|
a |
|
b/preprocessOfApneaECG/mit2Segments.py |
|
|
1 |
""" |
|
|
2 |
This file include some functions for converting raw Apnea-ECG database to many txt files, each txt file including |
|
|
3 |
a 60s ECG segment corresponding with labels came from raw Apnea-ECG database. |
|
|
4 |
|
|
|
5 |
Before run this file, you first set path information. |
|
|
6 |
|
|
|
7 |
If you want to know more information about Apnea-ECG database, please see https://physionet.org/physiobank/database/apnea-ecg/. |
|
|
8 |
|
|
|
9 |
""" |
|
|
10 |
|
|
|
11 |
__version__ = '0.2' |
|
|
12 |
__time__ = "2019.06.22" |
|
|
13 |
__author__ = "zzklove3344" |
|
|
14 |
|
|
|
15 |
import wfdb |
|
|
16 |
import os |
|
|
17 |
import numpy as np |
|
|
18 |
|
|
|
19 |
# path information |
|
|
20 |
# You need to set these file path before you run this file. |
|
|
21 |
# Raw apnea-ecg database. You must download firstly. |
|
|
22 |
APNEA_ECG_DATABASE_PATH = "G:/Apnea-ecg/raw records/" |
|
|
23 |
# Folder for writing apnea-ecg 60s segments |
|
|
24 |
SEGMENTS_BASE_PATH = "F:/Apnea-ecg/ecg segments/" |
|
|
25 |
|
|
|
26 |
# The number of segments in train set |
|
|
27 |
SEGMENTS_NUMBER_TRAIN = 17045 |
|
|
28 |
# The number of segments in test set |
|
|
29 |
SEGMENTS_NUMBER_TEST = 17268 |
|
|
30 |
|
|
|
31 |
APNEA_ECG_TRAIN_FILENAME = [ |
|
|
32 |
"a01", "a02", "a03", "a04", "a05", "a06", "a07", "a08", "a09", "a10", |
|
|
33 |
"a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19", "a20", |
|
|
34 |
"b01", "b02", "b03", "b04", "b05", |
|
|
35 |
"c01", "c02", "c03", "c04", "c05", "c06", "c07", "c08", "c09", "c10" |
|
|
36 |
] |
|
|
37 |
|
|
|
38 |
# The number of 60s segments for every subject in a01-a20, b01-b05, c01-c10 |
|
|
39 |
TRAIN_LABEL_AMOUNT = [489, 528, 519, 492, 454, |
|
|
40 |
510, 511, 501, 495, 517, |
|
|
41 |
466, 577, 495, 509, 510, |
|
|
42 |
482, 485, 489, 502, 510, |
|
|
43 |
487, 517, 441, 429, 433, |
|
|
44 |
484, 502, 454, 482, 466, |
|
|
45 |
468, 429, 513, 468, 431] |
|
|
46 |
|
|
|
47 |
APNEA_ECG_TEST_FILENAME = [ |
|
|
48 |
"x01", "x02", "x03", "x04", "x05", "x06", "x07", "x08", "x09", "x10", |
|
|
49 |
"x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20", |
|
|
50 |
"x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "x30", |
|
|
51 |
"x31", "x32", "x33", "x34", "x35" |
|
|
52 |
] |
|
|
53 |
|
|
|
54 |
# The number of 60s segments for every subject in x01-x35 |
|
|
55 |
TEST_LABEL_AMOUNT = [523, 469, 465, 482, 505, |
|
|
56 |
450, 509, 517, 508, 510, |
|
|
57 |
457, 527, 506, 490, 498, |
|
|
58 |
515, 400, 459, 487, 513, |
|
|
59 |
510, 482, 527, 429, 510, |
|
|
60 |
520, 498, 495, 470, 511, |
|
|
61 |
557, 538, 473, 475, 483] |
|
|
62 |
|
|
|
63 |
ECG_RAW_FREQUENCY = 100 |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
class Mit2Segment: |
|
|
67 |
""" |
|
|
68 |
Mit to 60s segments. |
|
|
69 |
""" |
|
|
70 |
|
|
|
71 |
def __init__(self): |
|
|
72 |
self.raw_ecg_data = None # list, raw ecg data |
|
|
73 |
self.denoised_ecg_data = None # list, raw ecg data |
|
|
74 |
r"""basic attributes""" |
|
|
75 |
self.label = None # int, 0 or 1 |
|
|
76 |
self.database_name = None # string, "apnea ecg" |
|
|
77 |
self.filename = None # string, like "a01", "x02" |
|
|
78 |
self.local_id = None # int, the ID in filename, like 101 in "a01" |
|
|
79 |
self.global_id = None # int, global ID in database(train set or test set) |
|
|
80 |
self.samplefrom = None # int, sample from where |
|
|
81 |
self.sampleto = None # int, sample to where |
|
|
82 |
self.base_file_path = None # string |
|
|
83 |
|
|
|
84 |
def write_ecg_segment(self, rdf): |
|
|
85 |
""" |
|
|
86 |
Write minute-by-minute ECG segment to txt file. |
|
|
87 |
:param int rdf: 0 means to write to raw ecg file, 1 means to write to denoised ecg file. |
|
|
88 |
:return: None |
|
|
89 |
""" |
|
|
90 |
|
|
|
91 |
# a01-a10, b01-b05 and c01-c10 belong to train set; |
|
|
92 |
# x01-x35 belong to test set. |
|
|
93 |
# if self.filename.find('x') >= 0: |
|
|
94 |
# file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/" |
|
|
95 |
# else: |
|
|
96 |
# file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/" |
|
|
97 |
if not os.path.exists(self.base_file_path): |
|
|
98 |
os.makedirs(self.base_file_path) |
|
|
99 |
if rdf == 0: |
|
|
100 |
filename = "raw_ecg_segment_data.txt" |
|
|
101 |
ecg_data = self.raw_ecg_data |
|
|
102 |
elif rdf == 1: |
|
|
103 |
filename = "denosing_ecg_segment_data.txt" |
|
|
104 |
ecg_data = self.denoised_ecg_data |
|
|
105 |
else: |
|
|
106 |
raise Exception("Error rdf value.") |
|
|
107 |
|
|
|
108 |
attr_name = "database_name file_name local_id samplefrom sampleto global_id label\n" |
|
|
109 |
# 将标签转化为数字 |
|
|
110 |
if self.label == 'A': |
|
|
111 |
self.label = 1 |
|
|
112 |
elif self.label == 'N': |
|
|
113 |
self.label = 0 |
|
|
114 |
|
|
|
115 |
with open(self.base_file_path + filename, "w") as f: |
|
|
116 |
r"""attributes name """ |
|
|
117 |
f.write(attr_name) |
|
|
118 |
|
|
|
119 |
r"""attributes value""" |
|
|
120 |
f.write( |
|
|
121 |
self.database_name[0] + " " + self.database_name[1] + " " |
|
|
122 |
+ self.filename + " " + str(self.local_id) + " " |
|
|
123 |
+ str(self.global_id) + " " + str(self.samplefrom) + " " |
|
|
124 |
+ str(self.sampleto) + " " + str(self.label) + "\n") |
|
|
125 |
|
|
|
126 |
r"""data""" |
|
|
127 |
for value in ecg_data: |
|
|
128 |
f.write(str(value[0]) + "\n") |
|
|
129 |
|
|
|
130 |
def read_ecg_segment(self, rdf, database_name_or_path): |
|
|
131 |
""" |
|
|
132 |
Read Minute-by-minute ECG segment from TXT file |
|
|
133 |
:param string or list database_name_or_path: the database or the file path you want to read |
|
|
134 |
:param int rdf: 0 means to read to raw ecg file, 1 means to read to denoised ecg file. |
|
|
135 |
:return: None |
|
|
136 |
""" |
|
|
137 |
|
|
|
138 |
if rdf == 0: |
|
|
139 |
filename = "raw_ecg_segment_data.txt" |
|
|
140 |
elif rdf == 1: |
|
|
141 |
filename = "denosing_ecg_segment_data.txt" |
|
|
142 |
else: |
|
|
143 |
raise Exception("Error rdf value.") |
|
|
144 |
if database_name_or_path == ["apnea-ecg", "train"]: |
|
|
145 |
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/" + filename |
|
|
146 |
elif database_name_or_path == ["apnea-ecg", "test"]: |
|
|
147 |
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/" + filename |
|
|
148 |
else: |
|
|
149 |
file_path = database_name_or_path |
|
|
150 |
|
|
|
151 |
with open(file_path) as f: |
|
|
152 |
_ = f.readline() |
|
|
153 |
|
|
|
154 |
# attribute values |
|
|
155 |
attrs_value = f.readline().replace("\n", "").split(" ") |
|
|
156 |
self.database_name = [attrs_value[0], attrs_value[1]] |
|
|
157 |
self.filename = attrs_value[2] |
|
|
158 |
self.local_id = int(attrs_value[3]) |
|
|
159 |
self.global_id = int(attrs_value[4]) |
|
|
160 |
self.samplefrom = int(attrs_value[5]) |
|
|
161 |
self.sampleto = int(attrs_value[6]) |
|
|
162 |
self.label = int(attrs_value[7]) |
|
|
163 |
self.base_file_path = SEGMENTS_BASE_PATH + self.database_name[1] + "/" + str(self.global_id) + "/" |
|
|
164 |
|
|
|
165 |
# ECG segment data |
|
|
166 |
ecg_data = [] |
|
|
167 |
data_value = f.readline().replace("\n", "") |
|
|
168 |
while data_value != "": |
|
|
169 |
ecg_data.append(float(data_value)) |
|
|
170 |
data_value = f.readline().replace("\n", "") |
|
|
171 |
if rdf == 0: |
|
|
172 |
self.raw_ecg_data = ecg_data |
|
|
173 |
elif rdf == 1: |
|
|
174 |
self.denoised_ecg_data = ecg_data |
|
|
175 |
|
|
|
176 |
def read_edr(self, flag): |
|
|
177 |
""" |
|
|
178 |
flag为0时读取原始edr信号,为1时读取下采样之后的edr信号. |
|
|
179 |
:return: None |
|
|
180 |
""" |
|
|
181 |
|
|
|
182 |
edr = [] |
|
|
183 |
if self.filename.find('x') >= 0: |
|
|
184 |
if flag == 0: |
|
|
185 |
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/edr.txt" |
|
|
186 |
elif flag == 1: |
|
|
187 |
file_path = SEGMENTS_BASE_PATH + "test/" + str(self.global_id) + "/downsampling_EDR.txt" |
|
|
188 |
else: |
|
|
189 |
file_path = "" |
|
|
190 |
print("edr file path error....") |
|
|
191 |
else: |
|
|
192 |
if flag == 0: |
|
|
193 |
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/edr.txt" |
|
|
194 |
elif flag == 1: |
|
|
195 |
file_path = SEGMENTS_BASE_PATH + "train/" + str(self.global_id) + "/downsampling_EDR.txt" |
|
|
196 |
else: |
|
|
197 |
file_path = "" |
|
|
198 |
print("edr file path error....") |
|
|
199 |
|
|
|
200 |
with open(file_path) as f: |
|
|
201 |
data_value = f.readline().replace("\n", "") |
|
|
202 |
while data_value != "": |
|
|
203 |
edr.append(float(data_value)) |
|
|
204 |
data_value = f.readline().replace("\n", "") |
|
|
205 |
edr = np.array(edr) |
|
|
206 |
|
|
|
207 |
return edr |
|
|
208 |
|
|
|
209 |
|
|
|
210 |
def get_ecg_data_annotations(database_name, is_debug=False): |
|
|
211 |
""" |
|
|
212 |
Read files in specified database. |
|
|
213 |
:param list database_name: Database you want to read. |
|
|
214 |
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now. |
|
|
215 |
:param bool is_debug: whether is debug mode. |
|
|
216 |
:return list: ecg data and annotations. |
|
|
217 |
|
|
|
218 |
example: data_set = get_ecg_data_annotations("train", True) |
|
|
219 |
""" |
|
|
220 |
|
|
|
221 |
data_annotations_set = [] |
|
|
222 |
file_name_set = None |
|
|
223 |
no_apn = None |
|
|
224 |
|
|
|
225 |
if database_name[0] == "apnea-ecg": |
|
|
226 |
root_file_path = APNEA_ECG_DATABASE_PATH |
|
|
227 |
if database_name[1] == "train": |
|
|
228 |
file_name_set = APNEA_ECG_TRAIN_FILENAME |
|
|
229 |
no_apn = False |
|
|
230 |
elif database_name[1] == "test": |
|
|
231 |
file_name_set = APNEA_ECG_TEST_FILENAME |
|
|
232 |
no_apn = True |
|
|
233 |
|
|
|
234 |
# if database name is test, we first read label file |
|
|
235 |
test_label_set = [] |
|
|
236 |
if no_apn is True: |
|
|
237 |
# read event-2.txt, which is test label downloading from PhysioNet |
|
|
238 |
test_annotation_path = root_file_path + "event-2.txt" |
|
|
239 |
with open(test_annotation_path) as f: |
|
|
240 |
lines = f.readlines() |
|
|
241 |
for line in lines: |
|
|
242 |
line = line.replace("\n", "") |
|
|
243 |
for index_str in range(len(line)): |
|
|
244 |
if line[index_str] == "A" or line[index_str] == "N": |
|
|
245 |
test_label_set.append(line[index_str]) |
|
|
246 |
|
|
|
247 |
file_count = 0 # use when the database name is test. |
|
|
248 |
test_label_index = 0 # use when the database name is test. |
|
|
249 |
for name in file_name_set: |
|
|
250 |
if is_debug: |
|
|
251 |
print("process file " + name + "...") |
|
|
252 |
|
|
|
253 |
file_path = root_file_path + name |
|
|
254 |
ecg_data = wfdb.rdrecord(file_path) # use wfdb.rdrecord to read data |
|
|
255 |
|
|
|
256 |
if no_apn is False: |
|
|
257 |
# use wfdb.rdann to read annotation |
|
|
258 |
annotation = wfdb.rdann(file_path, "apn") |
|
|
259 |
# annotation range |
|
|
260 |
annotation_range_list = annotation.sample |
|
|
261 |
# annotation |
|
|
262 |
annotation_list = annotation.symbol |
|
|
263 |
else: |
|
|
264 |
annotation_range_list = [] |
|
|
265 |
annotation_list = [] |
|
|
266 |
for index_label in range(TEST_LABEL_AMOUNT[file_count]): |
|
|
267 |
annotation_range_list.append(np.array(index_label * 6000)) |
|
|
268 |
annotation_list.append(test_label_set[test_label_index]) |
|
|
269 |
test_label_index += 1 |
|
|
270 |
file_count += 1 |
|
|
271 |
annotation_range_list = np.array(annotation_range_list) |
|
|
272 |
|
|
|
273 |
data_annotations_set.append([ecg_data, annotation_range_list, annotation_list, name]) |
|
|
274 |
|
|
|
275 |
return data_annotations_set |
|
|
276 |
|
|
|
277 |
|
|
|
278 |
def process_ecg_data_segments(database_name, data_annotations_set, is_debug=False): |
|
|
279 |
""" |
|
|
280 |
Divide ECG data to minute-by-minute ECG segment. |
|
|
281 |
:param list database_name: name of database. |
|
|
282 |
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now. |
|
|
283 |
:param list data_annotations_set: output of function get_ecg_data_annotations. |
|
|
284 |
:param bool is_debug: whether is debug mode. |
|
|
285 |
:return: None |
|
|
286 |
""" |
|
|
287 |
|
|
|
288 |
data_set = [] |
|
|
289 |
global_counter = 0 # use for global id |
|
|
290 |
|
|
|
291 |
base_floder_path = None |
|
|
292 |
|
|
|
293 |
if database_name[0] == "apnea-ecg": |
|
|
294 |
if database_name[1] == "train": |
|
|
295 |
base_floder_path = SEGMENTS_BASE_PATH + "/train" |
|
|
296 |
elif database_name[1] == "test": |
|
|
297 |
base_floder_path = SEGMENTS_BASE_PATH + "/test" |
|
|
298 |
|
|
|
299 |
# ecg data segments divide |
|
|
300 |
for data_annotation in data_annotations_set: |
|
|
301 |
segment_amount = len(data_annotation[2]) |
|
|
302 |
for index_segment in range(segment_amount): |
|
|
303 |
eds = Mit2Segment() |
|
|
304 |
eds.database_name = database_name |
|
|
305 |
eds.samplefrom = data_annotation[1][index_segment] |
|
|
306 |
if (data_annotation[1][index_segment] + 6000) > len(data_annotation[0].p_signal): |
|
|
307 |
eds.sampleto = len(data_annotation[0].p_signal) |
|
|
308 |
else: |
|
|
309 |
eds.sampleto = data_annotation[1][index_segment] + 6000 |
|
|
310 |
eds.raw_ecg_data = data_annotation[0].p_signal[eds.samplefrom:eds.sampleto] |
|
|
311 |
eds.label = data_annotation[2][index_segment] |
|
|
312 |
eds.filename = data_annotation[3] |
|
|
313 |
eds.local_id = index_segment |
|
|
314 |
eds.global_id = global_counter |
|
|
315 |
eds.base_file_path = SEGMENTS_BASE_PATH + "/" + database_name[1] + "/" + str(eds.global_id) + "/" |
|
|
316 |
eds.write_ecg_segment(rdf=0) |
|
|
317 |
global_counter += 1 |
|
|
318 |
data_set.append(eds) |
|
|
319 |
if is_debug: |
|
|
320 |
print("---------------------------------------------------") |
|
|
321 |
print(("global id: %s, file name: %s, local id: %s") % ( |
|
|
322 |
str(eds.global_id), eds.filename, str(eds.local_id))) |
|
|
323 |
print("---------------------------------------------------") |
|
|
324 |
|
|
|
325 |
if not os.path.exists(base_floder_path): |
|
|
326 |
os.makedirs(base_floder_path) |
|
|
327 |
|
|
|
328 |
# extra_info, this file store number of all ECG segments. |
|
|
329 |
with open(base_floder_path + "/extra_info.txt", "w") as f: |
|
|
330 |
f.write("Number of ECG segments\n") |
|
|
331 |
f.write(str(global_counter)) |
|
|
332 |
|
|
|
333 |
return data_set |
|
|
334 |
|
|
|
335 |
|
|
|
336 |
def produce_database(database_name, is_debug): |
|
|
337 |
""" |
|
|
338 |
Produce database. It will write many txt files in SEGMENTS_BASE_PATH. |
|
|
339 |
:param list database_name: name of database. |
|
|
340 |
Reserved paras, it must be ["apnea-ecg", "train"] or ["apnea-ecg", "test"] now. |
|
|
341 |
:param bool is_debug: whether is debug mode. |
|
|
342 |
:return: None |
|
|
343 |
""" |
|
|
344 |
|
|
|
345 |
# read files from a01-a35, every file including whole ecg data and the corresponding annotation |
|
|
346 |
data_annotations_set = get_ecg_data_annotations(database_name, is_debug) |
|
|
347 |
# divide ECG data to minute-by-minute ECG segments |
|
|
348 |
_ = process_ecg_data_segments(database_name, data_annotations_set, is_debug) |
|
|
349 |
|
|
|
350 |
|
|
|
351 |
def produce_all_database(is_debug): |
|
|
352 |
""" |
|
|
353 |
Produce train database and test database. |
|
|
354 |
:param bool is_debug: whether is debug mode. |
|
|
355 |
:return: None |
|
|
356 |
""" |
|
|
357 |
produce_database(["apnea-ecg", "train"], is_debug) |
|
|
358 |
produce_database(["apnea-ecg", "test"], is_debug) |
|
|
359 |
|
|
|
360 |
|
|
|
361 |
if __name__ == '__main__': |
|
|
362 |
print("fileIO test statements") |
|
|
363 |
# if you want to generate train database, you can run follow statement. |
|
|
364 |
# produce_database(["apnea-ecg", "train"], is_debug) |
|
|
365 |
|
|
|
366 |
# if you want to generate test database, you can run follow statement. |
|
|
367 |
# produce_database(["apnea-ecg", "test"], is_debug) |
|
|
368 |
|
|
|
369 |
# if you want to generate train and test database, you can run follow statement. |
|
|
370 |
produce_all_database(True) |