|
a |
|
b/Stats/TransformThread.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# -*- coding: UTF-8 -*- |
|
|
3 |
# |
|
|
4 |
# Copyright 2017 University of Westminster. All Rights Reserved. |
|
|
5 |
# |
|
|
6 |
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
7 |
# you may not use this file except in compliance with the License. |
|
|
8 |
# You may obtain a copy of the License at |
|
|
9 |
# |
|
|
10 |
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
11 |
# |
|
|
12 |
# Unless required by applicable law or agreed to in writing, software |
|
|
13 |
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
14 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
15 |
# See the License for the specific language governing permissions and |
|
|
16 |
# limitations under the License. |
|
|
17 |
# ============================================================================== |
|
|
18 |
""" It applies a set of transformation functions using independent threads for each feature. |
|
|
19 |
""" |
|
|
20 |
|
|
|
21 |
from typing import TypeVar, Any |
|
|
22 |
from scipy import stats |
|
|
23 |
from sklearn import preprocessing |
|
|
24 |
from Stats.YeoJohnson import YeoJohnson |
|
|
25 |
import numpy as np |
|
|
26 |
|
|
|
27 |
PandasDataFrame = TypeVar('DataFrame') |
|
|
28 |
|
|
|
29 |
__author__ = "Mohsen Mesgarpour" |
|
|
30 |
__copyright__ = "Copyright 2016, https://github.com/mesgarpour" |
|
|
31 |
__credits__ = ["Mohsen Mesgarpour"] |
|
|
32 |
__license__ = "GPL" |
|
|
33 |
__version__ = "1.1" |
|
|
34 |
__maintainer__ = "Mohsen Mesgarpour" |
|
|
35 |
__email__ = "mohsen.mesgarpour@gmail.com" |
|
|
36 |
__status__ = "Release" |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
class TransformThread: |
|
|
40 |
# todo: optimise threading further |
|
|
41 |
|
|
|
42 |
def __init__(self, |
|
|
43 |
**kwargs: Any): |
|
|
44 |
"""Initialise the objects and constants. |
|
|
45 |
:param kwargs: the input arguments for the selected transform function. |
|
|
46 |
""" |
|
|
47 |
self.__kwargs = kwargs |
|
|
48 |
|
|
|
49 |
def transform_scale_arr(self, |
|
|
50 |
dt: PandasDataFrame, |
|
|
51 |
method_args: Any, |
|
|
52 |
name: str): |
|
|
53 |
"""Standardize a dataset along any axis. |
|
|
54 |
:param dt: the dataframe of features. |
|
|
55 |
:param method_args: other input arguments |
|
|
56 |
(kwargs: with_mean=True) |
|
|
57 |
:param name: the name of the feature to be transformed. |
|
|
58 |
""" |
|
|
59 |
method_args[name] = None |
|
|
60 |
dt[name] = preprocessing.scale(dt[name], **self.__kwargs) |
|
|
61 |
|
|
|
62 |
def transform_robust_scale_arr(self, |
|
|
63 |
dt: PandasDataFrame, |
|
|
64 |
method_args: Any, |
|
|
65 |
name: str): |
|
|
66 |
"""Standardize a dataset along any axis. |
|
|
67 |
:param dt: the dataframe of features. |
|
|
68 |
:param method_args: other input arguments |
|
|
69 |
(kwargs: axis=0, with_centering=True, with_scaling=True) |
|
|
70 |
:param name: the name of the feature to be transformed. |
|
|
71 |
""" |
|
|
72 |
method_args[name] = None |
|
|
73 |
dt[name] = preprocessing.robust_scale(dt[name], **self.__kwargs) |
|
|
74 |
|
|
|
75 |
def transform_max_abs_scalar_arr(self, |
|
|
76 |
dt: PandasDataFrame, |
|
|
77 |
method_args: Any, |
|
|
78 |
name: str): |
|
|
79 |
"""Scale each feature by its maximum absolute value. |
|
|
80 |
:param dt: the dataframe of features. |
|
|
81 |
:param method_args: other input arguments |
|
|
82 |
(it is a placeholder no argument is available). |
|
|
83 |
:param name: the name of the feature to be transformed. |
|
|
84 |
""" |
|
|
85 |
if name in method_args[name] and "scale" in method_args[name].keys(): |
|
|
86 |
scale = method_args[name]["scale"] |
|
|
87 |
else: |
|
|
88 |
scale = preprocessing.MaxAbsScaler(**self.__kwargs) |
|
|
89 |
method_args[name] = {"scale": scale} |
|
|
90 |
|
|
|
91 |
arr = scale.fit_transform(dt[name]) |
|
|
92 |
arr = np.array(scale.transform(arr)) + 1 |
|
|
93 |
dt[name], summaries = stats.boxcox(arr) |
|
|
94 |
|
|
|
95 |
def transform_normalizer_arr(self, |
|
|
96 |
dt: PandasDataFrame, |
|
|
97 |
method_args: Any, |
|
|
98 |
name: str): |
|
|
99 |
"""Normalize samples individually to unit norm. |
|
|
100 |
:param dt: the dataframe of features. |
|
|
101 |
:param method_args: other input arguments |
|
|
102 |
(kwargs: norm='l2') |
|
|
103 |
:param name: the name of the feature to be transformed. |
|
|
104 |
""" |
|
|
105 |
if name in method_args[name] and "scale" in method_args[name].keys(): |
|
|
106 |
scale = method_args[name]["scale"] |
|
|
107 |
else: |
|
|
108 |
scale = preprocessing.Normalizer(**self.__kwargs) |
|
|
109 |
method_args[name] = {"scale": scale} |
|
|
110 |
|
|
|
111 |
arr = scale.fit_transform(dt[name]) |
|
|
112 |
dt[name] = scale.transform(arr) |
|
|
113 |
|
|
|
114 |
def transform_kernel_centerer_arr(self, |
|
|
115 |
dt: PandasDataFrame, |
|
|
116 |
method_args: Any, |
|
|
117 |
name: str): |
|
|
118 |
"""Center a kernel matrix |
|
|
119 |
:param dt: the dataframe of features. |
|
|
120 |
:param method_args: other input arguments |
|
|
121 |
(it is a placeholder no argument is available). |
|
|
122 |
:param name: the name of the feature to be transformed. |
|
|
123 |
""" |
|
|
124 |
if name in method_args[name] and "scale" in method_args[name].keys(): |
|
|
125 |
scale = method_args[name]["scale"] |
|
|
126 |
else: |
|
|
127 |
scale = preprocessing.KernelCenterer() |
|
|
128 |
method_args[name] = {"scale": scale} |
|
|
129 |
|
|
|
130 |
arr = scale.fit_transform(dt[name]) |
|
|
131 |
dt[name] = scale.transform(arr) |
|
|
132 |
|
|
|
133 |
def transform_yeo_johnson_arr(self, |
|
|
134 |
dt: PandasDataFrame, |
|
|
135 |
method_args: Any, |
|
|
136 |
name: str): |
|
|
137 |
"""Apply the Ye-Johnson transformation. |
|
|
138 |
:param dt: the dataframe of features. |
|
|
139 |
:param method_args: other input arguments |
|
|
140 |
(kwargs: lmbda=-0.5, derivative=0, epsilon=np.finfo(np.float).eps, inverse=False). |
|
|
141 |
:param name: the name of the feature to be transformed. |
|
|
142 |
""" |
|
|
143 |
method_args[name] = None |
|
|
144 |
yeo_johnson = YeoJohnson() |
|
|
145 |
dt[name] = yeo_johnson.fit(dt[name], **self.__kwargs) |
|
|
146 |
|
|
|
147 |
def transform_box_cox_arr(self, |
|
|
148 |
dt: PandasDataFrame, |
|
|
149 |
method_args: Any, |
|
|
150 |
name: str): |
|
|
151 |
"""Apply the Box-Cox transformation. |
|
|
152 |
:param dt: the dataframe of features. |
|
|
153 |
:param method_args: other input arguments |
|
|
154 |
(kwargs: lmbda=None, alpha=None). |
|
|
155 |
:param name: the name of the feature to be transformed. |
|
|
156 |
""" |
|
|
157 |
if name in method_args[name] and "scale" in method_args[name].keys(): |
|
|
158 |
scale = method_args[name]["scale"] |
|
|
159 |
else: |
|
|
160 |
scale, _ = stats.boxcox(dt[name], **self.__kwargs) |
|
|
161 |
method_args[name] = {"scale": scale} |
|
|
162 |
|
|
|
163 |
arr = scale.fit_transform(dt[name]) |
|
|
164 |
dt[name] = scale.transform(arr) |