a/README.md b/README.md
1
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
1
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
2
[![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](http://bestecgclassifier.herokuapp.com)
2
[![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](http://bestecgclassifier.herokuapp.com)
3
3
4
4
5
# Links to model notebooks
5
# Links to model notebooks
6
[2D CNN](https://github.com/hardikroutray/ECG/blob/main/scripts/CNN2D_ECG.ipynb)   
6
[2D CNN](https://github.com/hardikroutray/ECG/blob/main/scripts/CNN2D_ECG.ipynb)   
7
[1D CNN](https://github.com/hardikroutray/ECG/blob/main/scripts/Multi_lead_1dCNN.ipynb) 
7
[1D CNN](https://github.com/hardikroutray/ECG/blob/main/scripts/Multi_lead_1dCNN.ipynb) 
8
<!-- [Random Forest] (https://github.com/hardikroutray/ECG/blob/main/Multi-Lead-DataFrame-Update-Copy1_0528.ipynb)
8
<!-- [Random Forest] (https://github.com/hardikroutray/ECG/blob/main/Multi-Lead-DataFrame-Update-Copy1_0528.ipynb)
9
[Misc] (https://github.com/hardikroutray/ECG/blob/main/Iftah_Classification%20Analysis_full_features.ipynb)
9
[Misc] (https://github.com/hardikroutray/ECG/blob/main/Iftah_Classification%20Analysis_full_features.ipynb)
10
 -->
10
 -->
11
11
12
12
13
13
14
# ECG
14
# ECG
15
15
16
We classify various cardiovascular conditions from Electrocardiogram (ECG) images [1]. We also study the ECG of COVID-19 patients to identify potential cardiac injury due to SARS CoV 2. We perform both image and time series classification. Our 1D CNN model using time series achieves 95 % accuracy in classifying cardiac disorders including COVID-19.
16
We classify various cardiovascular conditions from Electrocardiogram (ECG) images [1]. We also study the ECG of COVID-19 patients to identify potential cardiac injury due to SARS CoV 2. We perform both image and time series classification. Our 1D CNN model using time series achieves 95 % accuracy in classifying cardiac disorders including COVID-19.
17
17
18
18
19
# Application
19
# Application
20
https://bestecgclassifier.herokuapp.com/
20
https://bestecgclassifier.herokuapp.com/
21
21
22
22
23
# Preprocessing
23
# Preprocessing
24
24
25
![alt text]( https://github.com/hardikroutray/ECG/blob/main/app/images/data_prep1.png )
25
![alt text]( https://github.com/hardikroutray/ECG/blob/main/app/images/data_prep1.png?raw=true)
26
26
27
# Best Performance (95 % Accuracy)
27
# Best Performance (95 % Accuracy)
28
28
29
Time series classification using 1D CNN <br>
29
Time series classification using 1D CNN <br>
30
![alt text](https://github.com/hardikroutray/ECG/blob/main/app/images/1d_CNN_vis.png)
30
![alt text](https://github.com/hardikroutray/ECG/blob/main/app/images/1d_CNN_vis.png?raw=true)
31
31
32
32
33
33