Diff of /model/lstmRNNModel.py [000000] .. [409112]

Switch to unified view

a b/model/lstmRNNModel.py
1
"""
2
    LSTM-RNN model for  OSA detection.
3
"""
4
5
from keras.models import Sequential
6
from keras.layers import Dense, LSTM
7
from keras.utils import plot_model
8
import os
9
import numpy as np
10
import tensorflow as tf
11
import keras.backend.tensorflow_backend as KTF
12
13
from model.common import TrainingMonitor, ModelCheckpoint, LossHistory
14
15
RR_INTERVALS_INTERPOLATION = 240
16
# handcraft_features
17
18
test_number = 1
19
base_floder_path = "result/lstm/" + "test_" + str(test_number) + "/"
20
21
if not os.path.exists(base_floder_path):
22
    os.makedirs(base_floder_path)
23
train_loss_path = base_floder_path + "train_loss.txt"
24
validation_loss_path = base_floder_path + "validation_loss.txt"
25
train_acc_path = base_floder_path + "train_acc.txt"
26
validation_acc_path = base_floder_path + "validation_acc.txt"
27
28
# GPU config
29
config = tf.ConfigProto()
30
config.gpu_options.allow_growth = True
31
config.gpu_options.per_process_gpu_memory_fraction = 0.7
32
sess = tf.Session(config=config)
33
KTF.set_session(sess)
34
35
36
def get_dataset():
37
    train_rri_amp_edr = np.load("G:/python project/apneaECGCode/data/apnea-ecg_train_clear_rri_ramp_edr.npy")
38
    train_label = np.load("G:/python project/apneaECGCode/data/apnea-ecg_train_clear_label.npy")
39
    test_rri_amp_edr = np.load("G:/python project/apneaECGCode/data/apnea-ecg_test_clear_rri_ramp_edr.npy")
40
    test_label = np.load("G:/python project/apneaECGCode/data/apnea-ecg_test_clear_label.npy")
41
    
42
    train_label = train_label.astype(dtype=np.int)
43
    test_label = test_label.astype(dtype=np.int)
44
    return train_rri_amp_edr, train_label, test_rri_amp_edr, test_label
45
46
47
def create_lstm_model(input_shape):
48
    model = Sequential()
49
    model.add(LSTM(384, input_shape=input_shape, use_bias=True, dropout=0.1,
50
                   recurrent_dropout=0.05, return_sequences=True))
51
    # model.add(LeakyReLU(alpha=1))
52
    # model.add(BatchNormalization())
53
    model.add(LSTM(384, use_bias=True, dropout=0.2,
54
                   recurrent_dropout=0.05, return_sequences=True))
55
    # model.add(LeakyReLU(alpha=1))
56
    # model.add(BatchNormalization())
57
    model.add(LSTM(384, use_bias=True, dropout=0.3,
58
                   recurrent_dropout=0.05))
59
    # model.add(LeakyReLU(alpha=1))
60
    # model.add(BatchNormalization())
61
    # model.add(LSTM(64, use_bias=True,
62
    #              dropout=0.7, recurrent_dropout=0.7))
63
    # model.add(LeakyReLU(alpha=1))
64
    # model.add(BatchNormalization())
65
    model.add(Dense(128))
66
    # model.add(Dropout(0.8))
67
    # model.add(LeakyReLU(alpha=1))
68
    model.add(Dense(64))
69
    model.add(Dense(32))
70
    # model.add(Dropout(0.5))
71
    # model.add(LeakyReLU(alpha=1))
72
    model.add(Dense(1, activation="sigmoid"))
73
    
74
    model.compile(loss="binary_crossentropy", optimizer="adam", metrics=['accuracy'])
75
    
76
    model.summary()
77
    plot_model(model, to_file=base_floder_path + '/lstm_model.png', show_shapes=True)
78
    
79
    return model
80
81
82
def train_network():
83
    print("read data...")
84
    X_train1, y_train, X_test1, y_test = get_dataset()
85
    
86
    model = create_lstm_model(input_shape=(RR_INTERVALS_INTERPOLATION, 3))
87
    fig_path = base_floder_path
88
    model_file_path = base_floder_path + "/model"
89
    if not os.path.exists(model_file_path):
90
        os.makedirs(model_file_path)
91
    model_file_path += "/model_{epoch:02d}-{val_acc:.6f}.hdf5"
92
    checkpoint = ModelCheckpoint(model_file_path, monitor='val_acc', verbose=1, save_best_only=True)
93
    callbacks = [
94
        TrainingMonitor(fig_path, model, train_loss_path, validation_loss_path, train_acc_path, validation_acc_path)
95
        , checkpoint]
96
    print("Training")
97
    history = LossHistory()
98
    history.init()
99
    model.fit(X_train1, y_train, batch_size=128, epochs=500, callbacks=callbacks, validation_data=(X_test1, y_test))
100
    return model
101
102
103
if __name__ == '__main__':
104
    train_network()
105