import torch
from torch import nn
class DeepECG(nn.Module):
def __init__(self, input_shape: int, hidden_units: int, output_shape: int, final):
super().__init__()
self.block_1 = nn.Sequential(
nn.Conv1d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_2 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_3 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3,
stride=2)
)
self.block_4 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
)
self.block_5 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU()
)
self.block_6 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.Dropout(0.5)
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=final, out_features=output_shape),
)
def forward(self, x: torch.Tensor):
x = self.block_1(x)
x = self.block_2(x)
x = self.block_3(x)
x = self.block_4(x)
x = self.block_5(x)
x = self.block_6(x)
x = self.classifier(x)
return x
class DeepECG_DUMMY(nn.Module):
def __init__(self, input_shape: int, hidden_units: int, output_shape: int):
super().__init__()
self.block_1 = nn.Sequential(
nn.Conv1d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_2 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.MaxPool1d(kernel_size=1,
stride=2)
)
self.block_3 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3,
stride=2)
)
self.block_4 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
)
self.block_5 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU()
)
self.block_6 = nn.Sequential(
nn.Conv1d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1),
nn.ReLU(),
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0),
nn.Dropout(0.5)
)
def forward(self, x: torch.Tensor):
x = self.block_1(x)
x = self.block_2(x)
x = self.block_3(x)
x = self.block_4(x)
x = self.block_5(x)
x = self.block_6(x)
a = x.shape[1]
b = x.shape[2]
return a*b