|
a |
|
b/TCARER_Basic.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": { |
|
|
6 |
"deletable": true, |
|
|
7 |
"editable": true |
|
|
8 |
}, |
|
|
9 |
"source": [ |
|
|
10 |
"# Temporal-Comorbidity Adjusted Risk of Emergency Readmission (TCARER)\n", |
|
|
11 |
"## <font style=\"font-weight:bold;color:gray\">Basic Models</font>" |
|
|
12 |
] |
|
|
13 |
}, |
|
|
14 |
{ |
|
|
15 |
"cell_type": "markdown", |
|
|
16 |
"metadata": { |
|
|
17 |
"deletable": true, |
|
|
18 |
"editable": true |
|
|
19 |
}, |
|
|
20 |
"source": [ |
|
|
21 |
"[1. Initialise](#1.-Initialise)\n", |
|
|
22 |
"<br\\>\n", |
|
|
23 |
"[2. Generate Features](#2.-Generate-Features)\n", |
|
|
24 |
"<br\\>\n", |
|
|
25 |
"[3. Read Data](#3.-Read-Data)\n", |
|
|
26 |
"<br\\>\n", |
|
|
27 |
"[4. Filter Features](#4.-Filter-Features)\n", |
|
|
28 |
"<br\\>\n", |
|
|
29 |
"[5. Set Samples & Target Features](#5.-Set-Samples-&-Target-Features)\n", |
|
|
30 |
"<br\\>\n", |
|
|
31 |
"[6. Recategorise & Transform](#6.-Recategorise-&-Transform)\n", |
|
|
32 |
"<br\\>\n", |
|
|
33 |
"[7. Rank & Select Features](#7.-Rank-&-Select-Features)\n", |
|
|
34 |
"<br\\>\n", |
|
|
35 |
"[8. Model](#8.-Model)\n", |
|
|
36 |
"<br\\>" |
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
{ |
|
|
40 |
"cell_type": "markdown", |
|
|
41 |
"metadata": { |
|
|
42 |
"deletable": true, |
|
|
43 |
"editable": true |
|
|
44 |
}, |
|
|
45 |
"source": [ |
|
|
46 |
"This Jupyter IPython Notebook applies the Temporal-Comorbidity Adjusted Risk of Emergency Readmission (TCARER).\n", |
|
|
47 |
"\n", |
|
|
48 |
"This Jupyter IPython Notebook extract aggregated features from the MySQL database, & then pre-process, configure & apply several modelling approaches. \n", |
|
|
49 |
"\n", |
|
|
50 |
"The pre-processing framework & modelling algorithms in this Notebook are developed as part of the Integrated Care project at the <a href=\"http://www.healthcareanalytics.co.uk/\">Health & Social Care Modelling Group (HSCMG)</a>, The <a href=\"http://www.westminster.ac.uk\">University of Westminster</a>.\n", |
|
|
51 |
"\n", |
|
|
52 |
"Note that some of the scripts are optional or subject to some pre-configurations. Please refer to the comments & the project documentations for further details." |
|
|
53 |
] |
|
|
54 |
}, |
|
|
55 |
{ |
|
|
56 |
"cell_type": "markdown", |
|
|
57 |
"metadata": { |
|
|
58 |
"deletable": true, |
|
|
59 |
"editable": true |
|
|
60 |
}, |
|
|
61 |
"source": [ |
|
|
62 |
"<hr\\>\n", |
|
|
63 |
"<font size=\"1\" color=\"gray\">Copyright 2017 The Project Authors. All Rights Reserved.\n", |
|
|
64 |
"\n", |
|
|
65 |
"It is licensed under the Apache License, Version 2.0. you may not use this file except in compliance with the License. You may obtain a copy of the License at\n", |
|
|
66 |
"\n", |
|
|
67 |
" <a href=\"http://www.apache.org/licenses/LICENSE-2.0\">http://www.apache.org/licenses/LICENSE-2.0</a>\n", |
|
|
68 |
"\n", |
|
|
69 |
"Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.</font>\n", |
|
|
70 |
"<hr\\>" |
|
|
71 |
] |
|
|
72 |
}, |
|
|
73 |
{ |
|
|
74 |
"cell_type": "markdown", |
|
|
75 |
"metadata": { |
|
|
76 |
"deletable": true, |
|
|
77 |
"editable": true |
|
|
78 |
}, |
|
|
79 |
"source": [ |
|
|
80 |
"## 1. Initialise" |
|
|
81 |
] |
|
|
82 |
}, |
|
|
83 |
{ |
|
|
84 |
"cell_type": "markdown", |
|
|
85 |
"metadata": { |
|
|
86 |
"deletable": true, |
|
|
87 |
"editable": true |
|
|
88 |
}, |
|
|
89 |
"source": [ |
|
|
90 |
"Reload modules" |
|
|
91 |
] |
|
|
92 |
}, |
|
|
93 |
{ |
|
|
94 |
"cell_type": "code", |
|
|
95 |
"execution_count": null, |
|
|
96 |
"metadata": { |
|
|
97 |
"collapsed": true, |
|
|
98 |
"deletable": true, |
|
|
99 |
"editable": true, |
|
|
100 |
"scrolled": true |
|
|
101 |
}, |
|
|
102 |
"outputs": [], |
|
|
103 |
"source": [ |
|
|
104 |
"# Reload modules \n", |
|
|
105 |
"# It is an optional step. It is useful to run when external Python modules are being modified\n", |
|
|
106 |
"# It is reloading all modules (except those excluded by %aimport) every time before executing the Python code typed.\n", |
|
|
107 |
"# Note: It may conflict with serialisation, when external modules are being modified\n", |
|
|
108 |
"\n", |
|
|
109 |
"# %load_ext autoreload \n", |
|
|
110 |
"# %autoreload 2" |
|
|
111 |
] |
|
|
112 |
}, |
|
|
113 |
{ |
|
|
114 |
"cell_type": "markdown", |
|
|
115 |
"metadata": { |
|
|
116 |
"deletable": true, |
|
|
117 |
"editable": true |
|
|
118 |
}, |
|
|
119 |
"source": [ |
|
|
120 |
"Import libraries" |
|
|
121 |
] |
|
|
122 |
}, |
|
|
123 |
{ |
|
|
124 |
"cell_type": "code", |
|
|
125 |
"execution_count": null, |
|
|
126 |
"metadata": { |
|
|
127 |
"collapsed": true, |
|
|
128 |
"deletable": true, |
|
|
129 |
"editable": true |
|
|
130 |
}, |
|
|
131 |
"outputs": [], |
|
|
132 |
"source": [ |
|
|
133 |
"# Import Python libraries\n", |
|
|
134 |
"import logging\n", |
|
|
135 |
"import os\n", |
|
|
136 |
"import sys\n", |
|
|
137 |
"import gc\n", |
|
|
138 |
"import pandas as pd\n", |
|
|
139 |
"from IPython.display import display, HTML\n", |
|
|
140 |
"from collections import OrderedDict\n", |
|
|
141 |
"import numpy as np\n", |
|
|
142 |
"import statistics\n", |
|
|
143 |
"from scipy.stats import stats" |
|
|
144 |
] |
|
|
145 |
}, |
|
|
146 |
{ |
|
|
147 |
"cell_type": "code", |
|
|
148 |
"execution_count": null, |
|
|
149 |
"metadata": { |
|
|
150 |
"collapsed": false, |
|
|
151 |
"deletable": true, |
|
|
152 |
"editable": true |
|
|
153 |
}, |
|
|
154 |
"outputs": [], |
|
|
155 |
"source": [ |
|
|
156 |
"# Import local Python modules\n", |
|
|
157 |
"from Configs.CONSTANTS import CONSTANTS\n", |
|
|
158 |
"from Configs.Logger import Logger\n", |
|
|
159 |
"from Features.Variables import Variables\n", |
|
|
160 |
"from ReadersWriters.ReadersWriters import ReadersWriters\n", |
|
|
161 |
"from Stats.PreProcess import PreProcess\n", |
|
|
162 |
"from Stats.FeatureSelection import FeatureSelection\n", |
|
|
163 |
"from Stats.TrainingMethod import TrainingMethod\n", |
|
|
164 |
"from Stats.Plots import Plots" |
|
|
165 |
] |
|
|
166 |
}, |
|
|
167 |
{ |
|
|
168 |
"cell_type": "code", |
|
|
169 |
"execution_count": null, |
|
|
170 |
"metadata": { |
|
|
171 |
"collapsed": false, |
|
|
172 |
"deletable": true, |
|
|
173 |
"editable": true, |
|
|
174 |
"scrolled": true |
|
|
175 |
}, |
|
|
176 |
"outputs": [], |
|
|
177 |
"source": [ |
|
|
178 |
"# Check the interpreter\n", |
|
|
179 |
"print(\"\\nMake sure the correct Python interpreter is used!\")\n", |
|
|
180 |
"print(sys.version)\n", |
|
|
181 |
"print(\"\\nMake sure sys.path of the Python interpreter is correct!\")\n", |
|
|
182 |
"print(os.getcwd())" |
|
|
183 |
] |
|
|
184 |
}, |
|
|
185 |
{ |
|
|
186 |
"cell_type": "markdown", |
|
|
187 |
"metadata": { |
|
|
188 |
"deletable": true, |
|
|
189 |
"editable": true |
|
|
190 |
}, |
|
|
191 |
"source": [ |
|
|
192 |
"<br/><br/>" |
|
|
193 |
] |
|
|
194 |
}, |
|
|
195 |
{ |
|
|
196 |
"cell_type": "markdown", |
|
|
197 |
"metadata": { |
|
|
198 |
"deletable": true, |
|
|
199 |
"editable": true |
|
|
200 |
}, |
|
|
201 |
"source": [ |
|
|
202 |
"### 1.1. Initialise General Settings" |
|
|
203 |
] |
|
|
204 |
}, |
|
|
205 |
{ |
|
|
206 |
"cell_type": "markdown", |
|
|
207 |
"metadata": { |
|
|
208 |
"deletable": true, |
|
|
209 |
"editable": true |
|
|
210 |
}, |
|
|
211 |
"source": [ |
|
|
212 |
"<font style=\"font-weight:bold;color:red\">Main configuration Settings: </font>\n", |
|
|
213 |
"- Specify the full path of the configuration file \n", |
|
|
214 |
"<br/>	 → config_path\n", |
|
|
215 |
"- Specify the full path of the output folder \n", |
|
|
216 |
"<br/>	 → io_path\n", |
|
|
217 |
"- Specify the application name (the suffix of the outputs file name) \n", |
|
|
218 |
"<br/>	 → app_name\n", |
|
|
219 |
"- Specify the sub-model name, to locate the related feature configuration, based on the \"Table_Reference_Name\" column in the configuration file\n", |
|
|
220 |
"<br/>	 → submodel_name\n", |
|
|
221 |
"- Specify the sub-model's the file name of the input (excluding the CSV extension)\n", |
|
|
222 |
"<br/>	 → submodel_input_name\n", |
|
|
223 |
"<br/>\n", |
|
|
224 |
"<br/>\n", |
|
|
225 |
"\n", |
|
|
226 |
"<font style=\"font-weight:bold;color:red\">External Configration Files: </font>\n", |
|
|
227 |
"- The MySQL database configuration setting & other configration metadata\n", |
|
|
228 |
"<br/>	 → <i>Inputs/CONFIGURATIONS_1.ini</i>\n", |
|
|
229 |
"- The input features' confugration file (Note: only the CSV export of the XLSX will be used by this Notebook)\n", |
|
|
230 |
"<br/>	 → <i>Inputs/config_features_path.xlsx</i>\n", |
|
|
231 |
"<br/>	 → <i>Inputs/config_features_path.csv</i>" |
|
|
232 |
] |
|
|
233 |
}, |
|
|
234 |
{ |
|
|
235 |
"cell_type": "code", |
|
|
236 |
"execution_count": null, |
|
|
237 |
"metadata": { |
|
|
238 |
"collapsed": false, |
|
|
239 |
"deletable": true, |
|
|
240 |
"editable": true |
|
|
241 |
}, |
|
|
242 |
"outputs": [], |
|
|
243 |
"source": [ |
|
|
244 |
"config_path = os.path.abspath(\"ConfigInputs/CONFIGURATIONS.ini\")\n", |
|
|
245 |
"io_path = os.path.abspath(\"../../tmp/TCARER/Basic_prototype\")\n", |
|
|
246 |
"app_name = \"T-CARER\"\n", |
|
|
247 |
"submodel_name = \"hesIp\"\n", |
|
|
248 |
"submodel_input_name = \"tcarer_model_features_ip\"\n", |
|
|
249 |
"\n", |
|
|
250 |
"print(\"\\n The full path of the configuration file: \\n\\t\", config_path,\n", |
|
|
251 |
" \"\\n The full path of the output folder: \\n\\t\", io_path,\n", |
|
|
252 |
" \"\\n The application name (the suffix of the outputs file name): \\n\\t\", app_name,\n", |
|
|
253 |
" \"\\n The sub-model name, to locate the related feature configuration: \\n\\t\", submodel_name,\n", |
|
|
254 |
" \"\\n The the sub-model's the file name of the input: \\n\\t\", submodel_input_name)" |
|
|
255 |
] |
|
|
256 |
}, |
|
|
257 |
{ |
|
|
258 |
"cell_type": "markdown", |
|
|
259 |
"metadata": { |
|
|
260 |
"deletable": true, |
|
|
261 |
"editable": true |
|
|
262 |
}, |
|
|
263 |
"source": [ |
|
|
264 |
"<br/><br/>" |
|
|
265 |
] |
|
|
266 |
}, |
|
|
267 |
{ |
|
|
268 |
"cell_type": "markdown", |
|
|
269 |
"metadata": { |
|
|
270 |
"deletable": true, |
|
|
271 |
"editable": true |
|
|
272 |
}, |
|
|
273 |
"source": [ |
|
|
274 |
"Initialise logs" |
|
|
275 |
] |
|
|
276 |
}, |
|
|
277 |
{ |
|
|
278 |
"cell_type": "code", |
|
|
279 |
"execution_count": null, |
|
|
280 |
"metadata": { |
|
|
281 |
"collapsed": false, |
|
|
282 |
"deletable": true, |
|
|
283 |
"editable": true |
|
|
284 |
}, |
|
|
285 |
"outputs": [], |
|
|
286 |
"source": [ |
|
|
287 |
"if not os.path.exists(io_path):\n", |
|
|
288 |
" os.makedirs(io_path, exist_ok=True)\n", |
|
|
289 |
"\n", |
|
|
290 |
"logger = Logger(path=io_path, app_name=app_name, ext=\"log\")\n", |
|
|
291 |
"logger = logging.getLogger(app_name)" |
|
|
292 |
] |
|
|
293 |
}, |
|
|
294 |
{ |
|
|
295 |
"cell_type": "markdown", |
|
|
296 |
"metadata": { |
|
|
297 |
"deletable": true, |
|
|
298 |
"editable": true |
|
|
299 |
}, |
|
|
300 |
"source": [ |
|
|
301 |
"Initialise constants and some of classes" |
|
|
302 |
] |
|
|
303 |
}, |
|
|
304 |
{ |
|
|
305 |
"cell_type": "code", |
|
|
306 |
"execution_count": null, |
|
|
307 |
"metadata": { |
|
|
308 |
"collapsed": false, |
|
|
309 |
"deletable": true, |
|
|
310 |
"editable": true, |
|
|
311 |
"scrolled": true |
|
|
312 |
}, |
|
|
313 |
"outputs": [], |
|
|
314 |
"source": [ |
|
|
315 |
"# Initialise constants \n", |
|
|
316 |
"CONSTANTS.set(io_path, app_name)" |
|
|
317 |
] |
|
|
318 |
}, |
|
|
319 |
{ |
|
|
320 |
"cell_type": "code", |
|
|
321 |
"execution_count": null, |
|
|
322 |
"metadata": { |
|
|
323 |
"collapsed": true, |
|
|
324 |
"deletable": true, |
|
|
325 |
"editable": true |
|
|
326 |
}, |
|
|
327 |
"outputs": [], |
|
|
328 |
"source": [ |
|
|
329 |
"# Initialise other classes\n", |
|
|
330 |
"readers_writers = ReadersWriters()\n", |
|
|
331 |
"preprocess = PreProcess(io_path)\n", |
|
|
332 |
"feature_selection = FeatureSelection()\n", |
|
|
333 |
"plts = Plots()" |
|
|
334 |
] |
|
|
335 |
}, |
|
|
336 |
{ |
|
|
337 |
"cell_type": "code", |
|
|
338 |
"execution_count": null, |
|
|
339 |
"metadata": { |
|
|
340 |
"collapsed": true, |
|
|
341 |
"deletable": true, |
|
|
342 |
"editable": true |
|
|
343 |
}, |
|
|
344 |
"outputs": [], |
|
|
345 |
"source": [ |
|
|
346 |
"# Set print settings\n", |
|
|
347 |
"pd.set_option('display.width', 1600, 'display.max_colwidth', 800)" |
|
|
348 |
] |
|
|
349 |
}, |
|
|
350 |
{ |
|
|
351 |
"cell_type": "markdown", |
|
|
352 |
"metadata": { |
|
|
353 |
"deletable": true, |
|
|
354 |
"editable": true |
|
|
355 |
}, |
|
|
356 |
"source": [ |
|
|
357 |
"### 1.2. Initialise Features Metadata" |
|
|
358 |
] |
|
|
359 |
}, |
|
|
360 |
{ |
|
|
361 |
"cell_type": "markdown", |
|
|
362 |
"metadata": { |
|
|
363 |
"deletable": true, |
|
|
364 |
"editable": true |
|
|
365 |
}, |
|
|
366 |
"source": [ |
|
|
367 |
"Read the input features' confugration file & store the features metadata" |
|
|
368 |
] |
|
|
369 |
}, |
|
|
370 |
{ |
|
|
371 |
"cell_type": "code", |
|
|
372 |
"execution_count": null, |
|
|
373 |
"metadata": { |
|
|
374 |
"collapsed": false, |
|
|
375 |
"deletable": true, |
|
|
376 |
"editable": true, |
|
|
377 |
"scrolled": true |
|
|
378 |
}, |
|
|
379 |
"outputs": [], |
|
|
380 |
"source": [ |
|
|
381 |
"# variables settings\n", |
|
|
382 |
"features_metadata = dict()\n", |
|
|
383 |
"\n", |
|
|
384 |
"features_metadata_all = readers_writers.load_csv(path=CONSTANTS.io_path, title=CONSTANTS.config_features_path, dataframing=True)\n", |
|
|
385 |
"features_metadata = features_metadata_all.loc[(features_metadata_all[\"Selected\"] == 1) & \n", |
|
|
386 |
" (features_metadata_all[\"Table_Reference_Name\"] == submodel_name)]\n", |
|
|
387 |
"features_metadata.reset_index()\n", |
|
|
388 |
" \n", |
|
|
389 |
"# print\n", |
|
|
390 |
"display(features_metadata)" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"cell_type": "markdown", |
|
|
395 |
"metadata": { |
|
|
396 |
"deletable": true, |
|
|
397 |
"editable": true |
|
|
398 |
}, |
|
|
399 |
"source": [ |
|
|
400 |
"Set input features' metadata dictionaries" |
|
|
401 |
] |
|
|
402 |
}, |
|
|
403 |
{ |
|
|
404 |
"cell_type": "code", |
|
|
405 |
"execution_count": null, |
|
|
406 |
"metadata": { |
|
|
407 |
"collapsed": false, |
|
|
408 |
"deletable": true, |
|
|
409 |
"editable": true |
|
|
410 |
}, |
|
|
411 |
"outputs": [], |
|
|
412 |
"source": [ |
|
|
413 |
"# Dictionary of features types, dtypes, & max-states\n", |
|
|
414 |
"features_types = dict()\n", |
|
|
415 |
"features_dtypes = dict()\n", |
|
|
416 |
"features_states_values = dict()\n", |
|
|
417 |
"features_names_group = dict()\n", |
|
|
418 |
"\n", |
|
|
419 |
"for _, row in features_metadata.iterrows():\n", |
|
|
420 |
" if not pd.isnull(row[\"Variable_Max_States\"]):\n", |
|
|
421 |
" states_values = str(row[\"Variable_Max_States\"]).split(',') \n", |
|
|
422 |
" states_values = list(map(int, states_values))\n", |
|
|
423 |
" else: \n", |
|
|
424 |
" states_values = None\n", |
|
|
425 |
" \n", |
|
|
426 |
" if not pd.isnull(row[\"Variable_Aggregation\"]):\n", |
|
|
427 |
" postfixes = row[\"Variable_Aggregation\"].replace(' ', '').split(',')\n", |
|
|
428 |
" f_types = row[\"Variable_Type\"].replace(' ', '').split(',')\n", |
|
|
429 |
" f_dtypes = row[\"Variable_dType\"].replace(' ', '').split(',')\n", |
|
|
430 |
" for p in range(len(postfixes)):\n", |
|
|
431 |
" features_types[row[\"Variable_Name\"] + \"_\" + postfixes[p]] = f_types[p]\n", |
|
|
432 |
" features_dtypes[row[\"Variable_Name\"] + \"_\" + postfixes[p]] = pd.Series(dtype=f_dtypes[p])\n", |
|
|
433 |
" features_states_values[row[\"Variable_Name\"] + \"_\" + postfixes[p]] = states_values\n", |
|
|
434 |
" features_names_group[row[\"Variable_Name\"] + \"_\" + postfixes[p]] = row[\"Variable_Name\"] + \"_\" + postfixes[p]\n", |
|
|
435 |
" else:\n", |
|
|
436 |
" features_types[row[\"Variable_Name\"]] = row[\"Variable_Type\"]\n", |
|
|
437 |
" features_dtypes[row[\"Variable_Name\"]] = row[\"Variable_dType\"]\n", |
|
|
438 |
" features_states_values[row[\"Variable_Name\"]] = states_values\n", |
|
|
439 |
" features_names_group[row[\"Variable_Name\"]] = row[\"Variable_Name\"]\n", |
|
|
440 |
" if states_values is not None:\n", |
|
|
441 |
" for postfix in states_values:\n", |
|
|
442 |
" features_names_group[row[\"Variable_Name\"] + \"_\" + str(postfix)] = row[\"Variable_Name\"]\n", |
|
|
443 |
" \n", |
|
|
444 |
"features_dtypes = pd.DataFrame(features_dtypes).dtypes" |
|
|
445 |
] |
|
|
446 |
}, |
|
|
447 |
{ |
|
|
448 |
"cell_type": "code", |
|
|
449 |
"execution_count": null, |
|
|
450 |
"metadata": { |
|
|
451 |
"collapsed": false, |
|
|
452 |
"deletable": true, |
|
|
453 |
"editable": true |
|
|
454 |
}, |
|
|
455 |
"outputs": [], |
|
|
456 |
"source": [ |
|
|
457 |
"# Dictionary of features groups\n", |
|
|
458 |
"features_types_group = OrderedDict()\n", |
|
|
459 |
"\n", |
|
|
460 |
"f_types = set([f_type for f_type in features_types.values()])\n", |
|
|
461 |
"features_types_group = OrderedDict(zip(list(f_types), [set() for _ in range(len(f_types))]))\n", |
|
|
462 |
"for f_name, f_type in features_types.items():\n", |
|
|
463 |
" features_types_group[f_type].add(f_name)\n", |
|
|
464 |
" \n", |
|
|
465 |
"print(\"Available features types: \" + ','.join(f_types))" |
|
|
466 |
] |
|
|
467 |
}, |
|
|
468 |
{ |
|
|
469 |
"cell_type": "markdown", |
|
|
470 |
"metadata": { |
|
|
471 |
"deletable": true, |
|
|
472 |
"editable": true |
|
|
473 |
}, |
|
|
474 |
"source": [ |
|
|
475 |
"<br/><br/>" |
|
|
476 |
] |
|
|
477 |
}, |
|
|
478 |
{ |
|
|
479 |
"cell_type": "markdown", |
|
|
480 |
"metadata": { |
|
|
481 |
"deletable": true, |
|
|
482 |
"editable": true |
|
|
483 |
}, |
|
|
484 |
"source": [ |
|
|
485 |
"## <font style=\"font-weight:bold;color:red\">2. Generate Features</font>" |
|
|
486 |
] |
|
|
487 |
}, |
|
|
488 |
{ |
|
|
489 |
"cell_type": "markdown", |
|
|
490 |
"metadata": { |
|
|
491 |
"deletable": true, |
|
|
492 |
"editable": true |
|
|
493 |
}, |
|
|
494 |
"source": [ |
|
|
495 |
"<font style=\"font-weight:bold;color:red\">Notes:</font>\n", |
|
|
496 |
"- It generates the final spell-wise & temporal features from the MySQL table(s), & converts it into CSV(s);\n", |
|
|
497 |
"- It generates the CSV(s) based on the configuration file of the features (Note: only the CSV export of the XLSX will be used by this Notebook)\n", |
|
|
498 |
"<br/>	 → <i>Inputs/config_features_path.xlsx</i>\n", |
|
|
499 |
"<br/>	 → <i>Inputs/config_features_path.csv</i>" |
|
|
500 |
] |
|
|
501 |
}, |
|
|
502 |
{ |
|
|
503 |
"cell_type": "code", |
|
|
504 |
"execution_count": null, |
|
|
505 |
"metadata": { |
|
|
506 |
"collapsed": false, |
|
|
507 |
"deletable": true, |
|
|
508 |
"editable": true |
|
|
509 |
}, |
|
|
510 |
"outputs": [], |
|
|
511 |
"source": [ |
|
|
512 |
"skip = True\n", |
|
|
513 |
"\n", |
|
|
514 |
"# settings\n", |
|
|
515 |
"csv_schema = [\"my_db_schema\"]\n", |
|
|
516 |
"csv_input_tables = [\"tcarer_features\"]\n", |
|
|
517 |
"csv_history_tables = [\"hesIp\"]\n", |
|
|
518 |
"csv_column_index = \"localID\"\n", |
|
|
519 |
"csv_output_table = \"tcarer_model_features_ip\"\n", |
|
|
520 |
"csv_query_batch_size = 100000" |
|
|
521 |
] |
|
|
522 |
}, |
|
|
523 |
{ |
|
|
524 |
"cell_type": "code", |
|
|
525 |
"execution_count": null, |
|
|
526 |
"metadata": { |
|
|
527 |
"collapsed": false, |
|
|
528 |
"deletable": true, |
|
|
529 |
"editable": true |
|
|
530 |
}, |
|
|
531 |
"outputs": [], |
|
|
532 |
"source": [ |
|
|
533 |
"if skip is False:\n", |
|
|
534 |
" # generate the csv file\n", |
|
|
535 |
" variables = Variables(submodel_name,\n", |
|
|
536 |
" CONSTANTS.io_path,\n", |
|
|
537 |
" CONSTANTS.io_path,\n", |
|
|
538 |
" CONSTANTS.config_features_path,\n", |
|
|
539 |
" csv_output_table)\n", |
|
|
540 |
" variables.set(csv_schema, csv_input_tables, csv_history_tables, csv_column_index, csv_query_batch_size)" |
|
|
541 |
] |
|
|
542 |
}, |
|
|
543 |
{ |
|
|
544 |
"cell_type": "markdown", |
|
|
545 |
"metadata": { |
|
|
546 |
"deletable": true, |
|
|
547 |
"editable": true |
|
|
548 |
}, |
|
|
549 |
"source": [ |
|
|
550 |
"<br/><br/>" |
|
|
551 |
] |
|
|
552 |
}, |
|
|
553 |
{ |
|
|
554 |
"cell_type": "markdown", |
|
|
555 |
"metadata": { |
|
|
556 |
"deletable": true, |
|
|
557 |
"editable": true |
|
|
558 |
}, |
|
|
559 |
"source": [ |
|
|
560 |
"## 3. Read Data" |
|
|
561 |
] |
|
|
562 |
}, |
|
|
563 |
{ |
|
|
564 |
"cell_type": "markdown", |
|
|
565 |
"metadata": { |
|
|
566 |
"deletable": true, |
|
|
567 |
"editable": true |
|
|
568 |
}, |
|
|
569 |
"source": [ |
|
|
570 |
"Read the input features from the CSV input file" |
|
|
571 |
] |
|
|
572 |
}, |
|
|
573 |
{ |
|
|
574 |
"cell_type": "code", |
|
|
575 |
"execution_count": null, |
|
|
576 |
"metadata": { |
|
|
577 |
"collapsed": false, |
|
|
578 |
"deletable": true, |
|
|
579 |
"editable": true |
|
|
580 |
}, |
|
|
581 |
"outputs": [], |
|
|
582 |
"source": [ |
|
|
583 |
"features_input = readers_writers.load_csv(path=CONSTANTS.io_path, title=submodel_input_name, dataframing=True)\n", |
|
|
584 |
"features_input.astype(dtype=features_dtypes)\n", |
|
|
585 |
"\n", |
|
|
586 |
"print(\"Number of columns: \", len(features_input.columns), \"; Total records: \", len(features_input.index))" |
|
|
587 |
] |
|
|
588 |
}, |
|
|
589 |
{ |
|
|
590 |
"cell_type": "markdown", |
|
|
591 |
"metadata": { |
|
|
592 |
"deletable": true, |
|
|
593 |
"editable": true |
|
|
594 |
}, |
|
|
595 |
"source": [ |
|
|
596 |
"Verify features visually" |
|
|
597 |
] |
|
|
598 |
}, |
|
|
599 |
{ |
|
|
600 |
"cell_type": "code", |
|
|
601 |
"execution_count": null, |
|
|
602 |
"metadata": { |
|
|
603 |
"collapsed": false, |
|
|
604 |
"deletable": true, |
|
|
605 |
"editable": true |
|
|
606 |
}, |
|
|
607 |
"outputs": [], |
|
|
608 |
"source": [ |
|
|
609 |
"display(features_input.head())" |
|
|
610 |
] |
|
|
611 |
}, |
|
|
612 |
{ |
|
|
613 |
"cell_type": "markdown", |
|
|
614 |
"metadata": { |
|
|
615 |
"deletable": true, |
|
|
616 |
"editable": true |
|
|
617 |
}, |
|
|
618 |
"source": [ |
|
|
619 |
"<br/><br/>" |
|
|
620 |
] |
|
|
621 |
}, |
|
|
622 |
{ |
|
|
623 |
"cell_type": "markdown", |
|
|
624 |
"metadata": { |
|
|
625 |
"collapsed": true, |
|
|
626 |
"deletable": true, |
|
|
627 |
"editable": true |
|
|
628 |
}, |
|
|
629 |
"source": [ |
|
|
630 |
"## 4. Filter Features" |
|
|
631 |
] |
|
|
632 |
}, |
|
|
633 |
{ |
|
|
634 |
"cell_type": "markdown", |
|
|
635 |
"metadata": { |
|
|
636 |
"deletable": true, |
|
|
637 |
"editable": true |
|
|
638 |
}, |
|
|
639 |
"source": [ |
|
|
640 |
"### 4.1. Descriptive Statsistics" |
|
|
641 |
] |
|
|
642 |
}, |
|
|
643 |
{ |
|
|
644 |
"cell_type": "markdown", |
|
|
645 |
"metadata": { |
|
|
646 |
"deletable": true, |
|
|
647 |
"editable": true |
|
|
648 |
}, |
|
|
649 |
"source": [ |
|
|
650 |
"Produce a descriptive stat report of 'Categorical', 'Continuous', & 'TARGET' features" |
|
|
651 |
] |
|
|
652 |
}, |
|
|
653 |
{ |
|
|
654 |
"cell_type": "code", |
|
|
655 |
"execution_count": null, |
|
|
656 |
"metadata": { |
|
|
657 |
"collapsed": false, |
|
|
658 |
"deletable": true, |
|
|
659 |
"editable": true |
|
|
660 |
}, |
|
|
661 |
"outputs": [], |
|
|
662 |
"source": [ |
|
|
663 |
"file_name = \"Step_04_Data_ColumnNames\"\n", |
|
|
664 |
"readers_writers.save_csv(path=CONSTANTS.io_path, title=file_name, data=list(features_input.columns.values), append=False)\n", |
|
|
665 |
"file_name = \"Step_04_Stats_Categorical\"\n", |
|
|
666 |
"o_stats = preprocess.stats_discrete_df(df=features_input, includes=features_types_group[\"CATEGORICAL\"],\n", |
|
|
667 |
" file_name=file_name)\n", |
|
|
668 |
"file_name = \"Step_04_Stats_Continuous\"\n", |
|
|
669 |
"o_stats = preprocess.stats_continuous_df(df=features_input, includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
670 |
" file_name=file_name)\n", |
|
|
671 |
"file_name = \"Step_04_Stats_Target\"\n", |
|
|
672 |
"o_stats = preprocess.stats_discrete_df(df=features_input, includes=features_types_group[\"TARGET\"], \n", |
|
|
673 |
" file_name=file_name)" |
|
|
674 |
] |
|
|
675 |
}, |
|
|
676 |
{ |
|
|
677 |
"cell_type": "markdown", |
|
|
678 |
"metadata": { |
|
|
679 |
"deletable": true, |
|
|
680 |
"editable": true |
|
|
681 |
}, |
|
|
682 |
"source": [ |
|
|
683 |
"### 4.2. Selected Population" |
|
|
684 |
] |
|
|
685 |
}, |
|
|
686 |
{ |
|
|
687 |
"cell_type": "markdown", |
|
|
688 |
"metadata": { |
|
|
689 |
"deletable": true, |
|
|
690 |
"editable": true |
|
|
691 |
}, |
|
|
692 |
"source": [ |
|
|
693 |
"#### 4.2.1. Remove Excluded Population, Remove Unused Features" |
|
|
694 |
] |
|
|
695 |
}, |
|
|
696 |
{ |
|
|
697 |
"cell_type": "markdown", |
|
|
698 |
"metadata": { |
|
|
699 |
"deletable": true, |
|
|
700 |
"editable": true |
|
|
701 |
}, |
|
|
702 |
"source": [ |
|
|
703 |
"<i>Nothing to do!<i/> \n", |
|
|
704 |
"<br/>\n", |
|
|
705 |
"<font style=\"font-weight:bold;color:red\">Notes: </font> \n", |
|
|
706 |
"- Ideally the features must be configured before generating the CSV feature file, as it is very inefficient to derive new features at this stage\n", |
|
|
707 |
"- This step is not necessary, if all the features are generated in prior to the generatiion of the CSV feature file" |
|
|
708 |
] |
|
|
709 |
}, |
|
|
710 |
{ |
|
|
711 |
"cell_type": "code", |
|
|
712 |
"execution_count": null, |
|
|
713 |
"metadata": { |
|
|
714 |
"collapsed": true, |
|
|
715 |
"deletable": true, |
|
|
716 |
"editable": true |
|
|
717 |
}, |
|
|
718 |
"outputs": [], |
|
|
719 |
"source": [ |
|
|
720 |
"# Exclusion of unused features\n", |
|
|
721 |
"# excluded = [name for name in features_input.columns if name not in features_names_group.keys()]\n", |
|
|
722 |
"# features_input = features_input.drop(excluded, axis=1)\n", |
|
|
723 |
"\n", |
|
|
724 |
"# print(\"Number of columns: \", len(features_input.columns), \"; Total records: \", len(features_input.index))" |
|
|
725 |
] |
|
|
726 |
}, |
|
|
727 |
{ |
|
|
728 |
"cell_type": "markdown", |
|
|
729 |
"metadata": { |
|
|
730 |
"deletable": true, |
|
|
731 |
"editable": true |
|
|
732 |
}, |
|
|
733 |
"source": [ |
|
|
734 |
"<br/><br/>" |
|
|
735 |
] |
|
|
736 |
}, |
|
|
737 |
{ |
|
|
738 |
"cell_type": "markdown", |
|
|
739 |
"metadata": { |
|
|
740 |
"deletable": true, |
|
|
741 |
"editable": true |
|
|
742 |
}, |
|
|
743 |
"source": [ |
|
|
744 |
"## 5. Set Samples & Target Features" |
|
|
745 |
] |
|
|
746 |
}, |
|
|
747 |
{ |
|
|
748 |
"cell_type": "markdown", |
|
|
749 |
"metadata": { |
|
|
750 |
"collapsed": true, |
|
|
751 |
"deletable": true, |
|
|
752 |
"editable": true |
|
|
753 |
}, |
|
|
754 |
"source": [ |
|
|
755 |
"### 5.1. Set Features" |
|
|
756 |
] |
|
|
757 |
}, |
|
|
758 |
{ |
|
|
759 |
"cell_type": "markdown", |
|
|
760 |
"metadata": { |
|
|
761 |
"deletable": true, |
|
|
762 |
"editable": true |
|
|
763 |
}, |
|
|
764 |
"source": [ |
|
|
765 |
"#### 5.1.1. Train & Test Samples" |
|
|
766 |
] |
|
|
767 |
}, |
|
|
768 |
{ |
|
|
769 |
"cell_type": "markdown", |
|
|
770 |
"metadata": { |
|
|
771 |
"deletable": true, |
|
|
772 |
"editable": true |
|
|
773 |
}, |
|
|
774 |
"source": [ |
|
|
775 |
"Set the samples" |
|
|
776 |
] |
|
|
777 |
}, |
|
|
778 |
{ |
|
|
779 |
"cell_type": "code", |
|
|
780 |
"execution_count": null, |
|
|
781 |
"metadata": { |
|
|
782 |
"collapsed": false, |
|
|
783 |
"deletable": true, |
|
|
784 |
"editable": true |
|
|
785 |
}, |
|
|
786 |
"outputs": [], |
|
|
787 |
"source": [ |
|
|
788 |
"frac_train = 0.50\n", |
|
|
789 |
"replace = False\n", |
|
|
790 |
"random_state = 100\n", |
|
|
791 |
"\n", |
|
|
792 |
"nrows = len(features_input.index)\n", |
|
|
793 |
"features = {\"train\": dict(), \"test\": dict()}\n", |
|
|
794 |
"features[\"train\"] = features_input.sample(frac=frac_train, replace=False, random_state=100)\n", |
|
|
795 |
"features[\"test\"] = features_input.drop(features[\"train\"].index)\n", |
|
|
796 |
"\n", |
|
|
797 |
"features[\"train\"] = features[\"train\"].reset_index(drop=True)\n", |
|
|
798 |
"features[\"test\"] = features[\"test\"].reset_index(drop=True)" |
|
|
799 |
] |
|
|
800 |
}, |
|
|
801 |
{ |
|
|
802 |
"cell_type": "markdown", |
|
|
803 |
"metadata": { |
|
|
804 |
"deletable": true, |
|
|
805 |
"editable": true |
|
|
806 |
}, |
|
|
807 |
"source": [ |
|
|
808 |
"Verify features visually" |
|
|
809 |
] |
|
|
810 |
}, |
|
|
811 |
{ |
|
|
812 |
"cell_type": "code", |
|
|
813 |
"execution_count": null, |
|
|
814 |
"metadata": { |
|
|
815 |
"collapsed": false, |
|
|
816 |
"deletable": true, |
|
|
817 |
"editable": true |
|
|
818 |
}, |
|
|
819 |
"outputs": [], |
|
|
820 |
"source": [ |
|
|
821 |
"display(features_input.head())" |
|
|
822 |
] |
|
|
823 |
}, |
|
|
824 |
{ |
|
|
825 |
"cell_type": "markdown", |
|
|
826 |
"metadata": { |
|
|
827 |
"deletable": true, |
|
|
828 |
"editable": true |
|
|
829 |
}, |
|
|
830 |
"source": [ |
|
|
831 |
"<font style=\"font-weight:bold;color:red\">Clean-Up</font>" |
|
|
832 |
] |
|
|
833 |
}, |
|
|
834 |
{ |
|
|
835 |
"cell_type": "code", |
|
|
836 |
"execution_count": null, |
|
|
837 |
"metadata": { |
|
|
838 |
"collapsed": false, |
|
|
839 |
"deletable": true, |
|
|
840 |
"editable": true |
|
|
841 |
}, |
|
|
842 |
"outputs": [], |
|
|
843 |
"source": [ |
|
|
844 |
"features_input = None\n", |
|
|
845 |
"gc.collect()" |
|
|
846 |
] |
|
|
847 |
}, |
|
|
848 |
{ |
|
|
849 |
"cell_type": "markdown", |
|
|
850 |
"metadata": { |
|
|
851 |
"deletable": true, |
|
|
852 |
"editable": true |
|
|
853 |
}, |
|
|
854 |
"source": [ |
|
|
855 |
"#### 5.1.2. Independent & Target variable¶" |
|
|
856 |
] |
|
|
857 |
}, |
|
|
858 |
{ |
|
|
859 |
"cell_type": "markdown", |
|
|
860 |
"metadata": { |
|
|
861 |
"deletable": true, |
|
|
862 |
"editable": true |
|
|
863 |
}, |
|
|
864 |
"source": [ |
|
|
865 |
"Set independent, target & ID features" |
|
|
866 |
] |
|
|
867 |
}, |
|
|
868 |
{ |
|
|
869 |
"cell_type": "code", |
|
|
870 |
"execution_count": null, |
|
|
871 |
"metadata": { |
|
|
872 |
"collapsed": true, |
|
|
873 |
"deletable": true, |
|
|
874 |
"editable": true |
|
|
875 |
}, |
|
|
876 |
"outputs": [], |
|
|
877 |
"source": [ |
|
|
878 |
"target_labels = list(features_types_group[\"TARGET\"])\n", |
|
|
879 |
"target_id = [\"patientID\"]" |
|
|
880 |
] |
|
|
881 |
}, |
|
|
882 |
{ |
|
|
883 |
"cell_type": "code", |
|
|
884 |
"execution_count": null, |
|
|
885 |
"metadata": { |
|
|
886 |
"collapsed": true, |
|
|
887 |
"deletable": true, |
|
|
888 |
"editable": true |
|
|
889 |
}, |
|
|
890 |
"outputs": [], |
|
|
891 |
"source": [ |
|
|
892 |
"features[\"train_indep\"] = dict()\n", |
|
|
893 |
"features[\"train_target\"] = dict()\n", |
|
|
894 |
"features[\"train_id\"] = dict()\n", |
|
|
895 |
"features[\"test_indep\"] = dict()\n", |
|
|
896 |
"features[\"test_target\"] = dict()\n", |
|
|
897 |
"features[\"test_id\"] = dict()\n", |
|
|
898 |
"\n", |
|
|
899 |
"# Independent and target features\n", |
|
|
900 |
"def set_features_indep_target(df):\n", |
|
|
901 |
" df_targets = pd.DataFrame(dict(zip(target_labels, [[]] * len(target_labels))))\n", |
|
|
902 |
" for i in range(len(target_labels)):\n", |
|
|
903 |
" df_targets[target_labels[i]] = df[target_labels[i]]\n", |
|
|
904 |
" \n", |
|
|
905 |
" df_indep = df.drop(target_labels + target_id, axis=1)\n", |
|
|
906 |
" df_id = pd.DataFrame({target_id[0]: df[target_id[0]]})\n", |
|
|
907 |
" \n", |
|
|
908 |
" return df_indep, df_targets, df_id" |
|
|
909 |
] |
|
|
910 |
}, |
|
|
911 |
{ |
|
|
912 |
"cell_type": "code", |
|
|
913 |
"execution_count": null, |
|
|
914 |
"metadata": { |
|
|
915 |
"collapsed": false, |
|
|
916 |
"deletable": true, |
|
|
917 |
"editable": true |
|
|
918 |
}, |
|
|
919 |
"outputs": [], |
|
|
920 |
"source": [ |
|
|
921 |
"# train & test sets\n", |
|
|
922 |
"features[\"train_indep\"], features[\"train_target\"], features[\"train_id\"] = set_features_indep_target(features[\"train\"])\n", |
|
|
923 |
"features[\"test_indep\"], features[\"test_target\"], features[\"test_id\"] = set_features_indep_target(features[\"test\"])\n", |
|
|
924 |
"\n", |
|
|
925 |
"# print \n", |
|
|
926 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
927 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
928 |
] |
|
|
929 |
}, |
|
|
930 |
{ |
|
|
931 |
"cell_type": "markdown", |
|
|
932 |
"metadata": { |
|
|
933 |
"deletable": true, |
|
|
934 |
"editable": true |
|
|
935 |
}, |
|
|
936 |
"source": [ |
|
|
937 |
"Verify features visually" |
|
|
938 |
] |
|
|
939 |
}, |
|
|
940 |
{ |
|
|
941 |
"cell_type": "code", |
|
|
942 |
"execution_count": null, |
|
|
943 |
"metadata": { |
|
|
944 |
"collapsed": false, |
|
|
945 |
"deletable": true, |
|
|
946 |
"editable": true, |
|
|
947 |
"scrolled": true |
|
|
948 |
}, |
|
|
949 |
"outputs": [], |
|
|
950 |
"source": [ |
|
|
951 |
"display(pd.concat([features[\"train_id\"].head(), features[\"train_target\"].head(), features[\"train_indep\"].head()], axis=1))\n", |
|
|
952 |
"display(pd.concat([features[\"test_id\"].head(), features[\"test_target\"].head(), features[\"test_indep\"].head()], axis=1))" |
|
|
953 |
] |
|
|
954 |
}, |
|
|
955 |
{ |
|
|
956 |
"cell_type": "markdown", |
|
|
957 |
"metadata": { |
|
|
958 |
"deletable": true, |
|
|
959 |
"editable": true |
|
|
960 |
}, |
|
|
961 |
"source": [ |
|
|
962 |
"<font style=\"font-weight:bold;color:red\">Clean-Up</font>" |
|
|
963 |
] |
|
|
964 |
}, |
|
|
965 |
{ |
|
|
966 |
"cell_type": "code", |
|
|
967 |
"execution_count": null, |
|
|
968 |
"metadata": { |
|
|
969 |
"collapsed": false, |
|
|
970 |
"deletable": true, |
|
|
971 |
"editable": true |
|
|
972 |
}, |
|
|
973 |
"outputs": [], |
|
|
974 |
"source": [ |
|
|
975 |
"del features[\"train\"]\n", |
|
|
976 |
"del features[\"test\"]\n", |
|
|
977 |
"gc.collect()" |
|
|
978 |
] |
|
|
979 |
}, |
|
|
980 |
{ |
|
|
981 |
"cell_type": "markdown", |
|
|
982 |
"metadata": { |
|
|
983 |
"deletable": true, |
|
|
984 |
"editable": true |
|
|
985 |
}, |
|
|
986 |
"source": [ |
|
|
987 |
"### 5.5. Save Samples" |
|
|
988 |
] |
|
|
989 |
}, |
|
|
990 |
{ |
|
|
991 |
"cell_type": "markdown", |
|
|
992 |
"metadata": { |
|
|
993 |
"deletable": true, |
|
|
994 |
"editable": true |
|
|
995 |
}, |
|
|
996 |
"source": [ |
|
|
997 |
"Serialise & save the samples before any feature transformation. \n", |
|
|
998 |
"<br/>This snapshot of the samples may be used for the population profiling" |
|
|
999 |
] |
|
|
1000 |
}, |
|
|
1001 |
{ |
|
|
1002 |
"cell_type": "code", |
|
|
1003 |
"execution_count": null, |
|
|
1004 |
"metadata": { |
|
|
1005 |
"collapsed": false, |
|
|
1006 |
"deletable": true, |
|
|
1007 |
"editable": true, |
|
|
1008 |
"scrolled": true |
|
|
1009 |
}, |
|
|
1010 |
"outputs": [], |
|
|
1011 |
"source": [ |
|
|
1012 |
"file_name = \"Step_05_Features\"\n", |
|
|
1013 |
"readers_writers.save_serialised_compressed(path=CONSTANTS.io_path, title=file_name, objects=features)\n", |
|
|
1014 |
"\n", |
|
|
1015 |
"# print\n", |
|
|
1016 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns), \n", |
|
|
1017 |
" \"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
1018 |
] |
|
|
1019 |
}, |
|
|
1020 |
{ |
|
|
1021 |
"cell_type": "markdown", |
|
|
1022 |
"metadata": { |
|
|
1023 |
"deletable": true, |
|
|
1024 |
"editable": true |
|
|
1025 |
}, |
|
|
1026 |
"source": [ |
|
|
1027 |
"### 5.2. Remove - Near Zero Variance\n", |
|
|
1028 |
"In order to reduce sparseness and invalid features, highly stationary ones were withdrawn. The features that had constant counts less than or equal a threshold were \f", |
|
|
1029 |
"ltered out, to exclude highly constants and near-zero variances.\n", |
|
|
1030 |
"\n", |
|
|
1031 |
"The near zero variance rules are presented in below:\n", |
|
|
1032 |
"- Frequency ratio: The frequency of the most prevalent value over the second most frequent value to be greater than a threshold;\n", |
|
|
1033 |
"- Percent of unique values: The number of unique values divided by the total number of samples to be greater than the threshold\n", |
|
|
1034 |
"\n", |
|
|
1035 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> the function\n", |
|
|
1036 |
"- The cutoff for the percentage of distinct values out of the number of total samples (upper limit). e.g. 10 * 100 / 100\n", |
|
|
1037 |
"<br/>	 → thresh_unique_cut\n", |
|
|
1038 |
"- The cutoff for the ratio of the most common value to the second most common value (lower limit). eg. 95/5\n", |
|
|
1039 |
"<br/>	 → thresh_freq_cut" |
|
|
1040 |
] |
|
|
1041 |
}, |
|
|
1042 |
{ |
|
|
1043 |
"cell_type": "code", |
|
|
1044 |
"execution_count": null, |
|
|
1045 |
"metadata": { |
|
|
1046 |
"collapsed": false, |
|
|
1047 |
"deletable": true, |
|
|
1048 |
"editable": true |
|
|
1049 |
}, |
|
|
1050 |
"outputs": [], |
|
|
1051 |
"source": [ |
|
|
1052 |
"thresh_unique_cut = 100\n", |
|
|
1053 |
"thresh_freq_cut = 1000\n", |
|
|
1054 |
"\n", |
|
|
1055 |
"excludes = []\n", |
|
|
1056 |
"file_name = \"Step_05_Preprocess_NZV_config\"\n", |
|
|
1057 |
"features[\"train_indep\"], o_summaries = preprocess.near_zero_var_df(df=features[\"train_indep\"], \n", |
|
|
1058 |
" excludes=excludes, \n", |
|
|
1059 |
" file_name=file_name, \n", |
|
|
1060 |
" thresh_unique_cut=thresh_unique_cut, \n", |
|
|
1061 |
" thresh_freq_cut=thresh_freq_cut,\n", |
|
|
1062 |
" to_search=True)\n", |
|
|
1063 |
"\n", |
|
|
1064 |
"file_name = \"Step_05_Preprocess_NZV\"\n", |
|
|
1065 |
"readers_writers.save_text(path=CONSTANTS.io_path, title=file_name, data=o_summaries, append=False, ext=\"log\")\n", |
|
|
1066 |
"\n", |
|
|
1067 |
"file_name = \"Step_05_Preprocess_NZV_config\"\n", |
|
|
1068 |
"features[\"test_indep\"], o_summaries = preprocess.near_zero_var_df(df=features[\"test_indep\"], \n", |
|
|
1069 |
" excludes=excludes, \n", |
|
|
1070 |
" file_name=file_name, \n", |
|
|
1071 |
" thresh_unique_cut=thresh_unique_cut, \n", |
|
|
1072 |
" thresh_freq_cut=thresh_freq_cut,\n", |
|
|
1073 |
" to_search=False)\n", |
|
|
1074 |
"\n", |
|
|
1075 |
"# print\n", |
|
|
1076 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
1077 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
1078 |
] |
|
|
1079 |
}, |
|
|
1080 |
{ |
|
|
1081 |
"cell_type": "markdown", |
|
|
1082 |
"metadata": { |
|
|
1083 |
"deletable": true, |
|
|
1084 |
"editable": true |
|
|
1085 |
}, |
|
|
1086 |
"source": [ |
|
|
1087 |
"### 5.3. Remove Highly Linearly Correlated\n", |
|
|
1088 |
"\n", |
|
|
1089 |
"In this step, features that were highly linearly correlated were excluded. \n", |
|
|
1090 |
"\n", |
|
|
1091 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> the function\n", |
|
|
1092 |
"- A numeric value for the pair-wise absolute correlation cutoff. e.g. 0.95\n", |
|
|
1093 |
"<br/>	 → thresh_corr_cut" |
|
|
1094 |
] |
|
|
1095 |
}, |
|
|
1096 |
{ |
|
|
1097 |
"cell_type": "code", |
|
|
1098 |
"execution_count": null, |
|
|
1099 |
"metadata": { |
|
|
1100 |
"collapsed": false, |
|
|
1101 |
"deletable": true, |
|
|
1102 |
"editable": true |
|
|
1103 |
}, |
|
|
1104 |
"outputs": [], |
|
|
1105 |
"source": [ |
|
|
1106 |
"thresh_corr_cut = 0.95\n", |
|
|
1107 |
"\n", |
|
|
1108 |
"excludes = list(features_types_group[\"CATEGORICAL\"])\n", |
|
|
1109 |
"file_name = \"Step_05_Preprocess_Corr_config\"\n", |
|
|
1110 |
"features[\"train_indep\"], o_summaries = preprocess.high_linear_correlation_df(df=features[\"train_indep\"], \n", |
|
|
1111 |
" excludes=excludes, \n", |
|
|
1112 |
" file_name=file_name, \n", |
|
|
1113 |
" thresh_corr_cut=thresh_corr_cut,\n", |
|
|
1114 |
" to_search=True)\n", |
|
|
1115 |
"\n", |
|
|
1116 |
"file_name = \"Step_05_Preprocess_Corr\"\n", |
|
|
1117 |
"readers_writers.save_text(path=CONSTANTS.io_path, title=file_name, data=o_summaries, append=False, ext=\"log\")\n", |
|
|
1118 |
"\n", |
|
|
1119 |
"file_name = \"Step_05_Preprocess_Corr_config\"\n", |
|
|
1120 |
"features[\"test_indep\"], o_summaries = preprocess.high_linear_correlation_df(df=features[\"test_indep\"], \n", |
|
|
1121 |
" excludes=excludes, \n", |
|
|
1122 |
" file_name=file_name, \n", |
|
|
1123 |
" thresh_corr_cut=thresh_corr_cut,\n", |
|
|
1124 |
" to_search=False)\n", |
|
|
1125 |
"\n", |
|
|
1126 |
"# print\n", |
|
|
1127 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
1128 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
1129 |
] |
|
|
1130 |
}, |
|
|
1131 |
{ |
|
|
1132 |
"cell_type": "markdown", |
|
|
1133 |
"metadata": { |
|
|
1134 |
"deletable": true, |
|
|
1135 |
"editable": true |
|
|
1136 |
}, |
|
|
1137 |
"source": [ |
|
|
1138 |
"### 5.4. Descriptive Statistics" |
|
|
1139 |
] |
|
|
1140 |
}, |
|
|
1141 |
{ |
|
|
1142 |
"cell_type": "markdown", |
|
|
1143 |
"metadata": { |
|
|
1144 |
"deletable": true, |
|
|
1145 |
"editable": true |
|
|
1146 |
}, |
|
|
1147 |
"source": [ |
|
|
1148 |
"Produce a descriptive stat report of 'Categorical', 'Continuous', & 'TARGET' features" |
|
|
1149 |
] |
|
|
1150 |
}, |
|
|
1151 |
{ |
|
|
1152 |
"cell_type": "code", |
|
|
1153 |
"execution_count": null, |
|
|
1154 |
"metadata": { |
|
|
1155 |
"collapsed": true, |
|
|
1156 |
"deletable": true, |
|
|
1157 |
"editable": true |
|
|
1158 |
}, |
|
|
1159 |
"outputs": [], |
|
|
1160 |
"source": [ |
|
|
1161 |
"# columns\n", |
|
|
1162 |
"file_name = \"Step_05_Data_ColumnNames_Train\"\n", |
|
|
1163 |
"readers_writers.save_csv(path=CONSTANTS.io_path, title=file_name, \n", |
|
|
1164 |
" data=list(features[\"train_indep\"].columns.values), append=False)\n", |
|
|
1165 |
"\n", |
|
|
1166 |
"# Sample - Train\n", |
|
|
1167 |
"file_name = \"Step_05_Stats_Categorical_Train\"\n", |
|
|
1168 |
"o_stats = preprocess.stats_discrete_df(df=features[\"train_indep\"], includes=features_types_group[\"CATEGORICAL\"], \n", |
|
|
1169 |
" file_name=file_name)\n", |
|
|
1170 |
"file_name = \"Step_05_Stats_Continuous_Train\"\n", |
|
|
1171 |
"o_stats = preprocess.stats_continuous_df(df=features[\"train_indep\"], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
1172 |
" file_name=file_name)\n", |
|
|
1173 |
"\n", |
|
|
1174 |
"# Sample - Test\n", |
|
|
1175 |
"file_name = \"Step_05_Stats_Categorical_Test\"\n", |
|
|
1176 |
"o_stats = preprocess.stats_discrete_df(df=features[\"test_indep\"], includes=features_types_group[\"CATEGORICAL\"],\n", |
|
|
1177 |
" file_name=file_name)\n", |
|
|
1178 |
"file_name = \"Step_05_Stats_Continuous_Test\"\n", |
|
|
1179 |
"o_stats = preprocess.stats_continuous_df(df=features[\"test_indep\"], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
1180 |
" file_name=file_name)" |
|
|
1181 |
] |
|
|
1182 |
}, |
|
|
1183 |
{ |
|
|
1184 |
"cell_type": "markdown", |
|
|
1185 |
"metadata": { |
|
|
1186 |
"deletable": true, |
|
|
1187 |
"editable": true |
|
|
1188 |
}, |
|
|
1189 |
"source": [ |
|
|
1190 |
"<br/><br/>" |
|
|
1191 |
] |
|
|
1192 |
}, |
|
|
1193 |
{ |
|
|
1194 |
"cell_type": "markdown", |
|
|
1195 |
"metadata": { |
|
|
1196 |
"deletable": true, |
|
|
1197 |
"editable": true |
|
|
1198 |
}, |
|
|
1199 |
"source": [ |
|
|
1200 |
"## 6. Recategorise & Transform" |
|
|
1201 |
] |
|
|
1202 |
}, |
|
|
1203 |
{ |
|
|
1204 |
"cell_type": "markdown", |
|
|
1205 |
"metadata": { |
|
|
1206 |
"deletable": true, |
|
|
1207 |
"editable": true |
|
|
1208 |
}, |
|
|
1209 |
"source": [ |
|
|
1210 |
"Verify features visually" |
|
|
1211 |
] |
|
|
1212 |
}, |
|
|
1213 |
{ |
|
|
1214 |
"cell_type": "code", |
|
|
1215 |
"execution_count": null, |
|
|
1216 |
"metadata": { |
|
|
1217 |
"collapsed": false, |
|
|
1218 |
"deletable": true, |
|
|
1219 |
"editable": true |
|
|
1220 |
}, |
|
|
1221 |
"outputs": [], |
|
|
1222 |
"source": [ |
|
|
1223 |
"display(pd.concat([features[\"train_id\"].head(), features[\"train_target\"].head(), features[\"train_indep\"].head()], axis=1))\n", |
|
|
1224 |
"display(pd.concat([features[\"test_id\"].head(), features[\"test_target\"].head(), features[\"test_indep\"].head()], axis=1))" |
|
|
1225 |
] |
|
|
1226 |
}, |
|
|
1227 |
{ |
|
|
1228 |
"cell_type": "markdown", |
|
|
1229 |
"metadata": { |
|
|
1230 |
"deletable": true, |
|
|
1231 |
"editable": true |
|
|
1232 |
}, |
|
|
1233 |
"source": [ |
|
|
1234 |
"### 6.1. Recategorise" |
|
|
1235 |
] |
|
|
1236 |
}, |
|
|
1237 |
{ |
|
|
1238 |
"cell_type": "markdown", |
|
|
1239 |
"metadata": { |
|
|
1240 |
"deletable": true, |
|
|
1241 |
"editable": true |
|
|
1242 |
}, |
|
|
1243 |
"source": [ |
|
|
1244 |
"Define the factorisation function to generate dummy features for the categorical features." |
|
|
1245 |
] |
|
|
1246 |
}, |
|
|
1247 |
{ |
|
|
1248 |
"cell_type": "code", |
|
|
1249 |
"execution_count": null, |
|
|
1250 |
"metadata": { |
|
|
1251 |
"collapsed": true, |
|
|
1252 |
"deletable": true, |
|
|
1253 |
"editable": true |
|
|
1254 |
}, |
|
|
1255 |
"outputs": [], |
|
|
1256 |
"source": [ |
|
|
1257 |
"def factorise_settings(max_categories_frac, min_categories_num, exclude_zero):\n", |
|
|
1258 |
" categories_dic = dict()\n", |
|
|
1259 |
" labels_dic = dict()\n", |
|
|
1260 |
" dtypes_dic = dict()\n", |
|
|
1261 |
" dummies = []\n", |
|
|
1262 |
" \n", |
|
|
1263 |
" for f_name in features_types_group[\"CATEGORICAL\"]:\n", |
|
|
1264 |
" if f_name in features[\"train_indep\"]:\n", |
|
|
1265 |
" # find top & valid states\n", |
|
|
1266 |
" summaries = stats.itemfreq(features[\"train_indep\"][f_name])\n", |
|
|
1267 |
" summaries = pd.DataFrame({\"value\": summaries[:, 0], \"freq\": summaries[:, 1]})\n", |
|
|
1268 |
" summaries[\"value\"] = list(map(int, summaries[\"value\"]))\n", |
|
|
1269 |
" summaries = summaries.sort_values(\"freq\", ascending=False)\n", |
|
|
1270 |
" summaries = list(summaries[\"value\"])\n", |
|
|
1271 |
"\n", |
|
|
1272 |
" # exclude zero state\n", |
|
|
1273 |
" if exclude_zero is True and len(summaries) > 1:\n", |
|
|
1274 |
" summaries = [s for s in summaries if s != 0]\n", |
|
|
1275 |
" \n", |
|
|
1276 |
" # if included in the states\n", |
|
|
1277 |
" summaries = [v for v in summaries if v in set(features_states_values[f_name])]\n", |
|
|
1278 |
"\n", |
|
|
1279 |
" # limit number of states\n", |
|
|
1280 |
" max_cnt = max(int(len(summaries) * max_categories_frac), min_categories_num)\n", |
|
|
1281 |
"\n", |
|
|
1282 |
" # set states\n", |
|
|
1283 |
" categories_dic[f_name] = summaries[0:max_cnt]\n", |
|
|
1284 |
" labels_dic[f_name] = [f_name + \"_\" + str(c) for c in categories_dic[f_name]]\n", |
|
|
1285 |
" dtypes_dic = {**dtypes_dic,\n", |
|
|
1286 |
" **dict(zip(labels_dic[f_name], [pd.Series(dtype='i') for _ in range(len(categories_dic[f_name]))]))}\n", |
|
|
1287 |
" dummies += labels_dic[f_name] \n", |
|
|
1288 |
" \n", |
|
|
1289 |
" dtypes_dic = pd.DataFrame(dtypes_dic).dtypes\n", |
|
|
1290 |
"\n", |
|
|
1291 |
" # print \n", |
|
|
1292 |
" print(\"Total Categorical Variables : \", len(categories_dic.keys()), \n", |
|
|
1293 |
" \"; Total Number of Dummy Variables: \", sum([len(categories_dic[f_name]) for f_name in categories_dic.keys()]))\n", |
|
|
1294 |
" return categories_dic, labels_dic, dtypes_dic, features_types" |
|
|
1295 |
] |
|
|
1296 |
}, |
|
|
1297 |
{ |
|
|
1298 |
"cell_type": "markdown", |
|
|
1299 |
"metadata": { |
|
|
1300 |
"deletable": true, |
|
|
1301 |
"editable": true |
|
|
1302 |
}, |
|
|
1303 |
"source": [ |
|
|
1304 |
"Select categories: by order of freq., max_categories_frac, & max_categories_num\n", |
|
|
1305 |
"\n", |
|
|
1306 |
"<br/><font style=\"font-weight:bold;color:red\">Configure:</font> The input arguments are:\n", |
|
|
1307 |
"- Specify the maximum number of categories a feature can have\n", |
|
|
1308 |
"<br/>	 → max_categories_frac\n", |
|
|
1309 |
"- Specify the minimum number of categories a feature can have\n", |
|
|
1310 |
"<br/>	 → min_categories_num\n", |
|
|
1311 |
"- Specify to exclude the state '0' (zero). State zero in our features represents 'any other state', including NULL\n", |
|
|
1312 |
"<br/>	 → exclude_zero = False" |
|
|
1313 |
] |
|
|
1314 |
}, |
|
|
1315 |
{ |
|
|
1316 |
"cell_type": "code", |
|
|
1317 |
"execution_count": null, |
|
|
1318 |
"metadata": { |
|
|
1319 |
"collapsed": false, |
|
|
1320 |
"deletable": true, |
|
|
1321 |
"editable": true |
|
|
1322 |
}, |
|
|
1323 |
"outputs": [], |
|
|
1324 |
"source": [ |
|
|
1325 |
"max_categories_frac = 0.90\n", |
|
|
1326 |
"min_categories_num = 1\n", |
|
|
1327 |
"exclude_zero = False # if possible remove state zero\n", |
|
|
1328 |
"\n", |
|
|
1329 |
"categories_dic, labels_dic, dtypes_dic, features_types_group[\"DUMMIES\"] = \\\n", |
|
|
1330 |
" factorise_settings(max_categories_frac, min_categories_num, exclude_zero)" |
|
|
1331 |
] |
|
|
1332 |
}, |
|
|
1333 |
{ |
|
|
1334 |
"cell_type": "markdown", |
|
|
1335 |
"metadata": { |
|
|
1336 |
"deletable": true, |
|
|
1337 |
"editable": true |
|
|
1338 |
}, |
|
|
1339 |
"source": [ |
|
|
1340 |
"Manually add dummy variables to the dataframe & remove the original Categorical variables" |
|
|
1341 |
] |
|
|
1342 |
}, |
|
|
1343 |
{ |
|
|
1344 |
"cell_type": "code", |
|
|
1345 |
"execution_count": null, |
|
|
1346 |
"metadata": { |
|
|
1347 |
"collapsed": false, |
|
|
1348 |
"deletable": true, |
|
|
1349 |
"editable": true |
|
|
1350 |
}, |
|
|
1351 |
"outputs": [], |
|
|
1352 |
"source": [ |
|
|
1353 |
"features[\"train_indep_temp\"] = preprocess.factoring_feature_wise(features[\"train_indep\"], categories_dic, labels_dic, dtypes_dic, threaded=False)\n", |
|
|
1354 |
"features[\"test_indep_temp\"] = preprocess.factoring_feature_wise(features[\"test_indep\"], categories_dic, labels_dic, dtypes_dic, threaded=False)\n", |
|
|
1355 |
"\n", |
|
|
1356 |
"# print\n", |
|
|
1357 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
1358 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
1359 |
] |
|
|
1360 |
}, |
|
|
1361 |
{ |
|
|
1362 |
"cell_type": "markdown", |
|
|
1363 |
"metadata": { |
|
|
1364 |
"deletable": true, |
|
|
1365 |
"editable": true |
|
|
1366 |
}, |
|
|
1367 |
"source": [ |
|
|
1368 |
"Verify features visually" |
|
|
1369 |
] |
|
|
1370 |
}, |
|
|
1371 |
{ |
|
|
1372 |
"cell_type": "code", |
|
|
1373 |
"execution_count": null, |
|
|
1374 |
"metadata": { |
|
|
1375 |
"collapsed": false, |
|
|
1376 |
"deletable": true, |
|
|
1377 |
"editable": true |
|
|
1378 |
}, |
|
|
1379 |
"outputs": [], |
|
|
1380 |
"source": [ |
|
|
1381 |
"display(pd.concat([features[\"train_id\"].head(), features[\"train_target\"].head(), features[\"train_indep_temp\"].head()], axis=1))\n", |
|
|
1382 |
"display(pd.concat([features[\"test_id\"].head(), features[\"test_target\"].head(), features[\"test_indep_temp\"].head()], axis=1))" |
|
|
1383 |
] |
|
|
1384 |
}, |
|
|
1385 |
{ |
|
|
1386 |
"cell_type": "markdown", |
|
|
1387 |
"metadata": { |
|
|
1388 |
"deletable": true, |
|
|
1389 |
"editable": true |
|
|
1390 |
}, |
|
|
1391 |
"source": [ |
|
|
1392 |
"Set" |
|
|
1393 |
] |
|
|
1394 |
}, |
|
|
1395 |
{ |
|
|
1396 |
"cell_type": "code", |
|
|
1397 |
"execution_count": null, |
|
|
1398 |
"metadata": { |
|
|
1399 |
"collapsed": true, |
|
|
1400 |
"deletable": true, |
|
|
1401 |
"editable": true |
|
|
1402 |
}, |
|
|
1403 |
"outputs": [], |
|
|
1404 |
"source": [ |
|
|
1405 |
"features[\"train_indep\"] = features[\"train_indep_temp\"].copy(True)\n", |
|
|
1406 |
"features[\"test_indep\"] = features[\"test_indep_temp\"].copy(True)" |
|
|
1407 |
] |
|
|
1408 |
}, |
|
|
1409 |
{ |
|
|
1410 |
"cell_type": "markdown", |
|
|
1411 |
"metadata": { |
|
|
1412 |
"deletable": true, |
|
|
1413 |
"editable": true |
|
|
1414 |
}, |
|
|
1415 |
"source": [ |
|
|
1416 |
"<font style=\"font-weight:bold;color:red\">Clean-Up</font>" |
|
|
1417 |
] |
|
|
1418 |
}, |
|
|
1419 |
{ |
|
|
1420 |
"cell_type": "code", |
|
|
1421 |
"execution_count": null, |
|
|
1422 |
"metadata": { |
|
|
1423 |
"collapsed": false, |
|
|
1424 |
"deletable": true, |
|
|
1425 |
"editable": true |
|
|
1426 |
}, |
|
|
1427 |
"outputs": [], |
|
|
1428 |
"source": [ |
|
|
1429 |
"del features[\"train_indep_temp\"]\n", |
|
|
1430 |
"del features[\"test_indep_temp\"]\n", |
|
|
1431 |
"gc.collect()" |
|
|
1432 |
] |
|
|
1433 |
}, |
|
|
1434 |
{ |
|
|
1435 |
"cell_type": "markdown", |
|
|
1436 |
"metadata": { |
|
|
1437 |
"deletable": true, |
|
|
1438 |
"editable": true |
|
|
1439 |
}, |
|
|
1440 |
"source": [ |
|
|
1441 |
"### 6.2. Remove - Near Zero Variance" |
|
|
1442 |
] |
|
|
1443 |
}, |
|
|
1444 |
{ |
|
|
1445 |
"cell_type": "markdown", |
|
|
1446 |
"metadata": { |
|
|
1447 |
"deletable": true, |
|
|
1448 |
"editable": true |
|
|
1449 |
}, |
|
|
1450 |
"source": [ |
|
|
1451 |
"Optional: Remove more features with near zero variance, after the factorisation step.\n", |
|
|
1452 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> the function" |
|
|
1453 |
] |
|
|
1454 |
}, |
|
|
1455 |
{ |
|
|
1456 |
"cell_type": "code", |
|
|
1457 |
"execution_count": null, |
|
|
1458 |
"metadata": { |
|
|
1459 |
"collapsed": false, |
|
|
1460 |
"deletable": true, |
|
|
1461 |
"editable": true |
|
|
1462 |
}, |
|
|
1463 |
"outputs": [], |
|
|
1464 |
"source": [ |
|
|
1465 |
"# the cutoff for the percentage of distinct values out of the number of total samples (upper limit). e.g. 10 * 100 / 100\n", |
|
|
1466 |
"thresh_unique_cut = 100\n", |
|
|
1467 |
"# the cutoff for the ratio of the most common value to the second most common value (lower limit). eg. 95/5\n", |
|
|
1468 |
"thresh_freq_cut = 1000\n", |
|
|
1469 |
"\n", |
|
|
1470 |
"excludes = []\n", |
|
|
1471 |
"file_name = \"Step_06_Preprocess_NZV_config\"\n", |
|
|
1472 |
"features[\"train_indep\"], o_summaries = preprocess.near_zero_var_df(df=features[\"train_indep\"], \n", |
|
|
1473 |
" excludes=excludes, \n", |
|
|
1474 |
" file_name=file_name, \n", |
|
|
1475 |
" thresh_unique_cut=thresh_unique_cut, \n", |
|
|
1476 |
" thresh_freq_cut=thresh_freq_cut,\n", |
|
|
1477 |
" to_search=True)\n", |
|
|
1478 |
"\n", |
|
|
1479 |
"file_name = \"Step_06_Preprocess_NZV\"\n", |
|
|
1480 |
"readers_writers.save_text(path=CONSTANTS.io_path, title=file_name, data=o_summaries, append=False, ext=\"log\")\n", |
|
|
1481 |
"\n", |
|
|
1482 |
"file_name = \"Step_06_Preprocess_NZV_config\"\n", |
|
|
1483 |
"features[\"test_indep\"], o_summaries = preprocess.near_zero_var_df(df=features[\"test_indep\"], \n", |
|
|
1484 |
" excludes=excludes, \n", |
|
|
1485 |
" file_name=file_name, \n", |
|
|
1486 |
" thresh_unique_cut=thresh_unique_cut, \n", |
|
|
1487 |
" thresh_freq_cut=thresh_freq_cut,\n", |
|
|
1488 |
" to_search=False)\n", |
|
|
1489 |
"\n", |
|
|
1490 |
"# print\n", |
|
|
1491 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
1492 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
1493 |
] |
|
|
1494 |
}, |
|
|
1495 |
{ |
|
|
1496 |
"cell_type": "markdown", |
|
|
1497 |
"metadata": { |
|
|
1498 |
"deletable": true, |
|
|
1499 |
"editable": true |
|
|
1500 |
}, |
|
|
1501 |
"source": [ |
|
|
1502 |
"### 6.3. Remove Highly Linearly Correlated" |
|
|
1503 |
] |
|
|
1504 |
}, |
|
|
1505 |
{ |
|
|
1506 |
"cell_type": "markdown", |
|
|
1507 |
"metadata": { |
|
|
1508 |
"deletable": true, |
|
|
1509 |
"editable": true |
|
|
1510 |
}, |
|
|
1511 |
"source": [ |
|
|
1512 |
"Optional: Remove more features with highly linearly correlated, after the factorisation step.\n", |
|
|
1513 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> the function" |
|
|
1514 |
] |
|
|
1515 |
}, |
|
|
1516 |
{ |
|
|
1517 |
"cell_type": "code", |
|
|
1518 |
"execution_count": null, |
|
|
1519 |
"metadata": { |
|
|
1520 |
"collapsed": false, |
|
|
1521 |
"deletable": true, |
|
|
1522 |
"editable": true |
|
|
1523 |
}, |
|
|
1524 |
"outputs": [], |
|
|
1525 |
"source": [ |
|
|
1526 |
"# A numeric value for the pair-wise absolute correlation cutoff. e.g. 0.95\n", |
|
|
1527 |
"thresh_corr_cut = 0.95\n", |
|
|
1528 |
"\n", |
|
|
1529 |
"excludes = []\n", |
|
|
1530 |
"file_name = \"Step_06_Preprocess_Corr_config\"\n", |
|
|
1531 |
"features[\"train_indep\"], o_summaries = preprocess.high_linear_correlation_df(df=features[\"train_indep\"], \n", |
|
|
1532 |
" excludes=excludes, \n", |
|
|
1533 |
" file_name=file_name, \n", |
|
|
1534 |
" thresh_corr_cut=thresh_corr_cut,\n", |
|
|
1535 |
" to_search=True)\n", |
|
|
1536 |
"\n", |
|
|
1537 |
"file_name = \"Step_06_Preprocess_Corr\"\n", |
|
|
1538 |
"readers_writers.save_text(path=CONSTANTS.io_path, title=file_name, data=o_summaries, append=False, ext=\"log\")\n", |
|
|
1539 |
"\n", |
|
|
1540 |
"file_name = \"Step_06_Preprocess_Corr_config\"\n", |
|
|
1541 |
"features[\"test_indep\"], o_summaries = preprocess.high_linear_correlation_df(df=features[\"test_indep\"], \n", |
|
|
1542 |
" excludes=excludes, \n", |
|
|
1543 |
" file_name=file_name, \n", |
|
|
1544 |
" thresh_corr_cut=thresh_corr_cut,\n", |
|
|
1545 |
" to_search=False)\n", |
|
|
1546 |
"\n", |
|
|
1547 |
"# print\n", |
|
|
1548 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
1549 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
1550 |
] |
|
|
1551 |
}, |
|
|
1552 |
{ |
|
|
1553 |
"cell_type": "markdown", |
|
|
1554 |
"metadata": { |
|
|
1555 |
"deletable": true, |
|
|
1556 |
"editable": true |
|
|
1557 |
}, |
|
|
1558 |
"source": [ |
|
|
1559 |
"### 6.4. Descriptive Statsistics" |
|
|
1560 |
] |
|
|
1561 |
}, |
|
|
1562 |
{ |
|
|
1563 |
"cell_type": "markdown", |
|
|
1564 |
"metadata": { |
|
|
1565 |
"deletable": true, |
|
|
1566 |
"editable": true |
|
|
1567 |
}, |
|
|
1568 |
"source": [ |
|
|
1569 |
"Produce a descriptive stat report of 'Categorical', 'Continuous', & 'TARGET' features" |
|
|
1570 |
] |
|
|
1571 |
}, |
|
|
1572 |
{ |
|
|
1573 |
"cell_type": "code", |
|
|
1574 |
"execution_count": null, |
|
|
1575 |
"metadata": { |
|
|
1576 |
"collapsed": true, |
|
|
1577 |
"deletable": true, |
|
|
1578 |
"editable": true |
|
|
1579 |
}, |
|
|
1580 |
"outputs": [], |
|
|
1581 |
"source": [ |
|
|
1582 |
"# columns\n", |
|
|
1583 |
"file_name = \"Step_06_4_Data_ColumnNames_Train\"\n", |
|
|
1584 |
"readers_writers.save_csv(path=CONSTANTS.io_path, title=file_name, \n", |
|
|
1585 |
" data=list(features[\"train_indep\"].columns.values), append=False)\n", |
|
|
1586 |
"\n", |
|
|
1587 |
"# Sample - Train\n", |
|
|
1588 |
"file_name = \"Step_06_4_Stats_Categorical_Train\"\n", |
|
|
1589 |
"o_stats = preprocess.stats_discrete_df(df=features[\"train_indep\"], includes=features_types_group[\"CATEGORICAL\"], \n", |
|
|
1590 |
" file_name=file_name)\n", |
|
|
1591 |
"file_name = \"Step_06_4_Stats_Continuous_Train\"\n", |
|
|
1592 |
"o_stats = preprocess.stats_continuous_df(df=features[\"train_indep\"], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
1593 |
" file_name=file_name)\n", |
|
|
1594 |
"\n", |
|
|
1595 |
"# Sample - Test\n", |
|
|
1596 |
"file_name = \"Step_06_4_Stats_Categorical_Test\"\n", |
|
|
1597 |
"o_stats = preprocess.stats_discrete_df(df=features[\"test_indep\"], includes=features_types_group[\"CATEGORICAL\"],\n", |
|
|
1598 |
" file_name=file_name)\n", |
|
|
1599 |
"file_name = \"Step_06_4_Stats_Continuous_Test\"\n", |
|
|
1600 |
"o_stats = preprocess.stats_continuous_df(df=features[\"test_indep\"], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
1601 |
" file_name=file_name)" |
|
|
1602 |
] |
|
|
1603 |
}, |
|
|
1604 |
{ |
|
|
1605 |
"cell_type": "markdown", |
|
|
1606 |
"metadata": { |
|
|
1607 |
"collapsed": true, |
|
|
1608 |
"deletable": true, |
|
|
1609 |
"editable": true |
|
|
1610 |
}, |
|
|
1611 |
"source": [ |
|
|
1612 |
"### 6.5. Transformations" |
|
|
1613 |
] |
|
|
1614 |
}, |
|
|
1615 |
{ |
|
|
1616 |
"cell_type": "markdown", |
|
|
1617 |
"metadata": { |
|
|
1618 |
"deletable": true, |
|
|
1619 |
"editable": true |
|
|
1620 |
}, |
|
|
1621 |
"source": [ |
|
|
1622 |
"Verify features visually" |
|
|
1623 |
] |
|
|
1624 |
}, |
|
|
1625 |
{ |
|
|
1626 |
"cell_type": "code", |
|
|
1627 |
"execution_count": null, |
|
|
1628 |
"metadata": { |
|
|
1629 |
"collapsed": false, |
|
|
1630 |
"deletable": true, |
|
|
1631 |
"editable": true |
|
|
1632 |
}, |
|
|
1633 |
"outputs": [], |
|
|
1634 |
"source": [ |
|
|
1635 |
"display(pd.concat([features[\"train_id\"].head(), features[\"train_target\"].head(), features[\"train_indep\"].head()], axis=1))\n", |
|
|
1636 |
"display(pd.concat([features[\"test_id\"].head(), features[\"test_target\"].head(), features[\"test_indep\"].head()], axis=1))" |
|
|
1637 |
] |
|
|
1638 |
}, |
|
|
1639 |
{ |
|
|
1640 |
"cell_type": "markdown", |
|
|
1641 |
"metadata": { |
|
|
1642 |
"collapsed": true, |
|
|
1643 |
"deletable": true, |
|
|
1644 |
"editable": true |
|
|
1645 |
}, |
|
|
1646 |
"source": [ |
|
|
1647 |
"<font style=\"font-weight:bold;color:blue\">Tranformation:</font> scale\n", |
|
|
1648 |
"<font style=\"font-weight:bold;color:brown\">Note:</font>: It is highly resource intensive" |
|
|
1649 |
] |
|
|
1650 |
}, |
|
|
1651 |
{ |
|
|
1652 |
"cell_type": "code", |
|
|
1653 |
"execution_count": null, |
|
|
1654 |
"metadata": { |
|
|
1655 |
"collapsed": false, |
|
|
1656 |
"deletable": true, |
|
|
1657 |
"editable": true |
|
|
1658 |
}, |
|
|
1659 |
"outputs": [], |
|
|
1660 |
"source": [ |
|
|
1661 |
"transform_type = \"scale\"\n", |
|
|
1662 |
"kwargs = {\"with_mean\": True}\n", |
|
|
1663 |
"method_args = dict()\n", |
|
|
1664 |
"excludes = list(features_types_group[\"CATEGORICAL\"]) + list(features_types_group[\"DUMMIES\"])\n", |
|
|
1665 |
"\n", |
|
|
1666 |
"features[\"train_indep\"], method_args = preprocess.transform_df(df=features[\"train_indep\"], excludes=excludes, \n", |
|
|
1667 |
" transform_type=transform_type, threaded=False, \n", |
|
|
1668 |
" method_args=method_args, **kwargs)\n", |
|
|
1669 |
"features[\"test_indep\"], _ = preprocess.transform_df(df=features[\"test_indep\"], excludes=excludes, \n", |
|
|
1670 |
" transform_type=transform_type, threaded=False, \n", |
|
|
1671 |
" method_args=method_args, **kwargs)\n", |
|
|
1672 |
"\n", |
|
|
1673 |
"# print(\"Metod arguments:\", method_args)" |
|
|
1674 |
] |
|
|
1675 |
}, |
|
|
1676 |
{ |
|
|
1677 |
"cell_type": "markdown", |
|
|
1678 |
"metadata": { |
|
|
1679 |
"deletable": true, |
|
|
1680 |
"editable": true |
|
|
1681 |
}, |
|
|
1682 |
"source": [ |
|
|
1683 |
"<font style=\"font-weight:bold;color:blue\">Tranformation:</font> Yeo-Johnson\n", |
|
|
1684 |
"<font style=\"font-weight:bold;color:brown\">Note:</font>: It is highly resource intensive" |
|
|
1685 |
] |
|
|
1686 |
}, |
|
|
1687 |
{ |
|
|
1688 |
"cell_type": "code", |
|
|
1689 |
"execution_count": null, |
|
|
1690 |
"metadata": { |
|
|
1691 |
"collapsed": false, |
|
|
1692 |
"deletable": true, |
|
|
1693 |
"editable": true |
|
|
1694 |
}, |
|
|
1695 |
"outputs": [], |
|
|
1696 |
"source": [ |
|
|
1697 |
"transform_type = \"yeo_johnson\"\n", |
|
|
1698 |
"kwargs = {\"lmbda\": -0.5, \"derivative\": 0, \"epsilon\": np.finfo(np.float).eps, \"inverse\": False}\n", |
|
|
1699 |
"method_args = dict()\n", |
|
|
1700 |
"excludes = list(features_types_group[\"CATEGORICAL\"]) + list(features_types_group[\"DUMMIES\"])\n", |
|
|
1701 |
"\n", |
|
|
1702 |
"features[\"train_indep\"], method_args = preprocess.transform_df(df=features[\"train_indep\"], excludes=excludes, \n", |
|
|
1703 |
" transform_type=transform_type, threaded=False, \n", |
|
|
1704 |
" method_args=method_args, **kwargs)\n", |
|
|
1705 |
"features[\"test_indep\"], _ = preprocess.transform_df(df=features[\"test_indep\"], excludes=excludes, \n", |
|
|
1706 |
" transform_type=transform_type, threaded=False, \n", |
|
|
1707 |
" method_args=method_args, **kwargs)\n", |
|
|
1708 |
"\n", |
|
|
1709 |
"# print(\"Metod arguments:\", method_args)" |
|
|
1710 |
] |
|
|
1711 |
}, |
|
|
1712 |
{ |
|
|
1713 |
"cell_type": "markdown", |
|
|
1714 |
"metadata": { |
|
|
1715 |
"deletable": true, |
|
|
1716 |
"editable": true |
|
|
1717 |
}, |
|
|
1718 |
"source": [ |
|
|
1719 |
"Visual verification" |
|
|
1720 |
] |
|
|
1721 |
}, |
|
|
1722 |
{ |
|
|
1723 |
"cell_type": "code", |
|
|
1724 |
"execution_count": null, |
|
|
1725 |
"metadata": { |
|
|
1726 |
"collapsed": false, |
|
|
1727 |
"deletable": true, |
|
|
1728 |
"editable": true |
|
|
1729 |
}, |
|
|
1730 |
"outputs": [], |
|
|
1731 |
"source": [ |
|
|
1732 |
"display(pd.concat([features[\"train_id\"].head(), features[\"train_target\"].head(), features[\"train_indep\"].head()], axis=1))\n", |
|
|
1733 |
"display(pd.concat([features[\"test_id\"].head(), features[\"test_target\"].head(), features[\"test_indep\"].head()], axis=1))" |
|
|
1734 |
] |
|
|
1735 |
}, |
|
|
1736 |
{ |
|
|
1737 |
"cell_type": "markdown", |
|
|
1738 |
"metadata": { |
|
|
1739 |
"deletable": true, |
|
|
1740 |
"editable": true |
|
|
1741 |
}, |
|
|
1742 |
"source": [ |
|
|
1743 |
"### 6.6. Summary Statistics" |
|
|
1744 |
] |
|
|
1745 |
}, |
|
|
1746 |
{ |
|
|
1747 |
"cell_type": "markdown", |
|
|
1748 |
"metadata": { |
|
|
1749 |
"deletable": true, |
|
|
1750 |
"editable": true |
|
|
1751 |
}, |
|
|
1752 |
"source": [ |
|
|
1753 |
"Produce a descriptive stat report of 'Categorical', 'Continuous', & 'TARGET' features" |
|
|
1754 |
] |
|
|
1755 |
}, |
|
|
1756 |
{ |
|
|
1757 |
"cell_type": "code", |
|
|
1758 |
"execution_count": null, |
|
|
1759 |
"metadata": { |
|
|
1760 |
"collapsed": true, |
|
|
1761 |
"deletable": true, |
|
|
1762 |
"editable": true |
|
|
1763 |
}, |
|
|
1764 |
"outputs": [], |
|
|
1765 |
"source": [ |
|
|
1766 |
"# Statsistics report for 'Categorical', 'Continuous', & 'TARGET' variables\n", |
|
|
1767 |
"# columns\n", |
|
|
1768 |
"file_name = \"Step_06_6_Data_ColumnNames_Train\"\n", |
|
|
1769 |
"readers_writers.save_csv(path=CONSTANTS.io_path, title=file_name, \n", |
|
|
1770 |
" data=list(features[\"train_indep\"].columns.values), append=False)\n", |
|
|
1771 |
"\n", |
|
|
1772 |
"# Sample - Train\n", |
|
|
1773 |
"file_name = \"Step_06_6_Stats_Categorical_Train\"\n", |
|
|
1774 |
"o_stats = preprocess.stats_discrete_df(df=features[\"train_indep\"], includes=features_types_group[\"CATEGORICAL\"], \n", |
|
|
1775 |
" file_name=file_name)\n", |
|
|
1776 |
"file_name = \"Step_06_6_Stats_Continuous_Train\"\n", |
|
|
1777 |
"o_stats = preprocess.stats_continuous_df(df=features[\"train_indep\"], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
1778 |
" file_name=file_name)\n", |
|
|
1779 |
"\n", |
|
|
1780 |
"# Sample - Test\n", |
|
|
1781 |
"file_name = \"Step_06_6_Stats_Categorical_Test\"\n", |
|
|
1782 |
"o_stats = preprocess.stats_discrete_df(df=features[\"test_indep\"], includes=features_types_group[\"CATEGORICAL\"],\n", |
|
|
1783 |
" file_name=file_name)\n", |
|
|
1784 |
"file_name = \"Step_06_6_Stats_Continuous_Test\"\n", |
|
|
1785 |
"o_stats = preprocess.stats_continuous_df(df=features[\"test_indep\"], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
1786 |
" file_name=file_name)" |
|
|
1787 |
] |
|
|
1788 |
}, |
|
|
1789 |
{ |
|
|
1790 |
"cell_type": "markdown", |
|
|
1791 |
"metadata": { |
|
|
1792 |
"deletable": true, |
|
|
1793 |
"editable": true |
|
|
1794 |
}, |
|
|
1795 |
"source": [ |
|
|
1796 |
"<br/><br/>" |
|
|
1797 |
] |
|
|
1798 |
}, |
|
|
1799 |
{ |
|
|
1800 |
"cell_type": "markdown", |
|
|
1801 |
"metadata": { |
|
|
1802 |
"deletable": true, |
|
|
1803 |
"editable": true |
|
|
1804 |
}, |
|
|
1805 |
"source": [ |
|
|
1806 |
"## 7. Rank & Select Features" |
|
|
1807 |
] |
|
|
1808 |
}, |
|
|
1809 |
{ |
|
|
1810 |
"cell_type": "markdown", |
|
|
1811 |
"metadata": { |
|
|
1812 |
"deletable": true, |
|
|
1813 |
"editable": true |
|
|
1814 |
}, |
|
|
1815 |
"source": [ |
|
|
1816 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> the general settings" |
|
|
1817 |
] |
|
|
1818 |
}, |
|
|
1819 |
{ |
|
|
1820 |
"cell_type": "code", |
|
|
1821 |
"execution_count": null, |
|
|
1822 |
"metadata": { |
|
|
1823 |
"collapsed": true, |
|
|
1824 |
"deletable": true, |
|
|
1825 |
"editable": true |
|
|
1826 |
}, |
|
|
1827 |
"outputs": [], |
|
|
1828 |
"source": [ |
|
|
1829 |
"# select the target variable\n", |
|
|
1830 |
"target_feature = \"label365\" # \"label30\", \"label365\"\n", |
|
|
1831 |
"\n", |
|
|
1832 |
"# number of trials\n", |
|
|
1833 |
"num_trials = 1\n", |
|
|
1834 |
"\n", |
|
|
1835 |
"model_rank = dict()\n", |
|
|
1836 |
"o_summaries_df = dict()" |
|
|
1837 |
] |
|
|
1838 |
}, |
|
|
1839 |
{ |
|
|
1840 |
"cell_type": "markdown", |
|
|
1841 |
"metadata": { |
|
|
1842 |
"deletable": true, |
|
|
1843 |
"editable": true |
|
|
1844 |
}, |
|
|
1845 |
"source": [ |
|
|
1846 |
"### 7.1. Define" |
|
|
1847 |
] |
|
|
1848 |
}, |
|
|
1849 |
{ |
|
|
1850 |
"cell_type": "markdown", |
|
|
1851 |
"metadata": { |
|
|
1852 |
"deletable": true, |
|
|
1853 |
"editable": true |
|
|
1854 |
}, |
|
|
1855 |
"source": [ |
|
|
1856 |
"<font style=\"font-weight:bold;color:blue\">Ranking Method:</font> Random forest classifier (Brieman)\n", |
|
|
1857 |
"<br/>Define a set of classifiers with different settings, to be used in feature ranking trials." |
|
|
1858 |
] |
|
|
1859 |
}, |
|
|
1860 |
{ |
|
|
1861 |
"cell_type": "code", |
|
|
1862 |
"execution_count": null, |
|
|
1863 |
"metadata": { |
|
|
1864 |
"collapsed": true, |
|
|
1865 |
"deletable": true, |
|
|
1866 |
"editable": true |
|
|
1867 |
}, |
|
|
1868 |
"outputs": [], |
|
|
1869 |
"source": [ |
|
|
1870 |
"def rank_random_forest_brieman(features_indep_arg, features_target_arg, num_trials):\n", |
|
|
1871 |
" num_settings = 3\n", |
|
|
1872 |
" o_summaries_df = [pd.DataFrame({'Name': list(features_indep_arg.columns.values)}) for _ in range(num_trials * num_settings)]\n", |
|
|
1873 |
" model_rank = [None] * (num_trials * num_settings)\n", |
|
|
1874 |
"\n", |
|
|
1875 |
" # trials \n", |
|
|
1876 |
" for i in range(num_trials): \n", |
|
|
1877 |
" print(\"Trial: \" + str(i))\n", |
|
|
1878 |
" # setting-1\n", |
|
|
1879 |
" s_i = i\n", |
|
|
1880 |
" model_rank[s_i] = feature_selection.rank_random_forest_breiman(\n", |
|
|
1881 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
1882 |
" **{\"n_estimators\": 10, \"criterion\": 'gini', \"max_depth\": None, \"min_samples_split\": 2, \"min_samples_leaf\": 1,\n", |
|
|
1883 |
" \"min_weight_fraction_leaf\": 0.0, \"max_features\": 'auto', \"max_leaf_nodes\": None, \"bootstrap\": True,\n", |
|
|
1884 |
" \"oob_score\": False, \"n_jobs\": -1, \"random_state\": None, \"verbose\": 0, \"warm_start\": False, \"class_weight\": None})\n", |
|
|
1885 |
"\n", |
|
|
1886 |
" # setting-2\n", |
|
|
1887 |
" s_i = num_trials + i\n", |
|
|
1888 |
" model_rank[s_i] = feature_selection.rank_random_forest_breiman(\n", |
|
|
1889 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
1890 |
" **{\"n_estimators\": 10, \"criterion\": 'gini', \"max_depth\": None, \"min_samples_split\": 50, \"min_samples_leaf\": 25,\n", |
|
|
1891 |
" \"min_weight_fraction_leaf\": 0.0, \"max_features\": 'auto', \"max_leaf_nodes\": None, \"bootstrap\": True,\n", |
|
|
1892 |
" \"oob_score\": False, \"n_jobs\": -1, \"random_state\": None, \"verbose\": 0, \"warm_start\": False, \"class_weight\": None})\n", |
|
|
1893 |
"\n", |
|
|
1894 |
" # setting-3\n", |
|
|
1895 |
" s_i = (num_trials * 2) + i\n", |
|
|
1896 |
" model_rank[s_i] = feature_selection.rank_random_forest_breiman(\n", |
|
|
1897 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
1898 |
" **{\"n_estimators\": 10, \"criterion\": 'gini', \"max_depth\": None, \"min_samples_split\": 40, \"min_samples_leaf\": 20,\n", |
|
|
1899 |
" \"min_weight_fraction_leaf\": 0.0, \"max_features\": 'auto', \"max_leaf_nodes\": None, \"bootstrap\": True,\n", |
|
|
1900 |
" \"oob_score\": False, \"n_jobs\": -1, \"random_state\": None, \"verbose\": 0, \"warm_start\": True, \"class_weight\": None})\n", |
|
|
1901 |
"\n", |
|
|
1902 |
" for i in range((num_trials * num_settings)):\n", |
|
|
1903 |
" o_summaries_df[i]['Importance'] = list(model_rank[i].feature_importances_)\n", |
|
|
1904 |
" o_summaries_df[i] = o_summaries_df[i].sort_values(['Importance'], ascending = [0])\n", |
|
|
1905 |
" o_summaries_df[i] = o_summaries_df[i].reset_index(drop = True)\n", |
|
|
1906 |
" o_summaries_df[i]['Order'] = range(1, len(o_summaries_df[i]['Importance']) + 1)\n", |
|
|
1907 |
" return model_rank, o_summaries_df" |
|
|
1908 |
] |
|
|
1909 |
}, |
|
|
1910 |
{ |
|
|
1911 |
"cell_type": "markdown", |
|
|
1912 |
"metadata": { |
|
|
1913 |
"deletable": true, |
|
|
1914 |
"editable": true |
|
|
1915 |
}, |
|
|
1916 |
"source": [ |
|
|
1917 |
"<font style=\"font-weight:bold;color:blue\">Ranking Method:</font> Gradient Boosted Regression Trees (GBRT) \n", |
|
|
1918 |
"<br/>Define a set of classifiers with different settings, to be used in feature ranking trials." |
|
|
1919 |
] |
|
|
1920 |
}, |
|
|
1921 |
{ |
|
|
1922 |
"cell_type": "code", |
|
|
1923 |
"execution_count": null, |
|
|
1924 |
"metadata": { |
|
|
1925 |
"collapsed": true, |
|
|
1926 |
"deletable": true, |
|
|
1927 |
"editable": true |
|
|
1928 |
}, |
|
|
1929 |
"outputs": [], |
|
|
1930 |
"source": [ |
|
|
1931 |
"def rank_gbrt(features_indep_arg, features_target_arg, num_trials):\n", |
|
|
1932 |
" num_settings = 3\n", |
|
|
1933 |
" o_summaries_df = [pd.DataFrame({'Name': list(features_indep_arg.columns.values)}) for _ in range(num_trials * num_settings)]\n", |
|
|
1934 |
" model_rank = [None] * (num_trials * num_settings)\n", |
|
|
1935 |
"\n", |
|
|
1936 |
" # trials \n", |
|
|
1937 |
" for i in range(num_trials): \n", |
|
|
1938 |
" print(\"Trial: \" + str(i))\n", |
|
|
1939 |
" # setting-1\n", |
|
|
1940 |
" s_i = i\n", |
|
|
1941 |
" model_rank[s_i] = feature_selection.rank_tree_gbrt(\n", |
|
|
1942 |
" features_indep_arg.values, features_target_arg.values, \n", |
|
|
1943 |
" **{\"loss\": 'ls', \"learning_rate\": 0.1, \"n_estimators\": 100, \"subsample\": 1.0, \"min_samples_split\": 2, \"min_samples_leaf\": 1,\n", |
|
|
1944 |
" \"min_weight_fraction_leaf\": 0.0, \"max_depth\": 10, \"init\": None, \"random_state\": None, \"max_features\": None, \"alpha\": 0.9,\n", |
|
|
1945 |
" \"verbose\": 0, \"max_leaf_nodes\": None, \"warm_start\": False, \"presort\": True})\n", |
|
|
1946 |
" \n", |
|
|
1947 |
" # setting-2\n", |
|
|
1948 |
" s_i = num_trials + i\n", |
|
|
1949 |
" model_rank[s_i] = feature_selection.rank_tree_gbrt(\n", |
|
|
1950 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
1951 |
" **{\"loss\": 'ls', \"learning_rate\": 0.1, \"n_estimators\": 100, \"subsample\": 1.0, \"min_samples_split\": 2, \"min_samples_leaf\": 1,\n", |
|
|
1952 |
" \"min_weight_fraction_leaf\": 0.0, \"max_depth\": 5, \"init\": None, \"random_state\": None, \"max_features\": None, \"alpha\": 0.9,\n", |
|
|
1953 |
" \"verbose\": 0, \"max_leaf_nodes\": None, \"warm_start\": False, \"presort\": True})\n", |
|
|
1954 |
"\n", |
|
|
1955 |
" # setting-3\n", |
|
|
1956 |
" s_i = (num_trials * 2) + i\n", |
|
|
1957 |
" model_rank[s_i] = feature_selection.rank_tree_gbrt(\n", |
|
|
1958 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
1959 |
" **{\"loss\": 'ls', \"learning_rate\": 0.1, \"n_estimators\": 100, \"subsample\": 1.0, \"min_samples_split\": 2, \"min_samples_leaf\": 1,\n", |
|
|
1960 |
" \"min_weight_fraction_leaf\": 0.0, \"max_depth\": 3, \"init\": None, \"random_state\": None, \"max_features\": None, \"alpha\": 0.9,\n", |
|
|
1961 |
" \"verbose\": 0, \"max_leaf_nodes\": None, \"warm_start\": False, \"presort\": True})\n", |
|
|
1962 |
"\n", |
|
|
1963 |
" for i in range((num_trials * num_settings)):\n", |
|
|
1964 |
" o_summaries_df[i]['Importance'] = list(model_rank[i].feature_importances_)\n", |
|
|
1965 |
" o_summaries_df[i] = o_summaries_df[i].sort_values(['Importance'], ascending = [0])\n", |
|
|
1966 |
" o_summaries_df[i] = o_summaries_df[i].reset_index(drop = True)\n", |
|
|
1967 |
" o_summaries_df[i]['Order'] = range(1, len(o_summaries_df[i]['Importance']) + 1)\n", |
|
|
1968 |
" return model_rank, o_summaries_df" |
|
|
1969 |
] |
|
|
1970 |
}, |
|
|
1971 |
{ |
|
|
1972 |
"cell_type": "markdown", |
|
|
1973 |
"metadata": { |
|
|
1974 |
"deletable": true, |
|
|
1975 |
"editable": true |
|
|
1976 |
}, |
|
|
1977 |
"source": [ |
|
|
1978 |
"<font style=\"font-weight:bold;color:blue\">Ranking Method:</font> Randomized Logistic Regression\n", |
|
|
1979 |
"<br/>Define a set of classifiers with different settings, to be used in feature ranking trials." |
|
|
1980 |
] |
|
|
1981 |
}, |
|
|
1982 |
{ |
|
|
1983 |
"cell_type": "code", |
|
|
1984 |
"execution_count": null, |
|
|
1985 |
"metadata": { |
|
|
1986 |
"collapsed": true, |
|
|
1987 |
"deletable": true, |
|
|
1988 |
"editable": true |
|
|
1989 |
}, |
|
|
1990 |
"outputs": [], |
|
|
1991 |
"source": [ |
|
|
1992 |
"def rank_randLogit(features_indep_arg, features_target_arg, num_trials):\n", |
|
|
1993 |
" num_settings = 3\n", |
|
|
1994 |
" o_summaries_df = [pd.DataFrame({'Name': list(features_indep_arg.columns.values)}) for _ in range(num_trials * num_settings)]\n", |
|
|
1995 |
" model_rank = [None] * (num_trials * num_settings)\n", |
|
|
1996 |
"\n", |
|
|
1997 |
" # trials \n", |
|
|
1998 |
" for i in range(num_trials): \n", |
|
|
1999 |
" print(\"Trial: \" + str(i))\n", |
|
|
2000 |
" # setting-1\n", |
|
|
2001 |
" s_i = i\n", |
|
|
2002 |
" model_rank[s_i] = feature_selection.rank_random_logistic_regression(\n", |
|
|
2003 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
2004 |
" **{\"C\": 1, \"scaling\": 0.5, \"sample_fraction\": 0.75, \"n_resampling\": 200, \"selection_threshold\": 0.25, \"tol\": 0.001,\n", |
|
|
2005 |
" \"fit_intercept\": True, \"verbose\": False, \"normalize\": True, \"random_state\": None, \"n_jobs\": 1, \"pre_dispatch\": '3*n_jobs'})\n", |
|
|
2006 |
"\n", |
|
|
2007 |
" # setting-2\n", |
|
|
2008 |
" s_i = num_trials + i\n", |
|
|
2009 |
" model_rank[s_i] = feature_selection.rank_random_logistic_regression(\n", |
|
|
2010 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
2011 |
" **{\"C\": 1, \"scaling\": 0.5, \"sample_fraction\": 0.50, \"n_resampling\": 200, \"selection_threshold\": 0.25, \"tol\": 0.001,\n", |
|
|
2012 |
" \"fit_intercept\": True, \"verbose\": False, \"normalize\": True, \"random_state\": None, \"n_jobs\": 1, \"pre_dispatch\": '3*n_jobs'})\n", |
|
|
2013 |
"\n", |
|
|
2014 |
" # setting-3\n", |
|
|
2015 |
" s_i = (num_trials * 2) + i\n", |
|
|
2016 |
" model_rank[s_i] = feature_selection.rank_random_logistic_regression(\n", |
|
|
2017 |
" features_indep_arg.values, features_target_arg.values,\n", |
|
|
2018 |
" **{\"C\": 1, \"scaling\": 0.5, \"sample_fraction\": 0.90, \"n_resampling\": 200, \"selection_threshold\": 0.25, \"tol\": 0.001,\n", |
|
|
2019 |
" \"fit_intercept\": True, \"verbose\": False, \"normalize\": True, \"random_state\": None, \"n_jobs\": 1, \"pre_dispatch\": '3*n_jobs'})\n", |
|
|
2020 |
" \n", |
|
|
2021 |
" for i in range((num_trials * num_settings)):\n", |
|
|
2022 |
" o_summaries_df[i]['Importance'] = list(model_rank[i].scores_)\n", |
|
|
2023 |
" o_summaries_df[i] = o_summaries_df[i].sort_values(['Importance'], ascending = [0])\n", |
|
|
2024 |
" o_summaries_df[i] = o_summaries_df[i].reset_index(drop = True)\n", |
|
|
2025 |
" o_summaries_df[i]['Order'] = range(1, len(o_summaries_df[i]['Importance']) + 1)\n", |
|
|
2026 |
" return model_rank, o_summaries_df" |
|
|
2027 |
] |
|
|
2028 |
}, |
|
|
2029 |
{ |
|
|
2030 |
"cell_type": "markdown", |
|
|
2031 |
"metadata": { |
|
|
2032 |
"deletable": true, |
|
|
2033 |
"editable": true |
|
|
2034 |
}, |
|
|
2035 |
"source": [ |
|
|
2036 |
"### 7.2. Run" |
|
|
2037 |
] |
|
|
2038 |
}, |
|
|
2039 |
{ |
|
|
2040 |
"cell_type": "markdown", |
|
|
2041 |
"metadata": { |
|
|
2042 |
"deletable": true, |
|
|
2043 |
"editable": true |
|
|
2044 |
}, |
|
|
2045 |
"source": [ |
|
|
2046 |
"Run one or more feature ranking methods and trials" |
|
|
2047 |
] |
|
|
2048 |
}, |
|
|
2049 |
{ |
|
|
2050 |
"cell_type": "markdown", |
|
|
2051 |
"metadata": { |
|
|
2052 |
"deletable": true, |
|
|
2053 |
"editable": true |
|
|
2054 |
}, |
|
|
2055 |
"source": [ |
|
|
2056 |
"<font style=\"font-weight:bold;color:blue\">Ranking Method:</font> Random forest classifier (Brieman)\n", |
|
|
2057 |
"<font style=\"font-weight:bold;color:brown\">Note:</font>: It is moderately resource intensive" |
|
|
2058 |
] |
|
|
2059 |
}, |
|
|
2060 |
{ |
|
|
2061 |
"cell_type": "code", |
|
|
2062 |
"execution_count": null, |
|
|
2063 |
"metadata": { |
|
|
2064 |
"collapsed": false, |
|
|
2065 |
"deletable": true, |
|
|
2066 |
"editable": true |
|
|
2067 |
}, |
|
|
2068 |
"outputs": [], |
|
|
2069 |
"source": [ |
|
|
2070 |
"rank_model = \"rfc\"\n", |
|
|
2071 |
"model_rank[rank_model] = dict() \n", |
|
|
2072 |
"o_summaries_df[rank_model] = dict() \n", |
|
|
2073 |
"model_rank[rank_model], o_summaries_df[rank_model] = rank_random_forest_brieman(\n", |
|
|
2074 |
" features[\"train_indep\"], features[\"train_target\"][target_feature], num_trials)" |
|
|
2075 |
] |
|
|
2076 |
}, |
|
|
2077 |
{ |
|
|
2078 |
"cell_type": "markdown", |
|
|
2079 |
"metadata": { |
|
|
2080 |
"deletable": true, |
|
|
2081 |
"editable": true |
|
|
2082 |
}, |
|
|
2083 |
"source": [ |
|
|
2084 |
"<font style=\"font-weight:bold;color:blue\">Ranking Method:</font> Gradient Boosted Regression Trees (GBRT)\n", |
|
|
2085 |
"<font style=\"font-weight:bold;color:brown\">Note:</font>: It is moderately resource intensive" |
|
|
2086 |
] |
|
|
2087 |
}, |
|
|
2088 |
{ |
|
|
2089 |
"cell_type": "code", |
|
|
2090 |
"execution_count": null, |
|
|
2091 |
"metadata": { |
|
|
2092 |
"collapsed": false, |
|
|
2093 |
"deletable": true, |
|
|
2094 |
"editable": true |
|
|
2095 |
}, |
|
|
2096 |
"outputs": [], |
|
|
2097 |
"source": [ |
|
|
2098 |
"rank_model = \"gbrt\"\n", |
|
|
2099 |
"model_rank[rank_model] = dict() \n", |
|
|
2100 |
"o_summaries_df[rank_model] = dict() \n", |
|
|
2101 |
"model_rank[rank_model], o_summaries_df[rank_model] = rank_gbrt(\n", |
|
|
2102 |
" features[\"train_indep\"], features[\"train_target\"][target_feature], num_trials)" |
|
|
2103 |
] |
|
|
2104 |
}, |
|
|
2105 |
{ |
|
|
2106 |
"cell_type": "markdown", |
|
|
2107 |
"metadata": { |
|
|
2108 |
"deletable": true, |
|
|
2109 |
"editable": true |
|
|
2110 |
}, |
|
|
2111 |
"source": [ |
|
|
2112 |
"<font style=\"font-weight:bold;color:blue\">Ranking Method</font>: Randomized Logistic Regression\n", |
|
|
2113 |
"<font style=\"font-weight:bold;color:brown\">Note:</font>: It is moderately resource intensive" |
|
|
2114 |
] |
|
|
2115 |
}, |
|
|
2116 |
{ |
|
|
2117 |
"cell_type": "code", |
|
|
2118 |
"execution_count": null, |
|
|
2119 |
"metadata": { |
|
|
2120 |
"collapsed": false, |
|
|
2121 |
"deletable": true, |
|
|
2122 |
"editable": true |
|
|
2123 |
}, |
|
|
2124 |
"outputs": [], |
|
|
2125 |
"source": [ |
|
|
2126 |
"rank_model = \"randLogit\"\n", |
|
|
2127 |
"model_rank[rank_model] = dict() \n", |
|
|
2128 |
"o_summaries_df[rank_model] = dict() \n", |
|
|
2129 |
"model_rank[rank_model], o_summaries_df[rank_model] = rank_randLogit(\n", |
|
|
2130 |
" features[\"train_indep\"], features[\"train_target\"][target_feature], num_trials)" |
|
|
2131 |
] |
|
|
2132 |
}, |
|
|
2133 |
{ |
|
|
2134 |
"cell_type": "markdown", |
|
|
2135 |
"metadata": { |
|
|
2136 |
"deletable": true, |
|
|
2137 |
"editable": true |
|
|
2138 |
}, |
|
|
2139 |
"source": [ |
|
|
2140 |
"### 7.3. Summaries" |
|
|
2141 |
] |
|
|
2142 |
}, |
|
|
2143 |
{ |
|
|
2144 |
"cell_type": "code", |
|
|
2145 |
"execution_count": null, |
|
|
2146 |
"metadata": { |
|
|
2147 |
"collapsed": true, |
|
|
2148 |
"deletable": true, |
|
|
2149 |
"editable": true |
|
|
2150 |
}, |
|
|
2151 |
"outputs": [], |
|
|
2152 |
"source": [ |
|
|
2153 |
"# combine scores\n", |
|
|
2154 |
"def rank_summarise (features_arg, o_summaries_df_arg):\n", |
|
|
2155 |
" summaries_temp = {'Order_avg': [], 'Order_max': [], 'Order_min': [], 'Importance_avg': []}\n", |
|
|
2156 |
" summary_order = []\n", |
|
|
2157 |
" summary_importance = []\n", |
|
|
2158 |
" \n", |
|
|
2159 |
" for f_name in list(features_arg.columns.values):\n", |
|
|
2160 |
" for i in range(len(o_summaries_df_arg)):\n", |
|
|
2161 |
" summary_order.append(o_summaries_df_arg[i][o_summaries_df_arg[i]['Name'] == f_name]['Order'].values)\n", |
|
|
2162 |
" summary_importance.append(o_summaries_df_arg[i][o_summaries_df_arg[i]['Name'] == f_name]['Importance'].values)\n", |
|
|
2163 |
"\n", |
|
|
2164 |
" summaries_temp['Order_avg'].append(statistics.mean(np.concatenate(summary_order)))\n", |
|
|
2165 |
" summaries_temp['Order_max'].append(max(np.concatenate(summary_order)))\n", |
|
|
2166 |
" summaries_temp['Order_min'].append(min(np.concatenate(summary_order)))\n", |
|
|
2167 |
" summaries_temp['Importance_avg'].append(statistics.mean(np.concatenate(summary_importance)))\n", |
|
|
2168 |
"\n", |
|
|
2169 |
" summaries_df = pd.DataFrame({'Name': list(features_arg.columns.values)})\n", |
|
|
2170 |
" summaries_df['Order_avg'] = summaries_temp['Order_avg']\n", |
|
|
2171 |
" summaries_df['Order_max'] = summaries_temp['Order_max']\n", |
|
|
2172 |
" summaries_df['Order_min'] = summaries_temp['Order_min']\n", |
|
|
2173 |
" summaries_df['Importance_avg'] = summaries_temp['Importance_avg']\n", |
|
|
2174 |
" summaries_df = summaries_df.sort_values(['Order_avg'], ascending = [1])\n", |
|
|
2175 |
" return summaries_df" |
|
|
2176 |
] |
|
|
2177 |
}, |
|
|
2178 |
{ |
|
|
2179 |
"cell_type": "code", |
|
|
2180 |
"execution_count": null, |
|
|
2181 |
"metadata": { |
|
|
2182 |
"collapsed": true, |
|
|
2183 |
"deletable": true, |
|
|
2184 |
"editable": true |
|
|
2185 |
}, |
|
|
2186 |
"outputs": [], |
|
|
2187 |
"source": [ |
|
|
2188 |
"# combine scores\n", |
|
|
2189 |
"summaries_df = dict()\n", |
|
|
2190 |
"\n", |
|
|
2191 |
"for rank_model in o_summaries_df.keys():\n", |
|
|
2192 |
" summaries_df[rank_model] = dict()\n", |
|
|
2193 |
" summaries_df[rank_model] = rank_summarise(features[\"train_indep\"], o_summaries_df[rank_model])" |
|
|
2194 |
] |
|
|
2195 |
}, |
|
|
2196 |
{ |
|
|
2197 |
"cell_type": "markdown", |
|
|
2198 |
"metadata": { |
|
|
2199 |
"deletable": true, |
|
|
2200 |
"editable": true |
|
|
2201 |
}, |
|
|
2202 |
"source": [ |
|
|
2203 |
"Save" |
|
|
2204 |
] |
|
|
2205 |
}, |
|
|
2206 |
{ |
|
|
2207 |
"cell_type": "code", |
|
|
2208 |
"execution_count": null, |
|
|
2209 |
"metadata": { |
|
|
2210 |
"collapsed": false, |
|
|
2211 |
"deletable": true, |
|
|
2212 |
"editable": true |
|
|
2213 |
}, |
|
|
2214 |
"outputs": [], |
|
|
2215 |
"source": [ |
|
|
2216 |
"for rank_model in model_rank.keys():\n", |
|
|
2217 |
" file_name = \"Step_07_Model_Train_model_rank_\" + rank_model\n", |
|
|
2218 |
" readers_writers.save_serialised_compressed(path=CONSTANTS.io_path, title=file_name, objects=model_rank[rank_model])\n", |
|
|
2219 |
" \n", |
|
|
2220 |
" file_name = \"Step_07_Model_Train_model_rank_summaries_\" + rank_model\n", |
|
|
2221 |
" readers_writers.save_serialised_compressed(path=CONSTANTS.io_path, title=file_name, objects=o_summaries_df[rank_model])" |
|
|
2222 |
] |
|
|
2223 |
}, |
|
|
2224 |
{ |
|
|
2225 |
"cell_type": "markdown", |
|
|
2226 |
"metadata": { |
|
|
2227 |
"deletable": true, |
|
|
2228 |
"editable": true |
|
|
2229 |
}, |
|
|
2230 |
"source": [ |
|
|
2231 |
"### 7.4. Select Top Features" |
|
|
2232 |
] |
|
|
2233 |
}, |
|
|
2234 |
{ |
|
|
2235 |
"cell_type": "markdown", |
|
|
2236 |
"metadata": { |
|
|
2237 |
"deletable": true, |
|
|
2238 |
"editable": true |
|
|
2239 |
}, |
|
|
2240 |
"source": [ |
|
|
2241 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> the selection method" |
|
|
2242 |
] |
|
|
2243 |
}, |
|
|
2244 |
{ |
|
|
2245 |
"cell_type": "code", |
|
|
2246 |
"execution_count": null, |
|
|
2247 |
"metadata": { |
|
|
2248 |
"collapsed": true, |
|
|
2249 |
"deletable": true, |
|
|
2250 |
"editable": true |
|
|
2251 |
}, |
|
|
2252 |
"outputs": [], |
|
|
2253 |
"source": [ |
|
|
2254 |
"rank_model = \"rfc\"\n", |
|
|
2255 |
"file_name = \"Step_07_Top_Features_\" + rank_model\n", |
|
|
2256 |
"rank_top_features_max = 400\n", |
|
|
2257 |
"rank_top_features_score_min = 0.1 * (10 ^ -20)\n", |
|
|
2258 |
"\n", |
|
|
2259 |
"# sort features\n", |
|
|
2260 |
"features_names_selected = summaries_df[rank_model]['Name'][summaries_df[rank_model]['Order_avg'] >= rank_top_features_score_min]\n", |
|
|
2261 |
"features_names_selected = (features_names_selected[0:rank_top_features_max]).tolist()" |
|
|
2262 |
] |
|
|
2263 |
}, |
|
|
2264 |
{ |
|
|
2265 |
"cell_type": "markdown", |
|
|
2266 |
"metadata": { |
|
|
2267 |
"deletable": true, |
|
|
2268 |
"editable": true |
|
|
2269 |
}, |
|
|
2270 |
"source": [ |
|
|
2271 |
"Save" |
|
|
2272 |
] |
|
|
2273 |
}, |
|
|
2274 |
{ |
|
|
2275 |
"cell_type": "code", |
|
|
2276 |
"execution_count": null, |
|
|
2277 |
"metadata": { |
|
|
2278 |
"collapsed": false, |
|
|
2279 |
"deletable": true, |
|
|
2280 |
"editable": true |
|
|
2281 |
}, |
|
|
2282 |
"outputs": [], |
|
|
2283 |
"source": [ |
|
|
2284 |
"# save to CSV\n", |
|
|
2285 |
"readers_writers.save_csv(path=CONSTANTS.io_path, title=file_name, data=features_names_selected, append=False, header=False)\n", |
|
|
2286 |
"\n", |
|
|
2287 |
"# print \n", |
|
|
2288 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
2289 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")\n", |
|
|
2290 |
"print(\"List of sorted features, which can be modified:\\n \" + CONSTANTS.io_path + file_name + \"csv\")" |
|
|
2291 |
] |
|
|
2292 |
}, |
|
|
2293 |
{ |
|
|
2294 |
"cell_type": "markdown", |
|
|
2295 |
"metadata": { |
|
|
2296 |
"deletable": true, |
|
|
2297 |
"editable": true |
|
|
2298 |
}, |
|
|
2299 |
"source": [ |
|
|
2300 |
"<font style=\"font-weight:bold;color:red\">Configure</font>: the selected feature manually if it isnecessary!" |
|
|
2301 |
] |
|
|
2302 |
}, |
|
|
2303 |
{ |
|
|
2304 |
"cell_type": "code", |
|
|
2305 |
"execution_count": null, |
|
|
2306 |
"metadata": { |
|
|
2307 |
"collapsed": false, |
|
|
2308 |
"deletable": true, |
|
|
2309 |
"editable": true |
|
|
2310 |
}, |
|
|
2311 |
"outputs": [], |
|
|
2312 |
"source": [ |
|
|
2313 |
"file_name = \"Step_07_Top_Features_rfc_adhoc\" \n", |
|
|
2314 |
"\n", |
|
|
2315 |
"features_names_selected = readers_writers.load_csv(path=CONSTANTS.io_path, title=file_name, dataframing=False)[0]\n", |
|
|
2316 |
"features_names_selected = [f.replace(\"\\n\", \"\") for f in features_names_selected]\n", |
|
|
2317 |
"display(pd.DataFrame(features_names_selected))" |
|
|
2318 |
] |
|
|
2319 |
}, |
|
|
2320 |
{ |
|
|
2321 |
"cell_type": "markdown", |
|
|
2322 |
"metadata": { |
|
|
2323 |
"deletable": true, |
|
|
2324 |
"editable": true |
|
|
2325 |
}, |
|
|
2326 |
"source": [ |
|
|
2327 |
"Verify the top features visually" |
|
|
2328 |
] |
|
|
2329 |
}, |
|
|
2330 |
{ |
|
|
2331 |
"cell_type": "code", |
|
|
2332 |
"execution_count": null, |
|
|
2333 |
"metadata": { |
|
|
2334 |
"collapsed": false, |
|
|
2335 |
"deletable": true, |
|
|
2336 |
"editable": true |
|
|
2337 |
}, |
|
|
2338 |
"outputs": [], |
|
|
2339 |
"source": [ |
|
|
2340 |
"# print \n", |
|
|
2341 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns), \n", |
|
|
2342 |
" \";\\nNumber of top columns: \", len(features[\"train_indep\"][features_names_selected].columns)) \n", |
|
|
2343 |
"print(\"features: {train: \", len(features[\"train_indep\"][features_names_selected]), \", test: \", len(features[\"test_indep\"][features_names_selected]), \"}\")" |
|
|
2344 |
] |
|
|
2345 |
}, |
|
|
2346 |
{ |
|
|
2347 |
"cell_type": "markdown", |
|
|
2348 |
"metadata": { |
|
|
2349 |
"deletable": true, |
|
|
2350 |
"editable": true |
|
|
2351 |
}, |
|
|
2352 |
"source": [ |
|
|
2353 |
"### 7.5. Summary Statistics" |
|
|
2354 |
] |
|
|
2355 |
}, |
|
|
2356 |
{ |
|
|
2357 |
"cell_type": "markdown", |
|
|
2358 |
"metadata": { |
|
|
2359 |
"deletable": true, |
|
|
2360 |
"editable": true |
|
|
2361 |
}, |
|
|
2362 |
"source": [ |
|
|
2363 |
"Produce a descriptive stat report of 'Categorical', 'Continuous', & 'TARGET' features" |
|
|
2364 |
] |
|
|
2365 |
}, |
|
|
2366 |
{ |
|
|
2367 |
"cell_type": "code", |
|
|
2368 |
"execution_count": null, |
|
|
2369 |
"metadata": { |
|
|
2370 |
"collapsed": true, |
|
|
2371 |
"deletable": true, |
|
|
2372 |
"editable": true |
|
|
2373 |
}, |
|
|
2374 |
"outputs": [], |
|
|
2375 |
"source": [ |
|
|
2376 |
"# columns\n", |
|
|
2377 |
"file_name = \"Step_07_Data_ColumnNames_Train\"\n", |
|
|
2378 |
"readers_writers.save_csv(path=CONSTANTS.io_path, title=file_name, \n", |
|
|
2379 |
" data=list(features[\"train_indep\"][features_names_selected].columns.values), append=False)\n", |
|
|
2380 |
"\n", |
|
|
2381 |
"# Sample - Train\n", |
|
|
2382 |
"file_name = \"Step_07_Stats_Categorical_Train\"\n", |
|
|
2383 |
"o_stats = preprocess.stats_discrete_df(df=features[\"train_indep\"][features_names_selected], includes=features_types_group[\"CATEGORICAL\"], \n", |
|
|
2384 |
" file_name=file_name)\n", |
|
|
2385 |
"file_name = \"Step_07_Stats_Continuous_Train\"\n", |
|
|
2386 |
"o_stats = preprocess.stats_continuous_df(df=features[\"train_indep\"][features_names_selected], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
2387 |
" file_name=file_name)\n", |
|
|
2388 |
"\n", |
|
|
2389 |
"# Sample - Test\n", |
|
|
2390 |
"file_name = \"Step_07_Stats_Categorical_Test\"\n", |
|
|
2391 |
"o_stats = preprocess.stats_discrete_df(df=features[\"test_indep\"][features_names_selected], includes=features_types_group[\"CATEGORICAL\"],\n", |
|
|
2392 |
" file_name=file_name)\n", |
|
|
2393 |
"file_name = \"Step_07_Stats_Continuous_Test\"\n", |
|
|
2394 |
"o_stats = preprocess.stats_continuous_df(df=features[\"test_indep\"][features_names_selected], includes=features_types_group[\"CONTINUOUS\"], \n", |
|
|
2395 |
" file_name=file_name)" |
|
|
2396 |
] |
|
|
2397 |
}, |
|
|
2398 |
{ |
|
|
2399 |
"cell_type": "markdown", |
|
|
2400 |
"metadata": { |
|
|
2401 |
"deletable": true, |
|
|
2402 |
"editable": true |
|
|
2403 |
}, |
|
|
2404 |
"source": [ |
|
|
2405 |
"### 7.6. Save Features" |
|
|
2406 |
] |
|
|
2407 |
}, |
|
|
2408 |
{ |
|
|
2409 |
"cell_type": "code", |
|
|
2410 |
"execution_count": null, |
|
|
2411 |
"metadata": { |
|
|
2412 |
"collapsed": false, |
|
|
2413 |
"deletable": true, |
|
|
2414 |
"editable": true |
|
|
2415 |
}, |
|
|
2416 |
"outputs": [], |
|
|
2417 |
"source": [ |
|
|
2418 |
"file_name = \"Step_07_Features\"\n", |
|
|
2419 |
"readers_writers.save_serialised_compressed(path=CONSTANTS.io_path, title=file_name, objects=features)\n", |
|
|
2420 |
"\n", |
|
|
2421 |
"# print \n", |
|
|
2422 |
"print(\"File size: \", os.stat(os.path.join(CONSTANTS.io_path, file_name + \".bz2\")).st_size)\n", |
|
|
2423 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
2424 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
2425 |
] |
|
|
2426 |
}, |
|
|
2427 |
{ |
|
|
2428 |
"cell_type": "markdown", |
|
|
2429 |
"metadata": { |
|
|
2430 |
"deletable": true, |
|
|
2431 |
"editable": true |
|
|
2432 |
}, |
|
|
2433 |
"source": [ |
|
|
2434 |
"<br/><br/>" |
|
|
2435 |
] |
|
|
2436 |
}, |
|
|
2437 |
{ |
|
|
2438 |
"cell_type": "markdown", |
|
|
2439 |
"metadata": { |
|
|
2440 |
"deletable": true, |
|
|
2441 |
"editable": true |
|
|
2442 |
}, |
|
|
2443 |
"source": [ |
|
|
2444 |
"<br/><br/>" |
|
|
2445 |
] |
|
|
2446 |
}, |
|
|
2447 |
{ |
|
|
2448 |
"cell_type": "markdown", |
|
|
2449 |
"metadata": { |
|
|
2450 |
"deletable": true, |
|
|
2451 |
"editable": true |
|
|
2452 |
}, |
|
|
2453 |
"source": [ |
|
|
2454 |
"## 8. Model" |
|
|
2455 |
] |
|
|
2456 |
}, |
|
|
2457 |
{ |
|
|
2458 |
"cell_type": "markdown", |
|
|
2459 |
"metadata": { |
|
|
2460 |
"collapsed": true, |
|
|
2461 |
"deletable": true, |
|
|
2462 |
"editable": true |
|
|
2463 |
}, |
|
|
2464 |
"source": [ |
|
|
2465 |
"<font style=\"font-weight:bold;color:orange\">Load a Saved Samples and Features Ranking:</font> \n", |
|
|
2466 |
"<br/> It is an optional step. The step loads the serialised & compressed outputs of Step-7." |
|
|
2467 |
] |
|
|
2468 |
}, |
|
|
2469 |
{ |
|
|
2470 |
"cell_type": "code", |
|
|
2471 |
"execution_count": null, |
|
|
2472 |
"metadata": { |
|
|
2473 |
"collapsed": false, |
|
|
2474 |
"deletable": true, |
|
|
2475 |
"editable": true |
|
|
2476 |
}, |
|
|
2477 |
"outputs": [], |
|
|
2478 |
"source": [ |
|
|
2479 |
"# open fetures\n", |
|
|
2480 |
"file_name = \"Step_07_Features\"\n", |
|
|
2481 |
"features = readers_writers.load_serialised_compressed(path=CONSTANTS.io_path, title=file_name)\n", |
|
|
2482 |
"\n", |
|
|
2483 |
"# print \n", |
|
|
2484 |
"print(\"File size: \", os.stat(os.path.join(CONSTANTS.io_path, file_name + \".bz2\")).st_size)\n", |
|
|
2485 |
"print(\"Number of columns: \", len(features[\"train_indep\"].columns)) \n", |
|
|
2486 |
"print(\"features: {train: \", len(features[\"train_indep\"]), \", test: \", len(features[\"test_indep\"]), \"}\")" |
|
|
2487 |
] |
|
|
2488 |
}, |
|
|
2489 |
{ |
|
|
2490 |
"cell_type": "code", |
|
|
2491 |
"execution_count": null, |
|
|
2492 |
"metadata": { |
|
|
2493 |
"collapsed": true, |
|
|
2494 |
"deletable": true, |
|
|
2495 |
"editable": true |
|
|
2496 |
}, |
|
|
2497 |
"outputs": [], |
|
|
2498 |
"source": [ |
|
|
2499 |
"# open scoring model files\n", |
|
|
2500 |
"rank_models = [\"rfc\", \"gbrt\", \"randLogit\"]\n", |
|
|
2501 |
"model_rank = dict()\n", |
|
|
2502 |
"o_summaries_df = dict()\n", |
|
|
2503 |
"\n", |
|
|
2504 |
"for rank_model in rank_models:\n", |
|
|
2505 |
" file_name = \"Step_07_Model_Train_model_rank_\" + rank_model\n", |
|
|
2506 |
" if not readers_writers.exists_serialised(path=CONSTANTS.io_path, title=file_name, ext=\"bz2\"):\n", |
|
|
2507 |
" continue\n", |
|
|
2508 |
"\n", |
|
|
2509 |
" file_name = \"Step_07_Model_Train_model_rank_\" + rank_model\n", |
|
|
2510 |
" model_rank[rank_model] = readers_writers.load_serialised_compressed(path=CONSTANTS.io_path, title=file_name)\n", |
|
|
2511 |
"\n", |
|
|
2512 |
" file_name = \"Step_07_Model_Train_model_rank_summaries_\" + rank_model\n", |
|
|
2513 |
" o_summaries_df[rank_model] = readers_writers.load_serialised_compressed(path=CONSTANTS.io_path, title=file_name)" |
|
|
2514 |
] |
|
|
2515 |
}, |
|
|
2516 |
{ |
|
|
2517 |
"cell_type": "markdown", |
|
|
2518 |
"metadata": { |
|
|
2519 |
"deletable": true, |
|
|
2520 |
"editable": true |
|
|
2521 |
}, |
|
|
2522 |
"source": [ |
|
|
2523 |
"Verify features visually" |
|
|
2524 |
] |
|
|
2525 |
}, |
|
|
2526 |
{ |
|
|
2527 |
"cell_type": "code", |
|
|
2528 |
"execution_count": null, |
|
|
2529 |
"metadata": { |
|
|
2530 |
"collapsed": false, |
|
|
2531 |
"deletable": true, |
|
|
2532 |
"editable": true, |
|
|
2533 |
"scrolled": true |
|
|
2534 |
}, |
|
|
2535 |
"outputs": [], |
|
|
2536 |
"source": [ |
|
|
2537 |
"display(pd.concat([features[\"train_id\"].head(), features[\"train_target\"].head(), features[\"train_indep\"].head()], axis=1))\n", |
|
|
2538 |
"display(pd.concat([features[\"test_id\"].head(), features[\"test_target\"].head(), features[\"test_indep\"].head()], axis=1))" |
|
|
2539 |
] |
|
|
2540 |
}, |
|
|
2541 |
{ |
|
|
2542 |
"cell_type": "markdown", |
|
|
2543 |
"metadata": { |
|
|
2544 |
"deletable": true, |
|
|
2545 |
"editable": true |
|
|
2546 |
}, |
|
|
2547 |
"source": [ |
|
|
2548 |
"<br/><br/>" |
|
|
2549 |
] |
|
|
2550 |
}, |
|
|
2551 |
{ |
|
|
2552 |
"cell_type": "markdown", |
|
|
2553 |
"metadata": { |
|
|
2554 |
"deletable": true, |
|
|
2555 |
"editable": true |
|
|
2556 |
}, |
|
|
2557 |
"source": [ |
|
|
2558 |
"### 8.1. Initialise" |
|
|
2559 |
] |
|
|
2560 |
}, |
|
|
2561 |
{ |
|
|
2562 |
"cell_type": "markdown", |
|
|
2563 |
"metadata": { |
|
|
2564 |
"deletable": true, |
|
|
2565 |
"editable": true |
|
|
2566 |
}, |
|
|
2567 |
"source": [ |
|
|
2568 |
"#### 8.1.1. Algorithms" |
|
|
2569 |
] |
|
|
2570 |
}, |
|
|
2571 |
{ |
|
|
2572 |
"cell_type": "markdown", |
|
|
2573 |
"metadata": { |
|
|
2574 |
"deletable": true, |
|
|
2575 |
"editable": true |
|
|
2576 |
}, |
|
|
2577 |
"source": [ |
|
|
2578 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> the trianing algorithm" |
|
|
2579 |
] |
|
|
2580 |
}, |
|
|
2581 |
{ |
|
|
2582 |
"cell_type": "markdown", |
|
|
2583 |
"metadata": { |
|
|
2584 |
"deletable": true, |
|
|
2585 |
"editable": true |
|
|
2586 |
}, |
|
|
2587 |
"source": [ |
|
|
2588 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 1</font>: Random Forest" |
|
|
2589 |
] |
|
|
2590 |
}, |
|
|
2591 |
{ |
|
|
2592 |
"cell_type": "code", |
|
|
2593 |
"execution_count": null, |
|
|
2594 |
"metadata": { |
|
|
2595 |
"collapsed": true, |
|
|
2596 |
"deletable": true, |
|
|
2597 |
"editable": true, |
|
|
2598 |
"scrolled": true |
|
|
2599 |
}, |
|
|
2600 |
"outputs": [], |
|
|
2601 |
"source": [ |
|
|
2602 |
"method_name = \"rfc\"\n", |
|
|
2603 |
"kwargs = {\"n_estimators\": 20, \"criterion\": 'gini', \"max_depth\": None, \"min_samples_split\": 100,\n", |
|
|
2604 |
" \"min_samples_leaf\": 50, \"min_weight_fraction_leaf\": 0.0, \"max_features\": 'auto',\n", |
|
|
2605 |
" \"max_leaf_nodes\": None, \"bootstrap\": True, \"oob_score\": False, \"n_jobs\": -1, \"random_state\": None,\n", |
|
|
2606 |
" \"verbose\": 0, \"warm_start\": False, \"class_weight\": \"balanced_subsample\"}" |
|
|
2607 |
] |
|
|
2608 |
}, |
|
|
2609 |
{ |
|
|
2610 |
"cell_type": "markdown", |
|
|
2611 |
"metadata": { |
|
|
2612 |
"deletable": true, |
|
|
2613 |
"editable": true |
|
|
2614 |
}, |
|
|
2615 |
"source": [ |
|
|
2616 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 2</font>: Logistic Regression" |
|
|
2617 |
] |
|
|
2618 |
}, |
|
|
2619 |
{ |
|
|
2620 |
"cell_type": "code", |
|
|
2621 |
"execution_count": null, |
|
|
2622 |
"metadata": { |
|
|
2623 |
"collapsed": true, |
|
|
2624 |
"deletable": true, |
|
|
2625 |
"editable": true, |
|
|
2626 |
"scrolled": true |
|
|
2627 |
}, |
|
|
2628 |
"outputs": [], |
|
|
2629 |
"source": [ |
|
|
2630 |
"method_name = \"lr\"\n", |
|
|
2631 |
"kwargs = {\"penalty\": 'l1', \"dual\": False, \"tol\": 0.0001, \"C\": 1, \"fit_intercept\": True, \"intercept_scaling\": 1,\n", |
|
|
2632 |
" \"class_weight\": None, \"random_state\": None, \"solver\": 'liblinear', \"max_iter\": 100, \"multi_class\": 'ovr',\n", |
|
|
2633 |
" \"verbose\": 0, \"warm_start\": False, \"n_jobs\": -1}" |
|
|
2634 |
] |
|
|
2635 |
}, |
|
|
2636 |
{ |
|
|
2637 |
"cell_type": "markdown", |
|
|
2638 |
"metadata": { |
|
|
2639 |
"deletable": true, |
|
|
2640 |
"editable": true |
|
|
2641 |
}, |
|
|
2642 |
"source": [ |
|
|
2643 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 3</font>: Logistic Cross-Validation" |
|
|
2644 |
] |
|
|
2645 |
}, |
|
|
2646 |
{ |
|
|
2647 |
"cell_type": "code", |
|
|
2648 |
"execution_count": null, |
|
|
2649 |
"metadata": { |
|
|
2650 |
"collapsed": true, |
|
|
2651 |
"deletable": true, |
|
|
2652 |
"editable": true |
|
|
2653 |
}, |
|
|
2654 |
"outputs": [], |
|
|
2655 |
"source": [ |
|
|
2656 |
"method_name = \"lr_cv\"\n", |
|
|
2657 |
"kwargs = {\"Cs\": 10, \"fit_intercept\": True, \"cv\": None, \"dual\": False, \"penalty\": 'l2', \"scoring\": None, \n", |
|
|
2658 |
" \"solver\": 'lbfgs', \"tol\": 0.0001, \"max_iter\": 10, \"class_weight\": None, \"n_jobs\": -1, \"verbose\": 0, \n", |
|
|
2659 |
" \"refit\": True, \"intercept_scaling\": 1.0, \"multi_class\": \"ovr\", \"random_state\": None}" |
|
|
2660 |
] |
|
|
2661 |
}, |
|
|
2662 |
{ |
|
|
2663 |
"cell_type": "markdown", |
|
|
2664 |
"metadata": { |
|
|
2665 |
"deletable": true, |
|
|
2666 |
"editable": true |
|
|
2667 |
}, |
|
|
2668 |
"source": [ |
|
|
2669 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 4</font>: Neural Network" |
|
|
2670 |
] |
|
|
2671 |
}, |
|
|
2672 |
{ |
|
|
2673 |
"cell_type": "code", |
|
|
2674 |
"execution_count": null, |
|
|
2675 |
"metadata": { |
|
|
2676 |
"collapsed": true, |
|
|
2677 |
"deletable": true, |
|
|
2678 |
"editable": true |
|
|
2679 |
}, |
|
|
2680 |
"outputs": [], |
|
|
2681 |
"source": [ |
|
|
2682 |
"method_name = \"nn\"\n", |
|
|
2683 |
"kwargs = {\"solver\": 'lbfgs', \"alpha\": 1e-5, \"hidden_layer_sizes\": (5, 2), \"random_state\": 1}" |
|
|
2684 |
] |
|
|
2685 |
}, |
|
|
2686 |
{ |
|
|
2687 |
"cell_type": "markdown", |
|
|
2688 |
"metadata": { |
|
|
2689 |
"deletable": true, |
|
|
2690 |
"editable": true |
|
|
2691 |
}, |
|
|
2692 |
"source": [ |
|
|
2693 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 5</font>: k-Nearest Neighbourhood" |
|
|
2694 |
] |
|
|
2695 |
}, |
|
|
2696 |
{ |
|
|
2697 |
"cell_type": "code", |
|
|
2698 |
"execution_count": null, |
|
|
2699 |
"metadata": { |
|
|
2700 |
"collapsed": true, |
|
|
2701 |
"deletable": true, |
|
|
2702 |
"editable": true |
|
|
2703 |
}, |
|
|
2704 |
"outputs": [], |
|
|
2705 |
"source": [ |
|
|
2706 |
"method_name = \"knc\"\n", |
|
|
2707 |
"kwargs = {\"n_neighbors\": 5, \"weights\": 'distance', \"algorithm\": 'auto', \"leaf_size\": 30,\n", |
|
|
2708 |
" \"p\": 2, \"metric\": 'minkowski', \"metric_params\": None, \"n_jobs\": -1}" |
|
|
2709 |
] |
|
|
2710 |
}, |
|
|
2711 |
{ |
|
|
2712 |
"cell_type": "markdown", |
|
|
2713 |
"metadata": { |
|
|
2714 |
"deletable": true, |
|
|
2715 |
"editable": true |
|
|
2716 |
}, |
|
|
2717 |
"source": [ |
|
|
2718 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 6</font>: Decision Tree" |
|
|
2719 |
] |
|
|
2720 |
}, |
|
|
2721 |
{ |
|
|
2722 |
"cell_type": "code", |
|
|
2723 |
"execution_count": null, |
|
|
2724 |
"metadata": { |
|
|
2725 |
"collapsed": true, |
|
|
2726 |
"deletable": true, |
|
|
2727 |
"editable": true |
|
|
2728 |
}, |
|
|
2729 |
"outputs": [], |
|
|
2730 |
"source": [ |
|
|
2731 |
"method_name = \"dtc\"\n", |
|
|
2732 |
"kwargs = {\"criterion\": 'gini', \"splitter\": 'best', \"max_depth\": None, \"min_samples_split\": 30,\n", |
|
|
2733 |
" \"min_samples_leaf\": 30, \"min_weight_fraction_leaf\": 0.0, \"max_features\": None,\n", |
|
|
2734 |
" \"random_state\": None, \"max_leaf_nodes\": None, \"class_weight\": None, \"presort\": False}" |
|
|
2735 |
] |
|
|
2736 |
}, |
|
|
2737 |
{ |
|
|
2738 |
"cell_type": "markdown", |
|
|
2739 |
"metadata": { |
|
|
2740 |
"deletable": true, |
|
|
2741 |
"editable": true |
|
|
2742 |
}, |
|
|
2743 |
"source": [ |
|
|
2744 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 7</font>: Gradient Boosting Classifier" |
|
|
2745 |
] |
|
|
2746 |
}, |
|
|
2747 |
{ |
|
|
2748 |
"cell_type": "code", |
|
|
2749 |
"execution_count": null, |
|
|
2750 |
"metadata": { |
|
|
2751 |
"collapsed": true, |
|
|
2752 |
"deletable": true, |
|
|
2753 |
"editable": true |
|
|
2754 |
}, |
|
|
2755 |
"outputs": [], |
|
|
2756 |
"source": [ |
|
|
2757 |
"method_name = \"gbc\"\n", |
|
|
2758 |
"kwargs = {\"loss\": 'deviance', \"learning_rate\": 0.1, \"n_estimators\": 100, \"subsample\": 1.0, \"min_samples_split\": 30,\n", |
|
|
2759 |
" \"min_samples_leaf\": 30, \"min_weight_fraction_leaf\": 0.0, \"max_depth\": 3, \"init\": None, \"random_state\": None,\n", |
|
|
2760 |
" \"max_features\": None, \"verbose\": 0, \"max_leaf_nodes\": None, \"warm_start\": False, \"presort\": 'auto'}" |
|
|
2761 |
] |
|
|
2762 |
}, |
|
|
2763 |
{ |
|
|
2764 |
"cell_type": "markdown", |
|
|
2765 |
"metadata": { |
|
|
2766 |
"deletable": true, |
|
|
2767 |
"editable": true |
|
|
2768 |
}, |
|
|
2769 |
"source": [ |
|
|
2770 |
"<font style=\"font-weight:bold;color:brown\">Algorithm 8</font>: Naive Bayes<br/>\n", |
|
|
2771 |
"Note: features must be positive" |
|
|
2772 |
] |
|
|
2773 |
}, |
|
|
2774 |
{ |
|
|
2775 |
"cell_type": "code", |
|
|
2776 |
"execution_count": null, |
|
|
2777 |
"metadata": { |
|
|
2778 |
"collapsed": false, |
|
|
2779 |
"deletable": true, |
|
|
2780 |
"editable": true, |
|
|
2781 |
"scrolled": true |
|
|
2782 |
}, |
|
|
2783 |
"outputs": [], |
|
|
2784 |
"source": [ |
|
|
2785 |
"method_name = \"nb\"\n", |
|
|
2786 |
"training_method = TrainingMethod(method_name)\n", |
|
|
2787 |
"kwargs = {\"alpha\": 1.0, \"fit_prior\": True, \"class_prior\": None}" |
|
|
2788 |
] |
|
|
2789 |
}, |
|
|
2790 |
{ |
|
|
2791 |
"cell_type": "markdown", |
|
|
2792 |
"metadata": { |
|
|
2793 |
"deletable": true, |
|
|
2794 |
"editable": true |
|
|
2795 |
}, |
|
|
2796 |
"source": [ |
|
|
2797 |
"<br/><br/>" |
|
|
2798 |
] |
|
|
2799 |
}, |
|
|
2800 |
{ |
|
|
2801 |
"cell_type": "markdown", |
|
|
2802 |
"metadata": { |
|
|
2803 |
"deletable": true, |
|
|
2804 |
"editable": true |
|
|
2805 |
}, |
|
|
2806 |
"source": [ |
|
|
2807 |
"#### 8.1.2. Other Settings" |
|
|
2808 |
] |
|
|
2809 |
}, |
|
|
2810 |
{ |
|
|
2811 |
"cell_type": "markdown", |
|
|
2812 |
"metadata": { |
|
|
2813 |
"deletable": true, |
|
|
2814 |
"editable": true |
|
|
2815 |
}, |
|
|
2816 |
"source": [ |
|
|
2817 |
"<font style=\"font-weight:bold;color:red\">Configure:</font> other modelling settings" |
|
|
2818 |
] |
|
|
2819 |
}, |
|
|
2820 |
{ |
|
|
2821 |
"cell_type": "code", |
|
|
2822 |
"execution_count": null, |
|
|
2823 |
"metadata": { |
|
|
2824 |
"collapsed": false, |
|
|
2825 |
"deletable": true, |
|
|
2826 |
"editable": true |
|
|
2827 |
}, |
|
|
2828 |
"outputs": [], |
|
|
2829 |
"source": [ |
|
|
2830 |
"# select the target variable\n", |
|
|
2831 |
"target_feature = \"label365\" # \"label30\" , \"label365\" \n", |
|
|
2832 |
"\n", |
|
|
2833 |
"# file name\n", |
|
|
2834 |
"file_name = \"Step_09_Model_\" + method_name + \"_\" + target_feature\n", |
|
|
2835 |
"\n", |
|
|
2836 |
"# initialise\n", |
|
|
2837 |
"training_method = TrainingMethod(method_name)" |
|
|
2838 |
] |
|
|
2839 |
}, |
|
|
2840 |
{ |
|
|
2841 |
"cell_type": "markdown", |
|
|
2842 |
"metadata": { |
|
|
2843 |
"deletable": true, |
|
|
2844 |
"editable": true |
|
|
2845 |
}, |
|
|
2846 |
"source": [ |
|
|
2847 |
"#### 8.1.3. Features" |
|
|
2848 |
] |
|
|
2849 |
}, |
|
|
2850 |
{ |
|
|
2851 |
"cell_type": "code", |
|
|
2852 |
"execution_count": null, |
|
|
2853 |
"metadata": { |
|
|
2854 |
"collapsed": true, |
|
|
2855 |
"deletable": true, |
|
|
2856 |
"editable": true |
|
|
2857 |
}, |
|
|
2858 |
"outputs": [], |
|
|
2859 |
"source": [ |
|
|
2860 |
"sample_train = features[\"train_indep\"][features_names_selected] # features[\"train_indep\"][features_names_selected], features[\"train_indep\"]\n", |
|
|
2861 |
"sample_train_target = features[\"train_target\"][target_feature] # features[\"train_target\"][target_feature]\n", |
|
|
2862 |
"sample_test = features[\"test_indep\"][features_names_selected] # features[\"test_indep\"][features_names_selected], features[\"test_indep\"]\n", |
|
|
2863 |
"sample_test_target = features[\"test_target\"][target_feature] # features[\"test_target\"][target_feature]" |
|
|
2864 |
] |
|
|
2865 |
}, |
|
|
2866 |
{ |
|
|
2867 |
"cell_type": "markdown", |
|
|
2868 |
"metadata": { |
|
|
2869 |
"deletable": true, |
|
|
2870 |
"editable": true |
|
|
2871 |
}, |
|
|
2872 |
"source": [ |
|
|
2873 |
"### 8.3. Fit" |
|
|
2874 |
] |
|
|
2875 |
}, |
|
|
2876 |
{ |
|
|
2877 |
"cell_type": "markdown", |
|
|
2878 |
"metadata": { |
|
|
2879 |
"deletable": true, |
|
|
2880 |
"editable": true |
|
|
2881 |
}, |
|
|
2882 |
"source": [ |
|
|
2883 |
"Fit the model, using the train sample" |
|
|
2884 |
] |
|
|
2885 |
}, |
|
|
2886 |
{ |
|
|
2887 |
"cell_type": "code", |
|
|
2888 |
"execution_count": null, |
|
|
2889 |
"metadata": { |
|
|
2890 |
"collapsed": false, |
|
|
2891 |
"deletable": true, |
|
|
2892 |
"editable": true, |
|
|
2893 |
"scrolled": false |
|
|
2894 |
}, |
|
|
2895 |
"outputs": [], |
|
|
2896 |
"source": [ |
|
|
2897 |
"o_summaries = dict()\n", |
|
|
2898 |
"# Fit\n", |
|
|
2899 |
"model = training_method.train(sample_train, sample_train_target, **kwargs)\n", |
|
|
2900 |
"training_method.save_model(path=CONSTANTS.io_path, title=file_name)" |
|
|
2901 |
] |
|
|
2902 |
}, |
|
|
2903 |
{ |
|
|
2904 |
"cell_type": "code", |
|
|
2905 |
"execution_count": null, |
|
|
2906 |
"metadata": { |
|
|
2907 |
"collapsed": true, |
|
|
2908 |
"deletable": true, |
|
|
2909 |
"editable": true |
|
|
2910 |
}, |
|
|
2911 |
"outputs": [], |
|
|
2912 |
"source": [ |
|
|
2913 |
"# load model\n", |
|
|
2914 |
"# training_method.load(path=CONSTANTS.io_path, title=file_name)" |
|
|
2915 |
] |
|
|
2916 |
}, |
|
|
2917 |
{ |
|
|
2918 |
"cell_type": "code", |
|
|
2919 |
"execution_count": null, |
|
|
2920 |
"metadata": { |
|
|
2921 |
"collapsed": true, |
|
|
2922 |
"deletable": true, |
|
|
2923 |
"editable": true |
|
|
2924 |
}, |
|
|
2925 |
"outputs": [], |
|
|
2926 |
"source": [ |
|
|
2927 |
"# short summary\n", |
|
|
2928 |
"o_summaries = training_method.train_summaries()" |
|
|
2929 |
] |
|
|
2930 |
}, |
|
|
2931 |
{ |
|
|
2932 |
"cell_type": "markdown", |
|
|
2933 |
"metadata": { |
|
|
2934 |
"deletable": true, |
|
|
2935 |
"editable": true |
|
|
2936 |
}, |
|
|
2937 |
"source": [ |
|
|
2938 |
"Predict & report performance, using the train sample" |
|
|
2939 |
] |
|
|
2940 |
}, |
|
|
2941 |
{ |
|
|
2942 |
"cell_type": "code", |
|
|
2943 |
"execution_count": null, |
|
|
2944 |
"metadata": { |
|
|
2945 |
"collapsed": false, |
|
|
2946 |
"deletable": true, |
|
|
2947 |
"editable": true, |
|
|
2948 |
"scrolled": true |
|
|
2949 |
}, |
|
|
2950 |
"outputs": [], |
|
|
2951 |
"source": [ |
|
|
2952 |
"o_summaries = dict()\n", |
|
|
2953 |
"# predict\n", |
|
|
2954 |
"model = training_method.predict(sample_train, \"train\")" |
|
|
2955 |
] |
|
|
2956 |
}, |
|
|
2957 |
{ |
|
|
2958 |
"cell_type": "code", |
|
|
2959 |
"execution_count": null, |
|
|
2960 |
"metadata": { |
|
|
2961 |
"collapsed": false, |
|
|
2962 |
"deletable": true, |
|
|
2963 |
"editable": true |
|
|
2964 |
}, |
|
|
2965 |
"outputs": [], |
|
|
2966 |
"source": [ |
|
|
2967 |
"# short summary\n", |
|
|
2968 |
"o_summaries = training_method.predict_summaries(pd.Series(sample_train_target), \"train\")\n", |
|
|
2969 |
"\n", |
|
|
2970 |
"# Print the main performance statistics\n", |
|
|
2971 |
"for k in o_summaries.keys():\n", |
|
|
2972 |
" print(k, o_summaries[k])\n", |
|
|
2973 |
"\n", |
|
|
2974 |
"# Print the by risk-bands of a selection of statistics\n", |
|
|
2975 |
"o_summaries = training_method.predict_summaries_risk_bands(pd.Series(sample_train_target), \"train\", np.arange(0, 1.05, 0.05))\n", |
|
|
2976 |
"display(o_summaries)" |
|
|
2977 |
] |
|
|
2978 |
}, |
|
|
2979 |
{ |
|
|
2980 |
"cell_type": "markdown", |
|
|
2981 |
"metadata": { |
|
|
2982 |
"deletable": true, |
|
|
2983 |
"editable": true |
|
|
2984 |
}, |
|
|
2985 |
"source": [ |
|
|
2986 |
"### 8.4. Predict" |
|
|
2987 |
] |
|
|
2988 |
}, |
|
|
2989 |
{ |
|
|
2990 |
"cell_type": "markdown", |
|
|
2991 |
"metadata": { |
|
|
2992 |
"deletable": true, |
|
|
2993 |
"editable": true |
|
|
2994 |
}, |
|
|
2995 |
"source": [ |
|
|
2996 |
"Predict & report performance, using the test sample" |
|
|
2997 |
] |
|
|
2998 |
}, |
|
|
2999 |
{ |
|
|
3000 |
"cell_type": "code", |
|
|
3001 |
"execution_count": null, |
|
|
3002 |
"metadata": { |
|
|
3003 |
"collapsed": false, |
|
|
3004 |
"deletable": true, |
|
|
3005 |
"editable": true, |
|
|
3006 |
"scrolled": false |
|
|
3007 |
}, |
|
|
3008 |
"outputs": [], |
|
|
3009 |
"source": [ |
|
|
3010 |
"o_summaries = dict()\n", |
|
|
3011 |
"# predict\n", |
|
|
3012 |
"model = training_method.predict(sample_test, \"test\")" |
|
|
3013 |
] |
|
|
3014 |
}, |
|
|
3015 |
{ |
|
|
3016 |
"cell_type": "code", |
|
|
3017 |
"execution_count": null, |
|
|
3018 |
"metadata": { |
|
|
3019 |
"collapsed": false, |
|
|
3020 |
"deletable": true, |
|
|
3021 |
"editable": true, |
|
|
3022 |
"scrolled": false |
|
|
3023 |
}, |
|
|
3024 |
"outputs": [], |
|
|
3025 |
"source": [ |
|
|
3026 |
"# short summary\n", |
|
|
3027 |
"o_summaries = training_method.predict_summaries(pd.Series(sample_test_target), \"test\")\n", |
|
|
3028 |
"\n", |
|
|
3029 |
"# Print the main performance statistics\n", |
|
|
3030 |
"for k in o_summaries.keys():\n", |
|
|
3031 |
" print(k, o_summaries[k])\n", |
|
|
3032 |
"\n", |
|
|
3033 |
"# Print the by risk-bands of a selection of statistics\n", |
|
|
3034 |
"o_summaries = training_method.predict_summaries_risk_bands(pd.Series(sample_test_target), \"test\", np.arange(0, 1.05, 0.05))\n", |
|
|
3035 |
"display(o_summaries)" |
|
|
3036 |
] |
|
|
3037 |
}, |
|
|
3038 |
{ |
|
|
3039 |
"cell_type": "markdown", |
|
|
3040 |
"metadata": { |
|
|
3041 |
"collapsed": true, |
|
|
3042 |
"deletable": true, |
|
|
3043 |
"editable": true |
|
|
3044 |
}, |
|
|
3045 |
"source": [ |
|
|
3046 |
"### 8.5. Cross-Validation" |
|
|
3047 |
] |
|
|
3048 |
}, |
|
|
3049 |
{ |
|
|
3050 |
"cell_type": "markdown", |
|
|
3051 |
"metadata": { |
|
|
3052 |
"deletable": true, |
|
|
3053 |
"editable": true |
|
|
3054 |
}, |
|
|
3055 |
"source": [ |
|
|
3056 |
"Perform k-fold cross-validation" |
|
|
3057 |
] |
|
|
3058 |
}, |
|
|
3059 |
{ |
|
|
3060 |
"cell_type": "code", |
|
|
3061 |
"execution_count": null, |
|
|
3062 |
"metadata": { |
|
|
3063 |
"collapsed": false, |
|
|
3064 |
"deletable": true, |
|
|
3065 |
"editable": true |
|
|
3066 |
}, |
|
|
3067 |
"outputs": [], |
|
|
3068 |
"source": [ |
|
|
3069 |
"o_summaries = dict()\n", |
|
|
3070 |
"score = training_method.cross_validate(sample_test, sample_test_target, scoring=\"neg_mean_squared_error\", cv=10)" |
|
|
3071 |
] |
|
|
3072 |
}, |
|
|
3073 |
{ |
|
|
3074 |
"cell_type": "code", |
|
|
3075 |
"execution_count": null, |
|
|
3076 |
"metadata": { |
|
|
3077 |
"collapsed": false, |
|
|
3078 |
"deletable": true, |
|
|
3079 |
"editable": true |
|
|
3080 |
}, |
|
|
3081 |
"outputs": [], |
|
|
3082 |
"source": [ |
|
|
3083 |
"# short summary\n", |
|
|
3084 |
"o_summaries = training_method.cross_validate_summaries()\n", |
|
|
3085 |
"print(\"Scores: \", o_summaries)" |
|
|
3086 |
] |
|
|
3087 |
}, |
|
|
3088 |
{ |
|
|
3089 |
"cell_type": "markdown", |
|
|
3090 |
"metadata": { |
|
|
3091 |
"deletable": true, |
|
|
3092 |
"editable": true |
|
|
3093 |
}, |
|
|
3094 |
"source": [ |
|
|
3095 |
"### 8.6. Save" |
|
|
3096 |
] |
|
|
3097 |
}, |
|
|
3098 |
{ |
|
|
3099 |
"cell_type": "markdown", |
|
|
3100 |
"metadata": { |
|
|
3101 |
"deletable": true, |
|
|
3102 |
"editable": true |
|
|
3103 |
}, |
|
|
3104 |
"source": [ |
|
|
3105 |
"Save the training model. " |
|
|
3106 |
] |
|
|
3107 |
}, |
|
|
3108 |
{ |
|
|
3109 |
"cell_type": "code", |
|
|
3110 |
"execution_count": null, |
|
|
3111 |
"metadata": { |
|
|
3112 |
"collapsed": false, |
|
|
3113 |
"deletable": true, |
|
|
3114 |
"editable": true, |
|
|
3115 |
"scrolled": false |
|
|
3116 |
}, |
|
|
3117 |
"outputs": [], |
|
|
3118 |
"source": [ |
|
|
3119 |
"training_method.save_model(path=CONSTANTS.io_path, title=file_name)" |
|
|
3120 |
] |
|
|
3121 |
}, |
|
|
3122 |
{ |
|
|
3123 |
"cell_type": "markdown", |
|
|
3124 |
"metadata": { |
|
|
3125 |
"deletable": true, |
|
|
3126 |
"editable": true |
|
|
3127 |
}, |
|
|
3128 |
"source": [ |
|
|
3129 |
"<br/><br/>" |
|
|
3130 |
] |
|
|
3131 |
}, |
|
|
3132 |
{ |
|
|
3133 |
"cell_type": "markdown", |
|
|
3134 |
"metadata": { |
|
|
3135 |
"deletable": true, |
|
|
3136 |
"editable": true |
|
|
3137 |
}, |
|
|
3138 |
"source": [ |
|
|
3139 |
"Fin!" |
|
|
3140 |
] |
|
|
3141 |
} |
|
|
3142 |
], |
|
|
3143 |
"metadata": { |
|
|
3144 |
"kernelspec": { |
|
|
3145 |
"display_name": "Python 3", |
|
|
3146 |
"language": "python", |
|
|
3147 |
"name": "python3" |
|
|
3148 |
}, |
|
|
3149 |
"language_info": { |
|
|
3150 |
"codemirror_mode": { |
|
|
3151 |
"name": "ipython", |
|
|
3152 |
"version": 3 |
|
|
3153 |
}, |
|
|
3154 |
"file_extension": ".py", |
|
|
3155 |
"mimetype": "text/x-python", |
|
|
3156 |
"name": "python", |
|
|
3157 |
"nbconvert_exporter": "python", |
|
|
3158 |
"pygments_lexer": "ipython3", |
|
|
3159 |
"version": "3.5.3" |
|
|
3160 |
} |
|
|
3161 |
}, |
|
|
3162 |
"nbformat": 4, |
|
|
3163 |
"nbformat_minor": 1 |
|
|
3164 |
} |