|
a |
|
b/neural.py |
|
|
1 |
import torch |
|
|
2 |
from torch import nn |
|
|
3 |
|
|
|
4 |
class DeepECG(nn.Module): |
|
|
5 |
|
|
|
6 |
def __init__(self, input_shape: int, hidden_units: int, output_shape: int, final): |
|
|
7 |
super().__init__() |
|
|
8 |
self.block_1 = nn.Sequential( |
|
|
9 |
nn.Conv1d(in_channels=input_shape, |
|
|
10 |
out_channels=hidden_units, |
|
|
11 |
kernel_size=3, |
|
|
12 |
stride=1), |
|
|
13 |
nn.ReLU(), |
|
|
14 |
nn.MaxPool1d(kernel_size=1, |
|
|
15 |
stride=2) |
|
|
16 |
) |
|
|
17 |
self.block_2 = nn.Sequential( |
|
|
18 |
nn.Conv1d(in_channels=hidden_units, |
|
|
19 |
out_channels=hidden_units, |
|
|
20 |
kernel_size=3, |
|
|
21 |
stride=1), |
|
|
22 |
nn.ReLU(), |
|
|
23 |
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0), |
|
|
24 |
nn.MaxPool1d(kernel_size=1, |
|
|
25 |
stride=2) |
|
|
26 |
) |
|
|
27 |
self.block_3 = nn.Sequential( |
|
|
28 |
nn.Conv1d(in_channels=hidden_units, |
|
|
29 |
out_channels=hidden_units, |
|
|
30 |
kernel_size=3, |
|
|
31 |
stride=1), |
|
|
32 |
nn.ReLU(), |
|
|
33 |
nn.MaxPool1d(kernel_size=3, |
|
|
34 |
stride=2) |
|
|
35 |
) |
|
|
36 |
self.block_4 = nn.Sequential( |
|
|
37 |
nn.Conv1d(in_channels=hidden_units, |
|
|
38 |
out_channels=hidden_units, |
|
|
39 |
kernel_size=3, |
|
|
40 |
stride=1), |
|
|
41 |
nn.ReLU(), |
|
|
42 |
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0), |
|
|
43 |
) |
|
|
44 |
self.block_5 = nn.Sequential( |
|
|
45 |
nn.Conv1d(in_channels=hidden_units, |
|
|
46 |
out_channels=hidden_units, |
|
|
47 |
kernel_size=3, |
|
|
48 |
stride=1), |
|
|
49 |
nn.ReLU() |
|
|
50 |
) |
|
|
51 |
self.block_6 = nn.Sequential( |
|
|
52 |
nn.Conv1d(in_channels=hidden_units, |
|
|
53 |
out_channels=hidden_units, |
|
|
54 |
kernel_size=3, |
|
|
55 |
stride=1), |
|
|
56 |
nn.ReLU(), |
|
|
57 |
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0), |
|
|
58 |
nn.Dropout(0.5) |
|
|
59 |
) |
|
|
60 |
|
|
|
61 |
self.classifier = nn.Sequential( |
|
|
62 |
nn.Flatten(), |
|
|
63 |
nn.Linear(in_features=final, out_features=output_shape), |
|
|
64 |
) |
|
|
65 |
|
|
|
66 |
def forward(self, x: torch.Tensor): |
|
|
67 |
x = self.block_1(x) |
|
|
68 |
x = self.block_2(x) |
|
|
69 |
x = self.block_3(x) |
|
|
70 |
x = self.block_4(x) |
|
|
71 |
x = self.block_5(x) |
|
|
72 |
x = self.block_6(x) |
|
|
73 |
x = self.classifier(x) |
|
|
74 |
return x |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
class DeepECG_DUMMY(nn.Module): |
|
|
78 |
|
|
|
79 |
def __init__(self, input_shape: int, hidden_units: int, output_shape: int): |
|
|
80 |
super().__init__() |
|
|
81 |
self.block_1 = nn.Sequential( |
|
|
82 |
nn.Conv1d(in_channels=input_shape, |
|
|
83 |
out_channels=hidden_units, |
|
|
84 |
kernel_size=3, |
|
|
85 |
stride=1), |
|
|
86 |
nn.ReLU(), |
|
|
87 |
nn.MaxPool1d(kernel_size=1, |
|
|
88 |
stride=2) |
|
|
89 |
) |
|
|
90 |
self.block_2 = nn.Sequential( |
|
|
91 |
nn.Conv1d(in_channels=hidden_units, |
|
|
92 |
out_channels=hidden_units, |
|
|
93 |
kernel_size=3, |
|
|
94 |
stride=1), |
|
|
95 |
nn.ReLU(), |
|
|
96 |
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0), |
|
|
97 |
nn.MaxPool1d(kernel_size=1, |
|
|
98 |
stride=2) |
|
|
99 |
) |
|
|
100 |
self.block_3 = nn.Sequential( |
|
|
101 |
nn.Conv1d(in_channels=hidden_units, |
|
|
102 |
out_channels=hidden_units, |
|
|
103 |
kernel_size=3, |
|
|
104 |
stride=1), |
|
|
105 |
nn.ReLU(), |
|
|
106 |
nn.MaxPool1d(kernel_size=3, |
|
|
107 |
stride=2) |
|
|
108 |
) |
|
|
109 |
self.block_4 = nn.Sequential( |
|
|
110 |
nn.Conv1d(in_channels=hidden_units, |
|
|
111 |
out_channels=hidden_units, |
|
|
112 |
kernel_size=3, |
|
|
113 |
stride=1), |
|
|
114 |
nn.ReLU(), |
|
|
115 |
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0), |
|
|
116 |
) |
|
|
117 |
self.block_5 = nn.Sequential( |
|
|
118 |
nn.Conv1d(in_channels=hidden_units, |
|
|
119 |
out_channels=hidden_units, |
|
|
120 |
kernel_size=3, |
|
|
121 |
stride=1), |
|
|
122 |
nn.ReLU() |
|
|
123 |
) |
|
|
124 |
self.block_6 = nn.Sequential( |
|
|
125 |
nn.Conv1d(in_channels=hidden_units, |
|
|
126 |
out_channels=hidden_units, |
|
|
127 |
kernel_size=3, |
|
|
128 |
stride=1), |
|
|
129 |
nn.ReLU(), |
|
|
130 |
nn.LocalResponseNorm(size=5, alpha=0.0002, beta=0.75, k=1.0), |
|
|
131 |
nn.Dropout(0.5) |
|
|
132 |
) |
|
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
|
136 |
def forward(self, x: torch.Tensor): |
|
|
137 |
x = self.block_1(x) |
|
|
138 |
x = self.block_2(x) |
|
|
139 |
x = self.block_3(x) |
|
|
140 |
x = self.block_4(x) |
|
|
141 |
x = self.block_5(x) |
|
|
142 |
x = self.block_6(x) |
|
|
143 |
a = x.shape[1] |
|
|
144 |
b = x.shape[2] |
|
|
145 |
return a*b |