|
a |
|
b/eval_rag.py |
|
|
1 |
|
|
|
2 |
#RAG evaluation is quite hard for me , I refer some documentation online |
|
|
3 |
|
|
|
4 |
eval_dataset = Dataset.from_csv("haa_develAdmittimes.csv") |
|
|
5 |
|
|
|
6 |
eval_dataset |
|
|
7 |
|
|
|
8 |
!pip install llama-index -qU |
|
|
9 |
|
|
|
10 |
from ragas.metrics import ( |
|
|
11 |
answer_relevancy, |
|
|
12 |
faithfulness, |
|
|
13 |
context_recall, |
|
|
14 |
context_precision, |
|
|
15 |
) |
|
|
16 |
from ragas.metrics.critique import harmfulness |
|
|
17 |
from ragas import evaluate |
|
|
18 |
|
|
|
19 |
subject_id hadm_id timestamp observations |
|
|
20 |
|
|
|
21 |
def create_ragas_dataset(rag_pipeline, eval_dataset): |
|
|
22 |
rag_dataset = [] |
|
|
23 |
for row in tqdm(eval_dataset): |
|
|
24 |
answer = rag_pipeline({"query" : row["timestamp"]}) |
|
|
25 |
rag_dataset.append( |
|
|
26 |
{"subject_id" : row["subject_id"], |
|
|
27 |
"answer" : answer["hadm_id"], |
|
|
28 |
"contexts" : [context.page_content for context in answer haa_develAdmittimes['hadm_id']], |
|
|
29 |
"observations" : [row["observations"]] |
|
|
30 |
} |
|
|
31 |
) |
|
|
32 |
|
|
|
33 |
haa_develAdmittimes['combined'] = haa_develAdmittimes['hadm_id'].astype(str) + " at " + haa_develAdmittimes['admittime'].astype(str) |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
|
|
|
37 |
rag_df = haa_develAdmittimes['combined'] |
|
|
38 |
rag_eval_dataset = Dataset.from_pandas(haa_develAdmittimes['combined']) |
|
|
39 |
return rag_eval_dataset |
|
|
40 |
|
|
|
41 |
def evaluate_ragas_dataset(ragas_dataset): |
|
|
42 |
result = evaluate( |
|
|
43 |
ragas_dataset, |
|
|
44 |
metrics=[ |
|
|
45 |
context_precision, |
|
|
46 |
faithfulness, |
|
|
47 |
answer_relevancy, |
|
|
48 |
context_recall, |
|
|
49 |
], |
|
|
50 |
) |
|
|
51 |
return result |
|
|
52 |
|
|
|
53 |
"""Lets create our dataset first:""" |
|
|
54 |
|
|
|
55 |
from tqdm import tqdm |
|
|
56 |
import pandas as pd |
|
|
57 |
|
|
|
58 |
basic_qa_ragas_dataset = create_ragas_dataset(qa_chain, eval_dataset) |
|
|
59 |
|
|
|
60 |
"""Save it for later:""" |
|
|
61 |
|
|
|
62 |
basic_qa_ragas_dataset.to_csv("basic_qa_ragas_dataset.csv") |
|
|
63 |
|
|
|
64 |
"""And finally - evaluate how it did!""" |
|
|
65 |
|
|
|
66 |
basic_qa_result = evaluate_ragas_dataset(basic_qa_ragas_dataset) |
|
|
67 |
|
|
|
68 |
basic_qa_result |
|
|
69 |
|
|
|
70 |
"""### Testing Other Retrievers |
|
|
71 |
|
|
|
72 |
Now we can test our how changing our Retriever impacts our RAGAS evaluation! |
|
|
73 |
""" |
|
|
74 |
|
|
|
75 |
def create_qa_chain(medical_retriever): |
|
|
76 |
primary_qa_llm = llm |
|
|
77 |
|
|
|
78 |
created_qa_chain = RetrievalQA.from_chain_type( |
|
|
79 |
primary_qa_llm, |
|
|
80 |
medical_retriever=medical_retriever, |
|
|
81 |
return_source_documents=True |
|
|
82 |
) |
|
|
83 |
|
|
|
84 |
return created_qa_chain |
|
|
85 |
|
|
|
86 |
"""#### Parent Document Retriever |
|
|
87 |
|
|
|
88 |
One of the easier ways we can imagine improving a retriever is to embed our documents into small chunks, and then retrieve a significant amount of additional context that "surrounds" the found context. |
|
|
89 |
|
|
|
90 |
You can read more about this method [here](https://python.langchain.com/docs/modules/data_connection/retrievers/parent_document_retriever)! |
|
|
91 |
""" |
|
|
92 |
|
|
|
93 |
!pip install chromadb -qU |
|
|
94 |
|
|
|
95 |
from langchain.retrievers import ParentDocumentRetriever |
|
|
96 |
from langchain.storage import InMemoryStore |
|
|
97 |
from langchain.vectorstores import Chroma |
|
|
98 |
|
|
|
99 |
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=750) |
|
|
100 |
child_splitter = RecursiveCharacterTextSplitter(chunk_size=200) |
|
|
101 |
|
|
|
102 |
vectorstore = Chroma(collection_name="split_parents", embedding_function=embeddings_model) |
|
|
103 |
|
|
|
104 |
store = InMemoryStore() |
|
|
105 |
|
|
|
106 |
parent_document_retriever = ParentDocumentRetriever( |
|
|
107 |
vectorstore=vectorstore, |
|
|
108 |
docstore=store, |
|
|
109 |
child_splitter=child_splitter, |
|
|
110 |
parent_splitter=parent_splitter, |
|
|
111 |
) |
|
|
112 |
|
|
|
113 |
parent_document_retriever.add_documents(base_docs) |
|
|
114 |
|
|
|
115 |
"""Let's create, test, and then evaluate our new chain!""" |
|
|
116 |
|
|
|
117 |
parent_document_retriever_qa_chain = create_qa_chain(parent_document_retriever) |
|
|
118 |
|
|
|
119 |
parent_document_retriever_qa_chain({"query" : "What is RAG?"})["result"] |
|
|
120 |
|
|
|
121 |
pdr_qa_ragas_dataset = create_ragas_dataset(parent_document_retriever_qa_chain, eval_dataset) |
|
|
122 |
|
|
|
123 |
pdr_qa_ragas_dataset.to_csv("pdr_qa_ragas_dataset.csv") |
|
|
124 |
|
|
|
125 |
pdr_qa_result = evaluate_ragas_dataset(pdr_qa_ragas_dataset) |
|
|
126 |
|
|
|
127 |
pdr_qa_result |
|
|
128 |
|
|
|
129 |
!pip install -q -U rank_bm25 |
|
|
130 |
|
|
|
131 |
from langchain.retrievers import BM25Retriever, EnsembleRetriever |
|
|
132 |
|
|
|
133 |
text_splitter = RecursiveCharacterTextSplitter() |
|
|
134 |
docs = text_splitter.split_documents(base_docs) |
|
|
135 |
|
|
|
136 |
bm25_retriever = BM25Retriever.from_documents(docs) |
|
|
137 |
bm25_retriever.k = 1 |
|
|
138 |
|
|
|
139 |
embedding = OpenAIEmbeddings() |
|
|
140 |
vectorstore = Chroma.from_documents(docs, embedding) |
|
|
141 |
chroma_retriever = vectorstore.as_retriever(search_kwargs={"k": 1}) |
|
|
142 |
|
|
|
143 |
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]) |
|
|
144 |
|
|
|
145 |
ensemble_retriever_qa_chain = create_qa_chain(ensemble_retriever) |
|
|
146 |
|
|
|
147 |
ensemble_retriever_qa_chain({"query" : "What subject id here ?"})["result"] |
|
|
148 |
|
|
|
149 |
ensemble_qa_ragas_dataset = create_ragas_dataset(ensemble_retriever_qa_chain, eval_dataset) |
|
|
150 |
|
|
|
151 |
ensemble_qa_ragas_dataset.to_csv("ensemble_qa_ragas_dataset.csv") |
|
|
152 |
|
|
|
153 |
ensemble_qa_result = evaluate_ragas_dataset(ensemble_qa_ragas_dataset) |
|
|
154 |
|
|
|
155 |
ensemble_qa_result |
|
|
156 |
|
|
|
157 |
|
|
|
158 |
from rouge_score import rouge_scorer |
|
|
159 |
|
|
|
160 |
def calculate_rouge_scores(references, predictions): |
|
|
161 |
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) |
|
|
162 |
scores = [] |
|
|
163 |
for ref, pred in zip(references, predictions): |
|
|
164 |
score = scorer.score(ref, pred) |
|
|
165 |
scores.append(score) |
|
|
166 |
return scores |
|
|
167 |
|
|
|
168 |
# Example usage with dummy data |
|
|
169 |
references = ["subject_id hadm_id timestamp observations 0 12 112213 2104-08-05 C0392747 C0684224 C3273238 C3812171 C0700287 C... 1 12 112213 2104-08-07 C0392747 C0684224 C3273238 C1523018 C0700287 12 112213 2104-08-08 C0181904 C1552822 C0015392 C0450429 C0150369 C..." ] |
|
|
170 |
|
|
|
171 |
|
|
|
172 |
predictions = ["2 12 112213 2104-08-08 C0181904 C1552822 C0015392 C0450429 C0150369 C...3 12 112213 2104-08-08 C0392747 C0684224 C3273238 C0202059 C4050465 C.."] |
|
|
173 |
|
|
|
174 |
rouge_scores = calculate_rouge_scores(references, predictions) |
|
|
175 |
for score in rouge_scores: |
|
|
176 |
print(score) |