|
a |
|
b/README.md |
|
|
1 |
# Heart Failure Prediction Project |
|
|
2 |
|
|
|
3 |
## Overview |
|
|
4 |
Machine learning models to predict heart failure severity and mortality risk using clinical data. |
|
|
5 |
|
|
|
6 |
Machine learning models to predict: |
|
|
7 |
- **Severity Score** (Regression) |
|
|
8 |
- **Mortality Risk** (Classification) |
|
|
9 |
|
|
|
10 |
## 📌 Key Features |
|
|
11 |
| Component | Techniques Used | |
|
|
12 |
|--------------------|------------------------------------------| |
|
|
13 |
| Data Analysis | EDA, Correlation Heatmaps, Feature Importance | |
|
|
14 |
| Regression Models | Linear, Ridge, Lasso, Kernel (RBF/Poly) | |
|
|
15 |
| Classification | Logistic Regression, SVM, Random Forest | |
|
|
16 |
| Model Evaluation | MSE, R², Accuracy, Precision-Recall | |
|
|
17 |
|
|
|
18 |
## 🚀 Results Highlight |
|
|
19 |
**Best Performing Models:** |
|
|
20 |
```python |
|
|
21 |
{ |
|
|
22 |
"Regression": { |
|
|
23 |
"Best Model": "RBF Kernel Regression", |
|
|
24 |
"MSE": 0.7888, |
|
|
25 |
"R² Score": 0.7500 |
|
|
26 |
}, |
|
|
27 |
"Classification": { |
|
|
28 |
"Best Model": "Random Forest", |
|
|
29 |
"Accuracy": 83.33%, |
|
|
30 |
"Recall": 63.16% # Critical for mortality prediction |
|
|
31 |
} |
|
|
32 |
} |