--- a +++ b/model/lstmRNNModel.py @@ -0,0 +1,105 @@ +""" + LSTM-RNN model for OSA detection. +""" + +from keras.models import Sequential +from keras.layers import Dense, LSTM +from keras.utils import plot_model +import os +import numpy as np +import tensorflow as tf +import keras.backend.tensorflow_backend as KTF + +from model.common import TrainingMonitor, ModelCheckpoint, LossHistory + +RR_INTERVALS_INTERPOLATION = 240 +# handcraft_features + +test_number = 1 +base_floder_path = "result/lstm/" + "test_" + str(test_number) + "/" + +if not os.path.exists(base_floder_path): + os.makedirs(base_floder_path) +train_loss_path = base_floder_path + "train_loss.txt" +validation_loss_path = base_floder_path + "validation_loss.txt" +train_acc_path = base_floder_path + "train_acc.txt" +validation_acc_path = base_floder_path + "validation_acc.txt" + +# GPU config +config = tf.ConfigProto() +config.gpu_options.allow_growth = True +config.gpu_options.per_process_gpu_memory_fraction = 0.7 +sess = tf.Session(config=config) +KTF.set_session(sess) + + +def get_dataset(): + train_rri_amp_edr = np.load("G:/python project/apneaECGCode/data/apnea-ecg_train_clear_rri_ramp_edr.npy") + train_label = np.load("G:/python project/apneaECGCode/data/apnea-ecg_train_clear_label.npy") + test_rri_amp_edr = np.load("G:/python project/apneaECGCode/data/apnea-ecg_test_clear_rri_ramp_edr.npy") + test_label = np.load("G:/python project/apneaECGCode/data/apnea-ecg_test_clear_label.npy") + + train_label = train_label.astype(dtype=np.int) + test_label = test_label.astype(dtype=np.int) + return train_rri_amp_edr, train_label, test_rri_amp_edr, test_label + + +def create_lstm_model(input_shape): + model = Sequential() + model.add(LSTM(384, input_shape=input_shape, use_bias=True, dropout=0.1, + recurrent_dropout=0.05, return_sequences=True)) + # model.add(LeakyReLU(alpha=1)) + # model.add(BatchNormalization()) + model.add(LSTM(384, use_bias=True, dropout=0.2, + recurrent_dropout=0.05, return_sequences=True)) + # model.add(LeakyReLU(alpha=1)) + # model.add(BatchNormalization()) + model.add(LSTM(384, use_bias=True, dropout=0.3, + recurrent_dropout=0.05)) + # model.add(LeakyReLU(alpha=1)) + # model.add(BatchNormalization()) + # model.add(LSTM(64, use_bias=True, + # dropout=0.7, recurrent_dropout=0.7)) + # model.add(LeakyReLU(alpha=1)) + # model.add(BatchNormalization()) + model.add(Dense(128)) + # model.add(Dropout(0.8)) + # model.add(LeakyReLU(alpha=1)) + model.add(Dense(64)) + model.add(Dense(32)) + # model.add(Dropout(0.5)) + # model.add(LeakyReLU(alpha=1)) + model.add(Dense(1, activation="sigmoid")) + + model.compile(loss="binary_crossentropy", optimizer="adam", metrics=['accuracy']) + + model.summary() + plot_model(model, to_file=base_floder_path + '/lstm_model.png', show_shapes=True) + + return model + + +def train_network(): + print("read data...") + X_train1, y_train, X_test1, y_test = get_dataset() + + model = create_lstm_model(input_shape=(RR_INTERVALS_INTERPOLATION, 3)) + fig_path = base_floder_path + model_file_path = base_floder_path + "/model" + if not os.path.exists(model_file_path): + os.makedirs(model_file_path) + model_file_path += "/model_{epoch:02d}-{val_acc:.6f}.hdf5" + checkpoint = ModelCheckpoint(model_file_path, monitor='val_acc', verbose=1, save_best_only=True) + callbacks = [ + TrainingMonitor(fig_path, model, train_loss_path, validation_loss_path, train_acc_path, validation_acc_path) + , checkpoint] + print("Training") + history = LossHistory() + history.init() + model.fit(X_train1, y_train, batch_size=128, epochs=500, callbacks=callbacks, validation_data=(X_test1, y_test)) + return model + + +if __name__ == '__main__': + train_network() +