|
a |
|
b/main.py |
|
|
1 |
import streamlit as st |
|
|
2 |
import numpy as np |
|
|
3 |
import pandas as pd |
|
|
4 |
import logging |
|
|
5 |
from data.data_loader import load_data, preprocess_data |
|
|
6 |
from visualization.plots import generate_shap_plots, plot_feature_importance |
|
|
7 |
from models.model import train_model, predict |
|
|
8 |
from models.evaluation import calculate_metrics |
|
|
9 |
|
|
|
10 |
def setup_logging(): |
|
|
11 |
"""Configure logging settings""" |
|
|
12 |
logging.basicConfig( |
|
|
13 |
level=logging.INFO, |
|
|
14 |
format='%(levelname)s - %(message)s' |
|
|
15 |
) |
|
|
16 |
|
|
|
17 |
def is_valid_number(value): |
|
|
18 |
"""Validate if input string is a valid number""" |
|
|
19 |
try: |
|
|
20 |
float(value) |
|
|
21 |
return True |
|
|
22 |
except ValueError: |
|
|
23 |
return False |
|
|
24 |
|
|
|
25 |
def main(): |
|
|
26 |
st.set_page_config( |
|
|
27 |
page_title="30-Day Readmission Risk Predictor", |
|
|
28 |
layout="wide" |
|
|
29 |
) |
|
|
30 |
|
|
|
31 |
setup_logging() |
|
|
32 |
|
|
|
33 |
st.title("30-Day Mental Health Hospital Readmission Risk Predictor") |
|
|
34 |
|
|
|
35 |
st.write(""" |
|
|
36 |
This application predicts the risk of patient readmission within 30 days |
|
|
37 |
of discharge from a mental health hospital using machine learning. |
|
|
38 |
""") |
|
|
39 |
|
|
|
40 |
try: |
|
|
41 |
# Load and preprocess data |
|
|
42 |
data = load_data() |
|
|
43 |
if data is None: |
|
|
44 |
st.error("Error loading data") |
|
|
45 |
return |
|
|
46 |
|
|
|
47 |
X_train, X_test, y_train, y_test, feature_names, scaler = preprocess_data(data) |
|
|
48 |
if X_train is None: |
|
|
49 |
st.error("Error preprocessing data") |
|
|
50 |
return |
|
|
51 |
|
|
|
52 |
# Ensure X_train and X_test are DataFrames with feature names |
|
|
53 |
X_train_df = pd.DataFrame(X_train, columns=feature_names) |
|
|
54 |
X_test_df = pd.DataFrame(X_test, columns=feature_names) |
|
|
55 |
|
|
|
56 |
# Train model |
|
|
57 |
model = train_model(X_train_df, y_train) |
|
|
58 |
if model is None: |
|
|
59 |
st.error("Error training model") |
|
|
60 |
return |
|
|
61 |
|
|
|
62 |
# Make predictions |
|
|
63 |
y_pred, y_pred_proba = predict(model, X_test_df) |
|
|
64 |
if y_pred is None: |
|
|
65 |
st.error("Error making predictions") |
|
|
66 |
return |
|
|
67 |
|
|
|
68 |
# Calculate and display metrics |
|
|
69 |
metrics = calculate_metrics(y_test, y_pred, y_pred_proba) |
|
|
70 |
if metrics: |
|
|
71 |
st.header("Model Performance Metrics") |
|
|
72 |
col1, col2, col3, col4, col5 = st.columns(5) |
|
|
73 |
with col1: |
|
|
74 |
st.metric("Accuracy", f"{metrics['accuracy']:.2f}") |
|
|
75 |
with col2: |
|
|
76 |
st.metric("Precision", f"{metrics['precision']:.2f}") |
|
|
77 |
with col3: |
|
|
78 |
st.metric("Recall", f"{metrics['recall']:.2f}") |
|
|
79 |
with col4: |
|
|
80 |
st.metric("F1 Score", f"{metrics['f1']:.2f}") |
|
|
81 |
with col5: |
|
|
82 |
st.metric("AUC-ROC", f"{metrics['auc_roc']:.2f}") |
|
|
83 |
|
|
|
84 |
# Define categorical features and their options |
|
|
85 |
categorical_features = { |
|
|
86 |
'age': ['18-25', '26-35', '36-45', '46-55', '56-65', '65+'], |
|
|
87 |
'length_of_stay': ['1-3 days', '4-7 days', '8-14 days', '15+ days'] |
|
|
88 |
} |
|
|
89 |
|
|
|
90 |
# Define numerical features and their ranges |
|
|
91 |
numerical_features = { |
|
|
92 |
'previous_admissions': {'min': 0, 'max': 100}, |
|
|
93 |
'num_procedures': {'min': 0, 'max': 50}, |
|
|
94 |
'num_medications': {'min': 0, 'max': 100}, |
|
|
95 |
'num_diagnoses': {'min': 0, 'max': 50}, |
|
|
96 |
'num_lab_procedures': {'min': 0, 'max': 200}, |
|
|
97 |
'num_outpatient': {'min': 0, 'max': 100}, |
|
|
98 |
'num_emergency': {'min': 0, 'max': 100}, |
|
|
99 |
'num_inpatient': {'min': 0, 'max': 100} |
|
|
100 |
} |
|
|
101 |
|
|
|
102 |
# Interactive Prediction |
|
|
103 |
st.header("Predict Readmission Risk") |
|
|
104 |
st.write("Enter patient information to predict readmission risk") |
|
|
105 |
|
|
|
106 |
# Create columns for input fields |
|
|
107 |
col1, col2 = st.columns(2) |
|
|
108 |
|
|
|
109 |
# Store all input values |
|
|
110 |
input_values = {} |
|
|
111 |
|
|
|
112 |
# First column of inputs |
|
|
113 |
with col1: |
|
|
114 |
# Handle categorical features |
|
|
115 |
for feature in categorical_features: |
|
|
116 |
input_values[feature] = st.selectbox( |
|
|
117 |
f"{feature.replace('_', ' ').title()}", |
|
|
118 |
options=categorical_features[feature], |
|
|
119 |
key=f"select_{feature}" |
|
|
120 |
) |
|
|
121 |
|
|
|
122 |
# Handle first half of numerical features |
|
|
123 |
numerical_features_list = list(numerical_features.keys()) |
|
|
124 |
for feature in numerical_features_list[:len(numerical_features_list)//2]: |
|
|
125 |
input_text = st.text_input( |
|
|
126 |
f"{feature.replace('_', ' ').title()}", |
|
|
127 |
value="0", |
|
|
128 |
key=f"input_{feature}" |
|
|
129 |
) |
|
|
130 |
|
|
|
131 |
if not is_valid_number(input_text): |
|
|
132 |
st.error(f"Please enter a valid number for {feature}") |
|
|
133 |
input_values[feature] = 0 |
|
|
134 |
else: |
|
|
135 |
value = float(input_text) |
|
|
136 |
if value < numerical_features[feature]['min'] or value > numerical_features[feature]['max']: |
|
|
137 |
st.warning(f"Value should be between {numerical_features[feature]['min']} and {numerical_features[feature]['max']}") |
|
|
138 |
input_values[feature] = value |
|
|
139 |
|
|
|
140 |
# Second column of inputs |
|
|
141 |
with col2: |
|
|
142 |
# Handle second half of numerical features |
|
|
143 |
for feature in numerical_features_list[len(numerical_features_list)//2:]: |
|
|
144 |
input_text = st.text_input( |
|
|
145 |
f"{feature.replace('_', ' ').title()}", |
|
|
146 |
value="0", |
|
|
147 |
key=f"input_{feature}" |
|
|
148 |
) |
|
|
149 |
|
|
|
150 |
if not is_valid_number(input_text): |
|
|
151 |
st.error(f"Please enter a valid number for {feature}") |
|
|
152 |
input_values[feature] = 0 |
|
|
153 |
else: |
|
|
154 |
value = float(input_text) |
|
|
155 |
if value < numerical_features[feature]['min'] or value > numerical_features[feature]['max']: |
|
|
156 |
st.warning(f"Value should be between {numerical_features[feature]['min']} and {numerical_features[feature]['max']}") |
|
|
157 |
input_values[feature] = value |
|
|
158 |
|
|
|
159 |
# Prediction button |
|
|
160 |
if st.button("Predict"): |
|
|
161 |
# Convert categorical inputs to numerical |
|
|
162 |
input_data = input_values.copy() |
|
|
163 |
|
|
|
164 |
# Process age categories |
|
|
165 |
age_mapping = {'18-25': 21.5, '26-35': 30.5, '36-45': 40.5, |
|
|
166 |
'46-55': 50.5, '56-65': 60.5, '65+': 70} |
|
|
167 |
input_data['age'] = age_mapping[input_data['age']] |
|
|
168 |
|
|
|
169 |
# Process length of stay categories |
|
|
170 |
los_mapping = {'1-3 days': 2, '4-7 days': 5.5, '8-14 days': 11, |
|
|
171 |
'15+ days': 15} |
|
|
172 |
input_data['length_of_stay'] = los_mapping[input_data['length_of_stay']] |
|
|
173 |
|
|
|
174 |
# Create DataFrame and make prediction |
|
|
175 |
input_df = pd.DataFrame([input_data], columns=feature_names) |
|
|
176 |
input_scaled = pd.DataFrame( |
|
|
177 |
scaler.transform(input_df), |
|
|
178 |
columns=feature_names |
|
|
179 |
) |
|
|
180 |
|
|
|
181 |
_, probabilities = predict(model, input_scaled) |
|
|
182 |
|
|
|
183 |
if probabilities is not None: |
|
|
184 |
prediction = probabilities[0] |
|
|
185 |
st.write(f"Predicted probability of readmission: {prediction:.2%}") |
|
|
186 |
|
|
|
187 |
risk_category = ( |
|
|
188 |
"High" if prediction > 0.7 |
|
|
189 |
else "Medium" if prediction > 0.3 |
|
|
190 |
else "Low" |
|
|
191 |
) |
|
|
192 |
st.write(f"Risk Category: {risk_category}") |
|
|
193 |
|
|
|
194 |
# Model Insights Section |
|
|
195 |
st.header("Model Insights") |
|
|
196 |
|
|
|
197 |
# Feature Importance Plot |
|
|
198 |
st.subheader("Feature Importance") |
|
|
199 |
st.write(""" |
|
|
200 |
This plot shows the relative importance of each feature in making predictions. |
|
|
201 |
Higher values indicate more important features. |
|
|
202 |
""") |
|
|
203 |
fig_importance = plot_feature_importance(model, X_train_df) |
|
|
204 |
if fig_importance: |
|
|
205 |
st.plotly_chart(fig_importance) |
|
|
206 |
|
|
|
207 |
# SHAP Analysis |
|
|
208 |
st.subheader("SHAP Analysis") |
|
|
209 |
st.write(""" |
|
|
210 |
SHAP (SHapley Additive exPlanations) values show how each feature |
|
|
211 |
contributes to predictions. Features in red increase the prediction, |
|
|
212 |
while features in blue decrease it. |
|
|
213 |
""") |
|
|
214 |
|
|
|
215 |
# Create and display SHAP plot with custom width |
|
|
216 |
fig_shap = generate_shap_plots(model, X_test_df) |
|
|
217 |
if fig_shap: |
|
|
218 |
# Use a container with custom width |
|
|
219 |
with st.container(): |
|
|
220 |
st.pyplot(fig_shap, use_container_width=False) |
|
|
221 |
else: |
|
|
222 |
st.error("Error generating SHAP plot") |
|
|
223 |
|
|
|
224 |
except Exception as e: |
|
|
225 |
st.error(f"An error occurred: {str(e)}") |
|
|
226 |
logging.error(f"Error in main: {str(e)}") |
|
|
227 |
|
|
|
228 |
if __name__ == "__main__": |
|
|
229 |
main() |