|
a |
|
b/finetunning_clinicalbert.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
"""fineTunning_ClinicalBERT.ipynb |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
|
7 |
"""### Fine Tunning""" |
|
|
8 |
|
|
|
9 |
!pip install transformers[torch] |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
#haa_trainChronologies_string = haa_trainChronologies.to_string |
|
|
14 |
|
|
|
15 |
print(haa_trainChronologies_string) |
|
|
16 |
|
|
|
17 |
example=haa_trainChronologies_string |
|
|
18 |
|
|
|
19 |
from datasets import Dataset |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
hf_dataset = Dataset.from_pandas(haa_develAdmittimes) |
|
|
23 |
|
|
|
24 |
hf_haa_develAdmittimes = hf_dataset.from_pandas(haa_develAdmittimes) |
|
|
25 |
|
|
|
26 |
hf_dataset |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
|
|
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def tokenize_data(example): |
|
|
35 |
combined_text = f"Subject ID: {example['subject_id']} Hospital Admission ID: {example['hadm_id']} Admittime: {example['admittime']}" |
|
|
36 |
|
|
|
37 |
# Tokenize the text and handle padding directly, ensuring output is suitable for processing |
|
|
38 |
tokenized_output = tokenizer(combined_text, truncation=True, padding='max_length', max_length=16) |
|
|
39 |
|
|
|
40 |
# Return the dictionary as-is if already in list format |
|
|
41 |
return tokenized_output |
|
|
42 |
|
|
|
43 |
from transformers import AutoTokenizer |
|
|
44 |
|
|
|
45 |
# Load the tokenizer |
|
|
46 |
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") |
|
|
47 |
|
|
|
48 |
def tokenize_data(example): |
|
|
49 |
# Create a single text string from the dataset fields |
|
|
50 |
text_to_tokenize = f"Subject ID: {example['subject_id']} Hospital Admission ID: {example['hadm_id']} Admittime: {example['admittime']} Observations: {example.get('observations', '')}" |
|
|
51 |
|
|
|
52 |
# Tokenize the combined text with consistent padding and truncation |
|
|
53 |
return tokenizer( |
|
|
54 |
text_to_tokenize, |
|
|
55 |
padding="max_length", # Ensures all outputs have the same length |
|
|
56 |
truncation=True, # Ensures no output exceeds max_length |
|
|
57 |
max_length=512 # Sets the maximum length of a sequence |
|
|
58 |
) |
|
|
59 |
|
|
|
60 |
# Example of how to apply this function using map in the Hugging Face dataset |
|
|
61 |
tokenized_dataset = hf_haa_develAdmittimes.map( |
|
|
62 |
tokenize_data, |
|
|
63 |
batched=True, |
|
|
64 |
batch_size=16, |
|
|
65 |
remove_columns=hf_haa_develAdmittimes.column_names |
|
|
66 |
) |
|
|
67 |
|
|
|
68 |
from transformers import DataCollatorWithPadding |
|
|
69 |
|
|
|
70 |
# Initialize the tokenizer |
|
|
71 |
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") |
|
|
72 |
|
|
|
73 |
# Initialize a data collator that dynamically pads the batches |
|
|
74 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, pad_to_multiple_of=None) # None means it will pad dynamically to the longest in the batch |
|
|
75 |
|
|
|
76 |
# Assuming hf_haa_develAdmittimes is correctly initialized as a dataset |
|
|
77 |
# Apply tokenization to the dataset |
|
|
78 |
tokenized_dataset = hf_haa_develAdmittimes.map( |
|
|
79 |
tokenize_data, |
|
|
80 |
batched=True, |
|
|
81 |
batch_size=8, |
|
|
82 |
remove_columns=hf_haa_develAdmittimes.column_names |
|
|
83 |
) |
|
|
84 |
|
|
|
85 |
tokenized_dataset |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
|
89 |
train_test_split = tokenized_dataset.train_test_split(test_size=0.1) |
|
|
90 |
train_dataset = train_test_split['train'] |
|
|
91 |
eval_dataset = train_test_split['test'] |
|
|
92 |
|
|
|
93 |
pip install transformers[torch] --upgrade |
|
|
94 |
|
|
|
95 |
pip install transformers[torch] --upgrade |
|
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
|
99 |
from transformers import AutoModelForSequenceClassification |
|
|
100 |
|
|
|
101 |
model = AutoModelForSequenceClassification.from_pretrained( |
|
|
102 |
"emilyalsentzer/Bio_ClinicalBERT", |
|
|
103 |
num_labels=1 # Specify the number of labels in your classification task |
|
|
104 |
) |
|
|
105 |
|
|
|
106 |
from transformers import DataCollatorWithPadding |
|
|
107 |
|
|
|
108 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, pad_to_multiple_of=None) |
|
|
109 |
|
|
|
110 |
from transformers import DataCollatorWithPadding |
|
|
111 |
|
|
|
112 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
113 |
sample_batch = data_collator([tokenized_dataset[i] for i in range(8)]) |
|
|
114 |
print(sample_batch) |
|
|
115 |
collated_batch = data_collator(sample_batch) |
|
|
116 |
print(collated_batch) |
|
|
117 |
|
|
|
118 |
# Diagnostic to check input shapes |
|
|
119 |
def check_input_shapes(data): |
|
|
120 |
print("Shapes of input tensors:") |
|
|
121 |
print("Input IDs:", data['input_ids'].shape) |
|
|
122 |
print("Attention Mask:", data['attention_mask'].shape) |
|
|
123 |
if 'token_type_ids' in data: |
|
|
124 |
print("Token Type IDs:", data['token_type_ids'].shape) |
|
|
125 |
|
|
|
126 |
# Apply this diagnostic function to a batch from the training dataset |
|
|
127 |
sample_batch = next(iter(Trainer.get_train_dataloader(trainer))) |
|
|
128 |
check_input_shapes(sample_batch) |
|
|
129 |
|
|
|
130 |
from transformers import DataCollatorWithPadding |
|
|
131 |
|
|
|
132 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
133 |
|
|
|
134 |
# Test the data collator on a small batch manually extracted from the dataset |
|
|
135 |
example_batch = [tokenized_dataset[i] for i in range(8)] # Adjust range as necessary |
|
|
136 |
collated_batch = data_collator(example_batch) |
|
|
137 |
print({k: v.shape for k, v in collated_batch.items()}) |
|
|
138 |
|
|
|
139 |
|
|
|
140 |
# Example of inspecting the output of one tokenized example |
|
|
141 |
example = {'subject_id': '1', 'hadm_id': '100', 'admittime': '2020-01-01', 'observations': 'Patient exhibits symptoms of flu.'} |
|
|
142 |
tokenized_example = tokenize_function(example) |
|
|
143 |
print(tokenized_example) |
|
|
144 |
|
|
|
145 |
# Assuming 'tokenized_datasets' is a list of tokenized examples |
|
|
146 |
sample_batch = [tokenized_dataset[i] for i in range(8)] |
|
|
147 |
collated_batch = data_collator(sample_batch) |
|
|
148 |
print({k: v.shape for k, v in collated_batch.items()}) |
|
|
149 |
|
|
|
150 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
151 |
|
|
|
152 |
input_ids = input_ids_np.squeeze(0) |
|
|
153 |
outputs = model(input_ids=input_ids,attention_mask=attention_mask) |
|
|
154 |
|
|
|
155 |
for batch in loader: |
|
|
156 |
outputs = model(input_ids=batch['input_ids'], attention_mask=batch['attention_mask']) |
|
|
157 |
print(outputs) |
|
|
158 |
break |
|
|
159 |
|
|
|
160 |
# Manually create a batch from the tokenized dataset |
|
|
161 |
sample_batch = [train_dataset[i] for i in range(8)] |
|
|
162 |
collated_batch = data_collator(sample_batch) |
|
|
163 |
|
|
|
164 |
# Print the shapes of each component |
|
|
165 |
print("Collated batch shapes:") |
|
|
166 |
for key, tensor in collated_batch.items(): |
|
|
167 |
print(f"{key}: {tensor.shape}") |
|
|
168 |
|
|
|
169 |
# Assuming a correct initialization of your data collator |
|
|
170 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
171 |
|
|
|
172 |
# Manually collate a sample batch |
|
|
173 |
sample_batch = [train_dataset[i] for i in range(8)] |
|
|
174 |
collated_batch = data_collator(sample_batch) |
|
|
175 |
|
|
|
176 |
# Print the structure and content of collated batch to diagnose |
|
|
177 |
print("Collated batch input_ids shape and content:", collated_batch['input_ids'].shape, collated_batch['input_ids']) |
|
|
178 |
|
|
|
179 |
from torch.utils.data import DataLoader |
|
|
180 |
from transformers import DataCollatorWithPadding, AutoTokenizer |
|
|
181 |
|
|
|
182 |
# Assuming you have initialized your tokenizer already |
|
|
183 |
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") |
|
|
184 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
185 |
|
|
|
186 |
# Create a DataLoader to automatically batch and collate samples |
|
|
187 |
loader = DataLoader(train_dataset, batch_size=8, collate_fn=data_collator) |
|
|
188 |
|
|
|
189 |
# Check the first batch |
|
|
190 |
#for batch in loader: |
|
|
191 |
# print("Batch 'input_ids' shape:", batch['input_ids'].shape) |
|
|
192 |
|
|
|
193 |
print("Collated input_ids shape:", collated_batch['input_ids'].shape) |
|
|
194 |
|
|
|
195 |
# Assuming your data loader setup from previous snippets |
|
|
196 |
loader = DataLoader(train_dataset, batch_size=8, collate_fn=data_collator) |
|
|
197 |
|
|
|
198 |
# Print detailed structure of the first few batches |
|
|
199 |
for batch in loader: |
|
|
200 |
if isinstance(batch, dict): |
|
|
201 |
for key, value in batch.items(): |
|
|
202 |
print(f"{key}: {value}") |
|
|
203 |
if hasattr(value, 'shape'): |
|
|
204 |
print(f"Shape of {key}: {value.shape}") |
|
|
205 |
else: |
|
|
206 |
print("Batch data type:", type(batch)) |
|
|
207 |
print(batch) |
|
|
208 |
break |
|
|
209 |
|
|
|
210 |
# Check the first few items in the dataset |
|
|
211 |
for i in range(3): |
|
|
212 |
print(train_dataset[i]) |
|
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
|
|
|
218 |
from transformers import DataCollatorWithPadding |
|
|
219 |
|
|
|
220 |
# Assuming you have a tokenizer loaded as follows |
|
|
221 |
# tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") |
|
|
222 |
|
|
|
223 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
224 |
|
|
|
225 |
# Assuming 'tokenized_datasets' is a dataset or a list of such tokenized examples |
|
|
226 |
# Let's simulate a batch with several examples |
|
|
227 |
sample_batch = [tokenized_dataset[i] for i in range(8)] # Collect 8 examples to form a batch |
|
|
228 |
collated_batch = data_collator(sample_batch) # Apply the data collator |
|
|
229 |
|
|
|
230 |
# Print out the shapes of the tensors in the collated batch to verify |
|
|
231 |
print({k: v.shape for k, v in collated_batch.items()}) |
|
|
232 |
|
|
|
233 |
from transformers import DataCollatorWithPadding, AutoTokenizer |
|
|
234 |
|
|
|
235 |
# Initialize the tokenizer and the data collator |
|
|
236 |
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") |
|
|
237 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, pad_to_multiple_of=None) |
|
|
238 |
|
|
|
239 |
# Assuming you have a list of dictionaries from tokenized datasets |
|
|
240 |
# Here we simulate tokenized data for demonstration |
|
|
241 |
tokenized_datasets = [{ |
|
|
242 |
'input_ids': tokenizer.encode("Sample text here", add_special_tokens=True), |
|
|
243 |
'token_type_ids': [0] * len(tokenizer.encode("Sample text here", add_special_tokens=True)), |
|
|
244 |
'attention_mask': [1] * len(tokenizer.encode("Sample text here", add_special_tokens=True)) |
|
|
245 |
} for _ in range(8)] |
|
|
246 |
|
|
|
247 |
# Use the data collator to turn these into a batch |
|
|
248 |
collated_batch = data_collator(tokenized_datasets) |
|
|
249 |
print({k: v.shape for k, v in collated_batch.items()}) |
|
|
250 |
|
|
|
251 |
print(collated_batch) |
|
|
252 |
|
|
|
253 |
print(tokenized_datasets[0]) |
|
|
254 |
|
|
|
255 |
from transformers import Trainer, TrainingArguments |
|
|
256 |
|
|
|
257 |
# Set up training arguments |
|
|
258 |
training_args = TrainingArguments( |
|
|
259 |
output_dir='./results', # where to save the model files |
|
|
260 |
num_train_epochs=1, # number of training epochs |
|
|
261 |
per_device_train_batch_size=8, # batch size per device during training |
|
|
262 |
evaluation_strategy='steps', # evaluation is done (and model saved) every eval_steps |
|
|
263 |
eval_steps=500, # number of steps to run evaluation |
|
|
264 |
save_steps=500, # number of steps to save the model |
|
|
265 |
warmup_steps=500, # number of steps for the warmup phase |
|
|
266 |
weight_decay=0.01 # strength of weight decay |
|
|
267 |
) |
|
|
268 |
|
|
|
269 |
# Initialize the trainer |
|
|
270 |
trainer = Trainer( |
|
|
271 |
model=model, |
|
|
272 |
args=training_args, # training arguments, defined above |
|
|
273 |
train_dataset=train_dataset, # training dataset |
|
|
274 |
eval_dataset=eval_dataset, # evaluation dataset |
|
|
275 |
data_collator=data_collator # our data collator |
|
|
276 |
) |
|
|
277 |
|
|
|
278 |
# Start training |
|
|
279 |
trainer.train() |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
from rouge_score import rouge_scorer |
|
|
283 |
|
|
|
284 |
def rouge_scores(references, predictions): |
|
|
285 |
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) |
|
|
286 |
|
|
|
287 |
# Store the scores in a list |
|
|
288 |
scores = [] |
|
|
289 |
|
|
|
290 |
for ref, pred in zip(references, predictions): |
|
|
291 |
score = scorer.score(ref, pred) |
|
|
292 |
scores.append(score) |
|
|
293 |
|
|
|
294 |
return scores |
|
|
295 |
|
|
|
296 |
|
|
|
297 |
references = [ |
|
|
298 |
"The timestamps for observations containing "C0392747" are as follows: |
|
|
299 |
|
|
|
300 |
- 2104-08-05 |
|
|
301 |
- 2104-08-07 |
|
|
302 |
- 2104-08-08 |
|
|
303 |
- 2104-08-08 |
|
|
304 |
- 2104-08-09 |
|
|
305 |
- ... |
|
|
306 |
- 2194-10-01 |
|
|
307 |
- 2165-04-30 |
|
|
308 |
- 2165-04-30 |
|
|
309 |
- 2165-05-02 |
|
|
310 |
- 2165-05-09" |
|
|
311 |
] |
|
|
312 |
predictions = [ |
|
|
313 |
" |
|
|
314 |
- 2104-08-08 |
|
|
315 |
- 2104-08-07 |
|
|
316 |
- 2104-08-08 |
|
|
317 |
- ... |
|
|
318 |
- 2194-10-01 |
|
|
319 |
- 2165-04-30 |
|
|
320 |
- 2165-04-30 |
|
|
321 |
- 2165-05-02 |
|
|
322 |
- 2165-05-09" |
|
|
323 |
" |
|
|
324 |
] |
|
|
325 |
|
|
|
326 |
# Calculate ROUGE scores |
|
|
327 |
rouge_scores = rouge_scores(references, predictions) |
|
|
328 |
|
|
|
329 |
# Print the scores |
|
|
330 |
for score in rouge_scores: |
|
|
331 |
print(score) |
|
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
|
335 |
|