[d8a979]: / code / adiposity_rebound / ar_calc.py

Download this file

426 lines (335 with data), 17.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
##### SETUP ######
#import sys
#sys.path.append('../visualize')
#import vis_quartiles_individual
import pickle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
from scipy import interpolate
import math
##### VARIABLES ######
attributes = ["ht","wt","bmi"]
percentiles = np.array([3, 5, 10, 25, 50, 75, 85, 90, 95, 97])
intervals = np.trunc(np.concatenate((np.array([0.01]),np.arange(.05,.2,.05),np.arange(.4,2,.2), np.arange(2,20,.5)))*100)/100
## Plot figures?
plot_bool = False
## Plot for blog style if plot_bool is true?
plot_for_blog = False
## Input individual patients? (Otherwise pulls all patients from BMI_filtered_contain_age5.pkl)
input_patient_bool = False
## Individual patient to analyze if input_patient_bool is true
patient_id = 16785 #16785, 10258, 9026, 12322, 11995, 12552
## Limit number of patients plot
count_bool = False
## Plot log on y axis?
plot_log = False
font_size = 14
######################
##### FUNCTIONS ######
def find_percentile(id_patient, age, grouped_age, grouped_patient_age):
df_datapoint = grouped_patient_age.get_group((id_patient, age))
ht = df_datapoint["ht"]
wt = df_datapoint["wt"]
bmi = df_datapoint["bmi"]
gender = df_datapoint["gender"]
group_age = grouped_age.get_group(age)
group_age = group_age[group_age["gender"] == gender.iloc[0]]
num_patients = group_age.shape[0]
percent_ht = np.sum(group_age["ht"] < ht.iloc[0])*100.0/num_patients
percent_wt = np.sum(group_age["wt"] < wt.iloc[0])*100.0/num_patients
percent_bmi = np.sum(group_age["bmi"] < bmi.iloc[0])*100.0/num_patients
return (percent_ht, percent_wt, percent_bmi, ht.iloc[0], wt.iloc[0], bmi.iloc[0])
######################
## Open pickle file, saved from bmi_adiposity_rebound_filter.py
## df_range contains individuals that have data in the age range where AR occurs
df = pickle.load(open('../../data/pkl/BMI_filtered_contain_age5.pkl', 'rb'))
## Open pickle file, saved from bmi_initial_processing.py
df_resampled = pickle.load(open('../../data/pkl/BMI_resampled.pkl', 'rb'))
## Already ran calculation ##
## Keep only method 4 results ##
#pat_list = pd.read_csv("../../data/csv/BMI_ar_4_method4.csv", names = ["Patient ID"])
#df = df[df["Patient ID"].isin(pat_list["Patient ID"])]
## Group datapoints for each patient
grouped = df.groupby(["id"])
resampled_grouped_age = df_resampled.groupby(["age"])
resampled_grouped_patient_age = df_resampled.groupby(["id", "age"])
## Create new list to add AR information for each patient
df_ar_list = []
## Iterate through each patient
count = 0
for name_patient, group_patient in grouped:
#print name_patient
if count_bool:
count = count + 1
if count < 0:
continue
if count == 20:
break
if input_patient_bool:
name_patient = patient_id
group_patient = grouped.get_group(name_patient)
#print name_patient
#print group_patient
# Throw out data less than 2 years
group_patient = group_patient[group_patient["age"] >= 2.0]
if plot_bool and not plot_for_blog:
## Create figure to hold patient-specific plots
fig = plt.figure()
ax_age_ht = fig.add_subplot(221)
ax_age_wt = fig.add_subplot(222)
ax_age_bmi = fig.add_subplot(223)
ax_velo = fig.add_subplot(224) ## First derivative of log(ht), log(wt), and log(bmi)
elif plot_for_blog:
fig = plt.figure(1, figsize=(15, 4.75))
fig.subplots_adjust(bottom=0.15, left=0.05, right=0.975)
ax_age_ht = fig.add_subplot(131)
ax_age_wt = fig.add_subplot(132)
ax_age_bmi = fig.add_subplot(133)
fig2 = plt.figure()
ax_velo = fig2.add_subplot(111)
## Count number of datapoints for this patient
num_x = group_patient.shape[0]
# And at least 5 datapoints?
if num_x < 5:
continue
## Regression of log(ht) on age
x = group_patient["age"]
log_ht = np.log(group_patient["ht"])
y = log_ht
## Model with cubic equation
X = np.column_stack((x*x*x, x*x, x, np.ones(num_x)))
## Make OLS model
model = sm.OLS(y,X)
results = model.fit()
## Sample fit
b = results.params
xnew = np.linspace(x.min(),x.max(),100)
ynew_ht_log = b[0]*xnew*xnew*xnew + b[1]*xnew*xnew + b[2]*xnew + b[3]
ynew_ht = np.power(math.e, ynew_ht_log)
## Calculate first derivative of log(ht)
ynew_ht_log_velo = 3*b[0]*xnew*xnew + 2*b[1]*xnew + b[2]
if plot_bool:
ax_velo.plot(xnew,2* ynew_ht_log_velo, 'r-', label="2*d(log(Height))/dt")
if plot_log:
## Plot original data points and fit on log-linear plot
ax_age_ht.plot(x,y, 'ro')
ax_age_ht.plot(xnew,ynew_ht_log, 'r-')
else:
## Plot original data points and fit on lin-lin plot
ax_age_ht.plot(x,group_patient["ht"], 'ro')
ax_age_ht.plot(xnew,ynew_ht, 'r-')
## Regression of log(wt) on age
x = group_patient["age"]
log_wt = np.log(group_patient["wt"])
y = log_wt
## Model with cubic equation
X = np.column_stack((x*x*x, x*x, x, np.ones(num_x)))
## Make RLM model
#model = sm.OLS(y,X)
model = sm.RLM(y,X)
## Sample fit
results = model.fit()
b = results.params
xnew = np.linspace(x.min(),x.max(),100)
ynew_wt_log = b[0]*xnew*xnew*xnew + b[1]*xnew*xnew + b[2]*xnew + b[3]
ynew_wt = np.power(math.e, ynew_wt_log)
## Calculate first derivative of log(ht)
ynew_wt_log_velo = 3*b[0]*xnew*xnew + 2*b[1]*xnew + b[2]
if plot_bool:
ax_velo.plot(xnew,ynew_wt_log_velo, 'b-', label="d(log(Weight))/dt")
if plot_log:
## Plot original data points and fit on lin-lin plot
ax_age_wt.plot(x,y, 'bo')
ax_age_wt.plot(xnew,ynew_wt_log, 'b-')
else:
## Plot original data points and fit on log-linear plot
ax_age_wt.plot(x,group_patient["wt"], 'bo')
ax_age_wt.plot(xnew,ynew_wt, 'b-')
## Calculate first derivative of log(bmi) from first derivatives of log(wt) and log(ht)
bmi_velo = np.subtract(ynew_wt_log_velo, 2*ynew_ht_log_velo)
if plot_bool:
## Plot first derivative of log(bmi) on log-linear plot
ax_velo.plot(xnew, bmi_velo, 'g-', label = "d(log(BMI))/dt")
ax_velo.axhline(y=0)
## Plot original BMI datapoints
ax_age_bmi.plot(group_patient["age"],group_patient["bmi"], 'go')
ynew_bmi = np.divide(ynew_wt, np.power(ynew_ht, 2)) * 703
ax_age_bmi.plot(xnew, ynew_bmi, 'g-')
## Set axis labels
ax_age_ht.set_xlabel("Age (years)")
ax_age_wt.set_xlabel("Age (years)")
ax_age_bmi.set_xlabel("Age (years)")
if plot_log:
ax_age_ht.set_ylabel("log(Height (inches))")
ax_age_wt.set_ylabel("log(Weight (pounds))")
else:
ax_age_ht.set_ylabel("Height (inches)")
ax_age_wt.set_ylabel("Weight (pounds)")
ax_age_bmi.set_ylabel("BMI")
ax_velo.set_xlabel("Age (years)")
ax_velo.set_ylabel("d/dt(log(variable))")
ax_velo.legend(loc = "lower right", prop={'size':font_size})
## Set title
if not plot_for_blog:
fig.suptitle("Patient #" + str(int(name_patient)) + " Progressing through Adiposity Rebound", fontsize = font_size)
else:
fig.suptitle("Individual Patient with Adiposity Rebound", fontsize = font_size)
font = {'family' : 'normal', 'weight' : 'normal', 'size' : font_size}
plt.rc('font', **font)
## Create DataFrame with first derivatives
df_derivs = pd.DataFrame({"age":xnew, "ht_velo": ynew_ht_log_velo, "wt_velo": ynew_wt_log_velo, "bmi_velo": bmi_velo})
## Adiposity rebound occurs when velocity of log(BMI) goes from negative to
## to positive. If the velocity stays positive, the ratio curve opens up,
## and thus the minimum of the curve is the adiposity rebound
## Default value of ar_age, indicating it could not be found
ar_age = np.nan
## CASE 1: BMI derivative stays above 0. Pick the minimum.
if df_derivs["bmi_velo"].min() > 0:
ar_age = df_derivs["age"].ix[df_derivs["bmi_velo"].idxmin()]
if plot_bool:
ax_velo.axvline(x=ar_age)
#print "here1"
ar_find = 1
## CASE 2: BMI derivative stays below 0. Pick the maximum.
elif df_derivs["bmi_velo"].max() < 0:
ar_age = df_derivs["age"].ix[df_derivs["bmi_velo"].idxmax()]
if plot_bool:
ax_velo.axvline(x=ar_age)
#print "here2"
ar_find = 2
## Note that the BMI derivative might cross 0 twice
else:
## Find the index of the datapoint with the largest BMI derivative
max_bmi_velo_index = df_derivs["bmi_velo"].idxmax()
min_bmi_velo_index = df_derivs["bmi_velo"].idxmin()
## Find the largest index
largest_index = max(df_derivs["bmi_velo"].index)
## CASE 3: BMI curve starts > 0, ends < 0. Unusual because that means
## BMI goes through maximum. Maybe pick earliest age as AR?
if df_derivs["bmi_velo"].iloc[0] > 0 and df_derivs["bmi_velo"].iloc[-1] < 0:
ar_find = 3
df_derivs_cut = df_derivs
## CASE 4: BMI curve starts < 0, ends > 0.
elif df_derivs["bmi_velo"].iloc[0] < 0 and df_derivs["bmi_velo"].iloc[-1] > 0:
ar_find = 4
df_derivs_cut = df_derivs.ix[min_bmi_velo_index:largest_index]
## CASE 5: BMI curve starts and ends > 0, and opens up, crossing 0 twice
## So extract portion from [minimum, right end] when BMI derivative crosses
## from negative to positive
elif df_derivs["bmi_velo"].iloc[0] > 0 and df_derivs["bmi_velo"].iloc[-1] > 0:
ar_find = 5
df_derivs_cut = df_derivs.ix[min_bmi_velo_index:largest_index]
## CASE 6: BMI curve starts and ends < 0, and opens down, crossing 0 twice
## So extract portion from [left end, maximum] when BMI derivative crosses
## from negative to positive
else:
ar_find = 6
df_derivs_cut = df_derivs.ix[0:max_bmi_velo_index]
## Linearly interpolate age on first derivative of log(bmi)
#f = interpolate.InterpolatedUnivariateSpline(df_derivs_cut["bmi_velo"], df_derivs_cut["age"])
f = interpolate.interp1d(df_derivs_cut["bmi_velo"], df_derivs_cut["age"])
## Try to find age at which first derivative of log(bmi) == 0
try:
ar_age = f(0)
if plot_bool:
ax_velo.axvline(x=ar_age)
if plot_for_blog:
ax_age_bmi.axvline(x=ar_age, color = "red", ls = "--")
## If cannot interpolate, means that either no ages or two ages were found. Thus, cannot determine AR.
except ValueError as inst:
print "ERROR: " + str(name_patient) + " - " + inst.args[0]
if plot_bool:
## Plot when patient's indvidual curve over population growth curves
#vis_quartiles_individual.plot_individual_against_percentiles(name_patient)
## Display plot
plt.show() #bbox_inches='tight', transparent="True", pad_inches=0
## Now calculate percentile patient is end at the end of his/her growth curve
## Use resampled dataset, and group by patients
grouped_resampled_patient = df_resampled.groupby(["id"])
grouped_resampled_patient_age = df_resampled.groupby(["id", "age"])
## Select the last age datapoint, and record age, height, weight, and BMI
last_resampled_dpt = grouped_resampled_patient.get_group(name_patient).sort("age").iloc[-1]
last_age = last_resampled_dpt["age"]
last_ht = last_resampled_dpt["ht"]
last_wt = last_resampled_dpt["wt"]
last_bmi = last_resampled_dpt["bmi"]
first_resampled_dpt = grouped_resampled_patient.get_group(name_patient).sort("age").iloc[0]
first_age = first_resampled_dpt["age"]
## Calculate weight, height, BMI percentiles at AR, if AR was found
if np.isnan(ar_age):
ar_ht_perc = np.nan
ar_wt_perc = np.nan
ar_bmi_perc = np.nan
ar_ht_res = np.nan
ar_wt_res = np.nan
ar_bmi_res = np.nan
else:
interval_index_right = np.searchsorted(intervals, ar_age)
if ar_age in intervals:
(ar_ht_perc, ar_wt_perc, ar_bmi_perc, ar_ht_res, ar_wt_res, ar_bmi_res) = find_percentile(name_patient, ar_age, resampled_grouped_age, resampled_grouped_patient_age)
else:
interval_index_left = interval_index_right - 1
age_left = intervals[interval_index_left]
age_right = intervals[interval_index_right]
if age_left < group_patient["age"].min():
(ar_ht_perc, ar_wt_perc, ar_bmi_perc, ar_ht_res, ar_wt_res, ar_bmi_res) = find_percentile(name_patient, age_right, resampled_grouped_age, resampled_grouped_patient_age)
elif age_right > group_patient["age"].max():
(ar_ht_perc, ar_wt_perc, ar_bmi_perc, ar_ht_res, ar_wt_res, ar_bmi_res) = find_percentile(name_patient, age_left, resampled_grouped_age, resampled_grouped_patient_age)
else:
(ht_left_perc, wt_left_perc, bmi_left_perc, ar_ht_left_res, ar_wt_left_res, ar_bmi_left_res) = \
find_percentile(name_patient, age_left, resampled_grouped_age, resampled_grouped_patient_age)
(ht_right_perc, wt_right_perc, bmi_right_perc, ar_ht_right_res, ar_wt_right_res, ar_bmi_right_res) = \
find_percentile(name_patient, age_right, resampled_grouped_age, resampled_grouped_patient_age)
right_ratio = (ar_age - age_left)/(age_right - age_left)
left_ratio = 1 - right_ratio
ar_ht_perc = ht_left_perc * left_ratio + ht_right_perc * right_ratio
ar_wt_perc = wt_left_perc * left_ratio + wt_right_perc * right_ratio
ar_bmi_perc = bmi_left_perc * left_ratio + bmi_right_perc * right_ratio
ar_ht_res = ar_ht_left_res * left_ratio + ar_ht_right_res * right_ratio
ar_wt_res = ar_wt_left_res * left_ratio + ar_wt_right_res * right_ratio
ar_bmi_res = ar_bmi_left_res * left_ratio + ar_bmi_right_res * right_ratio
## Create new numpy list that is of the correct dimensions
#row = np.array([None]*len(header_list))
#row = np.reshape(row, (1, len(header_list)))
## Create new DataFrame row
#df_row = pd.DataFrame(row, columns = header_list)
df_row = dict()
## Save patient information to this new row
df_row["id"] = name_patient
df_row["gender"] = group_patient["gender"].iloc[0]
df_row["race_ethnicity"] = group_patient["race_ethnicity"].iloc[0]
df_row["count"] = num_x
df_row["ar_find"] = ar_find
df_row["age_ar"] = ar_age
df_row["age_front"] = first_age
df_row["age_end"] = last_age
## Find and save height, weight, BMI percentiles at the last resampled datapoint
(df_row["perc_ht_end"], df_row["perc_wt_end"], df_row["perc_bmi_end"], \
df_row["res_ht_end"], df_row["res_wt_end"], df_row["res_bmi_end"]) = \
find_percentile(name_patient, last_age, resampled_grouped_age, resampled_grouped_patient_age)
## Find and save height, weight, BMI percentiles at the first resampled datapoint
(df_row["perc_ht_front"], df_row["perc_wt_front"], df_row["perc_bmi_front"], \
df_row["res_ht_front"], df_row["res_wt_front"], df_row["res_bmi_front"]) = \
find_percentile(name_patient, first_age, resampled_grouped_age, resampled_grouped_patient_age)
## Seight, weight, BMI percentiles at AR
(df_row["perc_ht_ar"], df_row["perc_wt_ar"], df_row["perc_bmi_ar"]) = \
(ar_ht_perc, ar_wt_perc, ar_bmi_perc)
(df_row["res_ht_ar"], df_row["res_wt_ar"], df_row["res_bmi_ar"]) = \
(ar_ht_res, ar_wt_res, ar_bmi_res)
## Append new row to aggregate AR info dataframe
df_ar_list.append(df_row)
#df_ar_info = pd.DataFrame.append(df_ar_info, df_row)
if input_patient_bool:
break
df_ar_info = pd.DataFrame(df_ar_list)
if not input_patient_bool:
## Dump data
#output = open('../../data/pkl/BMI_ar_4_onlymethod4_calculate_5pt.pkl', 'wb')
output = open('../../data/pkl/BMI_filtered_contain_age5_ar_calculate.pkl', 'wb')
pickle.dump(df_ar_info, output, -1)
output.close()
#df_ar_info.to_csv("../../data/csv/BMI_ar_4_onlymethod4_calculate_5pt.csv")
df_ar_info.to_csv("../../data/csv/BMI_filtered_contain_age5_ar_calculate.csv")