"""
This file include some functions for converting raw Apnea-ECG database to many txt files, each txt file including
a 60s ECG segment corresponding with labels came from raw Apnea-ECG database.
Before run this file, you first set path information.
If you want to know more information about Apnea-ECG database, please see https://physionet.org/physiobank/database/apnea-ecg/.
"""
__version__ = '0.2'
__time__ = "2019.06.22"
__author__ = "zzklove3344"
import wfdb
import os
import numpy as np
# path information
# You need to set these file path before you run this file.
# Raw apnea-ecg database. You must download firstly.
APNEA_ECG_DATABASE_PATH = "G:/Apnea-ecg/raw records/"
# Folder for writing apnea-ecg 60s segments
SEGMENTS_BASE_PATH = "F:/Apnea-ecg/ecg segments/"
# The number of segments in train set
SEGMENTS_NUMBER_TRAIN = 17045
# The number of segments in test set
SEGMENTS_NUMBER_TEST = 17268
APNEA_ECG_TRAIN_FILENAME = [
"a01", "a02", "a03", "a04", "a05", "a06", "a07", "a08", "a09", "a10",
"a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19", "a20",
"b01", "b02", "b03", "b04", "b05",
"c01", "c02", "c03", "c04", "c05", "c06", "c07", "c08", "c09", "c10"
]
# The number of 60s segments for every subject in a01-a20, b01-b05, c01-c10
TRAIN_LABEL_AMOUNT = [489, 528, 519, 492, 454,
510, 511, 501, 495, 517,
466, 577, 495, 509, 510,
482, 485, 489, 502, 510,
487, 517, 441, 429, 433,
484, 502, 454, 482, 466,
468, 429, 513, 468, 431]
APNEA_ECG_TEST_FILENAME = [
"x01", "x02", "x03", "x04", "x05", "x06", "x07", "x08", "x09", "x10",
"x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20",
"x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "x30",
"x31", "x32", "x33", "x34", "x35"
]
# The number of 60s segments for every subject in x01-x35
TEST_LABEL_AMOUNT = [523, 469, 465, 482, 505,
450, 509, 517, 508, 510,
457, 527, 506, 490, 498,
515, 400, 459, 487, 513,
510, 482, 527, 429, 510,
520, 498, 495, 470, 511,
557, 538, 473, 475, 483]
ECG_RAW_FREQUENCY = 100
class Mit2Segment:
"""
Mit to 60s segments.
"""
def __init__(self):
self.raw_ecg_data = None # list, raw ecg data
self.denoised_ecg_data = None # list, raw ecg data
r"""basic attributes"""
self.label = None # int, 0 or 1
self.database_name = None # string, "apnea ecg"
self.filename = None # string, like "a01", "x02"
self.local_id = None # int, the ID in filename, like 101 in "a01"
self.global_id = None # int, global ID in database(train set or test set)
self.samplefrom = None # int, sample from where
self.sampleto = None # int, sample to where
self.base_file_path = None # string
def write_ecg_segment(self, rdf):
"""
Write minute-by-minute ECG segment to txt file.
:param int rdf: 0 means to write to raw ecg file, 1 means to write to denoised ecg file.
:return: None
"""
# a01-a10, b01-b05 and c01-c10 belong to train set;
# x01-x35 belong to test set.
# if self.filename.find('x') >= 0:
# file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/"
# else:
# file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/"
if not os.path.exists(self.base_file_path):
os.makedirs(self.base_file_path)
if rdf == 0:
filename = "raw_ecg_segment_data.txt"
ecg_data = self.raw_ecg_data
elif rdf == 1:
filename = "denosing_ecg_segment_data.txt"
ecg_data = self.denoised_ecg_data
else:
raise Exception("Error rdf value.")
attr_name = "database_name file_name local_id samplefrom sampleto global_id label\n"
# 将标签转化为数字
if self.label == 'A':
self.label = 1
elif self.label == 'N':
self.label = 0
with open(self.base_file_path + filename, "w") as f:
r"""attributes name """
f.write(attr_name)
r"""attributes value"""
f.write(
self.database_name[0] + " " + self.database_name[1] + " "
+ self.filename + " " + str(self.local_id) + " "
+ str(self.global_id) + " " + str(self.samplefrom) + " "
+ str(self.sampleto) + " " + str(self.label) + "\n")
r"""data"""
for value in ecg_data:
f.write(str(value[0]) + "\n")
def read_ecg_segment(self, rdf, database_name_or_path):
"""
Read Minute-by-minute ECG segment from TXT file
:param string or list database_name_or_path: the database or the file path you want to read
:param int rdf: 0 means to read to raw ecg file, 1 means to read to denoised ecg file.
:return: None
"""
if rdf == 0:
filename = "raw_ecg_segment_data.txt"
elif rdf == 1:
filename = "denosing_ecg_segment_data.txt"
else:
raise Exception("Error rdf value.")
if database_name_or_path == ["apnea-ecg", "train"]:
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/" + filename
elif database_name_or_path == ["apnea-ecg", "test"]:
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/" + filename
else:
file_path = database_name_or_path
with open(file_path) as f:
_ = f.readline()
# attribute values
attrs_value = f.readline().replace("\n", "").split(" ")
self.database_name = [attrs_value[0], attrs_value[1]]
self.filename = attrs_value[2]
self.local_id = int(attrs_value[3])
self.global_id = int(attrs_value[4])
self.samplefrom = int(attrs_value[5])
self.sampleto = int(attrs_value[6])
self.label = int(attrs_value[7])
self.base_file_path = SEGMENTS_BASE_PATH + self.database_name[1] + "/" + str(self.global_id) + "/"
# ECG segment data
ecg_data = []
data_value = f.readline().replace("\n", "")
while data_value != "":
ecg_data.append(float(data_value))
data_value = f.readline().replace("\n", "")
if rdf == 0:
self.raw_ecg_data = ecg_data
elif rdf == 1:
self.denoised_ecg_data = ecg_data
def read_edr(self, flag):
"""
flag为0时读取原始edr信号,为1时读取下采样之后的edr信号.
:return: None
"""
edr = []
if self.filename.find('x') >= 0:
if flag == 0:
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/edr.txt"
elif flag == 1:
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/downsampling_EDR.txt"
else:
file_path = ""
print("edr file path error....")
else:
if flag == 0:
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/edr.txt"
elif flag == 1:
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/downsampling_EDR.txt"
else:
file_path = ""
print("edr file path error....")
with open(file_path) as f:
data_value = f.readline().replace("\n", "")
while data_value != "":
edr.append(float(data_value))
data_value = f.readline().replace("\n", "")
edr = np.array(edr)
return edr
def get_ecg_data_annotations(database_name, is_debug=False):
"""
Read files in specified database.
:param list database_name: Database you want to read.
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now.
:param bool is_debug: whether is debug mode.
:return list: ecg data and annotations.
example: data_set = get_ecg_data_annotations("train", True)
"""
data_annotations_set = []
file_name_set = None
no_apn = None
if database_name[0] == "apnea-ecg":
root_file_path = APNEA_ECG_DATABASE_PATH
if database_name[1] == "train":
file_name_set = APNEA_ECG_TRAIN_FILENAME
no_apn = False
elif database_name[1] == "test":
file_name_set = APNEA_ECG_TEST_FILENAME
no_apn = True
# if database name is test, we first read label file
test_label_set = []
if no_apn is True:
# read event-2.txt, which is test label downloading from PhysioNet
test_annotation_path = root_file_path + "event-2.txt"
with open(test_annotation_path) as f:
lines = f.readlines()
for line in lines:
line = line.replace("\n", "")
for index_str in range(len(line)):
if line[index_str] == "A" or line[index_str] == "N":
test_label_set.append(line[index_str])
file_count = 0 # use when the database name is test.
test_label_index = 0 # use when the database name is test.
for name in file_name_set:
if is_debug:
print("process file " + name + "...")
file_path = root_file_path + name
ecg_data = wfdb.rdrecord(file_path) # use wfdb.rdrecord to read data
if no_apn is False:
# use wfdb.rdann to read annotation
annotation = wfdb.rdann(file_path, "apn")
# annotation range
annotation_range_list = annotation.sample
# annotation
annotation_list = annotation.symbol
else:
annotation_range_list = []
annotation_list = []
for index_label in range(TEST_LABEL_AMOUNT[file_count]):
annotation_range_list.append(np.array(index_label * 6000))
annotation_list.append(test_label_set[test_label_index])
test_label_index += 1
file_count += 1
annotation_range_list = np.array(annotation_range_list)
data_annotations_set.append([ecg_data, annotation_range_list, annotation_list, name])
return data_annotations_set
def process_ecg_data_segments(database_name, data_annotations_set, is_debug=False):
"""
Divide ECG data to minute-by-minute ECG segment.
:param list database_name: name of database.
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now.
:param list data_annotations_set: output of function get_ecg_data_annotations.
:param bool is_debug: whether is debug mode.
:return: None
"""
data_set = []
global_counter = 0 # use for global id
base_floder_path = None
if database_name[0] == "apnea-ecg":
if database_name[1] == "train":
base_floder_path = SEGMENTS_BASE_PATH + "/train"
elif database_name[1] == "test":
base_floder_path = SEGMENTS_BASE_PATH + "/test"
# ecg data segments divide
for data_annotation in data_annotations_set:
segment_amount = len(data_annotation[2])
for index_segment in range(segment_amount):
eds = Mit2Segment()
eds.database_name = database_name
eds.samplefrom = data_annotation[1][index_segment]
if (data_annotation[1][index_segment] + 6000) > len(data_annotation[0].p_signal):
eds.sampleto = len(data_annotation[0].p_signal)
else:
eds.sampleto = data_annotation[1][index_segment] + 6000
eds.raw_ecg_data = data_annotation[0].p_signal[eds.samplefrom:eds.sampleto]
eds.label = data_annotation[2][index_segment]
eds.filename = data_annotation[3]
eds.local_id = index_segment
eds.global_id = global_counter
eds.base_file_path = SEGMENTS_BASE_PATH + "/" + database_name[1] + "/" + str(eds.global_id) + "/"
eds.write_ecg_segment(rdf=0)
global_counter += 1
data_set.append(eds)
if is_debug:
print("---------------------------------------------------")
print(("global id: %s, file name: %s, local id: %s") % (
str(eds.global_id), eds.filename, str(eds.local_id)))
print("---------------------------------------------------")
if not os.path.exists(base_floder_path):
os.makedirs(base_floder_path)
# extra_info, this file store number of all ECG segments.
with open(base_floder_path + "/extra_info.txt", "w") as f:
f.write("Number of ECG segments\n")
f.write(str(global_counter))
return data_set
def produce_database(database_name, is_debug):
"""
Produce database. It will write many txt files in SEGMENTS_BASE_PATH.
:param list database_name: name of database.
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now.
:param bool is_debug: whether is debug mode.
:return: None
"""
# read files from a01-a35, every file including whole ecg data and the corresponding annotation
data_annotations_set = get_ecg_data_annotations(database_name, is_debug)
# divide ECG data to minute-by-minute ECG segments
_ = process_ecg_data_segments(database_name, data_annotations_set, is_debug)
def produce_all_database(is_debug):
"""
Produce train database and test database.
:param bool is_debug: whether is debug mode.
:return: None
"""
produce_database(["apnea-ecg", "train"], is_debug)
produce_database(["apnea-ecg", "test"], is_debug)
if __name__ == '__main__':
print("fileIO test statements")
# if you want to generate train database, you can run follow statement.
# produce_database(["apnea-ecg", "train"], is_debug)
# if you want to generate test database, you can run follow statement.
# produce_database(["apnea-ecg", "test"], is_debug)
# if you want to generate train and test database, you can run follow statement.
produce_all_database(True)