--- a +++ b/RNN_ECG.py @@ -0,0 +1,90 @@ +import numpy +import matplotlib.pyplot as plt +import pandas +import math +from keras.models import Sequential +from keras.layers import Dense, LSTM, Dropout +from sklearn.preprocessing import MinMaxScaler +from sklearn.metrics import mean_squared_error +import pandas as pd +import scipy.io as sio +from os import listdir +from os.path import isfile, join +import numpy as np +import keras +from sklearn.metrics import accuracy_score + +number_of_classes = 4 + +def change(x): #Для получения чисел от 0 до 3 + answer = np.zeros((np.shape(x)[0])) + for i in range(np.shape(x)[0]): + max_value = max(x[i, :]) + max_index = list(x[i, :]).index(max_value) + answer[i] = max_index + return answer.astype(np.int) + +mypath = 'training2017/' +onlyfiles = [f for f in listdir(mypath) if (isfile(join(mypath, f)) and f[0] == 'A')] +bats = [f for f in onlyfiles if f[7] == 'm'] +mats = [f for f in bats if (np.shape(sio.loadmat(mypath + f)['val'])[1] >= 9000)] +check = np.shape(sio.loadmat(mypath + mats[0])['val'])[1] +X = np.zeros((len(mats), check)) +for i in range(len(mats)): + X[i, :] = sio.loadmat(mypath + mats[i])['val'][0, :9000] + +target_train = np.zeros((len(mats), 1)) +Train_data = pd.read_csv(mypath + 'REFERENCE.csv', sep=',', header=None, names=None) +for i in range(len(mats)): + if Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'N': + target_train[i] = 0 + elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'A': + target_train[i] = 1 + elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'O': + target_train[i] = 2 + else: + target_train[i] = 3 + +Label_set = np.zeros((len(mats), number_of_classes)) +for i in range(np.shape(target_train)[0]): + dummy = np.zeros((number_of_classes)) + dummy[int(target_train[i])] = 1 + Label_set[i, :] = dummy + +# scaler = MinMaxScaler(feature_range=(0, 1)) +# X = scaler.fit_transform(X) + +train_len = 0.9 +X_train = X[:int(train_len*len(mats)), :] +Y_train = Label_set[:int(train_len*len(mats)), :] +X_val = X[int(train_len*len(mats)):, :] +Y_val = Label_set[int(train_len*len(mats)):, :] + +# reshape input to be [samples, time steps, features] +X_train = numpy.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1])) +X_val = numpy.reshape(X_val, (X_val.shape[0], 1, X_val.shape[1])) + +# create and fit the LSTM network +batch_size = 64 +model = Sequential() +model.add(LSTM(512, return_sequences=True, input_shape=(1, check))) +#model.add(Dropout(0.25)) +model.add(LSTM(256, return_sequences=True)) +#model.add(Dropout(0.25)) +model.add(LSTM(128, return_sequences=True)) +#model.add(Dropout(0.25)) +model.add(LSTM(64, return_sequences=True)) +#model.add(Dropout(0.25)) +model.add(LSTM(32)) +model.add(Dense(number_of_classes, activation='softmax')) +early_stopping = keras.callbacks.EarlyStopping(monitor='val_acc', min_delta=0, patience=50, verbose=1, mode='auto') +model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) +model.fit(X_train, Y_train, epochs=250, batch_size=batch_size, validation_data=(X_val, Y_val), verbose=2, shuffle=False, callbacks=[early_stopping]) +# model.save('Keras_models/my_model_' + str(i) + '_' + str(j) + '_' + str() + '.h5') +predictions = model.predict(X_val) +score = accuracy_score(change(Y_val), change(predictions)) +print(score) +# Data[i - starti, j - starti] = str(format(score, '.5f')) +# Output = pd.DataFrame(Data) +# name = str(batch_size) + '.csv' +# Output.to_csv(path_or_buf='Keras_models/' + name, index=None, header=None)