[15a331]: / tests / utils / test_stroke_risk_utils.py

Download this file

160 lines (125 with data), 5.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""Tests for stroke_risk_utils.py."""
from unittest.mock import patch, MagicMock
import numpy as np
import pandas as pd
import pytest
from plotly.graph_objs import Figure
from src.utils.stroke_risk_utils import (
plot_combined_histograms,
plot_combined_bar_charts,
plot_combined_boxplots,
plot_correlation_matrix,
detect_anomalies_iqr,
flag_anomalies,
calculate_cramers_v,
evaluate_model,
plot_model_performance,
plot_combined_confusion_matrices,
extract_feature_importances,
plot_feature_importances,
)
@pytest.fixture
def sample_df():
"""Create a sample DataFrame for testing."""
return pd.DataFrame(
{
"age": [25, 30, 35, 40, 45],
"bmi": [20, 22, 24, 26, 28],
"gender": ["Male", "Female", "Male", "Female", "Male"],
"stroke": [0, 0, 1, 0, 1],
}
)
def test_plot_combined_histograms(sample_df): # pylint: disable=redefined-outer-name
"""Test if plot_combined_histograms function returns a Figure object."""
fig = plot_combined_histograms(sample_df, ["age", "bmi"])
assert isinstance(fig, Figure)
def test_plot_combined_bar_charts(sample_df): # pylint: disable=redefined-outer-name
"""Test if plot_combined_bar_charts function returns a Figure object."""
fig = plot_combined_bar_charts(sample_df, ["gender"])
assert isinstance(fig, Figure)
def test_plot_combined_boxplots(sample_df): # pylint: disable=redefined-outer-name
"""Test if plot_combined_boxplots function returns a Figure object."""
fig = plot_combined_boxplots(sample_df, ["age", "bmi"])
assert isinstance(fig, Figure)
def test_plot_correlation_matrix(sample_df): # pylint: disable=redefined-outer-name
"""Test if plot_correlation_matrix function calls px.imshow()."""
with patch("plotly.express.imshow") as mock_imshow:
plot_correlation_matrix(sample_df, ["age", "bmi"])
mock_imshow.assert_called_once()
def test_detect_anomalies_iqr(sample_df): # pylint: disable=redefined-outer-name
"""Test if detect_anomalies_iqr returns a DataFrame."""
anomalies = detect_anomalies_iqr(sample_df, ["age", "bmi"])
assert isinstance(anomalies, pd.DataFrame)
assert set(anomalies.columns) == {"age", "bmi"}
def test_flag_anomalies(sample_df): # pylint: disable=redefined-outer-name
"""Test if flag_anomalies returns a boolean Series."""
flags = flag_anomalies(sample_df, ["age", "bmi"])
assert isinstance(flags, pd.Series)
assert flags.dtype == bool
assert len(flags) == len(sample_df)
def test_calculate_cramers_v():
"""Test if calculate_cramers_v returns a value between 0 and 1."""
contingency_table = pd.DataFrame([[10, 20], [30, 40]])
v = calculate_cramers_v(contingency_table)
assert 0 <= v <= 1
@pytest.fixture
def mock_model():
"""Create a mock model for testing."""
model = MagicMock()
model.predict_proba.return_value = np.array(
[[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.4, 0.6]]
)
model.predict.return_value = np.array([1, 0, 1, 0, 1])
return model
def test_evaluate_model(mock_model, sample_df): # pylint: disable=redefined-outer-name
"""Test if evaluate_model returns a dict with expected keys."""
x = sample_df[["age", "bmi"]]
y = sample_df["stroke"]
results = evaluate_model(mock_model, x, y)
assert isinstance(results, dict)
expected_keys = {
"roc_auc",
"pr_auc",
"f1",
"precision",
"recall",
"balanced_accuracy",
}
assert expected_keys.issubset(results.keys())
def test_plot_model_performance():
"""Test if plot_model_performance returns a Figure object."""
results = {
"Model1": {"accuracy": 0.8, "precision": 0.7},
"Model2": {"accuracy": 0.75, "precision": 0.8},
}
fig = plot_model_performance(results, ["accuracy", "precision"])
assert isinstance(fig, Figure)
def test_plot_combined_confusion_matrices():
"""Test if plot_combined_confusion_matrices returns a Figure object."""
results = {"Model1": {"accuracy": 0.8}, "Model2": {"accuracy": 0.75}}
y_test = np.array([0, 1, 0, 1, 1])
y_pred_dict = {
"Model1": np.array([0, 1, 0, 0, 1]),
"Model2": np.array([0, 1, 1, 0, 1]),
}
fig = plot_combined_confusion_matrices(results, y_test, y_pred_dict)
assert isinstance(fig, Figure)
def test_extract_feature_importances(mock_model, sample_df): # pylint: disable=redefined-outer-name
"""Test if extract_feature_importances returns expected array."""
x = sample_df[["age", "bmi"]]
y = sample_df["stroke"]
mock_model.feature_importances_ = np.array([0.6, 0.4])
importances = extract_feature_importances(mock_model, x, y)
assert isinstance(importances, np.ndarray)
assert len(importances) == 2
np.testing.assert_array_almost_equal(importances, [0.6, 0.4])
def test_plot_feature_importances():
"""Test if plot_feature_importances returns a Figure object."""
feature_importances = {
"Model1": {"age": 0.6, "bmi": 0.4},
"Model2": {"age": 0.5, "bmi": 0.5},
}
fig = plot_feature_importances(feature_importances)
assert isinstance(fig, Figure)
if __name__ == "__main__":
pytest.main()