|
a |
|
b/analysis/data_analysis.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# Dataset Preparation for Prediction of Imminent ICU Admission and Prolonged Stay" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"## Imports & Inits" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": 4, |
|
|
20 |
"metadata": { |
|
|
21 |
"ExecuteTime": { |
|
|
22 |
"end_time": "2019-08-26T18:54:33.858025Z", |
|
|
23 |
"start_time": "2019-08-26T18:54:33.683791Z" |
|
|
24 |
} |
|
|
25 |
}, |
|
|
26 |
"outputs": [ |
|
|
27 |
{ |
|
|
28 |
"name": "stdout", |
|
|
29 |
"output_type": "stream", |
|
|
30 |
"text": [ |
|
|
31 |
"The autoreload extension is already loaded. To reload it, use:\n", |
|
|
32 |
" %reload_ext autoreload\n" |
|
|
33 |
] |
|
|
34 |
} |
|
|
35 |
], |
|
|
36 |
"source": [ |
|
|
37 |
"%load_ext autoreload\n", |
|
|
38 |
"%autoreload 2" |
|
|
39 |
] |
|
|
40 |
}, |
|
|
41 |
{ |
|
|
42 |
"cell_type": "code", |
|
|
43 |
"execution_count": 5, |
|
|
44 |
"metadata": { |
|
|
45 |
"ExecuteTime": { |
|
|
46 |
"end_time": "2019-08-26T18:54:33.919510Z", |
|
|
47 |
"start_time": "2019-08-26T18:54:33.887213Z" |
|
|
48 |
} |
|
|
49 |
}, |
|
|
50 |
"outputs": [ |
|
|
51 |
{ |
|
|
52 |
"data": { |
|
|
53 |
"text/plain": [ |
|
|
54 |
"{'workdir': PosixPath('../data/workdir'),\n", |
|
|
55 |
" 'figdir': PosixPath('../data/results/figures'),\n", |
|
|
56 |
" 'resultdir': PosixPath('../data/results'),\n", |
|
|
57 |
" 'dataset_csv': PosixPath('../data/proc_dataset.csv'),\n", |
|
|
58 |
" 'imminent_adm_cols': ['hadm_id', 'processed_note', 'imminent_adm_label'],\n", |
|
|
59 |
" 'prolonged_stay_cols': ['hadm_id', 'processed_note', 'prolonged_stay_label'],\n", |
|
|
60 |
" 'cols': ['hadm_id',\n", |
|
|
61 |
" 'imminent_adm_label',\n", |
|
|
62 |
" 'prolonged_stay_label',\n", |
|
|
63 |
" 'processed_note',\n", |
|
|
64 |
" 'charttime',\n", |
|
|
65 |
" 'intime',\n", |
|
|
66 |
" 'chartinterval'],\n", |
|
|
67 |
" 'dates': ['charttime', 'intime'],\n", |
|
|
68 |
" 'ia_thresh': {'lr': 0.45, 'rf': 0.27, 'gbm': 0.435, 'mlp': 0.2},\n", |
|
|
69 |
" 'ps_thresh': {'lr': 0.39, 'rf': 0.36, 'gbm': 0.324, 'mlp': 0.27}}" |
|
|
70 |
] |
|
|
71 |
}, |
|
|
72 |
"execution_count": 5, |
|
|
73 |
"metadata": {}, |
|
|
74 |
"output_type": "execute_result" |
|
|
75 |
} |
|
|
76 |
], |
|
|
77 |
"source": [ |
|
|
78 |
"import sys\n", |
|
|
79 |
"sys.path.append('../')\n", |
|
|
80 |
"\n", |
|
|
81 |
"import math\n", |
|
|
82 |
"import numpy as np\n", |
|
|
83 |
"import pandas as pd\n", |
|
|
84 |
"import spacy\n", |
|
|
85 |
"\n", |
|
|
86 |
"import seaborn as sns\n", |
|
|
87 |
"sns.set(style = 'darkgrid')\n", |
|
|
88 |
"\n", |
|
|
89 |
"import matplotlib.pyplot as plt\n", |
|
|
90 |
"%matplotlib inline\n", |
|
|
91 |
"\n", |
|
|
92 |
"from scipy import stats\n", |
|
|
93 |
"from pathlib import Path\n", |
|
|
94 |
"\n", |
|
|
95 |
"from utils.splits import set_group_splits\n", |
|
|
96 |
"from args import args\n", |
|
|
97 |
"vars(args)" |
|
|
98 |
] |
|
|
99 |
}, |
|
|
100 |
{ |
|
|
101 |
"cell_type": "markdown", |
|
|
102 |
"metadata": { |
|
|
103 |
"heading_collapsed": true |
|
|
104 |
}, |
|
|
105 |
"source": [ |
|
|
106 |
"## Stats" |
|
|
107 |
] |
|
|
108 |
}, |
|
|
109 |
{ |
|
|
110 |
"cell_type": "code", |
|
|
111 |
"execution_count": null, |
|
|
112 |
"metadata": { |
|
|
113 |
"ExecuteTime": { |
|
|
114 |
"end_time": "2019-07-17T18:48:22.330446Z", |
|
|
115 |
"start_time": "2019-07-17T18:48:17.056668Z" |
|
|
116 |
}, |
|
|
117 |
"hidden": true |
|
|
118 |
}, |
|
|
119 |
"outputs": [], |
|
|
120 |
"source": [ |
|
|
121 |
"df = pd.read_csv(args.dataset_csv)\n", |
|
|
122 |
"ia_df = df.loc[(df['imminent_adm_label'] != -1)][args.imminent_adm_cols].reset_index(drop=True)\n", |
|
|
123 |
"ps_df = ori_df.loc[(ori_df['chartinterval'] != 0)][args.prolonged_stay_cols].reset_index(drop=True)" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"execution_count": null, |
|
|
129 |
"metadata": { |
|
|
130 |
"ExecuteTime": { |
|
|
131 |
"end_time": "2019-07-17T18:48:22.402048Z", |
|
|
132 |
"start_time": "2019-07-17T18:48:22.333813Z" |
|
|
133 |
}, |
|
|
134 |
"hidden": true |
|
|
135 |
}, |
|
|
136 |
"outputs": [], |
|
|
137 |
"source": [ |
|
|
138 |
"df['subject_id'].nunique(), df['hadm_id'].nunique()" |
|
|
139 |
] |
|
|
140 |
}, |
|
|
141 |
{ |
|
|
142 |
"cell_type": "code", |
|
|
143 |
"execution_count": null, |
|
|
144 |
"metadata": { |
|
|
145 |
"ExecuteTime": { |
|
|
146 |
"end_time": "2019-07-17T18:48:29.519915Z", |
|
|
147 |
"start_time": "2019-07-17T18:48:29.443575Z" |
|
|
148 |
}, |
|
|
149 |
"hidden": true |
|
|
150 |
}, |
|
|
151 |
"outputs": [], |
|
|
152 |
"source": [ |
|
|
153 |
"ages = df.groupby(['subject_id'])[['admission_age']].first().to_numpy().reshape(-1)\n", |
|
|
154 |
"ages[ages>100] = 100\n", |
|
|
155 |
"print(f\"Median age: {ages.mean():0.1f}\")\n", |
|
|
156 |
"print(f\"IQR: {np.percentile(ages, 25):0.1f} - {np.percentile(ages, 75):0.1f}\")" |
|
|
157 |
] |
|
|
158 |
}, |
|
|
159 |
{ |
|
|
160 |
"cell_type": "code", |
|
|
161 |
"execution_count": null, |
|
|
162 |
"metadata": { |
|
|
163 |
"ExecuteTime": { |
|
|
164 |
"end_time": "2019-07-17T18:48:53.210075Z", |
|
|
165 |
"start_time": "2019-07-17T18:48:53.002656Z" |
|
|
166 |
}, |
|
|
167 |
"hidden": true |
|
|
168 |
}, |
|
|
169 |
"outputs": [], |
|
|
170 |
"source": [ |
|
|
171 |
"df['adm_to_icu_period'].describe().reset_index()" |
|
|
172 |
] |
|
|
173 |
}, |
|
|
174 |
{ |
|
|
175 |
"cell_type": "code", |
|
|
176 |
"execution_count": null, |
|
|
177 |
"metadata": { |
|
|
178 |
"ExecuteTime": { |
|
|
179 |
"end_time": "2019-07-17T18:49:21.918238Z", |
|
|
180 |
"start_time": "2019-07-17T18:49:21.653850Z" |
|
|
181 |
}, |
|
|
182 |
"hidden": true |
|
|
183 |
}, |
|
|
184 |
"outputs": [], |
|
|
185 |
"source": [ |
|
|
186 |
"df.groupby(df['admission_type'])['hadm_id'].nunique().reset_index()" |
|
|
187 |
] |
|
|
188 |
}, |
|
|
189 |
{ |
|
|
190 |
"cell_type": "code", |
|
|
191 |
"execution_count": null, |
|
|
192 |
"metadata": { |
|
|
193 |
"ExecuteTime": { |
|
|
194 |
"end_time": "2019-07-17T18:49:22.411510Z", |
|
|
195 |
"start_time": "2019-07-17T18:49:22.249868Z" |
|
|
196 |
}, |
|
|
197 |
"hidden": true |
|
|
198 |
}, |
|
|
199 |
"outputs": [], |
|
|
200 |
"source": [ |
|
|
201 |
"df.groupby(df['ethnicity'])['subject_id'].nunique().reset_index()" |
|
|
202 |
] |
|
|
203 |
}, |
|
|
204 |
{ |
|
|
205 |
"cell_type": "markdown", |
|
|
206 |
"metadata": { |
|
|
207 |
"hidden": true |
|
|
208 |
}, |
|
|
209 |
"source": [ |
|
|
210 |
"Make sure average prevalence of random test sets is approximately same as real prevalence" |
|
|
211 |
] |
|
|
212 |
}, |
|
|
213 |
{ |
|
|
214 |
"cell_type": "code", |
|
|
215 |
"execution_count": null, |
|
|
216 |
"metadata": { |
|
|
217 |
"ExecuteTime": { |
|
|
218 |
"end_time": "2019-07-17T18:27:25.090684Z", |
|
|
219 |
"start_time": "2019-07-17T18:27:05.095345Z" |
|
|
220 |
}, |
|
|
221 |
"hidden": true |
|
|
222 |
}, |
|
|
223 |
"outputs": [], |
|
|
224 |
"source": [ |
|
|
225 |
"ia_p = []\n", |
|
|
226 |
"ps_p = []\n", |
|
|
227 |
"\n", |
|
|
228 |
"for seed in range(127, 227):\n", |
|
|
229 |
" sdf = set_group_splits(ia_df.copy(), group_col='hadm_id', seed=seed)\n", |
|
|
230 |
" test_size = len(sdf.loc[(sdf['split'] == 'test')])\n", |
|
|
231 |
" test_pos = len(sdf.loc[(sdf['split'] == 'test') & (sdf['imminent_adm_label'] == 1)])\n", |
|
|
232 |
" ia_p.append(test_pos/test_size) \n", |
|
|
233 |
" \n", |
|
|
234 |
" sdf = set_group_splits(ps_df.copy(), group_col='hadm_id', seed=seed)\n", |
|
|
235 |
" test_size = len(sdf.loc[(sdf['split'] == 'test')])\n", |
|
|
236 |
" test_pos = len(sdf.loc[(sdf['split'] == 'test') & (sdf['prolonged_stay_label'] == 1)])\n", |
|
|
237 |
" ps_p.append(test_pos/test_size) \n", |
|
|
238 |
" \n", |
|
|
239 |
"\n", |
|
|
240 |
"ia_p = np.array(ia_p)\n", |
|
|
241 |
"ps_p = np.array(ps_p)\n", |
|
|
242 |
"\n", |
|
|
243 |
"print(f\"Prevalence of Imminent Admission: {(len(ia_df.loc[ia_df['imminent_adm_label'] == 1])/len(ia_df)):0.3f}\")\n", |
|
|
244 |
"print(f\"Average of test set = {(ia_p.mean()):0.3f}, std = {(ia_p.std()):0.3f}\")\n", |
|
|
245 |
"print(f\"Prevalence of Prolonged Stay: {(len(ps_df.loc[ps_df['prolonged_stay_label'] == 1])/len(ps_df)):0.3f}\")\n", |
|
|
246 |
"print(f\"Average of test set = {(ps_p.mean()):0.3f}, std = {(ps_p.std()):0.3f}\")" |
|
|
247 |
] |
|
|
248 |
}, |
|
|
249 |
{ |
|
|
250 |
"cell_type": "code", |
|
|
251 |
"execution_count": null, |
|
|
252 |
"metadata": { |
|
|
253 |
"ExecuteTime": { |
|
|
254 |
"end_time": "2019-07-17T18:49:26.743454Z", |
|
|
255 |
"start_time": "2019-07-17T18:49:26.652037Z" |
|
|
256 |
}, |
|
|
257 |
"hidden": true |
|
|
258 |
}, |
|
|
259 |
"outputs": [], |
|
|
260 |
"source": [ |
|
|
261 |
"print(f\"Average number of notes per admission for imminent admission: {ia_df.groupby('hadm_id').size().mean():0.2f}\")\n", |
|
|
262 |
"print(f\"Average number of notes per admission for prolonged stay (and entire dataset): {ps_df.groupby('hadm_id').size().mean():0.2f}\")" |
|
|
263 |
] |
|
|
264 |
}, |
|
|
265 |
{ |
|
|
266 |
"cell_type": "code", |
|
|
267 |
"execution_count": null, |
|
|
268 |
"metadata": { |
|
|
269 |
"ExecuteTime": { |
|
|
270 |
"end_time": "2019-07-17T18:49:48.377622Z", |
|
|
271 |
"start_time": "2019-07-17T18:49:48.020027Z" |
|
|
272 |
}, |
|
|
273 |
"hidden": true |
|
|
274 |
}, |
|
|
275 |
"outputs": [], |
|
|
276 |
"source": [ |
|
|
277 |
"df.groupby(df['deathtime'].apply(lambda x: True if pd.notnull(x) else False))['subject_id'].nunique().reset_index()" |
|
|
278 |
] |
|
|
279 |
}, |
|
|
280 |
{ |
|
|
281 |
"cell_type": "code", |
|
|
282 |
"execution_count": null, |
|
|
283 |
"metadata": { |
|
|
284 |
"ExecuteTime": { |
|
|
285 |
"end_time": "2019-07-17T18:49:49.030699Z", |
|
|
286 |
"start_time": "2019-07-17T18:49:48.901279Z" |
|
|
287 |
}, |
|
|
288 |
"hidden": true |
|
|
289 |
}, |
|
|
290 |
"outputs": [], |
|
|
291 |
"source": [ |
|
|
292 |
"df.groupby(df['gender'])['subject_id'].nunique().reset_index()" |
|
|
293 |
] |
|
|
294 |
}, |
|
|
295 |
{ |
|
|
296 |
"cell_type": "markdown", |
|
|
297 |
"metadata": { |
|
|
298 |
"hidden": true |
|
|
299 |
}, |
|
|
300 |
"source": [ |
|
|
301 |
"Distribution of notes by category" |
|
|
302 |
] |
|
|
303 |
}, |
|
|
304 |
{ |
|
|
305 |
"cell_type": "code", |
|
|
306 |
"execution_count": null, |
|
|
307 |
"metadata": { |
|
|
308 |
"ExecuteTime": { |
|
|
309 |
"end_time": "2019-07-17T18:49:51.015549Z", |
|
|
310 |
"start_time": "2019-07-17T18:49:50.883550Z" |
|
|
311 |
}, |
|
|
312 |
"hidden": true |
|
|
313 |
}, |
|
|
314 |
"outputs": [], |
|
|
315 |
"source": [ |
|
|
316 |
"df.groupby(df['category']).size().reset_index()" |
|
|
317 |
] |
|
|
318 |
}, |
|
|
319 |
{ |
|
|
320 |
"cell_type": "markdown", |
|
|
321 |
"metadata": { |
|
|
322 |
"hidden": true |
|
|
323 |
}, |
|
|
324 |
"source": [ |
|
|
325 |
"Distribution of notes by category for imminent admissions and delayed admissions" |
|
|
326 |
] |
|
|
327 |
}, |
|
|
328 |
{ |
|
|
329 |
"cell_type": "code", |
|
|
330 |
"execution_count": null, |
|
|
331 |
"metadata": { |
|
|
332 |
"ExecuteTime": { |
|
|
333 |
"end_time": "2019-07-17T18:40:35.638983Z", |
|
|
334 |
"start_time": "2019-07-17T18:40:35.428118Z" |
|
|
335 |
}, |
|
|
336 |
"hidden": true |
|
|
337 |
}, |
|
|
338 |
"outputs": [], |
|
|
339 |
"source": [ |
|
|
340 |
"df.loc[(df['imminent_adm_label'] == 1)].groupby('category').size().reset_index()" |
|
|
341 |
] |
|
|
342 |
}, |
|
|
343 |
{ |
|
|
344 |
"cell_type": "code", |
|
|
345 |
"execution_count": null, |
|
|
346 |
"metadata": { |
|
|
347 |
"ExecuteTime": { |
|
|
348 |
"end_time": "2019-07-17T18:42:29.970948Z", |
|
|
349 |
"start_time": "2019-07-17T18:42:29.704004Z" |
|
|
350 |
}, |
|
|
351 |
"hidden": true |
|
|
352 |
}, |
|
|
353 |
"outputs": [], |
|
|
354 |
"source": [ |
|
|
355 |
"df.loc[(df['imminent_adm_label'] == 0)].groupby('category').size().reset_index()" |
|
|
356 |
] |
|
|
357 |
}, |
|
|
358 |
{ |
|
|
359 |
"cell_type": "markdown", |
|
|
360 |
"metadata": { |
|
|
361 |
"hidden": true |
|
|
362 |
}, |
|
|
363 |
"source": [ |
|
|
364 |
"Distribution of notes for prolonged stay and short stay" |
|
|
365 |
] |
|
|
366 |
}, |
|
|
367 |
{ |
|
|
368 |
"cell_type": "code", |
|
|
369 |
"execution_count": null, |
|
|
370 |
"metadata": { |
|
|
371 |
"ExecuteTime": { |
|
|
372 |
"end_time": "2019-07-17T18:42:30.199045Z", |
|
|
373 |
"start_time": "2019-07-17T18:42:29.974531Z" |
|
|
374 |
}, |
|
|
375 |
"hidden": true |
|
|
376 |
}, |
|
|
377 |
"outputs": [], |
|
|
378 |
"source": [ |
|
|
379 |
"df.loc[(df['prolonged_stay_label'] == 1)].groupby('category').size().reset_index()" |
|
|
380 |
] |
|
|
381 |
}, |
|
|
382 |
{ |
|
|
383 |
"cell_type": "code", |
|
|
384 |
"execution_count": null, |
|
|
385 |
"metadata": { |
|
|
386 |
"ExecuteTime": { |
|
|
387 |
"end_time": "2019-07-17T18:42:30.334632Z", |
|
|
388 |
"start_time": "2019-07-17T18:42:30.202847Z" |
|
|
389 |
}, |
|
|
390 |
"hidden": true |
|
|
391 |
}, |
|
|
392 |
"outputs": [], |
|
|
393 |
"source": [ |
|
|
394 |
"df.loc[(df['prolonged_stay_label'] == 0)].groupby('category').size().reset_index()" |
|
|
395 |
] |
|
|
396 |
}, |
|
|
397 |
{ |
|
|
398 |
"cell_type": "code", |
|
|
399 |
"execution_count": null, |
|
|
400 |
"metadata": { |
|
|
401 |
"ExecuteTime": { |
|
|
402 |
"end_time": "2019-07-17T18:49:58.769470Z", |
|
|
403 |
"start_time": "2019-07-17T18:49:58.658678Z" |
|
|
404 |
}, |
|
|
405 |
"hidden": true |
|
|
406 |
}, |
|
|
407 |
"outputs": [], |
|
|
408 |
"source": [ |
|
|
409 |
"df['icu_los'].describe().reset_index()" |
|
|
410 |
] |
|
|
411 |
}, |
|
|
412 |
{ |
|
|
413 |
"cell_type": "code", |
|
|
414 |
"execution_count": null, |
|
|
415 |
"metadata": { |
|
|
416 |
"ExecuteTime": { |
|
|
417 |
"end_time": "2019-07-17T18:52:01.571726Z", |
|
|
418 |
"start_time": "2019-07-17T18:52:01.262084Z" |
|
|
419 |
}, |
|
|
420 |
"hidden": true |
|
|
421 |
}, |
|
|
422 |
"outputs": [], |
|
|
423 |
"source": [ |
|
|
424 |
"df['note'].apply(len).describe().reset_index()" |
|
|
425 |
] |
|
|
426 |
}, |
|
|
427 |
{ |
|
|
428 |
"cell_type": "code", |
|
|
429 |
"execution_count": null, |
|
|
430 |
"metadata": { |
|
|
431 |
"ExecuteTime": { |
|
|
432 |
"end_time": "2019-07-17T18:42:23.454748Z", |
|
|
433 |
"start_time": "2019-07-17T18:42:23.043855Z" |
|
|
434 |
}, |
|
|
435 |
"hidden": true |
|
|
436 |
}, |
|
|
437 |
"outputs": [], |
|
|
438 |
"source": [ |
|
|
439 |
"df['charttime_to_icu_period'].describe().reset_index()" |
|
|
440 |
] |
|
|
441 |
}, |
|
|
442 |
{ |
|
|
443 |
"cell_type": "markdown", |
|
|
444 |
"metadata": {}, |
|
|
445 |
"source": [ |
|
|
446 |
"## Plots" |
|
|
447 |
] |
|
|
448 |
}, |
|
|
449 |
{ |
|
|
450 |
"cell_type": "code", |
|
|
451 |
"execution_count": 7, |
|
|
452 |
"metadata": { |
|
|
453 |
"ExecuteTime": { |
|
|
454 |
"end_time": "2019-08-26T18:54:53.518650Z", |
|
|
455 |
"start_time": "2019-08-26T18:54:50.602313Z" |
|
|
456 |
} |
|
|
457 |
}, |
|
|
458 |
"outputs": [ |
|
|
459 |
{ |
|
|
460 |
"data": { |
|
|
461 |
"text/plain": [ |
|
|
462 |
"Index(['subject_id', 'hadm_id', 'icustay_id', 'admission_type', 'admittime',\n", |
|
|
463 |
" 'dischtime', 'intime', 'outtime', 'charttime', 'icu_los', 'deathtime',\n", |
|
|
464 |
" 'adm_to_icu_period', 'charttime_to_icu_period', 'chartinterval',\n", |
|
|
465 |
" 'ethnicity', 'dob', 'gender', 'admission_age', 'category',\n", |
|
|
466 |
" 'imminent_adm_label', 'prolonged_stay_label', 'note', 'processed_note'],\n", |
|
|
467 |
" dtype='object')" |
|
|
468 |
] |
|
|
469 |
}, |
|
|
470 |
"execution_count": 7, |
|
|
471 |
"metadata": {}, |
|
|
472 |
"output_type": "execute_result" |
|
|
473 |
} |
|
|
474 |
], |
|
|
475 |
"source": [ |
|
|
476 |
"df = pd.read_csv(args.dataset_csv)\n", |
|
|
477 |
"df.columns" |
|
|
478 |
] |
|
|
479 |
}, |
|
|
480 |
{ |
|
|
481 |
"cell_type": "code", |
|
|
482 |
"execution_count": 11, |
|
|
483 |
"metadata": { |
|
|
484 |
"ExecuteTime": { |
|
|
485 |
"end_time": "2019-08-26T18:56:35.688519Z", |
|
|
486 |
"start_time": "2019-08-26T18:56:35.448942Z" |
|
|
487 |
} |
|
|
488 |
}, |
|
|
489 |
"outputs": [ |
|
|
490 |
{ |
|
|
491 |
"name": "stdout", |
|
|
492 |
"output_type": "stream", |
|
|
493 |
"text": [ |
|
|
494 |
"Radiology\n", |
|
|
495 |
"VEN DUP EXTEXT BIL (MAP/DVT)\n", |
|
|
496 |
"[**2162-5-17**] 8:12 AM\n", |
|
|
497 |
" [**Last Name (un) 1296**] DUP EXTEXT BIL (MAP/DVT) Clip # [**Clip Number (Radiology) 18833**]\n", |
|
|
498 |
" Reason: eval for vein harvesting*****OR second case on [**2162-5-17**]******\n", |
|
|
499 |
" Admitting Diagnosis: CORONARY ARTERY DISEASE\n", |
|
|
500 |
" ______________________________________________________________________________\n", |
|
|
501 |
" [**Hospital 2**] MEDICAL CONDITION:\n", |
|
|
502 |
" 60 year old man pre-op for CABG\n", |
|
|
503 |
" REASON FOR THIS EXAMINATION:\n", |
|
|
504 |
" eval for vein harvesting*****OR second case on [**2162-5-17**]********\n", |
|
|
505 |
" ______________________________________________________________________________\n", |
|
|
506 |
" FINAL REPORT\n", |
|
|
507 |
" HISTORY: A 60-year-old gentleman, preop for CABG. Search for conduit.\n", |
|
|
508 |
"\n", |
|
|
509 |
" TECHNIQUE: Venous mapping of the superficial veins in the lower extremities\n", |
|
|
510 |
" was performed with [**Doctor Last Name 37**]-scale and Doppler ultrasound.\n", |
|
|
511 |
"\n", |
|
|
512 |
" FINDINGS: Right great saphenous vein is patent and compressible with\n", |
|
|
513 |
" diameters ranging between 0.15 and 0.21 cm. The right small saphenous vein is\n", |
|
|
514 |
" patent and compressible with diameters ranging between 0.14 and 0.20 cm.\n", |
|
|
515 |
"\n", |
|
|
516 |
" The left great saphenous vein presented with diameters ranging between 0.06\n", |
|
|
517 |
" and 0.49 cm. It was not visualized below the calf. The left small saphenous\n", |
|
|
518 |
" vein presented thick walled and calcified.\n", |
|
|
519 |
"\n", |
|
|
520 |
" COMPARISON: None available.\n", |
|
|
521 |
"\n", |
|
|
522 |
" IMPRESSION: Patent right great and small saphenous veins, with diameters\n", |
|
|
523 |
" described above. Left great saphenous vein with small diameters below the mid\n", |
|
|
524 |
" thigh and not visualized below the calf. The left small saphenous vein\n", |
|
|
525 |
" presented with thick walls and calcifications.\n", |
|
|
526 |
"\n", |
|
|
527 |
"\n", |
|
|
528 |
"\n" |
|
|
529 |
] |
|
|
530 |
} |
|
|
531 |
], |
|
|
532 |
"source": [ |
|
|
533 |
"print(df.iloc[0]['note'])" |
|
|
534 |
] |
|
|
535 |
}, |
|
|
536 |
{ |
|
|
537 |
"cell_type": "code", |
|
|
538 |
"execution_count": 12, |
|
|
539 |
"metadata": { |
|
|
540 |
"ExecuteTime": { |
|
|
541 |
"end_time": "2019-08-26T18:56:41.114437Z", |
|
|
542 |
"start_time": "2019-08-26T18:56:41.086224Z" |
|
|
543 |
} |
|
|
544 |
}, |
|
|
545 |
"outputs": [ |
|
|
546 |
{ |
|
|
547 |
"name": "stdout", |
|
|
548 |
"output_type": "stream", |
|
|
549 |
"text": [ |
|
|
550 |
"Radiology \n", |
|
|
551 |
" VEN DUP EXTEXT BIL ( MAP/DVT ) \n", |
|
|
552 |
" [ * * 2162 - 5 - 17 * * ] 8:12 AM \n", |
|
|
553 |
" [ * * Last Name ( un ) 1296 * * ] DUP EXTEXT BIL ( MAP/DVT ) Clip # [ * * Clip Number ( Radiology ) 18833 * * ] \n", |
|
|
554 |
" Reason : eval for vein harvesting*****OR second case on [ * * 2162 - 5 - 17 * * ] * * * * * * \n", |
|
|
555 |
" Admitting Diagnosis : CORONARY ARTERY DISEASE \n", |
|
|
556 |
" _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n", |
|
|
557 |
" [ * * Hospital 2 * * ] MEDICAL CONDITION : \n", |
|
|
558 |
" 60 year old man pre-op for CABG \n", |
|
|
559 |
" REASON FOR THIS EXAMINATION : \n", |
|
|
560 |
" eval for vein harvesting*****OR second case on [ * * 2162 - 5 - 17 * * ] * * * * * * * * \n", |
|
|
561 |
" _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n", |
|
|
562 |
" FINAL REPORT \n", |
|
|
563 |
" HISTORY : A 60-year-old gentleman , preop for CABG . Search for conduit . \n", |
|
|
564 |
"\n", |
|
|
565 |
" TECHNIQUE : Venous mapping of the superficial veins in the lower extremities \n", |
|
|
566 |
" was performed with [ * * Doctor Last Name 37**]-scale and Doppler ultrasound . \n", |
|
|
567 |
"\n", |
|
|
568 |
" FINDINGS : Right great saphenous vein is patent and compressible with \n", |
|
|
569 |
" diameters ranging between 0.15 and 0.21 cm . The right small saphenous vein is \n", |
|
|
570 |
" patent and compressible with diameters ranging between 0.14 and 0.20 cm . \n", |
|
|
571 |
"\n", |
|
|
572 |
" The left great saphenous vein presented with diameters ranging between 0.06 \n", |
|
|
573 |
" and 0.49 cm . It was not visualized below the calf . The left small saphenous \n", |
|
|
574 |
" vein presented thick walled and calcified . \n", |
|
|
575 |
"\n", |
|
|
576 |
" COMPARISON : None available . \n", |
|
|
577 |
"\n", |
|
|
578 |
" IMPRESSION : Patent right great and small saphenous veins , with diameters \n", |
|
|
579 |
" described above . Left great saphenous vein with small diameters below the mid \n", |
|
|
580 |
" thigh and not visualized below the calf . The left small saphenous vein \n", |
|
|
581 |
" presented with thick walls and calcifications . \n", |
|
|
582 |
"\n", |
|
|
583 |
"\n", |
|
|
584 |
"\n" |
|
|
585 |
] |
|
|
586 |
} |
|
|
587 |
], |
|
|
588 |
"source": [ |
|
|
589 |
"print(df.iloc[0]['processed_note'])" |
|
|
590 |
] |
|
|
591 |
}, |
|
|
592 |
{ |
|
|
593 |
"cell_type": "code", |
|
|
594 |
"execution_count": null, |
|
|
595 |
"metadata": {}, |
|
|
596 |
"outputs": [], |
|
|
597 |
"source": [] |
|
|
598 |
}, |
|
|
599 |
{ |
|
|
600 |
"cell_type": "code", |
|
|
601 |
"execution_count": null, |
|
|
602 |
"metadata": { |
|
|
603 |
"ExecuteTime": { |
|
|
604 |
"end_time": "2019-07-17T18:42:36.032162Z", |
|
|
605 |
"start_time": "2019-07-17T18:42:36.008573Z" |
|
|
606 |
} |
|
|
607 |
}, |
|
|
608 |
"outputs": [], |
|
|
609 |
"source": [ |
|
|
610 |
"intervals = ['-1 ≤ t ≤ 0']\n", |
|
|
611 |
"intervals += [f'-{i+1} ≤ t ≤ -{i}' for i in range(1, 15)]\n", |
|
|
612 |
"intervals.append('t ≤ -15')" |
|
|
613 |
] |
|
|
614 |
}, |
|
|
615 |
{ |
|
|
616 |
"cell_type": "markdown", |
|
|
617 |
"metadata": {}, |
|
|
618 |
"source": [ |
|
|
619 |
"### Bar Plot of Notes Over Days" |
|
|
620 |
] |
|
|
621 |
}, |
|
|
622 |
{ |
|
|
623 |
"cell_type": "markdown", |
|
|
624 |
"metadata": {}, |
|
|
625 |
"source": [ |
|
|
626 |
"#### All Notes" |
|
|
627 |
] |
|
|
628 |
}, |
|
|
629 |
{ |
|
|
630 |
"cell_type": "code", |
|
|
631 |
"execution_count": null, |
|
|
632 |
"metadata": { |
|
|
633 |
"ExecuteTime": { |
|
|
634 |
"end_time": "2019-07-17T18:42:38.585605Z", |
|
|
635 |
"start_time": "2019-07-17T18:42:38.475792Z" |
|
|
636 |
} |
|
|
637 |
}, |
|
|
638 |
"outputs": [], |
|
|
639 |
"source": [ |
|
|
640 |
"plot_df = pd.DataFrame(df.groupby(['chartinterval']).size(), columns=['n_notes'])\n", |
|
|
641 |
"plot_df.reset_index(inplace=True, drop=True)\n", |
|
|
642 |
"plot_df['days'] = intervals" |
|
|
643 |
] |
|
|
644 |
}, |
|
|
645 |
{ |
|
|
646 |
"cell_type": "code", |
|
|
647 |
"execution_count": null, |
|
|
648 |
"metadata": { |
|
|
649 |
"ExecuteTime": { |
|
|
650 |
"end_time": "2019-07-17T18:42:41.669474Z", |
|
|
651 |
"start_time": "2019-07-17T18:42:40.376671Z" |
|
|
652 |
} |
|
|
653 |
}, |
|
|
654 |
"outputs": [], |
|
|
655 |
"source": [ |
|
|
656 |
"fig, ax = plt.subplots(figsize=(15, 8))\n", |
|
|
657 |
"sns.barplot(x='days', y='n_notes', data=plot_df, ax=ax)\n", |
|
|
658 |
"ax.set_xticklabels(ax.get_xticklabels(),rotation=45, ha='right')\n", |
|
|
659 |
"ax.set_xlabel('Time to ICU Admission (days)')\n", |
|
|
660 |
"ax.set_ylabel('# notes')\n", |
|
|
661 |
"for index, row in plot_df.iterrows():\n", |
|
|
662 |
" ax.text(index, row['n_notes'], str(row['n_notes']), color='black', ha='center', va='bottom')" |
|
|
663 |
] |
|
|
664 |
}, |
|
|
665 |
{ |
|
|
666 |
"cell_type": "code", |
|
|
667 |
"execution_count": null, |
|
|
668 |
"metadata": { |
|
|
669 |
"ExecuteTime": { |
|
|
670 |
"end_time": "2019-06-27T00:38:13.014421Z", |
|
|
671 |
"start_time": "2019-06-27T00:38:12.991010Z" |
|
|
672 |
} |
|
|
673 |
}, |
|
|
674 |
"outputs": [], |
|
|
675 |
"source": [ |
|
|
676 |
"# fig.savefig(args.figdir/'note_bp.tif', dpi=300)" |
|
|
677 |
] |
|
|
678 |
}, |
|
|
679 |
{ |
|
|
680 |
"cell_type": "markdown", |
|
|
681 |
"metadata": {}, |
|
|
682 |
"source": [ |
|
|
683 |
"#### By Category" |
|
|
684 |
] |
|
|
685 |
}, |
|
|
686 |
{ |
|
|
687 |
"cell_type": "code", |
|
|
688 |
"execution_count": null, |
|
|
689 |
"metadata": { |
|
|
690 |
"ExecuteTime": { |
|
|
691 |
"end_time": "2019-07-17T18:43:10.933200Z", |
|
|
692 |
"start_time": "2019-07-17T18:43:10.805412Z" |
|
|
693 |
} |
|
|
694 |
}, |
|
|
695 |
"outputs": [], |
|
|
696 |
"source": [ |
|
|
697 |
"def plot_intervals(ax, df, cat):\n", |
|
|
698 |
" sns.barplot(x='days', y='n_notes', data=df, ax=ax)\n", |
|
|
699 |
" ax.set_xticklabels(ax.get_xticklabels(),rotation=45, ha='right')\n", |
|
|
700 |
" ax.set_xlabel('')\n", |
|
|
701 |
" ax.set_ylabel('')\n", |
|
|
702 |
" ax.set_title(f\"Note Category: {cat}\\n# notes: {df['n_notes'].sum()}\") \n", |
|
|
703 |
"\n", |
|
|
704 |
" for index, (_, row) in enumerate(df.iterrows()):\n", |
|
|
705 |
" ax.text(index, row['n_notes'], str(row['n_notes']), color='black', ha='center', va='bottom') " |
|
|
706 |
] |
|
|
707 |
}, |
|
|
708 |
{ |
|
|
709 |
"cell_type": "code", |
|
|
710 |
"execution_count": null, |
|
|
711 |
"metadata": { |
|
|
712 |
"ExecuteTime": { |
|
|
713 |
"end_time": "2019-07-17T18:43:12.728434Z", |
|
|
714 |
"start_time": "2019-07-17T18:43:12.610095Z" |
|
|
715 |
} |
|
|
716 |
}, |
|
|
717 |
"outputs": [], |
|
|
718 |
"source": [ |
|
|
719 |
"plot_df = pd.DataFrame(df.groupby(['category', 'chartinterval']).size(), columns=['n_notes'])\n", |
|
|
720 |
"plot_df.reset_index(inplace=True)\n", |
|
|
721 |
"plot_df['days'] = plot_df['chartinterval'].apply(lambda x: intervals[x])\n", |
|
|
722 |
"plot_df.drop(['chartinterval'], inplace=True, axis=1)" |
|
|
723 |
] |
|
|
724 |
}, |
|
|
725 |
{ |
|
|
726 |
"cell_type": "code", |
|
|
727 |
"execution_count": null, |
|
|
728 |
"metadata": { |
|
|
729 |
"ExecuteTime": { |
|
|
730 |
"end_time": "2019-07-17T18:43:26.011143Z", |
|
|
731 |
"start_time": "2019-07-17T18:43:15.024678Z" |
|
|
732 |
}, |
|
|
733 |
"scrolled": false |
|
|
734 |
}, |
|
|
735 |
"outputs": [], |
|
|
736 |
"source": [ |
|
|
737 |
"fig, ax = plt.subplots(6, 2, figsize=(20, 50))\n", |
|
|
738 |
"plot_intervals(ax[0][0], plot_df.loc[plot_df['category'] == 'Case Management ', ['n_notes', 'days']], 'Case Management')\n", |
|
|
739 |
"plot_intervals(ax[0][1], plot_df.loc[plot_df['category'] == 'Consult', ['n_notes', 'days']], 'Consult')\n", |
|
|
740 |
"\n", |
|
|
741 |
"plot_intervals(ax[1][0], plot_df.loc[plot_df['category'] == 'General', ['n_notes', 'days']], 'General')\n", |
|
|
742 |
"plot_intervals(ax[1][1], plot_df.loc[plot_df['category'] == 'Nursing', ['n_notes', 'days']], 'Nursing')\n", |
|
|
743 |
"\n", |
|
|
744 |
"plot_intervals(ax[2][0], plot_df.loc[plot_df['category'] == 'Nursing/other', ['n_notes', 'days']], 'Nursing/other')\n", |
|
|
745 |
"plot_intervals(ax[2][1], plot_df.loc[plot_df['category'] == 'Nutrition', ['n_notes', 'days']], 'Nutrition')\n", |
|
|
746 |
"\n", |
|
|
747 |
"plot_intervals(ax[3][0], plot_df.loc[plot_df['category'] == 'Pharmacy', ['n_notes', 'days']], 'Pharmacy')\n", |
|
|
748 |
"plot_intervals(ax[3][1], plot_df.loc[plot_df['category'] == 'Physician ', ['n_notes', 'days',]], 'Physician')\n", |
|
|
749 |
"\n", |
|
|
750 |
"plot_intervals(ax[4][0], plot_df.loc[plot_df['category'] == 'Radiology', ['n_notes', 'days']], 'Radiology')\n", |
|
|
751 |
"plot_intervals(ax[4][1], plot_df.loc[plot_df['category'] == 'Rehab Services', ['n_notes', 'days']], 'Rehab Services')\n", |
|
|
752 |
"\n", |
|
|
753 |
"plot_intervals(ax[5][0], plot_df.loc[plot_df['category'] == 'Respiratory ', ['n_notes', 'days']], 'Respiratory')\n", |
|
|
754 |
"plot_intervals(ax[5][1], plot_df.loc[plot_df['category'] == 'Social Work', ['n_notes', 'days']], 'Social Work')\n", |
|
|
755 |
"\n", |
|
|
756 |
"fig.text(0.5, 0.1, 'Time to ICU Admission (days)', ha='center')\n", |
|
|
757 |
"fig.text(0.08, 0.5, '# notes', va='center', rotation='vertical')\n", |
|
|
758 |
"\n", |
|
|
759 |
"plt.subplots_adjust(hspace = 0.3)" |
|
|
760 |
] |
|
|
761 |
}, |
|
|
762 |
{ |
|
|
763 |
"cell_type": "code", |
|
|
764 |
"execution_count": null, |
|
|
765 |
"metadata": { |
|
|
766 |
"ExecuteTime": { |
|
|
767 |
"end_time": "2019-06-27T00:42:13.420913Z", |
|
|
768 |
"start_time": "2019-06-27T00:42:13.395654Z" |
|
|
769 |
} |
|
|
770 |
}, |
|
|
771 |
"outputs": [], |
|
|
772 |
"source": [ |
|
|
773 |
"# cats = sorted(list(df['category'].unique()))\n", |
|
|
774 |
"\n", |
|
|
775 |
"# n = 0\n", |
|
|
776 |
"# fig, ax = plt.subplots(1, 1, figsize=(10, 8))\n", |
|
|
777 |
"# plot_intervals(ax, plot_df.loc[plot_df['category'] == cats[n], ['n_notes', 'days']], cats[n])\n", |
|
|
778 |
"# ax.set_xlabel('Time to ICU Admission (days)')\n", |
|
|
779 |
"# ax.set_ylabel('# notes')" |
|
|
780 |
] |
|
|
781 |
}, |
|
|
782 |
{ |
|
|
783 |
"cell_type": "code", |
|
|
784 |
"execution_count": null, |
|
|
785 |
"metadata": { |
|
|
786 |
"ExecuteTime": { |
|
|
787 |
"end_time": "2019-06-26T19:55:34.228896Z", |
|
|
788 |
"start_time": "2019-06-26T19:55:34.204962Z" |
|
|
789 |
}, |
|
|
790 |
"scrolled": false |
|
|
791 |
}, |
|
|
792 |
"outputs": [], |
|
|
793 |
"source": [ |
|
|
794 |
"# fig.savefig(args.figdir/'note_cats_bp.tif', dpi=300)" |
|
|
795 |
] |
|
|
796 |
}, |
|
|
797 |
{ |
|
|
798 |
"cell_type": "markdown", |
|
|
799 |
"metadata": {}, |
|
|
800 |
"source": [ |
|
|
801 |
"### Note Chart Time to ICU Admission Period Histogram" |
|
|
802 |
] |
|
|
803 |
}, |
|
|
804 |
{ |
|
|
805 |
"cell_type": "markdown", |
|
|
806 |
"metadata": {}, |
|
|
807 |
"source": [ |
|
|
808 |
"#### All Notes" |
|
|
809 |
] |
|
|
810 |
}, |
|
|
811 |
{ |
|
|
812 |
"cell_type": "code", |
|
|
813 |
"execution_count": null, |
|
|
814 |
"metadata": { |
|
|
815 |
"ExecuteTime": { |
|
|
816 |
"end_time": "2019-07-17T18:43:56.456943Z", |
|
|
817 |
"start_time": "2019-07-17T18:43:56.330361Z" |
|
|
818 |
} |
|
|
819 |
}, |
|
|
820 |
"outputs": [], |
|
|
821 |
"source": [ |
|
|
822 |
"plot_df = df[['category', 'charttime_to_icu_period']]" |
|
|
823 |
] |
|
|
824 |
}, |
|
|
825 |
{ |
|
|
826 |
"cell_type": "code", |
|
|
827 |
"execution_count": null, |
|
|
828 |
"metadata": { |
|
|
829 |
"ExecuteTime": { |
|
|
830 |
"end_time": "2019-07-17T18:44:05.284861Z", |
|
|
831 |
"start_time": "2019-07-17T18:44:03.949948Z" |
|
|
832 |
} |
|
|
833 |
}, |
|
|
834 |
"outputs": [], |
|
|
835 |
"source": [ |
|
|
836 |
"fig, ax = plt.subplots(figsize=(10, 8))\n", |
|
|
837 |
"\n", |
|
|
838 |
"sns.distplot(plot_df['charttime_to_icu_period'], kde=False, ax=ax, bins=80)\n", |
|
|
839 |
"ax.set_xlabel('Period between Note Chart Time and ICU Admission Time (days)')\n", |
|
|
840 |
"ax.set_ylabel('# notes')\n", |
|
|
841 |
"ax.set_xlim(0, 60)\n", |
|
|
842 |
"\n", |
|
|
843 |
"# ax.text(ax.get_xlim()[1]*0.50, ax.get_ylim()[1]*0.80, f\"Min: {mdf['chart_icu_period'].min()}, Avg: {mdf['chart_icu_period'].mean(): 0.2f}, Max: {mdf['chart_icu_period'].max()}\", fontweight='bold', fontsize=15, ha='center', va='bottom')" |
|
|
844 |
] |
|
|
845 |
}, |
|
|
846 |
{ |
|
|
847 |
"cell_type": "code", |
|
|
848 |
"execution_count": null, |
|
|
849 |
"metadata": { |
|
|
850 |
"ExecuteTime": { |
|
|
851 |
"end_time": "2019-06-26T19:55:34.712151Z", |
|
|
852 |
"start_time": "2019-06-26T19:55:34.686551Z" |
|
|
853 |
} |
|
|
854 |
}, |
|
|
855 |
"outputs": [], |
|
|
856 |
"source": [ |
|
|
857 |
"# fig.savefig(args.figdir/'note_icu_period_hist.tif', dpi=300)" |
|
|
858 |
] |
|
|
859 |
}, |
|
|
860 |
{ |
|
|
861 |
"cell_type": "markdown", |
|
|
862 |
"metadata": {}, |
|
|
863 |
"source": [ |
|
|
864 |
"#### By Category" |
|
|
865 |
] |
|
|
866 |
}, |
|
|
867 |
{ |
|
|
868 |
"cell_type": "code", |
|
|
869 |
"execution_count": null, |
|
|
870 |
"metadata": { |
|
|
871 |
"ExecuteTime": { |
|
|
872 |
"end_time": "2019-07-17T18:44:13.676427Z", |
|
|
873 |
"start_time": "2019-07-17T18:44:13.571725Z" |
|
|
874 |
} |
|
|
875 |
}, |
|
|
876 |
"outputs": [], |
|
|
877 |
"source": [ |
|
|
878 |
"def plot_period(ax, df, cat):\n", |
|
|
879 |
" sns.distplot(df, kde=False, ax=ax, bins=10)\n", |
|
|
880 |
" ax.set_xlabel('')\n", |
|
|
881 |
" ax.set_ylabel('')\n", |
|
|
882 |
" ax.set_title(f\"Note Category: {cat}\") " |
|
|
883 |
] |
|
|
884 |
}, |
|
|
885 |
{ |
|
|
886 |
"cell_type": "code", |
|
|
887 |
"execution_count": null, |
|
|
888 |
"metadata": { |
|
|
889 |
"ExecuteTime": { |
|
|
890 |
"end_time": "2019-07-17T18:45:21.689010Z", |
|
|
891 |
"start_time": "2019-07-17T18:45:12.353337Z" |
|
|
892 |
}, |
|
|
893 |
"scrolled": false |
|
|
894 |
}, |
|
|
895 |
"outputs": [], |
|
|
896 |
"source": [ |
|
|
897 |
"fig, ax = plt.subplots(6, 2, figsize=(20, 50))\n", |
|
|
898 |
"plot_period(ax[0][0], plot_df.loc[plot_df['category'] == 'Case Management ', ['charttime_to_icu_period']], 'Case Management')\n", |
|
|
899 |
"plot_period(ax[0][1], plot_df.loc[plot_df['category'] == 'Consult', ['charttime_to_icu_period']], 'Consult')\n", |
|
|
900 |
"\n", |
|
|
901 |
"plot_period(ax[1][0], plot_df.loc[plot_df['category'] == 'General', ['charttime_to_icu_period']], 'General')\n", |
|
|
902 |
"plot_period(ax[1][1], plot_df.loc[plot_df['category'] == 'Nursing', ['charttime_to_icu_period']], 'Nursing')\n", |
|
|
903 |
"\n", |
|
|
904 |
"plot_period(ax[2][0], plot_df.loc[plot_df['category'] == 'Nursing/other', ['charttime_to_icu_period']], 'Nursing/other')\n", |
|
|
905 |
"plot_period(ax[2][1], plot_df.loc[plot_df['category'] == 'Nutrition', ['charttime_to_icu_period']], 'Nutrition')\n", |
|
|
906 |
"\n", |
|
|
907 |
"plot_period(ax[3][0], plot_df.loc[plot_df['category'] == 'Pharmacy', ['charttime_to_icu_period']], 'Pharmacy')\n", |
|
|
908 |
"plot_period(ax[3][1], plot_df.loc[plot_df['category'] == 'Physician ', ['charttime_to_icu_period',]], 'Physician')\n", |
|
|
909 |
"\n", |
|
|
910 |
"plot_period(ax[4][0], plot_df.loc[plot_df['category'] == 'Radiology', ['charttime_to_icu_period']], 'Radiology')\n", |
|
|
911 |
"plot_period(ax[4][1], plot_df.loc[plot_df['category'] == 'Rehab Services', ['charttime_to_icu_period']], 'Rehab Services')\n", |
|
|
912 |
"\n", |
|
|
913 |
"plot_period(ax[5][0], plot_df.loc[plot_df['category'] == 'Respiratory ', ['charttime_to_icu_period']], 'Respiratory')\n", |
|
|
914 |
"plot_period(ax[5][1], plot_df.loc[plot_df['category'] == 'Social Work', ['charttime_to_icu_period']], 'Social Work')\n", |
|
|
915 |
"\n", |
|
|
916 |
"fig.text(0.5, 0.11, 'Period between Note Chart Time and ICU Admission Time (days)', ha='center')\n", |
|
|
917 |
"fig.text(0.08, 0.5, '# notes', va='center', rotation='vertical')\n", |
|
|
918 |
"\n", |
|
|
919 |
"plt.subplots_adjust(hspace = 0.1)" |
|
|
920 |
] |
|
|
921 |
}, |
|
|
922 |
{ |
|
|
923 |
"cell_type": "code", |
|
|
924 |
"execution_count": null, |
|
|
925 |
"metadata": { |
|
|
926 |
"ExecuteTime": { |
|
|
927 |
"end_time": "2019-06-27T00:43:24.745337Z", |
|
|
928 |
"start_time": "2019-06-27T00:43:24.720208Z" |
|
|
929 |
} |
|
|
930 |
}, |
|
|
931 |
"outputs": [], |
|
|
932 |
"source": [ |
|
|
933 |
"# cats = sorted(list(df['category'].unique()))\n", |
|
|
934 |
"\n", |
|
|
935 |
"# n = 0\n", |
|
|
936 |
"# fig, ax = plt.subplots(1, 1, figsize=(10, 8))\n", |
|
|
937 |
"# plot_period(ax, plot_df.loc[plot_df['category'] == cats[n], ['chart_icu_period']], cats[n])\n", |
|
|
938 |
"# ax.set_xlabel('Time to ICU Admission (days)')\n", |
|
|
939 |
"# ax.set_ylabel('# notes')" |
|
|
940 |
] |
|
|
941 |
}, |
|
|
942 |
{ |
|
|
943 |
"cell_type": "code", |
|
|
944 |
"execution_count": null, |
|
|
945 |
"metadata": { |
|
|
946 |
"ExecuteTime": { |
|
|
947 |
"end_time": "2019-06-26T19:35:38.476961Z", |
|
|
948 |
"start_time": "2019-06-26T19:35:38.451886Z" |
|
|
949 |
}, |
|
|
950 |
"scrolled": false |
|
|
951 |
}, |
|
|
952 |
"outputs": [], |
|
|
953 |
"source": [ |
|
|
954 |
"# fig.savefig(args.figdir/'note_cat_icu_period_hist.tif', dpi=300)" |
|
|
955 |
] |
|
|
956 |
}, |
|
|
957 |
{ |
|
|
958 |
"cell_type": "markdown", |
|
|
959 |
"metadata": {}, |
|
|
960 |
"source": [ |
|
|
961 |
"### Hospital Admission to ICU Admission Period Histogram" |
|
|
962 |
] |
|
|
963 |
}, |
|
|
964 |
{ |
|
|
965 |
"cell_type": "code", |
|
|
966 |
"execution_count": null, |
|
|
967 |
"metadata": { |
|
|
968 |
"ExecuteTime": { |
|
|
969 |
"end_time": "2019-07-17T18:45:44.547021Z", |
|
|
970 |
"start_time": "2019-07-17T18:45:44.519812Z" |
|
|
971 |
} |
|
|
972 |
}, |
|
|
973 |
"outputs": [], |
|
|
974 |
"source": [ |
|
|
975 |
"plot_df = df[['adm_to_icu_period']]" |
|
|
976 |
] |
|
|
977 |
}, |
|
|
978 |
{ |
|
|
979 |
"cell_type": "code", |
|
|
980 |
"execution_count": null, |
|
|
981 |
"metadata": { |
|
|
982 |
"ExecuteTime": { |
|
|
983 |
"end_time": "2019-07-17T18:45:46.580796Z", |
|
|
984 |
"start_time": "2019-07-17T18:45:45.217784Z" |
|
|
985 |
} |
|
|
986 |
}, |
|
|
987 |
"outputs": [], |
|
|
988 |
"source": [ |
|
|
989 |
"fig, ax = plt.subplots(figsize=(10, 8))\n", |
|
|
990 |
"\n", |
|
|
991 |
"sns.distplot(plot_df, kde=False, ax=ax, bins=80)\n", |
|
|
992 |
"ax.set_xlabel('Time between hospital admission and ICU admission (days)')\n", |
|
|
993 |
"ax.set_ylabel('# notes')\n", |
|
|
994 |
"ax.set_xlim(0, 70)\n", |
|
|
995 |
"# ax.text(ax.get_xlim()[1]*0.50, ax.get_ylim()[1]*0.80, f\"Min: {mdf['adm_icu_period'].min()}, Avg: {mdf['adm_icu_period'].mean(): 0.2f}, Max: {mdf['adm_icu_period'].max()}\", fontweight='bold', fontsize=15, ha='center', va='bottom') " |
|
|
996 |
] |
|
|
997 |
}, |
|
|
998 |
{ |
|
|
999 |
"cell_type": "code", |
|
|
1000 |
"execution_count": null, |
|
|
1001 |
"metadata": {}, |
|
|
1002 |
"outputs": [], |
|
|
1003 |
"source": [ |
|
|
1004 |
"# fig.savefig(args.figdir/'adm_icu_period_hist.tif', dpi=300)" |
|
|
1005 |
] |
|
|
1006 |
}, |
|
|
1007 |
{ |
|
|
1008 |
"cell_type": "markdown", |
|
|
1009 |
"metadata": {}, |
|
|
1010 |
"source": [ |
|
|
1011 |
"### Note Length Histogram" |
|
|
1012 |
] |
|
|
1013 |
}, |
|
|
1014 |
{ |
|
|
1015 |
"cell_type": "code", |
|
|
1016 |
"execution_count": null, |
|
|
1017 |
"metadata": { |
|
|
1018 |
"ExecuteTime": { |
|
|
1019 |
"end_time": "2019-07-17T18:45:50.860829Z", |
|
|
1020 |
"start_time": "2019-07-17T18:45:49.137114Z" |
|
|
1021 |
} |
|
|
1022 |
}, |
|
|
1023 |
"outputs": [], |
|
|
1024 |
"source": [ |
|
|
1025 |
"fig, ax = plt.subplots(figsize=(10, 8))\n", |
|
|
1026 |
"sns.distplot(df['note'].apply(len), kde=False, ax=ax, bins=100)\n", |
|
|
1027 |
"ax.set_xlabel('Length of Note (characters)')\n", |
|
|
1028 |
"ax.set_ylabel('# notes')" |
|
|
1029 |
] |
|
|
1030 |
}, |
|
|
1031 |
{ |
|
|
1032 |
"cell_type": "code", |
|
|
1033 |
"execution_count": null, |
|
|
1034 |
"metadata": { |
|
|
1035 |
"ExecuteTime": { |
|
|
1036 |
"end_time": "2019-06-26T19:59:38.291139Z", |
|
|
1037 |
"start_time": "2019-06-26T19:59:38.267860Z" |
|
|
1038 |
} |
|
|
1039 |
}, |
|
|
1040 |
"outputs": [], |
|
|
1041 |
"source": [ |
|
|
1042 |
"# fig.savefig(args.figdir/'note_len_hist.tif', dpi=300)" |
|
|
1043 |
] |
|
|
1044 |
}, |
|
|
1045 |
{ |
|
|
1046 |
"cell_type": "markdown", |
|
|
1047 |
"metadata": {}, |
|
|
1048 |
"source": [ |
|
|
1049 |
"### Imminent ICU Prediction Class Distribution" |
|
|
1050 |
] |
|
|
1051 |
}, |
|
|
1052 |
{ |
|
|
1053 |
"cell_type": "code", |
|
|
1054 |
"execution_count": null, |
|
|
1055 |
"metadata": { |
|
|
1056 |
"ExecuteTime": { |
|
|
1057 |
"end_time": "2019-07-17T18:53:53.526861Z", |
|
|
1058 |
"start_time": "2019-07-17T18:53:53.429558Z" |
|
|
1059 |
} |
|
|
1060 |
}, |
|
|
1061 |
"outputs": [], |
|
|
1062 |
"source": [ |
|
|
1063 |
"desc = ['Unused', 'Delayed Admission', 'Imminent Admission']" |
|
|
1064 |
] |
|
|
1065 |
}, |
|
|
1066 |
{ |
|
|
1067 |
"cell_type": "markdown", |
|
|
1068 |
"metadata": {}, |
|
|
1069 |
"source": [ |
|
|
1070 |
"#### Without Admissions" |
|
|
1071 |
] |
|
|
1072 |
}, |
|
|
1073 |
{ |
|
|
1074 |
"cell_type": "code", |
|
|
1075 |
"execution_count": null, |
|
|
1076 |
"metadata": { |
|
|
1077 |
"ExecuteTime": { |
|
|
1078 |
"end_time": "2019-07-17T18:53:54.551036Z", |
|
|
1079 |
"start_time": "2019-07-17T18:53:54.423540Z" |
|
|
1080 |
} |
|
|
1081 |
}, |
|
|
1082 |
"outputs": [], |
|
|
1083 |
"source": [ |
|
|
1084 |
"plot_df = pd.DataFrame(df.groupby(['imminent_adm_label']).size(), columns=['n_notes']).reset_index()\n", |
|
|
1085 |
"plot_df['imminent_adm_label'] = desc\n", |
|
|
1086 |
"plot_df = plot_df.reindex([2, 1, 0])\n", |
|
|
1087 |
"plot_df.reset_index(inplace=True, drop=True)" |
|
|
1088 |
] |
|
|
1089 |
}, |
|
|
1090 |
{ |
|
|
1091 |
"cell_type": "code", |
|
|
1092 |
"execution_count": null, |
|
|
1093 |
"metadata": { |
|
|
1094 |
"ExecuteTime": { |
|
|
1095 |
"end_time": "2019-07-17T18:53:55.840770Z", |
|
|
1096 |
"start_time": "2019-07-17T18:53:54.913513Z" |
|
|
1097 |
} |
|
|
1098 |
}, |
|
|
1099 |
"outputs": [], |
|
|
1100 |
"source": [ |
|
|
1101 |
"fig, ax = plt.subplots(figsize=(10, 8))\n", |
|
|
1102 |
"sns.barplot(x='imminent_adm_label', y='n_notes', data=plot_df, ax=ax)\n", |
|
|
1103 |
"ax.set_xlabel('Imminent Class Label')\n", |
|
|
1104 |
"ax.set_ylabel('# notes')\n", |
|
|
1105 |
"for index, row in plot_df.iterrows():\n", |
|
|
1106 |
" ax.text(index+0.05, row['n_notes']+50, str(row['n_notes']), color='black', ha='right', va='bottom')" |
|
|
1107 |
] |
|
|
1108 |
}, |
|
|
1109 |
{ |
|
|
1110 |
"cell_type": "code", |
|
|
1111 |
"execution_count": null, |
|
|
1112 |
"metadata": { |
|
|
1113 |
"ExecuteTime": { |
|
|
1114 |
"end_time": "2019-06-27T01:07:18.818779Z", |
|
|
1115 |
"start_time": "2019-06-27T01:07:18.795768Z" |
|
|
1116 |
} |
|
|
1117 |
}, |
|
|
1118 |
"outputs": [], |
|
|
1119 |
"source": [ |
|
|
1120 |
"# fig.savefig(args.figdir/'imminent_label_bp.tif', dpi=300)" |
|
|
1121 |
] |
|
|
1122 |
}, |
|
|
1123 |
{ |
|
|
1124 |
"cell_type": "markdown", |
|
|
1125 |
"metadata": {}, |
|
|
1126 |
"source": [ |
|
|
1127 |
"#### With Admissions" |
|
|
1128 |
] |
|
|
1129 |
}, |
|
|
1130 |
{ |
|
|
1131 |
"cell_type": "code", |
|
|
1132 |
"execution_count": null, |
|
|
1133 |
"metadata": { |
|
|
1134 |
"ExecuteTime": { |
|
|
1135 |
"end_time": "2019-07-17T18:54:20.657113Z", |
|
|
1136 |
"start_time": "2019-07-17T18:54:20.298763Z" |
|
|
1137 |
} |
|
|
1138 |
}, |
|
|
1139 |
"outputs": [], |
|
|
1140 |
"source": [ |
|
|
1141 |
"p1 = pd.DataFrame(df.groupby(['imminent_adm_label']).size(), columns=['n_notes']).reset_index()\n", |
|
|
1142 |
"p2 = df.groupby(['imminent_adm_label'])['hadm_id'].nunique().reset_index()\n", |
|
|
1143 |
"p = p1.merge(p2, on=['imminent_adm_label'])" |
|
|
1144 |
] |
|
|
1145 |
}, |
|
|
1146 |
{ |
|
|
1147 |
"cell_type": "code", |
|
|
1148 |
"execution_count": null, |
|
|
1149 |
"metadata": { |
|
|
1150 |
"ExecuteTime": { |
|
|
1151 |
"end_time": "2019-07-17T18:54:20.757964Z", |
|
|
1152 |
"start_time": "2019-07-17T18:54:20.660979Z" |
|
|
1153 |
} |
|
|
1154 |
}, |
|
|
1155 |
"outputs": [], |
|
|
1156 |
"source": [ |
|
|
1157 |
"p['imminent_adm_label'] = desc" |
|
|
1158 |
] |
|
|
1159 |
}, |
|
|
1160 |
{ |
|
|
1161 |
"cell_type": "code", |
|
|
1162 |
"execution_count": null, |
|
|
1163 |
"metadata": { |
|
|
1164 |
"ExecuteTime": { |
|
|
1165 |
"end_time": "2019-07-17T18:54:21.287840Z", |
|
|
1166 |
"start_time": "2019-07-17T18:54:21.204792Z" |
|
|
1167 |
} |
|
|
1168 |
}, |
|
|
1169 |
"outputs": [], |
|
|
1170 |
"source": [ |
|
|
1171 |
"p = p.reindex([2,1,0])\n", |
|
|
1172 |
"p.reset_index(inplace=True, drop=True)\n", |
|
|
1173 |
"p" |
|
|
1174 |
] |
|
|
1175 |
}, |
|
|
1176 |
{ |
|
|
1177 |
"cell_type": "code", |
|
|
1178 |
"execution_count": null, |
|
|
1179 |
"metadata": { |
|
|
1180 |
"ExecuteTime": { |
|
|
1181 |
"end_time": "2019-07-17T18:54:29.367296Z", |
|
|
1182 |
"start_time": "2019-07-17T18:54:29.263198Z" |
|
|
1183 |
} |
|
|
1184 |
}, |
|
|
1185 |
"outputs": [], |
|
|
1186 |
"source": [ |
|
|
1187 |
"plot_df = p.copy()\n", |
|
|
1188 |
"plot_df.rename(columns={'hadm_id':'# Admissions', 'n_notes':'# Notes'}, inplace=True)\n", |
|
|
1189 |
"plot_df = pd.melt(plot_df, id_vars='imminent_adm_label', var_name='Legend', value_name='counts')" |
|
|
1190 |
] |
|
|
1191 |
}, |
|
|
1192 |
{ |
|
|
1193 |
"cell_type": "code", |
|
|
1194 |
"execution_count": null, |
|
|
1195 |
"metadata": { |
|
|
1196 |
"ExecuteTime": { |
|
|
1197 |
"end_time": "2019-07-17T18:54:35.592328Z", |
|
|
1198 |
"start_time": "2019-07-17T18:54:34.576044Z" |
|
|
1199 |
} |
|
|
1200 |
}, |
|
|
1201 |
"outputs": [], |
|
|
1202 |
"source": [ |
|
|
1203 |
"fig, ax = plt.subplots(figsize=(10, 8))\n", |
|
|
1204 |
"\n", |
|
|
1205 |
"sns.barplot(x='imminent_adm_label', y='counts', hue='Legend', data=plot_df, ax=ax)\n", |
|
|
1206 |
"ax.set_xticklabels(ax.get_xticklabels(), ha='right')\n", |
|
|
1207 |
"ax.set_xlabel('Imminent Class Label')\n", |
|
|
1208 |
"ax.set_ylabel('# notes')\n", |
|
|
1209 |
"\n", |
|
|
1210 |
"for index, row in plot_df.iterrows():\n", |
|
|
1211 |
" if index < len(plot_df)//2:\n", |
|
|
1212 |
" ax.text(index-0.13, row['counts']+50, str(row['counts']), color='black', ha='right', va='bottom')\n", |
|
|
1213 |
" else:\n", |
|
|
1214 |
" ax.text(index % (len(plot_df)//2)+0.25, row['counts']+50, str(row['counts']), color='black', ha='right', va='bottom')" |
|
|
1215 |
] |
|
|
1216 |
}, |
|
|
1217 |
{ |
|
|
1218 |
"cell_type": "code", |
|
|
1219 |
"execution_count": null, |
|
|
1220 |
"metadata": {}, |
|
|
1221 |
"outputs": [], |
|
|
1222 |
"source": [ |
|
|
1223 |
"# fig.savefig(args.figdir/'imminent_label_adms_bp.tif', dpi=300)" |
|
|
1224 |
] |
|
|
1225 |
}, |
|
|
1226 |
{ |
|
|
1227 |
"cell_type": "markdown", |
|
|
1228 |
"metadata": {}, |
|
|
1229 |
"source": [ |
|
|
1230 |
"### Prolonged Stay Class Distribution" |
|
|
1231 |
] |
|
|
1232 |
}, |
|
|
1233 |
{ |
|
|
1234 |
"cell_type": "code", |
|
|
1235 |
"execution_count": null, |
|
|
1236 |
"metadata": { |
|
|
1237 |
"ExecuteTime": { |
|
|
1238 |
"end_time": "2019-07-17T19:00:53.843117Z", |
|
|
1239 |
"start_time": "2019-07-17T19:00:53.541066Z" |
|
|
1240 |
} |
|
|
1241 |
}, |
|
|
1242 |
"outputs": [], |
|
|
1243 |
"source": [ |
|
|
1244 |
"desc = ['Short Stay', 'Prolonged Stay']" |
|
|
1245 |
] |
|
|
1246 |
}, |
|
|
1247 |
{ |
|
|
1248 |
"cell_type": "markdown", |
|
|
1249 |
"metadata": {}, |
|
|
1250 |
"source": [ |
|
|
1251 |
"#### Without Admissions" |
|
|
1252 |
] |
|
|
1253 |
}, |
|
|
1254 |
{ |
|
|
1255 |
"cell_type": "code", |
|
|
1256 |
"execution_count": null, |
|
|
1257 |
"metadata": { |
|
|
1258 |
"ExecuteTime": { |
|
|
1259 |
"end_time": "2019-07-17T19:01:08.738416Z", |
|
|
1260 |
"start_time": "2019-07-17T19:01:08.586921Z" |
|
|
1261 |
} |
|
|
1262 |
}, |
|
|
1263 |
"outputs": [], |
|
|
1264 |
"source": [ |
|
|
1265 |
"plot_df = pd.DataFrame(df.groupby(['prolonged_stay_label']).size(), columns=['n_notes']).reset_index()\n", |
|
|
1266 |
"plot_df['prolonged_stay_label'] = desc\n", |
|
|
1267 |
"plot_df = plot_df.reindex([1, 0])\n", |
|
|
1268 |
"plot_df.reset_index(inplace=True, drop=True)\n", |
|
|
1269 |
"plot_df" |
|
|
1270 |
] |
|
|
1271 |
}, |
|
|
1272 |
{ |
|
|
1273 |
"cell_type": "code", |
|
|
1274 |
"execution_count": null, |
|
|
1275 |
"metadata": { |
|
|
1276 |
"ExecuteTime": { |
|
|
1277 |
"end_time": "2019-07-17T19:01:18.296482Z", |
|
|
1278 |
"start_time": "2019-07-17T19:01:17.775519Z" |
|
|
1279 |
} |
|
|
1280 |
}, |
|
|
1281 |
"outputs": [], |
|
|
1282 |
"source": [ |
|
|
1283 |
"fig, ax = plt.subplots(figsize=(10, 8))\n", |
|
|
1284 |
"sns.barplot(x='prolonged_stay_label', y='n_notes', data=plot_df, ax=ax)\n", |
|
|
1285 |
"ax.set_xlabel('5 Day Discharge Class Label')\n", |
|
|
1286 |
"ax.set_ylabel('# notes')\n", |
|
|
1287 |
"for index, row in plot_df.iterrows():\n", |
|
|
1288 |
" ax.text(index+0.05, row['n_notes']+50, str(row['n_notes']), color='black', ha='right', va='bottom')" |
|
|
1289 |
] |
|
|
1290 |
}, |
|
|
1291 |
{ |
|
|
1292 |
"cell_type": "code", |
|
|
1293 |
"execution_count": null, |
|
|
1294 |
"metadata": { |
|
|
1295 |
"ExecuteTime": { |
|
|
1296 |
"end_time": "2019-06-30T21:09:10.237355Z", |
|
|
1297 |
"start_time": "2019-06-30T21:09:10.163Z" |
|
|
1298 |
} |
|
|
1299 |
}, |
|
|
1300 |
"outputs": [], |
|
|
1301 |
"source": [ |
|
|
1302 |
"# fig.savefig(args.figdir/'discharge_label_bp.tif', dpi=300)" |
|
|
1303 |
] |
|
|
1304 |
}, |
|
|
1305 |
{ |
|
|
1306 |
"cell_type": "markdown", |
|
|
1307 |
"metadata": {}, |
|
|
1308 |
"source": [ |
|
|
1309 |
"#### With Admissions" |
|
|
1310 |
] |
|
|
1311 |
}, |
|
|
1312 |
{ |
|
|
1313 |
"cell_type": "code", |
|
|
1314 |
"execution_count": null, |
|
|
1315 |
"metadata": { |
|
|
1316 |
"ExecuteTime": { |
|
|
1317 |
"end_time": "2019-07-17T19:01:34.791633Z", |
|
|
1318 |
"start_time": "2019-07-17T19:01:34.568783Z" |
|
|
1319 |
} |
|
|
1320 |
}, |
|
|
1321 |
"outputs": [], |
|
|
1322 |
"source": [ |
|
|
1323 |
"p1 = pd.DataFrame(df.groupby(['prolonged_stay_label']).size(), columns=['n_notes']).reset_index()\n", |
|
|
1324 |
"p2 = df.groupby(['prolonged_stay_label'])['hadm_id'].nunique().reset_index()\n", |
|
|
1325 |
"p = p1.merge(p2, on=['prolonged_stay_label'])\n", |
|
|
1326 |
"p['prolonged_stay_label'] = desc\n", |
|
|
1327 |
"p = p.reindex([1,0])\n", |
|
|
1328 |
"p.reset_index(inplace=True, drop=True)\n", |
|
|
1329 |
"p" |
|
|
1330 |
] |
|
|
1331 |
}, |
|
|
1332 |
{ |
|
|
1333 |
"cell_type": "code", |
|
|
1334 |
"execution_count": null, |
|
|
1335 |
"metadata": { |
|
|
1336 |
"ExecuteTime": { |
|
|
1337 |
"end_time": "2019-07-17T19:01:42.249351Z", |
|
|
1338 |
"start_time": "2019-07-17T19:01:42.137270Z" |
|
|
1339 |
} |
|
|
1340 |
}, |
|
|
1341 |
"outputs": [], |
|
|
1342 |
"source": [ |
|
|
1343 |
"plot_df = p.copy()\n", |
|
|
1344 |
"plot_df.rename(columns={'hadm_id':'# Admissions', 'n_notes':'# Notes'}, inplace=True)\n", |
|
|
1345 |
"plot_df = pd.melt(plot_df, id_vars='prolonged_stay_label', var_name='Legend', value_name='counts')" |
|
|
1346 |
] |
|
|
1347 |
}, |
|
|
1348 |
{ |
|
|
1349 |
"cell_type": "code", |
|
|
1350 |
"execution_count": null, |
|
|
1351 |
"metadata": { |
|
|
1352 |
"ExecuteTime": { |
|
|
1353 |
"end_time": "2019-07-17T19:01:47.756030Z", |
|
|
1354 |
"start_time": "2019-07-17T19:01:47.553253Z" |
|
|
1355 |
} |
|
|
1356 |
}, |
|
|
1357 |
"outputs": [], |
|
|
1358 |
"source": [ |
|
|
1359 |
"fig, ax = plt.subplots(figsize=(10, 8))\n", |
|
|
1360 |
"\n", |
|
|
1361 |
"sns.barplot(x='prolonged_stay_label', y='counts', hue='Legend', data=plot_df, ax=ax)\n", |
|
|
1362 |
"ax.set_xticklabels(ax.get_xticklabels(), ha='right')\n", |
|
|
1363 |
"ax.set_xlabel('5 Day Discharge Class Label')\n", |
|
|
1364 |
"ax.set_ylabel('# notes')\n", |
|
|
1365 |
"\n", |
|
|
1366 |
"for index, row in plot_df.iterrows():\n", |
|
|
1367 |
" if index < len(plot_df)//2:\n", |
|
|
1368 |
" ax.text(index-0.13, row['counts']+50, str(row['counts']), color='black', ha='right', va='bottom')\n", |
|
|
1369 |
" else:\n", |
|
|
1370 |
" ax.text(index % (len(plot_df)//2)+0.25, row['counts']+50, str(row['counts']), color='black', ha='right', va='bottom')" |
|
|
1371 |
] |
|
|
1372 |
}, |
|
|
1373 |
{ |
|
|
1374 |
"cell_type": "code", |
|
|
1375 |
"execution_count": null, |
|
|
1376 |
"metadata": {}, |
|
|
1377 |
"outputs": [], |
|
|
1378 |
"source": [ |
|
|
1379 |
"# fig.savefig(args.figdir/'discharge_label_adms_bp.tif', dpi=300)" |
|
|
1380 |
] |
|
|
1381 |
} |
|
|
1382 |
], |
|
|
1383 |
"metadata": { |
|
|
1384 |
"kernelspec": { |
|
|
1385 |
"display_name": "Python 3", |
|
|
1386 |
"language": "python", |
|
|
1387 |
"name": "python3" |
|
|
1388 |
}, |
|
|
1389 |
"language_info": { |
|
|
1390 |
"codemirror_mode": { |
|
|
1391 |
"name": "ipython", |
|
|
1392 |
"version": 3 |
|
|
1393 |
}, |
|
|
1394 |
"file_extension": ".py", |
|
|
1395 |
"mimetype": "text/x-python", |
|
|
1396 |
"name": "python", |
|
|
1397 |
"nbconvert_exporter": "python", |
|
|
1398 |
"pygments_lexer": "ipython3", |
|
|
1399 |
"version": "3.7.4" |
|
|
1400 |
}, |
|
|
1401 |
"toc": { |
|
|
1402 |
"base_numbering": 1, |
|
|
1403 |
"nav_menu": {}, |
|
|
1404 |
"number_sections": true, |
|
|
1405 |
"sideBar": true, |
|
|
1406 |
"skip_h1_title": true, |
|
|
1407 |
"title_cell": "Table of Contents", |
|
|
1408 |
"title_sidebar": "Contents", |
|
|
1409 |
"toc_cell": false, |
|
|
1410 |
"toc_position": { |
|
|
1411 |
"height": "calc(100% - 180px)", |
|
|
1412 |
"left": "10px", |
|
|
1413 |
"top": "150px", |
|
|
1414 |
"width": "165px" |
|
|
1415 |
}, |
|
|
1416 |
"toc_section_display": true, |
|
|
1417 |
"toc_window_display": false |
|
|
1418 |
} |
|
|
1419 |
}, |
|
|
1420 |
"nbformat": 4, |
|
|
1421 |
"nbformat_minor": 2 |
|
|
1422 |
} |