|
a |
|
b/scripts/Multi-Lead-DataFrame-Update.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"id": "f5a54e19", |
|
|
7 |
"metadata": {}, |
|
|
8 |
"outputs": [], |
|
|
9 |
"source": [ |
|
|
10 |
"import pandas as pd\n", |
|
|
11 |
"import numpy as np\n", |
|
|
12 |
"import cv2\n", |
|
|
13 |
"import matplotlib.pyplot as plt\n", |
|
|
14 |
"import seaborn as sn\n", |
|
|
15 |
"import os.path, sys, re\n", |
|
|
16 |
"import time\n", |
|
|
17 |
"from PIL import Image\n", |
|
|
18 |
"\n", |
|
|
19 |
"from sktime.utils.data_processing import (\n", |
|
|
20 |
" from_3d_numpy_to_nested,\n", |
|
|
21 |
" from_multi_index_to_3d_numpy,\n", |
|
|
22 |
" from_nested_to_3d_numpy,\n", |
|
|
23 |
" from_multi_index_to_nested,\n", |
|
|
24 |
" from_nested_to_multi_index,\n", |
|
|
25 |
")\n", |
|
|
26 |
"\n", |
|
|
27 |
"from sklearn.model_selection import train_test_split\n", |
|
|
28 |
"from sklearn.pipeline import Pipeline\n", |
|
|
29 |
"import sklearn.metrics as metrics\n", |
|
|
30 |
"from sklearn.model_selection import StratifiedShuffleSplit\n", |
|
|
31 |
"from sklearn.model_selection import cross_val_predict\n", |
|
|
32 |
"\n", |
|
|
33 |
"from sktime.classification.compose import ColumnEnsembleClassifier\n", |
|
|
34 |
"from sktime.classification.dictionary_based import BOSSEnsemble\n", |
|
|
35 |
"from sktime.classification.interval_based import TimeSeriesForestClassifier\n", |
|
|
36 |
"from sktime.classification.shapelet_based import MrSEQLClassifier\n", |
|
|
37 |
"from sktime.datasets import load_basic_motions\n", |
|
|
38 |
"from sktime.transformations.panel.compose import ColumnConcatenator\n" |
|
|
39 |
] |
|
|
40 |
}, |
|
|
41 |
{ |
|
|
42 |
"cell_type": "code", |
|
|
43 |
"execution_count": 2, |
|
|
44 |
"id": "70e3cc1c", |
|
|
45 |
"metadata": {}, |
|
|
46 |
"outputs": [ |
|
|
47 |
{ |
|
|
48 |
"name": "stdout", |
|
|
49 |
"output_type": "stream", |
|
|
50 |
"text": [ |
|
|
51 |
"/home/moise/Desktop/Data_Science/Erdos_Institute/ecg-proj/ecg-copy\n" |
|
|
52 |
] |
|
|
53 |
} |
|
|
54 |
], |
|
|
55 |
"source": [ |
|
|
56 |
"cd ~/Desktop/Data_Science/Erdos_Institute/ecg-proj/ecg-copy/" |
|
|
57 |
] |
|
|
58 |
}, |
|
|
59 |
{ |
|
|
60 |
"cell_type": "markdown", |
|
|
61 |
"id": "f0cdc5d0", |
|
|
62 |
"metadata": {}, |
|
|
63 |
"source": [ |
|
|
64 |
"### Data Preprocessing task" |
|
|
65 |
] |
|
|
66 |
}, |
|
|
67 |
{ |
|
|
68 |
"cell_type": "code", |
|
|
69 |
"execution_count": 3, |
|
|
70 |
"id": "96b63a75", |
|
|
71 |
"metadata": {}, |
|
|
72 |
"outputs": [], |
|
|
73 |
"source": [ |
|
|
74 |
"pathroot = \"CSV_data_v2/\"" |
|
|
75 |
] |
|
|
76 |
}, |
|
|
77 |
{ |
|
|
78 |
"cell_type": "code", |
|
|
79 |
"execution_count": 4, |
|
|
80 |
"id": "952c9fcc", |
|
|
81 |
"metadata": {}, |
|
|
82 |
"outputs": [], |
|
|
83 |
"source": [ |
|
|
84 |
"LeadDict={'Lead1':np.array([[]]),'Lead2':np.array([[]]),'Lead3':np.array([[]]),'Lead4':np.array([[]]),\n", |
|
|
85 |
" 'Lead5':np.array([[]]),'Lead6':np.array([[]]),'Lead7':np.array([[]]),'Lead8':np.array([[]]),\n", |
|
|
86 |
" 'Lead9':np.array([[]]),'Lead10':np.array([[]]),'Lead11':np.array([[]]),'Lead12':np.array([[]])}" |
|
|
87 |
] |
|
|
88 |
}, |
|
|
89 |
{ |
|
|
90 |
"cell_type": "code", |
|
|
91 |
"execution_count": 5, |
|
|
92 |
"id": "b25f602e", |
|
|
93 |
"metadata": {}, |
|
|
94 |
"outputs": [], |
|
|
95 |
"source": [ |
|
|
96 |
"leadMinLen = {'Lead1':0,'Lead2':0,'Lead3':0,'Lead4':0,'Lead5':0,'Lead6':0,\n", |
|
|
97 |
" 'Lead7':0,'Lead8':0,'Lead9':0,'Lead10':0,'Lead11':0,'Lead12':0}" |
|
|
98 |
] |
|
|
99 |
}, |
|
|
100 |
{ |
|
|
101 |
"cell_type": "code", |
|
|
102 |
"execution_count": 6, |
|
|
103 |
"id": "34d659e8", |
|
|
104 |
"metadata": {}, |
|
|
105 |
"outputs": [], |
|
|
106 |
"source": [ |
|
|
107 |
"ClassLabels={'ECGImagesofPatientthathaveHistoryofMI':0,'ECGImagesofPatientthathaveabnormalheartbeat':1,\n", |
|
|
108 |
" 'ECGImagesofCOVID-19Patients':2,'NormalPersonECGImages':3,'ECGImagesofMyocardialInfarctionPatients':4}" |
|
|
109 |
] |
|
|
110 |
}, |
|
|
111 |
{ |
|
|
112 |
"cell_type": "code", |
|
|
113 |
"execution_count": 7, |
|
|
114 |
"id": "4bfdbe9c", |
|
|
115 |
"metadata": {}, |
|
|
116 |
"outputs": [], |
|
|
117 |
"source": [ |
|
|
118 |
"\"\"\"\n", |
|
|
119 |
"For every \"x\" value of the signal, average the \"y\" values over duplicates.\n", |
|
|
120 |
"\n", |
|
|
121 |
"Inputs:\n", |
|
|
122 |
"-------\n", |
|
|
123 |
"df data frame of two columns containing the signal \"x\" and \"y\" coordinates corresponding to \"active\" pixels\n", |
|
|
124 |
"\n", |
|
|
125 |
"Outputs:\n", |
|
|
126 |
"--------\n", |
|
|
127 |
"signal numpy array of unique values (\"y\") of the signal\n", |
|
|
128 |
"\"\"\"\n", |
|
|
129 |
"def uniqValsSignal(df):\n", |
|
|
130 |
" xdf=df[0].to_numpy()\n", |
|
|
131 |
" ydf=df[1].to_numpy()\n", |
|
|
132 |
" unikVals = pd.unique(xdf)\n", |
|
|
133 |
" signal = np.zeros(len(unikVals))\n", |
|
|
134 |
" for i in range(len(unikVals)):\n", |
|
|
135 |
" mask = (xdf==unikVals[i])\n", |
|
|
136 |
" signal[i] = np.mean(ydf[mask])\n", |
|
|
137 |
" return signal" |
|
|
138 |
] |
|
|
139 |
}, |
|
|
140 |
{ |
|
|
141 |
"cell_type": "code", |
|
|
142 |
"execution_count": 8, |
|
|
143 |
"id": "3a10f67e", |
|
|
144 |
"metadata": { |
|
|
145 |
"scrolled": true |
|
|
146 |
}, |
|
|
147 |
"outputs": [ |
|
|
148 |
{ |
|
|
149 |
"name": "stdout", |
|
|
150 |
"output_type": "stream", |
|
|
151 |
"text": [ |
|
|
152 |
"Processing ECGImagesofPatientthathaveHistoryofMI folder ...\n", |
|
|
153 |
"2064 files processed in this folder in 19 sec...\n", |
|
|
154 |
"\n", |
|
|
155 |
"Processing ECGImagesofPatientthathaveabnormalheartbeat folder ...\n", |
|
|
156 |
"2796 files processed in this folder in 29 sec...\n", |
|
|
157 |
"\n", |
|
|
158 |
"Processing ECGImagesofCOVID-19Patients folder ...\n", |
|
|
159 |
"3000 files processed in this folder in 14 sec...\n", |
|
|
160 |
"\n", |
|
|
161 |
"Processing NormalPersonECGImages folder ...\n", |
|
|
162 |
"3408 files processed in this folder in 33 sec...\n", |
|
|
163 |
"\n", |
|
|
164 |
"Processing ECGImagesofMyocardialInfarctionPatients folder ...\n", |
|
|
165 |
"2868 files processed in this folder in 28 sec...\n", |
|
|
166 |
"\n" |
|
|
167 |
] |
|
|
168 |
} |
|
|
169 |
], |
|
|
170 |
"source": [ |
|
|
171 |
"\"\"\"\n", |
|
|
172 |
"Note:\n", |
|
|
173 |
"-----\n", |
|
|
174 |
"\n", |
|
|
175 |
"1) For the \"time series\", only the second column of every lead is extracted as signal.\n", |
|
|
176 |
"2) Because of non-uniformity in signal lenght across both observations and Leads, the code\n", |
|
|
177 |
"uses the minimum signal length across observation and leads, in order to make the date \"proper\n", |
|
|
178 |
"for multivariate time series classification.\n", |
|
|
179 |
"\"\"\"\n", |
|
|
180 |
"\n", |
|
|
181 |
"labelArr = np.array([])\n", |
|
|
182 |
"for dirs in os.listdir(pathroot):\n", |
|
|
183 |
"# if dirs == 'ECGImagesofCOVID-19Patients':\n", |
|
|
184 |
"# continue\n", |
|
|
185 |
" t = time.time()\n", |
|
|
186 |
" count = 0\n", |
|
|
187 |
" print('Processing {0} folder ...'.format(dirs))\n", |
|
|
188 |
" if not os.path.isfile(dirs):\n", |
|
|
189 |
" for item in os.listdir(os.path.join(pathroot,dirs)):\n", |
|
|
190 |
" #print('Processing {0} file ...'.format(item))\n", |
|
|
191 |
" of, oe = os.path.splitext(item)\n", |
|
|
192 |
" if of[0]=='.':\n", |
|
|
193 |
" continue\n", |
|
|
194 |
" else:\n", |
|
|
195 |
" signal = pd.read_csv(os.path.join(pathroot,os.path.join(dirs,item)),header=None,sep=' ')#[1].to_numpy()\n", |
|
|
196 |
" signal = uniqValsSignal(signal)\n", |
|
|
197 |
" try:\n", |
|
|
198 |
" leadNum = int(of[-2:])\n", |
|
|
199 |
" except ValueError:\n", |
|
|
200 |
" leadNum = int(of[-1:])\n", |
|
|
201 |
" finally:\n", |
|
|
202 |
" leadKey = 'Lead'+str(leadNum)\n", |
|
|
203 |
" if leadNum == 13:\n", |
|
|
204 |
" continue\n", |
|
|
205 |
" if LeadDict[leadKey].shape[1] > 0:\n", |
|
|
206 |
" if len(signal)> leadMinLen[leadKey]:\n", |
|
|
207 |
" signal = np.reshape(signal[:leadMinLen[leadKey]],(1,leadMinLen[leadKey]))\n", |
|
|
208 |
" LeadDict[leadKey] = np.concatenate( (LeadDict[leadKey],signal) )\n", |
|
|
209 |
" else:\n", |
|
|
210 |
" LeadDict[leadKey] = LeadDict[leadKey][:,:len(signal)]\n", |
|
|
211 |
" LeadDict[leadKey] = np.concatenate( (LeadDict[leadKey],np.reshape(signal,(1,len(signal)))) )\n", |
|
|
212 |
" leadMinLen[leadKey] = len(signal) \n", |
|
|
213 |
" else:\n", |
|
|
214 |
" LeadDict[leadKey] = np.reshape(signal,(1,len(signal)))\n", |
|
|
215 |
" leadMinLen[leadKey] = len(signal) \n", |
|
|
216 |
" count = count+1\n", |
|
|
217 |
" labelArr = np.append(labelArr,np.repeat(ClassLabels[dirs],len(LeadDict[leadKey])-len(labelArr))) ##Add labels\n", |
|
|
218 |
" t = time.time()-t\n", |
|
|
219 |
" print('{0} files processed in this folder in {1} sec...\\n'.format(count,round(t))) " |
|
|
220 |
] |
|
|
221 |
}, |
|
|
222 |
{ |
|
|
223 |
"cell_type": "code", |
|
|
224 |
"execution_count": 9, |
|
|
225 |
"id": "e2823e5f", |
|
|
226 |
"metadata": { |
|
|
227 |
"scrolled": true |
|
|
228 |
}, |
|
|
229 |
"outputs": [], |
|
|
230 |
"source": [ |
|
|
231 |
"\"\"\"\n", |
|
|
232 |
"Post Processing:\n", |
|
|
233 |
"---------------\n", |
|
|
234 |
"\n", |
|
|
235 |
"1) Put all the leads on the same \"time\" scale/Length\n", |
|
|
236 |
"2) Pull all the leads(2D) into a 3D array of shape (n_obs,n_col,n_timepoints)\n", |
|
|
237 |
"3) Convert result from step 2 into a nested data frame.\n", |
|
|
238 |
"\"\"\"\n", |
|
|
239 |
"\n", |
|
|
240 |
"minLen = min(leadMinLen.values())\n", |
|
|
241 |
"for key in LeadDict.keys():\n", |
|
|
242 |
" LeadDict[key] = LeadDict[key][:,:minLen]\n", |
|
|
243 |
"\n", |
|
|
244 |
"dim1 = LeadDict['Lead1'].shape[0]\n", |
|
|
245 |
"dim2 = len(LeadDict.keys())\n", |
|
|
246 |
"dim3 = LeadDict['Lead1'].shape[1]\n", |
|
|
247 |
"X3d = np.zeros((dim1,dim2,dim3))\n", |
|
|
248 |
"for j in range(dim2):\n", |
|
|
249 |
" X3d[:,j,:] = list(LeadDict.values())[j]\n", |
|
|
250 |
" \n", |
|
|
251 |
"X3d_nested=from_3d_numpy_to_nested(X3d)\n", |
|
|
252 |
"X3d_nested.columns = list(LeadDict.keys())\n", |
|
|
253 |
"X3d_nested['Label'] = labelArr\n", |
|
|
254 |
"X3d_nested.to_csv('muti-lead-dataFrame.csv',index=False,float_format='%d')" |
|
|
255 |
] |
|
|
256 |
}, |
|
|
257 |
{ |
|
|
258 |
"cell_type": "code", |
|
|
259 |
"execution_count": 10, |
|
|
260 |
"id": "fdfd5abc", |
|
|
261 |
"metadata": { |
|
|
262 |
"scrolled": true |
|
|
263 |
}, |
|
|
264 |
"outputs": [ |
|
|
265 |
{ |
|
|
266 |
"data": { |
|
|
267 |
"text/html": [ |
|
|
268 |
"<div>\n", |
|
|
269 |
"<style scoped>\n", |
|
|
270 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
271 |
" vertical-align: middle;\n", |
|
|
272 |
" }\n", |
|
|
273 |
"\n", |
|
|
274 |
" .dataframe tbody tr th {\n", |
|
|
275 |
" vertical-align: top;\n", |
|
|
276 |
" }\n", |
|
|
277 |
"\n", |
|
|
278 |
" .dataframe thead th {\n", |
|
|
279 |
" text-align: right;\n", |
|
|
280 |
" }\n", |
|
|
281 |
"</style>\n", |
|
|
282 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
283 |
" <thead>\n", |
|
|
284 |
" <tr style=\"text-align: right;\">\n", |
|
|
285 |
" <th></th>\n", |
|
|
286 |
" <th>Lead1</th>\n", |
|
|
287 |
" <th>Lead2</th>\n", |
|
|
288 |
" <th>Lead3</th>\n", |
|
|
289 |
" <th>Lead4</th>\n", |
|
|
290 |
" <th>Lead5</th>\n", |
|
|
291 |
" <th>Lead6</th>\n", |
|
|
292 |
" <th>Lead7</th>\n", |
|
|
293 |
" <th>Lead8</th>\n", |
|
|
294 |
" <th>Lead9</th>\n", |
|
|
295 |
" <th>Lead10</th>\n", |
|
|
296 |
" <th>Lead11</th>\n", |
|
|
297 |
" <th>Lead12</th>\n", |
|
|
298 |
" <th>Label</th>\n", |
|
|
299 |
" </tr>\n", |
|
|
300 |
" </thead>\n", |
|
|
301 |
" <tbody>\n", |
|
|
302 |
" <tr>\n", |
|
|
303 |
" <th>0</th>\n", |
|
|
304 |
" <td>0 126.0\n", |
|
|
305 |
"1 119.5\n", |
|
|
306 |
"2 134.0\n", |
|
|
307 |
"3 ...</td>\n", |
|
|
308 |
" <td>0 105.0\n", |
|
|
309 |
"1 104.5\n", |
|
|
310 |
"2 104.5\n", |
|
|
311 |
"3 ...</td>\n", |
|
|
312 |
" <td>0 104.714286\n", |
|
|
313 |
"1 117.250000\n", |
|
|
314 |
"2 101...</td>\n", |
|
|
315 |
" <td>0 35.957447\n", |
|
|
316 |
"1 35.500000\n", |
|
|
317 |
"2 46...</td>\n", |
|
|
318 |
" <td>0 158.000000\n", |
|
|
319 |
"1 157.333333\n", |
|
|
320 |
"2 149...</td>\n", |
|
|
321 |
" <td>0 119.5\n", |
|
|
322 |
"1 116.5\n", |
|
|
323 |
"2 125.5\n", |
|
|
324 |
"3 ...</td>\n", |
|
|
325 |
" <td>0 137.5\n", |
|
|
326 |
"1 137.0\n", |
|
|
327 |
"2 136.5\n", |
|
|
328 |
"3 ...</td>\n", |
|
|
329 |
" <td>0 156.0\n", |
|
|
330 |
"1 154.0\n", |
|
|
331 |
"2 153.5\n", |
|
|
332 |
"3 ...</td>\n", |
|
|
333 |
" <td>0 162.000000\n", |
|
|
334 |
"1 162.000000\n", |
|
|
335 |
"2 151...</td>\n", |
|
|
336 |
" <td>0 155.0\n", |
|
|
337 |
"1 154.5\n", |
|
|
338 |
"2 155.5\n", |
|
|
339 |
"3 ...</td>\n", |
|
|
340 |
" <td>0 193.545455\n", |
|
|
341 |
"1 3.500000\n", |
|
|
342 |
"2 3...</td>\n", |
|
|
343 |
" <td>0 89.000000\n", |
|
|
344 |
"1 109.500000\n", |
|
|
345 |
"2 91...</td>\n", |
|
|
346 |
" <td>0.0</td>\n", |
|
|
347 |
" </tr>\n", |
|
|
348 |
" <tr>\n", |
|
|
349 |
" <th>1</th>\n", |
|
|
350 |
" <td>0 139.0\n", |
|
|
351 |
"1 129.0\n", |
|
|
352 |
"2 127.0\n", |
|
|
353 |
"3 ...</td>\n", |
|
|
354 |
" <td>0 103.0\n", |
|
|
355 |
"1 103.0\n", |
|
|
356 |
"2 102.0\n", |
|
|
357 |
"3 ...</td>\n", |
|
|
358 |
" <td>0 80.5\n", |
|
|
359 |
"1 80.0\n", |
|
|
360 |
"2 79.0\n", |
|
|
361 |
"3 79....</td>\n", |
|
|
362 |
" <td>0 67.5\n", |
|
|
363 |
"1 72.0\n", |
|
|
364 |
"2 77.0\n", |
|
|
365 |
"3 ...</td>\n", |
|
|
366 |
" <td>0 127.5\n", |
|
|
367 |
"1 126.0\n", |
|
|
368 |
"2 131.5\n", |
|
|
369 |
"3 ...</td>\n", |
|
|
370 |
" <td>0 130.0\n", |
|
|
371 |
"1 139.0\n", |
|
|
372 |
"2 130.5\n", |
|
|
373 |
"3 ...</td>\n", |
|
|
374 |
" <td>0 129.5\n", |
|
|
375 |
"1 129.5\n", |
|
|
376 |
"2 129.5\n", |
|
|
377 |
"3 ...</td>\n", |
|
|
378 |
" <td>0 155.5\n", |
|
|
379 |
"1 155.5\n", |
|
|
380 |
"2 155.5\n", |
|
|
381 |
"3 ...</td>\n", |
|
|
382 |
" <td>0 139.0\n", |
|
|
383 |
"1 131.5\n", |
|
|
384 |
"2 128.5\n", |
|
|
385 |
"3 ...</td>\n", |
|
|
386 |
" <td>0 153.5\n", |
|
|
387 |
"1 149.0\n", |
|
|
388 |
"2 151.0\n", |
|
|
389 |
"3 ...</td>\n", |
|
|
390 |
" <td>0 80.166667\n", |
|
|
391 |
"1 77.071429\n", |
|
|
392 |
"2 82...</td>\n", |
|
|
393 |
" <td>0 109.000000\n", |
|
|
394 |
"1 100.000000\n", |
|
|
395 |
"2 111...</td>\n", |
|
|
396 |
" <td>0.0</td>\n", |
|
|
397 |
" </tr>\n", |
|
|
398 |
" <tr>\n", |
|
|
399 |
" <th>2</th>\n", |
|
|
400 |
" <td>0 158.333333\n", |
|
|
401 |
"1 158.333333\n", |
|
|
402 |
"2 149...</td>\n", |
|
|
403 |
" <td>0 103.5\n", |
|
|
404 |
"1 106.5\n", |
|
|
405 |
"2 110.5\n", |
|
|
406 |
"3 ...</td>\n", |
|
|
407 |
" <td>0 103.5\n", |
|
|
408 |
"1 103.5\n", |
|
|
409 |
"2 103.5\n", |
|
|
410 |
"3 ...</td>\n", |
|
|
411 |
" <td>0 97.5\n", |
|
|
412 |
"1 97.5\n", |
|
|
413 |
"2 97.0\n", |
|
|
414 |
"3 ...</td>\n", |
|
|
415 |
" <td>0 118.363636\n", |
|
|
416 |
"1 97.000000\n", |
|
|
417 |
"2 94...</td>\n", |
|
|
418 |
" <td>0 116.666667\n", |
|
|
419 |
"1 155.500000\n", |
|
|
420 |
"2 156...</td>\n", |
|
|
421 |
" <td>0 131.200000\n", |
|
|
422 |
"1 136.166667\n", |
|
|
423 |
"2 104...</td>\n", |
|
|
424 |
" <td>0 108.5\n", |
|
|
425 |
"1 100.0\n", |
|
|
426 |
"2 112.5\n", |
|
|
427 |
"3 ...</td>\n", |
|
|
428 |
" <td>0 169.500000\n", |
|
|
429 |
"1 153.000000\n", |
|
|
430 |
"2 145...</td>\n", |
|
|
431 |
" <td>0 156.0\n", |
|
|
432 |
"1 156.0\n", |
|
|
433 |
"2 157.5\n", |
|
|
434 |
"3 ...</td>\n", |
|
|
435 |
" <td>0 145.5\n", |
|
|
436 |
"1 145.5\n", |
|
|
437 |
"2 145.5\n", |
|
|
438 |
"3 ...</td>\n", |
|
|
439 |
" <td>0 107.170732\n", |
|
|
440 |
"1 104.000000\n", |
|
|
441 |
"2 121...</td>\n", |
|
|
442 |
" <td>0.0</td>\n", |
|
|
443 |
" </tr>\n", |
|
|
444 |
" <tr>\n", |
|
|
445 |
" <th>3</th>\n", |
|
|
446 |
" <td>0 116.5\n", |
|
|
447 |
"1 117.5\n", |
|
|
448 |
"2 126.0\n", |
|
|
449 |
"3 ...</td>\n", |
|
|
450 |
" <td>0 100.5\n", |
|
|
451 |
"1 100.5\n", |
|
|
452 |
"2 101.5\n", |
|
|
453 |
"3 ...</td>\n", |
|
|
454 |
" <td>0 104.5\n", |
|
|
455 |
"1 104.5\n", |
|
|
456 |
"2 104.0\n", |
|
|
457 |
"3 ...</td>\n", |
|
|
458 |
" <td>0 63.0\n", |
|
|
459 |
"1 60.0\n", |
|
|
460 |
"2 67.5\n", |
|
|
461 |
"3 ...</td>\n", |
|
|
462 |
" <td>0 130.0\n", |
|
|
463 |
"1 123.5\n", |
|
|
464 |
"2 129.5\n", |
|
|
465 |
"3 ...</td>\n", |
|
|
466 |
" <td>0 131.5\n", |
|
|
467 |
"1 130.0\n", |
|
|
468 |
"2 131.5\n", |
|
|
469 |
"3 ...</td>\n", |
|
|
470 |
" <td>0 140.5\n", |
|
|
471 |
"1 150.0\n", |
|
|
472 |
"2 144.5\n", |
|
|
473 |
"3 ...</td>\n", |
|
|
474 |
" <td>0 155.0\n", |
|
|
475 |
"1 155.0\n", |
|
|
476 |
"2 155.0\n", |
|
|
477 |
"3 ...</td>\n", |
|
|
478 |
" <td>0 169.500000\n", |
|
|
479 |
"1 153.000000\n", |
|
|
480 |
"2 145...</td>\n", |
|
|
481 |
" <td>0 119.5\n", |
|
|
482 |
"1 122.0\n", |
|
|
483 |
"2 129.5\n", |
|
|
484 |
"3 ...</td>\n", |
|
|
485 |
" <td>0 154.055944\n", |
|
|
486 |
"1 136.396396\n", |
|
|
487 |
"2 44...</td>\n", |
|
|
488 |
" <td>0 121.714286\n", |
|
|
489 |
"1 144.000000\n", |
|
|
490 |
"2 133...</td>\n", |
|
|
491 |
" <td>0.0</td>\n", |
|
|
492 |
" </tr>\n", |
|
|
493 |
" <tr>\n", |
|
|
494 |
" <th>4</th>\n", |
|
|
495 |
" <td>0 157.000000\n", |
|
|
496 |
"1 157.000000\n", |
|
|
497 |
"2 148...</td>\n", |
|
|
498 |
" <td>0 106.5\n", |
|
|
499 |
"1 106.5\n", |
|
|
500 |
"2 106.0\n", |
|
|
501 |
"3 ...</td>\n", |
|
|
502 |
" <td>0 107.0\n", |
|
|
503 |
"1 106.0\n", |
|
|
504 |
"2 106.0\n", |
|
|
505 |
"3 ...</td>\n", |
|
|
506 |
" <td>0 58.5\n", |
|
|
507 |
"1 70.0\n", |
|
|
508 |
"2 86.0\n", |
|
|
509 |
"3 ...</td>\n", |
|
|
510 |
" <td>0 141.0\n", |
|
|
511 |
"1 136.5\n", |
|
|
512 |
"2 138.0\n", |
|
|
513 |
"3 ...</td>\n", |
|
|
514 |
" <td>0 155.5\n", |
|
|
515 |
"1 158.5\n", |
|
|
516 |
"2 156.5\n", |
|
|
517 |
"3 ...</td>\n", |
|
|
518 |
" <td>0 131.0\n", |
|
|
519 |
"1 130.5\n", |
|
|
520 |
"2 130.0\n", |
|
|
521 |
"3 ...</td>\n", |
|
|
522 |
" <td>0 133.5\n", |
|
|
523 |
"1 133.0\n", |
|
|
524 |
"2 146.5\n", |
|
|
525 |
"3 ...</td>\n", |
|
|
526 |
" <td>0 139.333333\n", |
|
|
527 |
"1 159.357143\n", |
|
|
528 |
"2 156...</td>\n", |
|
|
529 |
" <td>0 137.0\n", |
|
|
530 |
"1 138.5\n", |
|
|
531 |
"2 145.5\n", |
|
|
532 |
"3 ...</td>\n", |
|
|
533 |
" <td>0 137.5\n", |
|
|
534 |
"1 138.0\n", |
|
|
535 |
"2 146.5\n", |
|
|
536 |
"3 ...</td>\n", |
|
|
537 |
" <td>0 140.0\n", |
|
|
538 |
"1 135.0\n", |
|
|
539 |
"2 142.0\n", |
|
|
540 |
"3 ...</td>\n", |
|
|
541 |
" <td>0.0</td>\n", |
|
|
542 |
" </tr>\n", |
|
|
543 |
" <tr>\n", |
|
|
544 |
" <th>...</th>\n", |
|
|
545 |
" <td>...</td>\n", |
|
|
546 |
" <td>...</td>\n", |
|
|
547 |
" <td>...</td>\n", |
|
|
548 |
" <td>...</td>\n", |
|
|
549 |
" <td>...</td>\n", |
|
|
550 |
" <td>...</td>\n", |
|
|
551 |
" <td>...</td>\n", |
|
|
552 |
" <td>...</td>\n", |
|
|
553 |
" <td>...</td>\n", |
|
|
554 |
" <td>...</td>\n", |
|
|
555 |
" <td>...</td>\n", |
|
|
556 |
" <td>...</td>\n", |
|
|
557 |
" <td>...</td>\n", |
|
|
558 |
" </tr>\n", |
|
|
559 |
" <tr>\n", |
|
|
560 |
" <th>1173</th>\n", |
|
|
561 |
" <td>0 130.5\n", |
|
|
562 |
"1 127.5\n", |
|
|
563 |
"2 127.0\n", |
|
|
564 |
"3 ...</td>\n", |
|
|
565 |
" <td>0 100.5\n", |
|
|
566 |
"1 100.0\n", |
|
|
567 |
"2 99.5\n", |
|
|
568 |
"3 ...</td>\n", |
|
|
569 |
" <td>0 107.0\n", |
|
|
570 |
"1 107.0\n", |
|
|
571 |
"2 109.0\n", |
|
|
572 |
"3 ...</td>\n", |
|
|
573 |
" <td>0 57.0\n", |
|
|
574 |
"1 67.5\n", |
|
|
575 |
"2 82.5\n", |
|
|
576 |
"3 ...</td>\n", |
|
|
577 |
" <td>0 110.5\n", |
|
|
578 |
"1 107.5\n", |
|
|
579 |
"2 123.5\n", |
|
|
580 |
"3 ...</td>\n", |
|
|
581 |
" <td>0 142.5\n", |
|
|
582 |
"1 145.0\n", |
|
|
583 |
"2 156.5\n", |
|
|
584 |
"3 ...</td>\n", |
|
|
585 |
" <td>0 97.0\n", |
|
|
586 |
"1 124.5\n", |
|
|
587 |
"2 105.5\n", |
|
|
588 |
"3 ...</td>\n", |
|
|
589 |
" <td>0 127.5\n", |
|
|
590 |
"1 126.0\n", |
|
|
591 |
"2 127.5\n", |
|
|
592 |
"3 ...</td>\n", |
|
|
593 |
" <td>0 142.5\n", |
|
|
594 |
"1 137.5\n", |
|
|
595 |
"2 137.5\n", |
|
|
596 |
"3 ...</td>\n", |
|
|
597 |
" <td>0 133.0\n", |
|
|
598 |
"1 132.5\n", |
|
|
599 |
"2 132.5\n", |
|
|
600 |
"3 ...</td>\n", |
|
|
601 |
" <td>0 4.0\n", |
|
|
602 |
"1 12.5\n", |
|
|
603 |
"2 19.0\n", |
|
|
604 |
"3 ...</td>\n", |
|
|
605 |
" <td>0 138.5\n", |
|
|
606 |
"1 143.0\n", |
|
|
607 |
"2 143.5\n", |
|
|
608 |
"3 ...</td>\n", |
|
|
609 |
" <td>4.0</td>\n", |
|
|
610 |
" </tr>\n", |
|
|
611 |
" <tr>\n", |
|
|
612 |
" <th>1174</th>\n", |
|
|
613 |
" <td>0 92.5\n", |
|
|
614 |
"1 78.5\n", |
|
|
615 |
"2 92.0\n", |
|
|
616 |
"3 ...</td>\n", |
|
|
617 |
" <td>0 102.5\n", |
|
|
618 |
"1 103.0\n", |
|
|
619 |
"2 103.0\n", |
|
|
620 |
"3 ...</td>\n", |
|
|
621 |
" <td>0 87.5\n", |
|
|
622 |
"1 87.5\n", |
|
|
623 |
"2 87.5\n", |
|
|
624 |
"3 ...</td>\n", |
|
|
625 |
" <td>0 74.0\n", |
|
|
626 |
"1 72.5\n", |
|
|
627 |
"2 74.5\n", |
|
|
628 |
"3 ...</td>\n", |
|
|
629 |
" <td>0 71.5\n", |
|
|
630 |
"1 74.5\n", |
|
|
631 |
"2 83.0\n", |
|
|
632 |
"3 ...</td>\n", |
|
|
633 |
" <td>0 113.0\n", |
|
|
634 |
"1 111.0\n", |
|
|
635 |
"2 119.0\n", |
|
|
636 |
"3 ...</td>\n", |
|
|
637 |
" <td>0 141.600000\n", |
|
|
638 |
"1 133.250000\n", |
|
|
639 |
"2 122...</td>\n", |
|
|
640 |
" <td>0 121.0\n", |
|
|
641 |
"1 120.5\n", |
|
|
642 |
"2 120.0\n", |
|
|
643 |
"3 ...</td>\n", |
|
|
644 |
" <td>0 87.0\n", |
|
|
645 |
"1 86.5\n", |
|
|
646 |
"2 86.0\n", |
|
|
647 |
"3 ...</td>\n", |
|
|
648 |
" <td>0 140.0\n", |
|
|
649 |
"1 148.5\n", |
|
|
650 |
"2 142.0\n", |
|
|
651 |
"3 ...</td>\n", |
|
|
652 |
" <td>0 137.909091\n", |
|
|
653 |
"1 140.000000\n", |
|
|
654 |
"2 137...</td>\n", |
|
|
655 |
" <td>0 117.5\n", |
|
|
656 |
"1 125.0\n", |
|
|
657 |
"2 127.0\n", |
|
|
658 |
"3 ...</td>\n", |
|
|
659 |
" <td>4.0</td>\n", |
|
|
660 |
" </tr>\n", |
|
|
661 |
" <tr>\n", |
|
|
662 |
" <th>1175</th>\n", |
|
|
663 |
" <td>0 130.0\n", |
|
|
664 |
"1 131.5\n", |
|
|
665 |
"2 138.0\n", |
|
|
666 |
"3 ...</td>\n", |
|
|
667 |
" <td>0 103.0\n", |
|
|
668 |
"1 103.5\n", |
|
|
669 |
"2 103.5\n", |
|
|
670 |
"3 ...</td>\n", |
|
|
671 |
" <td>0 97.0\n", |
|
|
672 |
"1 96.5\n", |
|
|
673 |
"2 96.0\n", |
|
|
674 |
"3 ...</td>\n", |
|
|
675 |
" <td>0 54.5\n", |
|
|
676 |
"1 40.0\n", |
|
|
677 |
"2 70.0\n", |
|
|
678 |
"3 ...</td>\n", |
|
|
679 |
" <td>0 142.000\n", |
|
|
680 |
"1 147.000\n", |
|
|
681 |
"2 142.000\n", |
|
|
682 |
"3...</td>\n", |
|
|
683 |
" <td>0 135.0\n", |
|
|
684 |
"1 145.0\n", |
|
|
685 |
"2 138.5\n", |
|
|
686 |
"3 ...</td>\n", |
|
|
687 |
" <td>0 97.0\n", |
|
|
688 |
"1 124.5\n", |
|
|
689 |
"2 105.5\n", |
|
|
690 |
"3 ...</td>\n", |
|
|
691 |
" <td>0 137.5\n", |
|
|
692 |
"1 144.5\n", |
|
|
693 |
"2 153.5\n", |
|
|
694 |
"3 ...</td>\n", |
|
|
695 |
" <td>0 87.0\n", |
|
|
696 |
"1 86.5\n", |
|
|
697 |
"2 86.0\n", |
|
|
698 |
"3 ...</td>\n", |
|
|
699 |
" <td>0 156.5\n", |
|
|
700 |
"1 156.5\n", |
|
|
701 |
"2 155.5\n", |
|
|
702 |
"3 ...</td>\n", |
|
|
703 |
" <td>0 135.0\n", |
|
|
704 |
"1 135.0\n", |
|
|
705 |
"2 135.5\n", |
|
|
706 |
"3 ...</td>\n", |
|
|
707 |
" <td>0 128.0\n", |
|
|
708 |
"1 124.5\n", |
|
|
709 |
"2 136.5\n", |
|
|
710 |
"3 ...</td>\n", |
|
|
711 |
" <td>4.0</td>\n", |
|
|
712 |
" </tr>\n", |
|
|
713 |
" <tr>\n", |
|
|
714 |
" <th>1176</th>\n", |
|
|
715 |
" <td>0 127.0\n", |
|
|
716 |
"1 133.5\n", |
|
|
717 |
"2 137.5\n", |
|
|
718 |
"3 ...</td>\n", |
|
|
719 |
" <td>0 100.5\n", |
|
|
720 |
"1 100.0\n", |
|
|
721 |
"2 102.5\n", |
|
|
722 |
"3 ...</td>\n", |
|
|
723 |
" <td>0 91.5\n", |
|
|
724 |
"1 94.5\n", |
|
|
725 |
"2 96.0\n", |
|
|
726 |
"3 ...</td>\n", |
|
|
727 |
" <td>0 74.0\n", |
|
|
728 |
"1 72.5\n", |
|
|
729 |
"2 74.5\n", |
|
|
730 |
"3 ...</td>\n", |
|
|
731 |
" <td>0 113.875000\n", |
|
|
732 |
"1 144.000000\n", |
|
|
733 |
"2 152...</td>\n", |
|
|
734 |
" <td>0 132.5\n", |
|
|
735 |
"1 134.0\n", |
|
|
736 |
"2 143.5\n", |
|
|
737 |
"3 ...</td>\n", |
|
|
738 |
" <td>0 119.0\n", |
|
|
739 |
"1 118.5\n", |
|
|
740 |
"2 118.0\n", |
|
|
741 |
"3 ...</td>\n", |
|
|
742 |
" <td>0 125.5\n", |
|
|
743 |
"1 121.5\n", |
|
|
744 |
"2 129.0\n", |
|
|
745 |
"3 ...</td>\n", |
|
|
746 |
" <td>0 137.0\n", |
|
|
747 |
"1 136.5\n", |
|
|
748 |
"2 138.5\n", |
|
|
749 |
"3 ...</td>\n", |
|
|
750 |
" <td>0 55.5\n", |
|
|
751 |
"1 52.0\n", |
|
|
752 |
"2 77.5\n", |
|
|
753 |
"3 ...</td>\n", |
|
|
754 |
" <td>0 116.5\n", |
|
|
755 |
"1 116.5\n", |
|
|
756 |
"2 117.0\n", |
|
|
757 |
"3 ...</td>\n", |
|
|
758 |
" <td>0 114.0\n", |
|
|
759 |
"1 110.5\n", |
|
|
760 |
"2 123.5\n", |
|
|
761 |
"3 ...</td>\n", |
|
|
762 |
" <td>4.0</td>\n", |
|
|
763 |
" </tr>\n", |
|
|
764 |
" <tr>\n", |
|
|
765 |
" <th>1177</th>\n", |
|
|
766 |
" <td>0 158.857143\n", |
|
|
767 |
"1 158.857143\n", |
|
|
768 |
"2 150...</td>\n", |
|
|
769 |
" <td>0 103.0\n", |
|
|
770 |
"1 103.5\n", |
|
|
771 |
"2 107.0\n", |
|
|
772 |
"3 ...</td>\n", |
|
|
773 |
" <td>0 103.5\n", |
|
|
774 |
"1 105.0\n", |
|
|
775 |
"2 114.0\n", |
|
|
776 |
"3 ...</td>\n", |
|
|
777 |
" <td>0 74.5\n", |
|
|
778 |
"1 74.5\n", |
|
|
779 |
"2 75.0\n", |
|
|
780 |
"3 ...</td>\n", |
|
|
781 |
" <td>0 142.0\n", |
|
|
782 |
"1 136.5\n", |
|
|
783 |
"2 133.0\n", |
|
|
784 |
"3 ...</td>\n", |
|
|
785 |
" <td>0 150.0\n", |
|
|
786 |
"1 144.5\n", |
|
|
787 |
"2 154.5\n", |
|
|
788 |
"3 ...</td>\n", |
|
|
789 |
" <td>0 103.0\n", |
|
|
790 |
"1 95.5\n", |
|
|
791 |
"2 103.5\n", |
|
|
792 |
"3 ...</td>\n", |
|
|
793 |
" <td>0 111.5\n", |
|
|
794 |
"1 100.0\n", |
|
|
795 |
"2 104.5\n", |
|
|
796 |
"3 ...</td>\n", |
|
|
797 |
" <td>0 165.428571\n", |
|
|
798 |
"1 165.875000\n", |
|
|
799 |
"2 154...</td>\n", |
|
|
800 |
" <td>0 146.5\n", |
|
|
801 |
"1 145.0\n", |
|
|
802 |
"2 144.0\n", |
|
|
803 |
"3 ...</td>\n", |
|
|
804 |
" <td>0 96.5\n", |
|
|
805 |
"1 96.5\n", |
|
|
806 |
"2 96.5\n", |
|
|
807 |
"3 ...</td>\n", |
|
|
808 |
" <td>0 137.0\n", |
|
|
809 |
"1 134.0\n", |
|
|
810 |
"2 129.5\n", |
|
|
811 |
"3 ...</td>\n", |
|
|
812 |
" <td>4.0</td>\n", |
|
|
813 |
" </tr>\n", |
|
|
814 |
" </tbody>\n", |
|
|
815 |
"</table>\n", |
|
|
816 |
"<p>1178 rows × 13 columns</p>\n", |
|
|
817 |
"</div>" |
|
|
818 |
], |
|
|
819 |
"text/plain": [ |
|
|
820 |
" Lead1 \\\n", |
|
|
821 |
"0 0 126.0\n", |
|
|
822 |
"1 119.5\n", |
|
|
823 |
"2 134.0\n", |
|
|
824 |
"3 ... \n", |
|
|
825 |
"1 0 139.0\n", |
|
|
826 |
"1 129.0\n", |
|
|
827 |
"2 127.0\n", |
|
|
828 |
"3 ... \n", |
|
|
829 |
"2 0 158.333333\n", |
|
|
830 |
"1 158.333333\n", |
|
|
831 |
"2 149... \n", |
|
|
832 |
"3 0 116.5\n", |
|
|
833 |
"1 117.5\n", |
|
|
834 |
"2 126.0\n", |
|
|
835 |
"3 ... \n", |
|
|
836 |
"4 0 157.000000\n", |
|
|
837 |
"1 157.000000\n", |
|
|
838 |
"2 148... \n", |
|
|
839 |
"... ... \n", |
|
|
840 |
"1173 0 130.5\n", |
|
|
841 |
"1 127.5\n", |
|
|
842 |
"2 127.0\n", |
|
|
843 |
"3 ... \n", |
|
|
844 |
"1174 0 92.5\n", |
|
|
845 |
"1 78.5\n", |
|
|
846 |
"2 92.0\n", |
|
|
847 |
"3 ... \n", |
|
|
848 |
"1175 0 130.0\n", |
|
|
849 |
"1 131.5\n", |
|
|
850 |
"2 138.0\n", |
|
|
851 |
"3 ... \n", |
|
|
852 |
"1176 0 127.0\n", |
|
|
853 |
"1 133.5\n", |
|
|
854 |
"2 137.5\n", |
|
|
855 |
"3 ... \n", |
|
|
856 |
"1177 0 158.857143\n", |
|
|
857 |
"1 158.857143\n", |
|
|
858 |
"2 150... \n", |
|
|
859 |
"\n", |
|
|
860 |
" Lead2 \\\n", |
|
|
861 |
"0 0 105.0\n", |
|
|
862 |
"1 104.5\n", |
|
|
863 |
"2 104.5\n", |
|
|
864 |
"3 ... \n", |
|
|
865 |
"1 0 103.0\n", |
|
|
866 |
"1 103.0\n", |
|
|
867 |
"2 102.0\n", |
|
|
868 |
"3 ... \n", |
|
|
869 |
"2 0 103.5\n", |
|
|
870 |
"1 106.5\n", |
|
|
871 |
"2 110.5\n", |
|
|
872 |
"3 ... \n", |
|
|
873 |
"3 0 100.5\n", |
|
|
874 |
"1 100.5\n", |
|
|
875 |
"2 101.5\n", |
|
|
876 |
"3 ... \n", |
|
|
877 |
"4 0 106.5\n", |
|
|
878 |
"1 106.5\n", |
|
|
879 |
"2 106.0\n", |
|
|
880 |
"3 ... \n", |
|
|
881 |
"... ... \n", |
|
|
882 |
"1173 0 100.5\n", |
|
|
883 |
"1 100.0\n", |
|
|
884 |
"2 99.5\n", |
|
|
885 |
"3 ... \n", |
|
|
886 |
"1174 0 102.5\n", |
|
|
887 |
"1 103.0\n", |
|
|
888 |
"2 103.0\n", |
|
|
889 |
"3 ... \n", |
|
|
890 |
"1175 0 103.0\n", |
|
|
891 |
"1 103.5\n", |
|
|
892 |
"2 103.5\n", |
|
|
893 |
"3 ... \n", |
|
|
894 |
"1176 0 100.5\n", |
|
|
895 |
"1 100.0\n", |
|
|
896 |
"2 102.5\n", |
|
|
897 |
"3 ... \n", |
|
|
898 |
"1177 0 103.0\n", |
|
|
899 |
"1 103.5\n", |
|
|
900 |
"2 107.0\n", |
|
|
901 |
"3 ... \n", |
|
|
902 |
"\n", |
|
|
903 |
" Lead3 \\\n", |
|
|
904 |
"0 0 104.714286\n", |
|
|
905 |
"1 117.250000\n", |
|
|
906 |
"2 101... \n", |
|
|
907 |
"1 0 80.5\n", |
|
|
908 |
"1 80.0\n", |
|
|
909 |
"2 79.0\n", |
|
|
910 |
"3 79.... \n", |
|
|
911 |
"2 0 103.5\n", |
|
|
912 |
"1 103.5\n", |
|
|
913 |
"2 103.5\n", |
|
|
914 |
"3 ... \n", |
|
|
915 |
"3 0 104.5\n", |
|
|
916 |
"1 104.5\n", |
|
|
917 |
"2 104.0\n", |
|
|
918 |
"3 ... \n", |
|
|
919 |
"4 0 107.0\n", |
|
|
920 |
"1 106.0\n", |
|
|
921 |
"2 106.0\n", |
|
|
922 |
"3 ... \n", |
|
|
923 |
"... ... \n", |
|
|
924 |
"1173 0 107.0\n", |
|
|
925 |
"1 107.0\n", |
|
|
926 |
"2 109.0\n", |
|
|
927 |
"3 ... \n", |
|
|
928 |
"1174 0 87.5\n", |
|
|
929 |
"1 87.5\n", |
|
|
930 |
"2 87.5\n", |
|
|
931 |
"3 ... \n", |
|
|
932 |
"1175 0 97.0\n", |
|
|
933 |
"1 96.5\n", |
|
|
934 |
"2 96.0\n", |
|
|
935 |
"3 ... \n", |
|
|
936 |
"1176 0 91.5\n", |
|
|
937 |
"1 94.5\n", |
|
|
938 |
"2 96.0\n", |
|
|
939 |
"3 ... \n", |
|
|
940 |
"1177 0 103.5\n", |
|
|
941 |
"1 105.0\n", |
|
|
942 |
"2 114.0\n", |
|
|
943 |
"3 ... \n", |
|
|
944 |
"\n", |
|
|
945 |
" Lead4 \\\n", |
|
|
946 |
"0 0 35.957447\n", |
|
|
947 |
"1 35.500000\n", |
|
|
948 |
"2 46... \n", |
|
|
949 |
"1 0 67.5\n", |
|
|
950 |
"1 72.0\n", |
|
|
951 |
"2 77.0\n", |
|
|
952 |
"3 ... \n", |
|
|
953 |
"2 0 97.5\n", |
|
|
954 |
"1 97.5\n", |
|
|
955 |
"2 97.0\n", |
|
|
956 |
"3 ... \n", |
|
|
957 |
"3 0 63.0\n", |
|
|
958 |
"1 60.0\n", |
|
|
959 |
"2 67.5\n", |
|
|
960 |
"3 ... \n", |
|
|
961 |
"4 0 58.5\n", |
|
|
962 |
"1 70.0\n", |
|
|
963 |
"2 86.0\n", |
|
|
964 |
"3 ... \n", |
|
|
965 |
"... ... \n", |
|
|
966 |
"1173 0 57.0\n", |
|
|
967 |
"1 67.5\n", |
|
|
968 |
"2 82.5\n", |
|
|
969 |
"3 ... \n", |
|
|
970 |
"1174 0 74.0\n", |
|
|
971 |
"1 72.5\n", |
|
|
972 |
"2 74.5\n", |
|
|
973 |
"3 ... \n", |
|
|
974 |
"1175 0 54.5\n", |
|
|
975 |
"1 40.0\n", |
|
|
976 |
"2 70.0\n", |
|
|
977 |
"3 ... \n", |
|
|
978 |
"1176 0 74.0\n", |
|
|
979 |
"1 72.5\n", |
|
|
980 |
"2 74.5\n", |
|
|
981 |
"3 ... \n", |
|
|
982 |
"1177 0 74.5\n", |
|
|
983 |
"1 74.5\n", |
|
|
984 |
"2 75.0\n", |
|
|
985 |
"3 ... \n", |
|
|
986 |
"\n", |
|
|
987 |
" Lead5 \\\n", |
|
|
988 |
"0 0 158.000000\n", |
|
|
989 |
"1 157.333333\n", |
|
|
990 |
"2 149... \n", |
|
|
991 |
"1 0 127.5\n", |
|
|
992 |
"1 126.0\n", |
|
|
993 |
"2 131.5\n", |
|
|
994 |
"3 ... \n", |
|
|
995 |
"2 0 118.363636\n", |
|
|
996 |
"1 97.000000\n", |
|
|
997 |
"2 94... \n", |
|
|
998 |
"3 0 130.0\n", |
|
|
999 |
"1 123.5\n", |
|
|
1000 |
"2 129.5\n", |
|
|
1001 |
"3 ... \n", |
|
|
1002 |
"4 0 141.0\n", |
|
|
1003 |
"1 136.5\n", |
|
|
1004 |
"2 138.0\n", |
|
|
1005 |
"3 ... \n", |
|
|
1006 |
"... ... \n", |
|
|
1007 |
"1173 0 110.5\n", |
|
|
1008 |
"1 107.5\n", |
|
|
1009 |
"2 123.5\n", |
|
|
1010 |
"3 ... \n", |
|
|
1011 |
"1174 0 71.5\n", |
|
|
1012 |
"1 74.5\n", |
|
|
1013 |
"2 83.0\n", |
|
|
1014 |
"3 ... \n", |
|
|
1015 |
"1175 0 142.000\n", |
|
|
1016 |
"1 147.000\n", |
|
|
1017 |
"2 142.000\n", |
|
|
1018 |
"3... \n", |
|
|
1019 |
"1176 0 113.875000\n", |
|
|
1020 |
"1 144.000000\n", |
|
|
1021 |
"2 152... \n", |
|
|
1022 |
"1177 0 142.0\n", |
|
|
1023 |
"1 136.5\n", |
|
|
1024 |
"2 133.0\n", |
|
|
1025 |
"3 ... \n", |
|
|
1026 |
"\n", |
|
|
1027 |
" Lead6 \\\n", |
|
|
1028 |
"0 0 119.5\n", |
|
|
1029 |
"1 116.5\n", |
|
|
1030 |
"2 125.5\n", |
|
|
1031 |
"3 ... \n", |
|
|
1032 |
"1 0 130.0\n", |
|
|
1033 |
"1 139.0\n", |
|
|
1034 |
"2 130.5\n", |
|
|
1035 |
"3 ... \n", |
|
|
1036 |
"2 0 116.666667\n", |
|
|
1037 |
"1 155.500000\n", |
|
|
1038 |
"2 156... \n", |
|
|
1039 |
"3 0 131.5\n", |
|
|
1040 |
"1 130.0\n", |
|
|
1041 |
"2 131.5\n", |
|
|
1042 |
"3 ... \n", |
|
|
1043 |
"4 0 155.5\n", |
|
|
1044 |
"1 158.5\n", |
|
|
1045 |
"2 156.5\n", |
|
|
1046 |
"3 ... \n", |
|
|
1047 |
"... ... \n", |
|
|
1048 |
"1173 0 142.5\n", |
|
|
1049 |
"1 145.0\n", |
|
|
1050 |
"2 156.5\n", |
|
|
1051 |
"3 ... \n", |
|
|
1052 |
"1174 0 113.0\n", |
|
|
1053 |
"1 111.0\n", |
|
|
1054 |
"2 119.0\n", |
|
|
1055 |
"3 ... \n", |
|
|
1056 |
"1175 0 135.0\n", |
|
|
1057 |
"1 145.0\n", |
|
|
1058 |
"2 138.5\n", |
|
|
1059 |
"3 ... \n", |
|
|
1060 |
"1176 0 132.5\n", |
|
|
1061 |
"1 134.0\n", |
|
|
1062 |
"2 143.5\n", |
|
|
1063 |
"3 ... \n", |
|
|
1064 |
"1177 0 150.0\n", |
|
|
1065 |
"1 144.5\n", |
|
|
1066 |
"2 154.5\n", |
|
|
1067 |
"3 ... \n", |
|
|
1068 |
"\n", |
|
|
1069 |
" Lead7 \\\n", |
|
|
1070 |
"0 0 137.5\n", |
|
|
1071 |
"1 137.0\n", |
|
|
1072 |
"2 136.5\n", |
|
|
1073 |
"3 ... \n", |
|
|
1074 |
"1 0 129.5\n", |
|
|
1075 |
"1 129.5\n", |
|
|
1076 |
"2 129.5\n", |
|
|
1077 |
"3 ... \n", |
|
|
1078 |
"2 0 131.200000\n", |
|
|
1079 |
"1 136.166667\n", |
|
|
1080 |
"2 104... \n", |
|
|
1081 |
"3 0 140.5\n", |
|
|
1082 |
"1 150.0\n", |
|
|
1083 |
"2 144.5\n", |
|
|
1084 |
"3 ... \n", |
|
|
1085 |
"4 0 131.0\n", |
|
|
1086 |
"1 130.5\n", |
|
|
1087 |
"2 130.0\n", |
|
|
1088 |
"3 ... \n", |
|
|
1089 |
"... ... \n", |
|
|
1090 |
"1173 0 97.0\n", |
|
|
1091 |
"1 124.5\n", |
|
|
1092 |
"2 105.5\n", |
|
|
1093 |
"3 ... \n", |
|
|
1094 |
"1174 0 141.600000\n", |
|
|
1095 |
"1 133.250000\n", |
|
|
1096 |
"2 122... \n", |
|
|
1097 |
"1175 0 97.0\n", |
|
|
1098 |
"1 124.5\n", |
|
|
1099 |
"2 105.5\n", |
|
|
1100 |
"3 ... \n", |
|
|
1101 |
"1176 0 119.0\n", |
|
|
1102 |
"1 118.5\n", |
|
|
1103 |
"2 118.0\n", |
|
|
1104 |
"3 ... \n", |
|
|
1105 |
"1177 0 103.0\n", |
|
|
1106 |
"1 95.5\n", |
|
|
1107 |
"2 103.5\n", |
|
|
1108 |
"3 ... \n", |
|
|
1109 |
"\n", |
|
|
1110 |
" Lead8 \\\n", |
|
|
1111 |
"0 0 156.0\n", |
|
|
1112 |
"1 154.0\n", |
|
|
1113 |
"2 153.5\n", |
|
|
1114 |
"3 ... \n", |
|
|
1115 |
"1 0 155.5\n", |
|
|
1116 |
"1 155.5\n", |
|
|
1117 |
"2 155.5\n", |
|
|
1118 |
"3 ... \n", |
|
|
1119 |
"2 0 108.5\n", |
|
|
1120 |
"1 100.0\n", |
|
|
1121 |
"2 112.5\n", |
|
|
1122 |
"3 ... \n", |
|
|
1123 |
"3 0 155.0\n", |
|
|
1124 |
"1 155.0\n", |
|
|
1125 |
"2 155.0\n", |
|
|
1126 |
"3 ... \n", |
|
|
1127 |
"4 0 133.5\n", |
|
|
1128 |
"1 133.0\n", |
|
|
1129 |
"2 146.5\n", |
|
|
1130 |
"3 ... \n", |
|
|
1131 |
"... ... \n", |
|
|
1132 |
"1173 0 127.5\n", |
|
|
1133 |
"1 126.0\n", |
|
|
1134 |
"2 127.5\n", |
|
|
1135 |
"3 ... \n", |
|
|
1136 |
"1174 0 121.0\n", |
|
|
1137 |
"1 120.5\n", |
|
|
1138 |
"2 120.0\n", |
|
|
1139 |
"3 ... \n", |
|
|
1140 |
"1175 0 137.5\n", |
|
|
1141 |
"1 144.5\n", |
|
|
1142 |
"2 153.5\n", |
|
|
1143 |
"3 ... \n", |
|
|
1144 |
"1176 0 125.5\n", |
|
|
1145 |
"1 121.5\n", |
|
|
1146 |
"2 129.0\n", |
|
|
1147 |
"3 ... \n", |
|
|
1148 |
"1177 0 111.5\n", |
|
|
1149 |
"1 100.0\n", |
|
|
1150 |
"2 104.5\n", |
|
|
1151 |
"3 ... \n", |
|
|
1152 |
"\n", |
|
|
1153 |
" Lead9 \\\n", |
|
|
1154 |
"0 0 162.000000\n", |
|
|
1155 |
"1 162.000000\n", |
|
|
1156 |
"2 151... \n", |
|
|
1157 |
"1 0 139.0\n", |
|
|
1158 |
"1 131.5\n", |
|
|
1159 |
"2 128.5\n", |
|
|
1160 |
"3 ... \n", |
|
|
1161 |
"2 0 169.500000\n", |
|
|
1162 |
"1 153.000000\n", |
|
|
1163 |
"2 145... \n", |
|
|
1164 |
"3 0 169.500000\n", |
|
|
1165 |
"1 153.000000\n", |
|
|
1166 |
"2 145... \n", |
|
|
1167 |
"4 0 139.333333\n", |
|
|
1168 |
"1 159.357143\n", |
|
|
1169 |
"2 156... \n", |
|
|
1170 |
"... ... \n", |
|
|
1171 |
"1173 0 142.5\n", |
|
|
1172 |
"1 137.5\n", |
|
|
1173 |
"2 137.5\n", |
|
|
1174 |
"3 ... \n", |
|
|
1175 |
"1174 0 87.0\n", |
|
|
1176 |
"1 86.5\n", |
|
|
1177 |
"2 86.0\n", |
|
|
1178 |
"3 ... \n", |
|
|
1179 |
"1175 0 87.0\n", |
|
|
1180 |
"1 86.5\n", |
|
|
1181 |
"2 86.0\n", |
|
|
1182 |
"3 ... \n", |
|
|
1183 |
"1176 0 137.0\n", |
|
|
1184 |
"1 136.5\n", |
|
|
1185 |
"2 138.5\n", |
|
|
1186 |
"3 ... \n", |
|
|
1187 |
"1177 0 165.428571\n", |
|
|
1188 |
"1 165.875000\n", |
|
|
1189 |
"2 154... \n", |
|
|
1190 |
"\n", |
|
|
1191 |
" Lead10 \\\n", |
|
|
1192 |
"0 0 155.0\n", |
|
|
1193 |
"1 154.5\n", |
|
|
1194 |
"2 155.5\n", |
|
|
1195 |
"3 ... \n", |
|
|
1196 |
"1 0 153.5\n", |
|
|
1197 |
"1 149.0\n", |
|
|
1198 |
"2 151.0\n", |
|
|
1199 |
"3 ... \n", |
|
|
1200 |
"2 0 156.0\n", |
|
|
1201 |
"1 156.0\n", |
|
|
1202 |
"2 157.5\n", |
|
|
1203 |
"3 ... \n", |
|
|
1204 |
"3 0 119.5\n", |
|
|
1205 |
"1 122.0\n", |
|
|
1206 |
"2 129.5\n", |
|
|
1207 |
"3 ... \n", |
|
|
1208 |
"4 0 137.0\n", |
|
|
1209 |
"1 138.5\n", |
|
|
1210 |
"2 145.5\n", |
|
|
1211 |
"3 ... \n", |
|
|
1212 |
"... ... \n", |
|
|
1213 |
"1173 0 133.0\n", |
|
|
1214 |
"1 132.5\n", |
|
|
1215 |
"2 132.5\n", |
|
|
1216 |
"3 ... \n", |
|
|
1217 |
"1174 0 140.0\n", |
|
|
1218 |
"1 148.5\n", |
|
|
1219 |
"2 142.0\n", |
|
|
1220 |
"3 ... \n", |
|
|
1221 |
"1175 0 156.5\n", |
|
|
1222 |
"1 156.5\n", |
|
|
1223 |
"2 155.5\n", |
|
|
1224 |
"3 ... \n", |
|
|
1225 |
"1176 0 55.5\n", |
|
|
1226 |
"1 52.0\n", |
|
|
1227 |
"2 77.5\n", |
|
|
1228 |
"3 ... \n", |
|
|
1229 |
"1177 0 146.5\n", |
|
|
1230 |
"1 145.0\n", |
|
|
1231 |
"2 144.0\n", |
|
|
1232 |
"3 ... \n", |
|
|
1233 |
"\n", |
|
|
1234 |
" Lead11 \\\n", |
|
|
1235 |
"0 0 193.545455\n", |
|
|
1236 |
"1 3.500000\n", |
|
|
1237 |
"2 3... \n", |
|
|
1238 |
"1 0 80.166667\n", |
|
|
1239 |
"1 77.071429\n", |
|
|
1240 |
"2 82... \n", |
|
|
1241 |
"2 0 145.5\n", |
|
|
1242 |
"1 145.5\n", |
|
|
1243 |
"2 145.5\n", |
|
|
1244 |
"3 ... \n", |
|
|
1245 |
"3 0 154.055944\n", |
|
|
1246 |
"1 136.396396\n", |
|
|
1247 |
"2 44... \n", |
|
|
1248 |
"4 0 137.5\n", |
|
|
1249 |
"1 138.0\n", |
|
|
1250 |
"2 146.5\n", |
|
|
1251 |
"3 ... \n", |
|
|
1252 |
"... ... \n", |
|
|
1253 |
"1173 0 4.0\n", |
|
|
1254 |
"1 12.5\n", |
|
|
1255 |
"2 19.0\n", |
|
|
1256 |
"3 ... \n", |
|
|
1257 |
"1174 0 137.909091\n", |
|
|
1258 |
"1 140.000000\n", |
|
|
1259 |
"2 137... \n", |
|
|
1260 |
"1175 0 135.0\n", |
|
|
1261 |
"1 135.0\n", |
|
|
1262 |
"2 135.5\n", |
|
|
1263 |
"3 ... \n", |
|
|
1264 |
"1176 0 116.5\n", |
|
|
1265 |
"1 116.5\n", |
|
|
1266 |
"2 117.0\n", |
|
|
1267 |
"3 ... \n", |
|
|
1268 |
"1177 0 96.5\n", |
|
|
1269 |
"1 96.5\n", |
|
|
1270 |
"2 96.5\n", |
|
|
1271 |
"3 ... \n", |
|
|
1272 |
"\n", |
|
|
1273 |
" Lead12 Label \n", |
|
|
1274 |
"0 0 89.000000\n", |
|
|
1275 |
"1 109.500000\n", |
|
|
1276 |
"2 91... 0.0 \n", |
|
|
1277 |
"1 0 109.000000\n", |
|
|
1278 |
"1 100.000000\n", |
|
|
1279 |
"2 111... 0.0 \n", |
|
|
1280 |
"2 0 107.170732\n", |
|
|
1281 |
"1 104.000000\n", |
|
|
1282 |
"2 121... 0.0 \n", |
|
|
1283 |
"3 0 121.714286\n", |
|
|
1284 |
"1 144.000000\n", |
|
|
1285 |
"2 133... 0.0 \n", |
|
|
1286 |
"4 0 140.0\n", |
|
|
1287 |
"1 135.0\n", |
|
|
1288 |
"2 142.0\n", |
|
|
1289 |
"3 ... 0.0 \n", |
|
|
1290 |
"... ... ... \n", |
|
|
1291 |
"1173 0 138.5\n", |
|
|
1292 |
"1 143.0\n", |
|
|
1293 |
"2 143.5\n", |
|
|
1294 |
"3 ... 4.0 \n", |
|
|
1295 |
"1174 0 117.5\n", |
|
|
1296 |
"1 125.0\n", |
|
|
1297 |
"2 127.0\n", |
|
|
1298 |
"3 ... 4.0 \n", |
|
|
1299 |
"1175 0 128.0\n", |
|
|
1300 |
"1 124.5\n", |
|
|
1301 |
"2 136.5\n", |
|
|
1302 |
"3 ... 4.0 \n", |
|
|
1303 |
"1176 0 114.0\n", |
|
|
1304 |
"1 110.5\n", |
|
|
1305 |
"2 123.5\n", |
|
|
1306 |
"3 ... 4.0 \n", |
|
|
1307 |
"1177 0 137.0\n", |
|
|
1308 |
"1 134.0\n", |
|
|
1309 |
"2 129.5\n", |
|
|
1310 |
"3 ... 4.0 \n", |
|
|
1311 |
"\n", |
|
|
1312 |
"[1178 rows x 13 columns]" |
|
|
1313 |
] |
|
|
1314 |
}, |
|
|
1315 |
"execution_count": 10, |
|
|
1316 |
"metadata": {}, |
|
|
1317 |
"output_type": "execute_result" |
|
|
1318 |
} |
|
|
1319 |
], |
|
|
1320 |
"source": [ |
|
|
1321 |
"X3d_nested" |
|
|
1322 |
] |
|
|
1323 |
}, |
|
|
1324 |
{ |
|
|
1325 |
"cell_type": "code", |
|
|
1326 |
"execution_count": null, |
|
|
1327 |
"id": "e3b5fedb", |
|
|
1328 |
"metadata": {}, |
|
|
1329 |
"outputs": [], |
|
|
1330 |
"source": [] |
|
|
1331 |
}, |
|
|
1332 |
{ |
|
|
1333 |
"cell_type": "markdown", |
|
|
1334 |
"id": "c2a71ae7", |
|
|
1335 |
"metadata": {}, |
|
|
1336 |
"source": [ |
|
|
1337 |
"### Classification Task" |
|
|
1338 |
] |
|
|
1339 |
}, |
|
|
1340 |
{ |
|
|
1341 |
"cell_type": "code", |
|
|
1342 |
"execution_count": 11, |
|
|
1343 |
"id": "69ec3a5d", |
|
|
1344 |
"metadata": {}, |
|
|
1345 |
"outputs": [], |
|
|
1346 |
"source": [ |
|
|
1347 |
"split = StratifiedShuffleSplit(n_splits=1, test_size=0.25, random_state=42)\n", |
|
|
1348 |
"for train_index, test_index in split.split(X3d_nested, X3d_nested['Label']):\n", |
|
|
1349 |
" X_train = X3d_nested.loc[train_index]\n", |
|
|
1350 |
" X_test = X3d_nested.loc[test_index]" |
|
|
1351 |
] |
|
|
1352 |
}, |
|
|
1353 |
{ |
|
|
1354 |
"cell_type": "code", |
|
|
1355 |
"execution_count": 12, |
|
|
1356 |
"id": "0df5b1b4", |
|
|
1357 |
"metadata": {}, |
|
|
1358 |
"outputs": [ |
|
|
1359 |
{ |
|
|
1360 |
"name": "stdout", |
|
|
1361 |
"output_type": "stream", |
|
|
1362 |
"text": [ |
|
|
1363 |
"Data set proportions:\n", |
|
|
1364 |
"3.0 0.241087\n", |
|
|
1365 |
"2.0 0.212224\n", |
|
|
1366 |
"4.0 0.202886\n", |
|
|
1367 |
"1.0 0.197793\n", |
|
|
1368 |
"0.0 0.146010\n", |
|
|
1369 |
"Name: Label, dtype: float64\n", |
|
|
1370 |
"\n", |
|
|
1371 |
"Test set proportions:\n", |
|
|
1372 |
"3.0 0.240678\n", |
|
|
1373 |
"2.0 0.213559\n", |
|
|
1374 |
"4.0 0.203390\n", |
|
|
1375 |
"1.0 0.196610\n", |
|
|
1376 |
"0.0 0.145763\n", |
|
|
1377 |
"Name: Label, dtype: float64\n" |
|
|
1378 |
] |
|
|
1379 |
} |
|
|
1380 |
], |
|
|
1381 |
"source": [ |
|
|
1382 |
"#Ascertain the spits are balanced\n", |
|
|
1383 |
"dataSetProp = X3d_nested['Label'].value_counts()/len(X3d_nested)\n", |
|
|
1384 |
"testSetProp = X_test['Label'].value_counts() / len(X_test)\n", |
|
|
1385 |
"print('Data set proportions:')\n", |
|
|
1386 |
"print(dataSetProp)\n", |
|
|
1387 |
"print('\\nTest set proportions:')\n", |
|
|
1388 |
"print(testSetProp)" |
|
|
1389 |
] |
|
|
1390 |
}, |
|
|
1391 |
{ |
|
|
1392 |
"cell_type": "code", |
|
|
1393 |
"execution_count": 13, |
|
|
1394 |
"id": "c68b5285", |
|
|
1395 |
"metadata": { |
|
|
1396 |
"scrolled": true |
|
|
1397 |
}, |
|
|
1398 |
"outputs": [], |
|
|
1399 |
"source": [ |
|
|
1400 |
"y_train = X_train['Label']\n", |
|
|
1401 |
"X_train.drop('Label',axis=1,inplace=True)\n", |
|
|
1402 |
"y_test = X_test['Label']\n", |
|
|
1403 |
"X_test.drop('Label',axis=1,inplace=True)" |
|
|
1404 |
] |
|
|
1405 |
}, |
|
|
1406 |
{ |
|
|
1407 |
"cell_type": "code", |
|
|
1408 |
"execution_count": 14, |
|
|
1409 |
"id": "3f727d3e", |
|
|
1410 |
"metadata": { |
|
|
1411 |
"scrolled": true |
|
|
1412 |
}, |
|
|
1413 |
"outputs": [ |
|
|
1414 |
{ |
|
|
1415 |
"data": { |
|
|
1416 |
"text/html": [ |
|
|
1417 |
"<div>\n", |
|
|
1418 |
"<style scoped>\n", |
|
|
1419 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
1420 |
" vertical-align: middle;\n", |
|
|
1421 |
" }\n", |
|
|
1422 |
"\n", |
|
|
1423 |
" .dataframe tbody tr th {\n", |
|
|
1424 |
" vertical-align: top;\n", |
|
|
1425 |
" }\n", |
|
|
1426 |
"\n", |
|
|
1427 |
" .dataframe thead th {\n", |
|
|
1428 |
" text-align: right;\n", |
|
|
1429 |
" }\n", |
|
|
1430 |
"</style>\n", |
|
|
1431 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1432 |
" <thead>\n", |
|
|
1433 |
" <tr style=\"text-align: right;\">\n", |
|
|
1434 |
" <th></th>\n", |
|
|
1435 |
" <th>Lead1</th>\n", |
|
|
1436 |
" <th>Lead2</th>\n", |
|
|
1437 |
" <th>Lead3</th>\n", |
|
|
1438 |
" <th>Lead4</th>\n", |
|
|
1439 |
" <th>Lead5</th>\n", |
|
|
1440 |
" <th>Lead6</th>\n", |
|
|
1441 |
" <th>Lead7</th>\n", |
|
|
1442 |
" <th>Lead8</th>\n", |
|
|
1443 |
" <th>Lead9</th>\n", |
|
|
1444 |
" <th>Lead10</th>\n", |
|
|
1445 |
" <th>Lead11</th>\n", |
|
|
1446 |
" <th>Lead12</th>\n", |
|
|
1447 |
" </tr>\n", |
|
|
1448 |
" </thead>\n", |
|
|
1449 |
" <tbody>\n", |
|
|
1450 |
" <tr>\n", |
|
|
1451 |
" <th>309</th>\n", |
|
|
1452 |
" <td>0 138.0\n", |
|
|
1453 |
"1 140.5\n", |
|
|
1454 |
"2 143.5\n", |
|
|
1455 |
"3 ...</td>\n", |
|
|
1456 |
" <td>0 100.0\n", |
|
|
1457 |
"1 89.5\n", |
|
|
1458 |
"2 88.5\n", |
|
|
1459 |
"3 ...</td>\n", |
|
|
1460 |
" <td>0 96.5\n", |
|
|
1461 |
"1 96.0\n", |
|
|
1462 |
"2 101.0\n", |
|
|
1463 |
"3 ...</td>\n", |
|
|
1464 |
" <td>0 40.0\n", |
|
|
1465 |
"1 33.0\n", |
|
|
1466 |
"2 66.5\n", |
|
|
1467 |
"3 ...</td>\n", |
|
|
1468 |
" <td>0 108.50\n", |
|
|
1469 |
"1 98.00\n", |
|
|
1470 |
"2 113.00\n", |
|
|
1471 |
"3 ...</td>\n", |
|
|
1472 |
" <td>0 156.0\n", |
|
|
1473 |
"1 155.0\n", |
|
|
1474 |
"2 156.5\n", |
|
|
1475 |
"3 ...</td>\n", |
|
|
1476 |
" <td>0 125.535714\n", |
|
|
1477 |
"1 147.666667\n", |
|
|
1478 |
"2 139...</td>\n", |
|
|
1479 |
" <td>0 133.0\n", |
|
|
1480 |
"1 135.5\n", |
|
|
1481 |
"2 131.5\n", |
|
|
1482 |
"3 ...</td>\n", |
|
|
1483 |
" <td>0 107.5\n", |
|
|
1484 |
"1 97.5\n", |
|
|
1485 |
"2 123.0\n", |
|
|
1486 |
"3 ...</td>\n", |
|
|
1487 |
" <td>0 140.5\n", |
|
|
1488 |
"1 139.5\n", |
|
|
1489 |
"2 146.0\n", |
|
|
1490 |
"3 ...</td>\n", |
|
|
1491 |
" <td>0 153.0\n", |
|
|
1492 |
"1 150.5\n", |
|
|
1493 |
"2 162.5\n", |
|
|
1494 |
"3 ...</td>\n", |
|
|
1495 |
" <td>0 101.0\n", |
|
|
1496 |
"1 100.5\n", |
|
|
1497 |
"2 110.0\n", |
|
|
1498 |
"3 ...</td>\n", |
|
|
1499 |
" </tr>\n", |
|
|
1500 |
" <tr>\n", |
|
|
1501 |
" <th>1108</th>\n", |
|
|
1502 |
" <td>0 124.5\n", |
|
|
1503 |
"1 115.0\n", |
|
|
1504 |
"2 116.5\n", |
|
|
1505 |
"3 ...</td>\n", |
|
|
1506 |
" <td>0 101.0\n", |
|
|
1507 |
"1 101.5\n", |
|
|
1508 |
"2 102.5\n", |
|
|
1509 |
"3 ...</td>\n", |
|
|
1510 |
" <td>0 107.0\n", |
|
|
1511 |
"1 107.0\n", |
|
|
1512 |
"2 109.0\n", |
|
|
1513 |
"3 ...</td>\n", |
|
|
1514 |
" <td>0 25.5\n", |
|
|
1515 |
"1 22.5\n", |
|
|
1516 |
"2 40.5\n", |
|
|
1517 |
"3 ...</td>\n", |
|
|
1518 |
" <td>0 106.5\n", |
|
|
1519 |
"1 112.5\n", |
|
|
1520 |
"2 117.5\n", |
|
|
1521 |
"3 ...</td>\n", |
|
|
1522 |
" <td>0 135.0\n", |
|
|
1523 |
"1 145.0\n", |
|
|
1524 |
"2 138.5\n", |
|
|
1525 |
"3 ...</td>\n", |
|
|
1526 |
" <td>0 145.148148\n", |
|
|
1527 |
"1 6.000000\n", |
|
|
1528 |
"2 6...</td>\n", |
|
|
1529 |
" <td>0 123.5\n", |
|
|
1530 |
"1 111.0\n", |
|
|
1531 |
"2 114.0\n", |
|
|
1532 |
"3 ...</td>\n", |
|
|
1533 |
" <td>0 165.428571\n", |
|
|
1534 |
"1 165.875000\n", |
|
|
1535 |
"2 154...</td>\n", |
|
|
1536 |
" <td>0 130.0\n", |
|
|
1537 |
"1 132.0\n", |
|
|
1538 |
"2 133.0\n", |
|
|
1539 |
"3 ...</td>\n", |
|
|
1540 |
" <td>0 89.5\n", |
|
|
1541 |
"1 92.5\n", |
|
|
1542 |
"2 102.5\n", |
|
|
1543 |
"3 ...</td>\n", |
|
|
1544 |
" <td>0 135.0\n", |
|
|
1545 |
"1 128.5\n", |
|
|
1546 |
"2 125.0\n", |
|
|
1547 |
"3 ...</td>\n", |
|
|
1548 |
" </tr>\n", |
|
|
1549 |
" <tr>\n", |
|
|
1550 |
" <th>647</th>\n", |
|
|
1551 |
" <td>0 65.000000\n", |
|
|
1552 |
"1 56.000000\n", |
|
|
1553 |
"2 58.85...</td>\n", |
|
|
1554 |
" <td>0 80.0\n", |
|
|
1555 |
"1 80.0\n", |
|
|
1556 |
"2 80.0\n", |
|
|
1557 |
"3 81....</td>\n", |
|
|
1558 |
" <td>0 45.000000\n", |
|
|
1559 |
"1 44.500000\n", |
|
|
1560 |
"2 46.00...</td>\n", |
|
|
1561 |
" <td>0 40.500000\n", |
|
|
1562 |
"1 51.914286\n", |
|
|
1563 |
"2 45.92...</td>\n", |
|
|
1564 |
" <td>0 77.000000\n", |
|
|
1565 |
"1 78.555556\n", |
|
|
1566 |
"2 78...</td>\n", |
|
|
1567 |
" <td>0 45.500000\n", |
|
|
1568 |
"1 50.200000\n", |
|
|
1569 |
"2 46.00...</td>\n", |
|
|
1570 |
" <td>0 78.000000\n", |
|
|
1571 |
"1 82.000000\n", |
|
|
1572 |
"2 76...</td>\n", |
|
|
1573 |
" <td>0 54.636364\n", |
|
|
1574 |
"1 58.500000\n", |
|
|
1575 |
"2 62.12...</td>\n", |
|
|
1576 |
" <td>0 133.500000\n", |
|
|
1577 |
"1 133.500000\n", |
|
|
1578 |
"2 133...</td>\n", |
|
|
1579 |
" <td>0 73.000000\n", |
|
|
1580 |
"1 75.000000\n", |
|
|
1581 |
"2 75...</td>\n", |
|
|
1582 |
" <td>0 68.333333\n", |
|
|
1583 |
"1 57.500000\n", |
|
|
1584 |
"2 59.09...</td>\n", |
|
|
1585 |
" <td>0 74.631579\n", |
|
|
1586 |
"1 76.466667\n", |
|
|
1587 |
"2 79...</td>\n", |
|
|
1588 |
" </tr>\n", |
|
|
1589 |
" <tr>\n", |
|
|
1590 |
" <th>863</th>\n", |
|
|
1591 |
" <td>0 157.666667\n", |
|
|
1592 |
"1 157.666667\n", |
|
|
1593 |
"2 149...</td>\n", |
|
|
1594 |
" <td>0 105.0\n", |
|
|
1595 |
"1 109.5\n", |
|
|
1596 |
"2 102.5\n", |
|
|
1597 |
"3 ...</td>\n", |
|
|
1598 |
" <td>0 104.0\n", |
|
|
1599 |
"1 112.5\n", |
|
|
1600 |
"2 104.5\n", |
|
|
1601 |
"3 ...</td>\n", |
|
|
1602 |
" <td>0 52.0\n", |
|
|
1603 |
"1 76.0\n", |
|
|
1604 |
"2 58.0\n", |
|
|
1605 |
"3 ...</td>\n", |
|
|
1606 |
" <td>0 124.5\n", |
|
|
1607 |
"1 120.5\n", |
|
|
1608 |
"2 128.5\n", |
|
|
1609 |
"3 ...</td>\n", |
|
|
1610 |
" <td>0 118.333333\n", |
|
|
1611 |
"1 125.500000\n", |
|
|
1612 |
"2 128...</td>\n", |
|
|
1613 |
" <td>0 113.5\n", |
|
|
1614 |
"1 120.0\n", |
|
|
1615 |
"2 151.0\n", |
|
|
1616 |
"3 ...</td>\n", |
|
|
1617 |
" <td>0 92.5\n", |
|
|
1618 |
"1 94.0\n", |
|
|
1619 |
"2 109.5\n", |
|
|
1620 |
"3 ...</td>\n", |
|
|
1621 |
" <td>0 120.0\n", |
|
|
1622 |
"1 120.0\n", |
|
|
1623 |
"2 126.5\n", |
|
|
1624 |
"3 ...</td>\n", |
|
|
1625 |
" <td>0 150.0\n", |
|
|
1626 |
"1 153.5\n", |
|
|
1627 |
"2 145.5\n", |
|
|
1628 |
"3 ...</td>\n", |
|
|
1629 |
" <td>0 144.0\n", |
|
|
1630 |
"1 137.5\n", |
|
|
1631 |
"2 145.5\n", |
|
|
1632 |
"3 ...</td>\n", |
|
|
1633 |
" <td>0 127.888889\n", |
|
|
1634 |
"1 126.962963\n", |
|
|
1635 |
"2 133...</td>\n", |
|
|
1636 |
" </tr>\n", |
|
|
1637 |
" <tr>\n", |
|
|
1638 |
" <th>207</th>\n", |
|
|
1639 |
" <td>0 122.0\n", |
|
|
1640 |
"1 130.0\n", |
|
|
1641 |
"2 130.0\n", |
|
|
1642 |
"3 ...</td>\n", |
|
|
1643 |
" <td>0 97.5\n", |
|
|
1644 |
"1 92.0\n", |
|
|
1645 |
"2 93.0\n", |
|
|
1646 |
"3 ...</td>\n", |
|
|
1647 |
" <td>0 85.000000\n", |
|
|
1648 |
"1 80.500000\n", |
|
|
1649 |
"2 86...</td>\n", |
|
|
1650 |
" <td>0 34.0\n", |
|
|
1651 |
"1 33.0\n", |
|
|
1652 |
"2 63.0\n", |
|
|
1653 |
"3 ...</td>\n", |
|
|
1654 |
" <td>0 83.50\n", |
|
|
1655 |
"1 85.00\n", |
|
|
1656 |
"2 94.04\n", |
|
|
1657 |
"3 ...</td>\n", |
|
|
1658 |
" <td>0 117.5\n", |
|
|
1659 |
"1 113.5\n", |
|
|
1660 |
"2 122.5\n", |
|
|
1661 |
"3 ...</td>\n", |
|
|
1662 |
" <td>0 157.818182\n", |
|
|
1663 |
"1 144.714286\n", |
|
|
1664 |
"2 122...</td>\n", |
|
|
1665 |
" <td>0 104.5\n", |
|
|
1666 |
"1 93.0\n", |
|
|
1667 |
"2 113.5\n", |
|
|
1668 |
"3 ...</td>\n", |
|
|
1669 |
" <td>0 116.5\n", |
|
|
1670 |
"1 106.5\n", |
|
|
1671 |
"2 128.5\n", |
|
|
1672 |
"3 ...</td>\n", |
|
|
1673 |
" <td>0 147.0\n", |
|
|
1674 |
"1 145.0\n", |
|
|
1675 |
"2 149.0\n", |
|
|
1676 |
"3 ...</td>\n", |
|
|
1677 |
" <td>0 153.781022\n", |
|
|
1678 |
"1 141.024793\n", |
|
|
1679 |
"2 22...</td>\n", |
|
|
1680 |
" <td>0 106.0\n", |
|
|
1681 |
"1 101.5\n", |
|
|
1682 |
"2 113.5\n", |
|
|
1683 |
"3 ...</td>\n", |
|
|
1684 |
" </tr>\n", |
|
|
1685 |
" </tbody>\n", |
|
|
1686 |
"</table>\n", |
|
|
1687 |
"</div>" |
|
|
1688 |
], |
|
|
1689 |
"text/plain": [ |
|
|
1690 |
" Lead1 \\\n", |
|
|
1691 |
"309 0 138.0\n", |
|
|
1692 |
"1 140.5\n", |
|
|
1693 |
"2 143.5\n", |
|
|
1694 |
"3 ... \n", |
|
|
1695 |
"1108 0 124.5\n", |
|
|
1696 |
"1 115.0\n", |
|
|
1697 |
"2 116.5\n", |
|
|
1698 |
"3 ... \n", |
|
|
1699 |
"647 0 65.000000\n", |
|
|
1700 |
"1 56.000000\n", |
|
|
1701 |
"2 58.85... \n", |
|
|
1702 |
"863 0 157.666667\n", |
|
|
1703 |
"1 157.666667\n", |
|
|
1704 |
"2 149... \n", |
|
|
1705 |
"207 0 122.0\n", |
|
|
1706 |
"1 130.0\n", |
|
|
1707 |
"2 130.0\n", |
|
|
1708 |
"3 ... \n", |
|
|
1709 |
"\n", |
|
|
1710 |
" Lead2 \\\n", |
|
|
1711 |
"309 0 100.0\n", |
|
|
1712 |
"1 89.5\n", |
|
|
1713 |
"2 88.5\n", |
|
|
1714 |
"3 ... \n", |
|
|
1715 |
"1108 0 101.0\n", |
|
|
1716 |
"1 101.5\n", |
|
|
1717 |
"2 102.5\n", |
|
|
1718 |
"3 ... \n", |
|
|
1719 |
"647 0 80.0\n", |
|
|
1720 |
"1 80.0\n", |
|
|
1721 |
"2 80.0\n", |
|
|
1722 |
"3 81.... \n", |
|
|
1723 |
"863 0 105.0\n", |
|
|
1724 |
"1 109.5\n", |
|
|
1725 |
"2 102.5\n", |
|
|
1726 |
"3 ... \n", |
|
|
1727 |
"207 0 97.5\n", |
|
|
1728 |
"1 92.0\n", |
|
|
1729 |
"2 93.0\n", |
|
|
1730 |
"3 ... \n", |
|
|
1731 |
"\n", |
|
|
1732 |
" Lead3 \\\n", |
|
|
1733 |
"309 0 96.5\n", |
|
|
1734 |
"1 96.0\n", |
|
|
1735 |
"2 101.0\n", |
|
|
1736 |
"3 ... \n", |
|
|
1737 |
"1108 0 107.0\n", |
|
|
1738 |
"1 107.0\n", |
|
|
1739 |
"2 109.0\n", |
|
|
1740 |
"3 ... \n", |
|
|
1741 |
"647 0 45.000000\n", |
|
|
1742 |
"1 44.500000\n", |
|
|
1743 |
"2 46.00... \n", |
|
|
1744 |
"863 0 104.0\n", |
|
|
1745 |
"1 112.5\n", |
|
|
1746 |
"2 104.5\n", |
|
|
1747 |
"3 ... \n", |
|
|
1748 |
"207 0 85.000000\n", |
|
|
1749 |
"1 80.500000\n", |
|
|
1750 |
"2 86... \n", |
|
|
1751 |
"\n", |
|
|
1752 |
" Lead4 \\\n", |
|
|
1753 |
"309 0 40.0\n", |
|
|
1754 |
"1 33.0\n", |
|
|
1755 |
"2 66.5\n", |
|
|
1756 |
"3 ... \n", |
|
|
1757 |
"1108 0 25.5\n", |
|
|
1758 |
"1 22.5\n", |
|
|
1759 |
"2 40.5\n", |
|
|
1760 |
"3 ... \n", |
|
|
1761 |
"647 0 40.500000\n", |
|
|
1762 |
"1 51.914286\n", |
|
|
1763 |
"2 45.92... \n", |
|
|
1764 |
"863 0 52.0\n", |
|
|
1765 |
"1 76.0\n", |
|
|
1766 |
"2 58.0\n", |
|
|
1767 |
"3 ... \n", |
|
|
1768 |
"207 0 34.0\n", |
|
|
1769 |
"1 33.0\n", |
|
|
1770 |
"2 63.0\n", |
|
|
1771 |
"3 ... \n", |
|
|
1772 |
"\n", |
|
|
1773 |
" Lead5 \\\n", |
|
|
1774 |
"309 0 108.50\n", |
|
|
1775 |
"1 98.00\n", |
|
|
1776 |
"2 113.00\n", |
|
|
1777 |
"3 ... \n", |
|
|
1778 |
"1108 0 106.5\n", |
|
|
1779 |
"1 112.5\n", |
|
|
1780 |
"2 117.5\n", |
|
|
1781 |
"3 ... \n", |
|
|
1782 |
"647 0 77.000000\n", |
|
|
1783 |
"1 78.555556\n", |
|
|
1784 |
"2 78... \n", |
|
|
1785 |
"863 0 124.5\n", |
|
|
1786 |
"1 120.5\n", |
|
|
1787 |
"2 128.5\n", |
|
|
1788 |
"3 ... \n", |
|
|
1789 |
"207 0 83.50\n", |
|
|
1790 |
"1 85.00\n", |
|
|
1791 |
"2 94.04\n", |
|
|
1792 |
"3 ... \n", |
|
|
1793 |
"\n", |
|
|
1794 |
" Lead6 \\\n", |
|
|
1795 |
"309 0 156.0\n", |
|
|
1796 |
"1 155.0\n", |
|
|
1797 |
"2 156.5\n", |
|
|
1798 |
"3 ... \n", |
|
|
1799 |
"1108 0 135.0\n", |
|
|
1800 |
"1 145.0\n", |
|
|
1801 |
"2 138.5\n", |
|
|
1802 |
"3 ... \n", |
|
|
1803 |
"647 0 45.500000\n", |
|
|
1804 |
"1 50.200000\n", |
|
|
1805 |
"2 46.00... \n", |
|
|
1806 |
"863 0 118.333333\n", |
|
|
1807 |
"1 125.500000\n", |
|
|
1808 |
"2 128... \n", |
|
|
1809 |
"207 0 117.5\n", |
|
|
1810 |
"1 113.5\n", |
|
|
1811 |
"2 122.5\n", |
|
|
1812 |
"3 ... \n", |
|
|
1813 |
"\n", |
|
|
1814 |
" Lead7 \\\n", |
|
|
1815 |
"309 0 125.535714\n", |
|
|
1816 |
"1 147.666667\n", |
|
|
1817 |
"2 139... \n", |
|
|
1818 |
"1108 0 145.148148\n", |
|
|
1819 |
"1 6.000000\n", |
|
|
1820 |
"2 6... \n", |
|
|
1821 |
"647 0 78.000000\n", |
|
|
1822 |
"1 82.000000\n", |
|
|
1823 |
"2 76... \n", |
|
|
1824 |
"863 0 113.5\n", |
|
|
1825 |
"1 120.0\n", |
|
|
1826 |
"2 151.0\n", |
|
|
1827 |
"3 ... \n", |
|
|
1828 |
"207 0 157.818182\n", |
|
|
1829 |
"1 144.714286\n", |
|
|
1830 |
"2 122... \n", |
|
|
1831 |
"\n", |
|
|
1832 |
" Lead8 \\\n", |
|
|
1833 |
"309 0 133.0\n", |
|
|
1834 |
"1 135.5\n", |
|
|
1835 |
"2 131.5\n", |
|
|
1836 |
"3 ... \n", |
|
|
1837 |
"1108 0 123.5\n", |
|
|
1838 |
"1 111.0\n", |
|
|
1839 |
"2 114.0\n", |
|
|
1840 |
"3 ... \n", |
|
|
1841 |
"647 0 54.636364\n", |
|
|
1842 |
"1 58.500000\n", |
|
|
1843 |
"2 62.12... \n", |
|
|
1844 |
"863 0 92.5\n", |
|
|
1845 |
"1 94.0\n", |
|
|
1846 |
"2 109.5\n", |
|
|
1847 |
"3 ... \n", |
|
|
1848 |
"207 0 104.5\n", |
|
|
1849 |
"1 93.0\n", |
|
|
1850 |
"2 113.5\n", |
|
|
1851 |
"3 ... \n", |
|
|
1852 |
"\n", |
|
|
1853 |
" Lead9 \\\n", |
|
|
1854 |
"309 0 107.5\n", |
|
|
1855 |
"1 97.5\n", |
|
|
1856 |
"2 123.0\n", |
|
|
1857 |
"3 ... \n", |
|
|
1858 |
"1108 0 165.428571\n", |
|
|
1859 |
"1 165.875000\n", |
|
|
1860 |
"2 154... \n", |
|
|
1861 |
"647 0 133.500000\n", |
|
|
1862 |
"1 133.500000\n", |
|
|
1863 |
"2 133... \n", |
|
|
1864 |
"863 0 120.0\n", |
|
|
1865 |
"1 120.0\n", |
|
|
1866 |
"2 126.5\n", |
|
|
1867 |
"3 ... \n", |
|
|
1868 |
"207 0 116.5\n", |
|
|
1869 |
"1 106.5\n", |
|
|
1870 |
"2 128.5\n", |
|
|
1871 |
"3 ... \n", |
|
|
1872 |
"\n", |
|
|
1873 |
" Lead10 \\\n", |
|
|
1874 |
"309 0 140.5\n", |
|
|
1875 |
"1 139.5\n", |
|
|
1876 |
"2 146.0\n", |
|
|
1877 |
"3 ... \n", |
|
|
1878 |
"1108 0 130.0\n", |
|
|
1879 |
"1 132.0\n", |
|
|
1880 |
"2 133.0\n", |
|
|
1881 |
"3 ... \n", |
|
|
1882 |
"647 0 73.000000\n", |
|
|
1883 |
"1 75.000000\n", |
|
|
1884 |
"2 75... \n", |
|
|
1885 |
"863 0 150.0\n", |
|
|
1886 |
"1 153.5\n", |
|
|
1887 |
"2 145.5\n", |
|
|
1888 |
"3 ... \n", |
|
|
1889 |
"207 0 147.0\n", |
|
|
1890 |
"1 145.0\n", |
|
|
1891 |
"2 149.0\n", |
|
|
1892 |
"3 ... \n", |
|
|
1893 |
"\n", |
|
|
1894 |
" Lead11 \\\n", |
|
|
1895 |
"309 0 153.0\n", |
|
|
1896 |
"1 150.5\n", |
|
|
1897 |
"2 162.5\n", |
|
|
1898 |
"3 ... \n", |
|
|
1899 |
"1108 0 89.5\n", |
|
|
1900 |
"1 92.5\n", |
|
|
1901 |
"2 102.5\n", |
|
|
1902 |
"3 ... \n", |
|
|
1903 |
"647 0 68.333333\n", |
|
|
1904 |
"1 57.500000\n", |
|
|
1905 |
"2 59.09... \n", |
|
|
1906 |
"863 0 144.0\n", |
|
|
1907 |
"1 137.5\n", |
|
|
1908 |
"2 145.5\n", |
|
|
1909 |
"3 ... \n", |
|
|
1910 |
"207 0 153.781022\n", |
|
|
1911 |
"1 141.024793\n", |
|
|
1912 |
"2 22... \n", |
|
|
1913 |
"\n", |
|
|
1914 |
" Lead12 \n", |
|
|
1915 |
"309 0 101.0\n", |
|
|
1916 |
"1 100.5\n", |
|
|
1917 |
"2 110.0\n", |
|
|
1918 |
"3 ... \n", |
|
|
1919 |
"1108 0 135.0\n", |
|
|
1920 |
"1 128.5\n", |
|
|
1921 |
"2 125.0\n", |
|
|
1922 |
"3 ... \n", |
|
|
1923 |
"647 0 74.631579\n", |
|
|
1924 |
"1 76.466667\n", |
|
|
1925 |
"2 79... \n", |
|
|
1926 |
"863 0 127.888889\n", |
|
|
1927 |
"1 126.962963\n", |
|
|
1928 |
"2 133... \n", |
|
|
1929 |
"207 0 106.0\n", |
|
|
1930 |
"1 101.5\n", |
|
|
1931 |
"2 113.5\n", |
|
|
1932 |
"3 ... " |
|
|
1933 |
] |
|
|
1934 |
}, |
|
|
1935 |
"execution_count": 14, |
|
|
1936 |
"metadata": {}, |
|
|
1937 |
"output_type": "execute_result" |
|
|
1938 |
} |
|
|
1939 |
], |
|
|
1940 |
"source": [ |
|
|
1941 |
"X_train.head()" |
|
|
1942 |
] |
|
|
1943 |
}, |
|
|
1944 |
{ |
|
|
1945 |
"cell_type": "markdown", |
|
|
1946 |
"id": "7fa8a41a", |
|
|
1947 |
"metadata": {}, |
|
|
1948 |
"source": [ |
|
|
1949 |
"#### Column concatenator" |
|
|
1950 |
] |
|
|
1951 |
}, |
|
|
1952 |
{ |
|
|
1953 |
"cell_type": "code", |
|
|
1954 |
"execution_count": 15, |
|
|
1955 |
"id": "36fbcee6", |
|
|
1956 |
"metadata": {}, |
|
|
1957 |
"outputs": [ |
|
|
1958 |
{ |
|
|
1959 |
"name": "stdout", |
|
|
1960 |
"output_type": "stream", |
|
|
1961 |
"text": [ |
|
|
1962 |
"training time: 9 sec\n" |
|
|
1963 |
] |
|
|
1964 |
} |
|
|
1965 |
], |
|
|
1966 |
"source": [ |
|
|
1967 |
"pipItems = [\n", |
|
|
1968 |
" (\"concatenate\", ColumnConcatenator()),\n", |
|
|
1969 |
" (\"classify\", TimeSeriesForestClassifier(n_estimators=100,n_jobs=-1))]\n", |
|
|
1970 |
"concClf = Pipeline(pipItems)\n", |
|
|
1971 |
"t = time.time()\n", |
|
|
1972 |
"concClf.fit(X_train, y_train)\n", |
|
|
1973 |
"print('training time: {} sec'.format(round(time.time()-t)))" |
|
|
1974 |
] |
|
|
1975 |
}, |
|
|
1976 |
{ |
|
|
1977 |
"cell_type": "code", |
|
|
1978 |
"execution_count": 16, |
|
|
1979 |
"id": "cd2aacae", |
|
|
1980 |
"metadata": {}, |
|
|
1981 |
"outputs": [ |
|
|
1982 |
{ |
|
|
1983 |
"data": { |
|
|
1984 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARAAAAD2CAYAAAAeYNg+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoWUlEQVR4nO3dd3xUVdrA8d8zKXQpgpQEBQUV1AUVEUV3aSK4FCvCa++4oNixrezu+7LrWhfXsouCYkFBUSmCgigiitKRLlVICCCggNKSmef9Y27iBFJuhpm5d5Ln6+d+MnMyc8/jJHk459xzzxFVxRhjohHwOgBjTPKyBGKMiZolEGNM1CyBGGOiZgnEGBM1SyDGmKhZAjGmnBKRxiLyuYisEJFlIjLIKa8jItNEZLXztXbEex4SkTUiskpELiy1DpsHYkz5JCINgYaqukBEagDzgYuB64Gdqvq4iDwI1FbVwSLSEngbaAs0Aj4FTlTVYHF1WAvEmHJKVXNUdYHzeA+wAsgAegOjnJeNIpxUcMrfUdUDqroeWEM4mRQrNQ5xG2OilLt9nesuQVrd48Xta0WkCXA68C1QX1VzIJxkROQY52UZwDcRb8tyyoplCcQYPwkV21s4jIjcCtwaUTRcVYcX8brqwDjgLlXdLVJs3inqGyUmNEsgxviJhty/NJwsDksYkUQkjXDyeEtV33eKt4pIQ6f10RDY5pRnAY0j3p4JbC7p/DYGYoyfhELuj1JIuKkxAlihqs9EfGsCcJ3z+DpgfER5XxGpJCJNgebAnJLqsBaIMT6iwbxYnq49cA2wREQWOWUPA48DY0XkJmAjcAWAqi4TkbHAciAPGFDSFRgox5dxRaQbMAxIAV5R1cc9jmck0APYpqqnehxLY+B1oAEQItx3HuZhPJWBmUAlwv+ovaeqQ7yKx4kpBZgHZKtqj0TVe3DTYtd/kOmNW7keRI2XctmFcX74LwDdgZZAP+cat5deA7p5HEO+POBeVW0BtAMGePz5HAA6qWoroDXQTUTaeRgPwCDClz0TKxR0f/hAuUwghK9dr1HVdap6EHiH8DVuz6jqTGCnlzHkK2F+gFfxqKr+4jxNcw7PmsYikgn8EXgl4ZVryP3hA+U1gWQAmyKel3o9u6I6ZH6Al3GkOP30bcA0VfUynn8BDxDu3iVWDAdRE6G8JpAyX8+uiA6dH+BlLKoaVNXWhC8dthURT8aJRCR/nGq+F/WrhlwfflBeE0iZr2dXNMXMD/Ccqv4MzMC78aL2QC8R2UC469tJRN5MWO3WAvGFuUBzEWkqIulAX8LXuA0lzg/wKp56IlLLeVwF6AKs9CIWVX1IVTNVtQnh35vPVPXqhAUQzHV/+EC5TCCqmgcMBD4hPEA4VlWXeRmTiLwNzAZOEpEs5xq8V/LnB3QSkUXOcZGH8TQEPheR7wgn/2mqOsnDeLyTZIOo5XYeiDHJ6MCy6a7/ICud0tnzeSA2E9UYP/FJy8ItSyDG+IlPBkfdsgRijI+UcuuJ71gCMcZPrAtjjIlabO/GjbtyeRk3krNqk2/4KR4/xQIWD2A30/mQr34p8Vc8fooFLJ6kmwdiXRhj/MSuwsTGD2d0ickMt783PvmIz3X2uuxYhAJAjSoNaFCrxRHFs31vbO57k5SapKZnHPHnnBKITUM2JbUWlSo3PuJ4gjH6I4zV55N3MNv9hC+ftCzc8m0CiZX/qeuvu/irptfyOoQCgUA1r0MoJCWlutchFOLJ52MtEGNM1CyBGGOipTG8y7aodXhFZAxwkvOSWsDPqtraWVhqBbDK+d43qtq/tDosgRjjJ7EdA3kNeJ7wAtrh06temf9YRJ4GdkW8fq2zqJNrlkCM8ZMYdmFUdabTsjiMsyZMH6DTkdRREeaBGJM8yjAPRERuFZF5EUdZ5q2cD2xV1dURZU1FZKGIfCEi57s5ibVAjPGTMrRA3GxtWYJ+wNsRz3OAY1V1h4icCXwoIqeUtlauJRBj/CQB80BEJBW4FDizoFrVA4T350FV54vIWuBEwptrFcsSiDF+kpeQm+m6ACtVNSu/QETqATtVNSgixxPeF3ddaSeyMRBj/CSG98KUsA5vXwp3XwB+D3wnIouB94D+qlrqRmjWAjHGT2J7FaZfMeXXF1E2jvA2H2ViCcQYP0mye2GSvgtz9JD7yPz0XRqOfbmgrGqX39Pw3Vc4dt5U0luceNh7UhocQ+NZEznqmiviGtuzz/8fS1fPYsbXv21J89jf7uPLOR/x2VcfMvLNf3NUzRpxjaE4F3btwLKlM1m5fBYP3D/AkxjyVapUiVlfTmTunE9YuOBT/vznezyNx9PPxjaWSqxfJn7CtoEPFSo7uHYDP973Fw4sWFLke2rfezv7vpoT99jGjP6QfpcXvjT/xedf0+GcXnRqfzHr1mzgzrsTv+REIBDguWFD6dHzak5r1ZErr7yYFi2aJzyOfAcOHODCbldyVtsLOattN7pe0IG2bU/3JBbPP5skWw8k6RPIgQVLCO7aU6gsb/1G8n7IKvL1VTqcS152Drnrfoh7bN98PY+ff/q5UNkXn39NMBheTWr+vMU0bFQ/7nEcqu1Zp7N27QbWr99Ibm4uY8eOp1fPCxMeR6Rff90LQFpaKmlpqXi1X5Hnn421QMJE5GQRGSwiz4nIMOdxi3jV5yqmypWpeX1fdv339dJfnAD9rr6Uzz79MuH1NspowKas37YKzsrOoVGjBgmPI1IgEGDOtx+TtWkR06d/ydy5izyJw/PPJhh0f/hAXBKIiAwmvDGxAHMIb1cowNsi8mA86nSjZv9r2f3WOHTffq9CKDDo3tvIywsybuzEhNcdvg2iMK93KAyFQrQ9uxvHn9CWNme1pmXLk0p/Uxx4/tkkWQskXldhbgJOUdVC9yaLyDPAMuDxot7kzOW/FcIricV6MaBKp7WgWpffU3vQLQRqVEdDIfTgQfaMGR/TekrTp19vLriwA1f0viGh9ebLzsqhcWajgueZGQ3JydnqSSyH2rVrNzNnzubCrh1YvnxV6W+IMc8/G58kBrfilUBCQCPg0IGGhs73ihQ5tz9WSxpG2nrT3QWPa952Lbp3X8KTR8fO5zFw0M1c8sdr2edRS2juvEU0a9aUJk0ak529hT59enPNtd5dialbtw65uXns2rWbypUr06nT+Tz91IuexOL5Z+OTwVG34pVA7gKmi8hqYJNTdizQDBgYy4rq/v1hKp3ZipRaNcmY8ja7/jOK4O491HlgICm1a3LMc0M5+P1atg1IfM/ppVee4tzz2lLn6FosWPY5Tz7+PHfefQvp6emM+XAEAPPnLmbwPX9NaFzBYJBBdz3K5I9GkxII8NqoMSxf/n1CY4jUoMExjHjlWVJSUggEArw3biKTp0z3JBbPP5ska4FIvPp3IhIA2gIZhMc/soC56nLvvni0QKIVy0WVYyFWiyrHSqwWVY6VWC2qHCtlWVR536gHXf/eV7nucfeLNcdJ3GaiqmoI+CZe5zemXPJZ8iuNTWU3xk+SbGtLSyDG+IiGfNNzd8USiDF+Yl0YY0zU7DKuMSZq1oUxxkTNujDGmKhZAjHGRM0nd9m65a8phMZUdCF1f5RCREaKyDYRWRpR9hcRyRaRRc5xUcT3HhKRNSKySkRcLYJiLRBj/CTOe+M6nlXVpyILRKQl4dXaTyF8I+ynInJiabeeWAvEGD+JYQtEVWcCpW7N4OgNvKOqB1R1PbCG8L1sJbIEYoyPaCjk+jiCvXEHish3ThentlOWwW93zkP45tdSF+TxbRfmlJVrvQ6hwLZ/eLte6KGOuj/xq5iVJC3gr1+jqqkpXocQvTLMA4lyb9yXgP8F1Pn6NHAj4TvmD6uitJP56ydvTEUX55moqlqwvJqIvAxMcp5mAY0jXpoJbKYU1oUxxk/ygu6PKIhIw4inlwD5V2gmAH1FpJKINCW8N26pe59YC8QYP4nhVHZnb9wOQF0RyQKGAB1EpDXh7skG4DYAVV0mImOB5UAeMMDN4l+WQIzxkxh2YYrZG3dECa8fCgwtSx2WQIzxE7uZzhgTLbV7YYwxUbMWiDEmakl2M50lEGP8xFogxpho2aLKxpjoWQIxxkTNrsIYY6JmLRD/qFmzBi+8+E9atjwRVeX2/g8wZ87CuNWX3uUaUpqehu7dw/63/heAtLN7kHLqebBvDwAHvx5PaMNSpMbRVL52CPpT+N6m4Jb15H42Om6xHerCrh145pm/kRIIMPLVt3niyRcSVndREv2zKsntA27gmuv7gCrLl61iQP/BHDhwMDGVWwLxjyeeHMK0aV9w9VV/Ii0tjapVK8e1vrzls8ldPINKXa8vXL5wOnkLph32ev35R/aPLtPM4ZgIBAI8N2wo3S7qR1ZWDt/MnszESVNZsWJ1wmPJl+ifVXEaNqzPbbdfS7s23di//wAjX3+OSy/vwdtvvZ+Q+jWYXF2Ycns3bo0a1Wl/XltGvTYGgNzcXHbt2hPXOkOb18D+vXGtIxbannU6a9duYP36jeTm5jJ27Hh69fRuzRMvflYlSU1NpXKVyqSkpFC1SmW25GxLXOUxXJEsERKeQETkhkTU06RpY7Zv38l//vskX82exPMvPk7VqlUSUfVhUlt1oPJVj5Le5RqoVLWgXGrWpXK/h6l02T0EGjVLWDyNMhqwKeu3pR6ysnNo1KhBwuo/lJ9+Vjk5W/n3c6+wZMVMVq6dze7de/j8s1kJq19D6vrwAy9aIH8t7huRS7Tl5h3Zv0Cpqam0bn0Kr7zyFu3P6cHeX/dy7323H9E5o5G75Av2v/Yo+98aiv66m/TzLwNA9+5i38iH2f/23zn45Xukd7sR0hPTbBc5fPEpVe9+If3yswKoWesoLvpjF1qf2pEWzc6latWq9Lmyd+ICsBYIOOstFnUsAeoX9z5VHa6qbVS1TVpqjSOKITs7h+zsLcybuwiADz+YQqvWpxzROaOydw+oAkre0lkE6jcJlwfzYP+vAOi2jeiu7QRqHZOQkLKzcmic2ajgeWZGQ3JytpbwjjjH45efFdChY3t+2JDFju07ycvLY+KET2jb7ozEBRAqw+ED8WqB1AeuBXoWceyIU52FbNu6neysHJo3Px6ADh3PZeWKNYmourCqRxU8TGnWmtAOp+tQpTo4LQE5qi5S6xhCu7YnJKS58xbRrFlTmjRpTFpaGn369GbipKkJqbsovvlZAVmbNtOmbWuqVAm3Bv/Q4VxWrUpcLMnWhYnXVZhJQHVVXXToN0RkRpzqPMy99w5hxKvPkp6WzvoNG7n9tvvjWl96t5tIyTwRKlen8o3/IPfbiaRknEigXmNACe3ewcHpbwGQktGctHY9wxOHNETuZ2/BgcQMwAaDQQbd9SiTPxpNSiDAa6PGsHz59wmpuziJ/lkVZ/68xUz48GNmfDWeYF6Q7xYvZ9TIMYkLwCeJwS3xsu9bkupVm/omMFuVvWSVU9O9DqGQtIC/VmX/6Zc1Ra14XvRrr+jg+ve+9rszXJ83XsrtZVxjklIMx0CK2drySRFZ6YxJfiAitZzyJiKyL2LLy/+4CdcSiDE+EuMxkNeAboeUTQNOVdXfAd8DD0V8b62qtnaO/m4qsARijJ/EsAVS1NaWqjpVVfOcp98Q3v8lapZAjPERDbk/YuBGYErE86YislBEvhCR892coFzfC2NM0ilDYnD2wo3cD3e4s92lm/c+Qnj/l7ecohzgWFXdISJnAh+KyCmquruk81gCMcZHytKyiHJvXETkOqAH0Fmdy7CqegA44DyeLyJrgROBeSWdyxKIMT5SMDoRJyLSDRgM/EFV90aU1wN2qmpQRI4nvLXlutLOZwnEGB+J5d7axWxt+RBQCZjm3BP1jXPF5ffA30QkDwgC/VV1Z5EnjmAJxBgfiWUCKcvWlqo6DhhX1josgRjjJ+r55NIyKTGBiEidkr7vpoljjHEvli2QRCitBTIfUECAY4GfnMe1gI1A03gGZ0xFo6Fy1AJR1aYAzrz4Cao62XneHegS//CMqViSrQXi6m5cEZmvqmceUjZPVdvEK7DU9Azf3I3rN7/OG+l1CIVUa3Oj1yH4Wt7BbNfNiqyzO7n+vc/89jPPmytuB1G3i8ijwJuEuzRXk6CFgYypSJKtC+P2Xph+QD3gA+eo55QZY2JI1f3hB65aIM7VlkEiUl1Vf4lzTMZUWOWyBSIi54rIcmC587yViLwY18iMqYA0JK4PP3DbhXkWuBBn3ENVFxOe+mqMiaFy2YUBUNVNh+wnEox9OMZUbKFgci3R4zaBbBKRcwEVkXTgTmBF/MIypmJKtnkgbhNIf2AYkAFkAVOBP8UrKGMqqlB5uhcmwkmqelVkgYi0B76KfUjGVFyaZAnEbYfr3y7LjDFHINmuwpR2N+45wLlAPRG5J+JbRwH+2r3HmHLAL1dX3CqtC5MOVHdeF7nb9W7g8ngFZUxF5ZeWhVul3Y37BfCFiLymqj8kKCZjKqxgKLku47qN9pX8LfAARKS2iHwSn5Bi48KuHVi2dCYrl8/igfsHeB2OJ/E89uJb/OGmh7nknn8UlK1cn8VVDz/NFff9k76Dn2TJ6vC/Cx99OZcr7vtnwdGqzyBWrs9KSJzgr5+Xl7Ek20Qytwmkrqr+nP9EVX8CjolLRDEQCAR4bthQevS8mtNadeTKKy+mRYvmFS6eXh3O5qVHbi9U9uyb4+l/RXfefWowA668iGffHA/AH88/i3efGsy7Tw1m6B3X0KheHU5uekSblrnmp5+X17GEVFwfpSlmb9w6IjJNRFY7X2tHfO8hEVkjIqtExNWO8m4TSEhEjo2o6DjCt/WXFPzJItJZRKofUn7oXp0x1/as01m7dgPr128kNzeXsWPH06unq8+jXMXTpmUzalavWqhMRPh1734A9uzdT73aNQ9735Sv5tO9/ZmHlceLn35eXseiKq4PF17j8L1xHwSmq2pzYLrzHBFpCfQFTnHe86KIlHqhxG0CeQSYJSJviMgbwEwKb8pbiIjcCYwH7gCWikjviG//3WWdUWuU0YBNWZsLnmdl59CoUYN4V5sU8Txw/aU888Z4Luj/GM+8/iGDrup52Gs++XoB3c87I2Ex+enz8TqWWHZhitobF+gNjHIejwIujih/R1UPqOp6YA3QtrQ63N7O/7GInAG0I7wm6t2qur2Et9wCnKmqv4hIE+A9EWmiqsOc9xcpcqs+SalJIFDNTXhFnaeo/4eozhULfopn7NRZ3H/9JVzQrjWffL2AIS+N5uXHBhZ8/7vVG6icnk7zYxslLCY/fT5ex5KAmaj1VTUHQFVzRCR/KCKD8Gbb+bKcshKV2AIRkZOdr2cQXlR5M5ANHOuUFSclf90QVd1AeHOb7iLyDCUkEFUdrqptVLVNtMkDIDsrh8aZv/0BZGY0JCdna9TnO1J+imfCjDl0ObsVAF3POZ2lawpfXPv4qwV0Py9x3Rfw1+fjdSxl6cKIyK0iMi/iuLX0GopV1N9lqZmztC7Mvc7Xp4s4nirhfVtEpHVBFOFk0gOoC5xWWlBHau68RTRr1pQmTRqTlpZGnz69mThparyrTYp46tWpybzlawD4dun3HNugXsH3QqEQU2cvpHv7xHVfwF+fj9exBFVcH5H/4DqHm31yt4pIQwDn6zanPAtoHPG6TMINhhKVNg/kFudrRxeBRbqW8M7fkefKA64Vkf+W8VxlFgwGGXTXo0z+aDQpgQCvjRrD8uXfx7ta38XzwL9eY96yNfy85xe63PZn/tTnIobc1pd/vjqOYChEeloaQ27rW/D6+SvWUv/oWmTWrxv32CL56efldSwJ6MJMAK4DHne+jo8oH+30EhoR3ht3TmknK3FVdhG5tKQ3q+r77mIuO1uVvXi2KntyKcuq7F81uNz17337Le+VeN7IvXGBrYT3xv0QGEt4SGIjcEX+BnEi8ghwI+F//O9S1SmlxVDaIGr+EP0xhO+J+cx53hGYAcQtgRhTEcVyOZBi9sYF6FzM64cCQ8tSR2ldmBsARGQS0DJ/9NbpO71QloqMMaXT4q8x+JLb9UCa5CcPx1bgxDjEY0yFFkqyjrvbBDLDufflbcKXdvoCn8ctKmMqqFB5bIGo6kARuYTfVmIfrqofxC8sYyqmYHlMII4FwB5V/VREqopIDVXdE6/AjKmIkm0MxO3GUrcA7wH5czgyCF8OMsbEUKgMhx+4vZluANCe8EpkqOpqfHw7vzHJKtkSiNsuzAFVPZh/o5GIpOJinrwxpmySrQvjNoF8ISIPA1VE5ALCe8JMjF9YxlRMSbYkqusuzGDgR2AJcBswGXg0XkEZU1GFENeHH5TaAhGRAPCdqp4KvBz/kIypuJJtw+lSE4iqhkRksYgcq6obExGUMRVVqIgFjfzM7RhIQ2CZiMwBfs0vVNVecYkKSEspyxSV+EoL+GsPLb/d/bpv85deh1BI1Ubnex1C1JLtyoTbv9K/xjUKYwzgn8uzbpW2tWVloD/QjPAA6ghnYSBjTBwk21WY0logo4Bc4EugO9ASGBTvoIypqPxydcWt0hJIS1U9DUBERuBiiTNjTPSCyZU/Sk0gufkPVDWvqCXvjTGxU67GQIBWIrLbeSyEZ6Ludh6rqh4V1+iMqWDK1VUYVfXX9UtjyrlYDqKKyEnAmIii44HHgFqEN3/70Sl/WFUnR1OHfyZbGGNivajyKqA1gLPPbTbwAXAD8KyqlrS3kyuWQIzxkTiOgXQG1qrqD7Ecy3R7M50xJgFU3B9l1Jfwmsb5BorIdyIyUkRqRxuvJRBjfCSvDIfbvXFFJB3oBbzrFL0EnEC4e5NDeKvaqFgXxhgfKctVGGcvXDf74XYHFqjqVud9BbuFi8jLwKQyBRmhXLdAAoEAs2dPZtw4b7eCbNa8KbNmTyo4snIW86cBN3ga04VdO7Bs6UxWLp/FA/cPiHt9OVt/5IaBg+n5P7fS+6rbeGPshwDs2r2Hmwc9zEVX3sTNgx5m1+7wOt0/79rNDQMHc1aXSxj69Itxjy/Sy8OfJjtrMQsXTk9ovRC+CuP2KIN+RHRf8jfXdlwCLI023nKdQAYOvJFVq9Z4HQZrVq/nvHN6cN45Pfh9+17s27efiRM+8SyeQCDAc8OG0qPn1ZzWqiNXXnkxLVo0j2udqSkp3H/HLUwcPZzRw5/lnfcnsXb9D7zyxljatWnN5DEjaNemNSPeHAtAeno6d9xyDfcNuDmucRVl1Otj6dHjqoTXC7FfE1VEqgIXUHgb2idEZImIfEd4m9q7o4233CaQjIwGdOvWiVdffcfrUArp0PFc1q/7gU2bNnsWQ9uzTmft2g2sX7+R3Nxcxo4dT6+eF8a1znp169DypGYAVKtWleOPa8zWH3fw+Zez6d29CwC9u3fhs5mzAahapTJntDqVSunpcY2rKLNmfcvOn35OeL0Q+wSiqntV9WhV3RVRdo2qnqaqv1PVXofsOlkmcUsgItJWRM5yHrcUkXtE5KJ41XeoJ58cwiOP/J1QyF+Tgy+7vCfvvevtcrKNMhqwKeu3BJaVnUOjRg0SVn92zlZWrF7L7045iR0//Uy9unWAcJLZ+fOuUt5dvmkZDj+ISwIRkSHAc8BLIvIP4HmgOvCgiDwSjzojde/eiW3bdrBwYdRdu7hIS0vjoos688EHUzyNo6h5AKqJ+ZXcu3cfdz/yfwy+8zaqV6uWkDqTSZzGQOImXldhLid8iagSsAXIVNXdIvIk8C0wtKg3OZehbgVITa1Damr1qCo/55w29OjRhW7dOlCpUiWOOqoGI0f+ixtvvCuq88XKBV3/wOLFy/hx23ZP48jOyqFxZqOC55kZDcnJ2VrCO2IjNy+Pux75P/7YtSMXdGgPwNG1a/Hj9p3Uq1uHH7fvpE6tmnGPw8+SbU3UeHVh8lQ1qKp7Cc9+y9+Qah8ldN9UdbiqtlHVNtEmD4DHHnuCZs3acfLJ53HttXcwY8bXnicPgCuu6Mm7HndfAObOW0SzZk1p0qQxaWlp9OnTm4mTpsa1TlXlsX/8i+OPa8x1fS8tKO9wXjvGT/kUgPFTPqXj+efENQ6/C6GuDz+IVwI56Iz+ApyZXygiNUm+O5ZjokqVynTsdB4Tx3t39SVfMBhk0F2PMvmj0Sz9bgbvvTeR5cu/j2udC79bxsSPp/PtgsVcdt0ALrtuADO/nsPN1/Rh9twFXHTlTcyeu4Cbr+lT8J6ul13HE/8ezodTptH54qtZu/6HuMaY7403XuDLmRM46cQTWL9uHjdc3zch9ULy7Uwn8ej7ikglVT1QRHldoKGqLintHFWqHOePFIv/FlXem3vYR+spW1S5ZLkHs12PWPztuKtc/94/9sNbno+ExGUMpKjk4ZRvB7wdADDGx/zSsnDLprIb4yN+ubriliUQY3zEL4OjblkCMcZHku0yriUQY3zEWiDGmKglV/qwBGKMr9hVGGNM1KwLY4yJWnKlD0sgxviKdWGMMVELJlkbxBKIMT5iYyDGmKglV/qwBOJKUJOtZ5pY1TJ+73UIhewefbvXIUQt1i0QEdkA7CE8yTVPVduISB3Ce+Y2ATYAfVT1p2jOX24XVTYmGcVpPZCOqtpaVds4zx8Epqtqc2C68zwqlkCM8REtw39HoDcwynk8Crg42hNZAjHGR4Ko68Pl1pYKTBWR+RHfr5+/lYPz9Zho47UxEGN8pCxdE5dbW7ZX1c0icgwwTURWRh/d4SyBGOMjoRgvMaqqm52v20TkA6AtsFVEGqpqjrPN5bZoz29dGGN8JJYbS4lINRGpkf8Y6Ep4H9wJwHXOy64Dxkcbr7VAjPGRGF/GrQ984GwklgqMVtWPRWQuMFZEbgI2AldEW4ElEGN85AivrhQ+l+o6oFUR5TuAzrGowxKIMT6SbFMWLYEY4yPBJEshlkCM8ZHkSh+WQIzxlXjsFBlPlkCM8RG7nd9HAoEAX301ic2bt3DZZTd6GsvyFbP4Zc8vBEMh8vLyOP+8Xp7Gc2HXDjzzzN9ICQQY+erbPPHkC57FkpnZkJEjhtGgQT1CoRCvjBjN88+PiGudQ8Z9zcxVWdSpVplxg377Wbw9eyXvfLOKlIBw/kkZ3N3tTHKDIf76wWxWbt5JMBSix+nHc9MfTotLXNaF8ZGBA29k1ao11KhR3etQAOjevR87dkR113RMBQIBnhs2lG4X9SMrK4dvZk9m4qSprFix2pN48vKCPDD4byxatJTq1avx7TdTmP7pTFasjF88vc44gb7tTuLR974qKJu7bgszVmzi3Tt6kJ6aws5f9gEwbekP5OYFee/Onuw7mMelwybQ7XdNyagd+9+rWF7GTYSEzUQVkdcTVRdARkYDunXrxKuvvpPIapNC27NOZ+3aDaxfv5Hc3FzGjh1Pr54XehbPli3bWLRoKQC//PIrK1euplFGg7jWeWbT+hxVtVKhsrHffs8Nvz+V9NQUAOpUrwKAAPsO5pEXDHEgL0haSoDqldLiElcIdX34QVxaICIy4dAioKOI1AJQ1bi33598cgiPPPJ3qlf3R+tDVZkw8Q1UlREjRvPqyLc9i6VRRgM2ZW0ueJ6VnUPbs073LJ5Ixx2XSatWpzJnzsKE1/3D9t0s2LCN56ctpFJqCnd3P5NTM+vS5dTjmLFiExc8/h77cvO476I21Dwk+cRK0AZRAcgElgOvEJ62L0Ab4Ok41VdI9+6d2LZtBwsXLuX889slospSde58GVtytlGv3tFMnPgm369ay1dfzfEkFmdqcyF+GP2vVq0qY94Zzn33/YU9e35JeP3BUIg9+w/wRv/uLM3awQPvzOSjey9hadZ2AgFh6oOXs2ffAW54eSrtmjUks06NmMdgXZiwNsB84BFgl6rOAPap6heq+kVxb4pc3yAvL/pfoHPOaUOPHl1YuXIWr7/+bzp0OJeRI/8V9fliYUtO+IbHH3/cwYSJn9CmzWEzjBMmOyuHxpmNCp5nZjQkJ2erZ/EApKamMmbMcN5+5wM+HD/Fkxjq16xGp5bHIiKc1rguARF+2nuAKYvX0755BmkpAepUr0LrY+uxLHtHXGJIti5MXBKIqoZU9VngBuAREXkeF60dVR2uqm1UtU1qavRdj8cee4Jmzdpx8snnce21dzBjxtfceONdUZ/vSFWtWoXq1asVPO7c+XyWL//es3jmzltEs2ZNadKkMWlpafTp05uJk6Z6Fg/A8P8+xcqVaxg27GXPYujYojFz120Bwt2Z3GCI2lUr0bBWNeas24Kqsu9gLks2badpvZpxiUFVXR9+ENerMKqaBVwhIn8EdsezLj875pi6vPNOeN2XlNQUxo4dz7RpxTbE4i4YDDLorkeZ/NFoUgIBXhs1xtOEdu65Z3H11ZezZMkK5s75BIA/P/ZPPv74s7jV+eCYL5m3bis/791P13+O4/bOv+PiM09gyPuzuWzYBNJSUvjfy85FRLjy7JN47P2vuey5iaDQ68wTOLFB7bjE5ZeWhVvil0x2qCpVjvNNYIEixgy8dCAv1+sQCvHb57Prrf5eh1BIlcsfdf0Bdcjs4vr3fkbWp55/8OV6HogxySbWK5LFmyUQY3zEtrY0xkQt2cZALIEY4yN+HZMsjiUQY3wk2Vogtiq7MT4Sy53pRKSxiHwuIitEZJmIDHLK/yIi2SKyyDkuijZea4EY4yMx7sLkAfeq6gJne4f5IjLN+d6zqvrUkVZgCcQYH4llF8bZtjJ/C8s9IrICyIhZBVgXxhhfCWrI9eFyb1wARKQJcDrwrVM0UES+E5GRIhL1tFpLIMb4SFnGQCLvHXOOIvfJFZHqwDjgLlXdDbwEnAC0JtxCifoueevCGOMjsZ6JKiJphJPHW6r6PoCqbo34/svApGjPby0QY3wkxldhBBgBrFDVZyLKG0a87BLC++VGxVogxvhIjFsg7YFrgCUissgpexjoJyKtCS/2tQG4LdoKfJtA9u37ISZ3GorIrcX1Db3gp3j8FAtYPBDzvXFnEV4N8FCTY1VHRejCFDsy7RE/xeOnWMDiIaTq+vAD37ZAjKmIgppcO8NYAjHGR5JtUeWKkEB806d2+CkeP8UCFg+aZC0Q3y5paMpGRC4B3gdaqOrKEl53FzBcVfdGWc/1QBtVHRjN+03Jjjv6d67/IH/Y8Z3nSxpWhEHUiqIfMAvoW8rr7gKqxj0aE5VkW5XdEkg54ExVbg/chJNARCRFRJ4SkSXOPQ93iMidQCPgcxH53HndLxHnuVxEXnMe9xSRb0VkoYh8KiL1E/3/VREl274wFWEMpCK4GPhYVb8XkZ0icgZwNtAUOF1V80SkjqruFJF7gI6qur2Uc84C2qmqisjNwAPAvfH8nzDh3fGSiSWQ8qEf8C/n8TvO8+OB/6hqHoCq7izjOTOBMc6053RgfWxCNSWxqzAmoUTkaKATcKqIKJBCeIryfOdraSJfUzni8b+BZ1R1goh0AP4Si3hNyfwytuGWjYEkv8uB11X1OFVtoqqNCbcWFgD9RSQVQETqOK/fA0TuCr1VRFqISIDwjVX5agLZzuPr4vp/YAok2xiIJZDk1w/44JCycYQHSzcC34nIYuB/nO8NB6bkD6ICDxK+nfsznNWrHH8B3hWRL4HSxktMjCTbVRibB2KMj9Sp0dz1H+TOPas9nwdiYyDG+Eiy/YNuCcQYH7Gb6YwxUfPLbfpuWQIxxkdsHogxJmrJ1gKxy7jG+EisL+OKSDcRWSUia0TkwVjHawnEGB+J8arsKcALQHegJeHFlFvGMl5LIMb4SIxbIG2BNaq6TlUPEr5Pqncs47UxEGN8JMZjIBnApojnWYTv0o4ZSyDG+EjewWzXs0udvXAjV44ffsg2FEWdK6YZyhKIMUnKSRYlrduaBTSOeJ4JbI5lDDYGYkz5NRdoLiJNRSSd8Gp1E2JZgbVAjCmnnJXoBgKfEF4nZqSqLotlHXY3rjEmataFMcZEzRKIMSZqlkCMMVGzBGKMiZolEGNM1CyBGGOiZgnEGBM1SyDGmKj9P3J3XjHJhNr9AAAAAElFTkSuQmCC\n", |
|
|
1985 |
"text/plain": [ |
|
|
1986 |
"<Figure size 288x288 with 2 Axes>" |
|
|
1987 |
] |
|
|
1988 |
}, |
|
|
1989 |
"metadata": { |
|
|
1990 |
"needs_background": "light" |
|
|
1991 |
}, |
|
|
1992 |
"output_type": "display_data" |
|
|
1993 |
}, |
|
|
1994 |
{ |
|
|
1995 |
"name": "stdout", |
|
|
1996 |
"output_type": "stream", |
|
|
1997 |
"text": [ |
|
|
1998 |
"Column-Concatenator classifier score: 0.9254237288135593\n" |
|
|
1999 |
] |
|
|
2000 |
} |
|
|
2001 |
], |
|
|
2002 |
"source": [ |
|
|
2003 |
"y_train_pred = cross_val_predict(concClf, X_train, y_train, cv=10)\n", |
|
|
2004 |
"confmat = metrics.confusion_matrix(y_train,y_train_pred)\n", |
|
|
2005 |
"plt.matshow(confmat)\n", |
|
|
2006 |
"sn.heatmap(confmat,annot=True, annot_kws={\"size\":10}, fmt='d')\n", |
|
|
2007 |
"plt.xlabel(\"Actual\")\n", |
|
|
2008 |
"plt.ylabel(\"Predicted\")\n", |
|
|
2009 |
"plt.show()\n", |
|
|
2010 |
"print('Column-Concatenator classifier score: {}'.format(concClf.score(X_test, y_test)))" |
|
|
2011 |
] |
|
|
2012 |
}, |
|
|
2013 |
{ |
|
|
2014 |
"cell_type": "code", |
|
|
2015 |
"execution_count": null, |
|
|
2016 |
"id": "73c95904", |
|
|
2017 |
"metadata": {}, |
|
|
2018 |
"outputs": [], |
|
|
2019 |
"source": [] |
|
|
2020 |
}, |
|
|
2021 |
{ |
|
|
2022 |
"cell_type": "code", |
|
|
2023 |
"execution_count": 17, |
|
|
2024 |
"id": "cb7021a3", |
|
|
2025 |
"metadata": {}, |
|
|
2026 |
"outputs": [], |
|
|
2027 |
"source": [ |
|
|
2028 |
"#### Column-wise ensembling" |
|
|
2029 |
] |
|
|
2030 |
}, |
|
|
2031 |
{ |
|
|
2032 |
"cell_type": "code", |
|
|
2033 |
"execution_count": 20, |
|
|
2034 |
"id": "4b2d8cdd", |
|
|
2035 |
"metadata": {}, |
|
|
2036 |
"outputs": [ |
|
|
2037 |
{ |
|
|
2038 |
"name": "stdout", |
|
|
2039 |
"output_type": "stream", |
|
|
2040 |
"text": [ |
|
|
2041 |
"training time: 1417 sec\n" |
|
|
2042 |
] |
|
|
2043 |
} |
|
|
2044 |
], |
|
|
2045 |
"source": [ |
|
|
2046 |
"ensClf = ColumnEnsembleClassifier(\n", |
|
|
2047 |
" estimators=[\n", |
|
|
2048 |
" (\"TSF0\", TimeSeriesForestClassifier(n_estimators=100), [0]),\n", |
|
|
2049 |
" (\"BOSSEnsemble\", BOSSEnsemble(max_ensemble_size=5,n_jobs=-1), [6])])\n", |
|
|
2050 |
"t = time.time()\n", |
|
|
2051 |
"ensClf.fit(X_train, y_train)\n", |
|
|
2052 |
"print('training time: {} sec'.format(round(time.time()-t)))" |
|
|
2053 |
] |
|
|
2054 |
}, |
|
|
2055 |
{ |
|
|
2056 |
"cell_type": "code", |
|
|
2057 |
"execution_count": 21, |
|
|
2058 |
"id": "af8c34bc", |
|
|
2059 |
"metadata": { |
|
|
2060 |
"scrolled": true |
|
|
2061 |
}, |
|
|
2062 |
"outputs": [ |
|
|
2063 |
{ |
|
|
2064 |
"data": { |
|
|
2065 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARAAAADzCAYAAABOrUmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnI0lEQVR4nO3de5yUc//48dd7drdU22krHbZSlENut1DpoETRQeRU6kbIF1Fu4Rbixp3DL3LOMaRyIyXulFOhIqKDko6Skt2281mp3Zn374+5dk3Z3ZmdZua6Zvf99LgeO3PNzPV528O7z+dzfQ6iqhhjTDR8bgdgjElelkCMMVGzBGKMiZolEGNM1CyBGGOiZgnEGBO1VLcDMMb8KXfLLxGPq0irebTEM5ZIWAIxxksCfrcjKBFLIMZ4iQbcjqBELIEY4yUBSyDGmCipP8/tEErEEogxXpJkTZhSextXRLqKyEoR+VlE7vJAPKNFZJOILPFALA1EZIaILBeRpSJyi8vxHCEic0XkByee/7gZjxNTiogsFJGpCS044I/88IBSmUBEJAV4HugGNAP6ikgzd6NiDNDV5Rjy5QG3q+oJQGtgoMvfn/3A2ap6MtAc6CoirV2MB+AWYHnCS9VA5IcHlMoEArQCflbVX1T1ADAe6OlmQKr6JbDNzRjyqWqOqn7vPN5N8A8l08V4VFX3OE/TnMO1dSZEpD5wHvBqwgsPBCI/PKC0JpBM4LeQ51m4+AfiZSLSCDgF+M7lOFJEZBGwCZiuqm7G8zQwBEj4X6lqIOLDC0prAilshJ6tnHQIEUkHJgGDVXWXm7Goql9VmwP1gVYi8jc34hCRHsAmVV3gRvnJVgMprXdhsoAGIc/rA+tdisWTRCSNYPJ4U1XfczuefKq6Q0RmEuwvcqPDuR1wgYh0B44AqojIf1X1ioSU7s9NSDGxUlprIPOApiLSWETKAX2AD1yOyTNERIDXgOWq+qQH4qklItWcxxWAzsAKN2JR1btVtb6qNiL4e/NFwpIHWCeqF6hqHjAI+JRgB+EEVV3qZkwi8jYwBzhORLJE5FoXw2kHXAmcLSKLnKO7i/HUBWaIyGKCyX+6qib29qlXJFkTRmxRZWO8Y/+S6RH/QZb/2zk2G9cYE8IjNYtIWQIxxkNUvTHCNFKWQIzxEo90jkbKEogxXpJks3FL5V2YUCJyvdsxhPJSPF6KBSwewCbTeZCnfinxVjxeigUsnpiOAylsBriIvBNy636tM30AEWkkIvtCXnspknCtCWOMl8T2LswY4DlgXP4JVb0s/7GIPAHsDHn/amc6QcQ8m0B+OqFrTAaoDKvT7LCv1TprdSxCAaBi+VpkVG56WPHsj9Fw53JpGVSq2Oiwv8+BGI0lSk3NoEKFozwzMClW8ezb92vk4zVi2Imqql86kyX/whmN3Bs4+3DKKPVNmMuqNQj/pgQqn1bV7RAKpKZWdjuEg6SmprsdwkFciSdxI1HbAxtVdVXIucbOIkqzRKR9JBfxbA3EmDKpBInB6eQN7acZpaqjIvx4X+DtkOc5QENV3SoipwH/E5ETw83StgRijIdoCZqnTrKINGEUEJFU4GLgtJBr7Se4MhyqukBEVgPHAvOLu5YlEGO8JDEDyToDK1Q1K/+EiNQCtqmqX0SOBpoCv4S7UKnvAzEmqcSwD6SYGeB9OLj5AtABWCwiPwDvAgNUNewSnFYDMcZLYnsXpm8R568u5NwkggtMlYglEGO8xGbjGmOiZpPpjDFRy0uuyXSWQIzxEquBGGOiZn0gxpioWQ0ksWo/dCuVOp6Of9sOfr1gAAC+qunUfXIoaZm1yc3eSM6tjxDYtYfKPc6iev9LCz5b/rjGrLtkEPtXhB0vc9huuPEq+l3dGxFh3JgJvPTCmLiXWZxly2ezZ/ce/IEAeXl5tD/jAlfj8fl8fP31VNav38All/R3NRZX40myGkjSDyTb9b/pZF9/70HnMq67jL1zFrG267XsnbOIjOt6A7B76gzWXTyQdRcPZMOdI8jN3piQ5HHCCU3pd3VvOne8hPZtzufcrh05+pij4l5uON269aVN6+6uJw+AQYP6s3Llz26HUcC1eGxfmMTaN38J/h27DzqXfnYbdk3+DIBdkz8jvVPbv3yu8nkd2f3hzESEyLHHHcP8eYvYt+8P/H4/38yex3nnn5uQspNBZmYdunY9m9dfH+92KIDL8STZvjBxSyAicryI3Ckiz4rIM87jE+JVXqiUGtXwbw6OwvVv3kZKxl+n0Ffu1oHdH81MRDgsX76KNu1aUj2jGhUqHME5Xc4kM7NOQsouiqrywZQ3mP31FK7pX+iAxYQZMeJ+7rnnEQIe+aNwNR6/P/LDA+LSByIidxKcLjwemOucrg+8LSLjVXV4PMqN1BF/Pw79Yz8HVv2akPJ+WrmaZ58axXuTx/D773tZ8uMK/Hnu/gJ06nQJG3I2UatWDaZM+S8/rVzN11/PDf/BGOvW7Ww2bdrKwoVLaN++dcLL91w8HkmikYpXDeRaoKWqDlfV/zrHcKCV81qhROR6EZkvIvPf2fFb1IX7t+4gpVYGACm1MvBv23nQ65W7n5mw5ku+/457l7PaX0iPrv9g+/YdrF69NqHlH2pDziYANm/eygdTPqVFi5NdiaNNmxb06NGZFStmM27cSDp2bMvo0U+7Eosn4rEmDAABoF4h5+s6rxVKVUepagtVbXE4K4nt+eJbqvTsDECVnp3Z88WcP18UIb1Le3Z/NCvq60ejZs1gQsusX5ceF5zLpHfd2/q1YsUKpKdXKnjcqVN7li37yZVY7rvvMZo0ac3xx59Bv343M3PmN/TvP9iVWDwRT5J1osbrNu5g4HMRWQXkVyUaAk0IbnodM3Uev4uKrf5OSrUqNJ7xBluf+y/bXn2Hek8OpeqlXchbv4n1tz5c8P4KLU4ib+MWcrM2xDKMsMa++RwZGdXJzc1lyG3/YeeOYhd6iqsjj6zJ+PHBdWhSUlOYMGEy06cnNqGaInikZhGpuG2uLSI+gk2WTECALGCeRrh3X6wWVY6FWC6qHAuxWlQ5VmK1qHJpVZJFlfeNvSvib2aFq4aX3s21VTUAfBuv6xtTKiVZDSTpR6IaU6ok2daWlkCM8RANJFdz0BKIMV5iTRhjTNQ8cns2Ukk/F8aYUiWgkR9hFLG59gMikh2yiXb3kNfuFpGfRWSliHSJJFyrgRjjJXHeXNvxlKo+HnpCRJoR3O7hRIKDQD8TkWPDDbuwGogxXhLDoeyq+iUQdm8XR09gvKruV9U1wM8Ex3EVyxKIMV5Sgtm4oXPHnOP68AUAMEhEFjtNnOrOuUz+HDUOwYGfmeEuZAnEGC8pQR9I6Nwx54hkn9wXgWOA5gQ31H7COV/YqNawHS3WB2KMl8T5Loyqbsx/LCKvAPmzOrOA0Bms9YH14a5nNRBjvCSGd2EKIyJ1Q55eBOTfofkA6CMi5UWkMcHNtcMuEGM1EGM8RGN4F8bZXLsjUFNEsoD7gY4i0pxg82QtcAOAqi4VkQnAMiAPGBjJxFfPJpDOG7PdDqHAytaFLW3inoaz17odwkFOzTjG7RAO8sP2NW6HEL0YDmUvYnPt14p5/8PAw0W9XhjPJhBjyqQkG4lqCcQYL3F5rdySsgRijJfYbFxjTNSsCWOMiZrVQIwx0YrlbdxEsARijJdYDcQYEzWPbFkZKUsgxniJ1UCMMdGyRZWNMdGzBGKMiZrdhTHGRM1qIO4ZMXIYnc7twNYt2zin3cUA3HrnjfS98hK2bt0OwGMPPsuMz76KS/npt99J+dPbENixne3XXwNApesGUK51W8jLw79+PbsfH47+vgeACn0up0LX7mggwJ4XniV3/ry4xFUUn8/H119PZf36DVxySf+Ell2ufBrPT3qGtPJppKakMOPDWbz2xFgqV6vMgy/+mzoN6rDhtw38e8Awdu/ck9DYqlatzPMvPEqzZseiqtw4YAhz5y5MTOFJlkBK1YJCE9+aTL9eN/7l/KsvvUG3M3vR7cxecUseAPunfczOoXccdO7A9/PZft01bL+hP/7s36jY93IAUhoexREdz2bbdVezc+gdVL75VvAl9scxaFB/Vq78OaFl5juwP5d/9r6Nq8+5jqvOvY7TO7bixFNP4MqBfZk/eyF9zujH/NkLuWJgYTPS4+uxEfczffosTj2lM61P757Q75H6AxEfXlCqEsjcOQvYsX2na+Xn/riYwO7dB59bMB8CwXv7ucuX4atZC4Bybc/gj5lfQG4ugQ0b8K/PJvW4ExIWa2ZmHbp2PZvXXx+fsDIPtW/vHwCkpqaSmpaKqtK+Szs+nvgpAB9P/JQOXc9IaEyVK6fT7oxWjB3zDgC5ubns3Lk7zKdiKM4rksVawhOIiFyT6DKv+r++fPrVJEaMHEbVqlUSXXyBI7p058C87wBIqVmTwOZNBa/5N2/GV7NmwmIZMeJ+7rnnEQIudtr5fD7GTBvF1MXvMe/L+SxbuILqNauzdVNwJ4Ktm7ZRrUa1hMbUqHEDtmzZxksvj+DrOVN57oXhVKxYIWHla0AjPrzAjRrIf4p6IXSZ+j37I93OonhvjJ5A+1O707XDpWzasJl7H/pXTK5bUhX/cQX4/ez/fHrwhBSyCLYm5peiW7ez2bRpKwsXLgn/5jgKBAJcfe71XNSiN81OOZ7GxzVyNR4I1oaaNz+RV199k3ZterD3973c/q+/Novjxmog4Ow5UdjxI1C7qM+FLlOfXj4jJrFs2byVQCCAqvL2uEk0P/VvMbluSZQ/pwvlTm/LruEPFpzzb96Mr9aRBc9TatUisHVrQuJp06YFPXp0ZsWK2YwbN5KOHdsyevTTCSm7MHt2/c733/xA646t2L5lOzWODP7saxyZwY6tOxIaS3Z2DtnZG5g/bxEA/3v/Y05ufmLiAgiU4PCAeNVAagP9gPMLORLzV+I4svafzYIuPTqxcnliOw3TWrSi4mX/YOd9d8P+/QXnD8z5miM6ng1pafjq1CElsz55K5cnJKb77nuMJk1ac/zxZ9Cv383MnPkN/fsPTkjZ+aplVCW9SiUAyh1RjpbtT+XX1euYPe0buvUKbsvarVcXvvr064TGtWnjFrKzcmja9GgAOp7VlhUJ/J2JZROmiL1xR4jICucf9PdFpJpzvpGI7AvZM/elSOKN123cqUC6qi469AURmRmnMhn5yqO0adeS6jWq8d2Sz3hy+PO0adeSZicdj6qStS6bu28bFq/iqTz0PtL+3hxf1apkvDWRveNep2KfyyGtHNUeDe7fk7t8GXueeRL/r2vZ/+UMMl4di/r97Bn5dNINIjocNWrX4N6n78Tn8+Hz+fhiyky++exblixYxoMv3UePvt3YmL2Je28ossUbN7fffj+vvf4U5dLKsWbtOm684Y7wH4qV2DZNxvDXvXGnA3erap6IPArcDdzpvLZaVZuXpADRBLW7S6phxkmeCWzBabFpTsWKrcpePK+tyr5n75rCdn0r1PZeHSP+va8+cWbY64pII2Cqqv6l7S4iFwGXqurlxb2vOKXqNq4xSa8EfSCHsTduvv7AxyHPG4vIQhGZJSLtI7lAqRqJakyyK8ntWWcv3Ej2w/0LEbmH4AZSbzqncoCGqrpVRE4D/iciJ6rqruKuYwnEGC9JQDeYiFwF9AA6qdOHoar7gf3O4wUisho4Fphf3LUsgRjjIfFelF1EuhLsND1TVfeGnK8FbFNVv4gcTXBv3F/CXc8SiDFeEsMEUsTeuHcD5YHpEhzM+K2qDgA6AMNEJA/wAwNUNexoTksgxnhILGsgJdkbV1UnAZNKWoYlEGM8RPPcjqBkLIEY4yFJtjGdJRBjvMQSiDEmehrxoFVPKDaBiEixY7gj6aU1xkSutNVAFgAKCNAQ2O48rgasAxrHMzhjyhoNlKIaiKo2BnCm9n6gqh85z7sBneMfnjFlS2mrgeRr6Qw2AUBVPxaRB4v7wOFav8c7raPML7e7HcJBdi96w+0QDlLp5CvcDqHUCPhLUQ0kxBYRuRf4L8EmzRUkeGEgY8qCZGvCRDqdvy9QC3jfOWo554wxMaQa+eEFEdVAnLstt4hIuqomdpcfY8qQUlkDEZG2IrIMWOY8P1lEXohrZMaUQRqQiA8viLQJ8xTQBaffQ1V/IDh7zxgTQ6WyCQOgqr/JwXuZ+GMfjjFlW8CfXKuMRppAfhORtoCKSDngn0Bi9iAwpgwpreNABgDPAJlAFjANuCleQRlTVgVK01yYEMep6uWhJ0SkHZDYXX+MKeU0yRJIpA2ukRGeM8YchmS7CxNuNm4boC1QS0RuC3mpCpASz8CMKYu8cnclUuGaMOWAdOd9lUPO7wIujVdQxpRVXqlZRCrcbNxZwCwRGaOqvyYoJmPKLH8gdrdxRWQ0wf1fNuVvWems8fMO0AhYC/RW1e3Oa3cD1xIcovFPVf00XBmRRvtq/i7eTkHVRSTsxd3U5dyOLF3yJSuWzWbIHQNdjaV+/bpM+3QCi3+YwaKFnzNo0LUJKfe+keM486o7uOiff24ovuKX37h8yKP0GvwQfW5/hB9/Cu4jm71xCy1730yvwQ/Ra/BDPPjim0VdNi689PNyM5YYDyQbA3Q95NxdwOeq2hT43HmOiDQD+gAnOp95QUTCdlNEehempqruyH+iqttF5MgIP5twPp+PZ595mK7d+5KVlcO3cz5iytRpLF++ypV48vL8DLlzGIsWLSE9vRLfffsxn3/2JctXxDeeC85uQ5/uHbnnmTEF554a+x4DLjuP9qf9ja/m/8hTY99j9MO3A1C/Ti0mPn1vXGMqjJd+Xm7HEsvbuKr6pbNpdqieBPeKARgLzCS40VRPYLyzQ90aEfkZaAXMKa6MSGsgARFpmP9ERI4iOK2/SCJyvIh0EpH0Q84fmhFjrlXLU1i9ei1r1qwjNzeXCRMmc8H5XeJdbJE2bNjEokVLANiz53dWrFhFvcw6cS+3xYlNqZpe8aBzIsLv+/4AYPfeP6iVUS3ucYTjpZ+X27GoSsRHlJtr11bVnGBZmgPkVwQygd9C3pflnCtWpDWQe4DZIjLLed4BKDJYEfknMJDgaNXXROQWVZ3svPwI8EmE5UalXmYdfstaX/A8KzuHVi1PiWeRETvqqPqcfPLfmDt3oSvlD7m2FwP+8yxPvD4J1QDjhg8peC174xZ63/owlSoewaB/XMBpJzZNSExe+nm5HUtJ7sIczubahSis6hM2mkin838iIqcCrZ2CblXVLcV85DrgNFXd41Sh3hWRRqr6TBGBAuBk0OsBJKUqPl+lSMIr7DqF/T9Eda1YqlSpIu+MH8W//vUAu3e7syrChE++5I7+vTin7al8Ons+9z/3Bq8MG0ytjKpMe+URqlVJZ9nPv3LL/3uJ90feR3rFCnGPyUs/L7djScBI1I0iUldVc0SkLrDJOZ8FNAh5X31g/V8+fYhimzAicrzz9VSCiyqvB7KBhs65oqTkrxuiqmsJtrm6iciTFJNAVHWUqrZQ1RbRJg+A7KwcGtSvV/C8fmZdcnI2Rn29WEhNTeWdd0bx9vj3+d/kj12L44MZc+jcJvgv6rntTmPJqrUAlEtLo1qVYGuzWZOjaFCnJr+u31TUZWLKSz8vt2MpSRMmSh8AVzmPrwImh5zvIyLlRaQxwc2154a7WLg+kNudr08UcjxezOc2iEjz/CdOMukB1AROChfU4Zo3fxFNmjSmUaMGpKWl0bt3T6ZMnRbvYos16uXHWbHiZ5555hVX46iVUY35S34C4LvFK2lYN9gE3rZzN35/cCZX1obNrMvZRP3aNRMSk5d+Xm7H4leJ+AjH2Vx7DnCciGSJyLXAcOAcEVkFnOM8R1WXAhMIrvnzCTBQVcPOuA83DuQ65+tZYaM9WD/goF0+VTUP6CciL5fwWiXm9/u5ZfC9fPThW6T4fIwZ+w7Llv0U72KL1LZtS6644lJ+/HE58+YG737/+75H+eSTL+Ja7pAnXmX+kp/YsWsPna+9i5v6nM/9N13Bo69OwB/wUy4tjftvCk5xWrB0FS+8PYWUFB8+n497B1xO1crR1wJLwks/L7djifFdmKKWHe1UxPsfBh4uSRlSXPtORC4u7sOq+l5JCiuJ1HKZ7ndaOHyFtIvdZKuyJ5e8A9kR/wJ9XefSiH/v22141/VfzHCdqOc7X48kOCcm/5/MswjeP45bAjGmLEqy5UDCNmGuARCRqUCz/PvHTu/t8/EPz5iyRYu+x+BJkY4DaZSfPBwbgWPjEI8xZVrAMw33yESaQGY6c1/eJji4pA8wI25RGVNGBUpjDURVB4nIRfy5EvsoVX0/fmEZUzb5S2MCcXwP7FbVz0SkoohUVtXd8QrMmLIo2fpAIt1Y6jrgXSB/DEcm8L84xWRMmRUoweEFkc7GHQi0I7gSGaq6ij9n8RljYiTZEkikTZj9qnogf6KRiKQSwUw9Y0zJJFsTJtIEMktEhgIVROQcgnvCTIlfWMaUTUm2JGrETZg7gc3Aj8ANwEdA4peuMqaUCyARH14QtgYiIj5gsbMoq7tTSY0p5ZJtw+mwCURVAyLyg4g0VNV1iQjKmLIq4LGJm+FE2gdSF1gqInOB3/NPquoFcYnKY+pUqu52CAdJ99js133rv3I7hINUrNfe7RCilmx3JiJNIP+JaxTGGMA7t2cjFW5ryyOAAUATgh2orzkLAxlj4iDZ7sKEq4GMBXKBr4BuQDPglngHZUxZ5ZW7K5EKl0CaqepJACLyGhEssmqMiZ4/ufJH2ASSm/9AVfMKW/LeGBM7sewDEZHjCO6Dm+9o4D6gGsGtVzY754eq6kfRlBEugZwsIrvy4yE4EnWX81hVtUo0hRpjChfLuzCquhJoDuDsc5sNvA9cAzylqsXtrBCRcEsaht1c1xgTO3HsRO0ErFbVX2PZkoh0KLsxJgFKMhu3hHvj9iG4omC+QSKyWERGi0jUA50sgRjjISVJIKE7OTpHofvkikg54AJgonPqReAYgs2bHIIbxUWlJCuSGWPiLE5b43YDvlfVjQD5XwFE5BVgarQXtgRijIfEaZRmX0KaL/mbaztPLwKWRHthSyDGeEis58KISEWCe+DeEHL6MWfvagXWHvJaiVgCMcZDYn0XRlX3AjUOOXdlrK5fajtRu5zbkaVLvmTFstkMuWOgKzGMGDmM71fOZPrXf+4AeuudNzJ3yWd8PGsiH8+ayFmdEz9z9JVRT5Cd9QMLF36e0HLvfeRJOpzXhwuvGFBwbsWqX7j8+lu56MobGTjkfvb8XjDZm5U/r+Hy62+l5+U3cNGVN7J//4GExOnW9weSb03UUplAfD4fzz7zMD3Ov4KTTj6Lyy67kBNOaJrwOCa+NZl+vW78y/lXX3qDbmf2otuZvZjxWeKnwo8dN4EePS5PeLkXdj+Hl5586KBz9w9/msE3XsP7b7xIpw5tef3NSQDk5fm5a9hj/PuOm5n85su8/tyjpKYmZliSW98fsARSQERaiUhL53EzEblNRLrHq7xQrVqewurVa1mzZh25ublMmDCZC87vkoiiDzJ3zgJ2bN+Z8HLDmT37O7Zt35Hwcls0P4mqVSofdG7tuixaND8JgDYtT2X6rNkAfDN3Acce05jjmx4NQLWqVUhJSUwCcev7A8FOiUgPL4hLAhGR+4FngRdF5P8BzwHpwF0ick88ygxVL7MOv2WtL3ielZ1DvXp14l1sxK76v758+tUkRowcRtWqZXs2QJOjGzFj9rcATJvxFRs2bgHg19+yERGuv/Ueel0ziNFvTizuMqVGQCI/vCBeNZBLCe4j04HgnjIXquowoAtwWVEfCh1ZFwj8XtTbwipsqK6qN3L2G6Mn0P7U7nTtcCmbNmzm3of+5XZIrnpw6K28PWkKvfvfzO9795GWFuzXz/P7Wbh4KY/eP4RxLz7O57O+4dv5C12ONv78JTi8IF53YfJU1Q/sFZHVqpq/IdU+ESmy+eaMpBsFkFouM+q/+OysHBrUr1fwvH5mXXJyNhbzicTZsnlrweO3x03i9fHPuRiN+44+qgGvPP0IEGzOfPlNcMWI2kfWpEXzk6herSoA7du0ZNnK1bRucYprsSZCwDONk8jEqwZywLn/DHBa/kkRqUoC+n/mzV9EkyaNadSoAWlpafTu3ZMpU6fFu9iIHFm7ZsHjLj06sXL5zy5G476tTl9DIBDg5bHj6X1hsJusXavT+Gn1Gvb98Qd5eX7mL/qRYxo3dDHSxEi2TtR41UA6qOp+CK7qHnI+DbgqTmUW8Pv93DL4Xj768C1SfD7GjH2HZct+inexfzHylUdp064l1WtU47sln/Hk8Odp064lzU46HlUla102d982LOFxvfHG85zZoQ01a2aw5pf5DBv2OK+PGR/3cu+4fzjzFi5mx45ddLrwCm669kr27tvH+PeCI6k7n9mWi847F4CqVSrTr8/F9Ln2FkSE9m1acmbbVnGPEdz7/oB3OkcjJV7pGzjU4TRhYq1eeobbIRwkZ882t0M4yF5blb1YuQeyI+7yfOCoyyP+vX/g1zdd70q1kajGeIhX7q5EyhKIMR6SbJ2olkCM8RCv3J6NlCUQYzzEaiDGmKglV/qwBGKMp3hlfEekLIEY4yHWhDHGRC250oclEGM8xZowxpio+ZOsDmIJxBgPiXUfiIisBXYTHGKSp6otRCSD4J65jQguqtxbVbdHc/1SuaShMckqTiuSnaWqzVW1hfP8LuBzVW0KfO48j4rVQCKw3mOT17ymgscmr+35+lm3Q4hagu7C9AQ6Oo/HAjOBO6O5kNVAjPGQOKwHosA0EVkQsndu7fyNpZyvR0Ybr9VAjPEQLUENxEkIoRtqjypkf9x2qrpeRI4EpovIihiEWcASiDEeUpK7MKFLgBbznvXO100i8j7QCtiYv72liNQFNkUbrzVhjPGQWDZhRKSSiFTOfwycS3Af3A/4c2XAq4DJ0cZrNRBjPCQQ2xUCawPvO7sUpAJvqeonIjIPmCAi1wLrgF7RFmAJxBgPiWX6UNVfgJMLOb8V6BSLMiyBGOMhNpnOGBO1ktyF8QJLIMZ4iE2mM8ZEzZ9kKcQSiDEeklzpwxKIMZ7i1Y3eimIJxBgPSba7MKV2JGqXczuydMmXrFg2myF3DHQ7HIvHY/HcN2oSHW96mIvverrg3B0j36b30JH0HjqSboMfo/fQkQDk5uXx75ff5ZK7nqHX0GeZt+yXuMVlm2t7gM/n49lnHqZr975kZeXw7ZyPmDJ1GsuXr7J4LB4AenY4lb7ntOaelycWnBtxc9+Cx4+/+RHpFcsDMGnGvODX4bewdeceBo4Yw1vDbsLni/2/v8l2G7dU1kBatTyF1avXsmbNOnJzc5kwYTIXnN/F4rF4Cpx2fGOqpFcs9DVVZdp3P9KtTXAQ5y/Zmzj9xGMAqFE1ncoVj2Dpmuy4xBVAIz68IGEJRETGJaqsepl1+C1rfcHzrOwc6tWrk6jiLZ4kj+f7lWupUTWdo+rUBODYhnWZ+f1y8vx+sjZtY/na9WzcujMuZftVIz68IC5NGBH54NBTwFkiUg1AVS+IR7kh5f/lnJu92xZP8bwWz8dzfqBrm78XPL/wzNNYs34z//j3C9StWY2TmzYkJSU+//YmWxMmXn0g9YFlwKsE5wcJ0AJ4orgPhS6QIilV8fkqRVV4dlYODerX+zOYzLrk5GyM6lqxYPEkTzx5fj+fz1vK+AcHFZxLTUnhjivOK3je7z8v0bBOjbiU75WmSaTi1YRpASwA7gF2qupMYJ+qzlLVWUV9SFVHqWoLVW0RbfIAmDd/EU2aNKZRowakpaXRu3dPpkydFvX1DpfFkzzxfLdkNY3r1aJ2jaoF5/btP8DePw4AMOfHVaT4fByTWTsu5atqxIcXxKUGoqoB4CkRmeh83Rivsgrj9/u5ZfC9fPThW6T4fIwZ+w7Llv2UqOItniSI587nxjN/+Rp27Pmdc24ezo2XdObiji345NvFdG1z8Az4bbt+58ZHX8fnE46sXoWHb4x6+Yywkq0GIonIZCJyHsG1GYdG+pnUcpnJ9Z00nuG1VdmPaHnJXzt5itCxfueIf+9nZn0W8XXjJSG1AlX9EPgwEWUZk8xivCJZ3JXKgWTGJCvb2tIYE7Vk6wOxBGKMh3jl7kqkSuVQdmOSVSyHsotIAxGZISLLRWSpiNzinH9ARLJFZJFzdI82XquBGOMhMR6JmgfcrqrfO/vDLBCR6c5rT6nq44dbgCUQYzwklk0YZ9/b/D1wd4vIciAzZgVgTRhjPKUkTRgRuV5E5occ1xd1XRFpBJwCfOecGiQii0VktIhUjzZeSyDGeIhfAxEfoVM/nKPQfXJFJB2YBAxW1V3Ai8AxQHOCNZRi56gVx5owxnhIrGfjikgaweTxpqq+B6CqG0NefwWYGu31LYEY4yGxHIkqwXUSXgOWq+qTIefrOv0jABcR3HA7KpZAjPGQGNdA2gFXAj+KyCLn3FCgr4g0J7jUxlrghmgLsARijIfEsgaiqrMJrsVzqI9iVYZnE0jegeyYzDQUkeuL6lxyg5fi8VIsYPFA8q1IVhbuwhR5a8slXorHS7GAxUNANeLDCzxbAzGmLPKrV3Z8iYwlEGM8JNmaMGUhgXimTe3wUjxeigUsHjTJaiAJWdLQxJ+IXAS8B5ygqiuKed9gYJSq7o2ynKuBFqo6KNx7TckdVePvEf9B/rp1setLGpaFTtSyoi8wG+gT5n2DgcK3ZDOuS7ZV2S2BlALOXId2wLU4CUREUkTkcRH50Zk0dbOI/BOoB8wQkRnO+/aEXOdSERnjPD5fRL4TkYUi8pmIxGcfA3OQZNvasiz0gZQFFwKfqOpPIrJNRE4FTgcaA6eoap6IZKjqNhG5DThLVbeEueZsoLWqqoj8HzAEuD2e/xMG/IHk6gOxBFI69AWedh6Pd54fDbykqnkAqrqthNesD7wjInWBcsCa2IRqimN3YUxCiUgN4GzgbyKiQArBOQ4LnK/hhL7niJDHI4EnVfUDEekIPBCLeE3xvNK3ESnrA0l+lwLjVPUoVW2kqg0I1ha+BwaISCqAiGQ4798NVA75/EYROUFEfARnZuarCmQ7j6+K6/+BKZBsfSCWQJJfX+D9Q85NIthZug5YLCI/AP9wXhsFfJzfiQrcRXA9iC9wlr9zPABMFJGvgHD9JSZGku0ujI0DMcZDMio3jfgPctvuVa6PA7E+EGM8JNn+QbcEYoyH2GQ6Y0zUvDJNP1KWQIzxEBsHYoyJWrLVQOw2rjEeEuvbuCLSVURWisjPInJXrOO1BGKMh2gJ/gtHRFKA54FuQDOCq7E3i2W8lkCM8ZAY10BaAT+r6i+qeoDgPKmesYzX+kCM8ZAY94FkAr+FPM8iOEs7ZiyBGOMhJdnOxNlMO3Tl+FGHbENR2LVimqEsgRiTpJxkUdy6rVlAg5Dn9YH1sYzB+kCMKb3mAU1FpLGIlCO4Wt0HsSzAaiDGlFLOSnSDgE8JrhMzWlWXxrIMm41rjImaNWGMMVGzBGKMiZolEGNM1CyBGGOiZgnEGBM1SyDGmKhZAjHGRM0SiDEmav8f7MijKWJhmssAAAAASUVORK5CYII=\n", |
|
|
2066 |
"text/plain": [ |
|
|
2067 |
"<Figure size 288x288 with 2 Axes>" |
|
|
2068 |
] |
|
|
2069 |
}, |
|
|
2070 |
"metadata": { |
|
|
2071 |
"needs_background": "light" |
|
|
2072 |
}, |
|
|
2073 |
"output_type": "display_data" |
|
|
2074 |
}, |
|
|
2075 |
{ |
|
|
2076 |
"name": "stdout", |
|
|
2077 |
"output_type": "stream", |
|
|
2078 |
"text": [ |
|
|
2079 |
"Column-wise ensembling classifier score: 0.9084745762711864\n" |
|
|
2080 |
] |
|
|
2081 |
} |
|
|
2082 |
], |
|
|
2083 |
"source": [ |
|
|
2084 |
"y_train_pred = cross_val_predict(ensClf, X_train, y_train, cv=3)\n", |
|
|
2085 |
"confmat = metrics.confusion_matrix(y_train,y_train_pred)\n", |
|
|
2086 |
"plt.matshow(confmat)\n", |
|
|
2087 |
"sn.heatmap(confmat,annot=True, annot_kws={\"size\":10}, fmt='d')\n", |
|
|
2088 |
"plt.xlabel(\"Actual\")\n", |
|
|
2089 |
"plt.ylabel(\"Predicted\")\n", |
|
|
2090 |
"plt.show()\n", |
|
|
2091 |
"print('Column-wise ensembling classifier score: {}'.format(ensClf.score(X_test, y_test)))" |
|
|
2092 |
] |
|
|
2093 |
}, |
|
|
2094 |
{ |
|
|
2095 |
"cell_type": "code", |
|
|
2096 |
"execution_count": null, |
|
|
2097 |
"id": "82f302c7", |
|
|
2098 |
"metadata": {}, |
|
|
2099 |
"outputs": [], |
|
|
2100 |
"source": [] |
|
|
2101 |
}, |
|
|
2102 |
{ |
|
|
2103 |
"cell_type": "code", |
|
|
2104 |
"execution_count": null, |
|
|
2105 |
"id": "21353e0e", |
|
|
2106 |
"metadata": {}, |
|
|
2107 |
"outputs": [], |
|
|
2108 |
"source": [] |
|
|
2109 |
} |
|
|
2110 |
], |
|
|
2111 |
"metadata": { |
|
|
2112 |
"kernelspec": { |
|
|
2113 |
"display_name": "Python 3", |
|
|
2114 |
"language": "python", |
|
|
2115 |
"name": "python3" |
|
|
2116 |
}, |
|
|
2117 |
"language_info": { |
|
|
2118 |
"codemirror_mode": { |
|
|
2119 |
"name": "ipython", |
|
|
2120 |
"version": 3 |
|
|
2121 |
}, |
|
|
2122 |
"file_extension": ".py", |
|
|
2123 |
"mimetype": "text/x-python", |
|
|
2124 |
"name": "python", |
|
|
2125 |
"nbconvert_exporter": "python", |
|
|
2126 |
"pygments_lexer": "ipython3", |
|
|
2127 |
"version": "3.7.10" |
|
|
2128 |
} |
|
|
2129 |
}, |
|
|
2130 |
"nbformat": 4, |
|
|
2131 |
"nbformat_minor": 5 |
|
|
2132 |
} |