--- a +++ b/CNN_ECG.py @@ -0,0 +1,139 @@ +import numpy as np +import pandas as pd +import math +from keras.models import Sequential +from keras.layers import Dense, LSTM, Dropout, Conv1D, Conv2D, MaxPooling2D, Flatten +from keras.callbacks import ModelCheckpoint +from sklearn.preprocessing import MinMaxScaler +from sklearn.metrics import mean_squared_error +import scipy.io as sio +from os import listdir +from os.path import isfile, join +import keras +from sklearn.metrics import accuracy_score +from keras import backend as K +import sys + + +K.set_image_data_format('channels_last') #For problems with ordering + +number_of_classes = 4 + +def change(x): + return np.argmax(x, axis=1) + +if sys.argv[1] == 'cinc': + #Loading of .mat files from training directory. Only 9000 time steps from every ECG file is loaded + mypath = 'training2017/' + onlyfiles = [f for f in listdir(mypath) if (isfile(join(mypath, f)) and f[0] == 'A')] + bats = [f for f in onlyfiles if f[7] == 'm'] + mats = [f for f in bats if (np.shape(sio.loadmat(mypath + f)['val'])[1] >= 9000)] #Choic of only 9k time steps + if not mats: + raise ValueError("No valid .mat files found with at least 9000 time steps.") + check = np.shape(sio.loadmat(mypath + mats[0])['val'])[1] + X = np.zeros((len(mats), check)) + for i, mat in enumerate(mats): + X[i, :] = sio.loadmat(join(mypath, mat))['val'][0, :9000] + + #Transformation from literals (Noisy, Arithm, Other, Normal) + target_train = np.zeros((len(mats), 1)) + Train_data = pd.read_csv(mypath + 'REFERENCE.csv', sep=',', header=None, names=None) + for i in range(len(mats)): + if Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'N': + target_train[i] = 0 + elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'A': + target_train[i] = 1 + elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'O': + target_train[i] = 2 + else: + target_train[i] = 3 + + '''Label_set = np.zeros((len(mats), number_of_classes)) + for i in range(np.shape(target_train)[0]): + dummy = np.zeros((number_of_classes)) + dummy[int(target_train[i])] = 1 + Label_set[i, :] = dummy''' + Label_set = np.eye(number_of_classes)[target_train.astype(int)] + +elif sys.argv[1] == 'mit': + print('In proces...') + sys.exit() + +#X = np.abs(numpy.fft.fft(X)) #some stuff + +# Normalization part +#scaler = MinMaxScaler(feature_range=(0, 1)) +#X = scaler.fit_transform(X) + + +train_len = 0.8 #Choice of training size +X_train = X[:int(train_len*len(mats)), :] +Y_train = Label_set[:int(train_len*len(mats)), :] +X_val = X[int(train_len*len(mats)):, :] +Y_val = Label_set[int(train_len*len(mats)):, :] + +# reshape input to be [samples, tensor shape (30 x 300)] +n = 20 +m = 450 +c = 1 #number of channels + +X_train = numpy.reshape(X_train, (X_train.shape[0], n, m, c)) +X_val = numpy.reshape(X_val, (X_val.shape[0], n, m, c)) +image_size = (n, m, c) + +# create and fit the CNN network + +batch_size = 32 +model = Sequential() +#model.load_weights('my_model_weights.h5') +#64 conv +model.add(Conv2D(64, (3, 3), activation='relu', input_shape=image_size, padding='same')) +model.add(Conv2D(64, (3, 3), activation='relu', padding='same')) +model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) + +#128 conv +model.add(Conv2D(128, (3, 3), activation='relu', padding='same' )) +model.add(Conv2D(128, (3, 3), activation='relu', padding='same')) +model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) + +# #256 conv +model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) +model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) +model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) +model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) +model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) + +# #512 conv +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(Conv2D(512, (3, 3), activation='relu')) +# model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) + +#Dense part +model.add(Flatten()) +model.add(Dense(4096, activation='relu')) +model.add(Dropout(0.5)) +model.add(Dense(4096, activation='relu')) +model.add(Dropout(0.5)) +model.add(Dense(1000, activation='relu')) +model.add(Dense(number_of_classes, activation='softmax')) + +#Callbacks and accuracy calculation +#early_stopping = keras.callbacks.EarlyStopping(monitor='val_acc', min_delta=0, patience=50, verbose=1, mode='auto') +model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) +checkpointer = ModelCheckpoint(filepath="Keras_models/weights.{epoch:02d}-{val_acc:.2f}.hdf5", monitor='val_loss', save_weights_only=True, period=1, verbose=1, save_best_only=False) +model.fit(X_train, Y_train, epochs=250, batch_size=batch_size, validation_data=(X_val, Y_val), verbose=2, shuffle=False, callbacks=[checkpointer]) +model.save('Keras_models/my_model_' + str(i) + '_' + str(j) + '_' + str() + '.h5') +predictions = model.predict(X_val) +score = accuracy_score(change(Y_val), change(predictions)) +print(score) +# Data[i - starti, j - starti] = str(format(score, '.5f')) +# Output = pd.DataFrame(Data) +# name = str(batch_size) + '.csv' +# Output.to_csv(path_or_buf='Keras_models/' + name, index=None, header=None)