[409112]: / preprocessOfApneaECG / mit2Segments.py

Download this file

371 lines (311 with data), 12.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""
This file include some functions for converting raw Apnea-ECG database to many txt files, each txt file including
a 60s ECG segment corresponding with labels came from raw Apnea-ECG database.
Before run this file, you first set path information.
If you want to know more information about Apnea-ECG database, please see https://physionet.org/physiobank/database/apnea-ecg/.
"""
__version__ = '0.2'
__time__ = "2019.06.22"
__author__ = "zzklove3344"
import wfdb
import os
import numpy as np
# path information
# You need to set these file path before you run this file.
# Raw apnea-ecg database. You must download firstly.
APNEA_ECG_DATABASE_PATH = "G:/Apnea-ecg/raw records/"
# Folder for writing apnea-ecg 60s segments
SEGMENTS_BASE_PATH = "F:/Apnea-ecg/ecg segments/"
# The number of segments in train set
SEGMENTS_NUMBER_TRAIN = 17045
# The number of segments in test set
SEGMENTS_NUMBER_TEST = 17268
APNEA_ECG_TRAIN_FILENAME = [
"a01", "a02", "a03", "a04", "a05", "a06", "a07", "a08", "a09", "a10",
"a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19", "a20",
"b01", "b02", "b03", "b04", "b05",
"c01", "c02", "c03", "c04", "c05", "c06", "c07", "c08", "c09", "c10"
]
# The number of 60s segments for every subject in a01-a20, b01-b05, c01-c10
TRAIN_LABEL_AMOUNT = [489, 528, 519, 492, 454,
510, 511, 501, 495, 517,
466, 577, 495, 509, 510,
482, 485, 489, 502, 510,
487, 517, 441, 429, 433,
484, 502, 454, 482, 466,
468, 429, 513, 468, 431]
APNEA_ECG_TEST_FILENAME = [
"x01", "x02", "x03", "x04", "x05", "x06", "x07", "x08", "x09", "x10",
"x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20",
"x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "x30",
"x31", "x32", "x33", "x34", "x35"
]
# The number of 60s segments for every subject in x01-x35
TEST_LABEL_AMOUNT = [523, 469, 465, 482, 505,
450, 509, 517, 508, 510,
457, 527, 506, 490, 498,
515, 400, 459, 487, 513,
510, 482, 527, 429, 510,
520, 498, 495, 470, 511,
557, 538, 473, 475, 483]
ECG_RAW_FREQUENCY = 100
class Mit2Segment:
"""
Mit to 60s segments.
"""
def __init__(self):
self.raw_ecg_data = None # list, raw ecg data
self.denoised_ecg_data = None # list, raw ecg data
r"""basic attributes"""
self.label = None # int, 0 or 1
self.database_name = None # string, "apnea ecg"
self.filename = None # string, like "a01", "x02"
self.local_id = None # int, the ID in filename, like 101 in "a01"
self.global_id = None # int, global ID in database(train set or test set)
self.samplefrom = None # int, sample from where
self.sampleto = None # int, sample to where
self.base_file_path = None # string
def write_ecg_segment(self, rdf):
"""
Write minute-by-minute ECG segment to txt file.
:param int rdf: 0 means to write to raw ecg file, 1 means to write to denoised ecg file.
:return: None
"""
# a01-a10, b01-b05 and c01-c10 belong to train set;
# x01-x35 belong to test set.
# if self.filename.find('x') >= 0:
# file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/"
# else:
# file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/"
if not os.path.exists(self.base_file_path):
os.makedirs(self.base_file_path)
if rdf == 0:
filename = "raw_ecg_segment_data.txt"
ecg_data = self.raw_ecg_data
elif rdf == 1:
filename = "denosing_ecg_segment_data.txt"
ecg_data = self.denoised_ecg_data
else:
raise Exception("Error rdf value.")
attr_name = "database_name file_name local_id samplefrom sampleto global_id label\n"
# 将标签转化为数字
if self.label == 'A':
self.label = 1
elif self.label == 'N':
self.label = 0
with open(self.base_file_path + filename, "w") as f:
r"""attributes name """
f.write(attr_name)
r"""attributes value"""
f.write(
self.database_name[0] + " " + self.database_name[1] + " "
+ self.filename + " " + str(self.local_id) + " "
+ str(self.global_id) + " " + str(self.samplefrom) + " "
+ str(self.sampleto) + " " + str(self.label) + "\n")
r"""data"""
for value in ecg_data:
f.write(str(value[0]) + "\n")
def read_ecg_segment(self, rdf, database_name_or_path):
"""
Read Minute-by-minute ECG segment from TXT file
:param string or list database_name_or_path: the database or the file path you want to read
:param int rdf: 0 means to read to raw ecg file, 1 means to read to denoised ecg file.
:return: None
"""
if rdf == 0:
filename = "raw_ecg_segment_data.txt"
elif rdf == 1:
filename = "denosing_ecg_segment_data.txt"
else:
raise Exception("Error rdf value.")
if database_name_or_path == ["apnea-ecg", "train"]:
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/" + filename
elif database_name_or_path == ["apnea-ecg", "test"]:
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/" + filename
else:
file_path = database_name_or_path
with open(file_path) as f:
_ = f.readline()
# attribute values
attrs_value = f.readline().replace("\n", "").split(" ")
self.database_name = [attrs_value[0], attrs_value[1]]
self.filename = attrs_value[2]
self.local_id = int(attrs_value[3])
self.global_id = int(attrs_value[4])
self.samplefrom = int(attrs_value[5])
self.sampleto = int(attrs_value[6])
self.label = int(attrs_value[7])
self.base_file_path = SEGMENTS_BASE_PATH + self.database_name[1] + "/" + str(self.global_id) + "/"
# ECG segment data
ecg_data = []
data_value = f.readline().replace("\n", "")
while data_value != "":
ecg_data.append(float(data_value))
data_value = f.readline().replace("\n", "")
if rdf == 0:
self.raw_ecg_data = ecg_data
elif rdf == 1:
self.denoised_ecg_data = ecg_data
def read_edr(self, flag):
"""
flag为0时读取原始edr信号,为1时读取下采样之后的edr信号.
:return: None
"""
edr = []
if self.filename.find('x') >= 0:
if flag == 0:
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/edr.txt"
elif flag == 1:
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/downsampling_EDR.txt"
else:
file_path = ""
print("edr file path error....")
else:
if flag == 0:
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/edr.txt"
elif flag == 1:
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/downsampling_EDR.txt"
else:
file_path = ""
print("edr file path error....")
with open(file_path) as f:
data_value = f.readline().replace("\n", "")
while data_value != "":
edr.append(float(data_value))
data_value = f.readline().replace("\n", "")
edr = np.array(edr)
return edr
def get_ecg_data_annotations(database_name, is_debug=False):
"""
Read files in specified database.
:param list database_name: Database you want to read.
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now.
:param bool is_debug: whether is debug mode.
:return list: ecg data and annotations.
example: data_set = get_ecg_data_annotations("train", True)
"""
data_annotations_set = []
file_name_set = None
no_apn = None
if database_name[0] == "apnea-ecg":
root_file_path = APNEA_ECG_DATABASE_PATH
if database_name[1] == "train":
file_name_set = APNEA_ECG_TRAIN_FILENAME
no_apn = False
elif database_name[1] == "test":
file_name_set = APNEA_ECG_TEST_FILENAME
no_apn = True
# if database name is test, we first read label file
test_label_set = []
if no_apn is True:
# read event-2.txt, which is test label downloading from PhysioNet
test_annotation_path = root_file_path + "event-2.txt"
with open(test_annotation_path) as f:
lines = f.readlines()
for line in lines:
line = line.replace("\n", "")
for index_str in range(len(line)):
if line[index_str] == "A" or line[index_str] == "N":
test_label_set.append(line[index_str])
file_count = 0 # use when the database name is test.
test_label_index = 0 # use when the database name is test.
for name in file_name_set:
if is_debug:
print("process file " + name + "...")
file_path = root_file_path + name
ecg_data = wfdb.rdrecord(file_path) # use wfdb.rdrecord to read data
if no_apn is False:
# use wfdb.rdann to read annotation
annotation = wfdb.rdann(file_path, "apn")
# annotation range
annotation_range_list = annotation.sample
# annotation
annotation_list = annotation.symbol
else:
annotation_range_list = []
annotation_list = []
for index_label in range(TEST_LABEL_AMOUNT[file_count]):
annotation_range_list.append(np.array(index_label * 6000))
annotation_list.append(test_label_set[test_label_index])
test_label_index += 1
file_count += 1
annotation_range_list = np.array(annotation_range_list)
data_annotations_set.append([ecg_data, annotation_range_list, annotation_list, name])
return data_annotations_set
def process_ecg_data_segments(database_name, data_annotations_set, is_debug=False):
"""
Divide ECG data to minute-by-minute ECG segment.
:param list database_name: name of database.
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now.
:param list data_annotations_set: output of function get_ecg_data_annotations.
:param bool is_debug: whether is debug mode.
:return: None
"""
data_set = []
global_counter = 0 # use for global id
base_floder_path = None
if database_name[0] == "apnea-ecg":
if database_name[1] == "train":
base_floder_path = SEGMENTS_BASE_PATH + "/train"
elif database_name[1] == "test":
base_floder_path = SEGMENTS_BASE_PATH + "/test"
# ecg data segments divide
for data_annotation in data_annotations_set:
segment_amount = len(data_annotation[2])
for index_segment in range(segment_amount):
eds = Mit2Segment()
eds.database_name = database_name
eds.samplefrom = data_annotation[1][index_segment]
if (data_annotation[1][index_segment] + 6000) > len(data_annotation[0].p_signal):
eds.sampleto = len(data_annotation[0].p_signal)
else:
eds.sampleto = data_annotation[1][index_segment] + 6000
eds.raw_ecg_data = data_annotation[0].p_signal[eds.samplefrom:eds.sampleto]
eds.label = data_annotation[2][index_segment]
eds.filename = data_annotation[3]
eds.local_id = index_segment
eds.global_id = global_counter
eds.base_file_path = SEGMENTS_BASE_PATH + "/" + database_name[1] + "/" + str(eds.global_id) + "/"
eds.write_ecg_segment(rdf=0)
global_counter += 1
data_set.append(eds)
if is_debug:
print("---------------------------------------------------")
print(("global id: %s, file name: %s, local id: %s") % (
str(eds.global_id), eds.filename, str(eds.local_id)))
print("---------------------------------------------------")
if not os.path.exists(base_floder_path):
os.makedirs(base_floder_path)
# extra_info, this file store number of all ECG segments.
with open(base_floder_path + "/extra_info.txt", "w") as f:
f.write("Number of ECG segments\n")
f.write(str(global_counter))
return data_set
def produce_database(database_name, is_debug):
"""
Produce database. It will write many txt files in SEGMENTS_BASE_PATH.
:param list database_name: name of database.
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now.
:param bool is_debug: whether is debug mode.
:return: None
"""
# read files from a01-a35, every file including whole ecg data and the corresponding annotation
data_annotations_set = get_ecg_data_annotations(database_name, is_debug)
# divide ECG data to minute-by-minute ECG segments
_ = process_ecg_data_segments(database_name, data_annotations_set, is_debug)
def produce_all_database(is_debug):
"""
Produce train database and test database.
:param bool is_debug: whether is debug mode.
:return: None
"""
produce_database(["apnea-ecg", "train"], is_debug)
produce_database(["apnea-ecg", "test"], is_debug)
if __name__ == '__main__':
print("fileIO test statements")
# if you want to generate train database, you can run follow statement.
# produce_database(["apnea-ecg", "train"], is_debug)
# if you want to generate test database, you can run follow statement.
# produce_database(["apnea-ecg", "test"], is_debug)
# if you want to generate train and test database, you can run follow statement.
produce_all_database(True)