[3f1788]: / utils / plots.py

Download this file

207 lines (167 with data), 8.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python
import warnings
import numpy as np
import pandas as pd
import re
import matplotlib.pyplot as plt
from matplotlib import ticker
import seaborn as sns
from typing import List
from scipy import interp
from wordcloud import WordCloud
from spacy.lang.en.stop_words import STOP_WORDS
from sklearn.metrics import roc_auc_score, roc_curve, auc, confusion_matrix
from sklearn.metrics import average_precision_score, precision_recall_curve
def get_wordcloud(feature_names, scores, n_words='all'):
if n_words == 'all':
n_words = len(feature_names)
p = re.compile('^[a-z\s]+$')
neg_dict, pos_dict = {}, {}
for word, score in zip(feature_names, scores):
word = word.lower()
if len(word) > 7 and word not in STOP_WORDS:
if p.match(word):
neg_dict[word] = 1 - score
pos_dict[word] = score
neg_cloud = WordCloud(width=400, height=400, background_color='white', max_words=n_words, max_font_size=40, relative_scaling=0.5).generate_from_frequencies(neg_dict)
pos_cloud = WordCloud(width=400, height=400, background_color='white', max_words=n_words, max_font_size=60, relative_scaling=0.5).generate_from_frequencies(pos_dict)
return neg_cloud, pos_cloud
def print_top_words(feature_names: List[str], probs: np.ndarray, N: int):
words = sorted(zip(probs, feature_names), reverse=True)
pos = words[:N]
neg = words[:-(N + 1):-1]
print("Words associated with imminent threat: ")
for feat in pos:
print(np.round(feat[0], 2), feat[1])
print("***********************************************")
print("Words associated with not imminent threat: ")
for feat in neg:
print(np.round(feat[0], 2), feat[1])
def plot_prob(ax, df, threshold, starting_day, ending_day, interval_hours, is_agg=False, is_log=False):
if starting_day > 0:
warnings.warn(f"starting_day ({starting_day}) must be negative. Converting it to negative")
starting_day = -starting_day
if ending_day > 0:
warnings.warn(f"ending_day ({ending_day}) must be negative. Converting it to negative")
ending_day = -ending_day
if ending_day < starting_day:
warnings.warn(f"starting_day ({starting_day}) must be less than ending_day ({ending_day}). Swapping values.")
starting_day, ending_day = ending_day, starting_day
high = pd.to_timedelta(ending_day, unit='d')
low = pd.to_timedelta(starting_day, unit='d')
plot_data = df.loc[(df['relative_charttime'] > low) & (df['relative_charttime'] < high)][['relative_charttime', 'prob']].copy()
plot_data['interval'] = ((plot_data['relative_charttime'].apply(lambda curr_time: int((curr_time - df['relative_charttime'].max())/pd.to_timedelta(interval_hours, unit='h')))))/2
if is_agg:
plot_data = plot_data[['interval', 'prob']].groupby(['interval']).agg(lambda x: np.average(x, weights=plot_data.loc[x.index, 'prob']))
plot_data.reset_index(inplace=True)
if is_log:
plot_data['interval'] = -np.log1p(-plot_data['interval'])
ax.axhline(y=threshold, label=f'Threshold = {threshold}', linestyle='--', color='r')
sns.lineplot(x='interval', y='prob', data=plot_data, ax=ax)
# ax.set_xlabel(f'Time to ICU (days)')
# ax.set_ylabel('Probability')
ax.set_xlabel('')
ax.set_ylabel('')
ax.legend(loc='upper left')
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
def plot_confusion_matrix(ax, cm, classes, normalize=False, title=None, cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks and label them with the respective list entries
ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), xticklabels=classes,
yticklabels=classes, title=title, ylabel='True label', xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt), ha='center', va='center', color='white' if cm[i, j] >
thresh else 'black')
def plot_roc(ax, y_true, prob):
fpr, tpr, _ = roc_curve(y_true, prob)
ax.set_ylabel('Sensitivity')
ax.set_xlabel('1 - Specificity')
ax.plot([0, 1], [0, 1], linestyle='--')
ax.plot(fpr, tpr, marker='.')
ax.grid(b=True, which='major', color='#d3d3d3', linewidth=1.0)
ax.grid(b=True, which='minor', color='#d3d3d3', linewidth=0.5)
def plot_mean_roc(ax, y_trues, probs, is_individual=False):
curve_color = 'navy'
if is_individual:
curve_color = 'white'
tprs = []
base_fpr = np.linspace(0, 1, len(y_trues))
for i, (y_test, pos_prob) in enumerate(zip(y_trues, probs)):
fpr, tpr, _ = roc_curve(y_test, pos_prob)
tpr = interp(base_fpr, fpr, tpr)
tpr[0] = 0.0
tprs.append(tpr)
tprs = np.array(tprs)
mean_tprs = tprs.mean(axis=0)
std = tprs.std(axis=0)
tprs_upper = np.minimum(mean_tprs + std, 1)
tprs_lower = mean_tprs - std
ax.plot(base_fpr, mean_tprs, color=curve_color, marker='.')
if is_individual:
for i, (y_test, pos_prob) in enumerate(zip(y_trues, probs)):
fpr, tpr, _ = roc_curve(y_test, pos_prob)
ax.plot(fpr, tpr, color='blue', alpha=0.15)
ax.fill_between(base_fpr, tprs_lower, tprs_upper, color='grey', alpha=0.3)
ax.plot([0, 1], [0, 1], color='silver', linestyle=':')
ax.grid(b=True, which='major', color='#d3d3d3', linewidth=1.0)
ax.grid(b=True, which='minor', color='#d3d3d3', linewidth=0.5)
ax.set_ylabel('Sensitivity')
ax.set_xlabel('1 - Specificity')
def plot_auprc(ax, y_true, probs):
ap = average_precision_score(y_true, probs)
precision, recall, _ = precision_recall_curve(y_true, probs)
auprc = auc(recall, precision)
ax.set_xlabel("Sensitivity")
ax.set_ylabel("PPV")
# ax.set_title("Precision-Recall Curve")
ax.plot([0, 1], [0.5, 0.5], linestyle='--')
ax.plot(recall, precision, marker='.')
return ap, auprc
def plot_thresh_range(ax, y_true, prob, lower=0, upper=1, n_vals=5):
metrics = np.zeros((4, n_vals))
thresh_range = np.round(np.linspace(lower, upper, n_vals), 2)
for i, thresh in enumerate(thresh_range):
y_pred = (prob > thresh).astype(np.int64)
cm = confusion_matrix(y_true, y_pred)
tn,fp,fn,tp = cm[0][0],cm[0][1],cm[1][0],cm[1][1]
metrics[0][i] = np.round(tp/(tp+fn), 3)
metrics[1][i] = np.round(tn/(tn+fp), 3)
metrics[2][i] = np.round(tp/(tp+fp), 3)
metrics[3][i] = np.round(tn/(tn+fn), 3)
df = pd.DataFrame(metrics, index=['sensitivity', 'specificity', 'ppv', 'npv'], columns=thresh_range)
df=df.stack().reset_index()
df.columns = ['Metric','Threshold','Value']
ax = sns.pointplot(x='Threshold', y='Value', hue='Metric',data=df)
ax.grid(b=True, which='major', color='#d3d3d3', linewidth=1.0)
ax.grid(b=True, which='minor', color='#d3d3d3', linewidth=0.5)
ax.legend(loc='upper right')
def plot_youden(ax, y_true, prob, lower=0, upper=1, n_vals=5):
youden_idxs = np.zeros(n_vals)
thresh_range = np.round(np.linspace(lower, upper, n_vals), 2)
for i, thresh in enumerate(thresh_range):
y_pred = (prob > thresh).astype(np.int64)
cm = confusion_matrix(y_true, y_pred)
tn,fp,fn,tp = cm[0][0],cm[0][1],cm[1][0],cm[1][1]
youden_idxs[i] = tp/(tp+fn) + tn/(tn+fp)
youden_idxs = youden_idxs.reshape(1,-1)
df = pd.DataFrame(youden_idxs, index=['youden_idx'], columns=thresh_range)
df=df.stack().reset_index()
df.columns = ['Metric','threshold','youden_idx']
ax = sns.pointplot(x='threshold', y='youden_idx',data=df)
ax.set_xlabel('Threshold')
ax.set_ylabel('Youden Index')
ax.grid(b=True, which='major', color='#d3d3d3', linewidth=1.0)
ax.grid(b=True, which='minor', color='#d3d3d3', linewidth=0.5)