Diff of /process_data.py [000000] .. [3f1788]

Switch to unified view

a b/process_data.py
1
#!/usr/bin/env python
2
"""
3
  Script to process the notes by tokenizing them and merging the token:
4
  1. Load in the data
5
  2. Drop duplicates
6
  3. Merge `category`, `description`, and `text` into a new column called `note`
7
  4. Tokenize text using `scispacy` and create new column called `scispacy_note` to save tokenized text
8
  5. Save a csv file onto disk
9
"""
10
import pandas as pd
11
import spacy
12
13
from pathlib import Path
14
15
nlp = spacy.load('en_core_sci_md', disable=['parser', 'ner', 'tagger'])
16
raw_csv = Path('./data/raw_dataset.csv')
17
proc_csv = Path('./data/proc_dataset.csv')
18
19
def tokenize_text(text):
20
  tokens = [token.text for token in nlp(text)]
21
  return ' '.join(tokens)
22
23
def group_eth(eth):
24
  eth = eth.lower()
25
  if 'white' in eth:
26
    return 'white'
27
  elif 'black' in eth:
28
    return 'black'
29
  elif 'hispanic' in eth:
30
    return 'hispanic'
31
  elif 'asian' in eth:
32
    return 'asian'
33
  else:
34
    return 'unknown'
35
36
if __name__=='__main__':
37
  df = pd.read_csv(raw_csv)
38
  df.drop_duplicates(inplace=True)
39
  df['note'] = df['category'].str.cat(df['description'], sep='\n')
40
  df['note'] = df['note'].str.cat(df['text'], sep='\n')
41
  df['ethnicity'] = df['ethnicity'].apply(group_eth)
42
  df['processed_note'] = df['note'].apply(tokenize_text)
43
  df.drop(['text', 'description'], axis=1, inplace=True)
44
  df.to_csv(proc_csv, index=False)