{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Temporal-Comorbidity Adjusted Risk of Emergency Readmission (TCARER)\n",
"## Wide & Deep Neural Network (WDNN) Model"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"[1. Initialise](#1.-Initialise)\n",
"
\n",
"[2. Read Data & Store CSV](#2.-Read-Data-&-Store-CSV)\n",
"
\n",
"[3. Set TensorFlow Settings](#3.-Set-TensorFlow-Settings)\n",
"
\n",
"[4. Model](#4.-Model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"This Jupyter iPython Notebook applies the Temporal-Comorbidity Adjusted Risk of Emergency Readmission (TCARER).\n",
"\n",
"This Notebook extract aggregated features from the MySQL database, & then pre-process, configure & apply a Wide & Deep Neural Network (WDNN) model. \n",
"\n",
"Note that some of the scripts are optional or subject to some pre-configurations. Please refer to the comments & the project documentations for further details."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"