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Abstract—Sepsis is an inflammatory and deadly disease that
occurs when the body reacts to an infection. According to
the Centre for Disease Control (CDC), in America, about 1.7
million adults develop sepsis and 1 in 3 people who die in a
hospital had sepsis during that hospitalization. Early recognition
of sepsis in patients enables prompt intervention, proactive
measures, and the avoidance of serious problems. The main
goal of our project was to predict the risk of sepsis in hospital-
administered patients earlier than the clinical prediction using
various machine learning models on big data collected from
three different hospitals. Over 1 million ICU patient records
are collected, including 40 different features ranging from vital
signs, laboratory values, and demographics. We tried 4 different
machine learning models that include Logistic Regression (LR),
Naı̈ve Bayes (NB), Support Vector Machines (SVM), and Random
Forest (RF), and concluded that different models performed
differently in terms of predicting the outcome. Overall, RF
performed the best in sepsis risk prediction with an accuracy
rate of 87’%’, as it samples a small portion of characteristics
and data points to create several decision trees which then based
their prediction on the majority view of all the trees.

I. INTRODUCTION

Sepsis being a fatal disorder that develops when the body’s
immune reaction to an infection runs out of control and
begins to harm its own tissues and organs. It may result from
several bacterial, viral, or fungi infections, such as bloodstream
infections, pneumonia, and urinary tract infections. Inflamma-
tory chemicals are released by the immune system when it
becomes activated in response to an infection. This response
amplifies in sepsis and can cause extensive tissue damage and
inflammation. Organ failure, shock, and even death may result
from this. Treatment must start right away for sepsis, which is
a medical emergency. The chances of recovery are improved
if sepsis is identified and treated quickly. Sepsis can quickly
worsen and lead to septic shock and severe sepsis if ignored,
both of which pose a serious risk to life. Sepsis is a serious
illness that can be hazardous even with therapy and leaves a
permanent physical impact.

According to the WHO, 4.2 million newborns and children
worldwide are impacted by sepsis, which is projected to affect
30 million people worldwide and cause 6 million deaths annu-
ally. The most expensive medical condition for U.S. hospitals
is sepsis, which accounts for 24 billion dollars (13’%’ of U.S.
healthcare spending) annually (Paoli et al., 2018). Most of
these patients did not have a diagnosis of sepsis when they
were admitted.

Sepsis must be diagnosed and treated as soon as possible
since doing so can improve a patient’s response to antibiotics,
lower treatment costs, and improve patient outcomes. To do
this, researchers have investigated several early sepsis detec-
tion techniques. In order to predict sepsis, one method is to em-
ploy machine learning algorithms that learn from supervised or
unsupervised data input. Studies have demonstrated that when
it comes to identifying the likelihood of sepsis in emergency
patients, machine learning models like SVM and Random
Forest outperform conventional screening technologies. This
shows how machine learning could help in the early detection
and treatment of sepsis.

Logistic Regression works well with binary classification
problems and is computationally efficient, works well with
large datasets. A probabilistic model called Naive Bayes
determines the likelihood that a new observation will belong
to each class and then chooses the class with the highest
likelihood. The advantage of SVM is its ability to handle high-
dimensional data, which is common in clinical datasets that
contain numerous features. Random Forest can handle missing
values, outliers, and nonlinear relationships between features,
which can make it a good choice for analyzing complex
clinical datasets. So, all of the above properties of these model
makes them a better fit for predicting any clinical condition
like Sepsis.

II. DATA

The data we used for developing this project is collected
from the Early Prediction of Sepsis from Clinical Data: The
Physio Net/Computing in Cardiology Challenge 2019 [1]. It
consists of over 60,000-1 million ICU patient records with up
to 40 clinical variables for each hour of a patient’s ICU stay.

The data is collected from three separate hospital systems
in different parts of the United States each having its own
Electronic Medical Record (EMR) system i.e., Beth Israel
Deaconess Medical Center (hospital A), Emory University
Hospital (hospital B), and unnamed hospital system (hospital
C) [1]. The data collected contained eight vital sign variables,
26 laboratory variables, and six demographic variables which
gives a total of 40 variables including 15 million data points
over 2.5 million hourly time windows.

The data is de-identified and the target label is determined
using Sepsis-3 clinical criteria for sepsis onset. There are



three-time points to determine the onset time t(sepsis) of sepsis
for each septic patient:

• t(suspicion): The clinical suspicion of infection is identi-
fied at this step. The earlier timing of IV antibiotics and
blood cultures within a specific time interval is used to
determine it. If IV antibiotics were administered first, the
cultures had to be obtained within 24 hours. If cultures
were taken initially, IV antibiotics had to be ordered
within 72 hours. In either situation, IV antibiotics must
have been provided for a minimum of 72 hours.

• T(SOFA): The occurrence of organ failure as indicated
by a two-point increase in the Sequential Organ Failure
Assessment (SOFA) score within 24 hours.

• T(sepsis): The onset of sepsis is designated as the earlier
of t(suspicion) and t(SOFA) as long as t(SOFA) happened
within 24 hours of t(suspicion) and no more than 12 hours
after t(suspicion). [1]

For sepsis patients, the target label is 1 if t > t(sepsis) – 6
and 0 if t < t(sepsis) – 6. For non-sepsis patients, the target
label is 0. [1]

III. DATA PREPROCESSING

After data extraction, we performed various data pre-
processing steps so that data can be analyzed properly for
better accuracy and reliability which is very important in terms
of clinical data.

A. Missing Values, Duplicate data:

Our dataset was having some missing values which could
have hampered the outcome. So, missing values were replaced
by zeros in order to prevent the distortion of data and false
assumptions. Data were checked for duplicate values and
unique values were identified and analyzed.

B. Correlation Analysis:

A correlation matrix was plotted for every feature to show
the correlation coefficients between variables in a dataset. It
is an important tool in data analysis and is used to identify
patterns and relationships between variables. It is plotted using
the ’seaborn’ package. It was found that there were some
features that were highly correlated. Some of them are:

• MAP, diastolic, and systolic blood pressure were highly
correlated. so diastolic, and systolic blood pressure were
dropped and MAP was kept.

• Lactate, PTT, and phosphate have a high correlation as
all are indicators of kidney health. We dropped PTT and
phosphate.

• Fibrinogen and platelets have a high correlation as both
define the clotting ability, so platelet was dropped.

• Bilirubin (total) and bilirubin (direct) have a high corre-
lation as well, so the latter was dropped.

• Hct and Hgb were highly correlated, so Hct was dropped
and Hgb was preserved.

Similarly, there were some other correlated features as
well as shown in Fig.2 below. This image helps us to better
understand the correlation as it is plotted with the help of the

Fig. 1. Features in the data file. [1]



heatmap feature which is a popular tool in correlation analysis
for displaying the strength and direction of the association be-
tween two pairs of variables in a given dataset. The correlation
coefficient between each pair of variables is depicted on the
heatmap using colors.

Fig. 2. Correlation Analysis.

C. Outlier Detection:

Data were checked for outliers because outliers have a
substantial impact on statistical analysis, potentially leading
to incorrect or misleading results. Particularly it was checked
for features like heart rate and Temperature because they are
two critical vital signs that are commonly used to monitor the
health status of patients.

D. Data Aggregation:

On observing the data further, it was found that there were
multiple records belonging to a single patient because the data
is collected hourly in the ICUs. So in order to reduce the
complexity of the data set, data were aggregated based on the
patient ID. This helps to reduce the dimension of data from 1
million to 40,000. After performing aggregation, features have
been reduced from 41 to 26.

E. Under-sampling:

There was an issue with data imbalance with respect to the
target label which was handled by using the under-sampling
method which is a technique where instances from the majority
class are removed so that the number of instances in both
classes becomes more balanced. For example, in our dataset,
we have 40,000 instances, where 32,000 instances belong to
class A and 7000 instances belong to class B. In this case,
the dataset is highly imbalanced, and the model may struggle
to predict the minority class accurately. By under-sampling
the majority class, we have reduced the number of instances
in class A to 15000, making the dataset more balanced. The
model can then learn to distinguish between the two classes
more effectively and make more accurate predictions.

Fig. 3. Data Imbalance.

Fig. 4. Under-sampling.

IV. METHODOLOGY

As described above, four different supervised classifiers are
implemented depending on our dataset. We used the ‘sklearn’
python package for various functions like splitting the dataset,
importing the classifier libraries, hyperparameter tuning, and
for accuracy/classification reports. For all the models, the
dataset is divided into three parts: training, validation, and
testing, with split ratios of 60-20-20. Hyperparameter tuning is
done using grid search on the training data using 5-fold cross-
validation for logistic regression and naı̈ve Bayes classifiers
only.

For logistic regression, hyperparameter tuning for ‘the reg-
ularization parameter’ (‘C’) is done using the values [0.01,
0.1, 1, 10, 100]. The regularization parameter C governs the
degree of regularization. A lower C value results in greater
regularization, whereas a higher C value results in weaker
regularization and a more complex model. We can achieve
a reasonable balance between overfitting and underfitting the
data by adjusting the value of C. The model is then trained
using the optimal hyperparameters on the training set, and its
performance on the validation and testing sets is evaluated
using accuracy score and classification report metrics which



gives us values of precision, recall, and f1 score.
For naı̈ve bayes, variable smoothening is the hyperparameter

that is tuned using [1e-10, 1e-9, 1e-8] values.
For SVM, the best hyperparameters are defined as ‘ker-

nel=rbf’, which is abbreviated as ”radial basis function.” As
a result, the classes will be separated by the SVM classifier
using a non-linear decision boundary. The trade-off between
increasing the margin and decreasing the classification error is
controlled by setting the C parameter to 5. A more modest C
worth will take into consideration a balance between maximiz-
ing the margin and minimizing the classification error, while
a bigger C worth will prompt a more modest margin.

For random forest, we used n-estimators as 100 which
specifies the number of trees in the model, with a maximum
depth of 10 which helps to reduce the overfitting of the model
by reducing the complexity of the model.

V. RESULTS

Fig. 5. Performance Analysis.

The output of the four classifiers includes a classification
report which provides us with a table containing various
evaluation metrics i.e., precision, recall, f1 score of sepsis,
and non-sepsis prediction. The report also gives the macro-
average, which is the average performance of the model over
both classes, and the weighted average which considers the
number of instances of each class.

For logistic regression, the accuracy was 0.736. With regards
to precision, the model achieved 0.75 precision for class 0,
which means that out of all samples predicted to belong to
class 0, 75’%’ belong to class 0. The model achieved 0.69
precision for class 1, which means that out of all samples
predicted to belong to class 1, 69’%’ belong to class 1. For
recall, the model achieved 0.91 recall for class 0, which means
that out of all the samples that belong to class 0, 91’%’ were
correctly predicted by the model. The model achieved 0.38
recall for class 1, which means that out of all the samples
that belong to class 1, only 38’%’ were correctly predicted by
the model. The model achieved an f1-score of 0.82 for class
0 and 0.49 for class 1. Overall, the model achieved better
performance for class 0 compared to class 1.

For naı̈ve Bayes, the accuracy is 0.763. For the non-sepsis
class, the precision, recall, and F1-score were 0.77, 0.93, and
0.84, while for the sepsis class, they were 0.75, 0.43, and
0.55, respectively. The weighted average f1-score was 0.74.
This means that the overall performance of the model is not
very high and could potentially be improved.

In SVM, the testing accuracy of the model is 0.665. The
precision for class 0 (non-sepsis) is 0.67, which indicates that

67’%’ of the samples the model predicted to belong to class
0 do. If the recall is one hundred percent, then the model
correctly predicted all the samples in class zero. The harmonic
mean of precision and recall, the f1-score, is 0.80, indicating a
balance between precision and recall. The precision for class
1 is 0.00, indicating that of all the samples that the model
predicted would belong to class 1, only 0’%’ actually do. The
f1-score is 0.00.

The random forest model has a satisfactory accuracy score
of 0.86. However, it is evident that the model predicts instances
of non-sepsis with a higher accuracy (precision of 0.85 and
recall of 0.96) than it does instances of sepsis. Label 0(non-
sepsis) also has a higher F1 score than label 1(sepsis). The
model predicts label 0 slightly better than label 1, as shown by
the macro-average of precision, recall, and F1-score. Finally, a
bar plot is plotted for validation and test accuracies for a better
visual understanding of the classifier performances. The plots
showed that the random forest classifier performed better than
all other models for both testing and validation sets with SVM
being the least-performing model overall.

Fig. 6. Validation Accuracy.

Fig. 7. Test Accuracy.



VI. CONCLUSION

The risk of sepsis was predicted in this project utilizing pa-
tient data from different hospitals. Various data pre-processing
steps were followed to analyze the data and filter it for better
prediction and suitability. Different machine Learning Models
with different hyperparameters were used like Random Forest,
SVM, Naı̈ve Bayes, and logistic regression for prediction and
it is concluded that Random Forest being the best-performing
classifier in this project helps in predicting the risk of sepsis
much more accurately with an accuracy of 87’%’ followed by
Naı̈ve Bayes. We believe RF’s ability to handle imbalanced
data, like ours, makes it the best classifier for our dataset as it
samples a subset of features and data points to build multiple
decision trees, thus making predictions based on the majority
vote of all the trees. The performance of each model was
compared based on various scores like F1 score, precision,
and Recall, and the best performing mode was chosen.

In order to identify patients who are at a high risk of
developing sepsis and to take preventive steps to do so,
healthcare providers can benefit from these findings. Data
imbalance was the biggest challenge in this project which
was somehow handled by under-sampling but not completely.
While it has been demonstrated that machine learning models
may accurately predict a patient’s risk of sepsis, deep learning
models may have even more potential to boost the precision
and accuracy of these predictions provided sufficient compu-
tation resources should be available.

There is therefore a lot of opportunity for deep learning
models to be used in sepsis risk prediction studies in the
future. We might be able to create even more potent tools
for forecasting the danger of sepsis and enhancing patient
outcomes by integrating the benefits of both machine learning
and deep learning models.
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