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Background
We have all seen it. A patient’s health drastically gets worse at Intensive Care Unit (ICU) and everybody scrambles to save the patient. The doctors and other
care providers do their best to make the right decision using a severity score that is less accurate. In addition, most severity are good predictors of clinical
deterioration, the earliest, 2-day after ICU admission.

The burden of care for critically ill patients is massive. ICU beds are 10% of the beds in US hospitals, however hospitals spent on average 22% of their total
hospital cost on ICU patients. Mortality rate among ICU patient is 12%. Predicting severity is crucial for assessing severity of illness and deciding on the value
of novel treatments, interventions and health care policies. Currently Simplified Acute Physiology Score (SAPS) II is the most used severity prediction model.
SAPS II was designed to measure the severity of disease for patients admitted to intensive care unites aged 15 or more. SAPS II measurement is completed
24 hours after admission to the ICU and resulted in an integer point score between 0 and 163 and a predicted mortality between 0% and 100%. No new score
can be calculated during the stay and if a patient is discharged from the ICU and readmitted, a new SAPS II score can be calculated. Although the existing
SAPS II system discriminate between survivors and non-survivors very well, they fail to accurately predict the actual probability of death. The score
overestimate hospital mortality, as a result leads to overspending. Other commonly used severity scores is the Acute Physiology and Chronic Health
Evaluation (APACHE II). SAPSII severity score rely on logistic regression model and imposes stringent constrains on the relationship between explanatory
variables and risk of death. Given the complex process underlying death in ICU patients such an assumption might be too unrealistic. The poor calibration of
current severity scores might be to a large extent a consequence of the misspecification of the underlying statistical model rather than to the choice of
variables included in this model. Hence, we hypothesized to build new predictors using an expanded set of variables. We need a paradigm shift – from
reactive to predictive patient care - where with a reasonable degree of certainty we could actually tell the clinician, which patient is in imminent danger of
physiologic deterioration and which patient might actually be stable and might be so for the next 24 hours. A predictive machine learning model that can
accurately predict patient outcome would have a significant value in saving lives due to early intervention and limited hospital resources. A percentage point
saving in hospital running cost could result a saving of multi-millions of dollars per year. Doctors and other care providers could be efficiently utilized to treat
and save other patients who otherwise would have been idling in a standby.

This would allow the clinician to intervene earlier in those patients who are at a greater risk of deterioration or simply to increase surveillance, to actually keep
a closer look on those patients who might be identified as being unstable or predicted to deteriorate versus those who are actually quite stable and might not
need further surveillance beyond what is already being provided.

Objective
Piggybacking on the same project and availability of massive Electronic Health Records (EHRs), according to the Centers for Disease Control and Prevention
(CDC) nearly all hospitals and 86% of office-based physicians in the United States use Electronic Medical Records/Electronic Health Records (EMRs/EHRs),
we will build a flexable and better performing model using the same 17 variables used in the SAPS II severity prediction model. The question ‘Can we improve
the prediction performance of widely used severity scores using a more flexible model?’ is the central question of our project.

Data Source
For this project, I used publicly available Electronic Health Records (EHRs) datasets. The MIT Media Lab for Computational Physiology has developed MIMIC-
IIIv1.4 dataset based on 46,520 patients who stayed in critical care units of the Beth Israel Deaconess Medical Center of Boston between 2001 and 2012.
MIMIC-IIIv1.4 dataset is freely available to researchers across the world. A formal request should be made directly to www.mimic.physionet.org, to gain acess
to the data. There is a required course on human research ‘Data or Specimens Only Research’ prior to data acess request. I have secured one here -
www.citiprogram.org/verify/?kb6607b78-5821-4de5-8cad-daf929f7fbbf-33486907

The dataset has 26 relational tables including patient’s hospital admission, callout information when patient was ready for discharge, caregiver information,
electronic charted events including vital signs and any additional information relevant to patient care, patient demographic data, list of services the patient was
admitted or transferred under, ICU stay types, diagnoses types, laboratory measurments, microbiology tests and sensitivity, prescription data and billing
information.

Although I have full access to the MIMIC-IIIv1.4 datasets, I can not share any part of the data publicly. If you are interested to learn more about the data, there
is a MIMIC III Demo dataset based on 100 patients https://mimic.physionet.org/gettingstarted/demo/. If you are interested to requesting access to the data -
https://mimic.physionet.org/gettingstarted/access/.

Model Variables
For this project, I used the exact 17 variables used to develop the SAPS II severity prediction algorithm. These are 13 physiological variables, three underlying
(chronic) disease variables and one admission variable.

The physiological variables includes demographic (age), vital (Glasgow Comma Scale, sytolic blood pressure, Oxygenation, Renal, White blood cells count,
serum bicarbonate level, blood sodium level, blood potassium level, and blood bilirubin level). The three underlying disease variables includes Acquired
Immunodeficiency Syndrome (AIDS), metastatic cancer, and hematologic malignancy. Finally, whether admission was scheduled surgical or unshceduled
surgical was included in the model.

In the following section includes data wrangling work on each model variables.

Patient age ( Age )

The variable Age  was created from variables DOB  and ADMITTIME . DOB  is the date of birth of the given patient and found in the The patients 
table  of the MIMIC-IIIv1.4 26 relational datasets. ADMITTIME provides the date and time the patient was admitted to the hospital.

Patients who are older than 89 years old at any time in the database have had their date of birth shifted to obscure their age and comply with HIPAA. The shift
process was as follows: the patient’s age at their first admission was determined. The date of birth was then set to exactly 300 years before their first
admission. As a result, no impact on the age calculation.

After variable Age was created, then the actual age was transformed to its equvalent SAPSII score following the below scoring system.

Age  below 40 transformed to SAPSII score of (0 points),
Age  40 – 59 transformed to SAPSII score of (7 points),
Age  60 – 69 transformed to SAPSII score of (12 points),
Age  70 – 74 transformed to SAPSII score of (15 points),
Age  75 – 79 transformed to SAPSII score of (16 points), or
Age  80 and above transformed to SAPSII score of (18 points).

Glasgow Coma Scale ( gcs )

The variable gcs  was created by summing values in GCS - Eye Opening , GCS - Motor Response , and GCS - Verbal Response  variables. 
GCS - Eye Opening  (best eye response), GCS - Motor Response (best motor response, and GCS - Verbal Response  (best verbal response)

variables are found in The chartevents table  of the MIMIC-IIIv1.4 datasets. The The chartevetns table  has 330,712,483  rows, each row
associated with one ITEMID corresponds to an instantiation of the same measurement (e.g. GCS - Eye Opening ). Variable VALUE  in The 
chartevents table  contains the value measured for the concept identified by the ITEMID .

After variable gcs  was created, then the total GSC score was transformed to its equvalent SAPSII score following the below scoring system.

gcs  value below 6 transformed to SAPSII score of (26 points),
gcs  value 6-8 transformed to SAPSII score of (13 points),
gcs  value 9-10 transformed to SAPSII score of (7 points),
gcs  value 11-13 transformed to SAPSII score of (5 points), or
gcs  value 14-14 transformed to SAPSII score of (0 points).

Systolic blood pressure ( bp_0.0 , bp_2.0 , bp_5.0 , and bp_13.0 )

The variable bp  was pulled from the most frequently occuring sytolic blood pressure observations ( ITEMID ) found in The chartevents table , which
is originally compiled from the CareVue and MetaVision ICU databases .

First bp  variable was created pulling the most frequently occuring systolic blood pressure observations. Then transformed to its equvalent SAPSII score
following the below scoring system.

bp  value below 70 mmHg transformed to SAPSII score of (13 points),
bp  value 70-99 mmHg transformed to SAPSII score of (5 points),
bp  value 100-199 mmHg transformed to SAPSII score of (0 points), or
bp  value 200 and above mmHg transformed to SAPSII score of (2 points).

Then transformation was made to create the dummy variaibles bp_0.0  ( bp  with 0 points), bp_2.0 ( bp  with 2 points), bp_5.0 ( bp  with 5 points), and 
bp_13.0 ( bp  with 13 points).

Heart Rate ( hr_0.0 , hr_2.0 , hr_4.0 , hr_7.0 , and hr_11.0 )

The variable hr  was pulled from the most frequently occuring heart rate observations (eg ITEMID  211) found in The chartevents table .

First hr  variable was created pulling the most frequently occuring heart rate observations. Then transformed to its equvalent SAPSII score following the
below scoring system.

hr  value below 40 BPM transformed to SAPSII score of (11 points),
hr  value 40-69 BPM transformed to SAPSII score of (2 points),
hr  value 70-119 BPM transformed to SAPSII score of (0 points),
hr  value 120-159 BPM transformed to SAPSII score of (4 points), or
hr  value 160 and BPM above transformed to SAPSII score of (7 points).

Then transformation was made to create the dummy variaibles hr_0.0  ( hr  with 0 points), hr_2.0  ( hr  with 2 points), hr_4.0  ( hr  with 4 points), 
hr_7.0  ( hr  with 7 points), and hr_11.0  ( hr  with 11 points).

Body Temprature ( Temp )

The variable Temp  as pulled from the most frequently occuring body temprature observations ( ITEMID ) found in The chartevents table . Additional
transformation was made to convert body temprature unit in fahrenheit to celsius.

After variable Temp  was created, then the body temprature (celsius) was transformed to its equvalent SAPSII score following the below scoring system.

Temp  value below 39C transformed to SAPSII score of (0 points), or
Temp  value above 39C transformed to SAPSII score of (3 points).

On Mechanical Ventilation ( ventilation )

The ventilation  was created from two variables arterial oxygen partial pressure  and fractional inspired oxygen . The variable 
ventilation  is a ratio of arterial oxygen partial pressure  to fractional inspired oxygent . Values for both variables were pulled

from the most frequently occuring observations ( ITEMID ) found in The chartevents table .

After variable ventilation  was created, then transformed to its equvalent SAPSII score following the below scoring system.

ventilation  value N/A transformed to SAPSII score of (0 points),
ventilation  value below 100 transformed to SAPSII score of (11 points),
ventilation  value 100-199 transformed to SAPSII score of (9 points), or
ventilation  value 200 and above transformed to SAPSII score of (6 points).

Urinary Output ( OU )

The variable OU  was pulled from the most frequently occuring urine output observations in CareValue 40055 and MetaVision 226559 ( ITEMID ) found in 
The outputevents table .

After variable OU  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

OU  value below 0.5 litter within 24 hours of ICU stay transformed to SAPSII score of (11 points),
OU  value below 0.5-0.99 litter within 24 hours of ICU stay transformed to SAPSII score of (4 points), or
OU  value below 1 and above litter within 24 hours of ICU stay transformed to SAPSII score of (0 points).

Blood Urea Nitrogen ( bun )

The variable bun  was created from the most frequently occuring blood urea nitrogen observations ( ITEMID ) in The chartevents table .

After variable bun  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

bun  value below 28 mg/dL within 24 hours of ICU stay transformed to SAPSII score of (0 points),
bun  value 28-83 mg/dL within 24 hours of ICU stay transformed to SAPSII score of (6 points), or
bun  value 84 and above mg/dL within 24 hours of ICU stay transformed to SAPSII score of (10 points).

White Blood Cells count ( WBC_0.0  and WBC_3.0 )

The variable WBC  was created from ITEMID  corrosponding to white blood cells measurment in The chartevents table .

After the variable WBC  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

WBC  value less than 1,000 per milimeter cubed within 24 hours of ICU stay transformed to SAPSII score of (12 points),
WBC  value 1,000 - 19,000 per milimeter cubed within 24 hours of ICU stay transformed to SAPSII score of (0 points), or
WBC  value 20,000 and above per milimeter cubed within 24 hours of ICU stay transformed to SAPSII score of (3 points).

Then transformation was made to create the dummy variaibles WBC_0.0  ( WBC  with 0 points) and WBC_3.0  ( WBC  with 3 points).

Serum Bicarbonate level ( Bicarbonate )

The variable Bicarbonate  was created from the most frequently occuring serum bicarbonate level observations ( ITEMID ) in The chartevents 
table .

After the variable Bicarbonate  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

Bicarbonate value below 15 mEq/L within 24 hours of ICU stay transformed to SAPSII score of (6 points),
Bicarbonate value 15-19 mEq/L within 24 hours of ICU stay transformed to SAPSII score of (3 points), or
Bicarbonate value 20 and above mEq/L within 24 hours of ICU stay transformed to SAPSII score of (0 points).

Bilirubin level ( Bilirubin )

The variable Bilirubin  was created from the most frequently occuring blood bilirubin level observations ( ITEMID ) in The chartevents table .

After the variable Bilirubin  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

Bilirubin value below 4 mg/dL within 24 hours of ICU stay transformed to SAPSII score of (0 points),
Bilirubin value 4-5.9 mg/dL within 24 hours of ICU stay transformed to SAPSII score of (4 points), or
Bilirubin value 6 and above mg/dL within 24 hours of ICU stay transformed to SAPSII score of (9 points).

Blood Sodium level ( Sodium_0.0 , Sodium_1.0 , and Sodium_5.0 )

The variable Sodium  was created from the most frequently occuring blood bilirubin level observations ( ITEMID ) in The chartevents table .

After the variable Sodium  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

Sodium  value below 125 mEq/L within 24 hours of ICU stay transformed to SAPSII score of (5 points),
Sodium  value 125-144 mEq/L within 24 hours of ICU stay transformed to SAPSII score of (0 points), or
Sodium  value 145 and above mEq/L within 24 hours of ICU stay transformed to SAPSII score of (1 points).

Then transformation was made to create the dummy variaibles Sodium_0.0 ( Sodium  with 0 points)., Sodium_1.0 ( Sodium  with 1 points)., and 
Sodium_5.0  ( Sodium  with 5 points).

Blood Potassium level ( Potassium_0.0  and Potassium_3.0 )

The variable Potassium  was created from the most frequently occuring blood bilirubin level observations ( ITEMID ) in The chartevents table .

After the variable Potassium  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

Potassium  value below 3 mEq/L within 24 hours of ICU stay transformed to SAPSII score of (3 points),
Potassium  value 3-4.9 mEq/L within 24 hours of ICU stay transformed to SAPSII score of (0 points), or
Potassium  value 5 and above mEq/L within 24 hours of ICU stay transformed to SAPSII score of (3 points).

Then transformation was made to create the dummy variaibles Potassium_0.0  ( Potassium  with 0 points), and Potassium_3.0 ( Potassium  with 3
points).

Underlying Disease ( ud )

The variable ud  was created from the three underlying disease variables derived from the International Classification of Diseases Version 9 (ICD-9) codes for
diagnoses. The ICD-9 diagnoses codes are found in The d_Icd_diagnoses  and The diagnosis_icd  tables of the MIMIC-IIIv1.4 relational databases.
The three underlying diseases include metastatic cancer, hematologic malignancy and AIDS.

After the variable ud  was created, then the values were transformed to its equvalent SAPSII score following the below scoring system.

ud  value AIDS  was transformed to SAPSII score of (17 points),
ud  value Metastatic cancer  was transformed to SAPSII score of (9 points),
ud  value Hematologic malignancy  was transformed to SAPSII score of (10 points), or
ud  value NONE  was transformed to SAPSII score of (0 points).

Admission type ( admission )

The variable admission  was taken directly from The admissions table . Admission type describes the type of the admission: ELECTIVE , URGENT ,
NEWBORN , or EMERGENCY . Variable values URGENT  and EMERGENCY  were collapesd into a signle category Unscheduled surgical  and 
ELECTIVE  and NEWBORN  were collapsed into a single category Scheduled surgical .

The values of admission  variable were then transformed to its equvalent SAPSII score following the below scoring system.

admission  value Unscheduled surgical  was transformed to SAPSII score of (8 points), or
admission  value Scheduled surgical  was transformed to SAPSII score of (0 points).

Total SAPSII Score ( saps2 )

The variable saps2 is the sum of all feauture variables described above.

Hospital death ( hdeath )

The variable hdeath  is our target variable. hdeath  is equvalent to the variable HOSPITAL_EXPIRE_FLAG  in The admissions table  and indicates
whether the patient died within the given hospitalization. hdeath  value 1  indicates death in the hospital and 0  indciates survivial to hospital discharge.

Results

Descriptive Statistics

A total of 46,234 unique ICU patients were included in this study. Around 286 were lost during data cleaning. The original MIMIC-IIIv1.4 database has a
total population of 46,520 patients.
There are 60,517 unique Intensive Care Unit(ICU) stays, some patients were addmitted to ICU more than once. The entire MIMIC-IIIv1.4 datasets has
61,532 ICU stays. Only one ICU stay per hospital amission were included in the study, as a result 1,015 ICU stays from the original database were
excluded. Sometiems patients admitted to ICU were discharged to other wards in the hospital and in some cases return back to ICU such patients were
not included in this study.
56% of the patients were Male and 44% were female.
Study participants average age was 65 years old. Patients who are older than 89 years old at any time in the database have had their date of birth shifted
to obscure their age and comply with HIPAA. The shift process was as follows:the patient’s age at their first admission was determined. The date of birth
was then set to exactly 300 years before their first admission.
The majority of patients (75%) were adults (above 18 years old) and 25% were children (18 and below).
The majority of patients (42%) were married and 35% reported to Catholic as their religion.
The majority of patients (75%) were admited to ICU unschedulled.
Almost half of the patients have Medicare (49%). This is not surpirse as the average patient age was 65. A total of 38% of the ICU patients were covered
by private insurance. 10% of the ICU patients were used medicaid insurance and 1% of patients self-paid.
On average, patients stayed at ICU for 5 days.
10% of ICU patients deceassed during thier ICU stay.
Including both deaths within the hospital and deaths identified by matching thte patient to the social security master death index, 39.5% of study
participants were deceased.
A total of 22% of ICU patients had underlying chronic deases - Metastatic Cancer (8.7%), Hematologic Malignancy (2.4%), and AIDS (0.6%).

In [87]: desc_stat=saps_d.describe()
desc_stat

The majority of patients (70%) were whites, African Americans (10%), Asians (3%), and Hispanic/Lations were (4%).

A total of 19% of ICU patients had blood urea nitrogen level outside of the normal range within the first 24 hours of ICU stay.
9.5% of ICU patients had blood bicarbonate level outside of the normal range within the first 24 hours of ICU stay.
59% of ICU patients were on mechanical ventilation within the first 24 hours of ICU stay.
78% of ICU patients had temprature above normal within the first 24 hours of ICU stay.
10% of ICU patients had above normal blood bilirubin levels within the first 24 hours of ICY stay.
52% of ICU patients had Glasgow Coma Score of less than 14 (below the normal range) within the first 24 hours of ICU stay.
2.5% of ICU patients had blood potassium level outside of the normal range within the first 24 hours of ICU stay.
4% of ICU patients had blood sodium level outside of the normal range within the first 24 hours of ICU stay.
4% of ICU patients had white blood cell counts outside of the normal range within the first 24 hours of ICU stay.
56.4% of ICU patients had heart rate outside of the normal range within the first 24 hours of ICU stay.
6% of ICU patients experianced cardiac arrest the first 24 hours of ICU stay
82.5% of ICU patients had systolic blood pressure outside of the normal range within the first 24 hours of ICU stay.
75% of ICU patients had urine output level below normal range within the first 24 hours of ICU stay.

Correlations

The heat map below presents a wholestic picture of where the correlation between variables of interest stands. Light teal-to-dark teal color represents negative
correlation between two corrosponding variables. Light red to dark red color represents positive correlation between two corrosponding variables (columns).
The darker the color, the stronger the correlation.

In [11]: %matplotlib inline 
saps=saps.drop(['SUBJECT_ID','HADM_ID', 'ICUSTAY_ID'], axis=1)
# Compute correlations
corr = saps.corr() 
 
# Exclude duplicate correlations by masking uper right values
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True 
 
# Set background color / chart style
sns.set_style(style = 'white') 
 
# Set up  matplotlib figure
f, ax = plt.subplots(figsize=(18, 18)) 
 
# Add diverging colormap
#cmap =sns.diverging_palette(150, 275, s=80, l=55, n=12)
cmap = sns.diverging_palette(220, 20, sep=20, as_cmap=True) 
 
# Draw correlation plot
sns.heatmap(corr, mask=mask, cmap=cmap,  
        square=True, 
        linewidths=.5, cbar_kws={"shrink": .5}, ax=ax)
ax.set (title='Correlations: ICU Patients SAPSII Score')

In [144]: # Correlations of numerical values
saps.corr()['hdeath'].sort_values()

Generally speaking there is correlation (although weak - between 2 and -2) with all of the phsyilogical variables.Cardiac arrest (hr_11) is strongly correlated
(43.4%) with hospital death, morethan the total SAPSII score - created as a combined score of all 17 phsiological variables. Extreme levels of systolic blood
pressure (below 70mmHg) and low levels of Glasgow Coma Score were correlatd with within hospital death. When we change the target variable from death
within hospital death to death - including both deaths within the hospital and deaths identified by matching thte patient to the social security master death
index, we observe, expectedly age playing key role (correlation score increased from 17% to 42%).

Distributions and Comparisons

In [167]: plt.figure(figsize = (11, 6))
survived=saps.saps2.loc[saps.hdeath==0]
deceased=saps.saps2.loc[saps.hdeath==1]
_ = plt.hist(survived, bins=30, alpha=0.5, label='ICU Patients Survived')
_ = plt.hist(deceased, bins=30, alpha=0.5, label='ICU Patients Deceased')
_ = plt.xlabel('SAPSII Total Score')
_ = plt.ylabel('Frequency')
_ = plt.legend()

ICU patients distributed towards higher SAPSII total score. Majority proportion of ICU patients with a total SAPSII score of 70 and above have deceased.

In [169]: # Scipy helper functions
from scipy.stats import percentileofscore
from scipy import stats
# Calculate percentile for SAPSII Total Score
saps['percentile'] = saps['saps2'].apply(lambda x: percentileofscore(saps['saps2'], x))

In [170]: # Plot percentiles for SAPSII Total Score
plt.figure(figsize = (11, 6))
plt.plot(saps['saps2'], saps['percentile'], 'o')
plt.xticks(range(0, 110, 10), range(0, 110, 10))
plt.xlabel('SAPSII Total Score'); plt.ylabel('Percentile'); plt.title('SAPSII Total Score Percentiles');

The percentile of score cumulative distribution shows after SAPSII total score of 30,the percentile of ICU patients increased faster platuing at SAPSII total
score of 80.

In [165]: plt.figure(figsize = (11, 6))
Female=saps.saps2.loc[saps.GENDER=='F']
Male=saps.saps2.loc[saps.GENDER=='M'] 
 
_ = plt.hist(Female, bins=30, alpha=0.5, label='Female ICU Patients')
_ = plt.hist(Male, bins=30, alpha=0.5, label='Male ICU Patients')
_ = plt.xlabel('SAPSII Total Score')
_ = plt.ylabel('Frequency')
_ = plt.legend()

There is an overlaping normal distribution of SAPSII total score between female and male ICU patients, showing no distirbutional diffrence between male and
female ICU patients' SAPSII total score.

In [8]: plt.figure(figsize = (16, 8)) 
 
no_chronic=saps.saps2.loc[saps.ud==0]
aids=saps.saps2.loc[saps.ud==17]
malignancy=saps.saps2.loc[saps.ud==10]
metastatic=saps.saps2.loc[saps.ud==9] 
 
 
_ = plt.hist(no_chronic, bins=30, alpha=0.5, label='Chronic disease: None')
_ = plt.hist(metastatic, bins=30, alpha=0.5, label='Chronic disease: Metastatic Cancer')
_ = plt.hist(malignancy, bins=30, alpha=0.5, label='Chronic disease: Hematologic malignancy')
_ = plt.hist(aids, bins=30, alpha=0.5, label='Chronic disease: Aids')
_ = plt.ylabel('Frequency')
_ = plt.xlabel('SAPSII Total Score')
_ = plt.legend()
_ = plt.axvline(np.mean(no_chronic), color='b', linestyle=':')
_ = plt.axvline(np.mean(metastatic), color='y', linestyle=':')
_ = plt.axvline(np.mean(malignancy), color='g', linestyle=':')
_ = plt.axvline(np.mean(aids), color='r', linestyle=':')

Patients with underlying disease are distributed to the right of the SAPSII total score scale. In other words, those with prexisting chronic diesaes had higher
average SAPSII score, compared to patients without underlying disease.

In [7]: plt.figure(figsize = (16, 8)) 
 
aids=saps.saps2.loc[saps.ud==17]
malignancy=saps.saps2.loc[saps.ud==10]
metastatic=saps.saps2.loc[saps.ud==9] 
 
 
_ = plt.hist(metastatic, bins=30, alpha=0.5, label='Chronic disease: Metastatic Cancer')
_ = plt.hist(malignancy, bins=30, alpha=0.5, label='Chronic disease: Hematologic malignancy')
_ = plt.hist(aids, bins=30, alpha=0.5, label='Chronic disease: Aids')
_ = plt.ylabel('Frequency')
_ = plt.xlabel('SAPSII Total Score')
_ = plt.legend()
_ = plt.axvline(np.mean(metastatic), color='b', linestyle=':')
_ = plt.axvline(np.mean(malignancy), color='r', linestyle=':')
_ = plt.axvline(np.mean(aids), color='g', linestyle=':')

Metastatic cancer is the most common underlying chronic disease among ICU patients in this study, all sharing the same distribution with almost the same
average score.

In [9]: plt.figure(figsize = (12, 6)) 
 
sod=saps.saps2.loc[saps['Sodium_5.0']==1]  
pot=saps.saps2.loc[saps['Potassium_3.0']==1]
bic=saps.saps2.loc[saps.Bicarbonate>0] 
 
_ = plt.hist(sod, bins=30, alpha=0.5, label='Blood Sodium level: Outside Normal')
_ = plt.hist(pot, bins=30, alpha=0.5, label='Blood Potassium level: Outside Normal')
_ = plt.hist(bic, bins=30, alpha=0.5, label='Blood Bicarbonate: Outside Normal')
_ = plt.xlabel('SAPSII Total Score')
_ = plt.ylabel('Frequency')
_ = plt.legend()
_ = plt.axvline(np.mean(sod), color='b', linestyle=':')
_ = plt.axvline(np.mean(pot), color='r', linestyle=':')
_ = plt.axvline(np.mean(bic), color='g', linestyle=':')

The distribution of outside normal blood bicarbonate level picked after SAPSII score of 40 and continued to stay high, showing strong relationship with hospital
death. The distribution of outside normal blood sodium and blood potassium level picked up at early SAPSII score of 30 showing the prevalence of abnormal
sodium and potassium level is common among ICU patients and may have little contribution to the classification of surviving and deceased ICU patients in this
study.

In [175]: plt.figure(figsize = (12, 6)) 
 
hr11=saps.saps2.loc[saps['hr_11.0']==1]  
bp13=saps.saps2.loc[saps['bp_13.0']==1]
bp5=saps.saps2.loc[saps['bp_5.0']==1] 
 
_ = plt.hist(hr11, bins=30, alpha=0.5, label='Heart Rate: Cardiac Attack')
_ = plt.hist(bp13, bins=30, alpha=0.5, label='Systolic Blood Presssure: Less than 70mmHg')
_ = plt.hist(bp5, bins=30, alpha=0.5, label='Systolic Blood Presssure: Less than 70-99mmHg')
_ = plt.xlabel('SAPSII Total Score')
_ = plt.ylabel('Frequency')
_ = plt.legend()
_ = plt.axvline(np.mean(hr11), color='b', linestyle=':')
_ = plt.axvline(np.mean(bp13), color='r', linestyle=':')
_ = plt.axvline(np.mean(bp5), color='g', linestyle=':')

Population of ICU patients with extreme heart rate (experianced cardiac arrest) are distributed to the extreme right of SAPSII total score, the majority scoring
an average of 75 in their SAPSII score

There is 'no' diffrence in the distribution of hospital death by religion denomination. Majority of the ICU patients are member of the catholic church.

In [45]: plt.figure(figsize=(20,8))
ax=sns.countplot(data=saps, x='INSURANCE', hue='hdeath')
ncount = len(saps)
ax2=ax.twinx()
ax2.yaxis.tick_left()
ax.yaxis.tick_right()
ax.yaxis.set_label_position('right')
ax2.yaxis.set_label_position('left')
ax2.set_ylabel('Frequency [%]') 
 
ax.set_xticklabels(ax.get_xticklabels(),rotation=45) 
 
for p in ax.patches: 
    x=p.get_bbox().get_points()[:,0] 
    y=p.get_bbox().get_points()[1,1] 
    ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y),  
            ha='center', va='bottom') # set the alignment of the text 
 
# Use a LinearLocator to ensure the correct number of ticks
ax.yaxis.set_major_locator(ticker.LinearLocator(11)) 
 
# Fix the frequency range to 0-100
ax2.set_ylim(0,100)
ax.set_ylim(0,ncount)
ax.set_title('ICU Patient Insurance Type and ICU mortality')
# And use a MultipleLocator to ensure a tick spacing of 20
ax2.yaxis.set_major_locator(ticker.MultipleLocator(20)) 
 
# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
ax2.grid(None)

We observed distribution of high hospital death among medicare insurance holders, here the key player is likely age and underlying diease, not insurance
type. Generally, Medicare is available for people age 65 or older, younger people with disabilities and people with End Stage Renal Disease (permanent
kidney failure requiring dialysis or transplant).

Logistic Regressions

In [179]: # Logistic Regression plots - regplot
fig, ax=plt.subplots(figsize=(10,7))
sns.regplot(data=saps, x= 'saps2', y='hdeath', logistic=True, color='g', x_bins=10, ax=ax)
ax.set (title='Regression: SAPSII Total Score and ICU Survival')
plt.show()

There is a strong positive relationship between SAPSII total score and the probability of hospital mortality. The probability of hospital mortality starts to escalate
after SAPSII total score of 50.

In [180]: plt.figure(figsize=(20,10))
plt.subplot(2, 2, 1)
_ = sns.regplot(data=saps, x= 'AGE', y='hdeath',logistic=True, color='g', x_bins=10)
_ = plt.title('Regression: ICU Patient Age and ICU Survival')
plt.subplot(2, 2, 2)
_ = sns.regplot(data=saps, x= 'bp_13.0', y='hdeath', logistic=True, color='g', x_bins=10)
_ = plt.title('Regression: Systolic Blood Pressure (<70mmHg)and ICU Survival')
plt.subplot(2, 2, 3)
_ = sns.regplot(data=saps, x= 'bp_5.0', y='hdeath', logistic=True, color='r', x_bins=10)
_ = plt.title('Regression: Systolic Blood Pressure (70-99mmHg) and ICU Survival')
plt.subplot(2, 2, 4)
_ = sns.regplot(data=saps, x= 'hr_11.0', y='hdeath' , logistic=True, color='r', x_bins=10)
_ = plt.title('Regression: Cardiac Attack and ICU Survival')
plt.tight_layout()

Values in x-axis are SAPSII scores for the specific variable - not the actual values. For example age values are not exact patient age, rather SAPSII score that
corspondes to the patient age.

Patient age, extreme levels of systolic blood pressure (less than 70mmHg), blood bicarbonate level, pateint's galsgow comma score, urinary output level, and
presence of underliying chronic diseas is stronlgy associated with hospital death. This relationship diminishes when control for 'CHILD' variable.

Although we have seen strong positive correlation between cardiac arrest and hospital death, the logistic regression plot did not show the same.

For patients above 80 years old, their age increases their likelihood of hospital death by about 20%. Patients with extream blood pressure (less than 70mmHg)
the first 24 hours of their hospital stay increased their likelihood of hospital mortality by 17%.

In [181]: plt.figure(figsize=(20,10))
plt.subplot(2, 2, 1)
_ = sns.regplot(data=saps, x= 'UO', y='hdeath' , color='c', x_bins=10)
_ = plt.title('Regression: ICU Patient Urinary Output Level and ICU Survival')
plt.subplot(2, 2, 2)
_ = sns.regplot(data=saps, x= 'ud', y='hdeath' , color='c', x_bins=10)
_ = plt.title('Regression: ICU Patient with Underlying Disease and ICU Survival')
plt.subplot(2, 2, 3)
_ = sns.regplot(data=saps, x= 'Bicarbonate', y='hdeath' , color='y', x_bins=10)
_ = plt.title('Regression: Blood Bicarbonate Level and ICU Survival')
plt.subplot(2, 2, 4)
_ = sns.regplot(data=saps, x= 'gcs', y='hdeath' , color='y', x_bins=10)
_ = plt.title('Regression: ICU Patient Galsgow Coma Scale and ICU Survival')
plt.tight_layout()

Patients with sever urinary output level (less than 500mL) within the first 24 hours of their ICU stay increased their likelihood of hospital mortality by around
16%.

patients with low blood bicarbonate levels within the first 24 hours of ICU stay increased their chances of hospital mortability by around 15%. Patients with
underlying disease like AIDS increased their likelihood of hopital mortality by around 8%.

Patients with very low GCS (<6) within the first 24 hours of hospital stay increased their chances of hospitality mortality by around 20%

In [ ]:   

Out[87]:

los hdeath death admission ud bun Bicarbonate ventilation Temp Bilirubin ... MAR

count 61117.000000 61117.000000 61117.000000 61117.000000 61117.000000 61117.000000 61117.000000 61117.000000 61117.000000 61117.000000 ...

mean 4.957131 0.109249 0.395307 6.023987 1.123681 1.151071 0.352881 3.735262 2.336060 0.800187 ...

std 9.668438 0.311955 0.488921 3.450170 3.139658 2.461039 1.158467 3.310800 1.245403 2.480805 ...

min 0.000300 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ...

25% 1.120100 0.000000 0.000000 8.000000 0.000000 0.000000 0.000000 0.000000 3.000000 0.000000 ...

50% 2.107000 0.000000 0.000000 8.000000 0.000000 0.000000 0.000000 6.000000 3.000000 0.000000 ...

75% 4.540600 0.000000 1.000000 8.000000 0.000000 0.000000 0.000000 6.000000 3.000000 0.000000 ...

max 173.072500 1.000000 1.000000 8.000000 17.000000 10.000000 6.000000 11.000000 3.000000 9.000000 ...

8 rows × 70 columns

Out[11]: [Text(0.5, 1, 'Correlations: ICU Patients SAPSII Score')]

Out[144]: bp_5.0          -0.135879 
hr_0.0          -0.106079 
Sodium_0.0      -0.102613 
bp_0.0          -0.092186 
hr_4.0          -0.083538 
WBC_0.0         -0.066560 
hr_2.0          -0.055233 
Potassium_0.0   -0.044101 
hr_7.0          -0.026656 
bp_2.0          -0.017075 
Temp             0.007418 
los              0.038376 
Potassium_3.0    0.044101 
Bilirubin        0.064975 
WBC_3.0          0.066560 
Sodium_5.0       0.067255 
Sodium_1.0       0.076217 
ud               0.085655 
ventilation      0.162126 
admission        0.162633 
AGE              0.174295 
UO               0.184033 
Bicarbonate      0.186168 
bun              0.203030 
bp_13.0          0.226155 
gcs              0.262179 
saps2            0.421423 
death            0.433143 
hr_11.0          0.433746 
hdeath           1.000000 
Name: hdeath, dtype: float64

https://mimic.physionet.org/gettingstarted/demo/
https://mimic.physionet.org/gettingstarted/access/


Inferential Statistics - Frequentist

In [57]: # perform hypothesis test of spas2 score between those passed away at hospital and survived 
 
from scipy.stats import ttest_ind
ttest_name_list = ['admission', 'ud', 'bun', 'Bicarbonate', 'ventilation', 'Temp', 'Bilirubin', 'gcs', 'AGE', 'UO', 
                'saps2', 'Potassium_0.0', 'Potassium_3.0', 'Sodium_0.0', 'Sodium_1.0', 'Sodium_5.0', 'WBC_0.0', 
                'WBC_3.0', 'hr_0.0', 'hr_2.0', 'hr_4.0', 'hr_7.0', 'hr_11.0', 'bp_0.0', 'bp_2.0', 'bp_5.0', 'bp_13.
0']
for i in (ttest_name_list): 
    stat, pvalue=ttest_ind(saps[i], saps['hdeath'])        
    print(i, stat, pvalue)

Indipendent ttest result shows:

There is a statistically significant diffrence in admission type between deceased and survived ICU patients (tstat=422, pvalue=0.0) . On average
we have higher number of unscheduled surgical admissions among deceased ICU patients.
There is a statistically significant diffrence in the diagnosis of chronic disease between deceased and survived ICU patients (tstat=79.5, 
pvalue=0.0) . On average we have higher number of ICU patients with chronic dieases such as metastatic cancer,hematologic malignancy, and AIDS
when compared between decieased and survived ICU stay.
There is a statistically significant diffrence in blood urea nitrogin levels between deceased and survived ICU patients (tstat=103.8, pvalue=0.0) .
On average we have higher number of ICU patients with high levels of blood urea nitrogen among deceased ICU patients.
There is a statistically significant diffrence in blood bicarbonate levels between deceased and survived ICU patients (tstat=50, pvalue=0.0) . On
average we have higher number of ICU patients with low levels of blood bicarbonate levels among deceased ICU patients.
There is a statistically significant diffrence in ventilation use between deceased and survived ICU patients (tstat=269.6, pvalue=0.0) . On
average we have higher number of ICU patients on ventilation among deceased ICU patients.
There is a statistically significant diffrence in level of body temprature between deceased and survived ICU patients (tstat=428.8, pvalue=0.0) .
On average we have patients with high body temprature among deceased ICU patients.
There is a statistically significant diffrence in Bilirubin level between deceased and survived ICU patients (tstat=68.3, pvalue=0.0) . On average
we have higher number of patients with high Bilirubin levels among deceased ICU patients.
There is a statistically significant diffrence total Glasgow Coma Score between deceased and survived ICU patients (tstat=185.5, pvalue=0.0) .
On average we have higher number of ICU patients with higher Glsgow Coma Score among deceased ICU patients. The total Glasgow Coma Score is
based on best eye response, best verbal response, and best motor response scores.
There is a statistically significant diffrence in patient age between deceased and survived ICU patients (tstat=375, pvalue=0.0) . On average we
have higher proportion of deceased ICU patients who are older.
There is a statistically significant diffrence in urine output between deceased and survived ICU patients (tstat=-86.6, pvalue=0.0) . On average
ICU patients who are deceased have lower level of urine output compared to survived ICU patients.
There is a statistically significant diffrence in blood potassium level between deceased and survived ICU patients (tstat=-59.8, pvalue=0.0) . On
average we have higher number of ICU patients with low levels of blood potassium among deceased ICU patients.
There is a statistically significant diffrence in blood sodium levels (sodium sapsii score=1 and 5) between deceased and survived ICU patients 
(tstat=-64,-67, pvalue=0.0, 0.0) . On average we have higher number of patients with low level of blood sodium among deceased ICU

patients.
There is a statistically significant diffrence in white blood cell counts between deceased and survived ICU patients (tstat=-47, pvalue=0.0) . On
average we have higher proportion of ICU patients with above normal white blood cell counts among deceased ICU patients.
There is no statistical diffrence in the proportion of patients with cardiac arrest ( hr_11.0 ), however we observed statistically significant diffrence in the
proportion of patients with extreme tachycardia ( hr_7.0, -79.4, 0.0 ), and heart rate below normal (`hr_2.0, 137, 0.0).
There is a statistically significant diffrence in the patient systolic blood pressure between deceased and survived ICU patients. On average we have higher
number of ICU patients with systeolic blood pressure less than 70mmHg (tstat=90.8, pvalue=0.0) , below normal (between 70 -99mmHg), 
(tstat=162, pvalue=0.0) , above normal (more than and equal to 200mmHg) (tstat=-70.7, pvalue=0.0) among deceased ICU patients.

Inferential Statistics - Bootstrapping

Hypothesis testing based on bootstrapped survived and deceased dataseet at 5% significance level shows significant diffrence in mean SAPSII total score
between bootstraped datasets of survived and deceased icu patients.

In [20]: survived=saps.saps2.loc[saps.death==0]
deceased=saps.saps2.loc[saps.death==1] 
 
np.random.seed(47)
bs_std_diff=np.empty(N_rep) 
 
for i in range (N_rep): 
    bs_survived = np.random.choice(survived, size=len(survived)) 
    bs_deceased = np.random.choice(deceased, size=len(deceased)) 
    bs_std_diff[i]=np.std(bs_deceased) - np.std(bs_survived) 
     
bs_std_diff_mean, bs_std_diff_std=np.mean(bs_std_diff), np.std(bs_std_diff)
ci_std_diff=[bs_std_diff_mean - 1.96*bs_std_diff_std, bs_std_diff_mean + 1.96*bs_std_diff_std] 
 
print('The 95% confidence interval for the difference between the standard deviations\
 of survived and deceased SAPSII Score is: ', ci_std_diff)

In [21]: # Plot the histogram of values and mark the locations of the percentiles
_ = plt.hist(bs_std_diff, bins=30, linewidth=0.5, color='turquoise')
_ = plt.xlabel('Mean of standard devations of SAPSII Score')
_ = plt.ylabel('Frequency')
_ = plt.title('Distribution of mean of SDs of all SAPSII Score')
_ = plt.axvline(bs_std_diff_mean, color='m')
_ = plt.axvline(ci_std_diff[0], color='m', linestyle='--')
_ = plt.axvline(ci_std_diff[1], color='m', linestyle='--')

The 95% confidence interval for the difference between the standard deviations of survived and deceased SAPSII Score is: [0.28484245733704616,
0.6520856816890048]

In [23]: #Define a function to generate a permutation sample from insured and uninsured datasets
def permutation_sample(data1, data2): 
 
    # Concatenate the data sets: data 
    data = np.concatenate((data1, data2)) 
 
    # Permute the concatenated array: permuted_data 
    permuted_data = np.random.permutation(data) 
 
    # Split the permuted array into two: perm_sample_1, perm_sample_2 
    perm_sample_1 = permuted_data[:len(data1)] 
    perm_sample_2 = permuted_data[len(data1):] 
 
    return perm_sample_1, perm_sample_2

In [24]: #A bootstrap hypothesis test for difference of means
np.random.seed(47)
# Compute the difference in mean charges: diff_means
diff_means=np.mean(deceased) - np.mean(survived) 
 
deceased_shifted=deceased - np.mean(deceased) + np.mean(survived)
perm_mean_replicates=np.empty(N_rep)
for i in range(N_rep): 
    perm_survived, perm_deceased=permutation_sample(survived, deceased_shifted) 
    perm_mean_replicates[i]=np.mean(perm_survived) - np.mean(perm_deceased) 
     
bs_mean_diff=np.empty(N_rep)
for i in range(N_rep): 
    bs_mean_diff[i]=np.mean(bs_survived) - np.mean(np.random.choice(deceased_shifted, len(deceased_shifted))) 
 
# Compute p-value: perm_p, p
perm_p = np.sum(perm_mean_replicates>=diff_means)/len(perm_mean_replicates)
print('Permuation Pvalue: ', perm_p)
p=np.sum(bs_mean_diff>=diff_means)/len(bs_mean_diff)
print('Pvalue: ', p)

Inferential Statistics - Bayesian

In [29]: _ = plt.hist(deceased_model_rvs, bins=30, alpha=0.5, label='simulated')
#Initial simulation - 
seed(47)
n_survived = len(survived)
n_deceased = len(deceased)
deceased_model_rvs = gamma(alpha_est, scale=beta_est).rvs(n_deceased)
_ = plt.hist(deceased, bins=30, alpha=0.5, label='observed')
_ = plt.xlabel('SAPSII Score')
_ = plt.ylabel('Frequency')
_ = plt.legend()

In [44]: with pm.Model() as a_model: 
    alpha_ = pm.Exponential('alpha', 1/alpha_est) 
    rate_ = pm.Exponential('beta', 1/rate_est) 
    saps_deceased =pm.Gamma('Saps2_score_deceased', alpha=alpha_, beta=rate_, observed=deceased) 
    trace = pm.sample(10000, tune=2000, cores=4)

In [45]: alpha_samples = trace['alpha']
beta_samples = trace['beta']
alpha_ci = np.percentile(alpha_samples, [2.5, 97.5])
beta_ci = np.percentile(beta_samples, [2.5, 97.5])
print('95% confidence interval for alpha: ', alpha_ci)
print('95% confidence interval for beta: ', beta_ci)

admission 422.0928311045037 0.0 
ud 79.48553209547315 0.0 
bun 103.82321908155082 0.0 
Bicarbonate 50.20290726333376 0.0 
ventilation 269.5616326641353 0.0 
Temp 428.78581356046413 0.0 
Bilirubin 68.31563939515497 0.0 
gcs 185.50528236030465 0.0 
AGE 374.9833756789964 0.0 
UO -86.57830736617781 0.0 
saps2 528.4388303796287 0.0 
Potassium_0.0 613.9450781425617 0.0 
Potassium_3.0 -59.82832139042311 0.0 
Sodium_0.0 575.893954295901 0.0 
Sodium_1.0 -64.01776903987019 0.0 
Sodium_5.0 -66.93879118526705 0.0 
WBC_0.0 572.7364948958383 0.0 
WBC_3.0 -47.051164834922716 0.0 
hr_0.0 137.92767245017222 0.0 
hr_2.0 136.97522688863378 0.0 
hr_4.0 -27.759615489236438 4.484733069363873e-169 
hr_7.0 -79.36376090302323 0.0 
hr_11.0 -31.431895017712954 5.427222076346614e-216 
bp_0.0 33.35969234249016 6.566038544175584e-243 
bp_2.0 -70.68488389053853 0.0 
bp_5.0 162.14385989281462 0.0 
bp_13.0 90.75917162078173 0.0 

The 95% confidence interval for the difference between the standard deviations of survived and deceased SAPSII Score 
is:  [0.28484245733704616, 0.6520856816890048] 

Permuation Pvalue:  0.0 
Pvalue:  0.0 

Auto-assigning NUTS sampler... 
Initializing NUTS using jitter+adapt_diag... 
Multiprocess sampling (4 chains in 4 jobs) 
NUTS: [beta, alpha] 
Sampling 4 chains: 100%|██████████| 48000/48000 [01:22<00:00, 580.59draws/s] 
The number of effective samples is smaller than 25% for some parameters. 

95% confidence interval for alpha:  [7.33467864 7.59837212] 
95% confidence interval for beta:  [0.14113107 0.14638464] 



Clinical Deterioration Prediction - Machine Learning Models

Machine Learning Model - Logistic Regression

First, run logistics regression using saps2 (the sum of all features) as explantory variable and death at ICU (hdeath - hospital death) as target variable.

In [12]: # Create arrays for features and target variable
y = saps['hdeath'].values
X = saps['saps2'].values 
 
# Print the dimensions of X and y before reshaping
print("Dimensions of y before reshaping: {}".format(y.shape))
print("Dimensions of X before reshaping: {}".format(X.shape)) 
 
# Reshape X and y
#y = y.reshape(-1, 1)
X = X.reshape(-1, 1) 
 
# Print the dimensions of X and y after reshaping
print("Dimensions of y after reshaping: {}".format(y.shape))
print("Dimensions of X after reshaping: {}".format(X.shape))

Split the data into a training and test (hold-out) set
Train on the training set, and test for accuracy on the testing set

In [13]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score 
 
# Split the data into a training and test set.
Xlr, Xtestlr, ylr, ytestlr = train_test_split(X, y,random_state=5) 
 
clf = LogisticRegression(solver='lbfgs')
# Fit the model on the trainng data.
clf.fit(Xlr, ylr) 
 
# Print the accuracy
print('Training Accuracy: {}'.format((accuracy_score(clf.predict(Xlr), ylr))))
print('Testing Accuracy: {}'.format((accuracy_score(clf.predict(Xtestlr), ytestlr))))

Hyperparameter Tuning

The model has some hyperparameters we can tune for hopefully better performance. In Logistic Regression, the most important parameter to tune is the
regularization parameter C . Note that the regularization parameter is not always part of the logistic regression model. The regularization parameter is used to
control for unlikely high regression coefficients, and in other cases can be used when data is sparse, as a method of feature selection. We may not need this
for our model but worth checking.

In [14]: from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score 
 
def cv_score(clf, x, y, score_func=accuracy_score): 
    result = 0 
    nfold = 5 
    for train, test in KFold(nfold).split(x): # split data into train/test groups, 5 times 
        clf.fit(x[train], y[train]) # fit 
        result += score_func(clf.predict(x[test]), y[test]) # evaluate score function on held-out data 
    return result / nfold # average

In [15]: clf = LogisticRegression(solver='lbfgs')
score = cv_score(clf, Xlr, ylr)
print(score)

Using the cv_score  function (5-fold cross validation) for a basic logistic regression model without regularization,the score on the held-out data (test data) is 
0.908 , 91% .

In [16]: #the grid of parameters to search over
Cs = [0.01, 0.1, 1, 10, 100]
max_score = 0
for c in Cs: 
    clf=LogisticRegression(solver='lbfgs', C=c) 
    score = cv_score(clf, Xlr, ylr) 
    print(f'score: {score}, C:{c}') 
    if score > max_score: 
        max_score = score 
        max_C = c
print(f'\nThe Maximum score with training data is {max_score} for a C value of {max_C}.')

Based on the training set the best model parameter is 0.9079345258458951 for a C value of 0.01.

In [17]: clf =LogisticRegression(solver='lbfgs', C=max_C)
# Fit the model on teh training data
clf.fit(Xlr, ylr)
# Print the accuracy from the test data
print(f'The accuracy with the test data is {accuracy_score(clf.predict(Xtestlr), ytestlr)} for a C value of {max_C}
.')

Running the model with C=0.01 gives as the same accuracy results on the test data as the deafult. This is not always the case hence important to experment
with the hyperparameters that works best with new data.

Grid Search

In [18]: from sklearn.model_selection import GridSearchCV 
 
model = LogisticRegression(max_iter=1000) 
 
# define parameter values
solvers = ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
penalty = ['none', 'l1', 'l2', 'elasticnet']
c_values = [100, 10, 1.0, 0.1, 0.01] 
 
# define grid search
grid = dict(solver=solvers,penalty=penalty,C=c_values)
grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=5, scoring='accuracy', error_score=0)
grid_result = grid_search.fit(Xlr, ylr) 
 
# summarize results
print(f"Best score on training data: {grid_result.best_score_} using {grid_result.best_params_}")

In [19]: print(f'Score on test data: {accuracy_score(grid_result.predict(Xtestlr), ytestlr)}')

It gives a diffrent best value of C - this time 0.1. The GridSearchCV performs slightly better on test data (0.9036 vs 0.9044), almost the same.

Let's first set some code up for classification that we will need for further discussion on the math. We first set up a function cv_optimize  which takes a
classifier clf , a grid of hyperparameters (such as a complexity parameter or regularization parameter) implemented as a dictionary parameters , a
training set (as a samples x features array) Xtrain , and a set of labels ytrain . The code takes the traning set, splits it into n_folds  parts, sets up 
n_folds  folds, and carries out a cross-validation by splitting the training set into a training and validation section for each foldfor us. It prints the best value

of the parameters, and retuens the best classifier to us.

In [20]: def cv_optimize(clf, parameters, Xtrain, ytrain, n_folds=5): 
    gs = sklearn.model_selection.GridSearchCV(clf, param_grid=parameters, cv=n_folds) 
    gs.fit(Xtrain, ytrain) 
    print("BEST PARAMS", gs.best_params_) 
    best = gs.best_estimator_ 
    return best

We then use this best classifier to fit the entire training set. This is done inside the do_classify  function which takes a dataframe indf  as input. It takes
the columns in the list featurenames  as the features used to train the classifier. The column targetname  sets the target. The classification is done by
setting those samples for which targetname  has value target1val  to the value 1, and all others to 0. We split the dataframe into 80% training and 20%
testing by default, standardizing the dataset if desired. (Standardizing a data set involves scaling the data so that it has 0 mean and is described in units of its
standard deviation. We then train the model on the training set using cross-validation. Having obtained the best classifier using cv_optimize , we retrain on
the entire training set and calculate the training and testing accuracy, which we print. We return the split data and the trained classifier.

In [21]: from sklearn.model_selection import train_test_split 
 
def do_classify(clf, parameters, indf, featurenames, targetname, target1val, standardize=False, train_size=0.8): 
    subdf=indf[featurenames] 
    if standardize: 
        subdfstd=(subdf - subdf.mean())/subdf.std() 
    else: 
        subdfstd=subdf 
    X=subdfstd.values 
    y=(indf[targetname].values==target1val)*1 
    Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=train_size) 
    clf = cv_optimize(clf, parameters, Xtrain, ytrain) 
    clf=clf.fit(Xtrain, ytrain) 
    training_accuracy = clf.score(Xtrain, ytrain) 
    test_accuracy = clf.score(Xtest, ytest) 
    print("Accuracy on training data: {:0.2f}".format(training_accuracy)) 
    print("Accuracy on test data:     {:0.2f}".format(test_accuracy)) 
    return clf, Xtrain, ytrain, Xtest, ytest

In [22]: clf_l, Xtrain_l, ytrain_l, Xtest_l, ytest_l  = do_classify(LogisticRegression(solver='lbfgs'),  
                                                           {"C": [0.01, 0.1, 1, 10, 100]},  
                                                           saps, ['saps2'], 'hdeath',1)

Standardize

In [100]: from sklearn.model_selection import train_test_split 
 
def do_classify(clf, parameters, indf, featurenames, targetname, target1val, standardize=True, train_size=0.8): 
    subdf=indf[featurenames] 
    if standardize: 
        subdfstd=(subdf - subdf.mean())/subdf.std() 
    else: 
        subdfstd=subdf 
    X=subdfstd.values 
    y=(indf[targetname].values==target1val)*1 
    Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=train_size) 
    clf = cv_optimize(clf, parameters, Xtrain, ytrain) 
    clf=clf.fit(Xtrain, ytrain) 
    training_accuracy = clf.score(Xtrain, ytrain) 
    test_accuracy = clf.score(Xtest, ytest) 
    print("Accuracy on training data: {:0.2f}".format(training_accuracy)) 
    print("Accuracy on test data:     {:0.2f}".format(test_accuracy)) 
    return clf, Xtrain, ytrain, Xtest, ytest

In [101]: clf_l, Xtrain_l, ytrain_l, Xtest_l, ytest_l  = do_classify(LogisticRegression(solver='lbfgs'),  
                                                           {"C": [0.01, 0.1, 1, 10, 100]},  
                                                           saps, ['saps2'], 'hdeath',1)

ROC Curve

Plotting an ROC curve - receiver operating characteristic

In [24]: def make_roc(name, clf, ytest, xtest, ax=None, labe=5, proba=True, skip=0): 
    initial=False 
    if not ax: 
        ax=plt.gca() 
        initial=True 
    if proba: 
        fpr, tpr, thresholds=roc_curve(ytest, clf.predict_proba(xtest)[:,1]) 
    else: 
        fpr, tpr, thresholds=roc_curve(ytest, clf.decision_function(xtest)) 
    roc_auc = auc(fpr, tpr) 
    if skip: 
        l=fpr.shape[0] 
        ax.plot(fpr[0:l:skip], tpr[0:l:skip], 'o-', alpha=0.8, label='ROC curve for %s (area = %0.2f)' % (name, roc_
auc)) 
    else: 
        ax.plot(fpr, tpr, '.-', alpha=0.8, label='ROC curve for %s (area = %0.2f)' % (name, roc_auc)) 
    label_kwargs = {} 
    label_kwargs['bbox'] = dict( 
        boxstyle='round,pad=0.1', alpha=0.1, 
    ) 
    for k in range(0, fpr.shape[0],labe): 
        #from https://gist.github.com/podshumok/c1d1c9394335d86255b8 
        threshold = str(np.round(thresholds[k], 2)) 
        ax.annotate(threshold, (fpr[k], tpr[k]), **label_kwargs) 
    if initial: 
        ax.plot([0, 1], [0, 1], 'k--') 
        ax.set_xlim([0.0, 1.0]) 
        ax.set_ylim([0.0, 1.05]) 
        ax.set_xlabel('False Positive Rate') 
        ax.set_ylabel('True Positive Rate') 
        ax.set_title('ROC') 
    ax.legend(loc="lower right") 
    return ax

In [25]: from sklearn.metrics import roc_curve, auc
plt.figure(figsize=(10,6))
ax=make_roc("logistic", clf_l, ytest_l, Xtest_l, labe=200, skip=2)

Cross Validation Score

we should evaluate the performance of an algorithm rigorously by using resampling approaches (e.g. 100 times 5-fold cross-validation) to get some
measurement of the variability in the performance of the algorithm. Maybe on a particular hold-out set, two algorithms have very similar performance but the
variability of their estimates is massively different. That has serious implication on when we deploy our model in the future or use it to draw conclusion about
future performance.

In [26]: # Import necessary modules
from sklearn.model_selection import cross_val_score 
 
# Compute cross-validated AUC scores: cv_auc
cv_auc = cross_val_score(clf_l, Xtest_l, ytest_l.ravel(), cv=5, scoring='roc_auc') 
 
# Print list of AUC scores
print("AUC scores computed using 5-fold cross-validation: {}".format(cv_auc))

In [62]: # Split the data into a training and test set.
Xlr, Xtestlr, ylr, ytestlr = train_test_split(X, y.ravel(),random_state=5) 
 
clf = LogisticRegression(solver='lbfgs', max_iter=1000)
# Fit the model on the trainng data.
clf.fit(Xlr, ylr) 
 
# Print the accuracy
print('Training Accuracy: {}'.format((accuracy_score(clf.predict(Xlr), ylr))))
print('Testing Accuracy: {}'.format((accuracy_score(clf.predict(Xtestlr), ytestlr))))

In [64]: def cv_score(clf, x, y, score_func=accuracy_score): 
    result = 0 
    nfold = 5 
    for train, test in KFold(nfold).split(x): # split data into train/test groups, 5 times 
        clf.fit(x[train], y[train]) # fit 
        result += score_func(clf.predict(x[test]), y[test]) # evaluate score function on held-out data 
    return result / nfold # average

In [65]: score = cv_score(clf, Xlr, ylr)
print(score)

In [68]: #the grid of parameters to search over
Cs = [0.01, 0.1, 1, 10, 100]
max_score = 0
for c in Cs: 
    clf=LogisticRegression(solver='lbfgs', max_iter=1000, C=c) 
    score = cv_score(clf, Xlr, ylr) 
    print(f'score: {score}, C:{c}') 
    if score > max_score: 
        max_score = score 
        max_C = c
print(f'\nThe Maximum score with training data is {max_score} for a C value of {max_C}.')

In [70]: clf =LogisticRegression(solver='lbfgs', max_iter=1000, C=max_C)
# Fit the model on teh training data
clf.fit(Xlr, ylr)
# Print the accuracy from the test data
print(f'The accuracy with the test data is {accuracy_score(clf.predict(Xtestlr), ytestlr)}.')

In [71]: model = LogisticRegression(max_iter=1000) 
 
# define parameter values
solvers = ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
penalty = ['none', 'l1', 'l2', 'elasticnet']
c_values = [100, 10, 1.0, 0.1, 0.01] 
 
# define grid search
grid = dict(solver=solvers,penalty=penalty,C=c_values)
grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=5, scoring='accuracy', error_score=0)
grid_result = grid_search.fit(Xlr, ylr) 
 
# summarize results
print(f"Best score on training data: {grid_result.best_score_} using {grid_result.best_params_}")

In [72]: print(f'Score on test data: {accuracy_score(grid_result.predict(Xtestlr), ytestlr)}')

In [73]: def cv_optimize(clf, parameters, Xtrain, ytrain, n_folds=5): 
    gs = sklearn.model_selection.GridSearchCV(clf, param_grid=parameters, cv=n_folds) 
    gs.fit(Xtrain, ytrain) 
    print("BEST PARAMS", gs.best_params_) 
    best = gs.best_estimator_ 
    return best

In [74]: from sklearn.model_selection import train_test_split 
 
def do_classify(clf, parameters, indf, featurenames, targetname, target1val, standardize=False, train_size=0.8): 
    subdf=indf[featurenames] 
    if standardize: 
        subdfstd=(subdf - subdf.mean())/subdf.std() 
    else: 
        subdfstd=subdf 
    X=subdfstd.values 
    y=(indf[targetname].values==target1val)*1 
    Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size=train_size) 
    clf = cv_optimize(clf, parameters, Xtrain, ytrain) 
    clf=clf.fit(Xtrain, ytrain) 
    training_accuracy = clf.score(Xtrain, ytrain) 
    test_accuracy = clf.score(Xtest, ytest) 
    print("Accuracy on training data: {:0.2f}".format(training_accuracy)) 
    print("Accuracy on test data:     {:0.2f}".format(test_accuracy)) 
    return clf, Xtrain, ytrain, Xtest, ytest

In [80]: clf_l, Xtrain_l, ytrain_l, Xtest_l, ytest_l  = do_classify(LogisticRegression(solver='lbfgs', max_iter=2000),  
                                                           {"C": [0.01, 0.1, 1, 10, 100]},  
                                                           saps, ['admission', 'ud', 'bun', 'Bicarbonate', 'ventilat
ion', 
                                                                   'Temp', 'Bilirubin', 'gcs', 'AGE', 'UO', 'Potassi
um_0.0', 
                                                                   'Potassium_3.0', 'Sodium_0.0', 'Sodium_1.0', 'Sod
ium_5.0', 
                                                                   'WBC_0.0', 'WBC_3.0', 'hr_0.0', 'hr_2.0', 'hr_4.
0', 'hr_7.0', 
                                                                   'hr_11.0', 'bp_0.0', 'bp_2.0', 'bp_5.0', 'bp_13.
0'], 'hdeath',1)

In [76]: def make_roc(name, clf, ytest, xtest, ax=None, labe=5, proba=True, skip=0): 
    initial=False 
    if not ax: 
        ax=plt.gca() 
        initial=True 
    if proba: 
        fpr, tpr, thresholds=roc_curve(ytest, clf.predict_proba(xtest)[:,1]) 
    else: 
        fpr, tpr, thresholds=roc_curve(ytest, clf.decision_function(xtest)) 
    roc_auc = auc(fpr, tpr) 
    if skip: 
        l=fpr.shape[0] 
        ax.plot(fpr[0:l:skip], tpr[0:l:skip], 'o-', alpha=0.8, label='ROC curve for %s (area = %0.2f)' % (name, roc_
auc)) 
    else: 
        ax.plot(fpr, tpr, '.-', alpha=0.8, label='ROC curve for %s (area = %0.2f)' % (name, roc_auc)) 
    label_kwargs = {} 
    label_kwargs['bbox'] = dict( 
        boxstyle='round,pad=0.1', alpha=0.1, 
    ) 
    for k in range(0, fpr.shape[0],labe): 
        #from https://gist.github.com/podshumok/c1d1c9394335d86255b8 
        threshold = str(np.round(thresholds[k], 2)) 
        ax.annotate(threshold, (fpr[k], tpr[k]), **label_kwargs) 
    if initial: 
        ax.plot([0, 1], [0, 1], 'k--') 
        ax.set_xlim([0.0, 1.0]) 
        ax.set_ylim([0.0, 1.05]) 
        ax.set_xlabel('False Positive Rate') 
        ax.set_ylabel('True Positive Rate') 
        ax.set_title('ROC') 
    ax.legend(loc="lower right") 
    return ax
plt.figure(figsize=(10,6))
ax=make_roc("logistic", clf_l, ytest_l, Xtest_l, labe=200, skip=2)

In [79]: # Compute cross-validated AUC scores: cv_auc
cv_auc = cross_val_score(clf_l, Xtest_l, ytest_l.ravel(), cv=5, scoring='roc_auc') 
 
# Print list of AUC scores
print("AUC scores computed using 5-fold cross-validation: {}".format(cv_auc))

Weighted Logistic Regression for Imbalanced Dataset

In [95]: # Generate the confusion matrix and classification report
# Import necessary modules
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
ypred = clf.predict(Xtestlr)
# Generate the confusion matrix and classification report
print(confusion_matrix(ytestlr, ypred))
print(classification_report(ytestlr, ypred))

In [98]: from sklearn.metrics import roc_auc_score, recall_score 
 
# define class weights (11%, 89%)
w = {0:89, 1:11} 
 
# define model
clf2 = LogisticRegression(solver='lbfgs', max_iter=1000, class_weight=w)
# fit
clf2.fit(Xlr,ylr)
# test
ypred = clf2.predict(Xtestlr)
# performance
print(f'Accuracy Score: {accuracy_score(ytestlr,ypred)}')
print(confusion_matrix(ytestlr, ypred))
print(classification_report(ytestlr, ypred))
print(f'Area Under Curve: {roc_auc_score(ytestlr, ypred)}')
print(f'Recall score: {recall_score(ytestlr,ypred)}')

XGBoost

XGBoost Python api provides a method to assess the incremental performance by the incremental number of trees. It uses two arguments: “eval_set” —
usually Train and Test sets — and the associated “eval_metric” to measure your error on these evaluation sets.

In [87]: from xgboost import XGBClassifier
model = XGBClassifier(silent=False,  
                      scale_pos_weight=1, 
                      learning_rate=0.01,   
                      colsample_bytree = 0.4, 
                      subsample = 0.8, 
                      objective='binary:logistic',  
                      n_estimators=100,  
                      reg_alpha = 0.3, 
                      max_depth=3,  
                      gamma=1)

In [89]: eval_set = [(Xlr, ylr), (Xtestlr, ytestlr)]
eval_metric = ["auc", "error"]
%time model.fit(Xlr, ylr, eval_metric=eval_metric, eval_set=eval_set, verbose=True) 

In [ ]:   

Dimensions of y before reshaping: (61117,) 
Dimensions of X before reshaping: (61117,) 
Dimensions of y after reshaping: (61117,) 
Dimensions of X after reshaping: (61117, 1) 

Training Accuracy: 0.9077164735912037 
Testing Accuracy: 0.9036649214659686 

0.9079345258458951 

score: 0.9079345258458951, C:0.01 
score: 0.9079345258458951, C:0.1 
score: 0.9079345258458951, C:1 
score: 0.9079345258458951, C:10 
score: 0.9079345258458951, C:100 
 
The Maximum score with training data is 0.9079345258458951 for a C value of 0.01. 

The accuracy with the test data is 0.9036649214659686. 

Best score on training data: 0.9080219037022492 using {'C': 0.1, 'penalty': 'l2', 'solver': 'liblinear'} 

Score on test data: 0.9044502617801047 

BEST PARAMS {'C': 0.01} 
Accuracy on training data: 0.91 
Accuracy on test data:     0.90 

BEST PARAMS {'C': 0.01} 
Accuracy on training data: 0.91 
Accuracy on test data:     0.91 

AUC scores computed using 5-fold cross-validation: [0.84631633 0.81585015 0.85512388 0.85891427 0.84046901] 

Training Accuracy: 0.9216135436437812 
Testing Accuracy: 0.918913612565445 

0.9214825696009912 

score: 0.921002639409019, C:0.01 
score: 0.9214171293342783, C:0.1 
score: 0.9214825696009912, C:1 
score: 0.9215043846097171, C:10 
score: 0.9215262019981758, C:100 
 
The Maximum score with training data is 0.9215262019981758 for a C value of 100. 

The accuracy with the test data is 0.919044502617801. 

Best score on training data: 0.9215480943342714 using {'C': 0.1, 'penalty': 'l1', 'solver': 'liblinear'} 

Score on test data: 0.918782722513089 

BEST PARAMS {'C': 10} 
Accuracy on training data: 0.92 
Accuracy on test data:     0.92 

AUC scores computed using 5-fold cross-validation: [0.86265553 0.88734978 0.86138377 0.87400611 0.85694651] 

[[13384   199] 
 [ 1038   659]] 
              precision    recall  f1-score   support 
 
           0       0.93      0.99      0.96     13583 
           1       0.77      0.39      0.52      1697 
 
    accuracy                           0.92     15280 
   macro avg       0.85      0.69      0.74     15280 
weighted avg       0.91      0.92      0.91     15280 
 

Accuracy Score: 0.9013089005235602 
[[13567    16] 
 [ 1492   205]] 
              precision    recall  f1-score   support 
 
           0       0.90      1.00      0.95     13583 
           1       0.93      0.12      0.21      1697 
 
    accuracy                           0.90     15280 
   macro avg       0.91      0.56      0.58     15280 
weighted avg       0.90      0.90      0.87     15280 
 
Area Under Curve: 0.5598117356217265 
Recall score: 0.12080141426045964 

[0] validation_0-auc:0.805756 validation_0-error:0.083622 validation_1-auc:0.809636 validation_1-
error:0.087631 
[1] validation_0-auc:0.806417 validation_0-error:0.083535 validation_1-auc:0.806968 validation_1-
error:0.087696 
[2] validation_0-auc:0.833609 validation_0-error:0.083535 validation_1-auc:0.83371 validation_1-
error:0.087565 
[3] validation_0-auc:0.847123 validation_0-error:0.082968 validation_1-auc:0.848982 validation_1-
error:0.086976 
[4] validation_0-auc:0.841802 validation_0-error:0.082968 validation_1-auc:0.842443 validation_1-
error:0.086322 
[5] validation_0-auc:0.843148 validation_0-error:0.082902 validation_1-auc:0.844063 validation_1-
error:0.086846 
[6] validation_0-auc:0.85287 validation_0-error:0.083535 validation_1-auc:0.854493 validation_1-
error:0.087696 
[7] validation_0-auc:0.852881 validation_0-error:0.083557 validation_1-auc:0.85407 validation_1-
error:0.087107 
[8] validation_0-auc:0.854487 validation_0-error:0.08347 validation_1-auc:0.854802 validation_1-
error:0.087631 
[9] validation_0-auc:0.855782 validation_0-error:0.083208 validation_1-auc:0.855388 validation_1-
error:0.087173 
[10] validation_0-auc:0.859383 validation_0-error:0.083797 validation_1-auc:0.858915 validation_1-
error:0.087696 
[11] validation_0-auc:0.858277 validation_0-error:0.083841 validation_1-auc:0.857677 validation_1-
error:0.087827 
[12] validation_0-auc:0.85842 validation_0-error:0.084604 validation_1-auc:0.858429 validation_1-
error:0.088416 
[13] validation_0-auc:0.857983 validation_0-error:0.086219 validation_1-auc:0.858302 validation_1-
error:0.090118 
[14] validation_0-auc:0.859352 validation_0-error:0.085215 validation_1-auc:0.860531 validation_1-
error:0.089332 
[15] validation_0-auc:0.860412 validation_0-error:0.083797 validation_1-auc:0.861723 validation_1-
error:0.087893 
[16] validation_0-auc:0.862379 validation_0-error:0.083971 validation_1-auc:0.862877 validation_1-
error:0.087893 
[17] validation_0-auc:0.862198 validation_0-error:0.083688 validation_1-auc:0.862819 validation_1-
error:0.087696 
[18] validation_0-auc:0.86192 validation_0-error:0.083601 validation_1-auc:0.862644 validation_1-
error:0.087631 
[19] validation_0-auc:0.861278 validation_0-error:0.083666 validation_1-auc:0.861946 validation_1-
error:0.087696 
[20] validation_0-auc:0.862406 validation_0-error:0.083688 validation_1-auc:0.862919 validation_1-
error:0.087696 
[21] validation_0-auc:0.865696 validation_0-error:0.084342 validation_1-auc:0.866523 validation_1-
error:0.089005 
[22] validation_0-auc:0.865447 validation_0-error:0.085019 validation_1-auc:0.866014 validation_1-
error:0.089202 
[23] validation_0-auc:0.86629 validation_0-error:0.084713 validation_1-auc:0.866522 validation_1-
error:0.089005 
[24] validation_0-auc:0.86573 validation_0-error:0.084321 validation_1-auc:0.865647 validation_1-
error:0.088743 
[25] validation_0-auc:0.866428 validation_0-error:0.084691 validation_1-auc:0.86653 validation_1-
error:0.089005 
[26] validation_0-auc:0.866293 validation_0-error:0.084495 validation_1-auc:0.866744 validation_1-
error:0.088809 
[27] validation_0-auc:0.86664 validation_0-error:0.084626 validation_1-auc:0.866838 validation_1-
error:0.089071 
[28] validation_0-auc:0.866418 validation_0-error:0.08443 validation_1-auc:0.866702 validation_1-
error:0.088809 
[29] validation_0-auc:0.865961 validation_0-error:0.084648 validation_1-auc:0.866056 validation_1-
error:0.089136 
[30] validation_0-auc:0.867179 validation_0-error:0.084408 validation_1-auc:0.867253 validation_1-
error:0.088678 
[31] validation_0-auc:0.867052 validation_0-error:0.084626 validation_1-auc:0.867089 validation_1-
error:0.088874 
[32] validation_0-auc:0.867114 validation_0-error:0.084757 validation_1-auc:0.867105 validation_1-
error:0.089005 
[33] validation_0-auc:0.867554 validation_0-error:0.084866 validation_1-auc:0.867242 validation_1-
error:0.089071 
[34] validation_0-auc:0.867817 validation_0-error:0.085084 validation_1-auc:0.86753 validation_1-
error:0.089136 
[35] validation_0-auc:0.86776 validation_0-error:0.085237 validation_1-auc:0.867284 validation_1-
error:0.089136 
[36] validation_0-auc:0.867917 validation_0-error:0.08539 validation_1-auc:0.867914 validation_1-
error:0.089136 
[37] validation_0-auc:0.868079 validation_0-error:0.085324 validation_1-auc:0.868238 validation_1-
error:0.089071 
[38] validation_0-auc:0.867856 validation_0-error:0.085608 validation_1-auc:0.86799 validation_1-
error:0.089529 
[39] validation_0-auc:0.867798 validation_0-error:0.085651 validation_1-auc:0.86819 validation_1-
error:0.089529 
[40] validation_0-auc:0.868403 validation_0-error:0.085564 validation_1-auc:0.868699 validation_1-
error:0.089463 
[41] validation_0-auc:0.86849 validation_0-error:0.085215 validation_1-auc:0.868739 validation_1-
error:0.089136 
[42] validation_0-auc:0.868427 validation_0-error:0.085542 validation_1-auc:0.868531 validation_1-
error:0.089529 
[43] validation_0-auc:0.86876 validation_0-error:0.085542 validation_1-auc:0.86891 validation_1-
error:0.089463 
[44] validation_0-auc:0.869809 validation_0-error:0.085608 validation_1-auc:0.870056 validation_1-
error:0.089463 
[45] validation_0-auc:0.869507 validation_0-error:0.085499 validation_1-auc:0.869661 validation_1-
error:0.089463 
[46] validation_0-auc:0.869391 validation_0-error:0.085608 validation_1-auc:0.869682 validation_1-
error:0.08966 
[47] validation_0-auc:0.869438 validation_0-error:0.08576 validation_1-auc:0.869752 validation_1-
error:0.089594 
[48] validation_0-auc:0.869761 validation_0-error:0.085848 validation_1-auc:0.870027 validation_1-
error:0.089725 
[49] validation_0-auc:0.870033 validation_0-error:0.08552 validation_1-auc:0.870413 validation_1-
error:0.089463 
[50] validation_0-auc:0.870215 validation_0-error:0.085651 validation_1-auc:0.870418 validation_1-
error:0.089529 
[51] validation_0-auc:0.869963 validation_0-error:0.085433 validation_1-auc:0.870094 validation_1-
error:0.089332 
[52] validation_0-auc:0.870333 validation_0-error:0.085084 validation_1-auc:0.870355 validation_1-
error:0.08894 
[53] validation_0-auc:0.870283 validation_0-error:0.085128 validation_1-auc:0.870476 validation_1-
error:0.08894 
[54] validation_0-auc:0.870032 validation_0-error:0.085433 validation_1-auc:0.870275 validation_1-
error:0.089398 
[55] validation_0-auc:0.870189 validation_0-error:0.085455 validation_1-auc:0.870531 validation_1-
error:0.089463 
[56] validation_0-auc:0.869892 validation_0-error:0.085608 validation_1-auc:0.870177 validation_1-
error:0.089529 
[57] validation_0-auc:0.869509 validation_0-error:0.085739 validation_1-auc:0.86973 validation_1-
error:0.089594 
[58] validation_0-auc:0.869183 validation_0-error:0.085979 validation_1-auc:0.869321 validation_1-
error:0.089529 
[59] validation_0-auc:0.869056 validation_0-error:0.085564 validation_1-auc:0.869175 validation_1-
error:0.089398 
[60] validation_0-auc:0.86907 validation_0-error:0.085564 validation_1-auc:0.869009 validation_1-
error:0.089398 
[61] validation_0-auc:0.868867 validation_0-error:0.08576 validation_1-auc:0.868804 validation_1-
error:0.089529 
[62] validation_0-auc:0.868679 validation_0-error:0.085957 validation_1-auc:0.86868 validation_1-
error:0.089594 
[63] validation_0-auc:0.868765 validation_0-error:0.086371 validation_1-auc:0.868526 validation_1-
error:0.089856 
[64] validation_0-auc:0.868661 validation_0-error:0.085717 validation_1-auc:0.868409 validation_1-
error:0.089529 
[65] validation_0-auc:0.86865 validation_0-error:0.085957 validation_1-auc:0.868427 validation_1-
error:0.089529 
[66] validation_0-auc:0.868777 validation_0-error:0.08552 validation_1-auc:0.868408 validation_1-
error:0.089398 
[67] validation_0-auc:0.86935 validation_0-error:0.085717 validation_1-auc:0.868996 validation_1-
error:0.089529 
[68] validation_0-auc:0.869549 validation_0-error:0.086262 validation_1-auc:0.868994 validation_1-
error:0.089921 
[69] validation_0-auc:0.870164 validation_0-error:0.086502 validation_1-auc:0.86985 validation_1-
error:0.089921 
[70] validation_0-auc:0.870224 validation_0-error:0.085957 validation_1-auc:0.869928 validation_1-
error:0.089594 
[71] validation_0-auc:0.869967 validation_0-error:0.085957 validation_1-auc:0.869716 validation_1-
error:0.089594 
[72] validation_0-auc:0.869862 validation_0-error:0.086349 validation_1-auc:0.869547 validation_1-
error:0.089921 
[73] validation_0-auc:0.870112 validation_0-error:0.086437 validation_1-auc:0.869796 validation_1-
error:0.089921 
[74] validation_0-auc:0.870304 validation_0-error:0.086524 validation_1-auc:0.869977 validation_1-
error:0.089856 
[75] validation_0-auc:0.870106 validation_0-error:0.086349 validation_1-auc:0.869769 validation_1-
error:0.089921 
[76] validation_0-auc:0.870013 validation_0-error:0.085979 validation_1-auc:0.869659 validation_1-
error:0.089529 
[77] validation_0-auc:0.869817 validation_0-error:0.086306 validation_1-auc:0.869416 validation_1-
error:0.089921 
[78] validation_0-auc:0.869962 validation_0-error:0.085695 validation_1-auc:0.869603 validation_1-
error:0.089398 
[79] validation_0-auc:0.870129 validation_0-error:0.085455 validation_1-auc:0.869848 validation_1-
error:0.089202 
[80] validation_0-auc:0.869945 validation_0-error:0.085477 validation_1-auc:0.869671 validation_1-
error:0.089267 
[81] validation_0-auc:0.870049 validation_0-error:0.085586 validation_1-auc:0.869803 validation_1-
error:0.089398 
[82] validation_0-auc:0.870052 validation_0-error:0.085717 validation_1-auc:0.869887 validation_1-
error:0.089463 
[83] validation_0-auc:0.87035 validation_0-error:0.08576 validation_1-auc:0.870185 validation_1-
error:0.089529 
[84] validation_0-auc:0.870545 validation_0-error:0.086066 validation_1-auc:0.870365 validation_1-
error:0.089594 
[85] validation_0-auc:0.870496 validation_0-error:0.085673 validation_1-auc:0.870276 validation_1-
error:0.089398 
[86] validation_0-auc:0.870563 validation_0-error:0.085542 validation_1-auc:0.870213 validation_1-
error:0.089332 
[87] validation_0-auc:0.870483 validation_0-error:0.085957 validation_1-auc:0.870176 validation_1-
error:0.089463 
[88] validation_0-auc:0.870437 validation_0-error:0.08624 validation_1-auc:0.870178 validation_1-
error:0.08966 
[89] validation_0-auc:0.871024 validation_0-error:0.086371 validation_1-auc:0.870727 validation_1-
error:0.089725 
[90] validation_0-auc:0.871107 validation_0-error:0.085935 validation_1-auc:0.870856 validation_1-
error:0.089267 
[91] validation_0-auc:0.871102 validation_0-error:0.086175 validation_1-auc:0.870947 validation_1-
error:0.089529 
[92] validation_0-auc:0.871265 validation_0-error:0.08552 validation_1-auc:0.871157 validation_1-
error:0.089202 
[93] validation_0-auc:0.871577 validation_0-error:0.085848 validation_1-auc:0.871507 validation_1-
error:0.089267 
[94] validation_0-auc:0.871623 validation_0-error:0.085499 validation_1-auc:0.871392 validation_1-
error:0.089202 
[95] validation_0-auc:0.871802 validation_0-error:0.085673 validation_1-auc:0.87163 validation_1-
error:0.089202 
[96] validation_0-auc:0.871816 validation_0-error:0.085324 validation_1-auc:0.871624 validation_1-
error:0.089136 
[97] validation_0-auc:0.871802 validation_0-error:0.085411 validation_1-auc:0.87166 validation_1-
error:0.089136 
[98] validation_0-auc:0.871747 validation_0-error:0.085411 validation_1-auc:0.871759 validation_1-
error:0.089136 
[99] validation_0-auc:0.871832 validation_0-error:0.085433 validation_1-auc:0.871987 validation_1-
error:0.089136 
Wall time: 3.24 s 

Out[89]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, 
              colsample_bynode=1, colsample_bytree=0.4, gamma=1, 
              learning_rate=0.01, max_delta_step=0, max_depth=3, 
              min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, 
              nthread=None, objective='binary:logistic', random_state=0, 
              reg_alpha=0.3, reg_lambda=1, scale_pos_weight=1, seed=None, 
              silent=False, subsample=0.8, verbosity=1)



Machine Learning Model -
KNN

In [11]:

from sklearn.neighbors import KNeighbors
Classifier
knn=KNeighborsClassifier(n_neighbors=6)
knn.fit(X,y)

In [13]:

# Import necessary modules
from sklearn.neighbors import KNeighbors
Classifier
from sklearn.model_selection import trai
n_test_split 

# Split into training and test set
X_train, X_test, y_train, y_test = train
_test_split(X, y, test_size = 0.3, rando
m_state=42, stratify=y) 

# Create a k-NN classifier with 10 neigh
bors: knn
knn = KNeighborsClassifier(n_neighbors=1
0) 

# Fit the classifier to the training dat
a
knn.fit(X_train, y_train) 

# Print the accuracy
print('Training Accuracy: {}'.format(knn
.score(X_train,y_train)))
print('Testing Accuracy: {}'.format(knn.
score(X_test, y_test)))

In [15]:

# Import necessary modules
from sklearn.metrics import classificati
on_report
from sklearn.metrics import confusion_ma
trix 

# Create training and test set
X_train, X_test, y_train, y_test = train
_test_split(X, y, test_size =0.4, random
_state=42) 

# Instantiate a k-NN classifier: knn
knn = KNeighborsClassifier (n_neighbors=
7) 

# Fit the classifier to the training dat
a
knn.fit(X_train, y_train) 

# Predict the labels of the test data: y
_pred
y_pred = knn.predict(X_test) 

# Generate the confusion matrix and clas
sification performance report
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pr
ed))

In the support column - the firgures represent the
number of ICU patients in the test set on which 21,825
are ICU stay survivors and 2,622 are non-survivors
(deceased).

Our model shows 92% accuracy - represents the
number of correctly classified (True positive and true
negative) over the total number of data instances (true
positive, false positive, true negative, and false
negative).

Precision (positive predicitve value) in classifying the
data instances. Defined as true positive over true
positive plus false positive. Our model have a 93%
precision in classifying ICU stay survivors as survivors
and a 71% precision classifying ICU patient deaths
correctly.

Recall (sensetivity or ture positive rate). Defined as
true positive over true positive plus false negative.
100% recall means there is zero false negative. Our
model have a high (98%) recall classifying ICU stay
survivors (there only 2% false negative - survivors
clasfied as deceased. Model sensetivity classifying
deceased is only 40%, that is 60% fase negative -
deceased classified as survivors.

so, ideally in a good classifier, we want a metric that
takes into account both precision and recall. We have
f1-score for that. f1-score becomes high only if both
precision and recall becomes high. Our model shows
f1-score of 96% for classifying survivors and 51%
classifying deceased.

Out[11]:

KNeighborsClassifier(algorit
hm='auto', leaf_size=30, met
ric='minkowski', 
                    metric_
params=None, n_jobs=None, n_
neighbors=6, p=2, 
                    weights
='uniform')

Training Accuracy: 0.9244056
94116547 
Testing Accuracy: 0.91982984
29319371 

[[21404   421] 
[ 1586  1036]] 
             precision    r
ecall  f1-score   support 

          0       0.93      
0.98      0.96     21825 
          1       0.71      
0.40      0.51      2622 

   accuracy                 
0.92     24447 
  macro avg       0.82      
0.69      0.73     24447 
weighted avg       0.91      
0.92      0.91     24447 



Machine Learning Model - Ensemble Algorithms

In [13]: # Evaluate several ml models by training on training set and testing on testing set
def evaluate(X_train, X_test, y_train, y_test): 
    #Names of models 
    model_name_list = ['Random Forest', 'Extra Trees', 
                       'Gradient Boosted'] 
    model = np.arange(1, 4) 
    train_accuracy = np.empty(len(model)) 
    test_accuracy = np.empty(len(model)) 
    # Instantiate the models 
    model1 = RandomForestClassifier(n_estimators=100) 
    model2 = ExtraTreesClassifier(n_estimators=100) 
    model3 = GradientBoostingClassifier(n_estimators=100) 
    results =pd.DataFrame(columns=['train_accuracy', 'test_accuracy'])     
     
    # Train and predict with each model 
    for i, model in enumerate([model1, model2, model3]): 
        model.fit(X_train, y_train) 
         
        train_accuracy=model.score(X_train, y_train) 
        test_accuracy=model.score(X_test, y_test) 
         
        model_name=model_name_list[i] 
        results.loc[model_name, :] =[train_accuracy, test_accuracy] 
    return results 
     

In [14]: results = evaluate(X_train, X_test, y_train, y_test)
results

All selected ensemble prediction algorithms out performed the logistic regression  model. Random forest  and Extra trees  algorithm achieved
training data accuracy of 95% in discriminating between survived and deceased patients in the training data and 92% accuracy in discriminating test data.

In [ ]:   

Out[14]:
train_accuracy test_accuracy

Random Forest 0.949323 0.91983

Extra Trees 0.949323 0.919339

Gradient Boosted 0.924149 0.925993


