|
a |
|
b/run_exp_2.py |
|
|
1 |
import os |
|
|
2 |
import sys |
|
|
3 |
import numpy as np |
|
|
4 |
import seaborn as sns |
|
|
5 |
import matplotlib.pyplot as plt |
|
|
6 |
from run import run |
|
|
7 |
|
|
|
8 |
from matplotlib.colors import LinearSegmentedColormap |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def run_experiment2(data_path): |
|
|
12 |
''' |
|
|
13 |
Function that conducts a series of experiments with varying: |
|
|
14 |
- number of segments used for training and testing (N) |
|
|
15 |
- segment length (T) |
|
|
16 |
|
|
|
17 |
Parameters: |
|
|
18 |
data_path (str): path to the preprocessed dataset. |
|
|
19 |
|
|
|
20 |
Saves: |
|
|
21 |
- CSV files for accuracy, training time, and evaluation time grids, and |
|
|
22 |
- a heatmap plot of model accuracy in the 'exp2_results' directory. |
|
|
23 |
''' |
|
|
24 |
|
|
|
25 |
segments_range = [500,350,200,100,50] |
|
|
26 |
seconds_range = [1,2,5,7,10] |
|
|
27 |
leads = [0,1] |
|
|
28 |
|
|
|
29 |
accuracy_grid = np.zeros((len(segments_range), len(seconds_range))) |
|
|
30 |
train_time_grid = np.zeros_like(accuracy_grid) |
|
|
31 |
eval_time_grid = np.zeros_like(accuracy_grid) |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
for i, num_segments in enumerate(segments_range): |
|
|
35 |
for j, num_seconds in enumerate(seconds_range): |
|
|
36 |
print(f'Training for {num_segments} segments, {num_seconds} s long') |
|
|
37 |
accuracy, total_train_time, total_eval_time = run(NUM_SEGMENTS=num_segments, |
|
|
38 |
NUM_SECONDS=num_seconds, |
|
|
39 |
NUM_BATCH=16, |
|
|
40 |
LEADS=leads, |
|
|
41 |
NUM_EPOCHS=200, |
|
|
42 |
DATA_PATH = data_path, |
|
|
43 |
FS=128) |
|
|
44 |
accuracy_grid[i, j] = accuracy |
|
|
45 |
train_time_grid[i,j] = total_train_time |
|
|
46 |
eval_time_grid[i,j] = total_eval_time |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
os.makedirs('exp2_results', exist_ok=True) |
|
|
50 |
np.savetxt('exp2_results/accuracy_grid.csv', accuracy_grid, delimiter=',', fmt='%.2f') |
|
|
51 |
np.savetxt('exp2_results/train_time_grid.csv', train_time_grid, delimiter=',', fmt='%.2f') |
|
|
52 |
np.savetxt('exp2_results/eval_time_grid.csv', eval_time_grid, delimiter=',', fmt='%.2f') |
|
|
53 |
|
|
|
54 |
color_list = ["#FCDDD9", "#FABEB7", "#FAA99F", "#FA968A", "#F87F71", |
|
|
55 |
"#DC7366", "#B15F56", "#884C45", "#593633", "#2E2322"] |
|
|
56 |
custom_colormap = LinearSegmentedColormap.from_list("custom_salmon", color_list) |
|
|
57 |
|
|
|
58 |
yticklabels = [int(w/2) for w in segments_range] |
|
|
59 |
plt.figure(figsize=(10, 8), dpi=100) |
|
|
60 |
sns.heatmap(accuracy_grid, annot=True, fmt=".2f", xticklabels=seconds_range, yticklabels=yticklabels, |
|
|
61 |
cmap=custom_colormap, cbar_kws={'label': 'Accuracy %'}) |
|
|
62 |
plt.xlabel('NUMBER OF SECONDS (T)') |
|
|
63 |
plt.ylabel('TRAIN SAMPLES PER SUBJECT (N)') |
|
|
64 |
plt.savefig('exp2_results/fig_exp2.png') |
|
|
65 |
plt.close() |
|
|
66 |
|
|
|
67 |
if __name__ == "__main__": |
|
|
68 |
if len(sys.argv) != 2: |
|
|
69 |
print("Usage: python run_exp_2.py <data_path>") |
|
|
70 |
sys.exit(1) |
|
|
71 |
|
|
|
72 |
data_path = sys.argv[1] |
|
|
73 |
|
|
|
74 |
run_experiment2(data_path=data_path) |