[6536f9]: / neural.py

Download this file

146 lines (135 with data), 4.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from torch import nn
class DeepECG(nn.Module):
def __init__(self, input_shape: int, hidden_units: int, output_shape: int, final):
super().__init__()
self.block_1 = nn.Sequential(
nn.Conv1d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_2 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_3 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3,
stride=2)
)
self.block_4 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
)
self.block_5 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU()
)
self.block_6 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.Dropout(0.5)
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=final, out_features=output_shape),
)
def forward(self, x: torch.Tensor):
x = self.block_1(x)
x = self.block_2(x)
x = self.block_3(x)
x = self.block_4(x)
x = self.block_5(x)
x = self.block_6(x)
x = self.classifier(x)
return x
class DeepECG_DUMMY(nn.Module):
def __init__(self, input_shape: int, hidden_units: int, output_shape: int):
super().__init__()
self.block_1 = nn.Sequential(
nn.Conv1d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_2 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_3 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3,
stride=2)
)
self.block_4 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
)
self.block_5 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU()
)
self.block_6 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.Dropout(0.5)
)
def forward(self, x: torch.Tensor):
x = self.block_1(x)
x = self.block_2(x)
x = self.block_3(x)
x = self.block_4(x)
x = self.block_5(x)
x = self.block_6(x)
a = x.shape[1]
b = x.shape[2]
return a*b