Switch to side-by-side view

--- a
+++ b/STROKE_PREDICTION/KHDLCuoiKy.ipynb
@@ -0,0 +1,3984 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 2.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 45px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color: #66689c;\n",
+    "  background-size: auto 200%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 200px;\n",
+    "  background-position: 0 100%;\">ĐỀ TÀI: DỰ ĐOÁN NGUY CƠ ĐỘT QUỴ SỬ DỤNG PHÂN TÍCH DỮ LIỆU LÂM SÀN</h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "%md\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Nhóm 5:</strong>\n",
+    "<ul>\n",
+    "<li>\n",
+    "Lê Phúc Hậu - 21110879\n",
+    "</li>\n",
+    "<li>\n",
+    "Nguyễn Quang Vinh – 21110727\n",
+    "</li>\n",
+    "<li>\n",
+    "Nguyễn Thi Phú - 21110600\n",
+    "</li>\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "%md\n",
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 42px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 120px;\n",
+    "  background-position: 0 100%;\"> 1. Giới Thiệu </h1>\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> 1.1. Mô tả </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">Dự án sẽ sử dụng các tập dữ liệu để dự đoán, phân tích khả năng mắc đột quỵ của các tình nguyện viên được khảo sát dựa trên các thông số đầu vào như giới tính, tuổi tác, chỉ số sinh hóa và tình trạng sức khỏe của cơ thể..</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> 1.2.\tPhạm vi dự án </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Địa điểm:</strong> Dự án có thể thực hiện ở bất kỳ địa điểm nào có sẵn dữ liệu lâm sàn về bệnh đột quỵ. Một số nơi như bệnh viện, trung tâm y tế hoặc các cơ sở chăm sóc sức khỏe khác là những nơi có dữ liệu lâm sàn về bệnh đột quỵ và có thể triển khai dự án.<br>\n",
+    "\n",
+    "<strong>Thời gian:</strong> Thu thập dữ liệu trong 1 – 2  năm và 2 tháng để phân tích dữ liệu<br>\n",
+    "<strong>Đối tượng:</strong> Những người đang điều trị và những người không mắc bệnh. Dựa trên các chỉ số lâm sàn của 2 nhóm này từ đó tìm ra những điểm khác biệt và mối liên hệ.<br>\n",
+    "<ul>\n",
+    "<li>P: Những người bị bệnh đột quỵ và những người không bị bệnh đột quỵ tại Việt Nam</li>\n",
+    "<li>A: Các đối tượng bị bệnh đột quỵ và những người không bị bệnh đột quỵ ở thành phố Hồ Chí Minh</li>\n",
+    "<li>S: Những bệnh nhân đang điều trị bệnh đột quỵ hoặc theo dõi sức khỏe tại các bệnh viện ở thành phố Hồ Chí Minh</li>\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> 1.3.\tInstruments </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "- Khảo sát trực tiếp:\n",
+    "<ul>\n",
+    "<li>\n",
+    "Bộ câu hỏi về các triệu chứng<br>\n",
+    "Yêu cầu: Câu hỏi dạng có hoặc không (Yes-No Question)\n",
+    "</li>\n",
+    "<li>Hồ sơ bệnh án <br>\n",
+    "Yêu cầu: Cần có các mục cơ bản: họ tên, địa chỉ, giới tính, SĐT, tiền sử bệnh lý, danh sách các thuốc đang sử dụng (nếu có), kết quả đo lường về huyết áp, đường huyết, nồng độ cồn, lipid, cân nặng, chiều cao,...\n",
+    "</li>\n",
+    "<li>\n",
+    "Cuff và Sphygmomanometer <br>\n",
+    "Yêu cầu: Cuff bao phủ ít nhất 80% chiều dài của cánh tay và phải bao phủ toàn bộ vùng xung quanh.<br>\n",
+    "Thương hiệu: Omron\n",
+    "</li>\n",
+    "<li>\n",
+    "Ống nghe và đồng hồ đo nhịp tim (Stethoscope - Watch)<br>\n",
+    "Yêu cầu: Ống nghe có chất lượng cao, với độ dẻo và khả năng truyền âm tốt.<br>\n",
+    "Thương hiệu: Littmann 3M\n",
+    "</li>\n",
+    "<li>\n",
+    "Thiết bị đo SPO2 (Pulse Oximeter)<br>\n",
+    "Yêu cầu: Không<br>\n",
+    "Thương hiệu: Omron\n",
+    "</li>\n",
+    "<li>Đường kế (Glucometer)<br>\n",
+    "Yêu cầu: Không<br>\n",
+    "Thương hiệu: Accu-Check - Roche\n",
+    "</li>\n",
+    "<li>Thước dây dùng để đo chiều cao<br>\n",
+    "Yêu cầu: Độ chia nhỏ nhất của thước là 1mm<br>\n",
+    "Thương hiệu: Không yêu cầu\n",
+    "</li>\n",
+    "<li>Cân điện tử<br>\n",
+    "Yêu cầu: Thiết bị đạt độ chính xác cấp III theo tiêu chuẩn OIML. Bên cạnh đó giới hạn đo phải đạt tới 300kg.\n",
+    "<br>\n",
+    "Thương hiệu: Cân bàn điện tử JWI 700W Jadever\n",
+    "</li>\n",
+    "</ul>\n",
+    "- Khảo sát trực tuyến (online): Dùng Google Form (<a style=\"color: white\"href=\"https://docs.google.com\">https://docs.google.com</a>) để khảo sát\n",
+    "\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\">1.4.\tProtocols </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "- Đo huyết áp\n",
+    "<ul>\n",
+    "<li>\n",
+    "Bước 1: Người bệnh ngồi yên, lưng thẳng, chân không chạm đất. Tay được đặt trên bàn ở tư thế thoải mái.\n",
+    "</li>\n",
+    "<li>Bước 2: Người đo sẽ đeo cái cuff quanh cánh tay trên của người bệnh, đảm bảo cuff bao phủ ít nhất 80% chiều dài cánh tay.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 3: Bóp nút xả hơi trên bóp huyết áp để xả hết không khí trong cuff.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 4: Bật nút bơm để bơm hơi dần vào cuff cho đến khi cuff bắt đầu chèn ép động mạch cánh tay.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 5: Nghe âm thanh tiếng máu chảy qua động mạch bằng ống nghe và đọc chỉ số huyết áp cao nhất.\n",
+    "</li>\n",
+    "<liBước 6: Nút xả hơi cho hơi trong cuff thoát ra từ từ cho đến khi không còn nghe âm thanh và đọc chỉ số huyết áp thấp nhất.\n",
+    "</li>\n",
+    "<li>Bước 7: Ghi lại kết quả 2 lần đo và trung bình chúng\n",
+    "</li>\n",
+    "</ul>\n",
+    "- Đối với đo nhịp tim:\n",
+    "<ul>\n",
+    "<li>\n",
+    "Bước 1: Người bệnh nằm ngửa, chân duỗi thẳng.\n",
+    "</li>\n",
+    "<li>Bước 2: Người đo đặt ống nghe lên vị trí tim, và định vị được âm thanh truyền nhất.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 3: Người đo nhìn vào đồng hồ đo nhịp và đếm số nhịp trong 15 giây.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 4: Nhân kết quả đếm nhịp với 4 để tính toán nhịp tim trong 1 phút (nhịp/phút).\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 5: Đo 2 lần và tính trung bình các kết quả.\n",
+    "</li>\n",
+    "</ul>\n",
+    "- Đối với đo đường huyết\n",
+    "<ul>\n",
+    "<li>\n",
+    "Bước 1: Lấy máy đo đường huyết và que thử.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 2: Lấy một giọt máu từ ngón tay cái bằng lấy máu\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 3: Đặt máu lên đầu que thử.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 4: Bật máy và đọc kết quả trên màn hình.\n",
+    "</li>\n",
+    "<li>\n",
+    "Bước 5: Ghi lại kết quả. \n",
+    "</li>\n",
+    "</ul>\n",
+    "- Đối với đo chiều cao: Sử dụng thước dây có độ chia nhỏ nhất 1mm, đặt thước dây lên đỉnh đầu và đọc kết quả tại điểm gặp nhau của đầu đo và đầu thước.<br>\n",
+    "- Đối với việc đo cân nặng: Sử dụng cân điện tử JWI 700W Jadever, yêu cầu người được đo đứng trên cân và đọc kết quả trên màn hình hiển thị.<br>\n",
+    "- Đối với việc đo nồng độ cồn: Sử dụng thiết bị đo nồng độ cồn Alcohol Tester AT6000, người được kiểm tra thở vào ống hút hoặc cảm biến và đọc kết quả trên màn hình hiển thị.<br>\n",
+    "\n",
+    "\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Lưu ý</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Phải đảm bảo vệ sinh đối với các thiết bị đo và cần được thay, vệ sinh thiết bị để đảm bảo vệ sinh, độ chính xác, phải cài đặt lại thiết bị sau mỗi lần sử dụng.</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Thực hiện đo, sử dụng thiết bị theo hướng dẫn của nhà sản xuất và tuân thủ các quy định về an toàn và sử dụng thiết bị.</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Tất cả những người thực hiện đo các thông sô trên đều phải được đào tạo và có chứng chỉ y tế theo đúng quy định của pháp luật.</li>\n",
+    "</ul>\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\">1.5.\tCác yếu tố ảnh hưởng đến sự hữu ích của dữ liệu</h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "- Dữ liệu bị thiếu:\n",
+    "<ul>\n",
+    "<li>\n",
+    "Người được khảo sát ngại trả lời các câu hỏi về tiền sử bệnh, tình trạng hôn nhân, các chỉ số cơ thể,...\n",
+    "</li>\n",
+    "<li>\n",
+    "Người được khảo sát thiếu kiên nhẫn khi thực hiện quá nhiều bước đo để lấy các thông tin về chỉ số sinh hóa.\n",
+    "</li>\n",
+    "<li>\n",
+    "Người khảo sát không rõ về tiền sử bệnh của người thân.\n",
+    "</li>\n",
+    "\n",
+    "</ul>\n",
+    "- Dữ liệu không đúng đắn\n",
+    "<ul>\n",
+    "<li>\n",
+    "Khi khảo sát online qua form người khảo sát có thể điền các dữ liệu không được đo một cách chính xác, hoặc cố tình điền sai\n",
+    "</li>\n",
+    "<li>\n",
+    "Người được khảo sát cố tình trả lời sai để che giấu các thông tin cá nhân quan trọng như SĐT, địa chỉ nhà, công việc hiện tại,...\n",
+    "</li>\n",
+    "<li>\n",
+    "Người khảo sát không muốn người khác biết bản thân đang stress, hay mắc các bệnh trong người\n",
+    "</li>\n",
+    "</ul>\n",
+    "- Dữ liệu mang tính chủ quan: Tình nguyên viên được khảo sát chỉ dựa trên quan điểm cá nhân, chứ không có bất kì đánh giá khách quan nào của chuyên gia để trả lời các câu hỏi sức khỏe.<br>\n",
+    "- Câu hỏi mang tính chất hàn lâm, thuộc lĩnh vực Y tế: Nếu trả lời qua form khảo sát trực tuyến, người được khảo sát sẽ bối rối, lúng túng khi gặp các câu hỏi về chỉ số đường huyết, huyết áp, nhịp tim,…\n",
+    "\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 42px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 120px;\n",
+    "  background-position: 0 100%;\"> 2. Tổng quan bộ dữ liệu </h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "  <div style=\"width: 100%; height: 100%; background: #66689c;color: white; position:relative; padding:20px; font-size: 25px;\">\n",
+    "        <div style=\"display: flex; flex-direction: column;  margin-left:20px;\">\n",
+    "        <p style=\"font-size:  30px;font-weight: 800; text-align: center; margin-bottom:20px;\">Tên bộ dữ liệu: BRAIN STROKE DATASET</p>\n",
+    "        <div style=\"display: flex; flex-direction: column;  margin-left:20px; gap:5px\">\n",
+    "          <strong>Tác giả : Jillani Soft Tech</strong>\n",
+    "          <strong>Tên thật: Muhammad Ghulam Jillani</strong>\n",
+    "          <strong>\n",
+    "            Hiện đang là: Data Scientist và Machine <br>Learning Engineer ở Blocbelt\n",
+    "            Lahore, <br>Punjab, Pakistan\n",
+    "          </strong>\n",
+    "          <ul>\n",
+    "            <li>Top 100 Global Kaggle Master</li>\n",
+    "            <li>Lãnh đạo và Cố vấn nổi bật trong \n",
+    "            <br>Chương trình KaggleX BIPOC</li>\n",
+    "            <li>Có nhiều đóng góp quan trọng cho <br>nhóm Google Developer</li>\n",
+    "          </ul>\n",
+    "        </div>\n",
+    "      </div>\n",
+    "      <img\n",
+    "      style =\"position:absolute; bottom:0; right:0; background: #82cbff; width : 360px; height : 360px\"\n",
+    "        src=\"https://media.licdn.com/dms/image/D4D03AQEnHShp_sDHtw/profile-displayphoto-shrink_800_800/0/1699010356404?e=1720051200&v=beta&t=28adnzOaIGtSKC80XaPdSUZdhjpYFc6JA0Kit3sffh8\"\n",
+    "        alt=\"\"\n",
+    "      />\n",
+    "    </div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"my-paragraph\" style=\"font-size: 22px;\">\n",
+    " \n",
+    " <div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    " <strong>Link</strong> <a style=\"color: white\"href=\"https://www.kaggle.com/datasets/jillanisofttech/brain-stroke-dataset\">https://www.kaggle.com/datasets/jillanisofttech/brain-stroke-dataset</a><br>\n",
+    "  Gồm 4.981 dòng dữ liệu, 11 trường dữ liệu và không có dữ liệu trống :<br>\n",
+    "  1. Gender: Giới tính  <strong>( Male: nam (2074 - 58.36%), Female: nữ (2907 - 41.64%) </strong> <br>\n",
+    "  2. Age: Tuổi <br>\n",
+    "  3. Hypertension: Cao huyết áp <strong>( 0: không bị cao huyết áp (4502 - 90.38%), 1: có cao huyết áp (479- 9.62%) )</strong><br>\n",
+    "  4. Heart_disease: Bệnh tim  <strong> (0: không bị bệnh tim (4706- 94.48%), 1: có bị bệnh tim (275- 5.52%)) </strong> <br>\n",
+    "  5. Ever_married: Đã lập gia đình chưa  <strong>(No: chưa có gia đình (1701 - 34.15%), Yes: đã có gia đình (3280 - 65.85%)) </strong><br>\n",
+    "  6. Work_type: Loại công việc  <strong> (Self-employed: nghề tự do (804 - 16.14%), Private: không tiết lộ (2860 - 57.42%), Government Job: cán bộ Nhà nước (644 - 12.93%), Children: trẻ em (673 - 13.51%)) </strong><br>\n",
+    "  7. Residence_type: Nơi ở  <strong>(Urban: thành thị (2532 - 50.83%) hoặc Rural: nông thôn (2449 - 49.17%)) </strong><br>\n",
+    "  8. Avg_glucose_level: Chỉ số đường huyết trung bình (mg/dL)<br>\n",
+    "  9. Bmi: Chỉ số thể trọng   = cân nặng/chiều cao ^2   ( kq/m^2 ) <br>\n",
+    "  10. Smoking_status: Tình trạng hút thuốc  <strong> (smokes: hút gần đây (776 - 15.58%), formerly smoked: từng hút (867 - 17.41%), never smoked: chưa từng hút (1838 - 36.9%), Unknown: không biết hoặc bất khả dụng (1500 - 30.11%)) </strong><br>\n",
+    "  11. Stroke: Đột quỵ  <strong>(1: đột quỵ (248 - 95.02%), 0: không bị đột quỵ (4733 - 4.98%)) </strong><br></div>\n",
+    " \n",
+    "  \n",
+    "  \n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 123,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import pandas as pd\n",
+    "import matplotlib.pyplot as plt\n",
+    "import seaborn as sns\n",
+    "from pylab import *\n",
+    "from scipy import stats\n",
+    "import umap\n",
+    "import networkx as nx\n",
+    "from sklearn.linear_model import LogisticRegression\n",
+    "from sklearn.model_selection import train_test_split\n",
+    "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report\n",
+    "from sklearn.preprocessing import MinMaxScaler\n",
+    "from sklearn.preprocessing import OrdinalEncoder\n",
+    "from imblearn.over_sampling import SMOTE\n",
+    "from sklearn.ensemble import GradientBoostingClassifier\n",
+    "from xgboost import XGBClassifier\n",
+    "from sklearn.svm import SVC\n",
+    "from sklearn.ensemble import StackingClassifier\n",
+    "df = pd.read_csv(\"https://drive.google.com/uc?export=download&id=1QMtnX4HTvhTWFBOBfjVG7aWOke_mBZ1M\")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 124,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "def draw_box(data, col, title):\n",
+    "    fig = plt.figure(figsize=(15,3), dpi=80)\n",
+    "    plt.title(title, fontsize=16)\n",
+    "    plt.xticks(fontsize=15)\n",
+    "    plt.yticks(fontsize=15)\n",
+    "    \n",
+    "    bp_dict1 = boxplot(data[col], vert=False, widths = 0.5)\n",
+    "    \n",
+    "    for line in bp_dict1['medians']:\n",
+    "        # get position data for median line\n",
+    "        x, y = line.get_xydata()[1] # top of median line\n",
+    "        # overlay median value\n",
+    "        text(x, y + 0.05, '%.1f' % x,\n",
+    "             horizontalalignment='center', fontsize=15)\n",
+    "        \n",
+    "    for line in bp_dict1['boxes']:\n",
+    "        x, y = line.get_xydata()[0] # bottom of left line\n",
+    "        text(x,y - 0.05, '%.1f' % x,\n",
+    "             horizontalalignment='center', # centered\n",
+    "             verticalalignment='top', fontsize=15)      # below\n",
+    "        x, y = line.get_xydata()[3] # bottom of right line\n",
+    "        text(x,y - 0.05, '%.1f' % x,\n",
+    "             horizontalalignment='center', # centered\n",
+    "                 verticalalignment='top', fontsize=15)\n",
+    "    plt.xlabel(col, fontsize=16)\n",
+    "    plt.xlim([df[col].min() - 1, df[col].max() + 1])\n",
+    "    \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 125,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAEPCAYAAACEHA2pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAA7pklEQVR4nO3dd3RV1b728WcnIZUUWsAUpJMQOoiACChdQASBiPQjh6s0KV5Uiigiig1QD8KxEAXOkQAiBpQi5Yr0FqQkBIUAobc0SM96//DNHmwSQsAUkvX9jJExyFxzr/lbmZnAs1fZFsMwDAEAAAAAYDJ2RV0AAAAAAABFgUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEA4IGRnp6uWbNmafXq1fm+78zMTKWmpub7fgEAQPFFIAaAEu6nn37S22+/raSkpKIu5a4mTJigRYsWqWXLlvm639mzZ8vLy0uurq6aNGlSvu67KKxdu1bTp09XXFxcUZdS7Jw8eVJvvvmm9u3bV9SlAAAeAARiACgmhgwZIovFck+vOXbsmJ577jktWbJEr7zySgFVJr355puyWCyKjo6+p9eNHTtWdnZ26tChg/78808lJiZq/fr1Klu2bL7WZ7FYtGjRIn388cdasGBBvu67KLRs2VI//vijnnvuOWVkZBR1OXlisVg0ZMiQbO2TJk2Su7u7OnfurFOnTunFF1/UuHHj8rTPLVu2yGKxKCQkxNoWEhIii8WiLVu2ZOufnp6ufv36admyZerbt68SExPv82gAACUFgRgAilDWf+hv/fLw8FCLFi309ddf/619p6Wl6fnnn9ekSZO0adMmrVy5UmvWrMmnyv++bdu26csvv9SGDRt07Ngxbd68WV999ZV8fHzyfayxY8eqY8eOOnDggGbNmpXv+5ek2NhYvfnmmzkGsfzm4eGhtWvX6vTp05o4cWKBj1dQEhMTNWvWLE2cOFGlSpVS9erVtWTJEg0aNKhAxps6dars7e21f/9+NWnSRBMmTCiQcbLeILr1y9PTU/Xr19e7776rmzdv2vS/9e+B119/Pcd97ty509pn7NixNtssFoueeeaZAjkWACjpCMQA8AAYMGCAFi1apG+++UYTJ07UuXPn9MILL+jtt9++731GRkZq8ODBeu211+Tj46OwsDCdPn06H6u+f4ZhaN68eVqwYIHatWun0NBQfffddwV6xi40NFQBAQEaNmxYgew/NjZWb731VqEEYkkqX768NmzYIA8PD12+fLlQxsxvzs7OOnbsmKZOnaqwsDCdP39eFy9eVKNGjSRJqampCgkJuafL/QcOHKikpCS1bt3apv3GjRtydXXVihUr5OTkpK+//lr+/v6Kj4/P12O61TvvvKNFixZp0aJFmjFjhipWrKhJkyYpODg4x/7Ozs5atGiRMjMzs20LCQmRs7NzgdUKAGblUNQFAACkJk2aaMCAAdbvhw4dqlq1aumDDz7Q66+/LgeHe//rul69eqpXr57NGE2aNMmXev8ui8WiJUuWWL9v3ry5fvnllwIdc/DgwQW6/3uVmZmppKQkubm55al/p06d1KNHD40YMcLa5uPjo2nTpt2134PKwcFBNWrUsH5foUIFm+2Ojo763//9XwUFBemRRx7J0z7t7e1lb2+frd3NzU1Tp061fl+6dGlNmTLlPivPm6eeekoNGza0fj9q1Cg1a9ZMq1ev1vXr11WmTBmb/j169NDSpUu1YcMGderUydqenJyspUuX6plnntF3331XoDUDgNlwhhgAHkC+vr4KDAxUQkKCLl26ZLMtNjZWw4cPV/ny5eXi4qJ27dopIiLCpk9CQoKmTJmiZs2aqVy5cnJ2dlZAQIDeeecdpaen2/TNuudy06ZNev/991W1alU5OTmpbt26+vHHH++p7sTERI0YMULe3t5ydXVVmzZttHfv3mz9bty4oddee03VqlWTk5OTfHx8NGzYMJ0/fz7PY0VGRmrAgAHy8fGRk5OT/Pz8FBwcrD///FOSFB0dLYvFojfffDPba3O6H3v37t0aMmSIatasKVdXV3l6eurJJ5/Upk2b7lrLli1bVLVqVUnSW2+9Zb20tW3bttbtFotFCxcu1Ny5cxUQECBnZ2d98cUXku58f23Wpbe7du1SfHy8bty4IUk6ePCgevToobJly8rZ2Vn16tVTYGCgLl++bNOvbdu2qlKlis6ePau+ffvK09NT7u7u6tmzp86dO5dtvN9//10dO3aUm5ubypUrp8GDB+vKlSt3rC8nR44cUefOneXm5qayZcuqf//+2X6Hb/2Z3Hr/b5ZKlSrJYrHo3LlzunnzZo4B907udA/x9evX9corr6hatWpydHRUpUqV9MILL+jChQs2/e50r35uv095ZbFYVLFiRUlSqVKlsm1v3ry5AgICsv1MfvjhB8XGxuZ5DgAAeccZYgB4AKWmpurMmTNycHCQl5eXzbZOnTrJx8dH06dP15kzZzR79mz16NFDERER1uBw9uxZffXVV+rdu7cGDRqkzMxMrVu3TlOmTNHJkyf15ZdfZhvz9ddfV3p6ukaNGiXDMDRnzhw9++yzOnbsmKpVq5anugcOHCgXFxdNnjxZV69e1aeffqonnnhCO3fuVFBQkKS/7m3u1KmTtm3bpuDgYLVu3VoRERGaP3++NmzYoH379ql8+fK5jrNjxw517NhRhmHon//8pwIDA3Xp0iWtW7dOhw8fVvXq1fNU761WrlypqKgo9evXT/7+/rpw4YK+/PJLdejQQZs2bVKbNm3u+NrAwEDNnj1b48aNU8+ePdWrVy9JsoafLHPmzFFcXJyGDRumChUqqFatWnmqrXnz5nJyctK8efO0d+9etWnTRk5OTho5cqQqVKiglStXasuWLfL29rb2y3Ljxg21adNGjz/+uGbNmqXDhw/r888/V3x8vDZu3Gjtd/z4cT3++OMyDEMvv/yyfHx8tGbNGnXu3DnPP8OTJ0/q8ccfV2pqqkaPHi0/Pz+FhYXd0z6kvwLxxYsX5evrqxo1athc6XA/YmNj1bJlS507d07Dhg1T7dq1FR0drX/961/asmWL9u3bl22d5YfY2FhduXLF+uewsDCtXbtW/fv3V+nSpXN8zeDBg/XWW28pLi5Onp6ekv4K+c2bN1ft2rXzvUYAMD0DAFBkNm/ebEgyZsyYYVy+fNm4dOmSsXfvXqNnz56GJKNPnz7WvoMHDzYkGaNHj7bZx4cffmhIMn7++WdrW0pKipGWlpZtvEGDBhl2dnbG2bNnrW0LFy40JBmNGzc2UlNTre179+41JBmvvvrqXY9j2rRphiSjefPmNvsIDw837OzsjKeeesra9u9//9uQZLz++us2+/juu+8MScaoUaNyHSszM9MICAgwXFxcjIiIiGzbMzIyDMMwjJMnTxqSjGnTpmXrk/WzvFViYmK2fpcuXTLKly9vdOrUKdea7jZe1jyXK1fOuHz5crbtkozBgwdna8/6ue7atcv6upYtWxoODg7G4cOHrf0yMjKMrl27Zvs9aNOmjSHJ+Oijj2z2O2rUKEOSzc+vT58+hiRj586d1rbMzExre0713a5fv36GJOPXX3+12cczzzyTbR9ZP5OFCxdm20+bNm2Mhx9+2Dh16pRx8+bNO46X0z6yfp83b95sc7yurq7GkSNHbF6/b98+w97e3njjjTesbTn9bhhG7vN7u6x5y+lr6NChNmvk1uOYPXu2ERMTY9jZ2Rnz5883DMOw+T6rhpdfftnm9ZKMHj163LUuAEB2XDINAA+AKVOmqEKFCvL29lbTpk0VFham559/PsczuWPGjLH5/oknnpAk/fHHH9Y2R0dH633HaWlpunbtmq5cuaIOHTooMzMzx8uYX3rpJZvLOJs0aSJ3d3eb/d7N2LFjbfbRoEEDdejQQevXr7c+GGnlypVycHDQq6++avPa4OBg1axZUytXrsx1jAMHDigyMlLDhg1TQEBAtu12dvf3T9ut9/LeuHFDV69elcViUbNmzbR79+772uftBg0adNez3znx9vZW+fLldenSJW3fvl09e/a0nnGX/jrmrKcT//bbbzavtbe318iRI23abv+dycjI0E8//aSWLVvq0UcftfazWCx5/riuzMxMhYWFqXnz5nr88cdt9nG/T8KuXLmyXFxc7uu1WQzD0H//+1+1bdtW3t7eunLlivWrcuXKqlmzpjZs2PC3xriTrKseNmzYoOXLl+vll1/W4sWLFRwcnO3WhSy+vr7q0KGD9bLpRYsWydHRUc8991yB1AgAZscl0wDwAHjppZfUq1cvWSwWlS5dWoGBgfLw8Mixb9a9qlmyPrP36tWrNu2ffvqp5s+fr8jIyGxPrY2Njb3rfrP2fft+c5NTQA0MDNS6det0+vRp1a5dWydPnpSfn5/1ctBb1alTR6tWrVJqaqocHR1zHOP48eOSZPOwovxw8eJFTZo0ST/++KP1Mtcs9/r5z3dy6wOk7sfJkyclySYMZ8lqO3HihE37Qw89JCcnJ5u2239nLl++rBs3buR4SW5eL9O9dOmSEhMTc/wdqFOnTp72URAuX76sq1ev6qeffsr20K4seb0l4F49+uijNr+nzz77rPVJ0yEhIXd84vmQIUPUr18/HTt2TN98842eeeYZeXp66vr16wVSJwCYGYEYAB4AtWrVUvv27fPU904PGDIMw/rnjz76SK+88oq6dOmiCRMmqFKlSnJ0dNT+/fv16quv5vixLnnZ74PkbiE1t+0ZGRk232dmZqpjx446duyYxo0bp8aNG8vT01N2dnZ699138/RgrbxwdXW9p/6313k/cnsgVVHO7b3Mz9+R9bveqVOnO57tvvUs9J3qyq+aunTpokmTJmnDhg13DMTPPPOMvLy8NHLkSEVGRmrOnDn5MjYAIDsCMQCUQIsXL1bVqlW1evVqm0uIs57AXFAiIyPVoEEDm7aIiAg5ODjI399f0l9n49avX6+EhAS5u7vb9D169Kh8fX3veHZYkvVBVOHh4bnWknUWNKezarefRT106JB+//13TZs2LdtThG/9qJ7c/J2zyGXLls1TnVln8Y8ePZqtb1bb/ZztrFChgtzc3HTs2LFs23Jqu9M+SpcurcjIyDvWdqvc5ufkyZP39VFjd6rL09NTiYmJeXrT6da6bv1YpNvn4n6lpaVJUq6ff+zs7Kzg4GAtWLDAegk1AKBgcA8xAJRAWWcFbz0DmJSUpE8++aRAx50zZ471P/zSXx8PtGHDBnXo0MF6dvSZZ55Renq6PvzwQ5vXLlu2TMePH1fPnj1zHaNhw4YKDAzUl19+qaioqGzbs47Z3d1dFStW1ObNm22279q1Szt27LBpy/p53X7mfMuWLdq1a1eu9WTJemrw/VzWWrNmTe3YscN6n7X018f8/PDDDzb9vL291bJlS61cudImqGZmZuq9996TpLv+/HJib2+vLl26aPv27dmO96OPPsrzPrp166adO3dq69at1nbDMPT+++9n61+lShU5ODhkO/seGhqqs2fP3vMx5FbX888/r23btmn16tXZthuGocuXL1u/r1mzpiTZ1GUYhubOnZsv9axYsUKS7vqZ4GPHjtW0adP0r3/9677viwcA3B1niAGgBOrVq5cmT56sp556Sr169dK1a9cUEhKS7YxsfktOTlabNm0UHBysq1ev6rPPPpOzs7NmzZpl7TNkyBCFhIRo+vTp+vPPP/XYY48pMjJSn3/+uSpXrqxp06blOobFYtHXX3+t9u3bq0mTJtaPXbpy5YrWr1+vsWPHqkePHpKkkSNH6o033lC3bt3UrVs3RUdH68svv1T9+vV18OBB6z4DAgIUGBio999/X0lJSapVq5YOHTqkkJAQ1a1bV4cOHbrrsZcrV07Vq1fXd999pxo1algfkvbkk0/e9bUjR47UoEGD1L59e/Xv31+XL1/WvHnzFBgYqH379tn0nTt3rtq0aaPHHntMI0aMsH7s0ubNmzVixIi7Bq07mTFjhtatW6cOHTpo1KhR8vX11Zo1a6xhMS9nwGfMmKGff/5ZXbp00ejRo+Xr66uwsDCbwJnF3d1dgwYN0tdff62BAweqVatWOnz4sEJDQ1W9evU7PnTqfsycOVO//fabevTooX79+unRRx+VxWLRyZMntWrVKg0YMMB6ZUC/fv00adIkDRs2TBEREfL09NSKFSts3qzIq59++kmHDx+WJMXFxWnr1q0KDQ2Vn59ftofj3S4gIOBvfeYxACBvCMQAUAK9+uqrysjI0MKFCzVmzBj5+/tr6NChevTRRwv08stvv/1W8+bN0zvvvKOEhAQ98sgj+vDDD20+R7ZUqVJav369pk+frtDQUIWGhqps2bIaOHCgZsyYkaenMDdv3ly7d+/W9OnTtXjxYsXFxcnb21uPP/64zVivvfaarl27piVLlmjjxo1q2LChvv/+e3399dc2gdjBwUFr1qzRhAkT9PXXXyslJUWNGzdWWFiYFi5cmKdALP31ROBx48Zp4sSJ1jcH8hKIBwwYoDNnzmjevHkaN26cAgMD9fnnn+v333/PFoibNm2qbdu26Y033tCnn36qmzdvqmbNmpo7d65Gjx6dpzpzUrt2bf3666965ZVXNGfOHDk7O6tbt27617/+pWrVquXpac/Vq1fX1q1bNWHCBH3yySdycnJSly5dtGjRomyfySxJs2fPVkZGhlatWqXvv/9eLVu21MaNGzVq1ChFR0ff97HczsvLS9u3b9cHH3ygZcuWafny5XJycpK/v7+eeuop9e3b19rX09NTYWFhGj9+vN5++22VKVNG/fv3t77xci8mT55s/bODg4N8fX31P//zP3rjjTfk7e2db8cHALh/FuNBfVoKAAAocvv27VPTpk317rvv6rXXXivqcgAAyFfclAIAACQp22XBt97/W1Ie7PTmm2/KYrGobdu2RV0KAOABwCXTAABAklS3bl117NhR9erV040bN/Tjjz/qt99+U3Bw8H3fmwwAwIOMS6YBAIAkacKECVqzZo1iYmKUnp6uatWqqX///po4caJKlSpV1OXli/T0dCUmJsrV1TXXj/cCAJgDgRgAAAAAYErcQwwAAAAAMCUCMQAAAADAlArtoVpOTk6qUKFCYQ0HAAAAADC5y5cvKyUl5Y7bCy0QV6hQQTExMYU1HAAAAADA5Pz8/HLdziXTAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAsLFnzx6NGjVKQUFBcnNzU+XKldW3b19FRUVl6xsaGqrmzZvLy8tL5cqVU5s2bbRmzZo8jbN06VINGDBANWvWlMViUdu2bfP5SAAAAHJHIAYA2Jg1a5ZWrFihdu3aae7cuRo+fLh+/fVXNW7cWIcPH7b2+/TTTxUcHKzy5cvrvffe09SpUxUXF6du3brp+++/v+s4n3/+uVatWiV/f3+VKVOmIA8JAAAgRxbDMIzCGMjPz08xMTGFMRQA4G/Yvn27mjZtKkdHR2vb8ePHVa9ePfXu3VuLFy+WJNWqVUteXl7atWuXLBaLJCk+Pl6+vr568skntWrVqlzHOXPmjHx9fWVnZ6e6deuqfPny2rJlS4EdFwAAMJ+75VDOEAMAbLRs2dImDEtSzZo1FRQUpIiICGtbfHy8vL29rWFYkjw8PFS6dGm5uLjcdRx/f3/Z2fHPEAAAKDr8TwQAcFeGYejixYsqX768ta1t27Zau3atPv30U0VHRysyMlIjR45UXFycXn755SKsFgAAIG8ciroAAMCDb8mSJTp79qymT59ubfvkk0905coVjRkzRmPGjJEklS9fXhs3blSLFi2KqlQAAIA8IxADAHKVdea3RYsWGjx4sLXd1dVVtWvXlp+fn7p166aEhATNnj1bvXr10tatW1WjRo0irBoAAODuCMQAgDu6cOGCunbtKk9PTy1fvlz29vbWbX369JGDg4PCwsKsbT169FDNmjU1efJkLV26tChKBgAAyDPuIQYA5CguLk5dunRRbGys1q5dKx8fH+u2EydOaO3atXr66adtXlO2bFm1atVK27ZtK+xyAQAA7hlniAEA2SQnJ6t79+6KiorSL7/8ojp16thsv3jxoiQpIyMj22vT0tKUnp5eKHUCAAD8HZwhBgDYyMjIUHBwsHbs2KFly5bl+ICsGjVqyM7OTkuXLtWtH2cfExOjrVu3qlGjRta2tLQ0RUZG6vz584VSPwAAQF5xhhgAYGPChAn68ccf1b17d127dk2LFy+22T5gwABVqFBB//jHP/Tll1+qXbt26tWrlxISEjRv3jwlJSXp9ddft/Y/e/asAgMDNXjwYIWEhFjbf/31V/3666+SpMuXL+vGjRuaMWOGJKl169Zq3bp1wR8sAAAwNQIxAMBGeHi4JCksLMzmgVlZBgwYIEn6/PPP1aBBA3311VfWAPzII4/o22+/zVOY3bRpk9566y2btqlTp0qSpk2bRiAGAAAFzmLceq1bAfLz81NMTExhDAUAAAAAwF1zKPcQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQciroAALiT5ORkpaamFnUZgCk5OjrK2dm5qMsAAKBAEYgBPJCSk5NVpkwZJScnF3UpuEeO9tLrrZz07m8pSs0o6mpwv5ydnXX9+nVCMQCgRCMQA3ggpaamKjk5WWfOnJGHh0dRl4N7kZIgj3/V0fhlf0pO7kVdDe5DfHy8/P39lZqaSiAGAJRoBGIADzQPDw8CcXHz/0/qe7i7S87MHQAAeHDxUC0AAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYUokKxIZhKD4+XoZhFHUpAAAAAEyGPFL8lKhAnJCQIE9PTyUkJBR1KQAAAABMhjxS/JSoQAwAAAAAQF4RiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCnlORAnJiZq2rRp6ty5s8qWLSuLxaKQkJACLA0AAAAAgILjkNeOV65c0fTp01W5cmU1aNBAW7ZsKcCyAAAAAKB4GjJkiI4cOaIGDRqoVatWCg8P140bN+Tm5qYmTZqoXr16+vPPP5WUlCQXFxdVr15dhw4d0v79++Xp6am6deuqVq1aeuyxxyRJ27Zt0x9//KFq1arp0KFDOnDggBo3bqwXX3xRFovFur1GjRp67LHHZBiG5s+fr3379ln3V716da1atUq7d+/WzZs35ebmpkceeUQffPCBLBaL5s+fr/3796tRo0aqV6+eTpw4oerVq0uS/vjjD2utNWrUkCQdP35chw8fVlxcnBo3bqx69erpjz/+sLY1adIkW31Z9e/bt0/R0dFKTU1Vs2bN9MEHH8je3r5I5spiGIaRl44pKSm6fv26KlWqpL179+qRRx7RwoULNWTIkDwN5Ofnp5iYmL9T613Fx8fL09NTcXFx8vDwKNCxABQs1nMxlhwvvecvvXZGcmbuiiPWHwDcn9mzZ2v8+PF56uvi4qLk5GQ5OzsrKSlJkmRnZ6fMzEzZ2dmpdOnS8vPzkyRduHBBVapU0f79+yVJnp6eio+Pl5OTk/z8/HTt2jU1bNhQ4eHhKleunE6fPq3U1FTZ2dkpIyMj1zosFotKlSqltLQ0ubu7Kz4+XpJUt25dRUREyDAMa40uLi5KSUmRYRjWr6yab2Vvb6/MzEw5OjqqcuXKunr1qk39OdWwbNkyPfvss3n62d2Lu+XQPF8y7eTkpEqVKuVLUQAAAABQkqSnp1vD8MGDB+Xi4qIqVapYt0dGRsrJyUl2dnZydHRUamqqLl68qNTUVDk5OcnLy0tlypRRTEyMatWqpdTUVF24cEEXL17U6dOnFRERoVq1amngwIGqVq2aLl26JMMwdPLkSZ05c0YbN27U6dOndeLECUlSUFCQ/vGPf+j06dM2ddrZ2VnPHEuSYRhKTU3VpUuXVK1aNQ0cOFC1atXSkSNH1L9/f3l5ecnFxUWXL1+Wi4uL3N3dZbFY5OjoqJiYGJUpU0aenp6yWCyyWCyKiYnRP/7xDwUFBUmSTpw4oVOnTlnrz6rhyJEjCggIkLOzs0qXLq0+ffrcNbwXhDxfMl0cZJ3sznpXA0DxlbWO83gRC4B8xL+nAHDvbr1ydv369UpOTtaIESM0ceJESdJLL70kNzc3Xbt2TQ4ODkpNTdWoUaOUkZEhV1dXZWRkyM7OTidPntS2bdtUrlw52dvby9HRUVOnTlVycrJ27dplPSscGhoqNzc3Xb9+XSEhIRoxYoS++eYb6/5Onz6tPXv2aNKkSTZ1uru76+bNmzpy5Ij1DLQkjRw5UmfOnNGOHTu0adMmde3a1Rp0MzMztXTpUhmGoZSUFGVkZMjDw0OrVq2SJKWmpsowDFksFq1atUpz585VxYoV5eTkpJSUFL3wwgtKTk5Wu3btFBUVJQ8PD127dk3btm1T+fLlNXXqVE2ePFn/+7//q48//rjgJ+sWBRaIP/74Y5uDSUxMLKihrBISEiRJ/v7+BT4WgMKRkJBgfQcTQOHg31MA+Hv27t0rLy8vHTt2TGXKlFFsbKyOHj2qhg0baseOHfL09JSjo6PCw8NVpkwZVaxYURaLRZUqVdIff/yhVq1aycXFRR4eHgoICLDuz8vLS5LUoEED7d+/Xw0bNtT+/futlyLv37/fZn/Ozs7au3evHBwcZBiGMjMz1bhxY+sYFotFdnZ2slgsCg8PV4MGDeTs7KxLly7JwcHB2mYYhnW8o0ePymKxWMdu0KCBtc3R0VH79+/XiBEj5Ovra91/eHi4vLy8dPjwYTk4OKhRo0bWGjw9PXXixAk5ODho7969hT5XBRaIx48fb3P9/K3vPhQUd3d3SdKZM2e45wko5uLj4+Xv729d1wAKD/+eAsC9GzJkiFauXClJatq0qUJDQ1W7dm1dv35dklSnTh0dOHBASUlJslgsunnzpjp27KjQ0FClp6dLki5evKgaNWro2rVr1n7h4eEaMmSIfvvtN8XGxsrJyUkHDx5U79699f3331sfaiVJjRs31ldffWXdX3Jyspo2baqtW7da69y/f7+mT5+us2fPyjAM62XKDRs21C+//KLk5GR5e3srPT1dDRs21JIlS2QYhnW85ORkJSUlKTw8XL1799bKlSuVlJRk/WrcuLGSkpJ09uxZSX+9ydqxY0ctW7ZMdevW1datW3XgwAFNnz5d165dU1xcnKpVq6b09HQ1bdq0cCbrFnl+qNateKgWgILGei7GeKhWscf6A4B7l56erlKlSkmS9u3bp1atWqlixYqKjo6WJEVERKhhw4ZKS0uTg4ODMjIydO7cOfn4+MjBwUEuLi6yt7dXeHi4OnTooOjoaLm6uspisSg6Olre3t7y9/fXo48+qsOHD2v9+vXy8/NTenq64uLi5Obmphs3bsjT01MODg6qUaOGWrZsqSlTpujhhx+21mlnZ6edO3eqQ4cOiouLs7ZfvHhRnTp1Ur169bRr1y4dP35cAwcO1OrVq2WxWBQZGamAgABlZGQoISFBDg4OOn78uBo1aqT09HTrbTanTp3S22+/rR07duj48eNKT0/X9evXVbFiRfn7+ysqKsp61rhv376Kjo5WqVKllJiYqLS0tHx/2vTdcmiJuocYAAAAAIqCg4ODPv74Y40fP15NmjSRJGsYlqTAwEDrn1NTU+Xi4qJKlSpZn+CckpIiOzs7+fv7W58y/dBDD8kwDD388MMKDAzU/v37rffgent7y8nJSdWqVbN+NO7BgwdVvXp1nTp1SkePHlVkZKS++OILmzozMzPVrFkz6/dZT5muVKmS3N3dFR4eLumvp0xnnR12dnaWt7e3XF1dlZycbH0QV+XKlbM9Zbpy5co2T5muVq2aqlSpYq0/q4b69etbX5OSkqIVK1YUyUcvEYgBAAAAIB+88MILGj9+vHr27MnnEJe0zyG+FZdMAyhorOdijEumiz3WHwDcH/7+fPDk6yXTn332mWJjY3Xu3DlJUlhYmHXno0eP5kmwAAAAAIBi454C8YcffqhTp05Zv//+++/1/fffS5IGDBhAIAYAAAAAFBv3FIhvvSkcAAAAAIDizK6oCwAAAAAAoCgQiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYUokKxO7u7oqLi5O7u3tRlwIAAADAZMgjxY9DUReQnywWizw8PIq6DAAAAAAmRB4pfkrUGWIAAAAAAPKKQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTcijqAgAgJ4ZhSJLi4+OLuBLcs5QEeUiKT0iQUou6GNwP1h0AwCwIxAAeSAkJCZIkf3//Iq4E98rRXnq9lZPeneGn1Iyirgb3y9nZWY6OjkVdBgAABYpADOCB5OPjozNnzsjd3V0Wi6Woy8F9GF/UBeBvcXR0lLOzc1GXAQBAgSIQA3gg2dnZyc/Pr6jLAAAAQAnGQ7UAAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAViz549GjVqlIKCguTm5qbKlSurb9++ioqKsun3xRdfqE2bNqpYsaKcnJxUtWpVDR06VNHR0XcdIzo6WhaL5Y5f//znPwvo6IAH25EjR9SnTx9Vq1ZNrq6uKl++vFq3bq2wsDBrn8zMTIWEhOjpp5+Wv7+/3NzcVLduXc2YMUPJycl5His1NVUzZ85UQECAnJ2dVbFiRXXt2lUxMTEFcWgAAOQrh6IuAEDJNGvWLG3btk19+vRR/fr1deHCBX322Wdq3Lixdu7cqbp160qSDhw4oKpVq+rpp59WmTJldPLkSX3xxRdavXq1Dh48KB8fnzuOUaFCBS1atChb+9q1a7VkyRJ17NixwI4PeJCdOnVKCQkJGjx4sHx8fHTz5k2tWLFCTz/9tBYsWKDhw4fr5s2bGjp0qJo3b64XX3xR3t7e2rFjh6ZNm6aNGzdq06ZNslgsuY6Tlpamrl27avv27frnP/+p+vXr6/r169q1a5fi4uLk5+dXSEcMAMD9sRiGYRTGQH5+frxbDJjI9u3b1bRpUzk6Olrbjh8/rnr16ql3795avHjxHV+7b98+NW3aVO+++65ee+21ex67ffv22rNnjy5evChnZ+f7qh8oaTIyMtSkSRMlJycrMjJSqamp2rt3r1q2bGnTb/r06Zo2bZo2bNig9u3b57rP999/X1OmTNFvv/2mZs2aFWT5AADcl7vlUC6ZBlAgWrZsaROGJalmzZoKCgpSRERErq+tUqWKJCk2Nvaexz1//rw2b96sXr16EYaBW9jb28vf39+6rhwdHbOFYUnq2bOnJN11nWZmZmru3Lnq2bOnmjVrpvT0dN28eTPf6wYAoCARiAEUGsMwdPHiRZUvXz7btqtXr+rSpUvau3evhg4dKklq167dPY/x3XffKTMzU/379//b9QLF3Y0bN3TlyhX9+eefmj17tn7++ee7rqsLFy5IUo7r9FZHjx7VuXPnVL9+fQ0fPlxubm5yc3NT/fr1tXnz5nw7BgAAChL3EAMoNEuWLNHZs2c1ffr0bNt8fX2VkpIiSSpXrpw++eQTdejQ4b7GeOihh/Tkk0/+7XqB4m7ChAlasGCBJMnOzk69evXSZ599lutr3n//fXl4eKhLly659jt+/Lgkafbs2Spbtqx1nJkzZ6pz587as2eP6tevnw9HAQBAwSEQAygUkZGRGjlypFq0aKHBgwdn2/7zzz8rOTlZERERWrx4sW7cuHHPY0RFRWnfvn0aN26c7Oy4AAYYO3asevfurXPnzik0NFQZGRlKTU29Y/+ZM2fql19+0bx58+Tl5ZXrvhMTEyVJCQkJOnDggPz9/SVJTz75pGrUqKH3338/12cFAADwICAQAyhwFy5cUNeuXeXp6anly5fL3t4+W58nnnhCktSlSxf16NFDdevWVenSpTVq1Kg8j7NkyRJJ4nJp4P8LCAhQQECAJGnQoEHq2LGjunfvrl27dmV7gvTSpUs1ZcoUvfDCC3rppZfuum8XFxdJ0mOPPWYNw5JUuXJltWrVStu3b8/HIwEAoGBwCgVAgYqLi1OXLl0UGxurtWvX5voxSlmqV6+uRo0aWQNuXv3nP/9R7dq11aRJk/stFyjRevfurT179mT7PPANGzZo0KBB6tq1q+bPn5+nfWWt5YoVK2bb5u3trevXr//9ggEAKGAEYgAFJjk5Wd27d1dUVJRWr16tOnXq5Pm1SUlJiouLy3P/Xbt26Y8//uDsMJCLpKQkSbJZW7t27VLPnj3VtGlThYaGysEhbxeP1atXT6VKldLZs2ezbTt37pwqVKiQP0UDAFCACMQACkRGRoaCg4O1Y8cOLVu2TC1atMjWJz09PcezSLt379ahQ4fUtGlTm/bIyEidPn06x/H+85//SJKef/75fKgeKN4uXbqUrS0tLU3ffvutXFxcrG9ORUREqGvXrqpSpYpWr15tvQw6J7evP3d3dz311FPavn27IiMjre0RERHavn37fT0UDwCAwmYxDMMojIHu9oHIAEqWsWPHau7cuerevbv69u2bbfuAAQMUGxsrPz8/BQcHKygoSG5ubjp06JAWLlwoZ2dn7dy5UzVr1rS+xmKxqE2bNtqyZYvNvjIyMuTr66uqVatqx44dBX1owAOvZ8+eio+PV+vWreXr66sLFy5oyZIlioyM1EcffaTx48crISFBQUFBOnv2rGbOnClfX1+bfVSvXt3mjayc1t/Ro0f16KOPyt3dXWPGjJEkffLJJ0pPT9eBAwey7RMAgMJ2txzKQ7UAFIjw8HBJUlhYmMLCwrJtHzBggFxdXTVs2DBt3rxZy5cvV1JSknx8fNSvXz9NmTJFVapUydNYv/zyiy5evKjJkyfn4xEAxVdwcLC++uorff7557p69arc3d3VpEkTzZo1S08//bSkvz77+8yZM5Kk1157Lds+Bg8enOOVHbeqU6eO/u///k+vvvqqZsyYITs7Oz355JP64IMPCMMAgGKBM8QAAAAAgBLpbjmUe4gBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmJLFMAyjMAZycnJShQoVCmOoApeYmKjSpUsXdRkoZMy7OTHv5sS8mxPzbk7Muzkx7+Zx+fJlpaSk3HF7oQXiksTPz08xMTFFXQYKGfNuTsy7OTHv5sS8mxPzbk7MO7JwyTQAAAAAwJQIxAAAAAAAUyIQ34fx48cXdQkoAsy7OTHv5sS8mxPzbk7Muzkx78jCPcQAAAAAAFPiDDEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUB8m8TERE2bNk2dO3dW2bJlZbFYFBISkq3fkCFDZLFYsn0FBAQUftH42/bs2aNRo0YpKChIbm5uqly5svr27auoqKhsfSMiItS5c2eVLl1aZcuW1cCBA3X58uUiqBp/V17nnfVeshw5ckR9+vRRtWrV5OrqqvLly6t169YKCwvL1pf1XnLkdd5Z7yXbO++8I4vForp162bbtn37drVq1Uqurq6qVKmSxowZo8TExCKoEvntTvPetm3bHNd7586di6hSFAWHoi7gQXPlyhVNnz5dlStXVoMGDbRly5Y79nVyctKXX35p0+bp6VnAFaIgzJo1S9u2bVOfPn1Uv359XbhwQZ999pkaN26snTt3Wv8CjYmJUevWreXp6amZM2cqMTFRH374oQ4dOqTdu3fL0dGxiI8E9yKv8y6x3kuSU6dOKSEhQYMHD5aPj49u3rypFStW6Omnn9aCBQs0fPhwSaz3kiav8y6x3kuqmJgYzZw5U25ubtm2hYeHq127dgoMDNTHH3+smJgYffjhhzp+/Lh+/vnnIqgW+SW3eZckPz8/vfvuuzZtPj4+hVEaHhQGbCQnJxvnz583DMMw9uzZY0gyFi5cmK3f4MGDDTc3t0KuDgVl27ZtRkpKik1bVFSU4eTkZPTv39/a9tJLLxkuLi7GqVOnrG0bNmwwJBkLFiwotHqRP/I676z3ki89Pd1o0KCBUbt2bWsb673ky2neWe8lV3BwsPHkk08abdq0MYKCgmy2denSxXjooYeMuLg4a9sXX3xhSDLWrVtX2KUiH+U27zm1wXy4ZPo2Tk5OqlSpUp77Z2RkKD4+vgArQmFo2bJltrM9NWvWVFBQkCIiIqxtK1asULdu3VS5cmVrW/v27VWrVi2FhoYWWr3IH3md9yys95LL3t5e/v7+io2Ntbax3ku+nOY9C+u9ZPn111+1fPlyzZkzJ9u2+Ph4bdiwQQMGDJCHh4e1fdCgQSpdujTrvRjLbd5vlZ6ezuXxJkYg/htu3rwpDw8PeXp6qmzZsho5ciSLqQQxDEMXL15U+fLlJUlnz57VpUuX1LRp02x9mzVrpgMHDhR2iSgAt897FtZ7yXPjxg1duXJFf/75p2bPnq2ff/5Z7dq1k8R6L8lym/csrPeSJSMjQ6NHj9awYcNUr169bNsPHTqk9PT0bOvd0dFRDRs2ZL0XU3eb9yxRUVFyc3OTu7u7KlWqpKlTpyotLa0QK0VR4x7i+/TQQw9p4sSJaty4sTIzM7V27VrNmzdPBw8e1JYtW+TgwI+2uFuyZInOnj2r6dOnS5LOnz8v6a+5v91DDz2ka9euKSUlRU5OToVaJ/LX7fMusd5LqgkTJmjBggWSJDs7O/Xq1UufffaZJNZ7SZbbvEus95Jo/vz5OnXqlH755Zcct99tvW/durVA60PBuNu8S1L16tX1xBNPqF69erpx44aWL1+uGTNmKCoqSkuXLi3EalGU+Fv9Pt1+8/1zzz2nWrVqafLkyVq+fLmee+65IqoM+SEyMlIjR45UixYtNHjwYElSUlKSJOX4H2BnZ2drH/6DXHzlNO8S672kGjt2rHr37q1z584pNDRUGRkZSk1NlcR6L8lym3eJ9V7SXL16VW+88YamTp2qChUq5Njnbus9azuKj7zMuyR99dVXNt8PHDhQw4cP1xdffKFx48apefPmBV0qHgBcMp2Pxo0bJzs7u1zficKD78KFC+ratas8PT21fPly2dvbS5JcXFwkSSkpKdlek5ycbNMHxc+d5v1OWO/FX0BAgNq3b69BgwZp9erVSkxMVPfu3WUYBuu9BMtt3u+E9V58TZkyRWXLltXo0aPv2Odu6521XvzkZd7vZMKECZLEejcRAnE+cnFxUbly5XTt2rWiLgX3KS4uTl26dFFsbKzWrl1r89j9rEupsi6tutX58+dVtmxZzhYVU7nN+52w3kue3r17a8+ePYqKimK9m8it834nrPfi6fjx4/r3v/+tMWPG6Ny5c4qOjlZ0dLSSk5OVlpam6OhoXbt27a7rnY/gKV7yOu934u/vL0msdxMhEOejhIQEXblyJddLM/DgSk5OVvfu3RUVFaXVq1erTp06Ntt9fX1VoUIF7d27N9trd+/erYYNGxZSpchPd5v3O2G9lzxZl0XGxcWx3k3k1nm/E9Z78XT27FllZmZqzJgxqlq1qvVr165dioqKUtWqVTV9+nTVrVtXDg4O2dZ7amqqwsPDWe/FTF7n/U5OnDghSax3E+Ee4vuQ9Q6Tu7u7Tfvbb78twzDUuXPnIqoM9ysjI0PBwcHasWOHVq1apRYtWuTY79lnn9U333yjM2fOWN9B3Lhxo6KiojRu3LjCLBn5IC/zznoveS5duiRvb2+btrS0NH377bdycXGxvinCei9Z8jLvrPeSpW7dulq5cmW29ilTpighIUFz585V9erV5enpqfbt22vx4sWaOnWqdf4XLVqkxMRE9enTp7BLx9+Q13mPj4+Xk5OTzdU+hmFoxowZkqROnToVWs0oWhYjt5tmTOqzzz5TbGyszp07p88//1y9evVSo0aNJEmjR4/W9evX1ahRI/Xr108BAQGSpHXr1umnn35S586dtWbNGtnZcfK9OBk7dqzmzp2r7t27q2/fvtm2DxgwQJJ05swZNWrUSF5eXnr55ZeVmJioDz74QH5+ftqzZw+XUBYzeZn36Oho1nsJ07NnT8XHx6t169by9fXVhQsXtGTJEkVGRuqjjz7S+PHjJbHeS5q8zDvr3Rzatm2rK1eu6PDhw9a2/fv3q2XLlqpTp46GDx+umJgYffTRR2rdurXWrVtXhNUiv9w+71u2bFG/fv3Ur18/1ahRQ0lJSVq5cqW2bdum4cOHW59GDxMwkM3DDz9sSMrx6+TJk8b169eNAQMGGDVq1DBcXV0NJycnIygoyJg5c6aRmppa1OXjPrRp0+aOc377Mjl8+LDRsWNHw9XV1fDy8jL69+9vXLhwoYgqx9+Rl3lnvZc8//3vf4327dsbFStWNBwcHIwyZcoY7du3N1atWpWtL+u95MjLvLPezaFNmzZGUFBQtvatW7caLVu2NJydnY0KFSoYI0eONOLj44ugQhSE2+f9xIkTRp8+fYwqVaoYzs7Ohqurq9GkSRNj/vz5RmZmZhFWisLGGWIAAAAAgClx3Q8AAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAEAhCAkJkcVi0ZYtWwplvCpVqqht27aFMhYAAMUVgRgAAAAAYEoORV0AAADIf8eOHZPFYinqMgAAeKARiAEAKIGcnJyKugQAAB54XDINAEAhSktL05QpU+Tn5ydnZ2c1bdpU69evt26Pjo6WxWLRm2++qaVLl6pevXpycXFRYGCgfvjhB0nSwYMH1aFDB5UuXVre3t564403ZBiGzTjcQwwAwN0RiAEAKEQTJ07UDz/8oLFjx2rq1Km6dOmSunbtqo0bN9r0W716tSZMmKDnnntO7733ntLT09W7d299//336tChg+rXr68PPvhADRo00Ntvv61vv/22iI4IAIDiy2Lc/pYyAADIdyEhIRo6dKiqVKmi33//Xe7u7pKkc+fOKSAgQP7+/jpy5Iiio6NVtWpVlS5dWpGRkfL19ZUkHTlyRHXr1pXFYtGPP/6obt26SfrrjPPDDz+sypUra+fOndbxqlSpoipVqhTaU60BACiOOEMMAEAhevHFF61hWJJ8fHz0/PPP6+jRozp+/Li1/ZlnnrGGYUkKCgqSp6en/Pz8rGFYkkqVKqVmzZrZvBYAAOQNgRgAgEIUEBCQrS0wMFCSdOLECWtblSpVsvXz8vLSww8/nGP7tWvX8q9IAABMgkAMAMADyN7e/p7aAQDAvSMQAwBQiCIjI7O1RURESJKqVatW2OUAAGBqBGIAAArR/PnzlZCQYP3+3Llz+s9//qPAwEDVrFmzCCsDAMB8HIq6AAAAzMTLy0stWrTQkCFDlJqaqvnz5+vmzZuaM2dOUZcGAIDpEIgBAChE77//vrZs2aI5c+boypUrCgoK0r///W917NixqEsDAMB0+BxiAAAAAIApcQ8xAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATOn/AYa3ejofLwBhAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "draw_box(df, 'bmi', 'Phân bố của trường dữ liệu BMI')\n",
+    "print()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 126,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAEPCAYAAACEHA2pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAABerklEQVR4nO3dd3yN5/8/8NdJzsjJHiKyZIiZIIIaRSiJXaOU2Epbiu6q0X5oqlrdPka1HyUt0VKjZku0tDYxWloRIYksIcjeOdfvD79zf3OcjBMyndfz8TgPcp3rvq73vfPOfd/XLRNCCBAREREREREZGZO6DoCIiIiIiIioLjAhJiIiIiIiIqPEhJiIiIiIiIiMEhNiIiIiIiIiMkpMiImIiIiIiMgoMSEmIiIiIiIio8SEmIiIiIiIiIwSE2IialCKi4uxbNky7Nmzp9rb1mg0KCwsrPZ2iWpLfn5+rfSzd+9efPzxxygqKqqV/qj6xMTEYPHixYiOjq7rUIiI6gUmxESEffv24f3330deXl5dh1KpN954Axs2bED37t2rtd0vvvgCtra2MDc3x4IFC6q17brw66+/IjQ0FBkZGXUdSoMTGxuLxYsX4+zZs3UdisE2b94MJycnqNVqjBo1CiUlJTXW18mTJzFmzBj4+vpCoVDUWD+V+frrr7FixYo6678hysrKwrBhw3Dz5k20aNGirsNpcBITE7F48WIcPXq0rkMhomrEhJjoMTJlyhTIZLIqTXPlyhWMHTsW4eHhePPNN2soMmDx4sWQyWSIi4ur0nSvvvoqTExMEBQUhGvXriE7OxsHDhyAvb19tcYnk8mwYcMGfP755/j666+rte260L17d+zatQtjx46t0eSoOslkMkyZMkWvfMGCBbCyssKAAQMQHx+PGTNm4LXXXjOozcOHD0MmkyEsLEwqCwsLg0wmw+HDh/XqFxcXIyQkBD/99BOeffZZZGdnP+TcVA9PT0/07t270npZWVlYvXo1Nm3ahN27dyM5ObnaYoiMjIRCoYC5uTmio6Oxe/dufPfddxg8eHCV2snIyEBaWhrS0tLQtGlTPPnkk0hLS3vouLp3747Fixdj6dKlD91GTejduzc8PT3rOgwA9+8YaN26NUxMTLBq1Srs27cPI0eOxOrVq+s6tHrHkHOUm5sbkpKS8Mwzz+DWrVsP3VdcXBxkMhkWL1780G0QUfVhQkxUz2l/oS/9sba2Rrdu3bBu3bpHaruoqAjjxo3DggUL8Pvvv2PHjh3Yu3dvNUX+6I4dO4a1a9ciIiICV65cwaFDh/Dtt9/CxcWl2vt69dVXERwcjPPnz2PZsmXV3j4ApKenY/HixWUmYtXN2toav/76K27cuIG5c+fWeH81JTs7G8uWLcPcuXOhUCjQrFkzhIeHY9KkSTXS37vvvgtTU1OcO3cOHTt2xBtvvFEj/VS36dOnY8SIEbh06RJmzJgBd3f3amm3sLAQU6dOxdy5czF58mRMnz4dS5YswTPPPFPltoYNGwZHR0c4OjoiISEBx48fh6Oj40PH1rZtW/zyyy9YtmwZdu3a9dDtPM7ee+89WFpaYuvWrViwYAG6du2K999/HyYm//frX1hYGL788kuD24yLi8PixYtx4cKF6g+4AVi1ahV8fHwwbdq0ug6FiKoJE2KiBmLChAnYsGEDvvvuO8ydOxfJycmYNm0a3n///YduMyoqCpMnT8a8efPg4uKC3bt348aNG9UY9cMTQmD16tX4+uuv0bdvX2zZsgU//vhjjV6x27JlC1q1aoXp06fXSPvp6el47733aiUhBoBGjRohIiIC1tbWuH37dq30Wd3MzMxw5coVvPvuu9i9ezdSUlKQmpqKDh06ALifsIWFhVXpdv+JEyciLy8PvXr10inPycmBubk5tm3bBpVKhXXr1sHd3R2ZmZnVOk815ciRI7h9+zaWL19ebW1u3boV7dq1w/vvv48vv/wS9vb2+PXXXx+qrc8++wwRERGIiIiAk5MT2rVrh4iIiEeK74knnsAvv/yCmJgYaDSaR2rrcZOUlIRjx47hp59+wsiRIzF//vwy7355mIT4vffeM9qEWKlUYtu2bTh//jy++uqrug6HiKqBvK4DICLDdOzYERMmTJB+njp1Klq0aIFPPvkE8+fPh1xe9d25bdu2aNu2rU4fHTt2rJZ4H5VMJkN4eLj0c9euXXHw4MEa7XPy5Mk12n5VaTQa5OXlwcLCwqD6/fv3x7Bhw/DSSy9JZS4uLli0aFGl9eoruVwOHx8f6ecHrygqlUq89dZb8PX1RefOnQ1q09TUFKampnrlFhYWePfdd6WfLS0t8c477zxk5LUvMDAQgYGB1drmuHHjMG7cOACASqXCzz///NBtlT62mJmZwc7ODv369TN4+qKiItjZ2eH06dNo06aNVN69e3edMQXKq2dsXF1d8eeff0o/z5s3r07iKC4uRlFREdRqdZ30XxOaNGmCxMTEug6DiKoJrxATNVCurq5o3bo1srKy9J5lSk9PxwsvvIBGjRpBrVajb9++uHz5sk6drKwsvPPOO3jiiSfg4OAAMzMztGrVCh988AGKi4t16mqfufz999/x8ccfw8vLCyqVCn5+flW+VTE7OxsvvfQSGjduDHNzcwQGBiIyMlKvXk5ODubNmwdvb2+oVCq4uLhg+vTpSElJMbivqKgoTJgwAS4uLlCpVHBzc8OYMWNw7do1ABU/x1XW89inT5/GlClT0Lx5c5ibm8PGxgZPPfUUfv/990pjOXz4MLy8vADcv41Re/u79vlQ7a3x69evx/Lly9GqVSuYmZnhf//7H4Dyn6/VPvd26tQpZGZmIicnBwDw119/YdiwYbC3t4eZmRnatm2L1q1b4/bt2zr1tM87JiUl4dlnn4WNjQ2srKwwYsSIMp9D/fvvvxEcHAwLCws4ODhg8uTJSEtLKze+svzzzz8YMGAALCwsYG9vj/Hjx5f5PF5Zz/9qNWnSBDKZDMnJycjNzS0zwS1Pec8Q37t3D2+++Sa8vb2hVCrRpEkTTJs2DTdv3tSpV96z+lV9LjApKQkzZ86Eh4cHVCoVmjRpgqFDh5Y5mNfly5cxYMAAWFpaws7ODlOmTNG7cl2VMQTWr1+PTp06wcbGBpaWlvDx8cHkyZOl7UJr+/bt6NatGywsLGBlZYXAwEAcOHDAoD4AICEhQdqurK2tMXToUGn/K62idW1vbw+ZTIabN2+ipKREivHB2FxdXTFnzhykpqbq1NNum8eOHUOPHj1gbm4OJycnvPbaa2WOkr1t2za0b98eZmZmaNq0Kd577z0cPHiw3PjKY8g+Zei29Pfff1e4bfn7+8PT01PnKnlUVBRCQkLg5OQElUoFHx8fLFq0SGckfU9PT/zxxx+Ij4/XeSynvOdow8LC0KdPHwD3/yirra/d97X7VkREBBYtWgQvLy+YmZlh//79VT7e1sWxCTDsHFXR2ARVPU/u2rULAQEBMDMzg7u7e717Jp7IGPAKMVEDVVhYiISEBMjlctja2up8179/f7i4uCA0NBQJCQn44osvMGzYMFy+fFlKHJKSkvDtt99i1KhRmDRpEjQaDfbv34933nkHsbGxWLt2rV6f8+fPR3FxMWbPng0hBL788ks888wzuHLlCry9vQ2Ke+LEiVCr1Vi4cCHu3LmDFStWoE+fPjh58iR8fX0B3L/C079/fxw7dgxjxoxBr169cPnyZaxZswYRERE4e/YsGjVqVGE/J06cQHBwMIQQeP7559G6dWvcunUL+/fvx6VLl9CsWTOD4i1tx44diI6ORkhICNzd3XHz5k2sXbsWQUFB+P333yu8Ote6dWt88cUXeO211zBixAiMHDkSAODk5KRT78svv0RGRgamT58OR0dHg0eC7dq1K1QqFVavXo3IyEgEBgZCpVJh1qxZcHR0xI4dO3D48GE0btxYqqeVk5ODwMBA9OzZE8uWLcOlS5fw1VdfITMzE7/99ptU7+rVq+jZsyeEEHjllVfg4uKCvXv3YsCAAQYvw9jYWPTs2ROFhYWYM2cO3NzcsHv37iq1AdxPiFNTU+Hq6gofHx+dOx0eRnp6Orp3747k5GRMnz4dLVu2RFxcHFatWoXDhw/j7NmzevvZo7h27Rq6d++Oe/fuYerUqejQoQPS09Px559/4vjx4zpXU5OSkvDUU09h1KhRGD58OI4ePYrvvvsOpqam+Pbbb6vc9/fff4/nnnsOQ4YMwXPPPQe5XI64uDjs3r0bWVlZ0h0Jq1evxqxZs9CmTRssWrQIJSUl+PbbbzFw4EBs2rQJY8aMqbCf9PR09OrVC4mJiZgxYwZat26NP/74A3369KnSLe6urq64d+8emjZtCg8PD/j5+ZUZ24cffoiVK1di5cqVUj2tCxcuYPjw4Zg2bRomTJiA3bt3S7eAl74rYPPmzQgJCYGPjw8WL14MU1NTfPfdd9i9e3eVlrGh+5Sh2rVrh86dO+O7777DokWLdJLHc+fO4a+//sLixYulZ4PPnDmDvn37wsHBAbNnz0bjxo1x+vRpLFmyBBcuXMDOnTsB3D/ezJ8/H2lpafjiiy+kNst7trtXr15YsGABli5dihdeeAE9e/YEAL3j6ZtvvgkhBGbOnAlzc/OHHmSsNo9NWoacoypSlfPkvn378PXXX2PGjBmYNm0aNm3ahIULF8Ld3R0TJ06scuxE9JAEEdVrhw4dEgDEkiVLxO3bt8WtW7dEZGSkGDFihAAgRo8eLdWdPHmyACDmzJmj08ann34qAIhffvlFKisoKBBFRUV6/U2aNEmYmJiIpKQkqWz9+vUCgAgICBCFhYVSeWRkpAAg3n777UrnY9GiRQKA6Nq1q04bFy5cECYmJmLQoEFS2TfffCMAiPnz5+u08eOPPwoAYvbs2RX2pdFoRKtWrYRarRaXL1/W+76kpEQIIURsbKwAIBYtWqRXR7ssS8vOztard+vWLdGoUSPRv3//CmOqrD/tenZwcBC3b9/W+x6AmDx5sl65drmeOnVKmq579+5CLpeLS5cuSfVKSkrE4MGD9baDwMBAAUB89tlnOu3Onj1bANBZfqNHjxYAxMmTJ6UyjUYjlZcV34NCQkIEAPHnn3/qtDF8+HC9NrTLZP369XrtBAYGCg8PDxEfHy9yc3PL7a+sNrTb86FDh3Tm19zcXPzzzz860589e1aYmpqK//znP1JZWduGEBWv3wcFBwcLmUymE4OWdvsUQggPDw8BQGzbtk2nzpAhQ4RcLheZmZmVxvWgESNGiNatW1dY5+7du8LCwkK0aNFCp487d+4IFxcX0ahRI5GXl1dhG/PnzxcAxPfff69T/sorrwgAIjAwUCozZF3HxcWJnJycCmNzdnYWAMSdO3ekcgDCxMREnD59WirTaDSibdu2wsnJSSorKioSLi4uwtnZWdy7d08qz8rKEl5eXuXGV1a8hu5TVdmWvv76awFAHDx4UKfurFmzhImJiYiLi5PK2rZtK1q1aiWysrJ06n7xxRd6bWiXr6EqWlfafatVq1Z6+2VVj7e1fWyqyjmqouOKIedJ7bKwsLAQ8fHxUnlubq5wdHQUXbp0qTReIqo+vGWaqIF455134OjoiMaNG6NTp07YvXs3xo0bV+aV3JdfflnnZ+0tbjExMVKZUqmUnjsuKirC3bt3kZaWhqCgIGg0mjJvY545c6bOe0c7duwIKysrnXYr8+qrr+q00b59ewQFBeHAgQPSVaMdO3ZALpfj7bff1pl2zJgxaN68OXbs2FFhH+fPn0dUVBSmT5+OVq1a6X1feoTVqij9LG9OTg7u3LkDmUyGJ554AqdPn36oNh80adKkSq9+l6Vx48Zo1KgRbt26hePHj2PEiBE6VzNMTEwwf/58ANB7h6apqSlmzZqlU/bgNlNSUoJ9+/ahe/fu6NKli1RPJpMZ/LoujUaD3bt3o2vXrtKVJW0bDzsSdtOmTR/52UQhBH744Qf07t0bjRs3ll4NpH09UPPmzR958KfS7ty5g4iICAwZMqTMVyo9uH26urpKdxRo9enTB8XFxYiPj69y/zY2NkhKSqrwXaoRERHIycnBK6+8AisrK6nc3t4eL730EtLS0ip9F+vPP/8MFxcXjB8/Xqf8wf3aUB4eHjA3N68wNu12fO7cOZ1pu3XrpvOMufZxhdTUVGmgvrNnzyI5ORlTp07VuRvA0tISM2bMqFKshuxTVRUSEgILCwusX79eKisoKMCmTZvQt29feHh4AAAuXryIixcvYtq0aZDL5cjPz5c+o0aNAoAaH49h5syZ1fLMcG0dm0oz5BxVkaqcJ4cPH46mTZtKP6vVanTt2vWhtxEiejhMiIkaiJkzZyIiIgIHDx7EyZMncefOHYSHh8Pa2lqvrvZZVS3tO3vv3LmjU75ixQr4+vrCzMwMDg4OcHR0lG7TSk9Pr7RdbdsPtluRshLU1q1bo7i4WBrhOjY2Fm5ubrCxsdGr26ZNGyQlJek8B/egq1evArj/XF11Sk1NxbRp0+Do6AhLS0s0atQIjo6O2LdvX5nL62GUHkDqYcTGxgJAmbf2acuuX7+uU+7s7AyVSqVT9uA2c/v2beTk5KBly5Z67ZZVVpZbt24hOzu7zG2gLgc/un37Nu7cuYN9+/ZJrwUq/YmKikJqamq19RcTEwMhhMHbZ3n7HaC/TxtiwYIFcHBwQM+ePeHi4oJx48Zh48aNKCgokOo8zHb0oOvXr6NFixZ6Cb6zs/Mj3X7+MLEZsgy17T7KNq5lyD5VVVZWVhgzZgy2b98uPT++c+dO3Lt3D88995xUTztexFtvvQW1Wq3z0b6O61HeoWuIRz2OadXWsak0Q85RFanKebI6zqlE9Oj4DDFRA9GiRQuDR2Qtb4AhIYT0/88++wxvvvkmBg4ciDfeeANNmjSBUqnEuXPn8Pbbb5f5ChND2q1PKhtgqKLvS0pKdH7WaDQIDg7GlStX8NprryEgIAA2NjYwMTHBhx9+aNDAWoYwNzevUv0H43wYFQ1IVZfrtirr51Fot/X+/fuXe0Wp9NWu8uKqakyGDoBV3eunefPmuHz5Mg4ePIjffvsNhw4dwg8//IDQ0FAcPXoUjRs3rnKbj6qm13Vtb+OG9lfVbWn69OlYt24dfvjhB7z44otYt24d7O3tMWLECKmOdnt+9913MWjQoDLbeZT3PxuirOPYw6zj+npsqkhVzpNVGQyQiGoOE2IiI7Vx40Z4eXlhz549OldwyhoBtjpFRUWhffv2OmWXL1+GXC6Xrl54e3vjwIEDyMrK0rklEgD+/fdfuLq6QqlUltuHdiCqyt6Tqb3ScO/ePb3vHrzCdPHiRfz9999YtGiR3iippQflqYihCVBZ7O3tDYpTe8Xh33//1aurLTN0ALTSHB0dYWFhgStXruh9V1ZZeW1YWloiKiqq3NhKq2j9xMbGPtSrxsqLy8bGBtnZ2Qb90al0XHZ2dlJ5ZVdMtXx8fCCTyer0Pa4qlQqDBw/G4MGDAQA//PADxo0bh9WrV2Px4sXSNvLvv//qDRZn6Hbk7e2N6OhoaDQanWNMSkqK3h0VVVnX1RFbWbQDPz3KNl5VVd2WunXrBl9fX6xfvx6DBw9GREQEZs2apXMVtXnz5gDuPwrTtWvXSmOo6nHpYY9jVTneVkV1HJtKM+QcRUSPF94yTWSktH+ZLv1X67y8PPz3v/+t0X6//PJLnVed/PXXX4iIiEBQUJB0VWH48OEoLi7Gp59+qjPtTz/9hKtXr+pcDSmLv78/WrdujbVr1yI6Olrve+08W1lZwcnJCYcOHdL5/tSpUzhx4oROmXZ5PXjl/PDhwzh16lSF8WhZWloCKPsXwso0b94cJ06c0HmGLS4uTu+9sI0bN0b37t2xY8cOnV8GNRoNPvroIwCodPmVxdTUFAMHDsTx48f15vezzz4zuI0hQ4bg5MmTOHLkiFQuhMDHH3+sV9/T0xNyuVzv6vuWLVuQlJRU5XmoKK5x48bh2LFj2LNnj973Qgjcvn1b+lmbcJSOSwiB5cuXG9Sfg4MD+vfvj927d+ssh9Jt1aS0tDS9sg4dOgD4v9tQg4KCYGFhgRUrViA3N1eql56ejtWrV6NRo0bo0aNHhf0MGzYMycnJOu8TB4Bly5bp1a3Kuq6O2MrSqVMnODs7Y/369ToJe3Z2NtasWVPl9gzxMNvStGnTcOrUKcybNw8ajUbndmkACAgIQJs2bfDVV1+V+fqk3NxcnVd2WVpaVumRj4c9jlXleFsV1XFsKs2QcxQRPV54hZjISI0cORILFy7EoEGDMHLkSNy9exdhYWF6V2SrW35+PgIDAzFmzBjcuXMHK1euhJmZmc4vyVOmTEFYWBhCQ0Nx7do1PPnkk4iKisJXX32Fpk2bYtGiRRX2IZPJsG7dOvTr1w8dO3aUXruUlpaGAwcO4NVXX8WwYcMAALNmzcJ//vMfDBkyBEOGDEFcXBzWrl2Ldu3a4a+//pLabNWqFVq3bo2PP/4YeXl5aNGiBS5evIiwsDD4+fnh4sWLlc67g4MDmjVrhh9//BE+Pj7SIGlPPfVUpdPOmjULkyZNQr9+/TB+/Hjcvn0bq1evRuvWrfXeW7t8+XIEBgbiySefxEsvvSS9dunQoUN46aWXdF7pUxVLlizB/v37ERQUhNmzZ8PV1RV79+6VkkVDrhwtWbIEv/zyCwYOHIg5c+bA1dUVu3fv1kk4taysrDBp0iSsW7cOEydORI8ePXDp0iVs2bIFzZo103tf9qNYunQpjh49imHDhiEkJARdunSBTCZDbGwsdu7ciQkTJkh3BoSEhGDBggWYPn06Ll++DBsbG2zbtq1KrxJauXIlunfvjr59++K5556Dv78/srKy8Oeff6J///6YPXt2tc3bg4KDg2FnZ4eePXvC3d0daWlpWLt2LeRyOUJCQgAAtra2+PjjjzFr1ix07doVkyZNQnFxMb799lukpKRg06ZNMDMzq7CfuXPnYtOmTXjuuedw5swZtG7dGocPH8aJEyf0Bo6ryrqujtjKIpfL8emnn2L8+PHo0qULnnvuOZiamiIsLAwODg6IjY19pLs8yvIw29KkSZMwf/58hIeHIyAgQO9ZdJlMhu+//x59+/ZFu3btMG3aNLRu3RoZGRn4999/sX37duzcuVMa0K1Lly7Ys2cPXn75ZXTp0gWmpqYYOnSoziCCpbVp0waWlpZYvXq19D52Ly8vnQGtymPo8baqquPYpGXIOYqIHjO1Pq41EVWJ9vUOX3zxRaV1q/IKj+LiYhEaGiq8vLyEUqkUzZo1E0uWLBEREREGvaZGy8PDQ+f1KeXRvtLi77//FjNmzBCOjo7CzMxM9OzZU5w6dUqvfnZ2tpg7d67w9PQUCoVCODk5ieeee04kJydX2pfWP//8I8aMGSMcHR2FUqkUbm5uIiQkRFy7dk2qU1hYKF599VUpnq5du4o//vijzGV5/fp1MWLECGFvby8sLCxEz549xeHDhw1+3Y0QQhw/flx06dJFmJmZ6bx6pqJXmQhx/xUiH3zwgXB1dRVKpVK0b99ebNu2TVqusbGxOvXPnz8vhg4dKmxtbYVSqRS+vr5i+fLlQqPR6NQr75Ur5cVz/vx50bdvX6FWq4WdnZ2YOHGiuH79ugAgZs6cadAy+Pvvv0VQUJAwNzcXdnZ2Yty4cSI1NbXM16NkZGSIyZMnC1tbW2Fubi769esnLl68aPCrYgx97ZIQ91+v85///Ee0bt1aqFQqYW1tLXx9fcWcOXP0Xsd09OhR8cQTTwilUimcnJzE66+/Li5fvmzwa5eEEOLGjRti+vTpwsXFRSgUCtGkSRMxbNgwcfbsWalOeftXWfNg6Hb4zTffiH79+gknJyehVCqFs7OzGDp0qDh27Jhe3W3btomuXbsKtVotbfP79+83aP6EECI+Pl4888wzwsrKSlhZWYkhQ4aImJiYMuerquva0NjK2q6EEOXuO1u2bBFt27YVSqVSuLu7i8WLF4vt27cLAGLz5s2VznNV96mH2ZbGjBkjAIiVK1eWG8f169fFtGnThLu7u1AoFNLrfEJDQ3VeS5WVlSUmTZokHBwchEwmK3OZPGjXrl2iXbt2QqlU6izfis4VQlTteFvbx6aqnKOqclwRQn8/ruorqIioZsmEqKejEhARUYNw9uxZdOrUCR9++CHmzZtX1+EQVTvtIIQnTpww6LncmjZ58mRs2bIFKSkpjzRi9+OOxyYiMgSfISYiIoM9eCunKPX8b1BQUF2EVO0WL14svaeWjEthYaHeiMfZ2dlYtWoVHBwcEBAQUEeR/Z+0tDT89NNPGDVqFJPhUozh2ERENYPPEBMRkcH8/PwQHByMtm3bIicnB7t27cLRo0cxZsyYh342mai+iI6OxtChQzF27Fh4e3sjOTkZYWFhiIuLw1dffVXh6PY17dKlSzh//jzWrl2LwsJCzJ07t85iqY94bCKih8VbpomIyGBvvPEG9u7di8TERBQXF8Pb2xvjx4/H3LlzoVAo6jq8alFcXIzs7GyYm5vXaQJEte/27duYM2cOjh8/jlu3bkEul6Ndu3Z47bXXMHr06DqNbfHixXjvvffg7u6O0NBQTJkypU7jqW+M4dhERDWDCTEREREREREZJT5DTEREREREREap1p4hVqlUcHR0rK3uiIiIiIiIyMjdvn0bBQUF5X5fawmxo6MjEhMTa6s7IiIiIiIiMnJubm4Vfs9bpomIiIiIiMgoMSEmIiIiIiIio8SEmIiIiIiIiIwSE2IiIiIiIiIySkyIiYiIiIiIyCgxISYiIiIiIiKjxISYiIiIiIiIjBITYiIiIiIiIjJKTIiJiIiIiIjIKDEhJiIiIiIiIqPEhJiIiIiIiIiMEhNiIiIiIiIiMkpMiImIiIiIiMgoMSEmIiIiIiIio8SEmIiIiIiIiIwSE2IiIiIiIiIySkyIiYiIiIiIyCgxISYiIiIiIiKjxISYiIiIiIiIjBITYiIiIiIiIjJKTIiJiIiIiIjIKDEhJiIiIiIiIqPEhJgahLNnz2LAgAGwtraGlZUVgoODceHCBb16Bw4cwLRp0+Dn5wdTU1N4enpWqZ/8/Hx8+OGHaNOmDczNzeHq6orRo0fjn3/+qZ4ZISIiIiKiekNe1wEQVebcuXPo0aMH3N3dsWjRImg0GqxevRqBgYE4ffo0WrZsKdXdtGkTNm/ejICAALi4uFS5r/Hjx2PXrl14/vnnERAQgOTkZKxatQrdunXDxYsX4eHhUZ2zRkREREREdUgmhBC10ZGbmxsSExNroyt6zAwePBgnTpzA1atX4eDgAABISUlBixYtEBwcjG3btkl1k5OT4ejoCIVCgSFDhuDSpUuIi4szqJ+kpCS4ubnhzTffxCeffCKVHzp0CE899RQ+//xzvPbaa9U6b0REREREVHMqy0N5yzTVe0eOHEG/fv2kZBgAnJ2dERgYiD179iA7O1sqd3FxgUKheKh+srKyAABOTk465c7OzgAAtVr9UO0SEREREVH9xISY6r2CgoIyk1Fzc3MUFhbi0qVL1dJPs2bN4Obmhs8++wy7d+9GYmIiTp8+jRkzZsDLywtjx46tln6IiIiIiKh+YEJM9V7Lli1x8uRJlJSUSGWFhYU4deoUgPu3OlcHhUKBbdu2wcLCAk8//TTc3d3RpUsXZGdn4/jx47C1ta2WfoiIiIiIqH5gQkz13ksvvYTo6GhMmzYN//77Ly5duoRJkyYhJSUFAJCXl1dtfdnZ2cHf3x/z5s3Dzz//jE8//RRxcXEYPXo08vPzq60fIiIiIiKqe0yIqd6bMWMGFixYgE2bNsHX1xdt27bFtWvXMHfuXACApaVltfSTkZGBnj17olu3bvjwww8xbNgwvPHGG9i2bRuOHj2K9evXV0s/RERERERUPzAhpgbhgw8+QGpqKo4cOYK///4bZ86cgUajAQC0aNGiWvrYtm0bUlNT8fTTT+uUBwYGwtraGseOHauWfoiIiIiIqH7ge4ipwbCzs0OPHj2knw8ePAg3Nze0atWqWtpPTU0FAJ1nlQFACIGSkhIUFxdXSz9ERERERFQ/8AoxNUibN2/GmTNn8Oqrr8LEpOqbcVFREaKioqTnkIH/u9L8448/6tTdtWsXcnJy0KFDh0cLmoiIiIiI6hVeIaZ6788//0RoaCiCg4Ph4OCAkydPYv369RgwYABeeeUVnbp///03du3aBQCIiYlBRkYGlixZAgBo3749hg4dCuD+yNStW7fG5MmTERYWBgAYOnQofH19ERoaivj4eHTt2hUxMTFYuXIlnJ2dMW3atNqbaSIiIiIiqnFMiKnec3V1hampKT755BNkZWXBy8sLS5Ysweuvvw65XHcTPnfuHN59912dMu3PkydPlhLisiiVShw5cgTvv/8+9u7dix9++AFWVlYYPnw4li5dikaNGlX/zBERERERUZ2RCSFEbXTk5uaGxMTE2uiKiIiIiIiIqNI8lM8QExERERERkVFiQkxERERERERGiQkxERERERERGSUmxERERERERGSUmBATERERERGRUWJCTEREREREREaJCTEREREREREZJXldB0C1Lz8/H4WFhXUdBhkJpVIJMzOzug6DiIiIiEgPE2Ijk5+fDzs7O+Tn59d1KLVKaQrM76HCh0cLUFhS19EYFzMzM9y7d49JMRERERHVO0yIjUxhYSHy8/ORkJAAa2vrug6n9hRkwXpVG7z+0zVAZVXX0RiNzMxMuLu7o7CwkAkxEREREdU7TIiNlLW1tXElxP//gri1lRVgZkTzTURERERE5eKgWkRERERERGSUmBATERERERGRUWJCTEREREREREaJCTEREREREREZJSbEREREREREZJSYEBMREREREZFRYkJMRERERERERokJMRERERERERklJsRERERERERklJgQExERERERkVFiQkxERERERERGiQkxERERERERGSUmxERERERERGSUmBATERERERGRUWJCTEREREREREaJCTEREREREREZJSbEREREREREZJSYEBMREREREZFRYkJMRERERERERqnOEmIhBDIzMyGEqKsQiIiIjBrPxUREZOzqLCHOysqCjY0NsrKy6ioEIiIio8ZzMRERGTveMk1ERERERERGiQkxERERERERGSUmxERERERERGSUmBATERERERGRUWJCTEREREREREaJCTEREREREREZJSbEREREREREZJSYEBMREREREZFRYkJMRERERERERokJMRERERERERklJsRERERERERklJgQExERERERkVFiQkxERERERERGiQkxERERERERGSUmxERERERERGSUmBATERERERGRUWJCTEREREREREbJ4IQ4OzsbixYtwoABA2Bvbw+ZTIawsLAaDI2IiIiIiIio5sgNrZiWlobQ0FA0bdoU7du3x+HDh2swLCIiIqotGo0GK1euRHh4OLKysuDi4oKAgAD0798fa9aswYULF+Dq6opx48ahVatW6NatG77++mucO3cOHTp0gJ+fH/bv34+EhAQ4OzsjLi4OUVFRKCwshJ2dHXx8fDB9+nSYmJggJiYGubm5uHHjBn7//XckJydDqVSiW7dumDFjBnr06IFjx47hl19+gRACBQUFuHfvHnJycnDjxg1kZWXB1dUVHTt2xKBBg/Dkk0/iyJEjWLp0Ka5evYri4mLY2dmhb9++WLZsGf73v//h7NmzsLa2RmpqKk6cOIGsrCxYWlqiefPmCAgIQGFhIaKjo2FnZ4dOnTohPDwccXFxcHBwwNNPP42CggJEREQgIyMDrq6u6NOnD9zd3ZGUlITIyEgkJyfD2toa48aNQ/v27XH9+nV4eXnh559/RkREBDIzM1FcXAyNRgOVSgWZTAYLCwu4uLggPj4eSUlJkMvlaN68OQCgsLAQffv2xbBhw3DgwAHExcXh4MGDyMzMhI2NDVxcXJCRkYF79+4hNzcXSqUSDg4OEELgzp07KCwshFwuh6mpKQoLC2FqagpLS0tYWloiKysLOTk5MDU1hZ2dHUpKSlBSUgJra2tkZGQgJycHJSUlKCgogEwmAwAoFArY2NjAzMwMarUaubm5yMnJQV5eHoQQMDG5f33F1NQUGo0GJSUlcHR0hI+PD1JSUpCamoq8vDxoNBpYW1vDxsYGGRkZKCgoQEFBAUpKSmBlZQU3Nzdcu3YN+fn5kMlk0Gg0Ut8KhUJafubm5rC0tERaWhoKCwvRunVrDBo0CN988w2SkpKgVqvh5eWFlJQU5Ofnw8PDA+PHj8fevXtx6dIl5OTkQCaTwczMDDKZDIWFhVAoFFAqlVCpVLC3t0ezZs1w5coVXLlyBcXFxbC2tgZw//dhANLyLSoqglKphKurK4qKiiCXyzF48GDIZDLs3LkTSUlJKC4uhkwmg0wmg1KphLu7OwYOHIjTp08jMzNTWhYqlQo5OTnIz8+HtbU11Gq1tHwAwNPTEx999BEuX76M8+fPw9/fH0II7N+/H3Z2dujcuTNOnz6NO3fuICYmBvHx8dBoNFAqlbCzs0NaWhqKi4thamoKMzMzKBQKNGrUCN7e3rC0tMTly5eRn5+PwYMHw9vbGz/++COysrJgZmaGmJgY5OTkSPF7enrCysoKiYmJEEJApVIhJiYGBQUFaNq0Kezs7PDvv/+ipKQEfn5+CAkJwb///ouTJ08iMzMTrq6uCAgIgJubGxISEnDo0CHk5+ejZcuWUCqVSE9PR4sWLaBSqaQ+bt++jaysLBQXF8PExAQ2Njbw9/dHbGwszp07B7VajRdffBGzZs2CiYkJhBA4cuQIvvnmG1y7dg3W1tZo164dDh48iPj4eDRu3Bj9+/dHdnY2OnbsiBkzZkjbspYQAkePHsUvv/wCABg4cCC6d++ONWvWYO/evbh9+zbkcjmsra3RoUMHDB48GN27d5eOjwEBAXjxxRdx4sQJREdH49KlS8jIyECHDh0AAOfPn4eNjQ38/Pyk/T8mJgZ5eXlQq9Vo1qwZLl68KK3v0tNojyUDBw5Ejx49IJPJIITAsWPHEBMTAx8fHzz55JPSflyesqYBIJU1a9YMAHDt2jW9NstaPtpYqtqnRqPBW2+9hcjISHTq1AmffPIJTE1NK2zHkHYri0U7oUHy8/NFSkqKEEKIM2fOCABi/fr1hk4uXF1ddX7OyMgQAERGRobBbdCjM9rlnpchxCLr+/9SrTHa7Y2ogdDuo0qlUgAw6KNUKoVMJhMymUxYW1sbPB0AIZPJhJmZWYV1FAqFMDU1FaamppW2Z2JiIhQKhUH1qhLno368vb1rtT9+jO9jYWFR5zHU149SqRRbt24VPj4+BtWXyWQCgFCr1eLo0aPS8TEuLk60adNGmJqaCrlcLuRyuTAxMZHqV9QWAGFnZycdK83NzaXjUOnjkba+iYmJ9DE3N9c7Vpa3vrXHyjZt2oijR48Kf39/YW9vL5566ilhb28v/P39RVxcXLnngLi4OL1p2rRpI9q0aSPs7e1F9+7dpT66deum02ZZy0cbS1X79PDwkJaFXC6Xls3WrVsNPp+V1a421gfz0AcZfMu0SqVCkyZNDK1ORERE9ZxGowEA6SqXnZ0dxo0bB09PT516Dg4OuHjxIuRyOQoLC2FlZQVfX194e3vDzs4OMpmszL/kW1tbS1fWtFcvCgoKdOp4e3vD1tZWujJTVFQEGxsbyOVy+Pj4SH/d115hMzExgbe3txR/UVGRTn8jRozQuyIghND5WS6v/AY5W1tbvTI7Ozu9aZVKJcaOHQtTU1NpHq5fv15p+1VV1Ssl9HjTXq3V7l8mJiYGbdcVUSgU1RFahW3K5XLY2tpCqVTqlGuvdj5YV6uyq3x2dnZo06YNrKysUFhYiFGjRiE2NlY6ro0fP77c2IQQaNu2LZo2bYqgoCBoNBoIITBs2DCkpqZi8uTJyMrKQnp6unQc08Zsa2srrQOlUgkhBGQyGdq2bYu0tDT4+vrCysoKubm5aN68ORITEyGTyaQ7EkxMTHDjxg0oFAoIIWBrawu1Wo1bt26hqKgIKpUKEyZMQG5uLry9vaXlFhISghYtWkChUGDixIm4efMmgoKC0KlTJyQlJeG3335DYmIiOnfujBEjRugdA7XzPXz4cHTu3FmaJiEhAampqUhNTUVCQgJyc3MxadIkTJ48Gfn5+UhISJDafPrpp3WWT2ZmJiZNmoTU1NQq9RkfH4/4+HjIZDIkJyejqKgIiYmJsLa2xujRo6U7JCpSVrul578yj7bnPALtQsrMzKyrEIySdnmXtZESVTfu50T126pVq6T/a385+/bbbxESEoK4uDjpu8LCQqSnp2PhwoV47733EBgYiMOHD0Oj0cDU1BQ2NjZIT08HcP+XRG3Sq9FoMG/ePLzzzjswMTFBSUmJ3vlnxYoVmDBhAlQqFfLy8gAAWVlZKCoqwosvvoi33noLwP3jiZWVFbKysvDiiy/i7bff1pufK1euwMbGBg4ODsjLy4OJiYn0y21pCoUCCoVC6q80bfzZ2dl63xUUFEChUKC4uFhnuXXp0gWbN2+GhYWFNJ2pqalBv8iVplary4zJxMREWn4NVXnLo3SCQWUrvYzkcrm0/alUKnz33XcYMWIENBoNnnjiCZw8efKh+zFkPZS3HhUKhc4fp7RK7ytaJSUlOn/gUSgU0jHD0tJS2odKJ8EPbv8PxlFQUICEhAR89913GDlypNSPubk5TExMkJiYKLVZOqFdu3YtJk+ejMuXL2Pnzp0YMmQI1qxZg3bt2iE2NhYKhQKrVq2CmZkZVq9eLf0RURuDiYkJ/vnnH7i5uUnfmZmZIS4uDmvWrEFKSgrefvttLFy4ENOmTcPOnTuh0Whgbm4O4P4YTV988QXMzc2lRwiUSiWWLl0KjUYDtVoNOzs7CCEwc+ZMhIaGorCwEE888QRWrlyJRo0aoX379ti2bRvy8/MxduxYmJmZAbh/PFm+fDnc3Nxw7Ngx9OjRQ2c9HDt2DAkJCThx4oQ0zblz5wDcP3aHhYVJ3wsh4ObmhnPnzmH58uVo0qQJiouLoVarpeUD3D+n/Pzzz7h27ZrBff7nP/8BcP8PmteuXYOzszNcXV2l5frWW2/h888/19uOKmu39PxX9gfFGkuIP//8c53gHzyxZGVlAQDc3d1rKgSqQFZWFmxsbOo6DHrMcT8nahjMzMzg7u4OZ2dnmJmZ4d9//wXwf7/wubq6IiYmRvql8sqVK3B1dUVGRgZsbW3h7OyMP/74AyUlJbC3t0dqairMzMzg5uaG2NhY6YpI6eTU3NwcSqUSt27dgr+/P6KioqRkUC6XQ6FQICoqCkqlEsXFxZDL5XBzc0NKSgqio6N1kkft1WPtnWw2NjbIy8uDUqlEfn6+VEetViM/Px+2trYQQuhMr43L3t5eei6wdAIvk8mk82Z+fr5U7ubmhkuXLsHGxgZNmjTBlStXpOdqtb8gm5iYSM/zli5/kIeHB6KiovRiUqlUUCqVyMjIePSVXUfKu8JXXqJvSKJc0R8dbG1tpT/SGBrfoyTmSqUShYWFNdK+qakphBAoKSmBhYWFtB24ublJVy0VCgViY2N1+qvqstWuI+2z4No62udxhRBQKBRltmlubo7MzEydabR/MCudFCsUCunYod3/zM3NkZ2dDZVKBTc3N1y/fl16Dl77jLdSqURBQQHkcjnkcrn0rLr2WXAbGxvp2fTSfbu5ucHZ2Rn//PMPgPvHhqysLGg0Gp0kViaT4datW7CxscG5c+dgbm4OV1dX6ZgIQHpOuaioCMXFxbCxsUHr1q3h4uICGxsbFBQUSOW2trY4d+6cNKaATCbDlStXANzfNp2cnCCTyZCSkoLIyEh06NABJ06cgLW1NVq1aoXIyEjY2trC398fFy5cgFwuR1RUFNzc3HD16lVcunQJ9vb2sLGxwaVLl+Dq6oobN24gISFBZ72o1Wq0b98eMTExeslpTEwM2rdvL81f6TIhhBS/9vvS7WjHMWjdurXO9Gq1Gv7+/khJSTG4z8jISMjlcnTo0EFnGldXV8jlckRGRuptbw8qq93S83/hwoUKp6+xhPj111/H66+/Lv3s5uam872VlRUAICEhQbrVgGpeZmYm3N3dpeVPVJO4nxPVbytWrMA777yDvLw83LhxA6mpqcjPz0ebNm0QHR0tDbiUlJQEHx8f6apxy5YtpSvE2dnZSE5Oln5Jvnv3LjQaDXJzc5GYmAgvLy8IIVBUVKTzS3hubi5yc3PRuHFjXLhwQUpcgftXlYqKitCqVSspySgsLERCQgKys7PRokULnSup2l/Wb968Kf1SrJ2mdJ3c3FwAwL1793QStNJx3blzR/oFvnS5EAIZGRlSX1qJiYnw8/PDunXrUFxcLH1XOqHQLkdteXni4+PLjCk/P7/MK20NSXnJYHnLw5DksaIr5lVJhg3tryIVJcOP2n7pP8zk5ORI5QkJCdIfdwoLC+Hl5YXU1FSpv/KWT3mxlN5eSyu9jsq6CqyNq3S72mkebKuoqAhJSUk67eTm5qKkpEQ6ZmiXpfY4ANxfvhqNBoWFhdJAcdqY8/LyIJPJkJ2dDRsbG52+tbcAt23bFqmpqTrbRWJiovSYgxACjRs3RkZGBgICAuDj44PExETpmGhmZoaAgAB8++230vTp6ek4f/48kpOTkZGRIcWkHZwuICAAO3bsQN++fSGEQMuWLWFhYaFzrMjJyUGnTp2wfv16aT4uXLiAKVOm4OjRozh//jwmTpyII0eOoFWrVti8eTOKi4vh5+eHu3fvIiMjA35+ftiyZQtyc3P1LkDk5eXhr7/+go+Pj9468/HxkY692kRSWyaEwKhRo7Bjxw7pD4DadvLy8qRbmx+cPi8vDxcuXEBJSYnBfXbq1AlHjhzB+fPnERoaKtXVDkjXqVMnvXYMabf0/Ff6OEGlTyiXgYNqNVxGu9w5qFadMNrtjaiBuHfvnjR4iVKpFHZ2diIkJER4enrqDNzi4OAg/v77b2mwE2tra+Hn5yf8/f2lgWPKGgTL2tpaGnhLO2DKgwPSeHt7C1tbW52BZuzt7YVKpRI+Pj4608lkMmFiYlLuoFXW1tZi+PDhen08+LN2Pir62Nra6pXZ2dnpTatUKsWYMWOEqalpjQ7eZcggY/wY10epVEr7l4mJiUHbdUUfQwaoe9Q25XK5sLW11SvXDtb3YF3t/ysayAq4v2+2adNGWFlZSWWmpqbScW38+PEVxta2bVvRsmVLoVarRUlJidBoNKJ9+/bCwcFBTJ06VeTm5ors7Gyd/VClUglbW1tpHWgHJ5TJZKJt27aipKRE+Pn5Sd+3bNlS3LhxQ5iamgqFQiGUSqUwNTUV8fHxQqVSCZlMJuzt7YWDg4O4deuWMDU1FSqVSkyYMEHIZDLh7e0t9TF27FjRokULYWZmJqZMmSLs7e2FWq0W06dPF7m5uUIIIXJzc8Xzzz8vOnToIDQajd7xX6PRCH9/f/H8889L0+Tk5AgHBwfh4OAgsrOzhb+/v5g6daqYOnWq6NChg8jJyZHabNeunc7yyc3NFVOnThUODg5V6jMrK0vahhMSEoQQQiQmJgobGxshk8lEcXFxpeeystotPf+VDarFhNjIGO1yZ0JcJ4x2eyNqIOrjKNPaXxI5yjQ//JT/MTc3r/MY6utHqVSKbdu2PdQo08ePH5eOj486yrStrW2tjTLt6+srjh07Jo2y3KdPH2Fvby86dOgg4uPjyz0HlB6ZWTuNr6+vNMp0t27d9EaZ1rZZ3ijTvr6+Ve7T09OzzFGmt2/fbvD5rKx2tbFWlhDX2aBaREREVD+kpqZi48aNfA8x30PM9xDzPcSPzXuIR4wY8UjvIfbw8MClS5ca1HuIz507V6X38Hp4eJQ5DfB/7yFetmwZgLLfQ1zW8qnsPcTl9fmo7yEur11D3kMsE6LqDzVERkaic+fOWL9+PaZMmWLQNG5ubtJgHACkg3pGRgafLaxFRrvc8zOBj9yBeQmAmRHNdx0z2u2NqIHgPkpERI+7B/PQB1XpCvHKlSuRnp6O5ORkAMDu3bulxufMmcNRi4mIiIiIiKjBqFJC/Omnn+qMgLh9+3Zs374dADBhwgQmxERERERERNRgVCkh1r5ugYiIiIiIiKihM6m8ChEREREREdHjhwkxERERERERGSUmxERERERERGSUmBATERERERGRUWJCTEREREREREaJCTEREREREREZJSbEREREREREZJSYEBMREREREZFRYkJMRERERERERokJMRERERERERklJsRERERERERklJgQExERERERkVFiQkxERERERERGiQkxERERERERGSUmxERERERERGSU6iwhtrKyQkZGBqysrOoqBCIiIqPGczERERk7eV11LJPJYG1tXVfdExERGT2ei4mIyNjxlmkiIiIiIiIySkyIiYiIiIiIyCgxISYiIiIiIiKjxISYiIiIiIiIjBITYiIiIiIiIjJKTIiJiIiIiIjIKDEhJiIiIiIiIqPEhJiIiIiIiIiMEhNiIiIiIiIiMkpMiImIiIiIiMgoMSEmIiIiIiIio8SEmIiIiIiIiIwSE2IiIiIiIiIySkyIiYiIiIiIyCgxISYiIiIiIiKjxISYiIiIiIiIjBITYiIiIiIiIjJKTIiJiIiIiIjIKDEhJiIiIiIiIqMkr+sAqHYJIQAAmZmZdRxJLSvIgjWAzKwsoLCugzEeRredEREREVGDwoTYyGRlZQEA3N3d6ziS2qU0Beb3UOHDJW4oLKnraIyLmZkZlEplXYdBRERERKSHCbGRcXFxQUJCAqysrCCTyeo6nFr3el0HYISUSiXMzMzqOgwiIiIiIj1MiI2MiYkJ3Nzc6joMIiIiIiKiOsdBtYiIiIiIiMgoMSEmIiIiIiIio8SEmIiIiIiIiIwSE2IiIiIiIiIySkyIiYiIiIiIyCgxISYiIiIiIiKjxISYiIiIiIiIjBITYiIiIiIiIjJKTIgbmClTpkAmk5X7SUpKQlxcXIV1nn/++Qr7SEhIwHvvvYcnnngCdnZ2aNSoEXr37o2DBw/W0lxSXcjOzsaiRYswYMAA2NvbQyaTISwsTK/e6dOn8dJLL6Fjx45QKBSQyWRltpeXl4dp06bBz88PNjY2sLS0RPv27bF8+XIUFRUZFFNMTAxGjRoFOzs7mJubo0ePHjh06NCjzCYRERERkURe1wFQ1bz44ovo16+fTpkQAjNmzICnpydcXV2Rk5ODDRs26E3766+/Ijw8HMHBwRX2sXPnTixbtgzDhw/H5MmTUVxcjO+//x5BQUFYt24dpk6dWq3zRPVDWloaQkND0bRpU7Rv3x6HDx8us96+ffuwdu1atGvXDt7e3oiOji6zXl5eHv755x8MGjQInp6eMDExwfHjx/Haa6/h1KlT2LRpU4XxJCQkoFu3bjA1NcVbb70FCwsLrF+/HsHBwfjtt9/Qq1evR51lIiIiIjJyMiGEqI2O3NzckJiYWBtdGZ2jR4+iZ8+e+OCDD7BgwYJy6/Xr1w9nzpxBamoqzMzMyq33zz//wMnJCY0aNZLKCgoK4O/vj+zsbCQkJFRr/FQ/FBQU4N69e2jSpAkiIyPRuXNnrF+/HlOmTNGpl5qaCmtra6jVasyePRurVq1CVQ4jc+bMwcqVK5GSkoImTZqUW2/WrFn45ptvcOnSJbRs2RIAkJubi1atWsHR0RFnz559qPkkIiIiIuNRWR7KW6YfA5s2bYJMJsO4cePKrZOSkoJDhw5h5MiRFSbDAODr66uTDAOASqXCoEGDkJiYiKysrGqJm+oXlUpVYYKq5eTkBLVa/dD9eHp6AgDS09MrrHfkyBF06NBBSoYBwNzcHE8//TTOnTuHq1evPnQMREREREQAb5lu8IqKirBlyxZ0795dSjTK8uOPP0Kj0WD8+PEP3dfNmzdhbm4Oc3Pzh26DjE9hYSEyMzORl5eHyMhIfPrpp/Dw8ICPj0+F0xUUFMDOzk6vXLv9nT17Fs2bN6+RmImIiIjIOPAKcQO3f/9+3Llzp9JENzw8HM7Oznjqqaceqp+YmBhs374dzzzzDExNTR+qDTJO27dvh6OjI5o2bYqRI0fCzc0Nu3fvhlxe8d/jWrZsib///lvvjoSjR48CAJKSkmosZiIiIiIyDkyIG7hNmzZBoVDg2WefLbdOdHQ0zp49i7Fjx8LEpOqrPDc3F6NHj4ZarcZHH330KOGSEerTpw8iIiLw008/YcaMGVAoFMjJyal0upkzZyI9PR1jxozB+fPnER0djVdffRWRkZEA7g/aRURERET0KJgQN2DZ2dnYuXMn+vfvDwcHh3LrhYeHA8BD3S5dUlKCsWPH4t9//8XWrVvh4uLy0PGScXJyckK/fv0watQofPXVVxgyZAiCgoJw8+bNCqcbOHAgVqxYgT///BMBAQFo2bIl9u7diw8++AAAYGlpWRvhExEREdFjjAlxA/bzzz8jNze30kR306ZNaNmyJTp27FjlPp5//nns2bMHYWFhD327NVFpo0aNkv6YU5nZs2cjNTUVx48fR2RkJKKiomBjYwMAaNGiRU2HSkRERESPOQ6q1YCFh4fD0tISTz/9dLl1Tp06hZiYGISGhla5/bfeegvr16/Hl19+iZCQkEcJlUiivdU5IyPDoPoWFhbo1q2b9PPBgwehVqvx5JNP1kh8RERERGQ8eIW4gbp9+zYOHjyIESNGVDjq86ZNmwCg3Fcy5ebmIioqCmlpaTrln3zyCT799FMsWLAAr7zySvUFTkYjLS2tzPcTr127FgDQqVMnqSwjIwNRUVGVJsnHjx/H9u3bMW3aNOlKMRERERHRw+IV4gZq8+bNKC4urvB26ZKSEmzevBldu3ZFs2bNyqxz+vRp9OnTB4sWLcLixYsBADt27MDcuXPRvHlztG7dGhs3btSZJigoCE5OTtU2L1R/rFy5Eunp6UhOTgYA7N69W3qR+Zw5c2BjY4P4+Hhs2LABAKQBrpYsWQIA8PDwwMSJEwEAGzduxJo1azB8+HB4e3sjKysL+/fvR0REBIYOHapzC/6OHTswdepUrF+/HlOmTAEAxMfH49lnn8XTTz+NJk2a4J9//sGaNWvQrl07LF26tFaWBxERERE93pgQN1Dh4eFo3Lgx+vXrV26dgwcPIjU1FQsXLqxS23/99RcA4OrVq1JyU9qhQ4eYED+mPv30U8THx0s/b9++Hdu3bwcATJgwATY2NoiNjcW7776rM53258DAQGmb6dGjB44fP44ffvgBqampkMvlaNmyJT7//HPMmTOn0lisra3h7OyMlStX4u7du3B1dcXLL7+MhQsXwsrKqrpmmYiIiIiMmEyUdU9jDXBzc5OuNBERERERERHVtMryUD5DTEREREREREaJCTEREREREREZJSbEREREREREZJSYEBMREREREZFRYkJMRERERERERokJMRERERERERklJsRERERERERklJgQExERERERkVFiQkxERERERERGiQkxERERERERGSUmxERERERERGSUmBATERERERGRUWJCTEREREREREaJCTEREREREREZJSbEREREREREZJSYEBMREREREZFRYkJMRERERERERokJMRERERERERklJsRERERERERklJgQExERERERkVFiQkxERERERERGiQkxERERERERGSWZEELURkcqlQqOjo610ZXRys7OhqWlZV2HQQbgumoYuJ4aBq6nhoPrqmHgemoYuJ4aDq6runX79m0UFBSU+32tJcRU89zc3JCYmFjXYZABuK4aBq6nhoHrqeHgumoYuJ4aBq6nhoPrqn7jLdNERERERERklJgQExERERERkVFiQvwYef311+s6BDIQ11XDwPXUMHA9NRxcVw0D11PDwPXUcHBd1W98hpiIiIiIiIiMEq8QExERERERkVFiQkxERERERERGiQkxERERERERGSUmxA3ElClTIJPJyv0kJSUBAHr37l3m9wMGDKjjOXg8ZWdnY9GiRRgwYADs7e0hk8kQFhZWZt3Lly9jwIABsLS0hL29PSZOnIjbt2/r1dNoNPj444/h5eUFMzMztGvXDj/88EMNz8njzZD1pNFoEBYWhqeffhru7u6wsLCAn58flixZgvz8fL02y9sXP/roo1qaq8ePoftTecfDVq1a6dXl/lQzDF1XFZ23goKCpHpxcXHl1vvxxx9rcc4eH2fOnMHs2bPh6+sLCwsLNG3aFM8++yyio6P16vL8VLcMWVc8R9U9Q/cpnqMaHnldB0CGefHFF9GvXz+dMiEEZsyYAU9PT7i6ukrlbm5u+PDDD3Xquri41EqcxiYtLQ2hoaFo2rQp2rdvj8OHD5dZLzExEb169YKNjQ2WLl2K7OxsfPrpp7h48SJOnz4NpVIp1V24cCE++ugjPP/88+jcuTN27tyJcePGQSaTYezYsbU0Z48XQ9ZTbm4upk6diq5du2LGjBlo3LgxTpw4gUWLFuG3337D77//DplMpjNNUFAQJk2apFPWoUOHmpyVx5qh+xMAqFQqrF27VqfMxsZGrx73p5ph6LrasGGDXllkZCSWL1+O4OBgve9CQkIwaNAgnbJu3bpVS8zGZtmyZTh27BhGjx6Ndu3a4ebNm1i5ciUCAgJw8uRJ+Pn5AeD5qT4wZF3xHFX3DN2nAJ6jGhxBDdaRI0cEAPHBBx9IZYGBgcLX17cOozIu+fn5IiUlRQghxJkzZwQAsX79er16M2fOFGq1WsTHx0tlERERAoD4+uuvpbLExEShUCjErFmzpDKNRiN69uwp3NzcRHFxcc3NzGPMkPVUUFAgjh07pjfte++9JwCIiIgInXIAOuuJHp2h+9PkyZOFhYVFpe1xf6o5hq6rskybNk3IZDKRkJAglcXGxgoA4pNPPqmJcI3SsWPHREFBgU5ZdHS0UKlUYvz48VIZz091z5B1xXNU3TN0n+I5quHhLdMN2KZNmyCTyTBu3Di974qLi5GdnV0HURkXlUqFJk2aVFpv27ZtGDJkCJo2bSqV9evXDy1atMCWLVuksp07d6KoqAgvvfSSVCaTyTBz5kwkJibixIkT1TsDRsKQ9aRUKtG9e3e98hEjRgC4f0thWfLy8sq8XY2qztD9SaukpASZmZnlfs/9qeZUdV1pFRQUYNu2bQgMDISbm1uZdXJyclBYWPioIRq97t2761zdBYDmzZvD19dX53jG81PdM2Rd8RxV9wzdp7R4jmo4mBA3UEVFRdiyZQu6d+8OT09Pne+io6NhYWEBKysrNGnSBO+++y6KiorqJlBCUlISbt26hU6dOul998QTT+D8+fPSz+fPn4eFhQVat26tV0/7PdWumzdvAgAaNWqk911YWBgsLCygVqvRpk0bbNq0qbbDM1q5ubmwtraGjY0N7O3tMWvWLL0/AnJ/qn/27duH9PR0jB8/vszv33vvPVhaWsLMzAydO3fGgQMHajnCx5sQAqmpqdLxjOen+uvBdVUenqPqVnnrieeohoXPEDdQ+/fvx507d/R+qWjWrBn69OmDtm3bIicnB1u3bsWSJUsQHR2NzZs311G0xi0lJQUA4OzsrPeds7Mz7t69i4KCAqhUKqSkpMDJyUnvOSDttMnJyTUfMOn4+OOPYW1tjYEDB+qUd+/eHc8++yy8vLyQnJyMVatWYfz48cjIyMDMmTPrKFrj4OzsjLlz5yIgIAAajQa//vorVq9ejb/++guHDx+GXH7/1Mb9qf4JDw+HSqXCqFGjdMpNTEwQHByMESNGwNXVFdevX8fnn3+OgQMHYteuXRg8eHAdRfx4CQ8PR1JSEkJDQwHw/FSfPbiuysNzVN0qaz3xHNXwMCFuoDZt2gSFQoFnn31Wp/zbb7/V+XnixIl44YUX8L///Q+vvfYaunbtWpthEu7frgTcv8XwQWZmZlIdlUol/VtRPao9S5cuxcGDB7F69WrY2trqfHfs2DGdn5977jl07NgRCxYswJQpU6BWq2sxUuPy4KCBY8eORYsWLbBw4UJs3bpVGoiE+1P9kpmZib1792LQoEF6+1PTpk2xf/9+nbKJEyeiTZs2eOONN5gQV4OoqCjMmjUL3bp1w+TJkwHw/FRflbWuysJzVN0qbz3xHNXw8JbpBig7Oxs7d+5E//794eDgUGn9N954AwBw8ODBmg6NyqA96RQUFOh9p32uR1tHrVYbVI9q3ubNm/HOO+9g2rRpBv01XalUYvbs2UhPT8fZs2drIUIq7bXXXoOJiYnOcY77U/2ybds25Ofnl3u79IPs7e0xdepUXLlyBYmJiTUc3ePt5s2bGDx4MGxsbLB161aYmpoC4PmpPipvXT2I56i6Zeh60uI5qn5jQtwA/fzzz8jNzTX4lwp3d3cAwN27d2syLCqH9tYX7a1ppaWkpMDe3l76C6GzszNu3rwJIYRePYCvz6otERERmDRpEgYPHow1a9YYPB33tbqjVqvh4OCgs+y5P9Uv4eHhsLGxwZAhQwyehvvUo8vIyMDAgQORnp6OX3/9VWe75/mpfqloXZXGc1TdMnQ9lcZzVP3GhLgBCg8Ph6WlJZ5++mmD6l+/fh0A4OjoWJNhUTlcXV3h6OiIyMhIve9Onz4Nf39/6Wd/f3/k5ubqjVZ46tQp6XuqWadOncKIESPQqVMnbNmyRXrWxxDc1+pOVlYW0tLSdJY996f6IyUlBYcOHcIzzzxT5i2C5eE+9Wjy8/MxdOhQREdHY8+ePWjTpo3O9zw/1R+VrSstnqPqlqHr6UE8R9VvTIgbmNu3b+PgwYMYMWIEzM3Ndb7LzMzUu/VCCIElS5YAAPr3719rcZKuZ555Bnv27EFCQoJU9ttvvyE6OhqjR4+WyoYNGwaFQoHVq1dLZUIIrFmzBq6urmW+coGqz+XLlzF48GB4enpiz5495d6udPv2bb2yrKwsfPnll2jUqBE6duxY06Earfz8fGRlZemVv//++xBCYMCAAVIZ96f648cff4RGoyn3zqay9qmkpCSsW7cO7dq1K3PQJ6pYSUkJxowZgxMnTuCnn35Ct27dyqzH81PdM3Rd8RxVtwxZTzxHNUwcVKuB2bx5M4qLi8v8peLcuXMICQlBSEgIfHx8kJeXhx07duDYsWN44YUXEBAQUAcRP/5WrlyJ9PR0aTTA3bt3S8+7zZkzBzY2NliwYAF++ukn9OnTB6+88gqys7PxySefoG3btpg6darUlpubG1599VV88sknKCoqQufOnfHzzz/jyJEjCA8Pr/QZFSpfZevJxMQE/fv3x7179/DWW29h7969OtM3a9ZMOvmtWrUKP//8M4YOHYqmTZsiJSUF69atw40bN7Bhwwa99xSS4SpbT/fu3UOHDh0QEhKCVq1aAbg/6v6+ffswYMAADBs2TGqL+1PNMuTYpxUeHg4XFxf07t27zLbmzp2La9euoW/fvnBxcUFcXBy+/vpr5OTkYPny5TU+L4+jN954A7t27cLQoUNx9+5dbNy4Uef7CRMmAADPT/WAIesqKyuL56g6Zsh6unnzJs9RDZGgBqVr166icePGori4WO+769evi9GjRwtPT09hZmYmzM3NRceOHcWaNWuERqOpg2iNg4eHhwBQ5ic2Nlaqd+nSJREcHCzMzc2Fra2tGD9+vLh586ZeeyUlJWLp0qXCw8NDKJVK4evrKzZu3FiLc/R4qmw9xcbGlvs9ADF58mSprQMHDoigoCDRpEkToVAohK2trQgODha//fZb3c3gY6Ky9XTv3j0xYcIE4ePjI8zNzYVKpRK+vr5i6dKlorCwUK897k81x9BjX1RUlAAgXn/99XLb2rRpk+jVq5dwdHQUcrlcNGrUSIwYMUKcPXu2Fubk8RQYGFjhMa00np/qliHriueoumfIeuI5qmGSCfHAk9xERERERERERoDPEBMREREREZFRYkJMRERERERERokJMRERERERERklJsRERERERERklJgQExERERERkVFiQkxERERERERGiQkxERERERERGSUmxERERA8hLi4OMpkMixcvrutQ6lR9XQ69e/eGp6dnXYdBRET1HBNiIiIiIiIiMkpMiImIiIiIiMgoMSEmIiIiIiIio8SEmIiIakVWVhbeeecdPPHEE3BwcICZmRlatWqFDz74AMXFxQCAX375BTKZDN98843e9BqNBm5ubujYsaNO+VdffYWWLVtCpVKhefPmWLlyJcLCwiCTyXD48OEqx/n3338jODgYFhYWcHBwwOTJk5GWlgaZTIYpU6ZUOG1F/Xp6eqJ379565fv370dwcDDs7OygVqvRokULzJkzB4WFhVKdnJwczJs3D97e3lCpVHBxccH06dORkpKi01ZeXh7+85//oEWLFlCr1bCzs0P79u3x/vvv6/UbHh6Obt26wdLSEhYWFujVqxciIiIMWkaG0Gg0WLFiBfz9/aFWq2FjY4OBAwciMjJSqnP58mXIZDIsWLCgzDa6d++OJk2aSNsHAERFRSEkJAROTk5QqVTw8fHBe++9h6KiomqLnYiIjIe8rgMgIiLjkJSUhG+//RajRo3CpEmToNFosH//frzzzjuIjY3F2rVrERwcDCcnJ2zcuBEvvPCCzvSHDh1CUlIS3nrrLals2bJlmDdvHjp16oQPP/wQubm5+Pjjj9G4ceOHivHq1avo2bMnhBB45ZVX4OLigr1792LAgAGPNO/lWbFiBV5++WV4eXnh5ZdfhqurK65fv45t27bh/fffh1KpRFFREfr3749jx45hzJgx6NWrFy5fvow1a9YgIiICZ8+eRaNGjQAAs2bNwoYNG/Diiy+iffv2yM/Px5UrV3Do0CG8++67Ur/z5s3DsmXLMHToUCxduhQlJSXYtGkTBgwYgK1bt2LEiBGPPG/jx4/Hli1bEBISghdeeAHZ2dlYu3YtevbsiT/++ANPPPEEWrdujY4dO2LTpk344IMPIJPJpOmvXbuGEydO4NVXX4Vcfv/XlTNnzqBv375wdHTE7Nmz0bhxY5w+fRqhoaH466+/sH379keOm4iIjIwgIiKqBQUFBaKoqEivfNKkScLExEQkJSUJIYR49dVXhUwmE3FxcTr1pkyZIuRyuUhNTRVCCHHnzh1hZmYm/P39RX5+vlQvOTlZWFtbCwDi0KFDVYpx9OjRAoA4efKkVKbRaKTyyZMnS+WxsbECgFi0aJFUtn79+nL79fDwEIGBgdLP8fHxQqFQiHbt2onMzEy9+hqNRgghxDfffCMAiPnz5+t8/+OPPwoAYvbs2VKZnZ2dmDlzZoXzeObMGQFALF68WKe8qKhIdO7cWXh4eEh9G6Ks5bB161YBQISFhenUzczMFE2bNhW9evWSyr788ksBQPzxxx86dRcvXiwAiLNnz0plbdu2Fb6+viI7O1un7vLlywUA8fvvv0tlgYGBwsPDw+D5ICIi48RbpomIqFYolUrpSl9RURHu3r2LtLQ0BAUFQaPRSLfSTpw4EUIIbNy4UZo2Ly8P27ZtQ3BwsHT1NyIiAvn5+XjppZegUqmkus7Ozhg/fnyV4yspKcG+ffvQvXt3dOnSRSqXyWR48803H2qeK7J161YUFRVh0aJFsLKy0vtee7V0x44dkMvlePvtt3W+HzNmDJo3b44dO3ZIZTY2Njh16hTi4uLK7feHH36ATCbDhAkTkJaWJn3S09MxePBgxMfH4+rVq480b5s2bYKdnR0GDRqk00dBQQGCgoJw7Ngx5OXlAQBCQkIgl8uxYcMGnTY2btyINm3aICAgAABw8eJFXLx4EePGjUNeXp5Ou9or+NV5yzcRERkHJsRERFRrVqxYAV9fX5iZmcHBwQGOjo6YOHEiACA9PR0AEBAQAF9fX52EeOfOncjKypLqAkBsbCwAoGXLlnr9lFVWmdu3byMnJ6fa2quMNun09/evsF5sbCzc3NxgY2Oj912bNm2QlJQkPW/8xRdfIDo6Gl5eXmjTpg1mz56tlyRevnwZQgj4+PjA0dFR56N9l3Bqauojzdvly5dx7949NG7cWK+Pb7/9FiUlJUhLSwMANG7cGMHBwdi6dSsKCgoAACdPnkRMTIzO+r58+TIAYOHChXptatfPo8ZNRETGh88QExFRrfjss8/w5ptvYuDAgXjjjTfQpEkTKJVKnDt3Dm+//TY0Go1Ud+LEiZg3bx4iIyPRqVMnbNiwAdbW1hg2bFgdzkHlSj8D+6CSkpIqT1NVw4cPR1xcHPbt24fDhw9j165dWLVqFYYPH45t27bBxMQEGo0Gpqam0gBmZfHz83ukODQaDZo0aaJ31bc0R0dH6f+TJk3Cvn37sHv3bowaNQobNmyAiYmJzpV+7fYxd+5cBAUFldmmi4vLI8VNRETGhwkxERHVio0bN8LLywt79uyBicn/3aB07do1vbrjx4/HggULsHHjRjRt2hQHDhzApEmToFarpTqenp4AgCtXrqBXr14601+5cqXK8Tk6OsLCwqLMaQ1tz97eHgBw7949nfL8/HykpKSgWbNmUlmLFi0AABcuXICXl1e5bXp7e+PAgQPIysrSu7X633//haurK5RKpVTm4OCAiRMnSreev/TSS1izZg3+/PNP9O7dG82bN8f+/fvh5eUFHx8fg+arqpo3b45ff/0VTz75pM46K8/TTz8Na2trbNy4EcOGDcOWLVvQu3dvuLu767QJAAqFAv369auRuImIyPjwlmkiIqoVpqamAAAhhFSWl5eH//73v3p13dzc0Lt3b/zwww8IDw9HcXGxzu2zABAUFASVSoXVq1dLt9oCQEpKCsLDwx8qvoEDB+L48eM4deqUznefffaZQW1ok7bff/9dp/y///2v3hXiUaNGQaFQIDQ0FNnZ2XptaZfT8OHDUVxcjE8//VTn+59++glXr16VRoQuKSmRbjvXkslkaN++PQDgzp07AIAJEyYAuH/rcemr8lq3bt0yaF4rMnHiRBQXF+uMbF1RH2q1GqNGjcK+ffsQHh6OtLQ0vfUdEBCANm3aYPXq1UhISNBrMz8/H1lZWY8cOxERGRdeISYioloxcuRILFy4EIMGDcLIkSNx9+5dhIWFlTmgFHA/qZo6dSoWL16Mpk2bIjAwUOd7BwcHLFq0CAsWLECPHj0wbtw45Obm4uuvv0aLFi0QGRlZ5duRlyxZgv379yMoKAizZ8+Gq6sr9u7di9u3bwOo/PbmVq1a4amnnsLq1ashhICfnx9OnDiBo0ePSq9G0nJ3d8dnn32Gl19+Ge3bt8fEiRPh6uqK+Ph4bN26FSdPnoStrS2mTJmCsLAwhIaG4tq1a3jyyScRFRWFr776Ck2bNsWiRYsA3H/Ps7OzM4YNGwZ/f380btwYV69exerVq+Hs7Iy+ffsCALp06YJ33nkHS5YswdWrV/HMM8/AyckJSUlJOH78OGJiYsq8al8Vzz77LPbs2YPPPvsMkZGRGDRoEGxtbZGQkIDff/8dSqUShw4d0plm4sSJWLduHV555RWo1Wo888wzOt/LZDJ8//336Nu3L/z8/DBt2jS0atUKmZmZuHLlCrZt24bt27eX+a5nIiKictXlENdERGQ8iouLRWhoqPDy8hJKpVI0a9ZMLFmyRERERAgAYv369Tr1MzMzhbm5eZmvHCpt5cqVonnz5kKpVAofHx+xYsUK8d///lcAEKdOnapynOfPnxd9+/YVarVa2NnZiYkTJ4rr168LADqvNCrrdUNCCJGUlCSGDx8uLCwshJWVlRg5cqS4ceOG3muXtPbu3Sv69OkjrKyshFqtFi1atBAvv/yyKCgokOpkZ2eLuXPnCk9PT6FQKISTk5N47rnnRHJyslSnoKBAzJs3T3Tq1EnY2dkJlUolPD09xYsvviji4+P1+v3555/FU089JWxsbIRKpRIeHh5i2LBh4scff6zS8ipvOWg0GrFu3TrRrVs3YWlpKdRqtWjWrJkICQkRv/76q147Go1GNG3aVAAQISEh5fZ3/fp1MW3aNOHu7i4UCoVwdHQUXbp0EaGhoeLOnTtSPb52iYiIDCETotS9a0RERI+BOXPmYOXKlUhJSUGTJk0eub2zZ8+iU6dO+PDDDzFv3rxqiJCIiIjqAz5DTEREDZb2XbalpaSk4Pvvv4efn99DJcMPtimEwMcffwwA5Y5uTERERA0TnyEmIqIG67fffsOCBQswYsQIuLm5ITY2Fv/73/+QnZ2Njz76CABQWFiIu3fvVtqWNnn28/NDcHAw2rZti5ycHOzatQtHjx7FmDFj0LFjxxqdn/rk9u3b5b4qSsvGxsagUaSJiIjqK94yTUREDVZ0dDTeeustnDlzBnfu3IGZmRk6d+6M+fPnS4NIHT58GH369Km0Le3p8I033sDevXuRmJiI4uJieHt7Y/z48Zg7dy4UCkWNzk994unpifj4+ArrrF+/HlOmTKmdgIiIiGoAE2IiInqs3bt3D2fPnq20Ht9tq+vYsWNl3pJemq+vL5ydnWspIiIiourHhJiIiIiIiIiMEgfVIiIiIiIiIqPEhJiIiIiIiIiMEhNiIiIiIiIiMkpMiImIiIiIiMgoMSEmIiIiIiIio8SEmIiIiIiIiIzS/wO4l9uwOKw1SQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "draw_box(df, 'avg_glucose_level', 'Phân bố của trường dữ liệu chỉ số đường huyết trung bình ')\n",
+    "print()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 127,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIoCAYAAAAcFQqgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRV0lEQVR4nO3de1QV9f7/8ddGAUUFBBREwQt5w/uljNSOR000tYtWx1JD7asnQ0s5lccyb11My/JUpse+pfktv1bnZH71mKbmJY+XjMQ0ydLsYCkgIqCY3Pbn90eL/XMnKCA4gzwfa+212PP5zMx79uxh8WJmPuMwxhgBAAAAAADb8bC6AAAAAAAAUDRCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwDAtg4dOqSZM2fq448/troUAFXIp59+qqioKNWuXVv169fXE088IafTaXVZAKooQjsAVHL5+fl64YUXNG/evOvqj8rc3Fw98MADeuONN9S5c+cKX9/ChQvVpk0b1axZU82aNdPbb79d4eu0m19++UWzZs3Sq6++KmOM1eVUeTt37tTMmTO1fft2q0sps5UrV2rmzJn6z3/+Y3UppZKbm6sFCxYoLS1Na9as0csvv6wNGzZYXRaAKqq61QUAAK7OnDlzNGPGDBljVL16dcXFxVldUrmYNWuWDhw4oPXr16tJkyYVvr4GDRroX//6l0JDQ/XGG29o7Nixuu+++1SnTp0KX7ddNGzYUJmZmZo5c6by8vL05JNPWl1SlZWenq57771XycnJWrx4sRITE1W3bl2ryyqVffv2aeTIkXI6ndq+fbs2b94sh8NhdVklcuedd7p+/vTTT1WnTh1FRkZaWBGAqowz7QBQTpo0aSKHw+H28vb2Vnh4uP70pz/piy++uGSeUaNGyeFwaNmyZWVa58GDB/Xcc89pypQpevTRRzVt2jT98MMPV7klpXO12yD9dhm8r6+vPDw81L9/f6WnpyslJUVLlizRbbfdVn7FXsaQIUPUpEkTZWRk6B//+If69etXpQJ7ofnz5+vee+/V008/XeR3tjJbtmyZHA6HRo0aVWT72rVrFR4eLj8/Pw0fPlwJCQmaP3++HA6Hzp49W+r1Ff4e+L1evXrJ4XBo69atxc77yCOP6MKFC9q2bZvy8/M1efLkUq+/Il3puM/Pz9eYMWPUqVMnrVq1Slu3btXChQuvbZGl9Nxzz7n22XvvvSdJmjx5sv7+979r48aNaty4sSTpp59+ksPhuCb/TAQASZIBAJSLxo0bG0mme/fuJiYmxsTExJg777zTNGzY0EgyDofDzJ8/322emJgYI8ksXbq01OvLz883Xbt2NT169DD5+fkmJyfHdOnSxfTo0cMUFBSU01Zd2dVsgzHGpKenmxtuuMHcdtttZufOncbPz8/85S9/Kd8iS6igoMDccMMNZsSIEebXX3+9puueMWOGkWRmzJhxTddblAsXLpiePXua0NBQk5KSYnU55Wbp0qVGkomJiSmyvUmTJqZp06Zm8ODBpnbt2kaSkWQeeuihMq2vcP7f+8Mf/mAkmS1bthQ53//+7/8ah8Nh1q5da4wxZs2aNcbhcJgNGzaUqY7ycOzYMdf2FPU6duyYW//nn3/e+Pr6mqNHjxpjjHnqqadMrVq1zJEjR0q97qv9HVMSq1evNh4eHmbJkiXmqaeeMjVq1DB79+41EyZMMP/617/c+hZ+Fo0bN66wegDgYlweDwDl7L/+67/czuRduHBBf/7zn7V8+XI9+eSTGjRokFq0aHHV6zly5IgGDhyosWPHqlq1aqpWrZo+/PBDLV++XD/99JOaNWt21eu4Fl566SV16NBBy5cvl4+Pjz799FM99thj2rVrl6Kioq5pLRcuXNBf/vIX3XPPPapRo8Y1XbcVfvnlF7311lsaN26cQkNDXdO9vb21evVqvf7669q3b5+io6Ndbf/zP/+jatWq6YEHHrCi5Ar17rvvKiIiQg0bNlROTo6++eYb+fj4qE2bNm791q1bp9atW6tp06ZlWs/y5ct1/vx5hYeHF9l+6tQpLV++XAMHDpQkDRo0SMuWLdMvv/xSpvWVh9q1aysmJsb1fseOHTp69Ki6d++uG264QbVr13a1FRQUyMPDQx9//LHr99Ds2bPl5+enxMRERUREXPP6LyctLU0LFizQa6+9prFjx7qmP/fcc1q5cuUlvwsaNmyoxMREeXp6XutSAVRVVv/XAACuF4Vn2os6G3T27FlTq1YtI8nMmTPHNf1anEGqaNfDNtiBFWfas7OzjSTz4Ycflniexx9/3ERGRlZgVRXnSmfaS6pDhw5m0qRJV+ynYs60Xw+u5XHP7xgAVR33tAPANVC7dm21bNlS0m/3Qxbl2LFjGjlypEJCQuTt7a2IiAhNmzZNOTk5l/Q9e/as3nrrLQ0ZMkTNmzdXrVq1VKtWLbVr105PP/20MjIyilxH4X33P/30k7Zs2aJ+/fqpbt26qlmzpjp37qzly5df1Xbu379fQ4YMUb169VSzZk21b99ef/vb31RQUFDsPCtXrlSfPn0UEBAgb29vNW7cWGPGjNH3339fphqMMfr44481aNAghYSEyMvLSyEhIerRo4fmzp2rX3/91dX3SvflFncPdF5ent577z0NHz5crVq1kq+vr2rWrKmWLVvq0Ucf1YkTJ0pVs8Ph0KxZsyT9NgDfxeMiXLzui/ff6tWr1bt3bwUEBLjdH32l+6Vnzpwph8Oh7t27a926dZJ+O7NeqKj90aBBAz399NP69ttv9dVXX7n1v5rv1OnTp/Xoo48qPDzcta5JkyYpIyOjzGMl5Ofna8GCBWrXrp1q1KihevXqaejQoTpw4ECx8xR+JjNnziyyfevWra79sW/fPiUnJ1/VkxqutI82b96sIUOGqEGDBvLy8lL9+vV19913a9euXZf0Lcn91Rfvo9JIT0/XpEmT1LhxY9f4HBMmTFB6evoV5y2P47pw2959911J0ujRo92OjcL9dbWfQXp6up566im1adNGPj4+qlOnjrp06aJ58+a5/b74fV3c0w7gWuHyeAC4RrKysiS5B6RCCQkJeuyxx1S3bl394Q9/UHp6uv7973/r+eef17fffqtVq1a59d+/f7/GjRunevXqqWXLlurSpYvOnDmj+Ph4vfDCC/rwww+1e/duBQYGFlnLO++8o+eee06dO3dW//799dNPP2n37t2KiYlx/aFeWl9++aXGjx+vkJAQ9enTR2fOnNHWrVs1adIk7dixQx9++KHboFzGGI0aNUrLly9X9erVdeutt6p+/fr6+uuvtXTpUn3wwQf65z//qf79+5e4hry8PA0bNkwff/yxPDw8dNNNN6l3795KS0vToUOH9Ne//lV/+tOfrvqP7ZSUFI0cOVJ+fn5q3bq12rdvr+zsbCUkJOj111/XypUrtXPnTt1www0lWl5MTIwSEhK0f/9+dejQQR07dnS19ejR45L+8+fP1xtvvKGuXbuqf//+OnHihKpVq1aqbdi5c6d27typevXq6dZbb73s/khKStILL7ygF154QdJvTyz4vdJ+p06ePKmePXvq6NGjCggI0KBBg+R0OrV8+XKtX79erVu3LtX2SJLT6dS9996rTz75RF5eXurVq5fq1q2rPXv26KabbtKYMWNKvczf69y5szw8PDRo0KCrXlZRHn/8cc2fP18eHh7q2rWrevbsqaSkJK1evVpr1qzRW2+9pdGjR1fIui+WkpKinj176ocfflDdunVd++f999/X+vXrL7lloFB5HteFl+T//lL8QhcfJ2X1448/qnfv3vrPf/6jevXq6fbbb1deXp62bNmiKVOm6IMPPtCmTZsq3cj9AK4z1p7oB4Drx+Uuj9+/f7/x8PAwksw777zjml542ack8/TTT5v8/HxX24EDB1yX1O/cudNtecePHzebNm26ZMC57Oxs8+CDDxpJ5pFHHim2Rk9PT7NmzRq3tsJLh/38/Mz58+dLvN0Xb8Mjjzxi8vLyXG0HDx409erVM5LM4sWL3eZbtGiRkWSCgoLMvn37XNOdTqfrUnF/f3+Tmppa4lri4uKMJNOkSROTkJDg1uZ0Os2mTZtMRkbGJbUXd9ltcZdTZ2VlmdWrV5ucnBy36bm5uWbq1KlGkrn99ttLXLcxJbs8vnD/VatWzaxevbrIPlca5KxwPePGjTMbNmwwp06dMsaUbH9IMuvWrSuyptJ+p+6++24jyfTq1ctkZma6pp85c8b06NHDtb7SXBL9xhtvGEkmODjYHDp0yDU9Ly/PjB8/3rXM3+/PK332W7ZsMZJMly5dzGeffWa+//77EtVTuL7fK24fLVmyxEgyN9xwg9m/f79b27Zt20ydOnWMl5eX2/pLMiha4T76/WBxl3PPPfcYSaZnz55ux8zp06dNt27dit0/FXFcX+k4vZrPoHBb7rjjDnPu3DnX9NTUVNO5c2cjyTzwwAOlXh8AlCcujweACpSZmal169ZpyJAhcjqdCg0N1X333XdJvy5duujZZ591O1vatm1bjRw5UpK0adMmt/6NGjVSnz595OHh/mvcx8dHixYtUvXq1fXRRx8VW9fEiRMvOVM4atQotWrVSpmZmfrqq69Kva0NGjTQ/PnzVb36/7+Iq02bNpo+fbqk384OX+zll1+WJE2fPt3tjJnD4dCMGTPUvn17ZWRk6K233irR+lNTU/XGG29Ikv7xj3+oQ4cObu0Oh0N9+vSRn59fqbft9+rUqaM77rhDXl5ebtM9PT31wgsvKDQ0VOvXry/TY8JKIiYmRnfcccdVLaNBgwbq16+fgoKCJJVsf0i/PXu7KKX5Tv3nP//RJ598Ig8PDy1atEi+vr6uNn9/fy1atKhMz/NesGCBpN8ud7/4TH316tX1yiuvKCQkpNTLvFjt2rV12223qXnz5le1nKI4nU7X5d4rV650fd6Fbr31Vj3zzDPKzc3V3//+93Jf/8WOHz+ujz/+WA6HQ4sXL3Y7ZgICArR48eJi5y3v47oi7dixQ3v27JGPj4+WLFmiWrVqudrq1aunJUuWSPptf/z8889WlQkAPKcdAMrbxfdd+vv7a+DAgTp69KgiIiK0bt06tz8MCw0aNKjIkFIYPIobNXrnzp2aO3euYmNjNXr0aI0aNUqPPPKIvLy8dOrUKZ05c6bI+QYPHlzk9Cut73Luu+++IkdcLxxx+ocffnDd6/3zzz/r6NGjbu0XczgcrkuAt2zZUqL1b9myRbm5uerSpYu6dOlS6vrLYv/+/XrllVc0ceJEjRkzRqNGjdKoUaOUn58vp9OpI0eOVMh677nnnnJdXnnsj9J8p7744gsZY9S5c2e1atXqknnatm17SWi9kl9++cX1eY8YMeKS9ho1ahT5DzO72Ldvn06cOKGIiIhiv7+9evWS9NtxX5G2b98up9Opzp07KzIy8pL2jh07Frl/KuK4rkiFYwr0799fwcHBl7R36dJFHTp0kNPp1LZt265xdQDw/3FPOwCUs4vvuywcROrmm29W//793c5CX6y4Rz8VnoG8cOGC2/TU1FQNHTpUO3bsuGwtWVlZRd6LWdr1lURxj7+qU6eOAgMDdfr0af38888KDQ11BbjAwEC3s6wXK3wsVEn/gfCf//xHkooMgeUtOztbI0eOvGSsgd8rHMegvJX3AFjlsT9K850qPGt5pYHD9u/ff/nCL1K4zKCgILfHj12srI9ouxZ+/PFHSdLRo0eveJXBqVOnKrSWws/ycp9X06ZN9c0337hNq4jjuiIV1nC57YyIiND+/fttUS+AqovQDgDl7PfPaS+J31/mXpJ17NixQ1FRUZo1a5Y6dOigunXrup4bHBoaqpMnT8oYUy7rKy/F1WNXxY0QPnXqVK1atUqtWrXSiy++qBtvvFFBQUGuy+VvueUW7dq1q8K2t2bNmmWe92pGPb+csnynLhdOy3J5fEWpqM+sqHWEhIQoOjr6sn0Lb2ko7bKrMj4DAJUZoR0AKpns7GytW7dOHh4eWrdunfz9/S9pT05OvuZ1HTt2rMjpZ8+e1enTpyX9di++JDVs2FDSb4/8ysrKKvKsXOGZx8K+V1J4pve7774rcc2FIbu4e88Lz97/3ocffihJ+uCDD4q8TPiHH34ocQ3lrSzbVBH743IKl3G5R5CV9vFkhctMS0vTuXPnijzbXtwyy/o9KE9hYWGSfjtLXZrH3F2p9ry8PJ08ebJUtZR1/1zr71Ghsn4GhTUU1lSUiqgXAEqLe9oBoJLJzMxUQUGBfH19LwnskvTee+9Zckb7o48+KvKZ8v/zP/8jSbrhhhtcf/g2atTIdZlsUQHFGOOa/sc//rFE6+/du7e8vLwUHx+vr7/+ukTzFNaTmJhYZA2ffvppkfMVPqe6cePGl7Rt2LBBaWlpJVr/xQqDR35+fqnnvdjltun8+fNF3ktcEfvjcnr27CmHw6H4+Pgin9t96NChUl0aL/22Dc2aNZMkrVix4pL2nJycYgdnvNxnJkn/+te/SlVLWRRerXHo0CF9++23JZ6vXr168vLyUnp6ulJTUy9p37BhQ6m/U7feeqscDoe+/vrrIv8Jtn///ksujZcq7nt0pWOjrJ9B4RgB69evV0pKyiXt+/btU0JCgjw8PHTrrbeWuF4AKG+EdgCoZIKDg1W3bl1lZGS4AnGh3bt3a+rUqZbUdeLECT3++OMqKChwTUtMTNTs2bMlSZMnT3br//jjj0uSnn32WbeAZozRc889p4SEBPn7+2vs2LElWn/9+vU1fvx4SdK9996rgwcPurUbY/T5558rMzPTNa1v376SfvvHwqFDh1zT8/LyNGXKFO3du7fIdRUOrvb666+7TT98+LAefvjhEtX7e4VXIZQmsBWlcJsWLlzodh9udna2xo0bp+PHjxc5X3nvj8tp0qSJBg8eLKfTqfHjx7udIc3MzNT48ePL9I+nwmfBz5w50y1sFhQU6PHHH3cNhPh7vXv3loeHhzZs2OA24JgxRq+99pr++c9/lrqW0vL09NSMGTNkjNHdd99d5HgVBQUF+vzzz7V79263+QoD5bRp09wuA9+/f78mTJhQ6lrCw8N19913u/bPxWMznDlzRo888kix+6civkdXOjbK+hn06NFD3bp106+//qo///nPOn/+vKstLS1Nf/7znyVJw4YNc10JAQCWuOYPmQOA69TlntNenLI+J/zVV191PSe5W7du5v777zfdu3c3DofDjBw5sthnEl/pec1Xqudy8zz88MOmRo0apmnTpmbYsGEmOjraeHl5GUnm7rvvNk6n020+p9NpRo4caSSZ6tWrmz59+pj777/ftGzZ0kgyNWvWvOSZ4FeSk5Nj7rjjDiPJeHh4mKioKPPAAw+Yfv36mYYNGxa57Xfeeadrfbfddpu54447TKNGjYyvr6957LHHivz8//nPfxqHw2EkmXbt2plhw4aZ3r17G09PT9O7d29zyy23XPZZ6UVJTk42tWrVMpJM9+7dzahRo8xDDz1k3nnnHVefkjxvOzc313Tt2tX1fPSBAweaAQMGmHr16pmGDRuaMWPGFPlM8rLuj7J+p3755RfTpEkTI8kEBgaaIUOGmLvvvtsEBASY5s2bu/bj+++/X9KP0BQUFJjBgwcbScbLy8tER0ebYcOGmaZNm5oaNWq4ntX++/1pjHHt62rVqplevXqZIUOGmIiICOPp6Wn++te/GknmD3/4Q4lrMab0z2k3xpgnnnjCNV+bNm3MnXfeaYYNG2Z69epl/P39jSSzaNEit3l2797tOtZatGhh7rnnHhMVFWU8PT1NTExMmZ7TfvLkSRMREWEkmYCAANf+8ff3NxEREa798/v9WhHH9f79+42Hh4fx8PAwffv2NaNHjzYPPfSQWb169VV/BkePHnW11a9f39xzzz3mzjvvNL6+vkaS6dy5s0lPT3ebh+e0A7jWCO0AUE6uZWg3xphPPvnE3HLLLcbf39/Url3bdO3a1bz55pvG6XRaEtqXLl1qvv76azN48GATGBhovL29TZs2bcwrr7xi8vLyip1/xYoVrkDi6elpwsLCzKhRo8x3331X4hou5nQ6zYoVK0y/fv1MYGCg8fT0NCEhIaZnz57mpZdeMr/++qtb/wsXLphp06aZZs2aGU9PT1O/fn1z//33myNHjlz289++fbvp06ePCQoKMj4+PqZt27bm+eefNzk5OZcNZZezfft207dvX1O3bl3j4eFxybpLGr7OnDljJkyYYBo1amQ8PT1Nw4YNzbhx40xKSoqZMWNGkaG9UGn3x9V8p1JTU01sbKxp1KiR8fLyMmFhYSY2NtacPn3a9O7d20gyGzZsuOy2/l5eXp6ZP3++iYyMNN7e3iYwMNDceeedJiEh4bL70+l0mvnz55vWrVsbLy8vExAQYAYPHmzi4+PNli1brlloN8aYf//732b48OGmcePGxtvb29SpU8e0aNHC3HXXXea///u/LwmRxhiza9cu069fP+Pr62tq1qxpOnTocMXfB1eSlpZmJk6c6No/jRo1Mg8//LA5derUFX9XlPdxvWrVKtO9e3dTp04d1z/Mfv8dLutncPr0aTN16lTTunVrU6NGDePj42M6depkXnzxRXP+/PlL+hPaAVxrDmMq2VC+AADgupaRkaFmzZopMzNTKSkppR4tHQCA6wn3tAMAAEt8+eWXl0w7deqUYmJidObMGQ0aNKhKB3aHw+F6VVaF9c+cOdPqUgCg0uKRbwAAwBLdunVTo0aN1Lp1awUGBuqXX37Rvn37dO7cOYWHh+uNN96wukQAACxHaAcAAJaYNm2aNm/erP379+vMmTPy8vJSRESEBg0apLi4OAUGBlpdoqUSExP13XffqVWrVlaXUmZffPGF0tLS1KNHD6tLAYBKi3vaAQAAAACwKe5pBwAAAADApgjtAAAAAADYFPe0S3I6nTpx4oTq1KlTqUdoBQAAAABUDsYYnT17VqGhofLwKP58OqFd0okTJxQWFmZ1GQAAAACAKub48eNq1KhRse2Edkl16tSR9NuH5evra3E1AAAAAIDrXVZWlsLCwlx5tDiEdsl1Sbyvry+hHQAAAABwzVzpFm0GogMAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2FR1qwsAAAAAANhfUlKS0tLSrC7jioKCghQeHm51GeWG0A4AAAAAuKykpCS1bt1a58+ft7qUK/Lx8VFiYuJ1E9wJ7QAAAACAy0pLS9P58+f15Nx3FBbR0upyinX86GHNmzJGaWlphHYAAAAAQNUSFtFSzSM7WV1GlcJAdAAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZV3eoCAADApZKSkpSWlmZ1GSUSFBSk8PBwq8sAAOC6RGgHAMBmkpKS1Lp1a50/f97qUkrEx8dHiYmJBHcAACoAoR0AAJtJS0vT+fPn9eTcdxQW0dLqci7r+NHDmjdljNLS0gjtAABUAEI7AAA2FRbRUs0jO1ldBgAAsJClA9EtWrRI7du3l6+vr3x9fRUVFaVPP/3U1d6rVy85HA6318MPP+y2jKSkJA0cOFA+Pj6qX7++nnjiCeXn51/rTQEAAAAAoNxZeqa9UaNGevHFF9W8eXMZY/Tuu+/qzjvv1L59+9SmTRtJ0tixYzV79mzXPD4+Pq6fCwoKNHDgQIWEhGjnzp06efKkHnzwQXl6euqFF1645tsDAAAAAEB5sjS0Dx482O39888/r0WLFmn37t2u0O7j46OQkJAi5//ss8906NAhbdq0ScHBwerYsaOeffZZTZkyRTNnzpSXl1eFbwMAAAAAABXFNs9pLygo0MqVK5Wdna2oqCjX9Pfff19BQUFq27atpk6d6jaS7q5du9SuXTsFBwe7pkVHRysrK0vffvttsevKyclRVlaW2wsAAAAAALuxfCC6AwcOKCoqShcuXFDt2rW1atUqRUZGSpIeeOABNW7cWKGhofrmm280ZcoUHT58WB9//LEkKTk52S2wS3K9T05OLnadc+bM0axZsypoiwAAAAAAKB+Wh/aWLVsqISFBmZmZ+sc//qGYmBht27ZNkZGRGjdunKtfu3bt1KBBA/Xp00dHjx5VREREmdc5depUxcXFud5nZWUpLCzsqrYDAAAAAIDyZvnl8V5eXrrhhhvUpUsXzZkzRx06dNDf/va3Ivt269ZNknTkyBFJUkhIiFJSUtz6FL4v7j54SfL29naNWF/4AgAAAADAbiwP7b/ndDqVk5NTZFtCQoIkqUGDBpKkqKgoHThwQKmpqa4+GzdulK+vr+sSewAAAAAAKitLL4+fOnWqBgwYoPDwcJ09e1YrVqzQ1q1btWHDBh09elQrVqzQ7bffrsDAQH3zzTeaPHmybr31VrVv316S1K9fP0VGRmrkyJGaN2+ekpOTNW3aNMXGxsrb29vKTQMAAAAA4KpZGtpTU1P14IMP6uTJk/Lz81P79u21YcMG3XbbbTp+/Lg2bdqkBQsWKDs7W2FhYRo6dKimTZvmmr9atWpau3atxo8fr6ioKNWqVUsxMTFuz3UHAAAAAKCysjS0v/3228W2hYWFadu2bVdcRuPGjbVu3bryLAsAAAAAAFuw3T3tAAAAAADgN4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNVbe6AAAAAFQ+SUlJSktLs7qMEgkKClJ4eLjVZQBAmRDaAQAAUCpJSUlq3bq1zp8/b3UpJeLj46PExESCO4BKidAOAACAUklLS9P58+f15Nx3FBbR0upyLuv40cOaN2WM0tLSCO0AKiVCOwAAAMokLKKlmkd2sroMALiuMRAdAAAAAAA2RWgHAAAAAMCmuDweAADARirDqOyJiYlWlwAAVQahHQAAwCYq26jsebl5VpcAANc9QjsAAIBNVJZR2fdu/0zLX5ul/Px8q0sBgOseoR0AAMBm7D4q+/EfD1tdAgBUGQxEBwAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2ZWloX7Rokdq3by9fX1/5+voqKipKn376qav9woULio2NVWBgoGrXrq2hQ4cqJSXFbRlJSUkaOHCgfHx8VL9+fT3xxBPKz8+/1psCAAAAAEC5szS0N2rUSC+++KLi4+P11VdfqXfv3rrzzjv17bffSpImT56sNWvW6KOPPtK2bdt04sQJDRkyxDV/QUGBBg4cqNzcXO3cuVPvvvuuli1bpunTp1u1SQAAAAAAlJvqVq588ODBbu+ff/55LVq0SLt371ajRo309ttva8WKFerdu7ckaenSpWrdurV2796tm2++WZ999pkOHTqkTZs2KTg4WB07dtSzzz6rKVOmaObMmfLy8rJiswAAAAAAKBe2uae9oKBAK1euVHZ2tqKiohQfH6+8vDz17dvX1adVq1YKDw/Xrl27JEm7du1Su3btFBwc7OoTHR2trKws19n6ouTk5CgrK8vtBQAAAACA3Vge2g8cOKDatWvL29tbDz/8sFatWqXIyEglJyfLy8tL/v7+bv2Dg4OVnJwsSUpOTnYL7IXthW3FmTNnjvz8/FyvsLCw8t0oAAAAAADKgeWhvWXLlkpISNCePXs0fvx4xcTE6NChQxW6zqlTpyozM9P1On78eIWuDwAAAACAsrD0nnZJ8vLy0g033CBJ6tKli/bu3au//e1v+tOf/qTc3FxlZGS4nW1PSUlRSEiIJCkkJERffvml2/IKR5cv7FMUb29veXt7l/OWAAAAAABQviw/0/57TqdTOTk56tKlizw9PbV582ZX2+HDh5WUlKSoqChJUlRUlA4cOKDU1FRXn40bN8rX11eRkZHXvHYAAAAAAMqTpWfap06dqgEDBig8PFxnz57VihUrtHXrVm3YsEF+fn566KGHFBcXp4CAAPn6+mrixImKiorSzTffLEnq16+fIiMjNXLkSM2bN0/JycmaNm2aYmNjOZMOAAAAAKj0LA3tqampevDBB3Xy5En5+fmpffv22rBhg2677TZJ0quvvioPDw8NHTpUOTk5io6O1ptvvumav1q1alq7dq3Gjx+vqKgo1apVSzExMZo9e7ZVmwQAAAAAQLmxNLS//fbbl22vUaOGFi5cqIULFxbbp3Hjxlq3bl15lwYAAAAAgOVsd087AAAAAAD4DaEdAAAAAACbIrQDAAAAAGBTlj+nHQAAAKhoiYmJVpdwRUFBQQoPD7e6DAA2Q2gHAADAdSv9VLIcDodGjBhhdSlX5OPjo8TERII7ADeEdgAAcNU4iwm7yj6bKWOMHp39pppHdrC6nGIdP3pY86aMUVpaGt9TAG4I7QAAoMw4i4nKolGTFmoe2cnqMgCg1AjtAACgzDiLCQBAxSK0AwCAq8ZZTAAAKgaPfAMAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2FR1qwsAAAC4VhITE60u4bLsXh8A4NojtAMAgOte+qlkORwOjRgxwupSSiQvN8/qEgAANkFoBwAA173ss5kyxujR2W+qeWQHq8sp1t7tn2n5a7OUn59vdSkAAJsgtAMAgCqjUZMWah7ZyeoyinX8x8NWlwAAsBkGogMAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZV3eoCAAAAAPwmMTHR6hKuKCgoSOHh4VaXAVQZhHYAAADAYumnkuVwODRixAirS7kiHx8fJSYmEtyBa4TQDgAAAFgs+2ymjDF6dPabah7ZwepyinX86GHNmzJGaWlphHbgGiG0AwAAADbRqEkLNY/sZHUZAGyEgegAAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAm7I0tM+ZM0c33nij6tSpo/r16+uuu+7S4cOH3fr06tVLDofD7fXwww+79UlKStLAgQPl4+Oj+vXr64knnlB+fv613BQAAAAAAMqdpY9827Ztm2JjY3XjjTcqPz9fTz31lPr166dDhw6pVq1arn5jx47V7NmzXe99fHxcPxcUFGjgwIEKCQnRzp07dfLkST344IPy9PTUCy+8cE23BwAAAACA8mRpaF+/fr3b+2XLlql+/fqKj4/Xrbfe6pru4+OjkJCQIpfx2Wef6dChQ9q0aZOCg4PVsWNHPfvss5oyZYpmzpwpLy+vCt0GAAAAAAAqiqWh/fcyMzMlSQEBAW7T33//fb333nsKCQnR4MGD9cwzz7jOtu/atUvt2rVTcHCwq390dLTGjx+vb7/9Vp06dbpkPTk5OcrJyXG9z8rKqojNAYAqJSkpSWlpaVaXcUVBQUEKDw+3ugwAAIASsU1odzqdmjRpkrp37662bdu6pj/wwANq3LixQkND9c0332jKlCk6fPiwPv74Y0lScnKyW2CX5HqfnJxc5LrmzJmjWbNmVdCWAEDVk5SUpNatW+v8+fNWl3JFPj4+SkxMJLgDAIBKwTahPTY2VgcPHtSOHTvcpo8bN871c7t27dSgQQP16dNHR48eVURERJnWNXXqVMXFxbneZ2VlKSwsrGyFAwCUlpam8+fP68m57ygsoqXV5RTr+NHDmjdljNLS0gjtAACgUrBFaJ8wYYLWrl2r7du3q1GjRpft261bN0nSkSNHFBERoZCQEH355ZdufVJSUiSp2Pvgvb295e3tXQ6VAwAuFhbRUs0jL70tCQAAAGVj6SPfjDGaMGGCVq1apc8//1xNmza94jwJCQmSpAYNGkiSoqKidODAAaWmprr6bNy4Ub6+voqMjKyQugEAAAAAuBYsPdMeGxurFStWaPXq1apTp47rHnQ/Pz/VrFlTR48e1YoVK3T77bcrMDBQ33zzjSZPnqxbb71V7du3lyT169dPkZGRGjlypObNm6fk5GRNmzZNsbGx1+XZdAZ6AgAAAICqw9LQvmjRIklSr1693KYvXbpUo0aNkpeXlzZt2qQFCxYoOztbYWFhGjp0qKZNm+bqW61aNa1du1bjx49XVFSUatWqpZiYGLfnul8vGOgJAAAAAKoWS0O7Meay7WFhYdq2bdsVl9O4cWOtW7euvMqyLQZ6AgAAAICqxRYD0aF0GOgJAAAAAKoGSweiAwAAAAAAxSO0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAm6pudQEAAFxriYmJVpdwWXavDwAAXDuEdgBAlZF+KlkOh0MjRoywupQSycvNs7oEAABgMUI7AKDKyD6bKWOMHp39pppHdrC6nGLt3f6Zlr82S/n5+VaXAgAALEZoBwBUOY2atFDzyE5Wl1Gs4z8etroEAABgEwxEBwAAAACATRHaAQAAAACwKUI7AAAAAAA2xT3tAGBzSUlJSktLs7qMy+IRZQAAABWD0A4ANpaUlKTWrVvr/PnzVpdSIjyiDAAAoHwR2gHAxtLS0nT+/Hk9OfcdhUW0tLqcYvGIMgAAgIpBaAeASiAsoiWPKAMAAKiCGIgOAAAAAACb4kw7gHJVGQZNk6SgoCCFh4dbXQYAAABwWYR2AOWmMg2a5uPjo8TERII7AAAAbI3QDqDcVJZB044fPax5U8YoLS2N0A4AAABbI7QDKHd2HzQNAAAAqCwYiA4AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2VabQ3qxZM50+ffqS6RkZGWrWrNlVFwUAAAAAAMoY2n/66ScVFBRcMj0nJ0e//PLLVRcFAAAAAACk6qXp/H//93+unzds2CA/Pz/X+4KCAm3evFlNmjQpt+IAAAAAAKjKShXa77rrLkmSw+FQTEyMW5unp6eaNGmi+fPnl1txAAAAAOwnMTHR6hJKJCgoSOHh4VaXAVyVUoV2p9MpSWratKn27t2roKCgCikKAAAAgP2kn0qWw+HQiBEjrC6lRHx8fJSYmEhwR6VWqtBe6NixY+VdBwBcc5XhLEFlqBEAUHVkn82UMUaPzn5TzSM7WF3OZR0/eljzpoxRWloaoR2VWplCuyRt3rxZmzdvVmpqqusMfKF33nnnqgsDgIpS2c4SSFJebp7VJQAA4NKoSQs1j+xkdRlAlVCm0D5r1izNnj1bXbt2VYMGDeRwOMq7LgCoMJXpLMHe7Z9p+WuzlJ+fb3UpAAAAsECZQvvixYu1bNkyjRw58qpWPmfOHH388cf67rvvVLNmTd1yyy2aO3euWrZs6epz4cIF/eUvf9HKlSuVk5Oj6OhovfnmmwoODnb1SUpK0vjx47VlyxbVrl1bMTExmjNnjqpXL/OFBACqgMpwluD4j4etLgEAAAAWKtNz2nNzc3XLLbdc9cq3bdum2NhY7d69Wxs3blReXp769eun7OxsV5/JkydrzZo1+uijj7Rt2zadOHFCQ4YMcbUXFBRo4MCBys3N1c6dO/Xuu+9q2bJlmj59+lXXBwAAAACAlcoU2v/rv/5LK1asuOqVr1+/XqNGjVKbNm3UoUMHLVu2TElJSYqPj5ckZWZm6u2339Yrr7yi3r17q0uXLlq6dKl27typ3bt3S5I+++wzHTp0SO+99546duyoAQMG6Nlnn9XChQuVm5t71TUCAAAAAGCVMl0/fuHCBS1ZskSbNm1S+/bt5enp6db+yiuvlKmYzMxMSVJAQIAkKT4+Xnl5eerbt6+rT6tWrRQeHq5du3bp5ptv1q5du9SuXTu3y+Wjo6M1fvx4ffvtt+rU6dJLX3NycpSTk+N6n5WVVaZ6AQAAAACoSGUK7d988406duwoSTp48KBbW1kHpXM6nZo0aZK6d++utm3bSpKSk5Pl5eUlf39/t77BwcFKTk529bk4sBe2F7YVZc6cOZo1a1aZ6gQAAAAA4FopU2jfsmVLedeh2NhYHTx4UDt27Cj3Zf/e1KlTFRcX53qflZWlsLCwCl8vAAAAAAClYYvh1SdMmKC1a9dq+/btatSokWt6SEiIcnNzlZGR4Xa2PSUlRSEhIa4+X375pdvyUlJSXG1F8fb2lre3dzlvBQAAAAAA5atMof2Pf/zjZS+D//zzz0u0HGOMJk6cqFWrVmnr1q1q2rSpW3uXLl3k6empzZs3a+jQoZKkw4cPKykpSVFRUZKkqKgoPf/880pNTVX9+vUlSRs3bpSvr68iIyPLsnkAAAAAANhCmUJ74f3shfLy8pSQkKCDBw8qJiamxMuJjY3VihUrtHr1atWpU8d1D7qfn59q1qwpPz8/PfTQQ4qLi1NAQIB8fX01ceJERUVF6eabb5Yk9evXT5GRkRo5cqTmzZun5ORkTZs2TbGxsZxNx3UlKSlJaWlpVpdxWYmJiVaXAAAA4KYy/H0SFBSk8PBwq8uATZUptL/66qtFTp85c6bOnTtX4uUsWrRIktSrVy+36UuXLtWoUaNc6/Lw8NDQoUOVk5Oj6Ohovfnmm66+1apV09q1azV+/HhFRUWpVq1aiomJ0ezZs0u3UYCNJSUlqXXr1jp//rzVpZRIXm6e1SUAAIAqLv1UshwOh0aMGGF1KVfk4+OjxMREgjuKVK73tI8YMUI33XSTXn755RL1N8ZcsU+NGjW0cOFCLVy4sNg+jRs31rp160pcJ1DZpKWl6fz583py7jsKi2hpdTnF2rv9My1/bZby8/OtLgUAAFRx2WczZYzRo7PfVPPIDlaXU6zjRw9r3pQxSktLI7SjSOUa2nft2qUaNWqU5yIBXCQsoqWaR3ayuoxiHf/xsNUlAAAAuGnUpIWt/34CrqRMoX3IkCFu740xOnnypL766is988wz5VIYAAAAAABVXZlCu5+fn9t7Dw8PtWzZUrNnz1a/fv3KpTAAAAAAAKq6MoX2pUuXlncdAAAAAADgd67qnvb4+HjXIxTatGmjTp24VwQAAAAAgPJSptCempqqYcOGaevWrfL395ckZWRk6I9//KNWrlypevXqlWeNAAAAAABUSR5lmWnixIk6e/asvv32W6Wnpys9PV0HDx5UVlaWHn300fKuEQAAAACAKqlMZ9rXr1+vTZs2qXXr1q5pkZGRWrhwIQPRAQAAAABQTsp0pt3pdMrT0/OS6Z6ennI6nVddFAAAAAAAKGNo7927tx577DGdOHHCNe2XX37R5MmT1adPn3IrDgAAAACAqqxMof2NN95QVlaWmjRpooiICEVERKhp06bKysrS66+/Xt41AgAAAABQJZXpnvawsDB9/fXX2rRpk7777jtJUuvWrdW3b99yLQ4AAAAAqoLCR2nbld3ru56VKrR//vnnmjBhgnbv3i1fX1/ddtttuu222yRJmZmZatOmjRYvXqyePXtWSLEAAAAAcD1JP5Ush8OhESNGWF1KieTl5lldQpVTqtC+YMECjR07Vr6+vpe0+fn56c9//rNeeeUVQjsAAAAAlED22UwZY/To7DfVPLKD1eUUa+/2z7T8tVnKz8+3upQqp1Shff/+/Zo7d26x7f369dPLL7981UUBAAAAQFXSqEkLNY/sZHUZxTr+42GrS6iySjUQXUpKSpGPeitUvXp1nTp16qqLAgAAAAAApQztDRs21MGDB4tt/+abb9SgQYOrLgoAAAAAAJQytN9+++165plndOHChUvafv31V82YMUODBg0qt+IAAAAAAKjKSnVP+7Rp0/Txxx+rRYsWmjBhglq2bClJ+u6777Rw4UIVFBTo6aefrpBCAQAAAACoakoV2oODg7Vz506NHz9eU6dOlTFGkuRwOBQdHa2FCxcqODi4QgoFAAAAAKCqKVVol6TGjRtr3bp1OnPmjI4cOSJjjJo3b666detWRH0AAAAAAFRZpQ7therWrasbb7yxPGsBAAAAAAAXKXNoB64kMTHR6hKuKCgoSOHh4VaXAQAAAABFIrSj3KWfSpbD4dCIESOsLuWKfHx8lJiYSHAHAAAAYEuEdpS77LOZMsbo0dlvqnlkB6vLKdbxo4c1b8oYpaWlEdoBAAAA2BKhHRWmUZMWah7ZyeoyAAAAAKDS8rC6AAAAAAAAUDRCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBT1a1c+fbt2/XSSy8pPj5eJ0+e1KpVq3TXXXe52keNGqV3333XbZ7o6GitX7/e9T49PV0TJ07UmjVr5OHhoaFDh+pvf/ubateufa02A5VcYmKi1SVcUWWoEQAAAED5szS0Z2dnq0OHDhozZoyGDBlSZJ/+/ftr6dKlrvfe3t5u7cOHD9fJkye1ceNG5eXlafTo0Ro3bpxWrFhRobWj8ks/lSyHw6ERI0ZYXUqJ5eXmWV0CAAAAgGvI0tA+YMAADRgw4LJ9vL29FRISUmRbYmKi1q9fr71796pr166SpNdff1233367Xn75ZYWGhpZ7zbh+ZJ/NlDFGj85+U80jO1hdzmXt3f6Zlr82S/n5+VaXAgAAAOAasjS0l8TWrVtVv3591a1bV71799Zzzz2nwMBASdKuXbvk7+/vCuyS1LdvX3l4eGjPnj26++67i1xmTk6OcnJyXO+zsrIqdiNga42atFDzyE5Wl3FZx388bHUJAAAAACxg64Ho+vfvr+XLl2vz5s2aO3eutm3bpgEDBqigoECSlJycrPr167vNU716dQUEBCg5ObnY5c6ZM0d+fn6uV1hYWIVuBwAAAAAAZWHrM+3Dhg1z/dyuXTu1b99eERER2rp1q/r06VPm5U6dOlVxcXGu91lZWQR3AAAAAIDt2PpM++81a9ZMQUFBOnLkiCQpJCREqampbn3y8/OVnp5e7H3w0m/3yfv6+rq9AAAAAACwm0oV2n/++WedPn1aDRo0kCRFRUUpIyND8fHxrj6ff/65nE6nunXrZlWZAAAAAACUC0svjz937pzrrLkkHTt2TAkJCQoICFBAQIBmzZqloUOHKiQkREePHtWTTz6pG264QdHR0ZKk1q1bq3///ho7dqwWL16svLw8TZgwQcOGDWPkeAAAAABApWfpmfavvvpKnTp1UqdOv43cHRcXp06dOmn69OmqVq2avvnmG91xxx1q0aKFHnroIXXp0kVffPGF27Pa33//fbVq1Up9+vTR7bffrh49emjJkiVWbRIAAAAAAOXG0jPtvXr1kjGm2PYNGzZccRkBAQFasWJFeZYFAAAAAIAtVKp72gEAAAAAqEoI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYI7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4R2AAAAAABsitAOAAAAAIBNEdoBAAAAALApQjsAAAAAADZFaAcAAAAAwKYsDe3bt2/X4MGDFRoaKofDoU8++cSt3Rij6dOnq0GDBqpZs6b69u2rH374wa1Penq6hg8fLl9fX/n7++uhhx7SuXPnruFWAAAAAABQMSwN7dnZ2erQoYMWLlxYZPu8efP02muvafHixdqzZ49q1aql6OhoXbhwwdVn+PDh+vbbb7Vx40atXbtW27dv17hx467VJgAAAAAAUGGqW7nyAQMGaMCAAUW2GWO0YMECTZs2TXfeeackafny5QoODtYnn3yiYcOGKTExUevXr9fevXvVtWtXSdLrr7+u22+/XS+//LJCQ0OLXHZOTo5ycnJc77Oyssp5ywAAAAAAuHq2vaf92LFjSk5OVt++fV3T/Pz81K1bN+3atUuStGvXLvn7+7sCuyT17dtXHh4e2rNnT7HLnjNnjvz8/FyvsLCwitsQAAAAAADKyLahPTk5WZIUHBzsNj04ONjVlpycrPr167u1V69eXQEBAa4+RZk6daoyMzNdr+PHj5dz9QAAAAAAXD1LL4+3ire3t7y9va0uAwAAAACAy7LtmfaQkBBJUkpKitv0lJQUV1tISIhSU1Pd2vPz85Wenu7qAwAAAABAZWXb0N60aVOFhIRo8+bNrmlZWVnas2ePoqKiJElRUVHKyMhQfHy8q8/nn38up9Opbt26XfOaAQAAAAAoT5ZeHn/u3DkdOXLE9f7YsWNKSEhQQECAwsPDNWnSJD333HNq3ry5mjZtqmeeeUahoaG66667JEmtW7dW//79NXbsWC1evFh5eXmaMGGChg0bVuzI8QAAAAAAVBaWhvavvvpKf/zjH13v4+LiJEkxMTFatmyZnnzySWVnZ2vcuHHKyMhQjx49tH79etWoUcM1z/vvv68JEyaoT58+8vDw0NChQ/Xaa69d820BAAAAAKC8WRrae/XqJWNMse0Oh0OzZ8/W7Nmzi+0TEBCgFStWVER5AAAAAABYyrb3tAMAAAAAUNUR2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGzK1qF95syZcjgcbq9WrVq52i9cuKDY2FgFBgaqdu3aGjp0qFJSUiysGAAAAACA8mPr0C5Jbdq00cmTJ12vHTt2uNomT56sNWvW6KOPPtK2bdt04sQJDRkyxMJqAQAAAAAoP9WtLuBKqlevrpCQkEumZ2Zm6u2339aKFSvUu3dvSdLSpUvVunVr7d69WzfffPO1LhUAAAAAgHJl+zPtP/zwg0JDQ9WsWTMNHz5cSUlJkqT4+Hjl5eWpb9++rr6tWrVSeHi4du3addll5uTkKCsry+0FAAAAAIDd2Dq0d+vWTcuWLdP69eu1aNEiHTt2TD179tTZs2eVnJwsLy8v+fv7u80THBys5OTkyy53zpw58vPzc73CwsIqcCsAAAAAACgbW18eP2DAANfP7du3V7du3dS4cWN9+OGHqlmzZpmXO3XqVMXFxbneZ2VlEdwBAAAAALZj6zPtv+fv768WLVroyJEjCgkJUW5urjIyMtz6pKSkFHkP/MW8vb3l6+vr9gIAAAAAwG4qVWg/d+6cjh49qgYNGqhLly7y9PTU5s2bXe2HDx9WUlKSoqKiLKwSAAAAAIDyYevL4x9//HENHjxYjRs31okTJzRjxgxVq1ZN999/v/z8/PTQQw8pLi5OAQEB8vX11cSJExUVFcXI8QAAAACA64KtQ/vPP/+s+++/X6dPn1a9evXUo0cP7d69W/Xq1ZMkvfrqq/Lw8NDQoUOVk5Oj6OhovfnmmxZXDQAAAABA+bB1aF+5cuVl22vUqKGFCxdq4cKF16giAAAAAACunUp1TzsAAAAAAFUJoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmCO0AAAAAANgUoR0AAAAAAJsitAMAAAAAYFOEdgAAAAAAbIrQDgAAAACATRHaAQAAAACwKUI7AAAAAAA2RWgHAAAAAMCmrpvQvnDhQjVp0kQ1atRQt27d9OWXX1pdEgAAAAAAV+W6CO0ffPCB4uLiNGPGDH399dfq0KGDoqOjlZqaanVpAAAAAACU2XUR2l955RWNHTtWo0ePVmRkpBYvXiwfHx+98847VpcGAAAAAECZVbe6gKuVm5ur+Ph4TZ061TXNw8NDffv21a5du4qcJycnRzk5Oa73mZmZkqSsrKyKLfYqnTt3TpJ05NsE/Xo+2+Jqipd09HtJ0tHv9ktyWlvMZVSWOqXKUyt1lr/KUit1lq/KUqdUeWqlzvJVWeqUKk+t1Fn+Kkut1Fm+fjn2g6TfspPd811hfcaYy/ZzmCv1sLkTJ06oYcOG2rlzp6KiolzTn3zySW3btk179uy5ZJ6ZM2dq1qxZ17JMAAAAAAAucfz4cTVq1KjY9kp/pr0spk6dqri4ONd7p9Op9PR0BQYGyuFwWFhZ8bKyshQWFqbjx4/L19fX6nKASoNjByg9jhug9DhugLKpyseOMUZnz55VaGjoZftV+tAeFBSkatWqKSUlxW16SkqKQkJCipzH29tb3t7ebtP8/f0rqsRy5evrW+W+zEB54NgBSo/jBig9jhugbKrqsePn53fFPpV+IDovLy916dJFmzdvdk1zOp3avHmz2+XyAAAAAABUNpX+TLskxcXFKSYmRl27dtVNN92kBQsWKDs7W6NHj7a6NAAAAAAAyuy6CO1/+tOfdOrUKU2fPl3Jycnq2LGj1q9fr+DgYKtLKzfe3t6aMWPGJZf1A7g8jh2g9DhugNLjuAHKhmPnyir96PEAAAAAAFyvKv097QAAAAAAXK8I7QAAAAAA2BShHQAAAAAAmyK0AwAAAABgU4T2SmLhwoVq0qSJatSooW7duunLL7+0uiTANubMmaMbb7xRderUUf369XXXXXfp8OHDbn0uXLig2NhYBQYGqnbt2ho6dKhSUlIsqhiwnxdffFEOh0OTJk1yTeO4AYr2yy+/aMSIEQoMDFTNmjXVrl07ffXVV652Y4ymT5+uBg0aqGbNmurbt69++OEHCysGrFVQUKBnnnlGTZs2Vc2aNRUREaFnn31WF4+JznFTPEJ7JfDBBx8oLi5OM2bM0Ndff60OHTooOjpaqampVpcG2MK2bdsUGxur3bt3a+PGjcrLy1O/fv2UnZ3t6jN58mStWbNGH330kbZt26YTJ05oyJAhFlYN2MfevXv197//Xe3bt3ebznEDXOrMmTPq3r27PD099emnn+rQoUOaP3++6tat6+ozb948vfbaa1q8eLH27NmjWrVqKTo6WhcuXLCwcsA6c+fO1aJFi/TGG28oMTFRc+fO1bx58/T666+7+nDcXIaB7d10000mNjbW9b6goMCEhoaaOXPmWFgVYF+pqalGktm2bZsxxpiMjAzj6elpPvroI1efxMREI8ns2rXLqjIBWzh79qxp3ry52bhxo/nDH/5gHnvsMWMMxw1QnClTppgePXoU2+50Ok1ISIh56aWXXNMyMjKMt7e3+d///d9rUSJgOwMHDjRjxoxxmzZkyBAzfPhwYwzHzZVwpt3mcnNzFR8fr759+7qmeXh4qG/fvtq1a5eFlQH2lZmZKUkKCAiQJMXHxysvL8/tOGrVqpXCw8M5jlDlxcbGauDAgW7Hh8RxAxTn//7v/9S1a1fde++9ql+/vjp16qS33nrL1X7s2DElJye7HTt+fn7q1q0bxw6qrFtuuUWbN2/W999/L0nav3+/duzYoQEDBkjiuLmS6lYXgMtLS0tTQUGBgoOD3aYHBwfru+++s6gqwL6cTqcmTZqk7t27q23btpKk5ORkeXl5yd/f361vcHCwkpOTLagSsIeVK1fq66+/1t69ey9p47gBivbjjz9q0aJFiouL01NPPaW9e/fq0UcflZeXl2JiYlzHR1F/u3HsoKr661//qqysLLVq1UrVqlVTQUGBnn/+eQ0fPlySOG6ugNAO4LoSGxurgwcPaseOHVaXAtja8ePH9dhjj2njxo2qUaOG1eUAlYbT6VTXrl31wgsvSJI6deqkgwcPavHixYqJibG4OsCePvzwQ73//vtasWKF2rRpo4SEBE2aNEmhoaEcNyXA5fE2FxQUpGrVql0yWm9KSopCQkIsqgqwpwkTJmjt2rXasmWLGjVq5JoeEhKi3NxcZWRkuPXnOEJVFh8fr9TUVHXu3FnVq1dX9erVtW3bNr322muqXr26goODOW6AIjRo0ECRkZFu01q3bq2kpCRJch0f/O0G/H9PPPGE/vrXv2rYsGFq166dRo4cqcmTJ2vOnDmSOG6uhNBuc15eXurSpYs2b97smuZ0OrV582ZFRUVZWBlgH8YYTZgwQatWrdLnn3+upk2burV36dJFnp6ebsfR4cOHlZSUxHGEKqtPnz46cOCAEhISXK+uXbtq+PDhrp85boBLde/e/ZLHin7//fdq3LixJKlp06YKCQlxO3aysrK0Z88ejh1UWefPn5eHh3v0rFatmpxOpySOmyvh8vhKIC4uTjExMeratatuuukmLViwQNnZ2Ro9erTVpQG2EBsbqxUrVmj16tWqU6eO694nPz8/1axZU35+fnrooYcUFxengIAA+fr6auLEiYqKitLNN99scfWANerUqeMa96FQrVq1FBgY6JrOcQNcavLkybrlllv0wgsv6L777tOXX36pJUuWaMmSJZIkh8OhSZMm6bnnnlPz5s3VtGlTPfPMMwoNDdVdd91lbfGARQYPHqznn39e4eHhatOmjfbt26dXXnlFY8aMkcRxc0VWD1+Pknn99ddNeHi48fLyMjfddJPZvXu31SUBtiGpyNfSpUtdfX799VfzyCOPmLp16xofHx9z9913m5MnT1pXNGBDFz/yzRiOG6A4a9asMW3btjXe3t6mVatWZsmSJW7tTqfTPPPMMyY4ONh4e3ubPn36mMOHD1tULWC9rKws89hjj5nw8HBTo0YN06xZM/P000+bnJwcVx+Om+I5jDHGyn8aAAAAAACAonFPOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANkVoBwAAAADApgjtAAAAAADYFKEdAABcYv369erRo4f8/f0VGBioQYMG6ejRo672nTt3qmPHjqpRo4a6du2qTz75RA6HQwkJCa4+Bw8e1IABA1S7dm0FBwdr5MiRSktLs2BrAACovAjtAADgEtnZ2YqLi9NXX32lzZs3y8PDQ3fffbecTqeysrI0ePBgtWvXTl9//bWeffZZTZkyxW3+jIwM9e7dW506ddJXX32l9evXKyUlRffdd59FWwQAQOXkMMYYq4sAAAD2lpaWpnr16unAgQPasWOHpk2bpp9//lk1atSQJP33f/+3xo4dq3379qljx4567rnn9MUXX2jDhg2uZfz8888KCwvT4cOH1aJFC6s2BQCASoUz7QAA4BI//PCD7r//fjVr1ky+vr5q0qSJJCkpKUmHDx9W+/btXYFdkm666Sa3+ffv368tW7aodu3arlerVq0kye0yewAAcHnVrS4AAADYz+DBg9W4cWO99dZbCg0NldPpVNu2bZWbm1ui+c+dO6fBgwdr7ty5l7Q1aNCgvMsFAOC6RWgHAABuTp8+rcOHD+utt95Sz549JUk7duxwtbds2VLvvfeecnJy5O3tLUnau3ev2zI6d+6sf/7zn2rSpImqV+fPDQAAyorL4wEAgJu6desqMDBQS5Ys0ZEjR/T5558rLi7O1f7AAw/I6XRq3LhxSkxM1IYNG/Tyyy9LkhwOhyQpNjZW6enpuv/++7V3714dPXpUGzZs0OjRo1VQUGDJdgEAUBkR2gEAgBsPDw+tXLlS8fHxatu2rSZPnqyXXnrJ1e7r66s1a9YoISFBHTt21NNPP63p06dLkus+99DQUP373/9WQUGB+vXrp3bt2mnSpEny9/eXhwd/fgAAUFKMHg8AAK7a+++/r9GjRyszM1M1a9a0uhwAAK4b3GQGAABKbfny5WrWrJkaNmyo/fv3a8qUKbrvvvsI7AAAlDNCOwAAKLXk5GRNnz5dycnJatCgge699149//zzVpcFAMB1h8vjAQAAAACwKUaCAQAAAADApgjtAAAAAADYFKEdAAAAAACbIrQDAAAAAGBThHYAAAAAAGyK0A4AAAAAgE0R2gEAAAAAsClCOwAAAAAANvX/ANwFaCsW5vjxAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1200x600 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure(figsize=(12,6))  \n",
+    "sns.histplot(data=df, x='age', bins = 'auto', color = sns.color_palette(\"pastel\", 1)[0])\n",
+    "plt.title(\"Phân bố của trường dữ liệu độ tuổi\",fontsize=16)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Bảng dữ liệu tổng quan\n",
+    "![Bảng dữ liệu tổng quan](https://i.imgur.com/Bnzhf0g.png)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li>\n",
+    " <strong>Nhận xét:</strong> Tất cả các cột đều đủ dữ liệu.\n",
+    "</li>\n",
+    "<li>\n",
+    "<strong>Thống kê chất lượng dữ liệu:</strong> Tốt.\n",
+    "</li>\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 42px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 120px;\n",
+    "  background-position: 0 100%;\"> 3. Phân tích mối tương quan giữa các đặc trưng</h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> 3.1. Mối tương quan giữa bmi và chỉ số đường huyết trung bình: </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:20px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li>Chỉ số BMI theo phân loại quốc tế (WHO) thì dưới 18,5 là nhẹ cân, 18,5-24,9 là bình thường, 25-29,9 là thừa cân và từ 30 trở lên là béo phì.</li>\n",
+    "<li>Béo phì có thể làm cho các tế bào của cơ thể đề kháng với insulin. Insulin là một loại hormone mang đường từ máu đến các tế bào trong cơ thể của bạn, nơi nó được sử dụng để tạo năng lượng. Nếu bạn đề kháng với insulin, đường không thể được các tế bào hấp thụ, dẫn đến lượng đường trong máu cao.</li>\n",
+    "<li>Theo Thư viện Y khoa Quốc gia Hoa Kỳ, nghiên cứu về mối tương quan giữa chỉ số bmi và đường huyết ở bệnh nhân tiểu đường và không tiểu đường đã chỉ ra rằng những người mắc bệnh tiểu đường có chỉ số bmi và lượng đường cao hơn so với nhóm không mắc bệnh.</li>\n",
+    "<li>Kiểm định tính xác thực, ta chia bộ dữ liệu thành 3 nhóm dựa trên chỉ số đường huyết trung bình: bình thường (đường huyết < 140), tiền tiểu đường (140 ≤ đường huyết < 200) và tiểu đường (đường huyết ≥ 200). Quan sát những thay đổi về chỉ số bmi giữa 3 nhóm này.</li>\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 128,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def draw_hist_2d(data, x, y, title, lines = []):\n",
+    "    plt.figure (figsize= (8,6))\n",
+    "    plt.hist2d(y = data['bmi'], x = data['avg_glucose_level'], cmap=plt.cm.Blues) \n",
+    "    plt.colorbar()\n",
+    "    plt.xlabel(x, fontsize = 11)\n",
+    "    plt.ylabel(y, fontsize = 11)\n",
+    "    plt.title(title, fontsize = 20)\n",
+    "\n",
+    "    for line in lines:\n",
+    "        plt.axhline(y = line, color = 'black',  linestyle='--')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 129,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAItCAYAAAC3hvugAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt4ElEQVR4nO3deVxU5f4H8M8MMAOyDILJQIKimZqSuaWkuVJqZpqU6TUj82oamsvvlnrLNMtQMzU31PKqlejNbq6lprhlIQJqahlumKSCKyDbsMzz+8M4cYQzDDAwM/B5+zqvF3PO9zznOTPM8PX7nPOMSgghQERERERUBrW1O0BERERE9oGJIxERERGZhYkjEREREZmFiSMRERERmYWJIxERERGZhYkjEREREZmFiSMRERERmYWJIxERERGZhYkjEREREZmFiSNRNWjUqBFUKhVeffVVa3eF7qNSqaBSqTBz5kxrd6VK8XeQiCyBiSMREdkFg8GAI0eOYMmSJRg+fDiaNWsGtVotJf+VNWXKFKktlUqFAwcOmLXfzp078fzzz6NBgwbQarVo0KABnn/+eezcubPSfSKyNY7W7gAREZE5xowZg7Vr11ZJ2ydOnMCCBQvKtY/RaMTo0aOxevVq2forV67gypUr2LJlC/75z39i5cqVUKtZp6Gagb/JRERkF4QQ0s/u7u7o1q0b9Hp9pdstSgALCgpQv359s/d75513pKSxTZs22LBhA44ePYoNGzagTZs2AIDPP/8c7777bqX7SGQrmDgSEZFd6Nu3L9asWYPTp08jLS0NBw4cQLNmzSrd7uLFixEXF4fmzZtj5MiRZu1z9uxZzJ8/HwDQvn17/PTTTxgyZAg6dOiAIUOG4PDhw2jfvj0A4OOPP8b58+cr3U8iW8DEkYiIqsWRI0fMvm6wNC+99BJeffVVtGzZ0mJDv5cvX8b06dMBACtWrIBGozFrv0WLFqGgoAAAsGTJEri4uMi216lTB0uWLAEAFBQUYOHChRbpL5G1MXEkk06fPo0PP/wQvXv3li78dnNzQ9OmTREWFoYjR46Uul92djbc3d2hUqkwbNiwMo8TExMjXZC+fPnyUmO++OILdOvWDXXr1oWbmxuCgoIwa9YsZGRkAKjau2MvX76MsWPHIjAwEM7OzvDz88PAgQOxf/9+AMDMmTMrfIH+2rVrpX0vXbqkGHfp0iUprqzrvL7//nu8/PLLaNy4MVxdXeHs7IzAwECEhoZi7dq1yM7OLnU/o9GIr776Cs888wz0ej00Gg0eeOAB9OjRA8uXL0deXp7J4169ehVTp05F27ZtodPp4OTkBB8fHwQFBWHo0KFYu3at9HqVJj09HREREejcuTMeeOABaDQa+Pr6on///vjmm29kQ5XV7dixYxgzZgyaNWsGNzc3uLq6olmzZhg7dizOnj1b6j5NmjSBSqVC586dy2z/ypUrcHBwgEqlwttvv11qjC0/P0r+/PNPREREoHnz5ggODq5U4lgVwsPDkZmZibCwMHTr1s2sfYQQ2Lp1KwCgefPm6NSpU6lxnTp1kiqiW7dutcnXh6jcBJGC/fv3CwBlLlOnTi11/5dfflkAEK6uriIzM9PkscLDwwUA4ejoKG7cuCHblpeXJwYMGKB4/KZNm4pLly5Jj2fMmGGpp0AIIUR0dLRwc3Mr9dgqlUrMnj1bzJgxQ1pXmoYNGwoAIiwsrMS2NWvWSPsmJSUp9iMpKUmKW7NmTakxN2/eFL169SrzNStt/1u3bonOnTub3K9Fixbi0qVLpR770KFDwsPDo8xjb9++vdT99+7dK7y9vU3u+8wzz4i7d+8qPkcVUdbvTWFhoZg0aZJQqVSK/XJ0dBQrV64sse+7774r/Z6Yem2FEOLjjz+W2jtx4kSJ7ZV9fkz9Dlpadna2WL9+vXjqqaeEWq2W9fH999+36LG6detm8r1nyn//+18BQHh5eUmfO8Xfy/v37y91vwsXLkgxr7/+usljjB49Woq9ePFiuftIZGtYcSRFBQUFcHV1xeDBg7FixQocOHAAx44dw65du/DJJ5+gYcOGAIA5c+ZgzZo1JfYvqjRmZWVJ/ztXOs6mTZsAAL1790a9evVk2ydMmCDt37JlS6xZswZxcXGIjo7GuHHjcPHiRbz00ksWOef7Xbx4Ec899xwyMzPh6OiI8ePHIzo6GnFxcVizZg1atGiBd955B7t27aqS45dHdnY2evTogejoaABAu3btsHLlSvz000+Ij4/H5s2bMWnSJPj5+ZXYt7CwEM8++yx++uknAEC3bt2wadMmxMfHY9u2bRg4cCAA4MyZM+jVqxcyMzNl+xsMBgwZMgQZGRlwd3fH22+/jZ07dyIhIQExMTGIiorCuHHj8OCDD5ba959++gl9+/bFrVu34OPjgw8//BDbt29HQkICtm/fjpdffhnAvUpqWFiYpZ4ys4wfPx4LFy6EEAJdu3bFf/7zHxw4cABHjx7FZ599hpYtW6KgoACvv/46tm3bJtu36D0ghEBUVJTJ4xRtb9myJVq3bi3bZsvPT3GHDx/GqFGjoNfrMWzYMOzZswdGoxFarRahoaHYunUrpk2bZrX+FZeWloYJEyYAAObOnVvic8eU3377Tfq5efPmJmOLbz9z5kw5e0lkg6yduZLtunHjhrhz547idoPBIJ566ikBQDRs2FAUFBTItufn54v69esLAKJfv36K7ezcuVP6H3lUVJRs27Fjx6RKT3BwsMjOzi6x/6ZNm2QVDUtWHAcOHCi1u3nz5hLbs7KyxOOPPy47fmmqo+I4adIkaXt4eLgwGo2ltmMwGERKSops3dKlS6V9X3nllVL3/fe//y3FvP3227Jt0dHRZVYUhbj3O5Geni5bl5eXJxo1aiQAiD59+oisrKxS9121apV0jB9++EHxGOVl6vfmhx9+kLZ//vnnpe6fk5MjevbsKb0P8vPzZdvbtm0rAIiWLVsq9uHMmTPScT766CPZNks9P1VVcbx06ZKYNWuWaNKkSYkK6BNPPCEiIyPF7du3LXrM4ipacRw1apQAIDp37iz7fTen4hgZGSnFbNq0yeRxin8+rVixolx9JLJFTBypUk6cOCF9KMbHx5fYPn78eAFAODk5iZs3b5baRtGQtpubW4k/imPGjJHaP336tGI/nn/+eYsnjleuXBEODg4CgHjhhRcU44o/B9ZKHO/cuSPq1KkjAIh27dqVSOLL0qJFCwFAPPDAAyIjI6PUmPz8fNG8eXMBQNStW1fk5uZK29avXy/17f7EsCxffPGFACCcnZ3F9evXTcYWJen/+Mc/ynUMU0z93hQlhKGhoSbb+O233xSTtk8++cTkELQQ8iHt+y8FsNTzY8nEMTMzU6xbt0706NGjxBB+48aNxXvvvSfOnz9f6eOYoyKJ46FDh4RKpRKOjo7i1KlTsm3mJI7z5s2TYnbu3GnyWN9//70UO3/+fLP7SGSrOFRNZjMYDLh8+TJ+++03nD59GqdPn5Zd7P3LL7+U2KdoqC4/Px9ff/11ie05OTnYsmULAGDgwIGoU6eObPvevXsB3JsjrWXLlop9e+WVV8p9PmXZv38/CgsLAQDDhw9XjGvdunWJocXqtm/fPumGlzfffBMODg5m73v16lVpCG3w4MFwd3cvNc7R0REjRowAANy5cwfHjh2Ttvn6+ko/l3bZgilFw7vdunXDAw88YDK2a9euAO7dTFXVMjIypBs5XnjhBZOxLVq0kIY67+/bkCFDpDuAlYarN2zYAADo3LmzdAlIEVt6fg4fPowRI0ZAr9cjLCwM+/fvhxACnp6eGDVqFA4dOoQLFy7g/fffR5MmTaqkD5WVl5eH0aNHQwiBSZMmoVWrVuVuIzc3V/q5rLuwtVqt9HNOTk65j0Vka5g4kklZWVmIiIhA69at4erqioYNG6Jly5YICgpCUFCQNMktANy8ebPE/h07dpT+gKxfv77E9m3btknXy91/93Vubq4091m7du1M9rNovjRLOn36tPSzNY5fHsePH5d+fvLJJ8u1b/Hz7Nixo8nY4tuL79elSxc0btwYADBx4kQ8/vjjiIiIwE8//VTmndjx8fEAgN27d8u+7q20pWjevJSUlHKdY0UcP34cRqMRADB06NAy+1b0+39/3/z8/NCjRw8A9xJEcd+dtbGxsbhw4QKAku8BwLaen5dffhlr166Vrvnt168f/vvf/+LatWtYtWpVuX/3rOGjjz7C77//joCAAMyYMaNCbTg7O0s/l/X7bTAYpJ/vn7KHyB4xcSRFly5dQlBQEP7973/j5MmTUvVNidL/pov+GP78888lppspSibr16+PkJAQ2ba0tDTp57IqLWVtr4g7d+5Y9fjlUTxpL179M8ft27eln8v61ozi39JRfD8nJyds374dLVq0AADExcXh3//+N7p06QJPT0/06dMHUVFRpf4OXb9+vVz9BaqnclORfgEodaqjovdAcnIyDh06JNtW9B5wcnLCiy++aJF+VMfz4+7ujsDAQDRq1EiWSNmy33//HREREQDuzb3o6upaoXaKV+Xvv1HsfllZWdLPbm5uFToekS3hd1WTouHDhyMpKQkqlQojRozAkCFD0KJFC2n+OJVKBaPRKA2L3l9JKTJs2DDMmjULQghs2LBBuqvy9u3b2L17N4B7E/s6OvLX0doqMg9lkUceeQSnTp3C9u3bsX37dhw6dAjnz59HTk4Odu/ejd27d2PBggX4/vvvZQlqUTLZt29fzJs3r9LnYCnFk9yVK1fiiSeeMGu/unXrllgXGhqKN954A7m5uYiKipLmCywsLJQu4ejTpw+8vb0V+2ELz8+CBQuwatUq7N27F3fu3MHSpUuxdOlSNGvWDMOHD8ewYcPQqFEjq/bRlIULFyIvLw+NGzdGdnY2Nm7cWCKmeCV93759UvW2f//+UqLZoEEDKebPP/80eczk5GTpZ39//0r1n8gW8C81ler333/H4cOHAQD//ve/8eGHH5YaV7zqpOThhx9G+/btER8fj6ioKClx/Oabb6RhntKG6Dw9PaWfb9y4YfIYZW2viOIJwI0bNxSnkqns8Yt/A0bR0Ghpilcu7ld8KpFr164hMDDQ7ON7eXlJP6emppqMLT4EWny/Ig4ODhg4cKA0fc+1a9ewa9cuLFu2DAkJCUhISMDrr7+OzZs3S/t4e3vj6tWryMvLq9D1ZlWleBJXp06dSvXNw8MDzz77LL755ht88803WLp0KZycnBAdHS0950oT5dvS8zNo0CAMGjQIV69exZdffol169bhzJkzSExMxLvvvovp06fjySefxPDhw/Hiiy9Cp9NZtb/3Kxo2vnjxIoYOHVpm/AcffCD9nJSUJCWOjzzyiLT+999/N9lG8e1FFXkie8ahairVr7/+Kv1sao7EouuvylL0R/H06dM4efIkgL+H6Jo0aVLqtXXOzs7S9ZEJCQkm2ze3H+VR/Gacqjx+8WGv4sPj91P6dhIAaNu2rfTz/UOhZSmejMTGxpqMPXr0aKn7KfH19cWIESMQExMj9XHHjh2yodSi62Tj4+PLvF6sOj322GNSBbZofsvKKHoP3L59Gzt37gTw93vA3d0dzz33XKn72eLz4+fnhylTpuC3335DbGwsxo4di7p160IIgUOHDklzOb700kvYsWOH9NV8NUVgYKA0H+rBgwdNxha9Hx988EGbrsYSmYuJI5Wq+Ae9qUrXihUrzGpvyJAh0pD2+vXr8eeff+LHH38EoFxpAYBevXoBuHejQvFk9n5ffPGFWf0oj+7du0vVwC+//FIx7pdffin1jnJzFa8OmkpAi+68LU2PHj2kasiSJUvKvB61OD8/P6kS8vXXXytes1VYWCh91WHdunVlyWpZnJycpOHZgoIC2fWrRQlTenp6ue/IrkoPPPCA9FVyUVFRla5qP/PMM1IVe/369cjNzZUqr88//7zijRO2+vwUefzxx7F8+XJcu3YNX3/9Nfr16wdHR0fk5ubi66+/Rv/+/eHn54c333yzSv6DVx5r166FuDcNneJS/IaZorvGhRCypE+lUmHAgAEA7lUUlb569ciRI1LFccCAAZW6FITIZlT7BEBkFxISEqS5x5S+Umv58uXlmni7aLJwf39/MXfuXGm/xMRExX3i4+PLnAD8m2++qbIJwPv3729yAvDs7OxKTwCen58vvLy8BADRqlUr2fyIRYq+Gq1oKW0C8MmTJ0vbx40bpzgBeF5enkhNTZWtKz4B+IgRI0rdb/r06YoTgB86dEicO3eu1P2EuDfpeNFE2G5ubrJJsnNzc4W/v7+07eDBg4rtCCHEjz/+KA4cOGAypjxM/d5899130vauXbuanBA/NzdXLF26VOTk5CjGFE067eLiIlavXi21vXv3bpPtWuL5qc6vHExJSRHz588XQUFBJSYFnzNnjkWPVZmvHCyNOfM4CiFEYmKiNM9r+/btS3w2ZWdni/bt2wvg3ldSnj171iL9I7I2Jo5UKqPRKFq1aiV9gA4ePFhs375dxMfHiy1btogXXnhB+tYFcxO2tWvXSrGenp7SB25Zin/Xa8uWLcXatWtFfHy82Ldvnxg3bpxwcHCQJW8zZ8600LMgxLlz56SJtR0dHcX48ePFvn37RHx8vFi7dq145JFHBADRoUOHCieOQggxbdo0af8nnnhCbNmyRRw7dkzs3LlTvPbaa0KtVosnnnjCZOKYlZUl+0Pdrl07sWrVKhETEyMSEhLE1q1bxb/+9S/x4IMPlti/oKBABAcHS/v27NlTfPPNNyIhIUHs2LFDDBo0SNrWpEmTEt+HPGPGDKFWq0W3bt3EvHnzxK5du0RCQoI4fPiw+M9//iN7fSZMmFCi7zExMUKr1QoAwsHBQQwbNkxs2rRJxMfHi6NHj4qtW7eK9957Tzq/JUuWmPPymaWs398JEyZIMXq9XsycOVPs3btXHD9+XBw+fFisXbtWjBw5UtStW1cAMPld2gcOHCjxHvDx8SlzwnZLPD/VmTgWl5CQIMaPHy/q1atX6f/YXbt2TaxZs0a2NGvWTPa+KL6Y+s+MEnMTRyGEmDp1qhTbpk0bsXHjRhEXFyc2btwo2rRpI22bNm1aBc+YyPYwcSRFx48fl/4YlrYEBQWJq1evmp04ZmRkCBcXF1kbCxcuLLMfBoNBPPvss4r9CAwMFOfPn6+yisYPP/wgXF1dFY8/Y8YMqRrn7Oxcahtl/dHOysoSnTp1UjxG9+7dxenTp00mjkLc+5rIrl27KrZjav9bt27J/iNQ2tKiRYsS32wihPyPrallwIABpVaNhbiXHBVV1spa1q1bV2obFVHW76/RaBTvv/++cHR0LLNfrq6uiudX1Nb951haIl2ayj4/1koci+Tl5Ylvv/3W5FdSlmX//v1mnX9Z7xNTypM4FhYWitdee81kH0aOHCkKCwsrdsJENoiJI5n0xx9/iDFjxoiGDRsKJycn4eXlJR5//HExf/58aUjO3MRRCCEGDx4sxTs4OIhr166Z1Q+j0SjWrFkjunTpInQ6nahTp45o0aKF+Pe//y1u374t7ty5I7UbGRlZmVMuVVJSknj99ddFw4YNhUajET4+PqJfv35i165dQoi/q1I+Pj6l7m/OH+3s7Gwxe/ZsERQUJFxcXISHh4fo0KGDWLp0qSgoKCjzu6qL+/bbb8ULL7wgGjRoILRarXB2dhaNGzcWL774oli/fn2pw+FC3PtD+MUXX4g+ffoIHx8f4eTkJLy9vUX37t3F0qVLhcFgKHW/u3fviv/9739i7NixolOnTiIgIEA4OzsLZ2dn0ahRIzF48GCxY8cOk30W4t6w7IoVK0S/fv2En5+f0Gg0wtnZWfj7+4unn35azJ49W/z+++9ltlMe5v7+Xrx4Ubz99tuiffv2wsvLSzg4OAh3d3fxyCOPiGHDhol169Ypfl1jcW+//bYssTh69KjZfa3M82PtxNESbC1xLPLdd9+JAQMGSK+Jn5+fGDBggPj+++/LfXwiW6cSQmHyPSI7cvjwYelbK/bu3SvdVFNdQkJCEB0djS5dukg3/RAREdU0vKuaaoSiO46dnJzK/HpAS7t69ao05UbRXbhEREQ1ERNHsnk3b96UTd9yv927d2PlypUA7k1dUnzicEso+r7s0uTk5ODVV19Ffn4+AOCVV16x6LGJiIhsCb85hmze6dOnMWDAALz44osICQlBkyZNoFar8ccff2Dbtm346quvUFhYCBcXF3z00UcWP/4///lPZGVlYfDgwWjXrh28vLxw9+5dxMfHY/ny5VJiOXLkSAQFBVn8+ERERLaC1ziSzTtw4AB69OhhMsbDwwObNm3C008/La3LyspCUlJShY7ZrFkzODk5Abg3EXhZ3w7x/PPPY/369YqTOFPVSEpKMjlBvZK6deua/ApJIiIqHRNHsnmZmZn43//+h127duGXX37BjRs3kJaWBg8PDzz00EPo06cPxo0bhwceeEC2nzkJp5KkpCTpmyKOHTuGzZs3Y9++ffjzzz9x48YNCCFQv359dOrUCWFhYXjmmWcqe5pUAeYk9aUJCwuTvgWHiIjMx6Fqsnlubm4ICwtDWFiYVY7ftm1btG3bFh988IFVjk9ERGQrakXF0Wg04urVq3B3d+d3hRIREdkJIQTu3r0LPz8/qNXVfz9vbm4u8vLyqqRtjUYDZ2fnKmm7KtWKiuPVq1fh7+9v7W4QERFRBSQnJ6NBgwbVeszc3Fy4uHsDBdlV0r5er0dSUpLdJY+1InF0d3cHAJxPSoa7h4eVe1M5ufmF1u4C/aUm1Ood1DWjAl9orAEvBgBnJwdrd4H+wsEp23A3IwMPBfpLf8erU15eHlCQDW3LEYCDxrKNF+Yh5dc1yMvLY+Joi4qGp909POBh54mjhomjzWDiaDuYOJKlMXG0LVa9zMxBA5WFE0d7/sSqFYkjERERUYWoYPn/Sdjxf0z4zTFEREREZBZWHImIiIiUqNT3Fku3aafst+dEREREVK1YcSQiIiJSolJVwTWO9nuRIyuORERERGQWVhyJiIiIlPAaRxkmjkRERERKOFQtY78pLxERERFVK1YciYiIiBRVwVC1Hdft7LfnRERERFStWHEkIiIiUsJrHGVYcSQiIiIis7DiSERERKSE0/HI2G/PiYiIiKhaseJIREREpITXOMowcSQiIiJSwqFqGfvtORERERFVK1YciYiIiJRwqFqGFUciIiIiMgsrjkRERERKeI2jjP32nIiIiIiqFSuOREREREpUqiqoOPIaRyIiIiKq4VhxJCIiIlKiVt1bLN2mnWLiSERERKSEN8fI2G/PiYiIiKhaseJIREREpIQTgMuw4khEREREZmHiSERERKSk6BpHSy/lcOjQIfTv3x9+fn5QqVTYsmWLYuyYMWOgUqmwaNEi2frbt29j2LBh8PDwgKenJ0aOHInMzMxyPx1MHImIiIhsWFZWFlq3bo1ly5aZjNu8eTOOHDkCPz+/EtuGDRuGX3/9FXv27MGOHTtw6NAhjB49utx94TWOREREREps4BrHvn37om/fviZjrly5gvHjx2P37t3o16+fbNuZM2ewa9cuxMXFoX379gCAJUuW4JlnnsH8+fNLTTSVsOJIREREZAUZGRmyxWAwVKgdo9GI4cOH46233kLLli1LbI+JiYGnp6eUNAJASEgI1Go1YmNjy3UsJo5ERERESqrwGkd/f3/odDppiYiIqFAX586dC0dHR7z55pulbk9JSUH9+vVl6xwdHeHl5YWUlJRyHYtD1URERERKqnCoOjk5GR4eHtJqrVZb7qYSEhLw6aef4tixY1BVwzQ/rDgSERERWYGHh4dsqUji+OOPP+L69esICAiAo6MjHB0d8ccff+D//u//0KhRIwCAXq/H9evXZfsVFBTg9u3b0Ov15ToeK45ERERESmz8KweHDx+OkJAQ2brevXtj+PDhGDFiBAAgODgYaWlpSEhIQLt27QAA+/btg9FoRMeOHct1PCaORERERDYsMzMT58+flx4nJSXhxIkT8PLyQkBAALy9vWXxTk5O0Ov1aNasGQCgRYsW6NOnD0aNGoUVK1YgPz8f48aNw5AhQ8p1RzXAxJGIiIhImQ1MxxMfH48ePXpIjydPngwACAsLw9q1a81qY/369Rg3bhx69eoFtVqN0NBQLF68uFz9AJg4EhEREdm07t27QwhhdvylS5dKrPPy8kJUVFSl+8LEkYiIiEhRFVzjaMf3Jttvz4mIiIioWrHiSERERKTEBq5xtCW1KnHMNhTC0VBo7W5USm6+ffcfAIzmX6Zh0ww14LVwcLDfD6/iPJydrN0Fi8jJs//fKReNg7W7YBEFhTXkg8rO2cTroFJVwXQ89vvZa1ND1XPmzIFKpcLEiROldd27d4dKpZItY8aMsV4niYiIiGopm6k4xsXFYeXKlXj00UdLbBs1ahRmzZolPa5Tp051do2IiIhqKxufALy62UTPMzMzMWzYMHz22WeoW7duie116tSBXq+XluLf60hERERE1cMmEsfw8HD069evxFfmFFm/fj3q1auHVq1aYdq0acjOzjbZnsFgQEZGhmwhIiIiKreim2Msvdgpqw9Vb9y4EceOHUNcXFyp2//xj3+gYcOG8PPzw8mTJzFlyhQkJibi22+/VWwzIiIC77//flV1mYiIiKhWsmrimJycjAkTJmDPnj1wdnYuNWb06NHSz0FBQfD19UWvXr1w4cIFNGnSpNR9pk2bJn0dDwBkZGTA39/fsp0nIiKimo/XOMpYNXFMSEjA9evX0bZtW2ldYWEhDh06hKVLl8JgMMDBQT61Q8eOHQEA58+fV0wctVottFpt1XWciIiIqBayauLYq1cvnDp1SrZuxIgRaN68OaZMmVIiaQSAEydOAAB8fX2ro4tERERUm3ECcBmrJo7u7u5o1aqVbJ2rqyu8vb3RqlUrXLhwAVFRUXjmmWfg7e2NkydPYtKkSejatWup0/YQERERWRSHqmWsfnOMKRqNBnv37sWiRYuQlZUFf39/hIaG4t1337V214iIiIhqHZtLHA8cOCD97O/vj4MHD1qvM0RERFS7cahaxn5rpURERERUrWyu4khERERkK1QqFVSsOEpYcSQiIiIis7DiSERERKSAFUc5VhyJiIiIyCysOBIREREpUf21WLpNO8XEkYiIiEgBh6rlOFRNRERERGZhxZGIiIhIASuOcqw4EhEREZFZWHEkIiIiUsCKoxwrjkRERERkFlYciYiIiBSw4ijHiiMRERERmYUVRyIiIiIlnABchhVHIiIiIjILK45ERERECniNoxwTRyIiIiIFKhWqIHG0bHPViUPVRERERGQWVhyJiIiIFKhQBUPVdlxyZMWRiIiIiMzCiiMRERGRAt4cI8eKIxERERGZhRVHIiIiIiWcAFyGFUciIiIiMgsrjkRERERKquAaR2HH1zgycSQiIiJSUBU3x1h+ep/qw6FqIiIiIjILK45EREREClhxlGPFkYiIiIjMwoojERERkRJOxyPDiiMRERERmYUVRyIiIiIFvMZRjhVHIiIiIjJLrao45uQVwDGvwNrdqJQsQ6G1u0B/ycq179+lmkQIa/fAMoxG+z8Ro3CydhcsQuNo/3UVOy5qSQSs/55gxVHO/t8ZRERERFWkKHG09FIehw4dQv/+/eHn5weVSoUtW7ZI2/Lz8zFlyhQEBQXB1dUVfn5+eOWVV3D16lVZG7dv38awYcPg4eEBT09PjBw5EpmZmeV+Ppg4EhEREdmwrKwstG7dGsuWLSuxLTs7G8eOHcP06dNx7NgxfPvtt0hMTMRzzz0nixs2bBh+/fVX7NmzBzt27MChQ4cwevTocvelVg1VExEREZWHLQxV9+3bF3379i11m06nw549e2Trli5discffxyXL19GQEAAzpw5g127diEuLg7t27cHACxZsgTPPPMM5s+fDz8/P7P7woojERERkRVkZGTIFoPBYJF209PToVKp4OnpCQCIiYmBp6enlDQCQEhICNRqNWJjY8vVNhNHIiIiIiWqKloA+Pv7Q6fTSUtERESlu5ubm4spU6Zg6NCh8PDwAACkpKSgfv36sjhHR0d4eXkhJSWlXO1zqJqIiIjICpKTk6XkDgC0Wm2l2svPz8fgwYMhhEBkZGRlu1cqJo5ERERECqryGkcPDw9Z4lgZRUnjH3/8gX379sna1ev1uH79uiy+oKAAt2/fhl6vL9dxOFRNREREZMeKksZz585h79698Pb2lm0PDg5GWloaEhISpHX79u2D0WhEx44dy3UsVhyJiIiIFNjCXdWZmZk4f/689DgpKQknTpyAl5cXfH198cILL+DYsWPYsWMHCgsLpesWvby8oNFo0KJFC/Tp0wejRo3CihUrkJ+fj3HjxmHIkCHluqMaYOJIREREpMgWEsf4+Hj06NFDejx58mQAQFhYGGbOnIlt27YBAB577DHZfvv370f37t0BAOvXr8e4cePQq1cvqNVqhIaGYvHixeXuOxNHIiIiIhvWvXt3CBPfrWpqWxEvLy9ERUVVui9MHImIiIiUFJs+x6Jt2ineHENEREREZmHFkYiIiEiBLVzjaEtYcSQiIiIis7DiSERERKSAFUc5VhyJiIiIyCysOBIREREpUKEKKo52fFs1E0ciIiIiBRyqluNQNRERERGZhRVHIiIiIiWcAFzGpiqOc+bMgUqlwsSJE6V1ubm5CA8Ph7e3N9zc3BAaGorU1FTrdZKIiIiolrKZxDEuLg4rV67Eo48+Kls/adIkbN++HZs2bcLBgwdx9epVDBo0yEq9JCIiotqk6BpHSy/2yiYSx8zMTAwbNgyfffYZ6tatK61PT0/H6tWrsWDBAvTs2RPt2rXDmjVr8PPPP+PIkSOK7RkMBmRkZMgWIiIiIqocm0gcw8PD0a9fP4SEhMjWJyQkID8/X7a+efPmCAgIQExMjGJ7ERER0Ol00uLv719lfSciIqKaixVHOasnjhs3bsSxY8cQERFRYltKSgo0Gg08PT1l6318fJCSkqLY5rRp05Ceni4tycnJlu42ERERUa1j1buqk5OTMWHCBOzZswfOzs4Wa1er1UKr1VqsPSIiIqqdVKp7i6XbtFdWrTgmJCTg+vXraNu2LRwdHeHo6IiDBw9i8eLFcHR0hI+PD/Ly8pCWlibbLzU1FXq93jqdJiIiolrjXuJo6aFqa59VxVm14tirVy+cOnVKtm7EiBFo3rw5pkyZAn9/fzg5OSE6OhqhoaEAgMTERFy+fBnBwcHW6DIRERFRrWXVxNHd3R2tWrWSrXN1dYW3t7e0fuTIkZg8eTK8vLzg4eGB8ePHIzg4GJ06dbJGl4mIiKg2qYKhanueANzmvzlm4cKFUKvVCA0NhcFgQO/evbF8+XJrd4uIiIio1rG5xPHAgQOyx87Ozli2bBmWLVtmnQ4RERFRrVUV0+dwOh4iIiIiqvFsruJIREREZCs4HY8cK45EREREZBZWHImIiIgUqNUqqNWWLREKC7dXnZg4EhERESngULUch6qJiIiIyCysOBIREREp4HQ8cqw4EhEREZFZWHEkIiIiUsBrHOVYcSQiIiIis7DiSERERKSA1zjKseJIRERERGZhxZGIiIhIASuOcrUqcTQUGKHJN1q7G5VyJyvP2l2otKuZOdbugkUUCGHtLlSaRl0zBh0Ka8BrAQCedTTW7kKlFRTWjNcCsO+/FTVFng38zebNMXI1468GEREREVW5WlVxJCIiIioPFapgqBr2W3JkxZGIiIiIzMKKIxEREZECXuMox4ojEREREZmFFUciIiIiBZyOR44VRyIiIiIyCyuORERERAp4jaMcK45EREREZBZWHImIiIgU8BpHOSaORERERAo4VC3HoWoiIiIiMgsrjkREREQKOFQtx4ojEREREZmFFUciIiIiJVVwjSPst+DIiiMRERGRLTt06BD69+8PPz8/qFQqbNmyRbZdCIH33nsPvr6+cHFxQUhICM6dOyeLuX37NoYNGwYPDw94enpi5MiRyMzMLHdfmDgSERERKSi6xtHSS3lkZWWhdevWWLZsWanb582bh8WLF2PFihWIjY2Fq6srevfujdzcXClm2LBh+PXXX7Fnzx7s2LEDhw4dwujRo8v9fHComoiIiMiG9e3bF3379i11mxACixYtwrvvvosBAwYAAL744gv4+Phgy5YtGDJkCM6cOYNdu3YhLi4O7du3BwAsWbIEzzzzDObPnw8/Pz+z+8KKIxEREZGConkcLb0AQEZGhmwxGAzl7l9SUhJSUlIQEhIirdPpdOjYsSNiYmIAADExMfD09JSSRgAICQmBWq1GbGxsuY7HxJGIiIhIQVUOVfv7+0On00lLREREufuXkpICAPDx8ZGt9/HxkbalpKSgfv36su2Ojo7w8vKSYszFoWoiIiIiK0hOToaHh4f0WKvVWrE35mHFkYiIiEhBVQ5Ve3h4yJaKJI56vR4AkJqaKlufmpoqbdPr9bh+/bpse0FBAW7fvi3FmIuJIxEREZGdCgwMhF6vR3R0tLQuIyMDsbGxCA4OBgAEBwcjLS0NCQkJUsy+fftgNBrRsWPHch2PQ9VERERECmzhKwczMzNx/vx56XFSUhJOnDgBLy8vBAQEYOLEifjwww/RtGlTBAYGYvr06fDz88PAgQMBAC1atECfPn0watQorFixAvn5+Rg3bhyGDBlSrjuqASaORERERDYtPj4ePXr0kB5PnjwZABAWFoa1a9fi7bffRlZWFkaPHo20tDR06dIFu3btgrOzs7TP+vXrMW7cOPTq1QtqtRqhoaFYvHhxufvCxJGIiIhIgS1UHLt37w4hhMn2Zs2ahVmzZinGeHl5ISoqqlzHLQ2vcSQiIiIis7DiSERERKSg+F3QlmzTXjFxJCIiIlJgC0PVtoRD1URERERkFlYciYiIiBRwqFqOFUciIiIiMgsrjkREREQKeI2jHCuORERERGQWVhyJiIiIFKhQBdc4Wra5asWKIxERERGZhRVHIiIiIgVqlQpqC5ccLd1edWLiSERERKSA0/HIcaiaiIiIiMzCiiMRERGRAk7HI8eKIxERERGZxeqJY2RkJB599FF4eHjAw8MDwcHB2Llzp7S9e/fuUrZftIwZM8aKPSYiIqLaQq2qmsVeWX2oukGDBpgzZw6aNm0KIQTWrVuHAQMG4Pjx42jZsiUAYNSoUZg1a5a0T506dazVXSIiIqJay+qJY//+/WWPZ8+ejcjISBw5ckRKHOvUqQO9Xl/pY+VkZcNB7VBivYODA7TOztLj7KwsxTbUajWcXVwqFJuTnQ0hRKmxKpUKLsUSYqXYnGwDVCoVnF3+js3NzYEwGhX74VLHtUKxBkMujIWFFol1dqkjXdORn2dAoYlYrbOL2bEarTPU6nuF8/z8PBQWFFgk1kmjhYODg8nYgr9eH41GC/VfsQX5+SgoyFdu10kDB0fHcscWFhQgPz9PMdbR0QmOTk7ljy0sRL7BoBjr4OQIJydNuWONRiPycnMtE+voACeNFgAghIAhJ6dETI7Dvd9pBwdHaLR/x+bmZCu2q3ZwgFb79/s+J9vEe7kcsSq1Gs7OLhWMrfxnRGmxuTk5MJp439dxda1QrCE3t8T706HQsdTY3NyyPk/+/owwGAwm35/liXV2cZHe93l5eSjIV37P3R+bbyrW2Vn6jChPbH5+PvLylN+fWq0Wjn+978sTW1BQAIOJ96dGo4HTX+/78sQWFhYi18T708nJCRqNptyxRqMROaW8l0uLtTpVFVyTaMcVRwgbUlBQIDZs2CA0Go349ddfhRBCdOvWTdSrV094e3uLli1biqlTp4qsrCyT7eTm5or09HRpSU5OFgAUl+4hvcX51GxpcXGpoxj7+BNPymLretdTjA16rK0s9kH/AMXYh5q1kMU+1KyFYqz+QX8Rc/6OtLQIaqMY61nXWxbb5vHOirHOLnVksU90f8rk81Y8tkefASZj9538U4rt3n+wydj/7Dsl/nfiqvjfiauiz+Awk7GR38VKsc+9MsZk7MJv9kuxg1+fbDJ27lffS7HDJ75rMva9zzaJ/x6/Iv57/Ip4bepsk7FTFq+TYse+v8Bk7MR5K6TYifNWmIwd+/4CKXbK4nUmY1+bOluK/eDz/5mMfWXSdLH5l2ti8y/XxLz1O03GvjTm/6TYT/93wGTsgLCxUuzK74+ajO3z0qtS7Nr9p0zG9gsdKo5eTBNHL6aJg6evmIzt2XeAFHv0YprJ2M7dn5bFOpv4jGjbsbMs1tPLWzG2RVAbWeyDDUx8RjzcQpxNyZaWhx5W/ox4sEGALLZV67aKsXW96sliHw9+UjHWxaWOLLZbr94mn7draXnS8uyAQSZjL1y5I8UOHjrcZOyp81ek2Ff/afp9f/SXs1Ls2PGm3/cHYo5LsW9Nm24y9ocDP4sbd/PFjbv5YsYHc0zGbvl+rxQ755NPTcau37RVil0c+bnJ2M+/2CDFfv7FBpOxiyM/l2LXb9pqMnbOJ59KsVu+32sydsYHc6TYHw78bDL2rWnTpdgfj54wGRv+5mRx426+uHjllgAg0tPTqyMNkUlPTxcARMiCaNE3MtaiS8iCaKudV2VZveIIAKdOnUJwcDByc3Ph5uaGzZs345FHHgEA/OMf/0DDhg3h5+eHkydPYsqUKUhMTMS3336r2F5ERATef/99s4+fnVeIS7f/rgoIE7G5+fJYo1E52lBglMUWFCrH5t8Xm1+g/D/+fKPAr7cypMc5Bcr/iy8Q8tgsE7HG+2Lv5in/Lx6ALDYjT/l/2wBw5vZdaHPuHTsxNdNk7NojydC434v5/dpdk7FfxV2By8V7z9W5KxkmY/977Crcrt2rGl24nG4y9psT16C7UxcAcCnpjsnYr2P/hMeNcwCA1F+vm4zdHH8V+zPvxd44mWoydsfxFPxccC/29qkUk7G7TqYiwelebNrvV03GRv96Had33ovVZZk+t9MpmRCn753TzQu3TcaeuZ6Fb/+KTfvzlsnYczezpdjMGzdNxl68lSPF5maY7sOd3HycvHHvtTWYqDYCQLrh79iyZOTJY40KlT4AyMwvlMUWmPiMyCkwPza/0IjLd7Jkj5UUGIUsNs9ErFHIY3NNfEYIQBabk68cCwBZhr8/Q0ydW1GscCwwKzbbUCC1bep5AO59vlckNifP9Lll5BTgTla+WbF3i8VmG0zHZuaaH5uVWyjFZuWajgVM/227P04U+9maseb2uSpxHkc5lRAmPgGrSV5eHi5fvoz09HR88803+Pzzz3Hw4EEpeSxu37596NWrF86fP48mTZqU2p7BYJCV4TMyMuDv74//HjyFOm7uJeIdHBygMXfISq2G1sxhqPtjc3NMDy3Jhp8VYi/fzQFUKlm7ebm5EEL5A1FbrN3yxOYbck0OWZUnVlNs+Dnqp0sQRuUPObXGWYo15ueZjnXSQvXX0JKxIB+iUDnZLV+sBqq/LmtQis3IvPc7pnYsFltYAFGonESrHZygcnAsd6woLIDRRKzKwQnqCsQ29fdAYZ7ykJXa0QkOjveGrIzGQrNjhdGIgjzlIatyxTo4wuGvYW0hBAoMJYe3nmzi+VesfFg7L1d5KEytVsOp2PveVKJZnliVSg2Nc8Vi9U6o9GdEabGGXNPDz7LLTsoRm2coOVTdsO7f28sa1pa3a1tD1bkG07Ha+4aqzY3Nz89HvonhZ819Q9XmxhYUFCDvvuFnnavT37F2OlR9NyMDTR70Rnp6Ojw8PBTjq0JGRgZ0Oh2eXrgPTi5uFm07PycTP0zqaZXzqiybqDhqNBo89NBDAIB27dohLi4On376KVauXFkitmPHjgBgMnHUarXQ/nWdU3HOdVxlH3pKzImpSGzxD/KKxmoLSv43pfgfnrKUJ7b4H0pLxqqdzL9upVyxjk6Ao1PZgRaKdcgrOSmB2sERcDDvbVWeWJWDIxyqIFatdoDa2bzfy/LEqtRqOFVFrEpVaqy2lPeLSqUqdb0SW4i1xGdEqX0o9h9NS8ZqSnnfF08W5e2a/xmh1WqBUj7DKxur0WjMvm6uqmKdnJykpMySsY6OjlISWcTVtfR9S4tV4uDgAFeF17QysWq12uxYsi02kTjez2g0Kv5v6MSJEwAAX1/fauwRERER1UZVMX0Op+OphGnTpqFv374ICAjA3bt3ERUVhQMHDmD37t24cOECoqKi8Mwzz8Db2xsnT57EpEmT0LVrVzz66KPW7joRERFRrWL1xPH69et45ZVXcO3aNeh0Ojz66KPYvXs3nnrqKSQnJ2Pv3r1YtGgRsrKy4O/vj9DQULz77rvW7jYRERHVAvzKQTmrJ46rV69W3Obv74+DBw9WY2+IiIiISInVE0ciIiIiW8XpeOSs/l3VRERERGQfWHEkIiIiUqBWqaC2cInQ0u1VJyaORERERAo4VC3HoWoiIiIiMgsrjkREREQKOB2PHCuORERERGQWVhyJiIiIFPAaRzlWHImIiIjILKw4EhERESngdDxyrDgSERERkVlYcSQiIiJSoPprsXSb9oqJIxEREZECTscjx6FqIiIiIjILK45ERERECtSqe4ul27RXrDgSERERkVlYcSQiIiJSwGsc5VhxJCIiIiKzsOJIREREZIIdFwgtjhVHIiIiIjILK45ERERECniNoxwTRyIiIiIFnI5HjkPVRERERGQWVhyJiIiIFHCoWo4VRyIiIiIbVlhYiOnTpyMwMBAuLi5o0qQJPvjgAwghpBghBN577z34+vrCxcUFISEhOHfunMX7wsSRiIiISIGqipbymDt3LiIjI7F06VKcOXMGc+fOxbx587BkyRIpZt68eVi8eDFWrFiB2NhYuLq6onfv3sjNza3wuZeGQ9VEREREVpCRkSF7rNVqodVqS8T9/PPPGDBgAPr16wcAaNSoETZs2ICjR48CuFdtXLRoEd59910MGDAAAPDFF1/Ax8cHW7ZswZAhQyzWZ1YciYiIiBSoVaoqWQDA398fOp1OWiIiIkrtwxNPPIHo6GicPXsWAPDLL7/g8OHD6Nu3LwAgKSkJKSkpCAkJkfbR6XTo2LEjYmJiLPp8sOJIREREZAXJycnw8PCQHpdWbQSAqVOnIiMjA82bN4eDgwMKCwsxe/ZsDBs2DACQkpICAPDx8ZHt5+PjI22zFCaORERERApUKst/5WBRex4eHrLEUcnXX3+N9evXIyoqCi1btsSJEycwceJE+Pn5ISwszLKdK4PZieOCBQswbNgw+Pj4YMGCBSZjVSoVJk2aVOnOEREREVmTLUzH89Zbb2Hq1KnStYpBQUH4448/EBERgbCwMOj1egBAamoqfH19pf1SU1Px2GOPWazfQDkSx3/961/o0qULfHx88K9//ctkLBNHIiIiIsvIzs6GWi2/LcXBwQFGoxEAEBgYCL1ej+joaClRzMjIQGxsLMaOHWvRvpidOBZ17v6fiYiIiGqqqhyqNlf//v0xe/ZsBAQEoGXLljh+/DgWLFiA11577a/2VJg4cSI+/PBDNG3aFIGBgZg+fTr8/PwwcOBAi/ad1zgSERER2bAlS5Zg+vTpeOONN3D9+nX4+fnh9ddfx3vvvSfFvP3228jKysLo0aORlpaGLl26YNeuXXB2drZoXyqVOJ46dQrJycmlTi45aNCgyjRNREREZHXFp8+xZJvl4e7ujkWLFmHRokWKMSqVCrNmzcKsWbMq2TvTKpQ4nj59GoMHD0ZiYqLs626KqFQqFBYWVrpzRERERGQ7KpQ4jhw5Eo6Ojti2bRsefvhhaDQaS/eLiIiIyOps4RpHW1KhxPHXX3/FN998gz59+li6P0RERERkoyqUOD722GO4fv26pftCREREZFNsYR5HW1Kh76peunQpPvnkE+zZswcFBQWW7hMRERER2aAKVRwfeeQRdOrUCX369IFarYaLi4tsu0qlQnp6ukU6aEn/O50KTZ0sa3ejUnLz7f+mo8Prt1i7C5aRm2ntHlTayQcaWrsLFpE6sKu1u2ARTfTu1u5CpQ1uqbd2Fyyinqv9X7tfWGj/M+4VFpa8Abe6qVHBKlsZbdqrCv1Wvf7669iwYQMGDRrEm2OIiIioxuJQtVyFEsf//e9/WLBgAd544w1L94eIiIiIbFSFEkdPT080btzY0n0hIiIisikqFaDmdDySCg2z/9///R+WLFnCG2OIiIiIapEKVRzPnz+PU6dOoUmTJujWrRs8PT1l21UqFT799FNL9I+IiIjIatRVUHG0dHvVqUKJ444dO+Dg4AAA+PHHH0tsZ+JIREREVPNUKHFMSkqydD+IiIiIbA7vqpar8CRPN2/exMKFCxEbG4tr167B19cXnTp1wsSJE1GvXj1L9pGIiIiIbECFbo6JjY1F06ZNsXTpUuh0OnTr1g06nQ5LlixBkyZNEBsba+l+EhEREVW7omscLb3YqwpVHMPDw9GyZUt8//338PDwkNanp6ejb9++GDduHOLi4izWSSIiIiJrUKksP32OHY9UV6zi+Ouvv2Lq1KmypBEAdDodpk6ditOnT1ukc0RERERkOypUcXzooYeQlpZW6rb09HRODk5EREQ1glqlgtrCJUJLt1edKlRx/PjjjzFjxgwcPHhQtv7AgQOYOXMm5s+fb5HOEREREZHtMLviGBQUJLt9PD09HT179oROp8MDDzyAGzduID09HXXr1sWUKVPQt2/fKukwERERUXVRo4JVtjLatFdmJ47t2rWTJY7t2rWzSAciIyMRGRmJS5cuAQBatmyJ9957T0o8c3Nz8X//93/YuHEjDAYDevfujeXLl8PHx8cixyciIiIi85idOK5du7ZKOtCgQQPMmTMHTZs2hRAC69atw4ABA3D8+HG0bNkSkyZNwnfffYdNmzZBp9Nh3LhxGDRoEH766acq6Q8RERFREd5VLVfhCcAtpX///rLHs2fPRmRkJI4cOYIGDRpg9erViIqKQs+ePQEAa9asQYsWLXDkyBF06tTJGl0mIiIiqpWsnjgWV1hYiE2bNiErKwvBwcFISEhAfn4+QkJCpJjmzZsjICAAMTExiomjwWCAwWCQHmdkZFR534mIiKjmUaMK7qqG/ZYcbeL6zFOnTsHNzQ1arRZjxozB5s2b8cgjjyAlJQUajQaenp6yeB8fH6SkpCi2FxERAZ1OJy3+/v5VfAZERERUExUNVVt6sVc2kTg2a9YMJ06cQGxsLMaOHYuwsDD89ttvFW5v2rRpSE9Pl5bk5GQL9paIiIiodrKJoWqNRoOHHnoIwL27tePi4vDpp5/ipZdeQl5eHtLS0mRVx9TUVOj1esX2tFottFptVXebiIiIariq+G5pe/6uapuoON7PaDTCYDCgXbt2cHJyQnR0tLQtMTERly9fRnBwsBV7SERERFT7WL3iOG3aNPTt2xcBAQG4e/cuoqKicODAAezevRs6nQ4jR47E5MmT4eXlBQ8PD4wfPx7BwcG8o5qIiIiqnEpl+a8ItOdrHK2eOF6/fh2vvPIKrl27Bp1Oh0cffRS7d+/GU089BQBYuHAh1Go1QkNDZROAExEREVH1snriuHr1apPbnZ2dsWzZMixbtqyaekRERER0DycAl7PJaxyJiIiIyPZYveJIREREZKt4V7UcE0ciIiIiBaq//lm6TXvFoWoiIiIiMgsrjkREREQKOFQtx4ojEREREZmFFUciIiIiBaw4yrHiSERERERmYcWRiIiISIFKpYLK4l85aL8lR1YciYiIiMgsrDgSERERKeA1jnJMHImIiIgU8Luq5ThUTURERERmYcWRiIiISIFapYLawiVCS7dXnVhxJCIiIiKzsOJIREREpIA3x8ix4khEREREZmHFkYiIiEhJFdxVDVYciYiIiKiqXLlyBS+//DK8vb3h4uKCoKAgxMfHS9uFEHjvvffg6+sLFxcXhISE4Ny5cxbvBxNHIiIiIgVqqKpkKY87d+6gc+fOcHJyws6dO/Hbb7/hk08+Qd26daWYefPmYfHixVixYgViY2Ph6uqK3r17Izc316LPR60aqs7MzYeTKt/a3aiU2ONXrd2FSnNq+Ii1u2AR+UmnrN2FSvMLamXtLlhEfoHR2l2wiD9uZFq7C/QXYe0OWIIdD4dKbOAcbGEC8Llz58Lf3x9r1qyR1gUGBko/CyGwaNEivPvuuxgwYAAA4IsvvoCPjw+2bNmCIUOGWKTfACuORERERFaRkZEhWwwGQ6lx27ZtQ/v27fHiiy+ifv36aNOmDT777DNpe1JSElJSUhASEiKt0+l06NixI2JiYizaZyaORERERAqKpuOx9AIA/v7+0Ol00hIREVFqHy5evIjIyEg0bdoUu3fvxtixY/Hmm29i3bp1AICUlBQAgI+Pj2w/Hx8faZul1KqhaiIiIiJbkZycDA8PD+mxVqstNc5oNKJ9+/b46KOPAABt2rTB6dOnsWLFCoSFhVVLX4uw4khERESkoOgrBy29AICHh4dsUUocfX198cgj8vsDWrRogcuXLwMA9Ho9ACA1NVUWk5qaKm2z2PNh0daIiIiIyKI6d+6MxMRE2bqzZ8+iYcOGAO7dKKPX6xEdHS1tz8jIQGxsLIKDgy3aFw5VExERESmwhbuqJ02ahCeeeAIfffQRBg8ejKNHj2LVqlVYtWrVX+2pMHHiRHz44Ydo2rQpAgMDMX36dPj5+WHgwIEW7TsTRyIiIiIb1qFDB2zevBnTpk3DrFmzEBgYiEWLFmHYsGFSzNtvv42srCyMHj0aaWlp6NKlC3bt2gVnZ2eL9oWJIxEREZECNf6+JtGSbZbXs88+i2effVZxu0qlwqxZszBr1qzKdK1MTByJiIiIFNjCULUt4c0xRERERGQWVhyJiIiIFKhh+SqbPVft7LnvRERERFSNWHEkIiIiUqBSqaCy8EWJlm6vOrHiSERERERmYcWRiIiISIHqr8XSbdorVhyJiIiIyCysOBIREREpUKuqYAJwO77GkYkjERERkQn2m+ZZHoeqiYiIiMgsrDgSERERKeBXDsqx4khEREREZmHFkYiIiEgBJwCXY8WRiIiIiMzCiiMRERGRAjUsX2Wz56qdPfediIiIiKoRK45ERERECniNoxwrjkRERERkFlYciYiIiBSoYPlvjrHfeiMTRyIiIiJFHKqW41A1EREREZmFFUciIiIiBZyOR86e+05ERERE1YgVRyIiIiIFvMZRjhVHIiIiIjKL1RPHiIgIdOjQAe7u7qhfvz4GDhyIxMREWUz37t2ljL9oGTNmjJV6TERERLWFqooWe2X1xPHgwYMIDw/HkSNHsGfPHuTn5+Ppp59GVlaWLG7UqFG4du2atMybN89KPSYiIiKqnax+jeOuXbtkj9euXYv69esjISEBXbt2ldbXqVMHer2+urtHREREtZhKdW+xdJv2yuoVx/ulp6cDALy8vGTr169fj3r16qFVq1aYNm0asrOzFdswGAzIyMiQLURERETlpYaqShZ7ZfWKY3FGoxETJ05E586d0apVK2n9P/7xDzRs2BB+fn44efIkpkyZgsTERHz77belthMREYH333+/urpNREREVCvYVOIYHh6O06dP4/Dhw7L1o0ePln4OCgqCr68vevXqhQsXLqBJkyYl2pk2bRomT54sPc7IyIC/v3/VdZyIiIhqJA5Vy9lM4jhu3Djs2LEDhw4dQoMGDUzGduzYEQBw/vz5UhNHrVYLrVZbJf0kIiIiqq2snjgKITB+/Hhs3rwZBw4cQGBgYJn7nDhxAgDg6+tbxb0jIiKi2kz11z9Lt2mvrJ44hoeHIyoqClu3boW7uztSUlIAADqdDi4uLrhw4QKioqLwzDPPwNvbGydPnsSkSZPQtWtXPProo1buPREREVHtYfXEMTIyEsC9Sb6LW7NmDV599VVoNBrs3bsXixYtQlZWFvz9/REaGop3333XCr0lIiKi2oTXOMpZPXEUQpjc7u/vj4MHD1ZTb4iIiIhIidUTx+r0VHNvuLi5W7sbtd6fNzys3QWLyHjYz9pdqLQ7t7LKDrIDTfQ1433dIcD+z8PBnkspxWgcbW6a43IrKDRauwuVZgvnoKqCeRd5jSMRERFRDcShajn7/y8VEREREVULVhyJiIiIFLDiKMeKIxERERGZhRVHIiIiIgWcAFyOFUciIiIiMgsrjkREREQK1Kp7i6XbtFesOBIRERGRWVhxJCIiIlLAaxzlmDgSERERKeB0PHIcqiYiIiIis7DiSERERKRABcsPLdtxwZEVRyIiIiJ7MWfOHKhUKkycOFFal5ubi/DwcHh7e8PNzQ2hoaFITU2tkuMzcSQiIiJSUDQdj6WXioiLi8PKlSvx6KOPytZPmjQJ27dvx6ZNm3Dw4EFcvXoVgwYNssDZl8TEkYiIiMjGZWZmYtiwYfjss89Qt25daX16ejpWr16NBQsWoGfPnmjXrh3WrFmDn3/+GUeOHLF4P5g4EhERESlQVdE/AMjIyJAtBoNBsR/h4eHo168fQkJCZOsTEhKQn58vW9+8eXMEBAQgJibG4s8HE0ciIiIiK/D394dOp5OWiIiIUuM2btyIY8eOlbo9JSUFGo0Gnp6esvU+Pj5ISUmxeJ95VzURERGRgqqcxzE5ORkeHh7Seq1WWyI2OTkZEyZMwJ49e+Ds7GzZjlQAK45EREREClRVtACAh4eHbCktcUxISMD169fRtm1bODo6wtHREQcPHsTixYvh6OgIHx8f5OXlIS0tTbZfamoq9Hq9RZ8LgBVHIiIiIpvVq1cvnDp1SrZuxIgRaN68OaZMmQJ/f384OTkhOjoaoaGhAIDExERcvnwZwcHBFu8PE0ciIiIiBWqooLbwWLW6HFOAu7u7o1WrVrJ1rq6u8Pb2ltaPHDkSkydPhpeXFzw8PDB+/HgEBwejU6dOFu03wMSRiIiIyK4tXLgQarUaoaGhMBgM6N27N5YvX14lx2LiSERERKSg+DWJlmyzMg4cOCB77OzsjGXLlmHZsmWVbLlsvDmGiIiIiMzCiiMRERGRElssOVoRK45EREREZBZWHImIiIgUFP+KQEu2aa+YOBIREREpqYJvjrHjvJFD1URERERkHlYciYiIiBTw3hg5VhyJiIiIyCysOBIREREpYclRhhVHIiIiIjILK45ERERECjgdjxwrjkRERERkFlYciYiIiBSoqmAeR4vPC1mNmDgSERERKeC9MXIcqiYiIiIis7DiSERERKSEJUcZVhyJiIiIyCysOBIREREp4HQ8cqw4EhEREZFZWHEkIiIiUsDpeORYcSQiIiIis7DiSERERKSAN1XL1arEsZ6LFnVctNbuRqUMau1j7S5U2rlb7tbugkVcupVr7S5UWo+HPK3dBYtIyy2wdhcsws/N2dpdqDS9zv7PAQBcNA7W7kKlaZ3sf1Axz8kGXgdmjjL2/1tFRERERNWiVlUciYiIiMqD0/HIseJIRERERGZhxZGIiIhIAafjkWPFkYiIiIjMwoojERERkQLeVC3HiiMRERERmYUVRyIiIiIlLDnKWL3iGBERgQ4dOsDd3R3169fHwIEDkZiYKIvJzc1FeHg4vL294ebmhtDQUKSmplqpx0RERES1k9UTx4MHDyI8PBxHjhzBnj17kJ+fj6effhpZWVlSzKRJk7B9+3Zs2rQJBw8exNWrVzFo0CAr9pqIiIhqA1UV/bNXVh+q3rVrl+zx2rVrUb9+fSQkJKBr165IT0/H6tWrERUVhZ49ewIA1qxZgxYtWuDIkSPo1KmTNbpNREREtQCn45GzesXxfunp6QAALy8vAEBCQgLy8/MREhIixTRv3hwBAQGIiYkptQ2DwYCMjAzZQkRERESVY1OJo9FoxMSJE9G5c2e0atUKAJCSkgKNRgNPT09ZrI+PD1JSUkptJyIiAjqdTlr8/f2ruutERERUA6mqaLFXNpU4hoeH4/Tp09i4cWOl2pk2bRrS09OlJTk52UI9JCIiIqq9rH6NY5Fx48Zhx44dOHToEBo0aCCt1+v1yMvLQ1pamqzqmJqaCr1eX2pbWq0WWq22qrtMRERENR2n45GxesVRCIFx48Zh8+bN2LdvHwIDA2Xb27VrBycnJ0RHR0vrEhMTcfnyZQQHB1d3d4mIiIhqLatXHMPDwxEVFYWtW7fC3d1dum5Rp9PBxcUFOp0OI0eOxOTJk+Hl5QUPDw+MHz8ewcHBvKOaiIiIqlRVTJ/D6XgqITIyEgDQvXt32fo1a9bg1VdfBQAsXLgQarUaoaGhMBgM6N27N5YvX17NPSUiIiKq3ayeOAohyoxxdnbGsmXLsGzZsmroEREREdE9nMdRzuqJIxEREZGt4r0xcla/OYaIiIiI7AMrjkRERERKWHKUYcWRiIiIiMzCiiMRERGRAk7HI8eKIxERERGZhRVHIiIiIiVVMB2PHRccWXEkIiIiIvMwcSQiIiJSoKqipTwiIiLQoUMHuLu7o379+hg4cCASExNlMbm5uQgPD4e3tzfc3NwQGhqK1NTUCp2zKUwciYiIiJTYQOZ48OBBhIeH48iRI9izZw/y8/Px9NNPIysrS4qZNGkStm/fjk2bNuHgwYO4evUqBg0aVPHzVsBrHImIiIhs2K5du2SP165di/r16yMhIQFdu3ZFeno6Vq9ejaioKPTs2RMAsGbNGrRo0QJHjhxBp06dLNYXVhyJiIiIFKiq6B8AZGRkyBaDwWBWn9LT0wEAXl5eAICEhATk5+cjJCREimnevDkCAgIQExNj0eeDiSMRERGRFfj7+0On00lLREREmfsYjUZMnDgRnTt3RqtWrQAAKSkp0Gg08PT0lMX6+PggJSXFon3mUDURERGRAlUVTMdT1F5ycjI8PDyk9Vqttsx9w8PDcfr0aRw+fNiynTITE0ciIiIiK/Dw8JAljmUZN24cduzYgUOHDqFBgwbSer1ej7y8PKSlpcmqjqmpqdDr9ZbsMoeqiYiIiJTYwE3VEEJg3Lhx2Lx5M/bt24fAwEDZ9nbt2sHJyQnR0dHSusTERFy+fBnBwcHlPJpprDgSERER2bDw8HBERUVh69atcHd3l65b1Ol0cHFxgU6nw8iRIzF58mR4eXnBw8MD48ePR3BwsEXvqAaYOBIREREpq0iJ0Jw2yyEyMhIA0L17d9n6NWvW4NVXXwUALFy4EGq1GqGhoTAYDOjduzeWL19ugc7KMXEkIiIiUlB8+hxLtlkeQogyY5ydnbFs2TIsW7asot0yC69xJCIiIiKzsOJIREREpECFKpiOx7LNVStWHImIiIjILKw4EhERESmwgXtjbAorjkRERERkFlYciYiIiBRU5VcO2iNWHImIiIjILLWq4tjE2w1u7u7W7kalOKjt+L8pf3nI083aXbAI1UP2/1rY8/96i6vnrrV2FyzC0cH+X5CCwrLnm7MHzk72X1fRONr/ORhs4hx4lWNxtSpxJCIiIioPDlXL2UIqT0RERER2gBVHIiIiIgUcqJZjxZGIiIiIzFKrKo7ZWdlQqx1KrHdwcIDW2blYXJZiG2q1Gs4uLhWKzcnOVvyicpVKBZc6dcqMdVCrSsTm5uTAaDQq9qOOq2uFYg25uSgsLLRIrEudOlD9dVFHnsGAwsICxVhnF/Njtc4uUKvv/f8nPy8PBQX5FonVaJ3h4OBgMraoj7LY/HwU5Ocptuuk0cLR0bHcsQUFBcjPMyjGOjpp4OTkVO7YwsJC5BlylWMdneCk0ZQ71mg0wpCbY5FYBwdHaLT3bn4RQiA3J7tETLb63u+Ig6MjtMVic7JLxhZROzjA2dz3fTliVWo1XMz8jCgRm50NKHxGQKVCnWLv+/LE5uTkQJj5vi9PbG5uLoz3ve+L3xxTVmxxxT8jDAYDCguU3/fliXV2+ft9n5eXh4J85ff9/bH5pmKd/37flyc2Pz8feXnK73utVv4ZYW5sQUEBDAb5+z6/2I0lGo38M+L+2OKKxxYWFiI3V/l97+TkBE2xzwhzY41GI3JylN/3xWOtjdc43kfUAunp6QKA4tKtV29xNiVbWlxc6ijGPh78pCy2rlc9xdhWrdvKYh9sEKAY+9DDLWSxDz3cQjH2Qf8AceF6jrQEPdZWMdbLu54stuMTTyrGutSpI4vtHtLH5PNWPLZv/+dNxp5KuinFPhv6D5Oxe+MviISkdJGQlC5efPmfJmO3/3hSih0+arzJ2K93H5FiR0+YajL2iy37pNgJU2eZjF214Ttx7FKGOHYpQ0yZNd9k7Kf/+VqKnflxpMnYucvWSbFzl60zGTvz40gp9tP/fG0ydsqs+VLsZxu/Mxk7cdoH4vgfGeL4Hxniq237Tca+PnGqFPvNnliTsa+MflOK/e7wKZOxg4f/U4qNPnbRZOwLQ4eL5NsGkXzbIBKTb5uM7ffcICk2+bbBZGzPp/rIYl3qKH9GdOrcVRbr5a38GfFom3ay2AYBDRVjH27eQlxLz5OWh5srf0Y0CGgoi23dpp1irJd3PVlscJeuirEuderIYns93dfk81b83Po9N8hkbGLybSn2haHDTcaeOPunFPvKyNdNxv58IlGKfX3cJJOxe386LsW+NW26ydgfDvwsbtzNFzfu5osZH8wxGbvl+71S7JxPPjUZu37TVil2ceTnJmM//2KDFPv5FxtMxi5ftVqk5xSK9JxC8fW320zGzl+4RIrdsTvaZOys2XOl2H0/HjEZO/Wd96TYIwknTcaOn/h/Ij2nUCSn3hEARHp6utVyh8TLN8TVNINFl8TLN6x2XpVVqyqOREREROWh+uufpdu0VyohlMY6ao6MjAzodDocPnGx1HkcOVRdemxVDVVfv32XQ9XljK2qoWqjsWYMVXu73dtu70PVeYYccKjaNoaq1aLA7oeqNTVgqDojIwP+PnWRnp4ODw8PxfiqUJQ7nL18E+4WPvbdjAw8HFDPKudVWbUqcTx2LgVu7vb1At2vJkwAnpal/EFoT1R2fZHKPTXgFABwAnBbwgnAbUdNmADcJhLH5CpKHP3tM3HkUDURERGRAk7HI2f//x0hIiIiomrBiiMRERGRAk7HI8eKIxERERGZhRVHIiIiIgWcjkeOFUciIiIiMgsrjkRERERKeFu1DCuORERERGQWVhyJiIiIFLDgKMfEkYiIiEgBp+OR41A1EREREZmFFUciIiIiRZafjseeB6tZcSQiIiIis7DiSERERKSA1zjKseJIRERERGZh4khEREREZmHiSERERERm4TWORERERAp4jaMcE0ciIiIiBaoqmI7H8tP7VB8OVRMRERGRWayeOB46dAj9+/eHn58fVCoVtmzZItv+6quvQqVSyZY+ffpYp7NERERUqxQNVVt6sVdWTxyzsrLQunVrLFu2TDGmT58+uHbtmrRs2LChGntIRERERIANXOPYt29f9O3b12SMVquFXq83u02DwQCDwSA9zsjIqHD/iIiIqPZSwfJfEGjHBUfrVxzNceDAAdSvXx/NmjXD2LFjcevWLZPxERER0Ol00uLv719NPSUiIiKquWw+cezTpw+++OILREdHY+7cuTh48CD69u2LwsJCxX2mTZuG9PR0aUlOTq7GHhMREVGNoaqixU5Zfai6LEOGDJF+DgoKwqOPPoomTZrgwIED6NWrV6n7aLVaaLXa6uoiERERUa1g8xXH+zVu3Bj16tXD+fPnrd0VIiIiquFUVfTPXtl8xfF+f/75J27dugVfX19rd4WIiIhqOH5zjJzVE8fMzExZ9TApKQknTpyAl5cXvLy88P777yM0NBR6vR4XLlzA22+/jYceegi9e/e2Yq+JiIiIah+rJ47x8fHo0aOH9Hjy5MkAgLCwMERGRuLkyZNYt24d0tLS4Ofnh6effhoffPABr2EkIiKiKsfpeOSsnjh2794dQgjF7bt3767G3hARERGREqsnjkREREQ2iyVHGbu7q5qIiIiIrIOJIxEREZECW5qOZ9myZWjUqBGcnZ3RsWNHHD161MJnWzYmjkREREQ27r///S8mT56MGTNm4NixY2jdujV69+6N69evV2s/mDgSERERKSiax9HSS3ktWLAAo0aNwogRI/DII49gxYoVqFOnDv7zn/9Y/qRNqBU3xxTdtZ15966Ve1J5arUdX1H7l8ysPGt3wSJU9jyD619qwCkAALSiZkzP5ehg/y9IQaHyLBn2JN/J/usqTo72fw5372YAgMnZV6paRkZGlbV5f9tKX5mcl5eHhIQETJs2TVqnVqsREhKCmJgYi/fPlFqRON79K2Hs2raplXtCRERE5XX37l3odLpqPaZGo4Fer0fTQP8qad/NzQ3+/vK2Z8yYgZkzZ5aIvXnzJgoLC+Hj4yNb7+Pjg99//71K+qekViSOfn5+SE5Ohru7e7VUiTIyMuDv74/k5GR4eHhU+fGsqbaca205T6D2nGttOU+g9pxrbTlPoPacqxACd+/ehZ+fX7Uf29nZGUlJScjLq5pRMiFEiZzEHr7cpFYkjmq1Gg0aNKj243p4eNToN3RxteVca8t5ArXnXGvLeQK151xry3kCteNcq7vSWJyzszOcnZ2tdvwi9erVg4ODA1JTU2XrU1NTodfrq7Uv9n8BBBEREVENptFo0K5dO0RHR0vrjEYjoqOjERwcXK19qRUVRyIiIiJ7NnnyZISFhaF9+/Z4/PHHsWjRImRlZWHEiBHV2g8mjlVAq9VixowZdnGtQmXVlnOtLecJ1J5zrS3nCdSec60t5wnUrnOle1566SXcuHED7733HlJSUvDYY49h165dJW6YqWoqYc173ImIiIjIbvAaRyIiIiIyCxNHIiIiIjILE0ciIiIiMgsTRyIiIiIyCxPHSrpy5QpefvlleHt7w8XFBUFBQYiPj5e2CyHw3nvvwdfXFy4uLggJCcG5c+es2OPya9SoEVQqVYklPDwcAJCbm4vw8HB4e3vDzc0NoaGhJSYptReFhYWYPn06AgMD4eLigiZNmuCDDz6QfU9qTXhNgXtf4TVx4kQ0bNgQLi4ueOKJJxAXFydtt9fzPHToEPr37w8/Pz+oVCps2bJFtt2c87p9+zaGDRsGDw8PeHp6YuTIkcjMzKzGsyhbWef57bff4umnn4a3tzdUKhVOnDhRog17ee+aOtf8/HxMmTIFQUFBcHV1hZ+fH1555RVcvXpV1kZNeE1nzpyJ5s2bw9XVFXXr1kVISAhiY2NlMfZwnmTfmDhWwp07d9C5c2c4OTlh586d+O233/DJJ5+gbt26Usy8efOwePFirFixArGxsXB1dUXv3r2Rm5trxZ6XT1xcHK5duyYte/bsAQC8+OKLAIBJkyZh+/bt2LRpEw4ePIirV69i0KBB1uxyhc2dOxeRkZFYunQpzpw5g7lz52LevHlYsmSJFFMTXlMA+Oc//4k9e/bgyy+/xKlTp/D0008jJCQEV65cAWC/55mVlYXWrVtj2bJlpW4357yGDRuGX3/9FXv27MGOHTtw6NAhjB49urpOwSxlnWdWVha6dOmCuXPnKrZhL+9dU+eanZ2NY8eOYfr06Th27Bi+/fZbJCYm4rnnnpPF1YTX9OGHH8bSpUtx6tQpHD58GI0aNcLTTz+NGzduSDH2cJ5k5wRV2JQpU0SXLl0UtxuNRqHX68XHH38srUtLSxNarVZs2LChOrpYJSZMmCCaNGkijEajSEtLE05OTmLTpk3S9jNnzggAIiYmxoq9rJh+/fqJ1157TbZu0KBBYtiwYUKImvOaZmdnCwcHB7Fjxw7Z+rZt24p33nmnxpwnALF582bpsTnn9dtvvwkAIi4uTorZuXOnUKlU4sqVK9XW9/K4/zyLS0pKEgDE8ePHZevt9b1r6lyLHD16VAAQf/zxhxCi5r2mRdLT0wUAsXfvXiGEfZ4n2R9WHCth27ZtaN++PV588UXUr18fbdq0wWeffSZtT0pKQkpKCkJCQqR1Op0OHTt2RExMjDW6XGl5eXn46quv8Nprr0GlUiEhIQH5+fmyc2zevDkCAgLs8hyfeOIJREdH4+zZswCAX375BYcPH0bfvn0B1JzXtKCgAIWFhSW+g9XFxQWHDx+uMed5P3POKyYmBp6enmjfvr0UExISArVaXWJY0J7VtPducenp6VCpVPD09ARQM1/TvLw8rFq1CjqdDq1btwZQM8+TbA8Tx0q4ePEiIiMj0bRpU+zevRtjx47Fm2++iXXr1gEAUlJSAKDErO4+Pj7SNnuzZcsWpKWl4dVXXwVw7xw1Go30AV3EXs9x6tSpGDJkCJo3bw4nJye0adMGEydOxLBhwwDUnNfU3d0dwcHB+OCDD3D16lUUFhbiq6++QkxMDK5du1ZjzvN+5pxXSkoK6tevL9vu6OgILy8vuz73+9W0926R3NxcTJkyBUOHDoWHhweAmvWa7tixA25ubnB2dsbChQuxZ88e1KtXD0DNOk+yXUwcK8FoNKJt27b46KOP0KZNG4wePRqjRo3CihUrrN21KrN69Wr07dsXfn5+1u5Klfj666+xfv16REVF4dixY1i3bh3mz58v/WegJvnyyy8hhMCDDz4IrVaLxYsXY+jQoVCr+bFA9ik/Px+DBw+GEAKRkZHW7k6V6NGjB06cOIGff/4Zffr0weDBg3H9+nVrd4tqEf6FqARfX1888sgjsnUtWrTA5cuXAQB6vR4AStylmJqaKm2zJ3/88Qf27t2Lf/7zn9I6vV6PvLw8pKWlyWLt9RzfeustqeoYFBSE4cOHY9KkSYiIiABQs17TJk2a4ODBg8jMzERycjKOHj2K/Px8NG7cuEadZ3HmnJdery/xh7igoAC3b9+263O/X0177xYljX/88Qf27NkjVRuBmvWaurq64qGHHkKnTp2wevVqODo6YvXq1QBq1nmS7WLiWAmdO3dGYmKibN3Zs2fRsGFDAEBgYCD0ej2io6Ol7RkZGYiNjUVwcHC19tUS1qxZg/r166Nfv37Sunbt2sHJyUl2jomJibh8+bJdnmN2dnaJipuDgwOMRiOAmveaAvf+EPn6+uLOnTvYvXs3BgwYUCPPEzDv9QsODkZaWhoSEhKkmH379sFoNKJjx47V3ueqUpPeu0VJ47lz57B37154e3vLttfk19RoNMJgMACo2edJNsTad+fYs6NHjwpHR0cxe/Zsce7cObF+/XpRp04d8dVXX0kxc+bMEZ6enmLr1q3i5MmTYsCAASIwMFDk5ORYseflV1hYKAICAsSUKVNKbBszZowICAgQ+/btE/Hx8SI4OFgEBwdboZeVFxYWJh588EGxY8cOkZSUJL799ltRr1498fbbb0sxNeU13bVrl9i5c6e4ePGi+OGHH0Tr1q1Fx44dRV5enhDCfs/z7t274vjx4+L48eMCgFiwYIE4fvy4dIetOefVp08f0aZNGxEbGysOHz4smjZtKoYOHWqtUypVWed569Ytcfz4cfHdd98JAGLjxo3i+PHj4tq1a1Ib9vLeNXWueXl54rnnnhMNGjQQJ06cENeuXZMWg8EgtWHvr2lmZqaYNm2aiImJEZcuXRLx8fFixIgRQqvVitOnT0tt2MN5kn1j4lhJ27dvF61atRJarVY0b95crFq1SrbdaDSK6dOnCx8fH6HVakWvXr1EYmKilXpbcbt37xYASu17Tk6OeOONN0TdunVFnTp1xPPPPy/742RPMjIyxIQJE0RAQIBwdnYWjRs3Fu+8847sD1BNeU3/+9//isaNGwuNRiP0er0IDw8XaWlp0nZ7Pc/9+/cLACWWsLAwIYR553Xr1i0xdOhQ4ebmJjw8PMSIESPE3bt3rXA2yso6zzVr1pS6fcaMGVIb9vLeNXWuRdMNlbbs379fasPeX9OcnBzx/PPPCz8/P6HRaISvr6947rnnxNGjR2Vt2MN5kn1TCVHsKzGIiIiIiBTwGkciIiIiMgsTRyIiIiIyCxNHIiIiIjILE0ciIiIiMgsTRyIiIiIyCxNHIiIiIjILE0ciIiIiMgsTRyIiIiIyCxNHIqpyly5dgkqlwjfffGPtrlSZAwcOQKVSIT4+3mp9UKlUmD9/vtWOT0Q1HxNHIiIiIjILE0ciIiIiMgsTRyI7FBMTg+eeew5+fn5wdXXFY489hi+//BIAkJWVBVdX11KHLF944QUEBwdLj3/99Vd07doVzs7OaNq0KdavX4+BAweie/fuZvclLy8Pb775Jry8vODp6YnXX38dUVFRUKlUuHTpkuJ+pQ2rLlq0CCqVSrYuLS0N48ePR4MGDaDVahEYGIhp06bJYlauXIlmzZpBq9WiUaNG+PDDD2E0GmVtjBo1Cg8++CCcnZ3h7++PIUOGyNr4888/8fLLL6NevXpwcXFB165dkZCQYPbzUBohBObPn4+HH34YWq0WjRs3xsKFC6XtSsPbhYWF0Ov1svM8c+YMBgwYAJ1OB1dXV/Tr1w8XLlyoVP+IiMrL0dodIKLy++OPP9C5c2eMGTMGzs7O+OmnnzBy5EgYjUaEhYXhueeew8aNG/Gvf/1L2ufu3bv47rvvMG/ePABATk4Onn76aXh6euKrr74CALz//vtIS0tDkyZNzO7L1KlTsXLlSsyaNQuPPfYYvvnmG0ydOtUi52kwGNCzZ09cunQJM2bMQFBQEJKTk3H48GEpZsmSJXjzzTcxfvx4PPvss/j5558xc+ZMpKWlSYnp5MmTsXPnTsyZMweNGjXCtWvXsHPnTqmNO3fuoEuXLnBzc8OSJUug0+mwZMkS9OzZE+fOnUP9+vUr1P8JEybg888/xzvvvIOOHTvi559/xpQpU+Di4oIxY8aga9eu8PPzw8aNG9G+fXtpv3379iE1NRX/+Mc/AAAXL17EE088gVatWmHt2rVQq9WYPXs2evXqhcTERGi12gr1j4io3AQR2TWj0Sjy8/PF6NGjRXBwsBBCiK1btwoA4uzZs1LcunXrhIODg0hJSRFCCLFs2TLh4OAgkpKSpJikpCTh4OAgunXrZtaxb926JZydncWsWbNk63v16iUASG0nJSUJAGLTpk1SDADx8ccfy/ZbuHChKP6xtGrVKgFA/Pzzz6Uev6CgQNSrV08MGTJEtn7atGlCo9GImzdvCiGEaNmypZg8ebLiebz33ntCp9OJ1NRUaV1ubq4ICAgQb731loln4G/79+8XAERcXJwQQojz588LlUolVq5cKYubMmWK0Ov1orCwUAghxKRJk0SDBg2E0WiUYkaMGCFatmwpPX7llVdE48aNRU5OjrTu+vXrws3NTSxbtkxaV9pzSkRkSRyqJrJDd+7cwZtvvomGDRvCyckJTk5OWLVqFc6ePQsA6NOnDzw9PbFx40Zpn40bN6JHjx7w8fEBAMTFxSEoKAiNGjWSYho1aoTWrVub3Y9Tp04hNzcXzz33nGz9gAEDKnF2f4uOjkaLFi1kw+vF/f7777h58yZefPFF2fqXXnoJeXl5OHr0KACgbdu2WLt2LebPn4/Tp0+XaOeHH35Ajx494OXlhYKCAhQUFMDBwQHdunVDXFxchfq+d+9eAEBoaKjUZkFBAUJCQpCSkoLk5GQAwNChQ/Hnn39KVdS8vDxs3rwZQ4cOlfXvueeeg6Ojo9RO3bp10aZNmwr3j4ioIpg4EtmhV199FRs2bMC//vUv/PDDD4iLi8Nrr72G3NxcAIBGo0FoaKiUON66dQt79uyRhj4B4Nq1a3jggQdKtF2eYdlr164BQIl2Kjq0e79bt27Bz89PcfudO3cAQEqGixQ9vn37NoB7w9nDhw/HJ598gqCgIAQEBCAyMlKKv3nzJrZs2SIl4UXLl19+KSV45XXz5k0IIVCvXj1Zm0899RQASO126NABTZo0wYYNGwAAO3fuRFpamixxvHnzJhYtWlSifz/++GOF+0dEVBG8xpHIzuTm5mLHjh1YsGABxo8fL60vfjMIcK+StXr1apw8eRIxMTFwcHDAoEGDpO2+vr44ceJEifavX78Od3d3s/ri6+sLALhx44Yswbt+/XqZ+2q1WuTl5cnWFSWCRby9vXHy5EnFNry8vEo9Xmpqqmy7TqfDokWLsGjRIpw6dQqffvop3njjDbRq1QpPPvkkvLy80KdPH3zwwQel9rMivLy8oFKpcPjwYWg0mhLbmzVrJv08dOhQrFy5EosXL8bGjRvRsWNHNG7cWNZWv3798MYbb5Rox9zXiojIElhxJLIzBoMBRqNRlozcvXsX27Ztk8V1794der0eGzZswIYNG9C3b1/odDppe4cOHXDy5EkkJSVJ6y5duoRffvnF7L60atUKzs7O2Lp1q2z9li1byty3QYMGOHPmjGzdnj17ZI9DQkJw5swZxMbGltpGs2bN8MADD2DTpk2y9V9//TU0Gg0ef/zxEvsEBQVJdzYXHT8kJAS//fYbWrRogfbt28uWoKCgMs+lNL169QJwr2p6f5vt27eXJXxDhw7FjRs3sG3bNmzbtk1WbSzq3+nTp9GmTZsS7RRPQImIqhorjkR2RqfToUOHDpgzZw4eeOABODo6Ys6cOdDpdLLKm4ODAwYPHoy1a9fi+vXrsusdAWDEiBGYPXs2nn32Wbz//vsAgJkzZ0Kv10OtNu//lN7e3hg7dixmz54NZ2dnPPbYY9i0aZN0raWpdl544QUsWrQIHTp0QLNmzfDVV1/hypUrspjhw4dj+fLl6NevH2bMmIFWrVrhypUrOHToEFatWgUHBwdMnz4db775JurXr49nnnkGR44cwdy5czFx4kR4e3sDADp37oznn38erVq1goODA7744gtoNBo8+eSTAO7ddb1+/Xp069YNEyZMQEBAAG7cuIHY2Fj4+flh0qRJZj0fxT388MMIDw/H8OHD8dZbb6Fjx47Iz8/H2bNnsX//flly/cgjj+DRRx/F+PHjkZubi5deeknW1vvvv48OHTqgd+/eGD16NHx8fJCSkoKDBw/iySefLJFoEhFVGWvfnUNE5Xfu3DnRs2dPUadOHeHv7y8+/vhjMWPGDOHq6iqLi4mJEQCEm5ubyM7OLtHO6dOnRZcuXYRGoxGBgYHiP//5j+jevbsYOHCg2X0xGAxi3LhxwtPTU3h4eIiwsDCxdOlSAUCkpaUJIUq/qzozM1OMGDFCeHl5iXr16ol33nlHfPLJJ+L+j6Xbt2+LsWPHCr1eLzQajWjcuLF45513ZDGRkZGiadOmwsnJSQQEBIgPPvhAumtZCCHeeustERQUJNzc3ISHh4fo3Lmz2L17t6yNa9euiZEjRwpfX1+h0WhEgwYNxAsvvCB++ukns56H+++qFuLeHe9LliwRrVq1EhqNRnh5eYng4GCxYMGCEvtHREQIAKJXr16ltn/27FkxePBg4e3tLbRarWjUqJF45ZVXxOnTp6UY8K5qIqpiKiGEsGLeSkQ25Pbt22jcuDEmTZqEGTNmVLid4cOH4/Dhw7JhcCIisn8cqiaqxebOnQsfHx9pUuz58+ejsLAQr732mtltHDx4ED/99BPatWsHo9GIHTt2YP369ViwYEEV9pyIiKyBiSNRLaZWq/Hhhx/iypUrcHR0RMeOHbFv3z74+/sDAAoKChT3ValUcHBwgJubG3bs2IG5c+ciJycHgYGBWLBgASZOnFhNZ1H1hBAoLCxU3K5Wq82+LpSIyJ5xqJqIFN3/vdHFNWzY0OR3Udcka9euxYgRIxS3z5gxAzNnzqy+DhERWQkTRyJSFB8fr7hNq9VWeKoae3Pr1i2T12v6+fmZnKiciKimYOJIRERERGbhRTlEREREZBYmjkRERERkFiaORERERGQWJo5EREREZBYmjkRERERkFiaORERERGQWJo5EREREZJb/B4emu3JMHwlSAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 800x600 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "draw_hist_2d(df[df['avg_glucose_level'] < 140], 'avg_glucose_level', 'bmi', 'avg_glucose_level < 140', [17, 35])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 130,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAItCAYAAABPZgBXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABm0UlEQVR4nO3de5xN1f/H8feZ+zBmmHEZk3Gt3KkQSu6FJKJQKsm3KwrfSrqhX4VvJYVQifrm0pciKiRCymWMhBIRpdwVwzD39ftjmt0cc/Zcz8w5nNezx350zt5rr73OnnP5+Ky113YYY4wAAADg0/w83QAAAAB4HkEhAAAACAoBAABAUAgAAAARFAIAAEAEhQAAABBBIQAAAERQCAAAABEUAgAAQASF8EHVq1eXw+HQPffc4+mm4DwOh0MOh0OjR4/2dFOKFe9BAN6IoBAALlJpaWn67rvvNH36dP3rX/9So0aNFBAQYAXf+/fvL1L9U6dOtepyOByaNWtWvvb79ttvdeedd6patWoKCQlRdHS0OnXqpLlz5xapPcVh//79mjRpknr16qXLLrtMpUqVUkhIiKpUqaIePXpo3rx5SktLy3d9O3bs0AMPPKBatWopNDRUFSpU0HXXXadp06YVqJ6lS5fqlltuUZUqVRQcHKwqVarolltu0dKlSwvzMoFMBvAx1apVM5JM//79Pd0UnEeSkWRGjRrl6aYUq5J6D44ePdo6p66Wffv2FbruP/74w4SHhzvVN3PmzDz3GzVqlPHz87NtU9euXc25c+cK3S53euaZZ4zD4cj1HEoyzZo1M7/++mue9b311lsmKCjItp6rr77aHDt2LNc60tPTzcCBA3Ntz7/+9S+Tnp7urtMAH0KmEAAuUsYY63FISIhatGihWrVquaXuwYMHKyEhQRUrVsz3PtOnT9eYMWOUkZGhWrVqacaMGdq0aZMWLVqkdu3aSZI+++wz3XvvvW5pY1EdOnRIxhiVLl1ad955p2bOnKl169Zp8+bN+u9//6tmzZpJkuLi4tSxY0edOXPGtq7PP/9cDz74oFJSUlSpUiW98cYb2rhxo5YuXaqePXtKkjZt2qRbbrlF6enptvU8/fTTmjFjhiTpyiuv1Ny5c7Vp0ybNnTtXV155pSTpnXfe0TPPPOOu0wBf4umoFChpZAq9l8gUutWyZcvMtGnTzJYtW0xqaqoxxpj+/fsXOVO4aNEiI8lUqFDBvPrqq/nKFJ44ccJEREQYSaZq1ao5MmJpaWmmW7duVl1fffVVodrmTk888YQZP368SUhIcLk9LS3N9O7d22rzmDFjXJZLSUkxNWvWNJJMeHi42bNnT44yDz/8cJ7ncdeuXSYgIMBIMk2bNjVnz5512p6YmGiaNm1qJJmAgADz888/F+wFw+eRKQSAi1SnTp30wAMP6Morr1RAQIBb6jx9+rQGDx4sSXrllVcUGRmZr/3eeecdnTp1SpI0fvx4lS9f3mm7v7+/3nzzTfn7+0uSXn75Zbe0tyjGjx+vJ554QmXKlHG5PavNQUFBkqQFCxa4LLdw4UL98ssvkqSRI0e6zNa+/PLLKleunPXYlYkTJ1rjDidNmqTQ0FCn7aVKldKkSZMkZY4nfe211/J6iYATgsILyI4dO/TCCy+oU6dO1uDisLAwXXbZZerfv782bNjgcr+zZ8+qTJkycjgc6tevX57HWb9+vTVw/M0333RZ5v3331ebNm1Urlw5hYWFqWHDhnr++eeVkJAgqXivIv3tt9/00EMPqUaNGgoJCVFMTIx69Oihr776SpI0evRo6/gFNWvWrHwNwt+/f3++B9d//vnnuvPOO1WzZk2VLl1aISEhqlGjhnr16qVZs2bp7NmzLvfLyMjQBx98oBtvvFHR0dEKCgpShQoV1K5dO7355ptKSUnJ9bgHDx7Uk08+qauuukoREREKDAxUpUqV1LBhQ91+++2aNWuW9fdy5dSpUxo7dqyuvfZaVahQQUFBQapcubK6deumBQsWOHVNlrQtW7bowQcfVO3atRUWFqbSpUurdu3aeuihh7R7926X+9SqVUsOh0PXXnttnvX/8ccf8vf3l8Ph0BNPPOGyjDefn+I0cuRI/f7772rbtq3uvvvufO+3aNEiSVJ4eLjVXXq+KlWqqGPHjpKklStX6vTp00Vub3GLiopSo0aNJEl79+51WSbrtUuyveK8VKlS6t27tyTpxx9/zPE+Nsbok08+kSTVqVNHLVq0cFlPixYtVLt2bUnSJ598ctG+D1FMPJuoRH599dVXeQ52lmSefPJJl/vfeeedRpIpXbq0OXPmTK7HGjRokNX9cH4XT0pKiunevbvt8S+77DKzf//+YusGXLlypQkLC3N5bIfDYV588UUzatQoa50ruXXdzZw5M19da/v27cuzq+f48eOmQ4cOef7NXO1/4sQJc+211+a6X926dc3+/ftdHnvt2rU5LgJwtSxZssTl/l9++aWJiorKdd8bb7zRnD592vYcFUZe75v09HQzbNiwXAf/BwQEmOnTp+fY95lnnrHeJ3l1m7788stWfVu3bs2xvajnJ6/u4+zv4fxcvFEQRek+Xr9+vfHz8zNBQUFm586dxhjnz4xdW5OTk42/v7+RZDp16pTrMV566SWrvlWrVhWofZ7SsGFDI8mUKVPG5fbY2FgjydSuXTvXeubMmWO99nfffddp2969e61tDzzwQK713H///VbZX375pWAvBj6NTOEFIi0tTaVLl1bv3r01bdo0rV69Wlu2bNGyZcv06quvqlq1apKkcePGaebMmTn2z8oQJiYmWv/atDvO/PnzJWV2PZ3fxfPoo49a+9evX18zZ85UXFycVq5cqcGDB+uXX35Rnz593PKaz/fLL7/o5ptv1pkzZxQQEKAhQ4Zo5cqViouL08yZM1W3bl09/fTTWrZsWbEcvyDOnj2rdu3aaeXKlZKkJk2aaPr06frmm2+0efNmLVy4UMOGDVNMTEyOfdPT03XTTTfpm2++kSS1adNG8+fP1+bNm7V48WL16NFDkrRz50516NAhx+D25ORk9e3bVwkJCSpTpoyeeOIJLV26VPHx8Vq/fr3mzJmjwYMH65JLLnHZ9m+++UZdunTRiRMnVKlSJb3wwgtasmSJ4uPjtWTJEt15552SMjOg/fv3d9cpy5chQ4botddekzFGrVu31rvvvqvVq1dr06ZNevvtt1W/fn2lpaXpgQce0OLFi532zfoMGGM0Z86cXI+Ttb1+/fpq3Lix0zZvPj/FKTU1Vffff78yMjL0+OOPq06dOvned/fu3dbFE3ntl337zp07C9fYEnT06FGrnXXr1s2x/cyZMzpw4ICkor32H3/80WW5gtYD5MrTUSny59ixY+avv/6y3Z6cnGyuv/56I8lUq1bNpKWlOW1PTU01FStWNFLmlA92li5dav0Lc86cOU7btmzZYmVoWrZsmWOQszHGzJ8/3ylb4s5MYY8ePax6Fy5cmGN7YmKiufrqq52O70pJZAqHDRtmbR80aJDJyMhwWU9ycrI5fPiw07rJkydb+959990u933qqaesMk888YTTtpUrV+aZCTQm8z1x6tQpp3UpKSmmevXqRpLp3LmzSUxMdLnvW2+9ZR3jiy++sD1GQeX2vvniiy+s7e+8847L/c+dO2fat29vfQ6yLq7IctVVVxlJpn79+rZt2Llzp3Wcl156yWmbu87PhZgpfPHFF40kU7NmTacpY/KTKcz+vfLyyy/nepy4uDirrF3Phzd57LHHrPa+8sorObZnfz8NGjQo17qOHTtmle3bt6/TtqlTp1rb5s+fn2s92b+Hp02bVvAXBZ9FpvACUb58eZUtW9Z2e1BQkDU4+ddff9XWrVudtgcEBFgZvC+++EInTpxwWc/s2bMlSWFhYerevbvTtrfeessan/L222/nGOQsSbfeeqtuueWWfL2mgjh48KCWLFliHSMrW5ZdqVKl9NZbb7n92AV18uRJTZ8+XVJmhvD111+3Hd8YFBSkSpUqOa2bMmWKJKlChQqaPHmyy33HjBljZQPefvttJScnW9sOHz5sPW7durVtOwMCAhQeHu60bt68edq/f79CQkL0/vvvq1SpUi73ve+++3T11VdLUr4nLC6qcePGSZJ69eqlgQMHuiwTEhKiyZMnS8r8HGSNM82SlS384Ycf9P3337usI+sz4HA4dMcddzht8+bzU5z27Nmj//u//5OU+f4MCQkp0P7ZxwaGhYXlWrZ06dLW49ymePEGGzdu1MSJEyVljod86KGHcpRx12u/WM8hvAtB4QUqOTlZv/32m3788Uft2LFDO3bscBpQ7OoHL+sHMTU1Vf/73/9ybD937pw1ILpHjx45fvC+/PJLSZlzY9WvX9+2bQUZfJ5fX331ldX9dNddd9mWa9y4cY7uvpK2atUq6+KRRx55xLqaMj8OHjxodff07t3b9qrHgIAADRgwQJL0119/acuWLda2ypUrW49dDSXITVaXa5s2bVShQoVcy2YFnOvXry/QMQojISFBq1evlpT5j4Lc1K1b1xr2cH7b+vbtKz+/zK89uy7krLtqXHvttdawjCwldX5Gjx4tY4yMMV5xK7wHHnhASUlJuu2229S5c+cC75+UlGQ9zrpS105wcLD1+Ny5cwU+Vkk5cuSIbr31VqWlpcnhcOi9995z+Y8Ed732i/Ecwvu4Z44ClIjExES98cYbmjdvnn744YdcJzg9fvx4jnXNmzdXrVq1tHfvXs2ePTvHv2oXL15s/avy/KuUk5KStGfPHkmZ2a/cNG3aNF+vpyB27NhhPc7P8e2yQCXhu+++sx5fd911Bdo3++ts3rx5rmWzb9+xY4datmwpSWrVqpVq1qypX375RUOHDtXs2bN1yy23qHXr1mrWrFmuPyibN2+WJC1fvjzfV29nz0wWl++++04ZGRmSpNtvv1233357vvY7v20xMTHWWM+5c+dq3LhxTq9z48aN1hWkrq7U99bzU5xmzZqlVatWKTw83MqKFVT2zGJeV81nz3q76o3ITWJiovbt22e7vUGDBgWqz87p06fVtWtX/f7775Iys9jt27d3WdZdr72kziF8G0HhBWL//v1q3759rl942dn967Bfv356/vnn9e2332r//v2qXr26tS2r26xixYrWtBBZTp48aT3OK0OS1/bC+Ouvvzx6/ILIHpBnz9rlx59//mk9zutOEdHR0S73CwwM1JIlS3Trrbdq586diouLU1xcnKTMH4jWrVvr7rvvVp8+fXJkMY8ePVqg9kolk4koTLskuZzup1+/flq5cqUOHDigtWvXqk2bNta2rM9AYGCgbrvtNre040LO1Bw7dkyPPfaYJOn//u//XF4YlR/ZM955dWcmJiZaj/PqJj1fXFycdWcUV4wbpmdJSkpS9+7dFR8fL0l67LHHbKctktz32kvqHMK3ERReIO666y7t27dPDodDAwYMUN++fVW3bl1rfjSHw6GMjAzrR97uyy8rKDTGaO7cuRo5cqSkzKBi+fLlkqQ+ffq4baJbFF5h5lnMUq9ePW3fvl1LlizRkiVLtHbtWu3Zs0fnzp3T8uXLtXz5ck2YMEGff/65U/CZlX3u0qWL/vOf/xT5NbhL9qz49OnTdc011+Rrv6zJgLPr1auXHn74YSUlJWnOnDlWUJienm4Nq+jcubOioqJs2+Ft56e4vPPOOzpx4oTKli2rqKgozZs3L0eZjRs3Oj3Oymi1b9/eem9VqVLFKpOVXbOTdaWuJMXGxhap/e6Wlpam3r17W2NV//Wvf+U5yXb2q/yL8tovlnMI78Yv/wXgp59+0rp16yRJTz31lF544QWX5bJni+xcfvnlatq0qTZv3qw5c+ZYQeGCBQusLglX3WbZL3I5duxYrsfIa3thZP9xP3bsmO10KkU9ftZ4M0lWd6Ur2f8lfr7s0/gcOnRINWrUyPfxs98d4siRI7mWzd4t6equEv7+/urRo4d1Uc6hQ4e0bNkyTZkyRfHx8YqPj9cDDzyghQsXWvtERUXp4MGDSklJcVtXmztkD9BKlSpVpLaFh4frpptu0oIFC7RgwQJNnjxZgYGBWrlypXXO7SZ599bzU1yyuiFPnjxpTbWTm2nTpmnatGmSMscBZwWFl19+ufz9/ZWenq6ffvop1zqyb3c1xUtu2rZtW2yTNWdkZOiuu+6yLnjr06ePdUFZbsqUKaPY2FgdOHCgSK+9Xr16LssVtB4gN1xocgH44YcfrMe5zQGYNd4pL1k/eDt27NC2bdsk/dNtVqtWLZdj2UJCQqxbM2V1mxS1HQWR/cKW4jx+9i6a7F3W57O7a4YkXXXVVdbjtWvXFuj42QON7BkYVzZt2uRyPzuVK1fWgAEDtH79equNn376qVP35pVXXikp8xzmNW6pJF1xxRVW5jRr/saiyPoM/Pnnn1q6dKmkfz4DZcqU0c033+xyP289P94uKCjIuhp7/fr1uZ67NWvWSMq8WKI4xicX1gMPPGBlSrt166YPPvjA6R+RuWnVqpUkadeuXbmOMc167ZJy3HmnRo0aVvd99nKuZH3vXHLJJU5DhIC8EBReALLudSnlnqHK+hd6Xvr27Wt1M8+ePVu///67vv76a0n2GRJJ6tChg6TMQf/ZA9Xzvf/++/lqR0G0bdvW+gL+73//a1vu+++/L9JFJtmzerkFl1lXqLrSrl07a0qISZMm5XpB0PliYmKsf9n/73//sx07lJ6ebk11Uq5cOadANC+BgYFWl2laWprTeNGsYOjUqVMFvnK5OFWoUMG6rdecOXOKnI2+8cYbrezz7NmzlZSUZGVMb7nlFtvB+d56fopL9qug7Zbs52HmzJnW+rZt2zrVlZWxTkhI0Mcff+zyeL///rs1y0GHDh1sr74vacOHD9c777wjKbNd8+fPL9AQm+xTaNlNUXT27Flr+EK9evV0+eWXO213OBzWNGE//fST7W1NN2zYYGUKu3fvXqRhKPBBJT0xIgouPj4+z9sbvfnmmwWaNDprouvY2Fgzfvx4a79du3bZ7rN58+Y8J69esGBBsU1e3a1bt1wnrz579myRJ69OTU01kZGRRpJp0KCBSUpKylHmww8/dDqGqwl7hw8fbm0fPHiw7eTVKSkp5siRI07rsk9ePWDAAJf7Pfvss7aTV69du9b8/PPPLvczJnPC7KxJnMPCwpwmeE5KSrJuyRUWFmbWrFljW48xxnz99ddm9erVuZYpiNzeN5999pm1vXXr1rlO5p6UlGQmT57sNMny+e677z4jyYSGhpoZM2ZYdS9fvjzXet1xfi7Eyavt5GfyamMyb90YERFhTSx+/Phxp+1paWlOn/GvvvqqyG1zh+x/i2uuuSbP24S6kpKSYmrWrGkkmfDwcLNnz54cZR5++OE8z+OuXbus2wU2bdo0x3fw2bNnTdOmTY2UebvH3bt3F7it8G0EhReAjIwM06BBA+sLo3fv3mbJkiVm8+bNZtGiRebWW281kpzulZtXMDZr1iyrbNmyZa0vmbxkv6dm/fr1zaxZs8zmzZvNqlWrzODBg42/v79TYDZ69Gg3nQVjfv75Z1OqVCnrC2/IkCFm1apVZvPmzWbWrFmmXr16RpJp1qxZoYNCY4wZOXKk04/AokWLzJYtW8zSpUvNvffea/z8/Mw111yT6xd4YmKidT9USaZJkybmrbfeMuvXrzfx8fHmk08+MY899pi55JJLcuyflpZmWrZsae3bvn17s2DBAhMfH28+/fRT07NnT2tbrVq1ctxfd9SoUcbPz8+0adPG/Oc//zHLli0z8fHxZt26debdd991+vs8+uijOdq+fv16ExwcbCQZf39/069fPzN//nyzefNms2nTJvPJJ5+Y5557znp9kyZNys+fL1/yev8++uijVpno6GgzevRo8+WXX5rvvvvOrFu3zsyaNcsMHDjQlCtXzkjK9d7Mq1evzvEZqFSpUo67AZ3PHeenpILC06dPm5kzZzot2b8nXn75Zadt3333XYGPkd+g0Bhjpk2b5vTefffdd01cXJz55JNPTLt27axtt99+e+FesJu98cYbVpsuueQSs27dOrN9+/Zcl5SUFJd1ffbZZ8bPz896n02aNMls3LjRLFu2zPTq1cs6TqtWrXJ9Dz755JNW2SuvvNLMmzfPxMXFmXnz5pkrr7zS2jZy5MjiOi24iBEUXiC+++4764fO1dKwYUNz8ODBfAeFCQkJJjQ01KmO1157Lc92JCcnm5tuusm2HTVq1DB79uyxno8bN849J+BvX3zxhSldurTt8UeNGmVl0UJCQlzWkdcPcmJiomnRooXtMdq2bWt27NiR5w/hsWPHTOvWrW3ryW3/EydOOP14u1rq1q1r9u/fn2Pf7AFFbkv37t1dZnuNyQx8sjJieS3vvfeeyzoKI6/3b0ZGhhkzZowJCAjIs12lS5e2fX1ZdZ3/Gl0Fya4U9fyUVFCY/XaM+VkKk9kvSFBojDHPPfec1ePgarnxxhtzzfCWpDZt2hTo/Em5Z1/feustExQUZLvv1VdfbY4dO5Zrm9LT0829996baxsGDhxo0tPT3Xw24AsICi8gv/76q3nwwQdNtWrVTGBgoImMjDRXX321eeWVV6wv0YJ8uffu3dsq7+/vbw4dOpSvdmRkZJiZM2eaVq1amYiICFOqVClTt25d89RTT5k///zT/PXXX1a9U6dOLcpLdmnfvn3mgQceMNWqVTNBQUGmUqVKpmvXrmbZsmXGmH+ySZUqVXK5f14/yMZkdsO8+OKLpmHDhiY0NNSEh4ebZs2amcmTJ5u0tLQ8732c3ccff2xuvfVWU6VKFRMcHGxCQkJMzZo1zW233WZmz57tsovamMwv//fff9907tzZVKpUyQQGBpqoqCjTtm1bM3nyZJOcnOxyv9OnT5uPPvrIPPTQQ6ZFixamatWqJiQkxISEhJjq1aub3r17m08//TTXNhuT2VU6bdo007VrVxMTE2OCgoJMSEiIiY2NNTfccIN58cUXzU8//ZRnPQWR3/fvL7/8Yp544gnTtGlTExkZafz9/U2ZMmVMvXr1TL9+/cx7771nEhIS8jzeE0884fRjumnTpny3tSjnx5eDQmOM+eabb8wdd9xhYmNjTVBQkKlYsaK5/vrrc9xv3dPcHRQaY8z27dvNfffdZ2rWrGlCQkJMVFSUadWqlZk6dWqOe3Xn5rPPPjPdu3e33nsxMTGme/fu5vPPPy/iq4YvcxhTTNfvw2etW7fOupPHl19+aV2gUlI6duyolStXqlWrVtYFNAAAIHdcfQy3y7oyNzAwMM9b0rnbwYMHrekYsq5WBQAAeSMoRIEcP37caQqT8y1fvtya0PXmm292mvTaHbLuv+zKuXPndM899yg1NVWSdPfdd7v12AAAXMy4owkKZMeOHerevbtuu+02dezYUbVq1ZKfn59+/fVXLV68WB988IHS09MVGhqql156ye3H/9e//qXExET17t1bTZo0UWRkpE6fPq3NmzfrzTfftILGgQMHqmHDhm4/PgAAFyvGFKJAVq9enesN56XM24jNnz9fN9xwg7UuMTFR+/btK9Qxa9eurcDAQEmZk1jnNZv/LbfcotmzZ9tOQIzisW/fvlwnV7dTrly5XG9bCAC+bu3atXr55ZcVHx+vQ4cOaeHChU6TokvSzp07NWLECK1Zs0ZpaWmqV6+ePvroI1WtWjXfxyFTiAJp2rSpZs2apWXLlun777/XsWPHdPLkSYWHh+vSSy9V586dNXjwYFWoUMFpv7i4uDyDSTv79u2zbtU0YcIELVy4UKtWrdLvv/+uY8eOyRijihUrqkWLFurfv79uvPHGor5MFMKAAQPyDNhd6d+/v+1dHgAAmYmVxo0b695771XPnj1zbN+7d69atWqlgQMHasyYMQoPD9cPP/ygkJCQAh2HTCFKRH4yjHayB4XwXvnJ4rpCUAgA+edwOHJkCvv27avAwMBcbwObr7p9ISjMyMjQwYMHVaZMGe4DCQDABcIYo9OnTysmJkZ+fiV/bWxSUpJSUlKKpW5jTI6YJDg4WMHBwbnud35QmJGRoYiICD3xxBNat26dvvvuO9WoUUMjR47M0cWcn0Zd9A4cOFDgCUhZWFhYWFhYvGM5cOBAiccO586dMwooVWyvKSwsLMe6/EwgL8ksXLjQen7o0CEjyZQqVcpMmDDBfPfdd2bs2LHG4XAU+N70PjGmsEyZMpKkb77fo7C/H1+IwoIvjj9XWMjF8TouBmeS0jzdBLc4k3zhv47oiIKN/UHxulg+Gxe606cTdEWdGtbveElKSUmR0s4quP4AyT/IvZWnp+jMDzN14MABhYeHW6vzyhK6kpGRIUnq3r27hg0bJkm64oor9O2332ratGlq06ZNvuvyiV/nrPRsWJkyKlMmPI/S3utiCabKXCSv42LgCLo4fvgcF8EPeHg4QaE3uVg+GxcLjw798g+Sw81Bofn7/+Hh4U5BYWGUL19eAQEBqlevntP6unXrat26dQWqi19nAAAAOw5J7g5K3VhdUFCQmjVrpl27djmt3717t6pVq1aguggKAQAAvNiZM2ec7ui1b98+bd26VZGRkapataoef/xx9enTR61bt1a7du20bNkyLVmyRKtXry7QcQgKAQAA7Dj8Mhd311kAmzdvdprWbfjw4ZL+mdLrlltu0bRp0zR27Fg98sgjql27tj766CO1atWqQMchKAQAAPBibdu2lcljBsF7771X9957b5GOQ1AIAABgx+EohjGF3jlncsnPBAkAAACvQ6YQAADAjheMKSwpBIUAAAB26D4GAACALyFTCAAAYKsYuo+9NCfnna0CAABAiSJTCAAAYIcxhQAAAPAlZAoBAADs+NCUNN7ZKgAAAJQoMoUAAAB2fGhMIUEhAACAHbqPAQAA4EvIFAIAANjxoe5jMoUAAAAgUwgAAGCLMYUAAADwJWQKAQAA7DgcxZApZEwhAAAAvBSZQgAAADt+jszF3XV6IYJCAAAAO1xoAgAAAF9CphAAAMAOk1cDAADAl5ApBAAAsMOYQgAAAPgSMoUAAAB2GFMIAAAAX0KmEAAAwI4PjSkkKAQAALBD9zEAAAB8CZlCAAAAOz7UfeydrQIAAECJIlMIAABghzGFAAAA8CVkCgEAAGwVw5hCL83JeWerAAAAUKK8KigcN26cHA6Hhg4daq1r27atHA6H0/Lggw96rpEAAMB3ZI0pdPfihbym+zguLk7Tp09Xo0aNcmy777779Pzzz1vPS5UqVZJN8xp7Dp/xdBPc4srqZT3dBPytTIjXfAUUycXyOi4Gh04meboJ+NuOQ6c83YQiO3vmtKeb8HcQ5+4pabwzKPSKTOGZM2fUr18/vf322ypXrlyO7aVKlVJ0dLS1hIeHe6CVAAAAFy+vCAoHDRqkrl27qmPHji63z549W+XLl1eDBg00cuRInT17Ntf6kpOTlZCQ4LQAAAAUWNbk1e5evJDH+1zmzZunLVu2KC4uzuX2O+64Q9WqVVNMTIy2bdumESNGaNeuXfr4449t6xw7dqzGjBlTXE0GAAC46Hg0KDxw4IAeffRRrVixQiEhIS7L3H///dbjhg0bqnLlyurQoYP27t2rWrVqudxn5MiRGj58uPU8ISFBsbGx7m08AAC4+PnQ5NUeDQrj4+N19OhRXXXVVda69PR0rV27VpMnT1ZycrL8/f2d9mnevLkkac+ePbZBYXBwsIKDg4uv4QAAABcZjwaFHTp00Pbt253WDRgwQHXq1NGIESNyBISStHXrVklS5cqVS6KJAADAlxXHGEDGFOZUpkwZNWjQwGld6dKlFRUVpQYNGmjv3r2aM2eObrzxRkVFRWnbtm0aNmyYWrdu7XLqGgAAABSOd4aqfwsKCtKXX36pG264QXXq1NG///1v9erVS0uWLPF00wAAgC/wgsmr165dq27duikmJkYOh0OLFi2yLfvggw/K4XBo4sSJBX6pHr/6+HyrV6+2HsfGxmrNmjWeawwAAPBtXtB9nJiYqMaNG+vee+9Vz549bcstXLhQGzZsUExMTKGa5XVBIQAAgC84fx5luwtlu3Tpoi5duuRa1x9//KEhQ4Zo+fLl6tq1a6Ha49XdxwAAAB5VjN3HsbGxioiIsJaxY8cWqokZGRm666679Pjjj6t+/fqFfqlkCgEAADzgwIEDTrfuLex0euPHj1dAQIAeeeSRIrWHoBAAAMCGw+GQo5gmrw4PD3cKCgsjPj5er7/+urZs2VLkdtJ9DAAAcIH6+uuvdfToUVWtWlUBAQEKCAjQr7/+qn//+9+qXr16geoiUwgAAGCjODOF7nDXXXepY8eOTus6deqku+66SwMGDChQXQSFAAAAXuzMmTPas2eP9Xzfvn3aunWrIiMjVbVqVUVFRTmVDwwMVHR0tGrXrl2g4xAUAgAA2HH8vbi7zgLYvHmz2rVrZz0fPny4JKl///6aNWuW25pFUAgAAGDDG7qP27ZtK2NMvsvv37+/gA3KxIUmAAAAIFMIAABgxxsyhSWFTCEAAADIFAIAANghUwgAAACfQqYQAADABplCAAAA+BQyhQAAAHa8YPLqkkKmEAAAAGQKAQAA7PjSmEKCQgAAABsOh4ohKHRvde5C9zEAAADIFAIAANhxqBi6j700VUimEAAAAGQKAQAA7PjShSZkCgEAAECmEAAAwBaTVwMAAMCXkCkEAACwUwxjCo2XjikkKAQAALBRHBeauH+KG/eg+xgAAABkCgEAAOyQKQQAAIBPIVMIAABghylpAAAA4EvIFAIAANhgTCEAAAB8CplClLjTSWmebgL+ViaErwBvcbF8LnYcOuXpJrhFg8oRnm5CkZUPDfZ0E4osMS3Z003wqUwhvwgAAAA2fCkopPsYAAAAZAoBAADskCkEAACATyFTCAAAYIfJqwEAAOBLyBQCAADYYEwhAAAAfAqZQgAAABu+lCkkKAQAALDhS0Eh3ccAAAAgUwgAAGCLKWkAAADgS8gUAgAA2GBMIQAAAHwKmUIAAAAbZAoBAADgU8gUAgAA2HCoGDKFXnr5MZlCAAAAG1ndx+5eCmLt2rXq1q2bYmJi5HA4tGjRImtbamqqRowYoYYNG6p06dKKiYnR3XffrYMHDxb4tRIUAgAAeLHExEQ1btxYU6ZMybHt7Nmz2rJli5599llt2bJFH3/8sXbt2qWbb765wMeh+xgAAMCOF0xe3aVLF3Xp0sXltoiICK1YscJp3eTJk3X11Vfrt99+U9WqVfN9HIJCAAAAD0hISHB6HhwcrODg4CLXe+rUKTkcDpUtW7ZA+9F9DAAAYKM4xxTGxsYqIiLCWsaOHVvk9iYlJWnEiBG6/fbbFR4eXqB9vSooHDdunBwOh4YOHWqtS0pK0qBBgxQVFaWwsDD16tVLR44c8VwjAQAA3ODAgQM6deqUtYwcObJI9aWmpqp3794yxmjq1KkF3t9rgsK4uDhNnz5djRo1clo/bNgwLVmyRPPnz9eaNWt08OBB9ezZ00OtBAAAvqQ4M4Xh4eFOS1G6jrMCwl9//VUrVqwocJZQ8pKg8MyZM+rXr5/efvttlStXzlp/6tQpzZgxQxMmTFD79u3VpEkTzZw5U99++602bNhgW19ycrISEhKcFgAAgItRVkD4888/68svv1RUVFSh6vGKoHDQoEHq2rWrOnbs6LQ+Pj5eqampTuvr1KmjqlWrav369bb1jR071qmPPjY2ttjaDgAALl4OR/EsBXHmzBlt3bpVW7dulSTt27dPW7du1W+//abU1FTdeuut2rx5s2bPnq309HQdPnxYhw8fVkpKSoGO4/Grj+fNm6ctW7YoLi4ux7bDhw8rKCgox9UzlSpV0uHDh23rHDlypIYPH249T0hIIDAEAAAFlhnEufvexwUrv3nzZrVr1856nhXj9O/fX6NHj9bixYslSVdccYXTfl999ZXatm2b7+N4NCg8cOCAHn30Ua1YsUIhISFuq9ddl3QDAAB4Wtu2bWWMsd2e27aC8Gj3cXx8vI4ePaqrrrpKAQEBCggI0Jo1a/TGG28oICBAlSpVUkpKik6ePOm035EjRxQdHe2ZRgMAAN9RHF3H3nnrY89mCjt06KDt27c7rRswYIDq1KmjESNGKDY2VoGBgVq5cqV69eolSdq1a5d+++03tWzZ0hNNBgAAuCh5NCgsU6aMGjRo4LSudOnSioqKstYPHDhQw4cPV2RkpMLDwzVkyBC1bNlSLVq08ESTAQCAD8k+hYw76/RGHr/QJC+vvfaa/Pz81KtXLyUnJ6tTp0568803Pd0sAACAi4rXBYWrV692eh4SEqIpU6ZoypQpnmkQAADwWYWZQiY/dXojr5inEAAAAJ7ldZlCAAAAb+Hn55Cfn3tTe8bN9bkLQSEAAIANuo8BAADgU8gUAgAA2PClKWnIFAIAAIBMIQAAgB3GFAIAAMCnkCkEAACwwZhCAAAA+BQyhQAAADZ8KVPoU0FhYlKaHIFpnm5GoUWXDfF0E9xiyc6Dnm6CW7SrUdHTTSiyMiEXx1fAoZNJnm5CkR2+CF6DJFUvV9rTTXCLHYdOeboJRVY+NNjTTbgocKEJAAAAfMrFkSYAAAAoBg4VQ/exvDNVSKYQAAAAZAoBAADsMKYQAAAAPoVMIQAAgA1fmpKGTCEAAADIFAIAANhhTCEAAAB8CplCAAAAG740ppCgEAAAwAbdxwAAAPApZAoBAABs+FL3MZlCAAAAkCkEAACwVQxjCuWdiUIyhQAAACBTCAAAYIsxhQAAAPApZAoBAABs+NI8hQSFAAAANug+BgAAgE8hUwgAAGDDl7qPyRQCAACATCEAAIAdxhQCAADAp5ApBAAAsEGmEAAAAD6FTCEAAIANX7r6mKAQAADABt3HAAAA8CkEhQAAADayuo/dvRTE2rVr1a1bN8XExMjhcGjRokVO240xeu6551S5cmWFhoaqY8eO+vnnnwv8WgkKAQAAvFhiYqIaN26sKVOmuNz+n//8R2+88YamTZumjRs3qnTp0urUqZOSkpIKdBzGFAIAANjwhjGFXbp0UZcuXVxuM8Zo4sSJeuaZZ9S9e3dJ0vvvv69KlSpp0aJF6tu3b76PQ6YQAADAAxISEpyW5OTkAtexb98+HT58WB07drTWRUREqHnz5lq/fn2B6iIoBAAAsOFQMYwp/Lvu2NhYRUREWMvYsWML3L7Dhw9LkipVquS0vlKlSta2/KL7GAAAwAMOHDig8PBw63lwcLAHW0NQCAAAYMvP4ZCfm8cUZtUXHh7uFBQWRnR0tCTpyJEjqly5srX+yJEjuuKKKwrWriK1BAAA4CLmDVPS5KZGjRqKjo7WypUrrXUJCQnauHGjWrZsWaC6yBQCAAB4sTNnzmjPnj3W83379mnr1q2KjIxU1apVNXToUL3wwgu67LLLVKNGDT377LOKiYlRjx49CnQcgkIAAAAb3jAlzebNm9WuXTvr+fDhwyVJ/fv316xZs/TEE08oMTFR999/v06ePKlWrVpp2bJlCgkJKdBxCAoBAAC8WNu2bWWMsd3ucDj0/PPP6/nnny/ScQgKAQAAbPg5Mhd31+mNuNAEAAAAZAoBAABsOQo+BjA/dXojMoUAAADwrUzhlsN/KfRMmqebUWjNKkd6uglu0a5GRU83wS2+2nfU000osrrlijZpqrcIC/GprzKvtv+vRE83wS2qlyvt6SYU2c2vrvF0E4osI/msp5vg9nkFs+r0RnyTAgAA2HD8/Z+76/RGHu8+njp1qho1amTd6qVly5ZaunSptb1t27bWHEFZy4MPPujBFgMAAFx8PJ4prFKlisaNG6fLLrtMxhi999576t69u7777jvVr19fknTfffc5zb1TqlQpTzUXAAD4EF+aksbjQWG3bt2cnr/44ouaOnWqNmzYYAWFpUqVsm74XBTJSefk5++fY72fn58Cg/+Z9Tv5nP0YBofDT0EhhSybdE6ym3zS4VBwSGiuZc+eDf67qEOhof8ExknnzinDZNi2o1Sp0oUqm5yUpPSMdLeUDQ0tZV29lZycrPQ0+7GdoaXyXzYkNFR+fpkJ75SUFKWlprqlbHBIiPz/fq/Ylc362wcGBVvvq7S0VKXnUm9AYJD8AwIKXDY9LU1pqSm2Zf0DAxUQEFjwsunpSklOsm9DQKACg4IKXDYjIyPzPeyGsv7+AQoKznzvG2OU5OIz55eReZ4Czit7LpfPp7+fv4KzfT7PnrUfC1eQsn4OP4WEhhaqbNK5s7YT1DocDoU4fe7zXzY56ZwyMuw/96FOn+UClE1OUka68+c+6Vyy9TgkW9kUF2WzC872HZGakvvnviBlg0L++dynpqbk+plzKpuSotS0XL4jgv/5jihQ2dRUpeby+QwKClbA35/7gpRNS0tTSkqy0/aM1H8+rw6/ADn8M8uajHSZdPv2Fqysvxz+gQUvazJk0uxfW/ayKDkeDwqzS09P1/z585WYmOh0E+fZs2frgw8+UHR0tLp166Znn30212xhcnKykpP/+XAkJCRIkv59YzOX5Rte205DX5tlPR/a6Sql2PxI1b6qhZ6Y9qH1/Inu1+rMyT9dlq1et5GefW+J9fzZPh114tDvLsvG1LhM//fhl9bzF/p308F9P7suW6Wqlq3/wXo+4NbO+mHbFpdly0VGac33+63nD9/dU5s3rHNZNiS0lDbtPmI9H/5AP3296guXZSVp24HT1uOnht6nFZ8tsi27YddhK4h85t+D9dGHH9iWjdv5m6LKV5AkvfjsCH0wc7pt2bXxP6lK1WqSpFdfGqW3p0y0Lbvs63hdXqeeJOnNif/RGy+/aFt24Rdfq/GVTSVJs96arHFjnrYt+/jUearTJPP9unbhHM1++Tnbso9MeFeNW3WQJG1Ytkgzn3/MtuyDL72pZh27SpK2rF6uaU89bFt2wHOvqNVNt0mSdmxYozeG32tbtt/jz6v9bf0lSd9vXq/Bd3azLTvoiTHqd98jkqRdP3yvf/XqYFv23iEj9K9HnpQk7d+7S3feeI1t2TsGDtbgJ/9PknTk4O/q1a6xbdme/QbqsdGvSJJO/nlCXVtcZlv25lvv0AuvZb5fzp07qxa17f8xeX3XHnp12n+t57mVva79DZry3kfW87ZX1HQZnEpS0xat9O78f4bAdGlZX3/9ecJl2fqNrtLcz/65GOCOLi10+I8DLsvWuLSOZi9dbz0f2LOD9u35yWXZ6Eti9fHqbdbzh+7oqp+2f+eybNlyUfp80z/3VB0+8DZ9t+kbl2VDQktp1bY/rOdPDbpb69escFlWkhZvO2w9nvDUYH274lPbsv/bsNcKIqc8/7hWLf6fbdn/rt6hiMjykqQZL4/S5x/Osi379tJNqnRJVUnSB2+M1cL3ptqWnfzxalW9tE7mfpNf0bTXxtqWnbNktRpc0SSz3nff1GsvPmtbdsb/PlezltdJkj6aPVMvPftv+zbMmq/WHTpLkj5f+KGe/fdDtmVfmfq+brjpFknSqmVL9NhDd9uWjbp+qMrU7yhJOvfrFh39ZIxt2ch2Dyq88U2SpKQ/ftCRj56yLVuu1QBFNO0lSUo5uleH5g23LRvR/HaVa9lPkpT65wEd/O8g27LhTXoq8jr777GS5A23uSspXhEUbt++XS1btlRSUpLCwsK0cOFC1auX+eN9xx13qFq1aoqJidG2bds0YsQI7dq1Sx9//LFtfWPHjtWYMfZveAAAADhzmNxupldCUlJS9Ntvv+nUqVNasGCB3nnnHa1Zs8YKDLNbtWqVOnTooD179qhWrVou63OVKYyNjdWrn8cptHRYjvIXSvfxVdHl/i56YXcfBzrSL4ru47W/Hst8PRdw9/Hl4aUviu7j0iEXfvfxmaS0i6L7+MRF0n18SenAC777uPcb//QKXajdxxnJZ/Xb1N46deqUwsNLdgqthIQERURE6MY3vlJgaM7YoShSz53R54+088jryo1XZAqDgoJ06aWXSpKaNGmiuLg4vf7665o+PWe3YfPmzSUp16AwODhYwX//MDitDwlVcGjeF6nkp0yhymYL+gpTNnsQll32H6C8FKRs9h9Bt5YNDpZc/H2KWjYoKEhBfwcaJVE2ODTnj31AwD8BV14KUtY/IMAKEN1a1t/f6UfeXWX9/PyKpazD4XBZtpSLeQodDoftZ8YVbygbUoDvk4KULep3j23Z4Jyf+xCH6/dekIuydgKDghUYlL/PfYHKBgYpMDB/n/vAoCDrHy5uLRsYqMDA/H3uC1I2ICDAChCz+AW6PucOP385/HKOry/Rsg4/OWzaB8/xiqDwfBkZGU6Zvuy2bt0qSapcuXIJtggAAPgiP4dDfm4eA+ju+tzF40HhyJEj1aVLF1WtWlWnT5/WnDlztHr1ai1fvlx79+7VnDlzdOONNyoqKkrbtm3TsGHD1Lp1azVq1MjTTQcAABc57mhSgo4ePaq7775bhw4dUkREhBo1aqTly5fr+uuv14EDB/Tll19q4sSJSkxMVGxsrHr16qVnnnnG080GAAC4qHg8KJwxY4btttjYWK1Zc+HfuxEAAFyYfGlKGo/f5g4AAACe5/FMIQAAgLfypTGFZAoBAABAphAAAMCOL01JQ6YQAAAAZAoBAADsOP5e3F2nNyIoBAAAsMGUNAAAAPApZAoBAABs+DkyF3fX6Y3IFAIAAIBMIQAAgB3GFAIAAMCnkCkEAADIhZcm9tyOTCEAAADIFAIAANjxpTGFBIUAAAA2mJIGAAAAPoVMIQAAgA1f6j4mUwgAAAAyhQAAAHYcfy/urtMbkSkEAAAAmUIAAAA7fg6H/Nw8BtDd9bkLmUIAAACQKQQAALDjcLj/NndemijMf1A4YcIE9evXT5UqVdKECRNyLetwODRs2LAiNw4AAMCTfGlKmnwHhY899phatWqlSpUq6bHHHsu1LEEhAADAhSXfQWFGRobLxwAAABcrX+o+5kITAAAAFO1Ck+3bt+vAgQNKSkrKsa1nz55FqRoAAMDjfGlKmkIFhTt27FDv3r21a9cuGWNybHc4HEpPTy9y4wAAAFAyChUUDhw4UAEBAVq8eLEuv/xyBQUFubtdAAAAHucNYwrT09M1evRoffDBBzp8+LBiYmJ0zz336JlnnnHrlcyFCgp/+OEHLViwQJ07d3ZbQwAAAJDT+PHjNXXqVL333nuqX7++Nm/erAEDBigiIkKPPPKI245TqKDwiiuu0NGjR93WCAAAAG/kDfMUfvvtt+revbu6du0qSapevbrmzp2rTZs2ubVdhbr6ePLkyXr11Ve1YsUKpaWlubVBAAAAviAhIcFpSU5Odlnummuu0cqVK7V7925J0vfff69169apS5cubm1PoTKF9erVU4sWLdS5c2f5+fkpNDTUabvD4dCpU6fc0kB3+vejr8vhf+GOf9y0ZJynm+AWh0/mvFr9QrT8xxOebkKRNesQ6ekm4CLz2le/eLoJbnHy5DlPN6HIDu8/5OkmFJlJ9fzfwU/un78vq77Y2Fin9aNGjdLo0aNzlH/yySeVkJCgOnXqyN/fX+np6XrxxRfVr18/t7arUEHhAw88oLlz56pnz55caAIAAC5axdl9fODAAYWHh1vrg4ODXZb/3//+p9mzZ2vOnDmqX7++tm7dqqFDhyomJkb9+/d3W7sKFRR+9NFHmjBhgh5++GG3NQQAAMCXhIeHOwWFdh5//HE9+eST6tu3rySpYcOG+vXXXzV27FjPB4Vly5ZVzZo13dYIAAAAb+RwSH4enpLm7Nmz8vNz7sT29/d3+22HC9VN/u9//1uTJk3iIhMAAIBi1q1bN7344ov67LPPtH//fi1cuFATJkzQLbfc4tbjFCpTuGfPHm3fvl21atVSmzZtVLZsWaftDodDr7/+ujvaBwAA4DF+xZApLGh9kyZN0rPPPquHH35YR48eVUxMjB544AE999xzbm1XoYLCTz/9VP7+/pKkr7/+Osd2gkIAAAD3KFOmjCZOnKiJEycW63EKFRTu27fP3e0AAADwOt4weXVJKVRQKEnHjx/Xa6+9po0bN+rQoUOqXLmyWrRooaFDh6p8+fLubCMAAACKWaEuNNm4caMuu+wyTZ48WREREWrTpo0iIiI0adIk1apVSxs3bnR3OwEAAEpc1phCdy/eqFCZwkGDBql+/fr6/PPPnebXOXXqlLp06aLBgwcrLi7ObY0EAADwBIej4FPI5KdOb1SoTOEPP/ygJ598MseEixEREXryySe1Y8cOtzQOAAAAJaNQmcJLL71UJ0+edLnt1KlTTGwNAAAuCn4Oh/zcnNpzd33uUqhM4csvv6xRo0ZpzZo1TutXr16t0aNH65VXXnFL4wAAAFAy8p0pbNiwodMl1KdOnVL79u0VERGhChUq6NixYzp16pTKlSunESNGqEuXLsXSYAAAgJLip0Jm0PKo0xvlOyhs0qSJU1DYpEmTYmkQAAAASl6+g8JZs2YVYzMAAAC8D1cfAwAAwKcU+o4mAAAAFzs/FcPVx/LOVCFBIQAAgA26jwEAAOBTyBQCAADYKI57FXvrvY/JFAIAAIBMIQAAgB2Hw/23pWNMIQAAALyWx4PCqVOnqlGjRgoPD1d4eLhatmyppUuXWtuTkpI0aNAgRUVFKSwsTL169dKRI0c82GIAAOArsq4+dvfijTweFFapUkXjxo1TfHy8Nm/erPbt26t79+764YcfJEnDhg3TkiVLNH/+fK1Zs0YHDx5Uz549PdxqAACAi4vHxxR269bN6fmLL76oqVOnasOGDapSpYpmzJihOXPmqH379pKkmTNnqm7dutqwYYNatGjhiSYDAAAfwdXHHpKenq558+YpMTFRLVu2VHx8vFJTU9WxY0erTJ06dVS1alWtX7/etp7k5GQlJCQ4LQAAAAXlKKb/vJFXBIXbt29XWFiYgoOD9eCDD2rhwoWqV6+eDh8+rKCgIJUtW9apfKVKlXT48GHb+saOHauIiAhriY2NLeZXAAAAcGHziqCwdu3a2rp1qzZu3KiHHnpI/fv3148//ljo+kaOHKlTp05Zy4EDB9zYWgAA4Cuyuo/dvXgjj48plKSgoCBdeumlkqQmTZooLi5Or7/+uvr06aOUlBSdPHnSKVt45MgRRUdH29YXHBys4ODg4m42AADARcMrMoXny8jIUHJyspo0aaLAwECtXLnS2rZr1y799ttvatmypQdbCAAAfAGZwhI0cuRIdenSRVWrVtXp06c1Z84crV69WsuXL1dERIQGDhyo4cOHKzIyUuHh4RoyZIhatmzJlccAAABu5PGg8OjRo7r77rt16NAhRUREqFGjRlq+fLmuv/56SdJrr70mPz8/9erVS8nJyerUqZPefPNND7caAAD4AofDIYfbb3PnnalCjweFM2bMyHV7SEiIpkyZoilTppRQiwAAAHyPx4NCAAAAb+VLk1cTFAIAANgojnsVe2nvsXdefQwAAICSRaYQAADAhp/DIT83p/bcXZ+7kCkEAAAAmUIAAAA7vnShCZlCAAAAkCkEAACwVQxXH4tMIQAAALwVmUIAAAAbfnLIz82pPXfX5y4+FRSWbthSfkGlPN2MQrv51TWeboJb1KgR6ekmuMWdLS/xdBOKbFrcAU83wS06X3rhv6e2HT3t6Sa4xcXwuZCk5T+e8HQTimznd55uwcWByasBAADgU3wqUwgAAFAQTEkDAAAAn0KmEAAAwAa3uQMAAIBPIVMIAABgg6uPAQAA4FMICgEAAGz4yWGNK3TbUojJq//44w/deeedioqKUmhoqBo2bKjNmze79bXSfQwAAGDDG7qP//rrL1177bVq166dli5dqgoVKujnn39WuXLl3NougkIAAAAPSEhIcHoeHBys4ODgHOXGjx+v2NhYzZw501pXo0YNt7eH7mMAAAAbfsW0SFJsbKwiIiKsZezYsS7bsHjxYjVt2lS33XabKlasqCuvvFJvv/22218rmUIAAAAPOHDggMLDw63nrrKEkvTLL79o6tSpGj58uJ566inFxcXpkUceUVBQkPr37++29hAUAgAA2HA4HHK4eVBhVn3h4eFOQaGdjIwMNW3aVC+99JIk6corr9SOHTs0bdo0twaFdB8DAAB4scqVK6tevXpO6+rWravffvvNrcchUwgAAGDD8ffi7joL4tprr9WuXbuc1u3evVvVqlVzX6NEphAAAMCrDRs2TBs2bNBLL72kPXv2aM6cOXrrrbc0aNAgtx6HTCEAAICNrAmn3V1nQTRr1kwLFy7UyJEj9fzzz6tGjRqaOHGi+vXr59Z2ERQCAADkwhtuVXzTTTfppptuKtZj0H0MAAAAMoUAAAB2vOE2dyWFTCEAAADIFAIAANgpzsmrvQ2ZQgAAAJApBAAAsOMn92fQvDUj563tAgAAQAkiUwgAAGCDMYUAAADwKWQKAQAAbDjk/juaeGeekKAQAADAFt3HAAAA8ClkCgEAAGwwJQ0AAAB8CplCAAAAG4wpBAAAgE8hUwgAAGDDl6akIVMIAAAA38oUmrRkGYeLONjhJ0dA0D/lUpPsKylK2bRkyRibsg45AoJzLZuR+s+fyy8w5J/1udVbpLIpkslwS1lHQLA1hiIjLUUmPd2+3qCQ/JcNDJbDz+/vsqky6WluKhskh59/rmWTz52VJAUGBcvPP7NsWlqq0lNTbesNCAySf0BAgcump6UpLTXFtqx/YKACAgILXDYjPV3pqcm2Zf38A+QfGFTgsiYjQ2kp9p+NQpc1RmnJ53KUSTqb+dnxDwhQYFCwVTbrb+S6Xn8FBf/zHk46m+iWsg4/PwWHhBaqbErSuVy/I4IKWTY1OUkmw/7zGRRaqnBlU5JzfD6TA//5rASfV29GbvWGhFqf+9SUZGXk8rkvSNnA4BD5/f25T0tNUXqa/ec+e9n0fHxH+P39HVGQshlpqcrIrWxAoPz8AwpeNj1NGWnO3ycmLdvn1c9fDr/MsiYjXcqwr9eprMmQ0u2/p0qirKc5HJmLu+v0Rt5xxkvIX/97yOX6wCpXKqLjCOv5iQ8fkNJc//gFVKqrsl1GWc//XDBEJvm067JRNVW220v/HH/hv5WReNxlWf+yVVSuxyvW85OfPq30k787lTmRVbZMRcUOfNdaf3j+k0o58rPLev1Cw1X1gTnW8yMLRyn5jx0uyzoCglVt8EfW82OfvqRz+ze7LCtJ1Yd+aj0+vvxVnf35G9uyVQctkOPvIHLXh//R4U2f25a99sXPFBRWTpK0Z+Eb+mPdx7ZlWzz3kUKjKkuSfvlsug6smmNb9uonP1DpyjUlSb+ueE/7l71rW7bJ8HcUXq2eJOn3Nf/T3sVTcpRZ+/f/H586T3WatMxct3COZr/8nG29j0x4V41bdZAkbVi2SDOff8y27IMvvalmHbtKkrasXq5pTz1sW3bAc6+o1U23SZJ2bFijN4bfa1u23+PPq/1t/SVJh3bG65Pn7rEt2/Luf+vKHgMlScd++VEfjehjW7Zp74d1dd/BkqS/ft+reUO725a9ovsAXdP/cUnS6eOH9MGD19uWbdD5drW+/1lJUlLCX5o5oFWOMm///f/2N/fW0BfekJQZtPduUcu23muuv0lPvvqO9Ty3sk2v66Dnpsy2nt/VtoGSk3IGp5LUoGlLvfTuQuv5v7o0U8Jff7ose2n9xpowd7n1/I2BXXTyyB8uy1asdqkembHUej5tUE8d/XWPy7JlK12ix2avtp6/M+wO/bF7u8uypSLK6amPNlnP3xs5UPu3bXJZNjAkVKM+3WY9nzt6kHZvWuOyrCTN2PSr9fjtUcMUv8r+c//mmp1WEPn+2Kf07WcLbMtOXL5FZcpFSZI+nPh/+mrBf23Ljl+0TuVjYiVJH099Wcs/eMu27PNzV+iSWpdLknYumaEfP7Ev2/G5/yqyZn1J0s9fzNG2/71uW7btiLdUsW5TSdLe1R/ruw/G25ZtNfR1xVxxnSTp1/VLFTdjtG3Zlg+PV+zVmZ+dP+K/0vo3R9iWDbjyHgVUu1aSlHH0B6VumGRfttEdCqjZLrPs8Z+V+s0r9mXr36qAyzpJkszJX5Wy5iXbsv61uymw7s2ZZU8fUsqq0fZlL71BgQ1us91ekvzkkJ+bO3zdXZ+70H0MAAAAOYzJpS/xIpGQkKCIiAiV6z1VfoGhOQtcIN3HpcuGWY8v5O7jarFhF0X3cd/mMZIu7O7juF8TLoru4+trZmaWL+Tu421HT18U3cfR4f98513I3cefbzt8wXcff7bku2yFL8zuY5N6TsmfPaJTp04pPDzcvnwxyIodPlz/s0qFlXFr3WfPnFaflpd55HXlxqe6jx0BwVYXZq7l8lGmUGWzBX2FKetncyy/AtRbsLJBeRcqbNl8vvMKVjZQ+jvYKYmy2X/wsgQE/BNw5aUgZf0DAqwA0Z1l/fz95eef83UUtazDz0+BIcVQ1uFwWTakVGmXZV2tt+MNZbMHcu4sGxic/++pApUNyvl9Ehzq+rugqPW6o2xAYJACAvP3XeVfgO+IgpT1CwjM/E5xd1n/ACtAzGL3m+Pw85f+DlLz4nD4Sfn83Siusig5PhUUAgAAFITj7//cXac3YkwhAAAAyBQCAADY8aUpacgUAgAAwLcyhW2uu1SBoWF5F/RS5cPzP1Dbmz3YLNbTTXCLsJAL/+NTIeSUp5vgFtXL5f9iDm91MbwGSbos+sL9js2uQsiFfxFEp3pRnm5CkZ07c1qDP/NsGxzFME+ht44pvPB/1QAAAIoJ3ccAAADwKWQKAQAAbJApLEFjx45Vs2bNVKZMGVWsWFE9evTQrl27nMq0bdtWDofDaXnwwQc91GIAAICLj8eDwjVr1mjQoEHasGGDVqxYodTUVN1www1KTHS+NdR9992nQ4cOWct//vMfD7UYAAD4Ckcx/eeNPN59vGzZMqfns2bNUsWKFRUfH6/WrVtb60uVKqXo6OiSbh4AAIBP8Him8HynTmVOkREZGem0fvbs2SpfvrwaNGigkSNH6uxZ+xvdJycnKyEhwWkBAAAoKD9H8SzeyOOZwuwyMjI0dOhQXXvttWrQoIG1/o477lC1atUUExOjbdu2acSIEdq1a5c+/vhjl/WMHTtWY8aMKalmAwAAXPC8KigcNGiQduzYoXXr1jmtv//++63HDRs2VOXKldWhQwft3btXtWrVylHPyJEjNXz4cOt5QkKCYmMvjgmTAQBAySmOMYCMKczD4MGD9emnn2rt2rWqUqVKrmWbN28uSdqzZ4/LoDA4OFjBwRf+bPQAAMCzfGlKGo8HhcYYDRkyRAsXLtTq1atVo0aNPPfZunWrJKly5crF3DoAAADf4PGgcNCgQZozZ44++eQTlSlTRocPH5YkRUREKDQ0VHv37tWcOXN04403KioqStu2bdOwYcPUunVrNWrUyMOtBwAAFzOH3N/d66WJQs8HhVOnTpWUOUF1djNnztQ999yjoKAgffnll5o4caISExMVGxurXr166ZlnnvFAawEAAC5OHg8KjTG5bo+NjdWaNWtKqDUAAAD/KI4pZLx1Shqvm6cQAAAAJc/jmUIAAABv5UtT0pApBAAAAJlCAAAAO740TyGZQgAAABuOYloKa9y4cXI4HBo6dGgRanGNoBAAAOACEBcXp+nTpxfbPM0EhQAAADb85JCfw81LIXKFZ86cUb9+/fT222+rXLlyxfBKCQoBAAA8IiEhwWlJTk62LTto0CB17dpVHTt2LLb2EBQCAADYKM4xhbGxsYqIiLCWsWPHumzDvHnztGXLFtvt7sLVxwAAAB5w4MABhYeHW8+Dg4Ndlnn00Ue1YsUKhYSEFGt7CAoBAADsFPVyYbs6JYWHhzsFha7Ex8fr6NGjuuqqq6x16enpWrt2rSZPnqzk5GT5+/u7pVkEhQAAAF6qQ4cO2r59u9O6AQMGqE6dOhoxYoTbAkKJoBAAAMCWp29zV6ZMGTVo0MBpXenSpRUVFZVjfVERFAIAANgphjuaeOmtjwkKAQAALiSrV68ulnoJCgEAAGwU43UmXod5CgEAAECmEAAAwJYPpQrJFAIAAIBMIQAAgB1PT0lTksgUAgAAgEwhAACAHUcxzFPo9nkP3YSgEAAAwIYPXWdC9zEAAADIFAIAANjzoVQhmUIAAACQKQQAALDDlDQAAADwKWQKAQAAbPjSlDRkCgEAAECmEAAAwI4PXXzsW0Hhw82rqXSZcE83w+edSUrzdBPcIizkwv/4tKgR5ekmuMXF8J66GN5PknToZJKnm+AW1cuV9nQTiqy6LvzXcOa0F3wufCgqpPsYAAAAvpUpBAAAKAimpAEAAIBPIVMIAABggylpAAAA4FPIFAIAANjwoYuPyRQCAACATCEAAIA9H0oVkikEAAAAmUIAAAA7vjRPIUEhAACADaakAQAAgE8hUwgAAGDDh64zIVMIAAAAMoUAAAD2fChVSKYQAAAAZAoBAADs+NKUNGQKAQAAQKYQAADAji/NU0hQCAAAYMOHrjOh+xgAAABkCgEAAOz5UKqQTCEAAADIFAIAANhhShoAAAD4FDKFAAAAdophShovTRSSKQQAAIAXBIVjx45Vs2bNVKZMGVWsWFE9evTQrl27nMokJSVp0KBBioqKUlhYmHr16qUjR454qMUAAMBXOIpp8UYeDwrXrFmjQYMGacOGDVqxYoVSU1N1ww03KDEx0SozbNgwLVmyRPPnz9eaNWt08OBB9ezZ04OtBgAAPsGHokKPjylctmyZ0/NZs2apYsWKio+PV+vWrXXq1CnNmDFDc+bMUfv27SVJM2fOVN26dbVhwwa1aNHCE80GAAC4qHg8U3i+U6dOSZIiIyMlSfHx8UpNTVXHjh2tMnXq1FHVqlW1fv16l3UkJycrISHBaQEAACgoRzH9VxD5GWrnDl4VFGZkZGjo0KG69tpr1aBBA0nS4cOHFRQUpLJlyzqVrVSpkg4fPuyynrFjxyoiIsJaYmNji7vpAAAAxSI/Q+3cwePdx9kNGjRIO3bs0Lp164pUz8iRIzV8+HDreUJCAoEhAAAoMEcxTElT0PryGmrnLl4TFA4ePFiffvqp1q5dqypVqljro6OjlZKSopMnTzplC48cOaLo6GiXdQUHBys4OLi4mwwAAFBo5w9vy2/8cv5QO3fxePexMUaDBw/WwoULtWrVKtWoUcNpe5MmTRQYGKiVK1da63bt2qXffvtNLVu2LOnmAgAAH1KcFx/HxsY6DXcbO3Zsnu1xNdTOXTyeKRw0aJDmzJmjTz75RGXKlLHGCUZERCg0NFQREREaOHCghg8frsjISIWHh2vIkCFq2bIlVx4DAIAL1oEDBxQeHm49z0+W0F1D7VzxeFA4depUSVLbtm2d1s+cOVP33HOPJOm1116Tn5+fevXqpeTkZHXq1ElvvvlmCbcUAAD4nOKYV/Dv+sLDw52CwrzYDbVzF48HhcaYPMuEhIRoypQpmjJlSgm0CAAAIFNhppDJT50FYYzRkCFDtHDhQq1evTrHUDt38XhQCAAAAHt5DbVzF49faAIAAOCtHPpnWhq3LQVsw9SpU3Xq1Cm1bdtWlStXtpYPP/zQra+VTCEAAIAXy89QO3cgKAQAALBRjNeZeB26jwEAAECmEAAAwI433OaupJApBAAAgG9lCkuHBCgs5MJ9yRdy27PbceiUp5vgFhfD3+NMUpqnm+AW0WVDPN2EIitzEbyfpIvndcA7JJTK8HQT5EujCvn0AgAA2KD7GAAAAD6FTCEAAIAN3+k8JlMIAAAAkSkEAACwxZhCAAAA+BQyhQAAADYcf//n7jq9EZlCAAAAkCkEAACw5UOXHxMUAgAA2PChmJDuYwAAAJApBAAAsMWUNAAAAPApZAoBAABsMCUNAAAAfAqZQgAAADs+dPkxmUIAAACQKQQAALDjQ4lCgkIAAAA7TEkDAAAAn0KmEAAAwJb7p6Tx1g5kMoUAAAAgUwgAAGCHMYUAAADwKQSFAAAAICgEAAAAYwoBAABs+dKYQoJCAAAAG45imJLG/VPcuAfdxwAAACBTCAAAYMeXuo/JFAIAAIBMIQAAgB2H3H9TOi9NFJIpBAAAAJlCAAAAez6UKiRTCAAAADKFAAAAdnxpnkKCQgAAABtMSQMAAACfQqYQAADAhg9dZ0KmEAAAAGQKAQAA7PlQqpBMIQAAAAgKAQAA7DiK6b+CmjJliqpXr66QkBA1b95cmzZtcvtrJSgEAADwYh9++KGGDx+uUaNGacuWLWrcuLE6deqko0ePuvU4BIUAAAA2suYpdPdSEBMmTNB9992nAQMGqF69epo2bZpKlSqld999162v1ScuNDHGSJISz5z2cEuKxqReHH+usxf43yHLmYB0TzcBfzvtl+LpJhSZSbk4Pt+AO51OSJD0z++4JyT83YbiqPP8uoODgxUcHOy0LiUlRfHx8Ro5cqS1zs/PTx07dtT69evd2i6f+BY6fTozCLn+6joebgkAACio06dPKyIiokSPGRQUpOjoaF1WI7ZY6g8LC1NsrHPdo0aN0ujRo53WHT9+XOnp6apUqZLT+kqVKumnn35ya5t8IiiMiYnRgQMHVKZMGTm89d4yF4CEhATFxsbqwIEDCg8P93RzLmicS/fhXLoH59F9OJfuY4zR6dOnFRMTU+LHDgkJ0b59+5SSUjw9EcaYHDHJ+VnCkuYTQaGfn5+qVKni6WZcNMLDw/micxPOpftwLt2D8+g+nEv3KOkMYXYhISEKCQnx2PElqXz58vL399eRI0ec1h85ckTR0dFuPRYXmgAAAHipoKAgNWnSRCtXrrTWZWRkaOXKlWrZsqVbj+UTmUIAAIAL1fDhw9W/f381bdpUV199tSZOnKjExEQNGDDArcchKES+BQcHa9SoUR4f83Ax4Fy6D+fSPTiP7sO5hLv16dNHx44d03PPPafDhw/riiuu0LJly3JcfFJUDuPJ67wBAADgFRhTCAAAAIJCAAAAEBQCAABABIUAAAAQQaHPW7t2rbp166aYmBg5HA4tWrTIafs999wjh8PhtHTu3NmpzJ9//ql+/fopPDxcZcuW1cCBA3XmzJkSfBXeIa9zKUk7d+7UzTffrIiICJUuXVrNmjXTb7/9Zm1PSkrSoEGDFBUVpbCwMPXq1SvHhKW+IK9zef57Mmt5+eWXrTK8LzPldS7PnDmjwYMHq0qVKgoNDVW9evU0bdo0pzK8LzPldS6PHDmie+65RzExMSpVqpQ6d+6sn3/+2akM5xLejKDQxyUmJqpx48aaMmWKbZnOnTvr0KFD1jJ37lyn7f369dMPP/ygFStW6NNPP9XatWt1//33F3fTvU5e53Lv3r1q1aqV6tSpo9WrV2vbtm169tlnnWbLHzZsmJYsWaL58+drzZo1OnjwoHr27FlSL8Fr5HUus78fDx06pHfffVcOh0O9evWyyvC+zJTXuRw+fLiWLVumDz74QDt37tTQoUM1ePBgLV682CrD+zJTbufSGKMePXrol19+0SeffKLvvvtO1apVU8eOHZWYmGiV41zCqxngb5LMwoULndb179/fdO/e3XafH3/80UgycXFx1rqlS5cah8Nh/vjjj2JqqfdzdS779Olj7rzzTtt9Tp48aQIDA838+fOtdTt37jSSzPr164urqV7P1bk8X/fu3U379u2t57wvXXN1LuvXr2+ef/55p3VXXXWVefrpp40xvC/tnH8ud+3aZSSZHTt2WOvS09NNhQoVzNtvv22M4VzC+5EpRJ5Wr16tihUrqnbt2nrooYd04sQJa9v69etVtmxZNW3a1FrXsWNH+fn5aePGjZ5orlfKyMjQZ599pssvv1ydOnVSxYoV1bx5c6fup/j4eKWmpqpjx47Wujp16qhq1apav369B1p9YThy5Ig+++wzDRw40FrH+zL/rrnmGi1evFh//PGHjDH66quvtHv3bt1www2SeF/mV3JysiQ5Zf79/PwUHBysdevWSeJcwvsRFCJXnTt31vvvv6+VK1dq/PjxWrNmjbp06aL09HRJ0uHDh1WxYkWnfQICAhQZGanDhw97osle6ejRozpz5ozGjRunzp0764svvtAtt9yinj17as2aNZIyz2VQUJDKli3rtG+lSpU4l7l47733VKZMGacuON6X+Tdp0iTVq1dPVapUUVBQkDp37qwpU6aodevWknhf5ldWcDdy5Ej99ddfSklJ0fjx4/X777/r0KFDkjiX8H7c5g656tu3r/W4YcOGatSokWrVqqXVq1erQ4cOHmzZhSUjI0OS1L17dw0bNkySdMUVV+jbb7/VtGnT1KZNG08274L27rvvql+/fk4ZGuTfpEmTtGHDBi1evFjVqlXT2rVrNWjQIMXExDhltJC7wMBAffzxxxo4cKAiIyPl7++vjh07qkuXLjLcOAwXCDKFKJCaNWuqfPny2rNnjyQpOjpaR48edSqTlpamP//8U9HR0Z5oolcqX768AgICVK9ePaf1devWta4+jo6OVkpKik6ePOlU5siRI5xLG19//bV27dqlf/3rX07reV/mz7lz5/TUU09pwoQJ6tatmxo1aqTBgwerT58+euWVVyTxviyIJk2aaOvWrTp58qQOHTqkZcuW6cSJE6pZs6YkziW8H0EhCuT333/XiRMnVLlyZUlSy5YtdfLkScXHx1tlVq1apYyMDDVv3txTzfQ6QUFBatasmXbt2uW0fvfu3apWrZqkzB+UwMBArVy50tq+a9cu/fbbb2rZsmWJtvdCMWPGDDVp0kSNGzd2Ws/7Mn9SU1OVmpoqPz/nnwJ/f38ru837suAiIiJUoUIF/fzzz9q8ebO6d+8uiXMJ70f3sY87c+aMlfWTpH379mnr1q2KjIxUZGSkxowZo169eik6Olp79+7VE088oUsvvVSdOnWSlJnp6ty5s+677z5NmzZNqampGjx4sPr27auYmBhPvSyPyO1cVq1aVY8//rj69Omj1q1bq127dlq2bJmWLFmi1atXS8r8IRk4cKCGDx+uyMhIhYeHa8iQIWrZsqVatGjhoVflGXmdS0lKSEjQ/Pnz9eqrr+bYn/flP/I6l23atNHjjz+u0NBQVatWTWvWrNH777+vCRMmSOJ9mV1e53L+/PmqUKGCqlatqu3bt+vRRx9Vjx49rIt2OJfwep6+/Bme9dVXXxlJOZb+/fubs2fPmhtuuMFUqFDBBAYGmmrVqpn77rvPHD582KmOEydOmNtvv92EhYWZ8PBwM2DAAHP69GkPvSLPye1cZpkxY4a59NJLTUhIiGncuLFZtGiRUx3nzp0zDz/8sClXrpwpVaqUueWWW8yhQ4dK+JV4Xn7O5fTp001oaKg5efKkyzp4X2bK61weOnTI3HPPPSYmJsaEhISY2rVrm1dffdVkZGRYdfC+zJTXuXz99ddNlSpVTGBgoKlatap55plnTHJyslMdnEt4M4cxjIAFAADwdYwpBAAAAEEhAAAACAoBAAAggkIAAACIoBAAAAAiKAQAAIAICgEAACCCQgAAAIigEEAJ2L9/vxwOhxYsWODpphSb1atXy+FwaPPmzR5rg8Ph0CuvvOKx4wO4sBEUAgAAgKAQAAAABIXABWn9+vW6+eabFRMTo9KlS+uKK67Qf//7X0lSYmKiSpcu7bIb8dZbb1XLli2t5z/88INat26tkJAQXXbZZZo9e7Z69Oihtm3b5rstKSkpeuSRRxQZGamyZcvqgQce0Jw5c+RwOLR//37b/Vx1dU6cOFEOh8Np3cmTJzVkyBBVqVJFwcHBqlGjhkaOHOlUZvr06apdu7aCg4NVvXp1vfDCC8rIyHCq47777tMll1yikJAQxcbGqm/fvk51/P7777rzzjtVvnx5hYaGqnXr1oqPj8/3eXDFGKNXXnlFl19+uYKDg1WzZk299tpr1na7Luf09HRFR0c7vc6dO3eqe/fuioiIUOnSpdW1a1ft3bu3SO0DgOwCPN0AAAX366+/6tprr9WDDz6okJAQffPNNxo4cKAyMjLUv39/3XzzzZo3b54ee+wxa5/Tp0/rs88+03/+8x9J0rlz53TDDTeobNmy+uCDDyRJY8aM0cmTJ1WrVq18t+XJJ5/U9OnT9fzzz+uKK67QggUL9OSTT7rldSYnJ6t9+/bav3+/Ro0apYYNG+rAgQNat26dVWbSpEl65JFHNGTIEN1000369ttvNXr0aJ08edIKOocPH66lS5dq3Lhxql69ug4dOqSlS5dadfz1119q1aqVwsLCNGnSJEVERGjSpElq3769fv75Z1WsWLFQ7X/00Uf1zjvv6Omnn1bz5s317bffasSIEQoNDdWDDz6o1q1bKyYmRvPmzVPTpk2t/VatWqUjR47ojjvukCT98ssvuuaaa9SgQQPNmjVLfn5+evHFF9WhQwft2rVLwcHBhWofADgxAC5oGRkZJjU11dx///2mZcuWxhhjPvnkEyPJ7N692yr33nvvGX9/f3P48GFjjDFTpkwx/v7+Zt++fVaZffv2GX9/f9OmTZt8HfvEiRMmJCTEPP/8807rO3ToYCRZde/bt89IMvPnz7fKSDIvv/yy036vvfaayf619NZbbxlJ5ttvv3V5/LS0NFO+fHnTt29fp/UjR440QUFB5vjx48YYY+rXr2+GDx9u+zqee+45ExERYY4cOWKtS0pKMlWrVjWPP/54LmfgH1999ZWRZOLi4owxxuzZs8c4HA4zffp0p3IjRoww0dHRJj093RhjzLBhw0yVKlVMRkaGVWbAgAGmfv361vO7777b1KxZ05w7d85ad/ToURMWFmamTJlirXN1TgEgv+g+Bi5Af/31lx555BFVq1ZNgYGBCgwM1FtvvaXdu3dLkjp37qyyZctq3rx51j7z5s1Tu3btVKlSJUlSXFycGjZsqOrVq1tlqlevrsaNG+e7Hdu3b1dSUpJuvvlmp/Xdu3cvwqv7x8qVK1W3bl2nLu/sfvrpJx0/fly33Xab0/o+ffooJSVFmzZtkiRdddVVmjVrll555RXt2LEjRz1ffPGF2rVrp8jISKWlpSktLU3+/v5q06aN4uLiCtX2L7/8UpLUq1cvq860tDR17NhRhw8f1oEDByRJt99+u37//Xcr+5mSkqKFCxfq9ttvd2rfzTffrICAAKuecuXK6corryx0+wDgfASFwAXonnvu0dy5c/XYY4/piy++UFxcnO69914lJSVJkoKCgtSrVy8rKDxx4oRWrFhhdUdK0qFDh1ShQoUcdRekq/TQoUOSlKOewna3nu/EiROKiYmx3f7XX39JkhXoZsl6/ueff0rK7GK+66679Oqrr6phw4aqWrWqpk6dapU/fvy4Fi1aZAXYWct///tfK3grqOPHj8sYo/LlyzvVef3110uSVW+zZs1Uq1YtzZ07V5K0dOlSnTx50ikoPH78uCZOnJijfV9//XWh2wcA52NMIXCBSUpK0qeffqoJEyZoyJAh1vrsF1ZImRmoGTNmaNu2bVq/fr38/f3Vs2dPa3vlypW1devWHPUfPXpUZcqUyVdbKleuLEk6duyYU/B29OjRPPcNDg5WSkqK07qsIC9LVFSUtm3bZltHZGSky+MdOXLEaXtERIQmTpyoiRMnavv27Xr99df18MMPq0GDBrruuusUGRmpzp076//+7/9ctrMwIiMj5XA4tG7dOgUFBeXYXrt2bevx7bffrunTp+uNN97QvHnz1Lx5c9WsWdOprq5du+rhhx/OUU9+/1YAkBcyhcAFJjk5WRkZGU6BxunTp7V48WKncm3btlV0dLTmzp2ruXPnqkuXLoqIiLC2N2vWTNu2bdO+ffusdfv379f333+f77Y0aNBAISEh+uSTT5zWL1q0KM99q1Spop07dzqtW7FihdPzjh07aufOndq4caPLOmrXrq0KFSpo/vz5Tuv/97//KSgoSFdffXWOfRo2bGhdAZx1/I4dO+rHH39U3bp11bRpU6elYcOGeb4WVzp06CApM9t5fp1NmzZ1CuZuv/12HTt2TIsXL9bixYudsoRZ7duxY4euvPLKHPVkDy4BoCjIFAIXmIiICDVr1kzjxo1ThQoVFBAQoHHjxikiIsIpY+bv76/evXtr1qxZOnr0qNP4QkkaMGCAXnzxRd10000aM2aMJGn06NGKjo6Wn1/+/r0YFRWlhx56SC+++KJCQkJ0xRVXaP78+dbYxtzqufXWWzVx4kQ1a9ZMtWvX1gcffKA//vjDqcxdd92lN998U127dtWoUaPUoEED/fHHH1q7dq3eeust+fv769lnn9UjjzyiihUr6sYbb9SGDRs0fvx4DR06VFFRUZKka6+9VrfccosaNGggf39/vf/++woKCtJ1110nKfPq5NmzZ6tNmzZ69NFHVbVqVR07dkwbN25UTEyMhg0blq/zkd3ll1+uQYMG6a677tLjjz+u5s2bKzU1Vbt379ZXX33lFDjXq1dPjRo10pAhQ5SUlKQ+ffo41TVmzBg1a9ZMnTp10v33369KlSrp8OHDWrNmja677rocQSQAFIqnr3QBUHA///yzad++vSlVqpSJjY01L7/8shk1apQpXbq0U7n169cbSSYsLMycPXs2Rz07duwwrVq1MkFBQaZGjRrm3XffNW3btjU9evTId1uSk5PN4MGDTdmyZU14eLjp37+/mTx5spFkTp48aYxxffXxmTNnzIABA0xkZKQpX768efrpp82rr75qzv9a+vPPP81DDz1koqOjTVBQkKlZs6Z5+umnncpMnTrVXHbZZSYwMNBUrVrV/N///Z91da8xxjz++OOmYcOGJiwszISHh5trr73WLF++3KmOQ4cOmYEDB5rKlSuboKAgU6VKFXPrrbeab775Jl/n4fyrj43JvDJ80qRJpkGDBiYoKMhERkaali1bmgkTJuTYf+zYsUaS6dChg8v6d+/ebXr37m2ioqJMcHCwqV69urn77rvNjh07rDLi6mMAReAwxhgPxqQAvMiff/6pmjVratiwYRo1alSh67nrrru0bt06p65pAIB3o/sY8GHjx49XpUqVrAmdX3nlFaWnp+vee+/Ndx1r1qzRN998oyZNmigjI0OffvqpZs+erQkTJhRjywEA7kZQCPgwPz8/vfDCC/rjjz8UEBCg5s2ba9WqVYqNjZUkpaWl2e7rcDjk7++vsLAwffrppxo/frzOnTunGjVqaMKECRo6dGgJvYriZ4xRenq67XY/P798j8MEAG9F9zEAW+ffhzi7atWq5Xpv44vJrFmzNGDAANvto0aN0ujRo0uuQQBQDAgKAdjavHmz7bbg4OBCT9dyoTlx4kSu4yNjYmJynWQbAC4EBIUAAABg8moAAAAQFAIAAEAEhQAAABBBIQAAAERQCAAAABEUAgAAQASFAAAAkPT/gGHM+JrH1eEAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 800x600 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "data = df[(df['avg_glucose_level'] >= 140) & (df['avg_glucose_level'] < 200)]\n",
+    "draw_hist_2d(data, 'avg_glucose_level', 'bmi', 'avg_glucose_level: 140 - 200', [26, 35])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 131,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAItCAYAAACKFJrGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxpklEQVR4nO3deVwU9f8H8NcusLsgsIpyJt63oKYZouadSmZqlmmWZmZpaB6VZlla2RczUyuPrJ+JlWhpeZaaomImmqCkWJoHCibgDXIt1+f3hzGxsjOwy8Li8nr2mEfszHs++9lhd3n7/sx8RiWEECAiIiIiMpPa1h0gIiIionsTE0kiIiIisggTSSIiIiKyCBNJIiIiIrIIE0kiIiIisggTSSIiIiKyCBNJIiIiIrIIE0kiIiIisggTSSIiIiKyCBNJIgs0aNAAKpUKzz33nK27QndRqVRQqVSYM2eOrbtSofgeJKKqgIkkERHZnby8POzYsQNTp05F586dUadOHTg5OaFmzZpo3749Xn/9dZw/f77M7eXn5+Pzzz/HQw89BE9PTzg7O6Nx48Z46aWXcPLkyTK3c+3aNbzzzjto06YN3N3d4e7ujjZt2uCdd97B9evXLXmpRDblaOsOEBERWdPVq1fRsmVLk4lZWloajh07hmPHjuHTTz/F/PnzMXnyZMX2rl27hkceeQRHjhwxWn/+/Hl88cUXWL16NZYsWYIXXnhBsZ3Dhw9j8ODBSElJMVp/4sQJnDhxAv/3f/+HTZs24cEHHyzjKyWyPVYkiYjIrhgMBimJbNeuHWbPno2ff/4ZsbGx2LNnD15//XXodDrk5uZiypQp+OKLL2TbKigowJAhQ6Qk8vHHH8f27dtx+PBhfPrpp/Dy8oLBYMBLL72E7du3y7aTlJSEgQMHIiUlBY6Ojpg+fTr279+P/fv3Y/r06XB0dERycjIGDhyIS5cuWfeAEFUkQURmq1+/vgAgRo8ebeuu0F0ACABi9uzZtu5KheJ7UN6lS5fEww8/LKKjo2VjDh06JJydnQUAodfrRXp6usm4lStXSu+pl19+ucT2M2fOCHd3dwFANGnSROTl5Zls59lnn5Xa+f7770ts/+6776Tt/J3SvYQVSSKiaio8PLzEMKs9uO+++/DLL7+gU6dOsjFBQUF4+eWXAdwZ7t61a5fJuAULFgAAPDw88NFHH5XY3qRJE8ycORMAcPbsWWzcuLFETEpKCtasWQMA6NevH5588skSMcOGDUO/fv0AAN98841d/l7IPjGRrGbi4+Mxd+5c9OvXD3Xr1oVWq4WrqyuaNm2K0aNH49ChQyb3y8rKgpubG1QqFUaOHFnq80RHR0tXzy5btsxkzNdff43u3bujVq1acHV1RWBgIN577z2kp6cDqNirbxMTEzFhwgQ0bNgQOp0Ofn5+GDx4MPbu3QsAmDNnjvT85goPD5f2vXDhgmzchQsXpLjw8HDFNn/++Wc888wzaNSoEWrUqAGdToeGDRti6NChCA8PR1ZWlsn9CgsL8e233+KRRx6Bj48PNBoNPD090bNnTyxbtgy5ubmKz3v58mW88cYbaN++PfR6PZycnODt7Y3AwECMGDEC4eHh0u/LlLS0NISFhaFLly7w9PSERqOBr68vBg4ciA0bNkAIofj8Feno0aMYP348mjdvDldXV9SoUQPNmzfHhAkT8Pfff5vcp3HjxlCpVOjSpUup7f/zzz9wcHCASqXC9OnTTcbY+vjMmTMHdevWxaOPPor169fDYDBU6PNVNT179pR+PnfuXIntf//9N/766y8AdxI9FxcXk+0Uv3LeVCK5ZcsWFBYWAgDGjBkj25+idgoLC7Fly5ZS+09UJdi6JEqVZ+/evdLQidLyxhtvmNz/mWeeEQBEjRo1REZGhuJzhYaGCgDC0dFRXL161Whbbm6uGDRokOzzN23aVFy4cKHChigjIyOFq6uryedWqVTigw8+ELNnz5bWmaI0rLhq1Spp34SEBNl+JCQkSHGrVq0yGXPt2jXRu3fvUn9npva/fv266NKli+J+LVu2FBcuXDD53Pv375eG7JSWrVu3mtx/9+7donbt2or7PvLII+L27duyx8gSpb1vCgoKxNSpU4VKpZLtl6Ojo1ixYkWJfWfNmiW9T5R+t0II8dFHH0ntxcXFldhe3uNjjaHthg0bGj1frVq1xIQJE8Thw4ctbvNe8sMPP0iv/eOPPy6xvfiw9tq1axXbatasmQAg6tWrV2Jb8WHt5ORk2TYuX74sxY0aNcr8F0RkA6xIViP5+fmoUaMGhg0bhs8//xz79u3D0aNHsWPHDnz88ceoX78+AGDevHlYtWpVif2LKpGZmZnYvHmz4vOsX78ewJ1hnDp16hhtnzx5srR/69atsWrVKhw5cgSRkZGYOHEizp8/j6eeesoqr/lu58+fx2OPPYaMjAw4Ojpi0qRJiIyMxJEjR7Bq1Sq0bNkSb731Fnbs2FEhz2+OrKws9OzZE5GRkQCADh06YMWKFfjtt98QExODjRs3YurUqfDz8yuxb0FBAR599FH89ttvAIDu3btj/fr1iImJwZYtWzB48GAAwF9//YXevXsjIyPDaH+DwYDhw4cjPT0dbm5umD59OrZv347Y2FhER0cjIiICEydOxH333Wey77/99htCQkJw/fp1eHt7Y+7cudi6dStiY2OxdetWPPPMMwDuVFpHjx5trUNWJpMmTcKiRYsghEC3bt3w1VdfYd++ffj999/x5ZdfonXr1sjPz8dLL71UoipU9BkQQiAiIkLxeYq2t27dGm3btjXaVlWOT3R0ND7++GOpfzdv3sTy5csRFBSEVq1a4cMPP8Q///xTYc9va1FRUdLPLVu2LLH9zz//lH5u0aKFYltF25OSkpCZmWmyHb1eDx8fH9k2fH194e7uDgBSJZSoyrN1JkuV5+rVq+LmzZuy2w0Gg3j44YcFAFG/fn2Rn59vtD0vL094eXkJAGLAgAGy7Wzfvl36V3VERITRtqNHj0qVoODgYJGVlVVi//Xr1xtVSaxZkRw8eLDU7saNG0tsz8zMFA8++KDR85tSGRXJqVOnSttDQ0NFYWGhyXYMBoNISUkxWrdkyRKjyoapfd98800pZvr06UbbIiMjS604CnHnPZGWlma0Ljc3VzRo0EAAEP379xeZmZkm9/3iiy+k5/jll19kn8NcSu+bX375Rdr+f//3fyb3z87OFr169ZI+B3dfPNG+fXsBQLRu3Vq2D3/99Zf0PP/73/+Mtlnr+Fj7Ypvjx4+LV199Vfj6+hq9/9VqtejXr59Yu3atyM7OLnN7xav6li7169e3ymsz5fLly8LNzU0AEJ6eniZf21NPPSX15e6RlbsVjcIAEKdOnTLa5u3tXep7pkjr1q0FAOHj42PeCyKyESaSZCQuLk76MoyJiSmxfdKkSQKAcHJyEteuXTPZRtEQuKura4k/kuPHj5faj4+Pl+3HkCFDrJ5I/vPPP8LBwUEAEE888YRsXPFjYKtE8ubNm8LFxUUAEB06dCiR1JemZcuW0h9IuatR8/LyRIsWLaQhzZycHGnbmjVrpL7dnSiW5uuvvxYAhE6nE1euXFGMLUran376abOeQ4nS+6YoQRw6dKhiG3/++adsEvfxxx8rDlkLYTwEfvepA9Y6PhV11XZ+fr7Yvn27GDFihHRVc9Gi1+vFiy++KH777bdS26nKiWRhYaEYOHCg9DyffvqpybhHHnlEiiktiZ4+fbrsd2fRZzkoKKjUvhX9zl1dXcv+gohsiEPb1ZjBYEBiYiL+/PNPxMfHIz4+3ujk/j/++KPEPkVDe3l5efj+++9LbM/OzsamTZsAAIMHDy5xcvru3bsBAPfffz9at24t27dRo0aZ/XpKs3fvXhQUFAAAnn32Wdm4tm3blhiKrGx79uyRLqB55ZVX4ODgUOZ9L1++bHSBgJubm8k4R0dH6cT/mzdv4ujRo9I2X19f6WdTpzkoKRoO7t69Ozw9PRVju3XrBuDOEGtFS09Px759+wAATzzxhGJsy5YtpVMy7u7b8OHDoVbf+eqUG95eu3YtAKBLly7SKSNFqurxKeLg4ID+/fsjIiICqampWLlyJbp37w6VSoW0tDR88cUX6NKlC5o1a4YPPvgAycnJJtt5+eWXpYm2LV1++eWXCnmN//vf/7B161YAdy64CQ0NNRmXk5Mj/azRaBTb1Gq10s/Z2dkm2ymtjeLt3N0GUVXFO9tUM5mZmfj000+xbt06nDx5UkqsTLl27VqJdUFBQWjcuDHOnTuHNWvWYMKECUbbt2zZIp1vd/fV3Tk5OTh79iyAO+f7KXnggQfK9HrMER8fL/1cluc3lUhXlmPHjkk/P/TQQ2btW/x1BgUFKcYW3x4fH4/g4GAAQNeuXdGoUSOcP38eU6ZMwZo1azBkyBB069YNHTt2VPyDGBMTAwDYuXNnma96r4ypTo4dOyZdOTtixAiMGDGiTPvd3Tc/Pz/p3NW1a9di3rx5Rq/z8OHD0hXApmY4qKrHxxQ3Nzc8//zzeP7553Hx4kV88803+Oabb/D333/jzJkzmDVrFvLy8kzOrODl5QUvL6/K73Qp1qxZg7fffhsA0LBhQ0REREj/MLibTqeTfs7NzTV6fLfiV7w7OzuXaCcrK6vUWRKKt3N3G0RVFSuS1ciFCxcQGBiIN998E8ePH1dMIgH5fxEX/XE8ePBgieltiuZK8/LyQp8+fYy23bp1S/q5tEpMadstcfPmTZs+vzmKJ/HFq4NlcePGDenn0v6QFz/xv/h+Tk5O2Lp1q3QBwpEjR/Dmm2+ia9euqFmzplSxMvUeunLliln9BSqn+mJJvwCYnFqp6DOQlJSE/fv3G20r+gw4OTmZnC+wqh6f0tSpUwcNGjRAgwYNbN0Vi/30008YM2YMhBDw8fHBrl27FC9+KV7Nv/uCtLsVv8DG1dXVZDultVG8nbvbIKqqWJGsRp599lkkJCRApVJhzJgxGD58OFq2bCnNX6dSqVBYWCgNowqZOexGjhyJ9957D0IIrF27VpqM98aNG9i5cycA4KmnnoKjI99etmbJPJhFWrVqhRMnTmDr1q3YunUr9u/fj7NnzyI7Oxs7d+7Ezp07sXDhQvz8889GCWtRchkSEoL58+eX+zVYS/Gkd8WKFejcuXOZ9qtVq1aJdUOHDsXLL7+MnJwcREREoHv37tJzFJ3y0b9/f9SuXVu2H1Xt+JhSWFiIPXv24JtvvsGPP/5olAjVrl0bw4cPx9NPP21y3ytXrlicvBfRaDRo1qxZudoosm/fPjzxxBPIy8tDrVq1sHPnTjRu3Fhxn7p160o/X7p0qcQMFMUlJSUBuPOZK75fUTupqalluvVhUTv+/v6lxhJVBfxLX02cOnUKBw4cAAC8+eabmDt3rsm44lUpOc2aNcMDDzyAmJgYRERESInkhg0bpKEbU0N6NWvWlH6+evWq4nOUtt0SxROCq1evyk5dU97nLz5MVjSUasrdU4QUV/wPVnJyMho2bFjm5/fw8JB+Tk1NVYwtPmRafL8iDg4OGDx4sDRdUHJyMnbs2IGlS5ciNjYWsbGxeOmll4wmYa5duzYuX76M3NxcBAQElLnfFa14Uufi4lKuvrm7u+PRRx/Fhg0bsGHDBixZsgROTk6IjIyUjrncxP1V9fgUd/LkSXz99ddYs2aN0fQ/jo6OCAkJwejRozFw4EDFUxyWLVuGd999t1z9qF+/vuKk/mX1+++/Y+DAgcjJyYGrqyu2b9+ONm3alLpfq1atpJ9PnTqFdu3aycaeOnUKwJ0EsEaNGiXaiY2NRVpaGlJSUmSroMnJydIE/6amIyKqiji0XU2cPHlS+llpjsai87dKU/RHMj4+HsePHwfw35Be48aNTZ6bp9PppApAbGysYvtl7Yc5il/cU5HPX3w4rPhw+t3k7p4CAO3bt5d+vnvotDTFk5PDhw8rxv7+++8m95Pj6+uLMWPGIDo6Wurjtm3bjIZe77//fgB3jmFZzgmrLO3atZMqtEXza5ZH0Wfgxo0b2L59O4D/PgNubm547LHHTO5XVY9PamoqFi9ejPbt2yMgIADz58+Xksi2bdti4cKF+Oeff7BlyxYMHTq0TBeOVAXHjx9H//79kZGRAZ1Oh61bt5Z67nCRrl27Sj8Xn3PybikpKdLn2dRdj8raTvFtZbl7ElFVwESymsjPz5d+VqqEff7552Vqb/jw4dIQ+Jo1a3Dp0iX8+uuvAOQrMQDQu3dvAHcufCie3N7t66+/LlM/zNGjRw+pWvjNN9/Ixv3xxx/lutCmePVQKSEturLXlJ49e0pVjc8++6zU81mL8/Pzk6oZ33//vex5WQUFBdKtGWvVqmWUvJbGyclJGs7Nz883Ov+1KIFKS0sz+4rviuTp6SndezkiIqLcVe9HHnlEqnKvWbMGOTk5UmV2yJAhshdLVKXjk52djXXr1mHAgAGoW7cupk6dKl3o5enpicmTJ+PYsWOIi4vD1KlTzbp4Zs6cORB3ppizeClvNfLvv/9G3759cfPmTTg5OeGHH35Ajx49yrx/s2bNjD5LcrciLX6L0yFDhpTY/thjj0nfPUq/86J21Gq17D9EiKqcyp1tiGwlNjZWmuPspZdeMhmzbNkyozncSpu/sWjycn9/f/Hhhx9K+50+fVp2n5iYmFInJN+wYYNZ/TBH8bnjTE1InpWVVe4JyfPy8oSHh4cAIAICAozmZyzy3XffGT2HqQnJp02bJm2fOHGi7ITkubm5IjU11Whd8QnJx4wZY3K/t99+W4q5e0Ly/fv3izNnzpjcT4g7k6AXTczt6upqNGl3Tk6O8Pf3l7ZFRUXJtiOEEL/++qvYt2+fYow5lN43P/30k7S9W7duihP05+TkiCVLlijOHzhu3DgBQDg7OxvdTm/nzp2K7Vrj+FhjHsmieUSLFicnJzF48GCxadMmkZuba3G7VcHFixel4+zg4CDWr19vUTvFf6+hoaEltp89e1a6lWiTJk1KTGBfpPhtEk315fvvv5e2W3tuUKKKxESymigsLBQBAQHSF9WwYcPE1q1bRUxMjNi0aZN44oknBACjezOXlsCFh4dLsTVr1hQAxAMPPFBqX1588UVpv9atW4vw8HARExMj9uzZIyZOnCgcHByMkrk5c+ZY6SgIcebMGWlyYEdHRzFp0iSxZ88eERMTI8LDw0WrVq0EANGxY0eLE0khhJg5c6a0f+fOncWmTZvE0aNHxfbt28Xzzz8v1Gq16Ny5s2IimZmZKQIDA6WYDh06iC+++EJER0eL2NhYsXnzZvHaa6+J++67r8T++fn5Ijg4WNq3V69eYsOGDSI2NlZs27ZNPP7449K2xo0bl7if8+zZs4VarRbdu3cX8+fPFzt27BCxsbHiwIED4quvvjL6/UyePLlE36Ojo4VWq5X+iI8cOVKsX79exMTEiN9//11s3rxZvPPOO9Lr++yzz8ry6yuT0t6/kydPlmJ8fHzEnDlzxO7du8WxY8fEgQMHRHh4uBg7dqyoVauWAKB4L/B9+/aV+Ax4e3uXOoG8NY6PNRLJojbat28vPvnkE9mbDNxrrl27Jpo2bWr0D6UTJ04oLpcuXTLZVn5+vtH34tChQ8WOHTvE4cOHxWeffSbd7UutVouff/5Ztk+JiYnC09NT+u6ZMWOG+PXXX8Wvv/4qZsyYIRwdHQVw5yYCSUlJFXVoiKyOiWQ1cuzYMemPo6klMDBQXL58ucyJZHp6eok7XyxatKjUfhgMBvHoo4/K9qNhw4bi7Nmz0uN58+ZZ5wD865dffhE1atSQff7Zs2dL1TqdTmeyjdL+iGdmZopOnTrJPkePHj1EfHy8YiIpxJ3bWnbr1k22HaX9r1+/bvQH0NTSsmXLEndeEaLsdyUZNGiQyaqyEHeSpaKKUGnL6tWrTbZhidLev4WFheLdd9+V/nArLTVq1JB9fUVt3f0aTSXWppT3+FgjkZw/f744ceKExftXVXv37i3TcS2+KB3Hq1evGv3j8u5Fq9WKL7/8stR+HTp0SPj4+Mi24+PjIw4dOmTFI0FU8ZhIVjMXL14U48ePF/Xr1xdOTk7Cw8NDPPjgg2LBggXSEF5ZE0khhBg2bJgU7+DgIJKTk8vUj8LCQrFq1SrRtWtXodfrhYuLi2jZsqV48803xY0bN8TNmzeldpcvX16el2xSQkKCeOmll0T9+vWFRqMR3t7eYsCAAWLHjh1CiP+qVt7e3ib3L8sf8aysLPHBBx+IwMBA4ezsLNzd3UXHjh3FkiVLRH5+fqn32i7uxx9/FE888YSoW7eu0Gq1QqfTiUaNGoknn3xSrFmzxuTwuRBCFBQUiK+//lr0799feHt7CycnJ1G7dm3Ro0cPsWTJEmEwGEzud/v2bfHDDz+ICRMmiE6dOol69eoJnU4ndDqdaNCggRg2bJjYtm2bYp+FuDOM+/nnn4sBAwYIPz8/odFohE6nE/7+/qJv377igw8+KHFf4vIq6/v3/PnzYvr06eKBBx4QHh4ewsHBQbi5uYlWrVqJkSNHitWrV8veXrK44rfGAyB+//33Mve1PMenom6RaA+snUgKceeUlWXLlomuXbuK2rVrS5/BcePGKd7u9W5Xr14Vs2bNEgEBAcLV1VW4urqKwMBAMWvWLLupCFP1ohJCZrJAIhs6cOCAdEeX3bt3SxfpVJY+ffogMjISXbt2lS4iIiIiImO8apuqpKIrmp2cnEq9naG1Xb58WZpyp+gqXyIiIiqJiSRVumvXrhlNF3O3nTt3YsWKFQDuTJtRfCJzayi637cp2dnZeO6555CXlwcAGDVqlFWfm4iIyJ7wzjZU6eLj4zFo0CA8+eST6NOnDxo3bgy1Wo2LFy9iy5Yt+Pbbb1FQUABnZ2f873//s/rzv/DCC8jMzMSwYcPQoUMHeHh44Pbt24iJicGyZcukRHPs2LEIDAy0+vMTERHZC54jSZVu37596Nmzp2KMu7s71q9fj759+0rrMjMzkZCQYNFzNm/eHE5OTgDuTEyudHcJ4M6kwmvWrJGdVJoqRkJCguKE+XJq1aqleMtLIqJ7WVhYGH788UecOnUKzs7O6Ny5Mz788EM0b95cisnJycGrr76KdevWwWAwoF+/fli2bBm8vb1l2xVCYPbs2fjyyy9x69YtdOnSBcuXL0fTpk3L3DcmklTpMjIy8MMPP2DHjh34448/cPXqVdy6dQvu7u5o0qQJ+vfvj4kTJ8LT09Nov7IkoHISEhLQoEEDAMDRo0exceNG7NmzB5cuXcLVq1chhICXlxc6deqE0aNH45FHHinvyyQLlCXJN2X06NFGdxchIrIn/fv3x/Dhw9GxY0fk5+fjzTffRHx8PP7880/pLmgTJkzATz/9hPDwcOj1ekycOBFqtVrxlrAffvghwsLCsHr1ajRs2BBvv/02Tpw4gT///BM6na5MfWMiSfcMayWSVHUxkSQiKt3Vq1fh5eWFqKgodOvWDWlpafD09ERERASeeOIJAMCpU6fQsmVLREdHm7xwVAgBPz8/vPrqq3jttdcA3Ll1q7e3N8LDwzF8+PAy9aVanCNZWFiIy5cvw83NDSqVytbdIQu1b98eaWlpFu+fnp5uxd5QRdiyZYvF+/L3S2R/hBC4ffs2/Pz8pPuVV6acnBzk5uZWSNtCiBI5iVarhVarLXXfor+FHh4eAIDY2Fjk5eWhT58+UkyLFi1Qr1492UQyISEBKSkpRvvo9XoEBQUhOjqaiWRxly9fhr+/v627QURERBZISkpC3bp1K/U5c3Jy4OxWG8jPqpD2XV1dkZGRYbRu9uzZmDNnjuJ+hYWFmDJlCrp06YKAgAAAQEpKCjQaTYlZTry9vZGSkmKynaL1d59DqbSPKdUikXRzcwMARB39G67//nyvqu1a+r9UqrrrGQZbd8EqnJ2qxcfnnuCidbB1F6zCWXPvv47s3AJbd8Eq7OF3YQ9up6ejSUN/6e94ZcrNzQXys6BtPQZw0Fi38YJcZJxchaSkJLi7u0ury1KNDA0NRXx8PA4cOGDdPlmoWvwlLCodu7q5wdXNvZToqs3d7d5PJA0q+0gkXTTV4uNzT6jBRLLKcGIiSRXApqelOWigsnIiWXRxiru7u1EiWZqJEydi27Zt2L9/v1GF1sfHB7m5ubh165ZRVTI1NRU+Pj4m2ypan5qaCl9fX6N92rVrV+Y+cUJyIiIiIjkqACqVlRfzuiCEwMSJE6UZRxo2bGi0vUOHDnByckJkZKS07vTp00hMTERwcLDJNhs2bAgfHx+jfdLT03H48GHZfUxhIklERERUhYWGhuLbb79FREQE3NzckJKSgpSUFGRnZwO4c5HM2LFjMW3aNOzduxexsbEYM2YMgoODjS60adGiBTZu3AjgTpV3ypQpmDt3LrZs2YITJ05g1KhR8PPzw+DBg8vcN47NEREREclRqe8s1m7TDMuXLwdwZ4q04latWoXnnnsOALBo0SKo1WoMHTrUaELy4k6fPm00+8n06dORmZmJF198Ebdu3ULXrl2xY8eOMs8hCVSTeSTT09Oh1+sReyb5nj9H0tMOzpG8epvnSJJ18RzJqoMX25A1paenw7u2HmlpaWadS2it59br9dC2mwCVg3X/9ooCAwxxy23yuqyNfwmJiIiI5BSd12jtNu0Ez5EkIiIiIouwIklEREQkpwqcI1mVMZEkIiIiksOhbUX2kxITERERUaViRZKIiIhIVgUMbdtRHc9+XgkRERERVSpWJImIiIjk8BxJRaxIEhEREZFFWJEkIiIiksPpfxTZzyshIiIiokrFiiQRERGRHJ4jqYiJJBEREZEcDm0rsp9XQkRERESVihVJIiIiIjkc2lbEiiQRERERWYQVSSIiIiI5PEdSkf28EiIiIiKqVKxIEhEREclRqSqgIslzJImIiIiommNFkoiIiEiOWnVnsXabdoKJJBEREZEcXmyjyH5eCRERERFVKlYkiYiIiORwQnJFrEgSERERkUVYkSQiIiKSw3MkFdnPKyEiIiKiSsWKJBEREZEcniOpiBVJIiIiIrIIK5JEREREcniOpCImkkRERERyOLStyH5SYiIiIiKqVKxIEhEREcnh0LYi+3klRERERFSpWJEkIiIiksNzJBWxIklEREREFmFFkoiIiEhWBZwjaUd1PPt5JURERERUqViRJCIiIpLDcyQVVatE8sbtXBiQa+tuVHvZhgJbd8Eqrt++999LaYY8W3fBKgL89LbuAv3LWeNg6y5YRXbuvf89ZS+/C5tTqSpg+h/7SSQ5tE1EREREFqlSieS8efOgUqkwZcoUaV2PHj2gUqmMlvHjx9uuk0RERFR9FE1Ibu3FTlSZoe0jR45gxYoVaNOmTYlt48aNw3vvvSc9dnFxqcyuEREREZEJVSKRzMjIwMiRI/Hll19i7ty5Jba7uLjAx8enzO0ZDAYYDAbpcXp6ulX6SURERNUML7ZRVCVqq6GhoRgwYAD69OljcvuaNWtQp04dBAQEYObMmcjKylJsLywsDHq9Xlr8/f0rottERERE1ZrNK5Lr1q3D0aNHceTIEZPbn376adSvXx9+fn44fvw4ZsyYgdOnT+PHH3+UbXPmzJmYNm2a9Dg9PZ3JJBEREZmvIs5p5DmS1pGUlITJkydj165d0Ol0JmNefPFF6efAwED4+vqid+/eOHfuHBo3bmxyH61WC61WWyF9JiIiIqI7bJoSx8bG4sqVK2jfvj0cHR3h6OiIqKgofPrpp3B0dERBQcl5vIKCggAAZ8+erezuEhERUXVTdI6ktRcz7N+/HwMHDoSfnx9UKhU2bdp0VxdVJpePPvpIts05c+aUiG/RooXZh8emFcnevXvjxIkTRuvGjBmDFi1aYMaMGXBwKDmZalxcHADA19e3MrpIRERE1VkVGNrOzMxE27Zt8fzzz+Pxxx8vsT05Odno8fbt2zF27FgMHTpUsd3WrVtj9+7d0mNHR/PTQpsmkm5ubggICDBaV6NGDdSuXRsBAQE4d+4cIiIi8Mgjj6B27do4fvw4pk6dim7dupmcJoiIiIjoXnH3rDJyp+aFhIQgJCREtp27Z7bZvHkzevbsiUaNGik+v6Ojo1mz4phSpc/21Gg02L17N/r27YsWLVrg1VdfxdChQ7F161Zbd42IiIiqgwoc2vb39zeaZSYsLKzc3U1NTcVPP/2EsWPHlhp75swZ+Pn5oVGjRhg5ciQSExPNfj6bX7V9t3379kk/+/v7IyoqynadISIiIqogSUlJcHd3lx5b40Lh1atXw83NzeQQeHFBQUEIDw9H8+bNkZycjHfffRcPPfQQ4uPj4ebmVubnq3KJJBEREVFVUXQhipUbBQC4u7sbJZLW8NVXX2HkyJGys+EUKT5U3qZNGwQFBaF+/fr4/vvvy1TNLMJEkoiIiMgO/Prrrzh9+jS+++47s/etWbMmmjVrZvasOFX6HEkiIiIiW5KbWqe8S0VYuXIlOnTogLZt25q9b0ZGBs6dO2f2rDhMJImIiIiqsIyMDMTFxUlTICYkJCAuLs7o4pj09HSsX78eL7zwgsk2evfujSVLlkiPX3vtNURFReHChQs4ePAghgwZAgcHB4wYMcKsvnFom4iIiEiO6t/F2m2aISYmBj179pQeF90GevTo0QgPDwdw55bTQgjZRPDcuXO4du2a9PjSpUsYMWIErl+/Dk9PT3Tt2hWHDh2Cp6enWX1jIklEREQkoyIvtimrHj16QAihGPPiiy8a3Vb6bhcuXDB6vG7dOrP6IIdD20RERERkEVYkiYiIiGRUhYpkVcaKJBERERFZhBVJIiIiIhmsSCpjRZKIiIiILMKKJBEREZEMViSVsSJJRERERBZhRZKIiIhIThWYkLwqY0WSiIiIiCzCiiQRERGRDJ4jqYyJJBEREZEMlQoVkEhatzlb4tA2EREREVmEFUkiIiIiGSpUwNC2HZUkWZEkIiIiIouwIklEREQkgxfbKGNFkoiIiIgswookERERkRxOSK6IFUkiIiIisggrkkRERERyKuAcSWFH50gykSQiIiKSUREX21h/OiHb4dA2EREREVmEFUkiIiIiGaxIKmNFkoiIiIgswookERERkRxO/6OoWiWS2dlZUDs4lFivdnCAVqv7Ly4rU7YNtVoNrc7Zotic7CwIIUzGqlQq6JxdSo3NUudBpVLB2aV4bDYKCwtl++FSo4ZFsYacHBQUFFgl1tnFRSrl5xoMKCjIl43VOZc9Vqtzhlp9p7Cel5uL/Pw8q8RqtDo4/PtekYvNzi0oEZufl4e8vFzZdp00Wjg6Opofm5+PvFyDfKyTBo5OTmbHFhQUIM+QIxvr4OQEJyeN2bGFhYXIzcm2Sqza0REajRYAIISAITurRExW5p3j5ODoCK32v9jsrJKxUrsODtDp/vvcZ2UqfJbNiFWp1XB2drYsNkv5O8Kl2OfenNjsUj73NYp9ls2JzTHxuS/McyhzbHEuxb4jDAYD8vPlP/fmxDo7//e5z83NRV6e/OfenFid7r/PvTmxeXl5yM2V/9xrtf997s2Jzc/Ph8Fg/Lkv/rvQaDRwKvYdcXdsccVjCwoKkJMj/7l3cnKCRqMxO7awsBDZ2fKf++KxVMWJaiAtLU0AkF2Cuz8sDp65KS06ZxfZ2Psf7GIUW7NWbdnYFoH3G8X63OcvG9uwSQuj2IZNWsjG3le3njidkiktAW3by8bW8qhjFPtg8EOysc7OLkax3Xv3UzxuxWP7PTpEMfbYuStS7MAnnlaM3XP0vIi7mC7iLqaLYc++oBj704ETUuyoF19RjN2w67AU+9KUNxRjv92yV4qdMvN9xdgl326Vfm+vzp6vGPvRF+uk2LfmLVWMnfvpKil27qerFGPfmrdUiv3oi3WKsa/Oni/FfvjVRsXYsdPeEdvjr4jt8VfE4rU7FWNHTnhNiv18037F2KHPvSzFhu+MUYx9dPgYKXbt/j8VY58Y8axIumEQSTcM4nTSDcXYAY89LsUm3TAoxvZ6uL9RrLOL/HdEpy7djGI9ateRjW1zfwejWP969WVjm7dsJW5k5ktL85atZGP969U3ir2//QOysbXr1DGK7fJQN9lYFxcXo9iH+4UoHrfsPCEtQ4Y+oRh77VaGFPvMs6MVYxMvX5FiXxr/smLsqTMJUuyUaa8pxsbGxUux0998WzF29/5o6TjMmTtPMXbL9t1S7PyFnyrGrvthsxS75POVirFffbNOiv3qG+XP/Rf/t0p6bT9u3qYYu+iTJVLszt17FWM/mDdfiv314O+KsW+9PVuKjY2LV4ydMu01kZ0nROr1O3+/09LSbJY71Hk2XHiN/d6qS51nw232uqyN50gSERERkUVUQsiMjdiR9PR06PV6jP6/fdC4uJbYrlI7wPHfoTMAyMuRHw5TqdRwLDYMblasIRuQO9wqFZy0zqXGBtd3hwoqaIsNh+XmZKNQ4ddYfMjcrFhDjuIQlzmxWp2zNBR18p9bKCyUH4py0v4Xm5+bqxyr0UH171BUQV6u4jC4ObGOTlrpNAi52Ad99f/213hoO7+U4WqHYkPbZY0tKGW42rH4cLUZsa6OauQqDFc7OjrBqdiwVVljCwsLYVAYrjYn1sHBEZpiw9U5Joa2m/m6/duu8dB2lsLQtsNdw9WZCkPQ5sSq7xquNifWHoa2nTX2MbSdlpF9zw9tF/9d3KtD2+np6fCurUdaWhrc3d1l4ytCUe7gOWo11BqX0ncwQ2FuFq5+Pdomr8vaqtU5kk46FzjpSn8zlCXGothiiaKlscWTtyIaXdnbNSu2WBJszVhHjQZA2c59MSfWwUkDB6fKi9W51CixztHJSUrSSmNOrIOjo5RUWjXWwQHOJl5HeWPVanWFxN45P7hkbPGEpXisqfVyqkJs8eTPmrHFk1VrxhZPrqX9NSXPQ5eLlaPVaqV/EFgzVqPRlPm8u4qKdXJykpI0a8Y6OjpKSWURud+FqVg5Dg4OZX4PmxOrVqvN+mzYEqf/UcahbSIiIiKySLWqSBIRERGZgxVJZaxIEhEREZFFWJEkIiIiksMJyRWxIklEREREFmFFkoiIiEgGz5FUxookEREREVmEFUkiIiIiGaxIKmMiSURERCSDiaQyDm0TERERkUVYkSQiIiKSw+l/FLEiSUREREQWYUWSiIiISAbPkVTGiiQRERERWYQVSSIiIiIZrEgqY0WSiIiIiCzCiiQRERGRDBUqoCJpR5dtsyJJREREJKNoaNvaizn279+PgQMHws/PDyqVCps2bTLa/txzz5Vov3///qW2u3TpUjRo0AA6nQ5BQUH4/fffzeoXwESSiIiIqErLzMxE27ZtsXTpUtmY/v37Izk5WVrWrl2r2OZ3332HadOmYfbs2Th69Cjatm2Lfv364cqVK2b1jUPbRERERHKqwITkISEhCAkJUYzRarXw8fEpc5sLFy7EuHHjMGbMGADA559/jp9++glfffUV3njjjTK3U6UqkvPmzYNKpcKUKVOkdTk5OQgNDUXt2rXh6uqKoUOHIjU11XadJCIiIrKC9PR0o8VgMFjc1r59++Dl5YXmzZtjwoQJuH79umxsbm4uYmNj0adPH2mdWq1Gnz59EB0dbdbzVplE8siRI1ixYgXatGljtH7q1KnYunUr1q9fj6ioKFy+fBmPP/64jXpJRERE1UlFniPp7+8PvV4vLWFhYRb1sX///vj6668RGRmJDz/8EFFRUQgJCUFBQYHJ+GvXrqGgoADe3t5G6729vZGSkmLWc1eJoe2MjAyMHDkSX375JebOnSutT0tLw8qVKxEREYFevXoBAFatWoWWLVvi0KFD6NSpk626TERERFQuSUlJcHd3lx5rtVqL2hk+fLj0c2BgINq0aYPGjRtj37596N27d7n7qaRKVCRDQ0MxYMAAoxIrAMTGxiIvL89ofYsWLVCvXj3F0qvBYChRLiYiIiIyV0VWJN3d3Y0WSxPJuzVq1Ah16tTB2bNnTW6vU6cOHBwcSpwqmJqaatZ5lkAVSCTXrVuHo0ePmiznpqSkQKPRoGbNmkbrSyu9hoWFGZWK/f39rd1tIiIioirp0qVLuH79Onx9fU1u12g06NChAyIjI6V1hYWFiIyMRHBwsFnPZdNEMikpCZMnT8aaNWug0+ms1u7MmTORlpYmLUlJSVZrm4iIiKoPlapiFnNkZGQgLi4OcXFxAICEhATExcUhMTERGRkZeP3113Ho0CFcuHABkZGRGDRoEJo0aYJ+/fpJbfTu3RtLliyRHk+bNg1ffvklVq9ejb/++gsTJkxAZmamdBV3Wdn0HMnY2FhcuXIF7du3l9YVFBRg//79WLJkCXbu3Inc3FzcunXLqCpZWulVq9VarTxMRERE1dedxM/a99o2Lz4mJgY9e/aUHk+bNg0AMHr0aCxfvhzHjx/H6tWrcevWLfj5+aFv3754//33jXKhc+fO4dq1a9Ljp556ClevXsU777yDlJQUtGvXDjt27ChxAU5pbJpI9u7dGydOnDBaN2bMGLRo0QIzZsyAv78/nJycEBkZiaFDhwIATp8+jcTERLNLr0RERET3oh49ekAIIbt9586dpbZx4cKFEusmTpyIiRMnlqdrtk0k3dzcEBAQYLSuRo0aqF27trR+7NixmDZtGjw8PODu7o5JkyYhODiYV2wTERFRxbNgKLosbdqLKjH9j5JFixZBrVZj6NChMBgM6NevH5YtW2brbhERERFVe1Uukdy3b5/RY51Oh6VLlyreX5KIiIioIhSfrseabdoLm0//Q0RERET3pipXkSQiIiKqKiyZrqcsbdoLViSJiIiIyCKsSBIRERHJUKtVUKutW0IUVm7PlphIEhEREcng0LYyDm0TERERkUVYkSQiIiKSwel/lLEiSUREREQWYUWSiIiISAbPkVTGiiQRERERWYQVSSIiIiIZPEdSGSuSRERERGQRViSJiIiIZLAiqaxaJZKd6rnBxdXN1t0ol9NXs2zdhXLrdF9NW3fBKj47kGDrLpTbMw/eZ+suWIXLNQdbd8EqsnILbN2FcqvtprF1F6yiXm0XW3eBqghebKOMQ9tEREREZJFqVZEkIiIiMocKFTC0DfspSbIiSUREREQWYUWSiIiISAbPkVTGiiQRERERWYQVSSIiIiIZnP5HGSuSRERERGQRViSJiIiIZPAcSWWsSBIRERGRRViRJCIiIpLBcySVMZEkIiIiksGhbWUc2iYiIiIii7AiSURERCSDQ9vKWJEkIiIiIouwIklEREQkpwLOkYT9FCRZkSQiIiIiy7AiSURERCSD50gqY0WSiIiIiCzCiiQRERGRDM4jqYyJJBEREZEMDm0r49A2EREREVmEFUkiIiIiGRzaVsaKJBERERFZhBVJIiIiIhk8R1IZK5JEREREZBFWJImIiIhksCKpjBVJIiIiIrIIK5JEREREMnjVtjImkkREREQyOLStjEPbRERERGQRJpJEREREMoqGtq29mGP//v0YOHAg/Pz8oFKpsGnTJmlbXl4eZsyYgcDAQNSoUQN+fn4YNWoULl++rNjmnDlzpGpr0dKiRQuzjw8TSSIiIqIqLDMzE23btsXSpUtLbMvKysLRo0fx9ttv4+jRo/jxxx9x+vRpPPbYY6W227p1ayQnJ0vLgQMHzO4bz5EkIiIiklEVzpEMCQlBSEiIyW16vR67du0yWrdkyRI8+OCDSExMRL169WTbdXR0hI+Pj1l9uRsrkkREREQ2kJ6ebrQYDAartJuWlgaVSoWaNWsqxp05cwZ+fn5o1KgRRo4cicTERLOfi4kkERERkQwVKuAcyX/b9vf3h16vl5awsLBy9zcnJwczZszAiBEj4O7uLhsXFBSE8PBw7NixA8uXL0dCQgIeeugh3L5926zn49A2ERERkQ0kJSUZJXtarbZc7eXl5WHYsGEQQmD58uWKscWHytu0aYOgoCDUr18f33//PcaOHVvm52QiSURERCRDrVJBbeVzJIvac3d3V6wamqMoibx48SL27Nljdrs1a9ZEs2bNcPbsWbP249A2ERERkYyqMP1PaYqSyDNnzmD37t2oXbu22W1kZGTg3Llz8PX1NWs/JpJEREREVVhGRgbi4uIQFxcHAEhISEBcXBwSExORl5eHJ554AjExMVizZg0KCgqQkpKClJQU5ObmSm307t0bS5YskR6/9tpriIqKwoULF3Dw4EEMGTIEDg4OGDFihFl949A2ERERkYyqMP1PTEwMevbsKT2eNm0aAGD06NGYM2cOtmzZAgBo166d0X579+5Fjx49AADnzp3DtWvXpG2XLl3CiBEjcP36dXh6eqJr1644dOgQPD09zeobE0kiIiKiKqxHjx4QQshuV9pW5MKFC0aP161bV95uAWAiSURERCRLrbqzWLtNe2HzcySXL1+ONm3aSFcuBQcHY/v27dL2Hj16lLgX5Pjx423YYyIiIiICqkBFsm7dupg3bx6aNm0KIQRWr16NQYMG4dixY2jdujUAYNy4cXjvvfekfVxcXGzVXSIiIqpOVOaf01iWNu2FzRPJgQMHGj3+4IMPsHz5chw6dEhKJF1cXMp9L0giIiIisi6bJ5LFFRQUYP369cjMzERwcLC0fs2aNfj222/h4+ODgQMH4u2331asShoMBqP7VaanpwMAZv7f71Br7u1qZlrMPlt3gf7l1PxBW3eB/vWMnfwqOvjVsnUXys1FU6X+rFgsO7fA1l0oN2eNg627YBcqYt5Ha7dnS1XiE3/ixAkEBwcjJycHrq6u2LhxI1q1agUAePrpp1G/fn34+fnh+PHjmDFjBk6fPo0ff/xRtr2wsDC8++67ldV9IiIislOqf/+zdpv2okokks2bN0dcXBzS0tKwYcMGjB49GlFRUWjVqhVefPFFKS4wMBC+vr7o3bs3zp07h8aNG5tsb+bMmdIcS8CdiqS/v3+Fvw4iIiKi6qRKJJIajQZNmjQBAHTo0AFHjhzBJ598ghUrVpSIDQoKAgCcPXtWNpHUarXlvvE5EREREaf/UWbz6X9MKSwsNDrHsbii2wOZey9IIiIiIrIum1ckZ86ciZCQENSrVw+3b99GREQE9u3bh507d+LcuXOIiIjAI488gtq1a+P48eOYOnUqunXrhjZt2ti660RERGTnqsItEqsymyeSV65cwahRo5CcnAy9Xo82bdpg586dePjhh5GUlITdu3dj8eLFyMzMhL+/P4YOHYpZs2bZuttERERE1Z7NE8mVK1fKbvP390dUVFQl9oaIiIjoP5z+R1mVPEeSiIiIiKo+m1ckiYiIiKoqtUoFtZVLiNZuz5aYSBIRERHJ4NC2Mg5tExEREZFFWJEkIiIiksHpf5SxIklEREREFmFFkoiIiEgGz5FUxookEREREVmEFUkiIiIiGZz+RxkrkkRERERkEVYkiYiIiGSo/l2s3aa9YCJJREREJIPT/yjj0DYRERERWYQVSSIiIiIZatWdxdpt2gtWJImIiIjIIqxIEhEREcngOZLKWJEkIiIiIouwIklERESkwI4KiFbHiiQRERERWYQVSSIiIiIZPEdSGRNJIiIiIhmc/kcZh7aJiIiIyCKsSBIRERHJ4NC2MlYkiYiIiMgirEgSERERyVD9u1i7TXvBiiQRERERWYQVSSIiIiIZapUKaiuf02jt9myJFUkiIiIisggrkkREREQyVCrr3yLRjgqSZU8kFy5ciJEjR8Lb2xsLFy5UjFWpVJg6dWq5O0dERERkS5z+R1mZE8nXXnsNXbt2hbe3N1577TXFWCaSRERERPavzIlkYWGhyZ+JiIiI7BWHtpXxYhsiIiIiski5LrY5ceIEkpKSkJOTU2Lb448/Xp6miYiIiGyO0/8osyiRjI+Px7Bhw3D69GkIIUpsV6lUKCgoKHfniIiIiKjqsmhoe+zYsXB0dMSWLVtw+vRpJCQkGC3nz5+3dj+JiIiIKl3ROZLWXsyxf/9+DBw4EH5+flCpVNi0aZPRdiEE3nnnHfj6+sLZ2Rl9+vTBmTNnSm136dKlaNCgAXQ6HYKCgvD777+b1zFYmEiePHkS8+fPx4ABA9C0aVPUr1+/xEJERERE5ZeZmYm2bdti6dKlJrfPnz8fn376KT7//HMcPnwYNWrUQL9+/Uyeeljku+++w7Rp0zB79mwcPXoUbdu2Rb9+/XDlyhWz+mZRItmuXTuzn4iIiIjoXlM0j6S1F3OEhIRg7ty5GDJkSIltQggsXrwYs2bNwqBBg9CmTRt8/fXXuHz5conKZXELFy7EuHHjMGbMGLRq1Qqff/45XFxc8NVXX5nVN4sSySVLluDjjz/Grl27kJ+fb0kTRERERNVaenq60WIwGMxuIyEhASkpKejTp4+0Tq/XIygoCNHR0Sb3yc3NRWxsrNE+arUaffr0kd1HjkUX27Rq1QqdOnVC//79oVar4ezsbLRdpVIhLS3NkqYrVHpyClROOlt3o3z8mtm6B/SvsEndbN2Fcmtcs4atu0DFuGju/bvWXr9t/h/CqqiG1sXWXSi3xOtZtu5CuWXctv1rUMP6cyUWtefv72+0fvbs2ZgzZ45ZbaWkpAAAvL29jdZ7e3tL2+527do1FBQUmNzn1KlTZj2/Rd9aL730EtauXYvHH38czZo1g0ajsaQZIiIioiqtIm+RmJSUBHd3d2m9Vqu16vNUBosSyR9++AELFy7Eyy+/bO3+EBEREVUL7u7uRomkJXx8fAAAqamp8PX1ldanpqaiXbt2JvepU6cOHBwckJqaarQ+NTVVaq+sLKrW1qxZE40aNbJkVyIiIqJ7hkoFqK28WLPA2bBhQ/j4+CAyMlJal56ejsOHDyM4ONjkPhqNBh06dDDap7CwEJGRkbL7yLEokXz11Vfx2Wef8UIbIiIiogqWkZGBuLg4xMXFAbhzgU1cXBwSExOhUqkwZcoUzJ07F1u2bMGJEycwatQo+Pn5YfDgwVIbvXv3xpIlS6TH06ZNw5dffonVq1fjr7/+woQJE5CZmYkxY8aY1TeLhrbPnj2LEydOoHHjxujevTtq1qxptF2lUuGTTz6xpGkiIiKiKqOoimjtNs0RExODnj17So+nTZsGABg9ejTCw8Mxffp0ZGZm4sUXX8StW7fQtWtX7NixAzrdfxcYnzt3DteuXZMeP/XUU7h69SreeecdpKSkoF27dtixY0eJC3BKoxKm7nFYioYNGyo3qlJVqbvbpKenQ6/XQ/vwh/f+VdtUZSx48zFbd6HceNV21RLgp7d1F8rNXq7arlfn3r9q+6od/C4ybqejQ1NfpKWllftcQnMV5Q4vrz0CrYurVds2ZGVg2YiONnld1mZRRTIhIcHa/SAiIiKqciryqm17YPGkZdeuXcOiRYtw+PBhJCcnw9fXF506dcKUKVNQp04da/aRiIiIiKogiy62OXz4MJo2bYolS5ZAr9eje/fu0Ov1+Oyzz9C4cWMcPnzY2v0kIiIiqnTWvmK7Is65tCWLKpKhoaFo3bo1fv75Z6Ox/bS0NISEhGDixIk4cuSI1TpJREREZAsqK0/XU9SmvbCoInny5Em88cYbJU4Q1ev1eOONNxAfH2+VzhERERFR1WVRRbJJkya4deuWyW1paWmcrJyIiIjsglqlgtrKJURrt2dLFlUkP/roI8yePRtRUVFG6/ft24c5c+ZgwYIFVukcEREREVVdZa5IBgYGGl2unpaWhl69ekGv18PT0xNXr15FWloaatWqhRkzZiAkJKRCOkxERERUWdSwsOpWSpv2osyJZIcOHYwSyQ4dOlRIh4iIiIjo3lDmRDI8PLxCOrB8+XIsX74cFy5cAAC0bt0a77zzjlTRzMnJwauvvop169bBYDCgX79+WLZsmdm38CEiIiIyF6/aVmbz6mrdunUxb948xMbGIiYmBr169cKgQYNw8uRJAMDUqVOxdetWrF+/HlFRUbh8+TIef/xxG/eaiIiIiCy+s421DBw40OjxBx98gOXLl+PQoUOoW7cuVq5ciYiICPTq1QsAsGrVKrRs2RKHDh1Cp06dbNFlIiIiqibUqICrtmE/JUmbVySLKygowLp165CZmYng4GDExsYiLy8Pffr0kWJatGiBevXqITo6WrYdg8GA9PR0o4WIiIjIXEVD29Ze7EWVSCRPnDgBV1dXaLVajB8/Hhs3bkSrVq2QkpICjUaDmjVrGsV7e3sjJSVFtr2wsDDo9Xpp8ff3r+BXQERERFT9VIlEsnnz5oiLi8Phw4cxYcIEjB49Gn/++afF7c2cORNpaWnSkpSUZMXeEhERUXXBe20rs/k5kgCg0WjQpEkTAHemFTpy5Ag++eQTPPXUU8jNzcWtW7eMqpKpqanw8fGRbU+r1UKr1VZ0t4mIiIiqtSpRkbxbYWEhDAYDOnToACcnJ0RGRkrbTp8+jcTERAQHB9uwh0RERFQdqFT/3SbRWos9nSNp84rkzJkzERISgnr16uH27duIiIjAvn37sHPnTuj1eowdOxbTpk2Dh4cH3N3dMWnSJAQHB/OKbSIiIiIbs3kieeXKFYwaNQrJycnQ6/Vo06YNdu7ciYcffhgAsGjRIqjVagwdOtRoQnIiIiKiisYJyZXZPJFcuXKl4nadToelS5di6dKlldQjIiIiIioLmyeSRERERFVVRVxlzau2iYiIiKoB1b//WbtNe1Elr9omIiIioqqPFUkiIiIiGRzaVsaKJBERERFZhBVJIiIiIhmsSCpjRZKIiIiILMKKJBEREZEMlUoFlZVnELd2e7bEiiQRERERWYQVSSIiIiIZPEdSGRNJIiIiIhm817YyDm0TERERkUVYkSQiIiKSoVapoLZyCdHa7dkSK5JEREREZBFWJImIiIhk8GIbZaxIEhEREZFFWJEkIiIiklMBV22DFUkiIiIiqu5YkSQiIiKSoYYKaiuXEK3dni1Vq0SySfsWcNDWsHU3yuXDYW1s3YVym7v9lK27YBV/Xsm2dRfKrb13TVt3wSqOpt6ydRfoXwF+elt3gf7lorn3/8QXONn+NXBCcmUc2iYiIiIii9g+1SciIiKqojj9jzJWJImIiIjIIqxIEhEREcngLRKVsSJJRERERBZhRZKIiIhIBq/aVsaKJBERERFZhIkkERERkQw1VNJ5klZbzJyQvEGDBlCpVCWW0NBQk/Hh4eElYnU6nTUORwkc2iYiIiKSURWGto8cOYKCggLpcXx8PB5++GE8+eSTsvu4u7vj9OnTxZ6zYsbTmUgSERER2UB6errRY61WC61WWyLO09PT6PG8efPQuHFjdO/eXbZtlUoFHx8f63RUAYe2iYiIiGSoK2gBAH9/f+j1emkJCwsrtT+5ubn49ttv8fzzzytWGTMyMlC/fn34+/tj0KBBOHnypPkvvgxYkSQiIiKygaSkJLi7u0uPTVUj77Zp0ybcunULzz33nGxM8+bN8dVXX6FNmzZIS0vDggUL0LlzZ5w8eRJ169a1RtclTCSJiIiIZBRdrGLtNoE75zEWTyTLYuXKlQgJCYGfn59sTHBwMIKDg6XHnTt3RsuWLbFixQq8//77lnVaBhNJIiIionvAxYsXsXv3bvz4449m7efk5IT7778fZ8+etXqfeI4kERERkQxVBS2WWLVqFby8vDBgwACz9isoKMCJEyfg6+tr4TPLYyJJREREVMUVFhZi1apVGD16NBwdjQeUR40ahZkzZ0qP33vvPfzyyy84f/48jh49imeeeQYXL17ECy+8YPV+cWibiIiISEbRJOLWbtNcu3fvRmJiIp5//vkS2xITE6FW/1cbvHnzJsaNG4eUlBTUqlULHTp0wMGDB9GqVaty9dsUJpJERERECqrCrbH79u0LIYTJbfv27TN6vGjRIixatKgSesWhbSIiIiKyECuSRERERDKqwi0SqzJWJImIiIjIIqxIEhEREcmoyAnJ7QErkkRERERkEVYkiYiIiGSoYf2qmz1V8ezptRARERFRJWJFkoiIiEgGz5FUxookEREREVmEFUkiIiIiGSpY/8429lOPZCJJREREJItD28o4tE1EREREFmFFkoiIiEgGp/9RZk+vhYiIiIgqESuSRERERDJ4jqQyViSJiIiIyCKsSBIRERHJ4PQ/yliRJCIiIiKL2DyRDAsLQ8eOHeHm5gYvLy8MHjwYp0+fNorp0aOHdI5C0TJ+/Hgb9ZiIiIiqC5WqYhZ7YfNEMioqCqGhoTh06BB27dqFvLw89O3bF5mZmUZx48aNQ3JysrTMnz/fRj0mIiKi6kINVYUs9sLm50ju2LHD6HF4eDi8vLwQGxuLbt26SetdXFzg4+NTrucqzM2BSmUid1Y7QO2oKRaXLd+ISg21k9ay2LwcQAiZWBXUTrpSY3OyMgGVCjpnF2mdIScborBQths6lxoWxeYaclBYUGCVWK2zi3SVWmF+LkShfKzaSVf2WEctVGr1v7F5EIX5VorVQKV2UIzNy8kCADg4aaF2uBNbkJ+Hwvw82XYdnDRQOziaHVtYkI+CvFyF/jrBwdHJ7NiCggLkGnJkYx0dneCk0ZgdW1hYCEOO/GfDnFgHB0dotHc+R0II5GRnlYgx/LtO7eAAJ81/sbkK7arVDnDS/vf5NJho15JYlVoNjVZnUWxOdpbid0Txz705sZX5HZGV+d+fFZca/8Xm5Ch/Rzi7/PcdYTAYUJAv//k0J1bn7Az1v5/73Nxc5OfJf+bujs1TitXp4PDv596c2Ly8POTmyn8+tVotHB0dzY7Nz8+HwWAw2p5l+O94O2k0cHJykmJz74otrnhsQUEBDDkKn3snJ2iKfUeUNbawsBA52QrfEcViqWqzeSJ5t7S0NACAh4eH0fo1a9bg22+/hY+PDwYOHIi3334bLi4uppqAwWAw+kClp6cDAP5a9JTJeLcmD6Lh0/+THp/8+EmIPNMfhhr126Dx6IXS478+fQYFWWkmY539mqHpC8ukx6eXjUVeWqrJWK1nfTSfsFJ6fOb/QmG4erFE3JB5gJefP1b/Eiute330IJw5GWeyXfdatfHdr39Jj98ePwInYg6a7oOzCzYduSA9njvleRz5dbfJWADYHn9F+vmjmaE48MtW2diNvydIf4DObViAK7E7ZGMfnL0FTq41AQAJW5YgJXqTbGyHmd9B5+ELALi440tcjlonG3v/q6vh4tMQAHBpzzdI2hUuG9vmlRVw828JALh8YAMu/rS8RMyhf/8/6L1w3BfwIADgz13r8euXc2XbfeTN5WjwQHcAwJn927BnyVuysX1fW4gmnfsDAM4f3o1fFkyTje018QO06DUEAJB47Df8/L8JsrEPjZuFwJCnAQB/xERj4jMDZWNDp7+LkeNeAQCcPvkHXhjaWzb2+Ukz8MIrbwAALpw7jWce6Swb+/TYiZj4xvsAgNTLlzC0Z1vZ2MdHjsVrcxYAAG7duI4BnZrKxgaFDMWzb92Jzc3JxqsPt5aNvb9HCMbO/e/zqRTbOrgnJnz0lfR45sAHZJPUJu2CMGXJf+/D2U8+hIxbN0zG1mvRBtP/b7P0+KVBD+HK5STTsY2bY8XmX6XHk4f3Q+K50yZjq8p3RNKN/76Hp4wfg5+2/CgbezrphpR4vjEtFBvWfiMbG/f3JdSu4wkAeG/W6/h65QrZ2INxp+FfrwEAYP7cd7BiySLZ2N2/HUPzlq0AAAs/CsP8/70vH7s/Gu07dAQAfL70U8yZ9YZs7Jbtu9G1Ww8AwOqvvsT0aa/Ixq77YTP69h8AAFi/LgITx4+Vjf3qm3UY/PgTAIBtWzbh+WeHy8Z+vORLDHt6FAAgas8veG74ENnY9+cvxnMv3PkO+T36AIY91lc29q05/8P4V14FAJz44xgG9ukiGzt1+ixMe+NtAMCZ06fQp8v9srEvTZyKWe/Nk91emSpiKNqehrarVCJZWFiIKVOmoEuXLggICJDWP/3006hfvz78/Pxw/PhxzJgxA6dPn8aPP5r+UgoLC8O7775bWd0mIiIiqpZUQsiNjVS+CRMmYPv27Thw4ADq1q0rG7dnzx707t0bZ8+eRePGjUtsN1WR9Pf3R8up38FBa6KKeQ8Nbb//eMA9P7T93tbjdjG0HdiwNoB7e2h7RCsvuxjajrtyZ1TgXh/avk+ruueHtlv56qWf7+WhbSdVAYe2Yfuh7dvp6WjVwBNpaWlwd3eXja8I6enp0Ov1+D76LFxc3azadlbGbQwLbmKT12VtVaYiOXHiRGzbtg379+9XTCIBICgoCABkE0mtVgttsS/9ImqNDmqNc6l9KUuMRbHFEkVLY4t/iRfR6sreB3Nii/+Bs2Zs8aTdurFOAJwqLdZJV/IfJQ7FkrTSmBOrdnCUkkprxjo4OMDZxHuqvLFqtbpCYlUqlclYrXPJP+IqlQpaZ9Onv5hSFWJ1FRRbmd8RxZPH4nS6sn9HaLVawMR3eHljNRpNmc+7q6hYJycnKUmzZqyjo6OUVP630nTibjJWhoODg+zvtDyxarW6zLFUtdk8kRRCYNKkSdi4cSP27duHhg0blrpPXFwcAMDX17eCe0dERETVGc+RVGbzRDI0NBQRERHYvHkz3NzckJKSAgDQ6/VwdnbGuXPnEBERgUceeQS1a9fG8ePHMXXqVHTr1g1t2rSxce+JiIiIqi+bJ5LLl9+5GrZHjx5G61etWoXnnnsOGo0Gu3fvxuLFi5GZmQl/f38MHToUs2bNMvu5pg5oZvXzHCqbXlu2YY6q7KtnO9i6C1bh6Va24bSq7HCC6auJ7zVP3+9v6y7QvzIN8udB3kucNQ627kK52cNr0AjbTwGkqoB5H1WcR9J6SrvWx9/fH1FRUZXUGyIiIqL/cGhbmc3vbENERERE9yabVySJiIiIqipWJJWxIklEREREFmFFkoiIiEiG6t//rN2mvWBFkoiIiIgswookERERkQy16s5i7TbtBSuSRERERGQRViSJiIiIZPAcSWVMJImIiIhkcPofZRzaJiIiIiKLsCJJREREJEMF6w9F21FBkhVJIiIiIrIMK5JEREREMjj9jzJWJImIiIjIIqxIEhEREcng9D/KWJEkIiIiIouwIklEREQkg/NIKmNFkoiIiEiGqoIWc8yZMwcqlcpoadGiheI+69evR4sWLaDT6RAYGIiff/7ZzGctGyaSRERERFVc69atkZycLC0HDhyQjT148CBGjBiBsWPH4tixYxg8eDAGDx6M+Ph4q/eLQ9tEREREMtRQQW3lsWi1BRfbODo6wsfHp0yxn3zyCfr374/XX38dAPD+++9j165dWLJkCT7//HOzn1sJK5JERERENpCenm60GAwG2dgzZ87Az88PjRo1wsiRI5GYmCgbGx0djT59+hit69evH6Kjo63W9yJMJImIiIhkVOQ5kv7+/tDr9dISFhZmsg9BQUEIDw/Hjh07sHz5ciQkJOChhx7C7du3TcanpKTA29vbaJ23tzdSUlIsPAryOLRNREREZANJSUlwd3eXHmu1WpNxISEh0s9t2rRBUFAQ6tevj++//x5jx46t8H4qYSJJREREJMeSy6zL0iYAd3d3o0SyrGrWrIlmzZrh7NmzJrf7+PggNTXVaF1qamqZz7E0B4e2iYiIiO4hGRkZOHfuHHx9fU1uDw4ORmRkpNG6Xbt2ITg42Op9YSJJREREJENVQf+Z47XXXkNUVBQuXLiAgwcPYsiQIXBwcMCIESMAAKNGjcLMmTOl+MmTJ2PHjh34+OOPcerUKcyZMwcxMTGYOHGiVY8NwKFtIiIiInkVcGcbc4fKL126hBEjRuD69evw9PRE165dcejQIXh6egIAEhMToVb/Vxvs3LkzIiIiMGvWLLz55pto2rQpNm3ahICAAGu+CgBMJImIiIiqtHXr1ilu37dvX4l1Tz75JJ588skK6tF/mEgSERERyajAa23sAs+RJCIiIiKLsCJJREREJIclSUWsSBIRERGRRViRJCIiIpJhyXQ9ZWnTXrAiSUREREQWYUWSiIiISIaqAuaRtPq8lDbERJKIiIhIBq+1UcahbSIiIiKyCCuSRERERHJYklTEiiQRERERWYQVSSIiIiIZnP5HGSuSRERERGQRViSJiIiIZHD6H2WsSBIRERGRRViRJCIiIpLBi7aVVatEsk9Tb7i7u9u6G9Wes8bB1l2gf/Vo7mnrLlAx2bkFtu5CudVx09i6C0TWxUxSEYe2iYiIiMgi1aoiSURERGQOTv+jjBVJIiIiIrIIK5JEREREMjj9jzJWJImIiIjIIqxIEhEREcngRdvKWJEkIiIiIouwIklEREQkhyVJRaxIEhEREZFFWJEkIiIiksF5JJUxkSQiIiKSwel/lNl8aDssLAwdO3aEm5sbvLy8MHjwYJw+fdooJicnB6GhoahduzZcXV0xdOhQpKam2qjHRERERARUgUQyKioKoaGhOHToEHbt2oW8vDz07dsXmZmZUszUqVOxdetWrF+/HlFRUbh8+TIef/xxG/aaiIiIqgNVBS32wuZD2zt27DB6HB4eDi8vL8TGxqJbt25IS0vDypUrERERgV69egEAVq1ahZYtW+LQoUPo1KlTiTYNBgMMBoP0OD09vWJfBBEREVE1ZPOK5N3S0tIAAB4eHgCA2NhY5OXloU+fPlJMixYtUK9ePURHR5tsIywsDHq9Xlr8/f0rvuNERERkf1iSVFSlEsnCwkJMmTIFXbp0QUBAAAAgJSUFGo0GNWvWNIr19vZGSkqKyXZmzpyJtLQ0aUlKSqrorhMRERFVOzYf2i4uNDQU8fHxOHDgQLna0Wq10Gq1VuoVERERVVec/kdZlalITpw4Edu2bcPevXtRt25dab2Pjw9yc3Nx69Yto/jU1FT4+PhUci+JiIiIqIjNE0khBCZOnIiNGzdiz549aNiwodH2Dh06wMnJCZGRkdK606dPIzExEcHBwZXdXSIiIqpGiuaRtPZiL2w+tB0aGoqIiAhs3rwZbm5u0nmPer0ezs7O0Ov1GDt2LKZNmwYPDw+4u7tj0qRJCA4ONnnFNhEREZG18FbbymyeSC5fvhwA0KNHD6P1q1atwnPPPQcAWLRoEdRqNYYOHQqDwYB+/fph2bJlldxTIiIiIirO5omkEKLUGJ1Oh6VLl2Lp0qWV0CMiIiKif7Ekqcjm50gSERER0b3J5hVJIiIioqqK0/8oY0WSiIiIiCzCiiQRERGRnIqYrsd+CpKsSBIRERGRZViRJCIiIpLBi7aVMZEkIiIiksNMUhGHtomIiIjIIkwkiYiIiGSoKug/c4SFhaFjx45wc3ODl5cXBg8ejNOnTyvuEx4eDpVKZbTodLryHAqTmEgSERERVWFRUVEIDQ3FoUOHsGvXLuTl5aFv377IzMxU3M/d3R3JycnScvHiRav3jedIEhEREclQVcD0P+a2t2PHDqPH4eHh8PLyQmxsLLp166bwPCr4+PhY0sUyY0WSiIiIyAbS09ONFoPBUKb90tLSAAAeHh6KcRkZGahfvz78/f0xaNAgnDx5stx9vhsTSSIiIiIZqgpaAMDf3x96vV5awsLCSu1PYWEhpkyZgi5duiAgIEA2rnnz5vjqq6+wefNmfPvttygsLETnzp1x6dIl8w+CAg5tExEREdlAUlIS3N3dpcdarbbUfUJDQxEfH48DBw4oxgUHByM4OFh63LlzZ7Rs2RIrVqzA+++/b3mn78JEkoiIiEhOBc4j6e7ubpRIlmbixInYtm0b9u/fj7p165r1lE5OTrj//vtx9uxZs/YrDYe2iYiIiGRUhel/hBCYOHEiNm7ciD179qBhw4Zmv46CggKcOHECvr6+Zu+rhBVJIiIioiosNDQUERER2Lx5M9zc3JCSkgIA0Ov1cHZ2BgCMGjUK9913n3Se5XvvvYdOnTqhSZMmuHXrFj766CNcvHgRL7zwglX7xkSSiIiISIYKFTD9j5nxy5cvBwD06NHDaP2qVavw3HPPAQASExOhVv830Hzz5k2MGzcOKSkpqFWrFjp06ICDBw+iVatW5eh5SUwkiYiIiKowIUSpMfv27TN6vGjRIixatKiCevQfJpJEREREMirwWhu7wIttiIiIiMgirEgSERERyagKt0isyliRJCIiIiKLsCJ5j3HWONi6C+WWnVtg6y7Qv+zh/QTYz3vKXn4fRPaFZ0kqYSJJREREJIND28o4tE1EREREFmFFkoiIiEgGB7aVsSJJRERERBZhRZKIiIhIBs+RVMaKJBERERFZhBVJIiIiIhmqf/+zdpv2ghVJIiIiIrIIK5JEREREcnjZtiImkkREREQymEcq49A2EREREVmEFUkiIiIiGZz+RxkrkkRERERkEVYkiYiIiGRw+h9lrEgSERERkUVYkSQiIiKSw8u2FbEiSUREREQWYUWSiIiISAYLksqYSBIRERHJ4PQ/yji0TUREREQWYUWSiIiISJb1p/+xp8FtViSJiIiIyCKsSBIRERHJ4DmSyliRJCIiIiKLMJEkIiIiIoswkSQiIiIii/AcSSIiIiIZPEdSGRNJIiIiIhmqCpj+x/rTCdkOh7aJiIiIyCKsSBIRERHJ4NC2MlYkiYiIiMgiNk8k9+/fj4EDB8LPzw8qlQqbNm0y2v7cc89BpVIZLf3797dNZ4mIiKhaUVXQYi9snkhmZmaibdu2WLp0qWxM//79kZycLC1r166txB4SERERkSk2P0cyJCQEISEhijFarRY+Pj6V1CMiIiKif1VECdGOSpI2r0iWxb59++Dl5YXmzZtjwoQJuH79umK8wWBAenq60UJERERE1lXlE8n+/fvj66+/RmRkJD788ENERUUhJCQEBQUFsvuEhYVBr9dLi7+/fyX2mIiIiOyFqoL+sxc2H9ouzfDhw6WfAwMD0aZNGzRu3Bj79u1D7969Te4zc+ZMTJs2TXqcnp7OZJKIiIjMxul/lFX5iuTdGjVqhDp16uDs2bOyMVqtFu7u7kYLEREREVlXla9I3u3SpUu4fv06fH19bd0VIiIisnO81kaZzRPJjIwMo+piQkIC4uLi4OHhAQ8PD7z77rsYOnQofHx8cO7cOUyfPh1NmjRBv379bNhrIiIiIrJ5IhkTE4OePXtKj4vObRw9ejSWL1+O48ePY/Xq1bh16xb8/PzQt29fvP/++9BqtbbqMhEREVUXLEkqsnki2aNHDwghZLfv3LmzEntDRERERGV1z11sQ0RERFRZqtL0P0uXLkWDBg2g0+kQFBSE33//XTF+/fr1aNGiBXQ6HQIDA/Hzzz9b9LxKmEgSERERVXHfffcdpk2bhtmzZ+Po0aNo27Yt+vXrhytXrpiMP3jwIEaMGIGxY8fi2LFjGDx4MAYPHoz4+Hir9ksllMaV7UR6ejr0ej0uJN+456cCctY42LoL5ZadKz+ZPFUue3g/AfbznrKX3weRtaSnp8O7th5paWmV/ve7KHdIvW7957bkdQUFBaFjx45YsmQJAKCwsBD+/v6YNGkS3njjjRLxTz31FDIzM7Ft2zZpXadOndCuXTt8/vnn1nkhqALnSFaGolz59u17/1aJeXbwh8Ze/ujbA3t4PwH2856yl98HkbXc/vcWx7aseVXEbZaL2ry7ba1Wa/Ji4tzcXMTGxmLmzJnSOrVajT59+iA6Otrkc0RHRxvdnAUA+vXrh02bNpWz98aqRSJ5+/ZtAEBgswa27QgRERGZ7fbt29Dr9ZX6nBqNBj4+PmjasGLujOfq6lrirnuzZ8/GnDlzSsReu3YNBQUF8Pb2Nlrv7e2NU6dOmWw/JSXFZHxKSkr5On6XapFI+vn5ISkpCW5ublDZ032JLFR0y8ikpKR7fqjfWnhMTONxKYnHpCQeE9N4XEoy95gIIXD79m34+flVQu+M6XQ6JCQkIDc3t0LaF0KUyEnuxakNq0UiqVarUbduXVt3o8rh7SNL4jExjcelJB6TknhMTONxKcmcY1LZlcjidDoddDqdzZ6/SJ06deDg4IDU1FSj9ampqfDx8TG5j4+Pj1nxluJV20RERERVmEajQYcOHRAZGSmtKywsRGRkJIKDg03uExwcbBQPALt27ZKNt1S1qEgSERER3cumTZuG0aNH44EHHsCDDz6IxYsXIzMzE2PGjAEAjBo1Cvfddx/CwsIAAJMnT0b37t3x8ccfY8CAAVi3bh1iYmLwxRdfWLVfTCSrIa1Wi9mzZ9+T52JUFB4T03hcSuIxKYnHxDQel5J4TCz31FNP4erVq3jnnXeQkpKCdu3aYceOHdIFNYmJiVCr/xto7ty5MyIiIjBr1iy8+eabaNq0KTZt2oSAgACr9qtazCNJRERERNbHcySJiIiIyCJMJImIiIjIIkwkiYiIiMgiTCSJiIiIyCJMJO1EWFgYOnbsCDc3N3h5eWHw4ME4ffq0UcwXX3yBHj16wN3dHSqVCrdu3SrRzo0bNzBy5Ei4u7ujZs2aGDt2LDIyMirpVVhXacfkxo0bmDRpEpo3bw5nZ2fUq1cPr7zyCtLS0ozaSUxMxIABA+Di4gIvLy+8/vrryM/Pr+yXYzVlea+89NJLaNy4MZydneHp6YlBgwaVuA2XPR2XshyTIkIIhISEQKVSlbhnbXU7Jj169IBKpTJaxo8fbxRT3Y4JcOcex7169UKNGjXg7u6Obt26ITs7W9puT9+zQOnH5cKFCyXeJ0XL+vXrpTh7eq9UJ0wk7URUVBRCQ0Nx6NAh7Nq1C3l5eejbty8yMzOlmKysLPTv3x9vvvmmbDsjR47EyZMnsWvXLmzbtg379+/Hiy++WBkvwepKOyaXL1/G5cuXsWDBAsTHxyM8PBw7duzA2LFjpTYKCgowYMAA5Obm4uDBg1i9ejXCw8Pxzjvv2OpllVtZ3isdOnTAqlWr8Ndff2Hnzp0QQqBv374oKCgAYH/HpSzHpMjixYtN3mq1uh6TcePGITk5WVrmz58vbauOxyQ6Ohr9+/dH37598fvvv+PIkSOYOHGi0bQs9vQ9C5R+XPz9/Y3eI8nJyXj33Xfh6uqKkJAQAPb3XqlWBNmlK1euCAAiKiqqxLa9e/cKAOLmzZtG6//8808BQBw5ckRat337dqFSqcQ///xT0V2ucErHpMj3338vNBqNyMvLE0II8fPPPwu1Wi1SUlKkmOXLlwt3d3dhMBgqvM+VoSzH5Y8//hAAxNmzZ4UQ9n9c5I7JsWPHxH333SeSk5MFALFx40ZpW3U8Jt27dxeTJ0+W3ac6HpOgoCAxa9Ys2X3s/XtWiLJ9p7Rr1048//zz0mN7f6/YM1Yk7VTR8KyHh0eZ94mOjkbNmjXxwAMPSOv69OkDtVqNw4cPW72Pla0sxyQtLQ3u7u5wdLwzV390dDQCAwOlCV8BoF+/fkhPT8fJkycrtsOVpLTjkpmZiVWrVqFhw4bw9/cHYP/HxdQxycrKwtNPP42lS5eavFdtdTwmALBmzRrUqVMHAQEBmDlzJrKysqRt1e2YXLlyBYcPH4aXlxc6d+4Mb29vdO/eHQcOHJD2sffvWaD075TY2FjExcUZjf7Y+3vFnjGRtEOFhYWYMmUKunTpYtYM9ikpKfDy8jJa5+joCA8PD6SkpFi7m5WqLMfk2rVreP/9942GmFJSUoy+2ABIj+/1YwIoH5dly5bB1dUVrq6u2L59O3bt2gWNRgPAvo+L3DGZOnUqOnfujEGDBpncrzoek6effhrffvst9u7di5kzZ+Kbb77BM888I22vbsfk/PnzAIA5c+Zg3Lhx2LFjB9q3b4/evXvjzJkzAOz7exYo23ftypUr0bJlS3Tu3FlaZ8/vFXvHWyTaodDQUMTHxxv9K7i6K+2YpKenY8CAAWjVqhXmzJlTuZ2zIaXjMnLkSDz88MNITk7GggULMGzYMPz222/Q6XQ26GnlMXVMtmzZgj179uDYsWM27JntyL1Piv+jKzAwEL6+vujduzfOnTuHxo0bV3Y3K5WpY1JYWAjgzsVqRfc/vv/++xEZGYmvvvpKugeyPSvtuzY7OxsRERF4++23K7lnVFFYkbQzEydOxLZt27B3717UrVvXrH19fHxw5coVo3X5+fm4ceOGyaG8e0Vpx+T27dvo378/3NzcsHHjRjg5OUnbfHx8kJqaahRf9PhePiZA6cdFr9ejadOm6NatGzZs2IBTp05h48aNAOz3uMgdkz179uDcuXOoWbMmHB0dpVMfhg4dih49egCofsfElKCgIADA2bNnAVS/Y+Lr6wsAaNWqlVF8y5YtkZiYCMB+v2eBsr1XNmzYgKysLIwaNcpovb2+V6oFW5+kSdZRWFgoQkNDhZ+fn/j7778VY0u72CYmJkZat3Pnznv2JPCyHJO0tDTRqVMn0b17d5GZmVlie9EJ4KmpqdK6FStWCHd3d5GTk1Nhfa9I5rxXiuTk5AhnZ2exatUqIYT9HZfSjklycrI4ceKE0QJAfPLJJ+L8+fNCiOp3TEw5cOCAACD++OMPIUT1OyaFhYXCz8+vxMU27dq1EzNnzhRC2N/3rBDmvVe6d+8uhg4dWmK9vb1XqhMmknZiwoQJQq/Xi3379onk5GRpycrKkmKSk5PFsWPHxJdffikAiP3794tjx46J69evSzH9+/cX999/vzh8+LA4cOCAaNq0qRgxYoQtXlK5lXZM0tLSRFBQkAgMDBRnz541isnPzxdCCJGfny8CAgJE3759RVxcnNixY4fw9PSU/ijci0o7LufOnRP/+9//RExMjLh48aL47bffxMCBA4WHh4f0JW9vx6Usn5+74a6rtqvbMTl79qx47733RExMjEhISBCbN28WjRo1Et26dZPaqG7HRAghFi1aJNzd3cX69evFmTNnxKxZs4ROp5NmPBDCvr5nhSj75+fMmTNCpVKJ7du3l2jD3t4r1QkTSTsBwORSVEESQojZs2eXGnP9+nUxYsQI4erqKtzd3cWYMWPE7du3K/8FWUFpx6SoMmtqSUhIkNq5cOGCCAkJEc7OzqJOnTri1VdflaYHuheVdlz++ecfERISIry8vISTk5OoW7euePrpp8WpU6eM2rGn41KWz4+pfYonkkJUr2OSmJgounXrJjw8PIRWqxVNmjQRr7/+ukhLSzNqpzodkyJhYWGibt26wsXFRQQHB4tff/3VaLs9fc8KUfbjMnPmTOHv7y8KCgpMtmNP75XqRCWEEFYZIyciIiKiaoUX2xARERGRRZhIEhEREZFFmEgSERERkUWYSBIRERGRRZhIEhEREZFFmEgSERERkUWYSBIRERGRRZhIEhEREZFFmEgSUYW7cOECVCoVNmzYYOuuVJh9+/ZBpVIhJibGZn1QqVRYsGCBzZ6fiKofJpJEREREZBEmkkRERERkESaSRPeg6OhoPPbYY/Dz80ONGjXQrl07fPPNNwCAzMxM1KhRw+QQ5xNPPIHg4GDp8cmTJ9GtWzfodDo0bdoUa9asweDBg9GjR48y9yU3NxevvPIKPDw8ULNmTbz00kuIiIiASqXChQsXZPczNQy7ePFiqFQqo3W3bt3CpEmTULduXWi1WjRs2BAzZ840ilmxYgWaN28OrVaLBg0aYO7cuSgsLDRqY9y4cbjvvvug0+ng7++P4cOHG7Vx6dIlPPPMM6hTpw6cnZ3RrVs3xMbGlvk4mCKEwIIFC9CsWTNotVo0atQIixYtkrbLDYcXFBTAx8fH6HX+9ddfGDRoEPR6PWrUqIEBAwbg3Llz5eofEVF5Odq6A0RkvosXL6JLly4YP348dDodfvvtN4wdOxaFhYUYPXo0HnvsMaxbtw6vvfaatM/t27fx008/Yf78+QCA7Oxs9O3bFzVr1sS3334LAHj33Xdx69YtNG7cuMx9eeONN7BixQq89957aNeuHTZs2IA33njDKq/TYDCgV69euHDhAmbPno3AwEAkJSXhwIEDUsxnn32GV155BZMmTcKjjz6KgwcPYs6cObh165aUqE6bNg3bt2/HvHnz0KBBAyQnJ2P79u1SGzdv3kTXrl3h6uqKzz77DHq9Hp999hl69eqFM2fOwMvLy6L+T548Gf/3f/+Ht956C0FBQTh48CBmzJgBZ2dnjB8/Ht26dYOfnx/WrVuHBx54QNpvz549SE1NxdNPPw0AOH/+PDp37oyAgACEh4dDrVbjgw8+QO/evXH69GlotVqL+kdEVG6CiO5phYWFIi8vT7z44osiODhYCCHE5s2bBQDx999/S3GrV68WDg4OIiUlRQghxNKlS4WDg4NISEiQYhISEoSDg4Po3r17mZ77+vXrQqfTiffee89ofe/evQUAqe2EhAQBQKxfv16KASA++ugjo/0WLVokin8tffHFFwKAOHjwoMnnz8/PF3Xq1BHDhw83Wj9z5kyh0WjEtWvXhBBCtG7dWkybNk32dbzzzjtCr9eL1NRUaV1OTo6oV6+eeP311xWOwH/27t0rAIgjR44IIYQ4e/asUKlUYsWKFUZxM2bMED4+PqKgoEAIIcTUqVNF3bp1RWFhoRQzZswY0bp1a+nxqFGjRKNGjUR2dra07sqVK8LV1VUsXbpUWmfqmBIRVSQObRPdg27evIlXXnkF9evXh5OTE5ycnPDFF1/g77//BgD0798fNWvWxLp166R91q1bh549e8Lb2xsAcOTIEQQGBqJBgwZSTIMGDdC2bdsy9+PEiRPIycnBY489ZrR+0KBB5Xh1/4mMjETLli2NhuOLO3XqFK5du4Ynn3zSaP1TTz2F3Nxc/P777wCA9u3bIzw8HAsWLEB8fHyJdn755Rf07NkTHh4eyM/PR35+PhwcHNC9e3ccOXLEor7v3r0bADB06FCpzfz8fPTp0wcpKSlISkoCAIwYMQKXLl2Sqqy5ubnYuHEjRowYYdS/xx57DI6OjlI7tWrVwv33329x/4iIrIGJJNE96LnnnsPatWvx2muv4ZdffsGRI0fw/PPPIycnBwCg0WgwdOhQKZG8fv06du3aJQ2VAkBycjI8PT1LtG3OMG5ycjIAlGjH0qHgu12/fh1+fn6y22/evAkAUnJcpOjxjRs3ANwZ/n722Wfx8ccfIzAwEPXq1cPy5cul+GvXrmHTpk1SUl60fPPNN1LCZ65r165BCIE6deoYtfnwww8DgNRux44d0bhxY6xduxYAsH37dty6dcsokbx27RoWL15con+//vqrxf0jIrIGniNJdI/JycnBtm3bsHDhQkyaNElaX/ziEuBOpWvlypU4fvw4oqOj4eDggMcff1za7uvri7i4uBLtX7lyBW5ubmXqi6+vLwDg6tWrRgnflStXSt1Xq9UiNzfXaF1RYlikdu3aOH78uGwbHh4eJp8vNTXVaLter8fixYuxePFinDhxAp988glefvllBAQE4KGHHoKHhwf69++P999/32Q/LeHh4QGVSoUDBw5Ao9GU2N68eXPp5xEjRmDFihX49NNPsW7dOgQFBaFRo0ZGbQ0YMAAvv/xyiXbK+rsiIqoIrEgS3WMMBgMKCwuNkpPbt29jy5YtRnE9evSAj48P1q5di7Vr1yIkJAR6vV7a3rFjRxw/fhwJCQnSugsXLuCPP/4oc18CAgKg0+mwefNmo/WbNm0qdd+6devir7/+Mlq3a9cuo8d9+vTBX3/9hcOHD5tso3nz5vD09MT69euN1n///ffQaDR48MEHS+wTGBgoXTld9Px9+vTBn3/+iZYtW+KBBx4wWgIDA0t9Lab07t0bwJ2q6t1tPvDAA0YJ4IgRI3D16lVs2bIFW7ZsMapGFvUvPj4e999/f4l2iiekRESVjRVJonuMXq9Hx44dMW/ePHh6esLR0RHz5s2DXq83qsw5ODhg2LBhCA8Px5UrV4zOlwSAMWPG4IMPPsCjjz6Kd999FwAwZ84c+Pj4QK0u278xa9eujQkTJuCDDz6ATqdDu3btsH79eulcTaV2nnjiCSxevBgdO3ZE8+bN8e233+Kff/4xinn22WexbNkyDBgwALNnz0ZAQAD++ecf7N+/H1988QUcHBzw9ttv45VXXoGXlxceeeQRHDp0CB9++CGmTJmC2rVrAwC6dOmCIUOGICAgAA4ODvj666+h0Wjw0EMPAbhzVfeaNWvQvXt3TJ48GfXq1cPVq1dx+PBh+Pn5YerUqWU6HsU1a9YMoaGhePbZZ/H6668jKCgIeXl5+Pvvv7F3716jZLtVq1Zo06YNJk2ahJycHDz11FNGbb377rvo2LEj+vXrhxdffBHe3t5ISUlBVFQUHnrooRKJJxFRpbH11T5EZL4zZ86IXr16CRcXF+Hv7y8++ugjMXv2bFGjRg2juOjoaAFAuLq6iqysrBLtxMfHi65duwqNRiMaNmwovvrqK9GjRw8xePDgMvfFYDCIiRMnipo1awp3d3cxevRosWTJEgFA3Lp1Swhh+qrtjIwMMWbMGOHh4SHq1Kkj3nrrLfHxxx+Lu7+Wbty4ISZMmCB8fHyERqMRjRo1Em+99ZZRzPLly0XTpk2Fk5OTqFevnnj//felq6KFEOL1118XgYGBwtXVVbi7u4suXbqInTt3GrWRnJwsxo4dK3x9fYVGoxF169YVTzzxhPjtt9/KdBzuvmpbiDtX1H/22WciICBAaDQa4eHhIYKDg8XChQtL7B8WFiYAiN69e5ts/++//xbDhg0TtWvXFlqtVjRo0ECMGjVKxMfHSzHgVdtEVMlUQghhwzyWiKqQGzduoFGjRpg6dSpmz55tcTvPPvssDhw4YDRsTkRE9odD20TV2Icffghvb29pku4FCxagoKAAzz//fJnbiIqKwm+//YYOHTqgsLAQ27Ztw5o1a7Bw4cIK7DkREVUFTCSJqjG1Wo25c+fin3/+gaOjI4KCgrBnzx74+/sDAPLz82X3ValUcHBwgKurK7Zt24YPP/wQ2dnZaNiwIRYuXIgpU6ZU0quoeEIIFBQUyG5Xq9VlPq+UiMiecGibiGTdfd/r4urXr694L217Eh4ejjFjxshunz17NubMmVN5HSIiqiKYSBKRrJiYGNltWq3W4qlx7jXXr19XPN/Tz89PceJ0IiJ7xUSSiIiIiCzCk3qIiIiIyCJMJImIiIjIIkwkiYiIiMgiTCSJiIiIyCJMJImIiIjIIkwkiYiIiMgiTCSJiIiIyCL/D1HVzPHHRH4eAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 800x600 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "data = df[df['avg_glucose_level'] >= 200]\n",
+    "draw_hist_2d(data, 'avg_glucose_level', 'bmi', 'avg_glucose_level >= 200', [25, 42])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát 3 biểu đồ:</strong><br>\n",
+    "<ul>\n",
+    "<li>Biểu đồ chỉ số đường huyết bình thường: chỉ số bmi tập trung nhiều trong khoảng 17 đến 35.</li> \n",
+    "<li>Biểu đồ chỉ số đường huyết từ 140 đến 200: chỉ số bmi tập trung nhiều trong khoảng 25 đến 35. Phân bố của chỉ số bmi dưới 25 (bmi của nhóm bình thường và nhóm nhẹ cân) thấp hơn so với nhóm đường huyết bình thường.</li> \n",
+    "<li>Biểu đồ chỉ số đường huyết từ 200 trở lên: chỉ số bmi tập trung nhiều trong khoảng 25 đến 42. Phân bố của chỉ số bmi dưới 25 chiếm số lượng cực thấp. Đa phần nhóm này có chỉ số bmi thuộc nhóm béo phì và số ít thuộc nhóm thừa cân</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 132,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Có mối quan hệ tuyến tính giữa bmi và chỉ số đường huyết trung bình\n",
+      "Hệ số alpha (intercept): 70.69170001301529\n",
+      "Hệ số beta (slope): 1.2369867166410764\n",
+      "avg_gluco_level = 1.2369867166410764.bmi + 70.69170001301529\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "# avg_glu = alpha + beta*bmi\n",
+    "H0 = \"Không có mối quan hệ tuyến tính giữa bmi và chỉ số đường huyết trung bình\"\n",
+    "H1 = \"Có mối quan hệ tuyến tính giữa bmi và chỉ số đường huyết trung bình\"\n",
+    "X = df['bmi']\n",
+    "y = df['avg_glucose_level']\n",
+    "n = len(X)\n",
+    "X_mean = np.mean(X)\n",
+    "y_mean = np.mean(y)\n",
+    "XY_mean = np.mean(X * y)\n",
+    "X_squared_mean = np.mean(X**2)\n",
+    "beta = (XY_mean - X_mean * y_mean) / (X_squared_mean - X_mean**2)\n",
+    "alpha = y_mean - beta * X_mean\n",
+    "if(beta != 0):\n",
+    "  print(H1)\n",
+    "  print(\"Hệ số alpha (intercept):\", alpha)\n",
+    "  print(\"Hệ số beta (slope):\", beta)\n",
+    "  print(f\"avg_gluco_level = {beta}.bmi + {alpha}\")\n",
+    "else:\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định bằng phương pháp Least Squares Estimate:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối quan hệ tuyến tính giữa BMI và chỉ số đường huyết trung bình.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối quan hệ tuyến tính giữa BMI và chỉ số đường huyết trung bình.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định least squares để xác định mối quan hệ giữa chỉ số bmi và chỉ số đường huyết trung bình</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối quan hệ tuyến tính giữa bmi và chỉ số đường huyết trung bình</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Hệ số alpha (intercept): 70.69170001301529</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Hệ số beta (slope): 1.2369867166410764</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do β ≠ 0, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "BMI và chỉ số đường huyết trung bình có mối quan hệ tuyến tính, tuân theo:\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Hàm tuyến tính của chỉ số đường huyết trung bình theo bmi</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">avg_gluco_level = 1.2369867166410764.bmi + 70.69170001301529</li>\n",
+    "\n",
+    "</ul>\n",
+    "</div>\n",
+    "\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kết luận:</strong> Có mối quan hệ tuyến tính giữa chỉ số bmi và chỉ số đường huyết trung bình. Người có chỉ số bmi thuộc nhóm thừa cân và béo phì có nguy cơ cao tăng chỉ số đường huyết cao. Điều này phù hợp với kết quả nghiên cứu của y khoa.\n",
+    "\n",
+    "</div>\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\">3.2 Mối tương quan giữa bệnh tim với một số đặc trưng khác: </h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.2.1. Bệnh tim và chỉ số bmi </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:24px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li><strong> Theo nghiên cứu của Theo Thư viện Y khoa Quốc gia Hoa Kỳ: </strong> béo phì làm tăng đáng kể nguy cơ mắc bệnh tim mạch so với nhóm bmi thông thường, thừa cân liên quan đến đến nguy cơ phát triển bệnh tim mạch đáng kể ở độ tuổi sớm hơn.\n",
+    "</li>\n",
+    "<li><strong>Kiểm định tính xác thực: </strong>Chia bộ dữ liệu thành với nhóm không mắc bệnh tim và nhóm mắc bệnh tim quan sát sự khác biệt về phân bố bmi giữa hai nhóm\n",
+    "</li>\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 133,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAA0NElEQVR4nO3deVyVdf7//+cB5LCDC6gsioiGAi5kmlZKbumYluY6abZMfppcJm2mZXIpcmyxSS0/jWVNTB+dxlzKssmyHMpcUbRBBcEQEwgVFxZl5/r90Zfzk0CgAk5yPe63G7dbvK/l/brOu7f6PNdmMQzDEAAAAAAAJuNg7wIAAAAAALAHAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwCaTGxsrCwWi+Li4uxdSpOIjo5WcHBwlbbg4GBFR0fbpR4AAFAVgRgAgCvExsZq+fLl9i4D9VBRUaFly5YpLCxMVqtVQUFB+tOf/qTLly/buzQAwDWCQAwAwBUaOxAfO3ZMn332WaPt30zmzp2refPmqXv37lq5cqUmTJig5cuX64477pBhGPYuDwBwDXCydwEAAPwaFBQUyMPDo9H7sVqtjd6HGRw5ckSvvvqqxo0bp40bN9raO3XqpDlz5mj9+vWaOHGiHSsEAFwLOEMMAGhyFRUVevHFF9WpUydZrVZFREToww8/rHHdtWvXqn///vLw8JC7u7sGDhyobdu2VVvvtdde07Bhw+Tv7y9nZ2cFBgbqwQcf1NmzZ6usl56eLovFoqefflpr165Vr1695OLiovnz5ys4OFhffvmlTp48KYvFYvtJT0+v9XguXLigBx98UG3atJG7u7uio6N14MCBGtet6R7ijz76SLfccotat24tNzc3BQcHa9KkScrMzKyyXnJysqZMmaK2bdvKarUqNDRUzzzzjEpLS6ust2/fPt17773q0qWL3Nzc5O3trcGDB2v79u3V6jl8+LDuuusu+fv7y2q1qn379ho2bJi+/PLLasf4xz/+USEhIXJ2dla7du30wAMPKDs7u9bPprG8++67MgxDjzzySJX2Bx98UG5ublqzZo1d6gIAXFs4QwwAaHJPPvmkysrKNGvWLBmGoeXLl+uuu+7SsWPHFBISYlvviSee0AsvvKDRo0dryZIlKi8v1z//+U+NGDFCGzZs0NixY23rvvTSSxowYICGDRsmb29vHThwQLGxsdq1a5cSEhKqnZl9//33lZmZqYcfflgzZ86Ur6+voqOj9eSTTyonJ0fLli2zrevr63vVYyktLdVtt92m+Ph4TZ8+Xf369dPBgwc1dOhQtW7dus7PIi4uTnfeeaduuukmLVy4UO7u7srIyNDWrVuVkZGhgIAASVJ8fLyGDBkiX19fzZo1S35+ftq3b59iYmL0zTffaNOmTVWOLSUlRVOmTFFQUJCys7P15ptvatiwYdq+fbsGDRokScrJydHgwYPl4eGhWbNmqV27djpz5oz27NmjhIQE23oXL17UgAEDlJWVpd/97ne67rrrlJ6erv/93/9VXFycDhw4IB8fn1qPs6CgQEVFRXV+HpLk5uYmNze3WteJj4+Xg4OD+vbtW6XdxcVFvXr1Unx8fL36AgCYnAEAQBN5++23DUlGVFSUUVJSYmvfv3+/Icl4/PHHbW3x8fGGJOPpp5+uso/S0lLjhhtuMDp27GhUVFTY2gsKCqr19/e//92QZLz77ru2thMnThiSjBYtWhjHjh2rts2gQYOMjh071vuYXn/9dUOSERMTU6V92bJlhqRq++rYsaMxaNAg2+9z5841PD09jdLS0lr7iYyMNMLDw6sd54oVKwxJxvbt221tNX0WZ86cMdq0aWPcdttttrbNmzcbkoy9e/fW2vesWbMMNzc348iRI1XaDxw4YDg6OhoLFy6sdXvDMIzp06cbkur1s2jRojr3FxERYfj5+dW4bMKECYYko6ysrM79AADMjTPEAIAm9/vf/14tWrSw/X799dfL09NTx48ft7W9++67slgsmjp1qnJycqpsP2rUKD399NNKTU1V165dJUnu7u6SfrgcOy8vT2VlZbZLk/ft26fJkydX2cftt99u2/aX+OCDD9SiRQvNnTu32jEuWrSozu29vb11+fJlffzxxxozZowsFku1dRITE5WYmKi//OUvKiwsVGFhoW3ZiBEjJEnbtm3TrbfeKun//ywk6dKlSyoqKpLFYlHfvn21e/fuKn1L0ubNm9WjRw+5uLhU69swDL377ruKjo6Wn59flbHo0KGDunTpom3btumZZ56p9Tgfe+wxTZ06tc7PQ1KVqwSu5vLly1e9H7vyOAoLC5vkvnAAwLWLQAwAaHKdOnWq1taqVSudO3fO9ntSUpIMw1BoaOhV93P69GlbqN22bZtiYmIUHx+v4uLiKutdvHix2ra17fenSEtLU0BAQLXgZbVaFRISogsXLtS6/axZs/TBBx/ozjvvVOvWrXXLLbdo5MiRmjx5sry8vCT98FlI0lNPPaWnnnqqxv2cPn26yn//+c9/1ocffljty4QrA/egQYM0bdo0LVmyRC+//LJuvPFGDR8+XJMnT7aN0dmzZ3Xu3Dn9+9//vuql4/UJsN27d1f37t3rXK++3NzcdObMmRqXVV6a7erq2mD9AQCaJwIxAKDJOTo61thuXPGqnIqKCjk6OuqTTz6p8aypJEVEREiS9u7dq5EjR+q6667T0qVLFRwcLFdXV5WXl2vEiBGqqKiotm1d96g2ldatW2v//v366quv9Nlnn+nLL7/UQw89pEWLFmn79u3q1q2brf7HHntMw4YNq3E//v7+kn743IYPH65jx45p7ty5ioqKkre3txwcHPTcc89Ve7DWO++8oz/96U/697//ra+++krPPvusnnnmGcXGxmry5Mm2vm+77Tb98Y9/rLHv+gTP3NzcKme2a+Ph4VHnmV1/f38dPXpUxcXF1c4UZ2Zmql27dlf9/wwAgEoEYgDAr1KXLl306aefqlOnTnWezf3Xv/6l8vJyffzxxwoODra1Hzt27Cf3e7XwfTUhISH6/PPPq722qbi4WGlpaWrZsmWd+3B0dNStt95qu+R5165duummm/TCCy8oNjZWXbp0kSS1aNFCQ4cOrXVfiYmJ+u9//6tFixbp6aefrrJswYIFNW4TGRmpyMhIPf744zpz5oyuv/56PfHEE5o8ebJ8fX3l7e2tgoKCOvuuzR/+8Af94x//qNe6NdX+YzfccIM+++wz7du3T7fccoutvaioSIcOHdLgwYN/dq0AAPPgtUsAgF+lyvtNn3rqqRrP8F55uWzlmcAfr/f888//5H49PDxqvMT6au644w6VlpZWeSq1JP3tb39TXl5endv/+JJm6YeA6uTkZLuEPCoqSt27d9drr72mU6dOVVu/qKhI+fn5kq7+WcTFxWnv3r1V2s6fP19tPT8/PwUEBNj6dnR01G9/+1vt3LlTW7Zsqda3YRjVXm1Vk8cee0zbtm2r188999xT5/4mTZoki8Wi5cuXV2lfvXq1Ll++rLvvvrvOfQAAwBliAMCvUr9+/TR//nwtXrxYqampuuuuu9S2bVtlZmZq165dOn78uL799ltJ0p133qlly5bpN7/5jf7nf/5Hjo6O+uijj+q8f/dq/W7ZskVz5sxRv3795OjoqNGjR1d5UNWV7rvvPr3xxhtauHChvv32W9trl9avX6/OnTurrKys1v4efPBBZWVladiwYerYsaMKCgq0Zs0alZWVadq0aZJ+OGv9zjvvaMiQIYqIiNADDzygsLAw5eXl6dixY9q4caM2bdqk6OhohYWFqVu3bnrxxRdVWFiorl27KjExUbGxsYqIiFBiYqKt73feeUfLly/X2LFjFRoaKkdHR3322Wfau3evfv/739vWW7Jkib7++mvdcccdmjJlivr16yeLxaITJ05o8+bNmjp1ap1ndBv6HuLIyEjNnDlTK1eu1Lhx4/Sb3/xGSUlJeuWVVzR48GBNmjSpwfoCADRj9n3INQDATCpfu/Sf//yn2rIfv46o0gcffGAMHjzY8Pb2NqxWq9GxY0fjjjvuMP71r39VWW/9+vVGz549DVdXV8PPz8944IEHjJycHEOSMX36dNt6la9dutqrffLz84177rnHaN26tWGxWAxJxokTJ2o9rnPnzhn333+/0apVK8PNzc0YNGiQER8fX+MrnH58nBs3bjRuv/12IyAgwHB2djZ8fX2NwYMHGx9//HG1ftLS0owHHnjACAoKMlq0aGH4+voa/fr1M2JiYoxz585VWW/s2LFGq1atDHd3d+OWW24x4uLibK8+qnTw4EFj2rRpRufOnQ03NzfDy8vL6N27t/HKK69Ue2VRfn6+sXDhQqNbt26G1Wo1vLy8jPDwcGP27NnVXsfUVMrKyoyXXnrJ6Nq1q+Hs7GwEBAQYjz76aI2vnQIAoCYWw7jiCSYAAAAAAJgE9xADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEypyd5DbLVa5evr21TdAQAAAABM7uzZsyouLr7q8iYLxL6+vsrIyGiq7gAAAAAAJhcYGFjrci6ZBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAio+P16xZsxQeHi53d3d16NBBEydOVEpKSrV133vvPd14443y8fFR69atNWjQIH388cf17uvDDz9UVFSUXFxc1KFDBy1atEhlZWUNeTgAAAD1QiAGAOiFF17Qxo0bNWTIEK1YsUIzZszQV199paioKB0+fNi23quvvqpJkyapTZs2ev7557VgwQLl5ubq9ttv16ZNm+rs55NPPtGdd94pHx8fvfrqq7rzzju1ePFizZ49uzEPDwAAoEYWwzCMpugoMDBQGRkZTdEVAOAn2rVrl/r06SNnZ2dbW2pqqiIjIzV+/HitWbNGktS1a1f5+Pho7969slgskqS8vDwFBARo8ODB2rx5c639hIeHq0WLFtq/f7+cnJwkSfPnz9eSJUt09OhRhYWFNdIRAgAAM6orh3KGGACgAQMGVAnDktSlSxeFh4crKSnJ1paXlyc/Pz9bGJYkLy8veXh4yNXVtdY+jh49qqNHj2rGjBm2MCxJDz/8sAzD0IYNGxroaAAAAOqHQAwAqJFhGDp9+rTatGlja4uOjtbWrVv16quvKj09XcnJyZo5c6Zyc3P1hz/8odb9HTx4UJLUp0+fKu3+/v4KDAy0LQcAAGgqTnWvAgAwo7Vr1yozM1MxMTG2tldeeUU5OTmaM2eO5syZI0lq06aNvvjiC/Xv37/W/X3//feSpPbt21db1r59e2VlZTVg9QAAAHUjEAMAqqk889u/f39Nnz7d1u7m5qbrrrtOgYGBuv3225Wfn69ly5Zp3Lhx2rFjh0JDQ6+6z8LCQkmS1WqttszFxUV5eXkNfyAAAAC1IBADAKrIzs7WqFGj5O3trQ0bNsjR0dG2bMKECXJyctJHH31ka7vjjjvUpUsXPfXUU1q3bt1V91t5j3FxcXG1ZUVFRXXegwwAANDQuIcYAGCTm5urkSNH6uLFi9q6dav8/f1ty9LS0rR161aNGTOmyjatWrXSzTffrJ07d9a678pLpSsvnb7S999/X6UvAACApkAgBgBI+uEs7ejRo5WSkqItW7aoe/fuVZafPn1aklReXl5t29LSUpWVldW6/169ekmS9u/fX6U9KytLGRkZtuUAAABNhUAMAFB5ebkmTZqk3bt3a/369TU+ICs0NFQODg5at26drnyFfUZGhnbs2KHevXvb2kpLS5WcnFzlbHB4eLjCwsL0xhtvVAnVf/vb32SxWDR+/PhGOjoAAICacQ8xAECPPvqoPvzwQ40ePVrnz5/XmjVrqiyfOnWqfH19df/99+vNN9/UkCFDNG7cOOXn5+u1115TYWGhnnzySdv6mZmZ6tatm6ZPn67Y2Fhb+9KlSzVmzBgNHz5ckydP1uHDh7Vy5Ur97ne/U7du3ZrqcAEAACRJFuPKr/kbUWBgoDIyMpqiKwDATxQdHa0vv/zyqssr/6ooKyvTqlWr9NZbb+n48eOSpBtuuEELFizQrbfeals/PT1dnTp1qhaIJemDDz7QM888o6SkJPn6+uree+/VwoUL1aJFi4Y/MAAAYGp15VACMQAAAACgWaorh3IPMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTcrJ3AQAgSUVFRSopKbF3GQD+H2dnZ7m4uNi7DAAAGhWBGIDdFRUVqWXLlioqKrJ3KfiZnB2lJ2+26rmvi1VSbu9q0BBcXFx04cIFQjEAoFkjEAOwu5KSEhUVFenUqVPy8vKydzn4OYrz5fW/3TVv/beS1dPe1eAXysvLU1BQkEpKSgjEAIBmjUAM4FfDy8uLQHyt+n8n9708PSUXxhAAAFwbeKgWAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATKlZBWLDMJSXlyfDMOxdCgAAAADYkFV+nZpVIM7Pz5e3t7fy8/PtXQoAAAAA2JBVfp2aVSAGAAAAAKC+CMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCU6h2ICwoKtGjRIo0YMUKtWrWSxWJRbGxsI5YGAAAAAEDjcarvijk5OYqJiVGHDh3Us2dPxcXFNWJZAAAAAND8GIahr7/+WqmpqSosLJSrq6s6d+6sxMREJSQkyNvbWxEREeratatuuukmSdLOnTt1/PhxhYSEKDExUQcPHlRUVJQeeughWSwW2/LQ0FDddNNNMgxDq1at0oEDB2z769y5szZv3qx9+/bp8uXLcnd31w033KClS5fKYrFo1apVSkhIUO/evRUZGam0tDR17txZknT8+HFbraGhoZKk1NRUHT58WLm5uYqKilJkZKSOHz9ua7v++uur1VdZ/4EDB5Senq6SkhL17dtXS5culaOjo13Gw2IYhlGfFYuLi3XhwgW1a9dO+/fv1w033KC3335b9957b706CgwMVEZGxi+ptU55eXny9vZWbm6uvLy8GrUvAA2HudsMFOVJzwdJT5ySXBjDax1zEgAaXuWfrZGRkTp16pTKysp06dIlubi4qLCwUJLk4OCgiooKOTg4yMPDQ4GBgZKk7OxsBQcHKyEhQZLk7e2tvLw8Wa1WBQYG6vz58+rVq5cOHTqk1q1b67vvvlNJSYkcHBxUXl5ea10Wi0UtWrRQaWmpPD09lZeXJ0mKiIhQUlKSDMOw1ejq6qri4mIZhmH7qaz5So6OjqqoqJCzs7M6dOigc+fOVam/phrWr1+vu+666xd9xjWpK4fW+5Jpq9Wqdu3aNUhRAAAAAGAmlecho6Ki1KFDB02ZMkVnz55VSUmJrFarfHx81LJlS2VkZKhr164qKSlRdna2Tp8+re+++05JSUnq2rWrpk2bppCQEJ05c0aGYejEiRM6deqUvvjiC3333XdKS0uTJIWHh+v+++/Xd999V6UOBwcH25njyrpKSkp05swZhYSEaNq0aeratauOHDmiu+++Wz4+PnJ1ddXZs2fl6uoqT09PWSwWOTs7KyMjQy1btpS3t7csFossFosyMjJ0//33Kzw8XJKUlpamkydP2uqvrOHIkSMKCwuTi4uLPDw8NGHChDrDe2Oo9yXT14LK/8kqv9UAcG2onLP1vGAFQCPj71MAaHhffPGFJGncuHHasmWLXnnlFf39739XeXm53NzcVF5eLgcHB504cUI7d+5U69at5ejoKGdnZy1YsEBFRUXau3ev7azwe++9J3d3d124cEGxsbF6+OGH9Y9//MO2v++++07x8fH685//XKUOT09PXb58WUeOHLGdgZakmTNn6tSpU9q9e7e2b9+uUaNG2YJuRUWF1q1bJ8MwVFxcrPLycnl5eWnz5s2SpJKSEhmGIYvFos2bN2vFihVq27atrFariouL9cADD6ioqEhDhgxRSkqKvLy8dP78ee3cuVNt2rTRggUL9NRTT+lPf/qTXn755aYbFDViIH755ZerHExBQUFjdWWTn58vSQoKCmr0vgA0vPz8fNu3lQDsh79PAaDxHD9+XD179pSLi4sSEhLUsmVLtW3bVhaLRe3atdPx48d18803y9XVVV5eXgoLC9P+/fvl4+MjHx8fSVLPnj2VkJCgXr16KSEhwXYp8o/35+Liov3798vJyUmGYaiiokJRUVG2PiwWixwcHGSxWHTo0CFbXWfOnJGTk5OtzTAMW39Hjx6VxWKx9d2zZ09bm7OzsxISEvTwww8rICDAtv9Dhw7Jx8dHhw8flpOTk3r37m2rwdvbW2lpaXJyctL+/fubfDwaLRDPmzdP8+bNs/1+5bcPjcXT01OSdOrUKe55Aq4heXl5CgoKss1hAPbF36cA0PA+//xz3XXXXQoNDdWhQ4dUVFSkqKgovfXWWyorK5MknT59WqGhoTp//rwKCwttQfXee+/V119/rYsXL8pqteqbb77R+PHjtWnTJttDrSRV219RUZH69OmjHTt22OpISEhQTEyMMjMzZRiG7TLlXr166fPPP1dRUZH8/PxUVlamXr16ae3atTIMw9ZfUVGRCgsLdejQIY0fP17vv/++CgsLbT9RUVEqLCxUZmampB++ZB0+fLjWr1+viIgI7dixQwcPHlRMTIzOnz+v3NxchYSEqKysTH369GnKIZH0Ex6qdSUeqgWgITF3mwEeqtWsMCcBoOHl5ubKx8dH06dP18GDB9WvXz8tWbJE7dq1k5OTk1xdXeXo6KhDhw5p2LBhSk9Pl5ubmywWi9LT0+Xn56egoCD169dPhw8f1meffabAwECVlZUpNzdX7u7uunTpkry9veXk5KTQ0FANGDBA8+fPV8eOHW11ODg4aM+ePRo2bJhyc3Nt7adPn9Ztt92myMhI7d27V6mpqZo2bZq2bNkii8Wi5ORkhYWFqby8XPn5+XJyclJqaqp69+6tsrIy2202J0+e1LPPPqvdu3crNTVVZWVlunDhgtq2baugoCClpKTYzhpPnDhR6enpatGihQoKClRaWtrgT5uuK4c2q3uIAQAAAODXyGKxSPrhDO2pU6eUlpamN9980/YE5+LiYjk4OCgoKMj2lOn27dvLMAx17NhR3bp1U0JCgu0eXD8/P1mtVoWEhNhejfvNN9+oc+fOOnnypI4ePark5GStXr26Sh0VFRXq27dvlbpatGihdu3aydPTU4cOHZL0w1OmK88Ou7i4yM/PT25ubioqKrI9iKtDhw7VnjLdoUOHKk+ZDgkJUXBwsK3+yhp69Ohh26a4uFgbN260y6uXCMQAAAAA0ER27NihxMRE3kN8rb2H+EpcMg2gITF3mwEumW5WmJMA0PD4s9U+GvSS6ZUrV+rixYvKysqSJH300Ue2nc+ePZunwwIAAAAArhk/KRC/9NJLOnnypO33TZs2adOmTZKkqVOnEogBAAAAANeMnxSI09PTG6kMAAAAAACaloO9CwAAAAAAwB4IxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMqVkFYk9PT+Xm5srT09PepQAAAACADVnl18nJ3gU0JIvFIi8vL3uXAQAAAABVkFV+nZrVGWIAAAAAAOqLQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTcrJ3AQBgGIYkKS8vz86V4GcrzpeXpLz8fKnE3sXgl2IuAgDMgkAMwO7y8/MlSUFBQXauBD+Xs6P05M1WPbc4UCXl9q4GDcHFxUXOzs72LgMAgEZFIAZgd/7+/jp16pQ8PT1lsVjsXQ5+gXn2LgANxtnZWS4uLvYuAwCARkUgBmB3Dg4OCgwMtHcZAAAAMBkeqgUAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAzgF4uPj9esWbMUHh4ud3d3dejQQRMnTlRKSkqV9VavXq1Bgwapbdu2slqt6tSpk+677z6lp6fXq5/o6GhZLJZqPyNGjGiEowKuXUeOHNGECRMUEhIiNzc3tWnTRgMHDtRHH31kW6eiokKxsbEaM2aMgoKC5O7uroiICC1evFhFRUX17qukpERLlixRWFiYXFxc1LZtW40aNUoZGRmNcWgAADQoJ3sXAODa98ILL2jnzp2aMGGCevTooezsbK1cuVJRUVHas2ePIiIiJEkHDx5Up06dNGbMGLVs2VInTpzQ6tWrtWXLFn3zzTfy9/evs6/AwEA999xzVdrqsx1gJidPnlR+fr6mT58uf39/Xb58WRs3btSYMWP0+uuva8aMGbp8+bLuu+8+3XjjjXrooYfk5+en3bt3a9GiRfriiy+0fft2WSyWWvspLS3VqFGjtGvXLj344IPq0aOHLly4oL179yo3N1eBgYFNdMQAAPw8FsMwjKboKDAwkG+LgWZq165d6tOnj5ydnW1tqampioyM1Pjx47VmzZqrbnvgwAH16dNHzz33nJ544ola+4mOjlZOTo4OHz7cYLUDZlFeXq7rr79eRUVFSk5OVklJifbv368BAwZUWS8mJkaLFi3Stm3bNHTo0Fr3+eKLL2r+/Pn6+uuv1bdv38YsHwCAn6WuHMol0wB+sQEDBlQJw5LUpUsXhYeHKykpqdZtg4ODJUkXL16sd39lZWUqKCj4qWUCpubo6KigoCDbXHN2dq4WhiVp7NixklTn3K2oqNCKFSs0duxY9e3bV2VlZbp8+XKD1w0AQGMiEANoFIZh6PTp02rTpk21ZefOndOZM2e0f/9+3XfffZKkIUOG1Gu/KSkpcnd3l6enp9q1a6cFCxaotLS0QWsHmotLly4pJydH3377rZYtW6ZPPvmkzrmWnZ0tSTXO3SsdPXpUWVlZ6tGjh2bMmCF3d3e5u7urR48e+s9//tNgxwAAQGPiHmIAjWLt2rXKzMxUTExMtWUBAQEqLi6WJLVu3VqvvPKKhg0bVuc+O3furFtvvVWRkZG6dOmSNmzYoMWLFyslJUXr1q1r8GMArnWPPvqoXn/9dUmSg4ODxo0bp5UrV9a6zYsvvigvLy+NHDmy1vVSU1MlScuWLVOrVq1s/SxZskQjRoxQfHy8evTo0QBHAQBA4yEQA2hwycnJmjlzpvr376/p06dXW/7JJ5+oqKhISUlJWrNmjS5dulSv/b711ltVfp82bZpmzJih1atXa+7cubrxxhsbpH6guXjkkUc0fvx4ZWVl6b333lN5eblKSkquuv6SJUv0+eef67XXXpOPj0+t+668bSE/P18HDx5UUFCQJGnw4MEKDQ3Viy++WOvzAwAA+DXgoVoAGlR2drZuuukmlZaWas+ePXU+Afrbb79VRESEli5dqlmzZv3k/o4dO6awsDA9++yzmj9//s8tGzCF4cOH6+LFi9q7d2+1J0ivW7dOU6ZM0f33368333yzzn1t2LBBEyZM0K233qrt27dXWTZ48GClp6crLS2tQesHAOCn4qFaAJpMbm6uRo4cqYsXL2rr1q31eh1S586d1bt3b61du/Zn9Vl5Vur8+fM/a3vATMaPH6/4+Phq7wjftm2b7rnnHo0aNUqrVq2q174q53fbtm2rLfPz89OFCxd+ecEAADQyLpkG0CCKioo0evRopaSk6PPPP1f37t3rvW1hYaHtnuKfqvIMlK+v78/aHjCTwsJCST98eVVp7969Gjt2rPr06aP33ntPTk71+6dBZGSkWrRooczMzGrLsrKymJMAgGsCZ4gB/GLl5eWaNGmSdu/erfXr16t///7V1ikrK6vxjNG+ffuUmJioPn36VGlPTk7Wd999Z/s9Ly+vWmg2DEOLFy+WJN12220NcShAs3DmzJlqbaWlpXrnnXfk6upq+8IqKSlJo0aNUnBwsLZs2SJXV9er7vPHc9LT01O/+c1vtGvXLiUnJ9vak5KStGvXrno9KA8AAHvjHmIAv9gjjzyiFStWaPTo0Zo4cWK15VOnTtXFixcVGBioSZMmKTw8XO7u7kpMTNTbb78tFxcX7dmzR126dLFtY7FYNGjQIMXFxUmS4uLiNGXKFE2ZMkWhoaEqLCzU+++/r507d2rGjBm2J9wC+OFdwnl5eRo4cKACAgKUnZ2ttWvXKjk5WX/96181b9485efnKzw8XJmZmVqyZIkCAgKq7KNz585Vvtz68ZyUfnj1Ur9+/eTp6ak5c+ZIkl555RWVlZXp4MGD1fYJAEBTqyuHEogB/GLR0dH68ssvr7rcMAyVlJToscce03/+8x+lp6ersLBQ/v7+Gjp0qObPn6/g4OAq2/z4H98nTpzQ448/rvj4eGVnZ8vBwUHdunXTgw8+qBkzZlR7QBBgZv/617/01ltvKTExUefOnZOnp6euv/56zZ49W2PGjJEkpaenq1OnTlfdx/Tp0xUbG2v7vaZALEkJCQl6/PHHtXv3bjk4OGjw4MFaunRplS+4AACwFwIxAAAAAMCUeMo0AAAAAAA1IBADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTshiGYTRFR1arVb6+vk3RVaMrKCiQh4eHvctAE2PczYlxNyfG3ZwYd3Ni3M2JcTePs2fPqri4+KrLmywQNyeBgYHKyMiwdxloYoy7OTHu5sS4mxPjbk6Muzkx7qjEJdMAAAAAAFMiEAMAAAAATIlA/DPMmzfP3iXADhh3c2LczYlxNyfG3ZwYd3Ni3FGJe4gBAAAAAKbEGWIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoH4RwoKCrRo0SKNGDFCrVq1ksViUWxsbLX17r33Xlkslmo/YWFhTV80frH4+HjNmjVL4eHhcnd3V4cOHTRx4kSlpKRUWzcpKUkjRoyQh4eHWrVqpWnTpuns2bN2qBq/VH3HnfnevBw5ckQTJkxQSEiI3Nzc1KZNGw0cOFAfffRRtXWZ781Hfced+d68/eUvf5HFYlFERES1Zbt27dLNN98sNzc3tWvXTnPmzFFBQYEdqkRDu9q4R0dH1zjfR4wYYadKYQ9O9i7g1yYnJ0cxMTHq0KGDevbsqbi4uKuua7Va9eabb1Zp8/b2buQK0RheeOEF7dy5UxMmTFCPHj2UnZ2tlStXKioqSnv27LH9AZqRkaGBAwfK29tbS5YsUUFBgV566SUlJiZq3759cnZ2tvOR4Keo77hLzPfm5OTJk8rPz9f06dPl7++vy5cva+PGjRozZoxef/11zZgxQxLzvbmp77hLzPfmKiMjQ0uWLJG7u3u1ZYcOHdKQIUPUrVs3vfzyy8rIyNBLL72k1NRUffLJJ3aoFg2ltnGXpMDAQD333HNV2vz9/ZuiNPxaGKiiqKjI+P777w3DMIz4+HhDkvH2229XW2/69OmGu7t7E1eHxrJz506juLi4SltKSophtVqNu+++29b2+9//3nB1dTVOnjxpa9u2bZshyXj99debrF40jPqOO/O9+SsrKzN69uxpXHfddbY25nvzV9O4M9+br0mTJhmDBw82Bg0aZISHh1dZNnLkSKN9+/ZGbm6urW316tWGJOPTTz9t6lLRgGob95raYD5cMv0jVqtV7dq1q/f65eXlysvLa8SK0BQGDBhQ7WxPly5dFB4erqSkJFvbxo0bdfvtt6tDhw62tqFDh6pr16567733mqxeNIz6jnsl5nvz5ejoqKCgIF28eNHWxnxv/moa90rM9+blq6++0oYNG7R8+fJqy/Ly8rRt2zZNnTpVXl5etvZ77rlHHh4ezPdrWG3jfqWysjIujzcxAvEvcPnyZXl5ecnb21utWrXSzJkzmUzNiGEYOn36tNq0aSNJyszM1JkzZ9SnT59q6/bt21cHDx5s6hLRCH487pWY783PpUuXlJOTo2+//VbLli3TJ598oiFDhkhivjdntY17JeZ781JeXq7Zs2frd7/7nSIjI6stT0xMVFlZWbX57uzsrF69ejHfr1F1jXullJQUubu7y9PTU+3atdOCBQtUWlrahJXC3riH+Gdq3769HnvsMUVFRamiokJbt27Va6+9pm+++UZxcXFycuKjvdatXbtWmZmZiomJkSR9//33kn4Y+x9r3769zp8/r+LiYlmt1iatEw3rx+MuMd+bq0cffVSvv/66JMnBwUHjxo3TypUrJTHfm7Paxl1ivjdHq1at0smTJ/X555/XuLyu+b5jx45GrQ+No65xl6TOnTvr1ltvVWRkpC5duqQNGzZo8eLFSklJ0bp165qwWtgTf6r/TD+++X7y5Mnq2rWrnnrqKW3YsEGTJ0+2U2VoCMnJyZo5c6b69++v6dOnS5IKCwslqcZ/ALu4uNjW4R/I166axl1ivjdXjzzyiMaPH6+srCy99957Ki8vV0lJiSTme3NW27hLzPfm5ty5c1q4cKEWLFggX1/fGtepa75XLse1oz7jLklvvfVWld+nTZumGTNmaPXq1Zo7d65uvPHGxi4VvwJcMt2A5s6dKwcHh1q/icKvX3Z2tkaNGiVvb29t2LBBjo6OkiRXV1dJUnFxcbVtioqKqqyDa8/Vxv1qmO/XvrCwMA0dOlT33HOPtmzZooKCAo0ePVqGYTDfm7Haxv1qmO/Xrvnz56tVq1aaPXv2Vdepa74z16899Rn3q3n00UclifluIgTiBuTq6qrWrVvr/Pnz9i4FP1Nubq5GjhypixcvauvWrVUeu195KVXlpVVX+v7779WqVSvOFl2jahv3q2G+Nz/jx49XfHy8UlJSmO8mcuW4Xw3z/dqUmpqqN954Q3PmzFFWVpbS09OVnp6uoqIilZaWKj09XefPn69zvvMKnmtLfcf9aoKCgiSJ+W4iBOIGlJ+fr5ycnFovzcCvV1FRkUaPHq2UlBRt2bJF3bt3r7I8ICBAvr6+2r9/f7Vt9+3bp169ejVRpWhIdY371TDfm5/KyyJzc3OZ7yZy5bhfDfP92pSZmamKigrNmTNHnTp1sv3s3btXKSkp6tSpk2JiYhQRESEnJ6dq872kpESHDh1ivl9j6jvuV5OWliZJzHcT4R7in6HyGyZPT88q7c8++6wMw9CIESPsVBl+rvLyck2aNEm7d+/W5s2b1b9//xrXu+uuu/SPf/xDp06dsn2D+MUXXyglJUVz585typLRAOoz7sz35ufMmTPy8/Or0lZaWqp33nlHrq6uti9FmO/NS33GnfnevEREROj999+v1j5//nzl5+drxYoV6ty5s7y9vTV06FCtWbNGCxYssI3///3f/6mgoEATJkxo6tLxC9R33PPy8mS1Wqtc7WMYhhYvXixJuu2225qsZtiXxajtphmTWrlypS5evKisrCz97W9/07hx49S7d29J0uzZs3XhwgX17t1bU6ZMUVhYmCTp008/1b///W+NGDFCH3/8sRwcOPl+LXnkkUe0YsUKjR49WhMnTqy2fOrUqZKkU6dOqXfv3vLx8dEf/vAHFRQUaOnSpQoMDFR8fDyXUF5j6jPu6enpzPdmZuzYscrLy9PAgQMVEBCg7OxsrV27VsnJyfrrX/+qefPmSWK+Nzf1GXfmuzlER0crJydHhw8ftrUlJCRowIAB6t69u2bMmKGMjAz99a9/1cCBA/Xpp5/asVo0lB+Pe1xcnKZMmaIpU6YoNDRUhYWFev/997Vz507NmDHD9jR6mICBajp27GhIqvHnxIkTxoULF4ypU6caoaGhhpubm2G1Wo3w8HBjyZIlRklJib3Lx88waNCgq475j6fJ4cOHjeHDhxtubm6Gj4+PcffddxvZ2dl2qhy/RH3Gnfne/Lz77rvG0KFDjbZt2xpOTk5Gy5YtjaFDhxqbN2+uti7zvfmoz7gz381h0KBBRnh4eLX2HTt2GAMGDDBcXFwMX19fY+bMmUZeXp4dKkRj+PG4p6WlGRMmTDCCg4MNFxcXw83Nzbj++uuNVatWGRUVFXasFE2NM8QAAAAAAFPiuh8AAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAJpAbGysLBaL4uLimqS/4OBgRUdHN0lfAABcqwjEAAAAAABTcrJ3AQAAoOEdO3ZMFovF3mUAAPCrRiAGAKAZslqt9i4BAIBfPS6ZBgCgCZWWlmr+/PkKDAyUi4uL+vTpo88++8y2PD09XRaLRU8//bTWrVunyMhIubq6qlu3bvrggw8kSd98842GDRsmDw8P+fn5aeHChTIMo0o/3EMMAEDdCMQAADShxx57TB988IEeeeQRLViwQGfOnNGoUaP0xRdfVFlvy5YtevTRRzV58mQ9//zzKisr0/jx47Vp0yYNGzZMPXr00NKlS9WzZ089++yzeuedd+x0RAAAXLssxo+/UgYAAA0uNjZW9913n4KDg/Xf//5Xnp6ekqSsrCyFhYUpKChIR44cUXp6ujp16iQPDw8lJycrICBAknTkyBFFRETIYrHoww8/1O233y7phzPOHTt2VIcOHbRnzx5bf8HBwQoODm6yp1oDAHAt4gwxAABN6KGHHrKFYUny9/fXb3/7Wx09elSpqam29jvvvNMWhiUpPDxc3t7eCgwMtIVhSWrRooX69u1bZVsAAFA/BGIAAJpQWFhYtbZu3bpJktLS0mxtwcHB1dbz8fFRx44da2w/f/58wxUJAIBJEIgBAPgVcnR0/EntAADgpyMQAwDQhJKTk6u1JSUlSZJCQkKauhwAAEyNQAwAQBNatWqV8vPzbb9nZWXpn//8p7p166YuXbrYsTIAAMzHyd4FAABgJj4+Purfv7/uvfdelZSUaNWqVbp8+bKWL19u79IAADAdAjEAAE3oxRdfVFxcnJYvX66cnByFh4frjTfe0PDhw+1dGgAApsN7iAEAAAAApsQ9xAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABM6f8DVXiusSr4st4AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAvC0lEQVR4nO3deVwW9f7//+cFyipgKKbsLuSCu6ZpJe5pRmnidjJt9VPHJbW0TpkaeSxtUTueyk6dyLLNJdfKtKIMNzDtmImYBsmW4gao7PP9o5/XL2RV4bqEedxvN2+3mOs9837N9eZ9NU9mrhmLYRiGAAAAAAAwGQd7FwAAAAAAgD0QiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAGAzUVFRslgsio6OtncpNtG7d28FBwcXWxYcHKzevXvbpR4AAFAcgRgAgL+IiorS4sWL7V0GKuGFF15QRESEgoODZbFY1LFjR3uXBACoYerYuwAAAK4lUVFRSkxM1NSpU6tl+4cOHZLFYqmWbZvN008/rQYNGqhLly46efKkvcsBANRABGIAACRlZ2erXr161d6Ps7NztfdhFkeOHFGzZs0kqcSl6QAAVAaXTAMAbK6oqEgLFy5U06ZN5ezsrLZt22r9+vWltl2xYoV69OihevXqyd3dXb169dKWLVtKtHv99dc1YMAA+fr6ysnJSf7+/nr44Yd14sSJYu0SExNlsVg0d+5crVixQh07dpSLi4tmzZql4OBgfffdd0pKSpLFYrH+S0xMLHd/Tp8+rYcfflgNGzaUu7u7evfurT179pTatrTvEG/YsEG33nqrGjRoIDc3NwUHB2vUqFFKSUkp1i4+Pl5jxozR9ddfL2dnZ7Vo0ULPPfec8vPzi7XbvXu37rvvPoWEhMjNzU1eXl7q27evvvnmmxL1/Pzzzxo+fLh8fX3l7OysJk2aaMCAAfruu+9K7OMTTzyhZs2aycnJSY0bN9aDDz6o9PT0ct+b6nQxDAMAcKU4QwwAsLl//OMfKigo0KRJk2QYhhYvXqzhw4fr0KFDxULOU089pQULFig8PFzz589XYWGhPvzwQw0aNEirVq3SsGHDrG1ffvll9ezZUwMGDJCXl5f27NmjqKgobd++XT/++GOJM7OfffaZUlJS9Pe//10TJ06Uj4+PevfurX/84x/KyMjQokWLrG19fHzK3Jf8/Hzddtttio2N1fjx49W9e3ft3btX/fv3V4MGDSp8L6KjozV06FDdfPPNmj17ttzd3ZWcnKwvv/xSycnJ8vPzkyTFxsaqX79+8vHx0aRJk9SoUSPt3r1bkZGR+umnn7RmzZpi+5aQkKAxY8YoICBA6enpevvttzVgwAB98803CgsLkyRlZGSob9++qlevniZNmqTGjRvr+PHj2rlzp3788UdruzNnzqhnz55KTU3VQw89pJYtWyoxMVH//ve/FR0drT179qh+/frl7md2drZycnIqfD8kyc3NTW5ubpVqCwDAVTEAALCRd99915BkdO7c2cjLy7Muj4uLMyQZTz75pHVZbGysIcmYO3dusW3k5+cbN954oxEUFGQUFRVZl2dnZ5fo77///a8hyfjoo4+sy3777TdDklG3bl3j0KFDJdYJCwszgoKCKr1Py5YtMyQZkZGRxZYvWrTIkFRiW0FBQUZYWJj152nTphkeHh5Gfn5+uf20a9fOCA0NLbGfS5YsMSQZ33zzjXVZae/F8ePHjYYNGxq33Xabddm6desMScauXbvK7XvSpEmGm5ubceDAgWLL9+zZYzg6OhqzZ88ud33DMIzx48cbkir1b86cORVu71JBQUFGhw4dLns9AIC5cYYYAGBzjz76qOrWrWv9uUuXLvLw8NCvv/5qXfbRRx/JYrFo7NixysjIKLb+kCFDNHfuXB0+fFg33HCDJMnd3V3Sn5djZ2ZmqqCgwHpp8u7duzV69Ohi27jjjjus616NtWvXqm7dupo2bVqJfZwzZ06F63t5een8+fPatGmT7rzzzlJvuLV//37t379f//znP3XhwgVduHDB+tqgQYMkSVu2bFGfPn0k/f/vhSSdO3dOOTk5slgs6tatm3bs2FGsb0lat26d2rdvLxcXlxJ9G4ahjz76SL1791ajRo2KjUVgYKBCQkK0ZcsWPffcc+Xu58yZMzV27NgK3w+JS6EBALZDIAYA2FzTpk1LLPP29i52p+CDBw/KMAy1aNGizO388ccf1lC7ZcsWRUZGKjY2Vrm5ucXanTlzpsS65W33chw9elR+fn4lbsjl7OysZs2a6fTp0+WuP2nSJK1du1ZDhw5VgwYNdOutt2rw4MEaPXq0PD09Jf35XkjSM888o2eeeabU7fzxxx/F/vvpp5/W+vXrS/wx4a+BOywsTPfee6/mz5+vV199VTfddJMGDhyo0aNHW8foxIkTOnnypD7//PMyLx2vTIBt06aN2rRpU2E7AABsiUAMALA5R0fHUpcbhmH976KiIjk6OuqLL74o8zFFbdu2lSTt2rVLgwcPVsuWLfXSSy8pODhYrq6uKiws1KBBg1RUVFRi3WvlO6oNGjRQXFycvv/+e3311Vf67rvv9Mgjj2jOnDn65ptv1Lp1a2v9M2fO1IABA0rdjq+vr6Q/37eBAwfq0KFDmjZtmjp37iwvLy85ODjohRdeKHFjreXLl2vGjBn6/PPP9f333+v555/Xc889p6ioKI0ePdra92233aYnnnii1L5dXV0r3M+zZ88WO7Ndnnr16tnkjt8AABCIAQDXpJCQEG3evFlNmzat8Gzuxx9/rMLCQm3atKnY43cOHTp02f1e7jOCmzVrpq1bt5Z4bFNubq6OHj2q6667rsJtODo6qk+fPtZLnrdv366bb75ZCxYsUFRUlEJCQiRJdevWVf/+/cvd1v79+/W///1Pc+bM0dy5c4u99uyzz5a6Trt27dSuXTs9+eSTOn78uLp06aKnnnpKo0ePlo+Pj7y8vJSdnV1h3+V57LHH9N5771WqbWm1AwBQHXjsEgDgmnTx+6bPPPNMqWd4jx8/bv3vi2ecL2334osvXna/9erVK/US67Lcddddys/PL3ZXakl64403lJmZWeH6l17SLP0ZUOvUqWO9hLxz585q06aNXn/9dR07dqxE+5ycHGVlZUkq+72Ijo7Wrl27ii07depUiXaNGjWSn5+ftW9HR0f97W9/U0xMjDZu3Fiib8MwSjzaqjQzZ87Uli1bKvVv3LhxFW4PAICqwBliAMA1qXv37po1a5bmzZunw4cPa/jw4br++uuVkpKi7du369dff9WRI0ckSUOHDtWiRYt0++236//+7//k6OioDRs2VPj93bL63bhxo6ZMmaLu3bvL0dFR4eHhxW5U9Vf333+/3nrrLc2ePVtHjhyxPnZp5cqVat68uQoKCsrt7+GHH1ZqaqoGDBigoKAgZWdn64MPPlBBQYHuvfdeSX+etV6+fLn69euntm3b6sEHH1SrVq2UmZmpQ4cOafXq1VqzZo169+6tVq1aqXXr1lq4cKEuXLigG264Qfv371dUVJTatm2r/fv3W/tevny5Fi9erGHDhqlFixZydHTUV199pV27dunRRx+1tps/f75++OEH3XXXXRozZoy6d+8ui8Wi3377TevWrdPYsWMrPKNbHd8hfv/995WUlCTpz0uyc3NzNW/ePElSUFCQ9f0DAKBM9r3JNQDATC4+dunbb78t8dqljyO6aO3atUbfvn0NLy8vw9nZ2QgKCjLuuusu4+OPPy7WbuXKlUaHDh0MV1dXo1GjRsaDDz5oZGRkGJKM8ePHW9tdfOxSWY/2ycrKMsaNG2c0aNDAsFgshiTjt99+K3e/Tp48aTzwwAOGt7e34ebmZoSFhRmxsbGlPsLp0v1cvXq1cccddxh+fn6Gk5OT4ePjY/Tt29fYtGlTiX6OHj1qPPjgg0ZAQIBRt25dw8fHx+jevbsRGRlpnDx5sli7YcOGGd7e3oa7u7tx6623GtHR0dZHH120d+9e49577zWaN29uuLm5GZ6enkanTp2M1157zSgoKCjxvsyePdto3bq14ezsbHh6ehqhoaHG5MmTSzyOyVbCwsLKfHRTab9LAABcymIYf7mDCQAAAAAAJsF3iAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApmSz5xA7OzvLx8fHVt0BAAAAAEzuxIkTys3NLfN1mwViHx8fJScn26o7AAAAAIDJ+fv7l/s6l0wDAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAIAaLzY2VpMmTVJoaKjc3d0VGBiokSNHKiEhoUTbpUuXqnXr1nJ2dpafn5+mT5+uc+fOVaqf7OxsTZ06Vf7+/nJ2dlbr1q31xhtvVPXuAAAAG6lj7wIAALhaCxYsUExMjEaMGKH27dsrPT1dS5cuVefOnbVz5061bdtWkvTkk09q4cKFioiI0GOPPaZffvlF//rXv3TgwAFt3ry53D4KCwt12223KS4uThMnTlRISIg2b96sv//97zp9+rSefvppW+wqAACoQhbDMAxbdOTv76/k5GRbdAUAMJnt27era9eucnJysi47fPiw2rVrp4iICH3wwQdKS0tTYGCgxowZo+XLl1vbLV26VJMnT9b69esVHh5eZh8rV67UyJEj9c477+iBBx6wLo+IiNCmTZuUlJSkRo0aVc8OAgCAK1JRDuWSaQBAjdezZ89iYViSQkJCFBoaqoMHD0qSduzYoYKCAo0ePbpYu4s/f/zxx+X2sW3btmLt/7p+Tk6O1q1bd1X7AAAAbI9ADAColQzD0B9//KGGDRtKknJzcyVJrq6uxdq5ublJkvbs2VPu9nJzc+Xo6FgieFd2fQAAcO0hEAMAaqUVK1YoJSVFo0aNkiS1bNlSkhQTE1Os3cUzvykpKeVur2XLliosLNTOnTuvaH0AAHDt4TvEAIBaJz4+Xt27d1doaKi2bdsmR0dHSdJNN92kAwcO6LXXXlOfPn108OBBPfroo0pNTVVRUZEKCgrK3GZ6erpatWqlRo0a6d///rdCQkL01VdfacaMGcrMzFS/fv20detWW+0iAACoBL5DDAAwlfT0dA0ZMkReXl5atWqVNQxL0urVq9WhQwc98MADatq0qcLDwzVy5Eh16tRJ9erVK3e7jRs31vr165Wbm6uBAweqadOmmjFjhv71r39JUoXrAwCAaw+PXQIA1Bpnz57V4MGDdebMGW3btk2+vr7FXvfz89MPP/ygw4cPKz09XSEhIWrcuLF8fX11ww03VLj9Xr166ejRo9q/f7/OnTunDh06KDU1VZIqtT4AALi2EIgBALVCTk6OwsPDlZCQoK1bt6pNmzZltg0JCVFISIgk6ZdfflFaWpruu+++SvXj6Oiojh07Wn++eJl0//79r7h2AABgH1wyDQCo8QoLCzVq1Cjt2LFDK1euVI8ePSq1XlFRkWbOnCk3Nzc98sgj1uX5+fmKj49XWlpaueufOHFCCxYsUPv27QnEAADUQJwhBgDUeI8//rjWr1+v8PBwnTp1Sh988EGx18eOHStJeuyxx5STk6OOHTsqPz9fH374oXbv3q333ntPgYGB1vYpKSlq3bq1xo8fr6ioKOvysLAw9ejRQy1atFB6erreeustZWdna+PGjXJw4G/MAADUNARiAECNt2/fPknShg0btGHDhhKvXwzEnTp10uLFi7VixQo5ODioW7du+vrrr9WnT59K9dOlSxetXLlSKSkp8vT01IABA/T888+rWbNmVbYvAADAdnjsEgAAAACgVuKxSwAAAAAAlIJADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJZ5DDABQTk6O8vLy7F0GriFOTk5ycXGxdxkAAFQrAjEAmFxOTo6uu+465eTk2LsUu3FylP5xi7Ne+CFXeYX2ruba4OLiotOnTxOKAQC1GoEYAEwuLy9POTk5OnbsmDw9Pe1djn3kZsnz3200feURydnD3tXYXWZmpgICApSXl0cgBgDUagRiAIAkydPT07yB+P87Oe7p4SG5mPQ9AADAhLipFgAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAzTMAxDmZmZMgzD3qUAAIAaiGMJoPYhEMM0srKy5OXlpaysLHuXAgAAaiCOJYDah0AMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADClSgfi7OxszZkzR4MGDZK3t7csFouioqKqsTQAAAAAAKpPnco2zMjIUGRkpAIDA9WhQwdFR0dXY1nA5TEMQzExMfr111/VokUL3XzzzbJYLPYuCwAA4KqVdpxTVFSkGTNmKC4uTl27dtVLL70kR0fHKu3DFsdSV9OvPY//OPasPSodiJs0aaK0tDQ1btxYcXFxuvHGG6uzLqDSkpKSNHToUP3+++/q2LGj9u3bp8DAQK1du1ZBQUH2Lg8AAOCKlXac4+Hhod9//12GYahOnTratm2bFi9erJUrV2r48OFV0octjqWupl97Hv9x7Fm7VPqSaWdnZzVu3Lg6awEum2EYGjp0qG688UalpKTo66+/VnJysm688UYNGzZMhmHYu0QAAIArUtpxTlJSkpKSkmSxWJSamqr8/HwlJyfL09NTI0aMUGFh4VX3YYtjqavp157Hfxx71j6VPkMMXItiYmJ07Ngx7dixQy4uLpIkV1dXLVmyRP7+/oqJidEtt9wiSdYPqMzMTLvVC1yLLs4J/ieOi/i8BEpn68/L0o5zZs+eLUny9PTUkSNH1KRJE/n5+enAgQPy9/fXjBkz9Oqrr15VH2UdS1X3vlW2X3vVbO++UT2qLRC/+uqrxSZjdnZ2dXUFE/v111/VoUMH6wfSRa6ururQoYN+/fVX64dSVlaWJCkgIMDmdQI1QVZWlry8vOxdBq4BfF4C5bPV52VpxzlxcXGqU6eOOnXqVOw4x8/PT3Xq1FFcXNxV9yGVfixVla6mX3vVbO++UT2qLRBPnz5d06dPt/7s7+9fXV3BxFq0aKF9+/YpJyen2AfThQsX9NNPP6lFixbWZR4eHpKkY8eOydPT0+a1AteqzMxMBQQEWOcIwOclUDpbf16WdpzTtWtXbdu2TXv37lVkZKS1bUpKigoKCtS1a9er7kMq/ViqKl1Nv/aq2d59o3pYjCu45uPiTbXeffdd3XfffZVax9/fX8nJyZfbFVAuwzDUuXNn3XjjjVqyZIlcXV114cIFPfbYY4qLi9OePXusd/zLzMyUl5eXzp49ywEe8BfMDUk5mdKLAdJTxyQXk74Hf8HvBFA6W8+N0o5zsrOz5eHhIQcHByUlJcnf318pKSkKDQ1VZmam8vPzL+tu05dzLFXd+1bZfu1Vs737xpWpKIdW+qZawLXIYrFo7dq1io2Nlb+/v/r27St/f3/FxcVp7dq1fCABAIAaq7TjnKCgIAUHB8swDAUEBKhu3bry9/dXZmamVq9efdmPXrLXsdTV9GvP4z+OPWsfbqqFGi8oKEg//vgjz4IDAAC1TlnHOVX5HGJ7HUtdTb/2PP7j2LN24ZJpmAaXAAKlY26IS6Yvwe8EUDrmBlDzVJRDL+sM8dKlS3XmzBmlpqZKkjZs2GDd+OTJk7k7KQAAAACgxrisQPzyyy8rKSnJ+vOaNWu0Zs0aSdLYsWMJxAAAAACAGuOyAnFiYmI1lQEAAAAAgG1xl2kAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYpuHh4aGzZ8/Kw8PD3qUAAIAaiGMJoPapY+8CAFuxWCzy9PS0dxkAAKCG4lgCqH04QwwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEypjr0LAADYl2EYkqTMzEw7V2JHuVnylJSZlSXl2bsY+zP17wIAwFQIxABgcllZWZKkgIAAO1diP06O0j9ucdYL8/yVV2jvaq4NLi4ucnJysncZAABUKwIxAJicr6+vjh07Jg8PD1ksFnuXY1fT7V3ANcTJyUkuLi72LgMAgGpFIAYAk3NwcJC/v7+9ywAAALA5bqoFAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMADVcbGysJk2apNDQULm7uyswMFAjR45UQkJCsXYWi6XMfwMGDKiwn2nTpqlz587y9vaWm5ubWrdurblz5yo7O7u6dg1X6MCBAxoxYoSaNWsmNzc3NWzYUL169dKGDRusbYqKihQVFaU777xTAQEBcnd3V9u2bTVv3jzl5ORUuq+8vDzNnz9frVq1kouLi66//noNGTJEycnJ1bFrAABUqTr2LgAAcHUWLFigmJgYjRgxQu3bt1d6erqWLl2qzp07a+fOnWrbtq0k6f333y+xblxcnJYsWaKBAwdW2E9sbKxuvfVW3X///XJxcdHevXv14osvauvWrfr+++/l4MDfWK8VSUlJysrK0vjx4+Xr66vz589r9erVuvPOO7Vs2TJNmDBB58+f1/3336+bbrpJjzzyiBo1aqQdO3Zozpw5+vrrr/XNN9/IYrGU209+fr6GDBmi7du36+GHH1b79u11+vRp7dq1S2fPnpW/v7+N9hgAgCtjMQzDsEVH/v7+/LUYAKrB9u3b1bVrVzk5OVmXHT58WO3atVNERIQ++OCDMtd96KGH9N///le///77FYWXV155RU888YR27Nihm2666Yrqh20UFhaqS5cuysnJUXx8vPLy8hQXF6eePXsWaxcZGak5c+Zoy5Yt6t+/f7nbXLhwoWbNmqUffvhB3bp1q87yAQC4IhXlUP6cDwA1XM+ePYuFYUkKCQlRaGioDh48WOZ6ubm5Wr16tcLCwq74TF5wcLAk6cyZM1e0PmzH0dFRAQEB1rFycnIqEYYladiwYZJU7u+O9Ocl10uWLNGwYcPUrVs3FRQU6Pz581VeNwAA1YlADAC1kGEY+uOPP9SwYcMy23z++ec6c+aM7rnnnkpvt6CgQBkZGUpNTdVXX32lWbNmycPDg7OD16hz584pIyNDR44c0aJFi/TFF1+oX79+5a6Tnp4uSeX+7kjSL7/8otTUVLVv314TJkyQu7u73N3d1b59e3377bdVtg8AAFQnvkMMALXQihUrlJKSosjIyHLbODs7KyIiotLbjYuLU48ePaw/t2zZUuvXr5e3t/dV1Yvq8fjjj2vZsmWSJAcHB919991aunRpuessXLhQnp6eGjx4cLntDh8+LElatGiRvL29rf3Mnz9fgwYNUmxsrNq3b18FewEAQPUhEANALRMfH6+JEyeqR48eGj9+fKltMjMztWnTJt1+++2qX79+pbfdpk0bbdmyRefOndP27du1detW7jJ9DZs6daoiIiKUmpqqTz/9VIWFhcrLyyuz/fz587V161a9/vrrFf5eXBz3rKws7d27VwEBAZKkvn37qkWLFlq4cGG5318HAOBaQCAGgFokPT1dQ4YMkZeXl1atWiVHR8dS261evVo5OTmXdbm0JHl6elpvtHTXXXfpww8/1F133aUff/xRHTp0uOr6UbVatWqlVq1aSZLGjRungQMHKjw8XLt27SpxB+lPPvlEs2bN0oMPPqhHH320wm27urpKkm6++WZrGJakwMBA3XLLLdq+fXsV7gkAANWD7xADQC1x9uxZDR48WGfOnNGXX34pX1/fMtuuWLFCXl5euuOOO66qz7vvvluS9PHHH1/VdmAbERERio2NLfGM6i1btmjcuHEaMmSI3nzzzUpt6+Lv1/XXX1/itUaNGun06dNXXzAAANWMQAwAtUBOTo7Cw8OVkJCgjRs3qk2bNmW2TUtL07fffqvhw4fL2dn5qvrNzc1VUVGRzp49e1XbgW1cuHBBkoqN165duzRs2DB17dpVn376qerUqdzFY+3atVPdunWVkpJS4rXU1FT5+PhUTdEAAFQjAjEA1HCFhYUaNWqUduzYoZUrVxa76VVpPv74YxUVFZV5uXR+fr7i4+OVlpZmXXbmzBnl5+eXaPv2229Lkrp27XoVe4Cqdvz48RLL8vPztXz5crm6ulr/YHLw4EENGTJEwcHB2rhxo/Uy6NLEx8fr999/t/7s4eGh22+/Xdu3b1d8fLx1+cGDB7V9+3YNGDCgCvcIAIDqYTEMw7BFRxU9EBkAcGWmTp2qJUuWKDw8XCNHjizx+tixY4v93LVrV6WlpenYsWNycCj5d9HExEQ1bdpU48ePV1RUlCRp7dq1mjJliiIiIhQSEqK8vDxt27ZNa9asUZcuXRQTE1PiWciwn2HDhikzM1O9evWSn5+f0tPTtWLFCsXHx+uVV17R9OnTlZWVpdDQUKWkpGj+/Pny8/Mrto3mzZsX++OKxWJRWFiYoqOjrct++eUXde/eXR4eHpoyZYok6bXXXlNBQYH27t1bYpsAANhaRTmUm2oBQA23b98+SdKGDRu0YcOGEq//NRAfOnRIe/bs0fTp00sNw2Vp166d+vTpo3Xr1iktLU2GYah58+aaPXu2ZsyYQRi+xowaNUrvvPOO3njjDZ08eVIeHh7q0qWLFixYoDvvvFOSdPLkSR07dkyS9NRTT5XYxvjx4yu82qBNmzb67rvv9OSTT2revHlycHBQ37599dJLLxGGAQA1AmeIAQAAAAC1UkU5lO8QAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMyWIYhmGLjpydneXj42OLrqpddna26tWrZ+8yYGOMuzkx7ubEuJsT425OjLs5Me7mceLECeXm5pb5us0CcW3i7++v5ORke5cBG2PczYlxNyfG3ZwYd3Ni3M2JccdFXDINAAAAADAlAjEAAAAAwJQIxFdg+vTp9i4BdsC4mxPjbk6Muzkx7ubEuJsT446L+A4xAAAAAMCUOEMMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQXyI7O1tz5szRoEGD5O3tLYvFoqioqBLt7rvvPlkslhL/WrVqZfuicdViY2M1adIkhYaGyt3dXYGBgRo5cqQSEhJKtD148KAGDRqkevXqydvbW/fee69OnDhhh6pxtSo77sz32uXAgQMaMWKEmjVrJjc3NzVs2FC9evXShg0bSrRlvtcelR135nvt9s9//lMWi0Vt27Yt8dr27dt1yy23yM3NTY0bN9aUKVOUnZ1thypR1coa9969e5c63wcNGmSnSmEPdexdwLUmIyNDkZGRCgwMVIcOHRQdHV1mW2dnZ7399tvFlnl5eVVzhagOCxYsUExMjEaMGKH27dsrPT1dS5cuVefOnbVz507rB2hycrJ69eolLy8vzZ8/X9nZ2Xr55Ze1f/9+7d69W05OTnbeE1yOyo67xHyvTZKSkpSVlaXx48fL19dX58+f1+rVq3XnnXdq2bJlmjBhgiTme21T2XGXmO+1VXJysubPny93d/cSr+3bt0/9+vVT69at9eqrryo5OVkvv/yyDh8+rC+++MIO1aKqlDfukuTv768XXnih2DJfX19blIZrhYFicnJyjLS0NMMwDCM2NtaQZLz77rsl2o0fP95wd3e3cXWoLjExMUZubm6xZQkJCYazs7Nxzz33WJc9+uijhqurq5GUlGRdtmXLFkOSsWzZMpvVi6pR2XFnvtd+BQUFRocOHYyWLVtalzHfa7/Sxp35XnuNGjXK6Nu3rxEWFmaEhoYWe23w4MFGkyZNjLNnz1qX/ec//zEkGZs3b7Z1qahC5Y17actgPlwyfQlnZ2c1bty40u0LCwuVmZlZjRXBFnr27FnibE9ISIhCQ0N18OBB67LVq1frjjvuUGBgoHVZ//79dcMNN+jTTz+1Wb2oGpUd94uY77WXo6OjAgICdObMGesy5nvtV9q4X8R8r12+//57rVq1SosXLy7xWmZmprZs2aKxY8fK09PTunzcuHGqV68e870GK2/c/6qgoIDL402MQHwVzp8/L09PT3l5ecnb21sTJ05kMtUihmHojz/+UMOGDSVJKSkpOn78uLp27Vqibbdu3bR3715bl4hqcOm4X8R8r33OnTunjIwMHTlyRIsWLdIXX3yhfv36SWK+12bljftFzPfapbCwUJMnT9ZDDz2kdu3alXh9//79KigoKDHfnZyc1LFjR+Z7DVXRuF+UkJAgd3d3eXh4qHHjxnr22WeVn59vw0phb3yH+Ao1adJEM2fOVOfOnVVUVKQvv/xSr7/+un766SdFR0erTh3e2ppuxYoVSklJUWRkpCQpLS1N0p9jf6kmTZro1KlTys3NlbOzs03rRNW6dNwl5ntt9fjjj2vZsmWSJAcHB919991aunSpJOZ7bVbeuEvM99rozTffVFJSkrZu3Vrq6xXN923btlVrfageFY27JDVv3lx9+vRRu3btdO7cOa1atUrz5s1TQkKCPvnkExtWC3viU/0KXfrl+9GjR+uGG27QM888o1WrVmn06NF2qgxVIT4+XhMnTlSPHj00fvx4SdKFCxckqdQDYBcXF2sbDpBrrtLGXWK+11ZTp05VRESEUlNT9emnn6qwsFB5eXmSmO+1WXnjLjHfa5uTJ09q9uzZevbZZ+Xj41Nqm4rm+8XXUXNUZtwl6Z133in287333qsJEyboP//5j6ZNm6abbrqpukvFNYBLpqvQtGnT5ODgUO5fonDtS09P15AhQ+Tl5aVVq1bJ0dFRkuTq6ipJys3NLbFOTk5OsTaoecoa97Iw32u+Vq1aqX///ho3bpw2btyo7OxshYeHyzAM5nstVt64l4X5XnPNmjVL3t7emjx5cpltKprvzPWapzLjXpbHH39ckpjvJkIgrkKurq5q0KCBTp06Ze9ScIXOnj2rwYMH68yZM/ryyy+L3Xb/4qVUFy+t+qu0tDR5e3tztqiGKm/cy8J8r30iIiIUGxurhIQE5ruJ/HXcy8J8r5kOHz6st956S1OmTFFqaqoSExOVmJionJwc5efnKzExUadOnapwvvMInpqlsuNeloCAAElivpsIgbgKZWVlKSMjo9xLM3DtysnJUXh4uBISErRx40a1adOm2Ot+fn7y8fFRXFxciXV3796tjh072qhSVKWKxr0szPfa5+JlkWfPnmW+m8hfx70szPeaKSUlRUVFRZoyZYqaNm1q/bdr1y4lJCSoadOmioyMVNu2bVWnTp0S8z0vL0/79u1jvtcwlR33shw9elSSmO8mwneIr8DFvzB5eHgUW/7888/LMAwNGjTITpXhShUWFmrUqFHasWOH1q1bpx49epTabvjw4Xrvvfd07Ngx618Qv/76ayUkJGjatGm2LBlVoDLjznyvfY4fP65GjRoVW5afn6/ly5fL1dXV+kcR5nvtUplxZ77XLm3bttVnn31WYvmsWbOUlZWlJUuWqHnz5vLy8lL//v31wQcf6Nlnn7WO//vvv6/s7GyNGDHC1qXjKlR23DMzM+Xs7Fzsah/DMDRv3jxJ0m233WazmmFfFqO8L82Y1NKlS3XmzBmlpqbqjTfe0N13361OnTpJkiZPnqzTp0+rU6dOGjNmjFq1aiVJ2rx5sz7//HMNGjRImzZtkoMDJ99rkqlTp2rJkiUKDw/XyJEjS7w+duxYSdKxY8fUqVMn1a9fX4899piys7P10ksvyd/fX7GxsVxCWcNUZtwTExOZ77XMsGHDlJmZqV69esnPz0/p6elasWKF4uPj9corr2j69OmSmO+1TWXGnfluDr1791ZGRoZ+/vln67Iff/xRPXv2VJs2bTRhwgQlJyfrlVdeUa9evbR582Y7Vouqcum4R0dHa8yYMRozZoxatGihCxcu6LPPPlNMTIwmTJhgvRs9TMBACUFBQYakUv/99ttvxunTp42xY8caLVq0MNzc3AxnZ2cjNDTUmD9/vpGXl2fv8nEFwsLCyhzzS6fJzz//bAwcONBwc3Mz6tevb9xzzz1Genq6nSrH1ajMuDPfa5+PPvrI6N+/v3H99dcbderUMa677jqjf//+xrp160q0Zb7XHpUZd+a7OYSFhRmhoaEllm/bts3o2bOn4eLiYvj4+BgTJ040MjMz7VAhqsOl43706FFjxIgRRnBwsOHi4mK4ubkZXbp0Md58802jqKjIjpXC1jhDDAAAAAAwJa77AQAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgDABqKiomSxWBQdHW2T/oKDg9W7d2+b9AUAQE1FIAYAAAAAmFIdexcAAACq3qFDh2SxWOxdBgAA1zQCMQAAtZCzs7O9SwAA4JrHJdMAANhQfn6+Zs2aJX9/f7m4uKhr16766quvrK8nJibKYrFo7ty5+uSTT9SuXTu5urqqdevWWrt2rSTpp59+0oABA1SvXj01atRIs2fPlmEYxfrhO8QAAFSMQAwAgA3NnDlTa9eu1dSpU/Xss8/q+PHjGjJkiL7++uti7TZu3KjHH39co0eP1osvvqiCggJFRERozZo1GjBggNq3b6+XXnpJHTp00PPPP6/ly5fbaY8AAKi5LMalf1IGAABVLioqSvfff7+Cg4P1v//9Tx4eHpKk1NRUtWrVSgEBATpw4IASExPVtGlT1atXT/Hx8fLz85MkHThwQG3btpXFYtH69et1xx13SPrzjHNQUJACAwO1c+dOa3/BwcEKDg622V2tAQCoiThDDACADT3yyCPWMCxJvr6++tvf/qZffvlFhw8fti4fOnSoNQxLUmhoqLy8vOTv728Nw5JUt25ddevWrdi6AACgcgjEAADYUKtWrUosa926tSTp6NGj1mXBwcEl2tWvX19BQUGlLj916lTVFQkAgEkQiAEAuAY5Ojpe1nIAAHD5CMQAANhQfHx8iWUHDx6UJDVr1szW5QAAYGoEYgAAbOjNN99UVlaW9efU1FR9+OGHat26tUJCQuxYGQAA5lPH3gUAAGAm9evXV48ePXTfffcpLy9Pb775ps6fP6/FixfbuzQAAEyHQAwAgA0tXLhQ0dHRWrx4sTIyMhQaGqq33npLAwcOtHdpAACYDs8hBgAAAACYEt8hBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBK/w9OwFko2SpSrwAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "df_heart_disease_1 = df[df['heart_disease'] == 1]\n",
+    "df_heart_disease_0 = df[df['heart_disease'] == 0]\n",
+    "draw_box(df_heart_disease_0, 'bmi', 'heart disease = 0')\n",
+    "draw_box(df_heart_disease_1, 'bmi', 'heart disease = 1')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:24px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát 2 biểu đồ: :</strong><br>\n",
+    "<ul>\n",
+    "<li>Biểu đồ hộp về chỉ số bmi của người không bị bệnh tim: Q1 = 23.5, Q2 = 28.0, Q3 = 32.6.</li> \n",
+    "<li>Biểu đồ hộp về chỉ số bmi của người bị bệnh tim: Q1 = 27.3, Q2 = 29.9, Q3 = 32.6. Có hơn 75% người thuộc nhóm thừa cân và béo phì (bmi ≥ 25). Có đến 50% người bị béo phì (bmi từ 30 trở lên).</li> \n",
+    "<li>Có thể thấy, giá trị Q3 giữa hai biểu đồ không có sự khác biệt giá trị Q1, Q2 giữa hai nhóm lại cho thấy sự khác biệt. Ở nhóm bị bệnh tim thì những giá trị này cao hơn nhiều so với nhóm bị người không bị bệnh tim. </li>\n",
+    "</ul>\n",
+    "\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 134,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Giá trị t-statistic: 5.92917346374878\n",
+      "Giá trị v:  343\n",
+      "Giá trị p-value: 0.000000003713738\n",
+      "Có mối tương quan giữa BMI và bệnh tim.\n"
+     ]
+    }
+   ],
+   "source": [
+    "H0 = \"Không có mối tương quan giữa BMI và bệnh tim.\"\n",
+    "H1 = \"Có mối tương quan giữa BMI và bệnh tim.\"\n",
+    "bmi_heart_disease = df[df['heart_disease'] == 1]['bmi']\n",
+    "bmi_no_heart_disease = df[df['heart_disease'] == 0]['bmi']\n",
+    "n1 = len(bmi_heart_disease)\n",
+    "n2 = len(bmi_no_heart_disease)\n",
+    "mean1 = np.mean(bmi_heart_disease)\n",
+    "mean2 = np.mean(bmi_no_heart_disease)\n",
+    "std1 = np.std(bmi_heart_disease, ddof=1)  # ddof=1 để tính bằng mẫu, không phải toàn bộ quần thể\n",
+    "std2 = np.std(bmi_no_heart_disease, ddof=1)\n",
+    "v = ((std1**2 / n1) + (std2**2 / n2))**2 / (((std1**2 / n1)**2 / (n1 - 1)) + ((std2**2 / n2)**2 / (n2 - 1)))\n",
+    "v = int(v)\n",
+    "t_statistic = (mean1 - mean2) / np.sqrt(std1**2 / n1 + std2**2 / n2)\n",
+    "p_value = 1 - stats.t.cdf(np.abs(t_statistic), v)\n",
+    "print(\"Giá trị t-statistic:\", t_statistic)\n",
+    "print(\"Giá trị v: \",v)\n",
+    "print(\"Giá trị p-value: {:.15f}\".format(p_value))\n",
+    "alpha = 0.05\n",
+    "if p_value <= alpha:\n",
+    "    print(H1)\n",
+    "else:\n",
+    "    print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định t – test với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa chỉ số BMI và bệnh tim.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa chỉ số BMI và bệnh tim.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định t – test về mối tương quan giữa bệnh tim và chỉ số bmi</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Có mối tương quan giữa BMI và bệnh tim.</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Giá trị t-statistic: 5.92917346374878</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Giá trị v:  343</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Giá trị p-value: 0.000000003713738 </li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa chỉ số BMI và bệnh tim mạch.\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Có mối tương quan giữa bmi và bệnh tim mạch. Nhóm bị bệnh tim có tỉ lệ người bị thừa cân và béo phì cao hơn so với nhóm không bị bệnh tim. Điều này phù hợp với kết quả nghiên cứu của y khoa.\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.2.2. Bệnh tim và giới tính, tuổi </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li> <strong>Theo Thư viện Y khoa Quốc gia Hoa Kỳ:</strong> \n",
+    "\n",
+    "Nguy cơ xảy ra các biến cố tim mạch thường gia tăng nhanh hơn khi tuổi đời càng cao. Nam giới có nguy cơ mắc các bệnh tim mạch cao hơn so với nữ giới. Tuy nhiên sau thời kỳ mãn kinh (khoảng ngoài 50 tuổi), nguy cơ mắc bệnh tim mạch ở nữ giới sẽ gia tăng nhanh hơn.</li>\n",
+    "<li>\n",
+    "<strong>Kiểm định tính xác thực: </strong>Ta chọn mốc tuổi dễ bị bệnh tim là từ 40 tuổi, chia bộ dữ liệu theo 3 mốc tuổi: từ 40 - 60 tuổi, từ 60 - 80 tuổi và ngoài 80 tuổi. Quan sát tỉ lệ nam nữ mắc bệnh tim mạch.</li>\n",
+    "\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 135,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACXQAAAI8CAYAAABbQ7GKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN9///8cfJlCVEGkGs2jVaq2ZpalMUVaNI7LZKfapaWiO60KpWqVVS1Cy1qRW0NrEqpdSIvVNJJJF5/f7wy/nmNENCIgnP++12bp+T6z2u9zvOp7le53pd77fJMAwDERERERERERERERERERERERERyXZW2T0AERERERERERERERERERERERERuU8JXSIiIiIiIiIiIiIiIiIiIiIiIjmEErpERERERERERERERERERERERERyCCV0iYiIiIiIiIiIiIiIiIiIiIiI5BBK6BIREREREREREREREREREREREckhlNAlIiIiIiIiIiIiIiIiIiIiIiKSQyihS0REREREREREREREREREREREJIdQQpeIiIiIiIiIiIiIiIiIiIiIiEgOoYQuERERERERERERERERERERERGRHEIJXSIiIiIiIiIiIiIiIiIiIiIiIjmEErpERB6j33//HZPJZH7t3r07u4eUI3Xq1Mni9xQcHJyudosWLaJp06Z4enqSJ08eihcvTrdu3dizZ0/WDvgRXbhwgdGjR1OjRg2eeeYZ8uTJQ9GiRXnppZcYNWoUQUFBD+zjt99+o127dnh5eWFvb4+Xlxft2rXjt99+ewwzEBEREZGngeKZ1J04cYKhQ4dSpUoV8ufPj4ODAyVKlKBx48Z8+eWX6Yppcls8ExMTw6xZs2jWrBmFChXC3t4eZ2dnypUrR8+ePTP0+VA8IyIiIiKPg2Ka5MLDw/n222/x9vbmmWeewc7Ojrx581K5cmUGDBiQrvsTiXJbTHPv3j2mTp1Ko0aNzHMvXLgwLVu2ZPHixRnqa/fu3XTr1o3ixYuTJ08ePD09adasGYsWLcqi0YvI08BkGIaR3YMQEXla9OrVi59++sn8c//+/Zk+fXo2jijnWbt2La1bt7Y4du7cOUqUKJFqm6ioKF5//XXWr1+fYrmVlRWjRo1i9OjRmTnUTDF58mSGDx9OREREqnXee+89vvvuuxTLEhIS6NevH7Nnz061fZ8+fZgxYwZWVsrjFhEREZGHp3gmOcMwGDFiBF999RVxcXGp1vv2228ZPHhwimW5MZ45f/48rVq14q+//kqz3sCBA5k0aRImkynFcsUzIiIiIvI4KaaxdPjwYdq2bcvFixdTrWNtbc0XX3zBRx99lGqd3BjTnDx5krZt23Ly5MlU6zRt2pRff/0VZ2fnNPvy8/Pjs88+IyEhIcXyVq1asWzZMvLkyfNIYxaRp4++CREReUyioqJYtmwZgPni75dffiE6Ojo7h5Wj3L17lwEDBgDg4eGR7na9evUyBwre3t6sXLmS/fv3M3v2bEqVKkVCQgJ+fn7MnDkzS8b9sD7//HMGDRpEREQEZcuW5euvv2b79u0cPnyYLVu28PXXX1O3bt00b1x88skn5psfVatWZdGiRezfv59FixZRtWpVAGbNmsWIESMey5xERERE5MmkeCZl/fr148svvyQuLo7q1avzww8/8Mcff3Do0CE2bNjAp59+yvPPP59qQhPkvngmNjbWIpmrSpUqzJkzhz179rBp0yZGjRqFk5MTcP8BlvHjx6fal+IZEREREXlcFNNYunPnDi1atDAnczVo0IBFixaxb98+1q1bx+DBg7G1tSU+Pp5hw4aluWJVbotpbty4QZMmTczJXB07dmTt2rUcOnSItWvX0rFjRwA2bdpE586d0+xrxowZjBkzhoSEBEqVKsXs2bPZv38/K1euxNvbG4B169bRq1evrJ2UiDyZDBEReSwWLFhgAAZg+Pv7m98vXbo0u4eWY7z33nsGYDRq1Mjw8fEx/47OnTuXapuAgABzvdatWxtxcXEW5Tdv3jSKFStmAEa+fPmMkJCQLJ5F+mzZssU87h49ehgxMTGp1o2Ojk7x+MmTJw0bGxsDMGrUqGFERkZalEdERBg1atQwAMPGxsb4559/MnUOIiIiIvL0UDyT3OzZs82/h48//thISEhItW5q1/S5MZ5ZunSpecx16tRJNmbDMIzAwEDD1tbWPO7Y2NhkdRTPiIiIiMjjpJjG0tdff23+HXTs2DHFOqtWrTLXqVixYop1cmNMM2DAAPOYR48enWKdUaNGPfAzcvv2bcPV1dUAjGLFihk3b960KI+LizNat25t7mfbtm2ZPBMRedJphS4Rkcdk3rx5wP2nl3v27Em5cuUsjj/tAgMDmTx5Mvb29kydOjXd7SZMmACAjY0NU6dOxdra2qLc3d3d/ET4nTt3mDVrVuYN+iElJCTw9ttvA/D8888ze/ZsbG1tU61vZ2eX4vHvvvvOvK3L5MmTcXBwsCh3dHRk8uTJAMTFxfHtt99mxvBFRERE5CmkeMZSeHg4H3zwAXB/+4wvvvgizVW4Urumz43xzO7du83vhw8fnmzMANWrV+fVV18F7o/7xIkTyeoonhERERGRx0kxjaWk1/UjR45MsU6bNm3MK+f+9ddfhIeHJ6uT22Ka+Ph45s+fD0Dx4sVTnfuoUaMoVqwYAOPGjUuxzqxZswgNDQVg/PjxuLu7W5RbW1tb/E6+/vrrTJmDiDw9lNAlIvIYXL16lS1btgDQrVs3i//dsGEDN2/eTFc/t2/f5sMPP6RcuXI4ODhQsGBBmjRpwooVKwCYM2cOJpMJk8lEcHBwqv3cu3ePKVOm0KhRIzw9PbGzs8PDw4PGjRsze/Zs85fqj0tcXBx9+/YlISGBYcOGUbZs2XS1Cw8PJyAgAIDGjRvj5eWVYr327duTN29eAPPvKjtt2rSJf/75B4CPPvoIGxubDPdhGAarVq0CoHz58tSuXTvFerVr1zYHpqtWrcIwjIcctYiIiIg8rRTPJLdgwQL+/fdf4P62gQ8jt8YzMTEx5vfPPvtsqvVKlSqVYhtQPCMiIiIij5dimuQy47o+N8Y0//zzjzkJq0mTJik+oAL3k7GaNGkCwMGDBzl37lyyOitXrgQgb968tG/fPsV+vLy8aNy4MQABAQEpJsWJiKRGCV0iIo/BggULiI+Px8rKiq5duwLw5ptvYjKZiI2NZdGiRQ/s49ixY1SsWJGvv/6aU6dOce/ePW7cuMGWLVto3749/fv3T9dYjh49Svny5Rk4cCBbt27l+vXrxMbGcvPmTQICAujTpw9169bl+vXrKbYPDg42ByQvv/xyun8HaZk4cSJHjhyhTJkyDB8+PN3tDhw4YA4gGjZsmGo9Ozs78w2CAwcOEBsb+2gDfkRLly4FwGQymZ9aBwgJCeGff/4hJCTkgX2cO3eOK1euAGnPPWn55cuX0wwiRURERERSongmucRrend3d+rUqWM+fuPGDU6fPk1YWNgD+8it8UxighXA2bNnU6135swZ4H7cU6ZMGYsyxTMiIiIi8jgppkkuo9f1BQoUoECBAhZluTGmuX37tvl9wYIF06ybtHzHjh0WZTExMezfvx+AOnXqpLoqM/zf7yY6OprAwMAMj1lEnl5K6BIReQx+/vlnAF5++WWKFCkCQMmSJalbty7w4CV979y5Q/Pmzc0X8N27d+e3334jMDCQxYsXU6dOHWbOnMn06dPT7Of06dM0bNiQ8+fPkzdvXoYPH86KFSsIDAxk48aNDBgwABsbGw4cOEDbtm0fy0X1uXPnGDNmDABTp07F3t4+3W2PHz9ufl++fPk06yaWx8XFmVfHyi579+4FoESJEri4uLBw4UIqV65MgQIFKFu2LAUKFKBcuXJMmDCB6OjoFPt4mLkDKW51IiIiIiKSFsUzlhISEjhw4AAAlStXxjAMJk+ezLPPPkvBggUpU6YMrq6uvPDCC8yePZuEhIQU+8mt8UyXLl3MT9ePHz+e+Pj4ZHUOHz7MunXrAOjatau5fiLFMyIiIiLyOCmmSa5Pnz7m1am++OKLFOusW7eOw4cPA/DWW28lK8+NMY2zs7P5feJKXalJWp50rgCnTp0yx0KKaUQkq2R8jycREcmQI0eO8OeffwL/t4Rvom7durFr1y4OHjzI8ePHee6551LsY8yYMeanl7/77jvee+89c1n16tV5/fXX6dChg3nLitT4+PgQGhpK1apV2bRpU7L9vJs2bcqrr75Kq1at2LdvH3PmzKFv374ZnnNGvPXWW0RGRtKlSxfzsrPpdenSJfP71JbyTVS0aFHz+4sXL6b6u85qCQkJ/P3338D9p/nfe+89vv/++2T1Tp06xdChQ1mxYgXr1q0jX758FuWPMncRERERkfRSPJPcxYsXzdtkuLm50aFDhxS3DTl69Ch9+vRhzZo1/PLLL8me2M6N8Qzcj2N+/vlnunTpwq5du6hZsyaDBw+mbNmy3L17l127dvHNN98QExNDtWrV+Oabb5L1oXhGRERERB4XxTQpq1ChAj/88AMDBgxgyZIl3Lhxg/79+/Pss89y69YttmzZwpQpUwBo1qxZirur5MaYpnTp0tja2hIbG8sff/yRZt2k5RcuXLAoU0wjIo+DVugSEcliiU92ODg40KFDB4uyN954w/ylfmpPgERHRzNnzhwAatasaREoJLK2tmbGjBnkyZMn1XHs2LGD3bt3AzB37txkgUKi5s2b8/rrrwOYz5tV5s+fz6ZNm3B1deXbb7/NcPuke40nfaoiJU5OTub3d+/ezfC5MktoaKj5Cf1jx47x/fffU6hQIebPn09ISAiRkZH8/vvv5uWHd+/eTa9evZL1kxvnLiIiIiK5j+KZ5JJukb5u3TpWrFhB2bJlWb16NWFhYYSHh7N27VrzU9irVq1i2LBhyfrJzdf0bdq04eDBg/Tp04cjR47g4+NDnTp1aNKkCX5+fjg6OvLdd9+xY8eOFLcxyc1zFxEREZHcRTFN6vr378+ePXto374927Zto3Pnzrz44ou0bNmSiRMnUrRoUWbPns3atWstrssT5cbreicnJ1555RUA/vzzz1S321y0aBHHjh0z/5x0rv/9ObfMXURyHyV0iYhkobi4OBYuXAhA69atk20z4ebmRsuWLYH7e7intBVHYGAgd+7cAZI/PZJUwYIFadasWarlq1evBu7vi165cuU0x92gQQPg/l7mcXFxFmUlSpTAMAwMw2D79u1p9pOW27dv8/777wPw5ZdfPnCv8pTcu3fP/D6t/ckBi60co6KiMnyuzBIREWF+f+/ePRwdHdm2bRtvvvkm+fPnx8HBgQYNGrB161aef/55AFasWMG+ffss+smNcxcRERGR3EXxTMr+e03v6enJzp07ad26NS4uLjg7O9OqVSt27NhB4cKFAZgyZYrFE9yJbRPltmv6mJgY5s2bx6pVqzAMI1n59evXmT9/Plu2bEmxfW6eu4iIiIjkHopp0hYWFoa/v3+q1+1nz57l559/TnZ/IlFuva738/PDxub+RmY+Pj58/vnnXLhwgdjYWC5cuMDnn3+Oj4+PxZz+O+bcOncRyV2U0CUikoU2btxo3lM9tQv9xOOXLl1i27ZtycqDgoLM76tXr57m+WrUqJFqWWBgIAAnT57EZDKl+Xr33XcBiI2NtXj6PDMNGTKEmzdv8uKLL6a493p6JH3aJSYmJs260dHR5vcODg4ZOs+NGzcICgpK8XXu3LmHHjPc36e+XLlyyeo5ODhY7Fu/ZMmSVPvJyrmLiIiIyNNL8UzK/ntN/+GHH/LMM88kq+fu7s7HH39sHsvy5ctT7Se3xDNwP6GtcePGjB07lpCQED788ENOnDhBdHQ0oaGhbNq0ifr16xMYGMhrr73GxIkTk/WheEZEREREHgfFNKm7du0adevWZfr06cTFxTF27FjOnDlDTEwMt2/fZsWKFVSsWJHt27fzyiuvJLtHAbk3pqlduzYzZszAxsaG2NhYRo4cSfHixbGzs6N48eKMHDkSGxsbi1jGxcXFog/FNCLyOCihS0QkCyUu0VugQAGaN2+eYp1XX32VfPnyWdRP6t9//zW/T+kmQVJpld+4ceNBw01RZGTkQ7VLy9atW5k7dy7W1tZMnz4dK6uH+3OU9AL6QcvUJn2K/kHL3/7X1KlTqVy5coqvnj17PvSYAZo2bZpq3UaNGpmfEjlw4ECq/WTl3EVERETk6aV4JmUZuaZP+oR+dl3TZ2Y8A/efZt+xYwcAs2fPZvz48ZQvXx47Ozvy5s1LkyZN2LZtG97e3hiGwdChQzl69KhFH4pnRERERORxUEyTuoEDB/LXX39hMplYt24dw4YN49lnn8XW1hY3Nzdee+019uzZQ4UKFYiJiaFXr17m5LhEuTWmAejVqxf79u2jXbt2Flsi2tjY0KZNGw4dOmSRoJc/f36L9oppRORxsMnuAYiIPKlCQ0PNS+jevn37gUuuAixfvpypU6emuBf5o4qPjwfg+eefZ/78+eluV6RIkUwfy/jx44H7T6ucPHmSkydPJquT9KmKNWvWmAOhzp07m497eXmZ31+6dCnNp18uXrxofl+0aNGHH/wjsre355lnnuHmzZsPHEuePHlwd3fn2rVr5vqJ/jv3tOSUuYuIiIhI7qF4JnVeXl6YTCbzVoNpXWMnLXvQNX1uiGcMw8Df3x+AsmXL4uPjk2I9GxsbPvvsM+rXr09CQgJz5szh22+/NZcrnhERERGRrKaYJnX//vuveQXhxo0b8/LLL6dYz9nZmU8++YRu3boRGRnJ4sWLee+998zluTGmSapatWosX76cuLg4rl69SkxMDEWKFDGvvpX036lixYoWbRXTiMjjoIQuEZEs8ssvv1jsoZ0ed+/eZfny5XTv3t18LGnW/82bNylbtmyq7f97gyCpAgUKmM9RqVKlDI0rsyUuL7tv3z66dOnywPqDBg0yv0+a0PXcc8+Z3//9999p9pFYbmNjQ5kyZTI0Xj8/P/z8/DLUJi2JyxTD/wVxqUksT1ypK9HDzB2gQoUKGRmqiIiIiDylFM+kzsnJieLFixMcHAykfU2ftCwzrumzO565fv26ecuXqlWrplk36XY0/52f4hkRERERyWqKaVJ38uRJEhISgPtJTWnJ7Ov67I5pUmJjY5NiotXBgwfN71988UWLsrJly2JtbU18fLxiGhHJMkroEhHJIolL8xYqVMhin+3UDB06lEuXLjFv3jyLYCFp1v/BgwepV69eqn0k7sGekqpVq7J7927Onj3LtWvX8PT0TM80crSaNWtiZ2dHTEwMv//+O8OGDUuxXkxMDHv37jW3sbW1fZzDTKZBgwbmhK6zZ8+meiMkLCyMW7duAcmfwilZsiSFCxfmypUr/P7772me748//jD3UaJEiUcbvIiIiIg8FRTPpK1BgwbmhK6zZ89a3ORI6syZM+b3/72mz43xTNKktLi4uDTrxsbGptgOFM+IiIiISNZTTJO6zLquz40xTXrFx8ebVzErWrQodevWtSi3s7PjxRdfZM+ePezZs4eYmJhUV4FLjHns7e3TXMVMROS/rLJ7ACIiT6Jz586xa9cuADp06EDnzp0f+OrQoQMAW7du5fLly+a+atSogaurK0Cay/Bev36djRs3plrepk0b4P4WGZMmTXrkOT6K7du3YxhGmq+kW3ecO3fOfDwpFxcXGjVqBMCWLVtSXdZ2+fLlhIWFAdCuXbssmlX6Jf5bA6xYsSLVeitWrDDP+aWXXrIoM5lMtG3bFrj/dEdiMPRfe/fuNT/90bZtW0wm0yONXURERESefIpnHiy91/SJNwAg+TV9boxn3NzcyJs3LwB79uxJ8+ZP0kStkiVLWpQpnhERERGRrKSYJm0lSpQwX1vv2LEjzbppXdfnxpgmvWbPns2FCxcA6N+/P9bW1snqvPbaa8D9h/OTxn5JXbp0iS1btgDQqFEjXFxcsmbAIvJkMkREJNP5+fkZgAEY27dvT1ebHTt2mNuMGzfOomzgwIHmsu+++y5Z2/j4eKNt27bmOoBx7ty5ZPVefPFFAzCsra2NJUuWpDmeP//801i9enWy4+fOnTOfo2HDhuma28Pw8fFJcy6JAgICzPXatGljxMXFWZTfvHnTKFasmAEY+fLlM0JCQrJszBnRokULAzCsrKyMLVu2JCu/evWq4eXlZQCGnZ2dcenSpWR1Tp48aVhbWxuAUaNGDSMyMtKiPDIy0qhRo4YBGDY2NsapU6eybD4iIiIi8uRQPPNg8fHxRqVKlQzAcHJyMoKCgpLVOX78uOHs7GwAxjPPPGNEREQkq5Mb45kuXbqYx+zn55dinZCQEOO5554z19u4cWOyOopnRERERCSrKKZ5sDp16pj7mTNnTop1goODDU9PTwMwTCaT8ffffyerkxtjGsMwUrznkiggIMBwcHAwAKNs2bJGVFRUivVu375tuLq6GoBRvHhx49atWxblcXFxRuvWrc2/n23btmXmFETkKaCELhGRLFCqVCkDMDw8PIz4+Ph0tYmPjzcKFSpkAEbFihUtym7fvm2+aAaM7t27Gxs2bDAOHjxoLFmyxKhbt64BmIMBwAgODk52jtOnTxtubm7mOq1btzbmz59v7Nu3zwgMDDTWr19vfPHFF0bt2rUNwBgyZEiyPnJaQpdhGEbnzp3Ndb29vY1Vq1YZBw4cMPz9/c3/FoAxY8aMLBtvRp08edLIly+fARh58uQxhg0bZvzxxx/GgQMHjB9++MGczAUY48ePT7WfYcOGmetVrVrVWLx4sXHgwAFj8eLFRtWqVc1lw4cPf4yzExEREZHcTPFM+uzYscOws7Mz35j48ssvjT179hh79uwxxo8fb+TPn998rsWLF6faT26LZ06cOGE4Ojpa/DssW7bMOHTokLF7925j4sSJ5hs2gNGoUaNU+1I8IyIiIiJZQTHNg23bts38gIXJZDK6d+9urFmzxjh8+LDxxx9/GJ999plRoEAB87l69+6dal+5LaYxDMPIly+f0bZtW2PmzJnGrl27jMDAQGP58uVG9+7dDSsrKwMw3NzcjCNHjqTZz/Tp083zK1WqlOHv728cOHDAWLVqleHt7W0u69Kly2OamYg8SZTQJSKSyXbu3Gm+QOvfv3+G2r7zzjvmtoGBgRZlR44cMZ555hmLJzySvnx9fY3Zs2ebf7527VqK5zh58qT5SfIHvcaMGZOsfU5M6IqMjDRatmyZ6jysrKyM0aNHZ9lYH9aOHTuMggULpjpuk8lkjBgxIs0+4uPjjV69eqX579i7d+90B60iIiIi8nRTPJMxy5YtM1xcXFIdg62trTFt2rQ0+8iN8czmzZsNd3f3B/4bvPLKK2k+ga94RkREREQym2Ka9FuwYIHh5OT0wHF07tzZiI6OTrWf3BjTPGjeFStWfGAyV6JRo0YZJpMp1b5atmyZ6ipfIiJpsUJERDLVvHnzzO8T91xPr6T1k/YD8Pzzz3P8+HGGDBlCmTJlsLe3x93dHW9vbxYuXMhPP/1k3oMcMO/p/l9ly5blyJEjLFy4kA4dOlCsWDEcHByws7OjUKFCvPzyy4wYMYKDBw8yatSoDI0/uzg4OLBu3ToWLFhAkyZN8PDwwM7OjqJFi9K1a1d27tyJn59fdg8zmfr16/PXX38xevRonn/+efLmzUuePHkoWbIkPXv25ODBg3z22Wdp9mFlZcXs2bNZt24dbdu2pXDhwtjZ2VG4cGHatm3L+vXrmTVrFlZW+pMvIiIiIg+meCZjOnToQFBQEB988AEVKlTA2dkZR0dHypUrx4ABAzh+/DhvvfVWmn3kxnimcePG/P3334wfP56XX36ZZ555BltbWxwcHChZsiRvvPEGK1euZMuWLeTPnz/VfhTPiIiIiEhmU0yTfl27duXvv/9m5MiR1KlTBzc3N2xsbHBycqJcuXL4+PiwdetWFi1ahJ2dXar95MaYZtasWfTs2ZOKFSvi5uaGnZ0dRYoUoUWLFvj7+3P48GGef/75dPU1ZswYdu7cSdeuXSlatCh2dnZ4eHjQpEkTFi5cyLp168iTJ08Wz0hEnkQmwzCM7B6EiIhkjj59+jB79my8vLy4ePFidg9HREREREQk3RTPiIiIiIhIbqaYRkREMpMebxMReUJERUWxatUqAGrXrp3NoxEREREREUk/xTMiIiIiIpKbKaYREZHMpoQuEZFc4syZM6S2qGJ8fDxvv/02t27dAsDHx+dxDk1ERERERCRNimdERERERCQ3U0wjIiKPm7ZcFBHJJXx9fdm/fz+dO3emVq1aeHh4EBUVxZ9//smPP/7IoUOHAGjcuDGbNm3CZDJl84hFRERERETuUzwjIiIiIiK5mWIaERF53GyyewAiIpJ+J06cYPTo0amW16tXj8WLFytQEBERERGRHEfxjIiIiIiI5GaKaURE5HHSCl0iIrnEyZMn+fXXX9myZQvBwcHcvHmT2NhYChQoQI0aNejUqROdO3fGykq76YqIiIiISM6ieEZERERERHIzxTQiIvK4KaFLREREREREREREREREREREREQkh9CWi5ksISGBK1eu4OLiouU0RURERCTHMQyD8PBwChcurCcGJUWKaUREREQkJ1NMI2lRPCMiIiIiOVlG4hkldGWyK1euULRo0ewehoiIiIhImi5evIiXl1d2D0NyIMU0IiIiIpIbKKaRlCieEREREZHcID3xjBK6MpmLiwtw/5efN2/ebB6NiIiIiIilsLAwihYtar5uFfkvxTQiIiIikpMpppG0KJ4RERERkZwsI/GMEroyWeISvnnz5lWwICIiIiI5lraekNQophERERGR3EAxjaRE8YyIiIiI5AbpiWdy7AbzkZGR/Pbbb3z++ee0b9+e4sWLYzKZMJlM+Pn5Zco5rl+/zpAhQyhXrhwODg64ubnx0ksvMWvWLAzDyJRzPI0uXrzIu+++S6lSpbC3t8fd3Z1mzZqxbt26FOsn/rs+6DVv3ryHGs+qVato06YNnp6e2NnZ4eHhQd26dfn000+T1T158iTfffcdLVu2pEiRItjZ2ZE3b15q1qzJ2LFjuXv3bqrnmTRpEqVLl8be3p4yZcrwww8/pFr38uXLuLq60rRp04eak4iIiIiIZI2MxjOJtmzZQsuWLXF3d8fBwYHy5cvzySefpBlDPMjp06fx9fXFy8sLe3t7vLy88PX15ezZs2m2Cw8P5+OPPzbHuu7u7rRq1YqtW7em2ubgwYN4e3vj4OBAgQIF8PHx4datW6nW79ChA46Ojpw5c+ah5yciIiIiIpnvwoULvPvuu+Z4IE+ePJQsWRIfHx+OHj2aarvMjGm2b9/+wHs+06dPT9YuLCyMkSNH0qpVK0qVKoWrqyt2dnYULlyYtm3bphmXbd68mZo1a5InTx48PT0ZNGgQUVFRKdZNSEjgxRdfxNPTk3///TfD8xMRERF5HExGDs1c2r59O97e3imWjR49+pGTug4ePEizZs24ffs2AM7Ozty7d4+4uDgAmjVrxurVq7Gzs8tQv2FhYbi6uhIaGvpUPv1x4MABmjdvTkhICIUKFeLFF1/k9u3b7Nu3j9jYWEaNGsWYMWMs2vj6+qba34ULF9i2bRsmk4lz585RvHjxdI8lJiaGbt26sXTpUhwcHKhTpw4FCxbk2rVr/PXXX8THxye7QeHl5cXly5fJkycPNWrUwMvLi+vXr7Nnzx7u3btHqVKl2Lp1K8WKFbNoN2XKFAYOHEihQoWoXbs2e/bs4dq1a0yYMIEhQ4YkG1u7du3YtGkTx44d49lnn033nEREREQe1dN+vSoP9jR/Rh4mngH49ttvef/99zGZTLz00ksULFiQHTt2cO3aNcqVK8fOnTtxd3fP0Fh27dpF06ZNiYyMpGLFilSqVImgoCD++usvnJyc2LJlC7Vr107W7saNG7z00kucOnWKQoUKUb9+fa5fv86OHTuA+w+iDBw40KLN1atXKVeuHJGRkTRr1oxbt26xf/9+qlatyr59+7C1tbWov3r1atq2bcvYsWMZNmxYhuYlIiIi8qie5utVebCn/fOxb98+mjRpQnh4OEWKFKF69epYW1tz5MgRzp07h42NDQsXLqRjx44W7TI7pkm8x1ewYEGaN2+eYh0fH59k9wFPnz5NmTJlcHZ2plKlShQqVAgrKytOnz5tTkZ75513kj1Qf+TIEWrWrImdnR2NGzfmzJkz/PXXX7z66qusWbMm2bknTZrE4MGDWbRoEZ07d073vEREREQeVYauV40catu2bUb+/PmNRo0aGUOHDjUWLVpkeHp6GoAxevToR+r7zp075r7Kly9vHDhwwDAMw4iOjjamTJli2NraGoDx9ttvZ7jv0NBQAzBCQ0MfaYy5UVRUlFG0aFEDMDp16mRERkaay/bv328UKFDAAIxNmzalu8+3337bAIwmTZpkeDw9evQwAOO1114zbt68aVEWHx9v7NmzJ1mbV155xZg9e7YRHh5ucfzcuXNGxYoVDcDw9va2KIuLizPc3d0Nd3d383muX79uuLm5Gfny5TNiYmIs6i9fvtwAjK+++irDcxIRERF5VE/z9aqkz9P6GXnYeObQoUOGyWQyrK2tjfXr15uPR0REGI0aNTIAo0OHDhkaS0REhFG4cGEDMIYPH25RNnz4cAMwihYtajHGRG3btjUAo1GjRkZERIT5+Lp16wxra2vDysrKOHr0qEWbwYMHG4AxZ84c87Hu3bsbgLF06VKLumFhYYaXl5dRpUoVIzY2NkPzEhEREckMT+v1qqTP0/75qFKligEY/fr1s7g3ER8fb4wYMcIAjHz58hlRUVHmsqyIabZt22YARsOGDTPULjw83NizZ0+KscbWrVsNR0dHAzA2bNhgUfbaa68ZgLFt2zbDMAwjNjbWePnllw3AfA8w0YULFwxnZ2ejZcuWGRqbiIiISGbIyPVqjk3oiouLS3asePHimZLQlXjR6uDgYJw9ezZZ+ZdffmkAhrW1tXHy5MkM9f00BwsLFy40BwP//vtvsvJJkyYZgFG/fv109RcVFWXky5fPAIzFixdnaCxbtmwxAKNSpUrJEqoe1o4dOwzAAIyLFy+aj58+fdoAjL59+1rU79OnjwFY3CwJCwszihQpYrzwwgu6+SEiIiLZ4mm+XpX0eVo/Iw8bz3Ts2NEAjD59+iRrExwcbFhZWRmAceLEiXSP5YcffjAAo2zZskZ8fLxFWXx8vFG2bFkDMKZPn25R9tdff5lj2eDg4GT99u7d2wCMzp07WxyvX7++kSdPHotz7dy50wCM//3vfxZ1Bw4caFhZWRn79+9P93xEREREMtPTer0q6fM0fz5u3bplvodx48aNZOVxcXGGg4ODARiHDh0yH8+KmOZhE7oepFevXgZgvP/++xbHvby8jDJlylgcmz9/vgEYkyZNsjjeunVrw8nJKcWYSURERCSrZeR61Sp9i349ftbW1lnW97x58wDo3LkzJUuWTFY+cOBAnJ2diY+PZ8GCBVk2jifNgQMHAKhevTr58uVLVt64cWPg/tYh165de2B/v/76K3fu3MHNzY3XXnstQ2OZPHkyAIMHD062PcjDqlq1qvn9xYsXze8Tt+10c3OzqF+gQAEAi/3lhw8fzrVr1/jxxx+xsbHJlHGJiIiIiMije5h4JiYmhnXr1gHQtWvXZG2KFy9OvXr1AFixYkW6x5JYt3PnzlhZWYbtVlZWdOrUCYDly5en2K5evXopblefOMY1a9YQGxtrPn779m1cXV0tzpVSPLN//35++OEHBg4cSM2aNdM9HxERERERyXr29vbprpu4fWJWxTRZJfG+yn/nevv27XTdo1m2bBlr1qzh888/TzFmEhEREclJcmxCV1Y5efIkFy5cAKBFixYp1nF2duall14CYNOmTY9tbLld4kVx4kXyfyUGCIZhcOjQoQf25+/vD0C3bt0yFIjEx8cTEBAAQIMGDbh27Rrfffcdb7/9NoMHD2bu3LkWF/Dp9c8//5jfFypUyPy+RIkSAJw4ccKifuLPRYoUAWDv3r1MmzaNQYMGUaNGjQyfX0REREREss7DxDOnTp0iMjISINVr/MTjhw8fTvdYEutmtM/0touIiLCIb0qUKMHNmzfND6tA8ngmLi6Ovn374uXlxeeff57uuYiIiIiIyOOR9N7WiBEjLB7iSEhIwM/Pj6ioKFq0aEHRokWBrItpEl2/fp1PP/2U/v3789577zFt2jTzPbqMOnDgAEuWLMFkMtG6dWuLshIlSnDmzBmLOf83pgkNDTXfnxk0aNBDjUFERETkcXrqlggKCgoyv69UqVKq9SpVqsRvv/3G8ePHH8ewnggeHh4AnD17NsXypMfPnTuXZl/BwcFs27YNgN69e2doHGfPnjXfjNm7dy/vvPNOsgSuoUOHsnjxYl555ZV09ztu3DgAqlWrZk7igvvzrlOnDuvWrWPx4sW0atWKtWvXsm7dOqpUqULx4sWJjY2lX79+FC1alM8++yxD8xERERERkaz3MPFM4v/my5cPFxeXFNsl3ih5UAyUKDw83JxYVaxYsTT7vHnzJhERETg5OVmcI7V2efPmJW/evISFhXHu3Dmee+45ANq2bctvv/3Gu+++y/fff09ISAijRo0CMN8omTBhAn/++Sdr167F2dk5XXMREREREZHH68cff6Rly5bMnDmTdevWUaNGDaytrTl8+DCXL1+me/fuTJkyxVw/K2KapP7++29Gjx5tcczGxoaBAwfy1VdfpbmTyahRo7hw4QJRUVGcO3eOAwcOYGdnx/fff0+dOnUs6rZt25Zx48YxbNgwRo4cyT///MOECROws7OjWbNmAHz00UfcvHmT9evXJ1sJWURERCQneuoSuq5cuWJ+n5iVn5LEsrCwMO7evZvqF9bR0dFER0ebfw4LC8ukkeY+r7zyCl988QUHDx7k8OHDFlsUAkyfPt38/kG/p59++gnDMKhRowZVqlTJ0DiSPlXeu3dv6taty4QJEyhfvjxnzpzh448/Zv369bRt25ZDhw5RpkyZB/Y5Z84clixZgrW1NZMmTUpW/v333+Pt7U2XLl3Mx/LmzcuPP/4I3L/5cezYMdavX2++2QIQFRVFnjx5MJlMGZqjiIjkfLGxscTHx2f3MOQJZmVlha2tra4jRDLJw8Qz4eHhABbX+P+VGEumN1ZM7DOtfpPGp2FhYeZ66R1PWFiYxXh69+7Nzz//zOLFi1m8eLH5+EcffUS1atU4e/Ysn376KW+88QatWrUyl8fFxZGQkICdnV265iYiIrmHYRjExsaSkJCQ3UORJ5i1tTW2trbZPQyRJ0q5cuXYs2cP3bt3Z9OmTVy+fNlc9txzz/Hyyy+TN29e87GsiGkAXF1dGTx4MO3ataNs2bLkzZuXM2fO8NNPPzFlyhS+/fZb7t69y8yZM1PtY/Xq1Rw9etRiHBMnTqRXr17J6g4bNowVK1YwceJEJk6cCIDJZOKHH37A09OTXbt2MXPmTIYOHcoLL7xgbhcTE4OVlVWaiWUiIpI76R6NPA5ZHdM8dVcoSb8cd3R0TLVe0rLw8PBUE7rGjh3LmDFjMm+Audgrr7xCgwYN+OOPP2jTpg1Tp06lQYMG3L59m6lTpzJv3jxsbW2JjY1N8+mHhIQE5syZA5DihfmDGIZhfl+kSBE2btxo3rLx+eefZ/Xq1bzwwgsEBQUxbtw4Zs+enWZ/AQEB9O/fH4CvvvqK+vXrJ6tTo0YNgoKCmDt3LpcuXaJYsWL4+PhQtGhRzpw5w2effUaXLl3M23xOnjyZr776ikuXLuHg4MBrr73G5MmTU93eRUREco+wsDBu3bplkfAtklWsra1xdHTEw8NDCRUijyiz4pncyMbGhm3btrFgwQL27dtHnjx5aNWqFY0bNwbgrbfeIk+ePHz//ffA/a1W3nvvPXbt2kVCQgJVq1bl66+/plGjRtk5DRERyQQxMTHcuHGDyMhI3fyQx8Le3h53d3eLBBMReXi7du2iffv22NjYsHDhQl555RXs7OzYtWsX77//Pr1792bXrl0PvC/yqKpWrZrsIZnKlSszceJE6tevT4cOHfjxxx955513LBKskjpy5Ahw/7u2kydP8t1339GvXz8WL17MypUrLVYUc3V1JTAwkDlz5nDs2DFcXV3p2LEjNWvWJDY2lv79+/Pss8/i5+cH3L/vM3ToUA4fPoyVlRX16tVj0qRJycYsIiK5j+7RyOOWlTHNU5fQldmGDx/O+++/b/45LCzMvPzs02jp0qW0b9+eXbt20aZNG4uywYMHs3PnTgIDA3Fzc0u1jy1btnDhwgUcHBzo2rVrhseQ9CLe19fXnMyVyNramv79+zNw4EC2bNmSZl87d+6kbdu2xMTEMHr0aIt/6/8qXry4eVuSpPr374+DgwPfffcdcH81r/fee4+2bdsyZcoUjh8/jp+fH6dPn2bv3r1P3M0hEZGnSVhYGJcvX8bZ2Rl3d3etniRZxjAM4uPjiYqKIjQ0lODgYLy8vNJ8YEFEHiyj8Uxi7BEREZFqn4nbv6c3oE8az6TWb9It5ZP2+yjjsbW1xdfXF19fX4vjP//8M5s3b+bHH3+kYMGCXLhwAW9vb5ydnZk9ezaOjo74+fnRokUL9u7dS7Vq1dI1TxERyXkiIyO5ePEi1tbW5M+fHwcHB6ytrRXTSJZIXAUuNDTUvIKQkrpEHs2dO3do164dt27dYs+ePdSqVctc9uqrr/Lcc89RuXJl/P396datG97e3lkS0zxI+/bteeGFFzhy5Ahr1qxJNaErUd68ealZsyYLFiwgX758TJ06lTFjxjBhwgSLes7Ozrz77rvJ2o8bN46//vqLzZs34+DgQGBgIC1atKBMmTIsXryYqKgoPvnkE7y9vQkKCsLLyytT5ikiIo+f7tHI4/Q4YpqnLqEr6ZfjkZGRqf5CIyMjU2zzX/b29skShp5mHh4e7Nixgy1btrB161Zu375NwYIFadu2LTVq1KBw4cLA/ScxUuPv7w9Ahw4dcHV1zfAYSpQogclkwjAMnn322RTrJB6/evVqqv3s3r2bli1bEhERwSeffGJ+ciMj5s6dS0BAAP7+/nh4eAD3g4fixYuzbNkybGxsaNu2LaGhoYwfP54tW7bQtGnTDJ9HRERyhlu3buHs7IyXl5eCBHksnJ2dcXNz4/z589y6dYtixYpl95BEcrWMxjMlSpQA7t84CQ8PTzF2vHjxokXdB3FxccHNzY2QkBAuXLjA888/n2qf7u7uFlujlChRgkOHDnHhwoUU+0661WJ6xnP79m3ef/99GjZsSO/evQGYNm0aoaGhLF26lCZNmgBQpUoVKlSowIQJE1i4cGG65ikiIjnPrVu3sLW1pXjx4lhbW2f3cOQp4ODggIuLC5cuXeLWrVtK6BJ5ROvWrePmzZuUKlXKIpkr0bPPPkutWrXYtm0bW7ZswdvbO0timvSoUKECR44c4dKlSxlq17NnT6ZOncqKFSuSJXSl5NSpU3zxxRf06NHDvALxN998Q2xsLCtWrKBs2bIAeHp60qJFC6ZOncqXX36Z8QmJiEiOoHs08rhldUzz1C0FlPgFPGCxd/h/Jc2gS227RUmZyWSiSZMmjB07lpkzZ/LZZ59Ro0YNzpw5w9WrVylQoECqT22HhISwcuVKAPMNg4xydnamXLlywP3/aKck8Xhq/7Z79+6lefPmhIeH8/HHH/P5559neBy3bt1iyJAheHt707NnTwCuX7/O1atXqVmzpsWe7InbOCYuISwiIrlPbGws0dHRuLq6KlCQx8ra2ho3NzciIiKIi4vL7uGI5HoZiWfKlStnXhkvMDAwxf4Sj2dk5arEuhntM73tnJyczDcu0jJkyBDCw8OZOXOm+W9bYsxSt25dc73y5ctToEABxTMiIrlYXFwcERERuLm5KZlLHiuTyYSrqyvR0dHExsZm93BEcrXEBzvSupGY+BB9SEgIkHUxzYPcvn0bSHtBhZQkPtBy48aNdNXv378/Li4uTJw40XzsyJEjuLu7W8REukcjIpL76R6NZJesjGmeuoSuSpUqmd8HBQWlWi+x7LnnnsvyMT0tEp+W6NevH3Z2dinWWbBgAdHR0ZQqVYqGDRs+9Lk6duwIkOqWips3bwbgxRdfTFa2f/9+mjVrZk7m+uKLLx5qDO+//z4RERHMmDHDfCzxj8d/ly9O/Fl/XEREcq/4+Hjg/pZVIo9b4oqxSugSyTopxTN2dna0atUKIMWVqc6fP8/u3bsBaNeuXbrPlVh38eLFJCQkWJQlJCSwZMkS4P5WJUm99tprAOzatSvFVboSx9i6desH/r3aunUrc+fOZcSIERY3OlKKaQzDICoqSvGMiEgulngdqZ0IJDskXpckxtUi8nCKFCkCwN9//01oaGiy8tjYWA4dOgRAyZIlgayLadJy+fJlduzYAaR8jyYtAQEBAOl6QMXf35/t27fz7bffUqBAAfNxk8lEZGQkhmGYj+kejYhI7qd7NJKdsiqmeeoSusqWLWveimbDhg0p1omIiDBfTGr7u4w5fvy4eQuPRHFxcXz55ZfMmDGD0qVL88knn6TaPnG7xV69ej3wwnnFihWUL1+eRo0aJSsbNGgQ+fPnZ/369RYJVXD/psiCBQvM9ZIKDAykadOmhIWFPVIy15YtW/j5558ZOXIkZcqUMR/38PDAy8uLbdu2cebMGeD+/6kT552ZT7iIiEj20Bc/kh30uRPJHA8TzwwbNgyTycRPP/1kEWNGRkbSu3dv4uPj6dChA+XLl7dot3//fsqXL5/sOICvry+FCxfm1KlTjBw50qJs5MiRnDp1Ci8vL3r06GFRVrFiRdq2bUt8fDy9e/cmKirKXPbbb78xZ84crKysGD58eJq/h3v37tG/f38qVqzIRx99ZFGWGLPMmjXLfGz+/PlERkYqnhEReQLoulKygz53IpmjRYsWODk5ERUVRd++fbl79665LCYmhv/9739cuHABW1tbXn/9dXNZVsQ0kyZNSnEHlT///JPWrVsTFRVFqVKlaNu2rUX5woULOXjwYLJ2hmGwfPlyRowYAdx/0CYtN27cYOjQoTRt2pRu3bpZlFWrVo3IyEgWLVpkPjZz5kxzmYiI5G66tpTskFWfO5ORNAU9hytRogTnz59n9OjR+Pn5PXQ/I0eO5PPPP8fR0ZG//vor2b7fX331FR999BHW1tYcP348XZn+icLCwnB1dSU0NDTT98fMDQYPHsyMGTOoXr06RYoUITo6mr1793L9+nVKly7N5s2bU91n/fDhw1SrVg1ra2suXLhgsT1mSubMmUPPnj0pXrw4wcHByco3b95MmzZtuHfvHhUrVqRChQqcOXOGw4cPA/c/B59++qlFGzc3N/7991/y5cuXLJBIatiwYSkGKQBRUVFUrlwZR0dHDh48mCwLeObMmfTv3598+fLh7e3NqVOn+Ouvv6hXrx47duzQHxkRkVzq3r17nDt3jpIlS5InT57sHo48ZTLy+Xvar1flwZ7mz8jDxjPffvst77//PiaTiYYNG+Lh4cGOHTu4evUq5cqVY+fOnbi7u1u02b59O97e3gCkFJbv2rWLpk2bEhkZSaVKlahUqRJBQUEEBQXh5OTEli1bqF27drJ2N27coH79+vzzzz8UKlSIl156iRs3bvD7779jGAaTJk1K9mDLf3388ceMHz+enTt3UqdOHYuyK1euUKVKFW7fvs3LL7+Mg4MDmzZtwtbWln379lGlSpUH/ZpFRCQHUjwj2Smjn7+n+Xo1O4SHh/PNN9/w66+/cu7cOaytrSlbtiydO3dm4MCBqe7GkR7Lli1j7ty5HDx4kFu3bmFra4uXlxcNGjRgwIABvPDCCxnu82n/fMyfP5+ePXsSFxfHM888Q82aNbG1tSUwMJDLly9jZWXFDz/8wFtvvWXRLrNjmnz58nH37l1eeOEFSpYsiZWVlfn+TEJCAsWKFWPDhg1UqFDBop2vry9z587Fy8uLKlWqkC9fPm7fvs3ff//N+fPnARgwYACTJ09O815K165dWbVqFUFBQebVyBIdPXqU2rVrExsbS5MmTYiOjmbbtm0UKFCAY8eOUahQoYz90kVEJEdQTCPZKcvu0Rg5WEhIiHHz5k3zq2jRogZgDB061OJ4eHi4RbvRo0cbgAEY586dS9bvnTt3DE9PTwMwnnvuOSMwMNAwDMOIjo42pk6datjZ2RmA8fbbb2d4zKGhoQZghIaGPtScc7uNGzcabdu2NYoWLWrY29sbefPmNWrWrGl89dVXRmRkZJpt3333XQMwWrZsma5z/fTTTwZgFC9ePNU6J0+eNHx8fIwiRYoYtra2RoECBYyWLVsaGzduTLF+4ufmQa9t27ales5hw4YZVlZWxt69e9Mce8WKFQ1bW1vjmWeeMfr372/cuXMnXfMWEZGcKSoqyjh+/LgRFRWV3UORp1BGPn9P+/WqPNjT/Bl5lHhm8+bNRvPmzQ03NzfD3t7eKFOmjDF8+HAjLCwsxfrbtm0zxxep+eeff4wePXoYhQsXNmxtbY3ChQsbPXr0ME6fPp3mWEJDQ41hw4YZZcqUMezt7Q03NzejefPmxpYtWx74Ozh27Jhha2trvPPOO6nWOX78uPHqq68azs7OhoODg9GwYUNj9+7dD+xbRERyLsUzkp0y+vl7mq9XH7fg4GCjRIkS5utWR0dHw97e3vxz1apVjZCQkAz3e+/ePaN169YW37k7Ozub780AhpWVlTFx4sQM963Ph2EcOXLE8PX1NZ599lnD3t7esLOzM4oXL268+eabxr59+1Jtl5kxzVdffWW0bdvWKF26tOHq6mrY2NgYbm5uRv369Y2vv/461T537txpDBo0yKhRo4bh6elp2NraGo6OjkbZsmUNHx8fY8eOHQ+c/4YNGwzA+Oqrr1Kts3v3bqNhw4aGg4OD4ezsbLRq1co4fvz4A/sWEZGcSzGNZKesukeTo1foSlyR60F8fHyYM2eO+Wc/Pz/GjBkDwLlz51J8gvrgwYM0a9aM27dvA+Di4sK9e/eIjY0F7m+1uHr1auzt7TM05qf96Q+RB7l48SLjx4/nt99+49KlS7i4uFC9enUGDRpEq1at0tXH1KlTGTBgAAC9e/e22O4lIw4ePMi4ceP4448/CA0NpVChQrz66quMHDkSDw+PVNstWrSImTNncuTIEaKioihWrBht27bl448/Jn/+/Cm2WbhwIV988QWnT5+mYMGC9OrVi5EjR2JtbZ2sbkREBBUrVsTZ2ZlDhw490lNuIvL46OkPyU5aoUsykz4jIiIiTx/FM5KdtEJXzhQXF0e1atXMKxbNmzePxo0bk5CQwNKlS+nbty/h4eG0bNmSdevWZajv0aNHm3fPeOedd/j4448pUqQICQkJHD58mMGDB7Nz505MJhMHDhygevXq6e5bnw8REZGnk2IayU5ZdY/GJjMHmZtUr16dv/76i/Hjx7N27VouXryIk5MTlSpVwsfHh169emFlZZXdwxR5ohw4cIDmzZsTEhJCoUKFaNGiBbdv32bbtm1s2rSJUaNGmZMxU3P27Fk+/PBDTCZTilvTpNeyZcvo0qULcXFx1KxZk5IlSxIYGMiUKVNYunQpO3fupHTp0hZtDMPA19eXefPmYW1tzYsvvoinpyeBgYFMmDCBJUuWsHPnTooVK2bRbu3atbz55pvkz5+fVq1aceTIEcaMGcPt27eZPHlysrGNGDGCCxcusHPnTiVziTyBlu2/md1DyJDXX3wmU/tLT8L+t99+y+DBgzP1vNkh8SGDR90uXEREREQkp8ht8QxkbkyjeEaeJnPnzuXYsWMA/Prrr+atuK2srOjUqRMJCQl07dqV9evXExAQQKNGjdLd97x58wBo2LAhP/zwg/m4lZUV1atXZ+3atXh5eXH37l2WLVuWoYQuERERkbTktphG92ge3pMQ0+TohK7g4OCHaufn55euf5CCBQsyceJEJk6c+FDnEZH0u3fvHh06dCAkJIROnTrx008/4eDgANxP9GrRogWffvop9evXp0mTJin2kZCQgK+vLyaTiR49ejB37tyHGsuVK1fw8fEhLi6OGTNm0K9fPwDi4+Px9fVl/vz5dO3alX379mEymcztpk2bxrx583BxcWHt2rU0aNAAgNjYWN555x1mzZpF165d2blzp8X5Ro4ciZ2dHXv37qVs2bJERERQo0YNpk2bxieffIKnp6e5bmBgIJMnT+btt9+mbt26DzU/EZHcoF69eskSZxM999xzj3k0IiIiIiIi6ad4Rp4Gid+9ent7m5O5kurcuTOffPIJ586dY968eRlK6Lp69SoANWrUSLHc1dWVsmXLcujQIe7evfsQoxcRERGRtCimyR1ydEKXPJrcll0qj19mZ/SmZcWKFVy8eJF8+fIxffp0czIXQM2aNRk1ahTvvfcen376aaoJXZMmTWLHjh388MMP3Lhx46HH8t133xEZGUnjxo3NyVwA1tbWTJs2jTVr1nDgwAE2bdpEs2bNLM4P8P7775uTuQBsbW35/vvvWb9+Pbt27bJ4Ii0mJoZjx47xyiuvULZsWQCcnJzo1q0bI0aMYP/+/bRp0wa4n1DWr18/PD09GTt27EPPT0QkN+jTpw++vr7ZPQwRyeEU08iDPM6YRkREJJHiGXnSRUZGsmvXLgBatGiRYh2TyUTz5s2ZNm0amzZtylD/zz77LCdOnODgwYMploeGhnLq1Ckg9aSv3EIxjaRF8YyIiGQXxTS5g/YUFJHH4sCBA8D97U7z5cuXrLxx48YA7Nq1i2vXriUrP3nyJJ988gkNGzbk7bfffqSxrFixAoCuXbsmK3N2djYnWC1fvtx8PCwszPwlQuJYk3JwcKBevXrA/e0cE925c4f4+Hjc3Nws6hcoUADA4gmzb7/9lsOHDzNlypQH7pcrIiIiIiIiIiIikhVOnDhBQkICAJUqVUq1XmLZtWvXCAkJSXf/id/vbt++nQEDBnD58mUADMPg0KFDvPrqq9y9e5c6derQrVu3h52GiIiIiEiupoQuEXksEhOXEhOZ/svd3R34v6A9qfj4eHx8fDCZTMyePdtiG8SMCg8P5/Tp00DqT3clHj98+HCy8adnDkmfLPPw8MDR0ZETJ05Y1E38uUiRIsD9LWZHjx5Nu3bteO211zIyJRGRJ9rBgwd58803KVasGPb29ri5udGsWTPWr1+fYv0SJUpgMpkIDg7mt99+4+WXX8bV1ZX8+fPz6quvcuzYMXPdhQsXUqdOHVxcXMiXLx/t27fnzJkzKfa7fPly+vTpQ6VKlcifPz958uShZMmS9OrVi5MnTz7U3E6dOkX//v0pVaoUefLkwdXVlQYNGjB//vyH6k9ERERERHIWxTOSW125csX8PvH7y5QkLUva5kEGDBjAhx9+iJWVFVOnTsXLywsXFxfy5MlD9erVOX36NMOGDSMgIABra+s0+4qOjiYsLMziJSIiIiKZQzFN9lJCl4g8Fh4eHgCcPXs2xfKkx8+dO2dR9vXXX7Nv3z6++OILSpUq9UjjCA4ONr8vVqxYinWKFi2abBxubm7mLw8eNIf/jr9Nmzb8+eefTJw4kbCwMDZt2sRPP/2Eh4cHtWvXBu4/lWZjY8OUKVMebmIiIk+gSZMm8eKLL7Jw4UIKFChAmzZtqFixItu3b6dVq1Z8+umnqbadMWMGrVq1Ii4ujubNm+Ph4cG6deto0KABZ86c4cMPP8THxwdHR0eaN29O3rx5WbFiBQ0aNODff/9N1t8bb7zBokWLcHBw4JVXXqFZs2ZYWVnx008/Ub16dXbv3p2huS1dupTnn3+emTNnYmdnR8uWLalRowaHDh2ie/fu9OrVK8O/LxERERERyTkUz0huFh4ebn7v6OiYar2kZUnbPIiVlRVjx47F398fZ2dn4P4DtTExMQDcu3eP0NBQIiIiHtjX2LFjcXV1Nb8Sv9sVERERkUejmCb7KaFLRB6LV155BbifxZt05atE06dPN79P+hRVUFAQo0ePpm7dugwaNOiRx5H0iwUnJ6cU6yR+iZB0HHny5KFu3boA/Pjjj8na/PPPP2zdujVZO7j/pULBggUZMmQIrq6uNGvWjHv37vHjjz9ib2/PokWL2LBhA+PGjaNw4cLmdvfu3SM+Pv4hZyoikrtt3LiR//3vf7i5ufH7779z+PBhli5dyo4dOwgMDMTLy4vRo0fz+++/p9j+22+/ZfPmzezcuZMlS5Zw/PhxOnbsyJ07d3jttdfw9/cnMDCQgIAAli5dyt9//03dunW5cuUKU6dOTdbfggULuHHjBgcOHODXX39l1apVnD59mh9++IGIiAj69euHYRjpmtuxY8fo3r07AL/++isnTpxg+fLlBAQE8Ndff1G5cmV++ukn5s2b9/C/QBERERERyTaKZxTPSNpu3bpFo0aN8PX1pU6dOuzcuZM7d+5w9epVli9fzjPPPMO0adOoVauWeTvG1AwfPpzQ0FDz6+LFi49pFiIiIiJPLsU0OSOmUUKXiDwWr7zyCg0aNMAwDNq0acOaNWsIDQ3l7NmzfPDBB8ybNw9bW1vg/hNaAHFxcfj4+GBlZYW/v7/5eHYZNWoUJpOJVatW8dZbb/HPP/8QFhbG5s2badGihbnef8dZokQJgoKCGD9+PH379mXEiBH8+eeftGnThn///ZfBgwdTr1493nrrLQCWLFlCuXLlcHBwwMHBgVatWiVb9UtEJLfr2bMnJpMp2evll18GYPTo0RiGwfTp02nQoIFF28qVKzNx4kQAJk+enGL/gwYNolGjRuafra2tGT58OHA/WfjTTz/l+eefN5c7OjoyZMgQAAICApL116lTp2SJwCaTiXfeeYc6derw119/JdteNzVffPEF0dHRfP7557Rv396irHjx4syePRuA77//Pl39iYiIiIjI46V4RvHMk87FxcX8PjIyMtV6ScuStnkQHx8ftm/fTsOGDdm4cSP16tXD1dUVT09P2rVrx86dO3F3d+fs2bMMGzYszb7s7e3JmzevxUtERERE0qaYJnfENDbZPQAReXosXbqU9u3bs2vXLtq0aWNRNnjwYHbu3ElgYCBubm7A/f+YHjp0iPHjx1OuXLlMGUPSLxYiIiJwdXVNVufu3bsAyYL/xo0b8+OPP/Luu+8yY8YMZsyYYS4rWrQon332GcOGDTOPPyl3d3c+/PDDZMc/+OAD7ty5w8yZM83JYp07d6Z+/fqMHTuWq1ev8sknn+Dt7U1QUJB59TARkdyuXr16lC5dOtnx8uXLc+vWLfbv34+DgwOtW7dOsX1iUJHaMrotW7ZMdqxMmTLpKr9y5UqKfZ4+fZoNGzZw+vRpwsPDzasoXr9+HYCTJ0/y3HPPpdg2UUJCAr/99htwPwBJSY0aNXB2dubw4cPcu3ePPHnypNmniIiIiIg8XopnFM886ZLuInD58mWqVKmSYr2kq2clbZOWEydOsH79egCGDBmCyWRKVsfDw4MePXowceJEli9fzrx581KsJyIiIiIPRzFN7ohplNAlIo+Nh4cHO3bsYMuWLWzdupXbt29TsGBB2rZtS40aNcxBf+XKlQFYsWIFAGvWrDEH+YmCg4MBWLdunfkPxvbt2x84huLFi5vfX7hwwXyupBKX5S5RokSyst69e9OqVSuWLVvGiRMnMJlMVK1alU6dOrFw4UKL8T/I77//zk8//cTIkSPNf1zGjRuHk5MTq1evJn/+/MD9jOW3336bhQsX0q9fv3T1LSKS0/Xp0wdfX98Uyw4cOIBhGERFRWFvb59mPzdv3kzxeLFixZIdS5oUm1J5YtLvvXv3LI7Hx8ebk3nTWrL3v1vupuT27dvmekWLFk1X/SJFijywnoiIiIiIPD6KZxTPPOkqVKiAlZUVCQkJBAUFWexOkFRQUBAAnp6eKT7kmpLjx4+b35cqVSrVeok39CIjI7lx4wYFCxZM7/BFRERE5AEU0+SOmEYJXSLyWJlMJpo0aUKTJk0sjp85c4arV69SoEABqlWrZlG2c+fOVPu7du0a165dS/f58+bNS+nSpTl9+jSBgYEpJl8FBgYCJBtHIk9PT959991kx3fs2AGQbG4piY6Opn///pQrV46PP/7YfPzIkSNUqlTJnMwFUL9+fXOZiMjTICEhAbh/cd+hQ4eH6uNB2/RmZBvfSZMmMX36dDw9PZk4cSJ169alYMGC5qcyunbtyqJFi9K1P3vi3OD+FhMP8qBgSUREREREchbFM/9H8Uzu5ejoSL169dixYwcbNmxg6NChyeoYhsHGjRsBaNq0abr7Tvr5PX/+fKqrKCSutABo1wIRERGRx0gxzf/J7phGCV0ikiNMmDABgH79+mFnZwekncDk5+fHmDFj6N27N7NmzcrQudq1a8fXX3/NwoUL6dmzp0XZ3bt3WbNmDUCyPXPTEhwczK+//oqzs3Oq2cxJffHFF5w6dYrt27db/CEwmUxERERY1E38WcuKi8jTIvGpCJPJhL+/f4Yu7LPCL7/8AsCMGTOSbRkM8M8//6S7L3d3dxwcHIiKimLChAm4u7tn2jhFRERERCT7KZ6RJ4WPjw87duxg27Zt7Nu3j1q1almUL126lLNnzwLQo0ePdPeb9CHaadOmpbj6V0REBPPmzQOgSpUqODk5PcwUREREROQhKKbJObL3Ny8iT5Xjx48nW+owLi6OL7/8khkzZlC6dGk++eSTTDnXihUrKF++PI0aNUpWNnjwYBwdHdmyZQs//vij+Xh8fDzvvPMOd+7coWbNmsmeLIuJieHw4cPJ+vv7779p1aoVUVFRfPPNNxQoUCDNsR0/fpzx48fTp08fGjRoYFFWrVo1Tpw4wa5du8zHZs6caS4TEXkaFC5cmCpVqhAeHs6GDRuyeziEhIQAltv2Jvrrr78ytIKitbW1eSXHxCBERERERESeHIpn5Enh4+ND5cqVMQyDDh06EBAQANxf1WDp0qX07dsXgBYtWiT7DtbPzw+TyYTJZCI4ONiirHjx4rRu3RqANWvW0L17d86cOYNhGMTGxrJ7925efvllc7LYkCFDsnimIiIiIpKUYpqcQwldIvLYzJw5k4IFC1K/fn06derEa6+9hpeXF5988gmlSpVi8+bNmfa0VWhoKCdPnuTMmTPJygoXLsycOXOwtramX79+1K5dm86dO1O2bFl+/vlnChYsyMKFC5OtiBUZGUm1atUoVaoULVu2pGvXrtStW5dKlSpx4sQJPv30U/r165fmuAzDoF+/fri5ufHVV18lKx8xYoR5W8q2bdtSq1Yt/P39KV26NF26dHm0X4qISC7y+eefA9CzZ0/zyolJGYbBvn372LRpU5aPpUKFCgD88MMPFsvxXr16lR49ehAXF5eh/kaPHo2dnR1Dhw5l7ty5Fn0mCgoKYvny5Y82cBERERERyRaKZxTPPAlsbGxYvXo1JUqU4PLlyzRu3BgnJyecnJx44403CAsLo2rVqixYsCDDffv7+1O9enUA5s+fT+nSpXF2djZv9RgYGAjA0KFDM7T6l4iIiIhkDsU0OSOmUUKXiDw2LVu2pFmzZly4cIFVq1axbds2ihUrxldffcWff/5JiRIlHttYOnbsyL59+2jfvj1nz55lxYoVxMfHM2DAAI4ePUrp0qWTtXF0dOS9994jX7587N27l19//ZWLFy/SuXNn9u7dy8iRIx943pkzZ7Jr1y6+//578uXLl6y8efPmrF69mkqVKrFhwwZOnTpF586d+f3333F0dMyMqYuI5AqtW7dm0qRJhISE0KZNG8qUKcOrr77Km2++SdOmTfH09KR27dps3bo1y8fy8ccfY2dnx48//ki5cuXo1KkTLVq0oFSpUkRHR9OuXbsM9VetWjXmz58PgK+vL8WLF6dZs2Z069aNli1bUrRoUSpXrpwrng4REREREZHkFM8onnlSlChRgj///JNRo0ZRqVIlTCYTtra2VK9enQkTJrB3717y58+f4X7d3d3Zu3cvs2bNolmzZhQsWJDY2FhsbGx49tln6datGzt27EjxgVgRERERyXqKaXJGTGOT3QMQkadH06ZNk21j+LD8/Pzw8/NLtdzX1xdfX980+6hevTq//vprus9pZ2fHd999l+76Kenfvz/9+/dPs86rr77Kq6+++kjnERF5EgwaNIhXXnmFyZMns23bNgICArCyssLT05OqVavSqlUrOnTokOXjqFWrFoGBgYwYMYIDBw6wevVqihYtysCBAxkxYgQDBw7McJ8dO3akZs2afP/992zevJldu3YRHx9PwYIFKV26NO+++y6vv/56FsxGREREREQeB8UzimeeFC4uLowZM4YxY8aku82DvruF+yuA9e7dm969ez/iCEVEREQkKyimyf6YxmQYhpHdg3iShIWF4erqSmhoKHnz5s3WsSzbfzNbzy853+svPpPdQxAReWLcu3ePc+fOUbJkSfLkyZPdw5GnTEY+fznpelVyppz0GVFMIw+imEZEJHMonpHslNHPX066XpWcJ6d9PhTTSFoUz4iIZB7FNJKdsuoejbZcFBERERERERERERERERERERERySG05aLIU+zOhsnZPQTJ4fI1z/gSlSIiIiIiIiIiIiIiIiIiIvLwtEKXiIiIiIiIiIiIiIiIiIiIiIhIDqGELhERERERERERERERERERERERkRxCCV0iIiIiIiIiIiIiIiIiIiIiIiI5hBK6REREREREREREREREREREREREcggldImIiIiIiIiIiIiIiIiIiIiIiOQQSugSERERERERERERERERERERERHJIZTQJSIiIiIiIiIiIiIiIiIiIiIikkMooUtERERERERERERERERERERERCSHUEKXiIiIiIiIiIiIiIiIiIiIiIhIDqGELhERERERERERERERERERERERkRxCCV0iIiIiIiIiIiIiIiIiIiIiIiI5hBK6REREREREREREREREREREREREcgib7B6AiIiIyNPkzobJ2T2EDMnXfGCm9leiRAnOnz8PwKBBg5g0aVKqdb/++ms+/PBDAKytrYmLi3ukcwcHB1OyZEmKFy9OcHDwI/UlIiIiIvI0ym3xDGRuTKN4RkREREQkd8ttMY3u0TzdtEKXiIiIiGSLBQsWEBMTk2q5v7//YxyNiIiIiIhI+imeERERERGR3EwxTc6nhC4REREReexq1KjB7du3WbVqVYrlu3fv5u+//6ZmzZqPeWQiIiKpCw4OxmQypev1xx9/WLQNCQlh+PDhVKhQAQcHB/Lnz0+DBg34+eefH3lcq1atok2bNnh6emJnZ4eHhwd169bl008/TbXN6dOn8fX1xcvLC3t7e7y8vPD19eXs2bOptlm4cCEVK1bE3t6eYsWK4efnR3x8fIp1IyIiKFGiBJUqVUrzy0ERkdxI8YyIiIiIiORmimlyByV0iYiIiMhj16tXLyD1Jzxmz55tUU9ERCQncHZ2xsfHJ9VX4pdcLi4uVK9e3dzu7NmzVKtWjXHjxnHz5k0aNWpEtWrVOHjwID169MDX1xfDMDI8npiYGN544w1ee+01tmzZQsWKFXn99depVKkSZ86c4fvvv0+x3a5du3j++eeZO3cu+fLlo127duTLl4+5c+dSpUoV9u7dm6zN2rVrefPNN7l69SqtWrXCxsaGMWPGMHjw4BTPMWLECC5cuMDMmTOxs7PL8NxERHIyxTMiIiIiIpKbKabJHZTQJSIiIiKPXeXKlalRowabNm3i8uXLFmV3797ll19+wcvLi6ZNm6bY/vjx44wePZp69epRpEgR7OzsKFCgAI0bN+aXX355qDFFRUXxzTffULt2bfLly0eePHkoV64cH374Ibdv336oPkVE5Mni7u7OnDlzUn25u7sD0LlzZ5ycnMztunTpwvnz53n55Zf5559/WLt2LQEBARw9epRSpUoxd+5cZs2aleHx9O3bl6VLl/Laa69x4cIFAgICWLhwIVu3buXq1ausXbs2WZvIyEjeeOMNIiMjGT58OEFBQSxevJigoCCGDx9OREQEb7zxBlFRURbtRo4ciZ2dHXv37mX58uUcO3aM8uXLM23aNK5du2ZRNzAwkMmTJ/P2229Tt27dDM9LRCSnUzwjIiIiIiK5mWKa3EEJXSIiIiKSLXr16kVCQgJz5syxOP7LL79w9+5dfHx8sLJK+XJ14sSJfPrpp4SEhFC5cmXat29PuXLl2LZtG506deL999/P0FiuXLlCrVq1+OCDD/jnn3+oWbMmLVu2JDo6mq+//poaNWpw/vz5h52qiIg8BS5fvszGjRsB6N27t/n4nj172L9/P9bW1syaNYv8+fOby0qXLs3EiRMB+OyzzzK0SldAQADz5s2jUqVK/PLLL+ZkskRWVlbUrl07Wbs5c+Zw5coVypYty+eff25R9vnnn1O2bFkuXrzIvHnzzMdjYmI4duwYDRs2pGzZsgA4OTnRrVs34uPj2b9/v7lufHw8/fr1w9PTk7Fjx6Z7PiIiuY3iGRERERERyc0U0+R8SugSERERkWzRtWtXHBwckgUL/v7+mEymNJfy7d69O2fOnOHEiRNs2LCBxYsXs3v3bo4fP46Xlxfffvutxc3ltBiGwRtvvMGxY8fo3bs3wcHBbN68meXLl3P69GmGDBlCcHAwPXv2fJTpiojIE27OnDkkJCRQsWJFatWqZT5+4MABAEqUKEGpUqWStWvcuDEAFy9eTPffLoDJkycDMHjwYGxtbdPdbsWKFcD9VcT++6WclZUVnTp1AmD58uXm43fu3CE+Ph43NzeL+gUKFADuP7mZ6Ntvv+Xw4cNMmTKFvHnzpntcIiK5jeIZERERERHJzRTT5HxK6BIRERGRbOHq6kr79u05ffo0v//+OwAnT55k165dNGzYkGeffTbVtqmVlytXjpEjRwKwbNmydI1j48aN7Nq1ixdeeIHp06fj4uJiLrOxseGrr76iUqVKbNu2jaCgoIxMUUREniKJX34lXZ0L/i/ZKTH56b8cHR1xcHAA4ODBg+k6V3x8PAEBAQA0aNCAa9eu8d133/H2228zePBg5s6da5FkldThw4cBqFGjRorliccT6wF4eHjg6OjIiRMnLOom/lykSBEAgoODGT16NO3ateO1115L11xERHIrxTMiIiIiIpKbKabJ+WyyewAiIiIi8vTq1asXCxYswN/fn4YNG+Lv728+/iB3797lt99+4/Dhw9y6dYuYmBgArl69CtwPPNJj3bp1AHTo0AEbm+SXx1ZWVjRo0ICgoCB2795NpUqV0tWviIg8PX7//XdOnz6NnZ0d3bt3tyjz8PAA4Ny5cym2vXbtGlFRUWnW+a+zZ8+aE7b27t3LO++8kyyBa+jQoSxevJhXXnnFfCw8PJzbt28DUKxYsRT7Llq0KAA3b94kIiICJycnANq0acPixYuZOHEiffr0Ye/evfz00094eHiYt3Z8++23sbGxYcqUKemah4hIbqd4RkREREREcjPFNDmbErpEREREJNt4e3tTsmRJli1bxnfffce8efPImzcvr7/+eprt1qxZQ8+ePc03pVMSFhaWrjGcPXsWgJEjR5qfHEnNzZs309WniIg8XRK/7GrTpg3u7u4WZd7e3phMJm7evMnKlSuTrVw1ffp08/v0/u1K+vevd+/e1K1blwkTJlC+fHnOnDnDxx9/zPr162nbti2HDh2iTJkywP2ErkSJiVr/5ezsbDGexHpjx45l27ZtDBkyhCFDhgBga2vL/Pnzsbe3Z9GiRWzYsIGpU6dSuHBhcx/37t3D1tYWa2vrdM1NRCQ3UTwjIiIiIiK5mWKanE0JXSIiIiKSbUwmE76+vowePRofHx+uXbtGv379zFtPpeTy5ct06tSJqKgoPvzwQ958801KlCiBs7MzVlZWbNq0iWbNmmEYRrrGkJCQAED9+vUpVapUmnUrVqyY/smJiMhTISwszLyEfEpPL5YqVYpu3brx888/06tXL+7evUuLFi2IiopiwYIFfPnll9ja2hIbG4uVlVW6zpn0b1yRIkXYuHEj9vb2ADz//POsXr2aF154gaCgIMaNG8fs2bMfeZ4lSpQgKCgIf39/Tp8+TcGCBXnzzTcpX748//77L4MHD6ZevXq89dZbACxZsoRRo0Zx6tQpbG1tadKkCVOmTKFkyZKPPBYRkZxC8YyIiORWMTExTJ8+nV9++YXjx48TGRmJu7s7lStXxtfXl06dOlnUDwkJ4euvv2blypUEBweTJ08eKleuTN++fZOtUpxeERERfP/99/z666+cOnWKqKgoChQoQI0aNejXrx9t2rRJs/0ff/zB1KlT2blzJzdv3sTFxYXixYvToEEDvvrqK2xtbS3qT5o0icmTJ3Px4kWKFSvG4MGDGTBgQIp9X758meeee45atWqxadOmh5qfiEhuoJgmZ1NCl4iIiIhkK19fX8aMGcOaNWuABy/lu2bNGqKiomjXrh3jx49PVv7PP/9k6PyJW0u1bduWDz74IENtRUREFi9eTGRkJF5eXjRr1izFOtOmTSM8PJyVK1cmu9nxxhtvEBMTw8qVK3Fzc0vXOV1cXMzvfX19zclciaytrenfvz8DBw5ky5YtKbaLiIhIse+kWzfmzZvXoszd3Z0PP/wwWZsPPviAO3fuMHPmTEwmE6tWraJz587Ur1+fsWPHcvXqVT755BO8vb0JCgqyWAVMRCS3UzwjIiK5zaVLl2jWrBnHjx/H3d2devXq4eTkxMWLF/njjz9wcnKySOg6e/Ysr7zyCufPn6dAgQI0atSIqKgo9u7dy44dOwgICOCnn37CZDKlewy3b9+mQYMGHD9+HGdnZ+rWrUu+fPk4ffo069atY926dQwaNIhJkyYla2sYBv/73/+YNGkStra21KpViwYNGnDr1i1OnDjBd999x2effWaR0DVlyhQGDx5MoUKFaNWqFXv27OHdd9/l3r175hWIk3r33XeJi4uzWFFZRORJpZgm50rfo58iIiIiIlmkWLFitG3blgIFClC7dm1q1aqVZv2QkBAAihcvnqzMMAwWLlyYofO3aNECgKVLl6b7iRGRjAgPD8fPz4/KlSvj7OyMq6srNWvW5JtvviEmJuaR+l62bBmtW7emcOHC2NnZ4eTkRLly5ejbty9HjhzJnAmISJoSt1v09fVNdYUtJycnVqxYwe7duxk1ahR9+/blo48+YuvWrSxZsoTr168DULly5XSds0SJEuabJc8++2yKdRKPX7161XzMxcXFnDR24cKFFNtdvHgRuJ+8ldq2jEn9/vvv/PTTTwwbNoznnnsOgHHjxuHk5MTq1atp3749AwYMYNy4cZw/fz7Df6dFRHI6xTMiIpKbREVF0aRJE44fP46fnx9XrlxhzZo1LF68mF27dnHz5k1GjBhh0aZLly6cP3+el19+mX/++Ye1a9cSEBDA0aNHKVWqFHPnzmXWrFkZGsenn37K8ePHqV69OufPn2fjxo0sWbKEgwcPsm7dOmxsbPj+++/Zu3dvsrZ+fn5MmjSJunXr8s8//7Bjxw4WLlzIpk2buHjxIvv37ydPnjzm+vHx8YwZMwZ3d3f+/PNPli9fztGjR3Fzc+Pzzz8nNjbWov8VK1awcuVK/Pz8Uo23RESeJIppci4ldImIiIhItlu+fDm3bt1iz549D6xboUIF4H4iS9Kb1PHx8YwaNYrdu3dn6Nxt27alZs2a7N+/n549e6a4B/u///7L9OnTiYuLy1DfIufPn6dKlSqMGTOGoKAgDMMgOjqawMBAPvjgA2rXrs2///6b4X6jo6Np06YNHTt2ZO3atVy9ehV7e3vi4uI4deoUs2bNonr16nz77bdZMCsRSXT8+HH27duHyWSiZ8+eD6xfp04dxowZw8yZMxk3bhze3t6Eh4dz5MgRbGxs8Pb2Ttd5nZ2dKVeuHAC3bt1KsU7i8f+uhlWtWjUAAgMDU2yXeDyxXlqio6Pp378/5cqV4+OPPzYfP3LkCBUqVCB//vzmY/Xr1zeXiYg8aRTPiIhIbjF27Fj+/vtv+vXrx+jRo5NtS+jo6MgLL7xg/nnPnj3s378fa2trZs2aZXGNX7p0aSZOnAjAZ599lqGb8Fu3bgXgo48+SrZSccuWLc2x0X//tp48eZIvv/ySggULsm7duhSTCWrWrImNzf9tUhUcHMytW7do164d7u7uAHh4eNC+fXvu3LnDiRMnzHXDw8MZOHAgL7zwAv/73//SPR8RkdxOMU3OpIQuEREREclVWrduTfXq1bl06RJly5bl1VdfpVOnTpQqVYrx48fz0UcfZag/KysrVq5cyQsvvMDcuXMpWbIk9erVo0uXLnTo0IGqVavyzDPP8Pbbbz91wYI8mri4OFq3bk1wcDCFChVi8+bNREREEBkZyeLFi3FxceHw4cN069Ytw31/+eWX5iWw33nnHS5dukR4eDhRUVEEBgZSv359EhISGDJkCAcPHszsqYnI/zd79mwAvL29H/rJ7alTpxIVFUXHjh0pWLBgutt17NgRwGJLxaQ2b94MwIsvvmhxvF27dsD9rSITEhIsyhISEliyZAkA7du3f+AYvvjiC06dOsWMGTMstn00mUzJtnRM/Dkj27CIiDyJFM+IiEh2iY2NZdq0aQAMHTo0XW0OHDgA3F8luFSpUsnKGzduDGBeGSu9kq6glZbEBKxE06ZNIy4ujr59+5IvX7509XH79m2AZIljBQoUACy3nR8+fDjXrl3jxx9/tEgKExGR/6OY5vFRQpeIiIiI5Co2NjZs376djz/+mCJFihAQEMD27dupWrUqe/bsoXnz5hnus3Dhwuzdu5fp06fz4osvcvLkSZYtW8bOnTsBeOutt9i4cWO6v2wSAZg7dy7Hjh0D4NdffzV/yWllZUWnTp2YMWMGAOvXrycgICBDfc+bNw+Ahg0b8sMPP1CkSBFz39WrV2ft2rU4OztjGAbLli3LrCmJSBKxsbHMnz8fgN69e6dZ98yZM8meLjQMA39/f0aOHImbmxvffPNNsnYrVqygfPnyNGrUKFnZoEGDyJ8/P+vXrzf/9yTR4sWLWbBggbleUr6+vhQuXJhTp04xcuRIi7KRI0dy6tQpvLy86NGjR5pzOn78OOPHj6dPnz40aNDAoqxatWqcOHGCXbt2mY/NnDnTXCYi8jRTPCMiItnl0KFD3Lp1i8KFC1O6dGmOHTvGmDFj6N+/P8OGDWPdunXJHvpITHZKTH76L0dHRxwcHAAy9EBZ4vZa48ePN2/dlWj9+vVs27YNT09P2rRpY1G2ceNGABo0aMCdO3eYMWMGAwYMYODAgcyYMSPFFYxLlCgBYLESV9KfE79T2bt3L9OmTWPQoEHUqFEj3XMREXnaKKZ5fEyGNqHMVGFhYbi6uhIaGkrevHmzdSzL9idfik4kqcYhi7N7CJLD5Ws+MLuHIJJr3Lt3j3PnzlGyZMmn7oJSsl9GPn856Xr1SdegQQN27NiBt7e3eSuBpAzDoFSpUpw7d44ePXowd+7cdPedJ08eoqOjGTJkCBMmTEixTvXq1Tl06BDvvvsukydPTnffOekzophGHuT1F5/JtnOvWLGC9u3bky9fPq5evZrmf3+/++47hg4dSrVq1ShWrBiGYRAYGMj58+fx8PDgt99+SzHRac6cOfTs2ZPixYsTHBycrHzz5s20adOGe/fuUbFiRSpUqMCZM2c4fPgwcD9B69NPP03WbteuXTRt2pTIyEgqVapEpUqVCAoKIigoCCcnJ7Zs2ULt2rVTnY9hGLz00kucOXOGEydOJHsyfsOGDbRs2ZI8efLQpEkTrl27xv79+yldujRHjx7F0dEx1b5FJHsonpHslNHPX066XpWcJ6d9PhTTSFoedzzz448/0q9fP1588UW8vb356quvkm2TWLVqVVauXEmxYsUAmDVrFn379uWZZ57hxo0byfq8du0ahQoVAuCDDz7g66+/TtdYIiIi6NChAxs3bsTZ2Zl69eqRL18+Tp8+zcGDB6lXrx6zZ882bzUPEBMTQ548eTAMgxkzZjBy5MhkY3J2dubHH3+kc+fOFsfr1q3L/v37mT9/Pq1atWLt2rV0796dihUrcvToUWJjY6levTphYWH89ddfODk5pWseIpJzKKaR7JRV92i0QpeIiIiIiEgmi4yMNK9Mk/jU6X+ZTCbz00qbNm3KUP+JW7ul9vRraGgop06dAtBTpSJZxN/fH4CuXbs+8IuaevXq0aFDB27evMn69evZsGEDefPmZeTIkZw8efKhV61q0qQJR48excfHhzt37rBq1SouXLhAy5Yt2bhxY4rJXInjOXr0KD169CAkJIRff/2VkJAQevTowdGjR9NM5oL7q23t2rWL77//PsVtTpo3b87q1aupVKkSGzZs4NSpU3Tu3Jnff/9dyVwiIiIiItkkcevBw4cPM378eN555x1OnjxJaGgomzdvpmzZshw+fJhWrVoRGxsL3N9e3mQycfPmTVauXJmsz+nTp5vfh4WFpXssTk5OrFmzhg8++ICIiAg2btzIkiVLOHjwIAUKFKBx48bmlbMShYSEmBPQ3n33XTw9Pdm+fTthYWH8/fff+Pr6cvfuXbp168aOHTss2n7//fc4ODjQpUsX8ubNS9euXXFycuLHH38EYMKECRw7doxp06ZZJHNFRUUlS3oTERF5XLT5r4iIiIiISCY7ceKEeZuCSpUqpVovsezatWuEhITg5uaWrv7ffvttBg0axPbt2xkwYIB5eWvDMDh8+DDvvfced+/epU6dOnTr1u3RJyQiyaxZsybddWvWrMnixRlfIdnX1xdfX98065QtW5Y5c+ZkuO/SpUtnaGXApPr370///v3TrPPqq6/y6quvPlT/IiIiIiKS+RITk2JjY+nSpQtTpkwxlzVu3JjNmzdTrlw5goKCWLx4Md27d6dUqVJ069aNn3/+mV69enH37l1atGhBVFQUCxYs4Msvv8TW1pbY2FisrNK/jsjVq1dp27Ytf/75J59//jldunTBw8OD48ePM2LECMaMGcPKlSvZsWMHLi4uFuMHcHBwYMuWLTzzzP1VzsqVK8dPP/3E9evX+e233/Dz8yMgIMBcv0aNGgQFBTF37lwuXbpEsWLF8PHxoWjRopw5c4bPPvuMLl26mB/Kmzx5Ml999RWXLl3CwcGB1157jcmTJ6e69aSIiEhW0ApdIiIiIiIimezKlSvm9/99ojSppGVJ2zzIgAED+PDDD7GysmLq1Kl4eXnh4uJCnjx5qF69OqdPn2bYsGEEBARgbW2dZl/R0dGEhYVZvERERERERETkyZKYGAWk+IBGsWLFaNWqFQBbtmwxH582bRqvvfYa//77L927d8fd3Z2iRYsybNgw2rVrZ26T3ofUAHx8fDhw4ACfffYZH3/8MSVLlsTJyYmaNWuydu1aKleuzNGjR5kwYUKK42/fvr05mSupd955B4AdO3YQExNjUVa8eHFGjRrFzJkzGTFiBEWLFjX/LhwcHPjuu++A+6t5DRo0iOrVq7Ny5UpGjhzJr7/+SosWLcwP74mIiDwOSugSERERERHJZOHh4eb3aW0vlrQsaZsHsbKyYuzYsfj7++Ps7AzA3bt3zV9W3rt3j9DQUCIiIh7Y19ixY3F1dTW/Er/QFBERERERCQ8Px8/Pj8qVK+Ps7Iyrqys1a9bkm2++SZYskR7BwcGYTKZ0v3r27JkFsxJ5Oj377LMpvk+pztWrV83HnJycWLFiBbt372bUqFH07duXjz76iK1bt7JkyRKuX78OQOXKldM1jsuXL7N582YAunTpkqzc1taW119/HbBMLHN2djYncT1o/LGxsdy6deuBY5k7dy4BAQFMmDABDw8PAMaNG0fx4sVZtmwZbdu2Zfjw4fzvf//jwIEDFuMRERHJakroEhERERERyWVu3bpFo0aN8PX1pU6dOuzcuZM7d+5w9epVli9fzjPPPMO0adOoVasWly9fTrOv4cOHExoaan5dvHjxMc1CRERERERysvPnz1OlShXGjBlDUFAQhmEQHR1NYGAgH3zwAbVr1+bff//NUJ/W1tYULFgwzZerq6u5fs2aNTN7WiJPrWrVqmEymQBSTXZKPJ748FhSderUYcyYMcycOZNx48bh7e1NeHg4R44cwcbGBm9v73SN48KFC+b3efPmTbFO4n8HQkJCLI5Xr149XeNPbQ7/rTtkyBC8vb3NyaPXr1/n6tWr1KxZExsbG3Pd+vXrA3DkyJE0+xQREclMNg+uIiIiIiIiIhmRdBuAyMjIVOslLUva5kF8fHzYvn07DRs2ZOPGjeYvZF1dXWnXrh316tWjYsWKnD17lmHDhvHzzz+n2pe9vT329vbpPrdITnJnw+TsHoLkYPmaD8zuIYiIiORacXFxtG7dmuDgYAoVKsS8efNo3LgxCQkJLF26lL59+3L48GG6devGunXr0t1v0aJFuXbtWpp1Bg4cyJQpU3BwcKBr166POhUR+f88PT2pX78+O3bsYMuWLVStWtWiPDY2lt9//x2AF198MV19Tp06laioKLp06ULBggXT1aZIkSLm9/v27aNJkybJ6uzduxeAkiVLWhzv2LEjGzZsYOvWrSQkJGBlZbl2SeLKX+XKlUs1WSzR+++/T0REBDNmzDAfS/x+5b8rnif+nFguIiLyOGiFLhERERERkUxWuHBh8/u0VshKWpa0TVpOnDjB+vXrARgyZEiKXyZ6eHjQo0cPAJYvX45hGOnqW0REREREBO5vQ3bs2DEAfv31Vxo3bgzc3/69U6dO5gSI9evXExAQkGnnvXfvHgsWLACgQ4cO5MuXL9P6FhEYPXo0AGPHjjUnTcH9JM4hQ4Zw9uxZXFxcLLY7PXPmDDdv3rToxzAM/P39GTlyJG5ubnzzzTfJzrVixQrKly9Po0aNLI4XK1bMvPree++9R3BwsEX5/PnzWbJkCUCypM5u3bpRqlQpgoKCGDVqFAkJCeaybdu2MXHiRAAGDRqU5u9hy5Yt/Pzzz4wcOZIyZcqYj3t4eODl5cW2bds4c+YMAPHx8fj7+wP3VzkTERF5XJTQJSIiIpKJlDQh2UGfu5ynQoUK5qdEg4KCUq2XWObp6Ymbm1u6+j5+/Lj5falSpVKtl/iFZGRkJDdu3EhX3yIiIvJ003WlZAd97nKmuXPnAuDt7U2dOnWSlXfu3Nm8cs68efMy7bzLly83b+PYp0+fTOtXRO5r1KgRn332Gf/++y8vvfQS9erVo0OHDpQpU4bJkyfj4ODAokWLLFbbWrNmDYULF6ZWrVp07NiR119/nZIlS9K7d2/y58/P5s2bKVSoULJzhYaGcvLkSXNiVFL+/v64u7tz4sQJKlSogLe3Nx07dqRSpUp0794dwzDo1q0bb775pkU7Ozs7li9fjpubG1988QVly5bl9ddfp06dOjRu3JjIyEh8fHx4++23U/0dREVF8dZbb1G5cmWGDh2arHzkyJHcu3ePGjVq0L59e55//nk2bdpEvXr1eOWVVzLy6xaRbKBrS8kOWfW5U0KXiIiISCZITNyIj4/P5pHI0yjxc/ffZeYl+zg6OlKvXj0ANmzYkGIdwzDYuHEjAE2bNk1330n/nc+fP59qvevXr5vfOzs7p7t/ERERefoonpHspHgm54mMjGTXrl0AtGjRIsU6JpOJ5s2bA7Bp06ZMO/fs2bOB+w+oNGzYMNP6FZH/M2LECDZu3EiTJk34+++/WbNmDfHx8fj6+nLo0CFatWplUT8x6evmzZusX7+eDRs2kDdvXkaOHMnJkycfatWqSpUqERQUxEcffUTZsmU5cOAAK1eu5MaNGzRr1owlS5bw888/p7gqeZUqVQgKCmLAgAHEx8ezZs0a/v77bxo2bMiiRYuYM2dOmlsjfvrpp5w7d44ff/wRW1vbZOX9+vXjp59+okiRIqxdu5YbN27Qv39/1q1bpy0XRXIwxTSSnbIqprHJ1N5EREREnlK2trZYW1sTFRWlxAl57MLDw7G1tU3xSyjJPj4+PuzYsYNt27axb98+atWqZVG+dOlSzp49C2DeHjE9kn5ROm3atBRvsERERJifkq9SpQpOTk4PMwURERF5SiReS969e1fxjDx2UVFRWFtbK57JQU6cOGHexqxSpUqp1kssu3btGiEhIeledTg1Z8+eZdu2bQD07t37kfoSkbQ1bdo03Q+X1axZk8WLF2f4HL6+vvj6+qZaXrBgQcaNG8e4ceMy3HehQoWYMmUKU6ZMyXDbsWPHMnbs2DTrPGjsIpLz6B6NZKesimn0yIuIiIhIJjCZTDg6OhIaGqonQOSxioqKIiwsDBcXFz0lmMP4+PhQuXJlDMOgQ4cOBAQEAJCQkMDSpUvp27cvcP+J90aNGlm09fPzw2QyYTKZCA4OtigrXrw4rVu3Bu5ve9C9e3fOnDmDYRjExsaye/duXn75ZXOy2JAhQ7J4piIiIpLbmUwmXFxcCA0NJSoqKruHI0+R+Ph4QkNDcXR0VDyTg1y5csX8vkiRIqnWS1qWtM3D8vf3xzAMbGxs8PHxSVeb6OhowsLCLF4iIiLy9NE9GskuWRnTaIUuERERkUzi4eFBcHAw58+fx83NDXt7e30hLVnCMAzi4+MJDw8nLCwMe3t73N3ds3tY8h82NjasXr0ab29vgoODady4MY6OjiQkJHDv3j0AqlatyoIFCzLct7+/P82bN+fgwYPMnz+f+fPn4+joSExMDHFxceZ6Q4cOzdDqXyIiIvL0cnd3JyoqigsXLpA3b15cXFywtrZWTCNZwjAMoqOjCQkJISEhAQ8Pj+wekiQRHh5ufu/o6JhqvaRlSds8jPj4eObMmQNAq1at8PT0TFe7sWPHMmbMmEc6t4iIiDwZdI9GHqfHEdMooUtEREQkk9jZ2eHl5cWtW7e4evVqdg9HngK2trbky5cPd3d3rK2ts3s4koISJUrw559/MmHCBJYvX865c+ewtbWlYsWKdOnShYEDB2JnZ5fhft3d3dm7dy9z585l6dKlHDlyhJCQEGxsbChWrBh169alf//+1K9fPwtmJSIiIk8ia2trihYtyq1btwgPD+fOnTvZPSR5Cjg5OeHp6flQ18TyZNmwYQOXL18GoE+fPuluN3z4cN5//33zz2FhYRQtWjTTxyeSFe5smJzdQ5AcLl/zgdk9BJFcRfdoJDtkZUyjhC4RERGRTOTo6EixYsWIi4uzWCVHJLNZWVlha2urJ4xyARcXF8aMGZOhp8b9/Pzw8/NLs46NjQ29e/emd+/ejzhCERERkfusra0pWLAgHh4exMbGkpCQkN1DkieYjY0NNja6RZETubi4mN9HRkamWi9pWdI2D2PWrFnA/W0cW7Roke529vb22NvbP9K5RURE5MmhezTyOGV1TKNoSURERCQL6ItpERERERHJrUwmk1ZMEnmKFS5c2Pz+8uXLVKlSJcV6iStq/bdNRl2/fp21a9cC4OvrqxWoRURE5JHpHo08CayyewAiIiIiIiIiIiIiIiKSM1SoUAErq/u3j4KCglKtl1jm6emJm5vbQ59v3rx5xMXFYTKZ6NWr10P3IyIiIiLyJFFCl4iIiIiIiIiIiIiIiAD3tyqqV68eABs2bEixjmEYbNy4EYCmTZs+0vlmz54NgLe3N88+++wj9SUiIiIi8qRQQpeIiIiIiIiIiIiIiIiY+fj4ALBt2zb27duXrHzp0qWcPXsWgB49ejz0eXbu3MnJkycB6NOnz0P3IyIiIiLypFFCl4iIiIiIiIiIiIiIiJj5+PhQuXJlDMOgQ4cOBAQEAJCQkMDSpUvp27cvAC1atKBRo0YWbf38/DCZTJhMJoKDg9M8z6xZswBwc3Ojffv2mT8REREREZFcyia7ByAiIiIiIiIiIiIiIiI5h42NDatXr8bb25vg4GAaN26Mo6MjCQkJ3Lt3D4CqVauyYMGChz5HWFgYS5cuBaBbt27Y29tnythFRERERJ4EWqFLRERERERERERERERELJQoUYI///yTUaNGUalSJUwmE7a2tlSvXp0JEyawd+9e8ufP/9D9L168mMjISEDbLYqIiIiI/JcSukRERERERERERERERCQZFxcXxowZw7Fjx7h79y5hYWEEBgYyZMgQ7OzsUmzj5+eHYRgYhkGJEiVS7btfv37mepUrV86iGYiIiIiI5E5K6BIREREREREREREREREREREREckhlNAlIiIiIiIiIiIiIiIiIiIiIiKSQyihS0REREREREREREREREREREREJIfI8Qld4eHh+Pn5UblyZZydnXF1daVmzZp88803xMTEPFLfy5Yto3Xr1hQuXBg7OzucnJwoV64cffv25ciRI5kzARERERERERERERERERERERERkXSyye4BpOX8+fO8/PLLBAcHA+Do6Eh0dDSBgYEEBgayYMECAgICyJ8/f4b6jY6OpmPHjqxZs8Z8zNnZmZiYGE6dOsWpU6fw9/dnwoQJ/O9//8vMKYmIiIiIiIiIiIiIiIiIiIiIiKQqx67QFRcXR+vWrQkODqZQoUJs3ryZiIgIIiMjWbx4MS4uLhw+fJhu3bpluO8vv/zSnMz1zjvvcOnSJcLDw4mKiiIwMJD69euTkJDAkCFDOHjwYGZPTUREREREREREREREREREREREJEU5NqFr7ty5HDt2DIBff/2Vxo0bA2BlZUWnTp2YMWMGAOvXrycgICBDfc+bNw+Ahg0b8sMPP1CkSBFz39WrV2ft2rU4OztjGAbLli3LrCmJiIiIiIiIiIiIiIiIiIiIiIikKUcndAF4e3tTp06dZOWdO3emZMmSwP8laKXX1atXAahRo0aK5a6urpQtWxaAu3fvZqhvERERERERERERERERERERERGRh5UjE7oiIyPZtWsXAC1atEixjslkonnz5gBs2rQpQ/0/++yzAKlupxgaGsqpU6eA1JO+REREREREREREREREREREREREMluOTOg6ceIECQkJAFSqVCnVeoll165dIyQkJN39v/322wBs376dAQMGcPnyZQAMw+DQoUO8+uqr3L17lzp16tCtW7eHnYaIiIiIiIiIiIiIiIiIiIiIiEiG5MiEritXrpjfFylSJNV6ScuStnmQAQMG8OGHH2JlZcXUqVPx8vLCxcWFPHnyUL16dU6fPs2wYcMICAjA2to6zb6io6MJCwuzeImIiIiIiIiIiIiIiIiIiIiIiDyMHJnQFR4ebn7v6OiYar2kZUnbPIiVlRVjx47F398fZ2dnAO7evUtMTAwA9+7dIzQ0lIiIiAf2NXbsWFxdXc2vokWLpnscIiIiIiIiIiIiIiIiIiIiIiIiSeXIhK6sduvWLRo1aoSvry916tRh586d3Llzh6tXr7J8+XKeeeYZpk2bRq1atczbMaZm+PDhhIaGml8XL158TLMQEREREREREREREREREREREZEnjU12DyAlLi4u5veRkZGp1ktalrTNg/j4+LB9+3YaNmzIxo0bMZlMALi6utKuXTvq1atHxYoVOXv2LMOGDePnn39OtS97e3vs7e3TfW4REREREREREREREREREREREZHU5MgVugoXLmx+n9YKWUnLkrZJy4kTJ1i/fj0AQ4YMMSdzJeXh4UGPHj0AWL58OYZhpKtvERERERERERERERERERERERGRR5EjE7oqVKiAldX9oQUFBaVaL7HM09MTNze3dPV9/Phx8/tSpUqlWq9MmTLA/VXAbty4ka6+RUREREREREREREREREREREREHkWOTOhydHSkXr16AGzYsCHFOoZhsHHjRgCaNm2a7r4TE8UAzp8/n2q969evm987Ozunu38REREREREREREREREREREREZGHlSMTugB8fHwA2LZtG/v27UtWvnTpUs6ePQtg3h4xPapVq2Z+P23atBTrREREMG/ePACqVKmCk5NTuvsXERERERERERERERERERERERF5WDk6oaty5coYhkGHDh0ICAgAICEhgaVLl9K3b18AWrRoQaNGjSza+vn5YTKZMJlMBAcHW5QVL16c1q1bA7BmzRq6d+/OmTNnMAyD2NhYdu/ezcsvv2xOFhsyZEgWz1REREREREREREREREREREREROQ+m+weQGpsbGxYvfr/sXfncVHW+///n4MgMoAImuKWeDR37LhVHrIkOCaZdcrjRuSay8ms1Ozkx/QDWWmlLVZafjLFQlFzycpw4aiZ5UJSglKmgguGaSoggyDM/P7wx3zhsDODDvS4325zu11zvV/v1/W6ulFn3mde8742KTAwUCkpKQoODpbRaJTZbNbVq1clSd26dVNUVFSlc3/88cfq37+/fvjhB3366af69NNPZTQalZubq7y8PGvc9OnTK7X7FwAAAAAAAAAAAAAAAADYwmF36JIkPz8/HTp0SLNnz1aXLl1kMBjk4uKiHj16aP78+dq7d6+8vb0rnbdRo0bau3evPvroI91///1q0qSJrl27JmdnZ/3lL39RWFiYdu/erddff70a7goAAAAAAAAAAAAAAAAASuawO3QV8PT0VEREhCIiIio8Jzw8XOHh4WXGODs7a+zYsRo7dqyNFQIAAAAAAAAAAAAAAACAfTj0Dl0AAAAAAAAAAAAAAAAA8GdCQxcAAAAAAAAAAAAAAAAAOAgaugAAAAAAAAAAAAAAAADAQdDQBQAAAAAAAAAAAAAAAAAOgoYuAAAAAAAAAAAAAAAAAHAQNHQBAAAAAAAAAAAAAAAAgIOgoQsAAAAAAAAAAAAAAAAAHAQNXQAAAAAAAAAAAAAAAADgIGjoAgAAAAAAAAAAAAAAAAAHQUMXAAAAAAAAAAAAAAAAADgIGroAAAAAAAAAAAAAAAAAwEHQ0AUAAAAAAAAAAAAAAAAADoKGLgAAAAAAAAAAAAAAAABwEDR0AQAAAAAAAAAAAAAAAICDoKELAAAAAAAAAAAAxWRmZio8PFz+/v7y8PCQl5eXevXqpQULFig3N9fm/GlpaZo1a5Z69OghHx8fubm5qVWrVurfv7/mzZuna9eu2eEuAAAAgJrH+WYXAAAAAAAAAAAAAMdy8uRJ9e3bVykpKZIko9GonJwcxcXFKS4uTlFRUYqNjZW3t3eV8q9evVrjx49XRkaGJKlevXqqW7euTp06pVOnTmnLli2aOHGiGjRoYKc7AgAAAGoOdugCAAAAAAAAAACAVV5engYOHKiUlBQ1bdpU27ZtU1ZWlkwmk6Kjo+Xp6an4+HiFhYVVKf/atWsVGhqqjIwMjR8/XocPH1Z2drbS09OVkZGhb775RlOmTJGLi4ud7wwAAACoGdihCwAAAAAAAAAAAFaRkZFKSEiQJK1bt069e/eWJDk5OWno0KEym80KDQ3V5s2bFRsbq6CgoArn/u233zRhwgSZzWYtWLBAU6dOLTLu6empPn36qE+fPva7IQAAAKCGYYcuAAAAAAAAAAAAWEVGRkqSAgMDrc1chQ0bNkytW7eWJK1YsaJSuRcuXKhLly6pW7dumjJliu3FAgAAALUQDV0AAAAAAAAAAACQJJlMJu3Zs0eSFBISUmKMwWBQ//79JUlbt26tVP6CBrCwsDAZDAYbKgUAAABqLxq6AAAAAAAAAAAAIElKSkqS2WyWJHXp0qXUuIKxtLQ0Xbx4sUK5k5OTdfbsWUlSjx49lJCQoNDQUDVt2lSurq5q0aKFhg4dam0oAwAAAP6saOgCAAAAAAAAAACAJFkbriSpefPmpcYVHis8pyxHjx61Hu/Zs0c9e/bUqlWrlJ6ernr16ik1NVVr1qxRnz59NGfOnHLz5eTkKCMjo8gLAAAAqA1o6AIAAAAAAAAAAIAkKTMz03psNBpLjSs8VnhOWS5dumQ9njVrlpo1a6Zt27bpypUrSk9P1+HDh9W3b19ZLBbNnj1b69evLzPf3Llz5eXlZX21bNmyQnUAAAAAjo6GLgAAAAAAAAAAAFS7gkc5SpLFYtG6desUHBwsJ6frX1d16tRJX3zxhXx9fSVJERERZeabMWOG0tPTra/Tp09XX/EAAADADURDFwAAAAAAAAAAACRJnp6e1mOTyVRqXOGxwnMqmjsoKEjdu3cvFuPh4aFJkyZJkg4dOqRz586Vms/V1VX169cv8gIAAABqAxq6AAAAAAAAAAAAIElq1qyZ9Tg1NbXUuMJjheeUpXnz5tbjjh07lhrXqVMn6/HJkycrlBsAAACoTWjoAgAAAAAAAAAAgKTrjVYFj0BMTEwsNa5gzNfXVz4+PhXK3alTJ9WpU6fcOIvFYj02GAwVyg0AAADUJjR0AQAAAAAAAAAAQJJkNBoVEBAgSYqJiSkxxmKxaMuWLZKkfv36VTh3vXr1dM8990iSkpKSSo07cuSIpOvNXH5+fhXODwAAANQWNHQBAAAAAAAAAADAauTIkZKkHTt2aN++fcXG165dqxMnTkiSRowYUanco0ePliTFxsbq4MGDxcavXLmiRYsWSZLuvPNO3XLLLZXKDwAAANQGNHQBAAAAAAAAAADAauTIkfL395fFYtGgQYMUGxsrSTKbzVq7dq3GjRsnSQoJCVFQUFCRueHh4TIYDDIYDEpJSSmW+7HHHtMdd9xRJLfZbJZ0fdeuhx56SGlpaXJyctIrr7xSvTcKAAAAOCjnm10AAAAAAAAAAAAAHIezs7M2bdqkwMBApaSkKDg4WEajUWazWVevXpUkdevWTVFRUZXO7eTkpM8//1xBQUE6cuSINbeLi4vS09MlSS4uLnr//fd133332fW+AAAAgJqCHboAAAAAAAAAAABQhJ+fnw4dOqTZs2erS5cuMhgMcnFxUY8ePTR//nzt3btX3t7eVcrt6+urgwcPav78+erVq5dcXFyUnZ0tPz8/jRkzRgcPHrTuAgYAAAD8GbFDFwAAAAAAAAAAAIrx9PRURESEIiIiKjwnPDxc4eHh5ca5urpq2rRpmjZtmg0VAgAAALUTO3QBAAAAAAAAAAAAAAAAgIOgoQsAAAAAAAAAAAAAAAAAHAQNXQAAAAAAAAAAAAAAAADgIGjoAgAAAAAAAAAAAAAAAAAHQUMXAAAAAAAAAAAAAAAAADgIGroAAAAAAAAAAAAAAAAAwEHQ0AUAAAAAAAAAAAAAAAAADoKGLgAAAAAAAAAAAAAAAABwEDR0AQAAAAAAAAAAAAAAAICDoKELAAAAAAAAAAAAAAAAABwEDV0AAAAAAAAAAAAAAAAA4CBo6AIAAAAAAAAAAAAAAAAAB0FDFwAAAAAAAAAAAAAAAAA4CBq6AAAAAAAAAAAAAAAAAMBB0NAFAAAAAAAAAAAAAAAAAA6Chi4AAAAAqEaZmZkKDw+Xv7+/PDw85OXlpV69emnBggXKzc21OX9aWppmzZqlHj16yMfHR25ubmrVqpX69++vefPm6dq1a3a4CwAAAAAAAAAAcKM43+wCAAAAAKC2OnnypPr27auUlBRJktFoVE5OjuLi4hQXF6eoqCjFxsbK29u7SvlXr16t8ePHKyMjQ5JUr1491a1bV6dOndKpU6e0ZcsWTZw4UQ0aNLDTHQEAAAAAAAAAgOrGDl0AAAAAUA3y8vI0cOBApaSkqGnTptq2bZuysrJkMpkUHR0tT09PxcfHKywsrEr5165dq9DQUGVkZGj8+PE6fPiwsrOzlZ6eroyMDH3zzTeaMmWKXFxc7HxnAAAAAAAAAACgOrFDFwAAAABUg8jISCUkJEiS1q1bp969e0uSnJycNHToUJnNZoWGhmrz5s2KjY1VUFBQhXP/9ttvmjBhgsxmsxYsWKCpU6cWGff09FSfPn3Up08f+90QAAAAAAAAAAC4IdihCwAAAACqQWRkpCQpMDDQ2sxV2LBhw9S6dWtJ0ooVKyqVe+HChbp06ZK6deumKVOm2F4sAAAAAAAAAABwGDR0AQAAAICdmUwm7dmzR5IUEhJSYozBYFD//v0lSVu3bq1U/oIGsLCwMBkMBhsqBQAAAAAAAAAAjoaGLgAAAACws6SkJJnNZklSly5dSo0rGEtLS9PFixcrlDs5OVlnz56VJPXo0UMJCQkKDQ1V06ZN5erqqhYtWmjo0KHWhjIAAAAAAAAAAFCz0NAFAAAAAHZW0HAlSc2bNy81rvBY4TllOXr0qPV4z5496tmzp1atWqX09HTVq1dPqampWrNmjfr06aM5c+aUmy8nJ0cZGRlFXgAAAAAAAAAA4OahoQsAAAAA7CwzM9N6bDQaS40rPFZ4TlkuXbpkPZ41a5aaNWumbdu26cqVK0pPT9fhw4fVt29fWSwWzZ49W+vXry8z39y5c+Xl5WV9tWzZskJ1AAAAAAAAAACA6kFDFwAAAADUIAWPcpQki8WidevWKTg4WE5O15d3nTp10hdffCFfX19JUkRERJn5ZsyYofT0dOvr9OnT1Vc8AAAAAAAAAAAoFw1dAAAAAGBnnp6e1mOTyVRqXOGxwnMqmjsoKEjdu3cvFuPh4aFJkyZJkg4dOqRz586Vms/V1VX169cv8gIAAAAAAAAAADcPDV0AAAAAYGfNmjWzHqemppYaV3is8JyyNG/e3HrcsWPHUuM6depkPT558mSFcgMAAAAAAAAAgJuPhi4AAAAAsLOOHTtaH4GYmJhYalzBmK+vr3x8fCqUu1OnTqpTp065cRaLxXpsMBgqlBsAAAAAAAAAANx8NHQBAAAAgJ0ZjUYFBARIkmJiYkqMsVgs2rJliySpX79+Fc5dr1493XPPPZKkpKSkUuOOHDki6Xozl5+fX4XzAwAAAAAAAACAm4uGLgAAAACoBiNHjpQk7dixQ/v27Ss2vnbtWp04cUKSNGLEiErlHj16tCQpNjZWBw8eLDZ+5coVLVq0SJJ055136pZbbqlUfgAAAAAAAAAAcPPQ0AUAAAAA1WDkyJHy9/eXxWLRoEGDFBsbK0kym81au3atxo0bJ0kKCQlRUFBQkbnh4eEyGAwyGAxKSUkplvuxxx7THXfcUSS32WyWdH3XroceekhpaWlycnLSK6+8Ur03CgAAAAAAAAAA7Mr5ZhcAAAAAALWRs7OzNm3apMDAQKWkpCg4OFhGo1Fms1lXr16VJHXr1k1RUVGVzu3k5KTPP/9cQUFBOnLkiDW3i4uL0tPTJUkuLi56//33dd9999n1vgAAAAAAAAAAQPVihy4AAAAAqCZ+fn46dOiQZs+erS5dushgMMjFxUU9evTQ/PnztXfvXnl7e1cpt6+vrw4ePKj58+erV69ecnFxUXZ2tvz8/DRmzBgdPHjQugsYAAAAAAAAAACoOdihCwAAAACqkaenpyIiIhQREVHhOeHh4QoPDy83ztXVVdOmTdO0adNsqBAAAAAAAAAAADgSdugCAAAAAAAAAAAAAAAAAAdBQxcAAAAAAAAAAAAAAAAAOAgaugAAAAAAAAAAAFCizMxMhYeHy9/fXx4eHvLy8lKvXr20YMEC5ebmVilneHi4DAZDua9jx47Z+W4AAACAmsH5ZhcAAAAAAAAAAAAAx3Py5En17dtXKSkpkiSj0aicnBzFxcUpLi5OUVFRio2Nlbe3d5Xyu7i4yMfHp9RxZ2e+xgIAAMCfk8Pv0FUdv/woLC0tTbNmzVKPHj3k4+MjNzc3tWrVSv3799e8efN07do1O9wFAAAAAAAAAABAzZGXl6eBAwcqJSVFTZs21bZt25SVlSWTyaTo6Gh5enoqPj5eYWFhVb7G3/72N6WlpZX68vPzs98NAQAAADWIQ/+0obp/+bF69WqNHz9eGRkZkqR69eqpbt26OnXqlE6dOqUtW7Zo4sSJatCggZ3uCAAAAAAAAAAAwPFFRkYqISFBkrRu3Tr17t1bkuTk5KShQ4fKbDYrNDRUmzdvVmxsrIKCgm5muQAAAECt4rA7dFX3Lz/Wrl2r0NBQZWRkaPz48Tp8+LCys7OVnp6ujIwMffPNN5oyZYpcXFzsfGcAAAAAAAAAAACOLTIyUpIUGBhobeYqbNiwYWrdurUkacWKFTe0NgAAAKC2c9iGrv/+5UdwcLCk//fLjw8//FCSrL/8qIzffvtNEyZMkNls1oIFC/Thhx+qU6dO1nFPT0/16dNHb775ptzd3e10RwAAAAAAAAAAAI7PZDJpz549kqSQkJASYwwGg/r37y9J2rp16w2rDQAAAPgzcOiGLql6fvmxcOFCXbp0Sd26ddOUKVNsLxYAAAAAAAAAAKCWSEpKktlsliR16dKl1LiCsbS0NF28eLHS1zl8+LC6dOkio9EoDw8PtW/fXuPGjVN8fHzVCgcAAABqCYds6KruX34UNICFhYXJYDDYUCkAAAAAAAAAAEDtcvbsWetx8+bNS40rPFZ4TkVduHBBSUlJcnNzU05Ojo4ePaqPPvpIPXr00Isvvlju/JycHGVkZBR5AQAAALWBQzZ0VecvP5KTk62Lih49eighIUGhoaFq2rSpXF1d1aJFCw0dOtTaUAYAAAAAAAAAAPBnkpmZaT02Go2lxhUeKzynPLfddptef/11/fLLL7p69ar++OMPZWVlacuWLerRo4csFoteeeUVLViwoMw8c+fOlZeXl/XVsmXLCtcAAAAAODKHbOiqzl9+HD161Hq8Z88e9ezZU6tWrVJ6errq1aun1NRUrVmzRn369NGcOXPKzcevPwAAAAAAAAAAACruscce0/Tp09WuXTu5uLhIkurWrat+/frp22+/Va9evSRJ4eHhSk9PLzXPjBkzlJ6ebn2dPn36htQPAAAAVDeHbOiqzl9+XLp0yXo8a9YsNWvWTNu2bdOVK1eUnp6uw4cPq2/fvrJYLJo9e7bWr19fZj5+/QEAAAAAAAAAAGoTT09P67HJZCo1rvBY4Tm2qFevnl599VVJ0pUrVxQbG1tqrKurq+rXr1/kBQAAANQGNjV03XfffXr99dfLjZs/f77uu+8+Wy5lNwWPcpQki8WidevWKTg4WE5O1/9RdOrUSV988YV8fX0lSREREWXm49cfAAAAQM1VE9c0AAAAACBV73qmWbNm1uPU1NRS4wqPFZ5jq969e1uPT5w4Ybe8AAAAQE1hU0PXzp079fPPP5cb98svv2jXrl0Vzludv/woHBcUFKTu3bsXi/Hw8NCkSZMkSYcOHdK5c+dKzcevPwAAAICaq7rWNAAAAABQ3apzPdOxY0frD+ETExNLjSsY8/X1lY+PT6WuAQAAAKB0N+SRi9euXbN+8K+I6vzlR/Pmza3HHTt2LDWuU6dO1uOTJ09WKDcAAACA2qmyaxoAAAAAcBRVWc8YjUYFBARIkmJiYkqMsVgs2rJliySpX79+thX5X/bu3Ws9bt26tV1zAwAAADXBDflGIiEhQQ0bNqxwfHX+8qNTp06qU6dOuXEWi8V6bDAYKpQbAAAAQO1U2TUNAAAAADiKqq5nRo4cKUnasWOH9u3bV2x87dq11schjhgxosJ5C3//UpKcnBzNnDlTkuTu7q6goKAK5wYAAABqC+fKThgzZkyR999++22xcwXy8vJ05MgR/fjjj3rooYcqfI2CX37s3r1bMTExmj59erGYqv7yo169errnnnu0Y8cOJSUllRp35MgRSdebufz8/CqcHwAAAIBjuxFrGgAAAACoDjdyPTNy5Ei98847SkhI0KBBgxQZGamgoCCZzWatW7dO48aNkySFhIQUa7oKDw9XRESEJCk5ObnI9yzffPON5syZo5EjRyowMFAtWrSQdH0nsW+++UYzZszQgQMHJEmzZ89WgwYNKl07AAAAUNNVuqFr+fLl1mODwaBjx47p2LFjZc5p1qyZXnnllUpdZ+TIkdq9e7f1lx933nlnkfGq/vJDkkaPHq0dO3YoNjZWBw8eVPfu3YuMX7lyRYsWLZIk3XnnnbrlllsqlR8AAACA47pRaxoAAAAAsLcbuZ5xdnbWpk2bFBgYqJSUFAUHB8toNMpsNuvq1auSpG7duikqKqpSeS0Wi2JjYxUbGytJcnNzk7u7u9LT03Xt2jVJkpOTk1544QU9//zzla4bAAAAqA0q3dC1bNkySdc/cI8ZM0Z33323xo4dW2Js3bp11aJFC911111ycXGp1HWq65cfkvTYY4/pvffe0/79+zVo0CB99NFHCgwMlJOTk5KSkjRp0iSlpaXJycmJL20AAACAWuZGrWkAAAAAwN5u9HrGz89Phw4d0vz587V+/XolJyfLxcVFnTt31vDhwzV58mTVrVu3Ujn9/f01f/58ff/990pISNCFCxd0+fJlGY1GderUSX369NH48ePl7+9fpZoBAACA2sBgKe9h5WXw8/PTkCFD9Prrr9uzJquUlBTrLz8klfjLj9jYWHl7exeZV15DlySlpaUpKCjI+mhFo9EoFxcXpaenS5JcXFz0/vvvWxvHKiojI0NeXl5KT09X/fr1KzXX3j7bf/6mXh+OL/hi9M0uAQ6uQf/JN7sEAICdOdLnVUdQ3WuamsiR/kZY06A8rGlQFtYzAFA7OdLn1ZuN9Uxxjvb3wZoGZWE9g/KwpgGA2qcyn1crvUNXYQWNVtWlOn75UcDX11cHDx7Ue++9p9WrV+vo0aPKzs6Wn5+f7rvvPk2ZMkVdunSx8x0BAAAAcCTVvaYBAAAAgOrCegYAAACovWxq6LoRPD09FRERYd1xqyLCw8MVHh5ebpyrq6umTZumadOm2VAhAAAAAAAAAAAAAAAAANiHXRq69u3bp+3btys1NdX6OMT/ZjAYtHTpUntcDgAAAADsijUNAAAAgJqK9QwAAABQ+9jU0JWbm6vhw4dr48aNkiSLxVJqLIsFAAAAAI6GNQ0AAACAmor1DAAAAFB72dTQNWfOHG3YsEHu7u56/PHH1bFjR9WvX99etQEAAABAtWJNAwAAAKCmYj0DAAAA1F42NXStWrVKRqNR+/btU6dOnexVEwAAAADcEKxpAAAAANRUrGcAAACA2svJlslnzpxRQEAACwUAAAAANRJrGgAAAAA1FesZAAAAoPayqaHL29tbPj4+9qoFAAAAAG4o1jQAAAAAairWMwAAAEDtZVNDV3BwsPbt2yeLxWKvegAAAADghmFNAwAAAKCmYj0DAAAA1F42NXTNmTNHFy9eVHh4uJ3KAQAAAIAbhzUNAAAAgJqK9QwAAABQeznbMvmbb77R6NGj9fLLLysmJkYDBgzQrbfeKienkvvERowYYcvlAAAAAMCuWNMAAAAAqKlYzwAAAAC1l00NXaNGjZLBYJDFYtGBAwcUFxdXZjyLBQAAAACOhDUNAAAAgJqK9QwAAABQe9nU0DVixAgZDAZ71QIAAAAANxRrGgAAAAA1FesZAAAAoPayqaFr+fLldioDAAAAAG481jQAAAAAairWMwAAAEDtVfKD1AEAAAAAAAAAAAAAAAAAN5xNO3T9t2PHjun8+fNq2LCh2rVrZ8/UAAAAAFDtWNMAAAAAqKlYzwAAAAC1h807dOXn5+vll1+Wr6+v2rdvr7vvvlvz5s2zjkdFRelvf/ubDh8+bOulAAAAAMDuWNMAAAAAqKlYzwAAAAC1k00NXfn5+XrwwQf1v//7v7p06ZI6duwoi8VSJCYgIEB79+7V+vXrbSoUAAAAAOyNNQ0AAACAmor1DAAAAFB72dTQ9cEHH2jLli0KDAxUcnKyEhMTi8X4+fmpTZs22rp1qy2XAgAAAAC7Y00DAAAAoKZiPQMAAADUXjY1dEVGRsrHx0dr165Vs2bNSo3r2LGjTp06ZculAAAAAMDuWNMAAAAAqKlYzwAAAAC1l00NXT///LPuuOMOeXt7lxnn5eWl33//3ZZLAQAAAIDdsaYBAAAAUFOxngEAAABqL5sauvLz8+Xq6lpu3G+//VahOAAAAAC4kVjTAAAAAKipWM8AAAAAtZdNDV2tWrXSoUOHyoy5du2aEhMTddttt9lyKQAAAACwO9Y0AAAAAGoq1jMAAABA7WVTQ1f//v2VkpKiJUuWlBrz7rvv6vz58xowYIAtlwIAAAAAu2NNAwAAAKCmYj0DAAAA1F7OtkyePn26li9frieffFJHjhzRkCFDJElZWVk6ePCg1qxZozfffFONGjXSU089ZZeCAQAAAMBeWNMAAAAAqKlYzwAAAAC1l8FisVhsSfDNN9/o0Ucf1cWLF2UwGIqMWSwWNWjQQJs2bdLdd99tU6E1RUZGhry8vJSenq769evf1Fo+23/+pl4fji/4YvTNLgEOrkH/yTe7BACAnTnS51VHwZqmKEf6G2FNg/KwpkFZWM8AQO3kSJ9XHQHrmaIc7e+DNQ3KwnoG5WFNAwC1T2U+r9r0yEVJuueee3T48GE9//zz6ty5s9zc3OTq6qq2bdvq6aefVkJCwp9moQAAAACg5mFNAwAAAKCmYj0DAAAA1E42PXKxQJMmTTRv3jzNmzfPHukAAAAA4IZiTQMAAACgpmI9AwAAANQ+Nu/QBQAAAAAAAAAAAAAAAACwD5sauk6fPq0VK1bol19+KTXm559/1ooVK3TmzBlbLgUAAAAAdseaBgAAAEBNxXoGAAAAqL1sauh69913NXr0aFksllJjLBaLRo0apUWLFtlyKQAAAACwO9Y0AAAAAGoq1jMAAABA7WVTQ9fWrVvVsWNHdejQodSYjh07qlOnToqJibHlUgAAAABgd6xpAAAAANRUrGcAAACA2svmRy62bdu23Li2bdvq9OnTtlwKAAAAAOyONQ0AAACAmor1DAAAAFB72dTQZTKZ5ObmVm6cm5ubMjMzbbkUAAAAANgdaxoAAAAANRXrGQAAAKD2sqmhq2nTpvrxxx/Ljfvpp5/UuHFjWy4FAAAAAHbHmgYAAABATcV6BgAAAKi9bGro6tOnj44ePap169aVGrN+/Xr9/PPPuueee2y5FAAAAADYHWsaAAAAADXVjVjPZGZmKjw8XP7+/vLw8JCXl5d69eqlBQsWKDc3t6qll2jixIkyGAwyGAzy8/Oza24AAACgprGpoeuZZ56RwWDQiBEj9M477xTZsjczM1PvvPOORowYIScnJz399NM2FwsAAAAA9sSaBgAAAEBNVd3rmZMnT6pr166KiIhQYmKiLBaLcnJyFBcXp+eee0533XWXLl26ZJd72bFjh5YsWWKXXAAAAEBtYFNDV/fu3TV37lxlZ2dr6tSp8vHx0a233qpbb71VPj4+mjp1qkwmk15++WXdcccd9qoZAAAAAOyCNQ0AAACAmqo61zN5eXkaOHCgUlJS1LRpU23btk1ZWVkymUyKjo6Wp6en4uPjFRYWZvN9mEwmjRs3Ts7OzurZs6fN+QAAAIDawKaGLkmaPn26Nm7cqK5duyo/P19nzpzRmTNnlJ+fr65du2r9+vV64YUX7FErAAAAANgdaxoAAAAANVV1rWciIyOVkJAgSVq3bp2Cg4MlSU5OTho6dKg+/PBDSdLmzZsVGxtr0z3MnDlTx48f1/PPP6/OnTvblAsAAACoLZztkeShhx7SQw89pHPnzunUqVOSpFtvvVVNmjSxR3oAAAAAqFasaQAAAADUVNWxnomMjJQkBQYGqnfv3sXGhw0bppkzZyo5OVkrVqxQUFBQla6zd+9eLVy4UO3atdOLL76oiRMnVrlmAAAAoDaxqaHrL3/5i9q1a6eYmBhJUpMmTfjCAwAAAECNwZoGAAAAQE1VXesZk8mkPXv2SJJCQkJKjDEYDOrfv78WL16srVu3Vuk6OTk5GjNmjCwWi5YsWaJ69epVuWYAAACgtrHpkYvnzp2Tj4+PvWoBAAAAgBuKNQ0AAACAmqq61jNJSUkym82SpC5dupQaVzCWlpamixcvVvo6L730kpKSkjR27Fjde++9VSsWAAAAqKVs2qGrVatWysjIsFctAAAAAHBDsaYBAAAAUFNV13rm7Nmz1uPmzZuXGld47OzZs5VqLouPj9frr7+uJk2a6I033qhaobq+y1dOTo71Pes7AAAA1BY27dD1z3/+U998843Onz9vr3oAAAAA4IZhTQMAAACgpqqu9UxmZqb12Gg0lhpXeKzwnPLk5eVpzJgxysvL08KFC9WgQYMq1SlJc+fOlZeXl/XVsmXLKucCAAAAHIlNDV0zZsxQx44d1a9fP3333Xf2qgkAAAAAbgjWNAAAAABqqpq6npk3b55+/PFHPfjggxoyZIhNuWbMmKH09HTr6/Tp03aqEgAAALi5bHrk4oABA1SnTh399NNP6tOnjxo3biw/Pz+5ubkVizUYDIqNjbXlcgAAAABgV6xpAAAAANRU1bWe8fT0tB6bTKZS4wqPFZ5TliNHjmjOnDny8PDQokWLKjSnLK6urnJ1dbU5DwAAAOBobGro2rlzp/XYYrHo3LlzOnfuXImxBoPBlksBAAAAgN2xpgEAAABQU1XXeqZZs2bW49TUVHXt2rXEuNTU1BLnlGXSpEnKzc1VRESEvL29deXKlSLjeXl5kq7fT8GYq6urXFxcKlw/AAAAUBvY1NC1Y8cOe9UBAAAAADccaxoAAAAANVV1rWc6duwoJycnmc1mJSYmKiQkpMS4xMRESZKvr698fHwqlDs5OVnS9Uclzpgxo9S4U6dOWXf9euutt/Tss89W4g4AAACAms+mhq57773XXnUAAAAAwA3HmgYAAABATVVd6xmj0aiAgADt3r1bMTExmj59erEYi8WiLVu2SJL69etXLXUAAAAAf2ZON7sAAAAAAAAAAAAAOI6RI0dKur4L2L59+4qNr127VidOnJAkjRgxosJ5U1JSZLFYSn0VXLdVq1bWc+zOBQAAgD8juzR0WSwWbd68WS+++KImTJigjz/+2Dp2/vx5HT16VPn5+fa4FAAAAADYHWsaAAAAADVVdaxnRo4cKX9/f1ksFg0aNEixsbGSJLPZrLVr12rcuHGSpJCQEAUFBRWZGx4eLoPBIIPBoJSUFNtuDgAAAPiTsumRi5L0008/aejQofr1119lsVhkMBh07do1jRkzRpK0bds2Pf7449q4caMGDhxoc8EAAAAAYE+saQAAAADUVNW1nnF2dtamTZsUGBiolJQUBQcHy2g0ymw26+rVq5Kkbt26KSoqqlruCwAAAPizs2mHrjNnzig4OFhHjx5VSEiIXn/9dVksliIx//jHP+Ti4qLPP//cpkIBAAAAwN5Y0wAAAACoqap7PePn56dDhw5p9uzZ6tKliwwGg1xcXNSjRw/Nnz9fe/fulbe3t71uBwAAAEAhNjV0vfrqq/rjjz/09ttv68svv9Rzzz1XLMZoNOr222/XgQMHbLkUAAAAANgdaxoAAAAANdWNWM94enoqIiJCCQkJunLlijIyMhQXF6dp06apbt26Jc4JDw+XxWKRxWKRn59fpa63fPlyWSwWHtUIAACAPz2bGrpiYmLUoUMHPf3002XG+fn56bfffrPlUgAAAABgd6xpAAAAANRUrGcAAACA2sumhq6zZ8/K39+/3DiDwaCMjAxbLgUAAAAAdseaBgAAAEBNxXoGAAAAqL1sauhyd3fX+fPny41LTk6Wj4+PLZcCAAAAALtjTQMAAACgpmI9AwAAANReNjV0+fv764cfftCFCxdKjTl58qR++ukn9ejRw5ZLAQAAAIDdsaYBAAAAUFOxngEAAABqL5sausLCwpSZmaknnnhCJpOp2Hhubq6efPJJXbt2TWFhYbZcCgAAAADs7kasaTIzMxUeHi5/f395eHjIy8tLvXr10oIFC5Sbm2vrLRQxceJEGQwGGQwG+fn52TU3AAAAAMfCdzQAAABA7eVsy+TRo0crKipKmzZtUocOHdS/f39J0k8//aSnn35amzZt0qlTpxQcHKyhQ4fapWAAAAAAsJfqXtOcPHlSffv2VUpKiiTJaDQqJydHcXFxiouLU1RUlGJjY+Xt7W3zvezYsUNLliyxOQ8AAACAmoHvaAAAAIDay6YduurUqaMvvvhCw4cPV2pqqj766CNJUnx8vN577z2dOnVKgwYN0vr16+1SLAAAAADYU3WuafLy8jRw4EClpKSoadOm2rZtm7KysmQymRQdHS1PT0/Fx8fb5ZfyJpNJ48aNk7Ozs3r27GlzPgAAAACOj+9oAAAAgNrLph26JMnDw0NRUVGaNWuWNm/erBMnTshsNqtly5YKCQnRX//6VzuUCQAAAADVo7rWNJGRkUpISJAkrVu3Tr1795YkOTk5aejQoTKbzQoNDdXmzZsVGxuroKCgKt/DzJkzdfz4cc2cOVNnzpxRXFxclXMBAAAAqDn4jgYAAAConWxu6CrQoUMHdejQwV7pAAAAAOCGsveaJjIyUpIUGBhobeYqbNiwYZo5c6aSk5O1YsWKKjd07d27VwsXLlS7du304osvauLEiTbVDQAAAKDm4TsaAAAAoHax6ZGLAAAAAIDiTCaT9uzZI0kKCQkpMcZgMKh///6SpK1bt1bpOjk5ORozZowsFouWLFmievXqVa1gAAAAAAAAAADgMOyyQ9eFCxf00UcfaefOnTpz5owsFotatGihwMBAjRkzRo0bN7bHZQAAAACgWth7TZOUlCSz2SxJ6tKlS6lxBWNpaWm6ePGifHx8KnWdl156SUlJSXriiSd07733VmouAAAAgNqB72gAAACA2sfmhq7PP/9co0ePVnp6uiwWi/V8UlKStm/frnnz5mnZsmV65JFHbL0UAAAAANhddaxpzp49az1u3rx5qXGFx86ePVuphq74+Hi9/vrratKkid54440Kz/tvOTk5ysnJsb7PyMioci4AAAAANxbf0QAAAAC1k00NXfv27dPgwYOVl5ennj17asSIEWrdurUkKSUlRStWrNCBAwc0dOhQ7d69W3feeaddigYAAAAAe6iuNU1mZqb12Gg0lhpXeKzwnPLk5eVpzJgxysvL08KFC9WgQYMKz/1vc+fOVURERJXnAwAAALg5+I4GAAAAqL1sauh66aWXlJ+frzfeeEPTpk0rNj5p0iS99dZbmjZtmubMmaMvv/zSlssBAAAAgF3V1DXNvHnz9OOPP+rBBx/UkCFDbMo1Y8YMTZ061fo+IyNDLVu2tLVEAAAAANWspq5nAAAAAJTPyZbJ3333nbp06VLiQqHAlClT5O/vrz179thyKQAAAACwu+pa03h6elqPTSZTqXGFxwrPKcuRI0c0Z84ceXh4aNGiRRWuqTSurq6qX79+kRcAAAAAx8d3NAAAAEDtZVND17Vr1+Tv719uXJcuXXTt2jVbLgUAAAAAdldda5pmzZpZj1NTU0uNKzxWeE5ZJk2apNzcXM2cOVPe3t66cuVKkVdeXp4kyWKxWM+xHgMAAABqH76jAQAAAGovmxq6OnTooNOnT5cbl5qaqvbt29tyKQAAAACwu+pa03Ts2FFOTteXW4mJiaXGFYz5+vrKx8enQrmTk5MlXX9UoqenZ7FXVFSUJOnUqVPWc++//36FawcAAABQM/AdDQAAAFB72dTQNWHCBH377bfatWtXqTG7du3S7t27NWHCBFsuBQAAAAB2V11rGqPRqICAAElSTExMiTEWi0VbtmyRJPXr168SVQMAAAAA39EAAAAAtZlNDV3jxo3Ts88+qwEDBui5557ToUOHlJmZqczMTB06dEjTp0/XgAED9Oyzz2r8+PH2qhkAAAAA7KI61zQjR46UJO3YsUP79u0rNr527VqdOHFCkjRixIgK501JSZHFYin1VXDdVq1aWc89++yzlaodAAAAgOPjOxoAAACg9jJYLBZLVSfXqVOn6hc2GJSXl1fl+Y4qIyNDXl5eSk9PV/369W9qLZ/tP39Trw/HF3wx+maXAAfXoP/km10CAMDOHOnzqiOozjVNXl6eunfvroSEBDVv3lyRkZEKCgqS2WzWunXr9MQTTygjI0MhISHavHlzkbnh4eGKiIiQdP0Ri35+fhWua9SoUYqMjFSrVq2UkpJS6ftypL8R1jQoD2salIX1DADUTo70efVm4zua4hzt74M1DcrCegblYU0DALVPZT6v2rRDV1m/Ci/vZTabK3SNzMxMhYeHy9/fXx4eHvLy8lKvXr20YMEC5ebm2lJ+MRMnTpTBYJDBYKjUFyYAAAAAaqbqXNM4Oztr06ZN8vPzU2pqqoKDg+Xu7i53d3cNGTJEGRkZ6tatm6Kiom7Q3QIAAACoTW7EdzQAAAAAbg5nWyZX9wf+kydPqm/fvtZflRuNRuXk5CguLk5xcXGKiopSbGysvL29bb7Wjh07tGTJEpvzAAAAAKg5qntN4+fnp0OHDmn+/Plav369kpOT5eLios6dO2v48OGaPHmy6tatW601AAAAAKidaMoCAAAAai+bduiqTnl5eRo4cKBSUlLUtGlTbdu2TVlZWTKZTIqOjpanp6fi4+MVFhZm87VMJpPGjRsnZ2dn9ezZ0w7VAwAAAMB1np6eioiIUEJCgq5cuaKMjAzFxcVp2rRppTZzhYeHW385X9ndg5cvXy6LxVKlxy0CAAAAAAAAAICbz2EbuiIjI5WQkCBJWrdunYKDgyVJTk5OGjp0qD788ENJ0ubNmxUbG2vTtWbOnKnjx4/r+eefV+fOnW0rHAAAAAAAAAAAAAAAAACqyKEbuiQpMDBQvXv3LjY+bNgwtW7dWpK0YsWKKl9n7969Wrhwodq1a6cXX3yxynkAAAAAAAAAAAAAAADw5xAVFaURI0bo9ttvV+PGjeXi4iIvLy/dcccdmjt3rq5cuVLq3O3bt+uBBx5Qo0aN5Obmpg4dOmjmzJllzilNVlaWVq5cqWnTpqlv376qX7++DAaD2rZtW+lcqamp8vb2lsFgkLOzc6lxK1euVOfOneXq6qpbb71V4eHhys/PL7U+Pz8/denSRbm5uZWu6c+q9H/6N5HJZNKePXskSSEhISXGGAwG9e/fX4sXL9bWrVurdJ2cnByNGTNGFotFS5YsUb169apcMwAAAAAAAAAAAAAAAP4cFi9erO+++04dO3ZU9+7d5ePjo3Pnzun777/XgQMH9PHHH2vXrl1q1qxZkXlvvfWWpk6dKoPBoD59+qhJkybavXu3Xn31Va1bt07ffvutGjVqVOE6fv31Vz322GN2uadx48YpPT29zJgvv/xSjz32mLy9vTVgwAD9+OOPioiI0B9//KF33323WPyLL76oU6dO6dtvv1XdunXtUuefgUPu0JWUlCSz2SxJ6tKlS6lxBWNpaWm6ePFipa/z0ksvKSkpSWPHjtW9995bpVpzcnKUkZFR5AUAAAAAAAAAAAAAAIDaa8GCBbpw4YIOHz6smJgYrVy5UrGxsTp9+rTuvvtuHTt2TNOmTSsyJz4+XtOmTVOdOnX01VdfadeuXVqzZo2OHz+uoKAg/fLLL5o4cWKl6vD09NTo0aP17rvv6ttvv9WXX35Zpfv56KOP9PXXX2vSpEllxs2aNUt169bV3r17tX79eiUkJKhDhw5avHix0tLSisTGxcXp3Xff1b/+9S/97W9/q1Jdf1YO2dB19uxZ63Hz5s1LjSs8VnhORcTHx+v1119XkyZN9MYbb1S+yP/f3Llz5eXlZX21bNmyyrkAAAAAAAAAAAAAAADg+O688075+PgUO9+wYUO9+uqrklTsiXNz586VxWLR6NGjizyxzmg0aunSpXJyctK6dev0888/V7iONm3a6OOPP9ZTTz2lgIAAubu7V/peTp48qalTp+quu+7SlClTSo3Lzc1VQkKC7r33XrVr106S5O7urrCwMOXn52v//v3W2Pz8fI0fP16+vr6aO3dupWv6s3PIhq7MzEzrsdFoLDWu8FjhOeXJy8vTmDFjlJeXp4ULF6pBgwZVqlOSZsyYofT0dOvr9OnTVc4FAAAAAAAAAAAAAACAms3Z2VmS5Orqaj2Xm5urr776SpIUGhpabE6rVq0UEBAgSdqwYcMNqPI6i8WiMWPGKDc3Vx9//LGcnEpvJbp8+bLy8/OLNbI1bNhQknTlyhXrubfeekvx8fF67733VL9+/eopvhZzyIau6jZv3jz9+OOPevDBBzVkyBCbcrm6uqp+/fpFXgAAAAAAAAAAAAAAAPjzyczMVHh4uCTpoYcesp4/evSoTCaTJKlnz54lzi04Hx8fX71FFrJo0SL95z//0f/+7/+qY8eOZcY2btxYRqNRSUlJRc4XvC940l5KSor+93//V4888oj+8Y9/VEvdtZ3zzS6gJJ6entbjgj/mkhQeKzynLEeOHNGcOXPk4eGhRYsWVb1IAAAAAAAAAAAAAAAA/Klt3bpVK1eulNls1rlz5/T9998rMzNT/fv312uvvWaNS05OliQ1aNCg1B6Xli1bFomtbsePH9e///1v9ejRQ9OnT6/QnIceekjR0dF688039cQTT2jv3r1atmyZGjdurLvuukuS9K9//UvOzs567733qrP8Ws0hG7qaNWtmPU5NTVXXrl1LjEtNTS1xTlkmTZqk3NxcRUREyNvbu8h2b9L1xzFK17eUKxhzdXWVi4tLpe4BAAAAAAAAAAAAAAAAtduRI0cUGRlZ5FxoaKjefPNNeXl5Wc9lZmZKktzd3UvN5eHhIUnKyMiohkqLMpvNGjVqlHJzc7Vs2TLrYyLLM3fuXO3YsUPTpk3TtGnTJEkuLi769NNP5erqqlWrVikmJkaLFi0q0stz9epVubi4qE6dOtVyP7WNQz5ysWPHjtZnciYmJpYaVzDm6+tb7PmcpSnoYpwxY4Y8PT2LvaKioiRJp06dsp57//33bbkdAAAAAAAAAAAAAAAA1ELPPvusLBaLcnNzdezYMS1YsEBff/21OnXqpG+++eZml1eqt99+W99++61efPFF+fv7V3ien5+fEhMT9dprr2ncuHF68cUXdejQIT300EO6dOmSnn32WQUEBGjixImSpNWrV6t9+/Zyc3OTm5ubBgwYcMN2IKvJHLKhy2g0KiAgQJIUExNTYozFYtGWLVskSf369bthtQEAAAAAAAAAAAAAAACFubi4qE2bNpo6daq+/vprXbp0SWFhYcrOzpYk62MWs7KySs1R8CS5+vXrV2utv/zyi2bOnKnbb79dM2bMqPT8Ro0a6fnnn9eSJUs0Z84cdejQQZL03HPP6fLly1qyZIkMBoM+//xzDRs2TI0bN9a6dev01ltvac+ePQoMDCz2RD0U5ZCPXJSkkSNHavfu3dqxY4f27dunO++8s8j42rVrdeLECUnSiBEjKpw3JSWlzPFRo0YpMjJSrVq1KjcWAAAAAAAAAAAAAAAAKOzOO+9Up06ddPjwYcXFxalPnz7y8/OTJF2+fFmZmZnWBq/CTp8+LUnW2Ory9ddf6+rVq8rKytLf//73ImNXr16VJOXn56tv376SpBdeeEH9+/cvM+euXbu0bNkyzZo1S506dZIkzZs3T+7u7tq0aZO8vb0lSXXq1NG//vUvrVy5UuPHj7fzndUeDrlDl3S9ocvf318Wi0WDBg1SbGyspOvP8Fy7dq3GjRsnSQoJCVFQUFCRueHh4TIYDDIYDDRlAQAAAAAAAAAAAAAA4IZyd3eXJP3++++SpPbt28toNEqS4uLiSpxTcL579+43oELp2LFj2rVrV5HXvn37rOMF59LS0srMk5OTowkTJqh9+/b6n//5H+v5H3/8UR07drQ2c0nS3XffbR1D6Ry2ocvZ2VmbNm2Sn5+fUlNTFRwcLHd3d7m7u2vIkCHKyMhQt27dFBUVdbNLBQAAAAAAAAAAqHUyMzMVHh4uf39/eXh4yMvLS7169dKCBQuUm5tbpZy7du3SzJkzdf/99+u2226Tt7e3XFxc1LhxYwUGBmrhwoXWxxIBAADUVBcuXNBPP/0kSWrXrp0kqW7duhowYIAkaeXKlcXmnDx5Ut99950k6ZFHHqnW+p599llZLJYSX8nJyZKu76RVcG7UqFFl5nvllVd09OhRffjhh3J1dbWeNxgMxR4xWfDeYDDY96ZqGYdt6JKubyF36NAhzZ49W126dJHBYJCLi4t69Oih+fPna+/evUW6+AAAAAAAAAAAAGC7kydPqmvXroqIiFBiYqIsFotycnIUFxen5557TnfddZcuXbpU6bxvvPGGXn31VW3dulXHjh3TtWvX5OrqqvPnz2vnzp165pln1LlzZx09erQa7goAAMA+jhw5oqioKOvjCQs7evSoBg8erJycHN11113y9/e3jr3wwgsyGAxatmyZYmJirOdNJpPGjh2r/Px8DRo0SB06dCiSc//+/erQoUOx847gyJEjeu211/TEE0/onnvuKTLWvXt3JSUlac+ePdZzS5YssY6hdAaLxWK52UXUJhkZGfLy8lJ6errq169/U2v5bP/5m3p9OL7gi9E3uwQ4uAb9J9/sEgAAduZIn1fhmBzpb4Q1DcrDmgZlYT0DALWTI31erc3y8vLUvXt3JSQkqGnTplqxYoWCg4NlNpu1du1ajRs3TpmZmXrggQf01VdfVSr322+/rTp16ujuu+9W27Zt5enpKUn6448/tHLlSv373/9Wdna2OnXqpISEBDk5VXxvAkf7+2BNg7KwnkF5WNMAjm3nzp0KDAyUu7u7unXrphYtWig3N1enTp3SwYMHZTab1bFjR8XExOjWW28tMvett97S1KlTZTAYdO+996px48bavXu3fvvtN7Vv317ffvutGjVqVOL1JKmkNp9HHnlEv/32m6Trn4mSkpLk6uqqv/71r9aYJ554Qk888US595aSkqLWrVurTp06ysvLKzPWYrGoT58+On78uJKSktSgQYMi4zExMXrggQdUr149/f3vf1daWpr279+vtm3b6qeffrI+gvLPojKfV51vUE0AAAAAAAAAAACoASIjI5WQkCBJWrdunXr37i1JcnJy0tChQ2U2mxUaGqrNmzcrNjZWQUFBFc797LPPlni+YcOGmjx5slxdXTVhwgQdOXJE33//vQICAmy+HwAAAHvr3LmzXnnlFe3evVs///yz4uPjde3aNfn4+CgoKEiPPvqoRo8eXeTxgwWmTJkif39/LViwQPv371dWVpZuvfVWzZgxQzNmzLA2vFdGfHy8Tp48WeRcTk6O9u3bZ33fv3//yt9oOZYsWaI9e/ZozZo1xZq5Cq65adMmvfTSS4qJiZHRaNSwYcO0YMGCP10zV2XR0AUAAAAAAAAAAACryMhISVJgYKC1mauwYcOGaebMmUpOTtaKFSsq1dBVnrvuust6fObMGbvlBQAAsKdbbrlF//M//1Pl+cHBwQoODq5wfN++fUvcmatASkpKlWv5b35+fmVeq7AJEyZowoQJZcY8+OCDevDBB+1R2p9KxfepBQAAAAAAAAAAQK1mMpm0Z88eSVJISEiJMQaDwbrDw9atW+16/d27d1uP27RpY9fcAAAAQE3BDl0AAAAAAAAAAACQJCUlJclsNkuSunTpUmpcwVhaWpouXrwoHx+fKl8zOztbZ86c0dq1a/XSSy9Jku655x717NmzyjkBAACAmoyGLgAAAAAAAAAAAEiSzp49az1u3rx5qXGFx86ePVvphq60tDQ1bdq0xLGBAwdq+fLl5ebIyclRTk6O9X1GRkalagAAALXH5Zh3b3YJcHAN+k++2SVUCo9cBAAAAAAAAAAAgCQpMzPTemw0GkuNKzxWeE5F1alTR02aNFGTJk1Ur1496/nBgwfr9ddfr1CD2Ny5c+Xl5WV9tWzZstJ1AAAAAI6Ihi4AAAAAAAAAAADcULfccovS0tKUlpYmk8mk06dPa+bMmfriiy/UtWtXLVmypNwcM2bMUHp6uvV1+vTpG1A5AAAAUP1o6AIAAAAAAAAAAIAkydPT03psMplKjSs8VnhOVRgMBrVo0UIvv/yyoqKidO3aNf3rX//STz/9VOY8V1dX1a9fv8gLAAAAqA1o6AIAAAAAAAAAAIAkqVmzZtbj1NTUUuMKjxWeY6tHH31Ut956q8xms5YuXWq3vAAAAEBNQkMXAAAAAAAAAAAAJEkdO3aUk9P1r48SExNLjSsY8/X1lY+Pj11raN68uSTp2LFjds0LAAAA1BQ0dAEAAAAAAAAAAECSZDQaFRAQIEmKiYkpMcZisWjLli2SpH79+tn1+haLRcnJyZJsf5QjAAAAUFPR0AUAAAAAAAAAAACrkSNHSpJ27Nihffv2FRtfu3atTpw4IUkaMWJEhfPm5eWVG7Ns2TKlpaVJkvr27Vvh3AAAAEBtQkMXAAAAAAAAAAAArEaOHCl/f39ZLBYNGjRIsbGxkiSz2ay1a9dq3LhxkqSQkBAFBQUVmRseHi6DwSCDwaCUlJQiY99++63uueceffLJJzpz5kyRsV9//VUvvPCCJkyYIElq06aNRo0aVT03CAAAADg455tdAAAAAAAAAAAAAByHs7OzNm3apMDAQKWkpCg4OFhGo1Fms1lXr16VJHXr1k1RUVGVzr17927t3r1bklSvXj15eHgoKytL2dnZ1pjbb79dGzdulJubm31uCAAAAKhh2KELAAAAAAAAAAAARfj5+enQoUOaPXu2unTpIoPBIBcXF/Xo0UPz58/X3r175e3tXamcPXr00CeffKKxY8fq9ttvl5eXly5fviwnJye1adNGgwcPVnR0tH744Qf5+flVz40BAAAANQA7dAEAAAAAAAAAAKAYT09PRUREKCIiosJzwsPDFR4eXmq+sLAwhYWF2alCAAAAoHZihy4AAAAAAAAAAAAAAAAAcBA0dAEAAAAAAAAAAAAAAACAg6ChCwAAAAAAAAAAAAAAAAAcBA1dAAAAAAAAAAAAAAAAAOAgaOgCAAAAAAAAAAAAAAAAAAdBQxcAAAAAAAAAAAAAAAAAOAgaugAAAAAAAAAAAAAAAADAQdDQBQAAAAAAAAAAAAAAAAAOgoYuAAAAAAAAAAAAAAAAAHAQNHQBAAAAAAAAAAAAAAAAgIOgoQsAAAAAAAAAAAAAAAAAHAQNXQAAAAAAAAAAAAAAAADgIGjoAgAAAAAAAAAAAAAAAAAHQUMXAAAAAAAAAAAAAAAAADgIGroAAAAAAAAAAAAAAAAAwEHQ0AUAAAAAAAAAAAAAAAAADoKGLgAAAAAAAAAAAAAAAABwEDR0AQAAAAAAAAAAAAAAAICDoKELAAAAAAAAAAAAAAAAABwEDV0AAAAAAAAAAAAAAAAA4CBo6AIAAAAAAAAAAAAAAAAAB0FDFwAAAAAAAAAAAAAAAAA4CBq6AAAAAAAAAAAAAAAAAMBB0NAFAAAAAAAAAAAAAAAAAA6Chi4AAAAAAAAAAAAAAAAAcBA0dAEAAAAAAAAAAAAAAACAg6ChCwAAAAAAAAAAAAAAAAAcBA1dAAAAAAAAAAAAAAAAhfzyyy969913NWrUKPn7+8vZ2VkGg0Evv/xymfMuXryoGTNmqGPHjnJzc5O3t7fuueceffLJJ3arbfPmzTIYDDIYDAoODi4xpm/fvtaYsl5jxowpNvedd95R27Zt5erqqttuu03vv/9+qbWkpqbKy8tL/fr1s9v9AZCcb3YBAAAAAAAAAAAAAAAAjmTx4sV65513KjXnxIkTuu+++3Ty5Ek1bNhQQUFBys7O1t69e7V7927FxsZq2bJlMhgMVa7r0qVLGjdunAwGgywWS6lx/fv3l5+fX4ljubm5WrVqlSQpMDCwyNh7772nZ599Vk2bNtWAAQP0/fff66mnntLVq1c1bdq0Yrmeeuop5eXl6YMPPqjyPQEojoYuAAAAAAAAAAAAAACAQrp06aLnnntO3bp1U/fu3fXqq6+Wu8vW8OHDdfLkSfXt21fr16+Xt7e3JOnYsWPq37+/IiMjFRAQoHHjxlW5rsmTJ+vcuXOaOHGiFi9eXGrcCy+8UOrYmjVrtGrVKnl5eemf//yn9Xx+fr4iIiLUqFEjHTp0SI0aNdLvv/+ujh076uWXX9bTTz8tFxcXa/yGDRu0ceNGvf766/rLX/5S5XsCUByPXAQAAAAAAAAAAAAAACjkiSee0BtvvKHQ0FB16NBBTk5lt1d8//332r9/v+rUqaOPPvrI2swlSW3bttWbb74pSZozZ06ZO2uVZcOGDYqKitLUqVN1xx13VCmHJC1dulTS9QY0Nzc36/mUlBRduHBBjzzyiBo1aiRJaty4sR599FFdvnxZSUlJ1tjMzExNnjxZf/3rXzVlypQq1wKgZDR0AQAAAAAAAAAAAAAA2ODAgQOSJD8/P7Vp06bYeHBwsCTp9OnT2r9/f6XzX7hwQRMnTlT79u310ksvVbnO06dPa/v27ZKksWPHFhn7448/JEk+Pj5Fzjds2FCSdOXKFeu5GTNmKC0tTf/3f/8nZ2ceDgfYGw1dAAAAAAAAAAAAAAAANihodipofvpvRqPRuhvWDz/8UOn8//rXv3ThwgUtXbpU9erVq3Kdy5cvl9lsVteuXdWzZ88iY35+fpJUZCeuwu+bN28uSdq7d68WL16sp59+ulgOAPZBQxcAAAAAAAAAAAAAAIANGjduLElKTk4ucTwtLU3Z2dllxpQmOjpan332mSZPnqyAgIAq12ixWLR8+XJJxXfnkq7fQ+/evfXVV18pOjpamZmZWrVqlb766it17dpVrVq10rVr1zR+/Hi1bNlSc+bMqXItAMpGQxcAAAAAAAAA4Ia6du2aYmNjNX36dPXq1UsNGjSQi4uLfH199dBDD+mrr74qc/727dv1wAMPqFGjRnJzc1OHDh00c+bMIo+AscVPP/2kunXrymAwqG3btmXGnjt3Tk899ZRat24tV1dXNWnSRIMHD9bBgwdLnbNt2zb16tVL9erVk6+vr55++mnrl3v/zWw264477pCvr68uXbpk030BAACg+gQGBspgMOj8+fPauHFjsfEPPvjAepyRkVHhvGlpaZo0aZLatGmjV1991aYad+7cqRMnTsjV1VVhYWElxixcuFBubm4aPny46tevr9DQULm7u+v//u//JEnz589XQkKCFi9eLHd3d+u87OxsWSwWm+oD8P/Q0AUAAAAAAAAAuKF27dql4OBgzZ8/X2fOnNHdd9+tRx99VLfccou++OILPfjgg5owYUKJXwi99dZb+vvf/66YmBh17txZAwcOVHp6ul599VX17NlTFy5csKm23NxcjRgxQnl5eeXGHj16VF27dtX7778vJycn/eMf/1CrVq302Wef6c4779SGDRuKzfnxxx/1wAMP6MiRI7r//vvVqFEjvfvuuxoyZEiJ13j33Xd14MABvf322/L29rbp3gAAAFB92rRpY22SGjNmjD799FP98ccfOnPmjF577TW9+uqrcnFxkSQ5OVW8VWP8+PG6dOmSPvroIxmNRptqXLp0qSTp4Ycflo+PT4kxPXv2VGJioiIiIjRu3DjNmTNHiYmJuuOOO3T8+HHNmTNHw4cPV0hIiKTrn1dbtmwpo9Eod3d3hYaG6o8//rCpTgCS880uAAAAAAAAAADw5+Lk5KRBgwbpmWeeUZ8+fYqMrV69Wo899piWLFmigIAAjRgxwjoWHx+vadOmqU6dOvriiy+sXyKZTCY99NBDio2N1cSJE/XZZ59VubaXXnpJhw4d0lNPPaX33nuv1DiLxaJhw4bp999/1+OPP65ly5apTp06kqQlS5ZowoQJGjFihH799Vf5+vpa50VERCgvL0/btm1T3759lZeXp7///e/68ssvFRcXp549e1pjT58+rRdffFEPPPCAhg0bVuV7AqoqMzNTCxYs0Lp165ScnKw6deqoXbt2GjZsmCZPnqy6detWOmdqaqo+//xz7dixQ/Hx8UpNTZUk+fr66q677tK4ceN033332ftWAAC4IRYvXqzMzExt3LhRjz/+eJGxIUOGKDc3Vxs3biy1meq/RUZG6osvvtC//vUv9e3b16ba0tPTtX79ekklP26xsFatWmn27NnFzk+YMEFubm56++23JV3fzeuZZ57Rww8/rPfee09HjhxReHi4jh07pr1791aqcQ1AUTR0AQAAAAAAAABuqPvuu6/Uho2hQ4dq27ZtWrp0qVasWFGkoWvu3LmyWCwaPXq0tZlLkoxGo5YuXaq//OUvWrdunX7++Wd16NCh0nUdOHBA8+bN0+DBgzVo0KAyG7q+/vprxcfHq0GDBlq0aJG1mUu6vovCmjVrFBsbq3feeUdz5861jsXFxem2226zfiHn7OysJ554Qjt37tR3331XpKFr0qRJslgsWrRoUaXvBbDVyZMn1bdvX6WkpEi6/u9ZTk6O4uLiFBcXp6ioKMXGxlZq57jTp0+rVatWRXbfMxqNslgsSklJUUpKiqKjozVmzBgtWbKkyL9XAADUBO7u7tqwYYO+//57xcTE6LfffpOPj4/uv/9+BQYG6m9/+5skyd/fv0L5CnZ8PXDgQLGGrrS0NEnSDz/8YB2Ljo4u8mOCwlatWqXs7GzdeuutCg4OrvS9RUZGKjY2Vh9//LEaN24sSZo3b551h1pnZ2c9/PDDSk9P12uvvabt27erX79+lb4OgOtohwQAAAAAAAAAOJRu3bpJut78USA3N1dfffWVJCk0NLTYnFatWikgIECSSnzUYXmuXr2qkSNHytvbu8xGrgIF13jooYfk4eFRbLygxoJdEAr88ccfxXZkaNiwoSTpypUr1nOfffaZvvjiC7388stq1apV5W4GsFFeXp4GDhyolJQUNW3aVNu2bVNWVpZMJpOio6Pl6emp+Ph462OlKio/P18Wi0VBQUGKjIxUamqqsrKydOXKFR0+fFgPP/ywJOnjjz9WeHh4NdwZAAA3Ru/evRUREaElS5Zo3rx5CgwMVGZmpn788Uc5OzsrMDCwUvni4uK0a9euIq9ffvlFknT58mXruatXr5aa4+OPP5YkjR49utI7Z124cEHTpk1TYGCgRo8eLUk6d+6cfvvtN/Xq1UvOzv9vL6G7775b0vVHjQOoOhq6AAAAAAAAAAAO5ddff5UkNW3a1Hru6NGjMplMklRkF6vCCs7Hx8dX+pqzZs1SUlKSFi5caN1xoCwF1yivll9//VVZWVnW835+fjp+/LiuXbtmPZeUlCRJat68uaTrj8N5+umn1bNnTz399NOVvhfAVpGRkUpISJAkrVu3zrqLh5OTk4YOHaoPP/xQkrR582bFxsZWOK+3t7d++OEHbd++XSNGjFCzZs2seTt16qQNGzaof//+kqS33367zC+lAQCoaRYtWqTs7GwNHjxYTZo0qdCcjRs3ymKxlPhatmyZJCkoKMh6zs/Pr8Q8iYmJOnDggAwGg7UhqzKmTp2qrKws62cASTIYDJJU5LNu4fcF4wCqhoYuAAAAAAAAAIDDSEtL0/LlyyVJgwYNsp5PTk6WJDVo0ECenp4lzm3ZsmWR2Ir67rvv9Oabb+rhhx/W8OHDKzSn4Bq33nprmbUUPEquwMMPP6wLFy7ohRde0OXLl3XgwAHNnz9fdevW1f333y9J+ve//63z58/r//7v/yq9ewJgD5GRkZKkwMBA9e7du9j4sGHD1Lp1a0nSihUrKpzXy8tL3bt3L3XcYDBozJgxkq7vWFfQ7AgAQE1x/PhxnT9/vsg5i8Wijz/+WLNmzZKPj48WLFhQbN6GDRvUoUMHBQUFVUtdS5culSQFBwdXevfX7du365NPPtGsWbN02223Wc83btxYLVq00I4dO3T8+HFJ13fjLNgJrKz/zQdQPufyQwAAAAAAAAAAqH55eXkKCwtTenq6/P39NWHCBOtYZmamJMnd3b3U+QWPPszIyKjwNU0mk0aNGiUvLy8tXry4wvPKq6fwYxgL1/PCCy9ow4YNevPNN/Xmm29Kut7E8v7778vX11d79uzRkiVLNH36dP31r3+1zsvNzZWTk1ORx9kA1cFkMmnPnj2SpJCQkBJjDAaD+vfvr8WLF2vr1q12vX69evWsx/n5+XbNDQBAZRw8eFBPPvmk9X1B09KHH36oL7/80np+w4YN1p1lv/jiC02fPl3du3fXrbfeKovFori4OJ08eVKNGzfW119/XWQX2gLp6en65ZdfqmV3ymvXrunTTz+VJI0dO7ZSc7OzszVx4kT5+/tr+vTpxcZnzZqlCRMmqGfPngoMDNTRo0d1+PBhBQQE6L777rNL/cCfFSs/AAAAAAAAAIBDmDhxomJjY9WwYUN99tlnqlu3brVf84UXXtCvv/6qyMjIEr9cszcvLy/FxcVp+fLlSkhIkJeXlwYPHqxevXrp2rVrmjBhgv7yl78oPDxckhQbG6vp06crPj5eTk5OCggI0DvvvKNu3bpVe634c0pKSpLZbJYkdenSpdS4grG0tDRdvHhRPj4+drn+zp07JUl169ZVu3btyozNyclRTk6O9X1lmjkBAChPRkaG9u3bV+z8mTNndObMGev7wv9bFBAQoEGDBmn//v1KTEyUwWDQX/7yF82aNUtTp05VgwYNbkTpRWzatEkXLlyQj4+P/vGPf1Rq7ksvvaTk5GR99913cnFxKTY+fvx41a1bV/Pnz9eXX36pBg0aaMKECXrttdd45CJgIxq6AAAAAAAAAAA33TPPPKOlS5fK29tb27ZtK9bIUfCYxaysrFJzXLlyRZJUv379Cl1z586deu+99/TAAw9oxIgRlarX09NTFy9eLLWeglpKqsfDw0NPPfVUsTnz5s3T4cOHtW3bNrm5uSkuLk4hISG67bbbFB0drezsbM2cOVOBgYFKTExUixYtKlUzUBFnz561Hjdv3rzUuMJjZ8+etUtDV3Jysj744ANJ0tChQ8v9d3nu3LmKiIiw+boAAJSkb9++slgslZrTq1cvRUdHV/pao0aN0qhRo6plzqBBgyp9HwXmzp2ruXPn2qUOAJVDQxcAAAAAAAAA4KaaNm2aFi5cqAYNGmjr1q0l7j7l5+cnSbp8+bIyMzOtDV6FnT59ukhseTZu3CiLxaJTp06pb9++RcYuX74sSUpNTbWOvf3229bHIPr5+enixYs6depUibkLajEYDGrVqlW5tRw9elSvvPKKRowYoeDgYEnSggULdO3aNW3YsMHa4Obr66uQkBAtWrRIr776aoXuE6iMgseJSpLRaCw1rvBY4TlVlZ2drcGDB8tkMqlRo0aaN29euXNmzJihqVOnWt9nZGSoZcuWNtcCAAAA3Gw0dAEAAAAAAAAAbprnn39eb775pry8vLR161b17NmzxLj27dvLaDTKZDIpLi5OgYGBxWLi4uIkSd27d69UDYmJiaWOXb16Vbt27ZL0/5q8Cq5x8OBB6zVLq+W2226Th4dHuTVMmDBBnp6eevPNN63nfvzxRzVq1KjIbmV33323dQyoLfLy8hQaGqoffvhBLi4uioqKUrNmzcqd5+rqKldX1xtQIQAAAHBj0dAFAAAAAAAAALgpXnjhBb3xxhvy8vLStm3b1KtXr1Jj69atqwEDBmjt2rVauXJlsYaukydP6rvvvpMkPfLIIxW6/ttvv6233367xLGdO3cqMDBQbdq00bFjx4qNP/LII/roo4+0adMmZWVlyd3dvcj4ypUrJUmPPvpouXV8/PHH2rlzpz755BM1bNjQet5gMMhkMslischgMEj6f4+cLHgP2Fvh3e9MJlOpcYXHStoxr6Ly8/P12GOPaePGjXJ2dtbKlSvVr1+/KucDANROn+0/f7NLgIMLvtkFAHbmdLMLAAAAAIDaLDMzU+Hh4fL395eHh4e8vLzUq1cvLViwQLm5uVXKmZqaqkWLFmnw4MFq27at3Nzc5ObmptatW2v48OH6z3/+Y+e7AAAAsL8XX3xRr732mho0aFBuM1eBF154QQaDQcuWLVNMTIz1vMlk0tixY5Wfn69BgwapQ4cORebt379fHTp0KHbeFiEhIerWrZsuX76sJ598Uvn5+daxJUuWKDY2Vh4eHnrmmWfKzPP7779r+vTp6tevn8LCwoqMde/eXSaTSatWrSqSu2AMqA6Fd8ZKTU0tNa7wWEV20ypJfn6+wsLCtGbNGtWpU0effvqp/vnPf1YpFwAAAFCbsEMXAAAAAFSTkydPqm/fvkpJSZEkGY1G5eTkKC4uTnFxcYqKilJsbKy8vb0rnPP06dNq1aqVLBaL9ZzRaJTFYlFKSopSUlIUHR2tMWPGaMmSJapTp469bwsAAMBmmzZt0iuvvCJJatu2rd5///0S4xo1aqT58+db33fv3l0LFizQ1KlT9cADD+jee+9V48aNtXv3bv32229q3769Pvjgg2J5TCaTfvnlF7veg8Fg0KpVq9SnTx+tWLFC3377rXr16qXk5GTt379fzs7OWrFihXx9fcvM8+yzz+rq1asl1j19+nStW7dOI0aM0CeffKKcnBzt2LFDDRs21JNPPmnX+wEKdOzYUU5OTjKbzUpMTFRISEiJcQWPKvX19ZWPj0+lr1OwM9fq1autzVxDhw61qXYAAACgtmCHLgAAAACoBnl5eRo4cKBSUlLUtGlTbdu2TVlZWTKZTIqOjpanp6fi4+OL7cJQnvz8fFksFgUFBSkyMlKpqanKysrSlStXdPjwYT388MOSrj+2Jzw8vBruDAAAwHYXL160HsfFxSkyMrLE12effVZs7pQpU7Rt2zbdf//9OnTokD7//HN5eHhoxowZOnDggBo1anTD7qN9+/Y6dOiQJk2apPz8fG3YsEHJycl69NFHtW/fvnIf/bhlyxatWrVK4eHhat26dbHx22+/Xf/5z3909913a9euXTpw4IAGDBig3bt3q2nTptV1W/iTMxqNCggIkKQiO+EVZrFYtGXLFkmq0uMR8/PzFRoaWqSZa9iwYVUvGgAAAKhlDJbCP+uGzTIyMuTl5aX09HTVr1//ptbCc4RRnuCL0Te7BDi4Bv0n3+wSAAB25kifV2u7pUuX6oknnpAkfffdd+rdu3eR8VWrVik0NFSStH37dgUFBVUob3p6uo4fP17qI3YsFoseeOABxcTEyMPDQ+fPn1e9evUqXLcj/Y2wpkF5WNOgLKxnAKB2cqTPq7VZwXrGYDDo+++/15133llkfM2aNdbdtCqznpGK7szl7Oxs1525HO3vgzUNysJ6BuVhTVMU/01FefjvKsrjCP9drcznVXboAgAAAIBqEBkZKUkKDAws1swlScOGDbPuwrBixYoK5/Xy8iq1mUu6/uifMWPGSJKuXLmipKSkypQNAAAAABo5cqT8/f1lsVg0aNAgxcbGSpLMZrPWrl2rcePGSZJCQkKKNXOFh4fLYDDIYDBYHz9fID8/X2FhYdZmrpUrV/KYRQAAAKAENHQBAAAAgJ2ZTCbt2bNH0vUvOEpiMBjUv39/SdLWrVvtev3CO3Ll5+fbNTcAAACA2s/Z2VmbNm2Sn5+fUlNTFRwcLHd3d7m7u2vIkCHKyMhQt27dFBUVVam8e/bsUXT09d0zDAaDJk+eLF9f31Jfq1evro7bAwAAABye880uAAAAAABqm6SkJJnNZklSly5dSo0rGEtLS9PFixfl4+Njl+vv3LlTklS3bl21a9fOLjkBAEDtdznm3ZtdAhyYIzyeBDeWn5+fDh06pPnz52v9+vVKTk6Wi4uLOnfurOHDh2vy5MmqW7dupXIWrJMk6dq1azp37lyZ8dnZ2VWqHQAAAKjpaOgCAAAAADs7e/as9bh58+alxhUeO3v2rF0aupKTk/XBBx9IkoYOHar69euXGZ+Tk6OcnBzr+4yMDJtrAAAAAFA7eHp6KiIiQhERERWeEx4ervDw8BLH+vbtK4vFYqfqAAAAgNrL4R+5mJmZqfDwcPn7+8vDw0NeXl7q1auXFixYoNzc3CrlTE1N1aJFizR48GC1bdtWbm5ucnNzU+vWrTV8+HD95z//sfNdAAAAAPgzyczMtB4bjcZS4wqPFZ5TVdnZ2Ro8eLBMJpMaNWqkefPmlTtn7ty58vLysr5atmxpcx0AAAAAAAAAAKDqHHqHrpMnT6pv375KSUmRdP3LjpycHMXFxSkuLk5RUVGKjY2Vt7d3hXOePn1arVq1KvILEKPRKIvFopSUFKWkpCg6OlpjxozRkiVLVKdOHXvfFgAAAADYXV5enkJDQ/XDDz/IxcVFUVFRatasWbnzZsyYoalTp1rfZ2Rk0NQFAAAAAAAAAMBN5LA7dOXl5WngwIFKSUlR06ZNtW3bNmVlZclkMik6Olqenp6Kj49XWFhYpfLm5+fLYrEoKChIkZGRSk1NVVZWlq5cuaLDhw/r4YcfliR9/PHHpW4JDAAAAABl8fT0tB6bTKZS4wqPFZ5TWfn5+Xrssce0ceNGOTs7a+XKlerXr1+F5rq6uqp+/fpFXgAAAAAAAAAA4OZx2IauyMhIJSQkSJLWrVun4OBgSZKTk5OGDh2qDz/8UJK0efNmxcbGVjivt7e3fvjhB23fvl0jRoyw/mLdyclJnTp10oYNG9S/f39J0ttvv62rV6/a87YAAAAA/AkU3hkrNTW11LjCYxXZTask+fn5CgsL05o1a1SnTh19+umn+uc//1mlXAAAAAAAAAAA4OZz6IYuSQoMDFTv3r2LjQ8bNkytW7eWJK1YsaLCeb28vNS9e/dSxw0Gg8aMGSNJunLlipKSkipTNgAAAACoY8eOcnK6vtxKTEwsNa5gzNfXVz4+PpW+TsHOXNHR0dZmrqFDh1ataAAAAAAAAAAA4BAcsqHLZDJpz549kqSQkJASYwwGg3Unra1bt9r1+vXq1bMe5+fn2zU3AAAAgNrPaDQqICBAkhQTE1NijMVi0ZYtWySpwo9HLCw/P1+hoaFavXq1tZlr2LBhVS8aAAAAAAAAAAA4BIds6EpKSpLZbJYkdenSpdS4grG0tDRdvHjRbtffuXOnJKlu3bpq166d3fICAAAA+PMYOXKkJGnHjh3at29fsfG1a9fqxIkTkqQRI0ZUKnfBzlxr1qyRs7OzoqKiaOYCAAAAAAAAAKCWcMiGrrNnz1qPmzdvXmpc4bHCc2yRnJysDz74QJI0dOhQ1a9fv8z4nJwcZWRkFHkBAAAAwMiRI+Xv7y+LxaJBgwYpNjZWkmQ2m7V27VqNGzdO0vVdiYOCgorMDQ8Pl8FgkMFgUEpKSpGx/Px8hYWFafXq1XJ2dtbKlSt5zCIAAAAAAAAAALWIQzZ0ZWZmWo+NRmOpcYXHCs+pquzsbA0ePFgmk0mNGjXSvHnzyp0zd+5ceXl5WV8tW7a0uQ4AAAAANZ+zs7M2bdokPz8/paamKjg4WO7u7nJ3d9eQIUOUkZGhbt26KSoqqlJ59+zZo+joaEnXH0U/efJk+fr6lvpavXp1ddweAAAAAAAAAACoJs43uwBHkZeXp9DQUP3www9ycXFRVFSUmjVrVu68GTNmaOrUqdb3GRkZNHUBAAAAkCT5+fnp0KFDmj9/vtavX6/k5GS5uLioc+fOGj58uCZPnqy6detWKmfB4+kl6dq1azp37lyZ8dnZ2VWqHQAAAAAAAAAA3BwO2dDl6elpPTaZTKXGFR4rPKey8vPz9dhjj2njxo3WR5b069evQnNdXV3l6upa5WsDAAAAqN08PT0VERGhiIiICs8JDw9XeHh4iWN9+/aVxWKxU3UAAAAAAAAAAMDROOQjFwvvjJWamlpqXOGxiuymVZL8/HyFhYVpzZo1qlOnjj799FP985//rFIuAAAAAAAAAAAAAAAAALCFQzZ0dezYUU5O10tLTEwsNa5gzNfXVz4+PpW+TsHOXNHR0dZmrqFDh1ataAAAAAAAAAAAAAAAAACwkUM2dBmNRgUEBEiSYmJiSoyxWCzasmWLJFX48YiF5efnKzQ0VKtXr7Y2cw0bNqzqRQMAAAAAAAAAAAAAAACAjRyyoUuSRo4cKUnasWOH9u3bV2x87dq1OnHihCRpxIgRlcpdsDPXmjVr5OzsrKioKJq5AAAAAAAAAAAAAAAAANx0Dt3Q5e/vL4vFokGDBik2NlaSZDabtXbtWo0bN06SFBISoqCgoCJzw8PDZTAYZDAYlJKSUmQsPz9fYWFhWr16tZydnbVy5UoeswgAAAAAAAAAAAAAAADAITjf7AJK4+zsrE2bNikwMFApKSkKDg6W0WiU2WzW1atXJUndunVTVFRUpfLu2bNH0dHRkiSDwaDJkydr8uTJpca/8847NHwBAAAAAAAAAAAAAAAAuCEctqFLkvz8/HTo0CHNnz9f69evV3JyslxcXNS5c2cNHz5ckydPVt26dSuV02w2W4+vXbumc+fOlRmfnZ1dpdoBAAAAAAAAAAAAAAAAoLIcuqFLkjw9PRUREaGIiIgKzwkPD1d4eHiJY3379pXFYrFTdQAAAAAAAAAAAAAAAABgP043uwAAAAAAAAAAAAAAAAAAwHU0dAEAAAAAAAAAAAAAAACAg6ChCwAAAAAAAAAAAAAAAAAcBA1dAAAAAAAAAAAAAAAAAOAgaOgCAAAAAAAAAAAAAAAAAAdBQxcAAAAAAAAAAAAAAAAAOAgaugAAAAAAAAAAAAAAAADAQdDQBQAAAAAAAAAAAAAAAAAOgoYuAAAAAAAAAAAAAAAAAHAQNHQBAAAAAAAAAAAAAAAAgIOgoQsAAAAAAAAAAAAAAAAAHAQNXQAAAAAAAADs7pdfftG7776rUaNGyd/fX87OzjIYDHr55ZfLnbt9+3Y98MADatSokdzc3NShQwfNnDlTV65cqXI9x44d06hRo9SiRQu5urqqRYsWGjVqlE6cOFHmvMzMTP3P//yP2rdvLzc3NzVq1EgDBgzQf/7zn1Ln/PDDDwoMDJSbm5saNmyokSNH6sKFC6XGDxo0SEajUcePH6/y/QEAAAAAgNqDhi4AAAAAAAAAdrd48WI9/fTTioyMVGJiovLz8ys076233tLf//53xcTEqHPnzho4cKDS09P16quvqmfPnmU2RpVmz549uv322xUZGakGDRrokUceUYMGDRQZGamuXbtq7969Jc77/fff1bNnT82dO1eZmZkaOHCgOnfurK+//lrBwcF69913i8357bffFBgYqN27d+u+++5T27ZttWLFCvXr10/Xrl0rFr9p0yatX79es2fPVps2bSp9bwAAAAAAoPahoQsAAAAAAACA3XXp0kXPPfecoqKilJSUpMcff7zcOfHx8Zo2bZrq1Kmjr776Srt27dKaNWt0/PhxBQUF6ZdfftHEiRMrVYfJZNKQIUNkMpk0Y8YMJSYmKjo6WomJiZoxY4aysrI0ZMgQZWdnF5s7fvx4HT16VEFBQTp27JjWrFmjXbt26csvv5STk5OeffZZHTp0qMic119/XZmZmVq6dKm++uor7du3T48//rji4+P1+eefF4nNzMzUpEmT1LVrVz333HOVui8AAAAAAFB70dAFAAAAAAAAwO6eeOIJvfHGGwoNDVWHDh3k5FT+/xU5d+5cWSwWjR49WiEhIdbzRqNRS5culZOTk9atW6eff/65wnUsX75cZ8+eVbt27Yo97vHll19Wu3btdPr0aa1YsaLI2JEjR/T555+rTp06Wrp0qYxGo3XsgQce0KhRo2Q2mzV37twi8+Li4lSvXr0iDWwTJkyQJH333XdFYmfOnKmzZ8/qo48+krOzc4XvCQAAAAAA1G40dAEAAAAAAAC46XJzc/XVV19JkkJDQ4uNt2rVSgEBAZKkDRs2VDhvQeywYcOKNZU5OTlp6NChkqT169eXOC8gIECtWrUqlregxi+++KLIoxT/+OMPeXl5FblWw4YNJUlXrlyxntu/f7/ef/99TZ48Wb169arw/QAAAAAAgNqPhi4AAAAAAAAAN93Ro0dlMpkkST179iwxpuB8fHx8hfMWxFY2Z0XnZWVl6ddff7We9/Pz0/nz5/XHH39YzyUlJUmSmjdvLknKy8vTuHHj1KJFi2K7hgGAI8nMzFR4eLj8/f3l4eEhLy8v9erVSwsWLFBubm6Vcl6+fFmff/65Zs+erQcffFBNmzaVwWCQwWDQ8uXL7XsDAAAAQA3FPt4AAAAAAAAAbrrk5GRJUoMGDeTp6VliTMuWLYvEliczM9PaWHXrrbeWmfP8+fPKysqSu7t7kWuUNq9+/fqqX7++MjIylJycrE6dOkmSHn74YX399dd66qmntHDhQl28eFGzZ8+WJA0cOFCSNH/+fB06dEhffvmlPDw8KnQvAHCjnTx5Un379lVKSoqk64+/zcnJUVxcnOLi4hQVFaXY2Fh5e3tXKu/GjRs1evToaqgYAAAAqD3YoQsAAAAAAADATZeZmSlJ1oaqkhQ0P2VkZFQqZ1l5CzdUFc5b1XrGjh2rgIAARUdHq3HjxurQoYMSExP173//W927d9eJEyf00ksvaciQIRowYIB1Xl5eXpV3uwEAe8vLy9PAgQOVkpKipk2batu2bcrKypLJZFJ0dLQ8PT0VHx+vsLCwKuX39fVVSEiIZs6cWeyRtwAAAADYoQsAAAAAAAAA7MbZ2Vk7duxQVFSU9u3bp3r16mnAgAEKDg6WJE2cOFH16tXTwoULJV1/tOMzzzyjPXv2yGw2q1u3bnrjjTcUFBR0M28DwJ9cZGSkEhISJEnr1q1T7969JUlOTk4aOnSozGazQkNDtXnzZsXGxlbqv1mPP/64Ro0aVR1lAwAAALUGO3QBAAAAAAAAuOkKHrOYlZVVasyVK1ckXX/cYWVylpW3IOd/57WlHhcXF40aNUqLFy/WW2+9ZW3m+uSTT7Rt2za9/vrratKkiU6dOqXAwECdOHFCS5cu1erVq3X16lWFhITo4MGDFbpHAKgOkZGRkqTAwEBrM1dhw4YNU+vWrSVJK1asqFTuOnXq2F4gAAAAUMvR0AUAAAAAAADgpvPz85MkXb58ucijEgs7ffp0kdjyeHp6ysfHR5J06tSpMnM2atSoyOMVC65R2ryMjAzroxYrUs8ff/yhqVOn6t5779XYsWMlSYsXL1Z6erqWLVumUaNGaciQIVq/fr2uXbum+fPnV+geAcDeTCaT9uzZI0kKCQkpMcZgMKh///6SpK1bt96w2gAAAIA/Cxq6AAAAAAAAANx07du3l9FolCTFxcWVGFNwvnv37hXOWxBb2ZwVnefu7q527dqVW8e0adOUmZmpJUuWyGAwSJJ+/PFHSdLf/vY3a1yHDh3UsGFD6xgA3GhJSUkym82SpC5dupQaVzCWlpamixcv3pDaAAAAgD8LGroAAAAAAAAA3HR169bVgAEDJEkrV64sNn7y5El99913kqRHHnmkwnkLYqOjo60NCgXMZrNWr14tSXr00UeLjP3jH/+QJO3Zs6fEXboKahw4cKBcXFzKrOE///mPIiMj9eKLLxZp/ipo7Cr8WEeLxaLs7GzrGADcaGfPnrUeN2/evNS4wmOF59xIOTk51h0TC++cCAAAANR0NHQBAAAAAAAAcAgvvPCCDAaDli1bppiYGOt5k8mksWPHKj8/X4MGDVKHDh2KzNu/f786dOhQ7LwkjRo1Ss2aNdPRo0c1a9asImOzZs3S0aNH1aJFC40YMaLIWOfOnfXwww8rPz9fY8eOVXZ2tnXs66+/1vLly+Xk5KQZM2aUeU9Xr17VhAkT1LlzZ/373/8uMlawC9hHH31kPffpp5/KZDJVahcyALCnwo+9Ldg5sSSFx0p7VG51mzt3rry8vKyvli1b3pQ6AAAAAHtzvtkFAAAAAAAAAKh9Dh48qCeffNL6/vjx45KkDz/8UF9++aX1/IYNG9S0aVNJ1xucFixYoKlTp+qBBx7Qvffeq8aNG2v37t367bff1L59e33wwQfFrmUymfTLL7+UWIfRaNSaNWvUr18/vfrqq9q0aZO6dOmixMREJSYmyt3dXWvXrpWbm1uxuUuWLNGRI0e0fft2tWnTRn369NHvv/+uXbt2yWKx6J133lHXrl3L/Ofw0ksv6cSJE/r222+L7eT15JNP6oMPPtDMmTO1bds2ubm5aevWrapXr56mT59eZl4AgDRjxgxNnTrV+j4jI4OmLgAAANQKNHQBAAAAAAAAsLuMjAzt27ev2PkzZ87ozJkz1vc5OTlFxqdMmSJ/f38tWLBA+/fvV1ZWlm699VbNmDFDM2bMkKenZ6VrCQgI0E8//aQ5c+Zo+/btWrdunW655RaNGDFCs2fPVps2bUqc17hxY8XFxWnu3Llat26dPv/8c7m7u+v+++/Xc889p6CgoDKvm5iYqPnz52vixInq3bt3sfFmzZpp9+7dev7557Vz507l5+fr7rvv1ty5c8ttFAOA6lL4v7Mmk6nUuMJjVflvsz24urrK1dX1plwbAID/r707j6qq3v8//joyKTOKgnpVyCFNSA1ntCtq5mwON29qDuXQNc0pG/zdFKyWaQ7lcB0ptWtZapYzIplpSoYzStrNEGdSUxBwQPbvD5cnzxdQQPScA8/HWq11+Ez7vXerfXitPuwNAA8TG7oAAAAAAAAAFLoWLVrIMIwCzW3durVat25dqMeqVq2alixZku9aPD09NWnSJE2aNCnfc4OCgnTjxo17jqlVq5bWrl2b77UB4GGpUKGC+fPp06dz3WB6+vTpHOcAAAAAeHAlrF0AAAAAAAAAAAAAbEOtWrVUosTt/30UHx+f67g7ff7+/ipduvQjqQ0AAAAoLtjQBQAAAAAAAAAAAEmSq6urQkNDJUmbNm3KcYxhGIqKipIktWnT5pHVBgAAABQXvHIRAAAAAAAAKAZW7v7D2iXAxuX9JZcAirp+/fpp+/bt2rp1q3766Sc1atTIon/FihU6fvy4JKlv377WKBEAAAAo0nhCFwAAAAAAAAAAAMz69eun4OBgGYah7t27KyYmRpKUlZWlFStWaNCgQZKkdu3aqVWrVhZzw8PDZTKZZDKZlJiYmOP6Fy5csPjnjqtXr1q0p6enP5wTBAAAAGwcG7oAAAAAAAAAAABg5ujoqDVr1iggIECnT59W69at5ebmJjc3Nz3//PNKSUlRvXr1tGzZsgKtX7ZsWYt/7hg+fLhF+5QpUwrrlAAAAAC7woYuAACAIqp///7mv4jN7Z9r167la8309HRNmjRJdevWlZubmzw8PNSgQQPNmjVLt27dynFOWlqaPv/8c40ZM0YtWrSQp6enTCaTqlWrdt/jffzxx6pWrZpcXFxUvXp1zZkzJ9exp0+flpeXl9q0aZOvcwIAAAAAANkFBATo4MGDGj9+vIKCgmQymeTk5KSQkBBNnTpVsbGx8vHxsXaZAAAAQJHkaO0CAAAA8HCFhobmunnKwcEhz+tcunRJLVu21IEDB+Th4aHQ0FA5ODgoNjZWr732mtauXat169bJ2dnZYt6vv/6q3r1757vu2bNna+TIkSpfvrw6dOigXbt2adiwYbp27ZrGjBmTbfywYcOUmZmpefPm5ftYAAAAAAAgOw8PD0VERCgiIiLPc8LDwxUeHn7PMYZhPGBlAAAAQNHGhi4AAIAibuDAgerfv/8Dr/PKK6/owIEDCgoK0oYNG1SpUiVJ0vnz59W5c2dFR0crIiJC77//vsU8Dw8PDRgwQE899ZTq1auny5cvq2PHjvc81q1btxQRESFfX18dPHhQvr6+Sk5OVq1atfTee+/ptddek5OTk3n86tWr9c0332jKlCl67LHHHvhcAQAAAAAAAAAAAGvhlYsAAAC4rzNnzmjlypWSpFmzZpk3c0mSn5+fFi5cKEmaMWOGUlNTLeZWrVpVn3zyiYYNG6bQ0FC5ubnd93iJiYm6cOGCunbtKl9fX0lSuXLl1K1bN12+fFkJCQnmsampqRo+fLjq1q2rUaNGPfC5AgAAAAAAAAAAANbEhi4AAADcV1xcnAzDkLOzs55++uls/U8++aTKli2rjIwMbdiw4YGPd/HiRUlS6dKlLdrLlCkjSbp69aq57e2339a5c+e0cOFCOTryAFoAAAAAAAAAAADYN/6PFwAAQBG3detWHTp0SKmpqSpTpowaNmyo9u3by8XFJc9r3NlA5e3trRIlcv6bAF9fX/3xxx/as2ePevbs+UA1BwQESJLFk7ju/rlixYqSpNjYWM2dO1cjRoxQ/fr1H+iYAAAAAAAAAAAAgC1gQxcAAEARt3Tp0mxt5cuX1yeffKK2bdvmaY1y5cpJkpKTk3X16lW5u7tb9GdlZenEiROSpN9///0BK759vCZNmmj9+vVavny5OnTooHXr1mn9+vV68sknVaVKFd28eVODBw9WpUqV9O677z7wMQEAAAAAAAAAAABbwCsXAQAAiqg6dero448/Vnx8vFJSUnT+/Hlt3rxZTZs21dmzZ9W5c2d9//33eVqrUaNGcnV1lSQtWrQoW//SpUuVnp4uSUpJSSmU+mfOnKlSpUrphRdekKenp3r16iU3NzctXLhQkjR16lQdOnRIc+fOlZubm3leRkaGDMMolBoAAAAAAAAAAACAR40NXQAAAEXUqFGj9Nprr6l27dry8PBQuXLl9Mwzz2jHjh3q0qWLbt68qZEjR+ZpLQ8PD40ZM0aS9Pbbb2vmzJk6e/askpOTtWjRIg0fPlxOTk6SlOsrGfOrfv36io+PV0REhAYNGqR3331X8fHxatiwoX777Te9++67euGFF9SuXTtJ0qxZs1SpUiW5urrKzc1NvXr10sWLFwulFgAAAAAAAAAAAOBR4ZWLAAAAxYzJZFJERIS+/fZbHThwQCdPnlSlSpXuO2/ChAn6448/NG/ePI0YMUIjRoww9z399NOqVauW5s+fr9KlSxdarVWqVNH48eOztQ8ZMkSlSpXSRx99JOn207xGjBihLl26aPbs2Tpy5IjCw8P1v//9T7GxsYW2yQwAAAAAAAAAAAB42NjQBQAAUAzVqlXL/PnUqVN52tDl4OCguXPnaujQoVqzZo2SkpLk7u6uFi1aqEOHDurTp48kKTg4+KHVLUlLlixRTEyMPvnkE5UrV06S9MEHH6hKlSpauXKlHB0d1aVLF125ckWTJ0/Wli1b1KZNm4daEwAAAAAAAAAAAFBY2NAFAABQDN39KkIPD498zQ0ODs62acswDP3444+SpGeeeebBC8zFhQsXNGbMGIWFhWnAgAGSpPPnz+vs2bPq0aOHHB3/+vW2WbNmmjx5svbv38+GLgAAAAAAAAAAANgN3j0DAABQDC1fvlyS5Onpqccff/yB1/vqq6+UlJSkJk2aKCQk5IHXy83o0aOVlpam+fPnm9tMJpMkKS0tzWLsnZ/v9AMAAAAAAAAAAAD2gA1dAAAARdD+/fu1Zs0aZWZmWrRnZWUpMjJS48aNkyS99tprcnJyMvevXr1aNWvWVKtWrbKteebMGZ08eTJb+7p16zR48GC5uLho3rx5hXwmf9myZYs+++wzvfPOO6pevbq5vVy5cvrb3/6mrVu36rfffpMk3bp1S5988okk6amnnnpoNQEAAAAAAAAAAACFjVcuAgAAFEGJiYnq2rWrfHx89NRTT8nPz0+XL19WfHy8kpKSJEkvvPCCJkyYYDHvypUrOnr0qK5du5Ztzd27d6tbt26qU6eOAgMD5eTkpIMHD+qXX36Ru7u7vvnmGz355JM51tO1a1edPXtWkpSSkiJJOnXqlBo3bmweM3DgQA0cODDH+RkZGXrllVcUHByssWPHZut/5513NGTIENWvX19hYWE6duyYDh8+rNDQULVs2TIPVwwAAAAAAAAAAACwDWzoAgAAKILq1KmjkSNHKi4uTr/88ot+/PFHGYYhPz8/9ejRQwMGDFD79u3ztWZQUJD69u2rXbt2KTo6Wrdu3VLlypU1atQojRkzRhUrVsx17r59+3TixAmLtuvXr+unn34y/9y2bdtc50+cOFG///67du7cafFEsTsGDx4sZ2dnTZ06VevWrZO3t7eGDBmiyZMn88pFAAAAAAAAAAAA2BU2dAEAYIdu3rypH374QZs2bdL333+vX3/9VWlpaSpTpowaNmyoIUOGqEOHDvlac+PGjVq1apX279+v06dP69KlS3J2dlbVqlXVvn17jR49Wr6+vjnOTUtL08yZM7Vq1SodO3ZMGRkZKlOmjOrXr6/Bgwerc+fO2eZkZmYqIiJCixcvVnJysmrUqKHx48frH//4R47H2L9/vxo0aKABAwZowYIF+Tq34igwMFAzZszI97z+/furf//+OfZVq1ZNixcvLlA9iYmJBZp3x6RJkzRp0qR7jrlX7QAAAAAAAAAAAIC9KGHtAgAAQP5t27ZNrVu31tSpU3Xq1Ck1a9ZM3bp1U9myZbV27Vp17NhRQ4YMkWEYeV5z2bJlioyM1JUrVxQUFKTu3buradOmOnHihCZNmqTatWvr8OHD2eZdvHhRDRs21Lhx43T06FE1adJE3bp1U8WKFbV+/Xp16dJFI0aMyDbvrbfe0nvvvSdnZ2d16NBBp06d0vPPP6+VK1dmG3vr1i0NGjRIvr6+mjJlSv4uFgAAAAAAAAAAAADYETZ0AQBgh0qUKKHu3bvrhx9+0NmzZ7Vu3Tp9+eWXOnTokJYvXy4HBwctWLBAn332WZ7XfP3113X27Fn9+uuvio6O1ueff66oqCidPHlS//jHP5ScnKyBAwdmmzdx4kQdOXJEISEhOnHihKKiovTll19qz549Wr9+vRwdHTVz5kzFxsaa5yQnJ2vWrFl64okndOjQIX399dfatWuXnJycFB4enu0YM2fOVFxcnGbOnClvb++CXDIAAAAAAAAAAAAAsAu8chEAADvUsmVLtWzZMse+nj17Kjo6WpGRkVq6dKn69u2bpzXr1q2bY7u7u7umTZumFStWKDY2VikpKfL09DT3f/fdd5KkN998U6VLl7aY2759e4WFhSk6Olq7du1S48aNJUmHDh3SjRs31Lt3b7m6ukqSatasqb///e/asmWLxTGSkpL0zjvvqGPHjrm+jtFWXN40y9olwMZ5tx1u7RIAAAAAAAAAAABg43hCFwAARVC9evUkSSdPniyU9Rwdb+8BL1GihJycnCz6SpYsmac1fH19zZ8vXrwoSdk2gJUpU0aSdPXqVXPbq6++KpPJpP/85z/5LxwAAAAAAAAAAAAA7AwbugAAKIJ+/fVXSVL58uUfeK3r169r3LhxkqRnnnlGpUqVsuhv166dJGny5Mm6dOmSRd+GDRu0detW+fv7q3Pnzub2gIAASVJCQoLF+ISEBDk7O5s3f3311Vdat26d3n//fVWqVOmBzwUAAAAAAAAAAAAAbB2vXAQAoIg5d+6cFi9eLEnq3r17vufv3btXM2fOlGEY+uOPP/Tzzz/rwoULatCggSIjI7ONf/PNN7V7925FRUWpSpUqCg0Nlbe3t/73v/9pz549Cg0NVWRkpLy8vMxz6tatqypVqujTTz9Vhw4d1LhxYy1atEgHDx5U586d5ezsrMuXL2vEiBFq2LChhg0bVuDrAQAAAAAAAAAAAAD2hA1dAAAUIZmZmerTp4+uXLmi4OBgDRkyJN9rJCUlacmSJRZtrVu31vz581WxYsVs493c3LR27VqNGzdO06ZNU1RUlLmvTJkyat26dbZ5zs7OmjVrlrp166Znn33W3F6+fHnNmDFD0u2NYhcuXNDmzZtVosRfDxVNT0+Xq6trvs8LAAAAAAAAAAAAAOwBr1wEAKAIeeWVVxQTE6MyZcpo5cqVcnZ2zvcazz33nAzDUGZmphITE7Vo0SIlJCQoKChIK1euzDb+7NmzCg0N1axZs/Tee+/p+PHjunr1qnbv3q2QkBBFRESoWbNmSk1NtZjXqVMn7d+/X+PGjdOgQYP04YcfKj4+Xo899ph27NihhQsXauzYsQoODtatW7c0fvx4lS1bVm5ubvLy8tKrr76q9PT0Al8rAAAAAAAAAAAAALBFPKELAIAiYsSIEYqMjJSPj4+io6NVo0aNB1rPwcFBVapU0csvv6xWrVqpdu3aGjBggJo1ayZ/f3/zuH79+unnn3/WlClTNHbsWHN7gwYNtG7dOoWEhOjAgQOaOnWqIiIiLI5Ru3Ztvf/++xZtN27c0ODBg1W1alWNMymiQwAAH3xJREFUHz9ekjR27FjNmDFDL7/8srp06aLt27dr6tSpOnfunFatWvVA5wkAAAAAAAAAAAAAtoQndAEAUASMGTNGM2fOlLe3tzZv3qx69eoV6voBAQEKCwvT1atXFR0dbW4/ffq0+ecXXngh2zwnJyf16NFDkrRly5Y8HWvSpElKSEjQ/PnzVbJkSaWmpmrOnDlq2rSpFi1apE6dOmnKlCl6/vnn9fXXX+vYsWOFcIYAAAAAAAAAAAAAYBvY0AUAgJ174403NH36dHl5eWnz5s2qX7/+QzmOm5ubJCk5OdnclpSUZP7s6emZ4zwvLy9J0qVLl+57jKNHj2rSpEnq37+/WrZsKUk6cuSIbty4oaZNm1qMbdasmSRp//79eT8JAAAAAAAAAAAAALBxbOgCAMCOvfXWW/rwww/l5eWl6OhoNWjQ4KEc5/r169qxY4ckWbzKsWLFiubPP/30U45zY2NjJUmBgYH3PIZhGBoyZIi8vLw0bdo0c7vJZJIkpaWlWYy/8/OdfgAAAAAAAAAAAAAoCtjQBQCAnfr3v/+tyZMny9vbO8+buWbPnq2aNWuqb9++Fu3JycmaO3euUlJSss05ffq0XnzxRZ05c0YBAQF65plnzH2VK1c2H3fEiBFKTEy0mPvf//5XX375pSSpV69e96wtMjJS27Zt04wZM1S6dGlz+xNPPCEXFxetXr3a/JSv9PR0/fe//5WkQn+9JAAAAAAAAAAAAABYk6O1CwAAAPm3Zs0avf/++5KkatWqac6cOTmO8/X11dSpU80/X7hwQUePHpW/v7/FuPT0dA0dOlQjR45U3bp1FRAQIMMwdPLkSe3du1c3btxQhQoV9M0336hkyZIWcz/55BOFhYUpISFBtWrVUuPGjeXr66uEhAQdPnxYktSnTx/17t071/M5f/683njjDbVt2zbbxi93d3eNHj1akyZNUu3atRUaGqq9e/fq999/1wsvvKBq1arl/cIBAAAAAAAAAAAAgI1jQxcAAHbozpOqJCkuLk5xcXE5jqtSpYrFhq7clCtXTtOmTdMPP/yg+Ph4JSQkKCMjQ97e3mrcuLE6deqkwYMHy9PTM9vcoKAgxcfHa8aMGdq4caN+/vlnXb9+XT4+Pnr22Wf10ksv6fnnn7/n8UeOHKkbN25o7ty5Ofa///778vHx0fz58/Xtt9/Kz89Pb775piZOnHjfcwMAAAAAAAAAAAAAe8KGLgAA7FD//v3Vv3//fM8LDw9XeHh4tnZXV1eNHj1ao0ePLlA9fn5++uCDD/TBBx8UaP4XX3xxz36TyaSxY8dq7NixBVofAAAAAAAAAAAAAOxFCWsXAAAAAAAAAAAAAAAAAAC4jQ1dAAAAAAAAAAAAAAAAAGAjeOUiAAB5tHL3H9YuATautbULAAAAAAAAAAAAAGD3eEIXAAAAAAAAAAAAAAAAANgINnQBAAAAAAAAAAAAAAAAgI2w+Q1dqampCg8PV3BwsNzd3eXl5aUGDRpo2rRpunHjxgOtff78eY0ZM0aPP/64SpUqpdKlS6t58+ZatGiRDMMopDMAAAAAUJyRaQAAAADYK/IMAAAAYB2O1i7gXk6cOKEWLVooMTFRkuTq6qrr168rLi5OcXFxWrZsmWJiYuTj45Pvtffs2aNnn31WFy9elCS5u7srNTVVO3bs0I4dO7Ry5UqtWbNGzs7OhXlKAAAAAIoRMg0AAAAAe0WeAQAAAKzHZp/QlZmZqU6dOikxMVHly5dXdHS00tLSlJ6eruXLl8vDw0P79u1Tnz598r32lStX1LFjR128eFE1a9bUzz//rNTUVKWlpWn27NlycnJSVFSURo4cWfgnBgAAAKBYINMAAAAAsFfkGQAAAMC6bHZD15IlS3To0CFJ0qpVq9S6dWtJUokSJdSzZ0/Nnz9fkrRhwwbFxMTka+2pU6fq3LlzKlWqlDZs2KD69etLkpydnfXqq68qIiJCkrRgwQIdO3assE4JAAAAQDFCpgEAAABgr8gzAAAAgHXZ9IYuSQoLC1OTJk2y9f/zn/9UYGCgJGnp0qX5WvvO+LvXuNvw4cPl7u6uW7duadmyZfktHQAAAADINAAAAADsFnkGAAAAsC6b3NCVnp6uH3/8UZLUrl27HMeYTCa1bdtWkrR58+Y8r3306FElJSXdc213d3c1b94832sDAAAAgESmAQAAAGC/yDMAAACA9dnkhq6EhARlZWVJkoKCgnIdd6fv3LlzunTpUp7Wjo+Pzzb/XmsfOXIkT+sCAAAAwB1kGgAAAAD2ijwDAAAAWJ+jtQvIyZkzZ8yfK1asmOu4u/vOnDmj0qVLF/raKSkpunr1qtzd3XMcd/36dV2/ft3885UrV8zzrC39aqq1S4CNS0nLsHYJsHElbOBeZku4r+J+uK/ifmzhvnrn91TDMKxcSdFGpikcfPfifvjuxb3YwveureG+ivvhvop7sZX7Kpnm4SPPFB6+e3EvfO/ifmzlu9dWcE/F/XBfxf3Ywn01P3nGJjd0pab+dTN2dXXNddzdfXfPeRhr5xYWJk2apIiIiGztlSpVylM9AGDb3rR2AQBQxNjOfTU1NVVeXl7WLqPIItMAgC2wne9dACgabOu+SqZ5eMgzAGArbOu7FwDsn+3cV/OSZ2xyQ5c9efvttzV69Gjzz1lZWbp06ZLKlCkjk8lkxcqAe0tJSVGlSpV08uRJeXp6WrscALB73FdhLwzDUGpqqipUqGDtUmAjyDSwV3z3AkDh4r4Ke0Gmwd3IM7BXfO8CQOHivgp7kZ88Y5Mbujw8PMyf09PTcx13d9/dc/Kzdm7/Med1bRcXF7m4uFi0eXt756kWwBZ4enrypQYAhYj7KuwBf8X+8JFpgEeH714AKFzcV2EPyDQPF3kGeHT43gWAwsV9FfYgr3mmxEOuo0Du3ol2+vTpXMfd3ZfXv8bJ79qenp65PsoXAAAAAHJCpgEAAABgr8gzAAAAgPXZ5IauWrVqqUSJ26XFx8fnOu5On7+/v0qXLp2ntYOCgrLNv9faTzzxRJ7WBQAAAIA7yDQAAAAA7BV5BgAAALA+m9zQ5erqqtDQUEnSpk2bchxjGIaioqIkSW3atMnz2jVq1FDlypXvuXZaWpq2b9+e77UBe+Li4qIJEyZkexw1AKBguK8CuBuZBnj4+O4FgMLFfRXAHeQZ4OHjexcAChf3VRRFNrmhS5L69esnSdq6dat++umnbP0rVqzQ8ePHJUl9+/bN87omk8k8fvny5UpMTMw2Zs6cObp69aocHBzUu3fvAlQP2D4XFxeFh4fzpQYAhYT7KoD/i0wDPFx89wJA4eK+CuBu5Bng4eJ7FwAKF/dVFEU2vaErODhYhmGoe/fuiomJkSRlZWVpxYoVGjRokCSpXbt2atWqlcXc8PBwmUwmmUymHMPA66+/Ln9/f6Wnp6tDhw7as2ePJOnGjRuaO3eu3nnnHUnS4MGDVaNGjYd4lgAAAACKKjINAAAAAHtFngEAAACsy9HaBeTG0dFRa9asUVhYmBITE9W6dWu5uroqKytL165dkyTVq1dPy5Yty/faXl5eWrdunZ599lkdOXJE9evXl4eHh65du6abN29Kuv0Y3xkzZhTqOQEAAAAoPsg0AAAAAOwVeQYAAACwLpt9QpckBQQE6ODBgxo/fryCgoJkMpnk5OSkkJAQTZ06VbGxsfLx8SnQ2iEhITp8+LBGjRql6tWr6+bNm3Jzc1OzZs20cOFCbdy4kcfxAQAAAHggZBoAAAAA9oo8AwAAAFiPyTAMw9pFAAAAAAAAAAAAAAAAAABs/AldAApfamqqwsPDFRwcLHd3d3l5ealBgwaaNm2abty4Ye3yAMBupKena+PGjXrvvffUrVs3ValSRSaTSSaTSeHh4dYuDwCAIok8AwCFgzwDAIB1kGkAoHCQaVAcOFq7AACPzokTJ9SiRQslJiZKklxdXXX9+nXFxcUpLi5Oy5YtU0xMTIEfkw0Axcnu3bvVvn17a5cBAECxQZ4BgMJDngEA4NEj0wBA4SHToDjgCV1AMZGZmalOnTopMTFR5cuXV3R0tNLS0pSenq7ly5fLw8ND+/btU58+faxdKgDYDR8fH7Vq1Upjx47VF198IX9/f2uXBABAkUSeAYDCR54BAODRIdMAQOEj06Co4wldQDGxZMkSHTp0SJK0atUqNWnSRJJUokQJ9ezZU1lZWerVq5c2bNigmJgYtWrVyprlAoDNa968uS5dumTR9tZbb1mpGgAAijbyDAAULvIMAACPFpkGAAoXmQbFAU/oAoqJJUuWSJLCwsLMQeFu//znPxUYGChJWrp06SOtDQDskYODg7VLAACg2CDPAEDhIs8AAPBokWkAoHCRaVAcsKELKAbS09P1448/SpLatWuX4xiTyaS2bdtKkjZv3vzIagMAAACAeyHPAAAAALBnZBoAAFAQbOgCioGEhARlZWVJkoKCgnIdd6fv3Llz2R5RCQAAAADWQJ4BAAAAYM/INAAAoCDY0AUUA2fOnDF/rlixYq7j7u67ew4AAAAAWAt5BgAAAIA9I9MAAICCYEMXUAykpqaaP7u6uuY67u6+u+cAAAAAgLWQZwAAAADYMzINAAAoCDZ0AQAAAAAAAAAAAAAAAICNYEMXUAx4eHiYP6enp+c67u6+u+cAAAAAgLWQZwAAAADYMzINAAAoCDZ0AcVAhQoVzJ9Pnz6d67i7++6eAwAAAADWQp4BAAAAYM/INAAAoCDY0AUUA7Vq1VKJErf/c4+Pj8913J0+f39/lS5d+pHUBgAAAAD3Qp4BAAAAYM/INAAAoCDY0AUUA66urgoNDZUkbdq0KccxhmEoKipKktSmTZtHVhsAAAAA3At5BgAAAIA9I9MAAICCYEMXUEz069dPkrR161b99NNP2fpXrFih48ePS5L69u37SGsDAAAAgHshzwAAAACwZ2QaAACQX2zoAoqJfv36KTg4WIZhqHv37oqJiZEkZWVlacWKFRo0aJAkqV27dmrVqpU1SwUAu/Hnn3/qwoUL5n+ysrIkSenp6RbtV69etXKlAADYN/IMABQ+8gwAAI8OmQYACh+ZBkWdyTAMw9pFAHg0EhMTFRYWpsTEREm3H/OblZWla9euSZLq1aunmJgY+fj4WLFKALAfAQEBOnHixH3H9evXT4sXL374BQEAUISRZwCgcJFnAAB4tMg0AFC4yDQo6nhCF1CMBAQE6ODBgxo/fryCgoJkMpnk5OSkkJAQTZ06VbGxsQQFAAAAADaJPAMAAADAnpFpAABAfvCELgAAAAAAAAAAAAAAAACwETyhCwAAAAAAAAAAAAAAAABsBBu6AAAAAAAAAAAAAAAAAMBGsKELAAAAAAAAAAAAAAAAAGwEG7oAAAAAAAAAAAAAAAAAwEawoQsAAAAAAAAAAAAAAAAAbAQbugAAAAAAAAAAAAAAAADARrChCwAAAAAAAAAAAAAAAABsBBu6AAAAAAAAAAAAAAAAAMBGsKELAAAAAAAAAAAAAAAAAGwEG7oAAAAAAAAAAAAAAAAAwEawoQsArMRkMslkMlm7DLsTHh4uk8mk8PBwi/bFixfLZDKpf//+VqkLAAAAKE7IMwVDngEAAABsA5mmYMg0APDosKELAPBAvv/+e5lMJrVo0cLapQAAAABAvpBnAAAAANgzMg0AFF2O1i4AAIDC0LVrVzVu3FheXl7WLgUAAAAA8oU8AwAAAMCekWkAoPCxoQsAUCR4eXkRFAAAAADYJfIMAAAAAHtGpgGAwscrFwHABqxatUrNmjWTp6en3NzcFBoaqg0bNuQ6PjMzU4sWLVKLFi1UunRpubi4KDAwUP/617908uTJHOd8/fXXGjhwoIKCguTj46OSJUsqMDBQL730ko4ePZrjnP79+8tkMmnx4sWKj49Xz549Vb58eTk4OCg8PFwtWrRQWFiYJGnbtm3md86bTCYFBAQU+HpkZGQoPDxc1atXl4uLi8qXL69+/fopKSkp1zn3ej/7li1b1KlTJ/n5+cnJyUk+Pj6qXr26+vTpox9++CHH9WJiYtStWzeVL19ezs7OKleunLp27apdu3blOH737t1644031LBhQ/n7+8vZ2Vl+fn7q1KmTtmzZkmvdK1asUOvWrVWmTBk5OTmpTJkyeuKJJzRo0CAdPHgwxzkrV65U27ZtVbZsWTk7O6tixYrq06ePjhw5kutxAAAAgIeFPGOJPEOeAQAAgH0h01gi05BpANgGntAFAFY2YcIEvfvuu2ratKnat2+vX375RTt37lTHjh21atUqde3a1WJ8amqqOnfurO+//17u7u4KCQlR2bJldejQIc2bN08rVqxQdHS06tWrZzHv+eefl4uLi5544gm1bNlSmZmZio+P16effqqvvvpKmzdvVtOmTXOscefOnXrllVdUvnx5Pf3008rIyJCHh4fatm2rkiVLKioqSn5+fmrbtq15jq+vb4GuR3p6ulq1aqXY2Fi5ubmpTZs2KlWqlKKiorR+/Xp16NAhX+stWbJEAwYMkCQ1bNhQYWFhysjI0KlTp7R8+XL5+vrq6aeftpjz+uuva9q0aSpRooTq16+v5s2bKykpSd9++63Wrl2rhQsXmte8Y9y4cdq6datq166tkJAQubm56bffftO6deu0bt06ffTRRxoxYoTFnIkTJ2rChAlydHRU06ZNVbFiRV25ckVJSUmKjIxU7dq19eSTT5rHZ2Zmqnfv3vrqq6/k4uKikJAQVaxYUceOHdOyZcv09ddf6+uvv7b49wAAAAA8TOQZS+QZ8gwAAADsC5nGEpmGTAPAhhgAAKuQZEgyvL29jdjYWIu+CRMmGJKMGjVqZJvXq1cvQ5LRsWNH4/z58xZ9M2bMMCQZ1atXNzIzMy36li9fbly9etWiLSsry5gzZ44hyahdu7aRlZVl0d+vXz9znW+99ZZx69atbPVs3brVkGT8/e9/z8/p5+r11183JBk1a9Y0Tp8+bW5PS0szunTpYq5nwoQJFvM+/fRTQ5LRr18/i/bAwEBDkrF9+/Zsxzp//ryxd+9ei7YFCxYYkoxq1aoZBw4csOjbtm2b4eHhYTg7OxvHjh2z6NuwYYNx5syZbMfYuXOn4enpaTg5ORmnTp0yt1+7ds0oVaqU4e7ubvzyyy/Z5iUmJhoJCQkWbePGjTMkGY0aNTKOHz9u0bdixQrDwcHB8PHxMf78889s6wEAAACFiTyTM/LMbeQZAAAA2DoyTc7INLeRaQDYAjZ0AYCV3Pmld+bMmdn6rl27Znh5eRmSjKSkJHP7kSNHDJPJZFSoUMFISUnJcd327dsbkoy1a9fmuZYmTZoYkozDhw9btN8JCzVq1MgWPu4ozLCQnp5ueHh4GJKMjRs3Zus/e/asUbJkyXyFBVdXV8PLyytPx79165ZRoUIFQ5IRFxeX45gpU6YYkowxY8bkaU3DMIy3337bkGTMmTPH3JacnGxIMp588sk8rXHx4kWjVKlSRsmSJS1Cx92GDh1qSDJmzZqV59oAAACAgiDPZEeeyR15BgAAALaGTJMdmSZ3ZBoA1lAiT4/xAgA8NJ06dcrW5uLioscee0ySdPr0aXP7hg0bZBiG2rVrJw8PjxzXa9GihaTbj+D9v/73v/9p9uzZGjlypF5++WX1799f/fv31/nz5yUp1/e0P/fcc3JwcMjXeRXE3r17lZqaKl9f3xwfSevv7682bdrka82GDRvqypUr6tu3r/bs2aOsrKxcx+7bt09nzpxR1apVFRISkuOYe13fixcvaunSpXrjjTc0aNAg8/Xdtm2bJMvrW7ZsWQUEBOjgwYMaM2bMfd+tvnXrVmVkZCg0NFQVK1bMd20AAADAw0Ce+Qt5JnfkGQAAANgqMs1fyDS5I9MAsAZHaxcAAMVd5cqVc2z39PSUJF27ds3cdvz4cUlSZGSkIiMj77nuH3/8Yf5869YtDRs2TPPnz5dhGLnOSUlJybE9ICDgnscqLKdOnbrv8QIDA/O15n/+8x917NhRn332mT777DN5eHioQYMGatmypV588UWL63/n+v72228ymUz3XPfu6ytJCxcu1KhRo5SWlpbrnP97fZcuXaoePXpo+vTpmj59ukqXLq1GjRrpmWee0Ysvvmjxjvs7tcXExOS7NgAAAOBhIc/8hTxDngEAAID9IdP8hUxDpgFgW9jQBQBWVqJE3h+WeOcvF+rWras6dercc2yjRo3Mnz/++GPNmzdP/v7+mj59upo2bSo/Pz+VLFlSktSrVy998cUXuQaJUqVK5blGW1OrVi0dPXpUmzdv1nfffaedO3dq+/bt+u677zRx4kRFRkaqT58+kv66vv7+/nr22Wfvue7dv8jv2bNHQ4YMkYODgyZPnqxOnTqpcuXKcnV1lclk0oIFCzRkyJBs17d58+ZKTEzU+vXrtW3bNu3cuVNRUVHauHGjJkyYoNWrV6tVq1YWtVWrVk2hoaH3rK1mzZr5u0gAAABAAZFnHi7yDAAAAPBwkWkeLjINABQcG7oAwI5UqlRJkhQaGqrZs2fned5XX30lSZo/f746d+6crf/XX38tnAIf0J3H1CYmJuY65l59uXF0dFT79u3Vvn17Sbf/CmP69OmKiIjQkCFD1LVrV7m5uZmvb5kyZbR48eI8r79ixQoZhqHhw4frjTfeyNZ/r+tbqlQp9ejRQz169JB0+y83/v3vf2vBggV66aWXdOLECUl//bt//PHH81UbAAAAYCvIM+QZ8gwAAADsGZmGTEOmAfAo5X3LMQDA6tq1aydJWrNmjcVjfu/n0qVLkqQqVapk6zt8+LD2799f4JqcnZ0lSZmZmQVe446QkBC5u7vrwoUL2rx5c7b+8+fP59ieX56engoPD5e3t7fS09N17NgxSVKDBg3k6+urI0eO6PDhw3le717X99q1a1q1alWe1ypbtqymTJkiSUpKStKff/4pSWrVqpWcnZ31/fffKzk5Oc/rAQAAALaCPEOeIc8AAADAnpFpyDRkGgCPEhu6AMCO1KtXT927d9fJkyfVrVu3HP8SIi0tTcuWLdP58+fNbbVq1ZIkzZkzx/xYWEk6e/as+vbt+0C/6P/tb3+TdPsvHG7evFngdaTbfwkxePBgSdKoUaN09uxZc19GRob+9a9/KSMjI8/rpaena/r06Tm+r3z79u26fPmyHBwczOfg5OSkCRMmyDAMde3aVTt27Mg279atW/ruu+8UGxtrbrtzfZcsWaLU1FRz+7Vr1zR06FD9/vvv2dY5ceKEFi1alO2d7ZK0du1aSZKPj488PT0lSX5+fho+fLjS0tLUqVMnHTp0KNu869eva82aNfrll1/ueV0AAAAAayDPkGfIMwAAALBnZBoyDZkGwKPEKxcBwM58+umnunz5sjZu3KjHH39cderUUWBgoAzDUGJiog4cOKAbN24oISFBfn5+kqRx48Zp06ZNWrhwobZu3aqnnnpKKSkp2rZtmx577DF17dpVq1evLlA9lStXVv369RUXF6fg4GDVr19fJUuWlK+vrz744IN8rzdx4kTt2LFDu3fvVo0aNRQWFqaSJUtq+/btunnzpvr27aulS5fmaa0bN25ozJgxGjt2rIKDg1W9enU5OTkpMTHR/Mv+//t//09ly5Y1zxk2bJiSkpL04Ycfqnnz5qpdu7aqVaumUqVK6dy5c9q/f78uX76suXPnqnHjxpKkAQMG6OOPP9a+ffsUGBio5s2by8HBQdu3b1dGRoZGjBihjz/+2KK2P//8U4MGDdLQoUNVt25dBQYGSroduvbt2yeTyaQPP/xQDg4O5jkffPCBzp49q88//1x169ZVnTp19Nhjj8nR0VGnTp3S/v37lZaWpo0bN/KOdgAAANgk8gx5hjwDAAAAe0amIdOQaQA8KjyhCwDsjIeHhzZv3qzPP/9crVu3VlJSklavXq3vvvtOGRkZ6t27t1avXq2qVaua5zRq1EhxcXHq3Lmz0tLStGbNGv32228aPny4du3aZf4Lg4JatWqVevXqpZSUFH355ZeKjIzU8uXLC7SWm5ubtm7dqnfeeUd+fn6KiorSDz/8oFatWikuLs78S3VeuLu7a968eerZs6euX7+u6OhoffPNN0pOTla3bt0UExOjiIiIbPOmTJmiH3/8Ub1799bVq1e1adMmrV+/XmfOnFGLFi20aNEi9ezZ0zze29tbcXFxGjp0qLy9vbVx40bt2rVLbdq00d69e1W3bt1sx6hatao++ugjdezYUZcvX9aGDRu0fv16paWlqW/fvvr555/18ssvW8xxdHTUsmXLtGHDBj333HNKTk7WmjVrFBUVpUuXLqlTp076/PPP9fTTT+f9ggMAAACPEHmGPEOeAQAAgD0j05BpyDQAHhWTYRiGtYsAAAAAAAAAAAAAAAAAAPCELgAAAAAAAAAAAAAAAACwGWzoAgAAAAAAAAAAAAAAAAAb4WjtAgAARdfrr7+uCxcu5Glss2bNNHDgwIdcEQAAAADkDXkGAAAAgD0j0wCAfWNDFwDgoVm5cqVOnDiR5/GEBQAAAAC2gjwDAAAAwJ6RaQDAvpkMwzCsXQQAAAAAAAAAAAAAAAAAQCph7QIAAAAAAAAAAAAAAAAAALexoQsAAAAAAAAAAAAAAAAAbAQbugAAAAAAAAAAAAAAAADARrChCwAAAAAAAAAAAAAAAABsBBu6AAAAAAAAAAAAAAAAAMBGsKELAAAAAAAAAAAAAAAAAGwEG7oAAAAAAAAAAAAAAAAAwEawoQsAAAAAAAAAAAAAAAAAbMT/B8YFq+W7vppaAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 3000x600 with 3 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, axs = plt.subplots(1, 3, figsize=(30, 6))\n",
+    "\n",
+    "age_groups = [[40, 60], [60, 80], [80, 90]] \n",
+    "x = 'heart_disease'\n",
+    "hue = 'gender'\n",
+    "palette_color = 'pastel'\n",
+    "for i, age_group in enumerate(age_groups):\n",
+    "    tempDf = df[(df['age'] >= age_group[0]) & (df['age'] < age_group[1])]\n",
+    "    \n",
+    "    data = tempDf[x].groupby(tempDf[hue]).value_counts(normalize=True).rename('percent').reset_index()\n",
+    "    \n",
+    "    # Vẽ biểu đồ cột\n",
+    "    ax = sns.barplot(data=data, x=x, y='percent', hue=hue, ax=axs[i], palette=palette_color)\n",
+    "    axs[i].set_xlabel(x, fontsize=16)\n",
+    "    axs[i].set_ylabel('percent', fontsize=16)\n",
+    "    axs[i].set_title(f'Age: {age_group[0]} - {age_group[1]}', fontsize=20)\n",
+    "    \n",
+    "    # Thêm số trên đầu cột\n",
+    "    for p in ax.patches:\n",
+    "        if p.get_height() > 0:\n",
+    "            ax.annotate(format(p.get_height(), '.2%'), (p.get_x() + p.get_width() / 2., p.get_height()), \n",
+    "                    ha='center', va='center', xytext=(0, 7), textcoords='offset points',fontsize =16)\n",
+    "    \n",
+    "    axs[i].tick_params(axis='both', labelsize=18)\n",
+    "      \n",
+    "    \n",
+    "    axs[i].legend(prop={'size': 16})\n",
+    "\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ:</strong> <br>\n",
+    "<ul>\n",
+    "<li>Nhìn chung tỷ lệ nam, nữ mắc bệnh tim mạch đều tăng dần theo độ tuổi. Tại cả 3 biểu đồ, tỷ nam mắc bệnh tim nhiều hơn nữ.</li> \n",
+    "<li>Mốc tuổi 40 - 60, nam mắc bệnh tim mạch cao gấp 2.5 lần nữ giới. Mốc tuổi 60 - 80, nam mắc bệnh tim cao gấp 2 lần nữ. Mốc tuổi ngoài 80, nam giới mắc bệnh tim cao gấp 1.5 lần nữ giới. Có thể thấy tuy nam có tỷ lệ mắc bệnh tim mạch cao hơn phụ nữ, nhưng ở độ tuổi ngày càng cao, khoảng cách chênh lệch giữa nam nữ mắc bệnh tim mạch dần dần được thu hẹp. Điều này chứng minh phụ nữ sau thời kỳ mãn kinh (khoảng ngoài 50 tuổi) có tỉ lệ mắc bệnh tim mạch tăng lên nhanh chóng.</li> \n",
+    "</ul>\n",
+    "<strong>Kết luận: </strong>Có mối tương quan giữa độ tuổi và bệnh tim mạch. Độ tuổi càng cao thì nguy cơ mắc bệnh tim càng gia tăng, nam giới có tỉ lệ mắc bệnh tim mạch cao hơn nữ giới, ở độ tuổi sau mãn kinh tỷ lệ nữ giới mắc bệnh tim mạch gia tăng nhanh chóng. Điều này phù hợp với nghiên cứu của y khoa \n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.2.3.\tBệnh tim và hút thuốc lá: </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li> <strong>Theo Thư viện Y khoa Quốc gia Hoa Kỳ:</strong> \n",
+    "hút thuốc lá là một trong những yếu tố nguy cơ hàng đầu mắc các bệnh tim mạch mãn tính. Hút thuốc làm tổn thương tim và mạch máu rất nhanh, nhưng tổn thương này sẽ được phục hồi nhanh chóng đối với hầu hết những người hút thuốc ngừng hút thuốc.</li>\n",
+    "<li>\n",
+    "<strong>Kiểm định tính xác thực: </strong>chia bộ dữ liệu thành 2 nhóm, nhóm bị bệnh tim và nhóm không bị bệnh tim, sau đó theo dõi sự phân bố của thuộc tính tình trạng hút thuốc trong 2 nhóm trên.</li>\n",
+    "\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 136,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACEgAAAK0CAYAAAAa4ZpJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADgwklEQVR4nOzdd1jVdf/H8ddhI+MgoGiiuGc4EFduMXOUKzU1M21omZrjtrQyNa3MTHOvW1P7qeTCXOXAHS4SV+bGRDMHKiAgMs7vjy7O3QlEEASi5+O6znVxPvP9PTf3ZXVefj4Gk8lkEgAAAAAAAAAAAAAAQAFmldcFAAAAAAAAAAAAAAAAPGkEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFnk9cF/FulpKTo999/l4uLiwwGQ16XAwAAAAAAAAAAAADAP47JZFJMTIyeeuopWVllfEYEAYk88vvvv6tkyZJ5XQYAAAAAAAAAAAAAAP94ERER8vb2znAMAYk84uLiIunP/5FcXV3zuBoAAAAAAAAAAAAAAP55oqOjVbJkSfN38BkhIJFHUq/VcHV1JSABAAAAAAAAAAAAAEA2pH4Hn5GML+AAAAAAAAAAAAAAAAAoAAhIAAAAAAAAAAAAAACAAo+ABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8GzyugDgn2rZsmXasmWLjh07pmvXrunOnTsqVKiQKlWqpE6dOmnQoEFydna2mGMwGDK19pIlS9S7d+9MjY2MjNSGDRv0888/6+eff9bRo0cVHx+vgIAAbd++/aHzmjVrpt27dz9y/b59+2rRokUWbdOmTdOMGTMUERGhUqVKaciQIXrnnXfSnX/16lVVrVpV9erV09atWzP1TAAAAAAAAAAAAHhyTCaTEhMTlZKSktelAGZWVlaytbXN9Heqj4OABPCY5syZo5CQEFWpUkV+fn5yd3fX9evXtX//fh0+fFiLFi3S7t279dRTT5nnvPrqqw9d7/Lly9q5c6cMBoOaNm2a6Tr27t2rvn37Zrn+1q1bq3Tp0un2PXjwQCtWrJAkNW/e3KJv5syZGjJkiIoXL6527dpp//79GjhwoO7fv6/hw4enWWvgwIFKSkrS3Llzs1wjAAAAAAAAAAAAcs6DBw9048YNxcXFKTk5Oa/LAdKwtrZWoUKFVLRoUdnZ2eX4+gaTyWTK8VXxSNHR0TIajYqKipKrq2tel4PHcPDgQVWoUEHu7u4W7ZGRkerYsaP27dun7t27m4MGjzJgwADNmTNHzz77bJZOWti/f7+WLFkiPz8/+fn56eeff9Zbb731yBMkMrJy5Uq99NJLMhqNunbtmhwdHSVJycnJKlasmCTp119/laenp27cuKEqVaooJSVFN27ckK2trXmdoKAgde7cWZMmTdKIESMeqxYAAAAAAAAAAABkX1xcnCIiImRtbS2j0ShHR0dZW1s/0b+tD2SWyWRScnKy4uPjFRUVpZSUFHl7e6tQoUKPnJuV7945QQJ4TPXq1Uu33cPDQ5999pmaNGmS6aDD/fv3zUGK119/PUt1NGjQQA0aNDC/P3nyZJbmp2fhwoWSpB49epjDEZJ06dIl3bp1S2+++aY8PT0lSUWLFlXnzp313//+V7/++quqV68uSYqJidGgQYNUs2ZNDR06NNs1AQAAAAAAAAAA4PHdunVLtra28vHxkbW1dV6XA6TL2dlZ7u7u+u2333Tr1i2VKlUqR9e3ytHVAEiSbGz+zB7Z29tnavyaNWt09+5dubu7q2PHjk+wskeLiIgwnzzx97BGZGSkJKU5NcPDw0OSdO/ePXPbqFGj9Mcff2jBggXmzwMAAAAAAAAAAAC5LykpSbGxsXJ3dyccgXzP2tpa7u7uio2NVVJSUo6uTUACyGExMTEaO3asJKl9+/aZmrNo0SJJUq9evTIdqnhSFi9erJSUFFWvXl3+/v4WfaVLl5b05/Uaf5X6vkSJEpKkAwcOaM6cORo8eHCaNQAAAAAAAAAAAJC7Ur9kzuvvoYDMSv1dzemABH+tG8imrVu3avny5UpJSdH169e1f/9+xcTEqHXr1vriiy8eOf/SpUvauXOnpKxfr5HTTCaTFi9e/NBaihYtqgYNGmjTpk0KDAxUu3bttHHjRm3atEnVq1eXj4+PEhMT1a9fP5UsWVLjx4/P5ScAAAAAAAAAAADAwxgMhrwuAciUJ/W7SkACyKZTp05pyZIlFm09e/bUlClTZDQaHzn/m2++kclkkr+/v6pXr/6kysyUXbt26eLFi7K3t1evXr3SHTN9+nQ1b95cPXr0MLe5urpqwYIFkqTJkyfrxIkT2rx5s5ycnMxj4uPj5eDgwB+8AAAAAAAAAAAAAPIEV2wA2TRkyBCZTCY9ePBA58+f11dffaUffvhBVatW1Z49ezKcm5KSYj6x4bXXXsuFajO2cOFCSVKHDh3k7u6e7hh/f3+dPHlS48aN05tvvqnx48fr5MmTqlu3ri5cuKDx48erR48eatOmjSRpxowZKlmypAoVKiQnJyf17NlTkZGRufZMAAAAAAAAAAAAACBxggSQY2xtbVWuXDkNGzZMDRs2VIMGDdSrVy+dOXNGjo6O6c7Zvn27Ll++LEdHR/Xs2TOXK7YUFRWltWvXSnr0VR8+Pj76+OOP07T3799fjo6O+vrrryX9edrEu+++qw4dOmjmzJk6deqUxo4dq/Pnz+vAgQOysiKjBQAAAAAAAAAAACB38O0k8ATUq1dPVatWVUREhEJDQx86btGiRZKkF198MVPXcTxJK1asUHx8vEqVKqWWLVtmef6SJUsUHBysyZMnq2jRopKkiRMnysfHR6tXr1aHDh00atQoDR06VIcPH9b27dtz+hEAAAAAAAAAAACQAwwGA9emP4axY8fKYDBo7NixFu2LFy+WwWBQnz598qQu/A8BCeAJcXJykiTduHEj3f7bt29r3bp1kh59YkNuSA1r9O3bN8snO9y6dUvDhw9X8+bN1bdvX0nS9evXde3aNdWpU0c2Nv87rKZRo0aSpKNHj+ZM4QAAAAAAAAAAAEA6du3aJYPBoGbNmuV1KcgnuGIDeAJu3bqlY8eOSZIqVqyY7phly5YpISFB5cqVU9OmTXOzvDROnjypw4cPy2AwmAMOWTFs2DDFxsZq3rx55rbUVGFsbKzF2NT3pA4BAAAAAAAAAADwb9CpUyfVr18/z0+UBydIAI/l1KlTWrZsme7fv5+m7+zZs+ratasSEhJUv359+fr6prtG6okNr7322iPDAkFBQapcubICAgKyX3w6Fi5cKElq2bKlfHx8sjR3+/bt+vbbbzV69GhVqFDB3F60aFF5e3tr586dunDhgiQpOTnZ/Nx+fn45VD0AAAAAAAAAAACQfxmNRlWuXFnFixfP61L+9QhIAI/hxo0b6tWrlzw9PdW4cWP16NFDL774ourUqaMqVapo165dqlKlir777rt054eFheno0aOytrbO1F1DUVFROnPmjDlo8Hf169c3v8aPHy9JOnz4sEX7pk2b0p2bmJio//u//5OU9as+4uPj9dZbb8nX11cjRoxI0z969Gjdv39f/v7+6ty5s2rUqKGtW7eqYcOGatGiRZb2AgAAAAAAAAAAQO5bs2aNGjVqJFdXVzk5Oalhw4bavHnzQ8cnJSXpv//9r5o1ayZ3d3fZ29urTJkyevvttxUREZHunLVr1+qNN97Q008/rcKFC8vBwUFlypTRa6+9pjNnzqQ7p0+fPjIYDFq8eLFOnjypl156ScWLF5e1tbXGjh2rZs2aqXnz5pKk3bt3y2AwmF+lS5d+7M8jPj5eY8eOVYUKFWRvb6/ixYvr1Vdf1eXLlx86Z/HixTIYDOl+L7h9+3a98MIL8vLykq2trQoXLqwKFSqoV69e2rNnT7rrBQcHq3PnzipevLjs7OxUtGhRderUSfv37093/KFDh/Tee++pbt26KlasmOzs7OTl5aUXXnhB27dvf2jdq1atUsuWLeXh4SFbW1t5eHioatWqevPNN3X8+PF056xevVqtW7dWkSJFZGdnpxIlSqhXr146derUQ/fJTVyxATyGatWq6dNPP9XevXt1+vRphYWFKTExUe7u7goICFDnzp3Vt29f2dvbpzs/9RSF5557Tk899VS26zl48GCatujoaIv2mzdvpjt3/fr1unXrltzd3dWxY8cs7fvJJ58oPDxcISEhsrW1TdPfr18/2dnZafLkydq4caPc3NzUv39/ffHFF1yxAQAAAAAAAAAAkM+NGTNG48eP1zPPPKO2bdvq9OnTCgkJ0fPPP681a9aoU6dOFuNjYmLUvn177dq1S87Ozqpdu7aKFCmiEydOaO7cuVq1apW2bdumWrVqWczr1q2b7O3tVbVqVbVo0UJJSUk6efKkvvnmG61cuVJbt27VM888k26NISEheuutt1S8eHE1adJE8fHxcnFxUevWreXg4KAtW7bIy8tLrVu3Ns/x9PR8rM8jLi5OAQEBOnDggJycnNSqVSs5Ojpqy5Yt2rRpk9q1a5el9ZYsWaK+fftKkurWravmzZsrPj5eV65cUWBgoDw9PdWkSROLOf/5z3/01VdfycrKSv7+/mrcuLEuX76s77//Xhs2bNCCBQvMa6b64IMPtHPnTlWrVk21a9eWk5OTLly4oI0bN2rjxo36+uuv9e6771rM+eSTTzRmzBjZ2NjomWeeUYkSJRQVFaXLly9r4cKFqlatmqpXr24en5SUpJdfflkrV66Uvb29ateurRIlSujs2bNatmyZ1q5dq7Vr11r875AnTMgTUVFRJkmmqKiovC4FAAAAAAAAAAAAQAEWHx9vOnXqlCk+Pj5T4yWZJJnc3NxMBw4csOgbM2aMSZKpYsWKaeb17NnTJMn0/PPPm65fv27RN3XqVJMkU4UKFUxJSUkWfYGBgaZ79+5ZtKWkpJhmzZplkmSqVq2aKSUlxaL/1VdfNdc5cuRIU3Jycpp6du7caZJkatq0aaae+1H+85//mCSZKleubLp69aq5PTY21tShQwdzPWPGjLGY980335gkmV599VWL9jJlypgkmfbu3Ztmr+vXr5uOHDli0TZ//nyTJFP58uVNx44ds+jbvXu3ycXFxWRnZ2c6e/asRd/mzZtNv//+e5o9QkJCTK6uriZbW1vTlStXzO337983OTo6mpydnU2nT59OM+/SpUumX3/91aLtgw8+MEky1atXz3Tx4kWLvlWrVpmsra1NhQsXNt25cyfNeunJyu9sVr5754oNAAAAAAAAAAAAAEAan3zyierVq2fRNmrUKBmNRp09e9biyoxff/1VK1as0FNPPaXly5eraNGiFvOGDBmitm3b6ty5c/rhhx8s+l566SU5OTlZtBkMBg0YMEANGjTQL7/8ol9//TXdGitWrKgJEybIyurJfvUdHx+vefPmSZKmTp1qcUp8oUKFNHfuXDk4OGRpzevXr8toNKpRo0Zp+ooWLWpx0kZKSorGjh0rSQoMDLQ4vUGSmjRpotGjR+vBgwfmOlO1adNGxYsXT7NHgwYN9M477ygxMVHff/+9uT06Olrx8fEqW7asKlWqlGaej4+PKleubH5/+/ZtTZ06VQ4ODlqzZo3KlCljMb5Lly7q37+/7ty5o//7v//L4BN58ghIAAAAAAAAAAAAAADSeOGFF9K02dvbq2zZspKkq1evmts3b94sk8mkNm3ayMXFJd31mjVrJunPazH+7vz585o5c6aGDBmi119/XX369FGfPn10/fp1SdKZM2fSXbNjx46ytrbO0nM9jiNHjigmJkaenp7pXhNRrFgxtWrVKktr1q1bV1FRUerdu7d+/vlnpaSkPHRsWFiYfv/9d5UrV061a9dOd0xGn29kZKSWLl2q9957T2+++ab58929e7cky8+3SJEiKl26tI4fP67hw4fr1KlTGT7Hzp07FR8fr4YNG6pEiRJZri032eTp7igQVh+6mdclAPlel7pF8roEAAAAAAAAAACALClVqlS67a6urpKk+/fvm9suXrwoSVq4cKEWLlyY4bo3b/7v+8Xk5GQNHDhQ8+bNk8lkeuic6OjodNtLly6d4V455cqVK4/c7+8nJzzK7Nmz9fzzz+vbb7/Vt99+KxcXF9WpU0ctWrTQK6+8YvH5p36+Fy5ckMFgyHDdv36+krRgwQINHTpUsbGxD53z98936dKl6tKli6ZMmaIpU6bI3d1d9erV07PPPqtXXnlFnp6eaWoLDg7Ocm25jYAEAAAAAAAAAAAAACCNrFxbkXr6Qc2aNVWjRo0Mx/712o5p06Zp7ty5KlasmKZMmaJnnnlGXl5e5usqevbsqRUrVjw0POHo6JjpGvObKlWq6MyZM9q6dat27NihkJAQ7d27Vzt27NAnn3yihQsXqlevXpL+9/kWK1ZMzz33XIbr/jW88PPPP6t///6ytrbWF198oRdeeEGlSpVSoUKFZDAYNH/+fPXv3z/N59u4cWNdunRJmzZt0u7duxUSEqItW7bohx9+0JgxYxQUFKSAgACL2sqXL6+GDRtmWNtfr+bICwQkAAAAAAAAAAAAAADZUrJkSUlSw4YNNXPmzEzPW7lypSRp3rx5at++fZr+c+fO5UyB2ZR6dcSlS5ceOiajvoexsbFR27Zt1bZtW0l/nuQwZcoUjRs3Tv3791enTp3k5ORk/nw9PDy0ePHiTK+/atUqmUwmDRo0SO+9916a/ow+X0dHR3Xp0kVdunSR9OfpDx999JHmz5+v1157Tb/99puk//1vX6lSpSzVlhcyH/kBAAAAAAAAAAAAACAdbdq0kSStX7/e4uqNR7l9+7YkycfHJ03fL7/8oqNHjz52TXZ2dpKkpKSkx14jVe3ateXs7Kxbt25p69atafqvX7+ebntWubq6auzYsXJzc1NcXJzOnj0rSapTp448PT116tQp/fLLL5leL6PP9/79+1qzZk2m1ypSpIgmTZokSbp8+bLu3LkjSQoICJCdnZ127dqlGzduZHq9vEBAAgAAAAAAAAAAAACQLbVq1dKLL76oiIgIde7cOd3TFGJjY7Vs2TJdv37d3FalShVJ0qxZs8xXNUjStWvX1Lt372yFG7y9vSX9eUpCYmLiY68j/XmaQr9+/SRJQ4cO1bVr18x98fHxevvttxUfH5/p9eLi4jRlyhTdvHkzTd/evXt19+5dWVtbm5/B1tZWY8aMkclkUqdOnbRv374085KTk7Vjxw4dOHDA3Jb6+S5ZskQxMTHm9vv372vAgAEKDw9Ps85vv/2m//73v4qOjk7Tt2HDBklS4cKF5erqKkny8vLSoEGDFBsbqxdeeEEnTpxIMy8hIUHr16/X6dOnM/xcnjSu2AAAAAAAAAAAAAAAZNs333yju3fv6ocfflClSpVUo0YNlSlTRiaTSZcuXdKxY8f04MED/frrr/Ly8pIkffDBB/rxxx+1YMEC7dy5U35+foqOjtbu3btVtmxZderUSUFBQY9VT6lSpeTv76/Q0FD5+vrK399fDg4O8vT01MSJE7O83ieffKJ9+/bp0KFDqlixopo3by4HBwft3btXiYmJ6t27t5YuXZqptR48eKDhw4drxIgR8vX1VYUKFWRra6tLly6ZAw4ffvihihQpYp4zcOBAXb58WV9++aUaN26satWqqXz58nJ0dNQff/yho0eP6u7du5ozZ47q168vSerbt6+mTZumsLAwlSlTRo0bN5a1tbX27t2r+Ph4vfvuu5o2bZpFbXfu3NGbb76pAQMGqGbNmipTpoykP4MmYWFhMhgM+vLLL2VtbW2eM3HiRF27dk3Lly9XzZo1VaNGDZUtW1Y2Nja6cuWKjh49qtjYWP3www+qXLlylj/7nMIJEgAAAAAAAAAAAACAbHNxcdHWrVu1fPlytWzZUpcvX1ZQUJB27Nih+Ph4vfzyywoKClK5cuXMc+rVq6fQ0FC1b99esbGxWr9+vS5cuKBBgwZp//795lMKHteaNWvUs2dPRUdH67vvvtPChQsVGBj4WGs5OTlp586dGj16tLy8vLRlyxbt2bNHAQEBCg0NNQcJMsPZ2Vlz587VSy+9pISEBG3btk3r1q3TjRs31LlzZwUHB2vcuHFp5k2aNEk//fSTXn75Zd27d08//vijNm3apN9//13NmjXTf//7X7300kvm8W5ubgoNDdWAAQPk5uamH374Qfv371erVq105MgR1axZM80e5cqV09dff63nn39ed+/e1ebNm7Vp0ybFxsaqd+/eOnz4sF5//XWLOTY2Nlq2bJk2b96sjh076saNG1q/fr22bNmi27dv64UXXtDy5cvVpEmTzH/gT4DBZDKZ8rSCf6no6GgZjUZFRUVl+//UeW31obTHvgCw1KVukUcPAgAAAAAAAAAAeALu37+v8PBwlSlTRg4ODnldDvBIWfmdzcp375wgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMCzyesCAAAAAAAAAAAAAADITf/5z39069atTI1t1KiR3njjjSdcEXIDAQkAAAAAAAAAAAAAwL/K6tWr9dtvv2V6PAGJgoGABAAAAAAAAAAAAADgX+XSpUt5XQLygFVeFwAAAAAAAAAAAAAAAPCkEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABZ5NXhcAAAAAAAAAAAAAAEBGVh+6mdclZFmXukWeyLqrVq3SrFmzdOzYMT148EDly5fXyy+/rKFDh8rW1vaJ7FlQcIIEAAAAAAAAAAAAAAD/AEOGDFG3bt30008/qW7dumrdurUuX76s999/Xy1atFB8fHxel5ivEZAAAAAAAAAAAAAAACCfW7dunaZNmyZnZ2cdPHhQW7Zs0Zo1a3Tu3Dn5+vpq3759Gj16dF6Xma8RkAAAAAAAAAAAAAAAIJ/77LPPJEkjR46Un5+fud3T01OzZ8+WJM2cOVNRUVF5Ut8/Qb4PSKxatUrNmjVT4cKF5eTkpBo1amjSpElKTEzM0johISEaMGCAGjRooBIlSsjBwUFOTk6qWrWqBg0apEuXLqU7b9euXTIYDBm+5s6dmwNPCgAAAAAAAAAAAABAWlevXtXhw4clST179kzT36hRI5UsWVIJCQnavHlzbpf3j2GT1wVkZMiQIZo2bZpsbGzUokULOTs7a8eOHXr//fe1YcMGbd26VY6Ojplaa/PmzZozZ45KlSqlSpUqycvLS1FRUTpy5Ihmzpypb775Rhs3blSzZs3Sne/l5aXWrVun21epUqXHfUQAAAAAAAAAAAAAADIUFhYmSXJ3d1eZMmXSHePv76+IiAiFhYWpR48euVneP0a+DUj89f6U3bt3m48IuXXrllq0aGG+P2Xy5MmZWu/ll1/WG2+8odKlS1u0P3jwQO+9956mTZumV155RZcuXZK1tXWa+ZUrV9bixYuz+1gAAAAAAAAAAAAAAGRJeHi4JKlUqVIPHVOyZEmLsUgr316xkdP3p1SpUiVNOEKS7Ozs9OWXX8rBwUFXrlzRqVOnsl88AAAAAAAAAAAAAAA5JCYmRpLk5OT00DHOzs6SpOjo6Fyp6Z8oXwYkcvv+FIPBICurPz8Ke3v7bK8HAAAAAAAAAAAAAADyl3x5xUZu3p+SnJyscePGKS4uTlWrVlX58uXTHXf9+nV98sknunr1qhwcHFS5cmW1a9cuwyNMAAAAAAAAAAAAAADILhcXF0lSbGzsQ8fcu3dPkuTq6porNf0T5cuAxJO8P+Xy5cv6+OOPJUm3b99WWFiYrly5ovLly2vlypXmkyT+7vTp0xozZoxFm42NjQYNGqRJkybJxibjjzIhIUEJCQnm9xxrAgAAAAAAAAAAAADIjNKlS0uSIiIiHjomtS91LNLKl1dsPMn7U27fvq0lS5ZoyZIl2rBhg65cuSI/Pz+tXr1a1apVSzPeaDRqyJAh2r17t65du6bY2FgdP35cQ4cOlcFg0NSpUzVgwIBH7vv555/LaDSaX6kBDwAAAAAAAAAAAAAAMlKrVi1JUmRk5EMPEQgNDZUk+fn55Vpd/zT5MiDxJNWsWVMmk0kpKSm6cuWKVq5cqbi4ONWuXVvTp09PM75WrVqaOnWqmjRpomLFiqlQoULy9fXVlClTFBgYKElasGCBjh49muG+o0aNUlRUlPmVUbIHAAAAAAAAAAAAAIBU3t7eqlOnjiRp+fLlafr37duniIgI2dvbq23btrld3j9GvgxI5Mb9KQaDQSVKlFDXrl21f/9+eXl5aejQoTp27Fim1+jcubNq1qwpSdqwYUOGY+3t7eXq6mrxAgAAAAAAAAAAAAAgMz744ANJ0sSJE3XkyBFze2RkpPnWg4EDB8poNOZJff8E+TIgkdv3p7i5ualTp05KSUnR+vXrszS3SpUqkqQrV65kuw4AAAAAAAAAAAAAANLTsWNHDR48WPfu3VP9+vXVpk0bdenSReXLl9eJEyfUsGFDjR8/Pq/LzNfyZUAiL+5PcXJykiTduHEjS/MiIyMl/e/UCwAAAAAAAAAAAAAAnoRp06bpu+++U4MGDRQSEqLNmzfL29tbEydO1I4dO+To6JjXJeZrNnldQHpS7085fPiwli9frg8//NCi/0ncn7Jjxw5JUsWKFTM95+rVq9q7d68kqW7dujlSBwAAAAAAAAAAAADAUpe6RfK6hHyjW7du6tatW16X8Y+UL0+QkB7v/pSgoCBVrlxZAQEBadb7/PPPdfPmzTTtd+7c0aBBgxQaGiqj0ZjmF2natGm6detWmnnHjx/XCy+8oPj4eJUrV04dOnR4vAcFAAAAAAAAAAAAAABPXL48QUL63/0p06dPV/369RUQECAnJycFBwfr7t276d6fEhUVpTNnzuj+/ftp1vvggw80evRo+fr6qly5crKxsdHVq1cVFham2NhYGY1GrVq1Sl5eXhbzxowZo+HDh6tmzZoqU6aMrKysdOHCBYWFhSklJUWlSpXShg0bZG9v/0Q/DwAAAAAAAAAAAAAA8PjybUBC+vP0hoYNG2rWrFkKCQlRYmKiypUrp5EjR2ro0KGys7PL9FozZ87U3r17FRYWpuDgYN27d08uLi7y9fXVc889p7fffjtNOEKSPvzwQ/3000/65ZdftG3bNsXGxsrV1VXPPPOMOnTooP79+8vFxSUnHxsAAAAAAAAAAAAAAOQwg8lkMuV1Ef9G0dHRMhqNioqKkqura16Xky2rD6W9ugSAJe7FAgAAAAAAAAAAeeX+/fsKDw9XmTJl5ODgkNflAI+Uld/ZrHz3bpWTRQIAAAAAAAAAAAAAAORHBCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgWeT1wUAAAAAAAAAAAAAAJCRuz/OyOsSssyt9aAcXe/MmTPaunWrfv75Z/3888/69ddflZycrPHjx+ujjz7K0b0KKgISAAAAAAAAAAAAAADkc3PmzNG0adPyuox/NK7YAAA8EcuWLVPv3r1Vo0YNFS1aVLa2tjIajapbt64+//xz3bt3z2J8SkqKQkJC9PHHH6tRo0by8PCQra2tPD099eyzz2rZsmUymUxZriMkJEQDBgxQgwYNVKJECTk4OMjJyUlVq1bVoEGDdOnSpUeusWfPHnXv3l3e3t6yt7eXp6enateuraFDhyoxMTHN+GnTpql8+fKyt7dXhQoVNGvWrIeuffXqVRmNRrVq1SrLzwYAAAAAAAAAAP49nn76af3nP//RsmXL9Ouvv+qVV17J65L+cThBAgDwRMyZM0chISGqUqWK/Pz85O7uruvXr2v//v06fPiwFi1apN27d+upp56SJF28eFENGzaUJLm7u8vf31+FCxfWxYsXtX37dm3fvl2BgYFas2aN7OzsMl3H5s2bNWfOHJUqVUqVKlWSl5eXoqKidOTIEc2cOVPffPONNm7cqGbNmqWZazKZNHToUE2bNk22traqV6+emjRpolu3bunXX3/V119/rfHjx8vW1tY8Z+bMmRoyZIiKFy+udu3aaf/+/Ro4cKDu37+v4cOHp9lj4MCBSkpK0ty5c7P4CQMAAAAAAAAAgH+TN954w+K9lRXnIWQVAQkAwBPx1VdfqUKFCnJ3d7doj4yMVMeOHbVv3z4NHz5cK1askCQZDAa1aNFCI0aM0LPPPitra2vznN27d6tdu3bauHGjJk6cqI8//jjTdbz88st64403VLp0aYv2Bw8e6L333tO0adP0yiuv6NKlSxZ7StLYsWM1bdo0PfPMM1q+fLl8fHws+g8fPiwHBwfz++TkZI0bN06enp46fvy4PD09dePGDVWpUkUTJkzQ4MGDLcIUQUFBWrdunSZNmqSyZctm+pkAAAAAAAAAAACQdURKAABPRL169dKEIyTJw8NDn332mSRp69at5vZy5copODhYrVu3ThNUaNq0qUaOHClJWrp0aZbqqFKlSppwhCTZ2dnpyy+/lIODg65cuaJTp05Z9J85c0afffaZvLy8tGnTpjThCEmqU6eObGz+lzW8dOmSbt26pU6dOsnT01OSVLRoUXXu3Fl3797Vr7/+ah4bExOjQYMGqWbNmho6dGiWngkAAAAAAAAAAABZxwkSAIBclxoqsLe3z/ScWrVqSZIiIiJyrA6DwWA+furvtcyZM0dJSUl688035ebmlqn1IiMjJSlNMMTDw0OSdO/ePXPbqFGj9Mcff2jdunUWIQsAAAAAAAAAAAA8GXwjAwDIVTExMRo7dqwkqX379pmed+7cOUlS8eLFc6SO1Osw4uLiVLVqVZUvX96if8uWLZKkJk2a6O7du/ruu+90/PhxWVlZ6emnn9aLL75oPiUiVepJFX89KeKv70uUKCFJOnDggObMmaN3331X/v7+OfI8AAAAAAAAAAAAyBgBCQDAE7V161YtX75cKSkpun79uvbv36+YmBi1bt1aX3zxRabWiIuL0/Tp0yVJL7744mPVcfnyZX388ceSpNu3byssLExXrlxR+fLltXLlSvNJEpL04MEDnTlzRpIUHh6uXr166caNGxbr/ec//9GCBQvUvXt3c1vRokXVoEEDbdq0SYGBgWrXrp02btyoTZs2qXr16vLx8VFiYqL69eunkiVLavz48Y/1LAAAAAAAAAAAAMg6AhIAgCfq1KlTWrJkiUVbz549NWXKFBmNxkytMWDAAIWHh+upp57SBx988Fh13L59O00dfn5+WrRokapVq5ZmrMlkkiQNHDhQVapU0cqVK+Xn56fff/9dEydO1OLFi9WrVy+VKFFCjRs3Ns+dPn26mjdvrh49epjbXF1dtWDBAknS5MmTdeLECW3evFlOTk7mMfHx8XJwcJDBYHis5wMAAAAAAAAAAEDGrB49BACAxzdkyBCZTCY9ePBA58+f11dffaUffvhBVatW1Z49ex45f/z48VqyZIkcHBy0cuVKeXh4PFYdNWvWlMlkUkpKiq5cuaKVK1cqLi5OtWvXNp9OkSo1HCFJjo6O2r59u5o2bSoXFxdVqlRJ33zzjdq0aaPk5GTzdSGp/P39dfLkSY0bN05vvvmmxo8fr5MnT6pu3bq6cOGCxo8frx49eqhNmzaSpBkzZqhkyZIqVKiQnJyc1LNnT0VGRj7WMwIAAAAAAAAAAODhCEgAAHKFra2typUrp2HDhumHH37QnTt31KtXL8XHxz90zpQpU/Txxx/L3t5eQUFBatiwYbbrMBgMKlGihLp27ar9+/fLy8tLQ4cO1bFjx8xjXFxczD937txZRYoUSbPOgAEDJEl79+7VgwcPLPp8fHz08ccfa/78+froo49UsmRJSVL//v3l6Oior7/+WtKfp00MHjxYtWvX1rp16zR69GitWbNGbdq0UUpKSrafFQAAAAAAAAAAAP9DQAIAkOvq1aunqlWrKiIiQqGhoemOmTFjhoYPHy47OzutWbNGrVu3zvE63Nzc1KlTJ6WkpGj9+vXmdmdnZ3MoomzZsunOTW1PTEzUrVu3HrnXkiVLFBwcrMmTJ6to0aKSpIkTJ8rHx0erV69Whw4dNGrUKA0dOlSHDx/W9u3bs/t4AAAAAAAAAAAA+AsCEgCAPOHk5CRJunHjRpq+WbNmafDgweZwRLt27XK9jtq1a0vSQ8MPf213dnbOcI9bt25p+PDhat68ufr27StJun79uq5du6Y6derIxsbGPLZRo0aSpKNHj2btQQAAAAAAAAAAAJAhm0cPAQAgZ926dct8pUXFihUt+ubOnauBAweawxHPP//8E61lx44d6dbRtWtX/fjjj9qxY4dSUlJkZWWZKdy2bZskqVKlSnJ1dc1wj2HDhik2Nlbz5s0ztxkMBklSbGysxdjU96n9AAAAAAAAAAAAknTkyBHzFeCSdOHCBUnSvHnztHHjRnN7UFCQihcvnuv1/RNwggQAIMedOnVKy5Yt0/3799P0nT17Vl27dlVCQoLq168vX19fc9+CBQs0YMCALIcjgoKCVLlyZQUEBKTp+/zzz3Xz5s007Xfu3NGgQYMUGhoqo9Gobt26WfT36tVL5cqV08mTJ/Xxxx8rJSXF3Ldz505NmTJFkjR48OAMa9u+fbu+/fZbjR49WhUqVDC3Fy1aVN7e3tq5c6f5H2CSk5O1aNEiSZKfn1+mnh0AAAAAAAAAAPw7REdH6+DBg+ZX6mnXV65csWhPSEjI40rzL4PJZDLldRH/RtHR0TIajYqKinrk3zzO71YfSvvFIwBLXeoWyesSctWuXbvUvHlzOTk5qVatWvL29taDBw90+fJlHTlyRCkpKapSpYp+/PFHlSpVStKfV0r4+fnJZDKpcuXKqlev3kPXX7x4cZr3ffv2lY+Pjy5dumTRZzAYZG1tLV9fX5UrV042Nja6evWqwsLCFBsbK6PRqFWrVunZZ59Ns8/x48fVvHlz3b59W+XKlVPNmjV19epVHTp0SCkpKXr11Vf1zTffPPS0h/j4ePn6+qpQoUL6+eefZWtra9E/f/589e/fX25ubmrevLnOnj2rX375RQ0bNtTevXs5RQIAAAAAAAAAkCPu37+v8PBwlSlTRg4ODnldDvBIWfmdzcp371yxAQDIcdWqVdOnn36qvXv36vTp0woLC1NiYqLc3d0VEBCgzp07q2/fvrK3tzfPuXv3rlIze6dPn9bp06cfuv7fAxIZmTlzpvbu3auwsDAFBwfr3r17cnFxka+vr5577jm9/fbb8vLySndu9erVdfLkSX366afatGmTNmzYoEKFCqlp06bq16+funfvnuHen3zyicLDwxUSEpImHCFJ/fr1k52dnSZPnqyNGzfKzc1N/fv31xdffEE4AgAAAAAAAAAAIIdxgkQe4QQJ4N/l33aCBAAAAAAAAAAAyD84QQL/NE/qBAmrnCwSAAAAAAAAAAAAAAAgPyIgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMCzyesCAODf4O6PM/K6BCBfc2s9KK9LAAAAAAAAAAAABRwnSAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAA/AuYTKa8LgHIlCf1u0pAAgAAAAAAAAAAAAAKMCurP78WTk5OzuNKgMxJ/V1N/d3NKQQkAAAAAEnLli1T7969VaNGDRUtWlS2trYyGo2qW7euPv/8c927d++hc7dv3662bdvK09NTjo6Oqly5sj788MMM52QkKSlJs2fPVqNGjVS4cGHZ2trK09NTAQEBWrJkiVJSUtLMuXTpkgwGQ4avkSNHprvftm3bVKdOHTk4OKhYsWIaPHiw4uPj0x2bkpKiunXrqlixYrpz585jPR8AAAAAAAByl62trWxtbR/7v1cBuS0mJsb8e5uTbHJ0NQAAAOAfas6cOQoJCVGVKlXk5+cnd3d3Xb9+Xfv379fhw4e1aNEi7d69W0899ZTFvKlTp2rYsGEyGAxq3LixvLy8tHfvXn322Wdas2aN9u3bJ09Pz0zXkZCQoFatWmnPnj2ys7NTo0aNVKRIEUVERGjnzp3asWOH1q1bp7Vr18pgMKSZ7+TkpC5duqS7du3atdO0HT16VG3btpWdnZ2ee+45XbhwQTNmzFB4eLg2bNiQZvyMGTN0+PBhrVixQoULF870cwEAAAAAACDvGAwGubi46O7duzIajXJ0dMzrkoCHio+PV3R0tNzc3NL9b6DZQUACAAAAkPTVV1+pQoUKcnd3t2iPjIxUx44dtW/fPg0fPlwrVqww94WFhWn48OGytrbWhg0b1KZNG0lSXFyc2rdvr+DgYL311ltavXp1puuYPXu29uzZIx8fH+3Zs0elSpUy94WGhqpFixZat26dvvvuO3Xv3j3NfE9PTy1evDjT+40bN05JSUnatm2bmjVrpqSkJD377LPauHGjQkND5e/vbx4bERGhjz76SG3btk13bwAAAAAAAORfnp6eio+P1+XLl+Xq6ioXFxdZW1vn+BfQwOMwmUxKTk5WTEyMoqOjZW9vn6W/eJZZBCQAAAAASfXq1Uu33cPDQ5999pmaNGmirVu3WvR9/vnnMplM6tu3rzkcIUmFChXSwoULVbZsWa1Zs0anT59W5cqVM1XHjh07JEnvvPOORThCkvz9/dW9e3ctWLBA+/fvz5GQQmhoqCpUqKBmzZpJkmxsbPTGG29o165dCgkJsQhIvPPOOzKZTJo9e3a29wUAAAAAAEDusra2VsmSJXXr1i3FxMTo7t27eV0SkIatra3c3Nzk6ekpa2vrHF+fgAQAAADwCDY2f/5js729vbntwYMH2rRpkySpZ8+eaeb4+PioYcOG2rt3r4KCgjRq1KhM7eXg4JCpcTmVno6MjFT16tUt2jw8PCTJ4k7K1atXa8OGDZo6dap8fHxyZG8AAAAAAADkLmtra3l5ealo0aJKTExUSkpKXpcEmFlZWcnW1vaJnmpCQAIAAADIQExMjMaOHStJat++vbn97NmziouLkySLUxb+yt/fX3v37lVYWFim92vTpo1Wr16tWbNm6aWXXrI4ReLnn39WYGCgHB0d9corr6Q7PzY2VhMnTtSlS5dka2urcuXKqU2bNqpUqVK640uXLq0LFy4oMTFRtra2kqRff/1VklSiRAlJUlRUlAYPHix/f38NHjw4088CAAAAAACA/MlgMMjOzi6vywByHQEJAAAA4C+2bt2q5cuXKyUlRdevX9f+/fsVExOj1q1b64svvjCPCw8PlyS5ubnJxcUl3bVKlixpMTYz+vTpo927d2vp0qWqUKGCGjVqpKJFiyoiIkIhISHy9fXV3LlzVbp06XTn37p1K81pFcOGDdPLL7+sOXPmyNnZ2aKvQ4cOmjhxokaOHKnRo0fr3Llzmjx5suzs7PTcc89Jkt5//33dvHlTmzdvlpWVVaafBQAAAAAAAADyEwISAAAAwF+cOnVKS5YssWjr2bOnpkyZIqPRaG6LiYmRJDk5OT10rdQwQnR0dKb3t7Ky0uLFi1W9enWNGjVKO3bsMPcVKlRILVu2VLly5dLMs7e315tvvqkuXbqoatWq8vDwUHh4uNauXauJEyfq//7v/3Tjxg39+OOPFkfUjRw5UkFBQZoyZYqmTJki6c+/QTBr1iwVK1ZMP/30k+bPn68RI0aoZs2a5nkPHjyQlZWV+foRAAAAAAAAAMjv+OtfAAAAwF8MGTJEJpNJDx480Pnz5/XVV1/phx9+UNWqVbVnz54nvn90dLSef/55jRgxQgMHDtTZs2cVGxurEydOqGPHjpoyZYrq1q2riIgIi3nFixfX/Pnz1apVK3l7e8vR0VFVq1bVRx99pB07dsja2lpbt27V999/bzHPaDQqNDRUM2bMUL9+/TRixAgdPHhQb7/9thITE9W/f3+VLVvWfM1IcHCw/Pz8ZG9vL3t7ezVp0iRLV4gAAAAAAAAAQF4hIAEAAACkw9bWVuXKldOwYcP0ww8/6M6dO+rVq5fi4+MlyXytRmxs7EPXuHfvniTJ1dU10/sOHz5cmzdv1ttvv60pU6aoQoUKKlSokJ5++mktW7ZMzz33nH777Td99NFHmV6zbt26euGFFyRJGzZsSNPv7OysgQMHat68eZo0aZLq1KkjSZo4caJ++eUXzZ07V46OjgoNDVWbNm2UkJCgwMBALVy4UBcuXFDz5s115cqVTNcDAAAAAAAAAHmBgAQAAADwCPXq1VPVqlUVERGh0NBQSVLp0qUlSXfv3jVft/F3qac8pI59lOTkZH377beSpB49eqQ7pmfPnpKk7du3Z7Z8SVKVKlUkKdNBhrNnz+rTTz9V79691bJlS0nSV199pcTERAUFBemll15Snz59tHDhQkVFRWn27NlZqgcAAAAAAAAAchsBCQAAACATnJycJEk3btyQJFWqVEmFChWSJHNo4u9S2/38/DK1x40bN5SQkCDp4adOGI1GSdLt27czWfmfIiMjJf3v5ItH6d+/v1xcXDRlyhRz29GjR+Xp6amKFSua2xo1amTuAwAAAAAAAID8jIAEAAAA8Ai3bt3SsWPHJMkcDrCzs1O7du0kScuXL08z57ffflNISIgkqVOnTpnax8PDQ/b29pKkgwcPpjvmwIEDkqQyZcpkuv7Y2Fjz1Rp169Z95PhFixZp165dmjp1qjw8PMztBoNBcXFxMplMFmun9gEAAAAAAABAfkZAAgAAAP96p06d0rJly3T//v00fWfPnlXXrl2VkJCg+vXry9fX19w3cuRIGQwGffPNN/rxxx/N7XFxcXr99deVnJysF198UZUrV7ZY89ChQ6pcuXKadjs7O7Vv316SNHr0aB0/ftyiPzg4WF9//bWk/121kWr+/PnmKz3+Kjw8XB06dNC1a9fk5uam1157LcPP4saNGxoxYoRatWqlXr16WfT5+fkpLi5OK1assNg3tQ8AAAAAAAAA8jOD6a9//Qu5Jjo6WkajUVFRUQ89PvmfYvWhm3ldApDvtbwdmNclAPmaW+tBeV0C/uV27dql5s2by8nJSbVq1ZK3t7cePHigy5cv68iRI0pJSVGVKlX0448/qlSpUhZzp06dqmHDhslgMKhp06YqWrSo9u7dq2vXrqlSpUrat2+fPD09091Pkv7+j+NXr15VkyZNdPHiRVlbW6t+/foqUaKELl68aL6yo0WLFtq0aZMcHBzM82rWrKnjx4+rWrVqqlixouzs7BQeHq6jR48qISFBHh4eWrt2rZo0aZLhZ9GzZ099//33OnnyZJpTKo4dO6b69esrMTFRzz77rBISErRz5055eHjoxIkTKl68eNY+eAAAAAAAAADIpqx8926TSzUBAAAA+Va1atX06aefau/evTp9+rTCwsKUmJgod3d3BQQEqHPnzurbt6/5+ou/Gjp0qHx9ffXVV1/p0KFDio2NValSpTRq1CiNGjVKLi4uWaqlRIkSOnr0qKZPn67vv/9eJ06c0IEDB2Q0GtW0aVP17NlTr7/+uqytrS3mDR48WFu2bNHx48e1a9cuRUdHy9nZWdWrV1fbtm01YMAAFS1aNMO9t2zZohUrVmjSpEnpXuFRo0YN7dixQ6NGjdLu3btlbW2tdu3a6csvvyQcAQAAAAAAACDf4wSJPMIJEsC/CydIABnjBAkAAAAAAAAAAPA4svLdu1Uu1QQAAAAAAAAAAAAAAJBnCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8GzyugAAAADkP6sP3czrEoB8r0vdInldAgAAAAAAAIAs4AQJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAVevg9IrFq1Ss2aNVPhwoXl5OSkGjVqaNKkSUpMTMzSOiEhIRowYIAaNGigEiVKyMHBQU5OTqpataoGDRqkS5cuZTj//Pnz6tOnj7y9vWVvby9vb2/16dNHFy9ezMbTAQAAAAAAAAAAAACA3JCvAxJDhgxRt27d9NNPP6lu3bpq3bq1Ll++rPfff18tWrRQfHx8ptfavHmz5syZo99//12VKlVSp06d1LRpU92+fVszZ87U008/rV27dqU796efflKNGjW0ZMkSubm5qVOnTnJzc9OSJUtUvXp1HThwIIeeGAAAAAAAAAAAAAAAPAn5NiCxbt06TZs2Tc7Ozjp48KC2bNmiNWvW6Ny5c/L19dW+ffs0evToTK/38ssvKzw8XL/99pt27NihFStWaPPmzbp8+bLeffddxcbG6pVXXlFycrLFvLi4OHXr1k1xcXEaNWqUTp48qcDAQJ08eVKjRo1SbGysunXrlqWwBgAAAAAAAAAAAAAAyF35NiDx2WefSZJGjhwpPz8/c7unp6dmz54tSZo5c6aioqIytV6VKlVUunTpNO12dnb68ssv5eDgoCtXrujUqVMW/YsXL9bvv/+uihUrasKECRZ9EyZMUMWKFRUREaGlS5dm5fEAAAAAAAAAAAAAAEAuypcBiatXr+rw4cOSpJ49e6bpb9SokUqWLKmEhARt3rw52/sZDAZZWf35Udjb21v0BQUFSZK6d+9uHpPKyspKL730kiRp7dq12a4DAAAAAAAAAAAAAAA8GfkyIBEWFiZJcnd3V5kyZdId4+/vbzH2cSUnJ2vcuHGKi4tT1apVVb58+XRrSd3vSdUBAAAAAAAAAAAAAACeHJu8LiA94eHhkqRSpUo9dEzJkiUtxmbW5cuX9fHHH0uSbt++rbCwMF25ckXly5fXypUrLU6JiImJUWRkZIa1pNZx8+ZNxcbGysnJKUv1AAAAAAAAAAAAAACAJy9fBiRiYmIkKcOwgbOzsyQpOjo6S2vfvn1bS5YssWjz8/PTokWLVK1atXTryKiW1DpSa3nYuISEBCUkJFiMBQAAAAAAAAAAAAAAuSNfXrHxJNWsWVMmk0kpKSm6cuWKVq5cqbi4ONWuXVvTp09/Yvt+/vnnMhqN5lfqyRMAAAAAAAAAAAAAAODJy5cBCRcXF0lSbGzsQ8fcu3dPkuTq6vpYexgMBpUoUUJdu3bV/v375eXlpaFDh+rYsWNp6sioltQ6HlXLqFGjFBUVZX5FREQ8Vt0AAAAAAAAAAAAAACDr8mVAonTp0pKUYYggtS91bHa4ubmpU6dOSklJ0fr1683tLi4ucnd3lyRdvnw5wzo8PT0zvBLE3t5erq6uFi8AAAAAAAAAAAAAAJA78mVAolatWpKkyMhIhYeHpzsmNDRUkuTn55cje6aGG27cuGHRnrp+6n5Pug4AAAAAAAAAAAAAAJDz8mVAwtvbW3Xq1JEkLV++PE3/vn37FBERIXt7e7Vt2zZH9tyxY4ckqWLFihbtnTp1kiQFBgYqJSXFoi8lJUXfffedJKlz5845UgcAAAAAAAAAAAAAAMh5+TIgIUkffPCBJGnixIk6cuSIuT0yMlIDBgyQJA0cOFBGo9HcFxQUpMqVKysgICDNep9//rlu3ryZpv3OnTsaNGiQQkNDZTQa1a1bN4v+Pn366KmnntLZs2c1evRoi77Ro0fr7Nmz8vb2Vu/evR//YQEAAAAAAAAAAAAAwBNlk9cFPEzHjh01ePBgTZ8+XfXr11dAQICcnJwUHBysu3fvqmHDhho/frzFnKioKJ05c0b3799Ps94HH3yg0aNHy9fXV+XKlZONjY2uXr2qsLAwxcbGymg0atWqVfLy8rKYV6hQIa1cuVKtWrXSZ599pvXr1+vpp5/WyZMndfLkSTk5OWnVqlVydHR8op8HAAAAAAAAAAAAAAB4fPn2BAlJmjZtmr777js1aNBAISEh2rx5s7y9vTVx4kTt2LEjS6GEmTNnqkuXLoqLi1NwcLDWrFmjX375Rb6+vhozZozOnDmjZ599Nt25DRs21LFjx9S7d2/dvn1ba9as0e3bt9W7d28dO3ZM9evXz6lHBgAAAAAAAAAAAAAAT4DBZDKZ8rqIf6Po6GgZjUZFRUXJ1dU1r8vJltWH0l5dAsBSy9uBeV0CkK+5tR6U1yXgb/jzHXi0LnWL5HUJAAAAAAAAwL9eVr57z9cnSAAAAAAAAAAAAAAAAOQEAhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAPAvk5iYqODgYI0YMUJ16tSRm5ubbG1tVaxYMbVv316bNm166NzIyEiNGjVKvr6+cnJykp2dnby9vdW1a1ft2bPnsWv6+eef1bVrV3l5ecnBwUFlypTRoEGDdOPGjQznXb9+XQMHDlSZMmVkb28vLy8vde3aVUeOHHnonG3btqlOnTpycHBQsWLFNHjwYMXHx6c7NiUlRXXr1lWxYsV0586dx34+AAAA5D0CEgAAAAAAAADwL7N79261bNlSkydP1pUrV9SoUSN17txZRYoU0YYNG/T888+rf//+MplMFvMuXLig6tWra+LEibp27ZqaNWumDh06yNXVVatXr1bTpk01ZcqULNezevVq1a9fX6tXr5aPj486dOggKysrzZw5U9WrV9f58+fTnXf27FlVr15ds2bNkpWVlTp27CgfHx+tXr1a9erVU1BQUJo5R48eVdu2bXXq1Ck999xz8vT01IwZM9StW7d095gxY4YOHz6sr7/+WoULF87yswEAACD/ICABAAAAAAAAAP8yVlZWevHFF7Vnzx5du3ZNGzdu1HfffacTJ04oMDBQ1tbWmj9/vr799luLecOGDdPvv/+udu3a6bffftOmTZu0atUqnTp1SvPmzZMkvf/++7py5Uqma/n999/16quvKikpSfPmzdOhQ4f03Xff6ezZs+rVq5euX7+unj17pglrmEwmde/eXTdu3NArr7yis2fP6rvvvtOhQ4c0b948JSUlqXfv3vrjjz8s5o0bN05JSUnatGmTvv/+ex09elTNmjXTxo0bFRoaajE2IiJCH330kdq2bavu3btn5SMGAABAPkRAAgAAAAAAAAD+ZVq0aKHVq1ercePGafpeeukl9enTR5K0dOlSi74dO3ZIksaMGSMnJyeLvn79+qlChQpKSkrS4cOHM13L119/rbi4OLVs2VL9+vUzt1tbW2vOnDkyGo06fPiwtm7dajHvhx9+UFhYmNzc3DR79mxZW1tb1BIQEKB79+5p2rRpFvNCQ0NVoUIFNWvWTJJkY2OjN954Q5IUEhJiMfadd96RyWTS7NmzM/08AAAAyL8ISAAAAAAAAAAALNSqVUvSnyco/JWDg0Om5nt6emZ6r9RrMHr27Jmmz9nZWe3bt5ckrV27Nt157du3l7Ozc5q5qev9fV5kZKTc3d0t2jw8PCRJ9+7dM7etXr1aGzZs0IQJE+Tj45Pp5wEAAED+RUACAAAAAAAAAGDh3LlzkqTixYtbtLdp00bSn9dUxMXFWfQtWLBA586dk6+vrxo0aJCpfWJiYnT+/HlJkr+/f7pjUtvDwsIs2lPfP2reuXPnFBsba24vXbq0Lly4oMTERHPbr7/+KkkqUaKEJCkqKkqDBw+Wv7+/Bg8enKlnAQAAQP5HQAIAAAAAAAAAYPbHH39o8eLFkqQXX3zRou/LL79U7dq1tWnTJpUqVUrPP/+8unXrpmrVqumtt95Su3bttGXLFtnY2GRqr0uXLpl/LlWqVLpjSpYsKUkKDw+3aE99/6h5JpPJYp8OHTro1q1bGjlypO7evavDhw9r8uTJsrOz03PPPSdJev/993Xz5k0tWLBAVlb8Z3QAAICCgn+yAwAAAAAAAABIkpKSktSrVy9FRUXJ19dX/fv3t+j38vLSrl271KtXL0VGRmrTpk1atWqVTp06pRIlSqhFixYqUqRIpveLiYkx/+zk5JTumNTrM6Kjo9Od+6h5f587cuRIVapUSVOmTFHhwoVVt25dXbt2TV9//bWKFSumn376SfPnz9ewYcNUs2ZN87wHDx4oKSkp088GAACA/IeABAAAAAAAAABAkvTWW28pODhYHh4eWr16tezs7Cz6T58+rVq1amnDhg2aPXu2IiIiFBUVpV27dsnLy0vDhw9X27ZtlZycnEdP8GhGo1GhoaGaMWOG+vXrpxEjRujgwYN6++23lZiYqP79+6ts2bIaO3asJCk4OFh+fn6yt7eXvb29mjRpkua6DwAAAPwzZO6cMwAAAAAAAABAgfbuu+9q4cKFKly4sLZt26aKFSta9CclJenFF1/U+fPntXLlSnXt2tXc17RpU23dulVVq1bVtm3btHTpUvXt2/eRe7q4uJh/jo2NldFoTDPm3r17kiRXV9c0c2/fvq3Y2Nh0106dl95cZ2dnDRw4MM2ciRMn6pdfftG2bdvk6Oio0NBQtWnTRhUqVFBgYKDi4+P14Ycfqnnz5jp58qS8vb0f+YwAAADIPzhBAgAAAAAAAAD+5YYPH67p06fLzc1NW7duVa1atdKMOXjwoE6dOiV7e3t17tw5TX/hwoXVpk0bSdL27dszta+Pj4/558uXL6c7JiIiQpJUunRpi/bU94+aZzAYLPZ5mLNnz+rTTz9V79691bJlS0nSV199pcTERAUFBemll15Snz59tHDhQkVFRWn27NmPXBMAAAD5CwEJAAAAAAAAAPgXe++99zRlyhQZjUZt3bpV/v7+6Y5LDSIUKlRI1tbW6Y5JPQHi9u3bmdrb1dVV5cuXlySFhoamOya13c/Pz6I99f2j5lWoUEHOzs6PrKV///5ycXHRlClTzG1Hjx6Vp6enxWkajRo1MvcBAADgn4WABAAAAAAAAAD8S40cOVJffvmljEajtm3bpjp16jx0bIkSJSRJd+7c0blz59Idc/DgQUlSmTJlMl1Dp06dJEnLly9P03fv3j1t2LBBktKcWpE6b/369eles5G6XnqnXfzdokWLtGvXLk2dOlUeHh7mdoPBoLi4OJlMJnNb6l4Gg+GR6wIAACB/ISABAAAAAAAAAP9CH330kb744gu5ubk9MhwhSQ0aNDCHJN544w3dvHnT3JeSkqKJEydq//79kqQePXpYzA0KClLlypUVEBCQZt0hQ4aoUKFC2r59uxYsWGBuT05O1oABA3T37l3VqVNHrVq1spjXpk0b1apVS3fv3tWAAQOUnJxs7ps/f76Cg4Pl7Oysd999N8PnunHjhkaMGKFWrVqpV69eFn1+fn6Ki4vTihUrLNZO7QMAAMA/i8H01+grck10dLSMRqOioqLk6uqa1+Vky+pDNx89CPiXa3k7MK9LAPI1t9aD8roE/A1/vgOP1qVukbwuAQAA4LGtX79eHTp0kCT5+/urWrVq6Y7z9PTU5MmTze937NihF154QXFxcXJ1dVW9evXk4uKiY8eO6cKFC5KkDz74QJ9++qnFOosXL1bfvn3l4+OjS5cupdln1apV6tGjh5KTk1WvXj2VLl1ahw8f1sWLF+Xl5aV9+/aZr+L4qzNnzqhx48a6efOmypYtqzp16ig8PFyHDh2SjY2NVq5caT5p4mF69uyp77//XidPnkxz8sWxY8dUv359JSYm6tlnn1VCQoJ27twpDw8PnThxQsWLF89wbQAAADx5Wfnu3SaXagIAAAAAAAAA5BO3b982/xwaGqrQ0NB0x/n4+FgEJFq0aKETJ05oypQpCg4O1r59+5SUlKQiRYqoU6dOevvtt/Xss89muZ6uXbuqbNmy+uyzz7R3716FhYWpePHieueddzR69Gh5eXmlO69SpUo6fvy4JkyYoI0bNyooKEhGo1GdO3fWhx9++MhTHrZs2aIVK1Zo0qRJ6V4LUqNGDe3YsUOjRo3S7t27ZW1trXbt2unLL78kHAEAAPAPxAkSeYQTJIB/F06QADLGCRL5D3++A4/GCRIAAAAAAABA3svKd+9WuVQTAAAAAAAAAAAAAABAniEgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMCzyesCAAAAAAAAACCv3f1xRl6XAOR7bq0H5XUJAAAA2cIJEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAq8fB+QWLVqlZo1a6bChQvLyclJNWrU0KRJk5SYmJildcLCwvT5558rICBAXl5esrW1VeHChdW4cWPNmjXroevt2rVLBoMhw9fcuXNz4lEBAAAAAAAAAAAAAMATYpPXBWRkyJAhmjZtmmxsbNSiRQs5Oztrx44dev/997VhwwZt3bpVjo6Oj1wnKSlJfn5+kiRnZ2fVqVNHXl5eunLlivbv3699+/Zp6dKl2rJli9zc3NJdw8vLS61bt063r1KlSo/9jAAAAAAAAAAAAAAA4MnLtwGJdevWadq0aXJ2dtbu3bvNAYdbt26pRYsW2rdvn0aPHq3Jkydnar3atWvr/fffV/v27WVvb29uP3HihJ577jkdOnRIw4YN06JFi9KdX7lyZS1evDjbzwUAAAAAAAAAAAAAAHJfvr1i47PPPpMkjRw50hyOkCRPT0/Nnj1bkjRz5kxFRUU9ci0bGxuFhoaqa9euFuEISfL19dWkSZMkSYGBgVm+ugMAAAAAAAAAAAAAAOR/+TIgcfXqVR0+fFiS1LNnzzT9jRo1UsmSJZWQkKDNmzdne79atWpJkuLj43Xr1q1srwcAAAAAAAAAAAAAAPKXfHnFRlhYmCTJ3d1dZcqUSXeMv7+/IiIiFBYWph49emRrv3PnzkmS7Ozs5O7unu6Y69ev65NPPtHVq1fl4OCgypUrq127dipVqlS29gYAAAAAAAAAAAAAAE9evgxIhIeHS1KG4YOSJUtajH1cJpPJfMXG888/n+YKjlSnT5/WmDFjLNpsbGw0aNAgTZo0STY2+fKjBAAAAAAAAAAAAAAAyqdXbMTExEiSnJycHjrG2dlZkhQdHZ2tvcaNG6f9+/fL2dlZEydOTNNvNBo1ZMgQ7d69W9euXVNsbKyOHz+uoUOHymAwaOrUqRowYMAj90lISFB0dLTFCwAAAAAAAAAAAAAA5I58GZDILUuXLtUnn3wiKysrLVq0SBUqVEgzplatWpo6daqaNGmiYsWKqVChQvL19dWUKVMUGBgoSVqwYIGOHj2a4V6ff/65jEaj+ZV6AgYAAAAAAAAAAAAAAHjy8mVAwsXFRZIUGxv70DH37t2TJLm6uj7WHqtWrdJrr70m6c+AQ9euXbO8RufOnVWzZk1J0oYNGzIcO2rUKEVFRZlfERERWd4PAAAAAAAAAAAAAAA8Hpu8LiA9pUuXlqQMQwSpfaljs2Lt2rXq2bOnUlJSNG/ePHNQ4nFUqVJFR48e1ZUrVzIcZ29vL3t7+8feBwAAAAAAAAAAAAAAPL58eYJErVq1JEmRkZEKDw9Pd0xoaKgkyc/PL0trr1u3Tt27d1dycrLmzJmjN998M1u1RkZGSvrfqRcAAAAAAAAAAAAAACD/yZcBCW9vb9WpU0eStHz58jT9+/btU0REhOzt7dW2bdtMr7thwwZ169ZNSUlJmjNnjvr375+tOq9evaq9e/dKkurWrZuttQAAAAAAAAAAAAAAwJOTLwMSkvTBBx9IkiZOnKgjR46Y2yMjIzVgwABJ0sCBA2U0Gs19QUFBqly5sgICAtKst3nzZnXp0kVJSUmaO3dupsMR06ZN061bt9K0Hz9+XC+88ILi4+NVrlw5dejQIUvPBwAAAAAAAAAAAAAAco9NXhfwMB07dtTgwYM1ffp01a9fXwEBAXJyclJwcLDu3r2rhg0bavz48RZzoqKidObMGd2/f9+i/caNG+rcubMePHggb29vhYSEKCQkJN19J0+eLE9PT/P7MWPGaPjw4apZs6bKlCkjKysrXbhwQWFhYUpJSVGpUqW0YcMG2dvb5/yHAAAAAAAAAAAAAAAAckS+DUhIf57e0LBhQ82aNUshISFKTExUuXLlNHLkSA0dOlR2dnaZWicuLk4JCQmSpCtXrmjJkiUPHTt27FiLgMSHH36on376Sb/88ou2bdum2NhYubq66plnnlGHDh3Uv39/ubi4ZO9BAQAAAAAAAAAAAADAE2UwmUymvC7i3yg6OlpGo1FRUVFydXXN63KyZfWhm3ldApDvtbwdmNclAPmaW+tBeV0C/oY/34FH61K3SF6XAAAActDdH2fkdQlAvse/vwMAgPwoK9+9W+VSTQAAAAAAAAAAAAAAAHmGgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAACAAo+ABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAACAAo+ABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAMA/XGJiooKDgzVixAjVqVNHbm5usrW1VbFixdS+fXtt2rQpzZyUlBSFhITo448/VqNGjeTh4SFbW1t5enrq2Wef1bJly2QymbJcS2RkpBYvXqxBgwbpmWeeUaFChWQwGNSyZctHzk1KStLs2bPVqFEjFS5c2FxPQECAlixZopSUlHTnTZs2TeXLl5e9vb0qVKigWbNmPXSPq1evymg0qlWrVll+Nvyz2eR1AQAAAAAAAAAAAACA7Nm9e7eeffZZSVKxYsXUqFEjOTk56dSpU9qwYYM2bNigfv36ae7cuTIYDJKkixcvqmHDhpIkd3d3+fv7q3Dhwrp48aK2b9+u7du3KzAwUGvWrJGdnV2ma9m7d6/69u2b5WdISEhQq1attGfPHtnZ2alRo0YqUqSIIiIitHPnTu3YsUPr1q3T2rVrzc8gSTNnztSQIUNUvHhxtWvXTvv379fAgQN1//59DR8+PM0+AwcOVFJSkubOnZvlGvHPxgkSAAAAAAAAAAAAAPAPZ2VlpRdffFF79uzRtWvXtHHjRn333Xc6ceKEAgMDZW1trfnz5+vbb781zzEYDGrRooV++OEH3bhxQ1u2bFFgYKAOHTqkXbt2ycnJSRs3btTEiROzVIuXl5f69++vefPm6fDhw5kOIsyePVt79uyRj4+Pzp07p+DgYAUGBuqnn37SoUOH5OLionXr1um7774zz0lOTta4cePk6emp48ePa+3atTp27Jjc3d01YcIEJSYmWuwRFBSkdevWaezYsSpbtmyWngv/fAQkAAAAAAAAAAAAAOAfrkWLFlq9erUaN26cpu+ll15Snz59JElLly41t5crV07BwcFq3bq1rK2tLeY0bdpUI0eOTDMnMxo0aKC5c+eqX79+8vf3l729fabm7dixQ5L0zjvvqFSpUhZ9/v7+6t69uyRp//795vZLly7p1q1b6tSpkzw9PSVJRYsWVefOnXX37l39+uuv5rExMTEaNGiQatasqaFDh2bpmVAwcMUGAAAAAAAAAAAAABRwtWrVkiRFREQ80TnZ4eDgkKlxqUEISYqMjJT05xUhf+Xh4SFJunfvnrlt1KhR+uOPP7Ru3TrZ2PBV+b8RJ0gAAAAAAAAAAAAAQAF37tw5SVLx4sWf6JzsaNOmjSRp1qxZunz5skXfzz//rMDAQDk6OuqVV14xt5cuXVqSLE6K+Ov7EiVKSJIOHDigOXPmaPDgwfL3939Sj4B8joAEAAAAAAAAAAAAABRgf/zxhxYvXixJevHFFzM1Jy4uTtOnT8/SnOzq06ePevfurd9++00VKlRQQECAevTooUaNGqlOnToqU6aMgoODzaEI6c/rNBo0aKBNmzYpMDBQMTExWrFihTZt2qTq1avLx8dHiYmJ6tevn0qWLKnx48fnyrMgf+LcEAAAAAAAAAAAAAAooJKSktSrVy9FRUXJ19dX/fv3z9S8AQMGKDw8XE899ZQ++OCDJ1zln6ysrLR48WJVr15do0aN0o4dO8x9hQoVUsuWLVWuXLk086ZPn67mzZurR48e5jZXV1ctWLBAkjR58mSdOHFCmzdvlpOTk3lMfHy8HBwcZDAYnuBTIT/hBAkAAAAAAAAAAAAAKKDeeustBQcHy8PDQ6tXr5adnd0j54wfP15LliyRg4ODVq5cKQ8Pj1yoVIqOjtbzzz+vESNGaODAgTp79qxiY2N14sQJdezYUVOmTFHdunUVERFhMc/f318nT57UuHHj9Oabb2r8+PE6efKk6tatqwsXLmj8+PHq0aOH+QqPGTNmqGTJkipUqJCcnJzUs2dPRUZG5sozIm9xggQAAAAAAAAAAAAAFEDvvvuuFi5cqMKFC2vbtm2qWLHiI+dMmTJFH3/8sezt7RUUFKSGDRvmQqV/Gj58uDZv3qwBAwZoypQp5vann35ay5YtU2RkpLZs2aKPPvpIS5YssZjr4+Ojjz/+OM2a/fv3l6Ojo77++mtJf5428e6776pDhw6aOXOmTp06pbFjx+r8+fM6cOCArKw4Y6AgIyABAAAAAAAAAAAAAAXM8OHDNX36dLm5uWnr1q2qVavWI+fMmDFDw4cPl52dndasWaPWrVvnQqV/Sk5O1rfffitJFldl/FXPnj21ZcsWbd++PVNrLlmyRMHBwVq0aJGKFi0qSZo4caJ8fHy0evVq2djYqEOHDoqKitIXX3yh7du3q1WrVjnzQMiXiL8AAAAAAAAAAAAAQAHy3nvvacqUKTIajdq6dav8/f0fOWfWrFkaPHiwORzRrl27XKj0f27cuKGEhARJkqura7pjjEajJOn27duPXO/WrVsaPny4mjdvrr59+0qSrl+/rmvXrqlOnTqysfnfWQKNGjWSJB09ejQ7j4B/AAISAAAAAAAAAAAAAFBAjBw5Ul9++aWMRqO2bdumOnXqPHLO3LlzNXDgQHM44vnnn8+FSi15eHjI3t5eknTw4MF0xxw4cECSVKZMmUeuN2zYMMXGxmrevHnmNoPBIEmKjY21GJv6PrUfBRcBCQAAAAAAAAAAAAAoAD766CN98cUXcnNzy3Q4YsGCBRowYECWwxFBQUGqXLmyAgICslu2JMnOzk7t27eXJI0ePVrHjx+36A8ODtbXX38t6c+rNjKyfft2ffvttxo9erQqVKhgbi9atKi8vb21c+dOXbhwQdKfV3ssWrRIkuTn55cjz4L8y+bRQwAAAAAAAAAAAAAA+dn69ev16aefSpLKly+vWbNmpTvO09NTkydPlvTnlRL9+/eXyWRS2bJltXr1aq1evTrdeYsXL7Z4HxUVpTNnzuj+/fvpjq9fv77555s3b0qSDh8+bNE+evRoi6s8pk6dqp9//lkXL16Un5+f6tevrxIlSujixYsKDQ2VJLVo0UL/+c9/Hvo5xMfH66233pKvr69GjBiRpn/06NHq37+//P391bx5c509e1a//PKLGjZsqBYtWjx0XRQMBCQAAAAAAAAAAAAA4B/u9u3b5p9DQ0PNgYK/8/HxMQck7t69K5PJJEk6ffq0Tp8+/dD1/x6QeJT0rsmIjo62aE8NTqQqUaKEjh49qunTp+v777/XiRMndODAARmNRjVt2lQ9e/bU66+/Lmtr64fu+8knnyg8PFwhISGytbVN09+vXz/Z2dlp8uTJ2rhxo9zc3NS/f3998cUXXLHxL2Awpf7GI1dFR0fLaDQqKipKrq6ueV1Otqw+dPPRg4B/uZa3A/O6BCBfc2s9KK9LwN/w5zvwaF3qFsnrEgAAQA66++OMvC4ByPf493cAAJAfZeW7d6tcqgkAAAAAAAAAAAAAACDPEJAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4NnkdQEAAAAAAAAAAAAAkNPu/jgjr0sA8j231oPyuoRcxQkSAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACrxsBSRatGihSZMmPXLc5MmT1aJFi+xsBQAAAAAAAAAAAAAA8NhssjN5165dKl269CPHnTlzRrt3787OVgAAAAAAAAAAAAAAAI8tV67YSExMlJUVt3kAAAAAAAAAAAAAAIC8kSuphRMnTsjDwyM3tgIAAAAAAAAAAAAAAEgjy1dsvPbaaxbv9+3bl6YtVVJSkk6dOqWjR4+qffv2j1chAAAAAAAAAAAAAABANmU5ILF48WLzzwaDQefPn9f58+cznPPUU0/p008/zXJxAAAAAAAAAAAAAAAAOSHLAYlvvvlGkmQymfTaa6+pUaNGev3119Mda2dnJ29vb9WvX1+2trbZqxQAAAAAAAAAAAAAAOAxZTkg8eqrr5p/Hjt2rOrXr2/RBgAAAAAAAAAAAAAAkN9kOSDxV5cuXcqhMgAAAAAAAAAAAAAAAJ4cq7wuAAAAAAAAAAAAAAAA4EnL1gkSqQ4ePKjt27fr6tWrun//frpjDAaDFi5cmBPbAQAAAAAAAAAAAAAAZEm2AhIPHjxQjx49tG7dOkmSyWR66FgCEgAAAAAAAAAAAAAAIK9kKyAxfvx4BQUFycnJSa+88oqqVKkiV1fXnKoNAAAAAAAAAAAAAAAgR2QrILFixQoVKlRIBw8eVNWqVXOqJgAAAAAAAAAAAAAAgBxllZ3JV65cUcOGDQlHAAAAAAAAAAAAAACAfC1bAYnChQvL3d09p2oBAAAAAAAAAAAAAAB4IrIVkGjZsqUOHjwok8mUU/UAAAAAAAAAAAAAAADkuGwFJMaPH6/bt29r7NixOVQOAAAAAAAAAAAAAABAzrPJzuQ9e/aob9++mjBhgn788Ue1a9dOpUqVkpVV+rmL3r17Z2c7AAAAAAAAAAAAAACAx5KtgESfPn1kMBhkMpl0+PBhhYaGZjiegAQAAAAAAAAAAAAAAMgL2QpI9O7dWwaDIadqAQAAAAAAAAAAAAAAeCKyFZBYvHhxDpUBAAAAAAAAAAAAAADw5FjldQEAAAAAAAAAAAAAAABPWo4GJM6fP6/9+/fr7NmzObbmqlWr1KxZMxUuXFhOTk6qUaOGJk2apMTExCytExYWps8//1wBAQHy8vKSra2tChcurMaNG2vWrFmPXO/8+fPq06ePvL29ZW9vL29vb/Xp00cXL17MzuMBAAAAAAAAAAAAAIBckO2ARHJysiZMmKBixYqpUqVKatSokSZOnGjuX7ZsmZ555hn98ssvWV57yJAh6tatm3766SfVrVtXrVu31uXLl/X++++rRYsWio+Pz9Q6SUlJ8vPz0wcffKBDhw6pWrVq6tKli55++mnt379fAwcOVKNGjXT37t105//000+qUaOGlixZIjc3N3Xq1Elubm5asmSJqlevrgMHDmT52QAAAAAAAAAAAAAAQO7JVkAiOTlZzz//vMaMGaM7d+6oSpUqMplMFmMaNmyoAwcOaO3atVlae926dZo2bZqcnZ118OBBbdmyRWvWrNG5c+fk6+urffv2afTo0Zler3bt2lq5cqVu3bqlHTt2aMWKFdq7d6/CwsJUvHhxHTp0SMOGDUszLy4uTt26dVNcXJxGjRqlkydPKjAwUCdPntSoUaMUGxurbt26ZTqsAQAAAAAAAAAAAAAAcl+2AhJz587Vli1b1Lx5c4WHh+vkyZNpxpQuXVrlypXT1q1bs7T2Z599JkkaOXKk/Pz8zO2enp6aPXu2JGnmzJmKiop65Fo2NjYKDQ1V165dZW9vb9Hn6+urSZMmSZICAwPTXLWxePFi/f7776pYsaImTJhg0TdhwgRVrFhRERERWrp0aZaeDwAAAAAAAAAAAAAA5J5sBSSWLFkid3d3rVq1Sk899dRDx1WpUkWXL1/O9LpXr17V4cOHJUk9e/ZM09+oUSOVLFlSCQkJ2rx5c9YL/5tatWpJkuLj43Xr1i2LvqCgIElS9+7dZWVl+XFZWVnppZdekqQsn5ABAAAAAAAAAAAAAAByT7YCEqdPn1bdunVVuHDhDMcZjUbduHEj0+uGhYVJktzd3VWmTJl0x/j7+1uMzY5z585Jkuzs7OTu7p5uLan7Pck6AAAAAAAAAAAAAADAk5GtgERycnKaKyvSc+3atUyNSxUeHi5JKlWq1EPHlCxZ0mLs4zKZTOYrNp5//nmLOmNiYhQZGZlhLal13Lx5U7GxsdmqBQAAAAAAAAAAAAAAPBk22Zns4+Oj48ePZzgmMTFRJ0+eVIUKFTK9bkxMjCTJycnpoWOcnZ0lSdHR0ZleNz3jxo3T/v375ezsrIkTJ6ZbR0a1pNaRWsvDxiUkJCghIcFiLAAAAAAAAAAAAAAAyB3ZOkGidevWunTpkubPn//QMTNmzNDNmzfVrl277Gz1RCxdulSffPKJrKystGjRoiyFOLLq888/l9FoNL9ST54AAAAAAAAAAAAAAABPXrYCEiNGjJDRaNSAAQM0ZMgQhYSESJJiY2N15MgRjRw5UiNHjpSnp6cGDhyY6XVdXFzM6zzMvXv3JEmurq6PVfuqVav02muvSZIWLFigrl27PrSOjGpJreNRtYwaNUpRUVHmV0RExGPVDQAAAAAAAAAAAAAAsi5bAYnixYtr3bp1cnNz0/Tp09W4cWMZDAatXr1aderU0aRJk+Ts7Kw1a9bI09Mz0+uWLl1akjIMEaT2pY7NirVr16pnz55KSUnRvHnzzEGJv3NxcZG7u7sk6fLlyxnW4enpmeGVIPb29nJ1dbV4AQAAAAAAAAAAAACA3JGtgIQkNWnSRL/88ovee+89VatWTY6OjrK3t1f58uU1ePBgnThxQo0aNcrSmrVq1ZIkRUZGKjw8PN0xoaGhkiQ/P78srb1u3Tp1795dycnJmjNnjt58880Mx6eun7pfTtUBAAAAAAAAAAAAAAByT7YDEpLk5eWliRMn6vjx47p3757i4uJ05swZff311ypRokSW1/P29ladOnUkScuXL0/Tv2/fPkVERMje3l5t27bN9LobNmxQt27dlJSUpDlz5qh///6PnNOpUydJUmBgoFJSUiz6UlJS9N1330mSOnfunOk6AAAAAAAAAAAAAABA7sqRgMST8MEHH0iSJk6cqCNHjpjbIyMjNWDAAEnSwIEDZTQazX1BQUGqXLmyAgIC0qy3efNmdenSRUlJSZo7d26mwhGS1KdPHz311FM6e/asRo8ebdE3evRonT17Vt7e3urdu3eWnxEAAAAAAAAAAAAAAOQOm+xMjoiI0M6dO1WvXj1VqlQp3TGnT5/WoUOH1KJFC3l7e2d67Y4dO2rw4MGaPn266tevr4CAADk5OSk4OFh3795Vw4YNNX78eIs5UVFROnPmjO7fv2/RfuPGDXXu3FkPHjyQt7e3QkJCFBISku6+kydPlqenp/l9oUKFtHLlSrVq1UqfffaZ1q9fr6efflonT57UyZMn5eTkpFWrVsnR0THTzwYAAAAAAAAAAAAAAHJXtgISM2bM0FdffaVffvnloWNMJpP69OmjkSNH6rPPPsvS+tOmTVPDhg01a9YshYSEKDExUeXKldPIkSM1dOhQ2dnZZWqduLg4JSQkSJKuXLmiJUuWPHTs2LFjLQISktSwYUMdO3ZM48eP1/bt27VmzRoVKVJEvXv31scff6xy5cpl6bkAAAAAAAAAAAAAAEDuMphMJtPjTq5Zs6aSkpJ08uTJDMc9/fTTsrOzs7gq498uOjpaRqNRUVFRcnV1zetysmX1oZt5XQKQ77W8HZjXJQD5mlvrQXldAv6GP9+BR+tSt0helwAAAHLQ3R9n5HUJQL7Hv78D+Kfhz3fg0QrCn+9Z+e7dKjsbRUREqHz58o8cV758eUVERGRnKwAAAAAAAAAAAAAAgMeWrYBEXFycHB0dHznO0dFRMTEx2dkKAAAAAAAAAAAAAADgsWUrIFG8eHEdPXr0keOOHTumokWLZmcrAAAAAAAAAAAAAACAx5atgETjxo119uxZrVmz5qFj1q5dq9OnT6tJkybZ2QoAAAAAAAAAAAAAAOCxZSsg8e6778pgMKh3796aNm2axTUaMTExmjZtmnr37i0rKysNHjw428UCAAAAAAAAAAAAAAA8jmwFJPz8/PT5558rPj5ew4YNk7u7u0qVKqVSpUrJ3d1dw4YNU1xcnCZMmKC6devmVM0AAAAAAAAAAAAAAABZkq2AhCSNGDFC69atU/Xq1ZWcnKwrV67oypUrSk5OVvXq1bV27VqNHDkyJ2oFAAAAAAAAAAAAAAB4LDY5sUj79u3Vvn17Xb9+XZcvX5YklSpVSl5eXjmxPAAAAAAAAAAAAAAAQLZkKyBRtmxZVaxYUT/++KMkycvLi1AEAAAAAAAAAAAAAADId7J1xcb169fl7u6eU7UAAAAAAAAAAAAAAAA8EdkKSPj4+Cg6OjqnagEAAAAAAAAAAAAAAHgishWQ6NKli/bs2aObN2/mVD0AAAAAAAAAAAAAAAA5LlsBiVGjRqlKlSpq1aqVQkJCcqomAAAAAEA+c+bMGc2YMUN9+vSRr6+vbGxsZDAYNGHChIfOMRgMmXotXbo0W7Vt3rzZvFbLli3THbNr165H1jF37v+zd+/xPdf//8fv753PYzTLcUNMCMspc57kfD6rzCFnUjogIgpJSYSoUPGRQ3PIoRwiI2cjcsgpZzFmM8zM6/dHv/f76917mx2Zd7fr5bJL2/P0erxec+n1fr/e971eM5KdO3/+fJUuXVqurq4qXLiwRo0apaSkpGTHxsfHKzAwUGXKlNGdO3cytV8AAAAAAADIWk6Zmdy4cWM5Ojpq3759qlGjhvz9/RUYGCh3d3ebsSaTSevXr8/M5gAAAAAAj8j06dM1efLkdM3p0qVLin2nT5/WL7/8IpPJpFq1amW4rmvXrumVV16RyWSSYRgPHJ8vXz41aNAg2b6SJUvatP3444/q3LmzcufOrcaNGysqKkrvvfeeoqOjNWXKFJvxw4cP1+nTpxUZGSkXF5f07xAAAAAAAACyTaYCEhs3brR8bxiGLl26pEuXLiU71mQyZWZTAAAAAIBHqEyZMnrjjTdUoUIFhYSEaOzYsfr2229TnTNnzpwU+/r27atffvlF9erVU5EiRTJc14ABA3Tp0iX17t1b06dPf+D44ODgVOv6txEjRsjFxUXbtm1TiRIlFB8fr4oVK2r69Ol65513FBAQYBm7a9cuTZkyRX369FG1atUysjsAAAAAAADIRpkKSPzyyy9ZVQcAAAAAIAfr0aOH1c8ODhl/YuPt27f1v//9T5LUvXv3DK8TERGhefPm6c0339TTTz+dpoBEety5c0e///676tatqxIlSkiSPD099eKLL2r48OHasWOHmjVrJklKSkpSz549FRAQoHHjxmVpHQAAAAAAAMgamQpIZOY2qAAAAACA/6YlS5YoJiZGfn5+atGiRYbWuHLlinr37q2SJUtq9OjRWrBgQdYWKSkmJkZJSUny8/Ozas+TJ48k6caNG5a2SZMmae/evYqIiJCPj0+W1wIAAAAAAIDMy1RAAgAAAACA9Pr6668lSS+++KJcXV0ztEafPn105coV/fDDD3Jzc0vzvEuXLmn06NE6d+6c3NzcFBwcrMaNG6tw4cI2Y/39/eXh4aFDhw5ZtZt/LlCggCTp1KlTGjlypFq2bJnhwAcAAAAAAACyX5YEJAzD0OrVq7V161ZdvnxZVapUUbdu3SRJly9f1rVr11SsWDE5OjpmxeYAAAAAAI+pU6dOWR7XmNHHayxYsECLFy/Wq6++qtDQ0HTNPXz4sEaOHGnV5uTkpAEDBmjChAlycrJ+m9ysWTMtWLBAn3zyiXr06KFt27Zp9uzZ8vf3V9WqVSX9E9ZwcnLS1KlTM7Q/AAAAAAAAeDgy/tDY/2/fvn0qVaqUmjZtqrFjx+rLL79UZGSkpX/t2rUqVaqUVq1aldlNAQAAAAAec7Nnz5ZhGKpYsaKeeeaZdM+/ePGi+vXrp2LFimns2LFpnufr66tBgwZp06ZNunDhguLj47V//3699tprMplMmjRpkvr27Wszb9y4ccqXL58GDx4sX19fvfDCC7p9+7ZmzZolV1dX/e9//9OaNWs0fvx45c+f3zLv9u3bSkpKSvf+AQAAAAAAIPtkKiBx9uxZ1atXT0ePHlXDhg01YcIEGYZhNaZFixZydnbWsmXLMlUoAAAAAODxdu/ePc2ZM0eSLHcdTK+ePXvq2rVr+vLLL+Xh4ZHmeRUqVNCkSZNUs2ZNBQQEyMPDQ2XLltUnn3yiBQsWSJJmzZqlqKgoq3mBgYE6cOCAPvzwQ73yyisaPny49u/fr2bNmunatWsaNGiQQkND1bt3b0nS999/r5IlS8rd3V3u7u5q3LixTp48maF9BQAAAAAAQNbK1CM2xo4dq+joaH366acaOHCgJOmtt96yGuPh4aFy5cpp586dmdkUAAAAAOAxt27dOp0+fVru7u7q1KlTuufPnTtXK1asUJ8+fVS7du0sq6tVq1YqX768oqKitGLFCpUvX96qP2/evDbvdSXpjTfeUExMjGbOnCmTyaRly5apQ4cOql69usaNG6cLFy7onXfeUZ06dXTgwAF5eXllWc0AAAAAAABIv0zdQWLNmjUKDg62hCNSEhgYqAsXLmRmUwAAAACAx9zXX38tSWrdurV8fX3TPT8iIkKStHPnTtWuXdvqa/z48ZKk3bt3W9ouXryY5rVLlSol6Z87JabFpk2bNHv2bA0ZMkRPP/20JGn8+PHy9PTU8uXL1apVK/Xr10/jx4/XX3/9pfnz56dnVwFkkSNHjmjKlCkKDw9X2bJl5eTkJJPJpPfff/+Bc+/du6e5c+eqXr16euKJJ+Tq6qonn3xSdevW1bRp09JVR2BgoEwm0wO/Ro8ebTP37t27mjZtmqpWrSofHx/LHXDGjBmjW7dupbjNyZMnq3jx4nJ1ddVTTz2lzz//PMWx586dk6+vr+rXr5+u/QIAAACAx02m7iBx/vx5NW/e/IHjTCaTYmNjM7MpAAAAAMBj7OrVq1q6dKkkqXv37plaa9euXSn2xcTEaNOmTZKk27dvp3nN6OhoSZK3t/cDxyYkJKhXr14qWbKkhg0bZmmPiopSmTJllDt3bktb9erVLX0AHr7p06dr8uTJ6Z53/fp1NWvWTL/++qt8fHxUrVo15cqVS+fOndPevXsVGxurvn37pnm9Nm3a6MqVK8n2Xb16VStWrJAk1alTx6ovISFBTZo00bp16+Tq6moJSWzfvl3vvvuulixZoo0bNypXrlxW86ZOnapBgwbpySefVOPGjfXbb7+pf//+un37tgYPHmxTQ//+/XX37l3NmDEjzfsEAAAAAI+jTAUkPD09dfny5QeOO3nypPz8/DKzKQAAAADAY2zevHlKSEhQsWLFVKtWrQytYQ5YJGfOnDnq2rWrwsLCtG7dunSte+7cOW3evFmSVLly5QeO/+CDD3T06FFt3LhRrq6ulnaTyaT4+HirseafTSZTumoCkDXKlCmjN954QxUqVFBISIjGjh2rb7/9NtU5hmGoRYsW+vXXX9WrVy9NnDjR6hE5d+7c0f79+9NVx8SJE1PsmzBhglasWKESJUqoRo0aVn0jRozQunXrVKBAAa1Zs0ZlypSRJMXFxaljx45auXKl+vXrp3nz5lnmJCUl6b333lPevHm1f/9+5c2bV3///bdKlSql999/XwMHDpSzs7NlfEREhJYuXaoJEyaoaNGi6dovAAAAAHjcZOoRG2XLltXu3btTTMBL0l9//aV9+/bp2WefzcymAAAAAACPMfPjNbp16/bAsEBERISCg4MVFhaWZdufPHlysu9d9+/fr6ZNm+rWrVsqVqzYA++S+Mcff+jDDz9Ujx49VLNmTau+kJAQHTp0SFu2bLG0zZw509IH4OHr0aOHPvroI3Xq1EnBwcFycHjwpbDZs2dr48aNeuGFFzRjxgyrcIQkubi4qGLFillW4/3/f7xfYmKipk+fLkl6//33LeEI6Z+73Xz55Zdyd3fX//73Px07dszSd+rUKV25ckUtW7ZU3rx5JUn+/v5q1aqVYmJidOjQIcvYuLg4DRgwQOXLl9drr72WZfsEAAAAADlVpgISL774ouLi4tSjRw/dvHnTpv/OnTvq27evEhMT9eKLL2ZmUwAAAACAR2jPnj2qWrWq5WvlypWSpC+++MKq/cKFCzZz9+7dq6ioKDk6Oio8PPyB27p+/bqOHDmi48ePZ1n9I0eOVEBAgCpWrKi2bduqffv2qlixoipUqKC9e/eqcOHCWrFihdUdIf7NMAz17NlTfn5+mjBhgk3/8OHDZTKZ9Pzzz6t58+aqUqWKvv76axUvXlwdO3bMsn0BkL0+++wzSdKbb76Z7dvasmWLjhw5IicnJ3Xp0sWq79ChQ7px44YkqV69ejZzAwICVKZMGRmGoSVLlljazY8M+vfdXPPkySNJljUlaejQobp48aJmzZolJ6dM3WgWAAAAAB4LmXrn07VrV82bN0/Lly9XcHCwGjRoIEnat2+fBg4cqOXLl+v06dOqV6+e2rdvnyUFAwAAAAAevtjYWG3fvt2m/ezZszp79qzl54SEBJsx5r+OfuGFF5Q/f/7sKzIV77zzjrZs2aKDBw9q7dq1io+Pl4+Pj6pVq6bmzZurV69e8vb2TnWNmTNnasuWLVq4cKFy5cpl09+gQQMtX75co0eP1po1a+Th4aEOHTro448/loeHRzbtGYCsdOnSJe3bt0+Ojo6qVq2aTpw4oYULF+rUqVPy8vJSlSpV1Lx5c7m4uGTJ9sz/f2zUqJECAgKs+u4PMpjDDf9mvkPE7t27LW2BgYGSZHWniPt/LlCggCRp27Ztmj59ul599dUsvSMGAAAAAORkJsMwjMwscOPGDfXq1UsLFixQcku1bt1as2fPtrkd4X9dbGysfH19df36dfn4+DzqcjJl8Y7Lj7oEIMerd3XBoy4ByNFyNRjwqEvAv3B+Bx6sTeUnHnUJAIB0Cg8P19y5czVmzBgNHz7cpn/t2rWqX7++/P39NXz4cA0ePFiJiYlWY4oWLaqIiAg988wzmaolPj5eAQEBunHjhpYtW6ZmzZpZ9R87dkxPPfWUJOnAgQMqXbq0zRrBwcE6cuSIKlasqJ07d1raq1Wrph07dui7775T48aN9eOPP+qll15S6dKltW/fPiUmJurZZ59VbGysDh48KE9Pz0zti72IWTPlUZcA5Hi8fwfwuOH8DjyYPZzf0/PZe6YesSFJXl5emjdvng4ePKiJEyeqb9++6t27tz744APt2bNHixYtIhwBAAAAAACAHM/8eIqrV69q4MCBat68uX7//XfFxcXpt99+U5UqVXTixAk1aNDAMjajFi5cqBs3biggIECNGjWy6S9evLgKFy4sSZo1a5ZN/8aNG3XkyBFJ/1wMvN9nn30md3d3dezYUT4+PurUqZM8PT0t60ycOFG///67pk+fbhWOuHXrVrJ/AAUAAAAA9iLLHi4YHBys4ODgrFoOAAAAAAAAeKjM4YC7d+/queee06JFiyx9VatW1dq1a/XUU0/pwoULmjZtmkaMGJHhbX311VeSpJdffllOTslfohs5cqS6d++uKVOmyMfHR927d5ePj4/Wr1+vfv36ydnZWYmJiXJwsP4bqIoVK+rAgQOaO3euzp49q8KFC6tLly4qVKiQjh8/rjFjxqhjx45q2LChJGnKlCmaMGGCzp49K3d3d7Vo0UJTpkxJ8dEeAAAAAPC4yrKABAAAAAD8l3CbTiB19nCLTvz3eHt7W77v1atXsv0vvviiPv74Y61bty7DAYmjR49qy5YtkqRu3bqlOK5bt246e/asRo8erTFjxmjMmDGWvjJlyqhHjx4aO3as/Pz8bOYWKVJE7777rk17r1695O7urk8//VTSP3ebePXVV9W8eXNNnTpVf/zxh0aNGqVjx45p27ZtNuELAAAAAHicZUlA4sqVK/ryyy+1ceNGnT17VoZhqGDBgqpTp466desmf3//rNgMAAAAAAAAkG2KFi2a7PfJjblw4UKGt/P1119LkqpXr66SJUumOvbdd9/Viy++qB9++EHHjx+Xi4uLqlatqtatW2vUqFGSpLJly6Zpu3PnztX69ev19ddfW67XjR8/XkWKFNHixYvl5OSk5s2b6/r16/rwww+1bt061a9fP8P7CQAAAAA5TaYDEsuWLVPXrl11/fp1q2cUHjp0SOvWrdP48eM1e/ZstWzZMrObAgAAAAAAALJNiRIl5O3trbi4OF25ciXZMeZ2Ly+vDG0jKSlJ33zzjSSpe/fuaZpTtGhRvfHGGzbtmzdvliQ9//zzD1zjypUrGjx4sOrUqaOuXbtKki5duqQLFy6oTZs2Vo/5qF69uj788ENFRUURkAAAAABgVzJ1j7zt27erbdu2iomJ0bPPPqvPPvtMK1as0IoVKzRlyhRVrFhRsbGxat++vbZv355VNQMAAAAAAABZzsnJSS1atJAkrVu3Ltkxa9eulSRVrlw5Q9tYtWqVLly4IG9vb7Vt2zZDa0jStm3bFBkZqUKFCql58+YPHP/6668rPj5eX3zxhaXNZDJJkuLj463Gmn829wMAAACAvchUQGL06NFKSkrSRx99pB07dqh///5q3LixGjdurH79+mn79u36+OOPdffuXatnJAIAAAAAAAA50bBhw+Ts7KxZs2bpxx9/tOr76KOPFBkZKUdHR/Xr18+qLyIiQsHBwQoLC0t1ffPjNTp06CBPT89Ux167dk1Hjhyxad+2bZtat24tk8mkmTNnWt39ITnr1q3Tt99+qxEjRuipp56ytPv7+6tgwYL65ZdfdPz4cUn/3OHCXGNISEiq6wIAAADA4yZTj9jYunWrypQpo8GDB6c45rXXXtOcOXO0ZcuWzGwKAAAAAAAASJc9e/aob9++lp/NIYAvvvjCKvwQERGhJ598UpIUHBysWbNmqVu3bmratKkqVqyowMBAHThwQIcPH5ajo6OmT5+usmXLWm3r+vXrOnLkiG7fvp1iPX///bdWrlwpKW2P1/jrr79UoUIFlSpVSsWLF5enp6eOHDmivXv3ytnZWV999ZUaNGiQ6hq3bt1S7969VbZsWb355ps2/SNGjFCvXr1UsWJF1alTR0ePHtXBgwcVGhqqunXrPrBGAAAAAHicZCogkZiYaPNmMDllypSxvAEFAAAAAAAAHobY2NhkH/t69uxZnT171vJzQkKCVX+XLl309NNP68MPP9TmzZu1b98+5cmTR23bttUbb7yR4cdrfPvtt0pMTFTp0qVVpUqVB44vUKCAevXqpcjISG3atEkJCQnKnz+/XnnlFQ0ePFglS5Z84BqjR4/WyZMntXXrVjk7O9v09+zZUy4uLpo4caJ+/PFH5cqVS7169dKHH37IIzYAAAAA2B2TYRhGRidXrFhRnp6e2rRpU6rjateurbi4OO3evTujm7I7sbGx8vX11fXr1+Xj4/Ooy8mUxTsuP+oSgByv3tUFj7oEIEfL1WDAoy4B/8L5HXgwzu9A6ji/A3jcxKyZ8qhLAHI8zu8AHjec34EHs4fze3o+e3fIzIbuT7CnZNOmTdq8ebN69eqVmU0BAAAAAAAAAAAAAABkWKYesfHKK6/o8OHDaty4sXr37q2XX35ZQUFBkqSTJ0/q22+/1fTp0zVo0CD17NkzSwoGAAAAAAAAAAAAAABIr0wFJBwdHS3fT5o0SZMmTUp23KeffqpPP/3Uqs1kMunu3buZ2TwAAAAAAAAAAAAAAECaZCogYRjGI5kLAAAAAACA9Fm84/KjLgHI0eo96gIAAAAAZLtMBSTu3buXVXUAAAAAAAAAAAAAAABkG4dHXQAAAAAAAAAAAAAAAEB2IyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAIMc7cuSIpkyZovDwcJUtW1ZOTk4ymUx6//33U5wzatQomUymVL8OHz6crjri4+M1f/58DR48WLVr15aPj49MJpOKFy+epvn/+9//VKdOHeXOnVtubm4qUaKE3nzzTV27di3FOfPnz1fp0qXl6uqqwoULa9SoUUpKSkqxvsDAQJUpU0Z37txJ174BgL1zetQFAAAAAAAAAAAAAA8yffp0TZ48OUNzy5Urp/Llyyfb5+vrm661/vzzT3Xu3DndNRiGofDwcH3zzTdydHRU5cqVFRAQoF27dmnixIn6/vvvFRkZqcKFC1vN+/HHH9W5c2flzp1bjRs3VlRUlN577z1FR0drypQpNtsZPny4Tp8+rcjISLm4uKS7TgCwZwQkAAAAAAAAAAAAkOOVKVNGb7zxhipUqKCQkBCNHTtW3377bZrmtmjRQqNGjcqSOry9vdW1a1eFhISoQoUKiomJUZMmTR44b/r06frmm2/k7e2tH3/8UTVr1pQkJSYmqm/fvvryyy/VqVMnRUZGWs0bMWKEXFxctG3bNpUoUULx8fGqWLGipk+frnfeeUcBAQGWsbt27dKUKVPUp08fVatWLUv2FwDsCQEJAAAAAAAAAAAA5Hg9evSw+tnB4dE8Sb5YsWL6+uuvLT9v3LgxTfPMd794/fXXLeEISXJ2dtZnn32mVatWacuWLVq/fr3CwsIkSXfu3NHvv/+uunXrqkSJEpIkT09Pvfjiixo+fLh27NihZs2aSZKSkpLUs2dPBQQEaNy4cVmxqwBgdx7NmQMAAAAAAAAAAAD4j4iNjdXRo0clSfXq1bPpd3d3V2hoqCRp8eLFlvaYmBglJSXJz8/PanyePHkkSTdu3LC0TZo0SXv37tXUqVPl4+OT5fsAAPaAO0gAAAAAAAAAAADAru3Zs0dDhgzR1atX5evrqwoVKqhp06by9vZ+KNu/P8hgDjf8W968eSVJu3fvtrT5+/vLw8NDhw4dshpr/rlAgQKSpFOnTmnkyJFq2bKlWrRokZWlA4BdISABAAAAAAAAAAAAu7ZixQqtWLHCqs3X11efffaZXn755Wzfvp+fnxwdHZWUlKQTJ06oVKlSNmNOnDghSTp58qRVe7NmzbRgwQJ98skn6tGjh7Zt26bZs2fL399fVatWlST16dNHTk5Omjp1arbvCwA8znjEBgAAAAAAAAAAAOxSsWLFNHbsWO3du1dXr17V1atXFRkZqSZNmuj69evq0qWL5s2bl+11uLm5qVq1apKkWbNm2fT/+eef2rBhg6R/Hsdxv3HjxilfvnwaPHiwfH199cILL+j27duaNWuWXF1d9b///U9r1qzR+PHjlT9/fsu827dvKykpKRv3CgAePwQkAAAAAAAAAAAAYJdeeuklDR06VOXLl1fu3LmVO3duhYaGasWKFRowYIAk6bXXXtOdO3eyvZZ3331XJpNJy5YtU+/evfXnn38qNjZWa9euVcOGDS3jHBysP74LDAzUgQMH9OGHH+qVV17R8OHDtX//fjVr1kzXrl3ToEGDFBoaqt69e0uSvv/+e5UsWVLu7u5yd3dX48aNbe5KAQD/VQQkAAAAAAAAAAAA8J8zatQoOTo66vLly9q+fXu2b69evXqaNWuW3Nzc9MUXX6hEiRLy9fVV/fr1defOHY0ZM0bSP4/j+Le8efPqrbfe0syZMzVmzBgFBwdLkt544w3FxMRo5syZlvBFhw4d5O/vryVLlmjSpEnasmWL6tSpoxs3bmT7PgJATuf0qAsAAAAAAAAAAAAAHjY/Pz/5+/vrwoULOnv27EPZZvfu3dW4cWMtXrxYhw4dkslkUoUKFdS+fXvNnz9fklS2bNk0rbVp0ybNnj1bI0aM0NNPPy1JGj9+vDw9PbV8+XLlzp1bkuTo6Kg+ffpo/vz56tmzZ/bsGAA8JghIAAAAAAAAAAAA4D8nKSlJ169flyR5e3s/tO0GBASof//+Nu2bN2+WJD3//PMPXCMhIUG9evVSyZIlNWzYMEt7VFSUypQpYwlHSFL16tUtfQDwX0dAAgAAAAAAAAAAAP85y5cv182bN2UymVSxYsVHWsupU6e0ZMkSeXl5KTw8/IHjP/jgAx09elQbN26Uq6urpd1kMik+Pt5qrPlnk8mUpTUDwOPI4VEXAAAAAAAAAAAAAGS106dP67vvvtPt27dt+pYuXaoePXpIkjp37qyAgACr/h07dig4OFjBwcFZVs+dO3e0d+9em/bDhw+rcePGunXrlj7++GPlyZMn1XX++OMPffjhh+rRo4dq1qxp1RcSEqJDhw5py5YtlraZM2da+gDgv447SAAAAAAAAAAAACDH27Nnj/r27Wv5+fjx45KkL774Qj/++KOlPSIiQk8++aSuXr2ql156SX369FGFChVUoEAB3bp1S3/88Yf+/PNPSVKdOnU0ffp0m23dvHlTR44cSbGWli1b6sKFC5Kk2NhYSdLZs2dVtWpVy5gePXpYQhjmNUNCQlS0aFGVLFlSuXLl0qlTp7Rjxw7du3dPo0ePVs+ePVM9BoZhqGfPnvLz89OECRNs+ocPH65GjRrp+eef1/PPP6+LFy9qx44dKl68uDp27Jjq2gDwX5DjAxKLFi3S559/rn379unOnTsqXry4OnfurNdee03Ozs5pXic6OlorVqzQ7t27tXv3bkVFRenWrVsKCwvTunXrUpy3ceNG1alTJ9W1p0+frt69e6e5FgAAAAAAAAAAAKRPbGystm/fbtN+9uxZnT171vJzQkKCJKlQoUJ6++23tXPnTh07dkx79uzRnTt3lDdvXjVp0kSdOnVS+/bt5eCQ/huu7927V3/99ZdVW0JCglV9DRo0sOr38PDQq6++qs2bN2vbtm2Kj4+Xv7+/OnTooIEDB6py5coP3O7MmTO1ZcsWLVy4ULly5bLpb9CggZYvX67Ro0drzZo18vDwUIcOHfTxxx/Lw8Mj3fsJAPYmRwckBg0apMmTJ8vJyUl169aVl5eXNmzYoLffflsrVqzQzz//LHd39zSttXnzZnXt2jXDteTLl8/mRGZWsmTJDK8LAAAAAAAAAACAB6tdu7YMw0jz+Dx58mj8+PHZsq1Tp06le00XFxd9+umnGarHrFevXurVq1eqY5o0aaImTZpkajsAYK9ybEBi6dKlmjx5sry8vLRp0ybLc5GuXLmiunXrKjIyUiNGjNDEiRPTtF6+fPnUq1cvhYSEKCQkRLt3707XXR+Cg4M1Z86cjOwKAAAAAAAAAAAAAAB4xNJ/z6CHZOzYsZKkIUOGWMIRkpQ3b15NmzZNkjR16lRdv349Tes999xzmjFjhnr27KmKFSvK1dU164sGAAAAAAAAAAAAAAA5Uo4MSJw7d047d+6UJHXq1Mmmv3r16ipUqJASEhK0atWqh10eAAAAAAAAAAAAAAB4zOTIR2zs3btXkuTn56egoKBkx1SsWFFnzpzR3r171bFjx2yv6dKlSxo9erTOnTsnNzc3BQcHq3HjxipcuHC2bxsAAAAAAAAAAODfFu+4/KhLAHK0eo+6AAA5To4MSJw8eVKSUg0fFCpUyGpsdjt8+LBGjhxp1ebk5KQBAwZowoQJcnLKkYcSAAAAAAAAAAAAAAAohz5iIy4uTpLk6emZ4hgvLy9JUmxsbLbW4uvrq0GDBmnTpk26cOGC4uPjtX//fr322msymUyaNGmS+vbt+8B1EhISFBsba/UFAAAAAAAAAAAAAAAejhwZkMhJKlSooEmTJqlmzZoKCAiQh4eHypYtq08++UQLFiyQJM2aNUtRUVGprjNu3Dj5+vpavsx3wAAAAAAAAAAAAAAAANkvRwYkvL29JUnx8fEpjrlx44YkycfH56HUlJxWrVqpfPnykqQVK1akOnbo0KG6fv265evMmTMPoUIAAAAAAAAAAAAAACBJTo+6gOQEBgZKUqohAnOfeeyjUqpUKUVFRens2bOpjnN1dZWrq+tDqgoAAAAAAAAAAAAAANwvR95BokKFCpKk6OhonTx5Mtkxu3btkiSFhIQ8tLqSEx0dLen/7noBAAAAAAAAAAAAAABynhwZkChYsKAqVaokSZo/f75Nf2RkpM6cOSNXV1c1atToYZdnce7cOW3evFmSVLly5UdWBwAAAAAAAAAAAAAASF2ODEhI0rBhwyRJ48eP1549eyzt0dHR6tu3rySpf//+8vX1tfRFREQoODhYYWFhWVbH5MmTdeXKFZv2/fv3q2nTprp165aKFSum5s2bZ9k2AQAAAAAAAAAAAABA1nJ61AWkpEWLFho4cKA+++wzVa1aVWFhYfL09NT69esVExOj0NBQjRkzxmrO9evXdeTIEd2+fTvZNatWrWr5/vLly5KknTt3WrWPGDFCjRs3tvw8cuRIDR48WOXLl1dQUJAcHBx0/Phx7d27V/fu3VPhwoW1YsUKubq6ZuXuAwAAAAAAAAAAAACALJRjAxLSP3dvCA0N1eeff66tW7cqMTFRxYoV05AhQ/Taa6/JxcUlXett377dpi02Ntaq3RycMHvnnXe0ZcsWHTx4UGvXrlV8fLx8fHxUrVo1NW/eXL169ZK3t3fGdhAAAAAAAAAAAAAAADwUOTogIUnt2rVTu3bt0jQ2PDxc4eHhKfYbhpHu7b/55pt688030z0PAAAAAAAAAAAAAADkHA6PugAAAAAAAAAAAAAAAIDsRkACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN0jIAEAAAAAAAAAAAAAAOweAQkAAAAAAAAAAAAAAGD3CEgAAAAAAAAAAAAAAAC7R0ACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN0jIAEAAAAAAAAAAAAAAOweAQkAAAAAAAAAAAAAAGD3CEgAAAAAAAAAAAAAAAC7R0ACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN0jIAEAAAAAAAAAAAAAAOweAQkAAAAAAAAAAAAAAGD3CEgAAAAAAAAAAAAAAAC7R0ACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN0jIAEAAAAAAAAAAAAAAOweAQkAAAAAAAAAAAAAAGD3CEgAAAAAAAAAAAAAAAC7R0ACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN0jIAEAAAAAAAAAAAAAAOweAQkAAAAAAAAAAAAAAGD3CEgAAAAAAAAAAAAAAAC7R0ACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN0jIAEAAAAAAAAAAAAAAOweAQkAAAAAAAAAAAAAAGD3CEgAAAAAAAAAAAAAAAC7R0ACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN0jIAEAAAAAAAAAAAAAAOweAQkAAAAAAAAAAAAAAGD3CEgAAAAAAAAAAAAAAAC7R0ACAAAAAAAAAAAAAADYPQISAAAAAAAAAAAAAADA7hGQAAAAAAAAAAAAAAAAdo+ABAAAAAAAAAAAAAAAsHsEJAAAAAAAAAAAAAAAgN3L8QGJRYsWqXbt2sqdO7c8PT1Vrlw5TZgwQYmJielaJzo6WnPmzNGAAQNUrVo1eXh4yGQyqV69emmaf+zYMYWHh6tgwYJydXVVwYIFFR4erhMnTmRktwAAAAAAAAAAAAAAwEPk9KgLSM2gQYM0efJkOTk5qW7duvLy8tKGDRv09ttva8WKFfr555/l7u6eprU2b96srl27ZqiOLVu2qH79+rp586ZKly6t6tWr68CBA5o7d64WL16sdevWqWrVqhlaGwAAAAAAAAAAAAAAZL8ceweJpUuXavLkyfLy8tL27dv1008/acmSJfrzzz9VtmxZRUZGasSIEWleL1++fOrVq5e++OIL7dy5UzNmzEjTvJs3b6pdu3a6efOmhg4dqgMHDmjBggU6cOCAhg4dqvj4eLVr1063bt3K6K4CAAAAAAAAAAAAAIBslmMDEmPHjpUkDRkyRCEhIZb2vHnzatq0aZKkqVOn6vr162la77nnntOMGTPUs2dPVaxYUa6urmmaN2fOHJ0/f14lSpTQ+++/b9X3/vvvq0SJEjpz5oy++eabNK0HAAAAAAAAAAAAAAAevhwZkDh37px27twpSerUqZNNf/Xq1VWoUCElJCRo1apV2VpLRESEJKlDhw5ycLA+XA4ODmrfvr0k6YcffsjWOgAAAAAAAAAAAAAAQMblyIDE3r17JUl+fn4KCgpKdkzFihWtxmZ3LebtPao6AAAAAAAAAAAAAABAxuXIgMTJkyclSYULF05xTKFChazGZoe4uDhFR0enWou5jsuXLys+Pj7bagEAAAAAAAAAAAAAABnn9KgLSE5cXJwkydPTM8UxXl5ekqTY2NhsryO1Wsx1mGtJaVxCQoISEhKsxgIAAAAAAAAAAAAAgIcjR95Bwh6NGzdOvr6+li/znScAAAAAAAAAAAAAAED2y5EBCW9vb0lK9ZEVN27ckCT5+Phkex2p1WKu40G1DB06VNevX7d8nTlzJusKBQAAAAAAAAAAAAAAqcqRAYnAwEBJSjVEYO4zj80O3t7e8vPzkySdPn061Try5s2b6iNBXF1d5ePjY/UFAAAAAAAAAAAAAAAejhwZkKhQoYIkKTo6WidPnkx2zK5duyRJISEh2VqLeX3z9h5VHQAAAAAAAAAAAAAAIONyZECiYMGCqlSpkiRp/vz5Nv2RkZE6c+aMXF1d1ahRo2ytpWXLlpKkBQsW6N69e1Z99+7d0/fffy9JatWqVbbWAQAAAAAAAAAAAAAAMi5HBiQkadiwYZKk8ePHa8+ePZb26Oho9e3bV5LUv39/+fr6WvoiIiIUHByssLCwLKsjPDxc+fPn19GjRzVixAirvhEjRujo0aMqWLCgXn755SzbJgAAAAAAAAAAAAAAyFpOj7qAlLRo0UIDBw7UZ599pqpVqyosLEyenp5av369YmJiFBoaqjFjxljNuX79uo4cOaLbt28nu2bVqlUt31++fFmStHPnTqv2ESNGqHHjxpafPTw8tHDhQtWvX19jx47V8uXLVaZMGR04cEAHDhyQp6enFi1aJHd396zcfQAAAAAAAAAAAAAAkIVybEBCkiZPnqzQ0FB9/vnn2rp1qxITE1WsWDENGTJEr732mlxcXNK13vbt223aYmNjrdrNwYn7hYaGat++fRozZozWrVunJUuW6IknntDLL7+sd999V8WKFUv/zgEAAAAAAAAAAAAAgIcmRwckJKldu3Zq165dmsaGh4crPDw8xX7DMDJcR/HixTV37twMzwcAAAAAAAAAAAAAAI+Ow6MuAAAAAAAAAAAAAAAAILsRkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg93J8QGLRokWqXbu2cufOLU9PT5UrV04TJkxQYmJihtbbvXu32rZtq3z58snNzU1BQUEaMGCA/v7772THnzp1SiaTKdWvIUOGZGYXAQAAAAAAAAAAAABANnN61AWkZtCgQZo8ebKcnJxUt25deXl5acOGDXr77be1YsUK/fzzz3J3d0/zeosXL1bHjh119+5dVapUSUFBQdq1a5emTp2qRYsWKTIyUsWLF092rqenp9q0aZNs37PPPpuh/QMAAAAAAAAAAAAAAA9Hjg1ILF26VJMnT5aXl5c2bdqkkJAQSdKVK1dUt25dRUZGasSIEZo4cWKa1jt//ry6dOmiu3fv6osvvlDPnj0lSUlJSQoPD9d3332nTp06afv27TKZTDbz8+bNqzlz5mTZ/gEAAAAAAAAAAAAAgIcnxz5iY+zYsZKkIUOGWMIR0j9BhWnTpkmSpk6dquvXr6dpvU8//VQ3b95UvXr1LOEISXJ0dNT06dPl6+urnTt36ueff87CvQAAAAAAAAAAAAAAADlBjgxInDt3Tjt37pQkderUyaa/evXqKlSokBISErRq1ao0rRkREZHiel5eXmrWrJkk6Ycffsho2QAAAAAAAAAAAAAAIIfKkQGJvXv3SpL8/PwUFBSU7JiKFStajU1NXFycjh07ZjUvvevFx8dr/Pjx6t27twYMGKBPP/1UR44ceeC2AQAAAAAAAAAAAADAo+f0qAtIzsmTJyVJhQsXTnFMoUKFrMam5tSpU5bvU1rzQetduXJFQ4cOtWp7/fXX1blzZ02fPl1eXl4PrAMAAAAAAAAAAAAAADwaOfIOEnFxcZIkT0/PFMeYAwmxsbFpXi+1NVNaz9XVVa+88op++uknnTlzRjdv3tTBgwc1ZswYeXh46LvvvlPr1q1lGEaqNSQkJCg2NtbqCwAAAAAAAAAAAAAAPBw5MiCRkzz55JOaOXOm6tevr4IFC8rd3V1PP/20hg8frg0bNsjR0VE///yzli1bluo648aNk6+vr+XLfMcKAAAAAAAAAAAAAACQ/XJkQMLb21uSFB8fn+KYGzduSJJ8fHzSvF5qa6ZnPbPKlSuradOmkqQVK1akOnbo0KG6fv265evMmTNp3g4AAAAAAAAAAAAAAMicHBmQCAwMlKRUQwTmPvPY1BQpUsTy/enTpzO93v1KlSolSTp79myq41xdXeXj42P1BQAAAAAAAAAAAAAAHo4cGZCoUKGCJCk6OlonT55MdsyuXbskSSEhIQ9cz8fHR8WLF7eal5n17hcdHS3J+i4VAAAAAAAAAAAAAAAgZ8mRAYmCBQuqUqVKkqT58+fb9EdGRurMmTNydXVVo0aN0rRmy5YtU1zvxo0blkdktGrVKs11xsfHW+ZVrlw5zfMAAAAAAAAAAAAAAMDDlSMDEpI0bNgwSdL48eO1Z88eS3t0dLT69u0rSerfv798fX0tfREREQoODlZYWJjNeoMGDZKHh4fWrVunWbNmWdqTkpLUt29fxcTEqFKlSqpfv77VvJkzZyb7qI+TJ0+qefPmunDhgnLlyqVu3bplbocBAAAAAAAAAAAAAEC2cXrUBaSkRYsWGjhwoD777DNVrVpVYWFh8vT01Pr16xUTE6PQ0FCNGTPGas7169d15MgR3b5922a9/Pnza86cOerYsaN69uypr776SoGBgdq5c6dOnDihfPnyaf78+TKZTFbzpk2bpt69e6t06dIqUaKEXFxcdPLkSUVFRSkhIUF58uTRDz/8oLx582br8QAAAAAAAAAAAAAAABmXY+8gIUmTJ0/W999/r+eee05bt27VqlWrVLBgQY0fP14bNmyQu7t7utZr27attm/frlatWunEiROKiIhQUlKS+vXrp3379ql48eI2cwYOHKi2bdvq7t272rhxoxYvXqwjR47omWee0ciRI/XHH3+oZs2aWbXLAAAAAAAAAAAAAAAgG+TYO0iYtWvXTu3atUvT2PDwcIWHh6c65tlnn9WSJUvSvP1u3brx+AwAAAAAAAAAAAAAAB5zOfoOEgAAAAAAAAAAAAAAAFmBgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu5fjAxKLFi1S7dq1lTt3bnl6eqpcuXKaMGGCEhMTM7Te7t271bZtW+XLl09ubm4KCgrSgAED9Pfff6c679KlS+rfv7+CgoLk6uqqfPnyqW3bttqzZ0+G6gAAAAAAAAAAAAAAAA9Pjg5IDBo0SO3atdOWLVtUuXJlNWjQQKdPn9bbb7+tunXr6tatW+lab/HixapataoWL16sIkWKqHnz5nJwcNDUqVP1zDPP6NixY8nOO3r0qJ555hl9/vnncnBwUIsWLVSkSBEtXrxYVapUUURERFbsLgAAAAAAAAAAAAAAyCY5NiCxdOlSTZ48WV5eXtq+fbt++uknLVmyRH/++afKli2ryMhIjRgxIs3rnT9/Xl26dNHdu3f1xRdfaMeOHfr+++919OhRvfjii7p06ZI6deokwzCs5hmGoQ4dOujvv//WSy+9pKNHj+r777/Xjh079MUXX+ju3bt6+eWXdfHixaw+BAAAAAAAAAAAAAAAIIvk2IDE2LFjJUlDhgxRSEiIpT1v3ryaNm2aJGnq1Km6fv16mtb79NNPdfPmTdWrV089e/a0tDs6Omr69Ony9fXVzp079fPPP1vNW716tfbu3atcuXJp2rRpcnR0tPT17NlTYWFhunHjhiZPnpzhfQUAAAAAAAAAAAAAANkrRwYkzp07p507d0qSOnXqZNNfvXp1FSpUSAkJCVq1alWa1jQ/BiO59by8vNSsWTNJ0g8//JDsvGbNmsnLy8tmrnm9f88DAAAAAAAAAAAAAAA5R44MSOzdu1eS5Ofnp6CgoGTHVKxY0WpsauLi4nTs2DGreWldz/zzg+b9+eefio+Pf2AtAAAAAAAAAAAAAADg4cuRAYmTJ09KkgoXLpzimEKFClmNTc2pU6cs36e0ZkrrPagW8zzDMKy2AwAAAAAAAAAAAAAAcg6nR11AcuLi4iRJnp6eKY4xP+4iNjY2zeultmZK6z2olvsfu5FaLQkJCUpISLD8fP369QfOeVzcvBH34EHAf1xs/K1HXQKQoznYwfnQ3nB+Bx6M8zuQOs7vOQ/ndyB1nNuBB+P8nvNwfgdSx/kdeDB7OL+bP3M3DOOBY3NkQMIejRs3Tu+9955Nu/kOFAAA/Le9/agLAAAAWY7zOwAA9ofzOwAA9sd+zu9xcXHy9fVNdUyODEh4e3tLkuLj41Mcc+PGDUmSj49Pmtczr5ncQUlpPW9vb129ejXFWszzHlTL0KFD9frrr1t+vnfvnq5evao8efLIZDI9cB8APL5iY2NVqFAhnTlzJk3/zwIAADkf53cAAOwL53YAAOwP53fgv8MwDMXFxSl//vwPHJsjAxKBgYGSpDNnzqQ4xtxnHpuaIkWKWL4/ffq0ypYtm+b1AgMDdfXqVZ0+fTrVOkwmk9V2/s3V1VWurq5Wbbly5Xpg7QDsh4+PDy/CAACwM5zfAQCwL5zbAQCwP5zfgf+GB905wswhm+vIkAoVKkiSoqOjdfLkyWTH7Nq1S5IUEhLywPV8fHxUvHhxq3lpXc/884PmPfXUU/Ly8npgLQAAAAAAAAAAAAAA4OHLkQGJggULqlKlSpKk+fPn2/RHRkbqzJkzcnV1VaNGjdK0ZsuWLVNc78aNG1qxYoUkqVWrVsnOW758ebKP2TCv9+95AAAAAAAAAAAAAAAg58iRAQlJGjZsmCRp/Pjx2rNnj6U9Ojpaffv2lST179/f6lYZERERCg4OVlhYmM16gwYNkoeHh9atW6dZs2ZZ2pOSktS3b1/FxMSoUqVKql+/vtW8hg0bqkKFCoqJiVHfvn2VlJRk6Zs5c6bWr18vLy8vvfrqq1mz4wDsjqurq0aOHGnzmB0AAPD44vwOAIB94dwOAID94fwOIDkmwzCMR11ESl599VV99tlncnZ2VlhYmDw9PbV+/XrFxMQoNDRUa9eulbu7u2X8nDlz1LVrVxUpUkSnTp2yWW/RokXq2LGjkpKSVKVKFQUGBmrnzp06ceKE8uXLp8jISMujOO535MgR1ahRQ5cvX1bRokVVqVIlnTx5Ujt27JCTk5MWLlxoudMEAAAAAAAAAAAAAADIeXLsHSQkafLkyfr+++/13HPPaevWrVq1apUKFiyo8ePHa8OGDVbhiLRo27attm/frlatWunEiROKiIhQUlKS+vXrp3379iUbjpCkkiVLav/+/erXr5+SkpIUERGhkydPqlWrVtq+fTvhCAAAAAAAAAAAAAAAcrgcfQcJAAAAAAAAAAAAAACArJCj7yABAAAAAAAAAAAAAACQFQhIAAC0ceNGmUwm1a5d+5HWMWfOHJlMJoWHhz/SOgAA2evUqVMymUwymUw6depUqmMDAwNlMpk0Z86cTG83PDw8y9YCAOBhWbFihWrUqCEfHx/L+XPjxo2Puqwcx3xskLLatWvniH8/5td3D3odCABAdjFflwgMDHzUpQB4BJwedQEAAAAAAAAAbEVFRal169a6d++e6tatqyeffFImk0kBAQGPujQAAAAAeCwRkAAAAAAAAAByoKVLlyoxMVHDhg3TBx988KjLAQAAAIDHHo/YAAAAAAAAAHKg06dPS5KeeuqpR1wJAAAAANgHAhIA0u3+53ouWbJE1atXl4+Pjzw9PRUaGqpVq1alOPfu3bv68ssvVbt2bfn5+cnV1VVBQUHq06ePzpw5YzX2iy++kMlkUoMGDVJcLzo6Wq6urnJxcdHly5et+q5du6aRI0eqfPny8vb2loeHh8qWLav3339fN2/etFlr1KhRMplMGjVqlE6fPq3u3burUKFCcnZ2Vnh4eJqOze7du9W+fXsVLFhQLi4u8vHxUdGiRdW6dWstW7Ysxe2dP39ePXr0UP78+eXu7q4yZcroq6++sow9fPiwOnXqpICAALm5ualcuXL6/vvvU6zj6tWrGjZsmEqXLi0PDw95e3vr2Wef1YQJE3Tr1q007YvZ5cuXVa1aNZlMJrVv314JCQmWvvQeY+mffwOffvqpypYtKzc3Nz3xxBNq3bq1fv/993TVBQD477r/+dlRUVFq1aqV8ubNK1dXVz399NP6+OOPZRhGutZcs2aNfHx85ObmpgULFmTJtu7evasZM2aoWrVq8vX1lZubm5566ikNHDhQ586dsxprGIby5s0rBwcHRUdHW/Xt2LHD8vpr2rRpNtspWrSoTCaTTpw4ka3HCADw8JjfL86ePVuS1LVrV8u5oHbt2lZjDx8+rK5du6pIkSJydXWVn5+fwsLCtHDhwlTXTu29b3h4uEwmk+bMmaMjR46offv28vf3l6enpypVqmT1/nb79u1q1qyZnnjiCbm7u+u5557T+vXrU9y3W7du6eOPP1bVqlWVK1cuubm5qWTJknrrrbdszoGSNGfOHJlMJoWHh+vq1asaNGiQihUrJldXV5tjcb/Y2Fj5+PjIycnJ5nrD/Ro1apTiOTY5CQkJ+uijj/Tss8/K29tbLi4uCggIUKVKlfTWW2/p6tWrVuPvv4by3XffqXLlyvLy8tITTzyhjh07WkIwhmFo6tSpKl++vDw9PZU3b16Fh4fr77//TrGWn376SU2aNJG/v79cXFyUP39+tW/fXrt27UrTvtxv9uzZcnFxUe7cufXLL79Y9a1fv16tWrXSk08+KRcXF/n7+6tly5b67bffUlzvjz/+UNu2bZU3b17LdY6JEycqKSkp3bUBAHK2P//8U926dVNQUJBcXV3l5eWlIkWKqHHjxpbXMpL1Of369et6/fXXFRgYaHmv/OGHH+revXuSpHPnzqlXr14qVKiQXF1dVbJkSU2ZMiXFGm7evKnx48crJCTEcp26dOnSGj58uK5du5au/bl586aaN28uk8mkOnXqKCYmxtKX3tcxkrRo0SLVq1dPefLkkbOzs/LkyaOnn35ar7zyivbv35+u2gBkEQMA0kmSIcl49913DZPJZISGhhrt27c3ypUrZ0gyTCaT8cMPP9jMi42NNWrXrm1IMry8vIxatWoZbdq0MUqWLGlIMvLkyWPs2bPHMj4mJsZwd3c3HBwcjLNnzyZby2effWZIMlq1amXVfvDgQaNQoUKGJOPJJ580GjRoYDRt2tTIly+fIckoX768ERMTYzVn5MiRhiSjU6dOhp+fnxEQEGC0bt3aaNWqlTF48OAHHpd169YZzs7OhiSjXLlyRps2bYyWLVsalStXNlxdXY3mzZsnu72uXbsaAQEBRuHChY127doZderUMRwdHQ1JxsSJE43ffvvN8Pb2NkqWLGl06NDBeO655yy/gwULFtjUcfz4caNIkSKGJOOJJ54wWrdubTRr1szw9vY2JBkhISHG1atXreb88ssvhiSjVq1aVu1HjhwxihUrZkgy3nrrLePevXuZOsZJSUlGixYtDEmGi4uLUb9+faN9+/ZGYGCg4ebmZvTt29eQZHTp0uWBxxsA8Pg6efKk5Vx28uTJVMeaz2mzZ8+2tNWqVcuQZAwZMsRwcXExSpUqZXTo0MGoVauW5Rz66quv2qzVpUsXm7UMwzBmzJhhODo6Gn5+fsbmzZut+jK6rdu3bxv16tUzJBlubm5Gw4YNjfbt21vOnXnz5jV2795tNadt27aGJOP777+3av/ggw8sx6tly5ZWfcePHzckGUFBQVlSNwAgZ4iIiDC6dOlieT8WGhpqdOnSxejSpYsxbtw4y7gff/zRcHNzMyRZ3jPWrVvX8v/6bt262aydlve+5nPmgAEDDE9PT5v3oyaTyVi0aJERERFhODs7GxUqVLC6LuDk5GRzTjUMwzh37pxRtmxZQ5Lh5+dn1KtXz2jZsqXlfB8YGGicOnXKas7s2bMNSUbjxo2NoKAgI3fu3EazZs2Mtm3bGp07d7aMM58r7zdgwABDkjFs2LBkj/OxY8cMk8lk+Pj4GHFxcQ/8vSQlJRlhYWGGJMPHx8do2LCh0bFjR6NevXqWfdi7d6/VHHNdQ4YMMZycnIy6desabdq0MQoXLmxIMgoVKmRcvXrVaNeuneHm5mY0aNDAaNmypeHv729IMp555hkjISHBppbhw4dbfhehoaFGx44djfLlyxuSDEdHR+Orr76ymWN+ffDLL79YtY8YMcJy/A8ePGjVN3jwYEOS4eDgYFSuXNlo27atUaVKFcNkMhmOjo7G119/bbOdzZs3G56enoYko2jRokaHDh2MevXqGc7Ozkbr1q0tx+pBrwMBADnf77//bvj4+Fhei7Rq1cpo27at8dxzzxleXl5GuXLlLGPN5/TmzZsbpUqVMvz9/Y3WrVsb9evXN9zd3Q1JRv/+/Y1jx44ZAQEBRqFChWyul48fP96mhujoaMs50MfHx2jWrJnRunVrI2/evJb3y/8+55ivSxQpUsSq/eLFi0bFihUNScaLL75odQ7OyOuY9957z/LaqGbNmkbHjh2NRo0aGWXKlDFMJpMxadKkzP4KAGQAAQkA6WZ+c58rVy5j27ZtVn3mCy0lSpSwmdepUydDktGkSRPj0qVLVn2TJk0yJBlPPfWUcffuXUt7586dDUlWF4DuV6FCBUOSsWLFCkvbzZs3LReRhg8fbvUiJj4+3ujYsaMlmJBc7eYXP7dv3077QTEMo06dOoYk47vvvrPpi4mJMX777bcUt9e7d28jMTHR0rd8+XJDkuHt7W0UKVLEeP/9963CCZ9++qkhyShevLjNtqpUqWJIMpo1a2bcuHHD0v73338bISEhlgth90suIPHrr78afn5+hqOjozFjxgyr8Rk9xlOnTjUkGfny5TP++OMPS3tiYqLRp08fy/EgIAEA9i2rAhKSbM5R69evt1ywP3PmjFXfvwMS9+7dM9566y1DklGsWDHjyJEjNtvP6Lbefvtty7r37+OdO3eM7t27Wy7S3H8O/eKLLwxJxiuvvGK1Vp06dQwXFxcjODjYyJUrl9VrpZTmZLRuAEDOklK4zzD+uYDv6+trSLJ5z7hz504jd+7chiRj5syZVvPS8t7XvN3k1jb/oULBggWN3LlzG998843V3EGDBhmSjHr16lm137t3zwgNDTUkGd27dzdiY2MtfYmJiZYP4uvUqWM1z/xhiiQjLCzMuH79erLHKrmAxNGjRw2TyWT4+/snu5/mbQ4YMCDZNf9t06ZNhiSjQoUKVvWb7dy507hy5UqydeXJk8eIioqytN+8edOoXr26IckoW7asUaxYMasPVS5fvmwUL1482esMq1evtoQwf/75Z6u+L7/80pBkODs7GwcOHLDq+3dAIiEhwXLdpWLFisbFixetxs+cOdNy7WHfvn02x8Lb29twcXExjh49amm/deuWJRA6aNAgq9ct+/bts3xYRUACAOxD165dLa8X/u3mzZvGpk2bLD/ff05v2rSpER8fb+nbvXu34eTkZDg4OBhPP/20zfXypUuXWgIQ988zDMNo3769IcmoUqWK1Xk4Li7OaNiwoSHJqFatmtWc5AISBw8etFyDGD58uNX4jLyOuX37tuHu7m54eXkZhw8ftjk+p06dMg4dOmTTDiD7EZAAkG7mFzGfffaZTd/t27ctF2hOnz5taf/jjz8Mk8lk5M+fP9mLCIZhGI0aNbIJO6xfv96SPv23qKgoQ5IREBBg9WJp+vTpliBGcuLi4gx/f3/DycnJ6k4K5otEfn5+Nnc+SIunn37akGRzd4aUmLdXuHBh49atWzb9zzzzjCHJqFy5stXFKMP450WXn5+fIcn466+/LO2bN282JBkeHh42FzYMwzB27dpl+cuP+z8Q+XdAYv78+Yarq6vh5eVlrFq1ymadjB5j88Wd6dOn28y5deuWERAQQEACAP4Dsiog8e87SJk1aNDAkGTzgc39HzLdunXLaNeunSHJqFq1qvH3338nu1ZGtnXr1i3Dy8vLkGQsX77cZk58fLzljkvz5s2ztCd3N4ibN28arq6uRq1atYw333zTkGQVUE3prhMZPUYAgJwltYDEmDFjDEnGs88+m+zciRMnWv4Q4X5pee9r3u6D3o+2bdvWZu6VK1cM6Z+7Bt65c8fSbv5Qv3z58lbv4c2SkpKMMmXKGJKM33//3dJu/jDF2dnZOH78eLL1GkbyAQnD+L9rDd9++61V+82bN43cuXMbJpMp2Q8tkrNw4UJDkjFw4MA0jb+/rs8//9ym74cffrD0r1y50qb/448/TvaPD8x3sXj99deT3WaTJk1SDVD+8ssvxtWrVy0/N2vWzObDpqSkJCN//vyGJGPXrl3JbmfChAmGJKu7bn733XeG9M+dMe7//ZuZ/0CGgAQA2Afzefb+O0OnxHxO9/LysvkDSsMwjGbNmqV6vdx894b7Qxd//fWX4eDgYJhMJpswn2EYxtmzZy1329qyZYul/d8BifXr1xu5cuUynJ2dk707UkZex/z999+G9M/doADkLA4CgAxq2rSpTZurq6uKFi0qSVbP1l61apUMw1DDhg3l7e2d7HrmZ4du3brV0lanTh0FBgbqyJEjNs+2ND+/7OWXX5aTk5OlfeXKlZKk9u3bJ7sdLy8vVaxYUXfv3tXOnTtt+uvVqydfX99k56amcuXKkqTOnTsrMjJSd+/eTdO8OnXqyM3Nzab9qaeekiQ1bNjQ8rxSMycnJwUGBkqSzp8/b2nfuHGjJKlBgwbKly+fzZrPPvusypUrp3v37mnTpk3J1jN27Fh17txZefLk0ebNm9WwYUObMRk5xufOndOxY8ckSS+++KLNHDc3N7Vr1y7Z9QAASE5yr0UkqVSpUpKsX4vc78qVK5Zns7dq1UobNmzQE088kWXb2rVrl27cuCE/P79k53l4eKhDhw6SZPWM76JFiyooKEgnT57U8ePHJUmbN29WQkKCnn/+edWrV0+StG7dOkmSYRjasGGDTCaTwsLCMl03AODxYn7/16VLl2T7u3fvLumf54Lf/77RLC3vfVN6PxoUFCRJatSokc2cPHnyyM/PT3fu3LF6Frf5fWTr1q2t3sObOTg4qGbNmpKsrwuYVahQwXK9IT1effVVSdLUqVOt2ufPn69r166pXr16KlmyZJrWCgkJkaOjo77++mt9/vnnunDhQprrSO5Ymd/3Ozk5qX79+in23//7u3v3rrZs2SJJCg8PT3Zb5t/9/a8z7nfy5ElVq1ZNmzZtUv/+/RURESEPDw+rMXv37tX58+dVrFgxPfvss8muk9x1HPO/y3bt2snZ2dlmTkr/XgEAjyfzNfE+ffrop59+0u3btx8459lnn5W/v79Nu/m896Dr5fefF3/99Vfdu3dPFSpU0DPPPGMzp0CBAnrhhRckpXxenDt3rho0aKB79+5p5cqV6tq1q82YjLyOeeKJJxQYGKj9+/dr8ODB+uOPP5LdPoCHj4AEgAwrXLhwsu0+Pj6SZPVi6MSJE5Kkr776SiaTKdmvt956S5J0+fJlyzyTyWR5w28OREhSYmKi5s2bJ0k2L1jM23rppZdS3NaqVatstmVmDh6k17hx4xQSEqLVq1erRo0a8vHxUfXq1TV8+HAdOnQoxXkpHUcvL69U+81Bk/uPs/lDDvPFquQUK1bMauz9tmzZonfeeUeurq769ddfVb58+WTXyMgxPnv2rCQpb968ln37t9TqBgDYj/s/aDEMI9Wx5v5/fzgjpe+1yP2GDh2qrVu3qn79+lq0aJHc3d0fWHN6tpWZ8/G/QxDm/z7//POqUaOGXF1dLW179+5VdHS0ypcvrzx58mS6bgDA4+VB55tcuXLJz89P0v+9H7tfWt77ZuX7VfP7yBEjRqT4PnLatGmSsva9+vPPP69SpUpp+/bt2r17t6X9888/lyT1798/zWsVK1ZMkyZNUmJiovr376/8+fMrMDBQHTt21Lx583Tnzp0U5yZ3rMzH8cknn0z2w5bkjmN0dLTl55R+96m975eknj176vDhw+rRo4emTJkiBwfbS8Tm39fx48dT/H2ZPxS7//dl/reWUm25c+fO0B+lAABypjfffFP16tXT9u3b1aBBA/n4+KhSpUoaPHhwsn+cKOWs6+Fnz55VeHi4EhMTtXLlSj3//PPJrpHR1zHffPON/P399cknn6h06dLKkyePGjVqpEmTJunKlSsp1gwge9m+8gaANEruDXRK7t27J0kqX768ypUrl+rYKlWqWP0cHh6u9957TwsXLtTkyZPl7u6uFStW6MqVK6pataqCg4OT3VZKd1G4X5EiRWza0vIhSXICAgK0a9cubdq0SevWrdOWLVu0fft2bdmyRWPHjtW4ceP09ttv28x70HFMz3HOrNKlS8vZ2Vm7du3SgAEDtGTJkmSPR2aPMQDgv83T09PyfXx8fKpjb9y4IUnJhusyeo5s27atli5dqnXr1mnOnDnq1q3bA+c8rPNxvXr1NGvWLK1du1a9evXSunXrlDt3blWsWFEODg6qVq2atmzZops3b1qCEuZQxaOsGwDw+EnLe9+sfL9qfh9ZvXp1ywcVKSldurRNW0bfq5tMJg0YMEB9+/bV1KlTNXv2bP3222/au3evAgMD1aRJk3StN2DAALVr107Lly9XZGSkIiMjtWDBAi1YsEAjR47U5s2b9eSTT9rMS+1YPezz9YsvvqhvvvlG8+bNU6tWrZK9c6T59xUQEGD5y9uU5M2bN1vqBADkfB4eHlq7dq127typNWvWaOvWrdq6dat27dqlTz75RH379rWEEs1y0vVwf39/lS9fXqtXr9agQYP0008/JfsHCBl9HVOjRg2dOnVKK1eu1KZNm7R161b99NNPWr16tUaOHKmIiIgU7wgJIPsQkADwUBQqVEiSFBoaanNbywcpUqSI6tatq/Xr1+uHH35Q586dNWfOHElK9gONQoUK6fDhw+revbvatGmT6drTw2QyqXbt2pbbTN6+fVtz5sxRv379NGzYMLVp0+aBL6Ayo0CBApL+L9GaHHOfeez9cuXKpeXLl6tJkyZavXq1GjZsqB9//NHmQ6mMHGPz9q5cuaIbN24k+0HXqVOn0rQWAODx5ufnJy8vL924cUPHjh1TmTJlkh139epVXb16VVLKf0GSEfXr11fv3r3VpEkT9ejRQzdu3NDAgQOzbH3zOe/kyZMpjknpfBwWFiaTyaRffvlFf//9t6KiotSyZUvLBaJ69erpl19+0a+//pqmgAQAwH4VKFBAhw8fTvH93/Xr1y3n0eTe/z1s5usCzZs31xtvvPFQt/3yyy9r2LBhWrBggSZOnGi5LtGnT58MfQiTL18+vfLKK3rllVckSYcPH1a3bt3022+/aciQIZo7d26W1n+/PHnyyNXVVQkJCTpx4kSytxNP7X2/9M9jLho2bKgXX3xRLVq00Pz589W6dWurMebfV548eSzXYNLCvM2U3t/HxMTo+vXraV4PAPB4qFSpkipVqiTpn8dBLV26VC+//LKmTZumNm3aqE6dOtmy3cxeD3dxcdGyZcvUqVMnLV68WLVq1dK6desUEBBgNS4zr2Pc3d3Vpk0by3X0y5cva/jw4Zo5c6a6deumv/76K13rAcg8/pwIwENh/muE5cuXZ+hWzuYgxJw5c3Tp0iWtXr1a7u7uat++fYrbWrhwYSYqzhpubm7q3bu3nnnmGd27d0/79+/P1u2Zgxlr1qzRpUuXbPr37t2rqKgoq2ei/ZuPj4/WrFmj+vXra9OmTapXr56uXbtmNSYjx7hgwYKW58XOnz/fpj8hIUGLFi1K83oAgMeXg4ODatWqJUlasmRJiuMWL14s6Z9bMaf02KeMqlmzptavX6/cuXPr1Vdf1dixY7Ns7YoVK8rLy0tXr17V8uXLbfpv3bqlBQsWSJLNRaI8efKofPnyunr1qj766CMZhmF1i09zGOLHH39UZGSkXF1dVaNGjSyrHQDw+DC//0vpw/ivv/5a0j/P684JAQnz+8hFixY98BFbWc3T01Pdu3fX7du3NXbsWC1evFhubm7q3r17lqwfHBxsuWNkVFRUlqyZEicnJ1WvXl2SUgwumH/3qX0Y1a5dO0VERMjBwUHt27fXN998Y9VfqVIl5c2bV3/88YcOHjyY5vrMr/EWLlyoxMREm/5/bwcAYH+cnJzUpk0byx2IsvPcWLNmTTk4OCgqKkr79u2z6b9w4YLWrFkjKeXzorOzsxYsWKDw8HAdPHhQNWrUsAktZOXrmCeeeEITJkyQJJ0+fdrm2juA7EdAAsBDUaFCBbVu3VpnzpxRq1atkv1Lgvj4eM2bNy/ZD/ZbtWqlXLlyacOGDfrggw909+5dtW7d2vL87Pv17NlTRYoU0aJFi/T2228rLi7OZszFixc1a9asLNk3s4kTJ+r06dM27YcPH9aff/4pKfsfN1G9enVVqVJFt27dUq9evXTz5k1L35UrV9SrVy9JUocOHSyp1+R4eHhoxYoVatWqlbZv367atWtb/V4yeowHDRokSRo1apQOHz5saU9KStIbb7yh8+fPZ2i/AQCPn7feeksmk0nz5s3TV199ZdP/22+/adiwYZKkwYMHy9nZOctrqFSpkjZu3KiAgAC98847GjJkSJas6+bmpn79+kn6p/b7L6wkJibq1Vdf1cWLFxUUFJTsnZjMIQjzX7feH5CoWLGicuXKpa+++kq3bt1StWrVMnzLcQDA4+2VV16Rj4+P9uzZo7Fjx1pdrN+7d6/ef/99Sf88GzwnaN68uSpVqqQdO3aoa9euVs/nNrt27ZpmzJihu3fvZvn2+/fvLwcHB33yySe6c+eOOnbsmOwttFOzYcMGrVq1yuaDf8Mw9OOPP0p6OI+ZHDx4sCRp+vTpWr9+vVXfnDlztHz5cjk7O+vVV19NdZ3GjRtr1apVcnd3V3h4uOXZ6dI/HxaNHDlShmGoZcuWioyMtJmflJSkDRs2aNu2bZa2Nm3aqECBAjp9+rSGDh1quSW5JB04cMDy7xIAYB+mTZumI0eO2LRfvHhRu3btkpS958bChQurbdu2MgxDvXr1UnR0tKUvPj5ePXv21O3bt1WtWjVVq1YtxXUcHR319ddfq3///jp27Jhq1Kiho0ePWvoz8jrmr7/+0pdffqnY2FibsStWrJD0zx+EJPcZB4DsxSM2ADw0s2fPVkxMjFavXq2SJUuqXLlyCgoKkmEYOnXqlPbt26c7d+7o0KFDypcvn9VcNzc3dejQQTNmzNCUKVMkJf94DemfvwxZuXKlmjRpogkTJmjmzJl65plnVLBgQd28eVNHjx7VoUOH5O/vb7kdZlZ4//339eabbyo4OFilSpWSu7u7zp8/r8jISN29e1cvv/yyQkJCsmx7KZk/f77q1q2rZcuWKSgoSDVr1lRiYqJ++eUXxcbGKiQkJE2POXFxcdHChQvVtWtXffvtt6pZs6bWrVunQoUKZfgY9+vXT2vXrtWKFStUrlw51alTR7lz59b27dt14cIF9enTR9OnT8/OwwMAyCFq1qypTz/9VK+//rp69OihsWPHKiQkRE5OTjp27Jh2794twzDUoUOHLAsuJKds2bLavHmzwsLC9OGHHyouLk5Tp06VyWTK1Lrvvfeedu3apfXr16tUqVKqU6eOvL299dtvv+n06dPKkyePFi1aJBcXF5u59erV00cffaTbt28rKCjI6vFcDg4OqlOnjiIiIixjAQD/Tfny5dO8efPUtm1bvfPOO/r2229VoUIF/f3339q0aZPu3r2rrl27Zun73sxwcHDQ0qVL1bhxY82dO1eLFy9WuXLlVLhwYd25c0cnTpzQ77//rqSkJIWHh8vJKWsvWwYGBqpZs2ZaunSppH8CE+m1f/9+vfbaa/Lx8VFISIjy58+vW7duac+ePfrrr7/k6+ur0aNHZ2ndyWnYsKGGDx+u999/X88//7xCQ0NVuHBhHT58WHv27JGjo6NmzJhh9Qz0lNSpU0fr1q1Tw4YN1a9fP8XFxVnuhtG/f3+dPn1aH330kWrUqKHSpUurePHicnd318WLFxUVFaWYmBhNnz5dVatWlfTPbcTnzZunRo0a6eOPP9bSpUtVqVIlRUdHa+PGjWratKl2797N7cQBwE7MnDlT/fr1U1BQkMqUKSMfHx9dvnxZmzdv1q1bt1S3bl01a9YsW2v4/PPPdfjwYW3fvl3FihVTnTp15OTkpE2bNuny5csKCgrSvHnzHriOyWTSlClT5O3trXHjxqlmzZpau3atypYtm6HXMdeuXdMrr7yivn37qnz58goKCpIk/fnnn9q7d69MJpM++ugjOTo6ZuvxAWCLO0gAeGi8vb31888/a/78+apXr55Onz6tiIgIbdiwQbdu3VLnzp0VERFh9SHA/e4PRAQGBlpuJ5qc0qVLa//+/ZowYYJKlSql/fv3a9GiRdq+fbs8PT31xhtvWD5YyCqff/65unbtannxtWTJEp08eVLPP/+8IiIi0vXMzswoWrSo9uzZo6FDhypPnjz68ccftXbtWhUrVkzjx49XZGSkcufOnaa1HB0dNXfuXPXp00dHjx5VjRo1dOzYMUkZO8YODg764Ycf9PHHH6t48eLauHGj1q5dq2eeeUbbtm1T5cqVs/x4AAByroEDB2rXrl3q3r27HB0dtWrVKv3www+6cOGCmjdvrmXLlul///tftl8sKF68uCIjI1WiRAlNmzZN4eHhSkpKytSarq6uWrNmjaZNm6Zy5cpp8+bNioiIkLOzswYMGKB9+/bp2WefTXZujRo15OrqKin5AMT9bQQkAOC/rUmTJtqzZ4+6dOmiGzduaPHixdq9e7dq1KihBQsWWB61kFPkz59f27Zt04wZM1S5cmUdOXJEixcvttydoHfv3vrpp5/k5uaWLds33+r7ueeey9AfMDRt2lSjRo1SpUqVdOLECf3www/auHGjfH19NWTIEB04cCDLHwuWkjFjxmj16tVq2LChDh06pIULF+r8+fNq27attm7dmuIflSSnSpUq2rhxo/z9/TVkyBANHz7c0jdhwgRt2bJFnTt31o0bN7RmzRqtXLlS58+fV+3atfXll1/aPP60Vq1a2r59u1q1aqVr164pIiJCZ8+e1ejRo/X9999n2TEAADx6H3zwgfr06aNcuXJp27ZtWrRokf744w9VqVJFc+fO1Zo1a7I89PhvefLk0datWzVu3DgFBQXp559/1o8//qi8efNq2LBh2r17twIDA9O83tixYzVu3DhdunRJtWrV0o4dOySl/3VMsWLF9Omnn6pJkyaKiYnRqlWrtHLlSsXHx+vll1/Wzp07s+xxXwDSx2Q87If+AQAAAAAAAMBDVr16dW3ZskXz589Xx44dH3U5AAAAAB4BAhIAAAAAAAAA7Nrq1avVqFEjFS5cWMeOHZOzs/OjLgkAAADAI5C997UBAAAAAAAAgEcgOjpab7/9tq5du6ZVq1ZJ+ueREYQjAAAAgP8u7iABAAAAAAAAwO6cOnVKQUFBcnJyUtGiRTV48GD17NnzUZcFAAAA4BEiIAEAAAAAAAAAAAAAAOyew6MuAAAAAAAAAAAAAAAAILsRkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAeqVOnTslkMikwMDBb5wAAAAAAgP82AhIAAAAAAAA5lMlkkslkyvJ1w8PDZTKZNGfOnCxfGwAAAACAnMrpURcAAAAAAACQXgUKFNChQ4fk7Oz8qEsBAAAAAACPCQISAAAAAADgsePs7Kzg4OBHXQYAAAAAAHiM8IgNAAAAAADsyJ9//qlu3bopKChIrq6u8vLyUpEiRdS4cWPNnj3bMm7OnDkymUwKDw/X9evX9frrryswMFBubm566qmn9OGHH+revXuSpHPnzqlXr14qVKiQXF1dVbJkSU2ZMiXFGm7evKnx48crJCRE3t7e8vDwUOnSpTV8+HBdu3YtXftz8+ZNNW/eXCaTSXXq1FFMTIwk6dSpUzKZTAoMDLSZc/9jKZYsWaLq1avLx8dHnp6eCg0N1apVq1Lc3l9//aXw8HAFBARYjsXIkSN1+/Zt1a5dWyaTSRs3bkzXPtzv+vXrGj58uMqWLStPT0+5uroqf/78Cg0N1bvvvqvExERJ0qhRo6werWHeJ/PXqVOnJEmJiYn67rvv1LlzZwUHB8vHx0fu7u4qWbKkBg4cqPPnz1tt33zc5s6dK0nq2rWr1bqjRo2yGpfc8TULDAy0qsXswoULevXVV1WiRAm5ubnJw8NDhQoVUlhYmCZOnJjhYwcAAAAAQGZxBwkAAAAAAOzEgQMHFBoaqtjYWJUsWVJNmjSRo6Ojzp49q19//VXnzp1T165drebExMToueeeU3R0tGrUqKG4uDht3rxZQ4YM0dmzZzVo0CBVr15dzs7Oqlatmi5fvqxff/1VAwcO1M2bN/X2229brXf16lWFhYUpKipKPj4+qlu3rpydnbVp0yZ98MEHmj9/vjZs2JDqB+9mly5dUpMmTbRr1y69+OKL+uqrr+Ti4pLm4zFy5EiNGTNG1apVU6NGjXT48GFt3bpVTZo00ZIlS9SyZUur8X/88Ydq1aqlK1euKH/+/GrevLni4+P18ccfa8OGDZbASEbdvHlT1atX14EDB/TEE08oLCxMnp6eunjxoqW2119/Xbly5VL58uXVpUsXS5ChS5cuVmt5eXlZjtFLL70kX19flSpVSs8884zi4+MVFRWlKVOmaMGCBdq6dauKFy9umdelSxdFRkbq+PHjCg0NtfRJUvny5TO1jxcvXlTFihV1/vx5FS5cWA0aNJCbm5vOnz+vqKgo7d69W2+88UamtgEAAAAAQEYRkAAAAAAAwE588sknio2N1fvvv6933nnHqu/WrVvauXOnzZxly5apadOm2rVrlzw8PCRJe/bsUZUqVTRt2jRt2LBBLVq00JQpU+Tk5GSZ06JFC40dO1YDBgywzJOkvn37KioqSlWqVNHKlSuVJ08eSdKNGzfUrl07rV69Wp07d9aWLVtS3Zc//vhDjRo10l9//aXhw4drzJgx6T4en332mX777TdVqVLF0jZq1Ci99957GjJkiE1A4qWXXtKVK1fUoUMHzZkzR66urpL+uYNGWFiYjhw5ku4a7rd48WIdOHBADRs21LJly+Ts7Gzpu3fvnjZv3mw5li1atFCLFi0sAYk5c+Yku6avr6+WLVumBg0aWIVHEhMTNXLkSI0bN06vvvqqVq5cKUnKmzev5syZo/DwcB0/flw9evRQeHh4pvbrfjNnztT58+fVs2dPzZgxw+ouGImJifr111+zbFsAAAAAAKQXj9gAAAAAAMBOXLp0SZLUqFEjmz53d3fVrFnTpt3Ly0tffvmlVcghJCREjRo10r1793Tjxg1NmjTJEo6QpObNm6ts2bKKjY3Vrl27LO2nT5/WokWLZDKZNHPmTEs4wrydWbNmyc3NTVu3btXWrVtT3I8NGzYoNDRU58+f19dff52hcIQkjR492iocIUlDhw6Vr6+vjh49qjNnzljaN2/erD179sjLy0uff/65JRwhSQUKFNDHH3+coRruZ/79PP/881bhCElycHBQrVq10nWHDEny9vZWs2bNbOY5Oztr7Nixyp8/v9asWaO4uLjMFZ9G5n1s0KCBVTjCXFNYWNhDqQMAAAAAgOQQkAAAAAAAwE5UrlxZktSnTx/99NNPun379gPnPPvss/L397dpf+qppyRJderUkZubW4r958+ft7T9+uuvunfvnipUqKBnnnnGZk6BAgX0wgsvSJJ++eWXZOuZO3euGjRooHv37mnlypU2jwRJj6ZNm9q0ubq6qmjRopL+uTOE2aZNmyT988G+n5+fzbzGjRsrV65cGa5FkipVqiRJmjBhgr755htdvXo1U+vdb9++ffrkk080YMAAdevWTeHh4QoPD9fdu3d17949HTt2LMu2lRrzv8EhQ4bohx9+0I0bNx7KdgEAAAAASAsesQEAAAAAgJ148803FRkZqXXr1qlBgwZydnZWuXLlVLNmTXXo0MHyAf39ChcunOxaXl5eqfZ7e3tLklUIwxw4CAoKSrHGYsWKWY2939mzZy2Pe9iwYYOqV6+e4jppkVLtPj4+kqxrP3v2rCQpMDAwxfWKFCmimJiYDNdTu3Ztvf322/roo4/UpUsXmUwmPfXUUwoNDVXz5s3VtGlTOTik729Z4uPj9dJLLykiIiLVcbGxsRmuOz1eeuklrV27VvPmzVPr1q3l6Oiop59+WtWrV1ebNm1Ut27dh1IHAAAAAADJ4Q4SAAAAAADYCQ8PD61du1Y7duzQ6NGjFRYWpqNHj+qTTz5R5cqV1a9fP5s5D/pAPr0f2GeGv7+/GjZsKEkaNGiQoqOjM7VeRmr/92Mh0tqXVuPHj9fx48f12WefqW3btoqPj9fs2bPVokULVa1aVfHx8elab+jQoYqIiFBwcLCWLl2qc+fOKSEhQYZhyDAMPffcc5IkwzAyXfu/3bt3z6bNwcFB3333nQ4ePKgJEyaoSZMmunDhgqZPn66wsDA1a9ZMSUlJWV4LAAAAAABpQUACAAAAAAA7U6lSJY0YMUKrV69WdHS0Fi1aJHd3d02bNi3FR1tkhQIFCkiSTpw4keIYc5957P1cXFy0bNkytWnTRrt371atWrV08eLF7Cn2X8z1nDp1KsUxf/31V5ZsKzAwUAMGDND333+vs2fPaseOHSpRooR27typCRMmpGuthQsXSpK+//57NW/eXPnz55eLi4ul/88//8xQjeY14uLiku1PTEzUhQsXUpz/9NNP680339TSpUv1999/a926dfL399eKFSv0zTffZKgmAAAAAAAyi4AEAAAAAAB2zMnJSW3atNELL7wgSYqKisq2bdWsWVMODg6KiorSvn37bPovXLigNWvWSJLq1KmT7BrOzs5asGCBwsPDdfDgQdWoUSPLggmpqVmzpiRpzZo1unbtmk3/6tWrk23PCpUqVVLfvn0l2f5+nJ2dJUl3795Ndu7Vq1cl/fP4j3/76aefdOXKlWTnmQMQKa37xBNPyMXFRVevXtXff/+d7Nopzf03k8mksLAwderUSVL2/hsEAAAAACA1BCQAAAAAALAT06ZN05EjR2zaL168qF27dklK/oP0rFK4cGG1bdtWhmGoV69eVo/IiI+PV8+ePXX79m1Vq1ZN1apVS3EdR0dHff311+rfv7+OHTumGjVq6OjRo9lWt/RPQKJcuXKKi4vTgAEDdOfOHUvf+fPnNXjw4ExvIyIiQr/++qvNoykSExMtwZF//34KFiwoSTp48GCya5YqVUqSNGXKFKv2I0eOqHfv3inW8qB1nZ2dLaGR4cOHW9W8b98+9e/fP9l533zzjXbv3m3THhcXp40bN0rK3n+DAAAAAACkxulRFwAAAAAAALLGzJkz1a9fPwUFBalMmTLy8fHR5cuXtXnzZt26dUt169ZVs2bNsrWGzz//XIcPH9b27dtVrFgx1alTR05OTtq0aZMuX76soKAgzZs374HrmEwmTZkyRd7e3ho3bpxq1qyptWvXqmzZstlSt8lk0nfffadatWpp3rx52rhxo0JDQ3Xz5k398ssvKl++vJ577jn99ttvVo+wSI9NmzZp8uTJyps3rypUqCB/f3/FxcVp27Zt+n/t3V9oznscB/C35Wq1NW1XY2URYo275UIKudSTuSJtNy5ciFJLStvClnKDSz3h1hMtEVHyTGZkTynmEiux58Kf/CkpztVZnePUWc5xdjy9Xpe/vr9P7379bn71/n5/1Wo1CxcuTF9f3x/u6e7uzvHjx7Np06Zs2LAhDQ0NSZJjx46lubk5/f392bZtWw4dOpTz589n1apVqVaruX37dtatW5fW1taMjY19l6VQKGRwcDAnT57Mo0eP0tbWlrq6umzZsmXmHTly5EhGR0dz+vTplMvldHZ25sWLF3nw4EG2b9+eW7dufXe6x8WLF9PT05PW1tasWbMmCxYsyJs3b3Lnzp28e/cuHR0d2bVr1w89PwAAAPinnCABAAAANeLo0aPZvXt3mpqaMj4+nlKplMnJyXR1deXcuXO5du1a5s//uXslmpubMzY2luHh4bS3t+f69eu5fPlyWlpacvDgwUxMTGTx4sWznjc0NJTh4eFMT09n/fr1uX///k/L3tHRkYmJiezcuTNfvnzJyMhInjx5kr179+bGjRuZnp5OkrS0tPzQ/N7e3hw4cCArVqzI5ORkSqVS7t69m7a2tgwNDeXhw4czJzv87vDhw+nr60tTU1NGRkZSLBZTLBbz/v37JMnWrVtTLpezcePGvHz5MpcuXUq1Ws3AwECuXr0684uOP+vs7MyFCxeydu3a3Lt3L2fPnk2xWEylUplZ09XVlXK5nM2bN+fVq1e5cuVKPn36lBMnTuTMmTN/OXf//v3Zt29fFi1alEqlklKplEqlkpUrV+bUqVMZHx+fKXkAAADAf23et2/fvs11CAAAAID/s6dPn2bp0qVpaGjI69evU1dnzwkAAAD8anzNAwAAACT5+PFjHj9+/N3158+fZ8eOHfn69Wt6enqUIwAAAOAX5QQJAAAAgCTPnj1Le3t7lixZkmXLlqWxsTFTU1OpVCr5/PlzVq9endHR0TQ2Ns51VAAAAOAHKEgAAAAAJPnw4UMGBwdz8+bNTE1N5e3bt6mvr8/y5cvT3d2dPXv2pL6+fmZ9b2/vrGcXCoUUCoV/PzQAAAAwawoSAAAAAD9g3rx5s17b39+fgYGBnxcGAAAA+Fvz5zoAAAAAwK/InhMAAAD4tdTNdQAAAAAAAAAAgJ9NQQIAAAAAAAAAqHkKEgAAAAAAAABAzVOQAAAAAAAAAABqnoIEAAAAAAAAAFDzFCQAAAAAAAAAgJqnIAEAAAAAAAAA1DwFCQAAAAAAAACg5ilIAAAAAAAAAAA17zdkPo5V+06oLQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 2600x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "\n",
+    "def draw(tempDf, x, hue):\n",
+    "    # Tính toán phần trăm và đếm số lượng\n",
+    "    data = tempDf[x].groupby(tempDf[hue]).value_counts(normalize=True).rename('percent').reset_index()\n",
+    "    \n",
+    "    # Vẽ biểu đồ cột\n",
+    "    ax = sns.barplot(data=data, x=x, y='percent', hue=hue, palette='pastel')\n",
+    "    \n",
+    "    # Thêm số trên đầu cột\n",
+    "    for p in ax.patches:\n",
+    "        if p.get_height() > 0:\n",
+    "            ax.annotate(format(p.get_height(), '.2%'), (p.get_x() + p.get_width() / 2., p.get_height()),\n",
+    "                        ha='center', va='center', xytext=(0, 7), textcoords='offset points', fontsize=16)\n",
+    "            \n",
+    "    ax.tick_params(axis='both', labelsize=16)\n",
+    "    \n",
+    "    # Đặt tên cho hue\n",
+    "    legend_labels = [str(label) for label in data[hue].unique()]\n",
+    "    ax.legend(title=hue, prop={'size': 16}, title_fontsize=16)\n",
+    "    \n",
+    "    ax.set_xlabel(x, fontsize=16)\n",
+    "    ax.set_ylabel('percent', fontsize=16)\n",
+    "    plt.show()\n",
+    "\n",
+    "plt.figure(figsize=(26, 8))\n",
+    "draw(df, 'smoking_status', 'heart_disease')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ: </strong><br>\n",
+    "<ul>\n",
+    "<li>Hút thuốc trong nhóm không bị bệnh tim chiếm 15.19% và 22.18% ở nhóm bị bệnh tim. Con số chênh lệch đáng kể khi ở nhóm bị bệnh tim gấp 1.46 lần nhóm không bị bệnh tim. Chứng tỏ hút thuốc có nguy cơ bệnh tim cao.</li> \n",
+    "<li>Đã từng hút thuốc: chiếm 16.79% trong nhóm không bị bệnh tim và 28% trong nhóm bị bệnh tim. Có thể thấy đã từng hút thuốc trong nhóm bị bệnh tim cao gấp 1.67 nhóm không bị bệnh tim. Việc đã từng hút thuốc cũng có nguy cơ gây bệnh tim</li> \n",
+    "<li>Không hút thuốc: chiếm 37.17% trong nhóm không bị bệnh tim và 32.36% trong nhóm bị bệnh tim. Không hút thuốc làm giảm khả năng bị bệnh tim một chút.</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 137,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[  47.8668942   819.1331058 ]\n",
+      " [ 101.47560731 1736.52439269]\n",
+      " [  42.84280265  733.15719735]\n",
+      " [  82.81469584 1417.18530416]]\n",
+      "Chi-Square value: 44.0267323134354\n",
+      "Degree of Freedom:  3\n",
+      "p-value: 0.000000001489578\n",
+      "Có mối tương quan giữa việc hút thuốc và bệnh tim.\n"
+     ]
+    }
+   ],
+   "source": [
+    "heart_formerlysmoked_count = df[(df['smoking_status'] == 'formerly smoked') & (df['heart_disease'] == 1)].shape[0]\n",
+    "noheart_formerlysmoked_count = df[(df['smoking_status'] == 'formerly smoked') & (df['heart_disease'] == 0)].shape[0]\n",
+    "heart_neversmoked_count = df[(df['smoking_status'] == 'never smoked') & (df['heart_disease'] == 1)].shape[0]\n",
+    "noheart_neversmoked_count = df[(df['smoking_status'] == 'never smoked') & (df['heart_disease'] == 0)].shape[0]\n",
+    "heart_smokes_count = df[(df['smoking_status'] == 'smokes') & (df['heart_disease'] == 1)].shape[0]\n",
+    "noheart_smokes_count = df[(df['smoking_status'] == 'smokes') & (df['heart_disease'] == 0)].shape[0]\n",
+    "heart_unknown_count = df[(df['smoking_status'] == 'Unknown') & (df['heart_disease'] == 1)].shape[0]\n",
+    "noheart_unknown_count = df[(df['smoking_status'] == 'Unknown') & (df['heart_disease'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa việc hút thuốc và bệnh tim.\"\n",
+    "H1 = \"Có mối tương quan giữa việc hút thuốc và bệnh tim.\"\n",
+    "\n",
+    "\n",
+    "formerly_smoked_arr = [heart_formerlysmoked_count, noheart_formerlysmoked_count]\n",
+    "never_smoked_arr = [heart_neversmoked_count, noheart_neversmoked_count]\n",
+    "smokes_arr = [heart_smokes_count, noheart_smokes_count]\n",
+    "unknown_arr = [heart_unknown_count, noheart_unknown_count]\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(formerly_smoked_arr)\n",
+    "nij.append(never_smoked_arr)\n",
+    "nij.append(smokes_arr)\n",
+    "nij.append(unknown_arr)\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(4 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_smoke = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_smoke))\n",
+    "if p_smoke <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định chi – square về mối tương quan giữa tuổi và bệnh tim:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa các nhóm tuổi và bệnh tim mạch.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa các nhóm tuổi và bệnh tim mạch.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/jPg1eXC.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa hút thuốc và bệnh tim</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 44.0267323134354</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  3</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000001489578</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa việc hút thuốc và bệnh tim.</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "\n",
+    "<strong>Kết luận:</strong>  <br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "Việc hút thuốc làm tăng khả năng bị bệnh tim, điều này đúng với nghiên cứu của y khoa.\n",
+    "</li>\n",
+    "<li>\n",
+    "Nhưng với nhóm đã từng hút thuốc lại có tỉ lệ mắc bệnh tim mạch cao hơn so với nhóm hút thuốc. Điều này không phù hợp với nghiên cứu của y khoa. Điều này có khả năng còn phụ thuộc vào thời gian hút thuốc trước đó và thời gian bỏ hút thuốc, nhưng các dữ liệu này không được thể hiện trong bộ dữ liệu nên không thể đưa ra kết luận chính xác.\n",
+    "</li>\n",
+    "</ul>\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\">3.3. Mối tương quan giữa cao huyết áp và một số đặc trưng khác:</h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.3.1. Cao huyết áp và tuổi </h1>\n",
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li><strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ:</strong> cao huyết áp có tỉ lệ mắc tăng đáng kể khi tuổi ngày càng tăng. Điều này là do khi con người về già, thành động mạch bị lão hóa, giảm tính đàn hồi và trở nên cứng hơn, tăng tích lũy mỡ dẫn đến xơ mỡ động mạch, làm tăng khả năng bị cao huyết áp.</li>\n",
+    "<li><strong>Kiểm định tính xác thực: </strong>Chia bộ dữ liệu thành 2 nhóm bị cao huyết áp và không bị cao huyết áp, theo dõi sự phân bố của độ tuổi giữa hai nhóm này.\n",
+    "</li>\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 138,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAwwUlEQVR4nO3deVRV9f7/8dcRZBIhURQQVMoxyJxNbs7mjOZsiqlpZk551fLbTdMcK4ey6JqaYTe0bg7llJrer6blXNrSr/qFSk1AUTQFYhLYvz/6cn6dQKUUzjnt52Mt1vJ89mfv/d68F57zYg9YDMMwBAAAAACAyZSxdwEAAAAAANgDgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQClbtWqVbJYLNqzZ4+9S/lLGzZsmCwWi73LAADAYRGIAQC4SzNnztRnn31m7zJMIzs7W9OnT1doaKg8PDxUs2ZNzZ8/X7m5ufYuDQDgZAjEAADcpVdeecUhA/GKFSuUmZlp7zLuuQEDBmjOnDlq166doqOj1bp1a/3jH//Q6NGj7V0aAMDJuNq7AAAAnFFubq5u3rwpT09Pe5dyS2XLllXZsmXtXcY99fnnn2vjxo2aNGmSFi1aJEkaOXKk7rvvPi1evFijRo1Ss2bN7FwlAMBZcIYYAGA3+fn5ev311xUaGip3d3eFh4dr06ZN1uUpKSlyd3fXsGHDily/Z8+e8vb2VlpamqT/f89scnKyBg0apAoVKsjb21uRkZH6/vvvC62flZWlWbNmqV69evLw8FDFihXVr18/xcfH28wruOd5586dmjFjhvVS3WXLllnv0f3ggw9ksVhksVhUo0YNm/VXr16tFi1ayNvbW+XKlVOrVq20c+dOmznnzp2TxWLRzJkztWnTJjVq1EgeHh4KCQnRvHnzCtX+1VdfqVOnTqpcubI8PDwUHBysHj166MSJE9Y5t7qH+Msvv1SHDh3k4+MjLy8vNW3aVB999FGheTVq1FCbNm10+vRpde7cWd7e3qpQoYKGDRum1NTUIntS0tasWSNJmjhxos14wevY2NhSrggA4Mw4QwwAsJsXX3xRubm5GjdunAzD0Jtvvqk+ffrof//3f3X//ferUqVK6tmzp9atW6fo6Gh5e3tb101OTtbnn3+uqKgolS9f3ma7nTt3VkBAgGbPnq1z584pOjpaLVu21PHjx1WlShVJUk5Ojjp27KjDhw9r2LBhmjhxoi5fvqx//vOfeuSRR3T06FGFhobabHfKlCkyDEPPPvusvLy81LBhQ3344YcaMmSIWrZsqVGjRkmSTZ3/9V//pddee02RkZGaN2+e8vLytGbNGnXu3Fnr1q1Tr169bPbx+eefa9myZRo9erRGjBihNWvW6KWXXlJISIiGDBkiSTpz5ow6duyoWrVq6YUXXlCFChV08eJF7d69W2fOnNFDDz10y+/55s2b1atXLwUFBen5559XuXLlFBsbq0GDBikhIUHPP/+8zfzExES1a9dOffv21eOPP66vvvpKH3zwgVxcXLRy5co79vjGjRu6efPmHedJUvny5eXu7n7bOUeOHFHVqlUVEhJiMx4SEqKgoCAdOXKkWPsCAECSZAAAUMpiYmIMSUajRo2MnJwc6/jRo0cNScbUqVOtYzt27DAkGe+9957NNhYsWGBIMvbu3WsdGzp0qCHJ6Nu3r5Gfn28d37RpkyHJGDNmjHVs4cKFRpkyZYz//u//ttnuTz/9ZPj4+BhPPvlkoXrr1q1rZGRkFDoeScbQoUMLjR85csSQZMycOdNm/ObNm0bTpk2N6tWrW+s8e/asIckoV66ccf78eevcjIwMw9/f32jevLl1bMmSJYYkIzk5udA+f6vg+1EgNzfXqFatmlGhQgXj4sWL1vHMzEyjYcOGhpubm5GUlGQdr169uiHJWL9+vc12u3fvbri6uhqpqam33b9hGEbr1q0NScX6iomJueP2vL29jWbNmhW5rGnTpkZISMgdtwEAQAHOEAMA7ObZZ5+1uce1cePGKl++vM3lzR06dFD16tUVExOjESNGWMdjYmJUu3ZttWzZstB2p0yZYnOpcGRkpOrWravPPvtM77zzjqRfL70NCwvTQw89pJSUFOtcT09PNW/evNAlzQX1/pF7hj/66CNZLBZFRUXZ7EOSunXrppkzZyo+Pl61a9e2jj/++OOqVq2aTT2PPPKI9u/fbx3z9fWVJK1fv15PP/20XF2L93b+zTff6KefftLzzz+vgIAA67iHh4cmT56sqKgobd26VSNHjrQuq1q1qnr37m2znbZt22rLli06f/68wsPDb7vPRYsW6eeffy5WfWFhYXeck5GRccuzyB4eHsrIyCjWvgAAkLhkGgBgR7+/JFmS/Pz8dPXqVevrMmXKaMSIEXr55ZcVHx+vWrVq6fDhwzp16pTmz59f5Hbr1q1b5Nhnn32m7Oxsubu76/Tp08rMzJS/v3+R2yhTpvBjNmrWrFncQ5MknT59WoZh3Ha95ORkm0BcnO/JwIEDFRsbqzFjxmjq1Kn629/+ps6dO2vgwIHWS8KLcvbsWUlFB8+CsR9//NFm/Fb1SLKp6VYaN258xzl/hJeXl7Kzs4tclpWVJS8vr3u6PwDAXxuBGABgNy4uLkWOG4Zh83r48OF65ZVX9P7772v+/Pl6//335eLioqFDh/7pfefn56tBgwZasGBBsdf5o2ErPz9fLi4u2rZtW5EPt5JU6Azrrb4nv+Xu7q6dO3fq0KFD2r59u/bu3aspU6bo5Zdf1saNG9WmTZs/VOft3K6e3/epKNeuXVNOTk6x9uXr63vHM/BBQUFKTEwsclliYqLN2XUAAO6EQAwAcHjBwcHq1KmT/vWvf+mll17Sxx9/rK5duyowMLDI+WfOnFHz5s0LjQUFBVkvt61Vq5ZSUlLUvn37W4bVu1WrVi3t2LFDoaGhf/jscnE0b97cepzx8fFq2LChZs6cqT179hQ5//7775cknTp1qtCygrGCOfdK79699eWXXxZrbkxMzC2fKF6gadOmWr16tS5cuGDzYK0LFy4oKSmp0OXdAADcDn92CQDgFEaOHKmkpCSNHj1aN27c0FNPPXXLuQsXLrQ5e7l582adOXNGPXv2tI4NGTJECQkJ1nuKf+/y5cvFrs3b27vI+2SjoqIkSS+99JLy8/Pvah+/9fv7kaVfg6yvr+9tL2Nu1KiRqlWrpvfff19XrlyxjmdnZ2vx4sVyc3NTt27d/lRNt7Jo0SLt3LmzWF+dOnW64/aeeOIJSdKbb75pM17wevDgwfe0fgDAXxtniAEATiEyMlIBAQFavXq1qlSpou7du99y7vfff6+uXbuqe/fu1j+7VLlyZU2fPt06Z+LEifriiy80fvx47dy5U61bt5anp6fOnz+vbdu2qWHDhlq1alWxamvevLl27dqlBQsWKCQkROXKlVNkZKSaN2+uadOmac6cOYqPj1efPn1UpUoVJSYmav/+/fr+++/1ww8//OHvxZw5c/TFF18oMjJSoaGhys3N1YYNG5SUlKTnnnvuluu5uLgoOjpavXr1UtOmTfX000/Ly8tLsbGx+vbbb/X666/f8qz7n3Wv7yHu1q2bunfvrsWLF+vGjRtq0aKFDhw4oJUrV2rYsGF65JFH7un+AAB/bQRiAIBTcHV11dChQ/Xaa69pyJAht32y8vbt2zVx4kRNmzZNOTk5ateund544w2bsOfm5qZt27bp7bffVmxsrKZNmyYXFxcFBQWpZcuWevrpp4td2zvvvKMxY8Zo1qxZSk9PV/Xq1RUZGSlJmj17tpo0aaK33npLCxYsUFZWlgICAtSgQQPNmzfvT30vevbsqaSkJH388ce6fPmyvLy8VKdOHX344YfWs9K3EhkZqV27dmn27Nl69dVXlZubq/DwcK1evVqDBg36U/WUtrVr12r27NmKjY3Vhx9+qODgYM2ZM0cvvPCCvUsDADgZi1GcJ2IAAOAAZsyYoVmzZun06dNFPkl62LBh+uCDD4r1sCcAAADuIQYAOIWcnBy99957evTRR4sMwwAAAH8Ul0wDABza2bNntX//fq1fv15JSUl677337F0SAAD4iyAQAwAc2pdffqnhw4ercuXKmj9/vrp06WLvkgAAwF8E9xADAAAAAEyJe4gBAAAAAKZUapdMu7u7y9/fv7R2BwAAAAAwuStXrig7O/uWy0stEPv7+yshIaG0dgcAAAAAMLng4ODbLueSaQAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAc1d+5cWSwWhYeHW8cyMjL0zjvvqGPHjgoMDFT58uXVsGFDLV26VHl5ecXe9qZNm9SoUSN5eHioWrVqmjFjhnJzc0viMAAAcFgEYgAAHFBCQoLmzZuncuXK2Yz/+OOPGj9+vAzD0KRJk7Rw4UKFhoZqzJgxeuqpp4q17W3btunxxx/Xfffdp7fffluPP/645syZo/Hjx5fEoQAA4LAshmEYpbGj4OBgJSQklMauAABwegMHDtSVK1eUl5enlJQUnTx5UpKUkpKi5ORkhYWF2cx/6qmnFBMTo/j4eNWsWfO22w4LC1PZsmV19OhRubq6SpKmTZumefPm6dSpU6pbt27JHBQAAKXsTjmUM8QAADiYvXv3at26dXrzzTcLLatUqVKhMCxJvXr1kiSdPn36tts+deqUTp06pVGjRlnDsCSNGTNGhmFo3bp1d1c8AABOhEAMAIADycvL0/jx4zVy5Eg99NBDxV7v0qVLkn4NzLdz7NgxSVKTJk1sxoOCghQcHGxdDgCAGbjeeQoAACgt7777rs6fP69du3YVe52cnBy9+eabCg0NVdOmTW879+LFi5KkwMDAQssCAwOVlJT0xwoGAMCJEYgBAHAQV69e1csvv6zp06fL39+/2OuNGzdOp06d0tatW20ugy5KZmamJMnd3b3QMg8PD6Wmpv6xogEAcGJcMg0AgIOYNm2a/Pz8/tDTnhcsWKAVK1Zo9uzZ6tq16x3ne3p6SpKys7MLLcvKyrIuBwDADAjEAAA4gPj4eC1fvlwTJkxQUlKSzp07p3PnzikrK0s3b97UuXPndO3aNZt1Vq1apalTp2r06NGaNm1asfZTcKl0waXTv3Xx4kUFBQXd/cEAAOAkCMQAADiAxMRE5efna8KECQoNDbV+HTp0SHFxcQoNDdWsWbOs8zdu3KiRI0eqd+/eeuedd4q9nwYNGkiSjh49ajOelJSkhIQE63IAAMyAe4gBAHAA4eHh+vTTTwuNT5s2TWlpaVqyZIkeeOABSb/+WaaBAweqVatWWr16tcqUKfr32zdv3tQPP/wgX19f65nhsLAw1a1bV8uXL9czzzwjFxcXSdLSpUtlsVjUt2/fEjpCAAAcj8UwDKM0dnSnP4gMAAAKa9OmjVJSUnTy5ElJ0vnz5/Xwww8rJydHCxculI+Pj838+vXrq379+pKkc+fOKTQ0VEOHDtWqVausc7Zs2aIePXqobdu2GjhwoE6ePKno6GiNGDFCy5cvL7VjAwCgpN0ph3KGGAAAJ3L27FnduHFDkjR27NhCy2fMmGENxLfSvXt3bdiwQa+88orGjx8vf39//eMf/9DLL79cIjUDAOCoOEMMAAAAAPhLulMO5aFaAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJv0MMwCFkZWUpJyfH3mUAAJyIm5ubPDw87F0GACdGIAZgd1lZWapQoYKysrLsXQrg1NxcpBcfddf8r7KVk2fvaoCS5+HhoZ9//plQDOBPIxADsLucnBxlZWXpwoUL8vHxsXc5gPPKTpPPOw9q0tofJPfy9q4GKFGpqakKCQlRTk4OgRjAn0YgBuAwfHx8CMTA3fi/iyx8ypeXPPhZAgDgTnioFgAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEzJ4QKxYRhKTU2VYRj2LgUAAAAA4EDudV50uECclpYmX19fpaWl2bsUAAAAAIADudd50eECMQAAAAAApYFADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATKnYgTg9PV0zZsxQ586d5efnJ4vFolWrVpVgaQAAAAAAlJxiB+KUlBTNmjVLp0+f1sMPP1ySNQEAAAAAUOJcizsxMDBQFy9eVEBAgI4ePaqmTZuWZF0AAAAAAJSoYp8hdnd3V0BAQEnWAgAAAABAqSn2GeLSYhiGJCk1NdXOlQAoLQU/7wU//wAA3AmfGQFzutefG0ssEC9evFiLFy+2vk5PTy/WemlpaZKkkJCQEqkLgONKS0uTr6+vvcsAADgBPjMC5navPjeWWCCeNGmSJk2aZH0dHBxcrPXKly8vSbpw4YJ8fHxKpDYAjiU1NVUhISHWn38AAO6Ez4yAOd3rz40Od8m0xWKRJPn4+PCfG2AyBT//AADcCZ8ZAXO7V58bi/1QLQAAAAAA/koIxAAAAAAAUyIQAwAAAABM6Q/dQxwdHa3r168rKSlJkrR582YlJCRIksaPH8/TYQEAAAAATuMPBeKFCxfq/Pnz1tcbNmzQhg0bJElRUVEEYgAAAACA0/hDgfjcuXMlVAYAAAAAAKWLe4gBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSg4XiMuXL68bN26ofPny9i4FAAAAAOBA7nVedL0nW7mHLBaLfHx87F0GAAAAAMDB3Ou86HBniAEAAAAAKA0EYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJiSq70LAADDMCRJqampdq4EcHLZafKRlJqWJuXYuxigZPGeAeBeIBADsLu0tDRJUkhIiJ0rAZybm4v04qPumj8nWDl59q4GKHkeHh5yc3OzdxkAnBiBGIDdBQUF6cKFCypfvrwsFou9ywGc3iR7FwCUEjc3N3l4eNi7DABOjEAMwO7KlCmj4OBge5cBAAAAk+GhWgAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxADu2pEjRzRu3DiFhYWpXLlyqlatmvr376+4uDibeStWrFDr1q1VpUoVubu7KzQ0VMOHD9e5c+eKva/9+/fr0UcflZeXlwICAjRhwgSlp6ff4yMCAJS0PXv2yGKxFPl18OBB67ybN2/qlVde0f333y93d3fdf//9mjNnjnJzc4u9r5UrV6pevXry8PBQrVq19Pbbb5fEIQFwQq72LgCA83vttdf09ddfq1+/fqpfv74uXbqk6OhoNWrUSAcPHlR4eLgk6dixYwoNDVWPHj1UoUIFnT17VitWrNCWLVv03XffKSgo6Lb7OX78uNq3b6969epp8eLFSkhI0MKFCxUfH69t27aVxqECAO6xCRMmqGnTpjZjNWvWtP47KipKa9eu1VNPPaUmTZro4MGDmj59un766SctX778jttftmyZRo8erT59+mjSpEnat2+fJkyYoIyMDE2dOvWeHw8AJ2OUkqpVq5bWrgCUsq+//trIzs62GYuLizPc3d2NwYMH33bdo0ePGpKM+fPn33E/Xbp0MQIDA40bN25Yx1asWGFIMnbs2PHnigcA2MXu3bsNScbatWtvOefw4cOGJGP69Ok245MnTzYsFovx3Xff3XYfGRkZRsWKFY1u3brZjA8ePNgoV66cce3atT9/AACcwp1yKJdMA7hrERERcnNzsxmrVauWwsLCdPr06duuW6NGDUnS9evXbzsvNTVVO3fuVFRUlHx8fKzjTz75pLy9vfXJJ5/8qdoBAPaXlpZW5CXQ+/btkyQNHDjQZnzgwIEyDEP//ve/b7vd3bt36+rVqxozZozN+NixY/XLL79o69atd1k5AGdHIAZQIgzDUHJysipVqlRo2dWrV3X58mUdPXpUw4cPlyS1b9/+tts7ceKEcnNz1aRJE5txNzc3NWjQQMeOHbt3xQMASs3w4cPl4+MjDw8PtW3bVkePHrUuy87OliR5enrarOPl5SVJ+uabb2677YL3ht+/dzRu3FhlypThvQMA9xADKBmrV69WYmKiZs2aVWhZ1apVrR9yKlasqLfeekuPPfbYbbd38eJFSVJgYGChZYGBgdazCAAA5+Dm5qY+ffqoa9euqlSpkk6dOqWFCxeqZcuW2r9/vxo2bKg6depIkr7++muFhoZa1y34Pz8xMfG2+7h48aJcXFxUuXLlQvuuWLGikpKS7vFRAXA2BGIA99yZM2c0duxYtWjRQkOHDi20fNu2bcrKytLp06cVGxurX3755Y7bzMzMlCS5u7sXWubh4WFdDgBwDhEREYqIiLC+7tGjh/r27av69evrxRdf1Pbt29W1a1dVr15dU6ZMkZeXlxo3bqxDhw7ppZdekqur6x3/78/MzCx0S08B3jsASARiAPfYpUuX1K1bN/n6+mrdunVycXEpNKdt27aSpC5duqhnz54KDw+Xt7e3xo0bd8vtFlwuV3Bm+beysrIKXU4HAHA+NWvWVM+ePbVhwwbl5eXJw8NDW7duVf/+/dWnTx9Jv/5i9PXXX9fcuXPl7e192+15enoqJyenyGW8dwCQuIcYwD1048YNdenSRdevX9f27dvv+GeUJOmBBx5Qw4YNtXr16tvOK7hUuuDS6d+6ePFisfYFAHB8ISEhysnJsV49FBYWppMnT+rkyZPat2+fkpKS9PTTTyslJUW1a9e+7bYCAwOVl5eny5cv24zn5OTo6tWrvHcAIBADuDeysrIUGRmpuLg4bdmyRQ8++GCx183MzNSNGzduOyc8PFyurq42D1uRfv1Qc/z4cTVo0ODPlA0AcDA//vijPDw8bM7+WiwWhYWF6dFHH5Wfn592796t/Px8dejQ4bbbKnhv+P17x9GjR5Wfn897BwACMYC7l5eXpwEDBujAgQNau3atWrRoUWhObm6ufv7550Ljhw8f1okTJwo9AfTMmTP66aefrK99fX3VoUMHxcbGKi0tzTr+4YcfKj09Xf369buHRwQAKGlXrlwpNPbdd99p06ZN6tixo8qUKfpjamZmpqZPn67AwEA98cQT1vGMjAydOXNGKSkp1rF27drJz89PS5cutdnG0qVL5eXlpW7dut2jowHgrLiHGMBdmzx5sjZt2qTIyEhdu3ZNsbGxNsujoqKUnp6ukJAQDRgwQGFhYSpXrpxOnDihmJgY+fr6avr06Tbr1KtXT61bt9aePXusY3PnzlVERIRat26tUaNGKSEhQYsWLVLHjh3VuXPn0jhUAMA9MmDAAHl6eioiIkKVK1fWqVOntHz5cnl5eenVV1+1zuvfv7+CgoL04IMPKjU1Ve+//75+/PFHbd26VeXLl7fOO3z4sNq2basZM2Zo5syZkn69h3j27NkaO3as+vXrp06dOmnfvn2KjY3V3Llz5efnV9qHDcDBEIgB3LXjx49LkjZv3qzNmzcXWh4VFSUvLy+NHDlSu3fv1rp165SZmamgoCA98cQTmjZtmmrUqHHH/TRq1Ei7du3S1KlT9fe//13ly5fXiBEjNH/+/Ht8RACAkvb4449r9erVWrx4sVJTU+Xv76/evXtrxowZqlmzpnVekyZNFBMTo2XLlsnT01MtW7bUmjVrin2585gxY1S2bFktWrRImzZtUkhIiN544w0999xzJXRkAJyJxTAMozR2FBwcrISEhNLYFQAAAAAAd8yh3EMMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAli2EYRmnsyN3dXf7+/sWam56eLm9v7xKuCPcafXNe9M550TvnRe+cF71zXvTOOdE35+UIvbty5Yqys7NvubzUAvEfERwcrISEBHuXgT+Ivjkveue86J3zonfOi945L3rnnOib83KG3nHJNAAAAADAlAjEAAAAAABTcshAPGnSJHuXgD+Bvjkveue86J3zonfOi945L3rnnOib83KG3jnkPcQAAAAAAJQ0hzxDDAAAAABASSMQAwAAAABMiUAMAAAAADAlhwjE2dnZmjp1qoKCguTp6anmzZtr586d9i4Lv5Oenq4ZM2aoc+fO8vPzk8Vi0apVq4qce/r0aXXu3Fne3t7y8/PTkCFDdOXKldItGJKkI0eOaNy4cQoLC1O5cuVUrVo19e/fX3FxcYXm0jfH8j//8z/q16+f7r//fnl5ealSpUpq1aqVNm/eXGguvXNsc+fOlcViUXh4eKFl+/fv16OPPiovLy8FBARowoQJSk9Pt0OV2LNnjywWS5FfBw8etJlL3xzTt99+qx49esjPz09eXl4KDw/XW2+9ZTOH3jmWYcOG3fLnzmKxKDEx0TqX3jme+Ph4DRw4UMHBwfLy8lLdunU1a9YsZWRk2Mxz5N652rsA6dcfhHXr1mnixImqVauWVq1apa5du2r37t169NFH7V0e/k9KSopmzZqlatWq6eGHH9aePXuKnJeQkKBWrVrJ19dX8+bNU3p6uhYuXKgTJ07o8OHDcnNzK93CTe61117T119/rX79+ql+/fq6dOmSoqOj1ahRIx08eND6AZ2+OZ7z588rLS1NQ4cOVVBQkDIyMrR+/Xr16NFDy5Yt06hRoyTRO0eXkJCgefPmqVy5coWWHT9+XO3bt1e9evW0ePFiJSQkaOHChYqPj9e2bdvsUC0kacKECWratKnNWM2aNa3/pm+O6YsvvlBkZKQaNmyo6dOny9vbWz/88IMSEhKsc+id43nmmWfUoUMHmzHDMDR69GjVqFFDVatWlUTvHNGFCxfUrFkz+fr6aty4cfLz89OBAwc0Y8YMffPNN9q4caMkJ+idYWeHDh0yJBkLFiywjmVmZhoPPPCA0aJFCztWht/LysoyLl68aBiGYRw5csSQZMTExBSa9+yzzxqenp7G+fPnrWM7d+40JBnLli0rrXLxf77++msjOzvbZiwuLs5wd3c3Bg8ebB2jb84hNzfXePjhh406depYx+idYxswYIDRrl07o3Xr1kZYWJjNsi5duhiBgYHGjRs3rGMrVqwwJBk7duwo7VJNb/fu3YYkY+3atbedR98cz40bN4wqVaoYvXr1MvLy8m45j945h3379hmSjLlz51rH6J3jmTt3riHJOHnypM34k08+aUgyrl27ZhiG4/fO7pdMr1u3Ti4uLtYzHZLk4eGhESNG6MCBA7pw4YIdq8Nvubu7KyAg4I7z1q9fr+7du6tatWrWsQ4dOqh27dr65JNPSrJEFCEiIqLQGcJatWopLCxMp0+fto7RN+fg4uKikJAQXb9+3TpG7xzX3r17tW7dOr355puFlqWmpmrnzp2KioqSj4+PdfzJJ5+Ut7c3vbOztLQ05ebmFhqnb45pzZo1Sk5O1ty5c1WmTBn98ssvys/Pt5lD75zHmjVrZLFYNGjQIEn0zlGlpqZKkqpUqWIzHhgYqDJlysjNzc0pemf3QHzs2DHVrl3b5hskSc2aNZP06yl2OI/ExERdvnxZTZo0KbSsWbNmOnbsmB2qwu8ZhqHk5GRVqlRJEn1zdL/88otSUlL0ww8/6I033tC2bdvUvn17SfTOkeXl5Wn8+PEaOXKkHnrooULLT5w4odzc3EK9c3NzU4MGDeidHQ0fPlw+Pj7y8PBQ27ZtdfToUesy+uaYdu3aJR8fHyUmJqpOnTry9vaWj4+Pnn32WWVlZUmid87i5s2b+uSTTxQREaEaNWpIoneOqk2bNpKkESNG6Pjx47pw4YL+/e9/a+nSpZowYYLKlSvnFL2zeyC+ePGiAgMDC40XjCUlJZV2SbgLFy9elKRb9vTatWvKzs4u7bLwO6tXr1ZiYqIGDBggib45usmTJ8vf3181a9bUlClT1KtXL0VHR0uid47s3Xff1fnz5zV79uwil9+pd7z/lT43Nzf16dNHS5Ys0caNGzVnzhydOHFCLVu2tH5oo2+OKT4+Xrm5uerZs6c6deqk9evX66mnntK7776r4cOHS6J3zmLHjh26evWqBg8ebB2jd46pc+fOmj17tnbu3KmGDRuqWrVqGjhwoMaPH6833nhDknP0zu4P1crMzJS7u3uhcQ8PD+tyOI+Cft2pp0UtR+k4c+aMxo4dqxYtWmjo0KGS6Jujmzhxovr27aukpCR98sknysvLU05OjiR656iuXr2ql19+WdOnT5e/v3+Rc+7UO97/Sl9ERIQiIiKsr3v06KG+ffuqfv36evHFF7V9+3b65qDS09OVkZGh0aNHW58q3bt3b+Xk5GjZsmWaNWsWvXMSa9asUdmyZdW/f3/rGL1zXDVq1FCrVq3Up08fVaxYUVu3btW8efMUEBCgcePGOUXv7B6IPT09izx7UXB5i6enZ2mXhLtQ0C966pguXbqkbt26ydfX13r/vkTfHF3dunVVt25dSb/ec9OxY0dFRkbq0KFD9M5BTZs2TX5+fho/fvwt59ypd/TNMdSsWVM9e/bUhg0blJeXR98cVMH3/YknnrAZHzRokJYtW6YDBw7Iy8tLEr1zZOnp6dq4caM6deqkihUrWsf5uXNMH3/8sUaNGqW4uDgFBwdL+vUXUfn5+Zo6daqeeOIJp+id3S+ZDgwMtJ5K/62CsaCgoNIuCXeh4HKIW/XUz8+PM1V2cuPGDXXp0kXXr1/X9u3bbX626Jtz6du3r44cOaK4uDh654Di4+O1fPlyTZgwQUlJSTp37pzOnTunrKws3bx5U+fOndO1a9fu2Dve/xxHSEiIcnJy9Msvv9A3B1Xwff/9w30qV64sSfr555/pnRP47LPPlJGRYXO5tHTnzyn0zj7++c9/qmHDhtYwXKBHjx7KyMjQsWPHnKJ3dg/EDRo0UFxcnPUpZQUOHTpkXQ7nUbVqVfn7+9s8gKTA4cOH6aedZGVlKTIyUnFxcdqyZYsefPBBm+X0zbkUXF5048YNeueAEhMTlZ+frwkTJig0NNT6dejQIcXFxSk0NFSzZs1SeHi4XF1dC/UuJydHx48fp3cO5Mcff5SHh4e8vb3pm4Nq3LixpF9//n6r4P5Ef39/eucEVq9eLW9vb/Xo0cNmnN45puTkZOXl5RUav3nzpiQpNzfXKXpn90Dct29f5eXlafny5dax7OxsxcTEqHnz5goJCbFjdfgz+vTpoy1bttj8yaz//Oc/iouLU79+/exYmTnl5eVpwIABOnDggNauXasWLVoUOY++OZ7Lly8XGrt586b+9a9/ydPT0/qLDXrnWMLDw/Xpp58W+goLC1O1atX06aefasSIEfL19VWHDh0UGxurtLQ06/offvih0tPT6Z0dXLlypdDYd999p02bNqljx44qU6YMfXNQBfebrly50mb8vffek6urq9q0aUPvHNyVK1e0a9cu9erVy3p5ewF655hq166tY8eOKS4uzmb8o48+UpkyZVS/fn2n6J3FMAzD3kX0799fn376qf7+97+rZs2a+uCDD3T48GH95z//UatWrexdHn4jOjpa169fV1JSkpYuXarevXurYcOGkqTx48fL19dXFy5cUMOGDXXffffpueeeU3p6uhYsWKDg4GAdOXKEyzdL2cSJE7VkyRJFRkbaPKCiQFRUlCTRNwfUq1cvpaamqlWrVqpataouXbqk1atX68yZM1q0aJEmTZokid45izZt2iglJUUnT560jn377beKiIjQgw8+qFGjRikhIUGLFi1Sq1attGPHDjtWa07t2rWTp6enIiIiVLlyZZ06dUrLly9X2bJldeDAAdWrV08SfXNUI0aM0Pvvv6/+/furdevW2rNnj9auXasXX3xR8+bNk0TvHFl0dLTGjx+v7du3q1OnToWW0zvHs3fvXrVr104VK1bUuHHjVLFiRW3ZskXbtm3TyJEjtWLFCklO0DvDAWRmZhpTpkwxAgICDHd3d6Np06bG9u3b7V0WilC9enVDUpFfZ8+etc47efKk0bFjR8PLy8u47777jMGDBxuXLl2yX+Em1rp161v27Pf/BdA3x/LRRx8ZHTp0MKpUqWK4uroaFSpUMDp06GBs3Lix0Fx65/hat25thIWFFRrft2+fERERYXh4eBj+/v7G2LFjjdTUVDtUiCVLlhjNmjUz/Pz8DFdXVyMwMNCIiooy4uPjC82lb44nJyfHmDlzplG9enWjbNmyRs2aNY033nij0Dx655geeeQRo3LlykZubu4t59A7x3Po0CGjS5cuRkBAgFG2bFmjdu3axty5c42bN2/azHPk3jnEGWIAAAAAAEqb3e8hBgAAAADAHgjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAApSAtLU3Tpk1Ts2bNVLFiRXl4eKhu3bqaO3eucnNzbeaeO3dOffr0kY+Pj3x8fNSzZ0+dPXtWNWrUUJs2bQpte/v27Wrfvr18fHzk6empJk2a6KOPPiqlIwMAwHm52rsAAADMIDExUStXrlTfvn315JNPKj8/Xzt27NC0adN09uxZvffee5Kkq1evqmXLlkpOTtazzz6runXrau/evWrbtq1++eWXQttdunSpxowZo1atWmnGjBlyd3fXZ599pkGDBunKlSuaMGFCaR8qAABOw2IYhmHvIgAA+KvLyclRmTJl5Opq+7vooUOHKjY2VhcuXFBQUJBeeOEFLViwQB9//LEGDBhgnVcw3rp1a+3Zs0eSlJSUpNDQUA0aNEgxMTE22+3du7d27typxMRE+fj4lPjxAQDgjLhkGgCAUuDm5mYNwzdv3tS1a9eUkpKixx57TPn5+Tp69KgkafPmzQoODlb//v1t1p8yZUqhba5fv145OTkaNmyYUlJSbL4iIyOVnp6ugwcPlvzBAQDgpLhkGgCAUvL222/r3Xff1ZkzZ5Sfn2+z7Pr165Kks2fPKiIiQhaLxWZ55cqVdd9999mMnT59WpKKvK+4QHJy8l3XDQDAXxWBGACAUrBo0SJNmTJFXbp00eTJkxUQECA3Nzd9++23mjp1aqGAXBwF66xevVqVK1cuck5YWNhd1Q0AwF8ZgRgAgFIQGxur0NBQbdmyRWXK/P87ln744QebeTVq1FB8fLwMw7A5S3z58mXrWeQCtWrVkvTr2eMOHTqUXPEAAPxFcQ8xAAClwMXFRZL022dZZmZm6q233rKZFxkZqYSEBH3yySc24wsXLiy0zf79+8vNzU0zZ85UdnZ2oeWXL1++F6UDAPCXxRliAABKQe/evfXSSy+pa9eu6t27t65du6ZVq1apfPnyNvOmTp2qNWvWaMiQITpw4IDq1Kmjffv2af/+/apUqZLNWeOQkBBFR0dr9OjRCgsLU1RUlIKDg5WcnKxvv/1WmzdvVk5OTmkfKgAAToNADABAKZg6dary8vIUExOjCRMmKCQkRMOHD1fz5s312GOPWedVqlRJX331lSZPnqyVK1fKYrGobdu22r17t5o2bSpPT0+b7T799NOqU6eOFixYoOjoaKWmpqpy5coKCwvTkiVLSvswAQBwKvwdYgAAnMDVq1dVqVIlPfPMM3r33XftXQ4AAH8J3EMMAICDyczMLDT26quvSpLN2WQAAHB3OEMMAICDadmypR544AE1btxYeXl52rVrl7Zu3aq//e1v+vLLL60P6AIAAHeHQAwAgIN5/fXXFRsbq/PnzyszM1MhISHq3bu3ZsyYIW9vb3uXBwDAXwaBGAAAAABgStxDDAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCU/h8iZkyhFf82uAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAw1UlEQVR4nO3deXxM9/7H8fckJJOIqJBIIgna2C4tsZRGrXVRFftWpahW7VS1fr1V1NYFdbXuRVF6a2lr3y5KL62tlqKP+uEnWlQSWyhJJJHt/P7oL/PrNAlRSWbGeT0fjzwe5nu+c87n5POYMe+cZSyGYRgCAAAAAMBk3BxdAAAAAAAAjkAgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAQJFbsmSJLBaLdu3a5ehSHmj9+vWTxWJxdBkAADgtAjEAAPdp4sSJWrdunaPLMIWkpCS9/fbbioqKUnBwsCwWizp27OjosgAALopADADAfXr77bedMhAvWLBAKSkpji6jQMXHx2vixIn6/vvvVa9ePUeXAwBwccUcXQAAAK4oIyND6enp8vLycnQpeSpevLiKFy/u6DIKVFBQkGJiYlS+fHlJ4pRwAMB94QgxAMBhsrKy9P7776tSpUry9PRUzZo1tWHDBtvy+Ph4eXp6ql+/frk+v0OHDvLx8VFiYqKk/79m9vLly+rVq5dKly4tHx8fRUVF6cyZMzmen5qaqkmTJql69eqyWq0qU6aMunXrpujoaLt52dc8b9++XRMmTFClSpVktVo1f/58WyD79NNPZbFYZLFYVLFiRbvnL1u2TE888YR8fHxUokQJNWnSRNu3b7ebc+7cOVksFk2cOFEbNmxQnTp1ZLVaFRoaqmnTpuWofc+ePWrdurUCAgJktVoVEhKi9u3b68cff7TNyesa4m+++UYtW7aUr6+vvL29Vb9+fa1YsSLHvIoVK6pZs2Y6efKk2rRpIx8fH5UuXVr9+vVTQkJCrj0pbJ6enrYwDADA/eIIMQDAYd544w1lZGRo2LBhMgxDf//739WlSxf9z//8jx5++GGVLVtWHTp00KpVqzRnzhz5+PjYnnv58mX9+9//Vu/evVWyZEm79bZp00aBgYGaPHmyzp07pzlz5qhx48Y6duyYypUrJ0lKS0tTq1atdPDgQfXr10+jRo3SlStX9M9//lMNGzbU4cOHValSJbv1jhkzRoZhaPDgwfL29lZERIQ+++wz9enTR40bN9bAgQMlya7O//qv/9J7772nqKgoTZs2TZmZmVq+fLnatGmjVatWqVOnTnbb+Pe//6358+dr0KBBGjBggJYvX64333xToaGh6tOnjyTp1KlTatWqlSpXrqzXX39dpUuX1sWLF7Vz506dOnVKjz76aJ6/840bN6pTp04KDg7Wa6+9phIlSmjp0qXq1auXYmJi9Nprr9nNj42NVYsWLdS1a1d17NhRe/bs0aeffip3d3ctWrTorj2+efOm0tPT7zpPkkqWLClPT898zQUAoEAYAAAUscWLFxuSjDp16hhpaWm28cOHDxuSjLFjx9rGtm3bZkgyFi5caLeO6dOnG5KMb7/91jbWt29fQ5LRtWtXIysryza+YcMGQ5IxZMgQ29iMGTMMNzc34z//+Y/den/55RfD19fXeP7553PUW61aNSM5OTnH/kgy+vbtm2P80KFDhiRj4sSJduPp6elG/fr1jQoVKtjqPHv2rCHJKFGihHH+/Hnb3OTkZMPf399o0KCBbWz27NmGJOPy5cs5tvl72b+PbBkZGUZYWJhRunRp4+LFi7bxlJQUIyIiwvDw8DDi4uJs4xUqVDAkGatXr7Zbb7t27YxixYoZCQkJd9y+YRhG06ZNDUn5+lm8ePFd1/dHkowOHTrc8/MAADAMw+AIMQDAYQYPHmx3jWvdunVVsmRJu9ObW7ZsqQoVKmjx4sUaMGCAbXzx4sWqUqWKGjdunGO9Y8aMsTtVOCoqStWqVdO6dev0j3/8Q5K0fPly1ahRQ48++qji4+Ntc728vNSgQYMcpzRn13sv1wyvWLFCFotFvXv3ttuGJD3zzDOaOHGioqOjVaVKFdt4x44dFRYWZldPw4YNtW/fPttYqVKlJEmrV6/WSy+9pGLF8vff+ffff69ffvlFr732mgIDA23jVqtVr776qnr37q3NmzfrxRdftC0rX768OnfubLee5s2ba9OmTTp//rxq1qx5x23OnDlTv/76a77qq1GjRr7mAQBQUAjEAACH+eMpyZLk5+ena9eu2R67ublpwIABGj9+vKKjo1W5cmUdPHhQJ06c0DvvvJPreqtVq5br2Lp163T79m15enrq5MmTSklJkb+/f67rcHPLeZuN8PDw/O6aJOnkyZMyDOOOz7t8+bJdIM7P76Rnz55aunSphgwZorFjx6pRo0Zq06aNevbsaTslPDdnz56VlHvwzB77+eef7cbzqkeSXU15qVu37l3nAADgKARiAIDDuLu75zpuGIbd4/79++vtt9/WJ598onfeeUeffPKJ3N3d1bdv3z+97aysLNWuXVvTp0/P93O8vb3veRvu7u7asmVLnndD/uMR1rx+J7/n6emp7du368CBA9q6dau+/fZbjRkzRuPHj9f69evVrFmze6rzTu5Uzx/7lJvr168rLS0tX9sqVaqUU9+1GwDw4CEQAwCcXkhIiFq3bq1//etfevPNN/X555+rbdu2CgoKynX+qVOn1KBBgxxjwcHBtps2Va5cWfHx8XrqqacK7at7KleurG3btqlSpUr3fHQ5Pxo0aGDbz+joaEVERGjixInatWtXrvMffvhhSdKJEydyLMsey55TUDp37qxvvvkmX3MXL16c5x3FAQAoDHztEgDAJbz44ouKi4vToEGDdPPmTb3wwgt5zp0xY4bd0cuNGzfq1KlT6tChg22sT58+iomJsV1T/EdXrlzJd20+Pj65Xifbu3dvSdKbb76prKys+9rG7/3xemTptyBbqlSpO57GXKdOHYWFhemTTz7R1atXbeO3b9/WBx98IA8PDz3zzDN/qqa8zJw5U9u3b8/XT+vWrQt02wAA3A1HiAEALiEqKkqBgYFatmyZypUrp3bt2uU598yZM2rbtq3atWtn+9qlgIAAvfXWW7Y5o0aN0ldffaXhw4dr+/btatq0qby8vHT+/Hlt2bJFERERWrJkSb5qa9CggXbs2KHp06crNDRUJUqUUFRUlBo0aKBx48ZpypQpio6OVpcuXVSuXDnFxsZq3759OnPmjH766ad7/l1MmTJFX331laKiolSpUiVlZGRozZo1iouL08iRI/N8nru7u+bMmaNOnTqpfv36eumll+Tt7a2lS5fqyJEjev/99/M86v5nFcY1xHPmzNGNGzdsj0+fPq0pU6ZIkmrVqqWoqKgC3yYA4MFEIAYAuIRixYqpb9++eu+999SnT5873ll569atGjVqlMaNG6e0tDS1aNFCs2bNsgt7Hh4e2rJliz766CMtXbpU48aNk7u7u4KDg9W4cWO99NJL+a7tH//4h4YMGaJJkyYpKSlJFSpUsIWyyZMnq169evrwww81ffp0paamKjAwULVr19a0adP+1O+iQ4cOiouL0+eff64rV67I29tbVatW1WeffWY7Kp2XqKgo7dixQ5MnT9a7776rjIwM1axZU8uWLVOvXr3+VD1FbcaMGTp//rzt8cmTJ21/7Ojbty+BGACQbxYjP3fEAADACUyYMEGTJk3SyZMnc72TdL9+/fTpp5/m62ZPAAAAXEMMAHAJaWlpWrhwoZ588slcwzAAAMC94pRpAIBTO3v2rPbt26fVq1crLi5OCxcudHRJAADgAUEgBgA4tW+++Ub9+/dXQECA3nnnHT399NOOLgkAADwguIYYAAAAAGBKXEMMAAAAADClIjtl2tPTU/7+/kW1OQAAAACAyV29elW3b9/Oc3mRBWJ/f3/FxMQU1eYAAAAAACYXEhJyx+WcMg0AAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAheTIkSNq3769/Pz85O3trZo1a+rDDz/Mde6NGzcUEBAgi8WiVatW5XsbixYtUvXq1WW1WlW5cmV99NFHBVU+8MAr5ugCAAAAgAfRV199paioKEVEROitt96Sj4+PfvrpJ8XExOQ6f/z48UpOTr6nbcyfP1+DBg1Sly5dNHr0aO3evVsjRoxQcnKyxo4dWxC7ATzQLIZhGEWxoZCQkDxf/AAAAMCDJCEhQVWqVFFkZKRWrVolN7c7n5h5/PhxRUREaPz48Ro/frxWrlyprl273vE5KSkpCg0NVcOGDbVp0ybbeO/evbVu3TpduHBBpUuXLpD9AVzV3XIop0wDAAAABWz58uW6fPmypk6dKjc3N926dUtZWVl5zh85cqQ6deqkxo0b53sbO3fu1LVr1zRkyBC78aFDh+rWrVvavHnzn64fMAsCMQAAAFDAduzYIV9fX8XGxqpq1ary8fGRr6+vBg8erNTUVLu5K1eu1L59+/T+++/f0zaOHj0qSapXr57deN26deXm5mZbDiBvBGIAAACggEVHRysjI0MdOnRQ69attXr1ar3wwguaN2+e+vfvb5uXkpKiMWPG6JVXXlHFihXvaRsXL16Uu7u7AgIC7MY9PDxUpkwZxcXFFcSuAA80bqoFAAAAFLCkpCQlJydr0KBBtrtKd+7cWWlpaZo/f74mTZqkypUr691331V6err+9re/3fM2UlJS5OHhkesyq9WqlJSU+9oHwAw4QgwAAAAUMC8vL0nSs88+azfeq1cvSdL+/ft17tw5TZ8+XVOnTpWPj8+f2kZaWlquy1JTU201AMgbgRgAAAAoYMHBwZKkcuXK2Y1nn97866+/avz48SpfvryaNWumc+fO6dy5c7p06ZIk6erVqzp37twdb8QVFBSkzMxMXblyxW48LS1N165ds9UAIG8EYgAAAKCA1a1bV5IUGxtrN559Xa+/v79++eUXnTlzRg8//LAqVaqkSpUq2Y4oDxkyRJUqVVJCQkKe26hdu7Yk6fDhw3bjhw8fVlZWlm05gLxxDTEAAABQwLp37653331XixYtUosWLWzjCxcuVLFixdSsWTOFhYUpPj7e7nnHjx/XW2+9pddff11PPPGESpQoIUlKTk7WL7/8orJly6ps2bKSpBYtWsjPz09z585V27ZtbeuYO3euvL299cwzzxTBngKujUAMAAAAFLCIiAi98MIL+uSTT5SRkaGmTZtq165dWrlypd544w0FBwfnekrzQw89JEmqX7++OnbsaBs/ePCgmjdvrgkTJmjixImSfruGePLkyRo6dKi6deum1q1ba/fu3Vq6dKmmTp0qPz+/IthTwLURiAEAAIBCMG/ePIWFhWnx4sVau3atKlSooFmzZmnUqFEFto0hQ4aoePHimjlzpjZs2KDQ0FDNmjVLI0eOLLBtAA8yi2EYRlFsKCQkRDExMUWxKQAAAAAA7ppDuakWAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFPie4gBAABcTGpqqtLS0hxdBoAC4OHhIavV6ugyTItADAAA4EJSU1NVunRppaamOroUFCIPd+mNJz31zp7bSst0dDUoTFarVb/++iuh2EEIxAAAAC4kLS1NqampunDhgnx9fR1dDgrL7UT5/uMvGr3yJ8mzpKOrQSFJSEhQaGio0tLSCMQOQiAGAABwQb6+vgTiB9n/nQDgW7KkZKXPQGHhploAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxgEJhGIYSEhJkGIajSwEAAMADoqA/YxKIARSKxMRElSpVSomJiY4uBQAAAA+Igv6MSSAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJhSvgNxUlKSJkyYoDZt2sjPz08Wi0VLliwpxNIAAAAAACg8+Q7E8fHxmjRpkk6ePKlatWoVZk0A7oNhGNqzZ4+WLFmiPXv2yDAMR5cEAAAAOKVi+Z0YFBSkixcvKjAwUIcPH1b9+vULsy4Af8L58+fVsWNH/fLLL6pdu7aOHTumsLAwrVu3ThUqVHB0eQAAAIBTyfcRYk9PTwUGBhZmLQDug2EY6tixo+rXr6/Y2Fh9/fXXiomJUf369dWpUyeOFAMAAAB/kO8jxACc2969e3XhwgXt379fVqtVkuTl5aXZs2crJCREe/fu1ZNPPllk9WQH8ISEhCLbJgCYQfb7Kn/oBFwfn5fuXUG/BxZaIP7ggw/0wQcf2B4nJSUV1qYASDpz5oxq1aplC8PZvLy8VKtWLZ05c6ZIA3FiYqIkKTQ0tMi2CQBmkpiYqFKlSjm6DAD3gc9Lf15BvQcWWiAePXq0Ro8ebXscEhJSWJsCICk8PFzHjh1TamqqXShOSUnRDz/8oPDw8CKtp2TJkpKkCxcuyNfXt0i3DQAPsoSEBIWGhtreZwG4Lj4v3buCfg/klGngAdGoUSOFhYVpxIgRmj17try8vJSSkqKRI0eqQoUKatSoUZHWY7FYJEm+vr68wQNAIch+nwXguvi89OcV1Htgvm+qBcC5WSwWrVu3TocOHVJISIhatGihkJAQHT58WOvWreODEwAAAPAHHCEGHiAVKlTQkSNHtHfvXp05c0bh4eFq1KgRYRgAAADIBYEYeMBYLBY9+eSTRXoDLQAAAMAV3VMgnjNnjm7cuKG4uDhJ0saNGxUTEyNJGj58OHc6BAAAAAC4jHsKxDNmzND58+dtj9esWaM1a9ZIknr37k0gBgAAAAC4jHsKxOfOnSukMgAAAAAAKFrcZRoAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGUChKliypmzdvqmTJko4uBQAAAA+Igv6MWaxA1gIAf2CxWOTr6+voMgAAAPAAKejPmBwhBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAAplTM0QUAAAAg/wzDkCQlJCQ4uBIUqtuJ8pWUkJgopTm6GBQWXseORyAGAABwIYmJiZKk0NBQB1eCwuThLr3xpKfemRKitExHV4PCZLVa5eHh4egyTItADAAA4EKCg4N14cIFlSxZUhaLxdHloJCNdnQBKHQeHh6yWq2OLsO0CMQAAAAuxM3NTSEhIY4uAwAeCNxUCwAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAoAjt2rVLFosl15/vvvvONm/atGlq2LCh/P39ZbVaVblyZY0aNUpXr17N97Y2bNigOnXqyGq1KiwsTBMmTFBGRkZh7BZgSv369cvz9WyxWBQbGytJatasWa7L27Rpk+9tLVq0SNWrV7e9H3z00UeFtVumUszRBQAAAJjRiBEjVL9+fbux8PBw27+///571a5dWz179lTJkiV18uRJLViwQJs3b9axY8dUokSJO65/y5Yt6tixo5o1a6aPPvpIP/74o6ZMmaIrV65o7ty5hbJPgNm8/PLLatmypd2YYRgaNGiQKlasqPLly9vGQ0JC9M4779jNDQ4Oztd25s+fr0GDBqlLly4aPXq0du/erREjRig5OVljx469/x0xMYthGEZRbCgkJEQxMTFFsSkAAACntWvXLjVv3lwrV65U165d7+m5q1evVteuXbVixQr17NnzjnNr1Kih4sWL6/DhwypW7LdjIOPGjdO0adN04sQJVatW7U/vA4C87dmzR40bN9bUqVP1t7/9TdJvR4jj4+N1/Pjxe15fSkqKQkND1bBhQ23atMk23rt3b61bt04XLlxQ6dKlC6z+B83dciinTAMAADhIYmLiPZ3CXLFiRUnSjRs37jjvxIkTOnHihAYOHGgLw5I0ZMgQGYahVatW/ZlyAeTD8uXLZbFY1KtXrxzLMjIylJSUdE/r27lzp65du6YhQ4bYjQ8dOlS3bt3S5s2b76tesyMQAwAAOED//v3l6+srq9Wq5s2b6/DhwznmGIah+Ph4Xbp0yXaKpLu7u5o1a3bHdR89elSSVK9ePbvx4OBghYSE2JYDKFjp6en68ssvFRkZafsDVrbTp0+rRIkSKlmypAIDA/XWW28pPT39ruvM6/Vct25dubm58Xq+T1xDDAAAUIQ8PDzUpUsXtW3bVmXLltWJEyc0Y8YMNW7cWPv27VNERIRt7uXLlxUUFGR7HBISouXLl9/1dOeLFy9Kkt1zswUFBSkuLq6A9gbA723btk3Xrl3Tc889Zzf+yCOPqHnz5nr00Ud169YtrVq1SlOmTNHp06f1xRdf3HGdFy9elLu7uwICAuzGPTw8VKZMGV7P94lADAAAUIQiIyMVGRlpe9y+fXt17dpVjz32mN544w1t3brVtszPz0/bt29Xamqqjh49qjVr1uTrdMuUlBRJkqenZ45lVqtVCQkJBbAnAP5o+fLlKl68uLp37243vmjRIrvHffr00cCBA7VgwQK98soratiwYZ7rTElJkYeHR67LrFar7fWOP4dADAAA4GDh4eHq0KGD1qxZo8zMTLm7u0v67QhQ9h1s27Vrp6eeekqNGjVSQECA2rVrl+f6vLy8JEm3b9/OsSw1NdW2HEDBSUpK0vr169W6dWuVKVPmrvNfffVVLViwQDt27LhjIPby8lJaWlquy3g93z+uIQYAAHACoaGhSktL061bt/KcExkZqaCgIC1btuyO68o+VTr71Onfu3jxYr6/6gVA/q1bt07Jyck5TpfOS2hoqCTp+vXrd5wXFBSkzMxMXblyxW48LS1N165d4/V8nwjEAAAATuDnn3+W1WqVj4/PHeelpqbq5s2bd5xTu3ZtScpxo664uDjFxMTYlgMoOMuWLZOPj4/at2+fr/k///yzJMnf3/+O8/J6PR8+fFhZWVm8nu8TgRgAAKAIXb16NcfYDz/8oA0bNqhVq1Zyc3PTrVu3lJycnGPe6tWr9euvv9rdbTY9PV2nTp2yOxpco0YNVatWTR9//LEyMzNt43PnzpXFYrnn7z8GcGdXr17Vjh071KlTJ3l7e9stS0hIyHH5gmEYmjJliiSpdevWtvHk5GSdOnVK8fHxtrEWLVrIz89Pc+fOtVvH3Llz5e3trWeeeaagd8dUuIYYAACgCPXo0UNeXl6KjIxUQECATpw4oY8//lje3t569913JUnR0dFq2bKlevTooWrVqsnNzU2HDx/W0qVLVbFiRY0cOdK2vtjYWFWvXl19+/bVkiVLbOPTp09X+/bt1apVK/Xs2VPHjx/XnDlz9OKLL6p69epFvdvAA+2LL75QRkZGrqdLHzlyRM8++6yeffZZhYeHKyUlRWvXrtXevXs1cOBA1alTxzb34MGDat68uSZMmKCJEydK+u0a4smTJ2vo0KHq1q2bWrdurd27d2vp0qWaOnWq/Pz8imo3H0gEYgAAgCLUsWNHLVu2TB988IESEhLk7++vzp07a8KECQoPD5f029crdenSRf/5z3/06aefKj09XRUqVNCwYcP05ptv5uuGPe3atdOaNWv09ttva/jw4fL399ff/vY3jR8/vrB3ETCdZcuWKSAgwHYTvN+rUKGCGjdurLVr1+rSpUtyc3NT9erVNW/ePA0cODBf6x8yZIiKFy+umTNnasOGDQoNDdWsWbPs/jiGP8diGIZRFBsKCQlRTExMUWwKAAAAAIC75lCuIQYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmJLFMAyjKDbk6ekpf3//fM1NSkqSj49PIVeEgkbfXBe9c130znXRO9dF71wXvXNN9M11OUPvrl69qtu3b+e5vMgC8b0ICQlRTEyMo8vAPaJvroveuS5657roneuid66L3rkm+ua6XKF3nDINAAAAADAlAjEAAAAAwJScMhCPHj3a0SXgT6BvroveuS5657roneuid66L3rkm+ua6XKF3TnkNMQAAAAAAhc0pjxADAAAAAFDYCMQAAAAAAFMiEAMAAAAATMkpAvHt27c1duxYBQcHy8vLSw0aNND27dsdXRb+ICkpSRMmTFCbNm3k5+cni8WiJUuW5Dr35MmTatOmjXx8fOTn56c+ffro6tWrRVswJEmHDh3SsGHDVKNGDZUoUUJhYWHq3r27Tp8+nWMufXMu//3f/61u3brp4Ycflre3t8qWLasmTZpo48aNOebSO+c2depUWSwW1axZM8eyffv26cknn5S3t7cCAwM1YsQIJSUlOaBK7Nq1SxaLJdef7777zm4ufXNOR44cUfv27eXn5ydvb2/VrFlTH374od0ceudc+vXrl+frzmKxKDY21jaX3jmf6Oho9ezZUyEhIfL29la1atU0adIkJScn281z5t4Vc3QB0m8vhFWrVmnUqFGqXLmylixZorZt22rnzp168sknHV0e/k98fLwmTZqksLAw1apVS7t27cp1XkxMjJo0aaJSpUpp2rRpSkpK0owZM/Tjjz/q4MGD8vDwKNrCTe69997T3r171a1bNz322GO6dOmS5syZozp16ui7776zfUCnb87n/PnzSkxMVN++fRUcHKzk5GStXr1a7du31/z58zVw4EBJ9M7ZxcTEaNq0aSpRokSOZceOHdNTTz2l6tWr64MPPlBMTIxmzJih6OhobdmyxQHVQpJGjBih+vXr242Fh4fb/k3fnNNXX32lqKgoRURE6K233pKPj49++uknxcTE2ObQO+fz8ssvq2XLlnZjhmFo0KBBqlixosqXLy+J3jmjCxcu6PHHH1epUqU0bNgw+fn5af/+/ZowYYK+//57rV+/XpIL9M5wsAMHDhiSjOnTp9vGUlJSjEceecR44oknHFgZ/ig1NdW4ePGiYRiGcejQIUOSsXjx4hzzBg8ebHh5eRnnz5+3jW3fvt2QZMyfP7+oysX/2bt3r3H79m27sdOnTxuenp7Gc889Zxujb64hIyPDqFWrllG1alXbGL1zbj169DBatGhhNG3a1KhRo4bdsqefftoICgoybt68aRtbsGCBIcnYtm1bUZdqejt37jQkGStXrrzjPPrmfG7evGmUK1fO6NSpk5GZmZnnPHrnGnbv3m1IMqZOnWobo3fOZ+rUqYYk4/jx43bjzz//vCHJuH79umEYzt87h58yvWrVKrm7u9uOdEiS1WrVgAEDtH//fl24cMGB1eH3PD09FRgYeNd5q1evVrt27RQWFmYba9mypapUqaIvv/yyMEtELiIjI3McIaxcubJq1KihkydP2sbom2twd3dXaGiobty4YRujd87r22+/1apVq/T3v/89x7KEhARt375dvXv3lq+vr238+eefl4+PD71zsMTERGVkZOQYp2/Oafny5bp8+bKmTp0qNzc33bp1S1lZWXZz6J3rWL58uSwWi3r16iWJ3jmrhIQESVK5cuXsxoOCguTm5iYPDw+X6J3DA/HRo0dVpUoVu1+QJD3++OOSfjvEDtcRGxurK1euqF69ejmWPf744zp69KgDqsIfGYahy5cvq2zZspLom7O7deuW4uPj9dNPP2nWrFnasmWLnnrqKUn0zpllZmZq+PDhevHFF/Xoo4/mWP7jjz8qIyMjR+88PDxUu3ZteudA/fv3l6+vr6xWq5o3b67Dhw/bltE357Rjxw75+voqNjZWVatWlY+Pj3x9fTV48GClpqZKoneuIj09XV9++aUiIyNVsWJFSfTOWTVr1kySNGDAAB07dkwXLlzQF198oblz52rEiBEqUaKES/TO4YH44sWLCgoKyjGePRYXF1fUJeE+XLx4UZLy7On169d1+/btoi4Lf7Bs2TLFxsaqR48ekuibs3v11Vfl7++v8PBwjRkzRp06ddKcOXMk0TtnNm/ePJ0/f16TJ0/Odfndesf/f0XPw8NDXbp00ezZs7V+/XpNmTJFP/74oxo3bmz70EbfnFN0dLQyMjLUoUMHtW7dWqtXr9YLL7ygefPmqX///pLonavYtm2brl27pueee842Ru+cU5s2bTR58mRt375dERERCgsLU8+ePTV8+HDNmjVLkmv0zuE31UpJSZGnp2eOcavValsO15Hdr7v1NLflKBqnTp3S0KFD9cQTT6hv376S6JuzGzVqlLp27aq4uDh9+eWXyszMVFpamiR656yuXbum8ePH66233pK/v3+uc+7WO/7/K3qRkZGKjIy0PW7fvr26du2qxx57TG+88Ya2bt1K35xUUlKSkpOTNWjQINtdpTt37qy0tDTNnz9fkyZNoncuYvny5SpevLi6d+9uG6N3zqtixYpq0qSJunTpojJlymjz5s2aNm2aAgMDNWzYMJfoncMDsZeXV65HL7JPb/Hy8irqknAfsvtFT53TpUuX9Mwzz6hUqVK26/cl+ubsqlWrpmrVqkn67ZqbVq1aKSoqSgcOHKB3TmrcuHHy8/PT8OHD85xzt97RN+cQHh6uDh06aM2aNcrMzKRvTir79/7ss8/ajffq1Uvz58/X/v375e3tLYneObOkpCStX79erVu3VpkyZWzjvO6c0+eff66BAwfq9OnTCgkJkfTbH6KysrI0duxYPfvssy7RO4efMh0UFGQ7lP572WPBwcFFXRLuQ/bpEHn11M/PjyNVDnLz5k09/fTTunHjhrZu3Wr32qJvrqVr1646dOiQTp8+Te+cUHR0tD7++GONGDFCcXFxOnfunM6dO6fU1FSlp6fr3Llzun79+l17x/9/ziM0NFRpaWm6desWfXNS2b/3P97cJyAgQJL066+/0jsXsG7dOiUnJ9udLi3d/XMKvXOMf/7zn4qIiLCF4Wzt27dXcnKyjh496hK9c3ggrl27tk6fPm27S1m2AwcO2JbDdZQvX17+/v52NyDJdvDgQfrpIKmpqYqKitLp06e1adMm/eUvf7FbTt9cS/bpRTdv3qR3Tig2NlZZWVkaMWKEKlWqZPs5cOCATp8+rUqVKmnSpEmqWbOmihUrlqN3aWlpOnbsGL1zIj///LOsVqt8fHzom5OqW7eupN9ef7+XfX2iv78/vXMBy5Ytk4+Pj9q3b283Tu+c0+XLl5WZmZljPD09XZKUkZHhEr1zeCDu2rWrMjMz9fHHH9vGbt++rcWLF6tBgwYKDQ11YHX4M7p06aJNmzbZfWXW119/rdOnT6tbt24OrMycMjMz1aNHD+3fv18rV67UE088kes8+uZ8rly5kmMsPT1d//rXv+Tl5WX7wwa9cy41a9bU2rVrc/zUqFFDYWFhWrt2rQYMGKBSpUqpZcuWWrp0qRITE23P/+yzz5SUlETvHODq1as5xn744Qdt2LBBrVq1kpubG31zUtnXmy5atMhufOHChSpWrJiaNWtG75zc1atXtWPHDnXq1Ml2ens2euecqlSpoqNHj+r06dN24ytWrJCbm5see+wxl+idxTAMw9FFdO/eXWvXrtUrr7yi8PBwffrppzp48KC+/vprNWnSxNHl4XfmzJmjGzduKC4uTnPnzlXnzp0VEREhSRo+fLhKlSqlCxcuKCIiQg899JBGjhyppKQkTZ8+XSEhITp06BCnbxaxUaNGafbs2YqKirK7QUW23r17SxJ9c0KdOnVSQkKCmjRpovLly+vSpUtatmyZTp06pZkzZ2r06NGS6J2raNasmeLj43X8+HHb2JEjRxQZGam//OUvGjhwoGJiYjRz5kw1adJE27Ztc2C15tSiRQt5eXkpMjJSAQEBOnHihD7++GMVL15c+/fvV/Xq1SXRN2c1YMAAffLJJ+revbuaNm2qXbt2aeXKlXrjjTc0bdo0SfTOmc2ZM0fDhw/X1q1b1bp16xzL6Z3z+fbbb9WiRQuVKVNGw4YNU5kyZbRp0yZt2bJFL774ohYsWCDJBXpnOIGUlBRjzJgxRmBgoOHp6WnUr1/f2Lp1q6PLQi4qVKhgSMr15+zZs7Z5x48fN1q1amV4e3sbDz30kPHcc88Zly5dclzhJta0adM8e/bHtwD65lxWrFhhtGzZ0ihXrpxRrFgxo3Tp0kbLli2N9evX55hL75xf06ZNjRo1auQY3717txEZGWlYrVbD39/fGDp0qJGQkOCACjF79mzj8ccfN/z8/IxixYoZQUFBRu/evY3o6Ogcc+mb80lLSzMmTpxoVKhQwShevLgRHh5uzJo1K8c8euecGjZsaAQEBBgZGRl5zqF3zufAgQPG008/bQQGBhrFixc3qlSpYkydOtVIT0+3m+fMvXOKI8QAAAAAABQ1h19DDAAAAACAIxCIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAikBiYqLGjRunxx9/XGXKlJHValW1atU0depUZWRk2M09d+6cunTpIl9fX/n6+qpDhw46e/asKlasqGbNmuVY99atW/XUU0/J19dXXl5eqlevnlasWFFEewYAgOsq5ugCAAAwg9jYWC1atEhdu3bV888/r6ysLG3btk3jxo3T2bNntXDhQknStWvX1LhxY12+fFmDBw9WtWrV9O2336p58+a6detWjvXOnTtXQ4YMUZMmTTRhwgR5enpq3bp16tWrl65evaoRI0YU9a4CAOAyLIZhGI4uAgCAB11aWprc3NxUrJj936L79u2rpUuX6sKFCwoODtbrr7+u6dOn6/PPP1ePHj1s87LHmzZtql27dkmS4uLiVKlSJfXq1UuLFy+2W2/nzp21fft2xcbGytfXt9D3DwAAV8Qp0wAAFAEPDw9bGE5PT9f169cVHx+vv/71r8rKytLhw4clSRs3blRISIi6d+9u9/wxY8bkWOfq1auVlpamfv36KT4+3u4nKipKSUlJ+u677wp/5wAAcFGcMg0AQBH56KOPNG/ePJ06dUpZWVl2y27cuCFJOnv2rCIjI2WxWOyWBwQE6KGHHrIbO3nypCTlel1xtsuXL9933QAAPKgIxAAAFIGZM2dqzJgxevrpp/Xqq68qMDBQHh4eOnLkiMaOHZsjIOdH9nOWLVumgICAXOfUqFHjvuoGAOBBRiAGAKAILF26VJUqVdKmTZvk5vb/Vyz99NNPdvMqVqyo6OhoGYZhd5T4ypUrtqPI2SpXrizpt6PHLVu2LLziAQB4QHENMQAARcDd3V2S9Pt7WaakpOjDDz+0mxcVFaWYmBh9+eWXduMzZszIsc7u3bvLw8NDEydO1O3bt3Msv3LlSkGUDgDAA4sjxAAAFIHOnTvrzTffVNu2bdW5c2ddv35dS5YsUcmSJe3mjR07VsuXL1efPn20f/9+Va1aVbt379a+fftUtmxZu6PGoaGhmjNnjgYNGqQaNWqod+/eCgkJ0eXLl3XkyBFt3LhRaWlpRb2rAAC4DAIxAABFYOzYscrMzNTixYs1YsQIhYaGqn///mrQoIH++te/2uaVLVtWe/bs0auvvqpFixbJYrGoefPm2rlzp+rXry8vLy+79b700kuqWrWqpk+frjlz5ighIUEBAQGqUaOGZs+eXdS7CQCAS+F7iAEAcAHXrl1T2bJl9fLLL2vevHmOLgcAgAcC1xADAOBkUlJScoy9++67kmR3NBkAANwfjhADAOBkGjdurEceeUR169ZVZmamduzYoc2bN6tRo0b65ptvbDfoAgAA94dADACAk3n//fe1dOlSnT9/XikpKQoNDVXnzp01YcIE+fj4OLo8AAAeGARiAAAAAIApcQ0xAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFP6X3rxsbP8ozwlAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "df_hypertension_1 = df[df['hypertension'] == 1]\n",
+    "df_hypertension_0 = df[df['hypertension'] == 0]\n",
+    "draw_box(df_hypertension_0, 'age', 'hypertension = 0')\n",
+    "draw_box(df_hypertension_1, 'age', 'hypertension = 1')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ:</strong> <br>\n",
+    "<ul>\n",
+    "<li>Nhóm không bị bệnh tim: chỉ số tuổi tác Q1 = 23, Q2 = 42, Q3 = 59</li> \n",
+    "<li>Nhóm bị bệnh tim: chỉ số tuổi tác Q1 = 53, Q2 = 64, Q3 = 75. Có đến trên 75% người bị bệnh tim từ 53 tuổi trở lên, đây là người ở độ tuổi trung niên và người già</li> \n",
+    "<li>Các giá trị Q1, Q2, Q3 của nhóm bị bệnh tim cao lên hẳn so với nhóm không bị bệnh tim. Điều này cho thấy đa phần những người bị cao huyết áp thuộc nhóm người cao tuổi.</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 139,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Chi-Square value: 334.14515522475114\n",
+      "Degree of Freedom:  3\n",
+      "p-value: 0.000000000000000\n",
+      "Có mối tương quan giữa các nhóm tuổi và cao huyết áp\n"
+     ]
+    }
+   ],
+   "source": [
+    "child_df = df[(df['age'] >= 0) & (df['age'] <= 18)]\n",
+    "teenager_df = df[(df['age'] > 18) & (df['age'] <= 30)]\n",
+    "middle_df = df[(df['age'] > 30) & (df['age'] <= 45)]\n",
+    "old_df = df[df['age'] > 45]\n",
+    "child_hyp_count = child_df[child_df['hypertension'] == 1].shape[0]\n",
+    "child_no_hyp_count = child_df[child_df['hypertension'] == 0].shape[0]\n",
+    "teen_hyp_count = teenager_df[teenager_df['hypertension'] == 1].shape[0]\n",
+    "teen_no_hyp_count = teenager_df[teenager_df['hypertension'] == 0].shape[0]\n",
+    "mid_hyp_count = middle_df[middle_df['hypertension'] == 1].shape[0]\n",
+    "mid_no_hyp_count = middle_df[middle_df['hypertension'] == 0].shape[0]\n",
+    "old_hyp_count = old_df[old_df['hypertension'] == 1].shape[0]\n",
+    "old_no_hyp_count = old_df[old_df['hypertension'] == 0].shape[0]\n",
+    "\n",
+    "H0 = \"Không có mối tương quan giữa các nhóm tuổi và cao huyết áp\"\n",
+    "H1 = \"Có mối tương quan giữa các nhóm tuổi và cao huyết áp\"\n",
+    "\n",
+    "\n",
+    "child_arr = [child_hyp_count, child_no_hyp_count]\n",
+    "teen_arr = [teen_hyp_count, teen_no_hyp_count]\n",
+    "middle_arr = [mid_hyp_count, mid_no_hyp_count]\n",
+    "old_arr = [old_hyp_count, old_no_hyp_count]\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(child_arr)\n",
+    "nij.append(teen_arr)\n",
+    "nij.append(middle_arr)\n",
+    "nij.append(old_arr )\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(4 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_smoke = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_smoke))\n",
+    "if p_smoke <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định chi – square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa các nhóm tuổi và bệnh cao huyết áp.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa các nhóm tuổi và bệnh cao huyết áp.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/afElHdm.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa tuổi và cao huyết áp</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 334.14515522475114</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  3</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000000000000</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa các nhóm tuổi và cao huyết áp</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa các nhóm tuổi và bệnh cao huyết áp.\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Tập dữ liệu thể hiện người cao tuổi có nguy cơ cao bị cao huyết áp, điều này đúng với nghiên cứu của y khoa.\n",
+    "</div>\n",
+    "\n",
+    "\n",
+    "\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.3.2. Bệnh tim và cao huyết áp: </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li><strong>Theo nghiên cứu của Theo Thư viện Y khoa Quốc gia Hoa Kỳ:</strong> Người bị cao huyết áp có nguy cơ mắc bệnh tim mạch cao</li>\n",
+    "<li><strong>Kiểm định tính xác thực: </strong>Chia bộ dữ liệu thành 2 nhóm bị cao huyết áp và không bị cao huyết áp, quan sát sự phân bố của đặc trưng bệnh tim giữa hai nhóm này\n",
+    "</li>\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 140,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACDkAAAK7CAYAAADyPMY6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJzUlEQVR4nOzdd5SW1bk34N/QRmRgAAlqBARFxQQsiFhAo6hR0Sgay9HYjSVEsX+WhGONEo8aUeyJLdGDLWDD3hFFFCQaFRuGEhugQ5Hu+/3hYU7mAArOwMwbrmutWYvZ+372vp9xVlb0/bF3SaFQKAQAAAAAAAAAoI6rV9sNAAAAAAAAAAAsCyEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFIU6G3IYN25crr766hxxxBHp0qVLGjRokJKSklx00UXVWvfJJ59M796906pVqzRu3DidOnXKb37zm8ycObOGOgcAAAAAAAAAVoQGtd3A0lx33XUZOHBgja75hz/8IaeeempKSkqy3XbbZc0118wLL7yQiy++OPfdd1+GDx+eVq1a1eieAAAAAAAAAEDNqLMnOXTu3Dmnn3567rjjjrz99ts59NBDq7XemDFjctppp6V+/fp5+OGH89xzz+Xuu+/OBx98kJ122injxo3L8ccfX0PdAwAAAAAAAAA1rc6e5PDLX/6yyvf16lUvj3HJJZekUCjkyCOPzO677145vvrqq+dPf/pT1ltvvdx3331555130qlTp2rtBQAAAAAAAADUvDp7kkNNmjdvXh5++OEkycEHH7zY/LrrrpsePXokSYYMGbJSewMAAAAAAAAAls0qEXJ4991389VXXyVJunXrtsSaReNjxoxZaX0BAAAAAAAAAMuuzl5XUZPGjx+fJGnevHmaNm26xJq2bdtWqV2auXPnZu7cuZXff/3115k2bVrWWGONlJSU1FDHAAAAAAAAALDqKBQKmTFjRn74wx+mXr2ln9ewSoQcZsyYkSRp0qTJUmvKysqSJNOnT//WtS655JKcf/75NdccAAAAAAAAAJAkmThxYtq0abPU+VUi5FCTzj777Jx66qmV31dUVKRdu3aZOHFimjVrVoudAQAAAAAAAEBxmj59etq2bbvU2xkWWSVCDot+CLNmzVpqzcyZM5PkO4MKpaWlKS0tXWy8WbNmQg4AAAAAAAAAUA0lJSXfOr/0iyz+jbRv3z5J8uWXX1ZeXfF/TZw4sUotAAAAAAAAAFC3rBIhh4022iirr756kuTVV19dYs2i8a5du660vgAAAAAAAACAZbdKhBwaNWqUPfbYI0ly5513Ljb/j3/8IyNGjEiS7LPPPiu1NwAAAAAAAABg2fxbhRwGDRqUTp065bDDDlts7qyzzkpJSUluueWWPProo5XjX331VY4++ugsXLgwP//5z9OpU6eV2TIAAAAAAAAAsIwa1HYDSzN69Oj07du38vsPPvggSXLDDTfkoYceqhwfMmRI1l577STJlClTMm7cuKy11lqLrde1a9dcfvnlOfXUU9O7d+/85Cc/SevWrfPCCy/k448/zkYbbZTrr79+Bb8VAAAAAAAAAPB91dmQw/Tp0zNy5MjFxidNmpRJkyZVfj937txlXvOUU05Jly5dcvnll+eVV17JrFmz0q5du5x99tk5++yz07Rp0xrpHQAAAAAAAACoeSWFQqFQ200Us+nTp6e8vDwVFRVp1qxZbbcDAAAAAAAAAEVnWT97r7MnOQAUu4kTJ+b3v/99HnnkkUyaNClNmzbNFltskX79+mWPPfZYrP68887L+eef/61rvv322+nUqdMy9/DWW2/lxhtvzOjRo/PRRx9lypQpKRQKWWeddfKTn/wkJ598crp06bLYcwsXLsyQIUPy2muvVX5NmzYt9evXz4IFC751zzvvvDO/+93v8v7772fNNdfMUUcdlf79+6d+/fqL1c6aNSs//vGPU1ZWltGjR6dRo0bL/G4AAAAAAMB3mz9/fhYuXFjbbbAKqVevXho2bJiSkpIVsr6QA8AKMGrUqOy2226ZNm1a1l577ey+++6ZOnVqnnnmmTz++OP5z//8z6UGGjbddNNsttlmS5wrLy9frj5GjBiRgQMHZs0118xGG22UbbbZJl999VXeeOON3Hzzzbn99ttz++2356CDDqry3IwZM7L//vsv115J8tBDD+UXv/hFWrRokT322COvv/56zj///EydOjVXX331YvW//e1vM2HChAwfPlzAAQAAAAAAatD06dMzZcqUzJ07t7ZbYRVUv379rL766mndunWNfwbkuopqcl0F8H/NmTMnG264YSZOnJgDDzwwt9xySxo3bpzkm/DDosDD448/nl122aXyuUUnOZx77rk577zzaqSXjz76KHPmzFns9Ievv/46V1xxRc4444ysvvrqmTRpUlq0aFE5P2vWrBx33HHZfPPN07Vr17Rs2TKbbbbZd57ksPnmm+ett97KG2+8kQ033DCzZs1Kt27d8t5772XSpElZa621KmtfffXVbL311jnuuONyzTXX1Mj7AgAAAAAA33yGOXny5JSVlaW8vHyF/q16+FeFQiELFy7M7NmzU1FRka+//jpt2rTJ6quv/p3Puq4CoJYMGTIkEydOTPPmzXP99ddXBhySZMstt8x//ud/5qSTTsoFF1xQJeSwIrRv336J4/Xq1cvpp5+e6667Lh9++GGGDx+en/3sZ5XzTZo0yV/+8pfK7z/66KPv3GvevHl544030qtXr2y44YaV6xxyyCH57W9/m1deeSV77bVXkm+uwzj22GOz1lpr5ZJLLvn+LwgAAAAAACxmypQpKSsrS5s2bYQbqBVlZWVp2bJl/vGPf2TKlClp165dja1dr8ZWAiDJN6c1JMkWW2yR5s2bLza/8847J0lefPHFfPLJJyuztcU0aPBN1q20tLTaa3355ZdZuHBhWrZsWWV8jTXWSJLMnDmzcuwPf/hDxowZk0GDBjkFBwAAAAAAatD8+fMzd+7clJeXCzhQq+rXr5+WLVtm1qxZ33pS+PJykgNADVv0Yf6iD/f/r1atWiX55rie0aNHp3fv3lXmR48enbPOOivTpk1LeXl5Nt988/zsZz9L06ZNa7TPG2+8Me+++25at26drbfeutrrtW7dOquvvnrefvvtKuOLvl9nnXWSfHMqxLnnnpt99tknffr0qfa+AAAAAADA/1q4cGGSpGHDhrXcCfzvX7RdsGBB5V++rS4hB4Aa1rp16yTJhx9+uMT5fx0fP378YvMPPvhgHnzwwSpj5eXlueqqq3LYYYd9r56++uqr9O3bN0lSUVGRN998M++//37WXHPN3HPPPTV2msJee+2VwYMH54orrsgvf/nLvPzyy7nllluqBCl+9atfpUGDBhk0aFCN7AkAAAAAACzOKQ7UBSvi99B1FQA1rFevXkmS1157LWPGjFls/vrrr6/88/Tp0yv/vP766+fiiy/OmDFjMm3atEybNi3Dhw/PnnvumYqKihx++OG54447vldP8+bNy2233ZbbbrstQ4cOzfvvv5/11lsvgwcPznbbbfe91lySSy65JGuuuWZOO+20lJeXZ9ddd82cOXNy0003pbS0NP/93/+dRx99NAMGDMgPf/jDyufmzJlTmSwFAAAAAACApRFyAKhhvXr1yvbbb59CoZC99torDz74YCoqKvLhhx/m9NNPz+233155RFS9ev/7P8OHHnpozj777Gy22WZp0aJFWrRokR49euTBBx/MiSeemCQ55ZRTMm/evOXuqXnz5ikUCikUCvnkk08ybNiw/OAHP8iOO+6YM844o2ZePEn79u3z5ptv5ve//32OOeaY/Pa3v83f/va37LXXXvniiy9y8sknp0ePHjn++OOTJHfddVc22mijNG7cOI0bN84ee+yxxNMtAAAAAAAAIElKCoVCobabKGbTp09PeXl5Kioqauy4d6D4ffbZZ9l3333z4osvLjZ38sknZ/jw4Xn11Vdz44035phjjvnO9aZNm5bWrVtn4cKFef7552vk9IV58+Zlq622yuuvv54HH3wwe+6551JrP/roo3To0CH169fPggULvtd+Rx99dP7yl79kzJgx+dGPfpT7778/ffr0Sc+ePXPKKafk448/zm9+85s0b948b775ZsrKyr7vqwEAAAAAwCprzpw5GT9+fDp06JDVVlutttthFbc8v4/L+tl7g5puEoCkdevWeeGFF/Lkk0/m6aefztSpU7Pmmmtm7733Trdu3SqvaujSpcsyrdeyZcu0bt06H3/8cSZNmlQjPTZq1Ci/+MUv8vrrr2fIkCHfGnKorueeey633HJL+vfvnx/96EdJkgEDBqRJkyZ54IEH0qJFiyRJ/fr186tf/Sp33nlnjj322BXWDwAAAAAAAMVJyAFgBSkpKckuu+ySXXbZpcr4Bx98kI8//jhrrLFGunbtukxrLVy4MBUVFUmSpk2b1liPTZo0SfLNyRMryty5c3Pcccdlo402yjnnnFM5/vrrr6dz586VAYck6dmzZ+UcAAAAAACwYpWUlCRJHP5fnM4777ycf/75Offcc3PeeefVdjsrTb3vLgGgJl122WVJkmOPPTaNGjVapmceeOCBfPXVVykpKUm3bt1qrJennnoqSbLhhhvW2Jr/1+9+97u8++67ueGGG1JaWlo5XlJSklmzZlWpXfT9ov9TBQAAAAAAsKIcccQRKSkpya233lrbrbAchBwAVoC33nor06dPrzK2YMGCXHzxxbnhhhvSsWPH/OY3v6mcmzBhQv7yl79kzpw5i601dOjQ/PKXv0yS/OIXv8haa61VZf6VV15Jp06d0qlTp8WevfLKKzNx4sTFxr/66qtcdNFFue+++9KgQYMceeSR3+s9v8tbb72V3//+9/nlL3+Z7bffvspc165d8/bbb+fFF1+sHLvxxhsr5wAAAAAAAFi6E044IW+//XZOOOGE2m5lpXJdBcAKcOONN+aGG27IFltskXXWWSdz587Nyy+/nE8//TQdO3bME088UXlVRJJMmzYthx56aH71q19l8803zzrrrJPZs2fnrbfeynvvvZck2XHHHXPdddctttdXX32VcePGLbGPK6+8Mqeeemo23njjbLTRRllttdXy8ccfZ+zYsfniiy9SWlqam266KZ07d17s2b59+2b06NFJvrlyIvnm2oytt966smaPPfZI//79l7h3oVDIsccem5YtW+bSSy9dbP63v/1tevfuXXmlxyeffJJXXnklHTt2zEEHHbS0Hy0AAAAAAABJWrVqlVatWtV2GyudkxwAVoDevXtn1113zYQJE3L//ffnmWeeSbt27XLppZfmb3/7W9q3b1+lvm3btjnzzDPTvXv3/OMf/8iDDz6YYcOGZebMmdlzzz1z55135sknn0xZWdly9XHxxRfnsMMOS0lJSZ5//vncfffdGT16dNq3b5/TTz89b731Vg499NAlPvvWW29l5MiRGTlyZF5//fXK8UVjI0eOzAcffLDUvW+88ca8+OKLueqqq9K8efPF5nfbbbc88MAD6dy5cx599NG8++67+Y//+I8899xzWX311ZfrPQEAAAAAgOq577770rNnzzRr1ixNmjRJjx49MmzYsCo106dPT7NmzdKgQYMlniS9SO/evVNSUpJrr722cmyHHXZISUlJnn322Tz33HP56U9/mpYtW2b11VdP9+7d8+c///lb+3vqqaey7777Zu21106jRo3SunXr7LPPPnnppZeWWF9SUlJ5PfYtt9ySbbbZJuXl5SkpKclHH32UkpKS3HbbbUmSI488srK+pKQk5513XpW1Zs+encsvvzxbb711mjdvntVWWy0bbbRR/t//+3+ZOnXqYnvfeuutKSkpyRFHHJFZs2bl7LPPTseOHVNaWpq11lorhx9+eCZPnrzEvp988sn87Gc/y5prrpmGDRumRYsW2WCDDXLIIYfk+eefr1J73nnnLbHfRR577LHsueeead26dRo1apQf/vCHOfDAA/Pqq68usf5f/xm9/vrr2XfffdOqVauUlpbmRz/6US6//PIUCoUlPrsylRTqQhdFbPr06SkvL09FRUWaNWtW2+0AAAAAAAAAq7A5c+Zk/Pjx6dChQ1ZbbbVvrV0UAvjP//zPXHjhhdl2223Tpk2bvPPOOxk7dmxKSkpy3333ZZ999ql8pl+/frn66qtzzjnn5He/+91ia37wwQfZYIMN0rRp00yePLnyL3DusMMOee6559KvX78MGjQonTp1yiabbJJ//vOfGT58eL7++uuceuqpufzyyxdb8/TTT8/ll1+eevXqpVu3bll33XUzYcKEvPLKK6lXr15uuummxa7mXvRuJ5xwQq699tpsu+22adu2bT788MPcddddOffcczN8+PB88MEH6dGjRzp27Fj5bJ8+fdKnT58kyT//+c/stttueeONN9KyZct07do1TZs2zejRo/OPf/wj7du3z7PPPpt111238vlbb701Rx55ZPr06ZMPP/wwEyZMyHbbbZd69erlpZdeymeffZZ11103Y8eOTXl5eeVzt912W+V7dO/ePe3bt8/s2bMzadKkjB07NieccEKuvPLKyvrzzjsv559/fs4999zFgg79+/fPRRddlJKSkmy77bZp165d3n777bz++uupX79+brzxxhx11FFVnln0z+iss87KFVdckfXXXz+bbrppPv744wwfPjwLFy7MSSedVKWH77I8v4/L/Nl7gWqpqKgoJClUVFTUdisAAAAAAADAKm727NmFt956qzB79uzvrE1SSFJo3rx54eWXX64yd+655xaSFDbccMMq4++++26hpKSk0Lp168KcOXMWW/O0004rJCmceOKJVcZ/8pOfVO538cUXV5l79tlnC40bNy4kKTz66KNV5m688cZCkkLHjh0LY8eOrTL33HPPFZo2bVpo1KhR4d13313iuzVr1qzw0ksvLfH9Dz/88EKSwi233LLE+a+//rrQo0ePQpLC0UcfXZg+fXrl3Pz58yvfdccdd6zy3C233FK5/6677lrls+Rp06YVNttssyX+HDp06FBIUnjhhRcW6+XTTz8tjB49usrYon9G5557bpXxRx55pJCksNpqqxUef/zxKnN//OMfC0kKDRs2LLz55ptV5v71n9H1119fZe6pp54qlJSUFOrXr1+YOHHiEn9eS7I8v4/L+tm76yoAAAAAAAAAVmEXXHBBttpqqypjZ599dsrLy/Puu+9WuZpigw02yO67757PPvss99xzT5VnZs+enZtvvjklJSX59a9/vcS9Nt9885x99tlVxn7yk5+kb9++SVLlJIevv/668oSCwYMHZ5NNNqny3Pbbb5/+/ftn3rx5ueGGG5a43+mnn56tt976W95+6R577LG8+OKL2WyzzXL99denadOmlXMNGjTIpZdems6dO+eZZ57Jm2++udjzTZo0yS233FLlVIIWLVrkrLPOSvLN1RT/6tNPP015eXl69uy52FqtW7fO5ptvvkx9X3bZZUmSvn37Zpdddqkyd/TRR2fPPffM/PnzM3DgwCU+v+++++a4446rMtarV6/suuuuWbhwYZ555pll6mNFaVCru8MKcu8rn9d2CwAUuf26/6C2WwAAAAAAWCl+9rOfLTZWWlqa9dZbL2PGjMnkyZPTtm3byrmTTjopw4YNy6BBg3LIIYdUjt9555354osvsssuu2SjjTZa4l6HHXbYEscPP/zwXH755ZXXItSvXz9jxozJP//5z6y//vrZYostlvjcDjvskCQZMWLEEuf322+/JY4vi4cffjhJ8vOf/zwNGiz+0Xq9evWy/fbb580338yIESPSuXPnKvPdunXL2muvvdhzG2+8cZJk8uTJVca7d++eZ599NocddlhOOumkbL755qlXb/nOLViwYEFefPHFJMkRRxyxxJqjjz46Dz300FLDCkv6fVjU96OPPrpY3yubkxwAAAAAAAAAVmHt2rVb4viiEwjmzJlTZXyXXXbJxhtvnJEjR+a1116rHL/mmmuSJCeccMJS9+rQocO3js+ePTtTp05Nknz44YdJkg8++CAlJSVL/OrevXuS5PPPl/yXoNu3b7/UXr7Lov379++/1P2vvfbape6/vD/Xa6+9Nuutt17+/Oc/p1u3bmnevHl22mmn/O53v8uECROWqeepU6dWrru0n/X666+fZPGQxffte2VzkgMAAAAAAADAKmx5TwsoKSnJiSeemL59+2bQoEG55ZZb8tJLL2XMmDFp37599txzz2r1UygUknxzXUWSrLXWWtl1112/9ZlWrVotcbxx48bfu49F+/fs2bMyGLA0P/7xjxcbW96f68Ybb5xx48bl8ccfz9NPP50RI0bkhRdeyNNPP50LLrggf/rTn6qcnLGiLG/fK5uQAwAAAAAAAADL5bDDDss555yTwYMH57LLLsugQYOSJL/61a++9UPy8ePHL3H8o48+SpKsttpqWWONNZKk8oqMNdZYI7feemvNNb+MFu2/99575/TTT18pezZo0CC9e/dO7969kyTTp0/PFVdckfPPPz/HHXdc9tlnnzRp0mSpz6+xxhopLS3N3Llz8+GHH2aTTTZZrGbRCRXrrLPOinmJFaxuRzAAAAAAAAAAqHOaNGmSo48+OnPmzMnFF1+ce++9N6uttlqOPvrob33uL3/5yxLHb7/99iTfnJrQoME3f1d/yy23TKtWrfLWW2/l73//e82+QJJGjRolSRYsWLDE+d133z1Jcs8991SeLrGyNWvWLOedd16aN2+er776Ku++++631jdo0CA9e/ZMkqUGQ26++eYkyY477lijva4sQg4AAAAAAAAALLcTTjgh9erVyxVXXJF58+bloIMOqjyFYWlee+21XHrppVXGhg8fnmuuuSZJcsopp1SON2zYMOeee24KhUL22WefDB8+fLH1Fi5cmKeffjovv/zycvffpk2bJFlqgGLvvffOlltumVdeeSVHHnlkPv/888Vqvvjii1x//fVLDUosq6+++ipXXHHFEvd44YUX8uWXX6Z+/fqVPX+b0047LUly3XXX5amnnqoyd+utt+aBBx5Iw4YNc9JJJ1Wr59riugoAAAAAAAAAllv79u2z1157ZejQoUm+CT18l379+uXss8/O7bffnk022ST//Oc/88ILL+Trr7/OSSedVHlNwyInnHBCJkyYkP/6r//Kdtttlx//+Mfp2LFjGjdunE8++SSvv/56vvzyy1x33XXZeuutl6v/Pn365Pzzz89VV12VN998M23btk29evWy1157Za+99kq9evUydOjQ7LHHHrntttty7733ZtNNN027du0yb968fPjhh3njjTeycOHCHHHEEZUnUHwf8+bNy2mnnZYzzjgjXbp0yQYbbJCGDRvmo48+qgxw/OY3v8kPfvCD71xr9913z29/+9tcdNFF2WWXXdKjR4+0a9cu77zzTkaPHp369evn+uuvz49//OPv3W9tcpIDAAAAAAAAAN/LrrvumiTZZptt0rVr1++s32efffLEE09krbXWyrBhw/LKK6+ka9euufXWW3PllVcu8ZlLL700L774Yn7xi19k5syZefTRR/Pwww/nn//8Z3bYYYf88Y9/zIEHHrjcvW+yySa57777ss0222TkyJG59dZb86c//SmjR4+urPnhD3+Yl19+Oddff326d++ecePG5d577608VeL444/PY489ltVWW2259/9XZWVluf7663PggQdm7ty5eeKJJzJ06NB89tln2XffffPUU0/l/PPPX+b1LrzwwjzyyCPZfffd8/bbb+fuu+/OP//5z+y///4ZMWJEjjrqqGr1W5tKCrV1eci/ienTp6e8vDwVFRVp1qxZbbfD/7j3lcWPcQGA5bFf9+9OwwIAAAAA1DVz5szJ+PHj06FDh2p/8L4sevbsmRdffDF33nlnDjrooKXW7bDDDnnuuefyzDPPZIcddljhfVE3LM/v47J+9u4kBwAAAAAAAACW2yOPPJIXX3wx7dq1y3777Vfb7bCK+P6XggAAAAAAAACwSpk6dWrOPPPMfPHFFxk2bFiSb66TaNiwYS13xqpCyAEAAAAAAACAZTJjxoz86U9/SoMGDbLeeuvltNNOy4EHHljbbbEKEXIAAAAAAAAAYJm0b98+hUJhuZ979tlna74ZVkn1arsBAAAAAAAAAIBlIeQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAotCgthsAAAAAAAAAYNV07yuf13YLy22/7j+o7RZWaU5yAAAAAAAAAIBads8992SHHXZIixYt0qRJk2y66aa59NJLM3/+/NpurU4RcgAAAAAAAACAWnTyySfngAMOyIsvvpju3btnt912y4QJE3LmmWemV69emT17dm23WGcIOQAAAAAAAABALRk6dGgGDhyYsrKyjBw5Mo899ljuu+++vPfee+nSpUuGDx+e/v3713abdYaQAwAAAAAAAADUkosvvjhJctZZZ6Vr166V461atcq1116bJBk0aFAqKipqpb+6RsgBAAAAAAAAAGrB5MmTM2rUqCTJwQcfvNh8z54907Zt28ydOzfDhg1b2e3VSUIOAAAAAAAAAFALxowZkyRp2bJlOnTosMSabt26Vald1Qk5AAAAAAAAAEAtGD9+fJKkXbt2S61p27ZtldpVnZADAAAAAAAAANSCGTNmJEmaNGmy1JqysrIkyfTp01dKT3WdkAMAAAAAAAAAUBSEHAAAAAAAAACgFjRt2jRJMmvWrKXWzJw5M0nSrFmzldJTXSfkAAAAAAAAAAC1oH379kmSiRMnLrVm0dyi2lWdkAMAAAAAAAAA1ILNN988STJ16tSMHz9+iTWvvvpqkqRr164rra+6TMgBAADqqAkTJuSEE07IRhttlMaNG2e11VZLhw4dcvjhh2fs2LFLfe7rr7/Obbfdlp133jk/+MEPUlpamrXXXju9evXKtdde+737uf/++7PXXntlrbXWSqNGjdK6detsu+22ueCCC5bp+bFjx6ZRo0YpKSlJx44dl1o3cODAdOzYMaWlpdlggw1yzTXXLLV28uTJKS8vz09/+tPlfh8AAAAAqG1t2rTJlltumSS58847F5sfPnx4Jk6cmNLS0vTu3Xtlt1cnCTkAAEAdNHLkyHTu3DnXXHNNZs2alZ/+9Kfp3bt3SkpKcvvtt6dbt2655557FnuuoqIiO+64Y4444oiMGjUq3bp1y7777psNNtggY8aMyc0337zcvcybNy8HHHBA+vTpkyeffDI//vGPs99++6Vz58754IMPctVVVy3TGocddlgWLFjwrXWDBg3KySefnK+++ip77LFHZs6cmRNOOCGXX375EutPOOGELFiwINdff/1yvxcAAAAA1AXnnHNOkmTAgAEZPXp05fjUqVPTt2/fJN/8d7Dy8vJa6a+uaVDbDQAAAIs79thjM2PGjBx77LEZNGhQGjZsmOSbUxrOPffcXHTRRTn22GPzs5/9LKuttlqSpFAopE+fPnn++edz3HHH5bLLLktZWVnlmvPmzcvf/va35e7lmGOOyT333JM+ffrkpptuSqtWrSrnvv7667zyyivfucYFF1yQv/3tbznhhBMyaNCgJdYsXLgw559/flq1apW//e1vadWqVT777LNsvPHGueiii9KvX7/Kn0OSDBkyJEOHDs2ll16a9dZbb7nfCwAAAADqgj59+qRfv3656qqrsvXWW2ennXZKkyZN8tRTT+XLL79Mjx49cuGFF9Z2m3VGSaFQKNR2E8Vs+vTpKS8vT0VFRZo1a1bb7fA/7n3l89puAYAit1/3H9R2C6zCpk6dWhkk+Oyzz/KDH1T9fVy4cGGaNm2a2bNnZ/To0ZX39t188805+uijs+uuu+bRRx+tkV6eeuqp7LzzzuncuXNGjx5dJWSwrEaNGpVtttkm++67b/r27Zsdd9wx66+/ft5///0qdR988EE6duyYY445JjfeeGPl+DHHHJM//vGPGTt2bDbZZJMkyYwZM7LxxhvnBz/4QUaNGpUGDeS3AQAAAJJkzpw5GT9+fDp06FD5l2MoDnfffXeuueaavP7665k/f37WX3/9HHLIITnllFPSqFGj2m7ve1me38dl/ezdfwkEAIA6prS0dJlr//VUhUXXRpxxxhk11svVV1+dJDn55JO/V8Bhzpw5Ofzww9OiRYsMGjQob7311lJrp06dmiRp2bJllfE11lgjSTJz5szKsbPPPjuffPJJhg4dKuAAAAAAwL+FAw44IAcccEBtt1Hn+a+BAABQx5SVlWW77bbLCy+8kN/+9reLXVdx3nnnZfbs2dl9993Ttm3bJMmnn36asWPHpn79+tl2223z4Ycf5u67785HH32UsrKybLXVVtl7772XK/G9cOHCPPXUU0mS7bffPp988kkGDx6ccePGpbS0NJtvvnl+/vOfV7kS4//q379/3n777dx5551p3br1t4Yc2rdvnyR5++23q4wv+n6dddZJkrz88su57rrrctJJJ6Vbt27L/D4AAAAAQPETcgAAgDropptuSu/evXPjjTfm4YcfTrdu3VK/fv2MGTMmkydPzqGHHppBgwZV1v/tb39L8s2pB3/84x9z2mmnZf78+VXWXG+99TJkyJDKKx++y4cfflh5esLLL7+cvn37VjlNIfnm1IjBgwenV69eiz0/YsSIXHHFFdl7771z0EEHfed+rVu3zjbbbJOHH344gwcPzh577JGHHnooDz/8cDbZZJOsu+66mT9/fo499ti0bdvWPYQAAAAAsAqqV9sNAAAAi9too43y0ksv5ac//WkmT56c+++/P3/9618zfvz4dOzYMTvssEOVe+kWXfUwbdq09OvXL3vvvXfeeOONzJgxIy+99FK22mqrfPjhh9ltt90qa7/Lv9YdffTR2WKLLTJq1KjMmDEjr7/+enr37p3PP/88e++9d957770qz3711Vc54ogjUl5enuuuu26Z3/uqq65K48aNc9BBB6VZs2Y5+OCD06RJk9x0001JkssuuyxvvPFGrrvuujRp0qTyudmzZ6dQKCzzPgAAAABAcRJyAACAOujFF19Mly5d8uabb+bOO+/MJ598kmnTpuXBBx/M/Pnzc/TRR+foo4+urF/0Af+CBQuyzTbb5J577knnzp1TVlaWrbfeOk888UTWXHPNfPzxx7n22muXqYd/DQ2ss846eeyxx9KtW7eUlZVl0003zQMPPJDOnTtn5syZGTBgQJVnzzrrrLz33nu58sors/baay/ze3fr1i1vvvlmzj///BxzzDG58MIL8+abb6Z79+754IMPcuGFF+aggw7K7rvvniS5+uqr07Zt26y++upp0qRJDj744GUOcQAAAAAAxUfIAQAA6pgvv/wy++yzTz7//PP89a9/zUEHHZQ111wzLVq0yJ577plHH300q6++em6++eY888wzSZKmTZtWPn/ccccttmbTpk1zyCGHJEmefPLJZerjX9c84ogjUlpaWmW+fv36lXv965rPPvtsBg0alN69e+ewww5bxrf+X+uuu27+8z//MzfeeGN++9vfpm3btkm+ea/GjRvnyiuvTPLNqQ/9+vXLFltskaFDh6Z///657777svvuu+frr79e7n0BAAAAgLqvQW03AAAAVPXwww/n888/z/rrr5+tttpqsfn11lsvW221VZ555pk8+eST2XHHHbPeeutVmV+SReMff/zxMvXRvn37lJSUpFAoLNeaQ4cOTaFQyIQJE7LDDjtUqf/yyy+TJJMnT66cu/LKK7PZZpt9ay+33XZbnnrqqdx8881p3bp1kmTAgAFZd911c++996ZBgwbZe++9U1FRkd///vd58skn89Of/nSZ3hMAAAAAKB5CDgAAUMdMmDAhSdKsWbOl1pSXlydJpk2bliTZcMMN07Rp08yYMSNTpkxZ4jOLxsvKypapj7Kysmy00UZ55513vteab7755lLXnjNnTp577rkk/xt8WJopU6bktNNOy4477pgjjzwySfLpp5/m448/zn777ZcGDf73X2t69uyZ3//+93n99deFHAAAAADg35DrKgAAoI5ZZ511kiTvvPNOKioqFpufP39+Ro8enSTp0KFDkqRBgwbp06dPkqVfR/HEE08kSbp3777Mvey///7LveaVV16ZQqGwxK9F12usv/76lWP/97SH/+vUU0/NrFmzcsMNN1SOlZSUJElmzZpVpXbR94vmAQAAAIB/L0IOAABQx+y+++5p0qRJZs+enWOOOSYzZ86snJs3b15OOeWUTJgwIQ0bNsx+++1XOXfOOeekYcOGuemmm/LQQw9VWfO//uu/Mnz48NSvXz+//vWvq8wNGTIknTp1yk477bRYL/369UuLFi0ybNiwKiGDJBk8eHDuuOOOyroV4cknn8yf//zn9O/fPxtssEHleOvWrdOmTZs888wz+eCDD5IkCxcuzM0335wk6dq16wrpBwAAAACoXa6rAACAOuYHP/hBrr/++hx55JG555578uyzz2bLLbdMw4YN8+qrr2by5MmpV69errrqqqy33nqVz3Xq1Ck33XRTjjrqqPzsZz9Lt27d0r59+7z55pt55513Ur9+/Vx33XXp0qVLlf0qKioybty4zJkzZ7FeWrVqlbvuuit77bVXjj/++Fx99dXZeOON88EHH2TMmDFJkv79+6d37941/nOYPXt2jj/++HTp0iVnnHHGYvP9+/fPcccdl27dumXHHXfMu+++m7///e/p0aNHevXqVeP9AAAAAAC1z0kOAABQBx1yyCF59dVXc8QRR6Rp06Z56qmn8sgjj6RBgwb5xS9+kZdeeinHH3/8Ys8dfvjhefnll/Pzn/88EyZMyP33358vv/wy+++/f0aMGJFjjjlmuXvZZZddMnbs2Bx++OH58ssvc//992fChAnp3bt3HnvssVxwwQU18cqLueCCCzJ+/PjcdNNNadiw4WLzxx57bG655Zass846eeihh/LZZ5/luOOOy8MPP+y6CgAAAAD4N1VSKBQKtd1EMZs+fXrKy8tTUVGRZs2a1XY7/I97X/m8tlsAoMjt1/0Htd0CAAAAAMBymzNnTsaPH58OHTpktdVWq+12WMUtz+/jsn727iQHAAAAAAAAAKAoNKjtBgAA6qIvH726tlsAoMg13+3E2m4BAAAA6rxi/G+x/p2/djnJAQAAAAAAAABqybhx43L11VfniCOOSJcuXdKgQYOUlJTkoosuqu3W6iQnOQAAAAAAAABALbnuuusycODA2m6jaDjJAQAAAAAAAABqSefOnXP66afnjjvuyNtvv51DDz20tluq05zkAAAAAAAAAAC15Je//GWV7+vVc1bBt/HTAQAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFBrUdgMAAAAAAAAAsKoaPXp0+vbtW/n9Bx98kCS54YYb8tBDD1WODxkyJGuvvfZK76+uEXIAAAAAAAAAoFY03+3E2m6h1k2fPj0jR45cbHzSpEmZNGlS5fdz585dmW3VWUIOAAAAAAAAAFBLdthhhxQKhdpuo2jUq+0GAAAAAAAAAACWhZADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAA4N9MoVCo7RZghfweCjkAAAAAAAAA/JuoV++bj4AXLlxYy53A//4eLvq9rAlCDgAAAAAAAAD/Jho2bJj69etn9uzZtd0KZMaMGWnYsGEaNmxYY2sKOQAAAAAAAAD8mygpKcnqq6+eiooKpzlQq2bPnp3p06enadOmKSkpqbF1G9TYSgAAAAAAAADUutatW+ejjz7KP/7xj7Rs2TKlpaU1+iEzLE2hUMjChQszY8aMTJ8+PaWlpWnVqlWN7iHkAAAAAAAAAPBvpFGjRmnTpk2mTJmSjz/+uLbbYRXUsGHDNG/ePK1atUr9+vVrdG0hBwAAAAAAAIB/M6uvvnratWuXBQsWZMGCBbXdDquQevXqpWHDhivs9BAhBwAAAAAAAIB/Uw0aNEiDBj4W5t9HvdpuAAAAAAAAAABgWQg5AAAAAAAAAABFoc6HHO65557ssMMOadGiRZo0aZJNN900l156aebPn7/ca82aNSuXXHJJunXrlmbNmqVhw4ZZa621sueee+aBBx5YAd0DAAAAAAAAADWlTl++cvLJJ2fgwIFp0KBBevXqlbKysjz99NM588wz8+CDD+bxxx9P48aNl2mtqVOnZvvtt89bb72VsrKybLvttmnevHnef//9PPzww3n44YfTr1+/DBw4cAW/FQAAAAAAAADwfdTZkxyGDh2agQMHpqysLCNHjsxjjz2W++67L++99166dOmS4cOHp3///su83gUXXJC33norW2yxRf7xj3/ksccey1133ZXXXnstDz/8cBo0aJCrrroqL7/88gp8KwAAAAAAAADg+6qzIYeLL744SXLWWWela9euleOtWrXKtddemyQZNGhQKioqlmm9p59+Okly5plnpmXLllXmevfunR133DFJ8tJLL1W7dwAAAAAAAACg5tXJkMPkyZMzatSoJMnBBx+82HzPnj3Ttm3bzJ07N8OGDVumNVdbbbVlqmvVqtWyNwoAAAAAAAAArDR1MuQwZsyYJEnLli3ToUOHJdZ069atSu132X333ZMkv//97zNt2rQqc8OGDcszzzyTtdZaK3vttdf3bRsAAAAAAAAAWIEa1HYDSzJ+/PgkSbt27ZZa07Zt2yq13+XMM8/MK6+8ksceeyzrrrtuevTokebNm+f999/Pa6+9lh49euRPf/pTysvLv3WduXPnZu7cuZXfT58+fZn2BwAAAAAAAACqp06e5DBjxowkSZMmTZZaU1ZWlmTZQwZNmjTJgw8+mNNPPz2zZs3KY489lrvuuiuvvfZa1lhjjey8885ZZ511vnOdSy65JOXl5ZVfi8IWAAAAAAAAAMCKVSdDDivCxx9/nB49euTqq6/ORRddlA8//DAzZ87MK6+8ki222CLnn39+evbsWRmwWJqzzz47FRUVlV8TJ05cSW8AAAAAAAAAAKu2OhlyaNq0aZJk1qxZS62ZOXNmkqRZs2bLtObhhx+eUaNG5cILL8w555yTDh06pEmTJtlyyy3z0EMPpUuXLhk7dmwuu+yyb12ntLQ0zZo1q/IFAAAAAAAAAKx4dTLk0L59+yT51lMSFs0tqv02kydPzhNPPJEkOeiggxabb9iwYfbbb78kyZNPPrmc3QIAAAAAAAAAK0OdDDlsvvnmSZKpU6dm/PjxS6x59dVXkyRdu3b9zvUmTJhQ+eelnbxQXl6eJJk2bdpy9QoAAAAAAAAArBx1MuTQpk2bbLnllkmSO++8c7H54cOHZ+LEiSktLU3v3r2/c7111lmn8s8jR45cYs3LL7+cJOnQocP3aRkAAAAAAAAAWMHqZMghSc4555wkyYABAzJ69OjK8alTp6Zv375JkhNOOKHyBIYkGTJkSDp16pSddtqpylrt2rWrDE2cdNJJ+eijj6rM/+Uvf8ldd92VJDn44INr/F0AAAAAAAAAgOprUNsNLE2fPn3Sr1+/XHXVVdl6662z0047pUmTJnnqqafy5ZdfpkePHrnwwgurPFNRUZFx48Zlzpw5i6138803Z8cdd8zbb7+djTfeOFtvvXVatWqVt99+O3//+9+TJIccckh+8YtfrJT3AwAAAAAAAACWT50NOSTJwIED06NHj1xzzTUZMWJE5s+fn/XXXz9nnXVWTjnllDRq1GiZ1+rcuXPefPPN/OEPf8gjjzySUaNGZe7cuWnRokV23XXXHHXUUTnggANW4NsAAAAAAAAAANVRUigUCrXdRDGbPn16ysvLU1FRkWbNmtV2O/yPe1/5vLZbAKDI7TxtcG23AECRa77bibXdAgAAAEDRWNbP3uutxJ4AAAAAAAAAAL43IQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAo1PmQwz333JMddtghLVq0SJMmTbLpppvm0ksvzfz587/3mvfff3/22muvrLXWWmnUqFFat26dbbfdNhdccEENdg4AAAAAAAAA1KQ6HXI4+eSTc8ABB+TFF19M9+7ds9tuu2XChAk588wz06tXr8yePXu51ps3b14OOOCA9OnTJ08++WR+/OMfZ7/99kvnzp3zwQcf5KqrrlpBbwIAAAAAAAAAVFeD2m5gaYYOHZqBAwemrKwszz33XLp27ZokmTJlSnr16pXhw4enf//+ueyyy5Z5zWOOOSb33HNP+vTpk5tuuimtWrWqnPv666/zyiuv1Ph7AAAAAAAAAAA1o86e5HDxxRcnSc4666zKgEOStGrVKtdee22SZNCgQamoqFim9Z566qncfvvt6dy5c+6+++4qAYckqVevXrbeeusa6h4AAAAAAAAAqGl1MuQwefLkjBo1Kkly8MEHLzbfs2fPtG3bNnPnzs2wYcOWac2rr746yTdXYDRs2LDmmgUAAAAAAAAAVoo6eV3FmDFjkiQtW7ZMhw4dlljTrVu3TJw4MWPGjMlBBx30restXLgwTz31VJJk++23zyeffJLBgwdn3LhxKS0tzeabb56f//znKSsrq9kXAQAAAAAAAABqTJ0MOYwfPz5J0q5du6XWtG3btkrtt/nwww8zc+bMJMnLL7+cvn37Vn6/yBlnnJHBgwenV69e37rW3LlzM3fu3Mrvp0+f/p37AwAAAAAAAADVVyevq5gxY0aSpEmTJkutWXTqwrKEDKZOnVr556OPPjpbbLFFRo0alRkzZuT1119P79698/nnn2fvvffOe++9961rXXLJJSkvL6/8WhS2AAAAAAAAAABWrDoZcqhphUKh8s/rrLNOHnvssXTr1i1lZWXZdNNN88ADD6Rz586ZOXNmBgwY8K1rnX322amoqKj8mjhx4opuHwAAAAAAAABIHQ05NG3aNEkya9aspdYsum6iWbNmy7xekhxxxBEpLS2tMl+/fv0cd9xxSZInn3zyW9cqLS1Ns2bNqnwBAAAAAAAAACtenQw5tG/fPkm+9ZSERXOLar9rvZKSkiTJeuutt8SaReMff/zxcnQKAAAAAAAAAKwsdTLksPnmmydJpk6dmvHjxy+x5tVXX02SdO3a9TvXKysry0YbbZQkmTJlyhJrFo2XlZUtd78AAAAAAAAAwIpXJ0MObdq0yZZbbpkkufPOOxebHz58eCZOnJjS0tL07t17mdbcf//9kyz9OoonnngiSdK9e/fv0zIAAAAAAAAAsILVyZBDkpxzzjlJkgEDBmT06NGV41OnTk3fvn2TJCeccELKy8sr54YMGZJOnTplp512Wmy9fv36pUWLFhk2bFhuuOGGKnODBw/OHXfcUVkHAAAAAAAAANQ9dTbk0KdPn/Tr1y8zZ87M1ltvnd133z377bdfOnbsmDfeeCM9evTIhRdeWOWZioqKjBs3Lh988MFi67Vq1Sp33XVXVltttRx//PHp3Llz9t9//3Tt2jUHHXRQCoVC+vfvv8wnQwAAAAAAAAAAK1edDTkkycCBA3PXXXdlm222yYgRIzJs2LC0adMmAwYMyNNPP53GjRsv13q77LJLxo4dm8MPPzxffvll7r///kyYMCG9e/fOY489lgsuuGAFvQkAAAAAAAAAUF0lhUKhUNtNFLPp06envLw8FRUVadasWW23w/+495XPa7sFAIrcztMG13YLABS55rudWNstAAAAABSNZf3svU6f5AAAAAAAAAAAsIiQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoVCvk0KtXr1x66aXfWXfZZZelV69e1dkKAAAAAAAAAFjFNajOw88++2zat2//nXXjxo3Lc889V52tAAAAAAAAAIBV3Eq5rmL+/PmpV8/NGAAAAAAAAADA97dSkgdvvPFG1lhjjZWxFQAAAAAAAADwb2q5r6s46qijqnw/fPjwxcYWWbBgQd566628/vrr2Wuvvb5fhwAAAAAAAAAA+R4hh1tvvbXyzyUlJXn//ffz/vvvf+szP/zhD/O73/1uuZsDAAAAAAAAAFhkuUMOt9xyS5KkUCjkqKOOSs+ePXP00UcvsbZRo0Zp06ZNtt566zRs2LB6nQIAAAAAAAAAq7TlDjkcfvjhlX8+77zzsvXWW1cZAwAAAAAAAABYEZY75PCvPvrooxpqAwAAAAAAAADg29Wr7QYAAAAAAAAAAJZFtU5yWGTkyJF58sknM3ny5MyZM2eJNSUlJfnTn/5UE9sBAAAAAAAAAKugaoUc5s2bl4MOOihDhw5NkhQKhaXWCjkAAAAAAAAAANVRrZDDhRdemCFDhqRJkyY59NBDs/HGG6dZs2Y11RsAAAAAAAAAQKVqhRz++7//O6uvvnpGjhyZH/3oRzXVEwAAAAAAAADAYupV5+FJkyalR48eAg4AAAAAAAAAwApXrZBDixYt0rJly5rqBQAAAAAAAABgqaoVcth5550zcuTIFAqFmuoHAAAAAAAAAGCJqhVyuPDCCzNt2rScd955NdQOAAAAAAAAAMCSNajOw88//3yOPPLIXHTRRXn00Uezxx57pF27dqlXb8nZicMOO6w62wEAAAAAAAAAq7BqhRyOOOKIlJSUpFAoZNSoUXn11Ve/tV7IAQAAAAAAAAD4vqoVcjjssMNSUlJSU70AAAAAAAAAACxVtUIOt956aw21AQAAAAAAAADw7erVdgMAAAAAAAAAAMuiWic5/F/vv/9+Pv/886yxxhrZcMMNa3JpAAAAAAAAAGAVV+2THBYuXJiLLrooa621VjbaaKP07NkzAwYMqJy/4447su222+bvf/97dbcCAAAAAAAAAFZh1Qo5LFy4MHvuuWfOPffcfPHFF9l4441TKBSq1PTo0SMvv/xy/vrXv1arUQAAAAAAAABg1VatkMP111+fxx57LDvuuGPGjx+fN998c7Ga9u3bZ/3118/jjz9ena0AAAAAAAAAgFVctUIOt912W1q2bJl77rknP/zhD5dat/HGG2fChAnV2QoAAAAAAAAAWMVVK+TwzjvvpHv37mnRosW31pWXl+ezzz6rzlYAAAAAAAAAwCquWiGHhQsXprS09DvrPv7442WqAwAAAAAAAABYmmqFHNZdd9387W9/+9aa+fPn580338wGG2xQna0AAAAAAAAAgFVctUIOu+22Wz766KPceOONS625+uqr8/nnn2ePPfaozlYAAAAAAAAAwCquQXUePuOMM3Lrrbemb9++eeutt3LAAQckSWbNmpXRo0fn7rvvzhVXXJFWrVrlhBNOqJGGAQAAAAAAAIBVU0mhUChUZ4Hnn38+++67b6ZNm5aSkpIqc4VCIc2bN88DDzyQnj17VqvRumr69OkpLy9PRUVFmjVrVtvt8D/ufeXz2m4BgCK387TBtd0CAEWu+W4n1nYLAAAAAEVjWT97r9Z1FUmy/fbb5+9//3v+3//7f/nxj3+cxo0bp7S0NB07dky/fv3yxhtv/NsGHAAAAAAAAACAlada11Ussuaaa2bAgAEZMGBATSwHAAAAAAAAALCYap/kAAAAAAAAAACwMlQr5DBx4sTcfvvtGTdu3FJr3nnnndx+++2ZNGlSdbYCAAAAAAAAAFZx1Qo5XH311TnyyCNTKBSWWlMoFHLEEUfk2muvrc5WAAAAAAAAAMAqrlohh8cffzwbb7xxOnXqtNSajTfeOD/60Y/y6KOPVmcrAAAAAAAAAGAVV+3rKjp27PiddR07dszEiROrsxUAAAAAAAAAsIqrVsjhq6++SuPGjb+zrnHjxpkxY0Z1tgIAAAAAAAAAVnHVCjmsvfbaef3117+zbuzYsWndunV1tgIAAAAAAAAAVnHVCjlst912effdd3Pfffctteavf/1r3nnnnWy//fbV2QoAAAAAAAAAWMVVK+Rw0kknpaSkJIcddlgGDhxY5UqKGTNmZODAgTnssMNSr1699OvXr9rNAgAAAAAAAACrrmqFHLp27ZpLLrkks2fPzqmnnpqWLVumXbt2adeuXVq2bJlTTz01X331VS666KJ07969pnoGAAAAAAAAAFZB1Qo5JMkZZ5yRoUOHZpNNNsnChQszadKkTJo0KQsXLswmm2ySv/71rznrrLNqolcAAAAAAAAAYBXWoCYW2WuvvbLXXnvl008/zYQJE5Ik7dq1y5prrlkTywMAAAAAAAAAVC/ksN5662XDDTfMo48+miRZc801BRsAAAAAAAAAgBWiWtdVfPrpp2nZsmVN9QIAAAAAAAAAsFTVCjmsu+66mT59ek31AgAAAAAAAACwVNUKOey33355/vnn8/nnn9dUPwAAAAAAAAAAS1StkMPZZ5+djTfeOD/96U8zYsSImuoJAAAAAAAAAGAxDarz8B577JH69etn7Nix2W677dK6deu0b98+jRs3Xqy2pKQkTz31VHW2AwAAAAAAAABWYdUKOTz77LOVfy4UCvn000/z6aefLrG2pKSkOlsBAAAAAAAAAKu4aoUcnnnmmZrqAwAAAAAAAADgW1Ur5PCTn/ykpvoAAAAAAAAAAPhW9Wq7AQAAAAAAAACAZVGtkxwWKRQKeeSRRzJixIh8/vnn2WqrrXLUUUclST7//PN88cUXWX/99VO/fv2a2A4AAAAAAAAAWAVVO+QwduzYHHjggXnvvfdSKBRSUlKS+fPnV4YcnnjiiRx66KEZOnRofvazn1W7YQAAAAAAAABg1VSt6yomTZqUnXfeOe+++2523333XHrppSkUClVq+vTpk4YNG+b++++vVqMAAAAAAAAAwKqtWiGHiy++OFOnTs2VV16Zhx56KKeffvpiNauvvno23XTTjBo1qjpbAQAAAAAAAACruGqFHB599NF06tQp/fr1+9a69u3b5+OPP67OVgAAAAAAAADAKq5aIYd//vOf6dKly3fWlZSUZPr06dXZCgAAAAAAAABYxVUr5NCkSZN8/vnn31k3fvz4tGzZsjpbAQAAAAAAAACruGqFHLp06ZLXXnstU6ZMWWrNP/7xj4wdOzZbbLFFdbYCAAAAAAAAAFZx1Qo5HHLIIZkxY0Z++ctf5quvvlpsft68eenbt2/mz5+fQw45pDpbAQAAAAAAAACruAbVefjII4/MHXfckQceeCCdOnXKbrvtliQZO3Zs+vXrlwceeCATJkzIzjvvnAMPPLBGGgYAAAAAAAAAVk3VOsmhfv36efDBB3PQQQdl8uTJ+eMf/5gkGTNmTAYNGpQJEybk5z//ef7617/WSLMAAAAAAAAAwKqrWic5JElZWVnuuOOO9O/fP8OGDcuHH36Yr7/+Om3bts3uu++ezTbbrAbaBAAAAAAAAABWddUOOSzSqVOndOrUqaaWAwAAAAAAAACoolrXVQAAAAAAAAAArCw1cpLDlClT8sc//jHPPvtsJk2alEKhkDZt2mTHHXfMUUcdldatW9fENgAAAAAAAADAKqzaIYf7778/Rx55ZCoqKlIoFCrH33777Tz55JMZMGBAbrnlluyzzz7V3QoAAAAAAAAAWIVVK+QwcuTI7L///lmwYEG6deuWww47LB06dEiSfPTRR7n99tszatSoHHjggXnhhRey1VZb1UjTAAAAAAAAAMCqp1ohhwsuuCALFy7Mf/3Xf+W0005bbP7Xv/51/vCHP+S0007LhRdemIceeqg62wEAAAAAAAAAq7B61Xl4xIgR6dy58xIDDouccsop6dKlS1588cXqbAUAAAAAAAAArOKqFXKYP39+unTp8p11nTt3zvz586uzFQAAAAAAAACwiqtWyKFTp06ZOHHid9ZNnjw5G220UXW2AgAAAAAAAABWcdUKORx33HEZPnx4nnvuuaXWPPfcc3nhhRdy3HHHVWcrAAAAAAAAAGAV16A6Dx9zzDF55513sscee+T444/PYYcdlg4dOiRJxo8fnz//+c+57rrrcvLJJ+fYY4+tkYYBAAAAAAAAgFVTSaFQKHzfh+vXr//9Ny4pyYIFC77383XF9OnTU15enoqKijRr1qy22+F/3PvK57XdAgBFbudpg2u7BQCKXPPdTqztFgAAAACKxrJ+9l6tkxyqkY+o1rMAAAAAAAAAwKqnWiGHr7/+uqb6AAAAAAAAAAD4VvVquwEAAAAAAAAAgGUh5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiUOdDDvfcc0922GGHtGjRIk2aNMmmm26aSy+9NPPnz6/22sOGDUtJSUlKSkqy884710C3AAAAAAAAAMCKUqdDDieffHIOOOCAvPjii+nevXt22223TJgwIWeeeWZ69eqV2bNnf++1v/jiixxzzDEpKSmpwY4BAAAAAAAAgBWlzoYchg4dmoEDB6asrCwjR47MY489lvvuuy/vvfdeunTpkuHDh6d///7fe/0TTzwxn376aY4//vga7BoAAAAAAAAAWFHqbMjh4osvTpKcddZZ6dq1a+V4q1atcu211yZJBg0alIqKiuVee8iQIbnjjjty6qmnpnv37jXTMAAAAAAAAACwQtXJkMPkyZMzatSoJMnBBx+82HzPnj3Ttm3bzJ07N8OGDVuutadMmZLjjz8+G220US644IIa6RcAAAAAAAAAWPHqZMhhzJgxSZKWLVumQ4cOS6zp1q1bldpl9atf/SpTpkzJn/70p6y22mrVaxQAAAAAAAAAWGnqZMhh/PjxSZJ27dottaZt27ZVapfF4MGDc++99+bEE09Mjx49qtckAAAAAAAAALBSNajtBpZkxowZSZImTZostaasrCxJMn369GVa85NPPsmvf/3rrL/++rn44ou/d29z587N3LlzK79f1v0BAAAAAAAAgOqpkyc5rAjHHntsvvjii/zxj3/M6quv/r3XueSSS1JeXl75tehECQAAAAAAAABgxaqTIYemTZsmSWbNmrXUmpkzZyZJmjVr9p3r3XbbbXnwwQdz/PHHZ4cddqhWb2effXYqKioqvyZOnFit9QAAAAAAAACAZVMnr6to3759knxrgGDR3KLabzNkyJAkyahRoxYLOXzyySdJktdee61ybvDgwVlrrbWWuFZpaWlKS0u/c08AAAAAAAAAoGbVyZDD5ptvniSZOnVqxo8fnw4dOixW8+qrryZJunbtuszrLnpmSb788ss899xzSZI5c+YsT7sAAAAAAAAAwEpQJ6+raNOmTbbccsskyZ133rnY/PDhwzNx4sSUlpamd+/e37ne0KFDUygUlvh1yy23JEl22mmnyrFlOR0CAAAAAAAAAFi56mTIIUnOOeecJMmAAQMyevToyvGpU6emb9++SZITTjgh5eXllXNDhgxJp06dstNOO63cZgEAAAAAAACAFa5OXleRJH369Em/fv1y1VVXZeutt85OO+2UJk2a5KmnnsqXX36ZHj165MILL6zyTEVFRcaNG+e6CQAAAAAAAAD4N1RnT3JIkoEDB+auu+7KNttskxEjRmTYsGFp06ZNBgwYkKeffjqNGzeu7RYBAAAAAAAAgJWkpFAoFGq7iWI2ffr0lJeXp6KiIs2aNavtdvgf977yeW23AECR23na4NpuAYAi13y3E2u7BQAAAICisayfvdfpkxwAAAAAAAAAABYRcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIpCnQ853HPPPdlhhx3SokWLNGnSJJtuumkuvfTSzJ8/f7nWGTNmTC655JLstNNOWXPNNdOwYcO0aNEi2223Xa655prlXg8AAAAAAAAAWLka1HYD3+bkk0/OwIED06BBg/Tq1StlZWV5+umnc+aZZ+bBBx/M448/nsaNG3/nOgsWLEjXrl2TJGVlZdlyyy2z5pprZtKkSXnppZcyfPjw3H777XnsscfSvHnzFfxWAAAAAAAAAMD3UWdPchg6dGgGDhyYsrKyjBw5Mo899ljuu+++vPfee+nSpUuGDx+e/v37L/N6W2yxRe6+++5MmTIlTz/9dP77v/87L7zwQsaMGZO11147r7zySk499dQV+EYAAAAAAAAAQHXU2ZDDxRdfnCQ566yzKk9hSJJWrVrl2muvTZIMGjQoFRUV37lWgwYN8uqrr2b//fdPaWlplbkuXbrk0ksvTZIMHjzYtRUAAAAAAAAAUEfVyZDD5MmTM2rUqCTJwQcfvNh8z54907Zt28ydOzfDhg2r9n6bb755kmT27NmZMmVKtdcDAAAAAAAAAGpenQw5jBkzJknSsmXLdOjQYYk13bp1q1JbHe+9916SpFGjRmnZsmW11wMAAAAAAAAAal6dDDmMHz8+SdKuXbul1rRt27ZK7fdVKBQqr6vYc889F7vOAgAAAAAAAACoGxrUdgNLMmPGjCRJkyZNllpTVlaWJJk+fXq19jr//PPz0ksvpaysLAMGDPjO+rlz52bu3LmV31d3fwAAAAAAAABg2dTJkxxWlttvvz0XXHBB6tWrl5tvvjkbbLDBdz5zySWXpLy8vPJr0YkSAAAAAAAAAMCKVSdDDk2bNk2SzJo1a6k1M2fOTJI0a9bse+1xzz335KijjkqS3HTTTdl///2X6bmzzz47FRUVlV8TJ078XvsDAAAAAAAAAMunTl5X0b59+yT51gDBorlFtcvjr3/9aw4++OB8/fXXueGGGyrDDsuitLQ0paWly70nAAAAAAAAAFA9dfIkh8033zxJMnXq1IwfP36JNa+++mqSpGvXrsu19tChQ/Mf//EfWbhwYa677rocc8wx1WsWAAAAAAAAAFgp6mTIoU2bNtlyyy2TJHfeeedi88OHD8/EiRNTWlqa3r17L/O6Dz74YA444IAsWLAg1113XY477rga6xkAAAAAAAAAWLHqZMghSc4555wkyYABAzJ69OjK8alTp6Zv375JkhNOOCHl5eWVc0OGDEmnTp2y0047LbbesGHDst9++2XBggW5/vrrBRwAAAAAAAAAoMg0qO0GlqZPnz7p169frrrqqmy99dbZaaed0qRJkzz11FP58ssv06NHj1x44YVVnqmoqMi4ceMyZ86cKuOfffZZ9t1338ybNy9t2rTJiBEjMmLEiCXue9lll6VVq1Yr7L0AAAAAAAAAgO+nzoYckmTgwIHp0aNHrrnmmowYMSLz58/P+uuvn7POOiunnHJKGjVqtEzrfPXVV5k7d26SZNKkSbntttuWWnveeecJOQAAAAAAAABAHVRSKBQKtd1EMZs+fXrKy8tTUVGRZs2a1XY7/I97X/m8tlsAoMjtPG1wbbcAQJFrvtuJtd0CAAAAQNFY1s/e663EngAAAAAAAAAAvjchBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAACA72HcuHG5+uqrc8QRR6RLly5p0KBBSkpKctFFFy31mUceeSS//OUv061bt6y99topLS1N06ZNs9lmm+Wcc87JlClTlruPESNGpG/fvtlmm22yzjrrZLXVVkuTJk3yox/9KCeeeGI++uij71zj+eefz3/8x3+kTZs2KS0tTatWrbLFFlvklFNOyfz58xerHzhwYDp27JjS0tJssMEGueaaa5a69uTJk1NeXp6f/vSny/1u/P/27jus6rr/4/jryFKZKoimCLhLceDeolbu1LJh5iqkHKk5Su/Mleltaq7Egbdad6agYQ7MvUhLzYmhloK4EpWUGQie3x/enF/nBhWxPJzb5+O6ui74jPd5f79dV0W8/HwA/DdCDgAAAAAAAAAAAEA+BAcH691339Xy5csVFRWlrKysB+756quvtGTJEt26dUvVq1fXiy++qMaNG+v8+fOaMmWKqlWrppMnTz5UHxEREQoODtbly5dVpUoVde3aVS1atFBCQoLmzZun6tWra9euXbnuNRqNGjp0qFq0aKFvvvlGvr6+evHFF+Xv76/4+HjNmjVL6enpZnvmzZunoUOHKjU1VR06dFBycrIGDRqkGTNm5PoZgwYNUmZmphYsWPBQzwUAuTEYjUajpZuwZomJiXJ1ddWtW7fk4uJi6XbwH6sPXLN0CwAAK9cmYaWlWwAAWDm3toMt3QIAAACAv1lISIhOnz6t2rVry9/fX5988om+/PJLTZo0SR9++GGue44ePapSpUqpVKlSZuPJycnq16+fwsLC1LBhQ+3fvz/PfURHR6tIkSLy8fExG8/IyNCoUaM0e/ZslS1bVrGxsbKxsTFbM27cOE2cOFGNGzfWihUr5O3tbTZ/8OBB1a5dW7a2tpKkrKwsU+/R0dFyd3dXfHy8nn76ad25c0fx8fGys7Mz7Q8PD1e3bt00bdo0jRw5Ms/PBODJk9ffvRNyeESEHAomQg4AgEdFyAEA8KgIOQAAAABPnj59+mj58uX3DTncz4ULF1SuXDlJ+st+93T79m25uLjojz/+0PHjx+Xn52eaO336tKpXr64SJUro1KlTcnNze2C9s2fPqmLFigoMDNSiRYtM44GBgQoJCdGxY8dUo0YNSVJSUpKefvppeXh46ODBg6agBADkJq+/e+efJAAAAAAAAAAAAEABkB0CKFSokNlpCI/CYDCoUKG7N9g7ODiYzQUHByszM1OBgYF5CjhI0o0bNyRJxYsXNxsvUaKEpLsnUmQbPXq0fvvtN61du5aAA4C/DP80AQAAAAAAAAAAACwsPT1dY8aMkSQ9++yzKlKkyCPXzMrK0oQJE5SamqpnnnlGFStWNJvfvHmzJKl58+a6efOmVq1apePHj6tQoUKqXr26XnzxRbm7u5vtyb4SIzo62mw8+/syZcpIkn744QcFBwdryJAhqlu37iM/CwBkI+QAAAAAAAAAAAAAPGaHDx/WnDlzZDQade3aNR08eFDXr19XvXr1tGTJknzVjIuL00cffSRJSkhI0JEjR3Tx4kVVrFhRoaGhphMdJCkjI0OnT5+WJMXExKhnz56Kj483qzdixAgtXrxYr776qmmsZMmSatSokTZu3KiVK1eqQ4cO2rBhgzZu3KgaNWrI29tbt2/fVv/+/eXl5aVJkybl61kA4F4IOQAAAAAAAAAAAACPWVxcnJYvX2421qZNGy1cuNB0GsLDSkhIyFHT399f//rXv1StWrUca41GoyRp0KBBevrppxUaGip/f39dvnxZU6dO1bJly9SzZ0+VKVNGzZo1M+2dM2eOAgIC9Nprr5nGXFxctHjxYknS9OnTdeLECUVERMjR0dG0Ji0tTYULF5bBYMjX8wGAJBV68BIAAAAAAAAAAAAAf6UuXbrIaDQqMzNTsbGxCgkJUXR0tKpXr67Vq1fnq2atWrVkNBp1584dXbx4UaGhoUpNTVWdOnU0Z84cs7XZAQdJKlKkiLZt26YWLVrI2dlZVapU0dKlS9WuXTtlZWVp/PjxZnvr1q2rqKgoTZgwQYGBgZo0aZKioqJUv359nT17VpMmTdJrr72mdu3aSZLmzp0rLy8vFS1aVI6OjurRo4du3LiRr2cEAEIOAAAAAAAAAAAAgIXY2NjI29tbb775piIjI2UwGNS3b1/99ttv+a5pMBhUpkwZde/eXfv375enp6eGDRumY8eOmdY4Ozubvu7WrZs8PDxy1BkwYIAkae/evcrIyDCb8/b21kcffaRFixbpww8/lJeXlyQpKChIRYoU0axZsyTdPfXh3XffVZ06dbR27VqNHTtWa9asUbt27XTnzp18PyOAJxchBwAAAAAAAAAAAKAA8PHxUUBAgJKTk7V169a/pKabm5u6du2qO3fuaN26daZxJycnU7ChfPnyue7NHr99+7auX7/+wM9avny5tm/frunTp6tkyZKSpKlTp8rb21urV6/WCy+8oNGjR2vYsGE6ePCgtm3b9qiPB+AJRMgBAAAAAAAAAAAAKCAcHR0lSfHx8X97zTp16kjSPQMMfx53cnK672dcv35dw4cPV0BAgPr27StJunr1qq5cuaJ69erJ1tbWtLZp06aSpKNHjz7cgwCACDkAAAAAAAAAAAAABUJ6eroiIyMlSZUrV/7L6u7YsSPXmt27dzfN53Z1RPZpElWqVJGLi8t9P+O9995TSkqKFi5caBozGAySpJSUFLO12d9nzwPAwyDkAAAAAAAAAAAAADwG8fHxCg4OVmJiYo65S5cu6Y033tDly5fl4+OjZ5991mw+PDxcVatWVevWrXPsnTJliq5du5Zj/Pfff9fgwYN16NAhubq66uWXXzab79mzpypUqKCoqCh99NFHZkGHnTt3aubMmZKkd999977PtW3bNn355ZcaO3asKlWqZBovWbKkypYtq507d+rs2bOSpKysLP3rX/+SJPn7+9+3LgDkxmA0Go2WbsKaJSYmytXVVbdu3Xpggg2Pz+oDOf9FDgDAw2iTsNLSLQAArJxb28GWbgEAAADA3+zw4cMaMGCA6fuzZ8/q+vXrKlu2rMqUKWMaDw8PV+nSpRUbGytfX1/Z29urVq1a8vHxkdFo1IULF3T48GFlZGToqaeeUkREhGrWrGn2WcuWLVPfvn3l7e2t2NhYszmDwSAbGxv5+fmpQoUKsrW11aVLl3TkyBGlpKTI1dVVYWFhOYITknT8+HEFBAQoISFBFSpUUK1atXTp0iUdOHBAd+7cUe/evbV06dJ7nrqQlpYmPz8/FS1aVD/99JPs7OzM5hctWqSgoCC5ubkpICBAZ86c0cmTJ9WkSRPt3buX0xwAmOT1d++295wBAAAAAAAAAAAAcE+JiYn68ccfc4xfvHhRFy9eNH2fnp4u6e7JBjNmzNCePXsUFRWl6OhopaWlyc3NTQ0bNlSnTp3Uv3//h/6DtfPmzdPevXt15MgRbd++XcnJyXJ2dpafn5+ef/55vfPOO/L09Mx1b40aNRQVFaXJkydr48aNWr9+vYoWLaoWLVqof//+evXVV+/72RMnTlRMTIz27duXI+AgSf3795e9vb2mT5+uDRs2yM3NTUFBQfrnP/9JwAFAvnCSwyPiJIeCiZMcAACPipMcAACPipMcAAAAAAAA8i6vv3sv9Bh7AgAAAAAAAAAAAAAAyDeuqwAAAAAAAAAAAFbn5ndzLd0CAMDKcQqjdeIkBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAHmDUqFEyGAwyGAz6+OOP81Xjzp07Wr58udq0aSMPDw85ODiodOnSatWqlebPn5/rntTUVE2ZMkW1atWSo6OjnJ2dVa9ePc2dO1dZWVm57snMzNTYsWPl5eUlBwcH+fn5KSws7J59HT16VHZ2durfv3++ngsAAAB4nGwt3QAAAAAAAAAAFGT79u3TjBkzZDAYZDQa81Xj1q1b6ty5s/bs2SMXFxc1btxYbm5uunTpko4cOaLExEQNGDDAbE9CQoJatWqlY8eOydnZWU2aNJGNjY1++OEHvfvuu1q/fr02bNgge3t7s30ffPCBZsyYofLly6tDhw7auXOnXn75ZYWFhemll14yW5uVlaXAwEC5u7tr2rRp+Xo2AAAA4HEi5AAAAAAAAAAA95Camqo+ffqodOnSqlevntauXfvQNYxGo7p06aI9e/YoKChI06dPl5OTk2k+IyNDx48fz7Hv7bff1rFjx1S9enVFRETIy8tLknT16lV17txZW7du1YQJEzR58mTTnvj4eM2dO1fPPPOMDh48qKJFi+rUqVOqUaOGxo8fnyPkMGfOHB06dEihoaFyc3N76GcDAAAAHjeuqwAAAAAAAACAexg9erR++eUXLVq0SK6urvmqsXTpUu3atUvPP/+8FixYYBZwkCR7e3vVrVvXbOzy5ctavXq1JGnu3LmmgIMkeXp6avHixZKkzz77TElJSaa5EydOKCMjQ6+//rqKFi0qSapatapatGihkydPKjEx0bQ2Li5OY8eOVceOHdW9e/d8PRsAAADwuBFyAAAAAAAAAIBc7Nq1S3PnzlWvXr3Uvn37fNeZM2eOJGnkyJF53nPo0CEZjUbZ29urefPmOeZr1KghDw8PpaWlKSIiwjR+48YNSVLx4sXN1pcoUUKSlJycbBobOHCgDAaD5s+fn/eHAQAAACyM6yoAAAAAAAAA4L8kJyerX79+8vT01KxZs/Jd5+rVqzp27JhsbGzUuHFjnTt3TqGhoYqNjZWTk5MaNGigF154Qfb29jk+X5Lc3NxUqFDuf1bN3d1d165d008//aRXXnlFkuTj4yNJio6ONlsbHR0te3t7ubu7S5JCQ0O1YcMGzZ492+yUCAAAAKCgI+QAAAAAAAAAAP9lxIgRiomJUXh4uIoVK5bvOsePH5d09ySFkJAQDR8+XLdv3zZbU758eYWHh6tGjRqmsZIlS0qS4uPjlZycnOOKizt37uj8+fOSpJiYGNN4rVq15O3traVLl6pDhw5q2LChQkJCdPz4cXXu3Fn29va6efOmhgwZovr162vQoEH5fjYAAADAEriuAgAAAAAAAAD+ZMuWLVq4cKFeffVVdenS5ZFqZV8fkZCQoHfffVcvvPCCTpw4oaSkJO3fv18NGjTQuXPn1LZtW9NaSWrQoIGKFi0qSQoJCclR94svvlBqaqokKTEx0TRub2+vuXPnKi0tTc8//7xcXV01fPhwlS5dWp999pkk6f3339f169cVEhJidkpEdj0AAACgICPkAAAAAAAAAAD/cevWLb355pvy8PDQ3LlzH7me0WiUJGVmZqpRo0YKCwtT9erV5eTkpIYNG2rr1q3y9PTUlStXNH/+fNM+Z2dnDR8+XJI0evRozZkzR1euXFF8fLxCQkI0ePBg2dnZSVKO6yw6deqko0ePasyYMQoMDNSnn36qqKgolS9fXpGRkVq8eLFGjhwpPz8/ZWVl6aOPPpKHh4ccHR3l6uqqgQMHEngAAABAgUXIAQAAAAAAAAD+Y+jQobp48aLmzZsnd3f3R67n7Oxs+jooKCjX+Z49e0qStm3bZjY3btw4vf322/rjjz80ZMgQPfXUU/L09FRgYKD8/f3Vr18/SVLx4sVz1K1WrZomT56sRYsWacSIESpevLgyMjLUv39/VahQQR999JEkaeTIkZo0aZJeeOEFrVu3TkFBQQoODtYbb7zxyM8OAAAA/B1sLd0AAAAAAAAAABQU4eHhsrW11fz5881OVpCkU6dOSZKWLFmibdu2qVSpUlq5cuV965UvXz7Xr3Nbc+XKFbNxGxsbBQcHa8CAAVq3bp3i4uLk5OSkli1bqkOHDqZwhJ+fX56ebcqUKYqOjtb27dtVuHBhJSUl6fPPP1fjxo1NV2J06tRJcXFxWrVqlc6cOaPKlSvnqTYAAADwuBByAAAAAAAAAIA/yczM1O7du+85Hxsbq9jYWHl7ez+wVuXKleXs7KykpCRdv3491zXZ405OTrnO+/n55QgyGI1Gff/995KkZ5999oF9nD59WlOmTFGfPn3UqlUrSdLPP/+sjIwMNW7c2Gxt06ZNtWrVKh09epSQAwAAAAocrqsAAAAAAAAAgP+4efOmjEZjrn/17t1bkjRp0iQZjUbFxsY+sJ6tra26dOkiKed1FNm2bt0qSapfv36e+wwNDVVcXJwaNWqkOnXq3Het0WhUUFCQXF1dNWPGDNO4wWCQJKWkpJitz/4+ex4AAAAoSAg5AAAAAAAAAMAjmjdvnqpWrapevXrlmBszZozs7Oy0ePFibdiwwWzu008/VWRkpGxsbDRw4ECzucuXL+vChQs56m3YsEH9+/eXg4ODFixY8MDelixZot27d+uzzz5T8eLFTePPPPOMHBwcFB4eroSEBElSamqq/v3vf0uSateu/eAHBwAAAB4zrqsAAAAAAAAAgEd0/fp1nT59WqVKlcoxV7VqVS1evFj9+vVTp06dVLduXfn4+CgqKkqnTp2SjY2NgoODc1xJceDAAXXr1k01a9aUr6+v7OzsdPz4cZ06dUpOTk5au3atatSocd++rl69qlGjRqlt27bq0aOH2ZyTk5Pee+89TZkyRdWqVVOTJk10+PBhxcTE6LXXXlPFihUf/cUAAAAAfzFOcgAAAAAAAACAv1nv3r31ww8/6MUXX1RcXJy+/fZb3bx5U927d9e+ffsUGBiYY0/16tXVq1cvpaamauvWrVq/fr2MRqOGDRumU6dOqW3btg/83KFDhyojI0PBwcG5zk+ePFnTpk2To6Ojvv32W2VkZOj999/XsmXLHvWRAQAAgL+FwWg0Gi3dhDVLTEyUq6urbt26JRcXF0u3g/9YfeCapVsAAFi5NgkrLd0CAMDKubUdbOkWAAAA/qfd/G6upVsAAFg5fnYvWPL6u3dOcgAAAAAAAAAAAAAAAFaBkAMAAAAAAAAAAAAAALAKtpZuAAAAAAAAAE8erpoEADyqNpZuAAAAWAQnOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCgU+5BAWFqaWLVuqWLFicnR0VM2aNTVt2jTdvn07X/V++uknde/eXZ6enipcuLB8fX01ePBgxcfH/8WdAwAAAAAAAAAAAACAv1KBDjkMHTpUL7/8sr7//nvVr19fbdu2VVxcnN5//321atVKaWlpD1Vv9erVatiwoVavXi1vb2+98MILKlSokObNm6caNWro119//ZueBAAAAAAAAAAAAAAAPKoCG3JYu3atZs+eLScnJ/3444/avHmz1qxZo19++UV+fn6KjIzU2LFj81zv8uXL6t27tzIzM7Vw4UIdOHBAq1at0pkzZ9SzZ09dvXpVPXr0kNFo/BufCgAAAAAAAAAAAAAA5FeBDTl88sknkqQPPvhA/v7+pnF3d3fNnz9fkjRv3jzdunUrT/VmzZql1NRUtWnTRv379zeN29jYKDg4WK6urjp48KC2bNnyFz4FAAAAAAAAAAAAAAD4qxTIkMOlS5d08OBBSVKPHj1yzDdt2lReXl5KT09XREREnmqGh4ffs56Tk5M6d+4sSfrmm2/y2zYAAAAAAAAAAAAAAPgbFciQw5EjRyRJxYsXl6+vb65r6tata7b2fpKSkvTrr7+a7XuUegAAAAAAAAAAAAAA4PGztXQDuYmJiZEklStX7p5rvLy8zNbeT2xsrOnre9XMa7309HSlp6ebvs++LiMxMfGBfeDxSU1OsnQLAAArl5iSZukWAABWrhA/JwL3xc/uAIBHxc/uAIBHxc/uBUv279yNRuN91xXIkENS0t0fch0dHe+5xsnJSVLewgXZ9e5XM6/1pkyZogkTJuQYzw5JAAAAAABw1/uWbgAAAAAAANwXP7sXRElJSXJ1db3nfIEMORRko0eP1nvvvWf6/s6dO0pISFCJEiVkMBgs2BkAAPirJCYmysvLSxcuXJCLi4ul2wEAAAAAAP+Fn90BAPjfYzQalZSUpKeeeuq+6wpkyMHZ2VmSlJKScs81ycnJkpSn/3jJrpddM7fUR17rOTg4yMHBwWzMzc3tgT0AAADr4+Liwv8oAQAAAACgAONndwAA/rfc7wSHbIUeQx8PzcfHR5J04cKFe67Jnsteez/e3t6mr+Pi4h65HgAAAAAAAAAAAAAAePwKZMihdu3akqQbN24oJiYm1zWHDh2SJPn7+z+wnouLiypWrGi271HqAQAAAAAAAAAAAACAx69AhhzKli2revXqSZJWrFiRYz4yMlIXLlyQg4OD2rdvn6eaXbt2vWe95ORkrV+/XpLUrVu3/LYNAAD+Rzg4OGjcuHE5rqgCAAAAAAAFAz+7AwDw5DIYjUajpZvIzdq1a9W1a1c5OTlp9+7dphMWbty4oYCAAJ04cULDhw/X9OnTTXvCw8M1evRolSlTRtu3bzerd/nyZVWqVEmpqalatGiRAgMDJUlZWVnq27evvvzyS9WrV08//vijDAbD43tQAAAAAAAAAAAAAACQJwU25CBJQ4YM0Zw5c2RnZ6fWrVvL0dFR27dv182bN9WkSRNt3bpVRYoUMa1ftmyZ+vbtK29vb8XGxuaoFxYWptdee01ZWVlq0KCBfHx8dPDgQZ07d06enp6KjIw0XWsBAAAAAAAAAAAAAAAKlgJ5XUW22bNna9WqVWrUqJH27duniIgIlS1bVlOnTtWOHTvMAg550b17d/3444/q1q2bzp07p/DwcGVlZWngwIE6duwYAQcAAAAAAAAAAAAAAAqwAn2SAwAAAAAAAAAAAAAAQLYCfZIDAADA4xQWFqaWLVuqWLFicnR0VM2aNTVt2jTdvn3b0q0BAAAAAPBEO336tObOnas+ffrIz89Ptra2MhgM+vjjjy3dGgAAeMxsLd0AAABAQTB06FDNnj1btra2atWqlZycnLRjxw69//77Wr9+vbZs2fLQV2UBAAAAAIC/RnBwsGbPnm3pNgAAQAHASQ4AAOCJt3btWs2ePVtOTk768ccftXnzZq1Zs0a//PKL/Pz8FBkZqbFjx1q6TQAAAAAAnljVq1fXiBEj9NVXXyk6OlpvvPGGpVsCAAAWwkkOAADgiffJJ59Ikj744AP5+/ubxt3d3TV//nw1a9ZM8+bN09ixY+Xq6mqpNgEAAAAAeGK99dZbZt8XKsSf4QQA4EnFfwUAAIAn2qVLl3Tw4EFJUo8ePXLMN23aVF5eXkpPT1dERMTjbg8AAAAAAAAAAPwJIQcAAPBEO3LkiCSpePHi8vX1zXVN3bp1zdYCAAAAAAAAAADLIOQAAACeaDExMZKkcuXK3XONl5eX2VoAAAAAAAAAAGAZhBwAAMATLSkpSZLk6Oh4zzVOTk6SpMTExMfSEwAAAAAAAAAAyB0hBwAAAAAAAAAAAAAAYBUIOQAAgCeas7OzJCklJeWea5KTkyVJLi4uj6UnAAAAAAAAAACQO0IOAADgiebj4yNJunDhwj3XZM9lrwUAAAAAAAAAAJZByAEAADzRateuLUm6ceOGYmJicl1z6NAhSZK/v/9j6wsAAAAAAAAAAOREyAEAADzRypYtq3r16kmSVqxYkWM+MjJSFy5ckIODg9q3b/+42wMAAAAAAAAAAH9CyAEAADzxxowZI0maOnWqDh8+bBq/ceOGBgwYIEkaNGiQXF1dLdIfAAAAAAAAAAC4y2A0Go2WbgIAAMDShgwZojlz5sjOzk6tW7eWo6Ojtm/frps3b6pJkybaunWrihQpYuk2AQAAAAB4Ih0+fNj0BxEk6ezZs7p+/brKli2rMmXKmMbDw8NVunRpS7QIAAAeE0IOAAAA/xEaGqrPP/9cR48e1e3bt1WhQgX17NlTw4YNk729vaXbAwAAAADgibVr1y4FBAQ8cF1MTIx8fHz+/oYAAIDFEHIAAAAAAAAAAAAAAABWoZClGwAAAAAAAAAAAAAAAMgLQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBUIOQAAAAAAAAAAAAAAAKtAyAEAAAAAAAAAAAAAAFgFQg4AAAAAAFgpg8Egg8Fg6Taszvjx42UwGDR+/Hiz8WXLlslgMKhPnz4W6QsAAAAAADwYIQcAAAAAAGBRu3btksFgUMuWLS3dCgAAAAAAKOBsLd0AAAAAAABAQdC1a1c1bNhQrq6ulm4FAAAAAADcAyEHAAAAAAAASa6urgQcAAAAAAAo4LiuAgAAAACA/wFr1qxR06ZN5eLiIkdHRzVp0kQRERH3XJ+ZmamQkBC1bNlSxYsXl4ODg3x9ffXOO+/owoULue755ptv9NZbb6l69eoqVqyYChcuLF9fX/Xr10+nT5/OdU+fPn1kMBi0bNkyRUVF6ZVXXlHp0qVlY2Oj8ePHq2XLlgoICJAk7d69WwaDwfSXj49Pvt9HWlqaxo8fr0qVKsnBwUGlS5dW7969FRcXd889y5Ytk8FgUJ8+fXLMbdu2TZ06dZKnp6fs7OxUrFgxVapUST179tSePXtyrbd9+3Z169ZNpUuXlr29vUqWLKmuXbtq//79ua4/cOCARo0apfr166tUqVKyt7eXp6enOnXqpG3btt2z77CwMLVp00YlSpSQnZ2dSpQooWeeeUaBgYE6fvx4rntWr16ttm3bysPDQ/b29ipTpox69uypn3/++Z6fAwAAAABAQcBJDgAAAAAAWLlx48Zp0qRJaty4sdq3b69Tp05p37596tixo9asWaOuXbuarU9KSlLnzp21a9cuOTk5qU6dOvLw8NCJEye0YMEChYWFaevWrapdu7bZvpdfflkODg565pln1KpVK2VmZioqKkpLly5VaGiotmzZosaNG+fa4759+/T222+rdOnSat68udLS0uTs7Ky2bduqcOHC2rx5szw9PdW2bVvTHnd393y9j9TUVLVu3Vo//PCDHB0d9dxzz6lIkSLavHmzNm7cqA4dOjxUveXLl6tv376SpPr16ysgIEBpaWm6ePGiVq5cKXd3dzVv3txsz4gRIzRjxgwVKlRIdevWVbNmzRQXF6dvv/1W69ev1+LFi001s40ZM0Y7d+5UtWrVVKdOHTk6Ours2bPasGGDNmzYoFmzZmnIkCFmeyZOnKhx48bJ1tZWjRs3VpkyZXTr1i3FxcVpyZIlqlatmmrUqGFan5mZqddff12hoaFycHBQnTp1VKZMGZ05c0ZfffWVvvnmG33zzTdmfx8AAAAAAChIDEaj0WjpJgAAAAAAwMMzGAySJDc3N3333Xdq0KCBaW78+PGaMGGCKleunOOUhddff10rVqxQx44dtWTJEpUsWdI0N2vWLA0bNkyVKlVSdHS0bGxsTHOrVq1Sx44d5ejoaBozGo0KDg7WwIEDVa1aNZ04ccLUl3T3JIfly5dLkj744ANNnjxZhQqZHyy5a9cuBQQEqEWLFtq1a9cjv5eRI0dq+vTpqlq1qrZv366nnnpK0t3wQ48ePfTtt99KuhsOGT9+vGnfsmXL1LdvX/Xu3VvLli0zjZcvX14xMTHau3evmjZtavZZ8fHxunTpklkgZPHixerfv78qVqyoNWvWmIUM9uzZo44dOyo9PV1RUVGqVKmSaW7Tpk2qVauWSpcubfYZ+/fvV9u2bZWWlqaYmBiVKVNGkpSenq5ixYrJxsZGhw4dUpUqVcz2nT9/Xmlpaapatapp7B//+Ic++eQTNWjQQF9//bV8fX1Nc6tXr9arr74qFxcXnTt3Tm5ubnl53QAAAAAAPFZcVwEAAAAAgJWbOHGiWcBBkkaPHi1XV1edOXPG7PqJ6Ohoff3113rqqae0YsUKs4CDJA0dOlTt27fXL7/8ok2bNpnNvfLKK2YBB+lu0GLAgAFq1KiRTp48qejo6Fx7rFy5sj7++OMcAYe/WlpamhYuXChJ+uyzz0wBB0kqWrSoFixYoMKFCz9UzatXr8rV1TVHwEGSSpYsaRZwuHPnjik4sXLlSrOAgyQ1b95cY8eOVUZGhqnPbO3atcsRcJCkRo0aaeDAgbp9+7YpoCFJiYmJSktLU/ny5XMEHCTJ29vbLOCQkJCgzz77TIULF9aaNWvMAg6S9NJLLykoKEi///67/v3vf9/njQAAAAAAYDmEHAAAAAAAsHKdOnXKMebg4KDy5ctLki5dumQaj4iIkNFoVLt27eTs7JxrvZYtW0q6e8XEf/v11181b948DR06VG+++ab69OmjPn366OrVq5KU49SIbF26dDE7FeLvcvjwYSUlJcnd3T3XKxdKlSql55577qFq1q9fX7du3VKvXr30008/6c6dO/dce+TIEV2+fFkVKlRQnTp1cl1zv/d748YNffHFFxo1apQCAwNN73f37t2SzN+vh4eHfHx8dPz4cQ0fPlw///zzfZ9j586dSktLU5MmTUynQTxMbwAAAAAAFAS2lm4AAAAAAAA8mnLlyuU67uLiIkn6448/TGPnzp2TJC1ZskRLliy5b91r166Zvs7KytKgQYO0cOFC3e/my8TExFzHfXx87vtZf5WLFy8+8PP++wSDB5k/f746duyoL7/8Ul9++aWcnZ1Vr149tWrVSm+88YbZ+89+v2fPnjW7tiM3f36/0t1rLoYNG6aUlJR77vnv9/vFF1/opZde0syZMzVz5kwVL15cDRo00LPPPqs33nhD7u7uOXrbvn37Q/cGAAAAAEBBQcgBAAAAAAAr9zBXQGSfQlCrVi3VrFnzvmv/fAXG7NmztWDBApUqVUozZ85U48aN5enpabr6oUePHvr666/vGYAoUqRInnssaJ5++mmdPn1aW7Zs0Y4dO7Rv3z7t3btXO3bs0MSJE7VkyRL17NlT0v+/31KlSun555+/b90/BxB++uknBQUFycbGRv/85z/VqVMnlStXTkWLFpXBYNCiRYsUFBSU4/02a9ZMsbGx2rhxo3bv3q19+/Zp8+bN2rRpk8aNG6fw8HC1bt3arLeKFSuqSZMm9+3tz9dcAAAAAABQkBByAAAAAADgCeLl5SVJatKkiebNm5fnfaGhoZKkhQsXqnPnzjnmf/nll7+mwUeUfQ1DbGzsPdfcb+5ebG1t1b59e7Vv317S3RMVZs6cqQkTJigoKEhdu3aVo6Oj6f2WKFFCy5Yty3P9sLAwGY1GDR48WKNGjcoxf7/3W6RIEb300kt66aWXJN09heHDDz/UokWL1K9fP50/f17S//+9r1KlykP1BgAAAABAQZL3P+oBAAAAAACsXrt27SRJ69atM7vG4kESEhIkSd7e3jnmTp48qaNHj+a7J3t7e0lSZmZmvmtkq1OnjpycnHT9+nVt2bIlx/zVq1dzHX9YLi4uGj9+vNzc3JSamqozZ85IkurVqyd3d3f9/PPPOnnyZJ7r3e/9/vHHH1qzZk2ea3l4eGjatGmSpLi4OP3++++SpNatW8ve3l67du1SfHx8nusBAAAAAFCQEHIAAAAAAOAJUrt2bb344ou6cOGCunXrluupBikpKfrqq6909epV09jTTz8tSfr8889N1x5I0pUrV9SrV69HCiiULVtW0t3TCm7fvp3vOtLdUw369+8vSRo2bJiuXLlimktLS9M777yjtLS0PNdLTU3VzJkzde3atRxze/fu1c2bN2VjY2N6Bjs7O40bN05Go1Fdu3ZVZGRkjn1ZWVnasWOHfvjhB9NY9vtdvny5kpKSTON//PGHBgwYoJiYmBx1zp8/r5CQECUmJuaYW79+vSSpWLFicnFxkSR5enpq8ODBSklJUadOnXTixIkc+9LT07Vu3TqdOnXqvu8FAAAAAABL4boKAAAAAACeMEuXLtXNmze1adMmValSRTVr1pSvr6+MRqNiY2N17NgxZWRkKDo6Wp6enpKkMWPG6LvvvtPixYu1c+dO+fv7KzExUbt371b58uXVtWtXhYeH56ufcuXKqW7dujp06JD8/PxUt25dFS5cWO7u7po6depD15s4caIiIyN14MABVa5cWQEBASpcuLD27t2r27dvq1evXvriiy/yVCsjI0PDhw/XyJEj5efnp0qVKsnOzk6xsbGmkMI//vEPeXh4mPYMGjRIcXFx+vTTT9WsWTNVq1ZNFStWVJEiRfTbb7/p6NGjunnzpoKDg9WwYUNJUt++fTV79mwdOXJEvr6+atasmWxsbLR3716lpaVpyJAhmj17tllvv//+uwIDAzVgwADVqlVLvr6+ku6GRY4cOSKDwaBPP/1UNjY2pj1Tp07VlStXtGLFCtWqVUs1a9ZU+fLlZWtrq4sXL+ro0aNKSUnRpk2bVLVq1Yd+9wAAAAAA/N04yQEAAAAAgCeMs7OztmzZohUrVqhNmzaKi4tTeHi4duzYobS0NL3++usKDw9XhQoVTHsaNGigQ4cOqXPnzkpJSdG6det09uxZDR48WPv37zedFpBfa9asUY8ePZSYmKhVq1ZpyZIlWrlyZb5qOTo6aufOnRo7dqw8PT21efNm7dmzR61bt9ahQ4dMYYC8cHJy0oIFC/TKK68oPT1dW7du1dq1axUfH69u3bpp+/btmjBhQo5906ZN0/fff6/XX39dycnJ+u6777Rx40ZdvnxZLVu2VEhIiF555RXTejc3Nx06dEgDBgyQm5ubNm3apP379+u5557T4cOHVatWrRyfUaFCBc2aNUsdO3bUzZs3FRERoY0bNyolJUW9evXSwYMH9eabb5rtsbW11VdffaWIiAh16dJF8fHxWrdunTZv3qyEhAR16tRJK1asUPPmzfP+wgEAAAAAeIwMRqPRaOkmAAAAAAAAAAAAAAAAHoSTHAAAAAAAAAAAAAAAgFUg5AAAAAAAAAAAAAAAAKyCraUbAAAAAAAAuJcRI0bo+vXreVrbtGlTvfXWW39zRwAAAAAAwJIIOQAAAAAAgAJr9erVOn/+fJ7XE3IAAAAAAOB/m8FoNBot3QQAAAAAAAAAAAAAAMCDFLJ0AwAAAAAAAAAAAAAAAHlByAEAAAAAAAAAAAAAAFgFQg4AAAAAAAAAAAAAAMAqEHIAAAAAAAAAAAAAAABWgZADAAAAAAAAAAAAAACwCoQcAAAAAAAAAAAAAACAVSDkAAAAAAAAAAAAAAAArAIhBwAAAAAAAAAAAAAAYBX+D1264Q4lyyhBAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 2600x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "\n",
+    "plt.figure(figsize=(26, 8))\n",
+    "draw(df, 'heart_disease', 'hypertension')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ:</strong> Ở nhóm người không bị cao huyết áp có 4.69% bị bệnh tim. Ở nhóm người bị cao huyết áp có 13.36% bị bệnh tim. Hai con số này giữa hai nhóm có sự chênh lệch đáng kể\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 141,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[  26.44549287  248.55450713]\n",
+      " [ 452.55450713 4253.44549287]]\n",
+      "Chi-Square value: 62.45225691271743\n",
+      "Degree of Freedom:  1\n",
+      "p-value: 0.000000000000003\n",
+      "Có mối tương quan giữa bệnh tim và cao huyết áp.\n"
+     ]
+    }
+   ],
+   "source": [
+    "heart_hyp_count = df[(df['heart_disease'] == 1) & (df['hypertension'] == 1)].shape[0]\n",
+    "heart_no_hyp_count = df[(df['heart_disease'] == 1) & (df['hypertension'] == 0)].shape[0]\n",
+    "no_heart_hyp_count = df[(df['heart_disease'] == 0) & (df['hypertension'] == 1)].shape[0]\n",
+    "no_heart_no_hyp_count = df[(df['heart_disease'] == 0) & (df['hypertension'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa bệnh tim và cao huyết áp.\"\n",
+    "H1 = \"Có mối tương quan giữa bệnh tim và cao huyết áp.\"\n",
+    "\n",
+    "\n",
+    "heart_arr = [heart_hyp_count, heart_no_hyp_count]\n",
+    "noheart_arr = [no_heart_hyp_count , no_heart_no_hyp_count]\n",
+    "\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(heart_arr)\n",
+    "nij.append(noheart_arr)\n",
+    "\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(2 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_smoke = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_smoke))\n",
+    "if p_smoke <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định chi – square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa bệnh tim mạch và bệnh cao huyết áp.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa bệnh tim mạch và bệnh cao huyết áp.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/1sb4R3t.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 400px; height:400px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa bệnh tim và cao huyết áp</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 62.45225691271743</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  1</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000000000003</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa bệnh tim và cao huyết áp.</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa bệnh tim mạch và bệnh cao huyết áp..\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Có mối tương quan giữa cao huyết áp và bệnh tim mạch. Kết quả quan sát từ biểu đồ nhóm người bị cao huyết áp có nguy cơ bị tim mạch cao hơn. Điều này phù hợp với kết quả nghiên cứu của y khoa\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\">3.4 Mối tương quan giữa đột quỵ và các đặc trưng khác:</h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\" >3.4.1. Đột quỵ và giới tính:</h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ:</strong> Nam giới có nguy cơ bị đột quỵ nhiều hơn phụ nữ\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 142,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACDkAAAKzCAYAAAAeb0RXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8IUlEQVR4nOzdebjXY/4/8Odplfb0jaFSsqsxCI1MCIOY7IxlLFnH0jCMdRpkS2PGhCH7MCNLKBqRNaOiophsjaVUxtKiU6i0nN8fpvObM6fVOTl99Hhc1+e6znnf9/16v95d5+Kq9/Pcd1FJSUlJAAAAAAAAAABWc9WqugEAAAAAAAAAgBUh5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEGpUdQOFbtGiRfn3v/+d+vXrp6ioqKrbAQAAAAAAAICCU1JSktmzZ2f99ddPtWpL369ByKGC/v3vf6dFixZV3QYAAAAAAAAAFLzJkyenefPmSx0Xcqig+vXrJ/nmD7pBgwZV3A0AAAAAAAAAFJ5Zs2alRYsWpe/gl0bIoYIWH1HRoEEDIQcAAAAAAAAAqIDF7+CXZukHWQAAAAAAAAAArEaEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQahR1Q0AfF9Nnjw511xzTZ544olMmTIl9evXz3bbbZfu3btn3333LTf/0ksvzWWXXbbMmm+//XY233zzFe7hyy+/zKOPPppXX301r776asaMGZPZs2enTZs2ee+995a5tqSkJP369ctdd92V1157LcXFxalbt2622mqrHH744Tn11FNTq1atcuv69euXK6+8Mu+9917WXXfddOvWLT169Ej16tWX2N9WW22VevXqZcyYMUusBwAAAAAAVI6SkpLMnz8/ixYtqupW+B6rVq1aatasmaKiolVSX8gBYBUYPXp09t5778yYMSM/+MEPss8++2T69Ol5/vnn89RTT+V3v/vdUgMNW2+9dX70ox8tcaxhw4Yr1ce7776bo446amXbT5IcccQReeCBB1KtWrXstNNO2WCDDfLpp59m+PDhGTFiRO67774899xzqVOnTumav//97znqqKPSuHHj7Lvvvnnttddy2WWXZfr06bnhhhvK3eO3v/1tJk2alGHDhgk4AAAAAADAKvL111/ns88+y1dffZWFCxdWdTusAapXr5611147zZo1q/R3QEIOAJVs7ty5OfjggzNjxowcfvjhueuuu0qDAKNHj84+++yTnj17Zuedd86ee+5Zbv0BBxyQSy+9tFJ6qV+/fo4//vhsu+222WabbTJz5szst99+y103YMCAPPDAA2nYsGFeeOGFbL311qVjH3zwQTp16pSXX345ffr0yQUXXFA61qNHj9SqVSsvv/xyNt1003z55Zdp3759br755lx88cVZb731Sue+8sorueGGG/LLX/4yO+20U6U8L8D3zcruCrQkN910U04//fQkyQknnJDbb799pXpo1apVPvzww+XOu+yyy/K73/2uzLUFCxbk1ltvzT333JO33norCxYsSJs2bXLYYYfl3HPPLROU+299+vTJDTfckMmTJ6dly5Y566yzSp/hf3300UfZcssts+OOO+app55aqWcDAAAAWBN89dVXmTx5cqpXr57GjRunTp06qV69+ir7LXvWbCUlJVm4cGHmzJmT4uLiTJw4Mc2bN8/aa69dafcQcgCoZAMGDMjkyZPTqFGj9O3bt8wLnO233z6/+93v8qtf/So9e/ZcYsihMrVp0yZ33nln6fdDhw5doXXPPfdckuSoo44qE3BIko022iinnXZaLr744rz00kul17/++uuMGzcunTt3zqabbpokqVu3bo4++uj89re/zahRo9K1a9ckycKFC3PyySdnvfXWy9VXX12RRwT43qrIrkCLffDBBznvvPNSVFSUkpKSb9XHIYcckmnTpi1xbMaMGRk0aFCSZLfddiszNm/evOy333555plnUrt27XTo0CENGjTIyJEj87vf/S4PP/xwhg4dmkaNGpVZd+ONN+ass87KD37wg+y777556aWXcsYZZ2Tu3Lk555xzyvVwxhlnZMGCBenbt++3ej4AAACA77tp06alZs2a2XDDDZd4tDSsCvXq1UuTJk3y4YcfZtq0aWnZsmWl1RZyAKhko0ePTpJst9125V7cJMkee+yRJBk+fHg++eSTMrsbrC7WWmutFZrXtGnT0q9nzpyZhQsXpkmTJmXmrLPOOkmSL774ovTaddddl7Fjx2bAgAFp0KBBJXQM8P1S0V2BkmTRokU57rjjUlRUlGOOOSZ33333t+rl2muvXepY7969M2jQoGy66ab5yU9+UmasR48eeeaZZ7LBBhvkySefTNu2bZMks2fPzhFHHJHHH388p59+eu69997SNQsXLsxll12Wpk2b5p///GeaNm2azz77LFtssUWuuOKKdO/ePTVr1iydP2DAgAwcODC9e/fORhtt9K2eDwAAAOD7bMGCBfnyyy/zgx/8QMCB71z16tXTpEmTfPzxx1mwYEFq1KiceEK1SqkCQKnFL/MXv9z/X4uDASUlJRkzZky58TFjxuSCCy7IySefnN/85jfp169fZs+eveoaXoJ99tknSdKvX7+8/vrrZcY++OCD3HzzzSkqKspJJ51Uer1Zs2ZZe+218/bbb5eZv/j7DTbYIEkyceLEXHLJJTnwwANzwAEHrMKnAChcK7IrUJL07NlzqTX69OmTF198Mddcc01atWq1SvpcvFtQt27dylyfP39+br755iTJFVdcURpwSL45Sun2229PnTp1ct999+W9994rHZs4cWKmTZuWAw88sPT/l82aNctBBx2UmTNnlvl/zOzZs3PmmWfmRz/6Uc4+++xV8nwAAAAAhW7BggVJktq1a1dxJ6ypFv/sLf5ZrAxCDgCVrFmzZkm+CQMsyX9fnzBhQrnxQYMG5Zprrsltt92Wa6+9NkcddVRatGiRe+65Z9U0vASdO3fOxRdfnJkzZ2bbbbdNp06dcsQRR6Rz587ZfPPNU6tWrTz66KPp0KFDmXVdu3bNP//5z/zxj3/MrFmz8tRTT+Wuu+5Ks2bNSuf+8pe/TI0aNXLjjTd+Z88DUGhWdleg/zV+/PhcfPHF2WWXXfLLX/5ylfQ4fPjwjB8/PjVq1Mixxx5bZuztt98uDf0t7vW/rbfeemnbtm1KSkry8MMPl16fPn16kqzQrkAXXnhhPvnkk9x2222VlgAHAAAA+L4qKiqq6hZYQ62Knz0hB4BK1rlz5yTJq6++mrFjx5Yb/+8zw2fNmlX6dZs2bXLVVVdl7NixmTFjRmbMmJFhw4Zlv/32S3FxcY499tgyW3qvaldccUX+9re/Ze21186LL76Y+++/P88//3xKSkqyxx57ZKuttiq35uqrr866666bc845Jw0bNsxee+2VuXPn5rbbbkvt2rVz33335cknn0yvXr2y/vrrl66bO3duFi5c+J09G8DqriK7Ai1cuDDHHntsioqKcscdd6yyv8Au3sWhS5cu5Y5e+u8wwvKe4dVXXy29tnjHieXtCvTyyy/n5ptvTvfu3dO+ffsKPAUAAAAAUGiEHAAqWefOndOpU6eUlJSka9euGTRoUIqLi/PBBx/k3HPPzT333FN6nni1av//P8O/+MUvcuGFF+ZHP/pRGjdunMaNG6djx44ZNGhQzjzzzCTJ2Wefna+//nqVP8P8+fPTrVu3HH300TnggAMybty4fPnll/nXv/6VM844I7fddlu23377vPbaa2XWtWrVKm+88UauueaanHTSSfntb3+bf/7zn+natWs+//zznHXWWenYsWNOPfXUJMkDDzyQzTbbLHXq1EmdOnWy7777LnF3C4A1TUV2Bfr973+fkSNH5sorr0ybNm1WSX9ffvllHnzwwSTJCSecUG58cf//2+t/W3z9v/tv1qxZfvzjH+fxxx/P/fffn9mzZ+e+++7L448/nh/+8IfZcMMNM3/+/Jx88slp0aJFLr/88sp8LAAAAACgAAg5AKwC/fv3T8eOHTNlypR07do1jRo1Sps2bfKHP/whv/rVr7L11lsnKb8d99JceumlqV69eqZOnZqRI0euytaTJL17985dd92VLl265K9//Wvatm2btddeO5tsskmuu+66nHzyyZkxY0Z+9atflVvbtGnTnHfeebn11ltz+eWXZ/PNN0+SnHvuuZk5c2ZuvfXWFBUV5dFHH83Pf/7zNGvWLA8//HCuu+66DB8+PLvttluZ3wAGWBN9212B3njjjVxyySXZaaed0r1791XW34MPPpgvvvgi6623Xrp06VJufOONN07Lli2TJLfddlu58aFDh2b8+PFJyvafJNdff33q1KmTI444Ig0aNMiRRx6ZunXrlta59tprM27cuNx8882pW7du6bo5c+akpKSk0p4RAAAAAFg9ObwWYBVo1qxZXnzxxTzzzDN57rnnMn369Ky77rrZf//90759+9KjGtq1a7dC9Zo0aZJmzZrl448/zpQpU1Zl60mSv/zlL0mSI444YonjRx55ZG655ZYMGzYs8+bNS+3atZdZ74UXXshdd92VHj16ZMstt0yS9OrVK3Xr1s1jjz2Wxo0bJ0mqV6+eX/7yl+nXr19OPvnkynsggAKzeFegf/zjH+natWtuuummdOrUKdOnT89NN91UuivQ/PnzS3cFWrBgQY499thUq1Ytd955Z5ndgirbHXfckSQ55phjUqPGkv9Kcckll+SEE07IDTfckAYNGuSEE05IgwYN8uyzz+b0008v1/9i7du3zxtvvJG77747U6ZMScuWLXPsscemRYsWef/993P55ZfniCOOyD777JMkueGGG9K7d+9MmTIlderUyQEHHJAbbrhhqcdkAAAAAMCqtPj4WL+Qs+oIOQCsIkVFRdlzzz2z5557lrn+/vvv5+OPP84666yTbbfddoVqLVy4MMXFxUmS+vXrV3qv/2vSpElJkgYNGixxvGHDhkmSRYsWZebMmVl33XWXWmvevHk55ZRTstlmm+Wiiy4qvf7aa6+lbdu2pQGHJNl5551LxwDWdP37989BBx2U4cOHp2vXrmXGzjrrrAwbNiyvvPJK6a5AV155ZcaMGZNrrrkmm2222Srr61//+leGDx+eJOnWrdtS53Xr1i1TpkxJz549c/nll5c5WqJt27Y58cQTc9VVVy1xV6MNN9wwv/vd78pdP+WUU1KnTp386U9/SvLNrg+/+tWvsv/+++fGG2/MW2+9lUsvvTTvvfdeXn755VUa9AAAAAAAqoaQA8B37Nprr02SnHzyyalVq9YKrXnsscfy1VdfpaioKO3bt1+V7SVJNthgg0yYMCEjR44s92ItSV5++eUk3wQumjZtusxaV155Zf71r39l6NChZXZ8KCoqypdffllm7uLvF6ccAdZkK7sr0IABA5IkgwYNyuDBg8vUmjhxYpLk8ccfz6677prkmyMjvo0777wzyTfBtOWFKX73u9/l6KOPziOPPJL3338/tWrVSocOHXLwwQfn0ksvLdP/8tx999159tlnc+edd6ZZs2ZJvtkVaMMNN8xDDz2UGjVqZP/9909xcXGuueaaPPPMM/npT3/6rZ4RAAAAAFh9CTkArAJvvfVWmjdvXmYnhAULFqR379655ZZbsvHGG+fiiy8uHZs0aVL+8Y9/5JBDDslaa61VptbAgQNz4oknJkmOOuqorLfeemXGR40alWOOOSZJ8s4771RK/4ccckh+//vf57rrrsuee+5Z+kIs+WaXhR49eiRJDjvssFSvXn2pdd56661cc801OfHEE9OpU6cyY9tuu22GDx+e4cOHp2PHjkmSW2+9tXQMgG+3K9CwYcOWWu+TTz7JJ5988q37WbhwYe65554kyQknnLBCazbaaKOce+655a6/+OKLSVLu2ZZk2rRpOeecc7Lbbrvl+OOPT5J8+umn+fjjj3PIIYeUOTJj5513zjXXXJPXXntNyAEAAAAAvofs3wqwCtx6661Zd911s/POO+fwww/PAQcckObNm+fiiy9OmzZt8vTTT6du3bql82fMmJFf/OIX+b//+7906tQpRxxxRA444IBsuummOfDAAzNjxozstttuufnmm8vd66uvvsr48eMzfvz4JfZy4IEHpkOHDunQoUNOO+20JMmUKVNKr3Xo0CG33357mTU9evTI9ttvnzlz5mS33XbLDjvskMMPPzwdO3ZM+/btM3Xq1LRr1y7XXHPNUv8MSkpKcvLJJ6dJkybp3bt3ufHf/va3pS/v9t9//+y444658847s/HGG+eII45YoT9ngDXVknYFeu2111JSUrLEzyWXXJLkm2DC4mvfxuDBg/Pxxx+nfv36OfTQQ791/y+//HKGDRuWFi1aZP/991/u/F//+tf58ssvc8stt5ReW7zrj12BAAAAAL5f3njjjRx88MFp2rRp1l577bRr1y5/+tOfsmjRorRq1SpFRUWlO5cutmDBgtx+++3Zdddd06RJk9SuXTutW7fOL3/5y0yePLncPYYOHZqioqLsuuuumT9/fq655ppstdVWqVOnTtZZZ50cdNBBefvtt5fa40svvZR99tknjRo1Sr169dK+ffvSHVCXZc6cOfnDH/6QDh06pFGjRllrrbWy2Wab5bzzzsv06dPLzf/LX/6SoqKiHHfccZkxY0bOOuustGnTJrVr1y7zC6prGjs5AKwCXbp0ycSJEzNmzJi88sorqV27djbbbLOcc845OeOMM1KnTp0y81u0aJHzzz8/o0ePznvvvZcxY8bk66+/TtOmTbPffvvlyCOPzOGHH/6tzhYfO3ZsPvzwwzLX5s2bl5EjR5Z+v/fee5cZr1+/foYNG5a+ffumf//+efPNNzNmzJjUrVs322+/fQ4++OCcfvrp5Z7jv916660ZPnx4HnzwwTRq1Kjc+N57753HHnssPXv2zJNPPpm11147P//5z/OHP/wha6+99ko/J8D3zcruClQRAwYMyIUXXpgNNtggzz777FLnLf6L2s9//vMyYb0l+fzzz/PZZ5+VO9Li5ZdfzsEHH5yioqLceuutZXZhWJJnnnkmf/3rX3PllVdmk002Kb3erFmzNG/ePM8//3zef//9tGnTJgsXLizt0a5AAAAAAIXnhRdeyD777JM5c+akTZs22XPPPTN9+vScf/75pUdp/6/Zs2ena9euGTp0aOrVq5ftttsu//d//5dx48aVvud4+umns80225RbO3/+/HTp0iUjRoxIp06dssUWW2TUqFEZMGBAnn/++YwdOzatWrUqs6Z///454ogjsnDhwrRt2zbt2rXL5MmTc+KJJ+bNN99c6rP9+9//zt57751x48alSZMm2X777VO/fv2MGTMmv//979O/f/8MHTo0G264Ybm106ZNS/v27TNz5sz85Cc/yXbbbbfCR6J/HxWVfNtf4yJJMmvWrDRs2DDFxcVl/gEaAAAq4qyzzsott9yS7bbbLhtssEHmzZuXl19+OZ9++mk23njjPP300+X+grU0l156aS677LKccMIJ5XbvSb5JhB9//PHZcMMNy6XgF/vss8/SvHnzzJ8/Py+//HJ23HHHZd7ztddeyzbbbJMtttgiG2+8cerWrZvx48dn7NixqVmzZm655ZbSoyeWZs6cOWnXrl3WXnvtvPrqq6lZs2aZ8VtvvTWnnHJKGjVqlN122y3/+te/8uabb6Zjx4558cUX7eYAAAAArPHmzp2bCRMmpHXr1uWOy17dzJkzJ5tsskk++uijnHPOOendu3fpL3++9dZb6dy5cz799NMkyYQJE0r/beyoo45Kv379st9+++WOO+5Is2bNSmv+6U9/ytlnn51NNtkkb7/9dukR3EOHDs1uu+2WJNlmm20yePDg0uPC586dmwMOOCBDhgzJySefXGZ30U8++SSbbrppZs+enT/+8Y85++yzS8eeffbZ7Lfffpk7d26SlNlNtaSkJD/5yU8yfPjwnHDCCbnuuutSv379JN/8YtMFF1yQP/zhD9ltt93y3HPPla5b/O92SbL77rvnkUceKbh30ivzM7ii794dVwEAAKuhLl26ZK+99sqkSZPy6KOP5vnnn0/Lli3Tu3fv/POf/1zhgENl+etf/5r58+dnq622Wm7AIUk22GCDnHLKKalWrVpeeOGFDBgwIDNnzsxJJ52UcePGLTfgkCQ9e/bMhAkTctttt5ULOCTfHNdx1113ZYMNNsjf//73fPbZZznllFPy+OOPCzgAAAAAFJiHHnooH330UTbccMNcffXVZXa33nLLLdOjR49ya95+++3cd999WX/99dOvX78yAYfkm18k6tKlS95999088cQT5dYXFRXlrrvuKg04JMlaa62Vyy67LMk3u4z+tzvuuCOzZ89Ohw4dygQckm9CCKeccsoSn23IkCEZPnx4fvSjH6Vv376lAYckqVGjRnr37p22bdvm+eefzxtvvFFufc2aNXPrrbcWXMBhVRFyAACA1dBPf/rTDBw4MJMmTcrcuXNTXFycUaNG5Te/+c0yjwtakksvvTQlJSVL3MUhSY477riUlJQsdReHJDnnnHNSUlKyxL9kLcn//d//pW/fvnnjjTdSXFycuXPn5oMPPsitt95a7giLpbn66quzcOHCZYYqjjvuuLzxxhv5+uuv89lnn6Vv375p2LDhCtUHAAAAYPXxwgsvJEkOPfTQJf7Cy1FHHVXu2uDBg1NSUpJ99tmnTHDgv+26665JkhEjRpQba9myZbbeeuty17fYYoskyUcffVTm+tChQ5faS5Ice+yxS7z++OOPJ0kOPvjgJR7fWq1atXTq1GmpfW6zzTbZaKONllh7TbTsA3ChQD00ampVtwBAgTtkh/+r6hYAAAAAANYYU6ZMSZKl7mDaqFGj0qMMFvvggw+SfLPDwh133LHM+lOnln9/2LJlyyXOXbxjwrx585bYY+vWrZe4bmnXF/fZo0ePJe5Isbw+v+tdXVd3Qg4AAAAAAAAArBaWdQzp/44tWrQoSfKjH/1oiTsy/Lcl7Rb630dirEqL+9x5553Tpk2bZc7daqutyl1b2Z1dv++EHAAAlmDmkzdUdQsAFLhGe59Z1S0AAABAwdhggw2SZKlHqhYXF2fmzJllrrVo0SJJ0rFjx9x4442rsr0k3/T4zjvvLLXHpV1f3Of++++fc889dxV1t+b4bqIpAAAAAAAAALAUnTp1SpL0798/CxYsKDfer1+/ctf22WefJMljjz2WuXPnrtoGk+yyyy5JknvvvXeJ4/fcc88Sry/us3///ikpKVk1za1BhBwAAAAAAAAAqFKHHnpofvCDH2TixIm5+OKLS494SJJ33nknPXv2LLdmm222ycEHH5zJkyfnoIMOWuJOCl9++WXuvffefPrppxXu8YQTTki9evXy0ksv5frrry8zNnTo0PTt23eJ6/bff/9sv/32GTVqVI4//vhMnTq13JzPP/88ffv2XWLAg7IcVwEAAAAAAABAlVp77bXzt7/9Lfvuu2969+6dRx55JO3bt8+MGTMydOjQ7L///hk5cmQmTZqUWrVqla676667MnPmzDzxxBPZbLPNsvXWW6d169YpKSnJxIkT8/rrr+frr7/O22+/nXXXXbdCPa6//vq57bbbcvTRR+dXv/pVbr/99rRt2zYfffRRXnzxxZx11lm57rrryq2rVq1aBg4cmH333Td33313HnrooWy99dZp2bJlvv7663zwwQcZN25cFi5cmOOOOy41aniNvyx2cgAAAAAAAACgynXu3DkjR47MgQcemBkzZmTgwIGZMmVKrrzyyvztb3/LJ598kmrVqqVJkyala+rXr5+nnnoq/fr1yx577JFJkyZlwIABee655zJnzpwcddRRGTBgQNq0aVMpPf785z/P0KFDs9dee+XDDz/Mo48+mtmzZ6dv37754x//uNR166+/fl5++eX07ds3O+ywQ8aPH5+HHnoow4YNS5KceuqpGTJkSNZaa61K6fP7rKjEoR8VMmvWrDRs2DDFxcVp0KBBVbfDfzw0qvwWLwCwMvaYcX9VtwBAgWu095lV3QIAAABruLlz52bChAlp3bp1wb88/8c//pFddtkl7dq1yz//+c+qbocVtDI/gyv67t1ODgAAAAAAAABUualTp2bChAnlrr/xxhs56aSTkiTHH3/8d90WqxmHeQAAAAAAAABQ5d58883stttu2XLLLbPRRhulTp06mTBhQsaMGZNFixZlzz33zJln2jlxTSfkAAAAAAAAAECV23TTTXP66afnhRdeyPDhwzN79uzUr18/O+20U4488sicdNJJqVHDK+41nZ8AAAAAAAAAAKrc+uuvnxtvvLGq22A1V62qGwAAAAAAAAAAWBFCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEGoUdUNAAAAAAAAAFB1Hho1tapbWGmH7PB/lVqvVatW+fDDD5c557rrrstZZ51VqfetCpdeemkuu+yyXHLJJbn00kurup2VJuQAAAAAAAAAAEk6duyYjTfeeIljW2655XfcDUsi5AAAAAAAAAAASU488cQcd9xxVd0Gy1CtqhsAAAAAAAAAAFgRQg4AAAAAAAAAsBJeffXVHHXUUWnZsmVq166dJk2aZK+99srgwYOXOL9Vq1YpKirKxIkT88QTT2TXXXdNw4YN07hx4+y3334ZN25c6dx+/frlxz/+cerXr59GjRrloIMOyvvvv7/Euo888khOPPHEtG3bNo0bN85aa62V1q1bp1u3bhk/fvy3erZ//etfOeWUU9KmTZustdZaadiwYTp16pS//e1v36peZRNyAAAAAAAAAIAV1KdPn+ywww7p169f1llnnXTt2jVbbbVVhg4dmn333Tc9e/Zc6tpbbrkl++67bxYsWJC99947zZo1y+OPP55OnTrl/fffz3nnnZdjjz02a6+9dvbee+80aNAgAwYMSKdOnfL555+Xq3fYYYflvvvuS506ddK5c+fstddeqVatWu66665st912GTFixEo9W//+/bP11lvn1ltvTa1atdKlS5e0b98+Y8aMyS9+8Yt069Ztpf+8KluNqm4AAAAAAAAAAArBkCFDcvbZZ2edddbJww8/nE6dOpWOjRs3Ll26dMkll1ySXXbZJbvssku59dddd12efvrp7L777kmShQsX5ogjjkj//v1zwAEH5OOPP84rr7ySrbfeOkny1VdfZc8998yIESNy00035eKLLy5T7957781+++2XunXrll4rKSnJzTffnNNPPz0nn3xyxo0bl6KiouU+27hx4/KLX/wiRUVFefjhh3PQQQeVjn344Yf52c9+lrvuuiu77rprjjnmmJX7g6tEdnIAAAAAAAAAgCTHH398ioqKyn123XXXJMkll1ySkpKS9O3bt0zAIUnatWuXP/7xj0mSG264YYn1u3fvXhpwSJLq1avnwgsvTJK88cYb6dmzZ2nAIUnWXnvtnHPOOUmSZ599tly9ww8/vEzAIUmKiopy2mmn5cc//nHefPPNvP322yv07FdeeWXmzZuXK664okzAIUk23HDD3HHHHUmS66+/foXqrSp2cgAAAAAAAACAJB07dszGG29c7vrmm2+eadOmZdSoUalTp05+9rOfLXH94jDE0o6J6NKlS7lrm2yyyQqN//vf/15izffeey9PPvlk3nvvvcyePTsLFy5Mknz66adJkvHjx2fLLbdc4trFFi1alCeeeCLJN8GJJWnfvn3q1auXsWPHZu7cuVlrrbWWWXNVEXIAAAAAAAAAgCQnnnhijjvuuCWOjR49OiUlJZkzZ05q1669zDpTp05d4vWWLVuWu1avXr1ljtevXz9JMnfu3DLXFy5cmDPOOCO33HJLSkpKltrLrFmzltlrkkyfPr10XosWLVZo/gYbbLDceauCkAMAAAAAAAAALMeiRYuSfBNKOPjgg79VjWrVqlVo/L/16dMnffv2zXrrrZc//vGP2WmnnbLuuuuW7rBw5JFH5r777ltmAGKxxc+WJMcee+xy5y8v5LEqCTkAAAAAAAAAwHIs3uGgqKgod95550oFElaFBx98MElyyy23pGvXruXG33333RWu1bRp09SpUydz5szJtddem6ZNm1Zan5Wtav/UAQAAAAAAAKAArL/++vnhD3+Y2bNn58knn6zqdjJjxowkyYYbblhu7M0338xrr722wrWqV6+ePffcM8n/D0+sroQcAAAAAAAAAGAFXHHFFUmS448/PoMGDSo3XlJSkpEjR+app55a5b1sscUWSZI///nPZY6b+Pjjj3PMMcdkwYIFK1XvkksuSa1atfKb3/wmd999d5mai73xxht55JFHKtZ4BQk5AAAAAAAAAMAK+NnPfpY+ffpkxowZ6dq1azbZZJPst99+Oeqoo/LTn/406623Xjp06JDnnntulfdy0UUXpVatWrntttuy2Wab5fDDD88+++yTNm3aZN68eTnwwANXqt62226bv/3tb0mS4447LhtuuGH22muvHH300enSpUtatGiRdu3aVflOD0IOAAAAAAAAALCCunfvnrFjx+bkk09OUVFRnn322QwcODDvv/9+ttlmm1x//fXp3r37Ku9jxx13zCuvvJKuXbvmyy+/zGOPPZb3338/Z555Zl566aU0aNBgpWseeuihefPNN3P22WenUaNGGT58eB5++OG89dZb2XjjjdOrV69ceeWVq+BpVlxRSUlJSZV2UOBmzZqVhg0bpri4+Fv9kLBqPDRqalW3AECB22PG/VXdAgAFrtHeZ1Z1CwAAAKzh5s6dmwkTJqR169ZZa621qrod1kAr8zO4ou/e7eQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKQo2qbgAAAAAAAACAqjPzyRuquoWV1mjvMyu1XqtWrfLhhx8mSbp3754+ffosde7vf//7nHfeeUmS6tWrZ8GCBRW698SJE9O6detsuOGGmThxYoVqrQns5AAAAAAAAAAA/3Hvvffm66+/Xur4nXfe+R12w/8ScgAAAAAAAACAJO3bt8/06dPz6KOPLnF8xIgReeedd7L99tt/x52xmJADAAAAAAAAACTp1q1bkqXv1nDHHXeUmcd3T8gBAAAAAAAAAJK0a9cu7du3z1NPPZWPPvqozNgXX3yRBx98MM2bN89Pf/rTJa5/6623cskll6Rjx47ZYIMNUqtWrayzzjrZY4898uCDD36rnubMmZM//OEP6dChQxo1apS11lorm222Wc4777xMnz79W9UsZEIOAAAAAAAAAPAf3bp1y6JFi/KXv/ylzPUHH3wwX3zxRY499thUq7bkV+1//OMf07Nnz8yYMSPt2rXLQQcdlM022yzPP/98Dj/88Pz6179eqV7+/e9/Z8cdd8y5556bd999N9tvv326dOmSefPm5fe//33at2+fDz/88Ns+akEScgAAAAAAAACA/zjyyCNTp06dciGHO++8M0VFRcs8quIXv/hF3n///bz99tt58sknc//992fEiBF566230rx581x33XUZNWrUCvVRUlKSww47LOPGjcsJJ5yQiRMn5umnn84jjzyS9957L+ecc04mTpyY448/viKPW3CEHAAAAAAAAADgPxo2bJiDDjoo7733Xl544YUkyfjx4zN8+PDssssu2WijjZa6dmnjm222WXr06JEkeeihh1aojyFDhmT48OH50Y9+lL59+6Z+/fqlYzVq1Ejv3r3Ttm3bPP/883njjTdW5hELWo2qbgAAAAAAAAAAVifdunXLvffemzvvvDO77LJL7rzzztLry/PFF1/kiSeeyNixYzNt2rR8/fXXSZKPP/44yTeBiRXx+OOPJ0kOPvjg1KhR/tV+tWrV0qlTp7zxxhsZMWJE2rZtu0J1C52QAwAAAAAAAAD8l9122y2tW7fOQw89lD/96U+555570qBBgxxyyCHLXDdo0KAcf/zxmT59+lLnzJo1a4V6+OCDD5IkPXr0KN0FYmmmTp26QjW/D4QcAAAAAAAAAOC/FBUV5bjjjssll1ySY489Np988klOPvnk1KlTZ6lrPvrooxx++OGZM2dOzjvvvBx11FFp1apV6tWrl2rVquWpp57KXnvtlZKSkhXqYdGiRUmSnXfeOW3atFnm3K222mrFH67ACTkAAAAAAAAAwP847rjjctlll2XQoEFJln9UxaBBgzJnzpwceOCBueaaa8qNv/vuuyt1/xYtWiRJ9t9//5x77rkrtfb7rFpVNwAAAAAAAAAAq5uWLVtm//33zzrrrJMOHTpkxx13XOb8GTNmJEk23HDDcmMlJSXp16/fSt1/n332SZL0799/hXd/WBMIOQAAAAAAAADAEjzyyCOZNm1aXnrppeXO3WKLLZIkDz30UD7++OPS6wsXLszvfve7jBgxYqXuvf/++2f77bfPqFGjcvzxx2fq1Knl5nz++efp27dvFixYsFK1C5njKgAAAAAAAACggn72s59lu+22y6uvvppNN900u+yyS+rWrZuRI0fm3//+d84///wlHmOxNNWqVcvAgQOz77775u67785DDz2UrbfeOi1btszXX3+dDz74IOPGjcvChQtz3HHHpUaNNeP1v50cAAAAAAAAAKCCatSokaFDh+aiiy7KBhtskGeffTZDhw7NNttsk5deeil77733Stdcf/318/LLL6dv377ZYYcdMn78+Dz00EMZNmxYkuTUU0/NkCFDstZaa1X246y2ikoc3lEhs2bNSsOGDVNcXJwGDRpUdTv8x0Ojym/VAgArY48Z91d1CwAUuEZ7n1nVLQAAALCGmzt3biZMmJDWrVuvUS/BWX2szM/gir57t5MDAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAD4HispKanqFlhDrYqfPSEHAAAAAAAAgO+hatW+eR28cOHCKu6ENdXin73FP4uVQcgBAAAAAAAA4HuoZs2aqVmzZr744ouqboU11OzZs0t/DiuLkAMAAAAAAADA91BRUVHq16+f4uLizJkzp6rbYQ0zZ86czJo1K/Xr109RUVGl1a1RaZUAAAAAAAAAWK00bdo0c+bMyaRJk9KgQYPUr18/1atXr9SXzrBYSUlJFi5cmNmzZ2fWrFmpXbt2mjZtWqn3EHIAAAAAAAAA+J6qXr16WrRokWnTpmX27NmZOXNmVbfEGqBmzZpp1KhRmjZtmurVq1dqbSEHAAAAAAAAgO+x6tWrZ911102zZs0yf/78LFq0qKpb4nusWrVqqVmz5irbLUTIAQAAAAAAAGANUFRUlFq1alV1G1Ah1aq6AQAAAAAAAACAFbHahxz69++fXXfdNY0bN07dunWz9dZbp3fv3pk/f/5K1/ryyy9z9dVXp3379mnQoEFq1qyZ9dZbL/vtt18ee+yxVdA9AAAAAAAAAFBZVuvjKs4666z06dMnNWrUSOfOnVOvXr0899xzOf/88zNo0KA89dRTqVOnzgrVmj59ejp16pS33nor9erVy0477ZRGjRrlvffey+OPP57HH3883bt3T58+fVbxUwEAAAAAAAAA38Zqu5PDwIED06dPn9SrVy8jR47MkCFD8vDDD+fdd99Nu3btMmzYsPTo0WOF6/Xs2TNvvfVWtttuu3z44YcZMmRIHnjggbz66qt5/PHHU6NGjVx//fV5+eWXV+FTAQAAAAAAAADf1mobcrjqqquSJBdccEG23Xbb0utNmzbNTTfdlCS58cYbU1xcvEL1nnvuuSTJ+eefnyZNmpQZ69KlS3bbbbckyUsvvVTh3gEAAAAAAACAyrdahhw++uijjB49Okly5JFHlhvfeeed06JFi8ybNy+DBw9eoZprrbXWCs1r2rTpijcKAAAAAAAAAHxnVsuQw9ixY5MkTZo0SevWrZc4p3379mXmLs8+++yTJLnmmmsyY8aMMmODBw/O888/n/XWWy9du3b9tm0DAAAAAAAAAKtQjapuYEkmTJiQJGnZsuVS57Ro0aLM3OU5//zzM2rUqAwZMiQbbrhhOnbsmEaNGuW9997Lq6++mo4dO+aOO+5Iw4YNK/4AAAAAAAAAAEClWy1DDrNnz06S1K1bd6lz6tWrlySZNWvWCtWsW7duBg0alIsuuih/+MMfMmTIkNKxddZZJ3vssUc22GCD5daZN29e5s2bV/r9it4fAAAAAAAAAKiY1fK4ilXh448/TseOHXPDDTfkiiuuyAcffJAvvvgio0aNynbbbZfLLrssO++8c2nAYmmuvvrqNGzYsPSzeEcJAAAAAAAAAGDVWi1DDvXr10+SfPnll0ud88UXXyRJGjRosEI1jz322IwePTqXX355LrroorRu3Tp169bN9ttvn7///e9p165dXn/99Vx77bXLrHPhhRemuLi49DN58uQVfCoAAAAAAAAAoCJWy5BDq1atkmSZAYLFY4vnLstHH32Up59+OklyxBFHlBuvWbNmDjnkkCTJM888s8xatWvXToMGDcp8AAAAAAAAAIBVb7UMOWyzzTZJkunTp2fChAlLnPPKK68kSbbddtvl1ps0aVLp10sLJTRs2DBJMmPGjJXqFQAAAAAAAAD4bqyWIYfmzZtn++23T5L069ev3PiwYcMyefLk1K5dO126dFluvQ022KD065EjRy5xzssvv5wkad269bdpGQAAAAAAAABYxVbLkEOSXHTRRUmSXr16ZcyYMaXXp0+fntNOOy1JcsYZZ5TuwJAkAwYMyOabb57dd9+9TK2WLVuWhiZ+9atfZeLEiWXG//a3v+WBBx5Ikhx55JGV/iwAAAAAAAAAQMXVqOoGluaAAw5I9+7dc/3116dDhw7ZfffdU7du3Tz77LOZOXNmOnbsmMsvv7zMmuLi4owfPz5z584tV+/OO+/MbrvtlrfffjtbbLFFOnTokKZNm+btt9/Om2++mSQ5+uijc9RRR30nzwcAAAAAAAAArJzVNuSQJH369EnHjh3z5z//OSNGjMj8+fPTpk2bXHDBBTn77LNTq1atFa7Vtm3bvPHGG7nuuuvyxBNPZPTo0Zk3b14aN26cvfbaK926dcthhx22Cp8GAAAAAAAAAKiIopKSkpKqbqKQzZo1Kw0bNkxxcXEaNGhQ1e3wHw+NmlrVLQBQ4PaYcX9VtwBAgWu095lV3QIAAABAwVjRd+/VvsOeAAAAAAAAAAC+NSEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIKz2IYf+/ftn1113TePGjVO3bt1svfXW6d27d+bPn/+taz766KPp2rVr1ltvvdSqVSvNmjXLTjvtlJ49e1Zi5wAAAAAAAABAZVqtQw5nnXVWDjvssAwfPjw77LBD9t5770yaNCnnn39+OnfunDlz5qxUva+//jqHHXZYDjjggDzzzDPZaqutcsghh6Rt27Z5//33c/3116+iJwEAAAAAAAAAKqpGVTewNAMHDkyfPn1Sr169vPDCC9l2222TJNOmTUvnzp0zbNiw9OjRI9dee+0K1zzppJPSv3//HHDAAbntttvStGnT0rFFixZl1KhRlf4cAAAAAAAAAEDlWG13crjqqquSJBdccEFpwCFJmjZtmptuuilJcuONN6a4uHiF6j377LO555570rZt2zz44INlAg5JUq1atXTo0KGSugcAAAAAAAAAKttqGXL46KOPMnr06CTJkUceWW585513TosWLTJv3rwMHjx4hWrecMMNSb45AqNmzZqV1ywAAAAAAAAA8J1YLY+rGDt2bJKkSZMmad269RLntG/fPpMnT87YsWNzxBFHLLPewoUL8+yzzyZJOnXqlE8++ST3339/xo8fn9q1a2ebbbbJwQcfnHr16lXugwAAAAAAAAAAlWa1DDlMmDAhSdKyZculzmnRokWZucvywQcf5IsvvkiSvPzyyznttNNKv1/sN7/5Te6///507tz527YNAAAAAAAAAKxCq+VxFbNnz06S1K1bd6lzFu+6MGvWrOXWmz59eunXJ5xwQrbbbruMHj06s2fPzmuvvZYuXbpk6tSp2X///fPuu+8us9a8efMya9asMh8AAAAAAAAAYNVbLUMOla2kpKT06w022CBDhgxJ+/btU69evWy99dZ57LHH0rZt23zxxRfp1avXMmtdffXVadiwYeln8Y4SAAAAAAAAAMCqtVqGHOrXr58k+fLLL5c6Z/FxEw0aNFjhekly3HHHpXbt2mXGq1evnlNOOSVJ8swzzyyz1oUXXpji4uLSz+TJk5d7fwAAAAAAAACg4mpUdQNL0qpVqyRZZoBg8djiucurV1RUlJKSkmy00UZLnLP4+scff7zMWrVr1y4XkgAAAAAAAAAAVr3VcieHbbbZJkkyffr0TJgwYYlzXnnllSTJtttuu9x69erVy2abbZYkmTZt2hLnLL5er169le4XAAAAAAAAAFj1VsuQQ/PmzbP99tsnSfr161dufNiwYZk8eXJq166dLl26rFDNQw89NMnSj6N4+umnkyQ77LDDt2kZAAAAAAAAAFjFVsuQQ5JcdNFFSZJevXplzJgxpdenT5+e0047LUlyxhlnpGHDhqVjAwYMyOabb57dd9+9XL3u3buncePGGTx4cG655ZYyY/fff3/uvffe0nkAAAAAAAAAwOpntQ05HHDAAenevXu++OKLdOjQIfvss08OOeSQbLzxxhk3blw6duyYyy+/vMya4uLijB8/Pu+//365ek2bNs0DDzyQtdZaK6eeemratm2bQw89NNtuu22OOOKIlJSUpEePHiu8MwQAAAAAAAAA8N1abUMOSdKnT5888MAD+fGPf5wRI0Zk8ODBad68eXr16pXnnnsuderUWal6e+65Z15//fUce+yxmTlzZh599NFMmjQpXbp0yZAhQ9KzZ89V9CQAAAAAAAAAQEUVlZSUlFR1E4Vs1qxZadiwYYqLi9OgQYOqbof/eGjU1KpuAYACt8eM+6u6BQAKXKO9z6zqFgAAAAAKxoq+e1+td3IAAAAAAAAAAFhMyAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCUKGQQ+fOndO7d+/lzrv22mvTuXPnitwKAAAAAAAAAFjD1ajI4qFDh6ZVq1bLnTd+/Pi88MILFbkVAAAAAAAAALCG+06Oq5g/f36qVXMyBgAAAAAAAADw7X0nyYNx48ZlnXXW+S5uBQAAAAAAAAB8T630cRXdunUr8/2wYcPKXVtswYIFeeutt/Laa6+la9eu365DAAAAAAAAAIB8i5DDX/7yl9Kvi4qK8t577+W9995b5pr1118/V1555Uo3BwAAAAAAAACw2EqHHO66664kSUlJSbp165add945J5xwwhLn1qpVK82bN0+HDh1Ss2bNinUKAAAAAAAAAKzRVjrkcOyxx5Z+femll6ZDhw5lrgEAAAAAAAAArAorHXL4bxMnTqykNgAAAAAAAAAAlq1aVTcAAAAAAAAAALAiKrSTw2IjR47MM888k48++ihz585d4pyioqLccccdlXE7AAAAAAAAAGANVKGQw9dff50jjjgiAwcOTJKUlJQsda6QAwAAAAAAAABQERUKOVx++eUZMGBA6tatm1/84hfZYost0qBBg8rqDQAAAAAAAACgVIVCDvfdd1/WXnvtjBw5MltuuWVl9QQAAAAAAAAAUE61iiyeMmVKOnbsKOAAAAAAAAAAAKxyFQo5NG7cOE2aNKmsXgAAAAAAAAAAlqpCIYc99tgjI0eOTElJSWX1AwAAAAAAAACwRBUKOVx++eWZMWNGLr300kpqBwAAAAAAAABgyWpUZPE//vGPHH/88bniiivy5JNPZt99903Lli1TrdqSsxPHHHNMRW4HAAAAAAAAAKzBKhRyOO6441JUVJSSkpKMHj06r7zyyjLnCzkAAAAAAAAAAN9WhUIOxxxzTIqKiiqrFwAAAAAAAACApapQyOEvf/lLJbUBAAAAAAAAALBs1aq6AQAAAAAAAACAFVGhnRz+13vvvZepU6dmnXXWyaabblqZpQEAAAAAAACANVyFd3JYuHBhrrjiiqy33nrZbLPNsvPOO6dXr16l4/fee2922mmnvPnmmxW9FQAAAAAAAACwBqtQyGHhwoXZb7/9cskll+Tzzz/PFltskZKSkjJzOnbsmJdffjmPPPJIhRoFAAAAAAAAANZsFQo59O3bN0OGDMluu+2WCRMm5I033ig3p1WrVmnTpk2eeuqpitwKAAAAAAAAAFjDVSjkcPfdd6dJkybp379/1l9//aXO22KLLTJp0qSK3AoAAAAAAAAAWMNVKOTwzjvvZIcddkjjxo2XOa9hw4b57LPPKnIrAAAAAAAAAGANV6GQw8KFC1O7du3lzvv4449XaB4AAAAAAAAAwNJUKOSw4YYb5p///Ocy58yfPz9vvPFGNtlkk4rcCgAAAAAAAABYw1Uo5LD33ntn4sSJufXWW5c654YbbsjUqVOz7777VuRWAAAAAAAAAMAarkZFFv/mN7/JX/7yl5x22ml56623cthhhyVJvvzyy4wZMyYPPvhg/vjHP6Zp06Y544wzKqVhAAAAAAAAAGDNVFRSUlJSkQL/+Mc/ctBBB2XGjBkpKioqM1ZSUpJGjRrlsccey84771yhRldXs2bNSsOGDVNcXJwGDRpUdTv8x0OjplZ1CwAUuD1m3F/VLQBQ4BrtfWZVtwAAAABQMFb03XuFjqtIkk6dOuXNN9/Meeedl6222ip16tRJ7dq1s/HGG6d79+4ZN27c9zbgAAAAAAAAAAB8dyp0XMVi6667bnr16pVevXpVRjkAAAAAAAAAgHIqvJMDAAAAAAAAAMB3oUIhh8mTJ+eee+7J+PHjlzrnnXfeyT333JMpU6ZU5FYAAAAAAAAAwBquQiGHG264Iccff3xKSkqWOqekpCTHHXdcbrrpporcCgAAAAAAAABYw1Uo5PDUU09liy22yOabb77UOVtssUW23HLLPPnkkxW5FQAAAAAAAACwhqvwcRUbb7zxcudtvPHGmTx5ckVuBQAAAAAAAACs4SoUcvjqq69Sp06d5c6rU6dOZs+eXZFbAQAAAAAAAABruAqFHH7wgx/ktddeW+68119/Pc2aNavIrQAAAAAAAACANVyFQg4/+clP8q9//SsPP/zwUuc88sgjeeedd9KpU6eK3AoAAAAAAAAAWMNVKOTwq1/9KkVFRTnmmGPSp0+fMkdSzJ49O3369MkxxxyTatWqpXv37hVuFgAAAAAAAABYc1Uo5LDtttvm6quvzpw5c/LrX/86TZo0ScuWLdOyZcs0adIkv/71r/PVV1/liiuuyA477FBZPQMAAAAAAAAAa6AKhRyS5De/+U0GDhyYH/7wh1m4cGGmTJmSKVOmZOHChfnhD3+YRx55JBdccEFl9AoAAAAAAAAArMFqVEaRrl27pmvXrvn0008zadKkJEnLli2z7rrrVkZ5AAAAAAAAAICKhRw22mijbLrppnnyySeTJOuuu65gAwAAAAAAAACwSlTouIpPP/00TZo0qaxeAAAAAAAAAACWqkIhhw033DCzZs2qrF4AAAAAAAAAAJaqQiGHQw45JP/4xz8yderUyuoHAAAAAAAAAGCJKhRyuPDCC7PFFlvkpz/9aUaMGFFZPQEAAAAAAAAAlFOjIov33XffVK9ePa+//np+8pOfpFmzZmnVqlXq1KlTbm5RUVGeffbZitwOAAAAAAAAAFiDVSjkMHTo0NKvS0pK8umnn+bTTz9d4tyioqKK3AoAAAAAAAAAWMNVKOTw/PPPV1YfAAAAAAAAAADLVKGQwy677FJZfQAAAAAAAAAALFO1qm4AAAAAAAAAAGBFVGgnh8VKSkryxBNPZMSIEZk6dWp23HHHdOvWLUkyderUfP7552nTpk2qV69eGbcDAAAAAAAAANZAFQ45vP766zn88MPz7rvvpqSkJEVFRZk/f35pyOHpp5/OL37xiwwcODA/+9nPKtwwAAAAAAAAALBmqtBxFVOmTMkee+yRf/3rX9lnn33Su3fvlJSUlJlzwAEHpGbNmnn00Ucr1CgAAAAAAAAAsGarUMjhqquuyvTp0/OnP/0pf//733PuueeWm7P22mtn6623zujRoytyKwAAAAAAAABgDVehkMOTTz6ZzTffPN27d1/mvFatWuXjjz+uyK0AAAAAAAAAgDVchUIO//73v9OuXbvlzisqKsqsWbMqcisAAAAAAAAAYA1XoZBD3bp1M3Xq1OXOmzBhQpo0aVKRWwEAAAAAAAAAa7gKhRzatWuXV199NdOmTVvqnA8//DCvv/56tttuu4rcCgAAAAAAAABYw1Uo5HD00Udn9uzZOfHEE/PVV1+VG//6669z2mmnZf78+Tn66KMrcisAAAAAAAAAYA1XoyKLjz/++Nx777157LHHsvnmm2fvvfdOkrz++uvp3r17HnvssUyaNCl77LFHDj/88EppGAAAAAAAAABYM1VoJ4fq1atn0KBBOeKII/LRRx/l9ttvT5KMHTs2N954YyZNmpSDDz44jzzySKU0CwAAAAAAAACsuSq0k0OS1KtXL/fee2969OiRwYMH54MPPsiiRYvSokWL7LPPPvnRj35UCW0CAAAAAAAAAGu6CoccFtt8882z+eabV1Y5AAAAAAAAAIAyKnRcBQAAAAAAAADAd6VSdnKYNm1abr/99gwdOjRTpkxJSUlJmjdvnt122y3dunVLs2bNKuM2AAAAAAAAAMAarMIhh0cffTTHH398iouLU1JSUnr97bffzjPPPJNevXrlrrvuyoEHHljRWwEAAAAAAAAAa7AKhRxGjhyZQw89NAsWLEj79u1zzDHHpHXr1kmSiRMn5p577sno0aNz+OGH58UXX8yOO+5YKU0DAAAAAAAAAGueCoUcevbsmYULF+b3v/99zjnnnHLjp59+eq677rqcc845ufzyy/P3v/+9IrcDAAAAAAAAANZg1SqyeMSIEWnbtu0SAw6LnX322WnXrl2GDx9ekVsBAAAAAAAAAGu4CoUc5s+fn3bt2i13Xtu2bTN//vyK3AoAAAAAAAAAWMNVKOSw+eabZ/Lkycud99FHH2WzzTaryK0AAAAAAAAAgDVchUIOp5xySoYNG5YXXnhhqXNeeOGFvPjiiznllFMqcisAAAAAAAAAYA1XoyKLTzrppLzzzjvZd999c+qpp+aYY45J69atkyQTJkzIX//619x8880566yzcvLJJ1dKwwAAAAAAAADAmqmopKSk5Nsurl69+re/cVFRFixY8K3Xry5mzZqVhg0bpri4OA0aNKjqdviPh0ZNreoWAChwe8y4v6pbAKDANdr7zKpuAQAAAKBgrOi79wrt5FCBfESF1gIAAAAAAAAAa54KhRwWLVpUWX0AAAAAAAAAACxTtapuAAAAAAAAAABgRQg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABSE1T7k0L9//+y6665p3Lhx6tatm6233jq9e/fO/PnzK1x78ODBKSoqSlFRUfbYY49K6BYAAAAAAAAAWFVW65DDWWedlcMOOyzDhw/PDjvskL333juTJk3K+eefn86dO2fOnDnfuvbnn3+ek046KUVFRZXYMQAAAAAAAACwqqy2IYeBAwemT58+qVevXkaOHJkhQ4bk4Ycfzrvvvpt27dpl2LBh6dGjx7euf+aZZ+bTTz/NqaeeWoldAwAAAAAAAACrymobcrjqqquSJBdccEG23Xbb0utNmzbNTTfdlCS58cYbU1xcvNK1BwwYkHvvvTe//vWvs8MOO1ROwwAAAAAAAADAKrVahhw++uijjB49Okly5JFHlhvfeeed06JFi8ybNy+DBw9eqdrTpk3Lqaeems022yw9e/aslH4BAAAAAAAAgFVvtQw5jB07NknSpEmTtG7deolz2rdvX2buivrlL3+ZadOm5Y477shaa61VsUYBAAAAAAAAgO/MahlymDBhQpKkZcuWS53TokWLMnNXxP3335+HHnooZ555Zjp27FixJgEAAAAAAACA71SNqm5gSWbPnp0kqVu37lLn1KtXL0kya9asFar5ySef5PTTT0+bNm1y1VVXfeve5s2bl3nz5pV+v6L3BwAAAAAAAAAqZrXcyWFVOPnkk/P555/n9ttvz9prr/2t61x99dVp2LBh6WfxjhIAAAAAAAAAwKq1WoYc6tevnyT58ssvlzrniy++SJI0aNBgufXuvvvuDBo0KKeeemp23XXXCvV24YUXpri4uPQzefLkCtUDAAAAAAAAAFbManlcRatWrZJkmQGCxWOL5y7LgAEDkiSjR48uF3L45JNPkiSvvvpq6dj999+f9dZbb4m1ateundq1ay/3ngAAAAAAAABA5VotQw7bbLNNkmT69OmZMGFCWrduXW7OK6+8kiTZdtttV7ju4jVLMnPmzLzwwgtJkrlz565MuwAAAAAAAADAd2C1PK6iefPm2X777ZMk/fr1Kzc+bNiwTJ48ObVr106XLl2WW2/gwIEpKSlZ4ueuu+5Kkuy+++6l11ZkdwgAAAAAAAAA4Lu1WoYckuSiiy5KkvTq1StjxowpvT59+vScdtppSZIzzjgjDRs2LB0bMGBANt988+y+++7fbbMAAAAAAAAAwCq3Wh5XkSQHHHBAunfvnuuvvz4dOnTI7rvvnrp16+bZZ5/NzJkz07Fjx1x++eVl1hQXF2f8+PGOmwAAAAAAAACA76HVdieHJOnTp08eeOCB/PjHP86IESMyePDgNG/ePL169cpzzz2XOnXqVHWLAAAAAAAAAMB3pKikpKSkqpsoZLNmzUrDhg1TXFycBg0aVHU7/MdDo6ZWdQsAFLg9Ztxf1S0AUOAa7X1mVbcAAAAAUDBW9N37ar2TAwAAAAAAAADAYkIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKwmofcujfv3923XXXNG7cOHXr1s3WW2+d3r17Z/78+StVZ+zYsbn66quz++67Z911103NmjXTuHHj/OQnP8mf//znla4HAAAAAAAAAHy3alR1A8ty1llnpU+fPqlRo0Y6d+6cevXq5bnnnsv555+fQYMG5amnnkqdOnWWW2fBggXZdtttkyT16tXL9ttvn3XXXTdTpkzJSy+9lGHDhuWee+7JkCFD0qhRo1X8VAAAAAAAAADAt7Ha7uQwcODA9OnTJ/Xq1cvIkSMzZMiQPPzww3n33XfTrl27DBs2LD169Fjhetttt10efPDBTJs2Lc8991zuu+++vPjiixk7dmx+8IMfZNSoUfn1r3+9Cp8IAAAAAAAAAKiI1TbkcNVVVyVJLrjggtJdGJKkadOmuemmm5IkN954Y4qLi5dbq0aNGnnllVdy6KGHpnbt2mXG2rVrl969eydJ7r//fsdWAAAAAAAAAMBqarUMOXz00UcZPXp0kuTII48sN77zzjunRYsWmTdvXgYPHlzh+22zzTZJkjlz5mTatGkVrgcAAAAAAAAAVL7VMuQwduzYJEmTJk3SunXrJc5p3759mbkV8e677yZJatWqlSZNmlS4HgAAAAAAAABQ+WpUdQNLMmHChCRJy5YtlzqnRYsWZeZ+WyUlJaXHVey3337ljrP4X/Pmzcu8efNKv581a1aF7g8AAAAAAAAArJjVcieH2bNnJ0nq1q271Dn16tVLUvGQwWWXXZaXXnop9erVS69evZY7/+qrr07Dhg1LP4vDFgAAAAAAAADAqrVahhy+K/fcc0969uyZatWq5c4778wmm2yy3DUXXnhhiouLSz+TJ0/+DjoFAAAAAAAAAFbL4yrq16+fJPnyyy+XOueLL75IkjRo0OBb3aN///7p1q1bkuS2227LoYceukLrateuvdwjLQAAAAAAAACAyrda7uTQqlWrJFnmLgmLxxbPXRmPPPJIjjzyyCxatCi33HJLadgBAAAAAAAAAFh9rZYhh2222SZJMn369EyYMGGJc1555ZUkybbbbrtStQcOHJif//znWbhwYW6++eacdNJJFWsWAAAAAAAAAPhOrJYhh+bNm2f77bdPkvTr16/c+LBhwzJ58uTUrl07Xbp0WeG6gwYNymGHHZYFCxbk5ptvzimnnFJpPQMAAAAAAAAAq9ZqGXJIkosuuihJ0qtXr4wZM6b0+vTp03PaaaclSc4444w0bNiwdGzAgAHZfPPNs/vuu5erN3jw4BxyyCFZsGBB+vbtK+AAAAAAAAAAAAWmRlU3sDQHHHBAunfvnuuvvz4dOnTI7rvvnrp16+bZZ5/NzJkz07Fjx1x++eVl1hQXF2f8+PGZO3dumeufffZZDjrooHz99ddp3rx5RowYkREjRizxvtdee22aNm26yp4LAAAAAAAAAPh2VtuQQ5L06dMnHTt2zJ///OeMGDEi8+fPT5s2bXLBBRfk7LPPTq1atVaozldffZV58+YlSaZMmZK77757qXMvvfRSIQcAAAAAAAAAWA0VlZSUlFR1E4Vs1qxZadiwYYqLi9OgQYOqbof/eGjU1KpuAYACt8eM+6u6BQAKXKO9z6zqFgAAAAAKxoq+e6/2HfYEAAAAAAAAAPCtCTkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAPD/2rvzeC/nvH/gr9Oqc1ppufupqezGZElhZEm2pLF0Y2iWO4MahGwTZhr7aBrMpBQyiHuMFDVjuYsQ0kjdhKwhZJ/QpqST8/vDdH7Or0X76Ts9n4/HeTw6n+tzva/3df7o27fv67wvAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAADrWPfu3VNUVLTSry+//HKV6z333HO56qqrcuCBB6ZJkyapXr16GjRokH333TfXX399Fi9evNzzvvjii9x5550599xz06FDh9StWzdFRUXZZpttvvOaAwYMyDbbbJOaNWtm2223zfXXX7/Cve+//37q1auXQw45ZJXvCWBNVKvsBgAAAAAAAODfVfv27VcYKKhateoq1SgtLU2bNm2SJLVr1067du3SpEmTvPfee/nHP/6RCRMm5Pbbb8/YsWNTv379CudOnz49P/nJT1a770GDBqV3795p2rRpDj/88PzjH/9Ir1698uWXX+bcc89dZn+vXr1SWlqaG264YbWvBbA6hBwAAAAAAABgPTn55JPTvXv3ta6z++67p0+fPjniiCNSs2bN8vUXX3wxhx56aJ555pmcc845ueWWWyqcV6dOnZx44olp06ZNdtttt8yePTtdunRZ6bWWLFmSSy+9NA0bNswLL7yQhg0b5pNPPsmOO+6YK664ImeeeWaqV69evn/UqFEZPXp0+vfvn6222mqt7xVgZTyuAgAAAADgO/zqV78qHy1+xRVXrPb5n376aS688MK0bt06JSUlqVGjRpo1a5Zjjz02TzzxxHLPWdOx5KWlpenbt2+aN2+emjVrpnXr1hkxYsQKe5s6dWqqV6+eHj16rPZ9AbBhVKtWLVOmTMmxxx5bIeCQJK1bt07//v2TJHfdddcyrw9bb711brnllvTq1Svt27dPSUnJd17v7bffzqxZs3L00UenYcOGSZLGjRuna9eumT17dl555ZXyvfPmzcsZZ5yRXXfdNWefffba3irAdzLJAQAAAABgJSZOnJhrrrkmRUVFKSsrW+3z33zzzey333754IMPssUWW6RDhw4pLi7OSy+9lJEjR2bkyJG55pprcs4555SfszZjyS+44IJcc8012WqrrXL44Yfnsccey3HHHZcRI0bkmGOOqbB3yZIlOeWUU9KwYcPyD8gAKDy77bZbkmThwoWZNWtWmjZtulb1Pv300yTJ5ptvXmF9iy22SJLMnz+/fO3CCy/MRx99lNGjR6daNR89Auufv2kAAAAAAFZgwYIF6d69e5o2bZp27dpl9OjRq13jnHPOyQcffJDDDz88w4cPr/AbtDfddFN69uyZPn365LjjjkuzZs3Kj63JWPJPPvkkAwcOzPe///1Mnjw5xcXFefXVV7PzzjvnkksuWSbkcN1112XKlCm5++67lwlLALBuPPbYY3nxxRczb968bLHFFtljjz3SuXPnZSYyrI3p06cnSWrUqLFMMGFNtGzZMkkqTGz49vdbbrllkuTpp5/OkCFDctZZZ6Vt27ZrfV2AVeFxFQAAAAAAK3DhhRdm+vTpuemmm1KvXr01qvHoo48mSS6++OJlRoT36NEj2267bUpLSzN58uTy9TUdS/7iiy/mq6++yk9+8pMUFxcnSXbYYYfsv//+eemllzJ37tzyve+++2769u2bLl265Nhjj12jewPgu91+++259tprM3To0PTr1y9du3ZNq1atMmbMmHVSv6ysrPx1oUuXLuskPNG4ceP88Ic/zAMPPJC77ror8+bNy1//+tc88MAD2XnnndOiRYssXrw4PXr0SPPmzXP55Zev9TUBVpWQAwAAAADAcowfPz4DBw7Mz3/+83Tu3HmN62y22WartG/pM89Xxf8/lnyp1Rkvfvrpp6eoqCiDBw9e5esCsOp22WWXDBgwINOmTcvcuXPz8ccf56GHHsree++dDz/8MEcccUTGjx+/1te59NJL849//CO1a9dOv3791r7xf7nuuutSq1atnHDCCalbt266deuWkpKSDB06NEly9dVX58UXX8yQIUMqhPgWLly4Ro93AlhVQg4AAAAAAP+f+fPn5xe/+EWaNGmSP/3pT2tV67DDDkvyzYdQCxYsqHBs6NChmT59elq3bp0f/vCHq1xzRWPJVzZevEaNGuVBirvvvjv3339/rrzyyjRv3ny17wmA73b22WfnzDPPzE477ZQ6deqkcePGOfjggzNhwoQceeSRWbx4cXr37r1W17j99ttz2WWXpUqVKrnllluy7bbbrpvmk7Rt2zbTpk3LpZdemlNOOSWXX355pk2blj322CNvvvlmLr/88pxwwgnlr3MDBw5M8+bNU1xcnJKSknTr1q08fAewLlWr7AYAAAAAADY25513XmbMmJFRo0alQYMGa1XrD3/4Q15++eU88MAD+d73vpe99torxcXFeemll/Lqq6/m8MMPz9ChQ1Ot2qr9d+3KxpLvuuuuadGiRW699dYcfvjh2WuvvXLzzTfnhRdeyBFHHJEaNWpk9uzZOeuss7LHHnukV69ea3VvAKy+oqKiXHrppfnb3/6W559/PjNnzlyjwNmIESPyi1/8Isk3obn18eihFi1a5Le//e0y6z179kytWrXKg4DXXXddzjrrrBx55JEZNGhQXn755VxyySV544038vTTT6dKFb93Daw7Qg4AAAAAAN/y0EMP5cYbb8zxxx+fo446aq3rNWnSJOPHj8+pp56a//7v/84DDzxQfqx58+bp2LFjGjVqtMr1VjaWvEaNGhk4cGC6du2aQw89tHy9adOm+eMf/5gk6dOnT2bNmpWHHnqowodOCxYsSHFx8ZreJgCrYccddyz/83vvvbfaIYd777033bp1y9dff50bb7yxPOywIQwbNiyPPPJIbrnlljRu3DhJ0q9fv7Ro0SIjR45MtWrVcuSRR2bOnDn5/e9/n3HjxuWQQw7ZYP0B//7EpgAAAAAA/mXOnDk56aST0qhRowwcOHCd1Hz11Vez22675b777svgwYMzc+bMzJkzJ+PHj0+TJk1y7rnnpnPnzlmyZMl31lqVseQ/+tGPMnXq1Fx00UU55ZRT8oc//CHTpk3LVlttlQkTJmTo0KE5//zz07p16yxZsiS//e1v06hRo5SUlKRevXo5/fTTl3msBgDr1rcf41CnTp3VOnf06NE5/vjjs2TJkgwZMiSnnHLKum5vhWbNmpVzzz03BxxwQE488cQkyccff5wPP/ww7dq1qzCVaJ999kmSTJ06dYP1B2waTHIAAAAAAPiX3r1757333svw4cPTsGHDta5XWlqa//zP/8wbb7yRu+++u8Io8f333z8PPfRQvv/97+fhhx/O7bffXv6B0fKszljynXbaKVdeeWWFta+++io9evTI1ltvXT56/Pzzz88f//jHnHTSSTnyyCPz5JNP5uqrr85HH32Ue+65Z21uHYCVuOuuu5IkdevWzfbbb7/K591333057rjjUlpamiFDhqRnz57rq8XlOuecc/LFF1/kxhtvLF8rKipKknzxxRcV9i79fulxgHXFJAcAAAAAgH8ZNWpUqlWrlsGDB6dDhw4VvsaMGZMk+fOf/5wOHTrk+OOP/856kyZNyssvv5yaNWuma9euyxxv0KBBDjvssCTJuHHjVlhnXYwlv+qqq/LKK6/kxhtvzGabbZZ58+bl+uuvz957752bb745P/rRj9K/f/8cd9xxuffee/P666+v9jUA+MbUqVPz97//PaWlpRXWv/766/z5z3/ORRddlCQ588wzU7169fLjo0aNyg477JADDzxwmZoPPvhgjjnmmJSWluaGG27Y4AGHcePG5Y477kjfvn0rTBJq3LhxmjVrlsceeyxvvvlmkmTJkiW55ZZbkiRt2rTZoH0C//5McgAAAAAA+JbS0tI8/vjjKzz+9ttv5+23306LFi2+s9a7776bJCkuLk7VqlWXu6devXpJks8++2y5x9fFWPLXXnstV111Vbp3756OHTsmSV5++eV89dVX2XvvvSvs3WeffTJ8+PBMnTo122233WpfC4BvXiuOPvroNGjQIG3atEmTJk0ye/bsTJs2rfy14YQTTsjFF19c4bw5c+bktddey5dffllh/ZNPPknXrl3z1VdfpVmzZpk4cWImTpy43GtfffXVy0wjOvroo/Phhx8mSebOnZskee+997LXXnuV7zn55JNz8sknL7fmwoUL88tf/jKtW7fO+eefv8zxvn37pmfPnmnbtm0OOOCAvP7663nppZfSvn378tcdgHVFyAEAAAAA4F9mz569wmPdu3fPsGHDcvnll+c3v/nNKtXbcsstkySff/55pk+fXuE3X5eaNGlSkqRVq1bLHFsXY8nLysrSs2fP1KtXL9dcc035uvHiAOvPLrvskt69e2fKlCl59dVX89RTT6WsrCxNmjTJMccckxNPPDGdO3de5XoLFizIokWLknwTThg2bNgK915yySXLhByee+65vPPOOxXWFi1aVP4alCSdOnVaYc3LLrssM2bMyMSJEytMnliqR48eqVGjRq6++urcf//9qV+/fnr27Jnf//73Xk+Ada6orKysrLKbKGRz585NvXr1MmfOnNStW7ey2+FfRj7zz8puAYACd9Bnd1V2CwAUuPqdzqjsFgBYx1YWchg0aFAGDRqUPfbYI7fffnv5+uLFi9OqVau8//772W+//TJy5Mg0atQoyTcjy/v3758LL7wwSfLEE09k3333LT/3wQcfzNFHH53FixfnhhtuSI8ePdao75tvvjmnnHJK/vKXv6Rbt27l6/Pnz0/Dhg3ToEGDvPTSS9l8882zYMGC7Lnnnpk2bVqmT5+ebbbZZo2uCQAAq2tVP3s3yQEAAAAAYC3NmjUrr732Wv7jP/6jwnr16tVz++2350c/+lGeeOKJbLPNNtlzzz1Tp06dPP/88+XPLr/ooosqBBzWdiz5Uh9//HF+9atfpVOnThUCDklSu3btnHPOObnqqquy0047pX379nn22WczY8aMnHDCCQIOAABslIQcAAAAAADWo44dO+bFF1/Mtddem0ceeSQTJkxIaWlpGjVqlKOPPjqnnnpqDj744ArnrO1Y8qV69+6dr776KkOGDFnu8SuvvDINGjTIjTfemL/97W9p0qRJ+vTpk8suu2wN7xYAANYvj6tYSx5XsXHyuAoA1pbHVQCwtjyuAgAAAGDVeVwFAAAAAADwb2v2mIGV3QIABc4vKBSmKpXdAAAAAAAAAADAqjDJAQAAAIANzqMmAVhbB1V2AwBApTDJAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCsNGHHEaMGJEOHTqkQYMGKSkpyS677JL+/ftn8eLFa1Tvf//3f3PsscemSZMm2WyzzdKqVaucccYZ+eSTT9Zx5wAAAAAAAADAurRRhxx69+6d4447Lk899VT22GOPdOrUKe+++2769OmTjh07ZuHChatVb+TIkdlrr70ycuTItGjRIkceeWSqVKmSQYMGZeedd84bb7yxnu4EAAAAAAAAAFhbG23IYfTo0RkwYEBq166dSZMmZezYsbnnnnsyffr0tG7dOhMmTEjfvn1Xud4HH3yQ//qv/0ppaWluvPHGPPPMMxk+fHhef/31/PSnP83HH3+cbt26paysbD3eFQAAAAAAAACwpjbakMPvfve7JMkFF1yQNm3alK83bNgwgwcPTpIMGjQoc+bMWaV6f/rTn7JgwYIcdNBB6dGjR/l61apVM2TIkNSrVy+TJ0/OQw89tA7vAgAAAAAAAABYVzbKkMP777+fyZMnJ0m6deu2zPF99tknzZs3z6JFi/Lggw+uUs1Ro0atsF7t2rVzxBFHJEnuvffeNW0bAAAAAAAAAFiPNsqQw3PPPZck2XzzzdOqVavl7mnbtm2FvSszb968vPHGGxXOW5t6AAAAAAAAAMCGt1GGHGbMmJEk+d73vrfCPc2bN6+wd2Xefvvt8j+vqObq1AMAAAAAAAAANrxqld3A8sybNy9JUlJSssI9tWvXTpLMnTt3leutrOaq1lu0aFEWLVpU/v2cOXNWuQ82nAXz5333JgBYiblfLKzsFgAocFW8T4SV8t4dgLXlvTsAa8t7943L0s/cy8rKVrpvoww5bMyuuuqqXHrppcusL50EAQAAAN/oU9kNAAAAACvlvfvGaN68ealXr94Kj2+UIYc6deokSb744osV7pk/f36SpG7duqtcb2nN5f1AVrXehRdemHPOOaf8+6+//jqfffZZtthiixQVFX1nLwDAxm/u3Llp3rx5Zs6cuUr/1gAAAAA2LO/dAeDfT1lZWebNm5f/83/+z0r3bZQhh5YtWyZJZs6cucI9S48t3bsyLVq0KP/zu+++m9atW69xvZo1a6ZmzZoV1urXr/+dPQAAhadu3br+owQAAAA2Yt67A8C/l5VNcFiqygboY7XttttuSZJPP/00M2bMWO6eKVOmJEnatGnznfXq1q2bbbbZpsJ5a1MPAAAAAAAAANjwNsqQQ7NmzdKuXbskyZ133rnM8QkTJmTmzJmpWbNmOnfuvEo1jz766BXWmz9/fu67774kSdeuXde0bQAAAAAAAABgPdooQw5JctFFFyVJ+vXrl2effbZ8/dNPP81pp52WJOnVq1eFcRWjRo3KDjvskAMPPHCZer17905xcXHGjRuXoUOHlq8vWbIkp512WmbPnp127drlkEMOWV+3BAAUiJo1a+biiy9e5hFVAAAAwMbBe3cA2HQVlZWVlVV2Eyty1lln5brrrkv16tVz4IEHpqSkJI888khmz56d9u3b5+GHH06tWrXK999222058cQT06JFi7z99tvL1BsxYkROOOGELFmyJHvuuWdatmyZyZMn56233kqTJk0yYcKE8sdaAAAAAAAAAAAbl412kkOSDBgwIMOHD88Pf/jDTJw4MQ8++GCaNWuWfv365dFHH60QcFgVxx57bCZNmpSuXbvmrbfeyqhRo7JkyZKcfvrpef755wUcAAAAAAAAAGAjtlFPcgAAAAAAAAAAWGqjnuQAAAAAAAAAALCUkAMAwL+MGDEiHTp0SIMGDVJSUpJddtkl/fv3z+LFiyu7NQAAANikvfbaaxk4cGC6d++e1q1bp1q1aikqKsoVV1xR2a0BABtYtcpuAABgY9C7d+8MGDAg1apVS8eOHVO7du08+uij6dOnT+6777489NBDqVWrVmW3CQAAAJukIUOGZMCAAZXdBgCwETDJAQDY5I0ePToDBgxI7dq1M2nSpIwdOzb33HNPpk+fntatW2fChAnp27dvZbcJAAAAm6wf/OAHOe+88/KXv/wlr7zySn72s59VdksAQCUxyQEA2OT97ne/S5JccMEFadOmTfl6w4YNM3jw4Oy7774ZNGhQ+vbtm3r16lVWmwAAALDJOvnkkyt8X6WK3+EEgE2VfwUAAJu0999/P5MnT06SdOvWbZnj++yzT5o3b55FixblwQcf3NDtAQAAAAAA3yLkAABs0p577rkkyeabb55WrVotd0/btm0r7AUAAAAAACqHkAMAsEmbMWNGkuR73/veCvc0b968wl4AAAAAAKByCDkAAJu0efPmJUlKSkpWuKd27dpJkrlz526QngAAAAAAgOUTcgAAAAAAAAAACoKQAwCwSatTp06S5Isvvljhnvnz5ydJ6tatu0F6AgAAAAAAlk/IAQDYpLVs2TJJMnPmzBXuWXps6V4AAAAAAKByCDkAAJu03XbbLUny6aefZsaMGcvdM2XKlCRJmzZtNlhfAAAAAADAsoQcAIBNWrNmzdKuXbskyZ133rnM8QkTJmTmzJmpWbNmOnfuvKHbAwAAAAAAvkXIAQDY5F100UVJkn79+uXZZ58tX//0009z2mmnJUl69eqVevXqVUp/AAAAAADAN4rKysrKKrsJAIDKdtZZZ+W6665L9erVc+CBB6akpCSPPPJIZs+enfbt2+fhhx9OrVq1KrtNAAAA2CQ9++yz5b+IkCRvvvlmZs2alWbNmmXLLbcsXx81alSaNm1aGS0CABuIkAMAwL/cfffduf766zN16tQsXrw4W2+9dX7605/m7LPPTo0aNSq7PQAAANhkjR8/PgcccMB37psxY0Zatmy5/hsCACqNkAMAAAAAAAAAUBCqVHYDAAAAAAAAAACrQsgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAkGT9+fIqKitKhQ4fKbgUAAABYASEHAAAAYKMhaAAAAACsjJADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAACsd9OnT88vfvGLtGrVKjVr1kzt2rXTokWLHH744bn11luTJB06dMgBBxyQJHn88cdTVFRU/tWyZcvyWt27d09RUVFuu+22TJs2LT/+8Y/TtGnTVK1aNZdcckn5vs8++ywXXXRRdtpppxQXF6dOnTrZfffd079//yxcuHC1+v/nP/+ZvffeO0VFRfnxj3+cRYsWlR/7/PPPc/HFF2fXXXdNnTp1UlxcnNatW+eKK67IggUL1vyHBgAAACyjWmU3AAAAAPx7mzZtWtq3b5+5c+dm++23T5cuXVK1atW89957eeKJJ/L+++/nxBNPTKdOnbLZZptl7NixadKkSTp16lReo2HDhsvUnThxYn75y1+madOm2W+//bJw4cLUqVMnSfLWW2+lY8eOeeedd9KoUaN07tw5ixcvzmOPPZY+ffpk+PDhGTduXBo0aPCd/b/++uvp3Llz3nzzzfzqV79Kv379UlRUlCR5+eWX06lTp8ycOTNNmzbNPvvsk+rVq+eZZ55J3759c88992T8+PGpV6/eOvppAgAAwKZNyAEAAABYr6699trMnTs3V1xxRX79619XOLZw4cJMnjw5SXLBBRdkr732ytixY7PDDjvktttuW2ndoUOH5oILLsiVV16ZKlUqDqvs1q1b3nnnnRxxxBG58847U1JSkuSbiQydOnXKs88+m169euUvf/nLSq/x5JNP5qijjsqcOXNyww03pGfPnhV6P+KIIzJz5sz85je/Sd++fVOjRo0kyYIFC3LyySfnr3/9a84+++zccsstq/SzAgAAAFbO4yoAAACA9erjjz9OknTu3HmZY7Vq1cp+++23RnW32267XHHFFcsEHCZMmJBJkyaluLg4N910U3nAIUkaNWqUm266KUly11135b333lth/b/+9a85+OCD89VXX+W+++6rEHBIkmHDhuXNN99Mly5dcvnll5cHHJKUX7tx48a544478vnnn6/RPQIAAAAVCTkAAAAA69Uee+yRJDn11FMzduzYfPnll+uk7lFHHZWqVasusz5+/PgkSadOndKkSZNlju++++7ZZZdd8vXXX+fxxx9fbu3f/e53+clPfpItttgiTz75ZA477LBl9jzwwANJkh//+MfLrVG7du20bds2paWl5dMqAAAAgLUj5AAAAACsV+eff34OOuigTJo0KZ06dUrdunXTrl27nHvuuWv14X/Lli2Xu/7+++8nSVq1arXCc7feeusKe7/tqaeeyq9//evUrFkzTzzxRHbdddfl1njrrbeSJD/72c9SVFS03K8HH3wwyTePyQAAAADWXrXKbgAAAAD491ZcXJyHH344kydPzpgxYzJx4sRMnDgxU6ZMybXXXpvTTjst119//WrXrVWr1nroNtlpp51SvXr1TJkyJWeccUbuueee5V7r66+/TrLiiRHf1qJFi/XSKwAAAGxqhBwAAACADaJdu3Zp165dkqS0tDSjR4/Oz3/+8wwePDjHHHNMDjjggHVynS233DLJ/5u0sDxLjy3d+23169fP3//+93Tp0iX/8z//k8MOOyz3339/ateuXWFf8+bN8+qrr+akk07KMcccs056BwAAAFbO4yoAAACADa5atWo55phjcuihhyZJpk6dmiSpUaNGkm9CEGuqQ4cOSZIxY8bk448/Xub4c889l6lTp6ZKlSrZb7/9llujbt26GTNmTA455JA8/vjjOeigg/L5559X2HPYYYclSe6+++417hUAAABYPUIOAAAAwHo1ePDgvPbaa8usf/TRR5kyZUqS//c4h2bNmiVJpk+fnsWLF6/R9fbZZ5/sueeeWbhwYXr27JkFCxaUH5s1a1Z69uyZJDn++OPTvHnzFdYpLi7Offfdl65du2bSpEnp0KFDhdBEjx490qJFi4wYMSJ9+vTJvHnzlnuPQ4cOXaP7AAAAAJZVVFZWVlbZTQAAAAD/vnbdddc8//zzadWqVX7wgx+kbt26+ec//5knn3wyCxcuTMeOHTN27NhUq/bNUzXbtWuXKVOmZPvtt0/btm2z2WabpWHDhunXr1+SpHv37hk2bFhuvfXWdO/efbnXfOutt9KxY8e88847ady4cfbbb78sXrw4jz32WObOnZs2bdpk3LhxadCgQfk548ePzwEHHJD9998/48ePL19fsmRJTjzxxNxxxx3ZbrvtMm7cuPJwxEsvvZQuXbrk7bffTv369bPzzjunWbNmWbBgQV5//fW88sorady4cT766KP188MFAACATYxJDgAAAMB6deWVV+bUU09N/fr18/TTT2fEiBF5+eWXs+eee2bYsGEZM2ZMecAhSe65555069Ytc+fOzfDhw/PnP/85d91112pdc6uttsqzzz6bCy+8MFtssUXuv//+PPzww9l6663Tr1+/TJgwoULAYWWqVq2aYcOG5dRTT83rr7+efffdN2+88UaSZKeddsoLL7yQ/v37Z8cdd8wLL7yQESNGZNKkSSkpKcl5552XUaNGrVbvAAAAwIqZ5AAAAAAAAAAAFASTHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgI/xf400KhvXD6nAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 2600x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure(figsize=(26, 8))\n",
+    "draw(df, 'stroke', 'gender')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<strong>Quan sát biểu đồ:</strong> tỉ lệ bị đột quỵ giữa nam và nữ gần như không có quá nhiều sự khác biệt\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 143,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[ 103.26279863 1970.73720137]\n",
+      " [ 144.73720137 2762.26279863]]\n",
+      "Chi-Square value: 0.3918784193181082\n",
+      "Degree of Freedom:  1\n",
+      "p-value: 0.531313673871251\n",
+      "Không có mối tương quan giữa giới tính và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "stroke_male_count = df[(df['gender'] == 'Male') & (df['stroke'] == 1)].shape[0]\n",
+    "no_stroke_male_count = df[(df['gender'] == 'Male') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_female_count = df[(df['gender'] == 'Female') & (df['stroke'] == 1)].shape[0]\n",
+    "no_stroke_female_count = df[(df['gender'] == 'Female') & (df['stroke'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa giới tính và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa giới tính và đột quỵ\"\n",
+    "male_arr = [stroke_male_count, no_stroke_male_count]\n",
+    "female_arr = [stroke_female_count, no_stroke_female_count]\n",
+    "nij = []\n",
+    "nij.append(male_arr)\n",
+    "nij.append(female_arr)\n",
+    "nij = np.array(nij)\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(2 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_gender = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_gender))\n",
+    "if p_gender <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định chi – square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa giới tính và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa giới tính và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/AVKlET5.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 400px; height:400px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa giới tính và bệnh đột quỵ</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 0.3918784193181082</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  1</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.531313673871251</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Không có mối tương quan giữa giới tính và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value lớn hơn mức ý nghĩa, nên ta không thể bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy không có mối tương quan giữa giới tính và bệnh đột quỵ.\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Giới tính không có sự ảnh hưởng đến đột quỵ. Điều này không phù hợp với kết quả nghiên cứu\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.2.Đột quỵ và tuổi tác </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ:</strong> Lão hóa có liên quan đến nhiều thay đổi đáng chú ý ở động mạch não trong và ngoài sọ người. Đột quỵ có thể xảy ra ở mọi lứa tuổi nhưng càng cao tuổi thì nguy cơ bị đột quỵ càng tăng và tăng rõ rệt sau 50 tuổi. \n",
+    "<br>\n",
+    "<strong>Kiểm định tính xác thực:</strong> chia bộ dữ liệu thành 2 phần, bị đột quỵ và không bị đột quỵ sau đó quan sát sự phân bố độ tuổi giữa 2 nhóm\n",
+    "\n",
+    "\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 144,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACCoAAAHrCAYAAAADw+67AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhFklEQVR4nO3de5xWdYE/8M8Md1RAQGYghouECF7J63jLC4mmriZb2WrhZXUzsJQtlVa8oEliF9MQ1zZRf8m6Wmlp5g0VM0ERM28TedsdNh1wMkCZHG7P7w/X2Z0EBITnmYH3+/V6Xi+e8z3nPJ8zhzOvmS8fzikrFAqFAAAAAAAAAAAUQXmpAwAAAAAAAAAAWw5FBQAAAAAAAACgaBQVAAAAAAAAAICiUVQAAAAAAAAAAIpGUQEAAAAAAAAAKBpFBQAAAAAAAACgaBQVAAAAAAAAAICiUVQAAAAAAAAAAIpGUQEAAAAAAAAAKBpFBQBYg5deeiljx47NsGHDstVWW6Vjx47p27dv9tprr4wdOzY/+9nPSh2xmYMPPjhlZWV55JFHSh1ljRobG/PNb34zgwcPTocOHVJWVpYBAwZ8pH22huMGAACAzZG5EwBgQykqAMBq/PznP88uu+ySKVOmZOHChdl///0zatSo7LrrrvnTn/6UKVOm5J/+6Z8+sJ1feNduwoQJmTRpUt5+++0ce+yxGT16dP7+7/++1LEAAACA9WTuZON75JFHUlZWloMPPrjUUQBgk2tb6gAA0NIsWLAgo0ePTmNjY/75n/85l112WTp27Nhsnblz5+anP/1piRK2XrfddluS5De/+U0GDx5c4jQAAADAhjB3AgB8VIoKAPA37r777rzzzjvp06dPvvOd76x2nT322CN77LFHkZO1frW1tUmipAAAAACtmLkTAOCj8ugHAPgbCxYsSJJst91267zN+7fmmzlzZpLkkEMOSVlZWdPrxhtvTJL853/+Z8rKyjJgwICsXLky3/ve9zJ8+PBsvfXWKSsra7bP++67L0cffXR69eqV9u3bp0+fPvn85z+fp556ar2Padq0aWnfvn223XbbPPzww83GZsyYkeOPPz69e/dO+/bt06tXr3zmM5/JrFmz1vtz1mTAgAEpKytLoVBIktV+bd5+++386Ec/yvHHH5/Bgwdnq622ylZbbZVddtkl//Iv/5JFixat12c2NjbmyiuvzB577JFtttkm7du3T2VlZfbaa6+ce+65eeuttz6wzV//+td897vfzb777ptu3bqlY8eOGTJkSM4999z8+c9//qhfBgAAANgsmDvZ+HMnBx98cA455JAkycyZM5t9bQYMGNC03sknn9z09Xr++efz+c9/Pr17906bNm1y8cUXJ0kuvvjilJWVNb3/Wx/2iInXX38948aNy9ChQ9O5c+dss8022WuvvfLDH/4wK1as2GjHDMCWzR0VAOBv9OvXL0ny/PPPZ8aMGTnssMM+dJvKysqMHj069957bxYsWJCRI0emsrKyafzjH/94s/ULhUKOP/743HvvvTnwwAMzdOjQvPDCC03jEyZMyGWXXZaysrLst99+6devX2pqanLbbbflZz/7Wa6//vqceuqp63Q8F154YS699NIMGDAgv/rVrzJs2LCmsa9//ev57ne/m/Ly8uy555458MADU1tbm1/84he566678qMf/SinnHJKs/3deOONOeWUU9K/f//853/+5zpl+Pu///vU19fnpptuSpKMHj36A1+b3//+9znjjDOy3XbbZciQIdljjz3yl7/8JXPnzs3ll1+e2267LbNnz06PHj0+9PNWrVqVo446KjNmzEiXLl1y4IEHplu3bnnzzTfz0ksv5corr8w//MM/pHv37k3bvP766zniiCPy3HPPpXv37tlrr72yzTbb5Omnn86VV16Z22+/PY888kj69++/TscMAAAAmytzJxt/7uSII45Ix44dc99996WioiJHHHFE01jPnj0/sP7jjz+eL3/5y+ndu3cOOuig/PWvf80222yzTp+1No8++miOO+64/OUvf8mAAQPyqU99Ko2NjXnyySdz1lln5a677srdd9+ddu3afeTPAmALVwAAmnn77bcLH/vYxwpJCmVlZYWDDz64cOmllxZ+9atfFRYuXLjWbT/5yU8WkhQefvjh1Y6/9tprhSSFJIW+ffsW5s2b94F1fv3rXxeSFDp27Fi4//77m43927/9WyFJoV27doXnn39+rZ/d2NhYOPHEEwtJCnvuuWehrq6u2frXX399IUnh4x//eOH3v/99s7GZM2cWttlmm0L79u0Lf/zjH5uNTZs2rZCk0L9//7V+LVbn/WNfnfnz5xcefPDBwsqVK5stX7p0aeFLX/pSIUnhK1/5yge2W93XfObMmYUkheHDhxeWLFnygW3mzJlTqK+vb3q/atWqwv77719IUjjttNOabbN8+fLCP//zPxeSFA455JD1PWQAAADY7Jg72TRzJw8//HAhSeGTn/zkGtcZPXp009fn/PPP/8A8SqFQKFx00UWFJIWLLrpovT7njTfeKPTo0aNQVlZWuPbaa5vtu76+vnDooYcWkhQuueSS9TouAFgdj34AgL+x9dZbZ8aMGdlnn31SKBTyyCOPZMKECTnqqKPSq1evDB8+PNddd11Wrlz5kT7n8ssvzw477PCB5e8/2/ErX/lKPvWpTzUbO+2003L00Udn+fLl+cEPfrDGff/lL3/J4YcfnltuuSV/93d/l5kzZ6aioqJpfNWqVU23/7v11luz6667Ntv+oIMOyoQJE7Js2bL867/+a7Oxrl27ZsiQIRk0aNB6He+H6du3bw477LCUlzf/8aRz586ZOnVq2rZtm9tvv32d9vX+LSgPPPDA1f5vgj333LPZnRnuu+++/Pa3v83uu++e6667rtk2bdu2zeTJk7Pzzjvn4YcfzvPPP78hhwcAAACbDXMnpZk7+b922GGHXHbZZR+YR/korrrqqvz5z3/OmDFjcuaZZzbbd48ePXLzzTenXbt2+eEPf9j0eE8A2FCKCgCwGkOGDMns2bPzxBNP5MILL8zIkSObnrv4zDPP5Mwzz8wRRxyRZcuWbfBnjBo16gPLVqxYkd/+9rdJ3nvm4OqcdtppSfKB5yW+77XXXst+++2XmTNnZuzYsbnjjjvSuXPnZuv87ne/y+uvv55BgwZljz32WO1+3n9O4eOPP95s+Wc+85n84Q9/yIwZM9Z4bB/F448/niuuuCJjxozJKaeckpNPPjlf+cpX0r59+7z55pv5y1/+8qH7+MQnPpE2bdrkhhtuyJQpU/LGG2+sdf1f/epXSd47J23bfvDJWOXl5TnooIOa8gEAAMCWztxJ6eZOkuS4445LmzZtNuo+358f+fznP7/a8Y997GMZPHhw06M1AeCj+OBMPADQZO+9987ee++d5L1nI/7ud7/LlVdemVtvvTUPPvhgfvCDH+Qb3/jGeu+3V69eH/gFOEn+/Oc/5913302SDBw4cLXbvt/G/9Of/rTa8TPOOCMrVqzIP/7jP+aaa65Z7TqvvvpqkuSVV15JWVnZWrO++eabax3fWBYuXJhRo0blscceW+t6S5YsybbbbrvWdQYNGpTvf//7+cY3vpGxY8dm7Nix6d+/f6qrq3P00Ufns5/9bNq3b9+0/vtfjwkTJmTChAlr3Xexvh4AAADQGpg7Kc1cwYABAzb6Pt8/5gMPPPBD133zzTdXe7cLAFhXigoAsI7KysryiU98Iv/+7/+ehoaG/PKXv8ydd965Qb9sd+rUaRMkfM9JJ52Um2++ObfcckuOP/74HHnkkR9YZ9WqVUmSysrKjBw5cq3769mz5ybJ+bf+8R//MY899liqq6tzySWXZLfddsu2226bdu3aJUn69OmTN954Y51vLXjWWWflc5/7XH75y1/msccey2OPPZZbb701t956ay666KL85je/Se/evZP879fjgAMO+NDbMu60004f4SgBAABg82XupHg+ytfn/WNb0/K///u/z1ZbbbXWffzfR2oCwIZQVACADXD44Yfnl7/8Zerr6zfqfnv06JEOHTqksbExr7766geef5j8b7v9Yx/72Gr3MXr06Bx55JE56aSTctxxx2X69OkfuFViVVVV0+fdeOONG/UYNsTSpUtzzz33pLy8PPfcc0+6dev2gfG6urr13m9FRUVOP/30nH766UmSP/zhDzn11FMza9asnH/++bnpppuS/O/X49hjj83Xv/71j3YwAAAAgLmTEnr/LpJvv/32asf/67/+a7XLq6qq8tJLL+W8887LnnvuucnyAUCSlJc6AAC0NOvyP/Zra2uTJH379m22/P1fBFesWLFBn922bdsccMABSbLGX4JvuOGGJMkhhxyyxv187nOfyx133JHy8vJ8/vOfz80339xsfK+99krPnj3z4osv5oUXXtigrBvT4sWLs3LlynTp0uUDJYUk+clPfrLOd1JYmx133DHnnXdekveel/m+9//nxO23375RPgcAAAA2Z+ZONo2P+rV53/sFjZqamtWO/+pXv1rt8vfnR2677baP9PkAsC4UFQDgb1x77bUZPXp0Hn/88Q+MFQqF/PznP88Pf/jDJMkJJ5zQbPz9X74/yi+w//zP/5wkmTp1ambMmNFs7MYbb8wvf/nLtGvXLl/72tfWup+jjjoq99xzTzp16pSTTz451157bdNYu3btctFFF6VQKOQzn/lMHnvssQ9sv3Llyjz00EOZPXt2s+V33HFHdtxxxxx22GEbeogfUFFRkW233TaLFi3K//t//6/Z2OzZszN+/Pj12t9DDz2Ue+65J8uXL2+2vFAo5O67706S9O/fv2n5sccem7322itPPvlkTjnllNU+W/Ivf/lLrrvuuo88WQAAAACtnbmT92zsuZP3vzYvvfTSB+Y01sehhx6a8vLy3HfffZk5c2bT8kKhkKuvvjo/+9nPVrvdN77xjXTr1i3f+9738t3vfjfLli37wDqvvfZafvKTn2xwNgB4n0c/AMDfWL58eW6++ebcfPPN2W677TJ8+PD07NkzixYtyosvvpj//M//TPLe8wxPO+20ZtuOGjUq06ZNy7nnnpsHH3wwvXr1SllZWU499dTst99+6/T5Rx55ZC644IJcdtll+dSnPpX9998//fr1yx/+8Ic8/fTTadOmTa677rrstNNOH7qvQw45JA8++GCOPPLIjBkzJm+//XbTHQXGjh2b2traXHnllTnwwAOz00475eMf/3g6deqUurq6PPPMM1m0aFGmTp2afffdt2mfixcvzrx58/Luu++u41f0w7Vp0yYXXnhhzjnnnHzpS1/KlClTsv3226e2tjaPP/54TjrppDz66KNrvDXh33r22WdzzjnnpEuXLvnEJz6RPn365K9//Wuefvrp/Nd//Ve6du2aiRMnNq1fXl6eO++8M0cddVRuuumm/PSnP81uu+2Wfv36ZdmyZXn11Vfz3HPPZeXKlTn55JPTtq0foQAAANhymTvZNHMn/fr1y5577pmnnnoqu+yyS/bcc8907NgxPXv2zLe//e113k9VVVXOOuus/OAHP8hhhx2WAw88MN27d8/vf//71NbW5vzzz1/t/vr27Ztf/OIXGTVqVL7+9a9n8uTJ2XnnndO7d+8sXrw4NTU1eeWVV7LPPvvkpJNOWq9jA4C/ZZYdAP7GaaedloEDB2bGjBl54okn8uKLL2bBggVp27Zt+vTpky984Qv50pe+lCOOOOID2x511FH50Y9+lKlTp+ahhx5KQ0NDkuSAAw5Y51+2k+TSSy/N/vvvn2uuuSZPPPFEZs+enZ49e+azn/1svv71r2fvvfde533ts88+eeSRR/KpT30q559/ft5+++1cdtllSZLJkyfnuOOOy7XXXpvHHnss9957b9q3b5/evXvn4IMPztFHH53jjz9+nT/rozj77LMzcODATJ48uem2ijvuuGOmTJmSL3/5yxk4cOA67+uYY47J4sWL85vf/CYvvfRSZs+enU6dOqWqqirnn39+xowZ84FbT/bp0yezZ8/OjTfemP/4j//Is88+myeffDLdu3dPnz598uUvfzl/93d/l44dO27sQwcAAIBWxdzJpps7+dnPfpbx48fn4Ycfzn/8x39kxYoV6d+//3oVFZLk+9//fvr165d/+7d/y+OPP56tt946+++/f2677bYsWbJkjfs76KCD8sILL+SHP/xhfvWrX2XOnDlpbGxMr1690q9fv5x00kkZNWrUxjhUALZwZQUPYgYAAAAAAAAAiqS81AEAAAAAAAAAgC2HogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABRN21IHaAlWrVqV119/Pdtss03KyspKHQcAAIBWolAo5O23306fPn1SXu7/ArD5MFcCAADAhljXuRJFhSSvv/56qqqqSh0DAACAVmr+/Pnp27dvqWPARmOuBAAAgI/iw+ZKFBWSbLPNNkne+2J16dKlxGkAAABoLZYsWZKqqqqm3ythc2GuBAAAgA2xrnMligpJ0y0Mu3Tp4pdvAAAA1ptb47O5MVcCAADAR/FhcyUeoAkAAAAAAAAAFI2iAgAAAAAAAABQNIoKAAAAAAAAAEDRKCoAAAAAAAAAAEWjqAAAAAAAAAAAFI2iAgAAAAAAAABQNIoKAAAAAAAAAEDRKCoAAAAAAAAAAEWjqAAAAAAAAAAAFI2iAgAAAAAAAABQNIoKAAAAAAAAAEDRKCoAAAAAAAAAAEVT0qLC1KlTs+uuu6ZLly7p0qVLqqur8+tf/7pp/OCDD05ZWVmz15e//OVm+6itrc1RRx2Vzp07p1evXvnGN76RFStWFPtQAAAAAAAAAIB10LaUH963b998+9vfzuDBg1MoFHLTTTfl2GOPze9+97vstNNOSZLTTz89EydObNqmc+fOTX9euXJljjrqqFRWVubxxx/PG2+8kS996Utp165dLr/88qIfDwAAAAAAAACwdiUtKhxzzDHN3n/rW9/K1KlTM3v27KaiQufOnVNZWbna7e+///68+OKLefDBB1NRUZHdd989l156ac4777xcfPHFad++/SY/BgD4KGpra1NfX1/qGB+qZ8+e6devX6ljAAAAAABAM61lnn1j2Jzm6ktaVPi/Vq5cmdtvvz1Lly5NdXV10/JbbrklP/nJT1JZWZljjjkmEyZMaLqrwqxZs7LLLrukoqKiaf2RI0fmzDPPzAsvvJDhw4ev9rMaGxvT2NjY9H7JkiWb6KgAYM1qa2szdOjQNDQ0lDrKh+rcuXNqamo2mx+AAAAAAABo/VrTPPvGsDnN1Ze8qPDcc8+luro67777brbeeuvccccdGTZsWJLkH/7hH9K/f//06dMnzz77bM4777zMmzcvP//5z5MkdXV1zUoKSZre19XVrfEzJ02alEsuuWQTHREArJv6+vo0NDTk3CtuSNWgIaWOs0bzX5mXyeedmvr6+s3ihx8AAAAAADYPrWWefWPY3ObqS15UGDJkSJ555pksXrw4P/3pTzN69OjMnDkzw4YNyxlnnNG03i677JLevXvnsMMOyyuvvJJBgwZt8GeOHz8+48aNa3q/ZMmSVFVVfaTjAIANVTVoSAYPW/1dgAAAAAAAgLUzz976lJc6QPv27fPxj388e+yxRyZNmpTddtstP/jBD1a77j777JMkefnll5MklZWVWbBgQbN13n9fWVm5xs/s0KFDunTp0uwFAAAAAAAAAGx6JS8q/K1Vq1alsbFxtWPPPPNMkqR3795Jkurq6jz33HNZuHBh0zoPPPBAunTp0vT4CAAAAAAAAACg5Sjpox/Gjx+fI488Mv369cvbb7+d6dOn55FHHsl9992XV155JdOnT8+nP/3p9OjRI88++2zOOeecHHTQQdl1112TJIcffniGDRuWL37xi5k8eXLq6upywQUXZMyYMenQoUMpDw0AAAAAAAAAWI2SFhUWLlyYL33pS3njjTfStWvX7LrrrrnvvvvyqU99KvPnz8+DDz6Yq666KkuXLk1VVVVGjRqVCy64oGn7Nm3a5O67786ZZ56Z6urqbLXVVhk9enQmTpxYwqMCAAAAAAAAANakpEWFH//4x2scq6qqysyZMz90H/37988999yzMWMBAAAAAAAAAJtIeakDAAAAAAAAAABbDkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAWomVK1dmwoQJGThwYDp16pRBgwbl0ksvTaFQaFqnUCjkwgsvTO/evdOpU6eMGDEiL730UglTAwAAQHOKCgAAAACtxBVXXJGpU6fmhz/8YWpqanLFFVdk8uTJueaaa5rWmTx5cq6++upcd911eeKJJ7LVVltl5MiReffdd0uYHAAAAP5X21IHAAAAAGDdPP744zn22GNz1FFHJUkGDBiQf//3f8+TTz6Z5L27KVx11VW54IILcuyxxyZJbr755lRUVOTOO+/MCSecULLsAAAA8D53VAAAAABoJfbbb7/MmDEjf/zjH5Mkv//97/PYY4/lyCOPTJK89tprqaury4gRI5q26dq1a/bZZ5/MmjVrjfttbGzMkiVLmr0AAABgU3FHBQAAAIBW4vzzz8+SJUuy4447pk2bNlm5cmW+9a1v5cQTT0yS1NXVJUkqKiqabVdRUdE0tjqTJk3KJZdcsumCAwAAwP/hjgoAAAAArcRtt92WW265JdOnT8/TTz+dm266Kd/5zndy0003faT9jh8/PosXL256zZ8/fyMlBgAAgA9yRwUAAACAVuIb3/hGzj///JxwwglJkl122SX/9V//lUmTJmX06NGprKxMkixYsCC9e/du2m7BggXZfffd17jfDh06pEOHDps0OwAAALzPHRUAAAAAWomGhoaUlzefzmnTpk1WrVqVJBk4cGAqKyszY8aMpvElS5bkiSeeSHV1dVGzAgAAwJq4owIAAABAK3HMMcfkW9/6Vvr165eddtopv/vd7/K9730vp556apKkrKwsZ599di677LIMHjw4AwcOzIQJE9KnT58cd9xxpQ0PAAAA/0NRAQAAAKCVuOaaazJhwoR85StfycKFC9OnT5/80z/9Uy688MKmdc4999wsXbo0Z5xxRhYtWpQDDjgg9957bzp27FjC5AAAAPC/FBUAAAAAWoltttkmV111Va666qo1rlNWVpaJEydm4sSJxQsGAAAA66H8w1cBAAAAAAAAANg43FEBAKCIamtrU19fX+oYH6pnz57p169fqWMAAAAAALAZUlQAACiS2traDB06NA0NDaWO8qE6d+6cmpoaZQUAAAAAADY6RQUAgCKpr69PQ0NDzr3ihlQNGlLqOGs0/5V5mXzeqamvr1dUAAAAAABgo1NUAAAosqpBQzJ42PBSxwAAAAAAgJIoL3UAAAAAAAAAAGDLoagAAAAAAAAAABSNRz8AALBaNTU1pY6wVj179ky/fv1KHQMAAAAAgPWkqAAAQDNvvVmXsrKynHTSSaWOsladO3dOTU2NsgIAAAAAQCujqAAAQDNL316cQqGQr068NoOH7VbqOKs1/5V5mXzeqamvr1dUAAAAAABoZRQVAABYrb4DdsjgYcNLHQMAAAAAgM1MeakDAAAAAAAAAABbDkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoSlpUmDp1anbdddd06dIlXbp0SXV1dX796183jb/77rsZM2ZMevToka233jqjRo3KggULmu2jtrY2Rx11VDp37pxevXrlG9/4RlasWFHsQwEAAAAAAAAA1kFJiwp9+/bNt7/97cydOzdPPfVUDj300Bx77LF54YUXkiTnnHNO7rrrrtx+++2ZOXNmXn/99Rx//PFN269cuTJHHXVUli1blscffzw33XRTbrzxxlx44YWlOiQAAAAAAAAAYC3alvLDjznmmGbvv/Wtb2Xq1KmZPXt2+vbtmx//+MeZPn16Dj300CTJtGnTMnTo0MyePTv77rtv7r///rz44ot58MEHU1FRkd133z2XXnppzjvvvFx88cVp3779aj+3sbExjY2NTe+XLFmy6Q4SAAAAAAAAAGhS0jsq/F8rV67MrbfemqVLl6a6ujpz587N8uXLM2LEiKZ1dtxxx/Tr1y+zZs1KksyaNSu77LJLKioqmtYZOXJklixZ0nRXhtWZNGlSunbt2vSqqqradAcGAAAAAAAAADQpeVHhueeey9Zbb50OHTrky1/+cu64444MGzYsdXV1ad++fbp169Zs/YqKitTV1SVJ6urqmpUU3h9/f2xNxo8fn8WLFze95s+fv3EPCgAAAAAAAABYrZI++iFJhgwZkmeeeSaLFy/OT3/604wePTozZ87cpJ/ZoUOHdOjQYZN+BgAAAAAAAADwQSUvKrRv3z4f//jHkyR77LFH5syZkx/84Af5/Oc/n2XLlmXRokXN7qqwYMGCVFZWJkkqKyvz5JNPNtvfggULmsYAAAAAAAAAgJal5I9++FurVq1KY2Nj9thjj7Rr1y4zZsxoGps3b15qa2tTXV2dJKmurs5zzz2XhQsXNq3zwAMPpEuXLhk2bFjRswMAAAAAAAAAa1fSOyqMHz8+Rx55ZPr165e3334706dPzyOPPJL77rsvXbt2zWmnnZZx48ale/fu6dKlS84666xUV1dn3333TZIcfvjhGTZsWL74xS9m8uTJqaurywUXXJAxY8Z4tAMAAAAAAAAAtEAlLSosXLgwX/rSl/LGG2+ka9eu2XXXXXPfffflU5/6VJLk+9//fsrLyzNq1Kg0NjZm5MiRufbaa5u2b9OmTe6+++6ceeaZqa6uzlZbbZXRo0dn4sSJpTokAACAFq+2tjb19fWljvGhevbsmX79+pU6BgAAAAAbWUmLCj/+8Y/XOt6xY8dMmTIlU6ZMWeM6/fv3zz333LOxowEAAGyWamtrM3To0DQ0NJQ6yofq3LlzampqlBUAAAAANjMlLSoAAABQXPX19WloaMi5V9yQqkFDSh1njea/Mi+Tzzs19fX1igoAAAAAmxlFBQAAgC1Q1aAhGTxseKljAAAAALAFKi91AAAAAAAAAABgy6GoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARdO21AEAgNahpqam1BHWqmfPnunXr1+pYwAAAAAAAB9CUQEAWKu33qxLWVlZTjrppFJHWavOnTunpqZGWQEAAAAAAFo4RQUAYK2Wvr04hUIhX514bQYP263UcVZr/ivzMvm8U1NfX6+oAAAAAAAALZyiAgCwTvoO2CGDhw0vdQwAAAAAAKCVKy91AAAAAAAAAABgy6GoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNG0LXUAAADYUDU1NaWO8KF69uyZfv36lToGAAAAAECLoagAAECr89abdSkrK8tJJ51U6igfqnPnzqmpqVFWAAAAAAD4H4oKAAC0OkvfXpxCoZCvTrw2g4ftVuo4azT/lXmZfN6pqa+vV1QAAAAAAPgfigoAwGajpT8GoKXna436Dtghg4cNL3UMAAAAAADWg6ICANDqtabHACTJ8mXLSx0BAAAAAABKRlEBAGj1WstjAOY8en9uvvqSrFixotRRAAAAAACgZBQVAIDNRkt/DMD8V+eVOgIAAAAAAJRceakDAAAAAAAAAABbDkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKIpaVFh0qRJ2WuvvbLNNtukV69eOe644zJv3rxm6xx88MEpKytr9vryl7/cbJ3a2tocddRR6dy5c3r16pVvfOMbWbFiRTEPBQAAAAAAAABYB21L+eEzZ87MmDFjstdee2XFihX55je/mcMPPzwvvvhittpqq6b1Tj/99EycOLHpfefOnZv+vHLlyhx11FGprKzM448/njfeeCNf+tKX0q5du1x++eVFPR4AAAAAAAAAYO1KWlS49957m72/8cYb06tXr8ydOzcHHXRQ0/LOnTunsrJytfu4//778+KLL+bBBx9MRUVFdt9991x66aU577zzcvHFF6d9+/ab9BgAAAAAAAAAgHVX0kc//K3FixcnSbp3795s+S233JKePXtm5513zvjx49PQ0NA0NmvWrOyyyy6pqKhoWjZy5MgsWbIkL7zwwmo/p7GxMUuWLGn2AgAAAAAAAAA2vZLeUeH/WrVqVc4+++zsv//+2XnnnZuW/8M//EP69++fPn365Nlnn815552XefPm5ec//3mSpK6urllJIUnT+7q6utV+1qRJk3LJJZdsoiMB2PzV1tamvr6+1DHWqmfPnunXr1+pYwAAAAAAAPA3WkxRYcyYMXn++efz2GOPNVt+xhlnNP15l112Se/evXPYYYfllVdeyaBBgzbos8aPH59x48Y1vV+yZEmqqqo2LDjAFqa2tjZDhw5tdneblqhz586pqalRVgAAYLPzpz/9Keedd15+/etfp6GhIR//+Mczbdq07LnnnkmSQqGQiy66KD/60Y+yaNGi7L///pk6dWoGDx5c4uQAAADwnhZRVBg7dmzuvvvuPProo+nbt+9a191nn32SJC+//HIGDRqUysrKPPnkk83WWbBgQZKksrJytfvo0KFDOnTosBGSA2x56uvr09DQkHOvuCFVg4aUOs5qzX9lXiafd2rq6+sVFQAA2Kz85S9/yf77759DDjkkv/71r7PddtvlpZdeyrbbbtu0zuTJk3P11VfnpptuysCBAzNhwoSMHDkyL774Yjp27FjC9AAAAPCekhYVCoVCzjrrrNxxxx155JFHMnDgwA/d5plnnkmS9O7dO0lSXV2db33rW1m4cGF69eqVJHnggQfSpUuXDBs2bJNlB9jSVQ0aksHDhpc6BgAAbFGuuOKKVFVVZdq0aU3L/u98SqFQyFVXXZULLrggxx57bJLk5ptvTkVFRe68886ccMIJRc8MAAAAf6ukRYUxY8Zk+vTp+cUvfpFtttkmdXV1SZKuXbumU6dOeeWVVzJ9+vR8+tOfTo8ePfLss8/mnHPOyUEHHZRdd901SXL44Ydn2LBh+eIXv5jJkyenrq4uF1xwQcaMGbPZ3TWhNTwTPvFceACAv1VTU1PqCGvl5zeA1uOXv/xlRo4cmc9+9rOZOXNmPvaxj+UrX/lKTj/99CTJa6+9lrq6uowYMaJpm65du2afffbJrFmz1lhUaGxsTGNjY9P7JUuWbNoDAQAAYItW0qLC1KlTkyQHH3xws+XTpk3LySefnPbt2+fBBx/MVVddlaVLl6aqqiqjRo3KBRdc0LRumzZtcvfdd+fMM89MdXV1ttpqq4wePToTJ04s5qFscq3lmfCJ58IDALzvrTfrUlZWlpNOOqnUUdbKz28Arcerr76aqVOnZty4cfnmN7+ZOXPm5Ktf/Wrat2+f0aNHN/0nkIqKimbbVVRUNI2tzqRJk3LJJZds0uwAAADwvpI/+mFtqqqqMnPmzA/dT//+/XPPPfdsrFgtUmt4JnziufAAAP/X0rcXp1Ao5KsTr83gYbuVOs5q+fkNoHVZtWpV9txzz1x++eVJkuHDh+f555/Pddddl9GjR2/wfsePH59x48Y1vV+yZEmqqqo+cl4AAABYnZIWFVh/ngkPAND69B2wg5/hANgoevfunWHDhjVbNnTo0PzsZz9LklRWViZJFixYkN69ezets2DBguy+++5r3G+HDh02u0doAgAA0HKVlzoAAAAAAOtm//33z7x585ot++Mf/5j+/fsnSQYOHJjKysrMmDGjaXzJkiV54oknUl1dXdSsAAAAsCbuqAAAAADQSpxzzjnZb7/9cvnll+dzn/tcnnzyyVx//fW5/vrrkyRlZWU5++yzc9lll2Xw4MEZOHBgJkyYkD59+uS4444rbXgAAAD4H4oKAAAAAK3EXnvtlTvuuCPjx4/PxIkTM3DgwFx11VU58cQTm9Y599xzs3Tp0pxxxhlZtGhRDjjggNx7773p2LFjCZMDAADA/1JUAAAAAGhFjj766Bx99NFrHC8rK8vEiRMzceLEIqYCAACAdVde6gAAAAAAAAAAwJZDUQEAAAAAAAAAKBpFBQAAAAAAAACgaBQVAAAAAAAAAICiUVQAAAAAAAAAAIpGUQEAAAAAAAAAKBpFBQAAAAAAAACgaBQVAAAAAAAAAICiUVQAAAAAAAAAAIpGUQEAAAAAAAAAKJq2pQ4AAJtKTU1NqSOsVUvPBwAAAAAAsCkoKgCw2XnrzbqUlZXlpJNOKnWUdbJ82fJSRwAAAAAAACgaRQUANjtL316cQqGQr068NoOH7VbqOGs059H7c/PVl2TFihWljgIAAAAAAFA0igoAbLb6Dtghg4cNL3WMNZr/6rxSRwAAAAAAACi68lIHAAAAAAAAAAC2HIoKAAAAAAAAAEDRePQDQAtSW1ub+vr6UsdYq5qamlJHAAAAAAAAoBVTVABoIWprazN06NA0NDSUOso6Wb5seakjAAAAAAAA0AopKgC0EPX19WloaMi5V9yQqkFDSh1njeY8en9uvvqSrFixotRRAAAAAAAAaIUUFQBamKpBQzJ42PBSx1ij+a/OK3UEAAAAAAAAWjFFBeAjq62tTX19faljrFXPnj3Tr1+/UscAAAAAAACALZ6iAvCR1NbWZujQoWloaCh1lLXq3LlzampqlBUAAAAAAACgxBQVgI+kvr4+DQ0NOfeKG1I1aEip46zW/FfmZfJ5p6a+vl5RAQAAAAAAAEpMUQHYKKoGDcngYcNLHQMAAAAAAABo4cpLHQAAAAAAAAAA2HIoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARdO21AEAiqWmpqbUEdaqpecDAAAAAACAjUFRAdjsvfVmXcrKynLSSSeVOso6Wb5seakjAAAAAAAAwCZT0qLCpEmT8vOf/zx/+MMf0qlTp+y333654oorMmTIkKZ13n333fzzP/9zbr311jQ2NmbkyJG59tprU1FR0bRObW1tzjzzzDz88MPZeuutM3r06EyaNClt2+phAMnStxenUCjkqxOvzeBhu5U6zhrNefT+3Hz1JVmxYkWpowAAAAAAAMAmU9J/yZ85c2bGjBmTvfbaKytWrMg3v/nNHH744XnxxRez1VZbJUnOOeec/OpXv8rtt9+erl27ZuzYsTn++OPz29/+NkmycuXKHHXUUamsrMzjjz+eN954I1/60pfSrl27XH755aU8PKCF6TtghwweNrzUMdZo/qvzSh0BAAAAAAAANrmSFhXuvffeZu9vvPHG9OrVK3Pnzs1BBx2UxYsX58c//nGmT5+eQw89NEkybdq0DB06NLNnz86+++6b+++/Py+++GIefPDBVFRUZPfdd8+ll16a8847LxdffHHat29fikMDAAAAAAAAAFajfEM22n777fPnP//5A8sXLVqU7bfffoPDLF68OEnSvXv3JMncuXOzfPnyjBgxommdHXfcMf369cusWbOSJLNmzcouu+zS7FEQI0eOzJIlS/LCCy+s9nMaGxuzZMmSZi8AAACATWlTzacAAABAa7NBRYX//M//zMqVKz+wvLGxMX/60582KMiqVaty9tlnZ//998/OO++cJKmrq0v79u3TrVu3ZutWVFSkrq6uaZ3/W1J4f/z9sdWZNGlSunbt2vSqqqraoMwAAAAA62pTzKcAAABAa7Rej3745S9/2fTn++67L127dm16v3LlysyYMSMDBgzYoCBjxozJ888/n8cee2yDtl8f48ePz7hx45reL1myRFkBAAAA2CQ25XwKAAAAtEbrVVQ47rjjkiRlZWUZPXp0s7F27dplwIAB+e53v7veIcaOHZu77747jz76aPr27du0vLKyMsuWLcuiRYua3VVhwYIFqaysbFrnySefbLa/BQsWNI2tTocOHdKhQ4f1zgkAAACwvjbVfAoAAAC0Vuv16IdVq1Zl1apV6devXxYuXNj0ftWqVWlsbMy8efNy9NFHr/P+CoVCxo4dmzvuuCMPPfRQBg4c2Gx8jz32SLt27TJjxoymZfPmzUttbW2qq6uTJNXV1XnuueeycOHCpnUeeOCBdOnSJcOGDVufwwMAAADY6Db2fAoAAAC0dut1R4X3vfbaaxvlw8eMGZPp06fnF7/4RbbZZpvU1dUlSbp27ZpOnTqla9euOe200zJu3Lh07949Xbp0yVlnnZXq6ursu+++SZLDDz88w4YNyxe/+MVMnjw5dXV1ueCCCzJmzBh3TaDVq62tTX19faljrFVNTU2pIwAAALQKG2s+BQAAAFq7DSoqJMmMGTMyY8aMpv8J8H/dcMMN67SPqVOnJkkOPvjgZsunTZuWk08+OUny/e9/P+Xl5Rk1alQaGxszcuTIXHvttU3rtmnTJnfffXfOPPPMVFdXZ6uttsro0aMzceLEDT00aBFqa2szdOjQNDQ0lDrKOlm+bHmpIwAAALR4G2M+BQAAAFq7DSoqXHLJJZk4cWL23HPP9O7dO2VlZRv04YVC4UPX6dixY6ZMmZIpU6ascZ3+/fvnnnvu2aAM0FLV19enoaEh515xQ6oGDSl1nDWa8+j9ufnqS7JixYpSRwEAAGjRNtZ8CgAAALR2G1RUuO6663LjjTfmi1/84sbOA/yNqkFDMnjY8FLHWKP5r84rdQQAAIBWwXwKAAAAvKd8QzZatmxZ9ttvv42dBQAAAGCzZT4FAAAA3rNBRYV//Md/zPTp0zd2FgAAAIDNlvkUAAAAeM8GPfrh3XffzfXXX58HH3wwu+66a9q1a9ds/Hvf+95GCQcAAACwuTCfAgAAAO/ZoKLCs88+m9133z1J8vzzzzcbKysr+8ihAAAAADY35lMAAADgPRtUVHj44Yc3dg4AAACAzZr5FAAAAHhPeakDAAAAAAAAAABbjg26o8Ihhxyy1lsSPvTQQxscCAAAKL6amppSR/hQPXv2TL9+/UodA2CDmU8BAACA92xQUeH95ym+b/ny5XnmmWfy/PPPZ/To0RsjFwAAUARvvVmXsrKynHTSSaWO8qE6d+6cmpoaZQWg1TKfAgAAAO/ZoKLC97///dUuv/jii/POO+98pEAAAEDxLH17cQqFQr468doMHrZbqeOs0fxX5mXyeaemvr5eUQFotcynAAAAwHs2qKiwJieddFL23nvvfOc739mYuwUAADaxvgN2yOBhw0sdA2CLZD4FAACALU35xtzZrFmz0rFjx425SwAAAIDNmvkUAAAAtjQbdEeF448/vtn7QqGQN954I0899VQmTJiwUYIBAAAAbE7MpwAAAMB7Nqio0LVr12bvy8vLM2TIkEycODGHH374RgkGAAAAsDkxnwIAAADv2aCiwrRp0zZ2DgAAAIDNmvkUAAAAeM8GFRXeN3fu3NTU1CRJdtpppwwfPnyjhAIAAADYXJlPAQAAYEu3QUWFhQsX5oQTTsgjjzySbt26JUkWLVqUQw45JLfeemu22267jZkRAAAAoNUznwIAAADvKd+Qjc4666y8/fbbeeGFF/LWW2/lrbfeyvPPP58lS5bkq1/96sbOCAAAANDqmU8BAACA92zQHRXuvffePPjggxk6dGjTsmHDhmXKlCk5/PDDN1o4Wq/3b2HZkvXs2TP9+vUrdQwAAAC2EOZTAAAA4D0bVFRYtWpV2rVr94Hl7dq1y6pVqz5yKFqvt96sS1lZWU466aRSR/lQnTt3Tk1NjbICAAAARWE+BQAAAN6zQUWFQw89NF/72tfy7//+7+nTp0+S5E9/+lPOOeecHHbYYRs1IK3L0rcXp1Ao5KsTr83gYbuVOs4azX9lXiafd2rq6+sVFQAAWhF37gJaM/MpAAAA8J4NKir88Ic/zN/93d9lwIABqaqqSpLMnz8/O++8c37yk59s1IC0Tn0H7JDBw4aXOgYAAJsJd+4CNgfmUwAAAOA9G1RUqKqqytNPP50HH3wwf/jDH5IkQ4cOzYgRIzZqOAAAgMSdu4DNg/kUAACgGGpra1NfX1/qGEXRGu6+yeqtV1HhoYceytixYzN79ux06dIln/rUp/KpT30qSbJ48eLstNNOue6663LggQdukrAAAMCWzZ27gNbIfAoAAFAstbW1GTp0aBoaGkodpaiWL1te6gisp/UqKlx11VU5/fTT06VLlw+Mde3aNf/0T/+U733ve36xBgAAAPgf5lMAAIBiqa+vT0NDQ8694oZUDRpS6jib3JxH78/NV1+SFStWlDoK62m9igq///3vc8UVV6xx/PDDD893vvOdjxwKAAAAYHNhPgUAACi2qkFDtoi7Us5/dV6pI7CBytdn5QULFqRdu3ZrHG/btm3efPPNjxwKAAAAYHNhPgUAAACaW6+iwsc+9rE8//zzaxx/9tln07t3748cCgAAAGBzYT4FAAAAmluvosKnP/3pTJgwIe++++4Hxv7617/moosuytFHH73RwgEAAAC0dptyPuXb3/52ysrKcvbZZzcte/fddzNmzJj06NEjW2+9dUaNGpUFCxZsaHwAAADY6Nquz8oXXHBBfv7zn2eHHXbI2LFjM2TIkCTJH/7wh0yZMiUrV67Mv/zLv2ySoAAAAACt0aaaT5kzZ07+9V//Nbvuumuz5eecc05+9atf5fbbb0/Xrl0zduzYHH/88fntb3+7UY4HAAAAPqr1KipUVFTk8ccfz5lnnpnx48enUCgkScrKyjJy5MhMmTIlFRUVmyQoAAAAQGu0KeZT3nnnnZx44on50Y9+lMsuu6xp+eLFi/PjH/8406dPz6GHHpokmTZtWoYOHZrZs2dn3333Xe3+Ghsb09jY2PR+yZIl63uYAAAAsM7Wq6iQJP37988999yTv/zlL3n55ZdTKBQyePDgbLvttpsiHwAAAECrt7HnU8aMGZOjjjoqI0aMaFZUmDt3bpYvX54RI0Y0Ldtxxx3Tr1+/zJo1a41FhUmTJuWSSy7ZoCwAAACwvta7qPC+bbfdNnvttdfGzAIAAACwWdsY8ym33nprnn766cyZM+cDY3V1dWnfvn26devWbHlFRUXq6urWuM/x48dn3LhxTe+XLFmSqqqqj5QTAAAA1mSDiwoAAAAAFNf8+fPzta99LQ888EA6duy40fbboUOHdOjQYaPtDwAAANamvNQBAAAAAFg3c+fOzcKFC/OJT3wibdu2Tdu2bTNz5sxcffXVadu2bSoqKrJs2bIsWrSo2XYLFixIZWVlaUIDAADA33BHBQAAAIBW4rDDDstzzz3XbNkpp5ySHXfcMeedd16qqqrSrl27zJgxI6NGjUqSzJs3L7W1tamuri5FZAAAAPgARQUAAACAVmKbbbbJzjvv3GzZVlttlR49ejQtP+200zJu3Lh07949Xbp0yVlnnZXq6ursu+++pYgMAAAAH6CoAAAAALAZ+f73v5/y8vKMGjUqjY2NGTlyZK699tpSxwIAAIAmigoAAAAArdgjjzzS7H3Hjh0zZcqUTJkypTSBAAAA4EOUlzoAAAAAAAAAALDlUFQAAAAAAAAAAIqmpI9+ePTRR3PllVdm7ty5eeONN3LHHXfkuOOOaxo/+eSTc9NNNzXbZuTIkbn33nub3r/11ls566yzctdddzU9f/EHP/hBtt5662IdBq1YTU1NqSOsUUvOBgAAAAAAALChSlpUWLp0aXbbbbeceuqpOf7441e7zhFHHJFp06Y1ve/QoUOz8RNPPDFvvPFGHnjggSxfvjynnHJKzjjjjEyfPn2TZqd1e+vNupSVleWkk04qdZQPtXzZ8lJHAAAAAAAAANhoSlpUOPLII3PkkUeudZ0OHTqksrJytWM1NTW59957M2fOnOy5555JkmuuuSaf/vSn853vfCd9+vTZ6JnZPCx9e3EKhUK+OvHaDB62W6njrNacR+/PzVdfkhUrVpQ6CgAA66kl3x2rJWcDAAAAYMtQ0qLCunjkkUfSq1evbLvttjn00ENz2WWXpUePHkmSWbNmpVu3bk0lhSQZMWJEysvL88QTT+Qzn/nMavfZ2NiYxsbGpvdLlizZtAdBi9V3wA4ZPGx4qWOs1vxX55U6AgAA68mduwAAAADgw7XoosIRRxyR448/PgMHDswrr7ySb37zmznyyCMza9astGnTJnV1denVq1ezbdq2bZvu3bunrq5ujfudNGlSLrnkkk0dHwAA2MK4cxcAAAAAfLgWXVQ44YQTmv68yy67ZNddd82gQYPyyCOP5LDDDtvg/Y4fPz7jxo1rer9kyZJUVVV9pKwAAADvc+cuAAAAAFiz8lIHWB/bb799evbsmZdffjlJUllZmYULFzZbZ8WKFXnrrbdSWVm5xv106NAhXbp0afYCAAAAAAAAADa9VlVU+O///u/8+c9/Tu/evZMk1dXVWbRoUebOndu0zkMPPZRVq1Zln332KVVMAAAAAAAAAGANSvroh3feeafp7ghJ8tprr+WZZ55J9+7d071791xyySUZNWpUKisr88orr+Tcc8/Nxz/+8YwcOTJJMnTo0BxxxBE5/fTTc91112X58uUZO3ZsTjjhhPTp06dUhwUAAAAAAAAArEFJ76jw1FNPZfjw4Rk+/L1nt44bNy7Dhw/PhRdemDZt2uTZZ5/N3/3d32WHHXbIaaedlj322CO/+c1v0qFDh6Z93HLLLdlxxx1z2GGH5dOf/nQOOOCAXH/99aU6JAAAAAAAAABgLUp6R4WDDz44hUJhjeP33Xffh+6je/fumT59+saMBQAAAAAAAABsIiW9owIAAAAAAAAAsGVRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJpW+oAAAAAAAAAAJtSbW1t6uvrSx1jk6upqSl1BFgnigoAAAAAAADAZqu2tjZDhw5NQ0NDqaMUzfJly0sdAdZKUQEAAAAAAADYbNXX16ehoSHnXnFDqgYNKXWcTWrOo/fn5qsvyYoVK0odBdZKUQEAAAAAAADY7FUNGpLBw4aXOsYmNf/VeaWOAOtEUQEAAAAAAAC2MLW1tamvry91jKKoqakpdQTgbygqAAAAAAAAwBaktrY2Q4cOTUNDQ6mjFNXyZctLHQH4H4oKAAAAAAAAsAWpr69PQ0NDzr3ihlQNGlLqOJvcnEfvz81XX5IVK1aUOgrwPxQVAAAAAAAAYAtUNWhIBg8bXuoYm9z8V+eVOgLwNxQVAAAAAAAAIO89EqG+vr7UMTa5mpqaUkcAtnCKCgAAAAAAAGzxamtrM3To0DQ0NJQ6StEsX7a81BGALZSiAgAAAAAAAFu8+vr6NDQ05NwrbkjVoCGljrNJzXn0/tx89SVZsWJFqaMAWyhFBQAAAAAAAPgfVYOGZPCw4aWOsUnNf3VeqSMAW7jyUgcAAAAAAAAAALYcigoAAAAAAAAAQNEoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0igoAAAAAAAAAQNEoKgAAAAAAAAAARaOoAAAAAAAAAAAUjaICAAAAAAAAAFA0JS0qPProoznmmGPSp0+flJWV5c4772w2XigUcuGFF6Z3797p1KlTRowYkZdeeqnZOm+99VZOPPHEdOnSJd26dctpp52Wd955p4hHAQAAAAAAAACsq5IWFZYuXZrddtstU6ZMWe345MmTc/XVV+e6667LE088ka222iojR47Mu+++27TOiSeemBdeeCEPPPBA7r777jz66KM544wzinUIAAAAAAAAAMB6aFvKDz/yyCNz5JFHrnasUCjkqquuygUXXJBjjz02SXLzzTenoqIid955Z0444YTU1NTk3nvvzZw5c7LnnnsmSa655pp8+tOfzne+85306dNntftubGxMY2Nj0/slS5Zs5CMDAAAAAAAAAFanpHdUWJvXXnstdXV1GTFiRNOyrl27Zp999smsWbOSJLNmzUq3bt2aSgpJMmLEiJSXl+eJJ55Y474nTZqUrl27Nr2qqqo23YEAAAAAAAAAAE1abFGhrq4uSVJRUdFseUVFRdNYXV1devXq1Wy8bdu26d69e9M6qzN+/PgsXry46TV//vyNnB4AAAAAAAAAWJ2SPvqhVDp06JAOHTqUOgYAAAAAAAAAbHFa7B0VKisrkyQLFixotnzBggVNY5WVlVm4cGGz8RUrVuStt95qWgcAAAAAAAAAaDlabFFh4MCBqayszIwZM5qWLVmyJE888USqq6uTJNXV1Vm0aFHmzp3btM5DDz2UVatWZZ999il6ZgAAAAAAAABg7Ur66Id33nknL7/8ctP71157Lc8880y6d++efv365eyzz85ll12WwYMHZ+DAgZkwYUL69OmT4447LkkydOjQHHHEETn99NNz3XXXZfny5Rk7dmxOOOGE9OnTp0RHBQAAAAAAAACsSUmLCk899VQOOeSQpvfjxo1LkowePTo33nhjzj333CxdujRnnHFGFi1alAMOOCD33ntvOnbs2LTNLbfckrFjx+awww5LeXl5Ro0alauvvrroxwIAAAAAAAAAfLiSFhUOPvjgFAqFNY6XlZVl4sSJmThx4hrX6d69e6ZPn74p4gEAAAAAAAAAG1l5qQMAAAAAAAAAAFsORQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAAAAAACgaRQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAoBWZNGlS9tprr2yzzTbp1atXjjvuuMybN6/ZOu+++27GjBmTHj16ZOutt86oUaOyYMGCEiUGAACA5hQVAAAAAFqRmTNnZsyYMZk9e3YeeOCBLF++PIcffniWLl3atM4555yTu+66K7fffntmzpyZ119/Pccff3wJUwMAAMD/alvqAAAAAACsu3vvvbfZ+xtvvDG9evXK3Llzc9BBB2Xx4sX58Y9/nOnTp+fQQw9NkkybNi1Dhw7N7Nmzs++++35gn42NjWlsbGx6v2TJkk17EAAAAGzR3FEBAAAAoBVbvHhxkqR79+5Jkrlz52b58uUZMWJE0zo77rhj+vXrl1mzZq12H5MmTUrXrl2bXlVVVZs+OAAAAFssRQUAAACAVmrVqlU5++yzs//++2fnnXdOktTV1aV9+/bp1q1bs3UrKipSV1e32v2MHz8+ixcvbnrNnz9/U0cHAABgC+bRDwAAAACt1JgxY/L888/nscce+0j76dChQzp06LCRUgEAAMDauaMCAAAAQCs0duzY3H333Xn44YfTt2/fpuWVlZVZtmxZFi1a1Gz9BQsWpLKyssgpAQAA4IMUFQAAAABakUKhkLFjx+aOO+7IQw89lIEDBzYb32OPPdKuXbvMmDGjadm8efNSW1ub6urqYscFAACAD/DoBwAAAIBWZMyYMZk+fXp+8YtfZJtttkldXV2SpGvXrunUqVO6du2a0047LePGjUv37t3TpUuXnHXWWamurs6+++5b4vQAAACgqAAAAADQqkydOjVJcvDBBzdbPm3atJx88slJku9///spLy/PqFGj0tjYmJEjR+baa68tclIAAABYPUUFAAAAgFakUCh86DodO3bMlClTMmXKlCIkAgAAgPVTXuoAAAAAAAAAAMCWQ1EBAAAAAAAAACgaRQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAAAAAACgaRQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKpm2pAwAAAAAAANAy1dbWpr6+vtQxiqKmpqbUEQC2GIoKAAAAAAAAfEBtbW2GDh2ahoaGUkcpquXLlpc6AsBmT1EBAAAAAACAD6ivr09DQ0POveKGVA0aUuo4m9ycR+/PzVdfkhUrVpQ6CsBmT1EBAAAAAACANaoaNCSDhw0vdYxNbv6r80odAWCLUV7qAAAAAAAAAADAlkNRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRAQAAAAAAAAAoGkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAiqZFFxUuvvjilJWVNXvtuOOOTePvvvtuxowZkx49emTrrbfOqFGjsmDBghImBgAAAAAAAADWpkUXFZJkp512yhtvvNH0euyxx5rGzjnnnNx11125/fbbM3PmzLz++us5/vjjS5gWAAAAAAAAAFibtqUO8GHatm2bysrKDyxfvHhxfvzjH2f69Ok59NBDkyTTpk3L0KFDM3v27Oy7775r3GdjY2MaGxub3i9ZsmTjBwcAAAAAAAAAPqDF31HhpZdeSp8+fbL99tvnxBNPTG1tbZJk7ty5Wb58eUaMGNG07o477ph+/fpl1qxZa93npEmT0rVr16ZXVVXVJj0GAAAAAAAAAOA9LbqosM8+++TGG2/Mvffem6lTp+a1117LgQcemLfffjt1dXVp3759unXr1mybioqK1NXVrXW/48ePz+LFi5te8+fP34RHAQAAAAAAAAC8r0U/+uHII49s+vOuu+6affbZJ/37989tt92WTp06bfB+O3TokA4dOmyMiAAAAAAAAADAemjRd1T4W926dcsOO+yQl19+OZWVlVm2bFkWLVrUbJ0FCxaksrKyNAEBAAAAAAAAgLVqVUWFd955J6+88kp69+6dPfbYI+3atcuMGTOaxufNm5fa2tpUV1eXMCUAAAAAAAAAsCYt+tEPX//613PMMcekf//+ef3113PRRRelTZs2+cIXvpCuXbvmtNNOy7hx49K9e/d06dIlZ511Vqqrq7PvvvuWOjoAAAAAAAAAsBotuqjw3//93/nCF76QP//5z9luu+1ywAEHZPbs2dluu+2SJN///vdTXl6eUaNGpbGxMSNHjsy1115b4tQAAAAAAAAAwJq06KLCrbfeutbxjh07ZsqUKZkyZUqREgEAAAAAAAAAH0V5qQMAAAAAAAAAAFsORQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAAAAAACgaRQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAAAAAACgaRQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAAAAAACgaRQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAAAAAACgaRQUAAAAAAAAAoGjaljoAAAAAAABAa1JbW5v6+vpSx9jkampqSh0BgM2UogIAAAAAAMA6qq2tzdChQ9PQ0FDqKEWzfNnyUkcAYDOjqAAAAAAAALCO6uvr09DQkHOvuCFVg4aUOs4mNefR+3Pz1ZdkxYoVpY4CwGZGUQEAAAAAAGA9VQ0aksHDhpc6xiY1/9V5pY4AwGZKUQEAAAAAAPhIamtrU19fX+oYRVFTU1PqCADQ6ikqAAAAAAAAG6y2tjZDhw5NQ0NDqaMU1fJly0sdAQBaLUUFAAAAAABgg9XX16ehoSHnXnFDqgYNKXWcTW7Oo/fn5qsvyYoVK0odBQBaLUUFAAAAAADgI6saNCSDhw0vdYxNbv6r80odAQBavfJSBwAAAAAAAAAAthyKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDRtSx0AAAAAADZEbW1t6uvrSx2jaHr27Jl+/fqVOkZROLdsLraUv8s1NTWljgAAtDKKCgAAAAC0OrW1tRk6dGgaGhpKHaVoOnfunJqams3+H7SdWzYXW+Lf5eXLlpc6AgDQSmw2RYUpU6bkyiuvTF1dXXbbbbdcc8012XvvvUsdCwAAAKAkNve5kvr6+jQ0NOTcK25I1aAhpY6zyc1/ZV4mn3dq6uvrN/t/zHZu2VxsSX+X5zx6f26++pKsWLGi1FEAgFZisygq/Md//EfGjRuX6667Lvvss0+uuuqqjBw5MvPmzUuvXr1KHQ8AAACgqLakuZKqQUMyeNjwUsdgE3Bu2VxsCX+X5786r9QRAIBWprzUATaG733vezn99NNzyimnZNiwYbnuuuvSuXPn3HDDDaWOBgAAAFB05koAAABoyVr9HRWWLVuWuXPnZvz48U3LysvLM2LEiMyaNWu12zQ2NqaxsbHp/eLFi5MkS5Ys2bRhP4J33nknSfLyC8/krw1LS5xmzWpf+WOS5JU//D7JqtKGWYvWkLM1ZExaR87WkDGRc2NqDRkTOTem1pAxkXNjag0Zk9aRszVkTOTcmFpDxiT502svJXnvd6GW/Lva+9kKhUKJk8D/MleyeXr/++LcuXObjn1zNW/ee/8z27ndPJWXl2fVqpb7M8jGtCX9XW4tP2NuLFvS8W5Jx5psWce7JR1rsmUd75Z0rMmWdbyb21xJWaGVz6a8/vrr+djHPpbHH3881dXVTcvPPffczJw5M0888cQHtrn44otzySWXFDMmAAAAm7H58+enb9++pY4BScyVAAAAUHofNlfS6u+osCHGjx+fcePGNb1ftWpV3nrrrfTo0SNlZWUlTLZ6S5YsSVVVVebPn58uXbqUOg60aK4XWDeuFVg3rhVYd1vq9VIoFPL222+nT58+pY4CH0mp50q21O8hrYFz03I5Ny2Xc9OyOT8tl3PTcjk3LZdz03JtyedmXedKWn1RoWfPnmnTpk0WLFjQbPmCBQtSWVm52m06dOiQDh06NFvWrVu3TRVxo+nSpcsW9xcZNpTrBdaNawXWjWsF1t2WeL107dq11BGgmdY8V7Ilfg9pLZyblsu5abmcm5bN+Wm5nJuWy7lpuZyblmtLPTfrMldSXoQcm1T79u2zxx57ZMaMGU3LVq1alRkzZjS7vSEAAADAlsBcCQAAAC1dq7+jQpKMGzcuo0ePzp577pm99947V111VZYuXZpTTjml1NEAAAAAis5cCQAAAC3ZZlFU+PznP58333wzF154Yerq6rL77rvn3nvvTUVFRamjbRQdOnTIRRdd9IFbMAIf5HqBdeNagXXjWoF153qBlqW1zZX4HtJyOTctl3PTcjk3LZvz03I5Ny2Xc9NyOTctl3Pz4coKhUKh1CEAAAAAAAAAgC1DeakDAAAAAAAAAABbDkUFAAAAAAAAAKBoFBUAAAAAAAAAgKJRVAAAAAAAAAAAikZRoRWYMmVKBgwYkI4dO2afffbJk08+WepIUFKTJk3KXnvtlW222Sa9evXKcccdl3nz5jVb5913382YMWPSo0ePbL311hk1alQWLFhQosTQMnz7299OWVlZzj777KZlrhX4X3/6059y0kknpUePHunUqVN22WWXPPXUU03jhUIhF154YXr37p1OnTplxIgReemll0qYGIpv5cqVmTBhQgYOHJhOnTpl0KBBufTSS1MoFJrWca0A68u8R8vw6KOP5phjjkmfPn1SVlaWO++8s9m47++lYQ6kZZs6dWp23XXXdOnSJV26dEl1dXV+/etfN407Ny2HOZGW4+KLL05ZWVmz14477tg07ryUlrmRlmvAgAEfuHbKysoyZsyYJK6dUjJXsuEUFVq4//iP/8i4ceNy0UUX5emnn85uu+2WkSNHZuHChaWOBiUzc+bMjBkzJrNnz84DDzyQ5cuX5/DDD8/SpUub1jnnnHNy11135fbbb8/MmTPz+uuv5/jjjy9haiitOXPm5F//9V+z6667NlvuWoH3/OUvf8n++++fdu3a5de//nVefPHFfPe73822227btM7kyZNz9dVX57rrrssTTzyRrbbaKiNHjsy7775bwuRQXFdccUWmTp2aH/7wh6mpqckVV1yRyZMn55prrmlax7UCrA/zHi3H0qVLs9tuu2XKlCmrHff9vTTMgbRsffv2zbe//e3MnTs3Tz31VA499NAce+yxeeGFF5I4Ny2FOZGWZ6eddsobb7zR9HrssceaxpyX0jE30rLNmTOn2XXzwAMPJEk++9nPJnHtlJK5ko+gQIu29957F8aMGdP0fuXKlYU+ffoUJk2aVMJU0LIsXLiwkKQwc+bMQqFQKCxatKjQrl27wu233960Tk1NTSFJYdasWaWKCSXz9ttvFwYPHlx44IEHCp/85CcLX/va1wqFgmsF/q/zzjuvcMABB6xxfNWqVYXKysrClVde2bRs0aJFhQ4dOhT+/d//vRgRoUU46qijCqeeemqzZccff3zhxBNPLBQKrhVg/Zn3aJmSFO64446m976/txzmQFq+bbfdtvBv//Zvzk0LYU6k5bnooosKu+2222rHnJfSMjfSunzta18rDBo0qLBq1SrXTomZK9lw7qjQgi1btixz587NiBEjmpaVl5dnxIgRmTVrVgmTQcuyePHiJEn37t2TJHPnzs3y5cubXTs77rhj+vXr59phizRmzJgcddRRza6JxLUC/9cvf/nL7LnnnvnsZz+bXr16Zfjw4fnRj37UNP7aa6+lrq6u2fXStWvX7LPPPq4Xtij77bdfZsyYkT/+8Y9Jkt///vd57LHHcuSRRyZxrQDrx7xH6+H7e8thDqTlWrlyZW699dYsXbo01dXVzk0LYU6kZXrppZfSp0+fbL/99jnxxBNTW1ubxHkpNXMjrceyZcvyk5/8JKeeemrKyspcOyVmrmTDtS11ANasvr4+K1euTEVFRbPlFRUV+cMf/lCiVNCyrFq1KmeffXb233//7LzzzkmSurq6tG/fPt26dWu2bkVFRerq6kqQEkrn1ltvzdNPP505c+Z8YMy1Av/r1VdfzdSpUzNu3Lh885vfzJw5c/LVr3417du3z+jRo5uuidX9XOZ6YUty/vnnZ8mSJdlxxx3Tpk2brFy5Mt/61rdy4oknJolrBVgv5j1aD9/fWwZzIC3Tc889l+rq6rz77rvZeuutc8cdd2TYsGF55plnnJsSMyfSMu2zzz658cYbM2TIkLzxxhu55JJLcuCBB+b55593XkrM3Ejrceedd2bRokU5+eSTk/ieVmrmSjacogLQqo0ZMybPP/98s+eYAe+ZP39+vva1r+WBBx5Ix44dSx0HWrRVq1Zlzz33zOWXX54kGT58eJ5//vlcd911GT16dInTQctx22235ZZbbsn06dOz00475ZlnnsnZZ5+dPn36uFYAYBMzB9IyDRkyJM8880wWL16cn/70pxk9enRmzpxZ6lhbPHMiLdf7/8M4SXbdddfss88+6d+/f2677bZ06tSphMkwN9J6/PjHP86RRx6ZPn36lDoKMVfyUXj0QwvWs2fPtGnTJgsWLGi2fMGCBamsrCxRKmg5xo4dm7vvvjsPP/xw+vbt27S8srIyy5Yty6JFi5qt79phSzN37twsXLgwn/jEJ9K2bdu0bds2M2fOzNVXX522bdumoqLCtQL/o3fv3hk2bFizZUOHDm26/eT714Sfy9jSfeMb38j555+fE044Ibvssku++MUv5pxzzsmkSZOSuFaA9WPeo/Xw/b30zIG0XO3bt8/HP/7x7LHHHpk0aVJ22223/OAHP3BuSsycSOvRrVu37LDDDnn55ZddNyVmbqR1+K//+q88+OCD+cd//MemZa6d0jJXsuEUFVqw9u3bZ4899siMGTOalq1atSozZsxIdXV1CZNBaRUKhYwdOzZ33HFHHnrooQwcOLDZ+B577JF27do1u3bmzZuX2tpa1w5blMMOOyzPPfdcnnnmmabXnnvumRNPPLHpz64VeM/++++fefPmNVv2xz/+Mf3790+SDBw4MJWVlc2ulyVLluSJJ55wvbBFaWhoSHl5818j27Rpk1WrViVxrQDrx7xH6+H7e+mYA2l9Vq1alcbGRuemxMyJtB7vvPNOXnnllfTu3dt1U2LmRlqHadOmpVevXjnqqKOalrl2SstcyYbz6IcWbty4cRk9enT23HPP7L333rnqqquydOnSnHLKKaWOBiUzZsyYTJ8+Pb/4xS+yzTbbND3Dp2vXrunUqVO6du2a0047LePGjUv37t3TpUuXnHXWWamurs6+++5b4vRQPNtss03Tc0vft9VWW6VHjx5Ny10r8J5zzjkn++23Xy6//PJ87nOfy5NPPpnrr78+119/fZKkrKwsZ599di677LIMHjw4AwcOzIQJE9KnT58cd9xxpQ0PRXTMMcfkW9/6Vvr165eddtopv/vd7/K9730vp556ahLXCrD+zHu0HO+8805efvnlpvevvfZannnmmXTv3j39+vXz/b1EzIG0bOPHj8+RRx6Zfv365e2338706dPzyCOP5L777nNuSsycSMv19a9/Pcccc0z69++f119/PRdddFHatGmTL3zhC66bEjM30vKtWrUq06ZNy+jRo9O27f/+E69rp7TMlXwEBVq8a665ptCvX79C+/btC3vvvXdh9uzZpY4EJZVkta9p06Y1rfPXv/618JWvfKWw7bbbFjp37lz4zGc+U3jjjTdKFxpaiE9+8pOFr33ta03vXSvwv+66667CzjvvXOjQoUNhxx13LFx//fXNxletWlWYMGFCoaKiotChQ4fCYYcdVpg3b16J0kJpLFmypPC1r32t0K9fv0LHjh0L22+/feFf/uVfCo2NjU3ruFaA9WXeo2V4+OGHV/u79ujRowuFgu/vpWIOpGU79dRTC/379y+0b9++sN122xUOO+ywwv3339807ty0LOZEWobPf/7zhd69exfat29f+NjHPlb4/Oc/X3j55Zebxp2X0jI30rLdd999hSSr/Zq7dkrHXMmGKysUCoVilyMAAAAAAAAAgC1T+YevAgAAAAAAAACwcSgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAAAAAAAAAUDSKCgAAAAAAAABA0SgqAAAAAAAAAABFo6gAAAAAAAAAABSNogIAbIHuvffeHHDAAenWrVt69OiRo48+Oq+88krT+OOPP57dd989HTt2zJ577pk777wzZWVleeaZZ5rWef7553PkkUdm6623TkVFRb74xS+mvr6+BEcDAAAA8NGZLwGA4lFUAIAt0NKlSzNu3Lg89dRTmTFjRsrLy/OZz3wmq1atypIlS3LMMcdkl112ydNPP51LL7005513XrPtFy1alEMPPTTDhw/PU089lXvvvTcLFizI5z73uRIdEQAAAMBHY74EAIqnrFAoFEodAgAorfr6+my33XZ57rnn8thjj+WCCy7If//3f6djx45Jkn/7t3/L6aefnt/97nfZfffdc9lll+U3v/lN7rvvvqZ9/Pd//3eqqqoyb9687LDDDqU6FAAAAICNwnwJAGw67qgAAFugl156KV/4whey/fbbp0uXLhkwYECSpLa2NvPmzcuuu+7a9Et3kuy9997Ntv/973+fhx9+OFtvvXXTa8cdd0ySZrdEBAAAAGgtzJcAQPG0LXUAAKD4jjnmmPTv3z8/+tGP0qdPn6xatSo777xzli1btk7bv/POOznmmGNyxRVXfGCsd+/eGzsuAAAAwCZnvgQAikdRAQC2MH/+858zb968/OhHP8qBBx6YJHnssceaxocMGZKf/OQnaWxsTIcOHZIkc+bMabaPT3ziE/nZz36WAQMGpG1bP04AAAAArZv5EgAoLo9+AIAtzLbbbpsePXrk+uuvz8svv5yHHnoo48aNaxr/h3/4h6xatSpnnHFGampqct999+U73/lOkqSsrCxJMmbMmLz11lv5whe+kDlz5uSVV17Jfffdl1NOOSUrV64syXEBAAAAbCjzJQBQXIoKALCFKS8vz6233pq5c+dm5513zjnnnJMrr7yyabxLly6566678swzz2T33XfPv/zLv+TCCy9MkqbnMPbp0ye//e1vs3Llyhx++OHZZZddcvbZZ6dbt24pL/fjBQAAANC6mC8BgOIqKxQKhVKHAABatltuuSWnnHJKFi9enE6dOpU6DgAAAEDJmS8BgA3nIUkAwAfcfPPN2X777fOxj30sv//973Peeeflc5/7nF+6AQAAgC2W+RIA2HgUFQCAD6irq8uFF16Yurq69O7dO5/97GfzrW99q9SxAAAAAErGfAkAbDwe/QAAAAAAAAAAFE15qQMAAAAAAAAAAFsORQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACKRlEBAAAAAAAAACgaRQUAAAAAAAAAoGgUFQAAAAAAAACAolFUAAAAAAAAAACK5v8Dd95Uno0hp4EAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 2600x500 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plt.figure(figsize=(5,5))\n",
+    "fig, axs = plt.subplots(1, 2, figsize=(26, 5))\n",
+    "sns.histplot(data=df[df['stroke'] == 0], x='age', bins = 'auto', ax=axs[0], color = sns.color_palette(\"pastel\", 1)[0])\n",
+    "axs[0].set_title('Stroke: false', fontsize=16, y=1.05)\n",
+    "\n",
+    "sns.histplot(data=df[df['stroke'] == 1], x='age', bins = 'auto', ax=axs[1], color = sns.color_palette(\"pastel\", 1)[0])\n",
+    "axs[1].set_title('Stroke: true', fontsize=16, y=1.05)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:24px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ:</strong> Nhóm không bị đột quỵ, phân phối giữa các nhóm tuổi có độ dàn trải. Nhóm bị đột quỵ: Có 2 giá trị ngoại lai trong khoảng tuổi dưới 20 tuổi, 2 giá trị ngoại lai này có số lượng không đáng kể. Dữ liệu của biểu đồ có phân phối bị nghiêng về phía bên phải. Số lượng người mắc đột quỵ phân bố tăng dần theo số tuổi, trước 30 tuổi có rất ít trường hợp đột quỵ; sau 30 tuổi tỉ lệ bị đột quỵ tăng dần qua các năm và tăng mạnh nhất sau 50 tuổi.\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 145,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[  43.81449508  836.18550492]\n",
+      " [  31.86508733  608.13491267]\n",
+      " [  50.68540454  967.31459546]\n",
+      " [ 121.63501305 2321.36498695]]\n",
+      "Chi-Square value: 223.0649448330483\n",
+      "Degree of Freedom:  3\n",
+      "p-value: 0.000000000000000\n",
+      "Có mối tương quan giữa các nhóm tuổi và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "old_stroke_count = old_df[old_df['stroke'] == 1].shape[0]\n",
+    "old_nostroke_count = old_df[old_df['stroke'] == 0].shape[0]\n",
+    "child_stroke_count = child_df[child_df['stroke'] == 1].shape[0]\n",
+    "child_nostroke_count = child_df[child_df['stroke'] == 0].shape[0]\n",
+    "teen_stroke_count = teenager_df[teenager_df['stroke'] == 1].shape[0]\n",
+    "teen_nostroke_count = teenager_df[teenager_df['stroke'] == 0].shape[0]\n",
+    "mid_stroke_count = middle_df[middle_df['stroke'] == 1].shape[0]\n",
+    "mid_nostroke_count = middle_df[middle_df['stroke'] == 0].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa các nhóm tuổi và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa các nhóm tuổi và đột quỵ\"\n",
+    "\n",
+    "child_arr = [child_stroke_count, child_nostroke_count]\n",
+    "teen_arr = [teen_stroke_count, teen_nostroke_count]\n",
+    "middle_arr = [mid_stroke_count, mid_nostroke_count]\n",
+    "old_arr = [old_stroke_count, old_nostroke_count]\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(child_arr)\n",
+    "nij.append(teen_arr)\n",
+    "nij.append(middle_arr)\n",
+    "nij.append(old_arr )\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(4 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_age = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_age))\n",
+    "if p_age <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định chi – square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa độ tuổi và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa độ tuổi và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/lDWHBuw.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa tuổi và đột quỵ</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 223.0649448330483</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  3</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000000000000</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa các nhóm tuổi và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa tuổi và bệnh đột quỵ.\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Càng lớn tuổi nguy cơ mắc đột quỵ càng cao, điều này phù hợp với kết quả nghiên cứu của y khoa.\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.3. Đột quỵ và tình trạng hôn nhân </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul>\n",
+    "<li>Ở bộ dữ liệu này độ tuổi bắt đầu xuất hiện người bị đột quỵ là từ 30 trở đi. Với từng khoảng tuổi từ 30 trở đi, chia thành 2 nhóm đã kết hôn và chưa kết hôn, sau đó quan sát sự phân bố của đột quỵ trên 2 nhóm này\n",
+    "\n",
+    "</li>\n",
+    "\n",
+    "</ul>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 146,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACXQAAAI1CAYAAAB8TOBCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN5//H8ffJJEOIiBEkVlWFmlU1Y9XebVEtqlZRq1r6/SF0KFXVUqNqJKVVq0YpKqi9qV01Yq8YiUgkkty/PzxymjTDCYmcxOv5eJxHT+5rnOuKm96fc3/u6zIZhmEIAAAAAAAAAAAAAAAAAJDpbDJ7AAAAAAAAAAAAAAAAAACAh0joAgAAAAAAAAAAAAAAAAArQUIXAAAAAAAAAAAAAAAAAFgJEroAAAAAAAAAAAAAAAAAwEqQ0AUAAAAAAAAAAAAAAAAAVoKELgAAAAAAAAAAAAAAAACwEiR0AQAAAAAAAAAAAAAAAICVIKELAAAAAAAAAAAAAAAAAKwECV0AAAAAAAAAAAAAAAAAYCVI6AKALOTFF1+UyWSSo6Ojbt68mdnDSRdhYWEaMWKEmjVrphIlSsjNzU0ODg4qVKiQWrVqpVWrVqXaPjo6WuPGjdOLL74oZ2dn5cmTR3Xr1tXixYuf0gz+tWnTJplMplRf06dPT7H93bt39fHHH6t06dLKmTOnPDw81KxZM23YsOEpzgIAAADIGNkxnpH0yBigQ4cOKbaNi4vTjBkzVK1aNbm6usrV1VXVqlXT999/L8MwnuIspK5duz5yLiaTSfXq1Uu2PfEMAAAAsrvsGNP4+/tbFAcUL1482fbWdI9GkmJiYjR16lTVrFlTefLkkb29vTw8PFS/fn0FBAQoLi4uSZvg4OBHzn/YsGGZMBsAzzq7zB4AAMAye/bs0aFDhyQ9vECeN2+eBgwYkMmjenLXr1/Xp59+KhcXF/n6+urFF1+UjY2NTp06pRUrVmjFihV677339N133yVpGxERoYYNG2r79u3KnTu3GjdurPDwcG3YsEF//vmnhgwZogkTJjz1OeXPn1+NGzdOtqx06dLJHr9+/bpq1aqlkydPqmDBgmrRooWuXbum33//Xb///ru++eYb9e/fPyOHDQAAAGSY7BrPJNSlS5dkj1erVi3Z47GxsXr99de1dOlSOTk5qX79+pKk9evXq1evXlq/fr0WLFggG5un8zxmzZo1Uy3/6aef9ODBA/n5+SUpI54BAABAdpddY5oKFSqkGMtI0ooVK3T79u1k4wBru0cTFRWlRo0aafPmzXJwcFDNmjWVL18+XbhwQRs3btSGDRu0bNkyLV26VCaTKUl7Z2dntW/fPtm+K1eunNHDB4AkTMbTftwPAPBYevfurRkzZsjLy0uXLl1SuXLlzMFDVhYeHq4jR46oSpUqsrNLnGe8ceNGNW/eXBEREVqzZo1effXVROUDBw7UN998o3LlymnDhg3y8PCQJO3bt09169ZVeHi4Vq5cqebNmz+VuWzatEl+fn6qU6eONm3alKa2rVu31vLly1W/fn2tWLFCTk5OkqTVq1erZcuWMgxDBw4cUPny5TNg5AAAAEDGyq7xjCTzjYC0fsU2adIkDRo0SF5eXtqyZYuKFSsmSTp79qxq1qypy5cva/LkyerXr1+6jzmtdu/erWrVqsnGxkbBwcEqUqRIonLiGQAAAGR32TmmScnly5dVtGhRxcbGatu2bXrllVcSlVvbPZqvv/5agwcPlre3tzZv3qyiRYuay/bu3at69erp7t27+vnnnxOtpBwcHKxixYrJ29tbwcHBT2WsAGAJtlwEgCwgIiJCP//8syTpxx9/lIuLiw4fPqw9e/Zk8sienIuLi15++eUkyVyS5OfnZ76oXrduXaKy27dva9q0aZKkadOmmQMF6eGTEh999JEk6bPPPsuooaebY8eOafny5bK1tdWsWbPMNz8kqWnTpuratavi4uI0duzYTBwlAAAA8HiyczzzuOLi4jRu3DhJ0rhx48zJXJJUrFgxc9nYsWOT3RLkaZs1a5YkqVGjRkmSuYhnAAAAkN09qzFNQECAYmNj9fzzzydJ5rLGezTx27337ds3UTKXJFWpUsV8v2nHjh1PbUwA8CRI6AKALGDRokUKCwuTr6+v/Pz89MYbb0j690v1lNy8eVPvv/++ihYtKkdHR3l7e2vgwIG6c+eOunbtKpPJpLlz5ybbNigoSG3btlXBggXl4OAgT09PtWnT5qlf6MYnejk6OiY6vnr1akVHR6to0aKqUaNGknadOnWSJO3cuVOXL1/O+IE+gV9//VWSVKNGDXl7eycpj5/LypUr9eDBg6c6NgAAAOBJPcvxTEp27Nihq1evytHRUe3atUtS3q5dOzk4OOjy5cvatWtXJozwX5GRkVqwYIEkqXv37knKiWcAAACQ3T2rMc2cOXMkJR8HWOM9mhw5clhUL2HyGQBYMxK6ACALiA8K3nnnnUT/XbBggSIjI5Ntc+XKFVWrVk2TJ0/WvXv31Lx5c1WqVEmBgYF6+eWXFRoamuLnffDBB2rQoIGWL1+uokWLqnXr1ipevLiWL1+uWrVqmS/iE5o7d65MJpN8fHyecLb/2rNnj3755ReZTCa1aNEiUdmBAwckPXyqIjnFixeXu7u7JOngwYPpNiZLXLt2TWPGjFGvXr00YMAATZs2TefPn0+x/qPmEn/83r17+ueff9J/wAAAAEAGelbimYkTJ+q9995T3759NW7cOO3fvz/FuvExQNmyZZO96ZAzZ06VLVs2Ud3MsnjxYoWFhcnDw0MtW7ZMUk48AwAAgOzuWYlpEtqyZYv++ecf2dvb6+23305Sbo33aJo0aSJJ+u6775Lck9m3b58WLFignDlz6q233kq2/b179/TFF1+od+/e6t+/vyZNmqS///47w8cNAClJur8VAMCqnDx5Ulu2bJG9vb06d+4sSXrllVf0/PPP68SJE1q8eHGyF599+/bV6dOnVbduXS1fvly5cuWSJN25c0ctWrTQsmXLkv28mTNn6quvvlLJkiW1ZMkSlS9f3ly2efNmNW/eXL1791bNmjVVqlSpdJ3ryJEjdf78eUVGRurs2bPas2ePHBwc9O2336p69eqJ6p49e1aSkiybm1DhwoV169Ytc92n5cSJExo1alSiY3Z2durfv7/Gjx+fZHvJR80lV65cypUrl8LCwnT27Fm98MILGTNwAAAAIJ09S/HMkCFDEv08bNgwNW7cWHPnzlX+/PkTlVkSzxQpUkQHDhx46vHMf82ePVuS9NZbb8nBwSFJOfEMAAAAsrNnKaZJKD4OaN68uTw9PZOUW+M9mq5du+rPP/9UYGCgSpUqpZo1a8rT01MXLlzQ9u3bVa5cOU2fPj3FpLeQkBANHz480bHBgwfrzTff1LRp0+Ti4vIUZgEA/2KFLgCwcvEXzS1btlS+fPnMx+OfAEluSd9z585p2bJlsrGx0bRp08yBgiTlzp1b06ZNk8lkStIuLi5O/v7+kh4+WZIwUJCk2rVra8SIEYqOjtaMGTMSlbm5ual06dIqUaLE401U0ooVKxQQEKCFCxdqz549cnFx0ZQpU9SnT58kde/evStJcnZ2TrG/+IvrsLCwxx5TWri5uWngwIH6888/deXKFd27d0+HDh3SoEGDZDKZ9PXXX+u9995L0s4a5wIAAACkh2chnunUqZOWLVum4OBgRUZG6uTJk5oyZYry5s2rNWvWqGHDhrp//36iNlklBjhz5oz+/PNPSclvsyJlnbkAAAAAj+NZiGn+6+7du1q0aJGkrBUH2NjYaO7cuZowYYIMw9CGDRu0YMECbdu2TTlz5lSDBg2S/f04OjqqR48eWrt2rS5cuKCIiAgdPXpUn3zyiZycnDRv3jy1a9dOhmE8lXkAQDwSugDAisXExCggIEDSv8FBvLffflt2dnbavHmzTp8+nahsy5YtMgxDlSpV0vPPP5+kX19f3ySBgPRwidzLly+rRIkSqly5crJjqlu3riRp+/btiY63adNGJ06cUFBQkMXz+6+DBw/KMAyFhoZq9+7datmypXr27KlGjRqZgwNrVrFiRX399deqXbu2ChQoICcnJ5UrV04TJ07UggULJD18uuZpbwEJAAAAZIZnJZ6ZP3++WrVqJW9vb+XIkUOlSpVS3759tWfPHrm5uenw4cOaPn16mvu1BrNnz5ZhGHrppZfMW0ACAAAAz4pnJab5r19++UX37t1ToUKF1Lhx4yfu72kJCwtT8+bNNXToUPXr108nT57UvXv3dPjwYbVu3VoTJ07USy+9pAsXLiRqV7BgQX3//fdq1KiRChcurJw5c+qFF17Q//3f/2nDhg2ytbXVunXrtHz58kyaGYBnFQldAGDFVq1apatXr8rLy0uvvvpqorL8+fOradOmMgzD/IRIvIsXL0pSqnulJ1d25swZSdLp06dlMpmSfb300kuSpBs3bjzBzFKXK1cuVa1aVfPnz9d7772nDRs2aPTo0YnquLq6Snq4p3lKwsPDzf1Z4osvvlDXrl2TvEJCQh5zJv9q27atKlSoIElauXJlorKMmAsAAACQ2Z7VeCZesWLF1K1bN0lPJwb44Ycfko1nTpw48TjDV1xcnPnmVUpP5UvEMwAAAMi+ntWYJn4+Xbp0ka2tbbJ1rPEezZAhQ7R69Wr16dNHEydOVKlSpeTk5CRfX1/Nnz9fr776qs6dO6f/+7//s6g/SXrppZfUokULSUnjOgDIaHaZPQAAQMril+q9f/++6tSpk6T80qVLkqS5c+dqzJgxSS6sk1uyN7WyuLg4SVKBAgWSBCf/5eHhkfrg00m3bt00depU/frrr5owYYL5eHywc/78+RTbWhI0JbRmzRrzdiIJ+fv7p8t8y5Qpo4MHD5rHFc/Hx0f79+9PcS5hYWHmJYktnQsAAACQ2YhnHsYAkpKNAaTU45n4p8YtjQG2bt1qTsBKqGvXrsmuCvAo69at08WLF+Xk5KQOHTqkWI94BgAAANnVsxjTnDhxQjt27JCUdFWyhKztHk1sbKx+/PFHSVLHjh2TrdOpUyetXbtW69evt2g88cqUKaNly5YliesAIKOR0AUAVurKlStavXq1JOnmzZvatm1binUvX76sNWvWqFmzZpIkLy8vSVJwcHCKbZIrK1KkiCQpb968mjt37uMNPJ3F779+/fr1RMcrVaokSdq7d2+y7c6cOaNbt25JergVoiU2bdr0mKO0zM2bNyX9++RKvEqVKmnp0qUpziX+uLOzs5577rkMHSMAAACQHohnHkotBpCko0eP6v79+8qRI0ei8sjISB09ejRR3UeZO3duus47/qn81157LdUn6olnAAAAkB09qzFNfBxQp04dlSxZMsV61naP5vr164qKipKU8opgbm5ukmQel6VSiusAIKOx5SIAWKm5c+cqNjZW1apVk2EYKb4+/PBDSf8+KSJJtWrVkslk0r59+3Ty5MkkfR87dkx//fVXkuNVq1aVh4eHjh07Zr55kNni93v/7xf/TZs2lYODg86fP59sIPXTTz9Jkl5++WUVKlQo4wf6CJcuXdKWLVskybwkcrzWrVtLkrZt25bs0yzxc2nRooXs7e0zdqAAAABAOiCeefh0/cKFCyUljQGqV6+uAgUKKCoqSkuWLEnSdsmSJYqOjlahQoVUrVq1pzLehG7evKnly5dLSn27RYl4BgAAANnTsxjTxMTEKDAwUNKj4wBru0eTN29eOTo6SpJ27dqVbJ2dO3dKkooVK2Zxv/fu3TNvtfjfuA4AMhoJXQBgpRLuUZ6at99+W5L022+/mfdM9/HxUYsWLRQXF6c+ffro7t275vqhoaHq06ePDMNI0pe9vb1GjRolwzDUpk0bbd26NUmd2NhYbdiwwXzhG+/XX3/V888/r/r166dpnj/99JP27duX5LhhGFq6dKl5L/OePXsmKs+TJ4/69OkjSXrvvffMT0hI0v79+zVu3DhJ0v/+9780jedJfPPNN8nu5X7o0CG1aNFCkZGRKlGihFq1apWovGzZsmrVqpViY2PVvXt3RUZGmst+//13zZ07VzY2Nho+fHiGzwEAAABID89KPDN//nz9/fffSY5fv35db775pg4ePCh7e3v1798/UbmNjY0++ugjSdJHH32ks2fPmsvOnj2rYcOGSZKGDx8uG5un//XdvHnzFB0dreeee061atVKtS7xDAAAALKjZyWmSWjVqlW6du2a3Nzc1L59+1TrWts9GgcHB7Vs2VKSNGLECB06dChReVBQkCZNmiTp4daLCX3//ffmLe8TOnv2rFq1aqUrV64od+7cqW5BCQAZwgAAWJ1NmzYZkgxHR0fj1q1bj6xfqVIlQ5IxYcIE87FLly4ZPj4+hiQjb968Rtu2bY02bdoY7u7uRqlSpYyWLVsakoz58+cn6W/o0KGGJEOSUbZsWaNVq1ZGhw4djLp16xq5c+c2JBnTpk1L1GbOnDmGJMPb2ztNc+3SpYshyShcuLDRtGlTo1OnTsarr75qeHt7m8fQt29fIy4uLknbe/fuGdWrVzckGXny5DHatWtnNG7c2LC3tzckGYMHD07TWJ6Um5ubYWtra1SuXNlo37698frrrxuVK1c2bGxsDElG0aJFjWPHjiXb9tq1a0apUqUMSUbBggWN119/3ahbt65hMpkMScY333zzVOcCAAAAPK5nKZ5p1aqVIckoVaqU0apVK6NTp05GzZo1DRcXF0OS4eTkZCxcuDDZtjExMUabNm3M9Vq2bGm0bNnScHJyMiQZ7du3N2JjY9M0nvTy4osvGpKML774wqL6xDMAAADITp6lmCah+DH17t3bovrWdo/m4sWLRvHixQ1Jhq2trVGjRg3j9ddfN6pUqWL+fdarV8+IjIxM1O7FF180TCaT4evra7Rt29bo0KGDUa1aNcPR0dH85/fnn38+1bkAgGE8XAoSAGBl3nrrLfMX+JaYNGmSIckoU6ZMouPXr183+vbtaxQuXNhwcHAwihQpYvTt29e4efOmUa9ePUOSsXbt2mT73LZtm/Hmm28a3t7ehqOjo+Hq6mo899xzRuvWrY0ffvghSRDzuMHC1q1bjffff9+oUqWKUaBAAcPe3t5wcnIynnvuOaNLly7Gli1bUm0fFRVljB071vD19TVy5sxpuLm5GbVr107xpklGGj9+vNGqVSujZMmShpubm2FnZ2e4u7sbNWvWNL788ksjLCws1fahoaHGsGHDjFKlShmOjo6Gu7u70bhxY2P9+vVPaQYAAADAk3uW4pmlS5canTt3Nnx9fQ0PDw/Dzs7OcHV1NSpUqGAMGTLEOHPmTKrtY2NjjenTpxtVqlQxnJ2dDWdnZ6Nq1arG9OnTk32o5WnYu3ev+QbI5cuXLW5HPAMAAIDs4lmKaeJdvXrVsLOzMyQZu3fvtridNd2jMQzDCAsLMz799FOjatWqRq5cuQxbW1vD3d3dqFOnjjFjxgwjJiYmSZtZs2YZr7/+uvH8888b7u7uhp2dnZE7d26jatWqxqhRo4xr165lwkwAwDBMhpHMeo4AgGztzp07Kl68uEJDQ3Xt2jV5eHhk9pAAAAAAwCLEMwAAAACyMmIaAIAlbDJ7AACAjLN79+4kx27cuKEuXbro9u3bat68OYECAAAAAKtEPAMAAAAgKyOmAQA8CVboAoBszGQyqXDhwipTpozy5s2rS5cu6cCBAwoPD1fRokW1detWFSlSJLOHCQAAAABJEM8AAAAAyMqIaQAAT4KELgDIxkaMGKGgoCCdPn1at2/floODg0qUKKHmzZtr8ODByps3b2YPEQAAAACSRTwDAAAAICsjpgEAPAkSugAAAAAAAAAAAAAAAADASthk9gAAAAAAAAAAAAAAAAAAAA+R0AUAAAAAAAAAAAAAAAAAVsIusweQ3cTFxeny5ctydXWVyWTK7OEAAAAAiRiGobt376pQoUKyseH5DiRFTAMAAABrRkyD1BDPAAAAwJqlJZ4hoSudXb58WUWKFMnsYQAAAACpunDhggoXLpzZw4AVIqYBAABAVkBMg+QQzwAAACArsCSeIaErnbm6ukp6+MvPlStXJo8GAAAASCwsLExFihQxX7cC/0VMAwAAAGtGTIPUEM8AAADAmqUlniGhK53FL+GbK1cuggUAAABYLbaeQEqIaQAAAJAVENMgOcQzAAAAyAosiWfYYB7p7sKFC+rXr59KlCghR0dHeXh46NVXX9WqVatSbHPz5k0NHz5c5cqVk7OzsxwcHFS4cGG99tpr2rx58xONZ/ny5WrZsqUKFCggBwcHeXp66pVXXtGYMWOSrR8TE6OpU6fq5ZdfVq5cueTk5KRy5crpk08+UWRkZIqf880336hkyZJydHRUqVKl9N1336VY99KlS3Jzc1OjRo2eaG5ZkTWcHz4+PjKZTI98pXSOJPTXX3/JwcFBJpNJJUuWTLEe5wcAAACQPaQ1pvn999/17rvvqkqVKipYsKAcHR3l6uqqChUq6OOPP1ZISEi6jGv16tXmWKZBgwbJ1qlbt65FsdA777yTpC0xDQAAAJA9nD9/Xv369VPp0qWVM2dO5ciRQ8WKFVOXLl30119/JaobFxen7du3a+TIkapZs6by5s0re3t7eXh4qGHDhpo/f74Mw3ii8aTlPt6mTZseGc9Mnz492c/56aefVLZsWTk6Oqpo0aLy9/dXbGxssnXv3bsnHx8f+fr6Kjo6+onmBwDA4zIZT/p/WSQSFhYmNzc3hYaGPpNPf+zZs0eNGzfWrVu3VLBgQb300ku6efOmdu3apQcPHmjkyJEaPXp0ojanT59W7dq1dfnyZeXNm1fVqlWTk5OTjh49quPHj0uSvvrqKw0ePDhNY4mOjlbnzp21aNEi5cyZU9WrV1f+/Pl19epVHT16VLGxsUm+OI+KilLz5s21fv16OTo6mpO6du3apevXr+vFF1/Upk2blDt37kTtpkyZov79+6tgwYJ6+eWXtWPHDl29elUTJkzQkCFDkoytTZs2WrdunQ4fPqzixYunaV5ZmbWcHx988EGKN01u3bqllStXSpI2b96sWrVqpdhPdHS0qlatqsOHD8swDJUoUUKnTp1KUo/zAwBgTZ7161U8GucIkLLHiWk6d+6s+fPnq2TJkvLx8VG+fPl08+ZN7d69W3fu3JGnp6c2bNigsmXLPva4bt++LV9fX125ckWGYah+/fpav359knpffPGFTpw4kWwf0dHR+vnnnyVJgYGBeuutt8xlxDQAAGvC9SpSw/kBpG7Xrl1q2LCh7t69Ky8vL1WuXFm2trY6ePCgzp49Kzs7O/3000967bXXJEmnTp1SqVKlJEnu7u6qUqWK8uTJozNnzmjPnj2SpObNm2vJkiVycHBI01ge5z7epk2b5Ofnp/z586tx48bJ9tulSxf5+fklOvbbb7+pRYsWypMnj+rWrWueb79+/TR58uQkfQwaNEjffPONtm7dqldeeSVN8wIAIDVpul41kK5CQ0MNSUZoaGhmD+Wpi4yMNIoUKWJIMt544w0jIiLCXLZ7924jb968hiRj3bp1idq1bNnSkGQ0a9bMCA8PT1Q2Y8YMQ5JhZ2dnXLhwIU3jefvttw1JRuvWrY0bN24kKouNjTV27NiRpM3QoUMNSYaXl5dx+PBh8/GwsDCjWbNmhiSjU6dOidrExMQYHh4ehoeHh/lzrl27Zri7uxu5c+c2oqOjE9VfunSpIckYP358muaT1Vnb+ZGScePGGZKM55577pF1//e//xmSjH79+hmSjBIlSiSpw/kBALA2z/L1KizDOQIk73FjmgMHDhhXrlxJ0t/du3eN1157zZBkvPzyy080tjfffNOwtbU1+vTpY0gy6tevn+Y+fvnlF0OS4ebmlmhuxDQAAGvD9SpSw/kBpK58+fKGJKNnz56JruVjY2ON//u//zMkGblz5zYiIyMNwzCMU6dOGfXq1TN+//13IyYmJlFfmzZtMpydnQ1JxujRo9M8lse5j7dx40ZDklGnTp00fVaFChUMBwcH4++//zYMwzDCw8ON559/3rC1tU0Sr+3Zs8ewtbU13nvvvbRNCAAAC6TlepWErnT2LAcLP/30k/lC7/bt20nKv/nmG0OSUbNmzUTHXVxcDEnG7t27k+23VKlShiRj6dKlFo9l/fr1hiTD19c3yZfLKYmOjjaPZc6cOUnKr1y5YuTMmdMwmUzGP//8Yz5+6tQpQ5LRo0ePRPXfffddQ5Lx119/mY+FhYUZXl5eRoUKFYwHDx5YPJ/swJrOj9SULl3akGR88cUXqdbbvXu3YWtra7z22mvmACK5hC7ODwCAtXmWr1dhGc4RIHmPG9Ok5vz584akJ/o7F59ANXToUGPOnDmPndDVqFEjQ5LRu3fvRMeJaQAA1obrVaSG8wNIWUhIiDn+uH79epLymJgYI2fOnIYkY//+/Rb1+cknn6R4fyQ1j3MfzzAeL6ErKirKsLW1NRo2bJjo+KeffmpIMpYvX24+FhMTY1SsWNHw8vLi3xEAQIZIy/WqzSNW+wIsFr+0auXKlZNsSShJDRo0kCRt27ZNV69eNR/PkSOHRf17eHhYPJb45VEHDhwoe3t7i9ocP35c4eHhicaaUIECBeTr6yvDMLRkyRLz8Zs3b0p6uNRsQnnz5pUkc5+SNHz4cF29elUzZ86UnZ2dxfPJDqzp/EjJtm3b9Pfff8vOzk5dunRJsd79+/fVpUsX5cmTR1OmTEm1T84PAAAAIHt43JgmNfHX/TY2NhbHrgmFhISod+/eKl26tMaMGZPm9vEuXLhg3qKxe/fuicqIaQAAAIDswdHR0eK6lt5zqVixoqSHMUVaPM59vMd1584dxcbGWhTTfP311zpw4ICmTJnCtq0AgExntQldERER+v333/Xpp5+qbdu28vb2lslkkslkkr+/f7p8xrVr1zRkyBCVLl1aOXPmlLu7u2rVqqUffvhBhmGky2c8S+IveOIvgP4r/uLPMAzt37/ffLxJkyaSpNGjRysiIiJRm5kzZ+qff/5RuXLlVL16dYvGERsbq6CgIElS7dq1dfXqVU2aNEl9+vTRwIEDFRAQkOji7L/jt2QO+/btMx/z8fGR9DAhLKH4n728vCRJO3fu1LRp0/T++++rSpUqFs0lO7GW8yM1s2fPliQ1bdpUBQoUSLHeiBEjdPz4cX377bfy9PRMtU/ODwAAACB7eNyYJiVRUVH6+OOPJUkNGzZUzpw50zymPn36KCQkRLNmzbL4YZjkzJ07V3FxcSpfvnySeISYBgAAAMgeXFxcVKtWLUnS//3f/+nBgwfmsri4OPn7+ysyMlJNmjRRkSJFLOrzn3/+kSQVLFjQ4nE87n28hK5du6YxY8aoV69eGjBggKZNm6bz588nW9fT01NOTk6PjGmCg4M1atQotWnTRq1bt7Z4PgAAZBSrfVxy9+7datq0aYb1v2/fPr366qvmJ01dXFx09+5dbd26VVu3btXixYu1YsUKOTg4ZNgYspv4xJYzZ84kW57w+NmzZ83vv/zySx07dkyrVq1S0aJF9fLLL8vJyUlHjx7ViRMn1KxZszQ93XvmzBnzhd7OnTv13nvvJbnwGzp0qBYsWKB69eolGX98H2XLlk1xDgnH7+npqerVq2vVqlVasGCBmjVrpt9++02rVq1S+fLl5e3trQcPHqhnz54qUqSIPvnkE4vmkd1Yy/mRknv37mnhwoWSkj6RntD27ds1ceJEtWrVSh07dnxkv5wfAAAAQPbwuDFNvP379+vbb7+VYRi6ceOG9uzZo5CQEFWtWlWzZs1K83gWLFigxYsXa8CAAapRo0aa28czDENz586VlHwsREwDAAAAZB8zZ85U06ZN9f3332vVqlWqUqWKbG1tdeDAAV26dElvvfXWI3cmiRcREaFvv/1WktSuXTuLx/C49/ESOnHihEaNGpXomJ2dnfr376/x48cnuWfUsmVLLViwQBMnTtS7776rnTt3as6cOfL09NTLL78s6eEDM3Z2dhbPHwCAjGa1CV2SlCdPHlWqVMn8GjRokMXbFqQmNDRUzZs3182bN/X888/rxx9/VJUqVRQdHa2ZM2dq0KBBWrt2rQYOHKipU6emw0yeDfXq1dNnn32mffv26cCBA+ZlVuNNnz7d/D4sLMz8Pn/+/Nq0aZP69OmjefPmadWqVeayIkWKqF69esqXL5/F44hP0pMefhn9yiuvaMKECXr++ed1+vRpffzxx1q9erVatWql/fv3q1SpUpKkkiVLqmjRojp//rxmzpypSZMmJep306ZN+vvvv5OMX5K+/fZb+fn5JUrwyZUrl2bOnClJmjBhgg4fPqzVq1fL2dnZXCcyMlI5cuSQyWSyeH5ZlbWcHylZuHChwsPDVaBAgRSTSSMiItS1a1e5ublp2rRpFvfN+QFkb4Zh6MGDB4qLi8vsoeAZE789F/+fAICn43Fjmnjnz59XQEBAomMNGjTQjBkzzE+EW+rq1avq27evSpQooc8//zxNbf9r06ZNOnPmjBwdHdW5c+dk6xDTANnbgwcPFBsbm9nDwDPI1tY2w7fZAgAkVrp0ae3YsUNvvfWW1q1bp0uXLpnLXnjhBdWtW9firQbfe+89nT17VoUKFTKvPmyJx72PJ0lubm4aOHCg2rRpo+eee065cuXS6dOnNWfOHE2ZMkVff/21wsPD9f333yf6zLFjx2rjxo0aMmSIhgwZIkmyt7fXvHnz5OjoqJ9//llr1qzR1KlTVahQIXO7+/fvy97eXra2thbPD8DTxT0aZKaMjmmsNqGrVq1aunXrVqJjw4YNS5e+J0yYoKtXrypnzpxavXq1ihUrJklycHBQ3759FRYWpo8//ljff/+9Bg4cqOeeey5dPje7q1evnmrXrq3NmzerZcuWmjp1qmrXrq2bN29q6tSpCgwMlL29vR48eCAbm393+zxx4oRatGihGzduaOrUqWrRooVy5cqlAwcO6IMPPtCQIUO0Zs0a/f777xZdMCXcLtPLy0tr16417wv+4osvasWKFapQoYKOHDmiL774ItGT0KNGjVL37t01efJk5cqVS927d1euXLkUFBSkvn37Jjt+SapSpYqOHDmigIAAXbx4UUWLFlWXLl1UpEgRnT59Wp988ok6duxo3j5w8uTJGj9+vC5evKicOXOqdevWmjx5copbd2QH1nJ+pCT+PHj77bdTXO1r2LBh+ueffxQQEJCm5YM5P4DsKTo6WtevX1dERAQ3P5BpbG1t5eTkJE9PT1aWBYAM9rgxTbzWrVvLMAzFxsbq4sWLWr9+vUaNGiVfX18FBgaqffv2Fo+lZ8+eun37tpYsWSInJ6cnmld8LNSqVSu5u7snW4eYBsiewsLCFBISoqioqMweCp5hjo6O8vDwsDh5AADwZLZt26a2bdvKzs5OP/30k+rVqycHBwdt27ZNgwcPVvfu3bVt27ZHriL8ySefKCAgQDly5NDChQvTdK3/JPfxKlasmOThmnLlymnixImqWbOm2rVrp5kzZ+q9995ThQoVzHV8fHx05MgRzZ49W6dOnVL+/Pn15ptv6vnnn9ft27c1cOBA1ahRQ71795Yk/fLLLxo5cqROnjwpe3t7NWzYUFOmTDHfUwaQ+bhHA2uRkTGNyUj4f00r5+Pjo3PnzmnUqFHy9/d/7H68vb11/vx5devWTbNnz05SHh4eroIFCyo8PFwjR47U6NGjLe47LCxMbm5uCg0NfSaD0OvXr6tt27batm1bkrKBAwdq69at2rt3r77//nv16NFDMTExevHFF3Xs2DEtXLhQr732WqI2t2/f1gsvvKCrV69q9uzZ6tat2yPHcOTIEZUrV06S5O/vn2TJVUmaMmWK+vfvr6JFi+rcuXOJysaMGaMxY8Yk+Yff19dXLVu21Oeff65XXnkl2Tkmp0GDBjpw4ICOHz8uT09PffvttxowYIBatWqlbt266dixY/L399eLL76onTt3JvvFf3ZhDedHck6ePKnSpUtLephAFv8+oU2bNqlevXpq0qRJolXC4sv8/PxUokQJnTp1Kk2fzfkBZE0RERG6cOGCbG1t5ebmppw5c8rW1pbVJ/DUxCcEREZGKjQ0VHFxcSpcuLBFN/Wf9etVPNqzfo5cuHBB48aN0++//66LFy/K1dVVlStX1vvvv69mzZolW3/16tXat2+f9u3bpyNHjig6Olrdu3fXDz/8kG7jWr16tfnz69evr/Xr1yepc+zYMX3//ffav3+/goODFRISIsMw5OXlpTp16mjgwIHmWOm/vvnmG02ePFkXLlxQ0aJFNXDgQPXt2zfZupcuXdILL7ygatWqad26dek2x6wgrTHNowQHB6ts2bKysbHRP//8owIFCjyyTUBAgLp27ao+ffokWVV87ty56tatW4rnyH+FhoaqYMGCioyM1Nq1a9WoUaNHtvkvYhogawoLC9OlS5fk4uIiNzc3Vn7FUxe/kkJoaKjCw8Pl5eVl8bXns369itRxfgApu3Pnjp577jmFhIRox44dqlatWqLyM2fOqFy5coqIiNCGDRvk5+eXbD8TJ07UkCFD5OjoqGXLlqlx48ZpGseT3sdLTcWKFXXw4EGNGTNGI0aMsKhN9+7dNW/ePB04cEAvvPCCli9frtatW6tmzZoaNGiQrly5ov/973/KnTu3jhw5IhcXF4vHAyBjcI8G1uBxY5q0XK9a7QpdGeXvv//W+fPnJcn85Oh/ubi4qFatWvr999+1bt26NCV0Pes8PT21ZcsWrV+/Xhs2bNDNmzeVP39+tWrVSlWqVDEvUxp/obZr1y4dO3ZMjo6Oatu2bZL+8uTJoyZNmmjOnDlav369RQk7Pj4+MplMMgxDxYsXT7ZO/PErV64kKRs5cqQ6d+6spUuX6vTp03JwcNDLL7+sdu3amRMJU7oJ8l8BAQEKCgrS7Nmz5enpKUn64osv5O3trcWLF8vOzk6tWrVSaGioxo0bp/Xr1z/WF+hZhTWcH8mJT+ysWbNmsslckrRs2TIZhqHz58+rbt26icru3Lkj6eGNrfiySZMmJXr6IzmcH0DWFRISInt7e3l7e7PcNjKVi4uL3N3dde7cOYWEhKho0aKZPSQgS9uzZ48aN26sW7duqWDBgmrSpIlu3rypjRs3at26dck+8LNkyRINGjQoQ8d1+/Zt9ejRwxznpGT79u365ptvlD9/fpUuXVrVq1dXRESEDh8+rNmzZyswMFCBgYGJts2THn5RPnDgQBUsWFDNmjXTjh071K9fP92/f9+8FUVC/fr1U0xMTKItBp8VaY1pHsXHx0d+fn5atWqV/vjjD7311luPbPPrr79Keni+/jc2uXr1qiRp37595rIFCxakmCj2888/KzIyUkWLFlWDBg0sGnNCxDRA1hUSEiIXFxcVLlyYmx7INDlz5pSrq6suXryokJAQkm8AIIOtWrVKN27cUIkSJZIkc0kP751Vq1ZNGzdu1Pr165NN6Jo8ebKGDBkiBwcHLVmyJM3JXNKT38dLTZkyZXTw4EFdvHjRovp//vmn5syZoxEjRuiFF16Q9DCmcXZ21ooVK5QnTx5JD1fJ79Onj3766Sf17NkzTWMCkP64RwNrkdExzTOX0HXkyBHze19f3xTr+fr66vfff9exY8eexrCyFZPJpIYNG6phw4aJjp8+fVpXrlxR3rx5ValSJUkyJ9c5OTml+I+tm5ubJCXZgjMlLi4uKl26tE6cOKGQkJBk68QfTymLvnjx4vrggw+SHN+yZYskJZlbSp8xZMgQ+fn5mRONrl27pitXrqh9+/aJtvWrWbOmxo0bp4MHD2b7L7cz+/z4r9jYWAUGBkp6+BTGoyT8N+S/7t+/rz///FPSv0leKeH8ALKumJgY3bt3TwULFiRQgFWwtbWVu7u7rly5opiYmBS3DgaQuvv376tdu3a6deuW3njjDc2ZM0c5c+aU9DBxpkmTJhozZoxq1qyZ6Fq2WLFi6t+/vypVqqRKlSpp4cKF+uyzz9J1bP3799e1a9fUu3dvTZs2LcV6DRo00PHjx/X8888nOh4XF6eJEydq6NChevfdd9W4cWPzl9KxsbEaPXq0PDw8dOjQIXl4eOj69esqU6aMPv30U73//vuyt7c39/Xrr79q2bJlGj9+fIpfvGd3aYlpLOHs7Czp4epfabF3794Uy+7cuWOOTe7fv59ivfiHW7p165bmlbOIaYCs68GDB4qKipKHhwfJXMh0JpNJbm5uunTpkh48eJDougMAkL7i77mkdrM5tXsu3333nd5//31zMldyq1hbIj3u46Xk5s2bkiRXV9dH1o2KilKvXr1UunRpffzxx+bjBw8elK+vrzlulh7GNPFlADIX92hgbTIypnnm1rm/fPmy+b2Xl1eK9eLLwsLCFB4enmK9qKgohYWFJXoheRMmTJAk9ezZUw4ODpL+/T3fvn1b//zzT7Ltdu3aJUlp2pc6fmu+lLaY+OOPPyRJL730ksV97ty5U1u3blWRIkXUqlWrR9YfPHiw7t27pxkzZpiPxX9Jdu/evUR1439+lr9Ee5rnR0KrV6/WlStX5OrqmmRLx4QmTZokwzCSfW3cuFGSVKJECfOx/z4p/1+cH0DWFRMTI+nhntiAtYg/H+PPTwBp9+uvv+rChQvKnTu3pk+fbk7mkqSqVatq5MiRkh5u0Z5Qq1at9O2336pr164qX758uidV/vrrr5o/f74GDx78yPjFx8cnSTKXJNnY2OiDDz5Q8eLFFRERoa1bt5rL4rdmbNOmjTw8PCQ9XIWqbdu2unPnjo4fP26ue/fuXfXv318VKlTI8FXJsqLkYppHiYqKMv95PPfccxa1iV89OLnXnDlzJD3cljP+mI+PT7L9HDlyRHv27JHJZHqs1Y6JaYCsKzY2VpJInIHViD8X489NAEDGiL/ncuLECYWGhiYpf/Dggfbv3y8p6T2X6dOnq1+/fuZkrubNmz/RWDLiPt6lS5fMCzNY0u6zzz7TyZMnNWPGjETf9ZpMJmIawIpxjwbWKKNimmcuoevu3bvm905OTinWS1iWsM1/jR07Vm5ubuZXkSJF0megWdSxY8eSJLXFxMTo888/14wZM1SyZEn973//M5dVr17dfAH57rvv6saNG+ayuLg4ffHFF9qxY4ckJdkW5Ndff9Xzzz+v+vXrJxnH+++/rzx58mj16tWJvlyWHm43MX/+fHO9hG7fvq2///47SX87d+5Uu3btZDKZ9P333z/yJs369ev1448/asSIESpVqpT5uKenpwoXLqyNGzfq9OnTkh7+pY5/KjotT3FnRdZyfiQU/7vv0KGD+cn4jMb5AWQPBO+wJpyPwJPbs2ePJKly5crKnTt3kvL47ei2bdtm3tYuo4WEhKh3794qXbp0kkSyxxEfxyT8wiv+6WV3d/dEdfPmzStJiR5wGj58uK5evaqZM2c+s6sBpjWmuX79uqZNm5bsw1+XLl3SW2+9pcuXL8vHxyfJil+WxjSPa9asWZIentve3t5paktMA2QPXEPCWnAuAsDT0aRJEzk7OysyMlI9evRIFO9FR0dr0KBBOn/+vOzt7dW+fXtz2cyZM/Xee++lOZkrI+7jffPNN8mu6nXo0CG1aNFCkZGRKlGixCMXZjh27JjGjRund999V7Vr105UVqlSJR0/flzbtm0zH/v+++/NZQCsA9eQsCYZdT4+m9/ApqPhw4dr8ODB5p/DwsKe6aSu77//XjNmzFDlypXl5eWlqKgo7dy5U9euXVPJkiX1xx9/JEqasbe3V2BgoFq0aKHNmzerZMmSqlatmlxdXfXXX3+ZvwD++OOPVatWrUSfFRoaqr///jvZ7SM8PDz0yy+/qGXLlurdu7cmT56sMmXK6PTp0zpw4IAkacSIEWratGmidufOnVPFihVVpkwZlSxZUs7Ozvr777914MAB2dvba9asWY/cDzwyMlK9e/dWuXLlNHTo0CTlI0aMUK9evVSlShX5+fnp5MmTOnr0qGrUqKF69epZ9ovOoqzl/Ih3/fp1rVq1SpJl2y2mB84PAAAA6xT/RXZ8ItN/xa9eZRiG9u/fnySWyAh9+vRRSEiIli5dqhw5cjxRX99//71OnjwpT09Pvfzyy+bj8as3JVyJK+HP8Q9Y7Ny5U9OmTdOAAQNUpUqVJxpLVpbWmCYiIkLvvfeeBg4cqAoVKsjHx0eGYejChQvav3+/oqOjVahQIS1btizJn7ElMc3jevDggebNmycp7bEQMQ0AAACQNeXLl0/Tp09Xt27dtGjRIm3atElVq1aVvb299u7dq0uXLsnGxkbffvutihcvLunhFoO9evWSYRgqXry4Fi9erMWLFyfb/9y5cxP9nBH38UaNGqUhQ4aoQoUKKlasmGxsbMxt4uLiVLRoUa1cuTLVlXsMw1DPnj3l7u6u8ePHJyn/v//7PzVt2lQNGzZUw4YNdfXqVe3evVslS5ZMsrgAAAAZ6ZlL6Eq4Z3JERESK+0RHREQk2+a/HB0dWc4vgaZNmyo4OFj79+/X3r175ejoqNKlS2vIkCHq169fom1L4tWrV0+HDx/WxIkTFRQUpK1btyomJkb58uVTmzZt1KdPnyRPKluiYcOG+uuvv/T5559r/fr1Wr58uXLlyqWmTZtqwIABatSoUZI2Xl5e6tWrl7Zu3ao///xTUVFRKlSokHr06KEhQ4aodOnSj/zcMWPG6OzZs9q+fXuyS9fHb78xYcIE/fbbb8qdO7d69eqlcePGZftMYms6PyTpxx9/1IMHD1S2bFlVq1btSadnEc4PAAAA6+Tp6SlJOnPmTLLlCY+fPXs2w8ezYMECLV68WAMGDFCNGjXS1DY+iUh6+AX6kSNHdOrUKeXPn1+LFi1KFAd7enqqevXqWrVqlRYsWKBmzZrpt99+06pVq1S+fHl5e3vrwYMH6tmzp4oUKaJPPvkkXeeZ1aQ1pvH09NRXX32lzZs368iRIzp+/LgiIyOVO3duvfzyy2rRooV69uyZ4ncTGWXFihUKCQmRu7u7Wrdunaa2xDQAAABA1tW5c2eVK1dOkyZN0ubNmxUUFCTDMFSwYEG9+eabev/99xNtV3jnzh0ZhiHp4VaNJ06cSLHv/yZ0Pcrj3Mf73//+p23btuno0aP6448/dO/ePeXKlUuvvPKKWrVqpV69eqV6X1d6+KDOtm3btHDhwmRX6G7cuLFWrFihMWPGaM2aNXJyclKHDh301Vdfpbr7EwAA6c1kxP9fOAvw8fHRuXPnNGrUKPn7+z9WH0uWLDEvE3rs2DGVKVMm2XoffvihvvzyS+XKlSvZfaRTEhYWJjc3N4WGhj71L2QBAEDGu3//vs6ePatixYo98WopQHpJy3nJ9Soe5Vk9RzZs2KD69evLZDJp3759qlixYqLyrl27KiAgQJL0+eefa/jw4cn24+/vr9GjR6t79+764YcfHmssV69eVdmyZZUnTx4dOnTI/IXx3Llz1a1bN9WvX1/r169Psf2dO3eUJ0+eRMeKFy+uWbNmqW7duknq7927V35+fom228iVK5f++OMPvfTSSxo7dqw+/vhjrV69Wk2aNDHXiYyMVI4cOUjSAYAshpgG1iat5+Szer0Ky3B+AACQvRHPwBpl1D0am/QcZFbg6+trfn/kyJEU68WXvfDCCxk+JgAAAFgvHx8fmUwmBQcHP5XPM5lMJEcAmaBevXqqXbu2DMNQy5YttXLlSoWGhurMmTP64IMPFBgYaF6NyMYmY0Ppnj176vbt2/rhhx8e6+nf3LlzyzAMGYahq1evavXq1cqXL5/8/PyS3SKvSpUqOnLkiEaPHq0ePXrok08+0ZEjR/TSSy/p9OnT+uSTT9SxY0dzMtfkyZNVpEgROTk5ydnZWZ06ddLNmzefeN4AACBjENMAAAAAyKqe5Xjmmdty8bnnnlPRokV1/vx5rVmzRq+99lqSOvfu3dOWLVskKdnlPAEAAAAA2c+iRYvUtm1bbdu2TS1btkxUNnDgQG3dulV79+6Vu7t7ho0hICBAK1euVJ8+fZJdTSut8ufPryZNmqh+/fqqVq2aJkyYoDp16qh58+aJ6nl7e2vkyJFJ2vfq1Us5c+bUpEmTJEnffvutBgwYoFatWmnKlCk6duyY/P39derUKe3cuTPDk90AAAAAAAAA4FnwzCV0mUwmvf322/r000+1YMECjRgxQj4+PonqfPfddwoPD5etra3efPPNzBloOli8+0ZmDwFWrsGtBZk9BFi53I37Z/YQACDTBQUF6cGDB/Ly8srsoQDIYJ6entqyZYvWr1+vDRs26ObNm8qfP79atWqlKlWqqFChQpKkcuXKZdgYfv31V0nSnj17kiR0Xb16VZK0b98+c9mCBQtUoECBR/br4OCgN998UwcPHtSvv/6aJKErOQEBAQoKCtLs2bPl6ekpSfriiy/k7e2txYsXy87OTq1atVJoaKjGjRun9evXP/WHou6smfxUPw9ZC/EMADxETAMA1ol4Bo9CTAMAz3Y8Y9UJXbdv31ZsbKz557i4OElSRESEQkJCzMdz5MghFxcX88/+/v4aPXq0JOns2bNJErY++OAD/fDDD7p69aqaNWumwMBAVa5cWdHR0Zo1a5ZGjBgh6eE2F88991xGTQ8AAABZQIkSJTJ7CACeIpPJpIYNG6phw4aJjp8+fVpXrlxR3rx5ValSpQwfx969e1Msu3Pnjv78809J0v379y3u09nZWZJ0/fr1R9YNCQnRkCFD5Ofnp27dukmSrl27pitXrqh9+/ays/v364SaNWtq3LhxOnjwIKtcAwBghYhpAAAAAGRVz3I8Y9V7IVSsWFH58uUzvy5cuCBJ+vLLLxMd79evX5r6dXNz02+//aa8efPq2LFjqlKlinLlyiUXFxe99957io6OVqNGjfT1119nxLQAAMAzJjIyUl999ZVefvll5c6dWzly5FDp0qX14Ycf6ubNm+Z6w4cPl8lkUu/evVPs68iRIzKZTMqfP78ePHiQqOzy5csaPHiwypQpIycnJ7m6uqpq1aqaMmWKYmJikvTVtWtXmUwmzZ07V0eOHNEbb7yhggULytbWVv7+/mme59y5c2UymdS1a1eFhoZq8ODB8vHxUY4cOVSqVCmNGzfOnKB/6dIl9erVS0WKFJGjo6NKly6tyZOTfyrx3LlzGjdunOrVq6eiRYvK0dFRuXPnVs2aNTVjxgxznwkFBwfLZDLJx8dHsbGxmjhxoipWrCgXFxfz3uebNm2SyWRS3bp1FRERoZEjR5p/dwkfCHjU/uyLFy9W48aNlS9fPjk4OMjLy0udO3fWsWPHUvxd7dixQ02aNFHu3Lnl4uKiKlWqaPbs2Rb+pgFkhgkTJkh6+OCPg4NDhn3OsmXLZBhGsq85c+ZIkurXr28+9t8HmFITFBQkSRY9uDR48GDdu3dPM2bMMB+L//fz3r17ierG/xxfDgDIfohpiGn+i5gGAAAAWQXxDPHMf2WVeMaqV+jKSJUrV9bRo0c1btw4/fbbb7pw4YKcnZ3l6+urLl266J133pGNjVXnuwEAgCzg8uXLaty4sQ4fPix3d3dVrVpVrq6u2r9/v7788kstWrRImzZtkre3t7p166YvvvhCv/zyiyZNmqQcOXIk6S/+Zn7nzp1lb29vPr5582a1bt1at2/flo+Pjxo2bKioqCjt3r1b/fv318qVK/Xbb78lahNv+/bt6t27twoWLKjatWsrMjJSrq6ujz3nO3fuqHr16rp586Zq1aqlu3fvasuWLRo2bJguXryogQMHqmbNmrK3t9crr7yiGzduaPPmzXr//fcVERGhjz76KFF/P/74o0aMGKFixYrpueeeU40aNXTlyhXt2LFD27Zt07p167R48eJkEwkMw1Dbtm21Zs0a1apVS2XKlNHRo0cT1bl//77q1q2rY8eOqXbt2nrxxRcTBXEpiYmJ0ZtvvqmFCxfK0dFRlStXlpeXl06ePKn58+dr6dKlWrp0qRo3bpyo3aJFi9SxY0fFxsbK19dX5cqV04ULF/Tuu+8mGRuAp+vYsWMqXLiwcuXKZT4WExOj8ePHa8aMGSpZsqT+97//pctn/frrrxo+fLi8vLzMiVZPatKkSWrXrp2KFCmS6HhERIQmTpyoJUuWyM7OzrziVkrWr1+vH3/8UZ999plKlSplPu7p6anChQtr48aNOn36tEqUKKHY2Fjzlx1PY+UyAMDTR0xDTENMAwAAgKyKeIZ4JivHM1ad0JVSht2j+Pv7W5SxmD9/fk2cOFETJ058rM8BAABIjWEYev3113X48GF1795dX3/9tfkiPCYmRsOGDdNXX32lbt26acOGDeYL4W3btmnZsmXq0KFDov5iYmI0b948SUp0M/7q1atq27at7ty5o6lTp6pXr17mxPSbN2/q9ddf17p16zR27FiNHDkyyThnzpypYcOG6bPPPkuXhPbly5erRYsW2rt3r5ycnCRJ+/fvV7Vq1TR16lRt2LBBrVu31uTJk81bdi1fvlytW7fW559/rv79+5vbSdKrr76q1q1by9fXN9HnXL58WU2bNtXSpUu1ePFivfbaa0nGcv78ecXFxenw4cMprkiza9culS9fXqdOnVKBAgUsnueoUaO0cOFCVatWTT///LOKFStmLlu8eLE6dOigTp066cyZM8qdO7ekh39W3bt3Nz+RMmjQIHOboKAgNW/e3OLPB5D+vv/+e82YMcMc/EdFRWnnzp26du2aSpYsqT/++MO8bWG8K1euqE2bNuafL168KElasWKFXn75ZfPxqVOnJkp4Cg0N1d9//52mLRMfZdKkSeanAEuXLq0cOXLoypUr+uuvv3T79m05Ojpq5syZSf49TSgyMlK9e/dWuXLlNHTo0CTlI0aMUK9evVSlShX5+fnp5MmTOnr0qGrUqKF69eql21wAANaBmIaYhpgGAAAAWRXxDPFMVo9nWIIKAAAgg6xdu1bbtm1ThQoVNH369ERPVNjZ2Wn8+PHy9fXVxo0bdeTIEUnSO++8I+nfpzwSWrVqla5fv64qVaokunCeNGmSbt68qb59+6pPnz6JLvjz5s2rwMBA2dvba8qUKTIMI0m/zz33nD799NN0W53UxcVFP/zwQ6IL/kqVKqlp06aKi4tTeHi4vv76a3OgIEmtWrVSuXLlFBYWpr179ybqr2rVqskmHxQqVEjjx4+X9PCJipR8/vnnj9xebMqUKWkKFG7duqWvv/5aOXLk0JIlSxIFCpLUvn179erVS7dv3zYHeJI0a9Ys3b17Vy+//HKiQEF6uIVar169LB4DgPTXtGlTvfrqqzp//ryWL1+ujRs3qmjRoho/frwOHTqU7PaGUVFR2rVrl/l16dIlSdKNGzcSHQ8LC8vw8X/++ed6++23ZTKZtHnzZi1cuFD79++Xj4+PPvjgAx07dkxvvfVWqn2MGTNGZ8+e1cyZM5N9YrBnz56aM2eOvLy89Ntvv+n69evq1auXVq1axZaLAJANEdMQ0xDTAAAAIKsiniGeyerxDAldAAAAGWTVqlWSpHbt2iW6MI5nY2Oj2rVrS3q4pK4kvf7663J2dtb69evNq7zEiw8g4gOK/37OG2+8kew4vLy8VKpUKd24cUP//PNPkvLWrVvL1tY2LVNLVeXKleXp6ZnkePy2XX5+fskuVRxffvny5SRlUVFRWrlypUaOHKnevXurW7du6tq1q2bMmCFJ+vvvv1McT7t27VIdr6enp2rVqpVqnf/auHGjIiMjVaNGDXl5eSVbp27dupL+/bOVHu4JL0lvvvlmsm26dOmSpnEASF+NGjXSsmXLdP78ed2/f1+hoaHavXu3hg4dqpw5cybbxsfHR4ZhPPIV/29CvK5du8owjDStTB3fZv369cmWd+rUSXPnztWRI0cUEhKimJgYhYaGmpeQL168+CM/Y+zYsYqNjVW1atVSHceRI0cUHR2t69eva/r06XJzc7N4HgCArIOYJjFiGmKaZ9Hdu3fl7++vcuXKycXFRW5ubqpataq++uorRUdHP1HfixcvVosWLVSoUCE5ODjI2dlZpUuXVo8ePXTw4MH0mQAAAHhmEc8kRjyT9eIZq95yEQAAICs7c+aMpIfbU40YMSLVujdu3JD08MmJ1157TXPnzlVgYKA+/vhjSdL169e1atUq5ciRQx07dkz2cyy54L1x40aSJyGSW3HmSRQtWjTZ4y4uLqmWxz8d89/tx3bu3Kk33nhD58+fT/EzU1r5xtPTM9FTKMl5nPnH/86DgoIeuSJN/J+t9O9WbP99WiReSscBAACAzEBMkxgxDTHNs+bcuXOqW7eu+SEEJycnRUVFae/evdq7d6/mz5+voKAg5cmTJ039RkVF6bXXXtPKlSvNx1xcXBQdHa2TJ0/q5MmTmj17tiZMmJBk5QQAAABLEc8kRjyT9eIZEroAAAAySFxcnCSpZs2aKlGiRKp1y5Yta37/zjvvaO7cuQoICDAHC/PmzVNMTIzat29v3uv7v5/Tvn17OTs7p/o5efPmTXIspVVnHtejlgVOy7LBERERat26ta5du6Zu3bqpT58+KlmypHLlyiVbW1udPHlSpUuXTnaZYsmyuT3O/ON/5yVLllSNGjVSrfv888+nuX8AAADAGhDTPF55QsQ0yKpiYmLUokULBQcHq2DBggoMDFSDBg0UFxenRYsWqUePHjpw4IA6d+5sXpXCUp9//rk5meu9997Txx9/LC8vL8XFxenAgQMaOHCgtm7dqiFDhqh27dqqXLlyRkwRAABkc8Qzj1eeEPFM5iKhCwAAIIMUKVJE0sO9xz/44AOL29WqVUslS5bUyZMntW3bNtWoUUNz586VlHQp3/jP+eeff/TRRx+pSpUq6TJ2a7F582Zdu3ZNlSpV0uzZs5OUJ7c88dMQ/2dbunRp85+NJby8vHTixIkUt1hLy9ZrwLNg8e4bj66EZ1qDzB4AAGRzxDRPjpgGWVVAQIAOHz4sSVqyZImqV68u6eENwDfeeENxcXHq1KmTVq9eraCgINWvX9/ivgMDAyVJderU0XfffWc+bmNjo8qVK+u3335T4cKFFR4ersWLF5PQZaHg4GCLV5X4888/zVtMPWpVi3gBAQF6++23Lap74MABrVmzRuvXr9eRI0d069Ytubi4yNfXVx06dFDPnj1lb2+fpF3dunX1559/PrL/bt26Jfk39ZtvvtHkyZN14cIFFS1aVAMHDlTfvn2TbX/p0iW98MILqlatmtatW2fRnAAAWQ/xzJMjnslclqfeAQAAIE2aNGkiSVq0aFGKTyekpFu3bpKkuXPnat++fTp8+LCKFCmS7Bek8Z+zcOHCJxyx9bl165aklJcAnjdv3tMcjln9+vXl4OCgTZs26fr16xa3q1OnjiRp/vz5yZbHf6kNAAAAWANimidHTIOsKiAgQJLk5+dnTuZKqEOHDubkobT+uV+5ckWSUrzh6ebmZt6KKDw8PE19P8tcXFzUpUuXFF9Vq1aV9HA7pYRJcqm18fPzk/Qw6Sv+7/+jxMTEqFKlSvr444+1e/dulS1bVu3bt5evr6927Nihfv36qWbNmrpz506Sto0bN05xLAm3t4ofV7wpU6Zo4MCBioiIULNmzRQeHq5+/frpq6++SnaM/fr1U0xMjKZPn27RnAAAWRPxzJMjnslcJHQBAABkkFatWqlq1aravXu3unXrlmif7ni3b9/W9OnTFRMTk+h4ly5dZGNjo4ULF5qfVo0/9l9Dhw5V7ty5NXHiRH311VeKjo5OUufs2bOZdmH9JMqUKSPp4T7ox44dS1T2/fff65dffsmMYSl//vzq37+/7t27pxYtWpifWk4oKipKK1as0IkTJ8zHunfvLhcXF+3YsUPffvttovqbNm3ii0QAAABYFWKaJ0dMg6woIiJC27Ztk/TvDcr/MplMaty4sSSleYWj4sWLS5L27duXbHloaKhOnjwpKeWkLyTl4eGhuXPnpvjy8PCQ9DAZL+F2UKm1id+iqEGDBvL29rZ4LJUrV9bChQsVEhKiDRs26Oeff9aWLVt04MABFSxYULt379bgwYOTtBs2bFiKY2ndurWkhwl/7du3N7eJjY3V6NGj5eHhoUOHDmnp0qX666+/5O7urk8//VQPHjxI9Bm//vqrli1bJn9/f/O5CADInohnnhzxTOYioQsAACCD2NjYaNmyZapQoYICAgJUrFgx1ahRQx07dlS7du1UsWJF5cuXT3369EkSLHh5ealRo0YKCwvTnDlzZDKZzE+E/FfhwoW1fPly5cmTRx988IH5KZHOnTurRYsWKlmypIoXL64pU6Y8jWmnq4oVK6pVq1a6e/euKlasqFdffVUdO3ZUmTJl1Lt3b/P+9Znhiy++UKdOnbR7925VqFBBlSpVUvv27dWhQwfVrFlTefPmVatWrRIt0VuoUCHNnDlTtra2GjBggMqXL69OnTqpTp06qlevnnr37p1p8wEAAAD+i5jmyRHTICs6fvy44uLiJEm+vr4p1osvu3r1qnn1Bkv06dNH0sObZn379tWlS5ckSYZhaP/+/WrevLnCw8NVvXp1de7c+XGngQQuXbqktWvXSnp4I9MS9+/f188//5ymNpJkZ2envXv36rXXXpOjo2OisnLlymn8+PGSpAULFiRJtkrNrFmzJEkdO3ZUzpw5zceDg4MVEhKiNm3amJPWPD091bZtW925c0fHjx83171796769++vChUqaNCgQRZ/NgAgayKeeXLEM5mLhC4AAIAMVKhQIe3cuVPTp0/XSy+9pL///luLFy/W1q1bJUm9e/fW2rVrlSNHjiRtE+7FXrt27VSfGqxdu7aOHj2qESNGqHDhwtqzZ48WLVqkgwcPKn/+/Bo1apRmzpyZ/hN8ChYtWqQvv/xSpUuX1tatW7Vu3ToVLVpUa9eu1bvvvptp47Kzs9P8+fO1evVqtW7dWtevX9eKFSu0du1a3bp1Sy1atNBPP/2k2rVrJ2rXoUMHbdq0Sa+++qrOnTun5cuX6+7du5o+fbomTpyYSbMBAAAAkkdM8+SIaZDVXL582fzey8srxXoJyxK2eZS+ffvqww8/lI2NjaZOnarChQvL1dVVOXLkUOXKlXXq1CkNGzZMQUFBsrW1TbWvqKgohYWFJXohqblz5youLk5ly5ZVtWrVLGqzZMkS3blzR+7u7ubVsdJDxYoVJUmRkZEKCQmxqM2FCxe0fv16SUmTy27evClJcnd3T3Q8b968khJv2zl8+HBdvXpVM2fOlJ2d3eNNAACQpRDPPDnimcxjMtK6WShSFRYWJjc3N4WGhipXrlyZOpbFu5MuGQgk1ODWgsweAqxc7sb9M3sIgNW5f/++zp49q2LFiiV7gQ9khrScl9Z0vQrrZE3nCDENHoWYBqkhngGSR0wDa5PWc9Karlezq59++klvvvmmJOmff/5RyZIlk633xx9/qFGjRpKk7du3q3r16hZ/RlxcnH788Uf169cvUcKNJOXOnVsdO3bUmDFjzCsupcTf31+jR49OcpzzI7FSpUrp1KlTmjhxosUrU9WvX18bNmzQ+++/r2+++SbdxrJs2TK1adNGDg4OCgsLS7KKV3I++eQTjRw5UuXLl9dff/2VqOz69evKnz+/WrZsqeXLl5uPt2rVSitWrFBwcLC8vb21c+dO1ahRQwMGDLCam7V31kzO7CHAyhHTAEkRz8AaZdQ9GlboAgAAAAAAAAAAwFMREhKi+vXrq2vXrqpevbq2bt2qO3fu6MqVK1q6dKny5cunadOmqVq1aubtGFMyfPhwhYaGml8XLlx4SrPIOv7880+dOnVKDg4OeuuttyxqExwcrI0bN0pK23aLj2IYhnnLxebNm1uUzGUYhubOnZviWDw9PVW9enWtWrVKCxYs0N27d/Xzzz9r1apVKl++vLy9vfXgwQP17NlTRYoU0SeffJJu8wEAAMhIrCcKAAAAAAAAAAAASZKrq6v5fURERIr1EpYlbPMoXbp00aZNm1SnTh2tXbtWJpNJkuTm5qY2bdqoRo0aKlu2rM6cOaNhw4bpxx9/TLEvR0dHi5KCnmWzZ8+WJLVs2fKRK57FmzNnjgzDUJUqVVS+fPl0G8vo0aO1Y8cOubi46IsvvrCozaZNm3TmzBk5Ojqqc+fOydb59ttv5efnp44dO5qP5cqVy7y11YQJE3T48GGtXr1azs7O5jqRkZHKkSOH+RwEAACwJiR0AQAAIIkffvjBvIf8o3h4eGjChAkZPCIAAAAAsBwxDfD4ChUqZH5/6dKlFBN6Eq6elbBNao4fP67Vq1dLkoYMGZJsIo2np6fefvttTZw4UUuXLlVgYCAJN48pLCxMixcvliS98847FrWJi4szr4hlaRtLBAYGasyYMbKxsdHs2bNVqlQpi9rNmjVL0sMtFN3d3ZOtU6VKFR05ckQBAQG6ePGiihYtqi5duqhIkSI6ffq0PvnkE3Xs2FFNmjSRJE2ePFnjx4/XxYsXlTNnTrVu3VqTJ09W3rx502eyAAA8IeIZSCR0AQAAIBlbt25VQECARXW9vb0JFgAAAABYFWIa4PGVKVNGNjY2iouL05EjR8xJMP915MgRSVKBAgVSTLT5r2PHjpnflyhRIsV68ck+ERERun79uvLnz2/p8JHAggULFBERocKFC+vVV1+1qM369et1/vx55cyZU506dUqXcSxatMicHDZz5ky99tprFrULDQ3V0qVLJT1660dvb2+NHDkyyfFevXopZ86cmjRpkqSHq3kNGDBArVq10pQpU3Ts2DH5+/vr1KlT2rlzp2xsbNIwMwAAMgbxDCSJqxIAAAAkMXfuXBmGYdErODg4s4cLAAAAAIkQ0wCPz8nJSTVq1JAkrVmzJtk6hmFo7dq1kqRGjRpZ3HfCZJlz586lWO/atWvm9y4uLhb3j8Tit1vs2rWrxYlK8W3atWsnNze3Jx7D0qVL1alTJ8XFxWnGjBlpWvXr559/VmRkpIoWLaoGDRqk+bMDAgIUFBSkCRMmyNPTU5L0xRdfyNvbW4sXL1arVq00fPhwDRo0SHv27NH69evT/BkAAGQE4hlIJHQBAAAAAAAAAAAggS5dukiSNm7cqF27diUpX7Rokc6cOSNJevvtty3ut1KlSub306ZNS7bOvXv3FBgYKEkqX768nJ2dLe4f/zp27Jh27dolk8mkbt26WdTm1q1bWrZsmaRHr4hliWXLlqlDhw6KjY3VtGnT1KNHjzS1j08u69atW5pXzgoJCdGQIUPk5+dnnv+1a9d05coVVa1aVXZ2/25iVLNmTUnSwYMH0/QZAAAAGYmELgAAAAAAAAAAAJh16dJF5cqVk2EYateunYKCgiRJcXFxWrRokTkxp0mTJqpfv36itv7+/jKZTDKZTElWjPD29laLFi0kSStXrtRbb72l06dPyzAMPXjwQNu3b1fdunXNyWJDhgzJ4JlmX7NmzZIk+fn5qXjx4ha1mT9/vqKiolSiRAnVqVPniT5/5cqVev311xUTE6Np06apV69eaWp/5MgR7dmzJ00JaQkNHjxY9+7d04wZM8zHTCaTpIdJgwnF/xxfDgAAYA1I6AIAAAAAAAAAAICZnZ2dVqxYIR8fH126dEkNGjSQs7OznJ2d9frrryssLEwVK1bU/Pnz09z37NmzVblyZUnSvHnzVLJkSbm4uJi3ety7d68kaejQoWla/Qv/evDggebNmycpbSttxa+I9c477zwyuenXX3/V888/nyShT5JWr16t9u3bKyYmRtOnT09zMpf0b0JagwYN5O3tnaa269ev148//qgRI0aoVKlS5uOenp4qXLiwNm7cqNOnT0uSYmNjzfNOuIIcAABAZrN7dBUAAAAAAAAAAAA8S3x8fHTo0CFNmDBBS5cu1dmzZ2Vvb6+yZcuqY8eO6t+/vxwcHNLcr4eHh3bu3KmAgAAtWrRIBw8e1K1bt2RnZ6eiRYvqlVdeUa9evczb4CHtfvvtN12/fl25c+dW27ZtLWpz4MABHTx4ULa2turatesj64eGhurvv//W/fv3Ex2/fv262rZtq+joaBUuXFjbt2/X9u3bk+1jwoQJ8vDwSHL8cRPSJCkyMlK9e/dWuXLlNHTo0CTlI0aMUK9evVSlShX5+fnp5MmTOnr0qGrUqKF69eql6bMAAAAyEgldAAAAAAAAAAAASMLV1VWjR4/W6NGjLW7j7+8vf3//VOvY2dmpe/fuaU7WgWXiV5zq1KmTcuTIkaY2r776qgoVKvTYnx0REaGoqChJ0sWLFxUQEJBiXX9//2QTulasWKGQkBC5u7urdevWafr8MWPG6OzZs9q+fbvs7e2TlPfs2VMODg6aMGGCfvvtN+XOnVu9evXSuHHj2HIRAABYFRK6AAAAAAAAAAAAgGxi5cqVaW4zefJkTZ482eL6Xbt2TXYlLx8fHxmGkebPT6hdu3aP3cfYsWM1duzYVOukNHYAAABrYpPZAwAAAAAAAAAAAAAAAAAAPERCFwAAAAAAAAAAAAAAAABYCbZcBAAAAAAAAAAAANLZ4t03MnsIsGINMnsAAADAqrFCFwAAAAAAAAAAAAAAAABYCVboAgAAyKKy2lOe7V/Kl679+fj46Ny5c5KkRYsWqX379snWa9CggYKCgjRnzhx17do1XccAAAAA4PFktXhGIqYBAAAA8K+sFtMQz2Q9rNAFAACALO9///ufYmJiMnsYAAAAAPBYiGkAAAAAZFXEMxmDhC4AAABkaU5OTjp58qR++OGHzB4KAAAAAKQZMQ0AAACArIp4JuOQ0AUAAIAsbcCAAZKkMWPGKCIiIpNHAwAAAABpQ0wDAAAAIKsinsk4JHQBAAAgS2vatKnq1KmjK1eu6Ouvv05T2wULFqh+/fpyd3eXo6OjvL299c477+jkyZMZNFoAAAAASIyYBgAAAEBWRTyTcUjoAgAAQJY3btw4SdL48eN18+bNR9Y3DENdunRRx44dtXnzZlWsWFFt27ZVjhw5NGfOHFWsWFFr1qzJ6GEDAAAAgCRiGgAAAABZF/FMxiChCwAAAFletWrV1LZtW4WFhemzzz57ZP0ZM2YoMDBQHh4e2rNnj4KCgvTzzz/rxIkTGjVqlCIiItSxY0fduHHjKYweAAAAwLOOmAYAAABAVkU8kzFI6AIAAEC28Pnnn8vOzk5Tp07VuXPnUq07YcIESdLIkSNVoUIF83GTyaRRo0apfPnyunPnjmbOnJmRQwYAAAAAM2IaAAAAAFkV8Uz6I6ELAAAA2ULp0qX1zjvvKCoqSiNGjEix3sWLF3X69GlJUpcuXZKUm0wmdevWTZK0cePGjBksAAAAAPwHMQ0AAACArIp4Jv2R0AUAAIBsw9/fX05OTpo/f74OHTqUbJ1Lly5JkvLmzatcuXIlW6dEiRKJ6gIAAADA00BMAwAAACCrIp5JXyR0AQAAINsoWLCgBgwYoLi4OA0fPjyzhwMAAAAAaUJMAwAAACCrIp5JXyR0AQAAIFv56KOPlDdvXq1evVqbN29OUu7l5SVJunnzpsLCwpLt48yZM4nqAgAAAMDTQkwDAAAAIKsinkk/JHQBAAAgW3Fzc9PHH38sSfrwww+TlBcuXNi8XO/cuXOTlBuGYT7u5+eXYeMEAAAAgOQQ0wAAAADIqohn0g8JXQAAAMh2+vbtq6JFi2rXrl3asWNHkvIPPvhAkvTJJ5/or7/+Mh83DEOffvqpDh48qNy5c6tHjx5PbcwAAAAAEI+YBgAAAEBWRTyTPuwyewAAAABAenN0dNSYMWPUtWtXRUREJCnv1auXtm/frh9//FFVqlRRnTp15Onpqf379+vvv/9Wzpw59dNPPylfvnyZMHoAAAAAzzpiGgAAAABZFfFM+mCFLgAAAGRLb731lsqVK5dsmclkUmBgoH766SfVrFlT+/bt0+LFixUREaGuXbvqwIEDatKkyVMeMQAAAAD8i5gGAAAAQFZFPPPkWKELAAAgi2r/0rP9ZEJwcHCq5TY2Njp06FCqdTp27KiOHTum46gAAAAAWOJZj2ckYhoAAAAgK3vWYxrimYzHCl0AAAAAAAAAAAAAAAAAYCVI6AIAAAAAAAAAAAAAAAAAK0FCFwAAAAAAAAAAAAAAAABYCRK6AAAAAAAAAAAAAAAAAMBKkNAFAAAAAAAAAAAAAAAAAFaChC4AAAAAAAAAAAAAAAAAsBIkdAEAAAAAAAAAAAAAAACAlSChCwAAAAAAAAAAAAAAAACsBAldAAAAAJCB7t69K39/f5UrV04uLi5yc3NT1apV9dVXXyk6OvqJ+l68eLFatGihQoUKycHBQc7OzipdurR69OihgwcPps8EAAAAAAAAAADAU2WX2QMAAAAAgOzq3Llzqlu3roKDgyVJTk5OioqK0t69e7V3717Nnz9fQUFBypMnT5r6jYqK0muvvaaVK1eaj7m4uCg6OlonT57UyZMnNXv2bE2YMEGDBg1KzykBAAAAAAAAAIAMxgpdAAAAAJABYmJi1KJFCwUHB6tgwYL6448/dO/ePUVERGjBggVydXXVgQMH1Llz5zT3/fnnn5uTud577z1dvHhRd+/eVWRkpPbu3auaNWsqLi5OQ4YM0b59+9J7agAAAAAAAAAAIAOR0AUAAAAAGSAgIECHDx+WJC1ZskQNGjSQJNnY2OiNN97QjBkzJEmrV69WUFBQmvoODAyUJNWpU0ffffedvLy8zH1XrlxZv/32m1xcXGQYhhYvXpxeUwIAAAAAAAAAAE8BCV0AAAAAkAECAgIkSX5+fqpevXqS8g4dOqhYsWKS/k3QstSVK1ckSVWqVEm23M3NTc8995wkKTw8PE19AwAAAEC8u3fvyt/fX+XKlZOLi4vc3NxUtWpVffXVV4qOjk5zf8HBwTKZTBa/unXrlgGzAgAAAKyfXWYPAAAAAACym4iICG3btk2S1KRJk2TrmEwmNW7cWNOmTdO6devS1H/x4sV1/PjxFLdTDA0N1cmTJyWlnPQFAAAAAKk5d+6c6tatq+DgYEmSk5OToqKitHfvXu3du1fz589XUFCQ8uTJY3Gftra2yp8/f6p17t+/r9DQUElS1apVH3v8AAAAQFZGQhcAAEAWdWfN5MweQprkbtw/s4cAPDXHjx9XXFycJMnX1zfFevFlV69e1a1bt+Tu7m5R/3369NH777+vTZs2qW/fvvr444/l5eUlwzB04MABDRgwQOHh4apevbo6d+785BMCAABIZ1ktnpGIafBsiYmJUYsWLRQcHKyCBQsqMDBQDRo0UFxcnBYtWqQePXrowIED6ty5s1atWmVxv0WKFNHVq1dTrdO/f39NmTJFOXPmVKdOnZ50KgAAABkiq8U0xDNZD1suAgAAIEvp3LmzTCaTmjZtmmq927dvy8vLSyaTST/88MNTGh3w0OXLl83vvby8UqyXsCxhm0fp27evPvzwQ9nY2Gjq1KkqXLiwXF1dlSNHDlWuXFmnTp3SsGHDFBQUJFtb21T7ioqKUlhYWKIXAAAAMg4xDbKCgIAAHT58WJK0ZMkSNWjQQJJkY2OjN954QzNmzJAkrV69WkFBQen2uffv39f8+fMlSe3atVPu3LnTrW8AAAA8OeKZp4eELgAAAGQpU6ZMkZeXl37//XfzF8jJ6du3ry5fvqxmzZrp3XfffYojBKS7d++a3zs5OaVYL2FZwjaPYmNjo7Fjx2r27NlycXGRJIWHhys6OlrSv1uU3Lt375F9jR07Vm5ubuZXkSJFLB4HAAAA0o6YBllBQECAJMnPz0/Vq1dPUt6hQwcVK1ZMkhQYGJhun7t06VLdvn1bkjjvAQAArBDxzNNDQhcAAACylNy5c2vWrFmSpA8++EBnzpxJUmfx4sX6+eeflTdvXp78QLYUEhKi+vXrq2vXrqpevbq2bt2qO3fu6MqVK1q6dKny5cunadOmqVq1arp06VKqfQ0fPlyhoaHm14ULF57SLAAAAJ5NxDSwdhEREdq2bZskqUmTJsnWMZlMaty4sSRp3bp16fbZ8X83SpUqpTp16qRbvwAAAEgfxDNPDwldAAAAyHJeffVV9e7dW+Hh4erSpYvi4uLMZdeuXVOfPn0kSVOnTlWBAgUya5h4hrm6uprfR0REpFgvYVnCNo/SpUsXbdq0SXXq1NHatWtVo0YNubm5qUCBAmrTpo22bt0qDw8PnTlzRsOGDUu1L0dHR+XKlSvRCwAAABmLmAbW7Pjx4+Zz0tfXN8V68WVXr17VrVu3nvhzz5w5o40bN0qSunfv/sT9AQAAIGMQzzwdJHQBAAAgS5owYYJKlCihrVu3asKECebjPXv2VEhIiDp27KjXX39dknT58mUNHjxYZcqUkZOTk1xdXVW1alVNmTJFMTExSfqOiorSl19+qcqVK8vV1VUODg4qUKCAqlatqg8//DBdvqhG9laoUCHz+9RWyEpYlrBNao4fP67Vq1dLkoYMGSKTyZSkjqenp95++21JD7csMQzDor4BAADw9BDTwFpdvnzZ/N7LyyvFegnLErZ5XLNnz5ZhGLKzs1OXLl0sahMVFaWwsLBELwAAAGQ84pmMR0IXAAAAsiRnZ2cFBATIxsZGI0eO1OHDhzV37lytWLFChQoV0nfffSdJ2rx5s3x9ffX111/r/v37atiwoWrUqKHTp0+rf//+atasmR48eGDuNy4uTs2aNdOHH36oU6dOqVatWmrfvr3KlSunGzdu6Msvv9T58+cza9rIIsqUKSMbm4fh1pEjR1KsF19WoEABubu7W9T3sWPHzO9LlCiRYr1SpUpJergK2PXr1y3qGwAAAE8PMQ2s1d27d83vnZycUqyXsCxhm8cRGxuruXPnSpKaNWtm8UoOY8eOlZubm/lVpEiRJxoHAAAALEM8k/HsMnsAAAAAwOOqUaOGPvjgA40fP14dO3bUxYsXJUk//PCD8uTJo6tXr6pt27a6c+eOpk6dql69epmTbG7evKnXX39d69at09ixYzVy5EhJ0tatWxUUFKSKFSvqzz//TLIN3t69e/mCGI/k5OSkGjVqaMuWLVqzZo2GDh2apI5hGFq7dq0kqVGjRhb3HX8OS9K5c+f0wgsvJFvv2rVr5vcuLi4W9w8AAICnh5gGeGjNmjXmFYzfffddi9sNHz5cgwcPNv8cFhbG+Q0AAPCUEM9kLFboAgAAQJY2ZswYlStXTkePHlVoaKh69uypJk2aSJImTZqkmzdvqm/fvurTp0+iRJi8efMqMDBQ9vb2mjJlinlLuvgkmFq1aiUJFCSpSpUqyps371OYGbK6+C1CNm7cqF27diUpX7Rokc6cOSNJ5u0RLVGpUiXz+2nTpiVb5969ewoMDJQklS9fXs7Ozhb3DwAAgKeLmAbWJuF5ExERkWK9hGXJnWtp8cMPP0h6uI1j/PlvCUdHR+XKlSvRCwAAAE8P8UzGIaELAAAAWZqjo6M+//xz889fffWV+f2qVaskSW+88Uaybb28vFSqVCnduHFD//zzj6SHyTK2traaPXu2vvvuO125ciUDR4/srEuXLipXrpwMw1C7du0UFBQk6eGS0YsWLVKPHj0kSU2aNFH9+vUTtfX395fJZJLJZFJwcHCiMm9vb7Vo0UKStHLlSr311ls6ffq0DMPQgwcPtH37dtWtW9ecLDZkyJAMnikAAACeBDENrE2hQoXM7+NXzUpOwrKEbdLq2rVr+u233yRJXbt2la2t7WP3BQAAgKeLeCbjkNAFAACALC/hdnIJ38cntNSqVcucHPPf17FjxyRJN27ckCSVKFFCX3/9tR48eKB+/fqpUKFC8vHxUceOHTV//nxFR0c/xZkhK7Ozs9OKFSvk4+OjS5cuqUGDBnJ2dpazs7Nef/11hYWFqWLFipo/f36a+549e7YqV64sSZo3b55KliwpFxcX81aPe/fulSQNHTo0Tat/AQAAIHMQ08CalClTxrx6wpEjR1KsF19WoEABubu7P/bnBQYGKiYmRiaTSe+8885j9wMAAIDMQTyTMewyewAAAABARomLi5MktW/f/pFbziVcord///56/fXXtWLFCm3dulVbt27VggULtGDBAo0aNUpbtmxRwYIFM3TsyB58fHx06NAhTZgwQUuXLtXZs2dlb2+vsmXLqmPHjurfv78cHBzS3K+Hh4d27typgIAALVq0SAcPHtStW7dkZ2enokWL6pVXXlGvXr1Us2bNDJgVAAAAnhZiGmSG+AdFtmzZojVr1mjo0KFJ6hiGobVr10qSGjVq9ESfN2vWLEmSn5+fihcv/kR9AQAAwHoQzzwZEroAAACQbRUpUkT//POPPvroI1WpUiVNbfPnz68ePXqYt8U7ceKE3nnnHe3YsUPDhg1TQEBARgwZ2ZCrq6tGjx6t0aNHW9zG399f/v7+qdaxs7NT9+7d1b179yccIQAAAKwVMQ0yS5cuXbRlyxZt3LhRu3btUrVq1RKVL1q0yLziwpOsCrx161b9/fffkqR333338QcMAAAAq0M882TYchEAAADZVpMmTSRJCxcufOK+nn/+eX300UeSpIMHDz5xfwAAAADwKMQ0yCxdunRRuXLlZBiG2rVrp6CgIEkPV1lYtGiR+cZakyZNVL9+/URt/f39zVvoBAcHp/o5P/zwgyTJ3d1dbdu2Tf+JAAAAINMQzzwZq0/ounv3rvz9/VWuXDm5uLjIzc1NVatW1VdfffXEe2MuXrxYLVq0UKFCheTg4CBnZ2eVLl1aPXr0eGZOAAAAgOxs6NChyp07tyZOnJji9ePZs2c1b948888bNmzQ6tWr9eDBg0T1DMPQb7/9Jkny9vbO2IEDAAAAgIhpkHns7Oy0YsUK+fj46NKlS2rQoIGcnZ3l7Oys119/XWFhYapYsaLmz5//2J8RFhamRYsWSZI6d+4sR0fH9Bo+AAAArADxzJOx6i0Xz507p7p165qf4HByclJUVJT27t2rvXv3av78+QoKClKePHnS1G9UVJRee+01rVy50nzMxcVF0dHROnnypE6ePKnZs2drwoQJGjRoUHpOCQAAAE9R4cKFtXz5crVr104ffPCBxo8fL19fXxUsWFChoaE6fvy4Tp8+rWrVqqlz586SpEOHDmnQoEHKlSuXKlWqpEKFCikyMlL79+/XuXPn5ObmpjFjxmTyzAAAAAA8C4hpkJl8fHx06NAhTZgwQUuXLtXZs2dlb2+vsmXLqmPHjurfv78cHBweu/8FCxYoIiJCEtstAgAAZEfEM0/GahO6YmJi1KJFCwUHB6tgwYIKDAxUgwYNEi3ne+DAAXXu3FmrVq1KU9+ff/65OZnrvffe08cffywvLy/FxcXpwIEDGjhwoLZu3aohQ4aodu3aqly5ckZMEQAA4Inkbtw/s4eQJdSuXVtHjx7VlClTtGrVKu3Zs0dRUVHy9PRU0aJF1blzZ7Vr185cv0WLFgoNDdWWLVv0zz//aOfOncqZM6eKFCmiYcOGqW/fvipcuHAmzggAAADI+ohnLEdMg8zk6uqq0aNHa/To0Ra38ff3l7+//yPr9ezZUz179nyC0QEAAGQeYhrLEM88PpNhGEZmDyI5s2bNMj+RsX37dlWvXj1R+c8//6xOnTpJktavX59kj/bUFCtWTMHBwapTp442bdqUpDw0NFSFCxdWeHi4hg0bprFjx1rcd1hYmNzc3BQaGqpcuXJZ3C4jLN59I1M/H9avwa0FmT0EWDkuRICk7t+/r7Nnz6pYsWLKkSNHZg8HkJS289KarldhnazpHCGmwaMQ0yA1xDNA8ohpYG3Sek5a0/UqrI+1nR/ENEgN8QwehZgGSIp4BtYoo+7R2KTnINNTQECAJMnPzy9JMpckdejQQcWKFZMkBQYGpqnvK1euSJKqVKmSbLmbm5uee+45SVJ4eHia+gYAAAAAAAAAAAAAAACAx2WVCV0RERHatm2bJKlJkybJ1jGZTGrcuLEkad26dWnqv3jx4pKkffv2JVseGhqqkydPSko56QsAAAAAAAAAAAAAAAAA0ptVJnQdP35ccXFxkiRfX98U68WXXb16Vbdu3bK4/z59+kiSNm3apL59++rSpUuSJMMwtH//fjVv3lzh4eGqXr26Onfu/LjTAAAAAAAAAAAAAAAAAIA0scqErsuXL5vfe3l5pVgvYVnCNo/St29fffjhh7KxsdHUqVNVuHBhubq6KkeOHKpcubJOnTqlYcOGKSgoSLa2tqn2FRUVpbCwsEQvAAAAAAAAAAAAAAAAAHgcVpnQdffuXfN7JyenFOslLEvY5lFsbGw0duxYzZ49Wy4uLpKk8PBwRUdHS5Lu37+v0NBQ3bt375F9jR07Vm5ubuZXkSJFLB4HAAAAAAAAAAAAAAAAACRklQldGS0kJET169dX165dVb16dW3dulV37tzRlStXtHTpUuXLl0/Tpk1TtWrVzNsxpmT48OEKDQ01vy5cuPCUZgEAAAAAAAAAAAAAAAAgu7HL7AEkx9XV1fw+IiIixXoJyxK2eZQuXbpo06ZNqlOnjtauXSuTySRJcnNzU5s2bVSjRg2VLVtWZ86c0bBhw/Tjjz+m2Jejo6McHR0t/mwAAJA9GIaR2UMAzDgfAQAAkFZcQ8JacC4CAAAgrbiGhDXJqPPRKlfoKlSokPl9aitkJSxL2CY1x48f1+rVqyVJQ4YMMSdzJeTp6am3335bkrR06VL+MQAAAGY2Ng8vn2JjYzN5JMC/4s/H+PMTAAAASAkxDawN8QwAAAAsRTwDa5RRMY1VRkhlypQxT/TIkSMp1osvK1CggNzd3S3q+9ixY+b3JUqUSLFeqVKlJD1cBez69esW9Q0AALI/e3t72dvbKzw8PLOHApjdvXvXfG4CAAAAqbG3t5etra0iIyMzeyiAJCkyMlK2trbEMwAAAHgk7tHAGmVUTGOVCV1OTk6qUaOGJGnNmjXJ1jEMQ2vXrpUkNWrUyOK+E2bEnTt3LsV6165dM793cXGxuH8AAJC9mUwmubq6KjQ0lBsgsAqRkZEKCwuTq6trsqvPAgAAAAmZTCY5OTkpNDSUp9qR6WJjYxUaGionJyfiGQAAADwS92hgbTIyprFL197SUZcuXbRlyxZt3LhRu3btUrVq1RKVL1q0SGfOnJEk8/aIlqhUqZL5/bRp09SkSZMkde7du6fAwEBJUvny5eXs7Pw4UwAAANmUh4eHIiMjdf78eeXKlUuurq6ytbXly2c8NYZhKDY2Vnfv3lVYWJgcHR3l4eGR2cMCAABAFuHp6ang4GCdO3dO7u7ucnR0JJ7BU2UYhqKionTr1i3FxcXJ09Mzs4cEAACALIJ7NLAGTyOmseqErm+++UaHDx9Wu3btFBAQoPr16ysuLk5LlixRjx49JElNmjRR/fr1E7X19/fX6NGjJUlnz56Vj4+Puczb21stWrTQypUrtXLlSr311lvy9/dX8eLFFRMToz179mjAgAHmZLEhQ4Y8nQkDAIAsw9bWVkWKFFFISIju3r2rO3fuZPaQ8Iyyt7dX7ty55eHhIVtb28weDgAAALIIBwcHFS5cWCEhIbpy5UpmDwfPMGdnZxUoUEAODg6ZPRQAAABkEdyjgTXJyJjGahO67OzstGLFCvn5+Sk4OFgNGjSQk5OT4uLidP/+fUlSxYoVNX/+/DT3PXv2bDVu3Fj79u3TvHnzNG/ePDk5OSk6OloxMTHmekOHDk3T6l8AAODZYWtrq/z588vT01MPHjxQXFxcZg8JzxgbGxvZ29vz1BEAAAAei5OTk4oWLaqYmJhE34kCT4udnZ3s7Kz2FgUAAACsGPdoYA0yOqax6mjJx8dHhw4d0oQJE7R06VKdPXtW9vb2Klu2rDp27Kj+/fs/Vpabh4eHdu7cqYCAAC1atEgHDx7UrVu3ZGdnp6JFi+qVV15Rr169VLNmzQyYFQAAyE5MJhNPEgMAAADIskiqAQAAAJBVcY8G2ZnVR+qurq4aPXq0eQtFS/j7+8vf3z/VOnZ2durevbu6d+/+hCMEAAAAAAAAAAAAAAAAgPRhk9kDAAAAAAAAAAAAAAAAAAA8REIXAAAAAAAAAAAAAAAAAFgJEroAAAAAAAAAAAAAAAAAwEqQ0AUAAAAAAAAAAAAAAAAAVoKELgAAAAAAAAAAAAAAAACwEiR0AQAAAAAAAAAAAAAAAICVIKELAAAAAAAAAAAAAAAAAKwECV0AAAAAAAAAAAAAAAAAYCVI6AIAAAAAAAAAAAAAAAAAK0FCFwAAAAAAAAAAAAAAAABYCRK6AAAAAAAAAAAAAAAAAMBKkNAFAAAAAAAAAAAAAAAAAFaChC4AAAAAAAAAAAAAAAAAsBIkdAEAAAAAAAAAAAAAAACAlSChCwAAAAAAAAAAAAAAAACsBAldAAAAAAAAAAAAAAAAAGAlSOgCAAAAAAAAAAAAAAAAACtBQhcAAAAAAAAAAAAAAAAAWAkSugAAAAAAAAAAAJDE3bt35e/vr3LlysnFxUVubm6qWrWqvvrqK0VHRz9x/1evXtWIESNUuXJlubu7K2fOnPL29lbjxo31xRdf6MGDB+kwCwAAACDrscvsAQAAAAAAAAAAAMC6nDt3TnXr1lVwcLAkycnJSVFRUdq7d6/27t2r+fPnKygoSHny5Hms/n/55Rf17NlTYWFhkqQcOXLIwcFB58+f1/nz57V27Vr17t1buXPnTqcZAQAAAFkHK3QBAAAAAAAAAADALCYmRi1atFBwcLAKFiyoP/74Q/fu3VNERIQWLFggV1dXHThwQJ07d36s/hctWqROnTopLCxMPXv21NGjRxUZGanQ0FCFhYVp8+bNGjRokOzt7dN5ZgAAAEDWwApdAAAAAAAAAAAAMAsICNDhw4clSUuWLFH16tUlSTY2NnrjjTcUFxenTp06afXq1QoKClL9+vUt7vvKlSvq1auX4uLi9NVXX2nw4MGJyl1dXVWrVi3VqlUr/SYEAAAAZDGs0AUAAAAAAAAAAACzgIAASZKfn585mSuhDh06qFixYpKkwMDANPX97bff6vbt26pYsaIGDRr05IMFAAAAsiESugAAAAAAAAAAACBJioiI0LZt2yRJTZo0SbaOyWRS48aNJUnr1q1LU//xCWCdO3eWyWR6gpECAAAA2RcJXQAAAAAAAAAAAJAkHT9+XHFxcZIkX1/fFOvFl129elW3bt2yqO+zZ8/q8uXLkqTKlSvr8OHD6tSpkwoWLChHR0cVLlxYb7zxhjmhDAAAAHhWkdAFAAAAAAAAAAAASTInXEmSl5dXivUSliVsk5qTJ0+a32/btk1VqlTRzz//rNDQUOXIkUOXLl3SwoULVatWLX3yySeP7C8qKkphYWGJXgAAAEB2QEIXAAAAAAAAAAAAJEl37941v3dyckqxXsKyhG1Sc/v2bfP7ESNGqFChQvrjjz8UHh6u0NBQHT16VHXr1pVhGBo5cqSWLl2aan9jx46Vm5ub+VWkSBGLxgEAAABYOxK6AAAAAAAAAAAAkOHit3KUJMMwtGTJEjVo0EA2Ng9vV73wwgtauXKlChQoIEkaPXp0qv0NHz5coaGh5teFCxcybvAAAADAU0RCFwAAAAAAAAAAACRJrq6u5vcREREp1ktYlrCNpX3Xr19flSpVSlLHxcVFffv2lSQdOnRI165dS7E/R0dH5cqVK9ELAAAAyA5I6AIAAAAAAAAAAIAkqVChQub3ly5dSrFewrKEbVLj5eVlfl+mTJkU673wwgvm9+fOnbOobwAAACA7IaELAAAAAAAAAAAAkh4mWsVvgXjkyJEU68WXFShQQO7u7hb1/cILL8jW1vaR9QzDML83mUwW9Q0AAABkJyR0AQAAAAAAAAAAQJLk5OSkGjVqSJLWrFmTbB3DMLR27VpJUqNGjSzuO0eOHKpdu7Yk6fjx4ynWO3bsmKSHyVw+Pj4W9w8AAABkFyR0AQAAAAAAAAAAwKxLly6SpI0bN2rXrl1JyhctWqQzZ85Ikt5+++009d2tWzdJUlBQkPbv35+kPDw8XFOnTpUkVatWTfny5UtT/wAAAEB2QEIXAAAAAAAAAAAAzLp06aJy5crJMAy1a9dOQUFBkqS4uDgtWrRIPXr0kCQ1adJE9evXT9TW399fJpNJJpNJwcHBSfp+88039dJLLyXqOy4uTtLDVbtatmypq1evysbGRp999lnGThQAAACwUnaZPQAAAAAAAAAAAABYDzs7O61YsUJ+fn4KDg5WgwYN5OTkpLi4ON2/f1+SVLFiRc2fPz/NfdvY2Gj58uWqX7++jh07Zu7b3t5eoaGhkiR7e3t99913qlevXrrOCwAAAMgqWKELAAAAAAAAAAAAifj4+OjQoUMaOXKkfH19ZTKZZG9vr8qVK2vChAnauXOn8uTJ81h9FyhQQPv379eECRNUtWpV2dvbKzIyUj4+PnrnnXe0f/9+8ypgAAAAwLOIFboAAAAAAAAAAACQhKurq0aPHq3Ro0db3Mbf31/+/v6PrOfo6KghQ4ZoyJAhTzBCAAAAIHtihS4AAAAAAAAAAAAAAAAAsBIkdAEAAAAAAAAAAAAAAACAlSChCwAAAAAAAAAAAAAAAACsBAldAAAAAAAAAAAAAAAAAGAlSOgCAAAAAAAAAAAAAAAAACtBQhcAAAAAAAAAAAAAAAAAWAkSugAAAAAAAAAAAAAAAADASpDQBQAAAAAAAAAAAAAAAABWgoQuAAAAAAAAAAAAAAAAALASJHQBAAAAAAAAAAD8P3t3HhZ1uf9//DXIjoigKWoqLrlT4lbmkgh55JhtVm6k5tpmZWYnMw3Sk2ZYrpm2iR0KJZfcjhvHyixNUhOU8pTgglKayeIo28zvD7/MDw4gyww64PNxXXNdn/nc73v5nOZ0zTvec98AAAAAYCco6AIAAAAAAAAAAAAAAAAAO0FBFwAAAAAAAAAAAAAAAADYCQq6AAAAAAAAAAAAAAAAAMBOUNAFAAAAAAAAAAAAAAAAAHaCgi4AAAAAAAAAAAAAAAAAsBMUdAEAAAAAAAAAAAAAAACAnaCgCwAAAAAAAAAAAAAAAADsBAVdAAAAAAAAAAAAAAAAAGAnKOgCAAAAgEqUkZGhsLAw+fv7q2bNmvLy8lLXrl01b948ZWdnWz1+amqqpk+frs6dO8vHx0dubm5q2rSp+vfvrzlz5ignJ8cGTwEAAAAAAAAAAK4Xxxu9AAAAAACork6cOKE+ffooOTlZkuTu7q6srCzFxcUpLi5OUVFRio2Nlbe3d4XGX7VqlcaPH6/09HRJkqurq5ydnXXy5EmdPHlS27Zt05NPPqnatWvb6IkAAAAAAAAAAEBlY4cuAAAAAKgEubm5GjhwoJKTk9WgQQPt2LFDly5dktFoVHR0tDw9PXXw4EGFhoZWaPyYmBgNGzZM6enpGj9+vI4cOaLLly8rLS1N6enp+uabbzRp0iQ5OTnZ+MkAAAAAAAAAAEBlYocuAAAAAKgEkZGRio+PlyStWbNG3bt3lyQ5ODho8ODBMplMGjZsmLZs2aLY2FgFBQWVeeyzZ89qwoQJMplMmjdvnl588cVC7Z6enurVq5d69epluwcCAAAAAAAAAADXBTt0AQAAAEAliIyMlCQFBgZairkKGjJkiJo1ayZJWrlyZbnGXrhwof766y8FBARo0qRJ1i8WAAAAAAAAAADYDQq6AAAAAMDGjEaj9uzZI0kKCQkpNsZgMKh///6SpO3bt5dr/PwCsNDQUBkMBitWCgAAAAAAAAAA7A0FXQAAAABgY4mJiTKZTJKkDh06lBiX35aamqoLFy6UaeykpCSdOXNGktS5c2fFx8dr2LBhatCggVxcXHTrrbdq8ODBloIyAAAAAAAAAABQtVDQBQAAAAA2ll9wJUmNGjUqMa5gW8E+13Ls2DHL9Z49e9SlSxd9/vnnSktLk6urq1JSUrR69Wr16tVLM2fOLHW8rKwspaenF3oBAAAAAAAAAIAbh4IuAAAAALCxjIwMy7W7u3uJcQXbCva5lr/++styPX36dDVs2FA7duxQZmam0tLSdOTIEfXp00dms1kzZszQ2rVrrzne7Nmz5eXlZXk1bty4TOsAAAAAAAAAAACVg4IuAAAAAKhC8o9ylCSz2aw1a9YoODhYDg5X07t27dpp48aN8vX1lSSFh4dfc7ypU6cqLS3N8jp16lTlLR4AAAAAAAAAAJSKgi4AAAAAsDFPT0/LtdFoLDGuYFvBPmUdOygoSJ06dSoSU7NmTT3zzDOSpMOHD+v3338vcTwXFxfVqlWr0AsAAAAAAAAAANw4FHQBAAAAgI01bNjQcp2SklJiXMG2gn2upVGjRpbrtm3blhjXrl07y/WJEyfKNDYAAAAAAAAAALjxKOgCAAAAABtr27at5QjEhISEEuPy23x9feXj41Omsdu1a6caNWqUGmc2my3XBoOhTGMDAAAAAAAAAIAbj4IuAAAAALAxd3d39ejRQ5K0devWYmPMZrO2bdsmSerXr1+Zx3Z1dVXv3r0lSYmJiSXGHT16VNLVYi4/P78yjw8AAAAAAAAAAG4sCroAAAAAoBKMHDlSkrRr1y7t27evSHtMTIyOHz8uSRoxYkS5xn7iiSckSbGxsTpw4ECR9szMTL333nuSpDvvvFO33HJLucYHAAAAAAAAAAA3jt0XdGVkZCgsLEz+/v6qWbOmvLy81LVrV82bN0/Z2dlWj5+amqrp06erc+fO8vHxkZubm5o2bar+/ftrzpw5ysnJscFTAAAAALjZjBw5Uv7+/jKbzRo0aJBiY2MlSSaTSTExMRo3bpwkKSQkREFBQYX6hoWFyWAwyGAwKDk5ucjYw4cPV7du3QqNbTKZJF3dtev+++9XamqqHBwc9M9//rNyHxQAAAAAAAAAANiU441ewLWcOHFCffr0sfwBw93dXVlZWYqLi1NcXJyioqIUGxsrb2/vCo2/atUqjR8/Xunp6ZKuHl3i7OyskydP6uTJk9q2bZuefPJJ1a5d20ZPBAAAAOBm4ejoqA0bNigwMFDJyckKDg6Wu7u7TCaTrly5IkkKCAhQVFRUucd2cHDQl19+qaCgIB09etQytpOTk9LS0iRJTk5OWrJkifr27WvT5wIAAAAAAAAAAJXLbnfoys3N1cCBA5WcnKwGDRpox44dunTpkoxGo6Kjo+Xp6amDBw8qNDS0QuPHxMRo2LBhSk9P1/jx43XkyBFdvnxZaWlpSk9P1zfffKNJkybJycnJxk8GAAAA4Gbh5+enw4cPa8aMGerQoYMMBoOcnJzUuXNnRUREaO/evRX+gYqvr68OHDigiIgIde3aVU5OTrp8+bL8/Pw0evRoHThwwLILGAAAAABUVGWcpFJwV+JrvX799VcbPw0AAABQNdjtDl2RkZGKj4+XJK1Zs0bdu3eXdPWX6IMHD5bJZNKwYcO0ZcsWxcbGFjmi5FrOnj2rCRMmyGQyad68eXrxxRcLtXt6eqpXr17q1auX7R4IAAAAwE3J09NT4eHhCg8PL3OfsLAwhYWFlRrn4uKiyZMna/LkyVasEAAAAACKV9knqTg5OcnHx6fEdkdHu/0zFgAAAFCp7HaHrsjISElSYGCgpZiroCFDhqhZs2aSpJUrV5Zr7IULF+qvv/5SQECAJk2aZP1iAQAAAAAAAAAAqpHKPklFku6++26lpqaW+PLz87PdAwEAAABViF0WdBmNRu3Zs0eSFBISUmyMwWBQ//79JUnbt28v1/j5BWChoaEyGAxWrBQAAAAAAAAAAKD6+d+TVIKDgyX9/5NUli1bJkmWk1QAAAAA2I5VBV19+/bV3LlzS42LiIhQ3759yzxuYmKiTCaTJKlDhw4lxuW3paam6sKFC2UaOykpSWfOnJEkde7cWfHx8Ro2bJgaNGggFxcX3XrrrRo8eLCloAwAAABA9VVZOQ0AAAAAVLbKzmcq8yQVAAAAANdmVUHXV199pZ9//rnUuF9++UVff/11mcfNL7iSpEaNGpUYV7CtYJ9rOXbsmOV6z5496tKliz7//HOlpaXJ1dVVKSkpWr16tXr16qWZM2eWOl5WVpbS09MLvQAAAABUDZWV0wAAAABAZavMfKayT1IBAAAAcG3X5cjFnJwcOTiUfaqMjAzLtbu7e4lxBdsK9rmWv/76y3I9ffp0NWzYUDt27FBmZqbS0tJ05MgR9enTR2azWTNmzNDatWuvOd7s2bPl5eVleTVu3LhM6wAAAABQdZQ3pwEAAAAAe1GRfKYyT1Ip6MiRI+rQoYPc3d1Vs2ZNtW7dWuPGjdPBgwfLPRYAAABQnVyXv0jEx8erTp0612OqUuUnIJJkNpst577nJzPt2rXTxo0b5evrK0kKDw+/5nhTp05VWlqa5XXq1KnKWzwAAACAG8KechoAAAAAKI+K5DOVeZJKQefPn1diYqLc3NyUlZWlY8eO6cMPP1Tnzp312muvldqfU1QAAABQXTmWt8Po0aMLvf/222+L3MuXm5uro0eP6tChQ7r//vvLPIenp6fl2mg0lhhXsK1gn7KOHRQUpE6dOhWJqVmzpp555hlNnz5dhw8f1u+//6769esXO56Li4tcXFzKNDcAAACAG+965DQAAAAAUBmuVz5TmSepSNJtt92muXPn6oEHHlCzZs3k5OSk7OxsffXVV3r11Vf1448/6p///Ke8vb01efLkEseZPXt2qT/MBwAAAKqichd0rVixwnJtMBj066+/6tdff71mn4YNG+qf//xnmedo2LCh5TolJUW33357sXEpKSnF9rmWgr8Wadu2bYlx7dq1s1yfOHGixIIuAAAAAFXL9chpAAAAAKAyVJd8Zvjw4UXuOTs7q1+/furdu7d69+6t/fv3KywsTGPHjpWXl1ex40ydOlUvvvii5X16eroaN25caesGAAAArpdyF3R98sknkq4eVzh69Gj17NlTY8aMKTbW2dlZt956q+666y45OTmVeY62bdvKwcFBJpNJCQkJCgkJKTYuISFBkuTr6ysfH58yjd2uXTvVqFFDeXl514wzm82Wa4PBUMaVAwAAALB31yOnAQAAAIDKcL3ymco8SaU0rq6uevPNN3XvvfcqMzNTsbGxevjhh4uN5RQVAAAAVFflLugaOXKk5TosLEx33XVXoXu24O7urh49emj37t3aunWrpkyZUiTGbDZr27ZtkqR+/fqVeWxXV1f17t1bu3btUmJiYolxR48elXS1mMvPz698DwAAAADAbl2PnAYAAAAAKsP1ymcq8ySVsujevbvl+vjx4zYbFwAAAKgqyl3QVVBycrKNllHUyJEjtXv3bu3atUv79u3TnXfeWag9JibG8iV+xIgR5Rr7iSee0K5duxQbG6sDBw6oU6dOhdozMzP13nvvSZLuvPNO3XLLLVY8CQAAAAB7VZk5DQAAAABUpsrMZyrzJBUAAAAApXO40QsoyciRI+Xv7y+z2axBgwYpNjZWkmQymRQTE6Nx48ZJkkJCQhQUFFSob1hYmAwGgwwGQ7EJzfDhw9WtW7dCY5tMJklSYmKi7r//fqWmpsrBwcHuzpUHAAAAAAAAAACoTPknqUjS1q1bi42p6EkqZbF3717LdbNmzWw6NgAAAFAVWLVDV759+/Zp586dSklJ0ZUrV4qNMRgM+uijj8q+MEdHbdiwQYGBgUpOTlZwcLDc3d1lMpkscwQEBCgqKqrc63VwcNCXX36poKAgHT161DK2k5OT0tLSJElOTk5asmSJ+vbtW+7xAQAAAFQtlZHTAAAAAMD1UFn5TGWdpGI2m2UwGEpsz8rK0rRp0yRJHh4eRX7UDwAAANwMrCroys7O1tChQ7V+/XpJV7+El6QiyYKfn58OHz6siIgIrV27VklJSXJyclL79u01dOhQTZw4Uc7OzhVau6+vrw4cOKDFixdr1apVOnbsmC5fviw/Pz/17dtXkyZNUocOHSo0NgAAAICqobJzGgAAAACoLJWdz4wcOVILFixQfHy8Bg0apMjISAUFBclkMmnNmjWlnqQSHh4uSUpKSpKfn5+l7ZtvvtHMmTM1cuRIBQYG6tZbb5Uk5eTk6JtvvtHUqVO1f/9+SdKMGTNUu3btcq0bAAAAqA6sKuiaOXOm1q1bJw8PDz3++ONq27atatWqZau1SZI8PT0VHh5u+eJfFmFhYQoLCys1zsXFRZMnT9bkyZOtWCEAAACAqup65DQAAAAAUBkqO5+prJNUzGazYmNjFRsbK0lyc3OTh4eH0tLSlJOTI+nqSSuvvPKKXn75ZZs9DwAAAFCVWFXQ9fnnn8vd3V379u1Tu3btbLUmAAAAALguyGkAAAAAVFXXI5+pjJNU/P39FRERoe+//17x8fE6f/68Ll68KHd3d7Vr1069evXS+PHj5e/vXynPBAAAAFQFVhV0nT59Wvfccw9/+AAAAABQJZHTAAAAAKiqrlc+Y+uTVOrUqcPJKQAAAEApHKzp7O3tLR8fH1utBQAAAACuK3IaAAAAAFUV+QwAAABQfVlV0BUcHKx9+/bJbDbbaj0AAAAAcN2Q0wAAAACoqshnAAAAgOrLqoKumTNn6sKFCyVumwsAAAAA9oycBgAAAEBVRT4DAAAAVF+O1nT+5ptv9MQTT2jWrFnaunWrBgwYoCZNmsjBofg6sREjRlgzHQAAAADYFDkNAAAAgKqKfAYAAACovqwq6Bo1apQMBoPMZrP279+vuLi4a8aTLAAAAACwJ+Q0AAAAAKoq8hkAAACg+rKqoGvEiBEyGAy2WgsAAAAAXFfkNAAAAACqKvIZAAAAoPqyqqBrxYoVNloGAAAAAFx/5DQAAAAAqiryGQAAAKD6Kv4gdQAAAAAAAAAAAAAAAADAdWfVDl3/69dff9W5c+dUp04dtWrVypZDAwAAAEClI6cBAAAAUFWRzwAAAADVh9U7dOXl5WnWrFny9fVV69at1bNnT82ZM8fSHhUVpbvvvltHjhyxdioAAAAAsDlyGgAAAABVFfkMAAAAUD1ZVdCVl5en++67T6+//rr++usvtW3bVmazuVBMjx49tHfvXq1du9aqhQIAAACArZHTAAAAAKiqyGcAAACA6suqgq73339f27ZtU2BgoJKSkpSQkFAkxs/PTy1atND27dutmQoAAAAAbI6cBgAAAEBVRT4DAAAAVF9WFXRFRkbKx8dHMTExatiwYYlxbdu21cmTJ62ZCgAAAABsjpwGAAAAQFVFPgMAAABUX1YVdP3888/q1q2bvL29rxnn5eWlP/74w5qpAAAAAMDmyGkAAAAAVFXkMwAAAED1ZVVBV15enlxcXEqNO3v2bJniAAAAAOB6IqcBAAAAUFWRzwAAAADVl1UFXU2bNtXhw4evGZOTk6OEhATddttt1kwFAAAAADZHTgMAAACgqiKfAQAAAKovqwq6+vfvr+TkZC1fvrzEmEWLFuncuXMaMGCANVMBAAAAgM2R0wAAAACoqshnAAAAgOrL0ZrOU6ZM0YoVK/T000/r6NGjeuyxxyRJly5d0oEDB7R69Wq98847qlu3rp599lmbLBgAAAAAbIWcBgAAAEBVRT4DAAAAVF8Gs9lstmaAb775Rg8//LAuXLggg8FQqM1sNqt27drasGGDevbsadVCq4r09HR5eXkpLS1NtWrVuqFr+eKHczd0fti/4AvRN3oJsHO1+0+80UsAANiYPX1ftRfkNIXZ02eEnAalIafBtZDPAED1ZE/fV+0B+Uxh9vb5IKfBtZDPoDTkNABQ/ZTn+6pVRy5KUu/evXXkyBG9/PLLat++vdzc3OTi4qKWLVvqueeeU3x8/E2TKAAAAACoeshpAAAAAFRV5DMAAABA9WTVkYv56tevrzlz5mjOnDm2GA4AAAAArityGgAAAABVFfkMAAAAUP1YvUMXAAAAAAAAAAAAAAAAAMA2rCroOnXqlFauXKlffvmlxJiff/5ZK1eu1OnTp62ZCgAAAABsjpwGAAAAQFVFPgMAAABUX1YVdC1atEhPPPGEzGZziTFms1mjRo3Se++9Z81UAAAAAGBz5DQAAAAAqiryGQAAAKD6sqqga/v27Wrbtq3atGlTYkzbtm3Vrl07bd261ZqpAAAAAMDmyGkAAAAAVFXkMwAAAED1ZfWRiy1btiw1rmXLljp16pQ1UwEAAACAzZHTAAAAAKiqyGcAAACA6suqgi6j0Sg3N7dS49zc3JSRkWHNVAAAAABgc+Q0AAAAAKoq8hkAAACg+rKqoKtBgwY6dOhQqXE//fST6tWrZ81UAAAAAGBz5DQAAAAAqiryGQAAAKD6sqqgq1evXjp27JjWrFlTYszatWv1888/q3fv3tZMBQAAAAA2R04DAAAAoKoinwEAAACqL6sKup5//nkZDAaNGDFCCxYsKLRlb0ZGhhYsWKARI0bIwcFBzz33nNWLBQAAAABbIqcBAAAAUFWRzwAAAADVl1UFXZ06ddLs2bN1+fJlvfjii/Lx8VGTJk3UpEkT+fj46MUXX5TRaNSsWbPUrVs3W60ZAAAAAGyCnAYAAABAVUU+AwAAAFRfVhV0SdKUKVO0fv163X777crLy9Pp06d1+vRp5eXl6fbbb9fatWv1yiuv2GKtAAAAAGBz5DQAAAAAqiryGQAAAKB6crTFIPfff7/uv/9+/f777zp58qQkqUmTJqpfv74thgcAAACASkVOAwAAAKCqIp8BAAAAqh+rCrqaN2+uVq1aaevWrZKk+vXrkyAAAAAAqDLIaQAAAABUVeQzAAAAQPVl1ZGLv//+u3x8fGy1FgAAAAC4rshpAAAAAFRV1yOfycjIUFhYmPz9/VWzZk15eXmpa9eumjdvnrKzs20615NPPimDwSCDwSA/Pz+bjg0AAABUNVbt0NW0aVOlp6fbai0AAAAAcF2R0wAAAACoqio7nzlx4oT69Omj5ORkSZK7u7uysrIUFxenuLg4RUVFKTY2Vt7e3lbPtWvXLi1fvtzqcQAAAIDqwqoduh555BF98803OnfunK3WAwAAAADXDTkNAAAAgKqqMvOZ3NxcDRw4UMnJyWrQoIF27NihS5cuyWg0Kjo6Wp6enjp48KBCQ0OtnstoNGrcuHFydHRUly5dbLB6AAAAoOqzqqBr6tSpatu2rfr166fvvvvOVmsCAAAAgOuCnAYAAABAVVWZ+UxkZKTi4+MlSWvWrFFwcLAkycHBQYMHD9ayZcskSVu2bFFsbKxVc02bNk2//fabXn75ZbVv3966hQMAAADVhFVHLg4YMEA1atTQTz/9pF69eqlevXry8/OTm5tbkViDwWD1l3oAAAAAsCVyGgAAAABVVWXmM5GRkZKkwMBAde/evUj7kCFDNG3aNCUlJWnlypUKCgqq0DPs3btXCxcuVKtWrfTaa6/pySefrNA4AAAAQHVjVUHXV199Zbk2m836/fff9fvvvxcbazAYrJkKAAAAAGyOnAYAAABAVVVZ+YzRaNSePXskSSEhISWO179/fy1dulTbt28v+6ILyMrK0ujRo2U2m7V8+XK5urpWaBwAAACgOrKqoGvXrl22WgcAAAAAXHfkNAAAAACqqsrKZxITE2UymSRJHTp0KDEuvy01NVUXLlyQj49PueZ54403lJiYqLFjx+qee+6p+IIBAACAasiqgi6+YAMAAACoyshpAAAAAFRVlZXPnDlzxnLdqFGjEuMKtp05c6ZcBV0HDx7U3LlzVb9+fb399tsVW6iu7vKVlZVleZ+enl7hsQAAAAB74nCjFwAAAAAAAAAAAAD7kJGRYbl2d3cvMa5gW8E+pcnNzdXo0aOVm5urhQsXqnbt2hVapyTNnj1bXl5ellfjxo0rPBYAAABgT6zaoSuf2WzWv//9b3333Xc6d+6c7rzzTo0ePVqSdO7cOf31119q0aKFatSoYYvpAAAAAMCmyGkAAAAAVFVVLZ+ZM2eODh06pPvuu0+PPfaYVWNNnTpVL774ouV9eno6RV0AAACoFqwu6Prpp580ePBg/fe//5XZbJbBYFBOTo4lWdixY4cef/xxrV+/XgMHDrR6wQAAAABgS+Q0AAAAAKqqyshnPD09LddGo7HEuIJtBftcy9GjRzVz5kzVrFlT7733Xpn6XIuLi4tcXFysHgcAAACwN1YduXj69GkFBwfr2LFjCgkJ0dy5c2U2mwvFPPjgg3JyctKXX35p1UIBAAAAwNbIaQAAAABUVZWVzzRs2NBynZKSUmJcwbaCfa7lmWeeUXZ2tqZNmyZvb29lZmYWeuXm5kq6uutY/r2cnJwyrx0AAACoLqwq6HrzzTf1559/av78+dq0aZNeeumlIjHu7u664447tH//fmumAgAAAACbI6cBAAAAUFVVVj7Ttm1bOThc/fNRQkJCiXH5bb6+vvLx8SnT2ElJSZKuHpXo6elZ5BUVFSVJOnnypOXekiVLyrx2AAAAoLqwqqBr69atatOmjZ577rlrxvn5+ens2bPWTAUAAAAANkdOAwAAAKCqqqx8xt3dXT169LDMURyz2axt27ZJkvr161fmsQEAAACUjVUFXWfOnJG/v3+pcQaDQenp6dZMBQAAAAA2R04DAAAAoKqqzHxm5MiRkqRdu3Zp3759RdpjYmJ0/PhxSdKIESPKPG5ycrLMZnOJr/x5mzZtarn3wgsvlGvtAAAAQHVgVUGXh4eHzp07V2pcUlJSmbfbBQAAAIDrhZwGAAAAQFVVmfnMyJEj5e/vL7PZrEGDBik2NlaSZDKZFBMTo3HjxkmSQkJCFBQUVKhvWFiYDAaDDAaDkpOTyzUvAAAAgKusKujy9/fXjz/+qPPnz5cYc+LECf3000/q3LmzNVMBAAAAgM2R0wAAAACoqiozn3F0dNSGDRvk5+enlJQUBQcHy8PDQx4eHnrssceUnp6ugIAARUVFWfsYAAAAAIphVUFXaGioMjIyNHbsWBmNxiLt2dnZevrpp5WTk6PQ0FBrpgIAAAAAmyOnAQAAAFBVVXY+4+fnp8OHD2vGjBnq0KGDDAaDnJyc1LlzZ0VERGjv3r3y9va2xaMAAAAA+B8Gs9lsrmjnvLw8BQcH6+uvv9att96q/v3768MPP1RAQIB69OihDRs26OTJkwoODtb27dttuW67lZ6eLi8vL6WlpalWrVo3dC1f/FD6Vsu4uQVfiL7RS4Cdq91/4o1eAgDAxuzp+6o9IKcpyp4+I+Q0KA05Da6FfAYAqid7+r56o5HPFGVvnw9yGlwL+QxKQ04DANVPeb6vWrVDV40aNbRx40YNHTpUKSkp+vDDDyVJBw8e1OLFi3Xy5EkNGjRIa9eutWYaAAAAAKgU5DQAAAAAqiryGQAAAKD6crR2gJo1ayoqKkrTp0/Xli1bdPz4cZlMJjVu3FghISHq2LGjDZYJAAAAAJWDnAYAAABAVUU+AwAAAFRPVhd05WvTpo3atGljq+EAAAAA4LoipwEAAABQVZHPAAAAANWLVUcuAgAAAAAAAAAAAAAAAABsxyY7dJ0/f14ffvihvvrqK50+fVpms1m33nqrAgMDNXr0aNWrV88W0wAAAABApSCnAQAAAFBVkc8AAAAA1Y/VBV1ffvmlnnjiCaWlpclsNlvuJyYmaufOnZozZ44++eQTPfTQQ9ZOBQAAAAA2R04DAAAAoKoinwEAAACqJ6sKuvbt26dHH31Uubm56tKli0aMGKFmzZpJkpKTk7Vy5Urt379fgwcP1u7du3XnnXfaZNEAAAAAYAvXI6fJyMjQvHnztGbNGiUlJalGjRpq1aqVhgwZookTJ8rZ2dlmz/Pkk09q2bJlkqSmTZsqOTnZZmMDAAAAsC/8jQYAAACovqwq6HrjjTeUl5ent99+W5MnTy7S/swzz+jdd9/V5MmTNXPmTG3atMma6QAAAADApio7pzlx4oT69OljKaxyd3dXVlaW4uLiFBcXp6ioKMXGxsrb29vqZ9m1a5eWL19u9TgAAAAAqgb+RgMAAABUXw7WdP7uu+/UoUOHYhOFfJMmTZK/v7/27NljzVQAAAAAYHOVmdPk5uZq4MCBSk5OVoMGDbRjxw5dunRJRqNR0dHR8vT01MGDBxUaGmrtY8hoNGrcuHFydHRUly5drB4PAAAAgP3jbzQAAABA9WVVQVdOTo78/f1LjevQoYNycnKsmQoAAAAAbK4yc5rIyEjFx8dLktasWaPg4GBJkoODgwYPHmw5GnHLli2KjY0t58oLmzZtmn777Te9/PLLat++vVVjAQAAAKga+BsNAAAAUH1ZVdDVpk0bnTp1qtS4lJQUtW7d2pqpAAAAAMDmKjOniYyMlCQFBgaqe/fuRdqHDBmiZs2aSZJWrlxZrrEL2rt3rxYuXKhWrVrptddeq/A4AAAAAKoW/kYDAAAAVF9WFXRNmDBB3377rb7++usSY77++mvt3r1bEyZMsGYqAAAAALC5ysppjEaj5UiTkJCQYmMMBoP69+8vSdq+fXs5Vv3/ZWVlafTo0TKbzVq+fLlcXV0rNA4AAACAqoe/0QAAAADVl6M1nceNG6eff/5ZAwYM0JNPPqkRI0ZYfmGelJSkTz/9VEuXLtULL7yg8ePH22TBAAAAAGArlZXTJCYmymQySbp6vElJ8ttSU1N14cIF+fj4lGv9b7zxhhITEzV27Fjdc8895eqbLysrS1lZWZb36enpFRoHAAAAwPXF32gAAACA6suqgq4aNWpYrt999129++67xcbNnz9f8+fPL3TPYDAoNzfXmukBAAAAwCqVldOcOXPGct2oUaMS5y/YdubMmXIVdB08eFBz585V/fr19fbbb5e53/+aPXu2wsPDK9wfAAAAwI3B32gAAACA6suqIxfNZnOFX/m/VgcAAACAG6WycpqMjAzLtbu7e4lxBdsK9ilNbm6uRo8erdzcXC1cuFC1a9cuc9//NXXqVKWlpVlep06dqvBYAAAAAK4f/kYDAAAAVF9W7dDFF34AAAAAVVlVzWnmzJmjQ4cO6b777tNjjz1m1VguLi5ycXGx0coAAAAAXC9VNZ8BAAAAUDqrdui6HjIyMhQWFiZ/f3/VrFlTXl5e6tq1q+bNm6fs7GybzvXkk0/KYDDIYDDIz8/PpmMDAAAAuHl4enparo1GY4lxBdsK9rmWo0ePaubMmapZs6bee++9ii8SAAAAAAAAAADYJat26KpsJ06cUJ8+fZScnCzp6nEkWVlZiouLU1xcnKKiohQbGytvb2+r59q1a5eWL19u9TgAAAAA0LBhQ8t1SkqKbr/99mLjUlJSiu1zLc8884yys7MVHh4ub29vZWZmFmrPzc2VdPX4lfw2FxcXOTk5lesZAAAAAAAAAADAjWG3O3Tl5uZq4MCBSk5OVoMGDbRjxw5dunRJRqNR0dHR8vT01MGDBxUaGmr1XEajUePGjZOjo6O6dOlig9UDAAAAuJm1bdtWDg5X062EhIQS4/LbfH195ePjU6axk5KSJElTp06Vp6dnkVdUVJQk6eTJk5Z7S5YsseZxAAAAAAAAAADAdWS3BV2RkZGKj4+XJK1Zs0bBwcGSJAcHBw0ePFjLli2TJG3ZskWxsbFWzTVt2jT99ttvevnll9W+fXvrFg4AAADgpufu7q4ePXpIkrZu3VpsjNls1rZt2yRJ/fr1u25rAwAAAAAAAAAA9s2uC7okKTAwUN27dy/SPmTIEDVr1kyStHLlygrPs3fvXi1cuFCtWrXSa6+9VuFxAAAAAKCgkSNHSrp6vPu+ffuKtMfExOj48eOSpBEjRpR53OTkZJnN5hJf+fM2bdrUcu+FF16w/oEAAAAAAAAAAMB1YZcFXUajUXv27JEkhYSEFBtjMBjUv39/SdL27dsrNE9WVpZGjx4ts9ms5cuXy9XVtWILBgAAAID/MXLkSPn7+8tsNmvQoEGWnYVNJpNiYmI0btw4SVdznqCgoEJ9w8LCZDAYZDAYlJycfL2XDgAAAAAAAAAAbiDHG72A4iQmJspkMkmSOnToUGJcfltqaqouXLggHx+fcs3zxhtvKDExUWPHjtU999xTobVmZWUpKyvL8j49Pb1C4wAAAACoXhwdHbVhwwYFBgYqOTlZwcHBcnd3l8lk0pUrVyRJAQEBioqKusErBQAAAAAAAAAA9sQud+g6c+aM5bpRo0YlxhVsK9inLA4ePKi5c+eqfv36evvtt8u/yP8ze/ZseXl5WV6NGzeu8FgAAAAAqhc/Pz8dPnxYM2bMUIcOHWQwGOTk5KTOnTsrIiJCe/fulbe3941eJgAAAAAAAAAAsCN2WdCVkZFhuXZ3dy8xrmBbwT6lyc3N1ejRo5Wbm6uFCxeqdu3aFVqnJE2dOlVpaWmW16lTpyo8FgAAAIDqx9PTU+Hh4YqPj1dmZqbS09MVFxenyZMny9nZudg+YWFhMpvNMpvN8vPzK9d8K1askNls5qhGAAAAAAAAAACqKLs8crGyzZkzR4cOHdJ9992nxx57zKqxXFxc5OLiYqOVAQAAAAAAAAAAAAAAALiZ2eUOXZ6enpZro9FYYlzBtoJ9ruXo0aOaOXOmatasqffee6/iiwQAAAAAAAAAAAAAAAAAG7PLgq6GDRtarlNSUkqMK9hWsM+1PPPMM8rOzta0adPk7e2tzMzMQq/c3FxJktlsttzLycmp4JMAAAAAAAAAAAAAAAAAQNnZZUFX27Zt5eBwdWkJCQklxuW3+fr6ysfHp0xjJyUlSZKmTp0qT0/PIq+oqChJ0smTJy33lixZYs3jAAAAAAAAAAAAAAAAAECZ2GVBl7u7u3r06CFJ2rp1a7ExZrNZ27ZtkyT169fvuq0NAAAAAAAAAAAAAAAAACqLXRZ0SdLIkSMlSbt27dK+ffuKtMfExOj48eOSpBEjRpR53OTkZJnN5hJf+fM2bdrUcu+FF16w/oEAAAAAAAAAAAAAAAAAoBR2XdDl7+8vs9msQYMGKTY2VpJkMpkUExOjcePGSZJCQkIUFBRUqG9YWJgMBoMMBoOSk5Ov99IBAAAAAAAAAAAAAAAAoEIcb/QCSuLo6KgNGzYoMDBQycnJCg4Olru7u0wmk65cuSJJCggIUFRU1A1eKQAAAAAAAAAAAAAAAADYht3u0CVJfn5+Onz4sGbMmKEOHTrIYDDIyclJnTt3VkREhPbu3Stvb+8bvUwAAAAAAAAAAAAAAAAAsAm7LuiSJE9PT4WHhys+Pl6ZmZlKT09XXFycJk+eLGdn52L7hIWFyWw2y2w2y8/Pr1zzrVixQmazmaMaAQAAAAAAAADATS0jI0NhYWHy9/dXzZo15eXlpa5du2revHnKzs6u0Jhff/21pk2bpr/97W+67bbb5O3tLScnJ9WrV0+BgYFauHChLl++bOMnAQAAAKoWuz1yEQAAAAAAAAAAADfGiRMn1KdPH8sP4N3d3ZWVlaW4uDjFxcUpKipKsbGx5T5J5e2339bmzZst7z08POTi4qJz587pq6++0ldffaX58+dr69atatWqlS0fCQAAAKgy7H6HLgAAAAAAAAAAAFw/ubm5GjhwoJKTk9WgQQPt2LFDly5dktFoVHR0tDw9PXXw4EGFhoaWe+zg4GAtXLhQBw4cUHp6ujIzM5WZmanz589r4cKFcnNzU1JSkh566CGZTKZKeDoAAADA/rFDFwAAAAAAAAAAACwiIyMVHx8vSVqzZo26d+8uSXJwcNDgwYNlMpk0bNgwbdmyRbGxsQoKCirz2C+88EKx9+vUqaOJEyfKxcVFEyZM0NGjR/X999+rR48eVj8PAAAAUNWwQxcAAAAAAAAAAAAsIiMjJUmBgYGWYq6ChgwZombNmkmSVq5cadO577rrLsv16dOnbTo2AAAAUFVQ0AUAAAAAAAAAAABJktFo1J49eyRJISEhxcYYDAb1799fkrR9+3abzr97927LdYsWLWw6NgAAAFBVcOQiAAAAAAAAAAAAJEmJiYkymUySpA4dOpQYl9+WmpqqCxcuyMfHp8JzXr58WadPn1ZMTIzeeOMNSVLv3r3VpUuXCo8JAAAAVGUUdAEAAAAAAAAAAECSdObMGct1o0aNSowr2HbmzJlyF3SlpqaqQYMGxbYNHDhQK1asKHWMrKwsZWVlWd6np6eXaw0AAACAveLIRQAAAAAAAAAAAEiSMjIyLNfu7u4lxhVsK9inrGrUqKH69eurfv36cnV1tdx/9NFHNXfu3DIViM2ePVteXl6WV+PGjcu9DgAAAMAeUdAFAAAAAAAAAACA6+qWW25RamqqUlNTZTQaderUKU2bNk0bN27U7bffruXLl5c6xtSpU5WWlmZ5nTp16jqsHAAAAKh8FHQBAAAAAAAAAABAkuTp6Wm5NhqNJcYVbCvYpyIMBoNuvfVWzZo1S1FRUcrJydFTTz2ln3766Zr9XFxcVKtWrUIvAAAAoDqgoAsAAAAAAAAAAACSpIYNG1quU1JSSowr2Fawj7UefvhhNWnSRCaTSR999JHNxgUAAACqEgq6AAAAAAAAAAAAIElq27atHByu/vkoISGhxLj8Nl9fX/n4+Nh0DY0aNZIk/frrrzYdFwAAAKgqKOgCAAAAAAAAAACAJMnd3V09evSQJG3durXYGLPZrG3btkmS+vXrZ9P5zWazkpKSJFl/lCMAAABQVVHQBQAAAAAAAAAAAIuRI0dKknbt2qV9+/YVaY+JidHx48clSSNGjCjzuLm5uaXGfPLJJ0pNTZUk9enTp8xjAwAAANUJBV0AAAAAAAAAAACwGDlypPz9/WU2mzVo0CDFxsZKkkwmk2JiYjRu3DhJUkhIiIKCggr1DQsLk8FgkMFgUHJycqG2b7/9Vr1799ann36q06dPF2r773//q1deeUUTJkyQJLVo0UKjRo2qnAcEAAAA7JzjjV4AAAAAAAAAAAAA7Iejo6M2bNigwMBAJScnKzg4WO7u7jKZTLpy5YokKSAgQFFRUeUee/fu3dq9e7ckydXVVTVr1tSlS5d0+fJlS8wdd9yh9evXy83NzTYPBAAAAFQx7NAFAAAAAAAAAACAQvz8/HT48GHNmDFDHTp0kMFgkJOTkzp37qyIiAjt3btX3t7e5Rqzc+fO+vTTTzVmzBjdcccd8vLy0sWLF+Xg4KAWLVro0UcfVXR0tH788Uf5+flVzoMBAAAAVQA7dAEAAAAAAAAAAKAIT09PhYeHKzw8vMx9wsLCFBYWVuJ4oaGhCg0NtdEKAQAAgOqJHboAAAAAAAAAAAAAAAAAwE5Q0AUAAAAAAAAAAAAAAAAAdoKCLgAAAAAAAAAAAAAAAACwExR0AQAAAAAAAAAAAAAAAICdoKALAAAAAAAAAAAAAAAAAOwEBV0AAAAAAAAAAAAAAAAAYCco6AIAAAAAAAAAAAAAAAAAO0FBFwAAAAAAAAAAAAAAAADYCQq6AAAAAAAAAAAAAAAAAMBOUNAFAAAAAAAAAAAAAADwf3JychQbG6spU6aoa9euql27tpycnOTr66v7779fmzdvLtLHZDLpu+++04wZM9SzZ0/VqVNHTk5Oqlu3ru69915FRUXJbDaXey1+fn4yGAylvt54441C/Y4ePaoXXnhBvXv3VpMmTeTu7i43Nze1bNlSY8aMUXx8fIlzLliwQC1btpSLi4tuu+02LVmypMTYlJQUeXl5qV+/fuV+NgAlc7zRCwAAAAAAAAAAAAAAALAXX3/9te69915Jkq+vr3r27CkPDw8dPXpUGzdu1MaNGzV+/Hi9//77MhgMkqTjx4+rR48ekiQfHx916dJF3t7eOn78uHbu3KmdO3cqOjpaa9askbOzc5nX8sgjj+j8+fPFtl24cEEbN26UJAUGBhZq++6777RgwQLVr19frVu3Vvfu3WU0GhUfH6+PP/5YK1eu1MqVKzV06NBC/RYvXqwXXnhBDRo00IABA/T999/r2Wef1ZUrVzR58uQia3j22WeVm5ur999/v8zPBKB0FHQBAAAAAAAAAAAAAAD8HwcHBw0aNEjPP/+8evXqVaht1apVGj58uJYvX64ePXpoxIgRkiSDwaC+fftqypQpuvfee1WjRg1Ln6+//loDBgzQpk2bNGfOHM2YMaPMa4mIiCixbe7cudq4caNatWpVZJ3BwcFKTExUmzZtCt03mUx65513NGXKFI0dO1b9+/eXt7e3JCkvL0/h4eGqW7euDh8+rLp16+qPP/5Q27ZtNWvWLD333HNycnKyjLVu3TqtX79ec+fOVfPmzcv8TABKx5GLAAAAAAAAAAAAAAAA/6dv37764osvihRJSdLgwYM1atQoSdLKlSst91u0aKHY2Fj179+/UDGXJN1zzz165ZVXivSx1scffyxJGj16dJE2Pz+/IsVc0tVitZdeeknNmzeX0WjUt99+a2lLTk7W+fPn9dBDD6lu3bqSpHr16unhhx/WxYsXlZiYaInNyMjQxIkT1bFjR02aNMlmzwTgKnboAgAAAAAAAAAAAAAAKKOAgABJ0qlTpyq1z7Xs2bNHv/zyixwdHTVy5Mhy93d0vFou4uLiYrn3559/Srp6ZGRBderUkSRlZmZa7k2dOlWpqalav369ZSwAtsMOXQAAAAAAAAAAAAAAAGX03//+V5LUoEGDSu1zLfm7c/3973+Xr69vufouX75cx44dU7169XTXXXdZ7vv5+UlSoZ24Cr5v1KiRJGnv3r1aunSpnnvuOXXp0qWijwDgGiiTBAAAAAAAAAAAAAAAKIPU1FStWLFCkjRo0KAy9TEajVq4cGG5+lzLpUuXtHr1aknSmDFjSp376aefliSlpaUpISFBv/76q+rXr6+YmBjVqlXLEluvXj11795dmzdvVnR0tAYMGKBNmzZp8+bNuv3229W0aVPl5ORo/Pjxaty4sWbOnGn1swAoHgVdAAAAAAAAAAAAAAAApcjNzVVoaKjS0tLk7++vCRMmlKnf008/raSkJDVs2FCvvvqq1etYvXq1MjMz5evrq7///e/XjM3OzlZkZGShe82bN9dHH32kXr16FYlfuHChAgMDNXToUMu9WrVq6YMPPpAkRUREKD4+Xlu2bJGHh4cl5vLly3J1dZXBYLDm0QD8H45cBAAAAAAAAAAAAAAAKMWTTz6p2NhY1alTR1988YWcnZ1L7TNz5kxFRkbK1dVVq1evVp06daxex0cffSRJGjFihBwdr72PT+3atWU2m2U2m5WamqotW7bolltuUWBgoKZMmVIkvkuXLkpISFB4eLjGjRunmTNnKiEhQd26ddNvv/2mmTNnaujQoQoJCZEkLVq0SI0bN5a7u7s8PDw0bNgw/fnnn1Y/I3CzY4cuAAAAAAAAAAAAAACAa3j++ef10UcfydvbWzt27FCrVq1K7fPOO+9oxowZcnFx0bp169SjRw+r13Hs2DHt2bNHkjR69Ohy9a1fv75CQkIUFBSkO++8UxEREbrnnnt03333FYpr2rSpZsyYUaT/hAkT5Obmpvnz50u6upvX888/rwceeECLFy/W0aNHFRYWpl9//VV79+6VgwN7DAEVxf97AAAAAAAAAAAAAAAASjB58mQtXLhQtWvX1vbt2xUQEFBqn0WLFmny5MlydnbWmjVr1L9/f5us5eOPP5Yk9ezZU61bt67QGM7Ozho+fLgkad26dWXqExkZqdjYWEVERKhevXqSpDlz5qhp06b64osv9MADD2jq1KmaNGmS9u/fr507d1ZobQCuoqALAAAAAAAAAAAAAACgGC+//LLeeecdeXl5afv27erSpUupfZYsWaLnnnvOUsw1YMAAm6wlLy9PK1eulCSNGTPGqrE8PDwkSX/88UepsefPn9fkyZMVGBioJ554QpL0+++/6+zZs+ratWuhYx979uwpSTp06JBV6wNudhR0AQAAAAAAAAAAAAAA/I9XXnlFb7/9try8vLRjxw517dq11D7vv/++nn32WUsx1/8eZ2iNLVu26OzZs/L09NSjjz5q1VixsbGSVKajI1988UVdunRJy5Yts9wzGAySpEuXLhWKzX+f3w6gYijoAgAAAAAAAAAAAAAAKOC1117TW2+9pdq1a5e5mOuDDz7Q008/Xe5irnXr1qlNmzYKCgq6Zlz+cYtDhgyx7LBVkvnz5+vUqVNF7huNRs2aNUtr1qyRo6OjZcetkuzcuVOffvqppk+frttuu81yv169err11lu1a9cu/fbbb5Ku7iCWv8ZOnTpdc1wA1+ZYeggAAAAAAAAAAAAAAMDNYcOGDfrnP/8pSWrZsqWWLFlSbFzdunUVEREh6eoRgxMmTJDZbFbz5s31xRdf6Isvvii234oVKwq9T0tL0y+//KIrV66UuKY//vhDmzdvllS24xbnz5+vF198UW3btlXr1q3l6uqqs2fP6qefftJff/0lFxcXffDBB+rQoUOJY1y+fFlPPvmk/P39NWXKlCLt06dP14QJE9SlSxcFBgbq2LFjOnLkiHr06KG+ffuWukYAJaOgCwAAAAAAAAAAAAAA4P9cuHDBch0XF6e4uLhi45o2bWop6Lp48aLMZrMk6eeff9bPP/9c4vj/W9BVFp9++qlycnLUvn173XnnnaXGv/nmm9q+fbvi4uL0zTff6OLFi/Lw8FCLFi00ZswYPfXUU2revPk1x3jjjTeUlJSk7777Tk5OTkXax48fL2dnZ0VERGjTpk2qXbu2JkyYoLfeeosjFwErGcz5/0aBTaSnp8vLy0tpaWmqVavWDV3LFz+cu6Hzw/4FX4i+0UuAnavdf+KNXgIAwMbs6fsq7JM9fUbIaVAachpcC/kMAFRP9vR9FfbH3j4f5DS4FvIZlIacBgCqn/J8X3W4TmsCAAAAAAAAAAAAAAAAAJSCgi4AAAAAAAAAAAAAAAAAsBOON3oBAAAAAAAAAAAAAAAAJeEYW5TmkW633OglADbFDl0AAAAAAAAAAAAAAAAAYCco6AIAAAAAAAAAAAAAAAAAO0FBFwAAAAAAAAAAAAAAAADYCQq6AAAAAAAAAAAAAAAAAMBOUNAFAAAAAAAAAAAAAAAAAHaCgi4AAAAAAAAAAAAUkZGRobCwMPn7+6tmzZry8vJS165dNW/ePGVnZ1dozJSUFL333nt69NFH1bJlS7m5ucnNzU3NmjXT0KFD9Z///MfGTwEAAABUPY43egEAAAAAAAAAAACwLydOnFCfPn2UnJwsSXJ3d1dWVpbi4uIUFxenqKgoxcbGytvbu8xjnjp1Sk2bNpXZbLbcc3d3l9lsVnJyspKTkxUdHa3Ro0dr+fLlqlGjhq0fCwAAAKgS2KELAAAAAAAAAAAAFrm5uRo4cKCSk5PVoEED7dixQ5cuXZLRaFR0dLQ8PT118OBBhYaGlmvcvLw8mc1mBQUFKTIyUikpKbp06ZIyMzN15MgRPfDAA5Kkjz/+WGFhYZXwZAAAAEDVQEEXAAAAAAAAAAAALCIjIxUfHy9JWrNmjYKDgyVJDg4OGjx4sJYtWyZJ2rJli2JjY8s8rre3t3788Uft3LlTI0aMUMOGDS3jtmvXTuvWrVP//v0lSfPnz9eVK1ds+VgAAAA29csvv2jRokUaNWqU/P395ejoKIPBoFmzZpXYx2AwlOm1cuXKMq/ju+++09NPP63u3burUaNGcnV1lYeHh9q1a6eJEydadlz9X1999VWp63j//feL7fvZZ5+pffv2cnFxUZMmTRQWFqa8vLxiYy9duiQ/Pz916NChwsd234w4chEAAAAAAAAAAAAWkZGRkqTAwEB17969SPuQIUM0bdo0JSUlaeXKlQoKCirTuF5eXurUqVOJ7QaDQaNHj9bWrVuVmZmpxMREBQQEVOwhAAAAKtnSpUu1YMGCcvUZOXJkiW0nT57Url27ZDAYdM8995R5zC1btmjp0qVq0qSJWrdurfr16ystLU0HDhzQ4sWL9cknn2jTpk3q06dPsf3r169vKar/X61bty5yb9OmTRo+fLi8vb01YMAAHTp0SOHh4frzzz+1aNGiIvGvvfaaTp48qW+//VbOzs5lfq6bHQVdAAAAAAAAAAAAkCQZjUbt2bNHkhQSElJsjMFgUP/+/bV06VJt377dpvO7urparkva5QEAAMAedOjQQS+99JICAgLUqVMnvfnmm/r000+v2WfFihUltj399NPatWuXgoOD1bRp0zKvY/jw4Ro7dqz8/PwK3c/OztbLL7+sBQsW6PHHH1dycrJq1KhRpH+bNm2uua7/NX36dDk7O2vv3r1q1aqVLl26pC5dumjp0qWaNm2afH19LbFxcXFatGiRnnrqKd19991lngMcuQgAAAAAAAAAAID/k5iYKJPJJOnqHylLkt+WmpqqCxcu2Gz+r776SpLk7OysVq1a2WxcAAAAWxs7dqzefvttDRs2TG3atJGDQ8VLcK5cuaLPP/9ckjRmzJhy9W3btm2RYi7p6vept99+W66urjp9+rSOHj1a4fXly87OVnx8vO655x7LdzUPDw+FhoYqLy9PP/zwgyU2Ly9P48ePl6+vr2bPnm313DcbdugCAAAAAAAAAACAJOnMmTOW60aNGpUYV7DtzJkz8vHxsXrupKQkvf/++5KkwYMHq1atWteMz8rKUlZWluV9enq61WsAAAC4EdasWaOLFy/Kx8dHDz74oM3GNRgMlkIzFxcXq8e7ePGi8vLyinz3q1OnjiQpMzPTcu/dd9/VwYMHtW7dulK/16EoCroAAAAAAAAAAAAgScrIyLBcu7u7lxhXsK1gn4q6fPmyHn30URmNRtWtW1dz5swptc/s2bMVHh5u9dwAAAA32scffyxJCg0NtUnhlXR1h6zw8HAZjUa1a9dOLVu2LDbu999/1xtvvKGUlBS5urqqTZs2GjBggJo0aVIktl69enJ3d1diYmKh+/nv84v+k5OT9frrr+uhhx6yaYHazYSCLgAAAAAAAAAAANwwubm5GjZsmH788Uc5OTkpKipKDRs2LLXf1KlT9eKLL1rep6enq3HjxpW5VAAAAJtLTk7Wrl27JJX/uMWCTp48qRkzZkiSLly4oIMHD+r06dNq2bKlVq9eXeKRkD///LNef/31QvccHR01ceJEzZ07V46OhUuL7r//fkVHR+udd97R2LFjtXfvXn3yySeqV6+e7rrrLknSU089JUdHRy1evLjCz3Ozo6ALAAAAAAAAAAAAkiRPT0/LtdFoLDGuYFvBPuWVl5en4cOHa/369XJ0dNRnn32mfv36lamvi4uLzXawAAAAuFE++eQTmc1mdenSRbfffnuFx7lw4YIiIyML3evUqZM+/vhjtW/fvki8l5eXXnjhBT300ENq1aqVatWqpd9++02ffPKJFi9erHfffVeZmZlavnx5oX6zZ8/Wrl27NHnyZE2ePFmS5OTkpH/9619ycXHR559/rq1bt+q9994rVKR/5coVOTk5qUaNGhV+xptJ8eV3AAAAAAAAAAAAuOkU/KNbSkpKiXEF28qym1Zx8vLyFBoaqtWrV6tGjRr617/+pUceeaRCYwEAAFRFJpNJK1askCSNHj3aqrE6duwos9ksk8mk06dPa/Xq1TIajercubMWLlxYJD4gIEDvvvuuevfuLV9fX7m7u8vf31/vvPOOoqOjJUkffPCBDh06VKifn5+fEhIS9NZbb2ncuHF67bXXdPjwYd1///3666+/9MILL6hHjx568sknJUmrVq1S69at5ebmJjc3Nw0YMEBJSUlWPevNgIIuAAAAAAAAAAAASJLatm1rOY4nISGhxLj8Nl9fX/n4+JR7nvyduaKjoy3FXIMHD67YogEAAKqonTt36uTJk3Jzc9OwYcNsMqbBYFCjRo306KOP6vvvv1f9+vU1adIk/fTTT2Ue4+GHH1bHjh0lSRs3bizSXrduXb388stavny5Zs6cqTZt2kiSXnrpJV28eFHLly+XwWDQl19+qSFDhqhevXpas2aN3n33Xe3Zs0eBgYHKzMy0yfNWVxR0AQAAAEAlysjIUFhYmPz9/VWzZk15eXmpa9eumjdvnrKzsys0ZkpKit577z09+uijatmypeWXTc2aNdPQoUP1n//8x8ZPAQAAAOBm4e7urh49ekiStm7dWmyM2WzWtm3bJKnMxyMWlJeXp2HDhmnVqlWWYq4hQ4ZUfNEAAABV1McffyxJGjRokLy8vGw+fu3atfXQQw/JZDJpw4YN5erbtm1bSdLp06fLFP/111/rk08+0SuvvKJ27dpJkubMmSMPDw9t2LBBDz/8sJ555hnNmTNHJ06c0GeffVa+h7nJON7oBQAAAABAdXXixAn16dNHycnJkq7+YSQrK0txcXGKi4tTVFSUYmNj5e3tXeYxT506paZNm8psNlvuubu7y2w2Kzk5WcnJyYqOjtbo0aO1fPly1ahRw9aPBQAAAKCaGzlypHbv3q1du3Zp3759uvPOOwu1x8TE6Pjx45KkESNGlGvs/J25Vq9eLUdHR3bmAgAAN60LFy5o/fr1kqQxY8ZU2jweHh6SpD/++KNc/f78809JkqenZ6mxWVlZmjBhglq3bq1XX33Vcv/QoUPq0KFDof8G3rNnT0sbSsYOXQAAAABQCXJzczVw4EAlJyerQYMG2rFjhy5duiSj0ajo6Gh5enrq4MGDCg0NLde4eXl5MpvNCgoKUmRkpFJSUnTp0iVlZmbqyJEjeuCBByRd/WVXWFhYJTwZAAAAgOpu5MiR8vf3l9ls1qBBgxQbGytJMplMiomJ0bhx4yRJISEhCgoKKtQ3LCxMBoNBBoPB8uOWfHl5eQoNDdWqVavk6Oiozz77jGIuAABw04qKilJWVpZatGihe+65p9LmyT/RoVWrVmXuk5KSot27d0uSunXrVmr8P//5Tx07dkzLli2Ti4uL5b7BYNClS5cKxea/NxgMZV7PzYiCLgAAAACoBJGRkYqPj5ckrVmzRsHBwZIkBwcHDR48WMuWLZMkbdmyxfLHkbLw9vbWjz/+qJ07d2rEiBFq2LChZdx27dpp3bp16t+/vyRp/vz5unLlii0fCwAAAMBNwNHRURs2bJCfn59SUlIUHBwsDw8PeXh46LHHHlN6eroCAgIUFRVVrnH37Nmj6OhoSVf/gDdx4kT5+vqW+Fq1alVlPB4AAIBdyD9ucfTo0aUWN61bt05t2rQpUkwvSbNnz9a5c+eK3P/rr780ceJExcXFycvLS4899lih9gULFuj8+fNF+h0+fFgDBw7U5cuX1aJFC8uPiEty9OhRvfXWWxo7dqx69+5dqK1Tp05KTEzUnj17LPeWL19uaUPJOHIRAAAAACpBZGSkJCkwMFDdu3cv0j5kyBBNmzZNSUlJWrlyZbGJeHG8vLyumegaDAaNHj1aW7duVWZmphITExUQEFCxhwAAAABw0/Lz89Phw4cVERGhtWvXKikpSU5OTmrfvr2GDh2qiRMnytnZuVxjmkwmy3VOTo5+//33a8Zfvny5QmsHAAC4Hg4cOKCnn37a8v63336TJC1btkybNm2y3F+3bp0aNGhQqO/Bgwd16NAh1ahRQ6NGjSp1rrS0NP3yyy/F/oD31Vdf1fTp0+Xv768WLVrI0dFRKSkpOnjwoC5duiQvLy/FxMSofv36hfq9/vrrmjx5sjp27KhmzZrJwcFBv/32mw4ePCiTyaQmTZpo48aNhXbc+l9ms1njx4+Xj4+P5s6dW6T9tdde09///nfde++9uvfee5WamqoffvhBLVu21NChQ0t97puZ3Rd0ZWRkaN68eVqzZo2SkpJUo0YNtWrVSkOGDKlQsiBd3Rruyy+/1K5du3Tw4EGlpKRIknx9fXXXXXdp3Lhx6tu3r60fBQAAAMBNwmg0Wn5xFBISUmyMwWBQ//79tXTpUm3fvt2m87u6ulqu8/LybDo2AAAAgJuHp6enwsPDFR4eXuY+YWFhJR7/3qdPH5nNZhutDgAA4MZKT0/Xvn37itw/ffq0Tp8+bXmflZVVJCZ/d66//e1vllMYKmrx4sXavXu3Dh48qNjYWGVmZsrT01P+/v7629/+pqeeeqpIMZckTZs2TXv27NGRI0e0Y8cOXbp0SbVq1dLdd9+tBx54QBMmTJCnp+c1516+fLn27Nmj1atXq3bt2kXa+/fvrw0bNuiNN97Q1q1b5e7uriFDhmjevHlyd3e36rmrO4PZjr85nzhxQn369LGcse7u7q68vDzLhz0gIECxsbHy9vYu85inTp1S06ZNCyUM7u7uMpvNhX7pMXr0aC1fvlw1atQo15rT09Pl5eWltLQ01apVq1x9be2LH4puqQcUFHwh+kYvAXaudv+JN3oJAAAbs6fvq9XZjz/+qC5duki6eqRiSUVd7733np555hlJ0p9//ikfHx+bzD958mS98847cnZ21rlz58r1z9qePiPkNCgNOQ2uhXwGAKone/q+Cvtjb58PchpcC/kMSkNOUxj/TkVpHul2y41eAlCq8nxfdbhOayq33NxcDRw4UMnJyWrQoIGlGtBoNCo6Olqenp46ePCgQkNDyzVuXl6ezGazgoKCFBkZqZSUFF26dEmZmZk6cuSI5ezPjz/+uMRfkAAAAADAtZw5c8Zy3ahRoxLjCrYV7GONpKQkvf/++5KkwYMHl5oUZmVlKT09vdALAAAAAAAAAADcOHZb0BUZGan4+HhJ0po1axQcHCxJcnBw0ODBg7Vs2TJJV3/tHhsbW+Zxvb299eOPP2rnzp0aMWKEZes6BwcHtWvXTuvWrVP//v0lSfPnzy/2/FEAAAAAuJaMjAzL9bW2jS7YVrBPRV2+fFmPPvqojEaj6tatqzlz5pTaZ/bs2fLy8rK8GjdubPU6AAAAAAAAAABAxTne6AWUJDIyUpIUGBio7t27F2kfMmSIpk2bpqSkJK1cuVJBQUFlGtfLy0udOnUqsd1gMGj06NHaunWrMjMzlZiYqICAgIo9BAAAAABcJ7m5uRo2bJh+/PFHOTk5KSoqyvIDlmuZOnWqXnzxRcv79PR0iroAAAAAAAAAVCkXty660UuAnatqR9na5Q5dRqNRe/bskSSFhIQUG2MwGCw7aW3fvt2m87u6ulqu8/LybDo2AAAAgOrP09PTcm00GkuMK9hWsE955eXlafjw4Vq/fr0cHR312WefqV+/fmXq6+Liolq1ahV6AQAAAAAAAACAG8cuC7oSExNlMpkkSR06dCgxLr8tNTVVFy5csNn8X331lSTJ2dlZrVq1stm4AAAAAG4OBXfGSklJKTGuYFtZdtMqTl5enkJDQ7V69WrVqFFD//rXv/TII49UaCwAAAAAAAAAAHDj2WVB15kzZyzXjRo1KjGuYFvBPtZISkrS+++/L0kaPHhwqb9Oz8rKUnp6eqEXAAAAgJtb27Zt5eBwNd1KSEgoMS6/zdfXVz4+PuWeJ39nrujoaEsx1+DBgyu2aAAAAAAAAAAAYBfssqArIyPDcu3u7l5iXMG2gn0q6vLly3r00UdlNBpVt25dzZkzp9Q+s2fPlpeXl+XVuHFjq9cBAAAAoGpzd3dXjx49JElbt24tNsZsNmvbtm2SVObjEQvKy8vTsGHDtGrVKksx15AhQyq+aAAAAAAAAAAAYBfssqDrRsjNzdWwYcP0448/ysnJSVFRUWU68mTq1KlKS0uzvE6dOnUdVgsAAADA3o0cOVKStGvXLu3bt69Ie0xMjI4fPy5JGjFiRLnGzt+Za/Xq1XJ0dFRUVBTFXAAAAAAAAAAAVBN2WdDl6elpuTYajSXGFWwr2Ke88v8Ysn79ejk6Ouqzzz4r8y/kXVxcVKtWrUIvAAAAABg5cqT8/f1lNps1aNAgxcbGSpJMJpNiYmI0btw4SVJISIiCgoIK9Q0LC5PBYJDBYFBycnKhtry8PIWGhmrVqlWW/IVjFgEAAAAAAAAAqD7ssqCr4M5YKSkpJcYVbCvLblrFyf9jyOrVqy3HlDzyyCMVGgsAAAAA8jk6OmrDhg3y8/NTSkqKgoOD5eHhIQ8PDz322GNKT09XQECAoqKiyjXunj17FB0dLUkyGAyaOHGifH19S3ytWrWqMh4PAAAAAAAAAABUEscbvYDitG3bVg4ODjKZTEpISFBISEixcQkJCZIkX19f+fj4lHue/J25Vq1aZSnm4pftAAAAAGzFz89Phw8fVkREhNauXaukpCQ5OTmpffv2Gjp0qCZOnChnZ+dyjWkymSzXOTk5+v33368Zf/ny5QqtHQAAAAAAAAAA3Bh2uUOXu7u7evToIUnaunVrsTFms1nbtm2TpDIfj1hQXl6ehg0bVqiYa8iQIRVfNAAAAAAUw9PTU+Hh4YqPj1dmZqbS09MVFxenyZMnl1jMFRYWJrPZLLPZLD8/v0Jtffr0sbSV5TVq1KjKf0gAAAAAAAAAAGAzdlnQJUkjR46UJO3atUv79u0r0h4TE6Pjx49LkkaMGFGusfN35lq9erUcHR0VFRVFMRcAAAAAAAAAAAAAAACAG86uC7r8/f1lNps1aNAgxcbGSrp6vEhMTIzGjRsnSQoJCVFQUFChvmFhYTIYDDIYDEpOTi7UlpeXp9DQUK1atUqOjo767LPPOGYRAAAAAAAAAAAAAAAAgF1wvNELKImjo6M2bNigwMBAJScnKzg4WO7u7jKZTLpy5YokKSAgQFFRUeUad8+ePYqOjpYkGQwGTZw4URMnTiwxfsGCBRR8AQAAAAAAAAAAAAAAALgu7LagS5L8/Px0+PBhRUREaO3atUpKSpKTk5Pat2+voUOHauLEiXJ2di7XmCaTyXKdk5Oj33///Zrxly9frtDaAQAAAAAAAAAAAAAAAKC87LqgS5I8PT0VHh6u8PDwMvcJCwtTWFhYsW19+vSR2Wy20eoAAAAAAAAAAAAAAAAAwHYcbvQCAAAAAAAAAAAAAAAAAABXUdAFAAAAAAAAAAAAAAAAAHaCgi4AAAAAAAAAAAAAAAAAsBMUdAEAAAAAAAAAAAAAAACAnaCgCwAAAAAAAAAAAAAAAADsBAVdAAAAAAAAAAAAAAAAAGAnKOgCAAAAAAAAAAAAAAAAADtBQRcAAAAAAAAAAAAAAAAA2AkKugAAAAAAAAAAAAAAAADATlDQBQAAAAAAAAAAAAAAAAB2goIuAAAAAAAAAAAAAAAAALATFHQBAAAAAAAAAAAAAAAAgJ2goAsAAAAAAAAAAAAAAAAA7AQFXQAAAAAAAAAAAAAAAABgJyjoAgAAAAAAAAAAAAAAAAA7QUEXAAAAAAAAAAAAAAAAANgJCroAAAAAAAAAAAAAAAAAwE5Q0AUAAAAAAAAAAIAiMjIyFBYWJn9/f9WsWVNeXl7q2rWr5s2bp+zs7AqNefHiRX355ZeaMWOG7rvvPjVo0EAGg0EGg0ErVqyw7QMAAAAAVRQFXQAAAAAAAACuu5MnT+rZZ59V69at5ebmJldXVzVr1kwjR47UTz/9VK6xwsLCLMUAJb1+/vnnIv369OlTaj+DwaDRo0cX6btgwQK1bNlSLi4uuu2227RkyZIS15eSkiIvLy/169evXM8FADfSiRMndPvttys8PFwJCQkym83KyspSXFycXnrpJd11113666+/yj3u+vXr9eCDD2rmzJnavHmzUlNTK2H1AAAAQNXmeKMXAAAAAAAAAODmsm/fPt17773KyMhQo0aN1K9fP9WoUUOHDh3SypUr9dlnn+mzzz7To48+Wq5x77jjDnXs2LHYNi8vryL3+vfvLz8/v2Ljs7Oz9fnnn0uSAgMDC7UtXrxYL7zwgho0aKABAwbo+++/17PPPqsrV65o8uTJRcZ69tlnlZubq/fff79czwMAN0pubq4GDhyo5ORkNWjQQCtXrlRwcLBMJpNiYmI0btw4HTx4UKGhodq8eXO5x/f19VVAQIA6deqkzp076+GHH66EpwAAAACqLgq6AAAAAAAAAFxX48ePV0ZGhsaPH6/FixfLyclJkmQymfT6669r1qxZGj9+vAYOHChXV9cyj/vggw8qLCyszPGvvPJKiW2rV6/W559/Li8vLz3yyCOW+3l5eQoPD1fdunV1+PBh1a1bV3/88Yfatm2rWbNm6bnnnrM8jyStW7dO69ev19y5c9W8efMyrw0AbqTIyEjFx8dLktasWaPu3btLkhwcHDR48GCZTCYNGzZMW7ZsUWxsrIKCgso89uOPP65Ro0ZVxrIBAACAaoMjFwEAAAAAAABcN3/++acOHz4sSZo1a1ah4icHBweFhYXJzc1NFy9eVGJi4o1apj766CNJ0tChQ+Xm5ma5n5ycrPPnz+uhhx5S3bp1JUn16tXTww8/XGTNGRkZmjhxojp27KhJkyZd3wcAACtERkZKurpDYX4xV0FDhgxRs2bNJEkrV64s19g1atSwfoEAAABANUdBFwAAAAAAAIDrxsXFpcyx+QVT19upU6e0c+dOSdKYMWMKtf3555+SJB8fn0L369SpI0nKzMy03Js6dapSU1P1wQcfyNGRwxIAVA1Go1F79uyRJIWEhBQbYzAY1L9/f0nS9u3br9vaAAAAgJsFBV0AAAAAAAAArpuaNWuqV69ekqTXXntNOTk5ljaTyaSwsDBdvnxZISEhaty4cbnGPnDggF555RWNHz9eU6ZM0WeffaaMjIxyr3HFihUymUy6/fbb1aVLl0Jtfn5+klRk97D8940aNZIk7d27V0uXLtVzzz1XZAwAsGeJiYkymUySpA4dOpQYl9+WmpqqCxcuXJe1/a+srCylp6cXegEAAADVAT8LAwAAAAAAAHBdffDBB/r73/+u5cuXa/PmzerSpYtq1KihgwcPKiUlRY8//rgWL15c7nE3btyojRs3Frrn5eWlhQsXasSIEWUaw2w2a8WKFZKK7s4lXT1esXv37tq8ebOio6M1YMAAbdq0SZs3b9btt9+upk2bKicnR+PHj1fjxo01c+bMcj8HANxIZ86csVznF6kWp2DbmTNniuxceD3Mnj1b4eHh131eAAAAoLKxQxcAAAAAAACA66p169b6/vvv1a9fP6WkpOjLL7/U2rVrlZSUpJYtW6pPnz6qVatWmcdr0aKF3nzzTR08eFAXLlzQhQsX9O233+q+++5TWlqaRo4cqaioqDKN9dVXX+n48eNycXFRaGhosTELFy6Um5ubhg4dqlq1amnYsGHy8PDQBx98IEmKiIhQfHy8li5dKg8PD0u/y5cvy2w2l/m5AOBGKLizobu7e4lxBdsqshuiLUydOlVpaWmW16lTp27IOgAAAABbo6ALAAAAAAAAwHW1Z88e+fv7KyEhQZ999pnluK6NGzcqJydHY8aMKXZ3rJI8/vjjmjp1qjp27Chvb295e3urR48e2rhxoyZOnChJmjRpkrKzs0sd66OPPpIkPfDAAyXuNtOlSxclJCQoPDxc48aN08yZM5WQkKBu3brpt99+08yZMzV06FCFhIRIkhYtWqTGjRvL3d1dHh4eGjZsmP78888yPx8AoHguLi6qVatWoRcAAABQHXDkIgAAAAAAAIDr5uLFi3rooYd0/vx5ff/997rzzjstbffdd5/atWsnf39/ffzxxwoNDVVgYKBV84WFhem9997TuXPntG/fPvXq1avE2LS0NK1du1ZS8cctFtS0aVPNmDGjyP0JEybIzc1N8+fPl3R1N6/nn39eDzzwgBYvXqyjR48qLCxMv/76q/bu3SsHB35zC8C+eHp6Wq6NRmOJcQXbCvYBAAAAYD3+awEAAAAAAACA62bz5s06d+6cmjdvXqiYK1/B+zt37rR6Ph8fH9WrV0+SdPr06WvGfv7557p8+bKaNGmi4ODgcs8VGRmp2NhYRUREWOacM2eOmjZtqi+++EIPPPCApk6dqkmTJmn//v02eb7qLjs7WwsXLlTPnj3l4+MjV1dX3XrrrQoJCdGqVavKPE5YWJgMBsM1Xz///HORfkePHtULL7yg3r17q0mTJnJ3d5ebm5tatmypMWPGKD4+vsQ5FyxYoJYtW8rFxUW33XablixZUmJsSkqKvLy81K9fvzI/E1BZGjZsaLlOSUkpMa5gW8E+AAAAAKzHDl0AAAAAAAAArpuTJ09K0jWPxfLy8pIkXbhwwer58vLylJaWJqn0HWQ+/vhjSdITTzxR7p2zzp8/r8mTJyswMFBPPPGEJOn333/X2bNn9cgjj8jR8f//p9iePXvqrbfe0qFDhyjguYbTp0/rb3/7m44ePaq6deuqR48e8vDw0KlTp/TNN9/Iw8NDgwcPLteYd9xxhzp27FhsW/7nrqDvvvtOCxYsUP369dW6dWt1795dRqNR8fHx+vjjj7Vy5UqtXLlSQ4cOLdRv8eLFeuGFF9SgQQMNGDBA33//vZ599llduXJFkydPLjLPs88+q9zcXL3//vvleh6gMrRt21YODg4ymUxKSEiwHB/7vxISEiRJvr6+JR5RCwAAAKBiKOgCAAAAAAAAcN00atRIkvTzzz8rLS2tSBFNTk6ODhw4IElq1qyZ1fNt2LBBRqNRBoNBXbp0KTEuISFB+/fvl8FgsBRklceLL76oS5cuadmyZZZ7BoNBknTp0qVCsfnv89tR1OXLl3Xvvffq559/VlhYmF599VU5OTlZ2o1Go44dO1bucR988EGFhYWVOT44OFiJiYlq06ZNofsmk0nvvPOOpkyZorFjx6p///7y9vaWdLWIMDw8XHXr1tXhw4dVt25d/fHHH2rbtq1mzZql5557rtCzrFu3TuvXr9fcuXPVvHnzcj8TYGvu7u7q0aOHdu/era1bt2rKlClFYsxms7Zt2yZJFKYCAAAAlYAjFwEAAAAAAABcNyEhIfLw8NDly5c1btw4ZWZmWtqys7M1adIknTx5Uk5OTnrkkUcsbYsXL1abNm00YsSIQuOdPHlS//rXv3TlypUic61fv15jx46VJA0fPly+vr4lruujjz6SdLWAp2nTpuV6pp07d+rTTz/V9OnTddttt1nu16tXT7feeqt27dql3377TdLVYp/8ncA6depUrnluJrNnz9bPP/+s8ePH6/XXXy9UACVdLTgpaactW/Lz8ytSzCVJDg4Oeumll9S8eXMZjUZ9++23lrbk5GSdP39eDz30kOrWrSvp6mfh4Ycf1sWLF5WYmGiJzcjI0MSJE9WxY0dNmjSp0p8HKKuRI0dKknbt2qV9+/YVaY+JidHx48clqci/lwEAAABYj4IuAAAAAAAAANfNLbfcovfff1+Ojo6KiYlR8+bNNWDAAD344INq3ry5lixZIgcHBy1cuLDQbkXnz5/XL7/8YjmyMd+FCxf0+OOP65ZbblHv3r01dOhQPfjgg2rVqpUeeughXbhwQYGBgVq6dGmJa8rJydG//vUvSdKYMWPK9TyXL1/Wk08+KX9//2J3sZk+fbquXLmiLl266OGHH9Ydd9yh7du3q0ePHurbt2+55rpZ5OTkWP55Ffe/qT3JP0rTxcXFcu/PP/+UpCJH0NWpU0eSChUxTp06Vampqfrggw8KHcsJ3GgjR46Uv7+/zGazBg0apNjYWElXd6eLiYnRuHHjJF0t0g0KCirUNywsTAaDQQaDQcnJycWOf/78+UKvfJmZmYXuG43GynlAAAAAwM6RIQIAAAAAAAC4rkJDQ+Xv76/58+frm2++UWxsrMxmsxo0aKDhw4frueeeU7du3co0VuPGjfWPf/xD+/fv16+//qoDBw4oOztbdevW1X333adhw4Zp8ODBcnAo+betGzZs0Pnz5+Xj46MHH3ywXM/yxhtvKCkpSd99912RXaQkafz48XJ2dlZERIQ2bdqk2rVra8KECXrrrbc4crEEBw4c0Pnz59WwYUO1bNlS8fHxWrt2rc6cOSNvb2/16tVLISEh1/xneq2xX3nlFV24cEFeXl4KCAjQwIED5enpWe6xli9frmPHjqlevXq66667LPf9/PwkqdBOXAXf5x87unfvXi1dulTPP//8NY8DBW4ER0dHbdiwQYGBgUpOTlZwcLDc3d1lMpksOyIGBAQoKiqqQuPfcsstxd6fOHGiJk6caHn/+uuvl+uYVAAAAKC6oKALAAAAAAAAwHV3xx136JNPPilzfFhYWLF/1K9Tp47mzJlj1VoGDRoks9lcob6zZ8/W7NmzrxkzatQojRo1qkLj34wOHz4sSbr11lv1yiuvaO7cuYX++bz11lsKCAjQ+vXr1aRJk3KNvXHjRm3cuLHQPS8vLy1cuPCax8YZjUY9/fTTkqS0tDQlJCTo119/Vf369RUTE6NatWpZYuvVq6fu3btr8+bNio6O1oABA7Rp0yZt3rxZt99+u5o2baqcnByNHz9ejRs31syZM8v1DMD14ufnp8OHDysiIkJr165VUlKSnJyc1L59ew0dOlQTJ06Us7PzjV4mAAAAUC1R0AUAAAAAAAAAsBv5RxYePHhQP/zwg5555hk999xz8vX1tbw/ePCgBgwYoAMHDhS7M9r/atGihd58802FhISoadOmkqSjR49qzpw52rRpk0aOHKkaNWpo+PDhxfbPzs5WZGRkoXvNmzfXRx99pF69ehWJX7hwoQIDAzV06FDLvVq1aumDDz6QJEVERCg+Pl5btmyRh4eHJeby5ctydXVl9zbYDU9PT4WHhys8PLzMfUoqwC2ookW0AAAAwM2i/HtSAwAAAAAAAABQSfILPXJycjR06FAtXrxYrVq1Uq1atRQcHKwdO3bI1dVVCQkJio6OLtOYjz/+uKZOnaqOHTvK29tb3t7e6tGjhzZu3Gg53m3SpEnKzs4utn/t2rVlNptlNpuVmpqqLVu26JZbblFgYKCmTJlSJL5Lly5KSEhQeHi4xo0bp5kzZyohIUHdunXTb7/9ppkzZ2ro0KEKCQmRJC1atEiNGzeWu7u7PDw8NGzYMEthGwAAAADg5sMOXQAAAAAAAMBN4Isfzt3oJcDOPdLtlhu9BElXdwTKN2HChCLtTZo00YABA7RmzRrt3LlTjz/+uFXzhYWF6b333tO5c+e0b9++YnfcKqh+/foKCQlRUFCQ7rzzTkVEROiee+7RfffdVyiuadOmmjFjRpH+EyZMkJubm+bPny/p6m5ezz//vB544AEtXrxYR48eVVhYmH799Vft3btXDg78LhsAAAAAbjZkggAAAAAAAAAAu9G8efNir4uLOXv2rNXz+fj4qF69epKk06dPl7mfs7Oz5YjGdevWlalPZGSkYmNjFRERYZlzzpw5atq0qb744gs98MADmjp1qiZNmqT9+/dr586d5XwaAAAAAEB1QEEXAAAAAAAAAMBudOrUSQaDQZJ0/vz5YmPy79esWdPq+fLy8pSWliap8O5gZeHh4SFJ+uOPP0qNPX/+vCZPnqzAwEA98cQTkqTff/9dZ8+eVdeuXeXo+P8P1OjZs6ck6dChQ+VaDwAAAACgeqCgCwAAAAAAAABgN3x9fS0FTcXtUJWTk6Ovv/5aktStWzer59uwYYOMRqMMBoO6dOlSrr6xsbGSpFatWpUa++KLL+rSpUtatmyZ5V5+4dqlS5cKxea/z28HAAAAANxcKOgCAAAAAAAAANiV119/XZI0e/Zs7d2713I/NzdXkydP1vHjx+Xp6WnZ6UqSFi9erDZt2mjEiBGFxjp58qT+9a9/6cqVK0XmWb9+vcaOHStJGj58uHx9fQu1z58/X6dOnSrSz2g0atasWVqzZo0cHR0LraM4O3fu1Keffqrp06frtttus9yvV6+ebr31Vu3atUu//fabpKs7hn388ceSru5WBgAAAAC4+TiWHgIAAAAAAAAAwPUTFBSkmTNnavr06erVq5e6desmX19fHThwQMnJyXJzc9Pnn3+u+vXrW/qcP39ev/zyS5GirAsXLujxxx/XU089pYCAADVq1EiXL1/W0aNH9d///leSFBgYqKVLlxZZx/z58/Xiiy+qbdu2at26tVxdXXX27Fn99NNP+uuvv+Ti4qIPPvhAHTp0KPFZLl++rCeffFL+/v6aMmVKkfbp06drwoQJ6tKliwIDA3Xs2DEdOXJEPXr0UN++fSv6PyEAAAAAoAqjoAsAAAAAAAAAYHdee+01devWTfPnz9e+ffu0f/9++fr6atSoUfrHP/6hNm3alGmcxo0b6x//+If279+vX3/9VQcOHFB2drbq1q2r++67T8OGDdPgwYPl4FD0QIs333xT27dvV1xcnL755htdvHhRHh4eatGihcaMGaOnnnpKzZs3v+b8b7zxhpKSkvTdd9/JycmpSPv48ePl7OysiIgIbdq0SbVr19aECRP01ltvceQiAAAAANykKOgCAAAAAAAAANilfv36qV+/fmWKDQsLU1hYWJH7derU0Zw5cyo0/7BhwzRs2LAK9c03e/ZszZ49+5oxo0aN0qhRo6yaBwAAAABQfRT9yREAAAAAAAAAAAAAAAAA4IagoAsAAAAAAAAAAAAAAAAA7ARHLgIAAAAAAAAAdHHrohu9BNix2v0n3uglAAAAAMBNgx26AAAAAAAAAAAAAAAAAMBOUNAFAAAAAAAAAAAAAAAAAHaCgi4AAAAAAAAAAAAAAAAAsBMUdAEAAAAAAAAAAAAAAACAnaCgCwAAAAAAAAAAAAAAAADsBAVdAABUUb/88osWLVqkUaNGyd/fX46OjjIYDJo1a1aFxvv3v/+tsWPHqkuXLmrQoIFcXFzk6empjh076tVXX9X58+eL7ffnn39qxYoVmjhxou6++265u7vLYDAoODj4mvPl5uZq+vTpaty4sVxcXOTv76+YmJgS4w8dOiQnJyeNHz++Qs93M7LlZ8RkMum7777TjBkz1LNnT9WpU0dOTk6qW7eu7r33XkVFRclsNpc6zpdffqn7779fvr6+cnZ2Vr169XT33XfrjTfeKBLLZwQAAAAAAAAAAAA3I8cbvQAAAFAxS5cu1YIFC2w2XlRUlKKiotSyZUt16NBBt9xyi/7880/98MMPmj17tj766CP95z//Ufv27Qv12717t5544olyz/fKK69o3rx5at68uQYMGKBdu3bpscceU0xMjB555JFCsXl5eRo3bpzq1q2ruXPnWvWcNxNbfkaOHz+uHj16SJJ8fHzUpUsXeXt76/jx49q5c6d27typ6OhorVmzRs7OzkX6Z2dnKzQ0VDExMXJzc1P37t1Vv359paam6siRI1q4cKFmzJhRqA+fEQAAAAAAAAAAANyM2KELAIAqqkOHDnrppZcUFRWlxMREPf7441aN99JLL+ns2bP673//qx07duizzz7Ttm3bdOrUKT366KP6448/NHbs2CL96tevrwkTJmjZsmXav3+/3n///VLn+uOPP7Ro0SK1a9dO8fHxWrt2rb7//ns5OTkpLCysSPzChQsVFxenhQsXqnbt2lY9583Elp8Rg8Ggvn376t///rf++OMPbdu2TdHR0frhhx/01VdfycPDQ5s2bdKcOXOK7T9u3DjFxMTowQcf1MmTJxUbG6vPPvtM//nPf3T27Flt2rSpUDyfEQAAAAAAAAAAANys2KELAIAq6n+LqxwcrKvT7tixY7H3a9asqXnz5ikmJkZ79+5Venq6atWqZWnv3r27unfvbnmfkJBQ6lzx8fHKzs7W8OHD5e7uLklq06aN7rnnHu3cubPQHCdPntT06dN133336dFHH7XiCW8+tvyMtGjRQrGxscW23XPPPXrllVc0ffp0rVy5sshOW7GxsVq5cqU6dOig1atXy8nJqci67rrrrkL3+IwAAAAAAAAAAADgZsUOXQAAoFSOjldrwB0cHIoU41TEn3/+Kenq0X0F1alTR5KUmZlpuffMM8/IYDDovffes3peVJ6AgABJ0qlTp4q0LVq0SJL0wgsvlPnzw2cEAAAAAAAAAAAANyt26AIAANeUlZWlV199VZJ07733ys3Nzeox/fz8JEmJiYmF7icmJsrZ2Vl169aVJK1evVqbNm3SggUL1LhxY6vnReX573//K0lq0KBBoft5eXmWnb169+6t1NRURUdH65dffpGLi4sCAgI0aNAg1axZs1A/PiMAAAAAAAAAAAC4WVHQBQAACjlw4IAWLlwos9msc+fOaf/+/Tp//ry6du2qjz76yCZzdOzYUU2bNtUnn3yiAQMG6K677tKHH36ow4cP6/7775ezs7MuXryo559/Xt26ddOzzz5rk3lROYxGoxYuXChJGjRoUKG248ePW3bT2rt3r55++ulCu2tJ0pQpUxQdHa2+ffta7vEZAQAAAAAAAAAAwM2Kgi4AAFDIyZMnFRkZWehecHCwli1bpkaNGtlkDmdnZy1atEgPP/yw/va3v1nuN2jQQO+++64k6R//+IfOnz+v7du3y8Hh/58SbTQa5e7ubpN1wDaefvppJSUlqWHDhpbd3PLlH50oSWPGjNHdd9+tiIgItWnTRr/99pteffVVbdmyRQ888IAOHDig2267TRKfEQAAAAAAAAAAANy8HEoPAQAAN5MHH3xQZrNZubm5Sk5O1ocffqjExER16NBBX3zxhc3mGThwoA4dOqRXX31V48aN09tvv62EhAQ1b95c3377rT744ANNmTJF/v7+ysvL04wZM3TLLbfIw8NDXl5eeuaZZ2Q0Gm22HlTMzJkzFRkZKVdXV61evVp16tQp1G42my3XjRo10rZt29SlSxfVrFlTd9xxhzZs2KAOHTooMzNTc+bMKdSXzwgAAAAAAAAAAABuRuzQBQAAilWjRg01bdpUY8aMUVBQkNq3b68nnnhCPXv2lK+vr03maN++vf75z38Wupedna3x48erRYsWmjFjhqSrR/K9++67GjNmjB544AHt3r1bERERSk1N1Zo1a2yyFpTfO++8oxkzZsjFxUXr1q1Tjx49isR4enparkeNGiUXF5dC7TVq1NCECRM0ceJE7dy5s0h/PiMAAAAAAAAAAAC42VDQBQAASuXn56fAwEBt3rxZO3bs0OOPP15pc82ePVuJiYmKjY2Vq6urMjIytGTJEt1999368MMPJV3duenkyZNatWqVjh07platWlXaelC8RYsWafLkyXJ2dtaaNWvUv3//YuP8/PxkMBhkNpvVvHnzYmPy7589e7ZMc/MZAQAAAAAAAAAAQHXGkYsAAKBMPDw8JEl//PFHpc3xyy+/aPbs2Ro1apT69u0rSTp69Kiys7N19913F4rt2bOnJOnQoUOVth4Ub8mSJXruuecsxVwDBgwoMbZmzZpq3bq1JOn8+fPFxuTfr1mzZqlz8xkBAAAAAAAAAABAdUdBFwAAKFVWVpa+/fZbSaq0nY7MZrMmTJggLy8vzZs3z3LfYDBI+n/t3XuQ1WX9B/D3ARRdl6um4OUnZGEEFAak5Q0UdUF0GrVBrURrlKQsu2oXFcvKabT+qDQ1R9EYMWQ0IwSV4eJlRAkUyQslLSkOpmIusAjont8fDhvE7nJp4ZzDvl4zzOz5Ps/3OZ+zc3i++5797Pcka9as2Wz+xscbx9k1fvvb3+arX/1qYzPXqFGjtnrOZz/72SRp8iMVk+Shhx5Kknzyk59scR3vEQAAAAAAANoCDV0A0Ib8+te/zkc+8pGcd955mx3/17/+lRtvvDF1dXVbnLN8+fJ84QtfyKuvvppevXrlpJNO2im13XrrrZkzZ05++ctfpnv37o3HP/rRj6Zjx4659957s3LlyiRJfX19fv/73ydJjjjiiJ1ST1vV3HskSW655ZaMGzduu5q5kuRrX/taunXrlmnTpuWmm27abGzSpEmZOHFi47yWeI8AAAAAAADQFnQodQEAwI5ZsGBBxo0b1/j4pZdeSpLcdNNNmTp1auPxe++9Nz179kzy/kfbvfjii+nRo8dma9XX12fcuHG59NJLM3DgwPTq1SvFYjEvv/xyFixYkPXr1+fAAw/Mfffdl7322muLWo466qjGr19//fUkyVNPPbXZ8SuuuKLZj+Z77bXX8t3vfjc1NTU599xzNxurrq7ON7/5zfzsZz9Lv379cvTRR2fBggX5xz/+kXPOOScf+tCHtun71Ra15nvk6aefztixY1MsFvPBD34w99xzT+65554mn/f222/f7PF+++2Xu+++O6effnq+/OUv51e/+lX69u2bl156KQsXLkzy/vtj5MiRzb4W7xEAAAAAAADaCg1dAFCh6urqMm/evC2Ov/LKK3nllVcaH69bt26ra+2///65/vrrM3fu3CxevDjPP/981q5dm65du+aoo47KaaedlosuuiidO3du8vym6vjv+jY2ejXl0ksvzfr163PjjTc2Of6Tn/wk3bp1y0033ZQ//vGPOeCAA3LZZZflRz/60VZfW1vWmu+Rf//73ykWi0mSF154IS+88EKzc/+7oStJTjrppDzzzDP56U9/mocffjh//OMf07lz54wcOTJf//rXc/LJJ7f4/N4jAAAAAAAAtBWF4sbfzNEq6urq0qVLl7z99tvN/tJ7V7nnyeZ/cQ5JMnzlpFKXQJnrWnNJqUsAoJWV08+rlKdyeo/INGyNTENL5Jkt2VfZGvsqLSmXfbWcfl6l/JTb+8O1l5a47rI15XLtLRf2VLbGvsrWlMO+uj0/r7bbRTXtsFWrVmX8+PEZMGBAqqur06VLlwwZMiTXX3991q9f/z+t/dprr+Vb3/pWDj/88Oy9997p3r17jj322Pzud7+LPjcAAKA1yDQAAEClkmcAAKA0yvojF5ctW5ahQ4emtrY2SVJVVZV169Zl/vz5mT9/fiZOnJiZM2emW7du2732X/7yl5xyyil58803kyTV1dVZtWpVHn300Tz66KO55557cv/992fPPfdszZcEAAC0ITINAABQqeQZAAAonbJt6Hr33Xdz2mmnpba2Nj179swdd9yR4cOHp6GhIZMnT86FF16YhQsX5vOf/3z+/Oc/b9fab7/9dkaNGpU333wzH/nIR3LnnXdm8ODBWb9+fW655ZZ84xvfyIwZM3LppZfmhhtu2EmvEIBK43a+bI3b+bI15XA7X3YdmQYAAKhU8gwAAJRW2X7k4oQJE/Lss88mSaZMmZLhw4cnSdq1a5fRo0fnpptuSpJMmzYtM2fO3K61r7vuuqxYsSJ77713pk2blsGDBydJ9txzz3zlK1/J1VdfnSS5+eabs2TJktZ6SQAAQBsi0wAAAJVKngEAgNIq64auJBk2bFg+9alPbTF+9tlnp3fv3kmSO+64Y7vW3jh/0zU2dckll6S6ujrvvfdeJk6cuL2lAwAAyDQAAEDFkmcAAKC0yrKhq76+Po899liSZMSIEU3OKRQKqampSZI8+OCD27z2iy++mH/+858trl1dXZ1jjz12u9cGAABIZBoAAKByyTMAAFB6ZdnQ9fzzz6ehoSFJ0r9//2bnbRxbsWJFVq5cuU1rL168eIvzW1r7ueee26Z1AQAANpJpAACASiXPAABA6XUodQFNefXVVxu/Puigg5qdt+nYq6++mu7du7f62nV1dVm9enWqq6ubnLdu3bqsW7eu8fHbb7/deF6p1a9eVeoSKHN1a9aWugTKXLsy2MvKiX2VrbGvsjXlsK9u/Dm1WCyWuJLdm0zTOlx72RrXXlpSDtfdcmNfZWvsq7SkXPZVmWbnk2daj2svLXHdZWvK5dpbLuypbI19la0ph311e/JMWTZ0rVr1n824qqqq2Xmbjm16zs5Yu7mw8LOf/SxXX331FscPOeSQbaoHoLxdVuoCAHYz5bOvrlq1Kl26dCl1GbstmQagHJTPdRdg91Be+6pMs/PIMwDloryuvQCVr3z21W3JM2XZ0FVJvve97+Wb3/xm4+OGhoasXLky++67bwqFQgkrg5bV1dXlkEMOycsvv5zOnTuXuhyAimdfpVIUi8WsWrUqBx54YKlLoUzINFQq116A1mVfpVLINGxKnqFSue4CtC77KpVie/JMWTZ0derUqfHr+vr6ZudtOrbpOduzdnP/mbd17Y4dO6Zjx46bHevates21QLloHPnzi5qAK3Ivkol8FfsO59MA7uOay9A67KvUglkmp1LnoFdx3UXoHXZV6kE25pn2u3kOnbIpp1oy5cvb3bepmPb+tc427t2586dm72VLwAAQFNkGgAAoFLJMwAAUHpl2dDVt2/ftGv3fmmLFy9udt7GsR49eqR79+7btHb//v23OL+ltT/60Y9u07oAAAAbyTQAAEClkmcAAKD0yrKhq6qqKkcffXSSZPr06U3OKRaLmTFjRpLk5JNP3ua1+/Tpk//7v/9rce01a9bkkUce2e61oZJ07NgxV1111Ra3owZgx9hXgU3JNLDzufYCtC77KrCRPAM7n+suQOuyr7I7KsuGriQZM2ZMkmTWrFmZN2/eFuOTJ0/O0qVLkyTnnXfeNq9bKBQa50+aNCm1tbVbzPnNb36T1atXp3379vnc5z63A9VD+evYsWPGjx/vogbQSuyrwH+TaWDncu0FaF32VWBT8gzsXK67AK3LvsruqKwbugYMGJBisZgzzzwzM2fOTJI0NDRk8uTJufDCC5MkI0aMyIknnrjZuePHj0+hUEihUGgyDHz7299Ojx49Ul9fn1NPPTV/+ctfkiTr16/PjTfemCuuuCJJctFFF6VPnz478VUCAAC7K5kGAACoVPIMAACUVodSF9CcDh065P7778+wYcNSW1ub4cOHp6qqKg0NDXnnnXeSJEcccUQmTpy43Wt36dIlU6dOzSmnnJLnnnsugwcPTqdOnfLOO+9kw4YNSd6/je8vf/nLVn1NAABA2yHTAAAAlUqeAQCA0irbO3QlSa9evbJo0aJceeWV6d+/fwqFQvbYY48MGjQo1113XZ544ol069Zth9YeNGhQ/vrXv+Yb3/hGPvzhD2fDhg3ZZ599cswxx+SWW27JAw884HZ8AADA/0SmAQAAKpU8AwAApVMoFovFUhcBAAAAAAAAAABAmd+hC2h9q1atyvjx4zNgwIBUV1enS5cuGTJkSK6//vqsX7++1OUBVIz6+vo88MADueaaa3LGGWfk0EMPTaFQSKFQyPjx40tdHgDsluQZgNYhzwBAacg0AK1DpqEt6FDqAoBdZ9myZRk6dGhqa2uTJFVVVVm3bl3mz5+f+fPnZ+LEiZk5c+YO3yYboC158sknM3LkyFKXAQBthjwD0HrkGQDY9WQagNYj09AWuEMXtBHvvvtuTjvttNTW1qZnz5556KGHsmbNmtTX12fSpEnp1KlTFi5cmM9//vOlLhWgYnTr1i0nnnhivvOd7+Suu+5Kjx49Sl0SAOyW5BmA1ifPAMCuI9MAtD6Zht2dO3RBGzFhwoQ8++yzSZIpU6bkU5/6VJKkXbt2GT16dBoaGnLuuedm2rRpmTlzZk488cRSlgtQ9o499tisXLlys2OXX355iaoBgN2bPAPQuuQZANi1ZBqA1iXT0Ba4Qxe0ERMmTEiSDBs2rDEobOrss89O7969kyR33HHHLq0NoBK1b9++1CUAQJshzwC0LnkGAHYtmQagdck0tAUauqANqK+vz2OPPZYkGTFiRJNzCoVCampqkiQPPvjgLqsNAACgJfIMAABQyWQaAGBHaOiCNuD5559PQ0NDkqR///7Nzts4tmLFii1uUQkAAFAK8gwAAFDJZBoAYEdo6II24NVXX238+qCDDmp23qZjm54DAABQKvIMAABQyWQaAGBHaOiCNmDVqlWNX1dVVTU7b9OxTc8BAAAoFXkGAACoZDINALAjNHQBAAAAAAAAAACUCQ1d0AZ06tSp8ev6+vpm5206tuk5AAAApSLPAAAAlUymAQB2hIYuaAMOPPDAxq+XL1/e7LxNxzY9BwAAoFTkGQAAoJLJNADAjtDQBW1A3759067d+//dFy9e3Oy8jWM9evRI9+7dd0ltAAAALZFnAACASibTAAA7QkMXtAFVVVU5+uijkyTTp09vck6xWMyMGTOSJCeffPIuqw0AAKAl8gwAAFDJZBoAYEdo6II2YsyYMUmSWbNmZd68eVuMT548OUuXLk2SnHfeebu0NgAAgJbIMwAAQCWTaQCA7aWhC9qIMWPGZMCAASkWiznzzDMzc+bMJElDQ0MmT56cCy+8MEkyYsSInHjiiaUsFaBivPXWW3njjTca/zU0NCRJ6uvrNzu+evXqElcKAJVNngFoffIMAOw6Mg1A65Np2N0VisVisdRFALtGbW1thg0bltra2iTv3+a3oaEh77zzTpLkiCOOyMyZM9OtW7cSVglQOXr16pVly5Ztdd6YMWNy++237/yCAGA3Js8AtC55BgB2LZkGoHXJNOzu3KEL2pBevXpl0aJFufLKK9O/f/8UCoXsscceGTRoUK677ro88cQTggIAAFCW5BkAAKCSyTQAwPZwhy4AAAAAAAAAAIAy4Q5dAAAAAAAAAAAAZUJDFwAAAAAAAAAAQJnQ0AUAAAAAAAAAAFAmNHQBAAAAAAAAAACUCQ1dAAAAAAAAAAAAZUJDFwAAAAAAAAAAQJnQ0AUAAAAAAAAAAFAmNHQBAAAAAAAAAACUCQ1dAAAAAAAAAAAAZUJDFwAAAAAAAAAAQJnQ0AXAbmH27NkpFAoZOnRoqUsBAADYbjINAABQqeQZgNanoQuAVuMHdgAAoJLJNAAAQKWSZwB2Lxq6AAAAAAAAAAAAyoSGLgAAAAAAAAAAgDKhoQuArfrb3/6WL37xi+ndu3c6duyY6urqHHrooTn11FNz2223JUmGDh2aYcOGJUnmzJmTQqHQ+K9Xr16Na51//vkpFAq5/fbbs3jx4owePTo9e/ZM+/btM378+MZ5K1euzPe///3069cvVVVV6dSpUwYNGpSf//znWbt27XbV//rrr+fTn/50CoVCRo8enXXr1jWOvfXWW7nqqqsycODAdOrUKVVVVRkwYECuueaa1NfX7/g3DQAAKBsyDQAAUKnkGYC2qUOpCwCgvC1evDhHH3106urqcvjhh2fUqFFp3759XnnllcydOzfLly/PBRdckJqamuy1116ZMWNGDjjggNTU1DSusd9++22x7uOPP54vf/nL6dmzZ4477risXbs2nTp1SpIsXbo0J5xwQpYtW5YPfOADGTlyZDZs2JBZs2blsssuy913352HH3443bp122r9S5YsyciRI/PSSy/lu9/9bq699toUCoUkyXPPPZeampq8/PLL6dmzZ4455pjsscceefLJJ3PFFVdkypQpmT17drp06dJK300AAGBXk2lkGgAAqFTyjDwDtGFFAGjBBRdcUExSvOaaa7YYq6+vL86ZM6fx8axZs4pJiscff3yz640ZM6aYpJikePnllxffe++9LeYceeSRxSTF008/vbh69erG4//617+Kn/jEJ4pJiueee+5m5zT13HPnzi1279692L59++Jvf/vbLWo/7LDDikmKP/zhD4vr1q1rHFuzZk3xnHPOKSYpXnDBBc2+FgAAoPzJNDINAABUKnlGngHaLh+5CECLXnvttSTJyJEjtxjbe++9c9xxx+3Qun369Mk111yTdu02vxQ9+uijmTdvXqqqqnLzzTdnn332aRz7wAc+kJtvvjlJMmnSpLzyyivNrn/XXXflpJNOyvr16/OnP/0pY8eO3Wx8woQJeemllzJq1Kj8+Mc/zp577tk4tvG5999//9x555156623dug1AgAApSfTyDQAAFCp5Bl5Bmi7NHQB0KJPfvKTSZKLL744M2bMyDvvvNMq637mM59J+/bttzg+e/bsJElNTU0OOOCALcYHDRqUj3/842loaMicOXOaXPunP/1pPve5z2XffffNI488khEjRmwx589//nOSZPTo0U2uUV1dncGDB+fdd9/NU089ta0vCwAAKDMyjUwDAACVSp6RZ4C2S0MXAC36zne+k+HDh2fevHmpqalJ586dM2TIkHzrW9/6n36I7tWrV5PHly9fniTp3bt3s+cedthhm83d1GOPPZYf/OAH6dixY+bOnZuBAwc2ucbSpUuTJF/4whdSKBSa/Ddt2rQkyeuvv76tLwsAACgzMo1MAwAAlUqekWeAtqtDqQsA493HygAABGBJREFUoLxVVVXloYceylNPPZXp06fn8ccfz+OPP5758+fnF7/4RcaNG5ff/OY3273u3nvvvROqTfr165c99tgj8+fPzyWXXJIpU6Y0+VwNDQ1Jmv8rk00deuihO6VWAABg55NpZBoAAKhU8ow8A7RdGroA2CZDhgzJkCFDkiTvvvtu7rvvvpx33nm54YYbctZZZ2XYsGGt8jwHHXRQkv/8dUZTNo5tnLuprl275v7778+oUaPywAMPZMSIEZk6dWqqq6s3m3fIIYfkhRdeyJe+9KWcddZZrVI7AABQvmQaAACgUskzAG2Pj1wEYLt16NAhZ511Vk455ZQkydNPP50k2XPPPZO8HyZ21NChQ5Mk06dPz2uvvbbF+MKFC/P000+nXbt2Oe6445pco3Pnzpk+fXpOPvnkzJkzJ8OHD89bb7212ZyNn9n+hz/8YYdrBQAAKpNMAwAAVCp5BqBt0NAFQItuuOGGvPjii1scX7FiRebPn5/kP7e7Pfjgg5Mkf/vb37Jhw4Yder5jjjkmRx55ZNauXZuxY8emvr6+ceyNN97I2LFjkyRnn312DjnkkGbXqaqqyp/+9KecccYZmTdvXoYOHbpZ+Ljoooty6KGHZvLkybnsssuyatWqJl/jLbfcskOvAwAAKA8yjUwDAACVSp6RZ4C2q1AsFoulLgKA8jVw4MA888wz6d27d/r375/OnTvn9ddfzyOPPJK1a9fmhBNOyIwZM9Khw/uf4jtkyJDMnz8/hx9+eAYPHpy99tor++23X6699tokyfnnn58JEybktttuy/nnn9/kcy5dujQnnHBCli1blv333z/HHXdcNmzYkFmzZqWuri6f+MQn8vDDD6dbt26N58yePTvDhg3L8ccfn9mzZzcef++993LBBRfkzjvvTJ8+ffLwww83hoy//vWvGTVqVGpra9O1a9d87GMfy8EHH5z6+vosWbIkzz//fPbff/+sWLFi53xzAQCAnU6mkWkAAKBSyTPyDNB2uUMXAC36yU9+kosvvjhdu3bNE088kcmTJ+e5557LkUcemQkTJmT69OmNQSFJpkyZknPPPTd1dXW5++67c+utt2bSpEnb9Zwf/OAHs2DBgnzve9/Lvvvum6lTp+ahhx7KYYcdlmuvvTaPPvroZkGhJe3bt8+ECRNy8cUXZ8mSJTn22GPz97//PUnSr1+/LFq0KD//+c/Tt2/fLFq0KJMnT868efOyzz775Nvf/nbuvffe7aodAAAoLzKNTAMAAJVKnpFngLbLHboAAAAAAAAAAADKhDt0AQAAAAAAAAAAlAkNXQAAAAAAAAAAAGVCQxcAAAAAAAAAAECZ0NAFAAAAAAAAAABQJjR0AQAAAAAAAAAAlAkNXQAAAAAAAAAAAGVCQxcAAAAAAAAAAECZ0NAFAAAAAAAAAABQJjR0AQAAAAAAAAAAlAkNXQAAAAAAAAAAAGVCQxcAAAAAAAAAAECZ0NAFAAAAAAAAAABQJv4ffiIYkePeXJ0AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 3000x600 with 3 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, axs = plt.subplots(1, 3, figsize=(30, 6))\n",
+    "\n",
+    "age_groups = [[30, 50], [50, 70], [70, 85]] \n",
+    "x = 'stroke'\n",
+    "hue = 'ever_married'\n",
+    "palette_color = 'pastel'\n",
+    "for i, age_group in enumerate(age_groups):\n",
+    "    tempDf = df[(df['age'] >= age_group[0]) & (df['age'] < age_group[1])]\n",
+    "    \n",
+    "    # draw(data, 'heart_disease', 'gender', 'age: ' + str(age_group[0]) + ' - ' + str(age_group[1]))\n",
+    "    \n",
+    "    data = tempDf[x].groupby(tempDf[hue]).value_counts(normalize=True).rename('percent').reset_index()\n",
+    "\n",
+    "    \n",
+    "    # Vẽ biểu đồ cộtkiii\n",
+    "    ax = sns.barplot(data=data, x=x, y='percent', hue=hue, ax = axs[i], palette = palette_color)\n",
+    "    axs[i].set_xlabel(x, fontsize=16)\n",
+    "    axs[i].set_ylabel('percent', fontsize=16)\n",
+    "    axs[i].set_title(f'Age: {age_group[0]} - {age_group[1]}', fontsize = 16)\n",
+    "\n",
+    "    # Thêm số trên đầu cột\n",
+    "    for p in ax.patches:\n",
+    "        if p.get_height() > 0:\n",
+    "            ax.annotate(format(p.get_height(), '.2%'), (p.get_x() + p.get_width() / 2., p.get_height()), \n",
+    "                    ha='center', va='center', xytext=(0, 7), textcoords='offset points',fontsize =16)\n",
+    "    \n",
+    "    axs[i].tick_params(axis='both', labelsize=18)\n",
+    "      \n",
+    "    \n",
+    "    axs[i].legend(title=hue, prop={'size': 16}, title_fontsize=16)\n",
+    "plt.show()\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ:</strong> Ở mốc tuổi từ 30 - 50, tỉ lệ bị đột quỵ giữa người chưa kết hôn và người đã kết hôn là không đáng kể. Mốc tuổi từ 50 - 70, người chưa kết hôn có tỉ lệ bị đột quỵ cao hơn 1.3 lần so với người đã kết hôn. Mốc tuổi 70 - 80,  người chưa kết hôn có tỉ lệ bị đột quỵ cao gấp 1,31 lần so với người đã kết hôn. \n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 147,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[ 163.30857258 3116.69142742]\n",
+      " [  84.69142742 1616.30857258]]\n",
+      "Chi-Square value: 58.52750104665151\n",
+      "Degree of Freedom:  1\n",
+      "p-value: 0.000000000000020\n",
+      "Có mối tương quan giữa việc lập gia đình và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "stroke_married_count = df[(df['ever_married'] == 'Yes') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_married_count = df[(df['ever_married'] == 'Yes') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_unmarried_count = df[(df['ever_married'] == 'No') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_unmarried_count = df[(df['ever_married'] == 'No') & (df['stroke'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa việc lập gia đình và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa việc lập gia đình và đột quỵ\"\n",
+    "married_arr = [stroke_married_count , nostroke_married_count]\n",
+    "unmarried_arr = [stroke_unmarried_count , nostroke_unmarried_count]\n",
+    "nij = []\n",
+    "nij.append(married_arr)\n",
+    "nij.append(unmarried_arr)\n",
+    "nij = np.array(nij)\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(2 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_married = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_married))\n",
+    "if p_married <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định chi – square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa việc lập gia đình và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa việc lập gia đình và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/nQ2BqvT.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 400px; height:400px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa tình trạng hôn nhân và đột quỵ</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 58.52750104665151</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  1</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000000000020</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa việc lập gia đình và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa việc lập gia đình và bệnh đột quỵ\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Kết hôn và đột quỵ có mối tương quan với nhau. Nhìn chung từ mốc 50 tuổi trở đi, nhóm người không kết hôn có khả năng tăng nguy cơ đột quỵ cao hơn một chút so với nhóm đã kết hôn\n",
+    "</div>\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.4. Đột quỵ và nơi ở </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:24px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "Chia bộ dữ liệu thành thành 2 nhóm ở thành thị và nông thôn, quan sát tỉ lệ đột quỵ ở hai nhóm.\n",
+    "\n",
+    "\n",
+    "\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 148,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACDkAAAK6CAYAAAA5YBWfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIjUlEQVR4nOzdd7jXdf0//vthHfYSAZMpJmjgRFNxMVREw5FpmJJ7pbhLTRI3mSPUzJE5vjnRVFQCwo2mYqA5cYEMRwJ5QAQEfP/+8MP5dWIInoPwltvtus51nfOcjxeeNM7rfp7PkkKhUAgAAAAAAAAAwBqu2uouAAAAAAAAAABgRQg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCissSGHCRMm5Oqrr86hhx6aLl26pEaNGikpKcmFF15YqXVHjx6dPn36pFmzZqlTp046deqUX//61/nss8+qqHIAAAAAAAAAYFWosboLWJY//vGPGTJkSJWueeWVV+bUU09NSUlJdtxxx7Ro0SJPP/10Lr744tx3330ZM2ZMmjVrVqV7AgAAAAAAAABVY409yaFz5845/fTTc/vtt+eNN97IIYccUqn1xo8fn9NOOy3Vq1fPI488kieffDL33HNP3n333fTs2TMTJkzIscceW0XVAwAAAAAAAABVbY09yeHII4+s8HW1apXLY1xyySUpFAo57LDDsscee5S3161bNzfddFM22GCD3HfffXnzzTfTqVOnSu0FAAAAAAAAAFS9NfYkh6r0xRdf5JFHHkmSHHTQQUv0t23bNt26dUuS3H///d9qbQAAAAAAAADAilkrQg5vvfVWPv/88yRJ165dlzpmcfv48eO/tboAAAAAAAAAgBW3xl5XUZUmTpyYJGncuHEaNGiw1DGtW7euMHZFffnll/nggw/SoEGDlJSUVK5QAAAAAAAAAFgLFQqFzJ49O9/73vdSrdqyz2tYK0IOs2fPTpLUq1dvmWPq16+fJJk1a9Zy15o/f37mz59f/vW0adOyySabVEGVAAAAAAAAALB2mzJlSlq1arXM/rUi5FCVLrnkkpx33nlLtE+ZMiUNGzZcDRUBAAAAAAAAQHGbNWtWWrduvczbGRZbK0IOi/8Q5syZs8wxn332WZJ8bVDhrLPOyqmnnlr+9eI/6IYNGwo5AAAAAAAAAEAllJSULLd/rQg5tGvXLkny6aefZvbs2UtNfkyZMqXC2GUpLS1NaWlpVZcIAAAAAAAAAHyNaqu7gG9Dx44dU7du3STJiy++uNQxi9u33HLLb60uAAAAAAAAAGDFrRUhh1q1amXPPfdMktxxxx1L9L///vt59tlnkyT77rvvt1obAAAAAAAAALBivlMhh2uuuSadOnVK//79l+g788wzU1JSkptvvjkjRowob//8889zxBFHZNGiRfnxj3+cTp06fZslAwAAAAAAAAArqMbqLmBZxo0bl+OPP77863fffTdJcv311+fhhx8ub7///vuz3nrrJUmmT5+eCRMmpGXLlkust+WWW+byyy/Pqaeemj59+mTnnXdO8+bN8/TTT+fDDz9Mx44dc911163ipwIAAAAAAAAAvqk1NuQwa9asPP/880u0T506NVOnTi3/ev78+Su85imnnJIuXbrk8ssvzwsvvJA5c+akTZs2Oeuss3LWWWelQYMGVVI7AAAAAAAAAFD1SgqFQmF1F1HMZs2alUaNGqWsrCwNGzZc3eUAAAAAAAAAQNFZ0Xfva+xJDgDFbsqUKfntb3+bv/3tb5k6dWoaNGiQrbbaKgMGDMiee+65xPhBgwblvPPOW+6ab7zxRjp16rTCNbz++uu54YYbMm7cuEyaNCnTp09PoVDI+uuvn5133jknn3xyunTpssz5d955Z2644Ya89NJLmTt3btq0aZO99947Z599dpo0abLUOXfccUcuuuiivPPOO2nRokUOP/zwDBw4MNWrV19i7Jw5c/KDH/wg9evXz7hx41KrVq0VfjYAAAAAAChGCxYsyKJFi1Z3GbDKVKtWLTVr1kxJSckqWV/IAWAVGDt2bHr37p2ZM2dmvfXWyx577JEZM2bk8ccfz6hRo/Kb3/xmmYGGzTbbLJtvvvlS+xo1arRSdTz77LMZMmRIWrRokY4dO2a77bbL559/nldeeSV//vOfc9ttt+W2225Lv379KswrFAo59NBDc9ttt6V69erZZptt0rJly7z44ou57LLLcvfdd2fMmDFp06ZNhXkPP/xwfvazn6VJkybZc88989JLL+W8887LjBkzcvXVVy9R3znnnJPJkydnzJgxAg4AAAAAAHynzZo1K9OnT8/8+fNXdymwylWvXj1169ZN8+bNq/wdkOsqKsl1FcD/mjdvXjbaaKNMmTIlBx54YG6++ebUqVMnyVfhh8WBh1GjRmXXXXctn7f4JIdzzz03gwYNqpJaJk2alHnz5i1x+sOXX36ZK664ImeccUbq1q2bqVOnVjiZ4dprr80vfvGLNGjQIA8//HB22mmnJF+lS48//vj86U9/Srdu3TJmzJgK626xxRZ5/fXX88orr2SjjTbKnDlz0rVr17z99tuZOnVqWrZsWT72xRdfzLbbbptjjjkmf/jDH6rkeQEAAAAAYE00a9asTJs2LfXr10+jRo1W6W+5w+pUKBSyaNGizJ07N2VlZfnyyy/TqlWr1K1b92vnuq4CYDW5//77M2XKlDRu3DjXXXddecAhSbbeeuv85je/yUknnZTzzz+/QshhVWjXrt1S26tVq5bTTz89f/zjH/Pee+9lzJgx+dGPflTeP2TIkCTJqaeeWh5wSJKaNWvmqquuyvDhw/PMM8/k0UcfTc+ePZMkX3zxRV555ZX06NEjG220UZKkXr16Ofjgg3POOefkhRdeSN++fZMkixYtytFHH52WLVvmkksuWRWPDgAAAAAAa4zp06enfv36adWqlXADa4X69eunadOmef/99zN9+vQlTgevjGpVthIASb46rSFJttpqqzRu3HiJ/l69eiVJnnnmmXz00UffZmlLqFHjq6xbaWlpedusWbPy1ltvJfn/a/1vderUSbdu3ZIk9957b3n7p59+mkWLFqVp06YVxq+zzjpJks8++6y87corr8z48eNzzTXXOAUHYDmmTJmSE044IR06dEhpaWmaNWuW3XffPY888sgKr3HttdempKQkJSUlOfLIIytVz4MPPpi+ffumZcuWqVWrVpo3b57tt98+559//hJjd9lll/J9l/dx+OGHLzF3yJAh2XDDDVNaWprvf//7yz3xZ9q0aWnUqFF22223Sj0bAAAAwKqyYMGCzJ8/P40aNRJwYK1SvXr1NG3aNHPmzMnChQurbF0nOQBUscUv8xe/3P9fzZo1S/LVcT3jxo1Lnz59KvSPGzcuZ555ZmbOnJlGjRpliy22yI9+9KM0aNCgSuu84YYb8tZbb6V58+bZdtttl6h/RZ7hn//8Z3lb8+bNU7du3bzxxhsVxi7+ev3110/y1RUa5557bvbdd9/ss88+VfIsAN9FY8eOTe/evTNz5syst9565dcdPf744xk1alR+85vf5LzzzlvuGu+9915++ctfpqSkJJW5pe6LL77IwQcfnKFDh6ZOnTrZbrvt0qJFi3z00Ud57bXXctVVV+U3v/lNhTm9e/de5olCX3zxRe68884kSffu3Sv0XXPNNTn55JOz3nrrZc8998w//vGPnHDCCZk3b15OO+20JdY64YQTsnDhwlx33XXf+PkAAAAAVqVFixYl+eq0ZFjbLP5F24ULF5b/8m1lCTkAVLHmzZsn+erF0tL8d/vEiROX6H/ooYfy0EMPVWhr1KhRrrrqqvTv3/8b1fT555/n+OOPT5KUlZXl1VdfzTvvvJMWLVpk6NChFU5TaNq0aapXr55Fixblvffey8Ybb7zMZ/jf+vv27Zu77rorV1xxRY488sg899xzufnmmysEKY477rjUqFEj11xzzTd6FoC1wbx58/LjH/84M2fOzIEHHpibb765/PqjsWPHZo899sj555+fHXbYYZlXH3355Zc59NBDU1JSkv79++fWW2/9xvUcddRRGTp0aPbZZ5/ceOON5WG3xfu88MILS8w588wzl7nePffckzvvvDONGjXK/vvvX96+aNGinHfeeWnWrFn+9a9/pVmzZvn3v/+djTfeOBdeeGEGDBhQ4YcB999/fx544IFceuml2WCDDb7x8wEAAAB8G5ziwNpoVXzfu64CoIr16NEjyVenHIwfP36J/v/+TdNZs2aVf96hQ4dcfPHFGT9+fGbOnJmZM2dmzJgx2WuvvVJWVpaf//znuf32279RTV988UVuvfXW3HrrrXnggQfyzjvvZIMNNshdd92VHXfcscLY2rVrZ/vtt0+S3HjjjUus9fbbb+exxx5bov4kueSSS9KiRYucdtppadSoUXbffffMmzcvN954Y0pLS3PnnXdmxIgRGTx4cL73ve+Vz5s3b155khWAr17eT5kyJY0bN851111XHnBIkq233rr81ISlXROx2JAhQ/L000/nt7/97TJPVFgRjz76aG677bZ07tw599xzT4WAQ5JUq1atwolAK+Kmm25KkvTr16/Cs02aNCnTp0/PvvvuW75P8+bNs99+++XTTz+tcFrQ7Nmzc+KJJ2bzzTfPKaec8k0fDwAAAAAoMkIOAFWsR48e2WmnnVIoFNK3b9889NBDKSsry3vvvZfTTz89t912W/lvoVar9v//a/iQQw7JWWedlc033zxNmjRJkyZN0q1btzz00EM58cQTkySnnHJKvvjii5WuqXHjxikUCikUCvnoo48yfPjwrLvuuunevXvOOOOMJcb/5je/SUlJSR588MEce+yxefvttzNr1qz8/e9/zx577FE+7r/rT5J27drl1VdfzW9/+9scddRROeecc/Kvf/0rffv2zX/+85+cfPLJ6datW4499tgkyd13352OHTumTp06qVOnTvbcc8+lnm4BsLYZO3ZskmSrrbZK48aNl+jv1atXkuSZZ57JRx99tET/hAkT8utf/zo777xzjjvuuErVcvXVVydJTj755Co5UnHKlCkZPXp0kuSII46o0DdjxowkX50q9N8WX5/031cqnXXWWfnoo49y4403VtkxdwAAAADAmk/IAWAVGDp0aLp165apU6emb9++ady4cTp06JDLL788J510UjbbbLMkS77EWZZBgwalevXq+eSTT/L8889XqrYWLVpkjz32yFNPPZXNN988l112WR5++OEKY3r16pUbb7wxtWvXzvXXX5+NNtoojRo1ym677ZYvvvgiF1xwwTLrb9asWX75y1/mhhtuyAUXXJBOnTolSU4//fR8+umnueGGG8oDFD/96U/TvHnz3HfffbnyyivzzDPPpHv37hVeYgGsjRb/e3Dxy/3/tfiUg0KhkHHjxlXoW7RoUX7+85+npKQkN910U6WOg1u0aFEeffTRJMlOO+2Ujz76KL///e9z3HHH5eSTT86tt9660v/OvuWWW/Lll19m0003TdeuXSv0LT5x4r9PbPjvr9dff/0kyXPPPZc//vGPGTBgwBJrAAAAAADfbX7lCWAVaN68eZ5++umMHj06jz32WGbMmJEWLVpk7733TteuXcuvaujSpcsKrde0adM0b948H374YaZOnVolNdaqVSs/+9nP8tJLL+X+++/PXnvtVaH/iCOOyJ577pl77703b7zxRkpKSrLFFlvkwAMPzB133LFS9T/55JO5+eabM3DgwGyyySZJksGDB6devXoZNmxYmjRpkiSpXr16jjvuuNxxxx05+uijq+Q5AYpR8+bNkyTvvffeUvv/u/1/T8D53e9+l+effz5XXnllOnToUKk63nvvvfIQw3PPPZfjjz9+iVDDGWeckbvuuqv8uqblKRQKueWWW5IseYpD8tVzb7fddnnkkUdy1113Zc8998zDDz+cRx55JJtuumnatm2bBQsW5Oijj07r1q3LQ3cAAAAA3yXt2rXL+++/X6GtVq1aWXfddbPVVlvlqKOOWuJn+t+GJ554It27d8/OO++cJ554YqXmLv5FnEKhsAoqY20j5ACwipSUlGTXXXfNrrvuWqH93XffzYcffph11lknW2655QqttWjRopSVlSVJGjRoUGU11qtXL0ny73//e6n9LVu2zAknnLBE+9NPP50kSzzb0syfPz/HHHNMOnbsmLPPPru8/aWXXkrnzp3LAw5JssMOO5T3AazNevTokYsuuij//Oc/M378+GyxxRYV+q+77rryz2fNmlX++auvvppzzz0322+/fQYMGFDpOhZfH5F8FUrYfvvtc9lll6VTp0559913c/bZZ2f48OHZe++9M27cuHz/+99f7npPPPFE3nvvvZSWlubggw9e6pirrroq3bt3T79+/crbGjZsmBtvvDFJctlll+WVV17J8OHDy/87liRz585N7dq1K3VyBQAAAMCapFu3btlwww2TJGVlZRk/fnyGDRuWYcOG5ZRTTskVV1yxmiuksioTHFmbua4C4Ft22WWXJUmOPvro1KpVa4XmDBs2LJ9//nlKSkqq9FjuxUeQb7TRRis8Z9KkSbnvvvtSv379HHrooV87/qKLLspbb72V66+/PqWlpeXtJSUlmTNnToWxi7/2ggpY2/Xo0SM77bRTCoVC+vbtm4ceeihlZWV57733cvrpp+e2225LzZo1kyTVqn31f+kXLlyYn//856lWrVr+/Oc/l7dXxn8n69dff/2MHDkyXbt2Tf369bPZZptl2LBh6dy5cz777LMMHjz4a9e76aabkiR77733Mq9s6tq1a1599dWcd955Oeqoo3LBBRfk1VdfzTbbbJN33303F1xwQfr165c99tgjSXL11VendevWqVu3burVq5eDDjqoQjgDAAAAoFgdeeSRueWWW3LLLbfk/vvvzzvvvFP+i4lXXnllxo4d+63Ws8022+SNN97Ibbfd9q3uC/9LyAFgFXj99dcr/GZt8tXLp4svvjjXX399Ntxww/z6178u75s8eXL+8pe/ZN68eUus9cADD+TII49MkvzsZz9Ly5YtK/S/8MIL6dSpUzp16rTE3N///veZMmXKEu2ff/55Lrzwwtx3332pUaNGDjvssAr9X3zxRcaPH7/EvDfffDN77rln5s6dm8svv3yZd8Uv9vrrr+e3v/1tjjzyyOy0004V+rbccsu88cYbeeaZZ8rbbrjhhvI+gLXd0KFD061bt0ydOjV9+/ZN48aN06FDh1x++eU56aSTstlmmyVJeVjgoosuyrhx43LeeeelY8eOVVLDf58edOihh1YIqyVfXTN0zDHHJElGjx693LXKysry17/+NcnSr6r4b23bts1vfvOb3HDDDTnnnHPSunXrJMkxxxyTOnXq5Pe//32Sr059GDBgQLbaaqs88MADGThwYO67777sscce+fLLL1fqWQEAAADWdDVq1Mjvfve7NGzYMEny0EMPfav7161bN506dUqbNm2+1X3hfwk5AKwCN9xwQ1q0aJEddtghBx54YPbZZ5+0atUqv/71r9OhQ4f8/e9/r3DE9syZM3PIIYdk3XXXzU477ZR+/fpln332yUYbbZR99903M2fOTPfu3fPHP/5xib0+//zzTJgwIRMmTFii7/e//33atm2bH/zgB9lvv/1y0EEHpXv37mnVqlUGDhyY0tLS/PnPf07nzp2XWHPLLbdMhw4d0qdPnxx00EHZfvvt07lz57zxxhs5//zzc/TRRy/3z6BQKOToo49O06ZNc+mlly7Rf84555Rf6bH33nvnhz/8Yf785z9nww03rHBEOcDaqnnz5nn66aczatSonHnmmTnqqKNyzjnnZOzYsbnyyiszbdq0JEmXLl2SJPfff3+Sr/5yu8suu1T4uOWWW5IkjzzySHnbimjXrl356TobbLDBUscsbv/www+Xu9add96ZuXPnpk2bNunVq9cK7f/fbr311jz66KO57LLL0rx58yTJ4MGD07Zt29x7773Ze++9c9ZZZ+WUU07J2LFjvzZ0AQAAAFCMateuXX5l6Mcff7xE/6OPPpr99tsv6623XmrVqpXmzZtn3333zT/+8Y+lrvf222/n8MMPT/v27VNaWpr69eunbdu22XPPPXPzzTdXGPvEE0+kpKRkmT9b+sc//pE99tgjjRs3Tv369dO1a9f8+c9//tpnWvyLldtuu20aN26c2rVrp2PHjvnlL3+51BM7b7nllpSUlOTQQw/NnDlzctZZZ2XDDTdMaWlpWrZsmZ///OflPztbmmnTpuWMM85Ily5d0qBBg9SrVy8bbbRRDj300Dz77LOVrm9F7bLLLunevXuS5Mknn0xJSUn5R7t27ZIkO++8c0pKSnLnnXcuc51LL700JSUlOeCAA8rbBg0alJKSkgwaNCjvv/9++vfvn/XWWy+1a9fORhttlEGDBmXu3LnLXPOtt97KMccckw4dOqR27dpp1KhRdtppp/zlL3/5xs9blWqs7gIAvov69OmTSZMmZdy4cXnxxRdTWlqajh075rTTTssJJ5yQOnXqVBjfunXr/OpXv8rYsWPzzjvvZNy4cfniiy/SrFmz7LXXXjnooINy4IEHrvTR4xdffHFGjRqVF198MU899VQ+/fTT1KtXLx06dMgRRxyR4447bqkvrerWrZuTTjopTz/9dJ577rnMmTMnzZs3z09/+tMMGDAg22yzzdfufcMNN+SZZ57JPffck8aNGy/R37t37wwbNiznn39+RowYkbp16+anP/1pLr/88tStW3elnhPgu2pxGGzXXXet0P7uu+/mww8/zDrrrLPE6TdjxoxZ5nofffRRPvrooxXev379+unYsWPefPPNTJ8+faljFrfXr19/uWst/gvtYYcdttL/PZs+fXpOO+20dO/evfz0oY8//jgffvhh9t9//9So8f//tWaHHXbIb3/727z00kvZbbfdVmofAAAAgGKw+CTpFi1aVGg//fTTc/nll6datWrp2rVrdtxxx0yePDkPPvhgHnroodx4440VTnZ+9dVX061bt8yaNSsdO3bMXnvtlerVq2fq1Kl56qmnMm3atCVOgl6WoUOHpl+/flm0aFE6d+6cLl26ZMqUKTnyyCPz2muvLXPeBx98kN69e+eVV15J06ZNs/XWW6dBgwYZN25cfve732Xo0KF54okn0rZt2yXmlpWVZfvtt8/kyZOz4447pnPnzvnHP/6R2267LU8++WRefvnlNGrUqMKcRx99NPvvv38+/fTTNG/ePD179kytWrUyadKk3HHHHUmS7bffvkrq+zq9e/dO7dq1M3LkyLRo0SK9e/cu72vWrFmS5KSTTspTTz2Va665Zqm/IPrll1+W/4Ls4qtM/tvEiROz1VZbpUaNGtlpp50yd+7cPP744znvvPMyevTojB49OrVr164wZ+jQoenfv3/mzZuXTp06pU+fPikrK8vzzz+fQw45JI899tgKhVdWqQKVUlZWVkhSKCsrW92lAACwljj22GMLSQpnnXXWCo0/99xzC0kKRxxxxErvNXDgwEKSQp8+fZbaf/DBBxeSFHbfffdlrvHKK68UkhRKSkoKkyZNWukaDjnkkELt2rULb731Vnnbxx9/XEhS2GOPPSqMveuuuwpJCpdeeulK7wMAAACwKsydO7fw+uuvF+bOnbtC49u2bVtIUrj55puX6Hv99dcL1atXLyQpjB07trz9hhtuKCQpbLjhhoWXX365wpwnn3yy0KBBg0KtWrUq/HzlsMMOKyQpXHjhhUvs8/nnnxeefPLJCm2PP/54IUlh5513rtD+4YcfFho0aFBIUrjiiisq9I0ePbpQu3btQpLC/76a/vLLLwvdunUr/7nVrFmzyvsWLFhQOO200wpJCt27d68w7+abby5fb/fdd6/wnnbmzJmFzTffvJCkcPHFF1eYN3ny5EKjRo0KSQpnnnlmYf78+RX6P/7448LTTz9d6fpWxrL+TBdbuHBh+ffDuHHjluh/6KGHCkkKm266aYX2xT8PTFLYe++9C59//nl535QpUwobbbRR+Z/Df/vXv/5VKC0tLdSuXbtw3333VeibNGlSoUuXLoUkhVtvvXWFn3Flvv9X9N276yoAAGAN9Prrr5en8hdbuHBhLr744lx//fXZcMMN8+tf/7pK9rr//vvTqVOn9OzZc4m+AQMGpEmTJhk+fHiuv/76Cn133XVXbr/99vJxy3LTTTclSXr16rXSqfbRo0fn//2//5eBAweWH8WYfHWdR6tWrfL444/n3XffTZIsWrSoPEX+vydcAAAAABSzsrKyjBo1Kvvtt18WLVqUc845J127dk3y1W/zDxo0KMlXP6/ZdNNNK8zdaaedMnDgwHzxxRcVfr6z+LqLPn36LLFfnTp1stNOO61QbTfddFNmz56dbbfdNqecckqFvp49e+aYY45Z6ryRI0fmmWeeyeabb57rrrsuDRo0KO+rUaNGLr300nTu3DmPP/54Xn311SXm16tXLzfffHMaNmxY3takSZOceeaZSbLEdaZXXHFFysrK8qMf/SiXXHJJatWqVaG/efPm2WGHHaqsvqpQvXr1/OIXv0iS/OEPf1ii/5prrkmS8jH/q06dOrnuuusqnDDeqlWrXH755UmSa6+9NvPmzSvvu+iiizJ//vxceOGF2W+//Sqs1bZt2/Kf81111VWVeKrKE3IAAIA10A033JAWLVpkhx12yIEHHph99tknrVq1yq9//et06NAhf//731OvXr0q2ausrCwTJkwoDwv8t2bNmuXuu+9O7dq1c+yxx6Zz5875yU9+ki233DL9+vVLoVDIwIEDl/qX4SRZsGBB+V19RxxxxErVNXfu3Bx77LHp0qVLzjjjjCX6Bw4cmHnz5qVr167Zb7/9stlmm2XUqFHp1q1bevTosVJ7AQAAAKxpDjvssJSUlKSkpCSNGzfO7rvvnrfffjt/+ctfcsEFF5SPGz9+fD744IN06NAhW2211VLX2mWXXZIkzz77bHnb4qupjzvuuIwcObLCy+6V8cQTTyRJfvazny21/+c///lS2x955JEkyY9//OMK15EuVq1atfKgxX/XvVjXrl2z3nrrLdG+8cYbJ0mmTZtWoX3EiBFJkqOPPnqp9VR1fVXlyCOPTN26dXPHHXfkP//5T3n7O++8k1GjRqVx48Y5+OCDlzp3t912S8uWLZdo32uvvbLOOutk1qxZGTduXJKvwjJ/+9vfkiQHHnjgUtfr2rVr6tevn/Hjx3/j75eqsOQ/DfgOuPeFT1Z3CQAUuf23WXd1l8Bark+fPpk0aVLGjRuXF198MaWlpenYsWNOO+20nHDCCRXS16varrvumpdffjkXX3xxRo8enQcffDANGzZMnz59ctJJJ2W33XZb5txhw4Zl+vTpadq0afbZZ5+V2vf888/PxIkT8+yzz6ZmzZpL9B999NGpVatWLrvssjz88MNp3LhxjjnmmPz2t79NSUnJyj4mAAAAwBqlW7du2XDDDZMkn3zySZ5++unMnj07xx13XL7//e+XhxTee++9JMm77777tT8T+eST//8d2hlnnJExY8Zk9OjR6d27d2rWrJnNNtssO+20U376059m6623XqE6p06dmiRp3779UvuX1b647oEDB2bgwIErXPdibdq0WerYxSc7/O9L+Pfffz9J0qlTp+XuVVX1VZUmTZrkkEMOyfXXX5+bbropp59+epKvTmEoFAo57LDDUrdu3aXOXdaffZK0a9cuM2bMKP/nN2PGjPKTZVu3bv21dc2YMSPrr7/+yj5OlRByAACANdBuu+223PDAyhg0aFD5kYVLc+ihh+bQQw9d7hobbbRRbrnllpXe+8c//nEKhcJKz0uSSy65JJdccslyx6xI7QAAAADF6Mgjj6zwc4+ysrLsu+++efzxx3PAAQfk9ddfT926dfPll18mSVq2bJndd999uWs2a9as/PO6devm73//e8aOHZsRI0bk2WefzbPPPpsXX3wxV1xxRY4//vilXpFQVRbXvcMOO6RDhw7LHfuDH/xgibZq1VbtpQWVra8qDRgwINdff33++Mc/5tRTT828efNy8803p6SkZJlXVayoxT+7W/y8ybJP3/hvpaWlldq3MoQcAAAAAAAAANZwjRo1yt13351OnTrl/fffzxVXXJFzzjmn/Lfu11lnnW/0Sypbb711+akNCxcuzAMPPJD+/fvn2muvzf7775/u3bsvd/7666+fN998M5MmTVpq/7LaF9e99957l59OsCq1adMmEyZMyJtvvll+QsbyfNv1Lc8mm2ySXr16ZfTo0fnb3/6WDz74IJ9++mn22GOP5QYwJk6cuMy+xf9cWrVqleSrAEydOnUyd+7cXHbZZRUCMWuaVRtvAQAAAAAAAKBKrLvuujnnnHOSJJdddlk+/fTTbL311mnWrFlef/31vPbaa5Vav0aNGtl///3LT4R46aWXvnbOzjvvnCS5/fbbl9p/2223LbV9jz32SJIMHTr0G58EujJ69+6dJLnxxhtXaPy3UV+tWrWSfBUu+TonnXRSkuSaa64pP2HjhBNOWO6cUaNG5d///vcS7cOHD8+MGTPSoEGDbLXVVkmS6tWrZ9ddd02S3HPPPSv+EKuBkxwAAJbi0xFXr+4SAChyjXufuLpLAAAA4Dvo+OOPz+9///tMnjw5l19+eS644IKce+65OfHEE7Pvvvvmz3/+c3bYYYcKcxYtWpQnn3wydevWzbbbbpskufbaa9OzZ8907NixwtiPPvooL774YpKkbdu2X1vPEUcckUsvvTT/+Mc/ctVVV2XAgAHlfU888USuu+66pc7be++9s/XWW+eFF17IYYcdlt/97ndZd911K4z5z3/+k7vvvjtHHnlkatSo3KvtU089NX/+858zbNiwnHPOOTn33HNTs2bN8v5///vfeeutt8r/7L6N+hafovD2229nwYIFFer5X3369MmGG26YESNGJEk6dOhQHsRYlrlz5+a4447LX/7yl9SpUydJ8sEHH+S0005Lkhx77LGpXbt2+fhzzz03I0aMyBlnnJF69erlkEMOWeJakFdffTVvvfVW9ttvv5V+3qriJAcAAAAAAACAIlFaWppBgwYlSYYMGZKZM2fmhBNOyBlnnJG33347O+64Yzp37px99tkn/fr1S/fu3dOsWbP07NmzwskMN9xwQzp16pQNNtggffv2zcEHH5zdd989G2ywQaZOnZoePXqkb9++X1vP9773vdx4442pXr16TjrppGy66aY56KCDsvPOO6dHjx459thjlzqvWrVqeeCBB7L55pvn1ltvTfv27dOtW7f069cvP/7xj7PFFltk3XXXzXHHHbdCJx18nTZt2uTee+9NgwYNctFFF6V169bZd999c8ABB+SHP/xhWrVqlT/96U/fan1t2rRJ165d8+9//ztdunTJwQcfnCOPPDJnnnnmEmOrVatW4eSG448/PiUlJctdv3///nniiSeywQYb5IADDkjfvn2z0UYb5c0338x2222X8847r8L4LbfcMn/5y1+SJIceemjatm2b3XffPQcffHD69OmT1q1bp0uXLqv9pAchBwAAAAAAAIAi0r9//2yyySaZPXt2fve73yVJLr300jzzzDP52c9+ls8++ywjRozII488kg8++CC77LJL/vSnP+XAAw8sX+Oiiy7Kcccdl8aNG+e5557L0KFD8/rrr+eHP/xhbr311owYMWKFTyf46U9/mieeeCK777573n///Tz44IOZPXt2rrvuulxxxRXLnPe9730vzz33XK677rpss802mTBhQu69996MGTMmyVcnDYwcObLCaQOVsdtuu+XVV1/NSSedlMaNG2fEiBH529/+lk8//TSHHHLIEoGMb6O+++67LwcddFBmzZqVu+++OzfddFPuuuuupY5dfI1I3bp1c/jhh3/t2u3bt8+LL76Y7t2756mnnsrIkSOz3nrr5Te/+U1Gjx5dfrrDf/vJT36S1157LaecckoaN26cZ555Jvfdd19ef/31bLjhhhk8eHAuuuiib/y8VaGk8G1ccPIdNmvWrDRq1ChlZWVp2LDh6i6H/3PvC5+s7hIAKHK9Zi79/0QCwIpyXQUAAABJMm/evEycODHt27evspf1rJ3OOeecXHTRRTn66KNz/fXXL3PcoEGDct555+Xcc88tP/VjdVmZ7/8VfffuJAcAAAAAAAAAWIN9+OGH+cMf/pBq1arl5JNPXt3lrFYrdr4IAAAAAAAAAPCtOvPMMzNt2rSMHj06n376aY499thsvPHGq7us1UrIAQAAAAAAAAAq4U9/+lPGjBmzQmObNWuWyy67bIXG3nXXXZk8eXJatmyZk08+OYMHD65Mmd8JQg4AAAAAAAAAUAljxozJrbfeukJj27Ztu8Ihh0mTJq10LYMGDcqgQYNWel6xqLa6CwAAAAAAAACAYnbLLbekUCis0Mc3CS7w/xNyAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFGqs7gIAAAAAAAAAWDXufeGT1V3CStl/m3WrdL127drl/fffr9BWq1atrLvuutlqq61y1FFHZa+99qrSPVeFQYMG5bzzzsu5556bQYMGre5yVishBwAAAAAAAAC+07p165YNN9wwSVJWVpbx48dn2LBhGTZsWE455ZRcccUVq7lCVpSQAwAAAAAAAADfaUceeWQOPfTQ8q8XLlyYU045Jddcc02uvPLK9OvXL1tvvfXqK5AVVm11FwAAAAAAAAAA36YaNWrkd7/7XRo2bJgkeeihh1ZzRawoIQcAAAAAAAAA1jq1a9fO97///STJxx9/XN6+yy67pKSkJE888cRS5w0aNCglJSUZNGjQMtsnT56cI444Iq1bt07NmjUrnCLx17/+NUceeWQ6d+6cJk2apHbt2mnfvn0OP/zwTJgwoaof8zvHdRUAAAAAAAAArJVmzZqVJGnRokWVrfn2229niy22SK1atdKtW7cUCoU0a9asvP+AAw5IaWlpNtlkk/To0SMLFy7Mq6++mptvvjn33HNPRo0ale23377K6vmuEXIAAAAAAAAAYK3zxhtv5L333kuS9O3bt8rWveOOO3LwwQfnT3/6U0pLS5fov/3227PXXnulXr165W2FQiF//OMf84tf/CJHH310XnnllZSUlFRZTd8lrqsAAAAAAAAAYK1RVlaWUaNGZb/99suiRYtyzjnnpGvXrlW2ftOmTXPNNdcsNeCQJAceeGCFgEOSlJSU5Pjjj892222X1157LW+88UaV1fNd4yQHAAAAAAAAAL7TDjvssBx22GEV2qpXr56//OUv+dnPflale/Xq1SuNGjVa7ph33nknI0aMyDvvvJPZs2dn0aJFSZKPP/44STJhwoRssskmVVrXd4WQAwAAAAAAAADfad26dcuGG26YJPnkk0/y9NNPZ/bs2TnuuOPy/e9/P9tss02V7dWuXbtl9i1atCgnnHBCrr/++hQKhWWOmzVrVpXV813jugoAAAAAAAAAvtOOPPLI3HLLLbnlllvyyCOPZMqUKenevXtmz56dAw44IJ9//vkKr/Xll18ut79OnTrL7BsyZEiuu+66tGjRInfccUcmTZqUuXPnplAopFAopF+/fkmy3ADE2k7IAQAAAAAAAIC1SqNGjXL33XenadOmef/993PFFVeU99WqVStJMnv27KXOff/997/xvvfcc0+S5Prrr0+/fv3Stm3b1K5du7z/7bff/sZrry2EHAAAAAAAAABY66y77ro555xzkiSXXXZZPv300yTJ+uuvnyR54403lpjz+eef5/HHH//Ge86cOTNJ0rZt2yX6Xnvttbz00kvfeO21hZADAAAAAAAAAGul448/Pm3atElZWVkuv/zyJEmvXr2SJH/4wx8ybdq08rFz5szJ0UcfnSlTpnzj/TbeeOPytf/72osPP/ww/fv3z8KFC7/x2msLIQcAAAAAAAAA1kqlpaUZNGhQkmTIkCGZOXNmDjjggHTt2jWTJ0/OD37wg+y1117p06dP2rdvnyeeeCKHH374N97v7LPPTq1atXLjjTemY8eOOfDAA7PHHnukQ4cOmT9/fvbdd98qerLvLiEHAAAAAAAAANZa/fv3zyabbJLZs2fnd7/7XWrWrJm///3vOeGEE9KgQYOMGjUq//rXv7Lvvvtm3Lhxad269Tfe64c//GFefPHF9O3bN3PmzMmwYcPy7rvv5sQTT8w//vGPNGzYsAqf7LuppFAoFFZ3EcVs1qxZadSoUcrKynzDrUHufeGT1V0CAEWu18y7VncJABS5xr1PXN0lAAAAsAaYN29eJk6cmPbt26d27dqruxz4Vq3M9/+Kvnt3kgMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKNVZ3AQAAAAAAAACsGp+OuHp1l7BSGvc+sUrXmzRpUtq3b58kmThxYtq1a7fMse3atcv777+fm2++OYceeugK7zFo0KCcd955OffcczNo0KDKFczXcpIDAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAABYil122SUlJSV54okn8vTTT+dHP/pR1l133VSrVi233HLLEuPff//99O/fP+utt15q166djTbaKIMGDcrcuXOXGLtgwYL85S9/yc9+9rN06tQpDRs2TJ06ddKxY8cMGDAgH3zwwdfW9NJLL2W//fZLs2bNUlpamk022SSXX355CoVCVf9RrDGEHAAAAAAAAABgOYYOHZpddtkl7733Xnr16pVdd901paWlFcZMnDgxW221VUaNGpUdd9wxu+66az744IOcd9552XXXXTNv3rwK4z/++OMccsgheeSRR9KkSZP07t07PXr0yGeffZarr746m2++ed55551l1jRy5Mj88Ic/zJtvvpldd9012223Xd56662cfvrpOeWUU1bJn8OaoMbqLgAAAAAAAAAA1mTXXntt/vCHP+T4449f5pjbbrste++9d+68887UqVMnSTJ16tT07NkzzzzzTM4777xccskl5eMbNWqUBx98ML17906tWrXK2xcsWJBzzz03l1xySU466aQ88sgjS91v8ODBue6663LMMceUtz322GPp1atXrrnmmpx++ulp1apVZR99jeMkBwAAAAAAAABYjh49eiw34JAkderUyXXXXVcecEiSVq1a5fLLL0/yVVDiv09zaNCgQfr27Vsh4JAkNWvWzMUXX5zvfe97GTFiRGbPnr3U/fbbb78KAYfFde6+++5ZtGhRHn/88ZV6xmLhJAcAAAAAAAAAWI7999//a8fstttuadmy5RLte+21V9ZZZ53MmDEj48aNy/bbb1+h/+WXX86jjz6aiRMnZs6cOfnyyy+TJAsXLsyXX36Zd955J1tsscUS6/7oRz9aah0bb7xxRowYkWnTpq3IoxUdIQcAAAAAAAAAvpNKSkrKPy8UCssdu7j/v+cs1q5du6/dq3379svsa9euXWbMmJGpU6eWt82ZMyeHHHJI7r///uWuO2vWrKW2t2nTZqntDRs2TJIKp0Z8l7iuAgAAAAAAAIDvpHr16pV/PmfOnOWO/eyzz5Ik9evXX6Lvv6+gqIz/DlqcddZZuf/++9OpU6c88MADmTZtWubPn59CoZBCoZDttttuiTn/rVq1tfN1v5McAAAAAAAAAPhOatq0aerXr5/PPvss77zzTjp37rzUcTNnzszMmTOTLPuEhK8zceLEZfZNmjQpSdKqVavytnvuuSdJcvfdd2fTTTddYs7bb7/9jer4rls7ox0AAAAAAAAAfOdVq1YtO++8c5LkvvvuW+a4e++9N0nSpEmTbL755t9or1GjRuXf//73Eu3Dhw/PjBkz0qBBg2y11Vbl7YtDFW3btl1izsiRIzN9+vRvVMd3nZADAAAAAAAAAN9Zv/zlL1NSUpLbb789N9100xL9//jHP3L22WcnSU477bTUrFnzG+0zd+7cHHfccZk7d2552wcffJDTTjstSXLsscemdu3a5X0bb7xxkuTqq6+usM6ECRNy7LHHfqMa1gZCDgAAAAAAAAB8Z+200075/e9/n2rVquXII49Mhw4d8pOf/CT9+vXL1ltvnW7dumXGjBn56U9/mjPPPPMb79O/f/888cQT2WCDDXLAAQekb9++2WijjfLmm29mu+22y3nnnVdh/LnnnpuSkpIMHDgwm266afr165eePXumS5cu2WCDDbL99ttX9tG/k4QcAAAAAAAAAPhOGzBgQF588cUcccQRqV69eoYPH56//vWv+fDDD7P33nvnwQcfzJ133pnq1at/4z3at2+fF198Md27d89TTz2VkSNHZr311stvfvObjB49OnXq1Kkwfr/99suTTz6Znj175sMPP8ywYcPy73//O4MGDcrf/va3b3yixHddSaFQKKzuIorZrFmz0qhRo5SVlaVhw4aruxz+z70vfLK6SwCgyPWaedfqLgGAIte494mruwQAAADWAPPmzcvEiRPTvn37ClcVwNpgZb7/V/Tdu5McAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAADAKlYoFFZ3CfCtWxXf90IOAAAAAAAAAKtItWpfvZJdtGjRaq4Evn2Lv+8X/++gKgg5AAAAAAAAAKwiNWvWTPXq1TN37tzVXQp862bPnp2aNWumZs2aVbamkAMAAAAAAADAKlJSUpK6deumrKzMaQ6sVebOnZtZs2alQYMGKSkpqbJ1a1TZSgAAAAAAAAAsoXnz5pk0aVLef//9NG3aNKWlpVX60hfWFIVCIYsWLcrs2bMza9aslJaWplmzZlW6h5ADAAAAAAAAwCpUq1attGrVKtOnT8+HH364usuBVa5mzZpp3LhxmjVrlurVq1fp2kIOAAAAAAAAAKtY3bp106ZNmyxcuDALFy5c3eXAKlOtWrXUrFlzlZ1WIuQAAAAAAAAA8C2pUaNGatTwmha+qWqruwAAAAAAAAAAgBWxxocchg4dml122SVNmjRJvXr1stlmm+XSSy/NggULVnqtOXPm5JJLLknXrl3TsGHD1KxZMy1btsxee+2VYcOGrYLqAQAAAAAAAICqskafg3LyySdnyJAhqVGjRnr06JH69evnsccey69+9as89NBDGTVqVOrUqbNCa82YMSM77bRTXn/99dSvXz/bb799GjdunHfeeSePPPJIHnnkkQwYMCBDhgxZxU8FAAAAAAAAAHwTa+xJDg888ECGDBmS+vXr5/nnn8/IkSNz33335e23306XLl0yZsyYDBw4cIXXO//88/P6669nq622yvvvv5+RI0fm7rvvzj//+c888sgjqVGjRq666qo899xzq/CpAAAAAAAAAIBvao0NOVx88cVJkjPPPDNbbrlleXuzZs1y7bXXJkmuueaalJWVrdB6jz32WJLkV7/6VZo2bVqhr0+fPunevXuS5B//+EelawcAAAAAAAAAqt4aGXKYNm1axo4dmyQ56KCDlujfYYcd0rp168yfPz/Dhw9foTVr1669QuOaNWu24oUCAAAAAAAAAN+aNTLkMH78+CRJ06ZN0759+6WO6dq1a4WxX2ePPfZIkvz2t7/NzJkzK/QNHz48jz/+eFq2bJm+fft+07IBAAAAAAAAgFWoxuouYGkmTpyYJGnTps0yx7Ru3brC2K/zq1/9Ki+88EJGjhyZtm3bplu3bmncuHHeeeed/POf/0y3bt1y0003pVGjRpV/AAAAAAAAAACgyq2RIYfZs2cnSerVq7fMMfXr10+SzJo1a4XWrFevXh566KGcffbZufzyyzNy5MjyvnXWWSe9evXK+uuv/7XrzJ8/P/Pnzy//ekX3BwAAAAAAAAAqZ428rmJV+PDDD9OtW7dcffXVufDCC/Pee+/ls88+ywsvvJCtttoq5513XnbYYYfygMWyXHLJJWnUqFH5x+ITJQAAAAAAAACAVWuNDDk0aNAgSTJnzpxljvnss8+SJA0bNlyhNX/+859n7NixueCCC3L22Wenffv2qVevXrbeeus8/PDD6dKlS15++eVcdtlly13nrLPOSllZWfnHlClTVvCpAAAAAAAAAIDKWCNDDu3atUuS5QYIFvctHrs806ZNy9///vckSb9+/Zbor1mzZvbff/8kyejRo5e7VmlpaRo2bFjhAwAAAAAAAABY9dbIkMMWW2yRJJkxY0YmTpy41DEvvvhikmTLLbf82vUmT55c/vmyQgmNGjVKksycOXOlagUAAAAAAAAAvh1rZMihVatW2XrrrZMkd9xxxxL9Y8aMyZQpU1JaWpo+ffp87Xrrr79++efPP//8Usc899xzSZL27dt/k5IBAAAAAAAAgFVsjQw5JMnZZ5+dJBk8eHDGjRtX3j5jxowcf/zxSZITTjih/ASGJLn//vvTqVOn9OzZs8Jabdq0KQ9NnHTSSZk0aVKF/r/85S+5++67kyQHHXRQlT8LAAAAAAAAAFB5NVZ3Acuyzz77ZMCAAbnqqquy7bbbpmfPnqlXr14effTRfPrpp+nWrVsuuOCCCnPKysoyYcKEzJs3b4n1/vznP6d79+554403svHGG2fbbbdNs2bN8sYbb+S1115Lkhx88MH52c9+9q08HwAAAAAAAACwctbYkEOSDBkyJN26dcsf/vCHPPvss1mwYEE6dOiQM888M6ecckpq1aq1wmt17tw5r776aq688sr87W9/y9ixYzN//vw0adIku+++ew4//PAccMABq/BpAAAAAAAAAIDKKCkUCoXVXUQxmzVrVho1apSysrI0bNhwdZfD/7n3hU9WdwkAFLleM+9a3SUAUOQa9z5xdZcAAAAAUDRW9N17tW+xJgAAAAAAAACAb0zIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKAprfMhh6NCh2WWXXdKkSZPUq1cvm222WS699NIsWLDgG6/54IMPpm/fvmnZsmVq1aqV5s2bZ/vtt8/5559fhZUDAAAAAAAAAFVpjQ45nHzyyTnggAPyzDPPZJtttknv3r0zefLk/OpXv0qPHj0yd+7clVrviy++yAEHHJB99tkno0ePzg9+8IPsv//+6dy5c959991cddVVq+hJAAAAAAAAAIDKqrG6C1iWBx54IEOGDEn9+vXz5JNPZsstt0ySTJ8+PT169MiYMWMycODAXHbZZSu85lFHHZWhQ4dmn332yY033phmzZqV93355Zd54YUXqvw5AAAAAAAAAICqscae5HDxxRcnSc4888zygEOSNGvWLNdee22S5JprrklZWdkKrffoo4/mtttuS+fOnXPPPfdUCDgkSbVq1bLttttWUfUAAAAAAAAAQFVbI0MO06ZNy9ixY5MkBx100BL9O+ywQ1q3bp358+dn+PDhK7Tm1VdfneSrKzBq1qxZdcUCAAAAAAAAAN+KNfK6ivHjxydJmjZtmvbt2y91TNeuXTNlypSMHz8+/fr1W+56ixYtyqOPPpok2WmnnfLRRx/lrrvuyoQJE1JaWpotttgiP/7xj1O/fv2qfRAAAAAAAAAAoMqskSGHiRMnJknatGmzzDGtW7euMHZ53nvvvXz22WdJkueeey7HH398+deLnXHGGbnrrrvSo0ePb1o2AAAAAAAAALAKrZHXVcyePTtJUq9evWWOWXzqwqxZs752vRkzZpR/fsQRR2SrrbbK2LFjM3v27Lz00kvp06dPPvnkk+y99955++23l7vW/PnzM2vWrAofAAAAAAAAAMCqt0aGHKpaoVAo/3z99dfPyJEj07Vr19SvXz+bbbZZhg0bls6dO+ezzz7L4MGDl7vWJZdckkaNGpV/LD5RAgAAAAAAAABYtdbIkEODBg2SJHPmzFnmmMXXTTRs2HCF10uSQw89NKWlpRX6q1evnmOOOSZJMnr06OWuddZZZ6WsrKz8Y8qUKV+7PwAAAAAAAABQeTVWdwFL065duyRZboBgcd/isV+3XklJSQqFQjbYYIOljlnc/uGHHy53rdLS0iVCEgAAAAAAAADAqrdGnuSwxRZbJElmzJiRiRMnLnXMiy++mCTZcsstv3a9+vXrp2PHjkmS6dOnL3XM4vb69euvdL0AAAAAAAAAwKq3RoYcWrVqla233jpJcscddyzRP2bMmEyZMiWlpaXp06fPCq35k5/8JMmyr6P4+9//niTZZpttvknJAAAAAAAAAMAqtkaGHJLk7LPPTpIMHjw448aNK2+fMWNGjj/++CTJCSeckEaNGpX33X///enUqVN69uy5xHoDBgxIkyZNMnz48Fx//fUV+u66667cfvvt5eMAAAAAAAAAgDXPGhty2GeffTJgwIB89tln2XbbbbPHHntk//33z4YbbphXXnkl3bp1ywUXXFBhTllZWSZMmJB33313ifWaNWuWu+++O7Vr186xxx6bzp075yc/+Um23HLL9OvXL4VCIQMHDlzhkyEAAAAAAAAAgG/XGhtySJIhQ4bk7rvvznbbbZdnn302w4cPT6tWrTJ48OA89thjqVOnzkqtt+uuu+bll1/Oz3/+83z66ad58MEHM3ny5PTp0ycjR47M+eefv4qeBAAAAAAAAACorJJCoVBY3UUUs1mzZqVRo0YpKytLw4YNV3c5/J97X/hkdZcAQJHrNfOu1V0CAEWuce8TV3cJAAAAAEVjRd+9r9EnOQAAAAAAAAAALCbkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKlQo59OjRI5deeunXjrvsssvSo0ePymwFAAAAAAAAAKzlalRm8hNPPJF27dp97bgJEybkySefrMxWAAAAAAAAAMBa7lu5rmLBggWpVs3NGAAAAAAAAADAN/etJA9eeeWVrLPOOt/GVgAAAAAAAADAd9RKX1dx+OGHV/h6zJgxS7QttnDhwrz++ut56aWX0rdv329WIQAAAAAAAABAvkHI4ZZbbin/vKSkJO+8807eeeed5c753ve+l4suumiliwMAAAAAAAAAWGylQw4333xzkqRQKOTwww/PDjvskCOOOGKpY2vVqpVWrVpl2223Tc2aNStXKQAAAAAAAACwVlvpkMPPf/7z8s8HDRqUbbfdtkIbAAAAAAAAAMCqsNIhh/82adKkKioDAAAAAAAAAGD5qq3uAgAAAAAAAAAAVkSlTnJY7Pnnn8/o0aMzbdq0zJs3b6ljSkpKctNNN1XFdgAAAAAAAADAWqhSIYcvvvgi/fr1ywMPPJAkKRQKyxwr5AAAAAAAAAAAVEalQg4XXHBB7r///tSrVy+HHHJINt544zRs2LCqagMAAAAAAAAAKFepkMOdd96ZunXr5vnnn88mm2xSVTUBAAAAAAAAACyhWmUmT506Nd26dRNwAAAAAAAAAABWuUqFHJo0aZKmTZtWVS0AAAAAAAAAAMtUqZBDr1698vzzz6dQKFRVPQAAAAAAAAAAS1WpkMMFF1yQmTNnZtCgQVVUDgAAAAAAAADA0tWozOSnnnoqhx12WC688MKMGDEie+65Z9q0aZNq1Zaenejfv39ltgMAAAAAAAAA1mKVCjkceuihKSkpSaFQyNixY/Piiy8ud7yQAwAAAAAAAADwTVUq5NC/f/+UlJRUVS0AAAAAAAAAAMtUqZDDLbfcUkVlAAAAAAAAAAAsX7XVXQAAAAAAAAAAwIqo1EkO/+udd97JJ598knXWWScbbbRRVS4NAAAAAAAAAKzlKn2Sw6JFi3LhhRemZcuW6dixY3bYYYcMHjy4vP/222/P9ttvn9dee62yWwEAAAAAAAAAa7FKhRwWLVqUvfbaK+eee27+85//ZOONN06hUKgwplu3bnnuuefy17/+tVKFAgAAAAAAAABrt0qFHK677rqMHDky3bt3z8SJE/Pqq68uMaZdu3bp0KFDRo0aVZmtAAAAAAAAAIC1XKVCDrfeemuaNm2aoUOH5nvf+94yx2288caZPHlyZbYCAAAAAAAAANZylQo5vPnmm9lmm23SpEmT5Y5r1KhR/v3vf1dmKwAAAAAAAABgLVepkMOiRYtSWlr6teM+/PDDFRoHAAAAAAAAALAslQo5tG3bNv/617+WO2bBggV59dVX8/3vf78yWwEAAAAAAAAAa7lKhRx69+6dSZMm5YYbbljmmKuvvjqffPJJ9txzz8psBQAAAAAAAACs5WpUZvIZZ5yRW265Jccff3xef/31HHDAAUmSOXPmZNy4cbnnnntyxRVXpFmzZjnhhBOqpGAAAAAAAAAAYO1UUigUCpVZ4Kmnnsp+++2XmTNnpqSkpEJfoVBI48aNM2zYsOywww6VKnRNNWvWrDRq1ChlZWVp2LDh6i6H/3PvC5+s7hIAKHK9Zt61uksAoMg17n3i6i4BAAAAoGis6Lv3Sl1XkSQ77bRTXnvttfzyl7/MD37wg9SpUyelpaXZcMMNM2DAgLzyyivf2YADAAAAAAAAAPDtqdR1FYu1aNEigwcPzuDBg6tiOQAAAAAAAACAJVT6JAcAAAAAAAAAgG9DpUIOU6ZMyW233ZYJEyYsc8ybb76Z2267LVOnTq3MVgAAAAAAAADAWq5SIYerr746hx12WAqFwjLHFAqFHHroobn22msrsxUAAAAAAAAAsJarVMhh1KhR2XjjjdOpU6dljtl4442zySabZMSIEZXZCgAAAAAAAABYy1X6uooNN9zwa8dtuOGGmTJlSmW2AgAAAAAAAADWcpUKOXz++eepU6fO146rU6dOZs+eXZmtAAAAAAAAAIC1XKVCDuutt15eeumlrx338ssvp3nz5pXZCgAAAAAAAABYy1Uq5LDjjjvmrbfeyn333bfMMX/961/z5ptvZqeddqrMVgAAAAAAAADAWq5SIYeTTjopJSUl6d+/f4YMGVLhSorZs2dnyJAh6d+/f6pVq5YBAwZUulgAAAAAAAAAYO1VqZDDlltumUsuuSRz587NqaeemqZNm6ZNmzZp06ZNmjZtmlNPPTWff/55LrzwwmyzzTZVVTMAAAAAAAAAsBaqVMghSc4444w88MAD2XTTTbNo0aJMnTo1U6dOzaJFi7Lpppvmr3/9a84888yqqBUAAAAAAAAAWIvVqIpF+vbtm759++bjjz/O5MmTkyRt2rRJixYtqmJ5AAAAAAAAAIDKhRw22GCDbLTRRhkxYkSSpEWLFoINAAAAAAAAAMAqUanrKj7++OM0bdq0qmoBAAAAAAAAAFimSoUc2rZtm1mzZlVVLQAAAAAAAAAAy1SpkMP++++fp556Kp988klV1QMAAAAAAAAAsFSVCjmcddZZ2XjjjbPbbrvl2WefraqaAAAAAAAAAACWUKMyk/fcc89Ur149L7/8cnbcccc0b9487dq1S506dZYYW1JSkkcffbQy2wEAAAAAAAAAa7FKhRyeeOKJ8s8LhUI+/vjjfPzxx0sdW1JSUpmtAAAAAAAAAIC1XKVCDo8//nhV1QEAAAAAAAAAsFyVCjnsvPPOVVUHAAAAAAAAAMByVVvdBQAAAAAAAAAArIhKneSwWKFQyN/+9rc8++yz+eSTT/LDH/4whx9+eJLkk08+yX/+85906NAh1atXr4rtAAAAAAAAAIC1UKVDDi+//HIOPPDAvP322ykUCikpKcmCBQvKQw5///vfc8ghh+SBBx7Ij370o0oXDAAAAAAAAACsnSp1XcXUqVPTq1evvPXWW9ljjz1y6aWXplAoVBizzz77pGbNmnnwwQcrVSgAAAAAAAAAsHarVMjh4osvzowZM/L73/8+Dz/8cE4//fQlxtStWzebbbZZxo4dW5mtAAAAAAAAAIC1XKVCDiNGjEinTp0yYMCA5Y5r165dPvzww8psBQAAAAAAAACs5SoVcvjggw/SpUuXrx1XUlKSWbNmVWYrAAAAAAAAAGAtV6mQQ7169fLJJ5987biJEyemadOmldkKAAAAAAAAAFjLVSrk0KVLl/zzn//M9OnTlznm/fffz8svv5ytttqqMlsBAAAAAAAAAGu5SoUcDj744MyePTtHHnlkPv/88yX6v/jiixx//PFZsGBBDj744MpsBQAAAAAAAACs5WpUZvJhhx2W22+/PcOGDUunTp3Su3fvJMnLL7+cAQMGZNiwYZk8eXJ69eqVAw88sEoKBgAAAAAAAADWTpU6yaF69ep56KGH0q9fv0ybNi1/+tOfkiTjx4/PNddck8mTJ+fHP/5x/vrXv1ZJsQAAAAAAAADA2qtSJzkkSf369XP77bdn4MCBGT58eN577718+eWXad26dfbYY49svvnmVVAmAAAAAAAAALC2q3TIYbFOnTqlU6dOVbUcAAAAAAAAAEAFlbquAgAAAAAAAADg21IlJzlMnz49f/rTn/LEE09k6tSpKRQKadWqVbp3757DDz88zZs3r4ptAAAAAAAAAIC1WKVDDg8++GAOO+ywlJWVpVAolLe/8cYbGT16dAYPHpybb745++67b2W3AgAAAAAAAADWYpUKOTz//PP5yU9+koULF6Zr167p379/2rdvnySZNGlSbrvttowdOzYHHnhgnn766fzwhz+skqIBAAAAAAAAgLVPpUIO559/fhYtWpTf/e53Oe2005bo/8UvfpErr7wyp512Wi644II8/PDDldkOAAAAAAAAAFiLVavM5GeffTadO3deasBhsVNOOSVdunTJM888U5mtAAAAAAAAAIC1XKVCDgsWLEiXLl2+dlznzp2zYMGCymwFAAAAAAAAAKzlKhVy6NSpU6ZMmfK146ZNm5aOHTtWZisAAAAAAAAAYC1XqZDDMccckzFjxuTJJ59c5pgnn3wyTz/9dI455pjKbAUAAAAAAAAArOVqVGbyUUcdlTfffDN77rlnjj322PTv3z/t27dPkkycODH/7//9v/zxj3/MySefnKOPPrpKCgYAAAAAAAAA1k4lhUKh8E0nV69e/ZtvXFKShQsXfuP5a4pZs2alUaNGKSsrS8OGDVd3Ofyfe1/4ZHWXAECR6zXzrtVdAgBFrnHvE1d3CQAAAABFY0XfvVfqJIdK5CMqNRcAAAAAAAAAWPtUKuTw5ZdfVlUdAAAAAAAAAADLVW11FwAAAAAAAAAAsCKEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAU1viQw9ChQ7PLLrukSZMmqVevXjbbbLNceumlWbBgQaXXHj58eEpKSlJSUpJevXpVQbUAAAAAAAAAwKqyRoccTj755BxwwAF55plnss0226R3796ZPHlyfvWrX6VHjx6ZO3fuN177P//5T4466qiUlJRUYcUAAAAAAAAAwKqyxoYcHnjggQwZMiT169fP888/n5EjR+a+++7L22+/nS5dumTMmDEZOHDgN17/xBNPzMcff5xjjz22CqsGAAAAAAAAAFaVNTbkcPHFFydJzjzzzGy55Zbl7c2aNcu1116bJLnmmmtSVla20mvff//9uf3223Pqqadmm222qZqCAQAAAAAAAIBVao0MOUybNi1jx45Nkhx00EFL9O+www5p3bp15s+fn+HDh6/U2tOnT8+xxx6bjh075vzzz6+SegEAAAAAAACAVW+NDDmMHz8+SdK0adO0b99+qWO6du1aYeyKOu644zJ9+vTcdNNNqV27duUKBQAAAAAAAAC+NWtkyGHixIlJkjZt2ixzTOvWrSuMXRF33XVX7r333px44onp1q1b5YoEAAAAAAAAAL5VNVZ3AUsze/bsJEm9evWWOaZ+/fpJklmzZq3Qmh999FF+8YtfpEOHDrn44ou/cW3z58/P/Pnzy79e0f0BAAAAAAAAgMpZI09yWBWOPvro/Oc//8mf/vSn1K1b9xuvc8kll6RRo0blH4tPlAAAAAAAAAAAVq01MuTQoEGDJMmcOXOWOeazzz5LkjRs2PBr17v11lvz0EMP5dhjj80uu+xSqdrOOuuslJWVlX9MmTKlUusBAAAAAAAAACtmjbyuol27dkmy3ADB4r7FY5fn/vvvT5KMHTt2iZDDRx99lCT55z//Wd531113pWXLlktdq7S0NKWlpV+7JwAAAAAAAABQtdbIkMMWW2yRJJkxY0YmTpyY9u3bLzHmxRdfTJJsueWWK7zu4jlL8+mnn+bJJ59MksybN29lygUAAAAAAAAAvgVr5HUVrVq1ytZbb50kueOOO5boHzNmTKZMmZLS0tL06dPna9d74IEHUigUlvpx8803J0l69uxZ3rYip0MAAAAAAAAAAN+uNTLkkCRnn312kmTw4MEZN25cefuMGTNy/PHHJ0lOOOGENGrUqLzv/vvvT6dOndKzZ89vt1gAAAAAAAAAYJVbI6+rSJJ99tknAwYMyFVXXZVtt902PXv2TL169fLoo4/m008/Tbdu3XLBBRdUmFNWVpYJEya4bgIAAAAAAAAAvoPW2JMckmTIkCG5++67s9122+XZZ5/N8OHD06pVqwwePDiPPfZY6tSps7pLBAAAAAAAAAC+JSWFQqGwuosoZrNmzUqjRo1SVlaWhg0bru5y+D/3vvDJ6i4BgCLXa+Zdq7sEAIpc494nru4SAAAAAIrGir57X6NPcgAAAAAAAAAAWEzIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKAprfMhh6NCh2WWXXdKkSZPUq1cvm222WS699NIsWLBgpdYZP358LrnkkvTs2TMtWrRIzZo106RJk+y44475wx/+sNLrAQAAAAAAAADfrhqru4DlOfnkkzNkyJDUqFEjPXr0SP369fPYY4/lV7/6VR566KGMGjUqderU+dp1Fi5cmC233DJJUr9+/Wy99dZp0aJFpv5/7d15uNdz3j/w52k71Tl1itR0KxWGSJaULUPJkBjbhRnNFobGnp1mmmEsNcbMiBSyxT2GYjKWbhFCk0lNhcZOjepnK1ooref3h+nculu0On2nx+O6znWd815en9fn/FF9+z6/78+0aXnhhRcyatSo3H333Rk+fHjq1au3ke8KAAAAAAAAAFgXm+xJDg899FD69u2b0tLSjBkzJsOHD8+DDz6Yt956K61bt86oUaPSq1evNa635557ZvDgwZkxY0aefvrp/PnPf87zzz+fCRMmpHHjxnnxxRdz/vnnb8Q7AgAAAAAAAADWxyYbcrjmmmuSJJdeemnFKQxJ0qBBg/Tv3z9J0q9fv8yePftra1WrVi3jxo3L8ccfn+Li4uXmWrdunWuvvTZJct9993lsBQAAAAAAAABsojbJkMP06dMzduzYJEnXrl1XmN9///3TtGnTLFiwIMOGDVvv6+2xxx5Jkvnz52fGjBnrXQ8AAAAAAAAA2PA2yZDDhAkTkiRbbLFFWrRosdI1bdu2XW7t+njrrbeSJDVq1MgWW2yx3vUAAAAAAAAAgA1vkww5TJ48OUmyzTbbrHJN06ZNl1u7rsrLyyseV3HEEUes8DgLAAAAAAAAAGDTUK2yG1iZuXPnJklKSkpWuaa0tDRJMmfOnPW61hVXXJEXXnghpaWl6dOnz9euX7BgQRYsWFDx8/peHwAAAAAAAABYM5vkSQ7flLvvvju/+c1vUqVKldxxxx359re//bV7evfunbKysoqvZSdKAAAAAAAAAAAb1yYZcqhTp06S5PPPP1/lms8++yxJUrdu3XW6xpAhQ3LyyScnSQYOHJjjjz9+jfZddtllmT17dsXX1KlT1+n6AAAAAAAAAMDa2SQfV9G8efMkWW2AYNncsrVr4y9/+Uu6du2apUuX5pZbbqkIO6yJ4uLiFBcXr/U1AQAAAAAAAID1s0me5LDHHnskSWbOnJnJkyevdM24ceOSJG3atFmr2g899FB+8IMfZMmSJRkwYEBOPfXU9WsWAAAAAAAAAPhGbJIhhyZNmqRdu3ZJknvvvXeF+VGjRmXq1KkpLi5Oly5d1rjuI488khNOOCGLFy/OgAED0r179w3WMwAAAAAAAACwcW2SIYck6dmzZ5KkT58+GT9+fMX4zJkzc8YZZyRJzjrrrJSVlVXMDR06NC1btkynTp1WqDds2LAcd9xxWbx4cW6++WYBBwAAAAAAAAAoMNUqu4FVOfroo3POOefkhhtuyD777JNOnTqlpKQkTz31VGbNmpX27dvnyiuvXG7P7Nmz88Ybb+SLL75Ybvyjjz7Ksccem4ULF6ZJkyYZPXp0Ro8evdLrXnfddWnQoMFGuy8AAAAAAAAAYN1ssiGHJOnbt2/at2+fm266KaNHj86iRYuy3Xbb5dJLL815552XGjVqrFGdefPmZcGCBUmSadOmZdCgQatce/nllws5AAAAAAAAAMAmqKi8vLy8spsoZHPmzElZWVlmz56dunXrVnY7/NsDL35c2S0AUOAO/uS+ym4BgAJXr/PZld0CAAAAQMFY0/feq3yDPQEAAAAAAAAArDMhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAABsYN26dUtRUdFqv7744os1rjd69OicccYZ2XfffbP11lunZs2aKSkpyc4775yzzz47U6ZMWem+V199NT169MgBBxyQbbbZJrVr106tWrWy/fbb55RTTskrr7yyymv27ds322+/fYqLi/Ptb387N9100yrXTp8+PWVlZTnkkEPW+J4A1kW1ym4AAAAAAAAA/lO1b98+22+//UrnqlatusZ1hg0blgEDBmSbbbbJjjvumEaNGmX27NkZP358+vXrlzvvvDOPPvpoOnTosNy+0aNHp2/fvmnUqFF23HHH7Lvvvpk3b15eeeWV3HHHHbn77rtz991358QTT1xuX79+/dKjR480btw4hx9+eF544YWcddZZ+eKLL3LBBRes0N9ZZ52VxYsX5+abb17jewJYF0Xl5eXlld1EIZszZ07Kysoye/bs1K1bt7Lb4d8eePHjym4BgAJ38Cf3VXYLABS4ep3PruwWAACAStStW7cMGjQod955Z7p167be9V577bXUqlUrzZs3X2584cKFufjii9O3b980adIkU6ZMWS48MWXKlHzxxRdp2bLlcvuWLl2aP/zhD7noootSu3btTJs2LfXr10+SLFmyJN/61rcqrtugQYN89NFH2WmnnbJ06dJ89NFHqV69ekWtoUOH5thjj821116biy66aL3vFdg8rel77x5XAQAAAAAAAJu4nXbaaYWAQ5LUqFEjv/vd71KzZs1MmzYtr7766nLzzZs3XyHgkCRVqlTJhRdemG233Tbz5s3LqFGjKuamTJmSGTNm5JhjjkmDBg2SJA0bNsyxxx6bWbNm5bXXXqtYO3fu3Jx99tnZfffdc955522guwVYNSEHAAAAAICvcfHFF1c8P/2qq65apxpLly7NoEGDcvDBB2errbZKcXFxGjdunIMOOij9+/dfYf3MmTNz11135eyzz85+++2X2rVrp6ioKAcffPBqr7N48eL06tUrTZs2TXFxcVq3bp0hQ4ascv3EiRNTvXr1nHbaaet0XwBUvqKiolSp8uXbfsXFxWu1t1q1aivsmzlzZpJkiy22WG7tlltumST57LPPKsYuu+yyfPDBBxk4cGBFLYCNyZ80AAAAAACrMXr06Pz+979PUVFR1vXpv7Nnz86RRx6Z5557LnXr1s1+++2XevXqZfr06ZkwYULmzJmTM844Y7k9zz//fE466aS1vtall16a3//+99l2221z+OGH55lnnskJJ5yQIUOG5Ljjjltu7ZIlS3LqqaemQYMGufbaa9fp3gBYvWeeeSavvPJK5s6dmy233DJ77bVXunTpstZhhFVZsmRJrrjiisybNy8777xztt9++zXee+utt+bNN99Mw4YNs88++1SMLzsx4qsnNnz156233jpJ8ve//z0DBgzIueeem7Zt267nnQCsGSEHAAAAAIBVmDdvXrp165bGjRunXbt2eeihh9a6Rnl5eY4++ug899xz6d69e6677rqUlpZWzC9cuDAvv/zyCvsaNWqU7t27p02bNmnTpk3+8Y9/5Oc///lqr/XRRx/lxhtvzM4775yxY8emdu3aef3117Prrrvm8ssvXyHkcMMNN2TcuHEZPHhw6tWrt9b3BsDXu/vuu1cYa9y4ce6444507tx5reu99957+dWvfpUk+eSTTzJhwoRMmzYt22+/fQYPHlxxosP/NW/evIpA3ezZszNp0qS8/fbbadSoUYYMGZK6detWrG3YsGH23XffPPbYY7nvvvty+OGH59FHH81jjz2WXXfdNc2aNcuiRYty2mmnpWnTprnyyivX+j4A1pWQAwAAAADAKlx22WV566238thjj2Xw4MHrVOPOO+/MyJEjc+ihh+bmm29eYb5GjRor/fTrvvvum3333bfi50mTJn3ttV555ZUsXLgwP/zhD1O7du0kScuWLXPggQdmxIgRmTNnTsWbWO+991569eqVI444Iscff/w63RsAq7bbbrulb9++6dSpU7bZZpvMnz8/L730Ui6//PKMHj06Rx55ZJ544ol06NBhrep+8sknGTRo0HJjbdq0yR133JFWrVqtct/ChQtX2Lftttvm9ttvz3e+850V1t9www3p2LFjTjzxxIqxunXrZuDAgUmS6667Lq+88kqGDRuWkpKSijXz589PzZo1U1RUtFb3BbCmVh7lAgAAAADYzI0cOTI33nhjfvKTn6RLly7rXOeGG25Iklx00UUbqrVVWptnqJ955pkpKipK//79N3pfAJuj8847L+ecc05atWqVOnXqpGHDhvnud7+bUaNG5aijjsqiRYvSo0ePta67++67p7y8PEuXLs20adMyePDgzJs3L3vuuWfF3zkrU69evZSXl6e8vDwffPBBhg0blq222iodO3Zc6d9Rbdu2zaRJk3LFFVfk1FNPzZVXXplJkyZlr732yjvvvJMrr7wyJ554Yg477LAkyY033pimTZumdu3aKSkpSdeuXSv+XgLYkJzkAAAAAADwf3z22Wc5+eST06hRo1x//fXrXOfDDz/MSy+9lKpVq2a//fbLu+++m8GDB2fKlCkpLS3N3nvvnaOOOio1atTYIH2v7hnqNWrUSIMGDZIkgwcPzqOPPpq+ffumadOmG+TaAKyZoqKiXHHFFfnrX/+al156KVOnTl2nP4uLioqy9dZb5/jjj893v/vdtGrVKuedd14OPPDA7Lbbbqvd26hRoxx22GHp1KlT9t5771x33XU58MADc8QRRyy3rlmzZhWPxviq7t27p1atWhV/R95www0599xzc9RRR6Vfv3559dVXc/nll+ftt9/O3//+91U+QgNgXQg5AAAAAAD8HxdeeGEmT56coUOHpn79+utc5+WXX07y5UkKt912Wy644IIsWrRouTXbbrtthg4dml133XW9ek6+/HRvs2bNcuedd+bwww/PPvvsk9tuuy0vv/xyjjzyyNSoUSOzZs3Kueeem7322itnnXXWel8TgLW30047VXw/bdq09Q6c1atXL8ccc0xuuummPPzww18bclimRo0a+eEPf5iJEydm6NChK4QcVmbQoEF56qmncscdd6Rhw4ZJkj59+qRZs2Z54IEHUq1atRx11FGZPXt2fvvb32bEiBE55JBD1uv+AL5KbAoAAAAA4CueeOKJ3HLLLfnBD36Qo48+er1qLTum+5NPPsk555yTo446Kq+88krmzp2bF154IXvvvXfefffddO7ceYMc6V2jRo3ceOONmT9/fg499NCUlZXlggsuSOPGjfPHP/4xSXLJJZdkxowZue2225b7ZO28efPW+/oArJmv/plfp06dDVKzpKQkSfLRRx9ttH0zZszIBRdckI4dO+akk05K8uWpRe+//37atWuXatX+9/PV+++/f5Jk4sSJa9UPwNcRcgAAAAAA+LfZs2fnlFNOyVZbbZUbb7xxveuVl5cnSRYvXpx99903Q4YMyS677JLS0tLss88+efLJJ9OoUaO8//776d+//3pfL0m+973vZeLEienZs2dOPfXU/O53v8ukSZOy7bbbZtSoURk4cGAuuuiitG7dOkuWLMmvfvWrbLXVVikpKUlZWVnOPPNMgQeAjey+++5LktStWzc77rjjBqn59NNPJ0l22GGHtdr31FNPrfG+888/P59//nluueWWirGioqIkyeeff77c2mU/L5sH2FCEHAAAAAAA/q1Hjx6ZNm1a+vXrlwYNGqx3va9+Ord79+4rnf/Rj36UJBkxYsR6X2+ZVq1a5eqrr86tt96aCy+8MFtssUUWLlyY0047Ldttt13F89UvuuiiXHnllTnqqKPy8MMPp3v37hkwYEB+/OMfb7BeADZHEydOzMMPP5zFixcvN7506dLcfvvt6dmzZ5LknHPOSfXq1Svmhw4dmpYtW6ZTp04r1Ozdu3c+/vjjFcY//fTTnH322Rk3blzKyspywgknLDd//fXXZ+rUqSvsmzdvXq666qo8+OCDqVatWsXJDKsyYsSI3HPPPenVq1e+/e1vV4w3bNgwTZo0yTPPPJN33nknSbJkyZLccccdSZI2bdqsti7A2qr29UsAAAAAADYPQ4cOTbVq1dK/f/8VTlZ4/fXXkyS33357RowYkW9961sVn8RdlW233Xal369szfvvv78+rX+t3r1757XXXstTTz2VmjVrZu7cubnpppuy33775bbbbkvy5SkQ7733Xu6///68+eaba/1pYAC+NGXKlBxzzDGpX79+2rRpk0aNGmXWrFmZNGlS3nvvvSTJiSeemF//+tfL7Zs9e3beeOONfPHFFyvU7NmzZ3r16pXWrVtnu+22S7Vq1TJ9+vRMmDAhn3/+ecrKyjJkyJA0atRouX3XX399zj///Oy0007ZcccdU7Nmzbz//vt56aWX8umnn6a4uDgDBw7MLrvsssr7mT9/fn7+85+ndevWueiii1aY79WrV7p37562bdumY8eOefPNN/PPf/4z7du3z0EHHbQuv0KAVRJyAAAAAAD4isWLF+fZZ59d5fyUKVMyZcqUNGvW7Gtr7bDDDqlTp07mzp2bGTNmrHTNsvHS0tJ1a3gNvPHGG+ndu3e6detW8WbTq6++moULF2a//fZbbu3++++f+++/PxMnThRyAFhHu+22W3r06JFx48bl9ddfz9/+9reUl5enUaNGOe6443LSSSelS5cua1WzX79+ef755zNhwoQ89dRT+eyzz1KnTp20bt06hx56aE4//fQVAg5Jcs011+SJJ57IuHHj8txzz2XWrFkpKSnJdtttl1NOOSWnn376KoN4y/zmN7/J5MmTM3r06OVOnljmtNNOS40aNXLdddfl0UcfTb169dK9e/f89re/9bgKYIMTcgAAAAAA+LdZs2atcq5bt24ZNGhQrrzyyvzyl79co3rVqlXL0UcfnXvuuScjRozIMcccs8KaJ598Mkmy1157rVPPX6e8vDzdu3dPWVlZfv/731eMe4Y6wMbTokWL/PGPf1zrfd26dUu3bt1WOnfmmWfmzDPPXOuaXbt2TdeuXdd631f17t07vXv3Xu2a1fUOsCFVqewGAAAAAAAKXb9+/dKyZcv85Cc/WWGuZ8+eqV69egYOHJhHH310ubnf/e53GTVqVKpWrbpOb1ytidtvvz3PPvts/vjHP2aLLbaoGN95551TXFycoUOH5pNPPkny5fPZ//u//ztJsscee2yUfgAAYH04yQEAAAAAYD3NmDEjb7zxRr71rW+tMNeyZcsMHDgwJ598cr73ve+lbdu2ad68eSZNmpTXX389VatWzYABA9K6desV9u6zzz4V33/88cdJkrFjxy433qtXrxx++OEr7evDDz/MxRdfnM6dO6/wKd7S0tKcf/756d27d1q1apX27dtn/PjxmTx5ck488cRsv/326/S7AACAjUnIAQAAAABgI/vpT3+anXfeOb/97W/z/PPP56WXXsqWW26Z448/PhdeeOEqH1UxZsyYFcbmzJmz3Piy8MPK9OjRIwsXLsyAAQNWOn/11Venfv36ueWWW/LXv/41jRo1yiWXXJLf/OY3a3mH8M2b9fiNld0CAAWuXuezK7sF1kFReXl5eWU3UcjmzJmTsrKyzJ49O3Xr1q3sdvi3B15c9Qs7AFgTB39yX2W3AECB8x8lAAAbl5ADAOvLa/dNy5q+917lG+wJAAAAAAAAAGCdCTkAAAAAAAAAAAWhWmU3AAAAAMDmx6MmAVhfB1d2AwBApXCSAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIGzyIYchQ4akQ4cOqV+/fkpKSrLbbrvl2muvzaJFi9ap3j/+8Y8cf/zxadSoUWrWrJkWLVrk7LPPzkcffbSBOwcAAAAAAAAANqRNOuTQo0ePnHDCCfnb3/6WvfbaK507d857772XSy65JAcddFDmz5+/VvUeeOCB7LPPPnnggQfSrFmzHHXUUalSpUr69euXXXfdNW+//fZGuhMAAAAAAAAAYH1tsiGHhx56KH379k1paWnGjBmT4cOH58EHH8xbb72V1q1bZ9SoUenVq9ca1/t//+//5ac//WkWL16cW265JS+++GLuv//+vPnmm/nRj36UDz/8MF27dk15eflGvCsAAAAAAAAAYF1tsiGHa665Jkly6aWXpk2bNhXjDRo0SP/+/ZMk/fr1y+zZs9eo3vXXX5958+bl4IMPzmmnnVYxXrVq1QwYMCBlZWUZO3ZsnnjiiQ14FwAAAAAAAADAhrJJhhymT5+esWPHJkm6du26wvz++++fpk2bZsGCBRk2bNga1Rw6dOgq65WWlubII49MkvzlL39Z17YBAAAAAAAAgI1okww5TJgwIUmyxRZbpEWLFitd07Zt2+XWrs7cuXPz9ttvL7dvfeoBAAAAAAAAAN+8TTLkMHny5CTJNttss8o1TZs2XW7t6kyZMqXi+1XVXJt6AAAAAAAAAMA3r1plN7Ayc+fOTZKUlJSsck1paWmSZM6cOWtcb3U117TeggULsmDBgoqfZ8+evcZ98M2Z99ncr18EAKsx5/P5ld0CAAWuiteJsFpeuwOwvrx2B2B9ee2+aVn2nnt5eflq122SIYdNWe/evXPFFVesML7sJAgAAAD40iWV3QAAAACwWl67b4rmzp2bsrKyVc5vkiGHOnXqJEk+//zzVa757LPPkiR169Zd43rLaq7sF7Km9S677LKcf/75FT8vXbo0n3zySbbccssUFRV9bS8AwKZvzpw5adq0aaZOnbpG/9YAAAAAvlleuwPAf57y8vLMnTs3//Vf/7XadZtkyKF58+ZJkqlTp65yzbK5ZWtXp1mzZhXfv/fee2nduvU61ysuLk5xcfFyY/Xq1fvaHgCAwlO3bl3/UQIAAACbMK/dAeA/y+pOcFimyjfQx1rbY489kiQzZ87M5MmTV7pm3LhxSZI2bdp8bb26detm++23X27f+tQDAAAAAAAAAL55m2TIoUmTJmnXrl2S5N57711hftSoUZk6dWqKi4vTpUuXNap5zDHHrLLeZ599lkceeSRJcuyxx65r2wAAAAAAAADARrRJhhySpGfPnkmSPn36ZPz48RXjM2fOzBlnnJEkOeuss5Y7rmLo0KFp2bJlOnXqtEK9Hj16pHbt2hkxYkQGDhxYMb5kyZKcccYZmTVrVtq1a5dDDjlkY90SAFAgiouL8+tf/3qFR1QBAAAAmwav3QFg81VUXl5eXtlNrMq5556bG264IdWrV0+nTp1SUlKSp556KrNmzUr79u3z5JNPplatWhXr77rrrpx00klp1qxZpkyZskK9IUOG5MQTT8ySJUuy9957p3nz5hk7dmzefffdNGrUKKNGjap4rAUAAAAAAAAAsGnZZE9ySJK+ffvm/vvvz7777pvRo0dn2LBhadKkSfr06ZOnn356uYDDmjj++OMzZsyYHHvssXn33XczdOjQLFmyJGeeeWZeeuklAQcAAAAAAAAA2IRt0ic5AAAAAAAAAAAss0mf5AAAAAAAAAAAsIyQAwDAvw0ZMiQdOnRI/fr1U1JSkt122y3XXnttFi1aVNmtAQAAwGbtjTfeyI033phu3bqldevWqVatWoqKinLVVVdVdmsAwDesWmU3AACwKejRo0f69u2batWq5aCDDkppaWmefvrpXHLJJXnkkUfyxBNPpFatWpXdJgAAAGyWBgwYkL59+1Z2GwDAJsBJDgDAZu+hhx5K3759U1pamjFjxmT48OF58MEH89Zbb6V169YZNWpUevXqVdltAgAAwGZrl112yYUXXpg//elPee211/LjH/+4slsCACqJkxwAgM3eNddckyS59NJL06ZNm4rxBg0apH///vnOd76Tfv36pVevXikrK6usNgEAAGCz9bOf/Wy5n6tU8RlOANhc+VcAALBZmz59esaOHZsk6dq16wrz+++/f5o2bZoFCxZk2LBh33R7AAAAAADAVwg5AACbtQkTJiRJtthii7Ro0WKla9q2bbvcWgAAAAAAoHIIOQAAm7XJkycnSbbZZptVrmnatOlyawEAAAAAgMoh5AAAbNbmzp2bJCkpKVnlmtLS0iTJnDlzvpGeAAAAAACAlRNyAAAAAAAAAAAKgpADALBZq1OnTpLk888/X+Wazz77LElSt27db6QnAAAAAABg5YQcAIDNWvPmzZMkU6dOXeWaZXPL1gIAAAAAAJVDyAEA2KztscceSZKZM2dm8uTJK10zbty4JEmbNm2+sb4AAAAAAIAVCTkAAJu1Jk2apF27dkmSe++9d4X5UaNGZerUqSkuLk6XLl2+6fYAAAAAAICvEHIAADZ7PXv2TJL06dMn48ePrxifOXNmzjjjjCTJWWedlbKyskrpDwAAAAAA+FJReXl5eWU3AQBQ2c4999zccMMNqV69ejp16pSSkpI89dRTmTVrVtq3b58nn3wytWrVquw2AQAAYLM0fvz4ig8iJMk777yTGTNmpEmTJtl6660rxocOHZrGjRtXRosAwDdEyAEA4N8GDx6cm266KRMnTsyiRYuy3Xbb5Uc/+lHOO++81KhRo7LbAwAAgM3WyJEj07Fjx69dN3ny5DRv3nzjNwQAVBohBwAAAAAAAACgIFSp7AYAAAAAAAAAANaEkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAEgycuTIFBUVpUOHDpXdCgAAALAKQg4AAADAJkPQAAAAAFgdIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAANjo3nrrrZx88slp0aJFiouLU1pammbNmuXwww/PnXfemSTp0KFDOnbsmCR59tlnU1RUVPHVvHnzilrdunVLUVFR7rrrrkyaNCnf//7307hx41StWjWXX355xbpPPvkkPXv2TKtWrVK7du3UqVMne+65Z6699trMnz9/rfr/+OOPs99++6WoqCjf//73s2DBgoq5Tz/9NL/+9a+z++67p06dOqldu3Zat26dq666KvPmzVv3XxoAAACwgmqV3QAAAADwn23SpElp37595syZkx133DFHHHFEqlatmmnTpuW5557L9OnTc9JJJ6Vz586pWbNmhg8fnkaNGqVz584VNRo0aLBC3dGjR+fnP/95GjdunAMOOCDz589PnTp1kiTvvvtuDjrooPzrX//KVlttlS5dumTRokV55plncskll+T+++/PiBEjUr9+/a/t/80330yXLl3yzjvv5OKLL06fPn1SVFSUJHn11VfTuXPnTJ06NY0bN87++++f6tWr58UXX0yvXr3y4IMPZuTIkSkrK9tAv00AAADYvAk5AAAAABvVH/7wh8yZMydXXXVVfvGLXyw3N3/+/IwdOzZJcumll2afffbJ8OHD07Jly9x1112rrTtw4MBceumlufrqq1OlyvKHVXbt2jX/+te/cuSRR+bee+9NSUlJki9PZOjcuXPGjx+fs846K3/6059We43nn38+Rx99dGbPnp2bb7453bt3X673I488MlOnTs0vf/nL9OrVKzVq1EiSzJs3Lz/72c/y5z//Oeedd17uuOOONfpdAQAAAKvncRUAAADARvXhhx8mSbp06bLCXK1atXLAAQesU90ddtghV1111QoBh1GjRmXMmDGpXbt2br311oqAQ5JstdVWufXWW5Mk9913X6ZNm7bK+n/+85/z3e9+NwsXLswjjzyyXMAhSQYNGpR33nknRxxxRK688sqKgEOSims3bNgw99xzTz799NN1ukcAAABgeUIOAAAAwEa11157JUlOP/30DB8+PF988cUGqXv00UenatWqK4yPHDkySdK5c+c0atRohfk999wzu+22W5YuXZpnn312pbWvueaa/PCHP8yWW26Z559/PocddtgKax577LEkyfe///2V1igtLU3btm2zePHiitMqAAAAgPUj5AAAAABsVBdddFEOPvjgjBkzJp07d07dunXTrl27XHDBBev15n/z5s1XOj59+vQkSYsWLVa5d7vttltu7Vf97W9/yy9+8YsUFxfnueeey+67777SGu+++26S5Mc//nGKiopW+jVs2LAkXz4mAwAAAFh/1Sq7AQAAAOA/W+3atfPkk09m7NixefzxxzN69OiMHj0648aNyx/+8IecccYZuemmm9a6bq1atTZCt0mrVq1SvXr1jBs3LmeffXYefPDBlV5r6dKlSVZ9YsRXNWvWbKP0CgAAAJsbIQcAAADgG9GuXbu0a9cuSbJ48eI89NBD+clPfpL+/fvnuOOOS8eOHTfIdbbeeusk/3vSwsosm1u29qvq1auXhx9+OEcccUT+53/+J4cddlgeffTRlJaWLreuadOmef3113PKKafkuOOO2yC9AwAAAKvncRUAAADAN65atWo57rjjcuihhyZJJk6cmCSpUaNGki9DEOuqQ4cOSZLHH388H3744QrzEyZMyMSJE1OlSpUccMABK61Rt27dPP744znkkEPy7LPP5uCDD86nn3663JrDDjssSTJ48OB17hUAAABYO0IOAAAAwEbVv3//vPHGGyuMf/DBBxk3blyS/32cQ5MmTZIkb731VhYtWrRO19t///2z9957Z/78+enevXvmzZtXMTdjxox07949SfKDH/wgTZs2XWWd2rVr55FHHsmxxx6bMWPGpEOHDsuFJk477bQ0a9YsQ4YMySWXXJK5c+eu9B4HDhy4TvcBAAAArKiovLy8vLKbAAAAAP5z7b777nnppZfSokWL7LLLLqlbt24+/vjjPP/885k/f34OOuigDB8+PNWqfflUzXbt2mXcuHHZcccd07Zt29SsWTMNGjRInz59kiTdunXLoEGDcuedd6Zbt24rvea7776bgw46KP/617/SsGHDHHDAAVm0aFGeeeaZzJkzJ23atMmIESNSv379ij0jR45Mx44dc+CBB2bkyJEV40uWLMlJJ52Ue+65JzvssENGjBhREY745z//mSOOOCJTpkxJvXr1suuuu6ZJkyaZN29e3nzzzbz22mtp2LBhPvjgg43zywUAAIDNjJMcAAAAgI3q6quvzumnn5569erl73//e4YMGZJXX301e++9dwYNGpTHH3+8IuCQJA8++GC6du2aOXPm5P7778/tt9+e++67b62uue2222b8+PG57LLLsuWWW+bRRx/Nk08+me222y59+vTJqFGjlgs4rE7VqlUzaNCgnH766XnzzTfzne98J2+//XaSpFWrVnn55Zdz7bXXZqeddsrLL7+cIUOGZMyYMSkpKcmFF16YoUOHrlXvAAAAwKo5yQEAAAAAAAAAKAhOcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAg/H9stJlO6tUw9gAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 2600x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "\n",
+    "plt.figure(figsize=(26, 8))\n",
+    "draw(df, 'stroke', 'Residence_type')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:24px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "Tỉ lệ đột quỵ của thành thị là 5.33%, cao gấp 1.15 lần so với tỉ lệ đột quỵ của nông thôn. Sự khác biệt này là không quá rõ ràng.\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 149,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[ 126.06625176 2405.93374824]\n",
+      " [ 121.93374824 2327.06625176]]\n",
+      "Chi-Square value: 1.3551156873012458\n",
+      "Degree of Freedom:  1\n",
+      "p-value:  0.24438577258460314\n",
+      "Không có mối tương quan giữa nơi ở và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "stroke_urban_count = df[(df['Residence_type'] == 'Urban') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_urban_count = df[(df['Residence_type'] == 'Urban') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_rural_count = df[(df['Residence_type'] == 'Rural') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_rural_count = df[(df['Residence_type'] == 'Rural') & (df['stroke'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa nơi ở và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa nơi ở và đột quỵ\"\n",
+    "urban_arr = [stroke_urban_count, nostroke_urban_count]\n",
+    "rural_arr = [stroke_rural_count, nostroke_rural_count]\n",
+    "nij = []\n",
+    "nij.append(urban_arr )\n",
+    "nij.append(rural_arr)\n",
+    "nij = np.array(nij)\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(2 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_residence = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: \", p_residence)\n",
+    "if p_residence <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định Chi-square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa nơi ở và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa nơi ở và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/fExoluD.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 400px; height:400px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa đột quỵ và nơi ở</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 1.3551156873012458</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  1</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value:  0.24438577258460314</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Không có mối tương quan giữa nơi ở và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value lớn hơn mức ý nghĩa, nên ta không thể bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy không có mối tương quan giữa nơi ở và bệnh đột quỵ\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Nơi ở không có mối tương quan với bệnh đột quỵ, sự khác biệt giữa tỉ lệ người thành thị và nông thôn mắc bệnh đột quỵ là không đáng kể\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.5. Đột quỵ và loại việc làm: </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "Quan sát sự phân bố của loại việc làm trong nhóm người bị đột quỵ.\n",
+    "\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 150,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\2844643837.py:2: FutureWarning: \n",
+      "\n",
+      "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n",
+      "\n",
+      "  ax = sns.countplot(data=df[df['stroke'] == 1], x='work_type', palette='pastel')\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\2844643837.py:3: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n",
+      "  ax.set_xticklabels(ax.get_xticklabels(), fontsize=16)  # Tùy chỉnh kích thước chữ trên trục x\n",
+      "No artists with labels found to put in legend.  Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACCoAAAIUCAYAAADW71/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABT9UlEQVR4nO3daZgV1b0+7KcbEJChEVSwFYQoEURFnBBxQCURxxDRiEHjPB3BKE4xJ06JOZicOByNSvQoaKJ/o0ZQMRoNCmrEEcFZiUHFKGgUaEAZhP1+yEufdGgUEKoB7/u66rp6r7Vq1a96f6i9q55dVVYqlUoBAAAAAAAAAChAeV0XAAAAAAAAAAB8fQgqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYerXdQGrg0WLFuX9999Ps2bNUlZWVtflAAAAAAAAAMAap1QqZdasWamsrEx5+dLvmyCokOT9999P27Zt67oMAAAAAAAAAFjjTZkyJZtssslS+wUVkjRr1izJP/9ZzZs3r+NqAAAAAAAAAGDNU1VVlbZt21Zfg18aQYWk+nEPzZs3F1QAAAAAAAAAgK9g8TX4pVn6QyEAAAAAAAAAAFYyQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGHq13UBrFx3PfNRXZcAwBrukJ02qOsSAAAAAACAtZg7KgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAAClOnQYXHHnssBx54YCorK1NWVpaRI0cudezJJ5+csrKyXHnllTXaP/nkkwwYMCDNmzdPixYtctxxx2X27NmrtnAAAAAAAAAAYIXUaVBhzpw56dq1a6655povHDdixIg89dRTqaysXKJvwIABeeWVV/Lwww9n1KhReeyxx3LiiSeuqpIBAAAAAAAAgK+gfl1ufN99982+++77hWP+/ve/Z9CgQfnTn/6U/fffv0bfa6+9lgcffDDPPvtsdthhhyTJ1Vdfnf322y+/+tWvag02AAAAAAAAAAB1p07vqPBlFi1alCOPPDJnn312unTpskT/uHHj0qJFi+qQQpL07t075eXlefrpp5c677x581JVVVVjAQAAAAAAAABWvdU6qPCLX/wi9evXz2mnnVZr/9SpU7PhhhvWaKtfv35atmyZqVOnLnXeIUOGpKKionpp27btSq0bAAAAAAAAAKjdahtUeP755/M///M/GT58eMrKylbq3Oedd15mzpxZvUyZMmWlzg8AAAAAAAAA1G61DSo8/vjj+fDDD9OuXbvUr18/9evXzzvvvJMzzzwz7du3T5K0adMmH374YY31Pv/883zyySdp06bNUudu2LBhmjdvXmMBAAAAAAAAAFa9+nVdwNIceeSR6d27d422ffbZJ0ceeWSOOeaYJEmPHj0yY8aMPP/889l+++2TJI888kgWLVqU7t27F14zAAAAAAAAAPDF6jSoMHv27Pz1r3+tfj158uRMmDAhLVu2TLt27dKqVasa4xs0aJA2bdpkiy22SJJ07tw5ffr0yQknnJChQ4dmwYIFGThwYPr375/KyspC9wUAAAAAAAAA+HJ1+uiH5557Lt26dUu3bt2SJIMHD063bt1ywQUXLPMct956azp16pS99947++23X3bddddcf/31q6pkAAAAAAAAAOArqNM7KvTq1SulUmmZx7/99ttLtLVs2TK33XbbSqwKAAAAAAAAAFhV6vSOCgAAAAAAAADA14ugAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKEydBhUee+yxHHjggamsrExZWVlGjhxZ3bdgwYKce+652XrrrdOkSZNUVlbmBz/4Qd5///0ac3zyyScZMGBAmjdvnhYtWuS4447L7NmzC94TAAAAAAAAAGBZ1GlQYc6cOenatWuuueaaJfo+/fTTjB8/Pueff37Gjx+fu+++O2+88UYOOuigGuMGDBiQV155JQ8//HBGjRqVxx57LCeeeGJRuwAAAAAAAAAALIeyUqlUqusikqSsrCwjRoxI3759lzrm2WefzU477ZR33nkn7dq1y2uvvZYtt9wyzz77bHbYYYckyYMPPpj99tsv7733XiorK5dp21VVVamoqMjMmTPTvHnzlbE7deauZz6q6xIAWMMdstMGdV0CAAAAAACwBlrWa+91ekeF5TVz5syUlZWlRYsWSZJx48alRYsW1SGFJOndu3fKy8vz9NNPL3WeefPmpaqqqsYCAAAAAAAAAKx6a0xQYe7cuTn33HNz+OGHVycvpk6dmg033LDGuPr166dly5aZOnXqUucaMmRIKioqqpe2bduu0toBAAAAAAAAgH9aI4IKCxYsyPe+972USqVcd911X3m+8847LzNnzqxepkyZshKqBAAAAAAAAAC+TP26LuDLLA4pvPPOO3nkkUdqPMeiTZs2+fDDD2uM//zzz/PJJ5+kTZs2S52zYcOGadiw4SqrGQAAAAAAAACo3Wp9R4XFIYVJkyblz3/+c1q1alWjv0ePHpkxY0aef/756rZHHnkkixYtSvfu3YsuFwAAAAAAAAD4EnV6R4XZs2fnr3/9a/XryZMnZ8KECWnZsmU22mijHHLIIRk/fnxGjRqVhQsXZurUqUmSli1bZp111knnzp3Tp0+fnHDCCRk6dGgWLFiQgQMHpn///qmsrKyr3QIAAAAAAAAAlqKsVCqV6mrjY8aMyZ577rlE+1FHHZWLLrooHTp0qHW9Rx99NL169UqSfPLJJxk4cGDuu+++lJeXp1+/frnqqqvStGnTZa6jqqoqFRUVmTlzZo1HS6yJ7nrmo7ouAYA13CE7bVDXJQAAAAAAAGugZb32Xqd3VOjVq1e+KCexLBmKli1b5rbbbluZZQEAAAAAAAAAq0h5XRcAAAAAAAAAAHx9CCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYeo0qPDYY4/lwAMPTGVlZcrKyjJy5Mga/aVSKRdccEE22mijNG7cOL17986kSZNqjPnkk08yYMCANG/ePC1atMhxxx2X2bNnF7gXAAAAAAAAAMCyqtOgwpw5c9K1a9dcc801tfb/8pe/zFVXXZWhQ4fm6aefTpMmTbLPPvtk7ty51WMGDBiQV155JQ8//HBGjRqVxx57LCeeeGJRuwAAAAAAAAAALIeyUqlUqusikqSsrCwjRoxI3759k/zzbgqVlZU588wzc9ZZZyVJZs6cmdatW2f48OHp379/XnvttWy55ZZ59tlns8MOOyRJHnzwwey333557733UllZuUzbrqqqSkVFRWbOnJnmzZuvkv0ryl3PfFTXJQCwhjtkpw3qugQAAAAAAGANtKzX3uv0jgpfZPLkyZk6dWp69+5d3VZRUZHu3btn3LhxSZJx48alRYsW1SGFJOndu3fKy8vz9NNPL3XuefPmpaqqqsYCAAAAAAAAAKx6q21QYerUqUmS1q1b12hv3bp1dd/UqVOz4YYb1uivX79+WrZsWT2mNkOGDElFRUX10rZt25VcPQAAAAAAAABQm9U2qLAqnXfeeZk5c2b1MmXKlLouCQAAAAAAAAC+FlbboEKbNm2SJNOmTavRPm3atOq+Nm3a5MMPP6zR//nnn+eTTz6pHlObhg0bpnnz5jUWAAAAAAAAAGDVW22DCh06dEibNm0yevTo6raqqqo8/fTT6dGjR5KkR48emTFjRp5//vnqMY888kgWLVqU7t27F14zAAAAAAAAAPDF6tflxmfPnp2//vWv1a8nT56cCRMmpGXLlmnXrl1OP/30XHLJJenYsWM6dOiQ888/P5WVlenbt2+SpHPnzunTp09OOOGEDB06NAsWLMjAgQPTv3//VFZW1tFeAQAAAAAAAABLU6dBheeeey577rln9evBgwcnSY466qgMHz4855xzTubMmZMTTzwxM2bMyK677poHH3wwjRo1ql7n1ltvzcCBA7P33nunvLw8/fr1y1VXXVX4vgAAAAAAAAAAX66sVCqV6rqIulZVVZWKiorMnDkzzZs3r+tyvpK7nvmorksAYA13yE4b1HUJAAAAAADAGmhZr72XF1gTAAAAAAAAAPA1J6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACjMCgUV9tprr8yYMWOJ9qqqquy1115ftSYAAAAAAAAAYC21QkGFMWPGZP78+Uu0z507N48//vhXLgoAAAAAAAAAWDvVX57BL774YvXfr776aqZOnVr9euHChXnwwQez8cYbr7zqAAAAAAAAAIC1ynIFFbbddtuUlZWlrKys1kc8NG7cOFdfffVKKw4AAAAAAAAAWLssV1Bh8uTJKZVK+cY3vpFnnnkmG2ywQXXfOuuskw033DD16tVb6UUCAAAAAAAAAGuH5QoqbLrppkmSRYsWrZJiAAAAAAAAAIC123IFFf7VpEmT8uijj+bDDz9cIrhwwQUXfOXCkmThwoW56KKL8rvf/S5Tp05NZWVljj766PzkJz9JWVlZkqRUKuXCCy/MDTfckBkzZqRnz5657rrr0rFjx5VSAwAAAAAAAACw8qxQUOGGG27IKaeckvXXXz9t2rSpDg0kSVlZ2UoLKvziF7/Iddddl5tvvjldunTJc889l2OOOSYVFRU57bTTkiS//OUvc9VVV+Xmm29Ohw4dcv7552efffbJq6++mkaNGq2UOgAAAAAAAACAlaOsVCqVlnelTTfdNP/xH/+Rc889d1XUVO2AAw5I69atc+ONN1a39evXL40bN87vfve7lEqlVFZW5swzz8xZZ52VJJk5c2Zat26d4cOHp3///su0naqqqlRUVGTmzJlp3rz5KtmXotz1zEd1XQIAa7hDdtqgrksAAAAAAADWQMt67b18RSafPn16Dj300BUublntsssuGT16dN58880kycSJE/PEE09k3333TZJMnjw5U6dOTe/evavXqaioSPfu3TNu3Lilzjtv3rxUVVXVWAAAAAAAAACAVW+FggqHHnpoHnrooZVdyxJ+9KMfpX///unUqVMaNGiQbt265fTTT8+AAQOSJFOnTk2StG7dusZ6rVu3ru6rzZAhQ1JRUVG9tG3bdtXtBAAAAAAAAABQrf6KrLT55pvn/PPPz1NPPZWtt946DRo0qNF/2mmnrZTi7rjjjtx666257bbb0qVLl0yYMCGnn356Kisrc9RRR63wvOedd14GDx5c/bqqqkpYAQAAAAAAAAAKsEJBheuvvz5NmzbN2LFjM3bs2Bp9ZWVlKy2ocPbZZ1ffVSFJtt5667zzzjsZMmRIjjrqqLRp0yZJMm3atGy00UbV602bNi3bbrvtUudt2LBhGjZsuFJqBAAAAAAAAACW3QoFFSZPnryy66jVp59+mvLymk+nqFevXhYtWpQk6dChQ9q0aZPRo0dXBxOqqqry9NNP55RTTimkRgAAAAAAAABg2a1QUKEoBx54YH7+85+nXbt26dKlS1544YVcfvnlOfbYY5P88+4Np59+ei655JJ07NgxHTp0yPnnn5/Kysr07du3bosHAAAAAAAAAJawQkGFxUGBpbnppptWqJh/d/XVV+f888/Pf/zHf+TDDz9MZWVlTjrppFxwwQXVY84555zMmTMnJ554YmbMmJFdd901Dz74YBo1arRSagAAAAAAAAAAVp6yUqlUWt6Vvvvd79Z4vWDBgrz88suZMWNG9tprr9x9990rrcAiVFVVpaKiIjNnzkzz5s3rupyv5K5nPqrrEgBYwx2y0wZ1XQIAAAAAALAGWtZr7yt0R4URI0Ys0bZo0aKccsop2WyzzVZkSgAAAAAAAADga6B8pU1UXp7BgwfniiuuWFlTAgAAAAAAAABrmZUWVEiSt956K59//vnKnBIAAAAAAAAAWIus0KMfBg8eXON1qVTKBx98kPvvvz9HHXXUSikMAAAAAAAAAFj7rFBQ4YUXXqjxury8PBtssEEuu+yyHHvssSulMAAAAAAAAABg7bNCQYVHH310ZdcBAAAAAAAAAHwNrFBQYbGPPvoob7zxRpJkiy22yAYbbLBSigIAAAAAAAAA1k7lK7LSnDlzcuyxx2ajjTbK7rvvnt133z2VlZU57rjj8umnn67sGgEAAAAAAACAtcQKBRUGDx6csWPH5r777suMGTMyY8aM3HPPPRk7dmzOPPPMlV0jAAAAAAAAALCWWKFHP/zhD3/IXXfdlV69elW37bfffmncuHG+973v5brrrltZ9QEAAAAAAAAAa5EVuqPCp59+mtatWy/RvuGGG3r0AwAAAAAAAACwVCsUVOjRo0cuvPDCzJ07t7rts88+y8UXX5wePXqstOIAAAAAAAAAgLXLCj364corr0yfPn2yySabpGvXrkmSiRMnpmHDhnnooYdWaoEAAAAAAAAAwNpjhYIKW2+9dSZNmpRbb701r7/+epLk8MMPz4ABA9K4ceOVWiAAAAAAAAAAsPZYoaDCkCFD0rp165xwwgk12m+66aZ89NFHOffcc1dKcQAAAAAAAADA2qV8RVb6zW9+k06dOi3R3qVLlwwdOvQrFwUAAAAAAAAArJ1WKKgwderUbLTRRku0b7DBBvnggw++clEAAAAAAAAAwNpphYIKbdu2zV/+8pcl2v/yl7+ksrLyKxcFAAAAAAAAAKyd6q/ISieccEJOP/30LFiwIHvttVeSZPTo0TnnnHNy5plnrtQCAQAAAAAAAIC1xwoFFc4+++x8/PHH+Y//+I/Mnz8/SdKoUaOce+65Oe+881ZqgQAAAAAAAADA2qOsVCqVVnTl2bNn57XXXkvjxo3TsWPHNGzYcGXWVpiqqqpUVFRk5syZad68eV2X85Xc9cxHdV0CAGu4Q3baoK5LAAAAAAAA1kDLeu19he6osFjTpk2z4447fpUpAAAAAAAAAICvkfK6LgAAAAAAAAAA+PoQVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGHq13UBAAB8sRkPXl3XJQCwhmvRZ1BdlwAAAABQzR0VAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhVntgwp///vfc8QRR6RVq1Zp3Lhxtt566zz33HPV/aVSKRdccEE22mijNG7cOL17986kSZPqsGIAAAAAAAAAYGlW66DC9OnT07NnzzRo0CAPPPBAXn311Vx22WVZb731qsf88pe/zFVXXZWhQ4fm6aefTpMmTbLPPvtk7ty5dVg5AAAAAAAAAFCb+nVdwBf5xS9+kbZt22bYsGHVbR06dKj+u1Qq5corr8xPfvKTfOc730mS3HLLLWndunVGjhyZ/v37F14zAAAAAAAAALB0q/UdFe69997ssMMOOfTQQ7PhhhumW7duueGGG6r7J0+enKlTp6Z3797VbRUVFenevXvGjRu31HnnzZuXqqqqGgsAAAAAAAAAsOqt1kGFv/3tb7nuuuvSsWPH/OlPf8opp5yS0047LTfffHOSZOrUqUmS1q1b11ivdevW1X21GTJkSCoqKqqXtm3brrqdAAAAAAAAAACqrdZBhUWLFmW77bbLf/3Xf6Vbt2458cQTc8IJJ2To0KFfad7zzjsvM2fOrF6mTJmykioGAAAAAAAAAL7Iah1U2GijjbLlllvWaOvcuXPefffdJEmbNm2SJNOmTasxZtq0adV9tWnYsGGaN29eYwEAAAAAAAAAVr3VOqjQs2fPvPHGGzXa3nzzzWy66aZJkg4dOqRNmzYZPXp0dX9VVVWefvrp9OjRo9BaAQAAAAAAAIAvV7+uC/giZ5xxRnbZZZf813/9V773ve/lmWeeyfXXX5/rr78+SVJWVpbTTz89l1xySTp27JgOHTrk/PPPT2VlZfr27Vu3xQMAAAAAAAAAS1itgwo77rhjRowYkfPOOy8//elP06FDh1x55ZUZMGBA9Zhzzjknc+bMyYknnpgZM2Zk1113zYMPPphGjRrVYeUAAAAAAAAAQG3KSqVSqa6LqGtVVVWpqKjIzJkz07x587ou5yu565mP6roEANZwh+y0QV2XwL+Z8eDVdV0CAGu4Fn0G1XUJAAAAwNfAsl57Ly+wJgAAAAAAAADga05QAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFGaNCipceumlKSsry+mnn17dNnfu3Jx66qlp1apVmjZtmn79+mXatGl1VyQAAAAAAAAAsFRrTFDh2WefzW9+85tss802NdrPOOOM3HfffbnzzjszduzYvP/++zn44IPrqEoAAAAAAAAA4IusEUGF2bNnZ8CAAbnhhhuy3nrrVbfPnDkzN954Yy6//PLstdde2X777TNs2LA8+eSTeeqpp+qwYgAAAAAAAACgNmtEUOHUU0/N/vvvn969e9dof/7557NgwYIa7Z06dUq7du0ybty4pc43b968VFVV1VgAAAAAAAAAgFWvfl0X8GVuv/32jB8/Ps8+++wSfVOnTs0666yTFi1a1Ghv3bp1pk6dutQ5hwwZkosvvnhllwoAAAAAAAAAfInV+o4KU6ZMyQ9/+MPceuutadSo0Uqb97zzzsvMmTOrlylTpqy0uQEAAAAAAACApVutgwrPP/98Pvzww2y33XapX79+6tevn7Fjx+aqq65K/fr107p168yfPz8zZsyosd60adPSpk2bpc7bsGHDNG/evMYCAAAAAAAAAKx6q/WjH/bee++89NJLNdqOOeaYdOrUKeeee27atm2bBg0aZPTo0enXr1+S5I033si7776bHj161EXJAAAAAAAAAMAXWK2DCs2aNctWW21Vo61JkyZp1apVdftxxx2XwYMHp2XLlmnevHkGDRqUHj16ZOedd66LkgEAAAAAAACAL7BaBxWWxRVXXJHy8vL069cv8+bNyz777JNrr722rssCAAAAAAAAAGqxxgUVxowZU+N1o0aNcs011+Saa66pm4IAAAAAAAAAgGVWXtcFAAAAAAAAAABfH4IKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAApTv64LAAAAAPi6+c2k2+u6BADWcCd17F/XJQAArDB3VAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRmtQ4qDBkyJDvuuGOaNWuWDTfcMH379s0bb7xRY8zcuXNz6qmnplWrVmnatGn69euXadOm1VHFAAAAAAAAAMAXWa2DCmPHjs2pp56ap556Kg8//HAWLFiQb3/725kzZ071mDPOOCP33Xdf7rzzzowdOzbvv/9+Dj744DqsGgAAAAAAAABYmvp1XcAXefDBB2u8Hj58eDbccMM8//zz2X333TNz5szceOONue2227LXXnslSYYNG5bOnTvnqaeeys4771wXZQMAAAAAAAAAS7Fa31Hh382cOTNJ0rJlyyTJ888/nwULFqR3797VYzp16pR27dpl3LhxS51n3rx5qaqqqrEAAAAAAAAAAKveGhNUWLRoUU4//fT07NkzW221VZJk6tSpWWedddKiRYsaY1u3bp2pU6cuda4hQ4akoqKiemnbtu2qLB0AAAAAAAAA+P+tMUGFU089NS+//HJuv/32rzzXeeedl5kzZ1YvU6ZMWQkVAgAAAAAAAABfpn5dF7AsBg4cmFGjRuWxxx7LJptsUt3epk2bzJ8/PzNmzKhxV4Vp06alTZs2S52vYcOGadiw4aosGQAAAAAAAACoxWp9R4VSqZSBAwdmxIgReeSRR9KhQ4ca/dtvv30aNGiQ0aNHV7e98cYbeffdd9OjR4+iywUAAAAAAAAAvsRqfUeFU089NbfddlvuueeeNGvWLFOnTk2SVFRUpHHjxqmoqMhxxx2XwYMHp2XLlmnevHkGDRqUHj16ZOedd67j6gEAAAAAAACAf7daBxWuu+66JEmvXr1qtA8bNixHH310kuSKK65IeXl5+vXrl3nz5mWfffbJtddeW3ClAAAAAAAAAMCyWK2DCqVS6UvHNGrUKNdcc02uueaaAioCAAAAAAAAAL6K8rouAAAAAAAAAAD4+hBUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBhBBUAAAAAAAAAgMIIKgAAAAAAAAAAhRFUAAAAAAAAAAAKI6gAAAAAAAAAABRGUAEAAAAAAAAAKIygAgAAAAAAAABQGEEFAAAAAAAAAKAwggoAAAAAAAAAQGEEFQAAAAAAAACAwggqAAAAAAAAAACFEVQAAAAAAAAAAAojqAAAAAAAAAAAFEZQAQAAAAAAAAAojKACAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACiMoAIAAAAAAAAAUBhBBQAAAAAAAACgMIIKAAAAAAAAAEBh6td1AQAAAAAAAGuy2Xf9vq5LAGAN1/SQw+q6hEK5owIAAAAAAAAAUJi1JqhwzTXXpH379mnUqFG6d++eZ555pq5LAgAAAAAAAAD+zVoRVPj973+fwYMH58ILL8z48ePTtWvX7LPPPvnwww/rujQAAAAAAAAA4F+sFUGFyy+/PCeccEKOOeaYbLnllhk6dGjWXXfd3HTTTXVdGgAAAAAAAADwL+rXdQFf1fz58/P888/nvPPOq24rLy9P7969M27cuFrXmTdvXubNm1f9eubMmUmSqqqqVVtsAT6dPauuSwBgDVdV1bCuS+DfVM35rK5LAGANV74WfN9d23w2+9O6LgGANdzacD57bTL7U8d2AL6aRWvJsX3xZ5RSqfSF49b4oMI//vGPLFy4MK1bt67R3rp167z++uu1rjNkyJBcfPHFS7S3bdt2ldQIAAAAdevcui4AAFjJzshxdV0CALBSHVvXBaxUs2bNSkVFxVL71/igwoo477zzMnjw4OrXixYtyieffJJWrVqlrKysDisDVrWqqqq0bds2U6ZMSfPmzeu6HADgK3JsB4C1j+M7AKx9HN/h66NUKmXWrFmprKz8wnFrfFBh/fXXT7169TJt2rQa7dOmTUubNm1qXadhw4Zp2LDmba1btGixqkoEVkPNmzf3YQgA1iKO7QCw9nF8B4C1j+M7fD180Z0UFisvoI5Vap111sn222+f0aNHV7ctWrQoo0ePTo8ePeqwMgAAAAAAAADg363xd1RIksGDB+eoo47KDjvskJ122ilXXnll5syZk2OOOaauSwMAAAAAAAAA/sVaEVQ47LDD8tFHH+WCCy7I1KlTs+222+bBBx9M69at67o0YDXTsGHDXHjhhUs8/gUAWDM5tgPA2sfxHQDWPo7vwL8rK5VKpbouAgAAAAAAAAD4eiiv6wIAAAAAAAAAgK8PQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVgFWqffv2KSsrq7E0bNgw7dq1y2GHHZbHH398uec8+uijU1ZWluHDh6/8ggFgNTBp0qQMHDgwW265ZZo0aZJGjRplk002yY477piBAwfmD3/4w1fexttvv52ysrK0b9++1v777rsvu+22W5o3b159DB8zZsxX3u6aoFevXmvl/n7Zew7A2m3MmDE54YQTsuWWW2a99dZLgwYN0qpVq+y0004ZOHBg/vznP6dUKtV1mSvFyj7mDR8+PGVlZTn66KNXynwAUFdW9PvuRRddlLKyslx00UU12seMGZOysrL06tVruWtZfK4B+PqqX9cFAF8PPXv2zOabb54kmTFjRp577rnccccdufPOO/OrX/0qgwcPruMKl8/RRx+dm2++OcOGDXOiAoCV6u677873v//9zJs3L61atUrPnj2zwQYbZPr06ZkwYUKuueaa3H777enXr98qq2HChAnp169fFi1alL322isbbbRRysrK0qZNm1W2TQBg1fjHP/6RAQMG5KGHHkqSbLzxxunZs2cqKioyc+bMvPzyy7nmmmtyzTXXpFu3bhk/fnyd1Nm+ffu88847mTx5slAdAAB8DQgqAIU4/vjja1zQnzt3bk466aTccsstOeecc3LAAQfkm9/85jLNNWTIkPzoRz/KRhtttIqqBYC6MW3atBx11FGZN29ezjzzzFxyySVp1KhRjTHPP/987rrrrlVax8iRI7NgwYL8+Mc/zs9//vNVui0AYNWZMWNGdt1117zxxhvp1KlTrr322uy5555LjHv55ZdzxRVX5Pbbb6+DKle+jTfeOK+99loaNGhQ16UAwFph4MCB6d+/f9Zff/26LgVYi3j0A1AnGjVqlGuuuSZNmjTJwoULc/fddy/zuhtttFE6deqUioqKVVghABRv1KhRmT17diorK/OrX/1qiZBCkmy//fYZMmTIKq3j3XffTZJ07NhxlW4HAFi1Bg0alDfeeCPf+MY38uSTT9YaUkiSrbbaKjfeeGMeffTRgitcNRo0aJBOnTpls802q+tSAGCtsP7666dTp06CCsBKJagA1JmmTZtmiy22SPLP50cmNZ9LNWzYsPTo0SMVFRUpKyurHnP00UenrKwsw4cPr57r8MMPT1lZWS699NKlbm/UqFEpKytLt27dqtsWLFiQ3/3udxkwYEA6deqU5s2bp3Hjxtliiy1y2mmn5f33368xx+LnXN58881JkmOOOaa65tqe0fXZZ5/lsssuy84775wWLVqkUaNG2WKLLXLOOefk448/XpF/GwBrsWnTpiVJNthgg+Ve9/PPP8///u//plevXmnZsmUaNmyYDh065JRTTsmUKVOWaY7Fz5wcNmxYkprHueV53uT777+fwYMHp3Pnzll33XXTrFmz7Ljjjvn1r3+dzz//fInx/3psf+ONN3LYYYdlww03TJMmTbLjjjvmnnvuqR779NNP56CDDsoGG2yQxo0bp0ePHhk9enStdfzr54obbrgh22+/fZo0aZIWLVpkv/32y1NPPbXM+7TY559/nqFDh2aXXXZJRUVFGjVqlI4dO+a0007L3//+9xpj33rrrdSrVy/rrbdePv3006XO2aVLl5SVleWPf/zjEttakfd01KhR2WOPPdKsWbNUVFRkt912q/E/BODr4a233sptt92WJLniiiuy3nrrfek6O+200xJtn376aS699NJst912adasWdZdd9106dIlP/nJTzJ9+vQaY//0pz+lrKwsnTt3Xuo2Pv/887Rp0yZlZWWZOHFihg8fnrKysrzzzjtJkg4dOtT4nr28z9BO/u+7+9IeIfHee+9l0KBB6dixYxo1apSKior07Nkzv/nNb7Jw4cIvnPvjjz/Oqaeemnbt2qVhw4bZdNNNc8YZZyzxvwCAIn366ae58sors+uuu2a99darPkYdeOCB1Z8H/t2ECRNy8MEHZ/3110/Dhg2z5ZZb5rLLLkupVFpi7OLzBf9+/vvLjBs3Lvvuu29atGiRpk2bZocddshNN930hessyzWC5Kude5g8eXKOPPLItGnTJg0bNsxmm22Wn/zkJ5k3b95y7R/w1QgqAHWqqqoqSdKwYcMa7YMGDcrxxx+f+vXrZ//990/37t2rP5zU5phjjkmS6gBBbRZfdDn22GOr26ZNm5Yjjzwy999/f9Zbb7306dMne+21V2bPnp2rr7462267bf76179Wj2/atGmOOuqo6l9l9OzZM0cddVT1su2221aPff/999O9e/ecddZZmTRpUnbcccfst99+mTdvXv77v/87O+ywQ/WJGABIknbt2iX55+2Xl3bxvTazZs3Kt771rZxwwgl5/vnns8022+Sggw5Kw4YNM3To0HTr1i0vvPDCl86z7bbbLvU416dPn2Wq5bHHHstWW22VK664InPnzs23vvWt9OzZM2+99VYGDRqU/fffPwsWLKh13fHjx2f77bfPxIkTs/fee6dr16557rnn8t3vfjd33XVXRo4cmd122y3vvfde9t5772yxxRZ56qmn0qdPnzzxxBNLrWnw4ME56aSTsu666+Y73/lO2rZtmwceeCC77bZbRowYsUz7lSTz5s3Lvvvum1NOOSUvvPBCevbsmb59+2bevHnVnxv+9bnem222Wfbff//MmDEjt956a61zPvroo3n11Vez2WabZd99961uX9H39IorrsiBBx6Yxx57LFtuuWX233//zJ07N3379s3VV1+9zPsKwJpv1KhRWbRoUdZbb70ccMABKzTHJ598kp49e+a8887LW2+9lb322iv77bdfPvzww/z85z/P9ttvX+OCwbe+9a1ssskmef3115caCHzggQcybdq0bLfddunatWs233zzHHXUUWnSpEmSpF+/fjW+Z7dp02aFal+aZ599Nl27ds2vf/3rzJ8/P3379s0uu+yS8ePH5+STT87++++f+fPn17ru9OnT071799x2223Zfvvts//++2fWrFm58sor06NHj3z00UcrtVYAWBZTpkzJjjvumDPOOCMvvPBCdtxxxxx88MHZdNNN8/jjj+fHP/7xEuv86U9/Svfu3fP666/nW9/6Vnr06JE333wzZ511Vs4444yVUtedd96Z3XbbLQ8++GDatm2bgw46KI0bN87xxx+fM88880vX/6JrBF/l3MOECROy7bbb5vHHH88ee+yR3XffPR988EF+/vOfp3///itl34FlVAJYhTbddNNSktKwYcOW6Js4cWKpvLy8lKR00003lUqlUilJKUmpefPmpXHjxtU651FHHbXEnAsXLiy1a9eulKTW9T766KNSgwYNSuuss07pH//4R3V7VVVV6Z577inNmzevxvj58+eXzjvvvFKS0n777bdMNfyrRYsWlXr27FlKUjruuONKVVVV1X0LFiwonXnmmaUkpT333LPW9QH4epo1a1Zp4403LiUplZWVlXr16lX62c9+Vrr//vtLH3744VLX+/73v19KUjrggANK06ZNq9F3xRVXlJKUOnbsWPr888+r2ydPnlxKUtp0002XmO/LjnNL88EHH5RatWpVKisrK1177bWlhQsXVvf94x//KO21116lJKWLL7641u0lKV1yySWlRYsWVfddddVVpSSlTTbZpLTeeuuVbrnllhrrnn766aUkpd69ey9Rz+I5GzduXBo9enSNvl/+8pelJKWKiool/md77LFHKUnp0UcfrdF+7rnnlpKUNttss9LkyZOr2+fPn1867rjjSklKHTp0qPG54uGHHy4lKXXt2rXW/1m/fv1KSUqXXXZZjfYVeU8nTpxYqlevXqm8vLx055131ljnd7/7XamsrGyp7zkAa58jjzyylKS09957r/Achx12WClJqXv37jW+S8+aNau07777lpKUdtlllxrr/Od//mcpSemkk06qdc7vfve7pSSlq6++ukb74vMH/3qMXVFL+5wzd+7c6u2cfPLJpfnz51f3vfXWW6X27duXkpR+/OMf11hv2LBh1Z8rdt5559LHH39c3Td9+vTSLrvsUkpS6t+//1euHQCWx8KFC0s77LBDKUnp29/+9hLnDj777LPS/fffX/168ffdJKWhQ4fWGDt69OhSWVlZqV69eqUpU6bU6LvwwgtLSUoXXnhhjfZHH320lKS0xx571Gj/4IMPSs2aNSslKV1++eU1+v785z+XGjVqVF3Hv/uyawQr49zDf/7nf9b4Pv3SSy+VmjRpUkpSevLJJ5fYJrBqCCoAq1RtQYUZM2aU7r///tJmm21WSlKqrKwszZ49u1Qq/d+HkJ/+9KdLnXNpF0/OP//8UpLSiSeeuMQ6V155ZSlJ6ZBDDlmu+isrK0vl5eU1ggZfVMNiDzzwQClJadttty0tWLBgif6FCxeWttpqq1KS0ksvvbRcNQGwdnv99ddL3bt3rz4m/uuy7bbblq677roaX6ZfffXVUllZWamysnKJ49Vi++23XylJ6b777qtuWxVBhcUX8gcOHFhr/3vvvVdq0KBBaYMNNqgRRli8vZ122qlGe6n0z4Bfy5YtS0lKhx566BJz/uMf/yglKa2zzjo1LjaUSv/3ueL000+vtZ7FJ3N+/vOf12ivLajw2WeflZo2bVpKUrr33nuXmGvOnDml1q1bl5KUbr311hp9Xbp0KSUpPf744zXap0yZUqpfv35p3XXXLU2fPr26fUXf0+OPP76UpHTYYYfVus53vvMdQQWAr5HFQYKlXTyfMGFC6aijjlpiWXy8euedd0rl5eWlsrKy0sSJE5dY/7333qu+yPCXv/yluv2vf/1rdRjws88+q7HOhx9+WGrQoEGpYcOGNS72l0rFBBV++9vfVp+HmDt37hLr3XXXXaUkpWbNmtWo/V+DCi+88MIS67344oulsrKyUnl5+RIXdgBgVRo5cmQpSWmjjTYqzZo160vHL/6+e/DBB9fa36dPn1KSJX4ksLxBhUsuuaQ64FebH/7wh18aVFjaNYKveu5h++23X+LcQ6lUKp188slfem0CWLk8+gEoxL8+47pFixbZf//989Zbb2WzzTbLH//4x+pbPC52yCGHLPc2Fj9j6ve//30+++yzGn21PfbhX02cODGXX355Bg0alGOPPTZHH310jj766Hz++edZtGhRjcc/LIv7778/yT9vWVm/fv0l+svLy7P77rsnSZ588snlmhuAtdvixxk8/fTTueCCC7LPPvtkgw02SPLP2xOecsop6dOnT/Utif/4xz+mVCpl3333TbNmzWqds1evXklW/TFn8fHvsMMOq7V/4403TseOHfPRRx9l0qRJS/Tvu+++SzzqqX79+unQoUOSZL/99ltinVatWqVly5aZP39+Pv7441q3e9RRR9Xa/oMf/CBJlunZ188991xmz56dli1b5sADD1yif911162+ReSjjz5ao++0005Lkvz617+u0f6b3/wmn3/+eQYMGJAWLVpUt6/oe7p4P4444oha11na/wGAr6cpU6bk5ptvXmJZ/P33sccey6JFi9KtW7dss802S6y/8cYbZ5999klS89i32WabZffdd8/MmTOXeMTSrbfemgULFuQ73/lOWrZsuQr3rnaLj5X9+/df4hGUSXLwwQdnvfXWy6xZs/L8888v0d+1a9caj3xcbOutt063bt2yaNGiPPbYYyu7bABYqgcffDBJ8v3vfz9NmzZd5vVq+16bJJ07d06S/P3vf/9KdS0+5g4YMKDW/mX5frq0awRf9dzDAQccUOtjplfWvgPLbsmrZwCrQM+ePbP55psnSdZZZ51suOGG2XnnndOnT59aL+S3b99+ubfxjW98I3vssUfGjBmTESNG5Pvf/36S5IUXXsjEiRNTWVmZb3/72zXWmTNnTo488sgvfT51VVXVctXyt7/9LUly/vnn5/zzz//CsZ5hCUBtdtppp+y0005JklKplBdeeCH//d//ndtvvz1//vOf8z//8z85++yzq485N954Y2688cYvnPOrHHNef/31XHrppUu077rrrjn++OOT/N/xb7fddvvS+T766KN885vfrNHWrl27WscuPtmytP5mzZrlk08+ydy5c2vtXxx0WFr7e++996X1Lj5RsbS5kn9emPnXsYsdccQR+dGPfpS77747H3zwQTbaaKPMnz8/N9xwQ5Jk4MCBNcav6Hu6eD++bH8B+HpYf/31kyz9+H/AAQekVCpVv+7du3dGjx5d/fqrHPuOPfbYPPbYYxk2bFgOP/zw6vbFPyI45phjlmdXVpov26eysrJ06NAh06dPr/UixRf9Lzp06JDx48cv0+cKAFhZ3nnnnSRJp06dlmu9pX2/bt68eZIs9fv1sloZ30+Xdo1gVZ17WFn7Diw7QQWgEMcff3yOPvroZR7fuHHjFdrOsccemzFjxmT48OHVQYXFJ0J+8IMfpF69ejXGn3feeRkxYkQ6deqUSy+9NDvuuGPWX3/9rLPOOkmSXXbZJePGjatx8mZZLFq0KMk/L94sPnGzNF26dFmuuQH4+ikrK8t2222X//f//l8+/fTT3HvvvRk5cmTOPvvs6mPOtttum65du37hPN27d1/hGqZOnZqbb7651r7FQYXFtRxyyCFL3C3p37Vq1WqJtvLyL77h25f1r6jlPc4vr3XXXTcnnHBCfvnLX+b666/PhRdemD/84Q+ZNm1adttttyV+pVrUewrA2m277bbLb3/724wfPz6LFi1aZcfR2hx66KEZNGhQRo8enffeey+bbLJJxo8fnxdffDEbb7zxEj8iWJus6s8VALAyFPm5YEUt7RrBqj73ABRHUAFYq/Tr1y8DBw7M6NGjM2XKlLRu3Tq33XZbktp/sXHHHXckSX7/+9/XeivL2m4NtSzatm2bJPnOd76Ts846a4XmAIDafPvb3869996bf/zjH0n+75jTs2fPJR4tsDL16tXrS0+8t23bNpMmTcq5556bHXbYYZXVsrwmT55c622a33777STJJpts8qVzbLzxxtVzLc3iX3UsHvuvTj311Fx22WW5/vrr8+Mf/7j6vfr3uykkK/6ebrzxxnnrrbfy9ttv1xqEXLy/AHw9HHDAATnzzDMzffr0/PGPf8wBBxywXOsvPp4tPr7VZmnHvnXXXTff+973cuONN+bmm2/Of/7nf2b48OFJ/nmr57q6QLAs+7T4WF/b8fyLPgcsz+cKAFhZFt8d4PXXX6/jSmraeOON8/rrry/1e+hX+X66up57AJaf2BCwVll33XVz2GGHZdGiRbnlllty33335eOPP07Pnj2XuMVTknzyySdJkk033XSJvj/96U/VF4H+3eI7Lnz++ee19u+7775JkjvvvNOvKQBYZstyzHj33XeT/N9J8MXHnHvvvbfOb0+4uJbFQcDVxW9/+9svbO/Vq9eXzrHDDjukadOm+eSTT3Lvvfcu0f/ZZ5/l9ttvT5LsueeeS/S3a9cuffv2zfvvv58LLrggTz75ZCorK3PwwQcvMXZF39M99tgjyT+f/12bW265ZZnnAmDNt/nmm1c/u3nw4MGZOXPmcq2/++67p7y8PBMmTMjEiROX6P/ggw+qn4td27Hv2GOPTZLcfPPNmTdvXvWPCJZ2t8Uv+569Miw+5v/+97+v9Rg7YsSITJ8+Pc2aNcv222+/RP+LL76YF198cYn2V155JePHj095eXl23333lV43ACxNnz59kiT/7//9v8yZM6eOq/k/q/L76ep67gFYfoIKwFpn8cmQ4cOH56abbkqy9Odfdu7cOUly9dVX12h/4403cvLJJy91G4svDr3yyiu19n/nO9/JjjvumGeeeSbHHHNMrc8EnT59eoYOHbpKT8IAsGa59tprc9RRR+XJJ59coq9UKuXuu++u/oV9//79kyTdunVLv379MmXKlBx88MG1/iphzpw5ufXWWzNt2rRVWv/ZZ5+dFi1a5PLLL89ll12W+fPnLzFm8uTJ+d3vfrdK6/h31113XcaMGVOj7YorrsgzzzyTZs2a5bjjjvvSORo1apRTTz01SXLmmWdWPwc0SRYsWJAf/vCHmTp1ajp06JBDDjmk1jl++MMfJkkuvfTSJMlJJ52U+vWXvMndir6ngwYNSr169XLHHXdkxIgRNcbffvvtGTly5JfuJwBrl2uuuSabb755Jk2alF122SVjx46tddzbb79d/Szpxdq1a5dDDz00pVIpJ510Uj7++OPqvjlz5uTEE0/M3Llzs8suu2SXXXZZYs5ddtklW2yxRfUvHj/++OPsuuuu6dixY601fNn37JXh0EMPTbt27fL+++9n8ODBNb6PT548OWeeeWaSfx5TGzVqtMT6pVIpp5xySqZPn17dNnPmzJxyyikplUrp169f9Z2RAKAIBx10ULp165b3338/hx56aI3jdZLMnTs3DzzwQOF1HXfccWnatGnGjRuXq666qkbfmDFjMnTo0BWee3U99wAsP49+ANY6O++8czp37pzXXnstf/3rX9OkSZPqX5H8uwsvvDCHHHJIzj///Nxxxx3p0qVLPvzwwzz++OPZbbfdUllZWevFor59++biiy/OVVddlZdffjlt27ZNeXl5DjrooBx00EEpLy/PyJEjs//+++fmm2/OXXfdla5du6Zdu3aZP39+/va3v+Wll17KwoULc/TRR9d6kQKAr58FCxbklltuyS233JINNtgg3bp1y/rrr58ZM2bk1Vdfrb5gfcQRR9S4uD5s2LDMmDEjDzzwQLbYYot07do1HTp0SKlUyttvv52JEydm/vz5ee2119K6detVVv8mm2ySe+65J/369ctZZ52VX/7yl9lqq62y0UYbZebMmXnttdfy1ltvpXv37jniiCNWWR3/7qSTTspee+2V3XbbLRtvvHFefvnlvPTSS6lXr15uuummtGnTZpnmufjii/Pcc89l9OjR6dy5c/bcc880a9Ys48aNy7vvvptWrVrlzjvvrP5F6L/bbbfd0q1bt7zwwgtp0KBBTjzxxKVua0Xe02233TZDhgzJOeeck4MPPjjdu3fPZpttlkmTJuXZZ5/NGWeckSuuuGL5/4EArLHWW2+9/OUvf8n3v//9jB49Or169comm2ySbbfdNi1atMhnn32WSZMm5aWXXkqpVMrWW29d4xbK11xzTV5//fU8/fTT2WyzzbLnnnumfv36GTt2bD766KN06NBhqb+UTP75o4Ef/ehH+Z//+Z8k//fDgtr069cvjz76aI444oh8+9vfznrrrZfknxcjtthii5Xy/2jYsGHuuuuu9OnTJ9ddd13++Mc/Zuedd86sWbPyyCOPZO7cudlnn31y4YUX1rr+QQcdlJdffjnf+MY3sueee6asrCxjxozJJ598ko4dO67Sx3ABQG3Ky8szYsSI7LPPPnnggQfSrl277LrrrmnVqlX+/ve/Z+LEiWnRokXhjwKsrKzMDTfckCOOOCI//OEP87//+7/Zaqut8ve//z2PP/54Tj/99BX+frq6nnsAlp87KgBrpX+9g8IhhxySpk2b1jru4IMPztixY7P33nvngw8+yL333psPP/wwF110UR544IE0aNCg1vW22Wab/OEPf0iPHj3y9NNPZ/jw4bnxxhszfvz46jGVlZV56qmnMnTo0Oy000554403ctddd+WJJ55Ikpx88sn505/+VOuvNAD4ejruuOMycuTIDBo0KB06dMirr76aO++8M48++mjq1auXww8/PA888EB++9vf1ni2c7NmzfLQQw/ltttuS+/evfPuu+9mxIgReeSRR/LZZ59lwIABGTFiRDbbbLNVvg+77757XnnllZx//vnZZJNN8uyzz+bOO+/MhAkT0rp161x44YW54YYbVnkd/+qKK67Itddem6qqqowcOTLvvPNO+vTpk8cee2ypdz+oTcOGDfPggw/m2muvTdeuXfP4449nxIgRadCgQQYNGpSJEyfWepvof/Xtb387yT8/n3xRQGJF39Ozzz4799xzT3bddde8/PLLuffee9OgQYPcddddOe2005Z5XwFYe2y44Yb585//nD//+c859thj06RJkzz22GO5/fbb88gjj6R+/fo58cQT8/DDD2fChAnZaqutqtdt1apVnnzyyQwZMiQdOnTIQw89lFGjRmX99dfPj3/84zz//PNp3779Urf9gx/8IPXq1UuSNGnSJIceeuhSx55yyikZMmRINt100/zxj3/MjTfemBtvvDEffPDBCu97WVnZEm077rhjJkyYkFNPPTX16tXLiBEj8vjjj6dbt2657rrrMmrUqKWGDtdbb7089dRTOeyww/Lss89m1KhRadKkSU477bQ89dRT2XDDDVe4VgBYUZtuummee+65/OIXv0iXLl0ybty43H333XnnnXeyxx575Be/+EWd1NW/f/+MGTMm++yzT955553cc889mTVrVoYOHZrLL7/8K829Op57AJZfWcnD0wEAgLXQ4osTq8tXnoULF2azzTbLO++8kyeffDI9evSo65IAYK306quvpkuXLtlyyy1X6aMkAACAFeeOCgAAAAW4/vrr884776RHjx5CCgCwCj311FNJstIeGQEAAKx8HooOAACwirzxxhv57//+70ydOjUPPvhgysvL86tf/aquywKAtdL//u//ZuTIkXnooYeS1HwsJAAAsHoRVAAAAFhFPvjgg9x4441ZZ5110qVLl1x00UXZZZdd6rosAFhjjBw5MiNHjlzm8Q8//HC++c1v5owzzsiBBx646goDAAC+EkEFAABgrVQqleq6hPTq1Wu1qAMA1lQTJkzIzTffvMzjHXcBAGDNUFby6R0AAAAAAAAAKEh5XRcAAAAAAAAAAHx9CCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAqFNvv/12ysrKMmHChLouBQAAACiAoAIAAACwRisrK8vIkSPrugwAAABgGQkqAAAAAHVm/vz5dV0CAAAAUDBBBQAAAGCpRo0alRYtWmThwoVJkgkTJqSsrCw/+tGPqsccf/zxOeKII5Ikf/jDH9KlS5c0bNgw7du3z2WXXVZjvvbt2+dnP/tZfvCDH6R58+Y58cQTl9jmwoULc+yxx6ZTp0559913v7C+9u3bJ0m++93vpqysLO3bt8/bb7+d8vLyPPfcczXGXnnlldl0002zaNGijBkzJmVlZbn//vuzzTbbpFGjRtl5553z8ssv11jniSeeyG677ZbGjRunbdu2Oe200zJnzpxl++cBAAAAtRJUAAAAAJZqt912y6xZs/LCCy8kScaOHZv1118/Y8aMqR4zduzY9OrVK88//3y+973vpX///nnppZdy0UUX5fzzz8/w4cNrzPmrX/0qXbt2zQsvvJDzzz+/Rt+8efNy6KGHZsKECXn88cfTrl27L6zv2WefTZIMGzYsH3zwQZ599tm0b98+vXv3zrBhw2qMHTZsWI4++uiUl//f6ZCzzz47l112WZ599tlssMEGOfDAA7NgwYIkyVtvvZU+ffqkX79+efHFF/P73/8+TzzxRAYOHLhc/0MAAACgprJSqVSq6yIAAACA1df222+fww8/PGeddVa++93vZscdd8zFF1+cjz/+ODNnzswmm2ySN998MxdddFE++uijPPTQQ9XrnnPOObn//vvzyiuvJPnnHRC6deuWESNGVI95++2306FDhzz++OO56KKLMm/evIwaNSoVFRXLVF9ZWVlGjBiRvn37VrfdcccdOfnkk/PBBx+kYcOGGT9+fHbYYYf87W9/S/v27TNmzJjsueeeuf3223PYYYclST755JNssskmGT58eL73ve/l+OOPT7169fKb3/ymet4nnngie+yxR+bMmZNGjRp9lX8rAAAAfG25owIAAADwhfbYY4+MGTMmpVIpjz/+eA4++OB07tw5TzzxRMaOHZvKysp07Ngxr732Wnr27Flj3Z49e2bSpEnVj45Ikh122KHW7Rx++OGZM2dOHnrooWUOKSxN3759U69evepAxPDhw7PnnntWPypisR49elT/3bJly2yxxRZ57bXXkiQTJ07M8OHD07Rp0+pln332yaJFizJ58uSvVB8AAAB8nQkqAAAAAF+oV69eeeKJJzJx4sQ0aNAgnTp1Sq9evTJmzJiMHTs2e+yxx3LN16RJk1rb99tvv7z44osZN27cV655nXXWyQ9+8IMMGzYs8+fPz2233ZZjjz12ueaYPXt2TjrppEyYMKF6mThxYiZNmpTNNtvsK9cIAAAAX1f167oAAAAAYPW22267ZdasWbniiiuqQwm9evXKpZdemunTp+fMM89MknTu3Dl/+ctfaqz7l7/8Jd/85jdTr169L93OKaeckq222ioHHXRQ7r///mUOQDRo0KDGHRsWO/7447PVVlvl2muvzeeff56DDz54iTFPPfVU2rVrlySZPn163nzzzXTu3DlJst122+XVV1/N5ptvvkx1AAAAAMvGHRUAAACAL7Teeutlm222ya233ppevXolSXbfffeMHz8+b775ZnWg4Mwzz8zo0aPzs5/9LG+++WZuvvnm/PrXv85ZZ521zNsaNGhQLrnkkhxwwAF54oknlmmd9u3bZ/To0Zk6dWqmT59e3d65c+fsvPPOOffcc3P44YencePGS6z705/+NKNHj87LL7+co48+Ouuvv3769u2bJDn33HPz5JNPZuDAgZkwYUImTZqUe+65JwMHDlzm/QEAAACWJKgAAAAAfKk99tgjCxcurA4qtGzZMltuuWXatGmTLbbYIsk/70Bwxx135Pbbb89WW22VCy64ID/96U9z9NFHL9e2Tj/99Fx88cXZb7/98uSTT37p+MsuuywPP/xw2rZtm27dutXoO+644zJ//vylPvbh0ksvzQ9/+MNsv/32mTp1au67776ss846SZJtttkmY8eOzZtvvpnddtst3bp1ywUXXJDKysrl2h8AAACgprJSqVSq6yIAAAAAVoWf/exnufPOO/Piiy/WaB8zZkz23HPPTJ8+PS1atKib4gAAAOBryh0VAAAAgLXO7Nmz8/LLL+fXv/51Bg0aVNflAAAAAP9CUAEAAABYbd16661p2rRprUuXLl2Wut7AgQOz/fbbp1evXkt97AMAAABQNzz6AQAAAFhtzZo1K9OmTau1r0GDBtl0000LrggAAAD4qgQVAAAAAAAAAIDCePQDAAAAAAAAAFAYQQUAAAAAAAAAoDCCCgAAAAAAAABAYQQVAAAAAAAAAIDCCCoAAAAAAAAAAIURVAAAAAAAAAAACiOoAAAAAAAAAAAURlABAAAAAAAAACjM/wfpMFBeKh88JQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 2600x600 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure(figsize=(26, 6))\n",
+    "ax = sns.countplot(data=df[df['stroke'] == 1], x='work_type', palette='pastel')\n",
+    "ax.set_xticklabels(ax.get_xticklabels(), fontsize=16)  # Tùy chỉnh kích thước chữ trên trục x\n",
+    "ax.legend().remove()  # Loại bỏ huy hiệu (legend)\n",
+    "\n",
+    "plt.show()\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:24px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ trên</strong> ta thấy cao nhất là nhóm việc làm riêng tư, thấp nhất là nhóm trẻ em.<br> \n",
+    "Để có thể quan sát rõ hơn sự khác biệt giữa các nhóm việc làm, ta sẽ quan sát thêm thuộc tính tuổi. Với những người bị đột quỵ, thực hiện chia thành các nhóm theo từng loại công việc, tiến hành quan sát sự phân bố theo độ tuổi.\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 151,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>ever_married</th>\n",
+       "      <th>stroke</th>\n",
+       "      <th>percent</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>No</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.772727</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>No</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.227273</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>Yes</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.826531</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Yes</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.173469</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "  ever_married  stroke   percent\n",
+       "0           No       0  0.772727\n",
+       "1           No       1  0.227273\n",
+       "2          Yes       0  0.826531\n",
+       "3          Yes       1  0.173469"
+      ]
+     },
+     "execution_count": 151,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 152,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\1485882269.py:12: UserWarning: You are merging on int and float columns where the float values are not equal to their int representation.\n",
+      "  data2 = all_ages.merge(data2, on='age', how='left').fillna(0)\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAZfCAYAAABezrlhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5d3/8c+Z7IQs7AQJi4AVBcSKWHdUqqKiuKKiUqu1Wis/pba2V2sXNx5ba+mi1qWPtk/d2lqw1brVSlEEBRHFViGEBEIICTHJTBLIJDNzfn+cnMkJmZlMwmxJ3q/rypWTM9v9PTPGfLjv8z2GaZqmAAAAAACSJFeyBwAAAAAAqYSQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAEi4r3zlKzIMQ6tWrYr6MU899ZQMw9CPf/zjTvt//OMfyzAMPfXUU1E/V3l5uQzD0Jw5c6J+DABg4CAkAQAAAIBDerIHAABANC688EJ96Utf0vDhw5M9FABAP0dIAgD0CQUFBSooKEj2MAAAAwDL7QAAMVVRUaElS5bosMMOU05OjoYOHapZs2bpJz/5iTweT5f7r169Wqeffrry8vKUn5+vc889V//973+73C/cOUndjeXqq6/WiBEjNGjQIB1zzDH64x//GPb+zvOb3n//fZ133nkaNmyYDMPQpk2bgvd77733dOmll6qoqEiZmZkaO3asrr/+eu3cuTPic27evFnnn3++hgwZotzcXJ166ql69913o64HAJAYhCQAQMy8/fbbmjFjhn7961+rra1N8+fP14knnii3260f//jH2r59e6f7//3vf9fpp5+uffv26ZxzzlFRUZH+8Y9/6JRTTtGePXsOaixlZWWaPXu2/vjHPyo/P18XXHCBcnNzdc011+jnP/95xMeuXr1aJ510ksrLy3XmmWfqlFNOkctl/S/z4Ycf1gknnKC//vWvGj9+vBYsWKBhw4bpd7/7nWbNmqVPP/005HNu2LBBX/rSl1ReXq6zzjpLU6ZM0erVq3XGGWfok08+OahaAQCxxXI7AEBM1NXV6eKLL1ZDQ4N+9rOfaenSpcFgIUlr167VmDFjOj1m+fLleuGFF7RgwQJJkt/v18KFC/XCCy/o4Ycf1l133dXr8XzjG9/Qnj179NWvflWPPvqo0tOt/+X9/e9/14UXXhjxsU8++aTuv/9+fec73+m0f926dVqyZImKior04osv6phjjgne9rvf/U7XX3+9rr32Wq1bt67Lcz700EP65S9/qSVLlgT33XbbbVq+fLl++tOf6g9/+EOvawUAxBYzSQCAmHjiiSe0d+9enX322br99ts7BSRJOv744zVy5MhO+6644opgQJKktLQ0fe9735Nkzeb01vbt2/Xqq68qPz9fDz74YDAgSdL8+fN1ySWXRHz89OnT9e1vf7vL/v/5n/+R3+/Xb3/7204BSZKuu+46nX/++Xrvvff04YcfdnnsiSee2CkgSdIPfvADSQdXKwAg9ghJAICY+Oc//ylJ+vrXvx71Y84888wu+w477DBJUlVVVa/H8s4770iSzj777JDNHq644oqIjz/vvPNkGEanfYFAQG+++aYGDRqks846K+TjTj75ZEnS+++/3+W2ULUOGzZMQ4cOPahaAQCxx3I7AEBMVFRUSJImTZoU9WPGjh3bZV9eXp4kyev19nosu3fvliSNHz8+5O0TJkyI+Phx48Z12VdbW6umpiZJUmZmZsTH19bWdtkXqlbJqreuri7i8wEAEouQBABImgOX5KWK7OzsLvsCgYAkafDgwbr44osjPv7II4/ssi9VawUAdEVIAgDERHFxsT777DOVlpZq+vTpSR1LUVGRJGnHjh0hbw+3P5Lhw4crOztbLpdLTz75ZJfleACA/oN/1gIAxMTcuXMlSY899liSRyKddNJJkqRXX3015LWZnnvuuR4/Z3p6uubMmSOPx6M333zzoMcIAEhdhCQAQExcf/31Gj58uF555RUtX75cpml2un3dunWqqalJyFgmTZqkM888Ux6PR9/61rfk9/uDt/3jH//Qn//851497/e//325XC5de+21WrVqVZfbm5qa9L//+7/av39/b4cOAEgBhCQAQEwMHTpUf/7zn5WXl6fbbrtNkyZN0sKFC3X++edrypQpOv7444MNFRLhkUce0ahRo/TEE0/oC1/4gq644gqdeuqpOu+883rUgc/ppJNO0kMPPaSqqiqddtppmj59ui6++GJdfvnl+tKXvqThw4fruuuuO6imEwCA5CMkAQBiZs6cOfroo4904403yjRNrVy5UmvWrFFBQYHuuuuuHnW+O1iHHnqo3nvvPV155ZVqaGjQypUr5fF49OSTT+r222/v9fPeeOON2rBhgxYvXqzGxka99NJLeu2119TU1KRFixbppZdeCtl2HADQdxjmgeshAAAAAGAAYyYJAAAAABwISQAAAADgQEgCAAAAAIekhqTVq1dr/vz5GjNmjAzD0MqVK8Pe98Ybb5RhGFq+fHnCxgcAAABg4ElqSGpubtZRRx2lhx56KOL9VqxYoXXr1mnMmDEJGhkAAACAgSo9mS8+b948zZs3L+J9Kisrdcstt+i1117Tueeem6CRAQAAABiokhqSuhMIBHT11Vfr29/+to488sioHuP1ejtdxC8QCKiurk7Dhg2TYRjxGioAAACAFGeaphobGzVmzBi5XOEX1aV0SLr//vuVnp6uJUuWRP2YZcuW6Sc/+UkcRwUAAACgL6uoqNDYsWPD3p6yIemDDz7QL3/5S23cuLFHM0Df+973tHTp0uDPbrdb48aN044dO1RYWKhAICBJcrlcEbcNw5BhGGG3/X6/XC5X2G3JmsVybqelpck0zbDbpmnK5XKF3Y527NRETdRETdRETdRETdRETdTUtSaPx6Nx48YpLy9PkaRsSHr77bdVU1OjcePGBff5/X5961vf0vLly1VeXh7ycVlZWcrKyuqyv7CwUPn5+fEaLgAAAIAUZ0++dDcJk7Ih6eqrr9bcuXM77TvrrLN09dVX69prr03SqAAAAAD0d0kNSU1NTdq2bVvw57KyMm3atElDhw7VuHHjNGzYsE73z8jI0OjRo/WFL3wh0UMFAAAAMEAkNSRt2LBBp512WvBn+1yixYsX66mnnkrSqAAAAAAMZEkNSXPmzJFpmlHfP9x5SAAAAAAQK+GbgwMAAADAAERIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADkkNSatXr9b8+fM1ZswYGYahlStXBm9ra2vTHXfcoenTpys3N1djxozRNddco927dydvwAAAAAD6vaSGpObmZh111FF66KGHuty2b98+bdy4UXfeeac2btyov/71r9qyZYvOP//8JIwUAAAAwEBhmKZpJnsQkmQYhlasWKEFCxaEvc/69es1e/Zs7dixQ+PGjYvqeT0ejwoKCuR2u5Wfnx+j0QIAAADoa6LNBn3qnCS32y3DMFRYWBj2Pl6vVx6Pp9OXJAUCgeD3aLbt7Bhu2+/3R9w2TbPLtqSI2/brh9uOduzURE3URE3URE3URE3URE3UFLqmaPSZkNTS0qI77rhDV1xxRcTUt2zZMhUUFAS/iouLJUk1NTWSpNraWtXW1kqSqqurVVdXJ0mqqqpSQ0ODJKmyslJut1uSVFFRocbGRklSeXm5mpubJUllZWVqaWmRJJWWlqq1tVWSVFJSIp/Pp0AgoJKSEgUCAfl8PpWUlEiSWltbVVpaGqyprKxMkrX0sLy8XJLU2NioiooKSVYwrKyslCQ1NDSoqqpKklRXV6fq6mpqoiZqoiZqoiZqoiZqoiZq6kFN0egTy+3a2tp08cUXa9euXVq1alXEkOT1euX1eoM/ezweFRcXq76+XoWFhcFU6nK5Im4bhiHDMMJu+/1+uVyusNuSlXCd22lpacFUHWrbNE25XK6w29GOnZqoiZqoiZqoiZqoiZqoiZq61uTxeFRYWNjtcruUD0ltbW267LLLtH37dv3rX//SsGHDevS8nJMEAAAAQIo+G6QncEw9ZgekkpISvfXWWz0OSAAAAADQU0kNSU1NTdq2bVvw57KyMm3atElDhw5VUVGRLrnkEm3cuFEvvfSS/H6/9uzZI0kaOnSoMjMzkzVsAAAAAP1YUpfbrVq1SqeddlqX/YsXL9aPf/xjTZw4MeTj3nrrLc2ZMyeq12C5HQAAAACpjyy3mzNnTsQ2fClyuhQAAACAAaTPtAAHAAAAgEQgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAIekhqTVq1dr/vz5GjNmjAzD0MqVKzvdbpqmfvjDH6qoqEg5OTmaO3euSkpKkjNYAAAAAANCUkNSc3OzjjrqKD300EMhb//pT3+qX/3qV/rtb3+r9957T7m5uTrrrLPU0tKS4JECAAAAGCjSk/ni8+bN07x580LeZpqmli9frh/84Ae64IILJEl/+MMfNGrUKK1cuVKXX355IocKAAAAYIBI2XOSysrKtGfPHs2dOze4r6CgQMcdd5zWrl0b9nFer1cej6fTlyQFAoHg92i2TdOMuO33+yNum6bZZVtSxG379cNtRzt2aqImaqImaqImaqImaqImagpdUzRSNiTt2bNHkjRq1KhO+0eNGhW8LZRly5apoKAg+FVcXCxJqqmpkSTV1taqtrZWklRdXa26ujpJUlVVlRoaGiRJlZWVcrvdkqSKigo1NjZKksrLy9Xc3CzJCnH2sr/S0lK1trZKkkpKSuTz+RQIBFRSUqJAICCfzxc8l6q1tVWlpaWSpJaWFpWVlUmylh6Wl5dLkhobG1VRUSFJcrvdqqyslCQ1NDSoqqpKklRXV6fq6mpqoiZqoiZqoiZqoiZqoiZq6kFN0TDMaONUnBmGoRUrVmjBggWSpHfffVcnnniidu/eraKiouD9LrvsMhmGoeeffz7k83i9Xnm93uDPHo9HxcXFqq+vV2FhYTCVulyuiNuGYcgwjLDbfr9fLpcr7LZkJVzndlpaWjBVh9o2TVMulyvsdrRjpyZqoiZqoiZqoiZqoiZqoqauNXk8HhUWFsrtdis/P1/hpGxI2r59uyZNmqQPP/xQM2fODN7v1FNP1cyZM/XLX/4yquf1eDwqKCjo9kAAAAAA6N+izQYpu9xu4sSJGj16tN58883gPo/Ho/fee0/HH398EkcGAAAAoD9Lane7pqYmbdu2LfhzWVmZNm3apKFDh2rcuHG69dZbdc8992jKlCmaOHGi7rzzTo0ZMyY42wQAAAAAsZbUkLRhwwaddtppwZ+XLl0qSVq8eLGeeuopfec731Fzc7NuuOEGNTQ06KSTTtKrr76q7OzsZA0ZAAAAQD+XMuckxQvnJAEAAACQ+sE5SQAAAACQDIQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgkNIhye/3684779TEiROVk5OjSZMm6e6775ZpmskeGgAAAIB+Kj3ZA4jk/vvv1yOPPKLf//73OvLII7VhwwZde+21Kigo0JIlS5I9PAAAAAD9UEqHpHfffVcXXHCBzj33XEnShAkT9Oyzz+r9999P8sgAAAAA9FcpvdzuhBNO0JtvvqmtW7dKkj766CO98847mjdvXtjHeL1eeTyeTl+SFAgEgt+j2baX9IXb9vv9EbdN0+yyLSnitv364bajHTs1URM1URM1URM1URM1URM1ha4pGikdkr773e/q8ssv1+GHH66MjAwdffTRuvXWW7Vo0aKwj1m2bJkKCgqCX8XFxZKkmpoaSVJtba1qa2slSdXV1aqrq5MkVVVVqaGhQZJUWVkpt9stSaqoqFBjY6Mkqby8XM3NzZKksrIytbS0SJJKS0vV2toqSSopKZHP51MgEFBJSYkCgYB8Pp9KSkokSa2trSotLZUktbS0qKysTJLU3Nys8vJySVJjY6MqKiokSW63W5WVlZKkhoYGVVVVSZLq6upUXV1NTdRETdRETdRETdRETdRETT2oKRqGGW2cSoLnnntO3/72t/Wzn/1MRx55pDZt2qRbb71VDz74oBYvXhzyMV6vV16vN/izx+NRcXGx6uvrVVhYGEylLpcr4rZhGDIMI+y23++Xy+UKuy1ZCde5nZaWFkzVobZN05TL5Qq7He3YqYmaqImaqImaqImaqImaqKlrTR6PR4WFhXK73crPz1c4KR2SiouL9d3vflc333xzcN8999yjP/7xj/rss8+ieg6Px6OCgoJuDwQAAACA/i3abJDSy+327dsXTH+2tLS0YLoEAAAAgFjrVUjau3dv2Ns2b97c68EcaP78+br33nv18ssvq7y8XCtWrNCDDz6oCy+8MGavAQAAAABOvQpJ06dP18svv9xl/wMPPKDZs2cf9KBsv/71r3XJJZfoG9/4hqZOnarbb79dX//613X33XfH7DUAAAAAwKlX10launSpLr74Yl177bV68MEHVVdXp2uuuUabN2/WM888E7PB5eXlafny5Vq+fHnMnhMAAAAAIul144YPP/xQV199tbxer+rq6nTcccfpf//3fzV69OhYj/Gg0LgBAAAAgJSAxg2TJ0/WtGnTVF5eLo/Ho4ULF6ZcQAIAAACAnupVSFqzZo1mzJihkpISffzxx3rkkUd0yy23aOHChaqvr4/1GAEAAAAgYXoVkk4//XQtXLhQ69at09SpU3X99dfrww8/1M6dOzV9+vRYjxEAAAAAEqZXjRtef/11nXrqqZ32TZo0SWvWrNG9994bk4EBAAAAQDL0unGDJG3btk2lpaU65ZRTlJOTI9M0ZRhGLMd30GjcAAAAAECKc+OGzz//XGeccYYOO+wwnXPOOaqqqpIkXXfddbr99tt7N2IAAAAASAG9Ckm33XabMjIytHPnTg0aNCi4f+HChXrllVdiNjgAAAAASLRen5P02muvaezYsZ32T5kyRTt27IjJwAAAAAAgGXo1k9Tc3NxpBslWV1enrKysgx4UAAAAACRLr0LSySefrD/84Q/Bnw3DUCAQ0E9/+lOddtppMRscAAAAACRar5bb/fSnP9UZZ5yhDRs2qLW1Vd/5znf0n//8R3V1dVqzZk2sxwgAAAAACdOrmaRp06Zp69atOumkk3TBBReoublZF110kT788ENNmjQp1mMEAAAAgIQ5qOsk9QVcJwkAAACAFH02iHq53ccffxz1i8+YMSPq+wIAAABAKok6JM2cOVOGYcg0TRmGEdxvT0Q59/n9/hgOEQAAAAASJ+pzksrKyrR9+3aVlZXphRde0MSJE/Xwww9r06ZN2rRpkx5++GFNmjRJL7zwQjzHCwAAAABxFfVM0vjx44Pbl156qX71q1/pnHPOCe6bMWOGiouLdeedd2rBggUxHSQAAAAAJEqvuttt3rxZEydO7LJ/4sSJ+u9//3vQgwIAAACAZOlVSJo6daqWLVum1tbW4L7W1lYtW7ZMU6dOjdngAAAAACDRenUx2d/+9reaP3++xo4dG+xk9/HHH8swDP3973+P6QABAAAAIJF6fZ2k5uZmPf300/rss88kWbNLV155pXJzc2M6wIPFdZIAAAAASHG4TtKBcnNzdcMNN/T24QAAAACQknodkkpKSvTWW2+ppqZGgUCg020//OEPD3pgAAAAAJAMvQpJjz/+uG666SYNHz5co0eP7nQhWcMwCEkAAAAA+qxehaR77rlH9957r+64445YjwcAAAAAkqpXLcDr6+t16aWXxnosAAAAAJB0vQpJl156qV5//fVYjwUAAAAAkq5Xy+0mT56sO++8U+vWrdP06dOVkZHR6fYlS5bEZHAAAAAAkGi9uk7SxIkTwz+hYWj79u0HNSinyspK3XHHHXrllVe0b98+TZ48WU8++aRmzZoV1eO5ThIAAAAAKc7XSSorK+v1wHqivr5eJ554ok477TS98sorGjFihEpKSjRkyJCEvD4AAACAgSfqkLR06VLdfffdys3N1dKlS8PezzAM/fznP4/J4O6//34VFxfrySefDO6LNIsFAAAAAAcr6pD04Ycfqq2tLbgdjvOaSQfrb3/7m8466yxdeuml+ve//61DDjlE3/jGN/S1r30t7GO8Xq+8Xm/wZ4/HI0nBC97a310uV8RtwzBkGEbYbb/fL5fLFXbbfi3ndlpamkzTDLttmqZcLlfY7WjHTk3URE3URE3URE3URE3URE1da4r2TKOou9u99dZbKiwsDG6H+/rXv/4V7VN2a/v27XrkkUc0ZcoUvfbaa7rpppu0ZMkS/f73vw/7mGXLlqmgoCD4VVxcLEmqqamRJNXW1qq2tlaSVF1drbq6OklSVVWVGhoaJFnnQbndbklSRUWFGhsbJUnl5eVqbm6WZC05bGlpkSSVlpaqtbVVklRSUiKfz6dAIKCSkhIFAgH5fD6VlJRIklpbW1VaWipJamlpCS5dbG5uVnl5uSSpsbFRFRUVkiS3263KykpJUkNDg6qqqiRJdXV1qq6upiZqoiZqoiZqoiZqoiZqoqYe1BSNXjVuSJTMzEzNmjVL7777bnDfkiVLtH79eq1duzbkY0LNJBUXF6u+vl6FhYWkcGqiJmqiJmqiJmqiJmqipgFak8fjUWFhYbeNG1I6JI0fP15f/vKX9cQTTwT3PfLII7rnnnuCybQ7dLcDAAAAIEWfDXp1MdlEOfHEE7Vly5ZO+7Zu3arx48cnaUQAAAAA+ruUDkm33Xab1q1bp/vuu0/btm3TM888o8cee0w333xzsocGAAAAoJ9K6ZB07LHHasWKFXr22Wc1bdo03X333Vq+fLkWLVqU7KEBAAAA6KdS+pykWOCcJAAAAABSPzknCQAAAAASjZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAc+lRI+p//+R8ZhqFbb7012UMBAAAA0E/1mZC0fv16Pfroo5oxY0ayhwIAAACgH+sTIampqUmLFi3S448/riFDhiR7OAAAAAD6sT4Rkm6++Wade+65mjt3brf39Xq98ng8nb4kKRAIBL9Hs22aZsRtv98fcds0zS7bkiJu268fbjvasVMTNVETNVETNVETNVETNVFT6JqikfIh6bnnntPGjRu1bNmyqO6/bNkyFRQUBL+Ki4slSTU1NZKk2tpa1dbWSpKqq6tVV1cnSaqqqlJDQ4MkqbKyUm63W5JUUVGhxsZGSVJ5ebmam5slSWVlZWppaZEklZaWqrW1VZJUUlIin8+nQCCgkpISBQIB+Xw+lZSUSJJaW1tVWloqSWppaVFZWZkkqbm5WeXl5ZKkxsZGVVRUSJLcbrcqKyslSQ0NDaqqqpIk1dXVqbq6mpqoiZqoiZqoiZqoiZqoiZp6UFM0DDPaOJUEFRUVmjVrlt54443guUhz5szRzJkztXz58pCP8Xq98nq9wZ89Ho+Ki4tVX1+vwsLCYCp1uVwRtw3DkGEYYbf9fr9cLlfYbclKuM7ttLS0YKoOtW2aplwuV9jtaMdOTdRETdRETdRETdRETdRETV1r8ng8KiwslNvtVn5+vsJJ6ZC0cuVKXXjhhUpLSwvu8/v9MgxDLpdLXq+3022heDweFRQUdHsgAAAAAPRv0WaD9ASOqcfOOOMMbd68udO+a6+9VocffrjuuOOObgMSAAAAAPRUSoekvLw8TZs2rdO+3NxcDRs2rMt+AAAAAIiFlG/cAAAAAACJlNIzSaGsWrUq2UMAAAAA0I8xkwQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgkNIhadmyZTr22GOVl5enkSNHasGCBdqyZUuyhwUAAACgH0vpkPTvf/9bN998s9atW6c33nhDbW1tOvPMM9Xc3JzsoQEAAADopwzTNM1kDyJae/fu1ciRI/Xvf/9bp5xySlSP8Xg8KigokNvtVn5+fpxHCAAAACBVRZsNUnom6UBut1uSNHTo0LD38Xq98ng8nb4kKRAIBL9Hs21nx3Dbfr8/4rZpml22JUXctl8/3Ha0Y6cmaqImaqImaqImaqImaqKm0DVFo8+EpEAgoFtvvVUnnniipk2bFvZ+y5YtU0FBQfCruLhYklRTUyNJqq2tVW1trSSpurpadXV1kqSqqio1NDRIkiorK4OBrKKiQo2NjZKk8vLy4FK/srIytbS0SJJKS0vV2toqSSopKZHP51MgEFBJSYkCgYB8Pp9KSkokSa2trSotLZUktbS0qKysTJLU3Nys8vJySVJjY6MqKiokWcGwsrJSktTQ0KCqqipJUl1dnaqrq6mJmqiJmqiJmqiJmqiJmqipBzVFo88st7vpppv0yiuv6J133tHYsWPD3s/r9crr9QZ/9ng8Ki4uVn19vQoLC4Op1OVyRdw2DEOGYYTd9vv9crlcYbclK9g5t9PS0oKpOtS2aZpyuVxht6MdOzVREzVREzVREzVREzVREzV1rcnj8aiwsLDb5XZ9IiR985vf1IsvvqjVq1dr4sSJPXos5yQBAAAAkKLPBukJHFOPmaapW265RStWrNCqVat6HJAAAAAAoKdSOiTdfPPNeuaZZ/Tiiy8qLy9Pe/bskSQVFBQoJycnyaMDAAAA0B+l9HI7wzBC7n/yySf1la98JarnYLkdAAAAAKkfLbcDAAAAgETqMy3AAQAAACARCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEhArfp9UVyGZZrJHAgAAgINASAJi5b+vSWufksrXJ3skAAAAOAiEJCAWvM3Sro+s7bJ1khlI7ngAAADQa4QkIBZ2bpQCfmt7v1uq3prc8QAAAKDXCEnAwQr4pR0fWNt5I6zvLLkDAADoswhJwMHa85nkbZSyBkvHXCYZhvR5ueSpTvbIAAAA0AuEJOBglb9vfR/3RSl3qDT68Pb9zCYBAAD0RYQk4GA07Jbqd0mGSxp3jLVvwmzre+VmqXVf8sYGAACAXiEkAQfDni0ac6SUPdjaHlIs5Y+WAj6pYlPShgYAAIDeISQBveVtkqr+Y23bs0eSdU6S/fOODVKAduAAAAB9CSEJ6C277XfhIVLhmM63jTlSyhzU3g58S3LGBwAAgF4hJAG94Wz77ZxFsqWlW40cJBo4AAAA9DGEJKA3qj61lttlDZaKpoa+z/hjrKV3dTskz57Ejg8AAAC9RkgCesNu+z3+GMmVFvo+2fnS6PYAxWwSAABAn0FIAnqqodL6cqV1LKkLJ9gO/BPagQMAAPQRhCSgp+xZoaIjreV2kQwZKxUUWe3Ad34Y/7EBAADgoBGSgJ5oaZJ2t7f9nhiiYcOBDEOacKy1TTtwAACAPoGQBPTEzg8kM9AxQxSNoiOlzFypxSNVfxbf8QEAAOCg9YmQ9NBDD2nChAnKzs7Wcccdp/fffz/ZQ8JAFPBbIUkK3fY7HNqBAwAA9CkpH5Kef/55LV26VD/60Y+0ceNGHXXUUTrrrLNUU1OT7KFhoKn6r+RtlrLypNGH9+yx44+RDJdUt1NyV8VnfAAAAIgJwzRNM9mDiOS4447Tscceq9/85jeSpEAgoOLiYt1yyy367ne/2+3jPR6PCgoK5Ha7lZ+fH+/hRlZdYp3Aj75p29uSp1o6bI405eSeP/7Dv1rnM42cIo09KubDAwAASFlZg6WhxckeRdTZID2BY+qx1tZWffDBB/re974X3OdyuTR37lytXbs25GO8Xq+8Xm/wZ7fbLUlqaGiQZIUs+3kibRuGIcMwwm77/X65XK6w2/ZrObfT1v5ZamuO4RFCopmuNJn5h8rl8cg0TZmmKZfL1Wk77OdqyOFybftAKt9sfQEAAAwQ5rAJMmYtjPpvced2LP8u93g81ni6mSdK6ZBUW1srv9+vUaNGddo/atQoffZZ6BPgly1bpp/85Cdd9o8fPz4uY8RAdHeyBwAAANAH3ZDsAQQ1NjaqoKAg7O0pHZJ643vf+56WLl0a/DkQCKiurk7Dhg2TYRhJHJk1vVdcXKyKiorkL/3rBmOND8YaH4w1PhhrfDDW+GCs8cFY46OvjLWvjLMnTNNUY2OjxowZE/F+KR2Shg8frrS0NFVXV3faX11drdGjR4d8TFZWlrKysjrtKywsjNcQeyU/P7/PfNAYa3ww1vhgrPHBWOODscYHY40PxhoffWWsfWWc0Yo0g2RL6e52mZmZOuaYY/Tmm28G9wUCAb355ps6/vjjkzgyAAAAAP1VSs8kSdLSpUu1ePFizZo1S7Nnz9by5cvV3Nysa6+9NtlDAwAAANAPpXxIWrhwofbu3asf/vCH2rNnj2bOnKlXX321SzOHviArK0s/+tGPuiwHTEWMNT4Ya3ww1vhgrPHBWOODscYHY42PvjLWvjLOeEj56yQBAAAAQCKl9DlJAAAAAJBohCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJCeD1enXHHXdozJgxysnJ0XHHHac33ngj2cPqYtWqVTIMI+TXunXrkjaupqYm/ehHP9LZZ5+toUOHyjAMPfXUUyHv++mnn+rss8/W4MGDNXToUF199dXau3dvyo31K1/5SsjjfPjhhydsrOvXr9c3v/lNHXnkkcrNzdW4ceN02WWXaevWrV3um+zjGu1YU+G4/uc//9Gll16qQw89VIMGDdLw4cN1yimn6O9//3uX+yb7uEY71lQ4rge69957ZRiGpk2b1uW2d999VyeddJIGDRqk0aNHa8mSJWpqakrCKC3hxjpnzpyQx/Xss89OyLh68js/2cc02rEm+5g6bdy4Ueeff76GDh2qQYMGadq0afrVr37V6T7JPq7RjjUVjmu430P2V2VlZfC+yT6u0Y41FY6rJJWUlOjyyy/X2LFjNWjQIB1++OG66667tG/fvk73S/ZxTbSUbwHeH3zlK1/RX/7yF916662aMmWKnnrqKZ1zzjl66623dNJJJyV7eF0sWbJExx57bKd9kydPTtJopNraWt11110aN26cjjrqKK1atSrk/Xbt2qVTTjlFBQUFuu+++9TU1KQHHnhAmzdv1vvvv6/MzMyUGatktdV84oknOu2L5grQsXL//fdrzZo1uvTSSzVjxgzt2bNHv/nNb/TFL35R69atC/5BlwrHNdqxSsk/rjt27FBjY6MWL16sMWPGaN++fXrhhRd0/vnn69FHH9UNN9wgKTWOa7RjlZJ/XJ127dql++67T7m5uV1u27Rpk8444wxNnTpVDz74oHbt2qUHHnhAJSUleuWVV1JqrJI0duxYLVu2rNO+MWPGJGJoQd39zk+lYxrN/59S4Zi+/vrrmj9/vo4++mjdeeedGjx4sEpLS7Vr167gfVLluEYzVin5x/XrX/+65s6d22mfaZq68cYbNWHCBB1yyCGSUuO4RjtWKfnHtaKiQrNnz1ZBQYG++c1vaujQoVq7dq1+9KMf6YMPPtCLL74oKTWOa8KZiKv33nvPlGT+7Gc/C+7bv3+/OWnSJPP4449P4si6euutt0xJ5p///OdkD6WTlpYWs6qqyjRN01y/fr0pyXzyySe73O+mm24yc3JyzB07dgT3vfHGG6Yk89FHH02psS5evNjMzc1NyJjCWbNmjen1ejvt27p1q5mVlWUuWrQouC8Vjmu0Y02F4xqKz+czjzrqKPMLX/hCcF8qHNdQQo011Y7rwoULzdNPP9089dRTzSOPPLLTbfPmzTOLiopMt9sd3Pf444+bkszXXnst0UONONZQ+xIp2t/5qXBMox1rso+paZqm2+02R40aZV544YWm3+8Pe79UOK7RjjUVjmsob7/9tinJvPfee4P7UuG4hhJqrKlwXO+9915TkvnJJ5902n/NNdeYksy6ujrTNFP3uMYTy+3i7C9/+YvS0tI6/Ytsdna2rrvuOq1du1YVFRVJHF14jY2N8vl8yR6GJOtfsEePHt3t/V544QWdd955GjduXHDf3Llzddhhh+lPf/pTPIcYFO1YbX6/Xx6PJ44jCu+EE07oMlsxZcoUHXnkkfr000+D+1LhuEY7Vlsyj2soaWlpKi4uVkNDQ3BfKhzXUEKN1ZYKx3X16tX6y1/+ouXLl3e5zePx6I033tBVV12l/Pz84P5rrrlGgwcPTvhxjTRWJ5/Pl/QlK+F+56faMZWi+/9TMo/pM888o+rqat17771yuVxqbm5WIBDodJ9UOa7RjNUpFT6rTs8884wMw9CVV14pKXWOaygHjtUpmcfV/p0+atSoTvuLiorkcrmUmZmZ0sc1nghJcfbhhx/qsMMO6/ShkqTZs2dLsqYvU821116r/Px8ZWdn67TTTtOGDRuSPaRuVVZWqqamRrNmzepy2+zZs/Xhhx8mYVSR7du3T/n5+SooKNDQoUN18803J/1/PqZpqrq6WsOHD5eU2sf1wLHaUuW4Njc3q7a2VqWlpfrFL36hV155RWeccYak1DuukcZqS4Xj6vf7dcstt+j666/X9OnTu9y+efNm+Xy+Lsc1MzNTM2fOTOhx7W6stq1btyo3N1d5eXkaPXq07rzzTrW1tSVsnFLk3/mpdEy7G6st2cf0n//8p/Lz81VZWakvfOELGjx4sPLz83XTTTeppaVFUuoc12jGakv2cT1QW1ub/vSnP+mEE07QhAkTJKXOcT1QqLHakn1c58yZI0m67rrrtGnTJlVUVOj555/XI488oiVLlig3Nzdlj2u8cU5SnFVVVamoqKjLfnvf7t27Ez2ksDIzM3XxxRfrnHPO0fDhw/Xf//5XDzzwgE4++WS9++67Ovroo5M9xLCqqqokKeyxrqurk9frVVZWVqKHFlJRUZG+853v6Itf/KICgYBeffVVPfzww/roo4+0atUqpacn5z/Np59+WpWVlbrrrrskpfZxPXCs9phS5bh+61vf0qOPPipJcrlcuuiii/Sb3/xGUuod10hjtceUCsf1t7/9rXbs2KF//vOfIW/v7ri+/fbbcR2fU3djlaRJkybptNNO0/Tp09Xc3Ky//OUvuueee7R161Y9//zzcR9jNL/zU+WYRvv/p2QfU8k6Cd7n8+mCCy7Qddddp2XLlmnVqlX69a9/rYaGBj377LMpc1yjGauUGsf1QK+99po+//xzLVq0KLgvVY7rgUKNVUqN43r22Wfr7rvv1n333ae//e1vwf3f//73dc8990hK3eMad8le79ffHXrooea8efO67C8tLTUlmb/4xS8SP6geKCkpMXNycsyzzjor2UMxTTP8eT6rV682JZnPP/98l8fceeedpiSzvr4+MYNsF+mcpFDsdcHPPvtsfAcWxqeffmrm5+ebxx9/vOnz+UzTTM3japqhxxpOso7rp59+ar7xxhvm73//e/Pcc881L7zwQnPPnj2maabecY001nASfVxra2vNoUOHmg888EBw34Hr+f/whz+Yksz33nuvy+Ovvvpqs6CgIBFDjWqs4Xzta18zJZlr166N5xDDOvB3fqoc01Ci/f9Too/poYceakoyb7zxxk77v/71r5uSzK1bt6bMcY1mrOEk+7N6xRVXmBkZGWZtbW1wX6oc1wOFGms4yTiu//d//2eeddZZ5mOPPWa+8MIL5le/+lXTMAzz17/+tWmaqXtc443ldnGWk5Mjr9fbZb89jZ2Tk5PoIfXI5MmTdcEFF+itt96S3+9P9nDCso9jXz7Wt912m1wuV8R/eY6XPXv26Nxzz1VBQUHwPDopNY9ruLGGk6zjevjhh2vu3Lm65ppr9NJLL6mpqUnz58+XaZopd1wjjTWcRB/XH/zgBxo6dKhuueWWsPfp7rgm6phGM9ZwvvWtb0lSUn4PSF1/56fKMQ0l2v8/JfqY2sfkiiuu6LTfPhdl7dq1KXNcoxlrOMn8rDY1NenFF1/UWWedpWHDhgX3p8pxdQo31nASfVyfe+453XDDDXriiSf0ta99TRdddJF+97vfafHixbrjjjv0+eefp+RxTQRCUpwVFRUFpymd7H2JbkvaG8XFxWptbVVzc3OyhxKWPQUc7lgPHTo0ZZbahZOTk6Nhw4aprq4uoa/rdrs1b948NTQ06NVXX+30mUy14xpprOEk67ge6JJLLtH69eu1devWlDuuB3KONZxEHteSkhI99thjWrJkiXbv3q3y8nKVl5erpaVFbW1tKi8vV11dXbfHNRG/b6MdazjFxcWSlNTPq/N3fioc00ii+f9Too+pfUwOPBF+5MiRkqT6+vqUOa7RjDWcZH5WV65cqX379nVZvpYqx9Up3FjDSfRxffjhh3X00Udr7Nixnfaff/752rdvnz788MOUPK6JQEiKs5kzZ2rr1q1dOkK99957wdtT3fbt25Wdna3BgwcneyhhHXLIIRoxYkTIk3jff//9PnGcGxsbVVtbqxEjRiTsNVtaWjR//nxt3bpVL730ko444ohOt6fSce1urOEk47iGsn//fklW0Eul4xqKc6zhJPK4VlZWKhAIaMmSJZo4cWLw67333tPWrVs1ceJE3XXXXZo2bZrS09O7HNfW1lZt2rQpIcc12rGGs337dklK6ufV+Ts/FY5pJNH8/ynRx/SYY46RpE4XN5U6zkEeMWJEyhzXaMYaTjI/q08//bQGDx6s888/v9P+VDmuTuHGGk6ij2t1dXXImVi7eYTP50vJ45oQyV7v19+tW7euy3WSWlpazMmTJ5vHHXdcEkfWVU1NTZd9mzZtMjMyMszzzz8/CSPqKtJ5PjfeeKOZk5Nj7ty5M7jvn//8pynJfOSRRxI4Sku4se7fv9/0eDxd7v/tb3/blGT+9a9/Tcj4fD6fef7555vp6enmyy+/HPZ+qXBcoxlrqhzX6urqLvtaW1vNL37xi2ZOTo7Z2NhommZqHNdoxpoKx3Xv3r3mihUrunwdeeSR5rhx48wVK1aYH3/8sWmapnn22WebRUVFncb8xBNPmJLMV155JWXG6na7zZaWlk6PDQQC5sKFC01J5gcffBD3sUb7Oz/ZxzTasabCMTVN09y4caMpybzyyis77b/iiivM9PR0s7Ky0jTN1Diu0Yw1VY6rraamxkxPTzevvvrqkLenwnG1RRprqhzX8847z8zMzDS3bNnSaf+CBQtMl8uVUp/XRDNMM8Kic8TEZZddphUrVui2227T5MmT9fvf/17vv/++3nzzTZ1yyinJHl7Q6aefrpycHJ1wwgkaOXKk/vvf/+qxxx5TRkaG1q5dq6lTpyZtbL/5zW/U0NCg3bt365FHHtFFF10U7GZ0yy23qKCgQBUVFTr66KNVWFio//f//p+ampr0s5/9TGPHjtX69esTtnypu7HW19fr6KOP1hVXXKHDDz9cktX55h//+IfOPvtsvfzyy3K54j/Je+utt+qXv/yl5s+fr8suu6zL7VdddZUkpcRxjWas5eXlKXFcL7zwQnk8Hp1yyik65JBDtGfPHj399NP67LPP9POf/1xLly6VlBrHNZqxpspxDWXOnDmqra3VJ598Ety3ceNGnXDCCTriiCN0ww03aNeuXfr5z3+uU045Ra+99lpSxhlqrKtWrdIVV1yhK664QpMnT9b+/fu1YsUKrVmzRjfccEOw22A8Rfs7PxWOaTRjTYVjarvuuuv0v//7v7rssst06qmnatWqVfrzn/+s733ve7rvvvskpcZxjWasqXRcJev/sbfccoteffVVnXXWWV1uT5Xj2t1YU+W4rl69WqeffrqGDRumb37zmxo2bJheeuklvfLKK7r++uv1+OOPS0qt45owyU5pA8H+/fvN22+/3Rw9erSZlZVlHnvssearr76a7GF18ctf/tKcPXu2OXToUDM9Pd0sKioyr7rqKrOkpCTZQzPHjx9vSgr5VVZWFrzfJ598Yp555pnmoEGDzMLCQnPRokXddulK9Fjr6+vNq666ypw8ebI5aNAgMysryzzyyCPN++67z2xtbU3YOE899dSw4zzwV0Oyj2s0Y02V4/rss8+ac+fONUeNGmWmp6ebQ4YMMefOnWu++OKLXe6b7OMazVhT5biGEq5j3Ntvv22ecMIJZnZ2tjlixAjz5ptvDjkblkgHjnX79u3mpZdeak6YMMHMzs42Bw0aZB5zzDHmb3/7WzMQCCRkTD35nZ/sYxrNWFPhmNpaW1vNH//4x+b48ePNjIwMc/LkySG72Sb7uEYz1lQ6rqZpml/60pfMkSNHRuxsmgrH1TQjjzWVjut7771nzps3zxw9erSZkZFhHnbYYea9995rtrW1dbpfqhzXRGEmCQAAAAAcaNwAAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQCAPuvVV1/VSSedpMLCQg0bNkznnXeeSktLg7e/++67mjlzprKzszVr1iytXLlShmFo06ZNwft88sknmjdvngYPHqxRo0bp6quvVm1tbRKqAQCkCkISAKDPam5u1tKlS7Vhwwa9+eabcrlcuvDCCxUIBOTxeDR//nxNnz5dGzdu1N1336077rij0+MbGhp0+umn6+ijj9aGDRv06quvqrq6WpdddlmSKgIApALDNE0z2YMAACAWamtrNWLECG3evFnvvPOOfvCDH2jXrl3Kzs6WJD3xxBP62te+pg8//FAzZ87UPffco7fffluvvfZa8Dl27dql4uJibdmyRYcddliySgEAJBEzSQCAPqukpERXXHGFDj30UOXn52vChAmSpJ07d2rLli2aMWNGMCBJ0uzZszs9/qOPPtJbb72lwYMHB78OP/xwSeq0bA8AMLCkJ3sAAAD01vz58zV+/Hg9/vjjGjNmjAKBgKZNm6bW1taoHt/U1KT58+fr/vvv73JbUVFRrIcLAOgjCEkAgD7p888/15YtW/T444/r5JNPliS98847wdu/8IUv6I9//KO8Xq+ysrIkSevXr+/0HF/84hf1wgsvaMKECUpP53+JAAALy+0AAH3SkCFDNGzYMD322GPatm2b/vWvf2np0qXB26+88koFAgHdcMMN+vTTT/Xaa6/pgQcekCQZhiFJuvnmm1VXV6crrrhC69evV2lpqV577TVde+218vv9SakLAJB8hCQAQJ/kcrn03HPP6YMPPtC0adN022236Wc/+1nw9vz8fP3973/Xpk2bNHPmTH3/+9/XD3/4Q0kKnqc0ZswYrVmzRn6/X2eeeaamT5+uW2+9VYWFhXK5+F8kAAxUdLcDAAwYTz/9tK699lq53W7l5OQkezgAgBTFAmwAQL/1hz/8QYceeqgOOeQQffTRR7rjjjt02WWXEZAAABERkgAA/daePXv0wx/+UHv27FFRUZEuvfRS3XvvvckeFgAgxbHcDgAAAAAcOCsVAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAAAAAOBCSAAAAAMCBkAQAAAAADoQkAAAAAHAgJAEAAACAAyEJAAAAABwISQAAAADgQEgCAAAAAAdCEgAAAAA4EJIAAAAAwIGQBAAAAAAOhCQAAAAAcCAkAQAAAIADIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAAHQhIAIK4Mw+j05XK5VFhYqJNPPllPPPGETNPs0fOtWrVKhmHoK1/5SnwGDAAY8AhJAICEWLx4sRYvXqxFixbpiCOO0Jo1a/S1r31NV155ZbKHFrWnnnpKhmHoxz/+cbKHAgCIo/RkDwAAMDA89dRTnX5+4403dM455+i5557TokWLdN5550X1PLNnz9ann36qgoKCOIwSAABmkgAASfLlL39ZV199tSRp5cqVUT9u0KBBOvzww1VUVBSnkQEABjpCEgAgaY4++mhJUkVFRXCfYRiaMGGCWltbddddd+nwww9XVlaWFixYICn0OUlLliyRYRh65JFHwr7WMcccI8Mw9PHHHwf3vfzyy/rqV7+qqVOnKj8/X7m5uTrqqKN03333yev1dnr8nDlzdO2110qSfvKTn3Q6z+rAWbJPP/1UX/nKV1RcXKysrCyNGjVKl19+uf7zn//05jABABKM5XYAgKRpbGyUJGVlZXXaHwgEtGDBAq1evVqnnnqqZsyYoWHDhoV9nkWLFunXv/61nnnmGd10001dbv/ss8+0ceNGTZ8+XTNmzAjuv+6667R//35NmzZNM2bMkNvt1vvvv6/vf//7evPNN/X6668rLS1NknT22WfL5/NpzZo1OuqoozRz5szg80yePDm4vXLlSl1++eXyer2aOXOmvvSlL6miokJ/+tOf9Pe//12vvPKKTjnllF4dLwBAYhCSAABJYZqmXnrpJUnqFFwka2YpKytLW7Zs0SGHHNLtcx133HGaPHmy1qxZo507d2rcuHGdbn/66aclWWHK6dFHH9WZZ56pnJyc4L7GxkZdeeWVeumll/T000/rmmuukSR997vf1ejRo7VmzRotWLAgZPOG8vJyXXXVVcrIyNBLL72kuXPnBm979dVXdf755+uqq67Stm3blJmZ2W1dAIDkYLkdACCh/H6/SkpK9NWvflVr165VVlZWcBmb07Jly6IKSLZFixbJNE0988wzXW575plnZBhGl056F1xwQaeAJEl5eXn6xS9+IUl68cUXo359SVq+fLmam5u1bNmyTgFJsmaibrrpJlVUVOjll1/u0fMCABKLmSQAQEIYhtFlX15enn7/+99r0qRJXe47f/78Hj3/okWL9JOf/ETPPPOMvvvd7wb3r127Vtu3b9epp56q4uLiLo8rKSnRP/7xD23btk3Nzc0KBALBazeVlJT0aAyvv/66JOmiiy4KefvJJ5+sX/3qV3r//fd14YUX9ui5AQCJQ0gCACTE4sWLJUkul0v5+fmaPn26LrroIg0ZMqTLfUeOHNnlPKXuTJkyRccee6zWr1+vzZs3a/r06ZLCL7UzTVO33367fvGLX4S9oK19zlS0ysvLJanbGbDa2toePS8AILEISQCAhDiwA1wk2dnZvXqNq666SuvXr9czzzyjZcuWyefz6U9/+pOysrJ0ySWXdLrv888/rwcffFDFxcX6xS9+oeOPP14jRoxQRkaGWltblZWVFTY8hRMIBCR1BMJwjjvuuJ4VBgBIKEISAKDfWLhwoZYuXapnn31W9913n15//XXt3btXF154YZcZqxUrVkiSHnnkEZ177rmdbtu+fXuvXn/s2LEqLS3Vz3/+84jd+AAAqY3GDQCAfmPUqFGaO3euduzYoTVr1oRdaidJ9fX1kqxgc6A//elPIZ/f7kjn8/lC3v7lL39ZUkcAAwD0TYQkAEC/ctVVV0mSHnvsMb344osqKCjQeeed1+V+hx12WPB+zmV1b7/9tn72s5+FfO4xY8ZIkrZs2RLy9m9961vKycnR7bffrr/+9a9dbvd6vfrLX/6iXbt29awoAEBCEZIAAP3KggULNGjQIP3f//2fmpubdckll4RsArFkyRLl5ubq4Ycf1rRp03TFFVfolFNO0amnnqobb7wx5HN/6Utf0siRI/WXv/xFc+bM0Ve/+lVdf/31evfddyVZF5V99tln1dbWposvvlhTpkzR+eefH3zuYcOG6dJLL6VxAwCkOEISAKBfGTx4sC644ILgz6GW2knWTNKGDRs0f/581dbW6m9/+5uampr06KOPhp1Jys7O1ssvv6wvf/nL2rRpk5566in97ne/09atW4P3ueCCC/Txxx/rG9/4hgzD0BtvvKGXX35ZNTU1mj9/vv70pz/piCOOiG3RAICYMsyetu4BAAAAgH6MmSQAAAAAcCAkAQAAAIADIQkAAAAAHJIaklavXq358+drzJgxMgxDK1euDHvfG2+8UYZhaPny5QkbHwAAAICBJ6khqbm5WUcddZQeeuihiPdbsWKF1q1bF7w+BQAAAADES3oyX3zevHmaN29exPtUVlbqlltu0WuvvaZzzz03QSMDAAAAMFAlNSR1JxAI6Oqrr9a3v/1tHXnkkVE9xuv1yuv1dnqOuro6DRs2TIZhxGuoAAAAAFKcaZpqbGzUmDFj5HKFX1SX0iHp/vvvV3p6upYsWRL1Y5YtW6af/OQncRwVAAAAgL6soqJCY8eODXt7yoakDz74QL/85S+1cePGHs0Afe9739PSpUuDP7vdbo0bN047duxQYWGhAoGAJMnlckXcNgxDhmGE3fb7/XK5XGG3JWsWy7mdlpYm0zTDbpumKZfLFXY72rFTEzVREzVREzVREzVREzVRU9eaPB6Pxo0bp7y8PEWSsiHp7bffVk1NjcaNGxfc5/f79a1vfUvLly9XeXl5yMdlZWUpKyury/7CwkLl5+fHa7gAAAAAUpw9+dLdJEzKhqSrr75ac+fO7bTvrLPO0tVXX61rr702SaMCAAAA0N8lNSQ1NTVp27ZtwZ/Lysq0adMmDR06VOPGjdOwYcM63T8jI0OjR4/WF77whUQPFQAAAMAAkdSQtGHDBp122mnBn+1ziRYvXqynnnoqSaMCAAAAMJAlNSTNmTNHpmlGff9w5yEBAAAAQKyEbw4OAAAAAAMQIQkAAAAAHAhJAAAAAOBASAIAAAAAB0ISAAAAADgQkgAAAADAgZAEAAAAAA6EJAAAAABwICQBAAAAgAMhCQAAAAAcCEkAAAAA4EBIAgAAAAai5s+llqZkjyIlEZIAAACAgab5c2n1Y9J7/5fskaQkQhIAAAAw0JSvlwI+qalW8vuSPZqUQ0gCAAAABpI2r1TxUcfPLZ7kjSVFEZIAAACAgWTXR5K/tePnlsbkjSVFEZIAAACAgcI0raV2kiTD+sZMUheEJAAAAGCg2LtN2lcnpWdJow6z9jGT1EV6sgcAAAAAIEHsWaTioyWXS6oWISkEZpIAAACAgaCpVtpbam1PmCVl51vbLLfrgpAEAAAADAT2LNKow6RBQ6TsPOtnZpK6ICQBAAAA/V1bi9XVTpImzLa+B2eSCEkHIiQBAAAA/d2ujyR/mzR4uDRsgrXPnknyNkpmIGlDS0WEJAAAAKA/MwMdS+0mzJaM9tbfWbnWtmlK3ubkjS8FEZIAAACA/qxmm7SvXkrPlg6Z3rHfcElZ9nlJNG9wIiQBAAAA/Zk9izTuaCk9s/NtNG8IiZAEAAAA9FeNe6Xa7ZIMafysrrfbIWk/M0lOhCQAAACgv9qxwfo+6jBpUGHX2+0Od15mkpwISQAAAEB/FKrt94GYSQopqSFp9erVmj9/vsaMGSPDMLRy5crgbW1tbbrjjjs0ffp05ebmasyYMbrmmmu0e/fu5A0YAAAA6CsqNlltv/NGSMPGh74P10oKKakhqbm5WUcddZQeeuihLrft27dPGzdu1J133qmNGzfqr3/9q7Zs2aLzzz8/CSMFAAAA+hAz0LHUztn2+0A0bggpPZkvPm/ePM2bNy/kbQUFBXrjjTc67fvNb36j2bNna+fOnRo3blwihggAAAD0PXbb74wD2n4fKMeeSfJY10sKF6YGmD51TpLb7ZZhGCosLAx7H6/XK4/H0+lLkgKBQPB7NNumaUbc9vv9EbdN0+yyLSnitv364bajHTs1URM1URM1URM1URM1DeyazIpNkiQVH62AkRa+jszB1v0CPpmt+1O6pli9T9HoMyGppaVFd9xxh6644grl5+eHvd+yZctUUFAQ/CouLpYk1dTUSJJqa2tVW1srSaqurlZdXZ0kqaqqSg0NDZKkyspKud1uSVJFRYUaG63px/LycjU3W1cjLisrU0tLiySptLRUra2tkqSSkhL5fD4FAgGVlJQoEAjI5/OppKREktTa2qrS0tJgTWVlZZKspYfl5eWSpMbGRlVUVEiygmFlZaUkqaGhQVVVVZKkuro6VVdXUxM1URM1URM1URM1URM1damp1fO5JElDxkauyR+QMgdJknzN9SldU6zep2gYZrRxKs4Mw9CKFSu0YMGCLre1tbXp4osv1q5du7Rq1aqIIcnr9crr9QZ/9ng8Ki4uVn19vQoLC4Op1OVyRdw2DEOGYYTd9vv9crlcYbclK+E6t9PS0oKpOtS2aZpyuVxht6MdOzVREzVREzVREzVREzUN7JrMf/9WRtNe6bhFCgydELmmdx6XPNUyZ10ujZycsjXF4n3yeDwqLCyU2+2OmClSPiS1tbXpsssu0/bt2/Wvf/1Lw4YN69HzejweFRQUdHsgAAAAgH7jX7+W9jdIJ1wrDRkb+b7rn5NqSqTp50njjk7I8JIl2myQ1MYN3bEDUklJid56660eByQAAABgQPJbS86Untn9fYMd7rhWki2pIampqUnbtm0L/lxWVqZNmzZp6NChKioq0iWXXKKNGzfqpZdekt/v1549eyRJQ4cOVWZmFG84AAAAMBD52k8/SetJSKINuC2pIWnDhg067bTTgj8vXbpUkrR48WL9+Mc/1t/+9jdJ0syZMzs97q233tKcOXMSNUwAAACg7wj4rS8pypmk9mVnzCQFJTUkzZkzJ2IbvhQ5XQoAAADoO/xtHdvMJPVKn2kBDgAAACAKvvbzkQyXlBbFnAjnJHVBSAIAAAD6k540bZA6ltu1tXSehRrACEkAAABAf2LPJEWz1E6S0rOktAxrm9kkSYQkAAAAoH/x9XAmyTAczRs4L0kiJAEAAAD9i7+HM0lSx3lJ+5lJkghJAAAAQP/S05kkqWMmyctMkkRIAgAAAPqXnjZukGgDfgBCEgAAANCf9LRxg9Qxk8RyO0mEJAAAAKB/OZiZJJbbSSIkAQAAAP1Lb2aScuyZJEKSREgCAAAA+pfeNG7IsmeSmqRAIPZj6mMISQAAAEB/0psW4Fm5kuGSZFpBaYAjJAEAAAD9SW9mkgyDDncOhCQAAACgPwnOJGX07HHBkESHO0ISAAAA0J8EZ5KyevY4ZpKCCEkAAABAf9Kb5XZSx7WSmEkiJAEAAAD9Sm8aN0jMJDkQkgAAAID+JDiT1NNzkphJshGSAAAAgP6EmaSDRkgCAAAA+ouA3/qSetG4wTGTZJqxHVcfQ0gCAAAA+gt7FknqReOG9pmkgF9q2x+7MfVBhCQAAACgv7DPRzJckiutZ491pUmZudb2AD8viZAEAAAA9Be9bf9t47wkSYQkAAAAoP/wt1nfe3o+ko2QJImQBAAAAPQfPq/1Pa2H7b9ttAGXREgCAAAA+g9/jJbb7WcmCQAAAEB/4OvlNZJs9kySl5AEAAAAoD8InpPUy5CUY88ksdwOAAAAQH9wsDNJWTRukJIcklavXq358+drzJgxMgxDK1eu7HS7aZr64Q9/qKKiIuXk5Gju3LkqKSlJzmABAACAVGc3buj1TFL7cjtfS0fgGoCSGpKam5t11FFH6aGHHgp5+09/+lP96le/0m9/+1u99957ys3N1VlnnaWWlpYEjxQAAADoA+zldr2dSUrP6ghYA3g2KT2ZLz5v3jzNmzcv5G2maWr58uX6wQ9+oAsuuECS9Ic//EGjRo3SypUrdfnllydyqAAAAEDqO9iLyUpW84amWqsN+OBhsRlXH5Oy5ySVlZVpz549mjt3bnBfQUGBjjvuOK1duzbs47xerzweT6cvSQoEAsHv0Wybphlx2+/3R9w2TbPLtqSI2/brh9uOduzURE3URE3URE3URE3UNEBral9uF3Bl9LomM2uwNa4WT2rUFOP3KRopG5L27NkjSRo1alSn/aNGjQreFsqyZctUUFAQ/CouLpYk1dTUSJJqa2tVW1srSaqurlZdXZ0kqaqqSg0NDZKkyspKud1uSVJFRYUaG62pxvLycjU3N0uyQpy97K+0tFStrVZqLykpkc/nUyAQUElJiQKBgHw+X/BcqtbWVpWWlkqSWlpaVFZWJslaelheXi5JamxsVEVFhSTJ7XarsrJSktTQ0KCqqipJUl1dnaqrq6mJmqiJmqiJmqiJmqiJmoI1tbXskyTVNzb3uiZ3+2RUoNmdEjXF+n2KhmFGG6fizDAMrVixQgsWLJAkvfvuuzrxxBO1e/duFRUVBe932WWXyTAMPf/88yGfx+v1yuv1Bn/2eDwqLi5WfX29CgsLg6nU5XJF3DYMQ4ZhhN32+/1yuVxhtyUr4Tq309LSgqk61LZpmnK5XGG3ox07NVETNVETNVETNVETNQ3Qmt5/Wsbn5QrMuEDG2Om9qsn87F9ybX9X5vhZCkw9M/k1xfB98ng8KiwslNvtVn5+vsJJ6jlJkYwePVqSlSqdIam6ulozZ84M+7isrCxlZWV12W8fIPv7wW6npaX1atswjLDbhmFE3I7V2KmJmqiJmqiJmqiJmqipn9bU3rjBlZElhXjOaOowBhVa31s8qVFTN9s9fW+i4er+LskxceJEjR49Wm+++WZwn8fj0Xvvvafjjz8+iSMDAAAAUlRMGjdwraSkziQ1NTVp27ZtwZ/Lysq0adMmDR06VOPGjdOtt96qe+65R1OmTNHEiRN15513asyYMcEleQAAAAAc/ISkWEhqSNqwYYNOO+204M9Lly6VJC1evFhPPfWUvvOd76i5uVk33HCDGhoadNJJJ+nVV19VdnZ2soYMAAAApC57Jqm310mSrBbgkuRtkgJ+yZUW+f79UFJD0pw5cyK24TMMQ3fddZfuuuuuBI4KAAAA6KNiMZOUOcgKRgG/FZRyCmIztj4kZc9JAgAAANADAb/1JR3cTJJhSFkDe8kdIQkAAADoD+xZJOngZpIkx3lJnoN7nj6KkAQAAAD0B/b5SK60gz+PaIA3byAkAQAAAP1BLJo22OzmDfuZSQIAAADQV8WiaYPNnknyMpMEAAAAoK8KziRlHPxz5TCTBAAAAKCvC84kZR38c9HdDgAAAECfF8tzkuyZJG+jFOG6pv0VIQkAAADoD+yQlB6D5XZZg63vAb/Uuu/gn6+PISQBAAAA/YE/hjNJrrSOoDQAr5VESAIAAAD6A18Mu9tJA/paSYQkAAAAoD/wt1nfY9G4QSIkAQAAAOjjfF7reyxagEuOC8q6Y/N8fQghCQAAAOgPYr3cLm+E9d1dFZvn60MISQAAAEB/EMvGDZJUeIj1vWH3gGsDTkgCAAAA+gOffU5SrGaSRkqudMnXIjV/Hpvn7CMISQAAAEB/4G8/JylWIcmVJhUUWdsNlbF5zj6CkAQAAAD0B74YL7eTOi+5G0AISQAAAEB/4I/xcjtJKhxjfWcmCQAAAECfE8+ZJE91RwgbAAhJAAAAQH/gj3ELcEnKKZCyciUzILn3xO55UxwhCQAAAOjrAn7rS4ptSDIMx3lJA2fJHSEJAAAA6OvspXZSbJfbSYQkAAAAAH2QvdTOlWZ9xdIA7HBHSAIAAAD6ung0bbAVtHe4298geZtj//wpiJAEAAAA9HW+ODRtsGVkSYOHW9sDZMkdIQkAAADo6/xxnEmSBtx5SYQkAAAAoK+L50ySREgCAAAA0MckbCZpt2Sa8XmNFJLSIcnv9+vOO+/UxIkTlZOTo0mTJunuu++WOQDeGAAAACBq8Z5JyhsppWVIPq/UVBuf10gh6ckeQCT333+/HnnkEf3+97/XkUceqQ0bNujaa69VQUGBlixZkuzhAQAAAKkh3iHJ5ZIKiqS6ndZsUt6I+LxOikjpkPTuu+/qggsu0LnnnitJmjBhgp599lm9//77SR4ZAAAAkELivdxOspbc1e20zksqPip+r5MCUnq53QknnKA333xTW7dulSR99NFHeueddzRv3rywj/F6vfJ4PJ2+JCkQCAS/R7NtL+kLt+33+yNum6bZZVtSxG379cNtRzt2aqImaqImaqImaqImahpgNbXPJJlpGfGrKX+0td1Q2affp2ikdEj67ne/q8svv1yHH364MjIydPTRR+vWW2/VokWLwj5m2bJlKigoCH4VFxdLkmpqaiRJtbW1qq211lFWV1errq5OklRVVaWGhgZJUmVlpdxutySpoqJCjY2NkqTy8nI1N1sX0CorK1NLS4skqbS0VK2t1gezpKREPp9PgUBAJSUlCgQC8vl8KikpkSS1traqtLRUktTS0qKysjJJUnNzs8rLyyVJjY2NqqiokCS53W5VVlpdRBoaGlRVVSVJqqurU3V1NTVREzVREzVREzVREzVRU3AmqcUXiFtNOxp8sgZfrfLSkj77PkXDMKONU0nw3HPP6dvf/rZ+9rOf6cgjj9SmTZt066236sEHH9TixYtDPsbr9crr9QZ/9ng8Ki4uVn19vQoLC4Op1OVyRdw2DEOGYYTd9vv9crlcYbclK+E6t9PS0oKpOtS2aZpyuVxht6MdOzVREzVREzVREzVREzUNsJo+elHa/YnMw+fKmHR8fGry+5W26teSt0n+465W2vAJfe598ng8KiwslNvtVn5+vsJJ6ZBUXFys7373u7r55puD++655x798Y9/1GeffRbVc3g8HhUUFHR7IAAAAIA+a8PzUvVWafq50rgvxvF1/iRVb5GmzpUOPT5+rxMn0WaDlF5ut2/fvmD6s6WlpQXTJQAAAAB1dLdrPycpbgbIRWV7FZL27t0b9rbNmzf3ejAHmj9/vu699169/PLLKi8v14oVK/Tggw/qwgsvjNlrAAAAAH2eP84twG3Oi8r2Y70KSdOnT9fLL7/cZf8DDzyg2bNnH/SgbL/+9a91ySWX6Bvf+IamTp2q22+/XV//+td19913x+w1AAAAgD4vOJOUFd/XKSyyvu93Sy1N8X2tJOrVdZKWLl2qiy++WNdee60efPBB1dXV6ZprrtHmzZv1zDPPxGxweXl5Wr58uZYvXx6z5wQAAAD6nXhfTNaWnmVdSLZxr7XkbvQX4vt6SdKrmaTvfOc7Wrt2rd5++23NmDFDM2bMUFZWlj7++GOWwgEAAACJ5k/QOUnSgDgvqdeNGyZPnqxp06apvLxcHo9HCxcu1OjRo2M5NgAAAADRSNRMkkRICmfNmjWaMWOGSkpK9PHHH+uRRx7RLbfcooULF6q+vj7WYwQAAAAQTsAvme3dnxMZkty7O163n+lVSDr99NO1cOFCrVu3TlOnTtX111+vDz/8UDt37tT06dNjPUYAAAAA4dizSJKUloCQlDfCWtbna5WaauP/eknQq8YNr7/+uk499dRO+yZNmqQ1a9bo3nvvjcnAAAAAAETB57W+u9Ksr3gzXFLBGKluh9UKPG9k/F8zwXo1k2QHpG3btum1117T/v37JUmGYejOO++M3egAAAAARBZs2pCAWSRb4Rjrez89L6lXIenzzz/XGWecocMOO0znnHOOqqqqJEnXXXedbr/99pgOEAAAAEAEvjbreyLOR7L18+YNvQpJt912mzIyMrRz504NGjQouH/hwoV65ZVXYjY4AAAAAN1IxkzSkPaQ5KnpfE5UP9Hrc5Jee+01jR07ttP+KVOmaMeOHTEZGAAAAIAo2OckJXImKTtfys6TWhold5U0bHziXjsBejWT1Nzc3GkGyVZXV6esrKyDHhQAAACAKCXyGklO/XjJXa9C0sknn6w//OEPwZ8Nw1AgENBPf/pTnXbaaTEbHAAAAIBu+NvPSUrkcjupX4ekXi23++lPf6ozzjhDGzZsUGtrq77zne/oP//5j+rq6rRmzZpYjxEAACD5/D7p8zLreyR5I6XBwxIzJqSeplrrGkI5BYl7zaTPJO1O7OsmQK9C0rRp07R161b95je/UV5enpqamnTRRRfp5ptvVlFRUazHCAAAkHxb3pLK1nV/v7QM6YzbpAxOQRhw2rzSO09IGTnS6Uskw0jM6yajcYMkFRRJMqQWj3VuUnZeYl8/jnoVkiSpoKBA3//+92M5FgAAgNTU5pV2brS2C4okV5g/ody7raVP++qlgtGJGx9SQ4vHev/9bVJbi5SZk5jXTdZMUnqmlDdCaqyxltyNPjyxrx9HUYekjz/+OOonnTFjRq8GAwAAkJJ2fWT9a/3g4dKJ14WfIXj7ccmzx/pjmZA08LTt79hu8SQuJPmTFJIka8ndQA5JM2fOlGEYMk1ThuMXg2maktRpn9/vj+EQAQAAksg0pfL11vaE2ZGXUOXkt4ekxsSMDaml1RmSGqX8UYl5XV+SlttJVkiq+FCq71/NG6LubldWVqbt27errKxML7zwgiZOnKiHH35YmzZt0qZNm/Twww9r0qRJeuGFF+I5XgAAgMTau03aVyelZ0mHTI9836z2czJaPPEfF1LPgTNJiZLMmST7orLuKskMJP714yTqmaTx4zsuEHXppZfqV7/6lc4555zgvhkzZqi4uFh33nmnFixYENNBAgAAJI09i1R8dPd/hObkW9+ZSRqYDpxJSpRkziQNHm69rr9VatybuNmzOOvVdZI2b96siRMndtk/ceJE/fe//z3oQQEAAKSEplppb6m1PWFW9/e3u3sRkgamZM0kJatxgyQZLqlwjLXdj1qB9yokTZ06VcuWLVNra2twX2trq5YtW6apU6fGbHAAAABJZc8ijTpMGjSk+/tn2zNJLLcbkNqSNJOUrBbgtmBI6j/nJfWqBfhvf/tbzZ8/X2PHjg12svv4449lGIb+/ve/x3SAAAAASdHWYnW1k6yGDdFgJmlgax2AM0mS46KyAzwkzZ49W9u3b9fTTz+tzz77TJK0cOFCXXnllcrNzY3pAAEAAJJi10fW9W4Gj5CGTYjuMXZI8nmtr3QuKDugJHsmKdkhqXGvFdiSNY4Y6vXFZHNzc3XDDTfEciwAAACpwQx0LLWb2E3bb6f0LOvL57X+SB5MSBpQnCGprcUK2WkZ8X1N00xu4wbJ+seB7Hxr9sy9O/p/VEhhvQ5JJSUleuutt1RTU6NAoHO7vx/+8IcHPTAAAICkqdkm7auXMrKlMdN69tjsPKnJDknD4zM+pCbncjvJCg25w+L7mgF/R+vtZM7gFI6R9nisJXcDNSQ9/vjjuummmzR8+HCNHj2604VkDcMgJAEAgL6tJ22/D5Sdb3XFo3nDwGPPJLnSrPCyvzH+Icnf0Ugt7rNWkRQeIu35rN9cVLZXIemee+7RvffeqzvuuCPW4wEAAEiuxr1S7XZJhjQ+irbfB6J5w8Dk91nL6yTrPDbPnsQEZXupnSvN+kqWYPOG/tEGvFctwOvr63XppZfGeiwAAADJ16ntd2HPH2+HpP3MJA0ozvOR8kZY3xMRlINNG5J8/ltBkXXunrexX3z2exWSLr30Ur3++uuxHgsAAEBytbVIlR9b2xOjbPt9IPtaSV5mkgYUOyRl5Diul5WAz0CymzbY0jOlvJHWdj9oBd6r5XaTJ0/WnXfeqXXr1mn69OnKyOi8/nHJkiUxGRwAAEBCVWyylkzljZSGju/dczCTNDC1tVjfO4WkBHwGgjNJSTwfyVZ4iOSptkJS0dRkj+ag9CokPfbYYxo8eLD+/e9/69///nen2wzDiGlIqqys1B133KFXXnlF+/bt0+TJk/Xkk09q1qxerBEGAAAIx9n2e0IP2n4fiJmkgal1n/U9Myex56WlykySZIWknRsH7kxSWVlZrMcRUn19vU488USddtppeuWVVzRixAiVlJRoyJAhCXl9AAAwgNSUSPsbrJmAQ3rY9tvJ/gPZ22x1OEvmyfRIHOdMUk4CZ5J8KXJOkmS1AZckd5UUCEiuXp3ZkxKiDklLly7V3XffrdzcXC1dujTs/QzD0M9//vOYDO7+++9XcXGxnnzyyeC+iRMnxuS5AQAAOilrn0Uad/TBtVLOHNTRArqlsXfNH9D32NdIysiWsuyg3NS7oNzSaJ3jZJ/jE4m93C6Z7b9tg4db5yb5WqWmGil/dLJH1GtRx7sPP/xQbW1twe1IX7Hyt7/9TbNmzdKll16qkSNH6uijj9bjjz8e8TFer1cej6fTl6TgBW8DgUBU26ZpRtz2+/0Rt03T7LItKeK2/frhtqMdOzVREzVREzVREzX1sKb9bunzMpntbb8PqibTlNn+R3Jgv5v3aaDUFFxuN0hm5iCZhvVnttnS2OOazPf+KL39uAL73N3X0ea1Xjc9M/nvkwyZBdZskllfmZrvU/tt3Yk6JL311lsqLCwMbof7+te//hXtU3Zr+/bteuSRRzRlyhS99tpruummm7RkyRL9/ve/D/uYZcuWqaCgIPhVXFwsSaqpqZEk1dbWqra2VpJUXV2turo6SVJVVZUaGhokWedBud1uSVJFRYUaG631pOXl5WpubpZkLTlsabGmVUtLS9XaaqX4kpIS+Xw+BQIBlZSUKBAIyOfzqaSkRJLU2tqq0tJSSVJLS0tw6WJzc7PKy8slSY2NjaqoqJAkud1uVVZa6zobGhpUVVUlSaqrq1N1dTU1URM1URM1URM1xaKmZmtsvqx8KafgoGvyZwySJH1eWc77NEBqCtghKSNbrW1t8qVlS5K8ns97VtPnNTKaaiUzoMbd27qtqanB+q60zJR4nzzGYOv+NeUp+T75fD5FwzCjjVNJkJmZqVmzZundd98N7luyZInWr1+vtWvXhnyM1+uV1+sN/uzxeFRcXKz6+noVFhYGU6nL5Yq4bRiGDMMIu+33++VyucJuS1bCdW6npaUF03aobdM05XK5wm5HO3ZqoiZqoiZqoiZq6mFNuzdLH/1N5rCJMr501cHXtGmFjKr/KnD4XBmHfon3aSDUtPEFGXs+lY44S+aEY6V3n5LRsEvm0RcrMOoL0dfUUCXXmies5556pjTh2Ih1mP95XUb5e9KhxyvwhdOT/z7t+UyujX+ROXiEzJNvSLn3yePxqLCwUG63W/n5+QqnV40bEqWoqEhHHHFEp31Tp07VCy+8EPYxWVlZysrqeuKafYDs7we7nZaW1qttwzDCbhvtXXTCbcdq7NRETdRETdRETdR0QB3tXciMnLzYjD2nwNr2NgW75PE+9fOa7OskZeZY48vJkxokw9vYs5r213eMZV+91M3fsEbAOh1G6Zmp8T4NsVZxGU17ZfjbJFdWSr1P9li74+r+Lslz4oknasuWLZ32bd26VePH9/K6BQAAAKHYrZqzw//Lco8EW0B7YvN8SH3Oi8lKvb+gbPvST0nSvrrw97P52ldQpUILcEnKHhz8RwK5dyd3LAchpUPSbbfdpnXr1um+++7Ttm3b9Mwzz+ixxx7TzTffnOyhAQCA/sQOM3a4OViJvE4OUkNrx0ySpN4H5eZ6x3Y0IcluAZ4iIUnqaAXeh6+XlNIh6dhjj9WKFSv07LPPatq0abr77ru1fPlyLVq0KNlDAwAA/UnMZ5LsWQRmkgaMWM0kOWeP9jdIAX/k+/vbl9ulykySZF1UVurTISmlz0mSpPPOO0/nnXdesocBAAD6s2BIisNMkmkGz0tCP+X3dYSVLjNJB7HczjSlfQ3S4GHh75+SM0l2SNrdZz//KT2TBAAAEHcBv3XRTyl2M0lZVhtkmQGptTk2z4nUZc8iyZDSrdbfnWYTo20m7Wvt+Cza5/V0d16Sr+M6SSmjoMgKRt6mPjubSkgCAAADm/1HqeGSMgfF5jldaR1BifOS+r/gUrvsjlkTeyYp4HeEqG7Ys0iZg6yg4dwXTiout0vLkPJGWdt9dMkdIQkAAAxs++2mDfmxXRZEh7uB48CmDZIVlDNzre1oPwP2rNGgIVLuUGu7u5CUisvtpI4ld/WEJAAAgL7HG+PzkWy9PXEffc+BTRts9mdqf5SfATsQ5Q6VBrWHpH314e9vmpK/PSSl0kyS1OebNxCSAADAwLY/xu2/bcE/kJlJ6vfaWqzv4UKStxchKZqZpIDfOu9NSsGZpPY24O6q7jv0pSBCEgAAGNhi3f7bZj9ftH8go+9q3Wd9zzwwJLV/BqINynYgGuQISfsawocMexZJSr2ZpMHDpfQsKeCTGmuSPZoeIyQBAICBLdYXkrX1dKkV+q7ulttFu+TSXlqXO9Rq/JGWIam9DXgo9vlIrnTJlWJ/1huG46Kyu5M7ll5IsaMJAACQYLG+RpKNC8oOHPZyu3AzSdF8Bnzejk6LuUOtkDFoiPVzuCV3/hRt2mDrw+clEZIAAMDAFrfldr28mCj6Hnu53YEzSTk9+Aw4239ntF9rKbjkLkxI8qVo0wYbIQkAAKAPMs04drdrfz5/q9Tmje1zI7UEGzdkd96f1YM28PZSO7urndR984ZUbf9ts0NSU23HMeojCEkAAGDgat3XcVJ8rENSeqaU3v5HM0vu+jf7nKQDL0Zsz076vB2BJhxnZzvboG5CUqq2/7Zl5Uo5hda2u2+dl0RIAgAAA5cdXrJyrYt/xlpPllvFkt8n1e/qaA+dyvxtVpvovqw1TOOGjKyOWZ7ugnIwJA3p2JfbzbWSUn0mSepo3tDHLipLSAIAAANXvM5HsiWreUPJaundJ6VdmxP7ur2xZZX0zhNS1X+TPZLeC3a3y+56W1aUQTnUTFJ3bcCDM0kZUQ814froeUmEJAAAMHDFq7OdLVnNG5r2Wt8bqxP7ur1RX2F9r9mW3HH0lt9nzYZJXZfbSVJOlEHZbs6QO6xjX6c24CFmk4IzSVk9GnJCDRkrDR5hXTepD0lP9gAAAACSJniNpHjNJPXgxP1Y8u5Lzuv2hj2D0sdmGoLsWSQZocNKNEG5zSt5m63tQY7ldoZhzSZ5qqXm+q5Boy8stxsyVjr1xmSPoseYSQIAAANX3GeS7FmEBM8ktTYn53V7qm1/R8jogx3QJHVeamcYXW+P5jOwL0T7b9ugCG3A+8Jyuz6KkAQAAAau4ExSvJfbJXhGp6+EpAO7tvWxDmiSOpo2HHghWVs0n4FQ5yPZciNcULYvzCT1UYQkAAAwcCWscUMCw4q/reOP55ZG61pQqerAP/z7WAc0SY6ZpHAhKYrPgH0cBoUKScM638cp1VuA92GEJAAAMHAlqnFD6z7rBP9EaN3XsW0GOs51SUX2H/5G+5+kffG8pHDtv23RnJNkN2UIOZMU4VpJfaFxQx9FSAIAAAOTz2t9SfGbScrIkVztfbK8CZpNOjAUJep1e8P+w3/EJOt7w+7UnvkKpa275Xbtny1vU+g23lLk5XZ2I4f97q6PD4YkzkmKNUISAAAYmOx/2U/Pit85HYaR+DbgrQeEpP0p3OHOnkEpOsKaTWpttsJAX9LdcrvMQR0zZd6m0PeJFJKyBrcvpwvRBpzldnFDSAIAAANTvJs22BJ9QVnvvs4/p3LzBjsc5I+U8kdZ231tyV13jRsMo+MzECqwtnk7gm2oc5IMI3zzBho3xA0hCQAADEzxbtpgS/ZMUqpeK6nV0f570FCp8BBru6+FpO5mkqSOz0CopY/B9t+5UkaYc4uCbcAPnElqv4gt5yTFHCEJAAAMTPsTNZOU4JBkn5NkX7MnVWeS7HCQNdiaCSkcY/3c10JSd40bpI7PQKiZpOBSuyFdb7OFa95gn1PHdZJijpAEAAAGpoTNJCV4uZ09kzR4RGJft6cOPA/Hnkly7wnf4CAVdde4QYrcBjzS+Ui2UCHJNDvOSWK5XcwRkgAAwMCUsHOS7FmERC23az8nqWC09T1VZ5IODAe5w6T0bCngkxprkjeunmprsb5HM5MUKrDui3CNJFuokBTwd3QCpHFDzBGSAADAwJTomaREtwDPt0OSJzXbah94AVXD6Fhy15cuKmuH0ogzSRGWXEYzk2QfI2cbcHsWSSIkxQEhCQAADEzxvpCsLcfxB3Iiwor9R7sdkvxtHeeupJJ9IcJBX2ve4G+zZr6kbmaSIi23i3AhWVtWbtc24HZnO1e65OJP+ljjiAIAgIEn4O84dycnzjNJmYMlGZIZ6Hqh11gzTUc76UIpI9vaTsXzkkLNoPS1kGQvtTOMyB3mnN3tnEG5u/bftlBtwO3gy/lIcdGnQtL//M//yDAM3XrrrckeCgAA6Mvsf9F3pUWeAYgFl0vKHtz+unEOKz5vx3KszEGRZzCSqXV/R8AY5OjqZi+3a/68oyFCKrNn7TJyOroJhmKHpIC/4zFSdO2/bQeel2S3/2apXVz0mZC0fv16Pfroo5oxY0ayhwIAAPo6OzRk5UX+4zZWEtUG3J6VSM+02kInuv14tOw/9LPyOs+EZOV2hKaG3YkfV08FmzZkR76fK82qTeoclKM5H8k26ICQxIVk46pPhKSmpiYtWrRIjz/+uIYMidBDHgAAIBr2H6rxXmpnS1QbcK/dRCA3sa/bU82fW99DhYPeXC/JNK1mD37fwY2rsaZnM1jBC8kO6v6+oWb1ehKS7PvY5yTZjRuYSYqLPhGSbr75Zp177rmaO3dut/f1er3yeDydviQpEAgEv0ezbbavFw237ff7I26bptllW1LEbfv1w21HO3ZqoiZqoiZqoiZq6qam9ot6mlmDE1NT+4yO2R5W4vY+tc8kmZmDgvVJkloaU+t9clxAtUsd+UXWdn1l9J+98veld/9X5tZ/976m+kpp9WMyP/pb9DW1L50zM7K7f5/aPwOB/e7gfrM9LJqDhnQ/3pyOc5ICgYAC7bNYZnpm8v976mO/I6KR8iHpueee08aNG7Vs2bKo7r9s2TIVFBQEv4qLiyVJNTVWv/3a2lrV1tZKkqqrq1VXZ/1HWlVVpYaGBklSZWWl3G7rA1xRUaHGRivxl5eXq7nZ+uVTVlamlhbrw1laWqrWVivNl5SUyOfzKRAIqKSkRIFAQD6fTyUlJZKk1tZWlZaWSpJaWlpUVlYmSWpublZ5ebkkqbGxURUVFZIkt9utykrrX1IaGhpUVVUlSaqrq1N1dTU1URM1URM1URM19aImT80u6z6u7MTU1D6L4Guqj+/71N4YYr/f+hNvv5kh686NKfU+mU0dM0kH1lS5r335Y0Olytvri/jZ210pbV9nHd+qLb2uyVv5qSRTgdodUddkejtCUrfvU/tnwL2nIliTt36PJGmfkd3tZ6/O2/7H/X63qqt2a5/HqqOlzZ/0/5762u+IaBhmtHEqCSoqKjRr1iy98cYbwXOR5syZo5kzZ2r58uUhH+P1euX1drS59Hg8Ki4uVn19vQoLC4Op1OVyRdw2DEOGYYTd9vv9crlcYbclK+E6t9PS0oKpOtS2aZpyuVxht6MdOzVREzVREzVREzVFrkkbX5Cx51OZU78sc8Ls+Ne0+xNp00qZwybI+NLV8XufSt+Rtv5bZvFMGTPmy6wukbHhOSl/lAInXp8679Oa/5Xh3i198RKZow/vXFNbq9L++YBkBhQ49RtyDR4W+bNX9alcm/4qSTINQ8ZZdyhgpPW8pg/+JKPGCgTml2+XkZnTfU2f/UvG9ndlTpgtHXFm5PepbK205S2Zh8yQMfMC63P4zwdltO6TeeL1MvNHRR6v3y/jjQdk+FsVOPnrUk2JXFv+JfOQ6TJnnM/viChr8ng8KiwslNvtVn6+FVxDSQ97Swr44IMPVFNToy9+8YvBfX6/X6tXr9ZvfvMbeb1epaWldXpMVlaWsrK6dgexD5D9/WC3na/bk23DMMJuG+0njobbjtXYqYmaqImaqImaBnpN9oVdjZx8Ge2vFdea2mcRjPbldnF7n9pnNoz2ZXaGfc5VS2NqvU+OayR1qSkzy7rGk3u3XO4qafCwyJ+9nRuCz2+YpuSukmvouJ7VYRidGkUY++qlzJzu62g/J8nItLrbRXyf2pfbGfZnz+cNdrozBg8Nfg7DjjEtzTovybNHrv0Nwe52RnpW94/ld0Tn//6j4Or+LslzxhlnaPPmzdq0aVPwa9asWVq0aJE2bdrUJSABAABEJXgh2fD/khxTzi5z8VzEY3e3O7BxQ+u+g29qECut+zq6woVrWBDt9ZLcVVLdTslwHdw1lva7O46d1NFQoTvBxg1RtJE/sHGD3YAhKzfyNZacnNdK8tPdLp5SeiYpLy9P06ZN67QvNzdXw4YN67IfAAAgKqbpCEl5iXlN+3X8bda1jLprGd1b9sVqs9q7rWVkS650KeCzZs+c1yRKFjuAZOdZbcpDKRwj7VD3gad8vfW9aKqUN9K6f29C0oGP2RdlSGptD0mZ0YQkOyhbs4nBDn+RLiJ7IGcbcNNakkZ3u/hI6ZkkAACAmGtt7vgD0+7+Fm9pGR2zDfFsx33gTJJhdMxg7I/j6/aEHZIihYMh7bNCnj0KXhz3QN5mafcn1vaE2Y6ZpF5cX8kOSYar8xi705uZJF+r1ObtWftvW+4w6/s+ZpLiLaVnkkJZtWpVsocAAAD6suCFZAdLrgQu3c/Os/6obmm0Zj3iof0cl+CFS+3X3VeXOheU3RdFOBg01AoebfslT3XHtZOcKj60AlRBkRWQ7Iur7ndLLU1Sdg8CsB2SRkySakriE5LSM61ldT6vFZSb25fb9Sgk2cvt6q0ZQomZpDhhJgkAAAws9kxOopba2UJdTDSWAoGOkJR5QEiSUueCstHMoBhG5IvKBvzSjvaGDRNmW/fPyJIGjwj/mHACfsltteLWIdOt7/b5Qt3pyXI7qeO98Db2ciap/b773R2vnR5mySIOCiEJAAAMLPsT3LTBFu+w0ravY9v5R3tOnMNZT9kzKN2dHxWpEcOez6x6MnOloiOie0w4jTXWOVvp2dLIydY+Z3OJcPxt1uOk6GaSJMfSx8aOGbWenCeWmds+c2Ra45aktCibPqBHCEkAAGBgSdpMkqPDXTzYTRsyB3WcWyNJWSk0k2Sa0c+gRAo8dsOG8V+U0hxnjwzpRUiqb79v4RhrOZx9nlp3S+7spXaGEX13Ovsz0LS3Y9avJzNJhtFxf85JiitCEgAAGFgS3f7bFu8GCqGW2kmpNZPUtl/yddP+22Yvt2uu61haJlltv+srrCA47pjQj3Hv7mjO0R07UNmhLNfRQS6SVsf5SFFeeyf4Gfh8h/U9a3D0Act24HEjJMUFIQkAAAwsiW7/bXOejxIPwfbfB4SkeM9g9UQ07b9tmYM6OuA5Z4bK37e+Fx3R9T0cPNJ6Xl+r1FQb3ZgODEn2a3bXBrwnTRts9njdVe2v1YuW7Ac+prvjiF4hJAEAgIEluNwuwTNJOfGeSXIst3Oy6/Q2Rj+7Ei/RtP92OrB5g7dZ2v0fa3vC7K73d7msbndSdK3A2/Z3XK/Ifq3ezCRFK/iZMzu/Vk/YbcBtPZ2JQlQISQAAYOAwzeSfk9S2X/L7Yv/84WaSsnKt5WCm2XGfZOlpR7cDr320c6PVja5wTMf5R2EfE8V5SfbzDhrScdyCbba7m0lqXzYYbWc7qetnrlch6YDH0AI8LghJAABg4PB5ra5kUuJDUnp2x9KoeDRRCHdOkuFyNG9I8pK7aK6R5ORsxHBg2+9wehSSHE0bbNHOJNndBHsyk5RzwOxlr0LSAcvtaAEeF4QkAAAwcNghIT078Se8G0Z8zw9qDTOTJKXOtZJ6OpOUN8q64G/bfqn0XcnbZDU7cLb9PpAdkjw1HReYDceeSSp0zErZSwHb9necdxRKT6+RJFmBynkB42iXHTpl5nZ8dl3pnTsZImY4qgAAYOCwQ0JOgmeRbMELysYhrHjDnJMkpUbzBmf772gbFqSlS/mjre1tb1vfx32xc9A4UE5++8yZ2dEgIdx4DmzaIFkBJNgGPMJFZe3ldj2ZSTKMzufC9WYmyTA6whWd7eKGkAQAAAaOZLX/tsV1JinMcjspvuEsWm37reWOUs/CgR1gAv7Qbb9DPuaAhg+h7G+wjpnh6ghituCSu8/DP761F8vtpI7PQNbg3occe3w0bYib9O7vAgAA+h1vk/Uv4YOH9/457DbLzvM54qGl0TqPqDf/6t7luZLUtMFmv27dzsizKTn5nWc3ohGucYPzdZM5kxRs/53fs7bVzs/XmCOl7MHdP2bIIVL1lsghyb6IbP7ozheklazPWt3OyOclBRs3ZHc/Hif7vTiYz7P9WNp/xw0hCQCAgei9p61/JT/xOil/VO+eY9NK6w/R2VdKIybFdHhBpimt+4P1x/2cb0b3B3IkybpGki27wPpeU2J9RXLS9R3trLvjb5P87effhJxJaq83Xu3Ho2HPyvT02kDOsBipYUOox0RqAx5qqZ0teK2kSMvt7BbgIZY3RmLP6vXmfCQbM0lxR0gCAGCgaWmUGmus7fL10ozzev4cTbVWQJKkvaXxC0n76jv+Nb9+Z+QT9qOR7OV2RYdLtds7lmqF0vy5dXvD7uhDkj2L5EoLvYTLea2kZLHP7+npDEruUGnKKdayuGhnLQvGSDKsmcOWxtChOFRnO+drSpFnknrTuEGSimdan+sJx/bscU6jDpfGlEpjpvX+ORARIQkAgIHGuQSpcrN0+OmhT/aPpHxD6OeLNedz11fGICQlebld1mBp1mWR7/Pf16Wy97pvQe3kPB/JMLre7pxJMs3Q94m3nrb/djrs1J7dPz1Tyhth/WNAQ6U0+vDOtwf8kmePtR3qekvRhKTgTFIPl9sNHi4dc2nPHnOgjCzp6IsO7jkQEY0bAAAYaJzBI+CTKj7s2ePbWqRdH3X87N5j/dEZD87lUrEIY8meSYpGcKlXD0JSpPORpI56Az7J19L7sR2Mnrb/PliRrpfkqbY+sxk5oZe92UsC2/Z3zBg5+dusYyn1fLkd+gRCEgAAA40dPIYUW9/LN0iBQPSP3/WRdf7L4OHWv6IHfB3L92LN+Qeuu+rgwpjf1zHjkqyZpGjYFwvt0UyS3f47TEhKS+/owpaM85Kc7b8THZLqQ4Qk51K7ULNq6ZkdF+ANFVbt4GQYtOHupwhJAAAMJGagIyQd8WVrmV2Lp+P8om4fb1rnMUnWSfSR/hA9WH5fx5Iow3XwYcw+H8eV3vO2zYmU62gaYEYZXoMXko0wq5FjtwFPwnlJrfs62n/3tHFDb9nnGrmruh7HSE0bbJGW3AWX2uUkZ+ki4o6QBADAQNJUa80CpWVYTQHGfdHaX/5+dI+v2Wb98Z6eLR0yPbrr0fRWY/uSqMxB0rDx7a8ToVtZd5yd7VL5D9ucgvZQ6I9+1scb4RpJtqwktgHvbfvvg5E3QkrLtD7vjXs73xZVSIowo+cMSeiXCEkAAAwk9oxPwRjrD/Hxx1iBoW6ndW5Rd+wwNe5oa5lRpPM+YjnWWLyOHThS+XwkyXpf7NmWaM9L6m65neSYSUrCcruDadrQW4arozugM1y37u8IPpG65UWaSeptZzv0GYQkAAAGkgPbHmfnS6OnWtv2MrpwGvda7atlSONntT9Pe3hp/rzjX9djPdYhh8QmJCX7Gkk9EfwDPcJ1epy8USy3S+YFZRN9PpJtSIjPjb09aGjkro6RrpXETFK/R0gCAGAgCbXMyL5A5+7Nka/fs6O97feow6RBhdZ25qCOWY+DWQoXiv18hY6Q1FRrddfrjWS3/+6JaFpQO0Uzk5SdxHOS7DoSdT6SLVS4jnR9JKdozkliJqnfIiQBADBQ+BznZjivDTNkrLUsKeCXdm4M/Vhn2287VNniseSudV/HEq3CMVZr65xC62d3L8NYX2j/bbNnMZo/j+7+9jlJ4VqAS46ZpGQst+vlhWQPlv3ZbNxrff6lzuE7EnusodqAtzKT1N8RkgAAGCjcVZJM649lZ1AwDGnCsdb2jg9Ct9mu2GRdGyZvREcTBVswJMVwJsl+rtyhHX+I2v/y39tOev11Jsk0o5xJStJyu2S0/7YFP+umFa5Ns/MyzkjSMjqO2YHnhrHcrt8jJAEAMFBE6uhVdKT1B3aoduBmoGOp3YTZXTvDOWeSTDN+Yz3YGau+NJNkh4n9Dd23Afe1dNwn0jk2dt1t+63AmyjJaP/t5OzAuK/eqt+VJuWN6v6xg8KEVRo39HuEJAAABopIISktvaMdeNkB7cDttt8Z7W2/D5Q/yvqjs3Wf9Ud9vMbqnLHqaRgzAx3XScrpAzNJOfnWMY2mDbjdtCE9y3ofw0nP6mi/ncjZpGS0/3ZyXsvL/lzlj458rGzhZvSYSer3CEkAAAwU3V0bZvwxVtvk+or2pXnt7LbfxUeH/iM3Ld0KSlJsLiprmqHPGykYbY2vtVna7+7Zc3qb24OVIWUOPvgxxpvh6jgHq7sld61RnI8kWTOAyVhyl4z2307OcB3N9ZGcCEkDFiEJAICBoMXT/oex0XHtmANl50lFB7QDb9wr1ZapU9vvUGLZvGFfXceSqHzHkqi0jI6fe/o6waV2gyVXH/nzx/4DvbtrJXmjOB/JFuxwl8DmDck6H8lWUGQFRG+jVL3V2tddZztbuOtVtbZ3WGS5Xb/VR35LAACAg2LP8OSNsC4CG06wHfgn1h/fdlga/YWOtt+hxDIk2WPNL7KCUixepy81bbBF27zBbtrQ3UySlJyZpGD77ySFpPRMKW+ktW3PQB7MTJJpSm3ts3fMJPVbKR2Sli1bpmOPPVZ5eXkaOXKkFixYoC1btnT/QAAA0Jk7yrbHhYdIBWOsc2G2r5UqP7b2H9j2O9TjJMmzJ3R3vJ6wl9qF6j7mPAm/J/pS0wZbtCGJmaTuOT/3zmt7dSfYBrylo1lDwNfxGSck9VspHZL+/e9/6+abb9a6dev0xhtvqK2tTWeeeaaam5uTPTQAAPqW+ijPxXC2A9++tr3t90hp6LjIjxs0xPqDMeCXPNUHN1Y7ABWEWBJlj9/dwzDWr2eS7HOSInS2syV6Jsk0HeckJaGzna3TuW1junZoDMfZBtx+H+ywZLgiz8qiT4uirUfyvPrqq51+fuqppzRy5Eh98MEHOuWUU5I0KgBAQrXut/7AzY+iXW9f4Km2Opcl8l+gzUBHI4burg0jSUVHSJ/9s2OGIlTb7wMZhvWH6N5tVsiJ9pyPA/l91mxUuLHmDpPSs62214014c+vOlBfnEmyl6fZbcCNMP+2Ha+ZJNOUPi+T2rzd3zccf1vHRVyTtdxO6vx5jOa/AadBQ63PT/Pn1mOdS+2iDVvoc1I6JB3I7bbWkQ4dGv4/Mq/XK6+34z9mj8f6JRAIBDp9d7lcEbcNw5BhGGG3/X6/XC5X2G37tZzbaWlpMk0z7LZpmnK5XGG3ox07NVETNVFTv6nJ75fx/tMy3HsUOPE6KX9U366psVrmO09IhYfIOOFaBdrbWMe9psa9kr9VZlqmlDtMgQPq61KHK03m2KPlKn1HZkaOzKIj5JK6/+wVjpH2bpNZv0vGhGN7V5O7SoYZkJkxSMoukCF1rikQkKtwjIza7QrUVcjIHx3d+9T0uQxJys7rO/89ZebK5UqTEfDL31SvtLxhoT977eckBTIGdf8+ZeVa99nfKLP9mIWto3yDXP/t/A/WvWVmWy3Nu/3sxev33qChcqVnSr5WBfKL5Gp//ajep9whMup2KND0uQzTlNHetMHMyJbax8vv8r5Tkxnl5QNSermdUyAQ0K233qoTTzxR06ZNC3u/ZcuWqaCgIPhVXFwsSaqpqZEk1dbWqra2VpJUXV2tujpr6rSqqkoNDQ2SpMrKymAgq6ioUGOj9a9P5eXlwaV+ZWVlammx/iMpLS1Va6v1ryQlJSXy+XwKBAIqKSlRIBCQz+dTSUmJJKm1tVWlpaWSpJaWFpWVlUmSmpubVV5eLklqbGxURUWFJCsYVlZayw4aGhpUVWX9S2BdXZ2qq6upiZqoiZr6dU1NO/8rw10lydT+iv/0/Zpqt8uQZDRUSvUViXuf2s/xMfNHK2AqqprKjVHSIdPVMuUMlVdURnyfgp+99iVN/s939romb/V2SdK+rEI179sXsiZ/+0VAG3d+Ft375N4jw71bpgxp2IS+89/TttJgG/DKkk9Cvk9lZWXBmaQ9dZ5ua6p2ty8V8zapek9V+JpMU4Ft71r3zRsh76CR8uUVSUOK1TJohHz57ds5I+TPHyMNKdb+nOHyFxxibWcPV6B9e1/2cPmnnJrc33v1DdKRZ6tp+BFqSB/So/fJl2nNvjXV7LTep/b232ZGDr/L+2hN0TDMaONUkt1000165ZVX9M4772js2LFh7xdqJqm4uFj19fUqLCwkhVMTNVETNfWhmswNf5JRbTXsMUcfLvPoi/t2TRv/IrXXo6KpCsy8KDHv0+aXpYoPZR56gnT46fH77Pm80hsPWPV9+XYF0rN6XtOmlTKq/qPAlFNkTDkldE21pTI2PC8zd6h06je6f58++Ye0a5MCRUfI9cWL+9Z/Txv/LKOmRIEjzpJr4uzQ79Obv5Da9itw8tflyh8ZuSbTlOu1/5HMgAKn3SLXoDB/G9WWSuufk5meJeOMWxVwpafef0+Jep9qtsrY+BeZBUXSidfJqPhQ2vyyzJFTpFkL+2ZN/fF9irImj8ejwsJCud1u5edbATiUPrHc7pvf/KZeeuklrV69OmJAkqSsrCxlZWV12W8fIPv7wW6npaX1atswjLDbhmFE3I7V2KmJmqiJmvpETfsaZNjXNJFkNOyW0dd/l9td2yRpz2dyeRulnIL419TeCMEYcojkGG9ManK+fmaO1WyguU5qqJRr5OSe19Hehc81ZGzwfI8u422fsTKa66xzkzJywtfk90q7N1vPOfG4ntcUp+2oP2+5wySVyLW/oaMmZ32GgjMbruzB0dWUnSftd8vlbZYGFYYeY3vrd6P4aCk9s9PSo5T57ynCWGL6PrU30DD21VufyfbGDUZmTnz/e4pnTb3Y7i812WPqjqv7uySPaZr65je/qRUrVuhf//qXJk6cmOwhAQASZccGSaZU2P6PY8GLofZR+z3WxSyN9gYHpint+CD+r+trtS4IK0V/bZiDcTDXS/I2S/vqOz9PKFm5HS2cncEzlJ0brS54BWMSU3+sddfhzu5sZxjRNwPJsjvceULf3lQr7bWWVWlChAsIDxSd2oDvC4ZSZUTRTRB9VkqHpJtvvll//OMf9cwzzygvL0979uzRnj17tH///mQPDQAQT75WaeeH1vbkE60LoEqxuVBpsthjzxspTTrB2t650er+FU/u3ZJMq6tZItpfB0NSN+ElFPsxucOkjOxuXieK6yUF/B1BdMKxfbMTmd02O2xIcnS2i7a+nG7agNsXEB51WPTXE+rP0jI6ugI213W0AO/uM4o+LaVD0iOPPCK32605c+aoqKgo+PX8888ne2gAgHja/Ym1jGrQEGnklIObnUgV9tgLD7H++MwpsP5Fevd/Eve6ieB8r3p62nNPxhpNGKveYs2WZOVabc37Irtt9r56qf08jU687TNJmT2Y1YjUBrytRdr1kbXd3QWEB5L/z96dx0dV3f8ff89kX0gCYUkCYZFFZJPdDRWVKqjgVlBERX7uX5SvYltrrdqvG1qttVbrWqvWvSpatUKVQlVERDZ3iEAghCQQQnayzvn9cTOTm2QmmQlJZhJez8cjD27u3LnzOSdDkk/OOZ8Ta0tW3SNJkWwk25WFdJLkXvDV+OPyyy8PdmgAgPZijLTjS+vY/df/QxmdCBX2BMDhlAbUbdia+WXgyUQg/N1Etq0k9JGcYdYvku6pc/5qVZLUTDLmfh/1nyCFdYpl2E3FJFr9aVxSRVHTx90jSVF+7JHk1tyGsrs3W6Ob8T2l5IEBh9tluafclduSpI7c6wwdLqSTJADAYWh/plS6z5ri0u9o65w9STJe/poe6lyu+s1c3W3pP9ZqY3GeVLCr/V7bnVgGuoFmaznDpLq9iwIa+TMmsFgTUqxks6rc2my1saIc6UCWdU3/8f7HEWocjoajGI0FspGsm68kybjqp9r5s4Hw4cS+NqyKkaTDAUkSACC0ZNb99b/f0fVz/rv1shKK2iprUXlnU7rX+ut8eJT1F3rJ+it039HWsbvNbc1eLCIxtX1ew5vWTI8s229NsXSGW+u2WhIWXp+MHfDyOu5f9lNHdMxarPbUXPGGVo0k+Zhut/cna/QvPLr+vQmL52twgJGkwwRJEgAgdJQfkNxlvwdOqj/vcFrVySTvvxCHOvcISWJaw7/Ou9uYu0U66GUq1SG/rq1YRFhE29/fl9YkSe5rE1Os0ahDeZ3KMmtdm9Q11tXY1yU11qo1SbaRJPtURXdi2d8q+w0be6JKknRYIEkCAISOzK+sf3sNrh9xcfOnmlmo8qwLSmt4vltvKXmQJFNX8ryNdXTRBjf3dLniPKnWv93tPYlkILH6ek+4y34npXXcNMP25M9IUiDT7dwlwF019b/wl+yT8rdLckgDKPvdhHvKY02F9d6SmG7XxZEkAQBCQ02VlFVX9ts+iuTWmSvcuWP29gv7oLq2tkc58GAlSTFJ1siGq9ZKlPzRmlg9yVhu/S+uDcp+d4FRJMmWJO1v+lhrptuFhdePPLnXJTUo+53UqjC7NHsZcMka3Q5jtK0rI0kCAISG7G+kmkpralGvIU0fd/9CXLLPSqg6i+pKqxCF5D0B6D3USiqqK6w+aCveikV0lAYVCf1Iamur65OpQGKN7WFNebInY7k/WuuwouI7b9nvxjyV1QqblgH3TLcLIEmSGq5Lqq6Qsr+2Pu8qiWV7cH8dJGsUicIWXRpJEgAg+IypL17ga9NPz2aopv6X/86gqG4aWUyi9Yt7Yw5n/chZW5YD91YsoiMFMj2yKNeqrBYZZ/WTvxyOpq/jKfs93v+1TaEuOsF3GXDPSFIAa5KkhuuSsjZZ75VuvaTkAYccbpdlT5JYj9TlkSQBAIJv/w6ral1YZH3Zb28645Q7f6aRpY+1pvOU7JP272yj1/VRLKKjBPK1KrSt2Qo0VvvrFO6RCnfXlf2eENh9QpmvMuA1VfVTNFs7knSwiLLf/nJ/DSSSpMMASRIAIPjcf/1PP1qKiPJ9XVdNkiKipb5jrOO2Kgfuq1hER3G3t/yAtZdRcw5l7ZT9PeHuu7SRUrSXUbvOzFvxBvcoUlhE4NXo3CNJu7+29pmKoOx3ixpPt0OXRpIEAAiusgJpb4Z1PMBLwQY7+6aynYF9g9SWEgD3lLu8rd5LPQequWIRHSEiWopLbhiLL4ey4a07CSwrkPZ8Zx13xXU1sV6SpNauR5Ka7pWUPq5jy8R3Rky3O6yQJAEAgstd+rrXECk+uflrE1MlOaxf7NxVuUJZRbFUWVq3mWtK89d26yX1PEJWOfD1h/a6LRWL6Cj+jPxVllkjGVL9XliBiIytTyCMy3rNYI2etafmRpICXY8kNdpgl7LffmG63WElPNgBAAACdLBYclXX/5W+M6upshaNS97LfjcWHmklEyV7rV+8U4a3XSzlByQ52rb8sWcz1z7+/ZV+4CRrr5pdGw8tuXGXivZVLKKjJPW1qqbt22b1gTcle61/43tao0+tep00qbwueeiKo0iSrcKdfSSpFXskudmTpJQjKfvtD3cZ8IpiptsdBkiSAKAzqa2WVv/VKtl78nWd/xeb3V9bZb/jelgbyPojqW/bJ0lV5dKnz0hySKcsrN9D5lAdCHCtTe+h1l+ryw9IG9489NcP5iiSVD99rnBPy+05lFiT+kp7vq0r+31U6+8TyhqXAXc6W7eRrFuMbc+frppYtoe4ZCtJYiSpyyNJAoDOJPsba/qWZE1TO2pacOM5FPay3wN8lP32JqmvtensgTYs3rBrg5WsSdbI1uDj2+a+gRYkcDikUTOkn1ZbU8cORVi4dMRxh3aPQ5WQYn1ti3Obvy4sQhp0TOtfp98Yq6/7ju46Zb8bi06QnOGSq8aanhjXo74gRmum24VHScNPs0Zze/Rv01C7tCEnWKNIbTmKjZBEkgQAnYU9qZCsKVlDTwq8qlWoyN9uTQsLj7Sq2vnLPTpRlGMlEo5DXF7rqm24BmjnV9KgY62/1B/qfT2buQawRqbXYP9H1UKdwyGNmt7+rxMRLY07r/1fJ5jcZcBL91kjjXE9Dm26ndR2fww4nPQcZH2gy6NwAwB0Fvt3WvvohEVYa01qKqwpRp2Ve2+WfmOtv2r7K76ntZ9SbZXVH4cqb0vdGoM4a5rdwSLr3KEq2Wv91T9Ym7mi64lrtFeSp3BDK5MkAD6RJAFAZ+EeRep3dP3UpB1fWiNMnU3Z/vqy3/4UbLBzOOtHZtqiFLh7j6YB46X+461jdwJ3KDylv4O0mSu6HnexFneSdKgjSQB8IkkCgM6g/IC1f45klertd7Q1olS6T9qfGdTQWiWzrux376EN9x7xlydJOsR1SUU50oEsK/HqP0EaMMFKaAp2tryOpiWHskEq4E3jMuCHsiYJQLNIkgCgM9i5XpKx9tHp1stag9Gvbh2PfZ1SZ1BTKe3eZB0HOork5s/+O/5wjxiljrBKIkcnSClHNXystUiS0Nbc+/SUF1gjyIdS3Q5As0iSACDU1VRZRRqkhqV63QlG3ta6PX46id1fW22KS67bPLUV3IlHyT7rXq1RWVa/pqtBv9YdZ39b/5f6QFVXSKX5DWMFDpW9DHhVWf1U27YqWQ/AgyQJAEJd9jdWkYbY7lLvIfXn43vWV0FzT18LdfYKfQMDKPvdmHvUR0YqauW6pF0brAp0SWn1FfMkqXs/KTHVKrrgTk4D5Y4pJolF9Wg77jLgxlW/5i0ipuuWPQeCiCQJAEJZS0mFezQpa2PrR1Q60r5t1nqK8Chrb5tDcShT7uxlvxtvpOlw1Pfrzq+sjTsD5dlENoDS30BL3GXAJWstncQoEtBOSJIAIJTtz7SmbYVF1q9Bsus1RIrtYa3zyf6mw8MLmHudT/rYwMp+e+NOklqzqWzuj1JliRQVb61Haix1pLXOo6JYyvsx8PuzHgntxT3l7sBu619GKoF2QZIEAKHMXvY7Irrp4/ZRj8wQLwdeul/a95N1PGDiod/PPUWuNWXA3f3af7z3qUph4a0vB26Mrfw3SRLamDtJcr/HKNoAtAuSJAAIVfay3wObSSr6HW2NNJXmS/t3dExsrbGzLtlobdnvxhJTrSSxskQ6WOz/8wr3WH+Fd5f99mXABOuagl1WqXB/HSyyFtU7nFJiiv/PA/zh/r/jqrH+ZSQJaBckSQAQqtzFGHoNtoo0+BIRJaXXTcXbEaLlwKsrpazN1nHjNUCtFRYhdettHQeyLsk9ipQ2UoqO931ddDcptRXlwN2xJPSxYgTaUmyjPzCwJgloFyRJABCKaqqsYgySf0nFgLopd3sz6jeaDCW7N0u1VVay13NQ29030OINFaXSnu+sY3/61X3Nnm+tkuH+YD0S2lPjUVhGkoB2QZIEAKEo+2urGENcj/oy382JT7aKOEhWRbZQYkz9SMyhlP32JtAkKWuDVT45qa9/leeS+kqJaVY1vCw/y4EXUtkO7Si6m1UG3I01SUC7IEkCgFBjTP20uQEBJBWecuCbQqsc+L6fpPK6st99D7Hsd2PuJKkop+VS3c2V/falSTnw2pZfoyi3YWxAW3I4pLju9Z8zkgS0i06RJD3++OMaOHCgoqOjdcwxx+jLL0N0zj0AtIX8HVLZfincR9lvX3oNtkaeaiql3V+3X3yB8pT9Hme1qS3F97SSr9pqqXRv89fmfC9VltaV/T7K/9dIHWH9IlpRYpUOb07JXmtBfXi0FJfs/2sAgbCvS2JNEtAuQj5Jev3117V48WLdeeed2rBhg44++midccYZ2ru3hR+GANBZecp+j7WKMvjL4agfIQmVcuCl+dYGslLzFfpay+GwpsNJLZcCdydrAyZ4L/vtS1h4fRW8lgo42DeRbctphYCdfV0SI0lAuwhv+ZLgevjhh3XVVVdpwYIFkqQnn3xSH3zwgZ577jn9+te/DnJ0AcrLqC/ZCQDe1FZZxRek1iUV/cZIW/5jjURtXyPFdm/5Oe3JXSShz7D2iyUpzSp9nvujFBHj/ZrKUmutkDOsfv+jQPQfL/30mXQgy5p252sdSN6WupiYaod25E6SHE5r1BJAmwvpJKmqqkrr16/Xrbfe6jnndDo1bdo0rVmzxutzKisrVVlZ6fm8qKhIklRYWChJctXNWXc6nc0eOxwOORwOn8e1tbVyOp0+j92vZT8OW/MPqdrP6kgADm/JR8jUhMt14IDCwsJkjJExRk6n0+ex5/tY0lBp13ppwwdBbkS92qRhCisuljHG+n4YaJuaO3YmyFleIe38zvpoTupIuQ7WyFFRFPj38m4D5cj9XvpyacsNDkuUKSpqfZs6+udT3dfD13GbfJ1oU9u1qSZMYeUVMlHd5Cos7Bpt6opfJ9oUkm0qLrb21TMtzLYI6SQpPz9ftbW16tOnT4Pzffr00Y8/ep8XvmTJEv3f//1fk/MDBgxolxgBoP1cGewA2tB9wQ6ggx1u7UXw3NryJQCaKCkpUWJios/HQzpJao1bb71Vixcv9nzucrlUUFCg5ORkOYI8P7y4uFjp6enKyspSQkJCUGNpCbG2D2JtH8TaPoi1fRBr+yDW9kGs7aOzxNpZ4gyEMUYlJSVKS2t+m4aQTpJ69uypsLAw5eXlNTifl5enlJQUr8+JiopSVFTDhc5JSUntFWKrJCQkdJo3GrG2D2JtH8TaPoi1fRBr+yDW9kGs7aOzxNpZ4vRXcyNIbiFd3S4yMlITJkzQihUrPOdcLpdWrFih4447LoiRAQAAAOiqQnokSZIWL16s+fPna+LEiZo8ebIeeeQRlZWVeardAQAAAEBbCvkk6cILL9S+fft0xx13KDc3V2PHjtWyZcuaFHPoDKKionTnnXc2mQ4Yioi1fRBr+yDW9kGs7YNY2wextg9ibR+dJdbOEmd7cJiW6t8BAAAAwGEkpNckAQAAAEBHI0kCAAAAABuSJAAAAACwIUkCAAAAABuSpA5QWVmpW265RWlpaYqJidExxxyjjz76KNhhNbFq1So5HA6vH1988UXQ4iotLdWdd96p6dOnq0ePHnI4HHr++ee9XvvDDz9o+vTpio+PV48ePXTppZdq3759IRfr5Zdf7rWfhw8f3mGxrlu3Ttdff71GjhypuLg49e/fX3PmzNHWrVubXBvsfvU31lDo1++++06zZ8/WEUccodjYWPXs2VMnnXSS3nvvvSbXBrtf/Y01FPq1sXvvvVcOh0OjRo1q8tjnn3+uKVOmKDY2VikpKVq0aJFKS0uDEKXFV6xTp0712q/Tp0/vkLgC+Z4f7D71N9Zg96ndhg0bNGvWLPXo0UOxsbEaNWqUHn300QbXBLtf/Y01FPrV1/ch90d2drbn2mD3q7+xhkK/SlJGRoYuuugi9evXT7GxsRo+fLjuuusulZeXN7gu2P3a0UK+BHhXcPnll+vNN9/UjTfeqKFDh+r555/XmWeeqZUrV2rKlCnBDq+JRYsWadKkSQ3ODRkyJEjRSPn5+brrrrvUv39/HX300Vq1apXX63bv3q2TTjpJiYmJuu+++1RaWqqHHnpI33zzjb788ktFRkaGTKySVVbz2WefbXDOnx2g28oDDzyg1atXa/bs2RozZoxyc3P12GOPafz48friiy88v9CFQr/6G6sU/H7duXOnSkpKNH/+fKWlpam8vFxvvfWWZs2apaeeekpXX321pNDoV39jlYLfr3a7d+/Wfffdp7i4uCaPbdq0SaeddpqOOuooPfzww9q9e7ceeughZWRk6MMPPwypWCWpX79+WrJkSYNzaWlpHRGaR0vf80OpT/35+RQKffrvf/9bM2fO1Lhx43T77bcrPj5e27Zt0+7duz3XhEq/+hOrFPx+veaaazRt2rQG54wxuvbaazVw4ED17dtXUmj0q7+xSsHv16ysLE2ePFmJiYm6/vrr1aNHD61Zs0Z33nmn1q9fr3fffVdSaPRrhzNoV2vXrjWSzIMPPug5d/DgQTN48GBz3HHHBTGyplauXGkkmX/84x/BDqWBiooKk5OTY4wxZt26dUaS+dvf/tbkuuuuu87ExMSYnTt3es599NFHRpJ56qmnQirW+fPnm7i4uA6JyZfVq1ebysrKBue2bt1qoqKizLx58zznQqFf/Y01FPrVm5qaGnP00UebI4880nMuFPrVG2+xhlq/XnjhhebUU081J598shk5cmSDx2bMmGFSU1NNUVGR59wzzzxjJJnly5d3dKjNxurtXEfy93t+KPSpv7EGu0+NMaaoqMj06dPHnHfeeaa2ttbndaHQr/7GGgr96s2nn35qJJl7773Xcy4U+tUbb7GGQr/ee++9RpL59ttvG5y/7LLLjCRTUFBgjAndfm1PTLdrZ2+++abCwsIa/EU2OjpaV1xxhdasWaOsrKwgRudbSUmJampqgh2GJOsv2CkpKS1e99Zbb+nss89W//79PeemTZumYcOG6Y033mjPED38jdWttrZWxcXF7RiRb8cff3yT0YqhQ4dq5MiR+uGHHzznQqFf/Y3VLZj96k1YWJjS09NVWFjoORcK/eqNt1jdQqFfP/nkE7355pt65JFHmjxWXFysjz76SJdccokSEhI85y+77DLFx8d3eL82F6tdTU1N0Kes+PqeH2p9Kvn38ymYffrKK68oLy9P9957r5xOp8rKyuRyuRpcEyr96k+sdqHwXrV75ZVX5HA4dPHFF0sKnX71pnGsdsHsV/f39D59+jQ4n5qaKqfTqcjIyJDu1/ZEktTONm7cqGHDhjV4U0nS5MmTJVnDl6FmwYIFSkhIUHR0tE455RR99dVXwQ6pRdnZ2dq7d68mTpzY5LHJkydr48aNQYiqeeXl5UpISFBiYqJ69OihhQsXBv2HjzFGeXl56tmzp6TQ7tfGsbqFSr+WlZUpPz9f27Zt0x//+Ed9+OGHOu200ySFXr82F6tbKPRrbW2tbrjhBl155ZUaPXp0k8e/+eYb1dTUNOnXyMhIjR07tkP7taVY3bZu3aq4uDh169ZNKSkpuv3221VdXd1hcUrNf88PpT5tKVa3YPfpxx9/rISEBGVnZ+vII49UfHy8EhISdN1116miokJS6PSrP7G6BbtfG6uurtYbb7yh448/XgMHDpQUOv3amLdY3YLdr1OnTpUkXXHFFdq0aZOysrL0+uuv64knntCiRYsUFxcXsv3a3liT1M5ycnKUmpra5Lz73J49ezo6JJ8iIyN1wQUX6Mwzz1TPnj31/fff66GHHtKJJ56ozz//XOPGjQt2iD7l5ORIks++LigoUGVlpaKiojo6NK9SU1P1q1/9SuPHj5fL5dKyZcv0l7/8RZs3b9aqVasUHh6c/5ovv/yysrOzddddd0kK7X5tHKs7plDp15tvvllPPfWUJMnpdOr888/XY489Jin0+rW5WN0xhUK/Pvnkk9q5c6c+/vhjr4+31K+ffvppu8Zn11KskjR48GCdcsopGj16tMrKyvTmm2/qnnvu0datW/X666+3e4z+fM8PlT719+dTsPtUshbB19TU6JxzztEVV1yhJUuWaNWqVfrzn/+swsJCvfrqqyHTr/7EKoVGvza2fPly7d+/X/PmzfOcC5V+bcxbrFJo9Ov06dN1991367777tM///lPz/nbbrtN99xzj6TQ7dd2F+z5fl3dEUccYWbMmNHk/LZt24wk88c//rHjgwpARkaGiYmJMWeccUawQzHG+F7n88knnxhJ5vXXX2/ynNtvv91IMgcOHOiYIOs0tybJG/e84FdffbV9A/Phhx9+MAkJCea4444zNTU1xpjQ7FdjvMfqS7D69YcffjAfffSReeGFF8xZZ51lzjvvPJObm2uMCb1+bS5WXzq6X/Pz802PHj3MQw895DnXeD7/iy++aCSZtWvXNnn+pZdeahITEzsiVL9i9eWqq64yksyaNWvaM0SfGn/PD5U+9cbfn08d3adHHHGEkWSuvfbaBuevueYaI8ls3bo1ZPrVn1h9CfZ7de7cuSYiIsLk5+d7zoVKvzbmLVZfgtGvf//7380ZZ5xhnn76afPWW2+Z//f//p9xOBzmz3/+szEmdPu1vTHdrp3FxMSosrKyyXn3MHZMTExHhxSQIUOG6JxzztHKlStVW1sb7HB8cvdjZ+7rm266SU6ns9m/PLeX3NxcnXXWWUpMTPSso5NCs199xepLsPp1+PDhmjZtmi677DK9//77Ki0t1cyZM2WMCbl+bS5WXzq6X3/729+qR48euuGGG3xe01K/dlSf+hOrLzfffLMkBeX7gNT0e36o9Kk3/v586ug+dffJ3LlzG5x3r0VZs2ZNyPSrP7H6Esz3amlpqd59912dccYZSk5O9pwPlX618xWrLx3dr6+99pquvvpqPfvss7rqqqt0/vnn669//avmz5+vW265Rfv37w/Jfu0IJEntLDU11TNMaec+19FlSVsjPT1dVVVVKisrC3YoPrmHgH31dY8ePUJmqp0vMTExSk5OVkFBQYe+blFRkWbMmKHCwkItW7aswXsy1Pq1uVh9CVa/Nvbzn/9c69at09atW0OuXxuzx+pLR/ZrRkaGnn76aS1atEh79uxRZmamMjMzVVFRoerqamVmZqqgoKDFfu2I77f+xupLenq6JAX1/Wr/nh8Kfdocf34+dXSfuvuk8UL43r17S5IOHDgQMv3qT6y+BPO9+s4776i8vLzJ9LVQ6Vc7X7H60tH9+pe//EXjxo1Tv379GpyfNWuWysvLtXHjxpDs145AktTOxo4dq61btzapCLV27VrP46Fu+/btio6OVnx8fLBD8alv377q1auX10W8X375Zafo55KSEuXn56tXr14d9poVFRWaOXOmtm7dqvfff18jRoxo8Hgo9WtLsfoSjH715uDBg5KsRC+U+tUbe6y+dGS/Zmdny+VyadGiRRo0aJDnY+3atdq6dasGDRqku+66S6NGjVJ4eHiTfq2qqtKmTZs6pF/9jdWX7du3S1JQ36/27/mh0KfN8efnU0f36YQJEySpweamUv0a5F69eoVMv/oTqy/BfK++/PLLio+P16xZsxqcD5V+tfMVqy8d3a95eXleR2LdxSNqampCsl87RLDn+3V1X3zxRZN9kioqKsyQIUPMMcccE8TImtq7d2+Tc5s2bTIRERFm1qxZQYioqebW+Vx77bUmJibG7Nq1y3Pu448/NpLME0880YFRWnzFevDgQVNcXNzk+l/+8pdGknn77bc7JL6amhoza9YsEx4ebj744AOf14VCv/oTa6j0a15eXpNzVVVVZvz48SYmJsaUlJQYY0KjX/2JNRT6dd++fWbp0qVNPkaOHGn69+9vli5dar7++mtjjDHTp083qampDWJ+9tlnjSTz4YcfhkysRUVFpqKiosFzXS6XufDCC40ks379+naP1d/v+cHuU39jDYU+NcaYDRs2GEnm4osvbnB+7ty5Jjw83GRnZxtjQqNf/Yk1VPrVbe/evSY8PNxceumlXh8PhX51ay7WUOnXs88+20RGRpotW7Y0OH/uuecap9MZUu/XjuYwpplJ52gTc+bM0dKlS3XTTTdpyJAheuGFF/Tll19qxYoVOumkk4Idnsepp56qmJgYHX/88erdu7e+//57Pf3004qIiNCaNWt01FFHBS22xx57TIWFhdqzZ4+eeOIJnX/++Z5qRjfccIMSExOVlZWlcePGKSkpSf/7v/+r0tJSPfjgg+rXr5/WrVvXYdOXWor1wIEDGjdunObOnavhw4dLsirf/Otf/9L06dP1wQcfyOls/0HeG2+8UX/60580c+ZMzZkzp8njl1xyiSSFRL/6E2tmZmZI9Ot5552n4uJinXTSSerbt69yc3P18ssv68cff9Qf/vAHLV68WFJo9Ks/sYZKv3ozdepU5efn69tvv/Wc27Bhg44//niNGDFCV199tXbv3q0//OEPOumkk7R8+fKgxOkt1lWrVmnu3LmaO3euhgwZooMHD2rp0qVavXq1rr76ak+1wfbk7/f8UOhTf2INhT51u+KKK/Tcc89pzpw5Ovnkk7Vq1Sr94x//0K233qr77rtPUmj0qz+xhlK/StbP2BtuuEHLli3TGWec0eTxUOnXlmINlX795JNPdOqppyo5OVnXX3+9kpOT9f777+vDDz/UlVdeqWeeeUZSaPVrhwl2lnY4OHjwoPnFL35hUlJSTFRUlJk0aZJZtmxZsMNq4k9/+pOZPHmy6dGjhwkPDzepqanmkksuMRkZGcEOzQwYMMBI8vqxY8cOz3XffvutOf30001sbKxJSkoy8+bNa7FKV0fHeuDAAXPJJZeYIUOGmNjYWBMVFWVGjhxp7rvvPlNVVdVhcZ588sk+42z8rSHY/epPrKHSr6+++qqZNm2a6dOnjwkPDzfdu3c306ZNM++++26Ta4Pdr/7EGir96o2vinGffvqpOf744010dLTp1auXWbhwodfRsI7UONbt27eb2bNnm4EDB5ro6GgTGxtrJkyYYJ588knjcrk6JKZAvucHu0/9iTUU+tStqqrK/O53vzMDBgwwERERZsiQIV6r2Qa7X/2JNZT61Rhjjj32WNO7d+9mK5uGQr8a03ysodSva9euNTNmzDApKSkmIiLCDBs2zNx7772murq6wXWh0q8dhZEkAAAAALChcAMAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAoNNatmyZpkyZoqSkJCUnJ+vss8/Wtm3bPI9//vnnGjt2rKKjozVx4kS98847cjgc2rRpk+eab7/9VjNmzFB8fLz69OmjSy+9VPn5+UFoDQAgVJAkAQA6rbKyMi1evFhfffWVVqxYIafTqfPOO08ul0vFxcWaOXOmRo8erQ0bNujuu+/WLbfc0uD5hYWFOvXUUzVu3Dh99dVXWrZsmfLy8jRnzpwgtQgAEAocxhgT7CAAAGgL+fn56tWrl7755ht99tln+u1vf6vdu3crOjpakvTss8/qqquu0saNGzV27Fjdc889+vTTT7V8+XLPPXbv3q309HRt2bJFw4YNC1ZTAABBxEgSAKDTysjI0Ny5c3XEEUcoISFBAwcOlCTt2rVLW7Zs0ZgxYzwJkiRNnjy5wfM3b96slStXKj4+3vMxfPhwSWowbQ8AcHgJD3YAAAC01syZMzVgwAA988wzSktLk8vl0qhRo1RVVeXX80tLSzVz5kw98MADTR5LTU1t63ABAJ0ESRIAoFPav3+/tmzZomeeeUYnnniiJOmzzz7zPH7kkUfqpZdeUmVlpaKioiRJ69ata3CP8ePH66233tLAgQMVHs6PRACAhel2AIBOqXv37kpOTtbTTz+tn376Sf/5z3+0ePFiz+MXX3yxXC6Xrr76av3www9avny5HnroIUmSw+GQJC1cuFAFBQWaO3eu1q1bp23btmn58uVasGCBamtrg9IuAEDwkSQBADolp9Op1157TevXr9eoUaN000036cEHH/Q8npCQoPfee0+bNm3S2LFjddttt+mOO+6QJM86pbS0NK1evVq1tbU6/fTTNXr0aN14441KSkqS08mPSAA4XFHdDgBw2Hj55Ze1YMECFRUVKSYmJtjhAABCFBOwAQBd1osvvqgjjjhCffv21ebNm3XLLbdozpw5JEgAgGaRJAEAuqzc3Fzdcccdys3NVWpqqmbPnq1777032GEBAEIc0+0AAAAAwIZVqQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAF3IypUrdcEFF6hv376KjIxU9+7ddeSRR2r27Nl67LHHVFRUdEj3HzhwoBwOh9fHHn30UY0cOVJRUVFyOByaOnXqIb1WKGuuHzqb3/3ud3I4HHr++eeDHQoAhIzwYAcAAGgbd911l+68805J0lFHHaVjjjlGERER2rJli95++229+eabmjhxoo499tg2f+23335b//u//6vu3btr1qxZiouL0/Dhw9v8dQAA6AgkSQDQBaxfv16/+93vFBERoTfeeEPnnntug8dzc3P10ksvKSkpqV1e/5133pEkvfnmmzr11FPb5TUAAOgoJEkA0AW8/fbbMsZozpw5TRIkSUpJSdEvfvGLdnv93bt3S5KOOOKIdnsNAAA6CmuSAKAL2LdvnySpV69eAT2vvLxcS5Ys0bhx4xQfH6/4+Hgde+yxeuGFF/x6vns9y8qVKyVJgwYNksPhkMPh0KpVq/y6x9q1azV79mylpqYqMjJS/fr105VXXqldu3b5fL3nn39e69ev14wZM5SUlKQePXpozpw5nmStrKxMv/rVrzRw4EBFR0dr1KhRevPNN5vcb9WqVXI4HLr88suVk5Ojyy+/XH369FFMTIzGjx+vF1980a822K1Zs0bnnHOOevXqpaioKA0cOFD/8z//oz179jS47qGHHpLD4dBvfvMbn/c6/fTTG/SvW0FBgW699VaNGDFCMTExSkxM1Kmnnqr333/f573++c9/6rjjjlNsbKySk5N1wQUXaOvWrQG3DwAOCwYA0OndddddRpJJT083eXl5fj0nLy/PjBkzxkgyKSkp5swzzzQzZswwiYmJRpK5/vrrmzxnwIABxv6jY+nSpWb+/PmmT58+RpK54IILzPz58838+fPNDz/80GIMjz/+uHE6ncbpdJpjjjnGzJ492xNTr169zPfff9/g+jvvvNNIMtdee62JiooyEyZMMHPmzDFDhgwxksywYcNMYWGhmTRpkundu7f5+c9/bqZOnWocDodxOBxm2bJlDe63cuVKI8nMnDnT9O/f3/Tp08fMmTPH/OxnPzPh4eFGkrnzzjtb7Ae3v//97yYsLMxIMieccIK56KKLzLBhw4wk06dPnwZ9sm/fPhMVFWVSUlJMdXV1k3tt377dOBwOM3To0Abnt2zZYtLT040kM3DgQHPOOeeYU0891cTGxhpJ5sEHH2xyryeeeMJIMg6Hw5x00knmwgsvNAMGDDCJiYnmkksuMZLM3/72t+a+VABwWCFJAoAuYNu2bSYmJsZIMt26dTPz5883zzzzjNmwYYOpqanx+pwzzzzTSDL/+7//ayoqKjznc3NzzcSJE40k8+GHHzZ4jq/k4OSTTzaSzI4dO/yOec2aNSYsLMz07dvXfPXVVw0ee/bZZ40kc8wxxzQ4706SJJknnnjCc76qqspMmzbNSDIjRowwp556qiktLW1yv5NOOqnB/dxJkiTzs5/9rMFzvvzySxMfH2+cTqdZv359i/2wa9cuExMTY8LCwsy7777rOV9bW2tuvPFGI8lMnDixwXMuvvhiI8ksXbq0Sf/cdtttRpJ54IEHPOdqamrM6NGjjSTz+9//3tTW1noey8jIMIMGDTJhYWHmm2++8ZzPzMw00dHRJiIiokGSWFVVZebNm+dpP0kSANQjSQKALuLjjz/2jDDYP5KSksx1111n9uzZ47l248aNRpKZNGlSg1+03TZs2GAkmVmzZjU435ZJ0jnnnGMkmffee8/r47NmzTKSzIYNGzzn3EnSlClTmlz/7rvvGknG6XSaLVu2NHispqbG9OzZ00RERJiqqirPeXeS5HQ6zY8//tjknrfccouRZK644ooG5731wx133GEkmblz5za5T0VFhUlLSzOSzGeffeY5/8knnxhJ5swzz2wSb9++fU1ERESDkcGlS5d6Ruy8efvtt40ks2jRoiZxXXbZZU2uz8/P94xAkSQBQD3WJAFAF3Haaafpp59+0ttvv61rr71W48ePV3h4uAoLC/XEE09o7Nix2rJliyTp3//+tyTp3HPPldPZ9EeBe43Sl19+2S6xulwurVixQrGxsTrjjDO8XnPiiSdKktcYTj/99Cbn3EUjBg4cqGHDhjV4LCwsTAMGDFB1dbXy8/ObPHfs2LE68sgjm5yfO3euJOnTTz9toUX118ybN6/JY1FRUZo9e3aTe5144okaOXKkli1bpqysLM/5f/3rX8rOztY555yj3r17e867v27nn3++1xi89Zn79S666KIm1ycnJ3vtSwA43JEkAUAXEhkZqfPOO09PPPGE1q9fr3379umJJ55Q9+7dtXfvXl1//fWSpMzMTEnSbbfd5im00PijtLTUa0Lhr/vvv1+XX355g4/7779fkpSfn6/S0lKVl5crMjLS6+v/8pe/9FzbWN++fZuci4+P9/mY/fHKysomjw0YMMDrcwYOHChJTYoueOO+xv0cX/fKzs5ucP6aa66Ry+XSc8895zn3zDPPSJKuuuqqBte6v27z5s3z2mfuwh32PnPH1VIbAQD1KAEOAF1YUlKSrr32WqWlpemcc87RypUrVV5eLpfLJUmaMmWKBg8e3C6vvWzZMv33v/9tcO7kk0/Wr3/9a8/rx8fH64ILLmj2PiNHjmxyztvolz+PBZPD4fB6/rLLLtOvf/1rPffcc7r99tuVm5urf/3rXxo4cKB+9rOfNbjW3W/Tp09Xnz59fL5Wz5492y5wADgMkSQBwGHAvcFrbW2tCgsL1a9fP0nWdLubb765XV6zuRLgPXv2VHR0tJxOp/72t7/5TCA6ys6dO5s9n5aW1uI90tLStGXLFu3cudNrYuceBWo80pWYmKiLLrpIzz33nJYvX64NGzaotrZWV155ZZN+cX/drrzyyhaTS7fU1FRPXCNGjPDZRgBAvdD8cxsAICDGmGYf/+mnnyRZ0/F69uzpGaFYunRpu8fmTXh4uKZOnari4mKtWLEiKDHYbdq0SRkZGU3Ov/baa5KsEbeWuNcDvfrqq00eq6qq0j/+8Y8G19lde+21kqSnnnpKf/3rXxUWFqYFCxY0ua41Xzf3673xxhtNHisoKPCscwIA1CNJAoAu4Pbbb9cvf/lLbdu2rclj2dnZuuaaayRJs2bNUmRkpI455hj97Gc/0+rVq7Vw4UIVFxc3ed7mzZu1bNmydov5tttuk9Pp1IIFC7yOOpWWluq5557TwYMH2y0GN5fLpRtuuEHl5eWec+vXr9djjz0mh8Oh6667rsV7XHHFFYqJidFrr72mDz74oMG9f/Ob3yg7O1sTJkzQCSec0OS5kyZN0vjx4/Xuu+9qx44dOuuss7yOXl1wwQUaMWKEXn75Zd19991N1lcZY7R69WqtXr3ac27BggWKiorSyy+/rI8//thzvrq6WjfddJPKyspabBsAHG5IkgCgCygtLdVDDz2kIUOG6Mgjj9R5552nuXPn6sQTT9SgQYP05ZdfasiQIXrkkUc8z3nppZc0btw4/eUvf9GAAQN0yimnaN68eTr77LPVv39/jR07tl2TpClTpujxxx9XTk6OTjnlFI0ePVoXXHCBLrroIh177LHq2bOnrrjiCq+FFtra2Wefre+//16DBw/WhRdeqOnTp+u4445TSUmJbrvtNk2cOLHFe/Tv319PPfWUXC6XZs6cqRNPPFEXX3yxRowYoT/84Q/q06ePXnrpJZ/Pd48mSdLVV1/t9Zrw8HC98847GjRokO644w71799fP/vZzzRv3jydccYZSklJ0ZQpU7Ru3TrPcwYNGqQ//OEPqq6u1hlnnKFTTjlFc+fO1bBhw/Tuu+96rcYHAIc71iQBQBfw29/+VhMnTtTy5cu1efNmffrppyoqKlJCQoImT56sc845R//zP/+juLg4z3N69+6tzz//XM8884xee+01bdy4UZ9//rn69OmjI444QosWLfJaNrotXXvttTr22GP1yCOPaNWqVXr//fcVGxurvn37at68eTr//POVmJjYrjFIVinsL774QrfccouWL1+u4uJijRgxQjfeeKMuv/xyv+9z6aWXavDgwbr//vv1+eefa+3atUpNTdV1112n2267zWflPal+3Vi/fv00ffp0n9cNHTpUGzdu1GOPPaa3335bX3zxhWpqapSSkqJx48Zp1qxZmjNnToPnLFy4UH379tX999+vtWvXKjo6WieddJLuv/9+z5RCAEA9h2lpIjsAAF3UqlWrdMopp2j+/Pl6/vnngxrLkiVL9Jvf/EZ33nmnfve73wU1FgA43DHdDgCAICsuLtaf//xnRUZG+pxqBwDoOEy3AwAgSP72t7/pv//9rz755BPl5OToxhtv9KvcOACgfTGSBABAkPz3v//VCy+8oNLSUi1cuFD3339/sEMCACjIa5I++eQTPfjgg1q/fr1ycnK0dOlSnXvuuV6vvfbaa/XUU0/pj3/8o2688cYOjRMAAADA4SOoI0llZWU6+uij9fjjjzd73dKlS/XFF18wBQEAAABAuwvqmqQZM2ZoxowZzV6TnZ2tG264QcuXL9dZZ53VQZEBAAAAOFyFdOEGl8ulSy+9VL/85S81cuRIv55TWVnZYONBl8ulgoICJScny+FwtFeoAAAAAEKcMUYlJSVKS0uT0+l7Ul1IJ0kPPPCAwsPDtWjRIr+fs2TJEv3f//1fO0YFAAAAoDPLyspSv379fD4esknS+vXr9ac//UkbNmwIaATo1ltv1eLFiz2fFxUVqX///tq5c6eSkpLkcrkkSU6ns9ljh8Mhh8Ph87i2tlZOp9PnsWSNYtmPw8LCZIzxeWyMkdPp9Hnsb+y0iTbRJtpEm2gTbaJNtIk20aambSouLlb//v3VrVs3NSdkk6RPP/1Ue/fuVf/+/T3namtrdfPNN+uRRx5RZmam1+dFRUUpKiqqyfmkpCQlJCS0V7gAAAAAQpx78KWlQZiQTZIuvfRSTZs2rcG5M844Q5deeqkWLFgQpKgAAAAAdHVBTZJKS0v1008/eT7fsWOHNm3apB49eqh///5KTk5ucH1ERIRSUlJ05JFHdnSoAAAAAA4TQU2SvvrqK51yyimez91riebPn6/nn38+SFEBAAAAOJwFNUmaOnWqjDF+X+9rHRIAAAAAtBXfxcEBAAAA4DBEkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGBDkgQAAAAANiRJAAAAAGAT1CTpk08+0cyZM5WWliaHw6F33nnH81h1dbVuueUWjR49WnFxcUpLS9Nll12mPXv2BC9gAAAAAF1eUJOksrIyHX300Xr88cebPFZeXq4NGzbo9ttv14YNG/T2229ry5YtmjVrVhAiBQAAAHC4cBhjTLCDkCSHw6GlS5fq3HPP9XnNunXrNHnyZO3cuVP9+/f3677FxcVKTExUUVGREhIS2ihaAAAAAJ2Nv7lBp1qTVFRUJIfDoaSkJJ/XVFZWqri4uMGHJLlcLs+//hy7c0dfx7W1tc0eG2OaHEtq9tj9+r6O/Y2dNtEm2kSbaBNtok20iTbRJtrkvU3+6DRJUkVFhW655RbNnTu32axvyZIlSkxM9Hykp6dLkvbu3StJys/PV35+viQpLy9PBQUFkqScnBwVFhZKkrKzs1VUVCRJysrKUklJiSQpMzNTZWVlkqQdO3aooqJCkrRt2zZVVVVJkjIyMlRTUyOXy6WMjAy5XC7V1NQoIyNDklRVVaVt27Z52rRjxw5J1tTDzMxMSVJJSYmysrIkWYlhdna2JKmwsFA5OTmSpIKCAuXl5dEm2kSbaBNtok20iTbRJtpEmwJokz86xXS76upqXXDBBdq9e7dWrVrVbJJUWVmpyspKz+fFxcVKT0/XgQMHlJSU5MlKnU5ns8cOh0MOh8PncW1trZxOp89jycpw7cdhYWGerNrbsTFGTqfT57G/sdMm2kSbaBNtok20iTbRJtpEm5q2qbi4WElJSS1Otwv5JKm6ulpz5szR9u3b9Z///EfJyckB3Zc1SQAAAAAk/3OD8A6MKWDuBCkjI0MrV64MOEECAAAAgEAFNUkqLS3VTz/95Pl8x44d2rRpk3r06KHU1FT9/Oc/14YNG/T++++rtrZWubm5kqQePXooMjIyWGEDAAAA6MKCOt1u1apVOuWUU5qcnz9/vn73u99p0KBBXp+3cuVKTZ061a/XYLodAAAAAKmTTLebOnVqs2X4QmS5FAAAAIDDSKcpAQ4AAAAAHYEkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwIYkCQAAAABsSJIAAAAAwCaoSdInn3yimTNnKi0tTQ6HQ++8806Dx40xuuOOO5SamqqYmBhNmzZNGRkZwQkWAAAAwGEhqElSWVmZjj76aD3++ONeH//973+vRx99VE8++aTWrl2ruLg4nXHGGaqoqOjgSAEAAAAcLsKD+eIzZszQjBkzvD5mjNEjjzyi3/72tzrnnHMkSS+++KL69Omjd955RxdddFFHhgoAAADgMBGya5J27Nih3NxcTZs2zXMuMTFRxxxzjNasWePzeZWVlSouLm7wIUkul8vzrz/Hxphmj2tra5s9NsY0OZbU7LH79X0d+xs7baJNtIk20SbaRJtoE22iTbTJe5v8EbJJUm5uriSpT58+Dc736dPH85g3S5YsUWJioucjPT1dkrR3715JUn5+vvLz8yVJeXl5KigokCTl5OSosLBQkpSdna2ioiJJUlZWlkpKSiRJmZmZKisrk2Qlce5pf9u2bVNVVZUkKSMjQzU1NXK5XMrIyJDL5VJNTY1nLVVVVZW2bdsmSaqoqNCOHTskWVMPMzMzJUklJSXKysqSJBUVFSk7O1uSVFhYqJycHElSQUGB8vLyaBNtok20iTbRJtpEm2gTbaJNAbTJHw7jbzrVzhwOh5YuXapzzz1XkvT555/rhBNO0J49e5Samuq5bs6cOXI4HHr99de93qeyslKVlZWez4uLi5Wenq4DBw4oKSnJk5U6nc5mjx0OhxwOh8/j2tpaOZ1On8eSleHaj8PCwjxZtbdjY4ycTqfPY39jp020iTbRJtpEm2gTbaJNtIk2NW1TcXGxkpKSVFRUpISEBPkSsknS9u3bNXjwYG3cuFFjx471XHfyySdr7Nix+tOf/uTXfYuLi5WYmNhiRwAAAADo2vzNDUJ2ut2gQYOUkpKiFStWeM4VFxdr7dq1Ou6444IYGQAAAICuLKjV7UpLS/XTTz95Pt+xY4c2bdqkHj16qH///rrxxht1zz33aOjQoRo0aJBuv/12paWleUabAAAAAKCtBTVJ+uqrr3TKKad4Pl+8eLEkaf78+Xr++ef1q1/9SmVlZbr66qtVWFioKVOmaNmyZYqOjg5WyAAAAAC6uJBZk9ReWJMEAAAAQOoCa5IAAAAAIBhIkgAAAADAhiQJAAAAAGxIkgAAAADAhiQJAAAAAGxIkgAAAADAhiQJAAAAAGxIkgAAAADAhiQJAAAAAGxIkgAAAADAhiQJAAAAAGxIkgAAAICupqZSKsyWjAl2JJ0SSRIAAADQ1XzzL2n1c9L+ncGOpFMiSQIAAAC6mtJ91r9l+4MbRydFkgQAAAB0NZXl1r9V5cGNo5MiSQIAAAC6EmOkqjLruLoiuLF0UiRJAAAAQFdSUyEZl3VcfTC4sXRSJEkAAABAV1JZVn/MdLtWIUkCAAAAuhJ7YsR0u1YhSQIAAAC6EvtIEtPtWoUkCQAAAOhKquzT7UiSWoMkCQAAAOhKGo8kGRO8WDopkiQAAACgK7GvSTIuqbYqeLF0UiRJAAAAQFdiH0mSmHLXCiRJAAAAQFdS1ShJonhDwEiSAAAAgK6k8UgSSVLASJIAAACArsS9Jikytu5zkqRAkSQBAAAAXYWrtn7kKC7Z+peRpICRJAEAAABdhaeynUOK61F3jiQpUCGdJNXW1ur222/XoEGDFBMTo8GDB+vuu++WodY7AAAA0JS7aENkbP10u+qK4MXTSYUHO4DmPPDAA3riiSf0wgsvaOTIkfrqq6+0YMECJSYmatGiRcEODwAAAAgtlXUjSVGxUmSMdVxd7vt6eBXSSdLnn3+uc845R2eddZYkaeDAgXr11Vf15ZdfBjkyAAAAIAR5RpLipIi6JInpdgEL6el2xx9/vFasWKGtW7dKkjZv3qzPPvtMM2bM8PmcyspKFRcXN/iQJJfL5fnXn2P3lD5fx7W1tc0eG2OaHEtq9tj9+r6O/Y2dNtEm2kSbaBNtok20iTYdpm2qK/9tImNl6pIkU32wc7epjb9O/gjpJOnXv/61LrroIg0fPlwREREaN26cbrzxRs2bN8/nc5YsWaLExETPR3p6uiRp7969kqT8/Hzl5+dLkvLy8lRQUCBJysnJUWFhoSQpOztbRUVFkqSsrCyVlJRIkjIzM1VWZr3xduzYoYoKa37ntm3bVFVVJUnKyMhQTU2NXC6XMjIy5HK5VFNTo4yMDElSVVWVtm3bJkmqqKjQjh07JEllZWXKzMyUJJWUlCgrK0uSVFRUpOzsbElSYWGhcnJyJEkFBQXKy8ujTbSJNtEm2kSbaBNtok20ydOmymLrfEmVS+XVVkJQXVbcqdvU1l8nfziMv+lUELz22mv65S9/qQcffFAjR47Upk2bdOONN+rhhx/W/PnzvT6nsrJSlZWVns+Li4uVnp6uAwcOKCkpyZOVOp3OZo8dDoccDofP49raWjmdTp/HkpXh2o/DwsI8WbW3Y2OMnE6nz2N/Y6dNtIk20SbaRJtoE22iTYdpm755X47dm+UaerIcfYbJ8dkzMpFx0rSbOm+b2vDrVFxcrKSkJBUVFSkhIUG+hHSSlJ6erl//+tdauHCh59w999yjl156ST/++KNf9yguLlZiYmKLHQEAAAB0eutek/ZmSKPPknoPkVb8SXI4pRm/kRyOYEcXdP7mBiE93a68vNyT/bmFhYV5sksAAAAANt4KNxiXVFMVvJg6oVYlSfv27fP52DfffNPqYBqbOXOm7r33Xn3wwQfKzMzU0qVL9fDDD+u8885rs9cAAAAAugxPCfA4KSxCctYVs66mwl0gWpUkjR49Wh988EGT8w899JAmT558yEG5/fnPf9bPf/5z/c///I+OOuoo/eIXv9A111yju+++u81eAwAAAOgy7JvJSra9kkiSAtGqfZIWL16sCy64QAsWLNDDDz+sgoICXXbZZfrmm2/0yiuvtFlw3bp10yOPPKJHHnmkze4JAAAAdEk1VVJttXUcFWf9GxEjVZSwV1KAWjWS9Ktf/Upr1qzRp59+qjFjxmjMmDGKiorS119/zVQ4AAAAIBiq6qbaOcOlsEjrOIKRpNZodeGGIUOGaNSoUcrMzFRxcbEuvPBCpaSktGVsAAAAAPzlnmoXFVdfyY7pdq3SqiRp9erVGjNmjDIyMvT111/riSee0A033KALL7xQBw4caOsYAQAAALSkstF6JKl+JInpdgFpVZJ06qmn6sILL9QXX3yho446SldeeaU2btyoXbt2afTo0W0dIwAAAICWuKfbRcbVn4uItv5lJCkgrSrc8O9//1snn3xyg3ODBw/W6tWrde+997ZJYAAAAAACUGmbbufmHlUiSQpIq0aS3AnSTz/9pOXLl+vgQavTHQ6Hbr/99raLDgAAAIB/Gpf/lphu10qtSpL279+v0047TcOGDdOZZ56pnJwcSdIVV1yhX/ziF20aIAAAAAA/eBtJYrpdq7QqSbrpppsUERGhXbt2KTa2PlO98MIL9eGHH7ZZcAAAAAD85G1NUiQjSa3R6jVJy5cvV79+/RqcHzp0qHbu3NkmgQEAAAAIQJW3kSRKgLdGq0aSysrKGowguRUUFCgqKuqQgwIAAAAQIG8lwO37JBnT8TF1Uq1Kkk488US9+OKLns8dDodcLpd+//vf65RTTmmz4AAAAAD4wZj66XbeRpKMkWqqOj6uTqpV0+1+//vf67TTTtNXX32lqqoq/epXv9J3332ngoICrV69uq1jBAAAANCc6grJuKxj+5qksAjJGS65aqTqcikigFlfrlqpKFdKSpMcjraNN8S1aiRp1KhR2rp1q6ZMmaJzzjlHZWVlOv/887Vx40YNHjy4rWMEAAAA0Bz3eqTwaMkZ1vAxz5S7isDumblO+vw5KeOTQ4+vk2nVSJIkJSYm6rbbbmvLWAAAAAC0hqf8d9O6AYqIkSpKAq9wV2Rt86PMddLg461RqcOE30nS119/7fdNx4wZ06pgAAAAALSCZyPZuKaPeSrclQd2z4qSuucdlLK/lfqPa318nYzfSdLYsWPlcDhkjJHDNifR1FXJsJ+rra1twxABAAAANKvSS9EGN89eSQFOt3MnSZKU+aWUPvawWZvk95qkHTt2aPv27dqxY4feeustDRo0SH/5y1+0adMmbdq0SX/5y180ePBgvfXWW+0ZLwAAAIDG/BpJCmC6nTFSRXHdJw6pZK9UsOuQQuxM/B5JGjBggOd49uzZevTRR3XmmWd6zo0ZM0bp6em6/fbbde6557ZpkAAAAACa0dyapMhWJEnVFVZFPEnqN1ra/bU1mpQ8oPnndRGtqm73zTffaNCgQU3ODxo0SN9///0hBwUAAAAgAP6MJAVSuME9ihQZKx1xnHWcu0UqL2x1iJ1Jq5Kko446SkuWLFFVVf2GVFVVVVqyZImOOuqoNgsOAAAAgB+8bSTr1prpdu71SNHdpG69peRBkoy086tDCrOzaFUJ8CeffFIzZ85Uv379PJXsvv76azkcDr333nttGiAAAACAFlQ2M5LUmul27pGk6ATr30GTpP07pKyN0rCTu3w58FYlSZMnT9b27dv18ssv68cff5QkXXjhhbr44osVF+flCwMAAACg/Xim2/nYJ0kKcLqdbSRJknoPlWKSpIOFUvY3Uv/xrY20U2j1ZrJxcXG6+uqr2zIWAAAAAIFy1VqFFiQf0+2irX9bNZJUlyQ5nNLASdIPH9WVAx/XpcuBtzpJysjI0MqVK7V37165XK4Gj91xxx2HHBgAAAAAP7jXIzkc9aNGdu7RpeqDVmlvf5Ibz0hSQv259LHS1lVSyT5p/06p58BDCDq0tSpJeuaZZ3TdddepZ8+eSklJabCRrMPhIEkCAAAAOop9PZK3BMg9kmSMVFNZ/3lzGo8kue/Td4y0a701mkSS1NA999yje++9V7fccktbxwMAAAAgEM2tR5KsIgvOcGvfo+qDfiZJXkaSJGvK3a71Ut5Wqxx4bFJrow5prSoBfuDAAc2ePbutYwEAAAAQKM9Gss0UUPNMuato+X611fXX2UeSJKlbL6nnEerq5cBblSTNnj1b//73v9s6FgAAAACBcq9J8lb+2809euS+tjnuqXZhkVJ4VNPHB06y/t21Uaqpavp4F9Cq6XZDhgzR7bffri+++EKjR49WRETDOumLFi1qk+AAAAAAtKDKj5GkQDaUPWgr/+1tjVPvoVJsd6n8gLTn2y5ZDrxVSdLTTz+t+Ph4/fe//9V///vfBo85HI42TZKys7N1yy236MMPP1R5ebmGDBmiv/3tb5o4cWKbvQYAAADQaVW2sCZJqt9QtsqP6XaNN5JtzOGwRpO+/7e0o2uWA29VkrRjx462jsOrAwcO6IQTTtApp5yiDz/8UL169VJGRoa6d+/eIa8PAAAAhDy/ptu5R5L8mW7XaCNZb/odLW1ZKZXuk/ZnSj0H+RVqZ+F3krR48WLdfffdiouL0+LFi31e53A49Ic//KFNgnvggQeUnp6uv/3tb55zgwZ1rS8AAAAAcEj8KtzgTpL8GUnyI0mKiLYSpZ1f1ZUD71q/o/tduGHjxo2qrq72HDf30Vb++c9/auLEiZo9e7Z69+6tcePG6Zlnnmn2OZWVlSouLm7wIcmz4a3L5fLr2BjT7HFtbW2zx8aYJseSmj12v76vY39jp020iTbRJtpEm2gTbaJNh0+bTN2aJFdEjO821Y0kuSrLW2yTOVhkxRXdrfk21RVwMHlbparyTvN18offSdLKlSuVlJTkOfb18Z///MffW7Zo+/bteuKJJzR06FAtX75c1113nRYtWqQXXnjB53OWLFmixMREz0d6erokae/evZKk/Px85efnS5Ly8vJUUFAgScrJyVFhYaEkax1UUZH15sjKylJJiZVNZ2ZmqqzMehPu2LFDFRVWJr5t2zZVVVmVPTIyMlRTUyOXy6WMjAy5XC7V1NQoIyNDklRVVaVt27ZJkioqKjxTF8vKypSZmSlJKikpUVZWliSpqKhI2dnZkqTCwkLl5ORIkgoKCpSXl0ebaBNtok20iTbRJtpEmw7nNu3Z4xlJyj1Q4rNNlS7r1/6DRftbbFNF0T5JUm1EXPNtiu8pV2ScHNaNO83XyR8O4286FQSRkZGaOHGiPv/8c8+5RYsWad26dVqzZo3X51RWVqqystLzeXFxsdLT03XgwAElJSV5slKn09nsscPhkMPh8HlcW1srp9Pp81iyMlz7cVhYmCer9nZsjJHT6fR57G/stIk20SbaRJtoE22iTbTpMGlTVYWcHz1ovf7PfilHRJT3NuVtkWPDmzJJfaXjFzTbJq14RI7KUpkTrpCrW5/m2/TJ03KU5EmT5sr0GhzyX6fi4mIlJSWpqKhICQkJ8qVVhRs6SmpqqkaMGNHg3FFHHaW33nrL53OioqIUFdW0nru7gzxf/EM8DgsLa9Wxw+Hweeyoqwri67itYqdNtIk20SbaRJtoE22iTV2kTTV1Jb3DIuSMjPZ9fV3lO0d1hacSndd2uGqlylLr2piEltsUFSeVSKoq6xRfJ3dMLXG2fEnwnHDCCdqyZUuDc1u3btWAAQOCFBEAAAAQQjzlv5sp2iDZCje0sE9SXYIkh7Ple0r1Zccr/aia14mEdJJ000036YsvvtB9992nn376Sa+88oqefvppLVy4MNihAQAAAMHn2Ui2mT2SpPoS4FUHpeZW29gr2/kz6uKuqOeOo4sI6SRp0qRJWrp0qV599VWNGjVKd999tx555BHNmzcv2KEBAAAAwVfpxx5JUn2SJCPVVPq+zrORbDPlv+0iu2aSFNJrkiTp7LPP1tlnnx3sMAAAAIDQU+XndLuwcCksQqqttqbcRUR7v84zkuS7qEED7pEkptsBAAAACAmVfk63kxpOufPFn41k7dxrkrrYSBJJEgAAANBZ+TuSJNWPHjVXvMEz3S7QkSSSJAAAAAChwD3NLSqASnRtOpLkXpNU3nxBiE6GJAkAAADorNp8JCnANUnuxMtVI9VW+fecToAkCQAAAOis/C0BLtWvSfKVJBkTeHW78EirIITUpabckSQBAAAAnZEx/pcAl+o3lPU13a76oOSqtY79TZLsr13VdSrckSQBAAAAnVH1QUl164Ai22Ak6WDdKFJknOQM8z+OLli8gSQJAAAA6IzcSUlEjH9JjSdJqvD+eKBFG9y6YBlwkiQAAACgM/IUbfBjFEmyTbfzMS0u0PVIbowkAQAAAAgJno1k/ViPJLU83S7QynZurEkCAAAAEBKqAijaINWPJPmcbneII0lMtwMAAAAQVK0dSao66H3jV/dIUkygI0mxDePpAkiSAAAAgM4o0DVJ7iRJRqqpbPo4I0keJEkAAABAZxToSFJYeP3Gr97WJR3qmqRK1iQBAAAACKZA1yRJDafc2dVU1Y8uBVwC3Fa4wbgCe26IIkkCAAAAOqOqAEeSJFvxhkZJknuqXXiU9REIz3Q/0zT56qRIkgAAAIDOqDLANUmS75Gk1m4kK0lOp+2+XWNdEkkSAAAA0NnU1tRPjwtkJMnXXkmeog0Brkdyi+pa65JIkgAAAIDOxr0eyeGUwqP9f57P6XaHMJIk2dYlMZIEAAAAIBg85b/jJIfD/+dF1CVUbTndTpKiutZeSSRJAAAAQGfjKf8dwHokSYqou76tp9sxkgQAAAAgqOwjSYGIbIfCDZJtQ1nWJAEAAAAIBneBhECKNkj10+18jiQd4pokptsBAAAACIpWjyR5mW7nqq1Pblo93S62YVydHEkSAAAA0NlUtXZNkpfCDe6pds6wwPZcsqMEOAAAAICgcicjgY4kefZJqpCMsY7dSVJUt8Aq5dlRuAEAAABAULV2up07SZKp34z2UNcjSfUjSTWV1ka3nRxJEgAAANDZeEqAB5gkhYVLYRHWsbsSnXskKaaV65EkKTzK2thW6hKjSSRJAAAAQGdijG0kqRVriOxT7qSG0+1ay+HoUmXAO1WSdP/998vhcOjGG28MdigAAABAcNRUWRXppMBHkqT6vZLcFe7c0+0OZSRJ6lJlwDtNkrRu3To99dRTGjNmTLBDAQAAAILHPYoUFlk/dS4Q7pGkxtPtDmVNkmQbSSJJ6hClpaWaN2+ennnmGXXv3j3Y4QAAAADB09r1SG6+ptu1do8kN/fUP0aSOsbChQt11llnadq0aS1eW1lZqeLi4gYfkuRyuTz/+nNs6koi+jqura1t9tgY0+RYUrPH7tf3dexv7LSJNtEm2kSbaBNtok20qQu3qaxAkqTI2Na1qW6vJFdlmYzL5ZluZ6LiD61NkfVrkkL56+SPkE+SXnvtNW3YsEFLlizx6/olS5YoMTHR85Geni5J2rt3ryQpPz9f+fn5kqS8vDwVFFhvspycHBUWFkqSsrOzVVRUJEnKyspSSYmVXWdmZqqszMqMd+zYoYoKK/vetm2bqqqqJEkZGRmqqamRy+VSRkaGXC6XampqlJGRIUmqqqrStm3bJEkVFRXasWOHJKmsrEyZmZmSpJKSEmVlZUmSioqKlJ2dLUkqLCxUTk6OJKmgoEB5eXm0iTbRJtpEm2gTbaJNtOkwa1P19i8lSeo5qFVtqnFGWq+bn6uqskLJuGQk1YRFH1KbKk2YFVdlWUh/nfzhMP6mU0GQlZWliRMn6qOPPvKsRZo6darGjh2rRx55xOtzKisrVVlZ6fm8uLhY6enpOnDggJKSkjxZqdPpbPbY4XDI4XD4PK6trZXT6fR5LFkZrv04LCzMk1V7OzbGyOl0+jz2N3baRJtoE22iTbSJNtEm2tRF21SyV/rsGRmHU45Tb5ArMj7wNmWulePHFXKljZJj0DFyrP6rTFScdNpNh9amrE1yfP2e1GuwzKS5Ifl1Ki4uVlJSkoqKipSQkCBfQjpJeuedd3TeeecpLCzMc662tlYOh0NOp1OVlZUNHvOmuLhYiYmJLXYEAAAAEPI2vyft3iSljZTGnd+6e2Rtkr5+T+o1RBowXvrqDSkxVZpy5aHFtjdDWvealJAinXjVod2rnfibG4R3YEwBO+200/TNN980OLdgwQINHz5ct9xyS4sJEgAAANBlVJVLe+p+Nx44ufX3ibCVAG+rynZSfQnwLrBPUkgnSd26ddOoUaManIuLi1NycnKT8wAAAECXtmuD5Kq1Rn2S+rb+PvZ9kg7W7ZF0qJXtpIYlwI2xNpjtpEK+cAMAAABw2HPVSjvXW8cDJx9aAlJX3U5VB6XKthxJqisB7qqVaiqbvzbEhfRIkjerVq0KdggAAABAx8rbYpXqjoyTUkcc2r0i6pKZ6oq2HUkKi5DCI6WaKms0yZ2MdUKMJAEAAAChbkdd2e/+46WwQxzn8CQvRirdZx22xUiSVL8uqbJzr0siSQIAAABCWVGOdCBLcjilARMO/X5h4daojyRVWnsNtclIkmQr3lDWNvcLEpIkAAAAIJRlrrP+TT2qDUd8Yht+3lb3jaq7byVJEgAAAID2UFkm7fnWOj6Ust+N2dcLhUdba4naAiNJAAAAANqVp+x32qGV/W7MvVeS1HajSFJ9GXDWJAEAAABocw3Kfk9q232HIm1JUkwbrUeSGEkCAAAA0I5yf7T2MYpqg7LfjdlHkqLaciSJNUkAAAAA2ou7YEP/CYde9rsxe5IU04ZJEiNJAAAAANqFvex3//Ftf3/7dLu2Kv8t1a9JqmJNEgAAAIC2lFm3eWzqiLYtrODWXoUbIm1JksvVdvftYCRJAAAAQCipLJP2fGcdD2rDst927ZYk2e5b3XlHk0iSAAAAEDy11VLhHsmYYEcSOtxlv5P6tm3Zb7v2mm7ncNZvVNuJizeQJAEAACB4flwhrf6rlLUx2JGEhsZlv9uLO5FxhjccVWqTe3f+dUkkSQAAAAiefdusf7evYTRJknJ/qCv7Hd/2Zb/t4pKlAZOk4ae17f5Lkm1D2c47ktTGtQQBAAAAP1UdlMoKrOOyAith6j0kuDEF2466st8DJkjOsPZ7HYdDGjW9fe7tHqXqxGXAGUkCAABAcBRmN/zcvS/Q4apwj1S4u/3KfneULjCSRJIEAACA4HAnSd37Wf/u+0kq3R+8eILNXfY7baQ13a6zYk0SAAAA0EqFe6x/U0dKvYdaxzsP09GkitL6st8D26nsd0fxbCjLSBIAAADgP2NsI0l96/cDytosVVcGL65gydogGZeU1E9KSgt2NIeGEuAAAABAK5QfkKoPWsUJuvWRkgdJ8T2l2ipp9+ZgR9ex7GW/B7Vj2e+OwnQ7AAAAoBXco0gJKVJYuFVtzT3NLHPd4VUOPOd7qbJUiuompRwV7GgOHYUbAAAAgFZwJ0lJfevP9R0thUdJ5QVWEYfDRWYHlf3uKO6RpNoqqbY6uLG0EkkSAAAAOp4nSbKtvwmPlNLHWceHSznwA9lWXzjDOnfZb7vwyPpkr5OOJpEkAQAAoGPV1kjFedaxfSRJkgZOtP7dt00qze/YuIKhQdnvuODG0lYcjk6/LokkCQAAAB2rOM8qVhAZK8V2b/hYbHepzzDruKuPJlWUWOuRpM5f9ruxTr4uiSQJAAAAHcs91S4xzRp1aMydMOzeLFVXdFxcHW3Xeqvsd/d0KTE12NG0rcjOvVcSSRIAAAA6ln1/JG+SB0rxvaxF/121HHhtjbRzg3U8sAuU/W4sqm6vJJIkAAAAwA/eKtvZORz1m8tmrrNGW7qanO+tBCK6m5QyPNjRtD33SFIla5IAAACA5lWVWxvJSg0r2zWWNkqKiLau3dvFyoEbU1+wYcDErlH2uzGm27WfJUuWaNKkSerWrZt69+6tc889V1u2bAl2WAAAAGitwj3Wv3E9pIgY39d15XLghdlSUY6VHLnb2NW4p9tRuKHt/fe//9XChQv1xRdf6KOPPlJ1dbVOP/10lZV1zs4GAAA47LU01c5uwERJDil/u1Syr13D6lCest+juk7Z78Y6+UhSeLADaM6yZcsafP7888+rd+/eWr9+vU466aQgRQUAANCOqg9apaG79Q52JO0jkCQpNskqB563Rdq6ykoqDkVs0qFVkauulAoyJdchrJFy1Ug5P1jHXbFgg1tU516TFNJJUmNFRUWSpB49evi8prKyUpWVlZ7Pi4uLJUmuujez+1+n09nsscPhkMPh8HlcW1srp9Pp89j9WvbjsLAwGWN8Hhtj5HQ6fR77Gzttok20iTbRJtpEmzpxmza+I+37Sa7jFshZV/2t07fJ/bWprZWzcI8ckmoTUhUmtdymQZOtJCn3R+vjEBhJ5vj/J2f3vq1r09f/lOMQY/DE0j1dplsfOev6IKS+Tm3x/ykiVg5JqiqTq7ZWcjhCok3GGL++PiE93c7O5XLpxhtv1AknnKBRo3z/FWHJkiVKTEz0fKSnp0uS9u7dK0nKz89Xfr61e3NeXp4KCgokSTk5OSosLJQkZWdnexKyrKwslZSUSJIyMzM9U/127Nihigqrbv+2bdtUVVUlScrIyFBNTY1cLpcyMjLkcrlUU1OjjIwMSVJVVZW2bdsmSaqoqNCOHTskSWVlZcrMzJQklZSUKCsrS5KVGGZnW39xKSwsVE5OjiSpoKBAeXl5tIk20SbaRJtoE23qSm3aukXav0MOSQVb1nWNNtm+Tpnfb5Sj+qCMM0wZecX+tanHAFX2Ha+K2F5S93TVdEtVZWxvqXu6qrulqjKu7jg+RVVxfaTu6aqKT1FVfIp1HNdH1fEpUkyiHJKqM1a3qk27ftzsSdLKo5PlSuonk9RP5dHJMkn95Ko7Vvd0uRL76mB0T6l7umoT++pgTN1xQpoqYnpJyYNUNuD4kP06tcn/p4oaSZKMS0X780KqTf5wGH/TqSC77rrr9OGHH+qzzz5Tv379fF7nbSQpPT1dBw4cUFJSUufLwrviXxZoE22iTbSJNtEm2uS9TQVZClvzvCTJ9B4qTbyw87fJ9nUyu7+W8+t/WknFsZd1bJuKc6TVz8k4wuQ4bZFcEbEBtcn13XI5M7+Ueg1W7YQLu957rx3+P+nfD8pRUynXiddK8ckh0abi4mIlJSWpqKhICQkJ8qVTJEnXX3+93n33XX3yyScaNGhQQM8tLi5WYmJiix0BAAAQdJnrpO/q1mRHxUmn3WTtGdRVfLtM2rlOGnSMNOL0jn/91c9Za6KGnSwNPcn/59VUSSsekWoqpUkXSb2HtluIXcqqx6WyAum4+VKP/sGORpL/uUFIT7czxuj666/X0qVL9Z///CfgBAkAAKBTcRc1kKzSyQeLghdLe/AUbWhmf6T25C6UsHO95Kr1/3nZX1sJUmwPqdeQ9omtK/JsKNv5KtyFdJK0cOFCvfTSS3rllVfUrVs35ebmKjc3VwcPHgx2aAAAAG3PnUQ4nA0/7wpqa6TiXOvYn8p27SF1hBQVL1WW1leYa4kx0o66kt0DJ3Wtkb32Flm3V1InLAMe0knSE088oaKiIk2dOlWpqamej9dffz3YoQEAALStqoPW1CRJShlu/eveeLUrKM6VjMv6xTkmKTgxOMOkAROsY/deRS3J3yGV7ZfCIqV+R7dfbF1RVOcdSQrpEuCdYLkUAABA23CPGsX1kHoPkXK+71ojSfb9kYI5GtN/vJTxqRVPYXbLo1ruZCr9aCkiqv3j60o8G8p2vr2SQnokCQAA4LBhTyLcv7gX5QS2diaUBbKJbHuKipfSRlrHmeuav7asQNprlcDWgC688Wt76cQjSSRJAAAAocA9tS6prxSXLIVHSa4aqWRvcONqK/b2BdvAyda/e76TKkp9X7fzK+vfXkOk+OT2j6urYU0SAAAAWs2YptPR3MlEV5hyV1kmlR+wjoNV2c4uKU1K6metkdq13vs1NZVS1ibreNDkDgutS2EkCQAAAK1WfkCqPmgVFkjoY51zJxNdIUlyjyLFJUsR0cGNxW1Q3fS5XT7Kge+uK/sdlyz1PKJjY+sqWJMEAACAVnMnQgkpVqIk1Y8kHegKSVJdG7qHwFQ7t5SjpKhu1ihHzvcNHzOmfr0SZb9bzz2SVH2w062tI0kCAAAINm9FDdzHZful6oqOj6kthUrRBrvmyoHnb7f6PTxK6jem42PrKiJiJNUlmJ1sNIkkCQAAINi8JRFRcfX7CXXm/ZKMCa2iDXb9x1vJUuGehiN27s1j08daiRJax+GQojpn8QaSJAAAgGCqrZGK86zjxtPRuneB4g1l+6WaCskZLnXrHexoGoqKs5UDr0uMyvZL+36yjgdMDE5cXYl7XVIlI0kAAADwV3GetV4jMrZ+5MitK1S4c8eemFq/3iqUuMuB53wvVZRImXVlv3sPtTb2xaHxFG9gJAkAAAD+alz6286eJBnTsXG1lVCdaueWmCp1T7fKgW9fI+3eZJ0fSNnvNuGebtfJyoCTJAEAAASTJ0nysn9QQorkcFqL3g8WdmhYbaa59oWKgXXlwHeslWqqpPieUs9BwY2pq+ikI0nhwQ4AAHAYM0ban9ly5a7ohOCXDjZGOrDb+qtz2GHy47MoR4rtfmj72pTul8IjrK9hax0sarlwgcMpJQ84xFjzrUX60d1af4+DRdbUuUCmaTVX+S0s3No3qSjHui62u3/3rK2W8neEQNllU7/eKlRHkiQpZbj1da8osT6n7Hfbieqca5IOk+/yAICQlLVR+uYD/6499jLrl+BgyVwnfb/cqoY1+qzgxdFR9v4krXtVSh4oHXtp6+5RfkD69GkpMkaaulAKiwj8HrU10uq/SZUlLV/ba4g0eW7gryFJJfusWKMTpKn/07q1MzVV0md/lWqrpJOvk2ISW35OVbnVT5LvJCKpb12StEdKG+VfLN//W9q1wb9rO0JUnH/9ESzOMKtIw5aVVqLcl7LfbYaRJAAAAmCMtP0L6zi+l+8RgIoSa5rRjrXBS5KMS9pRF+vuzdKwqfV/He2qtq+x/t2faf2Cnpga+D0y10muGutruOc7q5xyoHK+sxKk8KjmK6Md2G1VJCvZJ3Xr1YpYv7S+zgcLpdwf6yueBSL76/pfBHeul4af2vJz3KNIccm+/w8k9ZV2fuX/prJV5db71P1cRwisrug/PvRHZgZMsirb9RoihUcGO5quIzbJeh/GJQc7koCQJAEAgsOzWWOkdPwCKcLHXiQl+6RPnpTytlp/cfd3ulFbyttqTaOSrOlLuzZIQ0/s+Dg6SsleKzlyy/xSOvqcwO5RUyVlbWp4j35HB/aLsjH1+9UMPkEacoLva796Q8rbYiVmo88MLNbqg9LurxvGGmiSZI9Vqn+PtDR65s8mq+7HinOs919Lo1y7NljXJaZa/7dCPTkJFRFRgb/P0bKegzrl+q4Q+NMCAOCwlLnO+rffWN8JkmSNCvQ8QpKx/jofDO5Y3SMUO9eHwFqPdtS4vXu+C7wy1e6vpZpKq6S1M9xal3IgK7B7HNgtFedaz+8/rvlr3ZXIsr9ueY1bY7s2WSNecT2sUZcDuwPfvDV/R33SH5NoJV57vmv5ef5UfovrYY0yuWrr1/f44qqt/3/Cuhqg1UiSAAAdr2y/tDfDOh7ox2aN7spTuzZaIxQdqTjPGlVxOKQJc6SoeGv6V+6PHRtHR6myjaqMOtP65d09euYvY+o35jziWKlf3foO+0iLP9z36DvK2kOoOckDrKSutrrhCFaLsbqknXVJ4eATbBuLrmtdrP3GWtO23OeaK9ttTP1IUnOFSRwO//dLytsiVRRb60BSWzFlEIAkkiQAQDC4N2vsNcS/eeq9h1rT7GoqpOxv2je2xty/LKcMt/6i33983fkAf+HvLLI2WqMqCX2svWPcCerOr/wfPbNPpew3pv4eeT/WT1tsycFiKfcH69j9/OY4HPWjSZnrrOTHH+6plBExVoLk2Vj0O6my1L97lBU0TPr7j7Wm2RXnSQW7mn9edYU1Utbceiupvnx2S0mSOxHtP/7wqcIItAOSJABAx6qprN+scZCfmzU6HPW/KLf01/m2VFVen5S5f3nuP6H1U7JCnctlJUOS1V6HQ0odUTd6VlqftLTEPpXSXXAheaD1dXPfvyU7v7Ku7zHA2ivIH31HW9PSDhbWJy3+xtp/vJXYJKUFPnq2s1HSHxFjxSI1n0y7E57ElJbXGfkzklSUY01pdDilARP8ix2AVyRJAICOtftra8pcXHLdWiM/9Tva+iW2NL9hUYH2lLWpblQlxRpVkaTo+NZPyQp1e+tGVSJj60tNO8Pqf+He4Ud7G0yltI0AuZPMXRutKXHNqa2uT1D8GUVyC4uQ0sf5H6t9KqU9qXDH6s/as5rK+ul99qTfHXfuFt+jZ/4UbXBzX1NWYK138sb9fkw96tD2egJAkgQA6ED2tSqBLiqPiLYSJaljprp5G1Vxa82UrM7APVUrfVzDqVr9x1ujE4V+jJ65p1L2HtpwQ9U+Q60iDtUHpexvm7/Hnu+s62ISpT5HBtaGARMlOaT9O6wqfc3GaptKad/DJ/Wo+tGznBZGz9wFKhon/d16S8mDZBUc8TF6FkiSFBlbX9nR29egskzaU9evA/0coQXgE0kSAKDj7Ntm/SU8PKp+MX8gPGtbttZvwNle8rbYRlUaLYBvzZSsUFecJxXsrBtVaVRMI8o+etZMgmqfStl4BMjhrC/S0dyUSXsiPWCi5AzwV5XYJCmlLrFqbqTP21RKN/voWXPtNab+Nbwl/YNsBUcaj57V1tRXqvMnSbJf523Knafsd5r/9wPgE0kSAKDjuH+hTB9rJUqBiu8p9Rpcdy8/17a0VoO1Kl4WwAcyJasz8IyqHCXFJDR93N3ePd9JFT5Gz1qaSpk+1poSV7LXd0GDA1lW8uAMr586Fyh3rLu/9j01zdtUSrv+461kqTDb9zogT4EKH0l/72ZGz4pzreISkXENR7Ga405+Gm8qS9lvoM2RJAEAOkbpfmnfT9Zx45GKQLhHKLLasRx4ca5tVMXHAvhApmSFuuZGVdyS0qSkftYv9lleRs8aTKWc7P0X9YgYqW9dMuFrhMY95a/vaCkyxv822PXob013c9VYeyA11txUSreo+PoS2r5GpDzTE8d6T/odTt8FRzxT7dL8T2rsI0n2e+X+aJWlj4qzCm0AOGQkSQCAjuHei6bxWpVA9RoixfawpnZlf902sTVmH1WJ9jKqIvk/Jasz8JT9TpG69/N9nXv6mLfRM3+nUtoLGpQXNnzsYJFVJtx+XWvYy4Hv9FIOvLmplHaDmhk9K/Mz6W8weraz/nwg65HcEvpY77vqgw2nm7rff/0nUPYbaCMkSQCA9lddKWVtto4PdVG5vRz4jnYoB15VXj81qqVY/ZmSFepcrvqpi4N8jKq4pRwlRXWrGz37vuFjDaZSRvq+R7deUk8fBQ3cZb+TB1oJwaHoO8oauTpYZK1h8xZrS3sJJaZaSaNxSbvWN7qHjwIVjUVE14+e2TfTdU+Za24T2cbCwuv7xf1+K9xjlaN3OOv38AJwyEiSAADtb/dmqbbKWlPUc9Ch36/f0VJYpPXX/Pwdh34/u111oyruX5Cb48+UrFCXt0WqKLZGVVKbGVWRGo2e2dob6FRKd/KZZStoUFtt9b10aKNIbmERUv9xTWP1Zyqlt1h32UbPqu0FKvxI+hsUHCm0KtEdLLTOJaa1/Hw7z5S7ugp3nrLfIyj7DbQhkiQAQPtqqQJYa0RESentUA68wVoVP2NtbkpWZ+CZqtXCqIqbffTMPRoS6FTK3kOsctbVFfVrobK/tZX9HhZ4O7wZMNH6Gu7PrK8k589USruU4XWjZ2X1o2e7N1vr4fxN+rv1qitkUTd65h4Fiu9pjTQFwr4uqbLUKkMv+b8xMwC/kCQBANrXvp+k8rq1Kn1bUfbblwF1f53fm2GthWkLeT/WjarEtTyq4tbclKxQV5RrVZlzOP0bVZGs4gD2cuD2qZT+/qLucNaPOLkLGnjKfk+yHm8LMYlSn+F1r7MusKmUbo3XnhlTnxQGkvS7R5N2bZT2161Nak2pbvdzinOtNrlqrXOU/QbaVKdIkh5//HENHDhQ0dHROuaYY/Tll518gSwAHE48a1XGNb9WJVDxyVYRB8n3Zp2B8netSmPepmR1Bp6pWn6Oqrh5NtP9Xtq2un4qZXIAUyk9BQ32SRmfWIUNwiKk/mP9v4c/3Ilb9jfSts/9n0pp5xk922PFWtaKpL/3UGv0rKaiPslqTWIT291aa+Wqlbavsc61xfREAA2EfJL0+uuva/Hixbrzzju1YcMGHX300TrjjDO0d28Lu2gDAIKvNN+qeibVbyTaljzlwDdZ1e4ORVFO4KMqbt6mZIW6qnJpTwtlv31JTLX2FjIuK0ly3yOQqZQR0dbaMslKPCSr7HdEK8t++9I93Sp24KppmFQEEmtUnJQ2qmGsgSb99oIj7kQ6KcD1SO77uJMrV23dujjKfgNtLeTrRD788MO66qqrtGDBAknSk08+qQ8++EDPPfecfv3rXwc5ugDlZVjfpAHgcLGnbr1En2HWX8DbWq/B1hqYsgJp63+9bwrqr911U8ZSjwp8Abx7StbWVdYv4s6Q//FqbYTqqrUSntaMaAycZG38KtWNqowO/B4DJjYcBWyPERF3OfCv37M+D2Qqpd3ASfXvEal1SX+/o6UtK60iFc5wqVsrK/glpdkKZUyw3n8A2lRIfxevqqrS+vXrdeutt3rOOZ1OTZs2TWvWrPH6nMrKSlVW1v81saioSJJUWFgoSXK5XJ77NHfscDjkcDh8HtfW1srpdPo8dr+W/ThszT+k6rI27CEA6Bxqk4YprLhYxhjr+2FYmIwxMsbI6XT6PPbre3aPo+Tct0L67r9tE2yPo1R74IDv7+V1sTc5ThoiU/GRHOU7pdydzb1CSHENHC5nSYn3NjX3dYpJlWoi5Kgqkek/Sqa0XE5nhd8/Z63jKJmYFDn2Z0o9BspVGylHUVHb/My1tyO+v0y1U47qcillnExpWSveezFyRvaUCnfL9BwsR02YXHW/WwT0e0TSUDmyNsgk9ZVKSlrXJkc3hZVXyDiccnUb5Pm/1Sb/nzr6dyNf/5/a8nsEbaJNtjYVFxdLkkwL20eEdJKUn5+v2tpa9enT8C8tffr00Y8//uj1OUuWLNH//d//NTk/YMCAdokRAOCP+4IdQAA6U6xtIZTae3WwAwjAFW1wj4VtcI972uAewOGnpKREiYmJPh8P6SSpNW699VYtXrzY87nL5VJBQYGSk5PlaIuys4eguLhY6enpysrKUkJCAAtkg4BY2wextg9ibR/E2j6ItX0Qa/sg1vbRWWLtLHEGwhijkpISpaU1vyYwpJOknj17KiwsTHl5eQ3O5+XlKSUlxetzoqKiFBUV1eBcUlJSe4XYKgkJCZ3mjUas7YNY2wextg9ibR/E2j6ItX0Qa/voLLF2ljj91dwIkltIV7eLjIzUhAkTtGLFCs85l8ulFStW6LjjjgtiZAAAAAC6qpAeSZKkxYsXa/78+Zo4caImT56sRx55RGVlZZ5qdwAAAADQlkI+Sbrwwgu1b98+3XHHHcrNzdXYsWO1bNmyJsUcOoOoqCjdeeedTaYDhiJibR/E2j6ItX0Qa/sg1vZBrO2DWNtHZ4m1s8TZHhympfp3AAAAAHAYCek1SQAAAADQ0UiSAAAAAMCGJAkAAAAAbEiSAAAAAMCGJKkDVFZW6pZbblFaWppiYmJ0zDHH6KOPPgp2WE2sWrVKDofD68cXX3wRtLhKS0t15513avr06erRo4ccDoeef/55r9f+8MMPmj59uuLj49WjRw9deuml2rdvX8jFevnll3vt5+HDh3dYrOvWrdP111+vkSNHKi4uTv3799ecOXO0devWJtcGu1/9jTUU+vW7777T7NmzdcQRRyg2NlY9e/bUSSedpPfee6/JtcHuV39jDYV+bezee++Vw+HQqFGjmjz2+eefa8qUKYqNjVVKSooWLVqk0tLSIERp8RXr1KlTvfbr9OnTOySuQL7nB7tP/Y012H1qt2HDBs2aNUs9evRQbGysRo0apUcffbTBNcHuV39jDYV+9fV9yP2RnZ3tuTbY/epvrKHQr5KUkZGhiy66SP369VNsbKyGDx+uu+66S+Xl5Q2uC3a/drSQLwHeFVx++eV68803deONN2ro0KF6/vnndeaZZ2rlypWaMmVKsMNrYtGiRZo0aVKDc0OGDAlSNFJ+fr7uuusu9e/fX0cffbRWrVrl9brdu3frpJNOUmJiou677z6VlpbqoYce0jfffKMvv/xSkZGRIROrZJXVfPbZZxuc82cH6LbywAMPaPXq1Zo9e7bGjBmj3NxcPfbYYxo/fry++OILzy90odCv/sYqBb9fd+7cqZKSEs2fP19paWkqLy/XW2+9pVmzZumpp57S1VdfLSk0+tXfWKXg96vd7t27dd999ykuLq7JY5s2bdJpp52mo446Sg8//LB2796thx56SBkZGfrwww9DKlZJ6tevn5YsWdLgXFpaWkeE5tHS9/xQ6lN/fj6FQp/++9//1syZMzVu3Djdfvvtio+P17Zt27R7927PNaHSr/7EKgW/X6+55hpNmzatwTljjK699loNHDhQffv2lRQa/epvrFLw+zUrK0uTJ09WYmKirr/+evXo0UNr1qzRnXfeqfXr1+vdd9+VFBr92uEM2tXatWuNJPPggw96zh08eNAMHjzYHHfccUGMrKmVK1caSeYf//hHsENpoKKiwuTk5BhjjFm3bp2RZP72t781ue66664zMTExZufOnZ5zH330kZFknnrqqZCKdf78+SYuLq5DYvJl9erVprKyssG5rVu3mqioKDNv3jzPuVDoV39jDYV+9aampsYcffTR5sgjj/ScC4V+9cZbrKHWrxdeeKE59dRTzcknn2xGjhzZ4LEZM2aY1NRUU1RU5Dn3zDPPGElm+fLlHR1qs7F6O9eR/P2eHwp96m+swe5TY4wpKioyffr0Meedd56pra31eV0o9Ku/sYZCv3rz6aefGknm3nvv9ZwLhX71xlusodCv9957r5Fkvv322wbnL7vsMiPJFBQUGGNCt1/bE9Pt2tmbb76psLCwBn+RjY6O1hVXXKE1a9YoKysriNH5VlJSopqammCHIcn6C3ZKSkqL17311ls6++yz1b9/f8+5adOmadiwYXrjjTfaM0QPf2N1q62tVXFxcTtG5Nvxxx/fZLRi6NChGjlypH744QfPuVDoV39jdQtmv3oTFham9PR0FRYWes6FQr964y1Wt1Do108++URvvvmmHnnkkSaPFRcX66OPPtIll1yihIQEz/nLLrtM8fHxHd6vzcVqV1NTE/QpK76+54dan0r+/XwKZp++8sorysvL07333iun06mysjK5XK4G14RKv/oTq10ovFftXnnlFTkcDl188cWSQqdfvWkcq10w+9X9Pb1Pnz4NzqempsrpdCoyMjKk+7U9kSS1s40bN2rYsGEN3lSSNHnyZEnW8GWoWbBggRISEhQdHa1TTjlFX331VbBDalF2drb27t2riRMnNnls8uTJ2rhxYxCial55ebkSEhKUmJioHj16aOHChUH/4WOMUV5ennr27CkptPu1caxuodKvZWVlys/P17Zt2/THP/5RH374oU477TRJodevzcXqFgr9WltbqxtuuEFXXnmlRo8e3eTxb775RjU1NU36NTIyUmPHju3Qfm0pVretW7cqLi5O3bp1U0pKim6//XZVV1d3WJxS89/zQ6lPW4rVLdh9+vHHHyshIUHZ2dk68sgjFR8fr4SEBF133XWqqKiQFDr96k+sbsHu18aqq6v1xhtv6Pjjj9fAgQMlhU6/NuYtVrdg9+vUqVMlSVdccYU2bdqkrKwsvf7663riiSe0aNEixcXFhWy/tjfWJLWznJwcpaamNjnvPrdnz56ODsmnyMhIXXDBBTrzzDPVs2dPff/993rooYd04okn6vPPP9e4ceOCHaJPOTk5kuSzrwsKClRZWamoqKiODs2r1NRU/epXv9L48ePlcrm0bNky/eUvf9HmzZu1atUqhYcH57/myy+/rOzsbN11112SQrtfG8fqjilU+vXmm2/WU089JUlyOp06//zz9dhjj0kKvX5tLlZ3TKHQr08++aR27typjz/+2OvjLfXrp59+2q7x2bUUqyQNHjxYp5xyikaPHq2ysjK9+eabuueee7R161a9/vrr7R6jP9/zQ6VP/f35FOw+laxF8DU1NTrnnHN0xRVXaMmSJVq1apX+/Oc/q7CwUK+++mrI9Ks/sUqh0a+NLV++XPv379e8efM850KlXxvzFqsUGv06ffp03X333brvvvv0z3/+03P+tttu0z333CMpdPu13QV7vl9Xd8QRR5gZM2Y0Ob9t2zYjyfzxj3/s+KACkJGRYWJiYswZZ5wR7FCMMb7X+XzyySdGknn99debPOf22283ksyBAwc6Jsg6za1J8sY9L/jVV19t38B8+OGHH0xCQoI57rjjTE1NfL529wAAYgFJREFUjTEmNPvVGO+x+hKsfv3hhx/MRx99ZF544QVz1llnmfPOO8/k5uYaY0KvX5uL1ZeO7tf8/HzTo0cP89BDD3nONZ7P/+KLLxpJZu3atU2ef+mll5rExMSOCNWvWH256qqrjCSzZs2a9gzRp8bf80OlT73x9+dTR/fpEUccYSSZa6+9tsH5a665xkgyW7duDZl+9SdWX4L9Xp07d66JiIgw+fn5nnOh0q+NeYvVl2D069///ndzxhlnmKefftq89dZb5v/9v/9nHA6H+fOf/2yMCd1+bW9Mt2tnMTExqqysbHLePYwdExPT0SEFZMiQITrnnHO0cuVK1dbWBjscn9z92Jn7+qabbpLT6Wz2L8/tJTc3V2eddZYSExM96+ik0OxXX7H6Eqx+HT58uKZNm6bLLrtM77//vkpLSzVz5kwZY0KuX5uL1ZeO7tff/va36tGjh2644Qaf17TUrx3Vp/7E6svNN98sSUH5PiA1/Z4fKn3qjb8/nzq6T919Mnfu3Abn3WtR1qxZEzL96k+svgTzvVpaWqp3331XZ5xxhpKTkz3nQ6Vf7XzF6ktH9+trr72mq6++Ws8++6yuuuoqnX/++frrX/+q+fPn65ZbbtH+/ftDsl87AklSO0tNTfUMU9q5z3V0WdLWSE9PV1VVlcrKyoIdik/uIWBffd2jR4+QmWrnS0xMjJKTk1VQUNChr1tUVKQZM2aosLBQy5Yta/CeDLV+bS5WX4LVr439/Oc/17p167R169aQ69fG7LH60pH9mpGRoaefflqLFi3Snj17lJmZqczMTFVUVKi6ulqZmZkqKChosV874vutv7H6kp6eLklBfb/av+eHQp82x5+fTx3dp+4+abwQvnfv3pKkAwcOhEy/+hOrL8F8r77zzjsqLy9vMn0tVPrVzlesvnR0v/7lL3/RuHHj1K9fvwbnZ82apfLycm3cuDEk+7UjkCS1s7Fjx2rr1q1NKkKtXbvW83io2759u6KjoxUfHx/sUHzq27evevXq5XUR75dfftkp+rmkpET5+fnq1atXh71mRUWFZs6cqa1bt+r999/XiBEjGjweSv3aUqy+BKNfvTl48KAkK9ELpX71xh6rLx3Zr9nZ2XK5XFq0aJEGDRrk+Vi7dq22bt2qQYMG6a677tKoUaMUHh7epF+rqqq0adOmDulXf2P1Zfv27ZIU1Per/Xt+KPRpc/z5+dTRfTphwgRJarC5qVS/BrlXr14h06/+xOpLMN+rL7/8suLj4zVr1qwG50OlX+18xepLR/drXl6e15FYd/GImpqakOzXDhHs+X5d3RdffNFkn6SKigozZMgQc8wxxwQxsqb27t3b5NymTZtMRESEmTVrVhAiaqq5dT7XXnutiYmJMbt27fKc+/jjj40k88QTT3RglBZfsR48eNAUFxc3uf6Xv/ylkWTefvvtDomvpqbGzJo1y4SHh5sPPvjA53Wh0K/+xBoq/ZqXl9fkXFVVlRk/fryJiYkxJSUlxpjQ6Fd/Yg2Fft23b59ZunRpk4+RI0ea/v37m6VLl5qvv/7aGGPM9OnTTWpqaoOYn332WSPJfPjhhyETa1FRkamoqGjwXJfLZS688EIjyaxfv77dY/X3e36w+9TfWEOhT40xZsOGDUaSufjiixucnzt3rgkPDzfZ2dnGmNDoV39iDZV+ddu7d68JDw83l156qdfHQ6Ff3ZqLNVT69eyzzzaRkZFmy5YtDc6fe+65xul0htT7taM5jGlm0jnaxJw5c7R06VLddNNNGjJkiF544QV9+eWXWrFihU466aRgh+dx6qmnKiYmRscff7x69+6t77//Xk8//bQiIiK0Zs0aHXXUUUGL7bHHHlNhYaH27NmjJ554Queff76nmtENN9ygxMREZWVlady4cUpKStL//u//qrS0VA8++KD69eundevWddj0pZZiPXDggMaNG6e5c+dq+PDhkqzKN//61780ffp0ffDBB3I623+Q98Ybb9Sf/vQnzZw5U3PmzGny+CWXXCJJIdGv/sSamZkZEv163nnnqbi4WCeddJL69u2r3Nxcvfzyy/rxxx/1hz/8QYsXL5YUGv3qT6yh0q/eTJ06Vfn5+fr222895zZs2KDjjz9eI0aM0NVXX63du3frD3/4g0466SQtX748KHF6i3XVqlWaO3eu5s6dqyFDhujgwYNaunSpVq9erauvvtpTbbA9+fs9PxT61J9YQ6FP3a644go999xzmjNnjk4++WStWrVK//jHP3TrrbfqvvvukxQa/epPrKHUr5L1M/aGG27QsmXLdMYZZzR5PFT6taVYQ6VfP/nkE5166qlKTk7W9ddfr+TkZL3//vv68MMPdeWVV+qZZ56RFFr92mGCnaUdDg4ePGh+8YtfmJSUFBMVFWUmTZpkli1bFuywmvjTn/5kJk+ebHr06GHCw8NNamqqueSSS0xGRkawQzMDBgwwkrx+7Nixw3Pdt99+a04//XQTGxtrkpKSzLx581qs0tXRsR44cMBccsklZsiQISY2NtZERUWZkSNHmvvuu89UVVV1WJwnn3yyzzgbf2sIdr/6E2uo9Ourr75qpk2bZvr06WPCw8NN9+7dzbRp08y7777b5Npg96s/sYZKv3rjq2Lcp59+ao4//ngTHR1tevXqZRYuXOh1NKwjNY51+/btZvbs2WbgwIEmOjraxMbGmgkTJpgnn3zSuFyuDokpkO/5we5Tf2INhT51q6qqMr/73e/MgAEDTEREhBkyZIjXarbB7ld/Yg2lfjXGmGOPPdb07t272cqmodCvxjQfayj169q1a82MGTNMSkqKiYiIMMOGDTP33nuvqa6ubnBdqPRrR2EkCQAAAABsKNwAAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAAAAADYkSQAAAABgQ5IEAOi0li1bpilTpigpKUnJyck6++yztW3bNs/jn3/+ucaOHavo6GhNnDhR77zzjhwOhzZt2uS55ttvv9WMGTMUHx+vPn366NJLL1V+fn4QWgMACBUkSQCATqusrEyLFy/WV199pRUrVsjpdOq8886Ty+VScXGxZs6cqdGjR2vDhg26++67dcsttzR4fmFhoU499VSNGzdOX331lZYtW6a8vDzNmTMnSC0CAIQChzHGBDsIAADaQn5+vnr16qVvvvlGn332mX77299q9+7dio6OliQ9++yzuuqqq7Rx40aNHTtW99xzjz799FMtX77cc4/du3crPT1dW7Zs0bBhw4LVFABAEDGSBADotDIyMjR37lwdccQRSkhI0MCBAyVJu3bt0pYtWzRmzBhPgiRJkydPbvD8zZs3a+XKlYqPj/d8DB8+XJIaTNsDABxewoMdAAAArTVz5kwNGDBAzzzzjNLS0uRyuTRq1ChVVVX59fzS0lLNnDlTDzzwQJPHUlNT2zpcAEAnQZIEAOiU9u/fry1btuiZZ57RiSeeKEn67LPPPI8feeSReumll1RZWamoqChJ0rp16xrcY/z48Xrrrbc0cOBAhYfzIxEAYGG6HQCgU+revbuSk5P19NNP66efftJ//vMfLV682PP4xRdfLJfLpauvvlo//PCDli9froceekiS5HA4JEkLFy5UQUGB5s6dq3Xr1mnbtm1avny5FixYoNra2qC0CwAQfCRJAIBOyel06rXXXtP69es1atQo3XTTTXrwwQc9jyckJOi9997Tpk2bNHbsWN1222264447JMmzTiktLU2rV69WbW2tTj/9dI0ePVo33nijkpKS5HTyIxIADldUtwMAHDZefvllLViwQEVFRYqJiQl2OACAEMUEbABAl/Xiiy/qiCOOUN++fbV582bdcsstmjNnDgkSAKBZJEkAgC4rNzdXd9xxh3Jzc5WamqrZs2fr3nvvDXZYAIAQx3Q7AAAAALBhVSoAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAAAIANSRIAAAAA2JAkAQAOWXl5uR599FGdfvrpSk1NVVRUlLp166YRI0bo8ssv1z//+U/V1tYGO8xWy8zMlMPh0NSpUw/5XpdffrkcDodWrVp1yPcCALSP8GAHAADo3FavXq3Zs2crJydH0dHRmjRpktLS0lRZWalt27bphRde0AsvvKARI0bou+++69DYBg4cqJ07d8oY06GvCwDo3EiSAACttmHDBp122mmqrKzUL3/5S/32t79VQkJCg2uysrL08MMP68knnwxSlIeub9+++uGHHxQbGxvsUAAAHYAkCQDQKi6XS5dccokqKyt1991367e//a3X69LT0/XHP/5Rl1xySQdH2HYiIiI0fPjwYIcBAOggrEkCALTKv/71L/3www/q37+/br311havnzBhQpNz33//vebNm6fU1FRFRkaqb9++uuyyy7Rly5YG17399ttyOBy68MILfd7/5ptvlsPh0KOPPqpVq1bJ4XBo586dkiSHw+H5GDhwYGANVctrkv7+979rypQpSkhIUGxsrMaMGaMlS5aooqKi2ft++OGHmjJliuLj49W9e3edf/75+vHHHwOODwDQtkiSAACt8uGHH0qSZs+erbCwsICfv2LFCk2cOFGvvPKKUlNTdcEFF6h37976+9//rokTJ+rTTz/1XHvWWWcpMTFR7733nkpLS5vcy+Vy6bXXXlNYWJguuugipaSkaP78+YqLi5MkzZ8/3/Px85//vJUt9u6aa67RZZddpvXr1+vEE0/UWWedpZycHP3mN7/RqaeeqvLycq/P+8c//qGzzjpLVVVVmjlzptLS0rR06VIde+yx2rx5c5vGCAAIkAEAoBVOOOEEI8m89NJLAT+3tLTU9OnTx0gyjz32WIPHHn74YSPJ9OvXzxw8eNBz/oorrjCSzIsvvtjkfh9//LGRZKZPn97g/IABA0xb/KjbsWOHkWROPvnkBufffPNNI8mkpaWZrVu3es4XFhaaKVOmGEnm5ptvbvCc+fPnG0lGknn66ac9510ul7nllluMJDN27NhDjhkA0HqMJAEAWmX//v2SpJ49e3p9/IorrtDll1/e4OOzzz6TJL3xxhvKy8vTcccdp4ULFzZ43k033aQJEyZo9+7deuuttzzn3WuaXn755Sav5T43b968Q29YAB599FFJ0p133qmhQ4d6zicmJurxxx+Xw+HQU0895XXa3fHHH6+rrrrK87nD4dDdd9+tfv36adOmTZ6+AgB0PJIkAEC7cJf+tn/89NNPkuSZSucrqXEnRPYpdyeddJL69eunFStWaO/evZ7zFRUVeuuttxQXF6fzzjuvvZrTRHV1tb744gtJ3tsxZswYjRkzRqWlpdq0aVOTxy+66KIm5yIiIjzTAe1tBwB0LJIkAECrJCcnS5Ly8/O9Pl5TUyNjjIwxuuaaaxo8tmfPHknyWUTBfT47O9tzzul0au7cuaqpqdHrr7/uOf/++++ruLhY55xzjmcNUkfYv3+/qqqq1LNnT5+v660dbgMGDGj2Oe4+AgB0PJIkAECrHH300ZKkjRs3tvm9HQ6H1/PuEaZXXnnFcy5YU+384asdAIDQRpIEAGiVGTNmSLKqtNXW1gb03LS0NEnylOhuLDMzU5K1iavdmDFjNGrUKH3xxRfavn27Dhw4oH/961/q1auXTj/99ABbcGiSk5MVGRmp/Px8lZWVeb3GVzsk3213n3f3EQCg45EkAQBa5cwzz9RRRx2lXbt2acmSJQE998QTT5Qkvfrqq14ff+mllxpcZ+ceMXrllVf05ptvqqqqShdeeKHCw5vujx4ZGSnJmvrX1iIiInTsscdKkl577bUmj3/77bfavHmz4uPjNXbs2CaPv/HGG03O1dTUeIpVTJkypW0DBgD4jSQJANAqTqdTf//73xUVFaXbb79dv/rVr1RUVNTkuv379zfZHHbOnDnq06ePPvvsMz399NMNHnv00Uf11VdfqW/fvrrgggua3O/iiy+Ww+HQK6+80uJUO/doTOPXbys33HCDJOl3v/udtm/f7jlfUlKi66+/3rMeKzo6uslzP/vsMz333HMNzt15553atWuXxowZ4zVBBAB0DIcxxgQ7CABA5/XZZ59p9uzZys3NVVRUlI455hilpaWpoqJCu3fv1ubNm1VdXa3hw4frH//4h0aNGiXJ2kx25syZOnjwoCZMmKBhw4bpxx9/1MaNGxUfH69//etfPhOFk08+WZ988okkafDgwZ6qeY09/PDDuvnmm9WnTx+dcsopiouLU8+ePXX//fcH1MbMzEwNGjRIJ598slatWtXgsWuuuUZPP/20YmJidOqppyo2NlarVq3Svn37dOyxx2rFihWKjY31XH/55ZfrhRde0HXXXacnn3xSkyZN0uDBg/X111/ru+++U0JCglatWqVx4/5/e3ceH1V973/8PZOEEAJJSNgChEVQUXZFvC515VbR4taKpS6Ua7X1qlykC+3vVttbRa7VWmzrblv1Vq2tXGyrF3DFBQFZFatCCAmEkARClkkmZJLMnN8fJ2dyksxMZsJkZpK8no9HHjk5mUk+n2+GcD75fr+fMzOiGAEA0cNMEgDguJx77rkqKCjQI488onPPPVe7d+/WqlWr9NZbb6m2tlbz58/X6tWrtWvXLn+BJEkXX3yxtmzZogULFujgwYN65ZVXVFZWphtuuEFbt24NOZNinzkK1bBh8eLF+ulPf6qBAwdq1apV+v3vfx9waVy4AjViePLJJ/X8889r5syZeu+99/SPf/xDw4YN0/Lly/XOO++0KZDs5s+fr7///e9KSkrS3/72Nx08eFBXXnmlNm7cSIEEAHHGTBIAAJ344osvdOqpp+qyyy7T66+/Hu9wAADdjJkkAAA6sXXrVknm0j4AQO/XsRUQAACQJL3xxht67LHHtG7dOklm0wgAQO9HkQQA6HN+8IMfqKKiotPHvfrqq3K73Zo4caL+3//7f/6W3wCA3i2ue5Lef/99Pfjgg9q2bZtKS0u1evVqXXXVVQEf+73vfU9PPvmkfv3rX2vJkiUxjRMA0LuMGzcu6M1c22PrLgD0PXHdk+R2uzV9+nQ9+uijIR+3evVqbdq0ibuPAwCioqioSIZhhPUGAOh74rrcbu7cuZo7d27Ix5SUlOjOO+/UunXrdPnll8coMgAAAAB9VULvSfL5fLrxxhv1wx/+UJMnTw7rOR6PRx6Pp83XqKysVE5OTsD7WwAAAADoGwzDUG1trUaOHCmnM/iiuoQukh544AElJydr8eLFYT9nxYoV+q//+q9ujAoAAABAT1ZcXKzRo0cH/XzCFknbtm3TI488ou3bt0c0A/STn/xES5cu9X9cU1OjMWPGaP/+/crKypLP55MkOZ3OkMcOh0MOhyPosdfrldPpDHosmbNY9uOkpCQZhhH02DAMOZ3OoMfhxk5O5ERO5ERO5ERO5ERO5EROHXNyuVwaM2aMBg0apFAStkj64IMPdPjwYY0ZM8Z/zuv16vvf/75WrlypoqKigM9LTU1Vampqh/NZWVnKyMjornABAAAAJDhr8qWzSZiELZJuvPFGzZkzp825Sy65RDfeeKMWLVoUp6gAAAAA9HZxLZLq6uq0d+9e/8eFhYXauXOnsrOzNWbMGOXk5LR5fEpKikaMGKGTTz451qECAAAA6CPiWiRt3bpVF154of9jay/RwoUL9eyzz8YpKgAAAAB9WVyLpAsuuCCiG/UF24cEAAAAANESvDk4AAAAAPRBFEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2FEkAAAAAYEORBAAAAAA2cS2S3n//fc2bN08jR46Uw+HQq6++6v9cU1OTli1bpqlTpyo9PV0jR47UTTfdpEOHDsUvYAAAAAC9XlyLJLfbrenTp+vRRx/t8Ln6+npt375dd999t7Zv367//d//1e7du3XFFVfEIVIAAAAAfYXDMAwj3kFIksPh0OrVq3XVVVcFfcyWLVs0e/Zs7d+/X2PGjAnr67pcLmVmZqqmpkYZGRlRihYAAABATxNubdCj9iTV1NTI4XAoKysr6GM8Ho9cLlebN0ny+Xz+9+EcW7VjsGOv1xvy2DCMDseSQh5b3z/YcbixkxM5kRM5kRM5kRM5kRM5kVPgnMLRY4qkhoYGLVu2TAsWLAhZ9a1YsUKZmZn+t7y8PEnS4cOHJUkVFRWqqKiQJJWXl6uyslKSVFpaqurqaklSSUmJampqJEnFxcWqra2VJBUVFcntdkuSCgsL1dDQIEkqKChQY2OjJCk/P1/Nzc3y+XzKz8+Xz+dTc3Oz8vPzJUmNjY0qKCjw51RYWCjJXHpYVFQkSaqtrVVxcbEkszAsKSmRJFVXV6u0tFSSVFlZqfLycnIiJ3IiJ3IiJ3IiJ3IiJ3KKIKdw9Ijldk1NTfr617+ugwcPav369SGLJI/HI4/H4//Y5XIpLy9PVVVVysrK8lelTqcz5LHD4ZDD4Qh67PV65XQ6gx5LZoVrP05KSvJX1YGODcOQ0+kMehxu7ORETuRETuRETuRETuRETuTUMSeXy6WsrKxOl9slfJHU1NSk+fPna9++fXrnnXeUk5MT0ddlTxIAAAAAKfzaIDmGMUXMKpDy8/P17rvvRlwgAQAAAECk4lok1dXVae/evf6PCwsLtXPnTmVnZys3N1ff+MY3tH37dr322mvyer0qKyuTJGVnZ6tfv37xChsAAABALxbX5Xbr16/XhRde2OH8woUL9fOf/1zjx48P+Lx3331XF1xwQVjfg+V2AAAAAKQestzuggsuCNmGL0G2SwEAAADoQ3pMC3AAAAAAiAWKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAAJu4Fknvv/++5s2bp5EjR8rhcOjVV19t83nDMHTPPfcoNzdXaWlpmjNnjvLz8+MTLAAAAIA+Ia5Fktvt1vTp0/Xoo48G/Pwvf/lL/eY3v9ETTzyhzZs3Kz09XZdccokaGhpiHCkAAACAviI5nt987ty5mjt3bsDPGYahlStX6qc//amuvPJKSdLzzz+v4cOH69VXX9U3v/nNWIYKAAAAoI9I2D1JhYWFKisr05w5c/znMjMzdeaZZ2rjxo1Bn+fxeORyudq8SZLP5/O/D+fYMIyQx16vN+SxYRgdjiWFPLa+f7DjcGMnJ3IiJ3IiJ3IiJ3IiJ3Iip8A5hSNhi6SysjJJ0vDhw9ucHz58uP9zgaxYsUKZmZn+t7y8PEnS4cOHJUkVFRWqqKiQJJWXl6uyslKSVFpaqurqaklSSUmJampqJEnFxcWqra2VJBUVFcntdksyizhr2V9BQYEaGxslSfn5+WpubpbP51N+fr58Pp+am5v9e6kaGxtVUFAgSWpoaFBhYaEkc+lhUVGRJKm2tlbFxcWSpJqaGpWUlEiSqqurVVpaKkmqrKxUeXk5OZETOZETOZETOZETOZETOUWQUzgcRrjlVDdzOBxavXq1rrrqKknSRx99pHPOOUeHDh1Sbm6u/3Hz58+Xw+HQyy+/HPDreDweeTwe/8cul0t5eXmqqqpSVlaWvyp1Op0hjx0OhxwOR9Bjr9crp9MZ9FgyK1z7cVJSkr+qDnRsGIacTmfQ43BjJydyIidyIidyIidyIidyIqeOOblcLmVlZammpkYZGRkKJmGLpH379mnChAnasWOHZsyY4X/c+eefrxkzZuiRRx4J6+u6XC5lZmZ2OhAAAAAAerdwa4OEXW43fvx4jRgxQm+//bb/nMvl0ubNm3XWWWfFMTIAAAAAvVlcu9vV1dVp7969/o8LCwu1c+dOZWdna8yYMVqyZInuu+8+nXjiiRo/frzuvvtujRw50j/bBAAAAADRFtciaevWrbrwwgv9Hy9dulSStHDhQj377LP60Y9+JLfbrVtvvVXV1dU699xztXbtWvXv3z9eIQMAAADo5RJmT1J3YU8SAAAAAKkX7EkCAAAAgHigSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALChSAIAAAAAG4okAAAAALBJ6CLJ6/Xq7rvv1vjx45WWlqYJEybo3nvvlWEY8Q4NAAAAQC+VHO8AQnnggQf0+OOP67nnntPkyZO1detWLVq0SJmZmVq8eHG8wwMAAADQCyV0kfTRRx/pyiuv1OWXXy5JGjdunF566SV9/PHHcY4MAAAAQG+V0Mvtzj77bL399tvas2ePJOmTTz7Rhx9+qLlz5wZ9jsfjkcvlavMmST6fz/8+nGNrSV+wY6/XG/LYMIwOx5JCHlvfP9hxuLGTEzmREzmREzmREzmREzmRU+CcwpHQRdKPf/xjffOb39SkSZOUkpKimTNnasmSJbr++uuDPmfFihXKzMz0v+Xl5UmSDh8+LEmqqKhQRUWFJKm8vFyVlZWSpNLSUlVXV0uSSkpKVFNTI0kqLi5WbW2tJKmoqEhut1uSVFhYqIaGBklSQUGBGhsbJUn5+flqbm6Wz+dTfn6+fD6fmpublZ+fL0lqbGxUQUGBJKmhoUGFhYWSJLfbraKiIklSbW2tiouLJUk1NTUqKSmRJFVXV6u0tFSSVFlZqfLycnIiJ3IiJ3IiJ3IiJ3IiJ3KKIKdwOIxwy6k4+POf/6wf/vCHevDBBzV58mTt3LlTS5Ys0cMPP6yFCxcGfI7H45HH4/F/7HK5lJeXp6qqKmVlZfmrUqfTGfLY4XDI4XAEPfZ6vXI6nUGPJbPCtR8nJSX5q+pAx4ZhyOl0Bj0ON3ZyIidyIidyIidyIidyIidy6piTy+VSVlaWampqlJGRoWASukjKy8vTj3/8Y91+++3+c/fdd5/+9Kc/6csvvwzra7hcLmVmZnY6EAAAAAB6t3Brg4RebldfX++v/ixJSUn+6hIAAAAAoq1LRdKRI0eCfm7Xrl1dDqa9efPmafny5Xr99ddVVFSk1atX6+GHH9bVV18dte8BAAAAAHZdKpKmTp2q119/vcP5hx56SLNnzz7uoCy//e1v9Y1vfEP//u//rlNOOUU/+MEP9N3vflf33ntv1L4HAAAAANh16T5JS5cu1de//nUtWrRIDz/8sCorK3XTTTdp165devHFF6MW3KBBg7Ry5UqtXLkyal8TAAAAAELpcuOGHTt26MYbb5TH41FlZaXOPPNM/eEPf9CIESOiHeNxoXEDAAAAACkGjRsmTpyoKVOmqKioSC6XS9ddd13CFUgAAAAAEKkuFUkbNmzQtGnTlJ+fr08//VSPP/647rzzTl133XWqqqqKdowAAAAAEDNdKpIuuugiXXfdddq0aZNOOeUUfec739GOHTt04MABTZ06NdoxAgAAAEDMdKlxwxtvvKHzzz+/zbkJEyZow4YNWr58eVQCAwAAAIB46HLjBknau3evCgoKdN555yktLU2GYcjhcEQzvuNG4wYAAAAAUjc3bjh69KguvvhinXTSSbrssstUWloqSbr55pv1gx/8oGsRAwAAAEAC6FKRdNdddyklJUUHDhzQgAED/Oevu+46rVmzJmrBAQAAAECsdXlP0rp16zR69Og250888UTt378/KoEBAAAAQDx0aSbJ7Xa3mUGyVFZWKjU19biDAgAAAIB46VKR9JWvfEXPP/+8/2OHwyGfz6df/vKXuvDCC6MWHAAAAADEWpeW2/3yl7/UxRdfrK1bt6qxsVE/+tGP9M9//lOVlZXasGFDtGMEAAAAgJjp0kzSlClTtGfPHp177rm68sor5Xa7dc0112jHjh2aMGFCtGMEAAAAgJg5rvsk9QTcJwkAAACAFH5tEPZyu08//TTsbz5t2rSwHwsAAAAAiSTsImnGjBlyOBwyDEMOh8N/3pqIsp/zer1RDBEAAAAAYifsPUmFhYXat2+fCgsLtWrVKo0fP16PPfaYdu7cqZ07d+qxxx7ThAkTtGrVqu6MFwAAAAC6VdgzSWPHjvUfX3vttfrNb36jyy67zH9u2rRpysvL0913362rrroqqkECAAAAQKx0qbvdrl27NH78+A7nx48fr88///y4gwIAAACAeOlSkXTKKadoxYoVamxs9J9rbGzUihUrdMopp0QtOAAAAACItS7dTPaJJ57QvHnzNHr0aH8nu08//VQOh0P/+Mc/ohogAAAAAMRSl++T5Ha79cILL+jLL7+UZM4ufetb31J6enpUAzxe3CcJAAAAgNQN90lqLz09XbfeemtXnw4AAAAACanLRVJ+fr7effddHT58WD6fr83n7rnnnuMODAAAAADioUtF0tNPP63bbrtNQ4YM0YgRI9rcSNbhcFAkAQAAAOixulQk3XfffVq+fLmWLVsW7XgAAAAAIK661AK8qqpK1157bbRjAQAAAIC461KRdO211+qNN96IdiwAAAAAEHddWm43ceJE3X333dq0aZOmTp2qlJSUNp9fvHhxVIIDAAAAgFjr0n2Sxo8fH/wLOhzat2/fcQVlV1JSomXLlmnNmjWqr6/XxIkT9cc//lGzZs0K6/ncJwkAAACA1M33SSosLOxyYJGoqqrSOeecowsvvFBr1qzR0KFDlZ+fr8GDB8fk+wMAAADoe8IukpYuXap7771X6enpWrp0adDHORwO/epXv4pKcA888IDy8vL0xz/+0X8u1CwWAAAAAByvsIukHTt2qKmpyX8cjP2eScfr73//uy655BJde+21eu+99zRq1Cj9+7//u2655Zagz/F4PPJ4PP6PXS6XJPlveGu9dzqdIY8dDoccDkfQY6/XK6fTGfTY+l7246SkJBmGEfTYMAw5nc6gx+HGTk7kRE7kRE7kRE7kRE7kRE4dcwp3p1HY3e3effddZWVl+Y+Dvb3zzjvhfslO7du3T48//rhOPPFErVu3TrfddpsWL16s5557LuhzVqxYoczMTP9bXl6eJOnw4cOSpIqKClVUVEiSysvLVVlZKUkqLS1VdXW1JHMfVE1NjSSpuLhYtbW1kqSioiK53W5J5pLDhoYGSVJBQYEaGxslSfn5+WpubpbP51N+fr58Pp+am5uVn58vSWpsbFRBQYEkqaGhwb900e12q6ioSJJUW1ur4uJiSVJNTY1KSkokSdXV1SotLZUkVVZWqry8nJzIiZzIiZzIiZzIiZzIiZwiyCkcXWrcECv9+vXTrFmz9NFHH/nPLV68WFu2bNHGjRsDPifQTFJeXp6qqqqUlZVFFU5O5ERO5ERO5ERO5ERO5NRHc3K5XMrKyuq0cUNCF0ljx47Vv/7rv+qZZ57xn3v88cd13333+SvTztDdDgAAAIAUfm3QpZvJxso555yj3bt3tzm3Z88ejR07Nk4RAQAAAOjtErpIuuuuu7Rp0ybdf//92rt3r1588UU99dRTuv322+MdGgAAAIBeKqGLpDPOOEOrV6/WSy+9pClTpujee+/VypUrdf3118c7NAAAAAC9VELvSYoG9iQBAAAAkHrJniQAAAAAiDWKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAABuKJAAAAACwoUgCAAAAAJseVST993//txwOh5YsWRLvUAAAAAD0Uj2mSNqyZYuefPJJTZs2Ld6hAAAAAOjFekSRVFdXp+uvv15PP/20Bg8eHO9wAABAb1R7WGqojXcUABJAjyiSbr/9dl1++eWaM2dOp4/1eDxyuVxt3iTJ5/P534dzbBhGyGOv1xvy2DCMDseSQh5b3z/YcbixkxM5kRM5kRM5kVOEOTW4ZHzwtIzNL/SenHrjz4mcyCkKOYUj4YukP//5z9q+fbtWrFgR1uNXrFihzMxM/1teXp4k6fDhw5KkiooKVVRUSJLKy8tVWVkpSSotLVV1dbUkqaSkRDU1NZKk4uJi1daaf1UqKiqS2+2WJBUWFqqhoUGSVFBQoMbGRklSfn6+mpub5fP5lJ+fL5/Pp+bmZuXn50uSGhsbVVBQIElqaGhQYWGhJMntdquoqEiSVFtbq+LiYklSTU2NSkpKJEnV1dUqLS2VJFVWVqq8vJycyImcyImcyImcopFTTbkchk+qOyL5vL0jp974cyIncopCTuFwGOGWU3FQXFysWbNm6c033/TvRbrgggs0Y8YMrVy5MuBzPB6PPB6P/2OXy6W8vDxVVVUpKyvLX5U6nc6Qxw6HQw6HI+ix1+uV0+kMeiyZFa79OCkpyV9VBzo2DENOpzPocbixkxM5kRM5kRM5kVOEOe3fIn3+hiRJFy2WL3VQz8+pN/6cyImcjjMnl8ulrKws1dTUKCMjQ8EkdJH06quv6uqrr1ZSUpL/nNfrlcPhkNPplMfjafO5QFwulzIzMzsdCAAA0Id9tkbav9U8PnuRNHh0fOMB0C3CrQ2SYxhTxC6++GLt2rWrzblFixZp0qRJWrZsWacFEgAAQFjcla3HDa74xQEgISR0kTRo0CBNmTKlzbn09HTl5OR0OA8AANBl9VWtx3S4A/q8hG/cAAAA0K18Xqm+uvVjiiSgz0vomaRA1q9fH+8QAABAb1JfJcm2RZvldkCfx0wSAADo29xVbT9mJgno8yiSAABA31bf0rQhdaD5niIJ6PMokgAAQN9mdbbLGWu+b3BJiXuHFAAxQJEEAAD6NqtIym4pknxeqelY/OIBEHcUSQAAoG+ziqRBQ6V+6ebxMZo3AH0ZRRIAAOi7fF7pWI15PGCw1H+Qecy+JKBPo0gCAAB9l9X+O6mf2bjBXyQxkwT0ZRRJAACg77KW2qUPlhwOqX+G+TEzSUCfRpEEAAD6LqtIGpBtvmcmCYAokgAAQF9W33Ij2XSrSGImCQBFEgAA6Mv8y+1aiqQ0ZpIAUCQBAIC+rH2RlNpLutt5m6XqQ9wU187jluoq4h1F39NQJx3YIdUeiXckEaFIAgAAfZO32db+25pJallu1+yRmhvjE1c07P1Q2vB7qeTTeEeSOLb9RfrgqdbCGLFxtEja9Zr0yd/jHUlEKJIAAEDfdKxare2/W24im5wqJfczj3vykruqYvP94b3xjSNR+LxSdYn5/mhRvKPpW6pLzPdZo+IbR4QokgAAQN/Uvv23pTc0b7Bysy5Q+7pj1a1LD6sYk5jyF0kj4xtHhCiSAABA39R+P5Klp7cB9za1xn6sRvLUxTeeRGBfYkfhGDs+r+QqM48HM5MEAACQ+NrfI8nS02eSrLbmFoqCtkVS3RGpyRO/WPoSV7lZKKWkdfx3luAokgAAQN9U39lMUg8tkto3JmB5meRuVzjWHIpPHH2NfamdfUlrD0CRBAAA+iZ3uxvJWvwzST10uZ1VJDlaLvOqKQj8BbF/TCgcY6KHNm2QKJIAAEBfZG//3VtnkoZOMN/XcL+kDmNCkRQbFEkAAAA9SH2V/O2/+6W3/VxPb9xg7UkaMUlKSjHv+dSXb6Lq80r11ebxqKnme2602/0aj7UWpz2ss51EkQQAAPqiettSu/Z7Jazldh63eYHd01gXpgOHSJm55nFfnjmpr5ZZEKdIw040f96eup5bBPcU1mtuQLbUb0B8Y+kCiiQAAND3BGv/LZkXdM4k87inLbmzt/9Oz25d5tSXiyT7zzq5nzRouPlxXx6TWOih90eyUCQBAIC+x9/+e3DHzzkcUmoP3ZdkzZAlp5ptl60L1L5cENS3+1lbhSNd/7qX1TCkB+5HkiiSAABAX+Rv/50T+PM9dV+SfdbE4Wi9QK09bM4y9UXtZw2ZXet+htE6vj3sJrIWiiQAAND3hFpuJ/XcDnft8+qfIaUONC9aa0rjF1c8udsVxNbsWk1pz9xz1hPUV0lNx8xlq9byxh6GIgkAAPQtbdp/B1huJ9nuldRDi6QBLUWSfTapry4vs5YgWsvtBg4xlyP6ms0ZNkSfNYuUMUJKSo5vLF1EkQQAAPoW/76dAO2/Lb1huZ2lLy8vs7f/TrcXjtZeLW602y168P2RLBRJAACgb6m3zba0b/9t6anL7eopktrw3w8rxVx2aOnLYxILPbyznZTgRdKKFSt0xhlnaNCgQRo2bJiuuuoq7d69O95hAQCAnqyz/UhSz1xu521qjbdNkdRyr6QGV8/KJxrcQe6HRZHUfbzNkqvcPGYmqXu89957uv3227Vp0ya9+eabampq0le/+lW53e54hwYAAHoq+4VzMPbldobR/TFFg1X8Jfc3239bklOlQUPN475WFNS326NlsS7e6yqkJk9sY+rtasvNZY79BgRusd9DJPROqrVr17b5+Nlnn9WwYcO0bds2nXfeeXGKCgAAxFRDreRtDN6uO1JhzSS1FEmGT2qsl1KD7F1KJO3bf9tljZJqj5hF0ohJsY8tXoL9rFPTpbQs6Vi1VHNIGjI+1pH1XlaDkMyRwZez9gAJPZPUXk2N2YkmOzv4LzWPxyOXy9XmTZJ8Pp//fTjHRstfjYIde73ekMeGYXQ4lhTy2Pr+wY7DjZ2cyImcyImcyKnX5ORtlrHhDzI+eFpqqItOTu6jkiQNyA6ekxwyWpo6+Oqre8bPqaUgMAYM7phTy8yJ0XIB22deey1j4kvL6vAYw3aj3R6VU4L/nIyW2Uoja2TC5hSOHlMk+Xw+LVmyROecc46mTJkS9HErVqxQZmam/y0vL0+SdPiw2eKxoqJCFRUVkqTy8nJVVpr/eEpLS1VdXS1JKikp8RdkxcXFqq011+8WFRX5l/oVFhaqoaFBklRQUKDGxkZJUn5+vpqbm+Xz+ZSfny+fz6fm5mbl5+dLkhobG1VQUCBJamhoUGFhoSTJ7XarqKhIklRbW6vi4mJJZmFYUmK+2Kqrq1Vaat7joLKyUuXl5eRETuRETuRETr07p9J/ytHgksPbJFUdOP6cvM2tHevSs0Pm1JTUX5JUV1HaI35OdeX7zcekpHfMySqSqkskw9d3XnstRZLLm9whp2q1zA5Wl/SsnBL859RcYb4O3SlZCZtTOBxGuOVUnN12221as2aNPvzwQ40ePTro4zwejzye1rWlLpdLeXl5qqqqUlZWlr8qdTqdIY8dDoccDkfQY6/XK6fTGfRYMgs7+3FSUpK/2g50bBiGnE5n0ONwYycnciInciIncuoVOUlybPi95CqTJGn8v8h78kXHl1N9pfT+EzKSU+X46g9lSEFzcmz7ixyH8+U79VJp7OkJ/3PSpuflqDwgY/qVMkZOaZuTQzLW/dIsNs/7rnzpQ3r/a8/nlXPdA5IM+S76DznTMto+5ugBOTc9J6Wmy3fhf8jREm9C55ToPyePW463HpYkGf/6fRnJ/RMuJ5fLpaysLNXU1CgjI0PBJPSeJMsdd9yh1157Te+//37IAkmSUlNTlZqa2uG8NUDW++M9TkpK6tKxw+EIeuxoWbcZ7DhasZMTOZETOZETOfWInCqLWwskSaouOf6cWmYWHAMGSw6HWYgFyykt0zxurJN6wHWEdf8nR3q2HC3fq83PLHOkVLlfqiqRc9CwqOSR0K+9+kqZ7b/7ydmyx6zNY7JyJYdT8rjl9NRKA7ISP6coHHdrTjXmbJHSs+XoN0DWjqREysmKtTPOzh8SP4Zh6I477tDq1av1zjvvaPx4NtUBANBnFH1svh9sLp1XTank8x7f1wx0H6FgetINZYO1/7az7cHpE/xNGwYHbiCQlCJlDDeP+8qYdLdecBNZS0IXSbfffrv+9Kc/6cUXX9SgQYNUVlamsrIyHTt2LN6hAQCA7nTMJZV9YR5PvtRsY+1rlmoPH9/XDaeznaUn3VDWyiulv9l6OZC+dm+gcH7W/jE51P3x9AUUSbHx+OOPq6amRhdccIFyc3P9by+//HK8QwMAAN1p/1bz/kTZY6XMEbZZkOO8mI2oSGrZr9CTiqT29wOyG9xy4Vp7RGpu7P6Y4q1l+WHIMelrs2vdyTBa/332giIpofck9ZCeEgAAIJq8TdKB7ebxuDPM91mjpIpC82J27Old/9rhXDhbetJyu3CWEfbPMHNqqDWXLuaMjU1s8RLJTJK1lNOZFPyxCK2+Umo6Zo6htYyxB0vomSQAANAHHfqnebGVlikNP9k8F42lYt5m6ZjZSjiimaTmRqnJE/qx8RbuDFlfWnIXzpik50jJ/aOzlLOvs24im5HbK4pNiiQAAJA4DKO1YcPYWf6ucv6L+7oKqamha1/bmm1JTg2+b8cuuZ/5WCnxZ5Pc1gzZ4NCP6ytFkr0gDjVr6HCw5C5arKV2g3v+UjuJIgkAACSSqmLJVS45k6W8ma3nU9OltCzzuKaL+5KsQiI9O3C3s0CsJXeeBN+X5J81yQn9uL7SqOBYtaz230pND/3YvlI4djd/04aR8Y0jSiiSAABA4ihsmUUaNVXql9b2c9bFV1UXL2YjadpgsZbcHUvgIqm5sbWI6yy3zFxJDnNmrCc0pOgq+8+6s4LYKpK6+rqCOXNn3dOsFzRtkCiSAABAojhWI5V/aR5bDRvsjvcv/tZyu86WpNn1hOYNVjOKlP4dC8v2kvtJg4aax7155sR+j6TOWMW3+2jXl3L2da4yyfCZy1itGd8ejiIJAAAkhv3bzD1JOeMCd8eyLxXrSgfc45lJSuRZl0jz6gvLy8JpiW5JTW8tnHv7MsTuYr8/UrhLWRMcRRIAAIi/QG2/28scITmcUqO7dVN+JMLdt2PXI2aSIigIpL6xvMyaXQv3Z03zhuPTi24ia6FIAgAA8dem7fdJgR+TlNI6wxTpxay3qbXQiWi5XS+cSRpsuzeQ4euemOItkuV2Ut+YXetOvegmshaKJAAAEF9t2n6fYc4WBdPVi1lrZiHc9t8W/0xSLyqSBg4xu755G6XaI90XV7xEej8sqe3rqitLOfsyj7v131cv6WwnUSQBAIB4qzxgtv1OSpHGzAj92K4ui4qk25ldWstMUqPbvPhORP57JIVZEDictnHshXtw7O2/+3XS/tuSYS3lrG95PsJmvYbSc8zmIb0ERRIAAIivIlvb75ROurNZf/GvKZN83vC/R1eaNkhmPM4k89hTF9lzYyGS9t92vXkPTlcK4qRks1CSeueYdCdrvHrJTWQtyfEOAAAARJlhSFUHzQth6wK/OzQ3SnUVx7fE5liNVLbbPA7WsMEuPUdK7i81N0i1h1vu+xOG+ghnWywOh7kvqb7K3NM0ICuy57dnGNLRos5bTfcfJA0e3fnXs5o2pKR13v7bLlp7cBrrzaWIgboRhqu50RyTzorejOHhFYJdLYizRpk3Kj70ueQI8e8mJU3KGdv1Lm4+r1RRaO6TOx4OhxlHZ39YCMVV3jpeXXWkwHzfi/YjSRRJAAD0Pvs+kr58Rxp/pnTqV7vv++xcLZXvkWZeI42c3LWvsX+rJEPKGS8NGtb54x0Osyir2Gd2Zwu3SLJudBnphbNkFiz1VdHZl1TyqfTJ38N77Jk3SEPGh36MtdQu3AYFFuuCtvaIuackNcxlaXaGIW1+wbzQPmuhlJ0X+deQpM/+TyrZ1fnjklOli+7svChwd+F+WJL5utovqXy3+RbK9Cuk0dMj+/qWgg3Snve69tz2csZL/3JD157rPip9+Ez0mndQJAEAgITl80qFLcvXDmyXTjyve/YJ1FWYBZIk7dso5Z4a+V/WvU3SgR3mcTizSJasUWaRVF0iaVbnj68pNfdNOJydFx2BRKsNuGFI+zaZxwOHBL/Y99SZRdm+TWEUSRG2/7b0H2SOY3VJy+vkK5E9X5KOFrYWn4Wbu1YkNbjMzoaSlDU6+GuorsLsflj8iXTCv4T+mvVdaPUuSSMmSYfzQxfDTcfMWAo3S6OmdeE13ywVbTGPM4ab+6a6qvpg68/AWioYiaItZoGUOuj4Z0gzRnQthgRGkQQAQG9S+nnr3hlvk1S8s/OLyq4o2tp6XFNqXmyHszzMruSzlrbfWdLwE8N/XqRLxayL0txTWgueSESrDXjlAXOJYFKKdPa3gxdJ7kpp/aPSkb3mX/tDXex3dWmZZBamO0vM2bwJZ0e+NNMqxiWp/Etz6WRaZmRfY/8280I9e4w5GxXMge3SrtfNn+X42aE7IHZ1TJL7Sad9PfRjGo9Jb680Z88qD5jL3SJR+k9ziWL/DOmcm49vOez2Vea/96It0rR5kT23yWMWnJI5Kzb0hK7H0UvRuAEAgN7EKggGDTXf798a/XvhNDVIBz9p+32KPg7++EDsbb/HddL2uz1rD5T7qFlkheJxS4c+a/k+syOL0RKtmSR/g4ppoZeMpWdLw1qKRnsxGkj9cRRJuadKqQPNorrsi8ie6640Z10kc1bMMFqWTkbA29z5DYQto6aaM6LHqlu/b7Cv6W//HeFyu3D0S5NGTzOPu/Sab/n3Ofb0498vaL2eSz4zC69IHPzEbAE/cEjXZlf7AIokAAB6i6oSc3bFmSTN+qZ5UVlfJR3eG93vY7/Amn6lea70i8hmWir3t86q5M2I7PunprfuN+mshXXxDnMJYubIru+ZiMa9kuqrI2tQYV0AH9xp/tU/mOOZSXImmRfrklS4JbLnWgXR0InSyReZxwd2RNaMwD6rMnxS6McmpUh5MzuP1X8/rAjaf0fK+vmV7W4tyMJRddCcdXUmSWNOO/44Bo82l7j5mluXrYbDXqyNO6PrDSh6OYokAAB6C+sv2yMnm3sMrIvKSP/iHUqbC6zZZuOE7DHmbNX+beF/nUL7rEoX9kyF08La5229mD+ei8FoLLezGlQMGd86+xbKkPFmEdrc2Dpr115zY+vSyq4USZJ5se5wmvtbwr1nUnOjuYxTMsd1+InmksmmY+asRjgMo/U1MHaW5AzjknTsLEkOcx9O7eHAj6m37dHqrov/QcOknHGSIpw98//7nBrZDY2DcTjMpYeSGYcvzBnjI3vNcUpONf/9ISCKJAAAeoOGWnN/gtQ6C2FdVFYUml3MouHwXvOv9cn9zSVQUutf1g9sC++Gq/XVrU0fImnYYOfflxTiwr7sS3Nc+qWbS8u6yj6TZBiRP9/bZM5oSeEv+XM4Wsdm/5bA39fe/rurbaBTB7Z2Jgy3mD74qdTsMQuzoRPMImvcrNavEc4YVR00Gw44k6UxM8P7vgOypBEnt3yfILNJ/m5/XSwaw2X9HMOdPTvmal3S2NXXfCC5k82Cq8Fl7gsLhzV2eTPNGTcERJEEAEBvcGC7OZszOK+1LXY4F5WRsi6kx9gusIZPMmdbGuvNJVSd8c+qnBDerEog9uYNwS7K/fs/TjNvFtpVqQMlOczx9bgjf37JLnMf14DB0rCJ4T9v1DTzr/3uytZ70dgdz1I7O+uC/9A/pYZObpjbZi/Z7NbZmrwZ5pK42sNmQ4PO+PdnTYlsVsW/DPHTwPvRojUmnYl09uzANnPsssdImVHsApeU3Lp0L5x/43UVra+lcWF0huzDKJIAAOjpvM3mRZjU8a/U/s3dQS4qI1F7xGy9LUfLLFULp7P146Igsx6W5sautf1uL2OEOYPRWG9u5m+vplSqKjYfM+b0rn8fydxDYt1HyBPhkjt7UTF2VmQNKpL7hV4yGa2CIGuk2X7b8EnF20M/tmKf2TAjuV9rAwPJnMkaFWZDg+OZVckeYy538zVLB3Z2/HysiqRIZs/aNKjoYvOQUMaebsZTecB83YdiFVLDT4r8PlJ9DEUSAAA9Xenn5gxH/0HmvV7srItKqx348bD2Xww/qeN9VcbMNJdO1ZSaS6mCOfSZ1GzNqkTQ9ru9pOTW+7JUBdiXZF2o557atbbf7Vn7ko5F2OHu6H6zuOxKgwqp9UL8SIE5C2BnLS2LxsXueGtp3zZzL1cw1kX26BnmLJedvaFBfXXwr7F/a8usytjI763jcLQWGvu3dOzcaN+T1N3azJ7tD/64Q/YGFSdHP47+GWZ7eyn0bJK9K2V3FGu9DEUSAAA9WfuZivZthe0XlUXH0Q68swusfgPMpVNS8JkE+2b9aHTVCna/JI+79Qal0boY7GqHO2ssRk/vWoOKAYPNolTq2A78eNp/tzfiFPOmop661r1t7bmPtrbfDjQDNGhoSzvpEA0NvE3ht/0OZtQUc+bqWE3r3japXfvvGBRJ9tmzwhCvef/yxDAbVHSFf8nkZ8GXhB78xBz/gUNaGk8gFIokAAB6suqS1rbCeUE2wPsvKqul8hD3mAmleKd5gTVoaPAbaPpnEr4IPONytEiqa5lVGT29a3HYBetwd2C7ORuSNVIa3MW23+35O9xFMJNUX9V6ET/2OPZ/+PfhfGIWqxb/0rIQN5sNl70deLDZCKtIG3Zi8CLEirU4SEODQ/9suYFwZtdnVZJSWps92GP1t/9OjU73uHBYr/nyPYFnz6qKWxtUBPv3GQ1Zo8y9iD5va5MQO8PXtislbb87RZEEAEBP5m8rPKV130x7bS4qu9AOPNwLrIwR5hIqw2jdIxUo1q7OqrRnFUCustYlYm3afkdxSVFXZpKKotCgQjL/6j9wiHlvKms2r0377yjtLRlzmlksVZd0XMLY7DHv2SSFngEaNtGc/WpqMBtW2HWY9TyOy9Cxs8zX4dEiyVVunvMvtRscuyKgs9kzf4OKKLX9DqbNMsStHZdMBupKiZAokgAA6Kkaas2buEqdL12yX1QGu8dMMIfzzVmolDAusPztwLe3bQdun1WJVgvkAdnmDJnP23qhXPaFWTykDjy+tt/t+YukMGeSmhsjb/sdTJslky2NMaxZpONp/91eanrwduAHPzVzSs8xi76gsdqbeLRraFBVbP6cojGrkpbZegNaq4CPVdOG9uztwJsbW88fqzHb0EvRbfsdTO6pZrv7htrW72uxxsjelRIhUSQBANBT7d9mzvJkj2lt+x1MoIvKcBXa7quSlBL6scNPNr9XY33rviCpdanW0AnmrEg0OBwdl9xZsVqzItES6Q1lS3aZsy+Rtv0OZtRUcxagvqplVqCbCgLrgr/089Zcg7X9Dsbf0OCI2bjCUmifVYlCYWfdSLVkl/l6i1eRZM2eNTeYe4Is+7fZGlQM7/44kpLNdvdS23/jwbpSIiSKJAAAeqJQbb+DsS4qD34qNYbZDrz2sHS0UGFfYDkDzCS0mVWJ8l/U7c0bqg9J1Qej0/a7vTTbTFJnN0ttU1REoUGFZP71375ksrsKgsxc815bhq+1wcKRAvP7Jae2bfsdTEr/1j1n1jgcq2m92Wm0XgOD88ziw9ds7pmL1Y1k27PPnhW2vObtDSrGx7CT3JiWduBVxa3twNu0/c6KXSw9HEUSAAA9Uam9rfCkzh8vtbuoDLC5OxDrAmvEyeFfYOW1tAN3lZkXa/5ZlWxpaBRmVezsRZJ/f9Zkqf/A6H4faybJ22TmEsrRQrNdd1K/6DSosIydJclhzgpYXea6oyDwL5ncZhbj1msgb0b4S7WsoqF8jzn7ZbX9zhkXvVmV9vtw3EfN41i0/27Pmj2rO2IuabU3qBh2Uuzi6D+odZlp0ccte8M+NT+m7XdEekSR9Oijj2rcuHHq37+/zjzzTH38cRc2nQIA0FsYRuuFayQb4Dts7u6kHXjTMXPWSYrsAqtfWuvepcKPoz+rYmctt3NXRr/tt11SSmuzic72JVnLyqLVoMIyIKu1Hbh1L6ruKAhGTDIvtj1uae+H0pG95vlIlmoNGtqyd8mQ9m2Kzg2EAxk5xWyIcKym9ecS65kkqePsWbQaVHSFvx34P6WCDZ13pURACV8kvfzyy1q6dKl+9rOfafv27Zo+fbouueQSHT4c4aZTAAB6i6qDLW2/k1uXYIXLflF5eE/oxx7Yac46DRpm7nuKhL0deHfMqlj6DWgtFAyfObNkFU7RFk6HO3el7V5C3bD/o30B2B0FgTOptSDa+4H5PlTb72DsBbm/7XeUZ1WS2jWBiGX77/bss2fRalDRFYNb/g34vFLBR+Y52n5HLDneAXTm4Ycf1i233KJFixZJkp544gm9/vrr+sMf/qAf//jHcY4uQuX55n82AAAcD2up3KgpkV8QWheVBRvMC6hQ+2v2H8d9VTKGm0urjhaZH+dNl1JSI/sa4coa2drIoDuXFPXPMDfBH85v28XMrqyl22A0G1TY5Yw1ZwVqj5gfd9esSd5MKf/91lbSXdlXYzU0sO5fNPYMc79MtI2dJe1reS2nZ8evGLBmzyr2mR+PnhadBhVdMW62tPNV8zicrpToIKGLpMbGRm3btk0/+clP/OecTqfmzJmjjRs3BnyOx+ORx9O6VrimxrzzcnV1tSTJ17K0wOl0hjx2OBxyOBxBj71er5xOZ9Bj63vZj5M2/lVqCnIXZAAAImQMniSHyxX5/0+ZE+Q89o4c9QXSoYLQ3yM5TUb6aDldLhmGIcMw5HQ62xwH/f80e5KcxeZmfV/WSVJ1dff8n5uUKUd9g4x+A6UBI+WrqlJSUpIMwzD//w1wHCiPTnNqTpbqG6TPP5D0Qehxyz6lw8/muK8jrNgHT5KzvFhGygD56o4pKamx6zmFODYGjZej9DMpPUe+pMFy1NRE/nPKOVWqeFuGM0XKHC9fVVXAnI775zRwrFT+pYxBqf5xDyfXqF/vDZ6kpAOfS5K8mScqqeXfzXG/9iI4djgccqSPltGcJEejWxo3Tb5ad1Ree1H99xRpTlH6Oblc5rJMo5MGLA6js0fE0aFDhzRq1Ch99NFHOuuss/znf/SjH+m9997T5s2bOzzn5z//uf7rv/4rlmECAAAA6EGKi4s1evTooJ9P6JmkrvjJT36ipUuX+j/2+XyqrKxUTk6OHHFei+lyuZSXl6fi4mJlZGTENZbOEGv3INbuQazdg1i7B7F2D2LtHsTaPXpKrD0lzkgYhqHa2lqNHBl672JCF0lDhgxRUlKSysvL25wvLy/XiBEjAj4nNTVVqalt1zxnZWV1V4hdkpGR0WNeaMTaPYi1exBr9yDW7kGs3YNYuwexdo+eEmtPiTNcmZmZnT4mobvb9evXT6effrrefvtt/zmfz6e33367zfI7AAAAAIiWhJ5JkqSlS5dq4cKFmjVrlmbPnq2VK1fK7Xb7u90BAAAAQDQlfJF03XXX6ciRI7rnnntUVlamGTNmaO3atRo+PEp3a46h1NRU/exnP+uwHDAREWv3INbuQazdg1i7B7F2D2LtHsTaPXpKrD0lzu6Q0N3tAAAAACDWEnpPEgAAAADEGkUSAAAAANhQJAEAAACADUUSAAAAANhQJMWAx+PRsmXLNHLkSKWlpenMM8/Um2++Ge+wOli/fr0cDkfAt02bNsUtrrq6Ov3sZz/TpZdequzsbDkcDj377LMBH/vFF1/o0ksv1cCBA5Wdna0bb7xRR44cSbhYv/3tbwcc50mTJsUs1i1btuiOO+7Q5MmTlZ6erjFjxmj+/Pnas2dPh8fGe1zDjTURxvWf//ynrr32Wp1wwgkaMGCAhgwZovPOO0//+Mc/Ojw23uMabqyJMK7tLV++XA6HQ1OmTOnwuY8++kjnnnuuBgwYoBEjRmjx4sWqq6uLQ5SmYLFecMEFAcf10ksvjUlckfzOj/eYhhtrvMfUbvv27briiiuUnZ2tAQMGaMqUKfrNb37T5jHxHtdwY02EcQ32e8h6Kykp8T823uMabqyJMK6SlJ+fr29+85saPXq0BgwYoEmTJukXv/iF6uvr2zwu3uMaawnfArw3+Pa3v61XXnlFS5Ys0Yknnqhnn31Wl112md59912de+658Q6vg8WLF+uMM85oc27ixIlxikaqqKjQL37xC40ZM0bTp0/X+vXrAz7u4MGDOu+885SZman7779fdXV1euihh7Rr1y59/PHH6tevX8LEKpltNZ955pk258K5A3S0PPDAA9qwYYOuvfZaTZs2TWVlZfrd736n0047TZs2bfJf0CXCuIYbqxT/cd2/f79qa2u1cOFCjRw5UvX19Vq1apWuuOIKPfnkk7r11lslJca4hhurFP9xtTt48KDuv/9+paend/jczp07dfHFF+uUU07Rww8/rIMHD+qhhx5Sfn6+1qxZk1CxStLo0aO1YsWKNudGjhwZi9D8Ovudn0hjGs7/T4kwpm+88YbmzZunmTNn6u6779bAgQNVUFCggwcP+h+TKOMaTqxS/Mf1u9/9rubMmdPmnGEY+t73vqdx48Zp1KhRkhJjXMONVYr/uBYXF2v27NnKzMzUHXfcoezsbG3cuFE/+9nPtG3bNv3tb3+TlBjjGnMGutXmzZsNScaDDz7oP3fs2DFjwoQJxllnnRXHyDp69913DUnGX//613iH0kZDQ4NRWlpqGIZhbNmyxZBk/PGPf+zwuNtuu81IS0sz9u/f7z/35ptvGpKMJ598MqFiXbhwoZGenh6TmILZsGGD4fF42pzbs2ePkZqaalx//fX+c4kwruHGmgjjGkhzc7Mxffp04+STT/afS4RxDSRQrIk2rtddd51x0UUXGeeff74xefLkNp+bO3eukZuba9TU1PjPPf3004YkY926dbEONWSsgc7FUri/8xNhTMONNd5jahiGUVNTYwwfPty4+uqrDa/XG/RxiTCu4caaCOMayAcffGBIMpYvX+4/lwjjGkigWBNhXJcvX25IMj777LM252+66SZDklFZWWkYRuKOa3diuV03e+WVV5SUlNTmL7L9+/fXzTffrI0bN6q4uDiO0QVXW1ur5ubmeIchyfwL9ogRIzp93KpVq/S1r31NY8aM8Z+bM2eOTjrpJP3lL3/pzhD9wo3V4vV65XK5ujGi4M4+++wOsxUnnniiJk+erC+++MJ/LhHGNdxYLfEc10CSkpKUl5en6upq/7lEGNdAAsVqSYRxff/99/XKK69o5cqVHT7ncrn05ptv6oYbblBGRob//E033aSBAwfGfFxDxWrX3Nwc9yUrwX7nJ9qYSuH9/xTPMX3xxRdVXl6u5cuXy+l0yu12y+fztXlMooxrOLHaJcJr1e7FF1+Uw+HQt771LUmJM66BtI/VLp7jav1OHz58eJvzubm5cjqd6tevX0KPa3eiSOpmO3bs0EknndTmRSVJs2fPlmROXyaaRYsWKSMjQ/3799eFF16orVu3xjukTpWUlOjw4cOaNWtWh8/Nnj1bO3bsiENUodXX1ysjI0OZmZnKzs7W7bffHvf/fAzDUHl5uYYMGSIpsce1fayWRBlXt9utiooKFRQU6Ne//rXWrFmjiy++WFLijWuoWC2JMK5er1d33nmnvvOd72jq1KkdPr9r1y41Nzd3GNd+/fppxowZMR3XzmK17NmzR+np6Ro0aJBGjBihu+++W01NTTGLUwr9Oz+RxrSzWC3xHtO33npLGRkZKikp0cknn6yBAwcqIyNDt912mxoaGiQlzriGE6sl3uPaXlNTk/7yl7/o7LPP1rhx4yQlzri2FyhWS7zH9YILLpAk3Xzzzdq5c6eKi4v18ssv6/HHH9fixYuVnp6esOPa3diT1M1KS0uVm5vb4bx17tChQ7EOKah+/frp61//ui677DINGTJEn3/+uR566CF95Stf0UcffaSZM2fGO8SgSktLJSnoWFdWVsrj8Sg1NTXWoQWUm5urH/3oRzrttNPk8/m0du1aPfbYY/rkk0+0fv16JSfH55/mCy+8oJKSEv3iF7+QlNjj2j5WK6ZEGdfvf//7evLJJyVJTqdT11xzjX73u99JSrxxDRWrFVMijOsTTzyh/fv366233gr4+c7G9YMPPujW+Ow6i1WSJkyYoAsvvFBTp06V2+3WK6+8ovvuu0979uzRyy+/3O0xhvM7P1HGNNz/n+I9ppK5Cb65uVlXXnmlbr75Zq1YsULr16/Xb3/7W1VXV+ull15KmHENJ1YpMca1vXXr1uno0aO6/vrr/ecSZVzbCxSrlBjjeumll+ree+/V/fffr7///e/+8//5n/+p++67T1Lijmu3i/d6v97uhBNOMObOndvhfEFBgSHJ+PWvfx37oCKQn59vpKWlGZdcckm8QzEMI/g+n/fff9+QZLz88ssdnnP33XcbkoyqqqrYBNki1J6kQKx1wS+99FL3BhbEF198YWRkZBhnnXWW0dzcbBhGYo6rYQSONZh4jesXX3xhvPnmm8Zzzz1nXH755cbVV19tlJWVGYaReOMaKtZgYj2uFRUVRnZ2tvHQQw/5z7Vfz//8888bkozNmzd3eP6NN95oZGZmxiLUsGIN5pZbbjEkGRs3buzOEINq/zs/UcY0kHD/f4r1mJ5wwgmGJON73/tem/Pf/e53DUnGnj17EmZcw4k1mHi/VhcsWGCkpKQYFRUV/nOJMq7tBYo1mHiM6//8z/8Yl1xyifHUU08Zq1atMv7t3/7NcDgcxm9/+1vDMBJ3XLsby+26WVpamjweT4fz1jR2WlparEOKyMSJE3XllVfq3XffldfrjXc4QVnj2JPH+q677pLT6Qz5l+fuUlZWpssvv1yZmZn+fXRSYo5rsFiDide4Tpo0SXPmzNFNN92k1157TXV1dZo3b54Mw0i4cQ0VazCxHtef/vSnys7O1p133hn0MZ2Na6zGNJxYg/n+978vSXH5PSB1/J2fKGMaSLj/P8V6TK0xWbBgQZvz1l6UjRs3Jsy4hhNrMPF8rdbV1elvf/ubLrnkEuXk5PjPJ8q42gWLNZhYj+uf//xn3XrrrXrmmWd0yy236JprrtHvf/97LVy4UMuWLdPRo0cTclxjgSKpm+Xm5vqnKe2sc7FuS9oVeXl5amxslNvtjncoQVlTwMHGOjs7O2GW2gWTlpamnJwcVVZWxvT71tTUaO7cuaqurtbatWvbvCYTbVxDxRpMvMa1vW984xvasmWL9uzZk3Dj2p491mBiOa75+fl66qmntHjxYh06dEhFRUUqKipSQ0ODmpqaVFRUpMrKyk7HNRa/b8ONNZi8vDxJiuvr1f47PxHGNJRw/n+K9ZhaY9J+I/ywYcMkSVVVVQkzruHEGkw8X6uvvvqq6uvrOyxfS5RxtQsWazCxHtfHHntMM2fO1OjRo9ucv+KKK1RfX68dO3Yk5LjGAkVSN5sxY4b27NnToSPU5s2b/Z9PdPv27VP//v01cODAeIcS1KhRozR06NCAm3g//vjjHjHOtbW1qqio0NChQ2P2PRsaGjRv3jzt2bNHr732mk499dQ2n0+kce0s1mDiMa6BHDt2TJJZ6CXSuAZijzWYWI5rSUmJfD6fFi9erPHjx/vfNm/erD179mj8+PH6xS9+oSlTpig5ObnDuDY2Nmrnzp0xGddwYw1m3759khTX16v9d34ijGko4fz/FOsxPf300yWpzc1NpdY9yEOHDk2YcQ0n1mDi+Vp94YUXNHDgQF1xxRVtzifKuNoFizWYWI9reXl5wJlYq3lEc3NzQo5rTMR7vV9vt2nTpg73SWpoaDAmTpxonHnmmXGMrKPDhw93OLdz504jJSXFuOKKK+IQUUeh9vl873vfM9LS0owDBw74z7311luGJOPxxx+PYZSmYLEeO3bMcLlcHR7/wx/+0JBk/O///m9M4mtubjauuOIKIzk52Xj99deDPi4RxjWcWBNlXMvLyzuca2xsNE477TQjLS3NqK2tNQwjMcY1nFgTYVyPHDlirF69usPb5MmTjTFjxhirV682Pv30U8MwDOPSSy81cnNz28T8zDPPGJKMNWvWJEysNTU1RkNDQ5vn+nw+47rrrjMkGdu2bev2WMP9nR/vMQ031kQYU8MwjO3btxuSjG9961ttzi9YsMBITk42SkpKDMNIjHENJ9ZEGVfL4cOHjeTkZOPGG28M+PlEGFdLqFgTZVy/9rWvGf369TN2797d5vxVV11lOJ3OhHq9xprDMEIsOkdUzJ8/X6tXr9Zdd92liRMn6rnnntPHH3+st99+W+edd168w/O76KKLlJaWprPPPlvDhg3T559/rqeeekopKSnauHGjTjnllLjF9rvf/U7V1dU6dOiQHn/8cV1zzTX+bkZ33nmnMjMzVVxcrJkzZyorK0v/8R//obq6Oj344IMaPXq0tmzZErPlS53FWlVVpZkzZ2rBggWaNGmSJLPzzf/93//p0ksv1euvvy6ns/sneZcsWaJHHnlE8+bN0/z58zt8/oYbbpCkhBjXcGItKipKiHG9+uqr5XK5dN5552nUqFEqKyvTCy+8oC+//FK/+tWvtHTpUkmJMa7hxJoo4xrIBRdcoIqKCn322Wf+c9u3b9fZZ5+tU089VbfeeqsOHjyoX/3qVzrvvPO0bt26uMQZKNb169drwYIFWrBggSZOnKhjx45p9erV2rBhg2699VZ/t8HuFO7v/EQY03BiTYQxtdx88836wx/+oPnz5+v888/X+vXr9de//lU/+clPdP/990tKjHENJ9ZEGlfJ/D/2zjvv1Nq1a3XJJZd0+HyijGtnsSbKuL7//vu66KKLlJOTozvuuEM5OTl67bXXtGbNGn3nO9/R008/LSmxxjVm4l2l9QXHjh0zfvCDHxgjRowwUlNTjTPOOMNYu3ZtvMPq4JFHHjFmz55tZGdnG8nJyUZubq5xww03GPn5+fEOzRg7dqwhKeBbYWGh/3GfffaZ8dWvftUYMGCAkZWVZVx//fWddumKdaxVVVXGDTfcYEycONEYMGCAkZqaakyePNm4//77jcbGxpjFef755weNs/2vhniPazixJsq4vvTSS8acOXOM4cOHG8nJycbgwYONOXPmGH/72986PDbe4xpOrIkyroEE6xj3wQcfGGeffbbRv39/Y+jQocbtt98ecDYsltrHum/fPuPaa681xo0bZ/Tv398YMGCAcfrppxtPPPGE4fP5YhJTJL/z4z2m4cSaCGNqaWxsNH7+858bY8eONVJSUoyJEycG7GYb73ENJ9ZEGlfDMIx/+Zd/MYYNGxays2kijKthhI41kcZ18+bNxty5c40RI0YYKSkpxkknnWQsX77caGpqavO4RBnXWGEmCQAAAABsaNwAAAAAADYUSQAAAABgQ5EEAAAAADYUSQAAAABgQ5EEAAAAADYUSQAAAABgQ5EEAAAAADYUSQAAAABgQ5EEAAAAADYUSQAAAABgQ5EEAAAAADYUSQAAAABgQ5EEAOix1q5dq3PPPVdZWVnKycnR1772NRUUFPg//9FHH2nGjBnq37+/Zs2apVdffVUOh0M7d+70P+azzz7T3LlzNXDgQA0fPlw33nijKioq4pANACBRUCQBAHost9utpUuXauvWrXr77bfldDp19dVXy+fzyeVyad68eZo6daq2b9+ue++9V8uWLWvz/Orqal100UWaOXOmtm7dqrVr16q8vFzz58+PU0YAgETgMAzDiHcQAABEQ0VFhYYOHapdu3bpww8/1E9/+lMdPHhQ/fv3lyQ988wzuuWWW7Rjxw7NmDFD9913nz744AOtW7fO/zUOHjyovLw87d69WyeddFK8UgEAxBEzSQCAHis/P18LFizQCSecoIyMDI0bN06SdODAAe3evVvTpk3zF0iSNHv27DbP/+STT/Tuu+9q4MCB/rdJkyZJUptlewCAviU53gEAANBV8+bN09ixY/X0009r5MiR8vl8mjJlihobG8N6fl1dnebNm6cHHnigw+dyc3OjHS4AoIegSAIA9EhHjx7V7t279fTTT+srX/mKJOnDDz/0f/7kk0/Wn/70J3k8HqWmpkqStmzZ0uZrnHbaaVq1apXGjRun5GT+SwQAmFhuBwDokQYPHqycnBw99dRT2rt3r9555x0tXbrU//lvfetb8vl8uvXWW/XFF19o3bp1euihhyRJDodDknT77bersrJSCxYs0JYtW1RQUKB169Zp0aJF8nq9cckLABB/FEkAgB7J6XTqz3/+s7Zt26YpU6borrvu0oMPPuj/fEZGhv7xj39o586dmjFjhv7zP/9T99xzjyT59ymNHDlSGzZskNfr1Ve/+lVNnTpVS5YsUVZWlpxO/osEgL6K7nYAgD7jhRde0KJFi1RTU6O0tLR4hwMASFAswAYA9FrPP/+8TjjhBI0aNUqffPKJli1bpvnz51MgAQBCokgCAPRaZWVluueee1RWVqbc3Fxde+21Wr58ebzDAgAkOJbbAQAAAIANu1IBAAAAwIYiCQAAAABsKJIAAAAAwIYiCQAAAABsKJIAAAAAwIYiCQAAAABsKJIAAAAAwIYiCQAAAABs/j+gGX2zrHbh4AAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1000x2000 with 4 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "work_types = ['children', 'Private', 'Self-employed', 'Govt_job']\n",
+    "fig, axs = plt.subplots(4, 1, figsize=(10, 20)) # sharey=True\n",
+    "max_y = 0\n",
+    "data2 =pd.DataFrame()\n",
+    "for i, work_type in enumerate(work_types):\n",
+    "    tempDf = df[(df['work_type'] == work_type) & (df['stroke'] == 1)]\n",
+    "    data = tempDf['age'].value_counts().reset_index().sort_values(by='index')\n",
+    "    data2['age'] = data['index']\n",
+    "    data2['index'] = data['age']\n",
+    "    \n",
+    "    all_ages = pd.DataFrame({'age': range(int(df['age'].min()), int(df['age'].max()) + 1)})\n",
+    "    data2 = all_ages.merge(data2, on='age', how='left').fillna(0)\n",
+    "    \n",
+    "    \n",
+    "    ax = sns.lineplot(data2, x = 'age', y = 'index', ax = axs[i], color = sns.color_palette(\"pastel\")[1])\n",
+    "    ax.set_title(work_type, fontsize = 15)\n",
+    "    max_y = max(max_y, data2['index'].max())\n",
+    "    \n",
+    "fig.subplots_adjust(hspace=0.5) \n",
+    "for ax in axs:\n",
+    "    ax.set_ylim(0, max_y + 1)\n",
+    "    ax.set_xticks(range(int(df['age'].min()), int(df['age'].max()) + 1, 5))\n",
+    "    ax.set_xticklabels(ax.get_xticks(), fontsize=12)\n",
+    "    ax.grid(axis='y', linestyle='dotted', alpha=0.5)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ: </strong><br>\n",
+    "<ul>\n",
+    "<li>Một lần nữa chúng ta thấy , với độ tuổi ngày càng tăng thì nguy cơ bị đột quỵ càng cao. \n",
+    "</li>\n",
+    "<li>Nhóm trẻ em: chỉ có một trường hợp bị đột quỵ, điều này là dễ hiểu vì trẻ em nằm trong độ tuổi dưới 16, mà ta đã biết ở độ tuổi càng cao thì nguy cơ bị đột quỵ càng tăng, điều này lý giải tại sao nhóm trẻ em có ít nguy cơ bị đột quỵ.\n",
+    "\n",
+    "</li>\n",
+    "\n",
+    "<li>Nhóm nhân viên chính phủ: Nhóm này có nguy cơ bị đột quỵ ít hơn hai nhóm riêng tư và nghề tự do. Nhóm này bắt đầu xuất hiện người bị đột quỵ từ 48 tuổi và dao động về số người đột quỵ các năm sau đó là không quá lớn\n",
+    "\n",
+    "</li>\n",
+    "<li>Nhóm nghề tự do: Nhóm này bắt đầu xuất hiện người bị đột quỵ từ mốc 38 tuổi, dao động về số người đột quỵ tăng mạnh trong đoạn 75 đến 80 tuổi. Ở độ tuổi 78 tuổi, số người đột quỵ lên cao nhất đạt 9 người.\n",
+    "</li>\n",
+    "<li>Nhóm riêng tư: bắt đầu xuất hiện người đột quỵ sau 32 tuổi và tăng mạnh khi tiến gần đến 80 tuổi. Ở tuổi 79, số người bị đột quỵ đạt cao nhất lên đến 13 người.\n",
+    "\n",
+    "</li>\n",
+    "<li>Ta nhận thấy ngoài nhóm trẻ em ra, ở 3 loại việc làm còn lại, số tuổi càng cao thì số người bị đột quỵ càng tăng. Điều này có ảnh hưởng trực tiếp đến sự phân bố số người đột quỵ giữa các nhóm. Ta biết khi ở độ tuổi càng cao thì sẽ tiến dần đến độ tuổi nghỉ hưu, lúc này người nghỉ hưu thường sẽ làm các công việc trong nhóm nghề tự do và riêng tư dẫn đến nhóm này tăng mạnh số người đột quỵ. Hoặc cũng có khả năng người bị bệnh đột quỵ thì có tình trạng sức khỏe không đáp ứng được các yêu cầu làm việc trong nhóm nhân viên chính phủ. Hay nói cách khác, nhóm nhân viên chính phủ có số lượng người đột quỵ thấp hơn 2 nhóm nghề tự do và riêng tư là do để có thể vào làm nhân viên chính phủ phải đạt đủ tiêu chuẩn sức khỏe, nên nhóm này có nguy cơ bị đột quỵ thấp hơn.\n",
+    "\n",
+    "\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 153,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[ 142.39710901 2717.60289099]\n",
+      " [  40.03051596  763.96948404]\n",
+      " [  32.06424413  611.93575587]\n",
+      " [  33.5081309   639.4918691 ]]\n",
+      "Chi-Square value: 47.83177224258346\n",
+      "Degree of Freedom:  3\n",
+      "p-value: 0.000000000231245 \n",
+      "Có mối tương quan giữa công việc và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "stroke_private_count = df[(df['work_type'] == 'Private') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_private_count = df[(df['work_type'] == 'Private') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_selfemployed_count = df[(df['work_type'] == 'Self-employed') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_selfemployed_count = df[(df['work_type'] == 'Self-employed') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_govt_count = df[(df['work_type'] == 'Govt_job') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_govt_count = df[(df['work_type'] == 'Govt_job') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_children_count = df[(df['work_type'] == 'children') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_children_count = df[(df['work_type'] == 'children') & (df['stroke'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa công việc và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa công việc và đột quỵ\"\n",
+    "private_arr = [stroke_private_count, nostroke_private_count]\n",
+    "selfemployed_arr = [stroke_selfemployed_count, nostroke_selfemployed_count]\n",
+    "govt_arr = [stroke_govt_count, nostroke_govt_count]\n",
+    "children_arr = [stroke_children_count, nostroke_children_count]\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(private_arr)\n",
+    "nij.append(selfemployed_arr)\n",
+    "nij.append(govt_arr)\n",
+    "nij.append(children_arr)\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(4 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_job = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f} \".format(p_job))\n",
+    "if p_job <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định Chi-square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa công việc và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa công việc và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/9r5ZpfY.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa đột quỵ và loại việc làm</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 47.83177224258346</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  3</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000000231245 </li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa công việc và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa loại công việc và bệnh đột quỵ.\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  Có mối tương quan giữa loại việc làm và bệnh đột quỵ. Nhóm việc làm riêng tư và nghề tự do có khả năng đột quỵ cao, nhóm nhân viên chính phủ có khả năng bị đột quỵ thấp hơn, và rất hiếm có người đột quỵ ở nhóm trẻ em.\n",
+    "</div>\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.6. Đột quỵ và tình trạng hút thuốc </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ:</strong> Những người hút thuốc có nguy cơ đột quỵ cao hơn so với những người không hút thuốc. Người hút thuốc lá trong một khoảng thời gian dài dẫn đến tăng huyết áp, từ đó khiến các mạch máu đến não bị tổn thương ở thành mạch. Lúc này, các chất béo, canxi, chất lắng đọng sẽ dễ dàng bám vào thành mạch và tạo thành các mảng xơ vữa, cục máu đông gây tắc mạch, hẹp mạch. Về lâu dài, khi lượng máu không cung cấp đủ cho não sẽ gây ra đột quỵ. \n",
+    "\n",
+    "<br>\n",
+    "Chia bộ dữ liệu thành hai 2 nhóm đột quỵ và không đột quỵ, quan sát sự phân bố giữa các loại tình trạng hút thuốc giữa 2 nhóm trên.\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 154,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACEgAAAK0CAYAAAAa4ZpJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZkUlEQVR4nOzdd3jP9/7/8ccnk2wRiRGxSZAaNWuUqDaltY6t9aVVKS01qkUpaqty7JbW6qmtVFTVahA7R4SIXSpRNYKEJDI/vz965fPr5yRIJCTifruuXJe85vP97rkO8Xl4vQxGo9EoAAAAAAAAAAAAAACAAswirwsAAAAAAAAAAAAAAAB40ghIAAAAAAAAAAAAAACAAo+ABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAACAAs8qrwt4XqWlpenPP/+Uo6OjDAZDXpcDAAAAAAAAAAAAAMAzx2g06u7duypZsqQsLB5+RgQBiTzy559/qnTp0nldBgAAAAAAAAAAAAAAz7zIyEh5eno+dAwBiTzi6Ogo6e//SE5OTnlcDQAAAAAAAAAAAAAAz57Y2FiVLl3a9Bn8wxCQyCPp12o4OTkRkAAAAAAAAAAAAAAAIAfSP4N/mIdfwAEAAAAAAAAAAAAAAFAAEJAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgWeV1AcCz6IcfftCvv/6qsLAwXb16Vbdv35adnZ2qVKmi9u3ba8CAAXJwcMh0blpamr7//nt9//33CgsLU2xsrFxdXeXj46OOHTuqf//+2aolPj5es2bN0urVq3Xu3DlZWFjI29tbPXv2VP/+/WVpaZlhTlBQkJo3b/7QdRcsWKD3338/Q/uKFSs0ceJEnT9/Xh4eHnrnnXc0evToTPeJi4tTtWrV5ODgoKNHj8rGxiZbzwYAAAAAAAAAAADkJ8nJyUpNTc3rMgokCwsLWVtby2AwPLE9CEgAj2HBggXav3+/fHx8VLt2bbm6uuratWs6cOCAjhw5osWLF2v37t0qWbKk2byYmBi1adNGe/bskZOTk1566SW5uLjoypUrCg0NVWxsbLYCErdu3ZKfn5/CwsLk6OioRo0aydLSUgcPHtTAgQMVGBiozZs3PzCY4OHhIX9//0z7qlSpkqFt8+bN6tGjh4oUKaLWrVvr2LFjGjdunKKjozVnzpwM40eNGqXLly8rODiYcAQAAAAAAAAAAACeWbGxsbp586YSExPzupQCzdLSUnZ2dnJ3d38iny8ajEajMddXxSPFxsbK2dlZMTExcnJyyutykE2HDh1SpUqV5OrqatYeHR2tdu3aKTg4WF27dtXKlStNfUajUX5+fgoKClJAQICmT59udspEUlKSjh8/rjp16mS5js6dO2vt2rWqXr26tmzZotKlS0uSrl27pjZt2ujw4cMaOXKkJk6caDYv/QSJl19+WUFBQVner1atWoqIiNCJEydUuXJlxcXFqU6dOjp37pyioqJUvHhx09iQkBA1aNBAAQEBmjdvXpb3AAAAAAAAAAAAAPKT2NhYXblyRQ4ODnJ2dn7ipxw8j4xGo1JTU5WQkKCYmBilpaXJ09NTdnZ2j5ybnc/eCUjkEQISBdfevXvVtGlTubq6Kjo62tS+ePFivfvuu3rttde0devWHO/z559/ytPTU0ajUb/99puaNWtm1n/8+HHVqFFDhQsX1rVr1+To6Gjqe5yARFJSkuzs7OTn56dt27aZ2idOnKhRo0bpp59+Ups2bSRJqampqlu3rq5fv66IiAj+Nw4AAAAAAAAAAIBn1u+//y5ra2t5enoSjHgKUlNT9ccff8jKykpeXl6PHJ+dz94tcqtIAH+zsvr75hpbW1uz9tmzZ0uShg0bliv7hISEyGg0ysbGRk2bNs3Q/8ILL6hYsWJKSEjQli1bcrzfnTt3lJqamuHUjKJFi0qS7t27Z2qbOXOmQkNDNXfuXMIRAAAAAAAAAAAAeGYlJycrMTFRzs7OhCOeEktLS7m6uiouLk4pKSm5urZVrq4GPOfu3r2rsWPHSpLpNAXp7ysvwsLCZGlpqZdeekm///671qxZo0uXLsnBwUH169dX27Zts3WPTnogwcXFRRYWmWed3NzcdOPGDf33v/9Vly5dMvRfu3ZNX3zxha5cuaJChQrJ29tbrVu3zjSJ5e7uLjs7O506dcqsPf37UqVKSZIuXbqkMWPGqH379mrXrl2WnwcAAAAAAAAAAADIb1JTUyVJ1tbWeVzJ8yX9H6OnpKSY/oF6biAgAeTAtm3btGLFCqWlpenatWs6cOCA7t69K39/f02dOtU07vjx45L+Pm3h22+/1dChQ5WcnGy2Vvny5bVhwwa98MILWdrb3d1dknT9+nXdu3dPDg4OZv1paWn6448/JEkXL17MdI3Tp09rzJgxZm1WVlYaMGCApk2bluH/bNq0aaNVq1ZpxowZ6tOnjw4ePKglS5bI3d1dDRo0kCT169dPVlZWmjt3bpaeAwAAAAAAAAAAAMjvOD3i6XpS75srNoAciIiI0LJly/T9999r27Ztunv3rrp3766lS5fK2dnZNC46OlqSdOvWLQ0cOFBt27bViRMndPfuXR04cED169fX77//Ln9/f9PYR6lfv77s7OwkSd9++22G/uXLlys+Pl7S3/fu/JOzs7MGDRqk3bt36+rVq4qLi9Px48c1ePBgGQwGzZw5U/3798+w5uTJk+Xh4aGhQ4fK2dlZr732mu7fv69FixbJ1tZWK1eu1NatWzVlyhSVLFnSNO/+/fumdB0AAAAAAAAAAAAA5AWD0Wg05nURz6PY2Fg5OzsrJiZGTk5OeV0Ocig5OVmXL1/WTz/9pAkTJshgMGjDhg1q2rSpJGnlypXq3r27JKlhw4bav3+/2fy7d++qUqVKpisvRo8enaV9P//8c40fP16FChXS1KlT1alTJ1laWmrTpk0aPHiwEhMTlZycLH9/f/3yyy9ZWvPHH3/Uv/71L0lSaGioatasadZ/8+ZNLV68WOfPn5eHh4d69Oghb29v3b59W97e3qpUqZL27t0rg8Gg1atX6/PPP9fZs2dlbW2tli1bau7cuSpXrlyWagEAAAAAAAAAAADy0v3793Xx4kWVK1dOhQoVyutynhvZee/Z+eydEySAXGBtba0KFSpoyJAh+uWXX3T79m299dZbSkhIkCQ5OjqaxgYEBGSY7+joqLfeekuStGPHjizvO2bMGL3//vu6f/++PvroI5UsWVIeHh567733VLt2bb3zzjuSJFdX1yyv2aFDB1MoIjAwMEO/m5ubPvnkEy1cuFDjx4+Xt7e3JOnjjz/WnTt3tHDhQhkMBv3000/q2rWr3N3dtX79es2cOVP79u1T8+bNde/evSzXAwAAAAAAAAAAAAC5gYAEkMvq16+vqlWrKjIyUiEhIZKk8uXLm/r/+et/Sm+/evVqlveytLTUggULdPz4cU2YMEF9+/bVkCFDtGnTJv3222+mqzV8fX2z9Qw+Pj6SpKioqCyN3717t5YsWaLhw4eratWqkqQpU6bI3t5emzZtUocOHfTBBx9oypQp+uOPP7RixYps1QMAAAAAAAAAAADgyQgKCpLBYFCzZs3yupQnziqvCwAKInt7e0nS9evXJUmVK1eWo6Oj7t69q5s3b2Y6J73dwcEh2/v5+vpmCEEYjUbt27dPktSyZctsrRcdHS3J/OSLB0lMTFRAQICqVKmikSNHmtqPHTum6tWrq0iRIqa2xo0bm/oAAAAAAAAAAAAA/C0oKEjNmzfXyy+/rKCgoLwup8DiBAkgl928eVNhYWGS/g5GSJKVlZXatWsn6cFXaGzfvl2SVK9evVypY82aNbp8+bIaNmyoF198Mcvzrly5or1792a5lokTJ+rs2bP65ptvZGtra2o3GAyKi4szG5v+vcFgyHI9AAAAAAAAAAAAAJAbCEgA2RQREaEffvhB9+/fz9B39uxZderUSYmJiWrQoIHZqQ4jR46UtbW1Fi1apM2bN5vN+/LLLxUcHCxLS0t98MEHZn0bNmyQt7e3WrRokWG/P//8U5GRkRnaN2/erL59+8rW1lZff/11hv5Zs2ZlepLF8ePH9eabbyohIUEVKlRQ27ZtH/wi9Pe7mDp1qvr06aOmTZua9dWuXVunTp0ynWIhSQsXLjT1AQAAAAAAAAAAAMDTREACyKbr16/rrbfekpubm5o0aaJu3brpX//6l+rWrSsfHx8FBQXJx8dHq1evNpvn7e2tRYsWKTU1VW+++abq1q2rTp06ycfHR5988oksLS21YMGCDFdlxMTE6MyZM7pw4UKGWg4fPqwyZcqoVq1a6tChg7p06SIfHx+9+eabSktL08aNG/XCCy9kmDdmzBgVL15cderUUadOndSlSxfVqVNHtWrVUmhoqLy8vBQYGGh2IsT/MhqN6tu3r1xdXTVt2rQM/aNGjZLBYFDLli3Vtm1b1a9fX4sXL1bFihXVrVu3rL5uAAAAAAAAAAAA4Jl17tw5vfPOOypXrpxsbW3l4OCgMmXKqHXr1lqyZIkkqVmzZmrevLkkaffu3TIYDKavsmXLmtbq1auXDAaDli5dqvDwcHXp0kUlSpSQpaWlxo4daxp369YtjRw5UtWqVZOdnZ0cHR314osvatq0aUpISMhW/Tdu3NBLL70kg8GgLl26KDEx0dR3+/ZtjRkzRjVr1pSjo6Ps7Ozk6+urCRMmKD4+/vFf2hNkldcFAM+aatWqaeLEidq7d69Onz6t0NBQJScny9XVVS1atFCHDh3Uu3fvTMMF//d//6eqVatq6tSp2rt3r8LCwlS0aFF16tRJH3/8cbav16hevbp69uypAwcOaPv27UpNTZWXl5cGDx6soUOHqlSpUpnO++yzz7Rv3z6dPHlS27dvV1xcnJycnPTSSy+pbdu2CggIkKOj40P3Xrhwofbt26c1a9bIxcUlQ7+/v782bdqkL774Qlu3bpWdnZ26du2qr776SnZ2dtl6TgAAAAAAAAAAAOBZEx4erkaNGik2NlZVqlTRG2+8IUtLS0VFRWnPnj26cuWKevfuLX9/fxUqVEi//vqrPDw85O/vb1rDzc0tw7r79+/X+++/rxIlSqhp06ZKSEgwfbb3+++/y8/PT3/88YeKFSumVq1aKTk5Wb/99ps+/fRTrV69Wjt27FCRIkUeWf/Zs2fVqlUrXbhwQZ988ommTJkig8Eg6e+T5v39/RUZGakSJUqocePGsra21uHDhzV69GitX79eQUFBcnZ2zqW3mTsMRqPRmNdFPI9iY2Pl7OysmJgYOTk55XU5AAAAAAAAAAAAAID/cf/+fV28eFHlypVToUKFsjX3nXfe0ZIlSzRhwgR99tlnZn0JCQk6cuSI6Rr7oKAgNW/eXC+//LKCgoIyXa9Xr15atmyZJGn48OGaOHGiLCzML41o0KCBDh06pDZt2mjFihWyt7eX9PdJEP7+/jp69Ki6d++uH374wTQns7337t2rdu3aKSYmRvPmzVNAQIBZ7b6+vrpw4YJGjRql0aNHy8bGRpIUHx+vPn36aOXKlerdu7cWL16crXeWLjvvPTufvXPFBgDgifjhhx/Us2dP1ahRQ+7u7rK2tpazs7Pq1aunyZMn6969exnmjB071uzYqMy+Tp8+ne1aUlJSNH/+fDVu3FhFihSRtbW13Nzc1KJFCy1btkxpaWkPnLty5Uo1b95cRYoUUaFChVS5cmUNGzZMt2/ffuCcFStWqFq1arK1tZWXl5fGjh2r1NTUTMfGxcWpbNmyql69upKSkrL9bAAAAAAAAAAAIH+6du2aJKlVq1YZ+goXLmwKR2RX5cqVNWHChAzhiODgYB06dEh2dnZauHChKRwhScWKFdPChQslSatWrVJUVNQD11+5cqVatmyppKQkBQYGmoUjJGnZsmW6cOGC3njjDY0fP94UjpBk2tvd3V3ff//9Qz9PyQtcsQEAeCIWLFig/fv3y8fHR7Vr15arq6uuXbumAwcO6MiRI1q8eLF2796tkiVLZphbo0YN1axZM9N1s3sUU2Jiol599VXt2bNHNjY2aty4sYoVK6bIyEj99ttv2rVrlzZu3Kgff/zRdCyUJBmNRvXq1UvLly+XpaWl6tWrp+LFiyskJETTp0/X6tWrFRwcLC8vL7P9Nm/erB49eqhIkSJq3bq1jh07pnHjxik6Olpz5szJUN+oUaN0+fJlBQcHm/0BAgAAAAAAAAAAPNvq1aunLVu2qF+/fho3bpxefvnlbJ9CkZl27drJ0tIyQ3v66Q/+/v7y8PDI0P/iiy+qRo0aCgsL0+7du9WjR48MYyZNmqRRo0apRIkS+vnnnzP9vObnn3+WJHXp0iXT+hwcHFSnTh1t2bJFR44c0auvvpqNp3uyCEggx9YdvpHXJQD5Xsd6xfK6hKfuq6++UqVKleTq6mrWHh0drXbt2ik4OFhDhw7VypUrM8xt166dxo4dmyt1zJ8/X3v27FGZMmW0Z88es0BDSEiI/Pz8tHHjRq1evVpdu3Y19S1YsEDLly+Xo6OjNm/ebEpxJicnq3///vr222/VvXt3BQcHm+2XfozUwYMHVblyZcXFxalOnTpasGCBPvvsMxUvXtxs/zlz5qhfv3566aWXcuV5AQAAAAAAAABA/jBs2DAFBwdrx44d8vf3l7W1tWrUqKGmTZuqa9euqlu37mOtW7Zs2Uzbr1y5IkkqV67cA+dWqFBBYWFhprH/tG/fPu3evVuFChXSnj17VKFChUzX+P333yVJb7/9tt5+++2H1nrjRv76LJmABADgiahfv36m7UWLFtWkSZPUtGlTbdu27YnXsWvXLknSBx98kOG0hzp16qhr165atGiRDhw4YBaQmDVrliRpyJAhZkdcWVtba/bs2dqyZYv27dunnTt3qkWLFpKkpKQknThxQn5+fqpcubIkyd7eXm+99ZZGjRqlw4cPq02bNpKk1NRU9e3bV8WLF9fkyZOf3AsAAAAAAAAAAAB5ws7OTtu3b9eRI0e0detW7d+/X/v371dISIhmzJih/v37a968edlet3Dhwk+gWqlatWqytrZWSEiIBgwYoPXr12e6V/rV5Q86qeKfypQp80RqfVwEJAAAT52V1d+//dja2j7xvbJ6VJWbm5vp17GxsTp79qwk6ZVXXskwtnDhwmrUqJHWrl2rdevWmQISd+7cUWpqaoZTM4oWLSpJunfvnqlt5syZCg0N1YYNG+Tk5JS9hwIAAAAAAAAAAM+MunXrmk6LSElJ0caNG9WzZ0/Nnz9fHTt2VPPmzXNln1KlSkn6/yc8ZCa9L33sP7m4uGjTpk1644039Msvv+j111/X5s2b5eDgYDaudOnSOn36tN5991117NgxV2p/WizyugAAwPPl7t27pusz0k9T+F9Hjx7V8OHD1bdvXw0bNkwrVqzQ3bt3H2u/119/XZI0b948Xb582azvv//9r1atWqXChQubHQH1zyBDerjhf6UHKv773/+a2tzd3WVnZ6dTp06ZjU3/Pv0PG5cuXdKYMWPUvn17tWvX7rGeCwAAAAAAAAAAPHusrKzUsWNHvfbaa5KkY8eOSZJsbGwk/R2geFzNmjWTJG3dulXXrl3L0B8aGqpjx47JwsLC7PTsf3JyctLWrVv16quvavfu3XrllVd0+/ZtszHpn72sWbPmsWvNKwQkAABP1LZt29SrVy/17NlTr732mkqVKqVt27bJ399fU6dOzXROYGCgpk6dqkWLFmn69Onq0aOHSpcureXLl2d7//S9//jjD1WqVEktWrRQt27d1LhxY9WtW1flypXTzp07ze7rcnV1laWlpaQHpyzT2y9evGjW3qZNGx0/flwzZsxQbGystm3bpiVLlsjd3V0NGjSQJPXr109WVlaaO3dutp8HAAAAAAAAAAA8G+bPn68zZ85kaP/rr78UEhIi6f9fQeHp6SlJOnfunJKTkx9rv8aNG6t+/fpKSEhQQECA4uPjTX03b95UQECAJKlr164qXbr0A9exs7NTYGCgOnTooEOHDqlZs2ZmgYu+ffuqTJkyWrt2rT799NNM/5HrX3/9pUWLFj3WczxJXLEBAHiiIiIitGzZMrO27t27a8aMGXJ2djZrr1ChgiZNmqTXX3/d9AeCiIgITZkyRZs3b9b//d//ydLSUj169Mjy/hYWFlq6dKleeOEFjRgxQrt27TL12dnZ6ZVXXlGFChXM5hQqVEgvvfSS9u7dq0WLFql169Zm/efOnTOtExsba9Y3efJk/fbbbxo6dKiGDh0qSbK2ttZ//vMf2draauXKldq6davmz5+vkiVLmubdv39f1tbWpmAGAAAAAAAAAAB4ti1cuFAffPCBypUrp+rVq8vJyUk3btzQ3r17lZCQID8/P9Np215eXqpTp45CQkLk6+urOnXqqFChQnJzc9OUKVOyvOeKFSvk5+enn376SeXKlVPTpk2VnJys3377TbGxsapdu3aW/gGnjY2N1qxZo969e+v7779X06ZNtWPHDpUuXVr29vb6+eef9cYbb2jatGlauHChXnjhBXl6eio+Pl5nz57VqVOn5O7urvfee++x39+TwAkSAIAnatCgQTIajUpKStL58+f11Vdf6ZdfflHVqlW1Z88es7Fvv/22RowYoZo1a6pIkSIqUqSIGjVqpMDAQA0YMECSNHjwYCUlJWV5/9jYWL3xxhsaNmyYPvzwQ509e1ZxcXE6ceKE2rVrpxkzZqhevXqKjIw0m/f555/LYDDop59+0vvvv69z584pNjZW27dvNx0dJf0dwPinsmXLKjw8XFOnTtV7772nUaNG6fjx42rTpo1u376tQYMGqVGjRnr//fclSatXr1aVKlVUuHBhFS5cWK1bt85wKgUAAAAAAAAAAHj2TJw4Uf369ZOLi4sOHjyotWvXKiIiQvXr19eyZcu0detWWVn9/zMN1q9fr+7duys2NlarV6/Wd999p1WrVmVrz/Lly+vo0aMaMWKEihYtqs2bN2v79u2qUKGCpkyZouDgYBUpUiRLa1laWmrZsmXq16+fzp49qyZNmuj8+fOSpGrVqun48eOaNm2afHx8dPz4ca1du1aHDh2Svb29Pv74Y23YsCFbtT8NBqPRaMzrIp5HsbGxcnZ2VkxMjJycnPK6nBxZd/hGXpcA5Hsd6xXL6xLylUOHDqlhw4by9PTUmTNnVLhw4UfOuXXrltzd3ZWamqo9e/aoSZMmWdrrvffe07fffqv+/ftr3rx5Gfr9/f3166+/qmfPnhlOuvjuu+/04Ycf6v79+2btpUuX1gcffKDhw4erZMmSunLlSpZqeffdd/Wf//xHoaGhqlq1qn766Se1a9dOjRs31uDBg3X16lV99tlncnFxUXh4uBwcHLK0LgAAAAAAAAAAeDLu37+vixcvqly5cipUqFBel/PcyM57z85n71yxAQB46urXr6+qVavq5MmTCgkJyVLYwdXVVe7u7rp69aqioqKytE9qaqq+//57SVK3bt0yHdO9e3f9+uuv2rFjR4a+d999V61bt9a6det06tQpGQwG1apVS126dNGKFSskSb6+vlmqZffu3VqyZIlGjx6tqlWrSpKmTJkie3t7bdq0yZTWtLS0VL9+/bRixQr17ds3S2sDAAAAAAAAAADg0QhIAADyhL29vSTp+vXrWRqfmpqqmJgYSZKjo2OW5ly/fl2JiYmS9MDEoLOzs6S/T6jITPHixfXhhx9maN+7d68kqWXLlo+sIzExUQEBAapSpYpGjhxpaj927JiqV69udpRV48aNTX0AAAAAAAAAAADIPRaPHgIAQO66efOmwsLCJEmVK1fO0pxNmzYpPj5eBoNBderUydKcokWLytbWVtLf13pk5uDBg5KkcuXKZWlNSbp06ZLWr18vBwcH9erV65HjJ06cqLNnz+qbb74x1SNJBoNBcXFxZmPTvzcYDFmuBwAAAAAAAAAAAI9GQAIAkOsiIiL0ww8/6P79+xn6zp49q06dOikxMVENGjQwXVFx+fJl/ec//8l0zsaNG9WnTx9JUo8ePVS8eHGz/sOHD8vb21ve3t5m7TY2NmrTpo0kafTo0Tp+/LhZ/86dO/Xvf/9b0t9XbfxTUlKSQkNDM9Ry+vRptW7dWgkJCfrqq69UtGjRh70KRUREaOrUqerTp4+aNm1q1le7dm2dOnVK+/btM7UtXLjQ1AcAAAAAAAAAAIDcYzAajca8LuJ5FBsbK2dnZ8XExDzw2PdnxbrDN/K6BCDf61ivWF6X8FQFBQWpefPmsre3V61ateTp6amkpCRdvnxZR48eVVpamnx8fLR161Z5eXlJ+vtKiVq1asnBwUG1atVSqVKllJCQoIiICJ07d06S1Lx5c23atEkODg6Z7idJ//vb2pUrV9S0aVP9/vvvsrS0VIMGDVSqVCn9/vvvCgkJkST5+fnp559/VqFChUzz7ty5oyJFiqh8+fKqUqWKXFxcdOnSJR0+fFhpaWkaN26cRo8e/dD3YDQa1aRJE124cEGnTp2Si4uLWf/WrVvVqlUrFSpUSC1bttRff/2lw4cPq2LFigoLC5OdnV32Xz4AAAAAAAAAAMg19+/f18WLF1WuXDmzzxHwZGXnvWfns3er3CwSAABJqlatmiZOnKi9e/fq9OnTCg0NVXJyslxdXdWiRQt16NBBvXv3NrtuonTp0vr000915MgRnT9/XkePHlVSUpLc3Nz0xhtvqHv37urSpYssLLJ3+FGpUqV07NgxzZ49Wz/99JNOnDihgwcPytnZWS+//LK6d++ud999V5aWlmbz7Ozs9NFHH2nv3r06ePCg4uLi5O7urq5du2rgwIGqV6/eI/deuHCh9u3bpzVr1mQIR0iSv7+/Nm3apC+++EJbt26VnZ2dunbtqq+++opwBAAAAAAAAAAAQC7jBIk8wgkSwPPleTtBAgAAAAAAAAAAoCDgBIm88aROkMjeP8MFAAAAAAAAAAAAAAB4BhGQAAAAAAAAAAAAAAAABZ5VXhcAAM+DO1vn5HUJQL7m4j8gr0sAAAAAAAAAAAAFHCdIAAAAAAAAAAAAAACAAo+ABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAAACjwrPK6AAAAAAAAAAAAAAAAnmXrDt/I6xKypWO9Yk9k3bVr12revHkKCwtTUlKSKlasqB49emjw4MGytrZ+IntmR74/QWLt2rVq1qyZihQpInt7e9WoUUPTpk1TcnJyttbZv3+/+vfvr4YNG6pUqVIqVKiQ7O3tVbVqVQ0YMECXLl3KdF5QUJAMBsNDv77++utceFIAAAAAAAAAAAAAAJ5NgwYNUufOnbVv3z7Vq1dP/v7+unz5sj799FP5+fkpISEhr0vM3ydIDBo0SLNmzZKVlZX8/Pzk4OCgXbt26dNPP1VgYKC2bdumwoULZ2mtLVu2aMGCBfLy8lKVKlXk4eGhmJgYHT16VHPnztWSJUu0efNmNWvWLNP5Hh4e8vf3z7SvSpUqj/uIAAAAAAAAAAAAAAA80zZu3KhZs2bJwcFBu3fvVu3atSVJN2/elJ+fn4KDgzV69GhNnz49T+vMtwGJ3H6BPXr0UJ8+fVS2bFmz9qSkJH3yySeaNWuW3n77bV26dEmWlpYZ5nt7e2vp0qU5fSwAAAAAAAAAAAAAAAqUSZMmSZKGDx9u+mxfktzc3DR//nw1adJEc+fO1ejRo+Xs7JxXZebfKzYe9QIlae7cuYqJicnSej4+PhnCEZJkY2OjL7/8UoUKFVJUVJQiIiJyXjwAAAAAAAAAAAAAAM+BK1eu6MiRI5Kk7t27Z+hv3LixSpcurcTERG3ZsuVpl2cmXwYknvYLNBgMsrD4+1XY2trmeD0AAAAAAAAAAAAAAJ4HoaGhkiRXV1eVK1cu0zF16tQxG5tX8uUVG1l9gZGRkQoNDVW3bt0ee6/U1FSNGzdO8fHxqlq1qipWrJjpuGvXrumLL77QlStXVKhQIXl7e6t169by8vJ67L0BAAAAAAAAAAAAAHiWXbx4UZIe+tl56dKlzcbmlXwZkHiSL/Dy5cv6/PPPJUm3bt1SaGiooqKiVLFiRa1Zs8Z0ksT/On36tMaMGWPWZmVlpQEDBmjatGmyssqXrxIAAAAAAAAAAAAAgCfm7t27kiR7e/sHjnFwcJAkxcbGPpWaHiRffqr/JF/grVu3tGzZMrO22rVra/HixapWrVqG8c7Ozho0aJDat2+vypUry8nJSRcuXNCSJUs0d+5czZw5U/fu3dPChQsfum9iYqISExNN3+f1f3gAAAAAAAAAAAAAAJ4nmR+XUIDVrFlTRqNRaWlpioqK0po1axQfH68XX3xRs2fPzjC+Vq1amjlzppo2barixYvLzs5Ovr6+mjFjhlatWiVJWrRokY4dO/bQfSdPnixnZ2fTV/oJGAAAAAAAAAAAAAAAPKscHR0lSXFxcQ8cc+/ePUmSk5PTU6npQfJlQOJpvECDwaBSpUqpU6dOOnDggDw8PDR48GCFhYVleY0OHTqoZs2akqTAwMCHjh0xYoRiYmJMX5GRkY9VNwAAAAAAAAAAAAAA+UXZsmUl6aGfgaf3pY/NK/kyIPG0X6CLi4vat2+vtLQ0bdq0KVtzfXx8JElRUVEPHWdraysnJyezLwAAAAAAAAAAAAAAnmW1atWSJEVHR+vixYuZjgkJCZEk1a5d+6nVlZl8GZDIixdob28vSbp+/Xq25kVHR0v6/6deAAAAAAAAAAAAAADwvPD09FTdunUlSStWrMjQHxwcrMjISNna2qpVq1ZPuzwz+TIgkRcvcNeuXZKkypUrZ3nOlStXtHfvXklSvXr1cqUOAAAAAAAAAAAAAACeJSNHjpQkTZkyRUePHjW1R0dHq3///pKkDz/8UM7OznlSX7p8GZCQHu8FbtiwQd7e3mrRokWG9SZPnqwbN25kaL99+7YGDBigkJAQOTs7q3Pnzmb9s2bN0s2bNzPMO378uN58800lJCSoQoUKatu27eM9KAAAAAAAAAAAAAAAz7B27dpp4MCBunfvnho0aKDXX39dHTt2VMWKFXXixAk1atRI48ePz+syZZXXBTxI+gucPXu2GjRooBYtWsje3l47d+7UnTt3Mn2BMTExOnPmjO7fv59hvZEjR2r06NHy9fVVhQoVZGVlpStXrig0NFRxcXFydnbW2rVr5eHhYTZvzJgxGjp0qGrWrKly5crJwsJCFy5cUGhoqNLS0uTl5aXAwEDZ2to+0fcBAAAAAAAAAAAAAEB+NWvWLDVq1Ejz5s3T/v37lZycrAoVKmj48OEaPHiwbGxs8rrE/BuQkHL3Bc6dO1d79+5VaGiodu7cqXv37snR0VG+vr567bXX1K9fvwzhCEn67LPPtG/fPp08eVLbt29XXFycnJyc9NJLL6lt27YKCAiQo6Njbj42AAAAAAAAAAAAAOAZ0rFesbwuIV/o3Llzhlsb8hOD0Wg05nURz6PY2Fg5OzsrJiZGTk5OeV1Ojqw7nPHqEgDmXrm1Kq9LAPI1F/8BeV0CAAAAAAAAAAAZ3L9/XxcvXlS5cuVUqFChvC7nuZGd956dz94tcrNIAAAAAAAAAAAAAACA/IiABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAACAAo+ABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAAAgAKPgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAIACj4AEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAACAAs8qrwsAAAAAAAAAAAAAAOBZdmfrnLwuIVtc/Afk6npnzpzRtm3b9N///lf//e9/derUKaWmpmr8+PEaNWpUru6VEwQkAAAAAAAAAAAAAADAY1uwYIFmzZqV12U8EldsAAAAAAAAAAAAAACAx1a9enV9/PHH+uGHH3Tq1Cm9/fbbeV1SpjhBAgAAAAAAAAAAAAAAPLY+ffqYfW9hkT/PasifVQEAAAAAAAAAAAAAAOQiAhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwCMgAQAAAAAAAAAAAAAACjwCEgAAAAAAAAAAAAAAoMAjIAEAAAAAAAAAAAAAAAo8AhIAAAAAAAAAAAAAAKDAIyABAAAAAAAAAAAAAAAKPAISAAAAAAAAAAAAAACgwLPK6wIAAAAAAAAAAAAAAMCz6+jRo+rfv7/p+wsXLkiSvvnmG23evNnUvmHDBpUoUeKp15eOgAQAAAAAAAAAAAAAAHhssbGxOnToUIb2qKgoRUVFmb5PTEx8mmVlQEACAAAAAAAAAAAAAIAccPEfkNcl5KlmzZrJaDTmdRmPZJHXBQAAAAAAAAAAAAAAADxpBCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAHgIo9GY1yU8V57U+yYgAQAAAAAAAAAAAABAJiws/v5IPTU1NY8reb6kv+/0959bCEgAAAAAAAAAAAAAAJAJa2trWVpaKiEhIa9Lea7cvXtX1tbWsra2ztV1CUgAAAAAkn744Qf17NlTNWrUkLu7u6ytreXs7Kx69epp8uTJunfv3gPn7tixQ61atZKbm5sKFy4sb29vffbZZw+d8yDNmjWTwWB45Nc777yT6fxr167pww8/VLly5WRraysPDw916tRJR48efeCe27dvV926dVWoUCEVL15cAwcOfOAPfGlpaapXr56KFy+u27dvZ/v5AAAAAAAAgGeJwWCQnZ2dYmJiOEXiKUlISFBsbKwcHR1lMBhydW2rXF0NAAAAeEYtWLBA+/fvl4+Pj2rXri1XV1ddu3ZNBw4c0JEjR7R48WLt3r1bJUuWNJs3c+ZMDRkyRAaDQU2aNJGHh4f27t2rSZMmaf369QoODpabm1uW6/D391fZsmUz7UtKStLKlSslSc2bN8/Qf/bsWTVp0kTXr19X+fLl1a5dO128eFHr1q3Txo0btWbNGrVv395szrFjx9SqVSvZ2Njotdde04ULFzRnzhxdvHhRgYGBGfaYM2eOjhw5opUrV6pIkSJZfi4AAAAAAADgWeXu7q5Lly7pjz/+kKurq2xtbXP9g/vnndFoVGpqqu7evavY2FjZ2tpm6+9Vs8pgNBqNub4qHik2NlbOzs6KiYmRk5NTXpeTI+sO38jrEoB875Vbq/K6BCBfc/EfkNclADp06JAqVaokV1dXs/bo6Gi1a9dOwcHB6tq1qymgIEmhoaF68cUXZWFhocDAQL3++uuSpPj4eLVp00Y7d+7Uv/71L61bty5XalyzZo26dOkiZ2dnXb16VYULFzb1GY1GvfjiiwoNDdXbb7+tJUuWyNLSUpK0cOFCBQQEyMHBQefOnVPx4sVN89q3b6+NGzfqt99+U7NmzZSSkqKWLVsqKChIR44cUZ06dUxjIyMjVbVqVTVt2lQ///xzrjwTAAAAAAAA8CyIj4/XzZs3FRcXl9elFGjW1tZydHSUm5ub6e83HyU7n71zggQAAAAgqX79+pm2Fy1aVJMmTVLTpk21bds2s77JkyfLaDSqd+/epnCEJNnZ2em7775T+fLltX79ep0+fVre3t45rvG7776TJHXr1s0sHCFJv/zyi0JDQ+Xi4qL58+eb/fDQt29frVmzRjt37tSsWbM0efJkU19ISIgqVaqkZs2aSZKsrKzUp08fBQUFaf/+/WYBiQ8++EBGo1Hz58/P8bMAAAAAAAAAzxI7Ozt5eXkpJSVFKSkpeV1OgWRhYSFra+snejoHAQkAAADgEays/v5js62traktKSnJdIpC9+7dM8wpU6aMGjVqpL1792rDhg0aMWJEjmqIjIzUjh07JEnvvvtuhv4NGzZIktq0aSMHB4cM/d27d9fOnTv1448/mgUkoqOj9cILL5iNLVq0qCTp3r17prZ169YpMDBQM2fOVJkyZXL0LAAAAAAAAMCzysrKyvT3hXj2WOR1AQAAAEB+dvfuXY0dO1bS3+GDdGfPnlV8fLwkmZ2y8E/p7aGhoTmuY+nSpUpLS9MLL7yQ6X7pezyqlnPnzpkdA1i2bFlduHBBycnJprZTp05JkkqVKiVJiomJ0cCBA1WnTh0NHDgwx88CAAAAAAAAAHmBgAQAAADwD9u2bVOvXr3Us2dPvfbaaypVqpS2bdsmf39/TZ061TTu4sWLkiQXFxc5Ojpmulbp0qXNxj4uo9GopUuXSsr89Ih/7uHl5fXQWoxGoy5dumRqb9u2rW7evKnhw4frzp07OnLkiKZPny4bGxu99tprkqRPP/1UN27c0KJFi2RhwY8QAAAAAAAAAJ5NnP0BAAAA/ENERISWLVtm1ta9e3fNmDFDzs7Opra7d+9Kkuzt7R+4VvpVF7GxsTmqKSgoSL///rtsbW311ltvZTrmUfX889qNf9YzfPhwbdiwQTNmzNCMGTMkSQaDQfPmzVPx4sW1b98+LVy4UMOGDVPNmjVN85KSkmRhYcFxggAAAAAAAACeGfzzLwAAAOAfBg0aJKPRqKSkJJ0/f15fffWVfvnlF1WtWlV79uzJk5q+++47SX+f9uDq6pqrazs7OyskJERz5sxR3759NWzYMB06dEj9+vVTcnKyAgICVL58edM1Izt37lTt2rVla2srW1tbNW3aNFeuEAEAAAAAAACAJ41/7gUAAABkwtraWhUqVNCQIUPUqFEjNWzYUG+99ZbOnDmjwoULm67ViIuLe+Aa9+7dkyQ5OTk9dh0xMTH68ccfJT34eg1JcnR01K1btx5YT3otmdXj4OCgDz/8MMOcKVOm6OTJk9q+fbsKFy6skJAQvf7666pUqZJWrVqlhIQEffbZZ2revLnCw8Pl6en5OI8IAAAAAAAAAE8FJ0gAAAAAj1C/fn1VrVpVkZGRCgkJkSSVLVtWknTnzh3T9Rb/KzIy0mzs41i5cqUSEhLk5eWlV1555YHj0ve4fPnyQ2sxGAwqU6bMI/c9e/asJk6cqJ49e5r2/eqrr5ScnKwNGzaoS5cu6tWrl7777jvFxMRo/vz52XwyAAAAAAAAAHi6CEgAAAAAWWBvby9Jun79uiSpSpUqsrOzkyRTaOJ/pbfXrl37sfddvHixJKl3796ysHjwH9/T93hULZUqVZKDg8Mj9w0ICJCjo6NmzJhhajt27Jjc3NxUuXJlU1vjxo1NfQAAAAAAAACQnxGQAAAAAB7h5s2bCgsLkyRTOMDGxkatW7eWJK1YsSLDnD/++EP79++XJLVv3/6x9g0PD9eRI0dkMBjUu3fvh45N32PTpk2ZXrORXmOHDh0eue/ixYsVFBSkmTNnqmjRoqZ2g8Gg+Ph4GY1GU1v6XgaD4dEPBAAAAAAAAAB5iIAEAAAAnnsRERH64YcfdP/+/Qx9Z8+eVadOnZSYmKgGDRrI19fX1Dd8+HAZDAYtWbJEW7duNbXHx8fr3XffVWpqqv71r3/J29vbbM3Dhw/L29s7Q/v/+u677yRJr7zyyiOvxXj99ddVq1Yt3blzR/3791dqaqqpb+HChdq5c6ccHBz00UcfPXSd69eva9iwYXr11Vf11ltvmfXVrl1b8fHxWrlypdna6X0AAAAAAAAAkJ8ZjP/85194amJjY+Xs7KyYmBg5OTnldTk5su7wjbwuAcj3Xrm1Kq9LAPI1F/8BeV0CnnNBQUFq3ry57O3tVatWLXl6eiopKUmXL1/W0aNHlZaWJh8fH23dulVeXl5mc2fOnKkhQ4bIYDDo5Zdflru7u/bu3aurV6+qSpUqCg4OlpubW6b7SdKD/jienJyskiVL6ubNm1q1apW6dOnyyOc4c+aMmjRpohs3bqh8+fKqW7euLl68qMOHD8vKykpr1qx55GkW3bt3108//aTw8HCVK1fOrC8sLEwNGjRQcnKyWrZsqcTERP32228qWrSoTpw4oRIlSjyyRgAAAAAAAADITdn57J0TJAAAAPDcq1atmiZOnKgmTZooKipKgYGB2rx5s6KiotSiRQstWLBAoaGhGcIRkjR48GBt375dr732mo4fP66ffvpJDg4OGjFihI4cOZIhHJFVmzZt0s2bN+Xq6qp27dplaU6VKlV0/PhxffDBB0pNTdWGDRt08eJFdejQQYcOHXpkOOLXX3/VypUrNXbs2AzhCEmqUaOGdu3apcaNG2v37t06cuSIWrdurb179xKOAAAAAAAAAJDvcYJEHuEECeD5wgkSwMNxggQAAAAAAAAAAHgcnCABAAAAAAAAAAAAAADwDwQkAAAAAAAAAAAAAABAgWeV1wUAAAAg/+EKLeDROtYrltclAAAAAAAAAMgGTpAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABV6+D0isXbtWzZo1U5EiRWRvb68aNWpo2rRpSk5OztY6+/fvV//+/dWwYUOVKlVKhQoVkr29vapWraoBAwbo0qVLD51//vx59erVS56enrK1tZWnp6d69eql33//PQdPBwAAAAAAAAAAAAAAnoZ8HZAYNGiQOnfurH379qlevXry9/fX5cuX9emnn8rPz08JCQlZXmvLli1asGCB/vzzT1WpUkXt27fXyy+/rFu3bmnu3LmqXr26goKCMp27b98+1ahRQ8uWLZOLi4vat28vFxcXLVu2TC+88IIOHjyYS08MAAAAAAAAAAAAAACehHwbkNi4caNmzZolBwcHHTp0SL/++qvWr1+vc+fOydfXV8HBwRo9enSW1+vRo4cuXryoP/74Q7t27dLKlSu1ZcsWXb58WR999JHi4uL09ttvKzU11WxefHy8OnfurPj4eI0YMULh4eFatWqVwsPDNWLECMXFxalz587ZCmsAAAAAAAAAAAAAAICnK98GJCZNmiRJGj58uGrXrm1qd3Nz0/z58yVJc+fOVUxMTJbW8/HxUdmyZTO029jY6Msvv1ShQoUUFRWliIgIs/6lS5fqzz//VOXKlTVhwgSzvgkTJqhy5cqKjIzU8uXLs/N4AAAAAAAAAAAAAADgKcqXAYkrV67oyJEjkqTu3btn6G/cuLFKly6txMREbdmyJcf7GQwGWVj8/SpsbW3N+jZs2CBJ6tq1q2lMOgsLC3Xp0kWS9OOPP+a4DgAAAAAAAAAAAAAA8GTky4BEaGioJMnV1VXlypXLdEydOnXMxj6u1NRUjRs3TvHx8apataoqVqyYaS3p+z2pOgAAAAAAAAAAAAAAwJNjldcFZObixYuSJC8vrweOKV26tNnYrLp8+bI+//xzSdKtW7cUGhqqqKgoVaxYUWvWrDE7JeLu3buKjo5+aC3pddy4cUNxcXGyt7fPdFxiYqISExNN38fGxmarbgAAAAAAAAAAAAAA8PjyZUDi7t27kvTAsIEkOTg4SMp+0ODWrVtatmyZWVvt2rW1ePFiVatWLdM6HlZLeh3ptTxo3OTJkzVu3Lhs1QoAAAAAAAAAAAAAAHJHvrxi40mqWbOmjEaj0tLSFBUVpTVr1ig+Pl4vvviiZs+e/cT2HTFihGJiYkxfkZGRT2wvAAAAAAAAAAAAAABgLl8GJBwdHSVJcXFxDxxz7949SZKTk9Nj7WEwGFSqVCl16tRJBw4ckIeHhwYPHqywsLAMdTyslvQ6HlWLra2tnJyczL4AAAAAAAAAAAAAAMDTkS8DEmXLlpWkh56ykN6XPjYnXFxc1L59e6WlpWnTpk2mdkdHR7m6ukqSLl++/NA63NzcHnolCAAAAAAAAAAAAAAAyDv5MiBRq1YtSVJ0dLQuXryY6ZiQkBBJUu3atXNlz/Rww/Xr183a09dP3+9J1wEAAAAAAAAAAAAAAHJfvgxIeHp6qm7dupKkFStWZOgPDg5WZGSkbG1t1apVq1zZc9euXZKkypUrm7W3b99ekrRq1SqlpaWZ9aWlpWn16tWSpA4dOuRKHQAAAAAAAAAAAAAAIPfly4CEJI0cOVKSNGXKFB09etTUHh0drf79+0uSPvzwQzk7O5v6NmzYIG9vb7Vo0SLDepMnT9aNGzcytN++fVsDBgxQSEiInJ2d1blzZ7P+Xr16qWTJkjp79qxGjx5t1jd69GidPXtWnp6e6tmz5+M/LAAAAAAAAAAAAAAAeKKs8rqAB2nXrp0GDhyo2bNnq0GDBmrRooXs7e21c+dO3blzR40aNdL48ePN5sTExOjMmTO6f/9+hvVGjhyp0aNHy9fXVxUqVJCVlZWuXLmi0NBQxcXFydnZWWvXrpWHh4fZPDs7O61Zs0avvvqqJk2apE2bNql69eoKDw9XeHi47O3ttXbtWhUuXPiJvg8AAAAAAAAAAAAAAPD48u0JEpI0a9YsrV69Wg0bNtT+/fu1ZcsWeXp6asqUKdq1a1e2Qglz585Vx44dFR8fr507d2r9+vU6efKkfH19NWbMGJ05c0YtW7bMdG6jRo0UFhamnj176tatW1q/fr1u3bqlnj17KiwsTA0aNMitRwYAAAAAAAAAAAAAAE+AwWg0GvO6iOdRbGysnJ2dFRMTIycnp7wuJ0fWHc54dQkAc6/cWpXXJQD5mov/gLwuAf+D39+BR+tYr1helwAAAPDYkpOTtWfPHm3dulVBQUE6d+6c4uLiVLRoUdWrV08BAQFq3bp1pnOjo6M1ffp0bd68Wb///ruSk5Pl7u6uhg0basCAAWratGm2agkNDdXWrVu1Y8cOhYeH69atW3JwcFD16tXVtWtX9e3bV9bW1hnmRUREaOHChTp69KguXbqkmzdvymg0qlSpUnr55Zc1aNAg+fr6ZrrnrFmzNGfOHEVGRsrLy0uDBg3SBx98kOnYK1euqGrVqqpfv762bduWrWcDAADAk5edz94JSOQRAhLA84WABPBwBCTyH35/Bx6NgAQAAHiW7dixw3SibvHixfXiiy/K3t5eERERCg8PlyT17dtXX3/9tQwGg2nehQsX1LRpU/35558qWrSo6tevLzs7O508eVKnTp2SJH311VcaMmRIlupISUkxhR8cHBxUt25deXh4KCoqSgcOHFBqaqrq1aunX3/9VS4uLmZzv/32W7333nvy8PBQlSpVVLx4ccXHx+vEiRP6448/ZGVlpeXLl6tbt25m8+bOnasBAwaoRIkSatCggQ4cOKC//vpL06dP19ChQzPU2L59e23btk0nTpxQ+fLls/aCAQAA8NQQkHgGEJAAni8EJICHIyCR//D7O/BoBCQAAMCzbNeuXZo/f74++ugjNWnSxKxv9erV6tGjh1JTU7Vs2TL17NnT1Ne2bVtt2rRJrVu31urVq2Vvb2/qW7hwoQICAmRlZaWLFy/K09PzkXWkpKSoQYMG+vTTT9WmTRvZ2tqa+k6cOKHXXntNV69eVe/evbV48WKzuZcuXdL9+/fl7e1t1p6WlqYZM2Zo2LBhsrOzU1RUlIoUKSJJSk1NVfHixSVJp06dkpubm65fvy4fHx+lpaXp+vXrZqdVbNiwQR06dNC0adM0bNiwRz4PAAAAnr7sfPZu8ZRqAgAAAAAAAADkE35+flq3bl2GcIQkdenSRb169ZIkLV++3Kxv165dkqQxY8aYhSOkv0+cqFSpklJSUnTkyJEs1WFlZaWQkBB16tTJLBwhSb6+vpo2bZokadWqVUpOTjbrL1u2bIZwhCRZWFjo448/Vvny5RUfH6/g4GBTX/pVHO3bt5ebm5skyd3dXR06dNCdO3dMp2BI0t27dzVgwADVrFlTgwcPztLzAAAAIH8jIAEAAAAAAAAAMFOrVi1JUmRkpFl7oUKFsjQ/PXyQW3UkJCTo5s2b2ZprZWUlSWbBi+joaEmSq6ur2diiRYtKku7du2dqGzFihP766y8tWrTItBYAAACebQQkAAAAAAAAAABmzp07J0kqUaKEWfvrr78uSRo3bpzi4+PN+hYtWqRz587J19dXDRs2zNU6bGxsMoQaHmbhwoU6e/as3N3d1aBBA1N72bJlJcnspIh/fl+qVClJ0sGDB7VgwQINHDhQderUyckjAAAAIB8h9goAAAAAAAAAMPnrr7+0dOlSSdK//vUvs74vv/xSERER+vnnn+Xl5aUGDRrIzs5OJ0+e1OnTp9W6detcO3HBaDSarth44403MlzBkS4+Pl79+/eXJMXExCg8PFznz5+Xh4eH1q5da3YPtbu7uxo2bKiff/5Zq1atUuvWrbV582b9/PPPeuGFF1SmTBklJyerb9++Kl26tMaPH5/j5wAAAED+QUACAAAAAAAAACBJSklJ0VtvvaWYmBj5+voqICDArN/Dw0NBQUHq16+f/vOf/+jnn3829ZUuXVp+fn4qVqxYrtQybtw4HThwQA4ODpoyZcoDxyUlJWnZsmVmbeXLl9d3332nJk2aZBg/e/ZsNW/eXN26dTO1OTk5adGiRZKk6dOn68SJE9qyZYvs7e1NYxISElSoUCEZDIacPhoAAADyCFdsAAAAAAAAAAAkSe+//7527typokWLat26dbKxsTHrP336tGrVqqXAwEDNnz9fkZGRiomJUVBQkDw8PDR06FC1atVKqampOapj+fLl+uKLL2RhYaHFixerUqVKDxzr4uIio9Eoo9Gov/76S1u2bFGxYsXUvHlzDRs2LMP4OnXqKDw8XOPGjdN7772n8ePHKzw8XPXq1dOFCxc0fvx4devWzXSdyJw5c1S6dGnZ2dnJ3t5e3bt3V3R0dI6eDwAAAHnDYDQajXldxPMoNjZWzs7OiomJMTvi7Vm07vCNvC4ByPdeubUqr0sA8jUX/wF5XQL+B7+/A4/WsV7u/MtIAACA/OKjjz7S7NmzVaRIEe3cuVO1atUy609JSVGNGjUUERGhNWvWqFOnTmb9t2/fVtWqVfXXX39p8eLF6t2792PVsXbtWnXr1k1paWn69ttv9c4772R7jaSkJNWvX1/Hjh1TYGCg3njjjSzNe+WVVxQaGqpTp07J3d1ds2fP1kcffaS2bduqd+/eioiI0NixY1WjRg0dPHhQFhb8G0QAAIC8lp3P3vnTGwAAAAAAAAA854YOHarZs2fLxcVF27ZtyxCOkKRDhw4pIiJCtra26tChQ4b+IkWKmE5d2LFjx2PV8eOPP6p79+5KS0vTN99881jhCEmysbFRjx49JEkbNmzI0pxly5Zp586dmj59utzd3SVJU6ZMUZkyZbRu3Tq1bdtWI0aM0ODBg3XkyJHHfkYAAADkHQISAAAAAAAAAPAc++STTzRjxgw5Oztr27ZtqlOnTqbjLl++LEmys7OTpaVlpmOcnZ0lSbdu3cp2HRs3blTXrl2VmpqqBQsW6L333sv2Gv9kb28vSbp+/fojx968eVNDhw5V8+bNTSdfXLt2TVevXlXdunVlZWVlGtu4cWNJ0rFjx3JUHwAAAJ4+AhIAAAAAAAAA8JwaPny4vvzySzk7O2v79u2qW7fuA8eWKlVK0t9XaZw7dy7TMYcOHZIklStXLlt1BAYGqnPnzkpJSdGCBQsUEBCQrfmZ2blzpySpcuXKjxw7ZMgQxcXF6ZtvvjG1GQwGSVJcXJzZ2PTv0/sBAADw7CAgAQAAAAAAAADPoVGjRmnq1KlycXF5ZDhCkho2bGgKSfTp00c3btww9aWlpWnKlCk6cOCAJKlbt25mczds2CBvb2+1aNEiw7pbtmxRx44dlZKSoq+//jrL4Yh///vfioyMzNAeHx+vCRMmaP369bKysjKdCPEgO3bs0Pfff6/Ro0erUqVKpnZ3d3d5enrqt99+04ULFyRJqampWrx4sSSpdu3aWaoTAAAA+YfVo4cAAAAAAAAAAAqSTZs2aeLEiZKkihUrat68eZmOc3Nz0/Tp0yVJ1tbWWr58ud58803t2bNHFStWVP369eXo6KiwsDBTiGDkyJFq0qSJ2ToxMTE6c+aM7t+/b9Z+/fp1dejQQUlJSfL09NT+/fu1f//+TGuZPn263NzcTN//+9//1pAhQ+Tj46MqVaqoUKFCunr1qsLCwnT79m3Z2tpq0aJFql69+gPfQ0JCgt5//335+vpq2LBhGfpHjx6tgIAA1alTR82bN9fZs2d18uRJNWrUSH5+fg9cFwAAAPkTAQkAAAAAAAAAeM7cunXL9OuQkBCFhIRkOq5MmTKmgIQk+fn56cSJE5oxY4Z27typ4OBgpaSkqFixYmrfvr369eunli1bZrmO+Ph4JSYmSpKioqK0bNmyB44dO3asWUBi0qRJ2rZtm0JCQrRnzx7duXNH9vb2qlChgt59913169dP5cuXf+j+X3zxhS5evKj9+/fL2to6Q3/fvn1lY2Oj6dOna/PmzXJxcVFAQICmTp3KFRsAAADPIIPRaDTmdRHPo9jYWDk7OysmJkZOTk55XU6OrDt849GDgOfcK7dW5XUJQL7m4j8gr0vA/+D3d+DROtYrltclAAAAAAAAAM+97Hz2bvGUagIAAAAAAAAAAAAAAMgzBCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeFZ5XQAAAAAAAAAA5LU7W+fkdQlAvufiPyCvSwAAAMgRTpAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDgEZAAAAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAABQ4BGQAAAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAUOARkAAAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAAFDg5fuAxNq1a9WsWTMVKVJE9vb2qlGjhqZNm6bk5ORsrRMaGqrJkyerRYsW8vDwkLW1tYoUKaImTZpo3rx5D1wvKChIBoPhoV9ff/11bjwqAAAAAAAAAAAAAAB4QqzyuoCHGTRokGbNmiUrKyv5+fnJwcFBu3bt0qeffqrAwEBt27ZNhQsXfuQ6KSkpql27tiTJwcFBdevWlYeHh6KionTgwAEFBwdr+fLl+vXXX+Xi4pLpGh4eHvL398+0r0qVKo/9jAAAAAAAAAAAAAAA4MnLtwGJjRs3atasWXJwcNDu3btNAYebN2/Kz89PwcHBGj16tKZPn56l9V588UV9+umnatOmjWxtbU3tJ06c0GuvvabDhw9ryJAhWrx4cabzvb29tXTp0hw/FwAAAAAAAAAAAAAAePry7RUbkyZNkiQNHz7cFI6QJDc3N82fP1+SNHfuXMXExDxyLSsrK4WEhKhTp05m4QhJ8vX11bRp0yRJq1atyvbVHQAAAAAAAAAAAAAAIP/LlwGJK1eu6MiRI5Kk7t27Z+hv3LixSpcurcTERG3ZsiXH+9WqVUuSlJCQoJs3b+Z4PQAAAAAAAAAAAAAAkL/kyys2QkNDJUmurq4qV65cpmPq1KmjyMhIhYaGqlu3bjna79y5c5IkGxsbubq6Zjrm2rVr+uKLL3TlyhUVKlRI3t7eat26tby8vHK0NwAAAAAAAAAAAAAAePLyZUDi4sWLkvTQ8EHp0qXNxj4uo9FoumLjjTfeyHAFR7rTp09rzJgxZm1WVlYaMGCApk2bJiurfPkqAQAAAAAAAAAAAACA8ukVG3fv3pUk2dvbP3CMg4ODJCk2NjZHe40bN04HDhyQg4ODpkyZkqHf2dlZgwYN0u7du3X16lXFxcXp+PHjGjx4sAwGg2bOnKn+/fs/cp/ExETFxsaafQEAAAAAAAAAAAAAgKcjXwYknpbly5friy++kIWFhRYvXqxKlSplGFOrVi3NnDlTTZs2VfHixWVnZydfX1/NmDFDq1atkiQtWrRIx44de+hekydPlrOzs+kr/QQMAAAAAAAAAAAAAADw5OXLgISjo6MkKS4u7oFj7t27J0lycnJ6rD3Wrl2rd955R9LfAYdOnTple40OHTqoZs2akqTAwMCHjh0xYoRiYmJMX5GRkdneDwAAAAAAAAAAAAAAPB6rvC4gM2XLlpWkh4YI0vvSx2bHjz/+qO7duystLU3ffPONKSjxOHx8fHTs2DFFRUU9dJytra1sbW0fex8AAAAAAAAAAAAAAPD48uUJErVq1ZIkRUdH6+LFi5mOCQkJkSTVrl07W2tv3LhRXbt2VWpqqhYsWKD33nsvR7VGR0dL+v+nXgAAAAAAAAAAAAAAgPwnXwYkPD09VbduXUnSihUrMvQHBwcrMjJStra2atWqVZbXDQwMVOfOnZWSkqIFCxYoICAgR3VeuXJFe/fulSTVq1cvR2sBAAAAAAAAAAAAAIAnJ18GJCRp5MiRkqQpU6bo6NGjpvbo6Gj1799fkvThhx/K2dnZ1LdhwwZ5e3urRYsWGdbbsmWLOnbsqJSUFH399ddZDkfMmjVLN2/ezNB+/Phxvfnmm0pISFCFChXUtm3bbD0fAAAAAAAAAAAAAAB4eqzyuoAHadeunQYOHKjZs2erQYMGatGihezt7bVz507duXNHjRo10vjx483mxMTE6MyZM7p//75Z+/Xr19WhQwclJSXJ09NT+/fv1/79+zPdd/r06XJzczN9P2bMGA0dOlQ1a9ZUuXLlZGFhoQsXLig0NFRpaWny8vJSYGCgbG1tc/8lAAAAAAAAAAAAAACAXJFvAxLS36c3NGrUSPPmzdP+/fuVnJysChUqaPjw4Ro8eLBsbGyytE58fLwSExMlSVFRUVq2bNkDx44dO9YsIPHZZ59p3759OnnypLZv3664uDg5OTnppZdeUtu2bRUQECBHR8ecPSgAAAAAAAAAAAAAAHiiDEaj0ZjXRTyPYmNj5ezsrJiYGDk5OeV1OTmy7vCNvC4ByPdeubUqr0sA8jUX/wF5XQL+B7+/A4/WsV6xvC4BAADkojtb5+R1CUC+x8/vAAAgP8rOZ+8WT6kmAAAAAAAAAAAAAACAPENAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBR0ACAAAAAAAAAAAAAAAUeAQkAAAAAAAAAAAAAABAgUdAAgAAAAAAAAAAAAAAFHgEJAAAAAAAAAAAAAAAQIFHQAIAAAAAAAAAAAAAABR4BCQAAAAAAAAAAAAAAECBl6OAhJ+fn6ZNm/bIcdOnT5efn19OtgIAAAAAAAAAAAAAAHhsVjmZHBQUpLJlyz5y3JkzZ7R79+6cbAUAAAAAAAAAAAAAAPDYnsoVG8nJybKw4DYPAAAAAAAAAAAAAACQN55KauHEiRMqWrTo09gKAAAAAAAAAAAAAAAgg2xfsfHOO++YfR8cHJyhLV1KSooiIiJ07NgxtWnT5vEqBAAAAAAAAAAAAAAAyKFsBySWLl1q+rXBYND58+d1/vz5h84pWbKkJk6cmO3iAAAAAAAAAAAAAAAAckO2AxJLliyRJBmNRr3zzjtq3Lix3n333UzH2tjYyNPTUw0aNJC1tXXOKgUAAAAAAAAAAAAAAHhM2Q5I/N///Z/p12PHjlWDBg3M2gAAAAAAAAAAAAAAAPKbbAck/unSpUu5VAYAAAAAAAAAAAAAAMCTY5HXBQAAAAAAAAAAAAAAADxpOTpBIt2hQ4e0Y8cOXblyRffv3890jMFg0HfffZcb2wEAAAAAAAAAAAAAAGRLjgISSUlJ6tatmzZu3ChJMhqNDxxLQAIAAAAAAAAAAAAAAOSVHAUkxo8frw0bNsje3l5vv/22fHx85OTklFu1AQAAAAAAAAAAAAAA5IocBSRWrlwpOzs7HTp0SFWrVs2tmgAAAAAAAAAAAAAAAHKVRU4mR0VFqVGjRoQjAAAAAAAAAAAAAABAvpajgESRIkXk6uqaW7UAAAAAAAAAAAAAAAA8ETkKSLzyyis6dOiQjEZjbtUDAAAAAAAAAAAAAACQ63IUkBg/frxu3bqlsWPH5lI5AAAAAAAAAAAAAAAAuc8qJ5P37Nmj3r17a8KECdq6datat24tLy8vWVhknrvo2bNnTrYDAAAAAAAAAAAAAAB4LDkKSPTq1UsGg0FGo1FHjhxRSEjIQ8cTkAAAAAAAAAAAAAAAAHkhRwGJnj17ymAw5FYtAAAAAAAAAAAAAAAAT0SOAhJLly7NpTIebO3atZo3b57CwsKUlJSkihUrqkePHho8eLCsra2zvE5oaKi2bt2qHTt2KDw8XLdu3ZKDg4OqV6+url27qm/fvg9d7/z585owYYJ27NihGzduqFixYnrllVf0+eefq3z58rnxqAAAAAAAAAAAAAAA4AnJUUDiSRs0aJBmzZolKysr+fn5ycHBQbt27dKnn36qwMBAbdu2TYULF37kOikpKapdu7YkycHBQXXr1pWHh4eioqJ04MABBQcHa/ny5fr111/l4uKSYf6+ffv06quvKj4+XtWqVVPjxo0VHh6uZcuWad26ddqxY4caNGiQ248PAAAAAAAAAAAAAAByiUVuLnb+/HkdOHBAZ8+ezfFaGzdu1KxZs+Tg4KBDhw7p119/1fr163Xu3Dn5+voqODhYo0ePzvJ6L774otasWaObN29q165dWrlypfbu3avQ0FCVKFFChw8f1pAhQzLMi4+PV+fOnRUfH68RI0YoPDxcq1atUnh4uEaMGKG4uDh17txZCQkJOX5mAAAAAAAAAAAAAADwZOQ4IJGamqoJEyaoePHiqlKliho3bqwpU6aY+n/44Qe99NJLOnnyZLbWnTRpkiRp+PDhptMfJMnNzU3z58+XJM2dO1cxMTGPXMvKykohISHq1KmTbG1tzfp8fX01bdo0SdKqVauUnJxs1r906VL9+eefqly5siZMmGDWN2HCBFWuXFmRkZFavnx5tp4PAAAAAAAAAAAAAAA8PTkKSKSmpuqNN97QmDFjdPv2bfn4+MhoNJqNadSokQ4ePKgff/wxy+teuXJFR44ckSR17949Q3/jxo1VunRpJSYmasuWLTl5BElSrVq1JEkJCQm6efOmWd+GDRskSV27dpWFhfnrsrCwUJcuXSQpW88HAAAAAAAAAAAAAACerhwFJL7++mv9+uuvat68uS5evKjw8PAMY8qWLasKFSpo27ZtWV43NDRUkuTq6qpy5cplOqZOnTpmY3Pi3LlzkiQbGxu5urpmWkv6fk+yDgAAAADIr86cOaM5c+aoV69e8vX1lZWVlQwGQ4aT9v5XdHS0RowYIV9fX9nb28vGxkaenp7q1KmT9uzZ81i1xMfHa/LkyapZs6bs7e3l6OiounXras6cOUpNTc10TlBQkAwGw0O/vv7660znrlixQtWqVZOtra28vLw0duzYB+4TFxensmXLqnr16kpKSnqs5wMAAAAAAMCTYZWTycuWLZOrq6vWrl2rIkWKPHCcj4+PwsLCsrzuxYsXJUleXl4PHFO6dGmzsY/LaDSarth44403zK7guHv3rqKjox9aS3odN27cUFxcnOzt7XNUDwAAAADkRwsWLNCsWbOyNefChQtq2rSp/vzzTxUtWlTNmjWTnZ2dTp48qXXr1mndunX66quvNGTIkCyveevWLfn5+SksLEyOjo5q1KiRLC0tdfDgQQ0cOFCBgYHavHmzbGxsMp3v4eEhf3//TPuqVKmSoW3z5s3q0aOHihQpotatW+vYsWMaN26coqOjNWfOnAzjR40apcuXLys4OPiBNQAAAAAAACBv5Cggcfr0aTVu3Pih4QhJcnZ21vXr17O87t27dyXpoWEDBwcHSVJsbGyW183MuHHjdODAATk4OGjKlCmZ1vGwWtLrSK/lQeMSExOVmJhoNhYAAAAAnhXVq1fXxx9/rFq1aql27dqaNGmSvv/++4fOGTJkiP7880+1bt1aq1evNvt5aeHChQoICNCnn36qzp07y9PTM0t1vP/++woLC1P16tW1ZcsWU2j92rVratOmjbZv365x48Zp4sSJmc739vbW0qVLs/bQkkaPHi0bGxsdPHhQlStXVlxcnOrUqaMFCxbos88+U/HixU1jQ0JCNGfOHPXr108vvfRSlvcAAAAAAADA05GjKzZSU1PNTlx4kKtXr2Zp3NO2fPlyffHFF7KwsNDixYtVqVKlJ7bX5MmT5ezsbPpK/0s8AAAAAHgW9OnTR19++aW6d+8ub29vWVg8+sfJXbt2SZLGjBmTIUzet29fVapUSSkpKTpy5EiWavjzzz+1bt06SdKcOXPMfq7y8PDQokWLJEkzZ840C7w/rqSkJJ04cUIvv/yyKleuLOnv8Pxbb72l1NRUHT582DQ2NTVVffv2VfHixTV58uQc7w0AAAAAAIDcl6OARJkyZXT8+PGHjklOTlZ4eHi2wgeOjo6S/r679UHu3bsnSXJycsryuv+0du1avfPOO5KkRYsWqVOnTg+s42G1pNfxqFpGjBihmJgY01dkZORj1Q0AAAAAz4pChQplaZybm1uWxoWEhMhoNMrGxkZNmzbN0P/CCy+oWLFiSkhI0JYtW7JVa2bu3Lmj1NRUubq6mrUXLVpUkvnPgzNnzlRoaKjmzp372D+nAgAAAAAA4MnKUUDC399fly5d0sKFCx84Zs6cObpx44Zat26d5XXLli0rSQ8NEaT3pY/Njh9//FHdu3dXWlqavvnmG1NQ4n85Ojqa/iLs8uXLD63Dzc3toVeC2NraysnJyewLAAAAAAqy119/XdLfVxvGx8eb9S1atEjnzp2Tr6+vGjZsmKX10gMJLi4uDzzBIj1s8d///jfT/mvXrumLL75QQECAPvroIy1YsOCBP++5u7vLzs5Op06dMmtP/75UqVKSpEuXLmnMmDFq37692rVrl6VnAQAAAAAAwNNnlZPJw4YN09KlS9W/f39FRESoc+fOkv4+beHo0aNas2aNZsyYITc3N3344YdZXrdWrVqSpOjoaF28eFHlypXLMCYkJESSVLt27WzVvHHjRnXt2lWpqalasGCB3nvvvYeOr127tnbs2KGQkBC9+eabuVYHAAAAABR0X375pSIiIvTzzz/Ly8tLDRo0kJ2dnU6ePKnTp0+rdevWWrRokayssvajqbu7uyTp+vXrunfvnhwcHMz609LS9Mcff0iSLl68mOkap0+f1pgxY8zarKysNGDAAE2bNi1DLW3atNGqVas0Y8YM9enTRwcPHtSSJUvk7u6uBg0aSJL69esnKysrzZ07N0vPAQAAAAAAgLyRoxMkSpQooY0bN8rFxUWzZ89WkyZNZDAYtG7dOtWtW1fTpk2Tg4OD1q9fn+UjUyXJ09NTdevWlSStWLEiQ39wcLAiIyNla2urVq1aZXndwMBAde7cWSkpKVqwYIECAgIeOad9+/aSpFWrViktLc2sLy0tTatXr5YkdejQIct1AAAAAMDzwMPDQ0FBQXrrrbcUHR2tn3/+WWvXrlVERIRKlSolPz8/FStWLMvr1a9fX3Z2dpKkb7/9NkP/8uXLTSdVxMbGmvU5Oztr0KBB2r17t65evaq4uDgdP35cgwcPlsFg0MyZM9W/f/8Ma06ePFkeHh4aOnSonJ2d9dprr+n+/ftatGiRbG1ttXLlSm3dulVTpkxRyZIlTfPu37+v1NTULD8bAAAAAAAAnrwcBSQkqWnTpjp58qQ++eQTVatWTYULF5atra0qVqyogQMH6sSJE2rcuHG21x05cqQkacqUKTp69KipPTo62vSXVh9++KGcnZ1NfRs2bJC3t7datGiRYb0tW7aoY8eOSklJ0ddff52lcIQk9erVSyVLltTZs2c1evRos77Ro0fr7Nmz8vT0VM+ePbP9jAAAAABQkJ0+fVq1atVSYGCg5s+fr8jISMXExCgoKMgUOmjVqlWWgwSOjo4aOnSoJGnEiBGaPXu2rl69quvXr+vbb7/VgAEDZG1tLUkZruCoVauWZs6cqaZNm6p48eKys7OTr6+vZsyYoVWrVkn6+9qPY8eOmc0rW7aswsPDNXXqVL333nsaNWqUjh8/rjZt2uj27dsaNGiQGjVqpPfff1+StHr1alWpUkWFCxdW4cKF1bp16weeZgEAAAAAAICnK0dXbKTz8PDQlClTNGXKlNxYTpLUrl07DRw4ULNnz1aDBg3UokUL2dvba+fOnbpz544aNWqk8ePHm82JiYnRmTNndP/+fbP269evq0OHDkpKSpKnp6f279+v/fv3Z7rv9OnTzU67sLOz05o1a/Tqq69q0qRJ2rRpk6pXr67w8HCFh4fL3t5ea9euVeHChXPt2QEAAADgWZeSkqJ//etfOn/+vNasWaNOnTqZ+l5++WVt27ZNVatW1fbt27V8+XL17t07S+uOGTNGN27c0Ndff62PPvpIH330kamvadOm8vHx0TfffCNXV9cs19qhQwfVrFlTx44dU2BgoGrWrGnW7+bmpk8++STDvI8//lh37tzRwoULZTAY9NNPP6lr165q3LixJk+erKtXr+qzzz5T8+bNFR4enuFKEAAAAAAAADxduRKQeFJmzZqlRo0aad68edq/f7+Sk5NVoUIFDR8+XIMHD5aNjU2W1omPj1diYqIkKSoqSsuWLXvg2LFjx2a4DqRRo0YKCwvT+PHjtWPHDq1fv17FihVTz5499fnnn6tChQqP/5AAAAAAUAAdOnRIERERsrW1zfRKwiJFiuj111/XkiVLtGPHjiwHJCwtLbVgwQL1799fmzZt0uXLl+Xg4KBmzZqpdevWeuuttyRJvr6+2arXx8dHx44dU1RUVJbG7969W0uWLNHo0aNVtWpVSX+fgGhvb69NmzapSJEipnr79eunFStWqG/fvtmqCQAAAAAAALkrRwGJyMhI/fbbb6pfv76qVKmS6ZjTp0/r8OHD8vPzk6enZ7b36Ny5szp37pylsb169VKvXr0ytJctW1ZGozHbe/9TxYoVHxqsAAAAAAD8f5cvX5b096l8lpaWmY5JvzLx1q1b2V7f19c3QwjCaDRq3759kqSWLVtma73o6GhJf1/j8SiJiYkKCAhQlSpVTNdDStKxY8dUvXp1UzhCkunKyf+9ugMAAAAAAABPn8WjhzzYnDlz1Lt374eGD4xGo3r16qX58+fnZCsAAAAAwDOkVKlSkqTbt2/r3LlzmY45dOiQJKlcuXK5sueaNWt0+fJlNWzYUC+++GKW5125ckV79+6VJNWrV++R4ydOnKizZ8/qm2++ka2trandYDAoLi7ObGz69waDIcv1AAAAAAAA4MnIUUBi27Zt8vHxkbe39wPH+Pj4qGrVqtq6dWtOtgIAAAAAPEMaNmxoCkn06dNHN27cMPWlpaVpypQpOnDggCSpW7duZnM3bNggb29vtWjRIsO6f/75pyIjIzO0b968WX379pWtra2+/vrrDP2zZs3SzZs3M7QfP35cb775phISElShQgW1bdv2oc8VERGhqVOnqk+fPmratKlZX+3atXXq1CnTKRaStHDhQlMfAAAAAAAA8laOr9ho0qTJI8dVrFjR7C+IAAAAAADPlqNHj6p///6m7y9cuCBJ+uabb7R582ZT+4YNG1SiRAlZW1tr+fLlevPNN7Vnzx5VrFhR9evXl6Ojo8LCwkzzR44cmeHnypiYGJ05c0b379/PUMfhw4fVoUMH1ahRQ+XKlZO1tbWOHz+u06dPy8HBQRs3btQLL7yQYd6YMWM0dOhQ1axZU+XKlZOFhYUuXLig0NBQpaWlycvLS4GBgWYnQvwvo9Govn37ytXVVdOmTcvQP2rUKLVq1UotW7ZUy5Yt9ddff+nw4cOqWLFihhAIAAAAAAAAnr4cBSTi4+NVuHDhR44rXLiw7t69m5OtAAAAAAB5KDY21nQlxj9FRUUpKirK9H1iYqLp135+fjpx4oRmzJihnTt3Kjg4WCkpKSpWrJjat2+vfv36qWXLltmqo3r16urZs6cOHDig7du3KzU1VV5eXho8eLCGDh1qOrXif3322Wfat2+fTp48qe3btysuLk5OTk566aWX1LZtWwUEBMjR0fGhey9cuFD79u3TmjVr5OLikqHf399fmzZt0hdffKGtW7fKzs5OXbt21VdffSU7O7tsPScAAAAAAAByn8FoNBofd3L58uVla2urU6dOPXRc1apVde/ePV2+fPlxtypwYmNj5ezsrJiYGDk5OeV1OTmy7vCNRw8CnnOv3FqV1yUA+ZqL/4C8LgH/g9/fgUfrWK9YXpcAAABy0Z2tc/K6BCDf4+d3AACQH2Xns3eLnGzUpEkTnT17VuvXr3/gmB9//FGnT5/OcDcrAAAAAAAAAAAAAADA05KjgMRHH30kg8Ggnj17atasWWbXaNy9e1ezZs1Sz549ZWFhoYEDB+a4WAAAAAAAAAAAAAAAgMeRo4BE7dq1NXnyZCUkJGjIkCFydXWVl5eXvLy85OrqqiFDhig+Pl4TJkxQvXr1cqtmAAAAAAAAAAAAAACAbLHK6QLDhg1TlSpVNGbMGIWFhSkqKsrUV6NGDY0ZM0bt2rXL6TYAAAAAkK9wTznwcNxRDgAAAAAA8pscByQkqU2bNmrTpo2uXbumy5cvS5K8vLzk4eGRG8sDAAAAAAAAAAAAAADkSI4CEuXLl1flypW1detWSZKHhwehCAAAAAAAAAAAAAAAkO9Y5GTytWvX5Orqmlu1AAAAAAAAAAAAAAAAPBE5CkiUKVNGsbGxuVULAAAAAAAAAAAAAADAE5GjgETHjh21Z88e3bhxI7fqAQAAAAAAAAAAAAAAyHU5CkiMGDFCPj4+evXVV7V///7cqgkAAAAAAAAAAAAAACBXWeVkcuvWrWVpaamwsDA1adJE7u7uKlu2rAoXLpxhrMFg0M6dO3OyHQAAAAAAAAAAAAAAwGPJUUAiKCjI9Guj0ahr167p2rVrmY41GAw52QoAAAAAAAAAAAAAAOCx5Sgg8dtvv+VWHQAAAAAAAAAAAAAAAE9MjgISL7/8cm7VAQAAAAAAAAAAAAAA8MRY5HUBAAAAAAAAAAAAAAAAT1quBCSMRqO2bNmiUaNGKSAgQIsXLzb13bhxQ2fPnlVqampubAUAAAAAAAAAAAAAyMSZM2c0Z84c9erVS76+vrKyspLBYNCECRMeOTctLU3Lli3TK6+8omLFisnW1lYlSpSQn5+f5s+fn+1a4uPjNXnyZNWsWVP29vZydHRU3bp1NWfOnGx9dhwWFiYbGxsZDAZVrFjxgeNmzZqlihUrytbWVpUqVdK8efMeOPbKlStydnbWq6++mq1nwrMvR1dsSH//D7JLly46d+6cjEajDAaDkpOT9c4770iStm/frrffflsbN27Um2++meOCAQAAAAAAAAAAAAAZLViwQLNmzcr2vJiYGLVp00Z79uyRk5OTXnrpJbm4uOjKlSsKDQ1VbGys+vfvn+X1bt26JT8/P4WFhcnR0VGNGjWSpaWlDh48qIEDByowMFCbN2+WjY3NQ9dJSkpSz549lZKS8tBxc+fO1aBBg1SiRAm1bt1aBw4c0Icffqj79+9r6NChGcZ/+OGHSklJ0ddff53lZ0LBkKMTJKKiovTKK6/o7Nmzev311zVt2jQZjUazMe3atZO1tbV++umnHBUKAAAAAAAAZEd++tdzcXFxmjx5surUqSMnJydZW1urePHieuONN7Rp06Ysr8O/ngMAAMDDVK9eXR9//LF++OEHnTp1Sm+//fYj5xiNRrVr10579uxRQECArly5ol9++UUrV67Unj17dO3atWwHCd5//32FhYWpevXqOnnypLZt26ZffvlFp0+fVr169bR9+3aNGzfuket88cUXOn78uD744IMHjklNTdW4cePk5uam48eP68cff1RYWJhcXV01YcIEJScnm43fsGGDNm7cqLFjx6p8+fLZei48+3J0gsSkSZMUHR2tf//73xo4cKAk6ZNPPjEbY2dnpxr/r737Dq/x/v84/jrZkWUVRUhKidYMsWJH1d6jaIkO1G61NcqXVouq1ixKtbTlS9GorWZq1F5fu1btlRCRRITcvz96nfNznCSSSIjT5+O6ctW5P+N+33dy9T7nPq/7vsuU0c6dOx9nVQAAAAAAAECaZJWr5yIiIlSjRg0dPnxYnp6elvlOnDih5cuXa/ny5erTp88ja+XqOQAAADzK22+/bfXaweHR18v/8MMP2rhxo1599dUk3xO6uLioQoUKqa7h4sWLWrhwoSRp0qRJ8vX1tbTlzZtXM2bMUJkyZTRu3DgNHDhQXl5eSc6zc+dOjR49Wm3atFGrVq00efLkJPudOXNG169f1zvvvKPcuXNLkvLkyaOWLVvqu+++05EjR1S6dGlJUnR0tHr37q2yZcvqvffeS/U2wX481h0kVq1apYCAAEs4Ijl+fn66dOnS46wKAAAAAAAASJOscvXcp59+qsOHD6t8+fL6+++/tXr1as2fP1+7d+/W8uXL5eTkpIkTJ2rbtm2PnIer5wAAAJDRJk6cKEn68MMPM2S+Xbt2yTAMubi4qEaNGjbtpUuX1nPPPae4uDitWLEiyTnu3Lmjzp07K0eOHMkGI8wiIiIkSTlz5rRanitXLknS7du3LcsGDRqky5cva8aMGXJyeqx7CeAZ9VgBiYsXL6pUqVKP7GcymXTr1q3HWRUAAAAAAACQJm+//ba+/PJLdejQQQEBAem6es7T09OqPa1Xz0nS+vXrJUkDBgywOWnbsGFD1a5dW5L0559/JjvHw1fPJcd89VyLFi1srp67efOmjhw5YunL1XMAAAC4cuWK9u/fL0dHR1WtWlWnTp3S6NGj1b17d33wwQdasGCB7t69m6Y5zYGE7NmzJ/se3Pxedffu3Um2Dx06VEeOHNHEiROVJ0+eFNfn5+cnSVbvdR98XaBAAUnStm3bNHXqVPXp0yfN7+lhPx4rFuPh4aFr1649st/p06dtPvwBAAAAAAAAWU1GXz0nSW5ubqnqZz5J/LCHr547fPhwsnOk5+q5xYsXc/UcAADAv9SBAwck/fN+8bvvvlP//v1t7jr2wgsvKCwszPKYikcxBxquXr2q27dv24SOExMT9ffff0v653vkh23dulVff/21mjVrpvbt26dqfVWqVNHy5cs1b948NWrUSMuWLdPy5ctVunRpFS5cWAkJCeratat8fX01YsSIVG0H7NNj3UGiVKlS2r17t65fv55sn7///lv79+9X+fLlH2dVAAAAAAAAQKbKjKvnJKlBgwaSpC+++EKRkZFWbStWrNCGDRuUL18+NW3aNMnxXD0HAACAzGIO2EZGRqpPnz5q1qyZ/ve//yk6Olp//vmnKlWqpFOnTql+/fqWvo9SqVIlZcuWTZL03Xff2bT/+OOPio2NlSSbpxDExsYqNDRUPj4+mjp1aqq3Y+LEiXJ3d1f79u3l7e2tDh06yMPDQzNmzJAkjR07Vv/73/80depUeXh4WMbFxcXJMIxUrwfPvseKhr/++uv6448/9Pbbb2vu3LmWP3Szu3fvqkePHkpISNDrr7/+WIUCAAAAAAAAmSkzrp6T/nm0xo4dO7R69WoVLlxYwcHByp49u06cOKHdu3crODhYM2fOlI+Pj81Yrp4DAABAZjKHA+7du6cqVapowYIFlrbKlStrzZo1evHFF3Xp0iVNmTJFQ4cOfeScXl5e6t+/v0aMGKFBgwbJwcFBbdq0kaOjo5YsWaL33ntPzs7OSkhIsHkEx8CBA/XXX39p9uzZev7551O9HRUqVNDBgwc1e/ZsnT9/XoUKFVLnzp3l6+urkydPasSIEWrfvr0lvDxp0iSNGTNG58+fl7u7u5o3b65JkyZZ7rwG+/VYd5Do0qWLatasqSVLliggIEBdu3aVJO3fv199+vRRsWLFtHLlSoWEhKhdu3YZUjAAAAAAAACQGTLj6jnpn8fULl26VB988IFiYmK0evVqzZ8/X7t371auXLlUt25dy50dHsTVcwAAAMhsXl5eln9369YtyXbzhfBr165N9bzDhg1T9+7ddefOHfXt21f58+dX3rx59c477ygwMFBvvvmmJOtHw23cuFGTJ09Ww4YN1alTpzRvS+HChfWf//xH06dP15AhQ+Tr62vZLnd3d40fP17SP++X+/Tpo/Lly2vx4sUaOnSoFi1apAYNGigxMTHN68Wz5bHuIOHo6KilS5eqW7dumjdvnuUWKXv37tXevXslSa1atdIPP/zw+JUCAAAAAAAAmSgzrp6TpEuXLqlZs2Y6cOCAPvvsM7Vv31558uTR4cOHNWTIEH3yySdavHixNm3aZHWCmqvnAAAAkNleeOGFJP+dVJ9Lly6lel5HR0dNnTpVPXr00JIlS3T27Fl5enqqVq1aatSokSV0UapUKcuYxYsXyzAMnT17VrVq1bKa7+bNm5KkCxcuWNrGjx+vsmXLpljH7NmztW7dOn3//feWx9WNHj1ahQsX1sKFC+Xk5KRmzZopKipKX3zxhdauXat69eqlejvx7HmsgIQkeXp6as6cORo6dKhWrFihU6dOKTExUb6+vmrQoMEj/ygBAAAAAACArCC1V8999dVXWrt2baoDEp07d9bOnTs1ZswYffjhh5blQUFBWrZsmcqXL6/9+/dr7Nix+uSTTyRl3NVzD0vq6rm+ffuqWbNmmjx5sg4fPqzhw4frxIkT2rZtm80tjwEAAGBfihUrJi8vL0VHR+v69etJ9jEv9/T0TPP8pUqVsgpBSP8Ek7ds2SJJeuWVV2zGHDx4MNn57ty5o/DwcEn/H5pIzvXr19W/f3/Vrl1bXbp0kSRduXJFly5dUuvWreXk9P9flVerVk1ffPGF9u3bR0DCzj12QMIsICBAAQEBGTUdAAAAAAAA8ERlxtVzFy5c0Jo1ayRJ7du3t2l3dnZW69at9b///U9r1661BCS4eg4AAABPgpOTk5o3b66ffvpJa9euVYsWLWz6mN/PVqxYMUPW+csvv+js2bOqUqWKypcvb1k+fvx4S5D3YRs3blTt2rVVpEgRnThxIlXref/99xUTE6Nvv/3WssxkMkmSYmJirPqaX5vbYb+IgAMAAAAAAAD6/6vnJGXY1XNnz561/Nvb2zvJPj4+PpKkyMhIm7aDBw8qPDzc6mf//v2S/v/qufDw8Me6ei4oKMjm6jlJ2rdvX6q2EQAAAM+2wYMHy9nZWTNmzNCyZcus2r788ktt3rxZjo6O6tmzp1VbWFiYAgICFBISYjPnxYsXde7cOZvly5YtU9euXeXq6qpp06Zl7IY8YO3atfrpp580dOhQvfjii5blefLkUcGCBbVhwwadPHlSknT//n19//33kqTAwMBMqwlZQ4YEJK5fv67Ro0erfv36KlmypF5++WW9+uqrGj16tK5evZoRqwAAAAAAAAAylfnqOemfE6pJSevVcwUKFLD8e/v27Un22bZtmyTJ39/fsmz8+PEyDCPJnw0bNkiSihQpYln28F0mHsbVcwAAAP8Oe/bsUeXKlS0/y5cvlyR9++23VssfvCNaQECAZsyYofv376tJkyYKCgpSmzZtVKJECX300UdydHTU1KlTbR6VERUVpWPHjlmCBg/asWOHChcurHLlyqlly5Zq166dSpQooSZNmigxMVGLFy9W6dKlM2UfxMXFqXv37ipVqpTVI+7Mhg4dqjt37qhChQpq2bKlypQpo99//13BwcGqU6dOptSErOOxAxK//fabihUrpo8//li///67Dh8+rCNHjmjNmjX6+OOPVaxYMYWFhWVErQAAAAAAAECmyuir5woVKqSgoCBJUt++fXXmzBmr9p9//lnz58+XJHXo0CGDt+YfXD0HAADw73Hr1i1t377d8mO+A9r58+etlsfHx1uN69y5s7Zt26ZWrVrp7Nmz+u2333Tz5k21adNGW7du1TvvvJOmOkqWLKlOnTopNjZWa9as0dKlS2UYht577z0dPXpU9evXz7Btftinn36q06dPa8aMGXJ2drZp79q1q3744QcVKFBAy5Yt09WrV9WtWzctX76ckPC/gMkwDCO9g7dv367q1avr3r17qlChgjp16mRJup85c0Y//vijdu7cKScnJ23atEmVKlXKsMKfdbdu3ZKPj4+ioqKSvb3is2LhjmtPuwQgy6sbOe9plwBkadnr937aJeAhHN+BR+P4DqSM4zuygj179qhHjx6W1ydPntT169dVsGBBqzs7hIWF6fnnn7e8nj17tt58800lJiaqQoUK8vPz08GDB3X06FHL1XMPnyCeNWuWunTposKFC9uEIA4ePKjatWvr+vXrcnNzU+XKlZU7d24dOXJEhw4dkiS9/vrr+vHHH1N1QjYtz1+Oi4tTqVKllC1bNu3evdvmBPH06dPVrVs3Zc+eXbVr19bx48d16NAhBQcHa9OmTf+qE8Q3V0162iUAWR7HdwAAkBWl5bt3pxRbH+HTTz/V/fv39eWXX6p///427T179tS4cePUv39/jRgxwiZ1DwAAAAAAAGQW89VzDzt//rzOnz9veZ3U1XMvvfSSvvjiC23atEn79+9Xrly51KZNG33wwQepfryGWcmSJXXw4EGNGzdOK1eu1M6dOxUfH68cOXLo1Vdf1Ztvvqm2bdumbyMfwXz13NatW5O9es7FxUVjx47VsmXLlD17dnXr1k1ffPHFvyocAQAAAODf4bHuIJEjRw4VKlRI+/fvT7FfmTJldPbsWd24cSO9q7I73EEC+HfhClMgZVyBkvVwfAcejeM7kDKO7wCeNdxBAng0ju8AACArSst37w6Ps6KEhASVKlXqkf1KliyphISEx1kVAAAAAAAAAAAAAABAuj3WIzYCAgJ07ty5R/a7cOGCihcv/jirAgAAAAAAAAAAAIBU4w5RwKP92+4Q9VgBiW7duql79+4KDw9XzZo1k+wTHh6uTZs2aerUqY+zKgAAAAAAADwGHqEFpKzu0y4AAAAAQKZ7rIDEO++8o6NHj6pRo0bq3r27OnXqJH9/f0nS6dOn9dNPP2nq1Knq16+funbtmiEFAwAAAAAAAAAAAAAApJXD4wx2dHTU+PHjFRcXp3HjxqlcuXLKnj27smfPrnLlyunrr79WXFycxo8fL0dHR6sfJ6fHymYAAAAAAAAAAADgX+TYsWOaNGmSQkNDVapUKTk5OclkMumzzz5Ldszw4cNlMplS/Dl69Gia6ti4ceMj55w2bVqSY1esWKHhw4erSZMmyp8/v6X/+fPnU1znmjVrFBQUJDc3N+XLl099+vRRXFxckn0TExNVsWJF5cuXTzdu3EjTtgGAvXuslIJhGE9lLAAAAAAAAAAAAP5dpk6dqgkTJqRrbJkyZVS2bNkk23x8fNI1Z968eVW/fv0k24oXL57k8g4dOigqKipN69m3b58aNmwoFxcXvfrqqzp58qQmTZqk06dPa+nSpTb9J02apJ07d+q///2vcuTIkaZ1AYC9e6yARGJiYkbVAQAAAAAAAAAAACSrZMmS+uCDD1SuXDkFBgZq5MiR+umnn1I1tnnz5ho+fHiG1hMQEKBZs2alaUzLli314osvKjAwUIGBgcqTJ88jx3zyySe6d++e1qxZo1q1aunevXt65ZVXtGzZMu3atUsVKlSw9D137pyGDBmihg0b6rXXXkvrJgGA3eM5FwAAAAAAAAAAAMjy3n77bavXDg6P9ST5p+L7779P85hdu3bpxRdfVK1atSRJTk5Oevvtt7Vx40Zt3brVKiDRs2dPGYahKVOmZFTJAGBXnr0jBwAAAAAAAAAAAPAvERERoZw5c1oty5UrlyTp9u3blmULFy7U0qVL9dlnn6lw4cJPtEYAeFZwBwkAAAAAAAAAAADYtT179mjgwIGKjIyUj4+PypUrpyZNmsjLyyvdc165ckWffvqpLly4IDc3NwUEBKhRo0YqVKhQBlYu+fn56eTJk0pISJCzs7Mk6ciRI5KkAgUKSJKioqLUp08fVahQQX369MnQ9QOAPSEgAQAAAAAAAAAAALu2dOlSLV261GqZj4+PJk6cqE6dOqVrzqNHj2rYsGFWy5ycnNS7d2+NGTNGTk4Z8zVcs2bNNHr0aA0cOFBDhw7VX3/9pbFjx8rFxUWvvvqqJGnAgAG6du2aVqxY8Uw+egQAnhT+DwkAAAAAAAAAAAC7VKRIEY0cOVJ79+5VZGSkIiMjtXnzZjVu3FhRUVHq3Lmz5syZk6Y5fXx81K9fP4WHh+vSpUuKiYnRgQMH9N5778lkMmncuHHq0aNHhm3DwIEDVbx4cX399dfKkSOHKlasqEuXLmn8+PHKly+ftmzZounTp+v9999X2bJlLePu3r2re/fuZVgdAGAPCEgAAAAAAAAAAADALr3xxhsaNGiQypYtqxw5cihHjhwKDg7W0qVL1bt3b0nSe++9p7t376Z6znLlymncuHGqUaOG8uXLp2zZsqlUqVL6+uuvNW/ePEnSjBkztG/fvgzZBh8fH+3atUuTJk1S165d9eGHH2r79u169913lZCQoG7duumFF17Q8OHDJUnr1q1TYGCgXF1d5erqqho1amjv3r0ZUgsAPOsISAAAAAAAAAAAAOBfZ/jw4XJ0dNS1a9e0ffv2DJmzZcuWlrs4PPxIj8fh6empXr166dtvv9WYMWMUFBQkSRo9erQOHTqkadOmyd3dXbt27VKDBg0UHx+vefPmaebMmTp58qRq166t8+fPZ1g9APCsIiABAAAAAAAAAACAf52cOXMqT548kpSh4YESJUpk+JxJOX78uD7//HN16tRJdevWlSR99dVXSkhIUFhYmNq1a6fQ0FDNnDlTUVFRmjJlSqbWAwDPAgISAAAAAAAAAAAA+Ne5f/++oqKiJEleXl4ZNm9ERESGz5mUbt26ycvLS19//bVl2b59+5Q7d24VK1bMsqxatWqWNgD4t3N62gUAAAAAAAAAAAAAT9qSJUsUGxsrk8mkChUqZMicFy5c0KZNmyRJFStWzJA5k/L9999r48aN+umnn5QrVy7LcpPJpNjYWBmGIZPJJEmKiYmxtAHAvx13kAAAAAAAAAAAAIDdOXv2rH7++WfduXPHpm3x4sV6++23JUkdO3ZUvnz5rNp37NihgIAABQQE2IydMGGCrl+/brP8wIEDatKkieLi4lSkSBE1a9Ysg7bE2tWrV/Xhhx+qXr16ev31163aAgMDFRsbq//+97+WZdOnT7e0AcC/HXeQAAAAAAAAAAAAQJa3Z88e9ejRw/L65MmTkqRvv/1Wy5YtsywPCwvT888/r8jISL3xxht69913Va5cORUoUEBxcXE6fPiw/vrrL0lS7dq1NXXqVJt1xcbG6tixY0nWMWzYMPXv319ly5aVv7+/HBwcdPLkSe3du1eJiYkqVKiQli5dKldXV5uxI0aM0PLly22WN23aVC4uLpL+CTJMmTIl2f3Qr18/3blzR9OmTbNp+/DDD7Vo0SJ16tRJP/30k+Lj47VhwwblypXLat8BwL8VAQkAAAAAAAAAAABkebdu3dL27dttlp8/f17nz5+3vI6Pj5ck+fr6asCAAdq5c6dOnDihPXv26O7du8qdO7caN26sDh06qF27dnJwSNsN1z/++GNt2bJFhw4d0po1axQTEyNvb29VrVpVzZo1U7du3eTl5ZXk2JMnTya5DXv37rX8283NLdl1r169Wv/97381ZswY+fv727SXKVNG69ev16BBgxQeHi5HR0c1atRIX375pZ5//vk0bScA2COTYRjG0y7i3+jWrVvy8fFRVFSUvL29n3Y5j2XhjmtPuwQgy6sbOe9plwBkadnr937aJeAhHN+BR+P4DqSM43vWw/EdSBnHduDROL4DeNbcXDXpaZcAZHn2cHxPy3fvaYvEAQAAAAAAAAAAAAAAPIMISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9p6ddwKMsWLBA33zzjfbv36+7d++qaNGi6tixo9577z05Ozunep6IiAgtXbpUu3fv1u7du7Vv3z7FxcUpJCREa9euTXbcxo0bVbt27RTnnjp1qrp3757qWgAAAAAAAAAAAB7Xwh3XnnYJQJZW92kXACDLydIBiX79+mnChAlycnJSnTp15OnpqfXr12vAgAFaunSpfv/9d7m7u6dqrk2bNqlLly7priVv3ryqX79+km3FixdP97wAAAAAAAAAAAAAACDzZdmAxOLFizVhwgR5enoqPDxcgYGBkqTr16+rTp062rx5s4YOHaqxY8emar68efOqW7duCgwMVGBgoHbv3p2muz4EBARo1qxZ6dkUAAAAAAAAAAAAAADwlDk87QKSM3LkSEnSwIEDLeEIScqdO7emTJkiSZo8ebKioqJSNV+VKlU0bdo0de3aVRUqVJCrq2vGFw0AAAAAAAAAAAAAALKkLBmQuHDhgnbu3ClJ6tChg017tWrV5Ovrq/j4eK1YseJJlwcAAAAAAAAAAAAAAJ4xWfIRG3v37pUk5cyZU/7+/kn2qVChgs6dO6e9e/eqffv2mV7TlStX9Omnn+rChQtyc3NTQECAGjVqpEKFCmX6ugEAAAAAAAAAAAAAwOPJkgGJ06dPS1KK4QNfX1+rvpnt6NGjGjZsmNUyJycn9e7dW2PGjJGTU5bclQAAAAAAAAAAAAAAQFn0ERvR0dGSJA8Pj2T7eHp6SpJu3bqVqbX4+PioX79+Cg8P16VLlxQTE6MDBw7ovffek8lk0rhx49SjR49HzhMfH69bt25Z/QAAAAAAAAAAAAAAgCcjSwYkspJy5cpp3LhxqlGjhvLly6ds2bKpVKlS+vrrrzVv3jxJ0owZM7Rv374U5xk1apR8fHwsP+Y7YAAAAAAAAAAAAAAAgMyXJQMSXl5ekqSYmJhk+9y+fVuS5O3t/URqSkrLli1VtmxZSdLSpUtT7Dto0CBFRUVZfs6dO/cEKgQAAAAAAAAAAAAAAJLk9LQLSIqfn58kpRgiMLeZ+z4tJUqU0L59+3T+/PkU+7m6usrV1fUJVQUAAAAAAAAAAAAAAB6UJe8gUa5cOUlSRESETp8+nWSfXbt2SZICAwOfWF1JiYiIkPT/d70AAAAAAAAAAAAAAABZT5YMSBQsWFBBQUGSpLlz59q0b968WefOnZOrq6saNmz4pMuzuHDhgjZt2iRJqlix4lOrAwAAAAAAAAAAAAAApCxLBiQkafDgwZKk0aNHa8+ePZblERER6tGjhySpV69e8vHxsbSFhYUpICBAISEhGVbHhAkTdP36dZvlBw4cUJMmTRQXF6ciRYqoWbNmGbZOAAAAAAAAAAAAAACQsZyedgHJad68ufr06aOJEyeqcuXKCgkJkYeHh9atW6ebN28qODhYI0aMsBoTFRWlY8eO6c6dO0nOWblyZcu/r127JknauXOn1fKhQ4eqUaNGltfDhg1T//79VbZsWfn7+8vBwUEnT57U3r17lZiYqEKFCmnp0qVydXXNyM0HAAAAAAAAAAAAAAAZKMsGJKR/7t4QHBysb775Rlu3blVCQoKKFCmigQMH6r333pOLi0ua5tu+fbvNslu3blktNwcnzD7++GNt2bJFhw4d0po1axQTEyNvb29VrVpVzZo1U7du3eTl5ZW+DQQAAAAAAAAAAAAAAE9Elg5ISFLbtm3Vtm3bVPUNDQ1VaGhosu2GYaR5/R9++KE+/PDDNI8DAAAAAAAAAAAAAABZh8PTLgAAAAAAAAAAAAAAACCzEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3SMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPeyfEBiwYIFqlWrlnLkyCEPDw+VKVNGY8aMUUJCQprmiYiI0KxZs9S7d29VrVpV2bJlk8lkUt26dVM1/sSJEwoNDVXBggXl6uqqggULKjQ0VKdOnUrPZgEAAAAAAAAAAAAAgCfI6WkXkJJ+/fppwoQJcnJyUp06deTp6an169drwIABWrp0qX7//Xe5u7unaq5NmzapS5cu6apjy5YtqlevnmJjY/Xyyy+rWrVqOnjwoGbPnq2FCxdq7dq1qly5crrmBgAAAAAAAAAAAAAAmS/L3kFi8eLFmjBhgjw9PbV9+3atXr1aixYt0l9//aVSpUpp8+bNGjp0aKrny5s3r7p166Zvv/1WO3fu1LRp01I1LjY2Vm3btlVsbKwGDRqkgwcPat68eTp48KAGDRqkmJgYtW3bVnFxcendVAAAAAAAAAAAAAAAkMmybEBi5MiRkqSBAwcqMDDQsjx37tyaMmWKJGny5MmKiopK1XxVqlTRtGnT1LVrV1WoUEGurq6pGjdr1ixdvHhRxYoV02effWbV9tlnn6lYsWI6d+6cfvzxx1TNBwAAAAAAAAAAAAAAnrwsGZC4cOGCdu7cKUnq0KGDTXu1atXk6+ur+Ph4rVixIlNrCQsLkyS99tprcnCw3l0ODg5q166dJOnXX3/N1DoAAAAAAAAAAAAAAED6ZcmAxN69eyVJOXPmlL+/f5J9KlSoYNU3s2sxr+9p1QEAAAAAAAAAAAAAANIvSwYkTp8+LUkqVKhQsn18fX2t+maG6OhoRUREpFiLuY5r164pJiYm02oBAAAAAAAAAAAAAADp5/S0C0hKdHS0JMnDwyPZPp6enpKkW7duZXodKdVirsNcS3L94uPjFR8fb9UXAAAAAAAAAAAAAAA8GVnyDhL2aNSoUfLx8bH8mO88AQAAAAAAAAAAAAAAMl+WDEh4eXlJUoqPrLh9+7YkydvbO9PrSKkWcx2PqmXQoEGKioqy/Jw7dy7jCgUAAAAAAAAAAAAAACnKkgEJPz8/SUoxRGBuM/fNDF5eXsqZM6ck6ezZsynWkTt37hQfCeLq6ipvb2+rHwAAAAAAAAAAAAAA8GRkyYBEuXLlJEkRERE6ffp0kn127dolSQoMDMzUWszzm9f3tOoAAAAAAAAAAAAAAADplyUDEgULFlRQUJAkae7cuTbtmzdv1rlz5+Tq6qqGDRtmai0tWrSQJM2bN0+JiYlWbYmJiZo/f74kqWXLlplaBwAAAAAAAAAAAAAASL8sGZCQpMGDB0uSRo8erT179liWR0REqEePHpKkXr16ycfHx9IWFhamgIAAhYSEZFgdoaGhyp8/v44fP66hQ4datQ0dOlTHjx9XwYIF1alTpwxbJwAAAAAAAAAAAAAAyFhOT7uA5DRv3lx9+vTRxIkTVblyZYWEhMjDw0Pr1q3TzZs3FRwcrBEjRliNiYqK0rFjx3Tnzp0k56xcubLl39euXZMk7dy502r50KFD1ahRI8vrbNmy6ZdfflG9evU0cuRILVmyRCVLltTBgwd18OBBeXh4aMGCBXJ3d8/IzQcAAAAAAAAAAAAAABkoywYkJGnChAkKDg7WN998o61btyohIUFFihTRwIED9d5778nFxSVN823fvt1m2a1bt6yWm4MTDwoODtb+/fs1YsQIrV27VosWLdJzzz2nTp066T//+Y+KFCmS9o0DAAAAAAAAAAAAAABPTJYOSEhS27Zt1bZt21T1DQ0NVWhoaLLthmGku46iRYtq9uzZ6R4PAAAAAAAAAAAAAACeHoenXQAAAAAAAAAAAAAAAEBmIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHYvywckFixYoFq1ailHjhzy8PBQmTJlNGbMGCUkJKRrvt27d6tNmzbKmzev3Nzc5O/vr969e+vq1atJ9j9z5oxMJlOKPwMHDnycTQQAAAAAAAAAAAAAAJnM6WkXkJJ+/fppwoQJcnJyUp06deTp6an169drwIABWrp0qX7//Xe5u7uner6FCxeqffv2unfvnoKCguTv769du3Zp8uTJWrBggTZv3qyiRYsmOdbDw0OtW7dOsq18+fLp2j4AAAAAAAAAAAAAAPBkZNmAxOLFizVhwgR5enoqPDxcgYGBkqTr16+rTp062rx5s4YOHaqxY8emar6LFy+qc+fOunfvnr799lt17dpVknT//n2Fhobq559/VocOHbR9+3aZTCab8blz59asWbMybPsAAAAAAAAAAAAAAMCTk2UfsTFy5EhJ0sCBAy3hCOmfoMKUKVMkSZMnT1ZUVFSq5hs/frxiY2NVt25dSzhCkhwdHTV16lT5+Pho586d+v333zNwKwAAAAAAAAAAAAAAQFaQJQMSFy5c0M6dOyVJHTp0sGmvVq2afH19FR8frxUrVqRqzrCwsGTn8/T0VNOmTSVJv/76a3rLBgAAAAAAAAAAAAAAWVSWDEjs3btXkpQzZ075+/sn2adChQpWfVMSHR2tEydOWI1L63wxMTEaPXq0unfvrt69e2v8+PE6duzYI9cNAAAAAAAAAAAAAACePqenXUBSTp8+LUkqVKhQsn18fX2t+qbkzJkzln8nN+ej5rt+/boGDRpktez9999Xx44dNXXqVHl6eqZYQ3x8vOLj4y2vb9269ci6AQAAAAAAAAAAAABAxsiSd5CIjo6WJHl4eCTbxxxISE3QwDxfSnMmN5+rq6veeecdrV69WufOnVNsbKwOHTqkESNGKFu2bPr555/VqlUrGYaRYg2jRo2Sj4+P5cccyAAAAAAAAAAAAAAAAJkvSwYkspLnn39e06dPV7169VSwYEG5u7vrpZde0pAhQ7R+/Xo5Ojrq999/12+//ZbiPIMGDVJUVJTl59y5c09oCwAAAAAAAAAAAAAAQJYMSHh5eUmSYmJiku1z+/ZtSZK3t3eq50tpzrTMZ1axYkU1adJEkrR06dIU+7q6usrb29vqBwAAAAAAAAAAAAAAPBlZMiDh5+cnSSneZcHcZu6bksKFC1v+ffbs2cee70ElSpSQJJ0/fz5N4wAAAAAAAAAAAAAAwJOTJQMS5cqVkyRFRETo9OnTSfbZtWuXJCkwMPCR83l7e6to0aJW4x5nvgdFRERIsr5LBQAAAAAAAAAAAAAAyFqyZECiYMGCCgoKkiTNnTvXpn3z5s06d+6cXF1d1bBhw1TN2aJFi2Tnu337tuURGS1btkx1nTExMZZxFStWTPU4AAAAAAAAAAAAAADwZGXJgIQkDR48WJI0evRo7dmzx7I8IiJCPXr0kCT16tVLPj4+lrawsDAFBAQoJCTEZr5+/fopW7ZsWrt2rWbMmGFZfv/+ffXo0UM3b95UUFCQ6tWrZzVu+vTpST7q4/Tp02rWrJkuXbqk7Nmz680333y8DQYAAAAAAAAAAAAAAJnG6WkXkJzmzZurT58+mjhxoipXrqyQkBB5eHho3bp1unnzpoKDgzVixAirMVFRUTp27Jju3LljM1/+/Pk1a9YstW/fXl27dtXMmTPl5+ennTt36tSpU8qbN6/mzp0rk8lkNW7KlCnq3r27Xn75ZRUrVkwuLi46ffq09u3bp/j4eOXKlUu//vqrcufOnan7AwAAAAAAAAAAAAAApF+WvYOEJE2YMEHz589XlSpVtHXrVq1YsUIFCxbU6NGjtX79erm7u6dpvjZt2mj79u1q2bKlTp06pbCwMN2/f189e/bU/v37VbRoUZsxffr0UZs2bXTv3j1t3LhRCxcu1LFjx1S6dGkNGzZMhw8fVo0aNTJqkwEAAAAAAAAAAAAAQCbIsneQMGvbtq3atm2bqr6hoaEKDQ1NsU/58uW1aNGiVK//zTff5PEZAAAAAAAAAAAAAAA847L0HSQAAAAAAAAAAAAAAAAyAgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHaPgAQAAAAAAAAAAAAAALB7BCQAAAAAAAAAAAAAAIDdIyABAAAAAAAAAAAAAADsHgEJAAAAAAAAAAAAAABg9whIAAAAAAAAAAAAAAAAu0dAAgAAAAAAAAAAAAAA2D0CEgAAAAAAAAAAAAAAwO4RkAAAAAAAAAAAAAAAAHYvywckFixYoFq1ailHjhzy8PBQmTJlNGbMGCUkJKRrvt27d6tNmzbKmzev3Nzc5O/vr969e+vq1aspjrty5Yp69eolf39/ubq6Km/evGrTpo327NmTrjoAAAAAAAAAAAAAAMCTk6UDEv369VPbtm21ZcsWVaxYUfXr19fZs2c1YMAA1alTR3FxcWmab+HChapcubIWLlyowoULq1mzZnJwcNDkyZNVunRpnThxIslxx48fV+nSpfXNN9/IwcFBzZs3V+HChbVw4UJVqlRJYWFhGbG5AAAAAAAAAAAAAAAgk2TZgMTixYs1YcIEeXp6avv27Vq9erUWLVqkv/76S6VKldLmzZs1dOjQVM938eJFde7cWffu3dO3336rHTt2aP78+Tp+/Lhef/11XblyRR06dJBhGFbjDMPQa6+9pqtXr+qNN97Q8ePHNX/+fO3YsUPffvut7t27p06dOuny5csZvQsAAAAAAAAAAAAAAEAGybIBiZEjR0qSBg4cqMDAQMvy3Llza8qUKZKkyZMnKyoqKlXzjR8/XrGxsapbt666du1qWe7o6KipU6fKx8dHO3fu1O+//241buXKldq7d6+yZ8+uKVOmyNHR0dLWtWtXhYSE6Pbt25owYUK6txUAAAAAAAAAAAAAAGSuLBmQuHDhgnbu3ClJ6tChg017tWrV5Ovrq/j4eK1YsSJVc5ofg5HUfJ6enmratKkk6ddff01yXNOmTeXp6Wkz1jzfw+MAAAAAAAAAAAAAAEDWkSUDEnv37pUk5cyZU/7+/kn2qVChglXflERHR+vEiRNW41I7n/n1o8b99ddfiomJeWQtAAAAAAAAAAAAAADgycuSAYnTp09LkgoVKpRsH19fX6u+KTlz5ozl38nNmdx8j6rFPM4wDKv1AAAAAAAAAAAAAACArMPpaReQlOjoaEmSh4dHsn3Mj7u4detWqudLac7k5ntULQ8+diOlWuLj4xUfH295HRUV9cgxz4rY29GP7gT8y92KiXvaJQBZmoMdHA/tDcd34NE4vgMp4/ie9XB8B1LGsR14NI7vWQ/HdyBlHN+BR7OH47v5O3fDMB7ZN0sGJOzRqFGj9Mknn9gsN9+BAgCAf7cBT7sAAACQ4Ti+AwBgfzi+AwBgf+zn+B4dHS0fH58U+2TJgISXl5ckKSYmJtk+t2/fliR5e3unej7znEntlOTm8/LyUmRkZLK1mMc9qpZBgwbp/ffft7xOTExUZGSkcuXKJZPJ9MhtAPDsunXrlnx9fXXu3LlU/T8LAABkfRzfAQCwLxzbAQCwPxzfgX8PwzAUHR2t/PnzP7JvlgxI+Pn5SZLOnTuXbB9zm7lvSgoXLmz599mzZ1WqVKlUz+fn56fIyEidPXs2xTpMJpPVeh7m6uoqV1dXq2XZs2d/ZO0A7Ie3tzdvwgAAsDMc3wEAsC8c2wEAsD8c34F/h0fdOcLMIZPrSJdy5cpJkiIiInT69Okk++zatUuSFBgY+Mj5vL29VbRoUatxqZ3P/PpR41588UV5eno+shYAAAAAAAAAAAAAAPDkZcmARMGCBRUUFCRJmjt3rk375s2bde7cObm6uqphw4apmrNFixbJznf79m0tXbpUktSyZcskxy1ZsiTJx2yY53t4HAAAAAAAAAAAAAAAyDqyZEBCkgYPHixJGj16tPbs2WNZHhERoR49ekiSevXqZXWrjLCwMAUEBCgkJMRmvn79+ilbtmxau3atZsyYYVl+//599ejRQzdv3lRQUJDq1atnNa5BgwYqV66cbt68qR49euj+/fuWtunTp2vdunXy9PRU3759M2bDAdgdV1dXDRs2zOYxOwAA4NnF8R0AAPvCsR0AAPvD8R1AUkyGYRhPu4jk9O3bVxMnTpSzs7NCQkLk4eGhdevW6ebNmwoODtaaNWvk7u5u6T9r1ix16dJFhQsX1pkzZ2zmW7Bggdq3b6/79++rUqVK8vPz086dO3Xq1CnlzZtXmzdvtjyK40HHjh1T9erVde3aNb3wwgsKCgrS6dOntWPHDjk5OemXX36x3GkCAAAAAAAAAAAAAABkPVn2DhKSNGHCBM2fP19VqlTR1q1btWLFChUsWFCjR4/W+vXrrcIRqdGmTRtt375dLVu21KlTpxQWFqb79++rZ8+e2r9/f5LhCEkqXry4Dhw4oJ49e+r+/fsKCwvT6dOn1bJlS23fvp1wBAAAAAAAAAAAAAAAWVyWvoMEAAAAAAAAAAAAAABARsjSd5AAAAAAAAAAAAAAAADICAQkAADauHGjTCaTatWq9VTrmDVrlkwmk0JDQ59qHQCAzHXmzBmZTCaZTCadOXMmxb5+fn4ymUyaNWvWY683NDQ0w+YCAOBJWbp0qapXry5vb2/L8XPjxo1Pu6wsx7xvkLxatWplib8f8/u7R70PBAAgs5jPS/j5+T3tUgA8BU5PuwAAAAAAAAAAtvbt26dWrVopMTFRderU0fPPPy+TyaR8+fI97dIAAAAA4JlEQAIAAAAAAADIghYvXqyEhAQNHjxYn3/++dMuBwAAAACeeTxiAwAAAAAAAMiCzp49K0l68cUXn3IlAAAAAGAfCEgASLMHn+u5aNEiVatWTd7e3vLw8FBwcLBWrFiR7Nh79+7pu+++U61atZQzZ065urrK399f7777rs6dO2fV99tvv5XJZFL9+vWTnS8iIkKurq5ycXHRtWvXrNpu3LihYcOGqWzZsvLy8lK2bNlUqlQpffbZZ4qNjbWZa/jw4TKZTBo+fLjOnj2rt956S76+vnJ2dlZoaGiq9s3u3bvVrl07FSxYUC4uLvL29tYLL7ygVq1a6bfffkt2fRcvXtTbb7+t/Pnzy93dXSVLltTMmTMtfY8ePaoOHTooX758cnNzU5kyZTR//vxk64iMjNTgwYP18ssvK1u2bPLy8lL58uU1ZswYxcXFpWpbzK5du6aqVavKZDKpXbt2io+Pt7SldR9L//wNjB8/XqVKlZKbm5uee+45tWrVSv/73//SVBcA4N/rwedn79u3Ty1btlTu3Lnl6uqql156SV999ZUMw0jTnKtWrZK3t7fc3Nw0b968DFnXvXv3NG3aNFWtWlU+Pj5yc3PTiy++qD59+ujChQtWfQ3DUO7cueXg4KCIiAirth07dljef02ZMsVmPS+88IJMJpNOnTqVqfsIAPDkmD8v/vDDD5KkLl26WI4FtWrVsup79OhRdenSRYULF5arq6ty5sypkJAQ/fLLLynOndJn39DQUJlMJs2aNUvHjh1Tu3btlCdPHnl4eCgoKMjq8+327dvVtGlTPffcc3J3d1eVKlW0bt26ZLctLi5OX331lSpXrqzs2bPLzc1NxYsX10cffWRzDJSkWbNmyWQyKTQ0VJGRkerXr5+KFCkiV1dXm33xoFu3bsnb21tOTk425xse1LBhw2SPsUmJj4/Xl19+qfLly8vLy0suLi7Kly+fgoKC9NFHHykyMtKq/4PnUH7++WdVrFhRnp6eeu6559S+fXtLCMYwDE2ePFlly5aVh4eHcufOrdDQUF29ejXZWlavXq3GjRsrT548cnFxUf78+dWuXTvt2rUrVdvyoB9++EEuLi7KkSOHNmzYYNW2bt06tWzZUs8//7xcXFyUJ08etWjRQn/++Wey8x0+fFht2rRR7ty5Lec5xo4dq/v376e5NgBA1vbXX3/pzTfflL+/v1xdXeXp6anChQurUaNGlvcykvUxPSoqSu+//778/Pwsn5W/+OILJSYmSpIuXLigbt26ydfXV66uripevLgmTZqUbA2xsbEaPXq0AgMDLeepX375ZQ0ZMkQ3btxI0/bExsaqWbNmMplMql27tm7evGlpS+v7GElasGCB6tatq1y5csnZ2Vm5cuXSSy+9pHfeeUcHDhxIU20AMogBAGkkyZBk/Oc//zFMJpMRHBxstGvXzihTpowhyTCZTMavv/5qM+7WrVtGrVq1DEmGp6enUbNmTaN169ZG8eLFDUlGrly5jD179lj637x503B3dzccHByM8+fPJ1nLxIkTDUlGy5YtrZYfOnTI8PX1NSQZzz//vFG/fn2jSZMmRt68eQ1JRtmyZY2bN29ajRk2bJghyejQoYORM2dOI1++fEarVq2Mli1bGv3793/kflm7dq3h7OxsSDLKlCljtG7d2mjRooVRsWJFw9XV1WjWrFmS6+vSpYuRL18+o1ChQkbbtm2N2rVrG46OjoYkY+zYscaff/5peHl5GcWLFzdee+01o0qVKpbfwbx582zqOHnypFG4cGFDkvHcc88ZrVq1Mpo2bWp4eXkZkozAwEAjMjLSasyGDRsMSUbNmjWtlh87dswoUqSIIcn46KOPjMTExMfax/fv3zeaN29uSDJcXFyMevXqGe3atTP8/PwMNzc3o0ePHoYko3Pnzo/c3wCAZ9fp06ctx7LTp0+n2Nd8TPvhhx8sy2rWrGlIMgYOHGi4uLgYJUqUMF577TWjZs2almNo3759bebq3LmzzVyGYRjTpk0zHB0djZw5cxqbNm2yakvvuu7cuWPUrVvXkGS4ubkZDRo0MNq1a2c5dubOndvYvXu31Zg2bdoYkoz58+dbLf/8888t+6tFixZWbSdPnjQkGf7+/hlSNwAgawgLCzM6d+5s+TwWHBxsdO7c2ejcubMxatQoS79ly5YZbm5uhiTLZ8Y6depY/l//5ptv2sydms++5mNm7969DQ8PD5vPoyaTyViwYIERFhZmODs7G+XKlbM6L+Dk5GRzTDUMw7hw4YJRqlQpQ5KRM2dOo27dukaLFi0sx3s/Pz/jzJkzVmN++OEHQ5LRqFEjw9/f38iRI4fRtGlTo02bNkbHjh0t/czHygf17t3bkGQMHjw4yf184sQJw2QyGd7e3kZ0dPQjfy/37983QkJCDEmGt7e30aBBA6N9+/ZG3bp1Lduwd+9eqzHmugYOHGg4OTkZderUMVq3bm0UKlTIkGT4+voakZGRRtu2bQ03Nzejfv36RosWLYw8efIYkozSpUsb8fHxNrUMGTLE8rsIDg422rdvb5QtW9aQZDg6OhozZ860GWN+f7Bhwwar5UOHDrXs/0OHDlm19e/f35BkODg4GBUrVjTatGljVKpUyTCZTIajo6Px/fff26xn06ZNhoeHhyHJeOGFF4zXXnvNqFu3ruHs7Gy0atXKsq8e9T4QAJD1/e9//zO8vb0t70VatmxptGnTxqhSpYrh6elplClTxtLXfExv1qyZUaJECSNPnjxGq1atjHr16hnu7u6GJKNXr17GiRMnjHz58hm+vr4258tHjx5tU0NERITlGOjt7W00bdrUaNWqlZE7d27L5+WHjznm8xKFCxe2Wn758mWjQoUKhiTj9ddftzoGp+d9zCeffGJ5b1SjRg2jffv2RsOGDY2SJUsaJpPJGDdu3OP+CgCkAwEJAGlm/nCfPXt2Y9u2bVZt5hMtxYoVsxnXoUMHQ5LRuHFj48qVK1Zt48aNMyQZL774onHv3j3L8o4dOxqSrE4APahcuXKGJGPp0qWWZbGxsZaTSEOGDLF6ExMTE2O0b9/eEkxIqnbzm587d+6kfqcYhlG7dm1DkvHzzz/btN28edP4888/k11f9+7djYSEBEvbkiVLDEmGl5eXUbhwYeOzzz6zCieMHz/ekGQULVrUZl2VKlUyJBlNmzY1bt++bVl+9epVIzAw0HIi7EFJBST++OMPI2fOnIajo6Mxbdo0q/7p3ceTJ082JBl58+Y1Dh8+bFmekJBgvPvuu5b9QUACAOxbRgUkJNkco9atW2c5YX/u3DmrtocDEomJicZHH31kSDKKFCliHDt2zGb96V3XgAEDLPM+uI1379413nrrLctJmgePod9++60hyXjnnXes5qpdu7bh4uJiBAQEGNmzZ7d6r5TcmPTWDQDIWpIL9xnGPyfwfXx8DEk2nxl37txp5MiRw5BkTJ8+3Wpcaj77mteb1NzmCxUKFixo5MiRw/jxxx+txvbr18+QZNStW9dqeWJiohEcHGxIMt566y3j1q1blraEhATLF/G1a9e2Gmf+MkWSERISYkRFRSW5r5IKSBw/ftwwmUxGnjx5ktxO8zp79+6d5JwPCw8PNyQZ5cqVs6rfbOfOncb169eTrCtXrlzGvn37LMtjY2ONatWqGZKMUqVKGUWKFLH6UuXatWtG0aJFkzzPsHLlSksI8/fff7dq++677wxJhrOzs3Hw4EGrtocDEvHx8ZbzLhUqVDAuX75s1X/69OmWcw/79++32RdeXl6Gi4uLcfz4ccvyuLg4SyC0X79+Vu9b9u/fb/myioAEANiHLl26WN4vPCw2NtYIDw+3vH7wmN6kSRMjJibG0rZ7927DycnJcHBwMF566SWb8+WLFy+2BCAeHGcYhtGuXTtDklGpUiWr43B0dLTRoEEDQ5JRtWpVqzFJBSQOHTpkOQcxZMgQq/7peR9z584dw93d3fD09DSOHj1qs3/OnDljHDlyxGY5gMxHQAJAmpnfxEycONGm7c6dO5YTNGfPnrUsP3z4sGEymYz8+fMneRLBMAyjYcOGNmGHdevWWdKnD9u3b58hyciXL5/Vm6WpU6daghhJiY6ONvLkyWM4OTlZ3UnBfJIoZ86cNnc+SI2XXnrJkGRzd4bkmNdXqFAhIy4uzqa9dOnShiSjYsWKViejDOOfN105c+Y0JBl///23ZfmmTZsMSUa2bNlsTmwYhmHs2rXLcuXHg1+IPByQmDt3ruHq6mp4enoaK1assJknvfvYfHJn6tSpNmPi4uKMfPnyEZAAgH+BjApIPHwHKbP69esbkmy+sHnwS6a4uDijbdu2hiSjcuXKxtWrV5OcKz3riouLMzw9PQ1JxpIlS2zGxMTEWO64NGfOHMvypO4GERsba7i6uho1a9Y0PvzwQ0OSVUA1ubtOpHcfAQCylpQCEiNGjDAkGeXLl09y7NixYy0XIjwoNZ99zet91OfRNm3a2Iy9fv26If1z18C7d+9alpu/1C9btqzVZ3iz+/fvGyVLljQkGf/73/8sy81fpjg7OxsnT55Msl7DSDogYRj/f67hp59+sloeGxtr5MiRwzCZTEl+aZGUX375xZBk9OnTJ1X9H6zrm2++sWn79ddfLe3Lly+3af/qq6+SvPjAfBeL999/P8l1Nm7cOMUA5YYNG4zIyEjL66ZNm9p82XT//n0jf/78hiRj165dSa5nzJgxhiSru27+/PPPhvTPnTEe/P2bmS+QISABAPbBfJx98M7QyTEf0z09PW0uoDQMw2jatGmK58vNd294MHTx999/Gw4ODobJZLIJ8xmGYZw/f95yt60tW7ZYlj8ckFi3bp2RPXt2w9nZOcm7I6XnfczVq1cN6Z+7QQHIWhwEAOnUpEkTm2Wurq564YUXJMnq2dorVqyQYRhq0KCBvLy8kpzP/OzQrVu3WpbVrl1bfn5+OnbsmM2zLc3PL+vUqZOcnJwsy5cvXy5JateuXZLr8fT0VIUKFXTv3j3t3LnTpr1u3bry8fFJcmxKKlasKEnq2LGjNm/erHv37qVqXO3ateXm5maz/MUXX5QkNWjQwPK8UjMnJyf5+flJki5evGhZvnHjRklS/fr1lTdvXps5y5cvrzJlyigxMVHh4eFJ1jNy5Eh17NhRuXLl0qZNm9SgQQObPunZxxcuXNCJEyckSa+//rrNGDc3N7Vt2zbJ+QAASEpS70UkqUSJEpKs34s86Pr165Zns7ds2VLr16/Xc889l2Hr2rVrl27fvq2cOXMmOS5btmx67bXXJMnqGd8vvPCC/P39dfr0aZ08eVKStGnTJsXHx+uVV15R3bp1JUlr166VJBmGofXr18tkMikkJOSx6wYAPFvMn/86d+6cZPtbb70l6Z/ngj/4udEsNZ99k/s86u/vL0lq2LChzZhcuXIpZ86cunv3rtWzuM2fI1u1amX1Gd7MwcFBNWrUkGR9XsCsXLlylvMNadG3b19J0uTJk62Wz507Vzdu3FDdunVVvHjxVM0VGBgoR0dHff/99/rmm2906dKlVNeR1L4yf+53cnJSvXr1km1/8Pd37949bdmyRZIUGhqa5LrMv/sH32c86PTp06patarCw8PVq1cvhYWFKVu2bFZ99u7dq4sXL6pIkSIqX758kvMkdR7H/HfZtm1bOTs724xJ7u8VAPBsMp8Tf/fdd7V69WrduXPnkWPKly+vPHny2Cw3H/cedb78wePiH3/8ocTERJUrV06lS5e2GVOgQAG9+uqrkpI/Ls6ePVv169dXYmKili9fri5dutj0Sc/7mOeee05+fn46cOCA+vfvr8OHDye5fgBPHgEJAOlWqFChJJd7e3tLktWboVOnTkmSZs6cKZPJlOTPRx99JEm6du2aZZzJZLJ84DcHIiQpISFBc+bMkSSbNyzmdb3xxhvJrmvFihU26zIzBw/SatSoUQoMDNTKlStVvXp1eXt7q1q1ahoyZIiOHDmS7Ljk9qOnp2eK7eagyYP72fwlh/lkVVKKFCli1fdBW7Zs0ccffyxXV1f98ccfKlu2bJJzpGcfnz9/XpKUO3duy7Y9LKW6AQD248EvWgzDSLGvuf3hL2ektL0XedCgQYO0detW1atXTwsWLJC7u/sja07Luh7nePxwCML831deeUXVq1eXq6urZdnevXsVERGhsmXLKleuXI9dNwDg2fKo40327NmVM2dOSf//eexBqfnsm5GfV82fI4cOHZrs58gpU6ZIytjP6q+88opKlCih7du3a/fu3Zbl33zzjSSpV69eqZ6rSJEiGjdunBISEtSrVy/lz59ffn5+at++vebMmaO7d+8mOzapfWXej88//3ySX7YktR8jIiIsr5P73af0uV+SunbtqqNHj+rtt9/WpEmT5OBge4rY/Ps6efJksr8v85diD/6+zH9rydWWI0eOdF2UAgDImj788EPVrVtX27dvV/369eXt7a2goCD1798/yYsTpax1Pvz8+fMKDQ1VQkKCli9frldeeSXJOdL7PubHH39Unjx59PXXX+vll19Wrly51LBhQ40bN07Xr19PtmYAmcv2nTcApFJSH6CTk5iYKEkqW7asypQpk2LfSpUqWb0ODQ3VJ598ol9++UUTJkyQu7u7li5dquvXr6ty5coKCAhIcl3J3UXhQYULF7ZZlpovSZKSL18+7dq1S+Hh4Vq7dq22bNmi7du3a8uWLRo5cqRGjRqlAQMG2Ix71H5My35+XC+//LKcnZ21a9cu9e7dW4sWLUpyfzzuPgYA/Lt5eHhY/h0TE5Ni39u3b0tSkuG69B4j27Rpo8WLF2vt2rWaNWuW3nzzzUeOeVLH47p162rGjBlas2aNunXrprVr1ypHjhyqUKGCHBwcVLVqVW3ZskWxsbGWoIQ5VPE06wYAPHtS89k3Iz+vmj9HVqtWzfJFRXJefvllm2Xp/axuMpnUu3dv9ejRQ5MnT9YPP/ygP//8U3v37pWfn58aN26cpvl69+6ttm3basmSJdq8ebM2b96sefPmad68eRo2bJg2bdqk559/3mZcSvvqSR+vX3/9df3444+aM2eOWrZsmeSdI82/r3z58lmuvE1O7ty5M6VOAEDWly1bNq1Zs0Y7d+7UqlWrtHXrVm3dulW7du3S119/rR49elhCiWZZ6Xx4njx5VLZsWa1cuVL9+vXT6tWrk7wAIb3vY6pXr64zZ85o+fLlCg8P19atW7V69WqtXLlSw4YNU1hYWLJ3hASQeQhIAHgifH19JUnBwcE2t7V8lMKFC6tOnTpat26dfv31V3Xs2FGzZs2SpCS/0PD19dXRo0f11ltvqXXr1o9de1qYTCbVqlXLcpvJO3fuaNasWerZs6cGDx6s1q1bP/IN1OMoUKCApP9PtCbF3Gbu+6Ds2bNryZIlaty4sVauXKkGDRpo2bJlNl9KpWcfm9d3/fp13b59O8kvus6cOZOquQAAz7acOXPK09NTt2/f1okTJ1SyZMkk+0VGRioyMlJS8leQpEe9evXUvXt3NW7cWG+//bZu376tPn36ZNj85mPe6dOnk+2T3PE4JCREJpNJGzZs0NWrV7Vv3z61aNHCcoKobt262rBhg/74449UBSQAAParQIECOnr0aLKf/6KioizH0aQ+/z1p5vMCzZo10wcffPBE192pUycNHjxY8+bN09ixYy3nJd599910fQmTN29evfPOO3rnnXckSUePHtWbb76pP//8UwMHDtTs2bMztP4H5cqVS66uroqPj9epU6eSvJ14Sp/7pX8ec9GgQQO9/vrrat68uebOnatWrVpZ9TH/vnLlymU5B5Ma5nUm9/n+5s2bioqKSvV8AIBnQ1BQkIKCgiT98zioxYsXq1OnTpoyZYpat26t2rVrZ8p6H/d8uIuLi3777Td16NBBCxcuVM2aNbV27Vrly5fPqt/jvI9xd3dX69atLefRr127piFDhmj69Ol688039ffff6dpPgCPj8uJADwR5qsRlixZkq5bOZuDELNmzdKVK1e0cuVKubu7q127dsmu65dffnmMijOGm5ubunfvrtKlSysxMVEHDhzI1PWZgxmrVq3SlStXbNr37t2rffv2WT0T7WHe3t5atWqV6tWrp/DwcNWtW1c3btyw6pOefVywYEHL82Lnzp1r0x4fH68FCxakej4AwLPLwcFBNWvWlCQtWrQo2X4LFy6U9M+tmJN77FN61ahRQ+vWrVOOHDnUt29fjRw5MsPmrlChgjw9PRUZGaklS5bYtMfFxWnevHmSZHOSKFeuXCpbtqwiIyP15ZdfyjAMq1t8msMQy5Yt0+bNm+Xq6qrq1atnWO0AgGeH+fNfcl/Gf//995L+eV53VghImD9HLliw4JGP2MpoHh4eeuutt3Tnzh2NHDlSCxculJubm956660MmT8gIMByx8h9+/ZlyJzJcXJyUrVq1SQp2eCC+Xef0pdRbdu2VVhYmBwcHNSuXTv9+OOPVu1BQUHKnTu3Dh8+rEOHDqW6PvN7vF9++UUJCQk27Q+vBwBgf5ycnNS6dWvLHYgy89hYo0YNOTg4aN++fdq/f79N+6VLl7Rq1SpJyR8XnZ2dNW/ePIWGhurQoUOqXr26TWghI9/HPPfccxozZowk6ezZszbn3gFkPgISAJ6IcuXKqVWrVjp37pxatmyZ5JUEMTExmjNnTpJf7Lds2VLZs2fX+vXr9fnnn+vevXtq1aqV5fnZD+ratasKFy6sBQsWaMCAAYqOjrbpc/nyZc2YMSNDts1s7NixOnv2rM3yo0eP6q+//pKU+Y+bqFatmipVqqS4uDh169ZNsbGxlrbr16+rW7dukqTXXnvNknpNSrZs2bR06VK1bNlS27dvV61atax+L+ndx/369ZMkDR8+XEePHrUsv3//vj744ANdvHgxXdsNAHj2fPTRRzKZTJozZ45mzpxp0/7nn39q8ODBkqT+/fvL2dk5w2sICgrSxo0blS9fPn388ccaOHBghszr5uamnj17Svqn9gdPrCQkJKhv3766fPmy/P39k7wTkzkEYb669cGARIUKFZQ9e3bNnDlTcXFxqlq1arpvOQ4AeLa988478vb21p49ezRy5Eirk/V79+7VZ599JumfZ4NnBc2aNVNQUJB27NihLl26WD2f2+zGjRuaNm2a7t27l+Hr79WrlxwcHPT111/r7t27at++fZK30E7J+vXrtWLFCpsv/g3D0LJlyyQ9mcdM9u/fX5I0depUrVu3zqpt1qxZWrJkiZydndW3b98U52nUqJFWrFghd3d3hYaGWp6dLv3zZdGwYcNkGIZatGihzZs324y/f/++1q9fr23btlmWtW7dWgUKFNDZs2c1aNAgyy3JJengwYOWv0sAgH2YMmWKjh07ZrP88uXL2rVrl6TMPTYWKlRIbdq0kWEY6tatmyIiIixtMTEx6tq1q+7cuaOqVauqatWqyc7j6Oio77//Xr169dKJEydUvXp1HT9+3NKenvcxf//9t7777jvdunXLpu/SpUsl/XNBSFLfcQDIXDxiA8AT88MPP+jmzZtauXKlihcvrjJlysjf31+GYejMmTPav3+/7t69qyNHjihv3rxWY93c3PTaa69p2rRpmjRpkqSkH68h/XNlyPLly9W4cWONGTNG06dPV+nSpVWwYEHFxsbq+PHjOnLkiPLkyWO5HWZG+Oyzz/Thhx8qICBAJUqUkLu7uy5evKjNmzfr3r176tSpkwIDAzNsfcmZO3eu6tSpo99++03+/v6qUaOGEhIStGHDBt26dUuBgYGpesyJi4uLfvnlF3Xp0kU//fSTatSoobVr18rX1zfd+7hnz55as2aNli5dqjJlyqh27drKkSOHtm/frkuXLundd9/V1KlTM3P3AACyiBo1amj8+PF6//339fbbb2vkyJEKDAyUk5OTTpw4od27d8swDL322msZFlxISqlSpbRp0yaFhIToiy++UHR0tCZPniyTyfRY837yySfatWuX1q1bpxIlSqh27dry8vLSn3/+qbNnzypXrlxasGCBXFxcbMbWrVtXX375pe7cuSN/f3+rx3M5ODiodu3aCgsLs/QFAPw75c2bV3PmzFGbNm308ccf66efflK5cuV09epVhYeH6969e+rSpUuGfu59HA4ODlq8eLEaNWqk2bNna+HChSpTpowKFSqku3fv6tSpU/rf//6n+/fvKzQ0VE5OGXva0s/PT02bNtXixYsl/ROYSKsDBw7ovffek7e3twIDA5U/f37FxcVpz549+vvvv+Xj46NPP/00Q+tOSoMGDTRkyBB99tlneuWVVxQcHKxChQrp6NGj2rNnjxwdHTVt2jSrZ6Anp3bt2lq7dq0aNGignj17Kjo62nI3jF69euns2bP68ssvVb16db388ssqWrSo3N3ddfnyZe3bt083b97U1KlTVblyZUn/3EZ8zpw5atiwob766istXrxYQUFBioiI0MaNG9WkSRPt3r2b24kDgJ2YPn26evbsKX9/f5UsWVLe3t66du2aNm3apLi4ONWpU0dNmzbN1Bq++eYbHT16VNu3b1eRIkVUu3ZtOTk5KTw8XNeuXZO/v7/mzJnzyHlMJpMmTZokLy8vjRo1SjVq1NCaNWtUqlSpdL2PuXHjht555x316NFDZcuWlb+/vyTpr7/+0t69e2UymfTll1/K0dExU/cPAFvcQQLAE+Pl5aXff/9dc+fOVd26dXX27FmFhYVp/fr1iouLU8eOHRUWFmb1JcCDHgxE+Pn5WW4nmpSXX35ZBw4c0JgxY1SiRAkdOHBACxYs0Pbt2+Xh4aEPPvjA8sVCRvnmm2/UpUsXy5uvRYsW6fTp03rllVcUFhaWpmd2Po4XXnhBe/bs0aBBg5QrVy4tW7ZMa9asUZEiRTR69Ght3rxZOXLkSNVcjo6Omj17tt59910dP35c1atX14kTJySlbx87ODjo119/1VdffaWiRYtq48aNWrNmjUqXLq1t27apYsWKGb4/AABZV58+fbRr1y699dZbcnR01IoVK/Trr7/q0qVLatasmX777Tf997//zfSTBUWLFtXmzZtVrFgxTZkyRaGhobp///5jzenq6qpVq1ZpypQpKlOmjDZt2qSwsDA5Ozurd+/e2r9/v8qXL5/k2OrVq8vV1VVS0gGIB5cRkACAf7fGjRtrz5496ty5s27fvq2FCxdq9+7dql69uubNm2d51EJWkT9/fm3btk3Tpk1TxYoVdezYMS1cuNByd4Lu3btr9erVcnNzy5T1m2/1XaVKlXRdwNCkSRMNHz5cQUFBOnXqlH799Vdt3LhRPj4+GjhwoA4ePJjhjwVLzogRI7Ry5Uo1aNBAR44c0S+//KKLFy+qTZs22rp1a7IXlSSlUqVK2rhxo/LkyaOBAwdqyJAhlrYxY8Zoy5Yt6tixo27fvq1Vq1Zp+fLlunjxomrVqqXvvvvO5vGnNWvW1Pbt29WyZUvduHFDYWFhOn/+vD799FPNnz8/w/YBAODp+/zzz/Xuu+8qe/bs2rZtmxYsWKDDhw+rUqVKmj17tlatWpXhoceH5cqVS1u3btWoUaPk7++v33//XcuWLVPu3Lk1ePBg7d69W35+fqmeb+TIkRo1apSuXLmimjVraseOHZLS/j6mSJEiGj9+vBo3bqybN29qxYoVWr58uWJiYtSpUyft3Lkzwx73BSBtTMaTfugfAAAAAAAAADxh1apV05YtWzR37ly1b9/+aZcDAAAA4CkgIAEAAAAAAADArq1cuVINGzZUoUKFdOLECTk7Oz/tkgAAAAA8BZl7XxsAAAAAAAAAeAoiIiI0YMAA3bhxQytWrJD0zyMjCEcAAAAA/17cQQIAAAAAAACA3Tlz5oz8/f3l5OSkF154Qf3791fXrl2fdlkAAAAAniICEgAAAAAAAAAAAAAAwO45PO0CAAAAAAAAAAAAAAAAMhsBCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAOCpOnPmjEwmk/z8/DJ1DAAAAAAA+HcjIAEAAAAAAJBFmUwmmUymDJ83NDRUJpNJs2bNyvC5AQAAAADIqpyedgEAAAAAAABpVaBAAR05ckTOzs5PuxQAAAAAAPCMICABAAAAAACeOc7OzgoICHjaZQAAAAAAgGcIj9gAAAAAAMCO/PXXX3rzzTfl7+8vV1dXeXp6qnDhwmrUqJF++OEHS79Zs2bJZDIpNDRUUVFRev/99+Xn5yc3Nze9+OKL+uKLL5SYmChJunDhgrp16yZfX1+5urqqePHimjRpUrI1xMbGavTo0QoMDJSXl5eyZcuml19+WUOGDNGNGzfStD2xsbFq1qyZTCaTateurZs3b0qSzpw5I5PJJD8/P5sxDz6WYtGiRapWrZq8vb3l4eGh4OBgrVixItn1/f333woNDVW+fPks+2LYsGG6c+eOatWqJZPJpI0bN6ZpGx4UFRWlIUOGqFSpUvLw8JCrq6vy58+v4OBg/ec//1FCQoIkafjw4VaP1jBvk/nnzJkzkqSEhAT9/PPP6tixowICAuTt7S13d3cVL15cffr00cWLF63Wb95vs2fPliR16dLFat7hw4db9Utq/5r5+flZ1WJ26dIl9e3bV8WKFZObm5uyZcsmX19fhYSEaOzYsenedwAAAAAAPC7uIAEAAAAAgJ04ePCggoODdevWLRUvXlyNGzeWo6Ojzp8/rz/++EMXLlxQly5drMbcvHlTVapUUUREhKpXr67o6Ght2rRJAwcO1Pnz59WvXz9Vq1ZNzs7Oqlq1qq5du6Y//vhDffr0UWxsrAYMGGA1X2RkpEJCQrRv3z55e3urTp06cnZ2Vnh4uD7//HPNnTtX69evT/GLd7MrV66ocePG2rVrl15//XXNnDlTLi4uqd4fw4YN04gRI1S1alU1bNhQR48e1datW9W4cWMtWrRILVq0sOp/+PBh1axZU9evX1f+/PnVrFkzxcTE6KuvvtL69estgZH0io2NVbVq1XTw4EE999xzCgkJkYeHhy5fvmyp7f3331f27NlVtmxZde7c2RJk6Ny5s9Vcnp6eln30xhtvyMfHRyVKlFDp0qUVExOjffv2adKkSZo3b562bt2qokWLWsZ17txZmzdv1smTJxUcHGxpk6SyZcs+1jZevnxZFSpU0MWLF1WoUCHVr19fbm5uunjxovbt26fdu3frgw8+eKx1AAAAAACQXgQkAAAAAACwE19//bVu3bqlzz77TB9//LFVW1xcnHbu3Gkz5rffflOTJk20a9cuZcuWTZK0Z88eVapUSVOmTNH69evVvHlzTZo0SU5OTpYxzZs318iRI9W7d2/LOEnq0aOH9u3bp0qVKmn58uXKlSuXJOn27dtq27atVq5cqY4dO2rLli0pbsvhw4fVsGFD/f333xoyZIhGjBiR5v0xceJE/fnnn6pUqZJl2fDhw/XJJ59o4MCBNgGJN954Q9evX9drr72mWbNmydXVVdI/d9AICQnRsWPH0lzDgxYuXKiDBw+qQYMG+u233+Ts7GxpS0xM1KZNmyz7snnz5mrevLklIDFr1qwk5/Tx8dFvv/2m+vXrW4VHEhISNGzYMI0aNUp9+/bV8uXLJUm5c+fWrFmzFBoaqpMnT+rtt99WaGjoY23Xg6ZPn66LFy+qa9eumjZtmtVdMBISEvTHH39k2LoAAAAAAEgrHrEBAAAAAICduHLliiSpYcOGNm3u7u6qUaOGzXJPT0999913ViGHwMBANWzYUImJibp9+7bGjRtnCUdIUrNmzVSqVCndunVLu3btsiw/e/asFixYIJPJpOnTp1vCEeb1zJgxQ25ubtq6dau2bt2a7HasX79ewcHBunjxor7//vt0hSMk6dNPP7UKR0jSoEGD5OPjo+PHj+vcuXOW5Zs2bdKePXvk6empb775xhKOkKQCBQroq6++SlcNDzL/fl555RWrcIQkOTg4qGbNmmm6Q4YkeXl5qWnTpjbjnJ2dNXLkSOXPn1+rVq1SdHT04xWfSuZtrF+/vlU4wlxTSEjIE6kDAAAAAICkEJAAAAAAAMBOVKxYUZL07rvvavXq1bpz584jx5QvX1558uSxWf7iiy9KkmrXri03N7dk2y9evGhZ9scffygxMVHlypVT6dKlbcYUKFBAr776qiRpw4YNSdYze/Zs1a9fX4mJiVq+fLnNI0HSokmTJjbLXF1d9cILL0j6584QZuHh4ZL++WI/Z86cNuMaNWqk7Nmzp7sWSQoKCpIkjRkzRj/++KMiIyMfa74H7d+/X19//bV69+6tN998U6GhoQoNDdW9e/eUmJioEydOZNi6UmL+Gxw4cKB+/fVX3b59+4msFwAAAACA1OARGwAAAAAA2IkPP/xQmzdv1tq1a1W/fn05OzurTJkyqlGjhl577TXLF/QPKlSoUJJzeXp6ptju5eUlSVYhDHPgwN/fP9kaixQpYtX3QefPn7c87mH9+vWqVq1asvOkRnK1e3t7S7Ku/fz585IkPz+/ZOcrXLiwbt68me56atWqpQEDBujLL79U586dZTKZ9OKLLyo4OFjNmjVTkyZN5OCQtmtZYmJi9MYbbygsLCzFfrdu3Up33WnxxhtvaM2aNZozZ45atWolR0dHvfTSS6pWrZpat26tOnXqPJE6AAAAAABICneQAAAAAADATmTLlk1r1qzRjh079OmnnyokJETHjx/X119/rYoVK6pnz542Yx71hXxav7B/HHny5FGDBg0kSf369VNERMRjzZee2h9+LERq21Jr9OjROnnypCZOnKg2bdooJiZGP/zwg5o3b67KlSsrJiYmTfMNGjRIYWFhCggI0OLFi3XhwgXFx8fLMAwZhqEqVapIkgzDeOzaH5aYmGizzMHBQT///LMOHTqkMWPGqHHjxrp06ZKmTp2qkJAQNW3aVPfv38/wWgAAAAAASA0CEgAAAAAA2JmgoCANHTpUK1euVEREhBYsWCB3d3dNmTIl2UdbZIQCBQpIkk6dOpVsH3Obue+DXFxc9Ntvv6l169bavXu3atasqcuXL2dOsQ8x13PmzJlk+/z9998Zsi4/Pz/17t1b8+fP1/nz57Vjxw4VK1ZMO3fu1JgxY9I01y+//CJJmj9/vpo1a6b8+fPLxcXF0v7XX3+lq0bzHNHR0Um2JyQk6NKlS8mOf+mll/Thhx9q8eLFunr1qtauXas8efJo6dKl+vHHH9NVEwAAAAAAj4uABAAAAAAAdszJyUmtW7fWq6++Kknat29fpq2rRo0acnBw0L59+7R//36b9kuXLmnVqlWSpNq1ayc5h7Ozs+bNm6fQ0FAdOnRI1atXz7BgQkpq1KghSVq1apVu3Lhh075y5cokl2eEoKAg9ejRQ5Lt78fZ2VmSdO/evSTHRkZGSvrn8R8PW716ta5fv57kOHMAIrl5n3vuObm4uCgyMlJXr15Ncu7kxj7MZDIpJCREHTp0kJS5f4MAAAAAAKSEgAQAAAAAAHZiypQpOnbsmM3yy5cva9euXZKS/iI9oxQqVEht2rSRYRjq1q2b1SMyYmJi1LVrV925c0dVq1ZV1apVk53H0dFR33//vXr16qUTJ06oevXqOn78eKbVLf0TkChTpoyio6PVu3dv3b1719J28eJF9e/f/7HXERYWpj/++MPm0RQJCQmW4MjDv5+CBQtKkg4dOpTknCVKlJAkTZo0yWr5sWPH1L1792RredS8zs7OltDIkCFDrGrev3+/evXqleS4H3/8Ubt377ZZHh0drY0bN0rK3L9BAAAAAABS4vS0CwAAAAAAABlj+vTp6tmzp/z9/VWyZEl5e3vr2rVr2rRpk+Li4lSnTh01bdo0U2v45ptvdPToUW3fvl1FihRR7dq15eTkpPDwcF27dk3+/v6aM2fOI+cxmUyaNGmSvLy8NGrUKNWoUUNr1qxRqVKlMqVuk8mkn3/+WTVr1tScOXO0ceNGBQcHKzY2Vhs2bFDZsmVVpUoV/fnnn1aPsEiL8PBwTZgwQblz51a5cuWUJ08eRUdHa9u2bbp69aoKFCigjz76yGpMq1atNHbsWNWtW1d16tSRl5eXJOmLL75Qrly5NGzYMLVu3VpDhw7VL7/8opdffllXr17Vpk2bVL16deXPn19bt261qaV58+b65JNPNHHiRB08eFC+vr5ycHBQ06ZNLX8jn332mf744w/NmDFD4eHhKl26tC5cuKBdu3apQ4cO2rhxo83dPX799Vd17txZ+fPnV9myZZUjRw7duHFDW7ZsUVRUlEqWLKl33nknXfsPAAAAAIDHxR0kAAAAAACwE59//rneffddZc+eXdu2bdOCBQt0+PBhVapUSbNnz9aqVavk5JS510rkypVLW7du1ahRo+Tv76/ff/9dy5YtU+7cuTV48GDt3r1bfn5+qZ5v5MiRGjVqlK5cuaKaNWtqx44dmVZ7yZIltXv3br3xxhtKSEjQ4sWLdeTIEfXt21dr1qzRlStXJEm5c+dO1/yhoaEaOHCgAgICdPjwYS1YsEB//vmnfH19NXLkSO3fv99yZwezESNG6KOPPlL27Nm1ePFizZw5UzNnzlR0dLQkqWXLlgoPD1dISIguXbqkJUuW6OrVqxo+fLhWrlxpeUTHw0qXLq1FixapSpUq2r59u2bNmqWZM2dqz549lj6VKlVSeHi46tWrp8uXL2v58uWKjY3VhAkT9MMPPyQ5b//+/dWvXz8VLFhQe/bs0YIFC7Rnzx699NJLmjRpkrZt22YJeQAAAAAA8KSZDMMwnnYRAAAAAAAAWdnp06dVtGhReXl5KTIyUg4OXHMCAAAAAMCzhk/zAAAAAAAAkmJiYnTo0CGb5X///bc6duyoxMREde7cmXAEAAAAAADPKO4gAQAAAAAAIOnMmTPy9/dXkSJFVKxYMXl7e+vs2bPas2eP4uPjVaZMGf3xxx/y9vZ+2qUCAAAAAIB0ICABAAAAAAAg6fbt2/rkk0+0fv16nT17Vjdv3lS2bNlUvHhxtWrVSr1791a2bNks/UNDQ1M9d/PmzdW8efOMLxoAAAAAAKQaAQkAAAAAAIB0MJlMqe47bNgwDR8+PPOKAQAAAAAAj+T0tAsAAAAAAAB4FnHNCQAAAAAAzxaHp10AAAAAAAAAAAAAAABAZiMgAQAAAAAAAAAAAAAA7B4BCQAAAAAAAAAAAAAAYPcISAAAAAAAAAAAAAAAALtHQAIAAAAAAAAAAAAAANg9AhIAAAAAAAAAAAAAAMDuEZAAAAAAAAAAAAAAAAB2j4AEAAAAAAAAAAAAAACwewQkAAAAAAAAAAAAAACA3fs/EY9Y62NCOSQAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 2600x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure(figsize=(26, 8))\n",
+    "draw(df,'smoking_status','stroke')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:24px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ: </strong><br>\n",
+    "<ul>\n",
+    "<li>Nhóm không hút thuốc: tỉ lệ bị đột quỵ ít hơn. Sự khác biệt giữa tỉ lệ bị đột quỵ và không bị đột quỵ là không quá lớn.\n",
+    "\n",
+    "</li>\n",
+    "<li>Nhóm hút thuốc: tỉ lệ bị đột quỵ cao hơn so với không bị đột quỵ, tuy nhiên sự khác biệt là không quá đáng kể.\n",
+    "\n",
+    "</li>\n",
+    "\n",
+    "<li>Nhóm không biết: tỉ lệ bị không bị đột quỵ là 30.7%, cao hơn 1.62 lần so với bị đột quỵ.\n",
+    "</li>\n",
+    "<li>Nhóm đã từng hút thuốc: tỉ lệ bị đột quỵ là 28.23%, cao hơn 1.67 lần so với không bị đột quỵ.\n",
+    "</li>\n",
+    "\n",
+    "</ul>\n",
+    "\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 155,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[  43.16723549  823.83276451]\n",
+      " [  91.51254768 1746.48745232]\n",
+      " [  38.63641839  737.36358161]\n",
+      " [  74.68379843 1425.31620157]]\n",
+      "Chi-Square value: 28.733513415037887\n",
+      "Degree of Freedom:  3\n",
+      "p-value: 0.000002547567825\n",
+      "Có mối tương quan giữa việc hút thuốc và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "stroke_formerlysmoked_count = df[(df['smoking_status'] == 'formerly smoked') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_formerlysmoked_count = df[(df['smoking_status'] == 'formerly smoked') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_neversmoked_count = df[(df['smoking_status'] == 'never smoked') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_neversmoked_count = df[(df['smoking_status'] == 'never smoked') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_smokes_count = df[(df['smoking_status'] == 'smokes') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_smokes_count = df[(df['smoking_status'] == 'smokes') & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_unknown_count = df[(df['smoking_status'] == 'Unknown') & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_unknown_count = df[(df['smoking_status'] == 'Unknown') & (df['stroke'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa việc hút thuốc và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa việc hút thuốc và đột quỵ\"\n",
+    "\n",
+    "\n",
+    "formerly_smoked_arr = [stroke_formerlysmoked_count, nostroke_formerlysmoked_count]\n",
+    "never_smoked_arr = [stroke_neversmoked_count, nostroke_neversmoked_count]\n",
+    "smokes_arr = [stroke_smokes_count, nostroke_smokes_count]\n",
+    "unknown_arr = [stroke_unknown_count, nostroke_unknown_count]\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(formerly_smoked_arr)\n",
+    "nij.append(never_smoked_arr)\n",
+    "nij.append(smokes_arr)\n",
+    "nij.append(unknown_arr)\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(4 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_smoke = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_smoke))\n",
+    "if p_smoke <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định Chi-square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa việc hút thuốc và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa việc hút thuốc và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/3Wb9Kwv.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả của kiểm định chi – square về mối tương quan giữa đột quỵ và tình trạng hút thuốc</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 28.733513415037887</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  3</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000002547567825 </li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa việc hút thuốc và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa việc hút thuốc và bệnh đột quỵ\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>  \n",
+    "<ul>\n",
+    "<li>\n",
+    "Đột quỵ và tình trạng hút thuốc có mối tương quan với nhau.\n",
+    "</li>\n",
+    "<li>\n",
+    "Hút thuốc có khả năng làm tăng nguy cơ bị đột quỵ. Điều này phù hợp với nghiên cứu của y khoa.\n",
+    "</li>\n",
+    "<li>\n",
+    "Ngừng hút thuốc lá làm tăng nguy cơ bị đột quỵ cao hơn so với nhóm hút thuốc. Điều này trái lại với nghiên cứu của y khoa, khi đáng lý ra việc bỏ hút thuốc mang lại các tác động tích cực cho sức khỏe và giảm các nguy cơ mắc đột quỵ hơn so với nhóm hút thuốc. Điều này còn phụ thuộc vào thời gian hút thuốc và thời gian bỏ hút thuốc. Nhưng các dữ liệu này không được thể hiện trong bộ dữ liệu nên không thể đưa ra kết luận chính xác.\n",
+    "</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.6. Đột quỵ và cao huyết áp: </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ,</strong> cao huyết áp luôn gây những ảnh hưởng sâu sắc đến cấu trúc của mạch máu não. Tăng huyết áp thúc đẩy sự phát triển của mảng xơ vữa động mạch trên động mạch não và tiểu động mạch, có thể dẫn đến tắc động mạch và tổn thương do thiếu máu cục bộ. Đồng thời, tăng huyết áp cũng dẫn đến chứng xơ cứng mạch máu, dẫn đến tăng áp lực mạch, trở thành một yếu tố dự báo đột quỵ.\n",
+    "<br>\n",
+    "Chia bộ dữ liệu thành 2 nhóm bị cao huyết áp và không bị cao huyết áp, quan sát sự phân bố của người bị đột quỵ và không đột quỵ trên 2 nhóm trên.\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 156,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACDkAAAK2CAYAAABOotXkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBrUlEQVR4nOzdZ5SV5d0+7HNgABGYAUTQCARQIxrQiIAoaBQ1Chp7eSxR1FhilMSSv5VYo8SYgmKPPRqNBWwo9oJYULFFRaOogFgAHYp09/shD/NmHorgDM7scBxr7bVmX/V3jxPXyrpPr6ukUCgUAgAAAAAAAABQx9Wr7QIAAAAAAAAAAJaHkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKQp0NOYwbNy6XXHJJBgwYkK5du6a0tDQlJSU577zzqrXuI488kv79+6dVq1Zp3LhxOnfunNNPPz0zZ86socoBAAAAAAAAgJWhtLYLWJrLL788Q4YMqdE1//znP+eEE05ISUlJttpqq7Rp0yZPP/10zj///Nx5550ZNWpUWrVqVaN7AgAAAAAAAAA1o86GHLp06ZKTTjopm266abp165bzzz8/N91007deb+zYsTnxxBNTv3793HvvvenXr1+S5Kuvvsquu+6aRx99NEcffXTuuOOOFVr366+/zscff5xmzZqlpKTkW9cHAAAAAAAAAKuqQqGQGTNm5Hvf+17q1Vv6pRR1NuTw85//vMr3ZT3E8rjgggtSKBRy6KGHVgYckmT11VfPNddck06dOuXOO+/M22+/nc6dOy/3uh9//HHatWtXrdoAAAAAAAAAgGTChAlp27btUvvrbMihJs2bNy/3339/kuSAAw5YrP/73/9+evfunaeffjrDhg3LqaeeutxrN2vWLMm/f9FlZWU1UzAAAAAAAAAArEKmT5+edu3aVb6DX5pVIuTwzjvv5KuvvkqSdO/efYljunfvnqeffjpjx45dobUXXVFRVlYm5AAAAAAAAAAA1bDoHfzSrBIhh/HjxydJmjdvvtTUx6IrJxaNXZq5c+dm7ty5ld+nT59eQ1UCAAAAAAAAAMtSr7YL+C7MmDEjSdKkSZOljmnatGmSbw4tXHDBBSkvL6/8LApHAAAAAAAAAAAr1yoRcqhJp556aioqKio/EyZMqO2SAAAAAAAAAGCVsEpcV7HoiopZs2YtdczMmTOTJGVlZctcq1GjRmnUqFHNFQcAAAAAAAAALJdV4iSHDh06JEm+/PLLyqsr/q9FJzIsGgsAAAAAAAAA1C2rRMhhgw02yOqrr54kefHFF5c4ZlF7t27dvrO6AAAAAAAAAIDlt0qEHBo2bJidd945SXLLLbcs1v/hhx9m9OjRSZI99tjjO60NAAAAAAAAAFg+pbVdQE0aOnRohg4dmp49e+bGG2+s0nfKKafkjjvuyHXXXZe99torO+20U5Lkq6++yuGHH56FCxdmr732SufOnWujdOC/0IQJE/L73/8+DzzwQCZOnJhmzZpls802y8CBAyuDV//prLPOytlnn73MNd96660V/vfUggULctVVV+XGG2/Mm2++mQULFmTdddfNvvvum5NOOimNGzde5vxXX301Q4YMyeOPP57JkyencePGadu2bfr06ZPzzjsva6yxRpXxt9xyS373u9/lX//6V9q0aZPDDjssgwYNSv369Rdbe9asWfnhD3+Ypk2b5uWXX07Dhg1X6NkAAAAAAIBlmz9/fhYuXFjbZbAKqVevXho0aJCSkpKVsn6dDTm8/PLLOeaYYyq/v/fee0mSK6+8Mvfdd19l+7Bhw7L22msnSaZMmZJx48ZlrbXWWmy9bt265Y9//GNOOOGE9O/fPz/+8Y/TunXrPP3005k8eXI22GCDXHHFFSv5qYBVxZgxY7LTTjtl2rRpWXvttdOvX79MnTo1jz/+eB566KH89re/XWqgYZNNNsmPfvSjJfaVl5evUB1z587NLrvskkceeSSNGjVKr169UlZWlueffz6//e1vc+edd+aJJ55I8+bNlzj/oosuyimnnJJCoZDNNtssvXr1SkVFRd59991cccUV+eUvf1kl5HDfffflwAMPTIsWLbLzzjvnlVdeydlnn52pU6fmkksuWWz9M844Ix999FFGjRol4AAAAAAAADVo+vTpmTJlSubOnVvbpbAKql+/flZfffW0bt26xt8B1dmQw/Tp0/P8888v1j5x4sRMnDix8vuK/I/y+OOPT9euXfPHP/4xL7zwQmbNmpX27dvn1FNPzamnnppmzZrVSO3Aqm3OnDnZa6+9Mm3atOy333657rrrKk9LGDNmTPr165dzzjknffr0yQ477LDY/N133z1nnXVWjdQyaNCgPPLII1lnnXXy4IMPpkuXLkmSGTNmZP/998/999+fX/7yl7n55psXm3vdddflN7/5TTbYYIPccccdlXMX+ec//5m2bdsutl/Dhg3z3HPP5Qc/+EFmzZqV7t275/LLL8/pp59eJYT24osv5pJLLskvfvGLbLnlljXyvAAAAAAAwL/ftU6aNClNmzZNq1atVup/VQ//qVAoZOHChZk9e3YqKirywQcfpG3btll99dVrbI+SQqFQqLHVVkHTp09PeXl5KioqUlZWVtvlAHXA3//+9xxwwAFp3rx5xo8fv9gpCRdffHF+9atfpU+fPnn66acr2xddV3HmmWfWSMhh/vz5admyZWbOnJnrrrsuAwYMqNL/ySefpFOnTpkzZ07eeeedrLfeepV9X3zxRTp06JD58+fnjTfeSKdOnb5xv3nz5mX11VdP375989BDD1W2/+53v8sZZ5yRu+++O7vuumuSZOHChenRo0c+++yzvPnmm/79CQAAAAAANej9999PgwYN0rZtW+EGas3ChQvz4YcfprS0NO3bt//G8cv77r1eTRYJwL9Pa0iSzTbbbInXQGy//fZJkmeeeSaffPLJSqvjrbfeysyZM6vs+Z/WWmutdOnSJYVCIXfeeWeVvhtuuCHTp0/PXnvttVwBhyT58ssvs3DhwrRs2bJK+6LrLBbVkiR//vOfM3bs2AwdOlTAAQAAAAAAatD8+fMzd+7clJeXCzhQq+rXr5+WLVtm1qxZWbBgQY2tW2evqwAoVote5i96uf9/tWrVKsm/j+t5+eWX079//yr9L7/8ck455ZRMmzYt5eXl2XTTTfPTn/50ha/U+c9QwTfV8tJLL1VpHzlyZJJk6623zuzZs3PHHXdkzJgxWbhwYdZff/3stddeadeuXZU5rVu3zuqrr5633nqrSvui7+uss06S5IMPPsiZZ56ZPfbYI7vvvvsKPRMAAAAAALBsCxcuTJI0aNCgliuBpFGjRkmSBQsWpLS0ZuIJQg4ANax169ZJ/n0U1JL8Z/v48eMX67/33ntz7733VmkrLy/PxRdfnIMPPniF61i05w9/+MOl1vJ/63jttdeSJDNmzEiXLl0We5aTTz45F1xwQU444YQq7bvuumtuvfXW/OlPf8rPf/7zPPfcc7nuuuvSunXr9OrVK0nyi1/8IqWlpRk6dOhyPwsAAAAAALBinOJAXbAy/g5dVwFQw/r27Zvk36cjjB07drH+K664ovLn6dOnV/687rrr5vzzz8/YsWMzbdq0TJs2LaNGjcouu+ySioqKHHLIIbn55puXu4711luv8n6jq6++erH+J554IuPGjVusjiSZOnVqkuSUU07JwoULc++99+aLL77Ie++9l5NPPjnz58/PiSeemL///e9V5l1wwQVp06ZNTjzxxJSXl2fHHXfMnDlzcvXVV6dRo0b5+9//ngcffDCDBw/O9773vcp5c+bMqUyWAgAAAAAAwNKUFAqFQm0XUcymT5+e8vLyVFRUuFceqPTjH/84Tz31VNq2bZvLLrssW2+9daZOnZrLLrssf/rTn1JaWpr58+dn8ODBOfnkk79xvYEDB+aSSy7JmmuumYkTJ6Zhw4bLVce1116bww8/PPXq1cvpp5+eww8/PGVlZXn00Ufzy1/+Ml988UXmz5+fzp07V7lmolGjRpk3b17q16+f1157LRtttFGVdY855phcfvnl6dSpU957770qfVOmTMm1116bf/3rX2nTpk0OPPDAdO7cOV988UU6d+6c9ddfP08//XRKSkpy22235be//W3eeeedNGjQIDvssEOGDh2ajh07LtfzAQAAAAAAVc2ZMyfjx49Px44ds9pqq9V2OaziVuTvcXnfvQs5VJOQA7Akn332Wfbcc88888wzi/X9+te/zqhRo/Liiy/mqquuyhFHHPGN602bNi2tW7fOwoUL89RTT2WrrbZa7lrOOeecnHPOOYudlNClS5fsuuuuOf/887PllltWqbVVq1aZOnVqttlmmzz++OOLrfnGG2+ka9euSf595cXyhBIOP/zw/O1vf8vYsWOz0UYb5e67787uu++ePn365Pjjj8/kyZNz+umnp3nz5nnjjTfStGnT5X5GAAAAAADg34QcqEtWRsihtKaLBCBp3bp1nn766TzyyCN57LHHMnXq1LRp0ya77bZbunfvXnlVw6KgwDdp2bJlWrduncmTJ2fixIkrVMtvf/vbHHTQQbnrrrvy3nvvpWHDhunVq1f22muvnHXWWUuso1OnTpk6dWo6deq0xDX/s33y5MnfGHJ48sknc91112XQoEGVp0IMHjw4TZo0yT333JMWLVokSerXr59f/OIXueWWW3LkkUeu0HMCAAAAAAArpqSkJEniv4svTmeddVbOPvvsnHnmmZXvfFYFQg4AK0lJSUl22GGH7LDDDlXa33vvvUyePDlrrLFGunXrtlxrLVy4MBUVFUmSZs2arXAtnTp1ykknnbRY+9NPP50ki9W42WabZcyYMZkyZcoS1/vP9m86cWHu3Lk56qijssEGG+S0006rbH/llVfSpUuXyoBDkvTp06eyDwAAAAAAYGUaMGBAbrjhhlx33XUZMGBAbZfDcqpX2wUArGouuuiiJMmRRx6Zhg0bLtece+65J1999VVKSkrSvXv3Gqnjueeey6hRo9KuXbvstttuVfr22WefyjGzZs1abO7DDz+c5N8Bhw033HCZ+/zud7/LO++8kyuvvDKNGjWqbC8pKVls7UXfFyVHAQAAAAAAWLJjjz02b731Vo499tjaLuU7JeQAsBK8+eabmT59epW2BQsW5Pzzz8+VV16Z9dZbL6effnpl30cffZS//e1vmTNnzmJrDR8+PD//+c+TJAceeGDWWmutKv0vvPBCOnfunM6dOy8294svvsi4ceMWa3/uueey1157paSkJFdddVVKS6se7NO3b99stdVW+eyzz3Lsscdm7ty5lX2vvfZazjjjjCTJL37xizRo0GCZv4ff//73+fnPf56tt966Sl+3bt3y1ltv5Zlnnqlsu+qqqyr7AAAAAAAAWLpWrVqlc+fOadWqVW2X8p0ScgBYCa666qq0adMmffr0yX777Zfdd989bdu2zemnn5511103Dz/8cJo0aVI5ftq0afnZz36WNddcM1tvvXX233//7L777vnBD36QPfbYI9OmTcu2226byy+/fLG9vvrqq4wbN26JYYYPP/wwnTt3zkYbbZRdd901+++/f7p165Ytttgin3/+ea655prstNNOS3yGm2++OR06dMj111+fddddN3vssUd+/OMfp0ePHvnkk0+yww475Nxzz13q76BQKOTII49My5Ytc+GFFy7Wf8YZZ1Re6bHbbrtl8803z7XXXpv11lsv+++///L8mgEAAAAAgBpy5513pk+fPikrK0uTJk3Su3fvjBgxosqY6dOnp6ysLKWlpZkwYcJS1+rfv39KSkpy2WWXVbZts802KSkpyRNPPJEnn3wyP/nJT9KyZcusvvrq6dmzZ2666aZl1vfoo49mzz33zNprr52GDRumdevW2WOPPfLss88ucXxJSUnlydHXXXddtthii5SXl6ekpCQffPBBSkpKcsMNNyRJDj300MrxJSUlOeuss6qsNXv27Pzxj39Mr1690rx586y22mrZYIMN8v/+3//L1KlTF9v7+uuvT0lJSQYMGJBZs2bl1FNPzXrrrZdGjRplrbXWyiGHHJJJkyYtse5HHnkkP/3pT9OmTZs0aNAgLVq0yPrrr5+DDjooTz31VJWxZ5111hLrXWTkyJHZZZdd0rp16zRs2DDf+973st9+++XFF19c4vj//Gf0yiuvZM8990yrVq3SqFGjbLTRRvnjH/+YQqGwxLnfJSEHgJWgf//+2XHHHfPRRx/l7rvvzuOPP5727dvnwgsvzGuvvZYOHTpUGd+uXbucfPLJ6dmzZz788MPce++9GTFiRGbOnJlddtklt9xySx555JE0bdp0hepYZ511ctRRR6VevXp58sknM2zYsHz55Zc54ogj8vrrr+fQQw9d6tx27drllVdeySmnnJImTZrkgQceyNixY9OtW7dcfvnleeCBB6pcP/F/XXXVVXnmmWdy8cUXp3nz5ov177TTTrnnnnvSpUuXPPjgg3nnnXfyP//zP3nyySez+uqrr9BzAgAAAAAA396ZZ55ZeZV1//79s/7662f06NHZZZddMmzYsMpxZWVlGTBgQBYuXJgrrrhiiWu99957efDBB1NWVpaDDz54sf5hw4alb9++mTRpUnbcccf06NEjL730Ug4++OCceOKJS1zzpJNOyvbbb5+777477du3z+67755OnTrl7rvvzlZbbZXrrrtuqc923HHH5ec//3lKS0uz8847Z/PNN09JSUkOOeSQrLvuukmS3r1755BDDqn8/OhHP6qc//HHH2fzzTfPSSedlHfffTc9evRI//79M3fu3PzhD39I9+7d8+GHHy5x74qKimy55Za54oorstFGG6Vfv34pFAq58cYb07t371RUVFQZf8MNN+QnP/lJ7r///nTs2DF77bVXtt5665SVleXWW2/NXXfdtdTn/L8GDRqUnXbaKSNGjMgPfvCD7L333mnTpk3+8Y9/pFevXrn22muXOnfkyJHZfPPN8/bbb2eHHXbIFltskXfeeScnnXRSjj/++OWuYaUpUC0VFRWFJIWKioraLgUAAAAAAABYxc2ePbvw5ptvFmbPnv2NY5MUkhSaN29eeO6556r0nXnmmYUkhR/84AdV2t95551CSUlJoXXr1oU5c+YstuaJJ55YSFI47rjjqrT/+Mc/rtzv/PPPr9L3xBNPFBo3blxIUnjwwQer9F111VWFJIX11luv8Oqrr1bpe/LJJwvNmjUrNGzYsPDOO+8s8dnKysoKzz777BKf/5BDDikkKVx33XVL7P/6668LvXv3LiQpHH744YXp06dX9s2fP7/yWbfddtsq86677rrK/Xfccccq75KnTZtW+NGPfrTE30PHjh0LSQpPP/30YrV8+umnhZdffrlK26J/RmeeeWaV9gceeKCQpLDaaqsVHnrooSp9f/3rXwtJCg0aNCi88cYbVfr+85/RFVdcUaXv0UcfLZSUlBTq169fmDBhwhJ/X0uyIn+Py/vu3UkOAAAAAAAAAKuwc845J5tvvnmVtlNPPTXl5eV55513qlxNsf7666dfv3757LPPcvvtt1eZM3v27Fx77bUpKSnJL3/5yyXutemmm+bUU0+t0vbjH/84xxxzTJLkj3/8Y2X7119/XXkVw6233pqNN964yrytt946gwYNyrx583LllVcucb+TTjopvXr1WsbTL93IkSPzzDPP5Ec/+lGuuOKKNGvWrLKvtLQ0F154Ybp06ZLHH388b7zxxmLzmzRpkuuuuy5lZWWVbS1atMgpp5yS5N9XU/ynTz/9NOXl5enTp89ia7Vu3TqbbrrpctV90UUXJUmOOeaY7LDDDlX6Dj/88Oyyyy6ZP39+hgwZssT5e+65Z4466qgqbX379s2OO+6YhQsX5vHHH1+uOlYWIQcAAAAAAACAVdhPf/rTxdoaNWqUTp06JUkmTZpUpe9Xv/pVkmTo0KFV2m+55ZZ88cUX2X777bPBBhssca8lXWGRJIccckiSZNSoUVm4cGGSZOzYsfn444+z7rrrZrPNNlvivG222SZJMnr06CX277333ktsXx73339/kmSvvfZKaWnpYv316tXL1ltvvdT9u3fvnrXXXnux9g033DDJ4r/Xnj17pqKiIgcffHBeeumlfP311ytc84IFC/LMM88kSQYMGLDEMYcffniSLDWssKS/h2XV/V1b/J8E/Be444XPa7sEAIrc3j3XrO0SAAAAAAC+E+3bt19i+6ITCObMmVOlfYcddsiGG26Y559/Pi+99FJlAOHSSy9Nkhx77LFL3atjx47LbJ89e3amTp2a1q1b5/3330+SvPfeeykpKVnmM3z++ZLfD3bo0GGZ85Zl0f6DBg3KoEGDVnj/Ff29XnbZZdlll11y00035aabbkqzZs3So0eP9O3bNz/72c+Wut5/mjp1auW6S/tdr7vuukmWHlZY0bq/a0IOAAAAAAAAAKuwevVW7AKAkpKSHHfccTnmmGMydOjQXHfddXn22WczduzYdOjQIbvssku16ikUCklSeZLBWmutlR133HGZc1q1arXE9saNG3/rOhbt36dPn8pgwNL88Ic/XKxtRX+vG264YcaNG5eHHnoojz32WEaPHp2nn346jz32WM4555xcc801Oeigg1ZozW9jRev+rgk5AAAAAAAAALBCDj744Jx22mm59dZbc9FFF1VeXfGLX/ximS/Jx48fv8T2Dz74IEmy2mqrZY011kiStGvXLkmyxhpr5Prrr6+54pfTov132223nHTSSd/JnqWlpenfv3/69++fJJk+fXr+9Kc/5eyzz85RRx2VPfbYI02aNFnq/DXWWCONGjXK3Llz8/7772fjjTdebMyiEyrWWWedlfMQK1ndjmAAAAAAAAAAUOc0adIkhx9+eObMmZPzzz8/d9xxR1ZbbbUcfvjhy5z3t7/9bYntN954Y5J/n5pQWvrv/1a/R48eadWqVd58883885//rNkHSNKwYcMkyYIFC5bY369fvyTJ7bffXnm6xHetrKwsZ511Vpo3b56vvvoq77zzzjLHl5aWpk+fPkmy1GDItddemyTZdttta7TW74qQAwAAAAAAAAAr7Nhjj029evXypz/9KfPmzcv+++9feQrD0rz00ku58MILq7SNGjUql156aZLk+OOPr2xv0KBBzjzzzBQKheyxxx4ZNWrUYustXLgwjz32WJ577rkVrr9t27ZJstQAxW677ZYePXrkhRdeyKGHHprPP/98sTFffPFFrrjiiqUGJZbXV199lT/96U9L3OPpp5/Ol19+mfr161fWvCwnnnhikuTyyy/Po48+WqXv+uuvzz333JMGDRrkV7/6VbVqri2uqwAAAAAAAABghXXo0CG77rprhg8fnuTfoYdvMnDgwJx66qm58cYbs/HGG+fjjz/O008/na+//jq/+tWvKq9pWOTYY4/NRx99lD/84Q/Zaqut8sMf/jDrrbdeGjdunE8++SSvvPJKvvzyy1x++eXp1avXCtW/++675+yzz87FF1+cN954I+3atUu9evWy6667Ztddd029evUyfPjw7Lzzzrnhhhtyxx13ZJNNNkn79u0zb968vP/++3n99dezcOHCDBgwoPIEim9j3rx5OfHEE/Ob3/wmXbt2zfrrr58GDRrkgw8+qAxwnH766VlzzTW/ca1+/frljDPOyHnnnZcddtghvXv3Tvv27fP222/n5ZdfTv369XPFFVfkhz/84beutzY5yQEAAAAAAACAb2XHHXdMkmyxxRbp1q3bN47fY4898vDDD2ettdbKiBEj8sILL6Rbt265/vrr85e//GWJcy688MI888wzOfDAAzNz5sw8+OCDuf/++/Pxxx9nm222yV//+tfst99+K1z7xhtvnDvvvDNbbLFFnn/++Vx//fW55ppr8vLLL1eO+d73vpfnnnsuV1xxRXr27Jlx48bljjvuqDxV4uijj87IkSOz2mqrrfD+/6lp06a54oorst9++2Xu3Ll5+OGHM3z48Hz22WfZc8898+ijj+bss89e7vXOPffcPPDAA+nXr1/eeuut/OMf/8jHH3+cffbZJ6NHj85hhx1WrXprU0mhti4P+S8xffr0lJeXp6KiImVlZbVdDv/rjhcWP8YFAFbE3j2/OQ0LAAAAAFDXzJkzJ+PHj0/Hjh2r/eJ9efTp0yfPPPNMbrnlluy///5LHbfNNtvkySefzOOPP55tttlmpddF3bAif4/L++7dSQ4AAAAAAAAArLAHHnggzzzzTNq3b5+99967tsthFfHtLwUBAAAAAAAAYJUyderUnHzyyfniiy8yYsSIJP++TqJBgwa1XBmrCiEHAAAAAAAAAJbLjBkzcs0116S0tDSdOnXKiSeemP3226+2y2IVIuQAAAAAAAAAwHLp0KFDCoXCCs974oknar4YVkn1arsAAAAAAAAAAIDlIeQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUhdLaLgAAAAAAAACAVdMdL3xe2yWssL17rrlS1r399ttz6aWX5tVXX828efOy3nrr5cADD8zxxx+fBg0arJQ9i5GTHAAAAAAAAACgFv3617/Ovvvum2eeeSY9e/bMTjvtlI8++ignn3xy+vbtm9mzZ9d2iXWGkAMAAAAAAAAA1JLhw4dnyJAhadq0aZ5//vmMHDkyd955Z95999107do1o0aNyqBBg2q7zDpDyAEAAAAAAAAAasn555+fJDnllFPSrVu3yvZWrVrlsssuS5IMHTo0FRUVtVJfXSPkAAAAAAAAAAC1YNKkSRkzZkyS5IADDlisv0+fPmnXrl3mzp2bESNGfNfl1UlCDgAAAAAAAABQC8aOHZskadmyZTp27LjEMd27d68ydlUn5AAAAAAAAAAAtWD8+PFJkvbt2y91TLt27aqMXdUJOQAAAAAAAABALZgxY0aSpEmTJksd07Rp0yTJ9OnTv5Oa6johBwAAAAAAAACgKAg5AAAAAAAAAEAtaNasWZJk1qxZSx0zc+bMJElZWdl3UlNdJ+QAAAAAAAAAALWgQ4cOSZIJEyYsdcyivkVjV3VCDgAAAAAAAABQCzbddNMkydSpUzN+/PgljnnxxReTJN26dfvO6qrLhBwAAAAAAAAAoBa0bds2PXr0SJLccssti/WPGjUqEyZMSKNGjdK/f//vurw6ScgBAAAAAAAAAGrJaaedliQZPHhwXn755cr2qVOn5phjjkmSHHvssSkvL6+V+uoaIQcAAAAAAAAAqCW77757Bg4cmJkzZ6ZXr17p169f9t5776y33np5/fXX07t375x77rm1XWadIeQAAAAAAAAAALVoyJAhue2227LFFltk9OjRGTFiRNq2bZvBgwfnscceS+PGjWu7xDqjtLYLAAAAAAAAAGDVtHfPNWu7hDpj3333zb777lvbZdR5TnIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAoI766KOPcuyxx2aDDTZI48aNs9pqq6Vjx4455JBD8uqrry513tdff50bbrgh22+/fdZcc800atQoa6+9dvr27ZvLLrtshWoYO3ZsLrjggmy33XZp06ZNGjRokBYtWmSrrbbKpZdemvnz5y9x3rhx4/KXv/wl/fv3zzrrrJOGDRumrKwsPXr0yAUXXJCZM2cudc8hQ4ZkvfXWS6NGjbL++uvn0ksvXerYSZMmpby8PD/5yU9W6LkAAAAAgOJUUigUCrVdRDGbPn16ysvLU1FRkbKystouh/91xwuf13YJABQ598BR255//vnssMMOmTFjRtZZZ51sttlmqV+/fl555ZWMHz8+paWlueWWW7LPPvtUmVdRUZFdd901Tz31VMrKyrLlllumefPmmTRpUl5//fWsu+66efHFF5erhgULFqRBgwZJkqZNm6ZHjx5p06ZNJk6cmGeffTYLFy5Mz549M3LkyDRv3rzK3LZt22bSpElZbbXV0r1797Rt2zaffvppnn322cyZMyfrrrtuHnvssbRv377KvKFDh+a4447L2muvnV69euXZZ5/NJ598kosuuignnnjiYjXuscceeeihh/L666+nU6dOK/AbBgAAAPjvNGfOnIwfPz4dO3bMaqutVtvlsIpbkb/H5X33LuRQTUIOdZOQAwDVJeRAbdtkk03y2muv5cgjj8zQoUMrwwZff/11zjzzzJx33nlp3rx5Jk+eXPl/DgqFQvr27ZsnnngiRx11VC666KI0bdq0cs158+bltddeS/fu3ZerhgULFqRXr145+eSTs+uuu6ZRo0aVfa+//np23HHHTJ48OYceemiuvfbaKnO32267HHjggdl3332r1PDBBx9kl112yT//+c9su+22eeyxxyr7Fi5cmLXWWitJ8tZbb6VVq1b57LPPsuGGG+brr7/OZ599Vvl7SJJhw4Zlzz33zIUXXpjf/OY3y/urBQAAAPivJuRAXSLkUAcJOdRNQg4AVJeQA7Vp6tSpadWqVZLks88+y5prVv17XLhwYZo1a5bZs2fn5Zdfzqabbpokufbaa3P44Ydnxx13zIMPPrjS6/zb3/6Wn/3sZ2ncuHEqKiqqBBCWZdSoUdlqq62SJBMmTEjbtm2TJO+9917WW2+9HHHEEbnqqqsqxx9xxBH561//mldffTUbb7xxkmTGjBnZcMMNs+aaa2bMmDEpLS2t4acDAAAAKE5CDtQlKyPkUK+miwQAAKrnP09M+CaLwhBJcvHFFyfJd3aqwaJwxezZszNlypQVnpf8O+SwyNSpU5MkLVu2rDJ+jTXWSJLMnDmzsu3UU0/NJ598kquvvlrAAQAAAABWIUIOAABQxzRt2rTypIMzzjgj8+fPr+z7+uuvc9ZZZ2X27Nnp169f2rVrlyT59NNP8+qrr6Z+/frZcsst8/7772fw4ME5+uijc9JJJ+X222/PvHnzarTOd999N0nSsGHDxYIJyzMvSdZee+3Knzt06JDk31dV/KdF39dZZ50kyXPPPZfLL788AwcOXO6rNwAAAACA/w7+kycAAKiDrr766vTv3z9XXXVV7r///nTv3j3169fP2LFjM2nSpPzsZz/L0KFDK8e/9tprSf596sFf//rXnHjiiVXCEUnSqVOnDBs2rPLKh+ooFAq58MILkyS77LLLCp0+MXjw4CRJt27dKoMNSdK6detsscUWuf/++3Prrbdm5513zn333Zf7778/G2+8cb7//e9n/vz5OfLII9OuXbuce+651X4OAAAAAKC4OMkBAADqoA022CDPPvtsfvKTn2TSpEm5++67c9ddd2X8+PFZb731ss0221S5l27RVQ/Tpk3LwIEDs9tuu+X111/PjBkz8uyzz2bzzTfP+++/n5122qlybHWcffbZefbZZ9O0adPK0MLyuP7663Pbbbelfv36GTJkyGL9F198cRo3bpz9998/ZWVlOeCAA9KkSZNcffXVSZKLLroor7/+ei6//PI0adKkct7s2bNTKBSq/VwAAAAAQN0m5AAAAHXQM888k65du+aNN97ILbfckk8++STTpk3Lvffem/nz5+fwww/P4YcfXjl+0Qv+BQsWZIsttsjtt9+eLl26pGnTpunVq1cefvjhtGnTJpMnT85ll11WrdpuvPHGnHPOOalXr16uvfbarL/++ss179FHH81RRx2VJLnwwgvTp0+fxcZ07949b7zxRs4+++wcccQROffcc/PGG2+kZ8+eee+993Luuedm//33T79+/ZIkl1xySdq1a5fVV189TZo0yQEHHFAjIQ4AAAAAoG4ScgAAgDrmyy+/zB577JHPP/88d911V/bff/+0adMmLVq0yC677JIHH3wwq6++eq699to8/vjjSZJmzZpVzl8UJPhPzZo1y0EHHZQkeeSRR751bbfffnsOO+ywJP++UmOfffZZrnmjRo3Kbrvtlnnz5uXMM8/MCSecsNSx3//+9/Pb3/42V111Vc4444y0a9cuyb+fq3HjxvnLX/6S5N+nPgwcODCbbbZZhg8fnkGDBuXOO+9Mv3798vXXX3/rZwQAAAAA6i4hBwAAqGPuv//+fP755+nUqVM233zzxfr/s31RYKFTp05V+pdkUfvkyZO/VV133XVXDjjggHz99de58sorK8MO32T06NHp379/Zs2aldNPPz1nnXXWCu99ww035NFHH81FF12U1q1bJ0kGDx6c73//+7njjjuy22675dRTT83xxx+fMWPGVCvIAQAAAADUXUIOAABQx3z00UdJkrKysqWOKS8vT5JMmzYtSfKDH/yg8jSHKVOmLHHOovamTZuucE3Dhw/P//zP/2ThwoW5/PLLc8QRRyzXvOeeey477bRTZsyYkdNOOy3nnXfeCu89ZcqUnHjiidl2221z6KGHJkk+/fTTTJ48OT169EhpaWnl2EVXYLzyyisrvA8AAAAAUPeVfvMQAADgu7TOOuskSd5+++1UVFRUBhoWmT9/fl5++eUkSceOHZMkpaWl2X333XPTTTflkUceyR577LHYug8//HCSpGfPnitUz7333pt99903CxYsyOWXX77E6zCW5IUXXsiOO+5YGXD43e9+t0L7LnLCCSdk1qxZufLKKyvbSkpKkiSzZs2qMnbR90X9AAAAANRtXz54SW2XsMKa73RcbZewSnOSAwAA1DH9+vVLkyZNMnv27BxxxBGZOXNmZd+8efNy/PHH56OPPkqDBg2y9957V/addtppadCgQa6++urcd999Vdb8wx/+kFGjRqV+/fr55S9/WaVv2LBh6dy5c7bbbrvFahkxYkT23nvvLFiwIFdcccVyBxxefPHF/OQnP8n06dOrFXB45JFHctNNN2XQoEFZf/31K9tbt26dtm3b5vHHH897772XJFm4cGGuvfbaJEm3bt2+1X4AAAAA8F0bN25cLrnkkgwYMCBdu3ZNaWlpSkpKvtWpqKsCJzkAAEAds+aaa+aKK67IoYcemttvvz1PPPFEevTokQYNGuTFF1/MpEmTUq9evVx88cXp1KlT5bzOnTvn6quvzmGHHZaf/vSn6d69ezp06JA33ngjb7/9durXr5/LL788Xbt2rbJfRUVFxo0blzlz5lRp/+yzz7Lnnntm3rx5adu2bUaPHp3Ro0cvseaLLroorVq1qvz+k5/8JBUVFWnevHkmTZqUAQMGLHHeKaecks6dOy+xb/bs2Tn66KPTtWvX/OY3v1msf9CgQTnqqKPSvXv3bLvttnnnnXfyz3/+M717907fvn2XuCYAAAAA1DWXX355hgwZUttlFA0hBwAAqIMOOuigdO3aNX/5y1/y1FNP5dFHH02hUMjaa6+dAw88MAMHDlzitROHHHJINtpoo/z+97/P008/nVdffTVrrLFG9tlnn5x00kkrdFXFV199lblz5yZJJk6cmBtuuGGpY88666wqIYcvvvgiSfLll18uc96AAQOWGnI455xzMn78+IwePToNGjRYrP/II49Mw4YNc9FFF+W+++5L8+bNc9RRR+X3v/+96yoAAAAAKBpdunTJSSedlE033TTdunXL+eefn5tuuqm2y6qzSgqFQqG2iyhm06dPT3l5eSoqKlJWVlbb5fC/7njh89ouAYAit3fPNWu7BAAAAACAFTZnzpyMHz8+HTt2zGqrrVbb5XyjLx+8pLZLWGHNdzpupa4/YMCA3HDDDTn33HNzxhlnrNS9VrYV+Xtc3nfv9Wq6SAAAAAAAAACAlUHIAQAAAAAAAAAoCqW1XQAAQF1UjEekAVC3rOyjKwEAAABWRU5yAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKpbVdAAAAAAAAAACsql5++eUcc8wxld/fe++9JMmVV16Z++67r7J92LBhWXvttb/z+uoaIQcAAAAAAAAAakXznY6r7RJq3fTp0/P8888v1j5x4sRMnDix8vvcuXO/y7LqLCEHAAAAAAAAAKgl22yzTQqFQm2XUTTq1XYBAAAAAAAAAADLQ8gBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAA8F+mUCjUdgmwUv4OhRwAAAAAAAAA/kvUq/fvV8ALFy6s5Urg//87XPR3WROEHAAAAAAAAAD+SzRo0CD169fP7Nmza7sUyIwZM9KgQYM0aNCgxtYUcgAAAAAAAAD4L1FSUpLVV189FRUVTnOgVs2ePTvTp09Ps2bNUlJSUmPrltbYSgAAAAAAAADUutatW+eDDz7Ihx9+mJYtW6ZRo0Y1+pIZlqZQKGThwoWZMWNGpk+fnkaNGqVVq1Y1uoeQAwAAAAAAAMB/kYYNG6Zt27aZMmVKJk+eXNvlsApq0KBBmjdvnlatWqV+/fo1uraQAwAAAAAAAMB/mdVXXz3t27fPggULsmDBgtouh1VIvXr10qBBg5V2eoiQAwAAAAAAAMB/qdLS0pSWei3Mf496tV0AAAAAAAAAAMDyEHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUhTofcrj99tuzzTbbpEWLFmnSpEk22WSTXHjhhZk/f/4KrzVr1qxccMEF6d69e8rKytKgQYOstdZa2WWXXXLPPfeshOoBAAAAAAAAgJpSWtsFLMuvf/3rDBkyJKWlpenbt2+aNm2axx57LCeffHLuvffePPTQQ2ncuPFyrTV16tRsvfXWefPNN9O0adNsueWWad68ef71r3/l/vvvz/3335+BAwdmyJAhK/mpAAAAAAAAAIBvo86e5DB8+PAMGTIkTZs2zfPPP5+RI0fmzjvvzLvvvpuuXbtm1KhRGTRo0HKvd8455+TNN9/MZpttlg8//DAjR47Mbbfdlpdeein3339/SktLc/HFF+e5555biU8FAAAAAAAAAHxbdTbkcP755ydJTjnllHTr1q2yvVWrVrnsssuSJEOHDk1FRcVyrffYY48lSU4++eS0bNmySl///v2z7bbbJkmeffbZatcOAAAAAAAAANS8OhlymDRpUsaMGZMkOeCAAxbr79OnT9q1a5e5c+dmxIgRy7XmaquttlzjWrVqtfyFAgAAAAAAAADfmToZchg7dmySpGXLlunYseMSx3Tv3r3K2G/Sr1+/JMnvf//7TJs2rUrfiBEj8vjjj2ettdbKrrvu+m3LBgAAAAAAAABWotLaLmBJxo8fnyRp3779Use0a9euythvcvLJJ+eFF17IyJEj8/3vfz+9e/dO8+bN869//SsvvfRSevfunWuuuSbl5eXVfwAAAAAAAAAAoMbVyZDDjBkzkiRNmjRZ6pimTZsmSaZPn75cazZp0iT33ntvTjvttPzxj3/MyJEjK/vWWGONbL/99llnnXW+cZ25c+dm7ty5ld+Xd38AAAAAAAAAoHrq5HUVK8PkyZPTu3fvXHLJJTnvvPPy/vvvZ+bMmXnhhRey2Wab5eyzz06fPn0qAxZLc8EFF6S8vLzys+hECQAAAAAAAABg5aqTIYdmzZolSWbNmrXUMTNnzkySlJWVLdeahxxySMaMGZNzzz03p512Wjp27JgmTZqkR48eue+++9K1a9e8+uqrueiii5a5zqmnnpqKiorKz4QJE5bzqQAAAAAAAACA6qiTIYcOHTokyTIDBIv6Fo1dlkmTJuXhhx9Okuy///6L9Tdo0CB77713kuSRRx5Z5lqNGjVKWVlZlQ8AAAAAAAAAsPLVyZDDpptumiSZOnVqxo8fv8QxL774YpKkW7du37jeRx99VPnz0kIJ5eXlSZJp06atUK0AAAAAAAAAwHejToYc2rZtmx49eiRJbrnllsX6R40alQkTJqRRo0bp37//N663zjrrVP78/PPPL3HMc889lyTp2LHjtykZAAAAAAAAAFjJ6mTIIUlOO+20JMngwYPz8ssvV7ZPnTo1xxxzTJLk2GOPrTyBIUmGDRuWzp07Z7vttquyVvv27StDE7/61a/ywQcfVOn/29/+lttuuy1JcsABB9T4swAAAAAAAAAA1Vda2wUsze67756BAwfm4osvTq9evbLddtulSZMmefTRR/Pll1+md+/eOffcc6vMqaioyLhx4zJnzpzF1rv22muz7bbb5q233sqGG26YXr16pVWrVnnrrbfyz3/+M0ly0EEH5cADD/xOng8AAAAAAAAAWDF1NuSQJEOGDEnv3r1z6aWXZvTo0Zk/f37WXXfdnHLKKTn++OPTsGHD5V6rS5cueeONN/LnP/85DzzwQMaMGZO5c+emRYsW2XHHHXPYYYdl3333XYlPAwAAAAAAAABUR0mhUCjUdhHFbPr06SkvL09FRUXKyspquxz+1x0vfF7bJQBQ5LafdmttlwBAkWu+03G1XQIAAABA0Vjed+/1vsOaAAAAAAAAAAC+NSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKNT5kMPtt9+ebbbZJi1atEiTJk2yySab5MILL8z8+fO/9Zp33313dt1116y11lpp2LBhWrdunS233DLnnHNODVYOAAAAAAAAANSkOh1y+PWvf5199903zzzzTHr27JmddtopH330UU4++eT07ds3s2fPXqH15s2bl3333Te77757Hnnkkfzwhz/M3nvvnS5duuS9997LxRdfvJKeBAAAAAAAAACortLaLmBphg8fniFDhqRp06Z58skn061btyTJlClT0rdv34waNSqDBg3KRRddtNxrHnHEEbn99tuz++675+qrr06rVq0q+77++uu88MILNf4cAAAAAAAAAEDNqLMnOZx//vlJklNOOaUy4JAkrVq1ymWXXZYkGTp0aCoqKpZrvUcffTQ33nhjunTpkn/84x9VAg5JUq9evfTq1auGqgcAAAAAAAAAalqdDDlMmjQpY8aMSZIccMABi/X36dMn7dq1y9y5czNixIjlWvOSSy5J8u8rMBo0aFBzxQIAAAAAAAAA34k6eV3F2LFjkyQtW7ZMx44dlzime/fumTBhQsaOHZv9999/mestXLgwjz76aJJk6623zieffJJbb70148aNS6NGjbLppptmr732StOmTWv2QQAAAAAAAACAGlMnQw7jx49PkrRv336pY9q1a1dl7LK8//77mTlzZpLkueeeyzHHHFP5fZHf/OY3ufXWW9O3b99lrjV37tzMnTu38vv06dO/cX8AAAAAAAAAoPrq5HUVM2bMSJI0adJkqWMWnbqwPCGDqVOnVv58+OGHZ7PNNsuYMWMyY8aMvPLKK+nfv38+//zz7Lbbbnn33XeXudYFF1yQ8vLyys+isAUAAAAAAAAAsHLVyZBDTSsUCpU/r7POOhk5cmS6d++epk2bZpNNNsk999yTLl26ZObMmRk8ePAy1zr11FNTUVFR+ZkwYcLKLh8AAAAAAAAASB0NOTRr1ixJMmvWrKWOWXTdRFlZ2XKvlyQDBgxIo0aNqvTXr18/Rx11VJLkkUceWeZajRo1SllZWZUPAAAAAAAAALDy1cmQQ4cOHZJkmackLOpbNPab1ispKUmSdOrUaYljFrVPnjx5BSoFAAAAAAAAAL4rdTLksOmmmyZJpk6dmvHjxy9xzIsvvpgk6dat2zeu17Rp02ywwQZJkilTpixxzKL2pk2brnC9AAAAAAAAAMDKVydDDm3btk2PHj2SJLfccsti/aNGjcqECRPSqFGj9O/ff7nW3GeffZIs/TqKhx9+OEnSs2fPb1MyAAAAAAAAALCS1cmQQ5KcdtppSZLBgwfn5ZdfrmyfOnVqjjnmmCTJsccem/Ly8sq+YcOGpXPnztluu+0WW2/gwIFp0aJFRowYkSuvvLJK36233pqbb765chwAAAAAAAAAUPfU2ZDD7rvvnoEDB2bmzJnp1atX+vXrl7333jvrrbdeXn/99fTu3TvnnntulTkVFRUZN25c3nvvvcXWa9WqVW677basttpqOfroo9OlS5fss88+6datW/bff/8UCoUMGjRouU+GAAAAAAAAAAC+W3U25JAkQ4YMyW233ZYtttgio0ePzogRI9K2bdsMHjw4jz32WBo3brxC6+2www559dVXc8ghh+TLL7/M3XffnY8++ij9+/fPyJEjc84556ykJwEAAAAAAAAAqqukUCgUaruIYjZ9+vSUl5enoqIiZWVltV0O/+uOFz6v7RIAKHLbT7u1tksAoMg13+m42i4BAAAAoGgs77v3On2SAwAAAAAAAADAIkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAUahWyKFv37658MILv3HcRRddlL59+1ZnKwAAAAAAAABgFVdanclPPPFEOnTo8I3jxo0blyeffLI6WwEAAAAAAAAAq7jv5LqK+fPnp149N2MAAAAAAAAAAN/ed5I8eP3117PGGmt8F1sBAAAAAAAAAP+lVvi6isMOO6zK91GjRi3WtsiCBQvy5ptv5pVXXsmuu+767SoEAAAAAAAAAMi3CDlcf/31lT+XlJTkX//6V/71r38tc873vve9/O53v1vh4gAAAAAAAAAAFlnhkMN1112XJCkUCjnssMPSp0+fHH744Usc27Bhw7Rt2za9evVKgwYNqlcpAAAAAAAAALBKW+GQwyGHHFL581lnnZVevXpVaQMAAAAAAAAAWBlWOOTwnz744IMaKgMAAAAAAAAAYNnq1XYBAAAAAAAAAADLo1onOSzy/PPP55FHHsmkSZMyZ86cJY4pKSnJNddcUxPbAQAAAAAAAACroGqFHObNm5f9998/w4cPT5IUCoWljhVyAAAAAAAAAACqo1ohh3PPPTfDhg1LkyZN8rOf/SwbbrhhysrKaqo2AAAAAAAAAIBK1Qo5/P3vf8/qq6+e559/PhtttFFN1QQAAAAAAAAAsJh61Zk8ceLE9O7dW8ABAAAAAAAAAFjpqhVyaNGiRVq2bFlTtQAAAAAAAAAALFW1Qg7bb799nn/++RQKhZqqBwAAAAAAAABgiaoVcjj33HMzbdq0nHXWWTVUDgAAAAAAAADAkpVWZ/JTTz2VQw89NOedd14efPDB7Lzzzmnfvn3q1VtyduLggw+uznYAAAAAAAAAwCqsWiGHAQMGpKSkJIVCIWPGjMmLL764zPFCDgAAAAAAAADAt1WtkMPBBx+ckpKSmqoFAAAAAAAAAGCpqhVyuP7662uoDAAAAAAAAACAZatX2wUAAAAAAAAAACyPap3k8H/961//yueff5411lgjP/jBD2pyaQAAAAAAAABgFVftkxwWLlyY8847L2uttVY22GCD9OnTJ4MHD67sv/nmm7Plllvmn//8Z3W3AgAAAAAAAABWYdUKOSxcuDC77LJLzjzzzHzxxRfZcMMNUygUqozp3bt3nnvuudx1113VKhQAAAAAAAAAWLVVK+RwxRVXZOTIkdl2220zfvz4vPHGG4uN6dChQ9Zdd9089NBD1dkKAAAAAAAAAFjFVSvkcMMNN6Rly5a5/fbb873vfW+p4zbccMN89NFH1dkKAAAAAAAAAFjFVSvk8Pbbb6dnz55p0aLFMseVl5fns88+q85WAAAAAAAAAMAqrlohh4ULF6ZRo0bfOG7y5MnLNQ4AAAAAAAAAYGmqFXL4/ve/n9dee22ZY+bPn5833ngj66+/fnW2AgAAAAAAAABWcdUKOey000754IMPctVVVy11zCWXXJLPP/88O++8c3W2AgAAAAAAAABWcaXVmfyb3/wm119/fY455pi8+eab2XfffZMks2bNyssvv5x//OMf+dOf/pRWrVrl2GOPrZGCAQAAAAAAAIBVU0mhUChUZ4Gnnnoqe+65Z6ZNm5aSkpIqfYVCIc2bN88999yTPn36VKvQumr69OkpLy9PRUVFysrKarsc/tcdL3xe2yUAUOS2n3ZrbZcAQJFrvtNxtV0CAAAAQNFY3nfv1bquIkm23nrr/POf/8z/+3//Lz/84Q/TuHHjNGrUKOutt14GDhyY119//b824AAAAAAAAAAAfHeqdV3FIm3atMngwYMzePDgmlgOAAAAAAAAAGAx1T7JAQAAAAAAAADgu1CtkMOECRNy4403Zty4cUsd8/bbb+fGG2/MxIkTq7MVAAAAAAAAALCKq1bI4ZJLLsmhhx6aQqGw1DGFQiEDBgzIZZddVp2tAAAAAAAAAIBVXLVCDg899FA23HDDdO7cealjNtxww2y00UZ58MEHq7MVAAAAAAAAALCKq/Z1Feutt943jltvvfUyYcKE6mwFAAAAAAAAAKziqhVy+Oqrr9K4ceNvHNe4cePMmDGjOlsBAAAAAAAAAKu4aoUc1l577bzyyivfOO7VV19N69atq7MVAAAAAAAAALCKq1bIYauttso777yTO++8c6lj7rrrrrz99tvZeuutq7MVAAAAAAAAALCKq1bI4Ve/+lVKSkpy8MEHZ8iQIVWupJgxY0aGDBmSgw8+OPXq1cvAgQOrXSwAAAAAAAAAsOqqVsihW7duueCCCzJ79uyccMIJadmyZdq3b5/27dunZcuWOeGEE/LVV1/lvPPOS8+ePWuqZgAAAAAAAABgFVStkEOS/OY3v8nw4cOz8cYbZ+HChZk4cWImTpyYhQsXZuONN85dd92VU045pSZqBQAAAAAAAABWYaU1sciuu+6aXXfdNZ9++mk++uijJEn79u3Tpk2bmlgeAAAAAAAAAKB6IYdOnTrlBz/4QR588MEkSZs2bQQbAAAAAAAAAICVolrXVXz66adp2bJlTdUCAAAAAAAAALBU1Qo5fP/738/06dNrqhYAAAAAAAAAgKWqVshh7733zlNPPZXPP/+8puoBAAAAAAAAAFiiaoUcTj311Gy44Yb5yU9+ktGjR9dUTQAAAAAAAAAAiymtzuSdd9459evXz6uvvpqtttoqrVu3TocOHdK4cePFxpaUlOTRRx+tznYAAAAAAAAAwCqsWiGHJ554ovLnQqGQTz/9NJ9++ukSx5aUlFRnKwAAAAAAAABgFVetkMPjjz9eU3UAAAAAAAAAACxTtUIOP/7xj2uqDgAAAAAAAACAZapX2wUAAAAAAAAAACyPap3ksEihUMgDDzyQ0aNH5/PPP8/mm2+eww47LEny+eef54svvsi6666b+vXr18R2AAAAAAAAAMAqqNohh1dffTX77bdf3n333RQKhZSUlGT+/PmVIYeHH344P/vZzzJ8+PD89Kc/rXbBAAAAAAAAAMCqqVrXVUycODHbb7993nnnnfTr1y8XXnhhCoVClTG77757GjRokLvvvrtahQIAAAAAAAAAq7ZqhRzOP//8TJ06NX/5y19y33335aSTTlpszOqrr55NNtkkY8aMqc5WAAAAAAAAAMAqrlohhwcffDCdO3fOwIEDlzmuQ4cOmTx5cnW2AgAAAAAAAABWcdUKOXz88cfp2rXrN44rKSnJ9OnTq7MVAAAAAAAAALCKq1bIoUmTJvn888+/cdz48ePTsmXL6mwFAAAAAAAAAKziqhVy6Nq1a1566aVMmTJlqWM+/PDDvPrqq9lss82qsxUAAAAAAAAAsIqrVsjhoIMOyowZM/Lzn/88X3311WL98+bNyzHHHJP58+fnoIMOqs5WAAAAAAAAAMAqrrQ6kw899NDcfPPNueeee9K5c+fstNNOSZJXX301AwcOzD333JOPPvoo22+/ffbbb78aKRgAAAAAAAAAWDVV6ySH+vXr5957783++++fSZMm5a9//WuSZOzYsRk6dGg++uij7LXXXrnrrrtqpFgAAAAAAAAAYNVVrZMckqRp06a5+eabM2jQoIwYMSLvv/9+vv7667Rr1y79+vXLj370oxooEwAAAAAAAABY1VU75LBI586d07lz55paDgAAAAAAAACgimpdVwEAAAAAAAAA8F2pkZMcpkyZkr/+9a954oknMnHixBQKhbRt2zbbbrttDjvssLRu3bomtgEAAAAAAAAAVmHVDjncfffdOfTQQ1NRUZFCoVDZ/tZbb+WRRx7J4MGDc91112WPPfao7lYAAAAAAAAAwCqsWiGH559/Pvvss08WLFiQ7t275+CDD07Hjh2TJB988EFuvPHGjBkzJvvtt1+efvrpbL755jVSNAAAAAAAAACw6qlWyOGcc87JwoUL84c//CEnnnjiYv2//OUv8+c//zknnnhizj333Nx3333V2Q4AAAAAAAAAWIXVq87k0aNHp0uXLksMOCxy/PHHp2vXrnnmmWeqsxUAAAAAAAAAsIqrVshh/vz56dq16zeO69KlS+bPn1+drQAAAAAAAACAVVy1Qg6dO3fOhAkTvnHcpEmTssEGG1RnKwAAAAAAAABgFVetkMNRRx2VUaNG5cknn1zqmCeffDJPP/10jjrqqOpsBQAAAAAAAACs4kqrM/mII47I22+/nZ133jlHH310Dj744HTs2DFJMn78+Nx00025/PLL8+tf/zpHHnlkjRQMAAAAAAAAAKyaSgqFQuHbTq5fv/6337ikJAsWLPjW8+uK6dOnp7y8PBUVFSkrK6vtcvhfd7zweW2XAECR237arbVdAgBFrvlOx9V2CQAAAABFY3nfvVfrJIdq5COqNRcAAAAAAAAAWPVUK+Tw9ddf11QdAAAAAAAAAADLVK+2CwAAAAAAAAAAWB5CDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAikKdDzncfvvt2WabbdKiRYs0adIkm2yySS688MLMnz+/2muPGDEiJSUlKSkpyfbbb18D1QIAAAAAAAAAK0udDjn8+te/zr777ptnnnkmPXv2zE477ZSPPvooJ598cvr27ZvZs2d/67W/+OKLHHHEESkpKanBigEAAAAAAACAlaXOhhyGDx+eIUOGpGnTpnn++eczcuTI3HnnnXn33XfTtWvXjBo1KoMGDfrW6x933HH59NNPc/TRR9dg1QAAAAAAAADAylJnQw7nn39+kuSUU05Jt27dKttbtWqVyy67LEkydOjQVFRUrPDaw4YNy80335wTTjghPXv2rJmCAQAAAAAAAICVqk6GHCZNmpQxY8YkSQ444IDF+vv06ZN27dpl7ty5GTFixAqtPWXKlBx99NHZYIMNcs4559RIvQAAAAAAAADAylcnQw5jx45NkrRs2TIdO3Zc4pju3btXGbu8fvGLX2TKlCm55pprstpqq1WvUAAAAAAAAADgO1Na2wUsyfjx45Mk7du3X+qYdu3aVRm7PG699dbccccd+dWvfpXevXt/q9rmzp2buXPnVn6fPn36t1oHAAAAAAAAAFgxdfIkhxkzZiRJmjRpstQxTZs2TbL8IYNPPvkkv/zlL7Puuuvm/PPP/9a1XXDBBSkvL6/8LApbAAAAAAAAAAArV50MOawMRx55ZL744ov89a9/zeqrr/6t1zn11FNTUVFR+ZkwYUINVgkAAAAAAAAALE2dvK6iWbNmSZJZs2YtdczMmTOTJGVlZd+43g033JB77703v/jFL7LNNttUq7ZGjRqlUaNG1VoDAAAAAAAAAFhxdTLk0KFDhyRZ5ikJi/oWjV2WYcOGJUnGjBmzWMjhk08+SZK89NJLlX233npr1lprrRUrGgAAAAAAAABYqepkyGHTTTdNkkydOjXjx49Px44dFxvz4osvJkm6deu23OsumrMkX375ZZ588skkyZw5c1akXAAAAAAAAADgO1CvtgtYkrZt26ZHjx5JkltuuWWx/lGjRmXChAlp1KhR+vfv/43rDR8+PIVCYYmf6667Lkmy3XbbVbYtz+kQAAAAAAAAAMB3q06GHJLktNNOS5IMHjw4L7/8cmX71KlTc8wxxyRJjj322JSXl1f2DRs2LJ07d85222333RYLAAAAAAAAAKx0dfK6iiTZfffdM3DgwFx88cXp1atXtttuuzRp0iSPPvpovvzyy/Tu3TvnnntulTkVFRUZN26c6yYAAAAAAAAA4L9QnT3JIUmGDBmS2267LVtssUVGjx6dESNGpG3bthk8eHAee+yxNG7cuLZLBAAAAAAAAAC+IyWFQqFQ20UUs+nTp6e8vDwVFRUpKyur7XL4X3e88HltlwBAkdt+2q21XQIARa75TsfVdgkAAAAARWN5373X6ZMcAAAAAAAAAAAWEXIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAACgKAg5AAAAAAAAAABFQcgBAAAAAAAAACgKQg4AAAAAAAAAQFEQcgAAAAAAAAAAioKQAwAAAAAAAABQFIQcAAAAAAAAAICiIOQAAAAAAAAAABQFIQcAAAAAAAAAoCgIOQAAAAAAAAAARUHIAQAAAAAAAAAoCkIOAAAAAAAAAEBREHIAAAAAAAAAAIqCkAMAAAAAAAAAUBSEHAAAAAAAAACAoiDkAAAAAAAAAAAUBSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAUajzIYfbb78922yzTVq0aJEmTZpkk002yYUXXpj58+ev0Dpjx47NBRdckO222y5t2rRJgwYN0qJFi2y11Va59NJLV3g9AAAAAAAAAOC7VVrbBSzLr3/96wwZMiSlpaXp27dvmjZtmsceeywnn3xy7r333jz00ENp3LjxN66zYMGCdOvWLUnStGnT9OjRI23atMnEiRPz7LPPZtSoUbnxxhszcuTING/efCU/FQAAAAAAAADwbdTZkxyGDx+eIUOGpGnTpnn++eczcuTI3HnnnXn33XfTtWvXjBo1KoMGDVru9TbbbLP84x//yJQpU/LYY4/l73//e55++umMHTs2a6+9dl544YWccMIJK/GJAAAAAAAAAIDqqLMhh/PPPz9Jcsopp1SewpAkrVq1ymWXXZYkGTp0aCoqKr5xrdLS0rz44ovZZ5990qhRoyp9Xbt2zYUXXpgkufXWW11bAQAAAAAAAAB1VJ0MOUyaNCljxoxJkhxwwAGL9ffp0yft2rXL3LlzM2LEiGrvt+mmmyZJZs+enSlTplR7PQAAAAAAAACg5tXJkMPYsWOTJC1btkzHjh2XOKZ79+5VxlbHu+++myRp2LBhWrZsWe31AAAAAAAAAICaV1rbBSzJ+PHjkyTt27df6ph27dpVGfttFQqFyusqdtlll8Wus/i/5s6dm7lz51Z+nz59erX2BwAAAAAAAACWT508yWHGjBlJkiZNmix1TNOmTZNUP2Rw9tln59lnn03Tpk0zePDgbxx/wQUXpLy8vPKzKGwBAAAAAAAAAKxcdTLk8F258cYbc84556RevXq59tprs/7663/jnFNPPTUVFRWVnwkTJnwHlQIAAAAAAAAAdfK6imbNmiVJZs2atdQxM2fOTJKUlZV9qz1uv/32HHbYYUmSq6++Ovvss89yzWvUqNE3XmkBAAAAAAAAANS8OnmSQ4cOHZJkmackLOpbNHZF3HXXXTnggAPy9ddf58orr6wMOwAAAAAAAAAAdVedDDlsuummSZKpU6dm/PjxSxzz4osvJkm6deu2QmsPHz48//M//5OFCxfm8ssvzxFHHFG9YgEAAAAAAACA70SdDDm0bds2PXr0SJLccssti/WPGjUqEyZMSKNGjdK/f//lXvfee+/NvvvumwULFuTyyy/PUUcdVWM1AwAAAAAAAAArV50MOSTJaaedliQZPHhwXn755cr2qVOn5phjjkmSHHvssSkvL6/sGzZsWDp37pzttttusfVGjBiRvffeOwsWLMgVV1wh4AAAAAAAAAAARaa0tgtYmt133z0DBw7MxRdfnF69emW77bZLkyZN8uijj+bLL79M7969c+6551aZU1FRkXHjxmXOnDlV2j/77LPsueeemTdvXtq2bZvRo0dn9OjRS9z3oosuSqtWrVbacwEAAAAAAAAA306dDTkkyZAhQ9K7d+9ceumlGT16dObPn5911103p5xySo4//vg0bNhwudb56quvMnfu3CTJxIkTc8MNNyx17FlnnSXkAAAAAAAAAAB1UEmhUCjUdhHFbPr06SkvL09FRUXKyspquxz+1x0vfF7bJQBQ5LafdmttlwBAkWu+03G1XQIAAABA0Vjed+/1vsOaAAAAAAAAAAC+NSEHAAAAAAAAAKAoCDkAAAAAAAAAAEVByAEAAAAAAAAAKApCDgAAAAAAAABAURByAAAAAAAAAACKgpADAAAAAAAAAFAUhBwAAAAAAAAAgKIg5AAAAAAAAAAAFAUhBwAAAAAAAPgWxo0bl0suuSQDBgxI165dU1pampKSkpx33nlLnfPAAw/k5z//ebp375611147jRo1SrNmzfKjH/0op512WqZMmbLCdXTo0CElJSXf+DnnnHMWm7tgwYJcdtll6dOnT1q0aJEGDRqkVatW2W677XLDDTfk/2vv3qO0LMs9AP+G80kGFVECGshjC1EiUNuSCR5CNA+kW2XnAS0owzxlikVpmJFbDRBFJU+xPKJBW2GLoqIigRCikiTKQZFSBIPhJALO/sOY7QSDCMLwxXWtxVp+z3N/93u/84eLj+83z/vRRx9t8JoDBw7MXnvtldq1a2fvvffOTTfdVOl88+fPT3FxcY4++ujPfG8A/6pGVQ8AAAAAAAAAhWjIkCEZOHDgZ3rPPffck3vuuSd77bVX9t9//+y2225ZtGhRXnjhhfz617/O7bffnqeeeiqtW7fe5J4nn3xypeGI999/P4888kiSpFOnThX2Vq1alaOPPjrPPvtsatWqlY4dO2a33XbLvHnz8vTTT+epp57KyJEj84c//CFFRUXl7xs8eHAuvPDCNG3aNMcee2z+9Kc/pXfv3vnggw9yySWXrDdD7969s2bNmtxyyy2bfE8AlSkqKysrq+ohCllpaWmKi4uzZMmSNGzYsKrH4Z8eeuG9qh4BgAJ35Pv3V/UIABS4Rl3Or+oRAACArex3v/tdXnvttXzlK19Ju3btcs0112TYsGHp169ffvazn23wPdOmTcsee+yRPfbYo8L6smXLcs4552T48OE55JBD8qc//elzmfHaa6/NZZddln322SevvfZahb3f/va3ufjii1NSUpJnn302X/ziF8v3pkyZks6dO2fp0qW57777ctpppyVJ1q5dWz77jBkz0rhx4yxYsCBf/vKX89FHH2XBggWpWbNmeZ8RI0akW7duufbaa3PppZd+LvcE/Hva1O/ePa4CAAAAAAAANsN3v/vd/Pd//3e6d++e/fbbL9WqffpXb23btl0v4JAkDRo0yPXXX58kmThxYkpLSz+XGe+4444kyTnnnLPe3lNPPZUk+eEPf1gh4JAk7du3Lw82fDJwMXfu3CxcuDAnnXRSGjdunCRp0qRJunXrlsWLF2fGjBnltUuXLs3555+ftm3b5qKLLvpc7gfA4yoAAAAAAABgO1Cjxsdf3VWrVq3CaQib6/nnn89rr72WGjVq5Kyzzlpvv06dOpvUZ12YIUkWLVqUJNlll10q1Oy6665JPj6RYp0+ffrknXfeyciRI8vvDWBLOckBAAAAAAAAqtiqVatyxRVXJEmOOuqo1K1bd4t7rjvFoWvXrhs8PeKYY45Jktx000156623Kuz9+c9/zv3335+6devmjDPOKF9v2bJlklQ4seGTr5s1a5bk49MohgwZkh/96Edp3779Ft8LwDoiUwAAAAAAALCNTZ06NYMGDUpZWVnee++9TJ48OQsXLkyHDh1y++23b3H/5cuX58EHH0ySnHvuuRusOfvss/PMM8/k97//ffbee+907NgxTZo0ybx58zJhwoS0adMmt9xyS3mwIfn40RRf+9rXMmrUqNx///059thj8+ijj2bUqFE54IADUlJSktWrV6dnz55p0aJF+vXrt8X3AvBJQg4AAAAAAACwjb311lu5++67K6wdeeSRufXWW8tPQ9gSDz74YJYtW5Y99tgjXbt23WBNtWrVctddd+WAAw5Inz598tRTT5Xv1atXL0ceeWT23HPP9d43aNCgdOrUKaeffnr5WsOGDTN06NAkyXXXXZdXXnklo0ePTv369ctrVq5cmTp16qSoqGiL7w/YcXlcBQAAAAAAAGxjJ554YsrKyrJmzZrMnTs3v/vd7zJjxozsv//+eeihh7a4/7rTIM4888zUqLHh33suLS3Ncccdl0svvTS9e/fOzJkzs3z58rzyyis58cQTc8MNN+Sggw7KvHnzKryvffv2mT59eq666qp873vfS79+/TJ9+vQcdNBBmTVrVvr165fTTz+9/HEYN954Y1q0aJF69eqlfv366d69exYtWrTF9wjsmJzkAAAAAAAAAFWkevXqKSkpybnnnpsjjjgirVu3To8ePdKxY8fssccem9Vz5syZef7555Mk55xzTqV1l1xySUaPHp3zzjsvN9xwQ/n6/vvvn3vuuSeLFi3KmDFj8rOf/Wy9UydKSkry85//fL2evXr1St26dTNgwIAkH5/6cMEFF+SEE07I4MGD8+qrr+bKK6/MG2+8kYkTJ6ZaNb+TDXw2/q8BAAAAAAAA24GWLVumU6dOWbZsWZ544onN7nPHHXckSTp27Jh99913gzVr167NsGHDkqTCYyc+qXv37kmSsWPHbtJ177777jz55JO57rrr0qRJkyRJ//79U1JSkoceeignnHBC+vTpk4suuiiTJ0/e5L4AnyTkAAAAAAAAANuJ+vXrJ0kWLFiwWe9fu3Ztfv/73ydJzj333ErrFixYkFWrViVJGjZsuMGa4uLiJMn777//qddduHBhLrnkknTq1Ck9evRIkrz77rv5+9//ng4dOlR4ZEbHjh2TJNOmTfv0GwL4F0IOAAAAAAAAsB1YtWpVxo8fnyTZZ599NqvH6NGj8/e//z077bRTTjnllErrdt1119SuXTtJMmnSpA3WTJw4MUnSqlWrT73uxRdfnOXLl+fWW28tXysqKkqSLF++vELtutfr9gE+CyEHAAAAAAAA2AYWLFiQIUOGpLS0dL29+fPn54wzzsjf/va3tGzZMkcddVSF/REjRmS//fbLEUccsdFrrHtUxWmnnVZ+KsSG1KpVK8cff3ySpG/fvnn55Zcr7D/55JMZMGBAkv9/bEVlxo4dm2HDhqVv377Ze++9y9ebNGmS5s2b5+mnn86sWbOSfHzSxLoZ27Vrt9G+ABtSVFZWVlbVQxSy0tLSFBcXZ8mSJZUe5cO299AL71X1CAAUuCPfv7+qRwCgwDXqcn5VjwAAAGxlU6dOzXnnnVf+etasWVm4cGGaN2+eZs2ala+PGDEiTZs2zdy5c9OqVavUqlUrbdu2TcuWLVNWVpZ58+Zl6tSp+fDDD/OFL3who0ePzoEHHljhWnfddVd69OiRkpKSzJ07d4PzLFiwIM2bN8/q1aszceLEHHzwwRudf/78+TnssMMye/bsVK9ePYccckiaNWuW2bNnZ8qUKUmSzp07Z9SoUalTp84Ge6xcuTJt2rRJvXr18uc//zk1a9assH/bbbelV69eadSoUTp16pSZM2fmL3/5Sw499NA899xzTnMAym3qd+81Kt0BAAAAAAAAKlVaWrrBRz28/fbbefvtt8tfr1q1KsnHJxtcf/31efbZZzN9+vTMmDEjK1euTKNGjXLIIYfkW9/6Vnr27LnZv1g7bNiwrF69Oq1bt/7UgEOSNGvWLNOmTcugQYPyxz/+Ma+88komTpyY4uLifOMb30j37t1z7rnnpnr16pX2+OUvf5k5c+ZkwoQJ6wUckqRnz56pVatWrrvuujz66KNp1KhRevXqld/85jcCDsBmcZLDFnKSw/bJSQ4AbCknOQCwpZzkAAAAALDpNvW792rbcCYAAAAAAAAAgM0m5AAAAAAAAAAAFIQaVT0AAAAAAADAZ7X4sRuregQACpxHTRYmJzkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAfIqf/OQnKSoqSlFRUa6++urN6jF27Nh07do1jRs3Tt26dbPffvvlpz/9aZYtW7bJPV566aXUqlUrRUVF2WuvvSqtGzhwYPbaa6/Url07e++9d2666aZKa+fPn5/i4uIcffTRn+l+AACgKgg5AAAAAABsxIQJE3L99denqKhos3v89re/zVFHHZXHHnssrVu3zre+9a0sWbIk11xzTdq3b5+FCxd+ao8PP/wwZ555ZtasWbPRusGDB+fCCy/MihUrcuyxx2bZsmXp3bt3rr/++g3W9+7dO2vWrMktt9yyWfcGAADbkpADAAAAAEAlVqxYkbPPPjtNmzbNCSecsFk9XnzxxVxyySWpXr16Ro0alWeeeSYPPvhgZs2alSOOOCKvvfZavv/9739qn1/+8pd5+eWX88Mf/rDSmrVr1+aqq65K48aN8/LLL+cPf/hDXnrppeyyyy65+uqrs3r16gr1I0aMyMiRI3PllVfmS1/60mbdHwAAbEtCDgAAAAAAlejTp09ef/313HbbbSkuLt6sHr/+9a9TVlaWHj165Jhjjilfr1evXm6//fZUq1YtDz/8cP76179W2mPy5Mnp379/TjnllHz729+utG7u3LlZuHBhTjrppDRu3DhJ0qRJk3Tr1i2LFy/OjBkzymuXLl2a888/P23bts1FF120WfcGAADbmpADAAAAAMAGjBs3LjfeeGPOPPPMdO3adbN6fPjhhxk1alSSpHv37uvtl5SU5NBDD03y8akKG/LBBx/krLPOys4775zBgwdv9HqLFi1Kkuyyyy4V1nfdddckybJly8rX+vTpk3feeSdDhw5NjRo1NvGOAACgagk5AAAAAAD8i2XLluWcc87J7rvvngEDBmx2n5kzZ2bFihVJkvbt22+wZt36iy++uMH9vn37ZsaMGRk0aFCaNGmy0eu1bNkySSqc2PDJ182aNUuSTJw4MUOGDMmPfvSjSucCAIDtkZADAAAAAMC/+PGPf5w5c+ZkyJAh2XnnnTe7z5w5c5IkjRo1yk477bTBmhYtWlSo/aQJEybkhhtuyAknnJDTTz/9U6/XpEmTfO1rX8uoUaNy//33Z+nSpbnvvvsyatSoHHDAASkpKcnq1avTs2fPtGjRIv369dvsewMAgKrgDDIAAAAAgE94/PHHc+utt+a0007LiSeeuEW9li5dmiSpX79+pTUNGjRIkpSWllZYX7FiRc4+++wUFxdnyJAhm3zNQYMGpVOnThVCEQ0bNszQoUOTJNddd11eeeWVjB49usJcK1euTJ06dVJUVLTJ1wIAgG3NSQ4AAAAAAP+0ZMmSnHvuudltt91y4403Vuksl19+eV5//fUMGDAgTZs23eT3tW/fPtOnT89VV12V733ve+nXr1+mT5+egw46KLNmzUq/fv1y+umn55hjjkmS3HjjjWnRokXq1auX+vXrp3v37lm0aNHWui0AANgiTnIAAAAAAPinCy+8MG+//XYeeOCBNG7ceIv7rXtExfLlyyutWbZsWZKPT1tYZ9y4cRk8eHC6du2aM8888zNft6SkJD//+c/XW+/Vq1fq1q2bAQMGJPn41IcLLrggJ5xwQgYPHpxXX301V155Zd54441MnDgx1ar5PTkAALYvQg4AAAAAAP80YsSI1KhRIzfffHNuvvnmCnt//etfkyS33357xo4dmz322CP333//Rvu1bNkySbJ48eIsXbq0PPTwSfPmzatQmyQjR45MWVlZ3nrrrRx++OEV6hcvXpwkmT9/fvnegAED0rZt243Ocvfdd+fJJ5/MHXfckSZNmiRJ+vfvn5KSkjz00EOpUaNGTjjhhCxZsiS/+c1vMnbs2Bx99NEb7QkAANuakAMAAAAAwCesWbMmzzzzTKX7c+fOzdy5c1NSUvKpvfbdd9/Uq1cvK1asyJQpU9KpU6f1aqZMmZIkadeu3Xp706dPr7T3Bx98UD7nuuBDZRYuXJhLLrkknTp1So8ePZIk7777bv7+97/n5JNPTo0a//9PxR07dsxvfvObTJs2TcgBAIDtjrPGAAAAAAD+afHixSkrK9vgn7POOitJ0q9fv5SVlWXu3Lmf2q9WrVo59thjkyT33nvvevtvvvlmJkyYkCQ56aSTytcHDBhQ6RxPP/10kmTPPfcsX/vX0x7+1cUXX5zly5fn1ltvLV8rKipKsv6jNNa9XrcPAADbEyEHAAAAAIAtNHjw4Oy3334588wz19u7/PLLU1RUlDvvvDOPPfZY+fqKFSty7rnnZu3atfn2t7+d/fbbb6vMNnbs2AwbNix9+/bN3nvvXb7epEmTNG/ePE8//XRmzZqVJFm7dm3uuOOOJBs+WQIAAKqakAMAAAAAwBZauHBhXnvttbz11lvr7bVr1y7XX3991q5dm65du6ZTp0459dRTs9dee+XJJ5/Mvvvum1tuuWWrzLVy5cp8//vfT5s2bXLppZeut9+3b9988MEHad++fbp165YDDzwwjz/+eA499NB07tx5q8wEAABbQsgBAAAAAGAru+iii/LEE0/km9/8Zl5++eX88Y9/TIMGDdKnT59Mnjw5jRs33irX/eUvf5k5c+Zk6NChqVmz5nr7PXv2zJ133plmzZrl0UcfzYIFC9KrV6+MGjXK4yoAANguFZWVlZVV9RCFrLS0NMXFxVmyZEkaNmxY1ePwTw+98F5VjwBAgTvy/furegQAClyjLudX9QgAAP/WFj92Y1WPAECB89l9+7Kp3707yQEAAAAAAAAAKAhCDgAAAAAAAABAQahR1QMAAAAAsOPxqEkAttSRVT0AAFAlnOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIKw3Ycchg8fnsMPPzw777xz6tevnwMPPDDXXnttVq9evVn9/vznP+eUU07J7rvvnjp16qRVq1Y5//zzs2DBgs95cgAAAAAAAADg87RdhxwuvPDC/Od//meef/75HHTQQenSpUveeuutXHbZZencuXNWrlz5mfo99NBDOeSQQ/LQQw+lpKQkJ5xwQqpVq5bBgwfngAMOyBtvvLGV7gQAAAAAAAAA2FLbbchh5MiRGThwYBo0aJBJkyZlzJgxefjhh/P666+nTZs2GT9+fPr27bvJ/f72t7/lrLPOypo1a3LrrbfmhRdeyAMPPJCZM2fmO9/5Tt5999107949ZWVlW/GuAAAAAAAAAIDNtd2GHK655pokyeWXX5527dqVrzdu3Dg333xzkmTw4MFZsmTJJvUbMGBAVqxYkSOPPDI9e/YsX69evXqGDBmS4uLiTJ48OY8//vjneBcAAAAAAAAAwOdluww5zJ8/P5MnT06SdO/efb39jh07pkWLFlm1alVGjx69ST1HjBhRab8GDRrk+OOPT5L84Q9/2NyxAQAAAAAAAICtaLsMObz44otJkl122SWtWrXaYE379u0r1G7M0qVL88Ybb1R435b0AwAAAAAAAAC2ve0y5DBnzpwkyRe/+MVKa1q0aFGhdmPmzp1b/t+V9fws/QAAAAAAAACAba9GVQ+wIUuXLk2S1K9fv9KaBg0aJElKS0s3ud/Gem5qv1WrVmXVqlXlr5csWbLJc7DtrFi29NOLAGAjSpevrOoRAChw1XxOhI3y2R2ALeWzOwBbymf37cu679zLyso2Wrddhhy2Z7/+9a9z1VVXrbe+7iQIAAAA+NhlVT0AAAAAsFE+u2+Pli5dmuLi4kr3t8uQw0477ZQkWb58eaU1y5YtS5I0bNhwk/ut67mhH8im9uvTp08uvvji8tcfffRR3n///ey6664pKir61FkAgO1faWlpWrRokXnz5m3S3zUAAACAbctndwD491NWVpalS5fmC1/4wkbrtsuQQ8uWLZMk8+bNq7Rm3d662o0pKSkp/++33norbdq02ex+tWvXTu3atSusNWrU6FNnAAAKT8OGDf1DCQAAAGzHfHYHgH8vGzvBYZ1q22COz+wrX/lKkmTRokWZM2fOBmumTJmSJGnXrt2n9mvYsGH22muvCu/bkn4AAAAAAAAAwLa3XYYcmjdvng4dOiRJ7r333vX2x48fn3nz5qV27drp2rXrJvU86aSTKu23bNmyPPLII0mSbt26be7YAAAAAAAAAMBWtF2GHJLkiiuuSJL0798/U6dOLV9ftGhRzjvvvCRJ7969KxxXMWLEiOy333454ogj1ut34YUXpl69ehk7dmyGDh1avr527dqcd955Wbx4cTp06JCjjz56a90SAFAgateunV/84hfrPaIKAAAA2D747A4AO66isrKysqoeojIXXHBBBg0alJo1a+aII45I/fr18+STT2bx4sU59NBD88QTT6Ru3brl9XfddVd69OiRkpKSzJ07d71+w4cPz+mnn561a9fm4IMPTsuWLTN58uTMnj07u+++e8aPH1/+WAsAAAAAAAAAYPuy3Z7kkCQDBw7MAw88kK997WuZMGFCRo8enebNm6d///556qmnKgQcNsUpp5ySSZMmpVu3bpk9e3ZGjBiRtWvX5oc//GFeeuklAQcAAAAAAAAA2I5t1yc5AAAAAAAAAACss12f5AAAAAAAAAAAsI6QAwDAPw0fPjyHH354dt5559SvXz8HHnhgrr322qxevbqqRwMAAIAd2muvvZYbb7wxZ599dtq0aZMaNWqkqKgoV199dVWPBgBsYzWqegAAgO3BhRdemIEDB6ZGjRrp3LlzGjRokKeeeiqXXXZZHnnkkTz++OOpW7duVY8JAAAAO6QhQ4Zk4MCBVT0GALAdcJIDALDDGzlyZAYOHJgGDRpk0qRJGTNmTB5++OG8/vrradOmTcaPH5++fftW9ZgAAACww9p///3z4x//OPfcc09mzJiRM844o6pHAgCqiJMcAIAd3jXXXJMkufzyy9OuXbvy9caNG+fmm2/O17/+9QwePDh9+/ZNcXFxVY0JAAAAO6zvfve7FV5Xq+Z3OAFgR+VvAQDADm3+/PmZPHlykqR79+7r7Xfs2DEtWrTIqlWrMnr06G09HgAAAAAA8AlCDgDADu3FF19Mkuyyyy5p1arVBmvat29foRYAAAAAAKgaQg4AwA5tzpw5SZIvfvGLlda0aNGiQi0AAAAAAFA1hBwAgB3a0qVLkyT169evtKZBgwZJktLS0m0yEwAAAAAAsGFCDgAAAAAAAABAQRByAAB2aDvttFOSZPny5ZXWLFu2LEnSsGHDbTITAAAAAACwYUIOAMAOrWXLlkmSefPmVVqzbm9dLQAAAAAAUDWEHACAHdpXvvKVJMmiRYsyZ86cDdZMmTIlSdKuXbttNhcAAAAAALA+IQcAYIfWvHnzdOjQIUly7733rrc/fvz4zJs3L7Vr107Xrl239XgAAAAAAMAnCDkAADu8K664IknSv3//TJ06tXx90aJFOe+885IkvXv3TnFxcZXMBwAAAAAAfKyorKysrKqHAACoahdccEEGDRqUmjVr5ogjjkj9+vXz5JNPZvHixTn00EPzxBNPpG7dulU9JgAAAOyQpk6dWv6LCEkya9asLFy4MM2bN0+zZs3K10eMGJGmTZtWxYgAwDYi5AAA8E8PPvhgbrrppkybNi2rV6/Onnvume985zu56KKLUqtWraoeDwAAAHZY48aNS6dOnT61bs6cOWnZsuXWHwgAqDJCDgAAAAAAAABAQahW1QMAAAAAAAAAAGwKIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAgCTjxo1LUVFRDj/88KoeBQAAAKiEkAMAAACw3RA0AAAAADZGyAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAALa6119/Peecc05atWqV2rVrp0GDBikpKcmxxx6bO++8M0ly+OGHp1OnTkmSZ555JkVFReV/WrZsWd7r7LPPTlFRUe66665Mnz49p556apo2bZrq1avnyiuvLK97//33c8UVV6R169apV69edtppp3z1q1/Ntddem5UrV36m+d977738x3/8R4qKinLqqadm1apV5Xv/+Mc/8otf/CJt27bNTjvtlHr16qVNmza5+uqrs2LFis3/oQEAAADrqVHVAwAAAAD/3qZPn55DDz00paWl2XfffXPcccelevXqefvtt/Pss89m/vz56dGjR7p06ZI6depkzJgx2X333dOlS5fyHo0bN16v74QJE/L9738/TZs2zWGHHZaVK1dmp512SpLMnj07nTt3zptvvpnddtstXbt2zerVq/P000/nsssuywMPPJCxY8dm5513/tT5Z86cma5du2bWrFn5yU9+kv79+6eoqChJ8uqrr6ZLly6ZN29emjZtmo4dO6ZmzZp54YUX0rdv3zz88MMZN25ciouLP6efJgAAAOzYhBwAAACAreqGG25IaWlprr766vz0pz+tsLdy5cpMnjw5SXL55ZfnkEMOyZgxY7Lffvvlrrvu2mjfoUOH5vLLL8+vfvWrVKtW8bDK7t27580338zxxx+fe++9N/Xr10/y8YkMXbp0ydSpU9O7d+/cc889G73Gc889lxNPPDFLlizJLbfckl69elWY/fjjj8+8efPys5/9LH379k2tWrWSJCtWrMh3v/vd3Hfffbnoootyxx13bNLPCgAAANg4j6sAAAAAtqp33303SdK1a9f19urWrZvDDjtss/rus88+ufrqq9cLOIwfPz6TJk1KvXr1ctttt5UHHJJkt912y2233ZYkuf/++/P2229X2v++++7LUUcdlQ8//DCPPPJIhYBDktx9992ZNWtWjjvuuPTr16884JCk/NpNmjTJsGHD8o9//GOz7hEAAACoSMgBAAAA2KoOOuigJMkPfvCDjBkzJh988MHn0vfEE09M9erV11sfN25ckqRLly7Zfffd19v/6le/mgMPPDAfffRRnnnmmQ32vuaaa/Jf//Vf2XXXXfPcc8/lmGOOWa9m1KhRSZJTTz11gz0aNGiQ9u3bZ82aNeWnVQAAAABbRsgBAAAA2KouvfTSHHnkkZk0aVK6dOmShg0bpkOHDrnkkku26Mv/li1bbnB9/vz5SZJWrVpV+t4999yzQu0nPf/88/npT3+a2rVr59lnn03btm032GP27NlJkjPOOCNFRUUb/DN69OgkHz8mAwAAANhyNap6AAAAAODfW7169fLEE09k8uTJeeyxxzJhwoRMmDAhU6ZMyQ033JDzzjsvN91002fuW7du3a0wbdK6devUrFkzU6ZMyfnnn5+HH354g9f66KOPklR+YsQnlZSUbJVZAQAAYEcj5AAAAABsEx06dEiHDh2SJGvWrMnIkSNz5pln5uabb87JJ5+cTp06fS7XadasWZL/P2lhQ9btrav9pEaNGuV//ud/ctxxx+V///d/c8wxx+TRRx9NgwYNKtS1aNEif/3rX3Puuefm5JNP/lxmBwAAADbO4yoAAACAba5GjRo5+eST881vfjNJMm3atCRJrVq1knwcgthchx9+eJLksccey7vvvrve/osvvphp06alWrVqOeywwzbYo2HDhnnsscdy9NFH55lnnsmRRx6Zf/zjHxVqjjnmmCTJgw8+uNmzAgAAAJ+NkAMAAACwVd1888157bXX1lt/5513MmXKlCT//ziH5s2bJ0lef/31rF69erOu17Fjxxx88MFZuXJlevXqlRUrVpTvLVy4ML169UqSnHbaaWnRokWlferVq5dHHnkk3bp1y6RJk3L44YdXCE307NkzJSUlGT58eC677LIsXbp0g/c4dOjQzboPAAAAYH1FZWVlZVU9BAAAAPDvq23btnnppZfSqlWr7L///mnYsGHee++9PPfcc1m5cmU6d+6cMWPGpEaNj5+q2aFDh0yZMiX77rtv2rdvnzp16qRx48bp379/kuTss8/O3XffnTvvvDNnn332Bq85e/bsdO7cOW+++WaaNGmSww47LKtXr87TTz+d0tLStGvXLmPHjs3OO+9c/p5x48alU6dO+cY3vpFx48aVr69duzY9evTIsGHDss8++2Ts2LHl4Yi//OUvOe644zJ37tw0atQoBxxwQJo3b54VK1Zk5syZmTFjRpo0aZJ33nln6/xwAQAAYAfjJAcAAABgq/rVr36VH/zgB2nUqFEmTpyY4cOH59VXX83BBx+cu+++O4899lh5wCFJHn744XTv3j2lpaV54IEHcvvtt+f+++//TNf80pe+lKlTp6ZPnz7Zdddd8+ijj+aJJ57Innvumf79+2f8+PEVAg4bU7169dx99935wQ9+kJkzZ+brX/963njjjSRJ69at8/LLL+faa6/Nl7/85bz88ssZPnx4Jk2alPr16+fHP/5xRowY8ZlmBwAAACrnJAcAAAAAAAAAoCA4yQEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEP4PxPMMMgfbVVUAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 2600x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure(figsize=(26, 8))\n",
+    "draw(df,'stroke','hypertension')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ: </strong>Tỉ lệ bị đột quỵ của nhóm bị cao huyết áp là 13,78%, cao gấp 3.4 lần so với tỉ lệ bị đột quỵ của nhóm không bị cao huyết áp\n",
+    "\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 157,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[  23.8490263  455.1509737]\n",
+      " [ 224.1509737 4277.8490263]]\n",
+      "Chi-Square value: 86.74324378010591\n",
+      "Degree of Freedom:  1\n",
+      "p-value: 0.000000000000000\n",
+      "Có mối tương quan giữa cao huyết áp và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "stroke_htension_count = df[(df['hypertension'] == 1) & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_htension_count = df[(df['hypertension'] == 1) & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_no_htension_count = df[(df['hypertension'] == 0) & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_no_htension_count = df[(df['hypertension'] == 0) & (df['stroke'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa cao huyết áp và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa cao huyết áp và đột quỵ\"\n",
+    "hypertension_arr = [stroke_htension_count,nostroke_htension_count]\n",
+    "no_hypertension_arr = [stroke_no_htension_count, nostroke_no_htension_count]\n",
+    "nij = []\n",
+    "nij.append(hypertension_arr)\n",
+    "nij.append(no_hypertension_arr)\n",
+    "nij = np.array(nij)\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(2 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_hypertension = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_hypertension))\n",
+    "if p_hypertension <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định Chi-square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa bệnh cao huyết áp và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa giới tính và bệnh cao huyết áp và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/ldoqCL7.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 400px; height:400px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả kiểm định chi – square về mối tương quan giữa đột quỵ và cao huyết áp</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 86.74324378010591</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  1</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000000000000 </li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa cao huyết áp và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa bệnh cao huyết áp và bệnh đột quỵ.\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong>:  Cao huyết áp có mối tương quan với đột quỵ, cao huyết áp làm tăng khả năng mắc đột quỵ, điều này đúng với nghiên cứu của y khoa\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.8. Đột quỵ và bệnh tim: </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ,</strong> bị bệnh tim mạch làm tăng nguy cơ đột quỵ. Bệnh tim mạch có thể góp phần vào nguy cơ phát triển đột quỵ. Một số điều kiện tim mạch, chẳng hạn như bệnh động mạch vành, có thể dẫn đến sự tắc nghẽn của mạch máu. Khi một khu vực của não không nhận đủ máu, có thể xảy ra đột quỵ. <br>\n",
+    "Chia bộ dữ liệu thành 2 nhóm bị bệnh tim và không bị bệnh tim, quan sát sự phân bố của người bị đột quỵ và không bị đột quỵ trên hai nhóm này\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 158,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACDkAAAK4CAYAAAB0qLSUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBHklEQVR4nOzdd5SV1dk34N/QhjJUEWwgWNGABRGNoLEHazQxGrE3VGKNJmqiEcuraIyKmtgbiVgRK4pixwYo9q4ooFgAmQEEBJzvj7zMl3npzgBz5LrWOmvNefa9976fk4kp5zf7KSovLy8PAAAAAAAAAEANV2t5NwAAAAAAAAAAsDiEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQamzI4f3338+VV16ZQw89NJ06dUqdOnVSVFSU888/v0rrDh06NLvuumtatmyZBg0apEOHDvnLX/6SqVOnVlPnAAAAAAAAAMDSUGd5N7AgV199dfr161eta1522WX5wx/+kKKiomy99dZp3bp1nnvuuVxwwQUZOHBghg0blpYtW1brngAAAAAAAABA9aixJzl07Ngxp556am677ba8++67Oeigg6q03qhRo3LKKaekdu3aefjhh/PMM8/krrvuyscff5wddtgh77//fo455phq6h4AAAAAAAAAqG419iSHI488stL7WrWqlse48MILU15ensMOOyy77LJLxfWGDRvmxhtvzFprrZWBAwfmvffeS4cOHaq0FwAAAAAAAABQ/WpsyKE6ff/993n44YeTJD179pxnfM0110y3bt3y3HPPZdCgQTnjjDMWe+0ffvghX3zxRRo3bpyioqJq6xkAAAAAAAAAVhTl5eWZMmVKVltttYUegrBChBw++OCDfPfdd0mSLl26zLemS5cuee655zJq1KglWvuLL75ImzZtqtwjAAAAAAAAAKzoxo4dmzXWWGOB4ytEyGH06NFJkmbNmqVx48bzrZkbVJhbu7jmrjd27Ng0adKkCl0CAAAAAAAAwIqprKwsbdq0WeB3+nOtECGHKVOmJEkaNWq0wJqSkpIk//ngFmbmzJmZOXPmPGs3adJEyAEAAAAAAAAAqqCoqGih4wt+kAXzdeGFF6Zp06YVL4+qAAAAAAAAAIBlY4UIOcw9zmLatGkLrJk6dWqSLPI0hjPOOCOlpaUVr7Fjx1ZfowAAAAAAAADAAq0Qj6to165dkmTy5MmZMmXKfJ/hMTesMLd2QYqLi1NcXFzdLQIAAAAAAAAAi7BCnOSw/vrrp2HDhkmSkSNHzrdm7vXOnTsvs74AAAAAAAAAgMW3QoQc6tWrl9122y1JMmDAgHnGP/vss7zwwgtJkr333nuZ9gYAAAAAAAAALJ6fVMjhqquuSocOHXLwwQfPM3b66aenqKgoN998cx599NGK6999912OOOKIzJkzJ7/5zW/SoUOHZdkyAAAAAAAAALCYamzI4dVXX82WW25Z8Xr44YeTJNdee22l6+PHj6+YM2HChLz//vsZM2bMPOt17tw5f//73zNnzpzsuuuu2W677bLffvtlnXXWyRNPPJH1118/11xzzTK7P+Cnb+zYsTnuuOOy9tprp7i4OC1btswvf/nLin+e/V99+vRJUVHRQl/vvffeEvWw7bbbLnLNoqKiHH744ZXmjRs3Ln/605+y0047pV27dmncuHGKi4vTtm3b/O53v8uwYcMWuOeAAQPys5/9rKK+T58+mTNnznxrp02blnbt2qVjx475/vvvl+jeAAAAAAAAWPHUWd4NLEhZWVlefvnlea6PGzcu48aNq3g/c+bMxV7z5JNPTqdOnfL3v/89w4cPz7Rp09K2bducccYZOeOMM9K4ceNq6R1gxIgR6dGjRyZNmpRVV101u+yySyZOnJinnnoqjz32WP7617/mnHPOme/cjTfeOJtsssl8x5o2bbpEffTo0SPt2rWb79j333+f22+/PUmy3XbbVRp777338re//S3NmzfPhhtumM033zyzZ8/Ou+++mzvvvDN33nlnLrroovzpT3+qNO+hhx7KAQcckObNm2e33XbLa6+9lnPOOScTJ07MlVdeOU8PZ555ZsaMGZNhw4alXr16S3RvAAAAAACwops1a9YC/9AQlpdatWqlbt26KSoqWirrF5WXl5cvlZVXEGVlZWnatGlKS0vTpEmT5d0OUAPMmDEj6623XsaOHZv99tsvN998cxo0aJDkP+GHuYGHxx57LDvttFPFvD59+uScc87J2WefnT59+iz1Pu+6667st99+adq0acaPH1/RY5J89dVXGT9+fDbaaKPUqlX50J/bb789Bx10UMrLy/PWW29lgw02qBjbdNNN88477+TNN9/Meuutl2nTpqVLly758MMPM27cuKyyyioVtSNHjsyWW26Zo48+Ov/4xz+W+v0CAAAAAMBPRVlZWSZMmLBEfxAOy1Lt2rXTsGHDtGrVarH/0HVxv3uvsSc5ABSqQYMGZezYsWnWrFmuueaaSuGBzTffPH/9619z4okn5txzz60UcljWbrzxxiTJ/vvvX6nHJGndunVat24933n7779/brjhhjz55JMZOnRoRcjh+++/z5tvvpntt98+6623XpKkUaNGOfDAA3PmmWdm+PDh2XPPPZMkc+bMSa9evbLKKqvkwgsvXFq3CAAAAAAAPzllZWX5/PPPU1JSkpYtWy7Vv5iHJVVeXp45c+Zk+vTpKS0tzaeffpo11lgjDRs2rLY9hBwAqtmIESOSJJtttlmaNWs2z/iOO+6YJHn++efz5ZdfVjrdYFkZO3Zshg4dmiQ54ogjlnh+nTr/+Y+P4uLiimuTJ0/OnDlz0qJFi0q1K620UpJk6tSpFdcuu+yyjBo1KoMGDXIKDgAAAAAALIEJEyakpKQka6yxhnADNVZJSUlatGiRzz77LBMmTEjbtm2rbW0hB4BqNvfL/Llf7v9fLVu2TPKfJNurr76aXXfdtdL4q6++mtNPPz2TJk1K06ZNs+mmm2aPPfZI48aNq63HW265JT/88EM22mijdOnSZYnmPvzww3nqqadSv3797LzzzhXXW7VqlYYNG+bdd9+tVD/3/eqrr54k+fTTT3P22Wdn7733zl577VW1GwEAAAAAgBXIrFmzMnPmzLRs2VLAgRqvdu3aadGiRcaPH5/Zs2dX/BFtVQk5AFSzVq1aJUk++eST+Y7/9/XRo0fPM/7ggw/mwQcfrHStadOmueKKK3LwwQdXub/y8vLccsstSRbvFIfevXvnu+++y9SpU/PBBx/kzTffTOPGjXPzzTenXbt2lWr33HPP3HHHHbn00ktz5JFH5qWXXsrNN9+cVq1aZcstt0ySHHvssalTp06uuuqqKt8LAAAAAACsSObMmZMkqVu37nLuBBbP3FPBqzPkUKtaVgGgwvbbb58keeWVVzJq1Kh5xq+55pqKn8vKyip+XnvttXPBBRdk1KhRmTRpUiZNmpRhw4Zl9913T2lpaQ455JDcdtttVe7v6aefzieffJLi4uIceOCBi6wfMGBAbr311gwcODBvvvlmVl555dxyyy35zW9+M0/thRdemNatW+eUU05J06ZN88tf/jIzZszI9ddfn+Li4tx+++159NFH07dv36y22moV82bMmFHxX8wAAAAAAICFc4oDhWJp/K4KOQBUs+233z7bbLNNysvLs+eee+bBBx9MaWlpPvnkk5x66qnp379/RcKyVq3//4/hgw46KGeccUY22WSTNG/ePM2bN0+3bt3y4IMP5vjjj0+SnHzyyfn++++r1N+NN96YJPnVr36VFi1aLLJ+8uTJKS8vz8SJE/PMM8+kc+fO+c1vfpP9999/nmBCu3bt8tZbb+Wiiy7KUUcdlTPPPDNvvPFG9txzz3z77bc56aST0q1btxxzzDFJkjvvvDPrr79+GjRokAYNGmS33Xab7+kWAAAAAAAAkCRF5eXl5cu7iUJWVlaWpk2bprS0NE2aNFne7QA1xNdff51f//rXef755+cZO+mkkzJs2LCMHDky1113XY466qhFrjdp0qS0atUqc+bMybPPPputt976R/VVWlqaVVddNdOnT8+QIUOy8847L/Ea5eXl2WOPPfLwww/nyiuvzHHHHbdY84444oj8+9//zqhRo7Lhhhvm/vvvz1577ZXu3bvn5JNPzvjx4/OXv/wlzZo1y1tvvZWSkpIl7g0AAAAAAH7KZsyYkdGjR6d9+/apX7/+8m4HFmlJfmcX97v36nnoBQCVtGrVKs8991yGDh2aJ598MhMnTkzr1q3zq1/9Kl26dKl4VEOnTp0Wa70WLVqkVatWGT9+fMaNG/ej+7r99tszffr0tG3bNjvuuOOPWqOoqCiHHnpoHn744QwaNGixQg7PPPNMbr755px11lnZcMMNkyR9+/ZNo0aN8sADD6R58+ZJktq1a+fYY4/NgAED0qtXrx/VHwAAAAAAAD9dHlcBsJQUFRVlp512yoUXXpjrrrsu5513Xrp06ZKPP/4448ePz0orrZTOnTsv1lpz5sxJaWlpkqRx48Y/uqebbropSXLYYYdVelTGkmrUqFGS/5xYsSgzZ87M0UcfnfXXXz9//vOfK66/9tpr2WCDDSoCDknSvXv3ijEAAAAAAKBqioqKUlRUtLzbKDh9+vRJUVFR+vTpU+n6LbfcUvHHoCw/Qg4Ay9gll1ySJOnVq1fq1au3WHMeeOCBfPfddykqKkqXLl1+1L5vvfVWRowYkaKiohx22GE/ao25nnjiiSTJeuutt8ja//mf/8kHH3yQa6+9NsXFxRXXi4qKMm3atEq1c9/7L1wAAAAAAMBcTz/9dIqKirLtttsu71aoAYQcAJaCd955J2VlZZWuzZ49OxdccEGuvfbarLPOOvnLX/5SMTZmzJj8+9//zowZM+ZZ67777suRRx6ZJDnggAOyyiqrVBofPnx4OnTokA4dOiy0pxtvvDFJsuOOO2bNNddcaO11112X999/f57rs2bNynXXXZcrrrgiSRb5SIl33nknF110UY488shss802lcY6d+6cd999N88//3ylfeeOAQAAAAAA1CR777133n333Vx44YXLu5UVWp3l3QDAT9F1112Xa6+9NptttllWX331zJw5My+99FK++uqrrLPOOnn88ccrHvmQJJMmTcpBBx2UY489NptuumlWX331TJ8+Pe+8804+/PDDJMl2222Xq6++ep69vvvuu/kGEv7brFmz8u9//ztJcsQRRyyy/wEDBuToo4/O2muvnZ/97GcpKSnJV199lbfffjtffvllatWqlQsvvDC//OUvF7hGeXl5evXqlRYtWuTiiy+eZ/zMM8/Mrrvump122ik77bRTvvzyywwfPjzrrLNO9t9//0X2CAAAAAAAsCw1bdo0TZs2Xd5trPCc5ACwFOy666755S9/mTFjxuT+++/PU089lbZt2+biiy/OG2+8kXbt2lWqb9OmTU477bR07do1n332WR588MEMHjw4U6dOze67754BAwZk6NChKSkp+VH9PPDAA5kwYUJatGiRvfbaa5H1f/rTn9KrV6+UlJTkxRdfzF133ZXhw4dnpZVWyrHHHptRo0bl9NNPX+ga1113XZ5//vlcccUVadas2TzjPXr0yAMPPJCOHTvm0UcfzQcffJDf/e53eeaZZ9KwYcMfdZ8AAAAAAMD8DRw4MN27d0+TJk3SqFGjdOvWLYMHD15g/ezZs3PDDTdk2223TYsWLVJcXJz27dvn2GOPzdixY+c75957782RRx6Zjh07pnnz5qlfv37at2+fww8/fIF/sHnooYemqKgot9xyS956663st99+WXXVVVO7du306dMn2267bbbbbrskyTPPPJOioqKK1//9vmVJTJ8+PX369Mm6666b4uLirLrqqjnkkEMyZsyYBc655ZZbUlRUlEMPPXSesaFDh2aPPfZI69atU7du3TRv3jzrrrtuDjzwwDz77LPzXe+JJ57Ir3/966y66qqpV69eWrVqlb333jsvvvjifOuHDx+eP/3pT+natWtWWWWV1KtXL61bt84ee+yRoUOHLrDvu+++OzvuuGNWWmml1K1bNyuttFI23HDDHHXUUXnjjTfmO+eee+5Jjx49svLKK6devXpZffXVc+CBB+add95Z4D7LSlF5eXn58m6ikJWVlaVp06YpLS1NkyZNlnc7AAAAAAAAwE/UjBkzMnr06LRv3z7169dfZH1RUVGS5K9//WvOO++8bLXVVlljjTXy3nvv5fXXX09RUVEGDhyYvffeu9K8KVOmZM8998zTTz+dkpKSbLbZZll55ZXz5ptv5v33389KK62Uxx9/PJtuummleXXq1ElxcXE23HDDtG3bNrNnz85bb72VTz75JI0aNcpjjz2WrbbaqtKcQw89NLfeemuOOuqo9O/fP6uuumq6du2a6dOn5xe/+EVmzZqVp59+OkOGDEnr1q3To0ePirktW7bMJZdcssSf43fffZcddtghL730Uho1apTtttsuDRo0yLPPPpvZs2dnt912S//+/XP22WenT58+FfNuueWWHHbYYTnkkENyyy23VFy/9dZbc9hhhyVJunbtmnbt2mX69OkZN25cXn/99Rx33HG5/PLLK/Vw6qmn5u9//3tq1aqVLl26ZM0118yYMWMyfPjw1KpVK9dff33FmnPtuOOOeeqpp/Kzn/0sbdq0SaNGjfLxxx/n1VdfTZJcfvnlOfHEEyvNOffcc3P22WenTp062WqrrbL66quntLQ0Y8aMydtvv51LL700J510UkX97Nmzc8ABB+Suu+5KcXFxxanlH3zwQV5//fU0aNAg9957b6V/HRZmSX5nF/e7d4+rAAAAAAAAAPgJu+KKK/Liiy9miy22qLjWp0+fnHPOOTn99NPnCTkcc8wxefrpp7P77rvnxhtvTKtWrSrGLr/88px88snZb7/98u6776Z27doVY7fddlt23333So/sLi8vz9VXX53f//736dWrV958882K8MV/u/7663P66afnf/7nf1KrVuUHEmy55ZYZMmRIOnToUClc8GOdffbZeemll9KhQ4c88cQTWW211ZL8J/zQs2fP9O/ff4nWO+ecc1JeXp7nnnsu3bt3rzT29ddf5/PPP6907frrr8/f//73rLPOOhk4cGA22mijirFnn302u+++e4455ph079496667bsXYKaeckn/9619ZddVVK6334osvpkePHvnjH/+YffbZJ6uvvnqSZObMmenbt29KSkoycuTIrL/++pXmffbZZ5k+ffo8n81dd92VLbbYIrfffnvat29fMXbPPffkd7/7XXr27JlPPvlkvid5LwseVwEAAAAAAADwE3buuedWCjgkyRlnnJGmTZvmgw8+qPT4iXfffTe33357VltttQwYMKBSwCFJTjrppOy666758MMP88gjj1Qa22+//SoFHJL/nCbRu3fv/PznP8/bb7+dd999d749rrfeejn//PPnCThUt+nTp+faa69Nklx22WUVAYckadiwYa655prFOiXjv3311Vdp2rTpPAGHJGnVqlWlEy9++OGHitMh7rjjjkoBhyTZZpttctZZZ+X777+v6HOuXXbZZZ6AQ5L8/Oc/z+9///vMmjUr999/f8X1srKyTJ8+PWuttdY8AYckWXPNNdOhQ4eK95MmTcpll12W+vXrZ+DAgZUCDkmyzz775Oijj863336bf//73wv5RJYuIQcAAAAAAACAn7A99thjnmvFxcVZa621kqTSSQODBw9OeXl5dtlllzRu3Hi+62277bZJkhdeeGGesY8++ihXXXVVTjrppBxxxBE59NBDc+ihh+arr75Kkrz//vvzXXOvvfaqdCrE0vLqq69mypQpadmy5XwfubDKKqtk5513XqI1u3btmtLS0hx88MF55ZVX8sMPPyywdtSoUfniiy+y9tprZ7PNNptvzcI+34kTJ6Z///7505/+lKOOOqri833mmWeSVP58V1555bRr1y5vvPFGTjnllLzzzjsLvY+nnnoq06dPT7du3SpOg1iS3pYVj6vgJ+me4d8s7xYAKHD7dF15ebcAAAAAAFAt2rZtO9/rTZo0SZLMmDGj4tonn3ySJLnxxhtz4403LnTdb775/9/JzZkzJ8cdd1yuvfbalJeXL3BOWVnZfK+3a9duoXtVl3Hjxi1yv/97gsGi/POf/8zuu++ef/3rX/nXv/6Vxo0bZ/PNN8/222+fgw46qNLnP/fz/fjjj+f72I7/9t+fb/Kfx1ycfPLJmTZt2gLn/N/Pt3///tlnn31y6aWX5tJLL02LFi2yxRZbZKeddspBBx2Uli1bztPbE088scS9LUtCDgAAAAAAAAA/YUvyCIi5pxBssskm2XjjjRda+9+PwOjXr1+uueaarLLKKrn00kuz1VZbpXXr1hWPfujZs2duv/32BQYgGjRosNg91jQbbLBB3n///Tz22GN58skn88ILL+S5557Lk08+mXPPPTc33nhjDjzwwCT///NdZZVV8stf/nKh6/53AOGVV17J0Ucfndq1a+eiiy7KHnvskbZt26Zhw4YpKirKddddl6OPPnqez3frrbfOp59+mocffjjPPPNMXnjhhQwZMiSPPPJIzj777AwaNCg77LBDpd7WWWeddOvWbaG9/fdjLpY1IQcAAAAAAAAAkiRt2rRJknTr1i1XXXXVYs+76667kiTXXntt9txzz3nGP/zww+ppsIrmPobh008/XWDNwsYWpE6dOtl1112z6667JvnPiQqXXnppzjnnnBx99NHZe++906hRo4rPd6WVVsott9yy2OvffffdKS8vz/HHH58//elP84wv7PNt0KBB9tlnn+yzzz5J/nMKw5lnnpnrrrsuhx9+eD777LMk//9f+/XXX3+JelvWFj+yAwAAAAAAAMBP2i677JIkeeCBByo9xmJRJk2alCRZc8015xl7++2389prr/3onurVq5ckmT179o9eY67NNtssJSUlmTBhQh577LF5xr/66qv5Xl9STZo0SZ8+fdKsWbN89913+eCDD5Ikm2++eVq2bJl33nknb7/99mKvt7DPd8aMGRk4cOBir7Xyyivn4osvTpKMGTMm3377bZJkhx12SL169fL000/n66+/Xuz1ljUhBwAAAAAAAACSJJtuuml+85vfZOzYsfn1r38931MNpk2blttuuy1fffVVxbUNNtggSfKPf/yj4rEHSTJ+/PgcfPDBVQoorLHGGkn+c1rBrFmzfvQ6yX9ONejVq1eS5OSTT8748eMrxqZPn55jjz0206dPX+z1vvvuu1x66aX55ptv5hl77rnnMnny5NSuXbviHurWrZuzzz475eXl2XvvvTNs2LB55s2ZMydPPvlkXnrppYprcz/fW2+9NVOmTKm4PmPGjPTu3TujR4+eZ53PPvssN9xwQ8rKyuYZe/DBB5MkzZs3T5MmTZIkrVu3zvHHH59p06Zljz32yJtvvjnPvJkzZ+aBBx7Ie++9t9DPZWnyuAoAAAAAAAAAKtx8882ZPHlyHnnkkay//vrZeOON0759+5SXl+fTTz/N66+/nu+//z7vvvtuWrdunST585//nEcffTTXX399nnrqqXTu3DllZWV55plnstZaa2XvvffOoEGDflQ/bdu2TZcuXTJy5Mh06tQpXbp0Sf369dOyZcv07dt3idc799xzM2zYsAwfPjzrrbdetttuu9SvXz/PPfdcZs2alYMPPjj9+/dfrLW+//77nHLKKfnjH/+YTp06Zd11103dunXz6aefVoQU/vKXv2TllVeumHPcccdlzJgx+dvf/patt946P/vZz7LOOuukQYMG+fLLL/Paa69l8uTJufrqq7PlllsmSQ477LD069cvo0aNSvv27bP11lundu3aee655zJ9+vSceOKJ6devX6Xevv322xx11FHp3bt3Ntlkk7Rv3z7Jf8Iio0aNSlFRUf72t7+ldu3aFXP69u2b8ePHZ8CAAdlkk02y8cYbZ6211kqdOnUybty4vPbaa5k2bVoeeeSRdOjQYYk/++rgJAcAAAAAAAAAKjRu3DiPPfZYBgwYkB133DFjxozJoEGD8uSTT2b69Ok54IADMmjQoKy99toVc7bYYouMHDkye+65Z6ZNm5YHHnggH3/8cY4//vi8+OKLFacF/FgDBw5Mz549U1ZWljvvvDM33nhj7rjjjh+1VqNGjfLUU0/lrLPOSuvWrTNkyJA8++yz2WGHHTJy5MiKMMDiKCkpyTXXXJP99tsvM2fOzOOPP5777rsvX3/9dX7961/niSeeyDnnnDPPvIsvvjjPP/98DjjggEydOjWPPvpoHn744XzxxRfZdtttc8MNN2S//farqG/WrFlGjhyZ3r17p1mzZnnkkUfy4osvZuedd86rr76aTTbZZJ491l577Vx++eXZfffdM3ny5AwePDgPP/xwpk2bloMPPjgjRozIEUccUWlOnTp1ctttt2Xw4MHZa6+98vXXX+eBBx7IkCFDMmnSpOyxxx4ZMGBAttlmm8X/wKtZUXl5efly2/0noKysLE2bNk1paWmV/41J9bln+LzHwQDAktin68qLLgIAAAAAWIZmzJiR0aNHp3379qlfv/7ybgcWaUl+Zxf3u3cnOQAAAAAAAAAABUHIAQAAAAAAAAAoCHWWdwMAAAAAAAAA8GOceuqpmTBhwmLVdu/ePUceeeRS7oilTcgBAAAAAAAAgIJ0zz335LPPPlvseiGHwifkAAAAAAAAAEBB+vTTT5d3CyxjtZZ3AwAAAAAAAAAAi0PIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAh1lncDAAAAAAAAAKwY7hn+zfJuYYnt03XlpbLu3XffnX/84x95/fXX8/3332edddbJAQcckJNPPjl169ZdKnv+FDjJAQAAAAAAAACWoZNOOin77rtvnn/++XTt2jU9evTImDFjctppp2X77bfP9OnTl3eLNZaQAwAAAAAAAAAsI/fdd1/69euXkpKSvPzyyxkyZEgGDhyYDz/8MJ06dcqwYcNy1llnLe82aywhBwAAAAAAAABYRi644IIkyemnn57OnTtXXG/ZsmX++c9/JkmuuuqqlJaWLpf+ajohBwAAAAAAAABYBj7//POMGDEiSdKzZ895xrt37542bdpk5syZGTx48LJuryAIOQAAAAAAAADAMjBq1KgkSYsWLdK+ffv51nTp0qVSLZUJOQAAAAAAAADAMjB69OgkSdu2bRdY06ZNm0q1VCbkAAAAAAAAAADLwJQpU5IkjRo1WmBNSUlJkqSsrGyZ9FRohBwAAAAAAAAAgIIg5AAAAAAAAAAAy0Djxo2TJNOmTVtgzdSpU5MkTZo0WSY9FRohBwAAAAAAAABYBtq1a5ckGTt27AJr5o7NraUyIQcAAAAAAAAAWAY23XTTJMnEiRMzevTo+daMHDkySdK5c+dl1lchEXIAAAAAAAAAgGVgjTXWyOabb54kGTBgwDzjw4YNy9ixY1NcXJxdd911WbdXEIQcAAAAAAAAAGAZ+fOf/5wk6du3b1599dWK6xMnTkzv3r2TJMcdd1yaNm26XPqr6YQcAAAAAAAAAGAZ2WuvvXLCCSdk6tSp2XLLLbPLLrtkn332yTrrrJM333wz3bp1y3nnnbe826yxhBwAAAAAAAAAYBnq169f7rzzzvz85z/PCy+8kMGDB2eNNdZI37598+STT6ZBgwbLu8Uaq87ybgAAAAAAAACAFcM+XVde3i3UGPvuu2/23Xff5d1GwXGSAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAh1lncDAAAAAAAAAKwYJj965fJuYYk163F8ta73/vvv57HHHssrr7ySV155Je+++27mzJmT8847L2eeeWa17vVTJOQAAAAAAAAAAMvI1VdfnX79+i3vNgqWx1UAAAAAAAAAwDLSsWPHnHrqqbntttvy7rvv5qCDDlreLRUUJzkAAAAAAAAAwDJy5JFHVnpfq5azCZaETwsAAAAAAAAAKAhCDgAAUEONGTMmxx13XNZff/00aNAg9evXT/v27XPIIYfk9ddfr1T7ww8/5IUXXshf//rXdO/ePSuttFLq1q2bli1bZqeddsptt92W8vLyH9XHd999lwsvvDCbbLJJGjVqlMaNG2fzzTfPlVdemTlz5sx3zrRp0zJgwICccsop2XbbbdOkSZMUFRVlnXXWWeR+/fr1yzrrrJPi4uKsu+66+cc//rHA2s8//zxNmzbNzjvv/KPuDQAAAAAoLB5XAQAANdDLL7+cnXbaKVOmTMnqq6+enXfeObVr185rr72W/v37Z8CAARkwYEB++9vfJkk++eSTdOvWLUnSokWLdOnSJc2bN88nn3ySoUOHZujQobnjjjsycODA1KtXb7H7mDRpUrbffvu8/vrrady4cbp165batWvnpZdeygknnJAHH3wwDz300DxrfvjhhznggAOW+L6vuuqqnHTSSVl11VWz22675cUXX8xxxx2XGTNm5JRTTpmn/rjjjsvs2bNzzTXXLPFeAAAAAEDhcZIDAADUQL169cqUKVPSq1evjB49Ovfff3/uvffefPTRRznzzDMze/bs9OrVKzNmzEiSFBUVZfvtt88jjzySr7/+OkOGDMkdd9yR4cOH5+mnn06jRo3y0EMPpW/fvkvUxzHHHJPXX389HTt2zNtvv53HHnssjzzySN5777107do1jz/+eM4555x55jVu3DiHHXZYrrzyygwbNiwPPfTQIveaM2dOzjnnnLRs2TJvvPFG7r333rz++utp0aJFzj///MyaNatS/aBBg3LfffelT58+WWuttZbovgAAAACAwiTkAAAANczEiRPzxhtvJEnOP//81K1bt2KsVq1a6dOnTxo0aJDJkyfn3XffTZKsvfbaeeKJJ9KjR4/Url270nq/+MUvcvrppydJ+vfvv9h9fPHFF7nnnnuSJFdeeWXatGlTMda6detcf/31SZLLLrssU6ZMqTR37bXXzk033ZTjjjsu3bp1S6NGjRa536effpoJEyZk7733TsuWLZMkrVq1yq9//etK95okU6ZMyfHHH59NNtkkJ5988mLfEwAAAABQ2IQcAACghikuLl7s2rlhgEXZdNNNkyRjx45d7LVHjhyZ8vLy1KtXL9tss8084xtttFFWXnnlTJ8+PYMHD17sdRdk4sSJSf7zuI3/ttJKKyVJpk6dWnHtjDPOyJdffpnrr78+dep4Ch8AAAAArCiEHAAAoIYpKSnJ1ltvnSQ588wzKz2m4YcffkifPn0yffr07LLLLpVOV1iYDz/8MEmy6qqrLnYfc0MFzZo1S61a8/+fDnNDFq+88spir7sg7dq1S5JKJzb89/vVV189SfLSSy/l6quvzgknnJAuXbpUeV8AAAAAoHD4kycAAKiBrr/++uy666657rrr8vDDD6dLly6pXbt2Ro0alc8//zwHHXRQrrrqqsVa67vvvssVV1yRJPnNb36z2D20atUqSfL1119n6tSpKSkpqTT+ww8/5LPPPkuSjB49erHXXdh+P//5z/Pwww/njjvuyG677ZaHHnooDz/8cDbaaKOsueaamTVrVnr16pU2bdrkvPPOq/KeAAAAAEBhEXIAAIAaaP3118+LL76Ygw46KI899lg+//zzirENN9ww2267bZo0abJYa/Xu3TujR4/Oaqutlj//+c+L3cMWW2yRhg0b5rvvvssNN9yQk046qdJ4//7989133yVJysrKFnvdhbniiiuy3XbbZf/996+41qRJk1x//fVJkksuuSRvvvlmBg8enEaNGlXUTJ8+PfXr109RUVG19AEAAAAA1EweVwEAADXQ888/n06dOuWtt97KgAED8uWXX2bSpEl58MEHM2vWrBxxxBE54ogjFrnOeeedl1tvvTX169fPXXfdlZVWWmmxe2jcuHFOOeWUJMkZZ5yRK664IuPHj8/XX3+dG264Iccff3zq1q2bJAt8nMWS6tKlS956662cc845Oeqoo3LeeeflrbfeSteuXfPxxx/nvPPOy/77759ddtklSXLllVemTZs2adiwYRo1apSePXtm4sSJ1dILAAAAAFDzOMkBAABqmMmTJ2fvvffOhAkT8uKLL2aLLbaoGNt9992z4YYbplOnTrnpppty4IEHZrvttpvvOpdeemn++te/pri4OIMGDUq3bt2WuJezzz4733zzTa655pqceOKJOfHEEyvGttlmm2ywwQa59tpr06JFiyW/0QVYc80189e//nWe60cffXQaNGiQyy+/PMl/Tn048cQT86tf/SpXXXVV3nnnnfTp0ycfffRRXnrppWoLXgAAAABAdXr11VfTu3fvivcff/xxkuTaa6/NQw89VHF90KBBWXXVVZd5fzWdkAMAANQwDz/8cL755pusvfbalQIOc6211lrZYost8tRTT2Xo0KHzDTlceeWVOeWUU1KvXr0MHDgwPXr0+FG91K5dO1dffXV69+6dBx54IGPGjElJSUm23Xbb7LbbbjnwwAOTJJ06dfpR6y+uW2+9NU888URuuummtGrVKknSt2/frLnmmrnnnntSp06d/OpXv0ppaWkuuuiiDB06NDvvvPNS7QkAAAAAfoyysrK8/PLL81wfN25cxo0bV/F+5syZy7KtgiHkAAAANcyYMWOSJE2aNFlgTdOmTZMkkyZNmmfsH//4R0444YSKgMNuu+1W5Z46deo0T5ChvLw8zz//fJJkp512qvIeCzJhwoSccsop2W677XLYYYclSb766quMHz8+++yzT+rU+f//s6Z79+656KKL8tprrwk5AAAAANRAzXocv7xbWO623XbblJeXL+82CpbzWwEAoIZZffXVkyTvvfdeSktL5xmfNWtWXn311SRJ+/btK41dc801Oe644yoCDrvvvvtS6/Ouu+7KmDFj8vOf/zybbbbZUtvnD3/4Q6ZNm5Zrr7224lpRUVGSZNq0aZVq576fOw4AAAAA/LQIOQAAQA2zyy67pFGjRpk+fXqOOuqoTJ06tWLs+++/z8knn5wxY8akbt262WeffSrGrr/++vTu3XuJAw6DBg1Khw4dssMOO8wz9sUXX2Ts2LHzXH/ooYfSq1evFBcX55prrvkRd7l4hg4dmn/9618566yzsu6661Zcb9WqVdZYY4089dRTFc8snDNnTm666aYkSefOnZdaTwAAAADA8uNxFQAAUMOsvPLKueaaa3LYYYfl7rvvztNPP53NN988devWzciRI/P555+nVq1aueKKK7LWWmslSV577bUcffTRKS8vz1prrZV77rkn99xzz3zXv+WWWyq9Ly0tzfvvv58ZM2bMUzt8+PD8+te/zsYbb5z27dunbt26eeONN/Lee++lpKQk9913XzbaaKP57rP33ntn/PjxSf7znMHkP88V3HLLLStqjjzyyBx55JHznT99+vQcc8wx6dSpU/74xz/OM37WWWfl6KOPTpcuXbLddtvlgw8+yNtvv51u3bpl++23n++aAAAAAEBhE3IAAIAa6MADD0ynTp1y+eWX59lnn80TTzyR8vLyrLrqqjnggANywgknpGvXrhX1kydPrniO33vvvZf33ntvgWv/35DDwnTs2DEHH3xwXnzxxTz++OOZM2dO2rZtm5NPPjmnnHJKxaM15mfUqFH57LPPKl2bOXNmXn755Yr3PXr0WOD8c889N6NHj84LL7yQunXrzjPeq1ev1KtXL5dcckkeeuihNGvWLEcffXQuuugij6sAAAAAgJ+oovK5/08oP0pZWVmaNm2a0tLSNGnSZHm3w/+6Z/g3y7sFAArcPl1XXt4tAAAAAABUMmPGjIwePTrt27dP/fr1l3c7sEhL8ju7uN+916ruJgEAAAAAAAAAlgYhBwAAAAAAAACgIAg5AAAAAAAAABSQ8vLy5d0CLJal8btap9pXBAD4CZj86JXLuwUAClyzHscv7xYAAAD4ialV6z9/wz5nzpzl3Aksnrm/q3N/d6uDkxwAAAAAAAAACkDdunVTu3btTJ8+fXm3AotlypQpqVu3burWrVttawo5AAAAAAAAABSAoqKiNGzYMKWlpU5zoMabPn16ysrK0rhx4xQVFVXbuh5XAQAAAAAAAFAgWrVqlU8//TSfffZZWrRokeLi4mr9Ahmqory8PHPmzMmUKVNSVlaW4uLitGzZslr3EHIAAAAAAAAAKBD16tXLGmuskQkTJmT8+PHLux2Yr7p166ZZs2Zp2bJlateuXa1rCzkAAAAAAAAAFJCGDRumbdu2mT17dmbPnr2824FKatWqlbp16y61E0aEHAAAAAAAAAAKUJ06dVKnjq98WbHUWt4NAAAAAAAAAAAsDiEHAAAAAAAAAKAgCDkAAAAAAAAAAAWhxocc7r777my77bZp3rx5GjVqlI033jgXX3xxZs2atcRrTZs2LRdeeGG6dOmSJk2apG7dullllVWy++6754EHHlgK3QMAAAAAAAAA1aXO8m5gYU466aT069cvderUyfbbb5+SkpI8+eSTOe200/Lggw/mscceS4MGDRZrrYkTJ2abbbbJO++8k5KSkmy11VZp1qxZPvroozz88MN5+OGHc8IJJ6Rfv35L+a4AAAAAAAAAgB+jxp7kcN9996Vfv34pKSnJyy+/nCFDhmTgwIH58MMP06lTpwwbNixnnXXWYq937rnn5p133slmm22Wzz77LEOGDMmdd96ZV155JQ8//HDq1KmTK664Ii+99NJSvCsAAAAAAAAA4MeqsSGHCy64IEly+umnp3PnzhXXW7ZsmX/+859JkquuuiqlpaWLtd6TTz6ZJDnttNPSokWLSmO77rprtttuuyTJiy++WOXeAQAAAAAAAIDqVyNDDp9//nlGjBiRJOnZs+c84927d0+bNm0yc+bMDB48eLHWrF+//mLVtWzZcvEbBQAAAAAAAACWmRoZchg1alSSpEWLFmnfvv18a7p06VKpdlF22WWXJMlFF12USZMmVRobPHhwnnrqqayyyirZc889f2zbAAAAAAAAAMBSVGd5NzA/o0ePTpK0bdt2gTVt2rSpVLsop512WoYPH54hQ4ZkzTXXTLdu3dKsWbN89NFHeeWVV9KtW7fceOONadq06ULXmTlzZmbOnFnxvqysbLH2BwAAAAAAAACqpkae5DBlypQkSaNGjRZYU1JSkmTxQwaNGjXKgw8+mFNPPTXTpk3LkCFDcuedd+aVV17JSiutlB133DGrr776Ite58MIL07Rp04rX3LAFAAAAAAAAALB01ciQw9Iwfvz4dOvWLVdeeWXOP//8fPLJJ5k6dWqGDx+ezTbbLOecc066d+9eEbBYkDPOOCOlpaUVr7Fjxy6jOwAAAAAAAACAFVuNDDk0btw4STJt2rQF1kydOjVJ0qRJk8Va85BDDsmIESNy3nnn5c9//nPat2+fRo0aZfPNN89DDz2UTp065fXXX88ll1yy0HWKi4vTpEmTSi8AAAAAAAAAYOmrkSGHdu3aJclCT0mYOza3dmE+//zzPP7440mS/ffff57xunXrZp999kmSDB06dAm7BQAAAAAAAACWhRoZcth0002TJBMnTszo0aPnWzNy5MgkSefOnRe53pgxYyp+XtDJC02bNk2STJo0aYl6BQAAAAAAAACWjRoZclhjjTWy+eabJ0kGDBgwz/iwYcMyduzYFBcXZ9ddd13kequvvnrFzy+//PJ8a1566aUkSfv27X9MywAAAAAAAADAUlYjQw5J8uc//zlJ0rdv37z66qsV1ydOnJjevXsnSY477riKExiSZNCgQenQoUN22GGHSmu1bdu2IjRx4okn5tNPP600/u9//zt33nlnkqRnz57Vfi8AAAAAAAAAQNXVWd4NLMhee+2VE044IVdccUW23HLL7LDDDmnUqFGeeOKJTJ48Od26dct5551XaU5paWnef//9zJgxY571brrppmy33XZ59913s8EGG2TLLbdMy5Yt8+677+btt99Okhx44IE54IADlsn9AQAAAAAAAABLpsaGHJKkX79+6datW/7xj3/khRdeyKxZs7L22mvn9NNPz8knn5x69eot9lodO3bMW2+9lcsuuyyPPPJIRowYkZkzZ6Z58+b55S9/mcMPPzz77rvvUrwbAAAAAAAAAKAqisrLy8uXdxOFrKysLE2bNk1paWmaNGmyvNvhf90z/Jvl3QIABW7HSXcs7xYAKHDNehy/vFsAAAAAKBiL+917rWXYEwAAAAAAAADAjybkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIJQ40MOd999d7bddts0b948jRo1ysYbb5yLL744s2bN+tFr3n///dlzzz2zyiqrpF69emnVqlW22mqrnHvuudXYOQAAAAAAAABQnWp0yOGkk07Kvvvum+effz5du3ZNjx49MmbMmJx22mnZfvvtM3369CVa7/vvv8++++6bvfbaK0OHDs3Pfvaz7LPPPunYsWM+/vjjXHHFFUvpTgAAAAAAAACAqqqzvBtYkPvuuy/9+vVLSUlJnnnmmXTu3DlJMmHChGy//fYZNmxYzjrrrFxyySWLveZRRx2Vu+++O3vttVeuv/76tGzZsmLshx9+yPDhw6v9PgAAAAAAAACA6lFjT3K44IILkiSnn356RcAhSVq2bJl//vOfSZKrrroqpaWli7XeE088kf79+6djx4656667KgUckqRWrVrZcsstq6l7AAAAAAAAAKC61ciQw+eff54RI0YkSXr27DnPePfu3dOmTZvMnDkzgwcPXqw1r7zyyiT/eQRG3bp1q69ZAAAAAAAAAGCZqJGPqxg1alSSpEWLFmnfvv18a7p06ZKxY8dm1KhR2X///Re63pw5c/LEE08kSbbZZpt8+eWXueOOO/L++++nuLg4m266aX7zm9+kpKSkem8EAAAAAAAAAKg2NTLkMHr06CRJ27ZtF1jTpk2bSrUL88knn2Tq1KlJkpdeeim9e/eueD/XH//4x9xxxx3Zfvvtf2zbAAAAAAAAAMBSVCMfVzFlypQkSaNGjRZYM/fUhbKyskWuN3HixIqfjzjiiGy22WYZMWJEpkyZktdeey277rprvvnmm/zqV7/Khx9+uNC1Zs6cmbKyskovAAAAAAAAAGDpq5Ehh+pWXl5e8fPqq6+eIUOGpEuXLikpKcnGG2+cBx54IB07dszUqVPTt2/fha514YUXpmnTphWvuSdKAAAAAAAAAABLV40MOTRu3DhJMm3atAXWzH3cRJMmTRZ7vSQ59NBDU1xcXGm8du3aOfroo5MkQ4cOXehaZ5xxRkpLSyteY8eOXeT+AAAAAAAAAEDV1VneDcxPu3btkmShAYK5Y3NrF7VeUVFRysvLs9Zaa823Zu718ePHL3St4uLieUISAAAAAAAAAMDSVyNPcth0002TJBMnTszo0aPnWzNy5MgkSefOnRe5XklJSdZff/0kyYQJE+ZbM/d6SUnJEvcLAAAAAAAAACx9NTLksMYaa2TzzTdPkgwYMGCe8WHDhmXs2LEpLi7Orrvuulhr/va3v02y4MdRPP7440mSrl27/piWAQAAAAAAAIClrEaGHJLkz3/+c5Kkb9++efXVVyuuT5w4Mb17906SHHfccWnatGnF2KBBg9KhQ4fssMMO86x3wgknpHnz5hk8eHCuvfbaSmN33HFHbrvttoo6AAAAAAAAAKDmqbEhh7322isnnHBCpk6dmi233DK77LJL9tlnn6yzzjp58803061bt5x33nmV5pSWlub999/Pxx9/PM96LVu2zJ133pn69evnmGOOSceOHfPb3/42nTt3zv7775/y8vKcddZZi30yBAAAAAAAAACwbNXYkEOS9OvXL3feeWd+/vOf54UXXsjgwYOzxhprpG/fvnnyySfToEGDJVpvp512yuuvv55DDjkkkydPzv33358xY8Zk1113zZAhQ3LuuecupTsBAAAAAAAAAKqqqLy8vHx5N1HIysrK0rRp05SWlqZJkybLux3+1z3Dv1neLQBQ4HacdMfybgGAAtesx/HLuwUAAACAgrG4373X6JMcAAAAAAAAAADmEnIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQqhRy2H777XPxxRcvsu6SSy7J9ttvX5WtAAAAAAAAAIAVXJ2qTH766afTrl27Rda9//77eeaZZ6qyFQAAAAAAAACwglsmj6uYNWtWatXyZAwAAAAAAAAA4MdbJsmDN998MyuttNKy2AoAAAAAAAAA+Ila4sdVHH744ZXeDxs2bJ5rc82ePTvvvPNOXnvttey5554/rkMAAAAAAAAAgPyIkMMtt9xS8XNRUVE++uijfPTRRwuds9pqq+V//ud/lrg5AAAAAAAAAIC5ljjkcPPNNydJysvLc/jhh6d79+454ogj5ltbr169rLHGGtlyyy1Tt27dqnUKAAAAAAAAAKzQljjkcMghh1T83KdPn2y55ZaVrgEAAAAAAAAALA1LHHL4b59++mk1tQEAAAAAAAAAsHC1lncDAAAAAAAAAACLo0onOcz18ssvZ+jQofn8888zY8aM+dYUFRXlxhtvrI7tAAAAAAAAAIAVUJVCDt9//33233//3HfffUmS8vLyBdYKOQAAAAAAAAAAVVGlkMN5552XQYMGpVGjRjnooIOywQYbpEmTJtXVGwAAAAAAAABAhSqFHG6//fY0bNgwL7/8cjbccMPq6gkAAAAAAAAAYB61qjJ53Lhx6datm4ADAAAAAAAAALDUVSnk0Lx587Ro0aK6egEAAAAAAAAAWKAqhRx23HHHvPzyyykvL6+ufgAAAAAAAAAA5qtKIYfzzjsvkyZNSp8+faqpHQAAAAAAAACA+atTlcnPPvtsDjvssJx//vl59NFHs9tuu6Vt27apVWv+2YmDDz64KtsBAAAAAAAAACuwKoUcDj300BQVFaW8vDwjRozIyJEjF1ov5AAAAAAAAAAA/FhVCjkcfPDBKSoqqq5eAAAAAAAAAAAWqEohh1tuuaWa2gAAAAAAAAAAWLhay7sBAAAAAAAAAIDFUaWTHP6vjz76KN98801WWmmlrLfeetW5NAAAAAAAAACwgqvySQ5z5szJ+eefn1VWWSXrr79+unfvnr59+1aM33bbbdlqq63y9ttvV3UrAAAAAAAAAGAFVqWQw5w5c7L77rvn7LPPzrfffpsNNtgg5eXllWq6deuWl156Kffee2+VGgUAAAAAAAAAVmxVCjlcc801GTJkSLbbbruMHj06b7311jw17dq1y9prr53HHnusKlsBAAAAAAAAACu4KoUcbr311rRo0SJ33313VltttQXWbbDBBhkzZkxVtgIAAAAAAAAAVnBVCjm899576dq1a5o3b77QuqZNm+brr7+uylYAAAAAAAAAwAquSiGHOXPmpLi4eJF148ePX6w6AAAAAAAAAIAFqVLIYc0118wbb7yx0JpZs2blrbfeyrrrrluVrQAAAAAAAACAFVyVQg49evTIp59+muuuu26BNVdeeWW++eab7LbbblXZCgAAAAAAAABYwdWpyuQ//vGPueWWW9K7d++888472XfffZMk06ZNy6uvvpq77rorl156aVq2bJnjjjuuWhoGAAAAAAAAAFZMReXl5eVVWeDZZ5/Nr3/960yaNClFRUWVxsrLy9OsWbM88MAD6d69e5UaranKysrStGnTlJaWpkmTJsu7Hf7XPcO/Wd4tAFDgdpx0x/JuAYAC16zH8cu7BQAAAICCsbjfvVfpcRVJss022+Ttt9/On/70p/zsZz9LgwYNUlxcnHXWWScnnHBC3nzzzZ9swAEAAAAAAAAAWHaq9LiKuVq3bp2+ffumb9++1bEcAAAAAAAAAMA8qnySAwAAAAAAAADAslClkMPYsWPTv3//vP/++wusee+999K/f/+MGzeuKlsBAAAAAAAAACu4KoUcrrzyyhx22GEpLy9fYE15eXkOPfTQ/POf/6zKVgAAAAAAAADACq5KIYfHHnssG2ywQTp06LDAmg022CAbbrhhHn300apsBQAAAAAAAACs4Kr8uIp11llnkXXrrLNOxo4dW5WtAAAAAAAAAIAVXJVCDt99910aNGiwyLoGDRpkypQpVdkKAAAAAAAAAFjBVSnksOqqq+a1115bZN3rr7+eVq1aVWUrAAAAAAAAAGAFV6WQw9Zbb50PPvggAwcOXGDNvffem/feey/bbLNNVbYCAAAAAAAAAFZwVQo5nHjiiSkqKsrBBx+cfv36VXokxZQpU9KvX78cfPDBqVWrVk444YQqNwsAAAAAAAAArLiqFHLo3LlzLrzwwkyfPj1/+MMf0qJFi7Rt2zZt27ZNixYt8oc//CHfffddzj///HTt2rW6egYAAAAAAAAAVkBVCjkkyR//+Mfcd9992WijjTJnzpyMGzcu48aNy5w5c7LRRhvl3nvvzemnn14dvQIAAAAAAAAAK7A61bHInnvumT333DNfffVVxowZkyRp27ZtWrduXR3LAwAAAAAAAABULeSw1lprZb311sujjz6aJGndurVgAwAAAAAAAACwVFTpcRVfffVVWrRoUV29AAAAAAAAAAAsUJVCDmuuuWbKysqqqxcAAAAAAAAAgAWqUshhn332ybPPPptvvvmmuvoBAAAAAAAAAJivKoUczjjjjGywwQbZeeed88ILL1RXTwAAAAAAAAAA86hTlcm77bZbateunddffz1bb711WrVqlXbt2qVBgwbz1BYVFeWJJ56oynYAAAAAAAAAwAqsSiGHp59+uuLn8vLyfPXVV/nqq6/mW1tUVFSVrQAAAAAAAACAFVyVQg5PPfVUdfUBAAAAAAAAALBQVQo5/OIXv6iuPgAAAAAAAAAAFqrW8m4AAAAAAAAAAGBxVOkkh7nKy8vzyCOP5IUXXsg333yTLbbYIocffniS5Jtvvsm3336btddeO7Vr166O7QAAAAAAAACAFVCVQw6vv/569ttvv3z44YcpLy9PUVFRZs2aVRFyePzxx3PQQQflvvvuyx577FHlhgEAAAAAAACAFVOVHlcxbty47Ljjjvnggw+yyy675OKLL055eXmlmr322it169bN/fffX6VGAQAAAAAAAIAVW5VCDhdccEEmTpyYyy+/PA899FBOPfXUeWoaNmyYjTfeOCNGjKjKVgAAAAAAAADACq5KIYdHH300HTp0yAknnLDQunbt2mX8+PFV2QoAAAAAAAAAWMFVKeTwxRdfpFOnTousKyoqSllZWVW2AgAAAAAAAABWcFUKOTRq1CjffPPNIutGjx6dFi1aVGUrAAAAAAAAAGAFV6WQQ6dOnfLKK69kwoQJC6z57LPP8vrrr2ezzTarylYAAAAAAAAAwAquSiGHAw88MFOmTMmRRx6Z7777bp7x77//Pr17986sWbNy4IEHVmUrAAAAAAAAAGAFV6cqkw877LDcdttteeCBB9KhQ4f06NEjSfL666/nhBNOyAMPPJAxY8Zkxx13zH777VctDQMAAAAAAAAAK6YqneRQu3btPPjgg9l///3z+eef54YbbkiSjBo1KldddVXGjBmT3/zmN7n33nurpVkAAAAAAAAAYMVVpZMckqSkpCS33XZbzjrrrAwePDiffPJJfvjhh7Rp0ya77LJLNtlkk2poEwAAAAAAAABY0VU55DBXhw4d0qFDh+paDgAAAAAAAACgkio9rgIAAAAAAAAAYFmplpMcJkyYkBtuuCFPP/10xo0bl/Ly8qyxxhrZbrvtcvjhh6dVq1bVsQ0AAAAAAAAAsAKrcsjh/vvvz2GHHZbS0tKUl5dXXH/33XczdOjQ9O3bNzfffHP23nvvqm4FAAAAAAAAAKzAqhRyePnll/Pb3/42s2fPTpcuXXLwwQenffv2SZJPP/00/fv3z4gRI7LffvvlueeeyxZbbFEtTQMAAAAAAAAAK54qhRzOPffczJkzJ3/7299yyimnzDP++9//PpdddllOOeWUnHfeeXnooYeqsh0AAAAAAAAAsAKrVZXJL7zwQjp27DjfgMNcJ598cjp16pTnn3++KlsBAAAAAAAAACu4KoUcZs2alU6dOi2yrmPHjpk1a1ZVtgIAAAAAAAAAVnBVCjl06NAhY8eOXWTd559/nvXXX78qWwEAAAAAAAAAK7gqhRyOPvroDBs2LM8888wCa5555pk899xzOfroo6uyFQAAAAAAAACwgqtTlclHHXVU3nvvvey222455phjcvDBB6d9+/ZJktGjR+df//pXrr766px00knp1atXtTQMAAAAAAAAAKyYisrLy8t/7OTatWv/+I2LijJ79uwfPb+mKCsrS9OmTVNaWpomTZos73b4X/cM/2Z5twBAgdtx0h3LuwUAClyzHscv7xYAAAAACsbifvdepZMcqpCPqNJcAAAAAAAAAGDFU6WQww8//FBdfQAAAAAAAAAALFSt5d0AAAAAAAAAAMDiEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQanzI4e677862226b5s2bp1GjRtl4441z8cUXZ9asWVVee/DgwSkqKkpRUVF23HHHaugWAAAAAAAAAFhaanTI4aSTTsq+++6b559/Pl27dk2PHj0yZsyYnHbaadl+++0zffr0H732t99+m6OOOipFRUXV2DEAAAAAAAAAsLTU2JDDfffdl379+qWkpCQvv/xyhgwZkoEDB+bDDz9Mp06dMmzYsJx11lk/ev3jjz8+X331VY455phq7BoAAAAAAAAAWFpqbMjhggsuSJKcfvrp6dy5c8X1li1b5p///GeS5KqrrkppaekSrz1o0KDcdttt+cMf/pCuXbtWT8MAAAAAAAAAwFJVI0MOn3/+eUaMGJEk6dmz5zzj3bt3T5s2bTJz5swMHjx4idaeMGFCjjnmmKy//vo599xzq6VfAAAAAAAAAGDpq5Ehh1GjRiVJWrRokfbt28+3pkuXLpVqF9exxx6bCRMm5MYbb0z9+vWr1igAAAAAAAAAsMzUyJDD6NGjkyRt27ZdYE2bNm0q1S6OO+64I/fcc0+OP/74dOvWrWpNAgAAAAAAAADLVJ3l3cD8TJkyJUnSqFGjBdaUlJQkScrKyhZrzS+//DK///3vs/baa+eCCy740b3NnDkzM2fOrHi/uPsDAAAAAAAAAFVTI09yWBp69eqVb7/9NjfccEMaNmz4o9e58MIL07Rp04rX3BMlAAAAAAAAAIClq0aGHBo3bpwkmTZt2gJrpk6dmiRp0qTJIte79dZb8+CDD+aYY47JtttuW6XezjjjjJSWlla8xo4dW6X1AAAAAAAAAIDFUyMfV9GuXbskWWiAYO7Y3NqFGTRoUJJkxIgR84QcvvzyyyTJK6+8UjF2xx13ZJVVVpnvWsXFxSkuLl7kngAAAAAAAABA9aqRIYdNN900STJx4sSMHj067du3n6dm5MiRSZLOnTsv9rpz58zP5MmT88wzzyRJZsyYsSTtAgAAAAAAAADLQI18XMUaa6yRzTffPEkyYMCAecaHDRuWsWPHpri4OLvuuusi17vvvvtSXl4+39fNN9+cJNlhhx0qri3O6RAAAAAAAAAAwLJVI0MOSfLnP/85SdK3b9+8+uqrFdcnTpyY3r17J0mOO+64NG3atGJs0KBB6dChQ3bYYYdl2ywAAAAAAAAAsNTVyMdVJMlee+2VE044IVdccUW23HLL7LDDDmnUqFGeeOKJTJ48Od26dct5551XaU5paWnef/99j5sAAAAAAAAAgJ+gGnuSQ5L069cvd955Z37+85/nhRdeyODBg7PGGmukb9++efLJJ9OgQYPl3SIAAAAAAAAAsIwUlZeXly/vJgpZWVlZmjZtmtLS0jRp0mR5t8P/umf4N8u7BQAK3I6T7ljeLQBQ4Jr1OH55twAAAABQMBb3u/cafZIDAAAAAAAAAMBcQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCDU+5HD33Xdn2223TfPmzdOoUaNsvPHGufjiizNr1qwlWmfUqFG58MILs8MOO6R169apW7dumjdvnq233jr/+Mc/lng9AAAAAAAAAGDZqrO8G1iYk046Kf369UudOnWy/fbbp6SkJE8++WROO+20PPjgg3nsscfSoEGDRa4ze/bsdO7cOUlSUlKSzTffPK1bt864cePy4osvZtiwYenfv3+GDBmSZs2aLeW7AgAAAAAAAAB+jBp7ksN9992Xfv36paSkJC+//HKGDBmSgQMH5sMPP0ynTp0ybNiwnHXWWYu93mabbZa77rorEyZMyJNPPpnbb789zz33XEaNGpVVV101w4cPzx/+8IeleEcAAAAAAAAAQFXU2JDDBRdckCQ5/fTTK05hSJKWLVvmn//8Z5LkqquuSmlp6SLXqlOnTkaOHJnf/va3KS4urjTWqVOnXHzxxUmSO+64w2MrAAAAAAAAAKCGqpEhh88//zwjRoxIkvTs2XOe8e7du6dNmzaZOXNmBg8eXOX9Nt100yTJ9OnTM2HChCqvBwAAAAAAAABUvxoZchg1alSSpEWLFmnfvv18a7p06VKptio+/PDDJEm9evXSokWLKq8HAAAAAAAAAFS/GhlyGD16dJKkbdu2C6xp06ZNpdofq7y8vOJxFbvvvvs8j7MAAAAAAACA+Xn//fdz5ZVX5tBDD02nTp1Sp06dFBUV5fzzz1/gnKKiosV69e/ff4n7eeWVV/Lb3/42rVu3Tv369dO+ffscf/zx+frrrxc67/bbb892222X5s2bp379+llvvfXyxz/+Md9+++0C5wwYMCA/+9nPUlxcnLZt26ZPnz6ZM2fOfGunTZuWdu3apWPHjvn++++X+L4A/lud5d3A/EyZMiVJ0qhRowXWlJSUJEnKysqqtNc555yTF198MSUlJenbt+8i62fOnJmZM2dWvK/q/gAAAAAAABSmq6++Ov369VuiOYcccsgCx8aMGZOnnnoqRUVF+cUvfrFE695zzz3Zf//9M3v27Gy++eZp3759Ro4cmauuuip33313hg0blnXWWafSnPLy8hx66KHp379/ateuna5du2aVVVbJyJEjc8kll+TOO+/MsGHD5vnD5IceeigHHHBAmjdvnt122y2vvfZazjnnnEycODFXXnnlPL2deeaZGTNmTIYNG5Z69eot0X0B/F81MuSwrPTv3z/nnntuatWqlZtuuinrrrvuIudceOGFOeecc5ZBdwAAAAAAANRkHTt2zKmnnppNN900nTt3zgUXXJB//etfC51zyy23LHCsd+/eeeqpp7LjjjtmzTXXXOw+vvjiixxyyCGZPXt2rr322vTq1StJMmfOnBx66KH597//nZ49e+bll19OUVFRxbyrr746/fv3T+PGjfPQQw9lm222SZLMmjUrvXv3zg033JCePXtm2LBhlfY766yzUq9evbz00ktZb731Mm3atHTp0iVXX311/vKXv2SVVVapqB05cmSuvPLKHHvssdlqq60W+54AFqRGPq6icePGSf5zdM2CTJ06NUnSpEmTH7XH3XffncMPPzxJcv311+e3v/3tYs0744wzUlpaWvEaO3bsj9ofAAAAAACAwnbkkUfmb3/7W3r27JkOHTqkVq0f/9XbjBkzcvvttydJjjjiiCWae/nll+e7777LjjvuWBFwSJLatWvn6quvTtOmTTNixIg89thjlebNPYXiD3/4Q0XAIUnq1q2bK664Iquttlqef/75PPHEExVj33//fd5888384he/yHrrrZfkP6ezH3jggZkzZ06GDx9eUTtnzpz06tUrq6yySi688MIluieABamRIYd27dolyUIDBHPH5tYuiXvvvTc9e/bMDz/8kGuvvbYi7LA4iouL06RJk0ovAAAAAAAAqIqBAwdm8uTJadGiRfbaa68lmjto0KAkSc+ePecZKykpyZ577pnkP9+RzVVWVpYPPvggSbLjjjvOM69Bgwbp1q1bkv88CmOuyZMnZ86cOWnRokWl+pVWWinJ//9D5SS57LLLMmrUqFx11VW+UwOqTY0MOWy66aZJkokTJ2b06NHzrRk5cmSSpHPnzku09n333Zff/e53mTNnTq6++uocddRRVWsWAAAAAAAAquimm25Kkhx44IEpLi5e7HlTpkzJRx99lCTp0qXLfGvmXh81alTFtf8OI8wNKPxfLVu2TJK88sorFddatWqVhg0b5t13361UO/f96quvniT59NNP/197dx6mZV3vD/w9bIMzrIIiBgHipZwMUxL1CG64jegxM7eoDLUkkZJygegHLW4cT1qI4sLJpY4mIAcL86BiQiBXCAfJY6KgQKAnNRcYNtmc3x/GnKYZkEFh5onX67rmuub5Lp/7c89fPDzv53vn+9//fj7/+c/XOrQBsC31MuTQoUOH9OzZM0nywAMPVJufOXNmli9fnuLi4vTt23e7606ePDnnnntuNm3alNtvvz0DBgz42HoGAAAAAACAHbF06dI89dRTSWr/qIqlS5dW/v7JT36yxjUdO3ZMkipfLt5zzz3TsGHDJMnixYtr3Ldl/O+/lHzGGWfkueeey80335zy8vI8/vjjueeee7L33nvnyCOPTJJceumladSoUW699dZa3Q/Ah6mXIYckGTZsWJJk5MiRmTdvXuX422+/nYEDByZJBg0alJYtW1bOTZo0Kd26dcsJJ5xQrd6jjz6as88+O5s2bcodd9wh4AAAAAAAAEC9cM8996SioiKHHXZYDj744FrtXbVqVeXvpaWlNa5p1qxZkg8eUbFF06ZNc9RRRyVJxo4dW23PokWL8tvf/rbaviS54YYb0q5du1xxxRVp2bJlTjnllLz33nsZO3ZsiouL88tf/jJTpkzJyJEjs++++1bue++997J58+Za3R/A32tU1w1szZlnnplvfetbueWWW3LkkUfmhBNOSGlpaZ588smsWLEivXr1yjXXXFNlz8qVK/PSSy/lvffeqzL+5ptv5qyzzsqGDRvSoUOHzJo1K7Nmzarxuj/+8Y8rj94BAAAAAACAnen999/PvffemyS56KKLdum1R4wYkZNPPjm/+tWv8o1vfCNXXHFF2rVrl9mzZ+fSSy+tXNegQdXvTXfu3DnPP/987r777rz88stp165dvvSlL6Vbt2559913M3jw4PTq1Svf+MY3kiTjxo3LiBEjsnDhwjRu3DgnnXRSbr311nTp0mWX3i/wj6HehhySZNSoUenVq1duu+22zJo1Kxs3bkzXrl0zdOjQfPvb306TJk22q87atWuzfv36JMmrr76a++67b6trf/CDHwg5AAAAAAAAsEtMnTo1y5Ytyx577JF+/frVen/z5s0rf1+zZk2VU9C3WL16dZKkRYsWVcZPPPHEjB07NoMGDcqdd96ZO++8s3KuY8eOueaaazJ06NDsueee1Wq2bds2V199dbXxK6+8MitWrMhdd92VoqKi/OpXv8r555+f3r1754Ybbsif//znfO9738vxxx+f559/vvKUCYDtVa9DDkly7rnn5txzz92utf3790///v2rjXfu3DkVFRUfc2cAAAAAAADw0dx9991Jki984Qs1BhQ+TKdOnSp/X7ZsWbp3715tzfLly5N88JnZ37v44otz2mmn5aGHHsqCBQtSVFSUQw89NOedd14eeOCBJKmxZk2mT5+ee+65J8OHD8+nPvWpJB88mr60tDS//vWv07p16yRJw4YNc+mll+aBBx7IJZdcUqv7Baj3IQcAAAAAAAD4R/TOO+/k4YcfTvJB2GBHtGjRIvvvv39efvnlzJ07t8ZAwty5c5MkPXr0qLHGPvvsk0GDBlUbnzFjRpLkpJNO+tA+1q9fnwEDBuTAAw/MsGHDKsfnz5+fT3/605UBhyTp3bt35RxAbTX48CUAAAAAAADAx+3+++/P+vXr07Vr1xx77LE7XOfzn/98klSevPC3Vq9encmTJydJzjrrrO2uuXTp0kycODHNmjWr8ST1v3fddddl4cKFufPOO1NcXFw5XlRUlDVr1lRZu+V1UVHRdvcDsIWQAwAAAAAAANSBLY+quOiiiz70A/9JkyalW7duOeGEE6rNDR48OCUlJZk6dWrGjh1bOb558+YMHDgwK1asSM+ePXPyySdX2bdhw4Y8++yz1eq9+OKLOe2007Ju3brcdNNNadOmzTZ7e+GFF/Kv//qv+drXvpZjjjmmylyPHj2yYMGCPP3005Vjd911V+UcQG0VVVRUVNR1E4WsvLw8LVu2zMqVK9OiRYu6boe/euiZv9R1CwAUuBPfebCuWwCgwLUq+2ZdtwAAAOxk8+bNy8CBAytfv/LKK3nrrbfSoUOHfOITn6gcnzRpUtq3b19l77PPPpsePXqkYcOGWbZsWfbdd99tXuvee+/NhRdemE6dOmXp0qXV5idMmJAvfvGL2bx5c4444oh07tw5c+bMyeLFi9OuXbvMnDkz+++/f5U9K1asSOvWrbPffvvlwAMPTKtWrbJ06dI888wzef/99/PDH/4ww4cP32ZfFRUVOfroo/PKK69kwYIFadWqVZX5KVOmpG/fvmnatGlOOumkvP7663nmmWey//775w9/+ENKSkq2WR/YfWzvZ++NdmFPAAAAAAAA8A+jvLw8s2fPrjb+6quv5tVXX618vX79+mprtpzicMopp3xowGF7nHPOOdlvv/1y/fXXZ8aMGXn22WfTvn37XHbZZRk+fHjatWtXbU9JSUkuv/zyzJgxI7///e+zZs2a7L333jn//PPzrW99K4cffviHXveuu+7K008/nfHjx1cLOCRJWVlZfv3rX+dHP/pRpkyZkpKSkpx//vm56aabBByAHeIkh4/ISQ71k5McAPionOQAwEflJAcAAACA7be9n7032IU9AQAAAAAAAADsMCEHAAAAAAAAAKAgCDkAAAAAAAAAAAWhUV03AAAAAAAAUFsrpoyu6xYAKHCtyr5Z1y2wA5zkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAAAAAAFQcgBAAAAAAAAACgIQg4AAAAAAAAAQEEQcgAAAAAAAAAACoKQAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFAQhBwAAAAAAAACgIAg5AAAAAAB8iKuvvjpFRUUpKirKtddeu9373n///cyaNSsjRoxI796906ZNmzRu3Dht27bNSSedlPvvvz8VFRU17u3cuXPlNbf186Mf/ajKvk2bNmX48OHp2LFjiouL071790yYMGGrPc6fPz+NGzfOJZdcst33BQAAdaVRXTcAAAAAAFCfzZo1KzfddFOKioq2GkjYmsWLF6dXr15Jkj333DOHHXZYWrduncWLF2fq1KmZOnVqHnzwwUycODFNmjSpsvfss8/OW2+9VWPdd955J5MnT06SHH/88VXmhg4dmptuuin77bdfTjvttDz11FM599xzM2HChJx99tlV1m7evDlf//rX07Zt29x44421ujcAAKgLQg4AAAAAAFuxdu3a9O/fP+3bt0/Pnj3z8MMP12p/UVFR+vTpk6uuuionnXRSGjZsWDk3ffr0nHbaaXnkkUcycuTIjBgxosreH//4x1ute+ONN2by5Mk54IADcvTRR1eOv/nmmxk9enQ+9alPZc6cOSkpKcmLL76Ygw8+OD/4wQ+qhRxuueWWzJ07N+PHj0+rVq1qdW8AAFAXPK4CAAAAAGArvvvd72bRokW566670rJly1rv79q1a5588smUlZVVCTgkybHHHpuhQ4cmSX7+85/Xqu7dd9+dJLnooouqjP/P//xPNmzYkC996UspKSlJknTr1i3HHnts/vjHP6a8vLxy7bJlyzJ8+PCcfvrpOeecc2p9bwAAUBeEHAAAAAAAajBt2rSMHj06F1xwQfr27btTrnHooYcmSZYvX77de55++um89NJLadSoUb761a9WmXv77beTfPBojL/Vpk2bJMnq1asrxy677LIUFRVlzJgxO9Q7AADUBY+rAAAAAAD4O6tXr85FF12Udu3a5ac//elOu86iRYuSJO3bt9/uPVtOcejbt2/22WefKnOdO3dOkixYsKDK+IIFC9KkSZO0bds2STJ+/Pg88sgjGTVqVDp27Lij7QMAwC7nJAcAAAAAgL9z5ZVXZsmSJbn99tvTunXrnXKNtWvX5pZbbkmSfOELX9iuPWvWrMn48eOTJBdffHG1+UMOOSSdOnXKPffck8cffzzl5eW5+eab89xzz6WsrCxNmjTJihUrcvnll+fwww/PoEGDPr4bAgCAXcBJDgAAAAAAf+Pxxx/PnXfemfPPPz9nnnnmTrvOwIEDs2TJkuy7774ZNmzYdu0ZP358Vq9enX322afGR2g0adIko0ePzllnnZVTTjmlcrx9+/b5yU9+kiQZMmRI3nrrrTz++ONp0OD/vge3du3alJSUfMS7AgCAnctJDgAAAAAAf7Vy5cpcfPHF2WuvvTJ69Oiddp1rrrkm9913X5o2bZrx48enTZs227XvZz/7WZLkggsuSKNGNX+H7V/+5V8yf/78DBs2LF//+tfzb//2b3n++eez3377ZebMmRk7dmyuuuqqdO/ePZs3b86IESOy1157pbS0NC1btsxll12WtWvXfmz3CgAAHycnOQAAAAAA/NXgwYPz6quvZty4cWnbtu1OucbNN9+cESNGpLi4OJMmTUqvXr22a9/ChQvz9NNPJ0kuuuiiba496KCDct1111UZ27BhQy655JJ07do1I0aMSJJcddVV+clPfpKLL744n/vc5zJjxoz8+Mc/zuuvv56JEyfuwN0BAMDOJeQAAAAAAPBXkyZNSqNGjTJmzJiMGTOmytyLL76Y5IPTFKZOnZp99tknDz74YK3qjx49OldccUWaNGmSiRMnpqysbLv33n333UmS3r1758ADD6zVdZPkhhtuyIIFC/Lkk0+madOmWbVqVW677bYcddRR+fd///ckH5wCsWzZsowbNy4LFy7MAQccUOvrAADAziTkAAAAAADwNzZt2pTp06dvdX7p0qVZunRpOnXqVKu6t912W771rW9VBhxOO+207d67efPm/PznP0+SXHzxxbW6bpK89NJLueGGG9K/f//06dMnSfLCCy9kw4YNOeqoo6qs7d27d8aNG5f58+cLOQAAUO80qOsGAAAAAADqixUrVqSioqLGn69+9atJkmuuuSYVFRVZunTpdte94447MmjQoMqAw+mnn16rvh599NH8+c9/TvPmzXPOOefUam9FRUUGDBiQli1b5qabbqocLyoqSpKsWbOmyvotr7fMAwBAfSLkAAAAAADwEd16663p1q1bLrjggmpzY8eOzcCBA3c44JD836Mqzj///JSWltZq789+9rNMnz49P/nJT7LnnntWjn/qU59KcXFxJk2alHfeeSdJsnbt2vzHf/xHkuTQQw+tdZ8AALCzeVwFAAAAAMBH9NZbb+Wll17KPvvsU2V8/vz5GTBgQCoqKrLffvvloYceykMPPVRjjXvvvbfG8TfffDO/+c1vktT+URVvvPFGrr766pSVlaVfv35V5po1a5bvfOc7ueGGG3LQQQelV69emTdvXpYsWZIvfvGL2X///Wt1LQAA2BWEHAAAAAAAdpItj79IkhdffDEvvvjiVtduLeTwi1/8Ihs3bsxBBx2UI444olbXHzx4cDZs2JDbb7+9xvnrrrsurVu3zp133plf/epXadeuXYYMGZIf/ehHtboOAADsKkUVW/6FzQ4pLy9Py5Yts3LlyrRo0aKu2+GvHnrmL3XdAgAF7sR3HqzrFgAocK3KvlnXLQAA/ENbMWV0XbcAQIHz3r1+2d7P3hvswp4AAAAAAAAAAHaYkAMAAAAAAAAAUBCEHAAAAAAAAACAgtCorhsAAAAAYPfz0DN/qesWAChwJ9Z1AwBAnXCSAwAAAAAAAABQEIQcAAAAAAAAAICCIOQAAAAAAAAAABQEIQcAAAAAAAAAoCAIOQAAAAAAAAAABUHIAQAAAAAAAAAoCEIOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQ6n3IYcKECTnuuOPSunXrlJaW5jOf+UxuvPHGbNy4cYfq/fd//3fOOeectGvXLk2bNk2XLl3yzW9+M2+++ebH3DkAAAAAAAAA8HGq1yGHwYMH59xzz83TTz+dww8/PGVlZVm2bFmGDBmSPn36ZN26dbWq99BDD+XII4/MQw89lE6dOuVzn/tcGjRokFtvvTUHH3xwXn755Z10JwAAAAAAAADAR1VvQw4PP/xwRo0alWbNmmX27Nl57LHHMnHixCxatCjdu3fPzJkzM3z48O2u97//+7/56le/mk2bNuXOO+/MM888k3HjxmXhwoX58pe/nDfeeCP9+vVLRUXFTrwrAAAAAAAAAGBH1duQw/XXX58kGTp0aHr06FE53rZt24wZMyZJcuutt2blypXbVe+nP/1p1q5dmxNPPDGXXHJJ5XjDhg1z++23p2XLlpkzZ04ef/zxj/EuAAAAAAAAAICPS70MObz22muZM2dOkqRfv37V5nv37p2OHTtm/fr1efTRR7er5qRJk7Zar1mzZjnjjDOSJP/5n/+5o20DAAAAAAAAADtRvQw5PPvss0mSPffcM126dKlxzWGHHVZl7basWrUqL7/8cpV9H6UeAAAAAAAAALDr1cuQw5IlS5Ikn/zkJ7e6pmPHjlXWbsvSpUsrf99azdrUAwAAAAAAAAB2vUZ13UBNVq1alSQpLS3d6ppmzZolScrLy7e73rZqbm+99evXZ/369ZWvV65cud19sOusXb3qwxcBwDaUr1lX1y0AUOAaeJ8I2+S9OwAflffuAHxU3rvXL1s+c6+oqNjmunoZcqjPbrjhhvzwhz+sNr7lJAgAAAD4wJC6bgAAAADYJu/d66NVq1alZcuWW52vlyGH5s2bJ0nWrFmz1TWrV69OkrRo0WK7622pWdMfZHvrffe73813vvOdytfvv/9+3nnnnbRp0yZFRUUf2gsAUP+Vl5enY8eOWb58+Xb9WwMAAADYtbx3B4B/PBUVFVm1alX23Xffba6rlyGHzp07J0mWL1++1TVb5ras3ZZOnTpV/r5s2bJ07959h+sVFxenuLi4ylirVq0+tAcAoPC0aNHCf5QAAABAPea9OwD8Y9nWCQ5bNNgFfdTaoYcemiR5++23s2TJkhrXzJ07N0nSo0ePD63XokWL7L///lX2fZR6AAAAAAAAAMCuVy9DDh06dEjPnj2TJA888EC1+ZkzZ2b58uUpLi5O3759t6vm5z//+a3WW716dSZPnpwkOeuss3a0bQAAAAAAAABgJ6qXIYckGTZsWJJk5MiRmTdvXuX422+/nYEDByZJBg0aVOW4ikmTJqVbt2454YQTqtUbPHhwSkpKMnXq1IwdO7ZyfPPmzRk4cGBWrFiRnj175uSTT95ZtwQAFIji4uJ8//vfr/aIKgAAAKB+8N4dAHZfRRUVFRV13cTWXH755bnlllvSuHHjnHDCCSktLc2TTz6ZFStWpFevXnniiSeyxx57VK6/9957c+GFF6ZTp05ZunRptXoTJkzIF7/4xWzevDlHHHFEOnfunDlz5mTx4sVp165dZs6cWflYCwAAAAAAAACgfqm3JzkkyahRozJu3Lj88z//c2bNmpVHH300HTp0yMiRI/Pb3/62SsBhe5xzzjmZPXt2zjrrrCxevDiTJk3K5s2bc9lll+UPf/iDgAMAAAAAAAAA1GP1+iQHAAAAAAAAAIAt6vVJDgAAAAAAAAAAWwg5AAD81YQJE3LccceldevWKS0tzWc+85nceOON2bhxY123BgAAALu1l156KaNHj07//v3TvXv3NGrUKEVFRbn22mvrujUAYBdrVNcNAADUB4MHD86oUaPSqFGj9OnTJ82aNctvf/vbDBkyJJMnT87jjz+ePfbYo67bBAAAgN3S7bffnlGjRtV1GwBAPeAkBwBgt/fwww9n1KhRadasWWbPnp3HHnssEydOzKJFi9K9e/fMnDkzw4cPr+s2AQAAYLf16U9/OldeeWXuv//+LFiwIF/5ylfquiUAoI44yQEA2O1df/31SZKhQ4emR48eleNt27bNmDFjcvTRR+fWW2/N8OHD07Jly7pqEwAAAHZbX/va16q8btDAdzgBYHflXwEAwG7ttddey5w5c5Ik/fr1qzbfu3fvdOzYMevXr8+jjz66q9sDAAAAAAD+hpADALBbe/bZZ5Mke+65Z7p06VLjmsMOO6zKWgAAAAAAoG4IOQAAu7UlS5YkST75yU9udU3Hjh2rrAUAAAAAAOqGkAMAsFtbtWpVkqS0tHSra5o1a5YkKS8v3yU9AQAAAAAANRNyAAAAAAAAAAAKgpADALBba968eZJkzZo1W12zevXqJEmLFi12SU8AAAAAAEDNhBwAgN1a586dkyTLly/f6potc1vWAgAAAAAAdUPIAQDYrR166KFJkrfffjtLliypcc3cuXOTJD169NhlfQEAAAAAANUJOQAAu7UOHTqkZ8+eSZIHHnig2vzMmTOzfPnyFBcXp2/fvru6PQAAAAAA4G8IOQAAu71hw4YlSUaOHJl58+ZVjr/99tsZOHBgkmTQoEFp2bJlnfQHAAAAAAB8oKiioqKirpsAAKhrl19+eW655ZY0btw4J5xwQkpLS/Pkk09mxYoV6dWrV5544onssccedd0mAAAA7JbmzZtX+UWEJHnllVfy1ltvpUOHDvnEJz5ROT5p0qS0b9++LloEAHYRIQcAgL8aP358brvttsyfPz8bN25M165d8+Uvfznf/va306RJk7puDwAAAHZb06ZNy/HHH/+h65YsWZLOnTvv/IYAgDoj5AAAAAAAAAAAFIQGdd0AAAAAAAAAAMD2EHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAABJpk2blqKiohx33HF13QoAAACwFUIOAAAAQL0haAAAAABsi5ADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAADsdIsWLcpFF12ULl26pLi4OM2aNUunTp1y2mmn5Z577kmSHHfccTn++OOTJNOnT09RUVHlT+fOnStr9e/fP0VFRbn33nvz/PPP57zzzkv79u3TsGHD/OAHP6hc984772TYsGE56KCDUlJSkubNm+ezn/1sbrzxxqxbt65W/f/lL3/JUUcdlaKiopx33nlZv3595dy7776b73//+znkkEPSvHnzlJSUpHv37rn22muzdu3aHf+jAQAAANU0qusGAAAAgH9szz//fHr16pXy8vIceOCBOf3009OwYcO8+uqr+d3vfpfXXnstF154YcrKytK0adM89thjadeuXcrKyiprtG3btlrdWbNm5Rvf+Ebat2+fY445JuvWrUvz5s2TJIsXL06fPn3ypz/9KXvttVf69u2bjRs35qmnnsqQIUMybty4TJ06Na1bt/7Q/hcuXJi+ffvmlVdeydVXX52RI0emqKgoSfLCCy+krKwsy5cvT/v27dO7d+80btw4zzzzTIYPH56JEydm2rRpadmy5cf01wQAAIDdm5ADAAAAsFPdfPPNKS8vz7XXXpvvfe97VebWrVuXOXPmJEmGDh2aI488Mo899li6deuWe++9d5t1x44dm6FDh+a6665LgwZVD6vs169f/vSnP+WMM87IAw88kNLS0iQfnMhQVlaWefPmZdCgQbn//vu3eY0ZM2bkzDPPzMqVK3PHHXdkwIABVXo/44wzsnz58vy///f/Mnz48DRp0iRJsnbt2nzta1/LL3/5y3z729/O3XffvV1/KwAAAGDbPK4CAAAA2KneeOONJEnfvn2rze2xxx455phjdqjuAQcckGuvvbZawGHmzJmZPXt2SkpKctddd1UGHJJkr732yl133ZUkefDBB/Pqq69utf4vf/nLnHTSSdmwYUMmT55cJeCQJPfdd19eeeWVnH766bnmmmsqAw5JKq+999575xe/+EXefffdHbpHAAAAoCohBwAAAGCnOvzww5Mkl156aR577LG89957H0vdM888Mw0bNqw2Pm3atCRJWVlZ2rVrV23+s5/9bD7zmc/k/fffz/Tp02usff311+dLX/pS2rRpkxkzZuTUU0+ttuY3v/lNkuS8886rsUazZs1y2GGHZdOmTZWnVQAAAAAfjZADAAAAsFNdddVVOfHEEzN79uyUlZWlRYsW6dmzZ6644oqP9OF/586daxx/7bXXkiRdunTZ6t6uXbtWWfu3nn766Xzve99LcXFxfve73+WQQw6pscbixYuTJF/5yldSVFRU48+jjz6a5IPHZAAAAAAfXaO6bgAAAAD4x1ZSUpInnngic+bMyZQpUzJr1qzMmjUrc+fOzc0335yBAwfmtttuq3XdPfbYYyd0mxx00EFp3Lhx5s6dm29+85uZOHFijdd6//33k2z9xIi/1alTp53SKwAAAOxuhBwAAACAXaJnz57p2bNnkmTTpk15+OGHc8EFF2TMmDE5++yzc/zxx38s1/nEJz6R5P9OWqjJlrkta/9Wq1at8utf/zqnn356/uu//iunnnpqHnnkkTRr1qzKuo4dO+bFF1/MxRdfnLPPPvtj6R0AAADYNo+rAAAAAHa5Ro0a5eyzz84pp5ySJJk/f36SpEmTJkk+CEHsqOOOOy5JMmXKlLzxxhvV5p999tnMnz8/DRo0yDHHHFNjjRYtWmTKlCk5+eSTM3369Jx44ol59913q6w59dRTkyTjx4/f4V4BAACA2hFyAAAAAHaqMWPG5KWXXqo2/vrrr2fu3LlJ/u9xDh06dEiSLFq0KBs3btyh6/Xu3TtHHHFE1q1blwEDBmTt2rWVc2+99VYGDBiQJDn//PPTsWPHrdYpKSnJ5MmTc9ZZZ2X27Nk57rjjqoQmLrnkknTq1CkTJkzIkCFDsmrVqhrvcezYsTt0HwAAAEB1RRUVFRV13QQAAADwj+uQQw7JH/7wh3Tp0iWf/vSn06JFi/zlL3/JjBkzsm7duvTp0yePPfZYGjX64KmaPXv2zNy5c3PggQfmsMMOS9OmTdO2bduMHDkySdK/f//cd999ueeee9K/f/8ar7l48eL06dMnf/rTn7L33nvnmGOOycaNG/PUU0+lvLw8PXr0yNSpU9O6devKPdOmTcvxxx+fY489NtOmTasc37x5cy688ML84he/yAEHHJCpU6dWhiP++Mc/5vTTT8/SpUvTqlWrHHzwwenQoUPWrl2bhQsXZsGCBdl7773z+uuv75w/LgAAAOxmnOQAAAAA7FTXXXddLr300rRq1Sq///3vM2HChLzwwgs54ogjct9992XKlCmVAYckmThxYvr165fy8vKMGzcuP/vZz/Lggw/W6pr77bdf5s2bl+9+97tp06ZNHnnkkTzxxBPp2rVrRo4cmZkzZ1YJOGxLw4YNc9999+XSSy/NwoULc/TRR+fll19Okhx00EF57rnncuONN+af/umf8txzz2XChAmZPXt2SktLc+WVV2bSpEm16h0AAADYOic5AAAAAAAAAAAFwUkOAAAAAAAAAEBBEHIAAAAAAAAAAAqCkAMAAAAAAAAAUBCEHAAAAAAAAACAgiDkAAAAAAAAAAAUBCEHAAAAAAAAAKAgCDkAAAAAAAAAAAVByAEAAAAAAAAAKAhCDgAAAAAAAABAQRByAAAAAAAAAAAKgpADAAAAAAAAAFAQhBwAAAAAAAAAgIIg5AAAAAAAAAAAFIT/DylFwbkE2jGWAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 2600x800 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure(figsize=(26, 8))\n",
+    "draw(df,'stroke','heart_disease')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ: </strong> tỉ lệ người bị đột quỵ của nhóm bị bệnh tim là 17.09%, cao gấp 4 lần so với tỉ lệ bị đột quỵ của nhóm không bị bệnh tim.\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 159,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[  13.69202971  261.30797029]\n",
+      " [ 234.30797029 4471.69202971]]\n",
+      "Chi-Square value: 90.25539274279595\n",
+      "Degree of Freedom:  1\n",
+      "p-value:  0.0\n",
+      "Có mối tương quan giữa tim mạch và đột quỵ\n"
+     ]
+    }
+   ],
+   "source": [
+    "stroke_heart_count = df[(df['heart_disease'] == 1) & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_heart_count = df[(df['heart_disease'] == 1) & (df['stroke'] == 0)].shape[0]\n",
+    "stroke_no_heart_count = df[(df['heart_disease'] == 0) & (df['stroke'] == 1)].shape[0]\n",
+    "nostroke_no_heart_count = df[(df['heart_disease'] == 0) & (df['stroke'] == 0)].shape[0]\n",
+    "H0 = \"Không có mối tương quan giữa tim mạch và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa tim mạch và đột quỵ\"\n",
+    "heart_desease_arr = [stroke_heart_count,nostroke_heart_count]\n",
+    "no_heart_desease_arr = [stroke_no_heart_count,nostroke_no_heart_count]\n",
+    "nij = []\n",
+    "nij.append(heart_desease_arr)\n",
+    "nij.append(no_heart_desease_arr)\n",
+    "nij = np.array(nij)\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(2 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_heart = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: \", p_heart)\n",
+    "if p_heart <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định Chi-square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa bệnh tim mạch và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa bệnh tim mạch và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/pUyd5kE.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 400px; height:400px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả kiểm định chi – square về mối tương quan giữa đột quỵ và bệnh tim mạch</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 90.25539274279595</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  1</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value:  0.0</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa tim mạch và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "<ul>\n",
+    "<li>\n",
+    "Do p-value bé hơn mức ý nghĩa, nên ta bác bỏ giả thuyết H0\n",
+    "</li>\n",
+    "<li>\n",
+    "Với mức ý nghĩa 5%, ta thấy có mối tương quan giữa bệnh tim mạch và bệnh đột quỵ.\n",
+    "</li>\n",
+    "</ul>\n",
+    "<strong>Kết luận:</strong> Bệnh tim mạch có mối tương quan với đột quỵ. Bệnh tim có khả năng làm tăng nguy cơ bị đột quỵ. Điều này phù hợp với nghiên cứu của y khoa.\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.9. Đột quỵ và chỉ số bmi </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ,</strong> người bị thừa cân và béo phì làm tăng nguy cơ mắc bệnh đột quỵ hơn so với người có chỉ số bmi bình thường. <br>\n",
+    "Chia bộ dữ liệu thành 2 nhóm đột quỵ và không bị đột quỵ, quan sát sự phân bố của chỉ số bmi.\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 160,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAv60lEQVR4nO3deVxV9b7/8fdGZDPI4AAqblARCUUcyAbNh5pa2TFNzfE4d4zbzfSoPR7WuWmeyEunTMvyV5SZntJzj0Oa5SlLLTuGQxjSdYDAAWMQTZFBZWb9/uiyHxEKpMBO1uv5ePDH/n7XXt/P4utXfe81bIthGIYAAAAAADAZJ0cXAAAAAACAIxCIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAdZu3atLBaL9uzZ4+hSAAAwJQIxAMBUTpw4oT/96U8KCQmRm5ubWrZsqfDwcD322GM6fPiwfbucnBz99a9/JaxWo6ioSIsWLVLHjh3l6uqq4OBgvfjiiyotLXV0aQAA1IqzowsAAKChxMXFacCAAbJarZo2bZq6du2q/Px8/fDDD9qxY4duu+029erVS9LPgfj555+XJA0cONCBVf9+jR8/Xtu2bdOjjz6qPn36aP/+/fqv//ovnTx5Uu+++66jywMAoEYEYgCAaTz//PMqKCjQgQMH1L1790p95eXlunjx4g3vu7y8XAUFBfLw8LjZMm8Jn376qbZt26b58+dr2bJlkqSZM2fKx8dHy5cvV2RkpO68804HVwkAQPW4ZBoAYBonTpxQy5Ytq4RhSXJycpKvr68kac+ePerYsaOkn0O0xWKRxWKxnynes2ePLBaL1qxZoxUrVig0NFSurq5atWqVJOnKlSt65plnFBQUJKvVKn9/f82cOVNnz56tVZ3PPPOMLBaL/Qy1JGVkZCgyMlI2m00uLi4KDAzUvHnzlJ+ffzO/khv2j3/8Q5I0d+7cSu0Vr9etW9fAFQEA8NtxhhgAYBpBQUH64YcftGXLFo0ePfq623Xp0kWvvvqq5s2bp1GjRtm3bd26daXtXnvtNeXm5mrmzJny9fVVSEiISkpK9MADDyg2Nlbjx49X//79lZiYqJiYGO3cuVPfffedWrVqdc1xS0tL9dhjj+mDDz5QTEyM/uM//kOSlJqaqj59+sgwDM2cOVOBgYE6duyY3nrrLe3fv1979+5V06ZNqz323NxclZSU1Or35OnpKavVWu02cXFxateunQICAiq1BwQEyN/fX3FxcbUaCwAARyIQAwBM49lnn9WuXbv0yCOPKCQkRP369dNdd92lQYMGKTg42L5d69atNXLkSM2bN0/du3fX5MmTr7m/jIwMJSUlVQq4q1atUmxsrP7yl78oOjra3t6vXz9NmDBBzz//vN54440q+7p69arGjRun3bt3a9OmTRo1apS9b/bs2ZKkhIQEtWnTxt4+ePBgPfzww1q3bp1mzJhR7bE//PDD+vrrr2v4Df1szZo1mj59erXbZGZmqmvXrtfsa9eunTIyMmo1FgAAjkQgBgCYxj333KNvv/1Wr7zyinbs2KH33ntP7733niTpD3/4g9asWSM/P79a72/q1KlVzvZu3bpVzs7Oevrppyu1jx8/XosWLdLWrVurBOKLFy9q8ODBSkxM1Oeff67+/fvb+3JycvTpp58qMjJSzs7OunDhgr2vb9++8vDw0M6dO2sMxMuWLdOlS5dqdVxhYWE1bnP16tXrnkV2dXXV1atXazUWAACORCAGAJhKz5497fe3njhxQl999ZXefPNNffrpp5o0aZJ27txZ63398qxyhdOnT8tms8nb27tKX9euXbVt2zYVFxfLxcXF3j5jxgxduXJFBw8eVO/evSu9Jzk5WeXl5YqJiVFMTMw16zh37lyNtd5+++01bvNbuLu7q6io6Jp9hYWFcnd3r9PxAACoDwRiAIBpBQcHKzg4WFOnTlVYWJh27dqltLS0KvfFXk9dhb5x48ZpzZo1ioqK0ubNmyuF5fLycknStGnTrnvpdvPmzWscIzs7W8XFxbWqx9vbW25ubtVu4+/vf93LojMyMhQYGFirsQAAcCQCMQDA9KxWq3r06KGTJ08qMzNTAQEBslgsN7SvoKAgffHFF8rPz5enp2elvuPHj6tdu3aVAq8kTZ48WQMHDtT06dM1evRoffjhh/bLkYODg2WxWFRaWqohQ4bc2AFKGj16dJ3eQ3zHHXdo/fr1VT5ASEtLU2ZmZrUPLQMA4PeCQAwAMI2dO3dq0KBBatKkSaX2CxcuaN++fXJ2dlbnzp0lSc2aNZOkWt93W2HkyJH69NNP9corr1T62qRNmzYpJSVFTz755DXfN3nyZDk5OWnq1KkaNWqUtm7dKqvVqlatWmno0KHauHGj5s+fr4iIiErvKy0tVV5enlq0aFFtXXV9D/HEiRO1fv16vfbaa/bvIZZ+fvK2JE2aNKlWYwEA4EgEYgCAacybN0/Z2dl6+OGHFR4eLqvVqtOnT+v9999XVlaWFi5caA+WLVu2VKdOnfTPf/5TwcHB8vX1lZ+fnwYNGlTtGNOnT9fatWsVFRWlkydP6p577lFSUpLeeustBQYGavHixdd97x//+Ec5OTlp8uTJGjlypLZu3SpXV1e99dZb6tevn/r27avp06erR48eKioq0okTJ7RlyxZFR0fXeEa3ru8hHjZsmB566CEtX75cubm56tOnj/bv36/Vq1dr+vTpuvvuu+t0PAAA6gOBGABgGsuXL9dHH32k2NhYbdy4UXl5efLx8VFERISWLVumsWPHVtr+gw8+0Lx587RgwQIVFhZqwIABNQbipk2b6osvvlBUVJQ2btyojRs3qkWLFpoyZYqWLFly3e8grjBhwgQ5OTlp0qRJevjhh7Vt2za1b99e8fHxio6O1scff6w1a9aoWbNmat++vaZOnarBgwff9O/mRmzatEkvvPCC1q1bpw8++EA2m01LlizRggULHFIPAAC/lcUwDMPRRQAAAAAA0NCcHF0AAAAAAACOQCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACm1GBfu2S1WuXr69tQwwEAAAAATO6nn35SUVHRdfsbLBD7+voqPT29oYYDAAAAAJiczWartp9LpgEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAgOLi4vTkk08qLCxMHh4eCgwM1Lhx45ScnFxl240bN+ruu++Wj4+PWrZsqQEDBuhf//pXrcf6+OOPFRERIVdXVwUGBmrx4sUqLS2ty8MBAACoFQIxAEAvvfSSPvzwQw0ePFgrVqxQZGSk/v3vfysiIkJHjx61b/fGG29o/PjxatWqlf72t79p0aJFys3N1UMPPaQtW7bUOM5nn32mkSNHysfHR2+88YZGjhypJUuWaPbs2fV5eAAAANdkMQzDaIiBbDab0tPTG2IoAMBvtG/fPvXu3VsuLi72tpSUFIWHh2vMmDFat26dJCkkJEQ+Pj46ePCgLBaLJCkvL0/t2rXToEGDtG3btmrHCQsLU9OmTXXo0CE5OztLkhYuXKjo6GgdP35coaGh9XSEAADAjGrKoZwhBgCob9++lcKwJHXu3FlhYWFKTEy0t+Xl5cnPz88ehiXJy8tLzZo1k5ubW7VjHD9+XMePH1dkZKQ9DEvSE088IcMwtHnz5jo6GgAAgNohEAMArskwDJ07d06tWrWytw0cOFA7duzQG2+8odTUVCUlJWnWrFnKzc3Vn//852r3d/jwYUlS7969K7X7+/vLZrPZ+wEAABqKc82bAADMaP369crIyFBUVJS97fXXX9eFCxc0Z84czZkzR5LUqlUr7d69W3369Kl2f2fPnpUktW3btkpf27ZtlZmZWYfVAwAA1IxADACoouLMb58+fTRt2jR7u7u7u2677TbZbDY99NBDys/P16uvvqrRo0dr7969Cg4Ovu4+CwoKJElWq7VKn6urq/Ly8ur+QAAAAKpBIAYAVJKVlaVhw4bJ29tbmzdvVpMmTex9Y8eOlbOzsz755BN728MPP6zOnTvr2Wef1YYNG66734p7jIuKiqr0FRYW1ngPMgAAQF3jHmIAgF1ubq4efPBB5eTkaMeOHfL397f3nTp1Sjt27NCIESMqvadFixbq16+fYmNjq913xaXSFZdO/9LZs2crjQUAANAQCMQAAEk/n6UdPny4kpOTtX37dnXt2rVS/7lz5yRJZWVlVd5bUlKi0tLSavffs2dPSdKhQ4cqtWdmZio9Pd3eDwAA0FAIxAAAlZWVafz48dq/f782bdp0zQdkBQcHy8nJSRs2bNAvv8I+PT1de/fuVa9evextJSUlSkpKqnQ2OCwsTKGhoXrnnXcqheq33npLFotFY8aMqaejAwAAuDbuIQYA6KmnntLHH3+s4cOHKzs7W+vWravUP3nyZPn6+urRRx/Vu+++q8GDB2v06NHKz8/Xm2++qYKCAv3lL3+xb5+RkaEuXbpo2rRpWrt2rb196dKlGjFihO6//35NmDBBR48e1cqVKzVz5kx16dKloQ4XAABAkmQxfvkxfz2y2WxKT09viKEAAL/RwIED9fXXX1+3v+KfitLSUsXExGj16tU6ceKEJOmOO+7QokWLdO+999q3T01NVceOHasEYkn66KOP9PzzzysxMVG+vr6aPn26nnvuOTVt2rTuDwwAAJhaTTmUQAwAAAAAaJRqyqHcQwwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlJwdXQAASFJhYaGKi4sdXQaA/+Pi4iJXV1dHlwEAQL0iEANwuMLCQjVv3lyFhYWOLgU3yKWJ9Jd+Vr34TZGKyxxdDeqCq6urLl26RCgGADRqBGIADldcXKzCwkKlpaXJy8vL0eXgRhTly+v/ddX8TSclq6ejq8FNysvLU0BAgIqLiwnEAIBGjUAM4HfDy8uLQHyr+r+T+16enpIrcwgAAG4NPFQLAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAAptSoArFhGMrLy5NhGI4uBQAAAADsyCq/T40qEOfn58vb21v5+fmOLgUAAAAA7Mgqv0+NKhADAAAAAFBbBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKBGIAAAAAgCkRiAEAAAAApkQgBgAAAACYEoEYAAAAAGBKtQ7Ely9f1uLFizV06FC1aNFCFotFa9eurcfSAAAAAACoP8613fDChQuKiopSYGCgevTooT179tRjWQAAAADQ+BiGoW+++UYpKSkqKCiQm5ubOnXqpCNHjig+Pl7e3t7q1q2bQkJCdM8990iSYmNjdeLECQUFBenIkSM6fPiwIiIi9Pjjj8tisdj7g4ODdc8998gwDMXExOi7776z7y84OFhHjhzRoUOHdObMGZWUlOiOO+7Q0qVLZbFYFBMTo/j4ePXq1Uvh4eE6deqUOnXqJEk6ceKEvdbg4GBJUkpKio4eParc3FxFREQoPDxcJ06csLfdfvvtVeqrqP+7777TlStX5OHhod69e+vxxx+Xk5NjLl62GIZh1GbDoqIiXbp0SW3atNGhQ4d0xx13aM2aNZo+fXqtBrLZbEpPT7+ZWmuUl5cnb29v5ebmysvLq17HAlB3WLuNQGGe9LcA6Zk0yZU5vNWxJgGg7lX83RoeHq60tDSVlpbqypUrcnV1VUFBgSTJyclJ5eXlcnJyUrNmzWSz2SRJWVlZ6tChg+Lj4yVJ3t7eysvLk9Vqlc1mU3Z2tnr27KmEhAS1bNlSP/74o4qLi+Xk5KSysrJq67JYLGratKlKSkrk6empvLw8SVK3bt2UmJgowzDsNbq5uamoqEiGYdh/Kmr+pSZNmqi8vFwuLi4KDAzUxYsXK9X/a25ubtq5c6f9A4C6VFMOrXUMt1qtatOmTZ0UBQAAAABmUnEeMiIiQoGBgZo4caJ++uknFRcXy2q1ysfHR82bN1d6erpCQkJUXFysrKwsnTt3Tj/++KMSExMVEhKiKVOmKCgoSOfPn5dhGDp9+rTS0tK0e/du/fjjjzp16pQkKSwsTI8++qjS0tJksVjsdTg5OenYsWMKDQ2Vi4uLDMNQcXGxzp8/r6CgIE2ZMkUhISE6duyYJk2aJB8fH7m5uemnn36Sm5ubPD09ZbFY5OLiovT0dDVv3lze3t6yWCyyWCxKT0/Xo48+qrCwMEnSqVOndObMGXv9FotFVqtVJ06cUGhoqFxdXRUQEKD77ruvSrBuCLW+ZPpWUPGHrOJTDQC3hoo1W8sLVgDUM/49BYC6t3v3bknS6NGjtX37dr3++ut67733VFZWJnd3d5WVlcnJyUmnT59WbGysWrZsqSZNmsjFxUWLFi1SYWGhDh48aD8rvHHjRnl4eOjSpUtau3atnnjiCf3973+37+/HH39UXFyc3nvvvUp1eHp6Kjs72z5GhVmzZiktLU379+/Xl19+qWHDhtmDbnl5uTZs2CDDMFRUVKSysjJ5eXlp27ZtkqTi4mIZhiGLxaJt27ZpxYoVat26taxWq4qKivSnP/1JhYWFeuyxx7RgwQK5u7vr7Nmzio2NVatWrTRz5kw9/fTTiomJ0RNPPNFwk6J6DMTLly/X8uXL7a8vX75cX0PZ5efnS5ICAgLqfSwAdS8/P1/e3t6OLgMwPf49BYD6c+LECfXo0UOurq6Kj49X8+bN1bp1a1ksFrVp00YnTpxQv3795ObmJi8vL4WGhurQoUPy8fGRj4+PJKlHjx6Kj49Xz549FR8fb78U+df7qxjDx8dHeXl5Ki8vV0REhH0MFxcXSVJ5ebkSEhLsdZ0/f17Ozs72NsMw7OMdP35cFovFPnaPHj3sbS4uLoqPj9cTTzyhdu3ayWKxyMnJSQkJCfLx8VFSUpJ8fHzUs2dPew3e3t764Ycf5O3tfd1LqutTvQXi+fPna/78+fbXFde/1ydPT09JUlpaGvc8AbeQvLw8BQQE2NcwAMfi31MAqHu7du3SI488ouDgYCUkJKiwsFARERFavXq1SktLJUnnzp1TcHCwsrOzVVBQIIvFooSEBE2fPl3ffPONcnJyZLVa9f3332vMmDHasmWL/aFWkqrsr2KM9957z371T3x8vKKiopSdna3i4mJ7fT179tSuXbtUWFgoPz8/lZaWqmfPnlq/fr0Mw7CPV1hYqIKCAiUkJGjMmDHaunWrCgoK7D8REREqKChQRkaGpJ8/ZL3//vu1adMmhYaGKicnRwkJCfYacnNzddttt1U6joZU64dq/RIP1QJQl1i7jQAP1WpUWJMAUPdyc3Pl4+OjadOm6fDhw7rrrrsUHR2tNm3ayNnZWW5ubmrSpIkSEhJ03333KTU1Ve7u7rJYLEpNTZWfn58CAgJ011136ejRo/riiy9ks9lUWlqq3NxceXh46MqVK/L29pazs7OCg4PVt29fLVq0SO3bt7cH4ooztuPGjdOpU6fsofjcuXN64IEHFB4eroMHDyolJUVTpkzR9u3bZbFYlJSUpNDQUJWVlSk/P1/Ozs5KSUlRr169VFpaar/N5syZM3rhhRe0f/9+paSkqLS0VJcuXVLr1q0VEBCglJQUubi46MiRIxoxYoRSU1MVGBiotLQ0Xb58uc6fNl1TDm1U9xADAAAAwO9RxYOt4uPjlZaWplOnTundd9+1P8G5qKhITk5OCggIsD9lum3btjIMQ+3bt1eXLl0UHx+v5ORkeXl5yc/PT1arVUFBQfavxv3+++/VqVMnnTlzRsePH1dSUpJWrVpV6aFa5eXl6t69e6W6mjZtqjZt2sjT01MJCQmSfn7KdMXZYVdXV/n5+cnd3V2FhYX2B3EFBgZWecp0YGBgpadMBwUFqUOHDvb6pZ+/wSgkJMT+noqHgjniq5cIxAAAAADQQPbu3asjR47wPcS32vcQ/xKXTAOoS6zdRoBLphsV1iQA1D3+bnWMOr1keuXKlcrJyVFmZqYk6ZNPPrHvfPbs2TwdFgAAAABwy/hNgfiVV17RmTNn7K+3bNmiLVu2SJImT55MIAYAAAAA3DJ+UyBOTU2tpzIAAAAAAGhYjrlzGQAAAAAAByMQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADClRhWIPT09lZubK09PT0eXAgAAAAB2ZJXfJ2dHF1CXLBaLvLy8HF0GAAAAAFRCVvl9alRniAEAAAAAqC0CMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEzJ2dEFAIBhGJKkvLw8B1eCG1aULy9Jefn5UrGji8HNYi0CAMyCQAzA4fLz8yVJAQEBDq4EN8qlifSXfla9uMSm4jJHV4O64OrqKhcXF0eXAQBAvSIQA3A4f39/paWlydPTUxaLxdHl4CbMd3QBqDMuLi5ydXV1dBkAANQrAjEAh3NycpLNZnN0GQAAADAZHqoFAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAM4KbFxcXpySefVFhYmDw8PBQYGKhx48YpOTm50narVq3SgAED1Lp1a1mtVnXs2FEzZsxQampqrcYZOHCgLBZLlZ+hQ4fWw1EBt65jx45p7NixCgoKkru7u1q1aqX+/fvrk08+sW9TXl6utWvXasSIEQoICJCHh4e6deumJUuWqLCwsNZjFRcXKzo6WqGhoXJ1dVXr1q01bNgwpaen18ehAQBQp5wdXQCAW99LL72k2NhYjR07Vt27d1dWVpZWrlypiIgIHThwQN26dZMkHT58WB07dtSIESPUvHlznT59WqtWrdL27dv1/fffy9/fv8axbDabXnzxxUpttXkfYCZnzpxRfn6+pk2bJn9/f129elUffvihRowYobfffluRkZG6evWqZsyYobvvvluPP/64/Pz8tH//fi1evFi7d+/Wl19+KYvFUu04JSUlGjZsmPbt26fHHntM3bt316VLl3Tw4EHl5ubKZrM10BEDAHBjLIZhGA0xkM1m49NioJHat2+fevfuLRcXF3tbSkqKwsPDNWbMGK1bt+667/3uu+/Uu3dvvfjii3rmmWeqHWfgwIG6cOGCjh49Wme1A2ZRVlam22+/XYWFhUpKSlJxcbEOHTqkvn37VtouKipKixcv1s6dOzVkyJBq9/nyyy9r4cKF+uabb3TnnXfWZ/kAANyQmnIol0wDuGl9+/atFIYlqXPnzgoLC1NiYmK17+3QoYMkKScnp9bjlZaW6vLly7+1TMDUmjRpooCAAPtac3FxqRKGJWnUqFGSVOPaLS8v14oVKzRq1CjdeeedKi0t1dWrV+u8bgAA6hOBGEC9MAxD586dU6tWrar0Xbx4UefPn9ehQ4c0Y8YMSdLgwYNrtd/k5GR5eHjI09NTbdq00aJFi1RSUlKntQONxZUrV3ThwgWdPHlSr776qj777LMa11pWVpYkXXPt/tLx48eVmZmp7t27KzIyUh4eHvLw8FD37t311Vdf1dkxAABQn7iHGEC9WL9+vTIyMhQVFVWlr127dioqKpIktWzZUq+//rruu+++GvfZqVMn3XvvvQoPD9eVK1e0efNmLVmyRMnJydqwYUOdHwNwq3vqqaf09ttvS5KcnJw0evRorVy5str3vPzyy/Ly8tKDDz5Y7XYpKSmSpFdffVUtWrSwjxMdHa2hQ4cqLi5O3bt3r4OjAACg/hCIAdS5pKQkzZo1S3369NG0adOq9H/22WcqLCxUYmKi1q1bpytXrtRqv6tXr670esqUKYqMjNSqVas0b9483X333XVSP9BYzJ07V2PGjFFmZqY2btyosrIyFRcXX3f76Oho7dq1S2+++aZ8fHyq3XfFbQv5+fk6fPiwAgICJEmDBg1ScHCwXn755WqfHwAAwO8BD9UCUKeysrJ0zz33qKSkRAcOHKjxCdAnT55Ut27dtHTpUj355JO/ebwffvhBoaGheuGFF7Rw4cIbLRswhfvvv185OTk6ePBglSdIb9iwQRMnTtSjjz6qd999t8Z9bd68WWPHjtW9996rL7/8slLfoEGDlJqaqlOnTtVp/QAA/FY8VAtAg8nNzdWDDz6onJwc7dixo1Zfh9SpUyf16tVL69evv6ExK85KZWdn39D7ATMZM2aM4uLiqnxH+M6dOzV16lQNGzZMMTExtdpXxfpu3bp1lT4/Pz9dunTp5gsGAKCecck0gDpRWFio4cOHKzk5Wbt27VLXrl1r/d6CggL7PcW/VcUZKF9f3xt6P2AmBQUFkn7+8KrCwYMHNWrUKPXu3VsbN26Us3Pt/msQHh6upk2bKiMjo0pfZmYmaxIAcEvgDDGAm1ZWVqbx48dr//792rRpk/r06VNlm9LS0mueMfr222915MgR9e7du1J7UlKSfvzxR/vrvLy8KqHZMAwtWbJEkvTAAw/UxaEAjcL58+ertJWUlOj999+Xm5ub/QOrxMREDRs2TB06dND27dvl5uZ23X3+ek16enrqD3/4g/bt26ekpCR7e2Jiovbt21erB+UBAOBo3EMM4KbNnTtXK1as0PDhwzVu3Lgq/ZMnT1ZOTo5sNpvGjx+vsLAweXh46MiRI1qzZo1cXV114MABde7c2f4ei8WiAQMGaM+ePZKkPXv2aOLEiZo4caKCg4NVUFCgrVu3KjY2VpGRkfYn3AL4+buE8/Ly1L9/f7Vr105ZWVlav369kpKStGzZMs2fP1/5+fkKCwtTRkaGoqOj1a5du0r76NSpU6UPt369JqWfv3rprrvukqenp+bMmSNJev3111VaWqrDhw9X2ScAAA2tphxKIAZw0wYOHKivv/76uv2GYai4uFgLFizQV199pdTUVBUUFMjf319DhgzRwoUL1aFDh0rv+fV/vk+fPq2nn35acXFxysrKkpOTk7p06aLHHntMkZGRVR4QBJjZP//5T61evVpHjhzRxYsX5enpqdtvv12zZ8/WiBEjJEmpqanq2LHjdfcxbdo0rV271v76WoFYkuLj4/X0009r//79cnJy0qBBg7R06dJKH3ABAOAoBGIAAAAAgCnxlGkAAAAAAK6BQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEzJYhiG0RADWa1W+fr6NsRQ9e7y5ctq1qyZo8tAA2PezYl5Nyfm3ZyYd3Ni3s2JeTePn376SUVFRdftb7BA3JjYbDalp6c7ugw0MObdnJh3c2LezYl5Nyfm3ZyYd1TgkmkAAAAAgCkRiAEAAAAApkQgvgHz5893dAlwAObdnJh3c2LezYl5Nyfm3ZyYd1TgHmIAAAAAgClxhhgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCD+lcuXL2vx4sUaOnSoWrRoIYvForVr11bZbvr06bJYLFV+QkNDG75o3LS4uDg9+eSTCgsLk4eHhwIDAzVu3DglJydX2TYxMVFDhw5Vs2bN1KJFC02ZMkU//fSTA6rGzartvLPeG5djx45p7NixCgoKkru7u1q1aqX+/fvrk08+qbIt673xqO28s94bt//+7/+WxWJRt27dqvTt27dP/fr1k7u7u9q0aaM5c+bo8uXLDqgSde168z5w4MBrrvehQ4c6qFI4grOjC/i9uXDhgqKiohQYGKgePXpoz549193WarXq3XffrdTm7e1dzxWiPrz00kuKjY3V2LFj1b17d2VlZWnlypWKiIjQgQMH7H+Bpqenq3///vL29lZ0dLQuX76sV155RUeOHNG3334rFxcXBx8JfovazrvEem9Mzpw5o/z8fE2bNk3+/v66evWqPvzwQ40YMUJvv/22IiMjJbHeG5vazrvEem+s0tPTFR0dLQ8Pjyp9CQkJGjx4sLp06aLly5crPT1dr7zyilJSUvTZZ585oFrUlermXZJsNptefPHFSm3+/v4NURp+LwxUUlhYaJw9e9YwDMOIi4szJBlr1qypst20adMMDw+PBq4O9SU2NtYoKiqq1JacnGxYrVZj0qRJ9rb//M//NNzc3IwzZ87Y23bu3GlIMt5+++0Gqxd1o7bzznpv/EpLS40ePXoYt912m72N9d74XWveWe+N1/jx441BgwYZAwYMMMLCwir1Pfjgg0bbtm2N3Nxce9uqVasMScbnn3/e0KWiDlU379dqg/lwyfSvWK1WtWnTptbbl5WVKS8vrx4rQkPo27dvlbM9nTt3VlhYmBITE+1tH374oR566CEFBgba24YMGaKQkBBt3LixwepF3ajtvFdgvTdeTZo0UUBAgHJycuxtrPfG71rzXoH13rj8+9//1ubNm/Xaa69V6cvLy9POnTs1efJkeXl52dunTp2qZs2asd5vYdXN+y+VlpZyebyJEYhvwtWrV+Xl5SVvb2+1aNFCs2bNYjE1IoZh6Ny5c2rVqpUkKSMjQ+fPn1fv3r2rbHvnnXfq8OHDDV0i6sGv570C673xuXLlii5cuKCTJ0/q1Vdf1WeffabBgwdLYr03ZtXNewXWe+NSVlam2bNna+bMmQoPD6/Sf+TIEZWWllZZ7y4uLurZsyfr/RZV07xXSE5OloeHhzw9PdWmTRstWrRIJSUlDVgpHI17iG9Q27ZttWDBAkVERKi8vFw7duzQm2++qe+//1579uyRszO/2lvd+vXrlZGRoaioKEnS2bNnJf0897/Wtm1bZWdnq6ioSFartUHrRN369bxLrPfG6qmnntLbb78tSXJyctLo0aO1cuVKSaz3xqy6eZdY741RTEyMzpw5o127dl2zv6b1vnfv3nqtD/WjpnmXpE6dOunee+9VeHi4rly5os2bN2vJkiVKTk7Whg0bGrBaOBJ/q9+gX998P2HCBIWEhOjZZ5/V5s2bNWHCBAdVhrqQlJSkWbNmqU+fPpo2bZokqaCgQJKu+R9gV1dX+zb8B/nWda15l1jvjdXcuXM1ZswYZWZmauPGjSorK1NxcbEk1ntjVt28S6z3xubixYt67rnntGjRIvn6+l5zm5rWe0U/bh21mXdJWr16daXXU6ZMUWRkpFatWqV58+bp7rvvru9S8TvAJdN1aN68eXJycqr2kyj8/mVlZWnYsGHy9vbW5s2b1aRJE0mSm5ubJKmoqKjKewoLCyttg1vP9eb9eljvt77Q0FANGTJEU6dO1fbt23X58mUNHz5chmGw3hux6ub9eljvt66FCxeqRYsWmj179nW3qWm9s9ZvPbWZ9+t56qmnJIn1biIE4jrk5uamli1bKjs729Gl4Abl5ubqwQcfVE5Ojnbs2FHpsfsVl1JVXFr1S2fPnlWLFi04W3SLqm7er4f13viMGTNGcXFxSk5OZr2byC/n/XpY77emlJQUvfPOO5ozZ44yMzOVmpqq1NRUFRYWqqSkRKmpqcrOzq5xvfMVPLeW2s779QQEBEgS691ECMR1KD8/XxcuXKj20gz8fhUWFmr48OFKTk7W9u3b1bVr10r97dq1k6+vrw4dOlTlvd9++6169uzZQJWiLtU079fDem98Ki6LzM3NZb2byC/n/XpY77emjIwMlZeXa86cOerYsaP95+DBg0pOTlbHjh0VFRWlbt26ydnZucp6Ly4uVkJCAuv9FlPbeb+eU6dOSRLr3US4h/gGVHzC5OnpWan9hRdekGEYGjp0qIMqw40qKyvT+PHjtX//fm3btk19+vS55naPPPKI/v73vystLc3+CeLu3buVnJysefPmNWTJqAO1mXfWe+Nz/vx5+fn5VWorKSnR+++/Lzc3N/uHIqz3xqU28856b1y6deumrVu3VmlfuHCh8vPztWLFCnXq1Ene3t4aMmSI1q1bp0WLFtnn/4MPPtDly5c1duzYhi4dN6G2856Xlyer1Vrpah/DMLRkyRJJ0gMPPNBgNcOxLEZ1N82Y1MqVK5WTk6PMzEy99dZbGj16tHr16iVJmj17ti5duqRevXpp4sSJCg0NlSR9/vnn+vTTTzV06FD961//kpMTJ99vJXPnztWKFSs0fPhwjRs3rkr/5MmTJUlpaWnq1auXfHx89Oc//1mXL1/W0qVLZbPZFBcXxyWUt5jazHtqairrvZEZNWqU8vLy1L9/f7Vr105ZWVlav369kpKStGzZMs2fP18S672xqc28s97NYeDAgbpw4YKOHj1qb4uPj1ffvn3VtWtXRUZGKj09XcuWLVP//v31+eefO7Ba1JVfz/uePXs0ceJETZw4UcHBwSooKNDWrVsVGxuryMhI+9PoYQIGqmjfvr0h6Zo/p0+fNi5dumRMnjzZCA4ONtzd3Q2r1WqEhYUZ0dHRRnFxsaPLxw0YMGDAdef818vk6NGjxv3332+4u7sbPj4+xqRJk4ysrCwHVY6bUZt5Z703Pv/zP/9jDBkyxGjdurXh7OxsNG/e3BgyZIixbdu2Ktuy3huP2sw7690cBgwYYISFhVVp37t3r9G3b1/D1dXV8PX1NWbNmmXk5eU5oELUh1/P+6lTp4yxY8caHTp0MFxdXQ13d3fj9ttvN2JiYozy8nIHVoqGxhliAAAAAIApcd0PAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAANYO3atbJYLNqzZ0+DjNehQwcNHDiwQcYCAOBWRSAGAAAAAJiSs6MLAAAAde+HH36QxWJxdBkAAPyuEYgBAGiErFaro0sAAOB3j0umAQBoQCUlJVq4cKFsNptcXV3Vu3dvffHFF/b+1NRUWSwW/fWvf9WGDRsUHh4uNzc3denSRR999JEk6fvvv9d9992nZs2ayc/PT88995wMw6g0DvcQAwBQMwIxAAANaMGCBfroo480d+5cLVq0SOfPn9ewYcO0e/fuSttt375dTz31lCZMmKC//e1vKi0t1ZgxY7Rlyxbdd9996t69u5YuXaoePXrohRde0Pvvv++gIwIA4NZlMX79kTIAAKhza9eu1YwZM9ShQwf97//+rzw9PSVJmZmZCg0NVUBAgI4dO6bU1FR17NhRzZo1U1JSktq1aydJOnbsmLp16yaLxaKPP/5YDz30kKSfzzi3b99egYGBOnDggH28Dh06qEOHDg32VGsAAG5FnCEGAKABPf744/YwLEn+/v764x//qOPHjyslJcXePnLkSHsYlqSwsDB5e3vLZrPZw7AkNW3aVHfeeWel9wIAgNohEAMA0IBCQ0OrtHXp0kWSdOrUKXtbhw4dqmzn4+Oj9u3bX7M9Ozu77ooEAMAkCMQAAPwONWnS5De1AwCA345ADABAA0pKSqrSlpiYKEkKCgpq6HIAADA1AjEAAA0oJiZG+fn59teZmZn6xz/+oS5duqhz584OrAwAAPNxdnQBAACYiY+Pj/r06aPp06eruLhYMTExunr1ql577TVHlwYAgOkQiAEAaEAvv/yy9uzZo9dee00XLlxQWFiY3nnnHd1///2OLg0AANPhe4gBAAAAAKbEPcQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATOn/A4VJ8xu7D0VmAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAr8ElEQVR4nO3de3xNd77/8feOyE5ERENUrm6hIQiqOtRBUUM1iiJMVTjFaY9qicej7ZzRatVkRkvLqV9dOlMZpadV1zJtVU3T6YQqLT0tiaANudIgd5Hb+v3Rk/0QuSLJ3sl6PR8Pj5n9Xd+91met7/6m673X2ntbDMMwBAAAAACAyTjZuwAAAAAAAOyBQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAADYSXR0tCwWi2JiYuxdCgAApkQgBgCYypkzZ/T444+rW7ducnNzU5s2bdSrVy/NmTNHx44ds/XLzMzUSy+9RFitQm5url5++WWFhYXJ19dXFotF48ePt3dZAADcFGd7FwAAQEM5cuSIhg4dKqvVqoiICPXo0UM5OTk6deqUPv30U911113q27evpF8D8csvvyxJGjZsmB2rdkwZGRl66aWX5OPjo/79+2vPnj32LgkAgJtGIAYAmMbLL7+sq1ev6uuvv1bv3r3LLSstLdWlS5dued2lpaW6evWq3N3db7fMRsHHx0fJycny8/OTJFksFjtXBADAzeOWaQCAaZw5c0Zt2rSpEIYlycnJSd7e3pKkmJgYderUSdKvIdpischisdiuFMfExMhisWjjxo1avXq1goOD5erqqrfffluSlJeXp+eff16dO3eW1WqVr6+vZs+erbS0tFrV+fzzz8tisdiuUEtSSkqK5s6dK39/f7m4uCgwMFALFy5UTk7O7RySW2a1Wm1hGACAxoorxAAA0+jcubNOnTqlHTt2aOLEiVX26969u9544w0tXLhQEyZMsPW98847y/VbtWqVsrKyNHv2bHl7e6tbt24qKirSb3/7W8XGxio8PFxDhgxRXFyc1q1bp/379+vbb79V27ZtK91ucXGx5syZo3fffVfr1q3Tf/zHf0iSEhMTNXDgQBmGodmzZyswMFAnTpzQ2rVrdejQIX311Vdq3rx5tfuelZWloqKiWh0nDw8PWa3WWvUFAKAxIxADAEzjD3/4gz7//HM98sgj6tatmwYPHqx7771Xw4cPV1BQkK3fnXfeqfHjx2vhwoXq3bu3pk+fXun6UlJSFB8fXy7gvv3224qNjdXvf/97RUVF2doHDx6sqVOn6uWXX9abb75ZYV35+fmaMmWKDhw4oA8//FATJkywLZs/f74k6fjx42rfvr2tfcSIEXr44Ye1efNmzZo1q9p9f/jhh/Xll1/WcIR+tXHjRs2cObNWfQEAaMwIxAAA07jvvvv0zTffaMWKFfr000/1zjvv6J133pEkPfjgg9q4caPatWtX6/XNmDGjwtXenTt3ytnZWc8991y59vDwcL3wwgvauXNnhUB86dIljRgxQnFxcdq3b5+GDBliW5aZmamPP/5Yc+fOlbOzszIyMmzLBg0aJHd3d+3fv7/GQLxy5UpduXKlVvsVEhJSq34AADR2BGIAgKn06dNHmzdvlvTrZ4q/+OILvfXWW/r444/16KOPav/+/bVe1/VXlcv8/PPP8vf3l6enZ4VlPXr00O7du1VYWCgXFxdb+6xZs5SXl6fDhw+rf//+5Z6TkJCg0tJSrVu3TuvWrau0jgsXLtRY6913311jHwAAzIZADAAwraCgIAUFBWnGjBkKCQnR559/rqSkJAUEBNTq+S1atKiTOqZMmaKNGzdq6dKl2rZtW7mwXFpaKkmKiIio8tbtO+64o8ZtXL58WYWFhbWqx9PTU25ubrXqCwBAY0YgBgCYntVqVWhoqM6ePavU1FQFBATc8s8Ide7cWZ999plycnLk4eFRbtnJkyfl5+dXLvBK0vTp0zVs2DDNnDlTEydO1Pbt221fahUUFCSLxaLi4mKNHDny1nZQ0sSJE/kMMQAANyAQAwBMY//+/Ro+fLiaNWtWrj0jI0MHDx6Us7OzunbtKklq2bKlJNX6c7dlxo8fr48//lgrVqwo97NJH374oU6fPq2nnnqq0udNnz5dTk5OmjFjhiZMmKCdO3fKarWqbdu2Gj16tLZu3arIyEj169ev3POKi4uVnZ0tLy+vauviM8QAAFREIAYAmMbChQt1+fJlPfzww+rVq5esVqt+/vlnbdq0Senp6Vq8eLEtWLZp00ZdunTR+++/r6CgIHl7e6tdu3YaPnx4tduYOXOmoqOjtXTpUp09e1b33Xef4uPjtXbtWgUGBmrJkiVVPvd3v/udnJycNH36dI0fP147d+6Uq6ur1q5dq8GDB2vQoEGaOXOmQkNDde3aNZ05c0Y7duxQVFRUjVd06+MzxGvWrFFmZqbtcUJCgpYtWyZJCg0NVVhYWJ1vEwCAumQxDMOwdxEAADSEzz77TLt27VJsbKySk5OVnZ2t1q1bq1+/fpo9e7YmT55crv+hQ4e0cOFCff/99yooKNDQoUMVExOjmJgY3X///VXeWpyXl6elS5dq69atSklJkZeXl8aOHatly5bJx8fH1i86OlqzZs3SF198oWHDhtnat27dqkcffVTDhw/X7t275erqql9++UVRUVH66KOPlJycrJYtW6pDhw4aNWqU5s2bV+vPPdeljh076ty5c5Uui4iIUHR0dMMWBADATSIQAwAAAABMycneBQAAAAAAYA8EYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoN9jvEVqtV3t7eDbU5AAAAAIDJ/fLLL7p27VqVyxssEHt7eys5ObmhNgcAAAAAMDl/f/9ql3PLNAAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAcEhHjhzRU089pZCQELm7uyswMFBTpkxRQkJChb5r1qxR9+7dZbVa5efnp8jISOXl5d30Ns+ePStXV1dZLBYdPXq0LnYDAAA4MAIxAMAhLV++XNu3b9eIESO0evVqzZ07V//85z/Vr18//fjjj7Z+zz33nObPn6+ePXtq9erVeuSRR/Tmm29q4sSJN73NhQsXytnZuS53AwAAODD+qw8AcEiRkZF677335OLiYmsLDw9Xr1699Oc//1mbN29WWlqaXn/9dT322GPatGmTrV+3bt00f/587dmzR2FhYbXa3r59+7Rv3z49++yzWrZsWZ3vDwAAcDxcIQYAOKRBgwaVC8OS1LVrV4WEhCguLk6SdOjQIRUXF2vq1Knl+pU9fv/992u1raKiIj3zzDN65pln1KVLlzqoHgAANAYEYgBAo2EYhi5cuKC2bdtKkq5duyZJcnNzK9evRYsWkqRvv/22VutdtWqVrly5osWLF9dhtQAAwNERiAEAjcaWLVuUkpKi8PBwSdJdd90lSYqNjS3X76uvvpIkpaSk1LjO9PR0vfLKK3rllVfUqlWrOq4YAAA4Mj5DDABoFOLj4zVv3jwNHDhQERERkqR+/frp3nvv1fLly+Xn56f7779fcXFxevLJJ9W8eXNdvXq1xvU+99xz6ty5s2bPnl3fuwAAABwMgRgA4PDS09M1duxYeXp6atu2bWrWrJlt2fbt2xUeHq5///d/lyQ1a9ZMkZGR+vLLL3Xq1Klq1/v111/r3Xff1YEDB+TkxE1TAACYDYEYAODQsrKyNGbMGGVmZuqrr76Sr69vueV+fn7617/+pdOnTys9PV1du3ZV+/bt5evrq27dulW77meffVb/9m//pk6dOikxMVGSlJGRIUlKS0vT+fPnFRgYWC/7BQAA7I9ADABwWAUFBQoLC1NCQoI+//xz9ejRo8q+Xbt2VdeuXSVJJ0+eVFpammbOnFnt+s+fP69z586pU6dOFZaNGzdOnp6eyszMvJ1dAAAADoxADABwSCUlJQoPD9ehQ4e0e/duDRw4sFbPKy0t1bPPPqsWLVroiSeesLUXFRXp7Nmz8vT0lI+PjyRpw4YNys/PL/f8f/zjH3rzzTe1YsUKBQcH190OAQAAh0MgBgA4pEWLFumjjz5SWFiYLl++rM2bN5dbPn36dEnSM888o4KCAvXp00dFRUV677339M033+hvf/tbududU1JS1L17d0VERCg6OlqSNGrUqArbLbsiPHToUPXv379+dg4AADgEAjEAwCEdP35ckrRnzx7t2bOnwvKyQNy3b1+tWrVKW7ZskZOTkwYMGKADBw7o/vvvb8hyAQBAI2QxDMNoiA35+/srOTm5ITYFAAAAAECNOZTfmAAAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSvwOMQCYQEFBgQoLC+1dBhohFxcXubq62rsMAADqBYEYAJq4goIC3XHHHSooKLB3KQ3KpZn0+8FW/elf11RYYu9qGi9XV1dduXKFUAwAaJIIxADQxBUWFqqgoEBJSUlq1aqVvctpONdy1Or/9VDkh2clq4e9q2mUsrOzFRAQoMLCQgIxAKBJIhADgEm0atXKXIH4/y6It/LwkFxNtN8AAKDW+FItAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGA7PMAxlZ2fLMAx7lwIAAHDLOKcBHA+BGA4vJydHnp6eysnJsXcpAAAAt4xzGsDxEIgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZEIAYAAAAAmBKBGAAAAABgSgRiAAAAAIApEYgBAAAAAKZU60Ccm5urJUuWaPTo0fLy8pLFYlF0dHQ9lgYAAAAAQP1xrm3HjIwMLV26VIGBgQoNDVVMTEw9loX6YBiGYmNjdebMGQUFBem+++6TxWKxd1kAAAD4P3VxvlbZOiTZ2rp06SJJOnv2rEOeE15ff13XeivHt6bjeWPb6dOndfXqVbm5ualr164Oc3wdKQs4Ui21DsQ+Pj5KS0tT+/btdfToUd1zzz31WRfq2Llz5zR+/HidP39effr00fHjxxUYGKhdu3apQ4cO9i4PAADA9OrifK2ydbRv316SlJ6eruDgYB0+fFiSNGDAAJ06dcqhzgmvr7+ua72V41vT8byxLSUlRSUlJcrLy5O7u7ucnZ3VsWNHux9fR8oCjlSLdBO3TFutVttAo3ExDEPjx4/XPffco5SUFB04cEDJycm65557NGHCBBmGYe8SAQAATK0uztcqW0dSUpIuXLigCxcuKCkpSfn5+ZoxY4YiIiJUUFCgpKQkhzknvL7+5OTkOq31Vo5vTcczOTm5XFt6ero6dOigadOm6dKlS5o2bZo6dOig/v372/X4OlIWcKRaytT6CjEar9jYWCUlJenQoUNydXWVJLm5uWn16tXy9/dXbGysBg8ebOcqq1Y2MbKzs+1cCdA4lc0de5/ooPHh7y9Qt6r7e1wX52uVreO7776TJJWWlio6Otq23DAM+fv767vvvnOYc8Lr6z969Gid1norx7eq41k2ft9++60GDx5saysqKtK5c+d0+PBhubq62ta9cuVK7dixw27H15GygCPVUqbeAvHrr7+u119/3fY4Nze3vjaFGpw5c0ahoaG2F10ZNzc3hYaG6syZMw4diHNyciRJAQEBdq4EaNxycnLk6elp7zLQiPD3F6gflf09rovztcrWUdZmGIa+++67csuvX68jnBNeX/+N+3K7td7K8a3qePbp00eGYdieU9aWmpoqi8VSLuiFhoYqKSnJrsfXkbKAI9VSpt4CcWRkpCIjI22P/f3962tTqEFQUJCOHz+ugoKCci++q1ev6vvvv1dQUJAdq6uZh4eHJCkpKUmtWrWyczVA45Odna2AgADbXAJqi7+/QN2q7u9xXZyvVbaOsjbDMDRp0iTt3LlTBQUFMgzDtl5HOSe8vv7r/39d1Horx7eq43ns2DFZLBbbc8raiouLZbFYbP3L1h0QEGDX4+tIWcCRarExbsGRI0cMScbGjRtr/Rw/P79b2RTqQGlpqdGnTx9jzpw5Rn5+vmEYhpGfn2/MmTPH6Nu3r1FaWmrnCquXlZVlSDKysrLsXQrQKJl2Dl3NMowlrX79X9wS0752gHpS3Zyqi/O1ytaRl5dntGnTxmjTpo2Rm5tr9OnTx5g1a5Yxa9Yso2/fvkZeXp7DnBNeX39eXl6d1norx7em45mXl1euzcvLy+jdu7cxZ84c49KlS8acOXOM0NBQY/bs2XY9vo6UBexRS005lM8Qm4DFYtGuXbs0fvx4+fv7KzQ0VN9//706dOigXbt2OcTXwAMAAJhZXZyvVbUOHx8fGYahwMBA3XXXXdq0aZOkX7+5OSAgwGHOCa+vPyAgoE5rvZXjW9PxDAgIqNB27tw5/fTTT/rLX/5i+5ZpJycnux5fR8oCjlSLrSbDuPlvWSn72aWNGzdq5syZtXqOv7+/kpOTb3ZTqEOGA/3e183Izs6Wp6ensrKyuGUPuAWmnUMF2dKfA6TnkyRXE+13HTLtaweoJ7WZU3VxvlbZOiR+h/jGdfM7xOb4HeKaciiBGA6PEzLg9ph2DhGIb5tpXztAPWFOAQ2vphx6U7dMr1mzRpmZmUpNTZUk7dmzx7by+fPn8+2lAAAAAIBG46YC8YoVK3Tu3Dnb4x07dmjHjh2SpOnTpxOIAQAAAACNxk0F4sTExHoqAwAAAACAhuVk7wIAAAAAALAHAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQw+F5eHgoKytLHh4e9i4FAADglnFOAzgeZ3sXANTEYrGoVatW9i4DAADgtnBOAzgerhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTcrZ3AQCA+mUYhiQpOzvbzpU0sGs5aiUpOydHKrR3MY2T6V4zAADTIRADQBOXk5MjSQoICLBzJQ3LpZn0+8FW/WmZvwpL7F1N4+Xq6ioXFxd7lwEAQL0gEANAE+fr66ukpCR5eHjIYrHYu5wGF2nvAho5FxcXubq62rsMAADqBYEYAJo4Jycn+fv727sMAAAAh8OXagEAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAMAAAAATIlADAAAAAAwJQIxAAAAAMCUCMQAAAAAAFMiEAOAAzty5IieeuophYSEyN3dXYGBgZoyZYoSEhLK9bNYLFX+e+CBB2q1rY8++kj9+vWTq6urAgMDtWTJEhUXF9fHbqEBnDhxQpMnT1bnzp3VokULtW3bVkOGDNGePXtsfUpLSxUdHa1x48YpICBA7u7u6tmzp5YtW6aCgoJab6uwsFBRUVEKDg6Wq6ur7rzzTo0dO1bJycn1sWsAANQZZ3sXAACo2vLlyxUbG6vJkyerd+/eSk9P15o1a9SvXz99/fXX6tmzpyTp3XffrfDco0ePavXq1Ro1alSN2/nkk080fvx4DRs2TG+++aZ++OEHLVu2TBcvXtTatWvrfL9Q/86dO6ecnBxFRETI19dX+fn52r59u8aNG6f169dr7ty5ys/P16xZs/Sb3/xGTzzxhNq1a6dDhw5pyZIlOnDggP7xj3/IYrFUu52ioiKNHTtWBw8e1Jw5c9S7d29duXJFhw8fVlZWlvz9/RtojwEAuHkWwzCMhtiQv78/7xQDwE06ePCg+vfvLxcXF1vb6dOn1atXL02aNEmbN2+u8rmzZ8/WO++8o/Pnz9cYSkJCQtS8eXMdPXpUzs6/vle6ePFiRUVF6eTJkwoODq6bHYJdlZSU6O6771ZBQYHi4+NVWFioo0ePatCgQeX6LV26VEuWLNH+/fs1cuTIatf56quvavHixfrXv/6lAQMG1Gf5AADctJpyKLdMA4ADGzRoULkwLEldu3ZVSEiI4uLiqnzetWvXtH37dg0dOrTGMHzy5EmdPHlSc+fOtYVhSfrP//xPGYahbdu23d5OwGE0a9ZMAQEByszMlCS5uLhUCMOSNGHCBEmq9jUm/XrL9erVqzVhwgQNGDBAxcXFys/Pr/O6AQCoLwRiAGhkDMPQhQsX1LZt2yr7fPzxx8rMzNSjjz5a4/qOHTsmSerfv3+5dl9fX/n7+9uWo3HKy8tTRkaGzp49qzfeeEOffPKJRowYUe1z0tPTJana15j065spqamp6t27t+bOnSt3d3e5u7urd+/e+uKLL+psHwAAqC98hhgAGpktW7YoJSVFS5curbaP1WrVpEmTalxfWlqaJMnHx6fCMh8fH6Wmpt56sbC7RYsWaf369ZIkJycnTZw4UWvWrKn2Oa+++qpatWqlMWPGVNvv9OnTkqQ33nhDXl5etu1ERUVp9OjROnLkiHr37l0HewEAQP0gEANAIxIfH6958+Zp4MCBioiIqLRPdna2/v73v+vBBx9U69ata1zn1atXJUlWq7XCMldXV2VnZ99WzbCvBQsWaNKkSUpNTdXWrVtVUlKiwsLCKvtHRUXp888/11tvvVXj6yc3N1eSlJOTo2PHjikgIECSNHz4cAUFBenVV1+t9nPuAADYG7dMA0AjkZ6errFjx8rT01Pbtm1Ts2bNKu23fft2FRQU1Op2aUlyc3OT9Ovnjm9UUFBgW47GKTg4WCNHjtSMGTO0d+9e5ebmKiwsTJV9p+YHH3ygxYsX6/HHH9eTTz5Z47rLXhv33XefLQxLUmBgoAYPHqyDBw/W3Y4AAFAPCMQA0AhkZWVpzJgxyszM1KeffipfX98q+27ZskWenp566KGHarXusluly26dvl5aWlq120LjM2nSJB05cqTCb1nv379fM2bM0NixY7Vu3bparavstXHnnXdWWNauXTtduXLl9gsGAKAeEYgBwMEVFBQoLCxMCQkJ2rt3r3r06FFl37S0NH3xxRd65JFHKr0FujJ9+vSR9OvvFl8vNTVVycnJtuVoGspukc/KyrK1HT58WBMmTFD//v21devWct82Xp1evXqpefPmSklJqbAsNTVV3t7edVM0AAD1hEAMAA6spKRE4eHhOnTokD788EMNHDiw2v7vv/++SktLq7xduqioSPHx8eWuBoeEhCg4OFgbNmxQSUmJrX3t2rWyWCy1+mIuOJ6LFy9WaCsqKtKmTZvk5uZme2MlLi5OY8eOVceOHbV3795qb5GPj4/X+fPnbY89PDz04IMP6uDBg4qPj7e1x8XF6eDBg3rggQfqcI8AAKh7FqOyDxHVg5p+EBkAUNGCBQu0evVqhYWFacqUKRWWT58+vdzj/v37Ky0tTUlJSXJyqvieZ2Jiojp16qSIiAhFR0fb2vfu3atx48bp/vvv19SpU/Xjjz9qzZo1evzxx7Vhw4Y63y/UvwkTJig7O1tDhgyRn5+f0tPTtWXLFsXHx2vlypWKjIxUTk6OQkJClJKSoqioKPn5+ZVbR5cuXcq9CWOxWDR06FDFxMTY2k6ePKl7771XHh4eevrppyVJ//3f/63i4mIdO3aswjoBAGhINeVQvmUaABzY8ePHJUl79uzRnj17Kiy/PhCfOnVK3377rSIjIysNw9V56KGHtGPHDr388suaP3++vL299V//9V968cUXb6t+2E94eLj++te/au3atbp06ZI8PDx09913a/ny5Ro3bpwk6dKlS0pKSpIkPf/88xXWERERUeNdCT169NCXX36p5557TsuWLZOTk5OGDx+u1157jTAMAHB4XCEGAAAAADRJNeVQPkMMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAlAjEAAAAAwJQIxAAAAAAAUyIQAwAAAABMiUAMAAAAADAli2EYRkNsyGq1ytvbuyE2Ve9yc3PVsmVLe5eBBsa4mxPjbk6Muzkx7ubEuJsT424ev/zyi65du1bl8gYLxE2Jv7+/kpOT7V0GGhjjbk6Muzkx7ubEuJsT425OjDvKcMs0AAAAAMCUCMQAAAAAAFMiEN+CyMhIe5cAO2DczYlxNyfG3ZwYd3Ni3M2JcUcZPkMMAAAAADAlrhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEN8jNzdWSJUs0evRoeXl5yWKxKDo6ukK/mTNnymKxVPgXHBzc8EXjth05ckRPPfWUQkJC5O7ursDAQE2ZMkUJCQkV+sbFxWn06NFq2bKlvLy89Nhjj+mXX36xQ9W4XbUdd+Z703LixAlNnjxZnTt3VosWLdS2bVsNGTJEe/bsqdCX+d501Hbcme9N2x//+EdZLBb17NmzwrKDBw9q8ODBatGihdq3b6+nn35aubm5dqgSda2qcR82bFil83306NF2qhT24GzvAhxNRkaGli5dqsDAQIWGhiomJqbKvlarVX/5y1/KtXl6etZzhagPy5cvV2xsrCZPnqzevXsrPT1da9asUb9+/fT111/b/oAmJydryJAh8vT0VFRUlHJzc7VixQr98MMP+uabb+Ti4mLnPcHNqO24S8z3puTcuXPKyclRRESEfH19lZ+fr+3bt2vcuHFav3695s6dK4n53tTUdtwl5ntTlZycrKioKLm7u1dYdvz4cY0YMULdu3fX66+/ruTkZK1YsUKnT5/WJ598YodqUVeqG3dJ8vf315/+9Kdybb6+vg1RGhyFgXIKCgqMtLQ0wzAM48iRI4YkY+PGjRX6RUREGO7u7g1cHepLbGysce3atXJtCQkJhtVqNR599FFb25NPPmm4ubkZ586ds7Xt37/fkGSsX7++wepF3ajtuDPfm77i4mIjNDTUuOuuu2xtzPemr7JxZ743XeHh4cbw4cONoUOHGiEhIeWWjRkzxvDx8TGysrJsbW+//bYhydi3b19Dl4o6VN24V9YG8+GW6RtYrVa1b9++1v1LSkqUnZ1djxWhIQwaNKjC1Z6uXbsqJCREcXFxtrbt27froYceUmBgoK1t5MiR6tatm7Zu3dpg9aJu1HbcyzDfm65mzZopICBAmZmZtjbme9NX2biXYb43Lf/85z+1bds2rVq1qsKy7Oxs7d+/X9OnT1erVq1s7TNmzFDLli2Z741YdeN+veLiYm6PNzEC8W3Iz89Xq1at5OnpKS8vL82bN4/J1IQYhqELFy6obdu2kqSUlBRdvHhR/fv3r9B3wIABOnbsWEOXiHpw47iXYb43PXl5ecrIyNDZs2f1xhtv6JNPPtGIESMkMd+bsurGvQzzvWkpKSnR/PnzNXv2bPXq1avC8h9++EHFxcUV5ruLi4v69OnDfG+kahr3MgkJCXJ3d5eHh4fat2+vF154QUVFRQ1YKeyNzxDfIh8fHz377LPq16+fSktL9emnn+qtt97S999/r5iYGDk7c2gbuy1btiglJUVLly6VJKWlpUn6dexv5OPjo8uXL+vatWuyWq0NWifq1o3jLjHfm6pFixZp/fr1kiQnJydNnDhRa9askcR8b8qqG3eJ+d4UrVu3TufOndPnn39e6fKa5vtXX31Vr/WhftQ07pLUpUsX3X///erVq5fy8vK0bds2LVu2TAkJCfrggw8asFrYE3/Vb9GNH76fOnWqunXrpj/84Q/atm2bpk6daqfKUBfi4+M1b948DRw4UBEREZKkq1evSlKlJ8Curq62PpwgN16VjbvEfG+qFixYoEmTJik1NVVbt25VSUmJCgsLJTHfm7Lqxl1ivjc1ly5d0osvvqgXXnhB3t7elfapab6XLUfjUZtxl6S//vWv5R4/9thjmjt3rt5++20tXLhQv/nNb+q7VDgAbpmuQwsXLpSTk1O170TB8aWnp2vs2LHy9PTUtm3b1KxZM0mSm5ubJOnatWsVnlNQUFCuDxqfqsa9Ksz3xi84OFgjR47UjBkztHfvXuXm5iosLEyGYTDfm7Dqxr0qzPfGa/HixfLy8tL8+fOr7FPTfGeuNz61GfeqLFq0SJKY7yZCIK5Dbm5uatOmjS5fvmzvUnCLsrKyNGbMGGVmZurTTz8t97X7ZbdSld1adb20tDR5eXlxtaiRqm7cq8J8b3omTZqkI0eOKCEhgfluItePe1WY743T6dOntWHDBj399NNKTU1VYmKiEhMTVVBQoKKiIiUmJury5cs1znd+gqdxqe24VyUgIECSmO8mQiCuQzk5OcrIyKj21gw4roKCAoWFhSkhIUF79+5Vjx49yi338/OTt7e3jh49WuG533zzjfr06dNAlaIu1TTuVWG+Nz1lt0VmZWUx303k+nGvCvO9cUpJSVFpaamefvppderUyfbv8OHDSkhIUKdOnbR06VL17NlTzs7OFeZ7YWGhjh8/znxvZGo77lX56aefJIn5biJ8hvgWlL3D5OHhUa79lVdekWEYGj16tJ0qw60qKSlReHi4Dh06pN27d2vgwIGV9nvkkUf0t7/9TUlJSbZ3EA8cOKCEhAQtXLiwIUtGHajNuDPfm56LFy+qXbt25dqKioq0adMmubm52d4UYb43LbUZd+Z709KzZ0/t3LmzQvvixYuVk5Oj1atXq0uXLvL09NTIkSO1efNmvfDCC7bxf/fdd5Wbm6vJkyc3dOm4DbUd9+zsbFmt1nJ3+xiGoWXLlkmSfvvb3zZYzbAvi1Hdh2ZMas2aNcrMzFRqaqrWrl2riRMnqm/fvpKk+fPn68qVK+rbt6+mTZum4OBgSdK+ffv08ccfa/To0fr73/8uJycuvjcmCxYs0OrVqxUWFqYpU6ZUWD59+nRJUlJSkvr27avWrVvrmWeeUW5url577TX5+/vryJEj3ELZyNRm3BMTE5nvTcyECROUnZ2tIUOGyM/PT+np6dqyZYvi4+O1cuVKRUZGSmK+NzW1GXfmuzkMGzZMGRkZ+vHHH21t3333nQYNGqQePXpo7ty5Sk5O1sqVKzVkyBDt27fPjtWirtw47jExMZo2bZqmTZumoKAgXb16VTt37lRsbKzmzp1r+zZ6mICBCjp06GBIqvTfzz//bFy5csWYPn26ERQUZLRo0cKwWq1GSEiIERUVZRQWFtq7fNyCoUOHVjnmN06TH3/80Rg1apTRokULo3Xr1sajjz5qpKen26ly3I7ajDvzven5n//5H2PkyJHGnXfeaTg7Oxt33HGHMXLkSGP37t0V+jLfm47ajDvz3RyGDh1qhISEVGj/6quvjEGDBhmurq6Gt7e3MW/ePCM7O9sOFaI+3DjuP/30kzF58mSjY8eOhqurq9GiRQvj7rvvNtatW2eUlpbasVI0NK4QAwAAAABMift+AAAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQAAAACmRCAGAAAAAJgSgRgAAAAAYEoEYgAAAACAKRGIAQBoANHR0bJYLIqJiWmQ7XXs2FHDhg1rkG0BANBYEYgBAAAAAKbkbO8CAABA3Tt16pQsFou9ywAAwKERiAEAaIKsVqu9SwAAwOFxyzQAAA2oqKhIixcvlr+/v1xdXdW/f3999tlntuWJiYmyWCx66aWX9MEHH6hXr15yc3NT9+7dtWvXLknS999/rwceeEAtW7ZUu3bt9OKLL8owjHLb4TPEAADUjEAMAEADevbZZ7Vr1y4tWLBAL7zwgi5evKixY8fqwIED5frt3btXixYt0tSpU/XnP/9ZxcXFmjRpknbs2KEHHnhAvXv31muvvabQ0FC98sor2rRpk532CACAxsti3PiWMgAAqHPR0dGaNWuWOnbsqP/93/+Vh4eHJCk1NVXBwcEKCAjQiRMnlJiYqE6dOqlly5aKj4+Xn5+fJOnEiRPq2bOnLBaLPvroIz300EOSfr3i3KFDBwUGBurrr7+2ba9jx47q2LFjg32rNQAAjRFXiAEAaEBPPPGELQxLkq+vr373u9/p5MmTOn36tK19/PjxtjAsSSEhIfL09JS/v78tDEtS8+bNNWDAgHLPBQAAtUMgBgCgAQUHB1do6969uyTpp59+srV17NixQr/WrVurQ4cOlbZfvny57ooEAMAkCMQAADigZs2a3VQ7AAC4eQRiAAAaUHx8fIW2uLg4SVLnzp0buhwAAEyNQAwAQANat26dcnJybI9TU1P13nvvqXv37uratasdKwMAwHyc7V0AAABm0rp1aw0cOFAzZ85UYWGh1q1bp/z8fK1atcrepQEAYDoEYgAAGtCrr76qmJgYrVq1ShkZGQoJCdGGDRs0atQoe5cGAIDp8DvEAAAAAABT4jPEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEyJQAwAAAAAMCUCMQAAAADAlAjEAAAAAABTIhADAAAAAEzp/wOVRAJyO+3rIgAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "\n",
+    "draw_box(df[df['stroke'] == 0], 'bmi', 'Stroke = 0')\n",
+    "draw_box(df[df['stroke'] == 1], 'bmi', 'Stroke = 1')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ: </strong><br>\n",
+    "<ul>\n",
+    "\n",
+    "\n",
+    "<li>Chỉ số min của biểu đồ hộp bmi của nhóm bị đột quỵ xấp xỉ 18, cao hơn nhiều so với chỉ số min của nhóm bị đột quỵ. Tuy nhiên chỉ số max của nhóm bị đột quỵ lại thấp hơn so với  chỉ số max của nhóm không bị đột quỵ.\n",
+    "\n",
+    "</li>\n",
+    "<li>Nhóm không bị đột quỵ có chỉ số Q1 = 23.5 và Q2 = 28, trong khi nhóm bị đột quỵ chỉ số Q1 = 27 và Q2 = 29.4, cao hơn so với nhóm không bị đột quỵ. Nhóm bị đột quỵ có trên 75% thuộc nhóm thừa cân và béo phì (bmi ≥ 25) và có xấp xỉ 50% thuộc nhóm béo phì (bmi  ≥ 30).\n",
+    "</li>\n",
+    "\n",
+    "</ul>\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 161,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[  16.53001405  315.46998595]\n",
+      " [  62.78417988 1198.21582012]\n",
+      " [  74.68379843 1425.31620157]\n",
+      " [  94.00200763 1793.99799237]]\n",
+      "Chi-Square value: 37.603837899779755\n",
+      "Degree of Freedom:  3\n",
+      "p-value: 0.000000034285203\n",
+      "Có mối tương quan giữa BMI và đột quỵ\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:5: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  thin_stroke_count = thin_df[df['stroke'] == 1].shape[0]\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:6: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  thin_nostroke_count = thin_df[df['stroke'] == 0].shape[0]\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:7: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  normal_stroke_count = normal_df[df['stroke'] == 1].shape[0]\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:8: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  normal_nostroke_count = normal_df[df['stroke'] == 0].shape[0]\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:9: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  ovw_stroke_count = overweight_df[df['stroke'] == 1].shape[0]\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:10: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  ovw_nostroke_count = overweight_df[df['stroke'] == 0].shape[0]\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:11: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  obese_stroke_count = obese_df[df['stroke'] == 1].shape[0]\n",
+      "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_13748\\4208331033.py:12: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
+      "  obese_nostroke_count = obese_df[df['stroke'] == 0].shape[0]\n"
+     ]
+    }
+   ],
+   "source": [
+    "thin_df = df[(df['bmi'] >= 0) & (df['bmi'] <= 18.5)]\n",
+    "normal_df = df[(df['bmi'] > 18.5) & (df['bmi'] <= 25)]\n",
+    "overweight_df = df[(df['bmi'] > 25) & (df['bmi'] <= 30)]\n",
+    "obese_df = df[df['bmi'] > 30]\n",
+    "thin_stroke_count = thin_df[df['stroke'] == 1].shape[0]\n",
+    "thin_nostroke_count = thin_df[df['stroke'] == 0].shape[0]\n",
+    "normal_stroke_count = normal_df[df['stroke'] == 1].shape[0]\n",
+    "normal_nostroke_count = normal_df[df['stroke'] == 0].shape[0]\n",
+    "ovw_stroke_count = overweight_df[df['stroke'] == 1].shape[0]\n",
+    "ovw_nostroke_count = overweight_df[df['stroke'] == 0].shape[0]\n",
+    "obese_stroke_count = obese_df[df['stroke'] == 1].shape[0]\n",
+    "obese_nostroke_count = obese_df[df['stroke'] == 0].shape[0]\n",
+    "\n",
+    "H0 = \"Không có mối tương quan giữa BMI và đột quỵ\"\n",
+    "H1 = \"Có mối tương quan giữa BMI và đột quỵ\"\n",
+    "\n",
+    "\n",
+    "thin_arr = [thin_stroke_count, thin_nostroke_count]\n",
+    "normal_arr = [normal_stroke_count, normal_nostroke_count]\n",
+    "ovw_arr = [ovw_stroke_count, ovw_nostroke_count]\n",
+    "obese_arr = [obese_stroke_count, obese_nostroke_count]\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(thin_arr)\n",
+    "nij.append(normal_arr)\n",
+    "nij.append(ovw_arr)\n",
+    "nij.append(obese_arr )\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(4 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_bmi = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.15f}\".format(p_bmi))\n",
+    "if p_bmi <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định Chi-square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa chỉ số BMI và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa chỉ số BMI và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/w2YeNO4.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả kiểm định Chi – square về mối tương quan giữa đột quỵ và chỉ số bmi</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 37.603837899779755</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  3</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.000000034285203</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa BMI và đột quỵ</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "\n",
+    "<strong>Kết luận:</strong>  Nếu chỉ số bmi thuộc nhóm thừa cân và béo phì thì sẽ làm tăng nguy cơ mắc bệnh đột quỵ. Điều này phù hợp với nghiên cứu của y khoa.\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 32px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 60px;\n",
+    "  background-position: 0 100%;\">3.4.10. Đột quỵ và chỉ số đường huyết trung bình: </h1>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Theo nghiên cứu của Thư viện Y khoa Quốc gia Hoa Kỳ,</strong> người mắc bệnh tiểu đường thì có nguy cơ mắc bệnh đột quỵ cao gấp 1.5 - 2 lần so với người không mắc bệnh tiểu đường, nguy cơ tăng dần theo thời gian mắc bệnh tiểu đường <br>\n",
+    "Chia bộ dữ liệu thành 2 nhóm bị đột quỵ và không bị đột quỵ, quan sát sự phân bố của chỉ số đường huyết trung bình trên hai nhóm này\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 162,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAABI90lEQVR4nO3dd3xUZd7///ekzGSSkEpNI0AIGEpCU0FWioIUFbDSy9pdXduKLOqiiKyuZde1sbeucEtZQYpYWCkKeyMi0iysQAjNJASkJaS3uX5/8J35MSQhQSAhnNfz8ZgH5DrXua7POdecOfnkXOeMzRhjBAAAAACAxfjUdQAAAAAAANQFEmIAAAAAgCWREAMAAAAALImEGAAAAABgSSTEAAAAAABLIiEGAAAAAFgSCTEAAAAAwJJIiAEAqCOzZs2SzWbTmjVr6joUAAAsiYQYAGApaWlpuuOOO5SYmCin06nIyEh16NBBd911l7Zu3eqpl52drWeeeYZk9QyKi4v19NNPq0WLFgoICFBCQoL+/Oc/q6ysrK5DAwCgRvzqOgAAAGrLxo0b1atXLzkcDo0bN05JSUnKzc3Vzp079fnnn6tNmzbq1KmTpJMJ8bPPPitJ6t27dx1GffG6/fbbtXTpUv32t79V9+7dtX79ek2ePFm7d+/Wu+++W9fhAQBQLRJiAIBlPPvssyosLNQ333yjjh07ei1zuVw6evTor27b5XKpsLBQQUFB5xpmvbBs2TItXbpUjz76qF555RVJ0p133qmwsDC9+uqruvvuu3X55ZfXcZQAAJwZU6YBAJaRlpamyMjICsmwJPn4+KhRo0aSpDVr1qhFixaSTibRNptNNpvNc6V4zZo1stlsmjlzpl577TW1bdtWAQEBeueddyRJ+fn5mjRpklq2bCmHw6GoqCjdeeedysrKqlGckyZNks1m81yhlqTMzEzdfffdiomJkd1uV1xcnB555BHl5uaeyy751ebNmydJevjhh73K3T/PmTOnliMCAODscYUYAGAZLVu21M6dO7V48WLddNNNVda77LLL9Ne//lWPPPKIhg0b5qnbpEkTr3p/+9vflJOTozvvvFONGjVSYmKiSktLdd1112ndunW6/fbbdfXVV2v79u2aMWOGVq5cqc2bN6thw4aV9ltWVqa77rpLs2fP1owZM3TPPfdIkvbt26fu3bvLGKM777xTcXFx+u9//6u3335b69ev19q1a+Xv73/Gbc/JyVFpaWmN9lODBg3kcDjOWGfjxo2Kjo5WbGysV3lsbKyioqK0cePGGvUFAEBdIiEGAFjGk08+qVWrVunmm29WYmKievbsqSuuuEJ9+/ZVQkKCp16TJk00dOhQPfLII+rYsaNGjx5daXuZmZnasWOHV4L7zjvvaN26dfrjH/+o6dOne8p79uyp4cOH69lnn9Xrr79eoa2CggLddttt+uKLL/Thhx9q2LBhnmUPPvigJOm7775T06ZNPeXXXHONhgwZojlz5mjChAln3PYhQ4boP//5TzV76KSZM2dq/PjxZ6xz4MABJSUlVbosOjpamZmZNeoLAIC6REIMALCMq666St9++61efvllff7553rvvff03nvvSZIGDRqkmTNnqnHjxjVub+zYsRWu9i5ZskR+fn564oknvMpvv/12Pf3001qyZEmFhPjo0aO65pprtH37di1fvlxXX321Z1l2draWLVumu+++W35+fjpy5IhnWY8ePRQUFKSVK1dWmxC/8sorOn78eI22q127dtXWKSgoqPIqckBAgAoKCmrUFwAAdYmEGABgKSkpKZ77W9PS0rR69Wq99dZbWrZsmUaNGqWVK1fWuK1Tryq77d27VzExMQoNDa2wLCkpSUuXLlVJSYnsdrunfMKECcrPz9eGDRvUtWtXr3VSU1Plcrk0Y8YMzZgxo9I4Dh06VG2sXbp0qbbO2QgMDFRxcXGly4qKihQYGHhe+wMA4EIgIQYAWFZCQoISEhI0duxYtWvXTqtWrVJ6enqF+2Krcr6Svttuu00zZ87U1KlTtXDhQq9k2eVySZLGjRtX5dTt8PDwavs4duyYSkpKahRPaGionE7nGetERUVVOS06MzNTcXFxNeoLAIC6REIMALA8h8Oh5ORk7d69WwcOHFBsbKxsNtuvaqtly5ZasWKFcnNz1aBBA69lP/30k6Kjo70SXkkaPXq0evfurfHjx+umm27SokWLPNORExISZLPZVFZWpmuvvfbXbaCkm2666bzeQ9ytWzfNnTu3wh8Q0tPTdeDAgTM+tAwAgIsFCTEAwDJWrlypvn37ytfX16v8yJEj+vrrr+Xn56fWrVtLkoKDgyWpxvfdug0dOlTLli3Tyy+/7PW1SR9++KF27dqlBx54oNL1Ro8eLR8fH40dO1bDhg3TkiVL5HA41LBhQw0YMEALFizQo48+qs6dO3utV1ZWphMnTigiIuKMcZ3ve4hHjBihuXPn6m9/+5vne4ilk0/elqRRo0bVqC8AAOoSCTEAwDIeeeQRHTt2TEOGDFGHDh3kcDi0d+9evf/++zp48KCeeuopT2IZGRmpVq1a6YMPPlBCQoIaNWqkxo0bq2/fvmfsY/z48Zo1a5amTp2q3bt366qrrtKOHTv09ttvKy4uTlOmTKly3ZEjR8rHx0ejR4/W0KFDtWTJEgUEBOjtt99Wz5491aNHD40fP17JyckqLi5WWlqaFi9erOnTp1d7Rfd830M8ePBgXX/99Xr11VeVk5Oj7t27a/369frnP/+p8ePH68orrzyv/QEAcCGQEAMALOPVV1/VRx99pHXr1mnBggU6ceKEwsLC1LlzZ73yyiu69dZbverPnj1bjzzyiCZOnKiioiL16tWr2oTY399fK1as0NSpU7VgwQItWLBAERERGjNmjKZNm1bldxC7DR8+XD4+Pho1apSGDBmipUuXqnnz5tqyZYumT5+ujz/+WDNnzlRwcLCaN2+usWPH6pprrjnnffNrfPjhh3ruuec0Z84czZ49WzExMZo2bZomTpxYJ/EAAHC2bMYYU9dBAAAAAABQ23zqOgAAAAAAAOoCCTEAAAAAwJJIiAEAAAAAlkRCDAAAAACwJBJiAAAAAIAl1drXLjkcDjVq1Ki2ugMAAAAAWNzhw4dVXFxc5fJaS4gbNWqkjIyM2uoOAAAAAGBxMTExZ1zOlGkAAAAAgCWREAMAAAAALImEGAAAAABgSSTEAAAAAABLIiEGAAAAAFgSCTEAAAAAwJJIiAEAAAAAlkRCDAAAAACwJBJiAAAAAIAlkRADAAAAACyJhBgAAAAAYEkkxAAAAAAASyIhBgAAAABYEgkxAAAAAMCSSIgBAAAAAJZEQgwAAAAAsCQSYgAAAACAJZEQAwAAAAAsiYQYAAAAAGBJJMQAAAAAAEsiIQYAAAAAWBIJMQAAAADAkkiIAQAAAACWREKMi97mzZs1YMAAhYSEqEGDBurfv7++++67CvVWrFihO+64Q+3bt5evr6/i4+PPqp/4+HjZbLYKr3vvvff8bAgAAACAi4pfXQcAnMmWLVvUs2dPxcbGasqUKXK5XHrrrbfUq1cvffvtt2rTpo2n7rx58zR//nx17txZUVFRv6q/lJQUPfbYY15liYmJ57QNAAAAAC5ONmOMqY2OYmJilJGRURtd4RIyePBgrV+/Xrt27VJkZKQkKSsrS4mJierfv78WLVrkqXvgwAE1atRI/v7+uv7667Vt2zbt27evxn3Fx8erffv2+vTTT8/3ZgAAAACoA9XloUyZxkVt7dq1uvbaaz3JsCQ1a9ZMvXr10qeffqq8vDxPeVRUlPz9/c+5z5KSEuXn559zOwAAAAAubiTEuKgVFxfL6XRWKA8MDFRJSYm2bdt2Xvv78ssvFRgYqODgYMXHx+u11147r+0DAAAAuHhwDzEuam3atNE333yj8vJy+fr6Sjp5BXfDhg2SpMzMzPPWV8eOHdWzZ0+1adNGR48e1axZs/Twww/rwIEDevHFF89bPwAAAAAuDiTEuKjdf//9uu+++3THHXdo4sSJcrlcmjZtmrKysiRJhYWF562vjz/+2OvnCRMmaODAgXr11Vf14IMPKiYm5rz1BQAAAKDuMWUaF7V7771XkydP1rx589SuXTt16NBBu3fv1sSJEyVJwcHBF6xvm82mRx55RGVlZVqzZs0F6wcAAABA3SAhxkXv+eef16FDh7R27Vr98MMP2rhxo1wul6QL/5VIsbGxkqRjx45d0H4AAAAA1D6mTKNeCA8PV8+ePT0/r1q1SjExMWrbtu0F7XfPnj2SpEaNGl3QfgAAAADUPq4Qo96ZP3++Nm7cqIcfflg+Pmf/Fi4tLdWOHTs89yFLJ68Al5eXV6j3wgsvyG63q0+fPuccNwAAAICLC1eIcVH7v//7P02dOlX9+/dXZGSkvvnmG82cOVMDBgzQQw895FX3hx9+8DwYKy0tTTk5OZo2bZokKTk5WTfccIOkk0+mvuyyyzRu3DjNmjVL0skHak2bNk233HKLWrRooWPHjmnevHnatm2bpk+frqZNm9beRgMAAACoFSTEuKhFR0fL19dXL730knJzc9WiRQtNmzZNjz76qPz8vN++W7Zs0dNPP+1V5v553LhxnoS4Mh06dFBSUpLmzJmjw4cPy263KyUlRQsWLNCtt956/jcMAAAAQJ2zGWNMbXQUExOjjIyM2ugKAAAAAIBq81DuIQYAAAAAWBIJMQAAAADAkkiIAQAAAACWREIMAAAAALAkEmIAAAAAgCWREAMAAAAALInvIbaYoqIilZSU1HUYuATZ7XYFBATUdRgAAABAjZEQW0hRUZHCw8NVVFRU16HUGruv9MeeDv35q2KVlNd1NJe2gIAAHT9+nKQYAAAA9QYJsYWUlJSoqKhI6enpCgkJqetwakdxrkLeTNKjH+6WHA3qOppL1okTJxQbG6uSkhISYgAAANQbJMQWFBISYp2E+P9dDA9p0EAKsMg2AwAAAKgRHqoFAAAAALAkEmIAAAAAgCWREAMAAAAALImEGAAAAABgSSTEAAAAAABLIiEGAAAAAFgSCTEAAAAAwJJIiAEAAAAAlkRCDAAAAACwJBJiAAAAAIAlkRADAAAAACyJhBgAAAAAYEkkxAAAAAAASyIhBgAAAABYEgkxAAAAAMCSSIgBAAAAAJZEQgwAAAAAsCQSYgAAAACAJZEQAwAAAAAsqc4SYmOMTpw4IWNMXYUAAMAlgXMqAAC/Tp0lxLm5uQoNDVVubm5dhQAAwCWBcyoAAL8OU6YBAAAAAJZEQgwAAAAAsCQSYgAAAACAJZEQAwAAAAAsiYQYAAAAAGBJJMQAAAAAAEsiIQYAAAAAWBIJMQAAAADAkkiIAQAAAACWREIMAAAAALAkEmIAAAAAgCWREAMAAAAALImEGAAAAABgSSTEAAAAAABLIiEGAAAAAFgSCTEAAAAAwJJIiAEAAAAAllTjhDgvL09TpkzRgAEDFBERIZvNplmzZl3A0AAAAAAAuHD8alrxyJEjmjp1quLi4pScnKw1a9ZcwLAAAMDZWr9+vTIzM7Vt2zbl5OSoc+fOat++vT7//HNt2bJFPj4+Ki4uVmlpqbp27aqhQ4dq7969atmypX744Qf9+9//VllZmRo1aqTY2Fj1799fM2bM0HfffaeUlBTNnTtXfn5+crlcmjFjhrZs2aJOnTqpffv2Wr58udLT09WsWTPt379fmZmZstvtcjqdioiI0F133aXf/OY3kqSvvvpKn332mb744gsdOHBAdrtd3bt317333quePXtq3bp1+ve//y1jjIqLi3X8+HHl5+crLy9P5eXlnvgGDRqkq666SmvXrtX06dN14MAB+fn5KTg4WN26ddOLL76od955R5s3b1ZISIh++eUXfffddyooKFBgYKCioqLUuXNnlZaWevZXUlKSXnjhBWVlZemyyy5T//79VVBQoI8//lh79+5VRESE+vTpo9jYWGVmZmrTpk06cOCAQkJCNHLkSCUnJ2vPnj1q0aKFPvroI61atUqlpaUKCwtTgwYNJEmZmZmy2WyKiorSsWPHlJWVJYfDoYSEBB0/flwlJSW65pprNGTIEK1YsUL79+/X2rVrlZ2draioKCUlJSktLU2//PKLSktLFRgYqOjoaJWVlSktLU0FBQUKCAhQRESEioqK5OPjo5CQEIWGhiozM1PHjx+Xj4+PwsPDVV5eLn9/f7Vq1UonTpzQkSNHlJ2drYKCAkmSzWaTr6+vGjRoIIfDocDAQBljVFRUpKNHj6qsrEw+Pievr/j6+srX11cul0vNmjVTVFSUsrKydOjQIRUWFsput6tz585q2LChUlNTlZ+frwMHDqikpEQNGjRQhw4d9OOPPyo3N1fGGEmSw+FQTEyM/P39VVBQIJfLpaCgIEVHRysnJ0fFxcXq27evrr/+ek2aNEn79u1TYGCgLrvsMhUXF+vo0aNq1qyZBg0apI0bNyotLU0HDhxQQUGBfH19FRgYqPLyctlsNhljZLfbFRERoVatWik1NVVpaWlyuVwKCwuTJB06dEgul0tOp1Mul0tFRUWy2+1q27atfHx8VFZWpt69e0uSPvnkEx05ckQlJSXy9fVVaWmp/Pz8FBMTo4EDB2r37t0KCwtTw4YNtWvXLh08eFB79uxRUVGRQkJC5HQ6VVxcLD8/P9ntdiUkJGjSpEn66aeftHXrVqWkpMgYo+XLlys8PFzdunXTt99+q6NHjyotLU0ZGRkqLy+X0+lUcHCwjhw5orKyMtntdrVo0ULR0dGSJH9/fwUFBWn79u0qKirS4MGD1bJlS33wwQfKzc1VQECAfvnlF+Xk5Mjf318NGzZUfHy8GjRooIyMDBljFBMTox07dqiwsFCdOnWSv7+/1qxZo/LycrVv314jRozQ9u3btXPnTpWWlqpx48aKjY1VdHS00tPTtXr1ahUVFalt27Zq2bKlbDaboqOjlZmZqYyMDEVHR6u4uFipqan65Zdf5Ovrq9atW+uOO+7Qjz/+qH/961+SpJEjR+r++++Xj4+PjDH66quvtGzZMk+cUVFR2rhxo3bv3q2mTZuqe/fuysvLU5cuXXTvvfd63stu7jb+/e9/S5IGDhyoq666SuvWrdNnn32mLVu2KDc3VyEhIerUqZMGDx6sq666Sl9//bXS0tKUkJCgHj166Ouvv9auXbtUWFgop9OpVq1a6ccff9SWLVsUGhqq9u3bKzExUVdddZUkad26dUpLS1PLli31448/esZbkrZu3arQ0FA5HA7ZbDYNHDhQPXv29LyH3esmJCToqquuks1mO+tzyanttGrVSpK0e/fuStv8NX1Wto7L5dLjjz+uTZs2qWvXrnrppZfk6+t71rH/KqaGioqKTFZWljHGmI0bNxpJZubMmTVd3URHR3v9nJOTYySZnJycGreBc2PJfV6YY8yUkJP/4oKx5HsLuIj8+OOPRpIJDg42Pj4+RpLn3+peLVu2rFE99+uxxx4zTqfT2Gw2ExISclbrxsfHm4SEBGOz2aqs4+/vb3x9fY2vr2+17fn4+Bh/f/8a1TsfdWr6Ott9yovX2b6CgoLqPIaL9eVwOMzChQtNUlJSjY5r9+eR0+k0X331ledzdd++fSYpKcn4+voaPz8/4+fnZ3x8fIzD4ajyM8xmsxmHw2FCQ0NN3759TVhYmHE6naZBgwYmODjY2Gw243Q6PfVP/bwOCQkxSUlJJikpyURERJjOnTtXO97uz8qkpCTz1VdfmZSUFBMREWH69u1rIiIiTEpKitm3b99ZnU/27dvnaadHjx6ePrp3716hzVPr1rTPytZp3ry5Z5/6+fl59uXChQt/3UnxNKfnoaer8ZRph8Ohpk2b1rQ6AACoBcYYjRw5UpJUVlamxMREZWZmKjw83PNXeve//v7+CgkJkc1mk4+Pj4KDg7Vnzx7Z7XbZ7Xb5+vpqxIgRatmypaf90NBQderUSampqfLz89Mrr7yiuLg4HT16VC1btvT04/5Lvp/f/z/5LCQkRCEhIZKkhIQE7du3T7t37/Zc/fPz81PLli0VFhbmuTJTWlqq0NBQ+fn5KSEhwRO7r6+vJ+5WrVrJx8dHNptNpaWlnjqhoaEaNmxYhasT7v7cTo3RzeVyef5vs9k0fvx4T+zufRceHu5VJkl2u13Dhw+Xr6+vZxv27Nnjacdms1VY59do3rz5ObdhBae+dy9l+fn5stvtnveWj49Ppe/rs2G3289HaF7cVxfd/Pz8FBYWVqEvh8Mhu93utQ3+/v5yOByS5HXlNiwsrEK7HTp00JEjR5SQkKCSkhLdcsstOnjwoMLCwhQREaFRo0Z5tev+18/PT8YYdejQQXFxcerXr59cLpeMMRoyZIgOHTqkcePGKTc3Vzk5OQoLC1NxcbGMMXI4HAoLC1NCQoJnm4wxMsYoPj5eK1euVFxcnOLi4lRWVqbhw4fr8OHDKikp8XyehIeHKyMjQ4mJiSouLtahQ4d06NAh/fzzz9q+fbsSExM1evRoFRQUqGXLlp79NmLECCUmJsrf319jxozRwYMH1a9fP3Xt2lWZmZn64osvlJGRoW7dumnYsGEVPgOrYozR0KFD1a1bN2VkZKigoEBjx47VuHHjVFRUpPT0dE+bLpfLU7emfZ7avnud/fv3a//+/bLZbDpw4IBKS0uVkZGhkJAQ3XrrrSovL69R7Ofi3I6cc+DeSSdOnKirECzHva9relAANcXxDNSd9evXKyMjQ5JUXFys9evXa9u2bSotLfUcm+5/d+7cqeTkZM8vbX369NEnn3wi6eQvw/n5+brjjjtUWFioPXv2eKaF7t69W4cOHdKTTz6pZ599Vpdddpn++9//au/evTLGKDQ0VNnZ2ZKkp59+WlOmTJF0Msl8//33ddNNN6l9+/ZKS0vzOgeFhIRo06ZNatWqlRwOhwoLCyVJubm5Ki0t1T333KPHH39cklReXq4GDRooNzdXd999t5544glPO35+fiotLdWOHTsUGhqqyMhIFRYWqn///lqxYkWF856/v7/8/f09/Z3q6aef1nPPPacGDRqoqKjIU26z2VRWVlbhlzO73a4rrrhC8+fPV1BQkPLy8jwxlZWVSZJKSkpqNJZOp7PSmPz8/DRo0CC9/fbbFZb5+/urtLS0Ru3XpVP3x6nOd/zBwcHnra2LhXsqrOS9Hx0Oh/73f//Xk5xcfvnl+uabb35VHwEBATX6/dDX17fSBGXs2LF6//33K5RHRUVp9+7dXmXl5eVeU2EDAgJUVFSk4OBg2Ww25ebmSjqZBLvruafiu9fv16+fV7t79uzR9u3btWHDBkVGRkqSCgoK5O/vL7vdruLiYkny/FFNOrn/3nnnHY0YMUI7d+7UkiVLdP3112vGjBnq2LGj9u7dK39/f7355psKCAjQV1995fUedv8R7Ntvv63wx7s9e/ZoxowZyszM1OzZszV48GANHz5c8+fPl8vl8pqqv3fvXq1bt06RkZGe6fFPP/20ioqKtGHDBs2aNUtz5szRfffdp6lTp6qkpESXX3653njjDTVs2FDJyclatGiRioqKNHz4cAUEBEg6+Xny2muvKSYmRuvWrVPPnj2rHd9169YpPT1d69ev16ZNmzz/N/9vWvyWLVs8bc6YMcOzvKZ9ntq+e50//elPkk6eD3bv3q1mzZopOjpa//3vfxUTE6PHH39cr776arWxn4sLlhC/+uqrXsG7TxBu7jd7bGzshQoBVcjNzVVoaGhdh4FLCMczcHEICQlRWFiY0tLSFB0draKiIvn5+am4uFgul8tz3+DPP/8s6WSCLJ38BS42NlZZWVlKT0/XTz/9JOnklRj3+cJ9T6Ik/fTTT0pLS1NUVJQkqVmzZvrPf/4jl8uln3/+WT4+PgoICFBMTIxycnLk5+enn376ST4+Pp5fagMDA5WSkqLw8HClpKR47j+UTv7S7+/vrx07dnjuWS0vL1dMTIyysrKUmpoqp9OpoqIiGWPk5+en8vJyz0y20NBQFRYWat++fZ594776VFRUpLCwMBljPPe1lpeXe37Jd9+H/N1338npdHqSWafTqWbNmiknJ0dlZWWe8piYGG3btk2hoaFq2rSpdu7cKWOM5xdx6WTS53K5VFJS4rUP3L9AuxOR5s2be9Y/NfEICgrStm3bPOucmrgEBgYqJyfnV71fqkpuzjebzVZpQmyz2aqMv7rYTh83d/19+/Z57pl2/5Hm9PbcSdGp7Z++X89WYGCg577rypzefmX9uWcUnDpbwR27+xgICgry7K+YmBhlZ2fLZrPJ399fe/fu9Wrr9G08U99hYWEqLCxUcXGxJ/l013Hfj+t+X1fW5t69e73ade+P1NTUCuu77/92H+9hYWE6duyYYmNjZYzRnj17VFJSooCAAAUGBqqwsFCBgYHKzc2Vw+HwJEvubQkICFBISIjS0tLUs2dPT98Oh0NRUVFq1qyZfvjhB0knPxuMMSotLVVMTIyKioo8M1x++eUXhYaGasuWLZ778ps1a+ZJ3Nyfq4WFhSorK1NoaKguu+wyhYeHKzk5Wdu3b/e0ERYWpi1btig5OVmHDh1SaGio0tPTtWXLFoWFhalJkyay2Wxq2rSpJ26n06mQkBC1bdtWmzZtUlhYmMLCwrRt2zb5+flpx44diomJ0a5du7Rt2zZFREQoNDRU27Zt83yup6ene42L0+lUcnKyp4/qpKWlKTk5WQEBAV7/l+TVTnJysmf73Mtr0ufpbUrSpk2b5Ofnp06dOnmtEx0dLT8/P23atKnauM/VBUuIH330UT366KOen2NiYryWux8skZ6efl6mEqF6J06cUGxsrGffA+cLxzNQd9avX6/hw4crOztbJ06cUHZ2thISEpSRkaGSkhKvq5N79+5VZmam5xf3Nm3aKDU1VWVlZfr5559VUFCg2NhYJSUlKTU1VdnZ2crLy5PNZvNMeZakpKQkJSQkKDMzU8YYHThwwPNLclxcnFwulwoKCpSRkaHQ0FCVlZV52nQrKCjQ1q1bdfz4cX333XdeV2PLyspUWlqqtm3beiUZ6enpysvLU2JioteV1LKyMrlcLh08eFChoaGehCE+Pt7T56n74vjx455k9PSrt1FRUSorK1NKSorX1baCggJlZmZ6JcOSlJGRofbt2+u9995TWVmZJyEoLS31upLnXufUZOf0pGT//v2eslOTjvz8fLVv315r166tsM6ZkrDq1EYyLJ3czsquDhtjqoy/uthOHzd3/fj4eP3www9eyfDp7bmTy9NjORfVjcPp7Vc1nbSy8vLyck95fn6+pzw9Pd3zx52SkhK1aNFChw4d8rRV1T6srI/s7OxK33uS93u2qqv5LVq00Nq1az0/u/dHYmKiJyb3+pmZmV7tZGdnq6SkxPPHNPfYFhYWema6uB+oVlhYqMzMTPXu3dtzPBQWFsrHx0cJCQk6duyYp+/i4mKlp6fr0KFD6tu3r1JTU5WTkyO73S6Xy6WMjAzPlfHy8nI1btzY83A992fooUOHVFRUpICAAE+ZO/bs7GzPZ9j333+v/Px8uVwu5eTkKD8/X507d9aSJUv0hz/8QTk5OYqNjVXnzp09nxXSyYe0ueMuLCyUzWbTd999p/Hjx+urr75Sdna22rdvr7KyMrVt21bz589XWVmZ2rdvr2PHjiknJ0ft27fXggULPJ/fpyosLNT333+vhISESsftdAkJCZ7P41P/b4zxtONu85ZbbtGSJUs8+6cmfZ7apnudrl27au3atdq6daumTp3qqev+vO3atWuNYj8nNbkR+XQ8VKt+suQ+56FatcKS7y3gIuFyuUyHDh2MJBMQEGDatm1r0tPTTWRkpOchJe5//f39TUhIiLHZbMbHx8cEBwcbScZutxu73W58fX3N8OHDvR4KFRISYjp16mRSU1M9Dztp06aNOXLkiElJSTHh4eHGZrN5HoLlruNe1/3grYSEBK9Y3HVbtmxpwsLCvB5+ExERYRwOh9cDuHx9fT1xt2rVyvj4+Hj6dNcJDQ01Q4cOrfDAm9N/PjXGyl42m82MHz/e66Fh/v7+Jjw8vMKDxOx2u7n99tuNr69vhQf42Gy2X/XwscpecXFx59yGFV4tWrSo8xhq62W32z3vLR8fn2rf19W9avKAurN9tWrVyutnPz8/ExYWZux2u1e5w+Ewdrvdaxv8/f2Nw+HwbJ+7PCwsrEK7HTp0MEeOHPH6zIiIiDDh4eEmIiLCjBo1qsJ2+vv7e/rr0KGDadOmjXE6naa8vNy4XC6TnJxsIiMjzYQJE0xBQYHJz883ERERXjGHhYWZhIQEr22y2+2mY8eOpry83HTs2NG0adPGBAQEmDvvvNMcPnzY+Pr6ej5PIiMjTXp6umnbtq1xOBwmMjLSREZGmtzcXON0Ok1iYqIZPXq0sdlspmXLlp4+hg8fbhITE01AQIAZP368iYiIME6n09x5552moKDAGGNMQUGBueuuu0ynTp2My+Wq8fkkJSXF3HXXXSY/P9+kpKSYCRMmmAkTJphOnTqZ/Px8T5vl5eWeujXt89T23evk5uZ6xjg9Pd0YY0xGRoYJDQ01NpvNlJWVnfN5srqHapEQW4gl9zkJca2w5HsLuIjU5lOmH3/88V/9lOkWLVpU+5Rpd2LOU6Z58ar6FRgYWOcxXKwvh8NhFi1a9KueMv311197PlfP9SnTffr0OeunTLdr1+5XPWW6Xbt2Zt26dZ6nN/fp08dERESYTp06mf3795/V+eTUp0B37969wlOmT23z1Lo17bOydeLj4yt9yvTixYt/3UnxNNUlxDZjzn6OyKZNm9StWzfNnDlT48ePr9E6MTExnnuPpJPTd93TmphiWTssuc+LTkgvxEqT0qUAi2xzHbDkewu4iLiPwc8//5zvIeZ7iPkeYr6HmO8h5nuI+R7iU5yeh56OhNhCLLnPSYhrhSXfW8BFhGMQAIDKVZcQn9VDtd544w1lZ2frwIEDkk7+5cvd+IMPPsiTiwEAAAAA9cZZJcQvv/yy9u/f7/l58eLFWrx4sSRp9OjRJMQAAAAAgHrjrBLiU7/PDwAAAACA+syn+ioAAAAAAFx6SIgBAAAAAJZEQgwAAAAAsCQSYgAAAACAJZEQAwAAAAAsiYQYAAAAAGBJJMQAAAAAAEsiIQYAAAAAWBIJMQAAAADAkkiIAQAAAACWREIMAAAAALAkEmIAAAAAgCWREAMAAAAALImEGAAAAABgSSTEAAAAAABLqrOEuEGDBsrJyVGDBg3qKgQAAC4JnFMBAPh1/OqqY5vNppCQkLrqHgCASwbnVAAAfh2mTAMAAAAALImEGAAAAABgSSTEAAAAAABLIiEGAAAAAFgSCTEAAAAAwJJIiAEAAAAAlkRCDAAAAACwJBJiAAAAAIAlkRADAAAAACyJhBgAAAAAYEkkxAAAAAAASyIhBgAAAABYEgkxAAAAAMCSSIgBAAAAAJZEQgwAAAAAsCQSYgAAAACAJZEQAwAAAAAsiYQYAAAAAGBJJMQAAAAAAEvyq+sAUHuMMZKkEydO1HEktag4VyGSTuTmSiV1Hcyly1LvKQAAAFwySIgtJDc3V5IUGxtbx5HUHruv9MeeDv15WoxKyus6mktbQECA7HZ7XYcBAAAA1BgJsYVERUUpPT1dDRo0kM1mq+twatWjdR2ABdjtdgUEBNR1GAAAAECNkRBbiI+Pj2JiYuo6DAAAAAC4KPBQLQAAAACAJZEQAwAAAAAsiYQYAAAAAGBJJMQAAAAAAEsiIQYAAAAAWBIJMQAAAADAkkiIAQAAAACWREIMAAAAALAkEmIAAAAAgCWRENcj48ePl81mq/KVmZmpffv2nbHOXXfdVW0/b7/9tm699VbFxcXJZrNp/PjxF37jUGvy8vI0ZcoUDRgwQBEREbLZbJo1a1aFet9++63uv/9+denSRf7+/rLZbJW2l56ermeffVaXX365wsPD1bBhQ/Xu3VurVq06q7h2796tkSNHqnHjxnI6nWrdurWefPLJX7OJAAAAQI341XUAqLl77rlH1157rVeZMUb33nuv4uPjFR0drfz8fM2ePbvCup9//rnmzp2r/v37V9vPiy++qNzcXF1++eXKyso6b/Hj4nDkyBFNnTpVcXFxSk5O1po1ayqtt2zZMr377rvq2LGjWrZsqdTU1ErrLV26VC+++KKGDh2qcePGqaysTO+//7769eun9957TxMmTKg2pu+++069e/dWdHS0HnvsMUVGRurnn39Wenr6uWwqAAAAcEY2Y4ypjY5iYmKUkZFRG11ZyldffaXf/OY3ev755zV58uQq61177bXauHGjDh06pICAgDO2uX//fs/V4eDgYN1yyy2VXkFE/VRcXKzjx4+radOm2rRpk7p166aZM2dWmAlw6NAhhYSEyOl06oEHHtCbb76pyj4u/vvf/6pJkyZq2LChVx8pKSnKy8urNql1uVxKTk5WUFCQVq9eLafTeV62EwAAAKguD2XKdD03b9482Ww2jRw5sso6WVlZWr16tW666aZqk2FJat68eZXTY1H/ORwONW3atNp6TZo0qVFy2q5dO69k2N3HoEGDlJGRodzc3DOuv2LFCm3btk1TpkyR0+lUQUGBysvLq+0XAAAAOFckxPVYaWmpFixYoB49eig+Pr7Keh988IFcLpdGjRpVe8HB8g4ePKjAwEAFBgaesZ77XmOHw6GuXbsqKChIgYGBGj58uI4dO1YboQIAAMCiSIjrseXLl+vo0aPVJrpz585Vs2bN1Ldv31qKDFaXlpamxYsX6+abb5avr+8Z6+7atUuSdNttt6lt27ZauHChnnjiCS1atEg33HBDpdO0AQAAgPOBh2rVY/PmzZO/v79uu+22KuukpqZq8+bNeuSRR+Tjw98/cOEVFBTo1ltvldPp1AsvvFBt/by8PElSt27dNGfOHEnSzTffrMDAQP3xj3/UF198UeFhcgAAAMD5QIZUT+Xl5Wnp0qW67rrrFBkZWWW9uXPnShLTpVErysvLNXz4cP30009auHChoqKiql3HfZ/yiBEjvMrd98V//fXX5z9QAAAAQFwhrrc++ugjFRQUVJvozps3T23atFGXLl1qKTJY2V133aVPP/1Uc+fOrfEUfXfS3KRJE6/yxo0bS5KOHz9+foMEAAAA/h+uENdTc+fOVXBwsG688cYq62zYsEFpaWlcHUatePzxxzVz5kz99a9/rXC190zcf6zJzMz0Kj9w4IAkqVGjRucvSAAAAOAUJMT10OHDh7Vq1SoNGzbsjE/wnTdvniRV+ZVMBQUF2rFjh44cOXJB4oR1vPTSS3r55Zc1efJkPfTQQ1XWy8nJ0Y4dO5STk+MpGzJkiBwOh2bOnCmXy+Upf/fddyVJ/fr1u3CBAwAAwNKYMl0PzZ8/X2VlZWe88lteXq758+fryiuvVKtWrSqt8+2336pPnz6aMmWKnnnmGU/5J598ou+//17Sya92+uGHHzRt2jRJ0o033qiOHTuev41BnXjjjTeUnZ3tuQr7ySefeL6w/MEHH1RoaKj279+v2bNnS5I2bdokSZ73QfPmzTVmzBhJ0pIlSzRx4kS1bt1al112mefBWG79+vXzTIdesmSJJkyYoJkzZ2r8+PGSpKZNm+rJJ5/Un/70Jw0YMEBDhw7V999/r3feeUcjRoxQt27dLuzOAAAAgGWRENdDc+fOVePGjc/45N1Vq1bp0KFDevLJJ8+6/UWLFul///d/PT9v3bpVW7dulSTFxMSQEF8CXn75Ze3fv9/z8+LFi7V48WJJ0ujRoxUaGqq9e/fq6aef9lrP/XOvXr08CbH7jye7du3ylJ1q9erVFe4PPt1TTz2l8PBwvf7663r44Ye9kmQAAADgQrGZWvqSz5iYGM8VKAAAAAAALrTq8lDuIQYAAAAAWBIJMQAAAADAkkiIAQAAAACWREIMAAAAALAkEmIAAAAAgCWREAMAAAAALImEGAAAAABgSSTEAAAAAABLIiEGAAAAAFgSCTEAAAAAwJJIiAEAAAAAlkRCDAAAAACwJBJiAAAAAIAlkRADAAAAACyJhBgAAAAAYEkkxAAAAAAASyIhBgAAAABYEgkxAAAAAMCSSIgBAAAAAJZEQgwAAAAAsCQSYgAAAACAJdmMMaY2OnI4HGrUqFFtdGVZeXl5Cg4OruswUAOMVf3AONUPjFP9wVjVD4xT/cA41R+MVd06fPiwiouLq1xeawkxLryYmBhlZGTUdRioAcaqfmCc6gfGqf5grOoHxql+YJzqD8bq4saUaQAAAACAJZEQAwAAAAAsiYT4EvLoo4/WdQioIcaqfmCc6gfGqf5grOoHxql+YJzqD8bq4sY9xAAAAAAAS+IKMQAAAADAkkiIAQAAAACWREIMAAAAALAkEuJ6Yvz48bLZbFW+MjMzJUm9e/eudPmAAQPqeAsuTXl5eZoyZYoGDBigiIgI2Ww2zZo1q9K627dv14ABAxQcHKyIiAiNGTNGhw8frlDP5XLpL3/5i1q0aKGAgAB17NhR//rXvy7wllzaajJOLpdLs2bN0o033qjY2FgFBQWpffv2mjZtmoqKiiq0WdWx+MILL9TSVl16ano8VfV52LZt2wp1OZ4ujJqO1ZnOW/369fPU27dvX5X1Pvjgg1rcskvHxo0b9cADD6hdu3YKCgpSXFycbrvtNqWmplaoy/mpbtVkrDhH1b2aHlOco+ofv7oOADVzzz336Nprr/UqM8bo3nvvVXx8vKKjoz3lMTEx+vOf/+xVNyoqqlbitJojR45o6tSpiouLU3JystasWVNpvYyMDF199dUKDQ3V9OnTlZeXp5dfflk//vijvv32W9ntdk/dJ598Ui+88ILuuusudevWTUuXLtXIkSNls9k0fPjwWtqyS0tNxqmgoEATJkzQlVdeqXvvvVeNGzfW+vXrNWXKFH3xxRf68ssvZbPZvNbp16+fxo4d61XWqVOnC7kpl7SaHk+S5HA49O6773qVhYaGVqjH8XRh1HSsZs+eXaFs06ZNeu2119S/f/8Ky0aMGKFBgwZ5lXXv3v28xGw1L774otatW6dbb71VHTt21MGDB/XGG2+oc+fO+uabb9S+fXtJnJ8uBjUZK85Rda+mx5TEOareMai31q5daySZ559/3lPWq1cv065duzqMylqKiopMVlaWMcaYjRs3Gklm5syZFerdd999xul0mv3793vKVq5caSSZf/zjH56yjIwM4+/vb373u995ylwul/nNb35jYmJiTFlZ2YXbmEtYTcapuLjYrFu3rsK6zz77rJFkVq5c6VUuyWuccO5qejyNGzfOBAUFVdsex9OFU9Oxqswdd9xhbDabSU9P95Tt3bvXSDIvvfTShQjXktatW2eKi4u9ylJTU43D4TCjRo3ylHF+qns1GSvOUXWvpscU56j6hynT9di8efNks9k0cuTICsvKysqUl5dXB1FZi8PhUNOmTautt2jRIl1//fWKi4vzlF177bVKTEzUggULPGVLly5VaWmp7r//fk+ZzWbTfffdp4yMDK1fv/78boBF1GSc7Ha7evToUaF82LBhkk5OKaxMYWFhpdPVcPZqejy5lZeX68SJE1Uu53i6cM52rNyKi4u1aNEi9erVSzExMZXWyc/PV0lJybmGaHk9evTwurorSa1bt1a7du28Ps84P9W9mowV56i6V9Njyo1zVP1BQlxPlZaWasGCBerRo4fi4+O9lqWmpiooKEgNGjRQ06ZN9fTTT6u0tLRuAoUyMzP1yy+/qGvXrhWWXX755dq6davn561btyooKEiXXXZZhXru5ahdBw8elCQ1bNiwwrJZs2YpKChITqdTSUlJmjdvXm2HZ1kFBQUKCQlRaGioIiIi9Lvf/a7CHwE5ni4+y5YtU3Z2tkaNGlXp8meffVbBwcEKCAhQt27dtGLFilqO8NJmjNGhQ4c8n2ecny5ep49VVThH1a2qxolzVP3CPcT11PLly3X06NEKv1S0atVKffr0UYcOHZSfn6+FCxdq2rRpSk1N1fz58+soWmvLysqSJDVr1qzCsmbNmunYsWMqLi6Ww+FQVlaWmjRpUuE+IPe6Bw4cuPABw8tf/vIXhYSEaODAgV7lPXr00G233aYWLVrowIEDevPNNzVq1Cjl5OTovvvuq6NoraFZs2aaOHGiOnfuLJfLpc8//1xvvfWWvv/+e61Zs0Z+fidPbRxPF5+5c+fK4XDolltu8Sr38fFR//79NWzYMEVHR2vPnj169dVXNXDgQH388ccaPHhwHUV8aZk7d64yMzM1depUSZyfLmanj1VVOEfVrcrGiXNU/UNCXE/NmzdP/v7+uu2227zK//nPf3r9PGbMGN19991655139Mgjj+jKK6+szTChk9OVpJNTDE8XEBDgqeNwODz/nqkeas/06dO1atUqvfXWWwoLC/Natm7dOq+ff/vb36pLly6aPHmyxo8fL6fTWYuRWsvpDw0cPny4EhMT9eSTT2rhwoWeB5FwPF1cTpw4oc8++0yDBg2qcDzFxcVp+fLlXmVjxoxRUlKSHnvsMRLi82DHjh363e9+p+7du2vcuHGSOD9drCobq8pwjqpbVY0T56j6hynT9VBeXp6WLl2q6667TpGRkdXWf+yxxyRJq1atutChoRLuk05xcXGFZe77etx1nE5njerhwps/f76eeuop3XHHHTX6a7rdbtcDDzyg7Oxsbd68uRYixKkeeeQR+fj4eH3OcTxdXBYtWqSioqIqp0ufLiIiQhMmTNDOnTuVkZFxgaO7tB08eFCDBw9WaGioFi5cKF9fX0mcny5GVY3V6ThH1a2ajpMb56iLGwlxPfTRRx+poKCgxr9UxMbGSpKOHTt2IcNCFdxTX9xT006VlZWliIgIz18ImzVrpoMHD8oYU6GexNdn1ZaVK1dq7NixGjx4sGbMmFHj9TjW6o7T6VRkZKTXvud4urjMnTtXoaGhuv7662u8DsfUucvJydHAgQOVnZ2tzz//3Ot9z/np4nKmsToV56i6VdNxOhXnqIsbCXE9NHfuXAUHB+vGG2+sUf09e/ZIkho1anQhw0IVoqOj1ahRI23atKnCsm+//VYpKSmen1NSUlRQUFDhaYUbNmzwLMeFtWHDBg0bNkxdu3bVggULPPf61ATHWt3Jzc3VkSNHvPY9x9PFIysrS6tXr9bNN99c6RTBqnBMnZuioiLdcMMNSk1N1aeffqqkpCSv5ZyfLh7VjZUb56i6VdNxOh3nqIsbCXE9c/jwYa1atUrDhg1TYGCg17ITJ05UmHphjNG0adMkSdddd12txQlvN998sz799FOlp6d7yr744gulpqbq1ltv9ZQNGTJE/v7+euuttzxlxhjNmDFD0dHRlX7lAs6f7du3a/DgwYqPj9enn35a5XSlw4cPVyjLzc3V3/72NzVs2FBdunS50KFaVlFRkXJzcyuUP/fcczLGaMCAAZ4yjqeLxwcffCCXy1XlzKbKjqnMzEy999576tixY6UPfcKZlZeX6/bbb9f69ev14Ycfqnv37pXW4/xU92o6Vpyj6lZNxolzVP3EQ7Xqmfnz56usrKzSXyq2bNmiESNGaMSIEUpISFBhYaGWLFmidevW6e6771bnzp3rIOJL3xtvvKHs7GzP0wA/+eQTz/1uDz74oEJDQzV58mR9+OGH6tOnjx566CHl5eXppZdeUocOHTRhwgRPWzExMXr44Yf10ksvqbS0VN26ddNHH32ktWvXau7cudXeo4KqVTdOPj4+uu6663T8+HE9/vjj+uyzz7zWb9Wqlefk9+abb+qjjz7SDTfcoLi4OGVlZem9997Tzz//rNmzZ1f4nkLUXHXjdPz4cXXq1EkjRoxQ27ZtJZ186v6yZcs0YMAADRkyxNMWx9OFVZPPPre5c+cqKipKvXv3rrStiRMnavfu3brmmmsUFRWlffv26R//+Ify8/P12muvXfBtuRQ99thj+vjjj3XDDTfo2LFjmjNnjtfy0aNHSxLnp4tATcYqNzeXc1Qdq8k4HTx4kHNUfWRQr1x55ZWmcePGpqysrMKyPXv2mFtvvdXEx8ebgIAAExgYaLp06WJmzJhhXC5XHURrDc2bNzeSKn3t3bvXU2/btm2mf//+JjAw0ISFhZlRo0aZgwcPVmivvLzcTJ8+3TRv3tzY7XbTrl07M2fOnFrcoktTdeO0d+/eKpdLMuPGjfO0tWLFCtOvXz/TtGlT4+/vb8LCwkz//v3NF198UXcbeImobpyOHz9uRo8ebRISEkxgYKBxOBymXbt2Zvr06aakpKRCexxPF05NP/t27NhhJJlHH320yrbmzZtnrr76atOoUSPj5+dnGjZsaIYNG2Y2b95cC1tyaerVq9cZP9NOxfmpbtVkrDhH1b2ajBPnqPrJZsxpd3IDAAAAAGAB3EMMAAAAALAkEmIAAAAAgCWREAMAAAAALImEGAAAAABgSSTEAAAAAABLIiEGAAAAAFgSCTEAAAAAwJJIiAEAAAAAlkRCDADAr7Bv3z7ZbDY988wzdR1KnbpY90Pv3r0VHx9f12EAAC5yJMQAAAAAAEsiIQYAAAAAWBIJMQAAAADAkkiIAQC1Ijc3V0899ZQuv/xyRUZGKiAgQG3bttXzzz+vsrIySdK///1v2Ww2/c///E+F9V0ul2JiYtSlSxev8rfffltt2rSRw+FQ69at9cYbb2jWrFmy2Wxas2bNWcf5ww8/qH///goKClJkZKTGjRunI0eOyGazafz48Wdc90z9xsfHq3fv3hXKly9frv79+ys8PFxOp1OJiYl68MEHVVJS4qmTn5+vSZMmqWXLlnI4HIqKitKdd96prKwsr7YKCwv1pz/9SYmJiXI6nQoPD1dycrKee+65Cv3OnTtX3bt3V3BwsIKCgnT11Vdr5cqVNdpHNeFyufT6668rJSVFTqdToaGhGjhwoDZt2uSps337dtlsNk2ePLnSNnr06KGmTZt63h+StGPHDo0YMUJNmjSRw+FQQkKCnn32WZWWlp632AEA1uFX1wEAAKwhMzNT//znP3XLLbdo7NixcrlcWr58uZ566int3btX7777rvr3768mTZpozpw5uvvuu73WX716tTIzM/X44497yl588UVNmjRJXbt21Z///GcVFBToL3/5ixo3bvyrYty1a5d+85vfyBijhx56SFFRUfrss880YMCAc9r2qrz++uv6/e9/rxYtWuj3v/+9oqOjtWfPHi1atEjPPfec7Ha7SktLdd1112ndunW6/fbbdfXVV2v79u2aMWOGVq5cqc2bN6thw4aSpN/97neaPXu27rnnHiUnJ6uoqEg7d+7U6tWr9fTTT3v6nTRpkl588UXdcMMNmj59usrLyzVv3jwNGDBACxcu1LBhw85520aNGqUFCxZoxIgRuvvuu5WXl6d3331Xv/nNb/Sf//xHl19+uS677DJ16dJF8+bN0/PPPy+bzeZZf/fu3Vq/fr0efvhh+fmd/HVl48aNuuaaa9SoUSM98MADaty4sb799ltNnTpV33//vRYvXnzOcQMALMYAAFALiouLTWlpaYXysWPHGh8fH5OZmWmMMebhhx82NpvN7Nu3z6ve+PHjjZ+fnzl06JAxxpijR4+agIAAk5KSYoqKijz1Dhw4YEJCQowks3r16rOK8dZbbzWSzDfffOMpc7lcnvJx48Z5yvfu3WskmSlTpnjKZs6cWWW/zZs3N7169fL8vH//fuPv7286duxoTpw4UaG+y+UyxhjzP//zP0aS+eMf/+i1/IMPPjCSzAMPPOApCw8PN/fdd98Zt3Hjxo1GknnmmWe8yktLS023bt1M8+bNPX3XRGX7YeHChUaSmTVrllfdEydOmLi4OHP11Vd7yv72t78ZSeY///mPV91nnnnGSDKbN2/2lHXo0MG0a9fO5OXledV97bXXjCTz5Zdfesp69eplmjdvXuPtAABYE1OmAQC1wm63e670lZaW6tixYzpy5Ij69esnl8vlmUo7ZswYGWM0Z84cz7qFhYVatGiR+vfv77n6u3LlShUVFen++++Xw+Hw1G3WrJlGjRp11vGVl5dr2bJl6tGjh6644gpPuc1m0x/+8Idftc1nsnDhQpWWlmrKlClq0KBBheXuq6VLliyRn5+fnnjiCa/lt99+u1q3bq0lS5Z4ykJDQ7Vhwwbt27evyn7/9a9/yWazafTo0Tpy5IjnlZ2drcGDB2v//v3atWvXOW3bvHnzFB4erkGDBnn1UVxcrH79+mndunUqLCyUJI0YMUJ+fn6aPXu2Vxtz5sxRUlKSOnfuLEn68ccf9eOPP2rkyJEqLCz0atd9Bf98TvkGAFgDCTEAoNa8/vrrateunQICAhQZGalGjRppzJgxkqTs7GxJUufOndWuXTuvhHjp0qXKzc311JWkvXv3SpLatGlToZ/Kyqpz+PBh5efnn7f2quNOOlNSUs5Yb+/evYqJiVFoaGiFZUlJScrMzPTcb/zXv/5VqampatGihZKSkvTAAw9USBK3b98uY4wSEhLUqFEjr5f7u4QPHTp0Ttu2fft2HT9+XI0bN67Qxz//+U+Vl5fryJEjkqTGjRurf//+WrhwoYqLiyVJ33zzjdLS0rzGe/v27ZKkJ598skKb7vE517gBANbDPcQAgFrxyiuv6A9/+IMGDhyoxx57TE2bNpXdbteWLVv0xBNPyOVyeeqOGTNGkyZN0qZNm9S1a1fNnj1bISEhGjJkSB1uQfVOvQf2dOXl5We9ztkaOnSo9u3bp2XLlmnNmjX6+OOP9eabb2ro0KFatGiRfHx85HK55Ovr63mAWWXat29/TnG4XC41bdq0wlXfUzVq1Mjz/7Fjx2rZsmX65JNPdMstt2j27Nny8fHxutLvfn9MnDhR/fr1q7TNqKioc4obAGA9JMQAgFoxZ84ctWjRQp9++ql8fP7/CUq7d++uUHfUqFGaPHmy5syZo7i4OK1YsUJjx46V0+n01ImPj5ck7dy5U1dffbXX+jt37jzr+Bo1aqSgoKBK161pexEREZKk48ePe5UXFRUpKytLrVq18pQlJiZKkr777ju1aNGiyjZbtmypFStWKDc3t8LU6p9++knR0dGy2+2essjISI0ZM8Yz9fz+++/XjBkz9H//93/q3bu3WrdureXLl6tFixZKSEio0XadrdatW+vzzz/XVVdd5TVmVbnxxhsVEhKiOXPmaMiQIVqwYIF69+6t2NhYrzYlyd/fX9dee+0FiRsAYD1MmQYA1ApfX19JkjHGU1ZYWKi///3vFerGxMSod+/e+te//qW5c+eqrKzMa/qsJPXr108Oh0NvvfWWZ6qtJGVlZWnu3Lm/Kr6BAwfq66+/1oYNG7yWvfLKKzVqw520ffnll17lf//73ytcIb7lllvk7++vqVOnKi8vr0Jb7v00dOhQlZWV6eWXX/Za/uGHH2rXrl2eJ0KXl5d7pp272Ww2JScnS5KOHj0qSRo9erSkk1OPT70q7/bLL7/UaFvPZMyYMSorK/N6svWZ+nA6nbrlllu0bNkyzZ07V0eOHKkw3p07d1ZSUpLeeustpaenV2izqKhIubm55xw7AMBauEIMAKgVN910k5588kkNGjRIN910k44dO6ZZs2ZV+kAp6WRSNWHCBD3zzDOKi4tTr169vJZHRkZqypQpmjx5snr27KmRI0eqoKBA//jHP5SYmKhNmzad9XTkadOmafny5erXr58eeOABRUdH67PPPtPhw4clVT+9uW3bturbt6/eeustGWPUvn17rV+/Xl999ZXnq5HcYmNj9corr+j3v/+9kpOTNWbMGEVHR2v//v1auHChvvnmG4WFhWn8+PGaNWuWpk6dqt27d+uqq67Sjh079PbbbysuLk5TpkyRdPJ7nps1a6YhQ4YoJSVFjRs31q5du/TWW2+pWbNmuuaaayRJV1xxhZ566ilNmzZNu3bt0s0336wmTZooMzNTX3/9tdLS0iq9an82brvtNn366ad65ZVXtGnTJg0aNEhhYWFKT0/Xl19+KbvdrtWrV3utM2bMGL333nt66KGH5HQ6dfPNN3stt9lsev/993XNNdeoffv2uuOOO9S2bVudOHFCO3fu1KJFi7R48eJKv+sZAIAq1eUjrgEA1lFWVmamTp1qWrRoYex2u2nVqpWZNm2aWblypZFkZs6c6VX/xIkTJjAwsNKvHDrVG2+8YVq3bm3sdrtJSEgwr7/+uvn73/9uJJkNGzacdZxbt24111xzjXE6nSY8PNyMGTPG7Nmzx0jy+kqjyr5uyBhjMjMzzdChQ01QUJBp0KCBuemmm8zPP/9c4WuX3D777DPTp08f06BBA+N0Ok1iYqL5/e9/b4qLiz118vLyzMSJE018fLzx9/c3TZo0Mb/97W/NgQMHPHWKi4vNpEmTTNeuXU14eLhxOBwmPj7e3HPPPWb//v0V+v3oo49M3759TWhoqHE4HKZ58+ZmyJAh5oMPPjir/VXVfnC5XOa9994z3bt3N8HBwcbpdJpWrVqZESNGmM8//7xCOy6Xy8TFxRlJZsSIEVX2t2fPHnPHHXeY2NhY4+/vbxo1amSuuOIKM3XqVHP06FFPPb52CQBQEzZjTpm7BgDAJeDBBx/UG2+8oaysLDVt2vSc29u8ebO6du2qP//5z5o0adJ5iBAAAFwMuIcYAFBvub/L9lRZWVl6//331b59+1+VDJ/epjFGf/nLXySpyqcbAwCA+ol7iAEA9dYXX3yhyZMna9iwYYqJidHevXv1zjvvKC8vTy+88IIkqaSkRMeOHau2LXfy3L59e/Xv318dOnRQfn6+Pv74Y3311Ve6/fbb1aVLlwu6PReTw4cPV/lVUW6hoaE1eoo0AAAXK6ZMAwDqrdTUVD3++OPauHGjjh49qoCAAHXr1k1//OMfPQ+RWrNmjfr06VNtW+7T4WOPPabPPvtMGRkZKisrU8uWLTVq1ChNnDhR/v7+F3R7Libx8fHav3//GevMnDlT48ePr52AAAC4AEiIAQCXtOPHj2vz5s3V1uO7bb2tW7eu0inpp2rXrp2aNWtWSxEBAHD+kRADAAAAACyJh2oBAAAAACyJhBgAAAAAYEkkxAAAAAAASyIhBgAAAABYEgkxAAAAAMCS/j/5oK8Z9BVmjgAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAENCAYAAADJ1KyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAxOAAAMTgF/d4wjAAA2Y0lEQVR4nO3deVxWdf7//+eFyAWioiDKJqIpmZq7lpaKueQy5m6h4lKN1qSVOpaljcuYbTZT6ZhNjTKjmPtW+sktnU+ZueX4qckttwTRRCVAFkHevz/8cX27AuTShAs8j/vtxm2G93lf57wO7w5vnp7NZowxAgAAAADAYjzcXQAAAAAAAO5AIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAADcJDY2VjabTTt27HB3KQAAWBKBGABgKT/88IOeeOIJRUZGysfHRwEBAbr33nv1+9//XgcOHHD0S05O1rRp0wirhUhLS9P06dPVq1cvhYSEyGazqU+fPu4uCwCAm+Lp7gIAACgpe/fuVYcOHWS32zV8+HA1aNBAqampOnLkiD777DPdfffdatasmaTrgXj69OmSpKioKDdWXTolJSVp2rRpCg4OVsuWLfXJJ5+4uyQAAG4agRgAYBnTp09XRkaGvv76azVu3NhpWW5uri5evHjL687NzVVGRoZ8fX1/a5llQnBwsOLj4xUaGipJstlsbq4IAICbxyXTAADL+OGHHxQQEJAvDEuSh4eHAgMDJUk7duxQ7dq1JV0P0TabTTabzXGmeMeOHbLZbFq4cKHeffdd1a9fX97e3vrwww8lSVeuXNGkSZNUp04d2e12hYSE6Mknn1RiYqJLdU6aNEk2m81xhlqSEhISNGrUKIWFhcnLy0vh4eEaN26cUlNTf8uP5JbZ7XZHGAYAoKziDDEAwDLq1KmjI0eOaPXq1erXr1+h/e655x799a9/1bhx49S3b19H3xo1ajj1e+edd/Tzzz/rySefVGBgoCIjI5Wdna2HH35YO3fu1KOPPqr27dvr0KFDmj9/vrZs2aL9+/erWrVqBW43JydHv//977Vo0SLNnz9fo0ePliSdOnVKbdq0kTFGTz75pMLDw/Xf//5X77//vnbt2qUvvvhC5cuXv+G+//zzz8rOznbp51SpUiXZ7XaX+gIAUJYRiAEAljF58mRt3bpV/fv3V2RkpB588EHdd999euihh1S3bl1Hvxo1aqhPnz4aN26cGjdurKFDhxa4voSEBB0+fNgp4H744YfauXOnXnrpJc2aNcvR/uCDD+qxxx7T9OnTNWfOnHzrSk9P16BBg7Rt2zatWLFCffv2dSwbO3asJOk///mPgoKCHO2dOnVS7969tXjxYo0cOfKG+967d2/9+9//LuIndN3ChQs1YsQIl/oCAFCWEYgBAJbxwAMPaM+ePZo9e7Y+++wzLViwQAsWLJAk9ejRQwsXLlT16tVdXt+wYcPyne1ds2aNPD099eKLLzq1P/roo3rllVe0Zs2afIH44sWL6tSpkw4dOqRNmzapffv2jmXJycnauHGjRo0aJU9PTyUlJTmWtW3bVr6+vtqyZUuRgfjtt9/W5cuXXdqvhg0butQPAICyjkAMALCUpk2bavHixZKu31O8fft2zZs3Txs3btSQIUO0ZcsWl9f1y7PKeU6ePKmwsDD5+fnlW9agQQOtW7dOV69elZeXl6N95MiRunLlinbv3q2WLVs6febo0aPKzc3V/PnzNX/+/ALrOH/+fJG1tmjRosg+AABYDYEYAGBZdevWVd26dTVs2DA1bNhQW7du1ZkzZ1SzZk2XPl+hQoXbUsegQYO0cOFCzZgxQytXrnQKy7m5uZKk4cOHF3rpdtWqVYvcxqVLl3T16lWX6vHz85OPj49LfQEAKMsIxAAAy7Pb7WrSpImOHz+us2fPqmbNmrf8GqE6depo8+bNSk1NVaVKlZyWff/99woNDXUKvJI0dOhQRUVFacSIEerXr59WrVrleKhV3bp1ZbPZlJOTo86dO9/aDkrq168f9xADAPArBGIAgGVs2bJFDz30kMqVK+fUnpSUpK+++kqenp6qV6+eJKlixYqS5PJ9t3n69OmjjRs3avbs2U6vTVqxYoWOHTumMWPGFPi5oUOHysPDQ8OGDVPfvn21Zs0a2e12VatWTd26ddPy5cs1fvx4NW/e3OlzOTk5SklJkb+//w3r4h5iAADyIxADACxj3LhxunTpknr37q17771XdrtdJ0+e1L/+9S+dO3dOU6ZMcQTLgIAA3XXXXVq6dKnq1q2rwMBAVa9eXQ899NANtzFixAjFxsZqxowZOn78uB544AEdPnxY77//vsLDwzV16tRCPzt48GB5eHho6NCh6tOnj9asWSNvb2+9//77evDBB9W2bVuNGDFCTZo0UVZWln744QetXr1as2bNKvKMbnHcQzx37lwlJyc7vj969KhmzpwpSWrSpIl69ep127cJAMDtZDPGGHcXAQBASdi8ebPWrl2rnTt3Kj4+XikpKapSpYqaN2+uJ598UgMHDnTqv2vXLo0bN04HDx5UZmamOnTooB07dmjHjh3q2LFjoZcWX7lyRTNmzNDy5cuVkJAgf39/9ezZUzNnzlRwcLCjX2xsrEaOHKnt27crKirK0b58+XINGTJEDz30kNatWydvb29duHBBs2bN0vr16xUfH6+KFSuqVq1a6tq1q5555hmX73u+nSIiInT69OkClw0fPlyxsbElWxAAADeJQAwAAAAAsCQPdxcAAAAAAIA7EIgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlldh7iO12uwIDA0tqcwAAAAAAi7tw4YKysrIKXV5igTgwMFDx8fEltTkAAAAAgMWFhYXdcDmXTAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMRACUtLS9PUqVPVrVs3+fv7y2azKTY2tsC+hw4dUrdu3VSxYkX5+/srJiZGFy5ccOpz6tQp2Wy2Ar+WLl3qUk3JyckaNWqUAgMD5evrq44dO+qbb775rbsKAAAAlGqe7i4AsJqkpCTNmDFD4eHhatKkiXbs2FFgv/j4eLVv315+fn6aNWuW0tLSNHv2bH377bfas2ePvLy8nPpHR0erR48eTm1t2rQpsp7c3Fz17NlTBw8e1MSJE1WtWjXNmzdPUVFR2r9/v+rVq3fL+woAAACUZgRioIQFBwcrMTFRQUFB2rdvn1q1alVgv1mzZunKlSvav3+/wsPDJUmtW7dWly5dFBsbq1GjRjn1b968uYYOHXrT9axcuVJfffWVVqxYoQEDBkiSBg0apMjISE2dOlVLliy56XUCAAAAZQGXTAMlzG63KygoqMh+q1at0u9+9ztHGJakzp07KzIyUsuXLy/wM1euXNHVq1dvqp6VK1eqRo0a6tevn6MtMDBQgwYN0rp165SVlXVT6wMAAADKCgIxUAolJCTop59+UsuWLfMta926tQ4cOJCvffr06apYsaK8vb3VqlUrbd682aVtHThwQM2bN5eHh/Ovg9atWys9PV1Hjx69tZ0AAAAASjkCMVAKJSYmSrp+efWvBQcH69KlS44ztx4eHurataveeustrV+/Xn/961/1008/qXv37tqwYYNL2ypsO5J09uzZ37IrAAAAQKnFPcRAKZSRkSHp+uXVv+bt7e3oY7fbFR4erk2bNjn1iYmJUYMGDTRhwgT17NmzyG0VtR0AAADgTsQZYqAU8vHxkaQC79/NzMx06lMQf39/jRw5UkeOHFF8fHyR27rV7QAAAABlGYEYKIXyLlfOu3T6lxITE+Xv71/gWd1fqlmzpiTp0qVLRW6rsO1IUkhIiEs1AwAAAGUNgRgohUJDQxUYGKh9+/blW7Znzx41bdq0yHWcOHFC0vUnRt9I06ZN9c033yg3N9epfffu3apQoYIiIyNdLxwAAAAoQwjEQCnVv39/ffrppzpz5oyjbdu2bTp69KgGDhzoaLtw4UK+zyYkJGjBggVq3Lix0wOzEhMTdfjwYWVnZzvaBgwYoPPnz2v16tWOtqSkJK1YsUK9evUq8kw0AAAAUFbZjDGmJDYUFhZW5L2MgFXMnTtXycnJOnv2rN5//33169dPzZo1kySNHTtWfn5+OnPmjJo1a6YqVaroueeeU1pamt566y2FhYVp7969jqA6cuRIHT9+XJ06dVJISIhOnTqlDz74QKmpqdq0aZOioqIc2x0xYoT++c9/6uTJk4qIiJAkXbt2TQ8++KC+++47TZw4UdWqVdO8efP0448/au/evbr77rtL+scDAAAA3BZF5VACMeAGEREROn36dIHLfhlW//vf/2r8+PH68ssv5eXlpZ49e+rtt99WjRo1HP0//vhjzZ8/X4cOHdLly5dVpUoVtWvXTlOmTFHz5s2d1l1QIJaky5cva+LEiVq7dq0yMjLUqlUrzZ49u8D3IAMAAABlBYEYAAAAAGBJReVQ7iEGAAAAAFgSgRgAAAAAYEkEYgAAAACAJRGIAQAAAACWRCAGAAAAAFgSgRgAAAAAYEme7i4ApVdmZqauXr3q7jIAAICLvLy85O3t7e4yAKDMIBCjQJmZmapataoyMzPdXQpc4FVOeulBu177MktXr7m7GgCAu3h7e+vy5cuEYgBwEYEYBbp69aoyMzN15swZVa5c2d3loChZqar8twYav+K4ZK/k7moAAG6QkpKimjVr6urVqwRiAHARgRg3VLlyZQJxWfD/n8ivXKmS5M14AQAAAK7goVoAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwpFITiI0xSklJkTHG3aUAAAAAAMqYW8mUpSYQp6amys/PT6mpqe4uBQAAAABQxtxKpiw1gRgAAAAAgJJEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJbkciBOS0vT1KlT1a1bN/n7+8tmsyk2NrYYSwMAAAAAoPi4HIiTkpI0Y8YMHTp0SE2aNCnOmgAAAAAAKHaernYMDg5WYmKigoKCtG/fPrVq1ao46wIAAAAAoFi5fIbYbrcrKCioOGsBAAAAAKDEuHyGuLgZYyRJKSkpbq4E0v8bh7xxAQAApRt/SwGwulvJMMUWiP/yl7/oL3/5i+P7tLS0G/ZPTU2VJNWsWbO4SsItSE1NlZ+fn7vLAAAAReBvKQC47mYyTLEF4vHjx2v8+PGO78PCwm7Yv1KlSpKkM2fOqHLlysVVFlyUkpKimjVrOsYFAACUbvwtBcDqbiXDlJpLpm02mySpcuXK/BIvRfLGBQAAlG78LQUA191MhnH5oVoAAAAAANxJCMQAAAAAAEsiEAMAAAAALOmm7iGeO3eukpOTdfbsWUnSJ598ovj4eEnS2LFjeRoxAAAAAKDMuKlAPHv2bJ0+fdrx/erVq7V69WpJ0tChQwnEAAAAAIAy46YC8alTp4qpDAAAAAAAShb3EAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSSk0grlSpkn7++WdVqlTJ3aUAAAAAAMqYW8mUnsVYz02x2WyqXLmyu8sAAAAAAJRBt5IpS80ZYgAAAAAAShKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGAAAAABgSQRiAAAAAIAlebq7AJROxhhJUkpKipsrgUuyUlVZUkpqqnTV3cUAANyBORsAbh6BGAVKTU2VJNWsWdPNlcAVXuWklx6067WZYbp6zd3VAADcxdvbW15eXu4uAwDKDAIxChQSEqIzZ86oUqVKstls7i4HLhrv7gIAAG7l5eUlb29vd5cBAGUGgRgF8vDwUFhYmLvLAAAAAIBiw0O1AAAAAACWRCAGAAAAAFgSgRgAAAAAYEkEYgAAAACAJRGIAQAAAACWRCAGAAAAAFgSgRgAAAAAYEkEYgAAAACAJRGIAQAAAACWRCC+Q40YMUI2m63Qr4SEBElSdna2pk+frjp16shut6tOnTqaOXOmcnJyXN7W+fPnNXr0aIWGhsrb21sRERF64oknimvXAAAo89LS0jR16lR169ZN/v7+stlsio2NLbDv3Llzdc8998hutys0NFTjx4/XlStXCux7/PhxDR48WNWrV5ePj4/q1aunyZMnu1RTcnKyRo0apcDAQPn6+qpjx4765ptvbnUXAaBM8HR3ASgeo0ePVufOnZ3ajDF66qmnFBERodDQUEnS0KFDtWLFCj3++ONq2bKlvv76a73yyiv68ccf9fe//73I7Zw5c0YPPPCAJOmpp55SaGiozp49qz179tz+nQIA4A6RlJSkGTNmKDw8XE2aNNGOHTsK7Pfiiy/qzTff1IABA/Tcc8/p+++/15w5c/Tf//5XmzZtcur7n//8R1FRUQoNDdWECRMUEBCgH3/8UWfOnCmyntzcXPXs2VMHDx7UxIkTVa1aNc2bN09RUVHav3+/6tWrdzt2GwBKH1NCQkNDS2pTKMQXX3xhJJlXX33VGGPMnj17jCTzyiuvOPWbMGGCsdls5uDBg0Wus3v37qZ27domKSmpWGoGAOBOlJmZaRITE40xxuzdu9dIMgsXLnTqc/bsWePp6WliYmKc2ufMmWMkmfXr1zvarl27Zho1amTuu+8+k56eftP1LFu2zEgyK1ascLT99NNPpkqVKiY6Ovqm1wcApUVROZRLpi1kyZIlstlsGjx4sCTpiy++kCQ99thjTv0ee+wxGWO0bNmyG67v8OHD+p//+R9NnDhRAQEByszMVHZ2dvEUDwDAHcRutysoKOiGfXbt2qWcnJwC52lJWrp0qaNt8+bN+u677zR16lT5+PgoPT1d165dc7melStXqkaNGurXr5+jLTAwUIMGDdK6deuUlZXl8roAoCwhEFtEdna2li9frrZt2yoiIkKSHJObj4+PU98KFSpIkvbv33/DdW7dulWSVKNGDXXq1Ek+Pj7y8fFR9+7dderUqdu7AwAAWMzNzNN5c7LdblfLli3l6+urChUq6LHHHtOlS5eK3NaBAwfUvHlzeXg4/2nYunVrpaen6+jRo79pXwCgtCIQW8SmTZt08eJFDRkyxNF29913S5J27tzp1DfvzHHeg7cKc+zYMUnSqFGj5OXlpWXLlun111/Xl19+qc6dOys9Pf127gIAAJZyM/N03pw8aNAg1a9fXytXrtSLL76oVatWqVevXjLG3HBbiYmJCg4Oztee13b27Nlb3xEAKMV4qJZFLFmyROXLl9egQYMcbT169FCtWrX0xz/+URUqVFCLFi20e/duTZ48WZ6ensrIyLjhOtPS0iRJQUFB2rBhg+NflcPCwhQdHa0lS5boySefLL6dAgDgDta8eXPdd999euONNxQaGqqOHTvq0KFDevrpp1W+fHmneTpvTm7VqpUWL14sSerfv78qVKigl156Sdu2bcv3sM1fysjIkN1uz9fu7e3tWA4AdyLOEFtAWlqa1q1bp4cfflgBAQGOdm9vb23YsEEBAQHq37+/IiIiNGzYMP3pT3+Sv7+/KlaseMP15l3CNWjQIKdLrAYOHChPT0999dVXxbNDAABYxKpVq9SkSRM9/vjjql27tnr16qVBgwapWbNmTvN03pwcHR3t9Pm854YUNSf7+PgUeJ9wZmam0/oB4E7DGWILWLt2rdLT050ul87TsGFDfffdd/r+++91+fJlNWjQQD4+Pho3bpw6dOhww/WGhIRIun4P8S+VK1dOAQEBunz58u3bCQAALCg0NFRffvmljh07pnPnzqlevXoKCgpSSEiIIiMjHf0Km5OrV68uSUXOycHBwUpMTMzXnteWt34AuNNwhtgC4uLiVLFiRT3yyCMFLrfZbGrYsKEefPBB+fv7a/v27crNzb3hpVWS1KJFC0n57zW+evWqkpKSFBgYeHt2AAAAi6tXr57atWunoKAgff/990pMTHSapwubk/Pu/S1qTm7atKm++eYb5ebmOrXv3r1bFSpUcArfAHAnIRDf4S5cuKCtW7eqb9++jqdS3khGRoZeeeUVBQcHO112lZ6ersOHDyspKcnRFhUVperVqysuLs5xSZUkxcbG6tq1a+rSpcvt3RkAACwuNzdXL7zwgipUqKCnnnrK0d67d2/Z7XYtXLjQKdR+9NFHkuQ0JycmJurw4cNOr0ocMGCAzp8/r9WrVzvakpKStGLFCvXq1avA+4sB4E7AJdN3uGXLliknJ6fAy6Wl6/f/hoSEqEGDBkpJSdGCBQt04sQJbdiwQZUqVXL027Nnjzp27KipU6dq2rRpkq6/2uGtt97S8OHD1b59e8XExOjHH3/Uu+++q3bt2jm9yxAAADibO3eukpOTHWdxP/nkE8XHx0uSxo4dKz8/Pz333HPKzMxU06ZNlZ2drSVLlmjPnj365z//qfDwcMe6goKCNHnyZP3pT39St27d1KdPHx08eFAffvihoqOj1apVK0ffl156Sf/85z918uRJx6sYBwwYoPvvv18jR47U999/r2rVqmnevHm6du2apk+fXnI/FAAoYQTiO1xcXJyqV69e6OXPLVu21MKFC/XBBx/Ix8dH7dq105IlS9S0aVOX1j9s2DB5eXnp9ddf18SJE1WlShWNHj1as2bNUrly5W7jngAAcGeZPXu2Tp8+7fh+9erVjjO0Q4cOlZ+fn5o1a6Z33nlHcXFx8vDwUOvWrbVt2zZ17Ngx3/qmTJmiqlWras6cOXr++eedQnJRypUrp40bN2rixIl67733lJGRoVatWik2Ntbx+icAuBPZTFEvprtNwsLCHP/qCQAAAABAcSsqh3IPMQAAAADAkgjEAAAAAABLIhADAAAAACyJQAwAAAAAsCQCMQAAAADAkgjEAAAAAABLIhADAAAAACyJQAwAAAAAsCQCMQAAAADAkgjEAAAAAABLIhADAAAAACyJQAwAAAAAsCQCMQAAAADAkgjEAAAAAABLIhADAAAAACyJQAwAAAAAsCQCMQAAAADAkgjEAAAAAABLIhADAAAAACyJQAwAAAAAsCQCMQAAAADAkmzGGFMSG7Lb7QoMDCyJTVlWWlqaKlas6O4y4ALGqmxgnMoGxqnsYKzKBsapbGCcyg7Gyr0uXLigrKysQpeXWCBG8QsLC1N8fLy7y4ALGKuygXEqGxinsoOxKhsYp7KBcSo7GKvSjUumAQAAAACWRCAGAAAAAFgSgfgOMn78eHeXABcxVmUD41Q2ME5lB2NVNjBOZQPjVHYwVqUb9xADAAAAACyJM8QAAAAAAEsiEAMAAAAALIlADAAAAACwJAJxGTFixAjZbLZCvxISEiRJUVFRBS7v1q2bm/fgzpSWlqapU6eqW7du8vf3l81mU2xsbIF9Dx06pG7duqlixYry9/dXTEyMLly4kK9fbm6u3nzzTdWuXVve3t5q3LixPv7442LekzubK+OUm5ur2NhYPfLII6pZs6Z8fX3VqFEjzZw5U5mZmfnWWdix+Prrr5fQXt15XD2eCvt9WL9+/Xx9OZ6Kh6tjdaN5q0uXLo5+p06dKrTf0qVLS3DP7hx79+7VmDFj1LBhQ/n6+io8PFyDBg3S0aNH8/VlfnIvV8aKOcr9XD2mmKPKHk93FwDXjB49Wp07d3ZqM8boqaeeUkREhEJDQx3tYWFheu2115z6hoSElEidVpOUlKQZM2YoPDxcTZo00Y4dOwrsFx8fr/bt28vPz0+zZs1SWlqaZs+erW+//VZ79uyRl5eXo+/kyZP1+uuv6/e//71atWqldevWafDgwbLZbHrsscdKaM/uLK6MU3p6ukaOHKn7779fTz31lKpXr65du3Zp6tSp2rZtmz7//HPZbDanz3Tp0kXDhg1zamvWrFlx7sodzdXjSZLsdrs++ugjpzY/P798/TieioerY7Vo0aJ8bfv27dO7776rrl275lsWHR2tHj16OLW1adPmttRsNW+88YZ27typgQMHqnHjxjp37pzmzp2r5s2b6+uvv1ajRo0kMT+VBq6MFXOU+7l6TEnMUWWOQZn1xRdfGEnm1VdfdbR16NDBNGzY0I1VWUtmZqZJTEw0xhizd+9eI8ksXLgwX7+nn37a+Pj4mNOnTzvatmzZYiSZDz74wNEWHx9vypcvb5555hlHW25urmnXrp0JCwszOTk5xbczdzBXxikrK8vs3Lkz32enT59uJJktW7Y4tUtyGif8dq4eT8OHDze+vr5Fro/jqfi4OlYFeeKJJ4zNZjNnzpxxtJ08edJIMm+99VZxlGtJO3fuNFlZWU5tR48eNXa73QwZMsTRxvzkfq6MFXOU+7l6TDFHlT1cMl2GLVmyRDabTYMHD863LCcnR2lpaW6oylrsdruCgoKK7Ldq1Sr97ne/U3h4uKOtc+fOioyM1PLlyx1t69atU3Z2tv7whz842mw2m55++mnFx8dr165dt3cHLMKVcfLy8lLbtm3ztfft21fS9UsKC5KRkVHg5Wq4ea4eT3muXbumlJSUQpdzPBWfmx2rPFlZWVq1apU6dOigsLCwAvtcuXJFV69e/a0lWl7btm2dzu5KUr169dSwYUOn32fMT+7nylgxR7mfq8dUHuaosoNAXEZlZ2dr+fLlatu2rSIiIpyWHT16VL6+vqpUqZKCgoL0yiuvKDs72z2FQgkJCfrpp5/UsmXLfMtat26tAwcOOL4/cOCAfH19dc899+Trl7ccJevcuXOSpGrVquVbFhsbK19fX/n4+KhBgwZasmRJSZdnWenp6apcubL8/Pzk7++vZ555Jt8/AnI8lT4bN25UcnKyhgwZUuDy6dOnq2LFivL29larVq20efPmEq7wzmaM0fnz5x2/z5ifSq9fj1VhmKPcq7BxYo4qW7iHuIzatGmTLl68mO+PirvuuksdO3bUvffeqytXrmjlypWaOXOmjh49qmXLlrmpWmtLTEyUJAUHB+dbFhwcrEuXLikrK0t2u12JiYmqUaNGvvuA8j579uzZ4i8YTt58801VrlxZ3bt3d2pv27atBg0apNq1a+vs2bP629/+piFDhujnn3/W008/7aZqrSE4OFgvvPCCmjdvrtzcXH322WeaN2+eDh48qB07dsjT8/rUxvFU+sTFxclut2vAgAFO7R4eHuratav69u2r0NBQnThxQn/5y1/UvXt3rV+/Xj179nRTxXeWuLg4JSQkaMaMGZKYn0qzX49VYZij3KugcWKOKnsIxGXUkiVLVL58eQ0aNMip/R//+IfT9zExMRo1apQ+/PBDjRs3Tvfff39Jlgldv1xJun6J4a95e3s7+tjtdsf/3qgfSs6sWbO0detWzZs3T1WqVHFatnPnTqfvH3/8cbVo0UIvv/yyRowYIR8fnxKs1Fp+/dDAxx57TJGRkZo8ebJWrlzpeBAJx1PpkpKSog0bNqhHjx75jqfw8HBt2rTJqS0mJkYNGjTQhAkTCMS3weHDh/XMM8+oTZs2Gj58uCTmp9KqoLEqCHOUexU2TsxRZQ+XTJdBaWlpWrdunR5++GEFBAQU2X/ChAmSpK1btxZ3aShA3qSTlZWVb1nefT15fXx8fFzqh+K3bNkyTZkyRU888YRL/5ru5eWlMWPGKDk5Wfv37y+BCvFL48aNk4eHh9PvOY6n0mXVqlXKzMws9HLpX/P399fIkSN15MgRxcfHF3N1d7Zz586pZ8+e8vPz08qVK1WuXDlJzE+lUWFj9WvMUe7l6jjlYY4q3QjEZdDatWuVnp7u8h8VNWvWlCRdunSpOMtCIfIufcm7NO2XEhMT5e/v7/gXwuDgYJ07d07GmHz9JF6fVVK2bNmiYcOGqWfPnpo/f77Ln+NYcx8fHx8FBAQ4/ew5nkqXuLg4+fn56Xe/+53Ln+GY+u1+/vlnde/eXcnJyfrss8+c/rtnfipdbjRWv8Qc5V6ujtMvMUeVbgTiMiguLk4VK1bUI4884lL/EydOSJICAwOLsywUIjQ0VIGBgdq3b1++ZXv27FHTpk0d3zdt2lTp6en5nla4e/dux3IUr927d6tv375q2bKlli9f7rjXxxUca+6TmpqqpKQkp589x1PpkZiYqO3bt6t///4FXiJYGI6p3yYzM1O9evXS0aNH9emnn6pBgwZOy5mfSo+ixioPc5R7uTpOv8YcVboRiMuYCxcuaOvWrerbt68qVKjgtCwlJSXfpRfGGM2cOVOS9PDDD5dYnXDWv39/ffrppzpz5oyjbdu2bTp69KgGDhzoaOvdu7fKly+vefPmOdqMMZo/f75CQ0MLfOUCbp9Dhw6pZ8+eioiI0Kefflro5UoXLlzI15aamqp33nlH1apVU4sWLYq7VMvKzMxUampqvvY///nPMsaoW7dujjaOp9Jj6dKlys3NLfTKpoKOqYSEBC1YsECNGzcu8KFPuLFr167p0Ucf1a5du7RixQq1adOmwH7MT+7n6lgxR7mXK+PEHFU28VCtMmbZsmXKyckp8I+Kb775RtHR0YqOjlbdunWVkZGhNWvWaOfOnRo1apSaN2/uhorvfHPnzlVycrLjaYCffPKJ4363sWPHys/PTy+//LJWrFihjh076rnnnlNaWpreeust3XvvvRo5cqRjXWFhYXr++ef11ltvKTs7W61atdLatWv1xRdfKC4ursh7VFC4osbJw8NDDz/8sC5fvqyJEydqw4YNTp+/6667HJPf3/72N61du1a9evVSeHi4EhMTtWDBAv34449atGhRvvcUwnVFjdPly5fVrFkzRUdHq379+pKuP3V/48aN6tatm3r37u1YF8dT8XLld1+euLg4hYSEKCoqqsB1vfDCCzp+/Lg6deqkkJAQnTp1Sh988IGuXLmid999t9j35U40YcIErV+/Xr169dKlS5e0ePFip+VDhw6VJOanUsCVsUpNTWWOcjNXxuncuXPMUWWRQZly//33m+rVq5ucnJx8y06cOGEGDhxoIiIijLe3t6lQoYJp0aKFmT9/vsnNzXVDtdZQq1YtI6nAr5MnTzr6fffdd6Zr166mQoUKpkqVKmbIkCHm3Llz+dZ37do1M2vWLFOrVi3j5eVlGjZsaBYvXlyCe3RnKmqcTp48WehySWb48OGOdW3evNl06dLFBAUFmfLly5sqVaqYrl27mm3btrlvB+8QRY3T5cuXzdChQ03dunVNhQoVjN1uNw0bNjSzZs0yV69ezbc+jqfi4+rvvsOHDxtJZvz48YWua8mSJaZ9+/YmMDDQeHp6mmrVqpm+ffua/fv3l8Ce3Jk6dOhww99pv8T85F6ujBVzlPu5Mk7MUWWTzZhf3ckNAAAAAIAFcA8xAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAAAAMCSCMQAAAAAAEsiEAMAAAAALIlADAAAAACwJAIxAAC34NSpU7LZbJo2bZq7S3Gr0vpziIqKUkREhLvLAACUcgRiAAAAAIAlEYgBAAAAAJZEIAYAAAAAWBKBGABQIlJTUzVlyhS1bt1aAQEB8vb2Vv369fXqq68qJydHkvQ///M/stls+vvf/57v87m5uQoLC1OLFi2c2t9//33dfffdstvtqlevnubOnavY2FjZbDbt2LHjpuv8v//7P3Xt2lW+vr4KCAjQ8OHDlZSUJJvNphEjRtzwszfabkREhKKiovK1b9q0SV27dlXVqlXl4+OjyMhIjR07VlevXnX0uXLliiZNmqQ6derIbrcrJCRETz75pBITE53WlZGRoT/96U+KjIyUj4+PqlatqiZNmujPf/5zvu3GxcWpTZs2qlixonx9fdW+fXtt2bLFpZ+RK3JzczVnzhw1bdpUPj4+8vPzU/fu3bVv3z5Hn0OHDslms+nll18ucB1t27ZVUFCQ478PSTp8+LCio6NVo0YN2e121a1bV9OnT1d2dvZtqx0AYB2e7i4AAGANCQkJ+sc//qEBAwZo2LBhys3N1aZNmzRlyhSdPHlSH330kbp27aoaNWpo8eLFGjVqlNPnt2/froSEBE2cONHR9sYbb2jSpElq2bKlXnvtNaWnp+vNN99U9erVb6nGY8eOqV27djLG6LnnnlNISIg2bNigbt26/aZ9L8ycOXP07LPPqnbt2nr22WcVGhqqEydOaNWqVfrzn/8sLy8vZWdn6+GHH9bOnTv16KOPqn379jp06JDmz5+vLVu2aP/+/apWrZok6ZlnntGiRYs0evRoNWnSRJmZmTpy5Ii2b9+uV155xbHdSZMm6Y033lCvXr00a9YsXbt2TUuWLFG3bt20cuVK9e3b9zfv25AhQ7R8+XJFR0dr1KhRSktL00cffaR27drp3//+t1q3bq177rlHLVq00JIlS/Tqq6/KZrM5Pn/8+HHt2rVLzz//vDw9r/+5snfvXnXq1EmBgYEaM2aMqlevrj179mjGjBk6ePCgVq9e/ZvrBgBYjAEAoARkZWWZ7OzsfO3Dhg0zHh4eJiEhwRhjzPPPP29sNps5deqUU78RI0YYT09Pc/78eWOMMRcvXjTe3t6madOmJjMz09Hv7NmzpnLlykaS2b59+03VOHDgQCPJfP3114623NxcR/vw4cMd7SdPnjSSzNSpUx1tCxcuLHS7tWrVMh06dHB8f/r0aVO+fHnTuHFjk5KSkq9/bm6uMcaYv//970aSeemll5yWL1261EgyY8aMcbRVrVrVPP300zfcx7179xpJZtq0aU7t2dnZplWrVqZWrVqObbuioJ/DypUrjSQTGxvr1DclJcWEh4eb9u3bO9reeecdI8n8+9//duo7bdo0I8ns37/f0Xbvvfeahg0bmrS0NKe+7777rpFkPv/8c0dbhw4dTK1atVzeDwCANXHJNACgRHh5eTnO9GVnZ+vSpUtKSkpSly5dlJub67iUNiYmRsYYLV682PHZjIwMrVq1Sl27dnWc/d2yZYsyMzP1hz/8QXa73dE3ODhYQ4YMuen6rl27po0bN6pt27a67777HO02m01//OMfb2mfb2TlypXKzs7W1KlTValSpXzL886WrlmzRp6ennrxxRedlj/66KOqV6+e1qxZ42jz8/PT7t27derUqUK3+/HHH8tms2no0KFKSkpyfCUnJ6tnz546ffq0jh079pv2bcmSJapatap69OjhtI2srCx16dJFO3fuVEZGhiQpOjpanp6eWrRokdM6Fi9erAYNGqh58+aSpG+//VbffvutBg8erIyMDKf15p3Bv52XfAMArIFADAAoMXPmzFHDhg3l7e2tgIAABQYGKiYmRpKUnJwsSWrevLkaNmzoFIjXrVun1NRUR19JOnnypCTp7rvvzredgtqKcuHCBV25cuW2ra8oeaGzadOmN+x38uRJhYWFyc/PL9+yBg0aKCEhwXG/8V//+lcdPXpUtWvXVoMGDTRmzJh8IfHQoUMyxqhu3boKDAx0+sp7l/D58+d/074dOnRIly9fVvXq1fNt4x//+IeuXbumpKQkSVL16tXVtWtXrVy5UllZWZKkr7/+Wj/88IPTeB86dEiSNHny5HzrzBuf31o3AMB6uIcYAFAi3n77bf3xj39U9+7dNWHCBAUFBcnLy0vffPONXnzxReXm5jr6xsTEaNKkSdq3b59atmypRYsWqXLlyurdu7cb96Bov7wH9teuXbt205+5WX369NGpU6e0ceNG7dixQ+vXr9ff/vY39enTR6tWrZKHh4dyc3NVrlw5xwPMCtKoUaPfVEdubq6CgoLynfX9pcDAQMf/HzZsmDZu3KhPPvlEAwYM0KJFi+Th4eF0pj/vv48XXnhBXbp0KXCdISEhv6luAID1EIgBACVi8eLFql27tj799FN5ePy/C5SOHz+er++QIUP08ssva/HixQoPD9fmzZs1bNgw+fj4OPpERERIko4cOaL27ds7ff7IkSM3XV9gYKB8fX0L/Kyr6/P395ckXb582ak9MzNTiYmJuuuuuxxtkZGRkqT//Oc/ql27dqHrrFOnjjZv3qzU1NR8l1Z///33Cg0NlZeXl6MtICBAMTExjkvP//CHP2j+/Pn63//9X0VFRalevXratGmTateurbp167q0XzerXr16+uyzz/TAAw84jVlhHnnkEVWuXFmLFy9W7969tXz5ckVFRalmzZpO65Sk8uXLq3PnzsVSNwDAerhkGgBQIsqVKydJMsY42jIyMvTee+/l6xsWFqaoqCh9/PHHiouLU05OjtPls5LUpUsX2e12zZs3z3GprSQlJiYqLi7ulurr3r27vvrqK+3evdtp2dtvv+3SOvJC2+eff+7U/t577+U7QzxgwACVL19eM2bMUFpaWr515f2c+vTpo5ycHM2ePdtp+YoVK3Ts2DHHE6GvXbvmuOw8j81mU5MmTSRJFy9elCQNHTpU0vVLj395Vj7PTz/95NK+3khMTIxycnKcnmx9o234+PhowIAB2rhxo+Li4pSUlJRvvJs3b64GDRpo3rx5OnPmTL51ZmZmKjU19TfXDgCwFs4QAwBKRL9+/TR58mT16NFD/fr106VLlxQbG1vgA6Wk66Fq5MiRmjZtmsLDw9WhQwen5QEBAZo6dapefvllPfjggxo8eLDS09P1wQcfKDIyUvv27bvpy5FnzpypTZs2qUuXLhozZoxCQ0O1YcMGXbhwQVLRlzfXr19fDz30kObNmydjjBo1aqRdu3bpyy+/dLwaKU/NmjX19ttv69lnn1WTJk0UExOj0NBQnT59WitXrtTXX3+tKlWqaMSIEYqNjdWMGTN0/PhxPfDAAzp8+LDef/99hYeHa+rUqZKuv+c5ODhYvXv3VtOmTVW9enUdO3ZM8+bNU3BwsDp16iRJuu+++zRlyhTNnDlTx44dU//+/VWjRg0lJCToq6++0g8//FDgWfubMWjQIH366ad6++23tW/fPvXo0UNVqlTRmTNn9Pnnn8vLy0vbt293+kxMTIwWLFig5557Tj4+Purfv7/TcpvNpn/961/q1KmTGjVqpCeeeEL169dXSkqKjhw5olWrVmn16tUFvusZAIBCufMR1wAA68jJyTEzZswwtWvXNl5eXuauu+4yM2fONFu2bDGSzMKFC536p6SkmAoVKhT4yqFfmjt3rqlXr57x8vIydevWNXPmzDHvvfeekWR2795903UeOHDAdOrUyfj4+JiqVauamJgYc+LECSPJ6ZVGBb1uyBhjEhISTJ8+fYyvr6+pVKmS6devn/nxxx/zvXYpz4YNG0zHjh1NpUqVjI+Pj4mMjDTPPvusycrKcvRJS0szL7zwgomIiDDly5c3NWrUMI8//rg5e/aso09WVpaZNGmSadmypalataqx2+0mIiLCjB492pw+fTrfdteuXWseeugh4+fnZ+x2u6lVq5bp3bu3Wbp06U39vAr7OeTm5poFCxaYNm3amIoVKxofHx9z1113mejoaPPZZ5/lW09ubq4JDw83kkx0dHSh2ztx4oR54oknTM2aNU358uVNYGCgue+++8yMGTPMxYsXHf147RIAwBU2Y35x7RoAAHeAsWPHau7cuUpMTFRQUNBvXt/+/fvVsmVLvfbaa5o0adJtqBAAAJQG3EMMACiz8t5l+0uJiYn617/+pUaNGt1SGP71Oo0xevPNNyWp0KcbAwCAsol7iAEAZda2bdv08ssvq2/fvgoLC9PJkyf14YcfKi0tTa+//rok6erVq7p06VKR68oLz40aNVLXrl1177336sqVK1q/fr2+/PJLPfroo2rRokWx7k9pcuHChUJfFZXHz8/PpadIAwBQWnHJNACgzDp69KgmTpyovXv36uLFi/L29larVq300ksvOR4itWPHDnXs2LHIdeVNhxMmTNCGDRsUHx+vnJwc1alTR0OGDNELL7yg8uXLF+v+lCYRERE6ffr0DfssXLhQI0aMKJmCAAAoBgRiAMAd7fLly9q/f3+R/Xi3rbOdO3cWeEn6LzVs2FDBwcElVBEAALcfgRgAAAAAYEk8VAsAAAAAYEkEYgAAAACAJRGIAQAAAACWRCAGAAAAAFgSgRgAAAAAYEn/H3C5Z+p0p6NaAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1200x240 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "draw_box(df[df['stroke'] == 0], 'avg_glucose_level', 'Stroke = 0')\n",
+    "draw_box(df[df['stroke'] == 1], 'avg_glucose_level', 'Stroke = 1')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Quan sát biểu đồ:</strong> <br>\n",
+    "<ul>\n",
+    "<li>Nhóm không bị đột quỵ: max của chỉ số đường huyết trung bình thấp hơn 175, có trên 75% thuộc nhóm đường huyết dành cho người bình thường (đường huyết < 140), chỉ có một phần nhỏ thuộc nhóm tiền tiểu đường (140 ≤ đường huyết < 200 ). Nếu ta không quan tâm đến các điểm ngoại lệ của biểu đồ này thì không xuất hiện người bị béo phì thuộc nhóm này.\n",
+    "</li>\n",
+    "<li>Nhóm bị đột quỵ: chỉ số Q2, Q3 và max của biểu đồ cao hơn rất nhiều so với nhóm không bị đột quỵ. Có xấp xỉ 25% người bị béo phì trong nhóm này (đường huyết > 200).\n",
+    "</li>\n",
+    "\n",
+    "</ul>\n",
+    "\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 163,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Expected ij:\n",
+      "[[ 208.61674363 3981.38325637]\n",
+      " [  18.72073881  357.27926119]\n",
+      " [  20.66251757  394.33748243]]\n",
+      "Chi-Square value: 92.80248397931284\n",
+      "Degree of Freedom:  2\n",
+      "p-value: 0.0\n",
+      "Có mối tương quan giữa lượng đường trung bình và đột quỵ.\n"
+     ]
+    }
+   ],
+   "source": [
+    "normal_glu_df = df[(df['avg_glucose_level'] >= 0) & (df['avg_glucose_level'] < 140)]\n",
+    "prediact_glu_df = df[(df['avg_glucose_level'] >= 140) & (df['avg_glucose_level'] <= 200)]\n",
+    "diact_glu_df = df[df['avg_glucose_level'] > 200]\n",
+    "normal_glu_stroke_count = normal_glu_df[normal_glu_df['stroke'] == 1].shape[0]\n",
+    "normal_glu_nostroke_count = normal_glu_df[normal_glu_df['stroke'] == 0].shape[0]\n",
+    "prediact_glu_stroke_count = prediact_glu_df[prediact_glu_df['stroke'] == 1].shape[0]\n",
+    "prediact_glu_nostroke_count = prediact_glu_df[prediact_glu_df['stroke'] == 0].shape[0]\n",
+    "diact_glu_stroke_count = diact_glu_df[diact_glu_df['stroke'] == 1].shape[0]\n",
+    "diact_glu_nostroke_count = diact_glu_df[diact_glu_df['stroke'] == 0].shape[0]\n",
+    "\n",
+    "\n",
+    "H0 = \"Không có mối tương quan giữa lượng đường trung bình và đột quỵ.\"\n",
+    "H1 = \"Có mối tương quan giữa lượng đường trung bình và đột quỵ.\"\n",
+    "\n",
+    "\n",
+    "normal_glu_arr = [normal_glu_stroke_count, normal_glu_nostroke_count]\n",
+    "prediact_glu_arr = [prediact_glu_stroke_count, prediact_glu_nostroke_count]\n",
+    "diact_glu_arr = [diact_glu_stroke_count, diact_glu_nostroke_count]\n",
+    "\n",
+    "\n",
+    "nij = []\n",
+    "nij.append(normal_glu_arr)\n",
+    "nij.append(prediact_glu_arr)\n",
+    "nij.append(diact_glu_arr)\n",
+    "nij = np.array(nij)\n",
+    "\n",
+    "total_sum = np.sum(nij)\n",
+    "row_sums = np.sum(nij, axis=1)\n",
+    "col_sums = np.sum(nij, axis=0)\n",
+    "expected_ij = np.outer(row_sums, col_sums) / total_sum\n",
+    "print(\"Expected ij:\")\n",
+    "print(expected_ij)\n",
+    "chi_square = np.sum((nij - expected_ij)**2 / expected_ij)\n",
+    "print(\"Chi-Square value:\", chi_square)\n",
+    "dof = (2 - 1)*(3 - 1)\n",
+    "print(\"Degree of Freedom: \", dof)\n",
+    "p_bmi = 1 - stats.chi2.cdf(chi_square,dof)\n",
+    "alpha = 0.05\n",
+    "print(\"p-value: {:.1f}\".format(p_bmi))\n",
+    "if p_bmi <= 0.05:\n",
+    "  print(H1)\n",
+    "else :\n",
+    "  print(H0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Kiểm định Chi-square với mức ý nghĩa 5%:</strong><br>\n",
+    "<ul>\n",
+    "<li>\n",
+    "H0 : “Không có mối tương quan giữa lượng đường huyết trung bình và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "<li>\n",
+    "H1 : “Có mối tương quan giữa lượng đường huyết trung bình và bệnh đột quỵ.”\n",
+    "</li>\n",
+    "</ul>\n",
+    "\n",
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/1p2711p.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n",
+    "<div class=\"symple-box yellow center \" style=\"background: #fffdf3; border-radius: 2px; border: 1px solid #f2dfa4; box-sizing: border-box; color: #c4690e; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Kết quả kiểm định Chi-square về mối tương quan giữa đột quỵ và chỉ số đường huyết trung bình</strong>:\n",
+    "<ul style=\"background: transparent; border: 0px; box-sizing: initial; margin: 0px 0px 20px 20px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">\n",
+    "Chi-Square value: 92.80248397931284</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Degree of Freedom:  2</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">p-value: 0.0</li>\n",
+    "<li style=\"background: transparent; border: 0px; box-sizing: initial; list-style: disc; margin: 5px 0px; outline: 0px; padding: 0px; vertical-align: baseline;\">Có mối tương quan giữa lượng đường trung bình và đột quỵ.</li>\n",
+    "</ul>\n",
+    "</div>\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "\n",
+    "\n",
+    "<strong>Kết luận:</strong>  chỉ số đường huyết trung bình có ảnh hưởng nhiều đến đột quỵ. Nếu chỉ số đường huyết thuộc nhóm bị tiểu đường sẽ có nguy cơ cao mắc bệnh đột quỵ. Điều này phù hợp với nghiên cứu của y khoa\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div style=\"background: rgb(255, 233, 233); border-radius: 2px; border: 1px solid rgb(251, 196, 196); box-sizing: border-box; color: #de5959; float: none; font-family: Arial, sans-serif; font-size: 22px; margin: 0px auto; outline: 0px; padding: 15px 20px; vertical-align: baseline;\"><strong>Đánh giá độ tin cậy của bộ dữ liệu:</strong> Dựa trên các phân tích về mối tương quan giữa các đặc trưng của bộ dữ liệu phía trên, bộ dữ liệu đã thể hiện được phần lớn các nghiên cứu của y khoa. Tuy nhiên vẫn còn một số ít các nghiên cứu của y khoa mà bộ dữ liệu không thể hiện được hoặc không đủ tiêu chí đánh giá do bộ dữ liệu không đủ các thông tin cần có để xem xét. Kết luận: Bộ dữ liệu có độ tin cậy cao. </div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/2vdCUtH.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "</div>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/SWP9FMU.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 42px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 120px;\n",
+    "  background-position: 0 100%;\"> 4. Xây dựng mô hình </h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> 4.1 Tiền xử lý dữ liệu</h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<strong>Mã hóa dữ liệu: </strong>Ta sẽ biến các trường dữ liệu là kiểu object thành kiểu dữ liệu số hết. Đối với trường dữ liệu smokin_status có thư tự nên ta chuyển never smoke: 0, Unknown: 1,formerly smoked: 2,smokes: 3<br>\n",
+    "<strong>Xử lí bộ dữ liệu mất cân bằng: </strong>Do tỉ lệ số người bị đột quỵ và không bị đột quỵ trên nhau quá lớn do đó ta sẽ sử dụng phương pháp SMOTE để xử lí dữ liệu mất cân bằng<br>\n",
+    "<strong>Chuẩn hóa dữ liệu:</strong> Ta dùng MinMaxScaler để chuẩn hóa dữ liệu đối với các trường dữ liệu age, avg_glucose_level, bmi,smoking_status_encoded để giúp tăng tính ổn định khi xây dựng, huấn luyện mô hình\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 164,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def one_hot_encode(data, column):\n",
+    "    # Tạo một DataFrame tạm thời để lưu trữ kết quả\n",
+    "    encoded_data = pd.get_dummies(data[column], prefix=column)\n",
+    "    \n",
+    "    # Ghép kết quả với DataFrame gốc\n",
+    "    data = pd.concat([data, encoded_data], axis=1)\n",
+    "    \n",
+    "    # Xóa trường dữ liệu gốc\n",
+    "    data.drop(column, axis=1, inplace=True)\n",
+    "    \n",
+    "    return data\n",
+    "\n",
+    "\n",
+    "df = one_hot_encode(df, 'work_type')\n",
+    "custom_order = [['never smoked','Unknown', 'formerly smoked', 'smokes']]\n",
+    "encoder = OrdinalEncoder()\n",
+    "\n",
+    "\n",
+    "cat_cols = ['Residence_type', 'ever_married', 'gender']\n",
+    "df[cat_cols] = encoder.fit_transform(df[cat_cols])\n",
+    "\n",
+    "\n",
+    "# Áp dụng Ordinal Encoding với danh sách thứ tự tùy chỉnh\n",
+    "encoder = OrdinalEncoder(categories=custom_order)\n",
+    "encoded_data = encoder.fit_transform(df[['smoking_status']])\n",
+    "\n",
+    "# Chuyển đổi ma trận kết quả thành DataFrame\n",
+    "df_encoded = pd.DataFrame(encoded_data, columns=['smoking_status_encoded'])\n",
+    "\n",
+    "# Kết hợp DataFrame gốc và DataFrame đã được biến đổi\n",
+    "df_final = pd.concat([df, df_encoded], axis=1)\n",
+    "df_final.drop('smoking_status',axis=1,inplace=True)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 165,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "smote = SMOTE()\n",
+    "X = df_final.drop('stroke',axis=1)\n",
+    "y = df_final['stroke']\n",
+    "X_resampled, y_resampled = smote.fit_resample(X, y)\n",
+    "\n",
+    "# Tạo DataFrame mới từ mẫu đã cân bằng\n",
+    "df_resampled = pd.concat([pd.DataFrame(X_resampled, columns=X.columns),\n",
+    "                          pd.DataFrame(y_resampled, columns=['stroke'])], axis=1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 166,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "X = df_resampled.drop('stroke',axis=1)\n",
+    "y = df_resampled['stroke']\n",
+    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
+    "# Áp dụng chuẩn hóa z-score cho các cột dữ liệu\n",
+    "scaler = MinMaxScaler()\n",
+    "scaled_train_data = scaler.fit_transform(X_train)\n",
+    "scaled_test_data = scaler.transform(X_test)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> 4.2 Huấn luyện</h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ul><li>Ta dùng các mô hình học máy để huấn luyện mô hình dự đoán nguy cơ đột quỵ thông qua các dữ liệu lâm sàn.<br> \n",
+    "</li>\n",
+    "<li>\n",
+    "Các mô hình ta dùng để đánh giá bao gồm Logistic regression, Gradient boosting classifier, Support vector machine, XGBoost và cuối cùng là thuật toán học máy Stacking lấy XGBoost, Gradient boosting, Support vector machine, làm công cụ ước tính  và dùng Logistic regression làm công cụ ước tính cuối cùng\n",
+    "</li>\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<i>Sơ đồ của thuật toán học máy Stacking</i>\n",
+    "</div>\n",
+    "<ul>\n",
+    "</div>\n",
+    "\n",
+    "<div style=\"display: flex;\n",
+    "            justify-content: center;\n",
+    "            align-items: center;\">\n",
+    "<img src=\"https://i.imgur.com/OZl2Ix4.png\" alt=\"Mô tả hình ảnh\" style=\"weight: 500px; height:500px\">\n",
+    "</div>\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 167,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "model_LGT = LogisticRegression(max_iter = 100)\n",
+    "model_LGT.fit(scaled_train_data , y_train)\n",
+    "y_pred = model_LGT.predict(scaled_test_data)\n",
+    "\n",
+    "accuracy_lgt = accuracy_score(y_test, y_pred)\n",
+    "recall_lgt = recall_score(y_test, y_pred)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 168,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "graBoost = GradientBoostingClassifier(  learning_rate=0.4, n_estimators=300, min_samples_split=77, random_state=42)\n",
+    "graBoost.fit(scaled_train_data , y_train)\n",
+    "y_pred = graBoost.predict(scaled_test_data)\n",
+    "\n",
+    "accuracy_gra = accuracy_score(y_test, y_pred)\n",
+    "recall_gra = recall_score(y_test, y_pred)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 169,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "xgBoost = XGBClassifier(  objective=\"binary:logistic\", random_state=42, n_estimators = 500)\n",
+    "xgBoost.fit(scaled_train_data,y_train )\n",
+    "y_pred = xgBoost.predict(scaled_test_data)\n",
+    "\n",
+    "accuracy_xgb = accuracy_score(y_test, y_pred)\n",
+    "recall_xgb = recall_score(y_test, y_pred)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 170,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "svm = SVC( kernel = 'rbf', random_state =42,C=300)\n",
+    "svm.fit(scaled_train_data,y_train )\n",
+    "y_pred = svm.predict(scaled_test_data)\n",
+    "\n",
+    "accuracy_svm = accuracy_score(y_test, y_pred)\n",
+    "recall_svm = recall_score(y_test, y_pred)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 171,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "lgt = LogisticRegression(max_iter = 100)\n",
+    "svc = SVC( kernel = 'rbf', random_state =42,C=300)\n",
+    "grb = GradientBoostingClassifier(  learning_rate=0.3, n_estimators=500, min_samples_split=7, \n",
+    "random_state=42)\n",
+    "xgb =  XGBClassifier( n_estimators = 500)\n",
+    "clf = [('grb',grb),('xgb',xgb),('svc',svc)]\n",
+    "\n",
+    "\n",
+    "\n",
+    "classifier = StackingClassifier(estimators =clf , final_estimator=lgt)\n",
+    "classifier.fit(scaled_train_data,y_train )\n",
+    "y_pred = classifier.predict(scaled_test_data)\n",
+    "\n",
+    "accuracy_sta = accuracy_score(y_test, y_pred)\n",
+    "recall_sta = recall_score(y_test, y_pred)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> 4.3\t Đánh giá </h1>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "Ta sẽ đánh giá độ chính xác, độ tốt của mô hình thông qua các thang đo accuracy, recall. Vì đây là bài toán dự đoán bệnh do đó ta sẽ ưu tiên thang đo recall hơn precision nên ta không sử dụng thang đo presicion để đánh giá ở đây </div>\n",
+    " "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 172,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABOIAAAH+CAYAAAAxqqEBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1iUV/bA8S8dpFkRUJrYA4q994IllhijqDFijCm7ySbRrG5McV2TqInZGDfJ+tvYNbZI7A3EiohYQMEGKsUCUpQmfWZ+f7wyiBTBiINwPs8zD3Dfd945Awoz5557rp5Go9EghBBCCCGEEEIIIYSoVPq6DkAIIYQQQgghhBBCiJpAEnFCCCGEEEIIIYQQQjwHkogTQgghhBBCCCGEEOI5kEScEEIIIYQQQgghhBDPgSTihBBCCCGEEEIIIYR4DiQRJ4QQQgghhBBCCCHEcyCJOCGEEEIIIYQQQgghngNDXQegK2q1mjt37mBpaYmenp6uwxFCCCGEEEIIIYQQOqLRaEhPT8fe3h59/cqrW6uxibg7d+7g4OCg6zCEEEIIIYQQQgghRBVx8+ZNGjduXGnXr7GJOEtLS0D5BltZWek4GiGEEEIIIYQQQgihK2lpaTg4OGjzRZWlxibiCpajWllZSSJOCCGEEEIIIYQQQlR6+zLZrEEIIYQQQgghhBBCiOdAEnFCCCGEEEIIIYQQQjwHkogTQgghhBBCCCGEEOI5qLE94spLpVKRl5en6zBEBRgZGWFgYKDrMIQQQgghhBBCCCGKkERcKTQaDfHx8aSkpOg6FPEUateuja2tbaU3WRRCCCGEEEIIIYQoL0nElaIgCWdjY0OtWrUkofOC0Gg0ZGZmkpCQAICdnZ2OIxJCCCFeLKdPn2bu3LkEBgaSl5eHu7s7M2bMYNy4ceW+xuXLl/nqq6/w9/fn/v372NraMnr0aObOnUvdunVLvI9arWb16tWsXLmS8PBwcnNzady4MT169GDp0qVYWloCEB0djYuLS5mPr6+vj0qlKjKWkpLCv//9b7Zv305UVBQmJia4uLgwZcoU3nrrLUxNTcv9/IQQQgghnpaeRqPR6DoIXUhLS8Pa2prU1FSsrKyKHFOpVERERGBjY0O9evV0FKH4M5KTk0lISKB58+ayTFUIIYQop8OHD+Pp6YmpqSleXl5YWlri4+NDTEwMixcvZubMmU+8RlBQEAMHDiQrK4tRo0bh6upKaGgoBw8epHnz5gQGBhZ7fZWTk8PYsWPZvXs3bdq0oV+/fpiYmBAbG8uhQ4c4e/YsjRs3BpSE2pIlS0p87DNnzrBnzx6GDh3K3r17teMpKSl06NCBGzdu0LNnT7p06UJOTg779u3j+vXr9O/fHz8/P/T1pX2yEEII8bSqw2QeUCRPdOrUKX755RfOnj3LnTt3yMzMpHHjxnTo0IG///3vdOzYsdzPrYAk4kpIxGVnZxMVFYWzszNmZmY6ilD8GVlZWdr/ZDLDLYQQQjxZfn4+LVu25NatWwQFBeHh4QEoL0Y7d+5MdHQ0ERERODk5lXkdd3d3wsPD2bFjByNHjtSOf/fdd8yaNYt33nmHZcuWFbnPxx9/zJIlS1i4cCGzZ88uckytVgOUK0k2YsQIdu/ejY+PD2PGjNGOf/vtt8yePZuPPvqIH374QTuem5tLjx49OHPmDEePHqV3795PfAwhhBBCFFddJvOgaCJu8eLF/Pvf/6Zr1640btyYWrVqcePGDXbt2kVOTg5r1qxh8uTJFftmaWqo1NRUDaBJTU0tdiwrK0tz6dIlTVZWlg4iE8+C/AyFEEKIijlw4IAG0EydOrXYsdWrV2sAzbx588q8xrVr1zSAplOnTsWOqVQqTb169TS1atXSZGRkaMdv3bqlMTQ01PTq1etPxX/79m2NgYGBxsbGRpObm1vk2DvvvKMBNL6+vsXuN2fOHA2g2bp16596fCGEEKKmysvL07i6umpMTEw0ISEh2vGUlBRN8+bNNcbGxpro6OgnXsfNzU0DaHbs2FFk/Ntvv9UAmnfeeafYfT766CMNoFm4cGGxYyqVSqNSqcr1HF5++WUNUCxPVFpOISwsTGNqaqqxsbHRqNXqcj1GAam/F0IIIYQQHDlyBIDBgwcXO+bp6QnA0aNHy7xGfHw8QInLPvT19XF0dCQzM5OgoCDt+NatW8nPz+e1114jPT2d3377jQULFrBy5Upu375d7vhXr16NSqXijTfewMjIqMgxNzc3gCLLVUGpiPPz88PMzIxu3bqV+7GEEEIIUejQoUNcv36diRMnaivqAaytrZkzZw65ubmsWbOmzGtcv36d8PBwOnXqVKSiHmDmzJnUq1ePdevW8eDBA+347du3+emnn+jVq1exinpQXnuUp6L+zp077Nu3jwYNGhQ7VtoKOzc3N1q1akVCQgJpaWlPfIxHyWYNQgghhBCCyMhIAJo1a1bsmK2tLRYWFtpzSlO/fn0AoqKiih1Tq9XExsYCEBERwYABAwA4e/YsoCwXadGiBXFxcdr7GBsbs3DhQj7++OMyH1ej0bBy5UoA3nrrrWLHp02bxm+//caSJUs4e/astkfc3r17ycjIYPPmzdjb25f5GEIIIYQo2fOazAsJCSEoKEj7GuLxybydO3cSGxtLw4YN8fT0pFGjRuWKv2Ayz8vLi//85z/lus/169e5evUqDg4OWFtbl+s+BSQRV4lUag3BUfdISM/GxtKUzi51MdCvfruv/vOf/2T79u2EhoYC4O3tTUpKCtu3b9dpXEIIIYQov9TUVIBSX0xaWVlpzylN8+bNadKkCadPn2bPnj0MHz5ce2zJkiUkJycDStKtQMFO5/PmzWPQoEEcPHgQBwcHjh07xttvv82MGTNo2bIlQ4cOLfVxjx49yvXr1+nZsyctWrQodtzMzIxDhw7x3nvvsWbNGo4fPw6AgYEBH3zwAd27dy/zeQkhhBCidNVlMm/KlCmlJuKCg4PZu3cveXl5xMTEsHPnToBifW/LQxJxlWR/eBzzdl0iLjVbO2ZnbcrcEa0Z4manw8iEEEIIISqHnp4ev/zyCyNGjGDkyJGMHj0aV1dXzp8/j6+vL+7u7oSFhRVZJlKwGYONjQ0+Pj7UqlULgOHDh7N8+XKGDRvG999/X2YibsWKFYBS+VaSxMRERo0aRWJiInv37qVHjx5kZmayY8cOZs6cye7duzl79myxDbyEEEII8WTVZTKvpERigeDgYObNm6f9umHDhqxdu7bEKsAnkR5xlWB/eBzvrT9XJAkHEJ+azXvrz7E/PK6Uez57ubm5z+2xhBBCCPGCUasg6jiEbcXaMA+g1BfKBTvOP4mnpyfHjx9n6NChHDp0iKVLl5KcnMy2bdvo06cPoCTdChRcc+DAgdok3KPXMjEx4cyZM6U+XmpqKj4+PlhZWTFu3LgSz/n44485efIkPj4+DB06FCsrK2xtbXnnnXf4+uuvuXbtWrmXogghhBDi2SuYzDMyMmLkyJG8+uqrzJo1C09PT2bOnIm7uztAmZN5rVu3xtLSUjuZB/D999+X+bhPmswr8P7776PRaMjMzOT8+fMMGTKEoUOHsnjx4go/V0nElYNGoyEzN79ct/TsPObuvIimpOs8/PjPnZdIz84r1/U0mpKuVLq+ffvy/vvv89FHH1G/fn08PT0JDw9n6NChWFhY0LBhQyZPnkxSUpL2Pmq1mm+//ZamTZtiYmKCo6MjX3/9tfb47Nmzad68ObVq1aJJkyZ88cUX5OXlPcV3UgghhBBVxqWdsMQN1rwMPtNolh4IQOThjcVOjY+PJyMjo8yZ4kd16dKF3bt3c//+fbKzszlz5gyjR48mLCwMgI4dO2rPLVhKWrt27WLX0dfXx9LSkqysrFIf67fffiMrK4sJEyYUS+QV2LdvH3Xr1qVNmzbFjvXr1w+AkJCQcj03IYQQQhRVMKlWHSfzHmdmZkabNm1YvXo1Q4YMYfbs2YSHh5frvgVkaWo5ZOWpaP3lgWdyLQ0Qn5aN+z99y3X+pX95Usu4Yj+mNWvW8N5773HixAlSUlLo378/b731Fj/88ANZWVnMnj2bcePGcejQIQA+/fRTfv31V3744Qd69uxJXFwcV65c0V7P0tKS1atXY29vT1hYGNOnT8fS0pJZs2ZVKC4hhBBCVBGXdsKWN+CRqcM+ToYsCMjF97eleA3rDa0Ldyw7cEB5HVTwIvhpxMTEEBAQQOvWrbWz2gD9+/fn66+/5tKlS8Xuk5iYSFJSEs2bNy/1ugUz2SVt0lAgNzeX7OxscnNzMTY2LvYYACYmJhV6PkIIIUSNplZBTCBk3KVZA2Vn0cjISDp06FDktILJvM6dO5frsgWTeY9bsmQJUPHJvLJ2NC2YzHvjjTeoVatWhXc/HTx4MHv37uX48ePaHdrLQyriqqFmzZrx7bff0qJFC/z8/GjXrh3ffPMNLVu2pF27dqxcuZLDhw8TERFBeno6P/74I99++y1TpkzB1dWVnj17Fnkx+/nnn9O9e3ecnZ0ZMWIEn3zyCVu2bNHhMxRCCCHEU1OrYP9seKx+f0ATA5rU0WNDWB6hKz5SzkOZLf7mm28wNjbmjTfe0J5fMHH3+Ox3RkZGsYr+1NRUJk+ejEqlYsGCBUWO9enTh1atWuHv74+fn592XKPRMGfOHIBSZ6lDQ0M5d+4cbdq0KfLC/HE9evQgPz+f+fPnFxnPzs7mq6++Agor44QQQgjxBI9V1fdJ+wMA3y3Li51a2ZN5QJmTec7OzqVetzyTeWW5c+cOAEZGRhW6n1TElYOZkQGX/uVZrnODo+7hver0E89bPbUTnV3qluuxK+rRDPT58+c5fPgwFhYWxc67fv06KSkp5OTkaHcdKcnmzZtZunQp169fJyMjg/z8fGlmLIQQQlR1Gg3kZkDmPci69/Djfbh5GtLuFDvdUF+P5SPM8FyfSe+fovC68wqW9s3w8fEhJiaGxYsXF3kx++mnn7JmzRpWrVqFt7e3dnz79u3MmTOH/v37Y29vT0JCAjt37iQxMZH58+czcuTIIo9rYGDAqlWr6N+/P8OGDWPMmDE0btyYgIAAgoODad++Pf/4xz9KfIrlfQG9YMECAgIC+Oqrr/Dz86N79+5kZWWxb98+YmJi6NatW5EkoxBCCCFKUUJVvTKZp8+Gnf78zWcJHq9+BJQ9mZeamoqdnV2RJasZGRmYm5ujp6enHavIZN6gQYOAZzuZd+bMmRKPh4aGsmzZMoyMjBg4cGCp9y+JJOLKQU9Pr9zLQ3s1a4CdtSnxqdkl9onTA2ytTenVrAEG+nolnPHnmZubaz/PyMhgxIgRLFq0qNh5dnZ23Lhxo8xrnTx5kkmTJjFv3jw8PT2xtrZm06ZNT2x4KIQQQohnSJWnJNGKJNUe/3i/+DnqivV07ediSMCb5sw9ks3m3QfJUx3E3d2dRYsWMX78+HJdw93dnbZt2+Lr60tSUhLW1tZ07dqVGTNmlFp11qVLF4KDg5k7dy7+/v6kpaXh6OjIp59+ypw5c4q8timQnZ3Nb7/9hqmpKa+//nqZMbVr145z587xzTffcPjwYX766ScMDQ1p1qwZ8+fPZ+bMmcWWrAohhBDiMaVU1SuTeabKZN6kmXjtv4illVW1mMwbO3YshoaGdOjQAUdHR3Jzc7l69Sp+fn5oNBp+/PHHMqvuSiKJuGfMQF+PuSNa8976c+hR9J9nQdpt7ojWlZaEe1z79u3x8fHB2dkZQ8PiP+5mzZphZmaGv79/if8AAwMDcXJy4rPPPtOOxcTEVGrMQgghRLWl0UBOupIo0ybNypFgy6lYz5IiDE3BrC7UqgtmdZQX0bGBpZ7euZEB+yaZQ50m0O0v4D5Wud9jVq9ezerVq4uNt23bll27dlU4zJdeeomtW7eW+3xTU1Pu3btX7vObN29eYrxCCCGEKKfoEyVW1cNjk3mbNpKnUleLybw5c+awe/dugoKC2LVrF2q1Gjs7OyZOnMj7779Ply5dyvXcHiWJuEowxM2O/77ennm7LhGXmq0dt7U2Ze6I1gxxs3tusfz1r3/l119/ZcKECcyaNYu6dety7do1Nm3axPLlyzE1NWX27NnMmjULY2NjevToQWJiIhcvXmTatGk0a9aM2NhYNm3aRKdOndizZw/btm17bvELIYQQVVZ5q9Qe/7qCVWqF9MDU+mFCrW4JH+uUPG782E6iapXS1yUtjsdntIu4fwP2fgIHPoNWI6D9ZHDuDfrSYlgIIYSoUVJuwvmNEPx/ZZ6mncx7dYUykVeKF2ky7+233+btt9+ucExlkURcJRniZseg1rYER90jIT0bG0tTOrvUfW6VcAXs7e05ceIEs2fPZvDgweTk5ODk5MSQIUPQf/hC+osvvsDQ0JAvv/ySO3fuYGdnx7vvvgvAyJEj+fjjj3n//ffJyclh+PDhfPHFF/zzn/98rs9DCCGEqDSPVqlpk2b3i35dUkLtWVaplZZce/SYWW3Qr3jv2GL0DWDIoof9XUqp3x/9C2SnQcg6uBsO4VuVW20naPc6eEwE68Z/PhYhhBBCVE15WXBlD4SshxtHKHPy7nEWDSsrqmpBT/P4tlY1RFpaGtbW1qSmphbbeCA7O5uoqChcXFwwNTXVUYTiz5CfoRBC1FC6qFIzq60kzP5MlZouXNqp9Hl5dImJVSMYshBaP+zBotHAnRAlIRe29ZHkox649leq5FoMA0OT5x6+EEIIIZ4x7d/99coEXPYjO6M79wKPSeA/D9LjKTkxpwdW9vBR2LOZPHzOysoTPUtSESeEEEKIqqc8VWrFPt6H3PSnf8zyVqk9+tHU+oV8oQkoybaWwyEmEDLuKrPXTt2LPh89PWjUXrkN/hou71KSctHH4bq/cjOrC229oN1kaNhad89HCCGEEE/nQRJc2Kwk4BIuFY5bOyhV8B4ToY6zMmZsXnZV/ZCFL+5ro+dEKuKkIq5akp+hEEJUIaq80pNnpW5Y8Cyq1Epb6lmFq9ReFMnXIfQ3CN0A6XGF4/btlSo5t1eVJKUQQgghqiZVPlzzU5JvEftBna+MG5oqvWE9JoFLn5J7w5anqv4F9Lwq4iQRJ4m4akl+hkKU7fTp08ydO5fAwEDy8vJwd3dnxowZjBs3rtzXuHz5Ml999RX+/v7cv38fW1tbRo8ezdy5c6lbt26J91Gr1axevZqVK1cSHh5Obm4ujRs3pkePHixduhRLS8si58fFxfH555+zd+9e7t+/j5OTE2+88QazZs3CyMiozPju37+Pm5sbd+7cwdPTk/3795f7uYlSaDTK0sQiSTOpUqvRVPlw/RCErIWr+x55EW8GL41WquScuiuVdUIIIYTQvcSrSvLtwmalIr6AfXulD6zbq8qE5pOoVWVX1b+AZGmqEEKISnH48GE8PT0xNTXFy8sLS0tLfHx8GD9+PDdv3mTmzJlPvEZQUBADBw4kKyuLUaNG4erqSmhoKEuXLmX//v0EBgZSr169IvfJyclh7Nix7N69mzZt2uDt7Y2JiQmxsbHs3buX+fPnF0nExcfH06VLF27dusUrr7xCs2bNOHr0KJ9//jnBwcFs374dvTLe3L///vukpqaWerzGy89VEmpPSqI9Xr1WkGipsDKq1B6vUHs04SZValWbgSE0H6zcMhLhwiY4tw6Sriq7q53fCHWbKC/s204Eq+e3c7wQQgghHspOhfA/lGr2W6cLx2vVV9pLeEyqeHsJfQNw6fVs46whpCJOKuKqJfkZClGy/Px8WrZsya1btwgKCsLDwwOA1NRUOnfuTHR0NBERETg5OZV5HXd3d8LDw9mxYwcjRxaWn3/33XfMmjWLd955h2XLlhW5z8cff8ySJUtYuHAhs2fPLnJMrVYDaHdzBpgyZQpr167lv//9r3YnZ41Gw8SJE9m0aRMbNmxgwoQJJcbn4+PD2LFj+emnn3j//ferd0VcQZVauXf7fBZVamaPJdFK26hAqtRqJI0Gbp1RquTC/4DcDGVczwCaDVKq5Jp7gkHZVa1CCCGE+BPUaogJUKrfLu2E/CxlXM9A+Tvc7nVoNlj+Hj9ClqZWMknEVW/yMxSiZL6+vnh6ejJ16lRWrlxZ5NiaNWvw9vZm3rx5fPnll6Ve4/r16zRt2pROnToRHBxc5JharcbGxoasrCwSEhIwNzcH4Pbt2zg7O9OtWzeOHTv2xDjT09Np0KABjRo14tq1a0Uq32JiYnB2dqZfv34cOnSo2H0TExN56aWXGDJkCP/6179wcXF5cRJxVblK7dGPRmbP8lmL6iwnAy5tV6rkbgYVjpvbFG7w0KC5zsITQgghqp2UWAjdqFS/pcQUjtdvoSTf2owHy4a6i68Kk6WpQgghnrkjR44AMHjw4GLHPD09ATh69GiZ14iPjwfAxcWl2DF9fX0cHR0JCQkhKCiIAQMGALB161by8/N57bXXSE9PZ+fOncTGxtKwYUM8PT1p1KhRkeucPHmSnJwcBg0aVGz5qZOTEy1atODEiROoVCoMDIpWWb377rsYGBjw448/6m5p6pOq1EpLrhVUDj2NYlVqjyfRShiTKjVR2UwslBf97V6HxAgIXa+8OXiQAIFLlZtDFyUh99IryvlCCCGEqJi8LLi8W/k7e+Mo2t1MTayUnm/tXodGHaRnaxUhiTghhKhBIiMjAWjWrFmxY7a2tlhYWGjPKU39+vUBiIqKKnZMrVYTGxsLQEREhDYRd/bsWQBSUlJo0aIFcXGFuywaGxuzcOFCPv7443LFWTB+9epVYmJiaNKkiXZ8/fr1/PHHH2zfvp06deo8m0Rcfu4TdvuUKjUhyqVBcxj0L+j/BUT6KlVykb5w85Ry2/8PJRnXbjI4dJY3C0IIIURZNBq4c05ZehrmAzmPvO516a38PW35svTbrYIkESeEEDVIQWLK2tq6xONWVlZPTF41b96cJk2acPr0afbs2cPw4cO1x5YsWUJycjKgJN0KJCQkADBv3jwGDRrEwYMHcXBw4NixY7z99tvMmDGDli1bMnTo0HLH+eh5AHfu3OFvf/sbEyZMYNSoUcXvVCWr1EqoWpMqNVHdGRhBy+HKLT0eQjcobyLuXYeQdcqtYPlM2wlg0UDXEQshhBBVR0aCsuNpyG+QeLlw3NoRPCaCxwSo46yz8MSTSSKuMlXD7XyFEEJPT49ffvmFESNGMHLkSEaPHo2rqyvnz5/H19cXd3d3wsLCimy8ULAZg42NDT4+PtSqpczMDR8+nOXLlzNs2DC+//57bSLuiR5ej+QbEP0AMu/x1vTPMSKPpa/Ywva/Kkm02NvKeVHH4F/1QKN62mdddCfPIks9pUpNiKdmaQu9ZkDPjyH2pFIld2m7suuq3xfgPw+aD4H2b4DrAGWXViGEEKKmUeVBpJ8ycRV5oHDlhaEptBoJ7SaBc2945PW3qLqe6tXM6dOnmTt3LoGBgeTl5eHu7s6MGTMYN25cua9x+fJlvvrqK/z9/bl//z62traMHj2auXPnUrdu3RLvo1arWb16NStXriQ8PJzc3FwaN25Mjx49WLp0KZaWlk/zdCrHpZ2wfzak3Skcs7KHIYug9cjS71fN5OXlYWQku7AIoVOPTApYG+YBlFr1lpaWRp06dZ54SU9PT44fP878+fM5dOgQe/bswc3NjW3btuHv709YWBg2Njba8wsq2wYOHKhNwgGg0eDZuwsmJsacOX1KeYGReQ/rexeUOE+uh9qBxarU0s4pFXbWu7yhjj5rQnPZF5jN76+ZUf/iisLrpzxM2KlyQfPwd9FTVanVlhc2QlQmPT1lwtKpOwxdBBf/UJJyt8/Ald3KzdJOqZBr9zrUc9V1xEIIIUTlS7ii9H07v1npr1qgUQfl7+FLY5SWJuKFUuFE3OHDh/H09MTU1BQvLy8sLS3x8fFh/Pjx3Lx5k5kzZz7xGkFBQQwcOJCsrCxGjRqFq6sroaGhLF26lP379xMYGEi9evWK3CcnJ4exY8eye/du2rRpg7e3NyYmJsTGxrJ3717mz59fdRJxl3bCljfQNkgskBanjI9bW2nJuP379/PVV18RHh6OgYEB3bp148cff8TVVXnBeuvWLf7+979z4MABcnJyaNWqFT///DNdunQBYNeuXfzrX/8iLCwMCwsLevXqxbZt2wClCmbbtm2MHj1a+3i1a9dmyZIleHt7Ex0djYuLC5s2beKXX37h1KlTLFu2jBEjRvD+++9z7Ngx7t+/j6urK3PmzGHChAna66jVahYvXsz//vc/bt68ScOGDXnnnXf47LPP6N+/P61bt+ann37Snp+YmEijRo3Yt2+ftgeVEKIEj00KNEvPBiDy8EY6dOhQ5NT4+HgyMjLo3LlzuS7dpUsXdu/eXTjwsJfakm+/AaBjnXQ4uxoy79HCSOkJVzshCFZ4PrIE9D76GhWWBnmkPciF38Yqcd5VZvkizweCQ0ixx45MVmNsAI4N64FlPUIyEoGbvPZ7FpBV7PwD11XozUujbRt3Qs9fKNfzE0LoiKkVdPBWbncvKbP/FzZBehwE/Fu5OfWE9pOVKgDpfSOEEKI6yU6FcB9l6entM4Xj5g2UHcc9JoFNK93FJ/60CiXi8vPzmT59Ovr6+hw7dgwPDw8AvvzySzp37sycOXMYO3YsTk5OZV5n+vTpPHjwgB07djByZGFC6rvvvmPWrFl89tlnLFu2rMh9/vGPf7B7924WLlzI7NmzixwrWPJUaTQayMss37lqFeybRbEknHIhQE95U9ykb/mWqRrVqlCz4gcPHjBjxgzatGlDRkYGX375Ja+88gqhoaFkZmbSp08fGjVqxM6dO7G1teXcuXPa79+ePXt45ZVX+Oyzz1i7di25ubns3bu33I9d4B//+Afff/897dq1w9TUlOzsbDp06MDs2bOxsrJiz549TJ48GVdXV+0b/k8//ZRff/2VH374gZ49exIXF8eVK1cAeOutt3j//ff5/vvvMTExAZSG7I0aNaJ///4Vjk+IGqOESYE+ToYsCMjF97eleA3rXWRS4MCBA8o5vXtDVko5+6g9smlB3gNiUtQEBGXQuoE+7qFfQKhy7f5G+XwNXIq4ATfvFgkz8YGapEwNzRsYQ0N3qFWHrs4WGG/6Hb87FmgG/wu9WvW0VWoxyVlcndeHfv36YTjnEADdbDaT4exX7FuQkZHB5s2bady4MZ6enjg6Oj7L77AQorI1bA1DvoGB/4Sre5X+cdf8ISZAue39u7IbXPvJYN9eNngQQgjxYlKrIfq4Mvl0eSfkK5Pn6BtCM0+l+q3ZIKXPqnjh6Wk0mpIyRiXy9fXF09OTqVOnsnLlyiLH1qxZg7e3N/PmzePLL78s9RrXr1+nadOmdOrUieDg4CLH1Go1NjY2ZGVlkZCQgLm5OQC3b9/G2dmZbt26cezYsYo8v1KlpaVhbW1Namqqtul3gezsbKKionBxccHU1BRyH8A39s/kcStszh0wNn/quyclJdGgQQPCwsIIDAzkk08+ITo6usTlv927d6dJkyasX7++xGuVtyJuyZIlfPjhh2XG9fLLL9OyZUsWL15Meno6DRo04KeffuKtt94qdm52djb29vYsW7ZMu/y5bdu2jBkzhrlz55Z4/WI/QyFqGrUKlrgVXR4P5Ks1tPgpg9tpGoLebYDHgFchO4XUpLt0/iqQ6OQcrr5vhXNt5fy4dDWpORrsLPSxNi18g5uRq8HcSPm9UCA1W8OIjZkcj1WxY3oTRnZuok2eqUxq4/6XlVyOScD3f3MZNLA/mNVFY1aHt2d8zvKVq/n888+ZP3++9npTpkxh7dq1/Pe//+Xdd98FQKPRMGnSJDZu3MiGDRuKVNaWpOD3kqenJ/v37/+T31QhRJWQegtCNypJuZSYwnGbl5SEXJvxyu8eIYQQoqq7HwPnN0Lob5ASWzjeoKWSfGszHixsSr+/eKbKyhM9SxWqiDty5AgAgwcPLnbM09MTgKNHj5Z5jfj4eABcXFyKHdPX18fR0ZGQkBCCgoK0Sw63bt1Kfn4+r732Gunp6ezcuZPY2FgaNmyIp6cnjRo1qsjTqNYiIyP58ssvOXXqFElJSdpqt9jYWEJDQ2nXrl2pPfhCQ0OZPn36n46hY8eORb5WqVR88803bNmyhdu3b5Obm0tOTo62T9Tly5fJyckpdYmpqakpkydPZuXKlYwbN45z584RHh7Ozp07/3SsQlRbMYHFknAAhvp6LB9hhuf6THr/mojXyRVYGuvhczmPmFQNiweZaJNwGNXi02NZrDmTyqppHnh7ttX2Tdt+NJI5/9tD/27tsLdvTELKA3YeOExiUjrz589n5OefF3lcA2DV5tH079+fYX/5mjFjLtO4cWMCAgIIDg6mffv2/OMf/yhyn4ULF3L48GH+8pe/cPDgQZo2bcrRo0cJCgpixIgReHl5Vc73TghRtVk3hj5/h14zH1YPrFMqgBMuwv5/gN+X0GKYkpRr0k82yhJCCFG15GXB5V3K36+oRwqNTKzB/VXweB0aSZV3dVahRFxkZCQAzZo1K3bM1tYWCwsL7TmlqV+/PgBRUVHFjqnVamJjlSxwRESENjFz9uxZAFJSUmjRogVxcXHa+xgbG7Nw4UI+/vjjMh83JyeHnJwc7ddpaWllnl+EUS2lMq08YgK1PY7KNGmr0pC4PI9dASNGjMDJyYlff/0Ve3t71Go1bm5u5ObmYmZW9u59Tzqup6fH4wWUeXl5xc4rqGQs8N133/Hjjz+yZMkS3N3dMTc356OPPiI3N7dcjwvK8lQPDw9u3brFqlWr6N+//xOXQAtRo2XcLfVQPxdDAt40Z+6RbDZfhjw1uDdvyqLpExn/2tjCjQqMTCHSG86sgZ4fwmve2mu41ztP23P38A06S1LSUaytrenatSszZsygX79+JT5uly5dCA4OZu7cufj7+5OWloajoyOffvopc+bMKfa7w87OjlOnTvH555+zZ88edu3ahZOTE/Pnz2fWrFlFqvGEEDWQvj406aPcht2HsK3Km5q488rOq5e2g1VjZSc5j0lQR143CCGE0BGNBm6fU/5Ohf8BOY9snObSB9pNhlYvg9GT3xuLF1+FEnEFu+wV7H73OCsrq1J34ivQvHlzmjRpwunTp9mzZw/Dhw/XHluyZAnJycmAknQrkJCg7A4yb948Bg0axMGDB3FwcODYsWO8/fbbzJgxg5YtWzJ06NBSH3fBggXMmzevXM+zGD298i8Pde2v7I6aFkfJfeL0lOOu/Z/5DG1ycjJXr17l119/pVevXgAEBARoj7dp04bly5dz7969Eqvi2rRpg7+/P1OnTi3x+g0aNCiSBI2MjCQz88m9806cOMGoUaN4/fXXASXhGhERQevWrQElsWtmZoa/v3+JS1MB3N3d6dixI7/++isbNmwosnGDEKIEFg3LPNy5kQH7JpnDlN3g0qvU81avXs3q1auLjbdt25Zdu3ZVOKyXXnqJrVu3lvt8Ozs7VqxY8eQTS+Hs7FxsAkEIUQ2Z1YHO05Vb3AXljc6FLZB2C44ugqPfKgm7dpOh5cvKRIMQQghR2TIS4PwmZelp4pXC8dqOyiRR2wkyUVQDVXjX1D9LT0+PX375hREjRjBy5EhGjx6Nq6sr58+fx9fXF3d3d8LCwtDX19fep2B5pY2NDT4+PtoljcOHD2f58uUMGzaM77//vsxE3KeffsqMGTO0X6elpeHg4PDsn6C+AQxZ9LBBuh5Fk3EPqzeGLKyUZRJ16tShXr16/O9//8POzo7Y2NgiS70mTJjAN998w+jRo1mwYAF2dnaEhIRgb29Pt27dmDt3LgMGDMDV1RUvLy/y8/PZu3evdnOM/v3789NPP9GtWzdUKhWzZ8/GyOjJzSKbNWvG1q1bCQwMpE6dOvz73//m7t272kScqakps2fPZtasWRgbG9OjRw8SExO5ePEi06ZN016nYNMGc3NzXnnllWf83ROimnHqDsYWkJtRygkPJwXKU5krhBAvErs2YPcdDJoPV3YrSbkbRwpvprWhzTglKWfXRrexCiGEqH5UeRDpq2y8EHEANCpl3NBM2SjNYxI491Iqu0WNVKGffEElXGlVbwWN7Z7E09OT48ePM3ToUA4dOsTSpUtJTk5m27Zt9OnTB1CSbo8/7sCBA7VJuEevZWJiwpkzZyiLiYkJVlZWRW6VpvVIGLcWrOyKjlvZK+OP7FL4LOnr67Np0ybOnj2Lm5sbH3/8Md999532uLGxMb6+vtjY2DBs2DDc3d1ZuHAhBgZKUrBv3778/vvv7Ny5Ew8PD/r3719kQ43vv/8eBwcHevXqxcSJE/nkk0+K/TxK8vnnn9O+fXs8PT3p27cvtra2RTZ8APjiiy+YOXMmX375Ja1atWL8+PHaSsgCEyZMwNDQkAkTJsgGDEI8yaXtZSfhoNImBYQQokowMgX3sfDGDvjwAvSZrSxVzU6B4P/B//WC/+sNwb8qO0ULIYQQf0bCZTjwGfy7FWyaqOz2rVFB407w8hL45CqM+Z9SoS1JuBqtQrumzpkzhwULFrBx48ZiTbLj4+Oxs7Ojf//++Pv7P3VAffv25ejRo1y4cAF3d3dASeR8/fXXfPDBByxdurTYfRo0aEBaWlqRHnBPUqFdU5+WWqX0jMu4qywTc+oub3r/hOjoaFxdXTl9+jTt27cv81zZNVXUaHdCYeUQyM+CFkOVfkmPbtxg1UhJwlXSpIAQQlRZahXcOKxUKVzZAyqlXy2GptBqhFIlJ1UKQgghyisrBcJ9lKWnt88WjpvbQFsvpfrNpqXOwhMVUyV3Te3Tpw8LFizA19e3WCLuwIED2nOeVkxMDAEBAbRu3VqbhANlSeTXX3/NpUuXit0nMTGRpKQkmjdv/tSPW2n0DcrsvSTKJy8vj+TkZD7//HO6du36xCScEDVaRgJsmqQk4ZoOhPG/KeMyKSCEEMrvvqYDlduDZAjbAufWKTuuhv2u3Go7KQk5jwnKDq1CCCHEo9RqiD6mTOpc3gX52cq4viE0HwLtXlf+zhg8uY2TqJkqlIgbMGAATZo0YcOGDfztb3/Dw8MDUJaqfvPNNxgbG/PGG29oz4+LiyM1NRU7O7siS1YzMjIwNzcvsuNdamoqkydPRqVSsWDBgiKP26dPH1q1aoW/vz9+fn4MGjQIAI1Gw5w5cwAYN25cxZ65eGGcOHGCfv360bx58wo1eReixsnPgc2Tlebk9ZrCqysKE24yKSCEEEWZ14Ou70GXd+HOOSUhF+4DKTFw+Cs48o2yuVa7ydBiGBga6zpiIYQQunQ/GkI3QOhGSI0tHG/QSkm+tRkPFg10Fp54cVRoaSrA4cOH8fT0xNTUFC8vLywtLfHx8SEmJobFixczc+ZM7bne3t6sWbOGVatW4e3trR1fv349c+bMoX///tjb25OQkMDOnTtJTExk/vz5fP7558Ue99SpU/Tv35/c3FzGjBlD48aNCQgIIDg4mPbt23Ps2DHMzcu5synPaWmq0Bn5GYoaR6OBnR8oTclNrGG6P9RvpuuohBDixZKbCZd3Kkm5mMKd56lVD9p4QfvJYNNKd/EJIYR4vnIzlaq3kHUQfbxw3MRa6UPabhLYt4dHiozEi6tKLk0F6NevHwEBAcydO5fNmzeTl5eHu7s7ixYtYvz48eW6hru7O23btsXX15ekpCSsra3p2rUrM2bMoF+/fiXep0uXLgQHBzN37lz8/f1JS0vD0dGRTz/9lDlz5lQoCSeEENVO8P+UFwh6+jB2hSThhBDiaRjXUnr6tPWC5OvKsqPQDZARD0E/K7dGHZQqObdXwbQSN/8SQgihGxoN3DoDoesh/A/ISXt4QA+a9FWq31oOByMzXUYpXmAVroirLqQirnqTn6GoUW4cgXVjlF2ZBs2HHn/TdURCCFF9qPLhuj+cWwsR+0Gdr4wb1YLWo5UqOcduUg0hhBAvuvS7cGEThPwGSVcLx2s7Kcm3thOgtoPu4hOVrspWxNUkarVa1yGIpyQ/O1Fj3LsBW6YoSbg2XtD9A11HJIQQ1YuBITT3VG4ZCXB+k1KBnBQB5zcot3pNC9+kWdrqOmIhhBDlpcqDiANKBXSkr/KaGsDQDFqPUn63O/WQ3bTFMyUVcSVkOtVqNZGRkRgYGNCgQQOMjY2LbCwhqi6NRkNubi6JiYmoVCqaNWuGvvzSFNVVdhqsGASJV5SlUt57wUgqQIUQotJpNHDrtFIlF/4H5D1QxvUMoNlgpUqu2WDZMU8IIaqqu5eU5NuFzZCZVDjeuLPS9+2lMdJ+oAZ6XhVxkogr5Rucm5tLXFwcmZmZOohO/Fm1atXCzs4OY2PZ4UxUU2o1bJoIEfvAwhbePgJWdrqOSgghap6cDLi4TamSu3mqcNzcRuk11/4N6dsphBBVQVYKhG9VEnB3QgrHLRoqv689JkGDFjoLT+ieJOIqWXm+wRqNhvz8fFQq1XOOTvwZBgYGGBoaShWjqN78/wXHvwcDE5i6Dxp30HVEQgghEq8qb/DOb4QHiYXjDl2VKrnWo8HEQmfhCSFEjaNWQ9QRpe/b5V2gylHG9Q2hxVDweB2aDlTaEIgaTxJxlex5fYOFEOKZC/eBrW8qn7/yP2hbvh2rhRBCPCfankPrHvYceti71tgC3MYou6427iQbPAghRGW5F6Xsen1+I6TeLBy3eUlZetpmPJjX1118okqSRFwlk0ScEOKFdCcUVg6B/Czo/jcYPF/XEQkhhChLWpzyRjBknbLBToEGLZUm4G28wKKB7uITQojqIjcTLu9UKpOjjxeOm1qD+2vK0lP7djIJIkolibhKJok4IcQLJyMB/tcX0m5D00EwcTPoG+g6KiGEEOWh0UBMoJKQu7hdmVCBwuVR7d6ApgPk97oQQlREweY5IeuVzXNy0x8e0APXfkryreXLsqGZKBdJxFUyScQJIV4o+TmwZoTSCLxeM3jrIJjV1nVUQgghnkZ2qtJmIGQ93D5bOG5pDx4TlEq5uk10F58QQlR16fFwfhOE/gZJEYXjdZyVvm9tvaC2g87CEy8mScRVMknECSFeGBoN7HxfecNmYg3TD0H9prqOSgghxLNw9+LDDR42Qda9wnHnXkovuVYjwLiW7uITQoiqIj8XIg8ovzMj/UDzcFNFo1rQepQyieHYHfT1dRuneGFJIq6SSSJOCPHCCFoG+2eDnj5M+l3Z2UkIIUT1kp8DV/fCuXVw/RDw8CW6iTW4v6ok5aS3kRCiJiqYsLiwGTKTC8cduihLT196BUzlPb348yQRV8kkESeEeCFcPwzrX1Vm/AZ/Dd3f13VEQgghKlvqLWW3v5B1kBJbON7QTUnItRkHterqLj4hhKhsWfchbKuSgIsLLRy3sFWWnXpMggbNdRaeqJ4kEVfJJBEnhKjykq/Dr/0hOwXaToDR/5VKCCGEqEnUaog+plTJXd4Fqhxl3MAYWg5XknJN+skyLCFE9aBWwY0jSt+3y7sLf+fpGz3c1OZ1cB0ABoY6DVNUX5KIq2SSiBNCVGnZabB8ICRdhUYdwXuP7PYkhBA1WUF1yLm1EH+hcNzaQakMaTcJajvqLj4hhHha924oVcChGyHtVuF4Qzcl+eY+Dszr6S4+UWNIIq6SSSJOCFFlqVWwaSJE7AdLO3j7CFja6joqIYQQVUXceaVKLmyLsgMrAHrQpK/yprXlyzJ5I4So2nIfwKWdytLTmIDCcdPa4P6a8rvMrq2sBhHP1fPKE0kduxBCVDWHvlKScAYm4PWbJOGEEM/V6dOnGTZsGLVr18bc3JyuXbuyZcuWCl3j8uXLTJo0CVtbW0xMTHBycuLDDz/k3r17T74z8N5776Gnp4eenh7x8fGlnnf+/HkmTpxIo0aNMDExwd7enqFDh3L48OEi5wUEBDBz5kw6dOhAvXr1MDU1pWXLlsyePZuUlJQKPbcqwa4tDF8MM6/CmOXg0gfQwI3D4DMNvm8Be2dBfJiuIxVCiEIaDcSegh3vw+IWsP3dh0k4PWXJ6diVyu+14YvB3kOScKLakoo4qYgTQlQlYVuVN1EAY35VGnILIcRzcvjwYTw9PTE1NcXLywtLS0t8fHyIiYlh8eLFzJw584nXCAoKYuDAgWRlZTFq1ChcXV0JDQ3l4MGDNG/enMDAQOrVK32JkZ+fH4MHD8bc3JwHDx4QFxeHrW3xCYm1a9fy5ptvYm1tzcsvv0yjRo1ISkrizJkzvPrqq3z22Wfac21tbUlKSqJnz560a9cOPT09jhw5QkhICE2aNCEwMJCGDRs+3TetqrgfDSG/Kb2V0m4Xjtt5PFza9RqY1dZRcEKIGi0tDi5sUn5HJUcWjtdxUZbVt50A1o11F58QD8nS1EomiTghRJVzJwRWDoH8bOjxIQz6l64jEkLUIPn5+bRs2ZJbt24RFBSEh4cHAKmpqXTu3Jno6GgiIiJwcnIq8zru7u6Eh4ezY8cORo4cqR3/7rvvmDVrFu+88w7Lli0r8b6pqam4ubnRtWtXEhMTOXr0aImJuLNnz9K1a1c6duzI3r17qVOnTrHnYmhY2Mx70aJFTJ48GXt7e+2YRqPhr3/9K//973/5y1/+ws8//1yu71OVp1YpO26HrIMre0Cdp4wbmkKrkdB+Mjj1lA0ehBCVKz8XIvYpybdrfqBRK+NGtaD1aGWCwKm7VL2JKkWWpgohRE2Sfhc2TlSScM0Gw4C5uo5ICFHDHDp0iOvXrzNx4kRtEg7A2tqaOXPmkJuby5o1a8q8xvXr1wkPD6dTp05FknAAM2fOpF69eqxbt44HDx6UeP8PP/yQrKysJybFPvvsM1QqFevWrSuWhAOKJOEAZs+eXSQJB6Cnp8cXX3wBwNGjR8t8vBeKvgE0Gwjj1ihLvDwXgE1r5e9L2BZYMwL+0w6OfQdpd3QdrRCiuokPg33/gH+3hC1vQOQBJQnn0BVG/gSfRMAr/wXnHpKEq4ZehPYW3t7e2uOP36ytrYudn5mZyffff8/EiRNp2bIl+vr66OnpER0dXaHn9SjZ91cIIXQtPwc2vw7pd6B+c3h1ufJGSgghnqMjR44AMHjw4GLHPD09gScnrApe8Lq4uBQ7pq+vj6OjIyEhIQQFBTFgwIAix3ft2sWaNWvYsGEDNjY2pT5GSkoKvr6+tGvXjqZNm3L06FGCg4MxNDSkS5cudO/evcwYH2VkZAQUT9xVG+b1oNtfoOt7cPucUiUX7qMsYz30FRz+RunL1H4yNB8Khsa6jlgI8SLKvKf8bglZp2wmU8DSDtp6KTs712+mu/jEc1Fae4vx48dz8+bNP9XeYunSpezfv79c7S2WLVumbW9Rlg8//JDatWsXGcvJyWHhwoVFxhISEvjkk08AcHJyok6dOuVOCpammr7qEEKIF4RGA7tnwK1gMLUGr43KRyGEeM4iI5W+Pc2aFX+zZGtri4WFhfac0tSvXx+AqKioYsfUajWxsbEAREREFEnEJScnM336dEaPHs2ECRPKfIxz586h0WhwcHBgxIgR7N69u8jxQYMG8fvvv5c4q/24lStXAiUnH6sVPT1o3EG5eX4Dl3Yob5hjTihLxq75Qa36yhvmdpPBpqWuIxZCVHVqlbJBTMhvcGU3qHKVcX0jaDkMPF4H1/5gICmHmiA/P5/p06ejr6/PsWPHtJX1X375JZ07d2bOnDmMHTv2ie0tpk+fzoMHD0ptb/HZZ5+V2d7izTffZOzYsdr2FmX56KOPcHZ2LjKWlpZWLBFXv359fH196dChA3Xr1mXIkCEcOHCgzGs/iSxNFUIIXTq1DELXg54+jF0F9ZvqOiIhRA2VmpoKUGoCy8rKSntOaZo3b06TJk04ffo0e/bsKXJsyZIlJCcnAxTbqfQvf/kLubm5/Pe//31inAkJCQDs3r2b06dPs337dlJTU7l8+TIjR47Ez8+Pt99++4nXCQ0NZd68edjY2DBr1qwnnl9tGNcCjwkwdS98cA56fgwWtpCZBCd/gl+6wPKBcHY1ZKfpOlohRFWTfB3858MSd1j/Klz8Q0nCNXSHIYuUJfHj1kLzwZKEq0FepPYWFWVhYcGgQYOoW7fuM7um/M8QQghduX4IDsxRPh/8FTQdUPb5QghRxenp6fHLL78wYsQIRo4cyejRo3F1deX8+fP4+vri7u5OWFgY+o9sFLB582a2bNnC2rVrS9wd9XFqtdLwW6VSsWzZMkaNGgUoicItW7bQvHlzfv/9dxYvXoyDg0OJ17hx4wbDhw9HpVKxadMmbSVfjVPPFQb+E/p9DtcOKlVyEfvh1mnltv9TeOkVpUrOsav0cxKipsrJUCppQ39TKmkLmNaGNuOUjRfs2uosPKF7L0p7i0ft3r2b9PR0TExMaNWqVbFrViZJxAkhhC4kX4ffpyrNa9tOhK5/0XVEQogaSKXWEBx1j4T0bPINzABKrXpLS0srcWOEx3l6enL8+HHmz5/PoUOH2LNnD25ubmzbtg1/f3/CwsK0L5Lv3bvHX//6V4YPH87kyZPLFXNBxZ6BgQHDhw8vcszExITBgwezfPlyzp49W2IiLioqin79+pGUlISPjw/9+vUr1+NWawaG0GKIcstIgPMb4dw6SI5U3niH/gb1mipvtttOBMuGuo5YCFHZNBq4eUpJ0F/cDrkZDw/oKZPH7V6HFsPA0ESXUYoq4kVpb/GoDz74oMjXdnZ2/PTTT+W+/58hiTghhHjeslNh4wTIToHGneDlH6TKQAjx3O0Pj2PerkvEpWYDcD9FeTP1+6FgOnToUOTc+Ph4MjIy6Ny5c7mu3aVLl2K920BZngrQsWNHAGJjY0lOTmbPnj3olfJ70M7ODoCQkBA8PDxo0aIFALVq1dJutvCogsbLWVlZxY7duHGDfv36ERcXx++//87LL79crudTo1jYQI8Pofvf4GYwhKyF8G2QfA0O/lNZktbcU6mSayZLz4SodtLilGR86G/K//sCdZsomy60nQDWjXQXn6iSKqO9xaOTbc+qvQVA7969GT58OF27dqVBgwbcunWLjRs3smDBggol8v4M+csphBDPk1oFPtMh6SpY2sP49WBkquuohBA1zP7wON5bfw7NI2OmDm6kBf3Oz+v+oO/Q0Qxxs9MeK2hK3KdPn6d+zJiYGAICAmjdujXu7u4A1KtXj2nTppV4/p49e4iPj2fixImYmZlpd0lzdXXF0dGR2NhYbt26RePGjYvc79KlSwDFGjA/moTbvHmzdkmrKIWeHjh2UW5DFsLFbUqV3K1guLpXuVk0VN6Ut5ssPU6FeJHl58DVfUry7dpBZcUGgJH5w+Xpk8Cxm0wci0r1PNpbALz55ptFvm7atClffPEFjRo1KvU1ybMmmzUIIcTzdGg+RB4AQ1Pw+g0sy/cH41k7ffo0w4YNo3bt2pibm9O1a1e2bNlSoWtcvnyZSZMmYWtri4mJCU5OTnz44Yfl3s77vffeQ09PDz09PW1PiAIPHjxg/fr1jBs3jubNm2NmZkbt2rXp06cPGzdurFCcQoiiVGoN83ZdKpKEAzB19sCwti0Zl44y6/92olIrZ6SmpvLNN99gbGzMG2+8oT0/Li6OK1euFJvhzsjIQKMpevXU1FQmT56MSqViwYIF2nEHBweWL19e4q2g8u37779n+fLl2mWmenp6vPvuuwDMmTNH2zMOlP4z+/btw9nZmU6dOmnHC5aj3rlzh02bNvHKK6885XevhjKxhPZvwFt+8Ndg6P4BmDeAjLtwYgn81AFWDlF2T8wtuYm2EKIKirsA+2bD9y3h9ykQ6ask4Ry7waif4ZMIGP0zOHWXJJwoRqXWcPJ6MjtCb5ervUV5djMvaG8xdOhQDh06xNKlS0lOTmbbtm3aycA/096iLFOmTMHU9PkUSEhFnBBCPC8XfoeAH5TPR/4EjdrrJIzDhw/j6emJqakpXl5eWFpa4uPjw/jx47l58yYzZ8584jWCgoIYOHAgWVlZjBo1CldXV0JDQ1m6dCn79+8nMDBQW71SEj8/P5YtW4a5uXmJOx8dP36cyZMnU69ePQYMGMCrr75KQkICf/zxBxMnTuTEiRPPrYeDEC+KfJWazDwVWbkqMnOVj1l5+WQW+VrFpTtp2uWoj9LTN6DekL9xd8uXhP/vY8YknqBpowb4+PgQExPD4sWLi1SZffrpp6xZs4ZVq1bh7e2tHd++fTtz5syhf//+2Nvbk5CQwM6dO0lMTGT+/PnFdkJ7GjNmzGD37t2sW7eOS5cu0bt3b+Li4vDx8cHExISVK1diaFj4Mrdfv37ExsbStWtXLly4wIULF4pd85///OefjqtGaNBC2WBowFxlY4dz6+CaH8SeVG77ZoPbGKVKrnFHefMuRFWTeQ/CfoeQ9RD/yO9CSzulwtVjklS4iid6UdtblMXAwABra2uys4u/RnrWJBEnhBDPw+1zsPN95fMeH0Gb13QSRn5+PtOnT0dfX59jx45p/yB9+eWXdO7cmTlz5jB27FicnJzKvM706dN58OABO3bsKPKm+rvvvmPWrFl89tlnLFu2rMT7pqam8uabbzJ27FgSExNL3EHJ1taWdevWMW7cOIyNjbXj33zzDV26dOHnn3/mjTfeKPcfdCGqArVaQ3Z+YVIs82FiLDM3v0jyLDM3n6w8NVm5D5NoeSWPP3qNrFwVuSr1k4N4AlOnNthOWkRKwAYO7tmOnyofd3d3Fi1axPjx48t1DXd3d9q2bYuvry9JSUlYW1vTtWtXZsyY8cw2RjAxMcHPz4+FCxeyceNGfv75ZywsLHj55ZeZO3cubdsW3b0vJiYGUCYRgoKCSrymJOIqyMAIWo1Qbml3IHSD8sb+fhScW6PcGrRUEnJtvcC8hu5MK0RVoFbB9cPKxgtX94IqVxk3MFY2XGj3Orj2B30D3cYpXggvcnuLssTGxnL37t2njrEi9DSPrx2oIQpKI1NTU7GystJ1OEKI6iw9Hv7XD9LvQDNPmLBRZy90fH198fT0ZOrUqaxcubLIsTVr1uDt7c28efP48ssvS73G9evXadq0KZ06dSI4OLjIMbVajY2NDVlZWSQkJGBubl7s/t7e3uzevZtLly4xbtw4jh49SlxcXLn7OixYsIA5c+bw3Xff8cknn5TrPkKUh0ajISdfTXaeqkgVmZIAK0x8KYmx/CJJsFLPfSTZlp335xNl5aGnB7WMDDAzNqSWsQG1jA0wK/hoZMCDXBUnryc/8TrTe7kwc3ALTI3kjZkoJ40GYk4oVXKXdkD+ww0z9I2gxVAlKdd0gLzZF+J5Sb7+cOfjjcrr0AK27sr/R/fXoFZd3cUnXjgqtYaeiw4Vq6zXqFXc+fUd8tOTcX/vP4T8+DYG+nqkpqbSuXNnoqOjuXr1qrayPi4ujtTUVOzs7IosWc3IyMDc3LxIhVtqaiojRozg+PHjxYoAStO3b98S32PEx8ejUqlo1KjohiMpKSmMGTOGw4cPax+ztDzRkCFDOHDgAFFRUcX60ZaXVMQJIURlys+Bza8rL37qN4dXf9XpG5AjR44AMHjw4GLHPD09AUqsUHtUQT83FxeXYsf09fVxdHQkJCSEoKCgIluLA+zatYs1a9awYcMGbX+HiirYJfHRZWei5ihYfpldJNFVuPyyaBKteLLs0fOztEmyws8L+qJVNlMjfWoZG2JmVDRJpiTODDHVfl70eEFyzczYgFpGyrlmxvrK+MNrmRjql7pEAwpfRMenZhfrE/eoX49H4XPuNq93dWJyVycaWJo8+2+EqF709MC5p3Ib9i2E+yhJuTvn4PJO5WZpDx4TlQqcusX/jggh/qScDLi0XenZGBtYOG5WB9qMV5ae2rXRWXjixRYcde+Fbm9x5coVBg0aRPfu3WnWrBkNGjTg5s2b7N+/n+TkZHr37s2xY8eK3e+TTz4hKSkJgLCwMO2YhYUFAG+99RY9e/YsdxzyLkYIISqLRgO7P4Zbp8HUGiZsUj7qUGRkJADNmjUrdszW1hYLCwvtOaWpX19ZXhQVFVXsmFqtJjY2FoCIiIgiibjk5GSmT5/O6NGjn3prcJVKxdq1a9HT02PgwIFPdQ1RuR5ffpmlTYzlF1tK+WiyrEhyrYyKs2ex/LI8jAz0HibGlMRXQWKsICmmJMAKk2ePJsZMtZ8XnP/YNYwM0NfXXd8sA3095o5ozXvrz6EHRZJxBVGNad+IoBv3uJ2SxVL/SJYduc7odvZM69mEFraWOohavHBMraHjm8rt7kUlIXdhkzIxdXyxcnPupWwC0WoEGJnpOmIhXlwajdKjMeQ3ZYfjvIf9d/X0wXWAkvhuMRQMZUJF/Dnht0vejAFejPYWrq6ueHt7c/r0abZv305qaioWFha0adOGiRMnMm7cOOrWLV4lunXrVm2biwI+Pj7az/v27VuhRJwsTZWlqUKIynLyZzgwR3kR9LqP0ntDxwYPHoyfnx+RkZE0bVq8EW+jRo3IyMgodccjUJbvNW3alBs3brB7926GDx+uPfbvf/9bu9nDN998w6effqo9Nn78ePz8/Lh06ZK2RLy0svHSzJkzhwULFvDmm2+yYsWKcj9vUUij0ZCrUhepEMsuIVlWNDGW/9gGAI+d+8g1svJUz+V5PGn55aMVYoVjhUmxssbNjAwwMqj+G8s/3mgZwM7alLkjWjPEzY58lZr9F+NZfjyK0Jsp2nN6NavPmz1d6NOsgU4TiuIFlJ8DV/YoveSuH0KbBjaxBvex0H4y2HnIBg9ClFfaHTi/UUnA3bteOF7XFdpNUjZfsLLXXXyiWlCrNRyLTGTViWiORiSW6z4bp3elm+uT+7JVNc8rTyQVcUIIURmu+YPv58rng7+uEkm4Z0VPT49ffvmFESNGMHLkSEaPHo2rqyvnz5/H19cXd3d3wsLC0NcvTGRs3ryZLVu2sHbt2nL3gnvcsmXLWLBgAe3atePHH398Vk+nSlKpNcUSXVl5+WTlqrU9yB5dfvno8sqiibHCqrKatvxSPNkQNzsGtbYlOOoeCenZ2Fia0tmlLgYPk2uGBvq83Mael9vYczbmPisCbrA/PJ7jkUkcj0yiqY0F03q68Eq7RtJHTpSPoYmyo6rbGEi5WbjBQ2osnFmh3Bq6Kwk56V0lRMnyc5QNF0J+g+v+oHlYKW5kDm6vgMfr4NhVEtriT3uQk4/PuVusDozmRuID7biJoT45+SWvUNADbK2V1xOidJKIE0KIZy35Omydqrww8ngdur6n64i0CpqhllbxlpaWRp06dZ54HU9PT44fP878+fM5dOgQe/bswc3NjW3btuHv709YWJi2B9y9e/f461//yvDhw5k8efJTxb18+XL+8pe/4O7ujp+fn7Yfg65oNJqiSyYfqyh7PDFWYrIsr+RxWX4pnicDfb1yzVh3cKpDB6cO3LyXyerAaDafvsm1hAw+/SOM7w5c5fUujrzezQkbS9PnELWoFmo7QN/Z0PvvEHVU2c3x8m64Gwb7ZimTWS1fVpJyLn1Bv/pXqQpRprjzSvItbAtk3S8cd+yuLD1tPQpMdPv6SFQPN+9lsiYwms1nbpKenQ+ApYkh4zo58EY3Jy7HpfHe+nNAye0t5o5orZ3UEyWTpamyNFUI8Sxlp8LygZAUAY07g/dunffjUKk12oqXP/5vMWuXLWHjxo14eXkVOS8+Ph47Ozv69++Pv7//Uz9ewXLTCxcu4O7uTmhoKO3atSvXfUNCQvDw8Cgy9uuvv/LOO+/QunVrDh8+TIMGDZ54nceXXxZt1l9ysqxg+WWWNklWRmJNx8svCxNjT15+aVZCsqwmLb8UlSM9O4/Np2+y6kQ0t1OUnTGNDfQZ6WHPtJ4utLKT11biKWTeg7CtELIW4sMKx60dlWV2HpOUBJ4QNUXmPbiwBULXF/0/YWkPHhOU/xP1XHUXn6g2NBoNQTfusepEFAcv36Vg8YRLfXO8uzvzaofGWJgU1nE9qb3Fi+p55YkkESeJOCHEs6JWwUYviPQFq0Yw/TBYNtRpSI//kcy6cZaE3+cyaPR4fLdtKnLumjVr8Pb2Zt68eXz55ZdP9XgxMTG4urrSokULLl68CMDNmzeZN29esXM1Gg179u7lbnw8o14dh6GxCVM/+DvW9e20yy93b1nPioWf0tDRlbcXrUa/Vu0SkmtFm/oXJNJk+aUQlS9fpcb30l2WH7/BudgU7XiPpvV4q2cT+jSXPnLiKd0JVarkLvwOOQVV3Hrg2k+p/mn5ss4nuoSoFGqV0kMxZB1c3QeqXGXcwBhaDldWW7j2A31pCSD+vOw8FTtD77DyRBRX4tO1472a1efNHi5l/h1/dLL/8fYWLypJxFUyScQJIZ45v7lwYgkYmsKb+8G+fFVglWV/eBzvrT9XpGRco1Zx59d3yE9P5qdNe/jr2EGAslS1c+fOREdHc/XqVZydndFoNETF3iYh6R6W9RpgZGahrQq7l5KK2tCErLzCqrN7KSn8+vk7xFw8y8hPfsCuTa/CZFlefrGKstx8NfEb/kHOzXAa/3UdBhZFl8Smnz/Avf0/YVSvMQ0nfIOB+ZOXzJZEll8K8Xyci73PioAo9ofHaxPhTRqYM62nC2PaNcbMWN40iqeQl6UsWQ1ZC1HHCsfN6kCb8dBuMti66S4+IZ6VpGsQ+puy+UJ6XOG4XVsl+eY+VvomimcmPjWbdUHRbAy+yb0HSrLXzMiAMe0bMbWHM01tauYO6ZKIq2SSiBNCPFMXtsAf05XPX12hvFjSIZVaQ89Fh4qUixfIjrnA3S1fom9oRNOug8HYjJvnjpB1Lx7nYe9Qt+ur2mRZ0p4feBDuT71hH2HhPlB7jYyLh0k5uhZTpzYYWNRFnZlK5rVTqDNTse71OrW7exV73JIUJOKaf/wblnVttJVjGVGhnPjPR6DR8NKAV7Gu2wAjAz2MDPQx1Fc+Nm3lRu9Bw2T5pRBVzK37Sm+ZTcE3Sc9ResvUqWXEpC5OvNHNCRsr6SMnntK9KCVREboB0m4Xjtu3UxJybq+CWW2dhSdEheWkw8Xtyr/r2JOF42Z1HyaaJ4Gtu87CE9XPudj7rDoRzb6wOPIfTpo1qm3GlO5OjO/oiHUtIx1HqFtVOhF3+vRp5s6dS2BgIHl5ebi7uzNjxgzGjRtX7mtcvnyZr776Cn9/f+7fv4+trS2jR49m7ty51K375Ez/e++9x7JlywCIi4ur8C58kogTQjwzt8/CyqGgyoGeM2DgXF1HxMnryUz4NajU4zl3rpISsIGc25dBrcKogRNWnUZj3qp3kfMKEnG2Iz7GrtNQ7fLLvIQoIvcuJyX2KjkZKZjUsqRxizb0HuONW6fupS6/1C7NfLj8ctSwQRw/dqzY7/HVq1czderUMp/jlClTWL169Z/6PgkhKk9GTj5bTt9kVWAUN+8pfeSMDPQY0VbpI/eSvbWOIxQvrEeX7l3ZC+o8ZdzQVGlY324yOPeUXSNF1aTRQEygkny7uB3yHu5GqacPTQcqS6+bD5Gl1+KZyc1Xsy88jpUnojl/M0U73tmlLm/2cGZgq4YYysQ1UIUTcYcPH8bT0xNTU1O8vLywtLTEx8eHmJgYFi9ezMyZM594jaCgIAYOHEhWVhajRo3C1dWV0NBQDh48SPPmzQkMDKRevdJ38PLz82Pw4MGYm5vz4MEDScQJIXQnPR7+11dZQtB8CHhtrBI7u+0Ivc2Hm0KfeN6Ezg50c61fbPnl4/3OZPmlEOJpqdQa/C7Fs/x4FGdiCnf669akHm/1cqFfCxv5HSOe3oMkuLAZzq2DxMuF43VclISGx0SwstddfEIUSL0N5zcoFZ33bhSO12uqbLrQdgJYvbhN7kXVk5SRw8ZTsawLiiEhPQco3FjJu7szbo1kQuxxVTIRl5+fT8uWLbl16xZBQUHane0e7S0UERGBk5NTmddxd3cnPDycHTt2MHLkSO34d999x6xZs3jnnXe01W6PS01Nxc3Nja5du5KYmMjRo0clESeE0I28bFg9HG6fgfot4K2DYFo1fp88qSKuwMbpXenmWvrEhxBCPEuhN1NYERDF3rC4wj5y9c2Z2tOFV9s3opax4ROuIEQpNBqlQv3cWgj/A3IfNh3XVhlNflhlZKzbOEXNkpcNV/dCyHq4cRg0amXc2AJeekVJFjt0kepN8UxdvJPKqhPR7Dx/h9x85d9cA0sTJnd1YmIXR+pbSLVlaapkIs7X1xdPT0+mTp3KypUrixwr7257169fp2nTpnTq1Ing4OAix9RqNTY2NmRlZZGQkIC5uXmx+3t7e7N7924uXbrEuHHjJBEnhNANjQa2/0WZ2TStDdMPVant41VqDW3n+ZLxsD/T4/QAW2tTAmb3f+F3NxJCvHhup2SxNjCaDcGxpGcrv6dq1zJiYmdHpnR3pqH0kRN/Ru4DuLRDqZKLDSwcr1Uf2npB+zegQQvdxSeqN40G4s4rS08vbIHslMJjTj2U5FvrUWBc/L2uEE+roPp85YlogqPuacfbOtTmzR7ODHWzw9hQ96t2qrrnlSeq0LTjkSNHABg8eHCxY56engAcPXq0zGvEx8cD4OLiUuyYvr4+jo6OhISEEBQUxIABA4oc37VrF2vWrGHDhg3Y2NhUJHQhhHi2Tv6sJOH0DOC11VUqCQdwKiqZB2Uk4QDmjmgtSTghhE40qm3Gp8Na8cGAZmw9c5OVJ6KJvZfJL0eu8+vxG7zcRukjJ8tmxFMxNleWpHpMfLgT5XplOWDGXTj5k3Jr3OnhBg9jwKRm7g4onrEHyRC2BUJ+g7thheNWjZRlpx4Tq9zrRfHiS83MY/OZWNYExnA7RenHaqivx1B3O6b2cKa9Yx0dRyhKUqFEXGRkJADNmjUrdszW1hYLCwvtOaWpX78+AFFRUcWOqdVqYmNjAYiIiCiSiEtOTmb69OmMHj2aCRMmVCRsAHJycsjJydF+nZaWVuFrCCEEANcOgt8XyueeX4NrP93G85jE9Bw+3BSKBqUHU3TygyK7p9pamzJ3RGuGuEkfEiGEblmYGOLdw4XJ3Zzxu3SXlQFRBEffY1vIbbaF3KZrk7pM69mEAS2lj5x4SvWbwsB/Qr/P4ZqfUiUXsR9unVZu+z9Vlgi2nyxLBEXFqfLhur+y9PTqvsKNQwxMoOVwZdfTJv1A30C3cYpq51pCBqsDo/A5e5usPBWg7FA+sYsjk7s6Y2stleVVWYUScampqQBYW5c8O2llZaU9pzTNmzenSZMmnD59mj179jB8+HDtsSVLlpCcnAxASkpKkfv95S9/ITc3l//+978VCVlrwYIFzJs376nuK4QQWknX4Pc3lR4f7V6HLu/qOqIiVGoNH28OJTE9h+YNLVjp3QljQ32Co+6RkJ6NjaUpnV3qSiWcEKJKMdDXY4ibLUPcbDn/sI/cnrA4gm7cI+jGPVzqm/NmD2de7dBY+siJp2NgCC2GKrf0u3B+o7LranJBxdx6qNdM+dvedgJYNtR1xKIqS4pUkm/nN0FGfOG4nYfyb8jtVahVV2fhiepJrdZwNCKRlSeiOB6ZpB1vaWvJ1B7OjPJohKmRJH1fBBXqETd48GD8/PyIjIykadOmxY43atSIjIyMJybjDhw4wIgRI1CpVIwePRpXV1fOnz+Pr68v7u7uhIWFsXDhQmbPng3A5s2b8fLyYu3atUyePFl7nb59+5a7R1xJFXEODg7SI04IUX7ZqfDrAEiOVGbNp+yqclvL/3gwkh8ORmBmZMDO93vQrKEstxFCvJjupGSx5mQ0G0/Fkvawj5y1mTLbP6WbzPaLZ0CjgZunlCq5i39AXqYyrmegbOzQfjI0HaQk8YTISYeL25QE3M1TheO16kGb8crOp7ZuuotPVFsZOfn4nL3FmsBobiQ9AJTi3UGtGjK1hwtdm9RFT6p5n4kq2SOuoBKutERbWloadeo8eQ2yp6cnx48fZ/78+Rw6dIg9e/bg5ubGtm3b8Pf3JywsTNsD7t69e/z1r39l+PDhRZJwFWViYoKJSdV6wyyEeIGoVbB1mpKEs2oE49dXuSRc4LUklvhHAPDVaDdJwgkhXmj2tc34dGgr/ta/GVvP3mLliShikjP575Hr/HrsBi+3sWNazya4N5Y+cuIp6emBY1flNnShsttqyDplyerVPcrNoqFSIddusrLMVdQsGg3EnFD6vl3a/kiyVl9J0rZ7XXbjFZUmNjmTNSej2XL6JukPez9bmhoyvqMDU7o741C3lo4jFE+rQhVxc+bMYcGCBWzcuBEvL68ix+Lj47Gzs6N///74+/s/dUAFVW4XLlzA3d2d0NBQ2rVrV677hoSE4OHhUa5zZddUIUSF+H4BgUvB0Aze3A/2HrqOqIiE9GyG/RhAUkYO4zo25tuxbXUdkhBCPFMqtQb/y3dZHhBVZEe4zi51eaunCwNaNZRl9+LZSLiiJOTOb4LMwuVfOHZXquRkx8vqL/UWhG5Udj69/0hv83rNlL5vbbzASnrtimdPo9Fw8kYyq05Ec/DyXQqyNU3qm+Pdw5lX2zfG3ESqdCtLlayI69OnDwsWLMDX17dYIu7AgQPac55WTEwMAQEBtG7dGnd3dwDq1avHtGnTSjx/z549xMfHM3HiRMzMzKhXr95TP7YQQpTq/GYlCQcw+ucql4RTqTV8tCmUpAylL9y8kbIsQghR/Rjo6zH4JVsGv2RL2K1UVgTcYPeFOIKj7hEcdQ+nerV4s4cLYzvImxTxJ9m0VDZjGjBX2dghZJ2yUVNsoHLbOwvcX1Wq5Bp1kA0eqou8bLiyW0m+XT8MPMyAGFuC2yvg8To4dJaft6gU2XkqtofcZnVgNFfi07XjvZs3YGoPZ/o0ayCbFlUjFaqIy8/Pp0WLFty+fZugoCBt9VlqaiqdO3cmOjqaq1ev4uzsDEBcXBypqanY2dkV2eAhIyMDc3PzIuuYU1NTGTFiBMePH2fHjh2MHDnyifFUpEfc46QiTghRLrfOwqqhoMqBXjNhwJe6jqiYJQcjWHIwklrGSl+4pjayJFUIUTPEp2az5mQ0G07Fkpql7FZoZWrIhC6OeHd3xs7aTMcRimoj7Q6EblD6gz1aIdWglVIl18YLzKUo4IWj0UBcqPJzDftd6QdcwLmX0vet9UipgBSVJi41i3UnY9gYHMv9TOXvmJmRAWM7NGZKd2ea2ljoOMKa5XnliSqUiAM4fPgwnp6emJqa4uXlhaWlJT4+PsTExLB48WJmzpypPdfb25s1a9awatUqvL29tePr169nzpw59O/fH3t7exISEti5cyeJiYnMnz+fzz//vFyxSCJOCFGp0uLg136QHgfNh4LXBtDX13VURQReS2LSilNoNPDD+La80q6xrkMSQojnLjNXaWS9IiCK6GSlh5Ohvh7D3O14q5cLbRrX1m2AovpQqx/2DFsHl3ZAfrYyrm8ELYdBuzfAtR/oy86FVdqDJLiwRal+uxteOG7VGDwmgscEqNtEd/GJak2j0XAuNoVVJ6LYFx6PSq2kZBrXMWNKN2fGdXLA2sxIx1HWTFVyaSpAv379CAgIYO7cuWzevJm8vDzc3d1ZtGgR48ePL9c13N3dadu2Lb6+viQlJWFtbU3Xrl2ZMWMG/fr1q/CTEEKIZy4vGzZPUpJwDVrCmP9VuSRcQno2f9sUikYD4zs6SBJOCFFj1TI2ZHI3ZyZ1ceLQlQSWB9wg6MY9dp6/w87zd+jkXIdpPZswqLX0kRN/kr4+uPRSbkO/hfCtSjXVnRAlMXdph7Kpk8dEpZF/HWddRywKqPKVJcah6+HqflAr1UcYmECrl5Wfl0sfSaKKSpObr2ZvWByrTkRx/lZh9WUXl7pM7eEif6NqkApXxFUXUhEnhCiVRgPb3oULm8C0Nrx9uMrNiqrUGl5ffoqTN5Jp0dCS7X/tgZmxvHAUQogC4bdTWRkQxc7zd8h/WG3gWLcWU3s481pHByykj5x4luLDlITchc2Qdb9w3KW3UiXX6mUwkqXSOpEYoSTfzm+CjLuF4/btlKWn7mPBrI7u4hPVXlJGDr8FxbL+VAyJ6TkAGBvqM6qtPd49nHnJXnb/riqq7NLU6kIScUKIUgX+B3w/Bz0DmPwHNOmr64iK+cEvgh/9C/rC9ZT+EUIIUYq7admsPRnNb6diSXnYf8fS1JAJnR2Z0t2ZRrUlOSKeobxsuLoHzq2DG0fQNvw3tQb315QNHqrYpk/VUnYaXNymJEdvBReO16oPbcYrO582fEl38YkaIfx2KqtORLPr/B1yVWoAGlqZMLmrExM6O1LPwkTHEYrHSSKukkkiTghRosiDsOE10KiVJSdd3tF1RMUERCYxeaXSF27JeA9Gt2uk65CEEKLKy8pV4XPuFisDoriR9ABQdmId6mbLW72a4OFQW7cBiuonJfbhBg+/QWps4bitu1Il1+Y1qcR6lgr694X+Bhe3Q36WMq5nAM0GK8m3Zp5gaKzTMEX1lq9S43fpLqtORBMcfU877uFQm6k9nBnqZoexYdVqdyMKSSKukkkiTghRTFIk/DoAclKVGeuR/6lyW9QnpGUzbOlxkjJy8erkwMJX2+g6JCGEeKGo1RoOX01gRUAUgdeTteMdneowracLg1+ylR494tlSqyHqiFIld2U3qHKVcW1vsskPe5PJm/OnknITzm9UEnD3owvH6zdX+r61GQ+WFdvYT4iKSsnMZfPpm6w9GcPtFCUJXLBp0NQezrRzlKT7i0AScZVMEnFCiCKyUmD5AEi+Bg5dYcpOMKxa5eIqtYZJy4MIunGPlrZKXzhTI+kLJ4QQT+vinVRWBESx6/wd8lTKS2KHumZ4d3dhXMfGWJrKrnXiGcu8B2G/K0m5u2GF47UdweN1ZZOH2g66i+9FkZcFV/YoS08fXQJsbAluY5TkZuOOVW5CVVQ/kXfTWRUYzbZzt8nKUwFQ19yYiZ0deb2rE7bWpjqOUFSEJOIqmSTihBBaahVsGKfspGXVWNmcwcJG11EV82+/CJY+7Au364OeuDaQvnBCCPEsJKRls/ZkDOtPxRT2kTMxxKuzA1O6O9O4Ti0dRyiqHY0G4kKVhFzYVqUaHwA9cO0P7SdDi2FVblJQpzQaZXfakPXKbrXZhbtO4txLqX5rNRKM5f+rqFxqtYYjEQmsOhHN8cgk7XgrOyum9nBmZFt7mSx/QUkirpJJIk4IoeX7ubJBg6EZvLm/SjZRPh6ZyBsrg9Fo4EcvD0Z5SF84IYR41rJyVfwRcosVAVHcSCzsIzfEzZa3errI0iJROfKy4PIuOLcWoo8XjpvVVZZVtp9cszcWeJCk7EYbsh4SLhWOWzsoFYRtJ0BdF93FJ2qMjJx8tp65yZqTMUQ97DWqrweDWjdkag8XurjURU+qMF9okoirZJKIE0IAELoRtr+rfD52lbKcoYq5m5bNsB+Pk/wglwmdHVkwxl3XIQkhRLWmVms4GpHI8oAbnLhW2EeuvWNt3urVhMGtG2JoIP28RCW4d0PZ3CF0A6TfKRy3b69UfLmPVXZg1aHTp08zd+5cAgMDycvLw93dnRkzZjBu3LhyX+Py5ct89dVX+Pv7c//+fWxtbRk9ejRz586lbt26oMqHa34Qsp7Ik3v4PTyb/dfyuXZfQ1ImNGxQj34DPZnz2We0bNmyxMfYv38/ixcv5syZM+Tk5NC0aVOmTp3Khx9+iIFB0WqlU6dO8csvv3D27Fnu3LlDZmYmjRs3pkOHDvz973+nY8eOf+p7Jl5sMckPWBMYw+9nbpKekw8ou297dXLgjW7OONSVKszqQhJxlUwScUIIbp2BVcNAlQO9PoEBX+g6omLyVWomLT/FqSjpCyeEELpw6U4aK09EsTP0DrkqNQCNapsxtYcz4zs5SB85UTnUKrh+SKmSu7oP1MqSaQzNoPUopUrOqcdz74F2+PBhPD09MTU1xcvLC0tLS3x8fIiJiWHx4sXMnDnzidcICgpi4MCBZGVlMWrUKFxdXQkNDeXgwYM0d3UmcOEY6kXvgoy7AHhtzWTzxXzcXBvRs99grOo2ICwsjH379mFmZsb+/fvp3bt3kcdYunQpH374IVZWVowZM4batWtz8OBBwsPDGTt2LL///nuR8xcvXsy///1vunbtSuPGjalVqxY3btxg165d5OTksGbNGiZPnvzsvpGiytNoNAReT2bViSj8ryRQkDVp0sCcqd2dGdO+MeYmhroNUjxzkoirZJKIE6KGS4uD//WFjHhoMRzGr6+Su5V973uV/xy6hrmxATulL5wQQuhMQno260/GsC4ohvsP+8hZmBgyvpMD3t2lIkJUogdJcH4ThKyDxCuF43WbKFVybSeClV2lh5Gfn0/Lli25desWQUFBeHh4AJCamkrnzp2Jjo4mIiICJyenMq/j7u5OeHg4O3bsYOTIkUqvt/A/+G7RN8zaeo13Ohix7GUzqFUf2nqx+kot2vYeRrt27YpcZ9OmTUyYMIHWrVtz8eJF7fidO3do0qQJtWrVIiQkRBtPfn4+Y8eOZceOHWzcuBEvLy/tfbKzszE1Ld5UPzw8nE6dOmFlZUV8fLwsO6wBsnJVbA+9zeoT0Vy9m64d79uiAVN7uNCraX30ZWftaksScZVMEnFC1GB5WUol3J1z0KAVvOUHJpa6jqqYYxGJTFklfeGEEKIqyc5TsS3kNisCoriWkAEoPYKGuNkyrWcTOjhJHzlRSTQapZo/ZB2E+0Cu8u8PPX1oOkipkms+BAwqp0rT19cXT09Ppk6dysqVK4scW7NmDd7e3sybN48vv/yy1Gtcv36dpk2b0qlTJ4I3L1b6vl3aCflZqDUabL7LIEutT8KJTZh7jHric2nRogUREREkJiZSv359AFasWMFbb73F3//+d7799tsi558/fx4PDw969+7N0aNHy/W827dvT0hICCkpKVhb63ZZsKg8d1KyWBcUw8bgWO2mPbWMDRjboTFTujvLZHgN8bzyRFJLKYSoWTQa2PWhkoQzqwMTNlTJJNzdtGw+3hyKRgMTuzhKEk4IIaoIUyMDJnR2ZHxHB45FJrIiIIrjkUnsDYtnb1g87RxrM62nC0NespU+cuLZ0tMDh07KbcgCuLhdScrFnoTIA8rNvAG09YJ2b0CD5s/04Y8cOQLA4MGDix3z9PQEeGJyKz4yFACXvAhYM6LwQP0W6Ld7Hccdywk5H0ZQSh0GlCOhaGSknGNoWPi2Nj4+XnkMl+IbOBSMBQYGkpOTg4lJ2bvSXr9+natXr+Lg4CBJuGpIo9FwNuY+qwKj2R8ej0qt1Cg1rmOGd3dnXuvogLWZtB8Qz54k4oQQNUvgf5Sdt/QM4LU1yrKOKiZfpeaDjSEkP8illZ0VX77cWtchCSGEeIy+vh59W9jQt4UNV+LTWBkQxfaQO4TEpvD+hhAa1VbeyI3v7ICV9JETz5qxObSbpNySIpWEXOhGeJCgvNYJ/A84dFGWrr70yjOZdIyMjASgWbNmxY7Z2tpiYWGhPaeIvCy4vBtC11M/+BAAUQnpYGKvbJLVbjI06oBaoyH21r8AiIiIYMCAAWXGExwczMWLF+nUqRO1a9fWjhdUxkVFRRW7T8FYfn4+N27coFWrVsWuuXfvXvLy8oiJiWHnzp0ALFu2rMxYxIslJ1/FngtxrDoRTdjtVO141yZ1mdrDhYGtGmIgy09FJZJEnBCi5ojwBb+HyyWGLIQmfXQbTymWHIwkOOoe5sYG/DyxnWzOIIQQVVxLWyu+HduWv3u2ZH1QDOuDYridksXXey+z5GAE4zo58GYPF+kjJypH/WYw6F/Q/wuI9FOSchEH4OYp5bbvH+D2ilIl59D5qTd4SE1VEhalVYZZWVlpz0GjUVYfhKyHMB/IUcab19OjSYNanL6TyZ5WPzJ8ROFu9Ut++IHkZGWX4pSUlCfGMmXKFPT19YstPx08eDAGBgasWLGCDz74AAcHB0BJvs2bN097XkmPERwcXOSchg0bsnbt2hKrAMWLJzE9h99OxbA+KJakjBwAjA31ecWjEd49nGllJy2rxPMhiTghRM2QGAE+0wANtJ8CnafrOqISHY1I5Ocj1wBY8Gobmkg/CiGEeGE0sDTh40HNea+vK9sf9pGLTMhg1Ylo1gRG4/mSLdN6utDBqY40fRfPnoERtBym3NLj4fxGJRGWfE35GLIe6jd/uMHDBLCwqYQgNEo1XshvkHi5cNjaATwmoecxgV+6X2XEiBGMfPU1Ro8ejaurK+fPn8fX1xd3d3fCwsLQL2MDraysLF555RWuXLnC119/Td++fYscd3FxYc6cOcyfPx93d3fGjBmDtbU1/v7+xMbG4ujoSGxsbImP8f777/P++++TlZVFZGQk//73vxk6dCiLFi3ik08+eVbfJPGchd9OZeWJKHafj9Puft3QyoQ3ujkzobMjdc2NdRyhqGlkswbZrEGI6i/rPiwfqLwQdewGb+wEw6r3Bzc+NZthS49z70Euk7o48vUr7roOSQghxJ+g0Wg4FpnEioAojkUkasfbOih95Ia62WIkfeREZdJoIDZIqZK7uA3yMpVxfUNlY4d2k6HpQDAooT5DrYKYQMi4CxYNee3vP7LVx4czZ87QoUOHwvNUeRDph2W7UdQxURP70cNJRENTaDVCSfw59y6yO/2pU6eYP38+J06cICsrCzc3Nz7//HP8/f356aefWLlyJVOnTi0WUnZ2NiNHjsTPz49PP/2Ub775ptSnvn79ev7zn/8QFhaGoaEhPXv25LvvvsPLy4vw8HBu3LhRYh+5xw0fPpz9+/dz/vx53Nzcnni+qBryVWoOXLzL6sAoTkff1463c6zN1B7y+1eUTHZNrWSSiBOihlCr4LfX4Lo/WDWGt4+ARQNdR1VMvkrNxF9PERx9j9Z2Vvzxl+6yJFUIIaqRq/HprAyIYlvobXLzlYoMe2tTpnR3xquzozQEF5UvOw0u/gHn1sHtM4XjFrbgMUFJytVzVcYu7YT9syHtjva0OQFGLPBPZuPGjXh5eUHCFQhdD+c3E383HrvvM+jvYoD/p70f9qYbA2a1KxRi3759OXr0KBcuXMDdveiEZFZWFqNGjcLPz49Zs2axaNGiCn8LcnJysLa2xsLCgqSkpHLd58cff+Sjjz7il19+4b333qvwY4rnKyUzl43BN1l3Mpo7qdkAGOrrMbyNHVN7uODhUFu3AYoqTXZNFUKIZ8HvSyUJZ2gGEzZWySQcwA8HIwiOvoeFiSE/T2ovSTghhKhmWthasmhsG/4+pAXrg2JYdzKGO6nZLNh3hR/9IxnX0YGpPZxxqmeu61BFdWVqBR28lVvCZWWp6vmNkBEPAT8oN6ce0NANgv8HFK3X6GObxQLAd/l8vNJ/LZLMO3DTDMigz2vvwfT/PFV4MTExBAQE0Lp16zKTcJ988slTJeEAtm7dSk5ODtOmTSv3fe7cUZKRBTu0iqop4m46q05Esy3kFtl5ymRHPXNjJnVxZFJXJxpameo4QiEKSUWcVMQJUX2FboTt7yqfv7Za2TWsCjoakciUlcEA/GdCO0a0tddxREIIISpbdp6KnaF3WB5wg4i7GYDSQ39w64ZM69mETs7SR048B/m5ELFPqZK77g8ademnqjW0+CmD22kagt4yx8POGJoPIbXpaDq//jnR0TFcvXoVZ2dnAOLi4khNTcXOzq7IBg8ZGRmYm5sX+fedmprKiBEjOH78ODt27GDkyJHaY48uR50xYwbff//9E59WWlpasfd4ly9fpl+/fmRlZREeHq7dxAHgzJkzdOzYsdh1QkND6dOnD1lZWURERGifm6ga1GoNh68msOpENAHXCiscW9tZMbWHMyPa2svktqgQWZpaySQRJ0Q1d/M0rB4Gqlzo/Xfo/7muIypRXGoWw5cGcO9BLq93deSr0dIXTgghahKNRkPAtSSWH4/i6CN95No0tmZaTxeGudtJHyPxfKTehiPfKJVypTgclY/n+kxMTYzxGj8Oy7o2+Pj4EBMTw+LFi5k5c6b2XG9vb9asWcOqVavw9vbWjq9fv545c+bQv39/7O3tSUhIYOfOnSQmJjJ//nw+/7zoa7aC69ja2vLOO++UGJe3t3eRJNn06dM5d+4cnTp1om7dukRGRrJr1y709fXZvn17sV1QnZ2dMTQ0pEOHDjg6OpKbm8vVq1fx8/NDo9Hw448/8sEHH1TgmykqU3p2Hr+fucWak9HEJCt9D/X1YHBrW6b2cKazS12ZyBBPRZamCiHE00q7A5snKUm4FsOh7xxdR1SifJWav20M4d6DXF6yt+Lz4a11HZIQQojnTE9Pj17NGtCrWQMi76az8kQUPuduc+FWKh9uCmXhvitM6e7MhE6OWNeSpXGiElk3gib9ykzE9XMxJOBNc+ZebsbmP3aSl5eHu7s7ixYtYvz48eV6GHd3d9q2bYuvry9JSUlYW1vTtWtXZsyYQb9+/YqdHx0dDUB8fDzz5s0r8Zp9+/YtkogbPHgwV65c4ffffyc9PR1bW1smTZrEnDlzcHV1LXb/OXPmsHv3boKCgti1axdqtRo7OzsmTpzI+++/T5cuXcr13ETlik56wOrAaLaevUVGTj4AVqaGeHV2ZHJXJxzq1tJxhEKUj1TESUWcENVLXhasGgp3QsCmNUzzBRNLXUdVom/3X+GXI9exMDFk9wc9ca4vfYGEEEJAckYOv52KZe3JaJIycgGoZWzAax0aM7WHi/y9EJUn6jisefnJ503ZDS69Kj8eUeNpNBpOXEtm1YkoDl1NoCB70dTGAu/uzoxp34haxlJfJJ4NWZpaySQRJ0Q1pNHAH29D2BYwqwPTD0PdJ29LrwuHryYwddVpAH6e2J7hbex0HJEQQoiqJidf6SO3IiCKK/HpgNJHbmCrhrzV00WWX4lnT62CJW6QFsfjmzUo9MDKHj4KA33pvSUqT1auim0ht1kdGKXtownQr0UDpvZwoVez+vL7TzxzsjRVCCEq6sSPShJOzwDGra2ySbi41CxmbA4F4I1uTpKEE0IIUSITQwNe6+jA2A6NOXEtmRUBNzh8NRG/S3fxu3QX90ZKH7nhbaSPnHhG9A1gyCLY8gagR9Fk3MOkx5CFkoQTleZ2ShZrT0azKfgmqVl5AJgbGzC2Q2OmdHemSQMLHUcoxJ8nFXFSESdE9RDhCxvGARoYthg6T9d1RCXKV6nx+l8QZ2Lu49bIiq3vdpfdnIQQQpTbtYR0Vp6IxufsLXLylR0uba1MeaO7ExM7O1K7lrGOIxTVwqWdsH+20ne3gFUjJQnXemTp9xPiKWg0Gs7E3GfViSgOXLyLSq2kKBzqmjGlmzPjOjlgZSo9MkXlk6WplUwScUJUI4lXYflAyEmDDt7w8hJl7U4VtHDfFZYdvY6liSG7/9YTp3rS50cIIUTF3XuQy4ZTMaw5GUNieg4AZkYGvNZR6SPnIn3kxJ+lVkFMIGTcBYuG4NRdKuHEM5WTr2L3+ThWBUYRfjtNO97dtR5Te7jQv6UNBvpV8zW9qJ4kEVfJJBEnRDWRdR9+HQD3roNjd3hjBxhWzWqAw1cSmLpa6Qv3y6T2DHOXJalCCCH+nJx8FbvOx7EiIIrLccobWT09GNCyIdN6utC1ifSRE0JULQnp2fwWFMtvp2JJylAmEkwM9XmlXSO8ezjT0lbenwvdkERcJZNEnBDVgCoffhsLNw6DtYOyOYNFA11HVaI7KVkMX3qc+5l5TOnmxLxRbroOSQghRDWi0Wg4eT2ZFQFR+F9J0I6/ZG/FtJ4uvNzGHmND6SMnhNCdC7dSWHUimt0X7pCnUtIQtlamTO7mxITOjtQ1r5qT6aLmkERcJZNEnBDVwP45EPQzGNWCNw+AXRtdR1SivId94c4+7Avn8153TAxlaYcQQojKcT0xg5UBUficu0V2ntJHzsbShCndnZnURfrICSGen3yVmv0X41l1IpqzMfe14+0dazO1hwtD3GxlsxlRZUgirpJJIk6IF1zIb7DjL8rnr62Bl0brNJyyLNh3mf87ekP6wgkhhHiu7j/IZUNwLGsCo0l42EfO1EifsR0a82YPF9l9UAhRae4/yGXj6VjWnYwhLjUbACMDPYa72zG1hwttHWrrNkAhSiCJuEomiTghXmA3g2H1cFDlQp/Z0G+OriMq1aErd3lz9RkA/jupPUOlL5wQQojnLDdfze4Ld1h+PIpLcYUN0Qe0tGFaLxe6NaknfeSEEM/E1fh0VgdGsS3ktrYit76FMRO7OPF6F0dsrEx1HKEQpZNEXCWTRJwQL6jU2/BrP2UHr5Yvw7h1oF81y9lvP+wLl5KZh3d3Z/458iVdhySEEKIG02g0BN24x4qAGxy8XNhHrpWdFW/1dGFEW+kjJ4SoOJVaw6ErCaw6EUXg9WTt+Ev2Vkzt4cLLbewwNZK2LKLqk0RcJZNEnBAvoLwsWDkE4kLB5iWY5gsmVXNZTZ5Kzfj/O8m52BTaNLbm93e7SV84IYQQVcaNxAxWnYjm97M3tVUrDSxNmNLNiYldnKRpuhDiidKz89hy5hZrAqOJvZcJgL4eeL5ky9QeLnRyriPVtuKFIom4SiaJOCFeMBoN/DEdwn4Hs7rw9mGo46zrqEq1YO9l/u/YDSxNDdnzQS8c69XSdUhCCCFEMSmZhX3k7qYpfeRMDPV59WEfuaY2VXPCSwihO1FJD1gTGM3vZ27yIFcFgJWpIRM6OzK5mxON68jrXvFikkRcJZNEnBAvmIAf4OA/Qd8QJm8Hl166jqhU/pfvMm2N0hdu2evtGeImfeGEEEJUbbn5avaE3WFFQBThtwv7yPVr0YC3ejWhu6v0kROiJtNoNARcS2LViWgOX02gIIvQ1MaCqT2ceaVdI2oZG+o2SCH+JEnEVTJJxAnxArm6HzZ6ARoY/j10ekvXEZVK+sIJIYR4kWk0Gk5F3WNFQBQHL9/VvtluaWvJtJ4ujPSwl1YLQtQgmbn5/HHuNqsDo7mWkKEd79/Shqk9nOnZtL4k6UW1IYm4SiaJOCFeEIlX4dcBkJsOHabCiCW6jqhUeSo14/7vJCGxKbRtbM3v73aXptdCCCFeWFFJD1h9IootZ26RlacsP6tvofSRm9RV+sgJUZ3dup/JupMxbDp9k9SsPADMjQ14raMDU7o741LfXMcRCvHsSSKukkkiTogXQNZ9+LU/3LsBTj2UJamGVfdF/zd7L/O/h33h9v6tFw51pT+GEEKIF19qZp62j1x8Wjag9JEb074x03o609TGUscRCiGeBY1Gw+no+6w6EcWBi/GoH2YKHOvWYkp3Z17r2BgrUyPdBilEJZJEXCWTRJwQVZwqH34bCzcOg7WjsjmDeX1dR1Wqg5fu8tbagr5wHRjiZqvjiIQQQohnK0+lZm9YHMuPRxF2O1U73rdFA6b1dJElakK8oHLyVew6H8eqE1FcvFPYI7JH03pM7e5Cv5Y2GOjL/21R/T2vPNFTrZk6ffo0w4YNo3bt2pibm9O1a1e2bNlSoWtcvnyZSZMmYWtri4mJCU5OTnz44Yfcu3ev2LmRkZF888039O7dG3t7e4yNjXFwcOCNN97gypUrT/MUhBBVnd8XShLOqBZM2FClk3C37mcy8/fzALzZw0WScEIIIaolIwN9Rnk0Yuf7PdjyTjcGt26Inh4cuZrI5BXBDP3xOFvO3CT74TJWIUTVlpCWzb99r9Jj4SE++f08F++kYWKoz4TODhz4qDe/vdWVga0bShJOiGeswhVxhw8fxtPTE1NTU7y8vLC0tMTHx4eYmBgWL17MzJkzn3iNoKAgBg4cSFZWFqNGjcLV1ZXQ0FAOHjxI8+bNCQwMpF69etrzvby82Lx5M25ubvTs2RMrKyvCwsLYt28fZmZm7N+/n969e1foiUtFnBBVWMh62PFX5fNxa6H1KN3GU4bcfKUvXOhN6QsnhBCi5olJfsCqE9FsOXOTzNyCPnLGTO7qzOtdHalnYaLjCIUQjzt/M4VVJ6LYExZHnkpJB9hZmzK5mxMTOjlSR/o/ihqqSi5Nzc/Pp2XLlty6dYugoCA8PDwASE1NpXPnzkRHRxMREYGTk1OZ13F3dyc8PJwdO3YwcuRI7fh3333HrFmzeOedd1i2bJl2fPXq1bRt25Z27doVuc6mTZuYMGECrVu35uLFi+V9GoAk4oSosmJPwZqXQZULff4B/T7VdURl+mr3JZYHRGFlasge6QsnhBCihkrNymNTcCyrA6OJS1X6yBkb6jOmXSPe7OlC84bSR04IXcpTqdkfHs+qE1Gci03RjndwqsPUHs54vmSLkYFMJouarUom4nx9ffH09GTq1KmsXLmyyLE1a9bg7e3NvHnz+PLLL0u9xvXr12natCmdOnUiODi4yDG1Wo2NjQ1ZWVkkJCRgbv7knVhatGhBREQEiYmJ1K9f/qVrkogTogpKvQX/6wcPEqDVCHhtLehX3RcEvhfjeXvdWQD+b3IHPF+SJalCCCFqtjyVmn3h8Sw/foMLtwr7yPVu3oC3errQq5n0kRPiebr3IJeNwbGsOxmj3WzFyECPEW3s8e7hTJvGtXUboBBVyPPKExlW5OQjR44AMHjw4GLHPD09ATh69GiZ14iPjwfAxcWl2DF9fX0cHR0JCQkhKCiIAQMGPDEmIyNl1xZDwwo9FSFEVZObCZsmKUm4hm4welmVTsLdvJfJJw/7wk3r6SJJOCGEEAKlj9zItvaMaGPHmZj7rDgexYFL8RyLSORYRCLNG1owracLozwaYWpkoOtwhai2rsSnsSogmu2ht8nJVwPKsvFJXZyY1NURG0tTHUcoRM1VoexVZGQkAM2aNSt2zNbWFgsLC+05pSmoWouKiip2TK1WExsbC0BERMQTE3HBwcFcvHiRTp06Ubt27TLPzcnJIScnR/t1WlpaGWcLIZ4rjQZ2vg9xoVCrHnhtABMLXUdVqtx8Ne9vDCEtO5+2DrWZPaSlrkMSQgghqhQ9PT06Odelk3NdYpMzWRUYxZbTN4m4m8FsnzC+3X+V17s68XpXJxpYSh85IZ4FlVqD/+W7rDoRzckbydpxt0ZWTO3uwstt7TAxlAS4ELpWoURcaqpSXm5tbV3icSsrK+05pWnevDlNmjTh9OnT7Nmzh+HDh2uPLVmyhORk5RdGSkrKE2OZMmUK+vr6fPvtt0+MfcGCBcybN++J5wkhdCDgBwj3AX1DZXOGOmX3mdS1RfuvcP5mClamhvw0oZ1sziCEEEKUwbFeLeaOeImPBjZn8+lYVp+I5k5qNj/6R/Lfo9cZ7WHPtJ5NaGErfeSEeBpp2XlsOX2TtSdjiL2XCYCBvh6eLzVkag8XOjrVkSXhQlQhz309p56eHr/88gsjRoxg5MiRjB49GldXV86fP4+vry/u7u6EhYWhX8aStKysLF555RWuXLnC119/Td++fZ/4uJ9++ikzZszQfp2WloaDg8OzeEpCiD/j6j7w/5fy+dBvwbmnbuN5At+L8awIUCp6vx/nIZszCCGEEOVkbWbE271debOHi9JHLiCK8zdT2HLmFlvO3KJXs/pM6+lCn+YNJGkgRDncSMxgTWA0W8/e4sHDXYutzYyY0NmRyd2caFTbTMcRCiFKUqFEXEElXGlVb2lpadSpU+eJ1/H09OT48ePMnz+fQ4cOsWfPHtzc3Ni2bRv+/v6EhYVhY2NT4n2zs7MZNWoUhw8f5tNPP2XOnDnlit3ExAQTEyl7F6JKSbgCPtMBDXR8EzpN03VEZXq0L9xbPV0Y1LqhjiMSQgghXjyGBvqMaGvPy23sOBd7nxUBUewPj+d4ZBLHI5NoaqP0kXulnfSRE+JxGo2GY5FJrDoRxZGridrxZjYWTO2h/L8xM5b/N0JUZRVKxBX0houMjKRDhw5FjsXHx5ORkUHnzp3Lda0uXbqwe/fuYuNLliwBoGPHjsWOZWVlMWrUKPz8/Jg1axbffPNNRcIXQlQlmfdgoxfkpoNTTxiySNcRlenRvnAeDrWZJX3hhBBCiD9FT0+PDk516eBUl5v3Mll1IpotZ25yLSGDT/8I47sDV3m9iyOvd3OSxvKixsvMzcfn3G1Wn4jieuIDAPT0oH8LG6b2cKFH03pSSSrEC6JCibg+ffqwYMECfH198fLyKnLswIED2nOeVkxMDAEBAbRu3Rp3d/cixx5Nwn3yyScsWlS137QLIcqgyoetU+F+FNR2hHFrwNBY11GVaeE+pS+ctZkRP02UvnBCCCHEs+RQtxZfjmjNR4OaseX0TVadiOZ2ShZLD11j2dEbjPKwZ1ovF1raWuk6VCGeq1v3M1l7MoZNwbGkZecDYGFiyNgOjfHu7oxzfXMdRyiEqCg9jUajKe/J+fn5tGjRgtu3bxMUFISHhwegLFXt3Lkz0dHRXL16FWdnZwDi4uJITU3Fzs6uyAYPGRkZmJubF8nYp6amMmLECI4fP86OHTsYOXKk9lh2djYjR47Ez8+PGTNm8P333//Jp60so7W2tiY1NRUrK/mDLsRzte8fcOq/YGQO03zB1k3XEZXpwMV43ll3FoDlb3RkoCxJFUIIISpVvkrNgYt3WRFwg3OxKdrxnk3rM62XC32aNUBfX6p/RPWk0WgIjrrHqhPR+F6KR/3wHbtTvVp4d3dmbIfGWJoa6TZIIaqh55UnqlBFnKGhIcuXL8fT05PevXvj5eWFpaUlPj4+xMTEsHjxYm0SDpQNEtasWcOqVavw9vbWjm/fvp05c+bQv39/7O3tSUhIYOfOnSQmJjJ//vwiSTiAd999Fz8/P2xtbbG0tOSf//xnsdi8vb2LPLYQooo6t05JwgG8sqzKJ+Ee7Qs3vZeLJOGEEEKI58DQQJ/hbewY3saOszH3WRkQxb7wOAKuJRFwLQnXBuZM69mEMe2lj5yoPrLzVOw8f4fVJ6K5FJemHe/ZtD5TezjTr4WNJKCFqAYqvGtqv379CAgIYO7cuWzevJm8vDzc3d1ZtGgR48ePL9c13N3dadu2Lb6+viQlJWFtbU3Xrl2ZMWMG/fr1K3Z+dHQ0oPShmzdvXonX7Nu3ryTihKjqYoNg98fK530/hdYjyz5fx3Lz1by/4Rzp2fm0c5S+cEIIIYQudHCqQwenOty8l8mawGg2n77J9cQHzNkWxncHrvB6VycmSx858QK7m5bN+qAYNpyKJflBLgCmRvq80q4xU3s407yhpY4jFEI8SxVamlqdyNJUIZ6z1Fvwv77wIBFajYTX1oB+1e6zNm/XRVadiMbazIi9H/aSLeCFEEKIKiA9O48tZ26x6kQUt+5nAWBkoMfIto2Y1tOF1vby2l68GEJvprDqRBR7LsSR/3D9qb21KZO7OTOhswO1a1XtHspCVDfPK08kiThJxAlR+XIzYdUQiDsPDd3gzQNgYqHrqMq0PzyOd9efA2DFlI4MaCVLUoUQQoiqJF+lxu/SXZYHRHE25r52vLtrPd7q5ULf5rKMT1Q9eSo1+8LjWXUiipBH+h92cq7D1B4uDP5/9u47rsry/+P46wACylRUMFFxj8S9UlxpkpZWTpxhu8xMbWml2dAsLW33y1K/pqK5zVk5cpGWI80tAm5BZTjY9++PIycJFI4CB/D9fDx4eLzPda77cyPneM6H637fdbxxsC/Yv6wWKaoKZEaciIjVDAOWDjE34Up4QdCcAt+Ei7xwlVcX/A3As22qqAknIiJSADnY29HZvxyd/cuxK/IS328+zqp9Z9l67AJbj12gShkXnmhVmR6NfCnuqBw5sa0LlxOZuz2SWaERnItLBMDR3o6H65djcMvK+Pt6ZDODiBQVWhGnFXEieev3SbDuPbBzgEHLwK+VrSu6pcSUVHp9s42/T8bSqKIn8569j2L6raSIiEihcCrmGjO3hjP3j0jiE1MA8CxRjP7NKzLoPj+83ZUjJ/nrwJk4pm85zpLdp0lKSQOgtKsTA1pUpH/zSpRxc7JxhSKSTqem5jE14kTywcGVENIPMODhT6HJE7auKFvvLPuHGVvD8SxRjBUvKRdORESkMLqcmML8HSeYvvU4Jy7+myPXtd49PBFQmbrltfpI8k5qmsGvB84xfctxQsMuWrb7l/dgcCs/HqpXDicHrdIUKWjUiMtjasSJ5LHzB2BaR0i6DE2fgocm27qibK3ae4bnZ5tz4X4IbsL9tXRKqoiISGGWmmbwy/6zfL/5ODvC/82Ra1GlFE8FVOH+WsqRk9wTey2Zn/48wcxt4ZYGsL2diQfr+vBEKz8aVSyJyaSfN5GCSo24PKZGnEgeunoRvmsPl8LBrzUMXAz2xWxd1S1FXrjKQ59tIj4xhWfbVmFU59q2LklERERy0e4TMXy/+Tgr954h9foVKiuXduGJVn70aOxLCUfFZ8vtORZ1mZlbw1nw10muJqUC5lOi+zaryMAWlbhHZ1iIFApqxOUxNeJE8khqCvzYHY5vBM+K8PQGcPGydVW3lJiSSs+vt7H3VCyNK5Uk5JkWyoUTEREpok5fz5Gbsz2S+ARzjpxH8WL0a16Rx+/zw8dDOXKSvbQ0g9+PRDFjazgbDkVZttfwdmVwq8o82qC8LhIiUsioEZfH1IgTySOrXoc/voFiLvDUL+B9r60rytbYpfuYuS2Cktdz4fRbSxERkaLvSmIKP/15gulbw4m4cBUABzsTD9crx1OtqyhHTrJ0JTGFRTtPMmNrOMeirgBgMkGHWmUZ3KoyLat66fRTkUJKjbg8pkacSB74ayYsf8l8u8+PULurbevJgZV7z/DC9Vy46cFNaV+rrI0rEhERkfyUHqz//abjbA//N1i/eeVSPBlQmQ61vbFXjtxd78TFq/xvWzghO05YVlK6OjnQu0kFHm9ZiUpeLjauUETuVH71iRSEICK5I2IbrBhpvt1udKFowkVcuMLrC/4G4Lm2VdWEExERuQvZ25kIvNeHwHt9+PukOUduxd9n+OP4Rf44fhE/rxI8EVCZnsqRu+sYhsEfxy8yfctxftl/juvRgvh5lSC4pR89m1TA1Uk/EyJiHa2I04o4kTsXc8J8cYYrUVDnEeg5A+wKdsZaQnIqPb/Zyr5TcTSpVJK5yoUTERGR687EXmPm1gjm/BFB3PXVT+7ODvRrXonHW1ainIdiLIqyhORUlu0+zfSt4Rw4E2fZ3rp6aQa38qNdDV1tV6Qo0qmpeUyNOJFcknQVfgiEs3+Dtz88uQYcC/7S/DFL9/G/67lwK4e11htqERERyeRKYgoLd57kh83HCb8hR+6heuV4MqAy9Xw9bVug5KpzcQnM2hbBnO2RXLySBIBzMTu6N/JlcEs/qnu72bhCEclLasTlMTXiRHKBYcCCwfDPYihRGp5Zb75SagG34u8zDJlzPRducFPa19QpqSIiInJzqWkG6w6eZ9qmMP44/m+OXDO/UjzZujIdlSNXqO2KvMT0LeGs3HuGlOvnn5b3LM6g+yrRp2kFPEs42rhCEckPyogTkYJv0yRzE87OAfrMKhRNuPDoK7y+0JwL93y7qmrCiYiISLbs7Uw8UMebB+p4s+9ULN9vPs7yPafZHn6R7eEXqeRVgsEt/ejVpAIuygwrFJJT01i59wzTt4Sz+0SMZXszv1IMbuXHA3W8cVBsiYjkAa2I04o4kdtzcAWE9DPffngKNBls03JyIiE5lR5fb+Wf03E09SvJ3Kdb6A2WiIiI3JazsQn8b1s4s/+IJPZaMgBuzg70a1aRx1v6cY+nYi8KoguXE5nzRyQ//hHBubhEABzt7eha/x4Gt/KjbnkPG1coIraiU1PzmBpxInfg3H74/gFIugxNn4aHJtm6ohx5e8k+ZoVGUMrFkRUvBSgXTkRERO7Y1aQUFu48xQ+bj3M8+gpgXkHXxb8cTwVUpn4FT9sWKADsPx3H9C3HWbrnNEkpaQCUcXNiQPNK9GtekTJuTjauUERsTY24PKZGnMhtunoR/q8dxESAX2sYuBjsi9m6qmwt33OaoXN3ATBjcFPa6ZRUERERyUVp13Pkvt98nG1hFyzbm/qV5MmAyjxQx0c5cvksNc3gl/3nmL7leIZsv/q+HgxuVZku/uVwdNDZESJipow4ESl4UpNh/iBzE86zEvSaWSiacMejrzBq0V4AhrSvqiaciIiI5Do7OxMd63jT8XqO3A+bj7P879PsCL/EjvBLVChVnMEtK9O7aQVclSOXp2KvJTN/xwlmbgvn5KVrgHmVYue6PgxuVZlGFT0xmdQUFRHb0Io4rYgTybmVr8L2/wNHV3jyF/CuY+uKspWQnEr3r7ay/0wczfxKMefp5sqFExERkXxxLu7fHLmYq9dz5JwcCGpWgeBWlSmvHLlcdfT8ZWZsPc7Cv05xLTkVgJIlitG3WUUG3ldJsSQicks6NTWPqREnYqW/ZsDyYebbQXOg1kM2LSen3ly8l9l/RFLKxZGVL7XGx8PZ1iWJiIjIXeZaUioLd57kh83HCbshR65zXR+eDKhMw4olbVxh4ZWWZrDxSBTTt4Tz++Eoy/aa3m4MbuXHow3L41zM3oYVikhhoUZcHlMjTsQKEdtgZldIS4b2b0HbV21dUY4s23Oal+buwmSCGYOb0bZGGVuXJCIiInextDSDDYfPM23TcbYe+zdHrnElc45cpzreWrmfQ1cSU1i48yQztoYTFmVubppM0LG2N4Nb+XFfFS+dfioiVlFGnIgUDDEnYN4AcxOuzqPQ5hVbV5Qjx6OvMGrh3wAMaVdNTTgRERGxOTs7E/fX8ub+Wt7sPx3H95uPs2zPKf6KuMRfEZfwLVmc4JZ+9GlaATfngp/DawsnLl5l5tZw5v15gviEFMB8um/vphV4/D4/KnqVsHGFIiK3phVxWhEncnNJV+CHQDi7F3z84Yk14Ohi66qylZCcymNfbeXAmTiaVS7FnKeUCyciIiIF0/m4BGaFRvBjaASXrufIuTo5ENS0Ao+39KNCKTWWDMNgW9gFpm8J59cD50j/BFu5tAvBLf3o0dhXF8AQkTumU1PzmBpxItkwDPgpGPYvgRKl4ZkN4FnBxkXlzOjFe5nzRyReLo6sHNYab3flwomIiEjBdi0plcW7TvH95jCOXT/V0s4EneuW48nWlWl0F+bIJSSnsnT3KaZvCefg2XjL9jY1yjC4pR9ta5TBzk6nn4pI7lAjLo+pESeSjY0fw/r3wa4YPL4cKt1n64pyZOnuUwwL2Y3JBDMHN6ONTkkVERGRQiT94gPfbzrO5qPRlu0NK3ryVEAVAu8t+jlyZ2MTmBUazpw/Ii2rBIsXs6dH4/IEt/SjWlk3G1coIkVRfvWJivYruIjcngM/m5twAA9NLjRNuLCoy4xetBeAF9tXUxNORERECh07OxPta5blx6eas2pYa3o19sXR3o5dkTEMmbOTth9vYNqmMOISkm1S344dO+jSpQuenp64uLjQokUL5s+fb9UcBw4coH///vj4+ODk5ESlSpUYNmwY6/8OY+jcXQRMXMeX649x6Woy5T2LM7pLLT5oksqmT1+kYdV7cHd3p3379vz2229Zzr98+XKGDh1Kq1atcHFxwWQy8c4779xWTRcvXrTq2EREsqMVcVoRJ5LRuX/g+06QdBmaPQNdPrZ1RTmSkJzKo19u4eDZeJpXLsVs5cKJiIhIEXE+PoEfQyP5MTSCi1eSAHOOXO8mFRjcKv9y5NavX09gYCDOzs4EBQXh5ubGwoULiYiIYNKkSYwcOTLbOUJDQ+nYsSPXrl3jkUcewa9yFdZt2c6ePzbhUKo8PgM+xr64O80ql+KJVn50rO1NyNw5DBw4kDJlytCnTx8A5s2bR3R0NPPnz6dnz54Z9tGuXTs2btyIu7s7ZcuW5ejRo4wdO/amzbj/1lS1alV2797Nr7/+So0aNdi6dSteXl53/P0TkYJNp6bmMTXiRLJw5QJ81x5iIqByGxiwCOwLxxW7Ri3ay9ztkZR2dWTlS60pq1w4ERERKWISklNZsusU0zYf5+j5y4A5Ry7wXh+eup4jZzLlTWZaSkoKtWrV4uTJk4SGhtKgQQMAYmNjadasGeHh4Rw+fJhKlSrdch5/f3/27dvHrJAFXCxdjx9DIzgfn0jsHwuJ2TCd+h17MnvmNO69xwOAS5cuUaVKFRwcHNi1axe+vr4AnDx5koYNGwIQFhaGm9u/p6tu2rQJHx8fqlWrxrx58+jbt+8tG3HpNS1dupRu3bpZtn/88ce89tprPPvss3zzzTe3+60TkUJCp6aKSP5KTYafHjc34Ur6Qa+ZhaYJt3T3KeZuj8Rkgk/7NFATTkRERIok52L2BDWryC/D2zBjcFNaVy9NmgGr9p2lx9fbeOyrrSzfc5qU1LRc3/e6des4duwY/fr1szThADw8PBg9ejRJSUnMnDnzlnMcO3aMffv24VP1Xt7dW4JPfjnM+fhEyro58c7o1ylVyosjW1fi5/HvFVB/+uknYmJiGDp0qKUJB+Dr68uLL75IdHQ0ixcvzrCf1q1bU7169Rw1JdNratq0aYYmHMDIkSPx8vJi1qxZXLlyJdu5RERyQo04ETFbPQrCN4GjKwTNhRKlbF1Rjhy7IRduaPtqtK6uXDgREREp2kwmE+1qlmXWk81Z/XJrejcx58jtPhHD0Lm7aPvxBv7v92PEXsu9HLkNGzYA0KlTp0z3BQYGArBx48YsH5uSmsbqfWd4+ptfAYgrVoqklDTqV/BkalADNr9+P8MeqEmlShW5evUqoaGhubLfnDh79iwAlStXznSfnZ0dFStmrklE5E44ZD9ERIq8P6fDju/Mt7v/H3jXsW09OZSQnMqQ2Tu5kpRKiyqlGNaxhq1LEhEREclXtXzc+ahnfV4NrMWPoRH8GBrBqZhrjF95kKm/HqF30woMblmZil53liN35MgRAKpXr57pPh8fH1xdXS1j0sVeTSZkRyT/22auKTnGvN016SKLXmhJo4olLWPT0tKIjIwE4PDhw3To0CHb/aZv++9+rVG6dGkAjh8/num+m9UkInIntCJO5G4XvgVWvmK+ff9bUOsh29ZjhXHL/+Hg2XhKuzryWVBD7O3yJhNFREREpKAr4+bE8AdqsOWN+5nYw5/qZV25kpTK9C3htJu0nudm/cWO8IvcbkR4bGwsYD4VNSvu7u6WMUfPx/Pm4r20mPAbE1Yd5FTMNUq5OPJyj7ZU8qvM+bB/OLN3a4bHT5kyhQsXLgAQExOTo/2mZzilj7kdNWrUoEqVKuzYsYMVK1bkqCYRkTuhFXEid7OYSJg/ENJS4N7u0PoVW1eUY0t2nWLu9hOYTDA1qKFy4UREREQw58j1aVqR3k0qsOlINNM2H+f3w1Gs/ucsq/85S31fD54IqEwX/3IUy+UrzKemGQz8/g82HYm2bKvl48YTrSrTrcE9OBezp943X9O1a1e6devGo48+StWqVdmzZw9r167F39+fvXv3YmeXf+tFTCYTX331VYGqSUSKNr2aiNytkq7A3H5w9QL41INHvoQ8uspWbjt6/jKjF5tz4V66vzqtqpW2cUUiIiIiBYvJZKJNjTL874lmrB3ehqCmFXB0sGPPyViGheymzUfr+XZjznPk0lek/Xf12eXEFGZuDefchUskmJzZdCQakwk61fFm7tMtWDWsNb2bVsC5mD1gznXbtGkTnTt3Zt26dXz22WdcuHCBxYsX07ZtWwDKli2b7X7BfIXDG8fcLmtrEhG5E1oRJ3I3MgxY8jyc2wsuZSBoDjjeWW5IfrmWZM6Fu5qUyn1VvHipQ+a8EBERERH5Vw1vNz7sUY9XAmsyOzSSWaHhnIlNYMKqg0z97Qi9m1RgcCs/Knm5WB6Tmmaw/fhFzscnUNbNmarVqgHmPLbGjRsTeeEqM7aG89OfJ4i5EEVq4jVc7qnJUwGVebylHxVK3fy9ZfPmzfn5558zbZ8yZQoATZo0sWyrXr06f/75J0eOHMHLyyvD+Fvlx1nLmppERO6EGnEid6PfP4b9S8GuGPT5ETwr2LqiHBu3/B8OnYuntKsTU/s2UC6ciIiISA6VdnViWMfqPNu2Csv2nOb7Tcc5dC6eGVvDmbktnAdqe/NU6ypcuJzIuz/v50xsguWxxc+ZV539uGAZvyZW47eD50iPm3ON3gfAywMe4a2Hb++iXxEREWzevJk6derg7+9v2d62bVvmzp3L2rVradGiRYbHrFmzxjImL9ysJhGRO6FTU0XuNgeWw/oPzLcf/gQqtrj1+AJk8a6ThOxIz4VrQFk35cKJiIiIWMu5mD29m1Rg9cut+fHJ5rSrWQbDgLX7z9H72208P3tnhiYcwNUydXDw9GHFkgWs3LANw4C2NcrwRc+apO1ajKOjI089EWwZf+bMGQ4ePJj5VNbLlzNdMCI2NpaBAweSmprKhAkTMtzXu3dvPDw8+Pzzzzl58qRl+8mTJ/niiy8oXbo0jz322B19P6ytSUTkTmhFnMjd5Nw/sOhZ8+1mz0KjQbatxwpHz8czepH5t63DOigXTkREROROmUwmAqqXJqB6aY6ej+e7TceZt+NE1mPt7PF68CXOzR/DhXmjeKxHL0onl+LFdxcSERHBpEmT8PPzs4wfNWoUM2fOZPr06QQHB1u2L1myhNGjR3P//fdzzz33cP78eZYtW0ZUVBTvvfce3bp1y7DfkiVL8sUXXzBw4EAaNWpEnz59AJg3bx4XLlxg3rx5uLm5ZXjMkiVLWLJkCQDHjx+3bAsPDwegVq1avPHGG7ddk4jInbitRtyOHTsYO3YsW7duJTk5GX9/f0aMGEHv3r1zPMeBAwd4//33+e2337h06RI+Pj48+uijjB07llKlSmX5mDVr1jB+/Hh27tyJyWSicePGvPXWW3To0OF2DkPk7nLlAswNguQrULktBI63dUU5Zs6F28W15FRaVvVi6P3KhRMRERHJTdXKuvFog/I3bcQBOFeqh0//ifhFrGTVskWWz4ITJ060NMiy4+/vT/369Vm7di3R0dF4eHjQokULRowYQfv27bN8zIABAyhdujTjx49n+vTpGT4LduzYMdP43bt3M3PmzAzb9uzZw549ewDzqaw3NuJupyYRkdtlMv67Bjcb69evJzAwEGdnZ4KCgnBzc2Phwn9/CzJy5Mhs5wgNDaVjx45cu3aNRx55hKpVq7J7925+/fVXatSowdatWzMFcf74448MHDiQMmXKZPgtSHR0NPPnz6dnz57WHAZxcXF4eHgQGxuLu7u7VY8VKXRSk2HWYxC+CUpWhqfXQYmsG94F0WsL9jD/z5OUdnVi5bAAnZIqIiIikgeW7j7FsJDd2Y6bGtSARxqUz/uCRETyUX71iaxqxKWkpFCrVi1OnjxJaGgoDRo0AMznzzdr1ozw8HAOHz5MpUqVbjmPv78/+/btY+nSpRmW+X788ce89tprPPvss3zzzTeW7ZcuXaJKlSo4ODiwa9cufH19AXMuQMOGDQEICwvLtCT5VtSIk7vKipGwYxo4usJTv0LZ2rauKMcW/nWSkT/twc4EPz7VnJZVdUqqiIiISF7YduwCfb8LzXbc3KdbcF9Vr2zHiYgUJvnVJ7LqYg3r1q3j2LFj9OvXz9KEA/Dw8GD06NEkJSVlWgL8X8eOHWPfvn00bdo007n2I0eOxMvLi1mzZnHlyhXL9p9++omYmBiGDh1qacIB+Pr68uKLLxIdHc3ixYutORSRu8efP5ibcJigx7RC1YQ7ej6et5ak58LVUBNOREREJA81q1yKch7O3Oya9CagnIczzSoXnjMrREQKGqsacRs2bACgU6dOme4LDAwEYOPGjbec4+zZswBUrlw5czF2dlSsWJGrV68SGvrvb2JyY78id6XwLbDyVfPt+9+Cmp1tW48Vrial8MLsnVxLTiWgWmlevL+arUsSERERKdLs7UyM7VoHIFMzLv3vY7vWwd7uZq06ERHJjlWNuCNHjgBQvXrmoHQfHx9cXV0tY26mdGnzipb0q9fcKC0tjcjISAAOHz6co/2mb8tuv4mJicTFxWX4EinSLkXA/IGQlgL3dofW2ec3FiRjl/7D4XOXKePmxKd9GugNn4iIiEg+eLBuOb4e0Agfj4yZvD4eznw9oBEP1i1no8pERIoGq66aGhsbC5hPRc2Ku7u7ZczN1KhRgypVqrBjxw5WrFjBQw89ZLlvypQpXLhwAYCYmJgc7Tf9vN3s9jthwgTGjRt3yzEiRUbiZQjpB1cvQLn68MiXYCo8jawFf53kp79OYmcyhwGXcXOydUkiIiIid40H65bjgTo+bD9+kfPxCZR1M5+Oql+MiojcOasacbnBZDLx1Vdf0bVrV7p168ajjz5K1apV2bNnD2vXrsXf35+9e/diZ2fVYr1sjRo1ihEjRlj+HhcXR4UKFXJ1HyIFQloaLHkezu0DlzIQNAccS9i6qhw7ci6et6/nwr3cUblwIiIiIrZgb2fSBRlERPKAVd2u9BVpN1t9ln6FiewEBgayadMmOnfuzLp16/jss8+4cOECixcvpm3btgCULVs2R/tNP8U0u/06OTnh7u6e4UukSPr9IziwDOyKQZ/Z4OGb/WMKiBtz4VpXL82Q9sqFExERERERkaLDqkbcrfLYzp49y+XLl7PMcctK8+bN+fnnn7l06RIJCQn8+eefPProo+zduxeAJk2a5Gi/t8qPE7nr7F8GGyaYbz/8KVRsbtt6rDRm6T8cOX+ZssqFExERERERkSLIqkZc+mq1tWvXZrpvzZo1GcbcjoiICDZv3kydOnXw9/fPt/2KFAln98HiZ823mz8PjQbath4r/fTnCRZcz4X7rG9DSrsqF05ERERERESKFpNhGEZOB6ekpFCzZk1OnTpFaGgoDRo0AMynjDZr1ozw8HAOHTqEn58fAGfOnCE2NpZy5cplOHX08uXLuLi4YLohPD42NpauXbuyadMmli5dSrdu3Sz3Xbp0icqVK1OsWDF27dqFr6/5VLuTJ0/SsGFDAMLCwnBzc8vxgaefRhsbG6vTVKXwuxIN/9ceYiOhSjvovxDs8z0C8rYdPhdPty82k5CcxiudavDi/VrhKiIiIiIiIvknv/pEVn1Sd3BwYNq0aQQGBtKmTRuCgoJwc3Nj4cKFREREMGnSJEsTDswXSJg5cybTp08nODjYsn3JkiWMHj2a+++/n3vuuYfz58+zbNkyoqKieO+99zI04QBKlizJF198wcCBA2nUqBF9+vQBYN68eVy4cIF58+ZZ1YQTKVJSk2H+4+YmXMnK0HN6oWrCpefCJSSn0bp6aV5op1w4ERERERERKZqs/rTevn17Nm/ezNixY5k3bx7Jycn4+/szceJES4MsO/7+/tSvX5+1a9cSHR2Nh4cHLVq0YMSIEbRv3z7LxwwYMIDSpUszfvx4pk+fjslkonHjxrz11lt07NjR2sMQKTpWvQ4Rm8HRDfqGQIlStq7IKm8v+YejN+TC2SkXTkRERERERIooq05NLUp0aqoUCTumwYqRgAn6zoWanW1dkVXm/3mC1xb8jZ0J5jzdghZVvGxdkoiIiIiIiNyF8qtPZNXFGkSkAAnfbF4NB9BhTKFrwh06G8+YpfsAGNmppppwIiIiIiIiUuSpESdSGF0Kh3kDIS0F6vaEgOG2rsgqVxJTeGH2X5ZcuOfbVrV1SSIiIiIiIiJ5To04kcIm8TLM7QfXLkK5BtDtczAVnlw1wzB4e8k+jkVdwdvdiSnKhRMREREREZG7hBpxIoVJWhosfhbO/wMuZSFoDjiWsHVVVvnpz5Ms2nUKOxN83rcRXq5Oti5JREREREREJF+oESdSmGycCAd/BntHCJoNHuVtXZFVDp6N4+0bcuGaVS5cV3gVERERERERuRNqxIkUFvuXwsYPzbcf/hQqNLNtPVa6kpjCkNk7SUxJo22NMsqFExERERERkbuOGnEihcHZvbD4OfPtFi9AwwG2rcdKhmHw1vVcOB93Zz7pXV+5cCIiIiIiInLXUSNOpKC7Em2+OEPyVajSHh54z9YVWW3+nydYvOsU9nYmPu/XULlwIiIiIiIicldSI06kIEtJgvmDIDYSSlWBXtPB3sHWVVnlwJk4xiz9B4CRnWrQ1E+5cCIiIiIiInJ3UiNOpCBb9RpEbAFHN+gbAsVL2roiq1y+IReuXc0yPNdGuXAiIiIiIiJy91IjTqSg2jEN/poOmKDn91Cmpq0rsophGLy5eC9h0em5cA2UCyciIiIiIiJ3NTXiRAqi45tg1evm2x3HQo1A29ZzG+btOMHS3aextzPxRb+GlHJxtHVJIiIiIiIiIjalRpxIQXMp3JwLl5YC/r2g1cu2rshqB87EMXaZORfu1cCaNFEunIiIiIiIiIgacSIFSmI8zO0L1y5CuQbQ7XMwFa7TOW/MhWtfswzPtK5i65JERERERERECgQ14kQKirQ0WPwcnN8Prt4QNAeKFbd1VVYxDIPRi8y5cOU8nJmsXDgRERERERERCzXiRAqKjR/CwZ/B3hH6zAaP8rauyGpzt59g2R5zLtznfZULJyIiIiIiInIjNeJECoJ/FsPGiebbXadChaa2rec27D8dxzvLzblwrykXTkRERERERCQTNeJEbO3M37DkBfPtFkOgQT/b1nMbLiemMGTOTpJS0ri/VlmeVi6ciIiIiIiISCZqxInY0uUoCOkHyVeh6v3wwLu2rshqhmEwatFejkdf4R4PZyb3qq9cOBEREREREZEsqBEnYispSTB/EMSegFJVoecPYO9g66qsNmd7JMv3nMbBzsTn/RpRUrlwIiIiIiIiIllSI07EFgwDVr4CkVvByR36zoXiJW1dldX+OR3LuOX7AXjtwZo0rlT4jkFEREREREQkv6gRJ2ILO6bBzpmACXp8D2Vq2roiq8UnJDNktjkXrkOtsjwVoFw4ERERERERkVtRI04kv4VthFWvm293fAdqdLJpObcjPRcu/MJVynsWZ3Jv5cKJiIiIiIiIZEeNOJH8dPE4/PQ4GKng3xtaDbN1Rbdl9h+R/Pz3GRzsTHzWtyGeJZQLJyIiIiIiIpIdNeJE8ktivPkKqdcuwT0NodtnYCp8q8j2nYrl3Z/NuXCvP1hLuXAiIiIiIiIiOaRGnEh+SEuDRc/C+f3g6g1Bc6BYcVtXZbX4hGSGzDHnwnWsXZanWle2dUkiIiIiIiIihYYacSL5YcMEOLQC7B2hz2xwv8fWFVnNMAzeWLSXiOu5cJN61cdUCFf0iYiIiIiIiNiKGnEieW3fIvj9I/PtrlOhQlPb1nObfvwjkhXXc+E+76dcOBERERERERFrqREnkpfO7IElL5hv3/ciNOhn23pu075Tsby33JwL90bnWjSqqFw4EREREREREWupESeSVy6fh7n9IOUaVO0AD7xr64puS1x6LlxqGh1re/NkgHLhRERERERERG6HGnEieSElCeYNhLiT4FUNev4Adva2rspqhmEwauGNuXD1lAsnIiIiIiIicpvUiBPJbYYBK0fCiVBwcoe+IVDc09ZV3ZZZoRGs2HuGYvYmvlAunIiIiIiIiMgdUSNOJLdt/w52/g8wmVfCla5u64puy96Tsbz/8wEA3uhcm4bKhRMRERERERG5I2rEieSmsI2w+g3z7QfGQfUHbFvPbboxF+6BOt480crP1iWJiIiIiIiIFHpqxInkloth8NPjYKRCvT7Q8iVbV3RbDMPg9QV/E3nxKr4lizOpZ33lwomIiIiIiIjkAjXiRHJDYrz5CqnXLsE9jaDrVCikzav/bYtg1b6z13PhGuFRopitSxIREREREREpEtSIE7lTaWmw6BmIOgCuPhA0G4oVt3VVt+XvkzF8sMKcCzeqc20aVPC0bUEiIiIiIiIiRYgacSJ3av0HcGgl2DuZm3Du99i6otsSe+3fXLjAe70ZrFw4ERERERERkVx1W424HTt20KVLFzw9PXFxcaFFixbMnz/fqjlOnz7NsGHDqFOnDi4uLnh7exMQEMCsWbNITU3NND4lJYUffviB++67jzJlyuDm5kadOnV47bXXOHv27O0chsid27cQNk0y3+72Gfg2sW09tyk9F+7ExWv4lizOR8qFExEREREREcl1DtY+YP369QQGBuLs7ExQUBBubm4sXLiQPn36cOLECUaOHJntHGFhYTRv3pwLFy4QGBhI165diYuLY8mSJQwaNIh169Yxffr0DI/p06cPixYtolq1agQFBeHk5ERoaCgff/wxP/74Izt37sTHx8fawxG5fad3w5Ih5tsth0L9IJuWcydmbg1n9T/mXLgv+zXCo7hy4URERERERERym8kwDCOng1NSUqhVqxYnT54kNDSUBg0aABAbG0uzZs0IDw/n8OHDVKpU6ZbzvPDCC3z99ddMmTKFYcOGWbbHxMRQv359IiMjCQ8Pt8yzfft2mjdvTrNmzdi8eTPFiv3bJBg2bBifffYZ48aNY8yYMTk+8Li4ODw8PIiNjcXd3T3HjxMB4PJ5+L/2EHcSqnWEfvPBzt7WVd2Wv0/G0OPrrSSnGoztWofBrSrbuiQRERERERGRfJVffSKrTk1dt24dx44do1+/fpYmHICHhwejR48mKSmJmTNnZjtPWFgYAF26dMmw3dPTk4CAAACio6Mzje/YsWOGJhzAww8/DEBUVJQ1hyJy+1ISYd4AcxPOqxr0+L7QNuHSc+GSUw0evNeH4JZ+ti5JREREREREpMiyqhG3YcMGADp16pTpvsDAQAA2btyY7Tx169YFYOXKlRm2x8TEsGXLFnx8fKhTp45l+7333gvAr7/+SnJycobH/PzzzwB06NAhh0chcgcMA1aMhBN/gJMH9A2B4p62ruq2GIbBawv2cOLiNSqUKs7EnvWUCyciIiIiIiKSh6zKiDty5AgA1atXz3Sfj48Prq6uljG38uqrr7J8+XKGDx/O6tWrqVevniUjrkSJEixevJjixYtbxvv7+zNs2DCmTp1KnTp16Ny5M05OTmzbto2//vqLcePG8eijj95yn4mJiSQmJlr+HhcXl8OjFrnB9v+DXbPAZAc9v4fSmZ8LhcWMreGs+eccjvZ2yoUTERERERERyQdWNeJiY2MB86moWXF3d7eMuRVvb2+2bdvGgAEDWLVqFatXrwagePHiPPfcc9SvXz/TY6ZMmULlypV59dVX+fzzzy3bu3btSvfu3bPd54QJExg3bly240RuKmwDrB5lvv3Au1D9AZuWcyd2n4hh/MoDALz5UG3q+XratiARERERERGRu4BVp6bmlqNHj9KqVSuioqLYtGkT8fHxnDhxgjFjxvDee+/RoUMHUlNTLePT0tJ45plneOutt/j88885c+YMsbGxrFy5kgMHDtCiRQt27Nhxy32OGjWK2NhYy9eJEyfy+jClKLkYBvMfByMV6gXBfS/auqLbFns1mRev58J1ruvDoPtufXEVEREREREREckdVq2IS18Jd7NVb3FxcZQsWTLbeYKDg4mIiCAsLAwfHx8AXF1deeONNzh37hxTpkwhJCSE/v37A/DDDz/w3XffMXXqVJ599lnLPJ07d2bBggU0aNCA0aNH88svv9x0n05OTjg5OeX4WEUsEuJgbl9IiIHyjaHrVCikWWqGYfDqgj2cvHSNiqVKKBdOREREREREJB9ZtSIuPRsuqxy4s2fPcvny5Szz424UHx/Pli1bqF27tqUJd6P27dsDsGvXLsu2VatWZbjvRvXr16dkyZIZxovkmrQ0WPQMRB0EVx/oMxuKOdu6qtv2w5Zw1u7/NxfO3Vm5cCIiIiIiIiL5xapGXNu2bQFYu3ZtpvvWrFmTYczNJCUlARAdHZ3l/VFRUQAZVq+lPyb9vhslJiYSHx+v1W6SN9a/D4dXgb0TBM0B93K2rui27T4Rw4erzLlwbz1cG3/frLMeRURERERERCRvWNWI69ChA1WqVGHOnDns3r3bsj02Npbx48fj6OjIoEGDLNvPnDnDwYMHM5zK6uXlRc2aNYmMjGTatGkZ5o+JiWHSpElAxtVvrVq1AmD8+PEZrnwK8M4775CSkpLlajmRO7J3AWyabL7d7XPwbWzbeu5A7NVkhsw258J18fdhYAvlwomIiIiIiIjkN5NhGIY1D1i/fj2BgYE4OzsTFBSEm5sbCxcuJCIigkmTJjFy5EjL2ODgYGbOnMn06dMJDg62bF+1ahXdunUjJSWFDh060LBhQy5dusSyZcuIioqiR48eLFiwwDI+Li6O5s2bc/DgQfz8/HjwwQcpXrw4W7ZsYfv27ZQpU4bQ0FCqVKmS4+OIi4vDw8OD2NhY3N3drfkWyN3g9C74oTOkXIOWL0Gn92xd0W0zDINnZv3FL/vPUcmrBMuHBuiUVBEREREREZEb5FefyKqLNYB5pdrmzZsZO3Ys8+bNIzk5GX9/fyZOnEifPn1yNEfnzp3ZunUrH3/8MZs3b2bjxo04OztTu3ZtxowZw/PPP59hvLu7O6GhoUycOJGlS5cyY8YMUlNT8fX15bnnnuPNN9/E19fX2kMRyVr8OQjpb27CVXsAOr5j64ruyPebj/OLcuFEREREREREbM7qFXFFhVbESZZSEmFmVzjxB3hVh6d/A+fCm6W2K/ISvb7ZRkqawXuP3MvA+/xsXZKIiIiIiIhIgZNffSKrMuJEijTDgBUjzE04Jw/oG1Kom3AxV5N4cc4uUtIMHvIvxwDlwomIiIiIiIjYlBpxIun++BZ2/QgmO+j1A5SuZuuKbpthGLzy09+cirlGJa8SfNjDH5PJZOuyRERERERERO5qasSJABxbB2tGmW8/8B5U62jbeu7Q95uP8+uBf3Ph3JQLJyIiIiIiImJzasSJXDgGPw0GIw3q94X7hti6ojuyM/ISH646CMDbXetQt3zhPb1WREREREREpChRI07ubglxMLcvJMRA+Sbw8BQoxKdwxlxNYuj1XLiH65VjQPOKti5JRERERERERK5TI07uXmmpsOhpiD4EbuUgaDYUc7Z1VbfNMAxGzt/DqZhr+HmVYEJ35cKJiIiIiIiIFCRqxMnda937cHg12DuZm3BuPrau6I5M23Sc3w6ex9HBji/7KxdOREREREREpKBRI07uTnsXwOZPzLcf+QLKN7ZtPXfor4hLTFxtzoUb27UO996jXDgRERERERGRgkaNOLn7nN4FS69fkKHVMKjX27b13KFLV5IYOmcnKWkGXevfQ79myoUTERERERERKYjUiJO7S/w5mNsPUhKgeifoMNbWFd2RtDSDkT/t4XRsApVLuzD+sbrKhRMREREREREpoNSIk7tHSiLMGwDxp6F0DegxDezsbV3VHfluUxjrrufCfdGvoXLhRERERERERAowNeLk7mAY8PNwOLkdnD0gaK75z0Lsr4iLfLTmEADvdL1XuXAiIiIiIiIiBZwacXJ3CP0ads8Gkx30nA6lq9m6ojty6UoSL87ZRWqaQbf699C3WQVblyQiIiIiIiIi2VAjToq+o7/B2jfNtzu9D9U62LaeO5SWZjBi/m7OxCZQpbQL47v7KxdOREREREREpBBQI06KtgvHYMFgMNKgQX9o8YKtK7pj/7cpjPWHonBysOPL/o1wdXKwdUkiIiIiIiIikgNqxEnRlRALc/ua//RtCg9/CoV85dif4Rf5OD0Xrtu91C7nbuOKRERERERERCSn1IiToiktFRY+DdGHwO0e6PMjODjZuqo7cvFKEkPnmnPhHmlwD0FNlQsnIiIiIiIiUpioESdF02/vwpE14OAMQbPBzcfWFd2RDLlwZVwY/5hy4UREREREREQKGzXipOj5+yfYMsV8u9sXUL6RTcvJDd/+HsaG9Fy4fo1wUS6ciIiIiIiISKGjRpwULad2wrIXzbcDhkO9XratJxfsCL/IpLXmXLhxyoUTERERERERKbTUiJOiI/4shPSHlASoHgj3v23riu7YhcuJDJ1jzoV7rGF5+igXTkRERERERKTQUiNOiobkBJg3AOJPQ+ma0GMa2Nnbuqo7Ys6F28PZOHMu3PuP1lUunIiIiIiIiEghpkacFH6GAStGwMkd4OwBfeeCc+E/ffOb34+x8XAUzsXs+Kq/cuFERERERERECjs14qTwC/0Kds8Gkx30mgFeVW1d0R3bfvwik9ceBuDdbnWp5VP4G4siIiIiIiIidzs14qRwO/orrH3LfLvTB1D1ftvWkwsuXE5k6NydpKYZdG9Ynl5NfG1dkoiIiIiIiIjkAjXipPCKPgoLngAjDRoMgBbP27qiO5aWZjB8/h7OxSVStYwL7ykXTkRERERERKTIUCNOCqeEWJgbZP7Ttxk8/AkUgYbV1xuP8bslF66xcuFEREREREREihA14qTwSUuFhU/BhSPgXh76/AgOTrau6o79EXaByWsPAfDuI3Wp6eNm44pEREREREREJDepESeFz2/j4MhacHCGoNng5m3riu5Y9OVEXgrZRZoB3RuVp1dj5cKJiIiIiIiIFDVqxEnh8vd82DLVfPuRL+GehratJxekpRkMn7ebc3GJVCvryvvKhRMREREREREpktSIk8Lj1F+w9EXz7YAR4N/TtvXkkq82HGXTkejruXCNKOGoXDgRERERERGRokiNOCkc4s9CSH9ITYQaD8L9b9u6olwRGnaBT345DMB7j9Slhrdy4URERERERESKKjXipOBLTjA34eLPQOma0P07sCv8P7rRlxN5aa45F65HI196Nalg65JEREREREREJA8V/m6GFG2GAT+/DKf+BGdP6DsXnN1tXdUdS72eC3c+PpHqZV1579F7bV2SiIiIiIiIiOQxNeKkYNv2JeyZCyZ76DUDvKrauqJc8dV6cy5c8WL2yoUTERERERERuUuoEScF19Ff4ZfrWXCB46Fqe9vWk0u2HbvAp79ez4V7tC7VlQsnIiIiIiIicldQI04Kpuij8NMTYKRBwwHQ/FlbV5QrouITeSnEnAvXq7EvPRv72rokEREREREREcknasRJwXMtBuYGQWIsVGgOD30CJpOtq7pj6blwUfGJ1PB25d1H6tq6JBERERERERHJR7fViNuxYwddunTB09MTFxcXWrRowfz5862a4/Tp0wwbNow6derg4uKCt7c3AQEBzJo1i9TU1Cwfk5aWxg8//EBAQACenp6UKFGCGjVqMHjwYOLj42/nUKSgSUuFhU/ChSPgXh76/AgOTrauKld8uf4om4+ac+G+7NeI4o72ti5JRERERERERPKR1Qnx69evJzAwEGdnZ4KCgnBzc2PhwoX06dOHEydOMHLkyGznCAsLo3nz5ly4cIHAwEC6du1KXFwcS5YsYdCgQaxbt47p06dneExiYiI9e/bk559/pl69egQHB+Pk5ERkZCQrV67kvffew81NWVuF3q/vmLPhHIpD0BxwLWvrinLF1mPRTLmeC/e+cuFERERERERE7komwzCMnA5OSUmhVq1anDx5ktDQUBo0aABAbGwszZo1Izw8nMOHD1OpUqVbzvPCCy/w9ddfM2XKFIYNG2bZHhMTQ/369YmMjCQ8PDzDPMOHD2fKlCl8+OGHvP766xnmS0tLA8DOLucL/OLi4vDw8CA2NhZ3d/ccP07y0J4QWHw9C67nD1C3h23rySXn4xPoMnUz0ZcT6d3El4961rd1SSIiIiIiIiJyg/zqE1l1auq6des4duwY/fr1szThADw8PBg9ejRJSUnMnDkz23nCwsIA6NKlS4btnp6eBAQEABAdHW3ZfurUKb744gtat26dqQkH5gacNU04KYBO/gXLXjLfbj2yyDTh0nPhoi+bc+HGdVMunIiIiIiIiMjdyqru1YYNGwDo1KlTpvsCAwMB2LhxY7bz1K1rbkasXLkyw/aYmBi2bNmCj48PderUsWxfsGABKSkp9OrVi/j4eGbPns2ECRP44YcfOHXqlDWHIAVR3BkI6QepiVCjM7R/y9YV5ZrP1x1hy9ELlHC056v+yoUTERERERERuZtZlRF35MgRAKpXr57pPh8fH1xdXS1jbuXVV19l+fLlDB8+nNWrV1OvXj1LRlyJEiVYvHgxxYsXt4z/66+/AHOjrmbNmpw5c8Zyn6OjIx9++CHDhw+/5T4TExNJTEy0/D0uLi7bOiUfJCfAvP5w+SyUqQXd/w+KyOrGrUejmfqb+fnwwWN1qVZWuXAiIiIiIiIidzOrOh6xsbGA+VTUrLi7u1vG3Iq3tzfbtm3jwQcfZPXq1Xz00Ud88803xMbGMmjQIOrXz5ihdf78eQDGjRtH/fr1+eeff4iLi+Pnn3+mdOnSjBgxglWrVt1ynxMmTMDDw8PyVaFChZwcsuQlw4Dlw+DUX+DsCX3ngnPRyOs7H5/ASyG7MQzo06QCjzX0tXVJIiIiIiIiImJjNll6dPToUVq1akVUVBSbNm0iPj6eEydOMGbMGN577z06dOhAamqqZXz6xRjKli3LwoULqVOnDm5ubjz00ENMmzYNgMmTJ99yn6NGjSI2NtbydeLEibw7QMmZrZ/D3yFgsofeM6FUFVtXlCtS0wxeDjHnwtX0duOdbvfauiQRERERERERKQCsOjU1fSXczVa9xcXFUbJkyWznCQ4OJiIigrCwMHx8fABwdXXljTfe4Ny5c0yZMoWQkBD69++fYb8dO3akRIkSGeYKDAzEycmJP//885b7dHJywsnJKdvaJJ8c+QV+HWu+/eAEqNLOpuXkps9+O8LWY+ZcuC+VCyciIiIiIiIi11m1Ii49Gy6rHLizZ89y+fLlLPPjbhQfH8+WLVuoXbu2pQl3o/bt2wOwa9cuy7aaNWsC5quq/pednR1ubm5cu3Ytx8chNhZ9BBY8CUYaNBoEzZ6xdUW5ZsvRaD5bZ35+jH/Mn2plXW1ckYiIiIiIiIgUFFY14tq2bQvA2rVrM923Zs2aDGNuJikpCYDo6Ogs74+KigLIsHrt/vvvB2D//v1Zjo+OjsbPzy+b6qVAuBYDc4MgMRYqtIAuk8FksnVVueJ8fALDrufCBTWtwKMNy9u6JBEREREREREpQKxqxHXo0IEqVaowZ84cdu/ebdkeGxvL+PHjcXR0ZNCgQZbtZ86c4eDBgxlOZfXy8qJmzZpERkZa8t3SxcTEMGnSJODflXFgbu7Vrl2b3377jV9++cWy3TAMRo8eDUDv3r2tORSxhbRUWPgkXDgK7r7QZxY4ONq6qlyRmmYwbK45F66Wj3LhRERERERERCQzk2EYhjUPWL9+PYGBgTg7OxMUFISbmxsLFy4kIiKCSZMmMXLkSMvY4OBgZs6cyfTp0wkODrZsX7VqFd26dSMlJYUOHTrQsGFDLl26xLJly4iKiqJHjx4sWLAgw37/+OMP7r//fpKSkujevTu+vr5s3ryZ7du306hRI37//XdcXFxyfBxxcXF4eHgQGxuLu3vRuFJngbf2LfMFGhyKw5NroFz97B9TSHzyy2E+++0IJRztWT40gKpldEqqiIiIiIiISGGRX30iqy7WAOaVaps3b2bs2LHMmzeP5ORk/P39mThxIn369MnRHJ07d2br1q18/PHHbN68mY0bN+Ls7Ezt2rUZM2YMzz//fKbHNG/enO3btzN27Fh+++034uLiqFixIqNGjWL06NFWNeHEBnbPNTfhAB79qkg14TYfiebz67lwE7r7qwknIiIiIiIiIlmyekVcUaEVcfno5J8wvQukJkLrV6DD27auKNecj0ugy2ebiL6cRN9mFZnQ3d/WJYmIiIiIiIiIlfKrT2RVRpyI1eJOQ0h/cxOu5kPQ/k1bV5RrUlLTGDp3F9GXk6jl48bYrnVsXZKIiIiIiIiIFGBqxEneSb5mbsJdPgtlakP3b8Gu6PzIffbbEf44fhEXR3u+6t8I52L2ti5JRERERERERAqwotMVkYLFMGD5MDi9E4qXhL5zwcnN1lXlmt8PR/H5+qMAjO/uTxXlwomIiIiIiIhINtSIk7yx9TP4ex6Y7KHXTChV2dYV5ZpzcQkMn7cbw4B+zSvySIPyti5JRERERERERAoBNeIk9x1eC7+MNd9+8EOo0ta29eSilNQ0Xpq7iwtXkqhdzp0xDysXTkRERERERERyRo04yV1Rh2Hhk4ABjR6HZk/buqJcNfWGXLgv+zVULpyIiIiIiIiI5JgacZJ7rl2CkL6QGAcV74Muk8BksnVVueb3w1F8cT0XbkKPesqFExERERERERGrqBEnuSM1BRY8CReOgrsv9J4FDo62rirXnI1N4OXruXD9m1ekW/17bF2SiIiIiIiIiBQyasRJ7vh1LBz7DYqVMF8h1bWMrSvKNSmpabwUsouLV5KoU86dt5ULJyIiIiIiIiK3QY04uXO758C2L8y3H/0KytWzbT257NNfD7P9+EVcnRz4sn8j5cKJiIiIiIiIyG1RI07uzIkdsHyY+Xab1+Dex2xbTy7beDiKL9cfA2BCd38ql3axcUUiIiIiIiIiUlipESe3L+40zOsPqUlQ62FoN8rWFeWqs7EJDJ+3G4ABLSrSVblwIiIiIiIiInIH1IiT25N8DUL6weVzULYOPPYN2BWdH6eU1DRemmvOhbv3Hnfeeki5cCIiIiIiIiJyZ4pO50Tyj2HAspfg9C4oXhKC5oCTm62rylWf/HKY7eHXc+H6KRdORERERERERO6cGnFivS1TYe98MNlD7/9Bqcq2rihXbTh0nq82mHPhJvaoh59y4UREREREREQkF6gRJ9Y5vAZ+fcd8u/NEqNzGpuXktjOx1yy5cIPuq8RD9crZtiARERERERERKTLUiJOcizoEC58CDGgcDE2fsnVFuSolNY2hc3Zx6Woydcu7M7pLbVuXJCIiIiIiIiJFiBpxkjPXLsHcIEiMg4otofPHYDLZuqpcNfmXw/wZcQk35cKJiIiIiIiISB5QI06yl5oCPw2Gi2HgUcGcC+fgaOuqctX6g+f5Oj0Xrmc9KnkpF05EREREREREcpcacZK9X8ZA2HooVsJ8hVTXMrauKFedjrnGiPm7AXj8vkp08VcunIiIiIiIiIjkPjXi5NZ2zYbQL823H/0aytWzbT25LDk1jaFzb8iFe0i5cCIiIiIiIiKSN9SIk5s7sR1+ftl8u+3rcO+jtqwmT0xee5i/bsiFc3JQLpyIiIiIiIiI5A014iRrsacgpD+kJkGth6HtG7auKNetO3iObzaac+E+Ui6ciIiIiIiIiOQxNeIks+RrENIPrpyHsvfCY9+CXdH6UTHnwu0BILilH52VCyciIiIiIiIieaxodVfkzhkGLH0RzuyG4qWg7xxwcrV1VbkqPRcu5moy9Xw9GNWllq1LEhEREREREZG7gBpxktGWKbBvAdg5QO//QUk/W1eU6yatOWTOhXN24Iu+yoUTERERERERkfyhRpz869Bq+HWc+XbniVC5tW3ryQO/HTjHt7+HAfBxz3pU9Cph44pERERERERE5G6hRpyYRR2ChU8BBjQeDE2fsnVFue5UzDVG/vRvLtyDdZULJyIiIiIiIiL5R404gasXYW4QJMVDpVbQ+SNbV5TrklPTGDpnJzFXk6nv68HoLrVtXZKIiIiIiIiI3GXUiLvbpabAgsFwMQw8Kppz4RwcbV1Vrvt4zSF2RsaYc+H6NcLRQT/6IiIiIiIiIpK/1I242/3yNoRtgGIlzFdIdSlt64py3a/7z/F/lly4+lQopVw4EREREREREcl/asTdzXb9CKFfmW8/9g34+Nu2njxw8tJVSy7cE60q82BdHxtXJCIiIiIiIiJ3KzXi7laRf8DPw823274BdR6xbT15ICkljRfn7CL2mjkX7o3OtWxdkoiIiIiIiIjcxdSIuxvFnoR5AyA1CWp3hbav27qiPPHxmoPsPhGDu3LhRERERERERKQAUGeiCNuxYwddunTB09MTFxcXWrRowfw5syCkP1w5D9514dFvwO7mPwanT59m2LBh1KlTBxcXF7y9vQkICGDWrFmkpqZmGHvu3DlefPFFmjdvjre3N05OTvj6+tKhQwcWLVqEYRhZ7mPnzp306tWLypUrU7x4cSpVqsQjjzzC77//nu0xJiUl0aBBA0wmE7Vq/bvi7Zf95/hu03EAJvVSLpyIiIiIiIiI2J6DrQuQvLF+/XoCAwNxdnYmKCgINzc3Fi5cSJ/+gzjxgBMjO94DQXPAyfWmc4SFhdG8eXMuXLhAYGAgXbt2JS4ujiVLljBo0CDWrVvH9OnTLeNPnDjB//73P1q0aMFjjz1GqVKlOH/+PMuXL6dHjx489dRTfPfddxn2sWTJEnr06IGTkxOPPfYYFSpU4MSJEyxevJhly5Yxffp0goODb1rjuHHjOHr0aIZtJy9d5ZXruXBPBlSm073KhRMRERERERER2zMZN1umVMTFxcXh4eFBbGws7u7uti4nV6WkpFCrVi1OnjxJaGgoDRo0ACB21fs0GziW8Jg0Dm/4iUoBPW85zwsvvMDXX3/NlClTGDZsmGV7TEwM9evXJzIykvDwcCpVqgRAcnIydnZ22NvbZ5gnPj6e5s2bc+DAAfbt28e9995rua9OnTocPHiQnTt3WuoE8yq5Jk2a4OfnR1hYWJb1bd++nZYtWzJ16lRefPFFatasyd/79tP7223sPhFD/Qqe/PTsfTolVURERERERERuKb/6ROpQFEHr1q3j2LFj9OvX79/m1qFVePwxidEBjiSlwsx1+7OdJ70B1qVLlwzbPT09CQgIACA6OtqyvVixYpmacABubm48+OCDAJlWr4WFhVGuXLkMTTiARo0aUa5cOaKiorKsLSEhgccff5yAgABeeOEFy/aPVt+QC9e3oZpwIiIiIiIiIlJg3FaXIsvssfnzrZrDmuyxrDz//POYTCZMJhNnz569ncMosjZs2ABAp06dzBvOH4SFTwMGgT0GAbBx48Zs56lbty4AK1euzLA9JiaGLVu24OPjQ506dbKdJyEhgXXr1mEymTKshkvfx5kzZ9i9e3eG7Tt37uTMmTN06NAhyzlHjx5NZGQk33//PSaTCYArSSlM22zOhZvcu4Fy4URERERERESkQLE6I+6m2WN9+nDixAlGjhyZ7RzWZo/91y+//MI333yDi4sLV65csfYQirwjR44AUL16dbh6EeYGQVI8VArAp98XuL4wxzLmVl599VWWL1/O8OHDWb16NfXq1bP8O5UoUYLFixdTvHjxTI87f/48X331FWlpaZw/f56VK1dy4sQJxo4dS7Vq1TKM/fTTT3nooYdo2bIl3bt3p0KFCkRGRrJ48WLatWvHN998k2n+33//nalTp/LJJ59QtWpVy/aouER8gKcCKvNAHW8rv2siIiIiIiIiInnLqoy4m2aPxcbSrFkzwsPDOXz4sCUz7GaszR67UWxsLHXr1qVFixZERUWxceNGzpw5g4+PdYH8RTkjrlOnTvzyyy8cOXiAan+8DmEbwLMiPL0eXEpTvnx5Ll++TGxsbLZzXbx4kQEDBrBq1SrLtuLFi/P666/z2muvZdmI27dvH/7+/pa/FytWjPHjxzNy5EjL6rUb7dmzh169emVoDlaqVIl3332XQYMGZRh75coV6tWrR7ly5fj999+xs7MjKSUNp2L2OJTy5aF3Q5ivXDgRERERERERsUKBzIjLMnsM8PDwYPTo0SQlJTFz5sxs57E2e+xGw4YN49q1a3z55ZfWlH532vypuQlXzAWC5oJLaasefvToUVq1akVUVBSbNm0iPj6eEydOMGbMGN577z06dOiQ5WnEdevWxTAMUlJSOH78OOPGjePNN9+kR48epKSkZBi7YsUK2rRpQ9OmTTlw4ABXr17lwIEDtGrViscff5zXXnstw/hXXnmF06dP88MPP2BnZ/7x/XDVQQDsTfBFP+XCiYiIiIiIiEjBZFXHIlP22A0CAwOBvM0eW758OTNnzuTzzz+nbNmy1pROYmIicXFxGb6KKg8PDwBi/5ht3vDYN+BT13J/epc3O8HBwURERLB8+XICAgJwdXXF19eXN954g6FDh7Jt2zZCQkJu+nh7e3v8/PwYNWoU77//PosXL+a7776z3H/hwgX69+9P9erVmTVrFrVq1aJ48eLUqlWLWbNm0bhxYz755BMiIyMB88/fN998w3vvvUeNGjUAWPPPWX7YYs6FK+vujG9J5cKJiIiIiIiISMFkVSMuQ/bYf/j4+ODq6prj7LEaNWowfPhwOnfuzOuvv87zzz9P7dq1sbe3zzJ77MKFCzz99NM8+uij9O3b15qyAZgwYQIeHh6WrwoVKlg9R4GWlgrHN8HeBVR3uQzAkYtp0G4U1OlmGXb27FkuX76c5b/hjeLj49myZQu1a9fO8rTf9u3bA7Br164clZfevE1v5gJs3bqV2NhY2rZta1ndls7Ozo42bdqQmprK33//DWC5oMOrr75quVDHg3XLETHxYQBOHD+KyWTC09MzRzWJiIiIiIiIiOQnqy7WkJ4pdrPVVO7u7jnKHfP29mbbtm2W7LHVq1cD5uyx5557jvr162d6zAsvvEBSUhJff/21NSVbjBo1ihEjRlj+HhcXV3SacfuXwerXIe40AG1TUpgArD3jSVCbjKd2rlmzxjymbdtbTpmUlATc/BThqKgoAJycnHJU4unT5tqKFSuWaR/pc2W3j7p16/Lkk08CkJZm8NvBc1y8koyXqyMRW3/Gw8ODnj17UqKEVsWJiIiIiIiISMFjkzAta7PH5s2bx/z585k6darVF2VI5+TkhLu7e4avImH/Mpg/yNKEA+hQxZ4qJU3M+eMMuxd/ZtkeGxvL+PHjcXR0zHARhDNnznDw4MEMTVQvLy9q1qxJZGQk06ZNy7DLmJgYJk2aBPy7Mg7MF11ITk7OVOLFixcZPXo0kDEXsHnz5tjb27NgwQLLqrd0u3fvZsGCBZQoUYLmzZsD0LFjR6ZNm8a0adOo9NgITG2ep0r3kWxZMR8wr8qcNm0an332GSIiIiIiIiIiBY1VK+Is2WM3WfUWFxdHyZIls50nPXssLCzM0lhzdXXljTfe4Ny5c0yZMoWQkBD69+/PxYsXGTJkCA899BADBw60ptyiLy3VvBKOjBe+dbAzMa1rcQJ/vEqb/iMJWv0Pbu7uLFy4kIiICCZNmoSfn59l/KhRo5g5cybTp08nODjYsv3TTz+lW7duPP3004SEhNCwYUMuXbrEsmXLiIqKokePHnTs2DHD+J9//plWrVpRsWJFihcvTkREBCtWrODKlSv06tUrw2nFvr6+vP7664wfP56mTZvy2GOPUalSJcLDw1myZAlJSUl89tlnmZqmq/edZfqWcAA+6V2f8p6Zr9wqIiIiIiIiIlLQWNWIS88VO3LkCI0bN85wX3r2WLNmzW45R3r2WKNGjW6aPTZlyhR27dpF//79iYyM5MKFC6xYsQKTyZTlnOXKlQPMeWU3Xs21yIvYmmEl3I3aV3Zg8xMujN2QwLyQuSSnpuHv78/EiRPp06dPjqbv3LkzW7du5eOPP2bz5s1s3LgRZ2dnateuzZgxY3j++eczjB84cCBpaWn88ccfrF+/nmvXruHl5UWbNm14/PHHs9zvBx98QL169fj2229Zs2YN8fHxeHh40L59e4YNG0bnzp0zjD9x8SqvLtgDwLNtqtChtneOjkVERERERERExNasasS1bduWCRMmsHbtWoKCgjLcl1fZY15eXpZcsP9asWIFZ8+epV+/fhQvXhwvL6+cH0xRcPncLe9uVt6eVf1doMf34N/zpuNmzJjBjBkzsryvadOmzJ8/P0fldOjQgQ4dOuRo7I369OmTo+ZgYkoqQ+bsJD4hhUYVPXklsKblPsMwbvFIERERERERERHbMxlWdDBSUlKoWbMmp06dIjQ01LL6LDY2lmbNmhEeHs6hQ4cspz2eOXOG2NhYypUrl+ECD7Vq1eLQoUN89913PPXUU5btMTEx3HfffRw8eJBffvklw2mPWWnXrh0bN27kzJkzVmfHxcXF4eHhQWxsbOHNizu+CWY+nP24x3+Gyq3zvp489s6yf5ixNRzPEsVY+VJr7tEpqSIiIiIiIiKSC/KrT2TVxRocHByYNm0aaWlptGnThmeeeYaRI0dSv359Dh8+zPjx4zNlj9WuXZvFixdnmOfTTz/FwcGBp59+mo4dO/Lqq6/y1FNPUaNGDQ4ePJgpe0xuolJLcL8HyPqUXTCBe3nzuEJu9b4zzNgaDphz4dSEExEREREREZHCxuqrprZv357NmzfTqlUr5s2bx9dff423tzchISGMHDkyR3OkZ4/16tWL/fv3M2XKFObNm4efnx+ff/458+bNs/pA7kp29vDgxOt/+W8z7vrfH/zQPK4Qi7xwlVcXmK+q+mzbKtxfS7lwIiIiIiIiIlL4WHVqalFSJE5NTbd/mfnqqTdeuMG9vLkJV6eb7erKBYkpqfT8eht7T8XSuFJJQp5pQTF7q/vHIiIiIiIiIiI3lV99Iqsu1iAFVJ1uUOsh81VUL58DV2/z6aiFfCUcwISVB9l7KpaSJYrxed+GasKJiIiIiIiISKGlRlxRYWdfJC7IcKOVe2/MhWugXDgRERERERERKdS0vEgKpIgLV3j9ei7cc22r0r5WWRtXJCIiIiIiIiJyZ9SIkwInMSWVIXN2Ep+YQpNKJRnZqYatSxIRERERERERuWNqxEmB88GKA+w7FWfOheunXDgRERERERERKRrU4ZACZcXfZ/jftggAPunTgHIeyoUTERERERERkaJBjTgpMMKjr/D6QnMu3PPtqtK+pnLhRERERERERKToUCNOCoSEZHMu3OXEFJr6lWTkA8qFExEREREREZGiRY04KRA+WHGAf07HUcrFkc/6NsRBuXAiIiIiIiIiUsSo2yE29/Pfp5kVej0Xrnd95cKJiIiIiIiISJGkRpzYVHj0Fd5YuBeAIe2r0k65cCIiIiIiIiJSRKkRJzaTkJzKC7PNuXDN/EoxvKNy4URERERERESk6FIjTmzm/RX72X8mDi/lwomIiIiIiIjIXUCdD7GJ5XtO82NoJCYTfNqnAT4ezrYuSUREREREREQkT6kRJ/nuePQVRi26ngvXrhptapSxcUUiIiIiIiIiInlPjTjJVxly4SqX4uWO1W1dkoiIiIiIiIhIvlAjTvLVez/v58D1XLjPlQsnIiIiIiIiIncRdUEk3yzdfYrZf/ybC+ftrlw4EREREREREbl7qBEn+SIs6jKjr+fCvdheuXAiIiIiIiIicvdRI07yXEJyKkPm7OJKUirNK5diWAflwomIiIiIiIjI3UeNOMlz45abc+FKuyoXTkRERERERETuXuqISJ5auvsUc7f/mwtXVrlwIiIiIiIiInKXUiNO8syxG3LhhravRuvqyoUTERERERERkbuXGnGSJxKSUxkyeydXklJpUaUUwzrWsHVJIiIiIiIiIiI2pUac5Ilxy//h4Nl4Srs68llQQ+ztTLYuSURERERERETEptSIk1y3ZNcp5m4/gckEU4MaKhdORERERERERAQ14iSXHYu6zOjF5ly4l+6vTqtqpW1ckYiIiIiIiIhIwaBGnOSaa0nmXLirSancV8WLlzpUt3VJIiIiIiIiIiIFhhpxkmv+zYVzYmrfBsqFExERERERERG5gRpxkisW7zpJyA5zLtxnQQ0o66ZcOBERERERERGRG6kRJ3fs6PnLvLl4HwDDOlSnpXLhREREREREREQyUSNO7siNuXAtq3ox9H7lwomIiIiIiIiIZEWNOLkj7yz7h0PnzLlwU4KUCyciIiIiIiIicjNqxMltW7TzJPP+PIGdCT7rq1w4EREREREREZFbUSNObsvR8/E35MLVoGVV5cKJiIiIiIiIiNyKGnFitWtJqbwweyfXklMJqFaaF++vZuuSREREREREREQKPDXixGpjlu7j8LnLlHFz4tM+yoUTEREREREREckJNeLEKgv+OslPf53EzgRTgxpQxs3J1iWJiIiIiIiIiBQKt9WI27FjB126dMHT0xMXFxdatGjB/PnzrZrj9OnTDBs2jDp16uDi4oK3tzcBAQHMmjWL1NTUDGOPHDnC+PHjadOmDffccw+Ojo5UqFCBQYMGcfDgwds5BLkNR87F8/YScy7cyx2VCyciIiIiIiIiYg2TYRiGNQ9Yv349gYGBODs7ExQUhJubGwsXLiQiIoJJkyYxcuTIbOcICwujefPmXLhwgcDAQOrVq0dcXBxLlizh7NmzBAcHM336dMv4oKAg5s2bR926dQkICMDd3Z29e/eyatUqihcvzurVq2nTpo1VBx4XF4eHhwexsbG4u7tb9di70dWkFB75YgtHzl+mdfXSzBjcTKekioiIiIiIiEiRkF99IqsacSkpKdSqVYuTJ08SGhpKgwYNAIiNjaVZs2aEh4dz+PBhKlWqdMt5XnjhBb7++mumTJnCsGHDLNtjYmKoX78+kZGRhIeHW+aZMWMG9evXp2HDhhnmCQkJoW/fvtSpU4d//vknp4cBqBFnrVd+2sOCv05S1s2JlcNaU9pVp6SKiIiIiIiISNGQX30iq05NXbduHceOHaNfv36WJhyAh4cHo0ePJikpiZkzZ2Y7T1hYGABdunTJsN3T05OAgAAAoqOjLduDg4MzNeHAvFKuRo0a7N+/P8N4yV0//XmCBddz4T7r21BNOBERERERERGR22BVI27Dhg0AdOrUKdN9gYGBAGzcuDHbeerWrQvAypUrM2yPiYlhy5Yt+Pj4UKdOnRzVVKxYMQAcHBxuOS4xMZG4uLgMX5K9w+fieXupORduxAM1aFHFy8YViYiIiIiIiIgUTrfuXv3HkSNHAKhevXqm+3x8fHB1dbWMuZVXX32V5cuXM3z4cFavXp0hI65EiRIsXryY4sWLZzvP9u3b+eeff2jatCmenp63HDthwgTGjRuX7Zzyr6tJKQyZvZOE5DRaVy/NC+2q2bokEREREREREZFCy6pGXGxsLGA+FTUr7u7uljG34u3tzbZt2xgwYACrVq1i9erVABQvXpznnnuO+vXr56iWxx9/HDs7Oz766KNsx48aNYoRI0ZY/h4XF0eFChWyfdzd7O0l/3Dk/GW83Z34tE8D7HRxBhERERERERGR22bVqam55ejRo7Rq1YqoqCg2bdpEfHw8J06cYMyYMbz33nt06NCB1NTUmz7+2rVrPPbYYxw8eJD33nuPdu3aZbtPJycn3N3dM3zJzf305wkW7ryeCxekXDgRERERERERkTtl1Yq49JVwN1v1FhcXR8mSJbOdJzg4mIiICMLCwvDx8QHA1dWVN954g3PnzjFlyhRCQkLo379/pscmJCTwyCOPsH79ekaNGsXo0aOtOQTJgUNn/82FG9mpJs2VCyciIiIiIiIicsesWhGXng2XVQ7c2bNnuXz5cpb5cTeKj49ny5Yt1K5d29KEu1H79u0B2LVrV6b7rl27Rrdu3fjll1947bXXGD9+vDXlSw5cSUzhhdl/WXLhnm9b1dYliYiIiIiIiIgUCVY14tq2bQvA2rVrM923Zs2aDGNuJikpCYDo6Ogs74+KigLMp5Le6Nq1azzyyCP88ssvvPLKK0ycONGa0iUHDMPg7SX7OBZ1BW93J6YoF05EREREREREJNdY1Yjr0KEDVapUYc6cOezevduyPTY2lvHjx+Po6MigQYMs28+cOcPBgwcznMrq5eVFzZo1iYyMZNq0aRnmj4mJYdKkScC/K+Pg39NRf/nlF0aMGMHHH39s1UFKzvz050kW7TqFnQk+79sIL+XCiYiIiIiIiIjkGpNhGIY1D1i/fj2BgYE4OzsTFBSEm5sbCxcuJCIigkmTJjFy5EjL2ODgYGbOnMn06dMJDg62bF+1ahXdunUjJSWFDh060LBhQy5dusSyZcuIioqiR48eLFiwINM8Pj4+PPvss1nWFRwcjJ+fX46PIy4uDg8PD2JjY3XhBuDg2Tge+WILiSlpvBpYkyHtq9m6JBERERERERGRfJFffSKrLtYA5pVqmzdvZuzYscybN4/k5GT8/f2ZOHEiffr0ydEcnTt3ZuvWrXz88cds3ryZjRs34uzsTO3atRkzZgzPP/98hvHh4eGAOYdu3LhxWc7Zrl07qxpx8q8riSkMmb2TxJQ02tYoo1w4EREREREREZE8YPWKuKJCK+LMDMNgxPw9LN51Ch93Z1a8FKBTUkVERERERETkrpJffSKrMuKk6Jn/5wkW7zqFvZ2Jz/s1VBNORERERERERCSPqBF3Fzt4No4xS/8BYGSnGjT1K2XjikREREREREREii414u5SVxJTeOF6Lly7mmV4ro1y4URERERERERE8pIacXchwzB4c/FewqKu4OPuzCe9G2BnZ7J1WSIiIiIiIiIiRZoacXeheTtOsGT3aeztTHzRryGlXBxtXZKIiIiIiIiISJGnRtxd5sCZOMYuM+fCvRpYkybKhRMRERERERERyRdqxBVhO3bsoEuXLnh6euLi4kLT5s3p9dpkElPSaF+zDM+0rpLtHKdPn2bYsGHUqVMHFxcXvL29CQgIYNasWaSmpmb5mDVr1tC2bVvc3Nxwd3enffv2/Pbbbzfdx5w5c2jVqhWurq7mOps2ZcaMGVmOPXbsGO+88w7dunWjfPnymEwm/Pz8cvLtEBERERERERGxKZNhGIati7CFuLg4PDw8iI2Nxd3d3dbl5Lr169cTGBiIs7MzQUFBuLq6Mm1WCPHRZ6jY+Vl2/fRZtqekhoWF0bx5cy5cuEBgYCD16tUjLi6OJUuWcPbsWYKDg5k+fXqGx/z4448MHDiQMmXK0KdPHwDmzZtHdHQ08+fPp2fPnhnGjxw5kk8++QQfHx+6detGsWLFWLlyJcePH2fkyJFMmjQpw/gZM2YwePBg7O3tqV27Nvv376dChQqEh4ff+TdNRERERERERO5K+dUnUiOuCDbiUlJSqFWrFidPniQ0NJQGDRowd3skr88N5ez/RsDlKI4cPkylSpVuOc8LL7zA119/zZQpUxg2bJhle0xMDPXr1ycyMpLw8HDLPJcuXaJKlSo4ODiwa9cufH19ATh58iQNGzYEzM09Nzc3AP7880+aNm1KtWrV+OOPPyhVynya7JUrV2jfvj07duxg69at3HfffZZ9h4WFcf78eerXr0/x4sVxdnbGx8dHjTgRERERERERuW351SfSqalF0Lp16zh27Bj9+vWjQYMG7D9tzoWzc3Kh3zPDSE5KYubMmdnOExYWBkCXLl0ybPf09CQgIACA6Ohoy/affvqJmJgYhg4damnCAfj6+vLiiy8SHR3N4sWLLduXLl0KwPDhwy1NOAAXFxfefPNNAL755psM+65SpQotWrSgePHiOfpeiIiIiIiIiIgUFGrEFUEbNmwAoFOnTlxOTGHInJ0kpaRxf62yjB86AICNGzdmO0/dunUBWLlyZYbtMTExbNmyBR8fH+rUqZPlfv8rMDAw037Pnj0LQOXKlTONT9+2bt26bOsUERERERERESkMHGxdgOS+I0eOAFCtWjVGL9rL8egr3OPhzORe9Snp4oirq6tlzK28+uqrLF++nOHDh7N69eoMGXElSpRg8eLFGVampc9ZvXr1THOlb7txv6VLlwbg+PHjmcanbzt58iRXr16lRIkSOT18EREREREREZECSSviiqDY2FgAfg+/yrI9p3GwM/F5v0aUvH5xBnd3d8uYW/H29mbbtm08+OCDrF69mo8++ohvvvmG2NhYBg0aRP369bPcr4eHR6a50s+vvnG/nTt3BmDKlCnExMRYtl+9epUJEyZkmldEREREREREpDBTI64I+2ydefXZaw/WpHGlklY//ujRo7Rq1YqoqCg2bdpEfHw8J06cYMyYMbz33nt06NCB1NTU266vTZs2DBw4kCNHjlCnTh2ee+45hg4dir+/P2fOnLE09Ozs9GMqIiIiIiIiIoWfTk0tIlLTDLYfv8j5+AQSTU4AJF69TJdmZXkqoEqGsXFxcZQsmX1jLjg4mIiICMLCwvDx8QHA1dWVN954g3PnzjFlyhRCQkLo378/8O9KuNjYWLy8vDLt88Yx6WbMmEGTJk34/vvvmTFjBsWLFycwMJCPPvqIe++9FwcHhwwXchARERERERERKay01KgIWL3vDAET19H3u1CGhexmd5w5t835yjkm966PnZ3JMvbs2bNcvnw5yxy3G8XHx7NlyxZq165tacLdqH379gDs2rXLsi2rHLh0N8uPs7Oz46WXXmLPnj0kJCRw6dIlQkJCSEtL4/Lly9SrV49ixYrl5NsgIiIiIiIiIlKgqRFXyK3ed4bnf9zJmdgEyzbnCuarnUYd2kFo2IUM49esWQNA27ZtbzlvUlISANHR0VneHxUVBYCTk5NlW/qca9euzTQ+p/tNN3v2bACCgoJyNF5EREREREREpKBTI64QS00zGLd8P8Z/tjv7NcDB04cr+zfy2rfLSE0zj4iNjWX8+PE4OjoyaNAgy/gzZ85w8ODBDBdF8PLyombNmkRGRjJt2rQM88fExDBp0iTg35VxAL1798bDw4PPP/+ckydPWrafPHmSL774gtKlS/PYY49lmCv9lNUbbdq0iQkTJlCpUiWee+45674pIiIiIiIiIiIFlDLiCrHtxy9mWAmXzmRnj9eDL3Fu/hj2/d9wukdtoVr5MixcuJCIiAgmTZqEn5+fZfyoUaOYOXMm06dPJzg42LL9008/pVu3bjz99NOEhITQsGFDLl26xLJly4iKiqJHjx507NjRMr5kyZJ88cUXDBw4kEaNGtGnTx8A5s2bx4ULF5g3bx5ubm4Zau3ZsyfXrl2jXr16uLu7s3fvXlatWkWpUqVYsmRJpvHR0dG88sorlr8nJycTHR2doe5JkyZRunTp2/mWioiIiIiIiIjkGZNhGP9dUHVXiIuLw8PDg9jYWNzd3W1dzm1ZuvsUw0J23/T+xNOHiNk8B7uowxipKfj7+zNixAhLgyxdcHBwlo04gB07dvDxxx+zefNmoqKicHZ2pnbt2gwaNIjnn38ee3v7TPtdvXo148ePZ+fOnZhMJho3bsxbb72VoWmX7quvvmLGjBkcPnyYa9euUaFCBR5++GFGjRqFt7d3pvHh4eFUrlz5lt+X48ePZ2g0ioiIiIiIiIjcSn71idSIK8SNuG3HLtD3u9Bsx819ugX3VfXKdpyIiIiIiIiIyN0ov/pEyogrxJpVLkU5D2dMN7nfBJTzcKZZ5VL5WZaIiIiIiIiIiGRBjbhCzN7OxNiudQAyNePS/z62ax3s7W7WqhMRERERERERkfyiRlwh92Ddcnw9oBE+Hs4Ztvt4OPP1gEY8WLecjSoTEREREREREZEb6aqpRcCDdcvxQB0fth+/yPn4BMq6mU9H1Uo4EREREREREZGCQ424IsLezqQLMoiIiIiIiIiIFGA6NVVERERERERERCQfqBEnIiIiIiIiIiKSD9SIExERERERERERyQdqxImIiIiIiIiIiOQDNeJERERERERERETygRpxIiIiIiIiIiIi+UCNOBERERERERERkXygRpyIiIiIiIiIiEg+UCNOREREREREREQkH6gRJyIiIiIiIiIikg/UiBMREREREREREckHasSJiIiIiIiIiIjkAzXiRERERERERERE8oGDrQuwFcMwAIiLi7NxJSIiIiIiIiIiYkvp/aH0flFeuWsbcfHx8QBUqFDBxpWIiIiIiIiIiEhBEB8fj4eHR57NbzLyutVXQKWlpXH69Gnc3NwwmUy2LidXxMXFUaFCBU6cOIG7u7utyxGRAkSvDyJyM3p9EJGb0euDiNxKUXuNMAyD+Ph47rnnHuzs8i7J7a5dEWdnZ4evr6+ty8gT7u7uReJJICK5T68PInIzen0QkZvR64OI3EpReo3Iy5Vw6XSxBhERERERERERkXygRpyIiIiIiIiIiEg+UCOuCHFycmLs2LE4OTnZuhQRKWD0+iAiN6PXBxG5Gb0+iMit6DXi9ty1F2sQERERERERERHJT1oRJyIiIiIiIiIikg/UiBMREREREREREckHasSJiIiIiIiIiIjkAzXiRERERERERERE8oEacUXIhg0bMJlMvPPOO3kyv8lkol27dnkyt0hhltVzIzg4GJPJRHh4uE1qutuEh4djMpkIDg62dSkiIiJyl/Pz88PPzy/H49955x1MJhMbNmzIs5pE8pI1n33yum9RGKgRlwvSPwA++OCDti7ljrRr1w6TyWTrMkSytHv3bp577jnq1KmDu7s7jo6O+Pj48MADDzB58mSioqJsXWKBcKuGefp/ev/9cnNzo1mzZnz66ackJyfnb8FWsPZNrUhB8vnnn2MymRg0aFCW91+6dIny5ctTokQJDh8+nOG+mJgYJk6cSNu2bSlbtizFihXDw8ODRo0a8dJLL/HHH39kmi/9DfGNXw4ODvj4+PDII4+wadOmPDnO3KA36EXHlStXGD9+PI0aNcLV1RUnJyd8fX1p3bo1o0aN4tixY7YuMd9Z+3577dq1mEwmAgMDsx3bv39/TCYTc+bMuZMSb6mgPD/TP3+ZTCZ8fHxISUnJctyBAwcs4/QeQgora15L9X65cHCwdQGSe5o1a8aBAwcoXbp0nsx/4MABSpQokSdzi9xMWloar732GpMnT8be3p42bdrQqVMnXFxcOH/+PNu2beOVV15h7NixHDp0iPLly9u6ZAAmTJjAG2+8UWDquVHjxo15+OGHAUhNTeXs2bMsX76cESNGsHXrVn766ScbV2i98uXLc+DAATw8PGxdikiWXnzxRRYtWsSsWbPo0aMHjzzySIb7hwwZwunTp5k6dSo1atSwbF+3bh19+vQhOjqa6tWr061bN7y9vbly5Qr79+/nu+++4/PPP2fKlCkMGzYs036ffPJJfH19Abh27RoHDhxg5cqV/PzzzyxevJhu3brl7YHLXSs+Pp6AgAD+/vtvqlWrxoABA/Dy8iI6Oprt27fz4YcfUrVqVapWrWrrUgu0jh07UrFiRX799VdOnDhBhQoVshwXGxvL4sWL8fT0pHv37vlcpe04ODhw7tw5Vq5cmeXr2ffff4+dXcFfe/Liiy8SFBRExYoVbV2KFDBF8bU0r/sWhYEacUVIiRIlqFWrVp7Nn5dzi9zMm2++yeTJk2nUqBHz5s2jWrVqmcbs3LmT119/nWvXrtmgwqyVK1eOcuXK2bqMLDVp0iTTb7IvXbqEv78/CxYsICwsjCpVqtimuNtUrFgxvUZJgWYymZg+fTr+/v4888wztGrVyvIGdMGCBcydO5f27dszdOhQy2N2797Nww8/jMlkYtasWZbVLje6ePEiU6ZMIS4uLsv9PvXUU7Ro0SLDtp9++onevXszadIkNeIkz0yZMoW///6bp556iv/7v//L9LN7/PhxEhMTbVRd4WFnZ8fgwYMZN24cM2bM4O23385y3Jw5c7h27RpPPPEEzs7O+Vyl7bRs2ZI9e/bwww8/ZHo9S0lJ4ccff6Rjx45s3LjRRhXmTOnSpe/qpoTcXFF8Lc3rvkWhYMgdO378uAEYgYGB2Y4NDw83nnjiCeOee+4xihUrZpQvX9544oknjIiIiCzH79mzx+jcubPh6upquLu7G507dzb27t1rPP744wZgHD9+3DJ2/fr1BmCMHTs2wxyHDx82goODDT8/P8PR0dEoWbKkUa9ePWPYsGFGWlqaYRiGAWT59fjjj1vmAYy2bdtmqjExMdH45JNPjCZNmhiurq6Gi4uLUbt2bWP48OHGxYsXs/2eiNzMoUOHDHt7e6NMmTLG+fPnsx2fnJxsGMa/z8nHH3/c2L9/v/Hoo48apUqVyvCcWbRokREUFGRUrVrVKF68uOHu7m4EBAQYCxYsuOn83333nXHvvfcaTk5Ohq+vr/Hqq68a165dy/K5kdVzNN3GjRuNhx9+2PDy8jIcHR2NatWqGW+++aZx5cqVDONufE7v2LHD6Nixo+W14NFHH83y+Z/V1/Tp0zOMefbZZ7M8vu7duxuA8ccff2S6b/PmzUaXLl2MkiVLGk5OTkbNmjWNMWPGZKr5dsb/9ddfRo8ePYwKFSoYjo6ORunSpY0mTZoY77//vmEY//57ZvWV/np347/5jdq2bWsARlJSkjF27FijUqVKhqOjo1G9enXjyy+/zLL2qKgo4+mnnzbKlCljFC9e3GjSpImxaNEiY/r06Rm+nyK349tvvzUAo2fPnoZhGMbZs2eN0qVLG25ubkZ4eHiGsa1bt87xz1z661+69Negbdu2ZRobFxdnAEbt2rWznGfy5MlGvXr1DGdnZ8Pd3d1o166dsWzZspvuN6fjU1NTje+++85o2rSpUbJkScPZ2dkoX7688fDDDxvr1683DMMwxo4de9Pne1avp1Jwde7c2QCMXbt25fgxN3uvaRiGUalSJaNSpUoZtqX/nB87dsyYOHGiUa1aNcPJycnw8/Mzxo0bZyQlJWUYf+P/q5s2bTLatm1ruLq6Gh4eHkb37t2NI0eOZLnvvXv3Gr169TLKlCljODo6Gn5+fsawYcOM6Ojom9Z56dIlY8iQIYavr69hb29v+T8ku/fbWQkPDzdMJpNRpUoVy3v3/2rSpIkBGDt37rRsCwsLM5588knL/68+Pj7G448/num1Jt2xY8eMp59+2vKZoUyZMkbbtm0tr0E5fX5GRUUZw4YNyzBPr169jL1792ba543/hpMmTTJq165tODo6Zvs9ufHz17PPPms4ODgY586dyzBm8eLFBmCEhIQYTk5OmX5+Tp06ZYwZM8Zo3ry55d+2UqVKxvPPP59prnQ5/dyT/nMQHx9vvPTSS0a5cuUMR0dHw9/f3/jpp58yzZv+vU1/LbzxGB9//HHjyJEjxqOPPmp4enoaJUqUMDp06GDs3r07yxrPnTtnvPzyy0bVqlUNR0dHw8vLy+jevXuW338p+HL6WpqT98uJiYnGZ599ZnTq1Mnw9fW1PD8fe+yxDK8d/7VkyRLjgQceMEqVKmV5Lg0YMCDDz9TNPvusX7/e8PDwMCpUqGAcOHDAsi2rvoW1z5v04+7du7dRsmRJw8XFxWjTpo2xcePGLJ9TBYlWxOWjw4cPExAQQFRUFF27duXee+9l3759/PDDDyxfvpzNmzdnOB1lz549tG7dmitXrtC9e3eqV6/On3/+SUBAAPXr18/RPk+fPk2zZs24cuUKDz30EH369OHKlSscOXKEr776ikmTJuHg4MDYsWOZMWMGERERjB071vL4Bg0a3HL+a9eu8cADD7BlyxaqV6/O4MGDcXJy4siRI3z77bcMGjSIkiVL3tb3S2TmzJmkpqby7LPPUqZMmWzHOzhkfEk7evQoLVq0wN/fn+DgYC5cuICjoyMAo0aNwtHRkYCAAMqVK0dUVBTLli2jZ8+efPbZZxlWpQC89957jBkzBm9vb55++mmKFSvGvHnzOHDggFXH9PXXXzNkyBA8PT3p2rUrZcuW5c8//+SDDz5g/fr1rF+/3lJjuh07dvDRRx/Rvn17nn32WXbt2sWSJUvYu3cv+/btw9nZGT8/P8aOHcu4ceOoVKlShosWZPc8BnMG1fbt23FxcaFmzZoZ7vvpp5/o27cvTk5O9OnTh7Jly7J27Vreffdd1qxZw4YNGzL89t2a8bt376Zly5bY29vzyCOPUKlSJWJiYti/fz//93//x5tvvomnpydjx45lypQpALz88suWfeX0AjJ9+/Zl+/btdO7cGXt7e+bPn8+QIUMoVqwYTz/9tGXc5cuXadu2Lfv376dly5a0adOGkydPEhQUlKN8HpHsPPPMMyxatMiyCi4kJITo6Gi+//57KlWqZBl35MgRNm3aRMWKFW+aK3ej/77+3cratWsBaNSoUYbthmHQs2dPli5dSo0aNRgyZAhXrlxh3rx5dOvWjU8++YThw4ff9vhRo0bx0UcfUbVqVfr164ebmxunTp1i8+bN/Prrr7Rr14527doRHh7OzJkzadu2bYbnuKenZ46PUWzPy8sLML//zcn/Q3fi5ZdfZsuWLfTu3RtXV1eWL1/O2LFj+fvvv1mwYEGm8aGhoUyYMIEHH3yQoUOH8s8//7B48WI2bdpEaGhohlXhmzdvJjAwkKSkJHr27Imfnx/btm1j6tSp/Pzzz4SGhmZayZSYmMj999/P5cuX6datGw4ODnh7e9/2++1KlSrRsWNHfvnlFzZs2ED79u0z3L9v3z7+/PNPGjZsSMOGDQH4448/CAwM5MqVKzz88MNUr16d8PBwZs+ezapVq9i2bVum43zooYeIj48nMDCQoKAgLl26xK5du5g6dSrBwcE5en5GRUVx3333cezYMdq1a0dQUBDHjx9nwYIFrFixgjVr1hAQEJDpGIcOHUpoaCgPPfSQ5f1RTj3xxBN8++23zJo1i5EjR1q2//DDD5QqVYpHH300y8f9/vvvTJ48mQ4dOtC8eXOKFSvGrl27+Prrr1mzZg07d+7MEHlh7eee5ORkOnXqxKVLl+jRowdXr14lJCSE3r17s3r1ajp16pSj4wsPD6dFixbce++9PPHEExw7doylS5fSvn17Dhw4gLe3t2Vs+vf95MmTdOrUiUcffZTz58+zcOFC1qxZw2+//Ubz5s1z/L0V28vpa2lO3i9fvHiRl19+mdatW9OlSxdKlixJWFgYy5YtY9WqVfz+++80bdo0w7wjR47kk08+sTyXypYty4kTJ/j1119p3LgxdevWvWlNCxcupH///lStWpU1a9ZYojJuxZrnzalTp2jZsiVnzpzhwQcfpGHDhhw6dIgHHniA+++/P9t92ZStO4FFQU5XxLVv394AjG+//TbD9i+//NIAjPvvvz/D9oCAAAMwZs+enWH722+/neVvn7LqLH/22WcGYEyZMiVTPRcuXMjw9/SVIzdDFr+lHDlypAEYAwcONFJSUjLcFxMTY8THx990PpHspD9nfvvtN6sed+NvhMaMGZPlmGPHjmXaFh8fb/j7+xseHh4ZVm4dOXLEcHBwMMqXL5/hN6SxsbFGzZo1c7wi7p9//jEcHByM+vXrZ/ot+oQJEwzAmDRpkmXbjavcQkJCMowfOHCgARhz587NsD2rWv47X+PGjY2xY8caY8eONd5++23j6aefNsqVK2e4u7tner2JjY01PDw8DCcnJ2PPnj2W7ampqUafPn0MwHj33Xdve/yIESMMwFiyZEmmev/7PcpqNUS67FbENW/e3IiNjbVsP3jwoOHg4GDUrFkzw/i33nrLAIxnnnkmw/Zff/010wpDkdt18uRJw9PT03BycjIA4+GHH840ZubMmZb/X29H+mvQk08+aXm+v/baa8YjjzxiFCtWzGjUqFGm1fjp+2zbtq2RmJho2R4REWGULl3acHBwyPDaae34UqVKGffcc0+WK2NvfE9ys9+US+GydOlSAzDc3NyMkSNHGmvWrMlyBdmNbvV/2K1WxJUpU8Y4ceKEZXtiYqLRpk0bA8iw0v3G/1e/+eabDHN98803mZ6PqampRtWqVQ3AWL16dYbxr776qgEYTzzxRKY60z8XXL16NdNxZPd++2ZCQkIMwBgwYECm+4YPH24AxhdffGEYhmEkJSUZfn5+hpubW6ZVLps2bTLs7e0zHGdCQoJRvnx5w87Ozli1alWm+W/83mb3/Bw8eLABGKNGjcqwfcWKFQZgVKtWzUhNTbVsT/839PX1vekZQln57+evunXrGvfee6/l/jNnzhgODg7G0KFDDcMwslwRd+7cuSw/q6S/tqWvzE9nzeee9J+DRx55JMPrY/r7if9+brzVijjA+PDDDzOMT3+/MmHChAzbW7Zsadjb22f6eT106JDh5uZm+Pv7ZzpeKdisfS291fvlhIQE4+TJk5m279u3z3B1dTU6duyYYfvy5csNwPD398+0z+TkZOPs2bOWv//3s8/XX39t2NnZGS1btsx0ltytVsRZ87wZMGCAARgffPBBhu3ff/+95blTUFfEqRGXC3LSiIuIiDAAo06dOpmWlKemphq1atUyACMyMtIwDPMSdMCoX79+prkuX75slCxZ0qpG3H+bf1mxthGXnJxsuLm5GR4eHjoFVfJE7dq1DcCyjPlG69evt3y4TP9Kf6FNf076+PhkeBHPicmTJxuAsWHDBsu2cePGGYAxefLkTONnzZqV40bcSy+9ZADG77//nmme1NRUo0yZMkbjxo0zHCNgtGnTJsvjB4wRI0Zk2J6TRlxWXyaTyRg4cGCmBuX//vc/AzCef/75TPNFREQYDg4ORpUqVW57fHojbs2aNVnWfKM7acStW7cu02PS74uLi7NsSz+N5sY3Fuk6deqkRpzkmvQPUcWKFTNOnz6d6f6JEycagPH6669nuu/SpUuZXv8+/fTTDGPSX4Oy+ipdurTx8ccfZzqd9f777zcg69PTP/jgg0yNdGvHlypVyvDz8zMSEhJu+b1RI67omDx5suHq6prh569q1arGkCFDjMOHD2caf7uNuP82TAzD3HD6b2Mt/WerRo0aGZpBhmH+f7h69eqGyWSyxGH8/vvvBmB07tw50/zx8fFGqVKlDGdn5wzvNdI/SN74y6gb3W4jLiEhwfDy8jKKFy+e4RdLSUlJRpkyZQxnZ2fL+/FFixZlev7dqHv37oadnZ1lnnnz5hmAMWjQoGzruNXzMzEx0XB2dja8vLyybLg/8MADmd4Hpf8bTp06Ndt93+i/n78++eQTAzBCQ0MNwzCMDz/80IB/T+fLqhF3M2lpaZbT7NNZ+7kn/ecgLCwsy/tKlSqVYdutGnGVK1fO9POafl/37t0t23bu3Jllczhd+nsunaJa+FjzWnqr98u30rVrV8PR0THDKf3pp8Vm9T76v2787PPOO+9YXn+z+oVEdo24nDxvEhISDCcnJ6Ns2bKZ3lekpaVZFksU1EZcwb+ETBGxe/duANq2bZspYNHOzo42bdpkGLdnzx4AWrVqlWkuFxeXHC/x79q1Ky4uLgwZMoQ+ffowffp0wsLCbu8g/uPgwYPEx8fTtGlTnX4q+W7Dhg2MGzcuw9eGDRsyjKlfv36m0zzTnT9/nhEjRlC7dm1KlChhubR9+ikNp0+ftoxNfz62bt060zxZbbuZ0NBQANasWcM777yT4evdd9+lWLFiHDx4MNPjGjdunGlb+tLumJiYHO8/3bPPPoth/kUMaWlpnD17lv/973+sXLmS5s2bZ3iN2LVrF5D1KaAVK1akSpUqhIWFER8ff1vje/fujZ2dHY899hhPPPEEc+fO5dSpU1YfU3Zy8j2Mi4sjPDycatWqZTjNI11Wr8cit+P8+fN8++23gPkUjJ9//tmqx8fExGR6/Us/FeW/tm3bZnm+JyYmcujQIXr37s2rr75Knz59MozdtWsXJUqUoFmzZpnmST8VLv19yu2MDwoKIjw8nLp16/L222+zbt26AnWRHcl9I0aM4PTp08yfP5+XX36ZgIAAIiMj+fLLL6lXrx7Lli3Llf1k9X/xfffdh4ODg+X/pRu1atUq05U07ezsaNWqFYZhWP7fv9X/aa6urjRp0oSEhAQOHTqU4T5nZ2f8/f1v93Cy5OTkxIABA7h27Rpz5861bF++fDlRUVE89thjlvfj6e83Dh06lOn9xjvvvMPZs2dJS0vj8OHDAGzfvh0gx6dK3szBgwdJSEigWbNmlChRItP9Wb0upMvqdcQaAwYMoFixYvzwww8ATJ8+nYYNG2b7mWnRokUEBgZSpkwZHBwcMJlM2NnZERcXl+G94O187vH09KRy5cqZtvv6+lr1/q1BgwaZfl6zeh+Y/u9+7ty5LP/d099jZvVeUwq23Hwt3b17N/369aNixYo4OjpaPgMtX76cpKQkoqOjLWO3b9+Ok5MTbdu2zfH8L7/8Mu+88w7BwcEsXryY4sWLW3WsOX3eHDp0iMTERJo0aYKTk1OGsSaTiZYtW1q13/ymjLh8kn41s6w+3AGWqyumj0v/82b5CDeb57/8/PwIDQ3lnXfeYeXKlcyfPx8wXwH13XffpVevXjk/iP+IjY0FoHz58rc9dMrBIwAAFMVJREFUh8iteHt7c+DAAU6fPp3pyjrpbyoAQkJC6Nu3b5aPz8rFixdp2rQpkZGRtGrVio4dO+Lp6Ym9vT27d+9m6dKlGa4+lP6zntXzMafPxfT9AnzwwQc5fgyAu7t7pm3peVCpqalWzfVfJpMJb29vBgwYQEJCAk8//TQTJkzgu+++A3L22nX48GHi4uJwc3Ozenzz5s3ZsGED48ePZ86cOUyfPh2Apk2bMnHixEw5OLcrJ9/D3HrdFcnOc889R1RUFB9++CGTJk1i5MiRBAYGUrFiRcuY9J+3Gz8IpvPz88MwDMvfc3qFREdHR2rUqMGXX37Jnj17WLRoEVu2bLE0mePi4qhQoUKWj/3v+5TbGT916lQqV67M9OnTef/993n//fdxdnamd+/eTJ48WVcMLKLc3Nzo1auX5T1nbGwso0eP5quvvuLJJ5/k1KlTN/2lWU5l9fpsb2+Pl5eX5f/w7MbfuD39Mda+f09XtmzZTL94zw1PPvkkU6dO5YcffuDZZ58FsDSennzyScu49Pcbs2fPvuV8V65cAXLvPf3tfr9u9ZicKlOmDF27diUkJIRevXpx6NAhPv/881s+ZvLkybzyyiuUKVOGTp064evra2kaTJkyJcv3gtZ8j27Ml7uRg4MDaWlpOZ4np+8D0//dV6xYwYoVK246X/q/uxQuufFaunXrVkt2WqdOnahevTqurq6YTCaWLFnCnj17Mv3cly9fPlMj+FZ+//13wLwgyJr82nQ5fd4U9vftWhH3/+3de1RN6f8H8Hd16pxSSQolHVRKk3JnFhWtIeVOujCmTOMyiFnk+kUZLBqxxmVcx5hJbumCLIWo3AqJkRhGJpeWSxHd0MXn90fr7F/HOScdl2Tm81rrrNba+7P3ec5uP89+9rOf59n1RFaAPnr0SOn6hw8fysXJ/j5+/FhpvKr9KOPg4IDo6Gg8ffoUaWlpWLRoER4+fAgfHx+cOXOmzvt5k2xS1o/Re4UxAMKTjOTk5HfaXlUleNu2bbh79y6WLFmC06dPY926dViyZAlCQ0PRs2dPhXjZBUFZflQnL8rydVFRkdBDRdnnU5FN3nvhwgVh2buWXXWNB6p7MiQkJKCwsBDJycmYMWMGsrKyMHDgwA/Wg7cuPmS5y5gqO3bsQFxcHAYNGoQ5c+Zg/fr1KC4ulruJBv6//EtNTVXrhq2uVOV3Vee/sryrbrxIJEJwcDCys7ORl5eHXbt2wdnZGRERERgzZsz7/SD22WjcuDHWr18PqVSKgoICZGVlCes0NDRQWVmpdDtlDWoyysrnqqoqPHnyROlNnaryXLZcts27XNMA1fWP99WhQwd069YN58+fR3Z2Nh48eIDExES0adNGbmJyWXri4+NrrW/Ierl8qDr9ux4v4MMcs8DAQBQVFSEgIAASiaTWcqWyshJLliyBmZkZrl69ip07dyIsLAyhoaEICQlBeXm5XPzncN8jO67r1q2r9f/u7+//iVPKPoTaylJVli1bhlevXiEpKQkHDx7EqlWrsHjxYoSGhqJFixYK8UZGRkIP2rqKi4tDmzZt4Ovri9jYWLV+kzo+93o7N8TVE1m36JMnTyrcaBOR0HIsi5O9FfXs2bMK+yorKxO6zKtDW1sbPXv2xOLFi7F27VoQkdxwGC0tLQB172Fja2sLQ0NDXLhwAYWFhWqnh7G38ff3h6amJrZs2SLXTfp95eTkAACGDh2qsO7UqVMKy2T5Udk6ZctUkd34yoYOfAyamprv3EtOlo9rXmxlb197c9gvANy7dw85OTlo27YtDAwM3im+Jl1dXfTp0werVq3C/Pnz8eLFCxw7dkxYr6Wl9d49AGtjaGiI1q1b49atW0ov6srKY8bUkZeXh2nTpsHY2BhbtmwBAPj4+MDLywtJSUnCcFUAsLGxEYaeREZGfvC0qMrvZWVlwjC1mmR5uuYwL3XjazI3N4efnx8SExNhbW2NpKQkYZiquvUR9vnR0NBAo0aNFJY3adJEaUNHbm5urUP5lF2L09LSUFlZKVyXajpz5ozCjeXr169x9uxZaGhoCNf92q5ppaWlyMjIgK6ursLbxmvzvue3rNF+27ZtiIiIQFVVFcaNGyfXkCWrb6SlpdVpn7JhobI3KtemtvTb2dlBIpHgwoULKCsrU1j/tnLhfbm7u6Nly5bIy8vDsGHDah1CWlBQgOfPn+PLL79U6FGTkZGhMGz+c7jvUff/zj5/ysrS2urLOTk5MDY2VnhzcVlZGTIzMxXiu3fvjlevXiE1NbXOaZJKpUhJSUGrVq3g4+ODmJiYOm+rDltbW4jFYly8eFGuFx9Q3b7S0PMBN8TVE0tLS/Tt2xfZ2dlCF3KZLVu24Pr163BzcxOGeEilUvTq1QuXL1/G3r175eJXrlwpdD1+m4sXLyrt/i1rIa45nMXY2BhA9c1yXYhEIkycOBHPnz/H9OnTFTL88+fPUVJSUqd9MaZMu3btMHv2bDx+/BgeHh64deuW0jh150mTSqUAgNOnT8st37VrFw4fPqwQP3r0aGhpaWH16tVyDTRFRUVYunRpnb938uTJEIlECAoKwt27dxXWP3v2TOlcNuowNjbG/fv31d6uqqoKa9asAQBhzkqgurGycePG2L59O7Kzs4XlRIQ5c+agsrISAQEB7xyflpaGly9fKqRHVRlVUFCgNP5DGTNmDMrLyxESEiK3PCUlBUeOHPlo38v+GwIDA/Hs2TOsX79eGKIFABs2bICpqSlmzZqFO3fuCMvXrl0LXV1dTJ48WW5OqJpkPWzVkZubKzylrpnfZb0k5s2bh4qKCmH5vXv3sHr1aohEIrkeJurEv3r1SmljdmlpKUpKSqCtrS0MfVG3PsIaps2bN8v1uKxp//79uH79OoyMjODg4CAs79atG3Jzc+Vu+srLyzFjxoxav2vNmjVy177y8nL873//AwC5a47MzZs3hSkYZLZu3YqbN29i4MCBMDU1BVA9l5yVlRUSEhKQlJQkF7906VI8efIEfn5+ag2tfd/z28/PD3p6eoiMjMRvv/0GTU1Nhd84dOhQWFpaYvXq1cLD/poqKirk6kBDhgyBhYUFIiMjlV7rajaO1pZ+HR0d+Pn5oaCgAMuXL5dbl5iYiCNHjsDa2vqjzbmqpaWF/fv3Iy4uTuH739SsWTPo6uoiMzNTrtGwsLAQQUFBCvGfw31P9+7d0aNHD+zevVvh/hGobmxWp0GFNQzqlqW11ZelUikKCwvl6uhVVVUIDg5Gfn6+QvyUKVMAANOnT1dof6isrFTZ68zS0hIpKSmQSqXw9fVFdHR03X6sGsRiMby8vPDo0SOFeXIjIiIa/FyIPEfcB5SVlaX0Yg9UPyHauHEjevfujfHjxyM+Ph729vbIzs7GwYMHYWpqio0bN8pts27dOri4uGDMmDGIiYmBtbU1MjMzkZ6eDhcXF5w8efKt47V37NiBzZs3w8XFBVZWVjA0NMS1a9dw+PBhGBsbY9y4cUKsm5sboqOjMXLkSHh4eEAikcDJyQmDBw9Wuf8ff/wR6enp2LFjB9LT0+Hh4QGxWIzbt28jMTERp0+f/mhPvdh/w7Jly1BeXo7Vq1fDzs4OLi4ucHJygp6eHh4/fowrV67g/Pnz0NfXr/O5NnbsWISFhSEoKAjJycmQSqX4888/cfz4cYwYMUKhG7W1tTUWLVqEkJAQODo6wtvbGyKRCDExMXB0dFSYpFkVBwcHbNiwAd9//z1sbW3h6ekJKysrFBcX4/bt20hNTUVAQAA2bdqk7mESuLm5ISoqCsOGDUOnTp2gpaWFIUOGwNHRUYjJyMgQ5tcDqrt0nzhxAjdu3IClpSUWLFggrDM0NMTWrVvh5+eHHj16wMfHB6ampkhKSsLFixfRvXt3zJo1653jw8LCkJycDBcXF7Rp0wYSiQSZmZk4fvw42rZti+HDh8v9toyMDHh4eMDZ2Rk6OjpwcXGRa0h4X3PmzEFMTAw2bdqEq1evwtnZGffv30dUVBQGDx6M+Ph4tebJYExm8+bNOHLkCLy8vBTmtJTVAby8vPDtt98iKSkJGhoa6NSpEw4dOgQfHx+MHj0aISEhcHFxQfPmzVFcXIy7d+/i6NGjKC8vV3i6LfPrr78iMTERQPXNd25uLvbv34+ysjJMmDABXbt2FWLHjh2L2NhYHDhwAI6Ojhg0aBBKS0uxd+9ePH36FKtWrULbtm3fKf7Fixfo1asX2rVrhy5dusDS0hIlJSU4dOgQHj58iODgYGGyZTs7O5ibm2PPnj0Qi8WwsLCAhoYGgoKCVM4dwxqehIQETJo0SWh4MTc3R2lpKS5duoRTp05BU1MTGzZskJtke8aMGTh69Cg8PT2FBqdjx47ByMhIrvH6TT179oSTkxN8fHzQqFEjxMfH48aNGxgxYgRGjhypEO/u7o5p06bh8OHD+OKLL5CdnY34+HiYmJgID6WA6l7mv//+O9zd3eHp6YlRo0ZBKpUiLS0NKSkpsLKywooVK9Q6Lu9S367J0NAQXl5eiIiIQH5+PgYMGKAwV6NYLEZ0dDQ8PDzg6uoKNzc3dOjQARoaGrhz5w5OnTqFpk2bCjeqYrEYUVFRGDBgADw8PDBgwAA4OTmhqKgIly9fRllZmfCg8G35MywsDKmpqVi6dCnOnj2LHj16IDc3F/v27YOenh62b9/+Ua+jXbt2lSvXVNHU1MTkyZOxatUq4fgXFRUhISEBUqkU5ubmCtt8Dvc9u3fvRt++feHr64uff/4ZnTt3hq6uLu7evYu0tDTk5+d/1Aea7MNTtyytrb4cFBSEo0ePonfv3vD29oZEIkFKSgry8vLQp08fhd6/np6eCA4ORnh4OGxsbDB8+HA0a9YMeXl5OH78OIKDg/HDDz8oTXerVq2QkpKCvn37ws/PD0T0XvPTK7N8+XIkJSVh7ty5SE1NRadOnXDjxg0cOnQIAwYMQGJiYsOtt3/kt7L+J8heH13bR/Yq9tzcXBo3bhyZmZmRSCQiMzMzGjduHOXm5ird96VLl8jd3Z309fXJwMCAPDw8KCsriwYNGkQAqLCwUIhV9hrg9PR0mjhxIjk4OJCRkRHp6uqSjY0NTZ06le7cuSP3XRUVFTR79myytLQkkUhEAMjf319YX/N31PTy5UsKDw+njh07kq6uLunr65O9vT3NnDlTLn2MvY/MzEyaMGEC2dnZkb6+Pmlra1Pz5s3Jzc2NVq5cSY8ePRJiZXmy5vn7psuXL1P//v2pSZMmZGBgQK6urpSUlETbt28nALR9+3aFbbZu3Ur29vako6NDFhYWFBwcTGVlZUrzRs1XeL/p/Pnz5OvrS+bm5qStrU0mJibUuXNnmjt3Ll2/fl2IU/Vq79p+44MHD8jb25tMTExIU1NT7rfI9vfmRyKRUPv27WnWrFlUUFCg9HidPHmSPDw8yMjIiHR0dKhdu3a0cOFCKikpea/4xMRE+uabb8jW1pYMDAyE8mP+/PmUn58vF1tcXEzjx48nMzMz0tLSkjs2qo6Hq6srqbrUqfofPX78mAIDA8nExIQkEgl16dKFYmNjKTw8nABQXFyc0v0xpsrt27dJX1+fmjVrpnBe1+Tn50cA6JdffpFbXlhYSMuXL6fevXtT06ZNSSQSkaGhITk5OdGUKVPo3LlzCvuSnd81PxoaGtSkSRPq06cP7dixQ2kaKioqKDw8nDp06EBisVgoHw8cOPBe8eXl5RQWFkb9+/cnCwsL0tHRoebNm5OLiwvt2rWLXr9+LRefnp5Orq6uZGBgIKRfWXnKGq6//vqLfvrpJ+rXrx+1adOGJBIJSSQSsrKyIn9/f8rIyFC63b59+6hDhw6ko6NDLVq0oKCgICouLiapVEpSqVQuVnae5+Tk0IoVK8ja2pp0dHRIKpVSaGgovXr1Si6+5nX11KlT5OrqSo0aNSJDQ0MaPnw4/f3330rTdOXKFfLy8iITExPS1tYmqVRK06dPV5qflaWzprfVt+siNTVVyBdRUVEq4+7fv0/Tp08nGxsbEovFZGhoSO3bt6fvvvuOjh8/rhB/69YtCgwMJAsLC9LW1qZmzZpRnz59KCIiQi7ubfkzPz+fpk2bRlKpVKjneHl5UVZWlsJ31lZfqo3suu/u7l6neLFYrPB/KS8vp2XLlgnHx9LSkmbOnKnyfCOq+31PbeeBsrpJSEgIAaDk5GSF36jq/FB1b/b06VNasGABOTg4CGm0sbGh0aNHU2xsrNJ9sYZL3bK0tvoyEVF0dDR17tyZ9PT0yMTEhLy9vSknJ6fWvBgTE0N9+/alxo0bk1gsptatW9PYsWPp6tWrQoyq7e/fv082NjYkEolo7969RKT6HkfdfENUXccaNWoUNW7cmPT09MjZ2ZlSU1Np6tSpBIAuXbqk8th+ShpEn3BmcPZOqqqqYGVlhRcvXjT4SQgZY+zf4uuvv8bOnTtx7do1tG/f/lMnhzHG/vMCAgLwxx9/4J9//kHr1q3fGi/rnRESEiLXM5wxxti/S+/evZGWlobnz59DX1//UydHQQPtp8eA6nHXyiaoX7FiBe7cuYNhw4bVf6IYY+xf7sGDBwrLUlNTsWfPHtja2nIjHGOMMcYYYw2Asnp7ZGQkzpw5g6+++qpBNsIBPEdcg1ZSUoKWLVuiX79+aNeuHSoqKnDu3DlcuHABZmZm/CSPMcY+Ak9PT+jq6qJjx45o1KgRrl27hsTERGhpaWHdunWfOnmMMcYYY4wxVM/B3alTJ9jb20NLSwuXL19GSkoKDAwMEB4e/qmTpxI3xDVgenp6CAwMxIkTJ3Dy5Em8fPkSZmZmmDhxIhYuXFjrpLWMMcbejb+/P3bu3Ik9e/aguLgYRkZGGDx4MObNm4cePXp86uQxxhhjjDHGAEyaNAnx8fHIyMhAaWkpTE1NMXr0aCxcuBB2dnafOnkq8RxxjDHGGGOMMcYYY4zVA54jjjHGGGOMMcYYY4yxesANcYwxxhhjjDHGGGOM1QNuiGOMMcYYY4wxxhhjrB5wQxxjjDHGGGOMMcYYY/WAG+IYY4wxxhhjjDHGGKsH3BDHGGOMMcYYY4wxxlg94IY4xhhjjDHGGGOMMcbqATfEMcYYY4wxxhhjjDFWD/4Py+vSSP9aFO0AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1500x600 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "recall = [recall_lgt, recall_gra, recall_xgb, recall_svm, recall_sta]\n",
+    "\n",
+    "accuracy = [accuracy_lgt, accuracy_gra, accuracy_xgb, accuracy_svm, accuracy_sta]\n",
+    "ml = ['Logistic', 'GradientBoosting', 'XGBoost', 'Support Vector Machine', 'Stacking']\n",
+    "plt.figure(figsize=(15, 6))\n",
+    "# Vẽ biểu đồ\n",
+    "plt.plot(ml, recall, 'o-', label='recall')\n",
+    "plt.plot(ml, accuracy, 'o-', label='accuracy')\n",
+    "\n",
+    "# Đặt tiêu đề và nhãn trục\n",
+    "\n",
+    "\n",
+    "# Hiển thị chú thích\n",
+    "plt.legend()\n",
+    "\n",
+    "# Ghi số cua trục y lên từng điểm\n",
+    "for i, j in enumerate(recall):\n",
+    "    plt.text(ml[i], j, str(round(j, 4)),fontsize = 14)\n",
+    "\n",
+    "for i, j in enumerate(accuracy):\n",
+    "    plt.text(ml[i], j, str(round(j, 4)),fontsize = 14)\n",
+    "\n",
+    "plt.xticks(fontsize=14)\n",
+    "plt.yticks(fontsize=14)\n",
+    "# Hiển thị biểu đồ\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1 style=\"display: inline-block;\n",
+    "  font: bold 4.5em/1.5 Bebas, sans-serif;\n",
+    "  color: #5CA17C; /*non-webkit fallback*/\n",
+    "  font-size: 38px;\n",
+    "  text-transform: uppercase;\n",
+    "   background-color:#66689c;\n",
+    "  background-size: auto 250%;\n",
+    "  transition: background-position 0.5s;\n",
+    "    -webkit-background-clip: text;\n",
+    "  -webkit-text-fill-color: transparent;\n",
+    "  line-height: 80px;\n",
+    "  background-position: 0 100%;\"> TÀI LIỆU THAM KHẢO</h1>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "<div class=\"box_luuy\" style=\"background: #66689c; box-shadow: rgba(0, 0, 0, 0.1) 3px 4px 4px; clear: both; line-height: 2; color: white; font-size:22px ; letter-spacing: -0.75px; margin: 5px 0px; padding: 20px 25px; transition: 0.5s;\">\n",
+    "<ol type=\"1\">\n",
+    "<li>\n",
+    "Obesity and insulin resistance: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC380258/.\">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC380258/.</a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Correlation of Body Mass Index (BMI) with Saliva and Blood Glucose Levels in Diabetic and Non-Diabetic Patients: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485520/. \">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485520/. </a> \n",
+    "</li>\n",
+    "<li>\n",
+    "Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity: <a style=\"color: white\"href=\"https://pubmed.ncbi.nlm.nih.gov/29490333/.  \">https://pubmed.ncbi.nlm.nih.gov/29490333/.  </a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Heart Health and Aging: <a style=\"color: white\"href=\" https://www.nia.nih.gov/health/heart-health/heart-health-and-aging.  \"> https://www.nia.nih.gov/health/heart-health/heart-health-and-aging.  </a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Gender differences in coronary heart disease: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018605/.  \"> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018605/. </a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Cardiovascular risk of smoking and benefits of smoking cessation: <a style=\"color: white\"href=\" https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399440/.\">  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399440/.</a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Hypertension and Aging: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768730/.\"> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768730/.</a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Hypertension and Coronary Heart Disease: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768730/.\"> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169140/.</a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Stroke and gender: <a style=\"color: white\"href=\"https://pubmed.ncbi.nlm.nih.gov/11252851/.\">https://pubmed.ncbi.nlm.nih.gov/11252851/.</a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Aging and ischemic stroke: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535078/. \">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535078/. </a>\n",
+    "</li>\n",
+    "<li>\n",
+    "The relationship between smoking and stroke, Smoking and stroke: the more you smoke the more you stroke: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928253/. \">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928253/. </a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Hypertension and Stroke: Update on Treatment: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659031/. \">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659031/. </a>\n",
+    "</li>\n",
+    "<li>\n",
+    "Large Burden of Stroke Incidence in People with Cardiac Disease: A Linked Data Cohort Study: <a style=\"color: white\"href=\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945299/. \">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945299/. </a>\n",
+    "</li> \n",
+    "</ol>\n",
+    " </div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}