Download this file

431 lines (408 with data), 12.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
function QRS=nqrsdetect(S,fs)
% nqrsdetect - detection of QRS-complexes
%
% QRS=nqrsdetect(S,fs);
%
% INPUT
% S ecg signal data
% fs sample rate
%
% OUTPUT
% QRS fiducial points of qrs complexes
%
%
% see also: QRSDETECT
%
% Copyright (C) 2006 by Rupert Ortner
%
%% This program is free software; you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published by
%% the Free Software Foundation; either version 2 of the License, or
%% (at your option) any later version.
%%
%% This program is distributed in the hope that it will be useful, ...
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with this program; if not, write to the Free Software
%% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
%% USA
%% ============== Now Part of BioSigToolkit ============= %%
%% Modified and imporved by Hooman Sedghamiz, Feb 2018.
S=S(:);
S=full(S);
N=round(fs); %Filter order
%---------------------------------------
%Replaces filter bank in [1]
Bw=5.6; %filter bandwidth
Bwn=1/(fs/2)*Bw;
M=round((fs/2)/Bw); %downsampling rate
Wn0=Bwn; %bandwidth of the first filter
Wn1=[Bwn 2*Bwn]; %bandwidth of the second filter
Wn2=[2*Bwn 3*Bwn];
Wn3=[3*Bwn 4*Bwn];
Wn4=[4*Bwn 5*Bwn];
h0=fir1(N,Wn0); %impulse response of the first filter
h1=fir1(N,Wn1,'bandpass');
h2=fir1(N,Wn2,'bandpass');
h3=fir1(N,Wn3,'bandpass');
h4=fir1(N,Wn4,'bandpass');
%Polyphase implementation of the filters
y=cell(1,5);
y{1}=polyphase_imp(S,h0,M); %W0 (see [1]) filtered and downsampled signal
y{2}=polyphase_imp(S,h1,M); %W1
y{3}=polyphase_imp(S,h2,M); %W2
y{4}=polyphase_imp(S,h3,M); %W3
y{5}=polyphase_imp(S,h4,M); %W4
%----------------------------------------------
cut=ceil(N/M); %Cutting off of initial transient because of the filtering
y1=[zeros(cut,1);y{1}(cut:length(y{1}))];
y2=[zeros(cut,1);y{2}(cut:length(y{2}))];
y3=[zeros(cut,1);y{3}(cut:length(y{3}))];
y4=[zeros(cut,1);y{4}(cut:length(y{4}))];
y5=[zeros(cut,1);y{5}(cut:length(y{5}))];
%----------------------------------------
P1=sum([abs(y2) abs(y3) abs(y4)],2); %see [1] equation (13)
P2=sum([abs(y2) abs(y3) abs(y4) abs(y5)],2);
P4=sum([abs(y3) abs(y4) abs(y5)],2);
FL1=MWI(P1); %Feature 1 according to Level 1 in [1]
FL2=MWI(P2); %Feature 2 according to Level 2
FL4=MWI(P4); %Feature 4 according to Level 4
%--------------------------------------
%Level 1 [1]
d=sign(diff(FL1));
d1=[0;d];
d2=[d;0];
f1=find(d1==1);
f2=find(d2==-1);
EventsL1=intersect(f1,f2); %Detected events
%-------------------------------------------------------
%Level 2 [1]
meanL1=sum(FL2(EventsL1),1)/length(EventsL1);
NL=meanL1-meanL1*0.1; %Start Noise Level
SL=meanL1+meanL1*0.1; %Start Signal Level
threshold1=0.08; %Threshold detection block 1
threshold2=0.7; %Threshold detection block 2
[~,~,DS1,Class1]=detectionblock(FL2,EventsL1,NL,SL,threshold1);
[~,~,DS2,Class2]=detectionblock(FL2,EventsL1,NL,SL,threshold2);
%---------------------------------------------------
ClassL3=[];
for i=1:length(EventsL1)
C1=Class1(i);
C2=Class2(i);
if C1==1
if C2==1
ClassL3=[ClassL3 1]; %Classification as Signal
else
delta1=(DS1(i)-threshold1)/(1-threshold1);
delta2=(threshold2-DS2(i))/threshold2;
if delta1>delta2
ClassL3=[ClassL3 1]; %Classification as Signal
else
ClassL3=[ClassL3 0]; %Classification as Noise
end
end
else
if C2==1
ClassL3=[ClassL3 1]; %Classification as Signal
else
ClassL3=[ClassL3 0]; %Classification as Noise
end
end
end
SignalL3=EventsL1(find(ClassL3)); %Signal Level 3
NoiseL3=EventsL1(find(ClassL3==0)); %Noise Level 3
%--------------------------------------------
%Level 4 [1]
threshold=0.3;
VSL=(sum(FL4(SignalL3),1))/length(SignalL3);
VNL=(sum(FL4(NoiseL3),1))/length(NoiseL3);
SL=(sum(FL4(SignalL3),1))/length(SignalL3); %Initial Signal Level
NL=(sum(FL4(NoiseL3),1))/length(NoiseL3); %Initial Noise Level
SignalL4=[];
NoiseL4=[];
DsL4=[]; %Detection strength Level 4
for i=1:length(EventsL1)
Pkt=EventsL1(i);
if ClassL3(i)==1; %Classification after Level 3 as Signal
SignalL4=[SignalL4,EventsL1(i)];
SL=history(SL,FL4(Pkt));
Ds=(FL4(Pkt)-NL)/(SL-NL); %Detection strength
if Ds<0
Ds=0;
elseif Ds>1
Ds=1;
end
DsL4=[DsL4 Ds];
else %Classification after Level 3 as Noise
Ds=(FL4(Pkt)-NL)/(SL-NL);
if Ds<0
Ds=0;
elseif Ds>1
Ds=1;
end
DsL4=[DsL4 Ds];
if Ds>threshold %new classification as Signal
SignalL4=[SignalL4,EventsL1(i)];
SL=history(SL,FL4(Pkt));
else %new classification as Noise
NoiseL4=[NoiseL4,EventsL1(i)];
NL=history(NL,FL4(Pkt));
end
end
end
%------------------------------------------------
%Level 5
%if the time between two RR complexes is too long => go back and check the
%events again with lower threshold
SignalL5=SignalL4;
NoiseL5=NoiseL4;
periods=diff(SignalL4);
M1=100;
a=1;
b=1/(M1)*ones(M1,1);
meanperiod=filter(b,a,periods); %mean of the RR intervals
SL=sum(FL4(SignalL4))/length(SignalL4);
NL=sum(FL4(NoiseL4))/length(NoiseL4);
threshold=0.2;
for i=1:length(periods)
if periods(i)>meanperiod*1.5 %if RR-interval is to long
intervall=SignalL4(i):SignalL4(i+1);
critical=intersect(intervall,NoiseL4);
for j=1:length(critical)
Ds=(FL4(critical(j))-NL)/(SL-NL);
if Ds>threshold %Classification as Signal
SignalL5=union(SignalL5,critical(j));
NoiseL5=setxor(NoiseL5,critical(j));
end
end
end
end
%---------------------------------------------------
%Umrechnung auf Originalsignal (nicht downgesamplet)
Signaln=conversion(S,FL2,SignalL5,M,N,fs);
%----------------------------------------------------
%Level 6 If interval of two RR-complexes <0.24 => go back and delete one of them
height=FL2(SignalL5);
Signal=Signaln;
temp=round(0.1*fs);
difference=diff(Signaln); %Difference between two signal points
k=find(difference<temp);
for i=1:length(k)
pkt1=SignalL5(k(i));
pkt2=SignalL5(k(i)+1);
verg=[height(k(i)),height(k(i)+1)];
[x,j]=max(verg);
if j==1
Signal=setxor(Signal,Signaln(k(i)+1)); %Deleting first Event
else
Signal=setxor(Signal,Signaln(k(i))); %Deleting second Event
end
end
QRS=Signal;
%-------------------------------------------------------------------
%-------------------------------------------------------------------
%-------------------------------------------------------------------
%subfunctions
function y=MWI(S)
% MWI - Moving window integrator, computes the mean of two samples
% y=MWI(S)
%
% INPUT
% S Signal
%
% OUTPUT
% y output signal
a=[0;S];
b=[S;0];
c=[a,b];
y=sum(c,2)/2;
y=y(1:length(y)-1);
%------------------------------------------------
function y=polyphase_imp(S,h,M)
% polyphase_imp - polyphase implementation of decimation filters [2]
% y=polyphase_imp(S,h,M)
%
% INPUT
% S ecg signal data
% h filter coefficients
% M downsampling rate
%
% OUTPUT
% y filtered signal
%
%Determining polyphase components ek
e=cell(M,1);
l=1;
m=mod(length(h),M);
while m>0
for n=1:ceil(length(h)/M)
el(n)=h(M*(n-1)+l);
end
e{l}=el;
l=l+1;
m=m-1;
end
clear el;
for i=l:M
for n=1:floor(length(h)/M)
el(n)=h(M*(n-1)+i);
end
e{i}=el;
end
%Filtering
max=ceil((length(S)+M)/M);
Sdelay=S;
for i=1:M
Sd=downsample(Sdelay,M);
a=filter(e{i},1,Sd);
if length(a)<max
a=[a;zeros(max-length(a),1)];
end
w(:,i)=a;
Sdelay=[zeros(i,1);S];
end
y=sum(w,2);
%----------------------------------------------------------
function [Signal,Noise,VDs,Class]=detectionblock(mwi,Events,NL,SL,threshold)
% detectionblock - computation of one detection block
%
% [Signal,Noise,VDs,Class]=detectionblock(mwi,Events,NL,SL,threshold)
%
% INPUT
% mwi Output of the MWI
% Events Events of Level 1 (see [1])
% NL Initial Noise Level
% SL Initial Signal Level
% threshold Detection threshold (between [0,1])
%
% OUTPUT
% Signal Events which are computed as Signal
% Noise Events which are computed as Noise
% VDs Detection strength of the Events
% Class Classification: 0=noise, 1=signal
Signal=[];
Noise=[];
VDs=[];
Class=[];
sumsignal=SL;
sumnoise=NL;
for i=1:length(Events)
P=Events(i);
Ds=(mwi(P)-NL)/(SL-NL); %Detection strength
if Ds<0
Ds=0;
elseif Ds>1
Ds=1;
end
VDs=[VDs Ds];
if Ds>threshold %Classification as Signal
Signal=[Signal P];
Class=[Class;1];
sumsignal=sumsignal+mwi(P);
SL=sumsignal/(length(Signal)+1); %Updating the Signal Level
else %Classification as Noise
Noise=[Noise P];
Class=[Class;0];
sumnoise=sumnoise+mwi(P);
NL=sumnoise/(length(Noise)+1); %Updating the Noise Level
end
end
%------------------------------------------------------------
function [pnew]=conversion(S,FL2,pold,M,N,fs)
% conversion - sets the fiducial points of the downsampled Signal on the
% samplepoints of the original Signal
%
% [pnew]=conversion(S,FL2,pold,M,N,fs)
%
% INPUT
% S Original ECG Signal
% FL2 Feature of Level 2 [1]
% pold old fiducial points
% M M downsampling rate
% N filter order
% fs sample rate
%
% OUTPUT
% pnew new fiducial points
%
Signaln=pold;
P=M;
Q=1;
FL2res=resample(FL2,P,Q); %Resampling
nans1=isnan(S);
nans=find(nans1==1);
S(nans)=mean(S); %Replaces NaNs in Signal
for i=1:length(Signaln)
Signaln1(i)=Signaln(i)+(M-1)*(Signaln(i)-1);
end
%------------------- Sets the fiducial points on the maximum of FL2
Signaln2=Signaln1;
Signaln2=Signaln2';
int=2*M; %Window length for the new fiducial point
range=1:length(FL2res);
for i=1:length(Signaln2)
start=Signaln2(i)-int/2;
if start<1
start=1;
end
stop=Signaln2(i)+int/2;
if stop>length(FL2res)
stop=length(FL2res);
end
intervall=start:stop; %interval
FL2int=FL2res(intervall);
pkt=find(FL2int==max(FL2int)); %Setting point on maximum of FL2
if length(pkt)==0 % if pkt=[];
pkt=Signaln2(i)-start;
else
pkt=pkt(1);
end
delay=N/2+M;
Signaln3(i)=pkt+Signaln2(i)-int/2-delay; %fiducial points according to FL2
end
%Sets the fiducial points on the maximum or minimum
%of the signal
Bw=5.6;
Bwn=1/(fs/2)*Bw;
Wn=[Bwn 5*Bwn];
N1=32;
b=fir1(N1,Wn,'bandpass');
Sf=filtfilt(b,1,S); %Filtered Signal with bandwidth 5.6-28 Hz
beg=round(1.5*M);
fin=1*M;
for i=1:length(Signaln3)
start=Signaln3(i)-beg;
if start<1
start=1;
end
stop=Signaln3(i)+fin;
if stop>length(Sf)
stop=length(Sf);
end
intervall=start:stop; %Window for the new fiducial point
Sfint=abs(detrend(Sf(intervall),0));
pkt=find(Sfint==max(Sfint)); %Setting point on maximum of Sfint
if length(pkt)==0 %if pkt=[];
pkt=Signaln3(i)-start;
else
pkt=pkt(1);
end
pkt=pkt(1);
Signaln4(i)=pkt+Signaln3(i)-beg-1;
end
Signal=Signaln4'; %New fiducial points according to the original signal
cutbeginning=find(Signal<N); %Cutting out the first points because of initial transient of the filter in polyphase_imp
fpointsb=Signal(cutbeginning);
cutend=find(Signal>length(S)-N); %Cutting out the last points
fpointse=Signal(cutend);
pnew=setxor(Signal,[fpointsb;fpointse]);
%-------------------------------------------
function yn=history(ynm1,xn)
% history - computes y[n]=(1-lambda)*x[n]+lambda*y[n-1]
%
% yn=history(ynm1,xn)
lambda=0.8; %forgetting factor
yn=(1-lambda)*xn+lambda*ynm1;