|
a |
|
b/04_TrainBaselineModels.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"* [Baseline models](#Baseline-models)\n", |
|
|
8 |
"* [Load and prepare data](#Load-and-prepare-data)\n", |
|
|
9 |
" * [Load and prepare the text](#Load-and-prepare-the-text)\n", |
|
|
10 |
" * [Compute LACE features](#Compute-LACE-features)\n", |
|
|
11 |
"* [Train or load Word2Vec](#Train-or-load-Word2Vec)\n", |
|
|
12 |
"* [Model](#Model)\n", |
|
|
13 |
" * [Neural network with LACE features](#Neural-network-with-LACE-features)\n", |
|
|
14 |
" * [Random forest with TF-IDF matrix](#Random-forest-with-TF-IDF-matrix)\n", |
|
|
15 |
" * [2-layer feed forward neural network](#2-layer-feed-forward-neural-network)\n", |
|
|
16 |
" * [Logistic regression](#Logistic-regression)" |
|
|
17 |
] |
|
|
18 |
}, |
|
|
19 |
{ |
|
|
20 |
"cell_type": "markdown", |
|
|
21 |
"metadata": {}, |
|
|
22 |
"source": [ |
|
|
23 |
"# Baseline models" |
|
|
24 |
] |
|
|
25 |
}, |
|
|
26 |
{ |
|
|
27 |
"cell_type": "code", |
|
|
28 |
"execution_count": null, |
|
|
29 |
"metadata": { |
|
|
30 |
"collapsed": true |
|
|
31 |
}, |
|
|
32 |
"outputs": [], |
|
|
33 |
"source": [ |
|
|
34 |
"# Data prep\n", |
|
|
35 |
"import numpy as np\n", |
|
|
36 |
"import pandas as pd\n", |
|
|
37 |
"from sklearn.model_selection import train_test_split\n", |
|
|
38 |
"\n", |
|
|
39 |
"# Word2Vec\n", |
|
|
40 |
"import os\n", |
|
|
41 |
"import logging\n", |
|
|
42 |
"import string\n", |
|
|
43 |
"from gensim.models import word2vec\n", |
|
|
44 |
"import gensim\n", |
|
|
45 |
"logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)\n", |
|
|
46 |
"\n", |
|
|
47 |
"# Neural networks \n", |
|
|
48 |
"import keras\n", |
|
|
49 |
"from keras.models import Model\n", |
|
|
50 |
"from keras.preprocessing.text import Tokenizer\n", |
|
|
51 |
"from keras.preprocessing.sequence import pad_sequences\n", |
|
|
52 |
"from keras.layers import Embedding, Input, Conv1D, Dense, GlobalMaxPooling1D\n", |
|
|
53 |
"from keras.optimizers import RMSprop\n", |
|
|
54 |
"import keras.backend as K\n", |
|
|
55 |
"\n", |
|
|
56 |
"# Random forest\n", |
|
|
57 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n", |
|
|
58 |
"from sklearn.ensemble import RandomForestClassifier\n", |
|
|
59 |
"\n", |
|
|
60 |
"# Logistic regression\n", |
|
|
61 |
"import statsmodels.api as sm" |
|
|
62 |
] |
|
|
63 |
}, |
|
|
64 |
{ |
|
|
65 |
"cell_type": "code", |
|
|
66 |
"execution_count": null, |
|
|
67 |
"metadata": { |
|
|
68 |
"collapsed": true |
|
|
69 |
}, |
|
|
70 |
"outputs": [], |
|
|
71 |
"source": [ |
|
|
72 |
"# Data frame created by TextSections/TextPrep\n", |
|
|
73 |
"TRAIN_TEXT_LOC = \"\"\n", |
|
|
74 |
"TEST_TEXT_LOC = \"\"\n", |
|
|
75 |
"\n", |
|
|
76 |
"# Data frame containing LACE features.\n", |
|
|
77 |
"# Assumes presence of:\n", |
|
|
78 |
"# - LengthOfStay\n", |
|
|
79 |
"# - Charlson\n", |
|
|
80 |
"# - PrevERVisits\n", |
|
|
81 |
"# - AdmittedViaER\n", |
|
|
82 |
"TRAIN_AUX_LOC = \"\"\n", |
|
|
83 |
"TEST_AUX_LOC = \"\"\n", |
|
|
84 |
"\n", |
|
|
85 |
"# Unique visit identifier to merge the train/test text with LACE data\n", |
|
|
86 |
"MERGE_ON = \"\"\n", |
|
|
87 |
"\n", |
|
|
88 |
"# Other column names\n", |
|
|
89 |
"VISITID = \"\"\n", |
|
|
90 |
"OUTCOME = \"\" # e.g. ReadmissionInLessThan30Days" |
|
|
91 |
] |
|
|
92 |
}, |
|
|
93 |
{ |
|
|
94 |
"cell_type": "markdown", |
|
|
95 |
"metadata": {}, |
|
|
96 |
"source": [ |
|
|
97 |
"# Load and prepare data" |
|
|
98 |
] |
|
|
99 |
}, |
|
|
100 |
{ |
|
|
101 |
"cell_type": "markdown", |
|
|
102 |
"metadata": {}, |
|
|
103 |
"source": [ |
|
|
104 |
"## Load and prepare the text" |
|
|
105 |
] |
|
|
106 |
}, |
|
|
107 |
{ |
|
|
108 |
"cell_type": "code", |
|
|
109 |
"execution_count": null, |
|
|
110 |
"metadata": { |
|
|
111 |
"collapsed": true |
|
|
112 |
}, |
|
|
113 |
"outputs": [], |
|
|
114 |
"source": [ |
|
|
115 |
"# Read train and test text data.\n", |
|
|
116 |
"trainTXT = pd.read_csv(TRAIN_TEXT_LOC)\n", |
|
|
117 |
"testTXT = pd.read_csv(TEST_TEXT_LOC)\n", |
|
|
118 |
"\n", |
|
|
119 |
"# Read train and test LACE data.\n", |
|
|
120 |
"trainLACE = pd.read_csv(TRAIN_AUX_LOC)\n", |
|
|
121 |
"testLACE = pd.read_csv(TEST_AUX_LOC)\n", |
|
|
122 |
"\n", |
|
|
123 |
"# Combine data\n", |
|
|
124 |
"train = pd.merge(trainTXT, trainLACE, on = MERGE_ON)\n", |
|
|
125 |
"test = pd.merge(testTXT, testLACE, on = MERGE_ON)\n", |
|
|
126 |
"\n", |
|
|
127 |
"# Split the train data into a train and validation set.\n", |
|
|
128 |
"train, valid = train_test_split(train, \n", |
|
|
129 |
" stratify = train[OUTCOME], \n", |
|
|
130 |
" train_size = .9, \n", |
|
|
131 |
" random_state = 1234)\n", |
|
|
132 |
"\n", |
|
|
133 |
"# Prepare the sections.\n", |
|
|
134 |
"# If `sectiontext` is present, then include \"SECTIONNAME sectiontext\".\n", |
|
|
135 |
"# If not present, include only \"SECTIONNAME\".\n", |
|
|
136 |
"SECTIONNAMES = [x for x in trainTXT.columns if VISITID not in x and OUTCOME not in x]\n", |
|
|
137 |
"for x in SECTIONNAMES:\n", |
|
|
138 |
" rep = x.replace(\" \", \"_\").upper()\n", |
|
|
139 |
" train[x] = [\" \".join([rep, t]) if not pd.isnull(t) else rep for t in train[x]]\n", |
|
|
140 |
" valid[x] = [\" \".join([rep, t]) if not pd.isnull(t) else rep for t in valid[x]]\n", |
|
|
141 |
" test[x] = [\" \".join([rep, t]) if not pd.isnull(t) else rep for t in test[x]]" |
|
|
142 |
] |
|
|
143 |
}, |
|
|
144 |
{ |
|
|
145 |
"cell_type": "markdown", |
|
|
146 |
"metadata": {}, |
|
|
147 |
"source": [ |
|
|
148 |
"## Compute LACE features" |
|
|
149 |
] |
|
|
150 |
}, |
|
|
151 |
{ |
|
|
152 |
"cell_type": "markdown", |
|
|
153 |
"metadata": {}, |
|
|
154 |
"source": [ |
|
|
155 |
"This code assumes that, for each hospital visit, you have computed:\n", |
|
|
156 |
" * the Charlson index\n", |
|
|
157 |
" * the number of ER visits in the last 6 months\n", |
|
|
158 |
" * whether the patient was admitted through the ER\n", |
|
|
159 |
" * the length of stay, in days\n", |
|
|
160 |
"\n", |
|
|
161 |
"We then using these data to compute LACE." |
|
|
162 |
] |
|
|
163 |
}, |
|
|
164 |
{ |
|
|
165 |
"cell_type": "code", |
|
|
166 |
"execution_count": null, |
|
|
167 |
"metadata": { |
|
|
168 |
"collapsed": true |
|
|
169 |
}, |
|
|
170 |
"outputs": [], |
|
|
171 |
"source": [ |
|
|
172 |
"def LOS(los):\n", |
|
|
173 |
" if los <= 3:\n", |
|
|
174 |
" return(los)\n", |
|
|
175 |
" elif los <= 6:\n", |
|
|
176 |
" return(4)\n", |
|
|
177 |
" elif los <= 13:\n", |
|
|
178 |
" return(5)\n", |
|
|
179 |
" else:\n", |
|
|
180 |
" return(7)\n", |
|
|
181 |
" \n", |
|
|
182 |
"def ACUITY(erboolean):\n", |
|
|
183 |
" if erboolean:\n", |
|
|
184 |
" return(3)\n", |
|
|
185 |
" else:\n", |
|
|
186 |
" return(0)\n", |
|
|
187 |
" \n", |
|
|
188 |
"def LACE(data):\n", |
|
|
189 |
" return(LOS(data.LengthOfStay) + ACUITY(data.AdmittedViaER) + data.Charlson + data.PrevERVisits)\n", |
|
|
190 |
"\n", |
|
|
191 |
"train[\"LACE\"] = train.apply(LACE, axis=1)\n", |
|
|
192 |
"valid[\"LACE\"] = valid.apply(LACE, axis=1)\n", |
|
|
193 |
"test[\"LACE\"] = test.apply(LACE, axis=1)" |
|
|
194 |
] |
|
|
195 |
}, |
|
|
196 |
{ |
|
|
197 |
"cell_type": "markdown", |
|
|
198 |
"metadata": {}, |
|
|
199 |
"source": [ |
|
|
200 |
"For their use in modeling, we also transform the LACE variables by subtracting the mean of the train data:" |
|
|
201 |
] |
|
|
202 |
}, |
|
|
203 |
{ |
|
|
204 |
"cell_type": "code", |
|
|
205 |
"execution_count": null, |
|
|
206 |
"metadata": { |
|
|
207 |
"collapsed": true |
|
|
208 |
}, |
|
|
209 |
"outputs": [], |
|
|
210 |
"source": [ |
|
|
211 |
"# We transform \"length of stay\" following the precedent set by LACE.\n", |
|
|
212 |
"train[\"LOS_Quantized\"] = train.LengthOfStay.apply(LOS)\n", |
|
|
213 |
"test[\"LOS_Quantized\"] = test.LengthOfStay.apply(LOS)\n", |
|
|
214 |
"valid[\"LOS_Quantized\"] = valid.LengthOfStay.apply(LOS)\n", |
|
|
215 |
"\n", |
|
|
216 |
"train[\"Charlson_Transformed\"] = train.Charlson - train.Charlson.mean()\n", |
|
|
217 |
"train[\"LOS_Transformed\"] = train.LOS_Quantized - train.LOS_Quantized.mean()\n", |
|
|
218 |
"train[\"PrevERVisits_Transformed\"] = train.PrevERVisits - train.PrevERVisits.mean()\n", |
|
|
219 |
"\n", |
|
|
220 |
"test[\"Charlson_Transformed\"] = test.Charlson - train.Charlson.mean()\n", |
|
|
221 |
"test[\"LOS_Transformed\"] = test.LOS_Quantized - train.LOS_Quantized.mean()\n", |
|
|
222 |
"test[\"PrevERVisits_Transformed\"] = test.PrevERVisits - train.PrevERVisits.mean()\n", |
|
|
223 |
"\n", |
|
|
224 |
"valid[\"Charlson_Transformed\"] = valid.Charlson - train.Charlson.mean()\n", |
|
|
225 |
"valid[\"LOS_Transformed\"] = valid.LOS_Quantized - train.LOS_Quantized.mean()\n", |
|
|
226 |
"valid[\"PrevERVisits_Transformed\"] = valid.PrevERVisits - train.PrevERVisits.mean()" |
|
|
227 |
] |
|
|
228 |
}, |
|
|
229 |
{ |
|
|
230 |
"cell_type": "markdown", |
|
|
231 |
"metadata": {}, |
|
|
232 |
"source": [ |
|
|
233 |
"# Train or load Word2Vec" |
|
|
234 |
] |
|
|
235 |
}, |
|
|
236 |
{ |
|
|
237 |
"cell_type": "code", |
|
|
238 |
"execution_count": null, |
|
|
239 |
"metadata": { |
|
|
240 |
"collapsed": true |
|
|
241 |
}, |
|
|
242 |
"outputs": [], |
|
|
243 |
"source": [ |
|
|
244 |
"# Word2Vec hyperparameters\n", |
|
|
245 |
"window = 2\n", |
|
|
246 |
"dimension = 1000\n", |
|
|
247 |
"min_count = 5\n", |
|
|
248 |
"sg = 1 \n", |
|
|
249 |
"hs = 0 \n", |
|
|
250 |
"\n", |
|
|
251 |
"# Where to save the model:\n", |
|
|
252 |
"modelFile = './word2vec/w2v_dims_' + str(dimension) + \"_window_\" + str(window) + '.bin'\n", |
|
|
253 |
"\n", |
|
|
254 |
"# We will remove digits and punctuation:\n", |
|
|
255 |
"remove_digits_punc = str.maketrans('', '', string.digits + ''.join([x for x in string.punctuation if '_' not in x]))\n", |
|
|
256 |
"remove_digits_punc = {a:\" \" for a in remove_digits_punc.keys()}\n", |
|
|
257 |
"\n", |
|
|
258 |
"# (If the model already exists, don't recompute.)\n", |
|
|
259 |
"if not os.path.isfile(modelFile):\n", |
|
|
260 |
" # Use only training data to train word2vec:\n", |
|
|
261 |
" notes = train[SECTIONNAMES].apply(lambda x: \" \".join(x), axis=1).values \n", |
|
|
262 |
" stop = set([x for x in string.ascii_lowercase]) \n", |
|
|
263 |
" for i in range(len(notes)):\n", |
|
|
264 |
" notes[i] = [w for w in notes[i].translate(remove_digits_punc).split() if (w not in stop)]\n", |
|
|
265 |
" \n", |
|
|
266 |
" w2v = word2vec.Word2Vec(notes, \n", |
|
|
267 |
" size=dimension, \n", |
|
|
268 |
" window=window, \n", |
|
|
269 |
" sg=sg, \n", |
|
|
270 |
" hs=hs, \n", |
|
|
271 |
" min_count=min_count, \n", |
|
|
272 |
" workers=50)\n", |
|
|
273 |
" w2v.wv.save_word2vec_format(modelFile, binary=True)\n", |
|
|
274 |
"else:\n", |
|
|
275 |
" w2v = gensim.models.KeyedVectors.load_word2vec_format(modelFile, binary=True)" |
|
|
276 |
] |
|
|
277 |
}, |
|
|
278 |
{ |
|
|
279 |
"cell_type": "code", |
|
|
280 |
"execution_count": null, |
|
|
281 |
"metadata": { |
|
|
282 |
"collapsed": true |
|
|
283 |
}, |
|
|
284 |
"outputs": [], |
|
|
285 |
"source": [ |
|
|
286 |
"# Make the embedding matrix.\n", |
|
|
287 |
"# We include one extra word, `PADDING`. This is the word that will right-pad short notes.\n", |
|
|
288 |
"# For `PADDING`'s vector representation, we choose the zero vector.\n", |
|
|
289 |
"vocab = [\"PADDING\"] + sorted(list(w2v.wv.vocab.keys()))\n", |
|
|
290 |
"vset = set(vocab)\n", |
|
|
291 |
"\n", |
|
|
292 |
"embeddings_index = {}\n", |
|
|
293 |
"for i in range(len(vocab)):\n", |
|
|
294 |
" embeddings_index[vocab[i]] = i\n", |
|
|
295 |
"\n", |
|
|
296 |
"reverse_embeddings_index = {b:a for a,b in embeddings_index.items()}\n", |
|
|
297 |
"embeddings_matrix = np.matrix(np.concatenate(([[0.]*1000], [w2v[x] for x in vocab[1:]])))" |
|
|
298 |
] |
|
|
299 |
}, |
|
|
300 |
{ |
|
|
301 |
"cell_type": "markdown", |
|
|
302 |
"metadata": {}, |
|
|
303 |
"source": [ |
|
|
304 |
"# Model" |
|
|
305 |
] |
|
|
306 |
}, |
|
|
307 |
{ |
|
|
308 |
"cell_type": "markdown", |
|
|
309 |
"metadata": {}, |
|
|
310 |
"source": [ |
|
|
311 |
"## Neural network with LACE features" |
|
|
312 |
] |
|
|
313 |
}, |
|
|
314 |
{ |
|
|
315 |
"cell_type": "markdown", |
|
|
316 |
"metadata": {}, |
|
|
317 |
"source": [ |
|
|
318 |
"Prepare text using our embeddings index:" |
|
|
319 |
] |
|
|
320 |
}, |
|
|
321 |
{ |
|
|
322 |
"cell_type": "code", |
|
|
323 |
"execution_count": null, |
|
|
324 |
"metadata": { |
|
|
325 |
"collapsed": true |
|
|
326 |
}, |
|
|
327 |
"outputs": [], |
|
|
328 |
"source": [ |
|
|
329 |
"train_x = train[SECTIONNAMES].apply(lambda x: (\" \".join(x)).translate(remove_digits_punc), axis=1).values \n", |
|
|
330 |
"test_x = test[ SECTIONNAMES].apply(lambda x: (\" \".join(x)).translate(remove_digits_punc), axis=1).values \n", |
|
|
331 |
"valid_x = valid[SECTIONNAMES].apply(lambda x: (\" \".join(x)).translate(remove_digits_punc), axis=1).values \n", |
|
|
332 |
"\n", |
|
|
333 |
"train_x = [[embeddings_index[x] for x in note.split() if x in vset] for note in train_x]\n", |
|
|
334 |
"valid_x = [[embeddings_index[x] for x in note.split() if x in vset] for note in valid_x]\n", |
|
|
335 |
"test_x = [[embeddings_index[x] for x in note.split() if x in vset] for note in test_x]\n", |
|
|
336 |
"\n", |
|
|
337 |
"train_y = train[OUTCOME]\n", |
|
|
338 |
"valid_y = valid[OUTCOME]\n", |
|
|
339 |
"test_y = test[OUTCOME]" |
|
|
340 |
] |
|
|
341 |
}, |
|
|
342 |
{ |
|
|
343 |
"cell_type": "markdown", |
|
|
344 |
"metadata": {}, |
|
|
345 |
"source": [ |
|
|
346 |
"And model:" |
|
|
347 |
] |
|
|
348 |
}, |
|
|
349 |
{ |
|
|
350 |
"cell_type": "code", |
|
|
351 |
"execution_count": null, |
|
|
352 |
"metadata": { |
|
|
353 |
"collapsed": true |
|
|
354 |
}, |
|
|
355 |
"outputs": [], |
|
|
356 |
"source": [ |
|
|
357 |
"UNITS = 500\n", |
|
|
358 |
"FILTERSIZE = 3\n", |
|
|
359 |
"embedding_layer = Embedding(embeddings_matrix.shape[0],\n", |
|
|
360 |
" embeddings_matrix.shape[1],\n", |
|
|
361 |
" weights=[embeddings_matrix],\n", |
|
|
362 |
" input_length=maxlen,\n", |
|
|
363 |
" trainable=True)\n", |
|
|
364 |
"\n", |
|
|
365 |
"sequence_input = Input(shape=(maxlen,), dtype='int32')\n", |
|
|
366 |
"embedded_sequences = embedding_layer(sequence_input)\n", |
|
|
367 |
"\n", |
|
|
368 |
"lace_in = Input(shape=(4,))\n", |
|
|
369 |
"lace = keras.layers.Reshape((1,4,))(lace_in)\n", |
|
|
370 |
"lace = keras.layers.UpSampling1D(700)(lace)\n", |
|
|
371 |
"\n", |
|
|
372 |
"combined = keras.layers.concatenate([embedded_sequences, lace])\n", |
|
|
373 |
"\n", |
|
|
374 |
"conv = Conv1D(UNITS, FILTERSIZE, activation=\"tanh\", use_bias=True)(combined)\n", |
|
|
375 |
"pool = GlobalMaxPooling1D()(conv)\n", |
|
|
376 |
"\n", |
|
|
377 |
"\n", |
|
|
378 |
"out = Dense(1, \n", |
|
|
379 |
" activation='sigmoid', \n", |
|
|
380 |
" activity_regularizer=keras.regularizers.l1(l=.05)\n", |
|
|
381 |
" )(pool)\n", |
|
|
382 |
"\n", |
|
|
383 |
"optimizer = keras.optimizers.RMSprop(lr = .0001)\n", |
|
|
384 |
"model=Model(inputs=[sequence_input, lace_in], outputs=out)\n", |
|
|
385 |
"model.compile(loss='binary_crossentropy', optimizer=optimizer)\n", |
|
|
386 |
"\n", |
|
|
387 |
"model.fit(train_x, train_y, batch_size=100, epochs=4, validation_data=(valid_x, valid_y), verbose=1)" |
|
|
388 |
] |
|
|
389 |
}, |
|
|
390 |
{ |
|
|
391 |
"cell_type": "markdown", |
|
|
392 |
"metadata": {}, |
|
|
393 |
"source": [ |
|
|
394 |
"## Random forest with TF-IDF matrix" |
|
|
395 |
] |
|
|
396 |
}, |
|
|
397 |
{ |
|
|
398 |
"cell_type": "code", |
|
|
399 |
"execution_count": null, |
|
|
400 |
"metadata": { |
|
|
401 |
"collapsed": true |
|
|
402 |
}, |
|
|
403 |
"outputs": [], |
|
|
404 |
"source": [ |
|
|
405 |
"# Prepare the text for sklearn's tfidf vectorizer:\n", |
|
|
406 |
"train_x = train[SECTIONNAMES].apply(lambda x: (\" \".join(x)).translate(remove_digits_punc), axis=1).values \n", |
|
|
407 |
"test_x = test[ SECTIONNAMES].apply(lambda x: (\" \".join(x)).translate(remove_digits_punc), axis=1).values \n", |
|
|
408 |
"valid_x = valid[SECTIONNAMES].apply(lambda x: (\" \".join(x)).translate(remove_digits_punc), axis=1).values \n", |
|
|
409 |
"\n", |
|
|
410 |
"train_y = train[OUTCOME]\n", |
|
|
411 |
"valid_y = valid[OUTCOME]\n", |
|
|
412 |
"test_y = test[OUTCOME]\n", |
|
|
413 |
"\n", |
|
|
414 |
"tfidf = TfidfVectorizer()\n", |
|
|
415 |
"tr_x = tfidf.fit_transform(train_x)\n", |
|
|
416 |
"te_x = tfidf.transform(test_x)\n", |
|
|
417 |
"va_x = tfidf.transform(valid_x)" |
|
|
418 |
] |
|
|
419 |
}, |
|
|
420 |
{ |
|
|
421 |
"cell_type": "code", |
|
|
422 |
"execution_count": null, |
|
|
423 |
"metadata": { |
|
|
424 |
"collapsed": true |
|
|
425 |
}, |
|
|
426 |
"outputs": [], |
|
|
427 |
"source": [ |
|
|
428 |
"# Model:\n", |
|
|
429 |
"rfc = RandomForestClassifier(n_estimators=1000, max_depth=100, n_jobs=-1)\n", |
|
|
430 |
"rfc.fit(tr_x, train_y)" |
|
|
431 |
] |
|
|
432 |
}, |
|
|
433 |
{ |
|
|
434 |
"cell_type": "markdown", |
|
|
435 |
"metadata": {}, |
|
|
436 |
"source": [ |
|
|
437 |
"## 2-layer feed forward neural network " |
|
|
438 |
] |
|
|
439 |
}, |
|
|
440 |
{ |
|
|
441 |
"cell_type": "markdown", |
|
|
442 |
"metadata": {}, |
|
|
443 |
"source": [ |
|
|
444 |
"This model uses only the components of LACE together with the LACE score:" |
|
|
445 |
] |
|
|
446 |
}, |
|
|
447 |
{ |
|
|
448 |
"cell_type": "code", |
|
|
449 |
"execution_count": null, |
|
|
450 |
"metadata": { |
|
|
451 |
"collapsed": true |
|
|
452 |
}, |
|
|
453 |
"outputs": [], |
|
|
454 |
"source": [ |
|
|
455 |
"lace = Input(shape=(5,))\n", |
|
|
456 |
"dense = Dense(50, activation='tanh')(lace)\n", |
|
|
457 |
"out = Dense(1, activation='sigmoid')(dense)\n", |
|
|
458 |
"\n", |
|
|
459 |
"model = Model(inputs=lace, outputs=out)\n", |
|
|
460 |
"model.compile(loss='binary_crossentropy', optimizer=\"nadam\")" |
|
|
461 |
] |
|
|
462 |
}, |
|
|
463 |
{ |
|
|
464 |
"cell_type": "code", |
|
|
465 |
"execution_count": null, |
|
|
466 |
"metadata": { |
|
|
467 |
"collapsed": true |
|
|
468 |
}, |
|
|
469 |
"outputs": [], |
|
|
470 |
"source": [ |
|
|
471 |
"model.fit(train[[\"LOS_Transformed\", \"AdmittedViaER\", \"Charlson_Transformed\", \"PrevERVisits_Transformed\", \"LACE\"]].values, \n", |
|
|
472 |
" train_y,\n", |
|
|
473 |
" class_weight={0:1, 1:10}, \n", |
|
|
474 |
" epochs=1)" |
|
|
475 |
] |
|
|
476 |
}, |
|
|
477 |
{ |
|
|
478 |
"cell_type": "markdown", |
|
|
479 |
"metadata": {}, |
|
|
480 |
"source": [ |
|
|
481 |
"## Logistic regression" |
|
|
482 |
] |
|
|
483 |
}, |
|
|
484 |
{ |
|
|
485 |
"cell_type": "code", |
|
|
486 |
"execution_count": null, |
|
|
487 |
"metadata": { |
|
|
488 |
"collapsed": true |
|
|
489 |
}, |
|
|
490 |
"outputs": [], |
|
|
491 |
"source": [ |
|
|
492 |
"model = logit(formula = OUTCOME + \" ~ (LOS_Transformed + AdmittedViaER + Charlson_Transformed + PrevERVisits_Transformed + LACE)\", \n", |
|
|
493 |
" data = train\n", |
|
|
494 |
" ).fit(maxiter = 1000, method = 'lbfgs')" |
|
|
495 |
] |
|
|
496 |
} |
|
|
497 |
], |
|
|
498 |
"metadata": { |
|
|
499 |
"kernelspec": { |
|
|
500 |
"display_name": "Python 3", |
|
|
501 |
"language": "python", |
|
|
502 |
"name": "python3" |
|
|
503 |
}, |
|
|
504 |
"language_info": { |
|
|
505 |
"codemirror_mode": { |
|
|
506 |
"name": "ipython", |
|
|
507 |
"version": 3 |
|
|
508 |
}, |
|
|
509 |
"file_extension": ".py", |
|
|
510 |
"mimetype": "text/x-python", |
|
|
511 |
"name": "python", |
|
|
512 |
"nbconvert_exporter": "python", |
|
|
513 |
"pygments_lexer": "ipython3", |
|
|
514 |
"version": "3.5.2" |
|
|
515 |
} |
|
|
516 |
}, |
|
|
517 |
"nbformat": 4, |
|
|
518 |
"nbformat_minor": 2 |
|
|
519 |
} |