{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Temporal-Comorbidity Adjusted Risk of Emergency Readmission (TCARER)\n",
"## Basic Models"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"[1. Initialise](#1.-Initialise)\n",
"
\n",
"[2. Generate Features](#2.-Generate-Features)\n",
"
\n",
"[3. Read Data](#3.-Read-Data)\n",
"
\n",
"[4. Filter Features](#4.-Filter-Features)\n",
"
\n",
"[5. Set Samples & Target Features](#5.-Set-Samples-&-Target-Features)\n",
"
\n",
"[6. Recategorise & Transform](#6.-Recategorise-&-Transform)\n",
"
\n",
"[7. Rank & Select Features](#7.-Rank-&-Select-Features)\n",
"
\n",
"[8. Model](#8.-Model)\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"This Jupyter IPython Notebook applies the Temporal-Comorbidity Adjusted Risk of Emergency Readmission (TCARER).\n",
"\n",
"This Jupyter IPython Notebook extract aggregated features from the MySQL database, & then pre-process, configure & apply several modelling approaches. \n",
"\n",
"The pre-processing framework & modelling algorithms in this Notebook are developed as part of the Integrated Care project at the Health & Social Care Modelling Group (HSCMG), The University of Westminster.\n",
"\n",
"Note that some of the scripts are optional or subject to some pre-configurations. Please refer to the comments & the project documentations for further details."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"