|
a |
|
b/modules/DL_utils.py |
|
|
1 |
# Utility functions for deep learning with Keras |
|
|
2 |
# Dr. Tirthajyoti Sarkar, Fremont, CA 94536 |
|
|
3 |
# ============================================== |
|
|
4 |
|
|
|
5 |
# NOTES |
|
|
6 |
# Used tf.keras in general except in special functions where older/independent Keras has been used. |
|
|
7 |
|
|
|
8 |
import tensorflow as tf |
|
|
9 |
import numpy as np |
|
|
10 |
import matplotlib.pyplot as plt |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
class myCallback(tf.keras.callbacks.Callback): |
|
|
14 |
""" |
|
|
15 |
User can pass on the desired accuracy threshold while creating an instance of the class |
|
|
16 |
""" |
|
|
17 |
|
|
|
18 |
def __init__(self, acc_threshold=0.9, print_msg=True): |
|
|
19 |
self.acc_threshold = acc_threshold |
|
|
20 |
self.print_msg = print_msg |
|
|
21 |
|
|
|
22 |
def on_epoch_end(self, epoch, logs={}): |
|
|
23 |
if logs.get("acc") > self.acc_threshold: |
|
|
24 |
if self.print_msg: |
|
|
25 |
print( |
|
|
26 |
"\nReached {}% accuracy so cancelling the training!".format( |
|
|
27 |
self.acc_threshold |
|
|
28 |
) |
|
|
29 |
) |
|
|
30 |
self.model.stop_training = True |
|
|
31 |
else: |
|
|
32 |
if self.print_msg: |
|
|
33 |
print("\nAccuracy not high enough. Starting another epoch...\n") |
|
|
34 |
|
|
|
35 |
def build_classification_model( |
|
|
36 |
num_layers=1, |
|
|
37 |
architecture=[32], |
|
|
38 |
act_func="relu", |
|
|
39 |
input_shape=(28, 28), |
|
|
40 |
output_class=10, |
|
|
41 |
): |
|
|
42 |
""" |
|
|
43 |
Builds a densely connected neural network model from user input |
|
|
44 |
|
|
|
45 |
Arguments |
|
|
46 |
num_layers: Number of hidden layers |
|
|
47 |
architecture: Architecture of the hidden layers (densely connected) |
|
|
48 |
act_func: Activation function. Could be 'relu', 'sigmoid', or 'tanh'. |
|
|
49 |
input_shape: Dimension of the input vector |
|
|
50 |
output_class: Number of classes in the output vector |
|
|
51 |
Returns |
|
|
52 |
A neural net (Keras) model for classification |
|
|
53 |
""" |
|
|
54 |
layers = [tf.keras.layers.Flatten(input_shape=input_shape)] |
|
|
55 |
if act_func == "relu": |
|
|
56 |
activation = tf.nn.relu |
|
|
57 |
elif act_func == "sigmoid": |
|
|
58 |
activation = tf.nn.sigmoid |
|
|
59 |
elif act_func == "tanh": |
|
|
60 |
activation = tf.nn.tanh |
|
|
61 |
|
|
|
62 |
for i in range(num_layers): |
|
|
63 |
layers.append(tf.keras.layers.Dense(architecture[i], activation=tf.nn.relu)) |
|
|
64 |
layers.append(tf.keras.layers.Dense(output_class, activation=tf.nn.softmax)) |
|
|
65 |
|
|
|
66 |
model = tf.keras.models.Sequential(layers) |
|
|
67 |
return model |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
def build_regression_model( |
|
|
71 |
input_neurons=10, input_dim=1, num_layers=1, architecture=[32], act_func="relu" |
|
|
72 |
): |
|
|
73 |
""" |
|
|
74 |
Builds a densely connected neural network model from user input |
|
|
75 |
|
|
|
76 |
Arguments |
|
|
77 |
num_layers: Number of hidden layers |
|
|
78 |
architecture: Architecture of the hidden layers (densely connected) |
|
|
79 |
act_func: Activation function. Could be 'relu', 'sigmoid', or 'tanh'. |
|
|
80 |
input_shape: Dimension of the input vector |
|
|
81 |
Returns |
|
|
82 |
A neural net (Keras) model for regression |
|
|
83 |
""" |
|
|
84 |
if act_func == "relu": |
|
|
85 |
activation = tf.nn.relu |
|
|
86 |
elif act_func == "sigmoid": |
|
|
87 |
activation = tf.nn.sigmoid |
|
|
88 |
elif act_func == "tanh": |
|
|
89 |
activation = tf.nn.tanh |
|
|
90 |
|
|
|
91 |
layers = [ |
|
|
92 |
tf.keras.layers.Dense(input_neurons, input_dim=input_dim, activation=activation) |
|
|
93 |
] |
|
|
94 |
|
|
|
95 |
for i in range(num_layers): |
|
|
96 |
layers.append(tf.keras.layers.Dense(architecture[i], activation=activation)) |
|
|
97 |
layers.append(tf.keras.layers.Dense(1)) |
|
|
98 |
|
|
|
99 |
model = tf.keras.models.Sequential(layers) |
|
|
100 |
return model |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
def compile_train_classification_model( |
|
|
104 |
model, |
|
|
105 |
x_train, |
|
|
106 |
y_train, |
|
|
107 |
callbacks=None, |
|
|
108 |
learning_rate=0.001, |
|
|
109 |
batch_size=1, |
|
|
110 |
epochs=10, |
|
|
111 |
verbose=0, |
|
|
112 |
): |
|
|
113 |
""" |
|
|
114 |
Compiles and trains a given Keras model with the given data. |
|
|
115 |
Assumes Adam optimizer for this implementation. |
|
|
116 |
Assumes categorical cross-entropy loss. |
|
|
117 |
|
|
|
118 |
Arguments |
|
|
119 |
learning_rate: Learning rate for the optimizer Adam |
|
|
120 |
batch_size: Batch size for the mini-batch optimization |
|
|
121 |
epochs: Number of epochs to train |
|
|
122 |
verbose: Verbosity of the training process |
|
|
123 |
|
|
|
124 |
Returns |
|
|
125 |
A copy of the model |
|
|
126 |
""" |
|
|
127 |
|
|
|
128 |
model_copy = model |
|
|
129 |
model_copy.compile( |
|
|
130 |
optimizer=tf.keras.optimizers.Adam(lr=learning_rate), |
|
|
131 |
loss="sparse_categorical_crossentropy", |
|
|
132 |
metrics=["accuracy"], |
|
|
133 |
) |
|
|
134 |
|
|
|
135 |
if callbacks != None: |
|
|
136 |
model_copy.fit( |
|
|
137 |
x_train, |
|
|
138 |
y_train, |
|
|
139 |
epochs=epochs, |
|
|
140 |
batch_size=batch_size, |
|
|
141 |
callbacks=[callbacks], |
|
|
142 |
verbose=verbose, |
|
|
143 |
) |
|
|
144 |
else: |
|
|
145 |
model_copy.fit( |
|
|
146 |
x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=verbose |
|
|
147 |
) |
|
|
148 |
return model_copy |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
def compile_train_regression_model( |
|
|
152 |
model, |
|
|
153 |
x_train, |
|
|
154 |
y_train, |
|
|
155 |
callbacks=None, |
|
|
156 |
learning_rate=0.001, |
|
|
157 |
batch_size=1, |
|
|
158 |
epochs=10, |
|
|
159 |
verbose=0, |
|
|
160 |
): |
|
|
161 |
""" |
|
|
162 |
Compiles and trains a given Keras model with the given data for regression. |
|
|
163 |
Assumes Adam optimizer for this implementation. |
|
|
164 |
Assumes mean-squared-error loss |
|
|
165 |
|
|
|
166 |
Arguments |
|
|
167 |
learning_rate: Learning rate for the optimizer Adam |
|
|
168 |
batch_size: Batch size for the mini-batch operation |
|
|
169 |
epochs: Number of epochs to train |
|
|
170 |
verbose: Verbosity of the training process |
|
|
171 |
|
|
|
172 |
Returns |
|
|
173 |
A copy of the model |
|
|
174 |
""" |
|
|
175 |
|
|
|
176 |
model_copy = model |
|
|
177 |
model_copy.compile( |
|
|
178 |
optimizer=tf.keras.optimizers.Adam(lr=learning_rate), |
|
|
179 |
loss="mean_squared_error", |
|
|
180 |
metrics=["accuracy"], |
|
|
181 |
) |
|
|
182 |
if callbacks != None: |
|
|
183 |
model_copy.fit( |
|
|
184 |
x_train, |
|
|
185 |
y_train, |
|
|
186 |
epochs=epochs, |
|
|
187 |
batch_size=batch_size, |
|
|
188 |
callbacks=[callbacks], |
|
|
189 |
verbose=verbose, |
|
|
190 |
) |
|
|
191 |
else: |
|
|
192 |
model_copy.fit( |
|
|
193 |
x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=verbose |
|
|
194 |
) |
|
|
195 |
return model_copy |
|
|
196 |
|
|
|
197 |
|
|
|
198 |
def plot_loss_acc(model, target_acc=0.9, title=None): |
|
|
199 |
""" |
|
|
200 |
Takes a Keras model and plots the loss and accuracy over epochs. |
|
|
201 |
The same plot shows loss and accuracy on two axes - left and right (with separate scales) |
|
|
202 |
Users can supply a title if desired |
|
|
203 |
Arguments: |
|
|
204 |
target_acc (optional): The desired/ target acc for the function to show a horizontal bar. |
|
|
205 |
title (optional): A Python string object to show as the plot's title |
|
|
206 |
""" |
|
|
207 |
e = ( |
|
|
208 |
np.array(model.history.epoch) + 1 |
|
|
209 |
) # Add one to the list of epochs which is zero-indexed |
|
|
210 |
# Check to see if loss metric is in the model history |
|
|
211 |
assert ( |
|
|
212 |
"loss" in model.history.history.keys() |
|
|
213 |
), "No loss metric found in the model history" |
|
|
214 |
l = np.array(model.history.history["loss"]) |
|
|
215 |
# Check to see if loss metric is in the model history |
|
|
216 |
assert ( |
|
|
217 |
"acc" in model.history.history.keys() |
|
|
218 |
), "No accuracy metric found in the model history" |
|
|
219 |
a = np.array(model.history.history["acc"]) |
|
|
220 |
|
|
|
221 |
fig, ax1 = plt.subplots() |
|
|
222 |
|
|
|
223 |
color = "tab:red" |
|
|
224 |
ax1.set_xlabel("Epochs", fontsize=15) |
|
|
225 |
ax1.set_ylabel("Loss", color=color, fontsize=15) |
|
|
226 |
ax1.plot(e, l, color=color, lw=2) |
|
|
227 |
ax1.tick_params(axis="y", labelcolor=color) |
|
|
228 |
ax1.grid(True) |
|
|
229 |
|
|
|
230 |
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis |
|
|
231 |
|
|
|
232 |
color = "tab:blue" |
|
|
233 |
ax2.set_ylabel( |
|
|
234 |
"Accuracy", color=color, fontsize=15 |
|
|
235 |
) # we already handled the x-label with ax1 |
|
|
236 |
ax2.plot(e, a, color=color, lw=2) |
|
|
237 |
ax2.tick_params(axis="y", labelcolor=color) |
|
|
238 |
|
|
|
239 |
fig.tight_layout() # otherwise the right y-label is slightly clipped |
|
|
240 |
if title != None: |
|
|
241 |
plt.title(title) |
|
|
242 |
plt.hlines( |
|
|
243 |
y=target_acc, xmin=1, xmax=e.max(), colors="k", linestyles="dashed", lw=3 |
|
|
244 |
) |
|
|
245 |
plt.show() |
|
|
246 |
|
|
|
247 |
|
|
|
248 |
def plot_train_val_acc(model, target_acc=0.9, title=None): |
|
|
249 |
""" |
|
|
250 |
Takes a Keras model and plots the training and validation set accuracy over epochs. |
|
|
251 |
The same plot shows both the accuracies on two axes - left and right (with separate scales) |
|
|
252 |
Users can supply a title if desired |
|
|
253 |
Arguments: |
|
|
254 |
target_acc (optional): The desired/ target acc for the function to show a horizontal bar. |
|
|
255 |
title (optional): A Python string object to show as the plot's title |
|
|
256 |
""" |
|
|
257 |
e = ( |
|
|
258 |
np.array(model.history.epoch) + 1 |
|
|
259 |
) # Add one to the list of epochs which is zero-indexed |
|
|
260 |
# Check to see if loss metric is in the model history |
|
|
261 |
assert ( |
|
|
262 |
"acc" in model.history.history.keys() |
|
|
263 |
), "No accuracy metric found in the model history" |
|
|
264 |
a = np.array(model.history.history["acc"]) |
|
|
265 |
# Check to see if loss metric is in the model history |
|
|
266 |
assert ( |
|
|
267 |
"val_acc" in model.history.history.keys() |
|
|
268 |
), "No validation accuracy metric found in the model history" |
|
|
269 |
va = np.array(model.history.history["val_acc"]) |
|
|
270 |
|
|
|
271 |
fig, ax1 = plt.subplots() |
|
|
272 |
|
|
|
273 |
color = "tab:red" |
|
|
274 |
ax1.set_xlabel("Epochs", fontsize=15) |
|
|
275 |
ax1.set_ylabel("Training accuracy", color=color, fontsize=15) |
|
|
276 |
ax1.plot(e, a, color=color, lw=2) |
|
|
277 |
ax1.tick_params(axis="y", labelcolor=color) |
|
|
278 |
ax1.grid(True) |
|
|
279 |
|
|
|
280 |
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis |
|
|
281 |
|
|
|
282 |
color = "tab:blue" |
|
|
283 |
ax2.set_ylabel( |
|
|
284 |
"Validation accuracy", color=color, fontsize=15 |
|
|
285 |
) # we already handled the x-label with ax1 |
|
|
286 |
ax2.plot(e, va, color=color, lw=2) |
|
|
287 |
ax2.tick_params(axis="y", labelcolor=color) |
|
|
288 |
|
|
|
289 |
fig.tight_layout() # otherwise the right y-label is slightly clipped |
|
|
290 |
if title != None: |
|
|
291 |
plt.title(title) |
|
|
292 |
|
|
|
293 |
plt.hlines( |
|
|
294 |
y=target_acc, xmin=1, xmax=e.max(), colors="k", linestyles="dashed", lw=3 |
|
|
295 |
) |
|
|
296 |
|
|
|
297 |
plt.show() |
|
|
298 |
|
|
|
299 |
|
|
|
300 |
def train_CNN( |
|
|
301 |
train_directory, |
|
|
302 |
target_size=(256, 256), |
|
|
303 |
callbacks=None, |
|
|
304 |
classes=None, |
|
|
305 |
batch_size=128, |
|
|
306 |
num_classes=2, |
|
|
307 |
num_epochs=20, |
|
|
308 |
verbose=0, |
|
|
309 |
): |
|
|
310 |
""" |
|
|
311 |
Trains a conv net for a given dataset contained within a training directory. |
|
|
312 |
Users can just supply the path of the training directory and get back a fully trained, 5-layer, convolutional network. |
|
|
313 |
|
|
|
314 |
Arguments: |
|
|
315 |
train_directory: The directory where the training images are stored in separate folders. |
|
|
316 |
These folders should be named as per the classes. |
|
|
317 |
target_size: Target size for the training images. A tuple e.g. (200,200) |
|
|
318 |
classes: A Python list with the classes |
|
|
319 |
batch_size: Batch size for training |
|
|
320 |
num_epochs: Number of epochs for training |
|
|
321 |
num_classes: Number of output classes to consider |
|
|
322 |
verbose: Verbosity level of the training, passed on to the `fit_generator` method |
|
|
323 |
Returns: |
|
|
324 |
A trained conv net model |
|
|
325 |
|
|
|
326 |
""" |
|
|
327 |
from tensorflow.keras.preprocessing.image import ImageDataGenerator |
|
|
328 |
import tensorflow as tf |
|
|
329 |
from tensorflow.keras.optimizers import RMSprop |
|
|
330 |
|
|
|
331 |
# ImageDataGenerator object instance with scaling |
|
|
332 |
train_datagen = ImageDataGenerator(rescale=1 / 255) |
|
|
333 |
|
|
|
334 |
# Flow training images in batches using the generator |
|
|
335 |
train_generator = train_datagen.flow_from_directory( |
|
|
336 |
train_directory, # This is the source directory for training images |
|
|
337 |
target_size=target_size, # All images will be resized to 200 x 200 |
|
|
338 |
batch_size=batch_size, |
|
|
339 |
# Specify the classes explicitly |
|
|
340 |
classes=classes, |
|
|
341 |
# Since we use categorical_crossentropy loss, we need categorical labels |
|
|
342 |
class_mode="categorical", |
|
|
343 |
) |
|
|
344 |
|
|
|
345 |
input_shape = tuple(list(target_size) + [3]) |
|
|
346 |
|
|
|
347 |
# Model architecture |
|
|
348 |
model = tf.keras.models.Sequential( |
|
|
349 |
[ |
|
|
350 |
# Note the input shape is the desired size of the image 200x 200 with 3 bytes color |
|
|
351 |
# The first convolution |
|
|
352 |
tf.keras.layers.Conv2D( |
|
|
353 |
16, (3, 3), activation="relu", input_shape=input_shape |
|
|
354 |
), |
|
|
355 |
tf.keras.layers.MaxPooling2D(2, 2), |
|
|
356 |
# The second convolution |
|
|
357 |
tf.keras.layers.Conv2D(32, (3, 3), activation="relu"), |
|
|
358 |
tf.keras.layers.MaxPooling2D(2, 2), |
|
|
359 |
# The third convolution |
|
|
360 |
tf.keras.layers.Conv2D(64, (3, 3), activation="relu"), |
|
|
361 |
tf.keras.layers.MaxPooling2D(2, 2), |
|
|
362 |
# The fourth convolution |
|
|
363 |
tf.keras.layers.Conv2D(64, (3, 3), activation="relu"), |
|
|
364 |
tf.keras.layers.MaxPooling2D(2, 2), |
|
|
365 |
# The fifth convolution |
|
|
366 |
tf.keras.layers.Conv2D(64, (3, 3), activation="relu"), |
|
|
367 |
tf.keras.layers.MaxPooling2D(2, 2), |
|
|
368 |
# Flatten the results to feed into a dense layer |
|
|
369 |
tf.keras.layers.Flatten(), |
|
|
370 |
# 512 neuron in the fully-connected layer |
|
|
371 |
tf.keras.layers.Dense(512, activation="relu"), |
|
|
372 |
# Output neurons for `num_classes` classes with the softmax activation |
|
|
373 |
tf.keras.layers.Dense(num_classes, activation="softmax"), |
|
|
374 |
] |
|
|
375 |
) |
|
|
376 |
|
|
|
377 |
# Optimizer and compilation |
|
|
378 |
model.compile( |
|
|
379 |
loss="categorical_crossentropy", optimizer=RMSprop(lr=0.001), metrics=["acc"] |
|
|
380 |
) |
|
|
381 |
|
|
|
382 |
# Total sample count |
|
|
383 |
total_sample = train_generator.n |
|
|
384 |
|
|
|
385 |
# Training |
|
|
386 |
model.fit_generator( |
|
|
387 |
train_generator, |
|
|
388 |
callbacks=callbacks, |
|
|
389 |
steps_per_epoch=int(total_sample / batch_size), |
|
|
390 |
epochs=num_epochs, |
|
|
391 |
verbose=verbose, |
|
|
392 |
) |
|
|
393 |
|
|
|
394 |
return model |
|
|
395 |
|
|
|
396 |
|
|
|
397 |
def train_CNN_keras( |
|
|
398 |
train_directory, |
|
|
399 |
target_size=(256, 256), |
|
|
400 |
classes=None, |
|
|
401 |
batch_size=128, |
|
|
402 |
num_classes=2, |
|
|
403 |
num_epochs=20, |
|
|
404 |
verbose=0, |
|
|
405 |
): |
|
|
406 |
""" |
|
|
407 |
Trains a conv net for a given dataset contained within a training directory. |
|
|
408 |
Users can just supply the path of the training directory and get back a fully trained, 5-layer, convolutional network. |
|
|
409 |
|
|
|
410 |
Arguments: |
|
|
411 |
train_directory: The directory where the training images are stored in separate folders. |
|
|
412 |
These folders should be named as per the classes. |
|
|
413 |
target_size: Target size for the training images. A tuple e.g. (200,200) |
|
|
414 |
classes: A Python list with the classes |
|
|
415 |
batch_size: Batch size for training |
|
|
416 |
num_epochs: Number of epochs for training |
|
|
417 |
num_classes: Number of output classes to consider |
|
|
418 |
verbose: Verbosity level of the training, passed on to the `fit_generator` method |
|
|
419 |
Returns: |
|
|
420 |
A trained conv net model |
|
|
421 |
|
|
|
422 |
""" |
|
|
423 |
from keras.layers import Conv2D, MaxPooling2D |
|
|
424 |
from keras.layers import Dense, Dropout, Flatten |
|
|
425 |
from keras.models import Sequential |
|
|
426 |
from keras.optimizers import RMSprop |
|
|
427 |
from keras.preprocessing.image import ImageDataGenerator |
|
|
428 |
|
|
|
429 |
# ImageDataGenerator object instance with scaling |
|
|
430 |
train_datagen = ImageDataGenerator(rescale=1 / 255) |
|
|
431 |
|
|
|
432 |
# Flow training images in batches using the generator |
|
|
433 |
train_generator = train_datagen.flow_from_directory( |
|
|
434 |
train_directory, # This is the source directory for training images |
|
|
435 |
target_size=target_size, # All images will be resized to 200 x 200 |
|
|
436 |
batch_size=batch_size, |
|
|
437 |
# Specify the classes explicitly |
|
|
438 |
classes=classes, |
|
|
439 |
# Since we use categorical_crossentropy loss, we need categorical labels |
|
|
440 |
class_mode="categorical", |
|
|
441 |
) |
|
|
442 |
|
|
|
443 |
input_shape = tuple(list(target_size) + [3]) |
|
|
444 |
|
|
|
445 |
# Model architecture |
|
|
446 |
model = Sequential( |
|
|
447 |
[ |
|
|
448 |
# Note the input shape is the desired size of the image 200x 200 with 3 bytes color |
|
|
449 |
# The first convolution |
|
|
450 |
Conv2D(16, (3, 3), activation="relu", input_shape=input_shape), |
|
|
451 |
MaxPooling2D(2, 2), |
|
|
452 |
# The second convolution |
|
|
453 |
Conv2D(32, (3, 3), activation="relu"), |
|
|
454 |
MaxPooling2D(2, 2), |
|
|
455 |
# The third convolution |
|
|
456 |
Conv2D(64, (3, 3), activation="relu"), |
|
|
457 |
MaxPooling2D(2, 2), |
|
|
458 |
# The fourth convolution |
|
|
459 |
Conv2D(64, (3, 3), activation="relu"), |
|
|
460 |
MaxPooling2D(2, 2), |
|
|
461 |
# The fifth convolution |
|
|
462 |
Conv2D(64, (3, 3), activation="relu"), |
|
|
463 |
MaxPooling2D(2, 2), |
|
|
464 |
# Flatten the results to feed into a dense layer |
|
|
465 |
Flatten(), |
|
|
466 |
# 512 neuron in the fully-connected layer |
|
|
467 |
Dense(512, activation="relu"), |
|
|
468 |
# Output neurons for `num_classes` classes with the softmax activation |
|
|
469 |
Dense(num_classes, activation="softmax"), |
|
|
470 |
] |
|
|
471 |
) |
|
|
472 |
|
|
|
473 |
# Optimizer and compilation |
|
|
474 |
model.compile( |
|
|
475 |
loss="categorical_crossentropy", optimizer=RMSprop(lr=0.001), metrics=["acc"] |
|
|
476 |
) |
|
|
477 |
|
|
|
478 |
# Total sample count |
|
|
479 |
total_sample = train_generator.n |
|
|
480 |
|
|
|
481 |
# Training |
|
|
482 |
model.fit_generator( |
|
|
483 |
train_generator, |
|
|
484 |
steps_per_epoch=int(total_sample / batch_size), |
|
|
485 |
epochs=num_epochs, |
|
|
486 |
verbose=verbose, |
|
|
487 |
) |
|
|
488 |
|
|
|
489 |
return model |
|
|
490 |
|
|
|
491 |
|
|
|
492 |
def preprocess_image(img_path, model=None, rescale=255, resize=(256, 256)): |
|
|
493 |
""" |
|
|
494 |
Preprocesses a given image for prediction with a trained model, with rescaling and resizing options |
|
|
495 |
|
|
|
496 |
Arguments: |
|
|
497 |
img_path: The path to the image file |
|
|
498 |
rescale: A float or integer indicating required rescaling. |
|
|
499 |
The image array will be divided (scaled) by this number. |
|
|
500 |
resize: A tuple indicating desired target size. |
|
|
501 |
This should match the input shape as expected by the model |
|
|
502 |
Returns: |
|
|
503 |
img: A processed image. |
|
|
504 |
""" |
|
|
505 |
from keras.preprocessing.image import img_to_array, load_img |
|
|
506 |
import cv2 |
|
|
507 |
import numpy as np |
|
|
508 |
|
|
|
509 |
assert type(img_path) == str, "Image path must be a string" |
|
|
510 |
assert ( |
|
|
511 |
type(rescale) == int or type(rescale) == float |
|
|
512 |
), "Rescale factor must be either a float or int" |
|
|
513 |
assert ( |
|
|
514 |
type(resize) == tuple and len(resize) == 2 |
|
|
515 |
), "Resize target must be a tuple with two elements" |
|
|
516 |
|
|
|
517 |
# img = load_img(img_path) |
|
|
518 |
img = load_img(img_path,grayscale=True) |
|
|
519 |
img = img_to_array(img) |
|
|
520 |
img = img / float(rescale) |
|
|
521 |
img = cv2.resize(img, resize) |
|
|
522 |
if model != None: |
|
|
523 |
if len(model.input_shape) == 4: |
|
|
524 |
img = np.expand_dims(img, axis=0) |
|
|
525 |
|
|
|
526 |
return img |
|
|
527 |
|
|
|
528 |
|
|
|
529 |
def pred_prob_with_model(img_path, model, rescale=255, resize=(256, 256)): |
|
|
530 |
""" |
|
|
531 |
Tests a given image with a trained model, with rescaling and resizing options |
|
|
532 |
|
|
|
533 |
Arguments: |
|
|
534 |
img_path: The path to the image file |
|
|
535 |
model: The trained Keras model |
|
|
536 |
rescale: A float or integer indicating required rescaling. |
|
|
537 |
The image array will be divided (scaled) by this number. |
|
|
538 |
resize: A tuple indicating desired target size. |
|
|
539 |
This should match the input shape as expected by the model |
|
|
540 |
Returns: |
|
|
541 |
pred: A prediction vector (Numpy array). |
|
|
542 |
Could be either classes or probabilities depending on the model. |
|
|
543 |
""" |
|
|
544 |
from keras.preprocessing.image import img_to_array, load_img |
|
|
545 |
import cv2 |
|
|
546 |
|
|
|
547 |
assert type(img_path) == str, "Image path must be a string" |
|
|
548 |
assert ( |
|
|
549 |
type(rescale) == int or type(rescale) == float |
|
|
550 |
), "Rescale factor must be either a float or int" |
|
|
551 |
assert ( |
|
|
552 |
type(resize) == tuple and len(resize) == 2 |
|
|
553 |
), "Resize target must be a tuple with two elements" |
|
|
554 |
|
|
|
555 |
img = load_img(img_path,grayscale=True) |
|
|
556 |
img = img_to_array(img) |
|
|
557 |
img = img / float(rescale) |
|
|
558 |
img = cv2.resize(img, resize) |
|
|
559 |
if len(model.input_shape) == 4: |
|
|
560 |
img = np.expand_dims(img, axis=0) |
|
|
561 |
|
|
|
562 |
pred = model.predict(img) |
|
|
563 |
|
|
|
564 |
return pred |
|
|
565 |
|
|
|
566 |
|
|
|
567 |
def pred_class_with_model(img_path, model, rescale=255, resize=(256, 256)): |
|
|
568 |
""" |
|
|
569 |
Tests a given image with a trained model, with rescaling and resizing options |
|
|
570 |
|
|
|
571 |
Arguments: |
|
|
572 |
img_path: The path to the image file |
|
|
573 |
model: The trained Keras model |
|
|
574 |
rescale: A float or integer indicating required rescaling. |
|
|
575 |
The image array will be divided (scaled) by this number. |
|
|
576 |
resize: A tuple indicating desired target size. |
|
|
577 |
This should match the input shape as expected by the model |
|
|
578 |
Returns: |
|
|
579 |
pred: A prediction vector (Numpy array). |
|
|
580 |
Could be either classes or probabilities depending on the model. |
|
|
581 |
""" |
|
|
582 |
from keras.preprocessing.image import img_to_array, load_img |
|
|
583 |
import cv2 |
|
|
584 |
|
|
|
585 |
assert type(img_path) == str, "Image path must be a string" |
|
|
586 |
assert ( |
|
|
587 |
type(rescale) == int or type(rescale) == float |
|
|
588 |
), "Rescale factor must be either a float or int" |
|
|
589 |
assert ( |
|
|
590 |
type(resize) == tuple and len(resize) == 2 |
|
|
591 |
), "Resize target must be a tuple with two elements" |
|
|
592 |
|
|
|
593 |
img = load_img(img_path) |
|
|
594 |
img = img_to_array(img) |
|
|
595 |
img = img / float(rescale) |
|
|
596 |
img = cv2.resize(img, resize) |
|
|
597 |
if len(model.input_shape) == 4: |
|
|
598 |
img = np.expand_dims(img, axis=0) |
|
|
599 |
|
|
|
600 |
pred = model.predict(img) |
|
|
601 |
pred_class = pred.argmax(axis=-1) |
|
|
602 |
|
|
|
603 |
return pred_class |