1027 lines (1027 with data), 376.4 kB
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "ECG_project.ipynb",
"provenance": [],
"collapsed_sections": [],
"authorship_tag": "ABX9TyO0prtYilJLwoIgWqYim3nF",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/hardikroutray/ECG/blob/main/ECG_project.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"metadata": {
"id": "g4s82uBJWlj7",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f2a992cd-59ea-41b3-c703-4d5859d75685"
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib as plt\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sn\n",
"%matplotlib inline\n",
"%pylab inline\n",
"%config InlineBackend.figure_formats = ['retina']\n",
"from imutils import paths\n",
"import time # time1 = time.time(); print('Time taken: {:.1f} sec'.format(time.time() - time1))\n",
"import cv2\n",
"import pickle\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"import pickle\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "pluEuqpFYD0V"
},
"source": [
"\n",
"import keras\n",
"import keras.utils\n",
"from keras.models import Sequential\n",
"from keras.layers import Dense, Dropout, Flatten\n",
"from keras.layers import Conv2D, MaxPooling2D\n",
"from keras.optimizers import Adam\n",
"\n",
"from tensorflow.keras import utils as np_utils\n",
"\n",
"from tensorflow.keras.utils import to_categorical\n",
"from keras.preprocessing import image\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from tqdm import tqdm\n",
"from sklearn.metrics import plot_confusion_matrix\n",
"from sklearn.model_selection import train_test_split\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "cwJWpDYHJ0Fs"
},
"source": [
"from tensorflow import keras \n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Conv1D\n",
"from tensorflow.keras.layers import Convolution1D, ZeroPadding1D, MaxPooling1D, BatchNormalization, Activation, Dropout, Flatten, Dense"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JSElyJujYOGQ",
"outputId": "5dd6d0ef-4f92-4050-ee0b-216bcfbab84d"
},
"source": [
"from google.colab import drive\n",
"drive.mount._DEBUG = True\n",
"drive.mount('/content/MyDrive', force_remount=True)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"unset HISTFILE; export PS1=\"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: \"\n",
"bash: cannot set terminal process group (-1): Inappropriate ioctl for device\n",
"bash: no job control in this shell\n",
"\u001b[01;34m/content\u001b[00m# root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: umount -f /content/MyDrive || umount /content/MyDrive; pkill -9 -x drive\n",
"umount: /content/MyDrive: no mount point specified.\n",
"umount: /content/MyDrive: no mount point specified.\n",
"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: pkill -9 -f /opt/google/drive/directoryprefetcher_binary\n",
"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: ( while `sleep 0.5`; do if [[ -d \"/content/MyDrive\" && \"$(ls -A /content/MyDrive)\" != \"\" ]]; then echo \"google.colab.drive MOUNTED\"; break; fi; done ) &\n",
"[1] 158\n",
"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: cat /tmp/tmpxk3y3ecb/drive.fifo | head -1 | ( /opt/google/drive/drive --features=fuse_max_background:1000,max_read_qps:1000,max_write_qps:1000,max_operation_batch_size:15,max_parallel_push_task_instances:10,opendir_timeout_ms:120000,virtual_folders_omit_spaces:true --inet_family=IPV4_ONLY --preferences=trusted_root_certs_file_path:/opt/google/drive/roots.pem,mount_point_path:/content/MyDrive --console_auth 2>&1 | grep --line-buffered -E \"(Go to this URL in a browser: https://.*)$|Drive File Stream encountered a problem and has stopped|Authorization failed|The domain policy has disabled Drive File Stream\"; echo \"drive EXITED\"; ) &\n",
"[2] 161\n",
"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.activity.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fexperimentsandconfigs%20https%3a%2f%2fwww.googleapis.com%2fauth%2fphotos.native&response_type=code\n",
"google.colab.drive MOUNTED\n",
"fuser -kw \"/root/.config/Google/DriveFS/Logs/timeouts.txt\" ; rm -rf \"/root/.config/Google/DriveFS/Logs/timeouts.txt\"\n",
"Specified filename /root/.config/Google/DriveFS/Logs/timeouts.txt does not exist.\n",
"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: nohup bash -c 'tail -n +0 -F \"/root/.config/Google/DriveFS/Logs/drive_fs.txt\" | python3 /opt/google/drive/drive-filter.py > \"/root/.config/Google/DriveFS/Logs/timeouts.txt\" ' < /dev/null > /dev/null 2>&1 &\n",
"[3] 291\n",
"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: disown -a\n",
"root@b7c9efda8951-3fa0a08868c44e1badf05dfc7af50d5f: exit\n",
"Mounted at /content/MyDrive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "OneI2FHXYF8H"
},
"source": [
"# Enter the directory\n",
"!cd /content/MyDrive/MyDrive/ECG/\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "DKV8pm3NMi_c"
},
"source": [
""
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "jALJ2MIEH3ib"
},
"source": [
"# Importing any of these files is fine.\n",
"They differ by methods of preprocessing of the CSV files"
]
},
{
"cell_type": "code",
"metadata": {
"id": "DlqItrd6XNnX"
},
"source": [
"#Files 1\n",
"with open('/content/MyDrive/MyDrive/ECG/dataset_dict.pickle', 'rb') as file:\n",
" dataset_dict = pickle.load(file)\n",
"# Sets with truncated max and min to remove strays\n",
"with open('/content/MyDrive/MyDrive/ECG/dataset_dict_nominmax.pickle', 'rb') as file:\n",
" dataset_dict = pickle.load(file)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "zY9lmesoBffF"
},
"source": [
"#Full_no2\n",
"with open('/content/MyDrive/MyDrive/ECG/dataset_full.pickle', 'rb') as file:\n",
" dataset_dict = pickle.load(file)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NhNlh62VjOfY",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "e46d4ce0-6d61-4164-e455-7a513ac9ba94"
},
"source": [
"dataset_dict.keys()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"dict_keys(['XY', 'label'])"
]
},
"metadata": {
"tags": []
},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "y12V8VMrkh6F"
},
"source": [
"## Only use for XY, label when we import dataset_full"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tiPhEKAokmtU",
"outputId": "cf6370c7-4fc1-4983-e213-66043785db48"
},
"source": [
"X_train, X_test, y_train, y_test = train_test_split( dataset_dict['XY'], dataset_dict['label'], random_state=24)\n",
"print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)\n",
"\n",
"x_train1=X_train\n",
"x_test1=X_test\n",
"\n",
"y_train1=y_train\n",
"y_test1=y_test\n",
"\n",
"y_test = to_categorical(y_test1) #[:,1:5] # Since labeling is [1,2,3,4] instead \\\n",
"# of [0,1,2,3]\n",
"y_train = to_categorical(y_train1)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"(754, 673, 2) (754,) (252, 673, 2) (252,)\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "OAKau2s0iv40"
},
"source": [
"# x_train1=dataset_dict['X_train']\n",
"# x_test1=dataset_dict['X_test']\n",
"\n",
"# y_train1=dataset_dict['y_train']\n",
"# y_test1=dataset_dict['y_test']\n",
"\n",
"# y_test = to_categorical(y_test1) #[:,1:5] # Since labeling is [1,2,3,4] instead \\\n",
"# # of [0,1,2,3]\n",
"# y_train = to_categorical(y_train1) #[:,1:5] #one-hot encoding"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "uv-ZsQniIHqO"
},
"source": [
"Plotting an example to see if the coarse grained reconstruction looks reasonable. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "7GqJwWjSlCZ7",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 272
},
"outputId": "08b8ae18-3f2e-4790-cbb8-1cc2024e96a4"
},
"source": [
"plt.plot(x_train1[1,:,0],x_train1[1,:,1])\n",
"# plt.axis([0,400,-50,50])\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAH/CAYAAAD+E4rYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eYBcVZ33/a2l13Q6awMh0RiRfRMBRVHAZUYQxmUcx+d1BpzJiDzOwLyv+L6Kj4/vjMO4oCCgjzMOgmCYR1aFYVEEIktYA4EkZCVk6aQ7naTT6X2pqlt1nz86VX3OvefeulW3uuv+qr6ff/p21e2q03XqLN/z22K2bdsghBBCCCGEEB/i1W4AIYQQQgghJPpQOBBCCCGEEEKKQuFACCGEEEIIKQqFAyGEEEIIIaQoFA6EEEIIIYSQolA4EEIIIYQQQopC4UAIIYQQQggpCoUDIYQQQgghpCgUDoQQQgghhJCiUDgQQgghhBBCikLhQAghhBBCCCkKhQMhhBBCCCGkKBQOhBBCCCGEkKJQOBBCCCGEEEKKkqx2A8gUuZwNy8rO6Hs2Nk5+BdJpa0bfl5Dpgt9pUmvwO01qDX6nq0symUA8HivvbyvcFhICy8picHB8Rt+zo2M2AMz4+xIyXfA7TWoNfqdJrcHvdHWZM6elIN5Kha5KhBBCCCGEkKJQOBBCCCGEEEKKQuFACCGEEEIIKQqFAyGEEEIIIaQoFA6EEEIIIYSQoojLqvTaa6/hjTfewIYNG7B9+3b09/ejv78f2WwW7e3teOc734lzzjkHf/7nf45FixYFes2+vj7cc889WLlyJbq6ujA+Po6FCxfi3e9+Nz71qU/h/PPPn+b/ihBCCCGEkGgTs23brnYjgmJZFk4++eRA9zY1NeGqq67C5Zdf7nvf008/jWuuuQb9/f2e91x44YW47rrr0NzcXFJ7SyWdtqqWjrW3d3hG35eQ6YLfaVJr8DtNag1+p6tLmHSs4iwOANDR0YFTTz0Vxx9/PBYvXozZs2fDsix0dXXh6aefxuuvv45UKoXrr78emUwGf//3f298nVdeeQVXXXUV0uk0AOCDH/wgPvaxj6GtrQ3btm3Dfffdh0OHDuGxxx5DOp3Gz372M8Tj9O4ihBBCCCH1hyiLg23b2LZtG4477jjf+x588EFcc801sG0byWQSTz31FI444gjtnnQ6jU984hPYs2cPAOAb3/gGli9frt2zf/9+XHbZZdi1axcA4Ac/+AE+85nPVO4fckCLAyHh4Xea1Br8TpNag9/p6lI3BeBisVhR0QAAn/70p3HBBRcAmHRvWrVqleue3/72twXRcN5557lEAwAceeSR+OEPf1j4/eabb0Yulyuz9YQQQgghhMhFlHAohWOPPbZw3dvb63r+0UcfLVybREOe008/HWeeeSYAoKenB6+99loFW0kIIYQQQogMalY4dHZ2Fq4XLlyoPTc6OopXX30VANDa2oqzzz7b97XUrErPPPNMBVtJCCGEEEKIDGpSODz55JN44oknAExmV8q7LeV56623Ci5HJ510EpJJfz+v0047rXC9devWyjaWEEIIIYQQAYjMqpTnxRdfxOjoKIDJYOeenh48//zzeP755wEAyWQS3/nOd1wWh507dxaulyxZUvR91HvUvyWEEEIIIaReEC0cvvvd72Lbtm2ux+PxON773vfiqquuwllnneV6fmhoqHA9b968ou+j3qP+baVpbEwWMg3MNNV6X0KmC4nf6XySu1gsVuWWkCgi8TtNiB/8TstDtHDw4qijjsK5556LpUuXGp8fGxsrXDc1NRV9PfWevIWDEEIqyYH+MVx728uIx2L458vPwbz26S04SQghhJSKaOHwyCOPFK7Hxsawe/duPPnkk7j99ttxww034Je//CVuuukmnHPOOVVsZXBYx4GQ8Ej9Tv/4nrXY1TNp0fxf976O//6pU6rcIhIVpH6nCfGC3+nqUjd1HPxobW3FCSecgCuvvBIPPPAAOjo60N/fj8svv9zlztTa2lq4TqVSRV9bvWfWrFmVazQhhBxm485Dhet1b/VVsSWEEEKImZoRDipvf/vb8bWvfQ3AZND0v//7v2vPt7e3F677+/uLvp56j/q3hBAyHcRrcmYmhBAinZpdntTaCy+//LL23LJlywrXXV1dRV9LvUf9W0IImQ7iDI4mhBASQWpWOLS1tRWuBwcHtefe9a53IX74SG/Tpk2wLMv3tdavX1+4Pv744yvYSkIIcZOIUzgQUm1+++wOXH/36+jcRz98QvLUrHDYtWtX4Xr+/Pnac7NmzcKZZ54JYDKo+pVXXvF9LbVa9HnnnVe5RhJCiIE4hQMhVWV79yAeeWEXNu3qxw/ver3azSEkMtSscLj77rsL1+95z3tcz1988cWF69tvv93zddavX481a9YAmEzzmhcchBAyXVA4EFJdduydqtk0nvL3SiCknhAlHO64447CJt6LbDaLW265Bb/+9a8BTBZS+uu//mvXfZ/97GexePFiAJMWBZN42L9/P77+9a8Xfv/Hf/zHgosTIYRMF4xxIKS6tLU0VLsJhEQSUXUcVq9eje9///tYsmQJ3v/+9+O4447D/PnzkUwmMTQ0hDfffBN//OMf0d3dXfibK664wlg9urGxEd/73vfwpS99CZlMBj/4wQ/w3HPP4U/+5E/Q1taGbdu24d5778WhQ5MpEi+44AJ85jOfmbH/lRBSvzDGgZDq0tqsb4+sbA7JBA8OCRElHPJ0dXXhvvvu871nzpw5+NrXvobPf/7znvecc845+MlPfoJvfvObGBgYwHPPPYfnnnvOdd+f/umf4oc//CGtDYSQGYGuSoREi5HxDOa2NVW7GYRUHVHC4fvf/z5eeOEFrFmzBps2bUJXVxcGBgZgWRZaW1vR0dGBE044Aeeeey4uvPBCLbOSFx/5yEfw6KOP4u677y5YK8bGxtDR0YHTTjsNn/nMZ7TUroQQMt1QOBBSXXI5W/t9aDRN4UAIhAmHOXPm4KKLLsJFF11U0ddduHAhrrzySlx55ZUVfV1CCAmCc5MSA4UDIdUkZ7uFAyFEWHA0IYTUIqlMVvs9m8tVqSWEEABwaHkMjVE4EAJQOBBCSNVJO4RDxqJwIKSauF2VMlVqCSHRgsKBEEKqjNPiYGUpHAipJi5XJVocxNJ9cBRPvLIHgyOpajelJhAV40AIIbVIKqMLBVocCKkupuBoIg8rm8P1d72OwdE01u/ow9c+/+5qN0k8tDgQQkiVcVscbI87CSEzgVM4sHq0TLp6RzB4WPRt3Hmoyq2pDSgcCCGkyqTSjHGoJWzbpruZcJyuSk5xT2TQwKJ9FYeuSoQQUmWcm5KcbSObyyHBopPiODQ0gR/++nUMj6fxf//F6TjubXOr3SRSBs6sShQOMkkm9Tk0Z9uIx5juOgxclQgRzs6eIew9OFrtZpAQmDYllkV3JYn8+N51ODAwjvFUFi9u3Fft5pAycboqOa2CRAiOadSZwY6UDi0OhAjm9W29+Olv3gAA/NPfnI2lR82ucotIOZiEQyabQxMSVWgNKZeDg+OaiN/S2V/F1pAwuIQDN5wicbmcpbNobuTWNwy0OBAimLxoAIDbHt1cxZaQMFiGmAbGOciju1e3/L1jUXuVWkLC4o5x4HiUCAVg5aFwIKRGGBxljmqp2AavJAbXysO5SXH+TuTA4OjawDm3UgCGh8KBkBqBKTzlYhuUAy0O8shSONQMzr5Lp7PGcUqiDQVg5aFwIKRGyPKEWiym/SUtDvJwblKcvxM5OIWDDSBNMS8Ol8WBQe6hoXAgpEagxUEutjP1B2hxkAhdlWoHU9fxtFoetDhUHgoHQmoEnm7KhTEOtYHTVSnLMSkWk+hL87RaHAyOrjwUDoQIJhFnIZtagDEOtYHLvYUWB7GYDmK46ZSHOziafRgWCgdCBJNMcAjXAqaD6QwtDuJwbjadFggiB5NwmOCmUxymOg4kHNx1ECKYZIIWh1rAZHFgzIo8XDEO7EKx0FWpNqCrUuWhcCBEME5XJaYLlInR4mBxgZOGKx0rx6NYcgaDH2sAyMO5JlI4hIfCgRDBODcqEzwRE4lpg8kYB3kwq1LtwBiH2sA5BNNpzqthoXAgRDDOvOLjKatKLSFhMB1M0z9eHs4uo3CQC4VDbeDsx4kM18iwUDgQIhTbtl2n0hQOMjHVccgyxkEcWYd/C12V5GLKiMXAWnm4XZVocQgLhQMhQjG5soynuLBJxFjHweRkTSINXZVqB5PFjxYHeTin0TT7MDQUDoQIxemmBABjtDiIxHQyzaxK8nAHR1epISQ0dFWqDZiOtfJQOBAiFLPFgcJBJKYYB9ZxEIdTKDBORS7mrErcdErD6arEBCLhoXAgRChpQ7pOZuKRCYOjawNWjq4dTKmtGXckD+cQHEtlqtOQGoLCgRChZAxBXhZPqUVidlViX0rDXQCOG02pmPrOGfxOoo9TAI6O0yofFgoHQoRiinGgxUEmRosDTzfF4bQS0WokF1PfcUzKwynmx1IWkxaEhMKBEKGYKgvzlFomJrcIi4ubOJyn1LQ4yMW0uaQQlIdpDDKJSDgoHAgRCi0OtYPZ4sC+lAZjHGoHc4pk9qc0TP04Os44hzBQOBAilLQhxiHDzaZIcoa0SkzHKg+6KtUOxhgHzq/iMFmORiYoHMJA4UCIUEyuSrQ4yMScVYl9KQ13cHSVGkJCY4xxYIeKwyQAGSAdDgoHQoRiclVijINQmPqxJnDFOHCjKRbGONQGRlclWhxCQeFAiFBM1gVaHGRi2o9QBMqD6VhrB3MdB45JaZgtDhQOYaBwIEQoJpHAzaZMmFWpNnCeSNPiIBdT33FMysPUj6MTdFUKA4UDIUIxiQRaHGTCrEq1gcviwI2mWExdR/dBeTCrUuWhcCBEKOZqw1zYJEKLQ23gHJM2zH1Loo85OJpiXhpGVyXGOISCwoEQoZhOM02Zlkj04elmbWDabDLOQSbGdKwU8+IwFoCjq1IoKBwIEYppQsxwsykS21DHga5K8jCJeborycRUvI9iXh7mVNfsxzBQOBAiFJPVnDEOMmGV2trAaHHgkBSJ2eLAzpSGUczTChgKCgdChGKOceDCJhGmfqwNjP1IASgSo/sg+1IcpnWSVsBwUDgQIhRzjAM3mxIxWhzoFiEOxjjUDsbgaI5JcZiGH4VDOCgcCBEKLQ61g/mkmn0pDbpF1A6mGAfOr/IwVgDnmAwFhQMhQqHFoXagxaE2MMc4sB8lwqxKtYEp8QTHZDgoHAgRimnu44mYTBiIWRvQn7p2oHCoDUzTKKfWcFA4ECIUWhxqB3PlaG5SpEFXpdqBMQ61AQVg5aFwIEQo5joOOVaqFYixcjQ3KeKgq1LtYIpxyNk251dhmPqLfRgOCgdChGJa2GybpykSMfVYzrZ5Wi0Ms8WhCg0hofHqN86vsjC5JbEPw0HhQIhQvDJDMM5BHl76gK4RsqBbRO3gZSnimJSFMe6IBzKhoHAgRCheCxvjHOThZTqnCJSFaUyaLIMk+qiby5jyOJMWyMI0t9J9MBwUDoQIxWvuo2+8PLyEA0+rZcECcLWDurlsSE5tlSyOSVGwAnjloXAgRCheJ5kZKzvDLSFh8fSnpsVBFMZiU9ykiEQVfKpwoKuSLJjprPJQOBAiFK/JL8OFTRzerkrsS0mYNAI3KTJRPZJ04UAxLwm6KlUeCgdChOJ1kmkxxkEcnsHR9KcWhWlM2uxCkXhaHLjpFAWLMlYeCgdChOJtceBORRq0ONQGZlcljkdpOAOjkwnGOEjFWDmaVsBQUDgQIhTvGAduVKTh1WPMqiQLc3B0FRpCQqEKwHg8hkR8Kq8SXZVkYRuq5NBqFA4KB0KEos59TBcoHBabqgmM/tQ83RSHKhxisRgScboqScUYHM0lMhQUDoQIJeuRLpBZP+ThmY6VfSkG27bNFgduNMWhir14HEgmFIsD+1MUxoQF7MNQUDgQIhQG79UOapep/tS0HsnBy7DATYo81GEXj9FVSTJeVkCvwxpSHAoHQoRie1kcuFERh62JwKlNCoOj5eA17igc5KEeyiTiMSQSnF+l4jX+qBvKh8KBEKF4FyjiiZg01EWsQc3gwr4Ug1csA2Mc5OGOcaCrklS8U12zH8uFwoEQoegFihKFa06I8lAtDurpJk+r5eDVV+xCeegxDk5XJXaoJCjoKw+FAyFC0YKjaUoXjdpl6iaFi5scvMYd41TkoaVjjelinlZAWXgKB66TZUPhQIhQNL/4BroqSUbNNU5/apl4+lJzOIrD1+LAMSkKz6QFPJQpGwoHQoSixTiwsqls1KxKtDiIhC4RtYNucYghoaVjpRKUhJegpwAsHwoHQoSS88qqRB9ccWhZXJRNCk+r5cANSu2gdhljHGTjlXaVrkrlQ+FAiFC86zhwtykNdW1jlVqZeKZjpcVBHOpmM87K0aLx6i4Kh/KhcCBEKJ4WB06I4lA3KmqVWm465eCZVYnjURxql8VirBwtGQZHVx4KB0KEos57jXRVEo1ucVCEAxc3MXCDUjv4WhyYfEIUNi2BFYfCgRChaBaHBOs4SCanWRzixsdJtPF2VZrhhpDQ2A6LQ4IWB7F4dRf7sXwoHAgRCmMcagcviwMXNznQVal2cFaOVi26qUy2Gk0iZUJLYOWhcCBEKOrEl6SrkmjUOg7xuJpViX0pBQZH1w7qeIzFgObGZOH3iTSFgyS8XZVmuCE1BIUDIUJRNySNDI4Wjbq3VF2Vstx0isGrojBPNuWhDrt4LIaWpilX0Im0VYUWkXLRAt3Vxzkuy4bCgRChqB5JdFWSje1Rx4GLmxwsD0sf+1Ae6qFMLBZDS9OUxWEsRYuDJLSMdUnGj1UCCgdChOIZ40BXJXFoFgclgws3nXLwsjj0DU3McEtIWHSLg8NVKUWLgyRyHqmuaZkvHwoHQoSiZ1Wiq5JkPC0O7EoxeAmHVet70NM3OsOtIWGwXRaHKVelcboqiUKdQxM8lKkIFA6ECMWrAJzFCVEcOVocxONn6Xtjx6EZbAkJizMda4tmcaCrkiTU4Ogk3UArAoUDIQKxbTXvh9NViTEO0vC2OHBxk0JGGXdnHt+hPccxKQtnOtZmWhzE4lUjh4knyofCgRCB6MF7ugmWrkryYOVo+aiuSs0NCXzinKVTz7EfRaFXjoYWHD1Oi4Mo9EOZqXWSqa7Lh8KBEIGoiZPisRgrmwpHtR+xL2Wiuiolk3G9kB8tDqJQeysWi6G5UUnHmrK0zSiJNuoU2sC5tSIki98SHUZGRvDCCy9g9erV2LhxI3bt2oXh4WE0NDRg4cKFOOWUU3DhhRfiox/9KJLJYP/a6Ogo7rvvPvzhD39AZ2cnhoeHsWDBApxwwgn45Cc/iYsuugixWKz4CxEyg6gWh3g8xk2KcDyzKnGDIgbVVSkZj1MACsZpcUjE42hsiCOdycHGZPVoNdMSiS45D4sDrbnlI+abf/vtt+PGG29EKpVyPZfJZLB7927s3r0bv/vd73DCCSfg+uuvx7HHHuv7muvWrcNXv/pVdHd3a4/39PSgp6cHTz31FO666y7cfPPNmD9/fkX/H0LCoE56LuHACVEcmqsSA/hEolocEgmOScnowdGT/djSmEQ6kwYw6a5E4SADz+BoHsqUjZhv/s6dOwuioaOjA+9///tx6qmnYuHChUin09i4cSMeeughDAwMYMuWLbj00ktx1113YdmyZcbX2759Oy6//HIMDg4CAE4//XRccsklWLBgAXbt2oX7778fe/fuxerVq3HFFVfgzjvvRHNz84z9v4T4oVkcYjHtJIWbFHlofriaxaEarSHloMY4NCTjetwRa6uIwpmOFQCam5IYHM0LBwvzZjdVpW2kNHRXJa6TlUCMcIjFYvjABz6Av/3bv8W5556LRCKhPf/pT38aX/nKV/CVr3wFa9euRX9/P77zne/gjjvuML7et7/97YJouPTSS/Gtb31Lc0m67LLL8OUvfxmvvfYa1q9fj1tvvRVXXnnltP1/hJSCZnGIweGqxAlRGjlPiwPdzqSgCodE3Bl3xH6URE6zOEz+bGVmJZF4BUfT4lA+YoKjv/rVr+L222/Heeed5xINeebPn4+f/OQnBcvAiy++6HJDAoBVq1ZhzZo1AIDjjjsO11xzjSuOYfbs2bjhhhvQ2NgIALjtttswPDxcyX+JkLJRFza3qxI3KdJQF7ekllWpGq0h5WCpwdGJuNaPPN2UhZ3TLbqAs3o0MytJIec5t3JMlosY4TB37txA9x155JE466yzCr9v3brVdc+jjz5auL7ssss8A6mPPvpoXHjhhQCAsbExrFy5spQmEzJtuGIcaIIVjR7jwL6UiGpxSCbi7EfBmCwOekpWWhykoB6+JDkmK4IY4VAKbW1theuJiQnX888++2zh+oILLvB9rfPPP9/4d4RUk5zjRCxJVyXR6DEOMePjJNpo6VidwdEck6KwbZPFQUnJmqbFQQpexTU5tZZPTQqHbdu2Fa6PPvpo7bmDBw+ir68PALBo0SJ0dOgVPp2cdtpphWuT9YKQauAKjqarkmjUNYxpPGWScVocOCbFoo66vMUhHmdGHomofcXg6MpQc8Lh5Zdfxvbt2wFMxjyceuqp2vM7d+4sXC9ZsqTo6y1atAjxw9kxOjs7eQJIIoFex0F3b2GVWlk455QE6ziIRK2fkkjQfVAypqxKim7guBSEqtlZx6EyiMmqFITx8XH80z/9U+H3K664whVIPTQ0VLieN29e0ddsaGjA7NmzMTg4iEwmg7GxMcyaNatyjVZobEyio2P2tLx2Mar1vqQ8UmqKuWQCRyj9Z9vsT0DOZ5B1ZMiaN7el8HtDQ0LM/1HvJBqm1pr582ahSfk9maxMP/K7MDO07RksXLc0N6CjYzZaW6fSr7bNamJfVIjp/hxtxX40u22qD1tbG9mHZVIzFgfbtvH1r3+9YFE444wz8Fd/9Veu+8bGxgrXTU3B8jCr942OjoZsKSHhUTebiURMK2zDytGycJ5uxmN0VZJIxlLqOCTi2pi0OCZFYbI4qIkXeVotA9u2PYtrcm4tn5qxOPzgBz/A448/DgBYuHAhbrzxRjQ0NFS5VaWRTlsYHByf0ffMK+7eXqaalURf35SAzeVs9PdP/Z7J5uq6P6V9p9UNZywGjIxMJXSYmLDE/B/1zthYunA9OjqBdHLqXG58IhOqH6V9p6UzoKzD6fRk36UnpjIpDQ1PsC9CMhPfaTW2KAYgrWTDGq7zPpwzpwWNZVY/rwmLw49//ONCobd58+bh9ttvx6JFi4z3tra2Fq7zlaiLod43XW5KhJSCM6sSM7jIxc/iwAJwclBjixoSrBwtGfWU2mhxYHeKQB13iUSc1twKIV443HjjjfiP//gPAJO1Hu644w4cd9xxnve3t7cXrvv7+4u+fiaTwcjICIDJeAdVeBBSLdxZlfRATAbxy0HbpMCZvWXm20PKw7LU4GhnViV2pCRM6VjjTJMsDnXcJRMxZsaqEKKFw49//GP8/Oc/BzApGn71q1/hhBNO8P2bZcuWFa67urqKvkdPTw+y2cmczUuXLnVVmCakGjizKsXjMcQ8nifRJscYh5rAyqnpWGMOf2pajiRhSscaY1YlcaixRYl4TM+Mxbm1bMQKhx/96EcuS0Mx0QBMxj8sWLAAwKQo6O3t9b1//fr1hevjjz8+RIsJqRzOytGAI/CLrhFi0N0imC9eKpZWAC6OJF2VxOIU8wA0Qc9hKQPd4kArYKUQKRyuu+463HrrrQCmRMOJJ54Y+O8/9KEPFa6feeYZ33vV588777wSW0rI9OCMcQDgclciUnBYHFThwH4Ug+VbAI79KAlVGMQLFgeOS2lYjtoqPJSpDOKEw/e+9z388pe/BFCeaACAiy++uHC9YsUKWJZlvK+npwePPfYYAKClpQUf+chHymw1IZUlpy1seeHAjYpEco5NSpwbFJHoFgfdVYlFGWVhLAAXNz9Pootq6UvG4zyUqRCihMN3v/td/OpXvwIwFdNQqmgAJi0HZ5xxBgBg69atuO6661wTwcjICK6++mqk05Mp9pYvX64FVhNSTfQYB5OrEn2qpeDcpCS4uIkk62dx4HgUhdN9EADUKDIOSxlYjnpHCe1Qphotqg3E1HG46aabsGLFisLvl156Kbq6uooGOC9btgzHHHOM6/Frr70WX/jCFzA0NIQVK1Zg/fr1uOSSSzB//nx0dnbi/vvvR3d3NwDglFNOweWXX17Zf4iQENimGAdaHETi3KQwCFMmGYdwUEUfx6Ms1L6LMauSWLJacHQcMR7KVAQxwmHNmjXa7z/96U8D/d2VV16Jq666yvX4sccei1tuuQVXX3019u7di7Vr12Lt2rWu+84++2zcfPPNaGlpKa/hhEwD2SIxDnSNkIOfxYEbTjnoOeNjmgBkP8rClI6Vgl4eLvdBxjhUBDHCYTo444wz8PDDD+Pee+/F448/js7OTgwPD2P+/Pk46aSTcMkll+Diiy9mClYSOfQ6DpM/6aokE3VPyToOclEDMRsScViY+p3jURY5g6sSsyrJQ02DnEg4U11zTJaLGOFw5513TsvrtrW1Yfny5Vi+fPm0vD4h04E655lclWiGlYNucXC4RLAfxeA83bRtZjmTio0iFgf2pwgsR3A0rbmVQVRwNCFkkmKVTTknyoQF4GRi27aj2FTcUQCO/SgJU3C0HuMwww0iZZF1FGVMJhV3XtZWKRsxFgdCyBSmrEpM4ykTp9sZ/XDl4Yw5isdjSNgsyCgVUzpWPasS+1MClhZ3FEcyoQoHuiqVCy0OhAgka8iqpAkHLmxi0E83Yyw0JRAtX3zS4Dpo28zEIwhjjAMFvTj0rEoxJNXaKhaFQ7lQOBAiEL1y9OGfjHEQiTPGgRYHeWipWA9nN2OGLLnYhnSsaoyDzT2nCNQxl3RaHDgey4bCgRCB5IwxDubnSbRxWhwoAOWhF3+b6j+9CBz7UgqmrHWaRRfsSwlocUeJmCYcmOmsfCgcCBGIttlkjINocg5/amWvSQEoBHW4qcJPD5DmRkUK6rArHMxoFgeOSwlkHVmVVFGfoXAoGwoHQgRiFzsR47omBk0EQq2P+E4AACAASURBVN940r1FBqZgWoBFGaWipmPNd2eMWevEoY45p8WBWZXKh8KBEIHkHO4tAIP3pOKq46BZjqrRIlIqJtcWgK5KUnG6DwJMPiERyxF7xKxKlYHCgRCBFK3jwCMxMag9FWeMg0hMG02ArkpSydkGi4PqqkThIIJs1mlxULIqUciXDYUDIQIxFihijINInH3ptBxxkxJ9nFajPMyqJBNzjAMtgdJQxbrLVYnpWMuGwoEQgeQM6QIZVCsTp398PKaWmmKVWgl4WhziahYXdqQUzPOrUjmaWZVEYLmCo9WYIwqHcqFwIEQgxV2VZrxJpEyM1iPGq4jCmRkrj+6qxH6Ugm5xmPypWpJo0ZWBanFIOlyVKOTLh8KBEIEYK5uqJ2LcbIrBtOlknIMsTBtNwOmqRDUvBVOWLHVMcnqVgaXFOOgWB6ZjLR8KB0IEUsziwNNNOZg2naoIZF9GH0+LA12VRGKyAsaYVUkceh0Hp8WBwqFcKBwIEYi2UTk8iuneIhPdOmQ63WRfRh3TRhOgq5JUcjBYHLSsSjPdIlIOlhYcHUfCUceBc2t5UDgQIhCtUq0pOJqbFDGYLQ5Tj3HDGX001xYltD0Z5wmnRMwxDnQflIY65hKJycQTzHQWHgoHQgRi9MGlKV0ktuF0M8EqtaLQNprKqspNikyKza88qZZB1pFVCQCLwFUACgdCBGI8pWbwnkiM/tQMjhaFd1YlNf0j+1EKejpW/SdAMS8Fdczl3QZZBC48FA6ECMSYZ5ynmyIpaj1iX0aeQFmVuEkRg7EAHOOOxKFaFPKWBlocwkPhQIhAVPcWUyYebjblkDNsOrUNJzcpkcck/gCmY5WKqT91iwPHpAScWZUAh8WB1aPLgsKBEIGYKtUyxkEmRf2pKQIjj3dWpakllmNSDsXr5Mxwg0hZ6FmVDseP0X0wNBQOhAjE6IOrjGZuNuVQrHI03c6ij1eMg1aPg65KYtAtunmLAy260sg6CsABQIMqHGhxKAsKB0IEomdxcWfioXuLHPRUnpOwJocstIKMyuMJBrmLxCjmtToO7EsJqOlY865Kam0Vi+6DZUHhQIhAtBNOGFyVuEkRQ66Y2xn7MvKYXAcBRwE4bjbFYI5xYIpkaehZlQwWB1oBy4LCgRCBqMLBlI6VC5skTBmypp6lq1L00TeaU4/HaXEQickVlFmV5KEFR5tiHOiqVBYUDoQIRDvhjLtPxBjjIAdTIKZ6Kkbf+Oijbj80iwNjHERiSsfKrEry0IKjCwXg6KoUFgoHQgSi+VQX3FumnufCJgdTXzYkp6bmjJWd8TaR0rANFkCAQe5SMQW7x+mqJA7LYHHQ6jhY7MhyoHAgRCBFc/9zZRODKRAzqQoHFimKPJ4xDgxyF4mpoB9TJMtDDY5OsABcxaBwIEQgxtz/3KSIxNSXqqtShn64kcezAFyCYl4ixQvAzXSLSDmoY85YAI7CoSwoHAgRiDF4TzsRm+kWkXLRTqsP/9RdldiZUccUpwIwO5ZU1J4yF4BjX0pAszjEDa5KjDsqCwoHQgRiDt6jxUEiaSWGIS8YKBxkYYpTAZzug+xHKZhiHGK06Ioja0jHqgkHjsmyoHAgRCBFXZV4uimGifSUcGhuTAAAGpKJwmOMcYg+6v7DKx0rXZXkoMYwTMU4TD3PrpSBMX5MdVXioUxZUDgQIpCcIW88K0fLRBcOSQCMcZCGZ4yDUpCDYl4OxYoy0lVJBqZCqXRVCg+FAyEC0VyV4u50rMz6IQdVODQVLA4UDpIw+cQDzHQmFVN6XS04mn0pAn2dnPzJrErhoXAgRCAmiwN9cGUykbYK180UDiLxinGg+6BMTOl1dYvDTLeIlIMpVoVZlcJD4UCIQPQ6DoYCRZwPxWCOcWAdB0mYhDxAi4NUbNPBDJNPiMNkOUooFgeOyfKgcCBEIKYTTm5SZMIYB/mYspwBDI6WijriTMknGOMgA5PlKEErYGgoHAgRiClbBIP3ZEJXJfmYTqgBblKkYjqYYQE4eeRy7n5U10mK+fKgcCBEIKYJMaaMZprS5VDUVYnCIfKYTjYBCgepmNLr8mBGFrZtmwv5cUyGhsKBEIEY6ziwSq1IUiZXJcY4iMIrxkHdpFgck2Iwza/MqiQLTTTAw1WJArAsKBwIEYjxJEUL3pvZ9pDyMboqqSkDaXGIPLQ41BamNJ56jMMMN4iUjDreYh5xRxyT5UHhQIhANFelOIO+JGN0VWpQXZWyrr8h0cKUvQXgJkUqmsXhcOGw/E+AJ9USMIk/QB+fjHEoDwoHQgRiTBdIE6xImFVJPt4WB6Z+lIheOXryp7r55PQafUw1HACK+UpA4VDncFMik5xho8IYB3lkc7nCGIzFgMbDloaGZKJwD2Mcoo/JJx5wWgHZj1JQw2qnsirxYEYSgTKdsR/LIlntBpDq8dKmfVjx2Fac9M4F+IdPnaxNjCTamNIFxplVSRxON6X8GGRWJVmYTqgB1nGQCtNdy4e1VaYPWhzqmKdf34uJdBavbTmAPQdGqt0cUgJ65ej8T1ocpDGRcrspARQO0tCEPMwWB25S5GAKrNWzKs10i0ipeLoqcZ0MDYVDHZNVZr90hjOhJEyTIoOj5TGRmRIOTQ1T7klajANdlSKP6YQaoD+1VExuLqwcLQvbcLgGOF2VZrBBNQSFQx2T0CoocnMiCXNlU06I0jClYgVocZBGkBgHWhzkoGfkyWdVUp4HxUPUYXD09EHhUMdwAMnF6IPLoC9xqDUaVLFA4SALrxgHCgeZmDadsVhM61tOsdHGVlOWc0xWFAqHOkYbQJwFRWGq40DfTXnosSpT/UfhIAuTBRDg4YxUNIuD8nicmZXEoIl5ZRzq6yTn1nKgcKhj4koaHi5qsjBZHJhmTh5qP6mbzER8qtxUNmdzfEacXIDUjzzdlIOajlV1c4kxs5IYAol5dmFZUDjUMdqiluUIkoSxsqmW9YP9KQEvc3osFtOtDgyQjjTeBeBocZCIZ7A7MyuJgWJ++qBwqGOYz1guppNqnqTIQ1vc1F0J6K4kCe10U1lVOcfKxJSOFdDHKK260SZIHQeK+fKgcKhjGEwrl2IFijghykA9tVT7DwCSFA5i0MajVsdhqg+ZuU4OupsLjNd0VYo2XhaHeIxiPiwUDnVMkqdhYjFl/aAQlEfOww8XAJLqppOuSpHGc5PC002RBAqsZXdGGi/3Qa6T4aFwqGO4qMnFWDma/SkOU3asPMnE1O8W+zPSeLlF0J9aJl6BtTFmVRKDVx8y7ig8FA51DP1v5WKaFLXAPS5qIsh5uEQAQFKpHm3R4hBp9Cw8U48z05lMggRHszujjR6nMvU4D9jCQ+FQx1B5y0WbFFnHQSxe6VgBIKFYHJj1LNoEcYvg4YwcNCEID4sD+zPSmKp/A4xxqAQUDnUMFzW5mAoUMauSPLw2nADQQIuDGAKlfqT4E4NXJXB1jmVwdLTRxiQ8XJXYh2VB4VDHJHh6IhZTgSJaHOShxTg4XJUSFA5iYOrH2kKvr6JaHKbu4aYz2uhjUrnmmAwNhUMdQ4uDXExBtZwQ5eGbVYnB0WKwDVnOgMk+zf9mg5tNKXhaHLTK0TPYIFIyXjVymLAgPBQOdQxNdnIpWseB/SkCrR9dWZWYjlUKXsG0gB6rQkEvA9sj9ogWBzl4JZ5gnEp4KBzqGM3iwI2JKEwnnGrFWi5qMsh5uEQAurC36B8faUx1VfLEGecgDu+sSrQ4SMErfowHpuGhcKhjaLKTi7GOg3aSMsMNImXhl1WJ6Vjl4Gtx4DwrDi/XM55Wy8GrjgNdesND4VDHsIKiXMwWB2b8kIZfcLQW40DhEGm8NinO3znPRh/bVlNPAGpvco6Vg2cdB6ZjDQ2FQx3DkzC5FKsczf6Ugd6PzjoOqsWB/RllaHGoHZyiIeaZVWnGmkTKIJCrEjuxLCgc6piE4hTPASQLk0+1c+PJ083oY8qOlYfB0XLwcm0BdAHIeTb66CfV3tYjWhyije0RHE1Pi/BQONQxPKGWi6f/Jn1wReHn4pJkcLQYvArAAQ7XCArAyONnPWJWJTnkAlgcuO8pDwqHOoYmO7loxW3i5mueiEUfvw2nFhzNaPdI4+typm5UOCYjj1cqVoBZlSQRJKWubVMAlgOFQx3D7AJy8TKn04okC23DGXe6uNDiIAXNVcnxHOdZWfhbHNiXUvA6lInFYrTMh4TCoY6hyU4uQfKM85A6+tg+/tSMcZCDHVAAcp6NPv41OaaueVAdbfysgMyOFQ4KhzqGqlsuOQ/feF0McrMZdbyqmwLOdKwcn1HG9nE5S3CeFYXX3Ao4LA7ccEYav/gxHpqGg8KhjqHvrUycJyTqYpZMMoWnJPwKwKlZz1jHIdp4pX4E6D4ojYw1NdYakvoWiVmV5KCem7kSFsTV+9iPpULhUMfQ91Ymfj64DYp7S4abzcijLm6urEqqiwtFYKTxC3Ln6aYsLFU4JBwiUM2qxL6MNH4pklkELhwUDnWMtqBxYyIGP1O6ekKmnpyRaOJncWBWJTnYAf2pudmMPuqBSzKZ0J7TXJVmrEWkHNSR5nQD1TJKckiWDIVDHUMTukz8TlK0zSaFQ+TRCsC5CoepMQ7syyjjWwCO86woMgEtDjb7MtL4FvKjmA8FhUMdo6tuDh4p6Nki9Oc0iwM3m5HHPzia8SpS0NwHHc8xYYEs1HnTFeOgxh1xwxlpfOtxcEyGgsKhjuFJmEy0kxQ/9xZaHCKPtuF09GVDgsHRUvBP4TnVjzzdjD7qvKnOpwDQ1DD1ezqTnbE2kdLxiwVkRslwUDjUMTTXycSmxaFm8ItXSTA4Wgx+Y5IHNLLwszg0NUzFPKQoHCKNJubh7T7IIVk6FA51DBc0mdjw3mw20OIgCjsX1FWJfRllfDO48IBGFJY11UdOi0NjoyIc0hQOUUZPPKE/x/jOcCSr3YBSsW0bnZ2d2LRpEzZu3IiNGzdi8+bNGBgYAAAsXrwYf/zjH0t6zdHRUdx33334wx/+gM7OTgwPD2PBggU44YQT8MlPfhIXXXSRazGoBbigycQv6CtJi4MotFMxp9uZ8juFQ7RRZ0+mY5UNLQ61QdDaKtz7lI444XDdddfh9ttvr9jrrVu3Dl/96lfR3d2tPd7T04Oenh489dRTuOuuu3DzzTdj/vz5FXvfKEDVLRP/Og5TDzAda/Txq+OQSDAQUwp+MQ4UDrLQ6zj4CQfOr1HGL/EEq7mHQ5xwyGZ1ld/S0oKlS5diy5YtJb/W9u3bcfnll2NwcBAAcPrpp+OSSy7BggULsGvXLtx///3Yu3cvVq9ejSuuuAJ33nknmpubK/J/RIEEVbdIAtdx4Cl15PHrS9VNIsu+jDR+MQ483ZSFXsfBWzgwODraBK6twoySJSNOOLzrXe/CF7/4RZx00kk4+eST8c53vhM9PT346Ec/WvJrffvb3y6IhksvvRTf+ta3tNOiyy67DF/+8pfx2muvYf369bj11ltx5ZVXVux/qTasnigTP4sDsyrJws8PN6nVceD4jDJBYxw4z0afjJ/FQYlxmGCMQ6Txc+mlFTAc4oTD5z//+Yq8zqpVq7BmzRoAwHHHHYdrrrnG9eWaPXs2brjhBnz84x9HOp3Gbbfdhi9+8YuYPXt2RdpQbVjHQSZ+mxRaHGThXwCOwdFS8BPztOzKQhMOLosD07FKQV8n9ediHJOhqNusSo8++mjh+rLLLkMyadZQRx99NC688EIAwNjYGFauXDkj7ZsJtJMwbkzE4LfZpMVBFloxP1dNDqZjlQJPN2sHVaS76zgwOFoKfq5KCXpbhKJuhcOzzz5buL7gggt87z3//PONfycdLmgyUeWAKziaFgdR2H4xDlqVWvZllLF9AjHpqiQLX4tDI4WDFPyLMtLbIgx1KRwOHjyIvr4+AMCiRYvQ0dHhe/9pp51WuN66deu0tm0m4eCRid9mU6/jwD6NOr6pdRnjIAZdzPsUm6JwiDy6xUHvS83iwBiHSKNZHBw7XY7JcNSlcNi5c2fhesmSJUXvX7RoEeKHv3mdnZ3axk0yCWU08SRMDtpm0+neoloc6KoUeXwXN2ZVEoOfmNctDuzHqKNbHBLac3RVkkNQiwP3PqUjLji6EgwNDRWu582bV/T+hoYGzJ49G4ODg8hkMhgbG8OsWbMq3q7GxiQ6OmYu8LqhuVH7fSbfm5TPhLL3aEjGtX6bN7e1cJ1sTNR1n0r435PKRmTu3FatzW0pq3Bt5WwR/0+9kkxM9eO8+Xo/trdNpfBuaWkM1Y/8Dkw/ycapbdG8uS3aZ56BYgXkmKwI0/UZtrZO7W9mterjrqW5oXDd1tbMfiyRurQ4jI2NFa6bmpoC/Y163+joaMXbVA0SDL4UiZ7CUz9JaUwy64ckGOheG/jV40jE6XImCXXebHTEODQ3TYkKpmONNn7rJN20w1GXFoeokk5bGBwcn7H3G1dPNLM59PYOz9h7k/Lp65sSrjlHv42PpQvXI6PpuuzT/OmRhP99IpUpXA8Pj2ttVt1fsjkb+w8MuTalJBqom82BgTH0tkwtreMTSh+PTJT1vZT0nZbOyGiqcD0+ps+h6po5PmGxP0Iw3d/pkWGlH8cz2vtYzvFah/04Z04LGhvLkwB1aXFobZ1y50ilUj53TqHeNx1uStWAFU1lEriOA0+pI4+fxSEWizGITwh+MQ7sQ1n413HQK0fXSrxjLZJjprNpoy6FQ3t7e+G6v7+/6P2ZTAYjIyMAJuMdVOEhGaZjlYlffuoki4aJIufTlwDFvRT8CsDFmTNeFKo7mbOOQzweKzxmA0jzcCay+K2T6u+cV0unLoXDsmXLCtddXV1F7+/p6UE2O2naWrp0qeuUVyrclMgk51MRkxYHWfj54Tof46YzuvhZAdVYMs6z0SdjTbmxOC0OANDMWg4i8FsnaQUMR10Kh4ULF2LBggUAJkVBb2+v7/3r168vXB9//PHT2raZJB6LFQaUDQYJScEvzVwDLQ6i8HNxAVjhVAp+FgdadmXhZ3EAgKaGqcdYyyG66GPSJx0r9z0lU5fCAQA+9KEPFa6feeYZ33vV588777xpa1M10BY1ZvwQga3oAWfuf1ocZKGm9Y8ZZmNaBWXAnPG1g1+MAwA0spaDCOyAWZW47ymduhUOF198ceF6xYoVsCzLeF9PTw8ee+wxAEBLSws+8pGPzEj7Zoq4svPkxkQGfpsUtdJphhaHyOOXxhPgabUUdH9q/bkE/alFoVpqGwwWB1VM0KobXXxdldQxSYtDydStcDjvvPNwxhlnAAC2bt2K6667zpUhYWRkBFdffTXS6ckUl8uXL9cCq2sBbkzk4efeQouDLGyfrEoA/eOl4BfjQIuDLIpZHHT/+BlpEikDv+Bo1bprc0yWjLg6DkNDQ7jtttu0x/IZj/LP33jjjdrzS5Yswec+9znXa1177bX4whe+gKGhIaxYsQLr16/HJZdcgvnz56OzsxP3338/uru7AQCnnHIKLr/88mn4j6qLekJN5S2DnM/pJrMqycLvVAxwZOTh+IwsvjEOaqFN7jQjj2qpNcU40H1QBmrfuMS8ZnGYsSbVDCKFw89//nPP54eHh13Pv/e97zUKh2OPPRa33HILrr76auzduxdr167F2rVrXfedffbZuPnmm9HS0hL+H4gYCcVViadhMmAdh9pBE4GGrErM/iEDP/fBBN1BRVHM4qCn1+UcG1V8UySzcnQoxAmHSnPGGWfg4Ycfxr333ovHH38cnZ2dGB4exvz583HSSSfhkksuwcUXX1wzKVid8PREHn7+1LrFgf0ZdfwKwAF0c5GCNiYdz7GOgyysIhYHinkZ5MCijNOFOOGwZMkSbN26taKv2dbWhuXLl2P58uUVfV0J6BsTnp5IQM3k4VzYGLgni2J1HLjAycDf4sA+lIRucShSlJHdGVn0+DH9uRgTFoSiboOjySTaGsfxI4Kh0XThun1Wo/YcK2LKIuezuAG0CErB9olVYc54OeRsW7MKFYtxoAUpuuQ0VyVnjIN6H/uwVCgc6hx1QHH4yGBozFs4qPMji/pFn6IF4LhJEYFfsSktOJrug5HGslQ3pZjRRZmHMzIIWseBa2TpUDjUOZrBgQNIBJrFodUpHGJ0jRBEseBouhLKQBeA+nOs4yAHrYaDITAaoJiXguY+6HhOF38z1KAagsKhznGeUJPoMzSWKVzPntXgep7uLXLw840HuOmUguYW4VelloczkSZj+QdGA3p/8rAtutg+hzIJWhxCQeFQ58SoHMShWhzmOCwOALO4SEIL4CtqcWBfRhU/lzNaAOWQocWhZvCrkcPg6HBQONQ56nii8pbBsBLjMHuWQTjwREwMfsX8AG46pRC8ABz7MMoEsjhw0ykCv7gjWuXDQeFQ59RqfYpaxi+rEsATMUn4VTcFgESCBRolYEP1p/auUsvg6Gij1r7xsjjQCigDPysgsyqFg8KhzolpA6h67SDBsLI5jE5YACb7rq2ZMQ6SyRXJqsTTTRnk/CwO9KcWQ6kxDuzP6KIfyujPsRZHOCgc6hy9jgNHUNQZVgOjWxvNfvHKQzwRizZ6ATj387QeycD3dJN9KIZSsypRzEcXLTja11WJaZVKhcKhztHqOHAOjDwj44pwaHFbGwCecEpCXbOMFgf2pQh8Yxy4SRGDVjU6QIwDhWB08ctYx3Ss4aBwqHNYOFoW6olYMoAPLk/Eoo1fkSKAFgcp2D6blESccSpSCJJVifOrDHSLg/6cJhx4IFMyFA51jm5x4ACKOmpwZdKUhgdAnBsVMRSNceAmRQR+Fge6KsnBChDjQDEvA1+LQ9x8HwkGhUOdo5Vx4PiJPGr14ISXcFAD3rmwRRbbtn03nAA3nVLwE4D0iZdDqRYHHrZFF7/4MSadCAeFQ53DdKyysJRJLhHgRIxzYnRxigZjOlYKBxEEtThwkxJt9KxKXgczHJMSYB2H6YPCoc7R07FyAEUd1VXJ0+LASVEExdyUAPalBJzzpjvGgRtNKehZlRLGezgmZeBfx4GHa2GgcKhzaG+QhbpQebsqcaMiAbUvTYHRAJBgX0aedCZbuG40uLdQOMghiMWB/SmDwHUc2IclQ+FQ58SYXUAUWoxDEFclToqRRQ/eM9/DBS76pDJTY7Kp0X1KzT6UQ5A6DkyRLANfVyXue0JB4VDn6AXgqtYMEpBsEIsDFzYRFKvhADhPN5lwPIqk0lbhuqnBXzhkczYDaiNMsDoOU9cUgtFFd1XSn+MaGQ4KhzpHS8daxXaQYGgxDjSliyZIjIPax9ykRBPN4mASDrEYs9cJIUhWJdblkEHOz+KgpmNlH5YMhUOdoxkcuKJFHitAOtYYU82JQE8XyHgVqaTUGAeDcABoOZJCJkAdB7qeySBwcDT7sGQoHOocvQBcFRtCAqG7KgVJx8pOjSp+lU3zsC+jjyocmg0xDgBPqaVgKRZdb4sDx6QENIuDXx0HdmHJUDjUOboJnSMo6gRxVWLRMBloWT8CxKuwL6NJOj0lHEyuSgBPqaWQsab60tPiwBgHEfi5gjLGIRwUDnUOC8DJQrM4BAio5cIWXfxM6XnUk2r2ZTSZ0FyVip9SUwBGlyAWB4p5Gdg+Weso5MNB4VDnMGhPFno61uJ+8ZwUo4tWxyFAAThuUqKJ6qpEi4NsAmVVYl+KwC9rHdfIcFA41DkxqDEOHEBRR68czTzjkslqwdHme3hSHX2CuCqxH2Wg1nFIMsZBNLrFwSerEvuwZCgc6hzN4lC9ZpCABKnjwE2KDPoGJwrXbS0Nxnt4uhl9NIuDZ3A0x6QEgtVxYF9GHdu20TfkPb/qFocZa1bNQOFQ59BVSRaBXJW42RRBV+9o4XpxR5vxHm44o0+xOg4Ax6QUgtRxYF9Gn77BCUwctgTOak5ibluj9nw8Rk+LMFA41Dl6ATgOoKijuyox979kunpHCtdLPIQDfXGjT4quSjVDkDoO7Mvoox7KLOloM7gqsQ/DQOFQ5+gF4KrWDBKQIHUcGOMgg25NOMwy3sMMWdEniKsST6llYJVoceD0Gk26D/ofynCNDAeFQ53DAnCyCFLHgZvN6JOzbXQf1E/FTKh9zJOxaBIkqxJPqWWgWxxo0ZWK5gZ6hPtQhrU4wkHhUOfoFjwOoKijxjgkWTRMLOMpC+nDvvHNjQm0z2o03kdXpehD4VA7lNqXOUbWRpL+4VTh+oi5La7nGeMQDgqHOifG0uuisFRXpQBZP2x2aiRR/eKbPdxbAG44JaDHODCgVjLjKatw3dKUNN7Dg5noowrA5kZ3P+quSjPSpJqCwqHO0SwOHECRJ0hwtLbZ5GlKJAlysgnQF1cCal82eqVj1dxbeEodRaxsrmAFjCFYal1uOqNJMTFP8RcOCoc6hwXgZKGlYw3gqsTTzWgSVDjQ4hB9Sq0czX6MJhOqFbAp6VnNPUb3wchTbEzSBTQcFA51DgvAySIbxFWJm5TIo52I+bgqUQRGn7TqFuHlF6+MVfZjNBlT3JRamyjmJZMukulMz4zFPiwVCoc6Ry8AxwEUdYLVcZi65iYlmgQpGgY4NilZurhEEfWk2tNViZvNyDMRIL4BoJiXQHGLw9Q1XUBLh8KhzmE6VlnodRwCpGNlp0aScmIcGK8SPWzbxnhqqi9bvQJq6RoReYIERgOcX6OOlc3BOnzAFoO5Hocu/maqZbUDhUOd4+HGSSKKFuPglWecp5uRR3VVagwaHM2+jBypTLaweWxIxlltWDBjQS0OFIGRJu1IVuCsGg2wFkdYKBzqHDU4mqcn0Ud3VfLapNCfOuro6QLpTy0V1doQ1L2F/RhNxrUYB/alVFQ3UK+YI8Y4hIPCoc6hxUEWQVyV9BiH6W4RKYd0UFclnm5GmqCn1Kp1kP0YTYKKwAStgJEmUJYzzquhoHCoc/QCcBxAUadUVyVOitFEy/3vUTQM0LPx8HQzeowHzcRD14jIE9hVqf7n1gAAIABJREFUiTEOkSaIG6gzmyT7sTQoHOocbevJsRN5VFelpKerEgNqo85EwHSsPN2MNkEDarnZjD56XwazAlIERg/N4tBoXiNjsRitDiGgcKhzmFVJFoFclbTNJn2VokiQ3P8A/amjTjmZeNiP0aScGAduOKNHKvDcOnXNOIfSoHCoc3STHQdP1LG0AnBeMQ5MNRd1dFelYC4uPKmOHuVYHFiPI5pQBNYGgTPWcZ0sG+/RQeoCvQBc9dpBgqFuOoJYHOp1YVu3rRe3PLAeJy+bj89d8C4Ak/m9b3l4EwaGU1h+8Yk4an5r1doXtAAc+zLaBKnhADDTmR+2beOO329BV+8ILvv4CVh61OyqtKOcGAeeVE8vOdvGLx/djH2HxvDFC0/A245oK/o3qSJVo/PE6D5YNrQ41Dl0VZKF7qpUPMahXifE//nzF7B7/wh+/9Ju7Ng7BAB44pU9eHXLAbzVPYhf/X5LVduXSk9tUoLGOKjxLSQaBM6qxLgjT9Zs7cWq9T3Y2TOMG+9bV7V2TARNrcsYhxnj+Td68MKGfdixdwg//c36QH8TuLgmrbllQ+FQ59BVSRbZIK5K9MHV2L1/GACwesuBwmNb9wxUqzkAglsc1IxLalwEiQZlBUdzTGq8qYzFodF01dqRsabGpG+mM/bljLFpV3/h+uDgRKC/CSoc6HJWPhQOdY5aAI6iO/oEclVitgiN/KIQpY130MVN9dFNWzmejEWMwJl4aDnyxKva9kyTUeZWvzbRfXDmKMcVTI1x8Lc4KO/DfiyJaIxYUjVYAE4WpboqcWGb+gzUFKjVJqgfbjwWQ2OSVoeoEjQTT5Jj0hMvy+lMYykWh4ZkQIsDhfy0Us7Hm1atuYFjHEp/n3qGwqHO0WMcOHqiTsmuShHo0+7eEfzsgTdw/d2vY/Xm/QCAx1/Zg188vBEH+sem/f3zRfOcm+5f/m4zHn5+57R+73//Uid+8fBG9A6Ma48HPRUD9MVPdXEi1Yd1HMLjPN2fqXXo9y914rZHNuHg4OTYVC0ODT4WB2dCEfYnsLmzH//24AasfetgWX/fP5yanI9f2KX1fzmf7EQ5MQ5UDiXBrEp1DrMqyUJ1c/ByVYqaD+6vn9yGzZ2TvqrbugbR1JDA3Su3AQCGxzO4+i/fPa3vn87ksHv/sMvi8Nz6HgDAogWzcNYJR1T8fTftOoT7nt5++LcYLv+zkwrPBXVVyj8/jMzk36UtYFZjxdtKyqOs4OgIjMko4fw8Upksmhund2uydXd/YWwOjKbxtc+/W4txSPpYHPLFw/KCIZezEY+I1aRa/Oiu1wEAr245gFv+vwtKdj+78w9bC6Jj8cJZeM9xHQDCuyoFjlXh5qckaHGoczSLQxXbQYpj27Y2wXkJh1iENik52y5kNQImAxAfeWFX4fcNOw5Nexv+67md+OfbX/H8LJ56vXta3nflmq7C9Ysb9xWubdsOVN208HwDLQ5RRQ+oDRbjEAUxHyWclsCxCcvjzsrx0qb9heuNOyfnoKAWB4D9qZJy9F85Ae6qpeL5N3qmnijjo81YtDhMNxQOdY669aSrUrRxVo2OeQSoJCI0IR4cnHAtLD190++eVArqqXElGRozL6BWNlew7iUTMc9YlTyNmnBgjEOUUC2ASZ9TZwZHe+P8To/OgHAwnYgHjXEAeFqtMuwQCsNjmVCvp36c5Xy26YD9yDoO5UPhUOfQVUkOQdyUAMcmpcqd2n1gxPXYdG3U85RqZRmfpvYMj5oX0IkS4hsAoLmRwiGqBD2lTkZoTEYN53d6bCLcxjMIzg1lzrZdBzN+qFq/2ocz1WbQcUAyGDKlbthNvGYFTAbLqlTvfVgqFA51DoOj5ZAP8gX8M5Goi16108x19bqFg5MnX90D6/AGbH//GB5ctQM7e4a0e9KZLJ54ZQ+ef6On6PfUypbmzuMUDmu2HsCjL+4K5DKRzeXw5Kt78Mzabm3xyeZyODSc0u7N+94GzahUuEcRF6vW7cVjL+/GRHr6T2VJcbT0yAFTeOZy0XI3OzAwjgdX7dBcCmeSlCP2aGTc/N3esKMPDz2/0+UKc3Bwsv3buwcDv6fTWKuO9YZk3NOam6dWisDt7BnCg6t24IAjeUMpOA9IhsfSsG0bq9bvxROv7im4DvUOjOO+p9/C3Su3ofvgqOfrqcKhrKxKiquSn8UhzqxKZcPg6DpHc1WqWitIEKwAqViBaOUZ91sg8vz6yW1IJuK44IzFuPXhTdi+dwhPr92LH33lA4WJ/+m1ewsB1bNbG3HaMQs8X089cQrCuFIxtuvACH72wAYAkyb3//bRY33/9unX9+LXT062q721EWccDurrHZhwCZihsTQ6GlsCF3/Lowb4rd58AKs3H8DoRAafPf+Yon9LppdMOa5KEdul/OKhjdi+dwh/fK0bN/zDB9Dgc0o7HQSxOBwYGMfN969HNmfj4MAEll98IoDJzeh3V7yKobEMVq7pwg+/8gHfIPU8apVoADg0NFVcLEhgr3o4Ywl1PctYOfzortcxkc5i485D+NZlZ5X1Ok6XzKHRNN7YcQi3/24LgEmR9dEzl+CXj24uFN58Y0cfbjnxKOPrqYdd5RxmZjIBC/lFyKVXGrQ41DkxrQpK9dpBiqP64PpZHKIU9DUwEsxsveIPW5GzbWw/fOo5NJrWTsHyogEA7lKuTVglCgd1g//sur2F68df2VP0b//3E28Wrh96flfhesTg55s/KVWDQf0CavOYxMWjL3YW/Tsy/WQDFg2LWqazPKl0tjDmRsYzODSUKvIX09CGADEOT7yypyC4nlOCZ3/77A4MHR5roxNWoUp8MZxWxj5FOBSLbwCAdiWzWV/AisZRY9+hsYLb5PYQ1ianBWhoLI1fPzk1L+bnyD2K22pP35g2dlTU4eEcKkGEhB7jELSOQ3TGpAQoHOocBkfLwQroT52IkD/16Hhwf2Wna5BX7IFl+fv5l2pxUHFu5Etxe2ptnjrpnMi4254/mSs1xiGIOxOpDnq1YXkWh719ukUwU6KbXyVIpfX3HDVYHJx1UPI4XSGDWDgBd5yVKpgaAqRWXdzR5tkGKZTq0umFSziMpo0xIk6B6PVdU/chGcdcH8S6o/5No5+rUoQO2KRB4VDnMB2rHDIBs0VEKVXgSAnCwbkAObN15MkUWTzKWRDzi43zb/cf8s4A5UwjuWBOc+HauRkCpv4/dQFtLjHGgUSHXM4u+GDHYv7ug0nluSgJhy5H8oJqBN8HScfqJRyc8RFdvcGEg5/FIRnAVWtJxyzlPWUKB+cBS7lrhctVaSzjOtiysjnX997LMqy2w9nGIIdCaS042m+dVN6Th6YlQeFQ56gxYH2DE3hly4HCZJzL2Vi//WBg82+lyFg5vLrlAPYGPD2KErmcjXVvBfvM0pksXt1yAPsDVk9WT1v8LA5REQ62bYcSDs5sHXn8Fo9czsZLG3o8n/ei++Aonl7b7XJPemz1brz2Zi+6ekcwMp7Bs+v2YtW6vRibyLhOa9ds7UX34U2EczMETFZHXbO1F79T3IzKdVUCJqu1rtnai54+9zixbRtbd/dj6+7+ilgSc7aNjTsPaQGogyMpPPV6Nx5fvRurN+93nQ7WOlZANyXAe0xu3zuIDTv6qrZxcW6002nvPhybyODlTfsxOFJZd6YJx1gZUF5/dCKDlzbuc6Vw3tw5+d12FnV0buJzORtr3zqIzn36fOwUDmqMQ+kWh8nP0LZtvLlnAJt3HXKNuUNDE1i9ef+MJDUYm8hg1bq9eHbdXt/512l1SZc5fk0WB+fBlkmQelkc1EfTjrk+yKFQUFcl1eIQtRThUYfB0aTAk2u68OSaLnzwtEVY/okT8fTabvzn45P+id/78jk4an7rjLTjwVU78PuXd6OpIYHvX3EO5rY1zcj7VoKnXu/G/37iTcQAfLfIZ/bbZ3fg8Vf2oKkxgRv+/lzN1cVE0MqmUXGLmEhnS3p/58mVl8XBb/F4dt1erPjD1sDvmedf7njV+Pjzb+zD82/sQzwWw/z2Jhw87M/8ytYDeN+JR2r3jqcsXLviVXzv8nOMC6UaA5GnySd4b+oe8+KXr9bamIzjh3//AbS3Tvldb9rVjxvuWQsA+Opfno5T3+kdTB6E1Zv345aHNgEAvnXZmVi2qB3X371Wcw3507PfVjSYvJYoVzjkx8SufUP47oo1AIAvXXIiPnDKomlopT/dB50WB++x9fP/2ogNOw9h0YJWXPt379P+pzA4x0rvwNQm/t8e2FCoOq+S/+476e4dhW3bBUt6YT6OAf/6pfdh0YJJS0HYGAfV4tDdO1IQDdf9erJdV/75qYXqxxkrh+/euQb9wym898Qj8N8/dUrR1w/Dvz24AZt2TX5mL2zYh2v+6j3G+5yfQdrKobmMovTOug1Do2nXuue0DAHeB0BqcLRTOASxOAQOjla+v3f8fgvOPL4Ds5obir4+ocWh7okb0s49t37yxDYvGgDgt89sn7E2/f7l3QAmF5QnXi0eoBol8oFgNoD7n/b/zPKn26l0Fqs37/e9FwieM159Loy/f1jU06757U2YVUQYOd0RhjzqIPj9T+WIhiDkbLsgGgBg865+7WQ0TzqTw6MvdbpOQr2oRIxD2srhqdf06tf/67dvFK7//cENgdriR140AMA9K99C78C4y598y273Bq+WsQJmVAIccUeHN0b3rHyr8Nitj2yucOuC0e9IGWyKzQEmv/8bDldY7ukb0zbaYbBt22Xl6Bsah23byOVso2jwYzxlafEKhfnYBu7549TnPebIqjSoJHEIklVpQXtzQWCMTlhIZbK4U1kv1fH35p6Bwue8evOBUv6dsti6e0B7b6+6GE7hkCmzKr2zbsN4ynIdGPUb5kqvAyD1T90xDv5ttLK5gvVu0n3Qe1w6U+6uU6pXE38oHOocr3TVTlNrtU6ue/vLzy9dbUrxFw5yehfU4tCqpCOcruJmQVCFQ1tzAxYvnOVztzuwUbVAFCvINNNkczYGhs0WkX19Y0ZXJROl1nHwwnmip3730mVuCLzI5nLoOuB2j6rmd60ahHVVKtc1pJK4Tp09vivOuIMgNU6CkLFyrti68VQWYykLI2UWgvOKOci71ORsGxOO/1t1twlicYjFYmhvnTqdHhrLeI75mRwXplgCr7gPt8XB3P5DQxN4+vVuzZ0rTzaXcyXASFs5lxuUKUbFM8ZB2Xs4v4/FDsKcxd/86nE4/98ggpFMwk+qzvEaWM4T05kaVE7BMhSyfH018dvqOn2agwTJBs2q1NgQL1iS0lauYtkzSkVdUNpaG7D4iDafu+HajKqLeRQn9d5Bs6jtG5oILBoDWRwC3OPnI++XurccWpqShVgOlfFU9TfCM4kVMKMS4KgcfXhj51fVdqZw9pnJpQQwxB+FrA5ceD+PcXJwYML1nkHxEg75NS2VzrrEiuoSE3SuUVOyDo2mPetHzGTAuUm8mMYq4I5xMG3KbdvGj+9dhxV/2Iqf/uYN1/o8MpYxJlUZdridqu5nfu8H6K5KruDoImtZOmACEWDygCdIe4ib6K3GZEbxEuROf/MgpzBhGBnP4I0dfeh2nI70DowjY2Wxe/8wRsYz2HtwVJu89hwYweZdh6Z10A+NpXHw8ImJbdvo6h1BKpOFlc1h9/5hzwBkr63cwEjKlc0k/xqpdNYzpWBQi0MsFkNL09SmxLlAzBTDqnBoacCSjiLCwbHA5b+Dw2PpqmR7Kcb67X3Gxw/0jwf+zIMJh+JjL5uzC+PEubhXyhc9T0tT0rg5G09Z2nt3Hx4nKiPjGezzyVTl5ODguHZS3LlvuGJCOJezJ8dvmYHJuqtS6RaHIIHx00k2l3P1T/734bE09vePoXdgHAMjKddGsG/Q7apWCjnbxvbuQWzYccj4/I69g54xTsXY3j2EDTv7XEknxtMWrGyuqEtK0LVuthJT9PLG/S63rzzOuhSV+P6mM1l0HY6tACYL5G3Y0Wesw7Gte9CYHc4pGp3xBJPvkyskKencP6z9jwcHxvHCxn3G9jnjHowWh8Ofg3P9zKcQt23bZRXo6RstWLKzuRw69w0jq1Riz2g1cvz70dkvQd1LCYOj6x4vi4PztGc6T3z7h1P45i0vGs3k/cMp/I9bXtZ8ai/9+PH48BmL8eiLu/CbZ3YAAJZ0tOGfl59tjNkIw/7+MXz71pdhZW38P587Hbv2DeHBVTuxoL0Z7bMasLNnGB845Sh86ZKTAr1e575h/MuvXoFzr5K2Jhfxb97yIgZG0vjLD78LF77v7do9QS0OwOTmLj8xjqcsLXB2plBdlWa1NODoBaUF1w+NpnGgfwz/89bVrufUAMg81bKsmHhm7d7iNyFg5eiA1qh/XbEGew6M4MPvWaw9lwwpHJxCpKUpibe6Bl33ZXM20lYOTQ0JPPLCLvz22R1Y0N6E71/xfiQTcRwamsC3fvEyUpksrvjkyXjfSUe6XkNlw84+/PiedUgmYrj2S+/DA8/uwOrNB3D82+bi6184w9cNIQg33b8OG3YcwtknHIGvfLr0gNWwwdHOjY3pOz2dmCxEqUwWh4Ym8D9+8VJhPk7EY/jEOUu1+/L+/J89/524+P3vKPm9f/X7LVi13jv72Z2Pv4k/+0DprwsAa986iLUGcTCRyuKm+9YVAoe9KDa35lEtDitf6/K8zym6JtJZtLWUv55a2Rz+560v4+DgBD71wWVYtmg2brpvvef9L23cj5c27ncF4LtjHIpnPtqxdwjz25uxfnsfbrpvXeA2HzQIh/xBmLrxn2xH/nHbtU7e+shmJBNxfO/L78NdT27D69sO4pRl83H1598NIHhGJRP15moZBloc6hyvZcoZmDqdFod12w/6+mE7A/HuPBwA++qW3sJjXb0jvjn3y+XeP75VOFm86b51eHDVzkKbdvZMpvh7YcO+wJvWWx7e6JoMgclJ9Nl1ewuVlu996i33PapwSPpvMKIQ5zDqiHF4+5GzS/oejU5Y+OWjm42frel0zHnKFYYzj+vAxe9fWvzGkASJcWgOIC627h4oVGZ1BkqHjQ9xnsQl4jEcVNy01Fzp+e/ab5+dFPR9Qym8vGky8P/uldsKJ9q3PToVbO3Fj++Z3JhYWRv3rHwLa7ZOjvetewZCVzgem7AKp92vbCkvYLX84GjzSetMWwZN80IqncXjr+zR5uNszsbDL+wyvkb+4KZUgnzmK9d4b8adHF0kfgqYFEXFRAPgb81VKXYYk5+3nG5dQeOfvFi77WAhUcN/PbcTL24snlgDcAfgm7IqOXG2dUfPZIXpNVtLGzOm8Zr/fDKWPg7yVgavPYGVzeGWhzbh9W2T4nDDzkOF/0WPcfDvxz85623a7+MzkCq3VqBwqHc81rv+YX2zPp3BqeX4sh4YGMdYyp0GrtL0DQbLHmJyvzB9Yl75otNW1hh8pqIVgEv4byZVf9vxCgUylsqII8ahpSmJf/jMKTj31KOwoD1Yit03DSfbgHnTU6n+P+/0RfiLDx+DC9/3dsybPb2pgCsV4+Dn/pMIaS10FXgaTRc2zU2NCcxVPiNTv+QF5DalL4NUgFU5MDCuBX2GLbrlzKdfTr2TUiwOanG4/Hs5Bdl0zF9+GIVDJmus3FxJ0pms0S3k3FOP0sabU0j5jYP5s5uKijcn55xstngFtji0+qfuzB9kOF2uwrpdOv++3LEQJMbBZHEw/W0xnHMIMDUHWE6Lg5UXFN6f01vd+rqQf/10wKrRAHDRObpFv95itMJA4VDneLn27HdkMyoWlBSGYY+0m36se+uga6BPRyB10BNy0+RdylYkk8n55lAHHBuVIhYHVTg4Uw/OFKoPadvh/NinHbMQf3fxSXj7kbNDvbZROHgUjCuFc04+En9z0Yk4cl4rZjU34O8uPjH0a/pRKVclP8KKfuf4VE8P2w8LwjymDUXeZzlMQK07U0w44eBy0yhjfgvrqhRV4aC64EwHXuN06ZGz8Y+fPc343GUfPx4nvWOe52s2Nya0mINinHf60fjyn51snN+DzvnFPqd8fzr/37DCwTmenXGBQQmSVckpJnbsHUIqnS3Zim0Sinlh4MyulLd8mCwgXuTnqFKCo+e2NeFLl0zN785MW8QbCoc6x2tL4Qwss6ycZ8aNsHhVCPbjoed2utLAmRbedCYbqipr0EVke9eQy1dTPcUs9tmlrRxSaf8gukwJk6IaHD04WtlKr37Ytl1YGNWTS2dxu7DpfU0b1EpsvJwbea9MKZWiWAAfEExc+BE2ONq54VddB9tnNWpucaY+yOVs1xicH9DiNPUa+lhwbpZSmSz6Bicmv38B5innoUPGyiGby3mecuZfM6d8v9XxWSxzVcIRHN0/nHLVARkay2BswjLWB6kE+XZnczkcHBgvuLZp96SzJafvtbLFM7fl39PK5jzrsyzuaMOiBa3GhB2zWxt93fqaGhIlCZ58ATfT+A4azze7yPsdHJysR+H8f8Ouo5VKFOHc/I+Mu+dUp3Cwsjls6jxUEffXjJXDgf4xo+VjMjA6+PdwcDSNVDqrbf6DJB9oaay+S69EGBxd58Q8NhXOeIFV63vw3Bs9eN+JR+LLnzy5om0oJ3uGMyMC4N60vLlnADffvw6zWxrx///NWWgtoypk0EVk5WtdePuRetagdCYL27bxbw9swGvbevEX5x/j+fdpK+uyOFx18yp8/f86A8sWtQMo7YRTXRD/8/E3saC9Gae/a2Gg/6Vccjkb3//PNejcP4y/vehELde7syJnOa4hKtNlcXBu0lunWThkA7jsNCbjiKE0C5ZKaIuD43NVXdDaWxu1gN6f/uYNfOuyM7X7cznb5fJXTAw5A7IdukGzOLy5ZwA33rdO25CddXwHvvLpUzyDjZ2blf7hFL5z+zqMTlj42uffjWMWzyk894uHN+GljfvwkTOX4I0dfRgcSePKz56quVsVc29Rxdv+/nF87WfPu+557OVO/OLhjbCydtkB2yZs28ZPf/MG3tjRh4vOeTueW99TiKVyksqUfpp81U2r0NQQxzf/+kwcOd+dAKF/OIV/XfEq+odTaG9twJ+du8z4Oks6ZqGxIYEj5rW61p85sxp9Y32aGhMlJYDIZ3hraUq61o3AWZVa/NeTnz2wAUuPmu3KthR2418plxpnP9+9chsWtDfhzOOPKDxmcl9av72vIlbsH/3nGs/nMpa3iDfxswfecD0WpB+bVZdeZlUKDC0OdY7XlsKUd9m2gZc27UdPX/lp+ExUYsMHuDc4N9yzFuOpLA4MjOOh53eV9ZqlWCvylaDzpDJZ7Ds0hjVv9sK2/TNvZCxDasR0FtffvVa7J09xi4O+4b31keLBqGHZsPMQtu8dgpW18YtHNmnirsVhcXjP8R2er7MoQPYl0+J5aDD8Sa3zlKoSFgfV+uNk4dzmon8fi8VCuSup/vXl4GfJmd3a6Pr/nEGYaSvn2ggWCxB1ujY4YxJ6+sYKQvqPr3W5TnFf3dqrnajnKxHncW6aHn5+J/qGUphIZ/GT30xlqDk0NIEXN+6Djclg3QP940hlsq6g/WJxJIkA2ZJ29gwXxMgrWw54pvcslR09Q1j71kFkczYeeaHTUzQAQCqTK1k4pDJZDI1lcNfKbcbnX1X+l6GxDH73UqfrnkQ8VnA1WnaU7sYYA7BgTrPvCXJTYwLts4IfDC3OWxwM4yporMT89uJjt3OfO91vMZfUYoQJos8L8skieO4x+LMH9CrzJuGwe/+w8TtSyXiwdAU8HIrFOAD63ExXpeBQONQ55aT/23uwstmL1I3J0qNmY+GcZswpw8/W6VKhTnrl+kSXsog6sz+lMlmtaqdfJph0JocRQ4zGeMoqLDyWpWZx8R+6zpNyk4Wm0jg3dyOKkJvlEA4fOm0RPnjaImOA4dIA8Q+mRSWs3zvgrplQCeHgjCP6f//bu/GuxXPwuQ8fg4VzWgK2K4xwCGdx8BP27bMaXZ+RUySMpyzX2Cy2eXIeAji/v9mcXQgIN7ncAFMB44eGJvCNn7+Ir/3b84VDD+e4VoMt1excXlV3+4dTjvTIRVyVyijCV6ksS14Vzk2ky7A45NnWNWB83GTdyZOIx/DOo9tx5Z+fWnjsz859B45/21wsaG/GkfNa8BcXHIN5s5t8x0BzQ3CLw5xZjQWRYhrfQdN4trU04AsfOxbLFpUWrxV2QxzGpSbvhjaRchfBM2ESDk5x+fYj2vCJc5biXYqVLiwZKxc6ZjFIP2quSsyqFBi6KtU55aQNn1x8vU+MS8HK5gqbglgM+PZlZyEej2FnzxCu/dWrxr95z3EdeO3NXtfjfuk4y/XzLsUk6zwlTaWzrkJvXmSsrOcGrevACN5+5GxkslOvX6rFYSZwiplRzVVJb08iHsfyT5yI3oFxfOPnL2rP5U8D/XBaZ/KF+cLS3Ki3syEZRzIR1zaJnznvnXhp4z7PDFlOnN+9k94xHye9Y35J7QpSBM4LZ+xNqfhZHNpbG1BsaI2nLNfYLFZsycsPXqWrdwRHzmvF/kPmCt75wlWPvLCrkL7y/qe346rPnubaJLQ0JbWTeCubQzIR96y6O3nP1NarmMWhnPmnUjFlpVhNJ9JZbRx7zbUmyqmc/Nnzj3HVq1m0YBa+8Vfvcd3rG+PQmAxcUG+JMr+YXBGLiUCVj531NnzsrLfhiuufDlyENLyrknmDe/zb5mLrHrN4yzOWstDUmAgsPkxJA8ZTVuF/jcdi+Ke/PRuxWAy3Oazaixa0Bp4jnaStbOiYtZJdlZhVKTC0OJCSqcQGLY+6oZjd0lBYYP1Oj46cZz6l9ZtogrgKmAhzupPK5AJ/Vmkr5zplzbN19+RioOa7DlIAbqYxZeUAJidwr9MfZztjMeDoBcWFg9O6MTCSrohVxRSs3OpwxWluSHhafJzm8UrV82pqKN6fXm9VaupTJ34nf+2zGotaQ8ZT7k2Alc35xrkEcV/s7h1FT99XRNcSAAAgAElEQVSo58Y4H0D9tFKM7/VtB5Gzbde4HnN8d/JWE7/xW0pBxnKsPpUKgi0lnsgZ4+A115rwFA4+AqgU9yI/K2tjQxxtRWIO8ixWKtgbg6PLqFlUikVwOoRDIh7DsW8rfuKf/9ug65rJpVAdyy1NiYLXQoPjM5jbVr7rUiaTCy0cvNZTFdVVzbmmEG9ocahzyqm0XG76NxPq5KBmqfBbUEwBeMBkrvflP/gjmhoSmNumC48gJ36vbjmAu1ZuQzqTxeiEhY65zaEmr3QmG1g4DCq58Z3kM1zpBeD8FzfbYYgOUmgsLBkP9xNnRiUVp398W0tDoOwoj7+yB8+s3YsPn7EYF52z1PdkuBRMG4CWpqS2eW5qTHh+n+a2NeGAUiW1uTFRkYrWTY3FNzPvWNSOnYcLNKmEfX9/i0Oj8T1VxlKWUQikMlnPzWaQcdd1YMQ3HmbNm7146LmdrscfXLUTj7yg+9k7Xam+fdtqzGlrxKBPPIBqNSnmilTOPFsN4TAyntGC373mWhPNHnOM3/9RSkDzgE/Mx/BoGgvnBhM5Ryn/k9FVqYy6J00NCe1z82M6XJUWLZiFeQE26vm/9XOD+5c7XkFjQwL/+NnTjBaH/9PemYdJUZ37/1u9b9PTs68wDDDDvsmOiIgbKEYRRTFmI1GTKEa9V1x+mk1NRBOJek305gImJjeKYohXjbuAuAIubMq+LwMDM8zWM73+/mi6pqr6VFf13tX9fp6Hh15OV5+pPnXqfM+7CTPiCc+fdNNEeg+OhZ8v+0yxjcthihqvc4JRrVqK0aCDXsfBHwjC5w/C6wuA44A//nMLtu07hYpiG26+cgTKVY6tfIEsDnlOPDuix051JWUxBADt7t4LX3gTieafqLQL1uP1R9ShUCMcXlqzGy3tPfzONStAPBaCMRzjeIu8STd8DGG+a6UYB+lNJJzhKZXIpc+TZlQSIg3cNRn0quJb2ru8aD7djRdX70aH2yvrix4rLOEgzcZlMupkd5DHDha78NktRlE2q2i56GPtl5QxDeysWYleq9F27oqcZtSUOmTfB0KLFZYQiLagVBMYfOhEZ9TCdwCwiiEcXpWpgiwlmmgAxH1ULgAX+0SbaIXhMNICW4D6/sRicfD52PNLVOEQQyxbVWnvgl/a+/Iim+rFXa3A4iB1oQTUxziIP6N+KZWoIGQt+vuUOyLOJSt+TI3FYd+xduw42Iq/v71D0f1KKByk5yARi4Mapo2qjvp+Yx+X4jE4jhMJXrfHh893nMCXu5rh8QVw8HgH3vrsQMJ9zTVIOOQ58QRH+wPBuH0XpQhdBKQ70/MvaGDuCMWyCxZGacfP3ePD8RblHYpUEc2/MrxzEovFobGPC2MbexexwaCyX3miyN1kolkcpBgNOpS6rDhvTA1sZgO+N3OQ4meONHfKWnbUptMNw1qgVxRbI9pIx1OJ04wBNU586+x6XDG1HgZ96IY0e0o/XD19IGpK7agstuH7swbH1J8wJoXFzORhlZgwpJz5XiKuSsIYJCl9yx2oKLJh4tCKqDdpt5zFIcp4PNysLARPtnWrruyeDKQziLDSu6JwiCM4OlkxDqy6DMVOM+68djScdhOG9ivCFedEpkg16DmUqMgcFEZuMRptoRxL0bZJQyvRWFuIQocJ91w/Fovmj0Gh3YQhdUUYO6gMA2oKMXlYJVMMACGRMGlYBQbUOPnXyosjxUYsYimMdGOqMMpue6KCUHqeiwrMuGh8n4hzWchYuHfF4Kr08dZjEcXZpES3OKROOFQUWTF7Sj9cPKEPUwRXFNswc0JfxicjEd6f2jo8ONAkvpccUBmnmE+Qq1KeE68P9qETHehTHn2nUQ3CCUwqEi4c1wcXjK3FOxsOiVL9SXekZ07oiw+3HI0aHK2066pmoZIpmk+7EQgGY7I4cByHm68cgdueXMfv9rp7fCmNfZCLcbDH8J3hv+s7Fw/C9Rc1guM4/OWN7VE/cziKcJg5sS8qiqxY+trXzPelsFy6QjuUTb1tjJGuSo/8ZAovwr81tR6XTK4Dx/VaVH79wwkA4hPqQPQUkSP6l+CGy4bK+ugmYnGIdk39dE6ozoDRoMPd3z4L+4+141fPro9o5+7xMfsQbUGp1sVPmA0plYzoX4JbrhyBJSu+xDdnYo5OiSwOyXdV6k6SxYF1nkucFgzpV4wlt5zNj8mvdjVj79F2vo3VbFAsciZEzv3FE0UAFTB2xeUwGnS4+/qxCAaDfJ8fE/QfAG64bCiCwSB+vvQz0Zw+uK8Ld84fE3H9Ca0PQMgSU6kiHbQU6c/72M1n46l/bmEGlif6uwo3mR79yRQUOc3QcVxENjNWqtmYYxwUhINNZHEQf5/Tbkqo/kw07r5+LAx6Ha6Z0YC55w7AkhVf4ev9Lfz7v7lhouq5tqbUwVv19x5ti5h7Dp/oFI05giwOeU+8F0OyAqSFkyArwwWrf9LXvP6Aon+nknk4mQHfycbnD+J0hycmi0MYmyhrRGqDv5JlcQijdmwebGqXTREca0YhlsWhVpLlyWzSR+xySftq0OtEblgcxyV044nmahc+rNmoZ+YuT8TiEC3WQCpCq0vtzAVyFyOrEiB/TfZ4/DgRxfonXGwm6k6oltoyO4wGHVyCXPUtAouDkl+89LdXIySS5arEslyE3VqE/ZKmQbaaDTEF/bp7fEx3SLmFst1iiNkiCIj7LHd/kG4AGA16ZttKifXa5TDF1ydEzgcsVyEgMUtSUBLY77Sb+LEktTiYTZHzbvh+qzbVr1LAsDBGTZpYwmYxRNSfKS1Ub8GKhlCoG/S6iPkxlrlWaIHafaQtIl7O3eOLmko9HyHhkOfEu5T59ycHsP9Yu3JDBbqiWBzU4vMHFHfGogmH5lY3/qqwq51pHvnHF9hzpDcIVW0AnzVKurlPth7DYyu+xNa9p5LSR5ZLBBAZIxCNWHyFw6z+8gi/oy0NyFMKDJV+H1s4OCLaxJveN17UfB/HcUyfcZ8/EHd8S7TsRtLr1WjQRbh1ASE3OT/jd2Bdk2+tP4ifPLYm6i5lQ62y73KyCacIFsZhCQPmldKxSvnhpUNQVWKD2ajH+MFsF7PXP9mPJSu+wu4jiVlVWOeZlbq0RjLOY52P/YEgtu1vwR9e/AoffNWbyUquZkcs8Q2xIr2O5YqBRYqE+K5rVo1Fub8vEUHo8QX4a8mg14nmr2iFJsOseH8XfrnsM6xcs0fV9ymlE48W48ASnoP7xhfjJSUecSdH/+rebFSfft2EkwyRcOefPsKqD/YkNU5w0+6TePjvn+OR//0cW/cl5x6cLkg4nGHNmjW4/fbbMWPGDIwcORITJ07E3Llz8cc//hGnTmnrR42JBNY/z8tUCo2FaK5KYaL5iwKhCp5K2Tl6PPI7z29+dlD2PTWwLCXJRmqGVpsyUJhKVCjSOtxe/Pf/bcOWPafw9L+2sD4aM14ZVyW1aRKByN39WJEu8l0Oc4Q7hNAHepikngLLVUlaEdWo16EqjjibRIiWTrhc4JMt5zPOWrirQS4wmgP75i09/9GQ7rw2t7pVzSlqgh7jEaBAKFaFRTiuSm4uiiX3PwD0r3biwR9NxB9unSobm+Lu8WPznpP437cTm2dZC1UzI2ZGeu2xYgWUgqp///yX2LT7JJb/+xu0dvTIfj8QW0alWJEuWI1R6qAId8EH9Y1PlLJ2uOWuxURclYT3S2maaGkfymViNWLx2d+nsDko3BSSxmGFhIP4vFeXJja/h5G6BtYkcNz6qgLeahvNGvTKh/uwRyGDXCw89+Y32HGwFd8caE3KWiqd5L1wcLvduPXWW3HjjTfi9ddfx+HDh9HT04PW1lZs2bIFjz/+OC655BKsWbMm011NCdFM5ko3ib3H2mIqLsRCLBzYOyZjB5WhtswBDsD1FzUCAH56xXDodRyKnWZcMLZWMR94j1fe5Cqt+BwrroLYgsC+fWEjjAadKjcAud9A7ULFKuOqdLCp94bQ2c12MYgVlj+s2aSXXRiFue3qkTDoQ7vlV5zTP6E+1JY5cOf1Y6HTcShzWXDemBoM71+CfpUF4ADMP78Bt109CiaDDnaLAddd2IALxtUCCBW7YokcjuNw2ZR+AIAhdUUoL7Li8nPqUWg3waDn8LOrRibUZzVwknEQPmeFdhMun9ob2CqXkSreOAe5G6ncwjwW4SfdCZdeh6yxX15kxfTR7Gwq4d+xb7kDU0dWqe6HEFbihcbaQtRXhdwZxg9ij2U1Fodw/8Y0lKKi2BZyqTHqFXf2DzS1JxSnwlqosuqVDKgp5N2VdByHs0eEzuEPLhkMjgudm+ljalR/79EzMQZyYyiW+IlYkf59chYHAFhwyRAY9BxsZgPmxDn/sKZpuWtRLm21GoTnkrXJMWdaqP+NtYW4ZsbAhBfqSrVxhHO79BzbzIaIDYtiGWEejVEDSkTPhbFjYWZP6Qen3QS9Lvb52GIy4JyR4jmFA3Du6OqIee5YkpLCBINBkWVDuoGV7eR1cHQgEMBtt92G1atXAwCKi4tx9dVXo6GhAR0dHXjnnXewbt06tLS0YOHChVi+fDnGjh2b2U4nGdbyc0xDKS6fWo/SQgtufXydSBz84JLBWP76NwBCriknWt2oKIp/91W8g8IejnqdDr9cMB4dXV7e/DtucDkG9XXBag75ySqZveXM5YA4qPfs4ZX4cMuxWP4EuBwmvkotEEq5uW1fi2z7cYPKMGlYBUwGHW76Xa8gLXSYMKxfMT4SfP+ShVNx8nQ3Xv14HzZu7w20U5syUE44SNNYeryBhGs9CIXDDy4ZjL7lBagotkZUY5YyckApHrtlKiwm+cJqaqkps2PamFqMaiiDu7Obv8Hc971xovHz2C1TodeHFm7XXdCISybVRU0DO2daf5x3Vg0K7SZwHAe7xYhHfzoF3R5/TBaVeJEuouXOmVywabxxDnLBkXK/UzSLw/jB5bCaDVh7xo1Fek0KnzttRjx4wyTc88zHosXLb26cFKpW+/3xEYHY3zq7HpdO7ocCmxGvfSyu06CW4gKxD/aQuiL857Wj+d3cUpcVd8wbhcdWfCVqpxQcDUB2nCkJB38giMPHO1BX5YzaTg7Wwp3lqmTQ63D/98fhyIlOFNhNfD/PGVmNUQNK4bAa8cqH4vS2d103Bs+/t4vptuo/c9+QcxONJTA6VqQ1JaLNl4PrirBk4VQY9TrV1aelsC0O7L9PKeA4GsJzySoKedmUfpg2qhpOmxEcx+HXCyZg37F2PPjXDbLHvOXKEfivlzfH3JeZE/qKrvdIVyV9RAV4pfl99pQ6zDirFk67CU2numA06NDt8eOr3SejHsNhNeJ3CczH3581GLMm9UX3GXdep92EogIz5p03EE+8tImvyB0tWUQsSOMBrz2/ISnHTRd5bXFYuXIlLxr69euHVatW4Y477sBll12G+fPnY+nSpbjrrrsAAD09Pbj33nvh9SZn4GQL0p1MIDQB9K0ogM1ijJgMbGYjhtT1+ikeOp5YNiLhYtYS5QaqY/hvF9h6A9kUXZWimIeFE3lZHKn4pAsB6e6FdPfLYTPCbjFG3MyG1xdHWHAcViPqKgvQKPHrVrNQASTCQRDoJq17oDZYLhpewTl2WEL9VhINfHurMSl+q+EbWaHDLNqVko4fm0Xsf+tymBUD6qRtDHr11WoThRXjwDpncgI63h1ruUWOnMWhJkqmtYlDK0QLOumCVujS0lDrgsNqFIkGHcfxFlJWcSmLKVQDRBclMFUIaxdaKp5dDlPEuKivjlzAqx27rHGmxtVxXwIuEixXIZbFAQid49pyR8Sc5rSboNNFBh27Csyy/ff7g/D5e33ypdZtAyswIElIBUA0iwMQqrcSr2gA2JZ7uWtRzqVTDSLhIFMUMry5AYTmjX5VBcx2YWxmQ4Q7phqklnbpHGU2iotfGvS6iOtEeh/z+YJwOUJZoqpK7CgttEb8dnLXWqLzcUWRDXWVBairLODPh9VswPD+vdaARKtZhxHOq+lwdU42eSscAoEAnnzySf75o48+ioqKioh2CxYswLRp0wAA+/btw6pVq9LWx3TAWirpRIsj6U1OL9pl+J9Xt+G1j/fFvTDpUmFxUIOS24/HEyqAtv1AC154byeOnuxdOAtNx3J5ywfW9AZQNdQWit6TLq4G14kDwKSFiaRmVr5dkU02mFfqApJoViVW5ohEEZ6HaD7FqaS6NL2xB+kiWoyDEDmPs1ivz+0HWvD8uztxoInt4yx38y4ttMheiwNrC0WLM6mYFz5nLeJKXb3XpkMiDPQ6TtQnNYG3xYxrXa76sRC7xRix0EpE9KoJQt5/LH7hwLK2KtUFkSMy6Fje1crt8ala6KaCiBiHOGNe1MK6PGWDoxOxOAhdlVQKHaUMXlazIa5q2VLXYqlbklQgO+3GiPWE0y6+jpoYhVClG2xqN82ShTghQnKEgzcL7pWJoL0eJ4n169ejqSmUm33s2LEYOVLeL27BggX841dffTXlfUsrzHR2vY8jzI8Wg2gR2+P1Y+WaPfhg09G4vl5NcLQapDd86eQSRCggePH/foE3PzuIx1/axL8ndFWSEw7CALohEmFQINnlkO7WVZWo8zOtLrHLZiCS7uSqXagIz2m42F4wGIywOCRDOAgnw3gXJixYu8tyxFP1VQvYVe6kSYMRw/hjcFXy+vx4cuVmvLX+oMg9TojcQkzHcXwGIiAUtGg06DBzQl84bSZR/6QWh24F/+16gauOVHxLFy1SCyRrR5UVCC0VLHIBrjUSIZ9q4ZCIxYFV+FHO4qAEa0Eut+Hj7vGLfmPpuXVYU7fTKr0fJGJNUAPL4i13XpLnqqT+byoTiG7pJpTJqFOVbEMaLC/9+5Qyv9WUOiKuE7tkDLCuI+lYTWZGJTUIY3GSZ3EQXBcpFrWpQHs9ThJr167lH0+fPj1q2/Hjx8NmC+1krl+/Hl1dyQmQyQZY17pwp0B6gy52WiLS9gHAc2/Gl85UmCI0EeEwuK6IX/SfN6YGP7tqVEQbYXEjYZVo4YK3uNCCARJXhNlT6jBqYCmAkKiaNKwSw+pD5svG2kJcMrmO90EPVwaecVYoiLCowIzvXDyI332aNUlczXLaqJBbU3mRFSMHlOBbZ/fjJ8bvCqomO20mXrAM7utSPXkKTbcd7pCbXUt7T4RrUnIsDr2/ZTJ3+H56xQjZ96YM760UGw5gzkUuHFfL7/BdPX2AbLtpo6qZNyJvDBaHlg6PoutatPE3YUjIcmsy6HDndWPwpzvOxbwZAwGIBVBHt9jt0yNaFJ0pBHgmGYLJqIv6d0vpW+EQiQVWgD7L4hCKeWng+z9rIrv6rDCFqtmkx8Ca+OIPAHXXyv4kuyrFsuiM9jmTQYeRkuDVMO4escXBYtTjqjO/ocWkx3ln1cbVBzUMry+RPE9t8Ok1Mwby94AbZg8FELqPjm0sAwBRsdSEgqO90cW1HN+d2Vux/vqLBmHSsNA1WlViQ0WxTZXFQVqPR3q/HtzXxW+whe9/4XOh13G47sKGiHmjzGXDwitD8zsH4NLJdRHfG+mqlF6Lg3AjsK3Lo5jiWw3CMZDMTbZ0oT3nqiSxfXvvQnfECPmFCQAYDAYMGTIEGzduhN/vx65du6JaKLRFdItDOKVeGKfNBLNBn5SKkNJiNtL0crFg0OvwqwXjcfB4BxpqXdDpODzwwwm4f+lnfBu5OAePaKdch/+cPwZ7jrShosiK5tPdGFhTCJ2OQ2WxDXaLAaUuK265cgT2HD6NATUh94uHb5qMti4P+lWG/EnnX9CAcYPKUVvugMNqxIM/mogjzZ0YKHFz+u7FgzBpaAX6VDhCBaYcZiz+8WS0dvTwxwpz69yR2HPkdMQxouFk7JZIrQ1AkmIcJOcxWQysLcRDN0xEMAj84cWv0Hy6N/tOsdOMB2+YhKZTXSJ3slzDZjHitzdNxvEWd4SwFVLoMOO3N03GybZuPPfmdhw8k3oxFouDmhtjtMXuBeNqMaDayUyTLDL7S3bvWLup08fUoG9lAYoc5oiFvtGgky06aDTo8esfTsC2fS0otJtQV1kQkXaZZV00G3WYNqoa9dVOFBdYUChTWHLqiCpUl9rR3NqNIXVFMdUqiYfjLW50dccXX8es4xDnYkW6c2806DBucDnqq5zYKxE37h6fqLaL2ajHrIl90VjrQlmRNaXxQXWVBfjtTZOw90gb+lc7UZ5AAg81lLqsWPzjyWjv8qJOMG/fdPkw7Dx0Gv2rnbj5sbUIBIMIBEOxH/HsnPdIzqdahvUrxq8XTACn41BTakd9lRPnjKxGv8oC6DgOBoPyYjw0xnvnXqlw0Ot0+OUPJuDg8Xa+1srk4ZWoLLGhwGZEaaEVBzxi18e6KidGN5Tilz8YD7NRz8xqJj1PuhTGxrAQBrkfaOrAj3+/GheO64OrzxsY9zFFbr0atDjkrXDYu7c3O0RtrfLOR21tLTZu3Mh/NhXCwWQyoKwseiBTstHtiaxRYbOa+H4IXQAKbEb+9bJiG45LMvO4iuwxXQTdHp+omE11VeKFner69O4slZUVoE+FAwebQosnoyRQN/y3CP2/qyoL4bAaUVsd6ssgRvsw4Tas9wCgsqJ3IVsGoL4ve9erokK8EIw2BmprYjtHdYIbTWePH2VlBWjdHJk1ypCEsSccK5UVTpSpdNFSQ7hvdus2sXBw2TCwXwkG9ovc9Uz3tZRqygAMiNyQi2x35u8WFnlyFFhUn48OFTuiNqsx6vEqytnipk6QZcXt8YuOoRMsZkuKbPx75TLHMkmEg7Q/ZQD6nZkPWOmG6xhCs6zEgfJyp+x3ClHTJpnsP9qOIXHsnLNcY8pLHXFdH0WnxBW9w+dgzKDyCOEQ5DhYBELRbjOpPrfJoKysAMMbI+MWU/l9LKoqQ+PMbNLxFvZCly0usWkQZFJyOa0x/YbSttVVvePfblV2By0qsIiyZ9VWFaKM4X1Q10fsyiv83m7JUOxXVRDzmNDpuLTO7U6XWMz4/EH8+9MD+OGckXFb7o4JUrHabSbN3au0J3WSRHt77wVQVKRczVDYRvhZrcOKm5LLLlNd2jtJsC6YQ8djOy+7D/VWRJX6OiYLs0AsbD8gTpH6wjvb8cGXh3nff0DeR1yruAQ7pqfPWI/2MQItO91JcFUSml9T5FMs3eVKNIVsLiP0W/73x/uwV2UFYjWVbePdJRPu4Ld29KDT7cU7n+3HwaZ2SYyD8nxgjGGMseY01sJNTXB0OhHuyrOuWyWCwSC6PZHXdrzXjZwbu40xf+840IK/v/kN/zzbzm26Ec6J7204CH8cCUV6BL9lMs+nmhgHaUKCuISPxHrQtzJ2EZkMV6FYkKu1crLVzWitDuEcq8UYh7y1OAjjFCwWdkCsEGGbzs7EUpDK4fH4cPp0/IMxHlg31J4eL06ciBQBpU4z/7qDUVV0847jcKhceHt9Adz91Dr+udmoZ35noggtsG9+Is7t/rd/fyN6zgFoOdWpmJZTS/gDAd6trL3Tg2NNp7HnTE5qISdOdSZ8/oULlPbTXfD3JD91sTTNpq/HF9Hv8O5NKsaTlggGehcm7204iHVfHsbvbj5b0UXkRLNyZVkuGIzr/PoEY6S1vQdPPv85PtxyDHaLQVQR2iszBwmxSIRDLP0xG/Vwd/VEvN7t9mTVuBnTUMonnth/tC3mvnm8fmamrc6O7rj+znZJkb7wMYIMq8auQ2KhqkN+X5MGgep65p+b0dXZE3OcxynB+sDv8yftfAZViBjpnb2roxve7tiChVsli+0+FQUx/w0+XyDt46jAZoyIA9y57ySMcTpsnxDUfUKcc2miFBZaYVKZLl2K9qQOkVSULA4XT+gDILRTIKxQy6qweeiE+lL2hyWLkwHVqfFP7x/DcY1GXU6JBiDkdxoOSA0C6OjyMitlJzurUqr8NsskqW3J4iCPdHfP4wtgs6CQkhxycQPhIFgO4INcY8Vs1PM7bF5fgC+22Nntwxc7m0XtlAgnIpA+VtePyJzyar83FYQD+zmu18pQVWLDmIYyvk08mZVOnI681oH4/84BNYV83NRZjb19k6bmZNE/SmxOPiDN+PbcWztiPka8WZWUUJqvS5wWOO3iDYd45vgip5lPWjC6oSyuv0Fa6ygdSOsoAZGV7mPBm6JEIukiby0ONpsNp0+HdkS6u7vhcMgXLgq3CWO3J893O/NED46+4pz+qCqxo6bUjlLBom1gbSHumDcK72w8hE1nFiOHGUG3ckgLx337wtRUTrxsSj+8tf6gqjz2WsxuoAan3cRnVDrV3iMqqhUmUeHgD/QWeuKQupR50poYqU6zqGWk1aYBdS4JcsLhkkl1mDCkHCVOi+oUw1I4jkOBzaR401UjCBv7uHDb1aPg7vFh3OAyxfZCTEY984adKeFwyeQ6lLmsqCyxocRpwec7TmDkgBLRXLz/aBuCwWBMmxvSei1h4r1ujAYd7rpuDL450CrKLKWUEe+Hlw7hs23lK8lwSfGI0tsmb45lZVW6/qJGuBxmtHb0YHh9MdZ+FV/KdSF6nQ6LrhuDrXtP4aLJ9cofYMCKV0o1154/EHWVBfj7271i71RbpMVSLZ4UpS5PF3krHAoKCnjh0NLSoigcWlp6/eMLCrQVyBINls+qTiAmzEY9nzJUyvD+JSgqMPPCIRaLg7Dtt87ul7KsJGaTHvMvaFCVLlaLyl8NTpsRR848PtLMFneJCgdhfIPRkDrLTbmksnemFnpagDWepbUTWMjlmbeZDZgyvCrhfjntKoSDyt9VLhWoEhaTnm1xyJAFy2zUY+rI3nN7/tiQC0swGITVrIe7x48OtxetHZ6YqvzKzcmJLDqrSuwRwjFa8c4pwytx9ojEx43WYRX6cvf4YkpD3p0iiwNrQ+G8MTWieTzeIq9SKopsqCiyoUimZpISaQ5xABCK5zh/bC10XK+lKDGLAxWA0yT19b1q99ChQ4rthW2Eny7OBUgAACAASURBVNU8CgXglKgotvE7m6faelSnDBTuhNUyMjMkkz4qj6/FICU1CFOyyi0k3D0+HG/pwvpvjuNEHEFf6XBTAiJdlfI94DIarArlbkagrBTZFKdJusFJ41RYpFoQmo165i5rtglRjuNQI0hK8dGWo2hpV7/TKbXshkn2Lme0xa+aKt75AOucx2KlB1LnqiQV0QY9F7H5E0tK51SSCYtDGGFK6FMJCAcqAKdRBg3qTbS5efPmqG19Ph++/vprAIBer8fAgfHn7802lArAKWHQ60S7T6waASwOCXa+pVVYk43a4+dq1WFh7vxDx3uFg9Av+ZsDrbjnmU/wp1VbcPfTH4vS7qlBNBGmcPHlkuy2pjvDhpYwMnKzq7EsyRWLS9ZiU81CMpluGCzMpuxyVYqGsNLvyjV7cNfTH+GkTOyCFLmNgmQX0YoqHGSqb+cbrPEWi5UeELsqJXPTRNo3PUNU+wLJsTgkSibnfGHtF7XXIAuvyEKffXOOEnkrHM455xz+8Zo1a6K2FVaLHjduHF9FOhfgFGIc1FBd2ns+mlVkhQoGgzjd0ZuNQep+kmysZkNWLFYyhdC1YfeR3gDLymKxoAoK/t+0uxmxkKrib1J0HMcLQZNRh+rSXIo3Si7S3xdQKRxki6ol53dV42pjiTPbRzQuGt+Hf3zJpDpYGZnhstFtoEZiMfX5g3hn40GZ1r0EAkFZd4pkuxJGtziktjieVmDNi7G6u/SkKOW11OLAssadO7rXZTlceToTZHKvqKSwVzg0n+6O231LWnRWa+RtjMP48eNRXl6O48ePY8OGDdi0aZNsUbdly5bxj2fPnp2uLqYFjjFmdTHeVMTViZVdlYRZEXQcx3SpSDYWkx5tCsYQLV7AahAuroW58mvL7BFFm8KECxWpJVUmdBY/vWI43v/8MEYMKInJPzjfOHd0Nbo9Przy4T7+NXXCgf3bJ+v6UCP2UlFPZfaUfjAadCgptGBov1AhNZNBJ7qJxzr3pYNahsXUp8JtpKPby0zFmgqiZVUii0MI1s5yrLFlqYpxiLQ4RF4H/Sqd+OGlQ3DkZCcuHt83ad8dK5l0VbKaDShxmnGyrQf+QBDHTnXF5WpNrkoaRa/X45ZbbuGfL1q0CE1NTRHtli1bhrVr1wIA6urqMGfOnLT1MR0kw+IgvDG0dSnndRaaGnVyFYWSjDTnOwstmgzVIDexlRdZZXeRu2K8ofWIinel9jxWldhx3YWNGNE/vsDYfMFqNuCKc/rjpm8N41/rUiEIU21xUHOjTYW7m8NqxNxzB2D66Br+NWnMTDYitTgAQKEKC2pbZ2w59hMh2uYPxTiEYFm0YxUOnlQJBxUWBwA4e0QVrp4+MKO/aSbSsQoRXo+xupqFEQdHa2/dkdfbdVdddRXefvttfPDBB9i7dy+uuOIKzJs3Dw0NDejo6MDbb7+NdetCRcpMJhMeeughGI05ZnZNMMYBEN8Y2lXcrIS7ZaydjVRgUrGY1aLyV0Ox0wyr2RBxk3LaTHDKpMYMt23v8sBhNSqOiXRaHIjYEFplEnFVSpZ7S0WxFQa9TtbMr9dxKUvnK6XMZcVhmUxj2QKrYJ/cbyREzVycDgrI4gCALbzdPX60d3lgNRtUjflUbdCoiXHIFjKsG1Bb5hCloPf6AvD5AzFZv4VZCLW47shr4aDX6/HEE0/gzjvvxDvvvINTp07h6aefjmjncrmwePFijB8/PgO9TC3s4OjYjiG0OJxWY3EQXPn6NLkGqFnMZqN/czLgzsQFSCu5Ou0mOO1GWeHw0urdeP2T/Rg9sBS3XsV24wsj9L0l4ZBd2JIkHJKFXqdDdYkNB46zd+vSOX5KC+NLCZlphEJdDjVzcTooUJFFKx9gJRf4clczfvbEOtSWOfDz749TFA+py6rERX2eTWQ6IYbQdfCLnc147/PDCAaDuOu6s1BXqS5Vv9YLwGmvx0nGZrPhqaeewjPPPINZs2ahpqYGJpMJLpcLw4YNw8KFC/H6669j+vTpme5qimC5KiVicVCOcfBnwOKgZpLVovJXS/+qyKqt5UVWWf/jzm4fXv9kP4DQza21I3oKyB5PerIqEbEj9D9PJKtSMmG534RJZ9yKsChZNlc2njNdnMlPjXAQzsV1Fb0LmljqQMQCK82uWaZeRj4S7bZ66EQH9hyJXhnc6+stsqnjuKQu7qVzdrb9ZhecqWsCABcKkhxkAqGr5ZHmTrh7fOj2+PHCeztVH4MKwOUI06dPz2FxIA+zAFzMFofeG4aaGAd/BmIc1ARb5mqMAwDMnNgXzae70XSqCzodhwlDylFVYkeBjK/qgSZxOlalhYrwfaqtkF0IF+JqYldSbXEAgNpyO7CV/V46rQADawsx99z+2H6wFXOnDUjb98bK1ec34J+rd/HP1QgH4Vw8pqEUZw0qw+7DpzH33NT8nbfPG42X1+7BoL4uFNpN+GjLMcycmLkg2mxDqQ6CUkyKUPRbzfqkZsaSbiBlm8XhinP6o6vHB44DLpvSL6N9qSwJ1a7ySywf+2JIYa71AnAkHPIc1uQT64RUIMqq5EEwGIx6DL8gH7QhXcJBRXrHXLY4uBxm3HLliIjX5YIspZOiUsVhinHIXpIV45BMogVIpztg+dLJ/XDp5LR+ZcwU2Ey453vj8du/rAegrgK4cCHqtJswfUxNlNaJU1dZgNvnjeKfU7VoMUqpO9sVNt3EwiG5SzepO5lccHSmsFkM+NHsoZnuBoCQNaayxBZRvC+WeYuyKhGahrW+j3Ujw2zU84Fa/kAQ7h5f1JRpmciqpM7ikH+Xg9rARWEwFwuxq1L+ncdsxmLS89e0xxtQXMBkWjiUurQZd5BqhLUtPGpclbp6XZUoQDnz+BR889u6orv5Cq2FtiQLB+kGUjYHR2cDrPkrFhdAr1fbrko0OvKcZFgcAKBQcGP665vbcduT6/DuxkPMtmJXpfQMQVUxDnm4Uy4NNJP75bu90XeqRRYHclXKKjiOg1Ww6OxW2K2Wq+OQTFwO+YWsFlKkZgLhddWtJjhaYHFQk76VSC1Kgj02V6XkCgeHxOKQjfVMsglWbRV/DLFhwhgHLW5Yaq/HRMqJxwhQIKgO+tnXx9He5cXf397BbCsUDmlzVVIhCvLRxUY6AVpkbkg9nuiTonAHVE3NDCK92ARVkpUWKCyLQ7LN6dE2J0g4sBEuFpWuR0Ds+kKZjTLPAIXge6X4QGFRzmQLB2kdDrcntvoS+UbfisjsST0KVnkhXd291iUtrjtIOOQ5rJ2FeCwOsVQHFQaJpc1VScUueEVR/i1YhtYXY8KQcpQWWnDntaNhk6kAq+QaIbQ45KPlJtupLLbxj48o1C0QZlUqdppRXmTFHdeMTnqf7rpuDMoYbkkkHNgIkw6ocVUS7lALhSORGaaOrMLogaWoEFyLQjJpcYj4rm4SDtEY1q8YYxvLRK+pSVgAhAR92C3NZNClLMtZKqHZJN9JQowDIF8dlBUoLarjkEUWh2gpInMVHcfhx5cP55+HbkiRqVeVJkWh+4sWd1ByndoyB7bsPQUglPpx3OBy2bZCi8Otc0cyd9eSwaC+RVj84ylo7ejB3c98DI83AJfDxEzrSYg3P5Sux2AwmNIdaiJ29DodXw9nwcPvRbyvFOPgTmGMgxQ12dfyGZ2Ow81XjsDRk534f3/+FIB64XBIEFRdVWpP2+ZpMqHZJM9hFoCT9XSXR87i4A8EI1K7ieo4ZJFwiOZ3nS/ILTCU/OI9FOOQ1dQIXNIOnVCwOKTZ/9blMONnc0fiwy3HcM7IqqSmmcwlhMHRSjEOPV4/v0FjMuiyLi8/EUlMFgdLaufYLrI4qEK4rlAvHHoLX7JiJbQACYc8hyUS4lnLy1kcvL5AxE1LmI41XcJBjfsMLVjkhYOyqxJVjs5mhFlAPt9xAg89twFXnTsAg/oWRbTNRHGiIf2KMaRfcVq+S6uIXJU8/qhpr8naoD3cPT54fQFZsd6VRlcltYvgfEd4TapJkQwAh0XCQZteDrQNke8wXZXisDiorAcgfS1dZjqlomTl5FcNAHBY2W4isRSAI+GQfVSX2kTxTLsPt+GlNbuZbdNtcSDUodf3Wg6CiJ42N52LTCJ25IocRqvlkOoYh8F9XfzjusrUuCfmGiaJxSFaGvowQosvCQdCk7CDo2M/jpxfMuvmJkwBmq580dEWs1azHgvnRhZHy0fOHlHFPFcxCQdyVco6jAY9zh9bK3qttT0ylgUQB0eTcMguhPVool2T6QykJWLnxsuGwWLSw+UwiX4fTxQxmOoYhx9eOhQFNiPsFgN+MGtw0o+fixj0Ot5rIhhUTrkbCAZFhePIVYnQJqm2ODAuJGEhnPS5KrEXQEsWToXdYiAf4DMMqSvCkoVno63Tg28OtOLZf38DQEXlaAqOznrmX9CAKcMr8atnQ9WH5RYpPrI4ZC1mkx6dZ/zPezx+FLAT9EgWmXQ9ZhsDawux5JapMBg4/Gr5ehw6Efq9ormEploMlhRa8Pubz4Y/EKQ5PAbMRj1v4evxBmCM4t7ZfLqbF/wOq1F23ZTt0F0hz2FZHOKq4yATHO1lCIdABoSD3ERoM5NokGIxGVBeZBP7b8bkqkTnM1sRpjplCQd/IMC7EnJI3/VJqENtMCZZHLIfs0kPvU4nWmhGdz9LfdyKQa8j0RAjosKMCvUvDh8XB0ZrNa6SZhQigngGs91igF7HRcQ0CDMo8a9lUYyDNOMT0Yt4kSJ/Q9t7tE2UdYnqOGQvQsubV/KbNrV04dUP9/HPjQadZm9suYraa5JiHLSDsLgiS8yfauvG65/sx96jbfxr9JtmD2qvSUCaUUmb8Q0ACYe8J1kxDhzHocBmRGuHOLjLF2DvaobJdFYlWhjJo3Z385lXtvKPDXqOLDhZjF7HgeNC/riBYBA+f2/Wsz+t2oIDTb03NnJTyj6E12S06r5kcdAORqGY90XOs6s+2It1m4+KXkt1HQdCPcJrUin74JGTXfzj2nLtCge6M+Q5rHVzvItpVsVXn49hcchAHQeDXoeRA0rS8l25gllFqjmfP4DjLW7++eiBpSnvFxE/HMeJUqwKXSOEogEg4ZCNFDt7q8w2neqSbSdMx0qLzOxGeD16GDvWUtFg0HNw2qlIYrYgSligEAvY6e4t8udyaK9idBi6M+Q7SaocDbArL7OyDIhjHNI3BBfOHYEZZ9Wk7fu0jjTVHIt2SbVTYRVqIjsxKrhGsNoR2YHQveFwlEJ+ZHHQDkJXpWgxDmGqS+xpvW8S0TEJYxwULA7dORILqN2eE0mBHRwdn3JgpRZjCYdMxDgAIZFC+anVY1EhHITVTmvL7Gn9PYn4EMc5yN/oomUHITKDcHNG6C8thYSDdhALeeUiYqwNOiJzWGJwVfIILBLCSvBag4QDEUG8FgdWsI/vjFuSzx/A2q+O4MudzSLhoE93cLJyfRbiDEJXJbkJsU1QsEgusxaRXQgFQVSLA8WqZB3CzZlDJzqZBad6PH58tOUY/5yEQ3ZjinI9+hkxglrN/Z+rCGMcPt9xImpb4QacXIp4LUAzSp7DDo6ObzFfE8Xi8M6GQ1jx/i4AwMShFfz7+jQHJ9OOuHqEptRuT6gqpnRsCC0OhRrNSZ1vsFwjWJZBo4ZvbLlKUYEZVrMB7h4f3D0+tLT3oNgprkL870/3i55THYfsRhwcLb4OO92RAfBFTu36xuciQlelz74+jtlTOmQzJonTlmv3uqQ7Q76TxBgHu8WIxtpC0WvhBUlYNADAp9ua+MfptjiMG1TOBwtOH0PxDtEw6HX8bqU/EEQLo9IwWRy0h4nhGsFyRSOLQ/bBcZzE6hDprrTr8GnR877knpnViK5HyXXY7hbHkNktBozsT0k+sonGWpfo+f5j7bJtRcJBJkW8FqA7Q56TzBgHAPjpnBEiLeJj1HEQfVeaLQBmkx73f38cbvzWUFwzY2Bav1trcBwnsiIdYgRjtnf23tgo04c2YAVHs7KBUHB0dlIrinOIvCbbBNfkjZcNhd1C12U2Y4wSHN0pEQ73fmcsbPR7ZhXjh5SLsp3JuX8Gg0H0eHrfI4sDoVmS7SnktJswbXQ1/9znD4jcWaRkIjtERZENk4ZWavrCTRfiLC6Ru5unBb+tkywOmkCYLStcBI5pcSDhkJUoWRyEVsDGPq6I94nsIlqMQ4dAOIweWIqqEopvyDZ0HIezGsr453IJJ3z+IAJnYpL0Om3XO9Juz4mUkYjFAQAMAjHg8weiZv9IVx0HIj6UFintgkWKk2IcNAEriwsrfzwJh+xElFnpuNjiEAgG6ZrUGNEKwAmFg91KIanZivA3lLM45Ep8A0DCIe9JVuVoIcK4BZ8/GDXfOAmH7EbZLYIWKVqDFRzdzahCTDEO2YlQzB892SkKbO9wexFOtGS3GDS9q5kvmKLUVRG6Kjms5KKUrUSzGoURuoNqOb4BIOFAJLFydBjhTqXPH2AG1YYh4ZDd1ERZpABitwhyVdIGrHSsPQyLg4nqOGQlNosRTltoEekPBEVFGNs7KVmB1hBVcpdch+0kHDSBeDOG7apEFgciZ0iJxUEntDgEZIuHSdsS2YfdYkRRQSjwy+cPoqnFzb8Xcoug4GitIbrJecOuShTjoCWsggBZYbE3sgBqj2iV3DtIOGiCaL9hGBIORE6TXItDMKpwoLoK2Y9cgHRXt48v5mc166nSsEZg+eOyrlEDCYesRVibQSgcTossgLTQ1ALRdquF7i1UyC97YSWckOIRCQdtz63a7j2RMKyFe6Jreb0kODqqxYF8cLMeuQDpg029+arJLUI7sPxxuykdq6YQLiKF16Q4PTJdk1rAaJT3jxcuNul6zF5YCSeknGrrddk2UYwDoWVYGiHZMQ6sHPFhyFUp+6llZHHZ8M1xPPr8l/zrtEjRDqwdTqarEon6rEUoHP7yxna8uDpUYJNijrSHuACcRDgIhIRJ4+4tuQwr4YSQA03t+POr2/jnFo3/lnRnyHeSWDk6jDSrEsU4aJsahsXhv/9vm6gNLVK0A7MAHMU4aAqp28q/PzkAAKKYowJyVdIExiiuSsLdazO5gmYtrIQTQl54b5foOcU4EJqGHRyd3DoOFOOgbapK7Pw4aT7dDXePLyK7ElkctIPaAnAmEg5Zi43h7x4IBEXxDlYL+cRrgWipPIUWCBLy2Qsr4YSQXYdPi9uTqxKRayQ6KAwGaVYldrAQQBYHLWA06FBZYuOfH2mOrOdAgZjageWPy3InpIVK9sIKlG13e0XCgSUuiOxDXAAumqsSXY/ZilIBOItEKJDFgdA0qbc4BJn+02FIOGgDaYC0dNxQcLR2YPnjukk4aAqmcOj0iC0OJBw0gUki5Ls9vRZd4b2T6qpkL6JaHL4AAmeyDYaRrnKieWFoAboz5DspiHEwSIKjWRlbwggzMBHZS42kgrSN3CA0i9Qfd8+RNny6rYnRjq7NbMVqjlxEnu7yoEsoHEx0jWoBkauSN4CfPrYWtz2xDl/uahYLB7I4ZC1C8Xe4uRM/XbIGf397B4CQ+GsTxB4BQHNrd1r7l2xoJOY5HEM5JGxxEARH+/2BqBYHinHQBkKLw+ETHaKdTen7RHYjNJt3uL14a/0BZjvKqpS9sNyQyOKgTXQ6TnTPBICuHh/eXn9Q5LpEWZWyF+kmi8cbwLsbD6HD7cXJtkiRMLx/cbq6lhJoZslzWBv+LPelWBC6KnV7/XyRMBZ6PQkHLSBMybrnaJvoN502qhqNfVyZ6BYRB5XFvfEqR092yqZLNtJCJWthiYK2Tg/cPVQwTItYTAZRlWgAONXeI/KXJwtg9iIn6ljCYUT/EkwbWZ2ObqUMGolEBMl0Vep0+6K0BPSJfhmRFkoKLTCf2akWZvoosBnx/VmDE7ZSEenDaTfxwewebwDHTnUx25HFIXthiYLWDg/vO80BsDDcmYjshGVBOnm6d8FpNOgS3tAjUoecqOvo8ooKv00ZXonb543i76Vahe4MeU5KgqMFVoTObm+UlmRx0Ao6jkNtaaQ7Eu1qahNhzEqYMpdF9JzWKdkLa6HZ1NIrAC1mPS00NQRrHhWmvKbUyNmNrHBwe0WWpFxJW06jMd9JRXC0nm1xYB2WYhy0A2uxScJBm9QyfkvWa0R2wrruvtjZHPV9InthBbsLofiG7EbHcaJ1T5gOtxedAuFgz5GkIiQc8hzWrlSiO1VCF4dAsNcXvk+5A8VOs6itgbIqaQZWADTlitcmteWRv6VUONBvm70oCQMSDtpC6fcii0P2w/qNOtxedHb3bp7aLblR74hGIxFBohYHu5V9cZhNetRXOUWvkcVBOxQ7LRGv0QJFm4wbVI5qgeuZy2HCtFHVuGbGQBj0HKaOqEKpy5rBHhLRMBp0uHhCH9k6OHRdagslkW6kGg6aJCQcei0OuZLGPDf+CiJuWPEMicY42CwG6HVcRDYls1GP2jIHNm4/wb9GBeC0A8s/U8nETmQnVrMBD/xwAto6PQgCcNpM0Ok4XDyhL2acVUsZXDTANTMacOW0AeA44MZHV4veI2uRtlASemaq4ZD1dPVEJoLpcHvRRRYHItdgrdsTtTjoOA4FtsgLJCQcxC4SJBy0g5Pxm9LOpnbhOA6FDjNcDrPI8keiQTsYDToY9LoINzO6LrWFoqsSxThokogYB2tuXJd0h8h3UmBxAEI7mFJMZywOQkg4aIcCxm9KO5sEkXmkMSskHLSF0u9FYl6bSGMcbGRxIHIB1ro9GWt5lluL2aRHmdRvmnSDZrCY9BEBYLRAIYjMQ4Ht2kbJ950sDtqkUxLj4MiRGAcSDkQEybA4sHanSwst0Ok4zDirBgAwoMaJEkbALZGdcBwX8buWFtLvRxCZZsLgcpjO+MHrdRzGDirLcI+IWKCsStrn2xc2Rrx2utODbo+wKGNuCIfc+CuIuGEXgEv8uIUMi0M4vuHbFzbi/LG1KC+yUsVhjeG0m3CyrbeiKeX+J4jMU+qy4vc3n40Dx9pRXeZgzr9E9iJNMnHjZUPx3/+3jX9OFofs5/yxtRjevxgOqxEL//ABAIiKv9kshpwpykjCId9hBkcnweJgj/Tlqyl18MevKonMI09kP1I3tgjXM4IgMoLdYsSQfsWZ7gYRB1KLw5C6ItFzYRVpInupKLIhGAwys0rmSkYlgFyV8h6WSEjGoJAGR1vNhojib4T2aOvyiJ5THQ6CIIjEsJjEwkFaC6m51Z3O7hAJwHEczAwLUa5kVAJIOOQ97HSsSciqJDGV15TZyS0pB3AIbmj0cxIEQSSOUS+eTA168dKM7p3awmyKFA65klEJIOFAMHyVkjFH9a92wiK4eM5qoGC9XOCqcwfwj2+5ckQGe0IQBJEblLqsfCX3UQNKAAA3z+mdXy+fWp+RfhHxYWEIh6H9ihgttUnu2E6IuEiVxcFuMeLXCyZgy95TKHaaMayefG9zgcF1Rfh/3xkLfyCIhtrCTHeHIAhC8+g4DnddNwY7Dp7GsPrQAvOsxlLc/e2zYNDr0L/ameEeErEgFQ46jsPF4/tmqDfJh4RDvsOKcUiSVbTUZcX0MTXJORiRFXAchwE1JBgIgiCSSYHNJEqjy3EcGvu4MtgjIl6kMQ4ThpbnVDwguSrlOamyOBAEQRAEQeQb0mD3XCuUSsIhz2GJBNINBEEQBEEQsSN1Vcq1Su4kHIgIyOJAEARBEAQRO9KsSmRxIHIOqbtSDrniEQRBEARBpA1pjAMJByL3kFgYyOJAEARBEAQRO1JXJas5Mj2rliHhQDCKzWSoIwRBEARBEBpGGhxNMQ5EzmGziAc1WRwIgiAIgiBih2IciJzHLhEOFONAEARBEAQROxaKcSByHZvFKHpOFgeCIAiCIIjYoXSsRM4T6aqUoY4QBEEQBEFoGHJVInIesjgQBEEQBEEkjtEgXlpLhYTWIeFAwC4VDhnqB0EQBEEQhJYJBsXPdTm2GUvCgYCVsioRBEEQBEEkTGmhJdNdSCm55XhFxEWu+d8RBEEQBEFkgmKnBfPOG4j13xzH5VPrM92dpEMrRiIiAwBBEARBEAQRHzMn9sXMiX0z3Y2UQK5KRM6lCiMIgiAIgiCSDwkHIiLGgSAIgiAIgiCkkHAgKMaBIAiCIAiCUISEAwGLiYQDQRAEQRAEER0SDgS5KhEEQRAEQRCKkHAg4LAalRsRBEEQBEEQeQ0JBwI1ZQ70qywAAEwaWpHh3hAEQRAEQRDZCPmoEOA4Dnd/+yzsb2rHgOrCTHeHIAiCIAiCyEJIOBAAAJNRj4ZaV6a7QRAEQRAEQWQp5KpEEARBEARBEIQiJBwIgiAIgiAIglCEhANBEARBEARBEIpoKsbB6/Vi586d2Lp1K7Zu3Ypt27bhm2++QU9PDwBgzpw5ePjhh2M+7sGDB7FixQqsWbMGR48ehdfrRXl5OcaPH4+5c+firLPOSvafQhAEQRAEQRCaQlPC4ZprrsHWrVuTesyXXnoJDz30ELq6ukSv79+/H/v378fKlStx/fXX495774VORwYagiAIgiAIIj/RlHDw+/2i5y6XCy6XC/v27YvreK+99hruu+8+BINBcByHiy++GFOnToXJZMLmzZuxcuVKdHV14bnnnkMwGMT999+fhL+CIAiCIAiCILSHpoTDxIkTcd5552HYsGEYOnQoampq8PLLL+Oee+6J+VgtLS34xS9+wYuGJUuWYNasWfz7l19+OebPn4/rr78ep06dwt/+9jdcfPHFmDBhQjL/JIIgCIIgCILQBJoSDvfee2/SjrVs2TK0t7cDAK699lqRaAgzYMAA3H///bj99tsBAEuWLME//vGPpPWBIAiCIAiCILRC3jrtv/baa/zjBQsWyLabOXMmqqurAQBffPEFjhw5kvK+EQRBEARBEES2kZfCYffu3Th8+DAAoL6+Hn379pVtq9PpcM455wAAgsEg1q5dm5Y+EgRBEARBEEQ2kZfCYfv2mt36SgAAE71JREFU7fzjkSNHKrYfMWIE87MEQRAEQRAEkS/kpXDYs2cP/7i2tlaxvbDN3r17U9IngiAIgiAIgshmNBUcnSzCQdEAUFRUpNhe2KatrS0lfQIAk8mAsrKClB0/Gpn6XoJIFTSmiVyDxjSRa9CY1h55aXEQFnuzWCyK7YVtOjs7U9IngiAIgiAIgshmkmZx+M53voPPPvssKce65ZZbsHDhwqQcS0t4PD6cPu1O63eG1f6JE+0KLQlCG9CYJnINGtNErkFjOrMUFlphMsUnAfLS4mCz2fjH3d3diu2Fbex2e0r6RBAEQRAEQRDZTNIsDhdffDEGDx6clGONGjUqKceRo6Cg16eupaVFsb2wjdPpTEmfAMBg0KOw0Jqy40cjU99LEKmCxjSRa9CYJnINGtOZwWDQx//ZZHXi+uuvT9ahUk7//v35x4cOHVJsL2xTX1+fkj4BgE7HxW06SpRMfS9BpAoa00SuQWOayDVoTGuPvHRVGjRoEP9406ZNiu03b97M/CxBEARBEARB5At5KRwGDBiAmpoaAKG6DAcOHJBtGwgEsG7dOv75tGnTUt4/giAIgiAIgsg28lI4AMAll1zCP162bJlsuzfeeAOHDx8GAIwZMwbV1dUp7xtBEARBEARBZBt5KxwWLFgAh8MBAHj++efxxhtvRLTZvXs3HnzwQf75bbfdlrb+EQRBEARBEEQ2wQWDwWCmO6GWbdu24c033xS9tn37drz//vsAQvEH5513nuj9SZMmYfLkyczjvfLKK1i0aBGCwSA4jsPMmTMxdepUmEwmbN68GStXruQLvs2fPx+//OUvk/9HEQRBEARBEIQG0JRwePnll3HPPffE9BmlYnIrVqzAb37zG7jd8oXXrrvuOtx3333Q6+NPX0UQBEEQBEEQWibv82DNmzcPkydPxvPPP4+1a9fi6NGj8Hq9KC8vx7hx43DVVVdh7Nixme4mQRAEQRAEQWQUTVkcCIIgCIIgCILIDHkbHE0QBEEQBEEQhHpIOBAEQRAEQRAEoQgJB4IgCIIgCIIgFCHhQBAEQRAEQRCEIiQcCIIgCIIgCIJQhIQDQRAEQRAEQRCKkHAgCIIgCIIgCEIREg4EQRAEQRAEQShCwoEgCIIgCIIgCEVIOBAEQRAEQRAEoQgJB4IgCIIgCIIgFDFkugNE+lmzZg1WrVqFr776Cs3NzbBaraitrcX555+Pa6+9FsXFxZnuIpGjdHR04KOPPsJnn32GrVu3Yt++fWhvb4fRaERpaSmGDx+OmTNn4vzzz4fBoG566uzsxIsvvog333wT+/fvR3t7O0pKSjB48GB861vfwqxZs8BxnOo+bty4EStXrsSGDRtw/PhxGI1GVFVV4dxzz8U111yD2traeP98Is944okn8NRTT/HP58yZg4cffljxcydPnsQLL7yAd999F4cOHYLb7UZpaSlGjx6Nyy+/HOeee25M/aA5n0iEHTt24NVXX8W6detw7NgxtLW1weVyoaSkBMOHD8eECRNw0UUXwWq1yh6D5uncgQsGg8FMd4JID263G3fddRfefPNN2TZFRUVYvHhxzDcmglBi+fLlWLJkCXp6ehTbDh48GL/73e/Q0NAQtd1XX32F22+/HYcPH5ZtM2HCBDz++OOKiyO/348HH3wQ//jHPyA3LdpsNtx///248sorFf8GIr/55ptvcNVVV8Hr9fKvqREOq1evxt13342WlhbZNjNnzsTixYthsViiHovmfCIRurq68PDDD+PFF19EIBCI2nbVqlUYMmQI8z2ap3MLEg55QiAQwE9+8hOsXr0aAFBcXIyrr74aDQ0N6OjowDvvvIN169YBAMxmM5YvX46xY8dmsMdErvHzn/8cL7zwAgCgrKwMkydPxogRI1BaWgqPx4OtW7filVdeQWtrK4DQguYf//gH6uvrmcfbvXs35s+fj9OnTwMARo0ahdmzZ6OkpAT79u3DSy+9hCNHjgAARo4cieeeey7qQusXv/gFnn/+eQChG8/cuXMxYsQIeDwerFu3Dm+++SaCwSA4jsOSJUswa9aspJ0bIrfw+Xy4+uqrsW3bNthsNnR1dQFQFg7r16/HggUL4PF4AABTp07FBRdcAIfDgZ07d+LFF1/EqVOnAAAzZszAU089BZ2O7XFMcz6RCO3t7bjhhhvwxRdfAAjN2RdccAGGDRuGgoICuN1uHDhwAJ9++im+/PJLrFy5kikcaJ7OQYJEXrBixYpgY2NjsLGxMXjRRRcFjx07FtFm6dKlojYejycDPSVylZ///OfB73//+8E1a9YEfT4fs83JkyeD8+bN48fh9773PdnjzZ8/n2/3wAMPBAOBgOj9tra24LXXXsu3efLJJ2WP9dFHH/HtJk2aFNy1a1dEm9dffz04aNCgYGNjY3DChAnB1tZWdX84kXc89dRTwcbGxuCYMWOC//Vf/8WPrbvuukv2Mz09PcHzzz+fb7t06dKINseOHQtedNFFfJuXX35Z9ng05xOJcNNNN4nmV7fbLdu2paUl2NnZyXyP5uncg4Kj84BAIIAnn3ySf/7oo4+ioqIiot2CBQswbdo0AMC+ffuwatWqtPWRyH1uv/12LF++HNOmTYNer2e2KS4uxhNPPMHvOH388cdM8/YHH3yAjRs3AgAaGxtx9913R/jHFhQU4Pe//z1MJhMAYOnSpWhvb2d+7x/+8Af+8f33348BAwZEtJk1axauvfZaAEBrayuWLVum9CcTeciOHTvwxz/+EQDwH//xH6iqqlL1uZdffhkHDx4EAEybNg0LFiyIaFNRUYFHHnmEf/74448zXUhozicS4V//+hfef/99AMC8efNw3333RbUCuFwu2Gy2iNdpns5NSDjkAevXr0dTUxMAYOzYsRg5cqRsW+HN6tVXX01534j8weVyqWpXUVGBcePG8c+3b98e0ea1117jH3/3u9+VDaSurq7GzJkzAYT8dd99992INocOHcKXX34JAKipqeHbsxBeH8I+EAQQ8r++55574PV6MXbsWFx33XWqPyscTyzREGbUqFG8S9HRo0fx+eefR7ShOZ9IhD//+c8AQq5AixYtivs4NE/nJiQc8oC1a9fyj6dPnx617fjx4/mdg/Xr1/O+uQSRThwOB/+4u7s74v1YxrQw6FP4OdZrU6dOlfUZB4C+ffuiX79+AICDBw9iz549Ub+byC+WLl2KLVu2wGQy4YEHHlCdJaazsxMbNmwAEFqsjR8/Pmp74Zhes2ZNxPs05xPx8sUXX2Dnzp0AQnE0BQUFcR+L5unchIRDHiDcsR0xYkTUtgaDgQ9w8vv92LVrV0r7RhAswjcuILQbJaS5uRknT54EAFRVVaGsrCzqsYS7rSzrhfC1aDuzao9H5Ce7d+/m3YN+8pOfMN0o5Ni1axfvcjR06FDFVMSxjGma84lYWL9+Pf949OjRAIB33nkHP/7xjzF16lQMHz4cZ599NhYsWIC///3vfCC/FJqncxcSDnnA3r17+cdqchsL2wg/SxDp4NNPP8Xu3bsBhGIepAufWMdzVVUVvzu1f//+iBR+dH0QieL3+3HvvffC4/GgsbERN9xwQ0yfT/YYpDFNxMumTZv4x6Wlpbj11ltx88034/3338eJEyfg9XrR3NyMDz/8EL/+9a9xySWXMBfmNE/nLlQALg8QBhoVFRUpthe2kQtSIohU4Ha78Ytf/IJ/ftNNN0UEUre1tfGP1Yxno9GIgoICnD59Gl6vF11dXbDb7fz7dH0QifLss8/iyy+/hF6vx0MPPQSj0RjT52Md08I2ws+GoTFNxMuJEyf4x48//jj27t0Lo9GIyy67DOPGjYPFYsHOnTuxcuVKHD9+HAcPHsR3v/td/POf/xRZh2mezl1IOOQBQp9VpYJB0jadnZ0p6RNBSAkGg1i0aBG/OzRmzBh8+9vfjmgnHM9ms1nVsYXtOjs7RTckuj6IRNi7dy+eeOIJAKEAUDVuFFJiHdPS8RzteDSmiVgI11sAQmPb6XRi6dKlEeP6Rz/6EW688UZs3LgRra2t+NWvfoVnnnmGf5/m6dyFXJUIgsgKHn74Ybz11lsAQibyJUuWxLxzSxDpJBAI4N5770V3dzdqa2vxs5/9LNNdIoiEkLoILVq0iCmGHQ4HlixZwi/2V69ejX379qWji0SGIeGQBwjzK7My1EgRthEqfoJIFY899hieffZZACET8/Lly2Xz3wvHc09Pj6rjC9tJxzRdH0S8/PWvf+XToT7wwAOwWq1xHSfWMR1tPEuPR2OaiAXh72+z2XD55ZfLtq2oqMD555/PP//4449Fnw1D83RuQcIhDxCmU2tpaVFsL2yTSCo2glDDkiVLeBO3y+XCs88+i8bGRtn2TqeTf6xmPHu9XnR0dAAI+dFKCxXR9UHEw4EDB/iCVFdeeSWmTJkS97FiHdPCNsLPhqExTcRLYWEh/7ixsZEvzCbH8OHD+ccHDhzgH9M8nbtQjEMeUF9fj0OHDgEIFVHp06dP1PbhtuHPEkSqeOyxx0Si4S9/+QsGDx4c9TPCMSkcq3IcPXoUfr8fAFBXVxeRW7++vh6ffvqp6uPR9UEAwCuvvAK32w0gtNgKV4uW8vXXX/OPt2/fzrcrKyvD1VdfDSD2Ma00BmnOJ+Klf//++OijjwCI6+nIIRQI4YU/QPN0LkPCIQ8YNGgQPvjgAwDA5s2bMXnyZNm2Pp+Pv9Hp9XoMHDgwLX0k8o9HH30U//M//wOg19KgJBqAUPxDSUkJTp48iaNHj+LEiRNRc4QL0wsOGjQo4n3ha5s2bcJVV10V9fuVjkfkB0Jf8OXLl6v6zLZt27Bt2zYAwODBg3nhMHDgQOh0OgQCAWzbtg0+ny9qLQc1Y5rmfCIehHOwUAjIIcyeJBQaNE/nLuSqlAecc845/GNWlVEhwsqh48aNizAXEkQyWLx4cYRoCBehUkMsY1r4/rRp06Iea926dXwhLhYHDhzgAwD79OmD/v37q+0yQchit9sxduxYAKHsMcIiXCxiGdM05xOxMG3aNL6ewo4dO2QLvIXZsmUL/1g6H9I8nZuQcMgDxo8fj/LycgDAhg0bREpcyrJly/jHs2fPTnnfiPzjN7/5DT/O4hENAHDppZfyj//617/C5/Mx2x09ehRvvPEGAMBqtWLGjBkRbfr06YNRo0YBAA4fPsy3ZyG8PoR9IPKPhQsXYvv27Yr/fvvb3/KfmTNnDv/6v/71L9HxhOMpmgVj06ZN2LhxIwCgsrKSFxxCaM4n4qWiogITJ04EEBKx0nEqpKmpCe+++y6AkLVq6tSpovdpns5NSDjkAXq9Hrfccgv/fNGiRWhqaopot2zZMqxduxZAyMdwzpw5aesjkR889NBD+Mtf/gKgN6YhVtEAhHakxowZAyDkN7548eKINIIdHR244447+B2zBQsWMANJAeDWW2/lHz/44IN85Wohb7zxBp5//nkAIZ/2H/zgBzH3myDkmDt3LmpqagCEdl9Z4qGpqQmLFi3in99666387rAQmvOJRLj99tv5GINHHnkEmzdvjmgTnl/DmZAuvfTSiEx4NE/nJlxQ+isSOYnf78dNN93E+70WFxdj3rx5aGhoQEdHB95++22sW7cOAGAymbBs2TKMHz8+k10mcow//OEP+NOf/sQ/X7hwoaqYhvr6egwYMCDi9Z07d+K6667jfWxHjx6N2bNno7i4GPv378dLL72Ew4cPAwhl/vjb3/4WNV3m/fffjxUrVgAIuY7MnTsXI0aMgMfjwbp16/DGG28gGAyC4zj8/ve/p50sQhUvv/wy7rnnHgAhi8PDDz8s2/aTTz7Bj370I3i9XgDA1KlTceGFF8LhcGDnzp1YsWIFTp06BQCYPn06/vSnPzGFA0BzPpEYS5YswdNPPw0AfOXoCRMmwGw2Y+fOnXjppZdw/PhxAEBtbS1WrlwJl8sVcRyap3MPEg55RFdXF+6880688847sm1cLhcWL16M6dOnp69jRF7wne98B5999lnMn7vllluwcOFC5ntffPEF7rjjDhw5ckT28+PHj8fjjz+OkpKSqN/j9/vxq1/9Ci+88IJsG6vVivvuu08xMI8gwsQiHADgvffewz333IPW1lbZNhdddBEeeeQRxboRNOcTifDkk0/i6aeflnUxAoBRo0bhiSeeQGVlpWwbmqdzCxIOecjq1auxatUqbNq0CSdOnIDNZkNNTQ1mzJiB+fPnK164BBEPqRAOQMjUvWLFCrz11lvYv38/2tvbUVxcjKFDh2L27Nm49NJLI1L7RWPDhg1YuXIlNmzYgOPHj8NoNKKqqgrTpk3Dtddeq5jakiCExCocAKC5uRnPP/883nvvPRw+fBhdXV0oKyvDyJEjMWfOHJx77rkx9YHmfCJedu7ciRdffBEfffQRjh07hp6eHhQXF2PkyJG49NJLcfHFF6uaX2mezh1IOBAEQRAEQRAEoQgFRxMEQRAEQRAEoQgJB4IgCIIgCIIgFCHhQBAEQRAEQRCEIiQcCIIgCIIgCIJQhIQDQRAEQRAEQRCKkHAgCIIgCIIgCEIREg4EQRAEQRAEQShCwoEgCIIgCIIgCEVIOBAEQRAEQRAEoQgJB4IgCIIgCIIgFCHhQBAEQRAEQRCEIiQcCIIgCIIgCIJQhIQDQRAEQRAEQRCKkHAgCIIgCIIgCEIREg4EQRAEQRAEQShCwoEgCIIgCIIgCEVIOBAEQRAEQRAEoQgJB4IgCIIgCIIgFCHhQBAEQRAEQRCEIv8fu5WPgYyvOBMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": [],
"image/png": {
"width": 391,
"height": 255
}
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ejmMjREWjbnF"
},
"source": [
"comb_x=np.concatenate([x_train1, x_test1],axis=0)\n",
"comb_y=np.concatenate([y_train, y_test],axis=0)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "vwseJd7gAL2L"
},
"source": [
"v=-1"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "egYjhsPLj25f"
},
"source": [
"x_train, x_test, y_train, y_test = train_test_split(comb_x, comb_y, random_state=150, test_size=0.2, stratify=comb_y)\n",
"\n",
"x_train=x_train[:,:v,1]\n",
"x_test=x_test[:,:v,1]\n",
"\n",
"\n",
"x_train=np.expand_dims(x_train,2)\n",
"x_test=np.expand_dims(x_test,2)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "whti8wEQOmQU"
},
"source": [
"# x_test.reshape(742,1980,1)\n",
"print(x_test.shape)\n",
"\n",
"y_test.shape"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "-c3Ix3bpIc-o"
},
"source": [
"# Model \n",
"1d CNN <br>\n",
"https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "uUAeR8Q8_q92",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "86dcb04c-99d8-4170-b907-5dd47b25b240"
},
"source": [
"# Earlier (128)\n",
"\n",
"num_classes=4\n",
"\n",
"model_m = Sequential()\n",
"input_shape=(x_train.shape[1], 1)\n",
"model_m.add(Conv1D(128, kernel_size=3,padding = 'same',activation='relu', input_shape=input_shape))\n",
"\n",
"model_m.add(BatchNormalization())\n",
"\n",
"model_m.add(MaxPooling1D(pool_size=(2)))\n",
"\n",
"## CONV2\n",
"model_m.add(Conv1D(64,kernel_size=3,padding = 'same', activation='relu'))\n",
"\n",
"model_m.add(BatchNormalization())\n",
"\n",
"model_m.add(MaxPooling1D(pool_size=(2)))\n",
"## End CONV2\n",
"\n",
"model_m.add(Flatten())\n",
"model_m.add(Dense(64, activation='tanh'))\n",
"model_m.add(Dropout(0.1))\n",
"# model_m.add(Dense(32, activation='tanh'))\n",
"# model_m.add(Dropout(0.2))\n",
"model_m.add(Dense(16, activation='relu'))\n",
"model_m.add(Dropout(0.2))\n",
"model_m.add(Dense(num_classes, activation='softmax'))\n",
"model_m.summary()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"conv1d (Conv1D) (None, 672, 128) 512 \n",
"_________________________________________________________________\n",
"batch_normalization (BatchNo (None, 672, 128) 512 \n",
"_________________________________________________________________\n",
"max_pooling1d (MaxPooling1D) (None, 336, 128) 0 \n",
"_________________________________________________________________\n",
"conv1d_1 (Conv1D) (None, 336, 64) 24640 \n",
"_________________________________________________________________\n",
"batch_normalization_1 (Batch (None, 336, 64) 256 \n",
"_________________________________________________________________\n",
"max_pooling1d_1 (MaxPooling1 (None, 168, 64) 0 \n",
"_________________________________________________________________\n",
"flatten (Flatten) (None, 10752) 0 \n",
"_________________________________________________________________\n",
"dense (Dense) (None, 64) 688192 \n",
"_________________________________________________________________\n",
"dropout (Dropout) (None, 64) 0 \n",
"_________________________________________________________________\n",
"dense_1 (Dense) (None, 16) 1040 \n",
"_________________________________________________________________\n",
"dropout_1 (Dropout) (None, 16) 0 \n",
"_________________________________________________________________\n",
"dense_2 (Dense) (None, 4) 68 \n",
"=================================================================\n",
"Total params: 715,220\n",
"Trainable params: 714,836\n",
"Non-trainable params: 384\n",
"_________________________________________________________________\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "yi63jA2WJsC2",
"outputId": "f24f8efb-47d6-496b-90bf-7fda13c20854"
},
"source": [
"num_classes=4\n",
"\n",
"model_m = Sequential()\n",
"input_shape=(x_train.shape[1], 1)\n",
"model_m.add(Conv1D(64, kernel_size=3,padding = 'same',activation='relu', input_shape=input_shape))\n",
"\n",
"model_m.add(BatchNormalization())\n",
"\n",
"model_m.add(MaxPooling1D(pool_size=(2)))\n",
"\n",
"## CONV2\n",
"model_m.add(Conv1D(32,kernel_size=3,padding = 'same', activation='relu'))\n",
"\n",
"model_m.add(BatchNormalization())\n",
"\n",
"model_m.add(MaxPooling1D(pool_size=(2)))\n",
"## End CONV2\n",
"\n",
"\n",
"## CONV2\n",
"model_m.add(Conv1D(16,kernel_size=3,padding = 'same', activation='relu'))\n",
"\n",
"model_m.add(BatchNormalization())\n",
"\n",
"model_m.add(MaxPooling1D(pool_size=(2)))\n",
"## End CONV2\n",
"\n",
"model_m.add(Flatten())\n",
"model_m.add(Dense(32, activation='tanh'))\n",
"model_m.add(Dropout(0.1))\n",
"# model_m.add(Dense(32, activation='tanh'))\n",
"# model_m.add(Dropout(0.2))\n",
"model_m.add(Dense(16, activation='relu'))\n",
"model_m.add(Dropout(0.2))\n",
"model_m.add(Dense(num_classes, activation='softmax'))\n",
"model_m.summary()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Model: \"sequential_15\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"conv1d_30 (Conv1D) (None, 672, 64) 256 \n",
"_________________________________________________________________\n",
"batch_normalization_20 (Batc (None, 672, 64) 256 \n",
"_________________________________________________________________\n",
"max_pooling1d_30 (MaxPooling (None, 336, 64) 0 \n",
"_________________________________________________________________\n",
"conv1d_31 (Conv1D) (None, 336, 32) 6176 \n",
"_________________________________________________________________\n",
"batch_normalization_21 (Batc (None, 336, 32) 128 \n",
"_________________________________________________________________\n",
"max_pooling1d_31 (MaxPooling (None, 168, 32) 0 \n",
"_________________________________________________________________\n",
"conv1d_32 (Conv1D) (None, 168, 16) 1552 \n",
"_________________________________________________________________\n",
"batch_normalization_22 (Batc (None, 168, 16) 64 \n",
"_________________________________________________________________\n",
"max_pooling1d_32 (MaxPooling (None, 84, 16) 0 \n",
"_________________________________________________________________\n",
"flatten_15 (Flatten) (None, 1344) 0 \n",
"_________________________________________________________________\n",
"dense_44 (Dense) (None, 32) 43040 \n",
"_________________________________________________________________\n",
"dropout_30 (Dropout) (None, 32) 0 \n",
"_________________________________________________________________\n",
"dense_45 (Dense) (None, 16) 528 \n",
"_________________________________________________________________\n",
"dropout_31 (Dropout) (None, 16) 0 \n",
"_________________________________________________________________\n",
"dense_46 (Dense) (None, 4) 68 \n",
"=================================================================\n",
"Total params: 52,068\n",
"Trainable params: 51,844\n",
"Non-trainable params: 224\n",
"_________________________________________________________________\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "1hAXD7g5J5B6",
"outputId": "80a57b99-54b0-41fa-ea3a-951ed3601015"
},
"source": [
"model_m.compile(loss='categorical_crossentropy',\n",
" optimizer='adam', metrics=['accuracy'])\n",
"\n",
"# Hyper-parameters\n",
"BATCH_SIZE = 100\n",
"EPOCHS = 100\n",
"\n",
"# Enable validation to use ModelCheckpoint and EarlyStopping callbacks.\n",
"shape=x_train.shape\n",
"history = model_m.fit(x_train,\n",
" y_train,\n",
" batch_size=BATCH_SIZE,\n",
" epochs=EPOCHS,\n",
" validation_split=0.1,\n",
" verbose=1)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Epoch 1/100\n",
"8/8 [==============================] - 4s 412ms/step - loss: 0.0591 - accuracy: 0.9834 - val_loss: 0.8027 - val_accuracy: 0.8395\n",
"Epoch 2/100\n",
"8/8 [==============================] - 3s 377ms/step - loss: 0.0785 - accuracy: 0.9723 - val_loss: 0.8312 - val_accuracy: 0.8148\n",
"Epoch 3/100\n",
"8/8 [==============================] - 3s 379ms/step - loss: 0.0698 - accuracy: 0.9765 - val_loss: 0.7749 - val_accuracy: 0.8395\n",
"Epoch 4/100\n",
"8/8 [==============================] - 3s 385ms/step - loss: 0.0592 - accuracy: 0.9876 - val_loss: 0.6955 - val_accuracy: 0.8395\n",
"Epoch 5/100\n",
"8/8 [==============================] - 3s 380ms/step - loss: 0.0561 - accuracy: 0.9889 - val_loss: 0.8705 - val_accuracy: 0.8519\n",
"Epoch 6/100\n",
"8/8 [==============================] - 3s 380ms/step - loss: 0.0560 - accuracy: 0.9806 - val_loss: 0.8837 - val_accuracy: 0.8395\n",
"Epoch 7/100\n",
"8/8 [==============================] - 3s 379ms/step - loss: 0.0401 - accuracy: 0.9917 - val_loss: 0.7805 - val_accuracy: 0.8519\n",
"Epoch 8/100\n",
"8/8 [==============================] - 3s 385ms/step - loss: 0.0475 - accuracy: 0.9862 - val_loss: 0.7021 - val_accuracy: 0.8642\n",
"Epoch 9/100\n",
"8/8 [==============================] - 3s 387ms/step - loss: 0.0392 - accuracy: 0.9903 - val_loss: 0.8165 - val_accuracy: 0.8642\n",
"Epoch 10/100\n",
"8/8 [==============================] - 3s 383ms/step - loss: 0.0504 - accuracy: 0.9876 - val_loss: 0.7460 - val_accuracy: 0.8642\n",
"Epoch 11/100\n",
"8/8 [==============================] - 3s 377ms/step - loss: 0.0304 - accuracy: 0.9945 - val_loss: 0.7533 - val_accuracy: 0.8519\n",
"Epoch 12/100\n",
"8/8 [==============================] - 3s 380ms/step - loss: 0.0225 - accuracy: 0.9986 - val_loss: 0.6737 - val_accuracy: 0.8519\n",
"Epoch 13/100\n",
"8/8 [==============================] - 3s 381ms/step - loss: 0.0247 - accuracy: 0.9972 - val_loss: 0.6527 - val_accuracy: 0.8642\n",
"Epoch 14/100\n",
"8/8 [==============================] - 3s 377ms/step - loss: 0.0277 - accuracy: 0.9945 - val_loss: 0.7631 - val_accuracy: 0.8519\n",
"Epoch 15/100\n",
"8/8 [==============================] - 3s 383ms/step - loss: 0.0219 - accuracy: 0.9959 - val_loss: 0.7143 - val_accuracy: 0.8519\n",
"Epoch 16/100\n",
"8/8 [==============================] - 3s 379ms/step - loss: 0.0247 - accuracy: 0.9945 - val_loss: 0.8858 - val_accuracy: 0.8642\n",
"Epoch 17/100\n",
"8/8 [==============================] - 3s 385ms/step - loss: 0.0394 - accuracy: 0.9862 - val_loss: 0.9010 - val_accuracy: 0.8642\n",
"Epoch 18/100\n",
"8/8 [==============================] - 3s 388ms/step - loss: 0.0240 - accuracy: 0.9945 - val_loss: 0.9225 - val_accuracy: 0.8519\n",
"Epoch 19/100\n",
"8/8 [==============================] - 3s 382ms/step - loss: 0.0228 - accuracy: 0.9931 - val_loss: 0.9769 - val_accuracy: 0.8519\n",
"Epoch 20/100\n",
"8/8 [==============================] - 3s 382ms/step - loss: 0.0342 - accuracy: 0.9862 - val_loss: 0.7760 - val_accuracy: 0.8519\n",
"Epoch 21/100\n",
"8/8 [==============================] - 3s 384ms/step - loss: 0.0322 - accuracy: 0.9917 - val_loss: 0.6857 - val_accuracy: 0.8765\n",
"Epoch 22/100\n",
"8/8 [==============================] - 3s 380ms/step - loss: 0.0294 - accuracy: 0.9931 - val_loss: 0.6294 - val_accuracy: 0.8519\n",
"Epoch 23/100\n",
"8/8 [==============================] - 3s 384ms/step - loss: 0.0279 - accuracy: 0.9945 - val_loss: 0.6308 - val_accuracy: 0.8642\n",
"Epoch 24/100\n",
"8/8 [==============================] - 3s 380ms/step - loss: 0.0202 - accuracy: 0.9972 - val_loss: 0.6634 - val_accuracy: 0.8765\n",
"Epoch 25/100\n",
"8/8 [==============================] - 3s 382ms/step - loss: 0.0207 - accuracy: 0.9986 - val_loss: 0.5723 - val_accuracy: 0.8642\n",
"Epoch 26/100\n",
"8/8 [==============================] - 3s 385ms/step - loss: 0.0236 - accuracy: 0.9959 - val_loss: 0.5092 - val_accuracy: 0.8395\n",
"Epoch 27/100\n",
"8/8 [==============================] - 3s 384ms/step - loss: 0.0260 - accuracy: 0.9959 - val_loss: 0.7525 - val_accuracy: 0.8519\n",
"Epoch 28/100\n",
"8/8 [==============================] - 3s 384ms/step - loss: 0.0209 - accuracy: 0.9945 - val_loss: 0.8691 - val_accuracy: 0.8642\n",
"Epoch 29/100\n",
"8/8 [==============================] - 3s 384ms/step - loss: 0.0160 - accuracy: 0.9972 - val_loss: 0.9122 - val_accuracy: 0.8642\n",
"Epoch 30/100\n",
"8/8 [==============================] - 3s 379ms/step - loss: 0.0157 - accuracy: 1.0000 - val_loss: 0.8643 - val_accuracy: 0.8642\n",
"Epoch 31/100\n",
"8/8 [==============================] - 3s 383ms/step - loss: 0.0145 - accuracy: 0.9972 - val_loss: 0.7903 - val_accuracy: 0.8765\n",
"Epoch 32/100\n",
"8/8 [==============================] - 3s 383ms/step - loss: 0.0146 - accuracy: 0.9959 - val_loss: 0.8005 - val_accuracy: 0.8519\n",
"Epoch 33/100\n",
"8/8 [==============================] - 3s 380ms/step - loss: 0.0142 - accuracy: 0.9972 - val_loss: 0.9095 - val_accuracy: 0.8395\n",
"Epoch 34/100\n",
"8/8 [==============================] - 3s 382ms/step - loss: 0.0199 - accuracy: 0.9945 - val_loss: 0.9223 - val_accuracy: 0.8642\n",
"Epoch 35/100\n",
"8/8 [==============================] - 3s 378ms/step - loss: 0.0258 - accuracy: 0.9903 - val_loss: 0.9137 - val_accuracy: 0.8642\n",
"Epoch 36/100\n",
"8/8 [==============================] - 3s 383ms/step - loss: 0.0178 - accuracy: 0.9945 - val_loss: 0.8236 - val_accuracy: 0.8765\n",
"Epoch 37/100\n",
"8/8 [==============================] - 3s 383ms/step - loss: 0.0119 - accuracy: 0.9972 - val_loss: 0.9343 - val_accuracy: 0.8765\n",
"Epoch 38/100\n",
"8/8 [==============================] - 3s 381ms/step - loss: 0.0106 - accuracy: 0.9986 - val_loss: 0.9537 - val_accuracy: 0.8765\n",
"Epoch 39/100\n",
"1/8 [==>...........................] - ETA: 2s - loss: 0.0052 - accuracy: 1.0000"
],
"name": "stdout"
},
{
"output_type": "error",
"ename": "KeyboardInterrupt",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-18-4186720757cf>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mEPOCHS\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m verbose=1)\n\u001b[0m",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1181\u001b[0m _r=1):\n\u001b[1;32m 1182\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1183\u001b[0;31m \u001b[0mtmp_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1184\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1185\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 891\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 915\u001b[0m \u001b[0;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 916\u001b[0m \u001b[0;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 917\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=not-callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 918\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 919\u001b[0m \u001b[0;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 3022\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[1;32m 3023\u001b[0m return graph_function._call_flat(\n\u001b[0;32m-> 3024\u001b[0;31m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[0m\u001b[1;32m 3025\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3026\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1959\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1960\u001b[0m return self._build_call_outputs(self._inference_function.call(\n\u001b[0;32m-> 1961\u001b[0;31m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[0m\u001b[1;32m 1962\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n\u001b[1;32m 1963\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 595\u001b[0m \u001b[0mattrs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattrs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 596\u001b[0;31m ctx=ctx)\n\u001b[0m\u001b[1;32m 597\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 598\u001b[0m outputs = execute.execute_with_cancellation(\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0;32m---> 60\u001b[0;31m inputs, attrs, num_outputs)\n\u001b[0m\u001b[1;32m 61\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3qO_taXiGqWG",
"outputId": "66e5bf4d-525b-43dc-8515-e69da4d8b899"
},
"source": [
"print(history.history.keys())\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 571
},
"id": "RQapulbtF0Y2",
"outputId": "701a2505-3b6d-4ffc-aec6-678aaec40764"
},
"source": [
"plt.plot(history.history['accuracy'])\n",
"plt.plot(history.history['val_accuracy'])\n",
"plt.title('model accuracy')\n",
"plt.ylabel('accuracy')\n",
"plt.xlabel('epoch')\n",
"plt.legend(['train', 'validation'], loc='upper left')\n",
"plt.show()\n",
"# \"Loss\"\n",
"plt.plot(history.history['loss'])\n",
"plt.plot(history.history['val_loss'])\n",
"plt.title('model loss')\n",
"plt.ylabel('loss')\n",
"plt.xlabel('epoch')\n",
"plt.legend(['train', 'validation'], loc='upper left')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwoAAAIqCAYAAACE472jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXwV1f3/8de52feVEPawB1DZrAqoIFgXqPvW1qLU9tva2lZtba2tVmhd++vXb63dqwWs1VqxirjgguCGVgUUBcIe1kDISsie3PP7Y+bebDchQJKbm7yfj8c8JnPmzMxnLgHmc88yxlqLiIiIiIhIY55gByAiIiIiIt2PEgUREREREWlBiYKIiIiIiLSgREFERERERFpQoiAiIiIiIi0oURARERERkRaUKIiIiIiISAtKFEREREREpAUlCiIiIiIi0oISBRERERERaUGJgoiIiIiItKBEQUREREREWlCiICIiIiIiLShREBHpoYwx1l2yOvCcq9xzzuuoc4qISPekREFERERERFpQoiAiIiIiIi0oURARERERkRaUKIiIiIiISAtKFERE2mCMyXUH784wxvQzxvzZGLPHGFNpjNlkjLnVGONpVP8qY8w7xpgSY8xhY8xLxpiTjnKNicaYJ9zzVhtjCowxrxpjrjjKcR5jzPeNMZ+68Rwyxiwzxkxp5731Mcbcb4z5zBhzxBhTboz53BhzrzEmtX2fUPsYY6Lcz+ZxN94CY0yVMWaXMeafxpjJ7TjHGPfz32KMqXA/48+MMb9r7XhjTJoxZoExZo1bv8I9/l/GmEub1Z3v/lkvaiOGRW6d+c3KZ7jlue72hcaYV4wx+cYYrzHmlkZ1zzbGPGyM+a8xZr8xpsatt9wYc2U7Pod23ZMx5u9uTEuOcr4Fbr3VR7u2iPQy1lotWrRo0dLKAuQCFvg6kOf+XArUuT9b4BG37gPudh1wuNH+YmBkK+f/FlDfrG7jc/8DCAtwXDjwfKN6te6xvp8vb7QvK8DxZwKFjepUA5WNtncDowMct8rdP+8YP8cvNTq3Fyhqdr1aYG4bx3+/2edypNH9WmBVgGPOAgqa3WNh4/M0qz/fLV/URhyL3Drzm5XPcMtzgR81uk/fn+ctbr34RvFY9/ektFnZX9q4frvvCZjaqE5aK+fz0PA7/s1g/33TokVL91rUoiAi0j7/B+wExltrk4BE4C53303GmJ8BPwRuAZKstYnAycBmIBm4t/kJjTFTgT/hPKwtAQZZa1Pc+nfiPLx9DbgjQDy3A5fgPIz+2L1mCjAMeAP4e2s3YowZAiwDUt3rjwRigDg35teAQcB/jDFh7fhs2uMI8DvgbCDeWptqrY0BhgC/xUl8/mqMGRwg3qvcY8NwPqex1tp4937TcD6jNc2OGQ686O7/BJgJxFpr04AE4DzgPx10b431BR4E/gj0c2OMd+MG589rCXAZzsN7ovv7lAJ8D+dz+pZ7z00c6z1Za1cDG4FI4NpW4p2J82dQDjx9/LctIj1SsDMVLVq0aOnOCw3fthYByQH2r6Dh291fBNh/lruvCohs5dh3CdxqcJ+7vwxIbFQeR0OLxfwAx0UBGxrFldVs/xNu+f2t3HMk8Klb58pm+1ZxHC0K7ficH3PPe3ez8ghgr7vvyWM437/dYzYDCe08Zj4n3qJwTHEGOP9c9xwrO+iebnWPWdfK/iePds9atGjpvYtaFERE2ufP1tqSAOVvuOsa4KEA+9/DSRKigBG+QncMwDnu5v3W2voAxz7oHhsPzG5Ufh7ON8jVOC0dTVhrq4HfBLoJY0wscBXON9uB4sVaW0PDN+BfDFSnEyxz19Oalc8CBuB0z/pxe05kjInH+cYenOStrEMibL//dwLH+j6HMxq35pzAPT2O87s5wRgzsfEOY0xyo3O22gIlIr2XEgURkfb5rJXyfHeda6090nyntdaL06ccnO4lPhMBg/Nt7luBTmytLaWhS82kRrt8P3/i1gkk4DmByTgtBgb4zBhzINAC3ObWH9TKeY6ZMSbVGHOXMWa1MabQGFPnDqK1wHNutf7NDjvDXX9qrd3XzkuditOVyQLLTzzyY1KJ0xrTKmNMuDHmG+7g5Tx3ALvvcyh2q0XT9PfluO7JWluIM5YFnHE2jX3Fvc5Wa+3b7T2niPQe4cEOQEQkROS1Ul5/lP2N60Q0KuvjrksDJRiN7G1Wv/HP+9s4rrWH6n7u2uD0pz+a2HbUOSpjzFjgzWbXLKNhQHMkzoNxXLNDffV3H8PlfMeUtpFIdZZCNzkMyG0ZeBVnoLFPJXAIp5UHGuKPoyHJPJF7ehS4GviqMeY2t8UI4AZ3vfAYzycivYRaFEREgiuqi6/n+3e/1Fpr2rHM6KDrLsR52F0LXIDTxz7RWtvXWpuJ0x0KnAQmlAXqQtbYXThJQgFwPdDXWhtrrc1wP4cBjep21GfxBs5A/DTgYgB3yt5T3XgXd9B1RKSHUaIgIhIch9x1jDGmTxv1Bjar3/jn5t10Gmtt30F3nWiMSWo7xI7hzmR0Gs5D6cXW2lcDtKK01rrhi3fIMVzSd0zSMd5jnbuObqPOiX5mvoTo+9bax621+c32H+1zONZ7wlpraRiD4Ot+5GtNeNVa21bLlIj0YkoURESCYx1OlxtoGNTchPtA6HuR2NpGu3w/TzDGJLZy/umtlH+M80BscL7Z7wr+ZKeNcQbntlL+gbs+xRgzoJU6zTW+xwvbeQyAb7D6wEA7jTGGhj+P4+U797pW9rf2ORzvPfksxEnUznenx/2aW65BzCLSKiUKIiJBYK0tAla6m7ebRm93buR2nG+3jwAvNyp/DWd61Cjg5uYHGWMicV76Fei6ZcCz7uYvjTEJrcXoDrqNP8qttIevT31fY0xGgOucDHy1lWNX4Iy3CKOdswm5rRW+wdEL2rrHZnwD1r9gjOkXYP+1nPjgbt9ncXLzHe5n/fNAB53APfmO3we8gvM5/hNnnMsh4IVjOY+I9C5KFEREgucunAGsk4B/GWMGgvPA6L7A7aduvQestYd9B1lry4Ffu5t3G2N+aIyJcY/NwnmgbOuB9qc474UYBaw2xlxgjIlwjzfGmJHGmB8COTj92E/UJpxB2QZ42hgzwr1WhDHmcuB1nGSoBWttLQ1Jz1eMMf82xmT79rszKf2PMeZ3zQ79Gc5g6VHA28aYc3zJmDEmxhgzxxjzcrNj3sMZIB4JPGWMGerWjzXGfBv4Gw2zEh2v1931Q8aY6W4rBcaYL+AkRWltHHs899TYo+7aNwXtE+7nKyISWLBf5KBFixYt3Xmh4YVrM1rZP8/dv+p4zgF8G6dLiMVJGopwupj4Xt71BIFfxhaOM+2lr14tzkOs7+fLG+3LCnD8F3C+qffVqcEZYFvdqMwC05sdt4rjeOEaznz99Y3Oe7jRtXbhdIWxONPMBjr+h82OL2t0vwE/f5wuXY3rVLn36P982xFnqft5WpyXwi2i7ReuBYy/Ub1hON/k+85fiZMkWaAC5x0Zbf25HfM9Nfud2d/o2JOC/fdLixYt3XtRi4KISBBZa/+C89D+JM4Uq/E4D6evA1dZa79mA7yMzVpbB1wB/ABYj/OgWA+8hPNw/5+jXPcjIBune9NqnIfVZJyH1Y+B37nnae19DMfEWvscMNO9rzKcqWJ34bwYbiIN08C2dvxDbr2FOIlXBM7D7nrgYZw3EDc/ZiUwGufFdZ/jfEbRwHbgKdwZgALEeR5Ot7AynK46nwDfsNZ+45huOvB97MAZ2P0Ezjs4wnDGRvwT+IK19rWjHH/M99To2DoaXuj2kbX28xO6GRHp8Yy19ui1REREJOQZY7YAI4HvWGv/HOx4RKR7U6IgIiLSCxhjZuG8U6Ec6G8bjXsREQlEXY9ERER6OGNMOg2zRv1dSYKItIdaFERERHooY8xvgKuBTJxxHQXAONvyRW8iIi2oRUFERKTnSseZKrcS5/0bM5UkiEh7qUVBRERERERaUIuCiIiIiIi0oERBRERERERaUKIgIiIiIiItKFEQEREREZEWlCiIiIiIiEgL4cEOoKcyxuwEEoHcIIciIiIiIj1bFnDYWju0I0+qRKHzJMbExKSOGTMmNdiBiIiIiEjPtWnTJiorKzv8vEoUOk/umDFjUtesWRPsOERERESkB5s8eTJr167N7ejzaoyCiIiIiIi0oERBRERERERaUKIgIiIiIiItKFEQEREREZEWlCiIiIiIiEgLIZcoGGOuNMY8Yox5xxhz2BhjjTFPHOe5Bhpj/m6M2W+MqTbG5BpjfmuMSenouEVEREREQkkoTo96JzAeOALsBbKP5yTGmOHAaiADWArkAKcBNwMXGGOmWWsLOyRiEREREZEQE4qJwq04CcI2YDqw8jjP80ecJOEH1tpHfIXGmIfca9wL3HhiobaP1+ulqKiIsrIyqqursdZ2xWVFjsoYQ1RUFAkJCaSmpuLxhFwjpIiIiBynkPtf31q70lq71Z7A07TbmnAekAv8odnuu4FyYK4xJu64A20nr9fLnj17OHToEFVVVUoSpFux1lJVVcWhQ4fYs2cPXq832CGJiIhIFwnFFoWOcI67fs1a2+TJx1pbZox5DyeROANY0ZmBFBUVUVFRQXh4OJmZmcTFxelbW+k2vF4v5eXlHDhwgIqKCoqKikhPTw92WCIiItIFemuiMNpdb2ll/1acRGEUR0kUjDFrWtnVrrETZWVlAGRmZpKQkNCeQ0S6jMfj8f9e7t27l7KyMiUKIiIivURv/eo6yV2XtrLfV57c2YFUV1cDEBfX6b2cRI6b7/fT9/sqIiIiPV9vbVHoMNbayYHK3ZaGSe04HkDdjaRbM8YAaAyNiIhIL9Jbn059LQZJrez3lZd0QSwi3Z4vURAREZHeo7cmCpvd9ahW9o90162NYRARERER6dF6a6Lge/fCecaYJp+BMSYBmAZUAB90dWAiIiIi0rGsteo+exx69BgFY0wEMByotdZu95Vba7cbY17DmdnoJuCRRoctAOKAv1hry7syXula8+fPZ8GCBaxcuZIZM2YEOxwREZF2q633cqSqLthhdAgL1NR5qaytp6q23r92Fi+VNfVU1dVTWVNPdZ277a/n9ddtON5LdW2zOnX1eIwhOSaC5NgIUmIjSY6NJCXW2XZ+9m1HkhLnqxNBVHhYsD+ioAm5RMEYcylwqbuZ6a6nGGMWuT8XWGtvc38eAGwCdgFZzU71XWA18DtjzCy33uk471jYAvy8M+KX1uXm5jJ06FCuv/56Fi1aFOxwRES6varaeuq9lriokPvvXI5DRU0dK3MO8fJnebyZk09lbX2wQwop9dZSWF5DYXkNzrt12yc2MsyfNDQkFU2TDd/+FDfhSIwJ7xHj+0LxX5YJwPXNyoa5CzhJwW0chduqcCrwS+ACYDaQBzwMLLDWFndYxNItfe973+PLX/4ygwcPDnYoIiLtUlPnZd3uYlZvL+T97YWs21NMbb3ljGGpXDFpIBee3I94JQ09ipKD4KuoqaeippJ9JZXtPmbbvRcSHqZEoctZa+cD89tZNxdo9U/JWrsH+HpHxCWhJz09XS8PE5Furd5r+XxfKau3F7J6ewEf5RZRVettUe+DHUV8sKOIXyzdwAUnZXLFpIFMGZ5GmCc0HlS8XkvOgTIqa+v8XUCSYiJCJv6O5ksOXvpsPytzDrWaHCREh/eYzygyzENMZBjR4WFER4YRHd6wHRMZRnSEh+iIMKIjwoiJcLZjIsKI8m83lPvrNTpPVHgY9V5LSUUNJZW1FJfXUFxRS0lF43XLspKKWuq8xza2ITE6nPCwnjEMOOQSBemZfOMFABYvXszixYv9+xYuXEhWVhbnnHMOd999N7Nnz2bBggW8//77FBcXs3PnTrKysli5ciVPPfUU7777Lnv37qW2tpbhw4dz1VVXcfvttxMdHR3wms3HKBhjmD59OkuWLOFnP/sZy5Yto6ioiBEjRnDbbbfx9a8rtxSRzmGtZWv+Ed7bVsDq7YV8sKOQsqP0QzcGfGM0K2vreW7dPp5bt49+SdFcOnEAV0wayIiM+C6I/tiUVdXy7tYCVuTks2pzPgVHaprsNwYSoyMa+ow371ceF7jLR0xkaPYnr6ip482cfH/LQaCEEGBkRjyzT+7HnFP6MapvQhdHGdrCPIaMxGgyEqOPXtllraWsuo6S8lqK3SSjpKKmRaJR7CYVxRU1JEZHdOJddC0lCtItzJgxg5KSEh5++GHGjx/PpZde6t83YcIESkqcV1q8//773H///Zx55pnccMMNFBQUEBkZCcCDDz5ITk4OU6dOZc6cOVRVVfHee+8xf/58Vq1axRtvvEFYWPv+AykpKWHatGlERkZy5ZVXUl1dzTPPPMMNN9yAx+Ph+uub934TETl21lr2FFXy3vYCtztRQYsH5uaGpMUydXgaU4anM2VYGl5reX7dPp5du5ctB4/46+WVVvGnVdv506rtjB+UzBWTBnDRKf1JiYvs7NtqVW5BOSty8lmZk89/dxZSW9/6N7XWQmllLaWVtVBY0e5rRIV7miYPcU0TjbT4SIakxTEsPY7k2OB9FtCQHLy0Po+Vm5UcdEfGGBKjI0iMjmBwWmyww+lyShSkW5gxYwZZWVk8/PDDTJgwgfnz5zfZv2rVKgBee+01/vznP/Ptb3+7xTn++Mc/MnTo0BaDh+666y7uuecelixZwjXXXNOueD799FO+8Y1v8Je//MWfXNxyyy2ccsopPPjgg0oUROS4HTxcxfvbC/2tBkfr95yREMW0EelMGZ7G1OFpDExp+bDy7enD+dbZw9iw/zBL1uzlhU/3U1TekHB8uqeET/eU8KsXNzIruy+XTxrAOdkZRHRy94jaei8f5RaxMiefFTn57DjU+gDStLhIBqbE+LuFHD7OGX2q67wcOFzFgcNVR62bEhvB0PQ4hqbHM6xPHEPT48hKiyMrPZbYyM55RCqvbmg5OFpyMOeUfsw5uR8jlRxIkChR6OayfvpSsENot9wH5nT6NSZMmBAwSQAYNmxYwPJbb72Ve+65h1dffbXdiUJsbCwPPfRQkxaIsWPHMm3aNN5++22OHDlCfHz3a8oXCTU1dV4Oug91+0sqOVBaRXiYh/EDkzhpQBLREaHZjaSxkooaPthRyGo3OdjexsMyQHJsBFOGOUnB1BHpDEuPa9fsKcYYThrgfG4/mz2Gt7Yc4tk1e1mRc9D/zX1tvWX5hgMs33CA1LhILh7fnysnD2Rc/8QOm6Gl8Eg1qzYf4s3N+by9+RBl1a0/8I/rn8is7AxmjunLKQOS8DTqb19X76W0sjZA945GXT7Km3b5KKmopaY+8IN3IMUVtRTvLmHt7pIW+/olRbtJhLMM6+MkEYNSY485wWpvcjCqr9tyoORAugklChJSTjvttFb3lZeX8/DDD/Pcc8+xZcsWysrKmrxcZd++fe2+zsiRI0lMTGxRPmjQIACKi4uVKIgchS8JyCutIq/USQJ8P+e5Pxccqaa1dyBFhBnG9ktk4uAUJg1JYdLgZAYkx3TrKQdr673sOFTOxrxSNuw7zPs7CtmYd7jVewSIiwzjtKGpTB3utBqM7ZfY5IH5eESGe/ji2L58cWxfistreHH9fpas3cenexoeiIvKa1i0OpdFq3MZ1TeeKyYN5NKJA+h7DP23wek+lXOgjDdz8lmx6SDr9pS0er/RER7OHNGHWWMyOGd0BplJrV8rPMxDWnwUafFRxxRLRU19k+SheVJx8HAVOwvKyS0sb/WBHfD/jq7eXtikPMxjGJwa2zSJSI8jKz2OzMRo/59deXUdK3LyedntVlRdp+RAQo8SBQkpmZmZActra2uZOXMmH374ISeddBLXXHMNffr0ISLCGVC0YMECqqur232d5OTkgOXh4c5fmfp6TU8nvVvzJCCvtIoDpW6rwOGjJwHtUVtv+XRvKZ/uLWXR6lzA6YYzaXAKEwcnM2lICicHsdWhtKKWjXmH2eQuG/MOs/XgkaN+ox0Z5mHykBS3xSCNUwYmd2oXoJS4SOZOyWLulCy25Zfx7Np9PLd2X5OuOVsOHuH+V3J4cHkOZ47swxWTBnDe2MxWBwZX1dazensBKzbl82ZOPnmlrXfzGZAc4yQG2RlMGZbWqX9exhjiosKJiwpnYErbdb1eywE3aWi+7C6qoL6VmW7qvdZfr7noCA9ZaXGkx0fxUW5Rm8nBnJP7M+eUTEZkKDmQ7kuJQjfXFd15Qklr3yQuXbqUDz/8kHnz5rFw4cIm+/Ly8vwzKolI+1lr2VtcyYb9zoPw5gNl7C+tZH+JkwR0BGOgT3wU/ZJj6JcYTWZSNGVVdazbXcyOAA9i+WXV/q4zAOEew7j+TqvDxMHJTBqcwsCUjm118Hotu4sqmiQEm/LK2j2nepjHcMrAJCcxGJ7O5CEpQUtuRmQkcPsF2dx23mje317Is2v3svzzA/7pN70W3t5yiLe3HCIhKpzZJ/fjiskD+UJWCnmlVbyZ4yQGq7cXtPptvMfApMEpzByTwazsvozqG98tW4E8HkP/5Bj6J8cwbUTTqbJr673sKaogt7CcHYeaJhFtJUVVtV5yDpQBZS32je6b4A5IVnIgoUOJgnQbvvEAx/Nt/bZt2wC4/PLLW+x76623TiwwkV6gqraeLQfL2Ljf9w15GZvyDrfZv/xojHFaADKTYuif5CQB/ZKi6ZcU46yTY8hIiGr12/Ti8ho+2VPC2t3FrN1dzCe7SyivafrvQ523cauDU9YnIYpJbtIwcXAKpwxsf6tDZU09OQec+9+YV8qmvDJy8g63uG5bBiTHMKZfAmP6JTJ+YDKnDUvtdtMlhnkMZ45M58yR6fzq0jpe+SyPZ9fu5YMdRf46ZdV1PP3xHp7+eA8psREUV9S2er7E6HCmj85gVnYG00f1CerMSh0hIszDsD7xDOsTz8zspvsqaurILXCSiJ0FvkTiCDsLylt8RkoOJNQpUZBuIyUlBWMMu3fvPuZjs7KyAGd2pIsuushfvmPHDm6//faOClGkR8gvq3ITgjL/N+Q7Dh3hWN4p5DGQkRDo4d/ZzkxqOwloj5S4SM7JdrqsgNPlY2t+GWt3NSQPgWbROVRWzasbDvLqhoOA0+owtn9iQ5clt9Xh4OFq//37uhDtLChvd3epyDAPI/vGM7ZfImP8S0LQp9w8VvFR4Vx16iCuOnUQe4sreG6tM9VqbqMpSQMlCSMy4pnl/vlMHpLS6TModRexkeGM7Z/I2P4tx7GVVNSws6CcA6VVjOwbr+RAQp4SBek24uPjOf3003nnnXe49tprGTVqFGFhYVx88cVHPfaiiy5ixIgRPPTQQ3z22WdMnDiR3bt38+KLLzJnzpzjSj5EQp1vYG3TLjOHjzpPf2MpsRGNHoITGZoeS7+kGPqcYBJwPMI8huzMRLIzE/nq6YMB58Fs3e4S1u0uZu3uEj7ZU8KRZq0gdV7L+r2lrG/U6hAd4WlzIGtzaXGRjO3fkAyM7ZfEsD5xPe7heGBKLN+fNZLvzRzB2t3FPLt2H8s+3U9ZVR2RYR5OH5bKzOwMZmZnMCQtLtjhdjvJsZFMHBxaiaJIW5QoSLfyj3/8g1tvvZXly5fz1FNPYa1l4MCB/haD1sTFxfHmm2/y05/+lFWrVvHOO+8wbNgw7rrrLn74wx/y9NNPd80NiARJaWWtPyHwJQVbDh6hppXBlM0ZA0PT4hjTL9F9IHa6zmQmRnfL/uU+ybGBWx3W7S5h7S6n1SHQdKRt9a8f1ie+UUKQyNh+ifRJiOrWn0NHM8YweUgqk4ek8osvjWVXYQUDUmKIj9Jjg0hvYuyJTEkhrTLGrJk0adKkNWvWtFlv06ZNAIwZM6YrwhI5bvpd7V6cufmLWO2+0Xdb/pGjH+SKjQwjOzOh0TfkiWRnJnTaC6aCraSihnV7Sli3q5h1e0r4ZHcJZdV1xEeF+xMiX/ehUX0TWp3pR0Sku5o8eTJr165da62d3JHn7Zn/K4iI9DDl1XV8lFvE6u2FrN5ewIb9bc/N79M/KbpJQjC2XyKDU2NPeJ7+UJIcG8k5o515+8FpdSipqCElNrJXfQ4iIsdKiYKISDdUXVfPut0lrN7mtBh8sqeEujZGG0eEGUZmNLQSjA3RgbVdIcxjjuklXiIivZUSBRHplapq68k5UEZcZBiZSdEkBHn6yrp6L5/vP+x0JdpW2ObLmsDpS3/KwGSmjQj+3PwiItIzKVEQkV7jQKMXRr23rcD/kilwpojs58713z8pxlknO9N89nOnAO3IZMLrtWzJL2P1tkJWby/kvzsKj/rOguzMBKYOT2faiDS+MLT7zc0vIiI9ixIFEemxvF7L+n2lvLnpICty8tmw/3CrdY9U17E1/whb2xgUHCiZ8L047GjJhLWWXYUV/jEG728vpLC87WlKh6bHMWV4GlOHpzFlWJq6y4iISJdSoiAiPUpZVS3vbi1gRU4+qzbnt/nOgMGpsXgM5JVWtdnNx6e9yUTDS8icFon9JZW8v72QfSWVbZ4/MzGaqW5XoqnD0+ifHHPUmERERDqLEgURCXm5BeWsyMnnzZyDfLiziNr6wIN+wz3GfWFUX2ZmZzA03XlhlLWW4opa8korySupIu9wFQd8P5dWOeXHkExsyz/SrulKU2IjmDo8nSnD05g2Ip2stNheNVe/iIh0b0oURCTk1NZ7+Si3iJU5+azIyWdHgBdq+aTFOS/kmpWdwZkj0wN2DTLGkBoXSWpcJOP6JwU8j7WWkopa9pdWcqC0iv2lbjJRWkVeSRUHDlexv6SyzWQiPiqc04emut2J0snOTND0nCIi0m0pURCRkFBUXsOqzU5i8PaWQ5RVtT7wd1z/RGa5b+sdPzC5Qx7GjTGkxEWS0o5konErxIHSKmKjwjhjWBqnDEgiPMxzwrGIiIh0BSUKItItWWvJOVDGmzn5rNh0kHV7Slp9wVh0hIczR/RhZnYG52T3oV9ScPr2N04mxvZPDEoMIiIiHUWJgoh0K2VVtfxp1XaeX7eP/aVVrdYbkBzDzOwMZo7JYMqwNL1DQEREpIMpURCRbsFay3Pr9nH/KzkcKqtusd9jYNLgFGaOyWBWdl9G9Y3XwF8REZFOpERBRILu832l3FR6LKwAACAASURBVP3CBtbsKm5SnhgdzvTRzkDk6aP6kBIXGaQIRUREeh+NqpNeIysri6ysrCZlixYtwhjDokWL2n2eefPmYYwhNze3Q+NrLlC8PU1xeQ0/f+4zLvr9u02ShIyEKP7vmvGsueuLPPKViVw6cYCSBBERkS6mFgWRIJkxYwZvvfUWtrURuj1Yvdfy1Ie7+c1rmympqPWXR4QZbjhzKN+fOZL4KP3zJCIiEkz6n1h6tcsuu4wzzjiDfv36BTuUFlasWBHsEDrFml1F/GLpBjbsP9yk/KyR6cy/eBzD+8QHKTIRERFpTImC9GpJSUkkJQWeEz/Yhg8fHuwQOlR+WRUPvJLDf9bua1I+MCWGu740lvPG9tXgZBERkW5EYxSkW/jggw8wxnDZZZe1WmfMmDFERUVRVFRETU0Nv//975k9ezZDhgwhKiqK1NRUzj33XF555ZV2X7etMQpvvPEGZ511FnFxcaSmpnLppZeSk5PT5rmuuOIKhg0bRkxMDImJiUybNo0nnniiSb3c3FyMMbz11luAM/e+b5kxY4a/XmtjFKqrq3nggQc4+eSTiY2NJTExkbPOOot///vfLer6rjVv3jxyc3P58pe/THp6OtHR0Zx66qm8+OKL7fugTkBtvZdH39nBzN+81SRJiAr3cOu5o3jjh9M5f1ymkgQREZFuRi0K0i2cccYZjB49mpdffpnCwkLS0tKa7P/www/JycnhiiuuIDU1lQMHDnDzzTczdepUvvjFL9KnTx/y8vJYtmwZs2fP5m9/+xvf/OY3jzueJUuWcM011xAZGck111xDv379ePfdd5kyZQqnnHJKwGO+853vMG7cOM4++2z69etHYWEhL7/8MnPnzmXz5s386le/AiA5OZm7776bRYsWsWvXLu6++27/OY42eLmmpobzzz+ft956i+zsbG666SYqKir88X7yySfcd999LY7btWsXp512GsOGDWPu3LkUFRXx9NNPc8kll/DGG29wzjnnHPdn1Zb3thVw9wsb2JZ/pEn5BeMy+fmcMQxKje2U64qIiEgHsNZq6YQFWDNp0iR7NBs3brQbN248ar3e4L777rOAfeSRR1rs++53v2sB+8ILL1hrra2qqrJ79uxpUa+kpMSOGzfOpqSk2IqKiib7hgwZYocMGdKkbOHChRawCxcu9JeVlZXZ1NRUGx4ebj/66KMm9W+55RYLWMDu3Lmzyb5t27a1iKe6utrOnDnThoeH27179zbZN336dOv8FQwsULy+z+jCCy+0tbW1/vKDBw/aIUOGWMC+9957/vKdO3f6450/f36Tcy1fvtx/rvY4lt/VvcUV9jtPfGyH3P5ik2Xmb1bat7fkt+scIiIi0j6TJk2ywBrbwc+zalHo7uZ3z/7zAc0vPaHD586dy5133snixYv53ve+5y+vqanhX//6FxkZGVx44YUAREVFMXDgwBbnSEpK4oYbbuBHP/oRH330EWefffYxx7F06VKKioq47rrrOPXUU5vsmz9/PgsXLqS0tOW9BhpTEBkZyU033cSbb77JihUruO666445nsb+/ve/Y4zhoYceIjy84a9vRkYGd911F9/85jd59NFHmTp1apPjhgwZwp133tmk7Pzzz2fw4MF8+OGHJxRTY1W19fzt7R38YdU2qmq9/vK4yDBuPnck86YOJTJcPR5FRERCgf7Hlm5j4MCBzJo1i48//piNGzf6y5ctW0ZRURHXXnttk4fjDRs2MG/ePP+YAF8//x/96EcA7Nu3r8U12mPt2rUATJ8+vcW+pKQkJkyYEPC43bt3c9NNN5GdnU1sbKw/niuuuOKE4vEpKytj27Zt9O/fn+zs7Bb7Z86cCcC6deta7JswYQJhYWEtygcNGkRxcXGL8mNlreWNjQc57//e5n9f39IkSbhs4gBW3jaDb509XEmCiIhICFGLgnQr8+bN4/XXX2fx4sU8+OCDACxevBiA66+/3l/vgw8+YObMmdTV1TFr1iwuvvhiEhMT8Xg8fPLJJyxdupTq6urjisHXWtC3b9+A+zMzM1uU7dixg9NOO43i4mLOOusszjvvPJKSkggLCyM3N5fFixcfdzzN42ptKldfeUlJSYt9ycnJAY8JDw/H6/UG3NdeOwvKWbBsA6s2H2pSPrZfIgsuGccXslJP6PwiIiISHEoUursT7M4Tai677DISExN54oknuO+++ygsLOSVV15h/PjxjB8/3l/vnnvuobKykpUrVzaZKQjg/vvvZ+nSpccdg2+61IMHDwbcf+DAgRZlDz30EIWFhSxcuJB58+Y12ffUU0/5k50T4Ysr0PUB8vLymtTrbOXVdfx+5TYee2cnNfUNyUZSTAS3nT+ar542mDCPZjISEREJVeoHIN1KTEwMV199Nfv37+eNN97gySefpK6urklrAsC2bdtITU1tkSQA/mlHj9ekSZNaPU9paSmffPJJi/Jt27YB+LsZtSceX1eg+vr6dsWVkJDA8OHD2bdvH1u3bm2xf+XKlU3i7yzWWl74dD+z/vct/rRquz9JMAa+evpgVt42g7lnDFGSICIiEuKUKEi34/tG/vHHH+fxxx8nPDyca6+9tkmdrKwsioqKWL9+fZPyxx57jFdfffWErn/JJZeQkpLCk08+yccff9xk3/z58wMOZPZNa7pq1aom5a+++iqPPvpowOv4poDdvXt3u2O74YYbsNby4x//uEmCUVBQ4J9+9YYbbmj3+Rqz1lLvtdTU1VNRU0dZVS0lFTUUHKnm4OEqauu97Cmq4OLfv8cPnlrHgcNV/mMnDU7mhZvO5L7LTiY1LvK4ri8iIiLdi7oeSbczbdo0RowYwTPPPENtbS0XXXQRGRkZTerccsstvPrqq5x55plcffXVJCUl8fHHH/Puu+9y5ZVXsmTJkuO+fnx8PH/961+55pprOOuss5q8R+Hzzz/n7LPP5u23325yzHe/+10WLlzIVVddxZVXXkn//v35/PPPWb58OVdffTVPP/10i+vMmjWLZ555hssvv5zZs2cTExPDkCFDmDt3bqux3XbbbbzyyissXbqU8ePHM3v2bCoqKnjmmWfIz8/nJz/5CWeeeSbWWuq8lupaJ5moqfdSVF5DvddLnddJCOq9lkp3/8a8w9R7/VP7BlRXbymuqOWzfQ2JUnp8FHdcmM1lEwfgUQuCiIhIj6IWBemWrr/+empra/0/N3fBBRewbNkyxo4dy9NPP81jjz1GVFQUK1euZM6cOSd8/SuvvJLly5czefJk/v3vf/PnP/+Z1NRU3n//fYYOHdqi/imnnMLKlSuZOnUqL730En/60584fPgw//nPf7jxxhsDXuOb3/wmd9xxB6Wlpfz617/mrrvu4rHHHmszrsjISF5//XXuvfdeAB555BEWL17MyJEj+fNji7jh1jvZsK+Uz/aVsinvMDsKygEor6pjb3EFeaVVHCqrpqi8htLKWrxeJzGoq/e2mSQ0F+YxfOPMobx523SumDxQSYKIiEgPZI7l4UDazxizZtKkSZPWrFnTZr1NmzYBMGbMmK4IS3qgmrp69hRVUl5Td8Ln8hhDmMdZwpusPRzas52y6joqYzMZ1z+JzKToDoheRERETtTkyZNZu3btWmvt5I48r7oeiYQoay0lFbXsL6mkPkDC7zzke5o89Af+uaFOWy0Dxfs9pMRGMnVM4GljRUREpGdRoiASgurqvewrqaS0stZfZjBkJEaRFhdJmMd52ZuIiIjI8VKiIBJiyqpq2VtcSW2jdxdEhXsYlBJLbJT+SouIiEjH0FOFSIjwei0HDldRcKTpG55T4yLplxSj9xaIiIhIh1KiIBICKmvq2VNcQVVtw7sTwj0eBqbEkBgTEcTIREREpKdSoiDSjVlrKThSw4HDVU2mL02IjmBgSgwRYZrhWERERDqHEgWRbqqmzsve4gqOVDdMe+oxhn5J0aTGRXbpYGVNoywiItL7KFEIMmMM1lq8Xi8ej74dFkdJRQ37Siqp9zY8oMdEhDEoNZboiLAuj8eXKGgmJRERkd5DiUKQRUVFUVVVRXl5OQkJCcEOR4Ks3utlf0kVxRU1/jID9EmIJiMxCk+QHtTLy503PEdFRQXl+iIiItL1lCgEWUJCAlVVVRw4cACAuLg4jNEc+L3Rkeo69hZVUNNo2tPIMA+DUmOJC8K0p9ZarLWUl5f7fz+VzIqIiPQeShSCLDU1lfLycioqKti7d2+ww5EgsDgvUKurbzoOIMxj8IYZdpd0j6QxNjaW1NTUYIchIiIiXUSJQpB5PB4GDRpEUVERZWVlVFdXa+BoL1JdW8/u4goqaxpaEcI9hgEpMSRFBn/aU2MMUVFRJCQkkJqaqnE0IiIivUhIJgrGmIHAL4ELgDQgD3geWGCtLT6G81wBfB+YCEQCO4AngP+11ta0dWxH8ng8pKenk56e3lWXlCCz1vL4+7u47+VNVNc1JAlnjkjnN1eNJzMpOojRiYiIiIRgomCMGQ6sBjKApUAOcBpwM3CBMWaatbawHee5D7gDOAI8CxQBZwH3AbOMMRdaa2s75y6kN8s/XMWPl6znrS2H/GWR4R5+ekE286Zm4dEblkVERKQbCLlEAfgjTpLwA2vtI75CY8xDwK3AvcCNbZ3AGDMJJ0koASZba3e45cY9/404LQ0PdcYNSO+1/PMD3PGf9RRXNOSg2ZkJPPzliYzO1EBhERER6T5CqsOx25pwHpAL/KHZ7ruBcmCuMSbuKKe61F0/6ksSAKwzOOBn7uZNJxywiKu8uo7bl6znxifW+JMEY+BbZw9j6femKUkQERGRbifUWhTOcdevWWu9jXdYa8uMMe/hJBJnACvaOE+mu97RfIe1ttgYUwwMM8YMtdbu7IC4pRf7745CfrxkPbuLKvxl/ZKi+d+rxjN1hMaliIiISPcUaonCaHe9pZX9W3EShVG0nSgUuOuhzXcYY5KBlEbXazNRMMasaWVXdlvHSc9XUVPHr5dvZtHq3CblF43vzz2XnERSbPBnNRIRERFpTaglCknuurSV/b7y5KOc5yWcMQr/Y4z5o7U2F/xjFO5tVC8lwLEiR/XBjkJ+0qwVISE6nF9dchKXThwQxMhERERE2ifUEoUOYa19zxjzGPANYL0xpvGsR6fgzKSUDXhbP4v/XJMDlbstDZM6LGgJCa21IszMzuC+y07WtKciIiISMkItUfC1GCS1st9XXtKOc/0P8KG7vhrnBbkfADOAO3EShfzjDVR6n9ZaEe6+aBxXTBqA02AlIiIiEhpCLVHY7K5HtbJ/pLtubQyDnzvD0V/dpQljzMk4rQlrjyNG6WXKq+v49fIcFr+/q0m5WhFEREQklIVaorDSXZ9njPE0nvnIGJMATAMqcFoGjosxZgYwGFhmrW1tLIQIAO9vL+Qnz37KnqJKf1mi24pwuVoRREREJISFVKJgrd1ujHkNZ2ajm4BHGu1eAMQBf7HWlvsKjTHZ7rE5jc9ljEm01h5uVjYEeBSowel+JBJQeXUdDy7P4fFmrQizsjO47/KT6ZuoVgQREREJbSGVKLi+C6wGfmeMmQVsAk7HecfCFuDnzepvctfNv9p9zE0M1uIMZB4KXAxEAHOttes7J3wJda21Isy/eByXTVQrgoiIiPQMIZcouK0KpwK/BC4AZgN5wMPAAmttcTtP9SLwLeAqIAE4CCwBHrDWbmrrQOmd1IogIiIivUnIJQoA1to9wNfbWTfg17vW2sXA4o6MS3qu1dsLuP3Z9WpFEBERkV4jJBMFka5SXl3HA6/k8I8PmrYinDvGmdEoQ60IIiIi0kMpURBpxertBfxkyXr2Fje0IiTFRDD/4rFcOkGtCCIiItKzKVEQaaa8uo77X9nEEx/sblJ+7pi+3HfZSWpFEBERkV5BiYJII6u3FfCTZ1u2Iiy4eByXTOivVgQRERHpNZQoiABHqut4QK0IIiIiIn5KFKTXW72tgB8vWc++ErUiiIiIiPgoUZBeK7+sigdf2cyza/c2Kf/i2L7ce9lJZCSoFUFERER6LyUK0uvU1ntZvDqX376xlSPVdf7y5FinFeHi8WpFEBEREVGiIL3Ke9sKuPuFDWzLP9Kk/MKTMllwyTi1IoiIiIi4lChIr7CvpJJ7X9rIy58daFI+vE8c8y8ex1kj+wQpMhEREZHuSYmC9GhVtfX87e0d/GHVNqpqvf7yuMgwbjl3FNdPzSIy3BPECEVERES6JyUK0iNZa1mxKZ9fvriR3UUVTfZdPnEAP70wW1OeioiIiLRBiYL0ODsLylmwbAOrNh9qUj62XyK/vGQcp2alBikyERERkdChREF6jPLqOn6/chuPvbOTmvqGbkZJMRHcdv5ovnraYMI8ms1IREREpD2UKEjIs9aybH0e9720iQOHq/zlxsBXThvMbeeNJjUuMogRioiIiIQeJQoS0nIOHObupRv4786iJuWTBifzy0tO4qQBSUGKTERERCS0KVGQkFRaWcv/vb6Ff3ywi3qv9Zenx0dxx4XZXDZxAB51MxIRERE5bkoUJKR4vZYla/by4PIcCstr/OXhHsO8qVn84NyRJEZHBDFCERERkZ5BiYKEjE/2lHD3Cxv4dE9Jk/JpI9KYf9E4RvZNCFJkIiIiIj2PEgXp9gqPVPPr5Zt5+uM9TcoHJMdw55wxXHBSJsaom5GIiIhIR1KiIN1WXb2XJz7YxUOvb+FwVZ2/PDLcw41nD+M7M0YQExkWxAhFREREei4lCtIteb2Wbyz+mLe2NH1p2rlj+vKLL41lcFpskCITERER6R2UKEi39Pwn+5okCUPT4/jFRWM5Z3RGEKMSERER6T2UKEi3U1FTx6+Xb/Zvf+W0wcy/eCxR4epmJCIiItJVPMEOQKS5v7290/+G5T4JUdw5Z4ySBBEREZEupkRBupWDh6v481vb/du3nTeKuCg1fImIiIh0NSUK0q385tXNVNbWAzCmXyJXTh4U5IhEREREeiclCtJtfL6vlCVr9/q375wzhjCP3o8gIiIiEgxKFKRbsNZyz0sbsdbZPndMBtNGpAc3KBEREZFeTImCdAuvbzzIBzuKAAj3GO6YPSbIEYmIiIj0bkoUJOhq6rzc/0qOf/trZwxheJ/4IEYkIiIiIkoUJOie+GAXOwvKAUiMDufmWSODHJGIiIiIKFGQoCqpqOHhFVv92z+YNZKUuMggRiQiIiIioERBguzhFVsprawFICstluumZAU3IBEREREBlChIEO04dIR/vL/Lv/3TC8cQGa5fSREREZHuQE9lEjT3v5JDndeZD/W0oamcP65vkCMSERERER8lChIUq7cX8PrGg/7tu+aMxRi9XE1ERESku1CiIF2u3mu558VN/u3LJw3g5IFJQYxIRERERJpToiBd7tm1e9mYdxiA6AgPPzk/O8gRiYiIiEhzShSkS5VX1/GbVzf7t7999nAyk6KDGJGIiIiIBKJEQbrUX97eQX5ZNQAZCVF8e/qwIEckIiIiIoEoUZAuk1dayV/f3u7f/vH5o4mNDA9iRCIiIiLSGiUK0mX+36ubqar1AjCufyJXTBoY5IhEREREpDVKFKRLrN9bwn/W7vNv3zlnLB6PpkMVERER6a6UKEins7bpdKjnje3LlOFpQYxIRERERI5GiYJ0ulc3HODD3CIAwj2GO2aPCXJEIiIiInI0ShSkU1XX1XP/Kzn+7eumZDE0PS6IEYmIiIhIe2jKGelU/3h/F7sKKwBIiongB7NGBDkiERGRTlBZAluWw4bnYc9/YdQFcNFvITwq2JFJ4XZYdjPsfr9rrheVCLfv7JprdTIlCtJpispreHjFVv/2zbNGkhwbGcSIREREOlBlMeS8DBuXwvY3wVvbsO/TJ6GiAK7+B0ToxaJBU7ANFn8JyvK67pre+q67VidToiCd5uE3tlBWVQfAsPQ45k4ZEuSIRERETlBFEeS8BBufhx2rwFvXet2tr8HT18I1/1SyEAyHtsDii+DIgWBHErKUKEin2JZ/hCf+u9u/fcfsMUSEaUiMiIiEoPJCyFnmtBzseAtsK98Y95sA4y6FikJY/YhTtu0N+NdX4MtPQkRM18Xc2x3a7CYJB53tiFj4yr9gyNTgxhVilChIp7j/5U3Uey0AU4alce6YjCBHJCIicgyOHHKSgw3PQ+67rScHAybD2EucJSXLKbMWIuLgrQec7e1vwlNushAZ2yXh92r5OU6SUJ7vbEfEwbXPQNa04MYVgpQoSId7d2sBK3Kcv5zGwM/njMEYvVxNRES6ubKDsOkFp+Vg13tgvYHrDfwCjL0Uxl4MyYNb7jcGzrnDWa+63ynbsRKe+rLzrbaShc5zcKOTJFQUONuR8U6SoJaE4xKSiYIxZiDwS+ACIA3IA54HFlhri4/hPGcCPwbGA5lAPvA58Dtr7fKOjrs3qPda7nlpo3/7ykkDOWlAUhAjEhERacPhPNi0zBlzsGs1YAPXG3R6Q3KQNLB9557xUzBhsPIeZ3vnW/Dk1fDVpyFSU4V3uIMb3CSh0NmOjIevPQuDzwhuXCEs5BIFY8xwYDWQASwFcoDTgJuBC4wx06y1he04z3eAPwLlwHPAXmAgcDlwoTHmTmvtvZ1zFz3XMx/vIedAGQCxkWHcdv7oIEckIiLSTOm+huRg9wcETg4MDJ7idiu6GBL7H9+1pv/YaVl481fOdu478M+r4dp/K1noSAc+g8UXQ6XzglciE9wk4fTgxhXiQi5RwHm4zwB+YK19xFdojHkIuBW4F7ixrRMYYyKA+4EqYLK1dnOjffcB64CfG2N+Y62t7vhb6JmOVNfxm9e2+LdvnD6cvoma5UFERLqB0r1Ol6KNS533HARkYMg0Z0By9pcgsV/HXPvs28ATBm/Md7Z3vQtPXOl0iYmK75hr9GZ56+Hxi53pasF5j8HX/gODvhDcuHqAkEoU3NaE84Bc4A/Ndt8NfAuYa4z5kbW2vI1TpQJJwPrGSQKAtXaTMWYLcDIQDyhRaKc/r9pOwRHn48pMjOZ/zhoW5IhERKRXK97ljDnY8Dzs+zhwHeOBrDOdloPsiyChb+fEcuatzrVe/4WzvXs1/NOXLCR0zjV7g/2fwOOXQFWJsx2VBHOfg4GTgxtXDxFSiQJwjrt+zdqmI4ystWXGmPdwEokzgBVtnCcfOASMMsaMtNb63wpmjBkFjAQ+aU8XJnHsK6nkb+/s8G//5ILRxESGBTEiERHplYp2NrQc7F8buI4Jg6FnOWMOsr8E8X26JrZpNzvXfu3nzvbu9+GJK+DaJRCd2DUx9CT717lJQqmzHZ0Ec5+HAZOCG1cPEmqJgq/D+5ZW9m/FSRRG0UaiYK21xpibgCeANcaY54D9wADgMmAD8OX2BGSMWdPKruz2HN9T/Hp5DtV1Tu528oAkLp0wIMgRiYhIr1G43U0Onoe8TwPX8YTD0Oluy8GXIC6ta2P0mfo9p2Xh1Tuc7T3/hScud/rTR2vyj3bbtwYevwyqfUlCMly3FPpPCG5cPUyoJQq+v0Glrez3lScf7UTW2meMMfuBp4DrGu06CCwEdgQ8UFpYt7uYpZ/s92/f9aWxeDyaDlVERDpRwTbY+JyTIBz4LHAdTwQMm+GMORg9G2JTuzLC1k35rpMsLL/d2d77EfzjMqdffcxRH2Fk78fO51V92NmOSXGShH7jgxtXDxRqiUKHMcZ8Dfgb8B/gV8AuYAhwF/B7YDpw9dHOY60N2AnObWno8W1f1lrueWmTf/vCkzI5bWg3+YdYRER6lkObncRgw/OQvyFwnbBIGD7TaTkYfaHzENkdnXGjM8D55duc7X1rnIffuc8pWWjLng+d7lr+JCEVrn8BMk8Oblw9VKglCr4Wg9ba5nzlJW2dxB2H8HdgPTC30XiHHGPMXJwuTlcZY2ZYa1edWMg928ufHWDNLmeWgYgww08v7FU9rkREpLPlb3ISg41L4dCmwHXComDELGfMwegLQqcLz2n/40yd+tKPnO39a50+99c9330TnGDa/V8nSahxpmEnNg2uewEyTwpuXD1YqCUKvhmKRrWyf6S7bm0Mg895QATwVoBB0V5jzNvAZHdZdXyh9nxVtfU8sLzhH+15U7MYkqY5oUVE5ARY67w4yzcguWBz4Hrh0TDiXCc5GHV+6A4G/sI3nW5IL97qbOe5s/jMfb77dJXqDna978wSVXPE2Y5Nh+uXQd+xwY2rhwu1RGGluz7PGONp/JBvjEkApgEVwAdHOU+Uu25tmgNfec3xBtobLFqdy56iSgBSYiP43syRRzlCREQ6VFUpHNwY7Cg6Rn2N8+bijUuhcFvgOuExMPKLzpiDkef1nGlFT73BSRaW3exs533qvBfguheULIDzxuwnroRad+b7uD5OkpAxJrhx9QIhlShYa7cbY17DaRG4CXik0e4FQBzwl8bvUDDGZLvH5jSq+467vtJ9qdr6RvUnAFfivKbxzU65kR6g4Eg1f3iz4R/yW84dRVJMRBAjEhHpRbz18N+/wIpfQl1lsKPpXBGxTovB2Euc5KCnvs148jxn6tQXvg/YhjcNX7c0eDM0dQe57zpvsvYnCRlukqCuzl0hpBIF13eB1cDvjDGzgE3A6TjvWNgC/LxZfV/fGP80PNbaD40xC4GvAx+506PuArKAS4FI4LfW2lZGSslv39hCWXUdAMP7xPHV0wcHOSIRkV6iYCssvamNtwv3AJHxbnJwqdO9KDI22BF1jUlznZaFpTcBFg5+BosvcgbrxqUHO7qut/NtePIaqK1wtuP7wvUvQp/WeqBLRwu5RMFtVTgV+CVwATAbyAMeBhZYa4vbeapvAG8D84DzgQTgMPAu8Ddr7b86OPQeY/uhIzz5393+7Z/PGUNEmCeIEYmI9ALeenj/97DyPqiraihPHgwJ/YMXV0dKyYIxFzkDkyNigh1NcEy81kkWnv8OYJ3ZnRZf5HRD6qoXw3UHO1bBk19uaDGLz4R5L0K6ujl3GdhnuwAAIABJREFUpZBLFACstXtwWgPaUzfghP7WWgsschc5Bq9vPIjXOj9PG5HGOaMzghuQiEhPl58DS7/rTKHp4wmHs34EZ90G4ZHBi0063oSvuMnCjWC9kL8RFn/J6XIT3wv+z92+Ep76ckNCnNDPaUlIHxHcuHohfQ0sx2znIf8QEL44pi/G6OVqIiKdor4W3v4N/OWspklC5inwPyvhnJ8pSeipxl8Dl/3VSRgADuXAoi9B2cHgxtXZtq1omiQkDoB5LylJCJKQbFGQ4NpZ0JAoDO0TH8RIRER6sAOfO60IeZ82lHkiYMbtMO0WCNMEEj3eKVc571n4z7fA1jtTxS6a43TBScgMdnQdb+sb8K+vQn21s504EOYtg9RhwY2rF1OLghyzHY0ShWHpPXT2CRGRYKmrgVUPwF9nNE0S+k+CG9+Bs3+sJKE3OflKuOJRZ0YkgMKtTrJweH9w4+poW16Df32lIUlIGuQkREoSgkqJghyTw1W1FBxx/hJHhnnon9xLB5uJiHSG/Z/A386BVfeDt9YpC4uCcxfAN17XvPG91UmXw5V/d8algPOeiUVzoHRfcOPqKJuXw9PXOu/SAEga7HQ3Sh0a3LhEXY/k2OQ2ak0YkhZLmEfjE0RETlhdNbz1a3j3/5wuJj4DvwCX/FHTQYrzkjnjgSVfB28dFO2AP06B2JRgR3biSvc69wTOLF7zXnLWEnRKFOSYNBmfoG5HIiInbt8aeP4mOLSpoSw8BmbdBaffCJ6w4MUm3cvYi+GqxfDMPKfFqbrUWXqKlCxndqPkQcGORFzqeiTHZMehxgOZlSiIiBy32ip4/Rfw6LlNk4TBU+E778GUm5QkSEtjvgTX/ANie9gL2PpNcFsSlCR0J2pRkGOigcwiIh1g93+dt+8Wbm0oi4h1xiJ84Zvg0fd4/5+9+w6zq6r3P/7+plfSQ+iBQAi9d+kKiAVUVKRjRVHQH3qvigiK9er1CghWioJ0IaEJoQqCiPSWECAJvYSEhJCemfX7Y5/hnJnMJDOZPbPnnHm/nmeec/bae/b+hsOZOZ9Ze62lldj0g/D/noZ3amSMQo9e2eBlp1vvcgwKapMZb7373vMNRzo1qiS1ydKFcMeP4P7zgFRuH7snfPQcB2+q9Xr1dUYgdTiDglotpdRosTXHKEhSG8y8F677ajYItUGfQfCBH8IOx9uLIKnLMSio1WbNX8KCpdlsHIP79mLkIFcDlaRVWvIu3P4DeOAPjdvH7QcfOdt7siV1WQYFtdr0txoPZA7vJZSklZv+D7juazD3hXJb3yFw4I9hu6O8J1tSl2ZQUKs5NaoktdKS+dmMRg9e0Lh9kwPhI7+GNdYupi5JagODglptRqMZjxzILEnNeu52uP5kmPdSua3fEDjo57DN4fYiSKoaBgW1mmsoSNJKLJoLk0+FRy5p3L7ph+DDv4LBY4qpS5JWk0FBrVY5NaprKEhShWm3wPVfh/mvltv6D4eDfwFbfsJeBElVyaCgVlleV8+Lcxa+tz3WoCBJsHAO3PwdePzyxu2bHwoH/xIGjSqmLknKQa5BISJ6p5SW5XlOdQ2vzF3EsrpscaDRg/syqK8ZU1I3N/VGuOEb8O4b5bYBI+FD/wtbHFpcXZKUk7w/7b0SERcCf0wpPZfzuVWg6c54JEmZBbPh79+CJ//WuH3Lw+CD/wMDRxRTlyTlLO9lIHsA3wKeiYhbI+ITEdEz52uoAJUrMm/kQGZJ3dVT18K5OzcOCYPWhMMvhcPONyRIqil59yisDRwGfBHYH9gPeDMiLiDrZZiZ8/XUSVxDQVK39u4suOkUeHpS4/ZtPgMH/gQGDC+mLknqQLn2KKSUlqaULk0p7QNMAH5NFka+AzwXETdFxCERkXdPhjpY46DgGgqSuomU4Imrs16EypAweG044kr42O8MCZJqVod9YE8pTUspnQKsAxwF3AMcBFwDvBgRZ0SES1NWCXsUJHU781+Hy4+Ev30OFs0pt293NJx4P4w/sLjaJKkTdPhf9lNKS4EbgWuBV4Egu0Xp+8CMiPh1RPTt6Dq0+hYvq+OVuYsA6BGw/vABBVckSR0oJXj0sqwX4Zkby+1D1oOjroFDfpOttCxJNa5D57iMiF2BLwGfAvoB7wBnAxcA2wP/D/ga0Bf4ckfWotU3c3a5N2G94QPo08s7xyTVqHmvwA1fh2cnN27f8bPwgR9C38HF1CVJBcg9KETEYOBosoCwJVkPwiPAecClKaVFpUMfj4iLgZvJBkAbFLqoyhmPvO1IUk1KCR65GG45FZa8U24fugF89BzYaO/iapOkguS94Nr5ZL0HA4AlwMXAeSmlB5o7PqVUFxF3kc2OpC7KNRQk1bS5L8L1J8PzdzRu3/lLsP/3oa8TOEjqnvLuUTgeeB74HXBhSmnOKo4HuAv4Yc51KEeVA5k3MihIqhX19fDQhXDr92Hpu+X24RvBIefCBrsXV5skdQF5B4WDUkqTV31YWUrpXuDenOtQjpwaVVLNmTMDrvsazLynojFgtxNh31Ohj5M2SFKuQaGtIUHVoVFQcFVmSdXuiauzkLBsYblt5PisF2G9nYurS5K6mFynr4mI/SPigpbWR4iItUv798nzuuo4cxcuZc6CpQD07dWDtdboV3BFktQO774JE79cDgnRA/b4OnzpHkOCJDWR961HXwMmpJRebW5nSunViNgNGEI2NkFdXNOF1nr0iAKrkaR2evwKqMv++MHQDeCTF8I6OxRbkyR1UXlPiL89cN8qjvknsGPO11UHcUVmSTUjJXjkr+Xtvb5lSJCklcg7KIwmW315Zd4oHacqYFCQVDNefRhmTcme9x4AWxxabD2S1MXlHRTmAeut4pj1gAWrOEZdhGsoSKoZlb0Jmx/qKsuStAp5B4UHgEMjYkxzO0uDnA8tHacqULkq80bOeCSpWi1bDE9eXd7e7sjiapGkKpF3UDgHGAzcExEfjYi+ABHRNyIOAe4GBgFn53xddYCUkmsoSKoNU2+AxfOy58PGwgZ7FFqOJFWD3NdRiIgzgdOAa4EUEW8Dw4AofZ2ZUro5z+uqY7zxzhIWLasDYEj/3gwb0LvgiiRpNT1acdvRtkdCOIObJK1K3j0KpJROBw4CbgLmkE2FOge4ETiwtF9VYPpb7773fMORAwl/sUqqRvNehufvLG0EbPOZQsuRpGqR9zoKwHsrNLtKc5WrvO1oIwcyS6pWj10GpOz5RnvD0FXNuSFJgg7oUVDtqBzI7IxHkqpSSvDopeXtbY8qrhZJqjIGBbWo0dSozngkqRq9+C+YMz173ncIbPbhYuuRpCqSe1CIiLUi4tyIeC4iFkVEXTNfy/O+rvLnYmuSql7l2glbfhx69y+uFkmqMrmOUYiIdcjWSFgTeAroC7wALAE2Kl3vUbKF2dSFLaur58U5C9/bHjvCoCCpyix5F566try9nbcdSVJb5N2j8H1gDHBQSmmbUtuFKaUJZEHhFqA/8PGcr6ucvTRnIXX12eC/MWv0Y2DfDhn3Lkkd5+lJsKzUMzpyU1hnh2LrkaQqk3dQOBC4OaV0W9MdKaWXgU+SBYUf5Hxd5azRjEeOT5BUjSoHMW/n2gmS1FZ5B4UxZLccNagjCwYApJTeBW4FDsn5usqZ4xMkVbU5M+CFf2bPoyds/eli65GkKpR3UHgH6FOx/TawTpNj5gGjcr6ucjbdoCCpmlX2Jmz8fhg8prhaJKlK5R0UXgAqV7J5DNgvIgYAREQP4ADg5Zyvq5xVrqHgrUeSqkp9fWmRtZLtjiyuFkmqYnkHhduBfSOid2n7z8DawH0R8QvgXmAL4Iqcr6ucNb71aFCBlUhSG834B8x7KXvefziM/2Cx9UhSlcp7KpvzyW43Ggm8llK6JCJ2AL4GbF065nLgxzlfVzlasGQ5r7+zGIBePYJ1hznvuKQq8mjF2glbfwp69Wn5WElSi3INCimlZ4GfN2n7RkT8hGx61JkppTfyvKbyN3N2uTdh/eED6N3TBbwlVYlFc2HK9eXtbb3tSJJWV94Lrh0DvJFSuqWyPaU0C5iV57XUcZzxSFLVeuoaWJ71iDJmK1hr65UfL0lqUd5/Kr4AOCjnc64gItaNiAsi4tWIWBIRMyPi1xExrJXfv09EpFZ8rbfqs9WeyoHMBgVJVeWRituOtnUlZklqj7zHKLxO/uGjkYgYB9wHjAYmAVOBnYGTgYMiYo+U0uxVnGYmLS/6thXZytFPppReyqXoKtOoR8EZjyRVi1nPwCsPZs979IatPllsPZJU5fIOCjeTzXrUI6VUn/O5G5xHFhJOSimd09AYEb8CvkE2UPqElZ0gpTQTOKO5fRHRMKfeH3OotSq5hoKkqvTIJeXnm34QBo4orhZJqgF5//X/VGAwcH5EjMz53A29CQeQ9Qic22T36cAC4OiIWK1Pt6WaPwYsAv6y+pVWr5QS02e9+972Rk6NKqka1C2Hxytm3t7O244kqb3y7lG4jGzl5WOAwyNiJtntSKnJcSmltP9qnH/f0uPkpj0WKaX5EXEvWZDYlWxNh7Y6FugL/CWlNLc13xARD7Wwa8JqXL9wby9cxjuLlwPQv3dP1lyjb8EVSVIrPHcbvFuaVG/QGBi3Or9iJEmV8g4K+1Q87wtsWvpqqmlwaK2Gc01rYf+zZEFhPKsXFL5Qevz9anxvTZjxVrk3YcORA4mIAquRpFZ6tOK2o20+DT3z/vUmSd1P3usodPSE+0NKj/Na2N/QPrStJ46IvcmCyJMppfta+30ppR1aON9DwPZtraNo02c5kFlSlVkwG565ubztbEeSlAtX0ir7YunxD4VWUbDKGY82ciCzpGrwxFVQvyx7vu5OMGp8sfVIUo2otqDQ0GMwpIX9De2tGl/QICKGA58gG8R88eqVVhtcbE1S1am87ciVmCUpN3mvzLxXa49NKd29Gpd4pvTY0p+LNik9tjSGoSUNg5j/3NpBzLXKoCCpqrz2OLz+RPa8Vz/Y8uPF1iNJNSTv0V530fqByj1X4/x3lh4PaLpWQ0QMBvYAFgL3t/G8DYOYu/VtR/X1yaAgqbo8WrES82YfgX4tdThLktoq76DwQ5oPCkOBnYDdgeuBh1fn5Cml5yNiMtnMRicC51Ts/gEwEPh9Sum9T7sRMaH0vVObO2dE7AlsRhsHMdei195ZzJLlWfYaPrAPQwf0KbgiSVqJ5Uvh8SvL2952JEm5ynvWozNWtj8ijiP7cH9qOy7zFeA+4OyI2B+YAuxCtsbCtGbOPaXh8i2cz0HMJTNm2ZsgqYpM+zssmpM9H7IebLh3sfVIUo3p1MHMKaWLyG4L+kk7zvE8sCNwEVlAOAUYB5wF7JpSmt3ac0XEMOAwHMQMrLiGgiR1aY9U3Ha0zWegR7XNzyFJXVsRK9I8SnlMwGpJKb0EHN/KY1tcMSyl9DbQvz211JLpjk+QVC3mvw7P3Vre3vaI4mqRpBpVxJ9f1qOYgKJVcA0FSVXjscuhYT6LDd4Hwzcsth5JqkGdFhQiomdEfJ7sVp8HO+u6ar1GMx65KrOkriqlxrMdbecgZknqCHmvozB9JddZs/S4FPhuntdV+y1dXs9Lcxa+tz12hEFBUhf18oPwVmm5nD6DYPNDiq1HkmpU3rcA9aD56VGXAU8ADwDnpJSmNHOMCvTinIXUl165dYb2p1/v1VnmQpI6QeVKzFscCn38w4YkdYS8p0cdm+f51HlcaE1SVVi6EJ68pry97VHF1SJJNc655AQ4NaqkKjH1BljyTvZ8+DhYf9di65GkGpZrUIiI/hGxfkQ0u6RvRPQt7e+X53XVfvYoSKoKlYOYtz0CosUZsCVJ7ZR3j8L3gWeAQS3sHwhMxcHMXc70Wc54JKmLm/sSTP9HaSOyRdYkSR0m76DwQeC2lNKc5naW2m8DPpzzddVO011DQVJX99hlvDdfxrh9Ycg6hZYjSbUu76AwFpi2imOmlY5TFzF/8TJmzV8CQO+ewbrDBhRckSQ1UV/f5LYj106QpI6Wd1DoDdSv4pgEOEahC5n5Vnn9hA1GDKRnD+/5ldTFvHgfvD0ze95vCEywY1qSOlreQWE6sPcqjtkHeCHn66odpjvjkVTd3nga/vMnmP960ZV0nEcqehO2PAx6+/cmSepoeQeF64AdIuK/mtsZEd8Gtgcm5nxdtcMMxydI1WvKDfD7veDGU+A3O8PDF0Nqbt3LKrZkPjxd8WtjO287kqTOkPfKzL8EjgR+GhGfAiYDrwDrAAcC2wIvAv+T83XVDk6NKlWpp6+Dq4+H+uXZ9pJ5cN1X4alr4SNnwdD1iq0vL09NhGWlWyRHbQZrb19sPZLUTeS9MvPbEbEPcCmwK1nvQQIabnq/DzgqpfR2ntdV+xgUpCr01ES4+rOQ6koNwXszAj1/O5y3GxzwQ9jh+Opfa6ByEPN2R1b/v0eSqkTuKzOnlGamlHYHdgS+CpxWetwxpfS+lNLMvK+p1ZdSYoZrKEjV5clrGoeEERvD1x6CXU/kvb/LLJ0PN3wD/vLR8iDgajT7eXjxX9nz6Albf7rYeiSpG8n71qP3pJQeBh7uqPMrH2+9u5T5S7LbFgb17cWoQX0LrkjSSj1xNVzzxYqQsAkcdwMMHgMH/QQ2PwQmnQizn832z7gbztsd3n8G7PR56JH734c6VmVvwvgDYdDo4mqRpG4m198YEdE/ItaPiD4t7O9b2u90FV1E09uOwi59qet6/Cq45gvlkDByPBx3YxYSGqy/C5xwD+xxMkTpR/yyBfD3b8GfP5z9hb5a1NfBo5eVt107QZI6Vd5/Wvo+8AwwqIX9A4GpwHdzvq5W0wynRpWqw2NXwLVfhFRaqmbUhFJIWHPFY3v3hw/8ED53W3Zcgxfuhd/uAf86L/sQ3tVNvxPmv5o9HzAy61GQJHWavIPCB4HbUkpzmttZar8NcKWcLmK6A5mlru/Ry+DaL1WEhM3g2BtWfRvOujvAl+6GPb+Z3d8PsHwR3PIduPCD8NazHVt3e1WunbD1p6Fn7+JqkaRuKO+gMBaYtopjppWOUxdQOZB5IwcyS13PI3+FiV/mvRmNRm+RjUkYNKp139+rL+x/GnzhDlhzy3L7S//Oehf++WuoW5572e226G2YemN527UTJKnT5R0UegP1qzgmAY5R6CKcGlXqwh6+OBuY3BAS1twSjr0eBo5s+7nW3ha+cCfs8x3oUZrHom4J3HY6nP8BeHNKbmXn4sm/ZfUBrLUtrLlFsfVIUjeUd1CYDuy9imP2AV7I+bpaDXX1iRdmL3xve6xBQeo6HrooWzytISSM2aoUEkas/jl79YF9vg1f/AestU25/dWHs9Wd7/4l1C1rT9X5qbztaLujiqtDkrqxvIPCdcAOEfFfze2MiG+TLcI2MefrajW8OncRS+uyDqCRg/qyRj/v/5W6hAcvgOtPLm+P2RqOuQ4GDM/n/GO2hM/fDvudBj1Lk9TVLYU7zoQ/7Q+vP5nPdVbXm1Oy8AJZfVt+oth6JKmbyjso/BJ4CfhpRDwYET+JiBNLjw8BPwZeBP4n5+tqNVQOZN7I3gSpa/jPn7KF0hqstS0cm2NIaNCzN+z1zWyw89rbl9tfewz+sDfc9TNYvjTfa7bWI5eUn296cP7/dklSq+QaFFJKb5PdWvRvsp6DbwNnlx63A/4F7Fs6TgWbMcupUaUu5YE/wo2nlLfX3h6OmQT9h3XcNUdvBp+7NZtOtWdpwcX65XDXT+GP+8Krj3bctZtTtwwev6K87W1HklSY3JfoTCnNTCntDuwIfBU4rfS4Y0rpfSmlmXlfU6un0UBmZzySinX/7+Cmb5a319kRjr4W+g/t+Gv37JUt0HbCP2HdncvtbzwJf9wPbj8Tli/p+DoAnr0VFszKng9eC8bt1znXlSStoFdHnTil9DDwcEedX+3nGgpSF/Gv87K1DRqsuxMc9TfoN6Rz6xg1Hj57M/z7d6VwsChbBfqeX2ZTlR5ybrY2Q0d6tGIQ8zaHQ4+eHXs9SVKLOiQoRMRawP7AOkDfZg5JKaUzO+Laar0ZjlGQinffb2DyqeXt9XaBI6+GfmsUU0+PnrDbiTD+ILjua9lqzgCzpsD5789CTHTgh/eXHyg/39bbjiSpSLkHhYj4AdmYhMpzB+/N8ffec4NCgRYvq+OVuYsAiID1RwwouCKpG7r3LLj1++Xt9XaFo66GvoOLq6nBiHHZ6s//+RPcdgYsW5CtDP3Svzvn+uvtAiM37pxrSZKalesYhYg4kmxMwj3AYWSh4M/AEcAfyRZjuxzwptOCvThnIakU3dYd1p++vezelzrVP/+vcUhYf/euExIa9OgBu3wRvnIfbLhX5157z2+u+hhJUofKu0fhy8DLwEEppeURATAzpXQ5cHlEXAvcCFyW83XVRtNnVY5PGFRgJVI3dPcvszULGmzwPjjiCujbRd+Lw8Zm6zjMmgoL53TC9TaAIet2/HUkSSuVd1DYCrgspbS8ou29P1WnlG6JiFuAbwHX53xttYHjE6SC/OMXcOePyttj98xCQp8u/j6MyKZSlSR1G3lPj9obmF2xvQhoOm3Hk8A2OV9XbTTjLddQkDrdXT9rHBI23AuOuLLrhwRJUreUd4/Ca8BaFdsvAls3OWZtYDkq1AynRpU6T0rZAmb/+Hm5baN94PDLoI8TCUiSuqa8exQeAbas2L4D2DMijo6IgRHxIbJBzo/kfF21kUFB6iQpwZ0/bhwSxu0Hn7nckCBJ6tLyDgo3AFtGxIal7Z8B84CLgHeA68hmQvpeztdVG8xbtIy33l0KQJ9ePVh7aP+CK5Jq1LLF2dSid/+i3Lbx+7OehN6+7yRJXVuutx6llC4iCwUN2y9FxE7AKcA4YCZwXkrpiTyvq7aZWdGbMHbEAHr2iAKrkWrMskXw3G3w1ESYdjMsLY8HYpMD4FMXQ+9+xdUnSVIrdcjKzJVSSjOAr3b0ddR63nYk5WzpQnh2Mjw9Cabdki1O1tT4g+BTf4FezS1WL0lS19PhQUFdz/S3XENBarcl75bCwUR49lZYtrD544ZvBNscAXucZEiQJFUVg0I35BoK0mpaMj/rMXh6Ijx7Gyxf1PxxIzaBLQ6FzQ+BNbfM1iCQJKnKGBS6oco1FDYaZVCQVmrxO9lYg6cmZmMP6pY0f9zITUvh4NBsYTLDgSSpyhkUupmUEjNmOUZBWqlFc8vh4PnboW5p88eN3jzrNdj8UBg9oXNrlCSpgxkUupk35y9hwdI6ANbo14vhA/sUXJHURSx6G6belA1Ifv4OqF/W/HFrbpkFg80PgVHjO7dGSZI6kUGhm5le2ZswahDh7RHqzhbOgak3ZmMOpt8F9S0sGj9mq1I4OBRGbtypJUqSVBSDQjfjQGaJbLXke34Jd/2s5XCw1rbZmIPNPgojxnVufZIkdQEGhW6mciCz4xPULaUEt/8Q/vmrFfetvX15tqJhYzu9NEmSuhKDQjfjYmvq1lKC206He88qt625JWxzeBYOhq5fXG2SJHUxBoVuZrpBQd1VSjD5e/Cv35TbXC1ZkqQWGRS6keV19bw4u7x6rEFB3UZKcMupcP+55bZND4ZPXmRIkCSpBQaFbuTltxexvD4BsOYafRnY15df3UBKcPN34N+/LbdN+DAcdiH0cnpgSZJa4ifFbsTxCep2UoK//xc88Idy22YfyUJCz97F1SVJUhXoUXQBqyMi1o2ICyLi1YhYEhEzI+LXETFsNc61fURcGhEvl871RkT8IyKO6Yjai9R4fMKgAiuROkF9Pdz0zcYhYfNDDAmSJLVS1fUoRMQ44D5gNDAJmArsDJwMHBQRe6SUZrfyXF8FzgLeBm4EXgGGA1sCBwN/yf0fUKDKqVFdQ0E1rb4ebjoFHryg3LbFx+DjfzQkSJLUSlUXFIDzyELCSSmlcxoaI+JXwDeAHwMnrOokEXEAcDZwK3BYSml+k/0192nCW4/ULdTXww1fh4f/XG7b8hPwsT9Az2r8kSdJUjGq6tajUm/CAcBM4Nwmu08HFgBHR0RrPgX/AlgEHNE0JACklJa1r9quZ8asiqAwyqCgGlRfD9ef1DgkbPVJQ4IkSauh2n5z7lt6nJxSqq/ckVKaHxH3kgWJXYHbWzpJRGwJbA1MBOZExL7ADkACHgXubHr+ardoaR2vzlsMQM8ewXrDBhRckZSz+jq47iR49JJy29aHw6HnQY+exdUlSVKVqragsGnpcVoL+58lCwrjWUlQAHYqPb4J3AXs1WT/ExHx8ZTSc6sqKCIeamHXhFV9b2eaObvcm7DesP706VVVnUnSytXXwaSvwmOXltu2OQIO+Y0hQZKk1VRtnxaHlB7ntbC/oX3oKs4zuvT4OWAs8KHSuccDlwBbATdGRM1Msu74BNWs+jqY+JXGIWHbowwJkiS1U7X1KOSlISD1BA5PKf2rtP1OaVrUCcCOwCeAy1Z2opTSDs21l3oats+n3Pab4dSoqkV1y2HiCfDEVeW27Y6Gj5wNPart7yCSJHUt1fabtKHHYEgL+xva567iPA37X68ICQCklBLZtKuQTbtaE6Y7kFm1pm45XPvFxiFh+2MNCZIk5aTaehSeKT2Ob2H/JqXHlsYwND1PS4Hi7dJj/1bW1eW5hoJqSt1yuObz8NS15bYdPwsH/68hQZKknFTbb9Q7S48HRESj2iNiMLAHsBC4fxXnuZ9sKtWxLUylumXpcUY7au1SHKOgmlG3DP722cYhYafPw4d+ZUiQJClHVfVbNaX0PDCZbADyiU12/wAYCFycUnrvU3FETIiIRjMQpZQWAucD/YAfRURUHL8VcBywHLg6/39F53t7wVLeXpgtC9Gvdw/GrNGv4Iqk1VS3DK4+Hp6eVG7b+Ytw8C+h/DaWJEk5qLZbjwC+AtwHnB0R+wNTgF3I1liYBpza5PgppcemnyJOI5sW9evAbqU1GNYEPk4WIL5eCiZVb0bF1KhjRwykRw8/UKkpyvvAAAAgAElEQVQKLV+ahYSpN5TbdvkyHPRTQ4IkSR2gqnoU4L1ehR2Bi8gCwinAOOAsYNeU0uxWnucdYE/gJ8Bw4KvAh4F/AgemlM7KvfiCVK7IvJEDmVWNli+Fq45tHBJ2PdGQIElSB6rGHgVSSi8Bx7fy2BY/RaSU3iXrgWjaC1FTHJ+gqrZ8CVx5DEy7udy221fhgB8ZEiRJ6kBVGRTUNq6hoKq1bDFceTQ8O7nctsfJ8P4fGBIkSepgBoVuYLo9CqpGyxbDFUfCc7eV2973Ddj/dEOCJEmdwKBQ4+rrEzMrgoJrKKgqLFsElx8Bz99Rbtvzm7Df9wwJkiR1EoNCjXtj/mIWLasDYOiA3gwb2KfgiqRVeOc1uOYLMPOectte/wX7fteQIElSJzIo1LjKGY+87UhdWkrw6KVwy3dg8bxy+z7fgX2+XVxdkiR1UwaFGuf4BFWFeS/D9V+H525t3L7f92CvbxVTkyRJ3ZxBocZVzng0bpQzHqmLSQke/jPc8j1YOr/cPmwsfPQ3sOGehZUmSVJ3Z1Coca6hoC7r7Rfg+pNg+l0VjQG7nAD7nwZ9/P9VkqQiGRRqnEFBXU59PTx4Ptx2Bix9t9w+fBwcci5ssFthpUmSpDKDQg1bVlfPi3MWvrc9doRBQQWbMx2uO6nxjEbRA3Y7EfY9FXr3L642SZLUiEGhhr04ZyF19QmAtYf0o3+fngVXpG6rvh4e+D3c/kNYVg6vjNwUDj0P1t2xuNokSVKzDAo1rNHUqKPsTah5b8+EpyfBmlvAhntDz95FV5R56zmYdCK8dH+5LXrCHifD3v8NvfsVV5skSWqRQaGGOT6hG3n1UfjLIbB4brbdbyhM+DBsfghstA/0KmChvfo6+Ne5cOePYfnicvvozbOxCOts3/k1SZKkVjMo1LDGayg4NWrNeuVhuPjQxouULZ4Lj16SffUdAhMOhs0PhXH7Qq++HV/TrGdg4lfglQfLbT16wZ6nwJ7fLCa4SJKkNjEo1LAZb5VnlNnIHoXa9MpD8JePwZJSSOg3BPquAfNeKh+zZB48dln21XcN2PSDWU/DuP3zv+2nbjncdzbc9TOoW1JuH7MVHHIerLV1vteTJEkdxqBQw7z1qMa9/CBc/DFY8k623W8oHDMJ1tom62V4+tpszMLcF8vfs+QdePyK7KvPIBh/EGxxKGz8/vbPOPTGU1kvwmuPltt69M7GIbzv611nzIQkSWoVg0KNWrBkOW+8k/1Ft1ePYN1hTjtZU156AC7+eHk14/7D4Jjryn+xX3eH7OsDZ8Krj2SB4emJ2YDnBkvfhSevzr56D4TxB2Y9DZscAH0GtL6WumVwz6/g7l9A/bJy+9rbZWMR1tyi3f9cSZLU+QwKNaqyN2H9EQPo1bNHgdUoVy/+Gy75REVIGA7HXpfd3tNURDZoeJ3t4f1nwOuPw1MTs9AwZ3r5uGUL4Klrsq/eA2CTD2RjGjY5APquZHzLa49nvQhvPFFu69kX9v0O7PY16OmPGEmSqpW/xWtUZVBwfEINeeFf8NfDyisaDxgBx17fur/aR2S3Ja21Dez/fXjjyayn4amJMPvZ8nHLFpZ6ICZBr/6wyfuz0DD+QOg7ODtm+dKsB+Gfv4L65eXvXXenrBdh1Kb5/ZslSVIhDAo1yvEJNeiF++CSw7K//gMMGFkKCZu3/VwRWQ/EmK2yFZHfnJL1Mjw9CWZNLR+3fBFMuT776tk3G8uw8X7wn/PhzafLx/XqB/udBrt+GXq4sJ8kSbXAoFCjZjg1am2Z+U/466fKIWHg6CwkjJ7Q/nNHZGFjzc1h3+/Cm1PLYxoqw0DdEnjmxuyr0vq7wUd/AyM3bn8tkiSpyzAo1Kjp9ijUjhl3w6Wfzm4JAhi0Jhx7A4wa3zHXGz0h+9rnv2HWNJgyCZ6a1HgcAmRjGd5/Buz0BejhGBhJkmqNQaEGpZSYMatiDYVRBoWqNf0uuPTw7BYggEFj4LgbYOQmnXP9UeNh1Ldgr2/B7OezXoZpk2HQqGxGpeEbdk4dkiSp0xkUatCcBUt5Z3E2wHRAn56MHtwJK/Eqf8/fCZcdDssXZ9uD18p6Eoq6xWfEuNLKyqcUc31JktSpvF+gBjUdyBwRBVaj1fLc7U1Cwtpw3I2OA5AkSZ3GHoUa5PiEKvfsbXD5EdngYYA11oXjrofhGxVblyRJ6lYMCjXINRSq2LTJcMWRULc02x6yXja7kWMBJElSJ/PWoxo0Y1ZFj4IDmavHMzc3CQnrZwOXDQmSJKkA9ijUINdQqEJTb4Irj4H6Zdn20PWzgcvDNii2LkmS1G0ZFGpMfX1ixuyKoDDCHoUub8oNcNVxFSFhg2zg8tD1Ci1LkiR1bwaFGvPqvEUsXV4PwIiBfRgyoHfBFWmlnr4Orj4e6rPpbBm2YXa70ZB1i61LkiR1ewaFGtN0alR1YU9NhKs/C6ku2x6+UXa70ZB1iq1LkiQJBzPXHINClXjymsYhYcTG2e1GhgRJktRF2KNQY6Y741HX98TVcM0XK0LCJtntRoPHFFuXJElSBYNCjXENhS7u8avg2i9CysaRMHJ8drvR4DWLrUuSJKkJbz2qMU6N2oU9dkXjkDBqQna7kSFBkiR1QfYo1Jjjdh/Lc7PeZcasBWwwYkDR5ajBo5fBxC8DKdsetVm24vKgUYWWJUmS1BKDQo357PtcxbfLee72xiFh9BZw7HUwcGShZUmSJK2MQUHqSO+8Ctd8gfdCwppbwjHXwcARhZYlSZK0Ko5RkDpK3bJsCtSFs7PtQWPg6GsNCZIkqSoYFKSOcseZ8OK/sufRAw67AAaNLrYmSZKkVjIoSB3hmb/DvWeVt/c7DcbuUVw9kiRJbWRQkPL29gtw7Qnl7U0OgD2+Xlw9kiRJq8GgIOVp+VK46jhYPDfbXmNd+NjvoYdvNUmSVF389CLl6dbT4NWHs+c9esEnL4QBw4utSZIkaTUYFKS8PD0J/v278vYHfgjr7VxcPZIkSe1gUJDyMPt5mPTV8vaED8OuXymuHkmSpHYyKEjttWwxXHUsLHkn2x66ARxyLkQUW5ckSVI7GBSk9rr52/D6E9nznn3gU3+G/kOLrUmSJKmdDApSezx+JTx0YXn7wJ/A2tsVV48kSVJODArS6pr1DFxfsT7CFh+HnT5fXD2SJEk5MihIq2PpArjyWFi2INsesTF89GzHJUiSpJphUJBWx03fgllTsue9+sEn/wx9BxdbkyRJUo6qMihExLoRcUFEvBoRSyJiZkT8OiKGteEcd0VEWslXv478N6iKPXIJPPrX8vbBv4QxWxZXjyRJUgfoVXQBbRUR44D7gNHAJGAqsDNwMnBQROyRUprdhlP+oIX25e0qVLXp9SfhxlPK29t8BrY7qrh6JEmSOkjVBQXgPLKQcFJK6ZyGxoj4FfAN4MfACa09WUrpjLwLVI1aMj9bL2H54mx71AT40P86LkGSJNWkqrr1qNSbcAAwEzi3ye7TgQXA0RExsJNLU61LCa4/GWY/l233HgCf+gv08X81SZJUm6qtR2Hf0uPklFJ95Y6U0vyIuJcsSOwK3N6aE0bEp4ENgaXAFOCOlNKS/EpWTXjwfHjyb+XtD/8aRm1aXD2SJEkdrNqCQsMns2kt7H+WLCiMp5VBAbi8yfabEXFiSunq1nxzRDzUwq4Jrby+urpXH4Gbv1Pe3uE42ObThZUjSZLUGarq1iNgSOlxXgv7G9qHtuJck4CPAOsC/ck+2P+09L1XRMRB7ahTtWLRXLjqOKhbmm2P2QoO+nmhJUmSJHWGautRyE1K6f+aND0DfDciXgXOIQsNN7fiPDs0117qadi+vXWqQCnBpBPh7ZnZdp/B2XoJvZ05V5Ik1b5q61Fo6DEY0sL+hva57bjGn8imRt02IlxBqzu7/7cw9Yby9iHnwIhxxdUjSZLUiaotKDxTehzfwv5NSo8tjWFYpZTSYmB+adMpbbqrl/4Dt55W3t75S7DFx4qrR5IkqZNVW1C4s/R4QEQ0qr301/89gIXA/at7gYjYFBhGFhbeWt3zqIotnJONS6gvrbm39vZwwJmFliRJktTZqioopJSeByYDY4ETm+z+AVkPwMUppQUNjRExISIazUAUERtGxPCm54+IUcCFpc3LU0quztzd1NfDtV+Cd17OtvsNgU9eBL36FlqWJElSZ6vGwcxfAe4Dzo6I/cnWPtiFbI2FacCpTY6fUnqsXD53b+B3EfFPYDowB1gfOJhsnMODwH911D9AXdi9v4ZnJ5e3D/0dDNuguHokSZIKUnVBIaX0fETsCPwQOIjsw/1rwFnAD1JKb7fiNA+RrZ+wA7AdsAbZrUZPAFcCv08pLe2A8tWVzbwX7vhReXv3r8GEg4urR5IkqUBVFxQAUkovAce38thopu0J4Licy1I1e3cWXP1ZSHXZ9nq7wP6nF1uTJElSgapqjILUIerr4JrPw7uvZ9v9h8NhF0LP3sXWJUmSVCCDgnT3L2D6XaWNgI//EYasU2RFkiRJhTMoqHt79la462fl7b2+CZu8v7h6JEmSugiDgrqv526HK44CUrY9dk/Y5zuFliRJktRVVOVgZqndnr0NLj8C6pZk22usC584H3r0LLYuSZKkLsIeBXU/0ybD5Z8ph4Qh68FxN8DgNYutS5IkqQsxKKh7eeZmuOJIqCstkzFk/SwkDN+w2LokSZK6GG89Uvcx9Sa48hioX5ZtD10fjr3BlZclSZKaYVBQ9zDlBrjquIqQsAEcdyMMXa/QsiRJkroqg4Jq39PXwdXHQ/3ybHvYhtntRkPWLbYuSZKkLswxCmq7lODJv8F//gRLFxZdzco9NbHUk1AKCcM3ynoSDAmSJEkrZVBQ2z38F7j6s3DjKfC7PWDmvUVX1Lwnr8nqTHXZ9oiNSyHBVZclSZJWxaCgtlkwG247vbw9ZzpcdDDc9C1Y8m5xdTX1xNXwt89XhIRNsoHLa6xdbF2SJElVwqCgtrntdFj09ortD/wBfrs7TP9H59fU1ONXwTVfKIeEkeOzMQlrrFVsXZIkSVXEoKDWe+kBeOTi8vZHzoJNDihvz30B/vJRuOEbsGR+59cH8NgVcO0XIdVn26MmZLcbDR5TTD2SJElVyqCg1qlbDjf+v/L2ph+CHY6DI66EQ38H/YaU9z14AZy3Gzx3e+fW+OhlcO2XKkLCZtntRoNGd24dkiRJNcCgoNZ58Hx4/Ynsea/+8MGfZc8jYNvPwIkPZOGhwbyX4JKPw6QTYdHcjq/vkb/CxC8DKdsevUV2u9GgUR1/bUmSpBpkUNCqzX8D7vhReXuvb2arGlcaPAYO/yt84nzoP7zc/sglWe/CtFs6rr6HL84CSUNIWHNLOPZ6GDiy464pSZJU4wwKWrVbT4Ml72TPR2wMu3+t+eMiYKvD4MR/w+aHlNvnvwqXfgquPQEWzsm3tocuguu+ynshYcxWpZAwIt/rSJIkdTMGBa3cjHvg8SvK2wf/Enr1Xfn3DBoNn/oLfPLPMKDir/qPXQbn7QpTb8yntgcvgOtPLm+P2RqOuQ4GDG/5eyRJktQqBgW1rG4Z3PTN8vYWH4Nx+7b++7c4NBu7sOVh5bZ334DLj8gWQlswe/Vr+8+fstmVGqy1LRwzyZAgSZKUE4OCWnb/eTBrava8zyA48CdtP8fAEXDY+XD4pTBozXL7k3+Dc3eGpya2/ZwP/DFbFbrB2tvDMRMNCZIkSTkyKKh5816Bu35e3t7n2+1b1XjCh+Ar98M2nym3LXwLrjoWrjwG3p3VuvPc/7vGvRzr7AhHXwv9h61+bZIkSVqBQUHNu+U7sGxB9nzUZrDLCe0/54Dh8LHfZWsvDK4IHU9PynoXnrgaUmr5+/91Htz83+XtdXeCo6+B/kPbX5skSZIaMShoRc/dnn14b/Ch/4WevfM7//gD4cT7Ybujy22L5sDfPgeXHwnzX1/xe+77TRZeGqy3Cxx1TeOF3iRJkpQbg4IaW74EbvpWeXvrw2HsHvlfp98QOOQ32Yf9IeuV25+5MetdePTScu/CvWfB5FPLx6y3Kxz1N+i3Rv51SZIkCTAoqKl7z4Y5z2fP+w6BA87s2OttvD98+T7Y8bPltsXzslWWL/0U3H4m3Pr98r71d4ejroa+gzu2LkmSpG7OoKCyt2fCPb8sb+9/WrYmQkfrtwZ8+P+yNRCGblBuf3Zy43o2eB8ceZUhQZIkqRMYFFT292/D8sXZ87W2afxX/s6w0d5Z78LOX1px39g94cgroe+gzq1JkiSpmzIoKDP1Jpj299JGwId+BT16dn4dfQfBwf8Dx/8dho/L2jb+QDZTUp+BnV+PJElSN9Wr6ALUBSxdCH+vmHZ0+2Ng3R2Lqwdgg93hqw/CvJdg6PoQUWw9kiRJ3YxBQXDP/8K8F7Pn/YfD+88ospqyHj1g2AarPk6SJEm589aj7u6t5+C+s8vb7z8jWxhNkiRJ3ZpBoTtLCW76JtQtzbbX3anxImiSJEnqtgwK3dnTE2H6ndnz6JGtwNzD/yUkSZJkUOi+lsyHm79b3t7p89mUqJIkSRIGhe7rHz+H+a9mzweOhn1PLbYeSZIkdSkGhe7ozSlw/2/L2wecCf2HFlePJEmSuhyDQneTEtx4CtQvz7Y32AO2/nSxNUmSJKnLMSh0N49fCS/cmz3v0QsO/qWLmUmSJGkFBoXuZNFcmPy98vauX4Y1Ny+uHkmSJHVZBoXu5M4fw4I3s+eD14a9v11sPZIkSeqyDArdxauPwn/+VN4+6CfQd1Bx9UiSJKlLMyh0B/X12QDmVJ9tb7QvbH5osTVJkiSpSzModAePXAyvPJg979nHAcySJElaJYNCrVs4B247o7y9+0kwcuPCypEkSVJ1MCjUutvOgEVzsudD1oc9Tym0HEmSJFUHg0Ite/lBePgv5e0P/hz6DCiuHkmSJFUNg0Ktqq+DG/8fkLLt8QfBhIMLLUmSJEnVw6BQqx68AF57LHveq1/WmyBJkiS1kkGhFr37Jtx+Znl7z1Ng2NjCypEkSVL1MSjUosmnwZJ52fPh47KZjiRJkqQ2MCjUmpn3wuOXl7cP/gX07ldcPZIkSapKVRkUImLdiLggIl6NiCURMTMifh0Rw9pxzr0ioi4iUkT8KM96O03dsmwF5gabHwIb719cPZIkSapavYouoK0iYhxwHzAamARMBXYGTgYOiog9Ukqz23jOwcCfgYXAoHwr7kTzX4NUnz3vPRAO/Gmx9UiSJKlqVV1QAM4jCwknpZTOaWiMiF8B3wB+DJzQxnOeBQwBflr6/uo0dH044Z9w/3nQuz8MWafoiiRJklSlqurWo1JvwgHATODcJrtPBxYAR0fEwDac8xDgeOAk4NV8Ki1Qrz7wvq/DLl8quhJJkiRVsaoKCsC+pcfJKTXcY5NJKc0H7gUGALu25mQRMRr4IzAxpXRJnoVKkiRJ1azabj3atPQ4rYX9z5L1OIwHbm/F+f5IFpbaeqvSeyLioRZ2TVjdc0qSJElFq7agMKT0OK+F/Q3tQ1d1ooj4LPBR4NMppTdyqE2SJEmqGdUWFHIREWOBXwNXpZSubM+5Uko7tHCNh4Dt23NuSZIkqSjVNkahocdgSAv7G9rnruI8FwCLgK/kUZQkSZJUa6otKDxTehzfwv5NSo8tjWFosD3ZFKuzSguspYhIwIWl/aeW2ia2r1xJkiSpOlXbrUd3lh4PiIgelTMflRZN24Ns0bT7V3Gev5DNjtTUJsBewKPAQ8Aj7a5YkiRJqkJVFRRSSs9HxGSymY1OBM6p2P0DYCDw+5TSgobGiJhQ+t6pFec5qbnzR8RxZEHhxpTS93L/B0iSJElVoqqCQslXgPuAsyNif2AKsAvZGgvTgFObHD+l9BidVqEkSZJU5aptjAIppeeBHYGLyALCKcA44Cxg15TS7OKqkyRJkmpDNfYokFJ6CTi+lce2uichpXQRWQCRJEmSurWq61GQJEmS1PEMCpIkSZJWYFCQJEmStAKDgiRJkqQVGBQkSZIkrSBSSkXXUJMiYnb//v2Hb7bZZkWXIkmSpBo2ZcoUFi1aNCelNCLP8xoUOkhEzADWAGYWcPkJpcepKz1KtcjXvnvyde++fO27L1/77qu5134s8E5KacM8L2RQqEER8RBASmmHomtR5/K175583bsvX/vuy9e+++rM194xCpIkSZJWYFCQJEmStAKDgiRJkqQVGBQkSZIkrcCgIEmSJGkFznokSZIkaQX2KEiSJElagUFBkiRJ0goMCpIkSZJWYFCQJEmStAKDgiRJkqQVGBQkSZIkrcCgIEmSJGkFBoUaEhHrRsQFEfFqRCyJiJkR8euIGFZ0beo4pdc5tfD1etH1qX0i4rCIOCci7omId0qv6yWr+J7dI+KmiJgTEYsi4vGI+HpE9OysutV+bXntI2LsSn4OpIi4vLPr1+qJiBER8fmIuDYiniu9h+dFxD8j4nMR0exnN9/31a+tr31nvO97tfcE6hoiYhxwHzAamARMBXYGTgYOiog9UkqzCyxRHWse8Otm2t/t7EKUu+8B25C9li8DE1Z2cEQcAvwNWAxcAcwBPgL8H7AH8MmOLFa5atNrX/IYMLGZ9idzrEsd65PAb4HXgDuBF4E1gY8DfwI+GBGfTBUr5vq+rxltfu1LOux978rMNSIibgEOAE5KKZ1T0f4r4BvA71NKJxRVnzpORMwESCmNLbYSdYSI2JfsQ+JzwN5kvzz+mlI6qplj1ygdNwTYI6X0YKm9H3AHsBvwmZSSf12uAm187ccCM4A/p5SO67wqlbeI2A8YCNyYUqqvaB8DPACsBxyWUvpbqd33fY1Yjdd+LB38vvfWoxpQ6k04AJgJnNtk9+nAAuDoiBjYyaVJaqeU0p0ppWeb+QtScw4DRgGXN3xYKJ1jMdlfpwG+3AFlqgO08bVXjUgp3ZFSur7yg2Kp/XXgd6XNfSp2+b6vEavx2nc4bz2qDfuWHic38z/X/Ii4lyxI7Arc3tnFqVP0jYijgPXJguHjwN0ppbpiy1In26/0eHMz++4GFgK7R0TflNKSzitLnWjtiPgSMAKYDfwrpfR4wTUpP8tKj8sr2nzfdw/NvfYNOux9b1CoDZuWHqe1sP9ZsqAwHoNCrRoDXNykbUZEHJ9S+kcRBakQLf4sSCktj4gZwBbARsCUzixMneYDpa/3RMRdwLEppRcLqUi5iIhewDGlzcpQ4Pu+xq3ktW/QYe97bz2qDUNKj/Na2N/QPrQTalHnuxDYnywsDAS2An4PjAX+HhHbFFeaOpk/C7qvhcCZwA7AsNJXw7iGfYDbvf206v0M2BK4KaV0S0W77/va19Jr3+Hve4OCVOVSSj8o3df4RkppYUrpydLA9V8B/YEziq1QUkdLKb2ZUvp+SunhlNLc0tfdZL3J/wY2Bj5fbJVaXRFxEnAK2YyGRxdcjjrRyl77znjfGxRqQ8NfC4a0sL+hfW4n1KKuo2Hg016FVqHO5M8CNZJSWk42rSL4s6AqRcRXgbOAp4F9U0pzmhzi+75GteK1b1ae73uDQm14pvQ4voX9m5QeWxrDoNo0q/To7QbdR4s/C0r3uG5INhBuemcWpcL5s6BKRcTXgXPI5sPftzT7TVO+72tQK1/7lcnlfW9QqA13lh4PaGbVvsFki60sBO7v7MJUqF1Lj/5y6D7uKD0e1My+vYABwH3OfNLt+LOgCkXEf5MtmPYo2QfFN1s41Pd9jWnDa78yubzvDQo1IKX0PDCZbPDqiU12/4AsTV6cUlrQyaWpg0XEZs0NVCotwvKb0uYlnVmTCnU18BZweETs2NBYWnjpR6XN3xZRmDpWRGzf9A9Fpfb9yRbdBH8WVI2IOI1sAOtDwP4ppbdWcrjv+xrSlte+M973rsxcI0qLrt0HjAYmkU2BtgvZGgvTgN1TSrOLq1AdISLOIBvkdDfwAjAfGAd8COgH3AR8LKW0tKga1T4RcShwaGlzDHAg2V+I7im1vZVS+maT468GFgOXA3OAj5JNoXg18CkX8KoObXntS1MhbkL2e+Dl0v6tKc+xf1pKqeFDo7qwiDgWuAioI7v1pLnZjGamlC6q+B7f9zWgra99Z7zvDQo1JCLWA35I1v04AngNuBb4QUrp7SJrU8eIiL2BE4DtKE+POpesu/Jisp4k3+RVrBQGT1/JIS+klMY2+Z49gFOB3cgC43PABcDZLsJXPdry2kfE54CPkU2hOBLoDbwB/Av4TUrpnpZOoq6lFa87wD9SSvs0+T7f91Wura99Z7zvDQqSJEmSVuAYBUmSJEkrMChIkiRJWoFBQZIkSdIKDAqSJEmSVmBQkCRJkrQCg4IkSZKkFRgUJEmSJK3AoCBJkiRpBQYFSZIkSSswKEiSJElagUFBkiRJ0goMCpKkmhURd0VEKroOSapGBgVJkiRJKzAoSJIkSVqBQUGSJEnSCgwKkqRViohdIuLqiHg9IpZGxEsR8fuIWLvJcXdFRIqIvhHxo4iYERFLIuL5iDg9Ivq0cP79I+LmiJhTOn5aRPwsIoa0cPzwiPhxRDwZEQsjYl5EPFb6noHNHN8rIr4bEc+Wzv9SRPy8pXokSRApOcZLktSyiPgs8AdgCXAd8BKwCfBR4A1g15TSi6Vj7wL2Lh23E3A1sAw4BBgH3AB8NFX88omILwG/BRYAVwFvAvsAuwBPA3uklOZWHL8hcCewAfAQ8A+yP3yNB94PbJpSmtmknquAPYG/A+8AB5f+DRellI7P5T+UJNUYg4IkqUURMR54EngR2Dul9ErFvv2BycB1KaWPldruIvtg/iywS0rp7VJ7P7IP97sCx6SULi61bwBMIwshO6eUplac/zzgy8AfU0pfrGi/D9gN+G5K6adN6h0JvJtSWtyknoeBD6SU5pTaBwKPARsC66SUXm/3fyxJqjHeeiRJWpkvA72BkytDAkBK6XaynoOPRMTgJt93ZkNIKB27GPhOaRSj7K0AAALjSURBVPOzFccdBfQBflMZEkpOBeYDR0dEX4CI2IEsJDwK/LxpsSmltxpCQhP/3RASSsctAP5K9ntwx+b+4ZLU3fUqugBJUpe2W+lx74jYqZn9o4GeZLf9PFTR/o9mjv0nUAdsV9G2fenxjqYHp5TejohHgL2ACWQ9ALuWdt+SUqpv7T8CeLCZtpdKj8PacB5J6jYMCpKklRlRevzWKo4b1GT7jaYHpJSWR8RbZOGiQcNg5ddaOG9D+9Amj680c2yLKsc4VFheeuzZlnNJUndhUJAkrcy80uOQlNI7bfi+NcnGNbwnInoBI8kGEzc9/xjgqWbOs1aT4xo+8K/ThlokSavBMQqSpJW5v/S4Zxu/b+9m2t5H9tf7RyraGp7v0/TgiBgKbAssBqY0qefAiPB3mCR1IH/ISpJW5jdk05v+X2kGpEYiok9ENBciTouIYRXH9QMaZii6sOK4S0rn/1pEbNzkHGcCawCXpJSWAKSUHgLuIwsQ/91MPSNK15IktZO3HkmSWpRSmlpaR+EC4KmIuJlsOtPewPr/v707RokrjMIw/J3WJbgMNxBsrAXBRpdgEYikE6yGQLDUDWhj+vSuQEilRcCpbKyt/xT/BGROsJlAijxPdYuZy53uvtw592Q+aXjJHDZ+62H1+fU9Ct+TXL85/7KqPia5THJfVd9W5/uQOUj9mB4Ex0nukiyq6mB1XJl7EfZW17Lc/NcD/N+EAgDvGmPcVNWPJJ+S7GbejL8mec5cqHb7h68dJjlLcpRkO3P4+DzJl7G2wGeMcVVVP5OcJjlIspX5RqKvSRbrg8hjjKeq2knyOcl+kpPMvyctk1xkLmwDYEMWrgHw1/xecDbGqH99LQBsxowCAADQCAUAAKARCgAAQGNGAQAAaDxRAAAAGqEAAAA0QgEAAGiEAgAA0AgFAACgEQoAAEAjFAAAgEYoAAAAjVAAAAAaoQAAADRCAQAAaIQCAADQCAUAAKD5BZG3RiRZ3B03AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": [],
"image/png": {
"width": 389,
"height": 277
},
"needs_background": "light"
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAIqCAYAAABrIdadAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVf7/8ddJJQmp9JoAioAICFZAxa5gQUVxC4roura1rOu6RX/irnWLq+uuZXcVEOvq6pfFAooCIrqiYEMBRQlNQCGkkF7O749zJzOTTCBAksnMvJ+Px33ce88t85khJPczpxlrLSIiIiIiIg3FhTsAERERERFpn5QsiIiIiIhISEoWREREREQkJCULIiIiIiISkpIFEREREREJScmCiIiIiIiEpGRBRERERERCUrIgIiIiIiIhKVkQEREREZGQlCyIiIiIiEhIShZERERERCQkJQsiIiIiIhKSkgUREREREQlJyYKIiLQ4Y4z1lrwWvOci755T9/K66d51M1sqFhGRWKFkQUREREREQlKyICIiIiIiISlZEBERERGRkJQsiIiIiIhISEoWRETaKWNMvtcxd5wxpocx5hFjzEZjTLkxZpUx5gZjTFzA+ecbY5YYYwqNMcXGmFeMMUP38BqHGmOe9O5baYzZboyZb4w5bw/XxRljfmaM+cSL53tjzFxjzNHNfG9djDF3G2M+M8bsMsaUGmNWGmPuNMbkNO8Tahnee7nUGLPYGFNgjKkwxqwzxvzDGHPAbq7rZ4x52BjzpfcZlBlj1nsdsX9tjOkc4nWmGmMWGmN2GGOqvc/tc2PM48aY01r/3YqI7J2EcAcgIiJ71A94BugOFAOJwCDgPqA/8DNjzD3AzUAtUAakA+OB0caYI6y1XzW8qTHmcuBh/F8cFQJZwCnAKcaYJ4Gp1traBtclAC8AZ3tFNbi/J2cApxljJu/uzRhjxgJzAF9SUAXUAQd7yxRjzMnW2jV7/mj2jzEmFXgJ954BqnGfXx7wEy+WC621cxpcNxJYhPucfdeVAn295TjgI2BewGWzgR8G7BcBGUBnYIi3BJ4vIhJ2qlkQEWn//gKsA4ZbazNxD5i3eseuNsb8Bvg5cD2Qaa3NAA4B1uAe/u9seENjzGj8icILQB9rbbZ3/i2ABX4M/DpEPDfjEoU64CbvNbNxicsC4PGm3ogxJheYi0sUHgYOBFKANC/m14E+wIvGmPhmfDb76z5colAJXAGkW2uzgINwyUAH4GljzMAG1/0Jlyi8D4y01iZ5n0EacDhwPy4ZAMAYcywuUagFbgAyvNfpAPQEpgLvtM5bFBHZD9ZaLVq0aNHSDhcgH/fQXgBkhTj+pnfcAv8vxPFjvGMVQFIT174DxIe49i7veAnuwdZXnoar3bDA9BDXJQOfB8SV1+D4k1753U285yTgE++cSQ2OLfLKp+7l5zjdu25mg/I83MO7BX4a4rpUYK13/IkGx8q88iObGcMvvfNfC/fPlRYtWrTszaKaBRGR9u8Ra21hiPIF3roK9w15Q0txiUIyUN/23usTcLy3e7dt0MzIc693bUdccyafU3DfqFfiajyCWGsrcd+6N+I1+TkfVyMRKl6stVW4mg6Ak0Od04LOwdWsbAX+FSKWMuAP3u65DWo6ir11j2a+lu/8roH9TERE2jv9whIRaf8+a6L8O2+db63d1fCgtbYO2O7tZgccOhQwuG+6F4e6sbW2CFju7Y4MOOTb/tg7J5SQ9wRG4WoODPCZMWZrqAX4hXd+nybu01J872VJEwkTwFveOg3XNMnnVW/9hDHmHmPMUcaYxN281pu4pG4ksMgY82NjTM99DVxEpK0oWRARaf+2NFFeu4fjgecEPsh28dZFoZKMAJsanB+4/e1urtvcRLnvW3gDdNvNkuGdl7qb12gJvvfSVLzg/wwCzwfXV+NdXC3LzcB7QLEx5i1jzJXGmJTAm1jXwfxKoBzXPGw2sNkbdelhY8yh+/dWRERah5IFEZHYldzGr+f7m1NkrTXNWMa1UVwd9vYCa+0OYCyuqdRfcSMfJeGadz0ErDTG9G5wzeO4ka2ux40GtQPXb+IKYLnXUV1EpF1RsiAiEnu+99YpxpguuznP97D7fUCZb3t3TWiaOrbNW2cYYzJ3H2Kb8L2Xvrs5J/CBP/BzwDoLrLXXWWtH4oZA/SmuQ3p/Qvfp2GatfcBaOxFXU3EEbuhWA/zeGDNsn9+NiEgrULIgIhJ7PsL1VwB/R+cg3sP8KG93RcAh3/YIY0wGoR3XRPmHuDkZDNAeJiDzvZcjvc7XoZzgrUtxQ9E2yVq701r7D8BXQ9DU5+A731prP8B1+t6E+5s8tjmBi4i0FSULIiIxxlpbACz0dm9uYnSem3HNc3bh78wLbh6EYlwTpusaXmSMSQJubOJ1S4D/eLu/M8akhzrPu0+CMabjHt7K/noRNzJTJ+DyEDGk4vomALzo6wTtzcS8u0lNy711fTMv73MJybtvdcNrRETaAyULIiKx6Vbcg/JI4Flf+3pjTEev7fyvvPPusdb6hv3EWluKfzjR24wxP/d15jXG5OGa1OxuFKNf4ZrpDATeNcac5htFyDgHGmN+DqwGDmuRd9oEa+164B/e7j3GmMuNMcleLAOBV3BDzpYBdwRcmgGsNcb81hhziG9IVS+JOBH/JHjzA665yxjzgjFmojd0Ld413Ywxf8X1ZbDAGy3/TkVE9t3uvhkREZEoZa191xhzFa4z7vnAJGNMIe5B2DefwFPAPSEuvxc3S/HZwJ+Be40xu3CzP9cAk/HXIDR83XxjzGnA/wFDgdeAamNMMW5kocBv4G2IW7S0G4EBuI7KjwJ/M8aU4t4LuPkkfmit/bLBdbm4BOIOXPwlQCb+z+4b3KzaPgnAed6C934N7j373GKtXdlC70tEpEWoZkFEJEZZax/FPfQ/jRt+tSNQhPt2+3xr7Y9DzT9gra3BPfReC3yKSxBqcd/EH2etfXEPr/sBMAjX1OldXFOnLNw3+B/iRhc6zlrb1HwNLcabeO104DJgiRdDKrAeN1HbIdbaOQ0uKwbOAO4HluE6Pqfj+jV8APwWGGGtDRx29S+4z2sO8CUuUUgGNgLPAcdaa+9qhbcoIrJfjLVt8cWNiIiIiIhEGtUsiIiIiIhISEoWREREREQkJCULIiIiIiISkpIFEREREREJScmCiIiIiIiEpGRBRERERERCUrIgIiIiIiIhKVkQEREREZGQlCyIiIiIiEhIShZERERERCSkhHAHEK2MMeuADCA/zKGIiIiISHTLA4qttf1a+sZKFlpPRkpKSs7gwYNzwh2IiIiIiESvVatWUV5e3ir3VrLQevIHDx6cs3z58nDHISIiIiJRbNSoUaxYsSK/Ne6tPgsiIiIiIhKSkgUREREREQlJyYKIiIiIiISkZEFEREREREJSsiAiIiIiIiEpWRARERERkZCULIiIiIiISEiaZ6EdqKuro6CggJKSEiorK7HWhjskEQCMMSQnJ5Oenk5OTg5xcfp+QUREJJYoWQizuro6Nm7cSFlZWbhDEWnEWktFRQUVFRWUlpbSp08fJQwiIiIxRMlCmBUUFFBWVkZCQgLdu3cnLS1ND2PSbtTV1VFaWsrWrVspKyujoKCAzp07hzssERERaSN6Kg2zkpISALp37056eroSBWlX4uLiSE9Pp3v37oD/51VERERig55Mw6yyshKAtLS0MEci0jTfz6fv51VERERig5KFMPN1ZlaNgrRnxhgAdb4XERGJMXpCFZE98iULIiIiEluULIiIiIiISEhKFqR9U7MXERERkbDR0KnSMqwFWwe2FurqvO06f5mt88prg4+FKrN1UOeVYQEDJi54iQvcj2/+sYBzpt/+e27/3e9YuHAh48aNC/MHKCIiItL+KFmQ3bN1UFsFNVVuXVsFNZVuXVfjf7Bn/2sA8jd+S7+jzuDi889k5v23BwbhJRS1+/0aQXZtdesdX8P23pCdB/H6LyEiIiLioyejWGdtQBLgSwgq/dt11eGOsNVcc8lkLjz7VPr26g5VJVC0EXL6hTssERERkXZDyUK0sxZqq/0JQWAi4FtaSqimP3FNlYVoHrQr2d2nQyZ0G+qdYwDboGlTiGZL9U2amjiv0bE6Oufk0Dkn2x9/RSGU74SU7JBvT0RERCTWqINztCndDoUbYPta2PYFbPkEvvscdnwFheuhZCuUF0DVruYnCnGJkNQRUnKgY3fI6gudDoCuQ9xDffdh0GME9BgO3Q+BbkOg6yDoMtCdl9MfsnMhqw9k9oL0HtCxK6R1htQcSMli+j330e+ggwGYNftJTEISJj4eExfHzFlPsGjJO5jEZKbfeQ/LPv6cCedeSE7PfpjUHPK/K4G0Liz88Asu/8VtDDn6ZDL6HkxKz8EMPfYsbv/bU1Sk93UxdRsC3YdCj2FM/8f/YXqNZNGKL/3vtWgTxhjGjRvH9u3bufzyy+nRowfJyckcfPDBzJgxoxX+0URERETaJ9UsRJvyQtekZm/EJUJ8EiQkuXV8EiQke9uJ7lv/VjZu3DgKCwt54IEHGD58OBMnTqw/NmLECAoLCwF47733uPvuuxk7dizTpk1j+/btJCUlAXDvvfeyevVqRo8ezYQJE6ioqGDp0qVMnz6dRYsWsWDBAuLj4xu/eGpn9xnUVbt+GEBhYSFjxowhKSmJSZMmUVlZyfPPP8+0adOIi4vj4osvbvXPRERERCTclCxEm4QkaFhhEJcQkAT4EoJkf1k7mD163Lhx5OXl8cADDzBixAimT58edHzRokUAvP766zzyyCP89Kc/bXSPhx56iH79+jWaQOzWW2/ljjvu4IUXXmDy5MmNXzwu3tWWFHxdX/TJJ59w6aWX8uijj9YnGNdffz3Dhg3j3nvvVbIgIiIiMUHJQjuX96tXwh1Cs+XfM6HVX2PEiBEhEwWA/v37hyy/4YYbuOOOO5g/f37oZAGgQwakdoKyHQCkpnTgvj/eG1QTMWTIEMaMGcPbb7/Nrl276Nix4/69GREREZF2LvxfKYvshSOOOKLJY6Wlpdx1110cfvjhZGZmEhcXhzGGTp06AbB58+bd3zyjp2uOBBzYry8ZtrjRKX369AFg586d+/gORERERCKHahYkonTv3j1keXV1NSeccALLli1j6NChTJ48mS5dupCY6B7+b7/9diorK3d/87gE1xwJyMpM90ZHKoSUrPpTEhLcf5na2hae80FERESkHVKy0M61RdOeSNKwP4LPnDlzWLZsGVOnTm00YtGWLVu4/fbbQ17XSIeM4P2ijW4kKE3WJiIiIjFIzZCk3fD1D9iXb+3Xrl0LwLnnntvo2OLFi/chGi8pqauBok37cL2IiIhI5FOyIO1GdnY2xhg2bNiw19fm5eUB/lGTfL755htuvvnmvQ8mIdm/XbHTNUcSERERiTFqWyHtRseOHTnyyCNZsmQJP/rRjxg4cCDx8fGcddZZe7z2zDPP5IADDuC+++7js88+49BDD2XDhg28/PLLTJgwYe8TkLgENwldeYHb9zVHEhEREYkhShakXZk9ezY33HAD8+bN45lnnsFaS+/evetrDpqSlpbGW2+9xa9+9SsWLVrEkiVL6N+/P7feeis///nPee655/Y+mMxeUFnin6ytWM2RREREJLYYa224Y4hKxpjlI0eOHLl8+fLdnrdq1SoABg8e3BZhyd6qKIKCb/z72f2CRkeKJfpZFRERaZ9GjRrFihUrVlhrR7X0vdVnQWR3OmS65kg+RRuhtiZ88YiIiIi0ISULInuS2at+sjY1RxIREZFYEnHJgjFmkjHmQWPMEmNMsTHGGmOe3Mt7dDLGXGaMeckYs9YYU26MKTLGvGOMudQYE3Gfi7SiuATI6uPfL98J5UXhi0dERESkjURiB+dbgOHALmATMGgf7nE+8DCwBVgIbAC6AecC/wJON8acb9WhQ3w6ZEJKtksUAIo2QNJgTdYmIiIiUS0Sv0G/ARgIZABX7uM9vgTOAnpba39krf21tXYaLvHYCJyHSxxE/DJ6u1oG8JojbQ5vPCIiIiKtLOKSBWvtQmvtV/vzrb+19i1r7VxrbV2D8q3AI97uuP0IU6JRfAJk9vXvlxe40ZJEREREolTEJQttoNpba8gbaSzFa47kU7jR1TKIiIiIRCE1uA5gjEkALvJ25zXzmqYmUtiXvhQSCTJ6e5O11bgJ24o2Q3ZuuKMSERERaXGqWQh2DzAUeNVaOz/cwUg7FZ8AmYGjI6k5koiIiEQn1Sx4jDHXAjcCq4Epzb2uqZnyvBqHkS0TnbQ7KVlQng0V3uhIhRuha5q/A7SIiIhIFFDNAmCMuQZ4APgCON5aWxDmkCQSZAaOjuQ1RxIRERGJIjGfLBhjrgceBFbiEoWtYQ5JIoWaI4mIiEiUi+lkwRhzM/AX4GNcovBdmEOSSJOSBR2y/PsaHUlERESiSFQnC8aYRGPMIGPMgBDHbsV1aF4OnGit3d7mAUqbysvLIy8vL6hs5syZGGOYOXNms+8zdepUjDHk5+e7gsw+wc2RWmiytlDxioiIiLSliOuNaYyZCEz0drt766ONMTO97e3W2l94272AVcB6IC/gHhcDvwNqgSXAtcaYhi+Vb62d2bBQpBFfc6Sd69x+WQF0yIYOGbu9bNy4cSxevJj9mF9QREREpFVFXLIAjAAublDW31vAJQa/YPf6eet44PomzlkMzNyH+CSCnHPOORx11FH06NFj/26UkgXlWVBR6PYLN0DXQfs1OtKbb765fzGJiIiI7KeISxastdOB6c08Nx9oVGWwN/eQ6JaZmUlmZmYL3aw3VO3yT9ZW/C1k9d3n2w0Y0Kj1nIiIiEibiuo+CxI5/ve//2GM4ZxzzmnynMGDB5OcnExBQQFVVVX87W9/Y/z48eTm5pKcnExOTg4nnXQSr732WrNfd3d9FhYsWMAxxxxDWloaOTk5TJw4kdWrVzd9r9lPcd4Vv6H/0WeSMuBoMvoMYczRR/Hkk08GnZefn48xhsWLFwNgjKlfxo0bV39eU30WKisrueeeezjkkENITU0lIyODY445hn//+9+NzvW91tSpU8nPz+fCCy+kc+fOdOjQgcMOO4yXX365eR+UiIiIxKSIq1mQ6HTUUUdx0EEH8eqrr7Jjxw46deoUdHzZsmWsXr2a8847j5ycHLZu3cp1113H6NGjOfnkk+nSpQtbtmxh7ty5jB8/nn/+859cdtll+xzPCy+8wOTJk0lKSmLy5Mn06NGDd955h6OPPpphw4aFvObKK6/k4IMP5tjRR9GjcwY7dhby6ltLmTJlCmvWrOH3v/89AFlZWdx2223MnDmT9evXc9ttt9XfY08dmquqqjj11FNZvHgxgwYN4uqrr6asrKw+3o8//pi77rqr0XXr16/niCOOoH///kyZMoWCggKee+45zj77bBYsWMDxxx+/z5+ViIiIRDFrrZZWWIDlI0eOtHvyxRdf2C+++GKP58WCu+66ywL2wQcfbHTsqquusoD973//a621tqKiwm7cuLHReYWFhfbggw+22dnZtqysLOhYbm6uzc3NDSqbMWOGBeyMGTPqy0pKSmxOTo5NSEiwH3zwQdD5119/vQUsYNetWxd0bO3atW6jpsrabz+xdvMKW7nufXvCsaNtQkKC3bRpU9D5xx13nHX/BUMLFa/vMzr99NNtdXV1ffm2bdtsbm6uBezSpUvry9etW1cf7/Tp04PuNW/evPp7NYd+VkVERNqnkSNHWmC5bYVnWtUstHfTW6g9fVuYvn8Tkk2ZMoVbbrmFWbNmcc0119SXV1VV8eyzz9K1a1dOP/10AJKTk+ndu3eje2RmZjJt2jRuvPFGPvjgA4499ti9jmPOnDkUFBRw0UUXcdhhhwUdmz59OjNmzKCoqPF7re9jEJ8IWX1gZz5JSYlcPeUc3nr7Xd58800uuuiivY4n0OOPP44xhvvuu4+EBP9/365du3Lrrbdy2WWX8a9//YvRo0cHXZebm8stt9wSVHbqqafSt29fli1btl8xiYiISPRSnwVpN3r37s2JJ57Ihx9+yBdffFFfPnfuXAoKCvjRj34U9ID8+eefM3XqVPr3709KSkp9u/8bb7wRgM2b922+gxUrVgBw3HHHNTqWmZnJiBEjQl63YcMGrr76agYNGkRqp16YXiMxvUZy3k9ucvFs2rhP8fiUlJSwdu1aevbsyaBBgxodP+GEEwD46KOPGh0bMWIE8fHxjcr79OnDzp079ysuERERiV6qWZB2ZerUqbzxxhvMmjWLe++9F4BZs2YBcPHF/hFz//e//3HCCSdQU1PDiSeeyFlnnUVGRgZxcXF8/PHHzJkzh8rKyn2KwVdr0K1bt5DHu3fv3qjsm2++4YgjjmDnzp0cc8wxnHLKKWSmdyS+Yif5Gzcz6/m5VBbv37x/vriaGubVV15YWNjoWFZWVqMygISEBOrq6vYrLhEREYleShbau/1s2hNpzjnnHDIyMnjyySe566672LFjB6+99hrDhw9n+PDh9efdcccdlJeXs3DhwqARhADuvvtu5syZs88x+IZS3bZtW8jjW7dubVR23333sWPHDmbMmMHUqVP9B8oKeGbmo8x6fi5Ul0FF8R4na9tTXKFeH2DLli1B54mIiIjsLzVDknYlJSWFCy64gG+//ZYFCxbw9NNPU1NTE1SrALB27VpycnIaJQpA/ZCk+2rkyJFN3qeoqIiPP/64UfnatWsBOO+884IPpGSz+IPP/PuFG6C2BqC+WVBtbW2z4kpPT2fAgAFs3ryZr776qtHxhQsXBsUvIiIisr+ULEi74/tm/oknnuCJJ54gISGBH/3oR0Hn5OXlUVBQwKeffhpU/thjjzF//vz9ev2zzz6b7Oxsnn76aT788MOgY9OnTw/Zudk35OmiRYuCyue//jr/mh0w/0FdNRSuB2vrh4fdsGFDs2ObNm0a1lpuuummoCRj+/bt9UOzTps2rdn3ExEREdkdNUOSdmfMmDEccMABPP/881RXV3PmmWfStWvXoHOuv/565s+fz9ixY7ngggvIzMzkww8/5J133mHSpEm88MIL+/z6HTt25B//+AeTJ0/mmGOOCZpnYeXKlRx77LG8/fbbQddcddVVzJgxg/PPP59JkybRs2dPVq5cybx587jgggt47rnn/CdXFkPpdk488USef/55zj33XMaPH09KSgq5ublMmTKlydh+8Ytf8NprrzFnzhyGDx/O+PHjKSsr4/nnn+e7777jl7/8JWPHjt3n9y4iIiISSDUL0i5dfPHFVFdX1283dNpppzF37lyGDBnCc889x2OPPUZycjILFy5kwoQJ+/36kyZNYt68eYwaNYp///vfPPLII+Tk5PDee+/Rr1+/RucPGzaMhQsXMnr0aF555RUefvhhiouLefHFF7niiivcSYlp/guKN3PZRT/k17/+NUVFRfzhD3/g1ltv5bHHHtttXElJSbzxxhvceeedADz44IPMmjWLAw88kKeffrq+U7iIiIhISzDWTSAmLcwYs3zkyJEjly9fvtvzVq1aBcDgwYPbIiwJJ1sH338JNeVuPz4ZuhwEcY2HNG2P9LMqIiLSPo0aNYoVK1assNaOaul7q2ZBpK2YOMjOc2uA2koo2hTWkERERER2R8mCSFtK7ACZATNPlxdAWUH44hERERHZDSULIm0tJQdSsv37RRuhZt8mkBMRERFpTUoWokxFdS1FZVV8V1xBTa1m5m2XjIHMPhCf5PZtHezMd2sRERGRdkTJQpTZtLOc9QVlbC2uoKK6eZN9SRjExbv+Cxi3X10GxVvCGZGIiIhII0oWokxygv+ftLJG31S3a0lpkNHDv1/6HVQUhy8eERERkQaULESZpIBkoUrJQvuX1hWS0/37heuhtjp88TRBQyyLiIjEJiULYWaMa4ZSV9cyD/aqWYgwxkBWLsR5k6nX1cDO9dDOHs59yYLv51VERERig5KFMEtOTgagtLS0Re6XpGQh8sQnuoTBp6oEdn0XvnhC8P18+n5eRUREJDYoWQiz9HTXBGXr1q2UlJRQV1e3X00+AmsWqmr3717ShjpkQMeu/v2SLVDVMgnkvrLWUldXR0lJCVu3bgX8P68iIiISGxLCHUCsy8nJobS0lLKyMjZtapnZfGuqa8HLEVYVxanpSMSwUIN/CNXtayChg2uq1A6kpqaSk5MT7jBERESkDSlZCLO4uDj69OlDQUEBJSUlVFZW7ndtwLeF5ZRWumFT+3VOI72D/pkjg3HL9rVgvWFvU7K9IVbDFJExJCcnk56eTk5ODnFxqowUERGJJXqKbAfi4uLo3LkznTt3bpH7PbbyE15Y7mopfn92d6Ycmtci95U2svJreOFy//5Zf4ORU8IXj4iIiMQsfU0Yhfp1Tqvfzt9RFsZIZJ8MPQ8ODUgOXvslfL8mfPGIiIhIzFKyEIXyOgUkC9vD20lW9tHp90LngW67ugxemAbVFeGNSURERGKOkoUolNc5tX573Q4lCxEpKQ0mzYB4b6jSbSvhjVvDG5OIiIjEHCULUSg3oGZhY0EZNbWabyEidR8Kp97p31/2D1j9SvjiERERkZijZCEKdUxOoEu6+0a6utbybaGar0Sswy+DQWf49+dcDUWbwxePiIiIxBQlC1GqX0DtgpoiRTBj4KwHIaOX2y/fCS/+BOpqwxuXiIiIxAQlC1EqsN+COjlHuNQcOO9fYLz/ruuXwtt/DG9MIiIiEhOULESpvIDhU9cpWYh8uaPhuJv9+4vvhfyl4YtHREREYoKShSgV2AwpX82QosOxN0HuGLdt61xzpLKC8MYkIiIiUU3JQpQKrFlQM6QoERcP5/4TUrLdfvFmmHMNWBveuERERCRqKVmIUoETs23cWU61hk+NDpm94Oy/+/fXvAIf/Ct88YiIiEhUU7IQpVKS4ume0QGA2jrLpp3lYY5IWsygCXDE5f79+b+FrZ+FLx4RERGJWkoWophGRIpiJ/8euh3itmsr4YVpUKV/YxEREWlZShaiWD+NiBS9EjvApMch0UsIt38Jr928+2tERERE9pKShSiWpxGRoluXgXD6H/z7H82Glf8JXzwiIiISdZQsRLGgEZF2lB0ElhcAACAASURBVIUxEmk1h/4Yhp7n3597PezMD1s4IiIiEl2ULESxfho+NfoZA2f8BbJy3X5lMTw3BYq3hDcuERERiQpKFqJY35xUjHHbm3aWUVWj4VOjUodMmDQD4hLc/tZP4ZGx8PVb4Y1LREREIp6ShSjWITGenpkpANRZ2LhTTZGiVu9RMP5PYLz/0mXbYfa58NadUFcb3thEREQkYilZiHK5nTR8asw47BK46L/QsZtXYOHtP8ATZ0PJ1rCGJiIiIpFJyUKUy9PwqbGl3zFwxTvQ7zh/Wf4SeOQY+GZR2MISERGRyKRkIcr10/CpsadjV5jyEoz7DeB1Win9Dp6YCIvuUbMkERERaTYlC1EuaPjU7eqzEDPi4mHczXDRHEjr6hVaWHQ3zD4Hdn0X1vBEREQkMihZiHL9Ovv7LKgZUgzqf5xrlpR3jL9s3WI3WtK6JeGLS0RERCKCkoUo1ycnlTivJcq3ReVUVKsJSsxJ7+ZqGI67mfpmSbu2wRNnweI/Qp2G1BUREZHQIi5ZMMZMMsY8aIxZYowpNsZYY8yT+3iv3saYx40x3xpjKo0x+caY+40x2S0dd7gkJ8TTM8sNn2otbCxQU6SYFBcPx/8GprwIqZ1dma2DhXfAk+fCru/DG5+IiIi0SxGXLAC3ANcAI4DN+3oTY8wAYDlwCbAM+AvwDXAd8J4xptP+h9o+9NOISOIz4ATXLCl3jL/sm4Xw6DGQvzR8cYmIiEi7FInJwg3AQCADuHI/7vMQ0BW41lo70Vr7K2vtCbik4SDgzv2OtJ3I04hIEiijh5uP4Zhf+MtKtsCsM2DJn9UsSUREROpFXLJgrV1orf3KWmv39R5ercIpQD7w9waHbwNKgSnGmDSiQPBcC2qGJEB8Apx4K/z4P5DqVaLZOnjzd/D0+VC6I7zxiYiISLsQcclCCzneW79urQ36GtVaWwIsBVKBo9o6sNYQOCKSZnGWIAecBD9dAn2P9petXeBGS9rwv/DFJSIiIu1CrCYLB3nrL5s4/pW3HrinGxljlodagEEtEWhLUDMk2a3MXnDxyzD2Bn9ZybcwYzy8c7+aJYmIiMSwWE0WMr11URPHfeVZbRBLq+uTk0q8N37qlqIKDZ8qjcUnwEnT4YfPQ4o3GJithQW3wTMXQllBOKMTERGRMInVZKHFWGtHhVqA1eGOzScxPo7e2Sn1++t3qN+CNGHgKW60pN5H+Mu+mg+PHAMbl4UvLhEREQmLWE0WfDUHmU0c95UXtkEsbSKwKZKGT5XdyuwNl7wKo6/1lxVvghmnw7sPugk7REREJCbEarKwxls31SfhQG/dVJ+GiJPXKaCTs/otyJ7EJ8Ipv4cfPAsdvNZ4dTXw+i3wzA/ULElERCRGxGqysNBbn2KMCfoMjDHpwBigDIia4WACh0/ViEjSbAedDlcsgV6H+cu+fA0ePQ62fR6+uERERKRNRHWyYIxJNMYM8uZVqGet/Rp4HcgDrm5w2e1AGjDbWhs1T9V5msVZ9lVWX7jkNTgq4L9K0QbXLEnDq4qIiES1hHAHsLeMMROBid5ud299tDFmpre93Vrrm5q2F7AKWI9LDAJdBbwL/NUYc6J33pG4ORi+BH7bGvGHSz8Nnyr7IyEJTrsLckfDS1dAVQlUFMETE+GCWTDw1HBHKCIiIq0gEmsWRgAXe4vvCaV/QNmk5tzEq104DJiJSxJuBAYADwBHWWujagrb3tkpJHjDp24rrqSsqibMEUlEGnwGXPIKpHVx+zXlrg/DJ8+GNy4RERFpFRGXLFhrp1trzW6WvIBz8xuWNbjXRmvtJdbaHtbaJGttrrX2emvtzrZ6P20lIT6OPjmBMzlr+FTZRz2Gw7T5kJXr9m0tvPRTeO/v4Y1LREREWlzEJQuy7zQikrSYTgPg0teh68H+svm/gQXTNbSqiIhIFFGyEEPUyVlaVHp31ySpz1H+snf+Av/9GdSqmZuIiEg0ULIQQ/pp+FRpaSnZMOUlGHiav+yj2fD8xVBdEb64REREpEUoWYgheRoRSVpDUipMfhKG/8BftvpleGoSVBSHLy4RERHZb0oWYki/oGZI6uAsLSg+Ec5+CI6+xl+WvwRmToBd34UvLhEREdkvShZiSM+sFJLi3T/59l2VlFRUhzkiiSpxcXDKHXDS7f6yrZ/C46fCzvywhSUiIiL7TslCDImPM/TJSanfX79DtQvSwoyBsdfDWX8D4/16KfgGHjsFtq4Mb2wiIiKy15QsxJigTs7qtyCtZeQUuGA2xCe7/V3bYMZ4WP9eeOMSERGRvaJkIcYEdXLWiEjSmgafAVNehOQMt19ZBLMnwpp54Y1LREREmk3JQozJVSdnaUt5Y2Hqy5DWxe3XVMCzP4SPnwlvXCIiItIsShZiTD8NnyptrcdwmDYfsnLdvq2F/7sC3n0wvHGJiIjIHilZiDF5nVPrt9UMSdpMpwFw6evQbai/7PVb4I3bwNrwxSUiIiK7pWQhxvTMTCEpwf2z7yitoljDp0pbSe8OU1+Bvkf7y5beD/+9BmprwheXiIiINEnJQoyJizPk5qh2QcIkJQumvAQDT/eXffQk/PsiqC4PX1wiIiISkpKFGJQX1MlZyYK0scQUmPwkDP+hv2zNK/DkeVBRFL64REREpBElCzEoaK4FjYgk4RCfABMfgtE/85etXwozJ8Cu78IXl4iIiARRshCD8jQikrQHxsApd8DJv/OXbf3MzfZcsC58cYmIiOyr6grY8XW4o2hRCeEOQNpe4IhIaoYkYTfmOkjtBP/9Gdg62LkOHj8VfvwidB+65+tFRETamrVQshW2rXTLVm+9/Sv3N+2mr8IdYYtRshCDgpohqWZB2oNDfwwp2fD8JVBbCbu2wYzxMPY6yB0DPQ+FhORwRykiIrGophK+X+MlBp+7WvBtK6FsR+jzS79zTWo7dm3bOFuJkoUY1C29Ax0S46iorqOwrJrCsiqyUpPCHZbEukET3EhJz1wIlcVQWQRvek2UEjpAr1Fu2NXco6HPkZCcHt54RUQk+pRsa1Bb8DlsXwN1ezHEd3Y/96WXkgWJVHFxhrxOaazeWgK4pkiH9lWyIO1A3hg3F8NTk9wvWp+aCtcBev1SWAKYOOh+CPQd7ZKHvqOhY5ewhS0iIhGmpgq2f+mSgW2f+ZsRlX7f/HskdYRuB3vLUPd3qesQSO7YenGHgZKFGBWYLKzfUcahfbPDHJGIp8cwuHoZrH4Z1r8HG96Fgm+Cz7F1sOUTt7z/sCvrdIBX8zDarbPzXCdqEZFoUVPlal4ritzaxENmb9eMU7/v/KyFql1QvhPKC6Gi0G0XbvCaEa2E71dD3V5MTJuV65KBbkNdctB9KGTlQVz0jxWkZCFGaa4FaddSslw/hkN/7PZLtsKG9/zJw9aVgA2+Zsdat3w02+2n9whOHroOiYlf6iLSTtXWeE0si6Gi2P/QXxFQVlHY4HhAYlBRDDVNTF6ZmAZZfSCzj7fuDZl9/WXp3SEuvm3fb0uorvA/6Jd768D9kMe88r1pNhQoMdX9veg+NLi2oENGy763CKJkIUb1CxgRSZ2cpd1L7w4Hn+MWcH88Ny6D9e+6JGLzcqitCr6mZAt8/qJbADpkQp+j/M2Weh4KCWp+JyItaNf3rlZ07QLXwTXwwb9qV+u9bnWp+6b8+9Whj8clQEbP4AQiMKnI7A2JHVo2JmuhqrRx8tMoYSqGyhL/g35gQlBT0bIxNZTZ119L4EsMsvMiM7FqRUoWYlTQXAuqWZBI0yETDjzZLeC+ffp2hT952PA+VJUEX1NRBF/Ndwt4naYPg4MnwqhL3ERxIiJ7q2QrrJoLX8xx/apsXeu9lomD5Az3LXeHTKithqJNe05E6mpcE5zCDbC+iXPSugYkEH0gq69XK9HNjQYUWBtS6XvAb5gE+MqK3HZrfhZ7kpgKHbJcTXVKtttO6+zvX9DtYHdM9kh/HWNUw2ZI1lqM2jtKpErs4Job5Y52+3W1rqOar9nS+vfcUHaBaipg/Ttu+ehJOOtB119CRGRPijb5E4QN/6NRs8iQTPCDvm87aJ0ZvN2wLCmtcd8Ea9238EUboXCji61oo0sMfGVl2/ccXul3btm8fF8+kdYRl+B/0E/Jdg/3gdu7O6bhtluMkoUY1TU9mdSkeMqqaimuqGFnWTU5aWqSIVEiLh56DHfLUVe4P6YF3/hrHta/6yZ/89nyMfxjHIy5Fo67GRJTwha6iLRTO/Phi//Cqv/Cpg+aOMm4PlJDzoIeI4ITg6SOrdNvyhhIzXFLj+Ghz6kud0lEYAJRn1RshOLNYGtbPraElAYJUXrAdqbbD0yOGj70h0qOpM0pWYhRxhhyO6Wxaksx4GoXlCxI1DIGOg1wy8gprqx4i6tRePuPbiI4Wwvv/MV9U3jmA9Dv2PDGLCLht+Nr9zvhiznuS4VQTJybPHLI2TD4TNfHqr1JTIHOB7ollNoa18+rYa1E0SY3jHViWoiH/Ya1IoHHvUQgPrFt36e0CiULMaxf59T6ZCF/eymjcjV8qsSQjB5w3E2uz8Lc61xbY3A1ELPOhJEXwcm/c99uiUjs+H6NP0HYtjL0OSYe+h/nEoSDJkT+PC/xCa6/QlYf4OhwRyPtjJKFGBbUyVkjIkms6nwgXPwyfPQEvP7/XMc8gBVPwJp5MP6P7oFAVeEi0claN/b+F3NcE6MmRxRKhAHHewnCeNfsRyQGKFmIYZprQcQTFwejpsKBp8JrN7mOi+A6+z1/sfvmcMKf3NCDIhL5rHWTOvpqEAq+Dn1efDIccJJLEAaeqtFzJCYpWYhh/TqrZkEkSEYPmPyk68T46k2wa6srX/MK5C+Bk6a7YVY1uZtIZNr+FayY5RKEwg2hz0lIgYGnwOCzXIKQnN62MYq0M0oWYljwXAtlGj5VxGfIWa6D84LbYPlMV1ZZDK/8HD57Hs78K3QZGNYQRWQvVFfAkj+7QQzqqhsfT+roEoMhZ7uahKS0xueIxCglCzGsc8ckOiYnsKuyhl2VNWzfVUWXdI1LLAK45gZnPgCHXABzr4Uda135hvfgkTFw7E0w5nrNAi3S3uW/4wYx8P0f9knOcH0PhpwNA05o+RmMRaKE6tJjmDGGvM6p9ftqiiQSQt4YuGIpHPMLN0EQQG0VLLwTHj0WNjY13rqIhFVZAcy5BmZOCE4Ueh8BP/w33LQWzn0UBo1XoiCyG0oWYlxgUyR1chZpQmIHOPFWuHwx9BzpL/9+FTx2Mrx2M1SWhC8+EfGzFj57Af5+BHw021+enAET/gzT5rsmR5rhV6RZlCzEuKBOzkoWRHav+1C4bAGcejck+mrlLLz/CPz9KPhyfljDE4l5O9fDU+fDfy6F0u/95YPPhKvfh8Mv0wAFIntJ/2NiXGDNwvodZWGMRCRCxMXD0VfBVf+DASf6y4s3wdMXwAuXwq7vm75eRFpebQ28+zd46ChY+4a/PL0nTH7KjXKmoY9F9omShRinuRZE9lF2Lvz4P3DuPyElYHKmlS/A3w+Hj592zSFEpHV9+zH86wR4/bdQ7fvSy8ARl7vahMFnhDU8kUinZCHGNZxrwerhRqT5jIFhF8A1H8Cwyf7y8p3wf1fC7IlQsC588YlEs6pSmP9b+OfxboI1n65D4NI33OzrHTLCF59IlNDQqTEuOzWR9A4JlFTUUFZVy/cllXTN0KgQInslrTOc+w+XOMy9AYq8yZ6+WQQPHQ1jroWc/q6fQ1IqJKZ569TgMg3DKtI8Xy2AlwP+r4GbbXnczTD6WohPDF9sIlFGyUKMM8bQr3Man24qAlxTJCULIvvogJPgqvdg4V3w/sNg66CmHBbf27zr4xICEomU4KQiKS0gsUhtnHgkZ0DuGOjYpXXfo0g47foO5v3aNfcL1O9YOON+6DQgPHGJRDElC0JeJ3+ykL+jlCP7dwpzRCIRLLkjnHYXDD0P/vsz+O7z5l9bVwOVRW7ZFyYeDjzZNYk6SGPHSxSxFj56El6/BSoK/eUp2XDqXTD8B65ZoIi0OCUL0qCTs0ZEEmkRvUfBTxe7B5xvP3IdL6vLXTvr6jKoKoPqUm9d7rbravbvNW0tfDnPLcmZcPDZ7iGqz1EaLlIi1/a18PL1kL8kuHzYZJcopHUOT1wiMULJgtAvcBZnjYgk0nLiE+GwS4BLmnd+TVVAAlEWIqkILCsLTjx2fAUb3/ffq7IIVjzhlqxc92A1/EI105DIUVMFSx+At/8ItZX+8qxcOOMvcMCJTV8rIi1GyYIEzbWQv0PJgkjYJCS5JSV7364vWAef/hs+eQZ2BozCVLge3v6DW3of7pKGg8+F1Jym7yUSThveh7nXuVnSfUw8jL4GjvuV66cjIm1CyYI0Gj61rs4SF6e2nyIRJ6efGw3muF/Cpg9c0rDyP1AR0Adi0wduee1XMPBU10zpwFM0EpO0DxVFsOB2+PBxIGAo756Hwpl/hR7DwhaaSKxSsiBkpSaRlZpIYVk1FdV1bCupoEdmSrjDEpF9ZQz0OcItp90DX86HT56Fr16Hump3Tl01rH7ZLSnZrkP2sAuh92HqKCptz1pYNRde+yWUbPGXJ6bBibe6Cdbi4sMXn0gMU7IggGuK9HGZG2Fi3fZSJQsi0SIhGYac5ZbSHfD5iy5x2Pyh/5zynfDBv9ySM8A1Uxp2AWTnhS1siSFbPnGTqzXswHzgqTDhz5DVJzxxiQigGZzFE9QUSSMiiUSntE5wxE/gJ2/CNR/CMb+AzL7B5xR8DQvvhAeGw4zxsHxWcDMmkZZS/C3831Xw6HHBiUJaV5g0A374nBIFkXYgIpMFY0xvY8zjxphvjTGVxph8Y8z9xpi96hVojBlrjJnjXV9hjNlgjHnVGHNaa8XeXqmTs0iM6Xyga95x3Scw9RU4dAokpQefs34pzL0W/jQQnp/qmjPVVoclXIkiVaWw8G54cBR8/BT1fRNMPBx+GVyzDIaeq+ZwIu1ExDVDMsYMAN4FugJzgNXAEcB1wGnGmDHW2h3NuM+VwENAKfASsAnoDZwLnG6MucVae2frvIv2Jy9g+NR1Gj5VJHbExUHeWLeM/yOsedU1U1r7ppu3AaCmAj5/yS2pneGQSW4o1p6H6oFOmq+u1nW6f/P3sGtr8LGBp8HJv4MuB4UnNhFpUsQlC7gH/K7AtdbaB32Fxpj7gBuAO4ErdncDY0wicDdQAYyy1q4JOHYX8BHwW2PMn6y1lU3cJqoENkNar5oFkdiUmOI6Og89D3Z9B5+94B7utn7qP6dsO7z/iFs6HwTDJ8MhF6i5iOzeN4tg/i2w7bPg8m6HwKl3QP9xYQhKRJojopohebUKpwD5wN8bHL4NV0swxRiTxu7lAJnAl4GJAoC1dhXwJZACdGyBsCNCXlCyUEZdnd3N2SIS9Tp2haOvgiuWwJXvwZjrIL1n8Dnb18Cbv4P7h8LMM2DFbKgoDk+80j59/yU8PRmeODs4UejYHc7+u5vlvP+4cEUnIs0QaTULx3vr1621dYEHrLUlxpiluGTiKODN3dznO+B7YKAx5kBr7Ve+A8aYgcCBwMfNbM60vIlDg/Z0bXuS0SGRTmlJ7CitorKmji3FFfTK0ohIIgJ0G+KaiJx4G6x7Gz59Dr74r5tZ2id/iVte/QUcNN7N3zDgBIiPtD8z0iJKt8Oie9x8Cb7mbAAJKS7xHP0zSI6Z7+NEIlqk/Rb3NWb8sonjX+GShYHsJlmw1lpjzNXAk8ByY8xLwLdAL+Ac4HPgwpYKOlLkdkplR2kVAPnbS5UsiEiwuHgYcLxbJvwZVr/i+jd8sxB839/UVLjhWT9/EdK6wNBJrqlSjxHq3xALqitg2aPw9p+gMrCWycCIH8IJt0BGzyYvF5H2J9KShUxv3dQ4fr7yrD3dyFr7vDHmW+AZ4KKAQ9uAGcA3zQnIWjsqVLlX4zCyOfdoL/I6p7Fig3+uhTEHdA5zRCLSbiWlubkYhl0AJVvhs+fhk+eCm5qUfg/vP+wW9W+Ibta6BHHBdCjcEHws7xg49U7oMTwsoYnI/omoPgstyRjzY2ABsAQYDKR66zeBvwHPhi+68OgXOHyqRkQSkeZK7+6alVz5Dlz5Loy+FtJ7BJ9T37/hENe/4aMn1b8hWmxcBo+dAi9MC04UOh0AFz4DF89VoiASwSKtZsFXc5DZxHFfeeHubuL1S3gc+BSYEtD/YbUxZgquudP5xphx1tpF+xdy5Ajs5Ky5FkRkn3Q7GE75PZw03fVv+ORZWDU3oH+D9fdveOVGGDQBhl2o/g2RaGc+LLjd1SgESsmBcb+Gwy6B+MSwhCYiLSfSfjP7Ri4a2MTxA711U30afE4BEoHFITpK1xlj3gZGecuifQs18gQOn6q5FkRkvwT2b6i6D1a9DJ8+64bQDOzfsPI/bqnv33Ch+xZa/Rvar4oiWPJn+N/DUFvlL49PgiN/6mYGT9lja2ARiRCRliws9NanGGPiAh/0jTHpwBigDPjfHu6T7K27NHHcV17VxPGoFFizsLGgnNo6S3yc/mCLyH5KSnP9FYZPhuItsPIFV+OwbaX/nMD+DV0Gu46wgyYoaWhPaqth+UxYdDeUNRgscMhEV5uU0y8MgYlIa4qoPgvW2q+B14E84OoGh28H0oDZ1tr6r8WNMYOMMQ2HMV3irScZY4YFHjDGjAAm4eaff6vlom//OiYn0Lmjy6Oqauv4trA8zBGJSNTJ6OH1b1gKVyx12x27B5/z/Sp47kfw1Pmw4+vwxCl+1sKaefDwaDc0bmCi0OswmDYfLpilREEkSkVazQLAVcC7wF+NMScCq4AjcXMwfAn8tsH5q7x1/ddT1tplxpgZwCXAB97QqetxSchEIAm431r7eSu+j3apX+dUtu9yk1av215Kn5zUMEckIlGr+1DofgecdDusW+xGUwrs37D2DXhoMYy5HsbeAEn6fdTm1r8Lb90B65cGl2f2hZNuc7N9q/ZHJKpFVM0C1NcuHAbMxCUJNwIDgAeAo5ozkZrnUlyy8B5wqnefk4F3gB9Ya29o2cgjQ14ndXIWkTYWF+86OJ/7KNywEg67lPrvd2qr4O0/wENHwupX3bfc0vo2LYfZ58CM04MThaR019zomg/gkElKFERiQCTWLGCt3Yh70G/OuSF/k1lrLS7hmNligUWBPHVyFpFwSs2BM+6DkVPcaEmbl7vywg3w7A/gwFPh9Hsgp39444xWWz+DhXfBmleDy+MSYOTFbpSjjk119xORaBSRyYK0nsARkTTXgoiETc9D4dIF8NFsN9FXeYEr/2q+G1FprNc0KVEzzbeI79e4jsufvxRcbuJg+A/g2JvUJ0EkRkVcMyRpXcHNkMrCGImIxLy4OBh1MfxsOYy6BH/TpEpYfC/8/UhY81pYQ4x4BevgpSvgoaMaJwpDz4Orl8HEh5QoiMQw1SxIkLzO/g6EGwvKqKmtIyFeOaWIhFFqDpx5P4y8yDVN+naFKy9cD89cCANPg9Pu0QPt3ijaBG//0c2kXVcTfGzQGa65Ufeh4YlNRNoVPQVKkNSkBLpluOFTa+osmzV8qoi0F71GwmVvwpkPQEq2v/zLea6WYdE9UK3fWbtVsg1euxn+eqibMyEwUTjgJPjJW3DhU0oURKSekgVpJLApkjo5i0i7EhcHo6bCz1a4dWDTpEV3u+Y0X84PY4DtVFkBvPH/4IHh8P4jwTMv546FS+bBj/8DvUaFL0YRaZeULEgj6uQsIu1eao6rYbjsTdcZ2mdnPjx9ATzzA7cd6yqK3OhG9w+DpQ9ATUDNS6/D4KI5MPVlyD06fDGKSLumPgvSSK46OYtIpOg9yiUMK2bBgtuhotCVr3kVvn4LjrkRRl8LiR3CG2dbq9wFyx6FpX/1fyY+3Q+BE26FA0/RPAkiskdKFqSRfgGdnNUMSUTavbh4OGwaDD4b3pwOK55w5TUVsPBO+PhpGP9HOPDksIbZJqrL4cPHYcl9ULY9+FiXQXD8b2DQma45l4hIMyhZkEYCJ2bTLM4iEjHSOsFZD8KhF8GrN8KWT1z5znXw1CQ3ys+pd0F2bnjjbA01VfDRE/D2n6BkS/Cx7H4uSRh6nkusRET2gpIFaSQ3x58sbNpZTnVtHYkaPlVEIkWfw+EnC2H5DHjzd67dPsDql2Htm3Cs1zQpIXn396mrg+oyt1TtgqpSqPK2q8u8/V1eWSlUl3plAQsW4pMhPtG9XtB2klua3E7yzg/YTvCOBW5//RYsuheKNgTHn9kHjvulm1QtPrFVPmoRiX5KFqSRlKR4emR2YEtRBbV1lo0FZfTv0jHcYYmINF9cPBx+GQyZ6GaA/mi2K68ph7fucE2Teh/e+OG+/oG/zG1Hoo7d3IzLIy/ac0IkIrIHShYkpLxOaWwpqgBcUyQlCyISkdI6w9l/80/otvVTV17wjVuiSWonGHsDHHYpJKXu+XwRkWZQsiAh5XVO471vdgCwbrtGRBKRCNfnCLh8kev8+9bv/U2T9iQx1S1Jaf4lMRWSOnr73nbDc5LSIDHNTQNRWw01lW5dW9lgu8rNedBwu/4aryxo23eOt52UCiN+CEdeAcnprfghikgsUrIgIQWOiKS5FkQkKsTFwxE/gYPPde3862qCH/iDEgEvSVCHYBGJcUoWJKS8ThoRSUSiVFonGHZ+uKMQEYkIGuJGQgqcxVlzLYiIiIjEJiULElKfnNT6iT2/LSynsqY2vAGJiIiISJtTsiAhdUiMp2dmCgB1FjYWqJOziIiISKxRsiBNCmyKlK8RkURERERijpIFaVJe4IhI6uQsIiIiEnOULEiTAkdEUidnERERkdjTJkOnGmMGAacDZcCz1tpmzoYj4aThU0VERERiW4vWLBhj/p8xZosxJieg7CTgI+BPwEPACmNMp5Z8XWkdeeqzICIiIhLTWroZ0unAamttQUDZ3YAFbgMeBvoB17Xw60or6JuTSpxv+NSiciqqNXyqiIiISCxp4ICfmgAAIABJREFU6WQhD1jl2zHG9AJGAQ9Za++w1l4DvAVMbOHXlVaQlBBHr2w3fKq1sEHDp4qIiIjElJZOFrKBwFqFMbhahZcDypYDfVv4daWVqJOziIiISOxq6WThe6BXwP7xQDXwfkBZUiu8rrSS4LkWlCyIiIiIxJKWHg3pY+AsY8xQoAKYDLxjrS0POCcP2NLCryutRCMiiYiIiMSulv6G/w9AJvAJsMbb/rPvoDEmHtc06cMWfl1pJYE1C2qGJCIiIhJbWrRmwVq7xBhzBvATXF+Fp6y1rwWcMhrYDLzUkq8rrUfDp4qIiIjErhaflM1aOw+Y18SxJcChLf2a0np6Z6cQH2eorbNs/f/t3Xl8XHW9//H3Z7LvSdOm+166SMvSFlooBcuOiCCyKAIKchVFQOV69XfdQLzXuwkKLhdRFotXBFQ2RUDKVnZaLLa0lO5rkiZp9mSyfX9/nJPJJJ0sTSaZzOT1fDzyOJnvOXPmEw6Tzjvf8/1+qxvV0NSqjNSkWJcFAACAITBkA43NrMDMsno/EsNJSlJAk/3pUyXGLQAAAIwk0V7B+TQz+y8zKwhrKzKzFyWVSaows9ui+ZoYfNOYEQkAAGBEinbPwvWSLnTOHQxr+x9JyyVtlVQu6UYzuyTKr4tB1HlGJMYtAAAAjBTRDgtHS1rd/sDMMiRdJOlZ59xsSXMk7ZZ0bZRfF4OItRYAAABGpmiHhSJJ+8IeL5GULuk+SXLO1chbzXlOlF8Xgyj8NqTtjFkAAAAYMaIdFoKSMsIeL5c3hepLYW3VkkZF+XUxiKYVZoa+p2cBAABg5Ih2WNgu6dSwx5+Q9IFzbm9Y22R5g50RJybmZyg5YJKk0pqg6oItMa4IAAAAQyHaYeF+SQvM7A0ze1nSAkn/1+WYo+St7ow4kZwU0JRRYb0L3IoEAAAwIkQ7LPxC0oOSFktaJm98wn+27zSz+fICxAtRfl0MMlZyBgAAGHmiuoKzc65Z0mVmdq330NV0OaRY3grOO6L5uhh8nadPpWcBAABgJIhqWGjnnKvupr1MjFeIS9NHd9yGtJ1BzgAAACPCoIQFM8uUdKG8XoR8SVWS1kr6k3OOT5pxiFWcAQAARp6ohwUz+4i8gc6jJFnYLifpdjO7yjn3ZLRfF4OL25AAAABGnqiGBTNbKOmPkpIk/VbSKkn7JY2XN6XqpyQ9YmbLnHNrovnaGFwT8jOUmhRQU2ubymqbVNPYrJz0lFiXBQAAgEEU7dmQviWvB2G5c+5K59x9zrmn/e2Vkk7y9/9rlF8XgywpYJrSaXE2ZkQCAABIdNEOC8slPeycez3STufcG5Ie8Y9DnAm/FWk7tyIBAAAkvGiHhTxJu3s5Zpek3Ci/LoZA+IxIDHIGAABIfNEOC/skHd/LMYvljWNAnOk0IxI9CwAAAAkv2mHhL5JONbNvmllS+A4zC5jZTZJO94/rNzObZGb3mNk+Mwua2Q4z+7GZFfTjXAvN7P/MbI9/rhIze9HMrhxIjYloeiHTpwIAAIwk0Z469VZJF0j6N0lfMLOX5fUijJM3uHmavFWcf9DfFzCzmZJelVQk6TFJm+T1Ztwo6Wx/pqXyPp7ry5J+IumgpD9L2itvytf5kj4i6Tf9rTMRde5ZYIAzAABAootqWHDOFZvZMkl3STpD0tQuhzwr6Vrn3EBuQ/q5vKBwg3PuzvZGM7tN0lflBZVrezuJmZ0p6Q6/poucczVd9jMvaBfjctOVlhxQsKVNFXVNqmpoVl4G/5kAAAASVbRvQ5Jzbodz7ixJkyV9TNIV/nayc+4s59z2/p7b71U4U9IOST/rsvt7kuokXWFmWerdf0tqkHRZ16Dg/xzN/a0zUQUCpqmFDHIGAAAYKaK+gnM759xeebf1RNMKf/uMc66ty+vVmNkr8sLEUknPdXcSM5sv6ShJj0qqMLMVkhbJWwPi75Ke73p+eKYVZmlzSa0kb5Dz0ZPzY1wRAAAABsuAwoKZ3dPPpzrn3Of68bw5/nZzN/s/kBcWZquHsCDpOH9bKukFSSd32f8PM7vQObelt4LMrLuVqOf29tx4ND1s3MJ2ehYAAAAS2kB7Fj7bz+c5Sf0JC3n+tqqb/e3tvf25u8jffk5e78e5klZLGivpu5Iul/RnM1vgnGvqR50Jq9MgZ8ICAABAQhtoWJgelSqGXvtYjSRJn3TOveY/rvanTJ0rbz2IT0j6XU8ncs4titTu9zgsjE65w0fnVZyZEQkAACCRDSgsOOd2RquQPmrvOcjrZn97e2Uv52nfXxwWFCR590eZ2WPywsLx6iUsjDTT6VkAAAAYMaI+G9Ige9/fzu5m/xH+trsxDV3P012oOOhvM/pY14gxNjdNGSneentVDc06WMddWgAAAIkq3sLC8/72TDPrVLuZ5UhaJqle0uu9nOd1edOsTutmmtX5/rbf07wmKrPO06duL6d3AQAAIFHFVVhwzm2V9Iy8laCv67L7FklZklY650KfYM1srpl1mpnIOVcv6deS0iX9wMws7PgF8gZut0h6JPo/RfzjViQAAICRYdDWWRhEX5L0qqQ7zOw0SRslLZG3BsNmSd/qcvxGf2td2r8jb8rUr0g6wV+jYaykC+WFiK/44QRdMCMSAADAyBBXPQtSqHdhsaT75IWEmyTNlPQTSUudc+V9PE+1pOWS/l3SKElflvRReVOonuWc+0nUi08Q08NmRHpnd29jyQEAABCv4rFnQc653ZKu6uOxXXsUwvfVyuuJ6NobgR4snFoQ+v7lD8r0/PulWjGnqIdnAAAAIB7FXc8CYm9WUbYuXjQp9Pjmxzeosbk1hhUBAABgMBAW0C/fOGeuctO9jqmd5fW6+6VtMa4IAAAA0UZYQL+Mzk7T18+aE3r80+e3aHcFKzoDAAAkEsIC+u2yJVN15IRcSVKwpU3ff/K9GFcEAACAaCIsoN+SAqZbL5gfevzseyVatakkhhUBAAAgmggLGJCFUwp06eLJocc3P/4eg50BAAASBGEBA/YvZ89RXkaKJGlXRb3uepHBzgAAAImAsIABK+wy2PnnL2zRrnIGOwMAAMQ7wgKi4lPHT9GCiXmS2gc7b4hxRQAAABgowgKion2ws/nrZf9tY6n+9h6DnQEAAOIZYQFRc8zkfH3yuI7Bzrc8ycrOAAAA8YywgKj6+llzlZ/pDXbeXdGgX7ywNcYVAQAAoL8IC4iqUVmpnQY7/+LFrQx2BgAAiFOEBUTdJ4+boqMmeYOdm1radMsTDHYGAACIR4QFRF1SwHTr+R2DnZ/bxGBnAACAeERYwKA4enK+PnnclNDjm59gsDMAAEC8ISxg0PzLWXNCg533HGzQzxnsDAAAEFcICxg0BVmp+sbZc0OP//fFrdpRVhfDigAAAHA4CAsYVJcunqyjJ+dL8gY73/zEBjnnYlwVAAAA+oKwgEEVCJhuPf/I0GDnF94/oGcZ7AwAABAXCAsYdEdNytdlx3cMdr7liffU0MRgZwAAgOGOsIAh8fWz5qjAH+y8t7JBP39hS4wrAgAAQG8ICxgS+Zmp+uY5HYOd73pxm7Yz2BkAAGBYIyxgyFy8aLKOaR/s3Nqm7z3OYGcAAIDhjLCAIRPosrLzS5sP6OkNDHYGAAAYrggLGFILJuXp00s6Bjvf+uR7qm9qiWFFAAAA6A5hAUPun8+co1FZqZK8wc4/e57BzgAAAMMRYQFDLj8zVd8MW9n57pe2a9uB2hhWBAAAgEgIC4iJixZN0rFTGOwMAAAwnBEWEBPtg50D/mDnlz8o09MbimNbFAAAADohLCBm5k/M0+VLp4Yef/8JBjsDAAAMJ4QFxNRNZ8xRoT/YeV9Vo366isHOAAAAwwVhATGVl5nSaWXnu1/epq0MdgYAABgWCAuIuU8snKRFUwskSc2tTjcz2BkAAGBYICwg5gIB0/fPP7LTYOen1jPYGQAAINYICxgWjpyQpytPmBZ6fOuT76kuyGBnAACAWCIsYNj46hmzNTrbG+y8v6pRdzLYGQAAIKYICxg28jJS9M1z5oUe/+rlbdpSWhPDigAAAEY2wgKGlQuPnajF/mDnljbHys4AAAAxRFjAsOINdu5Y2fmVLeX68z/2x7YoAACAEYqwgGHnQxNyOw12vvnx97S7oj52BQEAAIxQhAUMS187c7ZGZ6dJkspqg7rynjdVXhuMcVUAAAAjC2EBw1Jueoru/NSxSk3y/hfdXlanq+57S7VMpwoAADBkCAsYtk6YWaiffPIYmT9+4d09Vbp25Ro1tbTFtjAAAIARgrCAYe2cBeP1gwvmhx6v3lKmmx5ep7Y2ZkgCAAAYbIQFDHufXjJVXz19dujxE+v26ftPvseUqgAAAIOMsIC4cMNps3TlCVNDj+97dYd+/sLWGFYEAACQ+AgLiAtmpu+dd6TOXTA+1PbfT7+vB9/cFcOqAAAAEhthAXEjKWC67dKjdeLMwlDbv/7pH3p6Q3EMqwIAAEhchAXElbTkJN11xSLNn5grSWpz0vW/e0dvbCuPcWUAAACJJy7DgplNMrN7zGyfmQXNbIeZ/djMCgZwzpPNrNXMnJn9IJr1Irpy0lN072eP19TCTElSU0ubrvnN29q4vzrGlQEAACSWuAsLZjZT0hpJV0l6U9LtkrZJulHSa2ZW2MPTuztnjqT7JdVHsVQMojE5aVp59ZLQKs81jS36zD1vancFlxAAACBa4i4sSPq5pCJJNzjnLnDOfdM5d6q80DBH0r/145w/kZQn6YfRKxODbUphpu6/+jjlpCVLkkprgrrynjdVVhuMcWUAAACJIa7Cgt+rcKakHZJ+1mX39yTVSbrCzLIO45zny+uluEHSvuhUiqFy5IQ8/fLKxUpN9v5X3l5Wp6vve0u1wZYYVwYAABD/4iosSFrhb59xzrWF73DO1Uh6RVKmpKV9OZmZFUm6W9KjzrkHolkohs4JMwt1xyePUcC8x+/uqdK1K9eoqaWt5ycCAACgR/EWFub4283d7P/A387uZn9Xd8v7b3BtfwsyszWRviTN7e85cfjOnj9et14wP/R49ZYy3fTwOrW1scozAABAf8VbWMjzt1Xd7G9vz+/tRGZ2taSPSfqSc64kCrUhxj69ZKq+enpHTnxi3T59/8n35ByBAQAAoD+SY11ALJjZNEk/lvSwc+6hgZzLObeom9dYI2nhQM6Nw3fDabNUXhfUb17bKUm679UdGp2dqi+fekSMKwMAAIg/8daz0N5zkNfN/vb2yl7Oc4+kBklfikZRGD7MTN8770idu2B8qO1/ntmsB9/cFcOqAAAA4lO8hYX3/W13YxLa/3zc3ZiGdgvlTb96wF+EzZmZk3Svv/9bftujAysXsZAUMN126dFaNqtjyY1//dM/9PSG4hhWBQAAEH/i7Tak5/3tmWYWCJ8RyV9YbZm8hdVe7+U8v5E3a1JXR0g6WdLf5S389s6AK0ZMpCUn6X8vX6RP3f261u+tVpuTrv/dO1p59fFaMuOw1+0DAAAYkeKqZ8E5t1XSM5KmSbquy+5bJGVJWumcq2tvNLO5ZtZpZiLn3A3OuWu6fqmjZ+HPflvXtRwQR3LSU3TvZ4/X1EIvFza1tOma37ytjfurY1wZAABAfIirsOD7kqRSSXeY2aNm9kMzWyXpq/JuP/pWl+M3+l8YgcbkpGnl1Us0JidNklTT2KIr73lTuyvqY1wZAADA8Bd3YcHvXVgs6T5JSyTdJGmmpJ9IWuqcK49ddRiOphRm6v6rjldOmnfX3YGaoK68502V1QZjXBkAAMDwFndhQZKcc7udc1c558Y751Kdc1Odc19xzh2McKw556yP573PP/7b0a8asfShCbm6+zOLlZrs/S+/vaxOV937lmqDLTGuDAAAYPiKy7AA9MfSGYW645PHKOBHx3/srdK1K9co2NIa28IAAACGKcICRpSz54/XDy5YEHq8ekuZbnpondraWOUZAACgK8ICRpzLlkzR187oWKrjyXf365YnNhAYAAAAuiAsYES6/tRZuvKEqaHH97+2Uxff9RrTqgIAAIQhLGBEMjN977wjde6C8aG2NTsP6qN3rtYPnnyPgc8AAAAiLGAESwqYbr/0GF23YqZSkrxRz61tTr9avV2n/+hFPfWP/XKOW5MAAMDIRVjAiJaaHNDXz5qrp25crqUzRoXai6sb9cXfrtXV972lXeUs4AYAAEYmwgIgaVZRjn73T0t1+6VHa3R2aqj9+fcP6IzbX9Sdz33AFKsAAGDEISwAPjPTx4+dpOe+9mFdvnSKzF+PIdjSph89u1nn/ORlvbqlLLZFAgAADCHCAtBFXmaKfnDBAv3pS8s0f2JuqH3bgTpd9qs3dOOD76i0pjGGFQIAAAwNwgLQjWMm5+ux607Szed9SDlpyaH2x/6+T6f96EX95rUdamVtBgAAkMAIC0APkgKmzy6bruduOkXnHT0h1F7T2KLvPrZBH//5K3p3T2UMKwQAABg8hAWgD4py03Xnp47Vys8dr+mjs0Lt7+6p0vk/e0XffWy9qhubY1ghAABA9BEWgMOw/IgxeurG5frq6bOVmuy9fZyTfvPaTp36Py/qsb/vZW0GAACQMAgLwGFKT0nSjacfoWe+crJOnj0m1F5WG9SND/5dl//6DW09UBvDCgEAAKKDsAD007TRWbr/quP0s8sWamxuWqj9lS3lOufHL+tHz7yvxmbWZgAAAPGLsAAMgJnp3KPG629fO0VXL5uugL82Q1Nrm+5ctUVn3v6Snn+/NLZFAgAA9BNhAYiCnPQUffe8D+mJ60/SsVPyQ+27Kup11b1v6YsPrNH+qoYYVggAAHD4CAtAFB05IU9/uPZE/fvHFygvIyXU/tT6Yp3+oxf14Ju7GAANAADiBmEBiLJAwHTZkil67qZT9ImFk0LtdU2t+uYf/6GbHlqn+qaWGFYIAADQN4QFYJCMzk7Tjy45Wr///FLNKsoOtf/xnb06/6ev6IOSmhhWBwAA0DvCAjDIlswo1BNfPkmXLO7oZfigtFYf++kr+uPaPTGsDAAAoGeEBWAIZKQm6b8uOlr/c/HRSk/x3nYNza362kPr9I1H3mWKVQAAMCwRFoAhdNGiSXrsupM0c0xWqO33b+/WBT97RdtYyA0AAAwzhAVgiM0Zl6PHv3ySLjhmQqhtU3GNzrtztZ5Yty+GlQEAAHRGWABiICstWbdfeox+eOECpSZ7b8O6plZd/7t39O1H/8FtSQAAYFggLAAxYmb61PFT9KcvnahphZmh9gde36WL/vdV7Syvi2F1AAAAhAUg5o6ckKcnrj9J5y4YH2pbv7daH71jtf66fn8MKwMAACMdYQEYBnLSU/TTy47V988/UilJJkmqCbbo2gfW6pYnNqippS3GFQIAgJGIsAAME2amK0+Ypj988URNKsgItd/7yg5dfNdr2nOwPobVAQCAkYiwAAwzR03K15+vX64zPjQ21LZud6XOvWO1nttYEsPKAADASENYAIahvMwU/fKKRfr2ufOUHPBuS6pqaNbn7n9bP/zLRjW3clsSAAAYfIQFYJgyM12zfIZ+/4UTNCEvPdR+10vb9Klfvq79VQ0xrA4AAIwEhAVgmFs0tUB/vmG5VswZE2p7e+dBnXvHar24+UAMKwMAAImOsADEgYKsVP36M8fpX86eoyT/tqSKuiZ99t439aNn3ldrm4txhQAAIBERFoA4EQiYvvThWfq/a5aoKCdNkuScdOeqLfr0r15XaXVjjCsEAACJhrAAxJklMwr1lxuX66RZo0Ntr2+r0EfuWK1Xt5TFsDIAAJBoCAtAHBqdnab7rz5eXz19tsy7K0lltUFd/us39J1H1+vtHRVq49YkAAAwQMmxLgBA/yQFTDeefoQWTyvQjQ++o7LaJrU5aeXrO7Xy9Z0ak5Oms44cq3Pmj9eS6aOUnMTfBgAAwOEhLABxbtms0frLDct1/e/e0RvbK0LtB2qCeuD1XXrg9V3Kz0zRGfPG6pwF47Rs1milJSfFsGIAABAvCAtAAijKTdfv/mmpXt5Spr+u369nNpSovK4ptL+yvlkPr9mjh9fsUXZask6dW6Rz5o/TKXPGKDOVXwMAACAyPiUACSIQMJ0ye4xOmT1GP7jA6a0dFfrr+mL9dX2xisNmSqoNtujxdfv0+Lp9Sk8J6JTZY3TO/PE6dV6RctNTYvgTAACA4YawACSgpIBp6YxCLZ1RqO9+9ENat6dSf11frKfWF2tXRX3ouMbmNj29oURPbyhRSpJp2azROmf+OJ3xoXEalZUaw58AAAAMB+YcM6YMBjNbs3DhwoVr1qyJdSlAiHNOG/fX6K/r9+up9cX6oLQ24nEBk5ZML9Q5C8bprCPHaWxu+hBXCgAA+mrRokVau3btWufcomifm7AwSAgLiAdbSmv19IZiPbV+v9bvre72uIVT8nXO/PE6e/44TR6VOYQVAgCA3gxmWOA2JGAEm1WUrVlFs3TdilnaXVHvB4dirdl5sNNxa3dVau2uSv3bXzbqyAm5+uhRE/TJ4yargFuVAABIaIQFAJKkyaMydc3yGbpm+QyVVDfqGT84vLG9Qq1hC7xt2FetDfuqdcdzH+jS4ybrcydNp7cBAIAERVgAcIixuem64oRpuuKEaaqoa9Lf3ivRU+v3a/WWMjW3esGhoblV9726Qytf36mPLBivL5w8Q/Mn5sW4cgAAEE2EBQA9GpWVqkuOm6xLjpus6sZmPbOhRL9evV0b93tjHFrbnJ5Yt09PrNunE2cW6gunzNTJR4yWmcW4cgAAMFCEBQB9lpueoosWTdInFk7Uyx+U6ZcvbdPqLWWh/a9uLderW8s1d1yOPn/yDJ139ASlJAViWDEAABiIuPxX3Mwmmdk9ZrbPzIJmtsPMfmxmBX18fpaZfdrM/s/MNplZnZnVmNnbZnaTmTFqE+iBmenk2WP0wDVL9OT1J+ljR09QUqCjJ2FTcY2+9tA6nfJfz+tXL29TbbAlhtUCAID+irupU81spqRXJRVJekzSJknHS1oh6X1Jy5xz5b2c42xJT0mqkPS8pC2SCiR9TNI4//ynOecauz1J73UydSpGlN0V9fr16u36/Vu71dDc2mlfTnqyLl86VVedOE1FrNkAAEBUsc5CGDN7WtKZkm5wzt0Z1n6bpK9Kuss5d20v5zhG0pGSHnbONYW150h6QdJCSf/snPvRAOokLGBEOljXpAde36n7X9uhstqmTvtSkwK64NgJ+vzJMzSrKCc2BQIAkGAICz6/V2GLpB2SZjrn2sL25UjaL8kkFTnn6vr5GpdJ+q2kJ51z5w2gVsICRrTG5lb9ce1e3f3yNm0vO/TtePq8In3hlJlaPLWAwdAAAAwAi7J1WOFvnwkPCpLknKsxs1fk9ToslfRcP1+j2d/26SZrM+suDczt5+sDCSE9JUmXLZmiS4+brGffK9FdL23VO7sqQ/v/trFUf9tYqmOn5OsLJ8/QGR8a12ncAwAAiL14G+A8x99u7mb/B/529gBe42p/+9cBnAOALylgOnv+OP3xiyfq4WtP0Onzxnba/86uSl37wFqdftuL+u0bO9XYZbwDAACInXjrWWhf8amqm/3t7fn9ObmZfVnS2ZL+Lumevjynu+4ev8dhYX/qABKRmem4aaN03LRR2lJao7tf2q4/vbNXTa1eJ+H2sjp960/rddszm/WZE6fpiqVTVZDFxGQAAMRSvPUsDBozu1DSjyUVS/qEc665l6cA6KdZRTn6z4uO0upvrNAXPzxTOekdf7cor2vSbc9u1on/sUrfeORdrdlZoXgaWwUAQCKJt56F9p6DvG72t7dXdrM/IjO7QNKDkkolrXDObetfeQAOR1Fuur5x9lxdt2KWHnxzl369erv2V3kzFjc0t+r3b+/W79/erZljsnTJ4sm6cOEkjclJi3HVAACMHPHWs/C+v+1uTMIR/ra7MQ2HMLOLJT0sqUTSKc6593t5CoAoy05L1jXLZ+ilf1mh2y89WnPHdZ5WdeuBOv3wqU1a+sPn9E+/eVvPvleilta2bs4GAACiJd56Fp73t2eaWSDC1KnLJNVLer0vJzOzT0u6X9Je0aMAxFxKUkAfP3aSLjhmotbuOqiH3tqjJ9/dp7omb9Bza5vTs++V6Nn3SjQmJ00XLpyoSxZP1swx2TGuHACAxBRXPQvOua2SnpE0TdJ1XXbfIilL0srwNRbMbK6ZHTKNqZl9RtJvJO2SdDJBARg+zEyLpo7Sf150lN781un6r4uO0nHTCjodc6AmqLte3KbTfvSiLvrFq3rord2qC/ZpxmMAANBHcbUomxRamO1VSUWSHpO0UdISeWswbJZ0onOuPOx4J0nOOQtrWyHpb/LC0j2Sdkd4qUrn3I8HUCeLsgFRtu1ArR56e4/+sHaPDtQED9mfmZqkjx41XpcsnqxFLPYGABghWMG5CzObLOn78qY5LZS3cvOfJN3inDvY5dhIYeGzku7t5WV2OuemDaBGwgIwSFpa2/Ti5gP6/Vu7tWpTqVraDv09NiM0KHqiinLSY1AlAABDg7AQhwgLwNA4UBPUo+/s1e/f3q0tpbWH7E8KmFbMKdIliydpxdwipSTF1d2XAAD0ajDDQrwNcAaATsbkpOmfTp6ha5ZP1zu7K/XQW7v1xLrOg6L/trFEf9tYotHZafrEwom6ePFkzSpiUDQAAL2hZ2GQ0LMAxE59U4v+8o9iPfT2br25vSLiMQun5OvS4ybrIwvGKyc9ZYgrBAAgeuhZAIDDkJmarIsWTdJFiyZpe1mdHn57tx5Zs0elYYOi1+6q1Npdlfr2o+u1ZHqhTp1bpNPmFWlqYVYMKwcAYHihZ2GQ0LMADC8trW166YMDeuitPfrbxpKIg6IlaeaYLJ02b6xOnVukRVMLGOMAABj26FkAgAFKTgro1LljdercsSqr9QZF/3HtXr23v7rTcVsP1GnrgW365UvblJOerFNmj9Fp84r04dlFKsgTsDAvAAAcH0lEQVRKjVH1AADEBmEBwIgzOjtN1yyfoWuWz9D+qgY9v+mAVm0q0eotZWpsDi0Mr5rGFj357n49+e5+BUxaOKVAp84r0mlzx2r22GzWcQAAJDxuQxok3IYExJ/G5la9trVcz20q0aqNpdpX1djtsRPzM3Tq3CKdOq9IJ8woVHpK0hBWCgBAB25DAoAhkJ6SpBVzi7RibpHc+U6bimu0alOpnttYond2Vyr8byt7Kxu08vWdWvn6TmWkJGnZrNE6bV6RTp1bpLG5LAIHAEgMhAUAiMDMNG98ruaNz9V1K2apvDaoFzcf0HObSvXS+wdUE2wJHdvQ3Bpay0GS5k/M9cdHFOmoiXkKBLhdCQAQnwgLANAHhdlpunDhJF24cJKaW9v01o4KrdpYqlWbSrWtrK7Tsev3Vmv93mrd8dwHGp2dphNnFmpqYaYm5mdoYkGGJuRnaGJ+BrcuAQCGPcICABymlKSATpw5WifOHK1vf/RD2l5Wp1WbSrVqU4ne2FbRaVrWstqgHl+3L+J5RmenhgLERD9ATCzoCBV5GSwWBwCILcICAAzQ9NFZ+txJ0/W5k6arurFZqz8o03MbS/X8+6WqqGvq9nlltU0qq23Suj1VEffnpCV3BImwHomJBRmalJ+h0dlp3OIEABhUhAUAiKLc9BR9ZMF4fWTBeLW2Ob27p1Kbimu092CD9lb6XwcbVFzdqNZuFoZrVxNs0abiGm0qrom4PzU5oAl56V6QyMtQbkaKslKTlJWWrKy0ZGX720PbkpSZmqwkggYAoBeEBQAYJEkB07FTCnTslIJD9rW0tqmkJuiHiPpQmNhzsCNQBFvaIpy1Q1NLm3aU12tHeX2/6stISfIDhB8mUr0g0VPQmDMuR/PG5/br9QAA8YewAAAxkJwUCI1TkEYdst85p/K6plCI2NclSOytbFBVQ/OAamhoblVDc6vKag/vefPG5+riRZN0/jETVJidNqAaAADDG2EBAIYhM9Po7DSNzk7T0ZPzIx5TG2wJ9UwUVwVVG2xWXbBVdcEW1TW1qLb9e/9xXbBVtf7j+qbWfte2cX+1vv/ke/rhUxt16twiXbxosk6ZM0YpSYF+nxMAMDwRFgAgTrXfFjRnXM5hP7etzam+2QsTtcEW1YcFCS9oHNpWVtuklzYfCN0e1dzq9PSGEj29oUSjs9P08WMn6OLFkzV77OHXAwAYnggLADACBQKmbH8cwtjDeF51Y7OeXLdfj6zZrbW7KkPtZbVB3f3ydt398nYdNSlPFy+apPOOnqD8zNToFw8AGDKEBQBAn+Wmp+iyJVN02ZIp2lJaqz+s3aM/rt2jkupg6Jh391Tp3T1VuvXJjTrjyLG6eNEkLT9iDLMvAUAcMud6nroP/WNmaxYuXLhwzZo1sS4FAAZVS2ubXt5SpkfW7NGzG0rU1HroLE5jc70VsC9aNEkzx2THoEoASFyLFi3S2rVr1zrnFkX73PQsAAAGJDkpoBVzirRiTpEq65v0+Lp9emTNHr0btthcSXVQv3hhq37xwlYtnJKvixdP1kePGq+c9MFfpbq+qUX7Khu1v6pB+6satb+yUeV1QY3NTdesomzNKsrW1FGZSmaANgAcgp6FQULPAoCRblNxtR55e48e/fteldUeupJ1ekpAZx85ThcvnqwTZhT2azXqhqbWjhBQ1aj9lQ3aV9WoYr9tX2WDqhtbej1PSpJpWmGWZhVla+aY7FCImDkmWxmpSYddFwAMpcHsWSAsDBLCAgB4mlvb9ML7B/Tw27u1alOpWiKsXD0xP0OfWDRJFy2cpCmFmZKkxuZWFVc1al9Vg4r9MLCvssFv83oKKusHttZEX0zMzwiFh9DXmGwVZDF4G8DwQFiIQ4QFADhUeW1Qj/59nx5+e7c2FddEPGbmmCwdrG9WRd2hvRH9kZoU0Li8dI3LS9eEvHSNz8/QqMxU7a1s0JbSWm0prVVxdeNhn7cwK1Uzw8JDe5AYn5cuMwZzAxg6jFkAACSEwuw0fe6k6bp62TRt2FetR9Z4tymF9xBsPVDX5/OlJJnG5qZrQl6GxuWla3x+x/cT8jI0Pj9dozJTe73FqaaxWVsP1IXCw9YDtdpaWqudFfVqjdATIknldU0q316hN7dXdGrPSk3STP8WpqmFmRqXm66x/te4vHQVZKYQJgDEDcICAGDImZnmT8zT/Il5+n8fmatVG0v18Jo9euH9UrV/Nk8KmMblpmt8e69AfobG56X7X14QGJ2V1q+xDl3lpKfomMn5OqbLatnBllbtLK8PhYj2r21ltWpsPnTWJ0mqa2oNTR8bSWpSQEW5aV1CRFrH9/6WsRIAhgPCAgAgptKSk3TOgvE6Z8F4ldcGta+yUUW5aRqdnRbztRnSkpM0e2zOIatSt7W5TrcxbSmt1ZYD3raqoedxFE2tbdpzsEF7Djb0eFxuerLG5XUEirGHBIz0Q/4btbY5NbW0qbG5VcGWNgVb/G2z931jc1hbS6vf3mVfWFvQP1dzq9OorFRNKsjQpIJMTSrI0ORRXq9JrK8RgMFFWAAADBuF2WkqzE6LdRm9CgRMk0dlavKoTK2YWxRqd86prLYpdCvTvsoGFVc3qqS6USXVQZVUNaom2PvsTJJU3dii6sZabS6p7b4Ok/IyUtTc6hRs8T7UD6XkgGl8from5XcEiPBAMZYwAcQ9wgIAAFFiZhqTk6YxOWk6YWZhxGPqgi0qqW5UcXWjSquDYWGiUcVVXqgorWns0wf/NicdHIIZobrT0ua0u6JBuysi95KkJJkm5Gd4AcIPFJNGZWhyQaYmFWSqKCc6t5EBGDyEBQAAhlBWWrJmjMnWjB5Wsm5rczpY39SpV6K4qlGlNV6gKK4OqrS6UeVdZowyk9KSA0pPSVJackBpyf42xfs+PSWsrX1/SuDQ56R07E9PCSgpEFBpTaP2HGzQ7or60G1UZbXBHn/W5lanneX12lleL6n8kP2pSQFNyE/XpIJMTR6VoXG5GSrMTtXo7FSvlynL2+amJzMoHIgRwgIAAMNMIGChW7KOnJDX7XHBllbVNLaEPtinJNmQfqhuaGrV3soG7T7YHiA6gsSeivpDwkxXTa1t2lFerx3l9T0el5JkGpWVqsKsND9MdAQJb9vx/ejstKgODm9tc6pralFdsEW1jS2qDXpfdcEW1QZbVdvYrLom7zrUhe3LzUjRxPwM76vA247PT1daMgPXEV8ICwAAxKm05CSlZcfuw2dGalJofYlI6ptatLc9PBys1+4ugaKva2k0tzpvzEd1zz0Z7TJTk7xwkZ2m0V3CRG56iuqbWg75gF/rh4G6ps6hoL6ptc//PfqiKCdNEwsyvNuzwoJEe1tuekpUXw8YKMICAAAYFJmpyTpibI6O6DKbVLu6YEtHkKioV2lNUBV1TSqrbVJ5XVDltU0qrw2q7jA/sNc3taq+qfcZp2KhtCao0pqg3tlVGXF/TnqyJvrjPCbmewEiPFBEa7pgoK8ICwAAICay0pI1Z1yO5oyLHCbaNTS1qrzOCxLltU0qqw16i+LVeoGirK5JFaFw0aSm1shrYPRXZmqSstOSlZ2e7G3TkpWVlqwcf9u1PTM1SRV1Tdpb2aB9lQ3ae7BBeysbVFLdqG7W+AupaWzRpuKablc4T00OaEJeutcTkZeholxvjY6inDSNyfGm2B2Tk8btTogawgIAABjWMlKTNCnVm0GpN8451QRbQr0SZbVNfsjwAkZ1Y7P/4T9F2WlJHR/80/0P/u1f/uOs1OSoTf/a3Nqm4qpG7Q0LEKGt/9XU0nPQaWrp2ziP/MwUjc1JV5EfHtoDRZEfKIr8fekphAr0jLAAAAAShpkpNz1Fuekpmj46K9bldJKSFAitzxFJ+zodHSGiXvsqvVmovLZ6VTf2bZ2OyvpmVdY36/2SyD0U7XLSk8OChBcqxuSkqSg3XWP9bVFOmrLS4vcjY2ubC93Olu0Hw7TkADNs9VH8XnkAAIAEEr5OxzGT8yMeU9PYrH2VjdpbWa/9Vd5aHaU13lS63niIRh2oCfZ6u1PH+VpU0+itPt6TrNQkFbUHCb/Gohw/ZOR2fJ+fmTJkH8KbWtp0oDb8Zw/qQHXHWiXtbeW1h/73SA5Yp9vHctNTOh6ne7eYhb5PTwmFjE7705OVkZKU8KGDsAAAABAnctJTNGdcSo/jPFrbnMrrgn6QCAsUNe0fpL0P1aU1QbX0MVXUNbVqe1mdtpfV9XhcalIgFHjag8SY7HQ/UHTc/lSYlarkpEDEczQ0tXZ82A/74F9S7QWh9raBLEjY0uZCvS8DkRSwUOAIDxP/c/HRGh0Hq9H3BWEBAAAggSQFzP9Lf7qk7tfpaF/8r/0v8B0fxg/963xvYynaNbW2hcZf9CRg0qisjl6KYEurH2KCqgn27VarwzEqK1VZaUmqC7aqprG5Tyuk90Vrm1NVQ7OqGjqHjkAC9TYQFgAAAEag8MX/5o3v/jjnnKobWsLCQ3hvhRcuDtQe3gf9NieV1Qa9VcD397N+k0Znd74NqignTWO6jMEYnZ2m1OTOvRjBltbQeho1jR3rbNQEm/1t2HobYY/b97c/L9hNiMpKS5yB44QFAAAAdMvMlJeZorzMlG7XzGhX39Ti9U50uYWo/fv2fT0tyJeSZBqT3TG4ulMYCPu+MDut3zNVtS9oWDjAW4WaWtpCC/tVN3YEiUSaupawAAAAgKjITE3W1MJkTS3seSaq5tY2ldV6IeJATVCpyYFQEMjPSImbhedSkwNKTU5VQVZqrEsZNIQFAAAADKmUpIDG52VofF5GrEtBLyIPQwcAAAAw4hEWAAAAAEREWAAAAAAQEWEBAAAAQESEBQAAAAARERYAAAAARBSXYcHMJpnZPWa2z8yCZrbDzH5sZgWHeZ5R/vN2+OfZ55930mDVDgAAAMSLuFtnwcxmSnpVUpGkxyRtknS8pBslnW1my5xz5X04T6F/ntmSVkl6UNJcSVdJOtfMTnDObRucnwIAAAAY/uKxZ+Hn8oLCDc65C5xz33TOnSrpdklzJP1bH8/z7/KCwm3OudP881wgL3QU+a8DAAAAjFhxFRb8XoUzJe2Q9LMuu78nqU7SFWbW4xrjZpYt6Qr/+Ju77P6ppJ2SzjKzGQOvGgAAAIhPcRUWJK3wt88459rCdzjnaiS9IilT0tJezrNUUoakV/znhZ+nTdLTXV4PAAAAGHHibczCHH+7uZv9H8jreZgt6bkBnkf+eXpkZmu62TW3t+cCAAAAw1m89Szk+duqbva3t+cP0XkAAACAhBVvPQvDjnNuUaR2v8dh4RCXAwAAAERNvPUstP/FP6+b/e3tlUN0HgAAACBhxVtYeN/fdjeW4Ah/291YhGifBwAAAEhY5pyLdQ195k+dukXe1Kkzw2dEMrMcSfslmaQi51xdD+fJllQqqU3S+PAZkcwsIGmrpGn+a/RrYTYzK8/IyBg1b968/jwdAAAA6JONGzeqoaGhwjlXGO1zx9WYBefcVjN7Rt6MR9dJujNs9y2SsiTdFR4UzGyu/9xNYeepNbOVkj4vb52Fm8LO82V5QeHpAa7gXN3Q0KC1a9fuGMA5+qt9JqZNPR6FRMS1H5m47iMX137k4tqPXJGu/TRJ1YPxYnHVsyCFehdelbfK8mOSNkpaIm9NhM2STnTOlYcd7yTJOWddzlPon2e2pFWS3pQ0T9L58nodTnTObR3sn2cwtE/n2t3gayQurv3IxHUfubj2IxfXfuQa6msfb2MW5H+AXyzpPnkh4SZJMyX9RNLS8KDQy3nKJZ0g6Q5Js/zzLJF0r6RF8RoUAAAAgGiJq9uQ2jnndku6qo/HWg/7KiTd6H8BAAAACBN3PQsAAAAAhgZhAQAAAEBEhAUAAAAAEcXdbEgAAAAAhgY9CwAAAAAiIiwAAAAAiIiwAAAAACAiwgIAAACAiAgLAAAAACIiLAAAAACIiLAAAAAAICLCQgIxs0lmdo+Z7TOzoJntMLMfm1lBrGvD4PGvs+vmqzjW9WFgzOwiM7vTzF42s2r/uj7Qy3NONLO/mFmFmTWY2btm9hUzSxqqujFwh3PtzWxaD78HnJk9ONT1o3/MrNDMrjGzP5nZFv89XGVmq83sc2YW8bMb7/v4d7jXfqje98nROAliz8xmSnpVUpGkxyRtknS8pBslnW1my5xz5TEsEYOrStKPI7TXDnUhiLpvSzpa3rXcI2luTweb2fmS/iCpUdLvJVVIOk/S7ZKWSbp4MItFVB3Wtfetk/RohPb1UawLg+tiSb+QtF/S85J2SRor6UJJv5J0jpld7MJW1eV9nzAO+9r7BvV9zwrOCcLMnpZ0pqQbnHN3hrXfJumrku5yzl0bq/oweMxshyQ556bFthIMBjNbIe+D4hZJp8j7B+S3zrnLIxyb6x+XJ2mZc+5tvz1d0ipJJ0j6lHOOvzLHgcO89tMkbZd0v3Pus0NXJaLNzE6VlCXpz865trD2cZLelDRZ0kXOuT/47bzvE0Q/rv00DcH7ntuQEoDfq3CmpB2SftZl9/ck1Um6wsyyhrg0AAPknHveOfdBhL8kRXKRpDGSHmz/wOCfo1HeX6kl6YuDUCYGwWFeeyQI59wq59wT4R8W/fZiSf/rP/xw2C7e9wmiH9d+SHAbUmJY4W+fifA/WI2ZvSIvTCyV9NxQF4chkWZml0uaIi8cvivpJedca2zLwhA71d/+NcK+lyTVSzrRzNKcc8GhKwtDaIKZfUFSoaRySa85596NcU2InmZ/2xLWxvt+ZIh07dsN6vuesJAY5vjbzd3s/0BeWJgtwkKiGidpZZe27WZ2lXPuxVgUhJjo9neBc67FzLZLOlLSDEkbh7IwDJkz/K8QM3tB0mecc7tiUhGiwsySJV3pPwwPBrzvE1wP177doL7vuQ0pMeT526pu9re35w9BLRh690o6TV5gyJK0QNJdkqZJesrMjo5daRhi/C4Yueol3SppkaQC/6t9nMOHJT3Hrahx7z8kzZf0F+fc02HtvO8TX3fXfkje94QFIM45527x73Mscc7VO+fW+4PZb5OUIenm2FYIYLA550qdc991zq11zlX6Xy/J61V+Q9IsSdfEtkr0l5ndIOkmeTMdXhHjcjCEerr2Q/W+Jywkhva/GuR1s7+9vXIIasHw0T4Y6uSYVoGhxO8CdOKca5E35aLE74K4ZGZflvQTSe9JWuGcq+hyCO/7BNWHax9RtN/3hIXE8L6/nd3N/iP8bXdjGpCYDvhbbj0YObr9XeDf8zpd3uC4bUNZFGKO3wVxysy+IulOefPlr/BnxemK930C6uO170nU3veEhcTwvL89M8LqfjnyFmSpl/T6UBeGmFrqb/kHYuRY5W/PjrDvZEmZkl5lRpQRh98FccjMviFvUbW/y/uwWNrNobzvE8xhXPueRO19T1hIAM65rZKekTeg9bouu2+RlypXOufqhrg0DDIzmxdp8JK/UMtP/YcPDGVNiKlHJJVJ+qSZLW5v9Bdn+oH/8BexKAyDy8wWdv1jkd9+mryFOSV+F8QNM/uOvEGtaySd5pwr6+Fw3vcJ5HCu/VC971nBOUH4C7O9KqlI0mPypkdbIm8Nhs2STnTOlceuQgwGM7tZ3sCnlyTtlFQjaaakcyWlS/qLpI8755piVSMGxswukHSB/3CcpLPk/aXoZb+tzDn3z12Of0RSo6QHJVVI+pi86RUfkXQJi3zFh8O59v40iUfI+3dgj7//KHXMwf8d51z7B0cMY2b2GUn3SWqVdxtKpFmOdjjn7gt7Du/7BHC4136o3veEhQRiZpMlfV9eV2ShpP2S/iTpFufcwVjWhsFhZqdIulbSseqYOrVSXtflSnk9SrzJ45gfCL/XwyE7nXPTujxnmaRvSTpBXmjcIukeSXewUF/8OJxrb2afk/RxedMrjpaUIqlE0muSfuqce7m7k2B46cN1l6QXnXMf7vI83vdx7nCv/VC97wkLAAAAACJizAIAAACAiAgLAAAAACIiLAAAAACIiLAAAAAAICLCAgAAAICICAsAAAAAIiIsAAAAAIiIsAAAAAAgIsICAAAAgIgICwAAAAAiIiwAAAAAiIiwAABIWGb2gpm5WNcBAPGKsAAAAAAgIsICAAAAgIgICwAAAAAiIiwAAHplZkvM7BEzKzazJjPbbWZ3mdmELse9YGbOzNLM7Admtt3Mgma21cy+Z2ap3Zz/NDP7q5lV+MdvNrP/MLO8bo4fZWb/ZmbrzazezKrMbJ3/nKwIxyeb2b+a2Qf++Xeb2X92Vw8AwGPOMe4LANA9M7ta0i8lBSU9Lmm3pCMkfUxSiaSlzrld/rEvSDrFP+44SY9IapZ0vqSZkp6U9DEX9o+PmX1B0i8k1Ul6WFKppA9LWiLpPUnLnHOVYcdPl/S8pKmS1kh6Ud4fv2ZLOl3SHOfcji71PCxpuaSnJFVL+oj/M9znnLsqKv+hACABERYAAN0ys9mS1kvaJekU59zesH2nSXpG0uPOuY/7bS/I+3D+gaQlzrmDfnu6vA/4SyVd6Zxb6bdPlbRZXhA53jm3Kez8P5f0RUl3O+c+H9b+qqQTJP2rc+6HXeodLanWOdfYpZ61ks5wzlX47VmS1kmaLmmic654wP+xACABcRsSAKAnX5SUIunG8KAgSc655+T1IJxnZjldnndre1Dwj22U9P/8h1eHHXe5pFRJPw0PCr5vSaqRdIWZpUmSmS2SFxT+Luk/uxbrnCtrDwpdfKM9KPjH1Un6rbx/BxdH+sEBAFJyrAsAAAxrJ/jbU8zsuAj7iyQlybsFaE1Y+4sRjl0tqVXSsWFtC/3tqq4HO+cOmtk7kk6WNFdeT8BSf/fTzrm2vv4Qkt6O0Lbb3xYcxnkAYEQhLAAAelLob7/ey3HZXR6XdD3AOddiZmXyAka79gHM+7s5b3t7fpft3gjHdit8zEOYFn+bdDjnAoCRhLAAAOhJlb/Nc85VH8bzxsob5xBiZsmSRssbYNz1/OMkbYhwnvFdjmv/0D/xMGoBAPQTYxYAAD153d8uP8znnRKh7SR5f8V/J6yt/fsPdz3YzPIlHSOpUdLGLvWcZWb8GwYAg4xftACAnvxU3tSnt/szI3ViZqlmFilIfMfMCsKOS5fUPnPRvWHHPeCf/3ozm9XlHLdKypX0gHMuKEnOuTWSXpUXIr4RoZ5C/7UAAFHAbUgAgG455zb56yzcI2mDmf1V3lSnKZKmyOtxOCBvAHK4jf7xXddZ+LOklWHn32FmX5H0M0lrzewh/3ynyBtcvUmHhoLLJb0g6d/N7BP+9yZv3YQz/Vp2DPynBwAQFgAAPXLOPWBm6yTdJGmFvA/kdZL2yVt07fcRnnaJpO9I+rSkCfIGJN8s6T9clwV+nHM/N7Mtkv5Z0ickZcqbqei/Jf1718HJzrntZrZQ0r9IukDSl+XdqrRD0o/kLeoGAIgCFmUDAERN+yJozjmLdS0AgIFjzAIAAACAiAgLAAAAACIiLAAAAACIiDELAAAAACKiZwEAAABARIQFAAAAABERFgAAAABERFgAAAAAEBFhAQAAAEBEhAUAAAAAEREWAAAAAEREWAAAAAAQEWEBAAAAQESEBQAAAAARERYAAAAARERYAAAAABARYQEAAABARP8fDcZuuLGCQqkAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": [],
"image/png": {
"width": 389,
"height": 277
},
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OZNS-3wQOR0g",
"outputId": "3727f59b-eb4d-444c-ad65-607c33801806"
},
"source": [
"model_m.save(\"model_93\")\n",
"sh=x_test\n",
"score = model_m.evaluate(x_test, y_test, verbose=0)\n",
"print('Test loss:', score[0])\n",
"print('Test accuracy:', score[1])"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"INFO:tensorflow:Assets written to: model_93/assets\n",
"Test loss: 0.4121353328227997\n",
"Test accuracy: 0.9306930899620056\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "5YVe7K1KWDek"
},
"source": [
"# 0.85 when two 64 conv used"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "W9QJ3T1UTsqg"
},
"source": [
"import sklearn.metrics as metrics\n",
"\n",
"y_test_pred = model_m.predict(x_test) \n",
"y_test_pred_labels = np.argmax(y_test_pred, axis=1) # only necessary if output has one-hot-encoding, shape=(n_samples)\n",
"# print(y_test_pred_labels)\n",
"y_test_labels = np.argmax(y_test, axis=1)\n",
"# print(y_test_labels)\n",
"confusion_matrix = metrics.confusion_matrix(y_true=y_test_labels, y_pred=y_test_pred_labels)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 341
},
"id": "Yckg6V0OP7hI",
"outputId": "efe0a77a-b55e-4b07-d2bf-77eb058a96f7"
},
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sn\n",
"\n",
"fig, ax = plt.subplots()\n",
"\n",
"text_labels=['Covid','MI','Abnormal','Normal']\n",
"df_cm = pd.DataFrame(confusion_matrix, range(num_classes), range(num_classes))\n",
"# plt.figure(figsize=(10,7))\n",
"sn.set(font_scale=1.4) # for label size\n",
"sn.heatmap(df_cm, annot=True, annot_kws={\"size\": 16}, fmt='g') # font size\n",
"\n",
"ax.set_xticklabels( text_labels, rotation = 45)\n",
"ax.set_yticklabels(text_labels,rotation = 45)\n",
"\n",
"plt.xlabel(\"Output Class\")\n",
"plt.ylabel(\"Target Class\")\n",
"\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAKJCAYAAABEVpPvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVhU1f8H8PedYV9kEQRBcMNdwV0zc8EtpRTUsp+7llrmki1+0xbrMc2lzCW1NHOv0MQtSg0XXHLDQhBcwFzYBGXfB2bm9wfNFWTYZ2Hg/XqeebrDnHvncx+mK+85554jKJVKJYiIiIiIiEirJPougIiIiIiIqD5g+CIiIiIiItIBhi8iIiIiIiIdYPgiIiIiIiLSAYYvIiIiIiIiHWD4IiIiIiIi0gGGLyIiIiIiIh1g+CIiIiIiItIBhi8iIiIiIiIdYPgiIiIiIiLSAYYvIiIiIiIiHWD4IiIiIiIi0gGGLyIiIiIiIh0w0ncBRLVZ7sEV+i6BahnrcRv0XQLVQhbGpvougWqhnIJ8fZdAtVChLE7fJQAACp78q5XjGju00Mpx6wr2fBEREREREekAwxcREREREZEOcNghEREREVF9o5Dru4J6ieGLiIiIiKi+USr0XUG9xGGHREREREREOsCeLyIiIiKi+kbBni99YM8XERERERGRDrDni4iIiIionlHyni+9YPgiIiIiIqpvOOxQLzjskIiIiIiISAfY80VEREREVN9w2KFesOeLiIiIiIhIB9jzRURERERU3yjk+q6gXmL4IiIiIiKqbzjsUC847JCIiIiIiEgH2PNFRERERFTfcKp5vWDPFxERERERkQ6w54uIiIiIqJ5R8p4vvWDPFxERERERkQ6w54uIiIiIqL7hPV96wfBFRERERFTfcNihXnDYIRERERERkQ6w54uIiIiIqL5RyPVdQb3Eni8iIiIiIiIdYM8XEREREVF9w3u+9ILhi4iIiIiovuFsh3rBYYdEREREREQ6wJ4vIiIiIqL6hsMO9YI9X0RERERERDrAni8iIiIiovqG93zpBcMXEREREVE9o1RynS994LBDIiIiIiIiHWDPFxERERFRfcMJN/SCPV9EREREREQ6wJ4vIiIiIqL6hhNu6AV7voiIiIiIiHSAPV9ERERERPUN7/nSC4YvIiIiIqL6RsGp5vWBww6JiIiIiIh0gD1fRPXcnYQUjP/2KArlT4cfBC4cC1d763L3K5QrcCbyIYJu3EdkXDKSM3ORX1AIcxNjNLa1RPsmDhjq2Rx9Wrtq+xRIh5o3d8fr08fjxRe94e7mAjMzMyQkJOLK1X/w008B+OPYKX2XSDrUs2cXDBj4PHr26oo2bT3g6NgQEokEaWnpuHkzCmfPXMTu3fuQlPhE36WSjvFaYQA47FAvBKVSqdR3EUS1Ve7BFfouQasK5QpM3HgUt+JTSvy8ovAVnZiKxT8H486j1Arfo2szJ6wYPwCNGljUuN7awHrcBn2XoDdvvTkFK1d8AgsL8zLbHDr8B6ZNfweZmVk6rEz/LIxN9V2CTg0fMQjfrFsKFxfnCtvm5ubhi6VrsGHdDzqorHbJKcjXdwl6wWtF+QplcfouAQCQd2W/Vo5r1vMVrRy3rmDPF1E99uOZMNyKT4GxVIICeeW+AUtIy8KMLX8gNbvojwpBAHp7uKBFI1vYWpgiKSMH1x8kicHs7/uJeP373+E/bxQsTI21di6kXTNnTMKG9cvF59fDInHixGnk5OTC07M9XvIZAmNjY/iOGo4G+63h8/JEFBQU6LFi0qa27VqVCF7/3r2PS5euITYmHrm5+WjarAmGjxgEJydHmJubYdnyxXB2boSPFi0v56hUF/BaYUA41bxeMHwR1VNRj1Kw9dR1AMAbA72wOeifSu23/tg1MXi5OzTAmkne8HCyK9Xuz/D7+Nj/LPIL5YhJzsTe8xGYMaiz5k6AdKZFi6b4Zs3n4vPFHy3HqtUbS7Tp3LkDfjuyB87OjeDt3RfvLpiFlau+1XWppEMZGZnYucMfe3b/ipuRd0q9bmpqghWrPsXrb4wHAMyd9waO/XEK585e0nWppCO8VhgYAxt2OGnSJFy5cqXS7YODg+HsXH7vfHJyMvz9/XHy5EnExsYiNzcXDg4O6Ny5M0aNGoX+/fvXtOxSOOEGUT1UKFdgyf7zKJAr4OFki+kDPSu1n1yhwOmIh+LzT/z6qA1eADCkUzNMeqGD+Pz8ndoxzIKq7rMl78PUtGhY3U8/B5T6YwoAQkMjMG36fPH5wg/eho1NA53VSLp14vgZdGrfDx8tWq42eAFAfr4MC+Z/jBPHz4g/mzlrso4qJH3gtYIMyZkzZ+Dj44N169bhxo0bSEtLQ35+PuLi4hAYGIiZM2di/vz5yMvL0+j7sueLqB7aHhyOyLhkSAQBS8b2hbG0ct/DpGbnIa+gUHzu1bRRue27NncGTocBANKyNXvxIt2wtLSAn+9wAIBCocAXy9aW2fbPoLO4dOkaevfuBhubBhg18kXs2r1PV6WSDkXcuFXptt9t3oGhwwYAAHr26qKlikjfeK0wQAY87HDjxtLB/ll2duq/HAaAq1evYu7cuZDJZACAvn37YvDgwbCyskJUVBT279+PlJQUHDt2DDKZDBs3boREopk+K4Yv0iulUglBEPRdRr0SnZiKLSdDAQDjn2+PTm6Old7X1LjkJSM1Ow9ONpZltk8tFrga21lVsVKqDYYM6Q9z86Kb5sPCb+LOnbvltv/1wG/o3bsbAMDXl39QEXD/foy4bW9vq8dKSJt4rSBdGjx4cLX3lclkWLRokRi8/ve//2H69Okl2kyYMAGTJ0/G/fv3cerUKRw+fBh+fn41qlmFww5J53bt2oW9e/cCAARBACfc1B254ulwQ1d7K7w9tGuV9rc2M0Er56ffJO0+F1Fm2/yCQvx0IVJ8/nJXj6oXTHrXtUsncfvChYrH2p8/f1nc7uzVUSs1kWEpPjHHkycp5bQkQ8ZrhQFSKLTzqOUCAgIQE1P0pVC/fv1KBS8AcHJywqpVq8Tn69atg0JD58aeL9Kpbdu2YfXq1TAyMoKpqSnGjh0rBjD2gGnfzrM3EBFbtN7Op6Ofh7lJ1S8BswZ1xvt7TwMA9pyPQExyBsY/3x4tGtnCxsIUjzNyEPogCT+eCcPdxDQAwNhebeDTpaXmToR0pn371uJ2dPS9CttH370vbru7u8La2qpeTiVNT/mN9hG3L/4VosdKSJt4rTA8SqVc3yXoRWBgoLitLnipeHl5oVu3brh27RoSEhLw999/o3v37jV+f4Yv0qmwsDBxe9myZVAqlXjllVcYwHTg36Q0fBdUNNzQt3sr9PJwqdZxBndqhs/H9sWyQxchK5Qj+GYMgm/GqG3b3rUhJvTtwOBlwJydnt7XFxuXUGH7tLR0ZGVlw8qqaDiqk5Mj/6Cqx9q2a4VJk8eKz3/c9pMeqyFt4rWCDEF2djZCQoq+BLKwsECPHj3Kbd+/f39cu3YNQNHsiQxfZDBUwWrdunX4+OOP8euvv6KwsBDLlxetBcIApl2q4YayQjkcrM3xrk/5F5uKjOreCt2aO2PvhQj4X7wFhZqho1ZmJvB0b1Sle8qo9rGyfnpPX052TqX2ycnJFf+gsrYq+55AqtssLMyxddsamJiYAACOHD6O8+cuV7AXGSpeKwyQAQwRLMusWbMQGRmJ1NRUmJubo1GjRujSpQteeukl9O7du8z9oqOjxeGD7du3h5FR+VHI0/PpbNC3b9/WSO0MX6QTgiBALpdDKpXiiy++gFwux8GDB5Gbm8sApgO7zkUgPOYxAGDRqN5oYG5ao+Mlpmfju6B/cDysaGhJLw8XdGjiAEtTY6Rk5eLq3QTceZSKXy7eRMDVO/hwZG+M7tm6gqNSbWRuZiZuy2SVWwg1Ly9f3LawMNd4TVT7CYKALT+sgZdX0XITsbHxmDdnkZ6rIm3itYJ06cyZM+J2QUEBMjIyEB0djf3796N3795YvXo1GjUqPSPzvXtPh8Q2adKkwvcp3qb4vjXB8EU6I5VKxQD25ZdfAgADmA7cf5yO7/4sWkB5UIemGNSxWY2Odzs+BW9uO4bU7Hy42FlhzSRvtHVpWKrd8ev/4pP/etuWHrwAeyszDGjvXqP3Jt3LLba+iYmJcaX2MTN7Gu5zcnI1XhPVfus2LMPIUcMAAOnpmRg/7k2kpKTpuSrSJl4rDJCBLbIMADY2NujTpw86duwIJycnSKVSJCYm4uLFizh79iyUSiUuXbqE1157Df7+/nB0LDn6JiMjQ9wubyp6dW2K71sTDF+kU1KpFIWFhTAyMsKXX34JpVKJQ4cOITc3F1988QUABjBNUiiU+HT/OeQXymFtZoJFvmV3xVdGgVyBD346jdTsfEglAtZPGQwPZ/UXr2FeLZCWk48vD1+CUgl8HXgF/dq6QSLh79SQZGVmi9sWlhaV2qf4N9iZWdnltKS66Os1n2PqtNcAABkZmRjjOxWhoTf0XBVpG68VpBIQEICDBw9Wur2fnx9Gjx5dYbt3330XHTp0EIcyFzdt2jSEh4dj3rx5iI+PR1xcHBYvXoytW7eWaJeT83RIrGpB8PIUb5OdrZnPKMMX6ZRCoYCRkZHYA7ZixQoUFhbi9OnTyM7OxrJlywAwgGnK4WtRCHtYNNzwPZ8ecLCu3D+IZTkT+RAPnxR989Pbw6XM4KUyumcbrPsjBDmyQsQkZ+JOQgraupbuJaPa61FikrjdxLVxhe1tbBqI93AAQGLiY63URbXT6q+WYMasSQCAzMwsjPGbjitX/tFzVaQLvFYYIC3d8xUXF4crVypebkClZ8+elWrXpUv5i7R36tQJP/zwA3x9fSGTyXD27FmEhYWVuG+rNmD4Ip1RBa6srCycOHECISEhePz4MfLz81FQUACJRIK8vDwOQdSgR2lPv6X57MAFfHbgQqX281n1q7g9a1BnvDWk6IIX9uDpP64VBS8AMJZK0LyRrTi9/YPkDIYvA3PzZhR8Rw0HAHh4NK+wvUfLZuJ2TEw8Zy+rR1Z/tQSz3poCAMjKysbY0a/j8qVreq6KdIXXCgOkpWGHrq6ulQ5Uqvaa0rJlS4waNQr79+8HUHRvWPHwZWHx9Evo/Pz8Uvs/q3gbS0vNTArD8EU6oQpeqampeP/993Hp0iXI5UXrS7i4uEAikUAikUChUDCA1WLZxW6irs6vQ8LfocH5+59wcbtPn4pnyezbt5e4HXqdQ83qi6++/gwz35wMAMjOzsErY17Hxb+u6rkq0iVeK0hl9OjRlRpGqC29evUSw9fdu3dLvNagQQNxOzU1tcJjFW9TfN+aYPgirVMqlZBKpUhLS8PUqVNx+/ZtuLq6YsSIERg2bBicnJyQnp6Ov/76C0ePHkV4eDgn4dCQNi72eLmrR6XaHv07Wtwe3LEpzP+7YbqNi734c1uLp7NZRSVUfNEqkCtw/3G6+NzBmrNZGZoTJ84gNzcX5ubm8PJsj1atWiAq6t8y248ptqDuoUN/6KJE0rOv13wuDjVUBa8L5ys/5IjqBl4rDJABTzVfHnv7p3+3ZGZmlnitefOnvbKxsbEVHqt4m+L71gTDF2mdIAjIz8/H0qVLcfv2bTRu3Bhz587FwIEDYWNjA7lcDkdHR3h4eGDs2LH48MMPceLECQYwDfDu0BTeHZpWqm3x8LVgRA+42luXatPJzUHcvhQdj7uJaWjpZFvmMQ9cvoXs/KLeMjNjI3Ro4lBmW6qdsrNzcPjIcbw2zhcSiQQfLX4HU6fNU9t2kPcL4jfeGRmZOHzkuC5LJT14Nni9OvYNruVVT/FaQbVF8d4qa+uSf8t4eHiII60iIyPFSeDKEhYWJm63adNGI/VJNHIUogo8efJEXJyuU6dO6Nu3L2xsbAAAEknRx1ChUMDCwgLr16/Hyy+/DADiEERV97EqgJF+PNfaFY0aFI2XliuUmL8zCFGPUtS2/SP0X6z5PUR87tejFUyMpDqpkzTrs8+/gkwmAwBMnDAG7737Zqk2np7tsf3HteLz1V9tQlpaeql2VHeoC17nzl7Sc1WkT7xWGBilQjsPPbt8+ekXQM/2VllaWqJbt24AimY+vHq1/OHRwcHB4na/fv00Uh97vqhGZDKZ2ik/n3Xt2jVERxf1rAwYMAAODk97QFQ9WRKJRLw3bPXq1UhJScGFCxfYA1aLmBkb4WO/Pliw+yTkCiViUzIxbt0R9PJojA5NHGBhaoyUrDxciY7HnUdPv3lq7miDtwaXP0sR1V7R0ffw3vufYcP6ov8PV674BP/3f6Nx4sRp5OTkwtOzPV7yGSJeC4KD/8LXa77TZ8mkZe+9P1sMXgAQfOYvdO7SEZ27dKxw34BfAxEXl6DN8khPeK0wMHVw2OG9e/dw+PBh8fnAgQNLtfHx8RFD1/bt2/Hcc8+pPVZYWBiuXSuaNMjZ2VkMbTXF8EXVtmPHDshkMrz22msV3oSoWlfBzMxMbKsKWsUVXwfsk08+waxZs/DgwQPk5uZyGvpaol87N3wzaRA+P3AByVm5UCiVuBgVj4tR8Wrb9/JojKWv9kMDi4rX06Daa/N3OyGRSLDiy49gbm6Ozl4d0NmrQ6l2R387gSlT54nfflPd5NGqWYnnI3wGY4TP4Ert+8/f4QxfdRivFaQNu3btQseOHdG1a9cy20RGRmLOnDniDIV9+/aFl5dXqXZjxozB1q1bERcXh+DgYGzfvh3Tpk0r0SYxMRELFy4Un8+bN08cqVVTDF9ULQEBAVixYgUEQYBcLseUKVNKTN/5LNUQw7y8PISHh2Pw4MFlfohVY28dHR3RtGlTPHjwACYmJsjLy8PKlSuRn5+PiRMnMnjpUb92bjj6wRgcu34P527F4M6jFKRm5SG/UA4LE2M0trVER3dHDPdqgR4tK17vhQzDxk3b8cexU3jj9fEYNswb7m4uMDMzxaNHj3Hl6j/Yu/cAfv/jpL7LJCI947XCQBhQz9elS5ewbNkyuLu747nnnkPr1q1ha2sLiUSCpKQkXLp0CcHBwVD8d06urq7iqKlnmZiYYPny5XjjjTdQUFCAFStW4Pz58xgyZAisrKwQFRWFffv2ISWl6LaKAQMGwM/PT2PnIih5Aw1VUUFBAbZv346DBw/i3r176NOnD3788cdy97l69SomTSoaouLt7Y1NmzYBKLrPS10IU/VqbdmyBd988w2aN2+O2NhYyGQyODo6IjAwUGNTfpYn9+AKrb8HGRbrcRv0XQLVQhbG7Nml0nIKKl5HiOqfQlmcvksAAOQGrq24UTWY+7yj8WPOnj0bJ09WLrD37dsXy5cvh5OTU7ntTp06hUWLFiEtLa3MNkOHDsWqVatgbq652ZrZ80VVZmxsjPHjx0OpVOL+/fv48ssvK9zHy8sL3t7eOHXqFE6dOoVt27bh9ddfF2eceTaAFR9SaG5ujg8++ACBgYE4ffo0fvzxR50ELyIiIqI6qxZMjlFZH374IQYOHIjr16/j1q1bSElJQWpqKgoKCmBlZQVXV1d06dIFL7/8stqhhup4e3sjMDAQv/zyC06dOoW4uDjk5OTA0dERnp6e8PPzQ//+/TV+LgxfVGVKpRJWVlaYPHlyiW8CUlJScObMGQwaNEgcZqhiYmKCHj164MyZM1AoFPj+++/RsGFD+Pr6qg1gEokEGRkZuHz5MnJyciAIAr766iskJiZW+E0GEREREVXAgIYduru7w93dHa+88opGj+vg4IA5c+Zgzpw5Gj1ueTjVPFVZ8R4plfT0dAwfPhyLFy/GoUOHkJGRIb6mGn87bdo0eHt7AwCys7Oxdu1a7Nu3D8DT6eYLCorWhMrNzcXFixcRHR2NJk2aoFmzZgDA4EVEREREBovhizTi9OnT4syFq1evRkBAgBjAJBIJCgsLAQBff/01+vTpA7lcjqSkJHz66af4+uuvcevWLQBFQxpTUlLw22+/4fvvv0diYiLat29fYmp6IiIiIqqhOrrOV23HYYekEYMGDUJWVhZ++eUXREdHY/Xq1QCA0aNHo0GDBjAyMoJcLoepqSm++uorLFy4EOfPnwcAbN26FceOHYOdnR2cnZ1x+/ZtpKWlIT09Ha6urvjggw9gZWWlz9MjIiIiIqox9nxRlal6sYqvzWFtbQ1fX1+8+uqr8PDwgFwuL9UDJpVKoVAoYG9vjx9++AFjx46Fi4sLACAmJgZhYWE4efIkHjx4gJycHDRt2hRbtmyBm5ub7k+SiIiIqC5TKLTzoHKx54uqRC6Xw8jICCkpKVi7di1mzJgBNzc3yOVyWFlZYfTo0QCAffv2qe0BUw1BNDIywhdffIGzZ88iNDQUJ06cQFpaGkxMTODq6opevXrBz88Prq6u+jxdIiIiIiKNYfiiKpFKpcjMzMTLL7+M5ORk9O3bF25ubpBKpeIsiBUFMNUQRKlUin79+qFfv36YNm0aCgoKIJfL4ejoqM9TJCIiIqr7eH+WXjB8UZWFh4cjP79o4cjt27fD09MTzs7OEASh0gFMFdZUMydaW1uXeI/irxERERGRhnGIoF7wni+qsq5du6Jdu3YAiu7VevjwIYCiKeWfDWDl3QNWXrhi8CIiIiKiuobhi6pEoVDAzMwMc+bMgY2NDZ48eYJNmzZBLpeLa3VVJYARERERkR5wwg29YPiiKlEFLHd3d7Ro0QIA8O+//+LChQsAioYLApULYJmZmfo5CSIiIiIiPWD4ompp3LgxXnnlFQBAUlKSuGZX8eGC5QWwb775Bnv27GEAIyIiItIHpVI7DyoXwxdVmap3a+DAgejbty8A4Oeff8bFixdLtVUXwNq0aYP8/Hzs3LkTcrlcp7UTERERETjsUE8YvqiEyoQhVe+WnZ0dOnbsCKBoOOI///wDoOi+sGfbFw9gPj4+8PLywo4dO2Bra6vhMyAiIiIiqp0YvkikWnsrLS0NR48exd27d0u8XjxUqXq/Zs2ahbZt2yI/Px979uxBXFyceF9YccUD2Pjx4/H999+jbdu22j0hIiIiIlKPPV96wfBFIqlUipSUFAwbNgwffPABZsyYgT179uDOnTsAUCJUCYIAhUIBExMT9O/fHyYmJkhNTcUvv/yCgoICMZwVVzyAsceLiIiIiOobhi8SyeVy7Ny5E+np6QCA+Ph4fPHFF3jvvfewZMkSxMTEICsrC0BRL5hEIoFUKsXw4cPFRZNDQ0PFBZLLCmBEREREpGdKhXYeVC6GLxJJpVJMmTIFJ06cgI+PjzgsMCoqCv7+/njrrbewZMkSRERElLg3rG3btnj99dchCAKuXr2KHTt2AGDQIiIiIqq1OOxQL4z0XQDVLnZ2drC3t8eKFSvw8OFDHDlyBMeOHUN8fDyio6MRHR2NoKAgjBw5Ej169MDIkSMBAN27d4epqSny8/Nx5coV+Pr6olGjRno+GyIiIiKi2oM9X/VY8WGBqsk0VPdyGRsbo2XLlliwYAHWrFmDJUuWoHHjxrC2tkZ+fj4CAgKwcOFCzJ8/HwEBAejduzf8/PygVCpx/vx5hIeH6+u0iIiIiKgiXOdLL9jzVQ+p7skqPiyw+GQaEokESqUSCoUCUqkUHTp0QIcOHfDCCy/g/Pnz+P3333HhwgUAwPHjxxEcHIw9e/agQ4cOMDMzQ15eHjZu3IhOnTqx94uIiIiI6D8MX/WMajp5mUyGhIQEnD17FsnJyUhOTkb37t3h6uqK7t27QxAESKVScWINhUIBJycnjBkzBmPGjIG/vz/CwsJw4MAB5OXlITIyEnfu3BHvBcvJyYGxsbGez5aIiIiI1OL9WXrB8FWPFBYWwsjICOnp6fj6668RHh6Omzdviq8fPHgQCoUCkydPxtChQ9G1a1cxeKl6xlTb48aNw7hx4+Dj44NDhw4hJCQE8fHxAIAGDRpg/fr1sLOz08t5EhERERHVRgxf9YRcLoeRkRFSU1Mxc+bMEvdkGRkZwdjYGLm5uQCAHTt24MaNGxg1ahReeeWVEgHs2QWU+/TpA09PT6SmpmLt2rWIi4vD0qVL0apVK52eHxERERFVAXu+9ILhqx5QKpWQSqVIT0/HG2+8gYiICLi4uGDAgAEYMmQI7OzsIJPJ4O/vj/DwcNy5cwchISFIS0tDdnY2pk6dKt4Hpm76eEtLS1hZWWHVqlXIzc2FlZWVHs6SiIiIiCqNa3LpBcNXPSAIAvLz87Fy5UoxeM2bNw/9+/cvMTTQ09MTf/31Fw4ePIijR48iOjoaR44cgaOjI3x8fMpct0u1oLJUKmXwIiIiIiIqA8NXHafqrbp//7441HDIkCGlgpdqIo4+ffqgSZMmMDMzw/79+xEZGYnff/8dvXr1goODQ5m9X1xQmYiIiMhwKBWcFl4fuM6XgVOoGa9bfP0uVSgKDg5GVFQUAGDo0KGlJsOQSqXitru7OyZPngxvb28AwMmTJ/H777+XOB4REREREVUNw5eBUgUs1QQY6enpSEpKAvB0GGBxqtfMzc3h6OhY6vVneXh4YODAgeIwwt9//x2pqalqwx4RERERGRiFQjsPKhfDlwFSKBQQBAF5eXmIiYnBypUrMWvWLPzf//0fgoKCADztoVKFJVX4MjIyEl8vK0iphhb6+fmhZcuWAIDY2FgUFhaWmu2QiIiIiAyQUqGdB5WLf0kbGNWU78nJydiwYQPmz5+P7du3IzQ0FHFxcfjuu+9w7do1sb0qLHXt2hVSqRSZmZnw9/eHUqksM0gJgiBOTa+aMj4zMxPp6enaP0EiIiIiojqKE24YEFXwSkhIwIIFCxAaGgoAMDMzw4QJE+Du7o7evXvD1ta21L7NmzeHXC4HAFy/fh23b99G27Zty3wvVTBr2LAhBEGAsbExAJQ54QYRERERGRBOuKEXDF8GQhW84uPjMXnyZMTGxsLFxQV9+/bF+PHjSwWpZ0NS//79MXbsWPz6668ICQmBv78/3nvvvTKnhhcEAU+ePMG5c+egVCrRsWNHeHh4aPUciYiIiIjqMoYvA6AaIpiYmIjZs2cjNjYWHh4emD59OgYMGAB7e/tSYUtd79SAAQMQFhaGO3fu4Oeff4apqSlmzJiBhg0bAiiabl4ikYj3k/31119ITk6Gubk5+vXrJ07SwZ4vIiIiIt5d1rMAACAASURBVAPHyTH0guHLAAiCgIyMDCxbtgy3bt2Cu7s73nzzTQwcOBCWlpZim4oMHjwY//77L/bs2YOkpCTs2LEDKSkpGDZsGAYOHChON5+cnIyLFy9ix44dSExMRLt27TBixAiGLiIiIqK6guFLLxi+ajnVcMPg4GCEh4fDxMQEI0aMwAsvvCAGr6ocZ+bMmcjJycFvv/2G2NhYHDlyBFevXsWuXbvQqVMnWFpaIjg4GImJiUhISICjoyPWrFkDZ2dnLZ4lEREREVHdx/BVy6kmvjhx4gQSEhLg5OQEX19f2NjYVPk4qgD2zjvvwMHBAcePH8fVq1eRkJCAhIQEXL58WVwjzNTUFG3atMHatWvRvHlzbZwaEREREelLBWu+knYwfBmAS5cu4cyZMwCAyZMno1mzZtWadbB4AJs4cSJ69eqFU6dOISAgAGlpaUhPT4dUKkWXLl3Qp08f+Pr6onHjxlo4IyIiIiKi+ofhywA8fvwYBQUFACBOjlHd+6+K79eqVSu0atUKo0aNglwuR0pKCqRSKdq1aweFQiHeA0ZEREREdQzv+dILhq9aTNW7dfv2bQCAsbExWrRoUeK1qhIEAdnZ2bhz5w66dOkCAHBwcICRkRFcXV3F45a1ADMREREREVUP/8I2ADKZDABQUFCA+/fvAyiaQKO60tPTsXLlSgQFBQEAjIyeZnBVoOPMhkRERER1mEKpnQeVi+GrFlMFoKZNm4o/CwsLA4AaDQkMCQlBaGgovvjiCzx69KhmRRIRERGR4VEqtPOgcjF8GQA7OzsARRNmnDp1SgxgVaXqLXv48CEEQYCzszPMzc01VicREREREZWN4csAvPjii/D09IRCoUBiYiIuXrxYrWGHEokE9+/fx+7du6FUKtGxY8cqT1lPRERERHUAhx3qBSfcqOWUSiXkcjm6deuGW7duQSaT4dtvv0Xbtm3Rv39/cer4ykhPT8fevXuRnp6ONm3aYMqUKeJ78B4v9azHbdB3CVTLZPrP1XcJVAvxWkFERJXBnq9aThAEGBsbY+LEiXBwcABQNPHG3LlzERISUunglZeXh7Nnz+Ls2bMAgF69etV42noiIiIiMkxKhUIrDyofw5eBcHV1xapVq2BpaQmgaAbE6dOnIzg4GMpiK5TL5XLxuWpoYlZWFs6ePYsff/wRDx48QLt27TB9+nRYWFjo/kSIiIiISP847FAvGL4MSPfu3fHZZ5+Jk2TIZDLMmTMHW7duRXh4OICiWRBVPVkSiQRxcXHYvXs31q1bh5s3b8LR0RHffPMNnJ2d9XYeRERERET1Ee/5MjDDhw+HUqnE559/juzsbBQUFGDdunXYv38/Bg4ciC5duqBZs2a4d+8ekpOTsXPnTiQnJyM3NxfNmjXDpk2b0KxZM32fBhERERHpE6eF1wuGLwNjZGSEkSNHwtnZGQsXLkRycjIKCgoQGxuLXbt2YdeuXTAxMYFMJoNEIoFCoYCjoyN69uyJjz/+GG5ubvo+BSIiIiKieonhy0D17NkTe/bswZ49exASEoIbN26Ir8lkMnH7hRdewIsvvoiBAwfC3t5eH6USERERUW3D+7P0guHLgDVp0gTvvvsuBEHA77//jtTUVPz7778wMTFBmzZt0KhRI/Tv31/fZRIRERFRbcOZCfWC4cvAGRsbQxAEjBo1qsw2XMeLiIiIiEj/GL4M3LOhSjW9fPH1vxi8iIiIiKgEDjvUC62EL1UAEAShzD/8U1NTsXHjRpw6dQpPnjxBw4YN0a9fP8yZMweOjo7aKKteqOyiy0REREREpFsaD19RUVEYOXIkAODll1/GqlWrSrVJT0/Ha6+9hocPHwIoGhb36NEj7Nu3DydPnsSePXs4HToRERERkbbUoanm169fj40bN4rP/fz8sGLFigr3S05Ohr+/P06ePInY2Fjk5ubCwcEBnTt3xqhRo7Qyd4LGw9epU6fEe4xeffVVtW1WrVqFBw8eQBAEKJVFXZ6q/z558gTvvvsuAgICNF0aEREREREBdWbY4a1bt7Bly5Yq73fmzBl8+OGHSE1NLfHzuLg4xMXFITAwEC+++CJWrlwJMzMzTZWr+fD1zz//AACsrKzQtWvXUq+npKTg8OHDEAQBUqkU8+bNw4ABAxAfH4+lS5ciLi4ON2/exMmTJzFo0CBNl0dERERERHVAYWEhFi1ahIKCAlhYWCAnJ6dS+129ehVz584Vl2fq27cvBg8eDCsrK0RFRWH//v1ISUnBsWPHIJPJsHHjRo3d2qPx8KXq0Wrbtq3aIoOCglBYWAhBEDBlyhTMnDkTANC6dWvY2tritddeAwCcOHGC4YuIiIiISAuUdWCq+S1btiAyMhKWlpZ4/fXXsX79+gr3kclkWLRokRi8/ve//2H69Okl2kyYMAGTJ0/G/fv3cerUKRw+fBh+fn4aqVnjszM8fvwYAODq6qr29UuXLonb48aNK/Fa586d4eHhAaVSiYiICE2XRkREREREdcCdO3ewadMmAMB7772Hxo0bV2q/gIAAxMTEAAD69etXKngBgJOTU4l5K9atWydOKFhTGg9feXl5AABzc3O1r4eEhAAA3Nzc4O7uXur1Fi1aAAAePXqk6dKIiIiIiAgouudLGw8dkMvl4nDDbt26Yfz48ZXeNzAwUNxWF7xUvLy80K1bNwBAQkIC/v777+oXXIzGw5eRUdFIRlUIKy4uLg5JSUkQBEE8mWfZ2tqWuT8REREREdVv27Ztw40bN2BiYoKlS5dWek3b7OxssSPIwsICPXr0KLd98dkOg4ODq19wMRoPX3Z2dgCK7v161l9//SVul3Wyubm5AAATExNNl0ZERERERIDB9nzdvXsXGzZsAAC89dZbaNmyZaX3jY6OFocPtm/fXuw0Kounp6e4ffv27WpUW5rGw1fr1q2hVCoRHh6OJ0+elHjtyJEj4nbPnj3V7p+QkAAAcHBw0HRpREREREQEFK3zpY2HFsnlcixevBgymQytW7fGjBkzqrT/vXv3xO0mTZpU2L54m+L71oTGZzscOHAggoODUVhYiAULFmD58uWws7PDTz/9hKtXr0IQBLRp00btCSsUCty8eROCIKBp06aaLo2IiIiIiLQoICAABw8erHR7Pz8/jB49ulJtd+zYgdDQUEilUixbtgzGxsZVqi0jI0PcVo3WK0/xNsX3rQmNh6+RI0di06ZNePz4MUJCQjB06NBSbaZOnap235CQEGRnZ0MQBHTq1EnTpREREREREaC1IYJxcXG4cuVKpduXNRruWffu3ROnkp88eXKJIYGVVXwdMFNT0wrbF2+TnZ1d5fdTR+Phy8LCAuvWrcMbb7yhtshhw4bB19dX7b6//fabuF3RDXBERERERFS7uLq6VjpQqdpXRKFQYPHixcjLy0OTJk0wf/78mpSoVxoPXwDQpUsXBAYGYtu2bfj777+RlZUFFxcXjBgxAmPHjlW7T2pqqnhPWGVmHyEiIiIioupRaqnna/To0ZUeRlhZu3btEqd6X7p0aZlLWlXEwsJC3M7Pz6+wffE2lpaW1XrPZ2klfAGAs7MzPvroo0q3t7OzQ2hoqLbKISIiIiIiFR2tyVVTDx8+xNq1awEUBbs+ffpU+1gNGjQQt1NTUytsX7xN8X1rQmvhi4iIiIiIqCaOHDkiLkVlY2ODTZs2qW138+ZNcfv27dtiO0dHR7zyyisAgObNm4ttYmNjK3zv4m2K71sTDF9ERERERPWNQrvTwmuKUvm0h2779u2V2icyMhKRkZEAgLZt24rhy8PDAxKJBAqFApGRkSgsLCx3ra+wsDBxu02bNtUpvxSNr/NVFUlJSQgICMCWLVtw4MABJCYm6rMcIiIiIiKqoywtLdGtWzcARTMfXr16tdz2wcHB4na/fv00UoPGe75yc3OxZcsWAEULk40ZM0Ztux07dmDNmjUoKCgQfyaVSjFz5kzMmzdP02UREREREZGKgdzzNXfuXMydO7fCdgEBAVi0aBGAorXDVqxYobadj4+PGLq2b9+O5557Tm27sLAwXLt2DUDRXBaq0FZTGu/5OnPmDDZv3ozvvvsOeXl5atsEBQVhxYoVkMlkUCqV4qOwsBCbN2/G5s2bNV0WERERERGpKJTaedRyY8aMEae3Dw4OVjuUMTExEQsXLhSfz5s3DxKJZmKTxnu+Ll++LG4PGzZMbZvVq1cDAARBQMOGDdG1a1fEx8fjxo0bUCqV2Lx5M3x9fdG4cWNNl0dERERERPWUiYkJli9fjjfeeAMFBQVYsWIFzp8/jyFDhsDKygpRUVHYt28fUlJSAAADBgyAn5+fxt5f4+FLNdNI8+bN4eDgUOr1kJAQPHjwAIIgoG3btti5c6c4dePq1auxbds2FBQU4NChQ3jrrbc0XR4RERERUb1XfCKL+qZ3795Yv349Fi1ahLS0NJw/fx7nz58v1W7o0KFYtWqVxnq9AC0MO4yLi4MgCPDw8FD7+pkzZ8Ttt99+u8Sc+bNnzxYXTbt06ZKmSyMiIiIiIoK3tzcCAwMxd+5cdOjQAba2tjAxMYGrqyuGDx+OLVu2YMOGDdVe0LksGu/5yszMBADY2tqqfT0kJAQAYGZmVmrWEEtLS3Tt2hUXLlzA3bt3NV0aEREREREBBnF/VlWMHj0ao0ePrtI+Dg4OmDNnDubMmaOlqkrTeM9XYWEhgKL7uZ6Vn5+PiIgICIIALy8vmJiYlGrTqFEjAE9DHBERERERUV2g8Z4vS0tLZGZmIjU1tdRroaGhKCgogCAI6N69u/qC/lvoTGEgC78RERERERmcOtbzZSg03vPVpEkTKJXKEitCq5w+fVrcLit8qUKblZWVpksjIiIiIiIASoVSKw8qn8bDV5cuXQAUzY9/+PBh8edPnjzBwYMHAQDm5ubo2rWr2v2joqIgCII4/z4REREREVFdoPFhh76+vti7dy8A4KOPPsKFCxdgb2+PEydOID09HYIgYMSIEWrv93r8+DEePnwIAGjdurWmSyMiIiIiIoDDDvVE4+GrU6dOePXVV7Fv3z7I5XIcPXq0xOtWVlaYPXu22n3//PNPKJVKCIIg9qARERERERHVBRoPXwCwZMkSmJqa4qeffoJcLhd/7uLigtWrV8PFxUXtfvv27RO3n3/+eW2URkSV1Ly5O16fPh4vvugNdzcXmJmZISEhEVeu/oOffgrAH8dO6btE0qI7CSkY/+1RFMqfTn4UuHAsXO2ty92vUK7AmciHCLpxH5FxyUjOzEV+QSHMTYzR2NYS7Zs4YKhnc/RpzaHldQWvFaQOPxcGgHPb6YWg1OLy1qmpqbh+/TqysrLQuHFjeHl5ibMZPistLQ179uwBUDRj4rRp07RVFlGlGZnUzz8Q33pzClau+AQWFmUvLHjo8B+YNv0dZGZm6bAy/cv0n6vvErSuUK7AxI1HcSs+pcTPKwpf0YmpWPxzMO48Kj3b7bO6NnPCivED0KiBRY3rrQ2sx23Qdwl6wWsFqcPPRfkKZXH6LgEAkDbBWyvHtd3LYF0erYYvIkNXH8PXzBmTsGnjCvH59bBInDhxGjk5ufD0bI+XfIbA2NgYAHDq1Hn4vDwRBQUF+ipX5+pD+NpyMhSb/vwHxlIJCirZ85WQloXxG44gNTsfACAIQG8PF7RoZAtbC1MkZeTg+oOkEsHMraE1/OeNgoWpsXZPSAfqY/jitYLU4eeiYgxf9ZtWhh0SkWFq0aIpvlnzufh88UfLsWr1xhJtOnfugN+O7IGzcyN4e/fFuwtmYeWqb3VdKmlJ1KMUbD11HQDwxkAvbA76p1L7rT92TQxe7g4NsGaSNzyc7Eq1+zP8Pj72P4v8QjlikjOx93wEZgzqrLkTIJ3gtYLU4efCwHDCDb3Q+FTzRGS4PlvyPkxNTQEAP/0cUOofTQAIDY3AtOnzxecLP3gbNjYNdFYjaU+hXIEl+8+jQK6Ah5Mtpg/0rNR+coUCpyMeis8/8eujNngBwJBOzTDphQ7i8/N3asc3wFQ1vFaQOvxcEFWM4YuIAACWlhbw8x0OAFAoFPhi2doy2/4ZdBaXLl0DANjYNMCokS/qpEbSru3B4YiMS4ZEELBkbF8YSyv3T0Rqdh7yCgrF515NG5XbvmtzZ3E7LTuvesWS3vBaQerwc2GAFFp6ULm0PuwwMzMTf//9NyIjI5Gamors7GwoFBX/ZgRBwPLly7VdHhH9Z8iQ/jA3L7o5Oiz8Ju7cuVtu+18P/IbevbsBAHx9X8Su3fvKbU+1W3RiKracDAUAjH++PTq5OVZ6X1Pjkv+UpGbnwcnGssz2qcUCV2M7qypWSvrGawWpw8+F4VFy2KFeaC18ZWZm4quvvsKRI0eQl1e9bzYZvuqunJwcmJiYlDn7Jele1y6dxO0LF65U2P78+cvidmevjlqpiXRDrng63NDV3gpvD+1apf2tzUzQytkOUf9NprH7XATef6mn2rb5BYX46UKk+Pzlrh7VL5z0gtcKUoefC6LK0cqww4SEBIwaNQr79u1Dbm4ulEpluQ8Aan9GddPDhw/xzjvv4MCBA/VuhqParH371uJ2dPS9CttH370vbru7u8Lamj0Yhmrn2RuIiH0CAPh09PMwN6n6lyKzik2ased8BObvDMLl6Hg8zsiBrFCOuJRMBP5zF+O/PSq+19hebeDTpaVmToJ0htcKUoefCwPEYYd6oZVuhzlz5iA+Ph4A0Lp1a4wcORIXLlzAxYsXxeGEWVlZiI+Px5UrVxAREQEAsLCwwNy5c2Fra6uNsqgWePLkCV599VWkpaUhIyMDpqam8PHxEaedJf1xdnp6n05sXEKF7dPS0pGVlQ0rq6LhZU5OjvVyvRZD929SGr4LKhpu6Nu9FXp5uFTrOIM7NcPnY/ti2aGLkBXKEXwzBsE3Y9S2be/aEBP6dmDwMlC8VpA6/FwQVY7Gw1dQUBAiIiIgCAKef/55fPfddzAyMkJCQgIuXrwIAPDz8yuxz/Xr1/Hxxx8jKioKu3fvxrZt29C8eXNNl0a1QFRUFJo2bYq0tDSEhoZCLpcDAANYLWBl/fQenZzsnErtk5OTK/7DaW1V9j0+VDuphhvKCuVwsDbHuz49anS8Ud1boVtzZ+y9EAH/i7egUDOKwcrMBJ7ujap0TxnVLrxWkDr8XBge3vOlHxofdnj8+HEARRNmLFmypFL39Hh5ecHf3x8dO3ZEfHw8FixYAJlMpunSqBZ47rnnMHv2bPTt2xcAEB4ejr179yIwMJBDEPXM3MxM3JbJKve7yMvLF7ctLMw1XhNp165zEQiPeQwAWDSqNxqYm9boeInp2fgu6B/8evk2AKCXhwumD/DE3GHdMOH59mjtbIesPBl+uXgTY9ceQsCVOzU+B9I9XitIHX4uiCpH4z1fYWFhEAQBbdu2hZubW6X3s7CwwMqVK/HSSy/h9u3bCAwMLNVDRoZNqVRCEAT0799f/Nn58+fFAAawB0yfcotNjGNiUrnfgZnZ0z/Wc3JyNV4Tac/9x+n47s+iBZQHdWiKQR2b1eh4t+NT8Oa2Y0jNzoeLnRXWTPJGW5eGpdodv/4vPvmvt23pwQuwtzLDgPbuNXpv0i1eK0gdfi4MEO/P0guN93wlJycDADw8Ss5gJQiCuJ2fnw91WrZsCS8vLwBAYGCgpksjPSi+rIAgCOJkKv3798ekSZPYA1aLZGVmi9sWlhaV2qf4N5WZWdnltKTaRKFQ4tP955BfKIe1mQkW+fau0fEK5Ap88NNppGbnQyoRsH7KYLXBCwCGebXAe/8Nb1Qqga8Dr0DBoS8GhdcKUoefC8OjVGjnQeXTePhSTStvaVly7K6FxdP/ETMyMsrcv0WLFlAqlfj33381XRrpWEJCAnbt2oWkpCTxZwxgtdejxKe/pyaujStsb2PTQByrDwCJiY+1Uhdp3uFrUQh7WPT7es+nBxysK/eHUlnORD7EwydF1/XeHi7wcLYrt/3onm1g8d+MijHJmbiTkFKj9yfd4rWC1OHngqhyND7s0NLSEhkZGaXW9rKxsRG3Y2Nj4eio/mbr3NyibmdVDxoZptjYWPj5+SE/Px95eXkYO3YsHBwcADwNYByCWLvcvBkF31HDAQAeHhVPeOPRspm4HRMTz1mqDMijtKffMH924AI+O3ChUvv5rPpV3J41qDPeGtIFABD24OkfXRUFLwAwlkrQvJGtOOX8g+QMtHVV31NGtQ+vFaQOPxcGiL1UeqHx8OXq6oqMjAykpJT8JrP4MMSQkBB06dJF7f63bt0CAJiYmGi6NNKRBw8eYOrUqcjMzAQA/Pzzz5DL5Rg3bly5AUwQBJw7d04MYEqlEi+99BIDmI78/U+4uN2nT8Wz3vXt20vcDr1+Qys1kWHILnZzfbER5pUmqc5OpDe8VpA6/FwQVY7Gw1ebNm0QGRmJu3fvlvi5p6cnjIyMIJfL4e/vjwkTJpQYiggAhw4dwr179yAIAlq0aKHp0kgH5HI5Pv74YyQkJMDIyAgKhQKJiYn49deib8wrCmAAxAD2008/AQADmI6cOHEGubm5MDc3h5dne7Rq1QJRUWUP/x0z2kfcPnToD12USBrSxsUeL3f1qLghgKN/R4vbgzs2hfl/N9K3cbEXf25r8XSWs6iE1AqPWSBX4P7jdPG5gzVnOTMkvFaQOvxcGB7en6UfGg9fPXv2xMGDBxEXF4fExEQ4OTkBAOzs7DBgwAAEBQUhLi4OEydOxFtvvYVWrVohNzcXQUFB2Lp1q3icoUOHaro00gGpVIphw4YhIiICMpkM7dq1w4MHD5CQkIADBw4AYACrrbKzc3D4yHG8Ns4XEokEHy1+B1OnzVPbdpD3C+I3mxkZmTh85LguS6Ua8u7QFN4dmlaqbfHwtWBED7jaW5dq08nNQdy+FB2Pu4lpaOlkW+YxD1y+hez8ot4yM2MjdGjiUGZbqn14rSB1+LkwQAxfeqHxCTf69+8PqVQKoGjB5eI++OADmP23DsTNmzcxb948DB8+HKNHj8amTZvEtb3c3d0xfvx4TZdGOtK1a1colUoUFhbCzs4Ob7/9Nho0aID4+HgcOHAA/v7+ePLkidj+2Uk4Jk6ciBdeeAEAxAD222+/cRIOHfjs86/E/w8nThiD9959s1QbT8/22P7jWvH56q82IS0tvVQ7qj+ea+2KRg2KRjLIFUrM3xmEqEfqJ9H4I/RfrPk9RHzu16MVTIykOqmTNIfXClKHnwuiiglK1V+9GrRnzx4kJiaiefPmGD16dInXLl68iHfeeQfp6er/R2vevDm+//57uLtz3RdDtmnTJqxfvx4NGjTA+++/j4SEBOzcuRM5OTlwcXHBmDFjSvSAAU/XAQOA4OBg7NmzB+fOnQMAdOrUCePHj9d5D5iRiavO3qu2eOvNKdiwfrn4PPR6BE6cOI2cnFx4erbHSz5DxHsyg4P/wnCfCfVqUfRM/7n6LkGnOn+4XdwOXDhWbc8XAJy9GYMFu09C/t+08RJBQC+PxujQxAEWpsZIycrDleh43Hn0dFhic0cb7HzLBw0sara4c21gPW6DvkvQOV4rSB1+LipWKIvTdwkAgMdD+lfcqBoc/wzWynHrCo0POwSAiRMnlvnac889h+PHj8Pf3x+XLl1CUlISBEGAm5sbvL29MWrUKE62UQd4eXnBzs4OWVlZKCgowKRJk1BYWIi9e/eKPWAAhyDWRpu/2wmJRIIVX34Ec3NzdPbqgM5eHUq1O/rbCUyZOq/e/aNJ6vVr54ZvJg3C5wcuIDkrFwqlEhej4nExKl5t+14ejbH01X51InjVV7xWkDr8XBCVTys9X0QAsGDBAvzxxx+wt7dHQEAAjI2NsWvXLuzevbvaPWCdO3eGn58fxowZAyMjrXx3UEJ97PlSadGiKd54fTyGDfOGu5sLzMxM8ejRY1y5+g/27j2A3/84qe8S9YI9X+p7vlRy8gtw7Po9nLsVgzuPUpCalYf8QjksTIzR2NYSHd0dMdyrBXq0rHgdIENSH3u+VHitIHX4uShbben5ShqknZ6vRifZ81Uehi/SOIVCAYlEgitXrmDhwoV48uQJ3nvvPUybNg3379/HwYMHsWfPHmRnZ1crgPXq1QvffvstrK3L/yNQE+pz+CL16lv4osqpz+GLiKqmtoSvxIHaCV9Opxm+yqPxCTeo/lAo1E+TI5EUfaw8PDxgb2+PwsJCnD59GgDQrFkzjBkzBhMnToSlpWWlJ+GYNGkSOnfuDHNzcyxevFgnwYuIiIiISJMYvqhKkpKScOrUKQBPQ5ZcLi/VTqlUwt7eHrNnz4axsTGuXLmCvXv3AiiazXLs2LGYOHEiLCwsKhXA+vXrh7lz5yIwMBBt2rTR9mkSERER1W1KQTsPKpf2b5qhOiMmJgYTJkxAUlISfHx8MGDAAHh7e8PS0lJsoxouqBoy2Lp1a7Rr1w5hYWGIjIwUhyS6ublh7NixAIDdu3dXahKO559/XsdnTERERESkOdUKX+3atdN0HaUIgoDIyEitvw9VTkxMDKZMmYKkpCRIJBIEBgbi5MmT2LZtG2bMmAEPDw+0adNGDF1yuRxSqRTu7u4YNGgQwsLCcODAAfj4+KBPnz4AUKUARkRERESao+Qiy3pRrWGHqqFgSqVSqw+qHfLz8zF8+HDEx8fD3NwcUqkUrq6usLGxwa1bt/Dpp59i1qxZ+OGHHxAREQEAkEql4j1hvr6+8PT0BAAcOXIEOTk54lBFVQCbNGlSiXvA9u/fj6SkJP2cMBERERGRFlT7ni+Go/rD1NQU33//PQAgNzcXpqamcHBwwAcffIA+ffogJycHjx49wldffYWFCxfi/fffR3R0NNLS0gAAdnZ2aNmyJQDg2rVryMzMhFQqLRXAik/CsXXrVhw5ckTt/WREREREVDNKhaCVB5WvWsMOb926pek6qJZ7/vnnsXPnTkyZMgVZWVkICwvDtWvX8OOPPyIoKAgnT57EwYMH3qEi7gAAIABJREFU8eDBA9y9exehoaFwc3PD1KlT8cILL2DevHm4fPkyYmJisHnzZnz66aeQSqXi8VUBTCqVYtOmTcjJycHgwYNLtCEiIiIizeCwQ/3ghBtUab169RIDmFKpxM8//wylUonPPvsMgwcPxpAhQ3Dt2jUcPHgQsbGxiI2NxcWLF9G/f3+0bdsWXl5eSEpKwq1bt/D48WM4OTmVOL6bmxt8fX1hbGyMoUOHolmzZvo5USIiIiIiLeAiy1Rlly9fxpQpU8Tnvr6+WLFiBYCitb8SEhLw888/IywsDFeuXIFEIoFCoYClpSWys7MBAEuXLsUrr7yi9viFhYUwMqod3wtwkWV6FhdZJnW4yDIRVVZtWWQ57jlvrRzX9eIprRy3ruA6X1Rlqh4wlUOHDmHRokUAitb+cnV1xfz587FlyxYsXLgQ/fr1AwBkZ2dDEAS4ubnBzs6uzOPXluBFRERERKRJ/CuXqqX4EEQAOHjwIARBwPLly8U2ZmZmmD59OsaOHYuwsDDs3LkTOTk5mDhxIgYPHqyv0omIiIjqPd7zpR81Cl+JiYl48cUXkZeXB4lEgq1bt4prOFXFhQsXMGPGDCiVSlhZWeH48eOwt7evSWmkA88GsICAAADA8uXLYWxsDJlMBhMTEzRo0AB9+/ZFp06dkJeXJ97rpVo8mYiIiIh0izMT6keNhh2uX78eubm5AIDZs2dXK3gBRTPpvf3221AqlcjKysLmzZtrUhbp0LNDEAMCArB48WIAgImJCQoLC8XXbGxsGLyIiIiIqN6qdvjKysrC0aNHIQgCXFxcMGvWrBoVMnPmTLi4uECpVOLAgQNiqKPar7wAZmRkpHatLgYvIiIiIv1RKrXzoPJVO3wdP34cMpkMAPDmm2/WeJIEY2NjvPnmmwCKFvINCgqq0fFIt8oLYMUXVCYiIiIiqq+qHb5CQkKKDiCRYMiQIRopZsiQIZBIikq6cuWKRo5JusMARkRERGQYlApBKw8qX7XDV0REBACgXbt2sLW11UgxdnZ2aN++PZRKJW7cuKGRY5JuMYARERER1X4MX/pR7fD15MkT8X4vTVIdLykpSaPHJd1RF8Dmz58PoCiAERERERHVR9UOX5mZmQBQ7mK51aHqRcvIyNDocUm3ng1g586dY6AmIiIiqiU44YZ+VDt8mZqaAiia9VCTsrOzSxyfDFevXr2wbds2AMC+ffvQqFEjPVdERERERKQ/1Z6i0N7eHtn/z96dx0VV7n8A/5yZYXXYQVlVFNcERNz33NK0BS3XXEst03szu67XbrmlmUvbz1ITU+viklppmblrmSgqoLjgAsim7DsMM3N+f3DnCLGIMMOwfN695vU7zHnOw3d+2o0PzznfJycHSUlJ+qxHmk/fK2pkHL169cKVK1dgYWFh7FKIiIiI6H/4fJZxVHnlq0mTJhBFEeHh4VLL+epSqVQICwuDIAhwdnbWy5xkfAxeRERERETVCF/dunUDAOTn5+PEiRN6KebEiRPIz88HAHTt2lUvcxIRERERUUmiKBjkRRWr8m2HvXv3xhdffAEA2LhxIwYNGlStjZYLCwvx2WeflZifiIiIiIj0T9Qau4Knc/nyZYSHh+PatWu4e/cu0tLSkJaWBo1GA2tra7Ro0QLdu3fHyJEj4eLiUqk5U1JSsHv3bhw/fhyxsbHIy8uDo6MjOnbsiJdeegn9+vXT++cQRLHqfUlGjx4t3SY4bNgwrF+/vsqFzJs3D4cPH4YgCPD29saePXuqPBeRvihM3YxdAtUyWbvnGLsEqoWsxnxu7BKIqI5Qq+KMXQIA4E775wwyr1fEb3qfU61W45lnnqnUWDMzM8yZMwfTp0+vcNypU6ewcOFCpKWllTtm6NChWLNmDczNzZ+q3opUfakKwDvvvINp06YBAH799VdkZmZi1apVT9XVLikpCYsXL8a5c+ek93R7QhERERERkf5p6+Atgk5OTvD29kabNm3g5uYGKysrqNVqxMbG4tSpU7hy5QoKCgrwySefoLCwELNmzSpznosXL2LOnDlS34revXtj0KBBUCqViIyMxN69e5GamoojR45ApVLhyy+/hExW5ae1SqjWyhcArF27Ft988w0EoegP0NzcHCNGjMDw4cPh4+MDS0vLUtfk5uYiPDwcP//8Mw4fPoz8/HyIoghBEDBlyhQsWLCgOiUR6Q1XvujvuPJFZeHKFxFVVm1Z+brdbqhB5m1944je5xRFEZGRkWjdunWF4w4ePIiFCxdCFEUoFAqcPHmy1KKQSqXC888/jwcPHgAAFixYIC0m6Tx8+BCTJk1CVFQUAGD16tUICAjQy2epdvgCgPfeew+HDh2CIAhSiAIAmUwGFxcXWFtbw9LSErm5ucjMzERCQgK02qIbTXXjRVHE8OHDsW7duuqWQ6Q3DF/0dwxfVBaGLyKqrNoSvm61HWaQedvc/NUg81bWm2++iZMnTwIAVq1ahVGjRpU4HxQUhP/85z8AgL59+2LLli1lzhMaGorRo0cDAFxcXHDixAm9rH5V67ZDnU8++QTe3t5Yu3Yt1Go1gKJQpdFoEBsbK4Ux3fs6uvflcjnee+89TJkyRR/lEBERERFRBerrPl+tWrWSwldZ+xEfPnxYOv77ildxvr6+8Pf3R0hICBISEnD58mV07ty52vXp5+ZFAJMnT8bRo0cxYcKEUg+liaIovYozNzfHa6+9ht9++43Bi4iIiIiIqiU6Olo6dnR0LHEuJycHly5dAgBYWlqiS5cuFc5VvNvh6dOn9VKfXla+dFxdXbF06VIsWLAAYWFhuHTpEuLi4pCeno6cnBw0atQItra2cHNzg7+/P3x9fWFqaqrPEoiIiIiI6Amq/+BR7XPs2DH8/vvvAIq6Hvbv37/E+Tt37kiPPrVv3/6J22T5+PhIx7du3dJLjXoNXzqmpqbo3LmzXpbmiIiIiIiIdM6fP4+cnBwARQ00EhIS8Mcff+CPP/4AACgUCnz44YelVr7u378vHbu7uz/x+xQfU/za6jBI+CIiIiIiotrLUM987d+/HwcOHKj0+ICAAIwcOfKpvsfKlSsRGRlZ6n2ZTIauXbtizpw5ZS4CZWZmSsd2dnZP/D7FxxS/tjoYvoiIiIiIGhhD7fMVFxeH4ODgSo/v2rWr3r63s7MzevXqhWbNmpV5Pjc3Vzo2MzN74nzFx+hW2qqL4YuIiIiIiPTCzc3tqQKVm9vTb+tz6NAh6Tg3NxcxMTE4duwYAgMDsW7dOmzbtg0bN25E9+7dn3puQ2P4IiIiIiJqYEQDrXyNHDnyqW8jrA5LS0u0bdsWbdu2xYsvvojx48cjKSkJ06dPx/79+9GqVasSY3UKCgqeOHfxMY0aNdJLvXprNU9ERERERGQsTZs2xbx58wAUNeLYtGlTifPW1tbScVpa2hPnKz6m+LXVwZUvIiIiIqIGpj62mgdK7s114cKFEuc8PT2l49jY2CfOVXxM8WurgytfRERERERULyiVSuk4IyOjxDkvLy/IZEXxJyIiAmq1usK5wsLCpOM2bdropT6GLyIiIiKiBkYrCgZ5GVtUVJR0bG9vX+Jco0aN4O/vD6CoUcfFixcrnOv06dPScd++ffVSH8MXEREREVEDI4qCQV7GFhQUJB136tSp1Pnhw4dLx4GBgeXOExYWhpCQEABFLex1oa26GL6IiIiIiKjW2r59uxSEyqPRaLB582Z8//33AABBEPDaa6+VGjdq1Cipvf3p06fLDGAPHz7E/Pnzpa//8Y9/SLcrVhcbbhARERERNTB1qeFGcHAwPvroI7i7u6NHjx5o3bo17O3toVAokJmZidu3b+PEiROIi4uTrpk5cyY6d+5cai5TU1OsWrUKb7zxBgoLC7F69WqcO3cOgwcPhlKpRGRkJPbs2YPU1FQAQP/+/REQEKC3z8LwRUREREREtV5sbCz27t1b4RgbGxvMmzcPY8aMKXdM9+7d8dlnn2HRokVIT0/HuXPncO7cuVLjhgwZgo8//lhvq14AIIiifnPvwIEDAQABAQGYPXv2U1//9ddfY8+ePRAEAceOHdNnaURPzdy8qbFLoFrGyszC2CVQLXSju7OxS6BaaFh4HVpaoBpzMf6MsUsAAFxyf9kg83aOPaj3OTMyMvDnn38iJCQEERERiI2NRXp6OtRqNSwtLeHk5IS2bduiV69eGDp0aImOhxVJTk5GUFCQtGqWm5sLJycn+Pj4ICAgoETben3R+8pXXFwcBEFAenp6la5PT0+X5iAiIiIiIv2rDc0xKsvGxgbDhg3DsGHD9Dqvo6MjZs+eXaUFo6piww0iIiIiIqIaUOue+dJqtQAAuVxu5EqIiIiIiOqn2rAnV0NU61a+kpKSABRtgkZERERERFRf1KqVr8TERJw7dw6CIMDDw8PY5RARERER1UtsB2Mc1QpfixYtKvfc+fPnKzxfnFqtxsOHDxEWFob8/HwIgoDu3btXpzQiIiIiIioHbzs0jmqFrwMHDpTZlVAURdy7dw/37t2r0rxWVlZl7khNRERERERUV1X7tsPytgmr6vZh/v7++Pe//w1nZ+6ZQkRERERkCHWp1Xx9Uq3w9dFHH5X4WhRFLF68GIIgoEePHnjhhReeOIcgCDA1NYWdnR1at24NBweH6pRERERERERUK1UrfAUEBJR6b/HixQCAFi1alHmeiIiIiIiMS2vsAhoovXc7fPnllyEIAnx9ffU9NRERERERUZ2l9/C1evVqfU9JRERERER6JILPfBlDrdrni4iIiIiIDE/Ljb6MwuDhq6CgAGfPnkVISAgSEhKQmZkJjUaDb7/9tsQ4URSRn59fVJRCARMTE0OXRkREREREVGMMGr4CAwOxZcsWpKWlSe+Joljm3mDp6el49tlnUVBQAF9fXwQFBRmyNCIiIiKiBkvL2w6NQmaISdVqNd588018/PHHSEtLgyiK0qs8dnZ2eOmllyCKIkJDQxETE2OI0oiIiIiIiIzCIOFr2bJlOHXqFERRhImJCUaPHo0NGzZg4MCBFV5XfF+w06dPG6I0IiIiIqIGT4RgkBdVTO+3Hd68eRN79+6FIAhwcnLCtm3b4OXlBQC4dOlShdf6+/tDqVQiJycHISEhmDhxor7LIyIiIiJq8LjPl3HofeVr37590u2Fa9askYJXZQiCgLZt20IURdy9e1ffpRERERERERmN3le+Lly4AADw8vJCjx49nvp6Z2dnAMDDhw/1WhcRERERERXhLYLGofeVr4cPH0IQBLRv375K1yuVSgBAbm6uPssiIiIiIiIyKr2vfOXl5QEAzMzMqnS9LnRZWFjorSYiIiIiInqMz3wZh95Xvuzs7AAAqampVbo+KiqqxDxERERERKRfWgO9qGJ6D1/NmjWT9up6WikpKYiIiIAgCGjXrp2+SyMiIiIiIjIavYev3r17AwCSk5Nx5MiRp7p206ZNUKvVAIBevXrpuzQiIiIiIgL3+TIWvYevgIAAmJubAwBWrFiB6OjoSl0XFBSEXbt2QRAE2NralthwmYiIiIiIqK7Te/hq3Lgxpk+fDlEUkZKSgldffRXbtm0rs3V8VlYWTp8+jZkzZ+LDDz+U3v/nP//JhhtERERERAaiFQzzoorpvdshALz99tu4c+cOfv31V2RlZWHt2rVYu3YtZLLHWc/X1xcqlUr6Wrcx8yuvvIKxY8caoiwiIiIiIiKjMUj4AoD169ejZcuW+Oqrr6TnuLRaLQShKBIXFBSULEShwKxZszBr1ixDlURERERERAC0fD7LKAwWvgRBwOzZszFy5Ejs2LEDp06dktrIF+fq6or+/ftj6tSp8PDwMFQ5RERERET0P6KxC2igDBa+dFxdXbFw4UIsXLgQ6enpSEpKQlZWFiwtLeHo6AhHR0dDl0BERERERGR0Bg9fxdna2sLW1rYmvyUREREREf0NN0Q2Dr13OyQiIiIiIqLSanTli4iIiIiIjE8rsOGGMTB8ERERERE1MGy4YRx6D18DBw6s1vUymQxKpRJWVlZo2bIlvL29MXjwYFhZWempQiIiIiIiopqn9/AVFxcHQRCkTZOLE8pY3vz7uOJjLl68iKCgICxbtgxjxozB3LlzYW5uru+SiYiIiIgaFDbcMA6DNNwoHqgEQZAClSiKpV6VGZOfn48dO3bg1VdfRWZmpiFKJiIiIiIiMii9r3wdP34cAHDq1CmsWbMGKpUKzZo1w4gRI+Dj44MmTZrA0tISubm5ePjwIcLCwnD48GFERUXBzMwM8+fPR+/evZGRkYFbt27hl19+wfnz5wEAd+7cwXvvvYfNmzfru2wiIiIiogZDy34bRiGIZd0fWE379u3D0qVLIZfLsWDBArz22mtl3nKoI4oidu7ciTVr1kCr1WL58uV45ZVXpPNHjx7FvHnzUFhYCEEQsHPnTnTu3FnfZROVYm7e1NglUC1jZWZh7BKoFrrR3dnYJVAtNCycLQ2otIvxZ4xdAgDgO9fXDDLvhPhdBpm3vtD7yte9e/ewbNkyAMDixYsxfvz4J14jCAImTZoEuVyO5cuXY/ny5fD394enpycAYMiQIZg3bx5Wr14NADh8+DDDF5GBODjYwc/PG506ecPPzxv+/j5o2tRdOj9kyGicOfOXESukmubZoik6+fuio18HdPBuhybOTrB3sIO1tRK5OXlITHyE0KvX8fOPv+HokZPQavkkQV0mc3WDSZt2ULRuA3nLVpDZ20NmbQOhkRJifh60KSlQR96G6twpqC6cByr485Y1cYb9jt1P9f0z3l+Iwgvnq/sxyIiU1koMGzkYPQd0R6v2LWFjZw25XI7srBzE3HuA0Ivh+GXvb7h7676xSyWqcXoPX7t374ZKpYKLi0ulgldxEyZMwNatW5GYmIjdu3dj4cKF0rnx48fjyy+/RHZ2NkJCQvRdNhEBeOON1/DFF6uMXQbVMrt/2ArPFs3KPGdjawIbW2u0aeuF0WNfwrWwG5g1cz5uRNyu4SpJX2xWfgy5q3uZ5wSlFWRKKyiaNYf5oCFQ341E1seroIm6V8NVUm3Vf2gfLF77L9g52JY6Z+dgCzsHW/h28cZrb47FgV0/Y+2/N0Kj1hihUuK6rHHoPXz98ccfEAQBnTp1qtL1nTp1wuHDh3Hu3LkS75uamsLPzw9nzpzBo0eP9FEqEf2NublZqfcyM7Ngbm4GU1NTI1REtUl8XCLCQiMQHfUAqanpUKsLYWdvBx/f9ujZqwsUCgU6+LTDT7/uwvODxyLyNn8gr8s0SY+gvhMJbWI8tJmZgFoNwdoaCq/WMPHxhSBXQNGyFWw++QwZc9+G5kF0xfPFxyH/8I9P/r7RUXr6BFTT+gzuidVblkEulwMA8nLzcO7YecRFx0OlKoSzW2P0fLY7HJs4QCaTYdSkl2Blo8SStz40cuVENUfv4SshIQEAYGlpWaXrddclJiaWOte4cWMAQHZ2dhWrI6KK5OTk4MyZ87h8ORxXroTj8uVwREbew61bf6BZMw9jl0dG8sHSjxF69TriYhPKHdOiZXNs3/U52rVvDVtbG6xZ9x+MfGFyDVZJ+pKz5SuoI29Bm1T+Lzplbu6wfn85FM1bQGZlhUaz30HmgrkVzqtNeoS8fU93CyLVHYIgYP6quVLwOv3bOSyftwYZqRklxpmamWLaPyfh9XcmAQCGvDQQewL3IzQ4vMZrbujYcMM49B6+dKKioqp1XUX7hCmVyqqWRUQVCAwMQmBgkLHLoFrml0PHnjjm3t0oTJ86F+cuHAYA9OrdFU5ODkhKSjF0eaRnqj/PPnGMNi4WWas+hN3mbwEAJj4dIdjaQUxPM3R5VEs949cOzm5NAAA52bn4z5wVyMnOLTVOVaDCVx9vhX/PjujY1QcA0PPZbgxfRsCnc41D7/t8ubq6QhRFXLlyBdHRFd+C8HdRUVG4fPkyBEGAq6trqfPJyckAADs7O73USsaRlZVl7BKIyABu3byDR4+K/ndaJpPBo6mbkSsiQ9JER0GblgoAEGQyyJuw42ND5uLx+M//7s17ZQav4q5eCJOObe1LPx9GVF/pPXz169cPAKDRaDB37lykp6dX6rq0tDTMnTsXGo2mxDzF3bhxA4IgwMnJSX8FU43avn07Pv3006cO5kRU+ykUCjRq9PiW87y8fCNWQwYnl0OweLz1glhQYMRiyNgK8lXScWXClG2xhhwJsaUfNSHDEw30oorp/bbDiRMn4r///S9yc3Nx48YNjBgxAm+//TaGDx8Oa2vrUuMzMzNx6NAh/N///R9SUopuT7G0tMTEiRNLjIuIiEBiYiIEQYCPj4++y6Ya8NNPP0nbBTRq1AijRo1C06bcR4uovnh9xgQpfD16lIxbN+8YuSIyJPMXR0IwLwpf2rRUaGKiKhwvc3OH9er1UHi2KGpbn5sDbUoyCq+Fo+DkMagjrtVA1WQo10KuQ12ohsJEgaYt3NF3SC+cOfpHmWPdmrpg0Ij+AIBCVSF+//F4DVZKZFx6D19NmjTBsmXLMH/+fGi1WiQnJ2PZsmVYsWIFmjZtCmdnZ5ibmyM/Px+JiYmIiYmBVquVnvGSyWRYtmwZmjRpUmLe7777Tjoua1WMajeNRgOZTIY2bdrg1q1b2LZtGzQaDUaPHs0ARlRHCYIAG1trPNOhLcaOexljJ4yUzn20fAP3+6pvBAGCUglFCy+YDXoO5kOGSadytm+tcL8vAJA7OkHu+PjOFcHGFjIbWyhaeMHixQCoLgUja+0qPjdWR6Ump2HfjoMY+/orAIBVX32Ag98fwqHdvyL+QQJUBYVwdmuCfkN7Y/yM0VBaK6EqUGHV/E8QF1N+Mx8yHDbcMA6DNNwYPnw4TE1NsXTpUqSnp0MURWg0GkRFRZVqxFG8sYaNjQ2WLVuG5557rtScY8aMwciRRf9h9/f3N0TZZEByuRyDBg2Cqakpvv76a1y/fh3fflv0oDYDGFHdsfSDefjH3Bnlns/NzcO/5v4He4Ke3FKcaj/LaTNgOWZCuefF/Hxkf74eBcd+q3AesbAQ6hvXob53F9r0VEAmh9ypMUz8/CF3dgEAmHbuCtvPv0bGP9+CNpWNWuqijR98CblcjlenBMDM3Axjpo3CmGmjSo1TF6px7th5bFm/HRFXbxihUiLjMVi3w8GDB8Pf3x/btm3DgQMHkJKSUmYHQwBwcHDAyy+/jGnTpsHBwaHMMbzVsO4zNzdH3759IYoiNm/ezABGVM8c+OEwFv1rOVJSuHLREBScOo7s//sUYkZGuWPEvLyicHbid4i5ZTRgEASYDR4G5aw5ECwsIW/cBFZLlyFj7tsGrJwMRaPR4OPFG3Bk/+94/Z1J6Dmge5njEuMeIvRiOGLuPajhCqk43ptgHIJYXiLSI1EUcffuXdy4cQOpqanIzc2FpaUl7Ozs0K5dO3h5eUlt5Kn+y8/Px+nTp6UAZmJigsmTJ9fKAGZuXrvqMZbi+3wNGTIaZ878ZeSKjMfKzOLJg+qx7j380amzLwDAxEQBR0cHdO7aEZ27dAQAREfH4j9LVuPwz78bs8wad6N7/ez0p+jgA5O27Yq+kCsgs7WFot0zMGn3DABAk5iAnM1fQvXHk9vTV8SkU2dYr/gYwv/2iMr8YDFU58t+XqguGRbe8NoPdOjUHm8vmoFOPToiPy8ffxz/C/duR0Gj1sDVwxk9B3RHY5ei208fJSRh/hv/xvUrDWv162L8GWOXAAD42v01g8w7M3aXQeatL/S+8hUfHy8dOzs7QyaTQRAEeHl5wcvLS9/fjuogc3Nz6bk9roAR1S1/nQ/BX+dDSr3v18kbX3+zDp4tmmH7ri+wYN6H2Lb1eyNUSPqkvhYG9bWwUu8r2rSF1cKlkLu6w/r9Fcj+YgPyfz5Y5e9TePkSCk6fgPmAwQAA077P1ovw1dAMGzUE729YCIVCgb9OX8S/315WapNluUKOWQunY9Ks8Wjs4oTPvvsE4wdNxcP48jf1JqpP9N5qfsCAARg4cCDGjRvH1Swqly6AzZgxA8888wwKCwvx7bffYs+ePYiJiTF2eUT0lK5cDsfIF6cgJzsHALD8o0XwbMFfpNRX6ls3kbHgXYh5RbcSNpo5GzLX6u3rpjpzUjrWraxR3dGspQeWrP0XFAoF4qLj8d60xaWCFwBo1Bp8vuIr/P7TCQCAta0VZv5rWk2XSwBEwTAvqpjew5dCUbSY1qlTJ4YvqhADGFH9EvsgHnv3/AwAMDU1xdjxI59wBdVl2kcPkX+i6PZSwcQE5oOHVms+TXycdCyzs6vWXFTzRk8bBTNzMwDA/l0/oSCv4n3fvt+8Rzru91wf/sxIT5SdnY2jR49ixYoVGDduHHr06IEOHTrAz88PgwcPxty5c/Hbb79BrVZXes6cnBxs374d48aNQ8+ePeHt7Y3+/fvjzTffxC+//FJuv4rq0Ptthw4ODnj06BGsrKz0PTXVQ7wFkah+ibh+Szp+pkMbI1ZCNUFz7550rGhRzUcLDP8IOhmQt//j1co7N+5VMLJI5I270rG1rRVs7W2QlpJukNqobHWp4UZgYCA2bNiAgjI2cy8sLERMTAxiYmLwyy+/oG3btvjkk0/QqlWrCucMDQ3F3LlzERcXV+L9hIQEJCQk4OTJk/jvf/+LTz/9FPb29nr7LHoPX02bNsWjR4/w6BHv3aXKYQAjqj8U/2uYABRtMUH1XPE/Y1n1bqaRF7ttUZvGjpl1jeX/NlgHUKUgrWX4rnF1KXzdv39fCl5OTk7o0aMHvL294ejoCJVKhevXr+Onn35Ceno6bt68iYkTJ+K///0vPD09y5zv7t27mD59OjL+163V19cXI0aMgIODA6KiorBv3z7Ex8cjODgYM2fOxM6dO2Fubq6Xz6L38DVkyBBcvHgRFy9elLoaEj2JLoAJgoDNmzfj2rVr2L59OwAGMKK6pGMnb+k4Pj7RiJVQTVC0bisda5OTqjWXaZ9npWP1zYYtw/EyAAAgAElEQVTV/a4+yEjLAFDUFderfUv8efJCheNbtWspHRfkFyAzLdOQ5VEdJwgCevbsialTp6JXr16lfrn38ssv46233sJbb72Fq1evIi0tDR9++KH0s+TfLV26VApeEydOxJIlS0rc+jpp0iTMmDEDly9fRlhYGLZu3YrZs2fr5bPo/ZmvgIAAuLi4IDc3F2vXrtX39FRHaDQa6f+qVCqcP38ely9fxuXLl6VzxccBj/cBmzFjBjp06AC1Wo3t27fzGTCiOqJNWy+8FDBM+vrUCXarq8/kzZrDrG9/6WtVyMUqz2Xi6wezZwdKXxecPVnBaKqNrl2OkI4DJrwAM3PTCsdPmDlGOg69GG6QZ2uoYqKBXoYwd+5cBAYGom/fvuXeVWFvb4/PPvtMWqE6f/58qVsKAeDs2bMICSnq2tu6dWssXLiw1DOHVlZWWLduHUxNi/4ef/PNN8jKytLLZ9F7+FIqlVi/fj2USiWCgoKwZMkSKVlSw6DRaCCXy5GVlYVNmzZh5syZmDp1KqZNm4bx48dj7ty5+Pbbb6HVaiGXy0s8GMkARlS7vPuvWZg3/224uDapcNzgIf3ww4+BMDMr+g/VrZt3cOSXEzVRIumRxfhJsJgwGTJHpwrHmXTtDpuP1kP43w8m6ugoqP4qGbZljZvAevV6mHTuBsjKuQVVEGA26DlYfbBK2uOr8GZEtfcNo5p3aM+v0i9U3Zu74eOtK2BjZ11qnMJEgX++PwuDXni80rlve9W3KaCGwdbWtlLjmjRpgs6dO0tf37p1q9SYw4cPS8eTJk2SmgX+naurK4YOLWoklJubi+PHjz9NyeXS+22HBw8W/Qs0YcIEbN26Ffv378ehQ4fQq1cvPPPMM3BwcKj0PZMvv/yyvssjA9MFr7S0NPzjH//ApUuXpN9m6X6rcPToUZw9exZXrlzBunXroFAooFarpb/8ugAGoNQtiGPGjIGHh0fNf7AG5Pvvvyr1nqOjg3S8dOm7SEpKLXH+hx8O4YcfDhm8Nqp59va2mDlrMuYvmo3r127iWtgNxMc/RE5OLszNzdC0qRu69ewMT8/HtwYnJ6di5uvvorCw0IiVU1XIrK1hEfAqLF+bAs29u1DfuwNt0iOI+XkQTM0ga+IMkw4+JZ/PSk9H1uplwN87jAkCTP38YernD21mBtQ3IqB+EA0xOwsQZJA7NYZJp86QO7tIl2iSHiFr+fs19XFJjyIj7mLXpiBMnj0BANBzQHf8eGEPzh37E1GR0VD/b5PlXgN7SJssA8DRH4/j5K+1Y9PhhkZbTxtMKpVK6Tg/P7/U+TNnHv9969+/f4Vz9evXDz/99JN0nT6yid7DV1lLdwUFBTh58iROnqz8bQSCIDB81THFg9ekSZMQGRkJR0dHPPPMM3jllVdgamqKhIQEbN68GQ8fPsSRI0eQkpKC7du3VyqAfffdd8jLy8OUKVMYwAxo5MjnKzzfp0/3Uu9FRJT+zRLVD1pt0SPZMpkM3j7t4e3TvsLxp07+gfnvfoD797hSXSdp//fLMpkMCq9WUHhV3C1MdfkSsj9fD2186Vt7ipNZ28C0Ww+YdutR/lx//YmsDR9DTGezjbrqi1VfIzsrB9PfnQJTM1M0UlriuZcHlTlWq9Viz7b9+HT5/9VwlaRTlxpuPI3IyEjp2NXVtcS55ORkpKSkAABcXFzg5FTxKr+Pj490XNYqWlXoPXwBKPO+Xd7LW7+JoijdajhnzhxERkaiadOmeP3119G3b1+4uDz+zWZoaCgOHDgAhUKBixcvYvLkyfj2228rDGDbtm3D1atX8euvv2LWrFlG+YxEDdGH76/Fr4ePoWfvbvDr1AEtvTzRpIkTLBtZID+/AJkZWbhz5z6uhIThx4NHEHb1urFLpmrI2foVCv48CxNfP5i0bguZmztk9g4QzM2BQhW02dnQxD6A+tYNFJw5Bc2d2+XOpX30EOn/eBOKdu1h0vYZyN3dIdjYQmZtA8gEiNnZ0CTEozDiGgpO/A7NvbvlzkV1x/bPd+GXfb9h+KtD0bmXHzxbNYeVjRXkchmyMrPx4H4srl4Iw09BhxFzL9bY5VI9c+HCBdy9W/S/Jfb29vD29i5x/v79+9Kxu7v7E+dzcXGBTCaDVqtFdHQ0RFGs9p50eg9fAQEB+p6S6gBBEKBSqfB///d/uHTpElxdXTFr1iwMGjSoxPLv1q1bceDAAQBFDzNmZWXh0qVLmDRpEnbs2FFmAOvXrx9UKhXMzMywaNEiODg4lFkD6Ye5OTtL0mMajQbn/7yE839eMnYpVBO0GqivhUF9LQx51Z1LFKG+dQPqWzeQjx/0UR3VEY8SkhD42U4EfrbT2KVQBerbyldeXh7+85//SF/PnDmzVHOOzMzHXTXtKrGZu4mJCaysrJCRkYHCwkLk5uaiUaNG1apT7+Hro48+0veUVMvpfgtw/fp1nDt3DhYWFhg1ahT69+9fKnh98sknAIDJkyejefPm2LZtG2JjYxESElJuADMzM8PgwYNLzUdEREREtcv+/fulX7RXRkBAAEaOHFmt7ymKIubPny+tbPn5+WHChAmlxuXm5krHZmZmlZq7+LicnJzaF76o4dEtv/7www+IjIyEv78/hg8fXqIzzfbt26XgNXbsWIwdOxaenp6wtrbGvHnzAOCJAayy/5IQERERUcUM9UBQXFwcgoODKz2+a9eu1f6eq1evxtGjRwEAjo6O2LBhA0xMTKo9ryEwfJHe6ELY9OnT0bx5c+n9ffv2YfXq1QCAUaNGYeLEidL54cOH4/z589i3bx8UCgVCQkLKfQaMiIiIiGo3Nze3pwpUbm5uTx5UgfXr10tdse3s7BAYGFii10BxlpaW0nFBQUGl5i8+rrqrXgDDF+mB7rbD5cuXo0+fPiU6w1y5cgWBgYEAitp5jh49Gi1bFu1qr+uO6OXlBaDo+S6NRoNLly4hICBAaspBRERERPplqFbzI0eOrPZthJW1YcMGfP311wCK9gLbvn07WrduXe54a+vHe8+lpT25s2phYSGys7MBFD3/VTy8VZXeN1mmhkcQBKkd9ZAhQ2Bvby+du3r1KuLi4qBUKjF06FD4+vpK52Syor9+np6eUCgUaNmypRTEbt++jYSEhBr8FEREREQNh9ZAr5qyfv16fPVV0d6ktra2+Pbbb9G2bdsKr/H09JSOY2Of3G0zISFB2jy8WbNm1e50CNTQyldOTg5u3ryJtLQ05OTkVLrtPPf5qjt0Qaq4zMxMfP/998jPz0ffvn2lP0/dSpnuL3BeXh60Wi2GDx+OFi1a4Msvv8SKFSsq1QKUiIiIiBqWtWvXYuvWrQAer3g9KXgBRc+DOTg4ICUlBQkJCUhKSqpwr6+wsDDpuE2bNtUvHAYOX7/88gt27NiB8PBwaWWksrjJcu2i1WrLDFgAyt3zIDc3F3l5Rc2KW7Uq2qjz789wpaen4/Dhw9BqtcjJyUHv3r3RsWNHdjUkIiIiMqC6ugPvmjVrsG3bNgCPg1e7du0qfX2fPn1w8OBBAMDp06fxyiuvlDv29OnT0rFu79nqMshthyqVCrNmzcK8efMQGhoKjUYDURTLfAGo8BwZn0ajgUwmQ15eHm7duoUjR47g6NGjePDgAQoKCiAIgrQkW5ypqakUooKDg/HgwQMoFAopiOfl5eHChQuIiIiAo6MjevToAUA/DzMSERERUf2yatWqagUvoKjZm86OHTugVqvLHJeQkIAjR44AACwsLDBgwIAqVl2SQVa+li5dihMnTgAoahHerVs3xMbG4t69e9KKVnZ2NuLi4nD79m2o1WoIggALCws899xzhiiJqkjXFCMtLQ2LFi3C7du3ER8fDwBo3rw5PD098cEHH6BJkyalrrWysoKrqyuioqLw4MED7Nq1C6+++iq8vLzw6NEjnDx5EkFBQYiLi0P//v2lDoj6uJ+WiIiIiMqnrWNrXytXrsSOHTsAVP4Zr7L07dsXfn5+uHLlCm7duoU1a9Zg8eLFJX7+zM7OxrvvvguVSgUAmDZtWolmHdUhiHpeYrp+/TpGjRoFQRDg4eGBwMBAuLm5Yfny5fjuu+8gCAJu3Lghjc/MzERQUBA2bdqE/Px89OvXD+vWrePqRy2gu9UwPT0dU6ZMwc2bNyEIQqlVSTc3Nyxbtgxdu3aV9lTQXXv79m3MmDEDiYmJsLKyglKpRLdu3RAaGors7GwkJSXB1dUV3377LTw8PIzxMStkbt7U2CVQLWNlZmHsEqgWutHd2dglUC00LLxu/XBLNeNi/BljlwAAWN6s9CbE+rA0+ju9z7lx40Zs2rRJ+nrOnDmVCl6enp5Sl+3iIiMjMX78eGRmZgIAOnbsiBEjRsDe3h7R0dHYt28f4uLiAAAdOnTArl27YGGhn//+6z18FQ9ZO3fuROfOnUu9Xzx86dy5cweTJ09Gamoqhg4dig0bNuizLKqivLw8LFy4EL/99htcXV3RrVs3tG3bFgUFBdi9ezfS09ORk5MDZ2dnLF68GP369ZM2Q9YFsOPHj2P58uVITEwsNb+bmxs2b95c5r8YtQHDF/0dwxeVheGLysLwRWVh+Hp6EydOfKqNm3Vmz56NOXPmlHnuypUrePfdd6U7usrSpUsXfPrpp3BwcHjq710evd92GBISAgBwd3eXgldleHl5YdWqVZg5cyaOHDmCkSNHok+fPvouj55SZGQkgoOD4ezsjHfeeQf9+/eXll379euHoKAgHD16FImJiVi5ciWAov28TE1NpQYdAwYMgIeHB1asWIGkpCTEx8ejTZs28PHxweTJk2vlihcRERFRfdbQfzXg5+eHn3/+GXv27MHRo0cRHR2NrKws2Nvbo3379hgxYgSGDx+u98dh9B6+EhMTIQgC2rdvX+L94oUXFhZKt6cV169fPzRv3hzR0dH48ccfGb5qgUuXLiEtLQ1Tp05F3759YW1tDa1WC0EQ0KZNG7z++utQKpU4cOAAHj58iJUrV0IURTz77LMwNTUFUNRQpXXr1ti8eTPy8/Px6NEjeHp6QhRFaQwRERERUVl27txpkHmVSiWmTZuGadOmGWT+sug9fOl2gbazsyvxfvEfsnNycmBra1vm9d7e3oiKikJ4eLi+S6NK0LWN1zXaSE1NBVDUGUb3Z1a85by7uzvGjRsHAFIAW7VqFQBIAUwmk0Gr1cLc3Bzm5uawsbEp89kxIiIiIqoZNbkhMj2m9/BlZmaG3NzcUm0brayspOPExMRyw5duD6ikpCR9l0YV0D2fpVuhlMvlAIq6ySgUCjRu3Ljc/bxcXV0rFcB0dHOwqyERERGRcWj5Y5hR6D18NWnSBPfv35e6h+g0a9ZMOg4PDy+3Q8n9+/cBgKsiNUi3ypWdnY1z584hIiICycnJ8Pb2xrVr12BmZiYFr/I2W65MACMiIiIiasiqHL4WLVoEAOjZsydeeOEF6X0vLy/cu3cPUVFRJcZ7e3tLxwcOHMCrr75aas7Q0FCEhoZCEAS4urpWtTR6CsX38XrnnXdw48YNKTj//PPPMDMzQ05ODnbu3In33nsPMpnsqVbAPv74YxQWFmLIkCEMYERERES1RF3b56u+KL2EUUkHDhzAwYMHERoaWuJ9f39/AMC9e/ek578AwMPDAx06dIAoirhy5Qref/99pKWlSecvXLiAuXPnSitebLZheKIoQi6XIyMjA6+//jouXLiAwsJCCIIAR0dHFBYWSn+Gly5dwp9//gkAFT6vpQtgAQEBcHZ2RlxcHDZt2iRtUkdERERE1FBVOXyVRxeaNBoNzp07V+Lc3LlzpeO9e/eid+/e6NOnD7p06YIpU6YgISEBAGBpaYkpU6bouzT6G0EQUFhYiPXr1yMiIgIeHh6YOXMmvvvuO+zZswczZ86UViyvXr2K3bt3S2G7MgFs0KBBaN68OdatWwelUlljn4uIiIiIKiYa6EUV03v4atGiBZ577jn4+PiU2ky5V69eeOeddyCKIkRRhEajQXJyMrKysqT3zM3NsW7dOjg7c8NKQykemnJzc3H58mU4ODjgrbfewmuvvYZOnTrB1dUVc+fOxT/+8Q8MGjQIAPDbb78hMDAQV69eBfDkAPbGG2/gu+++q9QO5ERERERE9Z3eG24AwKefflruuTfffBO+vr7YunUrgoODUVhYCKCoG2K/fv3w1ltvoWXLloYoiwCo1WooFArk5uYiNzcXiYmJiIyMRL9+/dCnTx9phUr3LJjuPZlMhqNHj+LIkSMAgClTpqBjx45SACvrGTAGaCIiIqLaia3mjcMg4etJevTogR49ekCr1SI9PR1A0b5gbD1ueAqFAsnJyZg9ezZ8fX3Rpk0bAMCwYcPg5OQkBSm5XC4d+/n5Sdc/bQAjIiIiotqHDTeMwyjhS0cmk8He3t6YJTQ4KpUKs2fPxtWrV5GcnCw9Z6dbgSyueKhiACMiIiIiqh6jhi+qGbpbCAHA1NQUY8aMQWJiImJjY5GamgoAyMjIKPPaygSwadOmwcfHh8GLiIiIqI7gupdx6L3hBtUuuuCVnp6OgwcPIiMjAwEBAZg/fz4cHR2Rm5sLAPj+++9x+/btMgNU8cYafn5+mDp1KoYMGQIAOHLkCD7//HOEh4fX3IciIiIiIqqDqr3ydfDgQZw8eVIftZQgCAKOHTum93kbEq1WKwWvUaNGITExEUuWLMGLL74odTBctWoVkpOTkZ6ejt27d+P1118vc4PrslbAFAoFfvnlF5w/fx7Lly+v0c9GRERERFXHhhvGUe3wlZ2dXWIz5eris0P6I5PJkJ2djXnz5iEuLg42NjZ4+PAh8vPzoVQqMXDgQACPA9jRo0ehVCoxduxYuLi4lJrv7wFMrVbD1NQUU6dOZWdDIiIiojqEDTeMo9Y981XevlH0dHQh6ejRo/jrr7/g5uaGOXPmoGfPnnB0dAQAmJmZSQHso48+QlJSEvbv3w8AFQYwnS5dusDb2xvm5uY18ImIiIiIiOq2aocvHx8f9O3bVx+1kB7onvHShaTz589Do9Fg5MiRGDhwIKysrAA8Dme6ACYIAlatWlWpAFYcgxcRERFR3cPlDuPQS/iaPXu2PmqhatIFr7S0NJw9exYdOnTA3bt3YWpqisGDB0vBCyi5gmVmZoYBAwYAQJUCGBERERERPVmtu+2Qqk4XvAYNGgRRFPHPf/4TOTk5aN68OVq3bl3htQxgRERERA0HG24YB8NXPSKKIk6cOIHc3FyIoogtW7ZAq9XC1NQUKpUKpqamFV5fXgCTyWR45ZVX4ObmVhMfg4iIiIgMTOSNh0bBfb7qEUEQ0KdPHyxcuBAODg5ITk5GamoqIiMjERISUqk5dAFs8eLFcHJyQlJSEr755hv8+OOPUKvVBv4ERERERET1F8NXPdO4cWOMGDEC06dPh52dHYCilvNBQUGIi4ur1By6ALZkyRKYmJhApVJh2LBhUCi4UEpERERUH2gN9KKKMXzVQw4ODnjhhRcwc+ZM2NvbQ6vVIiQkBEePHkVaWlql5jAzM0P//v2xYcMG/Prrr/D09DRw1URERERE9RuXMuopXQADgC1btiA5ORk7d+6EhYUFhg4dCltb2yfOYW5ujkGDBhm6VCIiIiKqYdxk2TiqFb64IXLN0+3PVRGtVguZTFYigG3duhXx8fHYvHkzRFHEsGHDKhXAiIiIiIhIP6ocvo4fPw4AUCqVeiuGKqbbx0ulUiEzMxPnzp1DdnY2BEGAlZUVevfuDaVSCVNTU6jVaigUijID2JYtWwCAAYyIiIiogeISinFUOXyx7XjN0oWpzMxMbNy4EaGhobh+/XqJMR06dIC3tzfmzJkjPetV3goYAxgRERFRw8XbDo2Dz3zVARqNBgqFAqmpqXjrrbcQGhoqnbO2tkZWVhZEUcS1a9dw7do1/Pnnn/jiiy/QqlUr6TZFBjAiIiIiIuNi+KrltFot5HI5MjIy8MYbbyAiIgIuLi7w9/fHkCFDYGdnhzt37iAyMhLff/89ACA6OhozZ87E+vXr0bFjxwpvQQwMDERBQQECAgJgY2NjzI9KRERERDWEbeGNg+GrlpPJZMjLy8OKFSsQEREBd3d3zJ49G3369IGDgwMAoEuXLgCAAQMGYMWKFYiPj0d8fDzeffdd7Ny5E25ubtLzYsUDWGBgIGJiYvDDDz8gICDAaJ+RiIiIiKgh4D5fdcC9e/cQHh4OQRAwePBg9O/fXwpeGo0GQFEXxN69e2P16tVo06YNFAoF4uPjMW/ePGRlZUEul0vdKXUBbNy4cWjWrBnWrl3LVS8iIiKiBkQ00D9UMYavOuDUqVOIioqCXC7HkCFDSjyfJZfLAUBqP9+xY0csWLAAFhYWAID79+/jyJEjAEpuDeDg4IDRo0dj9+7daNu2bU19FCIiIiKqBbQGelHFeNthHZCYmAgAaNq0KZo1awag4v2+OnfujPfffx//+te/kJGRgT/++AOvvvoqZLKSWdve3t6whdcDaq3G2CVQLZOWl23sEqgWcj55x9glUC2UF3/W2CUQUS3Dla86QKVSAQAePnyIuLg4ACg3eImiCK1Wiy5duqBt27aQy+W4fPkyUlJSaqxeIiIiIqrdeNuhcTB81QG6jaw1Gg0ePHggHZdFEATIZDI4OztLjTZSU1NRUFBQY/USEREREVFpDF91wODBg2Fvb4/8/Hx8/vnnSElJgVwuh1Zb9p21hYWFAAAbGxvIZDLY2trCxMSkJksmIiIiolqMz3wZB8NXHeDu7g5HR0cAwIMHD/DJJ58gIyMDMpmszABmYmKC9PR0hIeHQ6vVonXr1nBycqrpsomIiIioltKKokFeVDGGLyMSK/gLWjxUubu7Y968eQAAtVqNs2fP4vPPP0d6ejpkMhnUajWAx7ci5ufn49SpU0hOToalpSX69u37xO9HRERERESGxfBlJBqNBoIgQKVSITExEefOnUNISIj0TJeuM6EoihBFEf369cPSpUsBAMnJyTh06BAWLFiA2NhYKBRFTSvlcjkyMzNx8uRJ7NixA2lpafDy8sKwYcMAlN+kg4iIiIgaFtFAL6oYW80bgVqthkKhQHp6OtasWYPr16/j9u3bAIDmzZujS5cumDdvHmxsbCAIgrRi9dJLLyEvLw+ffPIJ0tPTcfr0aYSHh6N///7w8PCAhYUFzpw5g6ioKMTHx8PR0RFr1qxBkyZNjPlxiYiIiIgIDF81TqPRQKFQIC0tDVOnTsXNmzdLnI+JiUFUVBSioqIwc+ZMdOnSBWZmZgCKuh5OmjQJDg4OeP/996HVapGamopDhw5BpVJJQU0ul6N169bYuHEjPD09jfExiYiIiKgW03KdyigYvmqYXC5HdnY23nnnHdy8eRNNmjRB69at4e3tjaSkJPz55594+PAhLl68iPz8fLzxxhvo168fzM3NAQCmpqYICAhAixYtsHfvXgQHByM2NhZA0S2Kvr6+6Ny5MyZMmABXV1djflQiIiIiIiqG4asGiaIIQRDw448/4sKFC3Bzc8OcOXPQt29f2NvbAwCCg4Px66+/Yt++fQgPD8fXX38NAFIA02q1EAQBvr6+aNeuHVQqFSIjI6FSqWBmZgZfX19pdY2IiIiIqCzcENk4+BN6DdBoNJDL5VLDi4sXLwIAJkyYgEGDBkGpVEpjunbtisaNG0OpVGL79u2IiIjA5s2bIYoi+vfvD3Nzc+kZMBMTE5iamsLPz6/E95PL5TX7AYmIiIioTuGeXMbBbocGpgtVqamp0vNdly5dgp2dHQYPHgylUgmgZGBq3rw5Ro8ejSlTpsDExATXr1/Hli1bcOrUKeTn50shrrzuhexqSERERERU+3Dly8B0wev5559Heno6du7ciRYtWsDS0hIeHh5SOPs7Dw8PjB49GgCwfft2KYABkFbAiIiIiIiqgg03jIMrXwYmiiI2btyI9PR0AMC0adMQHh4ubaJc0S2CugBW3goYERERERHVHQxfBiYIAt544w0MHDgQFhYWKCwsRF5eHmJiYhATEyM9v1WesgJYYGAgfv/9dxQUFNTQpyAiIiKi+kQ00D9UMYYvA9NqtWjatCkWLVqEbt26wdTUFAAQGxuL0NBQCIIgrYKVp3gAs7CwQGhoKPbs2YPCwsKa+AhEREREVM9oDfSiijF8GZhMJoNWq4W7uzv+/e9/o2fPnrCwsIBarcbSpUsRFhYmjamILoCNGjUKDg4OWLJkidSsg4iIiIiIaj9BfNJ9b6QXWq0WMpkMsbGxWLFiBYKDg5GbmwsLCwvs3LkTHTp0kMZUJDY2FhYWFnBwcKihyhs2hambsUsgIqI6Ki/+rLFLoFrIxLGFsUsAAAQ0fcEg8x6I+dkg89YXXPnSgyflV12oKr4C1rVrVzRq1Ah5eXmYOHEirl27VqkVMHd3dwYvIiIiIqI6iCtf1aRrFZ+fn4+HDx8iJCQEgiBAEAS4u7ujY8eOUCiKOvqLogitVgu5XC6tgF28eBE5OTlPvQJGNYMrX0REVFVc+aKy1JaVr5eajjDIvD/GHDLIvPUFw1cl5OTkoFGjRqXe1wWv9PR0LF++HDdv3sTdu3el840aNUKrVq0wefJk+Pn5wdnZmQGsjmH4IiKiqmL4orLUlvD1goHC188MXxVi+HqCoKAg3Lt3D1OnToWLi4v0vi4cpaWlYdq0abhx44Z0Ti6XQ6PRSF83btwYXbt2xYwZM9C6detKB7DyNmCmmsPwRUREVcXwRWVh+KoaURQRHR2NiIgIXL9+HdevX8eNGzekvXTd3Nxw4sSJp5ozJycHe/fuxW+//Ybo6GhkZWXBwcEBbdu2xYsvvohhw4ZBEAS9fg6GrwoEBQXhgw8+gJ2dHcaOHYvRo0fDxcUFoihCEARkZ2djzpw5OH/+PFxcXODt7Y2hQ4dCo9EgOTkZx44dw61bt5CdnQ1LS0u0a9cOS5YsQfv27SsMYFZWVti6dSt8fX2N/f+CBscrD/4AACAASURBVI/hi4iIqorhi8pSW8LXiKbDDTLvoZjDBpl39erVCAwMLPf804av0NBQzJ07F3FxceWO6dq1Kz799FPY29s/Va0VUehtpnpGo9HAwsICtra2SEtLw759+6DVajF27FhpBezYsWO4ePEiXF1dMWfOHPTu3RtOTk7SHAMGDEBwcDA+/fRTJCcn4/r161i/fj0WL16MFi1aQC6Xl2jCsWLFCly5cgUZGRmYPXs2jh8/DhMTE70nbiIiIiKiuqT4XWUAYGFhgWbNmuHmzZtPPdfdu3cxffp0ZGRkAAB8fX0xYsQIODg4ICoqCvv27UN8fDyCg4Mxc+ZM7Ny5E+bm5nr5HAxf5ZDL5Rg6dCjMzMywcuVKJCUlYf/+/QCAcePGwdnZGcHBwVCr1XjhhRcwcOBAWFtbA3h8S2KzZs3QtGlTeHh44L333kNycjLCwsKwd+9evP3221AqlSW6IC5duhQLFixAbGwsvvrqK2lDZiIiIiIifdKibt385uXlhcmTJ6N9+/Z45pln0KJFCyQkJGDgwIFPPdfSpUul4DVx4kQsWbKkxGLHpEmTMGPGDFy+fBlhYWHYunUrZs+erZfPwfBVATMzMzz77LMQRRGrVq0qEcACAgKQkpICACWCF4ASjTIEQUD37t2xcuVKLFy4EGlpaThx4gTGjx8PpVIJURSlAObm5oaPP/4YgiCUeL6MiIiIiKghGzNmjF7mOXv2LEJCQgAArVu3xsKFC0vdZWZlZYV169bhueeeg0qlwjfffIPJkyfDysqq2t+f7fSewMzMDAMGDMDixYvh5OSEpKQkHDhwAHv37kV8fDycnJzg5eX1xHk6d+6McePGwczMDNHR0fjqq68AQPrD1gUwV1dXBi8iIiIiMihRFA3yqu0OH378TNqkSZOkLaH+ztXVFUOHDgUA5Obm4vjx43r5/gxflfD3APbo0SP89NNPSEtLQ35+PmJiYgBUvNlyo0aN0LNnT2lMfHx8qTFsLU9ERERENUFroFdtd+bMGem4f//+FY7t169fmddVB3/ar6SyVsBSUlKQlZWF27dvA8ATG2N07twZnTp1AgBcvXoVKSkp0Grrwl9TIiIiIqK6LTk5WXpsyMXFpUSjvLL4+PhIx7du3dJLDQxfT6F4AHN0dJRWsb788ssndlrRdWhRKBQQBAGWlpYwMzNjJ0MiIiIiqnGigf6pze7fvy8du7u7P3G8i4uLdGdadHS0Xm6rbLDhS7fipFKppOPKrELpAtiSJUvg6OgIAEhJScHu3bsr3CdALpcjOTkZ9+7dgyiK8PLyglKpZPgiIiIiIqoBmZmZ0rGdnd0Tx5uYmEhNNgoLC5Gbm1vtGhpkt0ONRgO5XI4HDx5g48aN8PT0xMSJE2FjY1Op63UBDIDUBfH333+HpaUlxo4dCw8PDykZ6zZSzs/Px6lTp5CXlwcTExP4+/tLYxjAiIiIiKgmGarV/P79+3HgwIFKjw8ICMDIkSMNUsvfFQ9PZmZmlbqm+LicnBw0atSoWjU0yPAll8sRExOD8ePHIzk5GQBw6NAhDB8+HL1794afn580Vrdn19+VFcAOHDiAuLg4TJkyBR07dpS+V2ZmJs6fP4/vv/8eaWlp8PT0xCuvvMLQRURERERGYajOhHFxcQgODq70+K5duxqkjtqqQYav/Px8LFy4EMnJyZDJZJDJZIiKisKWLVuwadMmTJ48Gd7e3nj++eel4FVWCCsrgB07dgzHjx/HmDFj4OTkBCcnJ/z++++4desW4uPj4eLigi+//BKurq41/rmJiIiIiAzJzc3tqQKVm5ubAaspydLSUjouKCio1DXFx1V31QtooOFLo9HAw8MDly9fhkwmQ4cOHZCamiq1jA8MDIS5uTkOHDiAl19+GZ07d0aTJk2k64sHseIBbOXKldJK2q5du0p8TxcXFwwZMgTvvfcemjZtWhMfk4iIiIioTIa67XDkyJE1dhvh07K2tpaO09LSnji+sLAQ2dnZAIqe/yoe3qqqQYavRo0aYcyYMfj555+hVqvh6OiIXbt2Ydu2bbh48SLOnj0LlUqFs2fPIiwsDI0aNcJbb72FNm3awMfHRwpeumfHygpgFhYW6Nq1K7p164ZWrVqhefPmsLOzg1KpNOZHJyIiIiJqkDw9PaXj2Nj/Z+++46uq8v3/v05J7xXSSQJSJURIBBREisAAUiJIExAuoqg4cp2rP5xRx++MM5lRubZRKQIWVFRElA6C9B5IgCR00hvp9eSU3x+5Z5uEkARIcpLwefrgMTs56+ysPVmPnPM+a+3PSmmwfXp6ulKxPCgoqEluGborqx2aTCbCwsKYMGECarWanTt3snfvXp566ik+/vhjXn/9dYYMGYKVlRUFBQWkpaXx17/+lT/+8Y/885//5MyZM+h0OjQajXLO2lUQy8rKuHTpEtnZ2XTt2pWAgAAJXkIIIYQQolW4G0vNe3p64uHhAVQFq+zs7Hrbx8bGKsddu3Ztkj7cleFLpVKh0WgICwtTyssfPHgQqNqHa9q0afzjH/9g9erVDBo0iKCgIPR6PWlpaaxevZoXX3yRZ555huPHj5OZmamc18bGhoceeohXX30VX19fUlJS2LNnT42QJoQQQgghhKUZTaZm+dfaDRo0SDn+7bff6m1b/fHBgwc3yc+/K8OX2eOPP678H/nNN99w6tQp5TFnZ2f69u3L22+/zbvvvsv48ePp1q0bUDVNeeDAAZ599ln++7//mx9++EG518ve3p4hQ4awaNEigoODWbp0qZKwhRBCCCGEEJYzZswY5fjzzz9Hr9fX2S49PZ2tW7cCYGdnp9xidKfuynu+4PcNlfv168fBgwcxGo2sX7+ebt26YW1tjVqtxmQy4eLigouLC9HR0SxbtoyEhARMJhM2NjYUFBRw/Phxjh8/TkREBD169ODpp5/GxsaGCRMmMHz4cFlqKNqs4OBA5s2dzqhRQwkM8MXW1pb09EyOHoth7dr1bNn6q6W7KCxAxoWoTcbE3eGjlV/y8WdfNbq9q4sz+zd/W+djvR4Yfdv9OHNgy20/V9TU+ueomsfgwYMJDw8nJiaGxMREoqOjWbJkSY37uYqLi1m8eDE6nQ6AuXPn1ijWcSdUpuYq8t9GZGZmMnnyZLKysggJCeHLL7/E3d29xt4HKpWKw4cPM2fOHKDqZr3IyEhiYmK4cuUKlZWVSlsXFxcmTJjASy+9hJWVVUtfjmhiWuuWK3/amjzz9Gyi//kX7O3tbtpmw09beHLuHykqKm7BnglLknEhapMxUb+ytH2W7kKTaQ3hq2MHL3au//y2ntuaWHmGWLoLAAzyG9Ys592XuqtZzltYWMjKlStrfK+4uFipMO7k5MSMGTNqPO7v78/kyZNvONeFCxeYPn06hYWFAPTp04exY8fi7u7OtWvX+P7770lNTQWgV69efPnll9jZ3fzv3K24a2e+oGr2q0OHDjzxxBN8+OGHXL58mU8++URJvyaTCZVKxcGDB5k7dy4A3bp1Y+rUqTz++OOYTCa+/vprjh8/zpYtVZ/EFBcXM2XKFAleos16av4TfPD+W8rXp2PPsX37bkpLy+jduwdjx4zAysqKCeNH4/ydE2PGzazxAYRon2RciNpkTNy9Rg0bTM9uXeptY2dre9PH/vvZeY3+WZ+sWktJaRkAE/4wotHPEw1rrlLzzaWwsJBPPvnkpo8XFRXd8HhkZGSd4atLly4sW7aMxYsXk5aWxqlTp2rcfmQWERHBe++912TBC+7y8GUuGX/vvfcqyxDPnj2rbIZcV/CaMmUK48ePR6VSoVKpmDFjBjNmzGD48OHK7FhoaKjFrkmIOxESEsTSd/+qfL3k1bf4178/qtGmT5+e/LLxSzp29Gbo0AdZ/OICov/1YUt3VbQgGReiNhkTd7cH7+/HhDG3H4SenP5Yo9qdiT/POx9VzXSoVComjnnktn+mELWFh4fz888/s27dOrZv3861a9coKirC3d2dHj16MHbsWMaMGdMk5eWru+uXHZr97W9/U6Yt//KXvzBjxgwOHDjAvHlVn850796dKVOmMGHCBOzs7JRZsep0Oh3W1tYt3nfRfO62ZYefr/mA6dOqNkZc+/V6Zs1+vs52I4YPZsvmrwEoKCgkpPP9FBQUtlg/RcuScSFqkzHROO112eHfliy+o/DVWG/++wPWbdgMwICIcJb/71sNPKNtaC3LDgf4Pdws5z2UurtZztte3NXVDgHl3q77778fV1dXAHbu3Mm33357S8ELkOAl2jQHB3smTqhah280Gvnb3//3pm137NzL4cMnAHBxcWb8o6NapI+i5cm4ELXJmBAtoay8nC07fy/zHTVOxk5TM5lMzfJP1O+uD1/mEPXwww8rywVPnTrF66+/DjQ+eAnR1o0Y8ZCypjk2Lp7z5y/V2/77H35RjidMkBfF9krGhahNxoRoCdt376eouASoKt4xbPAAC/dIiKZxV9/zZWYwGNBqtTz55JNcvHhRqXzSpUsXpk2bxtixYyV4NbErV67g4+ODbT035IqWdV/4vcrxgQNHG2y/f/8R5bhPWK9m6ZOwPBkXojYZE+L7n7ey5pv1pKZnojfocXV2JjjIn/v79mHSuJF4urvd8c/48ZdtyvG4kUOlkFkzaGsFN9qLu37mC0Cj0QBwzz334OjoiMlkws7OjoEDBzJ+/Hjs7e0leDWhDz/8kEcffZRdu3ZRUVFh6e6I/9Ojxz3K8cWLVxpsf/HSVeU4MNAPJyfZ0649knEhapMxIU7FnePC5auUlpWh01WSlXOdIydO8/6yNYyMmsOKL9bd0fKza8mpHD91Rvl60riRTdFtIVoFmfmqJjAwkHnz5vHmm29SVlZGTk4ONjY2ABK8msiJEydYvnw5lZWV/Pvf/0alUjFs2DDl/2dhOR07eCvHKanpDbbPzy+guLgER0cHADp08Lor9/Fp72RciNpkTNzd3N1cua93TzoF+uPoYE9JaSkXLl3l8PFTlFdUUKHT8b+frOJaSir/7/978bZ+xvpqs169e3SlS0inJuq9qM4kM18WIeGrlvDwcEJCQrh8+TLbtm1j1KhRjBgh+0o0FR8fH2bNmsWmTZtIS0vjrbeqKhdJALM8RycH5bi0pLRRzyktLVPeUDk5OjTQWrRFMi5EbTIm7k5hPbvx2fv/pF/4vcpWPdXl5uUT/d6nbNqxB4Aff9lO7x5dmTz+D7f0c/R6Az9t2al8PUkKbTQbKY5hGbLssJbu3bvTr18/oGpQxsTEACj7gIk74+vry4wZMxg3bhze3t7k5OTw1ltvyRLEVqD6hpg6XeM2Qi0v//13Zm/fdBsQitZDxoWoTcbE3enB/v2I7BtWZ/CCqhmx6DdeZtyoYcr3Plr5JTqd7pZ+zr5Dx8i5ngeAnZ0to4cNvv1OC9EKSfiqxvwJwBNPPEFQUBAGg4G1a9eSmJh40z824tZ17NiRadOmMXHiRAlgrUhZeblybG3duBubbW1/n60sLS1r8j4Jy5NxIWqTMSHq88oLC7D/v2qYOdfzaty71Rg//LxVOR41bDAODvZN2j/xOyOmZvkn6ieJohrzfV0dO3bE398fgPLycjZu3IjBYLBk19odCWCtT3FRiXJs38gXu+qfYJtLAov2RcaFqE3GhKiPi7MT/SP6KF+fPhPf6Odm5+Sy7/Ax5etJY6XQhmh/JHzVwcnJiWeffRYArVbL5MmTlYqIoulIAGtdMjKzlGN/P58G27u4OCv3cABkZmY3S7+EZcm4ELXJmBANCfTzVY6v5+U3+nk/bdmJwVB1m0dop0DC7+3R5H0Tv5NNli1DwtdNdO7cmdGjR/PTTz/RqVMnS3en3ZIA1nrEx19Qjjt3Dm6wfefQTspxcnKaVC9rp2RciNpkTIiG3G6F6B83bVeOpbx885Nlh5Yh1Q5vwtnZmejoaKytrS3dlXbPHMAAfvzxR7KysqQKogWcjIlTjgcOjGiw/YMP3q8cnzp9a2v6Rdsh40LUJmNCNCQpJU059nBzbdRzjsXEci05FQArKy3jRg5tlr4JYWky81UPCV4txxzAJk2aJDNgFrJ9+x7KyqpuhA/r3YMuXULqbR81aYxyvGHDlmbtm7AcGReiNhkToj4FhUUcPh6jfN27Z7dGPW/9L7/Pej38YH/cGxnaxO0zNdN/on4SvkSLqL4G+GZl+zt27MjUqVMlgFlISUkpP22s2thSrVbz6pI/3rTtsKGDlE+8CwuLlOeJ9kfGhahNxoSoz78/XE7J/1W0dHd1oV+fext8TlFxCTt271e+lkIboj2T8CWalTl0VV//Xbtsf/VgJgHMst7469vKniwzZ0Tx34ufvqFN7949WPXZ/ypf//vt/5CfX9BifRQtT8aFqE3GxN3ls6++51/vL+NqUspN2+QXFLLk/73Nhk07lO8tnDcTG5uGVxFt2rGb8v97jffp4M3AyPvuvNOiQUaTqVn+ifqpTFKWRDQTg8GARqOhoqKC1NRU9u7dS1ZWFlZWVtx3332Eh4fj7OwMVM2GVQ9lGRkZfPPNN6xfv56srCw8PT1ZsmRJi98DprX2a7Gf1Vo88/RsPnj/LeXrU6fPsn37bkpLy+jduwdjx4xQluT+9ttBRo+ZccubaIq2R8aFqE3GRMPK0vZZugtN4qOVX/LxZ18BEBwUQM9uXfDt6I2DvR2lpeVcuHyVQ8dOUlZtM+0JfxjB315d3KjzT5m7iHOJVYVcnpk7g2fnzWz6i2hFrDzrX6rbUnp2uL/hRrfhbOaRZjlveyEFN0Sz0Ov1aLVaCgoKiI6OJi4ujgsXLtRoM2zYMIYMGcLkyZNRq9VKWIPfZ8AAJYBJEY6W8fEna1Cr1fzzH69iZ2dHn7Ce9AnreUO7n3/Zzuw5i+66N1N3KxkXojYZE3enK9eSuXIt+aaP29nasHDeTOZMi2rU+RIuXFaCl1qtZuKYEU3STyFaK5n5Ek3OHKJyc3N5+umniY2NVWa1QkNDMRgMXL58GQBPT08mT57MCy+8UOO5ZnXNgL366qs8/PDD2NraNvu13I0zX2YhIUH817zpjBw5lMAAX2xtbcjIyObosRi++uoHNm/ZZekuCguQcSFqkzFxc+1l5qugsIiYuHPEnk3gTPx5MrNyyCsopLCoGBtrK1xdnOnaOYTIvmGMGzkUF2enRp/7raUfs/b7jQAMjLyPZUv/3lyX0Wq0lpmv7t6RzXLe+KyjzXLe9kLCl2hS5uWD+fn5zJo1i/Pnz+Pj48PIkSMZO3Ys99xzDyqVii+//JLo6GhUKhUqlYrZs2fz8ssvAw0HMK1Wy9KlSxkxovk/Hbubw5cQQog7017Cl2haEr7ubrLsUDQZk8mEWq2muLiYV155hfPnzxMYGMjChQsZPHgw7u7uSlsrKyvl2Gg0smrVKgBefvllNBpNnUsQ1Wo1K1eupKKigs6dO7fsxQkhhBBCtCNSFt4yJHyJJqNSqdDr9axbt44DBw7g5eXF/PnzGT58OI6Ojkq7ZcuW8e677wIQFhZGbGwsRqORNWvWADcPYI899hhWVlaMGjWK4ODglr9AIYQQQggh7oCUmhdNqqSkhD179mA0GvnDH/7A0KFDawSvFStWKMFrxowZfPDBByxcuBComgFbvXo10dHRAEoAM/P19WX+/PkSvIQQQggh7pCUmrcMCV+iSe3cuZOjR4/i7u5OVFQUHh4eymNffPEFb7/9NgBTp05l+vTpeHl58dxzzzFx4kSl3apVq24awLRamawVQgghhLhTpmb6T9RPwpdoUg888AD9+vVj1qxZ3HPPPcr3N2/ezD/+8Q8Axo8fz/Tp0wkNDVUef+SRR7CzswOqli+uWrVKCWrVi28IIYQQQgjRVsk0gmhSHTt25P3331e+NplMpKSk8N1332E0GunXrx9RUVFKMDOZTKhUKiIjI3FwcECv12Nvb09paSkrVqxAq9Xyxz/+0VKXI4QQQgjRLskSQcuQmS/R5Nzd3ZXKhiqVisuXL3Py5EkAhgwZQmRkVWlTc/CqrKwEwMbGhl69ejF9+nQqKytxdnZmzJgxlrkIIYQQQgghmpjMfIlmYzKZMBqNbN26lYqKCkJDQ5k1axbw+35gUFV2PiMjg8zMTJydnXnhhRdwdnZm0KBBUlJeCCGEEKIZyP1ZliHhSzRa7c2Pa39dPVBB1axX9YIZ+fn5ZGdn4+fnh0qlUma+SkpK+Omnn9Dr9fj5VW1q/OSTT7bQVQkhhBBC3H1MJqOlu3BXkvAlGkWv16PVaikqKmLXrl3ExsZSVlZGcHAwffr0ITIyErVaXSOQmWe+7O3tlfPs37+fsWPH4uDgAFSVpj948CDbtm1Do9HwwAMPADcGOSGEEEIIIdo6CV+iQQaDAa1WS25uLs8++ywJCQmUlZUpj/v6+tKvXz/+/ve/Y2VlpcxomWe+Jk2axA8//MD169dZu3YtRUVFjBgxAr1ez/bt29myZQsXLlygT58+DBs2DECClxBCCCFEMzLKskOLUJlMUupE3Jw5SBUWFjJv3jzi4uKUkvBubm6kpaUpbfv168c777xDhw4dlO8ZjUZMJhMrV67ko48+oqKiQnm+udCGXq/H09OTL7/8kk6dOrXcxTWC1trP0l0QQgjRRpWl7bN0F0QrZOUZYukuABDk0btZznvtemyznLe9kJkvUS+VSoVer+f9998nLi6OgIAAJk2axIMPPoi9vT2HDh1i1apVZGdnc/z4cV544QXefvtt/P39gd9nsMaOHYvRaOSDDz6oMWvm5OSEn58f7777bqsLXkIIIYQQ7ZXMv1iGzHyJBhUVFTFr1iwyMzNZvHgxjzzyCM7Ozsrj+/btY9WqVZw8eZLy8nL69OmjBDDzzBlULV88deoU69ato6CgAAcHByIjIxkyZEiN2bLWRGa+hBBC3C6Z+RJ1aS0zX/7uvZrlvCm5Z5rlvO2FzHyJBiUmJhIfH8+AAQMYNGiQErzMxTUGDRqEra0ty5cv5+jRo5w6dYqXXnrphgCmVqvp27cvffv2tfAVCSGEEEII0fIkfIkGmUvFjxgxosYMlUajUYJVRESE8v26AhigzIBVr2RYfWZMCCGEEEK0DFn8ZhlSUk4ozCHLaDRiMBjIzMxEp9Oh0WhwcnJSSsjr9XrlOeb9ugAiIiKYP38+kZGR2NraKgEsJSWlxs+pvReYEEIIIYQQdwOZ+RLA70sICwoKWL58OWfPniU5ORlXV1dCQ0MpKiriwoULAGi1NYdN9Q2TbzYD9s477ygbKAshhBBCCMsyysyXRUj4EkrwysvL4+mnn+b06dPKYykpKVy5cgWAkydPcubMGXr1uvEGzYYC2FNPPcXy5cvx9fVt/gsSQgghhBCiFZLwJdBoNBQXF/Pcc89x+vRp3N3d8fDwIDg4mDNnzih7eZ07d46tW7fi6+uLu7v7DeepHcDMmyzv3r2bS5cuKcsahRBCCCGEZZlkk2WLkPB1lzOHpR9++IETJ07g7+/PggULGDx4MB06dCA/P5+PP/6YvXv3cuXKFVasWIG9vT3Tpk3Dzc3thvNVD2D9+vWjsrISa2trFi1aREBAgAWuUAghhBBC1CYFNyxDwtddyrzU0Fzw4ujRo2i1WmbNmsXo0aNxdHREr9fj6urK888/T2BgIN9//z3x8fG8//77AI0KYAMGDCA8PBxbW9sWvT4hhBBCCCFaGwlfdyG9Xo9Wq6WgoIDTp08TGhrK5cuXcXV15aGHHsLR0RGoKqxhMplwdHQkKioKrVbLN998c8sBTIKXEEIIIUTrYpRlhxYh4esupNVqyc3NZeTIkbi5ufHUU09RVlZGr169CAoKqtHWHKJsbW0ZP348wC0FMCGEEEIIIUQVCV93IZPJxPr16ykqKqKoqIjVq1dTWVmpPG5ekmh2JwFMCCGEEEK0PnLPl2VI+LpLmJcamv935MiRFBYWsmrVKi5evAjA6dOnSU1NrXM/roYCmEajYfLkyXVWQRRCCCGEEK2L7PNlGWpLd0A0P4PBgFar5fr167zyyiscPnyYgIAApk6dyqxZs5RNk8vLy1m/fj3FxcV1nqd2AJs6dSrdu3cHYOnSpfz4448YjcYWuy4hhBBCCCHaEpn5aueMRiMajYaCggLmz5/PuXPnKC4uxtnZmR49evD444+jUqlYs2YNZWVlbN++ndDQUIYOHVpnoYzaAUytVvPxxx+TlpbG4MGDUaslzwshhBBCtHay7NAyJHy1c2q1mvLyct58803OnTuHv78/wcHBODk5ARAYGKgEsNWrV3PhwgVWrlyJWq1myJAhDQawsWPHotFoiIiIkH28hBBCCCGEqIeEr7vA+fPnOXbsGN7e3jz33HMMHToUZ2dnpRR8QEAAU6ZMAWD16tWcPXuW5cuXAzQYwOzs7Jg0aVKLXo8QQgghhLgzUmreMmSNWDuk1+tr/G9MTAxZWVkMHDiQQYMG4ezsDNQsBW8OYHPmzMHKykoJYHv27KG8vLzOnyOl5IUQQggh2iaTydQs/0T9JHy1M0ajEa1WS05ODi+99BJnzpwhIyMDgPHjx+Ph4XHT595OABNCCCGEEEI0jiw7bGfUajXFxcXMmTOHixcvUlBQgKOjIyqVCjs7O+UTiZvNWt3OEkQhhBBCCNG2SKl5y5Dw1Q6lpqYSFBREamoqhw4dUkJXWVmZcq9WfeoKYKtWraKyspJHHnkEGxublrgMIYQQQggh2hVZdtgOde3alWeeeYZHHnkErVZLWVkZAGvXriUvL69R92pVX4JoZ2fH6dOnWbduHZWVlc3dfSGEEEII0cxMzfSfqJ/MfLUz5gqGvXr1YubMmZhMJjZv3oxerychIYHDhw8zfPhwrKysGjyXOYCVlZWxZcsWXn31VRwdHVvgKoQQQgghhKjbb7/9xoYNGzh9+jQ5OTnY2dnh7+/PsGHDmDp1Ku7u7pbu4k2pTFKWpN0xBzCAuLg4vvzySzZv65GCkQAAIABJREFU3kxlZSVhYWG88sorhIWFNXpD5JSUFOzs7Oot1tFeaa39LN0FIYQQbVRZ2j5Ld0G0QlaeIZbuAgB2dkHNct6ysmvNct6qc5fx8ssvs23btpu2cXNzIzo6moceeqjZ+nEnJHy1YUajsUaAMoeu2kU14uLi+Oqrr9i8eTM6nY777ruPl19+mXvvvbfRAexuJeFLCCHE7ZLwJerSWsKXrW1gs5y3vDypWc5rNBp55pln2LNnDwDu7u5MnjyZLl26UFxczM6dO9m/fz8ANjY2rFq1ir59+zZLX+6EhK82qHboAtDpdFhbW9f4nl6vR6utWlkqAez2SPgSQghxuyR8ibpI+Lo93333HX/+858B6NSpE59//jkdOnSo0eazzz4jOjpaafPLL7806labliThq40xGAxoNBpKS0s5cuQIBw4c4OLFi+Tk5ODv709ERAQDBw6ke/fuAFRWViqDTgLYrZPwJYQQ4nZJ+BJ1aS3hy8Y2oFnOW1Ge3OTnNBqNDBkyhMzMTKAqiPXu3bvOtvPnz2fv3r0A/O1vf2Py5MlN3p87IeGrDTHPZOXn5/P6668TGxtLenr6De169OhBZGQkL7/8MiqVqsasmASwWyPhSwghxO2S8CXqIuHr1h05coRZs2YB0LdvX9auXXvTtocOHWLOnDkA9O/fnzVr1jR5f+6EvNtuIwwGA1qtlry8PGbPns22bdvIycnBwcGBbt26ERQUhJ2dHQDnzp1j9erVzJ8/H71ej7W1NTqdDoB7772XGTNm8Ic//AFra2tOnjxJdHQ0Z86cwWg0WvIShRBCCCFECzGZTM3yrzmYZ7IAhgwZUm/biIgI7O3tATh27BilpaXN0qfbJeGrDTCZTGg0GgoLC3nuuedITEwkICCAZ599lnXr1vH999+zZcsW3n77beVTAYD9+/fz5JNPYjQasba2VvboqiuAvfrqq5w7d85SlyiEEEIIIVpQWwpfiYmJyvG9995bb1utVqvcfmMwGLh48WKz9Ol2SfhqA1QqFXq9nk8++YQTJ07g5eXFwoULmT59OqGhoQCo1WqGDh3KkiVLeOONN5RlhseOHePFF1/EZDJhZWWFwWAAfg9gY8eOBeDChQu4urpa5gKFEEIIIYS4iStXrijH/v7+Dbav3qb6c1sD2WS5jTAajcTGxgLQs2dPBg0ahLOzM4BS0dBs6tSpWFtbs2TJEqBq7evXX3/N9OnT0Wg0Skn6e++9F4PBgLW1NU888USjBrMQQgghhGj7mqvow/r16/nxxx8b3X7ixIlMmjSp3jZFRUXKsZubW4PnrN6m+nNbAwlfFlR9M+S6ysdXd/jwYY4fPw7A0KFD8fT0rPF8qJohM59n0qRJFBQUEB0dTWFhIUeOHGH69OlKO/Nz+/TpQ/fu3bGxsWnGK2279LpUS3dBCCGEEKLJNdd7nA8++ICjR482un1kZGSDbarft2Vra9tg++ptSkpKGt2XliDhy0LMIamoqAgnJyfUanW9AaysrEw5rr2fV3XVzzN58mQOHTrE3r172bZtG8ePH6dfv34ANUKbBC8hhBBCCNEU/Pz8GhWoqre/m0j4sgBzOEpOTmbatGlMnjyZF154oc4AZp6hMhfLsLa2JiMjA6gqPV/XxnHm5zs6OhISEqJUiCkuLm7uSxNCCCGEEHexSZMmNbiM8FbZ29tTUFAAQHl5OY6OjvW2Ly8vV44dHByatC93SgpuWIBarSY3N5eRI0eSk5PD8uXLWbZsmfJY9ZLv5hmqrl27Ymdnh06nY/v27RgMBqysrG5aHt78/T59+ihTr61tzasQQgghhBANcXJyUo7z8vIabF+9TfXntgYSvizE3d2dgQMHAlVlMN99992bBjAADw8PevToAVTt4/X+++8rs2R1lfU0z34ZDAZlj6/6lisKIYQQQgjRGgUHByvHKSkpDbav3qb6c1sDCV8WYC73vmLFCkaPHq0sLawvgLm7uzN58mTl619//ZX169djNBqVQhu1FRQUsH37doxGI927d1fCnhBCCCGEEG1F165dleO4uLh62+r1euLj4wHQaDR07ty5Wft2qyR8WYBGo0Gv1wOwdOnSBgOYeWZrwoQJyibKFy5c4Ntvv+Xrr79Gr9crM13mEFZWVsbRo0eVTen69OlzQ0l6IYQQQgghWrtBgwYpx7/99lu9bY8dO6ZUR+zXrx/29vbN2rdbJe/GLUSr1aLX69FqtSxduhSALVu2KAEM4KmnnlICmPner2nTppGXl8fPP/9MXFwc169f5/Tp0yxevBh7e3ucnZ1JS0tj9+7d/PDDD1y9epXg4GD+67/+Czs7O4tdrxBCCCGEELcjIiICb29vsrKyOH78OLGxsfTu3bvOtp999plyPHbs2JbqYqOpTHXdMCRajDmAAbz44otKADOZTCxevJinnnrqhnbnzp3jq6++4ocfflDO4+Pjg6urK/7+/sTGxlJSUkJxcTHe3t6sWrWK0NDQlr84IYQQQgghmsC3337La6+9BlTdx7VmzRo6dOhQo81nn31GdHQ0AEFBQWzatKnOyuCWJOGrmdTeALm+PbxuJ4BlZmby/fff88EHH2Btba0U1TBzc3MjNDSUv/3tb3Tq1KkZrlAIIYQQQoiWYTAYWLBgAfv27QOq6iFMmTKFLl26UFxczI4dO9i/fz9QVWTus88+IyIiwpJdrpOEr2ZgMBjQaDSUlJRQUVGBu7v7DY/VVj1Y/fGPf2Tr1q0NBjCAgwcPEhsby65duygvL8fKyoqgoCBGjBhBREQEXl5ezXy1QgghhBBCNL/S0lL+9Kc/sXPnzpu2cXV1JTo6miFDhrRcx26BhK8mZp7hSkpKYvbs2bi4uBAZGUlkZCQRERG4uLjU2R4aH8AMBgNqtbrGzFp5eTl6vR6j0Yizs3MLXa0QQgghhBAta8+ePWzYsIHY2Fiys7Oxt7fHz8+PoUOHMm3aNDw8PCzdxZuS8NUMkpOTmTNnDqmpqUphDSsrKzw9Pbn//vuJiIigT58+hISEKAHKvExRp9Mp+3HVtwSxemirvcTxZt8TQgghhBBCWI6EryZWUVFB37590ev12NnZodPpMBgMODg4UFJSorTz9fXFz8+Phx56iPDwcLp27Yqjo+MN51u0aBHbt29vMIAJIYQQQgghWjfNG2+88YalO9GeaLVawsLC2LhxI3q9Hmtra9zc3IiKikKlUlFQUEBlZSVFRUWkpaVx7NgxvvvuO44ePcrZs2cBcHR0xMrKCo1Gw+jRo7ly5Qrnz59HpVJx6NAhrK2t6du3r7K5ssxwCSGEEEII0fpJ+GoGgYGBREREsGHDBgwGAwaDgU6dOvHRRx/x4IMP4ufnh0ajobi4WNkELjs7WymcsWHDBi5evEhaWhre3t5ERUWRkpJCQkICgAQwIYQQQggh2iBZdtiMjhw5wuzZs5Wvp0yZwptvvglAYWEhpaWl7N27l5iYGE6cOEFSUpLS1rzM0MvLiy5dujB06FA+/vhj8vLyMBqNaDQaFixYwKJFi1r8uoQQQgghhBC3TsJXM6sdwCZMmMA///nPG9qlp6dz9epVdu/eTWxsLFeuXKGgoEB53MXFhYKCAjQaDRqNBp1Oh6OjIzt27MDNza1FrkUIIYQQQghx+yR8tYDaAWzSpEm89dZbAEp1w+rFM4xGIzExMSQkJLBnzx7i4+PJyckBUKonenh4sGbNGjp37tzyFySEEEIIIYS4ZRK+Wkh9Aaz6xsu1N2EuLy+npKSEX3/9lbi4OPbt20dlZSWrVq2iS5cuLXsRQgghhBBCiNsm4asFNTaAwe/7dNX+fnJyMk5OTri6urZcx4UQQgghhBB3TMJXC7uVAFad7OklhBBC3JmioiKcnJws3Q0hxF1M3s23sPvvv581a9YoX69fv54lS5YAoNFoMBgMdT5Pgpdob+RzHyFES1q9ejXvvfce165ds3RXhBB3MXlHbwG3G8CEaOs+//xzvvrqK+D37RSEEKK5bdy4kX/+8598+eWXrF+/vsbWLqL9uXLlCuXl5ZbuhhB1kk2WLcTf31/ZiBkgPj6etLQ0hg0bhlqtxmAwyGyXaFdWrlxJdHQ0Bw8exNvbmx49eigBTDYJb7tKS0tRqVTy90q0WgaDgUuXLnHt2jWuX79ObGwsVlZW+Pv74+LiYunuiSb24Ycf8tJLLxEaGkpQUBBardbSXRKiBglfFiQBTNxN1qxZw6VLl1Cr1Rw4cAAPDw969uwpAawNS0pKYsmSJZSXl9O1a9eb3rMqhCWp1WoCAwPp0KEDSUlJZGRkEBcXJwGsHTpx4gSvv/46Op2O2NhYfH19CQwMlAAmWhUJXxZWVwC7cOECo0ePluAl2gVzsBo9ejQZGRmcOXMGvV7P4cOHJYC1YTk5OUycOJHExETy8/OxsbEhNDRUApholbRaLX5+fnh6epKcnCwBrB3TaDRkZGSQnp7OiRMn8Pf3lwAmWhUJX61A7QCWnp7OxIkTcXBwsHDPhLhz5i0T1Go1Q4cOJTU1lYSEBAlgbdzp06dJSEggMzOTjIwMMjMzsbW1lQAmWi2tVou/v78EsHbMycmJkJAQdDodycnJZGdnSwATrY6Er1bC39+f8PBwNm7cyI8//khAQICluyREk6m+jHb48OESwNqBgIAAvL29yc/PJykpiaysLAlgotWTANb+OTo6EhwcjF6vlwAmWiUJX61IYGAg8+bNo0OHDpbuihBNTq1Wo9frlQCWkpKiBLCDBw/i6ekpAayNMP9+OnXqhIuLiwQw0aZIAGv/JICJ1kzCVytjZWVl6S4I0SyMRqOylYI5gF29epXU1FTKyso4dOiQzIC1YkajUfl9VP/9SAATbZEEsPZPAphorSR8CSGancFgQKPRUFxczObNm/niiy/45ptvKCwsJC0tDZPJRGVlpSxBbKXS09NZv349vr6+yr2oEsBEWycBrP2TACZaIwlfQohmZQ5eeXl5LF68mC+++IJz586RlJSEyWSivLwck8mE0WjEYDDIDFgrk5KSwoQJE9i/fz+Ojo506tQJe3t7QAKYaPskgLV/EsBEayPhSwjRbEwmE2q1mvz8fObMmUNMTAy+vr5MnTqVJUuWMGfOHMaPH09gYCD5+flkZmZKEY5W5Nq1a8yePZvr169jMBi4cuUKACEhIfUGsIKCghoBzMbGhs6dO0sAE62SOYB5eXkpAUw2Ym5fzAHMYDCQlJQkAUxYlIQvIUSzUalUVFRU8Prrr3Po0CF8fHxYtGgRUVFRBAYGYmtri6enJ2FhYYwdO5YrV65w6dIlCWCtgMFgYNGiRSQmJipvTIqLi0lOTsZkMt1SAMvKypIAJlqM+b5Sg8GAXq/n6NGjZGdnk56ejre3t7KHprkd1L0PmASwtqP660P1+1OrM8/cSwATlibhSwjRrDIzM1m9ejW5ubkMHDiQJ554And3d6DqTbtKpcJoNGJtbc3o0aO5du0a58+flyWIFqZWqyktLeX48eMYDAa6detGWVkZubm5pKSkYDQaJYCJVse8zLmoqIgVK1awbNkyPvzwQzZt2sS3337LxYsXycrKonfv3mg0GqUCK0gAa4vMf3Oqvy7Ufo2o/rohAUy0BhK+hBC3RafTNepN9J49e/j2228BmDdvHn379lUeq149z/wp9COPPEJMTAxJSUkyA2ZhWq2WH374AZ1OR9euXYmKiiIuLo6cnBwJYKLVqX5/6XPPPcdPP/1EcnIyUFVJWK/Xc+nSJU6cOEFiYiIjRoxAq9U2OoAFBARIAGtFzK8ZFRUVJCUl8dNPP7F9+3aOHj2KTqfD3d0dGxsb5QM+CWCitZDwJYS4ZatXr+bEiRN06dIFGxubetvGxMSwZ88ebG1tGTduHCEhITWW+5hV3wcsLCyMffv2UVBQgF6vlxkwC/Hy8sJoNHLkyBHy8/MZMmQIwcHBnDt3TmbARKtSPXjNmjWLuLg4PD09iYiI4KWXXmLMmDH069eP8+fPU1hYyIULFzh27Bjjx49vVACLj4+noqKCkJAQCWCtgF6vR6vVUlBQwN///nfWrFnDxo0biYmJ4cSJE/zyyy9cvnyZ0tJS5XWj+uuOBDBhSRK+hBC3ZP369fz1r3/l8OHD2Nvb07Nnz3r3p0tOTmbbtm3o9XoCAgIYMGDADctEzMwvjFZWVhw+fJhr165hbW1NRUUFx44dw97ent69e0vwakE6nY59+/ZRWlrKwIEDiYqKwmAwkJCQIAFMtArmwj5FRUU8++yznDlzhsDAQJ5++mlmz55NWFgYnTp1olevXiQkJHDu3Dm0Wi0pKSkcPXq0wQCWnp5OSkoKqampzJ49WxnnwjIMBgNarZbc3FwWLFjAnj17yM/PR6VS0blzZ1xdXcnLy+PKlSvExcVRVFRE//79lfsAGwpgAQEBBAQESAATzUbClxCi0SorKzl48CAZGRnk5eWh0Wh47LHH6n1Ofn4+P/74IwAuLi6MGTPmhmUg1ZlMJqytrUlPT+fw4cMEBQVRUlJCWVkZ8fHxPPbYYw3OtommExgYyNmzZ0lMTOTMmTM89thjytLR+Pj42w5g169fB6Bbt243zIIKcStUKhU6nY4PPviAzZs34+vry3PPPceoUaPw8PBQ2q1YsYLPPvsMqPpbpNfrSUlJ4ciRI0yYMKHOAObv74+joyMFBQW8/fbbBAYGWuQaRRWj0YhGoyE/P5/Zs2dz7tw5fHx8iIqK4tVXX2XhwoVMmzYNZ2dnDhw4QFlZGSdOnKC4uJgHH3ywUQFs165ddO/endDQUAtfrWivJHwJIRpNo9HQtWtXKisr8fHx4YMPPmjwOV5eXiQmJnLlyhWuXLmCnZ0d9913300DmPkN+4kTJzh9+jR//etfMRqNpKam8sUXX+Dr69tclydqMf9+3N3dOXToEHl5eXh5eTFw4EB8fHywtra+7RmwjIwMysrKeOSRRyRMi9tmHl+xsbGsWbOGsrIyZs6cyaOPPoqzs7PSbsWKFbz99tsAzJ49m5EjR3Lx4kWKiopIS0urN4AFBQUxatQo+dtjYeYZzuLiYv7nf/6HEydOEBgYyPPPP8+kSZMICgpCo9Gg0Wg4e/Yse/fuVf4GnTp1ipKSknoDmMlkIjY2lsrKShYtWoSbm5uFr1i0VxK+hBCNZjKZsLGxoWfPnowaNUr5fm5uLlu2bMHX1xdbW9saz9FoNGRlZXHo0CFMJhNnzpzBy8uLbt261RnAVCoVhYWFrFy5ksuXLzNu3DieeuopJkyYIJ86N5ObzUKav2dnZ8eOHTvIzMyksrKSiRMn4urqip+fH1ZWVrcUwFxdXUlOTqagoID33ntP3tCKO2Ieox999BH79+8nLCyMp59+mo4dOyptVq9ezb/+9S8Apk6dysyZMxk0aBAeHh5s27YNgPT09HoDmLW1dQtfmahNpVKh1+tZu3Yt69atw8PDg4ULFzJy5Mga9+EtW7aM6OhoAPr06UNWVpYSrOqbAQsICMDJyYk33niD4OBgi1yjuDtI+BJCNJr5jU71e7wKCgoYNWoUmzdvxsvLi5CQEGUmw/ymPjw8nPj4eC5fvoxerycuLk65X8x8zsrKSjQaDWVlZRw4cICffvoJNzc3Zs2ahaurK46Oji1/we1YVlYWR44cITg4WPkd1FUIxWQyYW9vj4eHBzt27CA5ORk3Nzd69+6Ni4sL/v7+aLXaRi9BDAoKwsfHh2effVbe4Igms3v3bs6dO8frr79Onz59lO9///33vPnmmwBERUUxZ84cZczfc889ZGRkKPeApaam3vQeMNE6FBUV8fHHH5OWlkZUVBSPPfYYrq6uyuMrVqzgnXfeAWDGjBm89tpr2Nvbc/ToUUwmE6dPn77pDJiTkxPh4eE1lqoK0RwkfAkh7sjWrVs5dOgQZWVlHD58GDc3NyWAmT+pVKvVDBs2jNjYWJKSkigtLeXXX3+loqICd3d3PD090Wg05Obmsm3bNlavXs3Vq1fp378/48aNk0+dm1hycjJTp05l3bp1XLlyBZ1Oh7+/f43lf7X3z9FqtcTExJCZmYmXlxcPP/wwKpVKCWBWVlaNDmCBgYE4OTlZ5NpF+2IeU0OHDuWee+4hPDwcOzs7oKrS6rvvvkteXh5Dhgxhzpw5dO/evUblu6SkJPbv34+9vT0ajYakpCR27tzJlClTpOBCK7Rp0ya++OILPD09eeWVVwgICFAe++KLL5QZL/MMp7+/P5GRkaSmppKQkIBKpSImJuamAUzCtmgJEr6EEHfEz88PZ2dn0tLSyMnJ4dChQ7i7uysBzPziZmVlxaBBg0hMTOTatWsAnDx5kgMHDvDLL7+wb98+Pv30U3799VdSUlLw8/Pj3//+N15eXha+wvYlOTmZ2bNnk5GRgVqt5vz58+zbt49ff/0VJycnTCYTnp6eN8yGubi4kJuby+HDh4mPj6dv377KG59bCWBCNKXqS5dDQ0OV4AVVHwzt2LEDW1tb5s6dy5AhQ2o8T6VSUVBQwNatW+natStubm5KMZhJkybVuGdMtA7u7u6cOXOG8ePH88gjjyjf37x5M6+99homk4nx48cze/ZsunTpojyu0Wj49ddf0ev1SgArLy9n4MCBErhEi5PwJYRoNPMsVvUNlm1sbAgJCUGtVpOens7169frDGBGoxF7e3seffRRMjIyyM/Pp6ioiMLCQjIzM7l69Sp5eXkYjUYCAgL45JNP6NSpk2UvuJ2pqKhg8ODBFBQUKG9SzYUzrl27xoEDB9i+fTt6vR4bGxu8vb2V351KpSIgIICTJ0+SmZmJSqVS3riYw5k5gFW/BwwgKCgIBwcHS166aMfqCvWFhYX85S9/ITc3l/79+/OnP/0JuHFGNyEhga1btzJ37lxGjx5NcnIyK1eulL89rZSjoyNDhgyhR48e2NnZYTKZSElJ4aOPPiI5OZl+/frx5JNP0rt3b+D337e3tzfffvstlZWVODo6YjQaOX78OHq9nv79+1v4qsTdRsKXEKJRqu+t8q9//YvOnTvj4uKCwWDA1taW0NDQegNY9SWIQ4cOJTg4mICAAPLy8pQ37926dWP8+PG88sorBAUFWfqS2x2tVktYWBgbN25Er9djb2+Pv78/zzzzDMXFxVy5coXi4mIOHjzIiRMniImJISQkBJVKhZ2dHdbW1pw+fZqEhARKSkoYO3YsTk5ONWbHzPeAmQNYXFwczs7OhIWFySfM4rbcrCAMcNMN1/Py8li7di2lpaUMHz6cBx54AL1eX2Nfufz8fD799FMuXbrEfffdR1RUFKNGjapRrEO0PnZ2dsqHRyqVilOnTvHZZ59hMBiYPn0648aNA34fG5WVlRgMBr777juCg4MZPXo0R44cwdnZmVdeeUXu8RItTsKXEKJRzJuYjhkzhuPHjxMREaEELnMVxIYCWPX19UFBQdx///2MGzeOxx9/nKioKGbOnElkZKQs92lGgYGBREREsGHDBnQ6HVlZWXh4eLB06VK6deuGjY0NCQkJFBUVkZCQwN69e5V7+YKDg+nVqxc7duwgNTWV8vJyBg8eXOMNrTmA2djYcOzYMSorK3nttddwd3e34FWLtspgMCiFeC5fvszx48e5fPky1tbW2NraotVq6ywUo9Pp+Pnnn8nPz0ev1zNgwADc3NyUIFdWVsbBgwfZsGEDNjY2LFiwgI4dO2JlZSXLY9sIk8mE0Whk2bJlnDlzhtDQUP7xj3+g0WgwGo3KmNBoNGRmZvLpp5/i4uLC0qVLcXBwYPHixTWWJgrRUiR8CSEa7cSJE/zyyy/odDoyMjJ48MEHcXR0VIopNDaAVf+02sbGBjs7O2VZ2s0+yRZNx9/fXwlgAGfOnCEnJ4e5c+cyfPhwevTogbe3N9euXSMzM5OUlBR++eUXzpw5Q0ZGBnZ2dly9ehW1Ws3gwYNvqETp4uKCj48P7u7uvPbaa4SEhFjiMkUbZw5eeXl5/OlPf+Lzzz/nu+++Y8uWLezbt48jR44QERFRZ/EWrVbLb7/9RnJyMjqdDp1Oh4+PDx4eHmRlZSmFfS5fvkxkZCSPPfYYtra28rfHgmqH6Npf17UtiVqtZvv27SQmJqJWqxkzZkyND+9UKhUlJSV88803HD58mD59+vCHP/yB8PBw+UBIWIyELyFEo3l5eXHo0CHS0tKUtfJ+fn7Kp4yNDWD1vcGRNz8to64AlpKSwvDhwwkODmbAgAGMHj0aa2trpQx3cnIyx48fJz09nYqKCjIyMggNDaVnz543nN/FxYXw8HA8PT1b+tJEO2A0GtFoNOTn5/Pkk09y/PhxiouLlcfz8/O5evUqO3bsoHPnzvj4+CgzsEajEa1WS/fu3dm9ezc5OTlcvnyZbdu2kZCQwCeffML+/fu5du0avr6+vPvuu3To0MFSlyqoup9Yq9VSVFTEli1bWLduHdu3b+fy5csYDAb8/PxqVKmE32e+Dh06xJkzZ7C3t8fHx4fg4GCsra2V4HXw4EHWrl1LQUEBM2fO5N577613KasQzU3ClxCiUYxGI1ZWVvj5+bF7927y8vJIT09n3LhxypueW5kBE5ZXO4AlJCSQmprK8OHDUalUODs7ExERwdixY3F2dkar1XL16lUqKyuVAhzDhw+/6cyW3OMlbpd5aeCf//xnjhw5gq+vL8OHD2fixIlERkaSlJSE0Wjk+vXrHD16lICAAOV+Q3MFRE9PT6VITG5uLsXFxSQkJJCfn09paSl+fn4sX75cimtYWPX7iZ955hl++OEHYmJiSEhI4NChQxw5coSzZ88yZMgQtFptjaIparUad3d3NmzYQHFxMenp6eh0Ojw8PLh+/Trr16/nq6++4sKFC4SFhfHss8/i4OAgwUtYlIQvIUSjmF+sNBoNR48eJSMjA51OR5cuXQgKCqrxgthQAAsNDZUA1krUFcDS0tIYNmwYUBW6bWxsCA8PZ/Dgwdx///3k5eXh6enJggVUh9S9AAAgAElEQVQLGDlypCW7L9qx+Ph4Pv30U1xdXXnxxRd54oknuP/+++nbty/9+/ensrKS9PR0srOzOXnyJIGBgQQEBKDRaJS/V8HBwTzwwANcunQJa2trysrK6NmzJyNGjOCNN96Q4GVhJpMJtVpNYWEh8+fP5/Tp01hZWWFlZYW3tzdFRUUUFRWRmJjIsWPHeOCBB2osczYajXh5eWFlZaVUYo2JieGbb77hq6++4tixY2RnZ+Pp6cl//vMf/Pz8LHi1QlSR8CWEuCVOTk6o1Wp27dpFSUkJbm5uDBo06Ia1+DcLYMeOHcPa2lop7iAsr3YAi4+PVwKYRqNRthawsbEhMDCQhx56iGHDhtGnTx9A7tMTzWPTpk3s2rWLyZMnExUVhYuLC0ajEQBPT086d+6M0WgkKSlJCWABAQEEBgYqs/HmfetGjx7NhAkTGDNmDPPmzeOBBx6Qe35aAXMV3HfeeYedO3cSEBDAzJkzeeGFF4iKiiIkJIRLly5RUVFBcnIyp06don///sp9XebZLx8fH5ydnTl27Bg6nQ69Xo/RaMTBwYGQkBA++eQTgoODLXy1QlSR8CWEaDTzm+yOHTuSmJhIUlIS586dIzw8XNlw16yuAJaVlUVmZiaJiYnMmDEDW1tbC12JqK2hAGbeJgDA1tZW+fRZgpdoKuaxZL6vZ9euXZw8eZI///nPBAYGAr9vjgzg7OxMp06d0Ov1SgCLiYmpEcDMSxCtrKywtbXF3d0djUaDWq2WcdtKlJSU8J///Aej0cjzzz/PxIkTCQwMxN3dnd69exMSEkJWVhbZ2dmkpKQQGxurBDDzmHFyciI8PJwBAwZgMBjw8fGhZ8+eTJ48meeff/6G1ychLEnClxACuLGyVF3Mb1bs7OyUss/m+8AiIiLqrEZVPYBVVFRQWlrKe++9h7+/f7Nej7h19QWw6tsEVCdvYMWdMv/dMI8l8xg7d+4cR48eZeHChdjb29c51pycnBoVwMzMxzJuW4+4uDiWLVtGnz59mDdvnrLvVvVtSXx9fcnMzFSqr5oDmIuLS40l776+vowYMYKxY8cycuRIevXqdUM1ViEsTcKXEEIp6Zyfn8+OHTvQarU1luRUD1XmF7qwsDB+++03MjMzuXDhAqNGjcLFxeWGc1cPYF27dmXMmDESvFqx2wlgQtwu89+e4uJifv31VzZu3MjPP/9MVlYWMTExpKamMmPGDBwdHW9aoa4xAUy0XsnJyWzYsIG5c+cyYMAA5fvVtyXx8/OjY8eONw1g8Hugruv1SojWRMKXEAK1Wk1ubi6jRo3i559/Zs+ePWg0GmxtbfHw8Ljhk2NzGejMzEzi4uIoKSnB2tqaiIiIOpfzVA9gstSw9ZMAJlpC9X28Fi1axHfffcfBgweJj4/n4MGDpKWlUVJSglarZeDAgcrfkcYGsLi4OLy9venUqZMEsFbA/HfDaDRiNBrJzs7G2tqa7OxsduzYwYMPPkivXr1qLHGu/juvL4DV3turrmMhWgsJX0IIDAYDy5Yt48CBAwAUFRWxd+9ejh8/TmJiIp07d0aj0WBtba3s6aVWq3Fzc2P9+vVUVlai0Wh49NFHa5QCrk5eBNsWCWCiOZmr3BUUFDB37lxOnTqljCtPT0+Ki4vR6XRA1UyGr68vAQEBjQ5gaWlppKenc+nSJSZNmoS1tXVLX6Koxhy0CwoK+Oijj1i5ciWrVq1i06ZNpKenExsbi7+/P4MHD65zaXNDAWzAgAE1ApgQrZmELyEEarWarl278vjjj5Obm4tGoyEnJ4fc3FzOnj3LoUOHiIuLw9/fX7lhHaoqjun1eo4dO0Zqaip2dnb07dtXglY7UVcAu3DhAqNHj5bgJe6ISqWisrKS6Oho9uzZQ0BAAE888QSLFi3iySefxNbWFp1OR1ZWFhkZGZSXl+Pr60vHjh0bFcAKCgooLCxk6dKl+Pr6WuAKhVn1Gc4FCxawZcsWUlJSKCwsJCsri5SUFCorK9Hr9fTs2RNvb+8bztFQADtw4AAPP/wwTk5OFrhCIW6NhC8hBFBVwc7V1ZWhQ4fSv39/nJycyMnJobS0lJycHC5cuMBPP/1ERkYGxcXFdO3aFaj6VHrr1q3KC2z//v1xcHCw8NWIplI7gKWnpzNx4kT5HYvbUj00FRcX89FHH6FSqVi0aBETJ04kKCgIJycnBgwYgI+PD2VlZVy+fJlLly5RXFxMx44dGxXA7rnnHiZPnqxUSRSWo1arKS4uZuHChcTExODu7o6/vz/9+vWjrKyM3NxcALKzs3F2dqZbt27Y2dndcJ7aAczHx4fs7GyuXr1KXl4eM2fOrPO+YyFaGwlfQtyFqr9pqV5pzGg0KsU2BgwYwH333UfPnj2Jj49HpVJRWlpKYmIi27dv58KFC5SVlTFixAjl3q+kpCT69etHSEiIha9QNCV/f3/Cw8PZuHEjP/74o5RtFrdFr9ej0WgoLS2loKCAtLQ0PvnkEyIjI3nyySdxc3MDala58/HxoaioiEuXLnHx4sVGBzBHR0fs7e1b+hJFLebfz9dff826devw9/fnueee4/nnn2fy5MmMHz+eyspKCgsLyc/P5+TJkzg4ONC5c+cGA5ivry8eHh6Ul5fz/vvvy4bZos2Q8CXEXaR6SV6zukrDm+/r8vb2pkePHowePZrAwEAqKiq4du0aAJcuXeLAgQNs374dT09PLl++jF6v5+rVqzz88MMyM9LOBAYGMm/ePDp06GDprog2Sq1Wk5OTw4IFC0hNTUWlUrFr1y6eeeYZ+vbtq/x9ql7lzsfHh44dO95WABOWYw7Q5t/L8uXLSU5OZuHChTz66KO4u7uj1+uxt7cnPDwcGxsbsrOzycnJ4ciRI40OYAEBATz88MN1LlUUorWS8CXEXcL8YqjT6UhJSeHnn39m9+7dbNq0iaKiIoqLi/H19VXe/JhnxIxGI05OTvTo0YPx48fj5eWFh4cH8fHx6PV6srOzOX/+PJWVlQA4ODgwZcqUOl80RdtmZWVl6S6INkyn0zF//nxOnTrF9evXKSkp4dKlSzz00EP07NkTqLkPlwSwtkmv16PVaikoKODo0aNotVrWrFmDWq1m8eLFSlAyh2wbm/+/vfsMjKrM+z7+nZn0hCSEVJJACITeCSAIiIAKKE0QCyiKgg11UXcR19vbimXZRR9RV2GVlbIra0VFKSLSewiRQIAQSEIgpDcSJpmZ5wX3nE0gQABNwd/njVPOnDknB+ec37mu63+507p1a1xdXcnMzLzkAObi4lLbuyhyRRS+RH4HKp8M33jjDT755BO++OILduzYQWJiImvXruWLL76gqKgILy8vwsLCjODlLKzgDGMdO3Zk8ODBdO/eHYfDQVFREQUFBQD4+voyb948zeMlIkDVydstFgsWi4W9e/ca1QjLy8vp0aMH3bt3B6pvib9QAGvatCkhISEKXvWIc+qSG2+8ke3btxMSEsKmTZto3749EydOrLKs8xi7urrSqlWrSw5gIg2RwpfIVc5ms+Hi4kJeXh5Tpkzhp59+Ijs7GwAXFxfc3d2xWq04HA52797N0aNHsdlsdOjQwQhgZ3dVBIiMjKRPnz4MHTqU3NxcvL29mTt3Lq1bt66L3RSReqby5O0//PADYWFhdO3aleDgYHbu3GnctDly5Ah9+vQhMDDwnHVcLICdOHGCFi1aqDtsPeJwOFiyZAlr166loKCA1NRUSkpKCAkJ4ZZbbjlnmoorCWAiDZHCl8hVrPJcOvfffz+//PILTZs2ZcSIETz55JNMmjSJkSNHYrfbsdls5OTkkJGRQVpaGlarla5du16wS4+rqyt+fn4MGTKE4cOHExYWVgd7KSL1jXMi9vz8fMaOHcuyZcsIDQ2lRYsWxMTEEB4ezs6dOzl16hQ2mw2bzUZMTEy1pcKrC2ClpaUcPHiQjIwMHn74YXx8fOpgL8XJOTGys6hKUFAQnp6e7Nmzh+zsbEpLSykoKGDYsGHVViS8WADz9fUlOjpaAUyuCgpfIlcxk8nE6dOnefXVV1m3bh1Nmzbl8ccfZ/z48cTExBAYGEhISAiDBw+mefPm2O12Dhw4QG5uLrm5ufj4+NC6devzdu9wnjDNZrMmMRURg8lkori4mOnTp7N37158fX1p0aIFHTp0oFGjRjRr1oyIiAijBezEiRPY7XaioqJqFMACAgJwOBy89tprqnJXx5y9K3JycnjhhRfw9fWlQ4cONG/eHLPZTEJCgtGDwsPDgw4dOlR7vrhQANuyZQsBAQHGDUGRhkzhS+Qq5bxQSU5OZtGiReTm5nLrrbcybtw4o6Qz/HdMRmRkJG3btqWsrIzExESysrKw2Wz07t0bLy+v87Z+6UQoIpU5fyu+/fZbFi5cSNOmTXnqqae4+eabCQoKAs50eXYGsF27dpGVlUVqaio2m+2CAcwpPDycfv36ERoaWmv7JedytnA6e1ds3LiR/Px8oqOjiY6OJjIyEldXVxISEjh9+jT5+fkEBwcTGRlZbaGMswOYu7s7SUlJFBUVMXPmzGq7poo0NApfIg2U805iZZUDkvO/X3zxBd999x0Af/rTn86Zg6ty33s/Pz8iIyPJzMwkJSWFlJQUQkND6dKli0KWiFzQ2eXFP/roI/bv38+9997LmDFjCAgIAKhSpe5SA1hlqnJX90wmE2VlZfzv//4vmzZtIiIigh49ehAbG4ufn59xTnEGsKysLNLT02nSpAkREREXDWDR0dEEBATwzDPP0KJFizrYQ5Ffn8KXSANz9lxdBQUFFBYW4u3tXe34rO+//549e/bg6enJ/fffj6+v7wWDVEBAAKWlpWzfvh2r1UpRURGDBw/G3d1dAUxEquUsrpGXl8eqVatwdXXl008/paCggJkzZ9K0aVNj2cq/I1cawKTuJSYmMn/+fLy9vXniiScYP348wcHBxrno7AB24sQJ0tLSahzA2rVrV+04MZGGSreNRBoQZ+n3srIysrKyWLJkCXFxcWRlZTFz5kyGDBliXNg4lz158iTw37vEZ5eQr8x5shwzZgyfffYZ8fHxpKenG4OpRUSq4wxeQ4YMweFw8MQTT1BSUkJUVNRFK6C6u7szaNAgAGbNmkVWVhZffPEFAHfccYcK+dQzzqlLnP+Ni4vj5MmTjB49mv79++Pr6wtUDdmRkZGMHz8egAULFrB3717mzZsHwMCBA/Hw8Djne3SzT65WavkSaSCcgSknJ4cPPviAefPmsWrVKk6cOEFRURGpqam0bNnSuMPsPHFlZmayefNmysrKcHNzo2/fvucNUiaTyRg8HR8fT2JiIjabjVGjRhldhkREzuZwOFi+fDkrVqygvLyc/fv3c/r0aTw9PRk3bhwWi+WCnz9fC5jD4SAyMtK4oJe65RzjlZ2dzXPPPUdERARxcXHs3r2bGTNmXDBoX04LmMjVSP/SRRoAZ/A6fvw406dPZ/fu3QB4eHgwYcIEmjVrxjXXXIO/v/85n23RogU2mw2A+Ph4kpKSaNu27Xm/yxnMmjRpgslkwtXVFeC8BTdEREwmE/379+eZZ57hww8/NOYSzM3NZefOnfTp0+ei66iuBewf//gHrq6uTJ06VRfn9YDZbKa4uJh7772XQ4cOUVBQgI+PDyaTCU9PTxwOB3D+VqvLaQETudqo5UuknnMGr4yMDO655x4OHDhA06ZNGTZsGC+++CKjRo2iY8eO+Pv74+HhcU5IioqK4sSJEyQmJpKRkYHJZCI2Nva8peFNJhPZ2dm8++67ZGVl0b17dyZPnqzgJSIX5O3tTWRkJD4+Puzdu5eysjLMZjOlpaV07ty5Rq1XzhawyMhIfvzxR8rLy3nhhRdo0qRJLeyB1ERKSgpJSUmcOHGClJQUjh8/Tnl5OTfffDORkZHAhbsMVtcCdvz4cXx8fIiKilLIlquewpdIPeacQyszM5OHH36Yw4cP06pVKx588EHuuOMOIiMjzwlb1Z307HY7hw4dIicnh19++QWr1Uq7du3w8vICzgyWdxbxKCsrY+3atfz444/Y7XbGjx9P165dz7tuEREnLy8vIiMjadSoEYmJiZw6dYqCggL8/PyIioqq0SS5Li4uRERE0L59ex577DFVuatnAgMDad68OSUlJSQnJ2O1WgE4deoUffr0qdExrhzA9u3bR3p6Ovn5+QwbNkxzRspVT+FLpB4zmUwUFhby4osvsnXrVpo1a8ajjz7KkCFDjOpPNQlE0dHRFBUVkZycTElJCbt37yY7Oxuz2UxUVBQWiwWTyUROTg7r1q3j448/5siRI8TExDB9+nQaNWqk4CUiNVI5gO3bt4+cnBxSUlLw9/cnIiKiRl3LXFxciI6OrjInodQ9582+4OBgQkNDKS0tJTk5GbvdTnl5OZGRkcY55WKcAcxqtXLs2DFmz55dpSqmyNVK4UuknnLO47Vy5Uq+/vprrFYr48ePZ9SoUZdUftm5nh49elBQUMCJEycoLCwkKSmJuLg41q5dS3JyMvHx8bz33nusWrWKlJQUgoKC+Pvf/250IxGR37eajPt0/t44A5iPjw/79+8nMzOTAwcO4OvrS2RkpMb2NFCVpzMJCQkhNDSUsrIyDh8+TF5eHidOnKB169aEhITU6Iadn58f0dHR3HPPPTRr1qwW9kCk7il8idRTzhPX3LlziY+PJzAwkJkzZxIaGnrJ63FeEF1zzTXGGIyMjAyKi4s5duwYu3btYtu2bZw4cYLy8nJatWrFBx98oO4+IgL8dwJlq9VKXl4eK1euZMeOHSQkJHDkyBGCgoKwWCxGCXKz2VxtADt48KACWAPhPG84VdfF/ewAlpGRQUpKCjExMQQHB9cogPn6+hpd4EV+DxS+ROqxLVu28M4772C323nkkUcYNGjQZVUdrBzAOnfuTKdOnQgNDeX48eMAnD59GhcXF3r06MGYMWN4+umn1eIlIsB/53UqLCxk9uzZzJ8/n3/961+sW7eOdevWsWrVKrZu3cqBAwfo3Lkz3t7eF2wBUwCr35zHrvJ5xmq1Vpkr0mQyGSE7JCSEkJAQI4Clp6dz+PDhSwpgIr8nKikjUo9lZWVRXl4OYFT7utwTWeXPxcTEEBMTw6hRo7DZbOTm5mKxWGjXrp0xj4uIiHPev9zcXB5++GHi4+ON93x9fSkqKsLhcPDLL7/wyy+/sGnTJubOnUtMTIxxo6hJkyaMGDECgPnz55ORkWGUFx82bFi1U2RI3bDZbFgsFk6dOsXWrVvZuHEjhw4dIjs7m4iICHr27Enfvn1p164dLi4ulJeX4+rqSqdOnZgwYQIAy5cvZ9euXbzxxhvMmDGDTp06nXduSZHfI7V8idRDzouWb775hl27duHq6soDDzxASEjIZc+3ZTKZKCkpYe/evYSFhQFn5gnz9/cnJCSEwMBA446m7lSKiPNGTEFBAffffz+//PILYWFhDBw4kGnTpjF27Fg6depEeHg4CQkJABQUFPDzzz/TpUsXwsLCLtgFMSUlBVdXV1q0aKEWsHrA2cKZn5/Pc889x9KlS9m0aRPp6enk5uZy5MgRNm3aREJCAikpKVx77bVYLBasVisWi0UtYCI1pPAlUk+ZTCbWrl1LfHw8drudnj170qZNG2Per8uRnZ3N888/j7+/P9HR0VXW4zwx6gQpInDmt6C0tJQXX3yRjRs3EhERweOPP86ECROM0NWpUyeuu+46unbtyp49ezh16hT5+fls2rSJIUOG4O/vb4wXqxzADh48SEZGBpmZmdx6660KX3XM2cKZl5fHvffey9atWzl9+jSenp60bNkSb29vrFYrFRUVZGVlsXv3buLj4xk+fDiurq4XDWCtW7cmKChI5xcRFL5E6iXnCSo1NZV169YBEBISwoABA66o+8ZPP/3EwoUL2bVrF0OHDsXHx+dX2V4RuTodOHCAhQsXUlBQwNixYxk3bhwBAQHAf4twOBwOmjdvTseOHUlMTCQ3N5eCggL27NnDTTfdVGXyd2cAM5vNHD9+nL/97W9ERETU8V7+vjnnkywsLOTRRx8lISGByMhIJk2axDPPPMPUqVO5++67ad26NYGBgUbX09TUVLZv387o0aONLojnC2C7d++mS5cuBAcH1/HeitQ9dcIVqcecc9yYzWbWrFnDnj17Lms9drsdOHOyNJlMhIaG1mgiTBH5fVu7di1HjhzBYrFw4403Vhmf5Rwb6rxZ1LVrV2bMmGH8tqSkpPDDDz8AZy7wnZo0acL48eP59NNPadu2bW3tipyHs3jG3//+d3bu3ElQUBCPPPIId911Fy1btgTOnIMGDRrEs88+ywsvvGBMhLx9+3amT5+Ow+HA1dUVm80GYIwBu+WWWwA4ePCgxvaJ/B+FL5F6bOjQoXTu3Bm73U5mZiabN282gtSlMJvNHDlyhIULF+JwOOjYsaMxSbOIyPmcOHECgGbNmtG8eXOgapA6W2xsLM8//zxwZvzXxo0bAc5psQ8ICNDFeD1it9uNm3sdOnSgf//++Pr6AhhVDp3uuOMOKnea2rx5M//617+AM4Hc+e+jU6dOjB8/njvuuIPvvvtOLZwi/0fhS6Secjgc2Gw2evTogZubGzabjblz57J+/XqASwphBQUFLF68mIKCAtq0acOkSZOM7xAROR+r1QpAZmYmx44dA84/LtThcBjjU9u2bYvFYmHXrl3k5OTU2vbKf1X+fb/Y+WLLli3s2LEDgEGDBhEYGHjO+cE5ZQnArbfeyowZMwAoLCxk69atVZZzfrZr167MnDnTaEETEYUvkXrLZDLh6urKxIkTCQwMBKC8vJzHHnuMHTt21HjsV1lZmTEfD0Dv3r2vuGy9iPw+OMeF2mw20tLSjMfVMZlMmM1mQkNDCQ8PN6axOH36dK1tr5zhnKurqKgIONPyeKEAVlpaajx2dimsTuX13HbbbQwYMACAFStWGOENqp5b3N3dL28nRK5SCl8i9Vx4eDhvvvkm3t7ewJk70ZMnT+bnn3+ucmfSZrMZz50nx+LiYtatW8dHH33E0aNHadeuHZMnT8bLy6v2d0REGpwbbriBgIAAysrKeOedd8jJycFisZz3Qt45L6Gfnx9msxl/f39cXV1rc5N/95wVcdPS0hg2bBhvv/02UH0Ac54znMfNzc3N6GpaUVFR7fqdN/58fHyIjo42Xi8uLv51d0TkKqXwJdIAxMbG8sILLxgD2a1WK9OmTWPevHnG/DoWi8W422g2mzl27BgLFy7k7bffZt++fQQFBTFnzhxCQ0PrbD9EpGGJiIgwWt7T0tKYPXs2BQUF521JcXV1JT8/n4SEBOx2u1FiXGqP2WwmNzeXm266iezsbObNm8eHH35ovFf5uDnPGW3atMHT0xOr1crKlSux2Wy4urqeN2Q7X+/atasxTYCzlU1ELkyl5kUaiJYtWxIREcGmTZsoLy/Hbrezbds2YxLM4uJiKioq2L59O1u2bOGFF15gw4YNnDx5kqioKObPn0+LFi3qejdEpB640GTtzi5rAL6+vjRt2pRvv/0Wu91OdnY2ubm5dO7cGU9PT2MSZWfZ+bKyMlavXs2qVaswm82MHz+erl27Xvbk8HJ5PD09iYuLIzU1FYfDwebNm3Fzc6NHjx7G2K3Kx8NkMrFjxw6OHz9OVlYWNpuN3r17G1MJnH3snM+TkpL44YcfcDgc3HLLLbRq1apW91OkIVL4EmkgzGYzbdq0oVu3bmzevJnTp09TUVFBUVER8fHxrFixgi+//JLly5ezceNGCgoKaNy4MT179mT27NlERUXV9S6ISD3gDEpWq9WYMNd5we3n52dcWDu7pEVFRdG4cWPWrVvHqVOnSE1NJSEhgW7duhkVC53zRK1bt46PP/6YtLQ02rVrx+OPP46Pj4+CVy1yHt+RI0eSnJzMwYMHMZlMFwxgnp6eWCwWVq9eDZwpouHu7k7btm2N1rKzj2FBQQHz58/n0KFDxrHW+C6Ri1P4EmlgwsPDGTJkCHCmT/7JkyeN95wD4U0mE/369WPixIk88MAD6mooIsCZ3wwXFxfy8/N55ZVX+Oijj/j444/54osvWL9+PUlJSXTv3h13d3fjYttkMhEdHY2vry+bNm2irKyMo0eP8u2335KcnMyBAwfYu3cvH3zwAcuXL+fw4cMEBgby3nvvqbx4HTCbzUaL5NChQy8awODMMW7bti2FhYXEx8eTm5tLVlYWFRUVtG/f3pjTzRnCSktL2bx5M9988w35+fnccMMN9O/fX+P7RGrA5FCtaZEGyWq1YjKZWL58OXl5eRw+fBg3NzfatGlDcHAw1113XV1voojUIzabDYvFQl5eHvfddx/79++v8r6zhaNnz548+OCD9OzZs0pLhtVq5bvvvuP555/Hbrdjs9lwc3MzfoscDgcWi4WWLVvy1ltvVSnGILXPGbQBpk+fzvfff28cpyeffJKpU6cC/y3QAWcmxn7vvff45ptvAGjatCmxsbE8+eSTeHl54evrS0ZGBj/99BOff/45iYmJtGjRgvnz5xMeHl43OyrSwCh8iTRQNRlDoXEWIlJZcXExjz76KFu3biUkJITWrVvTqVMnsrKy2LRpE5mZmVRUVNCpUyceeOABrrvuOqOgglN8fDz/+c9/2LZtG+np6UbrSZcuXYiNjWXChAk0bdq0LnZPzlLTAFZ5ucTERBYvXsznn39urCcsLAx/f38iIiLYs2cPJSUlFBcXExwczMcff6x5vEQugcKXyFXCeQFU0/m/ROT3w3kjZvHixbz88suEh4fz2GOPMWDAAAICAgDYtm0b33//PZ999hnl5eW0b9+eBx980Ahgzi5nJpMJq9WK1Wrl4MGDWK1W3N3d6dKlCzabzbiIl9/O2TfWKrdene1yAlhmZiafffYZ77zzjtG6WVnjxo1p2bIlr7zyisYTi1wijfkSuUo4L4pERJycxRecvw0fffQRhw4d4uGHH2bEiBH4+fkZy2v5620AACAASURBVISHhxMVFYW7uzsJCQlkZmaSlpZGkyZNiIiIMMbzOCdTdnd3JywsjIiICEJDQ43fIP0O/bacx8vZ+uTp6Wn8zZ3vVXb2GLBDhw5x6NChc8aAVV7Ox8eHXr160b17d5o1a0ZJSQl+fn6EhoYSGxvLfffdx+TJk9XVUOQyqOVLRETkKuQc45Wbm8vJkydp27Yt/fr1w2azsXTpUiIjI6v9XFpaGkuXLmXBggWUl5fToUMHpkyZwsCBA8/pgii1y9nClZqayqRJk/Dz86NXr1706tWLnj174ufnV+3yULVl6w9/+AM//PBDtS1gZwd2gLKyMioqKrDb7fj6+tbS3opcndTyJSIichVyTrY7fPhwFixYQO/evTl48CCRkZFMmDCh2lYSAD8/PyIjI3F1dSUhIYETJ05UaQFTt8K6YzKZSEtL47777iMjI4P8/Hzi4uJYtWoVy5YtY//+/RQUFODu7k7jxo2N4+sshmK1WrFYLBesgnj23F4OhwNXV1fc3NyMAiwaTyxy+RS+RERErkIOh4PXX3+dnTt3AvDtt9+SnZ1N06ZNGTFixAXHhyqA1U+nT59mwIABFBQU4Onpic1mw+Fw4OnpSW5uLvv372fNmjWsXbuWH3/8kdzcXBwOB76+vri5uRkl4wGGDh3KgQMHSE5OvuA8YNWFLAUvkcun8CUiInIVMplMtGzZkoyMDE6cOGFMzG4ymRgwYAC+vr4XvIiuLoAdP34cHx8foqKiFMDqgIuLC126dGHZsmVUVFTg5uZG48aNGTt2LCaTiYKCAsrLyykqKiIjI4Pt27cblSn37t0LgI+PD66urlgsFoYNG0ZKSgoHDhy46ETMIvLrUPgSERG5Ctntdvz9/enSpQuHDx8mIyMDm81GcXExHTt2pE2bNhe9uK4cwPbt20d6ejr5+fkMGzYMNze3WtwbcWrWrBk9e/bkq6++wmazYbPZiIqK4t1336Vfv36Eh4djsVgoLi7m1KlTAGRlZbFnzx5+/PFHvvrqKw4dOkRGRgbBwcGMHTuW9PR0Y943BTCR35bCl4iIyFXIeeHs5+dH165dSUlJITMzE6vVyvr16+nbty+hoaE1DmBWq5Vjx44xe/ZszeNVxyIiIqoEsMTERE6ePMntt99ObGws119/PWPHjiU6Ohp/f3+Ki4spKCigoqKCkpISkpKSWL9+PcuXL2fDhg307t2bvXv3cvr0aRwOB9u2bcNms9G7d28FL5FfmaodioiIXMWcFe/S09N55ZVX2LZtG6dOncLT05OFCxfSsWPHC84T5ZSeno6npydNmjSppS2Xi9m6dSuTJk0yno8ePZrXX3/9nOWOHz/OkSNH+Omnn9izZw8pKSkUFBQY7/v5+VFQUIDFYjEKc/j4+LBq1SoaN25cK/si8nuh8CUiItJAXazqnDNUnR3Atm/fTklJySUHMKl/zg5gt956K7NmzQLAarXi5uZW5dja7Xbi4uLYv38/a9euZd++fWRnZwNnxpRVVFTQpEkT/vnPf9KqVava3yGRq5zCl4iISAPknMerrKyMzMxMdu7caVSni4iIoGvXrkZRDIfDgd1ux2KxKIBdhS4UwJz/Ts5+DGfm7yopKWHNmjUkJCSwfv16ysvL+fjjj4mJiandnRD5nVD4EhERqadKSkrw9vY+53XnRXR+fj4vv/wy+/fvJzk52Xjf29ubmJgYJk2aRLdu3QgNDVUAu8rVNIDBf1tMz349LS2NRo0a4e/vX3sbLvI7o/AlIiJSD/373//m8OHD3HfffYSFhRmvO8NRXl4ekydPZt++fcZ7FosFm81mPA8ODqZXr15MnTqV1q1b1ziAnX1RLg3DpQSwyhS4RWqPqh2KiIjUM//+97954YUXSE1NxWQy0bx5cxo1aoTD4cBsNlNcXMwf/vAH4uLiCAsLo2/fvjz66KMMHjyY7t27U1ZWRlFREXl5eaSnp7N3717atWtHcHCwUQXR39+frl27kpycTFZWFqdOneL777+nd+/eVcKeNByVqyAC7Nu3j4yMDAYPHozZbMZms1UbslTRUKT2KHyJiIjUIzabjZSUFHbs2EF+fj5Hjx415nJq1KgRAMuXL2fRokWEhoby+OOPc/fdd9O1a1fatGlDt27diI2NpUWLFiQkJFBQUEBeXh5Hjx6lY8eOBAQEGEU4nGXok5OTycvLo7CwkJ9//pmJEydiNpt1Ud4AXW4AE5HaofAlIiJSj5jNZlq0aEFUVBQ7d+4kKyuL1NRUbDYbLVq0wMfHh08++YS9e/dy1113MXbsWAICAgCMObv8/f1p3749HTp0YMOGDRQWFpKfn4/D4aBr1664ublVmQesW7du7Nq1C7vdzocffkhISIiCVwOmACZSfyl8iYiI1DMuLi5ERkYSERHBrl27qgSwsLAwVq5cydGjR5kxYwbNmjUzPlc5MDmrHrZs2ZKNGzcaLWA33ngjfn5+RhdGZwC75pprGDduHC1atKiLXZZfmQKYSP2k8CUiIlIPubi40KxZsyoBLC0tjYqKCn755RcsFgtPPPEErq6uF1xPUFAQ5eXl7Nmzh5ycHE6dOsXgwYONoOZsAfP19TW6NcrVoboAdvDgQYYNG6bgJVJH9H+eiIhIPeXu7s6gQYN49tlnCQoK4uTJkyxbtoy8vDzKyspITU0FzpQOPx9vb2/69u1rLJORkXHOMroQv3r17t2bf/7zn8bz9evXc/LkyTrcIpHfN/3aioiI1GNnB7CsrCxycnIoKiriwIEDwMWr1cXGxtK9e3cAdu/eTU5ODna7/TffdqkfevfuzT/+8Q8Ali5dSnBwcB1vkcjvl8KXiIhIPVc5gAUGBhqtWO+++y779++/4Ged8365uLhgMpnw8vLC3d1dBTV+Z6699lri4uJo1apVXW+KyO+awpeIiEgtcrY4Wa1W43FNWqGcAezPf/4zgYGBAOTk5PDpp59y7Nix837OYrGQnZ3N4cOHcTgctGrVCh8fH4Wv3yFPT8+63gSR3z2FLxERkVrirDCXlpbGzJkzee+99ygoKKjxmKvKASwoKIji4mJWrVrFkiVLSEtLA86M/3I4HEaLV1lZGWvXrqW0tBRXV1d69OhhLCMiIrVL1Q5FRERqidlsJjU1lbvuuov4+Hi2bdvG6tWrycvLw83NjbCwMGNZ55xdZzu7CmJ2djZHjx4lNTWV0NBQwsLCMJlMmM1mCgsL2bBhAwsWLCAtLY3mzZszc+ZMfH191fIlIlIHTA7d+hIREakVZWVlTJ48mV27dmE2mzGbzVRUVODm5kZFRQWTJk2iU6dODB8+3PiM3W6vtmXs9OnTrFmzhlmzZpGVlWWM6br99tsJCgoiKCiIVatWkZSUREZGBmFhYfzjH/8gOjq6NndZREQqUfgSERGpJSUlJbz00kt8/fXXuLi40LFjR3Jzc42S8QAeHh707NmT0aNHExsbS0hIiPHe2UHMGcBeffVVsrOzq/3OsLAwOnXqxNNPP11lQmYREal9Cl8iIiK1aNeuXUycOBG73c6QIUN46623+Oijj9i+fTvr16/HbDZjt9vx8/PD29ubhx9+mDZt2tC5c2djHTabDYvFApwbwDw9PenVqxe9e/cmJiaGqKgoGjdujI+PT13tsoiI/B+N+RIREaklDoeDkJAQjh8/TlJSEsnJyXTs2JFx48YxfPhwgoKCMJvNpKenc+rUKYqKili/fj3r16/n+PHj+Pv74+/vj6urq7FO5xiwyMhIdu7cSWFhITabjdDQUIYMGULTpk1xc3Orw70WEREnhS8REZFa4iyEkZ2dzU8//QRA48aNGTBgAGazmU6dOtGvXz8GDBhAVlYWJpOJvLw8ioqK2L17N5s3b2bDhg2Eh4djsViM1iwXFxfCw8Np1qwZCQkJHDt2jIKCAsaNG4eXl1dd7rKIiFSi8CUiIlLLOnbsyJ49ezh69CiJiYn07duX0NBQ4Ew5+aZNm3LdddfRp08fTp8+jclkIjs7m6KiIlJTU/nxxx/ZsWMHDoeD4OBgvLy8cHV1JSIigsDAQJKTk5kzZ47GeImI1DMKXyIiIrXIbrfjcDg4ceIE27dvN0rK9+nTx6iA6HA48PDwIDg4mBtuuIHCwkI2b94MnAlnJSUlZGRksGbNGhISEkhKSqJjx45YLBY6derE6NGjadq0aR3vqYiInE0FN0REROpAZmYmt912GydPniQ6OppFixYREBBQZfJjk8nEli1buPfeewFo0aIFvXr1Ii4ujpSUFMrLy41l/fz8GD16NE8//XSVMWEiIlJ/qOVLRESkltntdho1akRFRYUxUXJ5eTn9+/c3Jj82mUxs2rSJ++67D4C2bdsyceJEpk2bxh133IG/vz/e3t4cOnQIgIqKCl555RUCAwPrbL9EROTCXOp6A0RERH5vnHN1derUCbvdDsDevXuNyZCdwWvy5MnAmeA1fvx4Ro0ahclkwmQyMWHCBCZMmMCQIUOM1rGWLVvW2T6JiMjFqduhiIhIHXrllVdYtGgRAP/zP//DhAkT2LhxI/fffz8A7dq1Y/z48YwePRpPT08cDofROuZktVpVTl5EpAEw1/UGiIiI/B4573327t0bf39/AFavXs2nn356ScELUPASEWkg1PIlIiJShyoqKpg0aRI7d+7E09OT0tJSoObBS0REGg61fImIiNQRm82Gi4sL9913H35+fpSVlQEQExPDnXfeyahRoxS8RESuIgpfIiIidcRisQDQunVrfHx8cDgceHp60rdvX0aNGoWXl5eCl4jIVUThS0REpI41a9bMGOdVWlpKdnY27u7uAApeIiJXEYUvERGReqBbt25ER0cDsGLFClatWlXHWyQiIr82hS8REZF6oF27dsTGxgJnKiHGxcUBGPOAiYhIw6fwJSIiUsechYfvvvtumjdvjs1mY8mSJSQlJRkTMouISMOnX3QREZE65hzXFRoaSkREBABlZWUsW7YMm81Wl5smIiK/IoUvERGReqJRo0Y8+uijALi4uHDbbbcZFRFFRKThU/gSERGpR1q1asWwYcP4+uuviYqKquvNERGRX5HJ4exoLiIiIvWC1WrFzc2trjdDRER+ZQpfIiIiIiIitUDdDkVERERERGqBwpeIiIiIiEgtUPgSERERERGpBQpfIiIiIiIitUDhS0REREREpBYofImIiIiIiNQChS8REREREZFaoPAlIiIiIiJSCxS+REREREREaoHCl4iIiIiISC1Q+BIREREREakFLnW9ASIiIlJ32rRpYzxOSkqqwy0REbn6KXyJiDRQmZmZrFmzhnXr1pGSkkJubi6lpaU0btyYoKAgevTowcCBA7nmmmswm9XR4WoTFxfHhg0b2LZtGydOnCA3N5fTp0/TqFEjAgMD6dChA7Gxsdx00000atSorjdXREQAk8PhcNT1RoiISM0VFhby/vvvs2jRIqxW60WXb9u2LX/605+49tpra2HrzpWens7gwYMBCA8PZ82aNXWyHb+VL774gpkzZwIwZswYXn/99d/0+zZt2sRbb71FfHx8jZZ3c3NjxIgRPPHEE4SEhJzzvlq+RERqj1q+REQakCNHjjBlyhRSU1ON18xmM506dSIiIgIvLy+ys7NJSEggOzsbgP379zN58mSmTZvGY489VlebLlfI4XAwe/Zs5s+fX+V1Dw8POnfuTFBQED4+PuTm5pKRkcG+ffuw2+1YrVY+//xzvvvuuxoHNhER+W0ofImINBApKSnceeed5OXlAWCxWJgwYQJTp04lKCioyrJ2u52NGzcya9YsDh8+DMDcuXMpLCzkz3/+c61vu1y5P/7xj3zzzTfG86ioKJ544gkGDx6Mu7v7Ocvn5uayatUqPvjgA44dO0ZZWVltbq6IiFRDgwBERBoAq9XKk08+aQQvd3d3PvjgA/785z+fE7zgTGtY//79+frrrxkwYIDx+ieffMIPP/xQa9stv45//vOfVYLX0KFD+eabbxg+fHi1wQsgICCA22+/nR9++IHHHntM4/5EROoB/RKLiDQAH374IYmJicbzWbNm0b9//4t+zs3Njblz51YZ1/P8889TXFz8m2yn/PqOHTvGX/7yF+P5tddey5w5c3Bzc6vR593c3Jg2bRrz5s37rTZRRERqSAU3RETqubKyMgYOHGi0el133XV8+OGHl7SOPXv2cNtttxnPZ8yYweTJk89Z7plnnuHLL78E4LXXXuPWW2+94Hq3bt3KPffcA0CvXr1YuHCh8V7lQhQ18eOPPxIREQGcv0jHtm3bWLp0KfHx8Zw8eRIPDw+aN2/OTTfdxJ133omXl9cFv2PQoEEcO3bsnO87n3feeYe5c+cCnDNmrvLf6mKupNDIyy+/zKJFi4Az47tWrlxZbeGMy1XTghs5OTn8/PPPbN++naSkJNLT0ykpKcHDw4PAwEA6derETTfdxJAhQzCZTDX67j179vDVV18RFxdnrM/FxQVfX1+aNm1Ku3bt6N27NwMHDjzvsS0pKWHZsmX89NNPHDhwgLy8PCoqKvDw8CAoKIioqCi6du3KoEGDaN269aX9cUREfmUa8yUiUs/98MMPRvACqg1NF9O5c2diY2PZsWMHAEuWLLms9dSV8vJyZs2axZIlS6q8XlZWRn5+PvHx8SxevJi33nqLzp0719FW/vqcxTKcbr755l81eNXUwoULee2117DZbOe8V1xcTHFxMUeOHOGbb76hQ4cOzJ07l6ZNm553fRUVFbz00kt8+umn57xns9nIysoiKyuL+Ph4/v3vf/PQQw8xffr0c5aNi4vjiSeeIDMz87zblZKSwk8//cScOXPYu3cvLi669BGRuqNfIBGRem7Lli3G45CQEHr37n1Z6xk5cqQRvtLS0sjIyLjgBfKVatmyJRMmTKCkpISvvvoKAG9vb0aPHl3t8j4+Pudd11//+lcjeMXExNC+fXvMZjP79u1j//79wJnueffffz8LFy6kbdu2v/LenKtPnz54eXlx+PBhNm/eDEB0dDR9+vQ5Z1l/f//L+o74+HhKS0uN5yNGjLi8jb1CmZmZRvAKDw+nZcuWNGnSBHd3d0pKSkhOTmbfvn04HA727t3LhAkT+Oqrr/Dz86t2fW+88UaV4BUSEkLnzp0JCAjAbreTn5/PoUOHSElJOe82HT9+nPvvv5+SkhIAXF1d6dixI82bN8fDw4PS0lKOHTvG/v371c1WROoNhS8RkXpu586dxuMuXbrUuEvX2bp06XLOen/L8NWlSxe6dOlCenq6Eb78/f15/vnnL2k9J0+e5OOPP8bPz4+//OUvXHfddVXe37JlC0899RTZ2dkUFhYyY8YMPvvsM1xdXX+1fanOqFGjGDVqFF988YURvrp06XLJ+3chzrAM/51SoC5ERUXx3HPPMWTIEMLCwqpdJjU1lRdffJENGzaQkZHBX//6V1566aVzlsvNzWXx4sXAmYqdr776KqNHj6723/XJkydZsWIFHh4e57z30UcfGcErNjaWv/3tb9W2ClZUVLBr1y6WLl162f/viIj8WlRwQ0SknsvIyDAex8TEXPZ6YmJiqlS8c459qu/Ky8sxm82899575wQvgGuuuYZ58+YZYWv//v1VKgM2ZJWPUVhY2AVbB39L48aN4+677z5v8AJo1qwZf//7341xVV9//TUFBQXnLBcfH2+0og0fPpwxY8acNxQFBwdz9913Vxmv6FT5psSsWbPO2x3TxcWFXr16MXv2bCwWy/l3UkSkFih8iYjUY8XFxVRUVBjPz9eNqyYsFgve3t7G8/z8/Cvattp08803Exsbe97327dvz/jx443nS5curY3N+s1VPka+vr51uCU14+rqysiRI4Ez4/F27dp1zjKVuwAGBARc9nc5W72udD0iIrVJ3Q5FROqxyheYwEWr+V2Ml5cXRUVFAA1qHMyYMWMuuszo0aON7mx79uzh1KlTV/z3qmuVj3992Zfc3Fz27NnDoUOHKCgooLS0FLvdbrzvnNQbIDExkeuvv77K5yu3nq1cuZIpU6ZUO1fdxYSFhXHkyBEAFi9ezEMPPXTJ6xARqW0KXyIi9VjlliqAU6dOXdH6Kn++rrqwXSqTyXTOeLXqtG/fHjc3N6xWKzabjaSkJLp161YLW/jbqXz8r/TYX6kjR44we/Zs1q5dS3l5eY0+U7lKp1OXLl0IDw/n2LFjHD9+nFtuuYXRo0dz/fXX07Vr12rHd1Vn+PDhxli7OXPmsHHjRkaMGEHfvn0vOoWAiEhdUfgSEanHfHx8cHFxMboeVjeGpqZsNluVlpTLrcBX23x9fWsUFF1cXAgKCjLGSeXm5v7Wm/abq3yMCgsL62w7Nm/ezEMPPURZWdklfe7slls40zXxzTff5MEHH6S4uJj8/HwWLFjAggULcHV1pUOHDsTGxjJw4EBiY2PPOx5s3LhxbNiwgRUrVgBn5oDbtm0bcGasWGxsLNdccw033HCDuiWKSL2hMV8iIvVc5YqEBw8evOz1HDx4sEr3sPDw8Cvartri6elZ42Urd82r7sK/oal8jI4fP14nXUXz8vJ44oknjOAVHh7OU089xZIlS1i3bh27d+9m//79JCUlkZSUxGuvvWZ81uFwVLvO2NhYvv76a8aOHVvlmJWXl7N7927mz5/PxIkTGTp0KKtWrap2HWazmbfffpvXX3+9ykTRcKZK4vLly3n++efp378/zz77bIMa4ygiVy+FLxGReq5Hjx7G4/j4+PNe0F5MfHz8edd7uSqHud9K5XmuLqZy17yzu2xejtrYvwupfIzsdjsJCQm1vg1Lly41WlzbtWvHsmXLmDp1Kj169CAkJARPT88qrVM1DYgRERHMmjWLzZs3s2DBAh599FF69+5dpdvhkSNHmDZtGh9//HG16zCZTIwZM4Zly5axevVqXn31VcaMGUNkZKSxTEVFBZ9//jm33XbbVdEaKiINm8KXiEg9V3lS5czMTLZu3XpZ61m2bJnxODIysto5vlxc/tsb3VkO/EJqoyWmsLCwRt9TUVFBVlaW8bxx48bnLHOp++csTlJXunTpUqXlry5K6DvHVQE8/PDDF+0CWnlqhJrw8PCgT58+PP7443zyySds3bqVd955p8pE2X/961/JzMy84HoiIyMZN24cr7/+OqtXr2bFihVMnjzZOOapqanMnTv3krZNROTXpvAlIlLPDR06tMrYn48++uiS1xEfH19lwt4777yz2uUqtxZVVyzhbElJSRdd5kontnU4HOe02lUnMTERq9UKnCmrX/ni3elSS+0fOHDgosv8lhP3uru7M3bsWOP58uXLLxpCfm0nT540HtdknjnnuKvL5eHhwY033sgnn3xCYGAgcKY74vr16y9pPVFRUcyYMYPHH3/ceG3NmjVXtG0iIldK4UtEpJ7z9PRk4sSJxvOff/6Zb7/9tsaft1qtPPfcc8ZzX19fbr/99mqXrVwlbt++fRdd9/fff3/RZdzd3Y3HNa2Sd7Yvv/zykpbp3LlztaXZK+9fYmLiBdeXmZlZ7TxVZ/s19u9C7rvvPmMC6dLSUp599tnL6nq6YcOGy/r+yuHyYl1A4+Pj2bt372V9z9n8/Pzo3r278TwnJ+ey1jNw4EDjcXZ29pVulojIFVH4EhFpAKZOnVqlqMCzzz5bo4tpq9XKtGnTqrTgvPDCC+ftOla5pPvatWsveMG7cOFCDh06dNFt8PX1xWw+c7rJy8u7rIDy3XffVWm5O1tiYiL/+c9/jOe33XZbtct17tzZePzll1+eN8Q4HA5effXVGm1r5VbJyq1Ev5aIiAiefvpp4/mGDRt4+umnjVa+i7Farbz77rtMmTLlsr6/8vip1atXn3e5kpKSKiH/fGrSoupUuQvj2RULazp+6/jx48bjJk2a1Pi7RUR+CwpfIiINgLu7O3PmzDEu9E+fPs3UqVOZNWtWlXFOTna7nfXr1zN69Gh+/vln4/UJEyZw8803n/d7OnfuTFRUFHCmeMX06dPPuVi2Wq18+OGHzJo1Czc3t4tuu5ubm7HO8vLyC17AV8fV1RW73c4jjzxSZV+ctm7dypQpU4yg1Lp1a0aOHFntum6++WYjCMbHx/PGG28YZfydcnNzeeqpp1ixYkWN9q9169bG4/j4+Ese81QT9957b5Xj9u233zJq1Ci+//57Tp8+Xe1ncnNzWbp0KUOHDuX//b//d9nFQwYNGmQ8njdvXrWhNTk5mUmTJnHgwIGLTga9aNEiRo0axeLFi88bVouLi/nLX/7CL7/8ApzpRtqvX78qy1x//fX8z//8D1u3bj3v+L3du3fz0ksvGc8HDBhwwW0TEfmtmRyXWzZLRERq3eHDh5kyZQrp6enGa2azmc6dOxMREYGnpyc5OTkkJCScE8oeeughpk+fftHvWLlyJY899pjx3Nvbmz59+tCkSRNyc3PZsWMHeXl5eHt78+STT/Lyyy8D0KtXLxYuXFjtOt966y3ef/994EzRiz59+hAVFWV0p3Nun5+fHwDp6ekMHjwYOFPa/IYbbmDBggXAmbDTvn17zGYz+/fvr9J90MfHh0WLFtGuXbvz7t8rr7xSZTtDQ0OJjY3F09OTjIwMduzYwenTp2ndujX9+vUzxthNmzatyt+lsrvuuoudO3cCZ1r6+vXrR1BQEBaLBTjThe6hhx467zbVhN1u58033zyn8p+HhwedO3cmODgYb29v8vLyyMjIIDExsUrg8vb2rrYbZeUW1erG8FmtVkaOHElKSorxWosWLWjbti2enp6kpKSwe/duHA4HYWFh3H333bz55psAjBkzhtdff73K+t555x2j8IXJZKJZs2bExMTQuHFjKioqOHnyJHFxcVUqV1b3b7fydnt7e9OuXTvCwsLw8vIiLy+Pw4cPV2mZDQgI4KuvviIkJKSav66ISO3QJMsiIg1IdHQ0n3/+Oe+//z6LFy+mvLwcu93O7t272b17d7Wfad26hHZmxAAAA4dJREFUNX/84x9rfNf/xhtv5Mknn2TOnDk4HA5KSkrOaa0KDg5mzpw5NaoYCPDAAw+wevVqDh48SEVFBevXrz+ngMKECROM8HW2p59+mtLSUj799FMOHDhQbSGMsLAw3n777QsGL4A//elPHDt2zCi+cOLEiXPG0HXr1o23336bpUuX1mj/nnvuOe655x6KioooLCxk+fLlVd4PDw+/4vBlNpt55plnuPbaa3n77beNsvNlZWUXLHLh5eXFrbfeyiOPPHJZ3+vm5sYHH3zAlClTOHr0KAApKSlVwhic+Xf21ltvXbQ4SuWiJw6Hg6NHjxrrPZurqysPPfQQ06ZNO+c9Ly8vI6CVlJRcsFtq27Zt+dvf/qbgJSJ1TuFLRKSB8ff3Z+bMmUyePJnVq1ezfv16UlJSyMnJoaysjMaNGxMUFET37t0ZOHAgffv2Nbra1dSDDz5Inz59WLhwITt27CA7OxsvLy/Cw8O56aabGD9+PI0bN65x2XsfHx+WLl3Kp59+ypo1a0hOTqawsLDG479cXV156aWXGDZsGJ999hnx8fGcPHkSDw8Pmjdvzo033shdd91Vo7m93NzceP/991m+fDlffvkle/fupbCwEH9/f1q1asXIkSMZOXJklbL0F9O+fXuWLVvGokWL2LJlC2lpaZSUlNQ4nF6K/v37079/f3bu3MmGDRvYvn07x48fJy8vD6vVSqNGjQgODqZjx4706tWLIUOGXPGcZ82bN+fLL79kyZIlrFy5ksOHD2O1WgkMDCQ6Opphw4YxYsQI3N3dLxq+Jk+ezI033simTZuIi4sjKSmJY8eOUVJSgslkwtfXl+joaK655hpGjx593snAt27dyo4dO9i2bRsJCQkcPXqUnJwcTp8+jYeHB6GhoXTo0IGbbrqJQYMGXfL/AyIivwV1OxQRkXrn7G6HKhEuIiJXA90GEhERERERqQUKXyIiIiIiIrVA4UtERERERKQWKHyJiIiIiIjUAoUvERERERGRWqDwJSIiIiIiUgtUal5ERERERKQWqOVLRERERESkFih8iYiIiIiI1AKFLxERERERkVqg8CUiIiIiIlILFL5ERERERERqgcKXiIiIiIhILVD4EhERERERqQUKXyIiIiIiIrVA4UtERERERKQWKHyJiIiIiIjUAoUvERERERGRWqDwJSIiIiIiUgsUvkRERERERGrB/weakbbPPSijkwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"tags": [],
"image/png": {
"width": 431,
"height": 324
}
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "r44F6KcvzXvl",
"outputId": "a3b5dc67-74b0-4f68-eb06-2fecac065e9c"
},
"source": [
"from sklearn.metrics import classification_report\n",
"\n",
"y_pred = model_m.predict(x_test, batch_size=100, verbose=1)\n",
"y_pred_bool = np.argmax(y_pred, axis=1)\n",
"\n",
"y_test_b = np.argmax(y_test, axis=1)\n",
"\n",
"print(classification_report(y_test_b, y_pred_bool, target_names=text_labels))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"3/3 [==============================] - 0s 43ms/step\n",
" precision recall f1-score support\n",
"\n",
" Covid 0.98 0.96 0.97 50\n",
" MI 0.94 1.00 0.97 48\n",
" Abnormal 0.95 0.74 0.83 47\n",
" Normal 0.88 1.00 0.93 57\n",
"\n",
" accuracy 0.93 202\n",
" macro avg 0.94 0.93 0.93 202\n",
"weighted avg 0.93 0.93 0.93 202\n",
"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "f26xlOInxU51"
},
"source": [
"plt.figure()\n",
"plt.step(recall['micro'], precision['micro'], where='post')\n",
"\n",
"plt.xlabel('Recall')\n",
"plt.ylabel('Precision')\n",
"plt.ylim([0.0, 1.05])\n",
"plt.xlim([0.0, 1.0])\n",
"plt.title(\n",
" 'Average precision score, micro-averaged over all classes: AP={0:0.2f}'\n",
" .format(average_precision[\"micro\"]))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "awKhL4mloL6v"
},
"source": [
""
]
},
{
"cell_type": "code",
"metadata": {
"id": "qgAV_fmLxY12"
},
"source": [
""
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "FJGc4GmWKRBf"
},
"source": [
""
]
},
{
"cell_type": "code",
"metadata": {
"id": "5rL-ow3sKSC_"
},
"source": [
""
],
"execution_count": null,
"outputs": []
}
]
}