|
a |
|
b/Hospital_Streamlit.py |
|
|
1 |
import streamlit as st |
|
|
2 |
import pandas as pd |
|
|
3 |
import numpy as np |
|
|
4 |
from datetime import datetime |
|
|
5 |
import plotly.graph_objects as go |
|
|
6 |
import plotly.express as px |
|
|
7 |
from streamlit_autorefresh import st_autorefresh |
|
|
8 |
import pickle |
|
|
9 |
import os |
|
|
10 |
from io import BytesIO |
|
|
11 |
import pydicom |
|
|
12 |
import cv2 |
|
|
13 |
import random |
|
|
14 |
from ultralytics import YOLO |
|
|
15 |
from plotly.subplots import make_subplots |
|
|
16 |
|
|
|
17 |
# Load languages |
|
|
18 |
def load_languages(): |
|
|
19 |
return { |
|
|
20 |
'English': { |
|
|
21 |
'welcome': 'Welcome', |
|
|
22 |
'dashboard': 'Dashboard', |
|
|
23 |
'profile': 'Profile', |
|
|
24 |
'settings': 'Settings', |
|
|
25 |
'emergency': 'Emergency Contact', |
|
|
26 |
'about': 'About Us', |
|
|
27 |
'prediction': 'Patient Prediction', |
|
|
28 |
'analytics': 'Analytics' |
|
|
29 |
}, |
|
|
30 |
'Spanish': { |
|
|
31 |
'welcome': 'Bienvenido', |
|
|
32 |
'dashboard': 'Tablero', |
|
|
33 |
'profile': 'Perfil', |
|
|
34 |
'settings': 'Ajustes', |
|
|
35 |
'emergency': 'Contacto de Emergencia', |
|
|
36 |
'about': 'Sobre Nosotros', |
|
|
37 |
'prediction': 'Predicción de Pacientes', |
|
|
38 |
'analytics': 'Análisis' |
|
|
39 |
}, |
|
|
40 |
'French': { |
|
|
41 |
'welcome': 'Bienvenue', |
|
|
42 |
'dashboard': 'Tableau de Bord', |
|
|
43 |
'profile': 'Profil', |
|
|
44 |
'settings': 'Paramètres', |
|
|
45 |
'emergency': 'Contact d\'urgence', |
|
|
46 |
'about': 'À Propos', |
|
|
47 |
'prediction': 'Prédiction de Patients', |
|
|
48 |
'analytics': 'Analytique' |
|
|
49 |
} |
|
|
50 |
} |
|
|
51 |
|
|
|
52 |
# Theme configurations |
|
|
53 |
dark_theme = { |
|
|
54 |
'primary_color': '#4da6ff', |
|
|
55 |
'background_color': '#0e1117', |
|
|
56 |
'secondary_bg': '#262730', |
|
|
57 |
'text_color': '#fafafa', |
|
|
58 |
'font': 'sans-serif', |
|
|
59 |
'card_bg': '#1a1a1a', |
|
|
60 |
'success_color': '#2fd36e', |
|
|
61 |
'warning_color': '#ffd534', |
|
|
62 |
'danger_color': '#ff4961' |
|
|
63 |
} |
|
|
64 |
|
|
|
65 |
# 3D Scatter plot for visual appeal |
|
|
66 |
def create_3d_scatter(): |
|
|
67 |
x = np.random.randn(100) |
|
|
68 |
y = np.random.randn(100) |
|
|
69 |
z = np.random.randn(100) |
|
|
70 |
|
|
|
71 |
fig = go.Figure(data=[go.Scatter3d( |
|
|
72 |
x=x, y=y, z=z, |
|
|
73 |
mode='markers', |
|
|
74 |
marker=dict( |
|
|
75 |
size=5, |
|
|
76 |
color=z, |
|
|
77 |
colorscale='Viridis', |
|
|
78 |
opacity=0.8 |
|
|
79 |
) |
|
|
80 |
)]) |
|
|
81 |
|
|
|
82 |
fig.update_layout( |
|
|
83 |
scene=dict( |
|
|
84 |
xaxis_title='X', |
|
|
85 |
yaxis_title='Y', |
|
|
86 |
zaxis_title='Z', |
|
|
87 |
bgcolor='rgba(0,0,0,0)' |
|
|
88 |
), |
|
|
89 |
margin=dict(r=0, b=0, l=0, t=0), |
|
|
90 |
paper_bgcolor='rgba(0,0,0,0)', |
|
|
91 |
plot_bgcolor='rgba(0,0,0,0)' |
|
|
92 |
) |
|
|
93 |
|
|
|
94 |
return fig |
|
|
95 |
|
|
|
96 |
def create_dynamic_dashboard(): |
|
|
97 |
st.title("Hospital Dashboard") |
|
|
98 |
|
|
|
99 |
st_autorefresh(interval=10000, key="dashboard_refresh") |
|
|
100 |
|
|
|
101 |
current_time = datetime.now() |
|
|
102 |
times = pd.date_range(end=current_time, periods=20, freq='1min') |
|
|
103 |
|
|
|
104 |
# 3D Scatter plot for visual appeal |
|
|
105 |
st.subheader("Hospital Activity Visualization") |
|
|
106 |
fig_3d = create_3d_scatter() |
|
|
107 |
st.plotly_chart(fig_3d, use_container_width=True) |
|
|
108 |
|
|
|
109 |
# Interactive metrics with hover effect |
|
|
110 |
col1, col2, col3 = st.columns(3) |
|
|
111 |
with col1: |
|
|
112 |
current_patients = np.random.randint(80, 120) |
|
|
113 |
st.metric("Current Patients", current_patients, delta=np.random.randint(-5, 5)) |
|
|
114 |
with col2: |
|
|
115 |
bed_capacity = f"{np.random.randint(60, 90)}%" |
|
|
116 |
st.metric("Bed Capacity", bed_capacity, delta=f"{np.random.randint(-3, 3)}%") |
|
|
117 |
with col3: |
|
|
118 |
staff_on_duty = np.random.randint(40, 60) |
|
|
119 |
st.metric("Staff on Duty", staff_on_duty, delta=np.random.randint(-2, 2)) |
|
|
120 |
|
|
|
121 |
# Interactive charts |
|
|
122 |
fig = make_subplots(rows=1, cols=2, subplot_titles=("Patient Flow (Last 20 minutes)", "Department Load (%)")) |
|
|
123 |
|
|
|
124 |
# Patient Flow |
|
|
125 |
fig.add_trace( |
|
|
126 |
go.Scatter( |
|
|
127 |
x=times, |
|
|
128 |
y=np.random.randint(50, 100, size=20), |
|
|
129 |
name="Admissions", |
|
|
130 |
mode='lines+markers', |
|
|
131 |
line=dict(color='#4da6ff', width=3), |
|
|
132 |
marker=dict(size=8, symbol='circle', line=dict(color='#ffffff', width=2)) |
|
|
133 |
), |
|
|
134 |
row=1, col=1 |
|
|
135 |
) |
|
|
136 |
fig.add_trace( |
|
|
137 |
go.Scatter( |
|
|
138 |
x=times, |
|
|
139 |
y=np.random.randint(40, 90, size=20), |
|
|
140 |
name="Discharges", |
|
|
141 |
mode='lines+markers', |
|
|
142 |
line=dict(color='#ff4961', width=3), |
|
|
143 |
marker=dict(size=8, symbol='circle', line=dict(color='#ffffff', width=2)) |
|
|
144 |
), |
|
|
145 |
row=1, col=1 |
|
|
146 |
) |
|
|
147 |
|
|
|
148 |
# Department Load |
|
|
149 |
departments = ['ER', 'ICU', 'Surgery', 'Pediatrics', 'General'] |
|
|
150 |
values = np.random.randint(40, 100, size=len(departments)) |
|
|
151 |
fig.add_trace( |
|
|
152 |
go.Bar( |
|
|
153 |
x=departments, |
|
|
154 |
y=values, |
|
|
155 |
marker_color='#4da6ff', |
|
|
156 |
hoverinfo='y', |
|
|
157 |
textposition='auto', |
|
|
158 |
textfont=dict(color='white'), |
|
|
159 |
hoverlabel=dict(bgcolor='#1a1a1a', font_size=14) |
|
|
160 |
), |
|
|
161 |
row=1, col=2 |
|
|
162 |
) |
|
|
163 |
|
|
|
164 |
fig.update_layout( |
|
|
165 |
height=500, |
|
|
166 |
showlegend=False, |
|
|
167 |
paper_bgcolor='rgba(0,0,0,0)', |
|
|
168 |
plot_bgcolor='rgba(0,0,0,0)', |
|
|
169 |
font=dict(color='#fafafa'), |
|
|
170 |
margin=dict(l=20, r=20, t=60, b=20), |
|
|
171 |
) |
|
|
172 |
fig.update_xaxes(showgrid=False, zeroline=False) |
|
|
173 |
fig.update_yaxes(showgrid=True, gridcolor='rgba(255,255,255,0.1)', zeroline=False) |
|
|
174 |
|
|
|
175 |
st.plotly_chart(fig, use_container_width=True) |
|
|
176 |
|
|
|
177 |
emergency_data = pd.DataFrame({ |
|
|
178 |
'Time': times[-5:], |
|
|
179 |
'Type': np.random.choice(['Critical', 'Moderate', 'Minor'], size=5), |
|
|
180 |
'Department': np.random.choice(['ER', 'ICU', 'Surgery'], size=5), |
|
|
181 |
'Status': np.random.choice(['In Progress', 'Waiting', 'Completed'], size=5) |
|
|
182 |
}) |
|
|
183 |
|
|
|
184 |
st.subheader("Recent Emergency Cases") |
|
|
185 |
st.dataframe( |
|
|
186 |
emergency_data.style |
|
|
187 |
.applymap(lambda x: f'color: {dark_theme["text_color"]}; background-color: {dark_theme["card_bg"]}') |
|
|
188 |
.set_properties(**{'background-color': dark_theme['card_bg'], 'color': dark_theme['text_color'], 'border-color': dark_theme['primary_color']}) |
|
|
189 |
.highlight_max(axis=0, props='color: #ff4961; font-weight: bold;') |
|
|
190 |
.highlight_min(axis=0, props='color: #2fd36e; font-weight: bold;'), |
|
|
191 |
use_container_width=True |
|
|
192 |
) |
|
|
193 |
|
|
|
194 |
def user_profile_section(): |
|
|
195 |
st.title("User Profile") |
|
|
196 |
|
|
|
197 |
if 'user_profile' not in st.session_state: |
|
|
198 |
st.session_state.user_profile = { |
|
|
199 |
'name': '', |
|
|
200 |
'email': '', |
|
|
201 |
'phone': '', |
|
|
202 |
'department': '', |
|
|
203 |
'role': '', |
|
|
204 |
'profile_picture': None |
|
|
205 |
} |
|
|
206 |
|
|
|
207 |
col1, col2 = st.columns(2) |
|
|
208 |
|
|
|
209 |
with col1: |
|
|
210 |
st.session_state.user_profile['name'] = st.text_input("Full Name", st.session_state.user_profile['name']) |
|
|
211 |
st.session_state.user_profile['email'] = st.text_input("Email", st.session_state.user_profile['email']) |
|
|
212 |
st.session_state.user_profile['phone'] = st.text_input("Phone", st.session_state.user_profile['phone']) |
|
|
213 |
|
|
|
214 |
with col2: |
|
|
215 |
st.session_state.user_profile['department'] = st.selectbox( |
|
|
216 |
"Department", |
|
|
217 |
["Cardiology", "Emergency", "Pediatrics", "Surgery", "Other"], |
|
|
218 |
index=0 if not st.session_state.user_profile['department'] else None |
|
|
219 |
) |
|
|
220 |
st.session_state.user_profile['role'] = st.selectbox( |
|
|
221 |
"Role", |
|
|
222 |
["Doctor", "Nurse", "Administrator", "Other"], |
|
|
223 |
index=0 if not st.session_state.user_profile['role'] else None |
|
|
224 |
) |
|
|
225 |
uploaded_file = st.file_uploader("Upload Profile Picture", type=['jpg', 'png']) |
|
|
226 |
if uploaded_file is not None: |
|
|
227 |
st.session_state.user_profile['profile_picture'] = uploaded_file |
|
|
228 |
st.image(uploaded_file, width=150) |
|
|
229 |
|
|
|
230 |
if st.button("Save Profile"): |
|
|
231 |
st.success("Profile updated successfully!") |
|
|
232 |
|
|
|
233 |
def emergency_contact_section(): |
|
|
234 |
st.title("Emergency Contact") |
|
|
235 |
|
|
|
236 |
st.header("Emergency Department") |
|
|
237 |
col1, col2, col3 = st.columns(3) |
|
|
238 |
|
|
|
239 |
with col1: |
|
|
240 |
st.info("📞 Emergency Hotline\n\n1-800-HOSPITAL") |
|
|
241 |
with col2: |
|
|
242 |
st.info("🚑 Ambulance Service\n\n911") |
|
|
243 |
with col3: |
|
|
244 |
st.info("👨⚕️ On-call Doctor\n\n+1-555-0123") |
|
|
245 |
|
|
|
246 |
st.header("Contact Form") |
|
|
247 |
|
|
|
248 |
emergency_type = st.selectbox( |
|
|
249 |
"Emergency Type", |
|
|
250 |
["Medical Emergency", "Fire Emergency", "Security Issue", "Other"] |
|
|
251 |
) |
|
|
252 |
|
|
|
253 |
description = st.text_area("Description of Emergency") |
|
|
254 |
location = st.text_input("Location in Hospital") |
|
|
255 |
|
|
|
256 |
if st.button("Submit Emergency Alert"): |
|
|
257 |
if description and location: |
|
|
258 |
st.success("Emergency alert submitted successfully!") |
|
|
259 |
st.info("Emergency response team has been notified.") |
|
|
260 |
else: |
|
|
261 |
st.error("Please fill in all required fields.") |
|
|
262 |
|
|
|
263 |
def about_us_section(): |
|
|
264 |
st.title("About Us") |
|
|
265 |
|
|
|
266 |
st.markdown(""" |
|
|
267 |
## Our Mission |
|
|
268 |
To provide exceptional healthcare services with compassion and innovation, |
|
|
269 |
ensuring the best possible outcomes for our patients and communities. |
|
|
270 |
|
|
|
271 |
## Our Vision |
|
|
272 |
To be the leading healthcare provider known for excellence in patient care, |
|
|
273 |
medical research, and healthcare technology innovation. |
|
|
274 |
|
|
|
275 |
## Our Values |
|
|
276 |
- **Excellence** in all aspects of healthcare |
|
|
277 |
- **Compassion** towards all patients |
|
|
278 |
- **Innovation** in medical practices |
|
|
279 |
- **Integrity** in our actions |
|
|
280 |
- **Teamwork** in our approach |
|
|
281 |
|
|
|
282 |
## Hospital Statistics |
|
|
283 |
""") |
|
|
284 |
|
|
|
285 |
col1, col2, col3 = st.columns(3) |
|
|
286 |
|
|
|
287 |
with col1: |
|
|
288 |
st.metric("Years of Service", "50+") |
|
|
289 |
with col2: |
|
|
290 |
st.metric("Healthcare Professionals", "1000+") |
|
|
291 |
with col3: |
|
|
292 |
st.metric("Patients Served Annually", "50,000+") |
|
|
293 |
|
|
|
294 |
st.header("Our Departments") |
|
|
295 |
departments = [ |
|
|
296 |
("🫀 Cardiology", "Specialized heart care and treatment"), |
|
|
297 |
("🧠 Neurology", "Expert neurological care"), |
|
|
298 |
("👶 Pediatrics", "Comprehensive children's healthcare"), |
|
|
299 |
("🏥 Emergency Care", "24/7 emergency services"), |
|
|
300 |
("🔬 Research", "Cutting-edge medical research") |
|
|
301 |
] |
|
|
302 |
|
|
|
303 |
for dept, desc in departments: |
|
|
304 |
st.subheader(dept) |
|
|
305 |
st.write(desc) |
|
|
306 |
|
|
|
307 |
def prediction_page(): |
|
|
308 |
st.title("Patient Readmission Prediction") |
|
|
309 |
|
|
|
310 |
col1, col2 = st.columns(2) |
|
|
311 |
|
|
|
312 |
with col1: |
|
|
313 |
gender = st.selectbox('Gender:', ["Female", "Male", "Other"]) |
|
|
314 |
admission_type = st.selectbox('Admission Type:', ['Emergency', 'Urgent', 'Elective']) |
|
|
315 |
diagnosis = st.selectbox('Diagnosis:', ['Heart Disease', 'Diabetes', 'Injury', 'Infection']) |
|
|
316 |
lab_procedures = st.number_input('Number of Lab Procedures:', 1, 100, 1) |
|
|
317 |
medications = st.number_input('Number of Medications:', 1, 36, 1) |
|
|
318 |
|
|
|
319 |
with col2: |
|
|
320 |
outpatient_visits = st.number_input('Number of Outpatient Visits:', 0, 5, 0) |
|
|
321 |
inpatient_visits = st.number_input('Number of Inpatient Visits:', 0, 5, 0) |
|
|
322 |
emergency_visits = st.number_input('Number of Emergency Visits:', 0, 5, 0) |
|
|
323 |
num_diagnoses = st.number_input('Number of Diagnoses:', 1, 10, 1) |
|
|
324 |
a1c_result = st.selectbox('A1C Result:', ['Normal', 'Abnormal']) |
|
|
325 |
|
|
|
326 |
if st.button("Predict Readmission", key="predict_button"): |
|
|
327 |
gender_code = {"Female": 0, "Male": 1, "Other": 2}[gender] |
|
|
328 |
admission_code = {"Emergency": 1, "Urgent": 2, "Elective": 0}[admission_type] |
|
|
329 |
diagnosis_code = {"Heart Disease": 1, "Diabetes": 0, "Injury": 3, "Infection": 2}[diagnosis] |
|
|
330 |
a1c_code = {"Normal": 1, "Abnormal": 0}[a1c_result] |
|
|
331 |
|
|
|
332 |
input_data = np.array([[ |
|
|
333 |
gender_code, admission_code, diagnosis_code, lab_procedures, |
|
|
334 |
medications, outpatient_visits, inpatient_visits, |
|
|
335 |
emergency_visits, num_diagnoses, a1c_code |
|
|
336 |
]]) |
|
|
337 |
|
|
|
338 |
try: |
|
|
339 |
model_path = os.path.join(os.path.dirname(__file__), "Readmission_Model.pkl") |
|
|
340 |
with open(model_path, "rb") as m: |
|
|
341 |
model = pickle.load(m) |
|
|
342 |
result = model.predict(input_data)[0] |
|
|
343 |
|
|
|
344 |
if result == 1: |
|
|
345 |
st.error("⚠️ High Risk: Readmission is Required") |
|
|
346 |
st.markdown(""" |
|
|
347 |
### Recommended Actions: |
|
|
348 |
1. Schedule follow-up appointment within 7 days |
|
|
349 |
2. Review medication compliance |
|
|
350 |
3. Coordinate with care management team |
|
|
351 |
""") |
|
|
352 |
else: |
|
|
353 |
st.success("✅ Low Risk: Readmission is Not Required") |
|
|
354 |
st.markdown(""" |
|
|
355 |
### Recommended Actions: |
|
|
356 |
1. Schedule routine follow-up within 30 days |
|
|
357 |
2. Provide standard discharge instructions |
|
|
358 |
3. Document any concerns for future reference |
|
|
359 |
""") |
|
|
360 |
except FileNotFoundError: |
|
|
361 |
st.error("Model file not found. Please ensure 'Readmission_Model.pkl' is in the correct directory.") |
|
|
362 |
except Exception as e: |
|
|
363 |
st.error(f"An error occurred during prediction: {str(e)}") |
|
|
364 |
|
|
|
365 |
def analytics_page(): |
|
|
366 |
st.title("Hospital Analytics Dashboard") |
|
|
367 |
|
|
|
368 |
time_period = st.selectbox( |
|
|
369 |
"Select Time Period", |
|
|
370 |
["Last 24 Hours", "Last Week", "Last Month", "Last Year"] |
|
|
371 |
) |
|
|
372 |
|
|
|
373 |
if time_period == "Last 24 Hours": |
|
|
374 |
dates = pd.date_range(end=datetime.now(), periods=24, freq='H') |
|
|
375 |
elif time_period == "Last Week": |
|
|
376 |
dates = pd.date_range(end=datetime.now(), periods=7, freq='D') |
|
|
377 |
elif time_period == "Last Month": |
|
|
378 |
dates = pd.date_range(end=datetime.now(), periods=30, freq='D') |
|
|
379 |
else: |
|
|
380 |
dates = pd.date_range(end=datetime.now(), periods=12, freq='M') |
|
|
381 |
|
|
|
382 |
analytics_data = pd.DataFrame({ |
|
|
383 |
'Date': dates, |
|
|
384 |
'Admissions': np.random.randint(50, 150, size=len(dates)), |
|
|
385 |
'Discharges': np.random.randint(40, 140, size=len(dates)), |
|
|
386 |
'Readmissions': np.random.randint(5, 30, size=len(dates)), |
|
|
387 |
'Average_Stay': np.random.uniform(2, 7, size=len(dates)) |
|
|
388 |
}) |
|
|
389 |
|
|
|
390 |
col1, col2, col3, col4 = st.columns(4) |
|
|
391 |
|
|
|
392 |
with col1: |
|
|
393 |
total_admissions = analytics_data['Admissions'].sum() |
|
|
394 |
st.metric("Total Admissions", f"{total_admissions:,}") |
|
|
395 |
|
|
|
396 |
with col2: |
|
|
397 |
avg_stay = analytics_data['Average_Stay'].mean() |
|
|
398 |
st.metric("Average Stay (days)", f"{avg_stay:.1f}") |
|
|
399 |
|
|
|
400 |
with col3: |
|
|
401 |
readmission_rate = (analytics_data['Readmissions'].sum() / total_admissions) * 100 |
|
|
402 |
st.metric("Readmission Rate", f"{readmission_rate:.1f}%") |
|
|
403 |
|
|
|
404 |
with col4: |
|
|
405 |
bed_turnover = total_admissions / len(dates) |
|
|
406 |
st.metric("Daily Bed Turnover", f"{bed_turnover:.1f}") |
|
|
407 |
|
|
|
408 |
fig = make_subplots(rows=2, cols=2, subplot_titles=("Admissions vs Discharges Trend", "Readmission Trend", "Average Length of Stay Trend", "Department-wise Statistics")) |
|
|
409 |
|
|
|
410 |
# Admissions vs Discharges Trend |
|
|
411 |
fig.add_trace(go.Scatter( |
|
|
412 |
x=analytics_data['Date'], |
|
|
413 |
y=analytics_data['Admissions'], |
|
|
414 |
name="Admissions", |
|
|
415 |
line=dict(color='#4da6ff', width=3) |
|
|
416 |
), row=1, col=1) |
|
|
417 |
fig.add_trace(go.Scatter( |
|
|
418 |
x=analytics_data['Date'], |
|
|
419 |
y=analytics_data['Discharges'], |
|
|
420 |
name="Discharges", |
|
|
421 |
line=dict(color='#ff4961', width=3) |
|
|
422 |
), row=1, col=1) |
|
|
423 |
|
|
|
424 |
# Readmission Trend |
|
|
425 |
fig.add_trace(go.Scatter( |
|
|
426 |
x=analytics_data['Date'], |
|
|
427 |
y=analytics_data['Readmissions'], |
|
|
428 |
name="Readmissions", |
|
|
429 |
line=dict(color='#ffd534', width=3) |
|
|
430 |
), row=1, col=2) |
|
|
431 |
|
|
|
432 |
# Average Length of Stay Trend |
|
|
433 |
fig.add_trace(go.Scatter( |
|
|
434 |
x=analytics_data['Date'], |
|
|
435 |
y=analytics_data['Average_Stay'], |
|
|
436 |
name="Average Stay", |
|
|
437 |
line=dict(color='#2fd36e', width=3) |
|
|
438 |
), row=2, col=1) |
|
|
439 |
|
|
|
440 |
# Department-wise Statistics |
|
|
441 |
departments = ['Emergency', 'Surgery', 'Cardiology', 'Pediatrics', 'Neurology'] |
|
|
442 |
occupancy_rates = np.random.uniform(60, 95, len(departments)) |
|
|
443 |
fig.add_trace(go.Bar( |
|
|
444 |
x=departments, |
|
|
445 |
y=occupancy_rates, |
|
|
446 |
name="Occupancy Rate", |
|
|
447 |
marker_color='#4da6ff' |
|
|
448 |
), row=2, col=2) |
|
|
449 |
|
|
|
450 |
fig.update_layout( |
|
|
451 |
height=800, |
|
|
452 |
showlegend=True, |
|
|
453 |
paper_bgcolor='rgba(0,0,0,0)', |
|
|
454 |
plot_bgcolor='rgba(0,0,0,0)', |
|
|
455 |
font=dict(color='#fafafa'), |
|
|
456 |
legend=dict( |
|
|
457 |
bgcolor='rgba(0,0,0,0)', |
|
|
458 |
bordercolor='rgba(0,0,0,0)' |
|
|
459 |
) |
|
|
460 |
) |
|
|
461 |
fig.update_xaxes(showgrid=False, zeroline=False) |
|
|
462 |
fig.update_yaxes(showgrid=True, gridcolor='rgba(255,255,255,0.1)', zeroline=False) |
|
|
463 |
|
|
|
464 |
st.plotly_chart(fig, use_container_width=True) |
|
|
465 |
|
|
|
466 |
st.subheader("Department-wise Statistics") |
|
|
467 |
dept_data = pd.DataFrame({ |
|
|
468 |
'Department': departments, |
|
|
469 |
'Occupancy_Rate': occupancy_rates, |
|
|
470 |
'Avg_Stay': np.random.uniform(2, 8, len(departments)), |
|
|
471 |
'Patient_Satisfaction': np.random.uniform(75, 95, len(departments)) |
|
|
472 |
}) |
|
|
473 |
|
|
|
474 |
st.dataframe( |
|
|
475 |
dept_data.style.format({ |
|
|
476 |
'Occupancy_Rate': '{:.2f}%', |
|
|
477 |
'Avg_Stay': '{:.2f}', |
|
|
478 |
'Patient_Satisfaction': '{:.2f}%' |
|
|
479 |
}) |
|
|
480 |
.applymap(lambda x: f'color: {dark_theme["text_color"]}; background-color: {dark_theme["card_bg"]}') |
|
|
481 |
.set_properties(**{'background-color': dark_theme['card_bg'], 'color': dark_theme['text_color'], 'border-color': dark_theme['primary_color']}) |
|
|
482 |
.highlight_max(axis=0, props='color: #2fd36e; font-weight: bold;') |
|
|
483 |
.highlight_min(axis=0, props='color: #ff4961; font-weight: bold;'), |
|
|
484 |
use_container_width=True |
|
|
485 |
) |
|
|
486 |
|
|
|
487 |
def medical_image_analysis_page(): |
|
|
488 |
st.title("Medical Image Analysis") |
|
|
489 |
|
|
|
490 |
# Disease details dictionary |
|
|
491 |
DISEASE_DETAILS = { |
|
|
492 |
'Aortic enlargement': { |
|
|
493 |
'description': 'Abnormal enlargement of the aorta', |
|
|
494 |
'precautions': [ |
|
|
495 |
'Immediate cardiovascular consultation', |
|
|
496 |
'Regular blood pressure monitoring', |
|
|
497 |
'Avoid heavy lifting and strenuous activities' |
|
|
498 |
], |
|
|
499 |
'admission': 'Immediate hospitalization if risk of rupture' |
|
|
500 |
}, |
|
|
501 |
'Cardiomegaly': { |
|
|
502 |
'description': 'Abnormal enlargement of the heart', |
|
|
503 |
'precautions': [ |
|
|
504 |
'Restrict physical activities', |
|
|
505 |
'Follow strict medication regimen', |
|
|
506 |
'Regular cardiac monitoring' |
|
|
507 |
], |
|
|
508 |
'admission': 'Urgent cardiac care if symptoms are severe' |
|
|
509 |
}, |
|
|
510 |
'Pneumothorax': { |
|
|
511 |
'description': 'Collapsed or partially collapsed lung', |
|
|
512 |
'precautions': [ |
|
|
513 |
'Oxygen therapy', |
|
|
514 |
'Chest tube insertion may be required', |
|
|
515 |
'Complete bed rest' |
|
|
516 |
], |
|
|
517 |
'admission': 'Immediate hospitalization' |
|
|
518 |
}, |
|
|
519 |
'No finding': { |
|
|
520 |
'description': 'No significant medical conditions detected', |
|
|
521 |
'precautions': ['Regular health check-ups'], |
|
|
522 |
'admission': 'Not required' |
|
|
523 |
} |
|
|
524 |
} |
|
|
525 |
|
|
|
526 |
# Ensure uploads directory exists |
|
|
527 |
os.makedirs('uploads', exist_ok=True) |
|
|
528 |
|
|
|
529 |
# Load YOLO model |
|
|
530 |
MODEL_PATH = 'yolov8n.pt' |
|
|
531 |
model = YOLO(MODEL_PATH) |
|
|
532 |
|
|
|
533 |
# Disease classes |
|
|
534 |
CLASSES = [ |
|
|
535 |
'Aortic enlargement', 'Atelectasis', 'Calcification', 'Cardiomegaly', |
|
|
536 |
'Consolidation', 'ILD', 'Infiltration', 'Lung Opacity', 'Nodule/Mass', |
|
|
537 |
'Other lesion', 'Pleural effusion', 'Pleural thickening', 'Pneumothorax', |
|
|
538 |
'Pulmonary fibrosis', 'No finding' |
|
|
539 |
] |
|
|
540 |
|
|
|
541 |
st.markdown("### Upload Medical Image") |
|
|
542 |
uploaded_file = st.file_uploader( |
|
|
543 |
"Choose a medical image (DICOM, JPG, PNG)", |
|
|
544 |
type=['dcm', 'dicom', 'jpg', 'png'] |
|
|
545 |
) |
|
|
546 |
|
|
|
547 |
if uploaded_file is not None: |
|
|
548 |
# Save the uploaded file |
|
|
549 |
with open(os.path.join("uploads", uploaded_file.name), "wb") as f: |
|
|
550 |
f.write(uploaded_file.getbuffer()) |
|
|
551 |
|
|
|
552 |
file_path = os.path.join("uploads", uploaded_file.name) |
|
|
553 |
|
|
|
554 |
try: |
|
|
555 |
# Read the image |
|
|
556 |
if uploaded_file.name.endswith('.dcm') or uploaded_file.name.endswith('.dicom'): |
|
|
557 |
dicom = pydicom.dcmread(file_path) |
|
|
558 |
img = dicom.pixel_array |
|
|
559 |
else: |
|
|
560 |
img = cv2.imread(file_path) |
|
|
561 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
562 |
|
|
|
563 |
# Normalize and convert to RGB |
|
|
564 |
img = (img / img.max() * 255).astype(np.uint8) |
|
|
565 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) |
|
|
566 |
|
|
|
567 |
# Perform inference |
|
|
568 |
results = model(img) |
|
|
569 |
|
|
|
570 |
# Process results |
|
|
571 |
predictions = [] |
|
|
572 |
for r in results: |
|
|
573 |
boxes = r.boxes.xyxy.cpu().numpy() |
|
|
574 |
confidences = r.boxes.conf.cpu().numpy() |
|
|
575 |
class_ids = r.boxes.cls.cpu().numpy().astype(int) |
|
|
576 |
|
|
|
577 |
for box, confidence, class_id in zip(boxes, confidences, class_ids): |
|
|
578 |
x_min, y_min, x_max, y_max = box |
|
|
579 |
predictions.append({ |
|
|
580 |
'class_name': CLASSES[class_id], |
|
|
581 |
'confidence': float(confidence), |
|
|
582 |
'box': { |
|
|
583 |
'x_min': int(x_min), |
|
|
584 |
'y_min': int(y_min), |
|
|
585 |
'x_max': int(x_max), |
|
|
586 |
'y_max': int(y_max) |
|
|
587 |
} |
|
|
588 |
}) |
|
|
589 |
|
|
|
590 |
# If no findings, add a default prediction |
|
|
591 |
if not predictions: |
|
|
592 |
predictions.append({ |
|
|
593 |
'class_name': 'No finding', |
|
|
594 |
'confidence': 1.0, |
|
|
595 |
'box': {'x_min': 0, 'y_min': 0, 'x_max': 1, 'y_max': 1} |
|
|
596 |
}) |
|
|
597 |
|
|
|
598 |
# Visualize results |
|
|
599 |
visualized_img = img.copy() |
|
|
600 |
for pred in predictions: |
|
|
601 |
color = [random.randint(0, 255) for _ in range(3)] |
|
|
602 |
visualized_img = draw_bbox(visualized_img, |
|
|
603 |
[pred['box']['x_min'], pred['box']['y_min'], |
|
|
604 |
pred['box']['x_max'], pred['box']['y_max']], |
|
|
605 |
pred['class_name'], |
|
|
606 |
pred['confidence'], |
|
|
607 |
color) |
|
|
608 |
|
|
|
609 |
st.subheader("Analysis Results") |
|
|
610 |
|
|
|
611 |
# Create responsive layout |
|
|
612 |
col1, col2 = st.columns([2, 1]) |
|
|
613 |
|
|
|
614 |
with col1: |
|
|
615 |
# Display image responsively |
|
|
616 |
st.image(visualized_img, use_column_width=True, caption="Analyzed Medical Image") |
|
|
617 |
|
|
|
618 |
with col2: |
|
|
619 |
# Detailed analysis report |
|
|
620 |
st.markdown("### Detected Conditions") |
|
|
621 |
|
|
|
622 |
# Check if predictions exist |
|
|
623 |
if not predictions: |
|
|
624 |
st.info("No significant findings detected.") |
|
|
625 |
else: |
|
|
626 |
for pred in predictions: |
|
|
627 |
disease = pred['class_name'] |
|
|
628 |
confidence = pred['confidence'] |
|
|
629 |
|
|
|
630 |
st.markdown(f"#### {disease}") |
|
|
631 |
st.markdown(f"**Confidence:** {confidence:.2%}") |
|
|
632 |
|
|
|
633 |
# Retrieve disease details |
|
|
634 |
if disease in DISEASE_DETAILS: |
|
|
635 |
details = DISEASE_DETAILS[disease] |
|
|
636 |
st.markdown(f"**Description:** {details['description']}") |
|
|
637 |
|
|
|
638 |
st.markdown("**Precautions:**") |
|
|
639 |
for precaution in details['precautions']: |
|
|
640 |
st.markdown(f"- {precaution}") |
|
|
641 |
|
|
|
642 |
st.markdown(f"**Hospital Admission:** {details['admission']}") |
|
|
643 |
|
|
|
644 |
st.markdown("---") |
|
|
645 |
|
|
|
646 |
# Clean up temporary file |
|
|
647 |
os.remove(file_path) |
|
|
648 |
|
|
|
649 |
except Exception as e: |
|
|
650 |
st.error(f"An error occurred during image analysis: {str(e)}") |
|
|
651 |
|
|
|
652 |
def draw_bbox(image, box, label, confidence, color): |
|
|
653 |
alpha = 0.1 |
|
|
654 |
alpha_box = 0.4 |
|
|
655 |
overlay_bbox = image.copy() |
|
|
656 |
overlay_text = image.copy() |
|
|
657 |
output = image.copy() |
|
|
658 |
|
|
|
659 |
text_width, text_height = cv2.getTextSize(label.upper(), cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1)[0] |
|
|
660 |
cv2.rectangle(overlay_bbox, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, -1) |
|
|
661 |
cv2.addWeighted(overlay_bbox, alpha, output, 1 - alpha, 0, output) |
|
|
662 |
cv2.rectangle(overlay_text, (int(box[0]), int(box[1])-7-text_height), (int(box[0])+text_width+2, int(box[1])), (0, 0, 0), -1) |
|
|
663 |
cv2.addWeighted(overlay_text, alpha_box, output, 1 - alpha_box, 0, output) |
|
|
664 |
cv2.rectangle(output, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 2) |
|
|
665 |
cv2.putText(output, label.upper(), (int(box[0]), int(box[1])-5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, cv2.LINE_AA) |
|
|
666 |
cv2.putText(output, f"{confidence:.2f}", (int(box[0]), int(box[3])+20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1, cv2.LINE_AA) |
|
|
667 |
return output |
|
|
668 |
|
|
|
669 |
import google.generativeai as genai |
|
|
670 |
from typing import List |
|
|
671 |
from datetime import datetime |
|
|
672 |
from fpdf import FPDF |
|
|
673 |
import io |
|
|
674 |
import PIL.Image |
|
|
675 |
from gtts import gTTS |
|
|
676 |
import base64 |
|
|
677 |
|
|
|
678 |
def chatbot_page(): |
|
|
679 |
st.title("🏥 Hospital AI Assistant") |
|
|
680 |
st.write("Chat with our AI assistant for hospital-related queries and image analysis.") |
|
|
681 |
|
|
|
682 |
# Language settings in sidebar |
|
|
683 |
st.sidebar.title("Language Settings") |
|
|
684 |
language = st.sidebar.radio("Choose Response Language:", ["English", "Hindi", "Marathi"]) |
|
|
685 |
|
|
|
686 |
# Configure Gemini API |
|
|
687 |
genai.configure(api_key=st.secrets["google"]["api_key"]) |
|
|
688 |
|
|
|
689 |
# Initialize models |
|
|
690 |
text_model = genai.GenerativeModel('gemini-pro') |
|
|
691 |
vision_model = genai.GenerativeModel('gemini-pro-vision') |
|
|
692 |
|
|
|
693 |
if "chat_history" not in st.session_state: |
|
|
694 |
st.session_state.chat_history = [] |
|
|
695 |
st.session_state.chat = text_model.start_chat(history=[]) |
|
|
696 |
|
|
|
697 |
# Image upload section |
|
|
698 |
uploaded_image = st.file_uploader("📤 Upload an image for analysis", type=['jpg', 'jpeg', 'png']) |
|
|
699 |
|
|
|
700 |
if uploaded_image: |
|
|
701 |
# Save and display uploaded image |
|
|
702 |
image = PIL.Image.open(uploaded_image) |
|
|
703 |
st.image(image, caption="Uploaded Image", use_column_width=True) |
|
|
704 |
|
|
|
705 |
# Add image analysis button |
|
|
706 |
# if st.button("🔍 Analyze Image"): |
|
|
707 |
# with st.spinner("Analyzing image..."): |
|
|
708 |
# try: |
|
|
709 |
# prompt = f"Analyze this medical image and describe what you see in {language.lower()}. If it's not a medical image, please provide a general description." |
|
|
710 |
# response = vision_model.generate_content([prompt, image]) |
|
|
711 |
|
|
|
712 |
# if response and hasattr(response, "text"): |
|
|
713 |
# analysis_text = response.text |
|
|
714 |
# st.session_state.chat_history.append({ |
|
|
715 |
# "role": "assistant", |
|
|
716 |
# "content": analysis_text, |
|
|
717 |
# "type": "image_analysis" |
|
|
718 |
# }) |
|
|
719 |
|
|
|
720 |
# # Add text-to-speech option |
|
|
721 |
# st.write("#### 📢 Listen to the analysis:") |
|
|
722 |
# if st.button("🔊 Play Analysis"): |
|
|
723 |
# lang_code = 'hi' if language == "Hindi" else 'mr' if language == "Marathi" else 'en' |
|
|
724 |
# tts = gTTS(text=analysis_text, lang=lang_code) |
|
|
725 |
# audio = BytesIO() |
|
|
726 |
# tts.write_to_fp(audio) |
|
|
727 |
# audio.seek(0) |
|
|
728 |
# audio_base64 = base64.b64encode(audio.read()).decode() |
|
|
729 |
# audio_tag = f'<audio controls autoplay><source src="data:audio/mp3;base64,{audio_base64}" type="audio/mp3"></audio>' |
|
|
730 |
# st.markdown(audio_tag, unsafe_allow_html=True) |
|
|
731 |
# except Exception as e: |
|
|
732 |
# st.error(f"Error during image analysis: {str(e)}") |
|
|
733 |
|
|
|
734 |
# Display chat history |
|
|
735 |
for message in st.session_state.chat_history: |
|
|
736 |
with st.chat_message(message["role"]): |
|
|
737 |
st.write(message["content"]) |
|
|
738 |
if message.get("type") == "image_analysis": |
|
|
739 |
# Add audio playback option for image analysis |
|
|
740 |
if st.button(f"🔊 Play Response", key=f"play_{len(st.session_state.chat_history)}"): |
|
|
741 |
lang_code = 'hi' if language == "Hindi" else 'mr' if language == "Marathi" else 'en' |
|
|
742 |
tts = gTTS(text=message["content"], lang=lang_code) |
|
|
743 |
audio = BytesIO() |
|
|
744 |
tts.write_to_fp(audio) |
|
|
745 |
audio.seek(0) |
|
|
746 |
audio_base64 = base64.b64encode(audio.read()).decode() |
|
|
747 |
audio_tag = f'<audio controls autoplay><source src="data:audio/mp3;base64,{audio_base64}" type="audio/mp3"></audio>' |
|
|
748 |
st.markdown(audio_tag, unsafe_allow_html=True) |
|
|
749 |
|
|
|
750 |
# Chat input |
|
|
751 |
if prompt := st.chat_input("Ask me anything about the hospital..."): |
|
|
752 |
st.session_state.chat_history.append({"role": "user", "content": prompt}) |
|
|
753 |
with st.chat_message("user"): |
|
|
754 |
st.write(prompt) |
|
|
755 |
|
|
|
756 |
try: |
|
|
757 |
# Handle regular text queries |
|
|
758 |
response = text_model.generate_content([ |
|
|
759 |
f"Respond in {language.lower()} to the following query: {prompt}" |
|
|
760 |
]) |
|
|
761 |
bot_response = response.text |
|
|
762 |
st.session_state.chat_history.append({ |
|
|
763 |
"role": "assistant", |
|
|
764 |
"content": bot_response, |
|
|
765 |
"type": "text" |
|
|
766 |
}) |
|
|
767 |
with st.chat_message("assistant"): |
|
|
768 |
st.write(bot_response) |
|
|
769 |
# Add audio option for text responses |
|
|
770 |
# if st.button("🔊 Play Response", key=f"play_text_{len(st.session_state.chat_history)}"): |
|
|
771 |
# lang_code = 'hi' if language == "Hindi" else 'mr' if language == "Marathi" else 'en' |
|
|
772 |
# tts = gTTS(text=bot_response, lang=lang_code) |
|
|
773 |
# audio = BytesIO() |
|
|
774 |
# tts.write_to_fp(audio) |
|
|
775 |
# audio.seek(0) |
|
|
776 |
# audio_base64 = base64.b64encode(audio.read()).decode() |
|
|
777 |
# audio_tag = f'<audio controls autoplay><source src="data:audio/mp3;base64,{audio_base64}" type="audio/mp3"></audio>' |
|
|
778 |
# st.markdown(audio_tag, unsafe_allow_html=True) |
|
|
779 |
except Exception as e: |
|
|
780 |
st.error(f"Error: {str(e)}") |
|
|
781 |
|
|
|
782 |
# Export options |
|
|
783 |
# st.sidebar.title("Chat Options") |
|
|
784 |
# if st.sidebar.button("🗑️ Clear Chat"): |
|
|
785 |
# st.session_state.chat_history = [] |
|
|
786 |
# st.session_state.chat = text_model.start_chat(history=[]) |
|
|
787 |
# st.experimental_rerun() |
|
|
788 |
|
|
|
789 |
if st.sidebar.button("📥 Export Chat"): |
|
|
790 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
791 |
txt_content = "" |
|
|
792 |
for msg in st.session_state.chat_history: |
|
|
793 |
txt_content += f"{msg['role'].title()}: {msg['content']}\n\n" |
|
|
794 |
|
|
|
795 |
st.sidebar.download_button( |
|
|
796 |
"📄 Download Chat", |
|
|
797 |
data=txt_content, |
|
|
798 |
file_name=f"chat_export_{timestamp}.txt", |
|
|
799 |
mime="text/plain" |
|
|
800 |
) |
|
|
801 |
|
|
|
802 |
# Footer |
|
|
803 |
st.markdown("---") |
|
|
804 |
st.markdown("Made with ❤️ for Tatva-AI") |
|
|
805 |
# Add chatbot to main navigation |
|
|
806 |
import tensorflow as tf |
|
|
807 |
from PIL import Image |
|
|
808 |
|
|
|
809 |
# Add this function after the medical_image_analysis_page() function |
|
|
810 |
def brain_tumor_detection_page(): |
|
|
811 |
st.title("Brain Tumor Detection") |
|
|
812 |
|
|
|
813 |
def load_model_with_custom_objects(model_path): |
|
|
814 |
def custom_depthwise_conv2d(*args, **kwargs): |
|
|
815 |
if 'groups' in kwargs: |
|
|
816 |
del kwargs['groups'] |
|
|
817 |
return tf.keras.layers.DepthwiseConv2D(*args, **kwargs) |
|
|
818 |
|
|
|
819 |
custom_objects = { |
|
|
820 |
'DepthwiseConv2D': custom_depthwise_conv2d, |
|
|
821 |
'tf': tf |
|
|
822 |
} |
|
|
823 |
|
|
|
824 |
try: |
|
|
825 |
model = tf.keras.models.load_model( |
|
|
826 |
model_path, |
|
|
827 |
custom_objects=custom_objects, |
|
|
828 |
compile=False |
|
|
829 |
) |
|
|
830 |
return model |
|
|
831 |
except Exception as e: |
|
|
832 |
st.error(f"Model loading failed: {e}") |
|
|
833 |
return None |
|
|
834 |
|
|
|
835 |
def preprocess_image(image): |
|
|
836 |
image = image.convert("RGB") |
|
|
837 |
image = image.resize((224, 224)) |
|
|
838 |
image_array = np.array(image) / 255.0 |
|
|
839 |
image_array = np.expand_dims(image_array, axis=0) |
|
|
840 |
return image_array |
|
|
841 |
|
|
|
842 |
model_path = 'models/keras_model.h5' |
|
|
843 |
model = load_model_with_custom_objects(model_path) |
|
|
844 |
|
|
|
845 |
if model is None: |
|
|
846 |
st.error("Could not load the model.") |
|
|
847 |
return |
|
|
848 |
|
|
|
849 |
uploaded_file = st.file_uploader("Upload brain scan image", type=['jpg', 'png', 'jpeg']) |
|
|
850 |
|
|
|
851 |
if uploaded_file is not None: |
|
|
852 |
image = Image.open(uploaded_file) |
|
|
853 |
st.image(image, caption="Uploaded Scan", use_column_width=True) |
|
|
854 |
|
|
|
855 |
try: |
|
|
856 |
processed_image = preprocess_image(image) |
|
|
857 |
predictions = model.predict(processed_image) |
|
|
858 |
|
|
|
859 |
CLASS_LABELS = ["Pituitary", "No Tumor", "Meningioma", "Glioma"] |
|
|
860 |
|
|
|
861 |
st.subheader("Prediction Results:") |
|
|
862 |
for label, prob in zip(CLASS_LABELS, predictions[0]): |
|
|
863 |
st.progress(float(prob)) |
|
|
864 |
st.write(f"{label}: {prob*100:.2f}%") |
|
|
865 |
|
|
|
866 |
predicted_class = CLASS_LABELS[np.argmax(predictions)] |
|
|
867 |
st.success(f"Predicted Condition: {predicted_class}") |
|
|
868 |
|
|
|
869 |
except Exception as e: |
|
|
870 |
st.error(f"Analysis failed: {e}") |
|
|
871 |
|
|
|
872 |
|
|
|
873 |
def main(): |
|
|
874 |
st.set_page_config( |
|
|
875 |
page_title="Hospital Management System", |
|
|
876 |
layout="wide", |
|
|
877 |
initial_sidebar_state="expanded" |
|
|
878 |
) |
|
|
879 |
|
|
|
880 |
if 'language' not in st.session_state: |
|
|
881 |
st.session_state.language = 'English' |
|
|
882 |
|
|
|
883 |
languages = load_languages() |
|
|
884 |
|
|
|
885 |
# Sidebar Navigation |
|
|
886 |
with st.sidebar: |
|
|
887 |
st.markdown("<h2 style=' color: #4da6ff;'>Tatva AI</h2>", unsafe_allow_html=True) |
|
|
888 |
|
|
|
889 |
st.image("logo.jpeg", width=100) |
|
|
890 |
|
|
|
891 |
if 'user_profile' in st.session_state and st.session_state.user_profile['name']: |
|
|
892 |
st.write(f"Welcome, {st.session_state.user_profile['name']}") |
|
|
893 |
if st.session_state.user_profile['profile_picture']: |
|
|
894 |
st.image(st.session_state.user_profile['profile_picture'], width=100) |
|
|
895 |
|
|
|
896 |
# Navigation menu |
|
|
897 |
menu_options = [ |
|
|
898 |
"Dashboard", |
|
|
899 |
"Patient Prediction", |
|
|
900 |
"Analytics", |
|
|
901 |
"Brain Tumor Detection", |
|
|
902 |
"Medical Image Analysis", |
|
|
903 |
"User Profile", |
|
|
904 |
"Emergency Contact", |
|
|
905 |
"About Us", |
|
|
906 |
"Settings", |
|
|
907 |
"Chatbot" |
|
|
908 |
] |
|
|
909 |
|
|
|
910 |
selected_page = st.selectbox( |
|
|
911 |
languages[st.session_state.language]['welcome'], |
|
|
912 |
menu_options |
|
|
913 |
) |
|
|
914 |
|
|
|
915 |
|
|
|
916 |
if selected_page == "Chatbot": |
|
|
917 |
chatbot_page() |
|
|
918 |
# Page rendering based on selection |
|
|
919 |
if selected_page == "Dashboard": |
|
|
920 |
create_dynamic_dashboard() |
|
|
921 |
elif selected_page == "Patient Prediction": |
|
|
922 |
prediction_page() |
|
|
923 |
elif selected_page == "Brain Tumor Detection": |
|
|
924 |
brain_tumor_detection_page() |
|
|
925 |
elif selected_page == "Analytics": |
|
|
926 |
analytics_page() |
|
|
927 |
elif selected_page == "Medical Image Analysis": |
|
|
928 |
medical_image_analysis_page() |
|
|
929 |
elif selected_page == "User Profile": |
|
|
930 |
user_profile_section() |
|
|
931 |
elif selected_page == "Emergency Contact": |
|
|
932 |
emergency_contact_section() |
|
|
933 |
elif selected_page == "About Us": |
|
|
934 |
about_us_section() |
|
|
935 |
elif selected_page == "Settings": |
|
|
936 |
st.title("Settings") |
|
|
937 |
|
|
|
938 |
st.subheader("Language Settings") |
|
|
939 |
new_language = st.selectbox( |
|
|
940 |
"Select Language", |
|
|
941 |
list(languages.keys()), |
|
|
942 |
index=list(languages.keys()).index(st.session_state.language) |
|
|
943 |
) |
|
|
944 |
if new_language != st.session_state.language: |
|
|
945 |
st.session_state.language = new_language |
|
|
946 |
st.experimental_rerun() |
|
|
947 |
|
|
|
948 |
st.subheader("Theme Settings") |
|
|
949 |
theme = st.selectbox( |
|
|
950 |
"Choose Theme", |
|
|
951 |
["Dark"] |
|
|
952 |
) |
|
|
953 |
|
|
|
954 |
current_theme = dark_theme |
|
|
955 |
st.markdown(f""" |
|
|
956 |
<style> |
|
|
957 |
:root {{ |
|
|
958 |
--primary-color: {current_theme['primary_color']}; |
|
|
959 |
--background-color: {current_theme['background_color']}; |
|
|
960 |
--secondary-bg: {current_theme['secondary_bg']}; |
|
|
961 |
--text-color: {current_theme['text_color']}; |
|
|
962 |
--font: {current_theme['font']}; |
|
|
963 |
--card-bg: {current_theme['card_bg']}; |
|
|
964 |
--success-color: {current_theme['success_color']}; |
|
|
965 |
--warning-color: {current_theme['warning_color']}; |
|
|
966 |
--danger-color: {current_theme['danger_color']}; |
|
|
967 |
}} |
|
|
968 |
</style> |
|
|
969 |
""", unsafe_allow_html=True) |
|
|
970 |
|
|
|
971 |
# Add 3D effect and continuous movement |
|
|
972 |
st.markdown(""" |
|
|
973 |
<script> |
|
|
974 |
const cursor = document.createElement('div'); |
|
|
975 |
cursor.className = 'custom-cursor'; |
|
|
976 |
document.body.appendChild(cursor); |
|
|
977 |
|
|
|
978 |
document.addEventListener('mousemove', (e) => { |
|
|
979 |
cursor.style.left = e.clientX + 'px'; |
|
|
980 |
cursor.style.top = e.clientY + 'px'; |
|
|
981 |
|
|
|
982 |
const elements = document.querySelectorAll('.stPlotlyChart, .stDataFrame, .stMetric'); |
|
|
983 |
elements.forEach(el => { |
|
|
984 |
const rect = el.getBoundingClientRect(); |
|
|
985 |
const x = (e.clientX - rect.left) / rect.width - 0.5; |
|
|
986 |
const y = (e.clientY - rect.top) / rect.height - 0.5; |
|
|
987 |
el.style.transform = `perspective(1000px) rotateY(${x * 5}deg) rotateX(${-y * 5}deg)`; |
|
|
988 |
}); |
|
|
989 |
}); |
|
|
990 |
</script> |
|
|
991 |
<style> |
|
|
992 |
.custom-cursor { |
|
|
993 |
width: 20px; |
|
|
994 |
height: 20px; |
|
|
995 |
border: 2px solid #ffffff; |
|
|
996 |
border-radius: 50%; |
|
|
997 |
position: fixed; |
|
|
998 |
pointer-events: none; |
|
|
999 |
z-index: 9999; |
|
|
1000 |
mix-blend-mode: difference; |
|
|
1001 |
} |
|
|
1002 |
.stPlotlyChart, .stDataFrame, .stMetric { |
|
|
1003 |
transition: transform 0.1s ease; |
|
|
1004 |
} |
|
|
1005 |
.stMetric { |
|
|
1006 |
background: linear-gradient(145deg, rgba(26,26,26,0.6) 0%, rgba(26,26,26,0.8) 100%); |
|
|
1007 |
border-radius: 10px; |
|
|
1008 |
padding: 10px; |
|
|
1009 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1); |
|
|
1010 |
} |
|
|
1011 |
.stMetric:hover { |
|
|
1012 |
background: linear-gradient(145deg, rgba(26,26,26,0.8) 0%, rgba(26,26,26,1) 100%); |
|
|
1013 |
} |
|
|
1014 |
</style> |
|
|
1015 |
""", unsafe_allow_html=True) |
|
|
1016 |
|
|
|
1017 |
if __name__ == "__main__": |
|
|
1018 |
main() |