a b/Clinical Deterioration Model - Exploratory Data Analysis.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "metadata": {},
6
   "source": [
7
    "# Clinical Deterioration Model: Exploratory Data Analysis\n",
8
    "\n",
9
    "#### This notebook includes an EDA of final dataset prepared for a clinical deterioration model "
10
   ]
11
  },
12
  {
13
   "cell_type": "markdown",
14
   "metadata": {},
15
   "source": [
16
    "## 1. Data Source \n",
17
    "\n",
18
    "For this project, I used publicly available Electronic Health Records (EHRs) datasets. The MIT Media Lab for Computational Physiology has developed MIMIC-IIIv1.4 dataset based on 46,520 patients who stayed in critical care units of the Beth Israel Deaconess Medical Center of Boston between 2001 and 2012. MIMIC-IIIv1.4 dataset is freely available to researchers across the world. A formal request should be made directly to www.mimic.physionet.org, to gain acess to the data. There is a required course on human research ‘Data or Specimens Only Research’ prior to data acess request. I have secured one here -www.citiprogram.org/verify/?kb6607b78-5821-4de5-8cad-daf929f7fbbf-33486907\n",
19
    "\n",
20
    "The dataset has 26 relational tables including patient’s hospital admission, callout information when patient was ready for discharge, caregiver information, electronic charted events including vital signs and any additional information relevant to patient care, patient demographic data, list of services the patient was admitted or transferred under,  ICU stay types, diagnoses types, laboratory measurments, microbiology tests and sensitivity, prescription data and billing information. \n",
21
    "\n",
22
    "Although I have full access to the MIMIC-IIIv1.4 datasets, I can not share any part of the data publicly. If you are interested to learn more about the data, there is a MIMIC III Demo dataset based on 100 patients https://mimic.physionet.org/gettingstarted/demo/. If you are interested to requesting access to the data - https://mimic.physionet.org/gettingstarted/access/. \n"
23
   ]
24
  },
25
  {
26
   "cell_type": "code",
27
   "execution_count": 1,
28
   "metadata": {},
29
   "outputs": [],
30
   "source": [
31
    "import os\n",
32
    "import pandas as pd\n",
33
    "import matplotlib.pyplot as plt\n",
34
    "import matplotlib.ticker as ticker\n",
35
    "from matplotlib.dates import DateFormatter\n",
36
    "from datetime import datetime\n",
37
    "import matplotlib.dates as mdates\n",
38
    "import seaborn as sns\n",
39
    "import numpy as np\n",
40
    "import random\n",
41
    "import sys\n",
42
    "import csv\n",
43
    "import re"
44
   ]
45
  },
46
  {
47
   "cell_type": "code",
48
   "execution_count": 2,
49
   "metadata": {},
50
   "outputs": [
51
    {
52
     "data": {
53
      "text/plain": [
54
       "'C:\\\\Users\\\\abebu\\\\Dropbox\\\\Data Science\\\\Projects\\\\Capstone Project 1\\\\Potential Projects\\\\9. MIMIC\\\\EDA\\\\Exploratory-Data-Analysis-Clinical-Deterioration'"
55
      ]
56
     },
57
     "execution_count": 2,
58
     "metadata": {},
59
     "output_type": "execute_result"
60
    }
61
   ],
62
   "source": [
63
    "os.getcwd()"
64
   ]
65
  },
66
  {
67
   "cell_type": "code",
68
   "execution_count": 3,
69
   "metadata": {},
70
   "outputs": [],
71
   "source": [
72
    "os.chdir(\"C://Users/abebu/Google Drive/mimic-iii-clinical-database-1.4\")"
73
   ]
74
  },
75
  {
76
   "cell_type": "code",
77
   "execution_count": 32,
78
   "metadata": {},
79
   "outputs": [
80
    {
81
     "name": "stdout",
82
     "output_type": "stream",
83
     "text": [
84
      "<class 'pandas.core.frame.DataFrame'>\n",
85
      "Int64Index: 61117 entries, 0 to 61116\n",
86
      "Data columns (total 33 columns):\n",
87
      "SUBJECT_ID       61117 non-null int64\n",
88
      "HADM_ID          61117 non-null int64\n",
89
      "ICUSTAY_ID       61117 non-null int64\n",
90
      "los              61117 non-null float64\n",
91
      "hdeath           61117 non-null int64\n",
92
      "death            61117 non-null int64\n",
93
      "admission        61117 non-null int64\n",
94
      "ud               61117 non-null float64\n",
95
      "bun              61117 non-null float64\n",
96
      "Bicarbonate      61117 non-null float64\n",
97
      "ventilation      61117 non-null float64\n",
98
      "Temp             61117 non-null float64\n",
99
      "Bilirubin        61117 non-null float64\n",
100
      "gcs              61117 non-null float64\n",
101
      "AGE              61117 non-null float64\n",
102
      "UO               61117 non-null float64\n",
103
      "saps2            61117 non-null float64\n",
104
      "Potassium_0.0    61117 non-null int64\n",
105
      "Potassium_3.0    61117 non-null int64\n",
106
      "Sodium_0.0       61117 non-null int64\n",
107
      "Sodium_1.0       61117 non-null int64\n",
108
      "Sodium_5.0       61117 non-null int64\n",
109
      "WBC_0.0          61117 non-null int64\n",
110
      "WBC_3.0          61117 non-null int64\n",
111
      "hr_0.0           61117 non-null int64\n",
112
      "hr_2.0           61117 non-null int64\n",
113
      "hr_4.0           61117 non-null int64\n",
114
      "hr_7.0           61117 non-null int64\n",
115
      "hr_11.0          61117 non-null int64\n",
116
      "bp_0.0           61117 non-null int64\n",
117
      "bp_2.0           61117 non-null int64\n",
118
      "bp_5.0           61117 non-null int64\n",
119
      "bp_13.0          61117 non-null int64\n",
120
      "dtypes: float64(11), int64(22)\n",
121
      "memory usage: 15.9 MB\n"
122
     ]
123
    }
124
   ],
125
   "source": [
126
    "saps=pd.read_csv('saps_ts.csv', header=0, index_col=0)\n",
127
    "saps.info()"
128
   ]
129
  },
130
  {
131
   "cell_type": "code",
132
   "execution_count": 5,
133
   "metadata": {},
134
   "outputs": [
135
    {
136
     "name": "stdout",
137
     "output_type": "stream",
138
     "text": [
139
      "<class 'pandas.core.frame.DataFrame'>\n",
140
      "Int64Index: 58976 entries, 0 to 58975\n",
141
      "Data columns (total 7 columns):\n",
142
      "SUBJECT_ID        58976 non-null int64\n",
143
      "GENDER            58976 non-null object\n",
144
      "HADM_ID           58976 non-null int64\n",
145
      "INSURANCE         58976 non-null object\n",
146
      "RELIGION          58518 non-null object\n",
147
      "MARITAL_STATUS    48848 non-null object\n",
148
      "ETHNICITY         58976 non-null object\n",
149
      "dtypes: int64(2), object(5)\n",
150
      "memory usage: 3.6+ MB\n"
151
     ]
152
    }
153
   ],
154
   "source": [
155
    "demo=pd.read_csv('demography.csv', header=0, index_col=0)\n",
156
    "demo.info()"
157
   ]
158
  },
159
  {
160
   "cell_type": "code",
161
   "execution_count": 33,
162
   "metadata": {},
163
   "outputs": [],
164
   "source": [
165
    "def adm_merge(table1, table2):\n",
166
    "    return table1.merge(table2, how='inner', left_on=['SUBJECT_ID','HADM_ID'], right_on=['SUBJECT_ID','HADM_ID'])"
167
   ]
168
  },
169
  {
170
   "cell_type": "code",
171
   "execution_count": 34,
172
   "metadata": {},
173
   "outputs": [
174
    {
175
     "data": {
176
      "text/html": [
177
       "<div>\n",
178
       "<style scoped>\n",
179
       "    .dataframe tbody tr th:only-of-type {\n",
180
       "        vertical-align: middle;\n",
181
       "    }\n",
182
       "\n",
183
       "    .dataframe tbody tr th {\n",
184
       "        vertical-align: top;\n",
185
       "    }\n",
186
       "\n",
187
       "    .dataframe thead th {\n",
188
       "        text-align: right;\n",
189
       "    }\n",
190
       "</style>\n",
191
       "<table border=\"1\" class=\"dataframe\">\n",
192
       "  <thead>\n",
193
       "    <tr style=\"text-align: right;\">\n",
194
       "      <th></th>\n",
195
       "      <th>SUBJECT_ID</th>\n",
196
       "      <th>HADM_ID</th>\n",
197
       "      <th>ICUSTAY_ID</th>\n",
198
       "      <th>los</th>\n",
199
       "      <th>hdeath</th>\n",
200
       "      <th>death</th>\n",
201
       "      <th>admission</th>\n",
202
       "      <th>ud</th>\n",
203
       "      <th>bun</th>\n",
204
       "      <th>Bicarbonate</th>\n",
205
       "      <th>...</th>\n",
206
       "      <th>hr_11.0</th>\n",
207
       "      <th>bp_0.0</th>\n",
208
       "      <th>bp_2.0</th>\n",
209
       "      <th>bp_5.0</th>\n",
210
       "      <th>bp_13.0</th>\n",
211
       "      <th>GENDER</th>\n",
212
       "      <th>INSURANCE</th>\n",
213
       "      <th>RELIGION</th>\n",
214
       "      <th>MARITAL_STATUS</th>\n",
215
       "      <th>ETHNICITY</th>\n",
216
       "    </tr>\n",
217
       "  </thead>\n",
218
       "  <tbody>\n",
219
       "    <tr>\n",
220
       "      <td>0</td>\n",
221
       "      <td>268</td>\n",
222
       "      <td>110404</td>\n",
223
       "      <td>280836</td>\n",
224
       "      <td>3.2490</td>\n",
225
       "      <td>1</td>\n",
226
       "      <td>1</td>\n",
227
       "      <td>8</td>\n",
228
       "      <td>0.0</td>\n",
229
       "      <td>6.0</td>\n",
230
       "      <td>0.0</td>\n",
231
       "      <td>...</td>\n",
232
       "      <td>1</td>\n",
233
       "      <td>0</td>\n",
234
       "      <td>0</td>\n",
235
       "      <td>0</td>\n",
236
       "      <td>1</td>\n",
237
       "      <td>F</td>\n",
238
       "      <td>Medicare</td>\n",
239
       "      <td>CATHOLIC</td>\n",
240
       "      <td>SEPARATED</td>\n",
241
       "      <td>HISPANIC OR LATINO</td>\n",
242
       "    </tr>\n",
243
       "    <tr>\n",
244
       "      <td>1</td>\n",
245
       "      <td>269</td>\n",
246
       "      <td>106296</td>\n",
247
       "      <td>206613</td>\n",
248
       "      <td>3.2788</td>\n",
249
       "      <td>0</td>\n",
250
       "      <td>0</td>\n",
251
       "      <td>8</td>\n",
252
       "      <td>17.0</td>\n",
253
       "      <td>0.0</td>\n",
254
       "      <td>0.0</td>\n",
255
       "      <td>...</td>\n",
256
       "      <td>0</td>\n",
257
       "      <td>0</td>\n",
258
       "      <td>0</td>\n",
259
       "      <td>1</td>\n",
260
       "      <td>0</td>\n",
261
       "      <td>M</td>\n",
262
       "      <td>Medicaid</td>\n",
263
       "      <td>UNOBTAINABLE</td>\n",
264
       "      <td>SINGLE</td>\n",
265
       "      <td>WHITE</td>\n",
266
       "    </tr>\n",
267
       "    <tr>\n",
268
       "      <td>2</td>\n",
269
       "      <td>270</td>\n",
270
       "      <td>188028</td>\n",
271
       "      <td>220345</td>\n",
272
       "      <td>2.8939</td>\n",
273
       "      <td>0</td>\n",
274
       "      <td>0</td>\n",
275
       "      <td>0</td>\n",
276
       "      <td>0.0</td>\n",
277
       "      <td>0.0</td>\n",
278
       "      <td>0.0</td>\n",
279
       "      <td>...</td>\n",
280
       "      <td>1</td>\n",
281
       "      <td>0</td>\n",
282
       "      <td>0</td>\n",
283
       "      <td>0</td>\n",
284
       "      <td>1</td>\n",
285
       "      <td>M</td>\n",
286
       "      <td>Medicare</td>\n",
287
       "      <td>JEHOVAH'S WITNESS</td>\n",
288
       "      <td>MARRIED</td>\n",
289
       "      <td>UNKNOWN/NOT SPECIFIED</td>\n",
290
       "    </tr>\n",
291
       "    <tr>\n",
292
       "      <td>3</td>\n",
293
       "      <td>271</td>\n",
294
       "      <td>173727</td>\n",
295
       "      <td>249196</td>\n",
296
       "      <td>2.0600</td>\n",
297
       "      <td>0</td>\n",
298
       "      <td>0</td>\n",
299
       "      <td>8</td>\n",
300
       "      <td>0.0</td>\n",
301
       "      <td>0.0</td>\n",
302
       "      <td>0.0</td>\n",
303
       "      <td>...</td>\n",
304
       "      <td>0</td>\n",
305
       "      <td>1</td>\n",
306
       "      <td>0</td>\n",
307
       "      <td>0</td>\n",
308
       "      <td>0</td>\n",
309
       "      <td>F</td>\n",
310
       "      <td>Private</td>\n",
311
       "      <td>NOT SPECIFIED</td>\n",
312
       "      <td>MARRIED</td>\n",
313
       "      <td>PATIENT DECLINED TO ANSWER</td>\n",
314
       "    </tr>\n",
315
       "    <tr>\n",
316
       "      <td>4</td>\n",
317
       "      <td>272</td>\n",
318
       "      <td>164716</td>\n",
319
       "      <td>210407</td>\n",
320
       "      <td>1.6202</td>\n",
321
       "      <td>0</td>\n",
322
       "      <td>0</td>\n",
323
       "      <td>8</td>\n",
324
       "      <td>0.0</td>\n",
325
       "      <td>0.0</td>\n",
326
       "      <td>0.0</td>\n",
327
       "      <td>...</td>\n",
328
       "      <td>0</td>\n",
329
       "      <td>0</td>\n",
330
       "      <td>0</td>\n",
331
       "      <td>1</td>\n",
332
       "      <td>0</td>\n",
333
       "      <td>M</td>\n",
334
       "      <td>Medicare</td>\n",
335
       "      <td>UNOBTAINABLE</td>\n",
336
       "      <td>MARRIED</td>\n",
337
       "      <td>WHITE</td>\n",
338
       "    </tr>\n",
339
       "  </tbody>\n",
340
       "</table>\n",
341
       "<p>5 rows × 38 columns</p>\n",
342
       "</div>"
343
      ],
344
      "text/plain": [
345
       "   SUBJECT_ID  HADM_ID  ICUSTAY_ID     los  hdeath  death  admission    ud  \\\n",
346
       "0         268   110404      280836  3.2490       1      1          8   0.0   \n",
347
       "1         269   106296      206613  3.2788       0      0          8  17.0   \n",
348
       "2         270   188028      220345  2.8939       0      0          0   0.0   \n",
349
       "3         271   173727      249196  2.0600       0      0          8   0.0   \n",
350
       "4         272   164716      210407  1.6202       0      0          8   0.0   \n",
351
       "\n",
352
       "   bun  Bicarbonate  ...  hr_11.0  bp_0.0  bp_2.0  bp_5.0  bp_13.0  GENDER  \\\n",
353
       "0  6.0          0.0  ...        1       0       0       0        1       F   \n",
354
       "1  0.0          0.0  ...        0       0       0       1        0       M   \n",
355
       "2  0.0          0.0  ...        1       0       0       0        1       M   \n",
356
       "3  0.0          0.0  ...        0       1       0       0        0       F   \n",
357
       "4  0.0          0.0  ...        0       0       0       1        0       M   \n",
358
       "\n",
359
       "   INSURANCE           RELIGION  MARITAL_STATUS                   ETHNICITY  \n",
360
       "0   Medicare           CATHOLIC       SEPARATED          HISPANIC OR LATINO  \n",
361
       "1   Medicaid       UNOBTAINABLE          SINGLE                       WHITE  \n",
362
       "2   Medicare  JEHOVAH'S WITNESS         MARRIED       UNKNOWN/NOT SPECIFIED  \n",
363
       "3    Private      NOT SPECIFIED         MARRIED  PATIENT DECLINED TO ANSWER  \n",
364
       "4   Medicare       UNOBTAINABLE         MARRIED                       WHITE  \n",
365
       "\n",
366
       "[5 rows x 38 columns]"
367
      ]
368
     },
369
     "execution_count": 34,
370
     "metadata": {},
371
     "output_type": "execute_result"
372
    }
373
   ],
374
   "source": [
375
    "saps=adm_merge(saps, demo)\n",
376
    "saps.head()"
377
   ]
378
  },
379
  {
380
   "cell_type": "code",
381
   "execution_count": 81,
382
   "metadata": {},
383
   "outputs": [],
384
   "source": [
385
    "saps_d=pd.get_dummies(saps, columns=['GENDER', 'INSURANCE', 'RELIGION', 'MARITAL_STATUS', 'ETHNICITY'])"
386
   ]
387
  },
388
  {
389
   "cell_type": "code",
390
   "execution_count": 83,
391
   "metadata": {},
392
   "outputs": [],
393
   "source": [
394
    "saps_d=saps_d.drop(['SUBJECT_ID', 'HADM_ID', 'ICUSTAY_ID'], axis=1)"
395
   ]
396
  },
397
  {
398
   "cell_type": "markdown",
399
   "metadata": {},
400
   "source": [
401
    "## 1. Describe the Data \n"
402
   ]
403
  },
404
  {
405
   "cell_type": "code",
406
   "execution_count": 87,
407
   "metadata": {},
408
   "outputs": [
409
    {
410
     "data": {
411
      "text/html": [
412
       "<div>\n",
413
       "<style scoped>\n",
414
       "    .dataframe tbody tr th:only-of-type {\n",
415
       "        vertical-align: middle;\n",
416
       "    }\n",
417
       "\n",
418
       "    .dataframe tbody tr th {\n",
419
       "        vertical-align: top;\n",
420
       "    }\n",
421
       "\n",
422
       "    .dataframe thead th {\n",
423
       "        text-align: right;\n",
424
       "    }\n",
425
       "</style>\n",
426
       "<table border=\"1\" class=\"dataframe\">\n",
427
       "  <thead>\n",
428
       "    <tr style=\"text-align: right;\">\n",
429
       "      <th></th>\n",
430
       "      <th>los</th>\n",
431
       "      <th>hdeath</th>\n",
432
       "      <th>death</th>\n",
433
       "      <th>admission</th>\n",
434
       "      <th>ud</th>\n",
435
       "      <th>bun</th>\n",
436
       "      <th>Bicarbonate</th>\n",
437
       "      <th>ventilation</th>\n",
438
       "      <th>Temp</th>\n",
439
       "      <th>Bilirubin</th>\n",
440
       "      <th>...</th>\n",
441
       "      <th>MARITAL_STATUS_SEPARATED</th>\n",
442
       "      <th>MARITAL_STATUS_SINGLE</th>\n",
443
       "      <th>MARITAL_STATUS_UNKNOWN (DEFAULT)</th>\n",
444
       "      <th>MARITAL_STATUS_WIDOWED</th>\n",
445
       "      <th>ETHNICITY_ASIAN</th>\n",
446
       "      <th>ETHNICITY_BLACK/AFRICAN AMERICAN</th>\n",
447
       "      <th>ETHNICITY_HISPANIC/LATINO</th>\n",
448
       "      <th>ETHNICITY_OTHERS</th>\n",
449
       "      <th>ETHNICITY_UNKNOWN/NOT SPECIFIED</th>\n",
450
       "      <th>ETHNICITY_WHITE</th>\n",
451
       "    </tr>\n",
452
       "  </thead>\n",
453
       "  <tbody>\n",
454
       "    <tr>\n",
455
       "      <td>count</td>\n",
456
       "      <td>61117.000000</td>\n",
457
       "      <td>61117.000000</td>\n",
458
       "      <td>61117.000000</td>\n",
459
       "      <td>61117.000000</td>\n",
460
       "      <td>61117.000000</td>\n",
461
       "      <td>61117.000000</td>\n",
462
       "      <td>61117.000000</td>\n",
463
       "      <td>61117.000000</td>\n",
464
       "      <td>61117.000000</td>\n",
465
       "      <td>61117.000000</td>\n",
466
       "      <td>...</td>\n",
467
       "      <td>61117.000000</td>\n",
468
       "      <td>61117.00000</td>\n",
469
       "      <td>61117.000000</td>\n",
470
       "      <td>61117.000000</td>\n",
471
       "      <td>61117.000000</td>\n",
472
       "      <td>61117.000000</td>\n",
473
       "      <td>61117.000000</td>\n",
474
       "      <td>61117.000000</td>\n",
475
       "      <td>61117.000000</td>\n",
476
       "      <td>61117.000000</td>\n",
477
       "    </tr>\n",
478
       "    <tr>\n",
479
       "      <td>mean</td>\n",
480
       "      <td>4.957131</td>\n",
481
       "      <td>0.109249</td>\n",
482
       "      <td>0.395307</td>\n",
483
       "      <td>6.023987</td>\n",
484
       "      <td>1.123681</td>\n",
485
       "      <td>1.151071</td>\n",
486
       "      <td>0.352881</td>\n",
487
       "      <td>3.735262</td>\n",
488
       "      <td>2.336060</td>\n",
489
       "      <td>0.800187</td>\n",
490
       "      <td>...</td>\n",
491
       "      <td>0.009654</td>\n",
492
       "      <td>0.22560</td>\n",
493
       "      <td>0.005989</td>\n",
494
       "      <td>0.122732</td>\n",
495
       "      <td>0.032822</td>\n",
496
       "      <td>0.098140</td>\n",
497
       "      <td>0.035964</td>\n",
498
       "      <td>0.051966</td>\n",
499
       "      <td>0.077311</td>\n",
500
       "      <td>0.703798</td>\n",
501
       "    </tr>\n",
502
       "    <tr>\n",
503
       "      <td>std</td>\n",
504
       "      <td>9.668438</td>\n",
505
       "      <td>0.311955</td>\n",
506
       "      <td>0.488921</td>\n",
507
       "      <td>3.450170</td>\n",
508
       "      <td>3.139658</td>\n",
509
       "      <td>2.461039</td>\n",
510
       "      <td>1.158467</td>\n",
511
       "      <td>3.310800</td>\n",
512
       "      <td>1.245403</td>\n",
513
       "      <td>2.480805</td>\n",
514
       "      <td>...</td>\n",
515
       "      <td>0.097778</td>\n",
516
       "      <td>0.41798</td>\n",
517
       "      <td>0.077154</td>\n",
518
       "      <td>0.328132</td>\n",
519
       "      <td>0.178173</td>\n",
520
       "      <td>0.297506</td>\n",
521
       "      <td>0.186201</td>\n",
522
       "      <td>0.221960</td>\n",
523
       "      <td>0.267086</td>\n",
524
       "      <td>0.456585</td>\n",
525
       "    </tr>\n",
526
       "    <tr>\n",
527
       "      <td>min</td>\n",
528
       "      <td>0.000300</td>\n",
529
       "      <td>0.000000</td>\n",
530
       "      <td>0.000000</td>\n",
531
       "      <td>0.000000</td>\n",
532
       "      <td>0.000000</td>\n",
533
       "      <td>0.000000</td>\n",
534
       "      <td>0.000000</td>\n",
535
       "      <td>0.000000</td>\n",
536
       "      <td>0.000000</td>\n",
537
       "      <td>0.000000</td>\n",
538
       "      <td>...</td>\n",
539
       "      <td>0.000000</td>\n",
540
       "      <td>0.00000</td>\n",
541
       "      <td>0.000000</td>\n",
542
       "      <td>0.000000</td>\n",
543
       "      <td>0.000000</td>\n",
544
       "      <td>0.000000</td>\n",
545
       "      <td>0.000000</td>\n",
546
       "      <td>0.000000</td>\n",
547
       "      <td>0.000000</td>\n",
548
       "      <td>0.000000</td>\n",
549
       "    </tr>\n",
550
       "    <tr>\n",
551
       "      <td>25%</td>\n",
552
       "      <td>1.120100</td>\n",
553
       "      <td>0.000000</td>\n",
554
       "      <td>0.000000</td>\n",
555
       "      <td>8.000000</td>\n",
556
       "      <td>0.000000</td>\n",
557
       "      <td>0.000000</td>\n",
558
       "      <td>0.000000</td>\n",
559
       "      <td>0.000000</td>\n",
560
       "      <td>3.000000</td>\n",
561
       "      <td>0.000000</td>\n",
562
       "      <td>...</td>\n",
563
       "      <td>0.000000</td>\n",
564
       "      <td>0.00000</td>\n",
565
       "      <td>0.000000</td>\n",
566
       "      <td>0.000000</td>\n",
567
       "      <td>0.000000</td>\n",
568
       "      <td>0.000000</td>\n",
569
       "      <td>0.000000</td>\n",
570
       "      <td>0.000000</td>\n",
571
       "      <td>0.000000</td>\n",
572
       "      <td>0.000000</td>\n",
573
       "    </tr>\n",
574
       "    <tr>\n",
575
       "      <td>50%</td>\n",
576
       "      <td>2.107000</td>\n",
577
       "      <td>0.000000</td>\n",
578
       "      <td>0.000000</td>\n",
579
       "      <td>8.000000</td>\n",
580
       "      <td>0.000000</td>\n",
581
       "      <td>0.000000</td>\n",
582
       "      <td>0.000000</td>\n",
583
       "      <td>6.000000</td>\n",
584
       "      <td>3.000000</td>\n",
585
       "      <td>0.000000</td>\n",
586
       "      <td>...</td>\n",
587
       "      <td>0.000000</td>\n",
588
       "      <td>0.00000</td>\n",
589
       "      <td>0.000000</td>\n",
590
       "      <td>0.000000</td>\n",
591
       "      <td>0.000000</td>\n",
592
       "      <td>0.000000</td>\n",
593
       "      <td>0.000000</td>\n",
594
       "      <td>0.000000</td>\n",
595
       "      <td>0.000000</td>\n",
596
       "      <td>1.000000</td>\n",
597
       "    </tr>\n",
598
       "    <tr>\n",
599
       "      <td>75%</td>\n",
600
       "      <td>4.540600</td>\n",
601
       "      <td>0.000000</td>\n",
602
       "      <td>1.000000</td>\n",
603
       "      <td>8.000000</td>\n",
604
       "      <td>0.000000</td>\n",
605
       "      <td>0.000000</td>\n",
606
       "      <td>0.000000</td>\n",
607
       "      <td>6.000000</td>\n",
608
       "      <td>3.000000</td>\n",
609
       "      <td>0.000000</td>\n",
610
       "      <td>...</td>\n",
611
       "      <td>0.000000</td>\n",
612
       "      <td>0.00000</td>\n",
613
       "      <td>0.000000</td>\n",
614
       "      <td>0.000000</td>\n",
615
       "      <td>0.000000</td>\n",
616
       "      <td>0.000000</td>\n",
617
       "      <td>0.000000</td>\n",
618
       "      <td>0.000000</td>\n",
619
       "      <td>0.000000</td>\n",
620
       "      <td>1.000000</td>\n",
621
       "    </tr>\n",
622
       "    <tr>\n",
623
       "      <td>max</td>\n",
624
       "      <td>173.072500</td>\n",
625
       "      <td>1.000000</td>\n",
626
       "      <td>1.000000</td>\n",
627
       "      <td>8.000000</td>\n",
628
       "      <td>17.000000</td>\n",
629
       "      <td>10.000000</td>\n",
630
       "      <td>6.000000</td>\n",
631
       "      <td>11.000000</td>\n",
632
       "      <td>3.000000</td>\n",
633
       "      <td>9.000000</td>\n",
634
       "      <td>...</td>\n",
635
       "      <td>1.000000</td>\n",
636
       "      <td>1.00000</td>\n",
637
       "      <td>1.000000</td>\n",
638
       "      <td>1.000000</td>\n",
639
       "      <td>1.000000</td>\n",
640
       "      <td>1.000000</td>\n",
641
       "      <td>1.000000</td>\n",
642
       "      <td>1.000000</td>\n",
643
       "      <td>1.000000</td>\n",
644
       "      <td>1.000000</td>\n",
645
       "    </tr>\n",
646
       "  </tbody>\n",
647
       "</table>\n",
648
       "<p>8 rows × 70 columns</p>\n",
649
       "</div>"
650
      ],
651
      "text/plain": [
652
       "                los        hdeath         death     admission            ud  \\\n",
653
       "count  61117.000000  61117.000000  61117.000000  61117.000000  61117.000000   \n",
654
       "mean       4.957131      0.109249      0.395307      6.023987      1.123681   \n",
655
       "std        9.668438      0.311955      0.488921      3.450170      3.139658   \n",
656
       "min        0.000300      0.000000      0.000000      0.000000      0.000000   \n",
657
       "25%        1.120100      0.000000      0.000000      8.000000      0.000000   \n",
658
       "50%        2.107000      0.000000      0.000000      8.000000      0.000000   \n",
659
       "75%        4.540600      0.000000      1.000000      8.000000      0.000000   \n",
660
       "max      173.072500      1.000000      1.000000      8.000000     17.000000   \n",
661
       "\n",
662
       "                bun   Bicarbonate   ventilation          Temp     Bilirubin  \\\n",
663
       "count  61117.000000  61117.000000  61117.000000  61117.000000  61117.000000   \n",
664
       "mean       1.151071      0.352881      3.735262      2.336060      0.800187   \n",
665
       "std        2.461039      1.158467      3.310800      1.245403      2.480805   \n",
666
       "min        0.000000      0.000000      0.000000      0.000000      0.000000   \n",
667
       "25%        0.000000      0.000000      0.000000      3.000000      0.000000   \n",
668
       "50%        0.000000      0.000000      6.000000      3.000000      0.000000   \n",
669
       "75%        0.000000      0.000000      6.000000      3.000000      0.000000   \n",
670
       "max       10.000000      6.000000     11.000000      3.000000      9.000000   \n",
671
       "\n",
672
       "       ...  MARITAL_STATUS_SEPARATED  MARITAL_STATUS_SINGLE  \\\n",
673
       "count  ...              61117.000000            61117.00000   \n",
674
       "mean   ...                  0.009654                0.22560   \n",
675
       "std    ...                  0.097778                0.41798   \n",
676
       "min    ...                  0.000000                0.00000   \n",
677
       "25%    ...                  0.000000                0.00000   \n",
678
       "50%    ...                  0.000000                0.00000   \n",
679
       "75%    ...                  0.000000                0.00000   \n",
680
       "max    ...                  1.000000                1.00000   \n",
681
       "\n",
682
       "       MARITAL_STATUS_UNKNOWN (DEFAULT)  MARITAL_STATUS_WIDOWED  \\\n",
683
       "count                      61117.000000            61117.000000   \n",
684
       "mean                           0.005989                0.122732   \n",
685
       "std                            0.077154                0.328132   \n",
686
       "min                            0.000000                0.000000   \n",
687
       "25%                            0.000000                0.000000   \n",
688
       "50%                            0.000000                0.000000   \n",
689
       "75%                            0.000000                0.000000   \n",
690
       "max                            1.000000                1.000000   \n",
691
       "\n",
692
       "       ETHNICITY_ASIAN  ETHNICITY_BLACK/AFRICAN AMERICAN  \\\n",
693
       "count     61117.000000                      61117.000000   \n",
694
       "mean          0.032822                          0.098140   \n",
695
       "std           0.178173                          0.297506   \n",
696
       "min           0.000000                          0.000000   \n",
697
       "25%           0.000000                          0.000000   \n",
698
       "50%           0.000000                          0.000000   \n",
699
       "75%           0.000000                          0.000000   \n",
700
       "max           1.000000                          1.000000   \n",
701
       "\n",
702
       "       ETHNICITY_HISPANIC/LATINO  ETHNICITY_OTHERS  \\\n",
703
       "count               61117.000000      61117.000000   \n",
704
       "mean                    0.035964          0.051966   \n",
705
       "std                     0.186201          0.221960   \n",
706
       "min                     0.000000          0.000000   \n",
707
       "25%                     0.000000          0.000000   \n",
708
       "50%                     0.000000          0.000000   \n",
709
       "75%                     0.000000          0.000000   \n",
710
       "max                     1.000000          1.000000   \n",
711
       "\n",
712
       "       ETHNICITY_UNKNOWN/NOT SPECIFIED  ETHNICITY_WHITE  \n",
713
       "count                     61117.000000     61117.000000  \n",
714
       "mean                          0.077311         0.703798  \n",
715
       "std                           0.267086         0.456585  \n",
716
       "min                           0.000000         0.000000  \n",
717
       "25%                           0.000000         0.000000  \n",
718
       "50%                           0.000000         1.000000  \n",
719
       "75%                           0.000000         1.000000  \n",
720
       "max                           1.000000         1.000000  \n",
721
       "\n",
722
       "[8 rows x 70 columns]"
723
      ]
724
     },
725
     "execution_count": 87,
726
     "metadata": {},
727
     "output_type": "execute_result"
728
    }
729
   ],
730
   "source": [
731
    "desc_stat=saps_d.describe()\n",
732
    "desc_stat"
733
   ]
734
  },
735
  {
736
   "cell_type": "code",
737
   "execution_count": 88,
738
   "metadata": {},
739
   "outputs": [],
740
   "source": [
741
    "desc_stat.to_csv('desc_stat.csv')"
742
   ]
743
  },
744
  {
745
   "cell_type": "code",
746
   "execution_count": 18,
747
   "metadata": {},
748
   "outputs": [
749
    {
750
     "data": {
751
      "text/plain": [
752
       "46234"
753
      ]
754
     },
755
     "execution_count": 18,
756
     "metadata": {},
757
     "output_type": "execute_result"
758
    }
759
   ],
760
   "source": [
761
    "# Number of patients (unieque)\n",
762
    "saps['SUBJECT_ID'].nunique()"
763
   ]
764
  },
765
  {
766
   "cell_type": "code",
767
   "execution_count": 85,
768
   "metadata": {},
769
   "outputs": [
770
    {
771
     "data": {
772
      "text/plain": [
773
       "60517"
774
      ]
775
     },
776
     "execution_count": 85,
777
     "metadata": {},
778
     "output_type": "execute_result"
779
    }
780
   ],
781
   "source": [
782
    "saps['ICUSTAY_ID'].nunique()"
783
   ]
784
  },
785
  {
786
   "cell_type": "code",
787
   "execution_count": 89,
788
   "metadata": {},
789
   "outputs": [
790
    {
791
     "data": {
792
      "text/plain": [
793
       "8    75.299835\n",
794
       "0    24.700165\n",
795
       "Name: admission, dtype: float64"
796
      ]
797
     },
798
     "execution_count": 89,
799
     "metadata": {},
800
     "output_type": "execute_result"
801
    }
802
   ],
803
   "source": [
804
    "saps['admission'].value_counts(normalize=True) * 100"
805
   ]
806
  },
807
  {
808
   "cell_type": "code",
809
   "execution_count": 90,
810
   "metadata": {},
811
   "outputs": [
812
    {
813
     "data": {
814
      "text/plain": [
815
       "0.0     88.283129\n",
816
       "9.0      8.740612\n",
817
       "10.0     2.413404\n",
818
       "17.0     0.562855\n",
819
       "Name: ud, dtype: float64"
820
      ]
821
     },
822
     "execution_count": 90,
823
     "metadata": {},
824
     "output_type": "execute_result"
825
    }
826
   ],
827
   "source": [
828
    "saps['ud'].value_counts(normalize=True) * 100"
829
   ]
830
  },
831
  {
832
   "cell_type": "code",
833
   "execution_count": 91,
834
   "metadata": {},
835
   "outputs": [
836
    {
837
     "data": {
838
      "text/plain": [
839
       "0.0     81.607409\n",
840
       "6.0     17.204706\n",
841
       "10.0     1.187886\n",
842
       "Name: bun, dtype: float64"
843
      ]
844
     },
845
     "execution_count": 91,
846
     "metadata": {},
847
     "output_type": "execute_result"
848
    }
849
   ],
850
   "source": [
851
    "saps['bun'].value_counts(normalize=True) * 100"
852
   ]
853
  },
854
  {
855
   "cell_type": "code",
856
   "execution_count": 92,
857
   "metadata": {},
858
   "outputs": [
859
    {
860
     "data": {
861
      "text/plain": [
862
       "0.0    90.503461\n",
863
       "3.0     7.230394\n",
864
       "6.0     2.266145\n",
865
       "Name: Bicarbonate, dtype: float64"
866
      ]
867
     },
868
     "execution_count": 92,
869
     "metadata": {},
870
     "output_type": "execute_result"
871
    }
872
   ],
873
   "source": [
874
    "saps['Bicarbonate'].value_counts(normalize=True) * 100"
875
   ]
876
  },
877
  {
878
   "cell_type": "code",
879
   "execution_count": 93,
880
   "metadata": {},
881
   "outputs": [
882
    {
883
     "data": {
884
      "text/plain": [
885
       "6.0     51.493038\n",
886
       "0.0     41.903235\n",
887
       "9.0      4.036520\n",
888
       "11.0     2.567207\n",
889
       "Name: ventilation, dtype: float64"
890
      ]
891
     },
892
     "execution_count": 93,
893
     "metadata": {},
894
     "output_type": "execute_result"
895
    }
896
   ],
897
   "source": [
898
    "saps['ventilation'].value_counts(normalize=True) * 100"
899
   ]
900
  },
901
  {
902
   "cell_type": "code",
903
   "execution_count": 94,
904
   "metadata": {},
905
   "outputs": [
906
    {
907
     "data": {
908
      "text/plain": [
909
       "3.0    77.868678\n",
910
       "0.0    22.131322\n",
911
       "Name: Temp, dtype: float64"
912
      ]
913
     },
914
     "execution_count": 94,
915
     "metadata": {},
916
     "output_type": "execute_result"
917
    }
918
   ],
919
   "source": [
920
    "saps['Temp'].value_counts(normalize=True) * 100"
921
   ]
922
  },
923
  {
924
   "cell_type": "code",
925
   "execution_count": 96,
926
   "metadata": {},
927
   "outputs": [
928
    {
929
     "data": {
930
      "text/plain": [
931
       "0.0    89.978238\n",
932
       "9.0     7.986321\n",
933
       "4.0     2.035440\n",
934
       "Name: Bilirubin, dtype: float64"
935
      ]
936
     },
937
     "execution_count": 96,
938
     "metadata": {},
939
     "output_type": "execute_result"
940
    }
941
   ],
942
   "source": [
943
    "saps['Bilirubin'].value_counts(normalize=True) * 100"
944
   ]
945
  },
946
  {
947
   "cell_type": "code",
948
   "execution_count": 95,
949
   "metadata": {},
950
   "outputs": [
951
    {
952
     "data": {
953
      "text/plain": [
954
       "0.0     48.133907\n",
955
       "26.0    26.377276\n",
956
       "5.0     18.975081\n",
957
       "7.0      6.513736\n",
958
       "Name: gcs, dtype: float64"
959
      ]
960
     },
961
     "execution_count": 95,
962
     "metadata": {},
963
     "output_type": "execute_result"
964
    }
965
   ],
966
   "source": [
967
    "saps['gcs'].value_counts(normalize=True) * 100"
968
   ]
969
  },
970
  {
971
   "cell_type": "code",
972
   "execution_count": 182,
973
   "metadata": {},
974
   "outputs": [
975
    {
976
     "data": {
977
      "text/plain": [
978
       "0    94.052391\n",
979
       "1     5.947609\n",
980
       "Name: hr_11.0, dtype: float64"
981
      ]
982
     },
983
     "execution_count": 182,
984
     "metadata": {},
985
     "output_type": "execute_result"
986
    }
987
   ],
988
   "source": [
989
    "saps['hr_11.0'].value_counts(normalize=True) * 100"
990
   ]
991
  },
992
  {
993
   "cell_type": "code",
994
   "execution_count": 97,
995
   "metadata": {},
996
   "outputs": [
997
    {
998
     "data": {
999
      "text/plain": [
1000
       "0.0    100.0\n",
1001
       "Name: UO, dtype: float64"
1002
      ]
1003
     },
1004
     "execution_count": 97,
1005
     "metadata": {},
1006
     "output_type": "execute_result"
1007
    }
1008
   ],
1009
   "source": [
1010
    "saps['UO'].value_counts(normalize=True) * 100"
1011
   ]
1012
  },
1013
  {
1014
   "cell_type": "code",
1015
   "execution_count": 123,
1016
   "metadata": {},
1017
   "outputs": [
1018
    {
1019
     "data": {
1020
      "text/html": [
1021
       "<div>\n",
1022
       "<style scoped>\n",
1023
       "    .dataframe tbody tr th:only-of-type {\n",
1024
       "        vertical-align: middle;\n",
1025
       "    }\n",
1026
       "\n",
1027
       "    .dataframe tbody tr th {\n",
1028
       "        vertical-align: top;\n",
1029
       "    }\n",
1030
       "\n",
1031
       "    .dataframe thead th {\n",
1032
       "        text-align: right;\n",
1033
       "    }\n",
1034
       "</style>\n",
1035
       "<table border=\"1\" class=\"dataframe\">\n",
1036
       "  <thead>\n",
1037
       "    <tr style=\"text-align: right;\">\n",
1038
       "      <th></th>\n",
1039
       "      <th>SUBJECT_ID</th>\n",
1040
       "      <th>HADM_ID</th>\n",
1041
       "      <th>ICUSTAY_ID</th>\n",
1042
       "      <th>VALUE</th>\n",
1043
       "    </tr>\n",
1044
       "  </thead>\n",
1045
       "  <tbody>\n",
1046
       "    <tr>\n",
1047
       "      <td>0</td>\n",
1048
       "      <td>3</td>\n",
1049
       "      <td>145834.0</td>\n",
1050
       "      <td>211552.0</td>\n",
1051
       "      <td>602.0</td>\n",
1052
       "    </tr>\n",
1053
       "    <tr>\n",
1054
       "      <td>1</td>\n",
1055
       "      <td>3</td>\n",
1056
       "      <td>145834.0</td>\n",
1057
       "      <td>211552.0</td>\n",
1058
       "      <td>1385.0</td>\n",
1059
       "    </tr>\n",
1060
       "    <tr>\n",
1061
       "      <td>2</td>\n",
1062
       "      <td>3</td>\n",
1063
       "      <td>145834.0</td>\n",
1064
       "      <td>211552.0</td>\n",
1065
       "      <td>3670.0</td>\n",
1066
       "    </tr>\n",
1067
       "    <tr>\n",
1068
       "      <td>3</td>\n",
1069
       "      <td>3</td>\n",
1070
       "      <td>145834.0</td>\n",
1071
       "      <td>211552.0</td>\n",
1072
       "      <td>4915.0</td>\n",
1073
       "    </tr>\n",
1074
       "    <tr>\n",
1075
       "      <td>4</td>\n",
1076
       "      <td>3</td>\n",
1077
       "      <td>145834.0</td>\n",
1078
       "      <td>211552.0</td>\n",
1079
       "      <td>2900.0</td>\n",
1080
       "    </tr>\n",
1081
       "    <tr>\n",
1082
       "      <td>...</td>\n",
1083
       "      <td>...</td>\n",
1084
       "      <td>...</td>\n",
1085
       "      <td>...</td>\n",
1086
       "      <td>...</td>\n",
1087
       "    </tr>\n",
1088
       "    <tr>\n",
1089
       "      <td>271495</td>\n",
1090
       "      <td>99995</td>\n",
1091
       "      <td>137810.0</td>\n",
1092
       "      <td>229633.0</td>\n",
1093
       "      <td>335.0</td>\n",
1094
       "    </tr>\n",
1095
       "    <tr>\n",
1096
       "      <td>271496</td>\n",
1097
       "      <td>99995</td>\n",
1098
       "      <td>137810.0</td>\n",
1099
       "      <td>229633.0</td>\n",
1100
       "      <td>1890.0</td>\n",
1101
       "    </tr>\n",
1102
       "    <tr>\n",
1103
       "      <td>271497</td>\n",
1104
       "      <td>99995</td>\n",
1105
       "      <td>137810.0</td>\n",
1106
       "      <td>229633.0</td>\n",
1107
       "      <td>570.0</td>\n",
1108
       "    </tr>\n",
1109
       "    <tr>\n",
1110
       "      <td>271498</td>\n",
1111
       "      <td>99999</td>\n",
1112
       "      <td>113369.0</td>\n",
1113
       "      <td>246512.0</td>\n",
1114
       "      <td>2320.0</td>\n",
1115
       "    </tr>\n",
1116
       "    <tr>\n",
1117
       "      <td>271499</td>\n",
1118
       "      <td>99999</td>\n",
1119
       "      <td>113369.0</td>\n",
1120
       "      <td>246512.0</td>\n",
1121
       "      <td>2430.0</td>\n",
1122
       "    </tr>\n",
1123
       "  </tbody>\n",
1124
       "</table>\n",
1125
       "<p>271500 rows × 4 columns</p>\n",
1126
       "</div>"
1127
      ],
1128
      "text/plain": [
1129
       "        SUBJECT_ID   HADM_ID  ICUSTAY_ID   VALUE\n",
1130
       "0                3  145834.0    211552.0   602.0\n",
1131
       "1                3  145834.0    211552.0  1385.0\n",
1132
       "2                3  145834.0    211552.0  3670.0\n",
1133
       "3                3  145834.0    211552.0  4915.0\n",
1134
       "4                3  145834.0    211552.0  2900.0\n",
1135
       "...            ...       ...         ...     ...\n",
1136
       "271495       99995  137810.0    229633.0   335.0\n",
1137
       "271496       99995  137810.0    229633.0  1890.0\n",
1138
       "271497       99995  137810.0    229633.0   570.0\n",
1139
       "271498       99999  113369.0    246512.0  2320.0\n",
1140
       "271499       99999  113369.0    246512.0  2430.0\n",
1141
       "\n",
1142
       "[271500 rows x 4 columns]"
1143
      ]
1144
     },
1145
     "execution_count": 123,
1146
     "metadata": {},
1147
     "output_type": "execute_result"
1148
    }
1149
   ],
1150
   "source": [
1151
    "fields = ['SUBJECT_ID', 'HADM_ID','ICUSTAY_ID', 'VALUE']\n",
1152
    "uo=pd.read_csv('urine_output.csv', usecols=fields)\n",
1153
    "uo"
1154
   ]
1155
  },
1156
  {
1157
   "cell_type": "code",
1158
   "execution_count": 124,
1159
   "metadata": {},
1160
   "outputs": [],
1161
   "source": [
1162
    "uo=uo.groupby(['SUBJECT_ID', 'HADM_ID','ICUSTAY_ID'])['VALUE'].min().reset_index(name='VALUE')"
1163
   ]
1164
  },
1165
  {
1166
   "cell_type": "code",
1167
   "execution_count": 125,
1168
   "metadata": {},
1169
   "outputs": [],
1170
   "source": [
1171
    "uo.rename(columns = {'VALUE':'UO'}, inplace = True) "
1172
   ]
1173
  },
1174
  {
1175
   "cell_type": "code",
1176
   "execution_count": 126,
1177
   "metadata": {},
1178
   "outputs": [
1179
    {
1180
     "data": {
1181
      "text/html": [
1182
       "<div>\n",
1183
       "<style scoped>\n",
1184
       "    .dataframe tbody tr th:only-of-type {\n",
1185
       "        vertical-align: middle;\n",
1186
       "    }\n",
1187
       "\n",
1188
       "    .dataframe tbody tr th {\n",
1189
       "        vertical-align: top;\n",
1190
       "    }\n",
1191
       "\n",
1192
       "    .dataframe thead th {\n",
1193
       "        text-align: right;\n",
1194
       "    }\n",
1195
       "</style>\n",
1196
       "<table border=\"1\" class=\"dataframe\">\n",
1197
       "  <thead>\n",
1198
       "    <tr style=\"text-align: right;\">\n",
1199
       "      <th></th>\n",
1200
       "      <th>SUBJECT_ID</th>\n",
1201
       "      <th>HADM_ID</th>\n",
1202
       "      <th>ICUSTAY_ID</th>\n",
1203
       "      <th>UO</th>\n",
1204
       "    </tr>\n",
1205
       "  </thead>\n",
1206
       "  <tbody>\n",
1207
       "    <tr>\n",
1208
       "      <td>0</td>\n",
1209
       "      <td>3</td>\n",
1210
       "      <td>145834.0</td>\n",
1211
       "      <td>211552.0</td>\n",
1212
       "      <td>602.0</td>\n",
1213
       "    </tr>\n",
1214
       "    <tr>\n",
1215
       "      <td>1</td>\n",
1216
       "      <td>4</td>\n",
1217
       "      <td>185777.0</td>\n",
1218
       "      <td>294638.0</td>\n",
1219
       "      <td>1400.0</td>\n",
1220
       "    </tr>\n",
1221
       "    <tr>\n",
1222
       "      <td>2</td>\n",
1223
       "      <td>6</td>\n",
1224
       "      <td>107064.0</td>\n",
1225
       "      <td>228232.0</td>\n",
1226
       "      <td>300.0</td>\n",
1227
       "    </tr>\n",
1228
       "    <tr>\n",
1229
       "      <td>3</td>\n",
1230
       "      <td>8</td>\n",
1231
       "      <td>159514.0</td>\n",
1232
       "      <td>262299.0</td>\n",
1233
       "      <td>37.0</td>\n",
1234
       "    </tr>\n",
1235
       "    <tr>\n",
1236
       "      <td>4</td>\n",
1237
       "      <td>9</td>\n",
1238
       "      <td>150750.0</td>\n",
1239
       "      <td>220597.0</td>\n",
1240
       "      <td>1354.0</td>\n",
1241
       "    </tr>\n",
1242
       "    <tr>\n",
1243
       "      <td>...</td>\n",
1244
       "      <td>...</td>\n",
1245
       "      <td>...</td>\n",
1246
       "      <td>...</td>\n",
1247
       "      <td>...</td>\n",
1248
       "    </tr>\n",
1249
       "    <tr>\n",
1250
       "      <td>53749</td>\n",
1251
       "      <td>99985</td>\n",
1252
       "      <td>176670.0</td>\n",
1253
       "      <td>279638.0</td>\n",
1254
       "      <td>818.0</td>\n",
1255
       "    </tr>\n",
1256
       "    <tr>\n",
1257
       "      <td>53750</td>\n",
1258
       "      <td>99991</td>\n",
1259
       "      <td>151118.0</td>\n",
1260
       "      <td>226241.0</td>\n",
1261
       "      <td>920.0</td>\n",
1262
       "    </tr>\n",
1263
       "    <tr>\n",
1264
       "      <td>53751</td>\n",
1265
       "      <td>99992</td>\n",
1266
       "      <td>197084.0</td>\n",
1267
       "      <td>242052.0</td>\n",
1268
       "      <td>675.0</td>\n",
1269
       "    </tr>\n",
1270
       "    <tr>\n",
1271
       "      <td>53752</td>\n",
1272
       "      <td>99995</td>\n",
1273
       "      <td>137810.0</td>\n",
1274
       "      <td>229633.0</td>\n",
1275
       "      <td>335.0</td>\n",
1276
       "    </tr>\n",
1277
       "    <tr>\n",
1278
       "      <td>53753</td>\n",
1279
       "      <td>99999</td>\n",
1280
       "      <td>113369.0</td>\n",
1281
       "      <td>246512.0</td>\n",
1282
       "      <td>2320.0</td>\n",
1283
       "    </tr>\n",
1284
       "  </tbody>\n",
1285
       "</table>\n",
1286
       "<p>53754 rows × 4 columns</p>\n",
1287
       "</div>"
1288
      ],
1289
      "text/plain": [
1290
       "       SUBJECT_ID   HADM_ID  ICUSTAY_ID      UO\n",
1291
       "0               3  145834.0    211552.0   602.0\n",
1292
       "1               4  185777.0    294638.0  1400.0\n",
1293
       "2               6  107064.0    228232.0   300.0\n",
1294
       "3               8  159514.0    262299.0    37.0\n",
1295
       "4               9  150750.0    220597.0  1354.0\n",
1296
       "...           ...       ...         ...     ...\n",
1297
       "53749       99985  176670.0    279638.0   818.0\n",
1298
       "53750       99991  151118.0    226241.0   920.0\n",
1299
       "53751       99992  197084.0    242052.0   675.0\n",
1300
       "53752       99995  137810.0    229633.0   335.0\n",
1301
       "53753       99999  113369.0    246512.0  2320.0\n",
1302
       "\n",
1303
       "[53754 rows x 4 columns]"
1304
      ]
1305
     },
1306
     "execution_count": 126,
1307
     "metadata": {},
1308
     "output_type": "execute_result"
1309
    }
1310
   ],
1311
   "source": [
1312
    "uo"
1313
   ]
1314
  },
1315
  {
1316
   "cell_type": "code",
1317
   "execution_count": 127,
1318
   "metadata": {},
1319
   "outputs": [
1320
    {
1321
     "data": {
1322
      "text/html": [
1323
       "<div>\n",
1324
       "<style scoped>\n",
1325
       "    .dataframe tbody tr th:only-of-type {\n",
1326
       "        vertical-align: middle;\n",
1327
       "    }\n",
1328
       "\n",
1329
       "    .dataframe tbody tr th {\n",
1330
       "        vertical-align: top;\n",
1331
       "    }\n",
1332
       "\n",
1333
       "    .dataframe thead th {\n",
1334
       "        text-align: right;\n",
1335
       "    }\n",
1336
       "</style>\n",
1337
       "<table border=\"1\" class=\"dataframe\">\n",
1338
       "  <thead>\n",
1339
       "    <tr style=\"text-align: right;\">\n",
1340
       "      <th></th>\n",
1341
       "      <th>SUBJECT_ID</th>\n",
1342
       "      <th>HADM_ID</th>\n",
1343
       "      <th>ICUSTAY_ID</th>\n",
1344
       "      <th>UO</th>\n",
1345
       "    </tr>\n",
1346
       "  </thead>\n",
1347
       "  <tbody>\n",
1348
       "    <tr>\n",
1349
       "      <td>0</td>\n",
1350
       "      <td>3</td>\n",
1351
       "      <td>145834.0</td>\n",
1352
       "      <td>211552.0</td>\n",
1353
       "      <td>4.0</td>\n",
1354
       "    </tr>\n",
1355
       "    <tr>\n",
1356
       "      <td>1</td>\n",
1357
       "      <td>4</td>\n",
1358
       "      <td>185777.0</td>\n",
1359
       "      <td>294638.0</td>\n",
1360
       "      <td>0.0</td>\n",
1361
       "    </tr>\n",
1362
       "    <tr>\n",
1363
       "      <td>2</td>\n",
1364
       "      <td>6</td>\n",
1365
       "      <td>107064.0</td>\n",
1366
       "      <td>228232.0</td>\n",
1367
       "      <td>11.0</td>\n",
1368
       "    </tr>\n",
1369
       "    <tr>\n",
1370
       "      <td>3</td>\n",
1371
       "      <td>8</td>\n",
1372
       "      <td>159514.0</td>\n",
1373
       "      <td>262299.0</td>\n",
1374
       "      <td>11.0</td>\n",
1375
       "    </tr>\n",
1376
       "    <tr>\n",
1377
       "      <td>4</td>\n",
1378
       "      <td>9</td>\n",
1379
       "      <td>150750.0</td>\n",
1380
       "      <td>220597.0</td>\n",
1381
       "      <td>0.0</td>\n",
1382
       "    </tr>\n",
1383
       "    <tr>\n",
1384
       "      <td>...</td>\n",
1385
       "      <td>...</td>\n",
1386
       "      <td>...</td>\n",
1387
       "      <td>...</td>\n",
1388
       "      <td>...</td>\n",
1389
       "    </tr>\n",
1390
       "    <tr>\n",
1391
       "      <td>53749</td>\n",
1392
       "      <td>99985</td>\n",
1393
       "      <td>176670.0</td>\n",
1394
       "      <td>279638.0</td>\n",
1395
       "      <td>4.0</td>\n",
1396
       "    </tr>\n",
1397
       "    <tr>\n",
1398
       "      <td>53750</td>\n",
1399
       "      <td>99991</td>\n",
1400
       "      <td>151118.0</td>\n",
1401
       "      <td>226241.0</td>\n",
1402
       "      <td>4.0</td>\n",
1403
       "    </tr>\n",
1404
       "    <tr>\n",
1405
       "      <td>53751</td>\n",
1406
       "      <td>99992</td>\n",
1407
       "      <td>197084.0</td>\n",
1408
       "      <td>242052.0</td>\n",
1409
       "      <td>4.0</td>\n",
1410
       "    </tr>\n",
1411
       "    <tr>\n",
1412
       "      <td>53752</td>\n",
1413
       "      <td>99995</td>\n",
1414
       "      <td>137810.0</td>\n",
1415
       "      <td>229633.0</td>\n",
1416
       "      <td>11.0</td>\n",
1417
       "    </tr>\n",
1418
       "    <tr>\n",
1419
       "      <td>53753</td>\n",
1420
       "      <td>99999</td>\n",
1421
       "      <td>113369.0</td>\n",
1422
       "      <td>246512.0</td>\n",
1423
       "      <td>0.0</td>\n",
1424
       "    </tr>\n",
1425
       "  </tbody>\n",
1426
       "</table>\n",
1427
       "<p>53754 rows × 4 columns</p>\n",
1428
       "</div>"
1429
      ],
1430
      "text/plain": [
1431
       "       SUBJECT_ID   HADM_ID  ICUSTAY_ID    UO\n",
1432
       "0               3  145834.0    211552.0   4.0\n",
1433
       "1               4  185777.0    294638.0   0.0\n",
1434
       "2               6  107064.0    228232.0  11.0\n",
1435
       "3               8  159514.0    262299.0  11.0\n",
1436
       "4               9  150750.0    220597.0   0.0\n",
1437
       "...           ...       ...         ...   ...\n",
1438
       "53749       99985  176670.0    279638.0   4.0\n",
1439
       "53750       99991  151118.0    226241.0   4.0\n",
1440
       "53751       99992  197084.0    242052.0   4.0\n",
1441
       "53752       99995  137810.0    229633.0  11.0\n",
1442
       "53753       99999  113369.0    246512.0   0.0\n",
1443
       "\n",
1444
       "[53754 rows x 4 columns]"
1445
      ]
1446
     },
1447
     "execution_count": 127,
1448
     "metadata": {},
1449
     "output_type": "execute_result"
1450
    }
1451
   ],
1452
   "source": [
1453
    "uo.loc[uo['UO'] <500, 'UO'] = 11\n",
1454
    "uo.loc[uo['UO'].between(500, 999), 'UO'] = 4\n",
1455
    "uo.loc[uo['UO']>999, 'UO'] = 0\n",
1456
    "uo"
1457
   ]
1458
  },
1459
  {
1460
   "cell_type": "code",
1461
   "execution_count": 130,
1462
   "metadata": {},
1463
   "outputs": [],
1464
   "source": [
1465
    "saps=saps.drop(['UO'], axis=1)"
1466
   ]
1467
  },
1468
  {
1469
   "cell_type": "code",
1470
   "execution_count": 134,
1471
   "metadata": {},
1472
   "outputs": [],
1473
   "source": [
1474
    "def sai_merge(table1, table2):\n",
1475
    "    return table1.merge(table2, how='left', left_on=['SUBJECT_ID','HADM_ID', 'ICUSTAY_ID'], right_on=['SUBJECT_ID','HADM_ID', 'ICUSTAY_ID'])"
1476
   ]
1477
  },
1478
  {
1479
   "cell_type": "code",
1480
   "execution_count": 136,
1481
   "metadata": {},
1482
   "outputs": [],
1483
   "source": [
1484
    "saps=sai_merge(saps, uo)"
1485
   ]
1486
  },
1487
  {
1488
   "cell_type": "code",
1489
   "execution_count": 137,
1490
   "metadata": {},
1491
   "outputs": [],
1492
   "source": [
1493
    "saps.to_csv('saps_ts.csv')"
1494
   ]
1495
  },
1496
  {
1497
   "cell_type": "code",
1498
   "execution_count": 128,
1499
   "metadata": {},
1500
   "outputs": [
1501
    {
1502
     "data": {
1503
      "text/plain": [
1504
       "11.0    45.894259\n",
1505
       "4.0     29.348514\n",
1506
       "0.0     24.757227\n",
1507
       "Name: UO, dtype: float64"
1508
      ]
1509
     },
1510
     "execution_count": 128,
1511
     "metadata": {},
1512
     "output_type": "execute_result"
1513
    }
1514
   ],
1515
   "source": [
1516
    "uo['UO'].value_counts(normalize=True) * 100"
1517
   ]
1518
  },
1519
  {
1520
   "cell_type": "markdown",
1521
   "metadata": {},
1522
   "source": [
1523
    "\n",
1524
    "### Race Categories\n",
1525
    "`American Indian or Alaska Native:`\n",
1526
    "A person having origins in any of the original peoples of North and South America (including Central America), and who maintains tribal affiliation or community attachment.\n",
1527
    "\n",
1528
    "`Asian:`\n",
1529
    "A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.\n",
1530
    "\n",
1531
    "`Black or African American:`\n",
1532
    "A person having origins in any of the black racial groups of Africa. Terms such as \"Haitian\" ... can be used in addition to \"Black or African American\".\n",
1533
    "\n",
1534
    "`Native Hawaiian or Other Pacific Islander:`\n",
1535
    "A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.\n",
1536
    "\n",
1537
    "`White:`\n",
1538
    "A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.\n",
1539
    "\n",
1540
    "`Hispanic or Latino:`\n",
1541
    "A person of Cuban, Mexican, Puerto Rican, South or Central American, or other Spanish culture or origin, regardless of race. The term, \"Spanish origin\", can be used in addition to \"Hispanic or Latino\".\n",
1542
    "\n",
1543
    "https://www.iowadatacenter.org/aboutdata/raceclassification"
1544
   ]
1545
  },
1546
  {
1547
   "cell_type": "code",
1548
   "execution_count": 47,
1549
   "metadata": {},
1550
   "outputs": [],
1551
   "source": [
1552
    "race_map = {'BLACK/AFRICAN AMERICAN' :2, \n",
1553
    " 'UNKNOWN/NOT SPECIFIED': 0,\n",
1554
    " 'HISPANIC OR LATINO' : 3,\n",
1555
    " 'BLACK/HAITIAN': 2,\n",
1556
    " 'BLACK/CAPE VERDEAN': 2,\n",
1557
    " 'WHITE - OTHER EUROPEAN': 4,\n",
1558
    " 'MULTI RACE ETHNICITY': 5, \n",
1559
    " 'WHITE - RUSSIAN': 4, \n",
1560
    " 'ASIAN - CHINESE': 1,\n",
1561
    " 'ASIAN - ASIAN INDIAN': 1,\n",
1562
    " 'AMERICAN INDIAN/ALASKA NATIVE': 5,\n",
1563
    " 'HISPANIC/LATINO - CENTRAL AMERICAN (OTHER)': 3,\n",
1564
    " 'BLACK/AFRICAN': 2,\n",
1565
    " 'PORTUGUESE': 4, \n",
1566
    " 'NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER': 5,\n",
1567
    " 'ASIAN - OTHER': 1,\n",
1568
    " 'ASIAN - VIETNAMESE': 1, \n",
1569
    " 'MIDDLE EASTERN': 4,\n",
1570
    " 'HISPANIC/LATINO - PUERTO RICAN': 3, \n",
1571
    " 'ASIAN - KOREAN': 1,\n",
1572
    " 'HISPANIC/LATINO - SALVADORAN': 3, \n",
1573
    " 'HISPANIC/LATINO - DOMINICAN': 3,\n",
1574
    " 'WHITE - BRAZILIAN': 4, \n",
1575
    " 'HISPANIC/LATINO - GUATEMALAN': 3,\n",
1576
    " 'ASIAN - FILIPINO': 1, \n",
1577
    " 'SOUTH AMERICAN': 3, \n",
1578
    " 'WHITE - EASTERN EUROPEAN': 4,\n",
1579
    " 'HISPANIC/LATINO - CUBAN': 3, \n",
1580
    " 'CARIBBEAN ISLAND': 3, \n",
1581
    " 'ASIAN - CAMBODIAN': 1,\n",
1582
    " 'OTHER': 5 }\n",
1583
    "\n",
1584
    "\n",
1585
    "saps.loc[:, \"ETHNICITY\"].replace(race_map, inplace=True)"
1586
   ]
1587
  },
1588
  {
1589
   "cell_type": "code",
1590
   "execution_count": 75,
1591
   "metadata": {},
1592
   "outputs": [],
1593
   "source": [
1594
    "# Further transformation required, remap ethnicity. \n",
1595
    "r_map = {2: 'BLACK/AFRICAN AMERICAN',\n",
1596
    "         'WHITE': 'WHITE',\n",
1597
    "         0: 'UNKNOWN/NOT SPECIFIED',\n",
1598
    "         3: 'HISPANIC/LATINO', \n",
1599
    "         'ASIAN': 'ASIAN',\n",
1600
    "         'PATIENT DECLINED TO ANSWER': 'OTHERS', \n",
1601
    "         5: 'OTHERS',\n",
1602
    "         'UNABLE TO OBTAIN': 'OTHERS', \n",
1603
    "         4: 'WHITE', \n",
1604
    "         1: 'ASIAN',\n",
1605
    "        'HISPANIC/LATINO - MEXICAN':'HISPANIC/LATINO',\n",
1606
    "        'HISPANIC/LATINO - COLOMBIAN': 'HISPANIC/LATINO',\n",
1607
    "        'ASIAN - JAPANESE': 'ASIAN',\n",
1608
    "        'HISPANIC/LATINO - HONDURAN': 'HISPANIC/LATINO',\n",
1609
    "        'ASIAN - THAI': 'ASIAN',\n",
1610
    "        'AMERICAN INDIAN/ALASKA NATIVE FEDERALLY RECOGNIZED TRIBE': 'OTHERS'}\n",
1611
    "\n",
1612
    "\n",
1613
    "saps.loc[:, \"ETHNICITY\"].replace(r_map, inplace=True)"
1614
   ]
1615
  },
1616
  {
1617
   "cell_type": "code",
1618
   "execution_count": 177,
1619
   "metadata": {},
1620
   "outputs": [
1621
    {
1622
     "data": {
1623
      "text/plain": [
1624
       "<matplotlib.axes._subplots.AxesSubplot at 0x13b4cac3848>"
1625
      ]
1626
     },
1627
     "execution_count": 177,
1628
     "metadata": {},
1629
     "output_type": "execute_result"
1630
    },
1631
    {
1632
     "data": {
1633
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAHhCAYAAABQl9uFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de1RVZeL/8c9BQRK8hJkTZCNWappmhpqp6DiWVpaX8OulwCnNymp0dAov4SUv6KR8+zpUY4l2EVJB85rSqCkLMyEvWWRqalZoapkXSAQ95/dHy/OT8ZJO5zy7vc/7tVZr7fPsrX5Kgs95zrOf7fJ4PB4BAADAiCCrAwAAAAQSyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYVNHqAJerZcuWioqKsjoGAADAryosLNTGjRsveM425SsqKkoLFy60OgYAAMCv6tGjx0XP8bEjAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+ZKkMyVWJ/jv2Tk7AAABqKLVAX4XKoRKGS6rU/x3+nqsTgAAAK4AM18AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZdVvn68ccf1a5dO+3evVv79u1Tnz591LdvX40ZM0Zut1uSlJqaqri4OPXu3Vvbtm2TpCu6FgAAIBD8avkqKyvT6NGjFRoaKklKTk7WkCFDlJGRIY/Ho9WrV6ugoEB5eXnKzMxUSkqKxo0bd8XXAgAABIJfLV9TpkxR7969de2110qSCgoK1KJFC0lSbGysPvroI23atElt2rSRy+VSZGSkzpw5oyNHjlzRtQAAAIHgkuVr4cKFioiIUNu2bb1jHo9HLpdLkhQWFqYTJ06oqKhI4eHh3mvOjl/JtQAAAIGg4qVOLliwQC6XSxs2bND27duVmJhYbpaquLhYVatWVXh4uIqLi8uNV6lSRUFBQZd9LQAAQCC45MxXenq65syZo3feeUe33HKLpkyZotjYWG3cuFGSlJOTo5iYGDVr1ky5ublyu93av3+/3G63IiIi1LBhw8u+FgAAIBBccubrQhITE5WUlKSUlBTVrVtXnTp1UoUKFRQTE6NevXrJ7XZr9OjRV3wtAABAIHB5PB6P1SEuR48ePbRw4UL//QEZLv/93v7U1xZ/fQAABJRL9RY2WQUAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGFTx1y44c+aMXnjhBe3du1cVKlRQcnKyPB6Phg8fLpfLpZtvvlljxoxRUFCQUlNTtXbtWlWsWFEjR45UkyZNtG/fvsu+FgAAwOl+tXx9+OGHkqS5c+dq48aN3vI1ZMgQtWzZUqNHj9bq1asVGRmpvLw8ZWZm6sCBA3r22We1YMECJScnX/a1AAAATver5atjx45q3769JGn//v265pprtHbtWrVo0UKSFBsbq/Xr1ys6Olpt2rSRy+VSZGSkzpw5oyNHjqigoOCyr42IiPDfvykAAMDvwGWt+apYsaISExM1fvx4derUSR6PRy6XS5IUFhamEydOqKioSOHh4d5fc3b8Sq4FAABwustecD9lyhRlZ2crKSlJp06d8o4XFxeratWqCg8PV3FxcbnxKlWqKCgo6LKvBQAAcLpfLV+LFi3SjBkzJElXXXWVXC6Xbr31Vm3cuFGSlJOTo5iYGDVr1ky5ublyu93av3+/3G63IiIi1LBhw8u+FgAAwOl+dc3XPffcoxEjRujhhx/W6dOnNXLkSN14441KSkpSSkqK6tatq06dOqlChQqKiYlRr1695Ha7NXr0aElSYmLiZV8LAADgdC6Px+OxOsTl6NGjhxYuXOi/PyDD5b/f25/62uKvDwCAgHKp3sImqwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgype6mRZWZlGjhypwsJClZaW6qmnntJNN92k4cOHy+Vy6eabb9aYMWMUFBSk1NRUrV27VhUrVtTIkSPVpEkT7du377KvBQAACASXLF9LlixR9erV9dJLL+mnn35S9+7d1aBBAw0ZMkQtW7bU6NGjtXr1akVGRiovL0+ZmZk6cOCAnn32WS1YsEDJycmXfS0AAEAguGT56ty5szp16uR9XaFCBRUUFKhFixaSpNjYWK1fv17R0dFq06aNXC6XIiMjdebMGR05cuSKro2IiPDjvyYAAMDvwyXXfIWFhSk8PFxFRUX661//qiFDhsjj8cjlcnnPnzhxQkVFRQoPDy/3606cOHFF1wIAAASCX11wf+DAASUkJKhr16564IEHFBT0/39JcXGxqlatqvDwcBUXF5cbr1KlyhVdCwAAEAguWb5++OEHPfbYY3ruuecUFxcnSWrYsKE2btwoScrJyVFMTIyaNWum3Nxcud1u7d+/X263WxEREVd0LQAAQCC45Jqvf/3rXzp+/LheffVVvfrqq5KkUaNGacKECUpJSVHdunXVqVMnVahQQTExMerVq5fcbrdGjx4tSUpMTFRSUtJlXQsAABAIXB6Px2N1iMvRo0cPLVy40H9/QIbLf7+3P/W1xV8fAAAB5VK9hU1WAQAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMuqzy9emnnyo+Pl6StG/fPvXp00d9+/bVmDFj5Ha7JUmpqamKi4tT7969tW3btiu+FgAAIBD8avl644039MILL+jUqVOSpOTkZA0ZMkQZGRnyeDxavXq1CgoKlJeXp8zMTKWkpGjcuHFXfC0AAEAg+NXydcMNN+if//yn93VBQYFatGghSYqNjdVHH32kTZs2qU2bNnK5XIqMjNSZM2d05MiRK7oWAAAgEPxq+erUqZMqVqzofe3xeORyuSRJYWFhOnHihIqKihQeHu695uz4lVwLAAAQCK54wX1Q0P//JcXFxapatarCw8NVXFxcbrxKlSpXdC0AAEAguOLy1bBhQ23cuFGSlJOTo5iYGDVr1ky5ublyu93av3+/3G63IiIiruhaAACAQFDx1y8pLzExUUlJSUpJSVHdunXVqVMnVahQQTExMerVq5fcbrdGjx59xdcCAAAEApfH4/FYHeJy9OjRQwsXLvTfH5Dh8t/v7U99bfHXBwBAQLlUb2GTVQAAAIMoXwAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAAIBBlC8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGUL1jjTInVCf57ds4OALBcRasDIEBVCJUyXFan+O/09VidAABgY8x8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGULwAAAIMoXwAAAAZRvoBAYefNYe2cHQD+A5usAoGCjW0B4HeBmS8AAACDKF8AAAAGUb4AAAAMonwBAAAYRPkCAAAwiPIFAABgEOULAADAIMoXAACAQZQvAAAAgyhfAOAvdn4skp2zA79zPF4IAPyFRzoBuABmvgAAAAyifAEAABhE+QIAADCI8gUAAGAQ5QsAAMAgyhcAwDnsvEWGnbPjirDVBADAOdjew7wzJb/8d7cji7JTvgAAwH+PwnvF+NgRAADAIMoXAACAQZQvAAAAgyhfAAAABlG+AAAADKJ8AQAAGET5AgAAMIjyBQAAYBDlCwAAwCDKFwAAgEGWPV7I7XZr7Nix2rFjh0JCQjRhwgT98Y9/tCoOAACAEZbNfK1atUqlpaWaN2+ehg0bpsmTJ1sVBQAAwBjLytemTZvUtm1bSVLTpk31+eefWxUFAADAGJfH47Hkkd6jRo3SPffco3bt2kmS2rdvr1WrVqlixQt/EtqyZUtFRUWZjAgAAPBfKSws1MaNGy94zrI1X+Hh4SouLva+drvdFy1eki76LwAAAGAnln3s2KxZM+Xk5EiStm7dqnr16lkVBQAAwBjLPnY8e7fjzp075fF4NGnSJN14441WRAEAADDGsvIFAAAQiNhkFQAAwCDKFwAAgEGULwAAAIMoXwAAAAZZts+XE33xxRdq2LDheeOrVq1Sx44dLUjkfG3atDlvrLi4WCUlJdq+fbsFiZyvtLRU//u//6vs7GyVlpYqLCxM9913n55++ulL7tUHAJfSoUMHuVwuSZLH4/EeS9Lq1autiuUXzHz50LnPp3z00Ue9x2+//bYVcQJCbm5uuX+efvppXXPNNUpNTbU6mmNNmTJF1apV04oVK5Sbm6sFCxbI4/FoypQpVkdzrKNHj2rSpElyu93auXOnevTooT59+mjPnj1WR3O8bdu2afjw4UpISNDw4cO1detWqyM51sqVK7VixQqtWLFCK1eu1IgRI+TxeNSvXz+ro/kcb1N96NxdO06fPn3BcfjHwYMHNWrUKIWFhWn+/Pm6+uqrrY7kWAUFBZo7d673dXh4uIYMGaL4+HgLUznbuHHjdPvtt0uSJkyYoPj4eNWrV08TJ05UWlqaxemcKycnR6mpqXrmmWdUu3Ztff3115owYYKeeeYZtW/f3up4jhMSEiJJOnnypJKTk7Vz506lpaUpOjra4mS+R/nyoXOnSC92DN9bvHixUlNTNXjwYHXp0sXqOI4XHBx8wXG+zv3n+PHjSkhIUFFRkXbs2KFu3brJ5XLp5MmTVkdztJkzZ+r1119X9erVJUnR0dFq0qSJBg8eTPnyk/z8fCUlJal79+4aO3asgoKc+QEd5cuHPB6PysrK5PF4zjuGfzz77LPavHmzhg0bpurVqys3N9d77kLrweAbZ7+2z8XXuf/l5+crJibGW3QpX/53tnidVaNGDb7W/WTy5MlatmyZRo0apQYNGmjfvn3ec06b/aJ8+VBhYaE6d+4s6ZcfRJ07dz5v0SB8Kzw8XLGxscrPzz/vHOXLP/7z69zlcvF17mfXXnutUlJSlJubq0GDBqmoqEgzZ85U/fr1rY7maKdPn1Zpaan34zDplxtOysrKLEzlXAUFBYqOjlZGRka5cZfL5bi10zxeyIcOHjyoWrVqWR0j4B05ckRZWVkaOHCg1VEAnzh16pQWLFigqKgotWvXTlu3btWyZcs0dOhQVa5c2ep4jpWRkaEtW7Zo1KhRql69uo4fP64JEyaoUaNGjlwE/ntUVlam7Oxsxy0pceaHqRZ57rnnrI4Q0LZt26bExEQ9+OCD+v77762O41gzZszwHm/YsMF7PGbMGCviBIRKlSqpb9++ateunSSpadOmeuGFFy444wvf6du3r+644w7Fx8erTZs2+p//+R81adKE4mXAoUOHNH36dHXs2FFLly61Oo7P8bEjbK20tFTLly9Xenq6QkJCVFRUpFWrVik0NNTqaI61fv16PfHEE5Kk1157Ta1atZIktj3wo4ULFyolJUWhoaGaPn26ateurRdeeEF79uzxFjL4R+/evdW7d2+rYwSMvLw8zZkzR9u3b1dQUJDmzp2r6667zupYPkf58qGCgoLz/ic9uxbm3Fvz4TsdOnRQly5dNHXqVNWpU0cDBgygePnZuSsVzj1mzZf/zJ49W8uXL9fhw4c1efJkHTp0SH/+8581depUq6M52ogRIy56Ljk52WCSwNCjRw/VrVtXvXv31p133qmBAwc6snhJlC+fuummmzRt2jSrYwSUhIQELVu2TIWFhYqLi+MuJAPYRsW86tWrq1q1aqpWrZp2796tsWPHMuNlwH333Vfu9aFDhzRt2jTdcccdFiVytsaNG2vLli3KyclRrVq1HP39hfLlQyEhIYqKirI6RkAZOHCgBg4cqLy8PGVmZurzzz/XSy+9pK5du6pevXpWx3OkgwcPat68efJ4POWODx06ZHU0xzr3h1BkZCTFy5C2bdt6j5ctW6bXXntNiYmJ6tq1q4WpnGvcuHEqKSnRihUrlJSUpF27dikjI0P33XffeVt+2B3ly4fi4uKsjhCwWrRooRYtWuj48eNasmSJnn/+eS1atMjqWI70wAMP6PDhw+cdO+1upN+To0ePav369XK73SoqKmI/O4OOHj2q0aNHq7i4WOnp6dzR7mehoaHq3r27unfvrt27dyszM1Ndu3bVunXrrI7mU2w14UNz58696DRpr169DKcJHLm5uWrdurVcLpe+/PJLHTp0SLGxsVbHAnyGtUfWWLNmjSZPnqxHH31Uffr0sTqO45WWll50PDw83HAa/6J8+dClHub8zDPPGEwSODIyMrRkyRLNnDlT4eHh+vLLLzVmzBj16NGDwusnl5ppOXdGBv73nxuAwrcaNGigq666SmFhYeed42vd9zp06ODdtPlcLpdLq1evtiiVf1C+YGs9e/bUnDlzVKlSJe9YcXGxEhIStGDBAguTAb4zZMgQvfzyy5KkWbNm6bHHHpP0yw0nTtv5GwgErPnyobOt/Vxnt5pwWmv/vQgNDS1XvCQpLCzsgu9U4RuvvvqqBg0aJOmXu7+uvfZaixM5348//ug9Xrt2rbd88d7Zv+bNm3fRc8ys+15paaneffddJSQk6NChQ5o4caJCQkKUmJiomjVrWh3PpyhfPrRy5UpJv3xD7N+/v2bNmmVxIucLDg7WkSNHFBER4R07cuSIzpw5Y2EqZ/v444+95evvf/87My+GsbeaOWdvJoEZ48ePV+XKleV2uzV27Fg1btxYN998s8aOHatXXnnF6ng+RfnyoXPXXgQFBbEWw4BBgwapf//+6tatm2rXrq0DBw4oKyuLRz350cU2WYX/sLeaNRo3bsy2Hgbt379faWlpOnXqlDZt2qTp06crODjYkRMZlC/YWkxMjKZPn67Fixdr7dq1ioqKUmpqKvut+RFFwLyvvvpKw4YNk8fjKXe8e/duq6M5WlpaGuXLoLPfTzZv3qzGjRsrODhY0i8PlncaypcP7d27V9IvswElJSX6+uuvvTMD0dHRVkZzrNLSUtWqVUsDBw48b5yZR/84+xits0Xg7DGP0fKfs4vtJZV7hBnPHPQvj8ejsrKyC87w8v3F9ypXrqx58+YpOztbXbp0kdvt1oIFCxQZGWl1NJ/jbkcfatmyperXry/p/HUZrIvxD25yMK+wsPCi55hx9I/8/PyLnmvevLnBJIGlSZMmqlmzpvd7isT3F386cuSI0tLSFBkZqYcfflgbNmzQ7NmzFRMTc94bbLtj5suHbr75Zu3fv1/NmzdXbGysWrdurapVq1ody9HWrFlzwXHeU/jPxTZChP+8++673uONGzfqzjvv9JYAypf/3HbbbXrnnXesjhEwIiIivOt1t23bpvfee08FBQW6/vrrLU7me8x8+Vhpaam2bNmivLw8bd68WdIv70zP3h0G3zpx4oSysrJUtWpVde/eXUFBQdqxY4fGjBnDR2B+Eh8ff8FxZnjNiI+PpxAYwn9rs0pLS7V8+XKlp6crJCRERUVFmj9/vkJDQ62O5nPMfPlYSEiIGjVqpGPHjqm4uFgFBQX64osvrI7lWIMHD9att96qL774QgcOHNA111yj1NRUJSYmWh3NsfhhZC1ucjAnKSnpvLHTp08rOztb999/vwWJnK1Dhw7q0qWLpk6dqjp16mjAgAGOLF4S5cunZs+erbVr1+rEiRNq1aqV2rdvr2HDhnnv2IDvFRcXa+jQofJ4POrcubOioqK0ePFi1ahRw+pojlVUVKQxY8Zo3LhxCg8P17Jly7R69WqNHz/ecc9fQ2CrV6+e9/jQoUOaO3eusrKydMstt1C+/CAhIUHLli1TYWGh4uLiHL18hI8dfSgmJkZt27ZVz5491bx5c0qXAed+LPDggw8qMzPzvB3v4VvDhg1T48aN1a9fP7lcLp0+fVpvvfWWtm/frqlTp1odz5GmTZvmnfFaunSpHnjgAe+5oUOHWhUrIOTl5WnOnDnavn27goKC9Oabb+q6666zOpaj5eXlKTMzUzk5OYqLi1PXrl3LFWEnYObLhzZs2KBPPvlEOTk5SklJUc2aNRUbG6t27do58lbZ34NzP4KpXr06xcuAAwcOaNq0ad7XFStWVP/+/Xncih/VrVvXe/zXv/7VwiSBpUePHqpbt6569+6tO++8UwMHDqR4GdCiRQu1aNFCx48f1+LFi/X8889r0aJFVsfyKcqXDwUHB6tVq1Zq1aqVJCknJ0czZszQiy++qO3bt1uczpnYc8q8oKCgC44z0+s/hw4d0hNPPGF1jIDTuHFjbdmyRTk5OapVqxbr7QyrWrWq4uPjL3qTj51Rvnzos88+06ZNm/TJJ59oz549atCggbp166aXXnrJ6miOtWTJEqsjBJw//vGPWrVqlTp27OgdW716teMefPt7sn79esqXBcaNG6eSkhKtWLFCSUlJ2rVrlzIyMnTfffepevXqVseDjbHmy4f69eunNm3a6K677lLDhg15l2TAunXrvI//+Omnn3T11VdLkubOncvu335y/PhxDR06VD/++KOuv/56HThwQBEREZoyZYr3vz9868EHH9Tzzz9/wXNt2rQxnCZw7d69W1lZWXr//fe1bt06q+PAxihfsLWEhATv3lIXO4Z/7N+/X4cOHdJ1112nWrVqWR3H0dq0aaO2bdte8FxycrLhNJg5c6YGDBhgdQzYGB87wtbOfe9wsWP41oIFC/TQQw8pMjJSxcXF3uKVmpqqZ555xuJ0zhQdHU3J+h1ZuXIl5Qu/yYVXzgI2ce5Huxc7hm8tXrzYezx+/HjvcV5enhVxAkKFChUkSd99953y8/P13XffWZwosPHmDr8VM1+wtZMnT+rrr7+W2+1WSUlJuWP4B7ON5r3yyit68skndfToUUVFRenrr79WjRo1lJKSwsa2fsRzTOEvlC/YWmhoqPcRIJUqVSp3DP9gttG8adOmqXPnzurWrZt3LDMzU//4xz/04osvWpjM2Tp37iyXy+V9Y3H2mK91/FaUL9gazxk07+jRo1q/fr3cbreOHTum3NxceTweHTt2zOpojvXll19q9OjR5cZ69uyprKwsixIFhuTkZN1xxx2qWJEflfAtvqJgawkJCRc9x92O/tGoUSMtW7ZMktSwYUMtX77cewz/uNgP/7NrweAfX3zxhebMmaPKlSurdevWio2NZX8v+ATlC7ZWuXJlffPNN7r33nvVsWNHPm40IDk5WUVFRapQoYKuuuoqq+MEhOrVq+uzzz5T48aNvWOfffaZqlWrZmEq53v00Uf16KOPqqioSDk5OZoyZYqOHz+u2267TQMHDrQ6HmyMfb5ge8eOHdP777/v3WX9gQceUKtWrViX4Sfp6elKS0tTxYoVlZSUdNH9p+A73333nZ566im1bNlStWvX1nfffacNGzbotddeU+3ata2O52hnzpzxzjAWFRWpUqVK+vzzz3X77bdbnAx2xlYTsL1q1aqpT58+mjlzpp555hnNnz9fsbGxVsdyrKVLl2rlypWaO3eu3nrrLavjBITrr79eWVlZat68ucrKytSkSRPNnz+f4uVnO3fuVOfOnb3rGYBB4OYAABK5SURBVD/++GPde++93GGK34yPHeEIe/bs0fLly7VmzRpFR0dzB5gfhYSEKCQkRBERESorK7M6TsCoVKmSOnXqZHWMgDJx4kSlpKR4P97t2LGjIiIiNHHiRL355pvWhoOtUb5gazNnzlR2drZq1Kih+++/XxkZGaxDMohVC3Ayt9tdbp2dJDVr1ow3HfjNKF+wtalTp+qGG25QUFCQ5syZo/T0dO+5uXPnWpjMub766isNGzZMHo/He3zWtGnTLEwG+Jbb7b7g+OnTpw0ngdOw4B62VlhYeMHxkpIS3XjjjYbTBIZLPUaoRYsWBpMA/jVjxgwdPXpUgwYNUpUqVVRcXKzU1FSFhITob3/7m9XxYGOULzjKt99+q/T0dC1ZskQfffSR1XEc68svv1SDBg1UWlqqzMxMhYSE6KGHHlJQEPfwwDk8Ho/eeOMNzZ8/XyUlJapWrZq6du2qAQMG8LWO34TyBUdYt26d5syZo82bN2vgwIHq3r27rr32WqtjOdLs2bP1/vvv691339XkyZO1f/9+RUZGSpJeeOEFi9MBwO8fa75ga7NmzdJ7772n+vXr67HHHpPb7dYTTzxhdSxHy8nJ0dy5c+VyubRs2TJlZ2erWrVq6t27t9XRAJ8aOnToRfcLZH0jfgvKF2xt1qxZuv/++9WjRw/Vr19fs2bNsjqS4wUFBalChQoqKChQ7dq1vbfhM4kOp+ENBfyF8gVbW7NmjbKzszVx4kSVlJTo5MmTOnHihKpUqWJ1NEfbu3evFi5cqA4dOkiSdu3axRoYOA43kMBfWPMFx9i3b58yMzP1/vvv69Zbb9X06dOtjuRI27Zt0/jx4xUVFaWJEyeqoKBAzz33nP7v//5PTZs2tToe4DNt2rQ5b6y4uFglJSXavn27BYngFJQvOM6ZM2e0Zs0a3X333VZHCQilpaVyuVwKDg62OgrgV++++65mzZql4cOH689//rPVcWBjlC8AAC7h4MGDGjVqlMLCwjR27FhdffXVVkeCzbHmCwCAi1i8eLFSU1M1ePBgdenSxeo4cAhmvgBckXXr1qldu3ZWxwD87tlnn9XmzZs1bNiw8/YNvNB6MOByMfMFW+vQoYN3Hx6Px1NuT57Vq1dbFcvR0tLSKF8ICOHh4YqNjVV+fv555yhf+C0oX7C1lStXlnudk5OjSZMm6S9/+Ys1gQKAx+NRWVnZBff1CgkJsSAR4B/JycnnjR05ckRZWVkWpIGTUL5ga2d/2J88eVLJycnauXOn0tLSFB0dbXEy5/r000/VuXPncjONZ4+ZbYRTbdu2Tenp6Vq/fr3uueceq+PA5ihfsL38/HwlJSWpe/fuGjt2LJt9+tltt92md955x+oYgN+VlpZq+fLlSk9PV0hIiIqKirRq1SqFhoZaHQ02R/mCrU2ePFnLli3TqFGj1KBBA+3bt897jtkvAL9Fhw4d1KVLF02dOlV16tTRgAEDKF7wCcoXbK2goEDR0dHKyMgoN+5yufT2229blMrZkpKSrI4AGJGQkKBly5apsLBQcXFxPL8UPsNWE3CcsrIyZWdnsyePH6WlpWnevHkqKSlRcHCw+vbtq/79+1sdC/CLvLw8ZWZmKicnR3Fxceratavq1atndSzYGOULjnHo0CHNnTtXCxYsUIMGDTRjxgyrIznSm2++qd27dysxMVHh4eEqKirSpEmTVLduXQ0YMMDqeIDfHD9+XIsXL9aCBQu0aNEiq+PAxihfsL28vDzNmTNH27dvV1BQkN58801dd911VsdyrD59+ig9Pb3cjQ1lZWV65JFHNG/ePAuTAb71888/a+HChapcubK6devGzTzwGb6SYGs9evTQ/Pnz1bt3b2VnZ6t27doULz8LDg4+74dQcHCwKlZkCSmcZfjw4fr++++1detWvfzyy1bHgYPw3RK21rhxY23ZskU5OTmqVatWuR3u4R8ul0s//vijatSo4R374YcfmBWA4/z000+aPn263G63HnvsMavjwEH4bglbGzdunObPn6/69esrKSlJW7duVUZGho4ePWp1NMd66qmn9Pjjj+uDDz7Ql19+qVWrVumJJ57Qk08+aXU0wKfOvpkLCgqS2+22OA2chDVfcJTdu3crKytL77//vtatW2d1HMfatWuX5s6dq2+//Va1atVSnz591LBhQ6tjAT4VHx+vWbNmyePxqH///t5jiUdp4behfMH2du/erRtvvFGS9O233+rkyZOKjo5WcHCwxckA2FmHDh3kcrnO29+LR2nht6J8wdays7OVkpKirKwsValSRZs3b9aIESP03HPPqWPHjlbHc6SzP5AuhB9IAPDrWPMFW5s1a5bmzZunKlWqSJKaNWumjIwMvf766xYnc66VK1dqxYoV3n9GjBghj8ejfv36WR0N8Kljx45p0qRJcrvd2rVrlx566CH16dNHe/futToabI67HWFrISEhql69ermxGjVqqFKlShYlcr6za11Onjyp5ORk7dy5U2lpaTxLE44zduxY3X777ZKk8ePH65FHHlG9evU0YcIEpaWlWZwOdsbMF2zN5XKppKSk3NjJkydVVlZmUaLAkJ+fr+7duysqKkoZGRkULzjS8ePHlZCQoJ9//lk7duxQt27d1KhRI508edLqaLA5Zr5gawkJCXr88cfVr18/1a5dW99//71mzpypRx55xOpojjV58mQtW7ZMo0aNUoMGDbRv3z7vOUoYnCg/P18xMTHetY6UL/xWlC/YWseOHRUREaHMzEwdOnRIUVFRGjZsmJo2bWp1NMcqKChQdHS0MjIyyo27XC69/fbbFqUCfO/aa69VSkqKcnNzNWjQIBUVFWnmzJmqX7++1dFgc9ztCOCKLFy4UO3bt1dERITVUQC/OnXqlBYsWKCoqCi1a9dOW7du1bJly/S3v/1NYWFhVseDjVG+YGtt2rS56Lnc3FyDSQLHBx98oHXr1uno0aO69dZb9ac//UkNGjSwOhYA2AblC8B/bdu2bfrwww+1fft2/eEPf9DYsWOtjgT4DG/u4C+UL9ja6dOntWbNGlWtWlV33nmnpF8e8jxhwgS9/PLLFqcLLIcPH1bNmjWtjgH4zHvvvXfRc927dzeYBE7DgnvY2t///ndVqFBBhw8f1ldffaXrr79eo0aNUkJCgtXRHIsd7hEo9uzZ43280PLly9WlSxd5PJ6Lfv0Dl4vyBVv75ptvtHDhQpWWluqhhx5ScHCw3n77be+zHuF7K1euLPc6JydHkyZN0l/+8hdrAgF+MmzYMO/x1q1bNXToUAvTwEkoX7C18PBwSb/suu52uzVr1qzzdryHb7HDPQIRs13wJXa4h2PUqFGD4mUIO9wDwH+PBfewtbvuukutWrWSx+PRxx9/rFatWnnPTZs2zcJkzvWfO9yfixIGJxk6dKh3zRffX+BLlC/YWl5e3kXPtWjRwmCSwBEfH3/BcXa4h9Pw/QX+QvmCrWVmZqpnz56SxF1IhuzYsYPHqwDAb8CaL9ja0qVLvcf9+vWzMEngmDBhgu6++26NHDlSK1as0PHjx62OBAC2wt2OsLVzJ26ZxDXjnXfeUWlpqbZs2aK8vDzNnz9fkhQTE6Onn37a4nQA8PtH+YKtnfsxIx85mhMSEqJGjRrp2LFjKi4uVkFBgbZv3251LACwBdZ8wda429G82bNna+3atTpx4oRatWqltm3b6o477lBwcLDV0QDAFihfsLWL3Y3kcrnUvHlzw2kCQ0xMjNq2bauePXuqefPmlC4AuEKULzjOmjVrlJ6errS0NKujOFJZWZk++eQT5eTkKD8/XzVr1lRsbKzatWunyMhIq+MBwO8e5QuOcPToUWVmZmr+/Pm64YYbFBcXp3vvvdfqWAEhJydHM2bM0ObNm1n3BQCXgfIFW/v888+Vnp6uzZs3695779WmTZv0zjvvWB3L0T777DNt2rRJ+fn52rt3rxo0aKBWrVqpdevWzHwBwGXgbkfYWu/evdW/f38tXbpUISEhevzxx62O5HhTp05V69atNWjQIDVs2JC7TAHgCjHzBVv79NNPlZWVpY0bN+ruu+/W1q1blZ6ebnUsxysqKtK///1vFRYWKjIyUvfcc4/Cw8OtjgUAtsAO97C12267TePHj9eiRYtUp04dnT59Wj179tScOXOsjuZYX3/9tXr16qU9e/aoZs2a2rVrl3r27Kk9e/ZYHQ0AbIGZL9haYWGhoqKiyo3t2LFDmZmZeuGFFyxK5WxPPfWUBg8erAYNGnjHCgoK9M9//lP/+te/LEwGAPbAmi/Y2uzZs1VYWKibbrpJ7du3V7NmzVS/fn2Klx8VFRWVK16SvLvdAwB+HeULtna2ZH311Vf68MMPNWvWLFWtWlVt27bVfffdZ3E6Z7rYZPmZM2cMJwEAe6J8wdaKiooUHh6um266STfddJMk6dixY5o3b57FyZzrlltuUXp6uh5++GHvWEZGhho1amRhKgCwD9Z8wdb69OmjN998U5UqVfKOLV68WC+99JJyc3MtTOZcP//8s5KSkrRz507dcMMNKiws1A033KB//OMfCg0NtToeAPzuUb5ga2+99ZbWrVun119/XW63Wy+++KK2b9+uqVOnKjo62up4jvbTTz/p22+/Va1atVSrVi2r4wCAbVC+YHszZ85UXl6efvjhB7Vs2VJDhw7lYc9+tGjRooue69atm8EkAGBPrPmC7Q0YMEBnzpzRhg0blJiYaHUcx9u9e3e51x6PRwsXLlRoaCjlCwAuAzNfsLVp06bJ5XLJ4/Fo6dKlatiwoXfh/dChQy1O53z79u3T8OHDFR0drZEjR7LLPQBcBma+YGt169b1Hg8ePNjCJIEnPT1db731lkaMGKE//elPVscBANtg5gu2t3v3bt14442SpG+++UYlJSWqV6+examc6+DBgxoxYoSqVaumsWPHqlq1alZHAgBboXzB1rKzs5WSkqKsrCxVqVJFmzdv1ogRI/Tcc8+pY8eOVsdzpObNmys4OFh33nmnXC5XuXPTpk2zKBUA2AflC7bWq1cvzZgxQ9WrV/eO/fjjj3rqqac0f/58C5M5V15e3gXHXS6XmjdvbjgNANgPa75gayEhIeWKlyTVqFGj3Kar8K2DBw/qgQceKDd26tQpjRs3jvIFAJchyOoAwG/hcrlUUlJSbuzkyZMqKyuzKJHzvfHGG1qzZo339d69exUXF6cKFSpYmAoA7IOZL9haQkKCHn/8cfXr10+1a9fW999/r5kzZ5Z77iB8Ky0tTQMGDFDlypX1ww8/aNq0aRo+fLg6depkdTQAsAXWfMH2tmzZovnz5+vQoUOKiopSjx491LRpU6tjOdrBgwf12GOPKTQ0VK+88or+8Ic/WB0JAGyD8gXH2blzp+bMmaMXX3zR6iiOVFpaKknav3+/Bg8erOTkZO/GtiEhIVZGAwBboHzBEc6cOaMPPvhA6enp+uGHH9SzZ0/179/f6liO1KFDB+8WE+d++3C5XFq9erVVsQDANihfsLXDhw9r3rx5Wrx4sZo2bap9+/axxQQA4HeNBfewtXvuuUfx8fF67733FB4ergEDBlgdyfFSU1MvOO5yufT0008bTgMA9sNWE7C1iRMn6vPPP1e/fv2UkZHBFhMGXHPNNeX+CQsLU0ZGhtauXWt1NACwBT52hCN89913ysrK0pIlS9SkSRN17dqVhz0b8MknnygpKUldunTRk08+yV5fAHAZKF9wFLfbrbVr1yorK0uvvvqq1XEcq6ysTCkpKdqwYYMmTZqkhg0bWh0JAGyDjx3hKEFBQerQoYPCwsKsjuJYX3zxhXdH+8zMTIoXAFwhZr7gSHFxccrKyrI6hiPdeuutCgsLU506dcptOeFyuTR37lyL0wHA7x93OwK4ItnZ2VZHAABbo3zB1nJzc88b83g8KioqsiBNYMjPzy/3OjQ0VI0aNVLt2rUtSgQA9kL5gq0tX778guO333674SSBY/fu3eVe//zzz3r11VeVkJCguLg4i1IBgH2w5guOcva5gzxj0KxTp04pPj6epwsAwGXgbkfY2t69e/Xkk09qwoQJys/PV9u2bdW2bVstWrTI6mgBpVKlSgoODrY6BgDYAuULtjZy5EjFx8erWbNmGjhwoObNm6d///vfysjIsDpaQDl8+LBOnjxpdQwAsAXWfMHWKlasqNatW0uS3n77bdWpU0eSVLlyZQtTOdvQoUO9W0xIv3zkuH37do0YMcLCVABgH5Qv2Nq5JeDcdV5ut9uKOAGhd+/e5V6Hhoaqbt26Cg8PtygRANgLC+5ha3fddZdatWolj8ejjz/+2Hu8ceNGrV+/3up4AACch/IFW8vLy7vouRYtWhhMAgDA5aF8AQAAGMTdjgAAAAZRvgAAAAyifAEAABhE+QIAADCI8gUAAGDQ/wPhswpCr7WjmAAAAABJRU5ErkJggg==\n",
1634
      "text/plain": [
1635
       "<Figure size 720x432 with 1 Axes>"
1636
      ]
1637
     },
1638
     "metadata": {},
1639
     "output_type": "display_data"
1640
    }
1641
   ],
1642
   "source": [
1643
    "#visualize again to check if everyting looks good. \n",
1644
    "plt.figure(figsize = (10, 6))\n",
1645
    "saps['ETHNICITY'].value_counts().plot(kind='bar', color='orange')"
1646
   ]
1647
  },
1648
  {
1649
   "cell_type": "code",
1650
   "execution_count": 129,
1651
   "metadata": {},
1652
   "outputs": [
1653
    {
1654
     "data": {
1655
      "application/vnd.plotly.v1+json": {
1656
       "config": {
1657
        "plotlyServerURL": "https://plot.ly"
1658
       },
1659
       "data": [
1660
        {
1661
         "marker": {
1662
          "color": "rgba(201, 10, 20, 1)",
1663
          "line": {
1664
           "color": "rgba(246, 78, 139, 1.0)",
1665
           "width": 1
1666
          }
1667
         },
1668
         "name": "Outside Normal Range",
1669
         "orientation": "h",
1670
         "type": "bar",
1671
         "x": [
1672
          82.5,
1673
          78,
1674
          75,
1675
          59,
1676
          56.4,
1677
          52,
1678
          22,
1679
          19,
1680
          10,
1681
          9.5,
1682
          4,
1683
          4,
1684
          2.5
1685
         ],
1686
         "y": [
1687
          "Systolic Blood Pressure",
1688
          "Temprature",
1689
          "Urine Output Level",
1690
          "On Mechanical VentilationHeart Rate",
1691
          "Glasgow Coma Score",
1692
          "Underlying Chronic Deases",
1693
          "Blood Urea Nitrogen Level",
1694
          "Blood Bilirubin Level",
1695
          "Blood Bicarbonate Level",
1696
          "Blood Sodium Level",
1697
          "White Blood Cell Counts",
1698
          "Blood Potassium Level"
1699
         ]
1700
        },
1701
        {
1702
         "marker": {
1703
          "color": "rgba(0, 140, 255, 1)",
1704
          "line": {
1705
           "color": "rgba(246, 78, 139, 1.0)",
1706
           "width": 1
1707
          }
1708
         },
1709
         "name": "Normal Range",
1710
         "orientation": "h",
1711
         "type": "bar",
1712
         "x": [
1713
          17.5,
1714
          22,
1715
          25,
1716
          41,
1717
          43.6,
1718
          48,
1719
          78,
1720
          81,
1721
          90,
1722
          90.5,
1723
          96,
1724
          96,
1725
          97.5
1726
         ],
1727
         "y": [
1728
          "Systolic Blood Pressure",
1729
          "Temprature",
1730
          "Urine Output Level",
1731
          "On Mechanical VentilationHeart Rate",
1732
          "Glasgow Coma Score",
1733
          "Underlying Chronic Deases",
1734
          "Blood Urea Nitrogen Level",
1735
          "Blood Bilirubin Level",
1736
          "Blood Bicarbonate Level",
1737
          "Blood Sodium Level",
1738
          "White Blood Cell Counts",
1739
          "Blood Potassium Level"
1740
         ]
1741
        }
1742
       ],
1743
       "layout": {
1744
        "barmode": "stack",
1745
        "template": {
1746
         "data": {
1747
          "bar": [
1748
           {
1749
            "error_x": {
1750
             "color": "#2a3f5f"
1751
            },
1752
            "error_y": {
1753
             "color": "#2a3f5f"
1754
            },
1755
            "marker": {
1756
             "line": {
1757
              "color": "#E5ECF6",
1758
              "width": 0.5
1759
             }
1760
            },
1761
            "type": "bar"
1762
           }
1763
          ],
1764
          "barpolar": [
1765
           {
1766
            "marker": {
1767
             "line": {
1768
              "color": "#E5ECF6",
1769
              "width": 0.5
1770
             }
1771
            },
1772
            "type": "barpolar"
1773
           }
1774
          ],
1775
          "carpet": [
1776
           {
1777
            "aaxis": {
1778
             "endlinecolor": "#2a3f5f",
1779
             "gridcolor": "white",
1780
             "linecolor": "white",
1781
             "minorgridcolor": "white",
1782
             "startlinecolor": "#2a3f5f"
1783
            },
1784
            "baxis": {
1785
             "endlinecolor": "#2a3f5f",
1786
             "gridcolor": "white",
1787
             "linecolor": "white",
1788
             "minorgridcolor": "white",
1789
             "startlinecolor": "#2a3f5f"
1790
            },
1791
            "type": "carpet"
1792
           }
1793
          ],
1794
          "choropleth": [
1795
           {
1796
            "colorbar": {
1797
             "outlinewidth": 0,
1798
             "ticks": ""
1799
            },
1800
            "type": "choropleth"
1801
           }
1802
          ],
1803
          "contour": [
1804
           {
1805
            "colorbar": {
1806
             "outlinewidth": 0,
1807
             "ticks": ""
1808
            },
1809
            "colorscale": [
1810
             [
1811
              0,
1812
              "#0d0887"
1813
             ],
1814
             [
1815
              0.1111111111111111,
1816
              "#46039f"
1817
             ],
1818
             [
1819
              0.2222222222222222,
1820
              "#7201a8"
1821
             ],
1822
             [
1823
              0.3333333333333333,
1824
              "#9c179e"
1825
             ],
1826
             [
1827
              0.4444444444444444,
1828
              "#bd3786"
1829
             ],
1830
             [
1831
              0.5555555555555556,
1832
              "#d8576b"
1833
             ],
1834
             [
1835
              0.6666666666666666,
1836
              "#ed7953"
1837
             ],
1838
             [
1839
              0.7777777777777778,
1840
              "#fb9f3a"
1841
             ],
1842
             [
1843
              0.8888888888888888,
1844
              "#fdca26"
1845
             ],
1846
             [
1847
              1,
1848
              "#f0f921"
1849
             ]
1850
            ],
1851
            "type": "contour"
1852
           }
1853
          ],
1854
          "contourcarpet": [
1855
           {
1856
            "colorbar": {
1857
             "outlinewidth": 0,
1858
             "ticks": ""
1859
            },
1860
            "type": "contourcarpet"
1861
           }
1862
          ],
1863
          "heatmap": [
1864
           {
1865
            "colorbar": {
1866
             "outlinewidth": 0,
1867
             "ticks": ""
1868
            },
1869
            "colorscale": [
1870
             [
1871
              0,
1872
              "#0d0887"
1873
             ],
1874
             [
1875
              0.1111111111111111,
1876
              "#46039f"
1877
             ],
1878
             [
1879
              0.2222222222222222,
1880
              "#7201a8"
1881
             ],
1882
             [
1883
              0.3333333333333333,
1884
              "#9c179e"
1885
             ],
1886
             [
1887
              0.4444444444444444,
1888
              "#bd3786"
1889
             ],
1890
             [
1891
              0.5555555555555556,
1892
              "#d8576b"
1893
             ],
1894
             [
1895
              0.6666666666666666,
1896
              "#ed7953"
1897
             ],
1898
             [
1899
              0.7777777777777778,
1900
              "#fb9f3a"
1901
             ],
1902
             [
1903
              0.8888888888888888,
1904
              "#fdca26"
1905
             ],
1906
             [
1907
              1,
1908
              "#f0f921"
1909
             ]
1910
            ],
1911
            "type": "heatmap"
1912
           }
1913
          ],
1914
          "heatmapgl": [
1915
           {
1916
            "colorbar": {
1917
             "outlinewidth": 0,
1918
             "ticks": ""
1919
            },
1920
            "colorscale": [
1921
             [
1922
              0,
1923
              "#0d0887"
1924
             ],
1925
             [
1926
              0.1111111111111111,
1927
              "#46039f"
1928
             ],
1929
             [
1930
              0.2222222222222222,
1931
              "#7201a8"
1932
             ],
1933
             [
1934
              0.3333333333333333,
1935
              "#9c179e"
1936
             ],
1937
             [
1938
              0.4444444444444444,
1939
              "#bd3786"
1940
             ],
1941
             [
1942
              0.5555555555555556,
1943
              "#d8576b"
1944
             ],
1945
             [
1946
              0.6666666666666666,
1947
              "#ed7953"
1948
             ],
1949
             [
1950
              0.7777777777777778,
1951
              "#fb9f3a"
1952
             ],
1953
             [
1954
              0.8888888888888888,
1955
              "#fdca26"
1956
             ],
1957
             [
1958
              1,
1959
              "#f0f921"
1960
             ]
1961
            ],
1962
            "type": "heatmapgl"
1963
           }
1964
          ],
1965
          "histogram": [
1966
           {
1967
            "marker": {
1968
             "colorbar": {
1969
              "outlinewidth": 0,
1970
              "ticks": ""
1971
             }
1972
            },
1973
            "type": "histogram"
1974
           }
1975
          ],
1976
          "histogram2d": [
1977
           {
1978
            "colorbar": {
1979
             "outlinewidth": 0,
1980
             "ticks": ""
1981
            },
1982
            "colorscale": [
1983
             [
1984
              0,
1985
              "#0d0887"
1986
             ],
1987
             [
1988
              0.1111111111111111,
1989
              "#46039f"
1990
             ],
1991
             [
1992
              0.2222222222222222,
1993
              "#7201a8"
1994
             ],
1995
             [
1996
              0.3333333333333333,
1997
              "#9c179e"
1998
             ],
1999
             [
2000
              0.4444444444444444,
2001
              "#bd3786"
2002
             ],
2003
             [
2004
              0.5555555555555556,
2005
              "#d8576b"
2006
             ],
2007
             [
2008
              0.6666666666666666,
2009
              "#ed7953"
2010
             ],
2011
             [
2012
              0.7777777777777778,
2013
              "#fb9f3a"
2014
             ],
2015
             [
2016
              0.8888888888888888,
2017
              "#fdca26"
2018
             ],
2019
             [
2020
              1,
2021
              "#f0f921"
2022
             ]
2023
            ],
2024
            "type": "histogram2d"
2025
           }
2026
          ],
2027
          "histogram2dcontour": [
2028
           {
2029
            "colorbar": {
2030
             "outlinewidth": 0,
2031
             "ticks": ""
2032
            },
2033
            "colorscale": [
2034
             [
2035
              0,
2036
              "#0d0887"
2037
             ],
2038
             [
2039
              0.1111111111111111,
2040
              "#46039f"
2041
             ],
2042
             [
2043
              0.2222222222222222,
2044
              "#7201a8"
2045
             ],
2046
             [
2047
              0.3333333333333333,
2048
              "#9c179e"
2049
             ],
2050
             [
2051
              0.4444444444444444,
2052
              "#bd3786"
2053
             ],
2054
             [
2055
              0.5555555555555556,
2056
              "#d8576b"
2057
             ],
2058
             [
2059
              0.6666666666666666,
2060
              "#ed7953"
2061
             ],
2062
             [
2063
              0.7777777777777778,
2064
              "#fb9f3a"
2065
             ],
2066
             [
2067
              0.8888888888888888,
2068
              "#fdca26"
2069
             ],
2070
             [
2071
              1,
2072
              "#f0f921"
2073
             ]
2074
            ],
2075
            "type": "histogram2dcontour"
2076
           }
2077
          ],
2078
          "mesh3d": [
2079
           {
2080
            "colorbar": {
2081
             "outlinewidth": 0,
2082
             "ticks": ""
2083
            },
2084
            "type": "mesh3d"
2085
           }
2086
          ],
2087
          "parcoords": [
2088
           {
2089
            "line": {
2090
             "colorbar": {
2091
              "outlinewidth": 0,
2092
              "ticks": ""
2093
             }
2094
            },
2095
            "type": "parcoords"
2096
           }
2097
          ],
2098
          "pie": [
2099
           {
2100
            "automargin": true,
2101
            "type": "pie"
2102
           }
2103
          ],
2104
          "scatter": [
2105
           {
2106
            "marker": {
2107
             "colorbar": {
2108
              "outlinewidth": 0,
2109
              "ticks": ""
2110
             }
2111
            },
2112
            "type": "scatter"
2113
           }
2114
          ],
2115
          "scatter3d": [
2116
           {
2117
            "line": {
2118
             "colorbar": {
2119
              "outlinewidth": 0,
2120
              "ticks": ""
2121
             }
2122
            },
2123
            "marker": {
2124
             "colorbar": {
2125
              "outlinewidth": 0,
2126
              "ticks": ""
2127
             }
2128
            },
2129
            "type": "scatter3d"
2130
           }
2131
          ],
2132
          "scattercarpet": [
2133
           {
2134
            "marker": {
2135
             "colorbar": {
2136
              "outlinewidth": 0,
2137
              "ticks": ""
2138
             }
2139
            },
2140
            "type": "scattercarpet"
2141
           }
2142
          ],
2143
          "scattergeo": [
2144
           {
2145
            "marker": {
2146
             "colorbar": {
2147
              "outlinewidth": 0,
2148
              "ticks": ""
2149
             }
2150
            },
2151
            "type": "scattergeo"
2152
           }
2153
          ],
2154
          "scattergl": [
2155
           {
2156
            "marker": {
2157
             "colorbar": {
2158
              "outlinewidth": 0,
2159
              "ticks": ""
2160
             }
2161
            },
2162
            "type": "scattergl"
2163
           }
2164
          ],
2165
          "scattermapbox": [
2166
           {
2167
            "marker": {
2168
             "colorbar": {
2169
              "outlinewidth": 0,
2170
              "ticks": ""
2171
             }
2172
            },
2173
            "type": "scattermapbox"
2174
           }
2175
          ],
2176
          "scatterpolar": [
2177
           {
2178
            "marker": {
2179
             "colorbar": {
2180
              "outlinewidth": 0,
2181
              "ticks": ""
2182
             }
2183
            },
2184
            "type": "scatterpolar"
2185
           }
2186
          ],
2187
          "scatterpolargl": [
2188
           {
2189
            "marker": {
2190
             "colorbar": {
2191
              "outlinewidth": 0,
2192
              "ticks": ""
2193
             }
2194
            },
2195
            "type": "scatterpolargl"
2196
           }
2197
          ],
2198
          "scatterternary": [
2199
           {
2200
            "marker": {
2201
             "colorbar": {
2202
              "outlinewidth": 0,
2203
              "ticks": ""
2204
             }
2205
            },
2206
            "type": "scatterternary"
2207
           }
2208
          ],
2209
          "surface": [
2210
           {
2211
            "colorbar": {
2212
             "outlinewidth": 0,
2213
             "ticks": ""
2214
            },
2215
            "colorscale": [
2216
             [
2217
              0,
2218
              "#0d0887"
2219
             ],
2220
             [
2221
              0.1111111111111111,
2222
              "#46039f"
2223
             ],
2224
             [
2225
              0.2222222222222222,
2226
              "#7201a8"
2227
             ],
2228
             [
2229
              0.3333333333333333,
2230
              "#9c179e"
2231
             ],
2232
             [
2233
              0.4444444444444444,
2234
              "#bd3786"
2235
             ],
2236
             [
2237
              0.5555555555555556,
2238
              "#d8576b"
2239
             ],
2240
             [
2241
              0.6666666666666666,
2242
              "#ed7953"
2243
             ],
2244
             [
2245
              0.7777777777777778,
2246
              "#fb9f3a"
2247
             ],
2248
             [
2249
              0.8888888888888888,
2250
              "#fdca26"
2251
             ],
2252
             [
2253
              1,
2254
              "#f0f921"
2255
             ]
2256
            ],
2257
            "type": "surface"
2258
           }
2259
          ],
2260
          "table": [
2261
           {
2262
            "cells": {
2263
             "fill": {
2264
              "color": "#EBF0F8"
2265
             },
2266
             "line": {
2267
              "color": "white"
2268
             }
2269
            },
2270
            "header": {
2271
             "fill": {
2272
              "color": "#C8D4E3"
2273
             },
2274
             "line": {
2275
              "color": "white"
2276
             }
2277
            },
2278
            "type": "table"
2279
           }
2280
          ]
2281
         },
2282
         "layout": {
2283
          "annotationdefaults": {
2284
           "arrowcolor": "#2a3f5f",
2285
           "arrowhead": 0,
2286
           "arrowwidth": 1
2287
          },
2288
          "coloraxis": {
2289
           "colorbar": {
2290
            "outlinewidth": 0,
2291
            "ticks": ""
2292
           }
2293
          },
2294
          "colorscale": {
2295
           "diverging": [
2296
            [
2297
             0,
2298
             "#8e0152"
2299
            ],
2300
            [
2301
             0.1,
2302
             "#c51b7d"
2303
            ],
2304
            [
2305
             0.2,
2306
             "#de77ae"
2307
            ],
2308
            [
2309
             0.3,
2310
             "#f1b6da"
2311
            ],
2312
            [
2313
             0.4,
2314
             "#fde0ef"
2315
            ],
2316
            [
2317
             0.5,
2318
             "#f7f7f7"
2319
            ],
2320
            [
2321
             0.6,
2322
             "#e6f5d0"
2323
            ],
2324
            [
2325
             0.7,
2326
             "#b8e186"
2327
            ],
2328
            [
2329
             0.8,
2330
             "#7fbc41"
2331
            ],
2332
            [
2333
             0.9,
2334
             "#4d9221"
2335
            ],
2336
            [
2337
             1,
2338
             "#276419"
2339
            ]
2340
           ],
2341
           "sequential": [
2342
            [
2343
             0,
2344
             "#0d0887"
2345
            ],
2346
            [
2347
             0.1111111111111111,
2348
             "#46039f"
2349
            ],
2350
            [
2351
             0.2222222222222222,
2352
             "#7201a8"
2353
            ],
2354
            [
2355
             0.3333333333333333,
2356
             "#9c179e"
2357
            ],
2358
            [
2359
             0.4444444444444444,
2360
             "#bd3786"
2361
            ],
2362
            [
2363
             0.5555555555555556,
2364
             "#d8576b"
2365
            ],
2366
            [
2367
             0.6666666666666666,
2368
             "#ed7953"
2369
            ],
2370
            [
2371
             0.7777777777777778,
2372
             "#fb9f3a"
2373
            ],
2374
            [
2375
             0.8888888888888888,
2376
             "#fdca26"
2377
            ],
2378
            [
2379
             1,
2380
             "#f0f921"
2381
            ]
2382
           ],
2383
           "sequentialminus": [
2384
            [
2385
             0,
2386
             "#0d0887"
2387
            ],
2388
            [
2389
             0.1111111111111111,
2390
             "#46039f"
2391
            ],
2392
            [
2393
             0.2222222222222222,
2394
             "#7201a8"
2395
            ],
2396
            [
2397
             0.3333333333333333,
2398
             "#9c179e"
2399
            ],
2400
            [
2401
             0.4444444444444444,
2402
             "#bd3786"
2403
            ],
2404
            [
2405
             0.5555555555555556,
2406
             "#d8576b"
2407
            ],
2408
            [
2409
             0.6666666666666666,
2410
             "#ed7953"
2411
            ],
2412
            [
2413
             0.7777777777777778,
2414
             "#fb9f3a"
2415
            ],
2416
            [
2417
             0.8888888888888888,
2418
             "#fdca26"
2419
            ],
2420
            [
2421
             1,
2422
             "#f0f921"
2423
            ]
2424
           ]
2425
          },
2426
          "colorway": [
2427
           "#636efa",
2428
           "#EF553B",
2429
           "#00cc96",
2430
           "#ab63fa",
2431
           "#FFA15A",
2432
           "#19d3f3",
2433
           "#FF6692",
2434
           "#B6E880",
2435
           "#FF97FF",
2436
           "#FECB52"
2437
          ],
2438
          "font": {
2439
           "color": "#2a3f5f"
2440
          },
2441
          "geo": {
2442
           "bgcolor": "white",
2443
           "lakecolor": "white",
2444
           "landcolor": "#E5ECF6",
2445
           "showlakes": true,
2446
           "showland": true,
2447
           "subunitcolor": "white"
2448
          },
2449
          "hoverlabel": {
2450
           "align": "left"
2451
          },
2452
          "hovermode": "closest",
2453
          "mapbox": {
2454
           "style": "light"
2455
          },
2456
          "paper_bgcolor": "white",
2457
          "plot_bgcolor": "#E5ECF6",
2458
          "polar": {
2459
           "angularaxis": {
2460
            "gridcolor": "white",
2461
            "linecolor": "white",
2462
            "ticks": ""
2463
           },
2464
           "bgcolor": "#E5ECF6",
2465
           "radialaxis": {
2466
            "gridcolor": "white",
2467
            "linecolor": "white",
2468
            "ticks": ""
2469
           }
2470
          },
2471
          "scene": {
2472
           "xaxis": {
2473
            "backgroundcolor": "#E5ECF6",
2474
            "gridcolor": "white",
2475
            "gridwidth": 2,
2476
            "linecolor": "white",
2477
            "showbackground": true,
2478
            "ticks": "",
2479
            "zerolinecolor": "white"
2480
           },
2481
           "yaxis": {
2482
            "backgroundcolor": "#E5ECF6",
2483
            "gridcolor": "white",
2484
            "gridwidth": 2,
2485
            "linecolor": "white",
2486
            "showbackground": true,
2487
            "ticks": "",
2488
            "zerolinecolor": "white"
2489
           },
2490
           "zaxis": {
2491
            "backgroundcolor": "#E5ECF6",
2492
            "gridcolor": "white",
2493
            "gridwidth": 2,
2494
            "linecolor": "white",
2495
            "showbackground": true,
2496
            "ticks": "",
2497
            "zerolinecolor": "white"
2498
           }
2499
          },
2500
          "shapedefaults": {
2501
           "line": {
2502
            "color": "#2a3f5f"
2503
           }
2504
          },
2505
          "ternary": {
2506
           "aaxis": {
2507
            "gridcolor": "white",
2508
            "linecolor": "white",
2509
            "ticks": ""
2510
           },
2511
           "baxis": {
2512
            "gridcolor": "white",
2513
            "linecolor": "white",
2514
            "ticks": ""
2515
           },
2516
           "bgcolor": "#E5ECF6",
2517
           "caxis": {
2518
            "gridcolor": "white",
2519
            "linecolor": "white",
2520
            "ticks": ""
2521
           }
2522
          },
2523
          "title": {
2524
           "x": 0.05
2525
          },
2526
          "xaxis": {
2527
           "automargin": true,
2528
           "gridcolor": "white",
2529
           "linecolor": "white",
2530
           "ticks": "",
2531
           "title": {
2532
            "standoff": 15
2533
           },
2534
           "zerolinecolor": "white",
2535
           "zerolinewidth": 2
2536
          },
2537
          "yaxis": {
2538
           "automargin": true,
2539
           "gridcolor": "white",
2540
           "linecolor": "white",
2541
           "ticks": "",
2542
           "title": {
2543
            "standoff": 15
2544
           },
2545
           "zerolinecolor": "white",
2546
           "zerolinewidth": 2
2547
          }
2548
         }
2549
        },
2550
        "title": {
2551
         "text": "ICU Patients Physiological Levels"
2552
        }
2553
       }
2554
      },
2555
      "text/html": [
2556
       "<div>\n",
2557
       "        \n",
2558
       "        \n",
2559
       "            <div id=\"1f546b10-3f5e-4530-81d6-b3a9742fe51f\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
2560
       "            <script type=\"text/javascript\">\n",
2561
       "                require([\"plotly\"], function(Plotly) {\n",
2562
       "                    window.PLOTLYENV=window.PLOTLYENV || {};\n",
2563
       "                    \n",
2564
       "                if (document.getElementById(\"1f546b10-3f5e-4530-81d6-b3a9742fe51f\")) {\n",
2565
       "                    Plotly.newPlot(\n",
2566
       "                        '1f546b10-3f5e-4530-81d6-b3a9742fe51f',\n",
2567
       "                        [{\"marker\": {\"color\": \"rgba(201, 10, 20, 1)\", \"line\": {\"color\": \"rgba(246, 78, 139, 1.0)\", \"width\": 1}}, \"name\": \"Outside Normal Range\", \"orientation\": \"h\", \"type\": \"bar\", \"x\": [82.5, 78, 75, 59, 56.4, 52, 22, 19, 10, 9.5, 4, 4, 2.5], \"y\": [\"Systolic Blood Pressure\", \"Temprature\", \"Urine Output Level\", \"On Mechanical VentilationHeart Rate\", \"Glasgow Coma Score\", \"Underlying Chronic Deases\", \"Blood Urea Nitrogen Level\", \"Blood Bilirubin Level\", \"Blood Bicarbonate Level\", \"Blood Sodium Level\", \"White Blood Cell Counts\", \"Blood Potassium Level\"]}, {\"marker\": {\"color\": \"rgba(0, 140, 255, 1)\", \"line\": {\"color\": \"rgba(246, 78, 139, 1.0)\", \"width\": 1}}, \"name\": \"Normal Range\", \"orientation\": \"h\", \"type\": \"bar\", \"x\": [17.5, 22, 25, 41, 43.6, 48, 78, 81, 90, 90.5, 96, 96, 97.5], \"y\": [\"Systolic Blood Pressure\", \"Temprature\", \"Urine Output Level\", \"On Mechanical VentilationHeart Rate\", \"Glasgow Coma Score\", \"Underlying Chronic Deases\", \"Blood Urea Nitrogen Level\", \"Blood Bilirubin Level\", \"Blood Bicarbonate Level\", \"Blood Sodium Level\", \"White Blood Cell Counts\", \"Blood Potassium Level\"]}],\n",
2568
       "                        {\"barmode\": \"stack\", \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"ICU Patients Physiological Levels\"}},\n",
2569
       "                        {\"responsive\": true}\n",
2570
       "                    ).then(function(){\n",
2571
       "                            \n",
2572
       "var gd = document.getElementById('1f546b10-3f5e-4530-81d6-b3a9742fe51f');\n",
2573
       "var x = new MutationObserver(function (mutations, observer) {{\n",
2574
       "        var display = window.getComputedStyle(gd).display;\n",
2575
       "        if (!display || display === 'none') {{\n",
2576
       "            console.log([gd, 'removed!']);\n",
2577
       "            Plotly.purge(gd);\n",
2578
       "            observer.disconnect();\n",
2579
       "        }}\n",
2580
       "}});\n",
2581
       "\n",
2582
       "// Listen for the removal of the full notebook cells\n",
2583
       "var notebookContainer = gd.closest('#notebook-container');\n",
2584
       "if (notebookContainer) {{\n",
2585
       "    x.observe(notebookContainer, {childList: true});\n",
2586
       "}}\n",
2587
       "\n",
2588
       "// Listen for the clearing of the current output cell\n",
2589
       "var outputEl = gd.closest('.output');\n",
2590
       "if (outputEl) {{\n",
2591
       "    x.observe(outputEl, {childList: true});\n",
2592
       "}}\n",
2593
       "\n",
2594
       "                        })\n",
2595
       "                };\n",
2596
       "                });\n",
2597
       "            </script>\n",
2598
       "        </div>"
2599
      ]
2600
     },
2601
     "metadata": {},
2602
     "output_type": "display_data"
2603
    }
2604
   ],
2605
   "source": [
2606
    "import plotly.graph_objects as go\n",
2607
    "fig = go.Figure()\n",
2608
    "fig.add_trace(go.Bar(\n",
2609
    "    y = [ 'Systolic Blood Pressure',\n",
2610
    "          'Temprature',\n",
2611
    "          'Urine Output Level',\n",
2612
    "          'On Mechanical Ventilation'\n",
2613
    "          'Heart Rate',\n",
2614
    "          'Glasgow Coma Score',\n",
2615
    "          'Underlying Chronic Deases',\n",
2616
    "          'Blood Urea Nitrogen Level',\n",
2617
    "          'Blood Bilirubin Level',\n",
2618
    "          'Blood Bicarbonate Level',\n",
2619
    "          'Blood Sodium Level',\n",
2620
    "          'White Blood Cell Counts', \n",
2621
    "          'Blood Potassium Level'],  \n",
2622
    "    x = [82.5,78,75,59,56.4,52,22,19,10,9.5,4,4, 2.5],\n",
2623
    "    name = 'Outside Normal Range',\n",
2624
    "    orientation = 'h',\n",
2625
    "    marker = dict(\n",
2626
    "    color='rgba(201, 10, 20, 1)',\n",
2627
    "    line=dict(color='rgba(246, 78, 139, 1.0)', width=1)\n",
2628
    "    )\n",
2629
    "))\n",
2630
    "fig.add_trace(go.Bar(\n",
2631
    "    y = [ 'Systolic Blood Pressure',\n",
2632
    "          'Temprature',\n",
2633
    "          'Urine Output Level',\n",
2634
    "          'On Mechanical Ventilation'\n",
2635
    "          'Heart Rate',\n",
2636
    "          'Glasgow Coma Score',\n",
2637
    "          'Underlying Chronic Deases',\n",
2638
    "          'Blood Urea Nitrogen Level',\n",
2639
    "          'Blood Bilirubin Level',\n",
2640
    "          'Blood Bicarbonate Level',\n",
2641
    "          'Blood Sodium Level',\n",
2642
    "          'White Blood Cell Counts', \n",
2643
    "          'Blood Potassium Level'],  \n",
2644
    "   x = [17.5,22,25,41,43.6,48,78,81,90,90.5,96,96, 97.5], \n",
2645
    "\n",
2646
    "    name = 'Normal Range',\n",
2647
    "    orientation = 'h',\n",
2648
    "    marker = dict(\n",
2649
    "    color='rgba(0, 140, 255, 1)',\n",
2650
    "    line=dict(color='rgba(246, 78, 139, 1.0)', width=1)\n",
2651
    "    )\n",
2652
    "))\n",
2653
    "      \n",
2654
    "fig.update_layout(barmode='stack', title='ICU Patients Physiological Levels')\n",
2655
    "fig.show()   \n"
2656
   ]
2657
  },
2658
  {
2659
   "cell_type": "markdown",
2660
   "metadata": {},
2661
   "source": [
2662
    "## Results 1: \n",
2663
    "### Descriptive Statistics\n",
2664
    "\n",
2665
    "+ A total of 46,234 unique ICU patients were included in this study. Around 286 were lost during data cleaning. The original MIMIC-IIIv1.4 database has a total population of 46,520 patients.\n",
2666
    "+ There are 60,517 unique Intensive Care Unit(ICU) stays, some patients were addmitted to ICU more than once. The entire MIMIC-IIIv1.4 datasets has 61,532 ICU stays. Only one ICU stay per hospital amission were included in the study, as a result 1,015 ICU stays from the original database were excluded. Sometiems patients admitted to ICU were discharged to other wards in the hospital and in some cases return back to ICU such patients were not included in this study. \n",
2667
    "+ 56% of the patients were Male and 44% were female. \n",
2668
    "+ Study participants average age was 65 years old. Patients who are older than 89 years old at any time in the database have had their date of birth shifted to obscure their age and comply with HIPAA. The shift process was as follows:the patient’s age at their first admission was determined. The date of birth was then set to exactly 300 years before their first admission.  \n",
2669
    "+ The majority of patients (75%) were adults (above 18 years old) and 25% were children (18 and below). \n",
2670
    "+ The majority of patients (70%) were whites, African Americans (10%), Asians (3%), and Hispanic/Lations were (4%). \n",
2671
    "+ The majority of patients (42%) were married and 35% reported to Catholic as their religion.\n",
2672
    "+ The majority of patients (75%) were admited to ICU unschedulled. \n",
2673
    "+ Almost half of the patients have Medicare (49%). This is not surpirse as the average patient age was 65. A total of 38% of the ICU patients were covered by private insurance. 10% of the ICU patients were used medicaid insurance and 1% of patients self-paid.  \n",
2674
    "+ On average, patients stayed at ICU for 5 days. \n",
2675
    "+ 10% of ICU patients deceassed during thier ICU stay. \n",
2676
    "+ Including both deaths within the hospital and deaths identified by matching thte patient to the social security master death index, 39.5% of study participants were deceased.\n",
2677
    "+ A total of 22% of ICU patients had underlying chronic deases - Metastatic Cancer (8.7%), Hematologic Malignancy (2.4%), and AIDS (0.6%). \n",
2678
    "+ A total of 19% of ICU patients had blood urea nitrogen level outside of the normal range within the first 24 hours of ICU stay. \n",
2679
    "+ 9.5% of ICU patients had blood bicarbonate level outside of the normal range within the first 24 hours of ICU stay.\n",
2680
    "+ 59% of ICU patients were on mechanical ventilation within the first 24 hours of ICU stay. \n",
2681
    "+ 78% of ICU patients had temprature above normal within the first 24 hours of ICU stay. \n",
2682
    "+ 10% of ICU patients had above normal blood bilirubin levels within the first 24 hours of ICY stay. \n",
2683
    "+ 52% of ICU patients had Glasgow Coma Score of less than 14 (below the normal range) within the first 24 hours of ICU stay. \n",
2684
    "+ 2.5% of ICU patients had blood potassium level outside of the normal range within the first 24 hours of ICU stay.\n",
2685
    "+ 4% of ICU patients had blood sodium level outside of the normal range within the first 24 hours of ICU stay.\n",
2686
    "+ 4% of ICU patients had white blood cell counts outside of the normal range within the first 24 hours of ICU stay. \n",
2687
    "+ 56.4% of ICU patients had heart rate outside of the normal range within the first 24 hours of ICU stay.\n",
2688
    "+ 6% of ICU patients experianced cardiac arrest the first 24 hours of ICU stay\n",
2689
    "+ 82.5% of ICU patients had systolic blood pressure outside of the normal range within the first 24 hours of ICU stay.\n",
2690
    "+ 75% of ICU patients had urine output level below normal range within the first 24 hours of ICU stay. "
2691
   ]
2692
  },
2693
  {
2694
   "cell_type": "markdown",
2695
   "metadata": {},
2696
   "source": [
2697
    "## 2. Demonstrate Correlations"
2698
   ]
2699
  },
2700
  {
2701
   "cell_type": "code",
2702
   "execution_count": 142,
2703
   "metadata": {},
2704
   "outputs": [
2705
    {
2706
     "data": {
2707
      "text/plain": [
2708
       "[Text(0.5, 1, 'Correlations: ICU Patients SAPSII Score')]"
2709
      ]
2710
     },
2711
     "execution_count": 142,
2712
     "metadata": {},
2713
     "output_type": "execute_result"
2714
    },
2715
    {
2716
     "data": {
2717
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAOJCAYAAAByHiPRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde1hU5d7/8c8MIyIyCoYZecZDnrYiauY2LQVre8oy8UxWllsrS90qWpZoHgIx85BkpmboFtSwR7N82h7SbW5BM/NUygZPpIHmaQARgfn90dP8tMxMmTU6835dl9fFzKx1f++1mD/88F33Wia73W4XAAAAAABwOrOrJwAAAAAAgKcghAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAuKmioiItWrRI3bt3V7du3dSpUydNmzZNBQUFTquZkpKiLl26/OF2c+bM0fr16yVJM2fO1CeffOK0OV3LmDFjtGDBAsfr9PR0DR06VF27dtVjjz2m/v37a+fOnY7P27dvr7179141xt69e9W+fftrjt++fXs9+uij6tatmx5//HF17txZU6ZMUXFx8XXndfz4cQ0dOlSSlJWVpd69e9/sIUqSxo0bp3379v2pfb788kv16tVLjz32mDp37qxXXnlFP/7441XbnDlzRo0bN9b48eOvej8lJUWNGzd2HHe3bt3UvXt3bdy40bFNcnKyunfv7hj/tddek81mkyRlZmaqadOmjm2vdd5/MX/+fHXr1k2PPfaYunTpopiYGKd+twEAKCkWV08AAOAc0dHROn/+vBYvXiyr1aq8vDyNHDlSr732mqZNm+bSuaWkpKh27dqSpFdeecWlc8nIyNCAAQM0depUtWnTRpL0n//8R4MHD9ayZctUp06dmxo3Li5Of/nLXyRJBQUFioyM1D//+U/179//d/c5ceKEDh8+LEmqVKmSEhMTb6r2L7Zt26ZevXrd8PZZWVmKiopScnKyKleuLEmKj4/XsGHDrprLypUrFRYWpk8//VTDhw+Xv7+/47Nq1arpf/7nfxyvv//+e/Xp00cbNmxQZmam3n33XX388cfy9/dXUVGRJkyYoOjoaE2fPv2G5/n5559r/fr1SkpKko+Pjy5duqSXX35Zc+bM0YgRI254HAAAXIEQDgBuKDMzU2vWrNHWrVvl5+cnSfL19dWECRO0a9cuSZLNZtOECRP0/fffy2QyqU2bNhoxYoQsFosaNWqksLAwff/994qLi1OfPn2ueu3r66vJkyfr3LlzKioqUmRkpHr06HHVHA4fPqyJEycqNzdXp06dUr169fTOO+9o5cqV2rdvn2JjY+Xl5aUNGzaoTp06GjhwoHbu3KnY2FhdvHhRpUqV0rBhw9S2bVslJyfrX//6l8xms44ePSofHx/FxMSoVq1a+uKLLxQfHy+TySQvLy+NHj1aLVq00IYNG5SYmKj58+df91zNnz9fTz75pCOAS1KrVq00ffp0+fj4lMjvw9vbW82aNVNGRoYk6b333tOGDRuUn5+vixcvKioqSu3bt9e4ceOUlZWlgQMHasKECeratau++eYbST+H4S+++ELFxcWqXLmyxo8fr0qVKikyMlIhISHatWuXTp48qVatWunNN9/UzJkzlZ2drZEjRyo2NlZZWVnXPE9XOnv2rC5fvqy8vDzHewMGDFC9evUcr4uLi5WUlKTx48crLy9Py5cv16BBg3732OvVqycfHx/98MMPOnXqlOx2u/Lz8yVJXl5eeuWVV5SWlvanzuepU6dUVFSk/Px8+fj4qHTp0nr99dd15swZSVJubq4mTZqkXbt2ycvLS+Hh4Ro+fLhycnJu+Dt/I99xAABuBiEcANzQ/v37Vbt2bUcA/0XFihX16KOPSpImTZokf39/rVmzRpcvX9aQIUO0cOFCDRo0SJcvX1a7du00c+ZMSbrqdWFhobp166bY2Fg1bNhQNptNvXr1cnS2f7F8+XLHJcmXL19W9+7d9eWXX6pfv35at26d+vXrpw4dOmjDhg2Sfg6AL7/8suLj49WkSROlpaWpf//+WrlypSRpx44d+vTTT3XPPffozTff1Pvvv6+YmBjFxsYqLi5OISEh2rp1q1JSUtSiRQuFhYUpLCzsD8/Vvn37NHLkyN+8/9BDD/35E/87srKytGnTJg0bNkw//PCDtm3bpoSEBPn4+Gjt2rWaNWuWOnTooEmTJunNN9/UggULlJmZ6dj/k08+0aFDh7RixQpZLBYlJSVp3Lhxjj8wHDt2TAkJCcrLy1PHjh2Vmpqq4cOHa82aNY6OfHh4+DXP05Xq1aunnj176oknnlC1atUUGhqqVq1aOb4zkvTvf/9b+fn5+utf/6rc3FxNnTpVzz77rCyWa/+X4osvvpDZbFbt2rVVr149ffbZZ2rfvr3uu+8+NW3aVG3btv3T5/qJJ57Ql19+qQcffFANGzZU06ZNFRYW5jieWbNm6dKlS/rss89UVFSkZ599VqmpqUpOTr6h7/z1vuMhISF/aq4AAPwaIRwA3JDZbP7D9cdbtmzRsmXLZDKZ5O3trd69e2vx4sWOrmbz5s2v2v6X10eOHNGxY8f06quvOj7Lz8/XgQMHVKtWLcd7o0aN0ldffaX58+fryJEjys7OvqrD+mt79uxRtWrV1KRJE0lSnTp1FBoaqtTUVJlMJjVs2FD33HOPJKlBgwb617/+JUnq3LmzXnrpJT300ENq3bq1nn/++Rs9TZIkk8n0h+fKZDL95j273S6z+fdvrTJy5Ej5+PiouLhYpUqVUkREhCPMxsbGas2aNTp69Ki+/fZb5ebmXrf+pk2btHfvXj355JOSfu5GX7x40fF5u3btZDab5efnp+rVq+v8+fO/GeNGz9OYMWP097//XampqdqxY4diY2OVkJCgpUuXysvLS8uWLVPXrl1lsVgUFham8ePHa926dY57ARw7dkzdunWTJBUWFuqee+7R3LlzVaZMGUnS9OnTNXr0aKWkpGjHjh2KiopSq1at9M4771z3HFzJarVq4cKFOn78uLZv367U1FQNGjRIffv21ahRo7Rt2zaNHTtWXl5e8vLy0pIlSyRJw4YNu6Hv/PW+44RwAMCtIoQDgBtq3LixMjIylJOTc1U3PCsrS6+//rpmzZql4uLiq8JlcXGxCgsLHa99fX2vGvOX10VFRbJarVet+z19+rSsVqt2797teG/EiBEqKipSx44d9fDDD+vkyZOy2+2/O+eioqLfhF273a7CwkKVKlXqqkvDTSaTY6zhw4frySef1FdffaXk5GQtXLjQ0T2/ESEhIdq9e7fatWt31ftz5sxRtWrV9NhjjykgIEDnzp276vPTp09ftRb6165cE36l/fv364UXXtDTTz+t1q1bq0WLFpowYcJ151hcXKznnntOffv2lfTzGvMrg/bvnZsr3ch52rBhg86dO6cnn3xSjz76qB599FENHz5cDz30kA4cOKAKFSpo8+bN2r9/v7744gtJPwftDz/80BHCf70m/EorV65UQECAwsLC9Nhjj+mxxx7TkCFD1L59e8el5Ddi/vz5atasmUJDQ1W1alVFRERo586dev755zVq1ChZLJarvksnT550/EHkRr7z1/uOAwBwq7g7OgC4oUqVKqlr16569dVXlZOTI0nKyclRdHS0/P395ePjowcffFBLliyR3W5XQUGBli9frr/+9a9/OHbNmjXl4+PjCCgnT55Uly5dfnMX7q1bt+rFF19Up06dJEnffvutioqKJP28FvjK8CP9HIYzMjK0Z88eSVJaWpp27Nih+++//3fnUlhYqPbt2+vixYvq06ePxo8fr4MHD/6pu2QPHDhQK1as0NatWx3vbdmyRQkJCY610G3bttWyZcsc4168eFFJSUk3dcn6jh071KhRIz3zzDO6//77tWHDhqvOy+XLl3+zz4MPPqiVK1c6fpczZ87U6NGj/7DWL+f5Rs9T2bJl9fbbb+u///2v473jx4/Ly8tL1apVU1JSkpo1a6Z///vf2rhxozZu3Kjk5GQdOHDAca+B6zGbzYqLi7vqbutpaWm69957Vb58+T/c/xf5+fmaPn36VX8YOXTokBo0aCDp5zX9q1atUnFxsQoKCvTyyy9rx44dN/ydv9HvOAAAN4NOOAC4qfHjx2vu3Lnq3bu3vLy8VFBQoPDwcMcjsMaNG6dJkyapa9euunz5stq0aaPBgwf/4bje3t6aO3euJk+erA8++ECFhYV65ZVX1KxZM6WkpDi2Gz58uF588UX5+vrKz89PLVq00LFjxyT9/Oipt99++6rAWaFCBc2cOVNvvvmm8vPzZTKZNHXqVNWsWdNxc7Jfs1gsevXVVzVy5EhH93PKlCny9va+4RuzVa9eXe+9957eeecdxcTEqLi4WBUqVFB8fLzq1q0rSRo8eLDefvttPfHEE45gGxYWpr///e9/eL5+rUuXLvriiy/UsWNHFRcXq127djp//rxycnJUu3ZtlS5dWj169NCMGTMc+0RERCgrK0s9e/aUyWRSUFCQ3nrrrT+s1aFDB40aNUrR0dG/e56u9MADD+j1119XVFSUbDabvLy8VLFiRc2fP19lypTRypUrNWXKlKv2qVGjhjp37qwPP/xQ/fr1u+58unfvrosXL+r5559XQUGBTCaTatSooQULFsjLy+uGz+ELL7wgk8mk3r17O5YTNGrUyHFJ+0svvaTJkyerW7duKioqUqdOnfTII4+oRYsWN/Sdv953HACAW2WyX+/aQAAAAAAAUGK4HB0AAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAg3hsCE9OTlZcXJyrpwEAAAAA8CAeG8IBAAAAADCaxdUTcLWFCxdq7dq1slgsat68uUaNGqWvv/5aMTExslgsKleunOLi4uTn5+fqqQIAAAAA7nAeHcKPHj2qlJQUJSYmymKxaOjQodq0aZNSU1PVoUMHDRw4UBs3btSFCxcI4QAAAACAW+bRl6N/9913atKkiUqVKiWTyaTmzZsrLS1NgwcP1pkzZzRgwACtW7dOFotH/60CAAAAAFBCPDqE169fX3v27FFhYaHsdrt27NihmjVras2aNXriiSeUkJCgOnXqaPny5a6eKgAAAADADXh0i7d69eoKDQ1Vnz59VFxcrGbNmik8PFx79uzRmDFj5Ovrq1KlSmnixImunioAAAAAwA2Y7Ha73dWTAAAAAADAE3j05egAAAAAABiJEA4AAAAAgEEI4QAAAAAAGIQQDgAAAACAQQjhAAAAAAAYhBAOAAAAAIBBCOEAAAAAABiEEA4AAAAAgEEI4QAAAAAAGMTi6gm4C5vN5vQaVqvV6TUAAAAAAM5DJxwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAg9xxITw5OVlxcXG/+3lcXJySk5P/9LhJSUm6fPmyUlJSNHz48FuZIgAAAAAA13THhXBnmTdvnoqLi109DQAAAACAG7O4egI349tvv9Wzzz6rM2fOqE+fPvL391d8fLwqVKigy5cvKzg4WJI0ffp07dixQ3a7XU8//bQ6duyo1NRUzZkzR5KUn5+vmJgY7dy5U6dOndLw4cM1YMAAHT16VM8995zOnDmjdu3aaejQoa48XAAAAACAm7gjQ7jFYtGCBQv0ww8/aNCgQSooKNCKFSvk7++vQYMGSZI2b96szMxMJSYm6tKlS+rZs6dat26ttLQ0TZs2TZUqVdJ7772ndevWaciQIYqPj9eMGTO0e/duXbp0SXPnzlVRUZEefvhhQjgAAAAAoETckSG8QYMGMplMqlixojIzMxUcHKyAgABJUtOmTSVJhw4d0v79+xUZGSlJKiws1IkTJ1SpUiVNnjxZvr6+ysrKUmho6G/Gr1Onjry9vSX9HPgBAAAAACgJd2TCNJlMjp/9/f1ls9l05swZVahQQXv37tU999yj4OBgtWzZUm+++aaKi4s1d+5cValSRU8//bTWr18vPz8/RUVFyW63O8b8ZU34leMDAAAAAFBS7sgQfiWLxaKpU6dq4MCBKl++vKNz3b59e6Wmpqpv377Ky8tTeHi4/Pz81K1bN/Xs2VPlypVTYGCgsrOzJUnNmzfXoEGD9OKLL7rycAAAAAAAbsxk/6UVjFtis9mcXsNqtTq9BgAAAADAeXhEGQAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBBCOAAAAAAABuE54QAAAAAAGIROOAAAAAAABrG4egLuwmazOb2G1WrVD58mOr2OJFXu0tuQOgAAAADgSeiEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQtwvhly5dUvv27f/UPidOnNDGjRslSZGRkUpPT3fG1AAAAAAAHs7tQvjN2L59u3bt2uXqaQAAAAAA3JzF1RMoCbm5uRo5cqQuXLigatWqSZIOHjyoSZMmSZL8/f01ZcoU+fr66o033tCPP/6os2fPqm3btho6dKjef/995efnq2nTppKkd999V6dPn9bFixf19ttvq2rVqi47NgAAAACA+3CLTviqVatUt25dLV26VL1795Ykvf766xo/frwSEhLUtm1bffDBBzp58qRCQkK0YMECLVu2TMuWLZOXl5cGDRqkLl26KCwsTJL00EMP6aOPPlLbtm21bt06Vx4aAAAAAMCNuEUnPC0tTW3atJEkNWnSRBaLRenp6ZowYYIk6fLly6pZs6b8/f21d+9ebd++XX5+fiooKLjmeI0aNZIkBQYG6vTp08YcBAAAAADA7blFCA8ODtbu3bsVHh6uAwcOqLCwUDVr1lRMTIzuvfdeff311zp16pSSk5NltVo1ceJEHT16VMuXL5fdbpfZbFZxcbGrDwMAAAAA4ObcIoT369dPY8eOVZ8+fRQcHKxSpUopOjpaUVFRKioqkiRNnjxZtWrV0ogRI/T111+rTJkyql69urKzs1W3bl3Fx8erYcOGLj4SAAAAAIA7M9ntdrurJ+EObDab02tYrVb98Gmi0+tIUuUuvQ2pAwAAAACexC1uzAYAAAAAwJ2AEA4AAAAAgEEI4QAAAAAAGIQQDgAAAACAQQjhAAAAAAAYhBAOAAAAAIBBCOEAAAAAABiE54QDAAAAAGAQOuEAAAAAABjE4uoJuIusC7lOr1GpXFnlHc9weh1J8q0arJ92bDGk1l0t2hpSBwAAAABcjU44AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGCQ2zKEL1u2TLNnz76hbSdPnqwTJ07c8Njfffed5syZc7NTAwAAAADgpllcPYFb9dprr/2p7evXr6/69es7aTYAAAAAAPw+l4TwnJwcvfbaa7LZbDp79qwiIiJUt25dTZkyReXLl5fZbFZISIgyMzM1fPhwBQUFKTMzU507d1ZaWpoOHDighx9+WCNGjFBkZKSio6N17tw5xcTEyGKxqFy5coqLi9OpU6c0duxYWSwWeXl5KTY2VkeOHFFiYqJmzJih1atXa/HixfL29laNGjU0ceJErVmzRps3b1Z+fr6OHTum559/Xt27d3fFaQIAAAAAuBmXhPCjR4+qc+fOeuSRR5SVlaXIyEhZrVZNnz5dNWvW1Pjx4x3bHj9+XAsXLlR+fr7CwsK0ZcsWlSlTRu3atdOIESMc261fv14dOnTQwIEDtXHjRl24cEHbtm1Tw4YNNWbMGO3cuVPnz593bH/27FnNnj1bq1atkp+fn6ZMmaKkpCT5+voqJydHCxYs0JEjRzR48GBCOAAAAACgRLhkTXhgYKDWr1+vkSNHKj4+XoWFhcrKylLNmjUlSaGhoY5tq1atKqvVqnLlyikwMFD+/v4qXbq0TCbTVWMOHjxYZ86c0YABA7Ru3TpZLBb16NFDAQEBeu6557R06VJ5eXk5tj9+/Lhq164tPz8/SVKLFi2UlpYmSapXr54kKSgoSAUFBU49FwAAAAAAz+GSEL5w4UKFhIQoLi5Of/vb32S321WxYkWlp6dLkvbu3evY9tdh+/esWbNGTzzxhBISElSnTh0tX75cGzZsULNmzbR48WL97W9/0wcffODYvkqVKkpPT1deXp4kKTU11fFHgButCQAAAADAn+GSy9HbtWun6OhorVmzRv7+/vLy8tLUqVMVFRWlsmXLqmzZsipfvvyfGvMvf/mLxowZI19fX5UqVUoTJ06U3W7XqFGjNHv2bJnNZo0dO1Y5OTmSpAoVKmjo0KF66qmnZDabVa1aNY0cOVJr1651xiEDAAAAACCT3W63u3oS7iDrQq7Ta1QqV1Z5xzOcXkeSfKsG66cdWwypdVeLtobUAQAAAABXuy2fEw4AAAAAgDsihAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBCT3W63u3oSAAAAAAB4AourJ+AubDab02tYrVYVnD3t9DqS5B0QqJyMg4bU8gu+TxdPHnd6nTJBVZ1eAwAAAACuh8vRAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIRwAAAAAAIMQwgEAAAAAMAghHAAAAAAAgxDCAQAAAAAwCCEcAAAAAACDEMIBAAAAADAIIfw6li1bptmzZ7t6GgAAAAAAN0EIBwAAAADAIB4dwpOTkxUXFydJunTpktq3b6+dO3eqe/fueuaZZ7R+/XoXzxAAAAAA4E48OoRfy9SpUzV9+nQtWrRIVapUcfV0AAAAAABuhBD+f+x2uyQpKytLNWvWlCSFhoa6ckoAAAAAADfj0SG8dOnSOnXqlCRp//79kqSKFSsqPT1dkrR3716XzQ0AAAAA4H4srp6AK7Vp00bLli1Tnz591LBhQ5UtW1bTpk1TVFSUypYtq7Jly6p8+fKuniYAAAAAwE2Y7L9ch41bYrPZnF7DarWq4Oxpp9eRJO+AQOVkHDSkll/wfbp48rjT65QJqur0GgAAAABwPR59OToAAAAAAEYihAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBCT3W63u3oSAAAAAAB4AourJ+AubDab02tYrVbZ/nvA6XUkyVq7gc7s+sqQWhVCWysn/Tun1/GrVV+SZDu0z+m1rHUbOb0GAAAAgDsPl6MDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBBCOAAAAAAABiGEAwAAAABgEEI4AAAAAAAGIYQDAAAAAGAQQjgAAAAAAAYhhAMAAAAAYBCPCeHJycmKi4tz9TQAAAAAAB7MY0I4AAAAAACuZnH1BIy0e/duDRgwQDk5ORo6dKgmTpyozz//XKVLl1ZcXJyCg4NVuXJlzZ8/X6VKlVJmZqY6deqkIUOGuHrqAAAAAAA34FEhvEyZMnr//fd15swZRUREqLi4+JrbnThxQqtXr1ZBQYHatGlDCAcAAAAAlAiPuhy9WbNmMplMuuuuu2S1WnXu3DnHZ3a73fFz3bp1ZbFY5OvrKx8fH1dMFQAAAADghjwqhO/du1eSdOrUKeXl5alSpUrKzs6W3W7X999/79jOZDK5aooAAAAAADfmUZej5+fn66mnnlJeXp4mTpyoH374QYMGDVLlypVVrlw5V08PAAAAAODmTPYrr8PGTbPZbE6vYbVaZfvvAafXkSRr7QY6s+srQ2pVCG2tnPTvnF7Hr1Z9SZLt0D6n17LWbeT0GgAAAADuPB51OToAAAAAAK5ECAcAAAAAwCCEcAAAAAAADEIIBwAAAADAIIRwAAAAAAAM4lGPKAMAAAAA3J629mzt1PEfXG7M05/+CJ1wAAAAAAAMwnPCAQAAAAAut7X3g04d/8HErU4d/0bRCQcAAAAAwCCsCS8hNpvN6TWsVqtyMg46vY4k+QXfp4Kzpw2p5R0QqIsnjzu9TpmgqpKM+11JUt7xDKfX8q0a7PQaAAAAgLOZTCZXT8EQdMIBAAAAADAInXAAAAAAgOuZPKNH7BlHCQAAAADAbYBOOAAAAADA9VgTDgAAAAAAShKdcAAAAACAy5lYEw4AAAAAAEoSnXAAAAAAgOuZPaNH7BlHCQAAAADAbcApITwlJUWtWrVSZGSk+vfvr969eys9PV2TJ0/WiRMnbnrc2bNna9myZSU40/8vKSlJly9fdsrYAAAAAIDrM5lMTv13u3Da5egPPPCAZsyYIUnaunWrYmNjNW/ePGeVu2Xz5s3T448/7uppAAAAAIBnMt8+QdmZDFkTfuHCBVWuXFmRkZGKjo6Wv7+/xowZI5vNJrvdrpiYGPn4+Cg6OlqXLl3SuXPn9OKLLyo8PFxdunRRjRo15O3trZo1a2r9+vX6/PPPlZ+fr3Hjxqlx48ZavXq1Fi9eLG9vb9WoUUMTJ07UmjVrtHnzZuXn5+vYsWN6/vnn1b17d6WmpmrOnDmSpPz8fMXExGjnzp06deqUhg8frrlz52r69OnasWOH7Ha7nn76aXXs2NGI0wQAAAAAcHNOC+Hbt29XZGSkCgoKdPDgQc2bN09paWmSpPj4eLVv3159+vTRf/7zH+3Zs0eBgYF65pln1LJlS+3atUuzZ89WeHi48vLy9MILL6hBgwaaPXu2KleurIkTJyotLU2jR4/WwoULNXv2bK1atUp+fn6aMmWKkpKS5Ovrq5ycHC1YsEBHjhzR4MGD1b17d6WlpWnatGmqVKmS3nvvPa1bt05DhgxRfHy8ZsyYoc2bNyszM1OJiYm6dOmSevbsqdatW6tcuXLOOlUAAAAA4PE85RFlhlyOnpGRodd7aUoAACAASURBVN69e6t69eqSpMOHD6tHjx6SpFatWkmS0tLSFB8fr5UrV8pkMqmwsNAxVs2aNR0/t2jRQpJUp04dnTp1SsePH1ft2rXl5+fn+Hzr1q1q0qSJ6tWrJ0kKCgpSQUGBJKlSpUqaPHmyfH19lZWVpdDQ0KvmfejQIe3fv1+RkZGSpMLCQp04cYIQDgAAAAC4ZYZcjh4YGHjV61q1amnv3r2qV6+eduzYoS+//FJHjx5VRESEHnroIX388cdatWqVY3vzFbeq37Nnj7p27aqDBw/q3nvvVZUqVZSenq68vDz5+voqNTXVEdqvtfh+3LhxWr9+vfz8/BQVFSW73e7Ytri4WMHBwWrZsqXefPNNFRcXa+7cuapSpYozTgsAAAAA4Be30c3TnMnpl6ObzWbl5uZqzJgxjmA9ePBgvfrqq1q9erUkacqUKfr22281efJkzZs3T0FBQTp79uw1x83MzNRTTz2lgoICTZw4URUqVNDQoUP11FNPyWw2q1q1aho5cqTWrl17zf27deumnj17qly5cgoMDFR2drYkqXnz5ho0aJA++ugjpaamqm/fvsrLy1N4eLijyw4AAAAAwK0w2X9pBeOW2Gw2p9ewWq3KyTjo9DqS5Bd8nwrOnjaklndAoC6ePO70OmWCqkoy7nclSXnHM5xey7dqsNNrAAAAAM6W8nxnp47fcv61G7VG84yV7wAAAAAA3AYMWRMOAAAAAMB1ecjd0T3jKAEAAAAAuA3QCQcAAAAAuNy1nm7ljuiEAwAAAABgEDrhAAAAAADXY004AAAAAAAoSXTCS8gvz4V2Nr/g+wypI/38/G6j/PIMbyMY9buSeIY3AAAAcKNMZtaEAwAAAACAEkQnvIT8lPKl02vc1fJh5R3PcHod6ecObsHZ04bU8g4IlM1mc3qdXzrg7ljr0k/ZTq8jSaXvutuQOgAAAPBArAkHAAAAAAAliU44AAAAAMDlWBMOAAAAAABKFJ1wAAAAAIDreciacEI4AAAAAMD1TFyODgAAAAAAShCdcAAAAACAy5k85HJ0zzhKAAAAAABuA3TCAQAAAACux5rw29eSJUskSVu2bFFSUpIyMzPVs2fPP7UPAAAAAABGuyM74fHx8erfv7/atm0rScrMzPzT+wAAAAAAbh8m8x3ZI/7TXBLCX3rpJT311FO6//77tWfPHs2ZM0eBgYE6evSoiouLNWzYMLVs2VJdu3bV/fffr4MHD8pkMmnu3LlasmSJzp8/r+joaDVu3FgZGRnq3bu3Y+x169Zp6dKljtczZ85UUlLSb/YZOXKkFi5cqLVr18pisah58+YaNWqUZs+erczMTP300086ceKExo4dqzZt2rjiNAEAAAAA3IxL/tQQERGhVatWSZJWrVqlNm3aKCAgQEuXLtXcuXM1ceJESVJubq46d+6sJUuW6O6779aWLVs0ZMgQlS9fXtHR0dcc+8iRI3r//feVkJCgmjVrauvWrdfc5+DBg/r888+VmJioxMREHT16VJs2bZIkeXt764MPPtBrr72mDz/80JmnAgAAAAAg/bwm3Jn/bhMu6YS3adNG06ZN07lz57Rz504VFxdr165d2rNnjySpsLBQZ8+elSQ1aNBAkhQUFKRLly794dh33XWXoqKiVLZsWWVkZCgkJOSa22VkZKhJkyYqVaqUJKl58+ZKS0uTJNWvX1+SdM8996igoODWDhYAAAAAgP/jkhBuNpv1t7/9TdHR0QoPD1dAQICCgoI0ePBg5efnKz4+XuXLl5ckma7xFwu73X7NcW02m2bNmqUvv/xSkvTMM884tv31PsHBwVq0aJEKCwvl5eWlHTt26PHHH9f3339/zZoAAAAAAOdx9Zrw4uJiRUdH6+DBg/L29takSZNUvXp1x+cLFizQ2rVrZTKZNHjwYHXo0OGm6rjsxmxPPvmkwsPD9b//+7+6++67NW7cOPXv3185OTnq27evzNf5BdSqVUsjR47UX//616ve9/PzU2hoqJ544gn5+vqqXLlyys7OvuY+9913nzp27Kg+ffqouLhYzZo1U3h4uL7//nvnHTQAAAAA4La0fv16FRQUKCkpSbt379Zbb72l+Ph4SdKFCxeUkJCgL774QhcvXtTjjz9+0yHcZP+9tjL+lJ9SvnR6jbtaPqy84xlOryNJvlWDVXD2tCG1vAMCZbPZnF7HarVKklvWuvRTttPrSFLpu+42pA4AAAA8zzdRTzt1/KYxH17386lTp6px48bq3LmzpJ+XUf/73/+WJF2+fFkDBgxQfHy8Ll68qL59+2rjxo03NY878hFlAAAAAAD8GUlJSUpKSnK87tWrl3r16uV4nZOTIz8/P8drLy8vFRYWymL5OTYHBQWpc+fOKioq0t///vebngchHAAAAADgciaTc9eE/zp0/5qfn59yc3Mdr4uLix0BfMuWLcrOztaGDRskSQMHDlRoaKgaN278p+fhGU9DBwAAAADgOkJDQ7VlyxZJ0u7du1W3bl3HZ+XLl5ePj4+8vb1VunRpWa1WXbhw4abq0AkHAAAAALiei++O3qFDB3311Vfq3bu37Ha7pkyZokWLFqlatWoKCwvTtm3b1LNnT5nNZoWGhqp169Y3VYcQDgAAAADweGazWRMnTrzqvVq1ajl+fvnll/Xyyy/fch1COAAAAADA5Uwmk6unYAjWhAMAAAAAYBA64SXkrpYPG1LHt2qwIXWkn5/fbZRfnqtNrZvD87sBAABwx3Py3dFvF55xlAAAAAAA3AbohJeQbWlHnV7jr3Wqy2azOb2O9HMH1/bfA8bUqt1AmauXOr1Olcf6SZIu/ZTt9Fq/dKbzMg87vZZvlZrGfi8MqGXk1QoAAAC4PXjKmnBCOAAAAADA9cyeEcK5HB0AAAAAAIPQCQcAAAAAuJyJG7MBAAAAAICSRCccAAAAAOB6Zs/oEXvGUQIAAAAAcBugEw4AAAAAcD0PeUQZnXAAAAAAAAziFp3wt956S/v379epU6eUn5+vqlWrKiAgQLNmzXL11AAAAAAAN8BT7o7uFiF8zJgxkqTk5GRlZGRo5MiRLp4RAAAAAAC/5RYh/PfExsbqm2++UXFxsQYOHKhHHnlEffr0UaNGjXTw4EFZrVaFhIRo27ZtstlsWrRokdatW6fNmzfLZrPp7NmzevnllxUeHu7qQwEAAAAA98aa8Dvbxo0blZWVpWXLlmnx4sWaPXu2cnJyJElNmzbVRx99pNzcXJUrV06LFi1S9erVtXPnTknSxYsXtWjRIn3wwQeaMmWKioqKXHkoAAAAAAA34bad8EOHDmnfvn2KjIyUJBUVFenEiROSpAYNGkiSypUrp1q1akmSypcvr0uXLkmSWrZsKbPZrLvvvlu+vr46f/68KlSo4IKjAAAAAADPYPKQTrjbhvDg4GC1atVK0dHRKioq0rvvvqsqVapI+uNf7r59+yRJ2dnZys/Pl7+/v9PnCwAAAABwf24bwjt06KDU1FT17dtXeXl5evTRR+Xr63tD+2ZnZ2vAgAGy2WyaMGGCzGa3vWofAAAAAG4PHpK73CqEd+/e3fGzyWTSuHHjfrPNsmXLHD9f+QizN954Q5K0YsUKtWzZUsOHD3fiTAEAAAAAnsitQjgAAAAA4M7Ec8I9VEREhKunAAAAAABwU4RwAAAAAIDrecjd0T2j3w8AAAAAwG2ATjgAAAAAwOVM3B0dAAAAAACDcDk6AAAAAAAoSXTCAQAAAAAu5ymXo5vsdrvd1ZMAAAAAAHi272eMc+r49YZPcur4N4pOeAnJ/vIzp9e4++FOstlsTq8jSVar1dBa3x476fQ6TaoFSZIhx2W1Wg2tZeTv6uLJ406vUyaoqiRp44F0p9dq36CW02sAAADgBpg8oxPuGUcJAAAAAMBtgE44AAAAAMDlTNwdHQAAAAAAlCQ64QAAAAAA16MTDgAAAAAAShKdcAAAAACA63F3dAAAAAAAUJLohAMAAAAAXM5k9owesWccJQAAAAAAt4HbuhOekpKiYcOGqXbt2rLb7SosLNTkyZOVmJioZ555Rh9//LECAwMVEhKiDRs26KWXXrqhcVu3bq2vvvrqqveSk5NVvnx5hYWFOeNQAAAAAADX4SnPCb+tQ7gkPfDAA5oxY4YkaevWrYqNjdW8efOu2qZ+/fqqX7/+LdXp3r37Le0PAAAAAMAfue1D+JUuXLigypUrKzIyUtHR0Y73U1JSlJiYqBkzZqhdu3YKDg5WcHCwbDabOnXqpLZt22rLli367LPP9NZbb6mgoEDDhw/XyZMndd999yk6Olpz5sxRYGCggoODNX/+fJUqVUqZmZnq1KmThgwZ4rqDBgAAAABP4CFrwm/7EL59+3ZFRkaqoKBABw8e1Lx585SWlva72588eVLJyckKCAjQmDFjrrlNfn6+Ro4cqcqVK+uVV17Rxo0br/r8xIkTWr16tQoKCtSmTRtCOAAAAACgRNz2IfzKy9EzMjLUu3dvVa9e/Xe3DwgIUEBAwG/et9vtjp/vvfdeVa5cWZLUtGlTHT58+Kpt69atK4vFIovFIh8fn5I4DAAAAADA9XjImvA7qt8fGBj4h9uYr7iEwdvbW6dOnZIkHThwwPH+jz/+qOzsbEnSrl27VKdOnavG8JQbAgAAAAAAjHXbd8J/uRzdbDYrNzdXY8aM0apVq25o34iICL366qtas2aNatSo4Xjf399fkyZNUlZWlpo2baqHHnpIe/bscdIRAAAAAAD+iKc0Q032K6/Txk3L/vIzp9e4++FOstlsTq8jSVar1dBa3x476fQ6TaoFSZIhx2W1Wg2tZeTv6uLJ406vUyaoqiRp44F0p9dq36CW02sAAADgj/13/jSnjl/7+VFOHf9G3VGXowMAAAAAcCe77S9HBwAAAAC4P5OHPKLMM44SAAAAAIDbAJ1wAAAAAIDreciN2eiEAwAAAABgEDrhAAAAAACXM5k8o0fsGUcJAAAAAMBtgE44AAAAAMD1zJ6xJtxkt9vtrp4EAAAAAMCzZSye6dTxgwe84tTxbxSd8BJy8eRxp9coE1RVZ79NcXodSQpo0lL5WT8YUsunUmXZbDan17FarZLklrXys086vY4k+dwdpGMrFjq9TrWIZyVJBWdPO72Wd0CgJGO/FwAAAPgtE3dHBwAAAAAAJYlOOAAAAADA9cxerp6BIeiEAwAAAABgEDrhAAAAAACXY004AAAAAAAoUXTCAQAAAACuRyccAAAAAACUJDrhAAAAAACXM5k8o0fsGUcJAAAAAMBtgE44AAAAAMD1PGRNOCEcAAAAAOByJrNnXKjtUSE8Pz9fo0ePVnZ2toKCgrRjxw69++67mjx5sux2uypVqqS4uDh9/PHH+uSTT2Q2mxUaGqqoqChXTx0AAAAA4AY8KoQnJSWpSpUqmjVrltLT09WlSxe9/vrrmjFjhmrVqqWlS5cqPT1dycnJev311xUSEqJ//vOfKiwslMXiUacKAAAAAIzFjdncT3p6ukJDQyVJtWrVUoUKFfTTTz+pVq1akqR+/fqpYcOGmjp1qhITE9W/f3+dOHFCdrvdldMGAAAAALgJjwrhdevW1TfffCNJOnbsmM6ePau7775bR44ckSS9//77+te//qXly5drwoQJWrJkib777jvHPgAAAAAAJzGbnPvvNuFR11j36NFDY8aMUb9+/XTvvfeqdOnSmjBhgl599VWZzWZVrFhRTz/9tM6dO6cePXooICBAlSpVUpMmTVw9dQAAAACAG/CoEH7gwAH16NFDDz74oI4cOaJvvvlGjRs31j//+c+rtouIiFBERISLZgkAAAAAnsfEI8rcT9WqVTVixAjNmTNHhYWFeuONN1w9JQAAAACAB/GoEF6xYkUlJCS4ehoAAAAAgF/j7ugAAAAAAKAkeVQnHAAAAABwe/KUNeF0wgEAAAAAMAidcAAAAACA65k9o0fsGUcJAAAAAMBtwGS32+2ungQAAAAAwLP9sGaZU8ev3LWPU8e/UXTCAQAAAAAwCGvCS8jJ8zlOrxFU3k+5Rw45vY4kla1RVyc+X2FIrXs7RujH9f/j9Dr3hHeTJOVn/eD0Wj6VKkuSzu/72um1yjdqJpvN5vQ6kmS1WpWffdLpdXzuDpIkHft4kdNrVXvyGUnS9v8ec3qtB2pXkyTZ/nvA6bWstRs4vQYAAECJ4u7oAAAAAACgJNEJBwAAAAC4nMlMJxwAAAAAAJQgOuEAAAAAANczeUaP2DOOEgAAAACA2wAhHAAAAADgciaz2an//khxcbHeeOMN9erVS5GRkTp69Og1t3nuuee0bNnNP9OcEA4AAAAAcD2Tybn//sD69etVUFCgpKQk/eMf/9Bbb731m23eeecdnT9//pYOkzXhAAAAAAC3l5SUpKSkJMfrXr16qVevXo7XX3/9tdq0aSNJCgkJ0b59+67af926dTKZTGrbtu0tzYMQDgAAAABwOZOTb8z269D9azk5OfLz83O89vLyUmFhoSwWiw4dOqRPP/1Us2bN0rvvvntL83D7EP7+++/ro48+0oYNG1S6dGlJ0tq1a7V06VJJP5/YevXqadSoUfL29lb79u0VFBQk8xVrBqKiotSoUSOXzB8AAAAA4Hx+fn7Kzc11vC4uLpbF8nNk/uSTT5SVlaUBAwbohx9+UKlSpVS5cuWb6oq7fQhfs2aNOnXqpLVr16p79+7avHmzli9frvfee0/lypWT3W7X1KlT9cknn6hnz56SpIULFzoCOwAAAADAADewbtuZQkNDtWnTJnXq1Em7d+9W3bp1HZ+NHj3a8fPs2bMVGBh405elu3UIT0lJUbVq1dS7d2+NGjVK3bt3V0JCgkaPHq1y5cpJkkwmk8aOHSuTi3/hAAAAAADX6dChg7766iv17t1bdrtdU6ZM0aJFi1StWjWFhYWVWB23DuErVqxQRESEgoOD5e3trW+//VaZmZmqXr26JOmbb77R22+/rcuXLysoKEgzZsyQJD377LOOy9HNZrMWL17ssmMAAAAAAI/g4sao2WzWxIkTr3qvVq1av9lu6NCht1THbUP4+fPntWXLFp05c0YJCQnKycnRkiVLFBQUpMzMTNWrV09NmzZVQkKC0tPTFR0d7diXy9EBAAAAAM7gtiF89erVevLJJxUVFSVJunjxosLCwjRq1CjFxsZq5syZslqtkqTU1FRXThUAAAAAPJ7J7OXqKRjCbUP4ihUrFBsb63hdpkwZPfLII8rKylKvXr30wgsvSJJyc3NVr149xcTEOLa98nJ0SXrqqafUoUMH4yYPAAAAAHBLbhvCV69e/Zv3rrzk/NFHH73mfhs3bnTWlAAAAAAAv8NTbpbt3KehAwAAAAAAB7fthAMAAAAA7iBmOuEAAAAAAKAE0QkHAAAAALieyTN6xJ5xlAAAAAAA3AbohAMAAAAAXI67owMAAAAAgBJlstvtdldPAgAAAADg2U59td6p41dsHe7U8W8UnXAAAAAAAAzCmvASknvkkNNrlK1RVyc+X+H0OpJ0b8cIZW1aa0itSu066/T2TU6vE/hAO0nS+f27nF6rfMNQSdKZXV85vVaF0NY6t2eH0+tIkn/jFkpf+LbT69R6doQkY39XNpvN6bWsVqskaferzzm9VsiUD3T4o1lOryNJNZ962ZA6AADAvZnMntEjJoQDAAAAAFyPG7MBAAAAAICSRCccAAAAAOByPKIMAAAAAACUKDrhAAAAAADX85Abs3nGUQIAAAAAcBugEw4AAAAAcDnWhAMAAAAAgBJFJ/xXPv30Uy1evFheXl6qW7euoqOjZfaQtQkAAAAA4DIekrs84yhvUH5+vt555x199NFHSkxMVE5OjjZt2uTqaQEAAAAA3MQd3Qk/fPiwxo4dK4vFIi8vL8XGxmrWrFn68ccfdfbsWbVt21bDhg3TmDFjZLfbdfLkSeXl5SkmJkZVqlTRK6+8opycHOXn52vUqFFq0aKFEhMTVaZMGUlSYWGhSpcu7eKjBAAAAAD3ZzJ5Ro/4jg7h27ZtU8OGDTVmzBjt3LlT58+fV0hIiCIiInTp0iVHCJekqlWrKiYmRps3b9a0adP0j3/8Q6dPn9aHH36on376SUeOHJHZbFZgYKAkKSEhQXl5eWrdurUrDxEAAAAA4Ebu6BDeo0cPzZ8/X88995ysVqteeukl7d27V9u3b5efn58KCgoc2z7wwAOSpKZNm2rKlCmqU6eO+vXrpxEjRqiwsFCRkZGSpOLiYk2bNk2HDx/W7Nn/j717j46qvPc//pkk5DoTIIRAQQJBZUFkxQh44ZZjl0JB6ZKiISRL1EJLCw1dgNxKMaVEIYCBU8QgWLQ2FAi3clpdv3MoBogCSgyXIAgUaLFALEgQJxMmo8z8/vAwxzEJBMjek8y8X2vNWjP72Xt/nz17J/DNdz/PfiVoZugDAAAAAL8KktyrWdf73333XfXu3VtvvfWWhgwZoieeeEI2m035+fkaM2aMnE6nPB6PJOnw4cOSpH379unuu+/WsWPH5HA4tHLlSuXl5Sk3N1eSlJOTo5qaGhUUFHhvSwcAAAAAoDE060p4z549NW3aNL3yyisKCQnRmjVrNGfOHJWVlSkqKkqdO3fW+fPnJUklJSV699135Xa7NX/+fCUkJOjVV1/Vli1b1KJFC/3yl7/U4cOHtXHjRvXp00fPPvusJOmZZ57RoEGD/HmYAAAAABD4gqQS3qyT8MTERBUVFfks++tf/1rnus8++6zS0tJ8li1durTWekePHm28DgIAAAAA8C3NOgkHAAAAAAQGZkcPIHl5ef7uAgAAAAAAwZGEAwAAAACaNktIcFTCg+MoAQAAAABoAqiEAwAAAAD8j9nRAQAAAAAwCbejAwAAAACAxkQlHAAAAADgd5YguR3d4vF4PP7uBAAAAAAguH159KCh+4/tfq+h+28oKuGNxG63Gx7DZrOZEidQY9lsNknmnStJqqx2Gh4rLjoyYM9VzcXzhseKaJMgSTr+2UXDY3Vr30aSedeg69LnhseRpPDW8aZeFwAAIEBZgmO0dHAcJQAAAAAATQCVcAAAAACA3wXLmHAq4QAAAAAAmIRKOAAAAADA/3hOOAAAAAAAaExUwgEAAAAAfseYcAAAAAAA0KiohAMAAAAA/I/nhAMAAAAAgMZEJRwAAAAA4HeWkOAYE37DJPzDDz/UpEmTdNddd0mSampq9MMf/lCjR4+uc/2ioiKNGDFCLVq0uK2OlZSUqKKiQhkZGbe1n+9yOp2aNm2aLl68qJiYGC1YsEBxcXE+6yxbtkw7duxQWFiYZs2apZSUlEbtAwAAAAAgODWoEv7QQw9pyZIlkiSXy6UhQ4boiSeeUGxsbK11V6xYoeHDh992x9LS0m57H3VZu3atunXrpokTJ+qdd95RQUGBZs+e7W0/fPiw9u7dqw0bNqiiokITJ07Upk2bDOkLAAAAAOB/BcmY8Ju+Hb2qqkohISE6fvy48vPzFRoaqoiICOXm5mrXrl26cOGCJk+erFdeeUU5OTn67LPPdOnSJaWlpWnSpEnaunWrXn/9dYWFhaljx45auHCh9u/frwULFigsLEyxsbF6+eWXtXXrVp06dUqjRo3SlClTtH79eknSyJEjtXjxYv35z3/W6dOndenSJV2+fFlZWVnaunWr/vGPf2jBggVKTU2ts/9lZWX6yU9+IumbRL+goKBW+4ABA2SxWNShQwddvXpVlZWVtarlAAAAAADcrAYl4R988IFGjx4ti8WiFi1a6IUXXtC8efP00ksvqUePHtq2bZvy8vK0dOlSLV++XEuWLFFFRYVSU1OVnp6umpoabxL+9ttv67nnntPjjz+uLVu2qKqqStu2bdOgQYM0duxYFRcX68svv2xQ5yMjI7Vq1SqtXLlSO3fu1GuvvaZNmzbpnXfeqTcJr6qqks1mkyTFxMTIbrfXam/VqpX387V1SMIBAAAAwDiWECrhXt++Hf2aX//61+rRo4ck6f7771d+fr5Pe6tWrXTo0CF98MEHslqtcrlckqRf/epXWrFihdauXauuXbvq0Ucf1c9//nO99tprevbZZ9WuXbvrjsH2eDze98nJyZIkm83mHbPesmVL1dTU1Lu91WqVw+GQJDkcjlq31H+7/do615J2AAAAAABuxy3/qSEhIUFHjx6VJJWWlqpLly6SJIvFIrfbrc2bN8tmsyk/P19jxoyR0+mUx+NRUVGRJk6cqNWrV0uS/va3v+mvf/2rfvSjH6mwsFB3332399ZzSYqIiNDFixd19epVffnllzpz5oy3zWK5+dnzevXqpZ07d0r6ZvK33r1712p///335Xa7de7cObndbqrgAAAAAGA0i8XYVxNxy48oe/HFF5WbmyuPx6PQ0FDNmzdPktSnTx+NGzdOOTk5mjJlisrKyhQVFaXOnTvr/PnzSklJ0Y9//GO1atVKMTExevjhh/Xpp59q5syZio6OVosWLTR37lyVlpZKktq2bav+/fvrqaeeUmJiojp37nxbB5yZmakZM2YoMzNTLVq08FbwFy5cqCFDhiglJUV9+vRRRkaG3G63cnJybiseAAAAAODGbqXI2hxZPN++vxu37Ltjy41gs9lMiROosa4NKzAzVmW10/BYcdGRAXuuai6eNzxWRJsESdLxzy4aHqtb+zaSzLsGXZc+NzyOJIW3jjf1ugAAAIHpytl/Grr/qI5dDN1/Q91yJbypy87O1uXLl32WWa1WLV++3E89AgAAAADUi0eUNW/Lli3zdxcAAAAAAPARsEk4AAAAAKAZCZIx4cFR7wcAAAAAoAmgEg4AAAAA8DtLSHDUiIPjKAEAAAAAaAKohAMAAAAA/C9IZkfnOeEAAAAAAL9znq8wdP+RCd8zdP8NRSW8kdjtdsNj2Gw2U+IEaiybzSbJvHMlSa5LnxseK7x1fMCeqwtVVwyP1dYaJUmqOvmJ4bGsd/aQZN41WFntNDyODfPgewAAIABJREFUJMVFR5p6XTw8x/hHUO6Yk214DAAA4MsSwuzoAAAAAACgEVEJBwAAAAD4X5CMCQ+OowQAAAAAoAmgEg4AAAAA8DuLhTHhAAAAAACgEVEJBwAAAAD4H5VwAAAAAADQmKiEAwAAAAD8riYswtD9hxu694ajEg4AAAAAgElIwgEAAAAAMMkNk/APP/xQffv21ejRozV69GiNHDlShYWF9a5fVFSkr7766rY7VlJSoqKiotvez3dVV1dr/PjxysrK0tixY1VZWVlrnfXr12vEiBEaOXKktm/f3uh9AAAAAAAEpwaNCX/ooYe0ZMkSSZLL5dKQIUP0xBNPKDY2tta6K1as0PDhw2+7Y2lpabe9j7qsX79e99xzj7Kzs7V582YVFBRo9uzZ3vYLFy6osLBQmzZtUk1NjbKystS/f3+FhzeVEQQAAAAAgObqpidmq6qqUkhIiI4fP678/HyFhoYqIiJCubm52rVrly5cuKDJkyfrlVdeUU5Ojj777DNdunRJaWlpmjRpkrZu3arXX39dYWFh6tixoxYuXKj9+/drwYIFCgsLU2xsrF5++WVt3bpVp06d0qhRozRlyhStX79ekjRy5EgtXrxYf/7zn3X69GldunRJly9fVlZWlrZu3ap//OMfWrBggVJTU+vs/3PPPaerV69Kks6dO6f4+Hif9vLyct13330KDw9XeHi4EhMTdfToUaWkpNzsVwUAAAAAgI8GJeEffPCBRo8eLYvFohYtWuiFF17QvHnz9NJLL6lHjx7atm2b8vLytHTpUi1fvlxLlixRRUWFUlNTlZ6erpqaGm8S/vbbb+u5557T448/ri1btqiqqkrbtm3ToEGDNHbsWBUXF+vLL79sUOcjIyO1atUqrVy5Ujt37tRrr72mTZs26Z133qk3CZek0NBQPfPMMzp+/LjefPNNn7aqqirZbDbv55iYGFVVVTWoPwAAAAAAXM9N345+za9//Wv16NFDknT//fcrPz/fp71Vq1Y6dOiQPvjgA1mtVrlcLknSr371K61YsUJr165V165d9eijj+rnP/+5XnvtNT377LNq167ddavOHo/H+z45OVmSZLPZdNddd0mSWrZsqZqamhse0x//+EedPHlSP/vZz7Rt2zbvcqvVKofD4f3scDh8knIAAAAAAG7VLc+OnpCQoKNHj0qSSktL1aVLF0mSxWKR2+3W5s2bZbPZlJ+frzFjxsjpdMrj8aioqEgTJ07U6tWrJUl/+9vf9Ne//lU/+tGPVFhYqLvvvtt767kkRURE6OLFi7p69aq+/PJLnTlzxttmsVhuut8rVqzQli1bJEnR0dEKDQ31aU9JSVFZWZlqampkt9t18uRJdevW7abjAAAAAADwXTc9JvyaF198Ubm5ufJ4PAoNDdW8efMkSX369NG4ceOUk5OjKVOmqKysTFFRUercubPOnz+vlJQU/fjHP1arVq0UExOjhx9+WJ9++qlmzpyp6OhotWjRQnPnzlVpaakkqW3bturfv7+eeuopJSYmqnPnzrd1wE8++aRmzJihTZs26erVq95+v/nmm0pMTNQjjzyi0aNHKysrSx6PR5MnT1ZEhLEPjQcAAAAABAeL59v3d+OW2e12w2PYbDZT4gRqrGvDCsyM5br0ueGxwlvHB+y5ulB1xfBYba1RkqSqk58YHst65zdDeMz6DiurnYbHkaS46EhTr4uH5ywzPNaOOdmGxwAAAL6M/v9EUxlmfMuV8KYuOztbly9f9llmtVq1fPlyP/UIAAAAABDsAjYJX7bM+EoJAAAAAAA345YnZgMAAAAAADeHJBwAAAAAAJOQhAMAAAAAgp7b7VZOTo4yMjI0evRonT592qd9/fr1GjFihEaOHKnt27ffcpyAHRMOAAAAAEBDbdu2TS6XS0VFRTpw4IDy8vK8E3tfuHBBhYWF2rRpk2pqapSVlaX+/fsrPDz8puNQCQcAAAAABL2ysjINHDhQkpSamqqPP/7Y21ZeXq777rtP4eHhstlsSkxM1NGjR28pDpXwRmLWM+fMfLYdsW5feOt4U+IE6vd37RneZrj2DG8zmPUdxkVHmhJHMve64BneAADgVhQVFamoqMj7OSMjQxkZGd7PVVVVslqt3s+hoaH6+uuvFRYWpqqqKp//78TExKiqquqW+kES3kiMfrC89M1/cs/bqw2PI0kJtmhddDhNidUmJtK0708y71xJMuU7NOv7k745rkA9V4EYy8zrwqxrXQrMcwUAAIz33aT7u6xWqxwOh/ez2+1WWFhYnW0Oh+OW/w3ndnQAAAAAQNDr1auXSkpKJEkHDhxQt27dvG0pKSkqKytTTU2N7Ha7Tp486dN+M6iEAwAAAACC3qBBg7Rr1y6NGjVKHo9H8+bN05tvvqnExEQ98sgjGj16tLKysuTxeDR58mRFRETcUhyScAAAAABA0AsJCdHcuXN9lt15553e9yNHjtTIkSNvP85t7wEAAAAAADQISTgAAAAAACYhCQcAAAAAwCQk4QAAAAAAmIQkHAAAAAAAk5CEAwAAAABgEpJwAAAAAABMYthzwleuXKndu3crJCREFotFkydPVs+ePW+43ciRI7V48WLt3btXLVu21COPPNKo/aqsrNTUqVPldDqVkJCg+fPnKyoqytvudrs1Z84cHTt2TOHh4XrxxRfVuXPnRu0DAAAAACA4GVIJP3HihIqLi/Xmm2/qjTfe0NSpUzVr1qyb2seIESMaPQGXpIKCAg0bNkxr1qxRcnKyioqKfNq3bdsml8uloqIiPf/888rLy2v0PgAAAAAAgpMhlfC4uDidO3dOGzduVFpamnr06KGNGzfqyJEjys3NVWhoqCIiIpSbm6sOHTpoyZIleu+999S+fXtdunRJkvTKK68oPj5eXbt21bp167RkyRJJUv/+/bVr1y7NnDlTYWFhOnfunFwulx577DFt375dFRUVKigoUGJiYp19Kysr089+9jNJUlpamhYvXqznnnvOp33gwIGSpNTUVH388cdGfEUAAAAAgCBkSCU8Li5Oy5cv1759+5SRkaEhQ4Zo+/btmj17tnJycrR69WplZmYqLy9Px48fV2lpqTZu3KiFCxfK4XA0OE7Hjh31xhtvqGvXrjpz5oxef/11DR48WMXFxfVuU1VVJZvNJkmKiYmR3W6v1W61Wr2fQ0ND9fXXX9/kNwAAAAAAQG2GVMJPnz4tq9Wq+fPnS5IOHTqkcePGqbq6Wj169JAk3X///crPz9eJEyfUs2dPhYSEyGq1qlu3btfdt8fj8b5PTk6WJMXGxqpr167e9y6Xq97trVarHA6HIiMj5XA4FBsbW2f7NW63W2Fhhg2dBwAAAAAEEUMq4ceOHdOcOXNUU1MjSUpKSpLNZlNSUpKOHj0qSSotLVWXLl2UlJSk8vJyud1uVVdX68SJEz77ioiI0IULFyRJZ8+e1eXLl71tFovlpvvWq1cv7dy5U5JUUlKi3r1712ovKSmRJB04cOCGfxQAAAAAAKChDCnxDh48WCdPnlR6erqio6Pl8Xg0ffp0dejQQbm5ufJ4PAoNDdW8efPUqVMnDRkyRE899ZQSEhLUpk0bn3317NlTNptN6enpuvPOO3XHHXfcVt/Gjx+vGTNmaP369WrdurXy8/MlSdOnT9ekSZM0aNAg7dq1S6NGjZLH49G8efNuKx4AAAAAANdYPN++vxu37Ltjy41gs9l03l5teBxJSrBF66LDaUqsNjGRpn1/knnnSpIp36FZ35/0zXEF6rkKxFhmXhdmXetSYJ4rAABg/L+7TeXf3IAc7OxyuTR27Nhay5OSkjR37lw/9AgAAAAAcD1fhbbwdxdMEZBJeHh4uAoLC/3dDQAAAAAAfARkEg4AAAAAaF6CZaC0IbOjAwAAAACA2qiEAwAAAAD8zh0kpXAq4QAAAAAAmIRHlAEAAAAA/M7oxzEn2KIN3X9DUQkHAAAAAMAkjAlvJEY/WF765uHyZsQJ1Fg2m02SeedKkmounjc8VkSbBM4VseqMxXXRfGI9/8f/MjyOJOU/84QpcQAAuBXBcpM2STgAAAAAwO+YmA0AAAAAADQqKuEAAAAAAL+jEg4AAAAAABoVlXAAAAAAgN8Fy8RsVMIBAAAAADAJlXAAAAAAgN8FSSGcSjgAAAAAAGahEg4AAAAA8DtmRwcAAAAAAI3KsEr4ypUrtXv3boWEhMhisWjy5Mnq2bPnDbcbOXKkFi9erL1796ply5Z65JFHDOnfH/7wB33++eeaOnVqrbZly5Zpx44dCgsL06xZs5SSkmJIHwAAAAAA3wiW2dENScJPnDih4uJirV27VhaLRZ988olmzJihv/zlLw3ex4gRI4zompxOp2bPnq3y8nINHjy4Vvvhw4e1d+9ebdiwQRUVFZo4caI2bdpkSF8AAAAAAMHFkCQ8Li5O586d08aNG5WWlqYePXpo48aNOnLkiHJzcxUaGqqIiAjl5uaqQ4cOWrJkid577z21b99ely5dkiS98sorio+PV9euXbVu3TotWbJEktS/f3/t2rVLM2fOVFhYmM6dOyeXy6XHHntM27dvV0VFhQoKCpSYmFhn32pqajR8+HD169dPp06dqtVeVlamAQMGyGKxqEOHDrp69aoqKysVFxdnxFcFAAAAABBjwm9LXFycli9frn379ikjI0NDhgzR9u3bNXv2bOXk5Gj16tXKzMxUXl6ejh8/rtLSUm3cuFELFy6Uw+FocJyOHTvqjTfeUNeuXXXmzBm9/vrrGjx4sIqLi+vdpmXLlhowYEC97VVVVbJard7PMTExstvtDe4TAAAAAAD1MaQSfvr0aVmtVs2fP1+SdOjQIY0bN07V1dXq0aOHJOn+++9Xfn6+Tpw4oZ49eyokJERWq1XdunW77r6/PU4gOTlZkhQbG6uuXbt637tcrlvuu9Vq9flDgMPhkM1mu+X9AQAAAABujEr4bTh27JjmzJmjmpoaSVJSUpJsNpuSkpJ09OhRSVJpaam6dOmipKQklZeXy+12q7q6WidOnPDZV0REhC5cuCBJOnv2rC5fvuxts1gsjd73Xr166f3335fb7da5c+fkdru5FR0AAAAA0CgMqYQPHjxYJ0+eVHp6uqKjo+XxeDR9+nR16NBBubm58ng8Cg0N1bx589SpUycNGTJETz31lBISEtSmTRufffXs2VM2m03p6em68847dccddxjRZS1cuFBDhgxRSkqK+vTpo4yMDLndbuXk5BgSDwAAAADwf4JldnSLJ1iO1GBmjBu32WymjU8PxFjXhhWYGavm4nnDY0W0SeBcEavOWFwXzSfW83/8L8PjSFL+M0+YEgcAgFvx939fNHT/d7drc+OVTGDYc8L9yeVyaezYsbWWJyUlae7cuX7oEQAAAADgeoKlPByQSXh4eLgKCwv93Q0AAAAAAHwEZBIOAAAAAGhegmV2dJJwAAAAAIDfBUsSbsgjygAAAAAAQG1UwgEAAAAAfhcsD+7iEWUAAAAAAL87fNbYx/ve0zHB0P03FJVwAAAAAIDfBUt9mCS8kVw5+0/DY0R17CK73W54HEmy2WwBF8tms0lSQMbiXBGrrlhmXhc1F439y7UkRbT55q/XgXiuXij6f4bHkaTcjKGmXhcAAKA2knAAAAAAgN8xOzoAAAAAAGhUVMIBAAAAAH4XLGPCqYQDAAAAAGASKuEAAAAAAL9zB0chnEo4AAAAAABmoRIOAAAAAPA7t8ft7y6Ygko4AAAAAAAmoRIOAAAAAPC7IJkc3bgkfOXKldq9e7dCQkJksVg0efJk9ezZ84bbjRw5UosXL9bevXvVsmVLPfLII43ary+++EI/+MEP1K1bN0nSo48+qmeffdbb7na7NWfOHB07dkzh4eF68cUX1blz50btAwAAAAAgOBmShJ84cULFxcVau3atLBaLPvnkE82YMUN/+ctfGryPESNGGNE1HTlyRMOGDdMLL7xQZ/u2bdvkcrlUVFSkAwcOKC8vT8uXLzekLwAAAACAbwTLc8INScLj4uJ07tw5bdy4UWlpaerRo4c2btyoI0eOKDc3V6GhoYqIiFBubq46dOigJUuW6L333lP79u116dIlSdIrr7yi+Ph4de3aVevWrdOSJUskSf3799euXbs0c+ZMhYWF6dy5c3K5XHrssce0fft2VVRUqKCgQImJiXX27eOPP9bhw4f19NNPKy4uTrNnz1ZCQoK3vaysTAMHDpQkpaam6uOPPzbiKwIAAAAABCFDJmaLi4vT8uXLtW/fPmVkZGjIkCHavn27Zs+erZycHK1evVqZmZnKy8vT8ePHVVpaqo0bN2rhwoVyOBwNjtOxY0e98cYb6tq1q86cOaPXX39dgwcPVnFxcb3bdO3aVb/85S+1evVqPfroo3rxxRd92quqqmS1Wr2fQ0ND9fXXX9/8lwAAAAAAaDC3x2Poq6kwpBJ++vRpWa1WzZ8/X5J06NAhjRs3TtXV1erRo4ck6f7771d+fr5OnDihnj17KiQkRFar1TtWuz7fvkUhOTlZkhQbG6uuXbt637tcrnq3f+ihhxQVFSVJGjRokJYuXerTbrVaff4Q4Ha7FRbG/HUAAAAAgNtnSCX82LFjmjNnjmpqaiRJSUlJstlsSkpK0tGjRyVJpaWl6tKli5KSklReXi63263q6mqdOHHCZ18RERG6cOGCJOns2bO6fPmyt81isdx032bPnq3/+Z//kSTt2bNH99xzj097r169VFJSIkk6cODADf8oAAAAAAC4fR6Px9BXU2FIiXfw4ME6efKk0tPTFR0dLY/Ho+nTp6tDhw7Kzc2Vx+NRaGio5s2bp06dOmnIkCF66qmnlJCQoDZt2vjsq2fPnrLZbEpPT9edd96pO+6447b69vzzz2vWrFlau3atoqKivLejT58+XZMmTdKgQYO0a9cujRo1Sh6PR/PmzbuteAAAAACAG2tKt4wbyeJpSn8SaMaunP2n4TGiOnaR3W43PI4k2Wy2gItls9kkKSBjca6IVVcsM6+LmovnDY8T0eabSTQD8Vy9UPT/DI8jSbkZQ029LgAAuBm7/37a0P33u7tpPHo6IAc7u1wujR07ttbypKQkzZ071w89AgAAAABcT7BUwgMyCQ8PD1dhYaG/uwEAAAAAgI+ATMIBAAAAAM1LkBTCjZkdHQAAAAAA1EYlHAAAAADgd8EyZziVcAAAAAAATEIlHAAAAADgd8EyOzrPCQcAAAAA+N2OT04Zuv+He3Q1dP8NRSW8kdjtdsNj2Gw2U+L4I1bN558ZHicivr0k886VmbEC7bq49v05/33W8FiR7TpKCszrwlV5wfA4khQe1zYgvz8zYwXaz7CZsa6dKwBA8xcslXDGhAMAAAAAYBIq4QAAAAAAvwuWkdJUwgEAAAAAMAmVcAAAAACA31EJBwAAAAAAjYpKOAAAAADA75gdHQAAAAAANCoq4QAAAAAAvwuSQjiVcAAAAAAAzEIlHAAAAADgd8EyO7pfk/BnnnlGU6dOVUpKilwul/r27asJEyZo7NixkqSnn35ax44dU+fOnRUVFaUrV66of//+mjx5siSpoqJCeXl5qqyslNPp1D333KNZs2YpPDy8znhOp1PTpk3TxYsXFRMTowULFiguLs5nnWXLlmnHjh0KCwvTrFmzlJKSYuyXAAAAAAAIGn69HX3AgAH66KOPJEllZWUaMGCAduzYIUmqqalRRUWFunfvrgULFqiwsFAbNmzQ3r17dejQIV29elUTJkzQmDFjvG1hYWFaunRpvfHWrl2rbt26ac2aNRo+fLgKCgp82g8fPqy9e/dqw4YNWrx4sX77298aduwAAAAAgP9z1eMx9NVU+DUJ79evnzcJ37lzp9LT02W322W327V//3498MADPuu7XC59/fXXSkhIUFlZmdq3b697773X2z5t2jT94he/qDdeWVmZBg4cKElKS0vTnj17arUPGDBAFotFHTp00NWrV1VZWdlYhwsAAAAAqIfH4zH01VT4NQlPTk7WqVOn5PF4VFpaqgceeEB9+/bV7t27tXfvXm/CPGPGDI0ePVo/+MEP1KZNG7Vu3Vrnz59Xp06dfPYXERGhqKioeuNVVVXJZrNJkmJiYmS322u1W61W7+e61gEAAAAABAen06mJEycqKytLP/3pT+st0l65ckVPPPGESkpKbrhPvybhISEh6t69u0pKStS2bVuFh4crLS1N+/btU1lZmfr16ydJ3tvRi4uL1apVK/3+979Xhw4d9Nlnn/ns79KlS9q+fXu98axWqxwOhyTJ4XAoNja23vZr61xL2gEAAAAAxmmKlfAbDWm+Zu7cubJYLA3ap98fUda/f3+tWLHCW/Xu3bu3jhw5Iklq1aqVz7ohISFq166dvvrqK6WmpurMmTMqLy+X9M0JW7ZsmUpLS+uN1atXL+3cuVOSVFJSot69e9dqf//99+V2u3Xu3Dm53e5aE7cBAAAAAILDjYY0S9KqVat03333qXv37g3ap98fUdavXz/Nnj1bCxculCSFh4fLZrMpOTnZu86MGTO8t5lHRkZq0aJFCgkJ0e9+9zvNnTtXV65cUXV1tVJTUzVp0qR6Y2VmZmrGjBnKzMxUixYtlJ+fL0lauHChhgwZopSUFPXp00cZGRlyu93Kyckx8MgBAAAAANe4DR63XVRUpKKiIu/njIwMZWRkeD9v2LBBb731ls82bdq0ue6Q5j179uj06dOaO3eu9u3b16B+WDxNaYR6M2bG2HGbzWbaGHWzY9V8/tmNV7xNEfHtJZl3rsyMFWjXxbXvz/nvs4bHimzXUVJgXheuyguGx5Gk8Li2Afn9mRkr0H6GzYzFsDEACBz/VXbY0P0/0fuem94mOztb48aNU0pKiux2uzIzM/X22297259//nmdPXtWLVq00KlTpxQXF6eFCxeqR48e9e7T75VwI2RnZ+vy5cs+y6xWq5YvX+6nHgEAAAAArqcploevDWlOSUmpc0jztburJWnmzJl67LHHrpuASwGahC9btszfXQAAAAAANHMNGdJ8swIyCQcAAAAANC9uj9vfXaglKipKS5curbV8+vTptZbl5eU1aJ9+nx0dAAAAAIBgQSUcAAAAAOB3TXFMuBGohAMAAAAAYBIq4QAAAAAAvzP6OeFNBc8JBwAAAAD43YYPyw3df/qDNz+TuRGohDcSu91ueAybzWZKHH/EOm+vNjxOgi1aknnnysxYgXZdXPv+Ki5XGR7rey2tkgLzurjocBoeR5LaxEQG5PdnZqxA+xk2M9a1c/XwHOMfT7pjTrbhMQAgmAVLfZgx4QAAAAAAmIRKOAAAAADA76iEAwAAAACARkUlHAAAAADgd1ephAMAAAAAgMZEJRwAAAAA4HfBMiacJBwAAAAA4HfBkoRzOzoAAAAAACahEg4AAAAA8Dt3cBTCqYQDAAAAAGAWv1bCn3nmGU2dOlUpKSlyuVzq27evJkyYoLFjx0qSnn76aR07dkydO3dWVFSUrly5ov79+2vy5MmSpIqKCuXl5amyslJOp1P33HOPZs2apfDw8DrjVVdX6/nnn9fly5cVFRWlRYsWKS4uzmed9evXa926dQoLC9P48eP1/e9/39gvAQAAAADAmHAzDBgwQB999JEkqaysTAMGDNCOHTskSTU1NaqoqFD37t21YMECFRYWasOGDdq7d68OHTqkq1evasKECRozZoy3LSwsTEuXLq033vr163XPPfdozZo1evzxx1VQUODTfuHCBRUWFmrdunVatWqVFi9eLJfLZdjxAwAAAACCi1+T8H79+nmT8J07dyo9PV12u112u1379+/XAw884LO+y+XS119/rYSEBJWVlal9+/a69957ve3Tpk3TL37xi3rjPffccxo/frwk6dy5c4qPj/dpLy8v13333afw8HDZbDYlJibq6NGjjXW4AAAAAIB6eDweQ19NhV+T8OTkZJ06dUoej0elpaV64IEH1LdvX+3evVt79+7VwIEDJUkzZszQ6NGj9YMf/EBt2rRR69atdf78eXXq1MlnfxEREYqKirpuzNDQUD3zzDNavXq1/uM//sOnraqqSjabzfs5JiZGVVVVjXS0AAAAAIBg59ckPCQkRN27d1dJSYnatm2r8PBwpaWlad++fSorK1O/fv0kyXs7enFxsVq1aqXf//736tChgz777DOf/V26dEnbt2+/Ydw//vGP+tOf/qSJEyf6LLdarXI4HN7PDofDJykHAAAAABjD7fEY+moq/D47ev/+/bVixQpv1bt37946cuSIJKlVq1Y+64aEhKhdu3b66quvlJqaqjNnzqi8vFzSN7cuLFu2TKWlpfXGWrFihbZs2SJJio6OVmhoqE97SkqKysrKVFNTI7vdrpMnT6pbt26NdqwAAAAAgODm9+eE9+vXT7Nnz9bChQslyTseOzk52bvOjBkzvLeZR0ZGatGiRQoJCdHvfvc7zZ07V1euXFF1dbVSU1M1adKkemM9+eSTmjFjhjZt2qSrV69q3rx5kqQ333xTiYmJeuSRRzR69GhlZWXJ4/Fo8uTJioiIMPDoAQAAAACSmlS12kh+T8I7duyoY8eO+Sz79qzlhYWF9W7bqVMnvf766w2OFR8fr1WrVtVa/uMf/9j7fuTIkRo5cmSD9wkAAAAAQEP5PQk3QnZ2ti5fvuyzzGq1avny5X7qEQAAAADgeprSDOZGCsgkfNmyZf7uAgAAAAAAtQRkEg4AAAAAaF7cwVEI9//s6AAAAAAABAsq4QAAAAAAvwuWMeFUwgEAAAAAMInFEyx/bgAAAAAANFkFW3cbuv8Jg/sZuv+GohIOAAAAAIBJGBPeSOx2u+ExbDabzturDY8jSQm2aFOOSfrmuMz6/iTzzpWZsU6crzQ8jiTdlRAXkN9foMYy82f4X5VfGh6nU1ysJM4VsWrHkQLzugCAYONRcNykTRIOAAAAAPA7d5CMlObUX6HDAAAgAElEQVR2dAAAAAAATEIlHAAAAADgd8EyZziVcAAAAAAATEIlHAAAAADgd1TCAQAAAABAo6ISDgAAAADwO7ebSjgAAAAAAGhEVMIBAAAAAH7Hc8IBAAAAAECjarZJ+ObNm/Xyyy/f9HYHDhxQenq6Ro0apWXLltVqr6ys1JgxY5SVlaVJkybpypUrjdFdAAAAAMB1eAx+NRXNNgm/Vb/5zW+Un5+vtWvX6uDBgzp8+LBPe0FBgYYNG6Y1a9YoOTlZRUVFfuopAAAAACDQNOsk/ODBgxozZoyGDx+uoqIiDRs2TNnZ2ZoyZUqd61dVVcnlcikxMVEWi0UDBgzQnj17fNYpKyvTwIEDJUlpaWnavXu34ccBAAAAAMHO7fEY+moqmvXEbGFhYVq1apXOnj2rcePGyel0asKECUpOTq5z/aqqKlmtVu/nmJgY/etf/6q1js1m87bb7XbjDgAAAAAAEFSadRKenJwsi8Witm3byul0SpKSkpLqXd9qtcrhcHg/OxwOxcbG1rlOZGRkne0AAAAAgMbnaULVaiM169vRLRZLrWUhIfUfktVqVYsWLfTpp5/K4/Ho/fffV58+fXzW6dWrl3bu3ClJKikpUe/evRu30wAAAACAoNWsk/Bb8dvf/lZTp07VU089peTkZN1777364osvlJ2dLUkaP3683nnnHY0aNUr79+/X008/7eceAwAAAEDg83g8hr6aimZ7O/qIESO87yMiIlRcXNyg7VJTU7V+/XqfZa1atfI+riw+Pl6rVq1qvI4CAAAAAPC/mm0Sfj3l5eVatGhRreVDhw5VVlaWH3oEAAAAALget7vpVKuNFJBJeEpKigoLC/3dDQAAAAAAfARkEg4AAAAAaF6a0rO8jUQSDgAAAADwu+BIwYNwdnQAAAAAAPyFSjgAAAAAwO+a0mPEjGTxBMuRAgAAAACarLmbthq6/5wnBxu6/4aiEg4AAAAA8DsmZsNNsdvthsew2WymxPFHrEsHPzQ8Tut7H5Rk3rkyM5bj9AnD40hSTOe7TP3+vigvNTxWq5T7JUlnvzD+uDq2Mve6uPzJAcPjSFLLHqm6cvafhseJ6thFUmD+DAfq73Yzz5Xr0ueGxwpvHS9Jqqx2Gh4rLjpSv1i1yfA4kvTq2CdNiQMA+AZJOAAAAADA79zu4KiEMzs6AAAAAAAmoRIOAAAAAPC7YJkznEo4AAAAAAAmoRIOAAAAAPC7YJkdnUo4AAAAAAAmoRIOAAAAAPA7j6iEAwAAAACARkQlHAAAAADgd0EyJLz5JuGbN2/WqVOnNHXq1Jvabs+ePfrP//xPhYWFqU2bNlqwYIGioqK87U6nU9OmTdPFixcVExOjBQsWKC4urrG7DwAAAAAIQkF3O/qcOXP06quv6k9/+pM6d+6sDRs2+LSvXbtW3bp105o1azR8+HAVFBT4qacAAAAAEDzcbrehr6ai2VbCJengwYMaM2aMKisrlZmZqcLCQnXp0kXh4eFavHhxndsUFhYqPj5ekvT1118rIiLCp72srEw/+clPJElpaWkk4QAAAACARtOsk/CwsDCtWrVKZ8+e1bhx4+R0OjVhwgQlJyfXu01CQoIk6W9/+5s+/PBDTZo0yae9qqpKNptNkhQTEyO73W7cAQAAAAAAJEluxoQ3fcnJybJYLGrbtq2cTqckKSkp6Ybb/eEPf9B///d/6/e//32tSrjVapXD4ZAkORwOxcbGNn7HAQAAAABBqVmPCbdYLLWWhYRc/5CWL1+ujz76SH/4wx/qnHCtV69e2rlzpySppKREvXv3bpzOAgAAAADq5fF4DH01Fc06Cb9Zn3/+uV599VWdP39eP/3pTzV69GitWbNGkjRmzBi5XC5lZmbq73//uzIzM1VUVKTs7Gw/9xoAAAAAECia7e3oI0aM8L6PiIhQcXHxDbeJj4/Xxx9/XGfbG2+84X2/dOnS2+8gAAAAAKDBmlK12kjNNgm/nvLyci1atKjW8qFDhyorK8sPPQIAAAAAXI9bJOHNVkpKigoLC/3dDQAAAAAAfARkEg4AAAAAaF6C5G704JqYDQAAAAAAf6ISDgAAAADwO7fb7e8umIJKOAAAAAAAJqESDgAAAADwO3eQjAm3eILlYWwAAAAAgCYr+43Nhu5/2ZgRhu6/oaiEAwAAAAD8LljqwyThjcRutxsew2azqbLaaXgcSYqLjtSRcxdMiZXcoa3Wf3DQ8DgjH7pXknTRYfx32CYmUpL07y8dhsdqFxtj6nXxz8+/MDxOl/hWkqS3Sj4yPNazaX0kSVfOfWp4rKgOiZKkoxWfGx6r+/fi9V9lhw2PI0lP9L5HJUf/YXictO5Jksz7fWtmLDPiBGqsa+fqzKUvDY91R+tYSeb9vij/12eGx5GklE7tTYmV0qm94TEAoDkgCQcAAAAA+F2wVMKZHR0AAAAAAJNQCQcAAAAA+J1bwVEJJwkHAAAAAKAOTqdT06ZN08WLFxUTE6MFCxYoLi7OZ5358+errKxMISEhmjFjhnr37n3dfXI7OgAAAADA79xuj6GvW7F27Vp169ZNa9as0fDhw1VQUODTfvToUe3fv18bNmzQwoUL9dJLL91wnyThAAAAAADUoaysTAMHDpQkpaWlac+ePT7tCQkJioyMlMvlUlVVlcLCbnyzObejAwAAAAD8zujZ0YuKilRUVOT9nJGRoYyMDO/nDRs26K233vLZpk2bNt7HYcbExNR6/GZYWJhCQkI0dOhQ2e125ebm3rAfJOEAAAAAgID33aT7u9LT05Wenu6zLDs7Ww6HQ5LkcDgUGxvr075lyxbFx8dr1apVcjgcysrK0n333ad27drVG4fb0QEAAAAAfufxeAx93YpevXpp586dkqSSkpJak67FxsYqOjpaoaGhiomJUXh4uDdpr0+zTcI3b96sl19++Za3X758uSZPnlxrudPp1MSJE5WVlaWf/vSnqqysvJ1uAgAAAACaqczMTP39739XZmamioqKlJ2dLUlauHChysvL9cMf/lCSNGrUKI0aNUo//OEP1bVr1+vuMyhvR9+5c6dKSkrUvn37Wm3XZr+bOHGi3nnnHRUUFGj27Nl+6CUAAAAABI9bnMDcUFFRUVq6dGmt5dOnT/e+nzt37k3ts9lWwiXp4MGDGjNmjIYPH66ioiINGzZM2dnZmjJlSr3bnD59WkVFRZo4cWKd7Tea/Q4AAAAA0Pia4u3oRmjWlfCwsDCtWrVKZ8+e1bhx4+R0OjVhwgQlJyfXub7D4dDcuXO1YMECnTx5ss51qqqqrjv7HQAAAAAAt6pZJ+HJycmyWCxq27atnE6nJCkpKane9Xft2qULFy5o8uTJ+vLLL3X+/HmtXLlS48aN865jtVqvO/sdAAAAAKDxuZtQtdpIzToJt1gstZaFhNR/h/3gwYM1ePBgSdKHH36odevW+STg0v/NfpeSklLn7HcAAAAAANyqZj0mvDGNGTNGLper3tnvAAAAAADGcXs8hr6aimZbCR8xYoT3fUREhIqLi29q+wcffFAPPvig9/Mbb7zhfV/X7HcAAAAAANyuZpuEX095ebkWLVpUa/nQoUOVlZXlhx4BAAAAAK6nKc1gbqSATMJTUlJUWFjo724AAAAAAOAjIJNwAAAAAEDzEiyVcCZmAwAAAADAJFTCAQAAAAB+5w6OQjiVcAAAAAAAzEIlHAAAAADgd8EyJtziCZYjBQAAAAA0WaP+84+G7n/dpGcM3X9DUQlvJHa73fAYNpvNlDj+iHXm0peGx7mjdawk886VmbHMPFeV1U7D48RFR0qS/lVp/HXRKS5wr4uKy1WGx5Gk77W06ry92vA4CbZoSYF5rgL1d3sgniszY3Gubj8WgObFHST1YcaEAwAAAABgEirhAAAAAAC/C5aR0lTCAQAAAAAwCZVwAAAAAIDfMSYcAAAAAAA0KirhAAAAAAC/C5Yx4SThAAAAAAC/43Z0AAAAAADQqKiEAwAAAAD8jko4AAAAAABoVM22Er5582adOnVKU6dOvantRo8e7X1/6tQp/ehHP/LZR2VlpaZOnSqn06mEhATNnz9fUVFRjdZvAAAAAEBtwTIxW9BVwgsLC1VYWKh58+apXbt2Gj9+vE97QUGBhg0bpjVr1ig5OVlFRUV+6ikAAAAAINA06yT84MGDGjNmjIYPH66ioiINGzZM2dnZmjJlyg23femllzRt2jTFxMT4LC8rK9PAgQMlSWlpadq9e7chfQcAAAAA/B+Px9hXU9Fsb0eXpLCwMK1atUpnz57VuHHj5HQ6NWHCBCUnJ193u6NHj8rhcKhv37612qqqqmSz2SRJMTExstvthvQdAAAAABB8mnUSnpycLIvForZt28rpdEqSkpKSbrjdX/7yF6Wnp9fZZrVa5XA4FBkZKYfDodjY2EbtMwAAAACgNmZHbwYsFkutZSEhNz6kDz74wHvL+Xf16tVLO3fulCSVlJSod+/et9dJAAAAAAD+V7NOwm/VhQsX1Lp1a+/nL774QtnZ2ZKk8ePH65133tGoUaO0f/9+Pf300/7qJgAAAAAEDY/HY+irqWi2t6OPGDHC+z4iIkLFxcUN3va9997z+dyqVSstW7ZMkhQfH69Vq1Y1TicBAAAAAPiWZpuEX095ebkWLVpUa/nQoUOVlZXlhx4BAAAAAK4nWMaEB2QSnpKSosLCQn93AwAAAAAAHwGZhAMAAAAAmpdgqYQH5cRsAAAAAAD4A5VwAAAAAIDfNaUZzI1EJRwAAAAAAJNQCQcAAAAA+F2QFMJl8QRLzR8AAAAA0GQ9MrfA0P2/mzPB0P03FJXwRuI8X2F4jMiE7+ns2+sMjyNJHYeNkv3EEVNi2e5KluvS54bHCW8dL0my2+2Gx7LZbJKkmovnDY8V0SbBlOtP+uYadP77rPFx2nWUZO65MjWWCT9btruSVfP5Z4bHkaSI+Pb69/Z3DI/T7vuPSwrM68KMOIEayy8/wybF+vjMvw2PI0k972hnSqyed7STFJjnCkDjCJbZ0UnCAQAAAAB+Fyw3aTMxGwAAAAAAJqESDgAAAADwux1zsv3dBVNQCQcAAAAAwCQk4QAAAAAAmIQkHAAAAAAAk5CEAwAAAABgEpJwAAAAAABMQhIOAAAAAIBJSMIBAAAAADBJs0jCN2/erJdffvmWtr169ap++ctfqqSkxGf56dOnNWzYsDq3OXDggNLT0zVq1CgtW7bsluICAAAAAPBdzSIJv1Wffvqpnn76aR06dMhn+ZYtWzR58mRdunSpzu1+85vfKD8/X2vXrtXBgwd1+PBhM7oLAAAAAAhwzSYJP3jwoMaMGaPhw4erqKhIw4YNU3Z2tqZMmVLvNtXV1XrxxRf14IMP+ixv2bKlVq9eXec2VVVVcrlcSkxMlMVi0YABA7Rnz55GPRYAAAAAQHAK83cHGiosLEyrVq3S2bNnNW7cODmdTk2YMEHJycn1btO9e/c6l3//+9+vd5uqqipZrVbv55iYGP3rX/+69Y4DAAAAAPC/mk0lPDk5WRaLRW3btpXT6ZQkJSUlNXocq9Uqh8Ph/exwOBQbG9vocQAAAAAAwafZJOEWi6XWspCQxu++1WpVixYt9Omnn8rj8ej9999Xnz59Gj0OAAAAACD4NJvb0Y22Z88elZWVKTs7W7/97W81depUXb16VQMGDNC9997r7+4BAAAAAAJAs0jCR4wY4X0fERGh4uLim9o+Ly+vzuW7du3yvu/bt6/69u0rSUpNTdX69etvoacAAAAAANSvWSTh11NeXq5FixbVWj506FBlZWX5oUcAAAAAANSt2SfhKSkpKiws9Hc3AAAAAAC4oWYzMRsAAAAAAM0dSTgAAAAAACYhCQcAAAAAwCQk4QAAAAAAmMTi8Xg8/u4EAAAAAADBgEo4AAAAAAAmafaPKGsqTl+8bHiMzm1a6qLDaXgcSWoTEym73W5KLJvNpitn/2l4nKiOXSTJlOOy2WymxjLzXH185t+Gx+l5RztJkuP0CcNjxXS+S5J03l5teKwEW7Qk6ci5C4bHSu7Q1tTrYvffTxsep9/dnSXxM0ys2nEkrovmEOva92fm71szj6uy2vj/o8VFRxoeA4DxqIQDAAAAAGASknAAAAAAAExCEg4AAAAAgElIwgEAAAAAMAlJOAAAAAAAJiEJBwAAAADAJCThAAAAAACYhCQcAAAAAACTkIQDAAAAAGCSMH934GZt3rxZp06d0tSpU29p+9OnT2vmzJmyWCy6++679Zvf/EYhIf/3twin06lp06bp4sWLiomJ0YIFCxQXF9dY3QcAAAAABLGgq4TPnz9fkyZN0po1a+TxePTuu+/6tK9du1bdunXTmjVrNHz4cBUUFPippwAAAACAQNMsk/ADBw7o2Wef1ZNPPqkdO3boscceU05OjjIzM/Xzn/9c1dXV9W57+PBhPfDAA5KktLQ07d6926e9rKxMAwcO9Lbv+f/t3XlYVPX+B/D3IILIoiGaqFyQcMNMA9Hc6JaRXruKkYaoYJpLKJhLiqa5oIKpaKW5kaaiLFIupaaJS6iZe+EGCYILKOCCbLLO+f3Bj7mMaFmd8x1neL+exyfmTHPe58w5DPM557scP67cjhAREREREVGNopdFuJmZGTZs2IC1a9ciODgYhYWF6Nu3L6KiouDo6IiYmJgnvlaSJKhUKgCAubk58vLytJ7Pz8+HpaXlE58nIiIiIiIi+rv0sgh3dXWFSqVCgwYNYGlpCSMjI7i5uQEAXFxckJqa+sTXVu3/XVBQACsrK63nLSwsUFBQ8MTniYiIiIiIiP4uvSzCz58/DwDIzs5GYWEhJElCYmIigIrm5E5OTk98rbOzM06cOAEAiI+PR8eOHbWed3FxwU8//aR53tXVVYldICIiIiIiohpIL4vwoqIi+Pn5wd/fH8HBwVCpVAgPD4ePjw+ysrIwaNCgJ742KCgIy5cvh7e3N0pLS9GrVy8AwIgRI1BSUgIfHx9cuXIFPj4+iImJQUBAgKjdIiIiIiIiIgOnd1OUeXl5wcvLq9rykJAQmJqa/unrmzdvjs2bN1dbvn79es3PX3zxxT/bSCIiIiIiIqLH0Lsi/GlkZGQgKCio2nI3NzeMHz9eB1tEREREREREZCBF+MGDB7UeN2nSBBERETraGiIiIiIiIqLH08s+4URERERERET6iEU4ERERERERkSAswomIiIiIiIgEYRFOREREREREJAiLcCIiIiIiIiJBVJIkSbreCCIiIiIiIqKagHfCiYiIiIiIiAQxiHnCnwV5eXmKZ1haWgrJMdQsS0tLAOKOlcgsHitmPS6L54X+ZBnasRKZxfNCf7IM+ViJzBJ5XhCRMngnnIiIiIiIiEgQFuFEREREREREgrAIJyIiIiIiIhKERTgRERERERGRICzCiYiIiIiIiARhEU5EREREREQkCItwIiIiIiIiIkFYhBMREREREREJYqzrDfirtm3bhqtXr+Kjjz76W6+/fPky5s2bh1q1asHExASffvopbGxsNM+r1WrMmTMHSUlJMDExwfz582Fvby/X5hMREREREVENVuPuhC9YsACffPIJIiIi4OHhgfDwcK3n4+LiUFJSgpiYGEyePBkLFy7U0ZYSERERERGRodG7O+EA8Ouvv2LYsGHIz89HYGAgFi1ahI4dO+LKlSuoV68eli5dirp16z72tUuXLkWjRo0AAOXl5TA1NdV6/syZM+jRowcAoEOHDrhw4YKyO0NEREREREQ1hl7eCTczM8OGDRuwdu1aBAcHo7CwEH379kVUVBQcHR0RExPzxNdWFuBnz57F5s2b8d5772k9n5+fDwsLC83jWrVqoaysTJH9ICIiIiIioppFL4twV1dXqFQqNGjQAJaWljAyMoKbmxsAwMXFBampqX/4+j179mD27NlYu3YtrK2ttZ6zsLBAQUGB5rFarYaxsV42GCAiIiIiIqJnjF4W4efPnwcAZGdno7CwEJIkITExEUBFc3InJ6cnvnbnzp3YvHkzIiIiYGdnV+15FxcXxMfHA6ho9t6yZUsF9oCIiIiIiIhqIr28xVtUVAQ/Pz8UFhYiODgYM2bMQHh4ODIyMtCkSRNMnDjxsa8rLy/HggULYGtri8DAQACAm5sbxo8fj6lTp2LChAnw8PDAsWPHMGjQIEiShJCQEJG7RkRERERERAZM74pwLy8veHl5VVseEhJSbZC1R9WqVQsnT5587HOLFi3S/BwcHPzPNpKIiIiIiIjoMfSuCH8aGRkZCAoKqra88q43ERERERERkS4YRBF+8OBBrcdNmjRBRESEjraGiIiIiIiI6PH0cmA2IiIiIiIiIn3EIpyIiIiIiIhIEBbhRERERERERIKwCCciIiIiIiIShEU4ERERERERkSAswomIiIiIiIgEUUmSJOl6I4iIiIiIiIhqAoOYJ/xZcCXzruIZLZ5vgJv3cxXPAYBmz1khLy9PSJalpSWK79xWPMfUpjEACNkvS0tLoVkij5XI968g7XfFs8wdWgIQ9zsMiDsviu9mKZ4DAKYNGiE7/6HiOQ0tzADwd5hZ1XMAnhf/NKvkXrbiOSbWDQEY5rECgPQc5bOa1rdE5M/nFM8BgMFdX8atB/mK59jWs1A8g+hZw+boRERERERERIKwCCciIiIiIiIShEU4ERERERERkSAswomIiIiIiIgEYRFOREREREREJAiLcCIiIiIiIiJBWIQTERERERERCcIinIiIiIiIiEgQFuFEREREREREghjregP+qm3btuHq1av46KOP/tbrL168iA8++AAODg4AAB8fH/Tp00fzfFFREaZMmYK7d+/C3Nwcn376KaytreXYdCIiIiIiIqrh9K4I/6cuXbqE4cOHY8SIEY99PioqCi1btkRgYCB2796NlStXYubMmYK3koiIiIiIiAyRXhbhv/76K4YNG4b8/HwEBgZi0aJF6NixI65cuYJ69eph6dKlqFu37mNfe+HCBaSmpuLAgQOwt7fHxx9/DAsLC83zZ86cwciRIwEA7u7uWLlypZB9IiIiIiIiIsOnl33CzczMsGHDBqxduxbBwcEoLCxE3759ERUVBUdHR8TExDzxtS+99BKmTp2KLVu2wM7ODl9++aXW8/n5+bC0tAQAmJubIy8vT9F9ISIiIiIioppDL4twV1dXqFQqNGjQAJaWljAyMoKbmxsAwMXFBampqU98rYeHB1588UXNz5cuXdJ63sLCAgUFBQCAgoICWFlZKbQXREREREREVNPoZRF+/vx5AEB2djYKCwshSRISExMBVDQnd3JyeuJr33//fSQkJAAAjh8/jrZt22o97+Ligp9++gkAEB8fD1dXVyV2gYiIiIiIiGogvSzCi4qK4OfnB39/fwQHB0OlUiE8PBw+Pj7IysrCoEGDnvjaOXPmICQkBL6+vjh79izGjh0LABgxYgRKSkrg4+ODK1euwMfHBzExMQgICBC1W0RERERERGTg9G5gNi8vL3h5eVVbHhISAlNT0z99fdu2bREdHV1t+fr16zU/f/HFF/9sI4mIiIiIiIgeQ++K8KeRkZGBoKCgasvd3Nwwfvx4HWwRERERERERkYEU4QcPHtR63KRJE0REROhoa4iIiIiIiIgeTy/7hBMRERERERHpIxbhRERERERERIKwCCciIiIiIiIShEU4ERERERERkSAswomIiIiIiIgEYRFOREREREREJIhKkiRJ1xtBREREREREVBMYxDzhz4I7xw/++f/0D9l0eR25ib8pngMAVq3bIy8vT0iWpaUlzl27pXjOy/a2ACBkvywtLYVmiTxWOQmnFM+p/5IbAODAxWTFs3q2dQIA3Dt9RPEs6449AEDI77FV6/bIzC1QPAcAnrcyR9aRfYrnNOrRCwCQnf9Q8ayGFmYAgOK7WYpnmTZoJPR32NCyRH/eiswSeaxu3MtVPMfO2goAUHBN+c92c/uKz3ah58XvF5TPavki4hNTFc8BAPfWzXGvsEjxHOu6dQAAs7buVTwr+N3eimcQPQ02RyciIiIiIiIShEU4ERERERERkSAswomIiIiIiIgEYRFOREREREREJAiLcCIiIiIiIiJBWIQTERERERERCcIinIiIiIiIiEgQFuFEREREREREgrAIJyIiIiIiIhLkmS3Ct23bhiVLlvzj9YSEhCAqKkrzeMuWLXjnnXcwYMAAHDp0qNr/f+3aNfj4+GDw4MGYPXs21Gr1P94GIiIiIiIiIuAZLsL/qXv37mHkyJE4ePCg1rLIyEhER0djw4YNmDNnDiRJ0npdaGgoJkyYgMjISEiShAMHDojedCIiIiIiIjJQxrregD/y66+/YtiwYcjPz0dgYCAWLVqEjh074sqVK6hXrx6WLl2KunXrPva1BQUFCAwMRHx8vGaZtbU1du7cCWNjY6Snp8PKygoqlUrrdRcvXkSnTp0AAO7u7jh27Bg8PDyU20kiIiIiIiKqMZ7pO+FmZmbYsGED1q5di+DgYBQWFqJv376IioqCo6MjYmJinvhaOzs7tG/fvtpyY2NjbN68Gd7e3ujVq1e15yVJ0hTm5ubmyMvLk2+HiIiIiIiIqEZ7potwV1dXqFQqNGjQAJaWljAyMoKbmxsAwMXFBampqX9rvUOHDsWRI0dw6tQp/PLLL1rPGRn97y0pKCiAlZXV398BIiIiIiIioiqe6SL8/PnzAIDs7GwUFhZCkiQkJiYCAM6cOQMnJ6e/tL6rV68iICAAkiShdu3aMDEx0Sq6AcDZ2RknTpwAAMTHx6Njx44y7AkRERERERHRM16EFxUVwc/PD/7+/ggODoZKpUJ4eDh8fHyQlZWFQYMG/aX1OTo6onXr1vD29sagQYPQvn17dOrUCcnJyZgzZw4AICgoCMuXL4e3tzdKS0sf22SdiIiIiIiI6O94Zgdm8/LygpeXV7XlISEhMDU1fer1BAYGaj0OCAhAQECA1jInJ8ZMM00AACAASURBVCdNEd68eXNs3rz5r28wERERERER0Z94Zovwp5GRkYGgoKBqy93c3DB+/HgdbBERERERERHRk+lVEV51zm8AaNKkCSIiInS0NURERERERER/zTPdJ5yIiIiIiIjIkLAIJyIiIiIiIhKERTgRERERERGRICzCiYiIiIiIiARhEU5EREREREQkCItwIiIiIiIiIkFUkiRJut4IIiIiIiIioppAr+YJf5blp1xWPMPihTbIv5qkeA4AWDi2QuHNVCFZdZs1R3b+Q8VzGlqYAQDy8vIUz7K0tAQAPLx1Q/EsM1s7lNy/o3gOAJg8ZyP0/buSeVfxrBbPNwAAPLhwRvGsei+6AhB3DorIqcwqvnNb8RxTm8YAIPTzovhuluJZpg0aCT1WhpZV+XlhiFmGeqwepqcpnmXW1AGA2POiKOuW4ll1GtkK+QwEKj4HRb5/mbkFimc9b2UOAMhLvqR4lqWTs+IZpL/YHJ2IiIiIiIhIEBbhRERERERERIKwCCciIiIiIiIShEU4ERERERERkSAswomIiIiIiIgEYRFOREREREREJAiLcCIiIiIiIiJBWIQTERERERERCcIinIiIiIiIiEgQY11vgGgnTpxAdHQ0li1bplm2ZMkSODo64t///jc+/fRTZGRkoLy8HLa2tpg2bRoaNmyowy0mIiIiIiIiQ1HjivAnkSQJAQEBGDFiBN544w0AwM8//4wxY8YgNjYWtWrV0vEWEhERERERkb5jc/T/l5OTA0tLS00BDgBdu3bFv/71L5w6dUqHW0ZERERERESGgkX4/7O2toadnV215XZ2dsjIyNDBFhEREREREZGhqXFFeJ06dVBSUqK1rLCwEOnp6UhPT6/2/1+7dg22traiNo+IiIiIiIgMWI0rwl944QVcvnwZWVlZAIDi4mKcOnUK//3vf3Hnzh0cPHhQ8//Gx8fj2rVr6NSpk642l4iIiIiIiAxIjRuYzcLCAtOmTcOYMWNQp04dlJaWwtfXFw4ODli9ejVCQkKwZs0aAEDjxo2xdu1aDspGREREREREsqhxRTgAvPnmm3jzzTerLW/QoAHCwsJ0sEVERERERERUE9S45uhEREREREREusIinIiIiIiIiEgQFuFEREREREREgrAIJyIiIiIiIhKERTgRERERERGRICzCiYiIiIiIiARhEU5EREREREQkiEqSJEnXG0FERERERERUE/BOOBEREREREZEgLMKJiIiIiIiIBGERTkRERERERCQIi3AiIiIiIiIiQViEExEREREREQnCIpyIiIiIiIhIEBbhRERERERERIKwCCciIiIiIiIShEU4ERERERERkSAswolqmPz8fCQlJaGwsFDXmyIbSZJw//59XW+G7NRqNcrLy3H69GmUlJTIuu5Lly49dnlcXJysObp2//593LhxAzk5OYpllJaW4sKFCzh+/DguXrwo+7F6HLVarXgGIOb9q0rEfonaJ12cF0S6JOpzicgQGOt6A2qSwsJC5ObmwtjYGDExMejfvz+aNm2qSNaKFSuwefNmGBv/7xAfPXpUkaybN29i3759ePjwoWZZQECAIlk7duzAmjVrUFJSAkmSoFKpcODAAVkzVqxY8cTnlNiv1atX46uvvkKdOnU0y5Q6Vnv37sXq1atRXl6O3r17Q6VSYezYsbLnHDt2DF9//bXWl85NmzbJngNUFI0hISEwNzdHcXEx5s6diy5duiiSBYg7XosXL4adnR0yMjJw8eJF2NjY4NNPP5Vt/QsXLtQck+HDh+Prr78GUHGc3njjDdlyqjp06BBMTU3RtWtXzbK4uDhF8hISEhAcHAy1Wo26deuioKAAkiRh1qxZcHFxkS3n8OHDCAsLg4ODgybn6tWrmDRpkuz7dePGDYSGhuLChQswNjaGWq1Gy5YtMX36dDRv3lzWLFHvHyBuv0Tuk8jzori4GFFRUfjll1+Ql5cHS0tLdOzYEUOHDtX6nJLD/fv3sXLlShw/fhz5+fmarICAADRo0EAvs0S+fwBw+fJlHD9+HHl5ebCysoKrqyteeuklWTNEHieRn0si9ysuLq7acar83iQ3SZJw6tQpZGRkwNbWFp06dVIkh54xEgnj7+8v7d+/X5oyZYq0Zs0aacSIEYpleXl5SQ8fPlRs/VW9++670vLly6WoqCjNP6X06dNHSktLk4qLizX/5Fa5D++//740e/ZsaefOndL8+fOlcePGyZ4lSZLUr18/qbCwUJF1P8rb21sqLi6Whg4dKqnVauntt99WJOett96Sjh07JqWkpGj+KcXT01PKysqSJEmSMjMzpXfeeUexLEkSd7y8vb0lSZKkoUOHSpIkSX5+frKuv3K9f/SznGbPni1NmjRJGj9+vDRq1CjN766vr68ieYMGDZIyMjK0lqWnp0sDBgyQNcfb21vKy8vTWpabmyt5eXnJmiNJFe/Vr7/+qrXs3LlzmnNFTqLeP0kSt18i90nkeTFx4kRpzZo10uXLl6Xr169Lly9fltasWSONHTtW9qzRo0dLu3fvlvLy8iS1Wi3l5eVJu3btkoYNG6a3WSLfv+XLl0ujRo2SNm7cKH3zzTfSxo0bpVGjRknLli2TNUfkcRL5uSRqv+bMmSPNmjVLiouLk44fPy7FxcVJs2bNkj7++GNZcyRJkrKzsyUvLy9p4sSJUlhYmBQYGCj1799fyszMlD2Lni28Ey5Qbm4uevbsiYiICCxatAhHjhxRLKtBgwZad8GVVKdOHcXufD/Kzs4O9vb2imYMGjQIALB//37MmTMHANCvXz8MHz5ckbymTZsqcrX9cYyMjGBiYgKVSgWVSgUzMzNFcmxtbbXudiqpfv36aNiwIQCgUaNGsLCwUDRP1PFSq9VISEhAs2bNUFJSgnv37sm6/qpX2Z/0s5ySkpIQFRUFAIiIiMCECROwcuVKSJKkSF5ZWRlsbW21ltna2sq+f6WlpdXOB1NTU0Xex5KSErRv315rWYcOHWTPAcS9f4C4/RK5TyLPi6ysLCxdulRrWevWrTF48GDZs/Lz89GnTx/NYwsLC7z11lvYsmWL3maJfP9+/vlnREZGai3z9fXFu+++iwkTJsiWI/I4ifxcErVfV65cwebNm7WW9ezZU/P9UE4LFy7ERx99pNWCLz4+HqGhoVi2bJnsefTsYBEuUGlpKdavXw9nZ2ckJyejoKBA9oxJkyZBpVLhzp07ePvtt9GiRQvNH/2wsDBZs1JTUwEANjY22LVrF5ydnTVZcjdBqlSnTh2MHDkSbdq00WRNmjRJkaz79+/j+vXr+Ne//oWUlBTk5+crklNaWoq+ffuiZcuWACqKILmPVaWOHTti8uTJyMzMxKxZs9CuXTtFcho0aIBZs2ZpnRPe3t6KZFlaWmLUqFHo1KkTLly4gKKiInz++ecAgA8//FD2PFHHy9PTE/PmzUNISAgWL14MPz8/WdcvSRJKS0shSVK1n5VQXl6OkpISmJiYwNfXFxkZGZg/f74iWQDw6quv4r333kO3bt1gaWmJgoICHD16FO7u7rLmeHt74+2334arqyssLS2Rn5+PM2fOwNfXV9YcAGjVqhWmT5+OHj16aPbpp59+QqtWrWTPEvX+AeL2S+Q+iTwvTE1NsWPHDs37l5+fj/j4eNStW1f2rAYNGmDFihVwd3eHhYWF5lhVXgjVxyyR719ZWRlu3ryJZs2aaZbdvHkTRkbyDtEk8jiJ/FwStV9qtRqnT59Gx44dNctOnTqF2rVry5oDALdv367Whc7d3R0rV66UPYueLSpJqW9cVM3Zs2cRFxcHf39/fPfdd2jXrp3s/YBOnjz5xOc6deoka9aTvkyoVCrF+v9u37692rK3335bkawzZ85g4cKFyMzMhI2NDRYvXowXXnhB9pzHHTO5j1VV8fHx+P333+Ho6IjXX39dkYzH9atXqrVEbGzsE58bOHCg7HmijldJSQmSk5Ph7OyMuLg4vPrqq7J+AXj99dc1F0iq/hlQYpwFANi1axe++OILREdHw9raGpIk4ZNPPsG2bdueOEjcP3Xp0iWcOXMG+fn5sLCwgIuLC9q2bSt7zp07d5CQkKDJeemll2BjYyN7jiRJiIuLq7ZPHh4eitxhFfX+idwvUfsEiDsv7t+/jy+//BJnz55FQUEBzM3N4eLiAn9/f9n7yVb2n370PfTx8ZG9hZCoLJHv32+//YbZs2ejtLQUFhYWyM/Ph4mJCebMmVPtbvI/IfI4ifz9FbVf169fR2hoKC5evAigohVhmzZtEBQUBAcHB9lyAMDPz++x35kHDRqE6OhoWbPo2cIiXLDDhw8jOTkZDg4OigxGVF5ejvLyckyaNAnLli2DJElQq9UYPXq0YoXxoUOH8Nprr2ke79mzR6u5kJzKysoQExOjeQ99fHxgYmKiSNajBaqlpSV27twpe86OHTuqLevfv7+sGbo4Lw4fPowrV66gefPmig30BUBzh6m4uFiz7M0335Q9p/I8j4mJqfacEnf5x48fjy5dusDHxwfh4eFITExUrIWEKMXFxTA1NdVadunSJTg7OwvbhvPnzyvWAqSqRz8XlXT79m00btxYSJao9w8Qt18i90nkeSFSWVmZsC5wIrOUkp+fryn4le5CVZXI907k55I+nxPTpk3Dm2++qfWd8/Dhw/j+++/1/m8+/TFOUSZQWFgYtm3bBmNjY+zYsQMLFy6UPePbb79F7969ER8fj969e6N3797o27cvmjRpInvWoUOHsHTpUsybNw9Lly7F0qVLsWTJEixfvlz2rEqzZs3CjRs30K1bN6Snp2PmzJmKZe3duxd79+7FDz/8gMWLF6Nz586K5KSkpCAlJQXJycn4/vvvFRkrQOR5AfzvXK9duzZ27Ngh66jejxoxYgR27dqFEydO4MSJE3/YGuSfqJzOKDs7u9o/JWRmZsLHxwcAMGrUKGRlZcm6/rKyMk0rgsmTJ8PPzw/Dhg3D7du3Zc2pytTUFKdOnUJ8fDwOHz6MN954AykpKYrlPc7evXuF5Fy7dk1IDgCh/QZFvX+AuP0SuU8iz4vx48cLyxozZozBZSn5/llYWOD555/XFOCimh6LPE4iP5dE7VdwcLDs65w6dSrWrVuHDz74ACEhIRg3bhxWrVqFGTNmyJ5FzxjhQ8HVYFVHilSr1YqMyFopNjZWsXVXysjIkLZt2yb17t1b2rZtm7Rt2zZp+/bt0qVLlxTLHDx4sNZjJUbffNpsJajVamnUqFGKrV/EeSFJYs/14cOHK7buJzlw4IC0bt06KT4+XrGMd999V7p69aokSZKUlpYm+/m3YMECKTQ0VJKkilGjU1JSpMjISGnGjBmy5jxq4MCB0rVr16QRI0ZIWVlZQn6viGqinJwcXW+CXhP5/h0/flxYFv19ycnJsq9z+/bt0rfffiutW7dO2r59u7R8+XLp2rVrsufQs0c/227oqbKyMqjVahgZGUGtVis6B6CbmxvWrFmD0tJSABWjf8p9Bc/W1hZvv/02PD09tQYVkfuOXVXFxcV4+PAhzMzMUFRUhPLycsWywsLCNMcoOztb9oFTKlWdSzsrKws3b95UJAcQc14A2ue69P/zuSula9euiI2N1eqvL/ecv1XNnTsXOTk56NChA2JjY3H8+HFMnTpV9pwZM2Zg4sSJuHPnDp5//nnMnTtX1vUnJiZquiIYGxvD0dERjo6OeOedd2TNeZSpqalm9oaGDRtqnf9yEjWfbGVOw4YN4e7ujsDAQNSqVQsLFy6UfYRg0fMZixIREQFfX19kZ2dj3rx5SExMRNu2bTFjxgxZ+1DrYo5rEecFIGbuaaDiHIyNjYWpqSk8PT013cGio6MVGTm6qvDwcIwaNUr29S5duhT+/v7VZgupV6+e7FlP8sorr8i+TlHzXN+7dw9r166Fqakp3nvvPTz33HMAKsaGkXssmB9++AH/+c9/UFhYiOXLl2s+K/z9/WFubi5rVlUnT56EkZGR1kBtcqnaGuz+/fsoLCxEYGAgfH19MWDAANnz6NnBIlygt956Cz4+Pmjfvj0SEhIU6zcNAEFBQXjttddw9uxZNGrUCIWFhYplrVixApGRkSgtLUVRUREcHBywe/duRbL8/Pzg6emJFi1aIDk5GYGBgYrkAICjo6Pm59atW6NHjx6K5PTu3RtAxYdv48aNFfmSUUnUedGnTx9h5/qvv/6KgoICWFpaAqgYWEzJIjwxMVEz1dawYcMU++I5btw43L17F9bW1khMTISfnx9sbGwwe/ZsdOvW7R+vX61Wa36ePHmy5mel+ydaWFhg+PDhGDx4MLZs2VJtyii5TJs2DZ6envjwww9hbm6uGUV38uTJ2LBhg2w5U6dORZ8+fZCRkYERI0Zg8+bNMDMzw5QpU6pNcfNPTZ8+Ha1bt8aECRM0+xQfH4/Jkyfjyy+/lDXr0SmbqpJ7Ror9+/fD19cXCxYsgIeHBxYtWoSff/4ZM2fOxOrVq2XLEXVOAGLPixUrViAhIQHdu3dHs2bNUFBQgBUrVsDZ2VnWaa+Aiv2yt7dHWVkZBg8ejHXr1qFevXrYs2eP7J+FlbO9ABWDf504cQKJiYkA5J3tZdu2bfj555/x0UcfKVIM68LcuXOhVqvh7u6u9Vlx9OhRLFiwQNasqVOnwsPDA2VlZRg6dCjWrl2Lpk2bKtI1LCoqCv/5z3+wYMEC2NnZYebMmTh+/DhmzZol6zlx+PBhzJkzB1ZWVujVqxdOnToFExMTnDx5EmPHjpUtB9D++1upuLiYRXgNwCJcgKp3VJ9//nkcOnQIbdq0kX3e36rq1KmDMWPGIC0tDaGhoYrMd1kpPj4e8fHxCAkJwfDhw2W/Y1dVv3794O7ujhs3bqBZs2aaK65KUGrU9UfNnj0bwcHBsLe3R2FhoWL9tAFx58WIESPQvXt3XL16FQMGDNBM56WEvLw8bNy4UbH1P6pJkyaaAWfu3Lmj2MAzbm5uCAgIgKOjI65fv44VK1Zg3LhxmDJliixFuCRJmtFlK+/M5efnKzZFWaXPP/8c169fh5OTE65cuaLICPaAuPlkCwsLNZ8VJ0+e1Fy80/f5oK2trREVFQV/f3/Fz4lKd+/eRd++fQFUDIwpd2Escu5kkeeFqLmngYq7npVTQO7fvx/+/v7YsGGDIudIixYtcOTIEQQGBsLIyAhXr15VZBDM5s2bIyQkBCEhIVi5ciXeffdd9OjRQ5E74X379sX9+/cf+9zRo0dlyxE5z3VJSYnmuLRp0wZjx45FRESEop8b165d01xMeOGFF/Djjz/Kuv6VK1di9+7dyM7OxqBBg3D06FHUqlULPj4+shfhj2NqaqrIdGj0bGERLkDVO6rNmzcXMjKqJEnIzs5GQUEBCgsL8eDBA8Wy6tevDxMTExQUFMDe3h4PHz6UPWPlypUYO3as1pXxSvo+euSKFSsQGxsLa2trZGdnY9y4cdi6dasiWZXnRWFhoSLnRWxsLAYOHKh14aly+iml5nNv1aoV9u7dqzUnuZ2dnew53bt3B1DxhWP//v2wtbVFZmamYheCbt++rfns+Ne//oVbt27B3t4etWrVkmX9gwcPRmBgIIKCgmBnZ4cbN25g8eLFisxjXFV6ejrCwsKQlpaGFi1aICgoCE2bNpU9R9R8svXq1cPKlSvh7++vuRi0c+fOaqPAy0HkfMbvvfceLl68iEaNGqFr166yr7+q33//HfPnz0dZWRmOHz+Ozp07Y9++fbLniJw7WeR5IWruaQAoLS3FvXv3YG1tDQ8PD6Snp+Ojjz7SdHGSk7+/P5ydnbFlyxYEBwfDyspKkekgVSoV7OzssGrVKiQlJeG7777D+vXrcffuXfz000+yZq1YsQKTJk3Cli1bFO1CInKe6/LyciQlJaFVq1ZwcXHBmDFj4O/vr0hLu7S0NGzYsAHGxsaamTXOnz8ve7cmtVoNMzMzODg4IDAwUDPyuqgLktnZ2Yp8l6ZnC4twAUTdUa0qICAA+/fvh6enJ3r27Cn7lFdVNW7cGN988w3MzMwQFhaG/Px82TMqp25Qus+ZLpibm8Pa2hoA0LBhw2r90uRUeV7069dPkfOi8q5w1QtPgDJ3fypduHABFy5c0MpS4s6WnHcpnkbDhg2xZMkSvPzyyzh37hxsbGxw7Ngx2b5EvfXWW7CwsEBYWBjS09Nha2uLvn37IjU1VZb1P0lQUBDGjRsHFxcXnDlzBtOmTUNERITsOYsXL0ZUVBTCw8O15pOVe6T+sLAwbN26Vescz8zMVGRGgCVLluDLL7/Epk2btOYzVmr2gfnz52tN/aeUffv24dKlS3j++efx8OFDPHz4ED/++CNCQ0NlzRF1TgBiz4sZM2YgICCg2tzTSrRK+/DDDzFkyBBERETAxsYG7733Hh4+fIiDBw/KngUAr776Kpo3b44pU6YgNzdXkYyqhVWrVq0wZcoURXIAwN7eHn5+fjhx4gReffVVxXIWLlyI0NBQzcXvynmu582bJ3vWzJkzMX/+fCxbtgw2Njbo06cPSktLERISInvW6tWrcfHiRTg4OCApKQl2dnaYN2+e7Od65XhHO3fuxJAhQwAAgYGBcHd3lzUHQLWbS8XFxbh8+TKmT58uexY9WzhPuAHLz89Heno6mjVrpuiAFWq1Grdv34aVlRW2b9+OLl26wMnJSZGsrKws5ObmwsjICF999RV8fX3Rpk0bRbKUVtms9Ny5c6hbty5cXV2RkJCA4uJihIeH63jr/png4GDMmjVL83jq1KlYtGiRYnkFBQXIyMhAs2bNFL2IAeCxfxjlLhaAij/EMTExSElJQcuWLTFgwABcunQJdnZ2sg5WBQAJCQnYvHkzjh07hl69emkdO7kNGzZMq/vAo49FGTdunOz9qHWZA1R0bVGyO5ChZ4k8VkpkPWnuaRGDpt29excNGjRQLKuwsBDHjh2Dh4eHZpmI/RKZI5ISg6Y9qnJwVhFZleTMun//vlZLt9TUVDRv3lyWdVf1aN/5OnXqwNHRUej88aQbvBNuoPbt24dVq1ahvLxcMxqmUv1YCgsLERMTg+zsbPz73/9WtB9LUFAQxowZg8jISPTq1QshISGK3EUTofLDvOqHes+ePRXN3LFjB9asWaPVdOvAgQOyrX/Lli1YtWoVHjx4oNVHq+rI5XKLi4vDF198AbVajd69e6N27dqKzhla2adUkiRcunRJsdkATE1N4efnp7Xs5Zdflm39JSUl2L17NyIjI1G7dm3k5+fjwIEDio+ybWtri5UrV+KVV17BxYsXYWJiomllUNnkXwSl7qrpKgeA4q0YDD1L5LFSIsvCwuKxX9yVGDTtUZWjyyuVVbduXa0CXMmsR4nKEUmJQdMeVdkdQkRWJTmzHu1qpkQBDkCRLhakH1iEG6ivv/4aW7duxfvvv4+xY8finXfeUawI//jjj+Hu7o5Tp07BxsYGM2bMkH3010plZWVwc3PD6tWr8dZbb1UbjEaf6KKbQnh4OFavXq3YiNRDhgzBkCFDsHr1anzwwQeKZDzqq6++QmxsLEaOHImxY8diwIABihbhVUfJd3d3x4gRIxTLUtLrr7+O//73v1i8eDEcHBwwcuRIIdNcqVQq3LhxAzdu3AAA2NjYaGZTEFmEK9lFQhc59M+JPFYis0Q2eDTELDlz/qhbk8jPP0M8TnJmxcTEPPE5JQYHpJqJRbiBMjIygomJCVQqFVQqlaJNdHNycjBgwAB89913cHFxUfQDt7S0FKGhoejYsSN++eUXRecJN0R2dnawt7dXPGfQoEHYtWsXysrKIEkSsrKyFCuMa9WqBVNTU6hUKhgZGSneHL3ql6js7GzcuXNH0Tyl+Pn5YdeuXUhPT8eAAQOEfVF6tOl+VlYWGjVqJCSbqCYy1IsL+nghbevWrbhw4QI6d+5c7TlDvAipr1lXr17FoUOH0K9fP1nWR/Q4LMINVMeOHTFp0iRkZmZi1qxZaNeunaJ5KSkpACpGdFZiRNZKCxcuxLFjxzBw4EDExcVh8eLFimUZojp16mDkyJFo06aN5o+VEqOWjx8/Hg4ODvj9999hamqqaGHcoUMHTJkyBZmZmQgODoazs7NiWQA0d20BwMTERJHBZ0QYPXo0Ro8ejZMnTyI2NhYXLlzA4sWL4enpqeiUcl988QUiIyNRWlqKoqIiODg4aL2nRESGatmyZfD19cWoUaOqDWBKz47p06fj6tWrcHd3x0svvaTrzSEDxSLcQE2aNAnx8fFwdnbGCy+8oOi0aDNnzsSMGTOQkpKC8ePHY86cOYplNWrUCD179kRubi5SU1PRvn17xbIMkZKjsT4qODgY06dPx4IFCzSji8ppwoQJ+OyzzzBlyhQcOnQITk5OcHR0rNZvUG5WVlYGNWppp06d0KlTJ+Tm5mLnzp2YOnUqduzYoVhefHw84uPjERISguHDhwsb3OtRSswBrMscQD+bfT5LWSKPFc8L/cmSM6dWrVr49NNPFZm+668wxOMkd9azcJzIsHF0dAPzR1+e5Z6O6vXXX9fcTZUkCbVr10ZpaSlMTU3xww8/yJpVqbJ/+759++Dk5IQTJ05g3bp1imQZorKyMsTExCA5ORkODg7w8fGBiYmJ7Dl+fn4IDw9HUFAQli1bhv79+2Pnzp2yZ2zatEnWdT6NkSNHYunSpbCyshKebQhGjhyJr776ClOmTMHixYvh4+ODqKgoxfISEhKwe/duram2lLhQKCoHAG7cuIFDhw5pZY0aNQqlpaWyD4xpSFmlpaVYvnw5xo0bB1NTUxw+fBinT5/GhAkTNPMAy0VkVqXJkycjLCys2vKEhATZ7+YZYpbIfXoSuUdiLyoqQnR0NFJTU9GiRQt4e3ujdu3auHXrluxjwxhq1uOIHPGdDJdy7YZJJ1JSUpCSkoJvv/0We/bswa1bt/Djjz9iz549smft3bsXe/bsQefOnfHZZ59h3759WLFiBVxdbqECjAAAE6BJREFUXWXPqpSbm4vXX38dmZmZGD16tNYo3/TnZs2ahRs3bqBbt25IT0/HzJkzFckZMmQINmzYgG7duuHVV19VpNndjRs3sHTp0sf+U1JKSgo6d+6Mbt26oXv37kL78RmCxo0b45tvvoGZmRnCwsKQn5+vaF5QUBBatWqlOVZKHS9ROUDFxcgHDx7AxMRE8w+AIjNTGFJWaGgoioqKNBePO3TogKKiIixcuFCW9esqq1JJSQkSExNRXFyMkpISzd9HJQpIQ8wSuU9PIvd3tUmTJiE7Oxs9evRARkaGphWXEoWqoWY9jsgR38lwsTm6gZk8eTIA4P3338fatWs1y5UYwbnyC9KNGzc0f6ScnZ0VnU6mtLQU69evh7OzM5KTk1FQUKBYliG6du0atmzZAgB44403FJt2pVevXpqf//Of/ygy32WdOnUUmzLkjxw6dEh4piEJDAxEXl4e2rVrB09PT0XvggOAvb09vLy8FM0QmQNUfNEMDAxk1l908eJFrVGP69evjxkzZmDgwIF6nVUpLS0N48aN0zxWqVSIi4tj1jOW80fkbpyak5ODKVOmAKj4mz948GBZ118Tsh6HjYhJDizCDdS9e/eQm5sLKysr3Lt3Dzk5OYplWVpa4rPPPsNLL72EX3/9FU2bNlUsKygoCHFxcfD398f333+vaP9zQ1RcXIyHDx/CzMwMRUVFso8u7+3t/cTRSaOjo2XNsrGxETrN28qVKzF27FhMmjSp2j4+rgkjPd60adMwZswYREZGIiwsDEuXLkVERIRieb169cLEiRO15qpXohmhqBwAeO2117BkyRI4OTlplsnd3cgQs0xNTastU2r2EJFZlXx9fbFx40Y8fPgQgLKFgiFmidynJ5F7JHEnJyecOXMGrq6uSEpKQpMmTVBaWgpJkmTvimaoWY/DqSdJDizCDZS/vz8GDBgACwsL5OXlVZsWSE5LlizB9u3bER8fD0dHR3z44YeyZ9y+fRuNGzfGc889h4EDB+Lu3bvo2rWr7DmGzs/PD56enmjRogWSk5Mxfvx4WdevdFPwql588UVhWUDFGAgAFGs9UFOUlZXBzc0Nq1evxltvvYXIyEhF8yIjI+Hh4aF4H35ROUBFk1VHR0fNrBRKfiE0pCxra2ucP39ea7aQ8+fPK1IYi8yqFB0djbVr16Jhw4aKZRhylsh9EuXMmTM4evQojIyMoFarAVRcMFSpVDhw4ACziHSIRbiBysnJQe3atZGSkoL69esjKChIsQ+munXrKjL6dVVff/01pk+fjlmzZmktV6lUOhmcS1/169cP7u7uuHnzJpo1a4b69evLuv6ff/4ZAwcORFhYWLUv0HJPhRYUFCTr+v7Mb7/9ht9+++2xz3Xq1Enotuiz0tJShIaGomPHjvjll19kb43xqHr16mH06NGKZojMASq6AokaVd6QsqZNm4axY8fC1tYWdnZ2yMjIQHp6Oj7//HO9zqr03HPPKdoSzdCzRO7Tk8h9933q1KkIDg6GhYUFCgsLERwcjFdeeUXWDEPPehw2Ryc5cHR0A+Xl5YXly5drXdEV0USHnm3nz5/H7NmzkZ2djaZNm2Lu3Llo1aqVbOs/cuQIevToge3bt2stV6lUijVhFWXFihVPfI6jpD69tLQ0HDt2DAMHDkRcXBzatWsHOzs7xfKmTJkCMzMzODs7ay4MeXt7620OAHzyySdo1qyZVpZSA8EZWpZarcaZM2eQlZWFJk2aoEOHDord3ReVVdkC6dy5czAxMdF6/+S++GmIWSL3qZKokdgHDhyINWvWwNraGtnZ2Rg3bhy2bt0q2/oNPUvXo7CTYeOdcAP1LFzRVcKyZcvw7bffai07evSojrZG/yxYsACLFi2Ck5MTkpKSMHfuXFmbA/fo0QNARbFftdXC1KlT9b4IHzBgABo3bqzowIM1gYODAxwcHAAAffr0UTzP3t4eAHDnzh2DyAEqmvSnpaUhLS1Ns0ypwtjQsi5fvgwHBwd06NAB69atw9GjRzFs2DBFuhGIyqocoFLEQJWGmCVynypVjsTevHlzTcFvYmIi+0js5ubmsLa2BgA0bNhQ0e4Qhpg1adIkNG/eHD169MDZs2cxffp0LFmyhAU4yYJ3wg2MLq7oiuTp6YnY2Fje1f+bhg0bho0bNz7x8T+1ZcsWrFq1Cg8ePEC9evU0y1944QVZc3QhNDQU06dPh6+vL1QqlWYuY1NTU3aJeIZlZGRUW9akSRO9zaG/7/PPP8eJEydQXl4Oa2tr1K9fH40aNUJiYiLWrFmjt1mkf/r27YvCwkLNY7lHYq/6XbBu3bpwdXVFQkICiouLER4eLluOIWcBwODBg7VuVDz6mOif4J1wA6OLK7oiOTs7o7i4mEX4X1Q5VY6xsTHmzJkDNzc3JCQkyD512JAhQzBkyBCsXr0aH3zwgazr1jVvb2988MEHaNWqFd58800EBARApVJp5ielZ9PEiROhUqmgVqtx8+ZN2NvbKzItmqgcQPvucE5ODuzs7PDDDz8w608cO3YMW7duRXFxMXr37q2ZbtDX11e2DF1kkf5ReiT2x30X7Nmzp6wZhp4F6H4UdjJsLMINjMgpm3ShRYsW6N69O2xsbCBJEkfCfErZ2dkAgJdffhkAkJqaCktLS7Rp00aRvKFDh2LPnj0oKSnRLNP35ugzZsxAQEAAHjx4gDFjxmD79u2wtrbGyJEj9X7fDFnVuZpzc3OrDe6obzmAdhec9PT0PxyvgFn/UzltmKmpKZo1a6ZZrkQ/bZFZpH+UHold5HdBQ80COAo7KYtFOOmVPXv24MCBA0KmATIklQOHPWkwGLmNHTsWjRo10vSbMoQvnsbGxujWrRsAYNOmTZp+zXXr1tXhVtFfYWlpievXrxtMDgA0bdoUV69eZdZTKC4uRlpaGtRqtdbPRUVFsuaIziL9Y6jj9hgaXY/CToaNRTjplSZNmsDMzIzNgP6m0tLSxw4GIzdJkrBkyRLZ16tLVS8kVH3PKq+O07PJ29sbKpUKkiTh3r176NKli17nABXje1Sej1lZWWjQoAGznkJaWpqmhYKpqSk++eQTzc9yE5lF+qOyT3NJSQnef/99gxu3x9CsWLECsbGxQkZ8p5qHRTjpldu3b8PDw0MzpZFKpUJ0dLSOt0p/pKamYuzYsZrHSjWpatWqFX777Tet5u76fuEkOTkZkydPhiRJWj+npKToetPoD1R+6QUqCiAbGxu9zgGAQYMGaWW9+OKLzHoKLVu2REZGBtzc3ODu7o5u3bop1qpKZBbpD0Mft8fQiBzxnWoejo5OeiU9Pb3aMjbpevb069cP+fn5mseG0H/q5MmTT3yuU6dOAreEnkZsbCwGDhyIsLCwat0h5LzjJCoHAA4dOoTXXntNq/95JbnnJDfUrJKSEpw7dw4nT57E2bNnAQBubm5aFyf1MYuI5CN6FHaqmXgnnPTCHw3QU9nfmf7cgQMHEBkZqRndMycnB99//73sOd999x2AihGO69WrZxB9wllo65fGjRsDABwdHQ0iB6j4fQL+N9Ais/46ExMTtG3bFg8ePEBBQQEuXryIS5cu6X0WEclH9CjsVDPxTjjphcom53FxcWjWrBlcXFxw/vx53Lp1S9HReg2Nl5cXPvnkE0RHR6Nz5844duyYIgO1nTp1CnPnzkV5eTl69+6NJk2aYODAgbLnEP2ZwsJC5ObmolatWti6dSv69++vSOsZETmPm4u8ktxzkhti1tdff43Dhw8jLy8PXbp0QY8ePeDq6oratWvLlqGLLCIi0j8swkmvvP/++1i3bp3m8fDhw/H111/rcIv0S+X7FxQUhE8//RRDhw7F5s2bZc8ZMmQIvvzySwQGBuKrr76Cj48Ptm3bJnsO0Z8ZO3YsvLy88OOPP8LJyQknTpzQ+gzRp5zKptk5OTkoKChAy5YtceXKFTRs2FD23y9DzOrYsSN69OiBgQMHws3NTdGCWGQWERHpHyNdbwDRX3H//n3N1D8pKSla/Y7pz9WuXRunTp1CWVkZjhw5oljzT5VKhfr160OlUsHU1BTm5uaK5BD9mdzcXPTs2RO3b9/G6NGjteau17ecmJgYxMTEwMnJCXv37sX69euxb98+NGrUiFlP4fjx43j33Xdx5MgR+Pj4wN/fH1FRUX94J14fsoiISP+wTzjplRkzZmDy5MnIzMyEjY0NQkNDdb1JemXu3Lm4evUq/P398fnnn2P8+PGK5Njb2yMsLAz379/H2rVrZW++SvS0SktLsX79erRt2xbJyckoKCjQ6xygYpYICwsLABXz1GdlZTHrKdSuXRtdunTRTB8XHx+PNWvWIDg4GJcvX9bbLCIi0j8swkmv/P7778jNzYWxsTFycnIQGBiIH3/8UdebpTeKi4tx9+5ddOnSBfb29mjfvr0iOXfu3IGzszNcXV1Rt25dzJs3T5Ecoj8zdepUHDhwAP7+/vj+++8xZ84cvc4BgO7du2Po0KF48cUXkZCQAE9PT2Y9hfPnz+PMmTM4ffo0rl69itatW6N///5YvHixrDmis4iISP+wTzjpFS8vL6xevRqrVq1C7969sXHjRqxcuVLXm6U3Bg0ahIkTJ6Jz5844ffo0li9fjo0bN8qec/78eWzfvh2nT5+Gh4cHBgwYAFtbW9lziJ5GXl4ejIyMsH//frz22muoV6+eXucAwJUrV5CcnIzmzZujdevWiuUYUtawYcPQvXt3dO3aFc7OzorO2iAyi4iI9A/vhJNeee6559CoUSMUFBSgc+fO+OKLL3S9SXqnc+fOACoGDlKr1YpktGvXDu3atcODBw8wZ84ceHh44MKFC4pkEf2RqVOnolu3bjh37hzUajX279+PL7/8Um9zgIpm28uXL9cUq9OnT0ezZs2Y9SeUuOD4LGQREZH+4cBspFcsLS0RFxcHlUqF6Oho3Lt3T9ebpFesrKwQExODpKQkxMbGKjZg2unTp/Hxxx9j6NChcHJyQlxcnCI5RH8mPT0dnp6eSElJQXBwsGKDOYrKAYCZM2fC09MT0dHRePvttzFjxgxmERER6REW4aRX5s+fjyZNmmDy5MlIS0tTtN+lIVq4cCGSk5OxePFipKSkICQkRJGcjRs3onfv3vjuu+8wbtw4NG7cWJEcoj9TWlqKPXv2wMnJCffu3UNOTo5e5wAVYzv07NkTVlZWeOONN1BeXs4sIiIiPcLm6KRXLCws4OzsDACYNm2ajrdGf9y+fRuNGzfGgwcPMHjwYEiSBJVKhQcPHsDa2lr2vOXLl8u+TqK/Y+TIkdi9ezemT5+OiIgITJgwQa9zAKC8vBxJSUlo1aoVkpKSFMsx5CwiIiJd4sBsRDVAaGgopk+fDl9fX6hUKhQXFwMATE1NsWnTJh1vHZE4WVlZisx1LTLn8uXLmDlzJq5evYrmzZsjJCREsQHTDDWLiIhIl9gcnagG8Pb2xgcffIBWrVohICAAqampSEtLg5eXl643jUhRn3/+OV555RW4urqibdu2GD58uN7mXLx4Ef3794eTkxPGjBkDMzMzFBQUID09nVlERER6hEU4UQ0wY8YM+Pr6wsXFBWPGjMHWrVuxf/9+REZG6nrTiBR15MgRxMfHo2/fvtizZw+ef/55vc1ZtmwZFi5ciNq1a+Ozzz5DeHg4vv32W4SHhzOLiIhIj7BPOFENYGxsjG7dugEANm3aBAcHBwBA3bp1dbhVRMqrX78+TExMUFBQAHt7ezx8+FBvcyRJQuvWrZGZmYmHDx+ibdu2AAAjI/mvpxtqFhER0bOAf+GIagCVSqX52cTERPOzUvOEEz0rGjdujG+++QZmZmYICwtTbOowETmVv69HjhxBly5dAAAlJSUoKChgFhERkR7hwGxENUDXrl3RpUsXSJKEX375RfPziRMncOzYMV1vHpFi1Go1bt26hXr16mH79u3o2rUrXnjhBb3MWbt2LQ4ePIjbt29j1apVMDc3x5w5c9C5c2eMGTOGWURERHqCRThRDXDy5MknPtepUyeBW0IkRnl5OcrLyzFp0iQsW7YMkiRBrVZj9OjRss4IICqnUkpKCqytrfHcc8/h+vXrSEpKgoeHh+w5hpxFRESkayzCiYjI4GzduhWrV6/GnTt30LBhQ0iShFq1asHV1RULFy7UuxwiIiIyHCzCiYjIYH3zzTcYMGCAweQQERGR/mMRTkREBuvWrVsIDQ1FSkoKHBwcMH36dDRr1kxvc4iIiEj/sQgnIiKDNXLkSPj4+MDNzQ0nT55EREQENm7cqLc5REREpP84RRkRERms4uJi9OzZE1ZWVnjjjTdQXl6u1zlERESk/1iEExGRwSovL0dSUhIAaP6rzzlERESk/9gcnYiIDFJ+fj4SExMRGhqK7OxsNGrUCPPnz0fr1q31MoeIiIgMg7GuN4CIiEhumzdvxvr162FsbIyZM2fC3d1dr3OIiIjIcLA5OhERGZxdu3Zh7969iI6OxqZNm/Q+h4iIiAwHi3AiIjI4JiYmMDExgbW1NUpLS/U+h4iIiAwHi3AiIjJoooY+4RArRERE9DQ4MBsRERmcrl27okuXLpAkCb/88gu6dOmieS4sLEzvcoiIiMhwsAgnIiKDc/LkySc+16lTJ73LISIiIsPBIpyIiIiIiIhIEPYJJyIiIiIiIhKERTgRERERERGRICzCiYiIiIiIiARhEU5EREREREQkCItwIiIiIiIiIkH+DwcINKxeni7sAAAAAElFTkSuQmCC\n",
2718
      "text/plain": [
2719
       "<Figure size 1296x1296 with 2 Axes>"
2720
      ]
2721
     },
2722
     "metadata": {},
2723
     "output_type": "display_data"
2724
    }
2725
   ],
2726
   "source": [
2727
    "saps=saps.drop(['SUBJECT_ID','HADM_ID', 'ICUSTAY_ID'], axis=1)\n",
2728
    "# Compute correlations\n",
2729
    "corr = saps.corr()\n",
2730
    "\n",
2731
    "# Exclude duplicate correlations by masking uper right values\n",
2732
    "mask = np.zeros_like(corr, dtype=np.bool)\n",
2733
    "mask[np.triu_indices_from(mask)] = True\n",
2734
    "\n",
2735
    "# Set background color / chart style\n",
2736
    "sns.set_style(style = 'white')\n",
2737
    "\n",
2738
    "# Set up  matplotlib figure\n",
2739
    "f, ax = plt.subplots(figsize=(18, 18))\n",
2740
    "\n",
2741
    "# Add diverging colormap\n",
2742
    "#cmap =sns.diverging_palette(150, 275, s=80, l=55, n=12)\n",
2743
    "cmap = sns.diverging_palette(220, 20, sep=20, as_cmap=True)\n",
2744
    "\n",
2745
    "# Draw correlation plot\n",
2746
    "sns.heatmap(corr, mask=mask, cmap=cmap, \n",
2747
    "        square=True,\n",
2748
    "        linewidths=.5, cbar_kws={\"shrink\": .5}, ax=ax)\n",
2749
    "ax.set (title='Correlations: ICU Patients SAPSII Score')"
2750
   ]
2751
  },
2752
  {
2753
   "cell_type": "code",
2754
   "execution_count": 144,
2755
   "metadata": {},
2756
   "outputs": [
2757
    {
2758
     "data": {
2759
      "text/plain": [
2760
       "bp_5.0          -0.135879\n",
2761
       "hr_0.0          -0.106079\n",
2762
       "Sodium_0.0      -0.102613\n",
2763
       "bp_0.0          -0.092186\n",
2764
       "hr_4.0          -0.083538\n",
2765
       "WBC_0.0         -0.066560\n",
2766
       "hr_2.0          -0.055233\n",
2767
       "Potassium_0.0   -0.044101\n",
2768
       "hr_7.0          -0.026656\n",
2769
       "bp_2.0          -0.017075\n",
2770
       "Temp             0.007418\n",
2771
       "los              0.038376\n",
2772
       "Potassium_3.0    0.044101\n",
2773
       "Bilirubin        0.064975\n",
2774
       "WBC_3.0          0.066560\n",
2775
       "Sodium_5.0       0.067255\n",
2776
       "Sodium_1.0       0.076217\n",
2777
       "ud               0.085655\n",
2778
       "ventilation      0.162126\n",
2779
       "admission        0.162633\n",
2780
       "AGE              0.174295\n",
2781
       "UO               0.184033\n",
2782
       "Bicarbonate      0.186168\n",
2783
       "bun              0.203030\n",
2784
       "bp_13.0          0.226155\n",
2785
       "gcs              0.262179\n",
2786
       "saps2            0.421423\n",
2787
       "death            0.433143\n",
2788
       "hr_11.0          0.433746\n",
2789
       "hdeath           1.000000\n",
2790
       "Name: hdeath, dtype: float64"
2791
      ]
2792
     },
2793
     "execution_count": 144,
2794
     "metadata": {},
2795
     "output_type": "execute_result"
2796
    }
2797
   ],
2798
   "source": [
2799
    "# Correlations of numerical values\n",
2800
    "saps.corr()['hdeath'].sort_values()"
2801
   ]
2802
  },
2803
  {
2804
   "cell_type": "code",
2805
   "execution_count": 145,
2806
   "metadata": {},
2807
   "outputs": [
2808
    {
2809
     "data": {
2810
      "text/plain": [
2811
       "hr_4.0          -0.206029\n",
2812
       "Sodium_0.0      -0.086233\n",
2813
       "Bilirubin       -0.065717\n",
2814
       "hr_7.0          -0.062670\n",
2815
       "bp_0.0          -0.030573\n",
2816
       "hr_0.0          -0.004219\n",
2817
       "bp_5.0          -0.002464\n",
2818
       "Potassium_3.0   -0.000401\n",
2819
       "WBC_0.0         -0.000081\n",
2820
       "WBC_3.0          0.000081\n",
2821
       "Potassium_0.0    0.000401\n",
2822
       "los              0.007898\n",
2823
       "bp_2.0           0.019057\n",
2824
       "hr_2.0           0.021176\n",
2825
       "bp_13.0          0.022891\n",
2826
       "Sodium_5.0       0.049146\n",
2827
       "Sodium_1.0       0.070888\n",
2828
       "ventilation      0.082251\n",
2829
       "Bicarbonate      0.082257\n",
2830
       "gcs              0.124120\n",
2831
       "UO               0.153244\n",
2832
       "ud               0.181802\n",
2833
       "Temp             0.197986\n",
2834
       "hr_11.0          0.199236\n",
2835
       "bun              0.287472\n",
2836
       "admission        0.297403\n",
2837
       "saps2            0.367351\n",
2838
       "AGE              0.416355\n",
2839
       "hdeath           0.433143\n",
2840
       "death            1.000000\n",
2841
       "Name: death, dtype: float64"
2842
      ]
2843
     },
2844
     "execution_count": 145,
2845
     "metadata": {},
2846
     "output_type": "execute_result"
2847
    }
2848
   ],
2849
   "source": [
2850
    "# Correlations of numerical values\n",
2851
    "saps.corr()['death'].sort_values()"
2852
   ]
2853
  },
2854
  {
2855
   "cell_type": "markdown",
2856
   "metadata": {},
2857
   "source": [
2858
    "## Results 2: \n",
2859
    "### Correlations\n",
2860
    "\n",
2861
    "+ The heat map above provides a wholestic picture of where the correlation between variables of interest stands. Light teal-to-dark teal color represents negative correlation between two corrosponding variables. Light red to dark red color represents positive correlation between two corrosponding variables (columns). The darker the color, the stronger the correlation.\n",
2862
    "+ Generally speaking there is correlation (although weak - between 2 and -2) with all of the phsyilogical variables. \n",
2863
    "+ Cardiac arrest (hr_11) is strongly correlated (43.4%) with hospital death, morethan the total SAPSII score - created as a combined score of all 17 phsiological variables.\n",
2864
    "+ Extreme levels of systolic blood pressure (below 70mmHg) and low levels of Glasgow Coma Score were correlatd with within hospital death. \n",
2865
    "+ When we change the target variable from death within hospital death to death - including both deaths within the hospital and deaths identified by matching thte patient to the social security master death index, we observe, expectedly age playing key role (correlation score increased from 17% to 42%). \n"
2866
   ]
2867
  },
2868
  {
2869
   "cell_type": "markdown",
2870
   "metadata": {},
2871
   "source": [
2872
    "## 3. Show Distributions and Comparisons "
2873
   ]
2874
  },
2875
  {
2876
   "cell_type": "code",
2877
   "execution_count": 166,
2878
   "metadata": {},
2879
   "outputs": [
2880
    {
2881
     "data": {
2882
      "text/plain": [
2883
       "<Figure size 792x432 with 0 Axes>"
2884
      ]
2885
     },
2886
     "metadata": {},
2887
     "output_type": "display_data"
2888
    }
2889
   ],
2890
   "source": [
2891
    "survived=saps.saps2.loc[saps.hdeath==0]\n",
2892
    "deceased=saps.saps2.loc[saps.hdeath==1]"
2893
   ]
2894
  },
2895
  {
2896
   "cell_type": "code",
2897
   "execution_count": 167,
2898
   "metadata": {},
2899
   "outputs": [
2900
    {
2901
     "data": {
2902
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAAFxCAYAAADajKhZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXBUVd7/8U93Nkw6LAHZgyYMIIgMAsMyIvK4hYdlZDBAWCKWKOAoGPhFAwQkSCQGMD4OFCAo6CTsEZF5ZEoF1LAJGkGEATL4MMgSDRAEOpFsfX9/WPQQCdDpdN8svF9VVqVvn3P727dS8sk599xjMQzDEAAAAOBl1souAAAAALcGgicAAABMQfAEAACAKQieAAAAMAXBEwAAAKYgeAIAAMAUvpVdgCd069ZNzZo1q+wyAAAAbnmnTp3S7t27y3yvRgTPZs2aaf369ZVdBgAAwC1v0KBB132PqXYAAACYguAJAAAAUxA8AQAAYIoacY8nAADwjKKiIp08eVKXL1+u7FJQxdWqVUvNmzeXn5+fy30IngAAwOnkyZMKDg7WnXfeKYvFUtnloIoyDEPnzp3TyZMnFRYW5nI/ptoBAIDT5cuXVb9+fUInbshisah+/frlHhkneAIAgFIInXCFO78nTLUDAIDrOp9XKHtBscfOZwvwVb0g/+u+f/LkSU2aNElr166VJK1Zs0YbN26U1WpVUVGRJk6cqG7dumn+/Plq0KCBhg0b5uw7ZMgQpaSkqHnz5s5jkydP1sGDB1W3bl1JUklJiWbOnKlWrVqV+fk///yztm3bpgEDBmjJkiXq3r27OnToUK7vmJaWppEjR960ncPhUHJysrKysmS1WuXn56f4+HiFhoaW6/OuNnHiRCUnJ8vf//rX+EbKuoaeRPAEAADXZS8oVnrmSY+dL7Jz8xsGz6t99NFH2rFjh9599135+fnpxIkTGjlypD744INyfeaLL76oXr16SZK++OILvfnmm1qwYEGZbY8cOaKtW7dqwIABGjNmTLk+54pFixa5FDy3bdumnJwcLV++XJK0efNmzZ49W4sWLXLrcyXpjTfecLuvGQieAACgSlq9erWmTJniXDUdGhqqDRs2qF69em6f88KFCwoMDJQkvf766zpw4IDy8vLUsmVLJSUlafHixTp8+LDWrFmjvXv3qm/fvurRo4dmzJih48ePy+FwKCYmRt26ddOAAQPUtWtXHTlyRBaLRQsXLlRaWpouXLighIQEjRo1SlOmTJGvr698fHw0Z84cNWrUyFlL48aNdeDAAW3atEndu3fXQw895AzIDz74oP7xj38oICBA8+bNU3h4uJo1a6Z58+bJz89Pf/zjH7Vnzx797W9/kySNHTtWL7zwgp5//nlt3LhRf/7zn/Xhhx8qMDBQb7/9tnx9fRUREaHp06eroKBAAQEBmjVrlpo0aaI33nhD27ZtU+PGjXX+/Hm3r60ruMcTAABUSTk5OddMO98sdJZ13+HcuXMVHR2tUaNGadu2bYqNjZXdblft2rW1fPlyrV69Wvv27dNPP/2kcePGqXv37ho6dKiz/7p161SvXj2tWLFCCxcu1CuvvCJJysvLU79+/ZSWlqaGDRsqIyNDzz77rOrUqaOEhATt3LlTd999t5YvX65x48bpwoULpepq06aNZs2apc2bN6t///56/PHHtW/fvht+v4KCAq1cuVLPP/+8CgoKdOrUKeXk5Oj8+fNq166dJMnPz0+PPvqoPvnkE0nSpk2b9Nhjjyk5OVnR0dFKTU3V6NGjNW/ePGVlZemrr75Senq65syZo7y8vBt+fkUx4gkAAKqkZs2aKTs7W8HBwc5j27dvV5s2bRQQEKDCwsJS7fPz81WrVq1rznP1VPsVRUVFys3N1aRJkxQYGKj8/HwVFRWVWUdWVpYyMzO1f/9+SVJxcbFzZPBK2GvSpIkKCgpK9YuMjNTSpUv19NNPKzg4WBMnTiz1/uHDhxUWFqaUlBQZhqEdO3YoJiZGO3bsKNXOMAznz1c/uigyMlIbNmyQv7//NfujDx48WAkJCQoPD9edd96pevXqKSsrS2+99ZbefvttGYYhPz8/HT16VO3bt5fVapXNZlPr1q3LvAaewognAACokh5//HEtXLhQxcW/Lm46duyY4uPjZbVadffdd2vr1q3O93744QcVFhaqfv36Lp07IyND2dnZSklJ0aRJk3T58mUZhiGr1SqHw1GqbXh4uPr166fU1FQtXbpUffr0UZ06dSSVPcJ6JShu2bJFnTt31nvvvac+ffro7bffLtVu165dSklJUUlJiSwWi1q1aqXbbrtNFotF/v7+ysnJkWEYOnz4sLOP1fqf6Na3b199/vnn+vTTT9W/f/9S577zzjtlGIbefvttDR482Pk9YmNjlZqaqpkzZyoiIkJhYWHav3+/HA6H8vPzdfToUZeun7sY8QTKqaIrPG+2ohMA8Kt+/frpzJkzGj58uPz8/FRSUqK5c+eqfv36uu+++/TNN99o0KBBstlsMgxDycnJLp+7Q4cOWrhwoYYMGSJ/f3+FhoYqJydHLVq0UFZWlt59911n26ioKE2bNk0jR46U3W7X8OHDSwXA32rZsqViY2M1YcIEvfjii5o/f76sVqumTJlSql10dLSSk5M1cOBA2Ww2Wa1WzZkzR5L09NNPa8yYMWrWrJlq165d5ucEBQXprrvuUnFxsWw22zXvR0ZG6s0331T37t0lSXFxcUpISFBBQYEuX76s+Ph4tW3bVn369FFkZKQaNmzocnB3l8W4evy2mho0aJDWr19f2WXgFnEiN79CKzwjOzdXaEigBysCAM85dOiQ2rZt63xt9uOUUL389vdFunEuY8QTAABcV70gf4IiPMZrwXPgwIHOm4GbN2+uoUOH6tVXX5WPj4969uyp559/Xg6HQwkJCTpy5Ij8/f2VmJioO+64Q/v27bumLQAAAKo3rwTPK6u6UlNTnccee+wxzZ8/X6GhoRozZowOHjyoU6dOqbCwUGvWrNG+ffv02muvadGiRZoxY8Y1be+++25vlAoAAACTeCV4Hj58WL/88oueeuopFRcXa/z48SosLFSLFi0kST179tSuXbt05swZ3X///ZKkjh076sCBA7Lb7WW2JXgCAABUb14JnrVq1dLo0aM1ePBg/fvf/9YzzzxTakVWUFCQTpw4IbvdXmoVlo+PzzXHrrQFAABA9eaV4BkWFqY77rhDFotFYWFhCg4O1s8//+x8Py8vT7Vr19bly5dLPSHf4XDIZrOVOnalLQAAAKo3rzxAPj09Xa+99pok6aefftIvv/yiwMBA/fDDDzIMQ9u3b1eXLl3UqVMnZWRkSJL27dun1q1by2azyc/P75q2AACgEuTnSuePe+6//NwbftzJkyc1ZMgQ5+s1a9ZoxIgRio6OVlRUlHbv3i1Jmj9/vlatWlWq75AhQ3TyZOnH3U2ePFkDBgxQdHS0oqOjNXz4cP3rX/+67uf//PPP+vvf/y5JWrJkiXO3ovJIS0tzqd369evVu3dvRUdHa8SIERo5cqR27dpV7s8zQ1nX1h1eGfGMjIzUlClTNGzYMFksFs2ePVtWq1WxsbEqKSlRz5499fvf/1733HOPduzYoaioKBmGodmzZ0uSZs6ceU1bAABQCQouSftWeu58HYdLgSEuNf3oo4+0Y8cOvfvuu/Lz89OJEyc0cuRIffDBB+X6yKu3zPziiy/05ptvasGCBWW2PXLkiLZu3aoBAwZozJgx5fqcKxYtWqSRI0e61LZ///6KjY2VJJ09e1YjRoxQWlqabr/9drc+u6rzSvD09/fX66+/fs3xtWvXlnpttVr1yiuvXNOuY8eO17QFAAC3ltWrV2vKlCny8/OTJIWGhmrDhg2qV6+e2+e8cOGCAgN/3cTj9ddf14EDB5SXl6eWLVsqKSlJixcv1uHDh7VmzRrt3btXffv2VY8ePTRjxgwdP35cDodDMTEx6tatmwYMGKCuXbvqyJEjslgsWrhwodLS0nThwgUlJCRo1KhRmjJlinx9feXj46M5c+aoUaNG162tQYMGioiI0Oeff66BAweW+ZmfffaZMzS3a9dOM2fO1Ndff6033nhDPj4+Cg0N1SuvvKKCggLFx8fr0qVLOn/+vAYPHqzhw4drxYoV2rBhg6xWqzp16qS4uDhlZ2dr+vTpKigoUEBAgGbNmqUmTZrojTfe0LZt29S4cWPn3vQVxV7tAACgSsrJyVFoaGipYzcLnWXtnT537lxFR0dr1KhR2rZtm2JjY2W321W7dm0tX75cq1ev1r59+/TTTz9p3Lhx6t69u4YOHersv27dOtWrV08rVqzQwoULnYNmeXl56tevn9LS0tSwYUNlZGTo2WefVZ06dZSQkKCdO3fq7rvv1vLlyzVu3DhduHDhpt+5fv36On/+fJmfWVxcrFmzZmnJkiV6//331ahRI2doXLBggdLS0tSoUSN98MEHOn78uPr166dly5Zp8eLFzi1A169fr/j4eK1Zs0ahoaEqLi5WcnKyoqOjlZqaqtGjR2vevHnKysrSV199pfT0dM2ZM6fU+puKYOciAABQJTVr1kzZ2dnODWkkafv27WrTpo0CAgJUWFhYqn1+fr5q1ap1zXmunmq/oqioSLm5uZo0aZICAwOVn5+voqKiMuvIyspSZmam837P4uJi5whgu3btJElNmjRxPsf8isjISC1dulRPP/20goODNXHixJt+59OnT6tdu3bau3fvNZ957tw51a5d27mf+vPPP69z584pJydHMTExkqTLly/rvvvu0wMPPKD33ntPn3zyiWw2m4qLf932NCkpScuWLdO8efPUsWNHGYahrKwsvfXWW3r77bdlGIb8/Px09OhRtW/fXlarVTabTa1bt75p7a5gxBMAAFRJjz/+uBYuXOgMTceOHVN8fLysVqvuvvtubd261fneDz/8oMLCQmcou5mMjAxlZ2crJSVFkyZN0uXLl2UYhqxWqxwOR6m24eHh6tevn1JTU7V06VL16dNHderUkVT2CKthGJKkLVu2qHPnznrvvffUp08fvf322zesKScnR1u2bNEDDzxQ5mfefvvtunjxovNJQYmJiTp16pQaN26shQsXKjU1VePGjVO3bt20bNkydezYUfPmzVOfPn2cNa1du1YzZ85UWlqaDh06pL179yo8PFyxsbFKTU3VzJkzFRERobCwMO3fv18Oh0P5+fk6evSoS9f1ZhjxBAAAVVK/fv105swZDR8+XH5+fiopKdHcuXNVv3593Xffffrmm280aNAg2Ww2GYah5ORkl8/doUMHLVy4UEOGDJG/v79CQ0OVk5OjFi1aKCsryzk1LUlRUVGaNm2aRo4cKbvdruHDh8tqvf7YXcuWLRUbG6sJEyboxRdf1Pz582W1WjVlypRr2v7v//6vvv32W1mtVhmGoaSkJNWtW/e6nzljxgyNHTtWVqtV7dq10z333KP4+HiNGTNGhmEoKChIc+bMkcViUUJCgv7+97+rbt268vHxUWFhodq0aaPIyEjVq1dPjRo10u9//3vFxcUpISFBBQUFunz5suLj49W2bVv16dNHkZGRatiwocuB/mYsxpUIXI0NGjRI69evr+wycIs4kZuv9Ez3HykR2bm5QkMCPVgRAHjOoUOH1LZt2/8cyM/9dWW7pwQEu7yqHVXfNb8vunEuY8QTAABcX2AIQREewz2eAAAAMAXBEwAAAKYgeAIAgFJqwPIPmMCd3xPu8QSqmfN5hbIXFLvd3xbgq3pB/h6sCEBNUqtWLZ07d07169cv81FBgPRr6Dx37lyZz029EYInUM3YC4orvKqe4Angepo3b66TJ0/qzJkzlV0KqrhatWqpefPm5epD8AQAAE5+fn4KCwur7DJQQ3GPJwAAAExB8AQAAIApCJ4AAAAwBcETAAAApiB4AgAAwBQETwAAAJiC4AkAAABTEDwBAABgCh4gj2qHLSMBAKieCJ6odtgyEgCA6ompdgAAAJiC4AkAAABTEDwBAABgCoInAAAATEHwBAAAgCkIngAAADAFwRMAAACmIHgCAADAFARPAAAAmILgCQAAAFMQPAEAAGAKgicAAABMQfAEAACAKQieAAAAMAXBEwAAAKYgeAIAAMAUBE8AAACYguAJAAAAUxA8AQAAYAqCJwAAAEzhW9kFADCXwzB0Ijff7f62AF/VC/L3YEUAgFsFwRO4xVwuKtGm7350u39k5+YETwCAW5hqBwAAgCkIngAAADAFwRMAAACmIHgCAADAFARPAAAAmILgCQAAAFMQPAEAAGAKgicAAABMQfAEAACAKbwWPM+dO6cHHnhA33//vY4fP65hw4Zp+PDhmjFjhhwOhyRpwYIFioyMVFRUlPbv3y9J120LAACA6s0rwbOoqEgvv/yyatWqJUlKSkpSTEyMVq5cKcMwtGXLFh08eFB79uzRunXrlJKSopkzZ163LQAAAKo/rwTP5ORkRUVFqWHDhpKkgwcPqmvXrpKkXr16aefOncrMzFTPnj1lsVjUtGlTlZSUKDc3t8y2AAAAqP48HjzXr1+vkJAQ3X///c5jhmHIYrFIkoKCgnTp0iXZ7XbZbDZnmyvHy2oLAACA6s/X0yd8//33ZbFYtGvXLh06dEhxcXHKzc11vp+Xl6fatWvLZrMpLy+v1PHg4GBZrdZr2gIAAKD68/iI54oVK5SWlqbU1FS1bdtWycnJ6tWrl3bv3i1JysjIUJcuXdSpUydt375dDodDp0+flsPhUEhIiNq1a3dNWwAAAFR/Hh/xLEtcXJymT5+ulJQUhYeHKyIiQj4+PurSpYuGDh0qh8Ohl19++bptgZrEYRg6kZvvdv/CYp70AAConrwaPFNTU50/p6WlXfP++PHjNX78+FLHwsLCymwL1BSXi0q06bsf3e7f957GHqwGAADz8AB5AAAAmILgCQAAAFMQPAEAAGAKgicAAABMQfAEAACAKQieAAAAMAXBEwAAAKYgeAIAAMAUBE8AAACYguAJAAAAUxA8AQAAYAqCJwAAAExB8AQAAIApCJ4AAAAwBcETAAAApiB4AgAAwBQETwAAAJiC4AkAAABTEDwBAABgCoInAAAATEHwBAAAgCkIngAAADAFwRMAAACmIHgCAADAFARPAAAAmMK3sgsAcOs4n1coe0Gx2/1tAb6qF+TvwYoAAGYieAIwjb2gWOmZJ93uH9m5OcETAKoxptoBAABgCoInAAAATEHwBAAAgCkIngAAADAFwRMAAACmIHgCAADAFARPAAAAmILgCQAAAFMQPAEAAGAKgicAAABMQfAEAACAKQieAAAAMAXBEwAAAKYgeAIAAMAUBE8AAACYguAJAAAAUxA8AQAAYAqCJwAAAExB8AQAAIApCJ4AAAAwBcETAAAApiB4AgAAwBQETwAAAJiC4AkAAABTEDwBAABgCoInAAAATOHrjZOWlJRo2rRpOnbsmHx8fJSUlCTDMDR58mRZLBa1atVKM2bMkNVq1YIFC/T555/L19dXU6dOVYcOHXT8+PEy2wIAAKD6cinNnT17tlwn/eyzzyRJq1ev1oQJE5SUlKSkpCTFxMRo5cqVMgxDW7Zs0cGDB7Vnzx6tW7dOKSkpmjlzpiSV2RYAAADVm0vBc/z48Xruuef02WefyeFw3LT9ww8/rFmzZkmSTp8+rQYNGujgwYPq2rWrJKlXr17auXOnMjMz1bNnT1ksFjVt2lQlJSXKzc0tsy0AAACqN5eC56pVqzRp0iTt2bNHUVFReuONN3TixIkb9vH19VVcXJxmzZqliIgIGYYhi8UiSQoKCtKlS5dkt9tls9mcfa4cL6stAAAAqjeXb5xs2LChQkNDVatWLWVlZenVV1/Vm2++ecM+ycnJ+vjjjzV9+nQVFBQ4j+fl5al27dqy2WzKy8srdTw4OLjU/ZxX2gIAAKB6cyl4vvDCCxo6dKguXryouXPnatGiRVq8eLG++OKLMttv2LBBb731liTptttuk8ViUfv27bV7925JUkZGhrp06aJOnTpp+/btcjgcOn36tBwOh0JCQtSuXbtr2gIAAKB6c2lV+5AhQ9SxY0cFBQUpJyfHeXzVqlVltn/00Uc1ZcoUjRgxQsXFxZo6dapatmyp6dOnKyUlReHh4YqIiJCPj4+6dOmioUOHyuFw6OWXX5YkxcXFXdMWACrqfF6h7AXFbve3BfiqXpC/BysCgFuLS8Fz79692rZtmyZPnqzExES1b99eY8aMUUBAQJntAwMDy5yGT0tLu+bY+PHjNX78+FLHwsLCymwLABVhLyhWeuZJt/tHdm5O8ASACnBpqn3r1q2aPHmyJOmvf/2rtm7d6tWiAAAAUPO4FDwtFosKCwslSUVFRTIMw6tFAQAAoOZxaao9KipKAwYMUOvWrfV///d/evrpp71dFwAAAGoYl4Ln4MGD9dBDD+nEiRMKDQ1VSEiIt+sCAABADeNS8Dx06JDWrFlT6lmcSUlJXisKAAAANY9LwXPy5MkaOXKkGjdu7O16AAAAUEO5FDwbNGigwYMHe7sWAAAA1GAuBc9mzZppyZIlatu2rXMP9Z49e3q1MAAAANQsLgXPoqIiHTt2TMeOHXMeI3gCAACgPFwKnklJSTp27Jh++OEHtWnTRg0bNvR2XQAAAKhhXAqeaWlp+vTTT3XhwgX9+c9/1vHjx537qgMAAACucGnnoo8++kjvvvuugoODNWrUKH377bfergsAAAA1jEvB88oWmVcWFvn7+3uvIgAAANRILk219+/fXyNGjNDp06f1zDPP6OGHH/Z2XYDXOAxDJ3Lz3e5fWOzwYDUAANw6XAqeI0eOVI8ePZSVlaWwsDDddddd3q4LNdj5vELZC4rd7l/R4He5qESbvvvR7f5972EjBQAA3OFS8FywYIHz5++//16bN2/W888/77WiULPZC4qVnnnS7f4EPwAAqieXdy6Sfr3X85///KccDqYaAQAAUD4uBc+oqKhSr59++mmvFAMAAICay6XgefWORWfOnFF2drbXCgIAAEDN5FLwvPph8QEBAXrppZe8VhAAAABqJpeCZ2pqqrfrAAAAQA3nUvD805/+pLy8PAUEBKigoEDSrwuNLBaLtmzZ4tUCAQAAUDO4FDzvvfdeDRw4UPfee6+OHDmid955R4mJid6uDQAAADWIS8Hz+++/17333itJatOmjbKzs9k2EwAAAOXiUvAMDg7W//zP/6hDhw7KzMxU06ZNvV0XAAAAahirK41ef/112Ww2bdu2TaGhoXr11Ve9XRcAAABqGJeCZ0BAgOrUqaN69eopLCxMFy9e9HZdAAAAqGFcfo5nw4YNtXPnTrVv315xcXFaunSpt2sDUAU5DEMncvPd6ltYzHa7AHArcyl4/vDDD3r11Vf19ddf68EHH9SSJUu8XReAKupyUYk2ffejW3373tPYw9UAAKoTl6baS0pKlJubK4vFIrvdLqvVpW4AAACAk0sjnhMnTtSwYcN05swZDR06VPHx8d6uCwAAADWMS8EzOztbH3/8sXJzc1WvXj1ZLBZv1wUAAIAaxqU587Vr10qSQkJCCJ0AAABwi0sjnoWFhRo4cKDCwsKc93e+/vrrXi0MAAAANcsNg+fChQv1l7/8RbGxsfrpp5/UqFEjs+oCAABADXPDqfYvv/xSktS1a1etW7dOXbt2df4HAAAAlMcNg6dhGGX+DAAAAJTXDYPn1QuJWFQEAACAirjhPZ4HDx5UVFSUDMPQ0aNHnT9bLBatXr3arBoBAABQA9wweG7cuNGsOgAAAFDD3TB4NmvWzKw6AAAAUMOx6ToAAABMQfAEAACAKQieAAAAMAXBEwAAAKZwaa924Grn8wplLyh2u39hscOD1QAAgOqC4IlysxcUKz3zpNv9+97T2IPVAACA6oKpdgAAAJiC4AkAAABTEDwBAABgCu7xBIBqoqIL+2wBvqoX5O/BigCgfAieAKoNh2HoRG6+2/2r+xMVKrqwL7Jzc4IngEpF8ARQbVwuKtGm7350uz9PVACAyuXx4FlUVKSpU6fq1KlTKiws1LPPPqvf/e53mjx5siwWi1q1aqUZM2bIarVqwYIF+vzzz+Xr66upU6eqQ4cOOn78eJltAQAAUL15PNFt3LhRdevW1cqVK7V06VLNmjVLSUlJiomJ0cqVK2UYhrZs2aKDBw9qz549WrdunVJSUjRz5kxJKrMtAAAAqj+PB88+ffrohRdecL728fHRwYMH1bVrV0lSr169tHPnTmVmZqpnz56yWCxq2rSpSkpKlJubW2ZbAAAAVH8eD55BQUGy2Wyy2+2aMGGCYmJiZBiGLBaL8/1Lly7JbrfLZrOV6nfp0qUy2wIAAKD688rNk9nZ2XriiSf02GOPacCAAaXu0czLy1Pt2rVls9mUl5dX6nhwcHCZbQEAAFD9eXxx0dmzZ/XUU0/p5ZdfVo8ePSRJ7dq10+7du9WtWzdlZGSoe/fuatGihebOnavRo0frxx9/lMPhUEhISJltAaAqqOjjnHiOJoBbnceD5+LFi3Xx4kUtXLhQCxculCTFx8crMTFRKSkpCg8PV0REhHx8fNSlSxcNHTpUDodDL7/8siQpLi5O06dPL9UWAKqCij7OiedoArjVeTx4Tps2TdOmTbvmeFpa2jXHxo8fr/Hjx5c6FhYWVmZbAAAAVG88IBMAAACmIHgCAADAFARPAAAAmILgCQAAAFMQPAEAAGAKgicAAABMQfAEAACAKTz+HE8AQNkquvNRYbHDg9UAgPkIngBgkorufNT3nsYerAYAzMdUOwAAAEzBiOct6HxeoewFxW73Z7oPAAC4g+B5C7IXFCs986Tb/ZnuAwAA7mCqHQAAAKYgeAIAAMAUBE8AAACYguAJAAAAUxA8AQAAYAqCJwAAAExB8AQAAIApCJ4AAAAwBcETAAAApiB4AgAAwBQETwAAAJiC4AkAAABTEDwBAABgCoInAAAATEHwBAAAgCkIngAAADAFwRMAAACmIHgCAADAFARPAAAAmILgCQAAAFMQPAEAAGAKgicAAABM4VvZBaD8zucVyl5Q7Hb/wmKHB6sBAABwDcGzGrIXFCs986Tb/fve09iD1QAAALiGqW2yiMQAABLISURBVHYAAACYguAJAAAAUxA8AQAAYAqCJwAAAExB8AQAAIApCJ4AAAAwBcETAAAApiB4AgAAwBQETwAAAJiC4AkAAABTEDwBAABgCvZqBwC45HxeoewFxW73twX4ql6QvwcrAlDdEDwBAC6xFxQrPfOk2/0jOzcneAK3OKbaAQAAYAqCJwAAAExB8AQAAIApCJ4AAAAwhdeC57fffqvo6GhJ0vHjxzVs2DANHz5cM2bMkMPhkCQtWLBAkZGRioqK0v79+2/YFgAAANWbV4Ln0qVLNW3aNBUUFEiSkpKSFBMTo5UrV8owDG3ZskUHDx7Unj17tG7dOqWkpGjmzJnXbQsAAIDqzyuPU2rRooXmz5+vl156SZJ08OBBde3aVZLUq1cv7dixQ2FhYerZs6csFouaNm2qkpIS5ebmltn2kUce8UaZAHBLcRiGTuTmu92/sJgZKAAV45XgGRERoZMn//OsN8MwZLFYJElBQUG6dOmS7Ha76tat62xz5XhZbQEAFXe5qESbvvvR7f5972nswWoA3IpMWVxktf7nY/Ly8lS7dm3ZbDbl5eWVOh4cHFxmWwAAAFR/pgTPdu3aaffu3ZKkjIwMdenSRZ06ddL27dvlcDh0+vRpORwOhYSElNkWAAAA1Z8pW2bGxcVp+vTpSklJUXh4uCIiIuTj46MuXbpo6NChcjgcevnll6/bFgAAANWf14Jn8+bNtXbtWklSWFiY0tLSrmkzfvx4jR8/vtSx67UFAABA9cYD5AEAAGAKgicAAABMQfAEAACAKQieAAAAMAXBEwAAAKYgeAIAAMAUBE8AAACYguAJAAAAUxA8AQAAYAqCJwAAAExB8AQAAIApCJ4AAAAwBcETAAAApvCt7AIAALcGh2HoRG6+2/1tAb6qF+TvwYoAmI3gCQAwxeWiEm367ke3+0d2bk7wBKo5ptoBAABgCoInAAAATEHwBAAAgCkIngAAADAFwRMAAACmIHgCAADAFDxOCQBQLj2aWBVs/aXc/Ro7cvRoswJJ0iXHbdqV7fB0aQCqOIInAKBcgq2/6OKu98rdr6ihTRdz7JKk2j1GSQrwcGUAqjqm2gEAAGAKRjwBANVTfq5UcMn9/gHBUmCI5+oBcFMETwAwQY8m1lL3OLqjvjXPgxXVAAWXpH0r3e/fcTjBEzAZwRMATBBs/UVFme8773F0R/P/HufBigDAfARPAKgmAnwtFRoxbezI0eDWPrqQl+92/0ebFajhbRZddLsKALcygicAVBPWYvdWk19R1NCmoHsG6sSuNLf7X8yxq+lDI92uAcCtjVXtAAAAMAUjngAAuKuiK+slVtfjlkLwrATn8wplLyh2u39hMbt9AECFGQ7p/PGKnaOkUPouvWLnYHU9biEEz0pgLyhWeuZJt/v3vaexB6sBqq7fbs3ozuOIPLE145U6KvI4pIa3WSpUA7yg6Bfpnx9W7BztHvNMLcAtguAJoMr67daMV2+56CpPbM14pQ53Pv+Kpg+NVEmFqqhZbrf5lTvEhxT9KJ33+c+BkkIPVwXA2wieAADT+Tku62I5V9cXN6kt3eb3nwOMNgLVDqvaAQAAYApGPAHUaFdP6bp7jyYPTK8aDBm68EuR83Wgw1D+Va9vxt/Xqtv8fG7eEIDXEDwBXOO3i3qu5mp488SiHk+4ekrX3Xs0eWB61VBcYuhfOf95dNFd7Yp0ONv1PwnaNalN8AQqGcETwDV+u6jnaq6Gt5aPPK1ga+nRqPKOODLSCAA1C8ETgFeUtXikvCOOjDQCQM1C8ARqmBtNk0uujToy0oiaiHtEgcpH8ARqmBtNk0uujToy0oiaiHtEgcrH45QAAABgCkY8AQCoTJ7YMz4gmP3eUS0QPIEq5Gb3Z0o3v0eT+zOBasYTe8Z3HE7wRLVA8ASqkJvdnynd/B5N7s8EAFRV3OMJAAAAUxA8AQAAYAqm2t1wPq9Q9oJit/sXFlf+NoIAAABmI3i6wV5QrPTMk27373tPYw9WAwC45bEyHtUEwROQa6vJr7jeqvI6QYG6kJfvdn+JFelAVfbbnY+k8u1+5NWdj1gZj2qC4AnItdXkV1xvVXnTh0bqxG/2Ji9P/yvnAFA1/XbnI6l8ux+1bRJc5q1WroZXr2/ZyagpTEDwRLVXntFKqewRR0YaAXhbWcFVcj28en3LTkZNYYIqGTwdDocSEhJ05MgR+fv7KzExUXfccUdll4UqqjyjlVLZI46MNAIA4H1VMnhu3rxZhYWFWrNmjfbt26fXXntNixYtquyy4AXlHa2Urh2xZLQSwK2grHtMr3Blut7rU/US0/W4qSoZPDMzM3X//fdLkjp27KgDBw5UckU1jzuB74orwc/VxTTX6y/9GhqPbnV9tFK6dsSS0UoAt4LrTdVLrk3XX+8e0ytuFl5dCq6emK7/fZRUUPb3dJnVT3K4tujLq+cgRF/DYhiGUdlF/FZ8fLweffRRPfDAA5Kk3r17a/PmzfL1LTsnd+vWTc2aNTOzRAAAAJTh1KlT2r17d5nvVckRT5vNpry8POdrh8Nx3dAp6bpfDgAAAFVHldwys1OnTsrIyJAk7du3T61bt67kigAAAFBRVXKq/cqq9qysLBmGodmzZ6tly5aVXRYAAAAqoEoGTwAAANQ8VXKqHQAAADUPwRMAAACmqJKr2qsqdlTyjqKiIk2dOlWnTp1SYWGhnn32Wf3ud7/T5MmTZbFY1KpVK82YMUNWK38nVcS5c+c0aNAgLVu2TL6+vlxfD3vrrbe0detWFRUVadiwYeratSvX2EOKioo0efJknTp1SlarVbNmzeJ32IO+/fZbzZs3T6mpqTp+/HiZ13XBggX6/PPP5evrq6lTp6pDhw6VXXa1cfX1PXTokGbNmiUfHx/5+/srOTlZDRo00Nq1a7V69Wr5+vrq2Wef1X/9139VdtneY8BlH3/8sREXF2cYhmHs3bvXGDduXCVXVDOkp6cbiYmJhmEYRm5urvHAAw8YY8eONb788kvDMAxj+vTpxieffFKZJVZ7hYWFxl/+8hfj0UcfNY4ePcr19bAvv/zSGDt2rFFSUmLY7Xbjr3/9K9fYgz799FNjwoQJhmEYxvbt243nn3+e6+shS5YsMfr3728MHjzYMAyjzOt64MABIzo62nA4HMapU6eMQYMGVWbJ1cpvr++IESOMf/7zn4ZhGMaqVauM2bNnGzk5OUb//v2NgoIC4+LFi86fayr+PCwHdlTyjj59+uiFF15wvvbx8dHBgwfVtWtXSVKvXr20c+fOyiqvRkhOTlZUVJQaNmwoSVxfD9u+fbtat26t5557TuPGjVPv3r25xh4UFhamkpISORwO2e12+fr6cn09pEWLFpo/f77zdVnXNTMzUz179pTFYlHTpk1VUlKi3Nzcyiq5Wvnt9U1JSVHbtm0lSSUlJQoICND+/ft17733yt/fX8HBwWrRooUOHz5cWSV7HcGzHOx2u2w2m/O1j4+PiouLK7GimiEoKEg2m012u10TJkxQTEyMDMOQxWJxvn/pUgW3T7uFrV+/XiEhIc4/miRxfT3s/PnzOnDggN58803NnDlTsbGxXGMPCgwM1KlTp/Tf//3fmj59uqKjo7m+HhIREVFqg5ayrutv/+3jervut9f3yh//33zzjdLS0vTkk0/KbrcrODjY2SYoKEh2u/2ac9UU3ONZDuXdUQmuy87O1nPPPafhw4drwIABmjt3rvO9vLw81a5duxKrq97ef/99WSwW7dq1S4cOHVJcXFyp0Qqub8XVrVtX4eHh8vf3V3h4uAICAvTjjz863+caV8y7776rnj176v/9v/+n7OxsjRo1SkVF/9lDm+vrOVffJ3vluv723768vLxSQQnls2nTJi1atEhLlixRSEjILXd9GfEsB3ZU8o6zZ8/qqaee0osvvqjIyEhJUrt27ZxboWZkZKhLly6VWWK1tmLFCqWlpSk1NVVt27ZVcnKyevXqxfX1oM6dO2vbtm0yDEM//fSTfvnlF/Xo0YNr7CG1a9d2/kNcp04dFRcX8/8ILynrunbq1Enbt2+Xw+HQ6dOn5XA4FBISUsmVVk8ffvih8//HoaGhkqQOHTooMzNTBQUFunTpkr7//vsanS94gHw5sKOSdyQmJuof//iHwsPDncfi4+OVmJiooqIihYeHKzExUT4+PpVYZc0QHR2thIQEWa1WTZ8+nevrQXPmzNHu3btlGIYmTpyo5s2bc409JC8vT1OnTtWZM2dUVFSkJ554Qu3bt+f6esjJkyc1adIkrV27VseOHSvzus6fP18ZGRlyOByaMmUKQb8crlzfVatWqUePHmrSpIlzhP4Pf/iDJkyYoLVr12rNmjUyDENjx45VREREJVftPQRPAAAAmIKpdgAAAJiC4AkAAABTEDwBAABgCoInAAAATEHwBAAAgCl4+jmAGm/JkiXauXOnrFarLBaLJk6cqPbt2zvff+yxx9SpUyfNmDHDeax9+/a69957JUnFxcVq2bKl81FUycnJysrKktVqlZ+fn+Lj4xUaGqrJkyerb9++6tWrl+677z7t2LHDeb4jR44oMTFR0q/PAe7QoYOsVqtGjx6t3r17l1n3ypUrFRUVVeqh3leLjY3VoEGD9Mc//tF5LD8/XwkJCTp37pykX5+BOWPGDNWtW9e9iwcAHkTwBFCjHT16VFu3btWqVatksVicuzdt3LhRkpSZmanWrVvryy+/LLU1YJ06dZSamuo8T0xMjL744gv5+voqJydHy5cvlyRt3rxZs2fP1qJFi25YR5s2bZzne/DBB7Vs2TIFBATcsM/ixYs1ZMiQ6wbPsqSnp6tJkyaaM2eOJOmdd97R4sWLNXnyZJfPAQDeQvAEUKOFhITo9OnTSk9PV69evdS2bVulp6c731+3bp0iIiLUpEkTbdiwQSNHjrzmHEVFRcrPz1dgYKBCQkJ04MABbdq0Sd27d9dDDz2kXr16VajG7777Tq+++qp8fX0VEBCgxMREZWRkKDc3V5MmTVJKSoqmT5+un376SRcuXFDv3r01fvz4Ms/VtGlTbdiwQR07dtQf/vAHPfnkk7ryuOY1a9ZozZo1cjgceuSRR/Tcc89pw4YNSk1Nlb+/v8LCwvTKK6/ogw8+0IcffqiSkhLFxMTo7Nmz+tvf/iar1aquXbtq4sSJFfq+AG5d3OMJoEYLCQnRokWL9M0332jo0KHq06ePPvvsM0mS3W5XZmamevfurccff1yrVq1y9rtw4YKio6MVHR2t0aNHq2vXrurRo4fatGmjWbNmafPmzerfv78ef/xx7du3r0I1Tp8+XTNnzlRaWpqGDBmiOXPmaOjQoQoJCVFKSoqys7PVuXNnLVu2TCtWrNCKFSuue66HH35YY8aM0dq1a/Xggw/qySef1LFjx5STk6Nly5Zp1apVWr9+vX7++WedPn1aixYtUmpqqlatWqXbbrtN69atkyTVq1dPq1atUqtWrbRo0SK99957WrVqlU6cOKEvv/yyQt8XwK2LEU8ANdrx48dls9mUlJQk6dfRxTFjxqhbt27atGmTHA6Hxo4dK0k6c+aMdu3apR49elwz1X7F4cOHFRYWppSUFBmGoR07digmJqbU/ZzldfbsWbVp00bSr1voLViwoNT7devW1b59+7Rr1y4FBwerqKjouuf65ptv1LNnT/Xp00fFxcX64IMPNHXqVMXFxalNmzbO6f34+Hjt3btXrVu3VmBgoCSpS5cu+vrrr3XXXXcpLCxMkvTvf/9b586d0zPPPCPp17B+4sQJde/e3e3vC+DWxYgngBrtyJEjSkhIUEFBgSQpLCxMwcHB8vHxUXp6uhYvXqx33nlH77zzjqZNm3bD0URJ2rVrl1JSUlRSUiKLxaJWrVrptttuk8VicbvGBg0a6F//+pckac+ePbrzzjslSVarVQ6HQ+np6apfv75ef/11PfHEE/rll1+ue66NGzc67z/19fVVmzZt5O/vrzvuuEPff/+9CgsLJUnPPfecGjVqpKysLOf5vvrqK+dnX/k+LVq0UJMmTbRs2TKlpqZqxIgR6tChg9vfFcCtjRFPADXao48+qu+//16DBw9WYGCgDMPQSy+9pBMnTsgwDLVq1crZNiIiQklJScrOzr7u+aKjo5WcnKyBAwfKZrPJarU6F/K4KzEx0bmi3tfXV7Nnz5Ykde7cWc8884ymTJmi2NhY7d69W4GBgQoNDdXZs2fLPFdsbKwSEhL0pz/9SYGBgQoKCtKsWbN0++2368knn3Tew/rII4+oadOmevbZZ/XEE0/IYrEoLCxMQ4cO1Ycffug8X4MGDZy3HJSUlCg0NFT9+/ev0PcFcOuyGFfuOgcAAAC8iKl2AAAAmILgCQAAAFMQPAEAAGAKgicAAABMQfAEAACAKQieAAAAMAXBEwAAAKYgeAIAAMAU/x8Nm4ZuKw1itAAAAABJRU5ErkJggg==\n",
2903
      "text/plain": [
2904
       "<Figure size 792x432 with 1 Axes>"
2905
      ]
2906
     },
2907
     "metadata": {},
2908
     "output_type": "display_data"
2909
    }
2910
   ],
2911
   "source": [
2912
    "plt.figure(figsize = (11, 6))\n",
2913
    "_ = plt.hist(survived, bins=30, alpha=0.5, label='ICU Patients Survived')\n",
2914
    "_ = plt.hist(deceased, bins=30, alpha=0.5, label='ICU Patients Deceased')\n",
2915
    "_ = plt.xlabel('SAPSII Total Score')\n",
2916
    "_ = plt.ylabel('Frequency')\n",
2917
    "_ = plt.legend()"
2918
   ]
2919
  },
2920
  {
2921
   "cell_type": "code",
2922
   "execution_count": 169,
2923
   "metadata": {},
2924
   "outputs": [],
2925
   "source": [
2926
    "# Scipy helper functions\n",
2927
    "from scipy.stats import percentileofscore\n",
2928
    "from scipy import stats\n",
2929
    "# Calculate percentile for SAPSII Total Score\n",
2930
    "saps['percentile'] = saps['saps2'].apply(lambda x: percentileofscore(saps['saps2'], x))"
2931
   ]
2932
  },
2933
  {
2934
   "cell_type": "code",
2935
   "execution_count": 170,
2936
   "metadata": {},
2937
   "outputs": [
2938
    {
2939
     "data": {
2940
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApgAAAF/CAYAAADtmLluAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deVyVZd7H8e85kKggKVlO5pIUuOSYaaGW4VKGlVZjmba4tDjWaIZLgbhAipg6MvVYuZU5oWlqpk01M49ajTupZY+Wmfq0KC5pagqiHM65nj98PEkCHfA+G3zer9e8Xpztun/cMfLld13XfduMMUYAAACARez+LgAAAAAVCwETAAAAliJgAgAAwFIETAAAAFiKgAkAAABLETABAABgqVB/FwAguGzdulVTp07V8ePHZYzRH/7wByUlJSkmJsb9HofDoU6dOqlJkyZ6/fXX3c/v27dPXbp0UWxsrPs5Y4z69u2rBx54QJL06aefavr06crPz5fT6dS1116rkSNH6g9/+IMkqXHjxtqwYYOioqLUp08fPfLII+ratWuRGnv37q38/Hw5HA5999137uNde+21mjp1aqnf27Jly5SWllbqORgxYoSaN2+u/v37F3neGKNZs2bpo48+kjFGLpdL8fHxGjp0qC655JJSx7TaQw89pEOHDqlGjRqy2WwqKCjQ9ddfr7S0NIWFhfm0lvMtXLhQ0tn/RvPnz1d+fr6efPJJxcfHa+bMmWratKnfagNgHQImAI8VFBRo4MCBmjNnjq677jpJ0vLlyzVgwACtWrVKISEhkqQVK1aoSZMm2r59u/bs2aNrrrnGPUbVqlW1fPly9+NDhw6pW7duat68uWrVqqWkpCQtXbpUV111lSRp+vTpSkxMdAcTT5x77759+9S9e/cixyvNrl279NNPP3l8nN/68MMP9emnn2rRokUKCwvT6dOnNXjwYL322mt69tlnyz1ueaWkpOj222+XJLlcLj3zzDOaNm2aRowY4fNaztm8ebOaN28uSXrkkUf8VgcA7yJgAvBYfn6+Tp48qVOnTrmfu+eeexQRESGn0+kOmAsWLNBdd92lBg0a6O9//7vGjRtX4ph16tRRw4YN9f3330s62/08f/x+/fqpSZMmln4fb7/9tt5++23Z7XZdfvnlGjt2rEJCQvTqq6/q5MmTGjVqlMaNG6eMjAxt27ZNubm5kqSMjAy1bNmyxHEPHz4sl8ul06dPKywsTFWrVlVqaqqOHTsmScrNzdW4ceP05Zdfym63KyEhQYmJiTpx4oReeOEF7dy5U5LUqVMndyBt3bq1OnTooJ07d+qll15SaGioJkyYoBMnTsjpdKp///7605/+9Lvfs91uV5s2bbRx40ZJZ8N0ceOsX79ekydPdgfkxYsXa/ny5XrzzTcVEhKiyy67TJMmTVKdOnW0cuVKzZgxQ4WFhapWrZqSk5N1/fXX629/+5t++uknHTp0SDk5Oapbt66mTJmizZs3a/Xq1crOzlZYWJgOHjyoU6dOadSoUUVqLWncXbt2acyYMSooKJAxRr169VLv3r3L/gMAwPsMAJTBnDlzTIsWLUznzp3NiBEjzOLFi82pU6fcr+/atctcd9115ujRo+bLL780LVq0MEePHjXGGLN3717TsmXLIuN9/vnn5qabbjL79+83xhgzceJEc91115k777zTjBo1ynzwwQfG4XC43x8bG2t+/vlnY4wxjz76qPnnP/9ZYq3FHW/NmjXmjjvucI+xaNEi061bN/fXTz/9tDHGmE2bNpnExETjdDqNMca8+uqr5i9/+Ysxxpjhw4ebN99884Lj/fLLL6Zfv37muuuuM7169TIvvvii2bRpk/v18ePHm+HDhxun02nOnDljevfubTZt2mSGDRtmJk6caIwx5vTp06Zfv37m9ddfNw6Hw8TGxpp//OMfxhhjCgoKzJ133ml27NjhPl5CQoL5n//5nwtq6d27t1mxYoX78bFjx0zv3r3N3LlzSx1n3bp1pmnTpubAgQPGGGO2bdtm2rVr5378+uuvm7S0NLN7927TvXt3c/z4cWOMMTt27DC33HKLOX36tMnMzDRdunQxJ0+eNMYY8+STT5pXXnnlgnOXmZlp0tPTjTHG3Hrrrebrr78uddznn3/evP7668YYYw4ePGiGDh3q/u8DILDQwQRQJo899ph69uypTZs2adOmTZo9e7Zmz56tJUuWqEaNGlqwYIE6deqkWrVqqVatWqpXr54WLVqkgQMHSpJOnz6te++9V5LkdDpVq1YtTZkyRVdeeaUkKTk5WQMHDtRnn32mTZs2afLkycrKytL8+fPdHdKLsWbNGt19992KioqSJPXs2VMZGRk6cOBAkffdeOONqlWrlhYuXKgff/xRn332mS699NJSx46MjNTcuXP1448/Kjs7W9nZ2RowYID69u2roUOHav369UpNTZXdbleVKlW0YMECSdKgQYO0ZMkSSVJYWJh69eqlhQsXql+/fu5aJGnPnj3au3evkpKS3McsKCjQjh079Mc//vGCejIyMjRt2jSZ/78jcOfOnfXoo49q165dJY5Tr149XXXVVe41rxs2bFB8fLz78RNPPCFJeuutt3To0CH17dvXPYbNZtOPP/4oSWrbtq0iIiIkSc2aNdMvv/xS6rk7Z926dSWO26VLF6WkpGjr1q1q166dRo8eLbudvapAICJgAvDYli1b9MUXX+jJJ59Up06d1KlTJw0bNkzdunXTunXrFB8fr+XLl6tKlSrq3LmzpLPTwvPmzdPjjz8u6cI1mOdbtWqVjh8/rvvvv18JCQlKSEjQ0KFD1aFDB3399dfFhqiycjqdstls7sfGGBljVFhYWOR9K1eu1OTJk9W/f3/dfvvtuvrqq/Wvf/2r1LFnzZqluLg4tWzZUg0aNFDPnj2VnZ2tQYMGaejQoQoJCSly7P3796tatWrF1nR+PdWrV5d0dh1lzZo1i5y/w4cPKzIysth6zl+Deb7SxtmyZYv7eJIUGhpapLb8/HwdPHhQLpdL7du3L7Jp6sCBA6pTp44kXbCR6FzI/T2ljRsTE6NWrVpp/fr1Wr9+vV555RUtW7ZMV1xxhUdjA/Ad/vQD4LGoqChNnz5dmzdvdj93+PBh5ebmKjY2Vv/4xz9Us2ZNrVmzRh9//LE+/vhjrVy5UqdOnfrdcCZJ4eHhyszM1O7du93P7d27VyEhIWrQoIEl38Ott96qDz74wL0ucvHixbr88stVr149hYSEuIPd+vXrddttt+nhhx9W8+bNtXLlSjmdzlLHzsvL09SpU4t067799ls1a9ZMknTzzTfrvffekzFGBQUFGjx4sD7//HO1b99e8+bNkySdOXNGixYt0s0333zB+Ndee63sdrs+/PBDSVJOTo66deumb775pkznoCzjtG3bVmvWrNHhw4clnV2/OnXqVPfz3333naSzfxzcd999OnPmTKnHDg0NvSDMF3e84sZ99tlntWLFCnXr1k1paWmqVq2a9u7dW6bvHYBv0MEE4LFGjRrp1Vdf1d/+9jcdPHhQYWFhqlGjhjIyMhQdHa1hw4bpscceKzKVHRkZqT59+mju3Lm64YYbSh2/bdu2GjNmjJKSknTy5EmFhITo8ssv1+zZs393etpTHTp00Pfff68+ffrIGKOoqCjNmDFDNptNN9xwg6ZPn64hQ4bomWee0YgRI9S9e3cVFhbqlltu0apVq0rtxA0ZMkSvvfaaHnzwQdntdrlcLv3xj39UZmamJOmZZ57RhAkTdM8998jpdKpbt2667bbbdMMNN2j8+PHq1q2bHA6H4uPjNWDAgAvGr1KliqZPn66MjAz3Jpjhw4fr+uuvL9M5KG2c9evXF3lv06ZNNXz4cPfUeJ06dZSRkaHLL79caWlpSkxMlDFGoaGheu2111StWrVSjx0fH68pU6aU+HqTJk1KHHfw4MEaM2aMe7nEnXfeqdatW5fpewfgGzbj6bwFAAAA4AGmyAEAAGApAiYAAAAsRcAEAACApQiYAAAAsBQBEwAAAJYKussUtWnTRldddZW/ywAAAKj0cnJylJ2dfcHzQRcwr7rqKi1dutTfZQAAAFR6PXr0KPZ5psgBAABgKQImAAAALEXABAAAgKUImAAAALAUARMAAACWImACAADAUgRMAAAAWIqACQAAAEsRMAEAAGCpoLuTDwAAgJW6ZH6qXT/luR/HXBGuFcM6FnnPsi9yNOXfO7X/eL7q1qymTk0u1yffHHY/fi6hse674eJvZf3b43g6bnk/5y1eC5hffvml/vrXvyorK0s//PCDkpOTZbPZFBMTo9TUVNntdr3yyiv69NNPFRoaqpSUFLVo0cJb5QAAUKlcnfyh3459yzVRWrfnqPuxTZI57/XIsBD9sd6lRd5TNcSm085f3xVqkwrP+1DMFeG6okZYkc9EhoXoxBlnkeNKKvKeW66J0vwB7Uqs9bfhUpJ2/ZSnLpmfukPmsi9yNHLpNuU7zh4r53i+5m380f3+nOP5Grl0myRdVKgr7jiejFvez3mTVwLm7Nmz9f7776tatWqSpIkTJyoxMVFt2rTR2LFjtWrVKtWtW1efffaZFi9erAMHDuiZZ57Ru+++641yAAAIGv4MhlY5P+BJRcOlJJ0447zgPeeHS6louJTOhr7fBsHzw2Vxxz333COzN5QYMn87ZnHPT/n3Tnd4K0m+w6kp/955UYGuuON4Mm55P+dNXgmYDRo00LRp0/T8889Lkr766ivFxcVJkuLj47Vu3To1atRI7du3l81mU926deV0OnX06FFFRUV5oyQAAHyuIoTFiqC44FkW+4/nW/q+sn7+98Yt7+e8ySsBMyEhQfv27XM/NsbIZrNJksLDw3Xy5Enl5uaqZs2a7vece56ACQAIRoTJiqtuzWrK8SCs1a1ZzSvH+b1xy/s5b/LJJh+7/dfN6nl5eYqMjFRERITy8vKKPF+jRg1flAMAQJkQHiuumCvCi50mj7ki3P31cwmNi6xxLE61S0L0XELji6qluON4Mm55P+dNPgmYzZo1U3Z2ttq0aaPVq1erbdu2atCggaZMmaInnnhCBw8elMvlonsJAPALAmTFdm7zT3FWDOv4u7vIz61j9PYu8uKO48m45f2cN/kkYCYlJWnMmDHKzMxUdHS0EhISFBISohtvvFG9evWSy+XS2LFjfVEKAKCSI0x6XzDtIpd0wSWJinPfDVf5JLCV9zi+qs9TNmPMbzd3BbQePXpo6dKl/i4DABAkKmug/P7Fu/1dAiqBknIZF1oHAFQYFSVMEg4R7AiYAICgFeiBkqCIyoqACQAICoEeJiUCJXAOARMAEJACLVASHgHPETABAAHH1+GS8AhYi4AJAAgIvgyVBErAuwiYAACfI0wCFRsBEwDgdQRKoHIhYAIAvMqb4ZIwCQQmAiYAwFIESgAETACAZbwRLgmVQPAhYAIALgodSwC/RcAEAJSbleGSMAlUHARMAIDHCJQAPEHABAB45GLDJYESqDwImACAElnVsSRcApULARMAUCw6lgDKi4AJAHCjYwnACgRMAICkiwuXBEoA57P7uwAAQHAjXAL4LTqYAFBJ0bEE4C10MAGgEiJcAvAmOpgAUEkQKgH4Ch1MAKgECJcAfIkOJgBUQARKAP5EBxMAKhgr7xcOAOVBwAQAuNG9BGAFpsgBoAJgShxAIKGDCQBBjnAJINDQwQSASoRACcAXCJgAEGTK27EkXALwFQImAASRsoZLQiUAfyBgAkCA47JDAIINm3wAIICxgQdAMKKDCQAVBIESQKCggwkAAABL0cEEgABTnmlxupcAAgkBEwACSFnCJaESQKBiihwAghDhEkAgo4MJAH5ExxJARUQHEwD8hOtbAqioCJgAAACwFFPkAOBD3EccQGVAwAQAH2G9JYDKgilyAAAAWIqACQABhu4lgGDHFDkAeAlT4gAqKzqYAOAFXIIIQGVGwAQAP6N7CaCiYYocACziadeSQAmgoqODCQAWYEocAH7lsw6mw+FQcnKycnJyZLfbNX78eIWGhio5OVk2m00xMTFKTU2V3U7mBQAACGY+C5j/+c9/VFhYqIULF2rdunV66aWX5HA4lJiYqDZt2mjs2LFatWqVunTp4quSAMDnmB4HUBn4LGA2atRITqdTLpdLubm5Cg0N1datWxUXFydJio+P17p16wiYAIIClyACgJL5LGBWr15dOTk5uvPOO3Xs2DHNmDFDmzZtks1mkySFh4fr5MmTvioHAMqN9ZYAUDqfBcy5c+eqffv2Gj58uA4cOKB+/frJ4XC4X8/Ly1NkZKSvygEAn6B7CaAy8lnAjIyM1CWXXCJJuvTSS1VYWKhmzZopOztbbdq00erVq9W2bVtflQMAZcIliADAcz4LmP3791dKSooefvhhORwODR06VM2bN9eYMWOUmZmp6OhoJSQk+KocAPAYU+IAUDY+C5jh4eF6+eWXL3h+3rx5vioBADxGqASA8uOikwDwG+UNl0yPA8BZ3CoSAC4CoRIALkQHEwAAAJaigwmg0mNKHACsRcAEUKmVNVwSKgHg9zFFDgAeIlwCgGfoYAKodLhoOgB4Fx1MAJUK17cEAO8jYAIAAMBSBEwAKAbT4wBQfqzBBID/R6gEAGsQMAFUaKy5BADfY4ocQIVVlnBJ9xIArEMHE0ClRKAEAO+hgwkAAABL0cEEUKGw5hIA/I8OJoAKg3AJAIGBgAmg0mH9JQB4F1PkACoFQiUA+A4BE0DQYkocAAITU+QAghLhEgACFwETQIXH9DgA+BZT5AAqHAIlAPgXARNA0GBaHACCA1PkAIIC4RIAggcBE0CFwvQ4APgfU+QAgh6hEgACCwETQMBiWhwAghNT5AACEuESAIIXARNAUGN6HAACD1PkAIIOoRIAAhsBE0BAYEocACoOpsgB+B3hEgAqFgImgKDC9DgABD6myAH4haddSwIlAAQfOpgAfI4pcQCo2AiYAAAAsBQBE0DAYnocAIITazABeF1ZpsQJlQAQ/OhgAvAq1lsCQOVDwAQQMOheAkDFwBQ5AL8hUAJAxUQHEwAAAJYiYAIAAMBSTJEDsJwnG3uYHgeAiouACcBSpYVLQiUAVA5MkQMAAMBSBEwAAABYioAJAAAAS7EGE8BF4U49AIDfooMJoNy4xzgAoDg+7WDOnDlTH3/8sRwOhx566CHFxcUpOTlZNptNMTExSk1Nld1O5gUqAgIlAFRePktz2dnZ+uKLL7RgwQJlZWXp4MGDmjhxohITE/X222/LGKNVq1b5qhwAAAB4ic86mGvXrlVsbKwGDRqk3NxcPf/881q0aJHi4uIkSfHx8Vq3bp26dOniq5IAlANrLgEAv8dnAfPYsWPav3+/ZsyYoX379unpp5+WMUY2m02SFB4erpMnT/qqHADlQLgEAHjCZwGzZs2aio6OVpUqVRQdHa2wsDAdPHjQ/XpeXp4iIyN9VQ4AL2L9JQBUbj5bg9m6dWutWbNGxhgdOnRI+fn5ateunbKzsyVJq1ev1o033uircgBY7PsX73b/DwBQufmsg9mpUydt2rRJDzzwgIwxGjt2rOrVq6cxY8YoMzNT0dHRSkhI8FU5AAAA8BKfXqbo+eefv+C5efPm+bIEAGXEuksAQFlx0UkAJfI0XDItDgA4H7eKBFAuhEoAQEnoYAIAAMBSdDABuLHeEgBgBTqYACQRLgEA1ilTwPzll1+8VQeAIML6SwBAaTyaIv/ss880btw4OZ1Ode3aVXXr1lXPnj29XRuAAEGgBACUhUcdzJdfflnz5s1T7dq19dRTT2nBggXergsAAABByqOAabfbVbNmTdlsNoWFhSk8PNzbdQEAACBIeTRF3qBBA02dOlXHjx/XrFmzVLduXW/XBcAHPNnYw/Q4AKCsPAqYL7zwghYvXqzWrVurevXqGj9+vLfrAuBlpYVLQiUA4GKUGjDXrl3r/rp+/fqqX7++pLObftq3b+/dygAAABCUSg2YH35YcoeDgAkAAIDilBowx48fr9DQUBUUFPiqHgAAAAS5UgNmUlKSpk6dqq5du8pms0mSjDGy2WxatWqVTwoEAABAcCk1YE6dOlWS9NJLL6lFixbu57Ozs71bFQDLeXorSDb4AAAuVqkBc/Pmzdq9e7fmzp2rxx57TJLkcrk0f/58ffDBBz4pEMDFY8c4AMCXSg2YkZGROnLkiAoKCnT48GFJks1m03PPPeeT4gAAABB8Sg2YsbGxio2NVc+ePVWnTh1f1QQAAIAg5tGF1jds2KCZM2eqoKCATT4AAAAolUcBc/bs2ZoxY4auvPJKb9cDwCKebuoBAMBqHgXM+vXrq2HDht6uBYBF2DEOAPAnjwJm1apV9eSTT6pp06bu62EOGzbMq4UB8A5CJQDA2zwKmB06dPB2HQAAAKgg7J68qXv37iosLNTevXtVt25dAicAAABK5FHATE1N1f79+7Vu3Trl5eUpKSnJ23UBAAAgSHk0Rf7jjz9qwoQJ2rx5szp37qxZs2Z5uy4AZcCmHgBAIPEoYDqdTh09elQ2m025ubmy2z1qfALwAW4DCQAINB4FzMTERD300EM6fPiwevXqpZSUFG/XBQAAgCDlUcCMi4vTm2++qapVq2rfvn1q0aKFt+sCAABAkPJornvs2LFatmyZoqKi9P777ys9Pd3bdQEAACBIedTB3LFjh8aNGydJGj16tB555BGvFgWgdNwGEgAQyDzqYBpjdOzYMUnSiRMn5HQ6vVoUgJKxYxwAEOg86mAOHjxY999/v2rWrKkTJ04oNTXV23UBKAdCJQAgEHgUME+cOKEVK1bo2LFjuuyyy9z3IwcAAAB+y6Mp8kWLFikkJES1a9cmXAIAAKBUHnUwCwoKdN9996lRo0bui6xPnTrVq4UB+BWbegAAwcSjgDlixAhv1wGgBGzqAQAEG48CZrNmzTR79mwdPnxYHTt2VOPGjb1dFwAPECoBAIHIozWYKSkpql+/vr7//nvVrl1bo0aN8nZdAAAACFIeBczjx4/rgQceUGhoqFq1aiVjjLfrAgAAQJDyKGBK0p49eyRJBw8edG/0AQAAAH7rd5Nibm6uRo8erZSUFH399dcaMmSIkpOTfVEbAJW8zpL1lwCAQFXqJp958+Zpzpw5Cg0N1ejRoxUfH++ruoBKq7hd44RJAEAwKbWD+cEHH+hf//qXFi5cqLfeestXNQGVVkmXJOI6mACAYFJqwKxSpYqqVKmiqKgoORwOX9UEAACAIObxbh12jgMAAMATpa7B3L17t4YPHy5jjPvrc7hVJAAAAIpTasB86aWX3F/37t3b68UAAAAg+JUaMOPi4nxVBwCd3S3OLnIAQLDz6F7kALyHQAkAqGi4JQ/gR1yWCABQEfk8YP7888/q0KGD9uzZox9++EEPPfSQHn74YaWmpsrlcvm6HAAAAFjMpwHT4XBo7Nixqlq1qiRp4sSJSkxM1Ntvvy1jjFatWuXLcgAAAOAFPg2YkyZNUu/evXXFFVdIkr766iv3RqL4+HitX7/el+UAAADAC3wWMJcuXaqoqCjdeuut7ueMMbLZbJKk8PBwnTx50lflAAAAwEt8tov83Xfflc1m04YNG7Rjxw4lJSXp6NGj7tfz8vIUGRnpq3KAgMBliQAAFZHPAub8+fPdX/fp00dpaWmaMmWKsrOz1aZNG61evVpt27b1VTmAXxAmAQCVgV8vU5SUlKRp06apV69ecjgcSkhI8Gc5gFdxSSIAQGXhlwutZ2Vlub+eN2+eP0oAAACAl3ChdQAAAFiKgAkAAABLETABAABgKQIm4CMl7RZnFzkAoKLxyyYfoLIiTAIAKgMCJuBFXPcSAFAZMUUOeAnXvQQAVFYETAAAAFiKgAkAAABLsQYTsAhT3wAAnEUHE7AA4RIAgF8RMAEfYxc5AKCiY4oc8DICJQCgsqGDCQAAAEsRMAEAAGApAiZgAe4zDgDAr1iDCZQTt4EEAKB4dDCBcuA2kAAAlIyACQAAAEsRMAEAAGApAiYAAAAsRcAEAACApQiYQDlwWSIAAErGZYoAD3FZIgAAPEMHE/AAlyUCAMBzBEwAAABYioAJAAAASxEwAQAAYCkCJgAAACzFLnKgGJ5u3mEXOQAAFyJgAr9RWrgkUAIA8PuYIgcAAIClCJgAAACwFAETAAAAliJgAgAAwFIETOA3StrIwwYfAAA8wy5yQMXvHCdQAgBQPnQwUemVdFkiT6+FCQAAiiJgAgAAwFIETAAAAFiKNZiodJj6BgDAu+hgolIhXAIA4H0ETKAE7CIHAKB8mCJHhedp15JACQCANehgokJjShwAAN8jYAIAAMBSBExATI8DAGAl1mCi0iJUAgDgHXQwAQAAYCkCJiq0krqUdC8BAPAepshRoRS3a5wwCQCAb/ksYDocDqWkpCgnJ0cFBQV6+umnde211yo5OVk2m00xMTFKTU2V3U5TFeVT0iWJrk7+kJAJAIAP+Sxgvv/++6pZs6amTJmiY8eO6U9/+pOaNGmixMREtWnTRmPHjtWqVavUpUsXX5UEAAAAL/BZu7Br16569tln3Y9DQkL01VdfKS4uTpIUHx+v9evX+6ocAAAAeInPAmZ4eLgiIiKUm5urIUOGKDExUcYY2Ww29+snT570VTkAAADwEp8ueDxw4ID69u2re++9V927dy+y3jIvL0+RkZG+LAcAAABe4LM1mEeOHNHjjz+usWPHql27dpKkZs2aKTs7W23atNHq1avVtm1bX5WDCsKTe42zwQcAAN/yWcCcMWOGTpw4oddee02vvfaaJGnUqFFKT09XZmamoqOjlZCQ4KtyUAGUFi4JlQAA+I/PAubo0aM1evToC56fN2+er0oAAACAD3DRSQAAAFiKO/kgqHiy5hIAAPgXHUwEDcIlAADBgYCJCocNPgAA+BdT5KgQCJUAAAQOOpgAAACwFAETAAAAlmKKHAHL0009TI8DABBYCJgISNylBwCA4MUUOQAAACxFwAQAAIClmCJHwOBC6gAAVAx0MBEQCJcAAFQcBEwEFTb4AAAQ+Jgih1+UpWNJqAQAILjQwYTPMR0OAEDFRsAEAACApQiYCGhMjwMAEHxYgwmf4LaPAABUHlX7bpUAAA/qSURBVHQw4XWsuQQAoHKhgwnLlTdQ0r0EAKBiIGDCUmUNl4RKAAAqHqbIAQAAYCkCJgAAACxFwITfMD0OAEDFxBpM+AyBEgCAyoGAiYvmycYewiUAAJUHARMXpbRwSagEAKByYg0mAAAALEXABAAAgKUImAAAALAUazBRZtxbHAAAlIYOJsrE03DJBh8AACovOpgoVVm6lYRKAAAgETDxG0x/AwCAi8UUOdwIlwAAwAp0MCsxAiUAAPAGOpiVlNXhkvWXAADgHDqYKBcCJQAAKAkBsxKxqmtJuAQAAKUhYFYSFxMuCZQAAKAsCJgVFIESAAD4CwGzgmD6GwAABAoCZgVwseGSUAkAAKzEZYoAAABgKTqYQYopcQAAEKgImEGIDTwAACCQMUVeiRAuAQCAL9DBDALl7VgSKAEAgD8QMH3s98JiZFiITpxxlnt8QiUAAPA3AqYXlafzeDHhEgAAIBD4PWC6XC6lpaVp586dqlKlitLT09WwYUN/l1VsOPy97qBVO7vLi+4lAAAIBH4PmCtXrlRBQYHeeecdbd26VS+++KKmT5/u15pKCopXJ39YYojzR7gkUAIAgEDk913kW7Zs0a233ipJatmypbZv3+7nigAAAHAx/B4wc3NzFRER4X4cEhKiwsJCP1YUHOheAgCAQOX3KfKIiAjl5eW5H7tcLoWG+r0svylpFzmBEgAABAu/J7lWrVrpk08+0V133aWtW7cqNjbW3yV5FUERAABUdH4PmF26dNG6devUu3dvGWOUkZHh75L0/Yt3l3kXeXk+AwAAUBH5PWDa7XaNGzfO32VcoDzBkDAJAAAQAJt8AAAAULEQMAEAAGApAiYAAAAsRcAEAACApQiYAAAAsBQBEwAAAJYiYAIAAMBSBEwAAABYioAJAAAASxEwAQAAYCm/3yqyrHJyctSjRw9/lwEAAFDp5eTkFPu8zRhjfFwLAAAAKjCmyAEAAGApAiYAAAAsRcAEAACApQiYAAAAsBQBEwAAAJYKussU+YLL5VJaWpp27typKlWqKD09XQ0bNvR3WSX68ssv9de//lVZWVn64YcflJycLJvNppiYGKWmpspuD4y/IxwOh1JSUpSTk6OCggI9/fTTuvbaawO2XqfTqdGjR+u7775TSEiIJk6cKGNMwNZ7zs8//6wePXpozpw5Cg0NDfh677vvPtWoUUOSVK9ePfXq1UsTJkxQSEiI2rdvr8GDB/u5wqJmzpypjz/+WA6HQw899JDi4uIC+hwvXbpU7733niTpzJkz2rFjh7KysgL2HDscDiUnJysnJ0d2u13jx48P6J/jgoICjRw5Unv37lVERITGjh2r48ePB+T59eR3xSuvvKJPP/1UoaGhSklJUYsWLfxdNoKVwQX+/e9/m6SkJGOMMV988YV56qmn/FxRyWbNmmW6detmevbsaYwxZuDAgWbjxo3GGGPGjBlj/vu//9uf5RWxZMkSk56ebowx5ujRo6ZDhw4BXe+KFStMcnKyMcaYjRs3mqeeeiqg6zXGmIKCAvOXv/zF3HHHHWb37t0BX+/p06fNvffeW+S5e+65x/zwww/G5XKZJ5980mzfvt1P1V1o48aNZuDAgcbpdJrc3FzzX//1XwF/js+XlpZmFi5cGNDneMWKFWbIkCHGGGPWrl1rBg8eHNDnOCsry4wePdoYY8yePXvM448/HpDn15PfFdu3bzd9+vQxLpfL5OTkmB49evizZAS5wPgTMMBs2bJFt956qySpZcuW2r59u58rKlmDBg00bdo09+OvvvpKcXFxkqT4+HitX7/eX6VdoGvXrnr22Wfdj0NCQgK63ttvv13jx4+XJO3fv1+1a9cO6HoladKkSerdu7euuOIKSYH98yBJ33zzjfLz8/X444+rb9++2rRpkwoKCtSgQQPZbDa1b99eGzZs8HeZbmvXrlVsbKwGDRqkp556Sh07dgz4c3zOtm3btHv3bt19990BfY4bNWokp9Mpl8ul3NxchYaGBvQ53r17t+Lj4yVJ0dHR2rZtW0CeX09+V2zZskXt27eXzWZT3bp15XQ6dfToUX+VjCBHwCxGbm6uIiIi3I9DQkJUWFjox4pKlpCQoNDQX1c6GGNks9kkSeHh4Tp58qS/SrtAeHi4IiIilJubqyFDhigxMTGg65Wk0NBQJSUlafz48UpISAjoepcuXaqoqCj3H0dSYP88SFLVqlX1xBNP6I033tALL7ygkSNHqlq1au7XA63mY8eOafv27Xr55Zf1wgsvaMSIEQF/js+ZOXOmBg0adMG/b4FWc/Xq1ZWTk6M777xTY8aMUZ8+fQL6HDdt2lSffPKJjDHaunWrTp48qerVq7tfD5R6PfldEeg/GwgurMEsRkREhPLy8tyPXS5Xkf9jBrLz1yXl5eUpMjLSj9Vc6MCBAxo0aJAefvhhde/eXVOmTHG/Foj1Sme7giNGjNCDDz6oM2fOuJ8PtHrfffdd2Ww2bdiwQTt27FBSUlKR7kOg1Sud7VY1bNhQNptNjRo1Uo0aNXT8+HH364FWc82aNRUdHa0qVaooOjpaYWFhOnjwoPv1QKv3nBMnTuh///d/1bZtW+Xm5hb59y3Qap47d67at2+v4cOH68CBA+rXr58cDof79UCr9/7779eePXvUt29ftWrVSk2aNFF+fr779UCr95ziflf89ndfXl6ee300UFZ0MIvRqlUrrV69WpK0detWxcbG+rkizzVr1kzZ2dmSpNWrV+vGG2/0c0W/OnLkiB5//HE999xzeuCBByQFdr3Lli3TzJkzJUnVqlWTzWZT8+bNA7be+fPna968ecrKylLTpk01adIkxcfHB2y9krRkyRK9+OKLkqRDhw4pPz9f1atX148//ihjjNauXRtQNbdu3Vpr1qyRMcZdb7t27QL6HEvSpk2bdPPNN0s6+wf0JZdcErDnODIy0h1qLr30UhUWFgb0vxPbtm1T69atlZWVpdtvv11XX311QJ/fc4o7p61atdLatWvlcrm0f/9+uVwuRUVF+blSBCvuRV6Mc7vIv/32WxljlJGRoWuuucbfZZVo3759GjZsmBYtWqTvvvtOY8aMkcPhUHR0tNLT0xUSEuLvEiVJ6enp+uc//6no6Gj3c6NGjVJ6enpA1nvq1CmNHDlSR44cUWFhoQYMGKBrrrkmYM/v+fr06aO0tDTZ7faArvfcDtz9+/fLZrNpxIgRstvtysjIkNPpVPv27TV06FB/l1nE5MmTlZ2dLWOMhg4dqnr16gX0OZak119/XaGhoerfv7+ks384B+o5zsvLU0pKig4fPiyHw6G+ffuqefPmAXuOjx49qmHDhik/P181atTQhAkTdODAgYA8v578rpg2bZpWr14tl8ulkSNHBmQ4RnAgYAIAAMBSTJEDAADAUgRMAAAAWIqACQAAAEsRMAEAAGApAiYAAAAsFRxXDwcAD82aNUvr16+X3W6XzWbT0KFD1bx5c/fr9957r1q1aqXU1FT3c82bN9cNN9wgSSosLNQ111zjvszTpEmT9O2338put+uSSy7RqFGjVL9+fSUnJ+uuu+5SfHy8brnlFq1bt8493s6dO5Weni7p7CWBWrRoIbvdrieeeEIdO3Ystu63335bvXv3LnIB7PONGDFCPXr0cF/PUjp7Ka20tDT9/PPPks5eQzI1NVU1a9Ys38kDAIsQMAFUGLt379bHH3+sBQsWyGazue9o9P7770uStmzZotjYWG3cuLHIbfEuvfRSZWVlucdJTEzUf/7zH4WGhuqnn37Sm2++KUlauXKlMjIyNH369FLraNy4sXu8zp07a86cOQoLCyv1MzNmzNCDDz5YYsAszpIlS3TllVdq8uTJkqQ33nhDM2bMUHJyssdjAIA3EDABVBhRUVHav3+/lixZovj4eDVt2lRLlixxv7548WIlJCToyiuv1LJly/Too49eMIbD4dCpU6dUvXp1RUVFafv27froo4/Utm1b3XbbbYqPj7+oGrdt26YJEyYoNDRUYWFhSk9P1+rVq90X7M7MzNSYMWN06NAh/fLLL+rYsaOeeeaZYseqW7euli1bppYtW+qmm25S//79de7Sxu+8847eeecduVwudenSRYMGDdKyZcuUlZWlKlWqqFGjRho3bpzee+89LV++XE6nU4mJiTpy5Ijeeust2e12xcXFBcxFwgEEF9ZgAqgwoqKiNH36dH3++efq1auXunbtqk8++USSlJubqy1btqhjx466//77tWDBAvfnfvnlF/Xp00d9+vTRE088obi4OLVr106NGzfW+PHjtXLlSnXr1k3333+/tm7delE1jhkzRi+88ILmzZunBx98UJMnT1avXr0UFRWlzMxMHThwQK1bt9acOXM0f/58zZ8/v8Sxbr/9dv35z3/WokWL1LlzZ/Xv31/fffedfvrpJ82ZM0cLFizQ0qVLdfz4ce3fv1/Tp09XVlaWFixYoGrVqmnx4sWSpFq1amnBggWKiYnR9OnT9fe//10LFizQ3r17tXHjxov6fgFUTnQwAVQYP/zwgyIiIjRx4kRJZ7uFf/7zn9WmTRt99NFHcrlcGjhwoCTp8OHD2rBhg9q1a3fBFPk533zzjRo1aqTMzEwZY7Ru3TolJiYWWW9ZVkeOHFHjxo0lSTfddJNeeeWVIq/XrFlTW7du1YYNG1SjRg05HI4Sx/r888/Vvn17de3aVYWFhXrvvfeUkpKipKQkNW7c2D0tP2rUKH3xxReKjY1V9erVJUk33nijNm/erCZNmqhRo0aSpO+//14///yzBgwYIOlsKN+7d6/atm1b7u8XQOVEBxNAhbFz506lpaXpzJkzkqRGjRqpRo0aCgkJ0ZIlSzRjxgy98cYbeuONNzR69OhSu4OStGHDBmVmZsrpdMpmsykmJkbVqlWTzWYrd421a9fWrl27JEmfffaZrr76akmS3W6Xy+XSkiVLdNlll2nq1Knq27ev8vPzSxzr/fffd68PDQ0NVePGjVWlShU1bNhQe/bsUUFBgSRp0KBBqlOnjr799lv3eJs2bXIf+9z306BBA1155ZWaM2eOsrKy9Mgjj6hFixbl/l4BVF50MAFUGHfccYf27Nmjnj17qnr16jLG6Pnnn9fevXtljFFMTIz7vQkJCZo4caIOHDhQ4nh9+vTRpEmTdN999ykiIkJ2u929oaa80tPT3TvYQ0NDlZGRIUlq3bq1BgwYoJEjR2rEiBHKzs5W9erVVb9+fR05cqTYsUaMGKG0tDTdc889ql69usLDwzV+/Hhdfvnl6t+/v3uNaZcuXVS3bl09/fTT6tu3r2w2mxo1aqRevXpp+fLl7vFq167tXirgdDpVv359devW7aK+XwCVk82cWxEOAAAAWIApcgAAAFiKgAkAAABLETABAABgKQImAAAALEXABAAAgKUImAAAALAUARMAAACWImACAADAUv8Hk+0XyUjsy8sAAAAASUVORK5CYII=\n",
2941
      "text/plain": [
2942
       "<Figure size 792x432 with 1 Axes>"
2943
      ]
2944
     },
2945
     "metadata": {},
2946
     "output_type": "display_data"
2947
    }
2948
   ],
2949
   "source": [
2950
    "# Plot percentiles for SAPSII Total Score\n",
2951
    "plt.figure(figsize = (11, 6))\n",
2952
    "plt.plot(saps['saps2'], saps['percentile'], 'o')\n",
2953
    "plt.xticks(range(0, 110, 10), range(0, 110, 10))\n",
2954
    "plt.xlabel('SAPSII Total Score'); plt.ylabel('Percentile'); plt.title('SAPSII Total Score Percentiles');"
2955
   ]
2956
  },
2957
  {
2958
   "cell_type": "code",
2959
   "execution_count": 165,
2960
   "metadata": {},
2961
   "outputs": [
2962
    {
2963
     "data": {
2964
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAAFxCAYAAADajKhZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXxU1f3/8fdMNrKCEVECARNki3xTwAjla0rdWKoCNgXZDKVQFdRo8Ismhi1IBFGMCxRQv1JsEGQRhba0RbCUsvtF0RJEliIKRFkSyUoymXt/f/BjSszCJJncLLyejwePB3Pn3DOfufCAd+459xybaZqmAAAAgDpmr+8CAAAAcHUgeAIAAMASBE8AAABYguAJAAAASxA8AQAAYAmCJwAAACzhXd8FeELv3r3Vpk2b+i4DAADgqnfy5Ent3r27wveaRPBs06aN1q5dW99lAAAAXPXi4uIqfY+hdgAAAFiC4AkAAABLEDwBAABgiSYxxxMAANQPh8OhEydO6MKFC/VdCizWrFkztW3bVj4+Pm6fQ/AEAAA1duLECQUHB+vGG2+UzWar73JgEdM0de7cOZ04cUIRERFun8dQOwAAqLELFy7o2muvJXReZWw2m6699tpq3+kmeAIAgFohdF6davLnzlA7AADwmJyCEuUXl3qsvyA/b10T6Fvp+ydOnNDgwYN18803u4717t1bjz/+uMdqkKT4+HilpqaqQ4cOV2x72223afv27ZKkTZs26Z133pF08e7w+PHjNXDgQK1du1b//ve/NXnyZNd5kyZN0ogRI9S7d2/Xsfnz5+tPf/qTWrVqJeninNpJkyaVaXO54uJirV+/XsOGDdPatWvVvHlz3XXXXdX6ritXrlRcXFy15m66i+AJAAA8Jr+4VGv2nvBYf0NvaVtl8JSkm266SRkZGR77TE/59NNPtXTpUr3xxhsKDAxUTk6Ohg8frptuuqla/YwdO1YjR46UJB09elSTJ0/WBx98UGHbM2fOaPXq1Ro2bFiVC7lX5Y033tD9999fo3OvhOAJAACapJdfflmffPKJTNPU2LFj9Ytf/ELx8fHq3LmzDh8+rICAAMXExGjbtm3Kzc3VkiVL5OXlpSlTpigvL085OTkaNmyYRo0a5eozLy9PU6ZMUU5OjiRp6tSp6ty5c4Wfv3r1av36179WYGCgJOmaa67R6tWrFRISoi+++KJG3+mHH35QQECAJGnZsmXauHGjSktLFRwcrPnz52vx4sU6cuSIFixYINM01bJlS40cObLSa9GlSxcdPnxY+fn5eu2117Rjxw6dOXNGkyZNUlpamhITE2WaphwOh2bOnFnpd3UXwRMAADRqR44cUXx8vOv1vHnzdPDgQZ04cULvvfeeiouL9cADD+i2226TJEVHR2vq1KkaP368mjVrpt///vdKSkrSJ598otatW+vee+9V//799f333ys+Pr5M8Fy8eLF++tOfatSoUfr666/17LPPasWKFRXWdfr0aYWHh5c51rx58yq/S0XzJpcuXaoNGzbIbrcrJCREs2bNkmEY+uGHH7R06VLZ7XaNHz9e//rXvzRhwgQdOnRIjz/+uObPny9J+sc//lHltZgyZYpeeeUV/fnPf9bDDz+sRYsW6ZVXXtHOnTsVHBysl19+WUeOHFF+fr4bfxpVq5Pg6XQ6NXXqVB07dkxeXl6aM2eOTNNUcnKybDabOnbsqBkzZshut2vBggXasmWLvL29lZKSoujoaB0/frzCtgAAAD9W0VD7+vXrlZmZ6QqkpaWlOnXqlCS55oOGhIS4hr1DQkJUXFysli1b6p133tHGjRsVFBSk0tKy81UPHTqkXbt26S9/+YskKTc3t9K6wsLClJWVpS5duriO7d27Vy1btlSzZs1UUlJSpn1hYaGaNWtWrp/Lh9ov5+Pjo6eeekoBAQH67rvvytV6ec2VXYuoqChJ0g033KCzZ8+WOa9v3776+uuv9eijj8rb21sTJ06s9Lu6q07S3N///ndJ0nvvvacnnnhCc+bM0Zw5c5SYmKjly5fLNE1t3rxZmZmZ2rNnj1avXq309HTNnDlTkipsCwAA4K7IyEj17t1bGRkZeuedd/SLX/xCbdu2veJ5S5YsUffu3TVv3jwNHDhQpmmW63fs2LHKyMjQq6++qkGDBlXaV1xcnN5++20VFhZKks6dO6eUlBQVFRWpS5cu2rFjhwoKCiRdHEI/fPiwWw8vSdLBgwe1adMmvfrqq5o2bZoMw5BpmrLb7TIMo1bXwmazyTAM7d69W61atdKSJUs0ceJEpaenu1VbVerkjufdd9+t22+/XZJ06tQptWzZUlu2bFGvXr0kXUzQ27dvV0REhGJjY2Wz2RQWFian06ns7GxlZmaWa9uvX7+6KBVoGAqzpeI8z/TlFywFhHqmLwBopO68807t2bNHo0aNUmFhoe6++24FBQVd8bw77rhDqamp+uMf/6gWLVrIy8urzJ3JCRMmaMqUKVq1apXy8/OrfHq+R48eeuCBBzRu3Dh5e3vrwoULeuqpp1x3QEeNGqVRo0YpMDBQpaWlmjJlims+6JW0b99e/v7+iouLk6+vr6677jqdPn1aPXr0kMPh0EsvveS6e1rdaxETE6OHH35Yr7/+uiZNmqR33nlHdrtdjz32mFu1VcVm/jjKe1BSUpI++ugjvf7660pOTta2bdskSTt37tT777+vyMhItWjRwjV3YvTo0Zo9e7ZGjx5dru28efMq/Zy4uDitXbu2rr4GUPdyjkv7lnumr+6jpGvae6YvALiCL7/8Ul27dnW9tno5JdSvH//5S1Xnsjp9uGju3LmaPHmyHnjgARUXF7uOFxQUKCQkREFBQa5bzJeOBwcHl5nPeaktAABo+K4J9CUoolJ1Msfzww8/1BtvvCFJ8vf3l81mU7du3bR7925J0tatWxUTE6OePXtq27ZtMgxDp06dkmEYCg0NVVRUVLm2AAAAaNzq5I5n//799eyzz2r06NEqLS1VSkqKOnTooGnTpik9PV2RkZEaMGCAvLy8FBMTo+HDh8swDE2fPl3SxSH6H7cFAABA41YnwTMgIECvvfZauePLli0rdywhIUEJCQlljkVERFTYFgAAAI0Xi2MCAADAEgRPAAAAWILgCQAAPKcw++IScZ76VZhd5cft3r1bnTt31oYNG8ocHzRokJKTkys9b+3atVUu1Xi55ORkbd26VZKUlZWlJ598UvHx8Ro2bJhSU1Nd63xe2obykq1bt5ar4cSJE+rZs6fi4+MVHx+v4cOHX3Fh9o8++kjff/+9zpw5o9TUVLdqvtxXX32lTz75pNrn1QX2agcAAJ5TnOe5dYmli2sTX2FTjMjISP3pT3/SPffcI+li0CoqKvJcDf+f0+nUo48+qtTUVP3kJz+RJKWlpen111/X5MmT3e7n8i0+DcPQyJEjdfDgwTJba17uD3/4g1JTU9WhQ4caBc+NGzeqZcuWuvXWW6t9rqcRPAEAQKPWpUsXff3118rNzVVISIjWr1+vQYMGKSsrS9LFh5s3btyo0tJSBQcHa/78+WXOz8jI0J/+9CfZbDbdc889GjNmTIWfs3fvXt1www2u0ClJTz/9dLktKqvjwoULKikpkb+/vw4dOqQXXnhBhmEoNzdXU6dOVW5urr788kslJSXppZdeUlJSklatWqU9e/bolVdekZeXl8LDw/Xcc8/pj3/8o/7xj3/owoUL+uabb/TQQw/ptttu0wcffCAfHx/dfPPN2rx5s3bt2iXDMHTvvfdq7NixNa69JgieAACg0evXr58++ugjxcXF6YsvvtBDDz2krKwsGYahH374QUuXLpXdbtf48eP1r3/9y3XekSNHtGHDBi1fvlw2m01jx45VbGysIiMjy33G6dOnFR4eXuaYn59flXXZbLZyx44cOaL4+HhJkpeXl8aMGaP27dtrw4YNSkpKUufOnfXHP/5Ra9euVVpamrp27arU1FT5+PhIkkzT1LRp07R8+XJde+21evXVV/XBBx/I29tb+fn5evvtt/X1119rwoQJiouL0y9/+Uu1bNlS0dHRSkhI0LJly3T99dfXy66PBE8AANDoDRo0SKmpqQoPDy+z8YzdbpePj4+eeuopBQQE6LvvvlNp6X+29Dx06JBOnTrluvN3/vx5ffPNNxUGz7CwMG3cuLHMsZycHO3bt0933HFHuZBZWFhYYTC9fKj9cq1atdLChQvVrFkzFRQUVLqfenZ2tk6fPq3ExERJF++a3nbbbWrXrp1ruL5169Zl9pi/JD09Xenp6Tp79qx+9rOfVdh/XSJ4AgCARi88PFyFhYXKyMjQU089pW+//VaSdPDgQW3atEmrV69WUVGR4uLiZJqm67zIyEjddNNN+t///V/ZbDYtXbpUnTp1qvAzunfvrhMnTuiLL75QdHS0TNPUggUL5OfnpzvuuENt27bVzp071adPH0nSP//5T/Xs2dPt7/D8889r3rx56tChg15//XWdPHlS0sW7ppfXfM011+iGG27QwoULFRwcrM2bNysgIEBZWVkV3mG12WwyDEMlJSX661//qvT0dJmmqXvvvVf33nuv2rRp43aNtUXwBAAATcI999yjdevWKSIiwhU827dvL39/f8XFxcnX11fXXXedTp8+7TqnS5cu6tOnj0aOHKmSkhJFR0fr+uuvr7B/u92u1157Tc8995yKiopUWFio7t27u+48pqWlaebMmXrllVdkGIa6d++uIUOGuF3/4MGD9eijj+raa6/VDTfcoJycHElSjx499Mwzz2jWrFmuOqZMmaKHH35YpmkqMDBQL774omtO649169ZNL774ojp06KDmzZtryJAhat68uW677TaFhYW5XZ8n2MzLI3QjFRcXVy/zFACPyTnuuadAu4+Srmnvmb4A4Aq+/PJLde3a9T8HCrMvPtnuKX7BV3yqHfWn3J+/qs5l3PEEAACeExBKUESlWEAeAAAAliB4AgAAwBIETwAAUCtN4HER1EBN/twJngAAoMaaNWumc+fOET6vMqZp6ty5c2rWrFm1zuPhIgAAUGNt27bViRMndObMmfouBRZr1qyZ2rZtW61zCJ4AAKDGfHx8FBERUd9loJFgqB0AAACWIHgCAADAEgRPAAAAWII5nmgcPLkFG9uvAQBQLwieaByK8zy7lznB88oI+wAADyN4AqgYYR8A4GHM8QQAAIAlCJ4AAACwBEPtQE15cg6ks8Qz/QAA0IARPIGa8uQcyKghnukHAIAGjKF2AAAAWILgCQAAAEsQPAEAAGAJgicAAAAsQfAEAACAJQieAAAAsATBEwAAAJYgeAIAAMASBE8AAABYguAJAAAASxA8AQAAYAmCJwAAACxB8AQAAIAlCJ4AAACwhHd9FwA0VDkFJcovLq30/VCHU6VFjiv24+ttl7+PlydLAwCgUSJ4ApXILy7Vmr0nKn2/f5ti5WblXrGfqNYhBE8AAFQHwdPhcCglJUUnT55USUmJJk6cqBtuuEETJkzQjTfeKEkaOXKk7rnnHi1YsEBbtmyRt7e3UlJSFB0drePHjys5OVk2m00dO3bUjBkzZLczIwAAAKCx83jwXL9+vVq0aKGXXnpJOTk5+uUvf6nHHntMv/nNbzRu3DhXu8zMTO3Zs0erV69WVlaWEhIS9P7772vOnDlKTExU7969NX36dG3evFn9+vXzdJkAAACwmMeD58CBAzVgwADXay8vL+3fv1/Hjh3T5s2b1b59e6WkpGjv3r2KjY2VzWZTWFiYnE6nsrOzlZmZqV69ekmS+vbtq+3btxM8AQAAmgCPB8/AwEBJUn5+vp544gklJiaqpKREw4YNU7du3bRo0SL97ne/U3BwsFq0aFHmvLy8PJmmKZvNVuYYAAAAGr86mTyZlZWlMWPGaMiQIRo0aJD69eunbt26SZL69eunAwcOKCgoSAUFBa5zCgoKFBwcXGY+Z0FBgUJCQuqiRAAAAFjM48Hz7NmzGjdunJ5++mkNHTpUkjR+/Hh98cUXkqSdO3fq5ptvVs+ePbVt2zYZhqFTp07JMAyFhoYqKipKu3fvliRt3bpVMTExni4RAAAA9cDjQ+2LFy9Wbm6uFi5cqIULF0qSkpOTNXv2bPn4+Khly5aaNWuWgoKCFBMTo+HDh8swDE2fPl2SlJSUpGnTpik9PV2RkZFl5osCAACg8fJ48Jw6daqmTp1a7vh7771X7lhCQoISEhLKHIuIiNCyZcs8XRYAAADqGQtkAgAAwBIETwAAAFiC4AkAAABLEDwBAABgCYInAAAALEHwBAAAgCUIngAAALCEx9fxBOB5RQ6nSkoNt9p6lziVnV1Y7niQn7euCfT1dGkAALiN4Ak0AiWlhg5k5brVNuRcgTaePFHu+NBb2hI8AQD1iqF2AAAAWILgCQAAAEsQPAEAAGAJgicAAAAsQfAEAACAJXiqHWhirgvyUf82xeWOhzq+k3K83O/IWeLBqgAAIHgCdc6UqfNFjirbBBimCqto4zRMtz/Px7ig3J3Lyh0vbR0i+fu43Y+ihrjfFgAANxA8gTpW6jR1+HRelW26RDl0sIp1Oju2CvJ0WQAAWI45ngAAALAEwRMAAACWIHgCAADAEszxxNXHNKSc41dsFupwVvh0+CWt/G1yb/d0AAAgETxxNXIUSQfWXbFZaZFDuVU88BN214OerAoAgCaPoXYAAABYguAJAAAASxA8AQAAYAmCJwAAACxB8AQAAIAleKoddaswWyquertItzhLat8HAACoVwRP1K3iPGnf8tr3EzWk9n0AAIB6xVA7AAAALEHwBAAAgCUIngAAALAEwRMAAACW4OEiAHXPNKSc47Xvxy9YCgitfT8AgHpB8ARQ9xxF0oF1te+n+yiCJwA0Ygy1AwAAwBLc8QSuEqZMnS9yuN0+wDBVWEF7X2+7/H28PFkaAOAqQfAErhKlTlOHT7u/i1SXKIcOZuWWOx7VOoTgCQCoEYbaAQAAYAmCJwAAACxB8AQAAIAlCJ4AAACwBMETAAAAliB4AgAAwBIeX07J4XAoJSVFJ0+eVElJiSZOnKibbrpJycnJstls6tixo2bMmCG73a4FCxZoy5Yt8vb2VkpKiqKjo3X8+PEK2wIAAKBx83iiW79+vVq0aKHly5frrbfe0qxZszRnzhwlJiZq+fLlMk1TmzdvVmZmpvbs2aPVq1crPT1dM2fOlKQK2wIAAKDx8/gdz4EDB2rAgAGu115eXsrMzFSvXr0kSX379tX27dsVERGh2NhY2Ww2hYWFyel0Kjs7u8K2/fr183SZAK52hdlSsfsL6lfJL5g95AHADR4PnoGBgZKk/Px8PfHEE0pMTNTcuXNls9lc7+fl5Sk/P18tWrQoc15eXp5M0yzXFgA8rjhP2rfcM311H0XwBAA31MnkyaysLI0ZM0ZDhgzRoEGDyszRLCgoUEhIiIKCglRQUFDmeHBwcIVtAQAA0Ph5PHiePXtW48aN09NPP62hQ4dKkqKiorR7925J0tatWxUTE6OePXtq27ZtMgxDp06dkmEYCg0NrbAtAAAAGj+PD7UvXrxYubm5WrhwoRYuXChJmjJlitLS0pSenq7IyEgNGDBAXl5eiomJ0fDhw2UYhqZPny5JSkpK0rRp08q0BQAAQOPn8eA5depUTZ06tdzxZcuWlTuWkJCghISEMsciIiIqbAsAAIDGjQUyAQAAYAmCJwAAACxB8AQAAIAlCJ4AAACwBMETAAAAliB4AgAAwBIETwAAAFiC4AkAAABLeHwBeQBADRVmS8V5nunLL1gKCPVMXwDgIQRPAGgoivOkfcs901f3UQRPAA0OQ+0AAACwBMETAAAAliB4AgAAwBLM8QRQLaZMnS9yVOucAMNU4WXn+Hrb5e/j5enSAAANHMETQLWUOk0dPl29J6+7RDl0MCvX9TqqdQjBEwCuQgRPAI2HaUg5xz3Tl7PEM/0AANxG8ATQeDiKpAPrPNNX1BDP9AMAcJtbDxedPXu2rusAAABAE+fWHc+EhASFhoZq6NCh+vnPfy67nYfhAQAAUD1uBc8VK1bo6NGjWrNmjRYtWqQ+ffpo6NChCg8Pr+v6AAAA0ES4feuyVatWCg8PV7NmzXTo0CE9//zzeu211+qyNgAAADQhbt3xfPLJJ3X48GENHjxYL730kq6//npJUlxcnJ588sk6LRBXlyKHUyWlRrnjP14H8kpYJxIAgIbHreD5wAMPqHv37goMDNTp06ddx1esWFFnheHqVFJq6MBl6z1e8uN1IK+EdSIBAGh43Bpq/+yzzzR//nxJUlpamt58801Jkp+fX91VBgAAgCbFreD58ccfKzk5WZL0+uuv6+OPP67TogAAAND0uBU8bTabSkou7vLhcDhkmmadFgUAAICmx605niNGjNCgQYPUqVMn/fvf/9Zvf/vbuq4LAAAATYxbwXPYsGG666679O233yo8PFyhoaF1XRcAAACaGLeC55dffqmVK1equLjYdWzOnDl1VhRQW6ZMna9k+SV3l2ZyGkwpgZtMQ8o5Xvt+nCW17wMAGjC3gmdycrIefPBB3XDDDXVdD+ARpU5Th0/nVfieu0szdWwV5Omy0FQ5iqQD62rfT9SQ2vcBAA2YW8GzZcuWGjZsWF3XAgAAgCbMreDZpk0bvfnmm+ratatsNpskKTY2tk4LAwAAQNPiVvB0OBw6duyYjh075jpG8AQAAEB1uBU858yZo2PHjumbb75R586d1apVq7quCwAAAE2MW8Fz2bJl+uijj3T+/Hn98pe/1PHjxzV9+vS6rg0AAABNiFs7F/35z3/W0qVLFRwcrF//+tf6/PPP67ouAAAANDFuBc9LW2ReerDI19e37ioCAABAk+TWUPt9992n0aNH69SpU3rooYd0991313VdAAAAaGLcCp4PPvig+vTpo0OHDikiIkJdunSp67oAAADQxLgVPBcsWOD6/dGjR7Vp0yY9/vjjdVYUAAAAmh63dy6SLs71PHDggAzDqNOiAAAA0PS4FTxHjBhR5vVvf/vbOikGAAAATZdbwfPyHYvOnDmjrKysOisIAAAATZNbwfPyxeL9/Pz0zDPP1FlBAAAAaJrcCp4ZGRnV7vjzzz/XvHnzlJGRoczMTE2YMEE33nijJGnkyJG65557tGDBAm3ZskXe3t5KSUlRdHS0jh8/ruTkZNlsNnXs2FEzZsyQ3e7WcqMAAABowNwKnoMHD1ZBQYH8/PxUXFws6eKDRjabTZs3by7X/q233tL69evl7+8vSTpw4IB+85vfaNy4ca42mZmZ2rNnj1avXq2srCwlJCTo/fff15w5c5SYmKjevXtr+vTp2rx5s/r16+eJ7woAAIB65NatxB49emjevHnasGGDFi5cqFtuuUV//etf9Ze//KXC9u3atdP8+fNdr/fv368tW7Zo9OjRSklJUX5+vvbu3avY2FjZbDaFhYXJ6XQqOztbmZmZ6tWrlySpb9++2rFjhwe+JgAAAOqbW8Hz6NGj6tGjhySpc+fOysrKkq+vb6VbZw4YMEDe3v+5mRodHa1nnnlG7777rsLDw/W73/1O+fn5CgoKcrUJDAxUXl6e607q5ccAAADQ+LkVPIODg/Xqq6/q448/1ksvvaSwsLBqfUi/fv3UrVs31+8PHDigoKAgFRQUuNoUFBQoODi4zHzOgoIChYSEVOuzAAAA0DC5FTxffvllBQUF6Z///KfCw8P1/PPPV+tDxo8fry+++EKStHPnTt18883q2bOntm3bJsMwdOrUKRmGodDQUEVFRWn37t2SpK1btyomJqaaXwkAAAANkVsPF/n5+al58+YqLCxURESEcnNzFRoa6vaHpKamatasWfLx8VHLli01a9YsBQUFKSYmRsOHD5dhGK4lm5KSkjRt2jSlp6crMjJSAwYMqNk3AwAAQIPi9jqerVq10o4dO9StWzclJSXprbfeqvKctm3batWqVZKkm2++We+99165NgkJCUpISChzLCIiQsuWLXO3fgAAADQSbg21f/PNN3ryySfl6+urO++8kwd+AAAAUG1uBc9LSx3ZbDbl5+ezoDsAAACqza2h9kmTJmnkyJE6c+aMhg8frilTptR1XQAAAGhi3AqeWVlZ+tvf/qbs7Gxdc801rnU2AQAAAHe5FTxXrVqlwYMHV+tJdgCoa0UOp0pKjRqdG2CYKixyyNfbLn8fLw9XBgCoiFvBs6SkRPfff78iIiJc8ztffvnlOi0MAK6kpNTQgazcGp3bJcqhg1m5imodQvAEAItUGTwXLlyoRx99VJMnT9b333+v66+/3qq6AAAA0MRU+Xj6rl27JEm9evXS6tWr1atXL9cvAAAAoDqqDJ6maVb4ewAAAKC6qhxqv/zpdZ5kx5XkFJQov7i0zLFQh1OlRQ63+3Aa/IADAEBTVWXwzMzM1IgRI2Sapo4cOeL6vc1mq3ALTFzd8otLtWbviTLH+rcpVm41Hv7o2CrI02UBAIAGosrguX79eqvqAAAAQBNXZfBs06aNVXUAuIqYMnW+GlMwLrm09uYlTM0AgMbFrXU8AcCTSp2mDp/Oq/Z5l9bevISpGVUwDSnneO378QuWAtg8BIBnEDwBoClyFEkH1tW+n+6jCJ4APKbK5ZQAAAAATyF4AgAAwBIETwAAAFiC4AkAAABLEDwBAABgCYInAAAALEHwBAAAgCUIngAAALAEwRMAAACWIHgCAADAEgRPAAAAWILgCQAAAEsQPAEAAGAJgicAAAAsQfAEAACAJQieAAAAsATBEwAAAJYgeAIAAMAS3vVdAADgIqdpKr/IUas+fL3t8vfx8lBFAOBZBE8AaCAMUzqQlVurPqJahxA8ATRYDLUDAADAEgRPAAAAWILgCQAAAEsQPAEAAGAJgicAAAAsQfAEAACAJQieAAAAsATreDYVhdlScZ5n+vILlgJCPdMXAADA/1dnwfPzzz/XvHnzlJGRoePHjys5OVk2m00dO3bUjBkzZLfbtWDBAm3ZskXe3t5KSUlRdHR0pW1xBcV50r7lnumr+yiCJwAA8Lg6SXRvvfWWpk6dquLiYknSnDlzlJiYqOXLl8s0TW3evFmZmZnas2ePVq9erfT0dM2cObPStgAAAGj86s1YPsIAABShSURBVCR4tmvXTvPnz3e9zszMVK9evSRJffv21Y4dO7R3717FxsbKZrMpLCxMTqdT2dnZFbYFAABA41cnQ+0DBgzQiRMnXK9N05TNZpMkBQYGKi8vT/n5+WrRooWrzaXjFbUFgIauyOFUSalRqz78TdND1QBAw2TJw0WXz9EsKChQSEiIgoKCVFBQUOZ4cHBwhW0BoKErKTV0ICu3Vn3c0t1DxQBAA2XJUztRUVHavXu3JGnr1q2KiYlRz549tW3bNhmGoVOnTskwDIWGhlbYFgAAAI2fJXc8k5KSNG3aNKWnpysyMlIDBgyQl5eXYmJiNHz4cBmGoenTp1faFgAAAI1fnQXPtm3batWqVZKkiIgILVu2rFybhIQEJSQklDlWWVsAQD0wDSnnuGf6Yo1g4KrHAvIAgMo5iqQD6zzTF2sEA1c9VmYHAACAJQieAAAAsARD7SivhnO6Qh1O9W9TXOZYK3+barfADAAAaCoIniivhnO6Soscyv3ROoZhdz3oqaoAAEAjx1A7AAAALEHwBAAAgCUIngAAALAEwRMAAACWIHgCAADAEgRPAAAAWILgCQAAAEuwjmcjl1NQovziUoU6nCotctSoD19vu/x9vDxcGQAAQFkEz0Yuv7hUa/aeUP82xeUWb3dXVOsQgicAAKhzDLUDAADAEtzxBACUU+RwqqTUUIBhqpBpPAA8hOAJACinpNTQgaxcdYly6CDTeAB4CEPtAAAAsATBEwAAAJZgqB0yZer8ZXO4ajqny2mYniwLsMSP//7XRIBh8vcfANxA8IRKnaYOn85zva7pnK6OrYI8WRZgiR///a+JLlEOGWbDCJ6XgnRtHgqS+EESQN0geAJAE3IpSNfmoSCJHyQB1A3meAIAAMASBE8AAABYguAJAAAASxA8AQAAYAmCJwAAACzBU+0AAGuYhpRz3DN9+QVLAaGe6QuAZQieAABrOIqkA+s801f3UQRPoBFiqB0AAACWIHgCAADAEgRPAAAAWILgCQAAAEsQPAEAAGAJgicAAAAsQfAEAACAJQieAAAAsATBEwAAAJYgeAIAAMASBE8AAABYguAJAAAAS3jXdwEAAFSbaUg5x2vfj1+wFBBa+34AuIXgCQBofBxF0oF1te+n+yiCJ2AhhtoBAABgCUvveN5///0KDg6WJLVt21bDhw/X888/Ly8vL8XGxurxxx+XYRhKTU3VV199JV9fX6Wlpal9+/ZWlgkAAIA6YFnwLC4uliRlZGS4jg0ZMkTz589XeHi4Hn74YWVmZurkyZMqKSnRypUrtW/fPr3wwgtatGiRVWUCADzElKnzRQ7X6wDDVOFlr93l622Xv4+XJ0sDUE8sC54HDx5UUVGRxo0bp9LSUiUkJKikpETt2rWTJMXGxmrnzp06c+aMfvazn0mSunfvrv3791tVIgDAg0qdpg6fznO97hLl0MGs3Gr3E9U6hOAJNBGWBc9mzZpp/PjxGjZsmL7++ms99NBDCgkJcb0fGBiob7/9Vvn5+QoKCnId9/LyUmlpqby9eQ4KAACgMbMszUVERKh9+/ay2WyKiIhQcHCwfvjhB9f7BQUFCgkJ0YULF1RQUOA6bhgGoRMAAKAJsOyp9jVr1uiFF16QJH3//fcqKipSQECAvvnmG5mmqW3btikmJkY9e/bU1q1bJUn79u1Tp06drCoRAAAAdciyW4lDhw7Vs88+q5EjR8pms2n27Nmy2+2aPHmynE6nYmNj9ZOf/ET/9V//pe3bt2vEiBEyTVOzZ8+2qkQAAADUIcuCp6+vr15++eVyx1etWlXmtd1u13PPPWdVWQAAALAIC8gDAADAEgRPAAAAWILgCQAAAEuwThEA4OplGlLOcc/05RcsBYR6pi+giSJ4AgCuXo4i6cA6z/TVfRTBE7gCgicAoEH78Z7vUvX3fWe/d6BhIHgCABq0H+/5LlV/33f2ewcaBh4uAgAAgCUIngAAALAEwRMAAACWIHgCAADAEgRPAAAAWIKn2gEATV5FSzJJ1VuWiSWZgNojeAIAmryKlmSSqrcsE0syAbXHUDsAAAAsQfAEAACAJQieAAAAsATBEwAAAJbg4SIAADzBNKSc47Xvxy9YCgitfT9AA0TwBADAExxF0oF1te+n+yiCJ5oshtoBAABgCYInAAAALMFQe30rzJaKyy9q7K5Qh1P92xSrlb9N7i2BDAAAUD8InvWtOE/at7zGp5cWOZSblauwux70YFEAAACex1A7AAAALEHwBAAAgCUIngAAALAEczwBAHCDKVPnixyVvh9gmCqs4v1LfL3t8vfx8mRpQKNB8KxHOQUl8i1xqtSNf6gq4zRMD1YEAKhMqdPU4dOVr0LSJcqhg1lXXl8kqnUIwRNXLYJnPcovLlXuuQLluvEPVWU6tgryYEUAAAB1h+AJAICFrjRk713iVHZ2YZV9BPl565pAX0+XBtQ5gicAABa60pB9yLkCbTx5oso+ht7SluCJRomn2gEAAGAJgicAAAAsQfAEAACAJQieAAAAsAQPFwEA0IBcF+Sj/m2Kq2wT6vhOynFjLVC7j2TUfK3oMvyCpYBQz/SFqxbBEwCABsTHuKDcncuqbFPaOkTy97lyZ1FDpAPrPFNY91EET9QawbMmCrOl4sqXwnBXqMOpZv421Xz5eAAAgMaD4FkTxXnSvuW17qa0yCHvqMEeKAgAAKDhI3jWQHGpoQu12F/9EqdhyuaBegAAABoDgmcNlBqmDtRif/VLOrYKkhtTwwEAKONK225eEmCYKqyina+3Xf4+/E8E6xA8AQBoZK607eYlXaIcOljFjZKo1iHuB0/TkHKOu1ti5Xg6/qpG8AQA4Crl7p1TSQooLlThZ++XO17tu6Y8HX9Va5DB0zAMpaam6quvvpKvr6/S0tLUvn37+i4LAIAmxd07p1Lld0+rddcUV70GGTw3bdqkkpISrVy5Uvv27dMLL7ygRYsW1XdZAACgtjw1ZC8xbN8INcjguXfvXv3sZz+TJHXv3l379++v54oAAEBFqjNcL1U+ZG+3SYZZvc/2v/VBOfJ+cL32ttvk512D3cDZ4ckyNtM0q/nHXPemTJmi/v376+c//7kk6fbbb9emTZvk7V1xTu7du7fatGljZYkAAACowMmTJ7V79+4K32uQdzyDgoJUUFDgem0YRqWhU1KlXw4AAAANRw3uR9e9nj17auvWrZKkffv2qVOnTvVcEQAAAGqrQQ61X3qq/dChQzJNU7Nnz1aHDh3quywAAADUQoMMngAAAGh6GuRQOwAAAJoegicAAAAs0SCfam+o2FGpbjgcDqWkpOjkyZMqKSnRxIkTddNNNyk5OVk2m00dO3bUjBkzZLfzc1JtnDt3TnFxcVqyZIm8vb25vh72xhtv6OOPP5bD4dDIkSPVq1cvrrGHOBwOJScn6+TJk7Lb7Zo1axZ/hz3o888/17x585SRkaHjx49XeF0XLFigLVu2yNvbWykpKYqOjq7vshuNy6/vl19+qVmzZsnLy0u+vr6aO3euWrZsqVWrVum9996Tt7e3Jk6cqDvuuKO+y647Jtz2t7/9zUxKSjJN0zQ/++wzc8KECfVcUdOwZs0aMy0tzTRN08zOzjZ//vOfm4888oi5a9cu0zRNc9q0aebGjRvrs8RGr6SkxHz00UfN/v37m0eOHOH6etiuXbvMRx55xHQ6nWZ+fr75+uuvc4096KOPPjKfeOIJ0zRNc9u2bebjjz/O9fWQN99807zvvvvMYcOGmaZpVnhd9+/fb8bHx5uGYZgnT5404+Li6rPkRuXH13f06NHmgQMHTNM0zRUrVpizZ882T58+bd53331mcXGxmZub6/p9U8WPh9XAjkp1Y+DAgXryySddr728vJSZmalevXpJkvr27asdO3bUV3lNwty5czVixAi1atVKkri+HrZt2zZ16tRJjz32mCZMmKDbb7+da+xBERERcjqdMgxD+fn58vb25vp6SLt27TR//nzX64qu6969exUbGyubzaawsDA5nU5lZ2fXV8mNyo+vb3p6urp27SpJcjqd8vPz0xdffKEePXrI19dXwcHBateunQ4ePFhfJdc5gmc15OfnKygoyPXay8tLpaWl9VhR0xAYGKigoCDl5+friSeeUGJiokzTlM1mc72fl5dXz1U2XmvXrlVoaKjrhyZJXF8Py8nJ0f79+/Xaa69p5syZmjx5MtfYgwICAnTy5En94he/0LRp0xQfH8/19ZABAwaU2aClouv64//7uN7u+/H1vfTD/6effqply5Zp7Nixys/PV3BwsKtNYGCg8vPzLa/VKszxrIbq7qgE92VlZemxxx7TqFGjNGjQIL300kuu9woKChQSElKP1TVu77//vmw2m3bu3Kkvv/xSSUlJZe5WcH1rr0WLFoqMjJSvr68iIyPl5+en7777zvU+17h2li5dqtjYWP3P//yPsrKy9Otf/1oOx3/21eb6es7l82QvXdcf/99XUFBQJiihejZs2KBFixbpzTffVGho6FV3fbnjWQ3sqFQ3zp49q3Hjxunpp5/W0KFDJUlRUVGurVC3bt2qmJiY+iyxUXv33Xe1bNkyZWRkqGvXrpo7d6769u3L9fWgW265Rf/85z9lmqa+//57FRUVqU+fPlxjDwkJCXH9R9y8eXOVlpbyb0Qdqei69uzZU9u2bZNhGDp16pQMw1BoaGg9V9o4rVu3zvXvcXh4uCQpOjpae/fuVXFxsfLy8nT06NEmnS9YQL4a2FGpbqSlpekvf/mLIiMjXcemTJmitLQ0ORwORUZGKi0tTV5eXvVYZdMQHx+v1NRU2e12TZs2jevrQS+++KJ2794t0zQ1adIktW3blmvsIQUFBUpJSdGZM2fkcDg0ZswYdevWjevrISdOnNBTTz2lVatW6dixYxVe1/nz52vr1q0yDEPPPvssQb8aLl3fFStWqE+fPmrdurXrDv2tt96qJ554QqtWrdLKlStlmqYeeeQRDRgwoJ6rrjsETwAAAFiCoXYAAABYguAJAAAASxA8AQAAYAmCJwAAACxB8AQAAIAlWP0cQJP35ptvaseOHbLb7bLZbJo0aZK6devmen/IkCHq2bOnZsyY4TrWrVs39ejRQ5JUWlqqDh06uJaimjt3rg4dOiS73S4fHx9NmTJF4eHhSk5O1j333KO+ffvqtttu0/bt2139ffXVV0pLS5N0cR3g6Oho2e12jR8/XrfffnuFdS9fvlwjRowos6j35SZPnqy4uDj993//t+tYYWGhUlNTde7cOUkX18CcMWOGWrRoUbOLBwAeRPAE0KQdOXJEH3/8sVasWCGbzebavWn9+vWSpL1796pTp07atWtXma0BmzdvroyMDFc/iYmJ+sc//iFvb2+dPn1av//97yVJmzZt0uzZs7Vo0aIq6+jcubOrvzvvvFNLliyRn59flecsXrxYDzzwQKXBsyJr1qxR69at9eKLL0qS3n77bS1evFjJyclu9wEAdYXgCaBJCw0N1alTp7RmzRr17dtXXbt21Zo1a1zvr169WgMGDFDr1q314Ycf6sEHHyzXh8PhUGFhoQICAhQaGqr9+/drw4YN+ulPf6q77rpLffv2rVWN//rXv/T888/L29tbfn5+SktL09atW5Wdna2nnnpK6enpmjZtmr7//nudP39et99+uxISEirsKywsTB9++KG6d++uW2+9VWPHjtWl5ZpXrlyplStXyjAM9evXT4899pg+/PBDZWRkyNfXVxEREXruuef0wQcfaN26dXI6nUpMTNTZs2f1hz/8QXa7Xb169dKkSZNq9X0BXL2Y4wmgSQsNDdWiRYv06aefavjw4Ro4cKD+/ve/S5Ly8/O1d+9e3X777frVr36lFStWuM47f/684uPjFR8fr/Hjx6tXr17q06ePOnfurFmzZmnTpk2677779Ktf/Ur79u2rVY3Tpk3TzJkztWzZMj3wwAN68cUXNXz4cIWGhio9PV1ZWVm65ZZbtGTJEr377rt69913K+3r7rvv1sMPP6xVq1bpzjvv1NixY3Xs2DGdPn1aS5Ys0YoVK7R27Vr98MMPOnXqlBYtWqSMjAytWLFC/v7+Wr16tSTpmmuu0YoVK9SxY0ctWrRI77zzjlasWKFvv/1Wu3btqtX3BXD14o4ngCbt+PHjCgoK0pw5cyRdvLv48MMPq3fv3tqwYYMMw9AjjzwiSTpz5ox27typPn36lBtqv+TgwYOKiIhQenq6TNPU9u3blZiYWGY+Z3WdPXtWnTt3lnRxC70FCxaUeb9Fixbat2+fdu7cqeDgYDkcjkr7+vTTTxUbG6uBAweqtLRUH3zwgVJSUpSUlKTOnTu7hvenTJmizz77TJ06dVJAQIAkKSYmRv/3f/+nLl26KCIiQpL09ddf69y5c3rooYckXQzr3377rX7605/W+PsCuHpxxxNAk/bVV18pNTVVxcXFkqSIiAgFBwfLy8tLa9as0eLFi/X222/r7bff1tSpU6u8myhJO3fuVHp6upxOp2w2mzp27Ch/f3/ZbLYa19iyZUsdPnxYkrRnzx7deOONkiS73S7DMLRmzRpde+21evnllzVmzBgVFRVV2tf69etd80+9vb3VuXNn+fr6qn379jp69KhKSkokSY899piuv/56HTp0yNXfJ5984vrsS9+nXbt2at26tZYsWaKMjAyNHj1a0dHRNf6uAK5u3PEE0KT1799fR48e1bBhwxQQECDTNPXMM8/o22+/lWma6tixo6vtgAEDNGfOHGVlZVXaX3x8vObOnav7779fQUFBstvtrgd5aiotLc31RL23t7dmz54tSbrlllv00EMP6dlnn9XkyZO1e/duBQQEKDw8XGfPnq2wr8mTJys1NVWDBw9WQECAAgMDNWvWLF133XUaO3asaw5rv379FBYWpokTJ2rMmDGy2WyKiIjQ8OHDtW7dOld/LVu2dE05cDqdCg8P13333Ver7wvg6mUzL806BwAAAOoQQ+0AAACwBMETAAAAliB4AgAAwBIETwAAAFiC4AkAAABLEDwBAABgCYInAAAALEHwBAAAgCX+HwlDX3RM76gwAAAAAElFTkSuQmCC\n",
2965
      "text/plain": [
2966
       "<Figure size 792x432 with 1 Axes>"
2967
      ]
2968
     },
2969
     "metadata": {},
2970
     "output_type": "display_data"
2971
    }
2972
   ],
2973
   "source": [
2974
    "plt.figure(figsize = (11, 6))\n",
2975
    "Female=saps.saps2.loc[saps.GENDER=='F']\n",
2976
    "Male=saps.saps2.loc[saps.GENDER=='M']\n",
2977
    "\n",
2978
    "_ = plt.hist(Female, bins=30, alpha=0.5, label='Female ICU Patients')\n",
2979
    "_ = plt.hist(Male, bins=30, alpha=0.5, label='Male ICU Patients')\n",
2980
    "_ = plt.xlabel('SAPSII Total Score')\n",
2981
    "_ = plt.ylabel('Frequency')\n",
2982
    "_ = plt.legend()"
2983
   ]
2984
  },
2985
  {
2986
   "cell_type": "code",
2987
   "execution_count": 184,
2988
   "metadata": {},
2989
   "outputs": [
2990
    {
2991
     "data": {
2992
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAHeCAYAAABE9SyFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVxVdf7H8RcIiHBxQxBNTEABTR2zJnPJZdQ0ZrQix9SRxqUsF3LJxgVQMRdME7dwsjILdcyt32g5zZSTZdZgi46lJqIpuBAqIl2UK8L9/XFHJuRiy8A9XO/7+Xjcx7HzOefcj5+vzvjhe77nuFmtVisiIiIiIiIiTsjd6AREREREREREfik1tSIiIiIiIuK01NSKiIiIiIiI01JTKyIiIiIiIk5LTa2IiIiIiIg4LTW1IiIiIiIi4rQ8jE6gMnTo0IHbbrvN6DRERH6yzEzbtmlTY/NwJRaLreg1a95Q9MxMzFfN5AaYaFpHAyIiIlIdnT59mrS0NLuxW6Kpve2229i6davRaYiI/GSTJ9u2ixYZm4cryciwFb158xuKPnkyu07s4u1R3Vl0vwZERESkOoqOjq4wdks0tSIizkbNrOOVa2avW7SI7kB3B+YiIiIilUdrakVERERERMRpqakVETHAqFG2jzjOkSOjOHLETtFHjeKjPi0ZtV0DIiIi4ox0+7GIiAH8/Y3OwPV4elZQdH9/Sr6vi38tDYqIlFVUVMSpU6coLCw0OhURl+Ht7U2TJk3w9PT8yeeoqRURMcD8+UZn4HpCQyso+vz5WlMrInadOnUKPz8/mjVrhpubm9HpiNzyrFYrFy5c4NSpU4SEhPzk83T7sYiIiIiIHYWFhfj7+6uhFXEQNzc3/P39f/bdEWpqRUQMMHy47SOO8803w/nmGztFHz6c3T1bMPyvGhARKU8NrYhj/ZK/c7r9WETEAMHBRmfgemrWrKDowcEUFzciuLYGRURu7mLBVcyWa5V2PVNND+r5et30mKNHj7Jw4UKuXLnC5cuX6datG7Gxsezdu5cNGzaQnJxcKbmcO3eOF198kVmzZv2s8wYOHMjixYvZu3cvderUoWfPnpWSz/8iJiaGVq1aMW3aNAAsFgsPPPAA//znPw3OTKqKmloREQPMnm10Bq4nJKSCos+erTW1IvKTmC3X2PzFqUq73oC7mty0qc3Pz2fSpEksX76cZs2aUVxczPjx49mwYQOhoaGVlgdAQEDAz25ofyg6OrrykqkEb7/9Nj179uSee+4xOhVxADW1IiIiIiLV0M6dO+nQoQPNmjUDoEaNGixYsABPT0/27dvHyZMnefzxx8nNzaVHjx7ExsYSExNDvXr1yM/PZ9WqVcTFxZGVlUVxcTHDhw8nKiqKmJgYIiMjOXr0KGazmaVLl2K1Wpk0aRIbN27kgw8+YMWKFQC0atWKxMRE3N3/u2oxOTmZ3bt3ExQUxMWLFwFYvnw5DRo0oE+fPkyYMAGr1UpRURGJiYlERESQmprK22+/jZubG1FRUTz22GOkp6eTlJRESUkJ+fn5xMfH0759e6ZOnUpmZiYWi4WRI0cSFRXF3r17SU5OpkaNGgQHBzN79mwKCgqIj48vzfWH4uLiSEhIYOvWrXh4/LflOXXqFHFxcVy7dg03Nzfi4+OJjIzk/vvvp3379nz77bf4+/uzfPlySkpKmDlzJidPnqSkpIQJEybQoUOHKhxx+aW0plZExABDh9o+4jiHDg3l0CE7RR86lD3dQhi6VQMiItVLTk4OwTesV/H19cXLyza7a7FYSElJYd26daxdu7b0mH79+rFmzRo2btxIvXr12LBhA6+99hpLliwhNzcXgLZt27JmzRo6d+7MO++8U3rutWvXeO6551i1ahVbtmyhYcOGZGdnl8bT09P57LPP2Lx5M88//zwFBQVl8jtw4AB+fn68/PLLxMfHYzabycjIYMeOHaxfv57169fz/vvvc/z4cTIyMpgyZQpr1qxh+PDhbN26FbPZTFpaGitWrODll1+muLgYq9VKQkICK1asYO3atTRs2JC33nqLunXr2m1oASIiInjooYdISkoqs//5558nJiaGdevWERcXx/Tp0wHIyspi/PjxvPnmm+Tm5vLVV1+xadMm6tWrx7p160hJSWG2brOqtjRTKyJigIgIozNwPT4+FRQ9IoKimmeJ8NegiEj10rhxYw4dOlRmX1ZWVmmT2aJFi9IG94ezkddfhXLs2DE6deoEgMlkIiwsjKysLMA2AwsQFBTE+fPnS8+9ePEitWvXxv8/L1QfN25cme/PyMigdevWuLu7YzKZCA8PLxPv2rUrJ06cYMyYMXh4eDB69GjS09M5c+YMw4YNA+DSpUtkZmYSGBhISkoK3t7eFBQUYDKZMJlMJCQkkJCQgNlspn///uTm5pKTk8OECRMA21OpO3fu/KP1GzVqFIMHD+ajjz4q3Xfs2DF+/etfA9CyZcvSWtarV49GjRoB0KhRIywWC+np6XzxxRccOHAAsDX8Fy9epF69ej/63eJYampFRAyQkGB0Bq6nWbMKip6QQHcStKZWRKqdHj168NJLLzF48GCaNm1KUVERSUlJdOrUiebNm1f4lNjr+8PCwvj888/p3bs3ZrOZ9PR0mjRpctPv9Pf3Jz8/n7y8POrWrcucOXPo378/bdu2BWwN8xtvvEFJSQmFhYVkZGSUOT8tLY3AwEBWr17Nvn37WLx4MXFxcTRv3pxXXnkFNzc31qxZQ3h4OGPHjmXRokWEhYWxbNkyTp8+TU5ODgcPHuTFF1/EYrHQrVs3+vXrR1BQECkpKfj5+bFz5058fHx+tH41atQgKSmJxx9/vHTf9Zr07NmTw4cP06BBgzI1+6HQ0FCCgoJ46qmnKCwsZOXKldSpU+dHv1ccT02tiIiIiEg1ZDKZSEpKIj4+HqvVSkFBAT169GDIkCHs3bv3R88fOHAgCQkJDB48GIvFwrhx40pnYCvi7u7OzJkzefLJJ3F3d6dVq1a0adOmNN6yZUv69u3LgAEDCAwMLHe9yMhIJk6cyOuvv467uztjx44lMjKSjh07MnjwYK5evUrbtm1p2LAh/fv3Z8yYMfj7+5euzw0ICODcuXM89NBD+Pj4MGLECLy8vIiLi2PUqFFYrVZ8fX15/vnnycvLq3BN7XWhoaH88Y9/5PXXXwfgT3/6EwkJCaxevZpr164xd+7cCs8dNGgQ8fHxDB06FLPZzJAhQ8qsLZbqw81qtVqNTuJ/FR0dzdatW41OQ0TkJxs0yLbdsMHYPFzJwYO2ot9xxw1FHzSIT7I+YdnETmwYoAERkf86fPgwLVu2LP1vI17pI+KKbvy7Bzfv+apspvahhx7Cz88PgCZNmvDoo48yd+5catSoQZcuXRg3bhwlJSXMmjWLI0eO4OXlxZw5c7j99tvZv39/uWNFRG4l7doZnYHrMZkqKHq7dlytm0e7IA2KiNxcPV8vNaEi1VCVNLUWiwWA1NTU0n0PPvggy5cvJzg4mFGjRnHw4EFOnz7N1atXefPNN9m/fz9JSUmsXLmSmTNnljv2jjvuqIpURUQMMXWq0Rm4nttvr6DoU6fSnalaUysiIuKkqqSp/eabb7hy5QojRozg2rVrxMbGcvXqVZo2bQpAly5d+PTTTzl37hz33XcfAO3atePrr7/GbDbbPVZNrYiIiIiIiNyoSlY6e3t7M3LkSF599VUSExOZNm0atWrVKo37+vry/fffYzabMZlMpftr1KhRbt/1Y0VEbiWPPGL7iON8/fUjfP21naI/8gj/6nAbj2zUgIiIiDijKpmpDQkJ4fbbb8fNzY2QkBD8/PzIy8srjRcUFFC7dm0KCwvLvLC5pKQEk8lUZt/1Y0Wkeqvsh2fc6FZ7mEbHjkZn4Hpq166g6B07UnjCQscmGhQRERFnVCVN7ebNm0lPT2fWrFl89913XLlyBR8fHzIzMwkODubjjz9m3LhxZGdn88EHHxAVFcX+/fsJDw/HZDLh6elZ7lgRqd7Mlmts/uJUlV1/wF1NbqmmdvJkozNwPU2bVlD0yZPpzmStqRUREXFSVdLUDhgwgGnTpjF48GDc3NyYN28e7u7uTJ48meLiYrp06cKvfvUr2rRpw549exg0aBBWq5V58+YBkJiYWO5YERERERFDXc4FSyUui6vpBz71b3rI0aNHWbhwIVeuXOHy5ct069aN2NhY9u7dy4YNG0hOTq6UVM6dO8eLL77IrFmzftZ5AwcOZPHixezdu5c6derQs2fPSsnnfxETE8P58+f529/+VrrvH//4B7GxsezcuZMmTZrYPe+9994rfYfuT2WxWNi2bRu///3vKzzms88+w8/Pj8jISMaNG3fT9+r+8LpLlizh3//+N25ubvj4+DB79mwaNWr0k3NzJVXS1Hp5efHCCy+U279x48Yy/+3u7s7s2bPLHdeuXbtyx4qI3Er697dtt20zNg9X8tVXtqK3aXND0fv3J+30XuZOvodtgzUgInITlu9h//rKu167ITdtavPz85k0aRLLly+nWbNmFBcXM378eDZs2EBoaGjl5QEEBAT87Ib2h6KjoysvmUryw3edvvPOO9x22203Pf6NN95g1qxZP6upPXfuHJs2bbppU7tlyxaioqKIjIz8SQ0twNy5cwkNDWX9etuft/fee48JEybw5ptv/uTcXEmVvadWREQqVg1+kO1y6tWroOg9e1J4woOeId0cm5CIyI/YuXMnHTp0oFmzZoDtoaoLFizA09OTffv2cfLkSR5//HFyc3Pp0aMHsbGxxMTEUK9ePfLz81m1ahVxcXFkZWVRXFzM8OHDiYqKIiYmhsjISI4ePYrZbGbp0qVYrVYmTZrExo0b+eCDD0qbr1atWpGYmIi7+3+fL5ucnMzu3bsJCgri4sWLACxfvpwGDRrQp08fJkyYgNVqpaioiMTERCIiIkhNTeXtt9/Gzc2NqKgoHnvsMdLT00lKSqKkpIT8/Hzi4+Np3749U6dOJTMzE4vFwsiRI4mKimLv3r0kJydTo0YNgoODmT17NgUFBcTHx9ttFH/729/y9ttv07JlS/Lz87FYLDRo0ACA77//nri4uNLc4+PjOXv2LIcPH2bKlCmsX7+e5cuX8/XXX1NQUEBYWBjz58/niy++YMGCBXh4eFC7dm0WLVrEn//8ZzIyMlixYgUDBgxg1qxZWCwW8vLyGDt2LEFBQezevZuDBw/SvHlzfv/737Nnzx7+/e9/M3fuXKxWKw0bNmTRokV4e3sDcPXqVf75z3+SmJhY+vvp3bs3d999NwDvvvsu69atK40tXbqUo0eP8vLLL+Pp6cmpU6eIiopi9OjRnDhxgvj4eIqKivD29iY5ORmLxUJCQgIWi4WaNWvy3HPPUVxczOjRo6lbty5du3bliSeeqKw/xg6hplZExADjxxudgetp0qSCoo8fTzfGo5ZWRKqbnJwcgoODy+zz9fUt/bXFYiElJYXi4mK6d+9ObGwsAP369aN3796sXbuWevXqsXDhQsxmM9HR0dx7770AtG3blri4OJKTk3nnnXeIiooC4Nq1azz33HNs2rQJf39/VqxYQXZ2No0bNwYgPT2dzz77jM2bN3P58mXuv//+MvkdOHAAPz8/XnjhBTIyMjCbzWRkZLBjxw7Wr1+Pm5sbw4YNo0uXLmRkZDBlyhQiIiLYvn07W7duJTw8nLS0NLZs2QLAnj17sFqtJCQksH79evz9/VmyZAlvvfUWAwcOrHDm8ze/+Q1Tpkxh8uTJ/P3vf6dv376ls55//vOfuffeexkyZAgnTpxg2rRp/OUvf6Fly5bMmjWLq1evUrt2bV577TVKSkr47W9/y3fffcf7779P7969GTlyJP/85z/Jz8/nqaeeIj09nXHjxvHJJ58wfPhwOnTowJdffsny5ct57bXXuO+++4iKiiqtIUBCQgLJycmEhYWxbt06jh07VvoK07y8PBo0aICbm1uZ31O9evUAOHHiBKtWraJWrVrMmDGDjz/+mIYNG3LmzBm2bdvG1atXue+++xg9ejQLFixg1KhRdO3alR07dnDo0CE2b95MTEwM3bp149NPP2XRokVMnDiRc+fOsWXLFry8nO8ZJmpqRURERESqocaNG3Po0KEy+7KyssjOzgagRYsWpQ2Ih8d//1kfEhICwLFjx+jUqRMAJpOJsLAwsrKyANsMLEBQUBDnz58vPffixYvUrl0bf39/gHIPbM3IyKB169a4u7tjMpkIDw8vE+/atSsnTpxgzJgxeHh4MHr0aNLT0zlz5gzDhg0D4NKlS2RmZhIYGEhKSgre3t4UFBRgMpkwmUwkJCSQkJCA2Wymf//+5ObmkpOTw4QJEwAoLCykc+fON61dzZo1admyJfv27eO9994jOTm5tKlNT0/nX//6V+ma2/z8/HLn5ubmMmnSJHx8fLh8+TJFRUU89dRT/PnPf+aPf/wjDRs2pG3btly9erX0vICAAFauXMnmzZtxc3Pj2rWK3wpx4cIFwsLCAPjDH/5QJnZ9pt1qtZZpbLdv307fvn3x9/dnypQp+Pr6cvz4cdq1awdAeHg4Hh4eeHh4lM76fvvtt9x5550ApT+4mDdvHi+99BKvvPIKVqsVT09PAJo0aeKUDS1U0XtqRUTk5h54wPYRxzlw4AEOHLBT9Ace4LNfBfDAOg2IiFQvPXr0YPfu3WRmZgJQVFREUlIS6enpAOVm8q67vj8sLIzPP/8cALPZTHp6eoUPSbrO39+f/Pz80tdxzpkzhwMHDpTGQ0JCOHDgACUlJVy+fJmMjIwy56elpREYGMjq1asZPXo0ixcvJjQ0lObNm/PGG2+QmppKdHQ04eHhzJ07l6effpoFCxYQHh6O1WolJyeHgwcP8uKLL7Jq1SoWLlyIn58fQUFBpKSkkJqaylNPPUWHDh1+tH6/+93vWLNmDXXq1Ckzwx0aGsqwYcNITU1lyZIl9OvXr7RuVquVjz76iLNnz7J48WImTZpEYWEhVquV7du38/DDD5OamkqLFi3YuHEj7u7ulJSUALbbgB988EEWLlxIhw4dsFqtZa77Q4GBgZw4cQKAVatW8d5775XGPD096dKlC6mpqaX73n33XV5//XUKCwtZtmwZycnJzJkzh5o1a5b5nhuFhYXx1VdfAbBt2zZSU1MJDQ1l8uTJpKamkpiYSJ8+fQDK3GLubDRTKyJigP/8/6c4kL9/BUXv14/LJ+vQL7yrYxMSEfkRJpOJpKQk4uPjsVqtFBQU0KNHD4YMGcLevXt/9PyBAweSkJDA4MGDsVgsjBs3rnQGtiLu7u7MnDmTJ598End3d1q1akWbNm1K4y1btqRv374MGDCAwMDActeLjIxk4sSJvP7667i7uzN27FgiIyPp2LEjgwcP5urVq6VPGO7fvz9jxozB39+/dH1uQEAA586d46GHHsLHx4cRI0bg5eVFXFwco0aNwmq14uvry/PPP09eXl6Fa2oBOnfuzNSpU5k/f36Z/U899RRxcXFs3LgRs9lcOht955138qc//YmVK1eSkpLCwIED8fLyIjg4mJycHNq0acPUqVPx8fHB09OT2bNn4+/vT1FREQsXLqRv377MnTuXl156iUaNGpWu2f3Vr37FokWLyvxAITExkenTp+Pu7k5AQEDpLPZ106ZNY/78+QwaNAiAOnXqsHz5ckwmE+3bt+fhhx/Gx8eH2rVrk5OTU+EPK/70pz8xY8YMVq5cibe3NwsXLqR79+6la38LCwuJi4u76Z8JZ+BmvfHHBk4oOjqarVu3Gp2GiEvLyr1c5e+pDa7vU2XXFxERudEPn54LGPJKHxFXVO7vHjfv+TRTKyIiIiLyU/jUVxMqUg05743TIiJOrFcv20ccZ//+Xuzfb6fovXrx5R316fWGBkRERMQZaaZWRMQAjz5qdAauJzCwgqI/+ijmk4159I77HJuQiIiIVAo1tSIiBnCyd5rfEho3rqDoTzxBV55Aj4kSERFxTrr9WERERERERJyWmloREQN07277iOPs29edffu6lw90787+yLp0X2MnJiIiItWemloREQMMG2b7iOMEBQ0jKGhY+cCwYZiHDGBYOzsxEZEfyLPkcdp8utI+eZa8H/3Oo0ePMmrUKGJiYnjkkUdYtmwZVquVtLQ0Jk6cWGm/t3PnzjFr1qyffd7AgQM5deoUW7duZefOnZWWz/8iJiaGY8eOlf63xWLhN7/5TZV819q1a39WLj/F4cOHK3z3bmX44Z+d6+/odXZaUysiYgA1tI7XqNEw+4Fhw+jCMLo4NBsRcUYFRQX8NeOvlXa9B5s/SN2adSuM5+fnM2nSJJYvX06zZs0oLi5m/PjxbNiwgdDQ0ErLAyAgIOAXNbXXRUdHV14yTmTlypUMHTq0Uq/ZsmXLcu9orSpV2Tw7kppaEREDFBXZtp6exubhSkpKbEV3d7+h6EVFFBUXgacnnjU0ICJSfezcuZMOHTrQrFkzAGrUqMGCBQvw9PRk3759nDx5kscff5zc3Fx69OhBbGwsMTEx1KtXj/z8fFatWkVcXBxZWVkUFxczfPhwoqKiiImJITIykqNHj2I2m1m6dClWq5VJkyaxceNGPvjgg9Jmp1WrViQmJuLu/t8bPJOTk9m9ezdBQUFcvHgRgOXLl9OgQQP69OnDhAkTsFqtFBUVkZiYSEREBKmpqbz99tu4ubkRFRXFY489Rnp6OklJSZSUlJCfn098fDzt27dn6tSpZGZmYrFYGDlyJFFRUezdu5fk5GRq1KhBcHAws2fPpqCggPj4+J/VmB05coQ5c+YAULduXebNm8ehQ4dYtWoVnp6eZGdnM2jQIP71r3/xzTff8NhjjzFkyBDeffdd1q1bV3qdpUuX8uabb3Lp0iVmzZpFXFwc06dPL1fr6/Lz83n22Wcxm82lP5zo2LEjH3zwAcuWLcNkMlGnTh0iIiK455572LBhA8nJyWzatIm//OUvlJSU0LNnT2JjY0uvmZaW9ovy/qHOnTuzZ88eDhw4QGJiIr6+vvj7+1OzZk3GjRvHM888Q1BQEFlZWbRp04bExESys7OZNWsWFouFvLw8xo4dS69evejXrx/33HMPR44cwc3NjZSUFHx9fZkzZw4HDhygqKiI2NhYDhw4QMOGDfnDH/7ApUuXGD58OFu3bv3JY2iPmloREQP07m3b7tplaBou5d//thX9zjt3lQ307s3B7P1MmNqOXcN2lTtPRMQoOTk5BAcHl9nn6+tb+muLxUJKSgrFxcV07969tOHp168fvXv3Zu3atdSrV4+FCxdiNpuJjo7m3nvvBaBt27bExcWRnJzMO++8U9qAXbt2jeeee45Nmzbh7+/PihUryM7OpnHjxgCkp6fz2WefsXnzZi5fvsz9999fJr8DBw7g5+fHCy+8QEZGBmazmYyMDHbs2MH69etxc3Nj2LBhdOnShYyMDKZMmUJERATbt29n69athIeHk5aWxpYtWwDYs2cPVquVhIQE1q9fj7+/P0uWLOGtt95i4MCBFTa0U6ZMoVatWgCUlJSU7k9ISGDevHk0b96cTZs28corr9CpUyeys7P5v//7Pw4ePMj48eN57733+O677xg3bhxDhgzhxIkTrFq1ilq1ajFjxgw+/vhjRo8ezdq1a5k1a9ZNaw22Gd1OnTrxxz/+ke+++47Bgwfz3nvvMWfOHN58800aNGjAM888U+b3cOHCBV5++WW2bduGl5cXSUlJFBQUlPkz8EvybtiwYbl6zZw5k+eff54WLVqQnJzMd999B8CJEyd49dVXqVWrFr169eLcuXMcP36c4cOH06FDB7788kuWL19Or169KCgo4Le//S0JCQk888wzfPTRR3h5eXHx4kU2b97MuXPnWLt2Lb///e+ZNGkSf/jDH3j77bfp16+f3TH8OdTUiogY4PHHjc7A9TRqVEHRH3+cgsw9PN6+s2MTEhH5EY0bN+bQoUNl9mVlZZGdnQ1AixYt8PLyAsDD47//rA8JCQHg2LFjdOrUCQCTyURYWBhZWVmAbQYWICgoiPPnz5eee/HiRWrXro2/vz9Qfs1lRkYGrVu3xt3dHZPJRHh4eJl4165dOXHiBGPGjMHDw4PRo0eTnp7OmTNnGPaftTeXLl0iMzOTwMBAUlJS8Pb2pqCgAJPJhMlkIiEhgYSEBMxmM/379yc3N5ecnBwmTJgAQGFhIZ073/x/sxcsWEBYWBhga/4feOCB0pokJiYCUFRUVFqrFi1a4OnpiZ+fH02bNsXLy4s6depgsVgA8Pf3Z8qUKfj6+nL8+HHatWtX5vtuVuvr8evNW8OGDTGZTGRnZ2MymWjQoAEAd999d5mxyMrKokWLFnh7ewMwffr0cr/P/zXv63JycmjRogUAd911Fzt27ACgadOmmEwmwHaLusViISAggJUrV7J582bc3Ny4du1a6XWu/7lq1KgRFouF06dPl35nQEBA6VpeX19fMjIy2L59OykpKXZz+jn0oCgREQMMHWr7iOMEBQ0lKMhO0YcOpfP0lQxtqwERkeqlR48e7N69m8zMTMDWhCUlJZGeng6Am5ub3fOu7w8LC+Pzzz8HwGw2k56eTpMmTW76nf7+/uTn55OXZ3uI1fVbR68LCQnhwIEDlJSUcPnyZTIyMsqcn5aWRmBgIKtXr2b06NEsXryY0NBQmjdvzhtvvEFqairR0dGEh4czd+5cnn76aRYsWEB4eDhWq5WcnBwOHjzIiy++yKpVq1i4cCF+fn4EBQWRkpJCamoqTz31FB06dPgFFbXlv2DBAlJTU3n22Wfp1q3bTWsJ8P3337Ns2TKSk5OZM2cONWvWxGq1ApRuf6zWP4x/99135OfnExAQQEFBAbm5uQD8+9//LvO9TZs25fjx41y9ehWAp59+unQG9bpfmveNgoKCSsfyh3nYu/7SpUt58MEHWbhwIR06dChzzRuPDw0N5auvvirNZ+TIkYDtAWMrV66kYcOG1K9fv8Lfw0+lmVoREQNcvmzb+vgYm4crKS62Fb1GjRuKfvkyl4sug48PPp4aEBGpPkwmE0lJScTHx2O1WikoKKBHjx4MGTKEvXv3/uj5AwcOJCEhgcGDB2OxWBg3blzpDGxF3N3dmTlzJo45aZUAACAASURBVE8++STu7u60atWKNm3alMZbtmxJ3759GTBgAIGBgeWuFxkZycSJE3n99ddxd3dn7NixREZG0rFjRwYPHszVq1dp27YtDRs2pH///owZMwZ/f//S9bkBAQGcO3eOhx56CB8fH0aMGIGXlxdxcXGMGjUKq9WKr68vzz//PHl5eT97Te2sWbOYMmUKxcXFAMydO5ecnJybnmMymWjfvj0PP/wwPj4+1K5du/ScsLAwJk+ezLx5825a6yeffJLp06fz97//ncLCQmbPno2XlxcJCQk88cQT+Pn5UVJSwu233156Tv369XniiScYOnQobm5u9OjRw+6twz83b3s/2Jg5cybTp0/Hx8cHT0/Pm35P3759mTt3Li+99BKNGjUqXVdtT8+ePfn0008ZPHgwxcXFjB07FoBevXoxe/ZsFi5c+JN/PzfjZq2oXXci0dHR//PiYhH532TlXmbzF6eq7PoD7mpCcP1bp+G4/o5aral1nOvvqC23prZ7d/ZrTa2I2HH48OEyT6HNs+RRUFRQadf39fS96dOP5db30ksvMXz4cLy8vJg8eTJdunThoYcecnge69at44EHHqB+/fokJyfj6elZpa/7uXLlCkOHDmXTpk1lHkJ23Y1/9+DmPZ9makVEDDB6tNEZuJ7bbqug6KNHcznrE0bf3cmxCYmI06lbs66aUKlUvr6+DBw4EG9vb2677bYyT0x2JH9/f0aMGIGPjw9+fn4kJSVV2Xd9+eWXzJw5kwkTJthtaH8JzdSKSKXQTK2IiNxq7M0WiUjV+7kztXpQlIiIAS5dsn3Eca5du8S1a3aKfukSl77L5FKhBkRERMQZqakVETHAgw/aPuI4X331IF99ZafoDz7It93a8uAGDYiIiIgz0ppaEREDPP200Rm4niZNKij6009TeOpfPN3hXscmJCIiIpVCTa2IiAGio43OwPUEBFRQ9Oho7kUDIiIi4qx0+7GIiAHOn7d9xHGuXj3P1at2in7+PBcyj3D+sgZERG7uWl4eV0+drrTPtby8H/3Oo0ePMmrUKGJiYnjkkUdYtmwZVquVtLQ0Jk6cWGm/t3PnzjFr1qyffd7AgQM5deoUW7duZefOnZWWz//KYrHQuXNnXnnlldJ9hw8ftvtO24kTJ5KWlubI9KSSaaZWRMQAAwbYtnpPreMcPGgrern31A4YQJbeUysiP0GJuYBLb71Vader8/DDULfiVwTl5+czadIkli9fTrNmzSguLmb8+PFs2LCB0NDQSssDICAg4Bc1tddFV7NbkP7+978TFRXFW2+9xYgRI3B3d6dly5Z6mvUtSk2tiIgBnnnG6AxcT3BwBUV/5hmuntrLMx3vcWxCIiI/YufOnXTo0IFmzZoBUKNGDRYsWICnpyf79u3j5MmTPP744+Tm5tKjRw9iY2OJiYmhXr165Ofns2rVKuLi4sjKyqK4uJjhw4cTFRVFTEwMkZGRHD16FLPZzNKlS7FarUyaNImNGzfywQcflM5otmrVisTExDLvE01OTmb37t0EBQVx8eJFAJYvX06DBg3o06cPEyZMwGq1UlRURGJiIhEREaSmpvL222/j5uZGVFQUjz32GOnp6SQlJVFSUkJ+fj7x8fG0b9+eqVOnkpmZicViYeTIkURFRbF3716Sk5OpUaMGwcHBzJ49m4KCAuLj4+3Ovm7atIm4uDhyc3P58MMP6dGjB2lpaWzYsIHk5GTWrVvHpk2bCAgI4MKFCwB8++23TJs2DQ8PD2rUqMHzzz9Pw4YNq3iUpTKoqRURMUC/fkZn4HoaNKig6P36cQ8aEBGpfnJycggODi6zz9fXt/TXFouFlJQUiouL6d69O7GxsQD069eP3r17s3btWurVq8fChQsxm81ER0dz7722h+K1bduWuLg4kpOTeeedd4iKigLg2rVrPPfcc2zatAl/f39WrFhBdnY2jRs3BiA9PZ3PPvuMzZs3c/nyZe6///4y+R04cAA/Pz9eeOEFMjIyMJvNZGRksGPHDtavX4+bmxvDhg2jS5cuZGRkMGXKFCIiIti+fTtbt24lPDyctLQ0tmzZAsCePXuwWq0kJCSwfv16/P39WbJkCW+99RYDBw6029CeOHGCK1euEBkZySOPPMLq1avp0aNHafz777/njTfeYPv27bi5uZXOMn/yySfccccdTJ06lc8//5xLly6pqXUSampFRAyQnW3bBgUZm4crsVhsRa9Z84aiZ2eTU5BDScNAgkwaEBGpPho3bsyhQ4fK7MvKyiL7P/8n0qJFC7y8vADw8PjvP+tDQkIAOHbsGJ06dQLAZDIRFhZGVlYWYJuBBQgKCuL8Dx7ycPHiRWrXro2/vz8A48aNK/P9GRkZtG7dGnd3d0wmE+Hh4WXiXbt25cSJE4wZMwYPDw9Gjx5Neno6Z86cYdiwYQBcunSJzMxMAgMDSUlJwdvbm4KCAkwmEyaTiYSEBBISEjCbzfTv35/c3FxycnKYMGECAIWFhXTu3LnCum3atIkrV64wcuRIAL788ktOnjxZGj9+/DjNmzcvrV3btm0BGDBgAC+//DKPP/44fn5+lbpmWaqWHhQlImKAQYNsH3GcQ4cGceiQnaIPGsSZ33Zl0GYNiIhULz169GD37t1kZmYCUFRURFJSEunp6QC4ubnZPe/6/rCwMD7//HMAzGYz6enpNGnS5Kbf6e/vT35+Pnn/eYjVnDlzOHDgQGk8JCSEAwcOUFJSwuXLl8nIyChzflpaGoGBgaxevZrRo0ezePFiQkNDad68OW+88QapqalER0cTHh7O3Llzefrpp1mwYAHh4eFYrVZycnI4ePAgL774IqtWrWLhwoX4+fkRFBRESkoKqampPPXUU3To0MFu/teuXWPHjh2sW7eOV199lVdffZVRo0axfv360mOCg4PJyMigsLCQ4uJiDh8+DNhu977rrrt4/fXX6du3b5mHTEn1pplakWrmYsFVzJZrVXJtU00P6vl6Vcm15eeZOtXoDFxP06YVFH3qVK6d+ZypXe52bEIiIj/CZDKRlJREfHw8VquVgoICevTowZAhQ9i7d++Pnj9w4EASEhIYPHgwFouFcePGlc7AVsTd3Z2ZM2fy5JNP4u7uTqtWrWjTpk1pvGXLlvTt25cBAwYQGBhY7nqRkZFMnDiR119/HXd3d8aOHUtkZCQdO3Zk8ODBXL16lbZt29KwYUP69+/PmDFj8Pf3L12fGxAQwLlz53jooYfw8fFhxIgReHl5ERcXx6hRo7Barfj6+vL888+Tl5dXbk3tP//5T+644w7q/uABXNHR0Tz44IOls9b169dn/PjxDBo0iPr161OrVi0AWrduzbPPPsvy5ctxd3dn2rRpPz5IUi24Wa1Wq9FJ/K+io6PZunWr0WmIVIqs3Mts/uJUlVx7wF1NCK7vUyXXrsq8oWpzFxERsefw4cNlnpZ7LS+PEnNBpV3f3eSLx02efiziqm78uwc37/k0UysiYoD/LGnihud/SBUqLLQV3dv7hqJnZXEm/wzFTRoTXEcDIiIV86hb96av4BERY2hNrYiIAWJibB9xnMOHYzh82E7RY2LIeaQPMW9pQERERJyRZmpFRAwQH290Bq7n9tsrKHp8PCVnvyS+c3vHJiQiIiKVQk2tiIgBevUyOgPXU79+BUXv1Yv2aEBExD6r1VrhU4ZFpPL9kkc+6fZjEREDHD9u+4jjXLlynCtX7BT9+HEy9+3i+EUNiIiU5e3tzYULF37RP7JF5OezWq1cuHABb2/vn3WeZmpFRAwwYoRtu2uXoWm4lG++sRX9zjt3lQ2MGEFu9n4mTG3HrmG7yp0nIq6rSZMmnDp1inPnzhmdiojL8Pb2/tH3Kd9ITa2IiAESE43OwPWEhFRQ9MREOLufxHvbOTYhEan2PD09CQkJMToNEfkRampFRAzQrZvRGbieunUrKHq3brRDAyIiIuKs1NSKiMu7WHAVs+ValVzbVNODer5e5fYfOWLbRkRUydeKHZcv24ru43ND0Y8c4fjF4xQ1DyWigQZERETE2aipFRGXZ7ZcY/MXp6rk2gPuamK3qX3ySdtWa2od58gRW9HLral98knytaZWRETEaampFRExwLx5RmfgekJDKyj6vHnU+O4r5t3dxrEJiYiISKVQUysiYoBOnYzOwPXUqVNB0Tt1og0aEBEREWelplZExABff23btm5tbB6uxGy2Fd1kuqHoX3/N0QtHsbRsQetADYiIiIizUVMrImKAceNsW62pdZyjR21FL7emdtw4CrSmVkRExGmpqRURMcDChUZn4HrCwioo+sKFeOUcYmG7Vo5NSERERCqFmloREQP8+tdGZ+B6ateuoOi//jWt0ICIiIg4KzW1IiIG2L/ftm3Xztg8XMn339uK7ud3Q9H37+fI+SNcaR1BuyANiIiIiLNRUysiYoAJE2xbral1nIwMW9HLramdMIErWlMrIiLitNTUiogYYMkSozNwPc2bV1D0JUuodf4IS1pHODYhERERqRRqakVEDKDbjh2v3G3H17VrRwQaEBEREWelplZExACffWbb6oFRjpOfbyt6uQdGffYZh3IOUdCuFb++TQMiIiLibNTUiogY4NlnbVutqXWcY8dsRS+3pvbZZ7mavZ9ntaZWRETEKampFRExwIoVRmfgelq0qKDoK1bge+EoK1q2cGxCIiIiUinU1IqIGKB1a6MzcD0mUwVFb92aFmhAREREnJWaWhERA3zyiW3bqZOxebiSS5dsRa9T54aif/IJX333Fd/f3YZOwRoQERERZ6OmVkTEANOn27ZaU+s4x4/bil5uTe306RRn72e61tSKiIg4JTW1IiIGeOklozNwPRERFRT9pZeoffE4LzUPdWxCIiIiUinU1IqIGCAiwugMXI+PTwVFj4ggFA2IiIiIs1JTKyJigA8/tG27dTM2D1eSl2cret26NxT9ww/Zf3Y/l+5tR7dmGhARERFno6ZWRMQAM2fatlpT6zjffmsrerk1tTNnQvZ+ZmpNrYiIiFNSUysiYoDVq43OwPVERlZQ9NWrqX8pk9XNmjo2IREREakUampFRAwQqmcSOVytWhUUPTSUpmhAREREnJWaWhERA7z/vm3bq5exebiS3Fxb0evXv6Ho77/Pl2e/JLdze3qFakBEREScjZpaEREDzJlj26qpdZyTJ21FL9fUzpmDe/Z+5kxtp6ZWRETECampFRExQGqq0Rm4npYtKyh6aiqB+WdIbdLYsQmJiIhIpVBTKyJigOBgozNwPd7eFRQ9OJjGaEBERESclZpaEREDvPuubdu3r7F5uJILF2xF9/e/oejvvsvnZz7nfNe76dtcAyIiIuJs1NSKiBggKcm2VVPrOJmZtqKXa2qTkvDI3k+Sezs1tSIiIk5ITa2IiAE2bDA6A9fTqlUFRd+wgcYFOWxoGOjYhERERKRSqKkVETFAUJDRGbiemjUrKHpQEIFoQERERJyVmloREQNs327b9utnbB6u5Px5W9EbNLih6Nu3s/fUXr77zT30i9CAiIiIOJsqa2ovXLhAdHQ0q1evxsPDg6lTp+Lm5kaLFi2YOXMm7u7urFixgl27duHh4cH06dNp27YtJ0+etHusiMit5IUXbFs1tY6TlWUrermm9oUX8Mrezwu12qmpFRERcUJV0i0WFRUxY8YMvL29AZg/fz4TJkxg/fr1WK1Wdu7cycGDB9m7dy+bNm1i8eLFJCYmVnisiMitZvNm20cc5447NnPHHXaKvnkzwf9IY/NADYiIiIgzqpKmdsGCBQwaNIjAQNtDNw4ePMg999wDQNeuXfnkk0/44osv6NKlC25ubjRu3Jji4mJyc3PtHisicqtp0MD2Ecfx8mqAl5edojdogH/TCBr4aEBEREScUaU3tVu3bqV+/frcd999pfusVitubm4A+Pr68v3332M2mzGZTKXHXN9v71gRkVvN1q22jzjOuXNbOXfOTtG3buVfy/7E1sMaEBEREWdU6Wtqt2zZgpubG59++imHDx9mypQp5ObmlsYLCgqoXbs2JpOJgoKCMvv9/PzKrJ+9fqyIyK1m2TLbNjra2DxcyalTtqIHBNxQ9GXL8M7ez7Lae4luqQERERFxNpXe1K5bt6701zExMcyaNYuFCxeSlpZGhw4d+Oijj7j33ntp2rQpCxcuZOTIkWRnZ1NSUkL9+vVp1apVuWNFRG41f/2r0Rm4njZtKij6X/9KSOEl/lqnjmMTEhERkUrhkFf6TJkyhYSEBBYvXkxoaCh9+vShRo0a3H333Tz66KOUlJQwY8aMCo8VEbnVqH9yPA+PCopepw51NCAiIiJOq0qb2tTU1NJfr127tlw8NjaW2NjYMvtCQkLsHisicit5803b9tFHjc3DleTk2IoeGHhD0d98k0+yPiGrbyceba0BERERcTYOmakVEZGyVq60bdXUOs7p07ail2tqV67EJ3s/Kxv8W02tiIiIE1JTKyJigB07jM7A9bRtW0HRd+wgvOgyO3x8HJuQiIiIVAo1tSIiBlD/5Hg1alRQdB8ffNCAiIiIOKtKf0+tiIj8uLVrbR9xnOzstWRn2yn62rXsmTeatQc0ICIiIs5ITa2IiAFeecX2Ecc5e/YVzp61U/RXXsH3jb/wypcaEBEREWek249FRAzw3ntGZ+B6fvWrCor+3nvcUVzEe56ejk1IREREKoWaWhERA6h/cjx39wqK7umJpwZERETEaen2YxERA6xZY/uI45w9u4azZ9eUD6xZw8ezH2fNfjsxERERqfbU1IqIGEBNreNlZ68hO3tN+cCaNZjWb1ZTKyIi4qR0+7GIiAF27TI6A9dz55277Ad27aIdUEFUREREqjnN1IqIiIiIiIjTUlMrImKAl1+2fcRxzpx5mTNn7BT95Zf5KP4xXv5CAyIiIuKMdPuxiEgVKrFaycq9XG7/62trAtD3Ecsvvrappgf1fL1+8fmuJifnTQAaN36ibODNNzGd/ZI3w8/wxF1P2DlTREREqjM1tSIiVaiwqJgdX2WX2/9IvG27+Ytffu0BdzVRU/sztGv3vv3A++/THqggKiIiItWcbj8WERERERERp6WmVkTEAHu21WHPtjpGp+FSTp9O4fTplPKBlBQ+nDKIlM/sxERERKTaU1MrImKAg/8ycfBfJqPTcCkXLmznwoXt5QPbt+Pz7k62p9uJiYiISLWnNbUiIgYYNe+00Sm4nLZt/2Y/8Le/8WuggqiIiIhUc2pqRcQpVPQU4cpw9VpJlVxXRERERKqemloRcQoVPUW4MkS1CaqS697MR2/VBaDrw3kO/25XderUUgCaNBlfNrB0KR+e+JD9j3Zj/L3j7ZwpIiIi1ZnW1IqIGODoPh+O7vMxOg2XcvHiTi5e3Fk+sHMn3h99ws5v7cRERESk2tNMrYiIAUbOPmN0Ci6nTZtt9gPbttEBqCAqIiIi1ZxmakVERERERMRpqakVETHAB5vq8cGmekan4VIyMxeRmbmofGDRInaN+x2LPrETExERkWpPtx+LiBjgxGFvo1NwOfn5n9oPfPop3qf28WnXmo5NSERERCqFmloREQMMn3HW6BRcTuvWW+wHtmzhXqCCqIiIiFRzuv1YREREREREnJaaWhERA+zcUI+dG7Sm1pFOnkzi5Mmk8oGkJHY91Zekj+3EREREpNrT7cciIgY4fUzrNx3NbN5vP7B/P15Zh9ifXdexCYmIiEilUFMrImKAx+KyjU7B5dxxxwb7gQ0b6AR0cmg2IiIiUll0+7GIiIiIiIg4LTW1IiIG+Mfa+vxjbX2j03ApJ048x4kTz5UPPPccu0b25LkP7cRERESk2tPtxyIiBsg55WV0Ci7n8uUj9gNHjuCZdZwjFxo5NiERERGpFGpqRUQMMHSq1tQ6WqtWa+0H1q6lM9DZodmIiIhIZdHtxyIiIiIiIuK01NSKiBjgb6/787fX/Y1Ow6V8++0Mvv12RvnAjBnseqwrMz6wExMREZFqT7cfi4gYIO+c/ufX0SyWLPuBrCxqnD5LVn4FcREREanW9K8qEREDDJ78ndEpuJzIyNfsB157jfuA+xyajYiIiFQW3X4sIiIiIiIiTktNrYiIAd5+tQFvv9rA6DRcyvHj0zh+fFr5wLRp7BrckWnv24mJiIhItafbj0VEDHA5Xz9TdLSiogv2Axcu4J6bx4UrFcRFRESkWlNTKyJigIETc4xOweVERKyyH1i1iq5AV4dmIyIiIpVFUwUiIiIiIiLitNTUiogYYNuqBmxbpTW1jpSRMZmMjMnlA5Mns2vA3Uz+h52YiIiIVHu6/VhExABFFv1M0dFKSq7YD1y5gluhhStFFcRFRESkWlNTKyJigEditabW0cLDX7QfePFFugHdHJqNiIiIVBZNFYiIiIiIiIjTUlMrImKAt1YG8NbKAKPTcClHj07g6NEJ5QMTJvDhQ3cy4V07MREREan21NSKiIiIiIiI09KaWhERAzw8+pzRKbicFi2W2A8sWaI1tSIiIk5MM7UiIiIiIiLitNTUiogYYMvyQLYsDzQ6DZeSnj6W9PSx5QNjx/Lh79ow9h07MREREan2dPuxiIgBPGuWGJ2Cy3F3r2U/UKsWVu+a1PKsIC4iIiLVmppaERED9B913ugUXE7z5ovsBxYtojvQ3YG5iIiISOXR7cciIiIiIiLitNTUiogYYGNyIBuTtabWkY4cGcWRI6PKB0aN4qM+LRm13U5MREREqj3dfiwiYgCf2lpT62ienv72A/7+lHxfF/9aFcRFRESkWlNTKyJigN+N1JpaRwsNnW8/MH++1tSKiIg4Md1+LCIiIiIiIk5LTa2IiAH+sqghf1nU0Og0XMo33wznm2+Glw8MH87uni0Y/lc7MREREan2dPuxiIgB6gZcMzoFl1OzZrD9QHAwxcWNCK5dQVxERESqNTW1IiIGeOCPF4xOweWEhMy2H5g9W2tqRUREnJhuPxYRERERERGnpaZWRMQAa5OCWJsUZHQaLuXQoaEcOjS0fGDoUPZ0C2HoVjsxERERqfZ0+7GIiAECm1w1OgWX4+MTYT8QEUFRzbNE+FcQFxERkWpNTa2IiAHuH5prdAo3dbHgKmZL1T3MylTTg3q+XlV2fXuaNUuwH0hIoDsJWlMrIiLipNTUiohIOWbLNTZ/carKrj/griYOb2pFRETk1qQ1tSIiBnhjbhBvzNWaWkc6eHAQBw8OKh8YNIhPOjdl0GY7MREREan2NFMrImKA28IsRqfgckymdvYD7dpxtW4e7YIqiIuIiEi1pqZWRMQAPQddNDoFl3P77VPtB6ZOpTtTtaZWRETESen2YxEREREREXFaampFRAzw2uxGvDa7kdFpuJSvv36Er79+pHzgkUf4V4fbeGSjnZiIiIhUe7r9WETEAM1aFhqdgsupXbuj/UDHjhSesNCxSQVxERERqdbU1IqIGKDH77Wm1tGaNp1sPzB5Mt2ZrDW1IiIiTkq3H4uIiIiIiIjTqpKZ2uLiYuLj4/n222+pUaMG8+fPx2q1MnXqVNzc3GjRogUzZ87E3d2dFStWsGvXLjw8PJg+fTpt27bl5MmTdo8VEblVvDqjMQAjZ58xOBPX8dVX/QFo02Zb2UD//qSd3svcyfewbfA2O2eKiIhIdVYlTe0HH3wAwIYNG0hLSyttaidMmECHDh2YMWMGO3fupHHjxuzdu5dNmzZx9uxZYmNj2bJlC/Pnzy93bO/evasiVRERQ7S487LRKbicevV62g/07EnhCQ96hnRzbEIiIiJSKaqkqe3Vqxfdu3cH4MyZMzRo0IBdu3Zxzz33ANC1a1f27NlDSEgIXbp0wc3NjcaNG1NcXExubi4HDx4sd6yaWhG5lXR9OM/oFFxOkybj7QfGj6cb41FLKyIi4pyq7J5eDw8PpkyZwnPPPUefPn2wWq24ubkB4Ovry/fff4/ZbMZkMpWec32/vWNFREREREREblSlC1UXLFjA3//+dxISErBYLKX7CwoKqF27NiaTiYKCgjL7/fz8yqyfvX6siMitZNX021g1/Taj03ApBw48wIEDD5QPPPAAn/0qgAfW2YmJiIhItVclTe3//d//8dJLLwFQq1Yt3NzcaN26NWlpaQB89NFH3H333bRv356PP/6YkpISzpw5Q0lJCfXr16dVq1bljhURuZXcca+ZO+41G52GS/H374e/f7/ygX79uNy3J/3C7cRERESk2quSNbX3338/06ZN4w9/+APXrl1j+vTphIWFkZCQwOLFiwkNDaVPnz7UqFGDu+++m0cffZSSkhJmzJgBwJQpU8odKyJyK+nc/5LRKbic224bYz8wZgzdGKM1tSIiIk6qSppaHx8fli5dWm7/2rVry+2LjY0lNja2zL6QkBC7x4qIiIiIiIj8kF7+KiJigJVTbmPlFK2pdaT9+3uxf3+v8oFevfjyjvr0esNOTERERKq9KpmpFRGRm2vXTetpHS0w8FH7gUcfxXyyMY/ecZ9jExIREZFKoaZWRMQAHaO0ptbRGjd+wn7giSfoyhN0dWw6IiIiUkl0+7GIiIiIiIg4rZ/U1J4/f76q8xARcSkvTm7Ci5ObGJ2GS9m3rzv79nUvH+jenf2Rdem+xk5MREREqr2fdPtxbGws9evXZ8CAAXTr1g13d03wioj8L359f77RKbicoKBh9gPDhmHO/Jhh7bo4NB8RERGpHD+pqf3LX/7CsWPH2Lx5MytXrqRjx44MGDCA4ODgqs5PROSWdI+aWodr1GiY/cCwYXRhGGppRUREnNP/t3fn8U2W+f7/30m60I2lQKEtBcsqinwBBUUREQWU48KICi7g7gxyUFBGGBAQ2cSFGQ8qjvzA0SLI4sZxmBkHN1wQFEQEEQQqFCgUKHRJtzTJ749Oe2hzd4EmuZPm9ZyHj6GfK7l4l4bST67ruu86L7kmJCQoJSVFjRo10p49ezRnzhzDe9ECAGrnP6Kl7gAAIABJREFULC37D/7jcjnkcjk8BxwOOYoK5HAajAEAgIBXp6b2scce04gRI5Sbm6vnn39eixYt0muvvaYvvvjC1/kAoEF6bXIbvTaZM7X+9OOPg/Tjj4M8BwYN0s4eSRqUZjAGAAACXp22H99+++3q0aOHYmJilJWVVVFfsWKFz4IBQEN26XXc0sffEhMfNB548EHZD36tB3td4d9AAADAK+rU1P7www/68ssvNXnyZM2ePVvdunXTww8/rMjISF/nA4AG6ZJr88yOEHJat77beODuu3WF7hYtLQAAwalO248//fRTTZ48WZL0P//zP/r00099GgoAGrqSIotKiixmxwgpTmeBnM4Cz4GCAhXknFCBw2AMAAAEvDo1tRaLRSUlJZIkh8Mht9vt01AA0NAtfipZi59KNjtGSNm+fai2bx/qOTB0qPZc2lFD3zYYAwAAAa9O249HjhypG2+8UZ07d9b+/fv14IPVnEsCANTJ5TecNjtCyElOHmM8MGaMCjK+0ZhLLvdvIAAA4BV1ampvu+02XXPNNcrIyFBKSori4+N9nQsAGrSeA/LNjtBgnbKXKL/Y4H5JYTdKkjKyq2wzHnSjUnSjUozGqoiNDFOzmAgvJQUAAN5Qp6Z2165dWrlypYqLiytq8+bN81koAGjoCu1lpz+iYlwmJ2l48otLtWbLIY+6VWUX53IprlI9wp6notJ8FcfEKioszuN5Z7r14jY0tQAABJg6NbWTJ0/W3XffrdatW/s6DwCEhKUzkiRJY1/wbL7gG+1tj0iS9jrTKtVvmvGIjth36a6xXTW2W5rRUwEAQACrU1PbokUL3Xbbbb7OAgAh48phnKn1t+OuUYb1bcNG6UDeNl2Z2MPPiQAAgDfUqalNTk7W66+/rq5du8piKbsFRb9+/XwaDAAasu79OFPrbznuwYb1vf0GSxqs7v6NAwAAvKROTa3D4VB6errS09MrajS1AHDu8nPKztTGNuFMrb/YlC1JcqryxQ4b5WTL7jitwiZNFRvOhRABAAg2dWpq582bp/T0dB08eFBdunRRQkKCr3MBQIP25izO1Ppbqu0xSZ5nam+Y9RhnagEACGJ1amqXLVumf//738rJydHvfvc7HThwQNOnT/d1NgBosAYMP2V2hJCT5brPsL51+H06mL9dA5LYgAwAQDCqU1P797//XcuXL9fo0aN1zz33aPjw4b7OBQS0au+D6QUlpWxHDQUX9rWbHSHk5LoHGtb39x0oaaAu9G8cAADgJXVqat1utyRVXCQqIoJ79CG0VXcfTG8YehG3zgoFudk2SVLjeKfJSUJHmI5LkkrVslI9Ovu48hwnZW/WXI0jWho9FQAABLA6NbU33HCD7rrrLh05ckQPPfSQrr32Wl/nAuADLrdbGdkFPpmbFeazkzY3URJnav3pPNvjkjzP1A6d+zhnagEACGJ1amrvvvtu9e3bV3v27FFqaqrOP/98X+cC4ANFDqfW/XTUJ3Ozwnx2Bo7INjtCyDnmesiw/t2Ih5SRv0MDk7v5OREAAPCGOjW1L7/8csWv9+3bp/Xr1+u///u/fRYKABq6rr19s2KO6uW5+xvWD/TuL6m/uvo3DgAA8JI6NbUtWrSQVHa29ueff5bLxTZDAKiPU1ll336bJfjmgmPwFK5MSZJDiZXqsVmZyinJUm7LBDWLTDR6KgAACGB1ampHjhxZ6eMHH3zQJ2EAIFQsf65suzZnav2nne1JSZ5naq977knO1AIAEMTq1NSmp6dX/Pr48ePKzMz0WSAACAWD7uRMrb8dc40xrG++c4wO5e/UoDbc1AcAgGBUp6Z2+vTpFb+OjIzUk08+6bNAABAKOvfiTK2/5bkvN6wf7HW5pMvV2b9xAACAl9SpqU1LYzsWAHjTycxwSVLzRIfJSUJHhDIkSSVKqVRvkpmhU8VHdKp1kpo3SjF6KgAACGB1ampvuukm2e12RUZGqri4WFLZRaMsFos++eQTnwYEgIbonRdbSeJMrT+1tU2R5HmmdtCLUzhTCwBAEKtTU9uzZ08NGzZMPXv21O7du7VkyRLNnj3b19kAoMEaMvqk2RFCzlHXOMP6xtHjdDh/l4akcFMfAACCUZ2a2n379qlnz56SpC5duigzM1MRERE+DQYADVnH7oVmRwg5+e4+hvXD3ftI6qOO/o0DAAC8pE5NbVxcnP7yl7+oe/fu2rJli5KSknydCwAatKyMsjO1CSmcqfWXSO2XJBWrfaV6s4z9Oll0SCfatFFCVHujpwIAgABmrcuDXnzxRcXGxurLL79USkqK5syZ4+tcANCgrX6plVa/1MrsGCElxTZDKbYZHvVrXpqhfgse1+p9nmMAACDw1WmlNjIyUk2aNFFBQYFSU1OVm5ur+Ph4X2cDgAZr6H0nzI4QcjJdEwzrX983QZn2PRralpv6AAAQjOq0Ujt9+nQdOXJEX3/9tex2uyZNmuTrXADQoKVeWKTUC4vMjhFS7O5esrt7edQzL+wl9Rmp1MaeYwAAIPDVqak9ePCgHnvsMUVERGjgwIHKy8vzdS4AaNAy0yOUmc4F9/ypkfaokfZ41Jun75Hr538r0+45BgAAAl+dmlqn06ns7GxZLBbl5+fLaq3T0wAA1XjvlQS990qC2TFCShvbLLWxzfKoX/3KLPVb+Ce9l+45BgAAAl+dztROmDBBd9xxh44fP64RI0Zo6tSpvs4FAA3ajQ8dNztCyDni+qNh/cuH/qijBXt1Yztu6gMAQDCqU1ObmZmpf/3rX8rOzlazZs1ksVh8nQsAGrS2XYrNjhByCtzdDevHunSXRd3V1s95AACAd9RpH/GqVaskSfHx8TS0AOAFh/dF6vC+SLNjhJQo7VKUdnnUW+7bJfeOv+uw3XMMAAAEvjqt1JaUlGjYsGFKTU2tOE/74osv+jQYADRkHyxqKUka+8Ihk5OEjmTbXEnSXmdapfpVi+bqiH2X7hrbVWO7pRk9FQAABLAam9pXX31VjzzyiCZOnKhjx46pVatW/soFAA3asDGcqfW3w84phvUvxkxRVuF+DUtt7+dEAADAG2psar/99ls98sgj6tOnj0aPHq233nrLX7kAoEFL7sCZWn8rVFfD+vEOXWVRVyX7OQ8AAPCOGs/Uut1uw18DAOrn4O5IHdzNmVp/irZsV7Rlu0e91e7tcv/wng7meY4BAIDAV2NTe+ZFobhAFAB4z/8ubqn/XdzS7BghJcn6vJKsz3vUr1z8vK54fa7+94DnGAAACHw1bj/euXOnRo4cKbfbrb1791b82mKx6J133vFXRgBocG4Zm2V2hJBzyDnNsP7Z2Gk6XnhAt7Rr5+dEAADAG2psateuXeuvHAAQUhJTS8yOEHKK1NmwfjK1s6zqrEQ/5wEAAN5RY1ObnMxlMwDAF9J3NpIkpV5YZHKS0BFj2SpJsrt7Vaon7tyqTPsepZ/fWamNexk9FQAABLAaz9QCAHxj3RsttO6NFmbHCCmJ1j8r0fpnj/oVb/xZl7/xgtYd9BwDAACBr8aVWgCAb9z22DGzI4ScDOdMw/onj83UyaJDuq1NGz8nAgAA3kBTCwAmSEhxmB0h5BSrvWH9VEp7WdVeCX7O40+n7CXKLy712fyxkWFqFhPhs/kBAKgJTS0AmGDv9ihJUsfuhSYnCR2xls2SpHx3n0r15O2bdTh/l/Ze2FUdm/QxemrQyy8u1Zoth3w2/60Xt6GpBQCYhjO1AGCCf73VXP96q7nZMUJKa+tCtbYu9Kj3fWuhLk9bqH9leI4BAIDAx0otAJhg5BOcqfW3g865hvV/PzFXp4qPaGTrJD8nAgAA3kBTCwAmaJ7ImVp/K1GKYT0nMUVWpYh1cwAAghPbjwHABHu2RmvP1mizY4SUOMs3irN841Fvu/UbWTcs1p7TnmMAACDwsVILACb49/J4SVLnXgUmJwkdrayLJEl5zssr1fssX6Q29l1aGN9VnZtebvRUAAAQwGhqAcAEdz551OwIIeeA8znD+j+ffE45JVm6s2VDvqkPAAANF00tAJigWYLv7hkKYw4lGtbzExJlU6Ka+TkPAADwDppaNFin7CXKL/ZN41BS6vLJvAgdu74rO0/btTfbj/0lzrJBkpTn7l+p3u67DcrI36GdPbqpa7P+Rk8FAAABjKYWDVZ+canWbDnkk7mHXtTaJ/MidHy6suxMLU2t/7SyLpYk5TkrN669Vy5Wsn2XFrbsSlMLAEAQoqkFABOMmpJZ7zlcbrcysn3TFDfE3Qi/ORcY1tdNWaA8x0mNasZNfQAACEY0tQBggsbxznrPUeRwat1PvrngVEPcjVCqlob1gviWsqmlGvs5DwAA8A7uUwsAJti5MUY7N8aYHSOkNLZ8qsaWTz3q7Td+qrB//0U7sz3HAABA4GOlFgBM8Pm7ZdfavbCv3eQkoSPB+oYkKdc5sFK917tvqLV9l15K7KoL4wcaPRUAAAQwmloAMME9046YHSHkpDtfMqx/NO0l2R2ndU+Tpn5OBAAAvIGmFgBMENuk4V2IKdA5FW9YL2oSL5viFevnPAAAwDs4UwsAJtj+Vay2f0Ub5U9NLB+rieVjj3rHrz5W+D+e0/aTnmMAACDwsVILACb48oOyra7d++WbnCR0tLSmSZJynIMr1Xt8kKYE+y79JeUndW8+2OipAAAggNHUAoAJ7p/JmVp/2+981bC+duarKirN1/0xrJwDABCMaGoBwARRMZyp9TeX4gzrJTFxsipOUX7OAwAAvMPrTa3D4dCUKVN0+PBhlZSUaMyYMerYsaMmT54si8WiTp06acaMGbJarXr55Zf1+eefKywsTFOmTFH37t114MABw8cCQEPyw+dlq4I9B7D92F+aWtZJkk67h1aqd/58nX7L+0Gb+vZUzxZDjZ4KAAACmNe7xbVr16pp06Zavny5Fi9erFmzZmnevHkaP368li9fLrfbrU8++UQ7d+7U5s2btXr1ai1YsEAzZ86UJMPHAkBD881HTfXNR9xCxp9aWFeohXWFR737Ryt0ybr39c1RzzEAABD4vL5Se91112nIkCEVH9tsNu3cuVN9+vSRJPXv319ff/21UlNT1a9fP1ksFiUlJcnpdCo7O9vwsYMGDfJ2TAAw1UOzD5sdIeTsc75uWP9g9usqcRbqoUZsQAYAIBh5faU2JiZGsbGxys/P16OPPqrx48fL7XbLYrFUjOfl5Sk/P1+xsbGVnpeXl2f4WABoaCIauRXRyG12jJDiVpTcBidnSxtFyRoTrwgbTS0AAMHIJ4dVMzMzNXr0aN1888268cYbK52Jtdvtaty4sWJjY2W32yvV4+LiDB8LAA3N9+vj9P164wsXwTeaWT5UM8uHHvXz13+oyPdn6PvjnmMAACDweb2pPXHihO6//3798Y9/1K233ipJuuCCC7Rp0yZJ0oYNG3TJJZeoV69e+uqrr+RyuXTkyBG5XC7Fx8cbPhYAGppN/2yiTf9sYnaMkNLcukbNrWs86t3+uUYXf/x3bTrmOQYAAAKf18/Uvvbaa8rNzdWrr76qV18tuyfg1KlTNXv2bC1YsEDt27fXkCFDZLPZdMkll2jEiBFyuVyaPn26JGnSpEmaNm1apccCQEPzh2cPmR0h5Ox1LjWsv/fsUjldDv0hLNzPiQAAgDd4val96qmn9NRTT3nUly1b5lEbN26cxo0bV6mWmppq+FgAaEhs3CXcBMZNqyssXBaFy+bnNAAAwDv4sQoATLD547LrBfQZnGtyktARb3lPkpTtvqVS/YKP39P+3C3a0P9i9Um4xeipFVxutzKyC3ySL8xqUanLNxcPKyl1+WReAAACAU0tAJjgO5pav4u3vi9JynZWbWrfV1P7Lr14/sFam9oih1Prfjrqk3xDL2rt07kBAGioaGoBwARjX+BMrb/tdaYZ1te8UFYf688wAADAa3xySx8AAAAAAPyBphYATLBxXRNtXMctffypuWWVmltWedS7rVul6Hee1MZjnmMAACDw0dQCgAm2fRGrbV/Emh0jpDSzrlMz6zqPepcv1umiLz/XthOeYwAAIPBxphYATDBm/mGzI4Scvc6/GdbfnV9WH+O/KAAAwItYqQUAAAAABC1WagHABF+vLTtPe8VNOSYnMYcv7/da3T1ZW1jfliSdcN1Vqd597dvan/ud/nVNb12ReJfRUwEAQACjqQUAE+z8tuw8bag2tb6+36uRJpbPJEknVLlxbf/tZwrP36EFvfJpagEACEI0tQBggofncqbW3/Y5/z/D+gdzy+oP+zMMAADwGs7UAgAAAACCFk0tAJhgw/tNteH9pmbHCCktrW+qpfVNj3rP999U47+N1YYjnmMAACDw0dQCgAl+/SFav/4QbXaMkBJn2ag4y0aPesoPG9V++w/6NcdzDAAABD7O1AKACR545ojZEULOfudrhvW1z5TVH/BnGAAA4DU0tTDNKXuJ8otLfTZ/dbf1AAAAANBw0NTCNPnFpVqz5ZDP5q/uth5AIPhsdTNJ0tW3nTI5SehIsC6RJGW5Kq/JXrx6ifbmbNYH1/fR1cms1wIAEGxoagHABL/tamR2hJATY9lmWE/ctU0leT/rt34Rfk4EAAC8gaYWAExw3/RMsyOEnHTnQsP6R9PL6vf5MwwAAPAarn4MAAAAAAhaNLUAYIJP3mmmT95pZnaMkNLK+rpaWV/3qPd+53U1++sD+uSQ5xgAAAh8bD8GABMc3hdpdoSQE2XZZVhvuW+X7Hn7dNje2M+JAACAN9DUAoAJRk89anaEkPOb88+G9XVTy+qj/RkGAAB4DduPAQAAAABBi6YWAEzw8bJ4fbws3uwYIaWV9RW1sr7iUb902Stq/uo9+jjDcwwAAAQ+th8DgAmyDnFPVH9rZEk3rDc7lK4WeRnKKmzp50QAAMAbaGoBwAR3T+ZMrb8dcL5gWP/n5LL63f4MAwAAvIbtxwAAAACAoEVTCwAm+MebzfWPN5ubHSOktLa+pNbWlzzqfd98SS3/5y7946DnGAAACHxsPwYAE5w+zrdff4uwGG/5jjt+VE1ys3S6mC3hAAAEI36qAgAT3DHxmNkRQs5B5zzD+scTy+p3+DMMAADwGrYfAwAAAACCFk0tAJjgoyUt9NGSFmbHCCmJ1heVaH3Ro37FkhfV6s8j9NEBzzEAABD42H4MACYoyOU9RX8Ls5w2rEflnlZ0Xq4KSo3HAQBAYKOpBQAT3D4hy+wIISfDOcuwvn5CWf12f4YBAABew1IBAAAAACBo0dQCgAnWvt5Ca1/nTK0/JVnnK8k636N+5evzlfT8cK39zXMMAAAEPrYfA4AJHMW8p+hvVhUZ1sOKixReUiyHy3gcAAAENppaADDB8HGcqfW3Q64ZhvXPxpXVh/szDAAA8BqWCgAAAAAAQYumFgBM8P6ilnp/UUuzY4SUZOscJVvneNSvWjRHbZ4dpvfTPccAAEDgo6kFAAAAAAQtztQCgAl+N+a42RFCzmHXVMP6F2PK6r/zZxgAAOA1rNQCAAAAAIIWTS0AmODdhQl6d2GC2TFCShvrTLWxzvSoX71wptrNuUHv7vccAwAAgY/txwBggvBIl9kRQo5LjQzrpZGN5IiIVLjVeBwAAAQ2mloAMMFND58wO0LIOeKaZFj/8uGy+k3+DAMAALyG7ccAAAAAgKDFSi1qdMpeovziUp/MXVLK9kuErlV/LjtPe/uELJOThI4U2zRJUoZzVqX6tX+epn1532v+XZfo9g6zjJ4KAAACGE0tapRfXKo1Ww75ZO6hF7X2ybxAMIhuzJs6/lbqbmpYL2zcVAVqrOgw43EAABDYaGoBwAQ3PMCZWn/LdD1hWP/6gbL6Df4Mgzrz5Y6h2MgwNYuJ8MncAAD/oakFAAABy5c7hm69uA1NLQA0AFwoCgBMsOKFVlrxQiuzY4SUtrY/qa3tTx71wS/8SR2nD9KKXz3HAABA4GOlFgBM0LSlb7ZTonolbuNz/HktWysnIkFNIznnDwBAMKKpBQATXH/PSbMjhJyjrscM6xvvKatf788wAADAa9h+DAAAAAAIWjS1AGCCZc+21rJn2e7qT+1sE9XONtGjft2zE9Vl6kAt2+M5BgAAAh/bjwHABAltSsyOEHKK3KmG9VNtUnUi97gSoozHAQBAYKOpBQATDL472+wIIeeYa6xhfdPdYyWN1WD/xgEAAF7C9mMAAAAAQNCiqQUAE7w1p7XemsOZWn86zzZB59kmeNSHzpmgCyYP0Fu7PccAAEDgY/sxAJgguUOx2RFCTqG7q2H9eIeuyszJVXKM8TgAAAhsNLUAYIJrRp4yO0LIOeZ62LD+3ciHJT2sa/wbBwAAeAlNLQAAqBeX262M7AKfzF1S6vLJvACAhoOmFgBM8MYziZKk+6ZnmpwkdKTaxkmS0p0LK9VveGacDuRt0+MP9NB95y80eipqUeRwat1PR30y99CLOHsOAKgZTS0AmOC8rkVmRwg5dncPw3pm1x46mFOi8+KMxwEAQGCjqQUAE1x9G2dq/S3L9YBhfcttD0h6QFf7Nw4AAPASbukDAAAAAAhaNLUAYIIl05O0ZHqS2TFCSnvbH9Te9geP+k3T/6Aej1+uJbs8xwAAQOBj+zEAmKBTT99cKRbVy3P3Naxn9Oyr/Tk2dWrSx8+JAACAN9DUAoAJ+v/utNkRQs5x1z2G9R9+d4+ke9Tfv3EAAICXsP0YAAAAABC0aGoBwASvT0nW61OSzY4RUjrYHlQH24Me9WFTHtTFj16m13/2HAMAAIGP7ccAYIILL8s3O0LIyXEb37Rn/2VXa39urC5s1tvPiQAAgDfQ1AKACa64KcfsCCHnhOsuw/r2m+6SdJeu8G8cAADgJT7bfvzjjz9q1KhRkqQDBw7ojjvu0J133qkZM2bI5XJJkl5++WXdeuutGjlypLZv317jYwEAAAAAqMonTe3ixYv11FNPqbi4WJI0b948jR8/XsuXL5fb7dYnn3yinTt3avPmzVq9erUWLFigmTNnVvtYAGhoFk1K1qJJnKn1p462e9XRdq9Hffike3Xp2D5atNNzDAAABD6fNLVt27bVwoULKz7euXOn+vQpu/9f//799c0332jLli3q16+fLBaLkpKS5HQ6lZ2dbfhYAGhoelyVrx5Xca7Wn065huqUa6hHffdVQ/XTlQPUo4XnGAAACHw+OVM7ZMgQHTp0qOJjt9sti8UiSYqJiVFeXp7y8/PVtGnTiseU140eCwANTd+hnKn1t5Pu2w3rO4beLul29fVvHAAA4CV+uaWP1fp/v43dblfjxo0VGxsru91eqR4XF2f4WAAAAAAAjPjl6scXXHCBNm3apEsvvVQbNmzQZZddprZt2+r555/XAw88oKNHj8rlcik+Pt7wsQDQ0LwysY0kaewLh2p5JLylo63s4oV7nWmV6rdOHKUj9l26a2xXje2WZvRUNFAut1sZ2QU+mTs2MkzNYiJ8MjcAoDK/NLWTJk3StGnTtGDBArVv315DhgyRzWbTJZdcohEjRsjlcmn69OnVPhYAGpreg3PNjhBysl2/M6z/PPh32p/bVr0TLvZzIpityOHUup+O+mTuWy9uQ1MLAH7is6a2TZs2WrVqlSQpNTVVy5Yt83jMuHHjNG7cuEq16h4LAA1JH5pav8t232JY/3nwLZJuUR//xgEAAF7ilzO1AIDKnKVl/8GfHP/5rzJrqUPukgI5XZ5jAAAg8NHUAoAJXpvcRq9NbmN2jJDS0Xa/Otru96jfMvl+XfFYf732s+cYAAAIfH45UwsAqOzS67ilj7+ddN1qWN9x3a1Kz9uqS1v18nMiAADgDTS1AGCCS67lHtz+dsp9s2H9l2tvlnSzLvFvHAAA4CVsPwYAE5QUWVRSZDE7RkixqFAWFXrUw4oK5bJnq8TpOQYAAAIfTS0AmGDxU8la/FSy2TFCSgfbw+pge9ijPuyph9Vv4mAt3uU5BgAAAh/bjwHABJffcNrsCCHnhOsOw/r2G+7Qb3k/6PLWPf2cCAAAeANNLQCYoOeAfLMjhJzT7qGG9T0DhkoaKlpaAACCE9uPAcAEhXarCu18C/Ynq/JklecFuiLseXLlZKqwlIt3AQAQjPiJCgBMsHRGkpbOSDI7Rkhpb3tE7W2PeNRvmvGI+k2+UUt/8RwDAACBj+3HAGCCK4dxptbfjrtGGda3DRulA3nbdGViDz8nAgAA3kBTCwAm6N6PM7X+luMebFjf22+wpMHq7t84AADAS9h+DAAmyM+xKj+Hb8H+ZFO2bMr2qDfKyZbzxH7lOzzHAABA4OMnKgAwwZuzkvTmLM7U+lOq7TGl2h7zqN8w6zFdOe12vbnbcwwAAAQ+th8DgAkGDD9ldoSQk+W6z7C+dfh9Opi/XQOS2IAMAEAwoqkFABNc2NdudoSQk+seaFjf33egpIG60L9xAACAl7D9GABMkJttU262zewYISVMxxWm4x716Ozjch77RbklnmMAACDw0dQCgAnS5iYqbW6i2TFCynm2x3We7XGP+tC5j+vKp+9W2h7PMQAAEPjYfgwAJhg4givt+tsx10OG9e9GPKSM/B0amNzNz4kAAIA30NQCgAm69i4wO0LIyXP3N6wf6N1fUn919W8cAADgJWw/BgATnMoK06ks3lf0p3BlKlyZHvXYrEw5D/2oU8WeYwAAIPDR1AKACZY/11rLn2ttdoyQ0s72pNrZnvSoX/fck7pyzgNa/qvnGAAACHwsEwCACQbdyZlafzvmGmNY33znGB3K36lBbbipDwAAwYimFgBM0LkXZ2r9Lc99uWH9YK/LJV2uzv6NAwAAvITtxwBggpOZ4TqZGW52jJASoQxFKMOj3iQzQ67fNulkkecYAAAIfDS1AGCCd15spXdebGV2jJDS1jZFbW1TPOqDXpyifvPH6p29nmMAACDwsf0YAEwwZPRJsyOEnKOucYb1jaPH6XD+Lg1J4aY+AAAEI5paADB0JAG1AAAcuklEQVRBx+6FZkcIOfnuPob1w937SOqjjv6NAwAAvITtxwBggqyMcGVlcKbWnyK1X5Ha71FvlrFfrl83KKvQcwwAAAQ+mloAMMHql1pp9UucqfWnFNsMpdhmeNSveWmG+i14XKv3eY4BAIDAx/ZjADDB0PtOmB0h5GS6JhjWv75vgjLtezS0LTf1AQAgGNHUAoAJUi8sMjtCyLG7exnWMy/sJamXUv0bBwAAeAlNLQCYIDM9QpKUmFril9+vb6JVcda6X5yqtStLg5OLa31cnitKGzNd9YnmN420R5JUpMorss3T9+h44QEda9dOiTGs1gIAEGxoagHABO+9kiBJGvvCIb/8fnHWQuVufLPOj3ckxCo3K7/WxzXue4+kyHok8582tlmSpL3OtEr1q1+ZpSP2XbprbFeN7ZZm9FQAABDAaGoBwAQ3PnTc7Agh54jrj4b1Lx/6o44W7NWN7bipD7zH5XYrI7vAJ3PHRoapWUyET+YGgGBEUwsAJmjbpfatvfCuAnd3w/qxLt1lUXe19XMeNGxFDqfW/XTUJ3Pf0itZ+cWlPpmbhhlAMKKpBQATHN5XtmU3uQPNrb9EaZckqVBdK9Vb7tulrML9OpLaXskxXY2eCgQUXzbMt17chqYWQNDhPrUAYIIPFrXUB4tamh0jpCTb5irZNtejftWiubrilRn6IN1zDAAABD5WagHABMPGcKbW3w47pxjWvxgzRVmF+zUstb2fEwEAAG+gqQUAE7Dt2P+qbjsud7xDV1nUVcl+zgMAALyDphYATHBwd9mZ2mC/YFTL2PA63c+2qtrug+uL+99GW7ZL8rxgVKvd23W0YK8yOnZU2zjji0kBAIDARVMLACb438Vl52n9dZ9aXwl3FSl347Kzfl5t98HtMOhBxVkd55Spuob59Kn5KnVbtbWw8r1or1z8PPepBQAgiNHUAoAJbhmbZXaEgHauzbJUQ8MccaGa/r+bpMLK5c/GTtPxwgO6pV27c/r9AACAuWhqAcAEiaklZkcIOdaSFgoL6+RRP5naWVZ1VqIJmQAAQP3R1DYAp+wlPrsJe0mpd8+0ASiTvrORJCn1wqJK9b6JVsVZC42e4qG2c6lnSoiyKPfsIjY4rsjDcji2Sbq0Uj1x51Zl2vco/fzOSm3cy5xwAADgnNHUNgD5xaVas8U35/KGXtTaJ/MCoW7dGy0keZ6pjbMWKnfjm3Wao7ZzqWdKuubuswvYAJU2/0r2/L2S3q5Uv+KNP+uIfZde4UwtAABBiaYWQINWl5XPs1nxLFffq/Pe9tixc34uzk3Y8UGKTR4mFVSuf/LYTJ0sOqTb2rQxJxgAAKgXmloADVpdVj7PZsWzXOO+90iKPOdcCSnndmVfnDurI15hYake9VMp7WVVeyWYkAkAANSf1ewAABCK9m6P0t7tUWbHCCmuRhkqKfneo568fbP0zZvam7PZhFQAAKC+WKkFABP8663mkqSOQX6f2mBSGv+NCuz7JV1Rqd73rYUVZ2o7NuFMLQAAwYamFgDOQcvY8Dqdw63uvG7X5w5KklKSK29D5irFvhOeNUSxbYZ7nKn99xNzdar4iEa2TjInGAAAqBeaWgA4B+GuIuVuXFbr46o7r9vkP/+fW2WhlqsU+46ltKlaN0nVYFuVNxmSE6SKE7U1v1FR00XF6nvxMAAAcG5oagHABN/93EmS1PuCX01OEjpcUQdUZP9cuRv3Vqo3+fmAdpccU8b5rdS7Ubsa56jpomIdBj2oOOu5XwCsuoaZZhkAgJrR1AKACf720bWSaGr9qbTZtzp2Ol3SgEr15I++VYEjS7OSEmptamtS19X76lTXMNf3StsAADR0NLUAYILpDy43O0LICT92vdp2ukX7tb5Sfe+D1+tkab6mx8ealAwAANQHTS0AmKBVfI7ZEUKOxdlYEWGtPeol8Y1V9j8AABCMaGoBBIS+iVbFWQurHa/pAj01CdSrCX+7o4sk6bJuu01OEjpcUenKLfjao950R7p2lRzVgQta67JGqSYkAwAA9UFTCyAgxFkLlbvxzWrHa7pAT00C9WrCaesGSqKp9afSZpuVlXNAVc/UJq3bLLsjS7PbJNDUIuS53G5lZBfU/sBzFBsZpmYxET6bH0BooqkFABM88/tzv6AQzk34sRvUrtNw7dM/K9V//f0NOuUs0DNNok1K1rDUtuvibJXv0uAq0P5R5HBq3U9HfTb/rRe3oakF4HU0tQBgguZN8syOEHIszhiFh7XwqDuaxChWMeIyUd5R266Ls1W+S4OrQAMAqmM1OwAAhKKvtl2gr7ZdYHaMkOKM3qecgi886s227VPm5q/0VeE+E1IBAID6YqUWAEyw4uOrJEn9evxscpLQ4Wz6vY7nZKjqmdrEj79XviNLs887rH5RHUzJBoQKX57Z5bwuELpoagHABHPGeG97Juom/OiNOq/zbdr7898r1feMuVE5rkLNiY0yKVnNWsaGn9OVv89kdPVwzqjCDL48s8t5XSB00dQCwDkojopSVK8ra31cbqMwRbUp9agbtU9hxQ4vJEN1LK5ohdmaedRL46IVo8C9SFS4q0i5G+t3YTGjq4cH2xlVbzT3VbV2Zem2zjbl2L2/ctjcavf6nFLZhbjO9RZntclzBeYbOwBQG5paADgHhe4Srdz2Rq2Pax4doZMFJR713VsukyR1ufjbitqIHvd5LyA8OGN+1Wn7Jx71+C2/akfJEe3pkaQBUZ1MSIa68EZzX5UjIVYxFw1ThpfnlaQ21//B63NKZRficmx595xucVabsjc6ACD40NQCgAm+X3+DpMpNLXzL2WSrTuQeVtUzta0/2ao8R5bmdDgaUk2tN1c+z1w5TIiyKNcrswIAUDc0tQBgguHj5podIeSEHx2m1C6369efP6xU3/3fw2R3FWt+dPBsxfUGb658nrm9Oemau70yZ7CLDLP4ZItwQpTF63MCQLCjqfWTU/YS5Rd7nqvzhpJSLvQBBJtG0b65+ieqZ3FFymaN86g7oyPVKIjOliI4WEu9e7/ecknX3C2n12dtGLiyMhC6aGr9JL+4VGu2HPLJ3EMvau2TeQEjfROtirMWetTre+GSUNuyuGvzFZKkrn2+NjlJ6HDG/KJT9n951Jtv/kU/lRzRz72SdG30+SYkA+ANXFkZCF00tQDOSpzVePXB6OqqZyPUtixu/ex6SZWb2qj4RJ2OtNXpqspS9VdWrsoXV1WOu/AylUaG63Sjuuc9U3XZYxonyJ6bdc7zGs0dVuxQ3s5v5Wzyo07mHlXVM7WtPv9RuY4szel8nKYWAIAgRFMLNEC+Wk2VQm9F1VduH/+MR61ETn30y2qdSN9epzmqu7JyVfcOnHJWzbJUe8NsadpSKz9/Ti1yutc575mqy37nwElaue2Nc57XaO7yq0qHZ96i9l1Gas/P71Z6/C+P3aIil0MvRoaf0+8HoGZn/pvkzdsRca9lAOVoaoEGyFerqVLwrajW5X6ydV3xPJPTZqtPLIVH1t6MesvZNstS7Q3znQMneSOaX1nc4bJaPe/D6YoMV4TOvqEtX60uV5/VZansdRjXslB5O7kiNszRMjZckT64B25ClEV7Py37N8kb/w6VC7Z7LQPwHZpaAAGjapNwpnNpPCUp3+qs9X6ydV3xPNO9bWafdZYz7dh4lSSpW98v6jUPahcVnyj1ulIlJZ/rUPE/PBrPZn//XNuyd2nHgK76r5QBNc515uuwfLW6XH1Wl6Wy1+G1ne865+cD9RXuKpJjywdevwdusL0ZCiD40NQCCBilkeHVNqDn0nhK9W8+feXHDYMk0dT6Q4nK3tjo3forhRfG6pv0HpXGH1r2lRJKcvTXhO+VfzK9xrnOfB0Gy2p13IWXKbdJlMebQvVdWS4/qxyqanoTTpKOhVnO6c83mP5ca/szKHfma622NyjP5vOveq9lb21tZlszEHxoagETGZ195dxrw3B1+6Fq7I5SZJhVxQa33fqvl7dJksLChlfUWhU10sDYPipO7VTtvLmWQn22f51Psp6putzlWhU10s2pwxUZ26zavL7IWh/fH71czVMvkrSzUn3JE5fL6XZpZJjVnGBnKF9VPlN9m09L05Z6b/NfPN4Uqu/KcvlZZW8yapLKm6D6/DmUX4CsqtxGYbKc47xVV+qrSsrvoSN7t531vPcOnKKoGhrF041scnfsfVY7V3zVKNf0RuSZznyt1fYG5dm8rqrea9lbW5uNtjV743ZBjZWvMIdnvjCrRZH1+f4TGSdFx9cjGRD8ArKpdblcevrpp7V7925FRERo9uzZateundmxAK8zOvsaDOdea/rB81ydbmRTeNOW9Y0WMBq7o/Rb2l8VFW5ToaNud5WMS71CGaf2quD0sWofc96o33srYoXyrGeqLXdc6hX6Lf1rRTdtVW1eX2StD7eskjzPQrvCrLLIajDif+Wrymeqb/PpqxXlMxvwM//+16f5NGoUy5ug+vw5lF+ArKrm0RGytDr/nOb11Z+r0WvgTC1yust97Jez2rlSW6Nc7mwb5ob0PftMVVeAJalpcaYOna78JnRE40iVqO5fhxKbRXlH93rUm0SFK8L2f01tjMuppkfO4jXZ406aWoS8gGxq169fr5KSEq1cuVLbtm3Ts88+q0WLFpkdCyGs6oqqt7Y4+WNF9cwGtL6Np1T2Q4+lVVK1P3ieqxY53TU49fp6ZTtXl7YZonDH2d1/sHmudHPq8GrHW8cl67canv/Fr2Wf61Wd/nFWv29i03YVv29tq6nlalsBri3ruToza1XVZa9tBTi+WbKyTx2u8fetOnf5nKX6UuGRuXJXydTyn1/ql8JD+rZvG/1X65qbsTPnLp+3YqxK5kBbqfa2M5uvM//+17f5NIPRboXaVP36VxUdE6+j7ZMC4jVQW6Nc7mwbZl98vYx2K1Sn6hsoNf0bdzar1VVXgCXjN5yjel1Zpz/Xci1Sjf9utIyNkGSp+Ph3F90jS2Hdb8UWVuJUdjWryLGRYdxfFyEhIJvaLVu26Mory75J9ejRQzt27DA5EUJd1RXVgj5XylG/3lCSlB/fvuIf5PLtcd5qPMvnPXPlw6jxPNsf5tzOA0qOS/b4Ya5qI1GX5qPS82Ob1fhDYmSYVTFxiWc1p1R78ylJbaLa6Kul085q3iadB+q3PZ9WO54yZm6Nz//i16GSzr6pDStVxapqXVeBa1sBri3ruToza1XVZa9tBThlzFxtrWbO6uYunzN+0E+yhkXoxD++r/T49ut+UmKsU+9G23Thv3+u89zl85armrnvuLlqnFr3v1uRYVbDvwNVm+Wz/bvVqqiRrkm+2eNNhDPnPds5y+c1eoOlPvMafv7/mbt83vpmrTq3GjVRM0u0vn11+lnNWfXr7zEe31rd7nr0rF4DNWWtGG/dWafDutTpDa26zimVfa3sjgLpLOaubd7yr9WZr4na3oxrVhSuUzk1v91bPq/beUDF+f/3WLe9+rk7Jl6kFr2Tq50zMrqxigvK5nI7wpTau/LnZbVZlNrOXbkWUfufa13e3HK5pJMF//dGeUlUC6Un/r8an3OmOHeRigr2G8/tDFNBkUUxtkZq6jZ8SPWs4ZLL+/c599m8bMMOaRa32322L3Gfmzp1qgYPHqyrriq7OuiAAQO0fv16hYUZ9+CXXnqpkpOr/0YFAAAAAAhehw8f1qZNmwzHAnKlNjY2Vna7veJjl8tVbUMrqdpPDgAAAADQsJl/qUcDvXr10oYNGyRJ27ZtU+fOnU1OBAAAAAAIRAG5/bj86sd79uyR2+3W3Llz1aFDB7NjAQAAAAACTEA2tQAAAAAA1EVAbj8GAAAAAKAuaGoBAAAAAEErIK9+3JCUnw/evXu3IiIiNHv2bLVr187sWPAhh8OhKVOm6PDhwyopKdGYMWPUsWNHTZ48WRaLRZ06ddKMGTNktfKeUkN38uRJ3XLLLVq6dKnCwsJ4DYSYv/71r/r000/lcDh0xx13qE+fPrwGQojD4dDkyZN1+PBhWa1WzZo1i+8DIeTHH3/UCy+8oLS0NB04cMDw6/7yyy/r888/V1hYmKZMmaLu3bubHRtedOZrYNeuXZo1a5ZsNpsiIiI0f/58tWjRQqtWrdI777yjsLAwjRkzRldffbXZsYMW30l9bP369SopKdHKlSv1xBNP6NlnnzU7Enxs7dq1atq0qZYvX67Fixdr1qxZmjdvnsaPH6/ly5fL7Xbrk08+MTsmfMzhcGj69Olq1KiRJPEaCDGbNm3SDz/8oBUrVigtLU1Hjx7lNRBivvjiC5WWluqdd97R2LFj9Ze//IXXQIhYvHixnnrqKRUXF0sy/v6/c+dObd68WatXr9aCBQs0c+ZMk1PDm6q+BubMmaNp06YpLS1NgwYN0uLFi3X8+HGlpaXpnXfe0ZIlS7RgwQKVlJSYnDx40dT62JYtW3TllVdKknr06KEdO3aYnAi+dt111+mxxx6r+Nhms2nnzp3q06ePJKl///765ptvzIoHP5k/f75GjhyphIQESeI1EGK++uorde7cWWPHjtUf/vAHDRgwgNdAiElNTZXT6ZTL5VJ+fr7CwsJ4DYSItm3bauHChRUfG33dt2zZon79+slisSgpKUlOp1PZ2dlmRYaXVX0NLFiwQF27dpUkOZ1ORUZGavv27erZs6ciIiIUFxentm3b6pdffjErctCjqfWx/Px8xcbGVnxss9lUWlpqYiL4WkxMjGJjY5Wfn69HH31U48ePl9vtlsViqRjPy8szOSV86b333lN8fHzFG1qSeA2EmFOnTmnHjh166aWXNHPmTE2cOJHXQIiJjo7W4cOHdf3112vatGkaNWoUr4EQMWTIEIWF/d8JP6Ove9WfD3k9NCxVXwPlb3Bv3bpVy5Yt07333qv8/HzFxcVVPCYmJkb5+fl+z9pQcKbWx2JjY2W32ys+drlclV7kaJgyMzM1duxY3Xnnnbrxxhv1/PPPV4zZ7XY1btzYxHTwtXfffVcWi0UbN27Url27NGnSpErvwPMaaPiaNm2q9u3bKyIiQu3bt1dkZKSOHj1aMc5roOH729/+pn79+umJJ55QZmam7rnnHjkcjopxXgOh48xz0+Vf96o/H9rt9koNDhqedevWadGiRXr99dcVHx/Pa8DLWKn1sV69emnDhg2SpG3btqlz584mJ4KvnThxQvfff7/++Mc/6tZbb5UkXXDBBdq0aZMkacOGDbrkkkvMjAgfe/vtt7Vs2TKlpaWpa9eumj9/vvr3789rIIRcfPHF+vLLL+V2u3Xs2DEVFhaqb9++vAZCSOPGjSt+QG3SpIlKS0v5tyBEGX3de/Xqpa+++koul0tHjhyRy+VSfHy8yUnhKx9++GHFzwUpKSmSpO7du2vLli0qLi5WXl6e9u3bR59QDxa32+02O0RDVn714z179sjtdmvu3Lnq0KGD2bHgQ7Nnz9Y//vEPtW/fvqI2depUzZ49Ww6HQ+3bt9fs2bNls9lMTAl/GTVqlJ5++mlZrVZNmzaN10AIee6557Rp0ya53W5NmDBBbdq04TUQQux2u6ZMmaLjx4/L4XBo9OjR6tatG6+BEHHo0CE9/vjjWrVqldLT0w2/7gsXLtSGDRvkcrn0pz/9iTc5Gpjy18CKFSvUt29fJSYmVuzO6N27tx599FGtWrVKK1eulNvt1u9//3sNGTLE5NTBi6YWAAAAABC02H4MAAAAAAhaNLUAAAAAgKBFUwsAAAAACFo0tQAAAACAoEVTCwAAAAAIWmFmBwAAIJC8/vrr+uabb2S1WmWxWDRhwgR169atYvzmm29Wr169NGPGjIpat27d1LNnT0lSaWmpOnToUHErp/nz52vPnj2yWq0KDw/X1KlTlZKSosmTJ2vo0KHq37+/rrjiCn399dcV8+3evVuzZ8+WVHaP8+7du8tqteqBBx7QgAEDDHMvX75cI0eOlNVq/H71xIkTdcstt+jyyy+vqBUUFOjpp5/WyZMnJZXdW3XGjBlq2rTpuf3hAQBgAppaAAD+Y+/evfr000+1YsUKWSwW7dq1S5MmTdLatWslSVu2bFHnzp317bffKj8/X7GxsZKkJk2aKC0trWKe8ePH64svvlBYWJiysrL0xhtvSJLWr1+vuXPnatGiRTXm6NKlS8V8AwcO1NKlSxUZGVnjc1577TXdfvvt1Ta1RtasWaPExEQ999xzkqQlS5botdde0+TJk+s8BwAAZqOpBQDgP+Lj43XkyBGtWbNG/fv3V9euXbVmzZqK8dWrV2vIkCFKTEzUBx98oLvvvttjDofDoYKCAkVHRys+Pl47duzQunXrdNlll+maa65R//7965Xxp59+0pw5cxQWFqbIyEjNnj1bGzZsUHZ2th5//HEtWLBA06ZN07Fjx5STk6MBAwZo3LhxhnMlJSXpgw8+UI8ePdS7d2/de++9Kr99/cqVK7Vy5Uq5XC4NGjRIY8eO1QcffKC0tDRFREQoNTVVzzzzjN5//319+OGHcjqdGj9+vE6cOKG33npLVqtVffr00YQJE+r1+QIAUBvO1AIA8B/x8fFatGiRtm7dqhEjRui6667TZ599JknKz8/Xli1bNGDAAA0fPlwrVqyoeF5OTo5GjRqlUaNG6YEHHlCfPn3Ut29fdenSRbNmzdL69et1ww03aPjw4dq2bVu9Mk6bNk0zZ87UsmXLdPvtt+u5557TiBEjFB8frwULFigzM1MXX3yxli5dqrfffltvv/12tXNde+21evjhh7Vq1SoNHDhQ9957r9LT05WVlaWlS5dqxYoVeu+993T69GkdOXJEixYtUlpamlasWKGoqCitXr1aktSsWTOtWLFCnTp10qJFi/Tmm29qxYoVysjI0LfffluvzxcAgNqwUgsAwH8cOHBAsbGxmjdvnqSyVdGHH35Yl156qdatWyeXy6Xf//73kqTjx49r48aN6tu3r8f243K//PKLUlNTtWDBArndbn399dcaP358pfOzZ+vEiRPq0qWLJKl37956+eWXK403bdpU27Zt08aNGxUXFyeHw1HtXFu3blW/fv103XXXqbS0VO+//76mTJmiSZMmqUuXLhVbnqdOnaoffvhBnTt3VnR0tCTpkksu0ffff6/zzz9fqampkqTffvtNJ0+e1EMPPSSp7I2AjIwMXXbZZef8+QIAUBtWagEA+I/du3fr6aefVnFxsSQpNTVVcXFxstlsWrNmjV577TUtWbJES5Ys0VNPPVXjKqgkbdy4UQsWLJDT6ZTFYlGnTp0UFRUli8VyzhlbtGihX3/9VZK0efNmnXfeeZIkq9Uql8ulNWvWqHnz5nrxxRc1evRoFRYWVjvX2rVrK877hoWFqUuXLoqIiFC7du20b98+lZSUSJLGjh2rVq1aac+ePRXzfffddxW/d/nn07ZtWyUmJmrp0qVKS0vTXXfdpe7du5/z5woAQF2wUgsAwH8MHjxY+/bt02233abo6Gi53W49+eSTysjIkNvtVqdOnSoeO2TIEM2bN0+ZmZnVzjdq1CjNnz9fw4YNU2xsrKxWa8VFmc7V7NmzK668HBYWprlz50qSLr74Yj300EP605/+pIkTJ2rTpk2Kjo5WSkqKTpw4YTjXxIkT9fTTT+umm25SdHS0YmJiNGvWLLVs2VL33ntvxZnhQYMGKSkpSWPGjNHo0aNlsViUmpqqESNG6MMPP6yYr0WLFhXbsJ1Op1JSUnTDDTfU6/MFAKA2Fnf5FSEAAAAAAAgybD8GAAAAAAQtmloAAAAAQNCiqQUAAAAABC2aWgAAAABA0KKpBQAAAAAELZpaAAAAAEDQoqkFAAAAAAQtmloAAAAAQND6/wE26UO032fqMAAAAABJRU5ErkJggg==\n",
2993
      "text/plain": [
2994
       "<Figure size 1152x576 with 1 Axes>"
2995
      ]
2996
     },
2997
     "metadata": {},
2998
     "output_type": "display_data"
2999
    }
3000
   ],
3001
   "source": [
3002
    "plt.figure(figsize = (16, 8))\n",
3003
    "\n",
3004
    "no_chronic=saps.saps2.loc[saps.ud==0]\n",
3005
    "aids=saps.saps2.loc[saps.ud==17]\n",
3006
    "malignancy=saps.saps2.loc[saps.ud==10]\n",
3007
    "metastatic=saps.saps2.loc[saps.ud==9]\n",
3008
    "\n",
3009
    "\n",
3010
    "_ = plt.hist(no_chronic, bins=30, alpha=0.5, label='Chronic disease: None')\n",
3011
    "_ = plt.hist(metastatic, bins=30, alpha=0.5, label='Chronic disease: Metastatic Cancer')\n",
3012
    "_ = plt.hist(malignancy, bins=30, alpha=0.5, label='Chronic disease: Hematologic malignancy')\n",
3013
    "_ = plt.hist(aids, bins=30, alpha=0.5, label='Chronic disease: Aids')\n",
3014
    "_ = plt.ylabel('Frequency')\n",
3015
    "_ = plt.xlabel('SAPSII Total Score')\n",
3016
    "_ = plt.legend()\n",
3017
    "_ = plt.axvline(np.mean(no_chronic), color='b', linestyle=':')\n",
3018
    "_ = plt.axvline(np.mean(metastatic), color='y', linestyle=':')\n",
3019
    "_ = plt.axvline(np.mean(malignancy), color='g', linestyle=':')\n",
3020
    "_ = plt.axvline(np.mean(aids), color='r', linestyle=':')"
3021
   ]
3022
  },
3023
  {
3024
   "cell_type": "code",
3025
   "execution_count": 185,
3026
   "metadata": {},
3027
   "outputs": [
3028
    {
3029
     "data": {
3030
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA68AAAHeCAYAAAB0eT2kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVxU9f7H8fcgIMLgxpqKCShoLj8zr6aZS2oZN80I9+W6lwu5ZFcTccsF0yKX9Gp7qJlb92p665plmRVaapaaiEtiLpCoCOiAML8/IG7GMI5dZqDm9Xw8eJzTfL4z82Fc8s05n3MMZrPZLAAAAAAAyjGXsm4AAAAAAIBbIbwCAAAAAMo9wisAAAAAoNwjvAIAAAAAyj3CKwAAAACg3CO8AgAAAADKPdeybuB2tWzZUjVr1izrNgDgD+n06YJt7doWaldOS5mZqp1ntLwAAADAAX766SclJiYWe/wPF15r1qypTZs2lXUbAPCHNHFiwXbhQgu1/0yUPt2phab2lhcAAAA4QGRkpMXH/3DhFQDw+1nLpAsfXCg96LheAAAAbgczrwAAAACAco/wCgBOZMSIgi+LtS0jNOLvDUpeAAAAUIY4bRgAnIiPj5VaJR+pYlXriwDgTyo3N1dnzpzR9evXy7oVwGl4eHioVq1acnNzs2k94RUAnMi8eVZqneZJnRzXCwCUJ2fOnJG3t7fq1Kkjg8FQ1u0Af3pms1kXL17UmTNnFBwcbNNzOG0YAAAATu/69evy8fEhuAIOYjAY5OPjc1tnOxBeAcCJDB5c8GWx9q/BGjyxXskLAOBPjuAKONbt/pkjvAKAEwkKKviyWKscpCCvO0peAABO5FJWjlLSs0vt61JWjtX3O3bsmEaMGKEBAwbo8ccf1+LFi2U2m5WYmKjx48eX2veVlpamGTNm3PbzevbsqTNnzmjTpk3asWNHqfXzvxgwYIAefvjhmx77z3/+o/DwcJ05c6bE523fvl0XLly4rfcymUxav3691TV79+7VDz/8IEkaM2aMza87f/589e3bV/369dPw4cN17ty52+rNmTDzCgBOZNYsK7UOs6QOjusFAMqzTNMNbfim5AB0u6LuqaVqXu4WaxkZGZowYYKWLFmiOnXqKC8vT2PHjtXatWsVEhJSaj1Ikp+f3+8Kr7+IjIwsvWZKyZEjR9SgQQNJ0tatW1WzZk2r699++23NmDFDAQEBNr9HWlqa1q9frx49epS4ZuPGjYqIiFD9+vW1dOlSm153zpw5CgkJ0Zo1ayQVBOtx48bp3Xfftbk3Z0J4BQAAAMrQjh071LJlS9WpU0eSVKFCBc2fP19ubm7av3+/fvzxRw0bNkzp6enq0KGDoqOjNWDAAFWrVk0ZGRlauXKlYmJilJKSory8PA0ePFgREREaMGCA6tevr2PHjikzM1OLFi2S2WzWhAkTtG7dOn3yySdFIeuuu+7SzJkz5eLy3xMz4+PjtWvXLgUGBurSpUuSpCVLlsjX11cPPfSQxo0bJ7PZrNzcXM2cOVPh4eFKSEjQ+++/L4PBoIiICA0cOFBJSUmKi4tTfn6+MjIyNHXqVDVr1kyTJ0/W6dOnZTKZNHToUEVERGjPnj2Kj49XhQoVFBQUpFmzZikrK0tTp061GAj/+te/6v3331eDBg2UkZEhk8kkX19fSdLVq1cVExNT1PvUqVN17tw5HTlyRJMmTdKaNWu0ZMkSff/998rKylJoaKjmzZunb775RvPnz5erq6sqV66shQsX6h//+IeSk5O1dOlSRUVFacaMGTKZTLp8+bJGjx6twMBA7dq1S4cOHVLdunXVo0cP7d69W99++63mzJkjs9msgIAALVy4UB4eHpKknJwcffzxx5o5c2bR99O5c2c1b95ckvTBBx9o9erVRbVFixbp2LFjeuWVV+Tm5qYzZ84oIiJCI0eO1KlTpzR16lTl5ubKw8ND8fHxMplMio2NlclkUsWKFfXcc88pLy9PI0eOVNWqVdW2bVsNHz68tH4bOwThFQCcSP/+BdtVqyzUNvWXdu/Wqgv3WV4AALCL1NRUBf1mZMPLy6to32QyadmyZcrLy1P79u0VHR0tSeratas6d+6sVatWqVq1alqwYIEyMzMVGRmpe++9V5LUpEkTxcTEKD4+Xlu3blVERIQk6caNG3ruuee0fv16+fj4aOnSpTp//rxq1KghSUpKStLevXu1YcMGZWdn68EHH7ypv4MHD8rb21svvPCCkpOTlZmZqeTkZG3btk1r1qyRwWDQoEGD1KZNGyUnJ2vSpEkKDw/Xli1btGnTJoWFhSkxMVEbN26UJO3evVtms1mxsbFas2aNfHx89NJLL+m9995Tz549SzyS+cADD2jSpEmaOHGiPvzwQ3Xp0qXoKOY//vEP3Xvvverbt69OnTqlZ599Vu+8844aNGigGTNmKCcnR5UrV9Ybb7yh/Px8/fWvf9WFCxf00UcfqXPnzho6dKg+/vhjZWRk6Mknn1RSUpLGjBmjL774QoMHD1bLli21b98+LVmyRG+88Ybuv/9+RUREFH2GkhQbG6v4+HiFhoZq9erVOn78uBo2bChJunz5snx9fYvNfVarVk2SdOrUKa1cuVKVKlXStGnT9PnnnysgIEBnz57V5s2blZOTo/vvv18jR47U/PnzNWLECLVt21bbtm3T4cOHtWHDBg0YMEDt2rXTl19+qYULF2r8+PFKS0vTxo0b5e5u+UyA8ozwCgBOJDzcSs0nXKpyTqpqZREAoNTVqFFDhw8fvumxlJQUnT9/XpJUr169oqDh6vrff77/cnuR48ePq3Xr1pIko9Go0NBQpaSkSCo4oipJgYGB+vnnn4uee+nSJVWuXFk+hff2/u2MZnJysho1aiQXFxcZjUaFhYXdVG/btq1OnTqlUaNGydXVVSNHjlRSUpLOnj2rQYMGSZKuXLmi06dPy9/fX8uWLZOHh4eysrJkNBplNBoVGxur2NhYZWZmqlu3bkpPT1dqaqrGjRsnqeAK0Pfdd5/Vz65ixYpq0KCB9u/fr+3btys+Pr4ovCYlJemrr77Sv//9b0kFp2f/9rnp6emaMGGCPD09lZ2drdzcXD355JP6xz/+ob/97W8KCAhQkyZNlJPz35llPz8/LV++XBs2bJDBYNCNGzdK7O/ixYsKDQ2VJPXr1++m2i9Hzs1m800BdsuWLerSpYt8fHw0adIkeXl56cSJE2ratKkkKSwsTK6urnJ1dS06invy5EndfffdklT0A4q5c+dqxYoVevXVV2U2m4vupVqrVq0/ZHCVCK8A4FRiY63U2sVK7awsAADYRYcOHbRixQr16dNHtWvXVm5uruLi4tS6dWvVrVu3xCuy/vJ4aGiovv76a3Xu3FmZmZlKSkpSrVq1rL6nj4+PMjIydPnyZVWtWlWzZ89Wt27d1KRJE0kFwfjtt99Wfn6+rl+/ruTk5Juen5iYKH9/f73++uvav3+/XnzxRcXExKhu3bp69dVXZTAY9OabbyosLEyjR4/WwoULFRoaqsWLF+unn35SamqqDh06pJdfflkmk0nt2rVT165dFRgYqGXLlsnb21s7duyQp6fnLT+/Rx55RG+++aaqVKly0xHrkJAQdevWTV27dtXFixeLLrhkMBhkNpv12Wef6dy5c3rppZeUnp6u7du3y2w2a8uWLXrsscc0adIkrVixQuvWrVNkZKTy8/MlFZy+26NHD7Vr104bN27Ue++9d9Pr/pq/v79OnTqlOnXqaOXKlQoODlbnzp0lSW5ubmrTpo0SEhI0cOBASQWnCr/11ltq3769Fi9erJ07d0qSBg8eXPTaln4/hIaG6rvvvlPr1q21efNmXblyRSEhIRoyZIiaNWum48ePa+/evZJ006nhfzSEVwAAAKAMGY1GxcXFaerUqTKbzcrKylKHDh3Ut29f7dmz55bP79mzp2JjY9WnTx+ZTCaNGTOm6IhqSVxcXDR9+nQ98cQTcnFx0V133aXGjRsX1Rs0aKAuXbooKipK/v7+xV6vfv36Gj9+vN566y25uLho9OjRql+/vlq1aqU+ffooJydHTZo0UUBAgLp166ZRo0bJx8enaH7Wz89PaWlp6t69uzw9PTVkyBC5u7srJiZGI0aMkNlslpeXl55//nldvny5xJlXSbrvvvs0efJkzZs376bHn3zyScXExGjdunXKzMwsOrp899136+9//7uWL1+uZcuWqWfPnnJ3d1dQUJBSU1PVuHFjTZ48WZ6ennJzc9OsWbPk4+Oj3NxcLViwQF26dNGcOXO0YsUK3XHHHUUztf/3f/+nhQsX3vSDg5kzZ2rKlClycXGRn59f0VHpXzz77LOaN2+eevfuLUmqUqWKlixZIqPRqGbNmumxxx6Tp6enKleurNTU1BJ/KPH3v/9d06ZN0/Lly+Xh4aEFCxaoffv2RbO5169fV0xMjNXfE38EBvNvfzxQzkVGRmrTpk1l3QYA/CEV/r9Ra9daqG3oLX3xhdaebW15AQD8if36irVSwa1yMk0lnw56u4wVXUu82jDgzH77Z08qOfNx5BUAnEjhuIzlWmBTqfplyd/KIgBwEtW83AmbQDlDeAUAJzJ5spVam8lSGysLAAAAytAfd1oXAAAAAOA0CK8A4EQef7zgy2Jt3eN6fELNkhcAAACUIU4bBvCnUdoX17Dkj37BjVatrNRqtZL8TFINK4sAAADKCOEVwJ9GpumGNnxzxq7vEXVPrT90eJ040Uqt9USptZUFAAAAZYjThgEAAIDfyk6XLv1Yel/Z6Vbf7tixYxoxYoQGDBigxx9/XIsXL5bZbFZiYqLGjx9fat9WWlqaZsyYcdvP69mzp86cOaNNmzZpx44dpdbP/2LAgAE6fvx40X+bTCY98MADdnmvVatW3VYvtjhy5EiJ964tDb/+vfPLPW7/6DjyCgBOpFu3gu3mzRZq73ST9uzR5uMtLC8AAGdiuiodWFN6r9e0r+RZ3WIpIyNDEyZM0JIlS1SnTh3l5eVp7NixWrt2rUJCQkqvB0l+fn6/K7z+IjIysvSa+QNZvny5+vfvX6qv2aBBg2L3N7UXe4ZkRyK8AoAT6djRSi24o5TiKtVp57iGAADasWOHWrZsqTp16kiSKlSooPnz58vNzU379+/Xjz/+qGHDhik9PV0dOnRQdHS0BgwYoGrVqikjI0MrV65UTEyMUlJSlJeXp8GDBysiIkIDBgxQ/fr1dezYMWVmZmrRokUym82aMGGC1q1bp08++aQo1Nx1112aOXOmXFz+e2JmfHy8du3apcDAQF26dEmStGTJEvn6+uqhhx7SuHHjZDablZubq5kzZyo8PFwJCQl6//33ZTAYFBERoYEDByopKUlxcXHKz89XRkaGpk6dqmbNmmny5Mk6ffq0TCaThg4dqoiICO3Zs0fx8fGqUKGCgoKCNGvWLGVlZWnq1Km3FcCOHj2q2bNnS5KqVq2quXPn6vDhw1q5cqXc3Nx0/vx59e7dW1999ZV++OEHDRw4UH379tUHH3yg1atXF73OokWL9O677+rKlSuaMWOGYmJiNGXKlGKf9S8yMjL0zDPPKDMzs+iHEK1atdInn3yixYsXy2g0qkqVKgoPD1eLFi20du1axcfHa/369XrnnXeUn5+vjh07Kjo6uug1ExMTf1ffv3bfffdp9+7dOnjwoGbOnCkvLy/5+PioYsWKGjNmjJ5++mkFBgYqJSVFjRs31syZM3X+/HnNmDFDJpNJly9f1ujRo9WpUyd17dpVLVq00NGjR2UwGLRs2TJ5eXlp9uzZOnjwoHJzcxUdHa2DBw8qICBA/fr105UrVzR48GBt2rTJ5l9DSwivAOBExo61Urt3rHSvlQUAALtITU1VUFDQTY95eXkV7ZtMJi1btkx5eXlq3759UbDp2rWrOnfurFWrVqlatWpasGCBMjMzFRkZqXvvvVeS1KRJE8XExCg+Pl5bt24tClo3btzQc889p/Xr18vHx0dLly7V+fPnVaNGDUlSUlKS9u7dqw0bNig7O1sPPvjgTf0dPHhQ3t7eeuGFF5ScnKzMzEwlJydr27ZtWrNmjQwGgwYNGqQ2bdooOTlZkyZNUnh4uLZs2aJNmzYpLCxMiYmJ2rhxoyRp9+7dMpvNio2N1Zo1a+Tj46OXXnpJ7733nnr27FlicJ00aZIqVaokScrPzy96PDY2VnPnzlXdunW1fv16vfrqq2rdurXOnz+vf/7znzp06JDGjh2r7du368KFCxozZoz69u2rU6dOaeXKlapUqZKmTZumzz//XCNHjtSqVas0Y8YMq5+1VHCEtnXr1vrb3/6mCxcuqE+fPtq+fbtmz56td999V76+vnr66adv+h4uXryoV155RZs3b5a7u7vi4uKUlZV10++B39N3QEBAsc9r+vTpev7551WvXj3Fx8frwoULkqRTp07ptddeU6VKldSpUyelpaXpxIkTGjx4sFq2bKl9+/ZpyZIl6tSpk7KysvTXv/5VsbGxevrpp/XZZ5/J3d1dly5d0oYNG5SWlqZVq1apR48emjBhgvr166f3339fXbt2tfhreDsIrwAAAEAZqlGjhg4fPnzTYykpKTp//rwkqV69enJ3L7hYoKvrf//5HhwcLEk6fvy4WrduLUkyGo0KDQ1VSkqKpIIjqpIUGBion3/+uei5ly5dUuXKleXj4yOp+ExkcnKyGjVqJBcXFxmNRoWFhd1Ub9u2rU6dOqVRo0bJ1dVVI0eOVFJSks6ePatBgwZJkq5cuaLTp0/L399fy5Ytk4eHh7KysmQ0GmU0GhUbG6vY2FhlZmaqW7duSk9PV2pqqsaNGydJun79uu677z6rn938+fMVGhoqqSDkP/zww0WfycyZMyVJubm5RZ9VvXr15ObmJm9vb9WuXVvu7u6qUqWKTCaTJMnHx0eTJk2Sl5eXTpw4oaZNm970ftY+61/qv4S0gIAAGY1GnT9/XkajUb6+vpKk5s2b3/RrkZKSonr16snDw0OSNGXKlGLf5//a9y9SU1NVr149SdI999yjbdu2SZJq164to9EoqeDUcpPJJD8/Py1fvlwbNmyQwWDQjRv/vaPDL7+v7rjjDplMJv30009F7+nn51c0a+vl5aXk5GRt2bJFy5Yts9jT7eCCTQDgRB5+uODLYm31w3p4vF/JCwAAdtGhQwft2rVLp0+fllQQtuLi4pSUlCRJMhgMFp/3y+OhoaH6+uuvJUmZmZlKSkpSrVq1rL6nj4+PMjIydPnyZUkqOuXzF8HBwTp48KDy8/OVnZ2t5OTkm56fmJgof39/vf766xo5cqRefPFFhYSEqG7dunr77beVkJCgyMhIhYWFac6cOXrqqac0f/58hYWFyWw2KzU1VYcOHdLLL7+slStXasGCBfL29lZgYKCWLVumhIQEPfnkk2rZsuXv+EQL+p8/f74SEhL0zDPPqF27dlY/S0m6evWqFi9erPj4eM2ePVsVK1aU2WyWpKLtrT7rX9cvXLigjIwM+fn5KSsrS+npBRft+vbbb29639q1a+vEiRPKycmRJD311FNFR0R/8Xv7/q3AwMCiX8tf92Hp9RctWqRHH31UCxYsUMuWLW96zd+uDwkJ0XfffVfUz9ChQyUVXOhr+fLlCggIUPXqlme+bwdHXgHAiVg7Y6drWFfpfBWpXlvHNQQAkNFoVFxcnKZOnSqz2aysrCx16NBBffv21Z49e275/J49eyo2NlZ9+vSRyWTSmDFjio6olsTFxUXTp0/XE088IRcXF911111q3LhxUb1Bgwbq0qWLoqKi5O/vX+z16tevr/Hjx+utt96Si4uLRo8erfr166tVq1bq06ePcnJy1KRJEwUEBKhbt24aNWqUfHx8iuZn/fz8lJaWpu7du8vT01NDhgyRu7u7YmJiNGLECJnNZnl5een555/X5cuXb3vmdcaMGZo0aZLy8vIkSXPmzFFqaqrV5xiNRjVr1kyPPfaYPD09Vbly5aLnhIaGauLEiZo7d67Vz/qJJ57QlClT9OGHH+r69euaNWuW3N3dFRsbq+HDh8vb21v5+fm68847i55TvXp1DR8+XP3795fBYFCHDh0snvJ7u31b+gHG9OnTNWXKFHl6esrNzc3q+3Tp0kVz5szRihUrdMcddxTNPVvSsWNHffnll+rTp4/y8vI0evRoSVKnTp00a9YsLViwwObvxxqDuaRYXk5FRkb+z4O+AP6cUtKzHXKf16DqnnZ9DwCA4x05cuTmK79mpxdccbi0VPQu8WrD+PNbsWKFBg8eLHd3d02cOFFt2rRR9+7dHd7H6tWr9fDDD6t69eqKj4+Xm5ubXW+jc+3aNfXv31/r16+/6WJgv1bsz55KznwceQUAAAB+y7M6YROlxsvLSz179pSHh4dq1qx50xWKHcnHx0dDhgyRp6envL29FRcXZ7f32rdvn6ZPn65x48aVGFxvF+EVAJxIp04F248+slB7u5O0b58++r6Z5QUAAOB36d+/f6nfJ/b36NKli7p06eKQ92rWrJm2bNlSqq9JeAUAJ9Krl5Vaw15Seg2p4f2OawgAAMBGhFcAcCLDh1up3TNcusfKAgAAgDLErXIAAAAAAOUe4RUAnEj79gVfFmtvtlf7cVVLXgAAAFCGOG0YAJzIoEFWak0HSZmfS03bOKodACi3LpsuKys3q9Rez8vNS1UrVi2xfuzYMS1YsEDXrl1Tdna22rVrp+joaO3Zs0dr165VfHx8qfSRlpaml19+WTNmzLit5/Xs2VMvvvii9uzZoypVqqhjx46l0s//ymQy6YEHHtDgwYM1bNgwSQW3XtmxY0exW8CMHz9evXv3VsuWLcuiVZQCwisAOJFbhtemVhYAgBPJys3Sv5L/VWqv92jdR0sMrxkZGZowYYKWLFmiOnXqKC8vT2PHjtXatWsVEhJSaj1Ikp+f320H11+LjIwsvWZKwYcffqiIiAi99957GjJkiFxcXNSgQYNi9w3FnwPhFQCcSG5uwdbNzUItL1fKzZVbBTfLCwAAdrFjxw61bNlSderUkSRVqFBB8+fPl5ubm/bv368ff/xRw4YNU3p6ujp06KDo6GgNGDBA1apVU0ZGhlauXKmYmBilpKQoLy9PgwcPVkREhAYMGKD69evr2LFjyszM1KJFi2Q2mzVhwgStW7dOn3zyiZYuXSpJuuuuuzRz5syb7scZHx+vXbt2KTAwUJcuXZIkLVmyRL6+vnrooYc0btw4mc1m5ebmaubMmQoPD1dCQoLef/99GQwGRUREaODAgUpKSlJcXJzy8/OVkZGhqVOnqlmzZpo8ebJOnz4tk8mkoUOHKiIiQnv27FF8fLwqVKigoKAgzZo1S1lZWZo6dWpRr7+2fv16xcTEKD09XZ9++qk6dOigxMTEoqPVq1ev1vr16+Xn56eLFy9Kkk6ePKlnn31Wrq6uqlChgp5//nkFBATY+VcZpYHwCgBOpHPngu3OnRZqCZ2lAwe080BTywsAAHaRmpqqoKCgmx7z8vIq2jeZTFq2bJny8vLUvn17RUdHS5K6du2qzp07a9WqVapWrZoWLFigzMxMRUZG6t5775UkNWnSRDExMYqPj9fWrVsVEREhSbpx44aee+45rV+/Xj4+Plq6dKnOnz+vGjVqSJKSkpK0d+9ebdiwQdnZ2XrwwQdv6u/gwYPy9vbWCy+8oOTkZGVmZio5OVnbtm3TmjVrZDAYNGjQILVp00bJycmaNGmSwsPDtWXLFm3atElhYWFKTEzUxo0bJUm7d++W2WxWbGys1qxZIx8fH7300kt677331LNnT4vB9dSpU7p27Zrq16+vxx9/XK+//ro6dOhQVL969arefvttbdmyRQaDoeio8RdffKGGDRtq8uTJ+vrrr3XlyhXC6x8E4RUAnEjhOJDlWrNh0rXdUvP7HNcQAEA1atTQ4cOHb3osJSVF58+flyTVq1dP7u7ukiRX1//+8z04OFiSdPz4cbVu3VqSZDQaFRoaqpSUFEkFR1QlKTAwUD///HPRcy9duqTKlSvLx8dHkorNhyYnJ6tRo0ZycXGR0WhUWFjYTfW2bdvq1KlTGjVqlFxdXTVy5EglJSXp7NmzGlQ4o3LlyhWdPn1a/v7+WrZsmTw8PJSVlSWj0Sij0ajY2FjFxsYqMzNT3bp1U3p6ulJTUzVu3DhJ0vXr13XffSX/P2n9+vW6du2ahg4dKknat2+ffvzxx6L6iRMnVLdu3aLPrkmTJpKkqKgovfLKKxo2bJi8vb01fvz4Et8D5QtXGwYAJ9K/f8GXxVqT/uo/cnnJCwAAdtGhQwft2rVLp0+fliTl5uYqLi5OSUlJkiSDwWDxeb88Hhoaqq+//lqSlJmZqaSkJNWqVcvqe/r4+CgjI0OXL1+WJM2ePVsHDx4sqgcHB+vgwYPKz89Xdna2kpOTb3p+YmKi/P399frrr2vkyJF68cUXFRISorp16+rtt99WQkKCIiMjFRYWpjlz5uipp57S/PnzFRYWJrPZrNTUVB06dEgvv/yyVq5cqQULFsjb21uBgYFatmyZEhIS9OSTT5Z4caUbN25o27ZtWr16tV577TW99tprGjFihNasWVO0JigoSMnJybp+/bry8vJ05MgRSQWnad9zzz1666231KVLF7366qtWPyuUHxx5BQAnkp1dsPX0tFDLzZays+Xp5ml5AQDALoxGo+Li4jR16lSZzWZlZWWpQ4cO6tu3r/bs2XPL5/fs2VOxsbHq06ePTCaTxowZU3REtSQuLi6aPn26nnjiCbm4uOiuu+5S48aNi+oNGjRQly5dFBUVJX9//2KvV79+fY0fP15vvfWWXFxcNHr0aNWvX1+tWrVSnz59lJOToyZNmiggIEDdunXTqFGj5OPjUzQ/6+fnp7S0NHXv3l2enp4aMmSI3N3dFRMToxEjRshsNsvLy0vPP/+8Ll++XGzm9eOPP1bDhg1Vtep/L4IVGRmpRx99tOgodPXq1TV27Fj17t1b1atXV6VKlSRJjRo10jPPPKMlS5bIxcVFzz777K1/kVAuGMxms7msm7gdkZGR2rRpU1m3AaAcSknP1oZvztj1PaLuqaWg6n/cYPfLLVwtjbS2f7M9M68AnNaRI0duukKto2+VA5cy1rEAACAASURBVDir3/7Zk0rOfBx5BQAnMnKklVrzkVLuF1Kr1o5rCADKqaoVqxI2gXKG8AoATqRXLyu1Rr2kRlYWAAAAlCHCKwA4kStXCrZVqlioXb8iZVxRlYpVLC8AAAAoQ4RXAHAijz5asLU00vro2keZeQXg1Mxmc4lX9gVQ+m738kuEVwBwIk89ZaXW8inJ/JXU9l7HNQQA5YSHh4cuXrwoHx8fAizgAGazWRcvXpSHh4fNzyG8AoATiYy0UmsQKTWwsgAA/sRq1aqlM2fOKC0traxbAZyGh4fHLe9J/GuEVwBwIj//XLD19bVQy/5ZunhRvpV8LC8AgD8xNzc3BQcHl3UbAKwgvAKAE4mKKthaGmmNWhfFzCsAACi3CK8A4ESeftpKrdXTUoU9UscWjmsIAADARnYLr927d5e3t7ekghmCXr16ac6cOapQoYLatGmjMWPGKD8/XzNmzNDRo0fl7u6u2bNn684777RXSwDg9Lp2tVIL7yqFW1kAAABQhuwSXk0mkyQpISGh6LFHH31US5YsUVBQkEaMGKFDhw7pp59+Uk5Ojt59910dOHBAcXFxWr58uT1aAgBIOn++YBsYaKGWeV5KTVWgp7/lBQAAAGXILuH1hx9+0LVr1zRkyBDduHFD0dHRysnJUe3atSVJbdq00Zdffqm0tDTdf//9kqSmTZvq+++/t0c7AIBCvXsXbC2NtPbe0JuZVwAAUG7ZJbx6eHho6NCh6tGjh06dOqXhw4ercuXKRXUvLy+lpKQoMzNTRqOx6PEKFSroxo0bcnVlFBcA7GHyZCu1NpMlj6+lLs0d1xAAAICN7JISg4ODdeedd8pgMCg4OFje3t66fPlyUT0rK0uVK1fW9evXlZWVVfR4fn4+wRUA7KhLFyu1ul2kulYWAAAAlCEXe7zohg0bFBcXJ0m6cOGCrl27Jk9PT50+fVpms1mff/65mjdvrmbNmumzzz6TJB04cEBhYWH2aAcAUCglpeDLYu1KilKOJJa8AAAAoAzZ5TBnVFSUnn32WfXp00cGg0Fz586Vi4uLJk6cqLy8PLVp00b/93//p8aNG2v37t3q3bu3zGaz5s6da492AACFBgwo2FoaaR3w3gBmXgEAQLlll/Dq7u6uF154odjj69atu+m/XVxcNGvWLHu0AACwYOpUK7W2UyXjPumRZo5rCAAAwEYMmAKAE+nUyUotpJMUYmUBAABAGSK8AoATOXGiYBsSYqF26YR0+rRCvGtbXgAAAFCGCK8A4ESGDCnYWhppHfKvIcy8AgCAcovwCgBOZOZMK7X2M6VqB6THmjquIQAAABsRXgHAibRrZ6VWp51Ux8oCAACAMkR4BQAncvRowTY83ELt56PSyRMKrxxieQEAAEAZIrwCgBN54omCraWR1ifef4KZVwAAUG4RXgHAicyda6XWca7k/53Us7HjGgIAALAR4RUAnEjr1lZqQa2lICsLAAAAyhDhFQCcyPffF2wbNbJQS/1eOnZMjarUs7wAAACgDBFeAcCJjBlTsLU00jpm2xhmXgEAQLlFeAUAJ7JggZVa5wVSzcNSv7sc1xAAAICNCK8A4ET+8hcrtZp/kWpaWQAAAFCGCK8A4EQOHCjYNm1qoXb+gHT0qJpWCbe8AAAAoAwRXgHAiYwbV7C1NNI67oNxzLwCAIByi/AKAE7kpZes1Lq8JAUflQaFO64hAAAAGxFeAcCJWDsbuGlgUymQ04UBAED5RHgFACeyd2/B1tKFm/b+tFc6fFh/qXqX9Ss7AQAAlAHCKwA4kWeeKdhaGml9ZvszzLwCAIByi/AKAE5k6VIrtYilUr1j0rB6jmsIAADARoRXAHAijRpZqfk3kvytLAAAAChDhFcAcCJffFGwbd3aQi3lC+m779S6amPLCwAAAMoQ4RUAnMiUKQVbSyOtU3ZMYeYVAACUW4RXAHAiK1ZYqT2yQmp4QhoZ4riGAAAAbER4BQAnEh5upeYbLvlaWQAAAFCGCK8A4EQ+/bRg266dhdqpT6VvD6hd1aaWFwAAAJQhwisAOJHp0wu2lkZap++czswrAAAotwivAOBEXn/dSu3R16W7T0vetR3XEAAAgI0IrwDgREKsXIsppFqIVI2LNQEAgPKJ8AoATuSjjwq2nTpZqJ34SNq3T52qNrO8AAAAoAwRXgHgNuSbzUpJz7brexgruqqal7tdXnv27IKtpWw6+7PZ0oED6nSgKeEVAACUO4RXALgN13PztO2783Z9j6h7atktvCYkWKk9liC1PCsZa9jlvQEAAP4XhFcAcCJBQVZqVYKkKlYWAAAAlCHCKwA4kQ8+KNh26WKhlvyB9PXX6lK1ueUFAAAAZYjwCgBOJC6uYGspm8Z9HicdOKAuB5oSXgEAQLlDeAUAJ7J2rZVa1Fqpbark6e+4hgAAAGxEeAWAcsauVzQuvA7UpaziVzQONAZKxkD7vC8AAMD/iPAKAOWMPa9ofOhLL0nS9DHVioXXLUe3SHv2qGvVFlLXrnZ5fwAAgN+L8AoATmTnxmqSpOljitde+PIF6cABdT3QlPAKAADKHcIrADiRv8WeLdwrfi/XDT03SB0vSpV8HNsUAACADQivAOBEjFXyS6z5evpKnr4O7AYAAMB2hFcAcCIHPzdKkqLuKV7bdGST9NVXiqxyrxQZ6eDOAAAArCO8AoAT2fXPqgU7Y4vXFiculr49oMgDewivAACg3CG8AoATGTKz5JnXf/X+lxRxRapYxbFNAQAA2IDwCgBOpJJXyTOvVTyqSB4EVwAAUD4RXgHAiezfWfLM67vfvyt9+YV6VW4t9erl4M4AAACsI7wCgBP54v3Cmdeni9eWf71cOnRAvQ58S3gFAADlDuEVAJzI8Nk/Fe7VLFbb1m+b9Fi25Obp2KYAAABsQHgFACfi7mEusebp5ilVIbgCAIDyifAKAE7k64+8JVmeeV11cJW0e7f6e98n9e/v4M4AAACscynrBgAAjpP4QRUlfmD5isKv7ntVrx59R3r1VQd3BQAAcGsceQUAJ/Jk3JnCvVrFatsHbJd650oV3BzbFAAAgA0IrwDgRCpY+VvfrYIbwRUAAJRbhFcAcCJ7/lNZkuWZ1zcPvCl9/rkGGdtIgwY5tC8AAIBbYeYVAJzI3v9U1t7CAPtbbx54U28mb5DefNOxTQEAANiAI68A4ERGLyx55nXnoJ0O7QUAAOB2cOQVAAAAAFDuceQVAJzIl9sKbpNjaeb1lW9ekXbt0nCv+6Xhwx3cGQAAgHUceQUAJ3LgU6MOfGq0WHv30Lt699T70rvvOrgrAACAW+PIKwA4kZHzfyrcKz7z+tHAj6SBju0HAADAVhx5BQAAAACUexx5BeAQl7JylGm6Ydf3yLmRb9fX/zPYvbnkmddle5dJn32mUZXaSqNGObgzAAAA6wivABwi03RDG745c+uF/4OIxoF2ff0/g0NfWZ53laQtSVukM19r1A9XCK8AAKDcIbwCgBMZMbfkmdd/9/u31M+x/QAAANiKmVcAAAAAQLnHkVcAcCKfvVdVkuWZ10VfLZI++1RjK7aTxo51cGcAAADWceQVAJzIsf2eOrbf02Jtx8kd2nHuC2nHDgd3BQAAcGt2O/J68eJFRUZG6vXXX5erq6smT54sg8GgevXqafr06XJxcdHSpUu1c+dOubq6asqUKWrSpIm92gEASBo662zhXvGZ1819Nkt9HNsPAACArexy5DU3N1fTpk2Th4eHJGnevHkaN26c1qxZI7PZrB07dujQoUPas2eP1q9frxdffFEzZ860RysAAAAAgD8Bu4TX+fPnq3fv3vL395ckHTp0SC1atJAktW3bVl988YW++eYbtWnTRgaDQTVq1FBeXp7S09Pt0Q4AoNAn66vpk/XVLNYWfrFQC+c9Ii1c6OCuAAAAbq3Uw+umTZtUvXp13X///UWPmc1mGQwGSZKXl5euXr2qzMxMGY3/vd/gL48DAOzn1BEPnTriYbH25Zkv9WXafunLLx3cFQAAwK2V+szrxo0bZTAY9OWXX+rIkSOaNGnSTUdUs7KyVLlyZRmNRmVlZd30uLe3d2m3AwD4lcHTzhXuFZ953dhzo9TTsf0AAADYqtSPvK5evVqrVq1SQkKCGjRooPnz56tt27ZKTEyUJH322Wdq3ry5mjVrps8//1z5+fk6e/as8vPzVb169dJuBwAAAADwJ+CQ+7xOmjRJsbGxevHFFxUSEqKHHnpIFSpUUPPmzdWrVy/l5+dr2rRpjmgFAJzajrUF866W7vMa93mctHOnJru2lyZPdmxjAAAAt2DX8JqQkFC0v2rVqmL16OhoRUdH27MFAMCv/HS8Yom1A+cPSOmHpbNVHdgRAACAbRxy5BUAUD4MjDlfuFd85nVt1FopyrH9AAAA2Mout8oBAAAAAKA0ceQVAJzIf1YVXBjP0szrc58+J326U7GG9lJsrGMbAwAAuAXCKwA4kdQz7iXWjl48Kl05IV24w4EdAQAA2IbwCgBOpP/kkmdeV0WukiId2w8AAICtmHkFAAAAAJR7HHkFACfy77d8JFmeeZ32yTRp507NMreXZs1ybGMAAAC3QHgFACdyOa3kv/ZTMlKkrHPSxRQHdgQAAGAbwivwB3ApK0eZpht2fQ9jRVdV8yr5Yj74c+gz8ULhXvGZ1zcefUN61LH9AAAA2IrwCvwBZJpuaMM3Z+z6HlH31CK8AgAAoNwivAKAE3n/NV9Jlmden/3oWenTnZp3o700b55jGwMAALgFwisAOJHsjJIvMn/x2kXJdFm6fNGBHQEAANiG8AoATqTn+NTCveIzryu7rpS6OrYfAAAAW3GfVwAAAABAuUd4BQAnsnmlrzav9LVYm/ifiZoY01yaONHBXQEAANwapw0DgBPJNZX8M8trudekGybp2jUHdgQAAGAbwisAOJHHo0ueeX35ry9Lf3VsPwAAALbitGEAAAAAQLlHeAUAJ/Lecj+9t9zPYm3cB+M07tm7pXHjHNwVAADArRFeAQAAAADlHjOvAOBEHhuZVrhXfOb1pS4vSV0c2w8AAICtOPIKAAAAACj3CK8A4EQ2LvHXxiX+Fmujt47W6EmNpdGjHdwVAADArXHaMAA4EbeK+SXWKrlVklwrSpUqObAjAAAA2xBeAcCJdBvxc+Fe8ZnXhQ8ulB50bD8AAAC24rRhAAAAAEC5x5FXAHAi6+IL5l2jVhWvjdgyQtq1Sysv3y+tXOngzgAAAKwjvAKAE/GsXPLMq08lH6liVcnHx4EdAQAA2IbwCgBO5JGhJc+8zus0T+rk2H4AAABsxcwrAAAAAKDc48grADiRdxYGSJKi3ileG/yvwdKuz/XGxTbSG284uDMAAADrCK8A4ESq+t0o3HMrVguqHCR53SF5Bjm2KQAAABsQXgHAiTz8t4uFe8VnXmd1mCV1cGw/AAAAtmLmFQAAAABQ7nHkFQCcyKq4QElS1Pritf6b+ku7d2vVhfukVRZuBAsAAFCGCK8A4ET8a+UU7hX/6z/cJ1yqck6qGu7YpgAAAGxAeAUAJ/Jg//TCPc9itdh2sVK7WMc2BAAAYCNmXgEAAAAA5R5HXgHAibw9p3DmdVPxWu8NvaUvvtDas62ltWsd3BkAAIB1hFcAcCI1Q02Fe8X/+m8a2FSqflnyb+rYpgAAAGxAeAUAJ9Kx96XCPa9itcltJkttJju2IQAAABsx8woAAAAAKPc48goATuSNWXdIkqL+Vbz2+LrHpa++0sYf75U2bnRwZwAAANYRXgHAidRpcL1wr/hpw61qtZL8TFKNVo5tCgAAwAaEVwBwIh16lDzzOrH1RKn1RMc2BAAAYCNmXgEAAAAA5R5HXgFIkvLNZqWkZ9vt9XNu5NvttWG716bVkCRFbS1e6/ZON2nPHm0+3kLavNnBnQEAAFhHeAUgSbqem6dt35232+tHNA6022vDdvXu/uUHFMZitY7BHaUUV6lOO8c2BQAAYAPCKwA4kbaPXS7cKx5ex947Vrp3rGMbAgAAsBEzrwAAAACAco8jrwDgRFZOqSlJivqweO3h1Q9LX3+tf//QXPr3vx3cGQAAgHWEVwBwIg3vzSzc8y5W6xrWVTpfRarX1rFNAQAA2IDwCgBO5L5uVwr3iofXUX8ZJf1llGMbAgAAsBEzrwAAAACAco8jrwDgRJZPKpx5/ah4rdPbnaR9+/TR982kjywsAAAAKEOEVwBwIk3blTzz2qthLym9htTwfsc2BQAAYAPCKwA4kVYRJc+8Dr9nuHTPcMc2BAAAYCPCKwA4oXyzWSnp2XZ9D2NFV1XzcrfrewAAAOdhU3j9+eef5evra+9eAAB29vLEWpKkiA9vaNt352+ufT9AfsePaN2uBtqwMOF/fq+oe2oRXgEAQKmxKbxGR0erevXqioqKUrt27eTiwkWKAeCP6C8PZhTueRav+T+mGqm1dfjBexzbFAAAgA1sCq/vvPOOjh8/rg0bNmj58uVq1aqVoqKiFBQUZO/+AAClqIWV8NrCP1J6IFKHHdsSAACATWw+hOrv76+goCB5eHgoKSlJc+bM0aJFi+zZGwCglOXdKPiyWMvPlTknWy43ch3bFAAAgA1sOvI6duxYHTt2TN26ddOCBQsUEBAgSYqMjNTYsWPt2iAAoPT8Y3LBzGvXD4sn2H8cHlKqM68AAAClyabw2rNnTzVt2lReXl5KTU0tevydd96xW2MAgNLXsssvt8rxKl4LiFKNtH36vkszxzYFAABgA5tOG96/f7+WLFkiSZo9e7ZWrlwpSapYsaL9OgMAlLrmna6qeaerlmt+j6pGh5n6odOjDu4KAADg1mwKrx9//LEmT54sSVq8eLE+/vhjuzYFALCPnOsG5Vw3WK7lXVN+drpcr19zcFcAAAC3ZtNpwwaDQTk5OXJ3d1dubq7MZrO9+wIA2MErU2tKkrpbmHl95ciIUp15zTeblZKe/T+/jjXGiq7cSxYAACdhU3jt3bu3unbtqrCwMJ04cULDhg2zd18AADto/cjlwj1j8VpgH92Rvl8HH7m7VN7rem6etn13vlReqyRR99QivAIA4CRsCq89evRQx44dlZKSoqCgIFWvXt3q+ry8PE2dOlUnT55UhQoVNG/ePJnNZk2ePFkGg0H16tXT9OnT5eLioqVLl2rnzp1ydXXVlClT1KRJk1L5xgAAxd3dPrNwr3h4vds3QmoboSTHtgQAAGATm8LrkSNH9O6778pkMhU9Nm/evBLXf/LJJ5KktWvXKjExsSi8jhs3Ti1bttS0adO0Y8cO1ahRQ3v27NH69et17tw5RUdHa+PGjf/jtwQAKMm1rJIvdXDtxlW5Z2eqUgWjcry8HdgVAADArdkUXidPnqz+/fsrMDDQphft1KmT2rdvL0k6e/asfH19tXPnTrVo0UKS1LZtW+3evVvBwcFq06aNDAaDatSooby8PKWnp9/yyC4A4Pd5fXoNSdLjFmZeX/9hFPd5BQAA5ZZN4dXX11c9evS4vRd2ddWkSZO0fft2LV68WJ988okMhoIrXHp5eenq1avKzMxU1apVi57zy+OEVwCwj/u7lzzzev8dAxR4+YAOdG/q2KYAAABsYFN4rVmzplauXKkGDRoUBdA2bdrc8nnz58/XxIkT1bNnz5tOOc7KylLlypVlNBqVlZV10+Pe3pyqBgD20qRNyTOvTXwelNo8qGTHtgQAAGATm+7zmpubq5MnT2rbtm3aunWrtm7danX9P//5T61YsUKSVKlSJRkMBjVq1EiJiYmSpM8++0zNmzdXs2bN9Pnnnys/P19nz55Vfn4+R10BwI4yr7go84rlv/ozc9N14+IJeVxJd3BXAAAAt2bTkdd58+bp5MmTOn36tMLDw+Xv7291/YMPPqhnn31W/fr1040bNzRlyhSFhoYqNjZWL774okJCQvTQQw+pQoUKat68uXr16qX8/HxNmzatVL4pAIBlbz1XMPPa08LM61tHxzLzCgAAyi2bwuuqVau0fft2XblyRY899ph+/PFHq0HT09NTixYtsvg6vxUdHa3o6OjbaBkA8Hu1f/xS4V7xEY32NQYrIOOg9j3OLcsAAED5Y9Npw1u3btWbb74pb29v/e1vf9O3335r774AAHbQsFWWGrbKslyr/oB8W4/TiVYPOLgrAACAW7PpyKvZbJakoos1ubu7268jAIDdZKRXKLmWk6ZKly+qiquPsqv7ObArAACAW7MpvD7yyCPq16+fzp49q+HDh6tTp0727gsAYAcJc++QJPVuV3zmNSFpAjOvAACg3LIpvPbv31+tWrVSUlKSgoODVb9+fXv3BQCwgwd6/XIl4crFazWHKyDre+3t1cixTQEAANjApvC6dOnSov3jx4/ro48+0pgxY+zWFADAPhr8Jbtwr3h4bVCtrdSyrX50bEsAAAA2sSm8+vr6SiqYfT18+LDy8/Pt2hQAwD4upZb81/4l0zl5/Zyq6m7+yvS/w4FdAQAA3JpN4bV37943/fewYcPs0gwAwL7WPB8oSerXsfjM65pjf2fmFQAAlFs2hdeTJ08W7aelpencuXN2awgAYD+d+5Y889q51kj5XzukPX0bOrYpAAAAG9gUXqdNm1a0X7FiRf3973+3W0MAAPsJa1byzGtY1dbSX1rrtGNbAgAAsIlN4TUhgdPHAODP4OI5t4KdxhZq11PknXpWfm41dOWOIMc2BgAAcAs2hddu3bopKytLFStWlMlkklRw8SaDwaAdO3bYtUEAQOlZ+0KAJGnAg8VnXtcmT2HmFQAAlFs2hde7775b3bt31913362jR4/qtdde0+zZs+3dGwCglD008GLhXpXitaBo+eUe0ZcDGzi2KQAAABvYFF6PHz+uu+++W5IUHh6uc+fOyd3d3a6NAQBKX90m1wr3iofXulVaSHe30E+ObQkAAMAmNoVXb29vvfTSS2rSpIm++eYb1ahRw959AQDsIDWl5JnX1GsnVPncGd3hVkuXgkIc2xgAAMAtuNiy6IUXXpDRaNSuXbsUFBSkOXPm2LsvAIAdrF8UoPWLAizXjk/X5u8mqOOi6Q7uCgAA4NZsOvJasWJFValSRdnZ2QoODlZGRoaqV69u794AAKUsYvDPhXtVi9dqj5dvXpJ21w1zbFMAAAA2sOnI67Rp03T27Fnt3r1bWVlZmjRpkr37AgDYQXDD6wpueN1yrXIzef9fb51r2MzBXQEAANyaTeH19OnTGjt2rNzd3fXAAw/o6tWr9u4LAGAH506669xJyxfcO5eVpGtJ2+VzMsnBXQEAANyaTeE1Ly9P6enpMhgMyszMlIuLTU8DAJQzm17216aX/S3XTj6nLUeeVYeXn3NwVwAAALdm08zr+PHj1adPH6WlpalXr16KiYmxd18AADvoOjytcK9a8dqdz6i6IVm76td1bFMAAAA2sCm8njt3Th9++KHS09NVrVo1GQwGe/cFALCD2uGmkmveTaSGTXTBgf0AAADYyqbzf9etWydJql69OsEVAP7AfjpeUT8dr2i5lnVE2T9sld/xIw7uCgAA4NZsOvKak5Oj7t27Kzg4uGje9YUXXrBrYwCA0vfP5X6SpOHdbxSvnZwrv+NHtG5XA21YmODo1gAAAKyyGl6XLVumUaNGaeLEibpw4YICAizf2B4A8MfQfWTJM6/dg6eomusJfdooxLFNAQAA2MBqeP3qq680atQotWjRQgMHDtTbb7/tqL4AAHZQM7TkmdeaXg2k+g2UVuIKAACAsmM1vJrNZov7AP7rUlaOMk3FT8EsTTk38u36+nAep48Wzrs2tlC7elDVTycr1LWuLoQ3cWxjAAAAt2A1vP764kxcqAmwLNN0Qxu+OWPX94hoHGjX14fz2PJKwczrk1HFf+Cy5ccFzLwCAIByy2p4PXTokHr37i2z2azk5OSifYPBoLVr1zqqRwBAKYkcnVq4V714LThWVd1/1CdN7nRsUwAAADawGl43b97sqD4AAA5wR3BOyTWvMCksTBcd2A8AAICtrIbXmjVrOqoPAIADnDzkUbBjYeb1ZMY++Z5MUphrmM41bObYxgAAAG7BpawbAAA4zrY3fLXtDV/LtdPx+vephbrvjXgHdwUAAHBrVo+8AgD+XHqMvVC451O8FjpTlT3PaEezWo5tCgAAwAaEVwBwIv7/396dh0dV3v0f/8xkkpCVECCQsGiAgCByIauxiIgKyIN1o2JVBPfy48KipYIgoIJY0NJ6YYVKQTFIZJPl8aHVgiICYZFFFhEELQIJBAiQTIBkkpnfHyQpODOZyTInQ8779dch9+Seb8op5jP3/b1PM4f3sYgWUosWOmNgPQAAAP4ivAKAiRzcFXHpwkPP68FzW9Twx31qF9JWxzp0M7YwAAAAH+h5BQAT+ezD+vrsQ/ctw5L02ZEZ+uznGUr9cIbBVQEAAPjGyisAmMhDf/De8/pQqymKic3Uv7slGVsUAACAHwivAGAi9RO997zWr9NMat5M5wysBwAAwF+EVwAwkQPbIyVJ/T30vB44u1EJP+xVh5Dr9XOnmw2uzLzO5BfKXlAU0PeIDrepXlRYQN8DAIBAI7wCgIn8e0G8JGnkEPew9O+jM9Uwc5+e+rot4dVA9oIiLdl2NKDvMbBzU8IrAOCqR3gFABN5+MXjJVcN3MdSpimqXrb+lZpgbFEAAAB+ILwCgInUS/C+PbVeeKLUJFF2A+sBAADwF4/KAQAT2bc1Uvu2RnoeO7NOOZvf1TVb1xlcFQAAgG+EVwAwkS8WxuuLhfGex47N1urjc9V14WyDqwIAAPCNbcMAYCKDx2aVXDV0H2s9XREJp7XqFvdnwAIAANQ0wisAmEhsfLH3sbCGUkJDnTewHgAAAH+xbRgATGRvRpT2ZkR5Hsv5Qqc2/lUtMr4wuCoAAADfCK8AYCJrl9bT2qX1PI9lvq8vTs5Xp6XvG1wVAACAb2wbBgATGTI+s+TK/Vmu9lBKjQAAIABJREFUQ9q8rTqJZ/VprzhjiwIAAPAD4RUATCS6rtP7WGi8VD9eFw2sBwAAwF9sGwYAE9m1Plq71kd7Hjv9ubLXT1Or9Z8bXBUAAIBvhFcAMJGvl8fp6+WetwV/nZWmtacXqePyNIOrAgAA8I1twwBgIk+86r3n9Ynr3lVYc7tW3uF5ZRYAAKAmEV4BwEQiorz3vEbYYqTYGBUaWA8AAIC/2DYMACayY220dqz1vLK649QqHV/3ulqvXWVwVQAAAL4RXgHARDZ+GqeNn3rued14PF3rzixTh0/TDa4KAADAN7YNA4CJPD35WMlVI/extu/J1uKClveNMLYoAAAAPxBeAcBEwuq4vI+FREiRESoysB4AAAB/sW0YAEzkm9Ux+mZ1jOexkyuU+eVEXbd6hcFVAQAA+EZ4BQAT2fyvutr8r7qex04s0frc/1P7fy0xuCoAAADf2DYMACbyuz8dLblq7D7Wbq6srR365H9CjS0KAADAD4RXADCRkHL+1Q+xhkphofL+JFgAAICaw7ZhADCRLZ/HasvnsZ7Hsj/R0S/Gqd3nnxhcFQAAgG+EVwAwka2fx2qrl/C6NXuZNuZ9pnafLzO4KgAAAN/YNgwAJjL8Le89r8Pbp0ntpSX3GFsTAACAP1h5BQAAAAAEPcIrAJhIxqq6yljl+VE5GScW6efVL6r9qkUGVwUAAOAb4RUATGTnV9Ha+VW057FTq7Q1f63afLXK4KoAAAB8q/aeV4fDobFjx+rYsWMqLCzUsGHD1KpVK40ZM0YWi0UpKSmaOHGirFar3nnnHa1du1Y2m01jx45Vhw4dqrscAMBlhk09VnLl3vM67PoPpOulpfS8AgCAIFTt4XXlypWKi4vTm2++qTNnzui+++7Tddddp5EjR6p79+6aMGGC1qxZo6SkJG3ZskWLFy9WVlaWRowYoaVLl1Z3OQAAAACAWqDaw2u/fv3Ut2/fsj+HhIRo79696tatmySpZ8+e2rBhg5KTk9WjRw9ZLBYlJSWpuLhYOTk5io+Pr+6SAAAlNqy81O/a/wYPY1kfKWn3Vt1zsat2/foRgysDAAAoX7X3vEZFRSk6Olp2u13PPfecRo4cKZfLJYvFUjael5cnu92u6OjoK74vLy+vussBAFxm76Zo7d3kued175kvtev8JrXY9KXBVQEAAPgWkOe8ZmVlafjw4Xr44Yd1991368033ywby8/PV2xsrKKjo5Wfn3/F12NiYgJRDgCgxDNTvPe8PtPuH1I7afm9xtYEAADgj2pfeT116pSeeOIJ/fGPf9TAgQMlSe3atdPmzZslSevWrVOXLl3UqVMnrV+/Xk6nU5mZmXI6nWwZBgAAAAB4VO0rr7NmzVJubq7effddvfvuu5KkcePGafLkyZo+fbpatGihvn37KiQkRF26dNGgQYPkdDo1YcKE6i4FAPAL65bFSfLc87ouc56a7NqigRe6acd9QwyuDAAAoHzVHl5ffvllvfzyy25fnz9/vtvXRowYoREjRlR3CQAAL37YEVly5XQfO5eh3Iu71GxHMeEVAAAEnYD0vAIAgtOTr2WWXLn3vD7ZdpbUVlpJzysAAAhC1d7zCgAAAABAdSO8AoCJfLm4nr5cXM/z2LE5+uGfz6rz4jkGVwUAAOAb24YBwET+s69OyZXLfSxvpwoKvlPivjBjiwIAAPAD4RUATOTxCVklV+49r49fN0O6Tvr0Kup5dbpcOpJzPqDvER1uU70oAj0AADWN8AoAuGpddBRr1e7jAX2PgZ2bEl4BAAgC9LwCgIms+bie1nzsued1zdH3tH/Vk+r68XsGVwUAAOAbK68AYCLHDoV7H8vfJ1fBITU8FGtgRQAAAP4hvAKAiTw2rnSLrXvP62Nt/iK1kVbdZ2xNAAAA/iC8AgCAKjuTXyh7QVFA34PDswDA3AivAGAin8+PlyT1n+ph7Mjf1PTbLXr8bDdtfnS4wZXhamcvKNKSbUcD+h4cngUA5kZ4BaDURKsaO7PVp0lBQObPc0YEZF5UXPZR77/4Z1/4STbHEdU72tDAigAAAPxDeAWgGOsFObYtVW62PSDzx6YOCci8qLhHx3jveX209VtSa+lfxpYEAxjxPNzCImdA5wcAgPAKAEAtZ8TzcPvf4P6BCAAA1YnnvAKAifxzXn39c159z2M/v63d//uIUue9bXBVAAAAvrHyCgAmcvak93/2zxYcV1RxtmJOBnaFDghmnJoMAMGL8AoAJvLbUSdKrty3eP425Q0pRfrc2JKAoMKpyQAQvNg2DAAAAAAIeoRXADCRT+c00KdzGngeO/xn7Vw5SL+a82eDqwIAAPCNbcMAYCLnc71/Znm+6KzynbmKyD1rYEUAAAD+IbwCgIk8+Hx2yZV7z+uDLSdJLaXVxpYEAADgF7YNAwAAAACCHuEVAExk5XsNtPI9zz2vK/8zVdtWPqBb3ptqcFUAAAC+sW0YAEzEUeD9M0uH86IczgLZCi4aWBEAAIB/CK8AYCIPjPDe8/pAi4lSC+lLY0sCAADwC9uGAQAAAABBj/AKACaybGZDLZvZ0PPYT69r64p7devM1w2uCgAAwDe2DQMAUA6ny6UjOecDNn9hkTNgcwMAUJsQXgHARO4bdrLkyr3n9b7kcVKy9JWxJQW9i45irdp9PGDz97/B/e8CAAC4Y9swAAAAACDoEV4BwESWzkjQ0hkJnsd+fFWblg/QbTNeNbgqAAAA39g2DAAmEhpe2l/p/tllqLWOQq3hKgqvY2xRAAAAfiC8AoCJ/PqZUyVX7n2Wv752tHSt9LWhFQEAAPiHbcMAAAAAgKBHeAUAE1n0lwQt+ovnntdFh8Zrw/K7dMdfxhtcFQAAgG9sGwYAE4mM9d7zGmmLU5Q1Vhdi44wtCgAAwA+EVwAwkQFPeu95HXDNH6RrpA3GlgQAAOAXtg0DAAAAAIIe4RUATCT9rUZKf6uR57EfXtK65Xeqz1svGVwVAACAb2wbBgATiWtYVHIV6j4W3lj1QhKU19B9SzEAAEBNI7wCgIncNeR0yZV7QL2r+e+l5lKGsSUBAAD4hW3DAAAAAICgx8orAJjI/D9dWnHt/5GHsQOjlLR3u6bt76R/jXnL4MoA35wul47knA/oexQWOX2/CABQIwivAGAiCU0LS67C3MciktU49KTONE02tijATxcdxVq1+3hA36P/DfR8A0CwIrwCgIn0eTSn5Mr9F/Q+zYZLzYZrs7ElAQAA+IWeVwAAAABA0CO8AoCJfPh6Y334uudtkR/uf16rl/VS/9efN7gqAAAA39g2DAAm0qRlQclVuPtYVFs1Dc/VyZZtjS0KAADAD4RXADCR2x86U3Llvvp6e9NnpKbPaKuxJQEAAPiFbcMAAAAAgKBHeAUAE3n/tUS9/1qi57HvR+hfy2/RgNdGGFwVAACAb2wbBgATubbtxZIr957Xa2M6qml4obLadjS2KAAAAD8QXgHARG77jfee19uaPCk1eVLbjC0JAADAL2wbBgAAAAAEPVZeAcBE5kxIkiT1X+Z0H9v3OzXav0vvbe+gla/NMro0AACAchFeAcBEUm48X3JVx32sbqqa1AnRkRu7GVsUAACAHwivAGAiPe87W3Ll3vPaM2mIlDREO4wtCQAAwC/0vAIAAAAAgh4rr6jVzuQXyl5QFND3KCxy7x0EgtV7Y5tIkvr/b7H72HdPqdGBPXp/S3stn/IPo0sDAAAoF+EVtZq9oEhLth0N6Hv0v8F9+yUQrK6/yV5yFeE+Vu82JUVG68ebuhpbFAAAgB8IrwBgIr/69bmSK/fw+qvER6TER7TL2JIAAAD8Qs8rAAAAACDosfIKACYyc3RJz+sq957XmXuHKuHgd1qwsZ2WTv3A4MoAAADKR3gFABPpeKv3nteODfqrSVaC9t/axdiiAAAA/EB4BYAgkJpoVYz1giSpsTNbfZoUVOv8ec4IZWQ5ldrfe89raqMHpUYPak+1vjMAAED1ILwCQBCIsV5QbsY8SZIjIVq52XYf31ExsalDJIVX65wAAABGIrwCgIn8bVRTSVL/z9yff/y3PYPV8NA+Lfq6rZa8lWZ0aQAAAOUivAKAH0q39QZiS68kJURYlFvts7rr2qf0XSLdxxLuU1J2c33Xp7MBlQAAAFRMwMLrt99+q7feektpaWk6fPiwxowZI4vFopSUFE2cOFFWq1XvvPOO1q5dK5vNprFjx6pDhw6BKgcAqqR0W28gtvRKUtLtj1b7nJ50Kye8dku4X+p9v74zpBIAAICKCUh4nT17tlauXKmIiEsHgrzxxhsaOXKkunfvrgkTJmjNmjVKSkrSli1btHjxYmVlZWnEiBFaunRpIMoBUMMaRocqPEArlqXynO4HEMFdsftu4f+OOR2yFjkUYg2V0xZqXFEAAAB+CEh4bd68uWbMmKEXX3xRkrR3715169ZNktSzZ09t2LBBycnJ6tGjhywWi5KSklRcXKycnBzFx8cHoiQANSjUeVGObcsDsmJZ6tKBRPBl1phLPa93e+h5nfXdE/S8AgCAoBWQ8Nq3b18dPXq07M8ul0sWi0WSFBUVpby8PNntdsXFxZW9pvTrhFcACJzu/UoflRPlPtZooJJObteefp2MLQoAAMAPhhzYZLVay67z8/MVGxur6Oho5efnX/H1mJgYI8oBANPqckdeyZV7eO3S8B7ptnv0vbElAQAA+MXq+yVV165dO23evFmStG7dOnXp0kWdOnXS+vXr5XQ6lZmZKafTyaorAARY4UWLCi9aPI8VX5DzfI5sFy8YXBUAAIBvhqy8jh49WuPHj9f06dPVokUL9e3bVyEhIerSpYsGDRokp9OpCRMmGFEKAJja7JebSJLu9dDzOnvfM/S8AgCAoBWw8Nq0aVMtWrRIkpScnKz58+e7vWbEiBEaMWJEoEoAAPzCzQPOllxFu481/q0Sc3Zo14AbjS0KAADAD4asvAJAoAX6cTwJERbl+n5Z0LuxV+mJz+7h9cYG/aWe/XXA2JIAAAD8QnhFjTmTXyh7QTkPnawGhUXOgM6P4BHox/Ek3f5oQOY12oV870cdXCjKU9h5uyJColUYxQF6AAAguBBeUWPsBUVasu2o7xdWQf8bGgd0fuBqM3dikiTpAQ89r3O//3/0vAK1hBEfEEeH21QvKiyg7wEAlyO8AoCJ3HKv957XWxIHq/HZndp5b0djiwJQ7Yz4gHhg56aEVwCGIrwCgIl06OG957VD/T5Sjz46WIl5UxOtirFe+YidxtXYg5znjFBGFm0AAACYGeEVAEzEfs57z6vdkaM6uWcVbYvTxboVe+52jPWCcjPmXfE1R0J0tfUgx6YOkRReLXMBAICrE+EVAExk3qRLPa8Peuh5nbf/9/S8AgCAoEV4BQAT6fXAmZIr99OEeyU9rka5u7T9gQ7GFgWYjNPl0pGc8wF9D07bB1AbEV4BwESuT80vuXIPr9fH95Zu7q0fjS0JMJ2LjmKt2n08oO/BafsAaiPCKwCYSG5OiPexwpOKOHtadW31dT6+oYFVAQAA+EZ4Ba4C9a351XZqqycJEZaAzY3gkjYlUZL00K3uPa9pB16g5xUAAAQtwitwFQgtync7ybU6Jd3+qIoDNjuCSe9BOSVXse5jTZ5Wo/w92jqovbFFAQAA+IHwCgAm0rZr6SEx7uG1bb2eUveeOmxsSQAAAH4hvAKAiZzJ9v7P/pmCLEWdylZ8aILsCYkGVgUAAOAb4RUATGTBtEsnkD5yu3vP64IfXqTnFQAABC3CKwCYQMPoUPVpUqCY5y49nqOx0+l2CFiM7SnVCftOxTe2q/ABYQkRFuVWW7UAAADuCK8AYAKhzovKzZiv60v+7NgWrdxs+xWvuV6S6oQoS/uljP0Vmj/p9kerpU4AAABvrDVdAADAOMdOxuvYyXjPY0VndTL7Z4WfPGtwVQAAAL4RXgHARKa8P0hT3h/keSznM007skIt3//M4KoAAAB8Y9swAJjIU/d4D6ZP1b1ZkeeydfSeBAMrAgAA8A/hFagGqYlWxVgvBGz+cEtowOaGudzY5seSq2j3sfBmUkozDl4CAABBifAKVIMY6wXlZswL2PzWu4YGbG6Yy+HjDSVJKQnuH7YcduQo/NQ5XWupq4uNPffFAgAA1BR6XgHARKZ9OFDTPhzoeezMv/XnzE/V4sN/G1wVAACAb6y8AoCJ/O7+Vd7H6vZQRN4p/Xx/AwMrAgAA8A/hFQBM5IZWh0uu3HtebwhvIrVsIrvbCAAAQM0jvAKAiRw61liSlJLgHlEPOU6pzokzamWppwtNWH2Fsfw5+K6xM1t9mhRUav48Z4QyspyV+l4AQHAgvAKAiUz/6D5JUr8b09zHzqxR5Ils/d+aBH33oudnwQKB4s/Bd46EaOVmV25vQGzqEEnhlfpeAEBwILwCgIkM/82n3sfiblXE+dM6/Jv6BlYEAADgH8IrAJhIu+QjJVfuPa/twhpL1zZWvrElBQ1v21arslX1cmxbBQCgagivAGAiB35OkiSlJOS6jxVmq87xHF2neJ1vnmB0aTXO27bVqmxVvRzbVgEAqBrCKwCYyNsf3yNJ+p8u7j2vb5/9UpEn6XkFgpU/h1qVqsyOgYruDnC6XDqSc75C71FR0eE21YsKC+h7ALh6EF4BwER+/9AK72Nxt6nOxRz956F4AysC4C9/DrUqVZkdAxXdHXDRUaxVu49X6D0qamDnpoRXAGUIrwBgIq2bZ5Zcufe8tg5LkJonKLDrKLha+Vr1q2pvcEKERe6b2QEA+C/CKwCYyHc/NZMkpSSccR8rPK6IzNNq76qv/OTGRpeGIOdr1a+qvcFJtz9a6e8FAJiDtaYLAAAY52+LB+hviwd4Hjv7ld49/YWuWfyVwVUBAAD4xsorAJjIC48s8z5W73bVKTyjnx6pZ2BFAAAA/iG8AoCJtGxSeriKe89ry9AGUtMG8u8sU+Dq0jA61K+e3Kr07vIsXwAILMIrPDqTXyh7QVFA36OwiP/AA0bbffAaSVJKwmn3sYJjijh6Sh1dDWRv1cTo0oCACnVeVG7GfJ+vq0rvLs/yBYDAIrzCI3tBkZZsOxrQ9+h/AwfCAEab9Ul/SdL9N7s/53XWufWKPBucz3n1tmpW1RNuL8dptwAABDfCKwCYyIuPLfE+Vu9OhRef04+P1TWwIv94WzWr6gm3l7vaT7st71E21RHyCfeojYzYaRYdbuNZtUA1IbwC8FvM9TepKDy0wt93tk6IXK26KqJp+b8g2Aocytu7qbLl+VTZ+qVLP0NEp1uUW8fm9ecIdP3V4ZrGJ0uu3HterwmNlxLjddHYklBNynuUTXWE/Ks93AOeGLHTbGDnpoRXoJoQXgH4rSg8VAt3vl/h72twroNcJ77X6fOF5b5uUMfHK1uaXypbv3TpZzj10y7Vjwzz+nMEuv7qsGN/C0lSSkK2+1jBEUX+nK2uzgTltmlmdGkAAADl4jmvAGAi/1jRV/9Y0dfz2LmN+kfuRjVdsdHgqgAAAHxj5RUATGTs4wu9j8X3VZhydejxWAMrMo9AHzpFTyoAoLYjvMIUyjvIpKoaO7NVyC+NuEo0aZhTcuXe89rEFiclxKl6zu7FLwX60Cl6UlEbOV0uHck5H7D5eWwfcHUhvMIUyjvIpKocCdGy3XBvQOYGqtvW71IkSSkJWe5jFw8r6vAJpRY30rl21xhdGgC4uego1qrdxwM2P4/tA64uhFcAMJEPPr1DkvRwL/fnvH6Qu0mR9mwNXJNAeAUAAEGH8AoAJjLhqQXex+LvUqjVroNPuW8pBgAAqGmEVwAwkUbx50qu3ANqI1us1CBW5T/QCAAAoGYQXgHARDbtaSNJSul9zH3s4k+K+s9x3VLUWGfbJxtdGnDV83ai9C9V9oRpTpQuX2UOZ6zI30WeM0IZWRzwBNQkwisAmEjaqt6SpMG93Xte03K3KDI/W4PWJBBegUrwdqL0L1X2hGlOlC5fZQ5nrMjfRWzqEEnhlagMQHUhvAK1SMz1N6koPLTC33e2TohcrboqomlRua8LjWtY2dJMISI+Uep0S6W+92ydEEWUfG9uHZvXvwtbgUN5ezdVusbXnvX+i/Vr9QfIFnpeP7SKrPT8AAAAgUJ4BWqRovBQLdz5foW/r8G5DnKd+F6nz5ff7fhw79GVLc0UClVcqf/9pUt/B6d+2iVJqh8Z5vXvYlDHxytdnyTVr5tXcuXe81o/JEqqFyVHld4BAAAgMAivAGAi63e2kySl9PnZfezCIcXnhei2iDbKvbVbhea9fOW4lKcV5KquHAMAAPMivAKAiaR/fqsk6fE+7j2v6XnfKCozR7f9e60W1t1boXkvXzku5WkFuaorxwAAwLwIr1ehM/mFsheU35tYVYVFxp6mV5kTAv1ReoogJzReHaraM+qrb5eeXen1YaWHmVjdx+rfrahO7fVRyv8aWxQAAIAfCK9XIXtBkZZsOxrQ9+h/Q+OAzv9LlTkh0B+lpwhyQuPVoao9o776dmtDz25lA37ptt6Ikj972tIboUsB/3zm51UvFAAAoJoRXgHgKlLZgF+6rXf/tpskSTffst0t6O8/n6m+RSm6/odM7e2cVC31wnyqcur5L/umfym3jk0xDS/QNx0g/j6ntlRFn1fLc1IBVBXhFQBM5JvVAyRdCq9uY3k/6mTmPs1bHU54RaVV5dTzX/ZN/1L9yDDd0fqRypYGH/x9Tm2pij6vluekAqgqwiv8Eoie1Ms/saUnFTDGAyOmeB9r2F2D+jytD9vMNrAiAAAA/xBe4ZdA9KRe/oktPamAMepEni+5CnMfs4Yqqn4jFURWfMsnqkdlt9xK5W+7vbzHmccVoaZUdFuyVLGtyXwQDtR+hFfAQJX9xfSEzeKzF0ziNF34tm/LryRJPXptdR/LP6Z1S/6iGw4e0+5uTYwurVoEIvxdHvyiYhOUn5sdsPktcQ21cO20Ss1f3rbbyx9bxOOKUFMqui1ZqtjWZD4IB2o/witgoMr2giXZOyrz4E6fr6sNp+kisLZ/eZckz+F1u/0nnc78XvO+DL9qw2tl/z8meQ9/lwe/h3uPDvj8AADAM8IrAJjIgyNf8z7W8CYNGjBcH7T7m4EVAUDt5nS5dCTnvO8XVkF0uE31otzbQYDahvAKXKYyWw5z69hk8eMRDxLbelHzQsNLH4/j/ktOqNWmOjFxcoTzn4barKrPCvamdPsz/84BV7roKNaq3ccD+h4DOzclvMIU+A0FuExlthzWjwyTpdF1Ph/xILElEDVvT8atkqRbb89wH8s/oi8WTlPHg0e0M7VZQN6/uoPT5f2iEh8Q+aOqzwr2pnT7M//OAcZjdRdmQXitBQL9GBspOE7wq+yqaETTIp8rBqX4xRe13bfr7pTkObx+az+ss5kHNG9deMDCa3UHp8v7RSU+IDKDQK0cl7pYP1ERp7MqU5pf7xEVm6DcwpwrPnSp7vnzc7PdPtiprvnNfFp1ZU5Llvw/MTnPGaGMLGdlSmN1F6ZBeK0FAv0YGyk4TvCr7Kro6fOFPlcMSvGLL2q7h/4wseQqxH0s4WY9dP/zmnPDX4wtCqiAQK0clxpy50vVfijX5R7uPVqffTPvig9dqnv+hTvfd/tgp7rmN/Np1ZU5LVny/8Tk2NQhksIrUZkxWN1FMKjx8Op0OvXKK69o//79CgsL0+TJk3XNNdfUdFkAUCuF2IpLr9zHLFaFhteR02Y1tigAV43LV74rurrr7+r35Y+kqsh7+Du/mVePq4LVXQSDGg+vq1evVmFhoRYuXKidO3fqT3/6k2bOnFnTZVXamfxC2QsqvhWoIgqLKrelBAB2re8tSbqtz3r3MfvParhgijodPKbtPZobXRqAq8DlK98VXd2tyC6oyryHv/MP7T1WESVtSGYLx1VpNfNn+3NVtj5Lvld3Y2WXzeHfc3+9sVktCvf2IW14jBQZX6X5q8PZgrPKd+QHbP6o0CjFhccFbP5AqvHwum3bNt1yy6V/CDp27Kg9e/bUcEVVYy8o0pJtRwP6Hv1vaBzQ+QHUXrs3eA+vu/N/Vm7WD5q3IZzwCqDWqmwA9zccV3Zrtb89tWGx4SrUlTWHWTPVp63vEF4nxKK84z+W+xpv4duf7c8t73xKMVZHua/xVH8pZ/ER2Qu9/xyFIRblHT9Y7vxS+R8gtEuMVXiElzNUOj4cFOE135GvFQdXBGz+e1rdc9WGV4vL5XLVZAHjxo1Tnz59dOutl07A7NWrl1avXi2bzXOu7t69u5o0aWJkiQAAAAAAgxw7dkybN292+3qNr7xGR0crP/+/y+JOp9NrcJXk8YcAAAAAANRuNX4qR6dOnbRu3TpJ0s6dO9W6desarggAAAAAEGxqfNtw6WnDBw4ckMvl0pQpU9SyZcuaLAkAAAAAEGRqPLwCAAAAAOBLjW8bBgAAAADAF8IrAAAAACDo1fhpwzCOw+HQ2LFjdezYMRUWFmrYsGFq1aqVxowZI4vFopSUFE2cOFFWK59pwLvTp0/r/vvv19y5c2Wz2bh/UGF///vf9cUXX8jhcOi3v/2tunXrxn0EvzkcDo0ZM0bHjh2T1WrVpEmT+LcIfvn222/11ltvKS0tTYcPH/Z4z7zzzjtau3atbDabxo4dqw4dOtR02Qgil99D+/bt06RJkxQSEqKwsDBNnTpVDRo00KJFi/Txxx/LZrNp2LBhuu2222q67FqFf9lNZOXKlYqLi9OCBQs0e/ZsTZo0SW+88YZGjhypBQsWyOVyac2aNTVdJoKYw+HQhAkTVKdOHUni/kGFbd68WTt27FB6errS0tJ0/Phx7iNUyFdffaWioiJ9/PHHGj58uP76179yD8Gn2bNn6+WXX1ZBQYEkz//92rt3r7Zs2aLFixdr+vTpevXVV2u4agSTX95Dr7/+usaPH6+0tDTdeeedmj17tk6ePKm0tDR9/PHHmjNnjqZPn67CwsIarrzipdHSAAAJnklEQVR2IbyaSL9+/fT73/++7M8hISHau3evunXrJknq2bOnNm7cWFPl4SowdepUPfTQQ0pISJAk7h9U2Pr169W6dWsNHz5cv/vd79SrVy/uI1RIcnKyiouL5XQ6ZbfbZbPZuIfgU/PmzTVjxoyyP3u6Z7Zt26YePXrIYrEoKSlJxcXFysnJqamSEWR+eQ9Nnz5dbdu2lSQVFxcrPDxcu3bt0o033qiwsDDFxMSoefPm+v7772uq5FqJ8GoiUVFRio6Olt1u13PPPaeRI0fK5XLJYrGUjefl5dVwlQhWn3zyieLj43XLLbeUfY37BxV15swZ7dmzR2+//bZeffVVjRo1ivsIFRIZGaljx47prrvu0vjx4zV48GDuIfjUt29f2Wz/7ZbzdM/Y7XZFR0eXvYZ7CZf75T1U+kH+9u3bNX/+fA0dOlR2u10xMTFlr4mKipLdbje81tqMnleTycrK0vDhw/Xwww/r7rvv1ptvvlk2lp+fr9jY2BqsDsFs6dKlslgsysjI0L59+zR69OgrPpHm/oE/4uLi1KJFC4WFhalFixYKDw/X8ePHy8a5j+DLBx98oB49eugPf/iDsrKyNGTIEDkcjrJx7iH44/Ke6NJ7Jjo6Wvn5+Vd8/fIgAvzSqlWrNHPmTL333nuKj4/nHjIAK68mcurUKT3xxBP64x//qIEDB0qS2rVrp82bN0uS1q1bpy5dutRkiQhiH330kebPn6+0tDS1bdtWU6dOVc+ePbl/UCGdO3fW119/LZfLpRMnTujChQtKTU3lPoLfYmNjy34ZrFu3roqKivhvGSrM0z3TqVMnrV+/Xk6nU5mZmXI6nYqPj6/hShGsVqxYUfZ7UbNmzSRJHTp00LZt21RQUKC8vDwdOnRIrVu3ruFKaxeLy+Vy1XQRMMbkyZP1z3/+Uy1atCj72rhx4zR58mQ5HA61aNFCkydPVkhISA1WiavB4MGD9corr8hqtWr8+PHcP6iQadOmafPmzXK5XHr++efVtGlT7iP4LT8/X2PHjtXJkyflcDj02GOPqX379txD8Ono0aN64YUXtGjRIv30008e75kZM2Zo3bp1cjqdeumll/ggBFcovYfS09OVmpqqxMTEsp0eXbt21XPPPadFixZp4cKFcrlcevbZZ9W3b98arrp2IbwCAAAAAIIe24YBAAAAAEGP8AoAAAAACHqEVwAAAABA0CO8AgAAAACCHuEVAAAAABD0bDVdAAAANeG9997Txo0bZbVaZbFY9Pzzz6t9+/Zl4/fcc486deqkiRMnln2tffv2uvHGGyVJRUVFatmyZdljo6ZOnaoDBw7IarUqNDRU48aNU7NmzTRmzBj1799fPXv21K9+9Stt2LChbL79+/dr8uTJkqSdO3eqQ4cOslqtevLJJ9WrVy+PdS9YsEAPPfSQrFbPnz+PGjVK999/v26++eayr50/f16vvPKKTp8+LenSs1InTpyouLi4yv2PBwBADSC8AgBM5+DBg/riiy+Unp4ui8Wiffv2afTo0Vq5cqUkadu2bWrdurU2bdoku92u6OhoSVLdunWVlpZWNs/IkSP11VdfyWazKTs7W++//74kafXq1ZoyZYpmzpxZbh1t2rQpm693796aO3euwsPDy/2eWbNm6cEHH/QaXj1ZsmSJEhMTNW3aNEnSnDlzNGvWLI0ZM8bvOQAAqGmEVwCA6cTHxyszM1NLlixRz5491bZtWy1ZsqRsfPHixerbt68SExO1fPlyPfroo25zOBwOnT9/XpGRkYqPj9eePXu0atUq3XTTTbr99tvVs2fPKtW4e/duvf7667LZbAoPD9fkyZO1bt065eTk6IUXXtD06dM1fvx4nThxQufOnVOvXr00YsQIj3MlJSVp+fLl6tixo7p27aqhQ4eq9DHvCxcu1MKFC+V0OnXnnXdq+PDhWr58udLS0hQWFqbk5GS99tprWrZsmVasWKHi4mKNHDlSp06d0ocffiir1apu3brp+eefr9LPCwCAL/S8AgBMJz4+XjNnztT27ds1aNAg9evXT19++aUkyW63a9u2berVq5ceeOABpaenl33fuXPnNHjwYA0ePFhPPvmkunXrptTUVLVp00aTJk3S6tWrNWDAAD3wwAPauXNnlWocP368Xn31Vc2fP18PPvigpk2bpkGDBik+Pl7Tp09XVlaWOnfurLlz5+qjjz7SRx995HWuO+64Q88884wWLVqk3r17a+jQofrpp5+UnZ2tuXPnKj09XZ988onOnj2rzMxMzZw5U2lpaUpPT1dERIQWL14sSapXr57S09OVkpKimTNnat68eUpPT9eRI0e0adOmKv28AAD4wsorAMB0Dh8+rOjoaL3xxhuSLq1yPvPMM+revbtWrVolp9OpZ599VpJ08uRJZWRkKDU11W3bcKnvv/9eycnJmj59ulwulzZs2KCRI0de0d9aUadOnVKbNm0kSV27dtU777xzxXhcXJx27typjIwMxcTEyOFweJ1r+/bt6tGjh/r166eioiItW7ZMY8eO1ejRo9WmTZuyrcrjxo3Tjh071Lp1a0VGRkqSunTpom+++UbXXXedkpOTJUn/+c9/dPr0aT399NOSLgX+I0eO6Kabbqr0zwsAgC+svAIATGf//v165ZVXVFBQIElKTk5WTEyMQkJCtGTJEs2aNUtz5szRnDlz9PLLL5e7qilJGRkZmj59uoqLi2WxWJSSkqKIiAhZLJZK19igQQP98MMPkqQtW7bo2muvlSRZrVY5nU4tWbJE9evX15///Gc99thjunDhgte5Vq5cWdaPa7PZ1KZNG4WFhemaa67RoUOHVFhYKEkaPny4GjVqpAMHDpTNt3Xr1rL3Lv15mjdvrsTERM2dO1dpaWl65JFH1KFDh0r/rAAA+IOVVwCA6fTp00eHDh3Sb37zG0VGRsrlcunFF1/UkSNH5HK5lJKSUvbavn376o033lBWVpbX+QYPHqypU6fq3nvvVXR0tKxWa9nhSJU1efLkspOObTabpkyZIknq3Lmznn76ab300ksaNWqUNm/erMjISDVr1kynTp3yONeoUaP0yiuv6Ne//rUiIyMVFRWlSZMmqWHDhho6dGhZT++dd96ppKQkDRs2TI899pgsFouSk5M1aNAgrVixomy+Bg0alG2fLi4uVrNmzTRgwIAq/bwAAPhicZWe2AAAAAAAQJBi2zAAAAAAIOgRXgEAAAAAQY/wCgAAAAAIeoRXAAAAAEDQI7wCAAAAAIIe4RUAAAAAEPQIrwAAAACAoEd4BQAAAAAEvf8P9SO/ukLBq/wAAAAASUVORK5CYII=\n",
3031
      "text/plain": [
3032
       "<Figure size 1152x576 with 1 Axes>"
3033
      ]
3034
     },
3035
     "metadata": {},
3036
     "output_type": "display_data"
3037
    }
3038
   ],
3039
   "source": [
3040
    "plt.figure(figsize = (16, 8))\n",
3041
    "\n",
3042
    "aids=saps.saps2.loc[saps.ud==17]\n",
3043
    "malignancy=saps.saps2.loc[saps.ud==10]\n",
3044
    "metastatic=saps.saps2.loc[saps.ud==9]\n",
3045
    "\n",
3046
    "\n",
3047
    "_ = plt.hist(metastatic, bins=30, alpha=0.5, label='Chronic disease: Metastatic Cancer')\n",
3048
    "_ = plt.hist(malignancy, bins=30, alpha=0.5, label='Chronic disease: Hematologic malignancy')\n",
3049
    "_ = plt.hist(aids, bins=30, alpha=0.5, label='Chronic disease: Aids')\n",
3050
    "_ = plt.ylabel('Frequency')\n",
3051
    "_ = plt.xlabel('SAPSII Total Score')\n",
3052
    "_ = plt.legend()\n",
3053
    "_ = plt.axvline(np.mean(metastatic), color='b', linestyle=':')\n",
3054
    "_ = plt.axvline(np.mean(malignancy), color='r', linestyle=':')\n",
3055
    "_ = plt.axvline(np.mean(aids), color='g', linestyle=':')"
3056
   ]
3057
  },
3058
  {
3059
   "cell_type": "code",
3060
   "execution_count": 39,
3061
   "metadata": {},
3062
   "outputs": [
3063
    {
3064
     "data": {
3065
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAGKCAYAAAC7NSYZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3xP9////9srOxJBqFUxYlTwFutjFFFKjVq1MjQobUpRo9QooY2IrUpjvetNQyVFqlqttkZtoUaqGqWqRqkVmkHWK6/fH75ePymR4JUYr/v1cnG55KzneZzT08vl3F/neZ7HYDKZTIiIiIiIiFWwedQFiIiIiIhI/lEAEBERERGxIgoAIiIiIiJWRAFARERERMSKKACIiIiIiFgRBQARERERESuiACDyFGjRogWHDx82T2/ZsoXAwEA6derEyy+/zNChQzl//jwAZ8+epXbt2ne08cknnzB69Og75p89exYvLy86depk/texY0dWr16dY10//vgjc+bMAWDTpk1MmjTpQQ+RxMREevXq9cDbZ6dTp04kJCTc0f5zzz1HfHx8jtsHBgayYcOGLPPi4+N57rnn7ruWN998k+jo6PvaJiYmhvbt299znTlz5rB27dr7rie7/dWsWdN8LXTo0IFevXqxa9cu8zrvvfdelunHyeLFi83XcPv27Zk6dSppaWlZ1tm8eTPPPfcc33zzTZb5c+fOpWHDhnTq1InOnTvToUMH+vTpw8mTJwFIT09n2rRpdOjQgY4dO9KhQwcWLFjArdG2o6OjefPNN4Hs/z8ESEpKYty4ceZ2OnfuzKpVqyx9KkTEitk96gJExLK++uor5s+fz/z58ylXrhwmk4lFixbRq1cv1q9f/0BtOjk58eWXX5qnL1y4QPv27alRowZVq1bNdrvDhw/zzz//APDiiy/y4osvPtD+Af75558sIcdSbh3X2bNn86T9x8GQIUMs2l7ZsmWzXA9Hjx6lX79+hIeH4+3tTWhoqEX3ZynffvstGzduJCoqCicnJ1JTU3n77beZN28ew4cPN6/32Wef0aFDB5YuXUq7du2ytNGuXTuCg4PN0xEREbzzzjtER0ezbNkyzp49yxdffIGdnR2JiYn07t2bIkWK4Ovrm+s6Z86cSYECBVi3bh0Gg4ELFy7g6+tLqVKlaNKkycOfCBGxegoAIk+Z2bNnExISQrly5QAwGAwEBQVRqlSpO37pfFAlSpSgXLly/Pnnn5QtW5aJEydy6tQprl27houLCzNmzCAxMZHIyEiMRiMFCxakXLlyfPfddyxcuJDExERCQ0M5duwY6enpNGrUiHfffRc7Ozv+85//EBQUxM6dO7l48SKvv/46AQEBjBkzhpSUFDp16kR0dDQff/wxP/zwA/b29hQpUoSwsDCKFy9urjEuLo7+/fuzdetWAPr160exYsXMv/g2bdqUjRs3Uq9ePXbv3n1H+3DzF9/Y2FiuXbtGv3796Nmz532fq5iYGGbPno2HhwfHjx8nIyOD999/n7p163LhwgVGjx7NxYsXKV26NFeuXDFvd+LECUJDQ7l27RpGo5HAwEC6detGTEwMoaGhFChQgOTkZN59910Arl+/TrNmzfj888+pUKECAH369OHVV19l48aNVK5cmX79+mV7fo1GI9OmTWPz5s0ULFiQmjVrcuLECSIiInI8xqpVqxIYGMjSpUuZPXs2gYGB9OzZk5YtWxISEsKBAwewt7enTJkyhIWF4eLiwoEDB5gxYwY3btzAxsaGQYMG0bx5c65fv37X68nT05Pvv/+e+fPnYzAYsLW15d133+X//u//7nk93e7SpUsYjUZSUlJwcnLC0dGR8ePHZ3nSc+bMGfbu3cuWLVto164dhw4dolatWtkee6NGjZg1a5a5/fT0dNLS0rCzs6NgwYJMmzaNzMzM3F8w/6+dokWLkp6ejoODAyVKlGDu3LkULlwYgJMnTxIcHEx8fDw2NjYMGDCAdu3acfz4cT744AOuXbuGwWCgb9++dO7c+Y5rZs2aNezYsYP58+eTnp6Ok5MTo0aNyvaJhIg8fdQFSOQpcvXqVf766y/q1KmTZb7BYKBjx464urpaZD8HDx7k9OnTeHt7s23bNtzc3IiKiuK7776jRo0arFixAm9vb/z8/GjXrh3Dhg3Lsv3kyZOpXr060dHRrF27lqtXr/K///0PgLS0NIoUKUJkZCQfffQRYWFhpKamEhYWZn4ScfHiRZYtW8aaNWuIjo6mcePG/Pzzz1n24eXlhZ2dHceOHSMlJYU//viDPXv2ALB7925q1qxJwYIFzevf3r6trS0AHh4eREdHM2/ePKZMmUJ6evoDna+ff/6Zvn37snbtWrp06cLs2bMB+OCDD/D29mb9+vWMGzfO3JUkIyODt99+2/zL8vLly1myZAmHDh0C4Pjx48ycOZOvvvoKBwcHAAoUKJClq8jp06f5888/ad68eZZasju/q1at4siRI3z99ddERkZy5syZ+zrGqlWrcuzYsSzzDh06xN69e1m3bh3R0dF4eHjw22+/8c8//zBmzBimTZvGF198QXh4OBMnTuTcuXPZXk8A06ZNY8KECURHRzNkyBBiYmKAe19Pt3vllVdwc3OjSZMm+Pr6MmXKFM6fP0/NmjXN66xcuZIXXniBokWL0q5dO5YuXZrtMWdkZLB69WoaNGgAwGuvvcaFCxdo2LAhgYGBzJ49m7S0NKpUqXJf53LQoEHs2bOHhg0b0q9fPz7++GNcXV3x8PAAYPjw4bRp04b169ezaNEiZs2aRVJSEgMGDCAwMJCvvvqKxYsXM2vWLA4ePAhkvWbOnTvH7NmzWbRoEWvXriUkJITBgwdz/fr1+6pTRJ5cegIg8hSxsbmZ6e/1i+Otdf4tMzMz22W3fhkHMBqNFClShOnTp1OqVClKlSqFh4cHERERnDp1ir179+b4S+KPP/7I4cOHze8RpKSkZFl+q6tQ9erVSUtLu+PGpESJElStWpVXXnkFHx8ffHx8aNSo0R37adWqFdu2baNy5co0bNiQ3377jePHj7Np0yZeeumle9YImPvWe3l5kZaWRlJSEkWKFMmyjsFguGM7k8mU5VyWLl0aLy8vAKpVq8YXX3wBwK5duxg1ahQA5cqVM99I/vnnn5w+fZqxY8ea20hJSeHXX3+lYsWKlCpVimefffaO/QYEBPDqq68ybNgwoqKi6NatmznM3O5u53fr1q106tQJR0dHAHx9fXP16//t58HJySnLvCpVqmBra0v37t1p0qQJrVu3pmbNmmzdupVLly4xcODALNv/9ttvtGnTJtvr6eWXX2bQoEE0a9aMxo0b88YbbwA5X0+3FCxYkCVLlnDmzBn27NnD3r17CQoKIiAggJEjR5KWlkZ0dDSTJ08GbgYGf39/zp8/T6lSpQD45ptv2L9/P3Czz3/16tUJCQkBoGTJkkRHR/P7778TExNDTEwMvr6+jB49+r6eHlWtWpUNGzZw5MgR9u3bx86dO1mwYAFz5syhTp06HD16lO7duwNQqlQpNm7cyO+//05qaqr5ui5RogQvvfQS27dvp0GDBlmumVtPf/r06ZPl/J8+ffqeXfpE5OmhACDyFClUqBDly5cnNjaW559/PsuyIUOGMGDAADw8PEhJSSE1NdV8swdw5coVcxeDf/v3OwC3++yzz/j888/p2bMnHTp0oHDhwpw9e/aedWZmZjJnzhwqVqwIQEJCQpYb6Vt13Zp36yXKW2xsbFi+fDmHDx9m9+7dTJ48maZNm5q7w9zSsmVL5syZw8WLF2ncuDFFixZlx44dbNu27Y6nEndzqwtJdnUAFClShGvXrmWZd/ny5Szn8vYbY4PBYG7n9r9v39+tblO3n/PLly9TsGBBDh06RIECBe5ab4UKFXjuuefYtGkTX3/9NZ9//vld17vb+f13d5nswmB2Dh8+fMcv3W5ubnz55ZccOHCAPXv2MHToUPr160epUqWoWLFilhdbL1y4gLu7+z2vp2HDhtG1a1d27txJdHQ0S5YsYfXq1TleT7csXryYunXrUqdOHTw8POjevTs//fQTb7zxBiNHjuSbb74hISGBkJAQ8wvrBoOBiIgI87X173cAbjdt2jS6d+9OpUqVqFSpEj179uTLL79k8eLFuQ4AGRkZfPDBBwwfPpwaNWpQo0YNXnvtNcLDw4mKiqJ+/frmum75448/MBqNdxyzyWQiIyMDIMs1k5mZSaNGjfjwww/N886fP5+lC52IPN3UBUjkKTNo0CBCQ0M5deoUcPNmMjw8nKNHj+Lp6YmLiwt169Zl2bJl5m0uXLjAhg0baNas2X3vb8eOHbzyyit0796dChUqsHnzZoxGIwC2trbmG5DbNWnShKVLl2IymUhLS2PAgAEsX778nvuxs7PDaDRiMpk4evQo7du3p2LFirz55pv06dPnri/w1qlThzNnzvDjjz/y/PPP07hxY5YtW0b58uXv+CX/9vbvh4+PD9HR0SQmJgI3b+BWrFiRq3PZtGlToqKiADh37py5S0uFChWyhK7z58/Tvn17fvnllxzbDAgIYNq0adSsWZMSJUrk+jiaNWvGunXrSEtLIyMjw/yUIjd+/vlnVq5cSe/evbPM37JlC3369KF27doMHjyYzp0788svv1CrVi1OnTrFvn37gJvva7Ru3ZoLFy5kez1lZGTQokULbty4gb+/PxMmTOC3334jLS0t19dTSkoKM2fOzBLYjh07RrVq1QCIjIykf//+bNmyhc2bN7N582YmTpzIqlWrctU9Jj4+njlz5nDjxg3g5g348ePHze3nhp2dHSdPniQ8PNzc5SwjI4MTJ05QrVo1XF1dqV69unlUp/Pnz+Pv74+bmxt2dnZ8//33wM3/p7/77rs7fgiAm+8t7Ny5kxMnTgCwdetWOnbsmO2TExF5+ugJgMhTpkOHDphMJoYPH05GRgapqalUr16dZcuWmfuLz5gxg8mTJ/Pyyy9jY2ODra0tb7/9trkLyv3o27cvwcHB5u4XtWrVMvcFb9iwISNGjCAkJITq1aubt3nvvfcIDQ2lQ4cOpKen8/zzz/P666/fcz/PPPMMNWvW5OWXX2bFihW0bduWrl27UqBAAZycnBg3btwd29jY2ODj48Phw4dxd3enbt26/PPPP3ft/vPv9nOrS5cuXLx4EX9/f2xtbUlJSaFBgwZ3reffJkyYwJgxY2jbti0lS5Y0d79wcHAgPDyc0NBQ/vvf/5KRkcGQIUOoW7euOSRkp3nz5owbNw4/P79cH8Ot4zh58iSdO3emQIEClClTBmdn57uue/r0aXOXMBsbG1xdXZkxY8Yd3Ud8fHzYtm0b7du3p0CBAhQqVIiQkBDc3d356KOPmDZtGqmpqZhMJqZNm0aZMmWyvZ7s7OwYO3YsI0aMwM7ODoPBwOTJk3FwcMj19fTWW29hMBjw8/PDYDCQmZlJjRo1+PDDDzl69ChxcXGEh4dn2aZz587Mnz8/V4FowoQJzJ49m44dO+Lg4EBGRgYNGzbM9olBdubMmcP06dNp3bo1zs7OZGZm0qpVK3OXqZkzZ/L+++8TERGBwWAgNDSUUqVKER4ezqRJk5g7dy5Go5GBAwfSsGHDO66ZSpUqmZ8y3Hr6M3/+fFxcXO6rThF5chlM9/tzl4iIPLYOHjzIuHHj+Prrr+/aDSY7O3bs4MqVK+Yb+0mTJuHo6MjIkSPzqlQREXlEFABERJ4So0aNYu/evcyePfueQ1feza0hSS9fvkxmZiZVq1Zl4sSJWUZKEhGRp4MCgIiIiIiIFcmzl4BjY2MJDAwE4NSpU/j7+xMQEMCECRPMQxTOmzePbt264efnd8cY3iIiIiIij7OFCxfi6+tLly5dsoxsNnnyZFauXJll3fj4eF566SVSU1OzzP/hhx945513zNOBgYHmf40bN2bGjBkWrztPXgJevHgx69atM79AFhYWxtChQ2nQoAHBwcFs2rSJ0qVLs3fvXlatWsX58+cZPHgwa9asyYtyREREREQsKiYmhoMHD7Jy5Upu3LjBkiVLiI+P59133+XPP/+kX79+5nW3b9/OzJkzuXz5cpY2Jk2axI4dO8zfigHM32A5c+aMeQhvS8uTJwBly5Zl7ty55ukjR46Yxy728fFh165d7N+/nyZNmmAwGChdujRGozHL59hFRERERB5XO3bsoEqVKgwcOJD+/fvzwgsvkJyczODBg80DKtxiY2PD//73vzu+t1OnTh0mTpx41/ZDQ0MZOXJknozQlSdPAFq3bp3lQ0Amk8k8GoWLiwuJiYkkJSVlOQm35ru7u9/RXlRUlHms7N9++42SJUvmRdkiIiIiIgCcPXs2yxDWvr6++Pr6mqevXr3KuXPnWLBgAWfPnmXAgAFs2LABDw8Ptm3blqWtxo0b33Uf7dq1u+vwzkePHiU5OfmuX7m3hHz5DsDtX5RMTk7Gzc0NV1dXkpOTs8zPbrSJ20+4t7c3mzZtytuCRURERMSqeXt7Ex0dne3ywoUL4+npiYODA56enjg6OhIfH0/RokUfet/r1q2je/fuD91OdvLlS8DVqlUzp5tt27ZRr1496tSpw44dO8jMzOTcuXNkZmbe9dd/EREREZHHTd26ddm+fTsmk4kLFy5w48aNO7r4PKg9e/bQtGlTi7R1N/nyBGDUqFGMHz+eWbNm4enpSevWrbG1taVevXr4+vqSmZl5319KFBERERF5VJo3b86+ffvo1q0bJpOJ4OBgbG1tLdL2pUuXKFKkiEXaupsn7jsA3t7exMbGPuoyREREROQp9jTfc+bLEwARERERsU7p6emcPXuWlJSUR13KXTk5OVGmTBns7e0fdSn5RgFARERERPLM2bNnKViwIOXLlzePCvm4MJlMXLlyhbNnz1KhQoVHXU6+yZeXgEVERETEOqWkpFC0aNHH7uYfwGAwULRo0cf26UReUQAQERERkTz1ON783/I415ZXFABEREREJN9FR0czY8aMbJfPmDHjnuPwZycqKor09HRiYmIYNmzYw5T41FIAEBEREZGnxsKFC8nMzHzUZTzW9BKwiIiIiDwSsbGx9O3bl/j4ePz9/SlcuDDz58/H3d2d9PR0PD09AZg5cyb79u3DZDLRp08f2rZty969e5k3bx5w8z2DqVOn8tNPP3Hp0iWGDRtG7969OXXqFK+//jrx8fE0b96cwYMHP8rDfWwoAIiIiIjII2FnZ8cnn3zCX3/9RVBQEGlpaaxatYrChQsTFBQEwNatWzl79iyRkZGkpqbSo0cPGjduzPHjx5k+fTolSpRgwYIFbNiwgQEDBjB//nxmz57NoUOHSE1NJTw8HKPRyAsvvKAA8P8oAIiIiIjII1GtWjUMBgPPPPMMZ8+exdPT0/wF3Nq1awNw7Ngxjhw5QmBgIAAZGRmcO3eOEiVKEBoaSoECBbhw4QJ16tS5o/3KlSvj4OAA3AwbcpPOhIiIiIg8ErePwFO4cGESExOJj4/H3d2dw4cPU7JkSTw9PWnQoAEhISFkZmYSHh5OmTJl6NOnDxs3bsTV1ZVRo0ZhMpnMbd56B8AaR/jJDQUAEREREXnk7OzsCAsLo1+/fhQqVMj8i32LFi3Yu3cvAQEBXL9+nZYtW+Lq6kqnTp3o0aMHbm5uFCtWjIsXLwJQr149goKCGDhw4KM8nMeawXQrLj0hvL29iY2NfdRliIiIiEguxMXF4eXl9ajLuKe71fg033NqGFARERERESuiACAiIiIiYkUUAERERERErIgCgIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRAFARERERPJNaroxX9vLzMwkODgYX19fAgMDOXXqlEX3/yTSh8BEREREJN842ttSd+SnFmtv//Re91y+ceNG0tLSiIqK4tChQ0yZMoX58+dbbP9PIj0BEBEREZGn1v79+2natCkAtWrV4pdffnnEFT16CgAiIiIi8tRKSkrC1dXVPG1ra0tGRsYjrOjRUwAQERERkaeWq6srycnJ5unMzEzs7Ky7F7wCgIiIiIg8terUqcO2bdsAOHToEFWqVHnEFT161h1/REREROSp1qpVK3bu3Imfnx8mk4nJkydbrO3OnTtTsGBBAMqUKUPz5s2ZNm0apUqVAmDw4MHUq1ePiRMn8ttvv+Hg4MCkSZMoV64chw4dIjQ0FFtbW5o0acKgQYPu2mZYWJjF6r1FAUBERERE8k1qujHHkXvutz1He9tsl9vY2PDBBx9YbH/m/aamAhAREWGeN3v2bEaOHEnr1q3N877//vu7jkI0YcIE5s6di4eHB0FBQRw5coRKlSrd0WZeUAAQERERkXxzr5v1x6G93Dp69Cg3btygb9++ZGRkMHz4cI4cOUJcXBzLli2jZs2ajBgx4q6jECUlJZGWlkbZsmUBaNKkCbt37yYjI+OONmvVqmXx2hUARERERET+xWg00qVLF/O0r68vvr6+5mknJyf69etH9+7d+fPPP3njjTfw9fWlTZs2lClThgkTJhAZGXnXUYj+Pc/FxYUzZ87ctc0NGzZY/KVlBQARERERkX+xtbUlOjo62+UVKlSgXLlyGAwGKlSoQOHChWnfvr25//+LL77Id999R8GCBe8YhejfIxMlJyfj5uZ21zYvXbpkbtNSNAqQiIiIiMh9Wr16NVOmTAHgwoULJCYm0r17d/7++28Adu/eTfXq1e86CpGrqyv29vacPn0ak8nEjh07qFev3h1tJiUl8cwzz1i8dj0BEBERERG5T926dWPMmDH4+/tjMBgICwvj+vXrDBo0CCcnJypWrEiPHj2wtbW96yhE77//PiNGjMBoNNKkSRO8vb3x8vLK0ubkyZPz5JsFBpPJZLJ4q3nI29ub2NjYR12GiIiIiORCXFwcXl5ej7qMe7pbjU/zPae6AImIiIhIvjFlpD6S9mJjYwkMDLTovp9U6gIkIiIiIvnGYOfI6Q/+Y7H2ygYfznGdxYsXs27dOpydnS223yeZngCIiIiIyFOtbNmyzJ0791GX8dhQABARERGRp1rr1q3z5GXaJ5UCgIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRJ2hRERERCTfmDJSczVyz/20Z7BzzHG9MmXK8Pnnn1tsv08yPQEQERERkXyTm5v1R9meNVAAEBERERGxIgoAIiIiIiJWRAFARERERPKUyWR61CVk63GuLa8oAIiIiIhInnFycuLKlSuP5Y22yWTiypUrODk5PepS8pVGARIRERGRPFOmTBnOnj3LpUuXHnUpd+Xk5ESZMmUedRn5SgFARERERPKMvb09FSpUeNRlyG3UBUhERERExIooAIiIiIiIWBEFABERERERK6IAICIiIiJiRRQARERERESsiAKAiIiIiIgV0TCgDyk6OpovvvgCgNTUVOLi4pg6dSqLFi3C2dmZpk2b8tZbb2XZ5tq1a7Ru3ZoqVaoA0LJlS3r37k1wcDBHjx4lICCAzp07k5iYyPvvv8+MGTPy/bhERERE5OmkAPCQunTpQpcuXQB4//336dq1K9OmTSMiIgIPDw9GjBjBTz/9RL169czb/Prrr7Rv357x48eb5129epXLly8TGRlJ79696dy5MwsXLiQoKCjfj0lEREREnl7qAmQhhw8f5vfff6dly5a4ubnh4eEBQJ06dThw4ECWdX/55ReOHDnCq6++yttvv83FixdxdHQkIyOD1NRUHBwcOHPmDDdu3DA/JRARERERsQQFAAtZuHAhAwcOxN3dnZSUFE6cOIHRaGTbtm1cv349y7qenp68/fbbLF++nJYtWzJp0iQKFChAixYtGD58OIMGDSI8PJxevXoxadIkJk+efEcbIiIiIiIPwmAymUz5saP09HRGjx7NX3/9hY2NDSEhIdjZ2TF69GgMBgOVK1dmwoQJ2NjcO5N4e3sTGxubHyXnWkJCAn5+fnzzzTcAHDp0iJkzZ+Lm5kbZsmUpWbIkvXv3Nq+flJSEs7Mztra23Lhxgw4dOrBx40bz8gMHDhATE0ORIkUoXLiweR89evTI3wMTERERsVK5vee8cuUKXbp0YcmSJaSlpTFhwgRsbW0pX748oaGh2NjY8Mknn7B+/XoMBgP9+/enVatWXLt2jZEjR5KUlEThwoWZNGkSRYsWNbc7fvx4ChUqxIgRIyx+bPn2BGDr1q1kZGQQGRnJwIED+fDDDwkLC2Po0KF89tlnmEwmNm3alF/lWNS+fft4/vnnzdPbtm1j4cKFzJs3j9OnT2dZBjBu3Di+++47AHbv3k316tWzLF+6dCl9+vQhJSUFW1tbDAaDngCIiIiIPGbS09MJDg7GyckJgHnz5jFw4EBWrlxJWloaP/74IwkJCURERBAZGcmSJUuYPHkycLP3SN26dVm5ciWBgYHMmjXL3G5kZCTHjh3Ls7rzLQBUqFABo9FIZmYmSUlJ2NnZceTIEerXrw+Aj48Pu3btyq9yLOrkyZOUKVPGPF2yZEn8/f3x8/OjUaNGVK5cmWvXrjFo0CAA3nnnHfN/7MjISN577z3ztuvXr6d58+Y4OzvTpk0bPvnkE5YtW0bbtm3z/bhEREREJHtTp07Fz8+P4sWLA+Dl5cW1a9cwmUwkJydjZ2eHs7MzpUuX5saNG9y4cQODwQDA77//jo+PD3DzndH9+/cDcPDgQWJjY/H19c2zuvNtFKACBQrw119/0bZtW65evcqCBQvYt2+f+SS4uLiQmJh4122joqKIiooCwMHBgbi4uPwqO1caN24MYK7rP//5D1OmTDEvvzV/4MCB5r/Hjh1rXn7lyhWuXLkC3Hw/4PZtJkyYAEB8fDzx8fF5eRgiIiIi8v8YjUbzSI8Avr6+WW7Ko6OjcXd3p2nTpixatAiA8uXL88EHHzB//nwKFixIgwYNAChVqhQvv/wyRqORN998E7gZFjZv3ky1atXYvHkzKSkpXLx4kXnz5jFv3jy+/fbbPDu2fAsAS5cupUmTJrzzzjucP3+e3r17k56ebl6enJyMm5vbXbe9/YR7e3vj5eX1ULWkphtxtLd9qDaeFjoXIiIiIneytbUlOjo62+Vr1qzBYDCwe/du4uLiGDVqFEePHuWLL76gcuXKrFixgilTptCkSRMuXrxo7urer7PkCiYAACAASURBVF8/6tSpQ1BQEKGhofTp04emTZtSsmRJNmzYwNWrVwkKCuLSpUukpKTg6emZJYhYQr4FADc3N+zt7QEoVKgQGRkZVKtWjZiYGBo0aMC2bdto2LBhvtTiaG9L3ZGf5su+Hnf7p/d61CWIiIiIPHFWrFhh/jswMJCJEycycOBAXF1dAShevDgHDhygUKFCODk54eDggMFgoGDBgiQkJPDTTz/RqVMnGjZsyHfffUedOnXo1asXvXrdvDeLjo7mjz/+sPjNP+RjAOjTpw9jx44lICCA9PR0hg0bRo0aNRg/fjyzZs3C09OT1q1b51c5IiIiIiIWNWnSJIYNG4adnR329vaEhIRQpkwZdu3aRY8ePbCxsaFOnTo0btyY06dPM2rUKOBmWLj1cnB+yLdhQC3FUsOA6gnATXoCICIiInKnx3HoeUvRh8BERERERKyIAoCIiIiIiBVRABARERERsSIKACIiIiIiVkQBQERERETEiigAiIiIiIhYEQUAERERERErogAgIiIiImJFFABERERERKyIAoCIiIiIiBVRABARERERsSIKACIiIiIiVkQBQERERETEiigAiIiIiIhYEQUAERERERErogAgIiIiImJFFABERERERKyIAoCIiIiIiBVRABARERERsSIKACIiIiIiVkQBQERERETEiigAiIiIiIhYEQUAERERERErogAgIiIiImJFFABERERERKyI3aMuQERERETkSXXlyhW6dOnCkiVLSEtLIyQkBFtbWxwcHJg6dSqXLl1i8uTJ5vUPHTrExx9/TKVKlXj33XcxmUwUKlSImTNn4uzszNdff82yZcuwtbWlSpUqTJw4ERsby/5mrycAIiIiIiIPID09neDgYJycnAAIDQ1l/PjxRERE0KpVKxYvXoyXlxcRERFEREQQEBDASy+9hI+PD0uXLqVt27asWLGCypUrs3r1alJSUvjwww/59NNPiYyMJCkpiS1btli8bj0BEBERERH5F6PRSJcuXczTvr6++Pr6Zlln6tSp+Pn5sWjRIgBmzZpF8eLFzds7Ojqa171+/Tpz585l+fLlAHh5efH3338DkJSURMmSJXFwcCAyMhJnZ2cAMjIysrRhKQoAIiIiIiL/YmtrS3R0dLbLo6OjcXd3p2nTpuYAcOvm/8CBAyxfvpwVK1aY11+9ejVt2rTB3d0dgJIlSzJz5ky+/vpr0tLSGDRoEDY2NhQrVgyAiIgIrl+/TuPGjS1+bAoAIiIiIiL3ac2aNRgMBnbv3k1cXByjRo1i/vz57Nu3j/nz57No0SLzzT7AV199xUcffWSenjZtGmFhYTRt2pQff/yRUaNGsWjRIjIzM5k+fTonT55k7ty5GAwGi9euACAiIiIicp9u/3U/MDCQiRMnsmvXLqKiooiIiKBw4cLm5YmJiaSlpVGqVCnzPDc3NwoWLAjcfHKQkJAAQHBwMA4ODoSHh1v85d9bFABERERERB5SZmYmoaGhlCpVisGDBwPwf//3f7z99tucPHmSZ599Nsv648eP54MPPiAzMxOTyURwcDBHjhxh9erV1KtXj969ewPQq1cvWrVqZdFaDSaTyWTRFvOYt7c3sbGxD91O3ZGfWqCaJ9/+6b0edQkiIiIijx1L3XM+jjQMqIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRAFARERERMSKKACIiIiIiFgRBQARERERESuiACAiIiIiYkUUAERERERErIgCgIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRAFARERERMSKKACIiIiIiFgRBQARERERESuiACAiIiIiYkUUAERERERErIgCgIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRAFARERERMSKKACIiIiIiFgRBQARERERESuiACAiIiIiYkUUAERERERErIhdfu5s4cKFbN68mfT0dPz9/alfvz6jR4/GYDBQuXJlJkyYgI2NMomIiIiIPN6MRiPjxo3j5MmT2NraEhYWhouLC+PGjSMhIQGj0ci0adMoW7YsW7du5eOPPwagWrVqTJgwgcWLF7N9+3YAEhISuHz5Mjt37mTz5s18/PHH2NnZ0bVrV3r06GHx2vMtAMTExHDw4EFWrlzJjRs3WLJkCWFhYQwdOpQGDRoQHBzMpk2baNWqVX6VJCIiIiLyQLZs2QJAZGQkMTExhIWFUahQITp06EC7du3Ys2cPf/zxB+7u7kyfPp1PP/0Ud3d3Fi9ezNWrVwkKCiIoKAiAN998kxEjRpCenk5YWBirV6/G2dkZf39/mjdvzjPPPGPR2vPt5/YdO3ZQpUoVBg4cSP/+/XnhhRc4cuQI9evXB8DHx4ddu3blVzkiIiIiIg+sZcuWhISEAHDu3DmKFSvGgQMHuHDhAn369OGrr76ifv36HDx4kCpVqjB16lQCAgIoVqwY7u7u5na+//573NzcaNq0KSdOnKBs2bIUKlQIBwcH6taty08//WTx2vPtCcDVq1c5d+4cCxYs4OzZswwYMACTyYTBYADAxcWFxMTEu24bFRVFVFQUAA4ODsTFxT10PWNf8nzoNp4GljiXIiIiIk8bo9FIly5dzNO+vr74+vpmWcfOzo5Ro0bxww8/8NFHHxEdHY2bmxtLly5l3rx5LF68mAoVKhATE8PatWspUKAAPXv2pFatWlSoUAG42UV+1qxZACQlJVGwYEFz+y4uLiQlJVn82PItABQuXBhPT08cHBzw9PTE0dGRv//+27w8OTkZNze3u257+wn39vbGy8vroet5dcmnD93G02D/9CaPugQRERGRx46trS3R0dE5rjd16lRGjBhBjx49KFiwIC1atACgRYsWzJ49m9q1a/Of//zH3I2nXr16xMXFUaFCBX7//Xfc3NwoV64cAK6uriQnJ5vbTk5OzhIILCXfugDVrVuX7du3YzKZuHDhAjdu3KBRo0bExMQAsG3bNurVq5df5YiIiIiIPLC1a9eycOFCAJydnTEYDNSvX5+tW7cCsG/fPipVqkSNGjU4duwY8fHxZGRkEBsbS6VKlQDYtWsXPj4+5jYrVqzIqVOnuHbtGmlpafz000/Url3b4rVn+wSgSZN7/zJsMBjMby7nRvPmzdm3bx/dunXDZDIRHBxMmTJlGD9+PLNmzcLT05PWrVvnvnIRERERkUfkpZdeYsyYMfTs2ZOMjAzGjh2Ll5cX48aNIzIyEldXV2bOnEmhQoV45513eP311wFo06YNVapUAeDkyZM0btzY3Ka9vT2jR4+mX79+mEwmunbtSokSJSxeu8FkMpnutiAwMJCIiIhsN8xpeV7x9vYmNjb2odupO1JdgAD2T+/1qEsQEREReexY6p7zcZRtF6BbjzRuSUlJISEhIdvlIiIiIiLy+Mu2C1CBAgXMf69atYqtW7diNBopXbo048ePz7JcRERERESeDNk+Afjmm2/Mf//yyy/MnTuX8PBwDh8+nC+FiYiIiIiI5WX7BCAjI4Nhw4bRq1cvOnToQFBQEKmpqfj5+eVnfSIiIiIiYkHZBoCOHTvSpk0b/ve//3H69GmCg4Px8PDIz9pERERERMTCsg0AFy9e5Ntvv8Xd3Z127dqxbNkynJycePPNN/PkgwQiIiIiIpL3sn0H4J133uHZZ5/F0dGRRYsWMW7cODp27Mj777+fn/WJiIiIiIgFZRsA0tPTMRgMGAwGjEYjAFWqVGHGjBn5VpyIiIiIiFhWtgFgzpw5nDlzhhs3bjBu3Lj8rElERERERPJItgEgIiKCPn360KNHj7uO+a8nASIiIiIiT55sXwKOjo7m/Pnzd11mMpmIiYlhxIgReVaYiIiIiIhYXrYB4MMPP7znhvoegIiIiIjIkyfbAFC/fv38rENERERERPJBtu8AiIiIiIjI0yfHAHD58uX8qENERERERPJBtl2Abhk8eDDu7u5069aNZs2aYWOjhwYiIiIiIk+qHAPAypUrOXHiBKtXr2b+/Pk0atSIbt264eHhkR/1iYiIiIiIBeXq5/zixYvj4eGBk5MTx44dIzQ0lDlz5uR1bSIiIiIiYmE5BoAhQ4bg6+tLQkIC06dPZ/78+SxYsICtW7fmR30iIiIiInIXq1atyjL96aef5mq7HLsA9ejRg1q1auHi4sLFixfN81euXHmfJYqIiIiIyMP6+uuv2bx5MzExMezZswcAo9HI8ePH6dWrV47b5xgADh48yPbt2xk9ejSTJk2iRo0aBAUF4ejo+PDVi4iIiIjIfWnatCnPPPMM165dw9fXFwAbG5tcv6ObYwDYvHkz0dHRAHz00Uf4+fkRFBT0ECWLiIiIiMiDKlSoEA0aNKBBgwZcuXKF1NRU4OZTgNzIMQAYDAbS0tJwcHAgPT0dk8n0cBWLiIiIiMhDe//999m6dSvFixfHZDJhMBiIjIzMcbscA4Cfnx8dOnSgSpUq/PHHH7z++usWKVhERERERB5cbGwsGzduvO/vdOUYALp3786LL77ImTNn8PDwwN3d/YGLFBERERERyyhXrhypqak4Ozvf13Y5BoC4uDiioqLMfYsAwsLC7r9CEREREZGnhNFoZNy4cZw8eRJbW1vCwsIwmUyMHj0ag8FA5cqVmTBhAjY2NvTv359r165hb2+Po6Mj//3vfzly5Aj9+/enfPnyAPj7+9OuXTvCwsLYv38/NjY2jBo1irp162Zbw/nz52nevDnlypUDsFwXoNGjR/Pqq69SsmTJXJ4OEREREZGn25YtWwCIjIwkJibGHACGDh1KgwYNCA4OZtOmTbRq1YrTp0+zfv16DAaDeftff/2V1157jb59+5rnHT16lIMHD7Jq1SpOnTrF8OHDzYPx3M3MmTMfqPYcA0CxYsXo3r37AzUuIiIiIvI0atmyJS+88AIA586do1ixYvz444/Ur18fAB8fH3bu3Ent2rVJSEigf//+JCQkEBQURPPmzfnll184efIkmzZtoly5cowdO5bixYvj5OREWloaSUlJ2Nnd+1b9iy++uGPeoEGDcqw9xwDw7LPPsmjRIry8vMyppUmTJjk2LCIiIiLypDIajXTp0sU87evrax5z/xY7OztGjRrFDz/8wEcffcSWLVvM98suLi4kJiaSnp5O37596dWrF//88w/+/v7UrFmTmjVr0r17d2rUqMH8+fP5+OOPGTBgADY2NrRt25bExERCQkLuWWOxYsUAMJlM/Prrr2RmZubq2HIMAOnp6Zw8eZKTJ0+a5ykAiIiIiMjTzNbW9p7db26ZOnUqI0aMoEePHlnemU1OTsbNzY1ixYrh5+eHnZ0dRYsWxcvLi5MnT9KqVSvc3NwAaNWqFSEhIaxdu5ZixYrxySefkJycTEBAALVr16ZEiRJ33befn1+W6dyO1pljAAgLC+PkyZOcPn2a5557juLFi+eqYRERERGRp9XatWu5cOECb775Js7OzhgMBmrUqEFMTAwNGjRg27ZtNGzYkF27drFixQoWLVpEcnIyx48fx9PTk379+jF+/Hhq1qzJ7t27qV69Om5ubhQoUABbW1tcXFxwcHAgOTk52xpu/4H+0qVLnD9/Ple15xgAli9fzg8//MA///zDK6+8wqlTpwgODs5V4yIiIiIiT6OXXnqJMWPG0LNnTzIyMhg7diwVK1Zk/PjxzJo1C09PT1q3bo2trS07duygR48e2NjYMHz4cNzd3Zk4cSIhISHY29tTrFgxQkJCcHZ25sCBA/j5+WE0GunQoQOenp7Z1nD7PbmjoyPvvvturmo3mHL4tK+/vz+fffYZvXr1IiIigq5du7JmzZpcnhrL8/b2JjY29qHbqTvyUwtU8+TbP73Xoy5BRERE5LFjqXvOvHb16lXOnDlDmTJlcv29rhw/G3YrH9x6ocHBweEhShQREREREUv49ttv8fPzY8GCBfj6+vLll1/marscuwC1b9+enj17cu7cOd544w1atmz50MWKiIiIiMjDWbp0KdHR0bi4uJCUlETv3r3p1KlTjtvlGABeffVVGjVqxLFjx6hQoQJVq1a1SMEiIiIiIvLgDAYDLi4uALi6uuLo6Jir7XIMAPPmzTP/feLECTZu3JirDwyIiIiIiEjeKVu2LFOmTKFevXrs37+fsmXL5mq7XH0JGO7/AwMiIiIiIpJ3evTowb59+9i1axfr16/nv//9b662yzEAPOgHBkREREREJO9MmTKFKVOmUKlSJV577TVGjx7NihUrctwuxwDwoB8YEBERERGRvGNnZ0elSpUA8PDwwMYmxwE+b26X0woP+oEBERERERHJO6VLl2bWrFnUqlWLn3/+meLFi+dquxwDQERExEMXJyIiIiIilhUWFsbKlSvZunUrFStW5K233srVdjkGgI4dO5KcnIyjoyOpqanAzReCDQYDmzZteriqRURERETkgTg6OtKnT5/73i7HAFC7dm06d+5M7dq1+e233/jkk0+YNGnSg9QoIiIiIiKPWI4B4MSJE9SuXRuA5557jvPnz+Pg4JDnhYmIiIiIiOXlGAAKFizIhx9+SM2aNdm/fz+lS5fOj7pERERERCQP5DhW0MyZM3F1dWX79u14eHgQGhqaH3WJiIiIiEgeyDEAODo6UqhQIYoUKUKFChVISEjIj7pERERERCQP5BgAgoODOXfuHDt37iQ5OZlRo0blR10iIiIiIpIHcgwAp0+fZsiQITg4ONCiRQsSExPzoy4REREREckDOQYAo9FIfHw8BoOBpKSkXH9iWEREREREHj85jgI0bNgw/P39uXTpEr6+vrz33nv5UZeIiIiIiOSBHAPA+fPn+e6774iPj6dIkSIYDIb8qEtERERERPJAjv15Pv/8cwDc3d118y8iIiIi8oTL8QlAWloanTt3pkKFCub+/zNnzszzwkRERERExPJyDAAjRozIjzpERERERCQfZBsAwsPDeeutt6hfvz4XL16kePHi+VmXiIiIiIjkgWzfAdizZ4/5b0s+Bbhy5QrNmjXjxIkTnDp1Cn9/fwICApgwYQKZmZkW24+IiIiISF5JT09n5MiRBAQE0K1bNzZt2mRe9tVXX+Hr65tl/czMTF5//XVWrlyZZf6JEyeoW7cuqampAAQGBpr/NW7cmBkzZli89mwDgMlkuuvfDyM9PZ3g4GCcnJwACAsLY+jQoXz22WeYTKYsJ05ERERE5HG1bt06ChcuzGeffcbixYsJCQkBIC4ujtWrV99x//zhhx/yzz//ZJmXlJTE1KlTcXBwMM+LiIggIiKCyZMnU6JECQYMGGDx2rMNALeP+GOp0X+mTp2Kn5+fuTvRkSNHqF+/PgA+Pj7s2rXLIvsREREREclLbdq0YciQIeZpW1tbrl69yowZMxg7dmyWdTds2IDBYMDHx8c8z2QyMX78eIYPH46zs/Md7YeGhjJy5EhcXFwsXnu27wAcOXIEPz8/TCYTv//+u/lvg8FAZGTkfe8oOjoad3d3mjZtyqJFiwDM7QG4uLiQmJh4122joqKIiooCwMHBgbi4uPve/7+Nfcnzodt4GljiXIqIiIg8bYxGI126dDFP+/r6ZunWc+vGPCkpibfffpshQ4bw3nvvMXbsWBwdHc3rHTt2jK+//pqPPvqIjz/+2Dx/3rx5NGvWjKpVq96x76NHj5KcnEyjRo3y4tAwmLLp3/PXX39lu9Gzzz573zvq2bMnBoMBg8FAXFwc5cuX59dff+XXX38FYOPGjezatYvg4OB7tuPt7U1sbOx97//f6o789KHbeBrsn97rUZcgIiIi8tjJzT3n+fPnGThwIAEBAVSpUoUxY8bg7u5Oamoqv//+O127dsXe3p59+/bh5OTEX3/9hb29Pe+99x4hISGULFkSgEOHDlGzZk1WrFgBwLRp06hatSodO3bMk2PL9gnAg9zk38utA4KbLzdMnDiR6dOnExMTQ4MGDdi2bRsNGza06D5FRERERPLC5cuX6du3L8HBweZf6tevXw/A2bNnGT58OO+9916WbebOnUuxYsXw8fHhhx9+MM9v0aIFS5YsMU/v2bOHN954I89qz/FLwHlp1KhRzJ07F19fX9LT02nduvWjLEdEREREJFcWLFhAQkIC4eHh5lF7UlJSLNL2pUuXKFKkiEXauptsuwA9rtQFyLLUBUhERETkTpa653wcPdInACIiIiIikr8UAERERERErIgCgIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRAFARERERMSKKACIiIiIiFgRBQARERERESuiACAiIiIiYkUUAERERERErIgCgIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRAFARERERMSKKACIiIiIiFgRBQARERERESuiACAiIiIiYkUUAERERERErIgCgIiIiIiIFVEAEBERERGxIgoAIiIiIiJWRAFARERERMSKKACIiIiIiFgRBQARERERESuiACAiIiIiYkUUAEREREREHlBsbCyBgYEAxMXF0aNHD/z9/RkzZgyZmZkArFixgq5du9KtWze2bNkCwPXr1xkwYAABAQH069eP+Ph4AL7//ntatmxJYGAggYGB7N271+I121m8RRERERERK7B48WLWrVuHs7MzAPPmzWPgwIE0a9aMd955hx9//JFatWrx2WefsXbtWlJTU3n55Zd54YUX+Pzzz6levTqDBg0iOjqa8PBwxo0bx5EjRxg5ciStW7fOs7r1BEBERERE5AGULVuWuXPnmqe9vLy4du0aJpOJ5ORk7OzscHd358svv8Te3p7Lly/j5uaGwWCgT58+DBgwAIBz585RrFgxAI4cOcKaNWsICAhgypQpZGRkWLxuBQARERERkX8xGo106dLF/C8qKuqOdVq3bo2d3f/foaZ8+fKEhobStm1brly5QoMGDQCws7Nj+fLl+Pr6Zvll39bWll69erF8+XKaNWsGQOPGjRk/fjwrVqzg+vXrREZGWvzYFABERERERP7F1taW6Oho8z9fX98ctwkNDWXFihVs2LCBzp07M2XKFPOyV199le3bt7Nv3z727Nljnv/pp5+yYsUKBg8eDEDXrl3x8PDAYDDw4osv8uuvv1r82BQAREREREQsoFChQri6ugJQvHhxEhIS+OOPPxg0aBAmkwl7e3scHBywsbFh4cKFrF27FoACBQpga2uLyWSiY8eO/P333wDs3r2b6tWrW7xOvQQsIiIiImIBkyZNYtiwYdjZ2WFvb09ISAhlypShatWq+Pr6YjAYaNq0KfXr18fT05NRo0axZs0ajEYjkydPxmAwMGnSJAYNGoSTkxMVK1akR48eFq/TYDKZTBZvNQ95e3sTGxv70O3UHfmpBap58u2f3utRlyAiIiLy2LHUPefjSF2ARERERESsiAKAiIiIiIgVUQAQEREREbEiCgAiIiIiIlZEAUBERERExIooAIiIiIiIWBEFABERERERK6IAICIiIiJiRRQARERERESsiAKAiIiIiIgVUQAQEREREbEiCgAiIiIiIlZEAUBERERExIooAIiIiIiIWBEFABERERERK6IAICIiIiJiRRQARERERESsiAKAiIiIiIgVUQAQEREREbEiCgAiIiIiIlZEAUBERERExIooAIiIiIiIWBEFABERERERK6IAICIiIiJiRRQARERERESsiF1+7Sg9PZ2xY8fy119/kZaWxoABA6hUqRKjR4/GYDBQuXJlJkyYgI2NMomIiIiIPBliY2OZMWMGERERxMXFERISgq2tLQ4ODkydOpVixYqxdOlS1q9fD0CzZs0YNGgQiYmJjBw5kqSkJNLT0xk9ejS1a9fmp59+YurUqRgMBnx8fBg0aJDFa863ALBu3ToKFy7M9OnTuXr1Kq+88gpVq1Zl6NChNPj/2rv3qKjK/Y/j72GACVBUEs0LFFheKDPN/Lks9WRZnY51CotRErykpYdlJoa1jLDMu2maJV7q0AoLMbKDHrNaiubldFFTUhOIMs+xk4RiKhdndGb//ujnJMdLnl/CjLM/r7Vci/08e4/fPT4L92eeZ+/5n/8hIyODdevW0bdv3/oqSURERETk/23JkiWsXLmSkJAQAKZMmcJzzz1Hhw4dWLZsGUuWLGHQoEGsXLmSd999F4vFQmJiInfeeScff/wx3bt3Z8iQIXz33XeMGzeO999/n6lTpzJv3jyioqJISkqiT58+xMXFXdK66+3j9nvuuYcxY8Z4tq1WK3v27KFbt24A9OrVi3/84x/1VY6IiIiIyO8SHR3N/PnzPdtz5syhQ4cOALhcLmw2G1dddRWvv/46VquVgIAATp06hc1mY8iQIQwYMKDWvgDLly8nKiqKqqoqKisrady48SWvu95mAMLCwgCorKzkiSee4Mknn/RMb5zuP378+DmPzc3NJTc3F4Dg4GD27t37u+uZcFfs734Nf3Ap3ksRERERf+NyuYiPj/ds2+127HZ7rX3uvvtuDhw44Nlu1qwZAF9++SVLly7l7bffJigoiIiICAzDYObMmcTFxRETE+M5pry8nLS0NCZMmABAYGAgO3fuJDU1lTZt2hAREXHJz63eAgDAjz/+SEpKComJidx3333MmjXL01dVVUV4ePg5jzvzDe/UqZMnWf0eg/761u9+DX+wfdZt3i5BRERExOdYrVZWrFjxXx/3wQcfkJmZyeLFiz0X7w6HgwkTJhAWFsbEiRM9+xYXF5Oamsr48eM9q2IAbrrpJgoKCnj55ZdZvHgxTzzxxO8/oTPU2xKgQ4cOMWzYMNLS0njooYcAiIuL4/PPPwdg48aNdO3atb7KERERERG5pPLz81m6dCnZ2dlERUUBYBgGf/nLX2jXrh2TJk3CarUCUFpaypgxY5g9eza9e/f27JuYmMjRo0eBX1bI1MUDcuptBmDhwoUcO3aMBQsWsGDBAgCeffZZJk+ezJw5c4iNjeXuu++ur3JERERERC4Zl8vFlClTaNGiBaNHjwbglltuoUOHDnzxxRc4nU42Ka33bQAAFuZJREFUbdoEQGpqKosXL8bpdDJlyhQAGjRoQGZmJsOGDWPEiBEEBwcTGRnJ5MmTL3mtFsMwjEv+qnWoU6dOFBYW/u7XuTlNS4AAts9K9nYJIiIiIj7nUl1z+iI9dF9ERERExEQUAERERERETEQBQERERETERBQARERERERMRAFARERERMREFABERERERExEAUBERERExEQUAERERERETEQBQERERETERBQARERERERMRAFARERERMREFABERERERExEAUBERERExEQUAERERERETEQBQERERETERBQARERERERMRAFARERERMREFABERERERExEAUBERERExEQUAERERERETEQBQERERETERBQARERERERMRAFARERERMREFACkTpw8eZJx48YxYMAAEhMT+fbbb2v1r1y5kgcffJD+/fvzzjvvAFBVVUVycjJ2u52ioiIAtm3bxuLFi+u9fhERERF/pQAgdeKTTz7h1KlTLFu2jJSUFObOnVurf+bMmWRlZZGTk0NWVhZHjx5ly5Yt9OnTh4kTJ5KXl4dhGLz11lsMHjzYS2chIiIicn6LFi3CbrcTHx/Pu+++62mfOnUqOTk5tfatqKjgrrvuwuFwAHD8+HFGjhzJoEGDsNvt7Nixo97qVgCQOhETE4PL5cLtdlNZWUlgYGCt/nbt2nH8+HGcTieGYWCxWAgNDaWmpobq6mpCQ0NZtWoVffv2xWazeeksRERERM7t888/Z8eOHeTk5JCdnc3BgwepqKhg+PDhFBQU1Np306ZNDBs2jEOHDnnasrKy6N69O0uXLmXatGlMmjSp3moP/O1dRP57oaGh/PDDD/zxj3/kyJEjLFy4sFb/ddddR//+/QkJCaFv376Eh4fTo0cPNmzYQE5ODmPHjmXmzJmMHj2ajIwMoqKiGDFihJfORkRERKS2zZs307ZtW1JSUqisrGT8+PFUVVUxevRoNm7cWGvfgIAAsrKy6N+/v6dtyJAhBAcHA+Byuer1A0/NAEidePPNN7ntttv46KOPyM/P55lnnvFMeRUVFbFhwwbWrVtHQUEBFRUVrFmzhoCAANLT05k9ezarV68mOTmZzMxMnnzySX788Uf27dvn5bO6vK1YsYKkpCSSkpJISEigY8eOHDt2rNY+breb4cOHe6YtDx48yIABA3jkkUcoKysDID8/n9WrV9d7/SIiIvXJ5XIRHx/v+ZObm1ur/8iRI+zevZt58+bxwgsv8NRTT9G6dWs6dep01mvdeuutNGnSpFZbeHg4V1xxBeXl5aSlpZGamlqn53MmzQBInQgPDycoKAiARo0acerUKVwuFwANGzbkiiuuwGazYbVaiYiIqHUhevjwYb7//nsef/xx3njjDaxWKxaLhZqaGq+ci784/QsM4IUXXqB///6Eh4fX2mfu3LkcPXrUs71mzRqGDx+OYRisWbOGgQMHUlBQcNY9HSIiIv7GarWyYsWK8/Y3btyY2NhYgoODiY2NxWazUVFRwZVXXnnRf0dxcTGpqamMHz+ebt26XYqyL4pmAKRODBkyhD179pCYmMjgwYMZO3Ys69atIzc3l1atWmG320lMTGTgwIEcP36cBx980HNsZmYmI0eOBCAxMZFHH32U8vJy2rdv763T8Su7du2itLQUu91eq/3DDz/EYrHQq1cvT1toaCjV1dVUV1cTEhJCVlYWycnJWCyW+i5bRETEp9x8881s2rQJwzAoKyujpqaGxo0bX/TxpaWljBkzhtmzZ9O7d+86rPRsmgGQOhEWFsa8efPO2z9w4EAGDhx4zr709HTPzz179qRnz56XvD4zW7RoESkpKbXaSkpK+Pvf/84rr7zCa6+95mnv168fkydPJiAggJEjR7JgwQK6du1KRkYGHTt25OGHH67v8kVERHzC7bffztatW3nooYcwDIOMjAysVutFHz979mycTidTpkwBoEGDBmRmZtZVubUoAJicccqBJVBP2THL+3Ds2DG+++47unfvXqv9b3/7G2VlZQwePJgffviBoKAgWrVqRa9evZg2bRoAL774IqNGjWLSpEksWrSIJ554gj/96U+EhoZ641RERES8bvz48edsHz169Dnbz3w6UH1d7J+LAoDJWQJt/HNSR2+X4XXRGbu8XUK92Lp1Kz169Dir/cxfYPPnz6dp06a1lgKVlJRgs9mIjo7G4XBgsVhwuVw4nU4FABERkcuM7gEQMZF9+/bRunVrz3ZWVhbr1q37zeMWLVrE448/DsADDzyA3W6nRYsW/9VaRxEREfENFsMwDG8X8d/o1KkThYWFv/t1bk576xJUc/nbPitZMwCYZwZARERELs6luub0RZoBEBERERExEQUAER/iOOnydgk+Q++FiIhI3dBNwCI+xBZk1fK0/7N9VrK3SxAREfFLmgEQERERETERBQARERERERNRABARERERMREFABERERERE1EAEBERERExEQUAERERERETUQAQERERETERBQARERERERNRABAREZ9QWFhIUlJSrbby8nKSkpI8f7p27UpOTg4HDx5kwIABPPLII5SVlQGQn5/P6tWrvVG6iMhlRQFAREzpXBebZ3ruued46aWXAKiqqiI5ORm73U5RUREA27ZtY/HixfVSqxksWbKE9PR0HA5HrfbIyEiys7PJzs4mNTWVuLg4EhISWLNmDcOHD2fIkCGsWbMGh8NBQUEB9957r5fOQETk8qEAICKmc76LzdOWLVtGSUmJZ3vLli306dOHiRMnkpeXh2EYvPXWWwwePLi+SvZ70dHRzJ8//7z9hmHw4osv8vzzz2O1WgkNDaW6uprq6mpCQkLIysoiOTkZi8VSj1WLiFyeFABExHQudLG5Y8cOCgsLsdvtnrbQ0FBqamqorq4mNDSUVatW0bdvX2w2W32V7PfuvvtuAgMDz9tfUFDAddddR2xsLAD9+vXj008/5YsvvqBHjx7s378fwzDIyMjg3Xffra+yLzm3201GRgZ2u52kpCT279/v6du7d2+t5VAdO3Zk48aN7N27l4ceeoihQ4dSXV0NQGZmJjt27PDWaYiIj1MAEBHTOd/F5k8//cSrr75KRkZGrfYePXpw+PBhcnJySEhIYO3atbRv356MjAyWLFlSX2Wb2sqVK0lISPBsh4WFMW3aNKZMmcKbb77JqFGjWLhwIRMnTmTDhg2eC+HLzdq1a3E6neTm5jJu3DimT5/u6evQoYNnOVRiYiJ33XUXvXr14r333uPFF1+kd+/ebNmyhUOHDnHgwAE6d+7sxTPxDxcKZACTJ08mPj7eE8qOHz+uQCaXhfN/3CIiYjIffvghR44c4bHHHqO8vJwTJ04QGxtLfHw86enpACxatIjk5GQyMzNJT0/n1VdfZd++fcTExHi5ev+2Z88eunTpclZ7SUkJNpuN6OhoHA4HFosFl8uF0+kkNDTUC5X+Ptu3b6dnz54A3HTTTezevfusfaqrq5k/fz5Lly4FOGs51IIFCxg5cmS91u2vzgxkO3fuZPr06WRmZnr69+zZw+uvv05ERISn7XQg+/zzz9myZQudO3f2i0Dmdrt5/vnnKS4uJjg4mMmTJ3P11Vd7+pcvX86yZcsIDAxk1KhR3H777ezdu5fnnnuOhg0b8tprrxEaGkpmZibdu3e/7N+Py51mAERE/k9ycjIrVqwgOzubxx57jH79+hEfH+/pP3z4MN9//z1du3alpqYGq9WKxWKhpqbGi1X7p1WrVpGbmwtARUUFYWFh51zfv2jRIh5//HEAHnjgAex2Oy1atKBx48b1Wu+lUllZSYMGDTzbVquVU6dO1donLy+Pe+65x3PROWjQIN5++21+/vlnmjZtSmhoKF9//TUTJ05k3bp19Vq/v7lQIHO73ezfv5+MjAwGDBhAXl4e4L+B7EKzU+Xl5WRnZ7Ns2TLeeOMN5syZg9Pp1OyUD9MMgIiY3qpVq6iurq617v9cMjMzPf+RJyYm8uijj9KyZUvat29fH2X6vdatW7N8+XIA7rvvPk97REQE+fn55zxm9uzZnp/79+9P//7967bIOtagQQOqqqo82263+6zlaqtWreKVV17xbDdr1ow5c+YAMG7cOCZOnMiYMWPIyspi2LBh3HHHHfVTvB86XyALDAykurqaQYMGMXToUFwuF8nJydxwww0MGjSI6dOn07Rp01qB7PXXX6dXr16X7b/HhcLQV199RefOnQkODiY4OJjo6GiKior8Ngz5AwUAETGl811snnbmJ/+nnV4GBNCzZ0/Pf4Zm4DjpwhZk9XYZPqEu34suXbqwfv167r33Xnbu3Enbtm1r9R8/fhyn00mLFi3OOvaTTz7hpptuIjw83POEq8v1XghfcaFAFhISQnJyMiEhIQB0796doqIiHnjgAb8MZBcKQ5WVlTRs2NDTFxYWRmVlpd+GIX+gACAiPsk45cASqKfsgG+8F7YgKzenveXVGnzF9lnJdfbaffv2ZcuWLQwYMADDMJg6dSpZWVlER0dzxx13sG/fPlq1anXWcS6Xi+XLlzN37lwAbr31VhISEujTp0+d1WoGFwpk33//PWPHjuX999/H7Xbz5Zdf8uCDD3r6/S2QXSgM/WdfVVUVDRs21OyUD1MAEBGfZAm08c9JHb1dhk+Iztjl7RKkngQEBDBp0qRabW3atPH8fOONN7JgwYKzjrNarbz22mue7ZSUFFJSUuquUJP4rUB23333kZCQQFBQEH/+85+57rrrAP8MZBcKQzfeeCNz587F4XDgdDr59ttva/X7WxjyB14PAL91V7mIiIgv8YUZGV/h7+/FbwWyESNGMGLEiLOO88dA9lthKCkpicTERAzDYOzYsZ7vSfHHMHTa5XwN6/UA8FuP2BIREfElmp36la/MTukelV/V1XvxW2EoISGh1nd1nOaPYei0y/ka1usB4GKeeSwiIiJyPrpH5Vd1eY+K1HY5X8N6PQBc6K7y03Jzcz3Pgz5x4gSdOnWq9zr9VaePZ6OvgwDe05jyNRqbZ9D49Ckam2fQ2PQ5v4xPuRROnDhR64lwdru91uOiL+Ya1ld5vcKLeebxf77hIiIiIiLedDHXsL7K6x9hdOnShY0bNwKc85nHIiIiIiK+5nK+hrUYhmF4s4DTd1CXlJR47io/86YSERERERFfczlfw3o9AIiIiIiISP3x+hIgERERERGpPwoAIiIiIiImogAgIiIiImIiCgAiIiIiIiaiAGBShmHwxRdf8Omnn3q7FJFaNDblcqTnaYgv0/iU/2R9/vnnn/d2EVK/DMMgOTmZo0ePkp+fz4EDB2jWrBkRERHeLk1MTmNTLgdut5tZs2ZRVlbGN998Q7t27bBYLBiGgcVi8XZ5YnIan3IxNANgQtu2bSMqKor09HT++te/Ul1dzcqVKykrK/N2aWJyGpvi6wzDIC0tDZfLRXh4OHl5eUyfPh3Ac5El4i0an3KxFABMKDw8nF27dlFUVESDBg0YPXo0hw4dIjs729uliclpbIqvO3LkCE6nk5SUFO68804WLFjAtm3bePnllwH0Cat4lcanXCwFABNq164dDz/8MKtXr6a0tJTw8HCeffZZSkpKqKio8HZ5YmIam+LLDMMgJCSEli1bUlhYiNPppEGDBixcuJDS0lKKioq8XaKYmNvt1viUi6YAYAKGYVBcXExJSYmn7ZZbbiE8PJycnBwKCwvZunUrDocDm83mxUrFbAzDoKSkhK+//trTprEpvuj0+umQkBDatm3LsmXLKC0txel00rRpU5o3b47b7fZ2mWJiAQEBGp9y0XQTsJ8zDINRo0ZRXFxMQUEBX375JX/4wx+IjIykSZMmnDx5knfeeYfS0lJSU1Np2bKlt0sWk3C73aSkpPCvf/2Ljz/+mJ07d9K7d28iIyOJiIjA6XRqbIrPOHPpRFxcHIcOHeKDDz7g559/ZufOnWzevJn777+f8PBwL1YpZmMYBjNmzKBdu3ZcccUVBAQEaHzKRbEYuiPEr+Xm5vLVV18xZcoUHA4HgwcPpm3btkyaNMmzj9PpxOVyERIS4sVKxWyysrIoKipixowZuFwu+vbty2233aaxKT7D7XYzbdo0LBYLcXFxdOzYkTZt2nj6161bx+HDh9m9ezdDhw4lJibGi9WK2bjdbtLS0ti8eTPr168nNDQUt9tNQMAvizs0PuVCNAPg506cOEFxcTHXX389jRo14v7772fJkiUcPHiQiIgIPvvsM9q2bUtwcLC3SxWTOXr0KAcPHuSGG24gLCyMJk2asHbtWk6cOEFISIjGpnjdmDFjaNasGbfccgsHDhzg448/plWrVkRGRgLQvHlzOnfuTO/evfWoWqlXbrebZ555hvbt23P11VfjdDq59tprgV+Xq2l8yoXoHgA/16ZNG0JCQigsLKSiooLg4GBeeeUVqqurcTgcdOvWDavV6u0yxYQ6dOiA0+kkJyeH3NxcNmzYwLhx46ipqQF+uRdAY1O86aqrrmLYsGHcfvvt9OvXj86dO5OXl8ePP/7IP//5T8aNG4fD4fB2mWJC7733HldeeSXDhw8nJiaGb775Bvh1qdq+ffs0PuWCFAD8XJMmTbDb7XzyySds2rSJH374ge3bt1NcXEy7du08n2SJ1LfmzZvz2GOPcdVVV/Hvf/+bxMREAgIC2LNnD23atKFZs2beLlFM6s033wTA4XAwc+ZMAFq0aEH37t0JCAjg8OHDREdHM336dGw2m2fJhUh9WL58OQ8//DBPP/00AN26dWPz5s3s3r0b+OVm4JiYGGbMmKHxKeelJUAmEBERQWxsLFu3biU/P5/du3fz9NNP6wJLvK5Ro0bExcURHh7Opk2beOedd5gwYQJNmzb1dmliUlVVVaSnp3PixAlSU1PJzs5m+/bt9OnThyZNmrBx40YcDgc33ngjwcHBeq661KuqqirGjx9PeXk5PXr0AH75PXrs2DEsFgvXXnstLpeLgIAAbDabxqecl24CNpFTp05x7NgxAK0HFJ/icDjYv38/ISEhREVFebscMbHPPvuMefPmERkZSVRUFE899RSPPvoozZs355prrmH9+vXMmjVL41S84vT4bNmyJTabjalTpwKwfv16Xn31VV566SXd7CsXRTMAJnL6GcF6oor4msDAQK688koaNWrk7VLE5IKCgoiIiCAlJYW8vDy+/vprZsyYgdvtxjAMkpOTueaaa7xdppjU6fE5cuRIPvroIzZu3Mgdd9xBTEwMJ0+eJDY2Vr9H5aJoBkBEROQMNTU1hISEUFFRwdSpUwkKCmLatGneLksEqD0+Z82aRXV1NfPmzfN2WXKZ0Z0hIiIiZzg9SxoREcGECRMICgrip59+8nJVIr84c3ympaXRqFEjjU/5r2kGQERE5ALO/HIlEV+j8Sn/HwoAIiIiIiImosgoIiIiImIiCgAiIiIiIiaiACAiIiIiYiIKACIiIiIiJqIAICJiMjk5OcyfP9/bZYiIiJcoAIiIiIiImIgCgIiIn1mxYgUvvfQSAA6Hgz59+rBt2zbi4+MZOnQoa9eu9XKFIiLiTQoAIiImMG3aNGbPnk1WVhatW7f2djkiIuJFCgAiIn7s9Hc9lpWVERMTA0CXLl28WZKIiHiZAoCIiJ+x2WyUl5cDsGfPHgAiIyP59ttvAdi1a5fXahMREe8L9HYBIiJyafXs2ZOcnBwGDhzI9ddfT1hYGLNmzeLpp58mLCyMsLAwGjVq5O0yRUTESyzG6flhERERERHxe1oCJCIiIiJiIgoAIiIiIiImogAgIiIiImIiCgAiIiIiIiaiACAiIiIiYiIKACIiIiIiJqIAICIiIiJiIgoAIiIiIiIm8r9Q0PgUFmb/YQAAAABJRU5ErkJggg==\n",
3066
      "text/plain": [
3067
       "<Figure size 864x432 with 2 Axes>"
3068
      ]
3069
     },
3070
     "metadata": {},
3071
     "output_type": "display_data"
3072
    }
3073
   ],
3074
   "source": [
3075
    "plt.figure(figsize=(12,6))\n",
3076
    "ax=sns.countplot(data=saps, x='ud', hue='hdeath')\n",
3077
    "ncount = len(saps)\n",
3078
    "ax2=ax.twinx()\n",
3079
    "ax2.yaxis.tick_left()\n",
3080
    "ax.yaxis.tick_right()\n",
3081
    "ax.yaxis.set_label_position('right')\n",
3082
    "ax2.yaxis.set_label_position('left')\n",
3083
    "ax2.set_ylabel('Frequency [%]')\n",
3084
    "\n",
3085
    "ax.set_xticklabels(ax.get_xticklabels(),rotation=45)\n",
3086
    "\n",
3087
    "for p in ax.patches:\n",
3088
    "    x=p.get_bbox().get_points()[:,0]\n",
3089
    "    y=p.get_bbox().get_points()[1,1]\n",
3090
    "    ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y), \n",
3091
    "            ha='center', va='bottom') # set the alignment of the text\n",
3092
    "\n",
3093
    "# Use a LinearLocator to ensure the correct number of ticks\n",
3094
    "ax.yaxis.set_major_locator(ticker.LinearLocator(11))\n",
3095
    "\n",
3096
    "# Fix the frequency range to 0-100\n",
3097
    "ax2.set_ylim(0,100)\n",
3098
    "ax.set_ylim(0,ncount)\n",
3099
    "ax.set_title('ICU Patients with Underlying Disease SAPSII Score')\n",
3100
    "# And use a MultipleLocator to ensure a tick spacing of 20\n",
3101
    "ax2.yaxis.set_major_locator(ticker.MultipleLocator(20))\n",
3102
    "\n",
3103
    "# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars\n",
3104
    "ax2.grid(None)\n"
3105
   ]
3106
  },
3107
  {
3108
   "cell_type": "code",
3109
   "execution_count": 186,
3110
   "metadata": {},
3111
   "outputs": [
3112
    {
3113
     "data": {
3114
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAFxCAYAAABa/59KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdfVzNd/8H8NdJN9JJN5qmG5TcbDb3i8YYsWaG6SIxYZvZnZDxK6bcLHdrw+b+5jKmuckwzGVmZmtYRWNcbiJhKnJXclr35/z+OJdzMkXte46PfF7Px6OHd6fT57y+7y673n19zver0ul0OhARERERUaVYiA5ARERERFSdcIAmIiIiIqoCDtBERERERFXAAZqIiIiIqAo4QBMRERERVQEHaCIiIiKiKrAUHaCq2rdvD3d3d9ExiOgOrVb/p4Wcv4+XPXytTv+JhUrOXhARPU4yMjKQmJhY7teq3QDt7u6OLVu2iI5BRERERI+xwMDACr/G0yREpExsrP5DUmUPP/ZYLGKPydsLIiJZVLsz0ET0iFm5Uv/nkCFicwhS9vBX/q7/ZEgLOXtBRCQLDtBEpMyePaITCFX28PeEyN0LIiJZcIAmImWsrEQnEKrs4VvVkLsXJEZxcTHS09NRUFAgOgpRtVSzZk14eHjAqgr/f8YBmoiUWb1a/+fw4SJTCFP28Fcf1X8yvNVwQWlIRunp6bC3t0fDhg2hUqlExyGqVnQ6HW7cuIH09HR4eXlV+vv4JkIiUmb1auMUKaGyh7/66GrDEE30sBQUFKBOnTocnon+AZVKhTp16lT5X3B4BpqIlPn5Z9EJhCp7+D8P/7mipxGZFYdnon/un/z94RloIiKix0h2XhEu3fzLZB/ZeUX3fb3ExET4+fkhJCQEQ4YMQXBwMM6dOwcACAkJMdT/VMeOHe957OLFixg5ciTeeustDBs2DDExMdDeuavRA8THxyMiIgIAMGrUKEXZHpTzn3hQz4qLi7Fw4UIMHjwYISEheOONN/DHH3/cd83MzEz89NNPFX59+fLlOHbs2F2PFRYWolu3bpXKvGXLFnTr1g0ajcbwWFhYWIU3ITGVxMREhIWFmfU1KsIz0ESkzIoV+j/ffltsDkHKHv6KZP0nb7eVsxf0aNAUluCb5HSTrde/rQec7Kzv+5wOHTpg3rx5AID9+/fjk08+wbJly0yW4e/mzp2LIUOGoHPnztDpdBg1ahT27t2LHj16VGmdhQsXmimh+XzxxRcoLS1FbGwsLCwskJGRgXfeeQdLliyBp6dnud+TkJCAtLS0CgfikSNHKs6Vn5+PmTNnYubMmYrXqg44QBORMhs36v+UdIAue/gbT+g/4QBNMsvNzYW7u/s9j02YMAEajQalpaUYM2YM/Pz8cODAAcyfPx82NjZwdHTEzJkzYWdnh8jISKSmpsLT0xNFRfeeAXdzc8PWrVthZ2eHFi1aYP78+bC01I80s2fPRnJyMgDg1VdfxbBhw3Du3DlMmjQJtra2sLW1hYODAwD9WeMDBw4gJCQEU6dORaNGjbB+/Xpcv34d/fr1Q1hYGOrVq4f09HT06tULZ8+excmTJ/Hiiy9i3Lhx5R5/SkoKoqOjAcBwTAsXLkSzZs3Qr18/XLt2De+88w62bNmCzz77DIcOHYJOp8Pw4cPRs2dPwzqpqamIjY3F1KlT71p/+/bt2Lt3Lyws9JsI3N3dMXjwYGzduhXt27fHhg0bDL/MdOzYEfHx8Vi+fDkKCgrQunVrXLlyBd9++y0sLCzQpk0bhIeHIyIiAq+88gratm2L8ePHIzc3F/Xr17/vMdnb29+V67XXXsORI0ewb98+dO3a9a6vlfcziYiIQE5ODnJycvDWW29hw4YNsLKywpUrVxAcHIyEhAScPn0aQ4cOxeDBg/H999/j66+/Nqz5+eefl9v/h4UDNBEp8+OPohMIVfbwfxwqdy9IXgkJCQgJCUFRURFSUlLuOfu8ZMkSPP/88xg2bBiysrIwaNAg7NmzB5GRkVi/fj1cXV2xZs0aLFmyBL6+vigsLERcXBwyMzOxe/fue14vLCwM69atw9y5c3HmzBl06dIFUVFRSE5ORnp6OuLi4lBSUoLBgwejQ4cOWLRoEUaPHo2OHTti+fLlSEtLq9RxXbp0CatWrUJBQQH8/f0RHx8PW1tbdO3atcIBOjIyEjNnzoSPjw82bdqElStXIigoCNOmTUO/fv2wbds2BAYG4pdffkF6ejo2bNiAwsJCBAUF3bUNxMfH557h+caNG3BwcDD8snCHp6fnPVsw7qhRowZGjhyJtLQ0+Pv741//+hciIyPRqlUrrFu3DiUlJYbnbt26FU2aNEFYWBj++OMPwxaM8o7p71snatSogdmzZ+Ptt99Gq1atDI/v27ev3J8JoP+Xi+HDhyMxMdEw2J84cQJjxozBnj17kJWVhVGjRmHw4MG4cOECli9fDltbW0RFRWH//v1wdXV9wE/QfDhAExERkSJlt3CkpaUhODgY8fHxhq+fO3cOvXv3BgC4urpCrVYjOzsbarXaMAQ999xzmDt3LpycnNCiRQsA+jPN9erVu+f1EhISMHz4cAwfPhx5eXmYM2cOFi9eDBcXF7Rr1w4qlQpWVlZo2bIlzp07h7NnzxrWbNOmzX0HaJ1OZ6g9PT1hb28Pa2truLi4wNHREcD933R27tw5TJs2DYB+v7KXlxcaNWqE0tJSZGRk4D//+Q9Wr16NjRs34sSJEwgJCQEAlJSUIDMz8759tre3x61bt1BSUnLXEH3x4sVy+1T2WO6YNWsWVq1ahU8//RStWrW66zlnz57FCy+8AABo2bKl4TXKO6byNGzYEEOHDsW0adMMPTp37ly5PxMAd63TuHFjWFlZwd7eHvXr14e1tTUcHBxQWFgIAKhTpw7Cw8NhZ2eHtLS0u4Z0EfgmQiJSZvFi/Yekyh7+4kOLsfiQvL0gAgAXF5d7HmvUqBEOHz4MAMjKykJubi4cHByg0Whw9epVAEBSUhIaNmwIb29vHD161PDcrKyse9aLiYnBgQMHAAB2dnbw8vKCtbU1GjVqZNgqUFxcjCNHjqBBgwbw9vbGkSNHAAD//e9/71nP2toa165dAwCcPHnS8Pg/uTqDl5cX5syZg7Vr12LChAno0qULAKB///6IiYmBj48PateuDW9vb7Rv3x5r167FmjVr0LNnT3h4eNx3bWtra/Ts2RPz5s0zvGny0qVLWLduHQIDA2FjY2M4joyMDNy6dQsAYGFhYXh+XFwcpk2bhtjYWJw6dcrQFwB39f7kyZOGs9MVHVN5hgwZgpycHCQkJABAhT8T4O7+3q/Xt2/fxhdffIF58+YhOjoaNjY25f5y8DDxDDQRKbNjh/7P99//x0vkFOYgrzjPRIEAOys7ONo4mmy9+yl7+DvO6D95/7l/3gui6ujOFg4LCwvk5eUhIiICNWvWNHz9nXfewaRJk7B7924UFBRg+vTpsLKyQnR0NEJDQ6FSqeDg4IBZs2bB2dkZycnJGDBgANzc3ODk5HTP682fPx/R0dH47LPPYG1tDQ8PD0ydOhVqtRpJSUkYOHAgiouL8fLLL6N58+aYMmUKwsLC8O9//xvOzs6wsbG5a72hQ4di+vTpqFevHurWrauoF1OnTkV4eDhKS0sBADNmzAAAvPzyy5gxYwaWLFkCAOjWrRuSkpIwePBg/PXXX+jevTvUarVhnYr2QI8fPx4LFixAUFAQrKysYG1tjejoaHh6eqJevXqwt7fHgAED0KhRI8NA3qRJEyxZsgTNmzdH06ZN0b9/fzg5OcHV1RUtW7bEli1bAACvv/46Jk6ciEGDBsHb29twZ76Kjqk8KpUKM2fONPyLQ9euXcv9mVSFWq1GmzZt0K9fP9SqVQu1a9fG1atXH/gLhzmpdKJH+CoKDAw0/KCJ6PGQocnAttRtJluvr09fuKvdH/xEosfAqVOn8NRTTxk+z84rgqaw5D7fUTVqG8sHXoWDqLr7+98j4P4zJ89AExERPUac7Kw58BKZGfdAE5Eyn3+u/5BU2cP/POFzfJ4gby+IiGTBAZqIlNm7V/8hqbKHv/f8Xuw9L28viIhkwS0cRKTM9u2iEwhV9vC3D5K7F0REsuAZaCIiIiKiKuAATUTKfPqp/kNSZQ//04Of4tOD8vaCiEgWHKCJSJnfftN/SKrs4f+W/ht+S5e3F/SI+OsmkH3RdB9/3bzvyyUmJsLPzw8hISEYMmQIgoODDXeaCwkJMdT/VNnbW98REhKC/v37IyQkBCEhIRg+fHi5N1y5IzMzEz/99JOiHHeEhYWhqKjIJGt169bNcKc9JSIiIu668+Pf6XQ6fP311xg0aJChZ7/88st918zJycGOOxe6L8eWLVuwt5z3v5T38ypPYmIi2rVrh8uXLxse+/TTT81+qeL09HQEBQUpXod7oIlImc2bRScQquzhbw6Suxf0iCi8DRxdZ7r1Wg0Gajnf9yllb+W9f/9+fPLJJ1i2bJnpMpRjzpw5aNSoEQBg3bp1WLVqFSZOnFjucxMSEpCWloZu3bopft07x1mdbNy4Eb///jtWr14NGxsbZGdnY+TIkXBwcKjwltgpKSn46aefDDdE+bvAwEDFuaysrDBx4kR8+eWX/+iujyJxgCYiIiKTyc3Nhbu7+z2PTZgwARqNBqWlpRgzZgz8/Pxw4MABzJ8/HzY2NnB0dMTMmTNhZ2eHyMhIpKamwtPTs1Jne2/duoVatWoBAGbPnm24dfSrr76KIUOGYPny5SgoKEDr1q1hb2+PhQsXAgAKCgowZ84cuLm5YcyYMdBoNCgoKMCECRPQvn17RERE4M8//0RhYSHeeustvPLKK+jWrRt27dqFKVOm4JVXXkHnzp0RHx+P//znP5g9ezZ69OiB1q1b4+LFi+jQoQNu376NY8eOwcvLCzExMeXmv3z5MiIjI1FYWAgbGxt8/PHH2LNnD3JzczFq1CgUFRWhT58+2L59OzZu3IjvvvsOKpUKr7zyCoYOHWpYJycnB5MnTzYc3x2xsbH46quvDHdgdHJywqhRo7B+/Xq4uLhg3LhxiIuLAwAEBQVh7ty5WLp0KU6fPo2NGzfCyckJK1asgKWlJdzd3fHJJ59g0aJFcHFxQVBQULk/r/KOqV69enfl6tChA7RaLb7++msMGTLkrq+tWrUKO3fuhKWlJdq1a4cJEyZgwYIFOHLkCP766y/MmDEDERERqFevHtLT09GrVy+cPXsWJ0+exIsvvohx48YhKSnpnp/1nbsrKsUBmoiUmT1b/2dEhNgcgpQ9/Nn79Z9EdJKzFySvO7fyLioqQkpKyj1nn5csWYLnn38ew4YNQ1ZWFgYNGoQ9e/YgMjIS69evh6urK9asWYMlS5bA19cXhYWFiIuLQ2ZmJnbv3l3ua4aHh8PW1hYqlQpeXl6YMGEC9u3bh/T0dMTFxaGkpASDBw9Ghw4dMHLkSKSlpcHf3x9ff/01YmJi4OrqiqVLl+L7779H9+7dcf36daxevRo3btzAhQsXoNFokJiYiM3/+2emAwcOVKoXGRkZWLNmDZ544gn4+vpi06ZNiIyMhL+/P3Jzc1G7du17vmfOnDkICQlBly5d8Ntvv+HTTz9FVFQUBg8ejA8++AB79+5F165d8eeff+I///kP1q1bB5VKheHDh6NTp06GdRwdHe8ZngEgOzsbzs53/yuCp6cnMjMzKzyOd999Fxs2bMDAgQMxevRoDB8+HL169cK3334LjUZjeF58fHy5P6/yjumzzz6753WmTp2KAQMG3HUcKSkp2LVrFzZs2ABLS0uEhoZi3759AABvb29MnjwZ6enpuHTpElatWoWCggL4+/sjPj4etra26Nq1K8aNG4ezZ8/e87Ou6Ix6VXGAJiJljh4VnUCosod/9IrcvSB5ld3CkZaWhuDg4Lv25J47d84wuLi6ukKtViM7OxtqtRqurq4AgOeeew5z586Fk5MTWrRoAQBwc3O756zlHWW3cJR9nXbt2kGlUsHKygotW7a8Zw+2q6srZsyYgVq1aiErKwtt2rRB48aN8frrr2PcuHEoKSlBSEgI1Go1IiMjERkZCY1Ggz59+lR4/DqdzlA7OjrCzc0NAFCrVi34+PgAAOzt7Svc73zmzBksW7YMK1euhE6ng5WVFRwcHPDUU08hOTkZW7duRXh4OFJSUpCZmYnhw4cD0J95//PPPyvMdYdarUZOTg4cHR0Nj128eLHc3pY9ljsmTpyIZcuWYf369fD29kb37t0NXzt79my5P6/yjqk8Tk5OmDRpEiIiItCmTRsA+v8NtWzZ0vA97dq1w9mzZwEAXl5ehu/19PSEvb09rK2t4eLiYji+O9tByvtZmwrfREhEymzYoP+QVNnD39B/Azb0l7cXRADg4uJyz2ONGjXC4cOHAQBZWVnIzc2Fg4MDNBoNrl69CgBISkpCw4YN4e3tjaP/+800Kyvrvm8OLO917mzfKC4uxpEjR9CgQQNYWFhAq9UCACZPnoyZM2di9uzZqFu3LnQ6HVJSUpCXl4fly5dj9uzZ+Pjjj3H16lWcOHECixYtwvLlyxETE4OSkhLDa1lbW+PatWsAgJMnTxoe/yd7eb29vTF+/HisXbsW06ZNQ0BAAAD9doo1a9agoKAAjRo1gre3N3x8fPDVV19h7dq1CAwMRJMmTR64/pAhQxAdHW3YXnHjxg0sXLgQwcHBsLGxwY0bN1BaWorc3Fykp6cDwF0927hxI0JDQxEbGwsA2LNnz13Zy/t5VXRM5enWrRu8vLywdetWw/ceO3YMJSUl0Ol0OHTokGFwtrAwjq4P6nV5P2tT4RloIiIiUuTOFg4LCwvk5eUhIiICNWvWNHz9nXfewaRJk7B7924UFBRg+vTpsLKyQnR0NEJDQ6FSqeDg4IBZs2bB2dkZycnJGDBgANzc3ODk5FTpHF27dkVSUhIGDhyI4uJivPzyy2jevDlUKhWWLFmC5s2bo2/fvggKCkLt2rXh4uKCq1evomHDhli0aBG+/fZbWFlZYfTo0XjiiSdw7do1vPbaa6hVqxbefPNNWFoax6YBAwZg0qRJ2LFjBxo2bKiof+Hh4Zg6dSoKCwtRUFCAjz76CADg6+uLyMhIvPfeewCAZs2awc/PD4MGDUJRURFatGhhOIMPVLwHOiQkBKWlpXj99ddhaWkJlUqF999/33BGtmPHjujfvz/q16+PBg0aAADq16+PM2fOYPXq1WjRogXeeOMNODo6ws7ODi+++KJhmO7evXu5P6+KjqkiH330ERISEgAATZs2Rc+ePTFo0CBotVq0bdsW3bt3x+nTp6vU1/J+1qai0plyHH8IAgMDzX6JE6JHRU5hDvKK80yylp2VHRxtHB/8xKr6+GP9n5GR/3iJDE0GtqVuM1EgoK9PX7ir3R/8RBMoe/gf/6L/JLLLP+8FUVWdOnUKTz31lPGBv27qr8RhKjb2D7wKB1F1d8/fI9x/5uQZaKJHWF5xnskGy74+fc0zQKekmH7NaqTs4afckLsX9Iio5cyBl8jMOEATkTL/+2c8WZU9/NhAuXtBRCQLvomQiIiIiKgKOEATkTJRUfoPSZU9/Kh9UYjaJ28viIhkwS0cRKTMpUuiEwhV9vAv5crdCyIiWXCAJiJlvvxSdAKhyh7+l33l7gURkSw4QBPRP2LKS+wVlRaZZB0iMu3fTeDBl8BMTEzE2LFj4ePjA51Oh5KSEsyYMQONGjVCSEgIpk6des8dA6uiY8eO99xGOyQkBPn5+bC1tUV+fj46duyIsLAwnDp1Cnv37sWoUaNM+nqmkJmZidOnT6Nbt25V/t5du3YhNjYWFhYWKCkpwcCBA/Haa69V+PzCwkJs374dAwYMKPfr8fHxuHz5MgYOHHjX40FBQZg7dy48PDzumyc9PR0BAQHYuHEjnnnmGQDA+vXrcf36dYSGhlbx6KrGXD+fquIATUT/yJ1L7HX4Qn+ZvYTRff/xWj0a9DBVrIdu4kT9n7NmARN/1H8yq/ssgYlIdqa8/CVQuUtglr2V9/79+/HJJ59g2bJlJstQnju38tbpdBg8eDCOHz+OZ5999p5r+T4qEhISkJaWVuUBev/+/diwYQOWLl0Ke3t7FBQUYPTo0bCxsUHPnj3L/Z5r165h06ZNFQ7QnTt3rnL+v1Or1Zg4cSI2b94Ma2trxetVNxygiUgRm1umO9NVHd24UabOv1HxE4kkkZubC3d393semzBhAjQaDUpLSzFmzBj4+fnhwIEDmD9/PmxsbODo6IiZM2fCzs4OkZGRSE1Nhaenp+H20xUpKipCSUkJ6tati8TERGzYsAHz5s3Dpk2bsH79emi1Wvj7+xtuRf3DDz+gpKQE9vb2WLBgAb777jts3rwZWq0Wo0ePRlFREcLCwnD58mU0bdoUU6dOxe3bt8vN37t3b/j6+iIlJQUqlQqLFy9GrVq1EBUVhStXriA7OxudO3dGaGgoli9fjoKCArRu3RoeHh6Ijo4GAMNx29vb480338TSpUvvGkjXrl2L8ePHw97eHgBQs2ZNhIeHY8qUKejZs+ddZ2TDwsIQHByMHTt2IDU1FQsXLoSfnx/mzJkDS0tL1K5dG59++il++OEHpKWlYfz48Zg3bx5+/fVXPPnkk8jOzgYA3L59Gx999JHh88mTJ6Np06Z39b1BgwZo164d5s2bh/Dw8Lu+tn37dqxZswbW1tZo2LAhpk+fjh07dtzV56ioKLRu3RoXL15Ehw4dcPv2bRw7dgxeXl6IiYnBmTNnMHv2bGi1WuTm5mLy5MmGOyc+Csw2QN+4cQOBgYFYtWoVLC0tERERAZVKhcaNG2PKlCmwsLDAwoUL8fPPP8PS0hKTJk1CixYtzBWHiMzkl8jBoiMItXx5mbr38oqfSPQYu3Mr76KiIqSkpNxz9nnJkiV4/vnnMWzYMGRlZWHQoEHYs2cPIiMjsX79eri6umLNmjVYsmQJfH19UVhYiLi4OGRmZmL37t3lvmZ4eDhsbW1x6dIlNGvWDE5OTrhw4QIA/QyyYsUKbN++HdbW1pg9ezY0Gg1ycnKwevVqWFhY4K233sLx48cBALVr18aSJUsAAAUFBRg/fjzc3d0xZswY/PTTTzh8+PA9+X/88Ufk5eWhV69eiIyMxIcffoj4+Hi0bNkSrVq1woABA1BYWIjOnTtj7NixGDlyJNLS0uDv74+goCDMnDkTPj4+2LRpE1auXImwsDCsWrXqnuO8dOkS6tevf9djnp6eyMzMrPDn8e677+LMmTMYNWoU5syZgx49euCtt97CTz/9hNzcXMPzzpw5g0OHDuGbb77BX3/9hZdeegkAsHTpUnTo0AGDBw/GhQsXMHHiRKxfv/6e1xk7diz69++Pw4cPGx7Lzs7GggULsHXrVqjVasycORMbN25ErVq17upzRkYG1qxZgyeeeAK+vr7YtGkTIiMj4e/vj9zcXKSmpiI8PBxNmzbFjh07sGXLlsd/gC4uLkZUVBRq1qwJAJg1axbGjh2L9u3bIyoqCnv37oWbmxuSkpKwadMmXL58GaGhodi8ebM54hAREZEZld3CkZaWhuDgYMTHxxu+fu7cOfTu3RsA4OrqCrVajezsbKjVari6ugIAnnvuOcydOxdOTk6GE2pubm6oV69eua95ZwuHVqvFpEmTsHLlSrRt2xaAfuhs3LixYQ6ZNGkSAMDKygrjxo1DrVq1cOXKFZSUlAAAvLy8DOu6ubkZzqC3bt0a58+fLzf/zZs3AQBPP/00AKBevXooLCyEo6Mjjh8/joSEBKjV6nLPoJ87dw7Tpk0DoJ+Zyr7+37m6uiIjIwMODg6Gxy5cuFBuX3Q63T2Pvfvuu1i6dCmGDRsGV1fXu05Wpqam4plnnoGFhQXUajWaNGkCQD9YJyQkYNeuXQBw19BdlrW1NWbNmoUPP/wQQUFBAPS99/HxgVqtBqD/ue7fvx8tW7a86zgdHR3h5uYGAKhVqxZ8fHwAAPb29igsLETdunWxePFi1KxZE3l5eYb1HhVmuQ70nDlzEBwcjLp16wIATpw4AV9fXwD6fTcHDx5EcnIyOnXqBJVKBTc3N5SWlhr+x0hE1cfzc7fg+blbRMcQZvx4/QcAjP9hPMb/MF5sICLBXFxc7nmsUaNGhrOUWVlZyM3NhYODAzQaDa5evQoASEpKQsOGDeHt7Y2jR48anpuVlXXf17OwsICrqyuKi4sNj9WvXx9paWmG4XX06NFISkrCjz/+iPnz5yMyMhJardYwcFpYGMehK1euGDL9/vvvaNy4cbn5HR31+8JVKtVdebZs2QJ7e3t89tlnePPNN1FQUACdTgcLCwtotVoA+oF9zpw5WLt2LSZMmIAuXbpUeHwhISH45JNPoNFoAAB5eXn45JNP8PrrrwMASkpKkJeXh6KiIqSmphqO585r7dixA/369cPatWvRuHFjxMXFGdb28vLCsWPHoNVq8ddffxm+39vbG8OHD8fatWsxf/58wy8P5WnevDleffVVrFixAgDg4eGBc+fO4a+//gKg/7neGZzL9vnvffu7GTNmYPTo0ZgzZw6aNGlS7i8HIpn8DPSWLVvg7OyMF154Acv/92+bOp3O0Cg7Ozvcvn0bGo3G8D++so87OzubOhIRmVGNwuIHP+kxlp9fpi7Or/iJRI+xO1s4LCwskJeXh4iICMPZXwB45513MGnSJOzevRsFBQWYPn06rKysEB0djdDQUKhUKjg4OGDWrFlwdnZGcnIyBgwYADc3Nzg5OZX7mne2cAD6fcExMTFISUkBADg7O+Ptt9/GkCFDoFKp0LVrVzz77LOwtbVFYGAgrK2t8cQTTxgG5bIcHR0RHR2NrKwstG7dGl26dEHLli3vyW9pWf4I5efnh3HjxiE5ORm2trZo0KABrl69iiZNmmDJkiVo3rw5pk6divDwcJSWlgLQD4sAyt0D3a1bN2g0GowYMQIqlQparRb9+/fHK6+8AgAYOnQoBg4cCA8PD8MZ3Tp16qC4uBgxMTF46aWXEBERgVq1asHKygrTp0/HoUOHAABPPfUUXn75ZfTv3x9169ZFnTp1AOjPWn/00UeIi4uDRqN54FVN3n33Xezbt8/Q+9DQUAwdOhQWFh3A1CoAACAASURBVBaoX78+xo8fj507d953jb/r06cP3n//fdSpU+eu/dmPCpXOxCP966+/DpVKBZVKhVOnTqFhw4Y4efIkTp48CQD48ccfcfDgQTRs2BCFhYV4++23AQCvvfYaVq1a9cABOjAwEFu2yHu2i+SSockw2bvp+/r0hbva/cFPrCRTZuvRoAf2XNxjkrUA0x8r0aPs1KlTd1154mFfxo7ocfD3v0fA/WdOk5+B/vrrrw31nes/xsTEIDExEe3bt0d8fDw6dOiA+vXrIyYmBm+99RauXLkCrVbLs89EREQKOdo4cuAlMrOHchm78PBwREZGYu7cufD29kZAQABq1KiBdu3aYeDAgdBqtYiKinoYUYjIxDrGfAMAODChv+AkYowdq/9z/nxg7Pf6T+a/PF9gIiIiMjezDtBr16411LGxsfd8PTQ01Ox3rCEiIiIiMiXeSIVIElqdFhmaDJOtd+f227Keeb5jfpmTzTzzTKKUfbM+EVXNP3k7IAdoIkkUlBSY9I161fn220SPk5o1a+LGjRuoU6cOh2iiKtLpdLhx48ZdV42pDA7QRKTIC7M2AgB+nThQcBIxPvhA/+eiRcAHO/WfLOq1SGAiko2HhwfS09Nx7do10VGIqqWaNWvCw8OjSt/DAZqIFCm1sRIdQaj/XYZWX1vZVvxEIjOxsrK6753siMj0OEATkSIHxwWKjiDUp5+WqV/6tOInEhHRY8Mst/ImIiIiInpccYAmIkW6fLwOXT5eJzqGMCNH6j8AYOSOkRi5Y6TYQEREZHbcwkFEihQ62ImOIFSdOmVq2zoVP5GIiB4bHKCJSJGE0X1FRxBq1qwydfdZFT+RiIgeG9zCQURERERUBRygiUiRrlPWouuUtaJjCPPGG/oPAHhj2xt4Y9sbYgMREZHZcQsHESmicXUSHUEoT88ydW3Pip9IRESPDQ7QRKTIofdfFR1BqOnTy9Rdp1f8RCIiemxwCwcRERERURVwgCYiRbp/tBrdP1otOoYwQ4boPwBgyJYhGLJliNhARERkdtzCQUSKZDdwFR1BqKZNy9R1mlb8RCIiemxwgCYiRZJH9hQdQajIyDJ1l8iKn0hERI8NbuEgIiIiIqoCDtBEpEiP8FXoEb5KdAxhgoP1HwAQ/E0wgr8JFhuIiIjMjls4iEiR6009REcwu5zCHOQV55X7Na+n1ACADI0GXk5e/6szKlzLzsoOjjaOpg9JREQPDQdoIlLkyJsviY5gdnnFediWuq3cr3n21f+5LRXwrOP5v7r85wJAX5++HKCJiKo5buEgIiIiIqoCDtBEpEjAhysQ8OEK0TGEWfFhAFZ8GKCvk1ZgRZK8vSAikgW3cBCRIlktvURHEMqrZZaxdpa7F0REsuAATUSKHB3aXXQEoboPPWqsfeTuBRGRLLiFg4iIiIioCjhAE5EiPccsRc8xS0XHEGbpmJ5YOkZ/N8aliUuxNFHeXhARyYJbOIhIkYz2TUVHEKppe+M1n5u6yN0LIiJZcIAmIkWODe4qOoJQXQcfM9aN5O4FEZEsuIWDiIiIiKgKOEATkSK9PliEXh8sEh1DmEUf9MKiD3rp698WYdFv8vaCiEgW3MJBRIpc6PKs6AhCPdvlgrF+Uu5eEBHJggM0ESlyIqiz6AhCdQ46Yay95O4FEZEsuIWDiIiIiKgKeAaaiBTp/c4XAIAdy0YLTiLGF+/0BgCMXrYDXxzQ92J0Rzl78Xc5hTnIK84z2Xp2VnZwtHE02XpERP8UB2giUiQ1oK3oCPfQ6rTI0GQ8+ImVVFRaVOHX2gakGmv3R68XIuUV52Fb6jaTrdfXpy8HaCJ6JHCAJiJFTgV2FB3hHgUlBdhzcY/J1uvRoEeFX+sYeMpYN3z0ekFERKbHPdBERERERFXAAZqIFOk7Yj76jpgvOoYw80f0xfwRffX1/vmYv1/eXhARyYJbOIhIkdN92ouOIFT7PqeNdf0H98LU+7P5xjoiooePAzQRKZLSx090BKH8+qQY6/oP7oWp92fzjXVERA8ft3AQkSIWxaWwKC4VHUOY0mILlBbr/1Naqi1FqVbeXhARyYIDNBEp0vu9Bej93gLRMYRZ8F5vLHhPfy3oBQcXYMFBeXtBRCQLbuEgIkVO9XtedAShnu9nvIzd8w3k7gURkSw4QBORImd6+YqOIJRvrzPG2lPuXhARyYJbOIhIEcv8IljmV3ynvsddUb4livL15yKKSopQVCJvL4iIZMEBmogU6RW6GL1CF4uOIczi0F5YHNpLXycsxuIEeXtBRCQLbuEgIkVODHhBdAShXhhwwlh7yd0LIiJZcIAmIkVSA9qKjiBU24BUY+0udy+IiGTBLRxEpIj17XxY384XHUOY/NvWyL9tra+L85FfLG8viIhkwQGaiBTpGbYMPcOWiY4hzLKwnlgW1lNfJy7DskR5e0FEJAtu4SAyoZzCHOQV55lsvaLSR/+KDscHvSg6glAvDjpurL1fFJaDiIgeHg7QRCaUV5yHbanbTLZejwY9TLaWuaT5txIdQahW/mnG2k3uXhARyYJbOIhIkZrZGtTM1oiOIYwmuyY02TX1daEGmkJ5e0FEJAsO0ESkSMCElQiYsFJ0DGFWTgjAygkB+vrQSqw8JG8viIhkwS0cRKTI0RB/0RGE8g85aqx95O4FEZEsOEATkSIXuzwrOoJQz3a5aKyflLsXRESy4BYOIlLE9vot2F6/JTqGMLeu2+LWdVt9XXALtwrk7QURkSw4QBORIi9FfImXIr4UHUOYLyNewpcRL+nrw1/iy8Py9oKISBbcwkFEivz+xqN/qT1z6vHG78a6sdy9ICKSBQdoIlLkUsfmoiMI1bzjJWPtKncviIhkwS0cRKSI+ko21FeyRccQJvuKGtlX1Po6PxvZ+fL2gohIFhygiUgR/8lr4D95jegYwqyZ7I81k/WXr1uTvAZrkuXtBRGRLMyyhaO0tBSTJ0/G+fPnUaNGDcyaNQs6nQ4RERFQqVRo3LgxpkyZAgsLCyxcuBA///wzLC0tMWnSJLRo0cIckYjITJJHvCw6glAvj0g21k3k7gURkSzMMkDv27cPALBhwwYkJiYaBuixY8eiffv2iIqKwt69e+Hm5oakpCRs2rQJly9fRmhoKDZv3myOSERkJukdmomOIFSzDunGuq7cvSAikoVZBuju3bvjxRdfBABkZmbCxcUFP//8M3x9fQEAnTt3xoEDB+Dl5YVOnTpBpVLBzc0NpaWluHnzJpydnc0Ri4jMoHb6dQBAroeL4CRiXE+vDQBw8cjF9Tx9L1zs5OwFEZEszLYH2tLSEuHh4fj4448REBAAnU4HlUoFALCzs8Pt27eh0WigVqsN33PncSKqPrpOjUXXqbGiYwgTO7UrYqd21ddHYhF7RN5eEBHJwqyXsZszZw7Gjx+PoKAgFBYWGh7Py8tD7dq1oVarkZeXd9fj9vb25oxERCZ26N1eoiMI1evdQ8a6mdy9ICKShVnOQH/77bdYtmwZAMDW1hYqlQrPPPMMEhMTAQDx8fFo164d2rRpg/3790Or1SIzMxNarZbbN4iqmcx2jZHZrrHoGMI0bpeJxu0y9bVLYzR2kbcXRESyMMsZ6JdeegkTJ07E66+/jpKSEkyaNAmNGjVCZGQk5s6dC29vbwQEBKBGjRpo164dBg4cCK1Wi6ioKHPEISIzcryQBQDIaegqOIkYWRccAQCuDXOQdVvfC1d7OXtBRCQLswzQtWrVwueff37P47Gx9+4NDA0NRWhoqDliENFD0CV6PQBg28qxgpOIsT66CwBg7MptWP+HvhdjO1XfXuQU5iCvOO/BT6yEotIik6xDRPSo4a28iUiRxFF9REcQqs+oRGP9dPXvRV5xHralbjPJWj0a9DDJOkREjxoO0ESkyJVW3qIjCOXd6oqxdpa7F0REsuCtvIlIEefUTDinZoqOIUxmqjMyU/Vvfs7MzURmrry9ICKSBQdoIlLkhdlxeGF2nOgYwsTNfgFxs1/Q18fiEHdM3l4QEcmCWziISJHfwvqJjiBUv7DfjHVzuXtBRCQLDtBEpMjV5g1ERxCqQfOrxtpJ7l4QEcmCWziISJE6KZdQJ+WS6BjCXEqpg0spdfT1rUu4dEveXhARyYJnoIlIkU4xmwHIex3ozTGdAOivA735uL4X1fk60LIw5fWuAcDOyg6ONo4mW4+IHm0coIlIkf0T/iU6glD/mrDfWD8rdy+qE1Ne7xoA+vr05QBNJBEO0ESkyI2mnqIjCOXZ9IaxdpC7F0REsuAeaCJSpO6Ji6h74qLoGMJcPFEXF0/U1dfZF3ExW95eEBHJggM0ESniN28r/OZtFR1DmK3z/LB1np++PrEVW0/I2wsiIllwCwcRKfJrRJDoCEIFRfxqrFvI3QsiIllwgCYiRW76uImOIJSbz01jXVvuXhARyYIDNJGpFecDJYWmWau0WL+ela1p1jODJ4+mAQCutPIWnESMtKNPAgC8W11B2k19L7yd5ewFEZEsOEATmVpJIXDluGnWatBdv94jPEC3X7gdgLzXgd6+sD0A/XWgt5/U94LXgSYierxxgCYiRX6ZPEh0BKEGTf7FWLeUuxdERLLgAE1EiuQ0dBUdQSjXhjnG2l7uXhARyYKXsSMiRdwOn4Xb4bOiYwhz9rAbzh7Wv3nw7PWzOHtd3l4QEcmCAzQRKfLc0p14bulO0TGE2bn0Oexc+py+Pr0TO0/L2wsiIllwCwcRKbJv6hDREYQaMnWfsW4tdy+IiGTBAZqIFMn1cBEdQSgXj1xjbSd3L4iIZFGpLRzXr183dw4iqqY8Ek7DI+G06BjCnE7wwOkED3199TROX5W3F0REsqjUGejQ0FA4Ozujf//+6NKlCywsuHWaiPTarvweAJDeoZngJGJ8v7ItAKBZh3R8f0bfi2Z15ewFEZEsKjVAr1+/HufOncM333yDJUuWwM/PD/3794enp6e58xHRI25v9DDREYQaFr3XWLeVuxdERLKo9KnkunXrwtPTEzVr1sSZM2cwY8YMfP755+bMRkTVgOZJJ2iedBIdQxinJzVwelKjr22d4GQrby+IiGRRqTPQY8aMwdmzZ9GnTx/ExMTA1VV/s4DAwECMGTPGrAGJ6NHmeeAEAOBSx+aCk4hx4oD+X+Kad7yEE1n6XjR3lbMXRESyqNQAHRQUhFatWsHOzg5Xr141PL5+/XqzBSOi6qHNl3sAyDtA7/myDQD9AL3nrL4XHKCJiB5vlRqgjxw5gl9//RURERGIjo7GM888g5EjR8LGxsbc+YjoEffD7DdERxDqjdk/GOt2D78XWp0WGZoMk61XVFpksrWIiB5XlRqgf/rpJ2zZsgUA8MUXXyA4OBgjR440azAiqh7yXRxERxDKwSXfWNd8+L0oKCnAnot7TLZejwY9TLaWTEz9i4ydlR0cbRxNth4RmValBmiVSoWioiJYW1ujuLgYOp3O3LmIqJpo8MtxAMDFLs8KTiLG8V8aAACe7XIRx6/oe/Hsk3L2Qmam/kWmr09fDtBEj7BKDdDBwcHo3bs3mjRpgrS0NIwYMcLcuYiommi1Vn8ZN1kH6L1rWwHQD9B7U/W94ABNRPR4q9QAPWDAAPj7++PSpUvw9PSEs7OzuXMRPRQ5hTnIK84z2Xoy7h/dHSP3L9QjYnYb6+fk7gURkSwqNUCfOnUKGzduRGFhoeGxWbNmmS0U0cOSV5yHbanbTLaejPtHC5zUoiMIpXYqMNY2cvfC3Ey5z1jGX3aJyHQqNUBHRERgyJAhePLJJ82dh4iqGe+9RwEAaf6tBCcR4+hebwBAK/80HM3U96KVm5y9MDdT7jOW8ZddIjKdSg3QLi4uGDBggLmzEFE19Oz6nwHIO0D/vF6/37mVfxp+TvtZX3OAJiJ6rFVqgHZ3d8fy5cvx1FNPQaVSAQA6depk1mBEVD3smveO6AhCvTNvl7FuL3cviIhkUakBuri4GOfPn8f58+cNj3GAJiIAKLK3FR1BKFt7415aWyu5e0FEJItKDdCzZs3C+fPn8eeff6Jp06aoW7euuXMRUTXhszsZAJAa0FZwEjGSd/sAANoGpCI5Q9+Ltu5y9oKISBaVGqBjY2OxZ88e3Lp1C/369cPFixcRFRVl7mxEVA003/QrAHkH6F83NQegH6B/Pa/vBQdoIqLHW6UG6J07d2LdunUYOnQohg0bhn/961/mzkVE1cTOBe+LjiDU+wt2GusOcveCiEgWlRqg79y6+84bCK2trc2XiIiqlRJbuf97YG1bYqwt5e4FEZEsKjVAv/rqq3j99deRmZmJt99+G927dzd3LiKqJprsTAIAnOnlKziJGEk7mwAAfHudQdIlfS98PeXsBRGRLCo1QA8ZMgR+fn44c+YMvLy80KxZM3PnIqJq4qmtBwHIO0Af3PoUAP0AffCivhccoImIHm+VGqAXLlxoqM+dO4cff/wRo0aNMlsoIqo+diwJFR1BqNAlO4z183L3gohIFpW+EyGg3wt98uRJaLVas4YioupDa1VDdAShalgZ/3tYw0LuXhARyaJSA3RwcPBdn48YMcIsYYio+mm6/TcAQEofP8FJxPhte1MAgF+fFPz2p74XfvXl7AURkSwqNUCXvQPhtWvXcPnyZbMFIqLqpdn2RADyDtCJ2/XvCfHrk4LEP/W94ABNRPR4q9QAXfamKTY2Nvi///s/swUioupl28qxoiMINXblNmPdSe5eEBHJolID9Nq1a82dg4iIiIioWqjUAN2nTx/k5eXBxsYGhYWFAPRvKFSpVNi7d69ZAxLRo+2pLQcAAKcCOwpOIsaBLfrL2HUMPIUDF/S96NhQzl4QEcmiUgN069at8dprr6F169ZISUnBv//9b0RHR5s7GxFVAz67kwHIO0An7/YBoB+gkzP0veAATUT0eKvUAH3u3Dm0bt0aANC0aVNcvnyZt/MmIgDAjmWjRUcQavQy43WgR3eUuxdERLKo1ABtb2+P+fPno0WLFkhOToabm5u5cxERERERPZIsKvOkzz77DGq1Gr/++is8PT0xY8YMc+ciomqieVw8msfFi44hTHxcc8THNdfX5+MRf17eXhARyaJSA7SNjQ0cHBzg5OQELy8v5ObmmjsXEVUTDX85joa/HBcdQ5jjvzTE8V8a6usrx3H8iry9ICKSRaWvA123bl0cPHgQzzzzDMLDw7FixQpzZyOiamDnog9ERxDqg0U7jbWf3L0gIpJFpc5A//nnnxgzZgysra3RrVs33L5929y5iIiIiIgeSZUaoEtLS3Hz5k2oVCpoNBpYWFTq24hIAi3W7UOLdftExxBm37oW2Leuhb4+tw/7zsnbCyIiWVRqEg4LC8OgQYPw3//+FwMHDsSoUaPMnYuIqgn3xBS4J6aIjiFMSqI7UhLd9fX1FKRcl7cXRESyqNQe6MuXL2P37t24efMmnJycoFKpzJ2LiKqJXZ+/KzqCUO9+vstYt5e7F0REsqjUGei4uDgAgLOzM4dnIiIiIpJapc5AFxUV4bXXXoOXl5dh//Nnn31W7nOLi4sxadIkZGRkoKioCO+99x58fHwQEREBlUqFxo0bY8qUKbCwsMDChQvx888/w9LSEpMmTUKLFi1Md2RE9FC0+upHAMDRod0FJxHjx69aAQC6Dz2KH1P1vejuI2cviIhkcd8BevHixXj//fcxfvx4ZGVlwdXV9YELbt++HY6OjoiJiUF2djb69euHZs2aYezYsWjfvj2ioqKwd+9euLm5ISkpCZs2bcLly5cRGhqKzZs3m+zAiOjhcP3jvOgIQp3/w/jfxfM35e4FEZEs7jtAJyQk4P3334evry+GDh2Kr7766oELvvzyywgICDB8XqNGDZw4cQK+vr4AgM6dO+PAgQPw8vJCp06doFKp4ObmZrjSh7Ozs8JDIqKHafdnb4uOINTbn+021r5y94KISBb33QOt0+nKre/Hzs4OarUaGo0Go0ePxtixY6HT6Qx7p+3s7HD79m1oNBqo1eq7vo/XlyYiIiKiR919B+iybxisypsHL1++jKFDh6Jv377o3bv3XdeNzsvLQ+3ataFWq5GXl3fX4/b29lXJTkSPgNarfkDrVT+IjiHMD6ta44dVrfX1mR/wwxl5e0FEJIv7buE4ceIEgoODodPpkJqaaqhVKhU2bNhQ7vdcv34db775JqKiouDn5wcAePrpp5GYmIj27dsjPj4eHTp0QP369RETE4O33noLV65cgVar5fYNqpy/bgKFJvrXCm0BUJwPWNmaZj0JuaSki44gVHqKi7HOlbsXRESyuO8AvX379iovuHTpUuTm5mLx4sVYvHgxAOCjjz5CdHQ05s6dC29vbwQEBKBGjRpo164dBg4cCK1Wi6ioqH92BCSfwtvA0XWmWcujNVBSyAFagT1z3hQdQag35+wx1u3k7gURkSzuO0C7u7tXecHJkydj8uTJ9zweGxt7z2OhoaEIDQ2t8msQEREREYlSqRupEBFVpO3yXWi7fNeDn/iY2rW8LXYtb6uvU3ZhV4q8vSAikkWlbqRCRFQRp4tZoiMIlXXRyVhr5O4FEZEsOEATPfJ0QH6O8mVKi83yhskfZww36XrVzfAZPxrrtsPFBSEiooeGAzTRo660BLh2Wvk6DbrzDZNEREQmwD3QRKTIc4u/w3OLvxMdQ5jvFj+H7xY/p69PfYfvTsnbCyIiWfAMNBEpos7KFh1BqOws4x1Vs/Pl7gURkSw4QBORIvumhYiOIFTItH3Guo3cvSAikgW3cBARERERVQEHaCJSpMMX29Dhi22iYwiz7YsO2PZFB319chu2nZS3F0REsuAWDiJSxOZWnugIQuXdsjHWRXL3gohIFhygiUiRXyIHi44g1ODIX4x1K7l7QUQkCw7QREREjxitTosMTYZJ1rKzsoOjjaNJ1iIiPQ7QRKTI83O3AAAOjgsUnESMLXOfBwAEjjuILf/V9yLwGTl7QaZTUFKAPRf3mGStvj59OUATmRgHaCJSpEZhsegIQhUX1jDWpXL3gohIFhygiUiRXycOFB1BqIETfzXWLeXuBRGRLHgZOyIiIiKiKuAATUSKdIz5Bh1jvhEdQ5hvYjrim5iO+vr4N/jmuLy9ICKSBbdwEBERPcZMeUUPgFf1IAI4QBORQgcm9BcdQaj+Ew4Y62fl7gU9mkx5RQ+AV/UgAriFg4iIiIioSjhAE5EiL8zaiBdmbRQdQ5iNs17Axlkv6Os/NmLjH/L2gohIFtzCQUSKlNpYiY4glJVNqbGuIXcviIhkwQGaiBSR9Q6EdwSOO2iseQdCIiIpcAsHEREREVEVcIAmIkW6fLwOXT5eJzqGMOs+7oJ1H3fR10fXYd1ReXtBRCQLbuEgIkUKHexERxDKzqHQWFvL3QsiIllwgCYiRRJG9xUdQai+oxOM9dNy94KISBbcwkFEREREVAUcoIlIka5T1qLrlLWiYwizdkpXrJ3SVV//vhZrf5e3F0REsuAWDiJSROPqJDqCUE6uGmNtK3cviIhkwQGaiBQ59P6roiMI9er7h4z1U3L3gohIFtzCQURERERUBRygiUiR7h+tRvePVouOIczqj7pj9Ufd9XXyaqxOXi02EBERmR23cBBBB+TnmGap0mJAV2qataqJ7AauoiMI5dog21ir5e4FEZEsOEATlZYA106bZq0G3QGt1jRrVRPJI3uKjiBUz5HJxrqp3L0gIpIFt3AQEREREVUBB2giUqRH+Cr0CF8lOoYwq8J7YFV4D319eBVWHZa3F0REsuAWDiJS5HpTD9ERhPJoet1Y15a7F0REsuAATUSKHHnzJdERhHrpzSPGuoncvSAikgW3cBARERERVQEHaCJSJODDFQj4cIXoGMKs+DAAKz4M0NdJK7AiSd5eEBHJgls4iEiRrJZeoiMI5dUyy1g7y90LIiJZcIAmIkWODu0uOoJQ3YceNdY+cveCiEgW3MJBRERERFQFHKCJSJGeY5ai55ilomMIs3RMTywdo78D4dLEpViaKG8viIhkwS0cRKRIRvumoiMI1bR9hrF2kbsXRESy4ABNRIocG9xVdAShug4+Zqwbyd0LIiJZcAsHEREREVEVcIAmIkV6fbAIvT5YJDqGMIs+6IVFH/TS178twqLf5O0FEZEsuIWDiBS50OVZ0RGEerbLBWP9pNy9ICKSBQdoqnZyVECeR2uTrFVUy8kk68jsRFBn0RGE6hx0wlh7yd0LIiJZcIAms8spzEFecZ7J1ivSFmDXf9eYZK0e7cNMsg4RERHJgwM0mV1ecR62pW4z2Xo9PF402VqkXO93vgAA7Fg2WnASMb54pzcAYPSyHfjigL4XozvK2QsiIllwgCYiRVID2oqOIFTbgFRj7S53L4iIZMEBmogUORXYUXQEoToGnjLWDeXuBRGRLHgZOyIiIiKiKuAATUSK9B0xH31HzBcdQ5j5I/pi/oi++nr/fMzfL28viIhkwS0cRI8wnQ4o1elQXKI1yVrmcLpPe/MsXE2073PaWNeXuxdERLLgAE30CNNBh6JSLa5rCk2yljmk9PEzy7rVhV+fFGNdX+5eEBHJgls4iEgRi+JSWBSXio4hTGmxBUqL9f8pLdWWolQrby+IiGTBAZqIFOn93gL0fm+B6BjCLHivNxa8p78W9IKDC7DgoLy9ICKSBbdwEJEip/o9LzqCUM/3M17G7vkGcveCiEgWHKCJSJEzvXxFRxDKt9cZY+0pdy+IiGRhti0cf/zxB0JCQgAAFy9exKBBgzB48GBMmTIFWq3+igILFy5E//79ERwcjGPHjpkrChGZkWV+ESzzi0THEKYo3xJF+fpzEUUlRSgqkbcXRESyMMsAvWLFCkyePBmFhforB8yaNQtjx47FunXroNPpsHfvXpw4cQJJSUnYtGkT5s6di2nTppkjChGZWa/QxegVulh0DGEWh/bC4tBe+jphMRYnyNsLIiJZmGULR/36r5HjcAAAHDxJREFU9bFgwQL83//9HwDgxIkT8PXV/9Nm586dceDAAXh5eaFTp05QqVRwc3NDaWkpbt68CWdnZ3NEIiIARaU65OcXK17Huobxd+8TA15QvF519sKAE8baS+5eEBHJwiwDdEBAANLT0w2f63Q6qFQqAICdnR1u374NjUYDR0dHw3PuPM4Bmsg8dDogJ78I53JzFa/1tFttQ50a0FbxetVZ24BUY+0udy+IiGTxUC5jZ2FhfJm8vDzUrl0barUaeXl5dz1ub2//MOIQkQlZ386H9e180TGEyb9tjfzb1vq6OB/5xfL2gohIFg9lgH766aeRmJgIAIiPj0e7du3Qpk0b7N+/H1qtFpmZmdBqtTz7TFQN9Qxbhp5hy0THEGZZWE8sC+uprxOXYVmivL0gIpLFQ7mMXXh4OCIjIzF37lx4e3sjICAANWrUQLt27TBw4EBotVpERUU9jChEZGLHB70oOoJQLw46bqy9XxSWg4iIHh6zDdAeHh6Ii4sDAHh5eSE2Nvae54SGhiI0NNRcEYjoIUjzbyU6glCt/NOMtZvcvSAikgVv5U1EitTM1qBmtkZ0DGE02TWhya6prws10BTK2wsiIllwgCYiRQImrETAhJWiYwizckIAVk4I0NeHVmLlIXl7QUQkC97Km4gUORriLzqCUP4hR421j9y9ICKSBQdoIonYWddAo9olitexLdUApcVAcT4udnnWBMmqr2e7XDTWT8rdC5KDVqdFhibDZOvZWdnB0cbxwU8keoRwgCaSiIWuBIXpxxSvo1XbAN49gJJC2N4qAgDkuzgoXrc6unXdFgDg4JKPWwW39HVNOXtBcigoKcCei3tMtl5fn74coKna4R5oIlLkpYgv8VLEl6JjCPNlxEv4MuIlfX34S3x5WN5eEBHJgmegiUiR39/oITqCUD3e+N1YN5a7F0REsuAATUSKXOrYXHQEoZp3vGSsXeXuBRGRLLiFg4gUUV/JhvpKtugYwmRfUSP7ilpf52cjO1/eXhARyYIDNBEp4j95DfwnrxEdQ5g1k/2xZrL+8nVrktdgTbK8vSAikgW3cBCRIskjXhYdQaiXRyQb6yZy94KISBYcoIlIkfQOzURHEKpZh3RjXVfuXhARyYIDNBEpoEPt1DQAQK678z9fprQYyM8BLG0AK1sTZXs4rqfXBgC4eOTiet51fW3nIjISERGZGQdoIvrnSkvQdepX/9/evUdHVZ57HP/OZJJILhDDxYIECBoiChFBEBQRqQi2VFppgdZCOXV54XC0QWlFkAIlgtA2p126VqgUegkQrnJZXfR0lWKlYATlDuUmBQrhloAgCZi57H3+2M3kCsxkJtlJ5vf5683M5OWZ99XkyZ5nvw8A62aF0Ma64xNwbh98pRt4S8MQV/0l5ItnPA5A5m/XsXjXYmvcP7NO/00REbGXEmgRCckno8PYvtrnhcJDoc/jT8i713kC/fWXPikf3/P1Ov23RESkYVACLRJmBiZurxGWuUwzLNPUqTP3tbE7BFulPXimfNwqzcZIRESkviiBFgkz04TC4jCUITQSSQVfAHD5zua1+n6PYWKYJl96DaJNE08If3xEOR1EOx21/v7aOH8iCYA7Ol3m/NXz1jjxjnqNQURE6pcSaBEJyWPzrRKG2tZA+wzrin1hcSmtfAZFIfzx0Tohtt4T6LysxwCrBjpvT541Vg20iEiTpgRaREKy7dn77Q7BVk//z7by8b1P2xiJiIjUFyXQIhKSc/dE9pFtnXucKx8nd7YxEhERqS9KoEUkJMknLwNwqWOSzZHY48xn1vnX7e6+xJkvrBsK2zVvV+k1190+3D6rttvrM7hy3VPrfy8mykmzmKhaf7+IiIROCbSIhOTR31qtrEM6B7oRW/H2o4BVA71i7wprXKUG2u0z+OcZ62bLJzr4/OPauLddc5qhBFpExE5KoEUkJPlje9gdgq2+NTG/fHzft2yMRKRxMkyDguKCsMwVHx1PUmxkfhom9UsJtIjUgnX0nM80+Xfq7dZDtTx+zmwMh13fRMf7LpSPb+9oYyQijdOX3i/568m/hmWu4XcPVwIt9UIJtIgEzTDA7TVw+wyi/2klkGc7tKjVXC3jYsIZWr07dbglACnpFzl15ZQ1bpFiZ0jyHxVrz6sKthZdteciUpESaBEJybC8fQAseL2/zZHYY/XPrfed+dt1rN632hrrHOgGoWLteVXB1qKr9lxEKlICLSIh+dN3u9sdgq1G/HhL+bj7CBsjERGR+qIEWgSrnbTPCL0W12jk9by1UdvSjfphwvXLoU/j81jzuGIhulmlp1LSL5aPVbohIhIRlECLYLWTLgyhhXQZdy1vpGvM2h//HIDTZTcTNiQ+LxQeCn2ejk/AuX3wle7VEuiTB9pYL7nvAic/P2mNI/BmwprqjWt75rXqjUWkoVMCLSIheWrFASBya6DX/G8/wKqBXnNgjTWOwBromuqNa3vmteqNRaShUwIt1VwuvUyJpyRs87l97rDNJQ3P+mcz7A7BViMn/6N8nDHSxkhERKS+KIGWako8Jaz7bF3Y5hvccXDY5pKG53z75naHUCcq1sUbpsmXXgOnz+R6lZKE+DvPA3DlOsRHt/7PuPJrwlFfXxfCWXbRUN+jiEhdUAItIiHp8NklAP59d7LNkYRXxbp4t9egsLiU2Otujn1RuSSh8FB7AFrfc5rCa/+2xnEdKr0m7Y6Eeog4eOEsu2io71FEpC447Q5ARBq3Iav/yZDV/7Q7DNvsWvo4u5Y+bo3PbWTXuY02RyQiInVNV6BFJCRrxt5vdwi2eujFDeXjO58O+PtSEh3EOIIvlWjmK4brjvIHbnLEnoiI1A0l0CISkqK2iXaHYKsWd5afA90itlXA3xfj8FB6ek/Q/56REAuuCh8e+o/Y6wbe4I5ibOYzuau5t9JjcS7rMbcZzamrqmsWEamJEmgRCUnq4SIAjqcHnjzWHetmv7Kb/qJNE08tz+Y2a2iKEx8TVS3hPLHXOvO5U8ZJTlw5YY1bdKr0mgSzxP99ZQlqvMtB6CePV1CLM68Nr0FplfPPjS5DKT29h9j296NfESIiNdNPRxEJyRNrraStIZwDbRhw8Vqp/6a/Vj6Dolo2yGkZF1PtMafppfT03kqPbVrwHQCefX09m85bbb2fvaPyWhhxMZRes45zLEtQE1Mj+/g/EZHGTAm01D3TF552ytIgrfqvB+wOwVZf/693ysctI3stREQihRJoqXuGYdVohkva8PDNJSH7vE283SHYKqnN+fKxK7LXQgJT0/nbVQV6HrfanovYQwm0iITkrgMXADh2XxubI7HHiQNWKUan+/Zy4ktrLTrdFplrES6madaYPAbb5CXQ5i6BnIhS7fSTav+Yp/yTtluciFLT+dtVBXoet9qei9hDCbSIhGTQn44AkZtAb/2T1b6703172XrFWgsl0KHxGiZHz1+t9niwTV4Cbe4SyIko1U4/qarsNBSAr3TXkYIiTZwSaBEJyYrne9kdgq2+8fyvysctI3st6lMgV40rnn5SVdlpKED4T0SpRze6Wl+RykFEwk8JtIiE5EpyZF9pa55cVD52RfZa3EwwjWNulPhWTXovnbjFVeMKp59Ue+4/p6EAjfpElBtdra9I5SAi4acEWkRC0mWfdRPdke532ByJPf61zzp5o3P3XfzrurUWnZtF5lrcTDCNY26U+DaVpFdEGj8l0CISksc2HAUiN4HO3zACsBLo/C+stVACLZEukJNGytyqxESlJdIQKYEWkZDkvfSg3SHYavhLvygft4rstRApE8hJI2VuVWKi0hJpiJRAi0hIilvcZncItkpoUd4kKCGqPtbCalNeJpS25TW1K5dwMG/aPKqZz7zhzY1lKtZ7u81oTl2t+70K5IZECOymxECPEAw3wzQoKC4I23zx0fEkxSaFbT5pOpRAS6PlMcyQf0gbponPNJVIhOCe3ecAONTjKzZHYo+ju3sDkNbjE45es9YiLa7u1qKsXXmZUNqW19SuXMLA54XCQzd82vAalN5iryrWe8e2v5/6+HUdyA2JENhNiYEeIRhuX3q/5K8n/xq2+YbfPVwJtNRICbQ0Wj7DpDDIhKEqt9fA7TNQ/lx7j/7lMyByE+jtf7E6Y6b1+ITtV621qMsEur7Ex0Td8ippRTWdnNFUjoqzVL7yX1XZJwHALT8N0B/sIo2fEmgRCcmS/+5tdwi2+tZ/zy0ft2o6a+E0vZSe3hvw62s6OaMpnZpR9cp/VWWfBAC3/DRAV/5FGj8l0CISkmuJsXaHYKu4xPKPvOOiInstREQihRLoJuJy6WVKPCVhmcvtq7nxgEhN7ttxBoADvdrZHIk9Du/oC0B6r485fM1ai/S4yFwLEZFIoQS6iSjxlLDus3VhmWtwx8FhmUciw8Mb/wVEbgL96cZhgJVAf3rVWgsl0BJON6tHv1m78jIVa9EBbouO5ktP9VM0Apmr6nz1dUKISEOjBFpq5rkO3vDf8hOOkzNME770GroRp4H448sP2R2CrUa8PLt83Dqy10Lqxs3q0W/Wrtz/mgq16GDVo1+pYb5A5qo6X32dECLS0Oi/eqmZtxTO7QvPXGnD/cNwnJxhYs2hG3EahtK4aLtDsNVtcdfKx87IXgsRkUjhtDsAEWncum8voPv28DUuaGwObn+Eg9sfscYlBRwsidy1EBGJFLoCLSIh6fvBcQD29bnT5kjssfODpwDo2mcrO4uttegaH5lrIZHnRvXZgdZTg2qqpXFSAi0iIfl9Zl+7Q7DVyMyflY9bR/ZaSOS5UX12oPXUcOua6kBbjMOt24zHRDlpFhMV0FwQ3tbgagvetCiBFpGQeGIj+8dIdGx5khDtjOy1EKkLgbYYh1u3Gb+3XXOaEXgCHc7W4GoL3rTop31T4S2F65fDM5fPA6YvPHNJk9cj/xQAu/ul2ByJPfbnPwZAt34fsr/EWotu8ZG5FiIikUIJdFPh84Tv1IyOT1h9a0UC0HvzSSByE+g9m61z07v1+5A9xdZaKIEWEWnalECLSEgWvvaw3SHYavRr08vHbSJ7LURCVdNNibW9IRGqN41p5ruKu9gRcDyGz4O7+PPyr6NiKMU6QtXOemqAKEcUvjB+Wqwa7eDYnkAbhsGMGTM4fPgwMTExZGVl0bFjR7vDEpEAGa7IPg0zylX+CyzKEdlrIRKqmm5KrO0NiVC9aYw3LoaLAc4F4E4ZxPmjn/i/jm1/P8e+sFKnrm0TcfsC/7S2uPQaa4/+X43PBZuMg9U1OFz12aAa7WDZnkBv3LgRt9vN8uXL2b17N2+//TY5OTl2h1XdtUtQGthNDIG47HRS4r126xcGyE3lY39C6fhnmCY+08TjtX4wOIBQDhUq6xxojXU8UVPTc8u/AdjZv4PNkdhj75ZBAGT038TeYmstMhIicy1EIkkwNzdCzTc4piQ6iHF4aNYsGrc78CvjUP3quDPKieEzcDrA5QxuLgBKi8Fzsvzr2ESISw5+HuBy6WVKPCW1+t6aNMSr47Yn0Dt27ODRRx8FoEePHuzfv9/miG6g9CrsXhq26Uq6Pc26LVmVHgsl6R028Kf+JBWsRLWoJPC/sityew3cPoOi/3QMbBnkX+xVlXUOLJtLmpZeWyM7gd63tTyB3leiBFqkKatYYhJMaQlULy8BiHc5uHRiT9BXxqH61fFWqRkUHd9L64RYXLX5ZLBVTzi9q/zr+0dTWnIFby3ykitON2sOr670mMMVQ/Rt8cHHRcO8Ou4wbb4kOHXqVJ588kkee8y6k33gwIFs3LgRl6vm3P6hhx7izjvVpEBERERE6k5BQQHbtm2r8Tnbr0AnJCRQUlJ+md8wjBsmz8AN34iIiIiISH2w/Y6Xnj17snnzZgB2795Nly5dbI5IREREROTGbC/hKDuF48iRI5imyezZs7nrrrvsDElERERE5IZsT6BFRERERBoT20s4REREREQaEyXQIiIiIiJBsP0UjnBTZ0P7eTwepkyZQkFBAW63m/Hjx3P33XczefJkHA4HaWlpTJ8+HadTf7/Vl4sXL/LMM8+waNEiXC6X9sJGv/nNb9i0aRMej4fvfve79OnTR/thE4/Hw+TJkykoKMDpdDJr1iz9/2GTPXv28Itf/ILc3FxOnjxZ4x68++67/P3vf8flcjFlyhQyMjLsDrvJqrgfBw8eZNasWURFRRETE8PcuXNp1aoVK1asYNmyZbhcLsaPH8/jjz9ud9j1qsn9VKjY2fC1117j7bfftjukiLN+/XqSkpJYunQpCxYsYNasWcyZM4fMzEyWLl2KaZr87W9/szvMiOHxePjpT3/KbbfdBqC9sNG2bdvYtWsXeXl55Obmcu7cOe2HjT788EO8Xi/Lli1jwoQJ/OpXv9J+2GDBggW8+eablJZaDbdq2oMDBw6wfft2Vq5cSXZ2NjNnzrQ56qar6n689dZbTJs2jdzcXAYPHsyCBQsoLCwkNzeXZcuWsXDhQrKzs3G7a99wrTFqcgl0o+ls2IQNHTqUH/3oR/6vo6KiOHDgAH369AFgwIABfPTRR3aFF3Hmzp3L6NGjadOmDYD2wkZbtmyhS5cuTJgwgZdeeomBAwdqP2yUmpqKz+fDMAyKi4txuVzaDxt06NCBd955x/91TXuwY8cO+vfvj8PhoF27dvh8Pi5dumRXyE1a1f3Izs6ma9euAPh8PmJjY9m7dy8PPPAAMTExJCYm0qFDBw4dOmRXyLZocgl0cXExCQkJ/q+joqLwegNvtSmhi4+PJyEhgeLiYl555RUyMzMxTROHw+F//urVqzZHGRnef/99kpOT/X9UAtoLG33++efs37+fX//618ycOZNJkyZpP2wUFxdHQUEBTz31FNOmTWPMmDHaDxsMGTKkUgO1mvag6u927U3dqbofZRdfdu7cyeLFixk3bhzFxcUkJib6XxMfH09xcXG9x2qnJlcDHWxnQ6kbZ8+eZcKECXzve9/jG9/4Bj//+c/9z5WUlNC8eXMbo4scq1evxuFwkJ+fz8GDB3n99dcrXbXRXtSvpKQkOnfuTExMDJ07dyY2NpZz5875n9d+1K/f//739O/fn9dee42zZ8/ygx/8AI/H439e+2GPijXnZXtQ9Xd7SUlJpQRO6taGDRvIycnhvffeIzk5WftBE7wCrc6G9isqKuKHP/whP/7xj/n2t78NwL333utvw75582YefPBBO0OMGEuWLGHx4sXk5ubStWtX5s6dy4ABA7QXNunVqxf/+Mc/ME2T8+fPc/36dfr166f9sEnz5s39v/RbtGiB1+vVz6oGoKY96NmzJ1u2bMEwDM6cOYNhGCQnJ9scaWRYt26d//dISkoKABkZGezYsYPS0lKuXr3KsWPHIi7fanKNVNTZ0H5ZWVn8+c9/pnPnzv7Hpk6dSlZWFh6Ph86dO5OVlUVUVJSNUUaeMWPGMGPGDJxOJ9OmTdNe2GTevHls27YN0zSZOHEi7du3137YpKSkhClTplBYWIjH42Hs2LF069ZN+2GD06dP8+qrr7JixQqOHz9e4x688847bN68GcMweOONN/THTR0q24+8vDz69etH27Zt/Z/G9O7dm1deeYUVK1awfPlyTNPkxRdfZMiQITZHXb+aXAItIiIiIlKXmlwJh4iIiIhIXVICLSIiIiISBCXQIiIiIiJBUAItIiIiIhIEJdAiIiIiIkFQhxERkRC89957fPTRRzidThwOBxMnTqRbt27+54cPH07Pnj2ZPn26/7Fu3brxwAMPAOD1ernrrrv8RwzOnTuXI0eO4HQ6iY6OZurUqaSkpDB58mS+9rWvMWDAAB555BG2bt3qn+/w4cNkZWUB1vn3GRkZOJ1OnnvuOQYOHFhj3EuXLmX06NGVmlZUNGnSJJ555hkefvhh/2PXrl1jxowZXLx4EbDOUZ4+fTpJSUm1WzwRkUZKCbSISC199tlnbNq0iby8PBwOh7/b4/r16wHYsWMHXbp04eOPP67UirhFixbk5ub658nMzOTDDz/E5XJx4cIFfve73wGwceNGZs+eTU5Ozk3jSE9P9883aNAgFi1aRGxs7E2/Z/78+YwcOfKGCXRNVq1aRdu2bZk3bx4ACxcuZP78+UyePDngOUREmgIl0CIitZScnMyZM2dYtWoVAwYMoGvXrqxatcr//MqVKxkyZAht27Zl7dq1fP/73682h8fj4dq1a8TFxZGcnMz+/fvZsGEDffv25atf/SoDBgwIKcZ9+/bx1ltv4XK5iI2NJSsri82bN3Pp0iVeffVVsrOzmTZtGufPn+fKlSsMHDiQl19+uca52rVrx9q1a+nRowe9e/dm3LhxlLUSWL58OcuXL8cwDAYPHsyECRNYu3Ytubm5xMTEkJqays9+9jPWrFnDunXr8Pl8ZGZmUlRUxB//+EecTid9+vRh4sSJIb1fEZH6oBpoEZFaSk5OJicnh507dzJq1CiGDh3KBx98AEBxcTE7duxg4MCBjBgxgry8PP/3XblyhTFjxjBmzBiee+45+vTpQ79+/UhPT2fWrFls3LiRYcOGMWLECHbv3h1SjNOmTWPmzJksXryYkSNHMm/ePEaNGkVycjLZ2dmcPXuWXr16sWjRIpYsWcKSJUtuONcTTzzBCy+8wIoVKxg0aBDjxo3j+PHjXLhwgUWLFpGXl8f777/P5cuXOXPmDDk5OeTm5pKXl0ezZs1YuXIlALfffjt5eXmkpaWRk5PDH/7wB/Ly8jh16hQff/xxSO9XRKQ+6Aq0iEgtnTx5koSEBObMmQNYV3tfeOEFHnroITZs2IBhGLz44osAFBYWkp+fT79+/aqVcJQ5dOgQqampZGdnY5omW7duJTMzs1K9c7CKiopIT08HrBa87777bqXnk5KS2L17N/n5+SQmJuLxeG44186dO+nfvz9Dhw7F6/WyZs0apkyZwuuvv056erq/bGTq1Kns2rWLLl26EBcXB8CDDz7Ip59+yj333ENqaioAJ06c4OLFizz//POA9UfHqVOn6Nu3b63fr4hIfdAVaBGRWjp8+DAzZsygtLQUgNTUVBITE4mKimLVqlXMnz+fhQsXsnDhQt58882bXt0FyM/PJzs7G5/Ph8PhIC0tjWbNmuFwOGodY6tWrTh69CgA27dvp1OnTgA4nU4Mw2DVqlW0bNmSX/7yl4wdO5br16/fcK7169f767NdLhfp6enExMTQsWNHjh07htvtBmDChAnccccdHDlyxD/fJ5984v+3y95Phw4daNu2LYsWLSI3N5dnn32WjIyMWr9XEZH6oivQIiK19OSTT3Ls2DG+853vEBcXh2ma/OQnP+HUqVOYpklaWpr/tUOGDGHOnDmcPXv2hvONGTOGuXPn8s1vfpOEhAScTqf/hr3aysrK8p8A4nK5mD17NgC9evXi+eef54033mDSpEls27aNuLg4UlJSKCoqqnGuSZMmMWPGDJ5++mni4uKIj49n1qxZtG7dmnHjxvlrvAcPHky7du0YP348Y8eOxeFwkJqayqhRo1i3bp1/vlatWvlLWXw+HykpKQwbNiyk9ysiUh8cZtkdICIiIiIicksq4RARERERCYISaBERERGRICiBFhEREREJghJoEREREZEgKIEWEREREQmCEmgRERERkSAogRYRERERCYISaBERERGRIPw/ShqUVX3f7AYAAAAASUVORK5CYII=\n",
3115
      "text/plain": [
3116
       "<Figure size 864x432 with 1 Axes>"
3117
      ]
3118
     },
3119
     "metadata": {},
3120
     "output_type": "display_data"
3121
    }
3122
   ],
3123
   "source": [
3124
    "plt.figure(figsize = (12, 6))\n",
3125
    "\n",
3126
    "sod=saps.saps2.loc[saps['Sodium_5.0']==1] \n",
3127
    "pot=saps.saps2.loc[saps['Potassium_3.0']==1]\n",
3128
    "bic=saps.saps2.loc[saps.Bicarbonate>0]\n",
3129
    "\n",
3130
    "_ = plt.hist(sod, bins=30, alpha=0.5, label='Blood Sodium level: Outside Normal')\n",
3131
    "_ = plt.hist(pot, bins=30, alpha=0.5, label='Blood Potassium level: Outside Normal')\n",
3132
    "_ = plt.hist(bic, bins=30, alpha=0.5, label='Blood Bicarbonate: Outside Normal')\n",
3133
    "_ = plt.xlabel('SAPSII Total Score')\n",
3134
    "_ = plt.ylabel('Frequency')\n",
3135
    "_ = plt.legend()\n",
3136
    "_ = plt.axvline(np.mean(sod), color='b', linestyle=':')\n",
3137
    "_ = plt.axvline(np.mean(pot), color='r', linestyle=':')\n",
3138
    "_ = plt.axvline(np.mean(bic), color='g', linestyle=':')"
3139
   ]
3140
  },
3141
  {
3142
   "cell_type": "code",
3143
   "execution_count": 175,
3144
   "metadata": {},
3145
   "outputs": [
3146
    {
3147
     "data": {
3148
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAFxCAYAAABX4e8NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVhUBfs+8HuGHYZVklQ0QX1NIVI08U0jvyaJC5HkhoFhmpmJoS8KIqDmggaS5YJbLi+4gubylqbilhpuZSruSgqCKyDMKOvM74/J+UkiIjJzYM79ua5zjYxnuc9j5sPhmXMkKpVKBSIiIiIieilSoQMQEREREekDNtZERERERLWAjTURERERUS1gY01EREREVAvYWBMRERER1QI21kREREREtcBQ6AC1wcPDA02aNBE6BlG9pFQpAQBSiYi+z1aqzxlSEZ1zHcLyE1F9dvPmTRw9erTS39OLxrpJkybYvHmz0DGIiIiISM/5+fk98/d4vYBI5JJOJyHpdJLQMXQrKUm9kCBYfiLSV3pxxZqIam7578sBAAFuAQIn0aHl6nNGgIjOuQ5h+YlIX2mlsS4vL0dkZCQyMjJgYGCAmJgYqFQqhIeHQyKRoFWrVpgyZQqkUikWLFiA/fv3w9DQEBEREXBzc8P169crXZeIat/uwN1CR9C93SI85zqE5ScifaWVxnrfvn0AgPXr1+Po0aOaxjokJAQeHh6Ijo5GamoqGjdujGPHjiE5ORk5OTkIDg7Gpk2bEBMT89S6Xl5e2ohKJHpGBkZCR9A9IxGecx1SX8tfWlqKrKwsFBUVCR2FiHTA1NQUjo6OMHqB/2lppbHu0aMHunXrBgDIzs6Gvb099u/fj06dOgEAPD09cfjwYTg5OaFr166QSCRo3LgxysvLkZubi/T09KfWZWNNpB2rTq0CAAS1CxI0h06tWqV+DQoSMoVo1dfyZ2VlwdLSEs2bN4dEIhE6DhFpkUqlwv3795GVlQUnJ6dqb6e1+QpDQ0OEhYVh+vTp6NmzJ1QqleZ/RBYWFigsLIRcLodMJtNs8/j9ytYlIu1YdWqVprkWjVWr/n93RzpXX8tfVFSEBg0asKkmEgGJRIIGDRq88E+otPrhxTlz5iA0NBQDBw5EcXGx5n2FQgErKyvIZDIoFIoK71taWlaYp368LhFpx/6g/UJH0L39+4VOIGr1ufxsqonEoyZ/37VyxXrLli1YsmQJAMDMzAwSiQSurq6am2kfPHgQHTt2hLu7Ow4dOgSlUons7GwolUrY2dmhbdu2T61LRERUl+QpSpCZ+7DWljxFSZXHO3r0KMaNG1fhvbi4uJd+jsPFixdx/Pjxp953dXVFYGAgAgMDMXjwYAwcOBCZmZnP3E9xcTGSk5NrlOHEiRMYNmwYAgMD8dFHH2HNmjU12k9xcTG6d+8OAJg5cyays7NrtJ/H/vzzT7i6uuL06dOa9/Lz87F9+3YA6nHXvXv3vtA+s7KyMHDgwJfKRXWXVq5Yv//++5g0aRI+/vhjlJWVISIiAi1atEBUVBTi4+Ph7OyMnj17wsDAAB07dsSgQYOgVCoRHR0NAAgLC3tqXSLSjmUnlwEAPuvwmcBJdGiZ+pzxmYjOuQ7Rl/LLi8uQcjKr1vbXv4MjbC2Ma21/1bVr1y7Y29vjrbfeqvC+tbU1EhMTNV+vX78eK1eu1Pxb/U93795FcnIyBgwY8ELHz8zMxIwZM7B8+XLY29ujqKgIQ4cORdOmTeHp6fniJ/S3yZMn13jbx5KTkzFs2DCsXbsWbm5uANTfiOzduxc+Pj5IS0vDtWvXNM08kVYaa3Nzc3z33XdPvZ9UyRMBgoODERwcXOE9JyenStclotq3IX0DAJE11hvU51zvO7t6iuXXjrlz5+L48eNQqVQICgpCr169cOzYMSxYsACAekZ8zpw5MDIywhdffAEbGxt4eHjgxx9/hJGREVxcXDTNY2Wys7M1o5lJSUnYtWsXysrKYGlpifnz52Px4sW4cuUKFixYgE8++QSTJ09GXl4eACAyMhKtW7fGN998A29v7wrH2bp1Kz788EPY29sDUN+J4YcffoC5uTnkcjkmT56MwsJC5OXlYcCAARgyZAgCAwNha2uLgoICzJ8/HxMnTkRBQQGaNWum2W9gYCCmTp0KCwsLTJ06FcXFxcjPz8eXX36JHj16YN++fZratG3bFtOmTXtqFDUtLQ0//fQTfHx8kJubCzs7OyxevBgXLlzA+vXrsWrVKhQVFaF9+/awtLR8qtZOTk5YtGgR9uzZg/Lycvj7+6Nr164A1LcmDg8PR6tWrTBy5MiX/vOnuoEPiCESuT1D9wgdQff2iPCc6xCWv+bS0tIQGBio+TozMxNjx47FgQMHkJWVhfXr16O4uBgDBw5Ely5dcPnyZcTGxsLBwQGLFy/Gzp074ePjg7t372LTpk0wNjaGSqWCvb39U031gwcPEBgYCLlcjvz8fLz//vsYO3YslEol8vPzsWrVKkilUgwfPhxnzpzBqFGjcOnSJYwZMwaxsbHo3LkzhgwZgr/++guTJk3CunXrMHHixKfO6c6dO3j99dcrvGdpaQkAuH79Ovr06YP3338ft2/fRmBgIIYMGQIA8PHxgZeXF5KSkvCvf/0L48aNw59//qkZJX3s2rVrGDZsGDw8PPD7779j/vz56NatG6ZPn47k5GQ0aNAACxYswK1bt9C4cWPNdj///DO8vLxgYmKCXr16ISUlBSNHjsSoUaOwfv16DB48GMbGxrh27Rree+89rFmz5qlav/vuuzh48CCSk5NRUlKCuXPnokuXLigrK0NoaCg6duyIjz/++OX+o6A6hY01ERFRPdG5c2d8++23mq/j4uIAAJcuXUJ6erqm6S4rK0N2djYcHBwwc+ZMmJub4/bt23B3dwcAODo6wti46rGTx6Mgj6+sGhkZwcLCAgBgZGSE8ePHw9zcHLdu3UJZWVmFbS9duoS0tDTs2LEDAFBQUPDM4zRu3Bi3bt2q8N6FCxc0Df/q1auxa9cuyGSyCsd5fAu0y5cv45133gEAvPnmmzA0rNjavPLKK0hISEBKSgokEgnKysqQl5cHKysrNGjQAAAwZsyYp3IlJyfDwMAAw4cPR1FREW7duoURI0Y88zwqq3VGRgbc3NxgYGAAMzMzREZGIisrCxcvXoRMJsPDhw+fuT+qn/g4QyKRW3R8ERYdXyR0DN1atEi9kCBY/trn7OwMDw8PJCYmYvXq1ejVqxccHR0RGRmJWbNmYfbs2WjYsCFUKhUAVBh5kEgkUCqVz9y3gYEBpk+fjt27d2P//v24cOEC9uzZg3nz5iEqKgpKpRIqlQpSqVSzH2dnZwQFBSExMRHz5s2Dj4/PM/fft29fJCcnIzc3F4B6BCM6Ohp37tzBihUr0K5dO8TFxcHb21uT/3Hux8c6deoUAODcuXNPNfnfffcdfH19ERsbCw8PD6hUKjRo0AAFBQXIz88HAMyYMaPCBxQvXryI8vJyrFu3Dj/88APWrFmDZs2aYd++fRXO88lfV1ZrZ2dnnDt3DkqlEqWlpRg2bBhKSkrg4uKCpUuXYtu2bbhw4UJVf7RUz/CKNZHA8ovzoShVPH/FZ7AwsoCNiU2Nt99+Sf3p9tFvja7xPuqdvz/Rj9EiOuc6hOWvfd27d8exY8cwZMgQPHz4ED169IBMJoOvry8GDhwIKysr2Nvb486dO09t6+rqim+++QYtWrRA586dK92/qakpZs6cibCwMGzfvh1mZmbw8/ODsbExXnnlFdy5cwft27dHaWkpYmNjMWrUKEyePBkbN26EXC7XXBGubMba0dEREyZMwJgxY2BgYACFQoH+/fvj3XffhYmJCaZOnYrt27fDxsYGBgYGKCmpePeUjz/+GJMmTYK/vz+cnZ2fekqet7c3Zs6ciSVLlqBRo0bIy8uDVCrFlClT8Pnnn0MqlaJt27Z44403NNskJyfD19e3wn4GDBiANWvWICYmBpcuXcKqVavQqVMnJCQkwMXFpdJat2nTBu+88w78/f2hVCrh7++v+UmBqakppk6dirCwMCQnJz/3JwhUP0hUT377V0/5+fm99O2GiIRyU34TW69srfH2vi190UTWpBYTEVFlzp8/jzZt2mi+zlOUQF5cVsUWL0ZmYijIXUGI6Nn++fceqLrv5BVrIiKiGrC1MGYjTEQVcMaaSOS+S/sO36U9fXtMvfbdd+qFBMHyE5G+YmNNJHKpGalIzUgVOoZupaaqFxIEy09E+oqjIEQit81/m9ARdG+bCM+5DmH5iUhf8Yo1EREREVEtYGNNJHJxR+IQdyRO6Bi6FRenXkgQLD8R6SuOghCJ3G9ZvwkdQfd+E+E51yF6U/6HuUBxYe3tz8QSMLercpWlS5fiyJEjkEqlkEgkGDduHFxdXat9iOzsbFy4cAHdu3ev9PezsrIwfvx4bNy4EePGjcOcOXOee3/lwMBAPHr0CGZmZnj06BG6dOmCcePG4ejRo1i/fn2FJ0W+qHXr1uHevXsIDg7WvHf06FGEhISgZcuWAIDi4mL4+PhUeNR7fbF582Zcu3YNoaGhWtl/fn4+fv31V/j4+CA8PBy9e/eGp6fnS+/3/PnzmDVrlubrU6dOYeHChXB1dUVoaCiKiorQsGFDxMTEwMzM7KWPV9l/S3FxcXB2doafn99L7782sbEmErlNAzcJHUH3NonwnOsQvSl/cSFwam3t7a/dkCob6ytXrmDv3r1Yt24dJBIJzp8/j7CwMGx7gaH1tLQ0XLt27ZmN9ZNepCGeM2cOWrRoAZVKhSFDhuDMmTPV3rYmnny0e0lJCby9veHr6wsrKyutHre+uXjxIvbu3Vvlky9rok2bNkhMTAQA7NixAw0bNoSnpydmzJiBvn37ws/PD0uXLsWGDRsQFBRUq8eu69hYExER1QN2dnbIzs5GSkoKPD090aZNG6SkpKCwsBD9+vXDL7/8AgMDA8TGxsLV1RW5ubnYsmULpFIp3N3dERoaiqVLl6KoqAjt27dHo0aNMH36dBgYGMDExATTp0+vcLzu3btjx44dyMnJQWRkJEpLS2Fqaopvv/0WdnaVfwNQUlKCsrIyNGzYEH/99Zfm/W3btmH16tUwNjZG8+bN8fXXXwMAIiIikJmZifLycgwbNgy9e/fGiRMnMGvWLFhbW0MqlaJdu3ZV1kUul0MqlcLAwACBgYGwtbVFQUEBli5diqlTp+L69etQKpUICQmBh4cHvv32W6SlpUGpVKJPnz4ICgrCmjVrKtQqLCwMu3btwrJly2BoaIgmTZrgm2++wcKFC2Fvbw9/f39cvXoVU6dORWJiIvr27YvmzZvD2NgY06ZNw+TJk5GXlwdA/ajz1q1bV/rUyWfZsWMHVq1aBalUig4dOiA0NBQnT57EnDlzYGhoCCsrK8TFxeHu3buYNGkSDA0NYWBggG+++QYODg6a/SxevBgXLlzAhg0bAAAbNmzA8uXLIZfLMXXqVLi5uWHu3Lk4e/YsFAoFWrRogZiYGMyfPx9ZWVm4f/8+srOzMWnSJLzzzjtP5Xz48CHmz5+PpKQkAMDJkyfx+eefAwA8PT0RHx+PHj16YNy4cWjUqBGysrLQp08fXL58GefOnUO3bt0wfvx4BAYGonXr1rh8+TLMzc3RsWNHHDp0CAUFBVixYkWVtVKpVJg2bRrOnj0Le3t73Lx5EwkJCXB0dHxunbWBjTWRyM0+NBsAEN41XOAkOjRbfc4IF9E51yEsf83Y2dkhISEBSUlJWLhwIUxNTTFu3Dj07NkTHTp0wKFDh9C1a1ccPHgQX331Ffz9/REVFYV27dph7dq1UKlUGDlyJK5du4b33nsPfn5+mDlzJtq0aYM9e/Zg9uzZmDhx4lPHnTNnDkaOHAlPT0/8/PPPOHfuHLp27VphnbCwMJiZmSEzMxOvv/46bG1tNY11Xl4e5s+fjx9//BEymQyzZs3SNHq2traIjY2FXC6Hn58fOnfujJiYGMydOxdOTk6YMmVKpbVIS0tDYGAgJBIJjIyMEBUVBQsLCwCAj48PvLy8sHbtWtja2mLWrFnIy8tDQEAAfvrpJ2zZsgVJSUlwcHDQPD1v8+bNFWpVVlaG//3vfwgKCkKfPn2wZcsWyOXyZ/7ZPHz4EKNHj0bbtm0RGxuLzp07Y8iQIfjrr78wadIkrFu3rtLaViY/Px/z58/Hpk2bYGZmhgkTJuDw4cM4dOgQvLy8MHz4cOzduxcFBQU4cuQIXFxcEB4ejhMnTuDBgwcVGutRo0Zh/fr1GDRoEP744w+4uLhg9OjR2Lx5MzZv3gxnZ2dYWVlh5cqVmm80bt++DQAwNjbG8uXLcfjwYaxYsaLSxjolJQXe3t6ab7TkcjksLS0BABYWFigsVI9KZWZmYsWKFSgqKsJ7772HgwcPwszMDP/3f/+H8ePHAwDc3NwQGRmJ4cOHw9TUFCtXrkRYWBiOHz8OS0tLzZ/5Y5mZmRg7dixSU1ORn5+PlJQU5Obm4v33369WnbWFjTWRyJ26dUroCLp3SoTnXIew/DVz/fp1yGQyxMTEAADOnDmDkSNHwsPDAwMGDEBiYiKUSiXefvttGBsbIyYmBitWrEBcXBzatWsHlUpVYX937tzRPKr5rbfewty5cys9bkZGBtq3bw8A6N27d6XrPB4FUSqViIiIwPLly9GhQwcA6gaoZcuWkMlkmmMdOnQIUqkUb7/9NgBAJpOhRYsWyMzMxO3bt+Hk5AQAcHd3x40bN5463pOjIP/0eNtLly7h5MmTOH36NACgrKwMeXl5iI+PR3x8PO7du6dpFiur1aRJk7BkyRKsW7cOzs7O6NGjR6XHq+y4aWlp2LFjBwCgoKCgyu3+6caNG8jNzcXIkSMBAAqFApmZmRg1ahQWL16MTz75BA4ODnBzc0P//v2xbNkyjBgxApaWlhg3blyV+3ZxcQEA2Nvbo6ioCCYmJsjNzcX48eNhbm6Ohw8forS0FAA0/228+uqrKCkpqXR/27dvx/fff6/5WiaTQaFQwNTUFAqFQjOa07RpU1haWsLY2Bj29vawsbEBAEgkkqeyWVlZaebnraysUFxcDEtLy6f+zOP+/gT0tWvXND/VsLOzg7Oz83NrrE28KwiRyK3vvx7r+68XOoZurV+vXkgQLH/NXLx4EVOnTkVxcTEAdSNnaWkJAwMDdOzYEZmZmUhJSUH//v0BABs3bsS0adOQlJSE8+fP448//oBUKoVSqQQANGzYEBcuXAAAHD9+HM2bN6/0uC1atNDMTG/btk0zW1sZqVQKBwcHTXMGAI6Ojrh69SoePnwIADh27BicnJzQokULnDhxAoD6SuelS5fg6OiIV155BVevXgWAGs1qP27WnJ2d0adPHyQmJmLZsmXw9vaGhYUFdu7cifj4eKxevRo//vgjbt68WWmtNmzYgODgYM2Yw+7du2FiYoK7d+8CANLT058698fHDQoKQmJiIubNm/fC882Ojo5o1KgRVqxYgcTERAQEBODNN9/E9u3b0a9fPyQmJqJVq1bYuHEjUlNT0aFDB6xevRre3t5Yvnz5U5ke/3k/WZvHDh48iJycHMTHx2P8+PEoKirSfAP2z3X/qbCwECUlJWjUqJHmPXd3dxw4cECz78ffXD1vXy+jVatWOPX3d+sPHjyoMIIkBF6xJiIiqgfef/99XL16FQMGDIC5uTlUKhUmTpyo+dG7j48Pdu7ciVatWgEAWrdujf79+8PW1hYODg548803IZPJkJCQABcXF8yYMQPTp0+HSqWCgYFBhbs8PGnixImIjo5GQkICTE1NERsb+9Q6j0dBAGjWuXjxIgD1VcTg4GAMHToUUqkUzZo1Q2hoKCQSCaKiouDv74/i4mKMGTMGDRo0QGxsLMLCwmBhYQELCwtYW1vXqF6DBw9GZGQkAgICIJfLMWTIEBgbG8Pa2hq+vr6wtrZGly5d0Lhx40prJZfLMWzYMNjY2MDCwgLdunWDXC5HSEgIjh8//sy7sYwaNQqTJ0/Gxo0bIZfLMWbMGAB45oz1li1bcOTIEc3XiYmJCAoKQmBgIMrLy9GkSRP06tULJSUlCA8Ph7m5OYyMjPD1119DpVJhwoQJmD9/PqRSKSZNmlRh382aNcOlS5ewatWqSrO6ublh0aJFGDhwIIyNjdG0aVPcuXOnWvXNyMhAkyZNKrz3xRdfICwsDBs3boStrS3mzp2L3Nzcau2vprp164aDBw9i8ODBsLe3h6mpKYyMjLR6zKpIVP/82VA95Ofnp5mTIqpvbspvYuuVrTXe3relL5rImjx/xWeYfkD9gaWod6NqvI965/GHtKJEdM51SH0t//nz5zU/HgcgyO32qrJs2TLY2tpqrlgTicHVq1dx4cIF9OnTB3l5eejbty/27dv33NtEVtdTf+9Rdd/JK9ZEInfx/kWhI+jeRRGecx2iN+U3t3upRrg2hYeHaz4kSCQmjRo1QlxcHFavXo3y8nKEhobWWlNdE2ysiUQuyS9J6Ai6lyTCc65DWP7aN/vxrVaIRMbc3BwJCQlCx9DghxeJiIiIiGoBG2sikYveF43ofdFCx9Ct6Gj1QoJg+YlIX3EUhEjkMgsyhY6ge5kiPOc6hOUnIn3FxppI5Fb6rhQ6gu6tFOE51yEsPxHpKzbWRERENZBfnA9FqaLW9mdhZAEbE5sq11m6dCmOHDkCqVQKiUSCcePGPfN+ypXJzs7GhQsX0L1790p/PysrC+PHj8fGjRsxbtw4zJkz57l3WAgMDMSjR49gZmaGR48eoUuXLhg3bhyOHj2K9evXP/MJidWxbt063Lt3D8HBwZr3jh49ipCQEM3T+YqLi+Hj41Phcdf1xebNm3Ht2jWEhoZqZf/5+fn49ddf4ePjg/DwcPTu3Ruenp4vvd/z589XuO/5qVOnsHDhQri6uiI0NBRFRUVo2LAhYmJiNPc3fyw9PR1TpkyBsbEx2rRpg8mTJ0MqlWLGjBn4/fffYWFhgdDQULz55psvnRMAunfvjh07dsDExASA+vZ8U6dOrfJBRy+DjTWRyE3ao36gQEyPGIGT6NDjhyjEiOic6xB9Kb+iVPFS96D/J9+WvlU21leuXMHevXuxbt06SCQSnD9/HmFhYdi2bVu1j5GWloZr1649s7F+0os0xI8faa5SqTBkyJAaPTHxRTz5eOuSkhJ4e3vD19dX8whtUrt48SL27t37wk9/fJ42bdpoGtMdO3agYcOG8PT0xIwZM9C3b1/4+flh6dKl2LBhA4KCgipsGxUVhcjISLi7u+Pbb7/F9u3bYWVlhYyMDKSkpCA/Px8jRoyot88nYWNNJHL3H90XOoLu3RfhOdchLH/N2NnZITs7GykpKfD09ESbNm2QkpKCwsJC9OvXD7/88gsMDAwQGxsLV1dX5ObmYsuWLZBKpXB3d0doaCiWLl2KoqIitG/fHo0aNcL06dNhYGAAExMTTH/85J6/Pb7Sl5OTg8jISJSWlsLU1BTffvst7Owqv393SUkJysrK0LBhwwqPlt62bRtWr14NY2NjNG/eHF9//TUAICIiApmZmSgvL8ewYcPQu3dvnDhxArNmzYK1tTWkUinatWtXZV3kcjmkUikMDAwQGBgIW1tbFBQUYOnSpZg6dSquX78OpVKJkJAQeHh44Ntvv0VaWhqUSiX69OmDoKAgrFmzpkKtwsLCsGvXLixbtgyGhoZo0qQJvvnmGyxcuBD29vbw9/evcOWzb9++aN68OYyNjTFt2jRMnjwZeXl5AIDIyEi0bt36mU9erMyOHTuwatUqSKVSdOjQAaGhoTh58iTmzJkDQ0NDWFlZIS4uDnfv3sWkSZNgaGgIAwMDfPPNN3BwcNDsZ/Hixbhw4QI2bNgAANiwYQOWL18OuVyOqVOnws3NDXPnzsXZs2ehUCjQokULxMTEYP78+cjKysL9+/eRnZ2NSZMm4Z133nkq58OHDzF//nzNY99PnjyJzz//HADg6emJ+Pj4pxrr27dvw93dHYD6Eeipqalo2rQp3nnnHUilUtjZ2cHAwAB3797F+PHj0bp1a1y+fBnm5ubo2LEjDh06hIKCAqxYsQKpqanYt28fioqKcPfuXQwdOhSpqam4fPkyJk6ciB49elRZ53379uH777+HTCaDtbU1WrduXeGnIzXBxppI5Jb6LBU6gu4tFeE51yEsf83Y2dkhISEBSUlJWLhwIUxNTTFu3Dj07NkTHTp0wKFDh9C1a1ccPHgQX331Ffz9/REVFYV27dph7dq1UKlUGDlyJK5du4b33nsPfn5+mDlzJtq0aYM9e/Zg9uzZmDhx4lPHnTNnDkaOHAlPT0/8/PPPOHfuHLp27VphncePNM/MzMTrr78OW1tbTWP9+ME1P/74I2QyGWbNmqVp9GxtbREbGwu5XA4/Pz907twZMTExmDt3LpycnDBlypRKa5GWlobAwEBIJBIYGRkhKioKFhYWANSPdvfy8sLatWtha2uLWbNmIS8vDwEBAfjpp5+wZcsWJCUlwcHBQXNVdPPmzRVqVVZWhv/9738ICgpCnz59sGXLFsjl8mf+2Tx8+BCjR49G27ZtERsbi86dO2PIkCH466+/MGnSJKxbt67S2lYmPz8f8+fPx6ZNm2BmZoYJEybg8OHDOHToELy8vDB8+HDs3bsXBQUFOHLkCFxcXBAeHo4TJ07gwYMHFRrrUaNGYf369Rg0aBD++OMPuLi4YPTo0di8eTM2b94MZ2dnWFlZYeXKlZpvNG7fvg0AMDY2xvLly3H48GGsWLGi0sY6JSUF3t7emm+05HI5LC0tAQAWFhYoLHz6yaRNmzbFsWPH0KlTJ+zbtw+PHj1CmzZtsHLlSnz88ce4desWrly5gkePHgFQP3Y9MjISw4cPh6mpKVauXImwsDAcP34cAKBQKLBixQr89NNPWLVqFTZu3IijR4/iv//9r6ax/vTTTyGVqm+E93hsqby8HDNmzMCGDRtgb2+P//znP9X683keNtZERET1wPXr1yGTyRDz9wzNmTNnMHLkSHh4eGDAgAFITEyEUqnE22+/DWNjY8TExGDFihWIi4tDu3btoFKpKuzvzp07mkc1v/XWW5g7d26lx83IyED79u0BAL1793CuE7EAACAASURBVK50ncejIEqlEhEREVi+fDk6dOgAAMjMzETLli0hk8k0xzp06BCkUinefvttAIBMJkOLFi2QmZmJ27dvw8nJCYD6iuaNGzeeOt6ToyD/9HjbS5cu4eTJkzh9+jQAoKysDHl5eYiPj0d8fDzu3bunaRYrq9WkSZOwZMkSrFu3Ds7Ozs+9+vnkcdPS0rBjxw4AQEFBQZXb/dONGzeQm5uLkSNHAlA3jpmZmRg1ahQWL16MTz75BA4ODnBzc0P//v2xbNkyjBgxApaWlhg3blyV+3ZxcQEA2Nvbo6ioCCYmJsjNzcX48eNhbm6Ohw8forS0FAA0/228+uqrKCkpqXR/27dvx/fff6/5WiaTQaFQwNTUFAqFAlZWVti5cyfWrFkDQP0N2KxZszBz5kwsX74cb7zxBoyNjdG1a1ecOXMGn3zyCV5//XW4uLjAxsamQmYrKyvNXL2VlRWKi4sr5LS0tESLFi0gkUhgbW2t+X0AWLFixVMz1rm5uZDJZLC3twcAdOzYEffu3Xv+H9Bz8D7WRCIXuisUobu088GZOis0VL2QIFj+mrl48SKmTp2qaRicnJxgaWkJAwMDdOzYEZmZmUhJSUH//v0BABs3bsS0adOQlJSE8+fP448//oBUKoVSqQQANGzYEBcuXAAAHD9+HM2bN6/0uC1atNDMTG/btq3KD31JpVI4ODhomjMAcHR0xNWrV/Hw4UMAwLFjx+Dk5IQWLVrgxIkTANRXOi9dugRHR0e88soruHr1KgDUaFZbIpEAAJydndGnTx8kJiZi2bJl8Pb2hoWFBXbu3In4+HisXr0aP/74I27evFlprTZs2IDg4GDNmMPu3bthYmKCu3fvAlB/CO+f5/74uEFBQUhMTMS8efNeeL7Z0dERjRo1wooVK5CYmIiAgAC8+eab2L59O/r164fExES0atUKGzduRGpqKjp06IDVq1fD29sby5cvfyrT4z/vJ2vz2MGDB5GTk4P4+HiMHz8eRUVFmm/A/rnuPxUWFqKkpASNGjXSvOfu7o4DBw5o9t2hQwd4e3sjMTERiYmJcHV1xYEDBzBr1iwsXboU+fn56NKlCzIyMtCgQQOsXbsWn332GSQSSbXn5Z+X81kaNGgAhUKB3NxcAMCff/5Zo/38E69YE4nco9JHQkfQvUciPOc6hOWvmffffx9Xr17FgAEDYG5uDpVKhYkTJ2p+9O7j44OdO3eiVatWAIDWrVujf//+sLW1hYODA958803IZDIkJCTAxcUFM2bMwPTp06FSqWBgYFDhLg9PmjhxIqKjo5GQkABTU1PExsY+tc7jURAAmnUuXrwIQD3CEhwcjKFDh0IqlaJZs2YIDQ2FRCJBVFQU/P39UVxcjDFjxqBBgwaIjY1FWFgYLCwsYGFhAWtr6xrVa/DgwYiMjERAQADkcjmGDBkCY2NjWFtbw9fXF9bW1ujSpQsaN25caa3kcjmGDRsGGxsbWFhYoFu3bpDL5QgJCcHx48efeTeWUaNGYfLkydi4cSPkcjnGjBkDAM+csd6yZQuOHDmi+ToxMRFBQUEIDAxEeXk5mjRpgl69eqGkpATh4eEwNzeHkZERvv76a6hUKkyYMAHz58+HVCrFpMefDP5bs2bNcOnSJaxatarSrG5ubli0aBEGDhwIY2NjNG3aFHfu3KlWfTMyMtCkSZMK733xxRcICwvDxo0bYWtrW+lPQV577TWMHDkSZmZm8PDwwLvvvovi4mL8+uuvSElJgYmJCaJ18AQpqVSKqKgofPbZZ7C0tIRSqcRrr7320vuVqP75s6F6yM/Pr95+epTopvzmS91ZwLelL5rImjx/RSJ6KefPn9f82BkQ5nZ7VVm2bBlsbW01V6yJqGpLlizBsGHDYGxsjNDQUHTt2hUffvhhhXX++fceqLrv5BVrIiKiGrAxsXmpRrg2hYeHaz4kSETVY2FhgYEDB8LU1BRNmjR55mcIXgQbayKRC9kZAgCY5z1P4CQ6FKI+Z8wT0TnXISx/7Zs9e7bQEYjqnYCAAAQEBNTqPvnhRSIiIiKiWsAr1kQiJ6or1Y/xUqmg6nP5VSpVje9CQET1S00+hsgr1kRERNVgamqK+/fv1+gfWyKqX1QqFe7fvw9TU9MX2o5XrIlE7sufvgQALOyzUOAkOvSl+pyxUETnXIfU1/I7OjoiKytLcx9jItJvpqamcHR0fKFt2FgTiZyZkZnQEXTPTITnXIfU1/IbGRlpnq5HRFQZNtZE9ZxSpcRN+c0abx/5bmSduWWYzsTFCZ1A1Fh+ItJXbKyJ6rmisiLsvr67xtv7tvQVX2NNRESkBfzwIpHITdw1ESO3jxQ6hm6NHKleSBAsPxHpK16xJhI5WzNbWBpZCh1Dtxo0EDqBqLH8RKSv2FgTidykdyahiayJ0DF0KyZG6ASixvITkb6q9ca6tLQUERERuHnzJkpKSvDFF1/g1VdfxahRo9C8eXMAgL+/P3r37o0FCxZg//79MDQ0REREBNzc3HD9+nWEh4dDIpGgVatWmDJlCqRSTqwQERERUd1W6431tm3bYGNjg9jYWOTl5aFfv3748ssvMWzYMHz66aea9dLT03Hs2DEkJycjJycHwcHB2LRpE2JiYhASEgIPDw9ER0cjNTUVXl5etR2TiP42fud4mBuZY6XvSqGj6M6wYerXlSI65zqE5ScifVXrjbW3tzd69uyp+drAwABnz55FRkYGUlNT8dprryEiIgInT55E165dIZFI0LhxY5SXlyM3Nxfp6eno1KkTAMDT0xOHDx9mY02kRY0sG8HK2EroGLrVtKnQCUSN5ScifVXrjbWFhQUAQC6XY+zYsQgJCUFJSQkGDBgAV1dXJCQkYOHChbC0tISNjU2F7QoLC6FSqSCRSCq8R0TaM6HLBPHNWH/9tdAJRI3lJyJ9pZXh5ZycHAwdOhS+vr7w8fGBl5cXXF1dAQBeXl44d+4cZDIZFAqFZhuFQgFLS8sK89QKhQJWViK7kkZERERE9VKtN9b37t3Dp59+igkTJqB///4AgOHDh+P06dMAgN9++w0uLi5wd3fHoUOHoFQqkZ2dDaVSCTs7O7Rt2xZHjx4FABw8eBAdO3as7YhE9ITgn4MRsDlA6Bi6FRCgXkgQLD8R6ataHwVZvHgxCgoKsGjRIixatAgAEB4ejlmzZsHIyAj29vaYPn06ZDIZOnbsiEGDBkGpVCI6OhoAEBYWhqioKMTHx8PZ2bnCvDYR1b4Wti3EN2PdurXQCUSN5ScifSVRqVQqoUO8LD8/P2zevFnoGEQ1clN+E1uvbK3x9l6veb30I81FN2NNRERUQ1X1nbxBNBERERFRLWBjTSRyo/83GoNTBgsdQ7cGD1YvJAiWn4j0FR9pTiRybV9pC2sTa6Fj6Fa7dkInEDWWn4j0FRtrIpEb4zFGfDPW4eFCJxA1lp+I9BVHQYiIiIiIagEbayKR+2zbZ/ho40dCx9Ctjz5SLyQIlp+I9BVHQYhErkOjDuKbsf73v4VOIGosPxHpKzbWRCI36q1R4puxDg0VOoGosfxEpK84CkJEREREVAvYWBOJ3LAfh+GDdR8IHUO3PvhAvZAgWH4i0lccBSESuS6vdYGNsY3QMXTrvfeETiBqLD8R6Ss21kQiN8J9hPhmrL/6SugEosbyE5G+4igIEREREVEtYGNNJHIBmwLQa00voWPoVq9e6oUEwfITkb7iKAiRyHm18IKNichmrH18hE4gaiw/EekrNtZEIvdJu0/EN2M9erTQCUSN5ScifcVRECIiIiKiWsDGmkjkBicPRo//9hA6hm716KFeSBAsPxHpK46CEImcT2sf2JrYCh1DtwYNEjqBqLH8RKSv2FgTidzHbh+Lb8b6s8+ETiBqLD8R6SuOghARERER1QI21kQi139Df3Rb1U3oGLrVrZt6IUGw/ESkrzgKQiRyA10GwtZUZDPWQUFCJxA1lp+I9BUbayKRG+g6UHwz1uzsBMXyE5G+4igIkciVlpeitLxU6Bi6VVqqXkgQLD8R6StesSYSOf8Uf5gYmGB/0H6ho+iOl5f6df9+QWOIFctPRPqKjTWRyPm/4Q87UzuhY+jWiBFCJxA1lp+I9BUbayKR+6jtR+KbsQ4IEDqBqLH8RKSv2FgTiZyiRIEreVdgZmRWo+0tjCxgY2JTy6m07OFD9au5ubA5RIrlJyJ9xcaaRC2/OB+KUsVL7aNeNpZPCNwciLyiPIR0DanR9r4tfevf+ffurX7lkK8gWH4i0ldsrEnUFKUKbL2y9aX2US8byyf4v+GPM/fOCB1Dt774QugEosbyE5G+YmNNJHJ9/tUHxibGQsfQrUGDhE4gaiw/Eekr3seaSOQKiwvxqPSR0DF068ED9UKCYPmJSF+xsSYSuS/+9wWWHF0idAzd8vVVLyQIlp+I9BVHQYhELvDNQJy+e1roGLo1dqzQCUSN5ScifcXGmkjkerbsCamRyH545ecndAJRY/mJSF+J7F9TIvqn3Ee5kBfLhY6hW/fuqRcSBMtPRPqKV6yJRG7sz2Nf6j7W9VL//upX3khZECw/EekrNtZEIvdp+09x6u4poWPo1n/+I3QCUWP5iUhfsbEmErnuzt1RblAudAzd8vEROoGosfxEpK84Y00kcncVd/GgSGQ3Fb51S72QIFh+ItJXvGJNJHLjdo4TdMY6vzgfilJFjbe3MLJ48UfKDx6sfuWQryBYfiLSV2ysiURuZIeR+P3O74IdX1GqwNYrW2u8vW9L3xdvrMPDa3w8enksPxHpKzbWRCLn2dwTxZJioWPolre30AlEjeUnIn3FGWsikcspzEHeozyhY+hWZqZ6IUGw/ESkr2r9inVpaSkiIiJw8+ZNlJSU4IsvvkDLli0RHh4OiUSCVq1aYcqUKZBKpViwYAH2798PQ0NDREREwM3NDdevX690XSLSjgm7JojvPtaBgepXDvkKguUnIn1V6431tm3bYGNjg9jYWOTl5aFfv354/fXXERISAg8PD0RHRyM1NRWNGzfGsWPHkJycjJycHAQHB2PTpk2IiYl5al0vL6/ajklEf/virS/w+23hZqwFERkpdAJRY/mJSF/VemPt7e2Nnj17ar42MDBAeno6OnXqBADw9PTE4cOH4eTkhK5du0IikaBx48YoLy9Hbm5upeuysSbSni7NuuCh6qHQMXSrRw+hE4gay09E+qrWZywsLCwgk8kgl8sxduxYhISEQKVSQSKRaH6/sLAQcrkcMpmswnaFhYWVrktE2nPjwQ3cU9wTOoZuXbumXkgQLD8R6SutDC/n5ORg6NCh8PX1hY+PT4UZaYVCASsrK8hkMigUigrvW1paVrouEWlPxJ4IJP2RJHQM3fr0U/VCgmD5iUhf1Xpjfe/ePXz66aeYMGEC+vfvDwBo27Ytjh49CgA4ePAgOnbsCHd3dxw6dAhKpRLZ2dlQKpWws7OrdF0i0p6xHmPR5/U+QsfQrWnT1AsJguUnIn1V6zPWixcvRkFBARYtWoRFixYBACZPnowZM2YgPj4ezs7O6NmzJwwMDNCxY0cMGjQISqUS0dHRAICwsDBERUVVWJeItKeTYyc8KBfZI83ffVfoBKLG8hORvqr1xjoyMhKRlXzkOynp6R81BwcHIzg4uMJ7Tk5Ola5LRNpxLe8abhfehoOlg9BRdOfiRfVr69bC5hAplp+I9BWfvEgkctF7o8V3H+vPP1e/8kbKgmD5iUhfsbEmErnxb4/H8VvHhY6hW7NmCZ1A1Fh+ItJXbKyJRM69kTvul9wXOoZuvf220AlEjeUnIn3FxppI5C7dv4Tsgmw0tmosdBTdOXtW/erqivzifChKFVWvXwULIwvYmNjUUjBxeKL8RER6hY01kch9vf9r8c1Yjxmjft2/H4pSBbZe2VrjXfm29GVj/YKeKD8RkV5hY00kchO7TsSxnGNCx9Ct2FihE4gay09E+oqNNZHIuTm44XbRbaFj6NZbbwmdQNRYfiLSV1p5pDkR1R/n7p5D5oNMoWPo1qlT6oUEwfITkb7iFWsikZt1cJb4ZqxD/j5XDvkKguUnIn3FxppI5CI8I5CWkyZ0DN2aN0/oBKLG8hORvmJjTSRybV9pi5sPbwodQ7fatRM6gaix/ESkrzhjTSRyp2+fxvW860LH0K3jx9ULCYLlJyJ9xSvWRCL3zaFvxDdjPWGC+pVDvoJg+YlIX7GxJhK56G7R+C37N6Fj6NaCBUInEDWWn4j0FRtrIpH7V4N/4bpcZKMgfJa2oFh+ItJXnLEmErnfc37HtdxrQsfQrSNH1AsJguUnIn3FK9ZEIhd/JF58M9YREepXDvkKguUnIn3FxppI5L7u/jWO3BTZ5cMlS4ROIGosPxHpKzbWRCLnbOuMqwVXhY6hW61bC51A1Fh+ItJXnLEmErljWcdw+d5loWPo1oED6oUEwfITkb7iFWsikfv+6Pfim7GeMkX9yiFfQbD8RKSv2FgTidysHrNw+OZhoWPo1ooVQicQNZafiPQVG2sikWtm3QwX8y8KHUO3nJ2FTiBqLD8R6atqzVjfu3dP2zmISCCHbxzGhTsXhI6hW3v2qBcSBMtPRPqqWlesg4ODYWdnh/79++Pdd9+FVMrPPBLpi4TjCcgrysPrDV8XOoruzJihfu3RQ9gcIsXyE5G+qlZjvW7dOly9ehUpKSlISEjAv//9b/Tv3x9NmzbVdj6iOk+pUuKm/GaNty8pL6nFNC8u9v1Y/HrzV0Ez6FxiotAJRI3lJyJ9Ve0Z64YNG6Jp06ZIT0/HpUuXMHPmTLRp0wZfffWVNvMR1XlFZUXYfX13jbf3es2rFtO8uEaWjWBrZitoBp3jRQFBsfxEpK+q1Vh/9dVXuHz5Mj744APExsbCwcEBAODn58fGmqieO/jXQaTfSYeLg0uNtq+XV+x37lS/envr/tjE8hOR3qpWYz1w4EC0a9cOFhYWuHPnjub9devWaS0YEenG0pNLkVeUV+PGul5esZ89W/3Kzk4QLD8R6atqNdZ//PEHfv31V4SHh2PGjBlwdXXFyJEjYWJiou18RKRl33p/iwNZInsM3vr1QicQNZafiPRVtW7vsXfvXoSHhwMAvv/+e+zdu1eroYhId16xeAXWptZCx9CtV19VLyQIlp+I9FW1GmuJRIKSEvUcZGlpKVQqlVZDEZHu7L22F2dunRE6hm5t365eSBAsPxHpq2qNggwePBg+Pj7417/+hWvXrmHEiBHazkVEOrLijxXIK8rDG6++IXQU3Zk7V/3q4yNsDpFi+YlIX1WrsR4wYADee+89ZGZmomnTprCzs9N2LiLSke97f48DmSKbsU5JETqBqLH8RKSvqtVYnz9/Hhs2bEBxcbHmvZiYGK2FIiLdsTOzg8xEJnQM3bK3FzqBqLH8RKSvqtVYh4eHIyAgAK/y0yZEeueXK7/g9N3TaNe4ndBRdGfzZvWrn5+wOUSK5ScifVWtxtre3h4DBgzQdhYiEkDin4nIK8oTV2P9/ffqV3Z2gmD5iUhfVauxbtKkCZYuXYo2bdpAIpEAALp27arVYESkGwl9E7Avc5/QMXRr61ahE4gay09E+qpajXVpaSkyMjKQkZGheY+NNZF+sDSxhJmRmdAxdMtaZPftrmNYfiLSV9VqrGNiYpCRkYEbN26gdevWaNiwobZzEZGO/HTpJ5y5dwYdmnQQOorubNigfh00SNgcIsXyE5G+qlZjnZSUhN27d+PBgwfo168frl+/jujoaG1nIyIdWHdmHfKK8sTVWCckqF/Z2QmC5ScifVWtxvqnn37C2rVrMXToUHzyySf46KOPtJ2L6qKHuUBxYe3sy8QSMOf90OuCZR8sw94be4WOoVs//yx0AlFj+YlIX1WrsX78CPPHH1w0NjbWXiKqu4oLgVNra2df7Yawsa4jzIzMYGwosr/T5uZCJxA1lp+I9JW0Oiv17dsXH3/8MW7cuIHPPvsMPXr00HYuItKRrRe24ljmMaFj6FZSknohQbD8RKSvqnXFOiAgAP/+979x6dIlODk54fXXX9d2LqJqyS/Oh6JUUePtS8pLajFN/ZScnoy8ojx0atpJ6Ci6s3y5+jUgQNgcIsXyE5G+qlZjvWDBAs2vr169ij179mDMmDFVbvPnn38iLi4OiYmJSE9Px6hRo9C8eXMAgL+/P3r37o0FCxZg//79MDQ0REREBNzc3HD9+nWEh4dDIpGgVatWmDJlCqTSal1YJxFSlCqw9UrNb4rr9ZpXLaapn1Z+uBKpN1KFjqFbu3cLneDl1PPPO9T38hMRPUu1n7wIqGetz507B6VSWeX6y5Ytw7Zt22Bmpr437rlz5zBs2DB8+umnmnXS09Nx7NgxJCcnIycnB8HBwdi0aRNiYmIQEhICDw8PREdHIzU1FV5ebH6ItMXIwAgGUgOhY+iWkZHQCV5OPf+8Q30vPxHRs1SrsR48eHCFr0eMGFHl+s2aNcP8+fMxceJEAMDZs2eRkZGB1NRUvPbaa4iIiMDJkyfRtWtXSCQSNG7cGOXl5cjNzUV6ejo6dVL/SNrT0xOHDx9mY02kRZvPbcbZ+2fx72b/FjpKjShVStyU33yhbcyTNgIAHgYM5DiQAFatUr8GBQmZgoio9lWrsX7yiYt3795FTk5Olev37NkTWVlZmq/d3NwwYMAAuLq6IiEhAQsXLoSlpSVsbGw061hYWKCwsBAqlUpz95HH7xGR9mw+vxl5RXn1trEuKivC7usvNlvgu1x9I+WtnU04DiQANtZEpK+q1Vg/+TAYExMTzZXo6vLy8oKVlZXm19OnT8d7770HheL/f+hMoVDA0tKywjy1QqHQbEdE2pH0UdILN6b13dblIUJHELX9+4VOQESkHdVqrBMTE1/qIMOHD0dUVBTc3Nzw22+/wcXFBe7u7oiNjcXw4cNx69YtKJVK2NnZoW3btjh69Cg8PDxw8OBBdO7c+aWOTXUb7+pBRERE+qJajfUHH3wAhUIBExMTFBcXA4BmZCM19fl3E5g6dSqmT58OIyMj2NvbY/r06ZDJZOjYsSMGDRoEpVKpuSoeFhaGqKgoxMfHw9nZGT179nyJ06O6jnf1EN6Gsxtw/v55dGneRegoOtNm82EAwHk/8ZxzXbJsmfr1s8+EzUFEVNuq1Vi3b98eH374Idq3b4+LFy/ihx9+wIwZM6rcxtHRERs3qj8g5OLigvXr1z+1TnBwMIKDgyu85+TkhCQ+OYBIZ36+/DNyH+WKqrFu+ctJAGyshbJhg/qVjTUR6ZtqNdZXr15F+/btAQCtW7dGTk4OH2tOpCdW91stuhnr7UvGCh1B1PbsEToBEZF2VKuxtrS0xLx58+Dm5oaTJ0+icePG2s5FRERERFSvVOuRhnPnzoVMJsOvv/6Kpk2bYubMmdrORUQ6sub0GhzMOCh0DJ1y2XgQLhvFdc51yaJF6oWISN9Uq7E2MTGBtbU1bG1t4eTkhIKCAm3nIiId2ZuxF2dunRE6hk41P3AGzQ+I65zrku3b1QsRkb6p9n2sGzZsiCNHjsDV1RVhYWFY9vhj3URUr/3g+4PoZqx/Wvil0BFEbccOoRMQEWlHta5Y37hxA1999RWMjY3RvXt3Pg2RiIiIiOgfqtVYl5eXIzc3FxKJBHK5vMLTEYmoflt9ajX2Xd0ndAydclu7D25rxXXOdcl336kXIiJ9U60Oedy4cfD398fZs2cxaNAgjBkzRtu5iEhHfsv8DRfvXRQ6hk41OXoRTY6K65zrktRU9UJEpG+qNWOdk5ODX375Bbm5ubC1tYVEItF2LiLSkcU+i0U3Y73ju1FCRxC1bduETkBEpB3VumL9+AmKdnZ2bKqJiIiIiCpRrSvWJSUl+PDDD+Hk5KSZr547d65WgxGRbvzw+w+4lHcJPVr2EDqKzrT7r/rRf6eGiuec65K4OPVraKiwOYiIaluVjfWiRYswevRohIaG4vbt23BwcNBVLiLSkT9y/sCdh3eEjqFTDn9mCB1B1H77TegERETaUWVjnZaWhtGjR6NTp04YOnQo/vvf/+oqFxHpyII+C0Q3Y/3L3M+EjiBqmzYJnYCISDuqnLFWqVSV/pqIiIiIiCqqsrF+8oOK/NAikX5acmIJdl3aJXQMnWq/YhfarxDXOdcls2erFyIifVPlKEh6ejoGDx4MlUqFK1euaH4tkUiwfv16XWUkIi06f/c8bj+8LXQMnbK/mCV0BFE7dUroBERE2lFlY72NNxsl0nvzes0T3Yz17jmfCh1B1Hhdhoj0VZWNdZMmTXSVg4iIiIioXqvWfayJSH8tPLYQV/OvolfrXkJH0ZkOS3cAAE6OFM8568TDXKC48LmrTY+1BgBETXjw7JVMLAFzu9pKRkSkE2ysiUQuIy8DtxXimrG2vS6u89WZ4kLg1NrnrnbxuI/6F6e2P3uldkPYWBNRvcPGmkjk4nrGiW7Ges/MIKEjiFpSRBUNNRFRPcbGmoiI6h6VEsi7Xjv74lgJEekIG2sikfsu7Ttcy7+Gvm36Ch1FZ95a9D8AwPHR4jnnuiR65TsAgK+H/frslUofAee21s4BOVZCRDrCxppI5HIKc5D3KE/oGDoluy2u861rMu9YCR2BiEgr2FgTidxsr9mim7HeNy1Q6AiitjLsJ6EjEBFpRZWPNCciIiIiouphY00kcnGH47C1tmZZ64nO329F5+/Fdc51yaRl72LSsneFjkFEVOs4CkIkcvlF+VCUKISOoVMmD8R1vnXN/QIzoSMQEWkFG2sikZvx3gzRzVgfiBoidARRW/qfnUJHICLSCo6CEBERERHVAl6xJhK52b/OxvWC6/Bz9RM6is68Hb8ZAHBkvPDnnF+cD0XpC46mKIsAx/aaLy2U5bDJPl3LybQnNKE7ACDui70CJyEiql1srIlErqisCKXlpULH0CmD4rpzvopSBbZeecEPUj7KB26d0Xzp6/oJbGo5lzY9KuE/0XSyIQAAIABJREFUPUSkn/h/N4HV6GrVEyyMLGBjUp/+SaW6Zur/TRXdjPWvkwYJHUHUFn61S+gIRERawcZaYDW6WvUE35a+bKyJiIiI6gB+eJFI5GYenImUMylCx9CpLrEp6BIrrnOuS0IW9EDIgh5CxyAiqnVsrImIiIiIagFHQYhEbrLnZNHNWB+e0F/oCKI2b8weoSMQEWkFG2siIjFTKYG867Wzr/KS2tkPEVE9xcaaSOSm7puKrMIsDHpTPHfKeCdmAwDeHQQAUPoIOFfzD1BX0Na3Wqt9+d37AHh3ECLSP2ysiUTO1NAURgZGQsfQqXITcZ1vXWNmXCZ0BCIirWBjTSRy4e+Ei27Gui48cVHM+MRFItJXvCsIEREREVEt4BVrIpGLTI3ETflNDGk3ROgoOvPu9LUAgANRzznn0kdAWXHV6xTLgdJqfPjPxBIwt6tmQv02cq43AGDpf3YKnISIqHaxsSYSORtTG+SX5AsdQ6eKrS2qt2JZMXDrTNXr2LsDWX88f1/thrCx/lsDq0dCRyAi0go21kRPqs4Vyn8qLwUeVdKYGpoARma1k0uLQruEim7GOm1s9e5eQdoR89kBoSMQEWkFG2uiJ1XnCuU/vdaj8m1efaNeNNb0cpQWr+CmY/tqrFgEyG8+9XYJ7/1MRKQ3tNZY//nnn4iLi0NiYiKuX7+O8PBwSCQStGrVClOmTIFUKsWCBQuwf/9+GBoaIiIiAm5ubs9cl4i0I3x3OLLl2Qh0DxQ6is7835REAMC+aS9/zkUox+6zq5+/4qtvAGY2T73t9ZrXS2eob4bN6QMAWBn2k8BJiIhql1Y61mXLliEyMhLFxeofqcfExCAkJARr166FSqVCamoq0tPTcezYMSQnJyM+Ph7Tpk175rpEpD2NLBvB1sxW6Bg6JXewhdxBXOdclzRtWICmDQuEjkFEVOu0csW6WbNmmD9/PiZOnAgASE9PR6dOnQAAnp6eOHz4MJycnNC1a1dIJBI0btwY5eXlyM3NrXRdLy/xXdEh0pWvOn8luhnr46P7Ch1B1L4e9qvQEYiItEIrV6x79uwJQ8P/37OrVCpIJBIAgIWFBQoLCyGXyyGTyTTrPH6/snWJiIiIiOo6nQwvPzkjrVAoYGVlBZlMBoVCUeF9S0vLStclIu0J/SUUq06uEjqGTvWYvAo9Jq8SOoZoBczyQcAsH6FjEBHVOp001m3btsXRo0cBAAcPHkTHjh3h7u6OQ4cOQalUIjs7G0ql8v+1d+dhUZb7/8DfMwwgq0iYoSKBB7eUELcoMrMUbbPUhCzN8rh9zQ6WHbdIDNxaOJX1w/JICyoulOE52TknyzQVl1BSSdxyIdxAcQERZvv9QUyA7Dzz3MPc79d1dZ0zzDP3vJ8egs/cfJ77hre3d7XHEjVP5rJl+Or6p3y5vtr+0Vtv3d+AVgFo497GauPbogL/Nijwl+ucbUlnv8vo7HdZdAwiIsWpstzezJkzERMTg4SEBAQGBiIiIgIODg7o3bs3IiMjYTKZ8MYbb9R4LFGzZDQAedl1H1fTcn0VWXHpvql9p0rXY50xcajoCFKLGbNDdAQiIquwWmHdvn17rFu3DgAQEBCAlStX3nLMtGnTMG3atEpfq+lYIiIiIiJbxgWiiSQX/W00kn5OEh1DVYNmJmHQTLnO2ZZExQ1DVBx3vyQi+8OdF4kk17V1VzgWOIqOoar8zu1FR5BaSMcLoiMQEVkFC2siyU3qPUm6Huv9Lw4WHUFqs0bvEh2BiMgq2ApCRERERKQAzlgTSe6lb17CxRsXMaHvBNFRlKMvBgwlNT4dMWc1AOC/C0f/udxhdcxGa6ST3oh5TwEAvpy/QXASIiJlsbAmklxP3544WnBUdAxlGUpqXcLwQoc/esrPH6x9ucPWXawQjsK65YqOQERkFSysiSQ3PnS8dD3WmU/aV8FscmuN3PY9G/dirRlubYPhdfaAsqFqMSNyj2rvRUSkJhbWRGQb6mjfqFF1rRyStXDchBHfHfq8cS9u3QXD2vSDl7KRiIikxMKaSHKT/zUZecV5mNxvstggdbRv1Ki6Vo46WjiGLtwGAPh2Tv+Gvx812RNzRwIANi5IFZyEiEhZLKyJJBfmF4Yjl4+IjqGq3OA2oiNI7aHQU6IjEBFZBQtrIsk9H/K8dD3WBx7rLDqC1P424mfREYiIrILrWBMRERERKYCFNZHkxqeNx0fpH4mOoapH47bi0bitomNIa+isURg6a5ToGEREimMrCJHkBgYMRPblbNExVHWqd1vREWxKk5brA+BmMjZoub7Hw443+r2IiGwZC2siyT0b/Kx0PdZZQ4NER7ApTVquD8Cw7s83aLm+/xu2r9HvRURky9gKQkRERESkABbWRJJ7fsPz+GDHB6JjqOrx2C14PHaL6BjSenhGFB6eESU6BhGR4tgKQmKYTUDBacB089Zd8xrCqC/bsc/RRblsknkk6BEcvnRYdAxVHb+vg+gIUoscINf3GxHJg4U1iaEvBn5NA9r3bNxue+X8Hy7bsY+FdaNFdo+Ursf68KCOoiNIbcJjv4iOQERkFWwFISIiIiJSAAtrIsk99+VzeG/7e6JjqGpYzPcYFvO96BjSGjB9NAZMHy06BhGR4tgKQtQsmGvuRTfqG9anrnOu1DozvOtwHLp0qIn5mpfsBwNER5DauIgmtH8REdkwFtZkB2opOutStSg1G5WJpDSjAcirYRMX/4cb1qd+R4/KhXW34fA47dHEgM3LkYGBAt61hu/Thn4wAmz3+7Sexg1hYU1E9omFNTV/tRWddalalLbuokymZkRv1MNoMsJB6yA6imq0BhMAwKRTsRuupu/Thn4wApr996neUPbv3VFnEpyEiEhZ7LEmktwLX7+ApTuXio6hqsfnb8Hj87mOtSiDXovCoNe4jjUR2R/OWBNJ7um7nsahfLl6rA8/zOX2RPrrI1xuj4jsEwtrIulU7vUdFvQkXFHauD51nbOCudRz9IE7RUeQ2nODskRHICKyChbWRLKp0utb3C4cpWf3w0nbiB8Hd/RQMJh6dCUGAIDBmT8CRbhxs+zfu2sLg+AkRETKYo81keQm/Gc6/t/JraJjqOrR+K14NF6uc7Ylj8wehUdmjxIdg4hIcZyuIZLcM12H4+DxTaJjqCorIkh0BKlNeWK/6AhERFbBwppIco92HAQnyW5ePB7eQXQEqUU+eFh0BCIiq2ArCJHkrpcWothYKjqGqpyKSuFUJNc525Krhc64Wtg8b3wlIqoNC2siyU3532v4+NRPomOoaujinzB0sVznbEuGxYzAsJgRomMQESmOrSBEkhtz1ygcOPYv0TFUdfDRTqIjSO3lp34WHaHxblwGSq4rM5azB+DqrcxYRGQTWFgTSS4i4EFoL2aKjqGq3+7xEx1BasP7HxUdofFKrgOZq5UZ6+4oFulEdoaFteSulFxBkb6ofgebbgLte1b6kpvJCK+zB6yQjNRy+eYVFBpK4N5MN3tpjBbXSgAANz3lOWdbkn/VBQDg07JYcBLB9MXAr2nKjBUymoU1kQ1gYS25In0R0o7X8wd78RXg/MFKXxrW/Xl4WSEXqeflzbNRcC0H0R0fEh1FNRFvbwcApMXJc862ZGTsUwCAH/+h0MwvEZGNYGFNJLkXe4xG5lGFZs2aicwnuoiOILVXn96j7huaTUDBaWXGkmwFHSJqGBbW9q6uG21MN8tmouvDbFQmE9mUgf73w3i+Gd9M1gin+7QTHUFqj997XN03VLLlotswZcYhIrvEwtre1XWjTfuet7R31Kg1Z/nsUd6NS7iqL0ZLRxfRUVTjUlDW21vcSp5ztiXnL7sBAO7wruf9HUREzQTXsSaS3PQfXsenZ3aKjqGqwQk7MThBrnO2JVFxwxAVx5lfIrI/nLEmktzEu8di35ENjXy1GTDq699OVJ3y16vYarTvqW6qvRfdatYzu0RHICKyChbWRJLr7xeGkrONLHSMBqC0sP7tRNXxf7js9Sq2GuWE+qr2XjIwubVGbvuegNZ8y5Kc1enRvux/c1F2LJftJCJ7wcKaSHLnCi+goLQIrZzcREdRjXt+WW9voY8852xNN2HEd4c+L/twlJdd5/EF+WXrLbfyuQyAy3YSkf1gjzWR5F77MRaf58j1p/mH3t+Fh96X65xtyefvT8Xn708VHYOISHGqzlg/+eST8PDwAAC0b98ekZGRWLBgARwcHBAeHo6XXnoJJpMJsbGxOHLkCJycnBAfHw9/f381Y1IDWP4E3FB//Mm41LWV8qGoQab0fAH7Dn8pOoaqMkbeJTqC1IaMbGxPPxGRbVOtsC4pKdtCODk52fK1YcOGYenSpfDz88PEiRORlZWF3NxclJaWYu3atcjMzMTixYuRmJioVkxqIMufgBvqjz8ZD+o3XflQ1CD3teuLG7/vEB1DVb/ffYfoCFLrcvch0RGIiKxCtcI6OzsbxcXFePHFF2EwGDBt2jSUlpaiQ4cOAIDw8HCkp6cjLy8P999/PwAgJCQEhw7xBzCRNZ25lov8kkL4OLuLjqIaz/OFAIBrd8hzzrYk//ztAACfOy4KTkJEpCzVCusWLVpg/PjxePrpp3Hq1ClMmDABnp6elufd3NyQk5ODwsJCuLv/+cvOwcEBBoMBOh3vs6yOyWxCbmFuLQfcrPUufbZi0Jxt8Si4loPojg+JjqKaBz/aDQBIi5PnnG3Jyo8mAQCi4+IEJyEiUpZq1WpAQAD8/f2h0WgQEBAADw8PXLny59q3RUVF8PT0xM2bN1FU9OduXCaTiUV1LW4abuK709/VfEDxlVqXQmMrBr3cawJ+/nW96Biq2hvVQ3QEqT0alSo6AhGRVai2KkhqaioWL14MALhw4QKKi4vh6uqKM2fOwGw2Y/v27ejduzdCQ0Oxbds2AEBmZiY6deqkVkQiKfX1DUWQ++2iY6jq7F234+xdcp2zLQm66zCC7josOgYRkeJUmwoeOXIkZs+ejWeeeQYajQYLFy6EVqvFjBkzYDQaER4ejrvvvhs9evTAjh07EBUVBbPZjIULF6oVkUhKv105jQs3r6FNC8+6D7YTXrnXAABX2slzzrbkQm7ZBj1t2p0TnISISFmqFdZOTk549913b/n6unXrKj3WarV488031YpFJL03ti+Wrsf6gWV7AbDHWpSUZX8FwB5rIrI/bF4mktwrfaZgb9Za0TFUtfvZu0VHkNoTz64RHYGIyCpYWBNJLrRNMC6d+l50DFWd7+IjOoLUArscEx2BiMgqWFgTSe7o5RM4e/MK2rbwEh1FNd6ny1YkuuwvzznbkrOn2wMA2vr/LjiJHTGbgILTyozl7AG4eiszFpFkWFgTSe7Nne9I12N9/z8zALDHWpR1/3wBAHusFaUvBn5NU2askNEsrIkaiYU1keT+3m8a9hxaLTqGqtLHhoiOILWnxq4SHYGIyCpYWBNJLrh1N1xwvU10DFVdDJLrfG2Nf9BvoiMQEVkFC+smulJyBUX6oroPrEGpsVTBNEQN9+ulo8gpLoCfizzb2992sgAAcClAnnO2JTkn/QEAfgEK9QQTEdkIFtZNVKQvQtrxxve1DfIfpGAaooZbmP4P6Xqsw5P2AWCPtShfJo0FwB5rIrI/LKyJJDcnbDp2HVwpOoaqtr8YKjqC1Ea8+IXoCEREVsHCmkhy3W7rhFyJ2kAAtoCIxhYQIrJXLKyJJHcg71ecvnEJ/hLdwHj7sUsAeBOjKKePBQJoHjcxFuuNKDWYLI9dTWbcKNY3aiwnnRYujg5KRSMiG8TCmkhyb+1eKl2PddgXmQDYYy3Khi+eBdA8eqxLDSb8eu6a5XGXbnpkV3jcEN18PVlYE9k5FtZEknvj3hlIPyhXz+tPf+0lOoLURv31U9ER7ELF2fSmzKQDnE0nUgoLayLJdfLuiNMSbWcOcCtz0biVuTIqzqY3ZSYd4Gw6kVJYWBNJbt+FA/itKB+Bbj6io6jmjux8AMD5LvKcsy35LTsIABDY5RgAwOTWGmfahsBoNluO0WnMMPjeXa/xXA1GtDiz3/KYs69EJAoLayLJJexNlK7Hut+qXwCwx1qUjauiAPzZY30TRvzrwGfIKyyxHOMTEIz8kwfqNV5kyAsorjBba6uzr2aYcbVCu0ZT2zeMJnPdBxGRqlhYE0nuzfBZ2PnLZ6JjqGrr5D6iI0jtmcn/FB1BCIPRjGMXr1seN7V9I+h2dyViEZGCWFgTSS7Qyx8nWniKjqGqK+3kOl9b06bdOdERiIisQis6ABGJtefcPhwrvCg6hqraZl1E2yy5ztmWHMvqimNZXUXHICJSHAtrIsl9kLEc31w4KDqGqvqsOYg+a+Q6Z1vyzZqR+GbNSNExiIgUx1YQIskt7P86dmQmiY6hqi1T+4mO0OzpTWbLzXMmsxk3DSY4ms3QV9ilsCZPT04EANz841iT2QyzmTfiEVHzx8KaSHIdPNvhiLNcN0Fdu0Ou87UGo8lsWcWj1GBCXmEJfIwm5FdY2aNGbjkAgLxCWF6vZF2t5OobXHmDiBqChTWR5Hbk7kH29fPo4nGH6Ciqaf/LeQDA73fLc8625FRWMADgzrvqt5xeQym5+gZX3iCihmBhTSS5xP2fouBajlSFda/ULAAsrEXZ8e9RAKxXWBMRicLCmkhybw+IxU/7l4uOoarv/3aP6AhSe3zCe6IjEBFZBQtrIsn5urdBKye3ap+reINadRzNZsuNa/XhoNXAUatpVE4lFfpUf76kDk/vfNERiIisgoU1keS25aQj6/o53OXhe8tzFW9Qq46P0WS5ca0+Wrs720Rh7bevbIOSnNBbz9nWVPfhpurqG/X9cKMBUPVjUkM/HJVryioevx3sCQAI7LG/0WMQEdkiFtZEkvvkly9QcC2n2sLaXoVu+BVA8yisq/twU3X1jfp+uLnN1QmXbpTeMlZDPhxVHKux0jeNAKBcYe3i7QuE3m95fK2FDi7tDZbHV1o4wKXC81XpSvS4nrVLkSzNVcWVVHSlRly+fKPRY7k769DKrfHfH0TNGQtrIsn9Y2A8tu77WHQMVf3vlXtFR5DasMnvKDpeKYxYm/mp5XHVDxA+V4ORf7LmGyUjQ15QNE9zVHElFc9LRfhf7u+NHmtkr/YsrElaLKyJJNfa9Ta0dHQRHUNVxa3kOl9b497yiugIRERWwS3NiST3w+mfcPBarugYqvLfmwv/vXKdsy05ltkHxzL7iI5BRKQ4zlgTSS7p4GoUXMtBD892oqM0SPlNfdXdeFfX1trBadkAgCM9fWEym6E3mW3ipkpZ7PnvMABAUMhewUmoOq3dHTG4XcN67ivy1p8HChzKHjh7AK7eCiUjsn0srIkk98HDi7A1Y5noGA1WflNfdTfe1bW19meTegEAbvzxeiMLa1U99X9LREegWjiabuJa+spGv97g6wm4OJY9CBnNwpqkwsKaSHLeLbzgrnMWHUNVNzysd741rf1d0yx6XUvdNWVZO1vl6nG97oOIiJohFtZEkvvvyS04cDUHIS39REdRzV0ZZwEAWb3aKj52TWt/1zSLXtdSd01Z1s5WHcko2/mycy+5l7iTgtkEFJxWZiy2lVAzwMKaSHLJWetQcE2uwvrezb8BqFhYVz9rXFevNnDrjLM9zjAr7efNjwFgYS0FfTHwa5oyY7GthJoBFtZEkksc/Da2/PyR6Biq+mJav0qPTSbg0o36zzJXVHXG2R5nmJU2YtpC0REqqbrBTEX12WyGG8xUVnGzGVeTGTf++P+N4aTTwsXRQaloRFbHwppIch5O7nBxUKsYvHVmuHzGtz6zw5VGasLMcImrY6NfS03XwrXxu/pZQ9UNZiqqz2Yz3GCmsoqbzXTppkf2uWuNHqubrycLa2pWWFgTSe6bE9/h4JUz6OXVwervVd3McPmMb31mhytqysxwjz1la1gf7Nu8lhi0F4f33AcA6Np3h+Ak1KywX5uaARbWRJJLOfwVCq7lqFJY24p7tpwEwMJalH1bhgJgYU0NxH5tagZYWBPZgJqWaCtXW5tE1ZvnNABqa5KoOtbHEQn4z64Pqr15z15vxPss+h7REaQ2KvpN0RGomVCyXxtgzzZZHwtrIhtQ0xJt5Wprk6ju5rmKPaF1jeUAJ1y9YQRgvOVYe70RT+/MH30iOTrX/P3ZHNV282NFNd0IyZsfa6ZkvzbAnm2yPv52IZLcv0/8B4eKctDdTZ7l9kLScwAAmWHynLMtOZT+AACge9hWwUmUUdvNjxXVdCPkuIFz4OLc8Btqywt1XUnTZnGJSDksrIkk99XRf+FC4RmpCus+28pugGJhLcYv2wYBsJ/CuqnqW5hXVV6oc1USItvBwpqoESr2RNe0JXV9l48zmc1Ce5k/jngfa7a8Lez9RVjx6r2iI0gt6tV5oiMQEVmFTRbWJpMJsbGxOHLkCJycnBAfHw9/f3/RsYgsKvZE17QldX2Xjys1mCDyHkFHrQ4OGq24AAKYdHKdr61x0N3az0+N5+LtiyvOt25cU1+6Ej2Qd0jhVLap/GZIF4MR+gu/NWksnVYDZ52WS/dRJTZZWG/evBmlpaVYu3YtMjMzsXjxYiQmJoqORc1cdStvVJ1tru8ssz2tlpF27BscKDyDYHd5ltsL3X4GALAvXJ5ztiUHtg8EAASH/yA4iX0ohRH/zl5/y8Y19SVTK0n5zZBdiq4h+/uVTRqrm68nnF0cuXQfVWKThXVGRgbuv7/sk3dISAgOHZLjk7S9qGvpOODPAramNopydS0dZzKbYWxAMZxfVHk1gqqzzfWdZban1TLSjm/ChSK5CuteO1hYi3RwBwtrW+Li7VtpxZLqtm2vi5vn7Si6dhEAGjVWxddXVN+xRKysouTsd/nvOgdHRxj1Tb8ZVQNAq9BYOq0Gzm4t+eGhnjRmG5x6mzt3LgYPHowHHii7c3zAgAHYvHkzdLrqPwf069cP7dpxowciIiIisq7c3Fzs3r272udscsba3d0dRUVFlscmk6nGohpAjSdHRERERKQWm7yDJzQ0FNu2bQMAZGZmolOnToITERERERHVziZbQcpXBTl69CjMZjMWLlyIjh07io5FRERERFQjmyysiYiIiIiaG5tsBSEiIiIiam5YWBMRERERKcAmVwVpCu7aaBv0ej3mzJmD3NxclJaWYsqUKfjLX/6CWbNmQaPRICgoCPPmzYNWy892arp06RKGDx+OpKQk6HQ6Xg/BPv74Y/zwww/Q6/V45pln0LdvX14TgfR6PWbNmoXc3FxotVrExcXxvxOBfvnlF7zzzjtITk7G6dOnq70OH374IX788UfodDrMmTMHwcHBomPbrYrX4/Dhw4iLi4ODgwOcnJywZMkS+Pj4YN26dVizZg10Oh2mTJmCBx98UHRs1dndT4eKuza++uqrWLx4sehIUtq4cSO8vLywevVqLF++HHFxcVi0aBGio6OxevVqmM1mfP/996JjSkWv1+ONN95AixYtAIDXQ7Ddu3dj//79SElJQXJyMs6fP89rItjWrVthMBiwZs0aTJ06Fe+99x6viSDLly/H66+/jpKSsg27qrsOWVlZ2LNnD9avX4+EhATMnz9fcGr7VfV6LFiwADExMUhOTsagQYOwfPly5OXlITk5GWvWrMGKFSuQkJCA0tLSOka2P3ZXWHPXRtswZMgQ/O1vf7M8dnBwQFZWFvr27QsA6N+/P3bu3CkqnpSWLFmCqKgo3H777QDA6yHY9u3b0alTJ0ydOhWTJ0/GgAEDeE0ECwgIgNFohMlkQmFhIXQ6Ha+JIB06dMDSpUstj6u7DhkZGQgPD4dGo0Hbtm1hNBpx+fJlUZHtWtXrkZCQgK5duwIAjEYjnJ2dceDAAfTs2RNOTk7w8PBAhw4dkJ2dLSqyMHZXWBcWFsLd3d3y2MHBAQaDQWAiObm5ucHd3R2FhYV4+eWXER0dDbPZDI1GY3n++vXrglPK46uvvoK3t7flQycAXg/BCgoKcOjQIbz//vuYP38+ZsyYwWsimKurK3JzczF06FDExMRgzJgxvCaCREREVNoYrrrrUPX3Pa+P9VS9HuUTNPv27cPKlSsxbtw4FBYWwsPDw3KMm5sbCgsLVc8qmt31WDd010aynnPnzmHq1KkYPXo0Hn/8cbz99tuW54qKiuDp6SkwnVy+/PJLaDQapKen4/Dhw5g5c2almR1eD/V5eXkhMDAQTk5OCAwMhLOzM86fP295ntdEfZ999hnCw8Px6quv4ty5c3j++eeh1+stz/OaiFOxr738OlT9fV9UVFSpsCPr2rRpExITE/HJJ5/A29ub1+MPdjdjzV0bbUN+fj5efPFFvPbaaxg5ciQAoFu3bpbt57dt24bevXuLjCiVVatWYeXKlUhOTkbXrl2xZMkS9O/fn9dDoF69euGnn36C2WzGhQsXUFxcjLCwMF4TgTw9PS2FQMuWLWEwGPhzy0ZUdx1CQ0Oxfft2mEwmnD17FiaTCd7e3oKTyiEtLc3yO8XPzw8AEBwcjIyMDJSUlOD69es4ceKElDWY3W0Qw10bbUN8fDy+/fZbBAYGWr42d+5cxMfHQ6/XIzAwEPHx8XBwcBCYUk5jxoxBbGwstFotYmJieD0Eeuutt7B7926YzWZMnz4d7du35zURqKioCHPmzEFeXh70ej3Gjh2L7t2785oI8vvvv+OVV17BunXrcPLkyWqvw9KlS7Ft2zaYTCbMnj2bH3ysqPx6pKSkICwsDL6+vpa/4PTp0wcvv/wy1q1bh7Vr18JsNmPSpEmIiIgQnFp9dldYExERERGJYHetIEREREREIrCwJiIiIiJSAAtrIiIiIiIFsLAmIiIiIlIAC2siIiIiIgVw5xQiIoV98skn2LlzJ7RaLTQaDaZPn47u3btbnh82bBhCQ0Mxb948y9e6d++Onj17AgAMBgM6duxoWRZxyZIlOHr0KLRaLRwdHTF37lz4+flh1qyIE5chAAAFg0lEQVRZeOSRR9C/f3/cd9992LFjh2W8I0eOID4+HkDZmv7BwcHQarUYP348BgwYUG3u1atXIyoqqtJmHBXNmDEDw4cPx7333mv52o0bNxAbG4tLly4BKFsLet68efDy8mrcvzwiomaMhTURkYKOHz+OH374ASkpKdBoNJadLjdu3AgAyMjIQKdOnbBr165KWzK3bNkSycnJlnGio6OxdetW6HQ6XLx4EZ9++ikAYPPmzVi4cCESExNrzdG5c2fLeAMHDkRSUhKcnZ1rfc2yZcswatSoGgvr6qSmpsLX1xdvvfUWAGDFihVYtmwZZs2aVe8xiIjsBQtrIiIFeXt74+zZs0hNTUX//v3RtWtXpKamWp5fv349IiIi4Ovri6+//hrPPffcLWPo9XrcuHEDrq6u8Pb2xqFDh7Bp0ybcc889eOihh9C/f/8mZTx48CAWLFgAnU4HZ2dnxMfHY9u2bbh8+TJeeeUVJCQkICYmBhcuXMDVq1cxYMAATJs2rdqx2rZti6+//hohISHo06cPxo0bh/LtEdauXYu1a9fCZDJh0KBBmDp1Kr7++mskJyfDyckJAQEBePPNN7FhwwakpaXBaDQiOjoa+fn5+OKLL6DVatG3b19Mnz69SedLRKQW9lgTESnI29sbiYmJ2LdvHyIjIzFkyBBs2bIFAFBYWIiMjAwMGDAAI0aMQEpKiuV1V69exZgxYzBmzBiMHz8effv2RVhYGDp37oy4uDhs3rwZjz32GEaMGIHMzMwmZYyJicH8+fOxcuVKjBo1Cm+99RYiIyPh7e2NhIQEnDt3Dr169UJSUhJWrVqFVatW1TjWww8/jIkTJ2LdunUYOHAgxo0bh5MnT+LixYtISkpCSkoKvvrqK1y5cgVnz55FYmIikpOTkZKSAhcXF6xfvx4A0KpVK6SkpCAoKAiJiYn4/PPPkZKSgpycHOzatatJ50tEpBbOWBMRKej06dNwd3fHokWLAJTNDk+cOBH9+vXDpk2bYDKZMGnSJABAXl4e0tPTERYWdksrSLns7GwEBAQgISEBZrMZO3bsQHR0dKV+6obKz89H586dAZRtRfzhhx9Wet7LywuZmZlIT0+Hh4cH9Hp9jWPt27cP4eHhGDJkCAwGAzZs2IA5c+Zg5syZ6Ny5s6X9ZO7cudi/fz86deoEV1dXAEDv3r3x888/o0uXLggICAAAnDp1CpcuXcKECRMAlH0YycnJwT333NPo8yUiUgtnrImIFHTkyBHExsaipKQEABAQEAAPDw84ODggNTUVy5Ytw4oVK7BixQq8/vrrtc4GA0B6ejoSEhJgNBqh0WgQFBQEFxcXaDSaRmf08fHBsWPHAAB79uzBnXfeCQDQarUwmUxITU3FbbfdhnfffRdjx45FcXFxjWNt3LjR0v+t0+nQuXNnODk5wd/fHydOnEBpaSkAYOrUqWjTpg2OHj1qGW/v3r2W9y4/nw4dOsDX1xdJSUlITk7Gs88+i+Dg4EafKxGRmjhjTUSkoMGDB+PEiRN4+umn4erqCrPZjL///e/IycmB2WxGUFCQ5diIiAgsWrQI586dq3G8MWPGYMmSJXjyySfh7u4OrVZruVGwseLj4y0rkuh0OixcuBAA0KtXL0yYMAGzZ8/GjBkzsHv3bri6usLPzw/5+fnVjjVjxgzExsbiiSeegKurK9zc3BAXF4fWrVtj3Lhxlh7yQYMGoW3btpgyZQrGjh0LjUaDgIAAREZGIi0tzTKej4+PpSXGaDTCz88Pjz32WJPOl4hILRpz+V0mRERERETUaGwFISIiIiJSAAtrIiIiIiIFsLAmIiIiIlIAC2siIiIiIgWwsCYiIiIiUgALayIiIiIiBbCwJiIiIiJSAAtrIiIiIiIF/H+GYXVfFVlmugAAAABJRU5ErkJggg==\n",
3149
      "text/plain": [
3150
       "<Figure size 864x432 with 1 Axes>"
3151
      ]
3152
     },
3153
     "metadata": {},
3154
     "output_type": "display_data"
3155
    }
3156
   ],
3157
   "source": [
3158
    "plt.figure(figsize = (12, 6))\n",
3159
    "\n",
3160
    "hr11=saps.saps2.loc[saps['hr_11.0']==1] \n",
3161
    "bp13=saps.saps2.loc[saps['bp_13.0']==1]\n",
3162
    "bp5=saps.saps2.loc[saps['bp_5.0']==1]\n",
3163
    "\n",
3164
    "_ = plt.hist(hr11, bins=30, alpha=0.5, label='Heart Rate: Cardiac Attack')\n",
3165
    "_ = plt.hist(bp13, bins=30, alpha=0.5, label='Systolic Blood Presssure: Less than 70mmHg')\n",
3166
    "_ = plt.hist(bp5, bins=30, alpha=0.5, label='Systolic Blood Presssure: Less than 70-99mmHg')\n",
3167
    "_ = plt.xlabel('SAPSII Total Score')\n",
3168
    "_ = plt.ylabel('Frequency')\n",
3169
    "_ = plt.legend()\n",
3170
    "_ = plt.axvline(np.mean(hr11), color='b', linestyle=':')\n",
3171
    "_ = plt.axvline(np.mean(bp13), color='r', linestyle=':')\n",
3172
    "_ = plt.axvline(np.mean(bp5), color='g', linestyle=':')"
3173
   ]
3174
  },
3175
  {
3176
   "cell_type": "code",
3177
   "execution_count": 44,
3178
   "metadata": {},
3179
   "outputs": [
3180
    {
3181
     "data": {
3182
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABL8AAAJECAYAAAD3+YZ3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde3zP9f//8ft7m23sYNZyirGJGjKnj0NMUaIDarEDTT4Oi48kInIYNTNySJHjJ8WSLVo+1Cd9HMocakksNOkgGkKGHbDj6/uHn/fPstlie4+X2/Vy2eXyfj1fr+fz9Xi9tz9c7p7P58tiGIYhAAAAAAAAwITsyrsAAAAAAAAAoKwQfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAACT6NSpk/bu3Ws9/uKLLxQWFqYePXro8ccf14svvqjjx49LklJSUtSsWbOrxnjnnXc0duzYq9pTUlLk5+enHj16WH+6d++u1atXF1vXl19+qTfffFOStGnTJk2ZMuV6H1Hp6enq27dvoefi4+PVokWLAvV16tRJL7/8srKysq457pXfx8qVK7V48eJrXr9371698MIL1/cQZeSJJ55QYmLiVe3x8fF67rnnrMdpaWmaMmWKunXrph49eujJJ5/UqlWrrOfHjh2rd95556pxmjVrppSUlLIp/i8mTJigffv2XfOaon5nq1at0ooVK8q8RgAAcOtwKO8CAABA6Vu3bp0WLFigBQsWqE6dOjIMQ4sXL1bfvn316aefXteYzs7O+s9//mM9PnHihJ544gk1btxY9957b5H99u7dq3PnzkmSHnroIT300EPXdX9JOnfuXIGA769atmypRYsWWY+zsrIUGhqqjz/+WCEhISW6R2hoaLHX3HfffXrrrbdKNN7NJCsrS88884y6deumjz/+WA4ODjp69Kj69esnSerVq1f5Fvj/7NixQ8HBwSW+/srf2a5du1S/fv2yKAsAANyiCL8AADChN954Q5GRkapTp44kyWKxKDw8XDVq1FB2dnap3KNatWqqU6eOfvvtN3l7e2vy5Mk6fPiwzp49KxcXF82cOVPp6emKjY1VXl6e3NzcVKdOHX3++edatGiR0tPTFRUVpYMHDyonJ0dt27bVyy+/LAcHB913330KDw/X9u3bdfLkSQ0cOFC9e/fWK6+8oosXL6pHjx6Kj4+Xvb39NWs8e/asMjIyVLlyZUmXArvXXntNx48fV05Ojh5//HENHjy4QJ+5c+fqzJkzioiI0Pfff6/JkycrJydH3t7eOnbsmHVmXGRkpD755BOlp6fr1Vdf1YEDB2SxWBQQEKCRI0de8zn+avXq1YqLi1NOTo7OnTunQYMGqXfv3oqPj9eGDRtkZ2enw4cPy9nZWdOnT1e9evX0888/a9y4cbpw4YJ8fX11/vz5Yn9n//3vf1WpUiUNGjTI2nbXXXdpzpw5ysnJKbZ/YcLCwtSoUSPt2bNHqampCgoK0p9//qlvvvlGFy5c0Jw5c3TPPffojz/+0OTJk3X06FEZhqEnn3xSAwcOVEpKivr06aN69erp6NGjatGihU6ePKlRo0bp9ddfl2EYmjFjhrKzs3Xq1Cndf//9mjp1aqG/s7Zt22rz5s3avn27nJ2dtXz5ckVERKhdu3aSpPHjx6tBgwZ69tlnr+tZAQDArYlljwAAmMyZM2d09OhRNW/evEC7xWJR9+7d5erqWir32b17t44cOSJ/f38lJCTI3d1dcXFx+vzzz9W4cWOtWLFC/v7+CgkJ0WOPPaYRI0YU6D916lQ1atRI8fHxWrNmjc6cOaN3331XkpSdna0qVaooNjZWb731lqKjo5WVlaXo6GjrDLTCgq9vv/1WPXr0UNeuXdWmTRsNHz5c/fv316OPPipJGj16tJ5++mnFx8dr9erV2rFjh/773/8W+ny5ubkaNmyYhg8frnXr1iksLEzJyclXXTdlyhR5eHho3bp1+uijj/Tjjz9q6dKl13yOK2VmZmrVqlVavHix1qxZozfeeEMzZsywnt+5c6cmTpyoTz75RP7+/tblfaNGjVKvXr20bt069e3bV8eOHSv2d7Zv376r/i4kqVGjRmratGmx/Yty9OhRxcbGasaMGZoxY4ZatWql+Ph4BQQE6P3337fW27p1a61bt04rV67U2rVrrbMQ//jjD/3rX//S559/rqlTp6pq1aqaOXOm/P39tXz5cr3wwgtatWqVPv30U23evLnIJZGdO3dWp06d1K9fP/Xp00ehoaH68MMPJUkZGRnavHmznnrqqet+TgAAcGti5hcAACZjZ3fp/7by8/OLveav8vPzizx3ecaVJOXl5alKlSqaMWOGatSooRo1aqh27dqKiYnR4cOH9c033xS6p9iVvvzyS+3du9e6b9jFixcLnL+8PLJRo0bKzs4u0cymy8se8/PzNX/+fH3yySfq2rWrJOn8+fPauXOnzp07Z92D7Pz58zpw4ICaNGly1VgHDx6UJD3wwAOSpDZt2hS6nC4hIUErV66UxWKRo6OjQkJCtGzZMoWHhxf5HE5OTtb+Li4uWrhwobZs2aLffvtNBw4cKPCsjRo1UvXq1SVJDRs21IYNG3TmzBn9+OOPevLJJyVJLVq0KNFSP4vFIsMwir2mMPn5+UXOtOvcubMkqXbt2pKkgIAASZK3t7e++eYbnT9/Xt999501FHRzc1NgYKASEhLk7+8vBweHIsO3adOmKSEhQQsXLtSvv/6qrKwsnT9/Xh4eHsU+b2BgoN5++22lpqZq/fr1evDBB+Xu7l5sPwAAYC6EXwAAmEzlypVVt25dJSUl6f777y9wbvjw4RoyZIhq166tixcvKisrq0AQc/r06SJDhb/u+XWlDz74QB9++KH69Omjbt26ycPDo9jN0fPz8/Xmm2+qXr16ki5txH5l8HK5rsttxYU2V7Kzs9Pzzz+v3bt3a+zYsVq4cKHy8/NlGIZiY2NVsWJFSVJqaqqcnJx05syZq8awt7e/6p6FhT/5+fkF6s7Pz1dubm6Jn+OPP/5QcHCwgoKC1KJFC3Xt2lVffPGF9byzs7P181/Dqys/OzgU/8+6pk2bFroZ/KZNm/Ttt99qzJgxqlKlis6ePVvgfEZGhrKysooMjhwdHQscV6hQocDx5e/+r22XvydHR8ci63/mmWd0zz33KCAgQI8++qiSkpJK/Lfg7u6url27au3atVq3bp0mTZpUon4AAMBcWPYIAIAJPf/884qKitLhw4clXZqpNX/+fB04cEC+vr5ycXFRixYttGzZMmufEydOaP369daZTn/Htm3b9NRTT6lXr17y8fHR5s2blZeXJ+lSYHRlGHRZ+/bt9d5778kwDGVnZ2vIkCHWJXJFcXBwUF5eXonDj0mTJmn79u3auHGjXF1d1bRpU+vSyrS0NIWGhmrTpk2F9q1Xr54cHR2VkJAgSfr+++918ODBq2ZGtW/fXu+//771OT788MOrQsdr2bdvnzw9PfWvf/1L7du3twZfl7+/wlSpUkWNGjWyvqVx//791plq1/LII48oIyNDS5YssY7/+++/a9q0adYQskOHDvrss8904sQJSZcCtmXLlukf//iHXFxcSvxcV3J1dZW/v781eEtPT9eaNWuK/J4u/82kpaVp7969GjVqlB555BH98ccfOnLkyDVnNf71761Pnz5avny5DMModIYfAAAwP2Z+AQBgQt26dZNhGBo5cqRyc3OVlZWlRo0aadmyZdZZOjNnztTUqVP1+OOPy87OTvb29nrhhRfUunXrv32//v37KyIiwrqEsWnTptYwpk2bNho1apQiIyPVqFEja5/x48crKipK3bp1U05Oju6//34NHDjwmve588471aRJEz3++ONasWKFqlSpcs3rvb29NWjQIEVHRysgIEAzZ85UZGSkunXrpuzsbD3xxBPq3r17obPUHBwcNHfuXE2aNEmzZ89W3bp15eXlJWdnZ124cMF63YQJEzRlyhTrcwQEBFy1if61tGvXTqtXr1bXrl1lsVjUqlUreXp6WoPLosyePVuvvPKKYmNj5e3tLV9f32Lv5ejoqHfffVczZsxQt27dZG9vL3t7ew0ZMkSBgYGSLv2+Bg0aZF22efHiRTVs2FCzZs0q8TMVZubMmXrttdcUHx+v7OxsdevWTYGBgTp69OhV13bu3FmjR4/W5MmTFR4erqeeekqVKlVStWrV1Lx5cx0+fNi6xPKvOnTooGnTpkmSnnvuOd17772qXLlyid/2CQAAzMdi/J01BAAAALeR6dOna8CAAfLy8tLx48fVo0cPbdy4kX2jbiFHjhxRWFiY1q9fb13uCgAAbi/M/AIAACjCXXfdpX79+snBwUGGYWjKlCkEX7eQN998Ux9++KFeffVVgi8AAG5jzPwCAAAAAACAaZXZhvdJSUkKCwuTJB0+fFihoaHq3bu3Jk2aZN2kdN68eerZs6dCQkL0/fffl1UpAAAAAAAAuAGLFi1ScHCwAgMDrS/dkaSpU6dq5cqVBa5NTU3VI488oqysrALtGzZs0EsvvWQ9DgsLs/60a9dOM2fOLJPay2TZ45IlS7R27Vrr9PLo6Gi9+OKLat26tSIiIrRp0ybVrFlT33zzjVatWqXjx49r2LBh+uijj8qiHAAAAAAAAFynxMRE7d69WytXrtSFCxe0dOlSpaam6uWXX9Zvv/2mAQMGWK/dunWrZs2apT///LPAGFOmTNG2bdvk5+dnbYuJiZF06e3Tw4cP15AhQ8qk/jKZ+eXt7a25c+daj/fv369WrVpJuvQGnh07dmjXrl1q3769LBaLatasqby8PKWmppZFOQAAAAAAALhO27ZtU4MGDTR06FANHjxYDz74oDIzMzVs2DD16NGjwLV2dnZ699135eHhUaC9efPmmjx5cqHjR0VFafTo0XJxcSmT+stk5leXLl0KvDLcMAxZLBZJkouLi9LT05WRkVHgi7jc7unpedV4cXFxiouLkyT9+OOPql69elmUDQAAAAAAcFtKSUlRo0aNrMfBwcEKDg6WJJ05c0bHjh3TwoULlZKSoiFDhmj9+vWqXbu2EhISCozTrl27Qsd/7LHHlJiYeFX7gQMHlJmZqbZt25bi0xRkk7c92tn9/wlmmZmZcnd3l6urqzIzMwu0u7m5Fdr/yi/c399fmzZtKtuCAQAAAAAAbiP+/v6Kj48v9JyHh4d8fX3l6OgoX19fOTk5KTU1VXfccccN33ft2rXq1avXDY9zLWW24f2VGjZsaE33EhIS1LJlSzVv3lzbtm1Tfn6+jh07pvz8/EJnfQEAAAAAAKD8tGjRQlu3bpVhGDpx4oQuXLhw1bLG6/X1118rICCgVMYqik1mfo0ZM0YTJ07U7Nmz5evrqy5dusje3l4tW7ZUcHCw8vPzFRERYYtSAAAAAAAA8Dd07NhRO3fuVM+ePWUYhiIiImRvb18qY586dUpVqlQplbGKYjEMwyjTO5Qyf39/JSUllXcZAAAAAAAApmHmvMUmM7/KWk5OjlJSUnTx4sXyLqVQzs7OqlWrlipUqFDepQAAAAAAANxWTBF+paSkyM3NTXXr1rW+VfJmYRiGTp8+rZSUFPn4+JR3OQAAAAAAALcVm2x4X9YuXryoO+6446YLviTJYrHojjvuuGlnpQEAAAAAAJiZKcIvSTdl8HXZzVwbAAAAAACAmZkm/CpMfHy8Zs6cWeT5mTNnKj4+/m+PGxcXp5ycHCUmJmrEiBE3UiIAAAAAAADKkKnDr7KyaNEi5efnl3cZAAAAAAAAKIYpNry/lqSkJPXv31+pqakKDQ2Vh4eHFixYIE9PT+Xk5MjX11eSNGvWLO3cuVOGYahfv3569NFH9c0332jevHmSLu0rNn36dH377bc6deqURowYoWeffVaHDx/WwIEDlZqaqo4dO2rYsGHl+bgAAAAAAAC4gunDLwcHB73zzjs6evSowsPDlZ2drVWrVsnDw0Ph4eGSpC1btiglJUWxsbHKyspSUFCQ2rVrp59++kkzZsxQtWrVtHDhQq1fv15DhgzRggUL9MYbb2jPnj3KysrS/PnzlZeXpwcffJDwCwAAAAAA4CZi+vCrYcOGslgsuvPOO5WSkiJfX19VqVJFktSsWTNJ0sGDB7V//36FhYVJknJzc3Xs2DFVq1ZNUVFRqlSpkk6cOKHmzZtfNX79+vXl6Ogo6VLQBgAAAAAAgJuH6dOaK9+06OHhofT0dKWmpsrT01N79+5V9erV5evrq9atWysyMlL5+fmaP3++atWqpX79+mnjxo1ydXXVmDFjZBiGdczLe37xJkcAAAAAAICbl+nDrys5ODgoOjpaAwYMUOXKla0ztTp16qRvvvlGvXv31vnz5/Xwww/L1dVVPXr0UFBQkNzd3eXl5aWTJ09Kklq2bKnw8HANHTq0PB8HAAAAAAAAxbAYl6cz3SL8/f2VlJRUoC05OVl+fn7lVFHJ3Ao1AgAAAACA21NheYtZ2JV3AQAAAAAAAEBZIfwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmJYpw6+snDybjpefn6+IiAgFBwcrLCxMhw8fLtX7AwAAAAAA4Po4lHcBZcGpgr1ajF5eauPtmtH3muc3btyo7OxsxcXFac+ePZo2bZoWLFhQavcHAAAAAADA9THlzC9b27VrlwICAiRJTZs21b59+8q5IgAAAAAAAEiEX6UiIyNDrq6u1mN7e3vl5uaWY0UAAAAAAACQCL9KhaurqzIzM63H+fn5cnAw5YpSAAAAAACAWwrhVylo3ry5EhISJEl79uxRgwYNyrkiAAAAAAAASCbd8N7WOnfurO3btyskJESGYWjq1KnlXRIAAAAAAABk0vArKyev2Dc0/t3xnCrYF3nezs5Or732WqndDwAAAAAAAKXDlMserxVU3QzjAQAAAAAAwDZMGX4BAAAAAAAAEuEXAAAAAAAATIzwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaZky/DJys8plvKSkJIWFhZXqvQEAAAAAAHD9HMq7gLJgcXDSkdfuK7XxvCP2FnvNkiVLtHbtWlWsWLHU7gsAAAAAAIAbY8qZX+XB29tbc+fOLe8yAAAAAAAAcAVTzvwqD126dFFKSkp5lwEAAAAAAFDqnnzySbm5uUmSatWqpY4dO+r1119XjRo1JEnDhg1Ty5YtNXnyZP34449ydHTUlClTVKdOHe3Zs0dRUVGyt7dX+/bt9fzzzxc6ZnR0dJnUTvgFAAAAAACAImVlXdoLPSYmxtr2xhtvaPTo0erSpYu17X//+5+ys7MVFxenPXv2aNq0aVqwYIEmTZqkuXPnqnbt2goPD9f+/ft19913XzVmWSH8AgAAAAAAQJEOHDigCxcuqH///srNzdXIkSO1f/9+JScna9myZWrSpIlGjRqlXbt2KSAgQJLUtGlT7du3TxkZGcrOzpa3t7ckqX379vrqq6+Um5t71ZhNmzYtk/oJvwAAAAAAAG5zeXl5CgwMtB4HBwcrODhYkuTs7KwBAwaoV69e+u233zRo0CAFBwera9euqlWrliZNmqTY2FhlZGTI1dXVOoa9vf1VbS4uLvr9998LHXP9+vVycCj9qMqU4ZeRm1WiNzT+nfEsDk7FXlerVi19+OGHpXZfAAAAAAAAW7C3t1d8fHyh53x8fFSnTh1ZLBb5+PjIw8NDTzzxhHW/r4ceekiff/653NzclJmZae2Xn58vV1fXAm2ZmZlyd3cvdMxTp05ZxyxNpnzbY0mCqvIcDwAAAAAA4FaxevVqTZs2TZJ04sQJpaenq1evXvrjjz8kSV999ZUaNWqk5s2bKyEhQZK0Z88eNWjQQK6urqpQoYKOHDkiwzC0bds2tWzZ8qoxMzIydOedd5ZJ/aac+QUAAAAAAIDS0bNnT73yyisKDQ2VxWJRdHS0zp8/r+eff17Ozs6qV6+egoKCZG9vr+3btyskJESGYWjq1KmSpFdffVWjRo1SXl6e2rdvL39/f/n5+RUYc+rUqWWy5FGSLIZhGGUychnx9/dXUlJSgbbk5GT5+fmVU0UlcyvUCAAAAAAAbk+F5S1mYZpljzdzhncz1wYAAAAAAGBmpgi/nJ2ddfr06ZsyZDIMQ6dPn5azs3N5lwIAAAAAAHDbMcWeX7Vq1VJKSopOnTpV3qUUytnZWbVq1SrvMgAAAAAAAG47pgi/KlSoIB8fn/IuAwAAAAAAADcZUyx7BAAAAAAAAApD+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkRfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAAAAAAAApkX4BQAAAAAAANMi/AIAAAAAAIBpEX4BAAAAAADAtAi/AAAAAAAAYFqEXwAAAAAAADAtwi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEzLwVY3ysnJ0dixY3X06FHZ2dkpMjJSDg4OGjt2rCwWi+rXr69JkybJzo48DgAAAAAA4GZz+vRpBQYGaunSpcrOztakSZNkb2+vunXrKioqSnZ2dnrnnXf06aefymKxaPDgwercubPOnj2r0aNHKyMjQx4eHpoyZYruuOMO67gTJ05U5cqVNWrUqDKp22ZJ05YtW5Sbm6vY2FgNHTpUc+bMUXR0tF588UV98MEHMgxDmzZtslU5AAAAAAAAKKGcnBxFRETI2dlZkjRv3jwNHTpUK1euVHZ2tr788kulpaUpJiZGsbGxWrp0qaZOnSpJWrRokVq0aKGVK1cqLCxMs2fPto4bGxurgwcPlmntNgu/fHx8lJeXp/z8fGVkZMjBwUH79+9Xq1atJEkdOnTQjh07bFUOAAAAAAAASmj69OkKCQlR1apVJUl+fn46e/asDMNQZmamHBwcVLFiRdWsWVMXLlzQhQsXZLFYJEk///yzOnToIElq3ry5du3aJUnavXu3kpKSFBwcXKa122zZY6VKlXT06FE9+uijOnPmjBYuXKidO3davwgXFxelp6cX2jcuLk5xcXGSJEdHRyUnJ9uqbAAAAAAAANPLy8tTYGCg9Tg4ONgaSsXHx8vT01MBAQFavHixJKlu3bp67bXXtGDBArm5ual169aSpBo1aujxxx9XXl6ennvuOUmXgrLNmzerYcOG2rx5sy5evKiTJ09q3rx5mjdvnj777LMyfTabhV/vvfee2rdvr5deeknHjx/Xs88+q5ycHOv5zMxMubu7F9r3yi/c399ffn5+NqkZAAAAAADgdmBvb6/4+PhCz3300UeyWCz66quvlJycrDFjxujAgQP6+OOPVb9+fa1YsULTpk1T+/btdfLkSeu2VgMGDFDz5s0VHh6uqKgo9evXTwEBAapevbrWr1+vM2fOKDw8XKdOndLFixfl6+tbIIArLTYLv9zd3VWhQgVJUuXKlZWbm6uGDRsqMTFRrVu3VkJCgtq0aWOrcgAAAAAAAFACK1assH4OCwvT5MmTNXToULm6ukqSqlatqu+++06VK1eWs7OzHB0dZbFY5ObmprS0NH377bfq0aOH2rRpo88//1zNmzdX37591bdvX0mXZpb9+uuvZRJ8STYMv/r166dx48apd+/eysnJ0YgRI9S4cWNNnDhRs2fPlq+vr7p06WKrcgAAAAAAAHCdpkyZohEjRsjBwUEVKlRQZGSkatWqpR07digoKEh2dnZq3ry52rVrpyNHjmjMmDGSLgVllzfCtxWLYRiGTe94g/z9/ZWUlFTeZQAAAAAAAJiGmfMWm73tEQAAAAAAALA1wi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkRfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAAAAAAAApkX4BQAAAAAAANMi/AIAAAAAAIBpEX4BAAAAAADAtAi/AAAAAAAAYFqEXwAAAAAAADAtwi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEzLobwLAAAAAAAAwM3v9OnTCgwM1NKlS5Wdna3IyEjZ29vL0dFR06dP16lTpzR16lTr9Xv27NHbb7+tu+++Wy+//LIMw1DlypU1a9YsVaxYUZ988omWLVsme3t7NWjQQJMnT5adXenP02LmFwAAAAAAAK4pJydHERERcnZ2liRFRUVp4sSJiomJUefOnbVkyRL5+fkpJiZGMTEx6t27tx555BF16NBB7733nh599FGtWLFC9evX1+rVq3Xx4kXNmTNHy5cvV2xsrDIyMvTFF1+USe2EXwAAAAAAALim6dOnKyQkRFWrVpUkzZ49W35+fpKkvLw8OTk5Wa89f/685s6dq/Hjx0uS/Pz8lJaWJknKyMiQg4ODHB0dFRsbq4oVK0qScnNzC4xRmgi/AAAAAAAAbnN5eXkKDAy0/sTFxVnPxcfHy9PTUwEBAda2yyHYd999p/fff1/9+vWznlu9erW6du0qT09PSVL16tW1YsUKPf7440pISFDXrl1lZ2cnLy8vSVJMTIzOnz+vdu3alcmzWQzDMMpk5DLi7++vpKSk8i4DAAAAAADANK6Vt/Tp00cWi0UWi0XJycmqW7euFixYoJ07d2rBggWaP3++ateubb2+V1Fxr/gAACAASURBVK9eeuutt1SjRg1J0lNPPaWRI0cqICBAX375pT744AMtXrxY+fn5mjFjhg4dOqQ33njDOgustLHhPQAAAAAAAIq0YsUK6+ewsDBNnjxZO3bsUFxcnGJiYuTh4WE9n56eruzsbGvwJUnu7u5yc3OTdGnG2OUlkBEREXJ0dNT8+fPLZKP7ywi/AAAAAAAAUGL5+fmKiopSjRo1NGzYMEnSP/7xD73wwgs6dOiQ7rrrrgLXT5w4Ua+99pry8/NlGIYiIiK0f/9+rV69Wi1bttSzzz4rSerbt686d+5c6vWy7BEAAAAAAOA2Z+a8hQ3vAQAAAAAAYFqEXwAAAAAAADAtwi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkRfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAAAAAAAApkX4BQAAAAAAANMi/AIAAAAAAIBpEX4BAAAAAADAtAi/AAAAAAAAYFqEXwAAAAAAADAtwi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKZF+AUAAAAAAADTIvwCAAAAAACAaRF+AQAAAAAAwLQIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEzLwZY3W7RokTZv3qycnByFhoaqVatWGjt2rCwWi+rXr69JkybJzo48DgAAAAAA4GaRl5enCRMm6NChQ7K3t1d0dLRcXFw0YcIEpaWlKS8vT6+//rq8vb21ZcsWvf3225Kkhg0batKkSVqyZIm2bt0qSUpLS9Off/6p7du3a/PmzXr77bfl4OCgp59+WkFBQWVSv83Cr8TERO3evVsrV67UhQsXtHTpUkVHR+vFF19U69atFRERoU2bNqlz5862KgkAAAAAAADF+OKLLyRJsbGxSkxMVHR0tCpXrqxu3brpscce09dff61ff/1Vnp6emjFjhpYvXy5PT08tWbJEZ86cUXh4uMLDwyVJzz33nEaNGqWcnBxFR0dr9erVqlixokJDQ9WxY0fdeeedpV6/zaZZbdu2TQ0aNNDQoUM1ePBgPfjgg9q/f79atWolSerQoYN27Nhhq3IAAAAAAABQAg8//LAiIyMlSceOHZOXl5e+++47nThxQv369dO6devUqlUr7d69Ww0aNND06dPVu3dveXl5ydPT0zrO//73P7m7uysgIEC//PKLvL29VblyZTk6OqpFixb69ttvy6R+m838OnPmjI4dO6aFCxcqJSVFQ4YMkWEYslgskiQXFxelp6cX2jcuLk5xcXGSJEdHRyUnJ9uqbAAAAAAAANPLy8tTYGCg9Tg4OFjBwcHWYwcHB40ZM0YbNmzQW2+9pfj4eLm7u+u9997TvHnztGTJEvn4+CgxMVFr1qxRpUqV1KdPHzVt2lQ+Pj6SLm2HNXv2bElSRkaG3NzcrOO7uLgoIyOjTJ7NZuGXh4eHfH195ejoKF9fXzk5OemPP/6wns/MzJS7u3uhfa/8wv39/eXn52eTmgEAAAAAAG4H9vb2io+Pv+Y106dP16hRoxQUFCQ3Nzd16tRJktSpUye98cYbatasme677z7r0sWWLVsqOTlZPj4++vnnn+Xu7q46depIklxdXZWZmWkdOzMzs0AYVppstuyxRYsW2rp1qwzD0IkTJ3ThwgW1bdtWiYmJkqSEhAS1bNnSVuUAAAAAAACgBNasWaNFixZJkipWrCiLxaJWrVppy5YtkqSdO3fq7rvvVuPGjXXw4EGlpqYqNzdXSUlJuvvuuyVJO3bsUIcOHaxj1qtXT4cPH9bZs2eVnZ2tb7/9Vs2aNSuT+m0286tjx47auXOnevbsKcMwFBERoVq1amnixImaPXu2fH191aVLF1uVAwAAAAAAgBJ45JFH9Morr6hPnz7Kzc3VuHHj5OfnpwkTJig2Nlaurq6aNWuWKleurJdeekkDBw6UJHXt2lUNGjSQJB06dEjt2rWzjlmhQgWNHTtWAwYMkGEYevrpp1WtWrUyqd9iGIZRJiOXEX9/fyUlJZV3GQAAAAAAAKZh5rzFZsseAQAAAAAAAFsj/AIAAAAAAIBpEX4BAAAAAADAtAi/AAAAAAAAYFqEXwAAAAAAADAtwi8AAAAAAACYFuEXAAAAAAAATIvwCwAAAAAAAKblUNSJ9u3bX7OjxWLR1q1bS70gAAAAAAAAoLQUGX75+PgoJiamyI5hYWFlUhAAAAAAAABQWopc9rho0aICxxcvXlRaWlqR5wEAAAAAAICbTZEzvypVqmT9vGrVKm3ZskV5eXmqWbOmJk6cWOA8AAAAAAAAcDMqcubXf//7X+vnffv2ae7cuZo/f7727t1rk8IAAAAAAACAG1XkzK/c3FyNGDFCffv2Vbdu3RQeHq6srCyFhITYsj4AAAAAAADguhUZfnXv3l1du3bVu+++qyNHjigiIkK1a9e2ZW0AAAAAAADADSky/Dp58qQ+++wzeXp66rHHHtOyZcvk7Oys5557Tm5ubrasEQAAAAAAALguRe759dJLL+muu+6Sk5OTFi9erAkTJqh79+569dVXbVkfAAAAAAAAcN2KDL9ycnJksVhksViUl5cnSWrQoIFmzpxps+IAAAAAAACAG1Fk+PXmm2/q999/14ULFzRhwgRb1gQAAAAAAACUiiLDr5iYGPXr109BQUGqVKnSVeeZAQYAAAAAAICbXZEb3sfHx+v48eOFnjMMQ4mJiRo1alSZFQYAAAAAAADcqCLDrzlz5lyzY0hISKkXAwAAAAAAAJSmIsOvVq1a2bIOAAAAAAAAoNQVuecXAAAAAAAAcKsrNvz6888/bVEHAAAAAAAAUOqKXPZ42bBhw+Tp6amePXvqgQcekJ0dk8UAAAAAAABwayg2/Fq5cqV++eUXrV69WgsWLFDbtm3Vs2dP1a5d2xb1AQAAAAAAANetRNO4qlatqtq1a8vZ2VkHDx5UVFSU3nzzzbKuDQAAAAAAALghxYZfw4cPV3BwsNLS0jRjxgwtWLBACxcu1JYtW2xRHwAAAAAAAG5zq1atKnC8fPnyEvctdtljUFCQmjZtKhcXF508edLavnLlyr9RIgAAAAAAAPD3fPLJJ9q8ebMSExP19ddfS5Ly8vL0008/qW/fviUao9jwa/fu3dq6davGjh2rKVOmqHHjxgoPD5eTk9ONVQ8AAAAAAABcQ0BAgO68806dPXtWwcHBkiQ7O7u/tRe9xTAM41oXBAYGKj4+3nocEhKi2NjY6yz5xvn7+yspKanc7g8AAAAAAGA2t0Lecvr0aWVlZVmPa9asWaJ+xc78slgsys7OlqOjo3JyclRMVgYAAAAAAACUqldffVVbtmxR1apVZRiGLBZLiSdnFRt+hYSEqFu3bmrQoIF+/fVXDRw48IYLBgAAAAAAAEoqKSlJGzdulJ1dse9uvEqx4VevXr300EMP6ffff1ft2rXl6el5XUUCAAAAAAAA16NOnTrKyspSxYoV/3bfYsOv5ORkxcXFFVhTGR0d/bdvBAAAAAAAgFtPXl6eJkyYoEOHDsne3l7R0dEyDENjx46VxWJR/fr1NWnSJNnZ2Wnw4ME6e/asKlSoICcnJ/373//W/v37NXjwYNWtW1eSFBoaqscee0zR0dHatWuX7OzsNGbMGLVo0aLIGo4fP66OHTuqTp06klS6yx7Hjh2rZ555RtWrVy/RgAAAAAAAADCPL774QpIUGxurxMREa/j14osvqnXr1oqIiNCmTZvUuXNnHTlyRJ9++qksFou1/w8//KB//vOf6t+/v7XtwIED2r17t1atWqXDhw9r5MiRBV64+FezZs267vqLDb+8vLzUq1ev674BAAAAAAAAbl0PP/ywHnzwQUnSsWPH5OXlpS+//FKtWrWSJHXo0EHbt29Xs2bNlJaWpsGDBystLU3h4eHq2LGj9u3bp0OHDmnTpk2qU6eOxo0bp6pVq8rZ2VnZ2dnKyMiQg8O1I6qPP/74qrbnn3++RPUXG37dddddWrx4sfz8/KypXfv27Us0OAAAAAAAAG5+eXl5CgwMtB4HBwcrODjYeuzg4KAxY8Zow4YNeuutt/TFF19YcyIXFxelp6crJydH/fv3V9++fXXu3DmFhoaqSZMmatKkiXr16qXGjRtrwYIFevvttzVkyBDZ2dnp0UcfVXp6uiIjI69Zn5eXlyTJMAz98MMPys/PL/GzFRt+5eTk6NChQzp06JC1jfALAAAAAADAPOzt7a+57FCSpk+frlGjRikoKKjA3vCZmZlyd3eXl5eXQkJC5ODgoDvuuEN+fn46dOiQOnfuLHd3d0lS586dFRkZqTVr1sjLy0vvvPOOMjMz1bt3bzVr1kzVqlUr9N4hISEFjgcOHFjiZys2/IqOjtahQ4d05MgR3XPPPapatWqJBwcAAAAAAMCtbc2aNTpx4oSee+45VaxYURaLRY0bN1ZiYqJat26thIQEtWnTRjt27NCKFSu0ePFiZWZm6qeffpKvr68GDBigiRMnqkmTJvrqq6/UqFEjubu7q1KlSrK3t5eLi4scHR2VmZlZZA1XTso6deqUjh8/XuL6iw2/3n//fW3YsEHnzp3TU089pcOHDysiIqLENwAAAAAAAMCt65FHHtErr7yiPn36KDc3V+PGjVO9evU0ceJEzZ49W76+vurSpYvs7e21bds2BQUFyc7OTiNHjpSnp6cmT56syMhIVahQQV5eXoqMjFTFihX13XffKSQkRHl5eerWrZt8fX2LrOHKLMrJyUkvv/xyieu3GIZhXOuC0NBQffDBB+rbt69iYmL09NNP66OPPirxDUqbv7+/kpKSyu3+AAAAAAAAZnMr5C1nzpzR77//rlq1asnT07PE/eyKu+ByNnZ5EzNHR8frLBEAAAAAAAD4+z777DOFhIRo4cKFCg4O1n/+858S9y122eMTTzyhPn366NixYxo0aJAefvjhGyoWAAAAAAAA+Dvee+89xcfHy8XFRRkZGXr22WfVo0ePEvUtNvx65pln1LZtWx08eFA+Pj669957b7hgAAAAAAAAoKQsFotcXFwkSa6urnJycipx32LDr3nz5lk///LLL9q4caOef/756ygTAAAAAAAA+Pu8vb01bdo0tWzZUrt27ZK3t3eJ+xYbfnl5eUm6tPfXDz/8oPz8/OuvFAAAAAAAAPibgoKCtHPnTu3YsUOffvqp/v3vf5e4b7HhV0hISIHjgQMH/v0KAQAAAAAAgOs0bdo0TZs2TXfffbf++c9/auzYsVqxYkWJ+hYbfh06dMj6+dSpUzp+/Pj1VwoAAAAAAAD8TQ4ODrr77rslSbVr15adnV3J+xZ3QUREhPWzk5OTXn755esoEQAAAAAAALg+NWvW1OzZs9W0aVN9//33qlq1aon7WgzDMMqwtlLn7++vpKSk8i4DAAAAAADANG72vCUrK0srV67UoUOHVK9ePYWEhMjR0bFEfYud+dW9e3dlZmbKyclJWVlZki5tfm+xWLRp06YbqxwAAAAAAAAohpOTk/r163ddfYsNv5o1a6Ynn3xSzZo1048//qh33nlHU6ZMua6bAQAAAAAAALZUbPj1yy+/qFmzZpKke+65R8ePHy/xtDIAAAAAAACgPBUbfrm5uWnOnDlq0qSJdu3apZo1a9qiLgAAAAAAAOCGFfteyFmzZsnV1VVbt25V7dq1FRUVZYu6AAAAAAAAgBtWbPjl5OSkypUrq0qVKvLx8VFaWpot6gIAAAAAAABuWLHhV0REhI4dO6bt27crMzNTY8aMsUVdAAAAAAAAwA0rNvw6cuSIhg8fLkdHR3Xq1Enp6em2qAsAAAAAAAC4YcWGX3l5eUpNTZXFYlFGRobs7IrtAgAAAAAAANwUin3b44gRIxQaGqpTp04pODhY48ePt0VdAAAAAAAAwA0rNvw6fvy4Pv/8c6WmpqpKlSqyWCy2qAsAAAAAAAC4YcWuYfzwww8lSZ6engRfAAAAAAAAuKUUO/MrOztbTz75pHx8fKz7fc2aNavMCwMAAAAAAABuVLHh16hRo2xRBwAAAAAAAFDqigy/5s+fr3/9619q1aqVTp48qapVq9qyLgAAAAAAAOCGFbnn19dff239zOwvAAAAAAAA3IqKDL8Mwyj0MwAAAAAAAHCrKDL8uvLNjrzlEQAAAAAAALeiIvf82r9/v0JCQmQYhn7++WfrZ4vFotjYWFvWCAAAAAAAAFyXIsOvtWvX2rIOAAAAAAAAoNQVGX7dddddtqwDAAAAAAAAKHVF7vkFAAAAAAAA3OoIvwAAAAAAAGBahF8AAAAAAAAwLcIvAAAAAAAAmBbhFwAAAAAAAEyL8AsAAAAAAACmZfPw6/Tp03rggQf0yy+/6PDhwwoNDVXv3r01adIk5efn27ocAAAAAAAAXENOTo5Gjx6t3r17q2fPntq0aZP13Lp16xQcHFzg+vz8fA0cOFArV64s0P7LL7+oRYsWysrKkiSFhYVZf9q1a6eZM2eWSf02Db9ycnIUEREhZ2dnSVJ0dLRefPFFffDBBzIMo8CXBwAAAAAAgPK3du1aeXh46IMPPtCSJUsUGRkpSUpOTtbq1atlGEaB6+fMmaNz584VaMvIyND06dPl6OhobYuJiVFMTIymTp2qatWqaciQIWVSv03Dr+nTpyskJERVq1aVJO3fv1+tWrWSJHXo0EE7duywZTkAAAAAAAAoRteuXTV8+HDrsb29vc6cOaOZM2dq3LhxBa5dv369LBaLOnToYG0zDEMTJ07UyJEjVbFixavGj4qK0ujRo+Xi4lIm9TuUyaiFiI+Pl6enpwICArR48WJJlx7eYrFIklxcXJSenl5o37i4OMXFxUmSHB0dlZycbJuiAQAAAAAAbgN5eXkKDAy0HgcHB1uXM14OpTIyMvTCCy9o+PDhGj9+vMaNGycnJydrn4MHD+qTTz7RW2+9pbffftvaPm/ePD3wwAO69957r7rvgQMHlJmZqbZt25bVo8li/HVuWhnp06ePLBaLLBaLkpOTVbduXf3www/64YcfJEkbN27Ujh07FBERcc1x/P39lZSUZIuSAQAAAAAAbgvF5S3Hjx/X0KFD1bt3bzVo0ECvvPKKPD09lZWVpZ9//llPP/20KlSooJ07d8rZ2VlHjx5VhQoVNH78eEVGRqp69eqSpD179qhJkyZasWKFJOn111/Xvffeq+7du5fZs9ls5tflh5IubWg2efJkzZgxQ4mJiWrdurUSEhLUpk0bW5UDAAAAAACAEvjzzz/Vv39/RUREWGdoffrpp5KklJQUjRw5UuPHjy/QZ+7cufLy8lKHDh20YcMGa3unTp20dOlS6/HXX3+tQYMGlWn9Nn/b45XGjBmjuXPnKjg4WDk5OerSpUt5lgMAAAAAAIC/WLhwodLS0jR//nzr2xkvXrxYKmOfOnVKVapUKZWximKzZY+lhWWPAAAAAAAApcvMeUu5zvwCAAAAAAAAyhLhFwAAAAAAAEyL8AsAAAAAAACmRfgFAAAAAAAA0yL8AgAAAAAAgGkRfgEAAAAAAMC0CL8AAAAAAABgWoRfAAAAAAAAMC3CLwAAAAAAAJgW4RcAAAAAAABMi/ALAAAAAAAApkX4BQAAAAAAANMi/AIAAAAAAIBpEX4BAAAAAADAtAi/AAAAAAAAYFqEXwAAAACA/2PvvuOqrv///9/gMERQERAc4AAUBRUnblFzpqWpb1EvWr4re2eOHGmOUstVmpplOXtn5TZxK5Ja7j3QHLgHvt0YCoKM8/r+4Y/zefdrvBscDhzv18vFPzjg6zzOep3X6/56Ph9PERG7pfBLRERERERERETslsIvERERERERERGxWwq/RERERERERETEbin8EhERERERERERu6XwS0RERERERERE7JbCLxERERERERERsVsKv0RERERERERExG4p/BIREREREREREbul8EtEREREREREROyWwi8REREREREREbFbCr9ERERERERERMRuKfwSERERERERERG7pfBLRERERERERETslsIvERERERERERGxWwq/RERERERERETEbin8EhERERERERERu6XwS0RERERERERE7JZdhF+PM7Ly5bZFRERERERERMS6nGxdQE5wdTZRc+jXVtn24SkvWmW7IiIiIiIiIiJifXYx8ktERERERERERKwrLi6Onj17AnD69Gm6dOlCt27dGDFiBGazGYBFixbRqVMnOnfuzPfffw/Ao0eP6NOnD927d+eVV14hMTERgNjYWJo3b07Pnj3p2bMnBw4csErddjHyS0RERERERERErGfevHmsXbsWNzc3AGbOnEnfvn2JjIxkyJAh/PDDD1SrVo3FixezevVqHj9+TNu2bWnSpAnLly8nLCyMfv36ER0dzeeff84777zDyZMnGTp0KK1atbJq7Rr5JSIiIiIiIiIiv6t06dJ8+umnlp8rVarETz/9hGEYpKSk4OTkhJeXF2vWrMHZ2Zm7d+9SuHBhHBwc6NWrF3369AHgP//5Dz4+PgCcPHmSlStX0r17dz744AMyMzOtUrvCLxERERERERGRp1xWVhYdO3a0/Fu2bNnPft+qVSucnP5vAmHZsmWZMGECbdq04d69e9SpUwcAJycnFi5cSFRU1M9GdJlMJl588UUWLlxIZGQkAA0aNODdd99l0aJFPHr0iKVLl1rlsSn8EhERERERERF5yplMJqKjoy3/oqKifvfvJ0yYwKJFi4iJiaFDhw588MEHlt/16NGDnTt3cvDgQfbt22e5/euvv2bRokX0798fgE6dOhEQEICDgwPPPPMMp06dsspjU/glIiIiIiIiIiJ/SpEiRfDw8ADA19eXBw8ecPHiRfr164dhGDg7O+Pi4oKjoyNz5sxh9erVABQsWBCTyYRhGDz//PPcvHkTgL179xIWFmaVWtXwXkRERERERERE/pTx48czaNAgnJyccHZ2Zty4cfj7+1OxYkWioqJwcHCgUaNGREREEBgYyNtvv83KlSvJyspi4sSJODg4MH78ePr160eBAgUICgqiS5cuVqnVwTAMwypbtpLw8HDi4uJ+cXvNoV9b5f4OT3nRKtsVEREREREREckrfitvsQea9igiIiIiIiIiInZL4ZeIiIiIiIiIiNgthV8iIiIiIiIiImK3FH6JiIiIiIiIiIjdUvglIiIiIiIiIiJ2S+GXiIiIiIiIiIjYLYVfIiIiIiIiIiJitxR+iYiIiIiIiIiI3VL4JSIiIiIiIiIidkvhl4iIiIiIiIiI2C2FXyIiIiIiIiIiYrcUfomIiIiIiIiIiN1S+CUiIiIiIiIiInZL4ZeIiIiIiIiIiNgthV8iIiIiIiIiImK3FH6JiIiIiIiIiIjdUvglIiIiIiIiIiJ2S+GXiIiIiIiIiIjYLYVfIiIiIiIiIiJitxR+iYiIiIiIiIiI3VL4JSIiIiIiIiIidkvhl4iIiIiIiIiI2C2FXyIiIiIiIiIiYrcUfomIiIiIiIiIiN1S+CUiIiIiIiIiInZL4ZeIiIiIiIiIiNgthV8iIiIiIiIiImK3FH6JiIiIiIiIiIjdUvglIiIiIiIiIiJ2S+GXiIiIiIiIiIjYLYVfIiIiIiIiIiJitxR+iYiIiIiIiIiI3VL4JSIiIiIiIiIidkvhl4iIiIiIiIiI2C2FXyIiIiIiIiIiYrcUfomIiIiIiIiIiN1yyq07ysjIYOTIkVy/fp309HT69OlDcHAww4cPx8HBgfLlyzNmzBgcHZXHiYiIiIiIiIjkNXFxcXz00Ud88803nD59mnHjxmEymXBxceHDDz/Ex8eHBQsWsGHDBgAiIyPp168fDx8+ZOjQoSQnJ5ORkcHw4cOpXr06hw4d4sMPP8TBwYHGjRvTr18/q9Sda+HX2rVr8fT0ZMqUKdy/f58XXniBihUrMnDgQOrUqcPo0aPZunUrLVq0yK2SRERERERERETkD5g3bx5r167Fzc0NgAkTJvDuu+9SqVIlli5dyrx58+jRowdr165lxYoVODg40L17d5o3b05sbCx169alV69eXLx4kSFDhrBq1SomTpzIjBkzCAgIoGfPnjRr1ozQ0NAcrz3Xhlm1bt2aN9980/KzyWTi5MmTREREANC4cWP27NmTW+WIiIiIiIiIiMgfVLp0aT799FPLz9OmTaNSpUoAZGVl4erqSvHixZk/fz4mkwlHR0cyMzNxdXWlV69edO3a9Wd/C7B8+XICAgJISUkhOTkZT09Pq9SeayO/3N3dAUhOTmbAgAEMHDjQMrQt+/cPHz781f+7bNkyli1bBoCLiwunT5/+xd+MbBlolbp/7b5EREREREREROxJVlYWHTt2tPwcFRVFVFSU5edWrVqRkJBg+dnX1xeAI0eOsHDhQhYtWoSzszNeXl4YhsHkyZMJDQ2lXLlylv9z584dhg4dysiRIwFwcnLi2LFjDB48mKCgILy8vKzy2HIt/AK4ceMGffv2pXv37jz33HNMmTLF8ruUlBQKFy78q//vv5/w8PBwS7L433r8+2ur1Hx4SkOrbFdEREREREREJK8wmUxER0f/qf+zceNGZs2axdy5cy3B1ePHjxk5ciTu7u6MGTPG8rfx8fEMHjyYYcOGWWYBAlSrVo1t27Yxffp05s6dy4ABA3LmAf2XXJv2ePfuXV5++WWGDh1K586dAQgNDWX//v0A7Nixg1q1auVWOSIiIiIiIiIi8hetWbOGhQsX8s033xAQEACAYRi88cYbhISE8P7772MymQA4f/48b775JlOnTiUyMtLyt927dycpKQl4MiPQWosg5trIr9mzCvBp/gAAIABJREFUZ/PgwQM+//xzPv/8cwBGjRrF+PHjmTZtGoGBgbRq1Sq3yhERERERERERkb8gKyuLCRMmUKJECfr37w9A7dq1qVSpEgcOHCA9PZ2dO3cCMHjwYObOnUt6ejoTJkwAwMPDg1mzZvHyyy/Tu3dvXFxcKFasGOPHj7dKvQ6GYRhW2bKVhIeHExcX94vbaw611rTHF62yXRERERERERGRvOK38hZ7kGvTHkVERERERERERHKbwi8REREREREREbFbCr9ERERERERERMRuKfwSsbLHGVn5arsiIiIiIiIi9iTXVnsUeVq5OpussiCDFmMQERERERER+d808ktEREREREREROyWwi8REREREREREbFbCr9ERERERERERMRuKfwSERERERERERG7pfBLRERERERERETslsIvERERERERERGxWwq/RERERERERETEbin8EhERERERERERu6XwS0RERERERERE7JbCLxERERERERERsVsKv0RERERERERExG4p/BIREREREREREbul8EtEREREREREROyWwi8REREREREREbFbCr9ERERERERERMRuKfwSERERERERERG7pfBLRERERERERETslsIvERERERERERGxWwq/RERERERERETEbin8EhERERERERERu6XwS0RERERERERE7JbCLxERERERERERsVsKv0RERERERERExG4p/BIREREREREREbul8EtEREREREREROyWwq984HFGVr7ctoiIiIiIiIiIrTnZugD531ydTdQc+rVVtn14yotW2a6IiIiIiIiISF6gkV8iIiIiIiIiImK3FH6JiIiIiIiIiIjdUvglIvIb1G9PREREREQk/1PPLxGR36B+eyIiIiIiIk/MmTOHbdu2kZGRQbdu3fjHP/4BwMSJEylXrhzdunWz/G1iYiJdu3Zl3bp1uLq68vDhQ4YOHUpycjIZGRkMHz6c6tWr51rtGvklIiIiIiIiIiK/af/+/Rw9epQlS5bwzTffcPPmTRITE3n11VfZtm3bz/52586dvPzyy9y9e9dy25dffkndunVZuHAhkyZN4v3338/V+jXyS0REREREREREftOuXbuoUKECffv2JTk5mWHDhpGSkkL//v3ZsWPHz/7W0dGRL7/8kk6dOllu69WrFy4uLgBkZWXh6uqaq/Ur/BIRERERERERecplZWXRsWNHy89RUVFERUUBcP/+ff7zn/8we/ZsEhIS6NOnDzExMQQEBPwi/GrQoMEvtl24cGEA7ty5w9ChQxk5cqQVH8kvKfwSEREREREREXnKmUwmoqOjf/V3np6eBAYG4uLiQmBgIK6uriQmJuLt7f2Htx8fH8/gwYMZNmwYEREROVX2H6KeXyIiIiIiIiIi8ptq1qzJzp07MQyDW7dukZqaiqen5x/+/+fPn+fNN99k6tSpREZGWrHSX6eRXyIiIiIiIiIi8puaNm3KwYMH6dy5M4ZhMHr0aEwm0x/+/1OnTiU9PZ0JEyYA4OHhwaxZs6xV7i8o/BIRERERERERkd81bNiwX729f//+v3r7f68CmZtB16/RtEcREREREREREbFbCr9ERERERERERMRuKfwSERERERERERG7pfBLRERERERERETslsIvERERERERERGxWwq/RESeUo8zsvLltkVERERERP4MJ1sXICIituHqbKLm0K+tsu3DU160ynZFRERERET+LI38EhERERERERERu6XwS0RERERERERE7JbCLxERERERERERsVsKv0RERERERERExG4p/BIREREREREREbul8EtEREREREREROyWwi8REREREREREbFbCr9ERERERERERMRuKfwSERERERERERG7pfBLRERERERERETslsIvERERERERERGxWwq/RERERERERETEbin8EhERERERERERu6XwS0RERERERERE7JbCLxH5Wx5nZOWr7YqIiIiIiMjTxcnWBYhI/ubqbKLm0K9zfLuHp7yY49sUERERERGRp49Gfv0PRubjfLVdERERERERERH5Pxr59T84OLly9f0qOb7d0qNP5Pg2RURERERERETk5zTyS0RERERERERE7JbCLxERERERERERsVsKv0RERERERERExG4p/BIREREREREREbul8EtEREREREREROyWwq+nnJH5OF9tV0RERERERETkz3CydQFiWw5Orlx9v0qOb7f06BM5vk35OSPzMQ5OrvlmuyIiIiIiIiK2oPBLJJ9ScCkiIiIiIiLyv2nao4iIDdj7lGN7f3wiIiIiIpJ/aOSXiIgN2PvIPXt/fGJ9jzOycHU25ZvtioiIiEjepfBLRERE8hxXZxM1h36d49s9POXFHN+miIiIiORtNp/2aDabGT16NFFRUfTs2ZMrV67YuiQRERERq3mckZUvty1PWOs51msnIiJ5WX7Pbmw+8mvLli2kp6ezbNkyjh07xgcffMCsWbNsXZaI2JhWsxT5fZoWmH9Za1QbaGRbbtCoRBGxBn2vS16X37Mbm4dfhw8fplGjRgBUq1aNH3/80cYVSW7Tjl5+jXpGyd9l7/sWnYD/NfYerOeFx2fNz0he+fxZgzXfQ3nl/Snyd9j7vsXev9ft/bjsaZDfsxsHwzAMWxYwatQoWrZsSWRkJABNmjRhy5YtODn9Xy63bNkyli1bBsDJkycpUKCATWoVEREREREREbFHaWlphIWFWX6OiooiKioK+GPZTV5m8yo9PDxISUmx/Gw2m3/x5P33Ey4iIiIiIiIiIrnnj2Q3eZnNG97XqFGDHTt2AHDs2DEqVKhg44pERERERERERCRbfs9ubD7t0Ww2M3bsWM6ePYthGEycOJGgoCBbliQiIiIiIiIiIv+f/J7d2Dz8EhERERERERERsRabT3sUERERERERERGxFoVfIiIiIiIiIiJitxR+iViZZhaLiC1o35P7zGazrUvIdYZhcPXqVVuXITnEMAw2bdpEcnKyrUv5VWlpabYuQSRHGYZBQkKCrcuwyMrKsnUJduG/V0SUvEPhVw5LTU3l0aNHti7DpsxmM2vXrrV1GTZjNptZvnw533zzDRcuXMDBwcHWJf0p+elLTyf3f49hGJw6dYr4+HhblyI5yDAMrl+/nqv7HsMwOH/+/FMZ/gB8+umnJCcn4+jo+NTtlz7++GNWr15t6zLYsmULjx8/tnUZ+ZrZbGbgwIFcv34dDw8PW5fzM2azmREjRuT77yuz2czo0aO5fPmyrUuxqp07d5KRkfHU7Q//LLPZTP/+/dmyZYtN6zAMg+nTp2M2mzGZTE/td3lOmTFjBqtXr+bBgwe2LoWkpCRbl5CnKPzKIWazmeHDhzN48GBmzpxJRkaGrUuyCbPZzNChQzl+/LitS7EJs9nMqFGjiIuLw8HBAXd395/9Li/LPrAcPXo0I0aMYNeuXaSmptq6rF8wDIO4uDiuXLmCg4NDnn9e8yqz2UyfPn2YP38+H3zwAevWrcu1+549e7bND/TsVfaB9Jo1a3L1Pt9880327t2Lo+PTd1iRkpLCnTt3GDNmDI8ePXrq9ktVq1a1BK22unhy6NAhduzYQXR0NOnp6TapIb8zm8307t0bk8nEq6++autyfiY7lCtXrhzh4eG2LucvM5vNDBkyhOLFi1O2bFlbl2M1+/bt4/PPPyclJQUHBwcFYL8h+zPn5eVFr169bFpLTEwMc+bMYejQoZjNZhwdHZ+q77GcVqNGDQ4dOsS2bdtsOoo2OjqacePGcffuXZvVkNeYxo4dO9bWReR32YFPQEAAAwcOpHz58nh7e5Oeno7JZLJ1ebkmO/gpXrw4b7/9NgCnTp2iWLFiNq4s90ycOJFy5coxZMgQqlatyt69ezlw4AAZGRmULFkSwzDy5Eiw7NeuWLFiDBw4kISEBC5dusStW7coX758nnkfZx8onDlzhilTplC1alUCAgJsXVa+YzabefvttylXrhxjx44lNTUVwzAIDQ3FbDZb9T2anJzM1atX2bt3L87OznZ9ApDbzGYzr732GoULF2bkyJEAVt/nmM1mXn75ZUqXLk2/fv2sdj95mbOzMxEREZw4cYI1a9bQuHFjXF1d8+z+PicYhkFaWhpZWVmkpqayceNG2rVrZxn5ltuP29fXF8MwOHfuHNeuXSMkJCTPfG/lB2azmcGDB5Oenk5WVhb+/v74+fnlifdvdmC0efNmevToQWBgIJmZmTg4OOSJ+v6o7ABv27ZtDBo0CD8/PzIzM+3ygoG/vz8XL15k5cqVtGjRAicnJ1uXlOdkv6+TkpJISUmhZs2aFClSxOrHYL+lRIkSXLt2jZMnT7J9+3aee+45SwCWnz5neYFhGJQpU4YyZcowefJkChYsSEBAAK6urrlei4ODA4mJiezcuZOwsDAKFiyY6zXkNQq/csDOnTtJSkpi8ODBFCxYEE9PTwzD4PTp0zx48ABvb29bl5grunfvTkBAAMOGDQOeDPmMi4ujUaNGT82Oc9euXQQEBODh4cGYMWPYtGkTHh4evP/++7Rp04aiRYvausRfMAyD3r17U6ZMGYYMGYKLiwvVqlUjOTmZ06dPU716dZvssP//zGYzI0eOJDAwkLFjx+Lu7s7FixeJiIiwXFV8Wt5nf4dhGLz22mtUqVLFElZs3LiRxMREKlasiLOzs1VPGl1cXChbtiwuLi6sXr0ab29vSpUqZbX7e1qYzWYGDRpEamoqHh4eFC9e3Oonr9kXfm7dusXVq1dp06YNbm5uZGVl2eUJ3X8zDIOdO3eSlpaGk5MThQsXJjw8nBs3brBixQqaNGmCs7Oz3QZgkydPZs6cOSxcuJC7d+9y9OhRPD09ycjIIDExEcMwKFiwoFUfu2EYlhEKjo6OlC5dmrS0NM6fP8+dO3cICQmxy+feGg4cOMDDhw+ZNGkShmGwYMEC/P3988S+ecyYMQQGBjJ8+HCGDh2Kt7c3lSpVsowoyi+v8ahRoyhZsiSvvvoqH3/8MSVLlqRMmTL56jH8HsMwmDRpEhcuXKBatWrUr1+fK1eu8OjRIwIDA21dXp6zaNEi3Nzc+PDDD3n06BGzZs2iWrVqeHt72yRwcnFxoVChQjRu3JikpCTmzZtHhw4dFID9CUuXLuXevXuWi7rr1q0jISGBO3fu4ODgQIkSJShQoECu1JK9X/Hx8aF06dJcunSJH374gbCwsJ/NSnoaKfzKAUePHuXcuXM0b94ceHJCYDabmTVrFklJSdSoUcPGFVpfRkYGR48eJTk5mVatWjF37lzOnj3LuHHjMJlMxMXF4e7unidCFGvIHuWXlJTE/PnzuXDhAm5ubsyePZvIyEjS09MpX748Xl5eti71F86cOcOhQ4cIDw8nLCwMAEdHR8qVK8eCBQvIzMykSpUqNq3RMAwGDRqEh4cHI0aMAGD79u0kJiZSr149Hj9+jIuLi01rzC9SUlL47LPPaNCgAZUrV2bKlCnExMTg7OzMypUrWbt2LRcuXKBBgwY5dp+GYfD9999Trlw54MlB1ooVK7hy5QrXrl3D1dWVMmXK5Nj9PY2++uorPD09GTNmDGlpaaxatQpfX19KlChhtftcsWIFjo6OTJ8+naSkJMaPH0+rVq0oVKiQ3QdgS5cu5a233mLPnj2cPHmSdevWERcXR9myZYmNjeXkyZM0btwYZ2dnW5dqFfXr16d9+/ZUr16dkJAQjhw5QmpqKvv27WP16tWcPHmSOnXqWPVA/6uvvuKTTz6hbdu2mEwmHB0d8ff356effuLw4cNERETY7TFHTjEMg9u3bwPQrl07AEJCQjCbzSxatAh/f39KlixpyxLx9vambdu2+Pj4UKVKFUaPHo2vry8VKlTINyfkjx49omDBgnTt2pWyZcvi5ubG3Llz8ff3JyAgwC4CsIsXLzJjxgwOHz7M7du3MZvNJCUlYTabLceW9vA4c4LZbMbNzY1nn30WgNDQUB49esQXX3xBtWrV8PLysnrgZDabeeutt7h48SLVq1fHMAxSUlJYvHgxI0aM4MqVK0ybNo0uXbrY9Xd5TjAMgy1btnDnzh0uXryIp6cnq1at4vTp08ydO5fAwEC++OIL3N3dKV++vNU/Ay+99BIbN27kwYMHxMXFUbp0adzc3MjIyGDPnj2Ehobi5uZm1RryMoVff5FhGKxYsYKwsDAKFSrE8ePHKVmyJN7e3jg4OODo6GgJQKpWrWrrcq3OZDLRqFEjTp48aZlu8+mnn+Lo6MiGDRv45JNPaNWqld2lzWazmSlTprB48WIcHR159tlnad26NY0bNyYyMpICBQqwfv161q1bR4cOHfJUA1mz2czChQuJiIjA29ubM2fOEB8fT6VKlXBycsLR0ZGUlBR8fHwICgqyaa2JiYls2LCBli1bEhQUxMcff8yWLVt49OgR33//PbNnzyY1NZXw8HB9Sf8Gs9nMjBkzqFatGs8++ywTJ04kJiaGAgUK8OWXX9KuXTtq1qxJw4YNqVq1ao6OUrx8+TIvvvgifn5+hIaGMnPmTG7cuMG4cePw8PDg22+/pWjRoprC+hdlZmbi5eVFixYtMJlMFCtWjKysLDZs2ICfn59VArCsrCwKFChA27ZtAahduzZJSUl8+OGHtGzZ0u4DsCpVquDk5MTFixf56KOPqFChAmazmZs3b/LgwQMyMjJo0KBBntrn/12GYbBv3z5OnDgBgLu7O/7+/vj4+LBu3Tr69+/Piy++yHPPPUf9+vWtPtK5YsWKnDt3jpUrV/LMM89gMpkwmUyEhISwcuVKQkND8fHxsWoN+Vn2yM0DBw6wfv16WrRogbOzMw4ODlSqVAnDMJg1axbBwcFWDdF/jWEYzJgxgxMnTmAymQgODiY9PZ2AgADCw8N5//338fDwIDQ0NFfr+rMMw+Drr7/m+vXrlChRAj8/P7KysggJCcHd3Z358+fj6+ub7y/+ZGRk4OPjQ9myZQkMDKRgwYLcv3+fgwcPsmvXLgoXLpyvwkprMZvNjBkzhtWrV5OSkkLVqlUxDAMnJyeqVKlCamoqU6dOpV69elbff966dYtRo0axf/9+TCYTx48fp3r16ri7u3PgwAH69evH2bNnKV++PIULF7ZqLfmZ2Wxm2LBh+Pv707RpU27fvs3ChQs5f/48c+fOBcDHx4cyZcoQEhJCoUKFrF7TxYsXWbVqFYGBgaSmphITE8O3337L7du32bJlCw4ODtSpU+ep/Twq/PqLUlJSGDhwIA8ePKB58+bs37+f//znP2RmZhIQEEBsbCwrV67kn//8Z56c6mYNTk5O1K5dm5s3b/LTTz/Rrl07tm/fzpIlSxg3bhz+/v62LjFHZS9y4OPjQ7du3QgKCsLDwwM3NzeuX7/OkiVL2Lx5MzExMUyePJnSpUvbumSL7J5PaWlptGjRAn9/fxwdHTl16hSXL1+mWrVqbN++nWXLltGlSxc8PT1tVud7771Ho0aNKFOmDJs3b2b16tXcv3+fBQsW0LlzZ2rVqkW1atWoXr36U/NZ+7OyT3IKFy5MkyZNKFKkCM2bN2ft2rWEh4cTERFBVlYWRYoUoVixYjn6PD58+BA/Pz/atGnDO++8w/fff4+TkxPjxo2jUKFCFCpUCA8PD8LCwuwqKMgNZrOZsWPHsnjxYrKysggLC7MstFG8eHHMZjNLliyhbNmy+Pn55dh9jhw5kpiYGK5cuWJ575hMJiIiInjw4AEjRoygffv2dvd6Zo+SyX5ctWrV4vTp06xcuZKePXtSs2ZN6taty3PPPUeLFi3san+U3RPq3r17HD9+nKtXr7J69Wrq1q2Lu7s7586dw9PTk3LlyuHs7Gy1q8pms5mYmBiOHz9OoUKFiIiIICEhgeXLl9O8eXNMJhPff/89u3fvpnPnzupv8hsMw2DYsGGEhITw9ttv07FjRx49esSNGzcsI9QrVaqEm5sbFSpUyJUTtmzZPUjhySi0OnXq4ObmZpmOX7JkSSpVqsT06dNp3769JbDLa7L3lUlJSTg6OlK/fn3c3NwsFwSy+6kuW7aMli1b4uTklCcfx//y9ddfc+nSJfz9/SlYsCC7d++mZ8+e1KtXDw8PD+Li4nj48CH169e325Gwf4RhGIwaNYrAwEB69OhBgwYNcHV15eHDhxQoUAAHBweqVKmCyWSiXLlyVg2cVq1aRbly5XjxxRfZsWMHBQoUoEGDBowYMQJ3d3eOHTvGc889R2RkpIKv32E2m+nbty+FChWiT58+eHh44OPjQ2ZmJu7u7nh7e1v6XpcoUSLXjomy9zWbN29m6tSplteycePGlCpVivbt2z/Vr6uDoSU4/rTsA/379+/z8ssv065dO6Kiovj22285ePAgLi4u3L17l7Fjx9p8xIw1rVixgipVqlCxYkXg/4YzP378mE8++YQNGzbg7+/PuHHjLNOd7El0dDR37tzhX//6F/Ckx9m1a9coV64clStX5sGDBzx69Ih69erlueDrnXfewcfHh8GDBwNw8OBBateuzfbt2zl69CgXLlwgKSmJ999/32YNyf87XMzuI3fmzBlmz55NnTp16Nixo6a0/AHZwVe5cuUsPb5++OEHmjRpwrVr13jjjTdo3rw5b775Zo7f79ixY7l9+zahoaEMGDCAM2fO8PLLL/PGG2/Qo0cPy740u2+P/HHZJ1bBwcG0a9fOErxn9/wCuHv3Lrt27aJevXo5En4ZhsGIESMIDAzk+eefx9vbG2dnZxITE382pXvevHm0atUqT+33csK7777LiRMn6Nu3Ly4uLkRGRgJPFjo5fvw48+fPt7vAL9vQoUMpXbo0/fv3B54sXDF//nySk5N55513GDduHI6OjpbQwhqyG4aXKlWKu3fvUrRoUVxcXOjWrRtLly5l165dtGrVim3btjFp0iS7Pv76u86cOcNXX33FpEmTyMzMZMSIEVy/fp1r167Ro0cPy3GNLXz44Ye4u7tbvq8WLlxISkoK6enplvcfQFpaWq71z/krRo8eTfHixXnjjTeAJ/1/slci7dSpk+XvkpOT8+V+wzAMDh48yOHDh0lLS+PkyZNMnjyZpUuXcuHCBaZOnQo8ea8VK1bsqel//Fs2btzIgQMHyB5zMn78eG7cuEFWVhatW7emQ4cOuVLHtWvXWLBgAd7e3kRFRZGSkkKvXr0YNWoU1apV47vvvuOrr77iyy+/zDOLXuRF2SO+jh8/TufOnXn22WcpUaIEJpOJa9eusWPHDuLj4+nQoYPV2x8ZhsFXX31F5cqVqVWrluX2adOmsXnzZhYsWJDro3fzMo38+gscHR0tqW7Lli2ZPHkyjx8/5pVXXqFt27bUqFGDDh06ULx4cVuXajUPHz5k+fLl3Lhxg2LFiuHl5WVpPurk5ERoaCiOjo706tWL4OBgW5drFUePHuXYsWMAzJ49m7i4OLp3705sbCyVKlWiTZs2VK5cmSJFiti40p/r0qUL3t7evPPOO8CT0G7nzp20bt2asmXLkpKSwtWrVxk8eLDNmpRmn9iXKlXKEtDFxMQQHh5OiRIl2L59O7du3SIgIOCpnrf+R0yYMIEbN24wYcIEAD766CMOHz5M06ZN8fLyIjIyki+//JJmzZrl2HOZfYUzKCiI3r1707BhQ7KysihevDitWrVi3LhxZGZmWg4IdHD1523bto179+7x5ptv4uHhweTJk1m8eDH79u3j0aNHVKxYkYIFC+boqI1NmzZx48YN3nrrLTw8PBg/fjwrVqxg8eLFuLu7U6FCBQDLqlX25tSpU1y6dAkfHx9++OEHNm7ciJeXF926dePUqVOsXLmStm3b2t37+e7du+zdu9cSbBmGgaurK0WLFmXXrl00bdoUDw8PGjVqZLWrydkro1WuXJkBAwbQsmVLihUrxpUrV7h58yavv/46zs7O+Pr60q1bNzXY/h2ZmZkULFiQ6Oho/v3vf3P8+HHu3bvHnDlzaNq0KevXr6dx48Y266N5/vx5zGYzaWlpfPzxx2zfvp169eqxfv16ChcuTPny5YEn7Tby8mft5MmTlC9fnpSUFD744AM2bdpEsWLF2L59OwEBAZZeavmxX6nZbKZ///54enrSq1cv6tWrZ5nu1bhxY44cOYKPjw8BAQH4+PhoBCZPZgzFx8ezY8cONm7cSHx8PIMHD6ZIkSLcunWL2rVr50odRYoUoWTJkpw+fZpTp05Rq1YtWrRowbBhwyhcuDDdunWja9euFC5cOE9/vmzt888/p0CBAsyYMYPNmzdz8eJFihcvTtGiRSlSpAhFihQhPT2dGjVqWP39Hxsby4cffsi+fftISkpi//791KlTh3r16uHg4MDgwYPp0KGD3bUe+qsUfv0JGzduxMHBAS8vLxwdHcnIyMDDw4NWrVoxffp04uPjiYyMtOvG7oZhcOLECRwcHHj++efZtWsXFy5cwNvb29LvbN26dZb+H76+vrYuOUdlL2RQokQJ6tevz7p16zAMA39/fyZMmEBQUBCJiYncu3cvz57Yp6SksG3bNjp06MDChQuJj49nypQpmEwmDh8+jJeXF+3bt8+xaVJ/xZgxYzh58iTTp08HYOrUqZw6dYqWLVvi7+9PkSJF2Lt3Lw0bNrTbz9rfZRgG169f5/79+xQuXBhHR0eWLVvG7du3mTBhAi4uLsTExODo6EifPn1y9Mt569atXL9+ncGDB+Ph4cGECRNYtmwZq1evpmTJknTv3p3p06fTrl07XFxc8txnJD9ITEzk2LFjxMXFsWrVKs6fP8+QIUPIysoiLS2NatWqATm7/8nMzOTo0aN89913bN26lXPnzjFq1ChKly7N8ePHadSoUY7dV14UEBBASkoKffv2xc/PjwULFvDgwQOmTp1K7969eeGFF/LlCI7/JSMjg23bttGwYUNcXFzIzMzEZDLh5eXFunXraNasmdWn6XzxxRds3ryZTz/9FHiyfytWrBipqals2bKFNm3aEBr1+OQYAAAgAElEQVQaSnBwsM2m6ecH06dPZ8eOHTRo0IBmzZrh7e1No0aN6N27N87Ozhw6dIgzZ87QunVrnJyccq0uwzCYPHkyDRs2JDU1lV27dnH+/HlKlSrFp59+SlhYGI8fP8bPz8/SHysvfm9kr5RZvXp14uPjiY2N5dSpU3h5eTF37lzq1q3L9evXCQoKsukx1t+RPSq/TJkyvPrqqwCkpqZSp04dvL29uXnzJhs2bCA9PZ2mTZvmydcpN02dOpWDBw/y/PPPc+fOHVxdXQkLC+Ptt9+mRIkSHDt2jMuXL9OkSROrP1eZmZk4OjpaztnOnDnDyZMnqVu3Ls2aNWPq1Km0a9cOV1fXp/51+z3Jyck0bNiQ+vXrYzKZCA0NZfv27SQkJODn54enpyeenp5UrFgxV44JgoODcXNzIyIigsjISGbPns3q1au5efMmzZs3x8/Pz3LuJAq//rD4+Hg2bdpEUlISnp6eFC1aFJPJZAnAWrduzfLly2nYsKHdXuEwm80MGDCAH3/8kdjYWFxdXencuTO7d+/m4sWLhISEsGXLFhYuXMjAgQPtrtFs9vSxAgUK0Lp1axwcHGjbti316tXD19cXT09P1q5dy6pVq3j99dcpWrRonvry+Oabb4iLi6NXr14YhsE///lPS5hnMpnYsGEDM2fO5IUXXrDpqpS3bt3C09OTlJQUHjx4wPfff8/Vq1cZP348zs7OrF+/nuLFi9O+fXu7/azlhDFjxpCUlET37t25fPkyGzdu5PTp08yYMYMCBQqwbt06vv32W9q0aZPjvYkeP37MiRMn2Lp1KzExMVy4cIHhw4fj5+dHfHw8zz77rKUfT176jOQH8+fPZ/fu3bzwwgskJCRYRlyNGDGCEiVKcPLkSc6dO0dkZCQODg458vwOGTKEs2fP0rZtW8tU1WrVqjFs2DC8vb358ccfSUhIyJWD99w2YMAAihcvTokSJcjIyGDFihUcPXqU/fv3M2jQIF555RXc3NyoVKmSzVfFy2mJiYmkpqZStGhRNmzYwOXLl6lbt66l99LmzZs5fvw4bdq0sdroFcMwePDggWUxjC1btlC1alXLKNWyZcuyfv16atWqZZfBY04xm82sXbuWZ555hg0bNnD16lXq169PSEgIjx8/ZufOnZw6dYrFixczcuTIXL9w6eDgwMyZM9mxYwevvfYarVq1IiIiwnJyuXnzZlauXEmnTp3ydLiZmJjIv//9by5evMi//vUvmjdvTu3atWnTpg3w5DOzYcMGnnvuuXzZc8cwDMvU4+xR+RMnTuTUqVNEREQQEBBAWFgYTZs2pXr16nlyhfPcYhgG27dvp3bt2nz77bc8fPiQ7t27U6NGDdzc3HBycmLTpk2sWrWKQYMGWfW5mjhxImXLlqVo0aK/CMDOnj3L4cOHadCgAT179tRx2e8wm8307t2bbdu2sWTJEjp27Ag8WfwlPDycnTt3cubMGQICAvD09LR6O4/sdkMZGRns2rULwzAIDw9n//79REZGkpGRwbRp03j//fft7pz871D49Qf5+PgQHBzMoUOHuHXrFoULF8bLywuTycSKFSu4evUqb7/9tt2ejGcviVu5cmVGjBiBj48P58+fJzg4mKZNm3LgwAFWrFjB9u3bmTJlit312sgOvsqWLcugQYMA2L59O0WLFiUjI4Nx48YRHR3Nvn37+OCDD/LUlAvDMLhx4wYPHjzg/Pnz3Lx5k65du+Lj48OWLVt46aWX2LNnD4sWLWLcuHE27dMzd+5cjhw5Qu3atfH392fx4sUcOHCAb775xhLQLVy4kBYtWliaSMqv27t3L0FBQYSEhBASEkJaWhpubm4UK1aMPXv2sG7dOt55550c7cc3c+ZMYmNj6dSpEw8ePMDDw4MqVaowdOhQfH19OXLkCOfPn6dJkyZ5fspKXpSVlQXAoUOHuH79Oi+99BLVqlXDwcGBYsWKER0dzZo1axgyZIhlJO7f9fDhQ2rWrMmUKVMwm8106tSJmjVr4ubmxsOHD9mxYwcrVqxg4MCBdnmik5iYyKRJk6hRo4Zl4YA5c+bQs2dPmjVrBjxZpt6erqhm9zLZvXs3W7duJT4+nlGjRjFlyhQSEhK4d+8eP/74I0uWLGHMmDFWbfGwYMECvvjiC1q3bk358uU5d+4cP/zwAzVr1sTV1ZUtW7Zw5MgRnn/+eY0C/g3ZC9w8fvyYNm3aUK9ePZYtW8aVK1cICQkhPj6ebdu2cfPmTQYNGmSZVphbkpOTcXFxoXPnznz33XcsX76c9u3bk5iYyGeffcaGDRvYsmULEydOzLP9Y81mM6NHj6ZIkSJERUWxZs0ajhw5QrNmzUhISOCLL75gx44dbNiwwRJE5Ednzpxh0aJF9OrVyzIq78aNGwwfPhyTycTZs2dxcHCgZMmSdrXgx5+VvQ91cnKiefPmVK5cma+//pobN25Qq1Ytpk6dSmxsLIcOHeK9996zenuYQ4cOsXTpUurUqWOZjmcymSx9O2/fvq1Fh/6H7IU4SpcuzYQJE1i7di3Ozs5UqFCBrKws3N3dCQ0N5ciRI5aG89asZfz48ezfv5/09HSCgoKoUKEC7733nuUYsG3btkRERGi6469Q+PU7zGYz48aNY9++fcydO5eQkBBKlSrFxYsXuXHjBuXLl2fnzp0sWrTI0kfJXs2bN+9nUw4++eQTdu7cyapVqzh27BjDhw/nxo0bDBgwIE8FPzll9OjRPHr0yNKoctq0aZbRF66urjRs2JBGjRrRoUMHSpUqZdti/4vZbOaNN94gKyuLTp06kZaWxrFjx7h16xZdunTBycmJLl26cOnSJcaNG2fz187X15fdu3eTmJhIeHg4ISEhJCUlYRgGly9fZvny5bz//vs2rzOvMgyDe/fuUbBgQQ4fPkzFihUpVaoUJpOJoKAg7ty5Q3R0NNu2bWPixIk59jwahsHSpUtp0aIFmzdv5sqVK/To0YPw8HDLKJHsK5xvvfUWPj4+Cr7+AkdHR3x9ffHz87M0U61duzbTpk0jOjqauLg43nvvvRy7+LBkyRK2bt1KREQE7du357333iM1NZWaNWsyf/58YmJiiIuL45133rG73o7ZV1SrVq1KkSJFGD16NNWrV6dGjRpcvHiRunXr4ufnh9lstqv3stlsZsSIEfj7+/PWW2/RsGFD5s2bx8WLF5k2bRqnTp3izp07PHz4kNdff93qF7qqV6/O4cOHLYt0VKhQgQsXLnDo0CFu3LjBhg0bGD58uF33WP07zGYzffr04ccff2TOnDkAuLm5WQKw+/fv88wzz9CuXTsaNWqUqyO+snt7/vDDD3z//fdkZWXxxhtvsGvXLqKjo+nWrRsFCxYkKCiIbt26WaY75jXZsyKy+825u7tTs2ZNy6qk7du35/bt2xQvXpyXXnopzwZ4vyf7Imrp0qWpVq0aM2bMYMeOHdy7d4+PPvoIJycn1qxZw4oVK4iMjHyqe7FmH3dnZGTw7rvvAuDl5UXlypVZsmQJGRkZ9OvXj5YtW9K8eXOrNSI3DIMjR46QmppKo0aN+Omnn1iwYAG1a9e2BJNr167l/v37dOrUya4u4OS07BGPfn5+DB06FIAbN27g7e1NcHCwZYSXu7s79erVs2rYlD3t2MXFhapVqzJz5kwiIyPx9fUlIyOD8uXL8/zzz5Oeno6jo6Nai/wKhV+/IXukj6+vLz169KB48eIsX77csuM/ffo00dHRbNq0iSlTpuT6lbLc5unpiYODA7t372bnzp1kZGQwb948evbsyeLFi2nevDmNGzfO08PR/wrDMDAMg/v375OcnEyJEiVYsGABt27d4sMPP8TJyYlt27Zx7dq1n03FyAuyd5DZTccBAgMDcXBw4OjRo9y+fZuoqCj8/f2JiorKEyevRYoUISIigvHjx1tOssuWLcsXX3zB+vXrmTp1ar48cMwta9eu5b333qNZs2bEx8ezbNkyChYsSEJCAs7OzpQsWRInJyf69OmToycSCQkJREdHExYWRvPmzVm2bBnnzp2jXr16zJo1i5iYGI4dO8aYMWPyxPssP8pemDn7aq2vry979+7l7t27vPnmm7Rt25aWLVvmaAjg5OTEpUuXiI+Pp2bNmrRr144JEybg6urKq6++SqtWrWjWrJndrSKUlZWFo6OjJdiqVKkSnp6ejB07lmbNmpGVlcXs2bPp3Llzjk0tzQsMw6B3796EhYXRt29fnJyccHNzo1OnTsydOxcnJyd69OhB3bp1qV27ttUu+BmGQXJyMs7Ozjg4ONC0aVPi4uKIjY0lMjKSkJAQ9uzZw7Jly5g8ebLdjTTPKYZhMGjQIPz9/fH39yc2NpZnnnkGgIIFC1KvXj3mzJlDUlIStWrVslyoyA3Zoyh8fX0ZPHgwqamp/Pjjj5w/f55hw4YRGxvL0qVL6du3L6VLl86zUwSzg6/Lly/TsWNHSpcujaOjoyUA27hxI4cPH+Zf//oXISEh+TJgMJvNvPbaaxw5coTFixfTrl07wsLC2Lx5M127diU4OJiNGzdaLm7lpQvAuS17xNe9e/eoXr06jx8/tqwA6OXlRZUqVZg+fTqPHj2ievXqVhutmj3ac8+ePZw7d45GjRpZFiX497//Tbt27di7dy+fffYZPXv21MWD/yE2NpYdO3YwcOBAihYtypQpUywXHH/88UdWrlxJsWLFKFmypFWPCbKziVKlSjF8+HAqVKjAvXv3aNSoEU5OThiGwdSpU3nmmWcsC9HZy/FJTlL49Ru+/PJLHB0dGTJkCB4eHgQFBeHv788nn3xCixYtCA0NJSEhgSFDhtj1gVf23HBPT0+KFy/OgQMHiI2NZebMmRQsWJCYmBiOHj1Ku3bt8vSS03/VN998w/z58xk8eDD37t3jq6++4j//+Q8fffQRbm5urF+/nsWLF9OlS5c8d1AzZMgQXFxcGDlyJPBkSuFPP/1EkyZNSE9PZ+/evTx48IAOHTrYdNTi8uXLOXbsGFWrVgXg66+/5uHDh5jNZh4+fEjFihUJDw+nR48eefbKb14RHBxMSkqK5Tk0mUy4uLiwadMmYmJiOHjwIK+//nqOTxl1cXHh0qVL3Lp1iyZNmlC9enVWrlzJnTt3GDBgAK1ataJ58+Y6wPoLBg0aRHp6OhUrVrTcln0g7efnx4YNG0hISKBGjRqWsCCnFCtWjMDAQObOnUtCQgK1a9emffv29O/fH2dnZ6sevNvKV199RUZGBn5+fphMJsxmM4ZhEBoaSqFChejbty9vvPEGUVFRdtcbJSsri4ULF1K0aFHL4gVpaWk4OTlhMpm4f/++ZSEFsF7D8Q8++IB33nmHEydOcPr0aS5fvsyzzz7LmjVrOHv2LA0aNCAiIoIuXbpYeoHJL+3btw8/Pz9effVV6tSpw/bt29myZQvNmzcHngRgTZo0oXz58rk63ckwDHr16kX58uUZNGgQLi4uBAcHU7hwYY4ePUrFihXp3Lkzu3btokqVKjm2Wq01DBs2jHLlytGmTRtOnDhBYmIiAQEBODs74+7uTo0aNdixYwfh4eH5cupRdogSFBTEyJEjuX79OpmZmTRp0gRPT0+WLl3KiRMn2L59O6NHj7br86E/YtOmTWRlZTF58mQuXbrEyZMnyczMpEyZMpYF02rXrk3FihWt9r42DIOhQ4cSEhLCmDFjaNasGVeuXOHevXtUqlQJd3d3Xn/9dY4ePcq0adN0QfIPCA4OJi0tjR07dlj6f3/22Wc0adIEf39/fvrpJ+rXr0+RIkWsekwwbtw4bt26xaRJk4An35Xr16/n8uXLpKamUqRIEcqUKUPZsmXz7AWDvEDh12/Yt28foaGhBAUFkZ6eDkCJEiW4desWt27d4plnniEiIsJu+w4ZhsGrr77KqVOnMAyDcuXKUbRoUUJDQ3n06BFnzpzhypUrbN68mVGjRtldo99sAQEBnD59mu+++44+ffrg4uJCUlISVapUYevWraxbt4533303z/VvePz4MVu3bqVq1aoEBQUxe/Zszp8/zyuvvILJZCIwMBCTyUStWrVs1qfOMAzWr19PVlYWV65cIS0tjZiYGM6fP88nn3xCvXr1WLhwIZmZmbRo0eKp7h/xv/z0008UKFAAR0dHatSowa1bt1i1ahWTJk2iXbt2tG7dmq5du1K3bt0c68tkGAZ9+vShcOHC+Pr6EhYWxqeffoqzszMRERHUqFGD2bNnc/PmTSIiInI8mHlauLm5MXXqVPz8/AgODsZsNgNPRmU9fPiQ0NBQateunWNBzMyZMzl//jxVqlQBYPHixdy8eRNvb28uXrxI5cqV6datGwEBAXku8M8JsbGxnDt3Dk9PT3x8fCwBmKOjI6GhoVSqVAkfHx+7G+2WmpqKq6srHTt2ZOHChRw4cIBmzZpZVvw7ePAgd+7coV69eoB1gq/sqaYmk4nr169TtmxZChQowO3bt9m/fz/Xr1/nhx9+ID4+nq5du6o/ze9YunQpycnJPPvsszg5OeHk5ETt2rXZvXs327Zts4wAc3Nzy/XnMSEhgT179lCiRAkiIiKA/xvRGh0dTWpqKuHh4bRq1SpPB1/wZJrTP/7xD8qXL8+NGzc4e/YsKSkplgDMw8ODpk2b5sv3qmEY9OvXj7CwMPr164fJZGL79u1kZWURHh5OcHAwvr6+fPfdd4wZM+apbkeRvVrpP//5z//H3nvHRXlm/f/vmaEODHUYei+CIEVQiqBijd1EY6qJiTG7JppiiZqmsURjTGI0xthLNDbEgr2CFVBBQQUVVBRFUFEEFQa47+8f/ub+7T7P7rPZXerI+0/M65VrZu77uq5zzud8DpGRkcCzYRy3bt3iypUraLVaSRVobW1dr8/1w4cPuXjxIkOHDpXa2P/44w+uXLnChQsXeP311zE2Nub999/X+66l/wZBEFi1ahVZWVmkp6fz5ptvUlJSwunTpxkxYgQ+Pj7Y2Njg6upKbGxsvd6HRFGkpKQEFxcXTpw4gY2NDZs3b+bq1au88847VFdXc+nSJdasWcNnn33WbCfJNhQtya+/QRRFLly4gEaj4ebNm5w4cYKIiAjMzMyky29mZiaWlpYEBgYil8v1NpiTyWQcOXIEa2trNm3aRFFREWfPniU2NhYHBwfOnz/PqlWr9LblQFftNjU1pV27dmRkZLBz507++te/8uDBAxYtWkRGRkaT9J+aN28e1dXVvPLKK+zYsYPNmzdTUlLCvHnzMDAwkIwuPTw8Gi3xJQgCY8eOxdHRkf79+1NRUcH27dvJzMxk+fLlwDM1UUREBL6+vi0VjP+D4cOHs2vXLgDpUhUeHs7jx49JSEggPDxcmvJSl0qVvLw81qxZQ21tLVeuXKG8vJy33nqLAwcO4O3tjbOzMzExMZJiRl/3yvrGw8MDb29vpk2bhr29PX5+fshkMrZu3cr27dvp169fnSU0tVotjx494uTJk4iiyKFDh7h8+TILFizAz8+Pw4cPc/v2bTp06KB3Le46OnToQFZWFufOncPS0hK1Wo2BgQFbt25l0aJFDB8+XK+M/QVB4JtvviElJUWarDt58mQ2bNggJcAOHDjA5s2b+fDDD+t1ivG0adNYsGABY8aMQaVScf/+fTw9PRk+fDjx8fH07NmTN954g86dO+tl4rUuOXfuHNeuXePp06fY29tjYmKCiYkJ7du3Z+/evaSlpdG5c+dGWZulpSUBAQFkZWVx7NgxoqOjkcvlKBQKHj58iJmZGf7+/lIytKmha9lMSUlBqVTi7u6OkZERrVu35t69e1y+fJl79+7h6emJoaFhvU98qy9yc3P58ccfGTlyJE5OTsyePZukpCQqKyvZsmULSUlJtGrVilGjRumtEODPIpPJ+P3339mwYYM0AdDIyAg/Pz9u3rzJ2bNnUSgU9dq9IIoiZ8+exdPTk99//52jR4+SnJxMVVUVS5cuxdfXl4KCAjp37lyvbev6gC5GkclkuLm5kZ2dzaZNmxg+fDgGBgakpaVhbGyMg4NDvb/fOvVlRUUFPXr0wN7ent9++41bt26xYsUKfH19ad++PV26dGHw4MFNvmDQFGhJfv0NycnJLF26FDs7O9zc3CguLqaoqAiNRoNKpWLfvn1s2bKFd955p96ljY2NIAhcvXoVS0tLZs6cSW5uLvPmzePq1aucOnWKTp06MWbMGL3s7R87dizbtm2jvLyc1NRU1Go1/v7+5OXlkZaWxvvvv4+5uTlvvPFGk1N81dbWcu/ePfbu3Yu9vT0vvvgi2dnZ+Pj44Ovri6mpaYP6evwjdGagxsbGfPrppxgYGODo6IiJiQkKhQKtVislFM3MzJplq0BDcv36dczNzcnOziY/P59t27YRFBREu3btEASBP/74gxdeeKHOk/W2traUlJRQUFDA22+/zeLFi7l69SqiKGJnZ4eLiwsqlarlIP43EUWRKVOmkJ+fL6mLdO/v9OnT8fPz49q1ayxbtoxx48bViepWFEVu3LjBw4cPCQ4ORqVSsXLlSjIzM1m5ciXw7F308PBotu07/wxRFJkwYQIajYaHDx+iVqtp3749ly5d4vTp0/j6+nL48GHWr1/PxIkT9WpcuM4/xNHRkXfffRdPT0927tzJsWPH+PHHH1mzZo2kGJg8eXK9+i1u3LgROzs78vLy2LdvH6NHj6ayspL09HTKy8vRaDRYWVmhUqlaiiF/guDgYMrLyzl9+jRarVZKgBkbG9OhQwfCwsIa9D0WBIGZM2dKE0Q1Gg2+vr6SCqxDhw6kpKSwbt063nzzTclntqmh2y+cnJyIiYlh8+bNRERESMp0f39/bt68ye3btwkNDcXIyKiRV/yf8fTpUxwdHYmIiGDixImcOXMGuVzO/Pnz6du3Lx4eHvj4+ODt7f3cJ7509OvXj9TUVJYtW8bgwYOBZwptX19fSktLiYyMrNeC85kzZ5g8eTLBwcH069cPT09PwsPDeffddzEwMCA9PZ2jR48SHx+vlzY1dYluivG4ceNo1aoVXbt2JT8/n9WrV/P1119z/vx5Ll++TGRkpKSOrg90yj2NRsPIkSOBZx1J/v7+HD9+HGtraxwdHaU1tExR/3O0JL/+Bk9PT2pqakhJScHNzQ2lUsmtW7f48ccfKSoqYs+ePUyfPl2vDbcTExMxNTXF2toaLy8vlixZwsOHD0lPT2fq1Km0adOGmpoawsPD9a7VURRF7t69y8WLF9m9ezexsbFcvXqVtLQ0Vq9eTVVVFUlJSTx58oShQ4c2qcqzKIpcvnxZ8v5RKpVs3rwZtVpN//79OXjwILm5uY1uHKszA719+zZ+fn5YWFhgYWGBmZkZDg4OaLVajhw5QlVVVYsc+09SWlrK06dPmTJlClqtlkWLFlFUVMTvv/9O165dGTZsWJ0OYvjll184ffo07dq1IyYmhtzcXNzd3Rk2bBgFBQVkZmaye/duXnvtNaD+fIH0lRs3brBs2TLy8/Ml/zY3NzfatWtHbGwsw4cPJzMzkx9++KFOvDoEQWDUqFFcvnyZJUuW8PTpU5RKJVFRUZSWliKXy6VktJWVVaOpReuLixcvsnDhQuzt7Vm3bh13797FwcGB+Ph4CgsLWbt2LSkpKcyePVvvvFE2b95MbW0tn376Kebm5mg0Gnr16kVSUhJ2dnYMHz6cU6dOMWbMmHpXON+9e5f8/Hzi4uLIzMxkz549jB49GoCUlBTkcjk+Pj4t+8k/QRRFPvroIy5cuEBJSQmCINCuXTvu3r3LvXv3ePToES4uLhgaGmJsbNzgia/x48djY2PDK6+8wq1btygsLKSsrIwOHTpw5coVFi1axLlz55g2bVqTKyrqEASB4cOH065dO/7617/i4eHBqVOncHV1xdnZWRqQERQURGBgYLMs/AiCwLhx4zh8+DDnz59n0KBBtGrVinXr1vHqq68SFBSEoaEhjo6OUtvX84ooiixdupQnT55QVlaGvb093bt3Jycnh1WrVjFgwAAADA0NCQwMrPez09HRETs7O3799Ve8vLyIiori2rVrXL16lSNHjpCQkMCUKVP0LnarD44cOSIV6XWdQNHR0ezbtw9vb2969+4tdTXUF7oBNDpvRICFCxdy69Yt4uLicHBw4Mcff0StVkt3k5bz8c/RkvwCiouLpX78gIAAVq1axalTp+jYsSN9+vQhLCyMiIgIevfurdfmqnl5eRw7doyCggI0Gg1OTk6UlZWxZcsWJk2aREhICE5OToSHh+ud/5IuAKyqqmL06NE8ePCAs2fPMmfOHHr27El0dLQ0Zapv375N6lIjCAIffvghFy5cYOvWrQwcOBBPT09MTU3ZunUrDg4O9OnTh5MnTxITE9OoEyn3799PbW0tc+bMIScnh/T0dGxtbbG1tUWpVKLRaDAwMGhUL7LmwPTp0yWFnJubG8uWLSMrK4vTp0/zzTff0L9/f2xsbPD19a0zk3lRFNm3bx9+fn4sX76cO3fuYGRkhFarpaKigsDAQMmnpVevXi2tjv8hVlZW2NraYmlpyUcffcSJEydYsWIFR44cwcjIiEGDBvHmm2/WSRFGEAQ+//xzvL29mTBhAp07d6a4uJiCggI8PT3x9vZm3bp1KBQKvU1GazQa0tPT0Wg0TJo0iblz57Jz505OnjxJbGwsVVVVfPbZZ002IP9vOHnypLTf1tbWUltbi0Kh4OzZs9TW1hIaGkrPnj3rPcAVBAFPT0+USiW///47/fr14+zZsxw6dEgKQPRNcVjXPHjwgBMnTnDgwAFu377N7du3WbFiBVeuXCEtLY2UlBS8vLwaxaZh/vz5mJubM2bMGCwtLWnXrh2VlZVcvnyZ+Ph43N3dycvL45NPPmnSNhoFBQXMmjWLN954A09PT37++WeKi4t59913palqulbN5jgIRNde5eHhweDBgzl9+jT29vaEhYXRtm1bpk6diq2tLb6+vi1nO898EH/44QeOHz9OSlXstPgAACAASURBVEoKqampJCYmEhkZyerVqzl06BCvvPJKg61HJpPh5eWFubk5K1euxNXVFRMTE9atW0dVVVWTf7+aEtu3b6e2tpaAgIC/s4tJT0+ndevWaDSaeo+lUlNTOX78OH369MHDw4MFCxZw4cIFRo8ejUKhwNnZmYiICFxcXFrU0P8mz33ya8+ePWzbto2AgADMzc1ZsGABADExMRw7dgwTExNCQkKwsbFploaV/w66z3j9+nWuXLmCu7s7tra2JCUlMWLECIyNjZusB8N/gyAIvPfee9ja2jJmzBgAOnbsSGpqKqtXr6Z3797Y2dlhbW3dJKt5Y8aMwdfXly+//JJ+/fphbm6OXC7H1NQUGxsbVq1ahZeXF0OGDGlUc/ukpCTgWbucj48Pbdu25cqVK2RkZGBtbY2trS1mZmZ4eXm1BDn/gocPH7JhwwasrKzw8fFBrVazYcMGxo4dK03g8/f3r7OgVXcpVigU9OvXjz59+nDp0iWKioo4efIkaWlpeHh44OLigpGRkd7vlfVBbW2t5B2hM1V1cHAgLS1N8jxau3Ytb731Vp2ZrX/++eeUlJQwY8YMACwsLHB0dCQzMxOtVku/fv2wtrYmKChI737T6upqqqqqMDQ0xNnZmVu3bmFjY0Nqairjxo3jzp07FBQU8M477+jVlFJRFNm1axd+fn6UlpZSWlpKRESEZDQPcOnSJczNzQkICKjXM3/+/Pk8ffpUSuRu27aNixcvYmZmRpcuXTh48KBkLtxSDPnHCILATz/9hK+vL3FxcdjY2FBbW8sXX3xBv379aNOmDf7+/hgaGtKjR49GUayfPn2amJgYnJ2dJRWFu7s7S5cuxdTUlJiYGDp16oRGo2nwtf07WFlZERcXx8SJEzly5AjGxsZMnz4dAwMDSfXVnO/HkyZNory8nKlTp6JWq1mxYgWpqakkJCQQHBxMt27d+Omnn+jfv/9zPcBGZ4Tep08frK2tMTAwYNiwYfTq1QuNRiNN+nz06BGRkZH19s6JoihZh+iS2roEmKGhIXv27OGNN96gV69edOrU6blW6f1ZdOfd06dPuX37NjY2NtjY2KBQKDhw4ACHDx/mpZdeqtcYRRcvtW3bFisrK7KyslixYgVPnz7l559/RqFQsH37dubMmcPrr7+ud2KUhuC5TX6Josjq1asxMzOjurqaCxcusHv3bkpLS5k5cybBwcHcvHmTjIwMYmNjMTQ0bOwl1wuCIJCamsqTJ09Qq9U4ODhgbW1NUVER586do2fPnty9e5erV68SGhrabI07/xmCIPDpp59SWVnJo0ePCAwMlEwgu3btSlZWFgsWLOCll15qdK+sf0RxcTFnz55l0qRJANLl6/z585w9e5b4+Hgp2dRYSTtBEBgzZgxlZWWYmpqyadMmbt68ib+/P7GxseTk5HD8+HEcHR2xt7d/bi9U/w5+fn6YmZmxatUqNBoNISEhJCYm0rt3b8mTqK6+R525r52dndSG9OTJE2JiYnBzc0OhUEitqh06dGiS70lTRhAEpk6dyqZNm7h27Rrt27fH1dWVxMREFi9ezPjx4+nYsSMODg7069evzi5djx8/prS0FCMjI6qrq6UEhFKpxMzMjMTERPr27Yurq6teJb50rddHjhzh6tWrUnV82bJl7Nq1iy+++IKwsDDi4uIIDw9vUu3tdUFxcTEjR45EqVTStWtXfvjhB0xNTfH09MTAwIC9e/eSkJDAsGHD6tXbVKvVUlBQQHJyMk5OTuzYsYPc3FyWLl2KhYUFycnJDBw4kAEDBrRUtf8JgiAwceJEFAoFffv2xdzcHAcHB65evcru3bsJDQ3F09MTPz8/4uPjG/xZTktLw8XFhV27dlFUVERMTIykojAwMODu3bv4+Pjg4uLSZM8NURTJzs6Wpqc5ODgQFhbG0qVLGTRoEEFBQdTU1DT7AViiKHLx4kVcXFwwNzdn3bp1PH78mM8++ww7OztSUlIYOnQoAwYMwMzMrFl/1v8G3TsnCAKxsbH4+/tTWFhIWloajo6OdOrUCV9fX8l8vD4TX7NnzyY/P5/9+/dLXQC6Ipq5uTlnzpwhOjpab+PX+kD3XKvVao4fPy756JaUlLBx40amTp1a7x1gZWVlTJ48GUEQ6NGjB0+fPiUrK4uePXvi7+/Pvn37SEhI4PPPP2/x2/sPeS6TX4Ig8Mknn2Bra8urr76KUqmUAvAvv/xSyqKGhoYSHh6uVxf//8nu3bv54IMP2LJlC6WlpSxduhSAK1eucOXKFfLy8nB3d6d37956qcbZtm0bRkZGfPvtt8AzP6OAgACpAtm5c2euXr3aZCcOarVaEhMTad26Nba2ttIFrLi4mBUrVjB48GBJBt1YTJo0CTc3Nz777DOCg4Pp2rUr+/bt49q1a0RGRhIREcHNmzcJDw/Xy2esLhBFkTNnzkheDbrqnkqlYs2aNcTHxyOTyTh69CixsbF1FkjoPAfs7e2ZOHEiAHPnzuXatWu0bdsWMzMzAgMDcXd3p0+fPnqXKKhvdF449vb2jB07loCAAExNTZHJZLi4uCAIAq+//jqiKCKKYp0EWKIocvv2bSoqKoiMjKS0tJSsrCwqKiok34izZ89SUlJC586d9argoVMwurq60qtXL06cOIGvry8+Pj4YGRlRVFTE8OHDJRWHvgUNoiiiUqno1asXM2fOxM3Njddff53FixeTnJzMkSNHSE5OZsaMGfXubaprpa2urmbu3LkUFBSwZMkS4FkrqlKpJCgoqGVk+z9B17Jsb2/PhAkTANi6dSsRERG4urpy584dEhMTG+1cTU5OZteuXZiZmfHCCy+QmJjI48ePCQwMlFQUW7Zs4aWXXmrS58bnn3/O/PnzKS4uprq6GqVSiY+PD9HR0UyfPh2FQkFoaGizTQYJgsDIkSPx8vKiffv25ObmsnXrVvLy8li2bBk2NjZkZGSQl5dHt27dMDY2braf9b9FVwi0t7dn/PjxAGRlZdGjRw8KCwtJT0/HwMAABwcHDAwM6vV7evToETNmzMDJyQkzMzO2bt2Kn58fbm5uwLOWzOPHj9OlS5dGtTppjoiiiJmZGcHBwbi6uvLkyRPs7e155ZVXGqRt3MTEhF69erFy5UpKS0vp06eP1JW1detW0tPT+fLLL1taWP8LnrvklyAI/OUvf+Hx48dMmjQJIyMjNBoNtra2GBgYkJeXJ8kcgWbZt/9n0AXT7du3x8/Pj+vXrzNkyBDi4uKQy+UUFhZy//597t+/z8iRI/VyJO6ePXtQKpVST76fnx8ymYzffvuN1q1bSxn1uLi4JpX40qnVPDw8sLGx4eLFixgaGuLp6SklPTIzM7l9+zbdunVr9IpqamqqdFGoqqrC3NycoKAg5s2bR1hYGGq1usEnTzU3srOzGTZsGL6+vtLhK4oiLi4u3Lp1S1JidejQoc4UfqIosmPHDh4/foy3tzfBwcEsWrSIS5cuMWHCBORyOefPn0ej0eDp6anXRYL6YteuXcjlckaPHo2JiQm//voriYmJpKWlERERwZIlSzAzMyMgIKBOWmoEQeDjjz8mJyeHhQsXUltbi7OzM0qlkvPnz2NsbMzly5fZtGkTo0eP1qt9XxRFPvzwQwIDA/nggw9wdHTk8OHD0vOrUqk4ceIEISEhTToY/0/RarVS8tTCwoK8vDwWLVqEn58fn332GW3atCEwMJCXX365waY469p1jIyMKC0txdXVVSo8OTk5tQRt/wcfffQRlZWVTJ8+HYB58+Zx5MgRSSlnbW1NbW0tPj4+jXK2mpmZIQgCZ86cwcjIiKioKNauXcvRo0fJzs5m165dTdrcXodSqZRsJJ48ecKUKVMwMzOTJsD9+OOPzbYNUDdJztXVlYEDB0qtzqWlpdjZ2eHq6srx48fZu3cvY8aMQa1WN7vPWJf89a9/paamhmnTpgHw448/kpWVRadOnQgJCeH69etkZ2c3iNrKxMQEJycnHj9+TNu2bSksLGTfvn3IZDIOHjzI9u3bmTJlSoPt5c0RQRBISkrCx8fn74p8Ou8+U1NTbG1tCQsLw8fHBysrq3pdT1ZWFhqNBplMhomJCefPn+f3339HqVTSs2dPyYt60qRJLYmv/5LnKvkliiKffPIJFhYWqNVqysvLpdHZarUaU1NTLl26xPXr1wkLC2v0pEF9kpqaysqVKzE3NycmJgYLCwtWr15N9+7diY6OJj4+nsGDBxMfH6+X/cTHjh3jxIkTVFZWYmFhIammAgMDAZg9ezbh4eFNbqy9rtprZ2fHwIEDMTIywtLSkt9//52qqiquXbvGtWvXWLduHePGjWtUSawoilRUVDBv3jy8vLyk1oaamhosLS3Jy8trqUr9Sezt7YmMjGTy5MloNBpp6pmBgQEnTpxAq9XSuXPnOvXFycnJYdasWYSEhKBQKPjuu+8oKytjwYIFyOVydu7cycKFC4mPj2/5Df9DcnNz2bJlCyYmJixZsoQLFy7wwQcfsG3bNlxdXenfvz8eHh51sgfr2jW8vb357LPP6NatG2fOnOHRo0eEhYUhl8tZt24de/bsYdasWY1ijF2f5Ofn89NPP/HOO+/g6urKvHnzuHfvHiNGjEAul6NSqcjIyCAsLKxJFTvqgu+++46srCwiIyORyWTMnz+fBw8eMG3aNGbNmkVZWRldunSR7kENiUKhwNvbG1EUWblyJc7Ozi3TyP4FDx8+xNHRUVJ2bdmyhby8PMkPJiUlhfv379OnT59Ge5bNzMzw9fVl7dq13LhxAw8PD0aMGIGJiQne3t4MGTIEd3f3Rlnbn6G2thatVotarSY9PZ1PP/0UNzc3tm/fjqmpKfPmzcPKyopp06ahVCqbXVJI1/7t6enJxx9/DMCqVauwtrYmNDSU/Px8EhMTOXDgANOmTXuug22dB5O7uzulpaW0atWKjRs3kpeXxzfffCMZoXfp0oX27dvXW7JZFEUePHgg7dEVFRUcPHhQskooKyvD2dkZQ0ND3nvvvef6N/tX6FT3tbW1xMTE/K9/b+j3eevWrZLPuLOzMwsWLOD+/fvMmzeP9evXU1RUxEsvvUTv3r31yoO0sXiukl9FRUXcv3+fSZMmYWdnx65du9BqtdjZ2Uljvq2srIiKitJ7FYOrqyuiKEqmnR07dsTIyIjFixfj7e0tGSrro8R55cqVlJeX89prr3Hq1CkKCwulBChA69atMTMzw8PDo0kFQbrEl4uLi2TMv379eiIjI2nVqhWPHj0iIyOD0tJSRo4cKbUwNRa6iUeGhoZcu3ZNer90LQ9Hjx6lR48eLYmTf4IgCCxcuFAaOe7u7s6LL77I559/jkajwdnZmcOHD7Nr1y5GjBhR51UpOzs7fHx8SExMxMnJCQsLC9zc3GjXrh2HDh1iw4YNLWOz/wNEUeTEiROYm5sTGhrKlStXePjwIV5eXlIbgyiK3L17VzLUrQsmTZrE48eP0R35KpWKVq1asX37dgCGDBmCXC7nvffea/JqjP8EGxsbIiMj+eKLLzh58iSiKEpm1bpJTh07dmxSe/5/iyAIbNu2jdDQUHbt2kV5eTkHDx7kxo0bTJ8+HY1GQ9u2bVmxYgXdunXDxMSkUc57AwMD3NzcMDExkYYPtfCPSUpKYuPGjfTv35/AwEDGjh3L/fv3Wbx4MQqFgp07d7Js2TJee+21Bje4/uWXX9i5cyfx8fEALF68mOLiYmJiYrhw4QK1tbV069YNV1fXJjc4SIduevaZM2dISkrihRdeICsri9mzZ5Oens4XX3zBq6++Ss+ePXFzc2tyBdI/y5w5c9i7dy+LFi0CnqmYrly5wqBBg1CpVDg5OVFVVcUHH3ygl+fBv8OlS5dYtWoVgwcPRhAEZs2aRVFREUuWLEGhULBr1y5++uknunbtWq/Pw9ChQ0lISKC0tJTw8HAcHR2Ry+VcunSJkJAQiouLsbCw4N1339VL0UJdIQgC77//Pjdu3GDevHkAkm+fjqqqKgwMDBpkLQsXLsTd3Z2amhquXbvGhg0bePjwITNnzkSlUhEeHs7WrVvp3LmzXqrSG4PnKvmlUqlo164d8MxTws7Ojv3791NdXY2NjQ0qlQo7Ozu9DcZFUSQ/P1+6ELVq1YqKigpSUlIwNjamc+fOiKLIunXr6NWrFwqFQu8SX/Dse/jhhx+IiooiKiqKjIwMbt++LSnAAPz9/ZtcEDRjxgwOHz7Mb7/9Bjy7rOTk5NC7d28cHR0JCAggPj6e6OjoJtWupFarOXv2LKdOneLmzZvk5uayceNGvv766xZJ9j9BV5UyNzcnLCwMpVLJzJkzadWqFUOHDmX+/PlkZ2dz8OBBpk+fXm8qHZ0KY8uWLXh7e2NhYcGCBQtIT09nypQpeqcOqm8EQWD06NGkp6dz+vRpnJ2dGTx4MB06dECtVmNpacnOnTtZv3497733Xp1eYHNycrCzs8PQ0FAqbpiammJvb8/u3bvp2bNng0j7GxJBEPj111+lBLKrqyuvv/46K1euZNCgQQQEBFBdXY2RkVFjL7XO0Sk7ampqGDRoEGFhYaxZs4bLly/z888/Y2pqilarxd7enoEDBza6ibWhoSG+vr4tia9/gYmJCffv3+fo0aP07NmTmJgYNm/eTOfOncnOzuaPP/7gm2++adCEhSAIJCQkSH6eN27c4OzZs+Tn5/Pzzz8TEBDA9evXKSgoICgoqMm+b4Ig8OWXX+Ls7Mxf/vIXrl27hlqtpmPHjtJdKy4uDq1Wi6WlZbPdKzds2IClpSVyuZzU1FTOnj1LcXEx06dPx9jYmC1btlBQUMDLL7/ckkThmQowIyODiIgIOnbsiFar5dGjR0RFRXHq1CnWrl0reSjW5xoePXokeYuVlJRw8eJFLCwsMDc3p1OnTjg6OhISEtJiIfJ/oJuQ6ejoiFKp5OLFi0RHRyOXyyWvz9OnT5ORkYGvr2+9ep4KgsDYsWMxNTXltddew8fHh/z8fHJzc3nllVck302VSkXPnj1bJh7XIXqf/BIEgTlz5khtbX+b2HJwcECj0ZCYmIihoSF+fn56Ze77P5k9ezbz58/H1NSUzMxMgoOD8ff3RyaTsX//fmQyGT169OCFF17Qu5dMFEV2796NWq3G09MTR0dHdu/eTXx8PE5OTuTk5JCXl4darW6y44C9vb25c+cOFy5cIDMzk8LCQmbMmIGRkRFJSUlcuXKlST7D5ubmtGrVCiMjIzIzMzE2Nubdd99tkWT/H8ydOxeVSsWnn34qTesKDw/nhx9+YMiQIfTp04eYmBh69epVrwlEURRxdXXFycmJRYsWSZPxRo0a1fL7/ZvoAitXV1dmzZrFyZMnqaqqIjg4mLKyMhYvXsySJUvIyMhgxowZdfb9jhs3josXL/Lxxx+TlZVFTk4OcrkcFxcXANLT07lz5440NEFfCh46c3szMzMiIiJQKpXMmjULd3d33nrrLSZPnoxKpZJa3fUJXWU7IyNDGmJjaWlJ27ZtOXHiBNXV1Xh5eUn3oaZi8aAvz15dIwiCNI3U09OT1q1bU1RUxLFjx+jSpQtt2rThrbfeIjc3lxkzZjRoUUKXZDU0NKR79+6EhISwevVqjhw5wh9//AGAXC7Hw8OD8PDwJqv4Avjwww95/Pgx3377LUqlknnz5nH+/Hl++eUXamtr8fDwICgoqMm8L/8p9+7dIy8vj9DQUM6fP8++fftYvXo1xsbGJCUlkZCQwKuvvtpsVW11jbm5Obdv32bjxo107doVHx8fampqmDJlCmlpacycObPeB4TI5XJat26NpaUltbW12NnZ4e/vz4IFC9i/fz9KpZIuXbq0JL7+BadPn0apVDJq1CgiIiJISEjg4sWLdOjQ4e/OHzc3t3rdqwRB4IMPPiA7O5s5c+ZgYmKCsbEx3t7elJeXc+vWLcrLy6W9vKnFdc0dvU9+ZWdn88MPP6BSqfj+++9xdnamqqpK2tQdHBxwcnKidevWTfpQrgsKCgo4f/48cXFxpKamsnbtWp48eULXrl3RarWcP39eb1s+58+fz7fffktWVhbe3t6Ym5vz9OlTyUxaqVRy69Yt2rdv36SUfzqfnkuXLlFYWMgbb7zBxo0bOXToEOvWrcPAwIAdO3awfv16hgwZ0mQTd6ampnh6etK5c2fatm3bUk38Fxw8eJC4uDhcXV0lObZarSY3N5eioiKsra0lo/L6RCaTUV1djZubG0+ePEGtVjNs2LCWCWz/JqIo8vbbb+Pk5MRnn30GPFNiPXr0CD8/P6ytrQkKCqJv37707du3TltJQ0ND+eGHH6isrOS9997jwoULUqI/IyODLVu2SOb2+pR8WLBgAWZmZtJwEF9fX6Kjo5k7dy4vv/wygYGB/PLLL/Tr169ZmlX/M3TepoGBgRgaGrJ792569+4NPKsgt23blvnz5yMIAsHBwY282hb+Fbokrkwmw83NDVdXV3x8fLCwsODu3bscP36c7t2707NnT/r161fvQfj/XNsHH3xAcXEx33//PQAWFha0a9eOnJwcCgsLiYiIAJCCu6ZKdXU1jx49ory8HGdnZ3bs2MGDBw+YNWsWhoaGnDlzhlu3btGjR49mvV8IgiANqPn999/p2rUrNTU1XLhwgYcPH7Jt2zYmT5783Be3Fi9ezJ07d/Dz8wOgTZs2XLx4kdatW6NWq9FoNJiZmfHuu+82WLLZwMAAJycnqqurOX36NPHx8bzyyivY2dkRFxfX0hL3fyCKIjk5ORgYGEiFPqVSSXh4ONu3byc3N1fy/lKpVPUeB48cOZKgoCB8fX3Zs2cP/v7+WFpaYmxsjJeXF9nZ2dy7d482bdro3dTppoDeJ78MDQ05ceIEAwYMoF+/fixZsoTExETu3LlDbW0tDg4OODs762XCB5698NnZ2djb29OmTRsKCwsZOHCgZNhobGzMzJkzadeuHUOGDNHbzbNNmzaIoohCoeDmzZsUFhZy6tQpSkpK6NixI/b29oSEhDSp50Dn8WVjY0NISAhnzpwhIiKCbt26cfnyZYqKinjw4AGbNm1qaUHTE0RRRCaTcf78eczMzCTfNplMxrZt21i+fDlyuRxXV1ecnZ3rvQItCALz58/n8OHDHDhwQG8nv9Y3xcXFUotCTEwMc+fOZefOndy8eZNDhw6xadMmrl27Vi8eeGZmZvTs2ZMZM2ZQWVnJiBEjyMnJYdu2bRw4cIDp06frZaBz6NAhoqKicHd3RxAEamtrsbW15eTJk9jZ2RETE9Mk2v3qmuvXr2NmZsZbb71F79692bJlC3v27KFPnz7AMwVYVFQUXl5eel/w0wfmz5+PtbU1Y8aMITg4GLVaTXV1NYIg4OXlxeXLlzl37hx9+vRp0OKXKIqMHz8emUxG27ZtuXjxIj4+PhgZGWFhYUFYWBjLly+nqKiI9u3bN9i6/lMUCgV+fn5UVVXx/fffc+3aNVauXImxsTGFhYWYmpoydepUzM3Nm+V+MX/+fJ4+fSolR7du3UpOTg5KpZLIyEhSUlJISkrixx9/fO7vkqWlpRQUFLBkyRKKi4vJz88nNDSUo0ePkpOTQ3R0NGZmZgQGBjb4fcjQ0FDyh1q+fDmBgYF07dpVb2O3ukAQBL744gsOHz7MvXv3CAkJkRLxuoLQmjVruHnzJpGRkfW6FlEUKSwsJDQ0lL59+xIdHU16ejrJyckEBgZiYWGBiYkJrVq1ok2bNi1ndD2hl8kvURQ5fvw4N27cwM3NDWtra06dOoWnpyfHjh1jxIgRZGZmcuPGDb3uj9aphoyNjQkMDKS6uprU1FT27dtHWloao0aN4u2338bPz4+wsLBGnQxYH+iMpaurq7G3t6eoqIiAgAD69++PtbU1ly5dIjk5GYVCQWhoqDQGvikgiiJjx47F2dmZcePG4eXlxYEDB2jdujXu7u6Eh4ezcOFCtm7dyty5cxu02ttC/aF7/goLC1m7di0dOnRApVIhk8nYsWMHgiAwbdo0AgMDG6T1QiaT4eDggEql4s0336xXTwt9ROc5FRAQQFhYGJcvX2bGjBkArF27lgEDBjBgwABcXV3p0aNHnSXfExISJLUggFKppHfv3nzzzTfI5XJefvllysrK9NrMOCcnBxMTE3x9fREEQTKvPXPmDO7u7ri6uuqVr6UgCGzevBlBEIiMjMTExASA/v37s23bNvbv30+vXr2AZ+qclkt18yA5OZno6GhcXV0lT5p79+7xySef0LVrVwICAoiMjGxwq4qDBw+iVCqZNGmSpKrIz8/H398fQ0NDLCwsiIqKalZdFQYGBnh5eWFsbMyDBw8ICgri3LlzbNiwgffff1/ySmxuaLVaCgoKSE5OxsnJiR07dpCbm8vSpUuxsrLi8OHDdO/enY8++ui5PuNFUWTfvn1UVlYSGBjI8OHDEUWR5ORkDh8+TEREBHv27CE2NrZRk6AGBga4u7tjYmKCn59fkyraNzVEUWTSpEn4+/vz1VdfERsby+3btykuLsbIyAhjY2NUKhUxMTEEBgbW+3e5d+9eRo4cyWuvvSZ1wHTs2JEzZ86QkpIiKcBMTEykM7yFukfvkl86Q+G8vDxyc3Np164darWaHTt2cOjQIT755BM6dOhA586d6dChg95mywVBYNSoUahUKkaNGgU8q2y5u7vz66+/0rdvX3r37o0oiri5uenl5pmWlsa2bdvIzMxELpcTHh7O7NmzCQoKIiQkhKioKJRKJb169Wpy1bwdO3aQlJTEd999h7GxMb/++isPHjyQJrKZm5sTGxvLoEGDnuvLij4gCAILFizA3d1dUqEEBARQVFTExo0bSUlJIScnh9TUVL799tsGHxJgbW2Np6dnszX3bSx0xQeA3r17Y2Vlhbu7Ozdu3MDU1JT4+HgMDQ0xNDSs0z34wYMHrFq1CplMhomJCba2ttTW1kreV8eOHaNbt260adNGr35TQRBYt24dBw4cwM7ODkEQAp04MgAAIABJREFUWLNmDZGRkVhYWCCTydi9eze7d+/m9ddfb3J7/n+Dzjg3Pz+f+/fvk5ubS9u2bamtrUWhUNCvXz9Wr15NamoqPXr0aOzltvBvkJWVhaGhIa1ataK2tlY6/3VKcHd39wa1ahAEgR9++IG4uDg6deoEgL29PXK5nLy8PK5evYqfnx9GRkaoVKpmk/jSoVAo8Pb2lqbBHj9+nFmzZjVrdaxCocDX15fq6mrmzp0rqZoAqX2vTZs2aDSaRl5p46GLHYuLi7l+/Tpbt27l3r17DBo0iJ49e1JWVkZFRQXJycm8/vrrje6L3DIg5M9RUlLCuXPneO211zA2NmbChAls2LCB3NxcDh8+TOfOnTE0NMTc3LxBvksfHx9MTU2ZNWsW0dHRklo3Li6OI0eOkJGRQVxcXIvHVz2jd8mvcePG4ePjw1dffUVcXBxWVlaoVCqOHj0KwHvvvQc8Owz0tY9WZ0B68eJFOnXqhEajkS76lpaW1NTUYGdnh6+vL6C/JrMuLi6EhoZib2/P7Nmz8fT0xMLCgiNHjhAeHo6VlVWTa3XU0apVK54+fcrWrVs5efIkRUVFfPfddygUir+7ADe1iZQt/HsIgsCYMWPQaDR07twZmUwmVfcjIyPx8vLC09MTFxcXXn31VVxdXRt7yS38CQRBYNKkSTg4ODBhwgTgWcUvNDQULy8vbty4QUJCAjExMXU2+UwQBEaOHElhYSH5+flUVFTw8OFDbGxspNaM5ORkLl++TNeuXfVO9TRhwgSePHmCtbU1rq6uREVFUVRUxPr16zly5AhZWVns3Lmz3qdyNTS6QQpOTk5MmzYNrVZLRUUF7dq1Q6FQSPvJ4MGDW9oomgGCILBy5Ur279+PWq3G0NCQxYsXEx4eLqnz9+zZw4EDB6S23YZc26RJkzAwMKBfv37S3xUKBS4uLshkMs6dO0dRURHBwcHNdn/RKWtUKhXDhg3TC2W9TtVmZGREaWkprq6uUrLLycmpSXndNjSCIPDVV1/h4eHBpEmT6NSpE9HR0SxatIiysjLCwsJo3bo1wcHBTcoeprm+Xw2FIAg8fvyY1NRUkpKSOHr0KI8fP+bXX38lPDyc27dv06FDhwZPNAUHByOKIt999x0dOnSQFGC64SVNMSbVN/Qq+aXVasnIyGD8+PHS32QyGcXFxRgaGlJaWoq7u3uTNQWvK3ST4mbPns3evXspKChAo9FIVf68vDxp1HtTavWrD8zMzHBxcaFDhw6kpKRQXV3N3r17JZ+vpvTZdUHMgQMHOHv2LB999BGXLl3iyJEjfP3119ja2iIIQrOfNNTCM3RmwXfv3mXs2LGYmZkhiuLfjVzWaDSSyXFL0Np8GDlyJEZGRkyePBmAn3/+mUOHDjFgwACsrKywtramoqICHx+fOgledXuHs7MzQ4cOpbq6mnbt2pGdnU1lZSVXrlzhypUrbN68mYkTJ6JWq5vU3vffMnv2bOzs7Bg/fjzh4eGo1Wq0Wi1hYWFERUXh6OiIm5sbr732ml4lvgCGDBmCvb09n3/+OQDbtm0jOzsbCwsLrKysePLkiaRSaNlDmjY6bxqtVkvr1q3x9PQkJCQEhULBihUryMzM5PTp0+zcuZPvvvtOmtjaUGubOHHi3yX0169fj5+fn5RId3Z2xsTERFLVN2cMDAxo1aqVXsULf6tqW7lyJc7OznU6XKW5Mm7cOM6ePcv8+fMBqKysxNLSEl9fX06ePElERIQ05KA5Dzt43pDJZJibm2NtbU1YWBjh4eEMHz4cY2NjkpOTOXLkCF27dq33QRyzZs2SvHp1hISEUFNTw4YNG+jcuTMKhQK5XN7s983mgl4lvx49esT8+fPx8/PDyckJuVyOXC7n6tWrrF69GoVCUS+Gwk2NqKgoYmJiMDY2xsfHh5SUFO7cuYOdnR1WVlYEBgZK/jL6tImLosimTZvIy8tDLpdLaofa2lqsra0JDQ3F39+fmzdvSqrApoIoikycOBFHR0feffdd6fdr3749lZWV7Ny5Ex8fnxazcT1BZxZsampKcHAwBQUFmJubS7+vPr2XzxOiKHLmzBk0Gg27d++mW7du/PHHH+Tn5/Pzzz+jUCg4fvw45eXl9O3bt86Umx9++CGPHz9m5syZmJmZMWvWLMrKyti/fz82NjYIgkBGRgYTJkyQhijoE0ePHqVPnz6o1WopcXz79m0+/PBDunXrRlBQkN4mkG/cuEFqaipDhgxh0aJFpKSkoFarSUtLIzExkW3btjFw4EDJ86yFpsu8efNwcnLio48+olWrVuzZs4cjR44QEhJC//79UavVWFtbM3ToUNzd3RtsXToPUq1Wy7Rp06S1njx5kv79+yOXy6msrMTQ0BAXFxe9CeD08Rw2MDDAzc0NExMTAgICWlQmPJuInJSURHl5ORERERgYGEjDhw4dOkSXLl2kBIk+PhP6xogRI6itraWkpAQPDw8cHR1xdnamsLCQgoIC9u3bx9atW/nmm28axMevoKCAxMREKdms695xd3fn0qVLdOrUqeV8bmD06tu2trZmyJAhUvChq/CWlJRgb2/P+PHjm1TCoy4RBIFPPvkECwsLaVoNgLOzMyNHjmTJkiVs2bKFF198EQ8PD0lmqS/oKqa1tbUEBAT8XZJI1/phamqKqakps2fPbsSV/mMSEhKwtbXl448/Bp5VCu7evUtJSQlLlixh4cKFLF26lGnTprVsknpAeXk5bdq0YdiwYeTk5LBjxw5SUlKQy+XP/aSl5szly5cZM2YMiYmJwDNVjo+PD8uXLwdg586d/P7778yZM6fO2h2rq6uJiYnh/PnzkjecWq1mwoQJuLu7c+7cOb755huqqqrqvcLZWFRWVlJWVgZATU0NRkZGuLq6NrgfUkNSXl6OsbEx48aNw87OjtDQUGJjY0lISJD+m4qKCrRard7+7vqGVqtFq9Vy+fJlfvvtN/Ly8ujevTvvvPMOf/zxB9HR0Q2+JlEUmTlzJg8ePODWrVtkZWVx4sQJrl+/zsKFC1EoFBw4cACtVkvPnj1blOnNAFNTU3r37t2SyPn/sLe3Z/ny5bz11ltUV1czevRoZDIZFy5cQKvVIopiYy+xhT9JYWEhd+7c4datW6SlpbFr1y4GDhxIYGAgVVVVHDhwgOrqar799tsG8/F74403MDExYcGCBYwaNYrQ0FAAUlNTuXz5Mk+ePGkyrbTPC3ql/IJnm9jZs2fJzMyUjF8TEhIYPXp0gxtFNxSCIEhtcWPHjuXAgQNoNBocHByQyWSoVCp8fHw4c+YMsbGxmJqa6t2hN3nyZLy8vJgwYQJhYWGcOHGC8+fPc+/ePdzc3Jr853306BHJyclcu3aNhIQEzp8/z4QJE8jPz+fy5ct88sknhIWFtVTp9ICPPvqIyspK3nzzTQDs7OxQqVRcuHCBkpISVCqVXrVaPC8IgoCdnR0KhYLr16/z8ssvS5O0XnzxRVJTU1m3bh3ffPNNnao2FAoFfn5+UtHj2rVrrFy5EhMTE4qLi7l79y6dOnXSq3YNQRBYv349GRkZqNVqampqmDlzJl26dJHenT179pCSkkKfPn30RokCzz77uHHjOHnyJBs3biQnJ4fXXnsNDw8P9u3bx+DBgzE0NEQQBIyNjfU2+adP6NSK5ubm/Prrr9y5cwcLCwt++eUXoqKiqK6uRq1WN2ibo45Hjx4xc+ZM7O3tUSqVbNiwgfLycinxtXPnTlauXMkbb7yhd0VVfUZfzoL/BFEUmTJlCqdOnSIgIIDHjx+j0Wjo3r07c+bMoaamBq1Wy4oVK/jss89wcHBo7CW38CexsLCguLiYO3fuMGvWLHbs2MH27dvZvHkzPj4+xMfHM2TIkHq/Y8+fP5+qqirprte6dWuqq6vZtGkTd+/e5cSJE2zfvp1p06Y12ymyzRm9S36Zm5vTqlUrDAwMOHr0KJWVlbz//vt62eqh480338Ta2pqvv/4aIyMj1q9fLxkqt2/fHjMzMywsLIiOjm5Qc9SGJDMzEy8vL0xMTJgyZQq7du1CqVSyePFioqOjUavVjb3Ef4hOWm1kZIQoity/f5+goCCmTp2KWq3m6dOnPHr0iPbt2+tVAPc84+rqyvTp0zEyMqJNmzbAs6S9SqUiPT2diooKWrdu3VJBb2bogomSkhKSkpLo378/AQEByOVy3n//ffLz85k2bVq9KPt0ZsbGxsY8ePCAoKAgzp07x/r16xk9ejR2dnZ6E+zoVL737t3DwcEBHx8f2rVrh6GhId999x0PHz7k5MmTJCUlMWPGDL0qeomiyKeffoqHhwdffPEFXl5ePH36lMWLF/Pxxx8jiiIff/wxAwYMaCmUNCN076aDgwODBw8mPj6etm3bYmpqSlJSEtu2beOVV15plAE3JiYmODk58fjxY0JDQ7l//z43b94kNjaW7Oxs/vjjD6ZNm4aHh0eDr62FFv4TysrKWL16NXl5edy6dYu9e/cik8kIDQ1l4MCBjBs3jj179jB37twWJX4zQBAEUlJSsLOzw8jICDc3NwoKCgA4deoUX375Jf7+/ly4cIGYmJh6Pxu1Wi0FBQUcPnwYS0tLqWgRGBiIq6sr9+7do6ysjNGjRzfrKbLNGb1LfsEzSa+npyddu3YlJiZG71UUug28e/furFmzhhs3bjB58mQOHTrE1atXiYuLA9C70amiKLJ69WrUajXFxcWS0a+pqSlLliwhLi6Ox48fExgY2OQkpaIoUlhYKK3L3NycNm3aEB0dLSn2Dh48yPr163nvvff0/hl+ntBoNLRv355p06ZhaGj4dwkwtVrdovBrZrz//vtUVlZSU1ODg4MD3t7enD59muvXrxMWFkZwcDCenp4MGTKkXi/Sf2tmPH36dI4fP86sWbP07nI1c+ZMPDw8GDt2LG3atCElJYVTp04RFRVFv379qKmpwdDQkHfffVfvAvL9+/dTVlYmDfXRaDS0bt2aO3fuUF5ezssvv4wgCHh4eDS5M6+F/83u3buRy+XS+S4IAoaGhty+fZtffvmFffv2sX//fr7//vsG9/h68OCBpBqsqKjg4MGDREZG4uTkRFFREQsXLuTq1atMnTq1JUHQQrNBZ4Fibm5OYGAgI0eOJCcnh59//pmrV69y6dIlvvrqKwYNGqR354c+orP8qayspGPHjsCzWHf9+vWsXbuWqVOnEhQUhI+PD5GRkQ1yLioUCnx9famurmbHjh1YWlpKZvfp6ek8evSIkSNHtng4NyJ6mfx6XqitrUUURWJjY6Us8pMnT1i+fDlKpRJBELhz5w5RUVF6qSKpqalhzpw52Nvb07t3b7p160aHDh3o1asXCoWCXbt2kZSURJ8+fZpUMkEQBMaPH09FRQVhYWF/92/37t1j/fr1rF69mjNnzjB58mR8fX0baaUt1BUzZsxg586d3L17F61Wi4uLC927d+eLL77AwcFB+o01Gk2Lwq+ZoDO3j4iI4PTp0xw6dIjMzEwCAwMxMjKitraWwMBAALy9vRukJcjAwAB3d3dUKhXDhg3D09Oz3v+fDc3x48dxcHBApVIxZcoU9u3bh5WVFZMmTeLVV1+lXbt2TbLgURfk5eVRUlJCbGwsVVVVGBgYIJfLOXXqFAUFBcTGxhIeHq6Xn13fyM/PZ9u2bTx+/Bhra2usrKwkBZgoilhbW+Pi4sKwYcMaNPEFMHToUBISEigtLSU8PBxHR0fkcjmXLl0iODgYQRBQqVR8/fXXernHtKC/6N6xoqIiNm3ahK2tLWlpaYwYMYIuXbqQmJhIz5499UoxrK8IgsCECRNwc3Pj008/BZ55fqnVavz9/cnLy+PFF1/ExMQEmUzWoHGwgYEBHh4e1NTUsHPnTry8vDh//jzLli3j7bffRqPRNNhaWvjftDhnN0N0L7ypqSk3b96kU6dOxMTEIJPJ2LNnD/Bs+tWmTZuYMmVKnRkrNyU+//xzLC0tWbNmDXfu3EGpVKJUKsnOziYxMZF79+6RkZHB7Nmzm1S/viAIfPDBB1haWvLOO+8A/3/rIzzzf3rppZd4/fXXkclkLYovPeD+/fuUlpaSlZWFQqEgLS2NkpISyfRyzJgxlJeX88orrzTySlv4d7hx4wZvvfUWP//8MxMnTuTu3bt8//33rF27llOnTlFcXIyLiwsxMTENui4TExMGDBigN22O8GyPTE5OJj4+npCQEBYtWsSpU6dQqVRs2bIFAwMDTE1N0Wq1jb3UekF3RigUCu7evQuAsbExtbW1KBQK7O3tW7y9mhGiKOLt7c3gwYPZs2cPhw4donPnzlIiycrKiqioqEZZW21tLV26dOHgwYMkJCRQUVGBtbU1zs7OuLm5ScpkBweHlvtJC80GQRD+rvslLi6Oo0eP8uWXX/Ltt99K57RuOE0LTRtRFBkxYgTh4eF88MEHAMyePZt79+5JHoVyuZwrV67Qvn37RlmjiYkJL7zwAnK5nHHjxvH06VN+++03vVPjN0dalF/NDN3IaVdXVyZNmoS1tTVlZWUcPHiQQYMGIZPJ+PDDD8nNzeXbb7/VWzl6ZGQkv/76K/n5+fTu3Vv6e2VlJXfu3OH/tXefAVWdWaPH/5zCoYgC0qvSRZrEDvae2FvGGDOxphhHiSWxxsQYo8bYTWKMmqZGdBB1bFFGTVRiwYYiqLELFhDpde/7IZdz4533nclEk8PB9fskcMAFB87ez3rWs5a9vT0jR46sVruSiqIQFxdHdnY2ISEhODg44OTk9C+LVDs7O2xsbGQxU0PY2NgQERFBZmYmjRo1om/fvgwZMoT69esTHR1No0aNaNq0qSwkzISqqvzwww9ERkbSoUMH3nrrLWxsbGjatCnt27cnNDSUWrVqUVRURLdu3UzSp6cmJb4Afv75Z0aMGIG7uzvdu3ena9eutGrVijZt2mAwGIxNbXv37o2dnZ2pw33iqp5PPz8/1q1bx8GDB+nSpQsajYa9e/eyfv16Xn75ZXkNqeYURWHXrl2Ul5cbe8H4+vpy8uRJHjx4gKOjo0leL35No9EQGhpKnTp1qKysxNnZmZCQEJYvX87333+PjY0NHTp0kPsTYTaWLl2Ks7Oz8fWxajNBp9ORn5/PsGHDgF/+PqHmXT9roqqBBH5+fjRr1oylS5dy69Yt5syZg06n4+7du9y5c4cmTZqYtBL619X4w4cPl8RXNWGhygxXs7J582YyMjKYPHmy8X23b98mPj6emJgYGjduzKpVq2jTpk2NPS5XtdsN8MwzzzBgwADefvttE0f1ny1fvhwLCwsGDBjA7t27uX79Ot27dyciIsLUoYknTFEUVq9eTd++fdHpdNSuXZuff/6Z1atX4+HhQd++fatVRaL47VJTU1mwYAE9e/akT58+XLhwgVdeeYXRo0czcOBA4+NKSkqwsrIyYaTmT1VVLl26hJeXF/fv32fEiBGMGDGCAQMGkJGRQWJiIgUFBZw9e5b58+fXqBtLVVWZP38+r776KrVr137kuvfaa68Zf7fy8vKYPHlyjR7qU1Ps37+fV199FVtbW9q2bcudO3do27YtR48epbi4mIiIiGpzJKaoqIh9+/aRlJTEa6+9hqOjI3v37iUmJsbYv0aI6k5RFIYNG8bQoUNp06bNv3y8d+/e9OjRg+HDh5sgOvF7VFRUoNPpKCgoYOjQoaiqip+fH/PmzQNgy5YtbNu2jQULFmBvb2/iaH/x6xM+wvSk8svMZGRkoNPpaNSoESUlJeh0Ouzs7Dhw4AA3btygZcuWREdH18hGehs2bEBRFONY2C+++AKDwcD58+e5dOmSsdlhddWgQQNiY2OxtbXF2tqa3NxcTp48SZ06dXB1dTV1eOIJ2rdvHx9++CF2dnZ8/vnn+Pj4EBISQlRUFPv37+f69eu4urpKbx4z5OLigpOTEzt37qSgoIDWrVvTokUL3nvvPXQ6nTGZrdNJV4HHoSgKY8eO5cyZM2zatImQkBB69+7N+++/j729PdHR0cYjWSNHjqxxzYkzMzPZtGkTAwYMAH6pyKmsrESj0dC9e3caNWpEq1ateO655/Dw8DBxtOK3cHZ2Jjg4GI1GwzPPPMOLL74IQH5+Pvn5+Zw/f55+/fpVi6oqvV6Pr68vFRUVrF69moYNG9KhQwe5ZgmzYmFhQWZmJg4ODo+chKl6LW3QoAEREREmr7gUv51Go6GsrAxra2u6d+9OUlIS7u7utG7dml27dpGQkMCUKVOq1XVREl/Vi9ydm4l9+/bRpk0bLCwsOHz4MEOHDsXKyoqysjIsLS3x8/OjsrLS1GH+YUpKSjh37hxZWVk4OjqSkJDA1atXWbx4MQAdOnTA0tKSSZMmmTjSRymKwqpVqygrK6Nu3bpER0cTHBxMYGAgWq3W2JtNo9EYm2ML8xcYGIirqyv16tXD39+fd999FxcXFzp16kSbNm04cOCALCLMSFXPqaCgIJydnYmNjcXZ2ZmVK1dibW3Nc889x6JFi5g8eTI9e/akVq1acrPzGKr6WoaEhDB69Gi2bNnC5cuXGTRoEAsWLGDSpEmUl5fTr18/U4f6h7l37x4PHz5EVVXKy8vR6/VotVrjv2XDxHzk5uZib2+Pra0tMTExWFhYsHPnTurVq0fHjh3p2LEjAIWFhdja2po42v/HysqKLl26yO+bMCuqqhIfH2/cbA4MDCQlJYUOHToYK2irqmgjIyNNHK34rT788EPc3d3561//iqWlJWVlZdjY2LBkyRKGDRvGCy+8gI2NDVOnTq2xLX/EkyGVX2bg6NGjfP/99xQUFNCrVy8OHDjAvn376NSpE1qtln379rFhwwZefPHFP2WimCnodDqaNm3K4cOHSUxM5NatWyxatMh4AfvLX/6Cn59ftUooKIrCpEmT0Gq1hIeHc/r0aX7++WcePnxIYGAgDg4O2NnZUVpaSlRUlEz5M3OqqrJ+/XoCAgJwcnJCr9dTWlpKaGgo+/fvp3///qxfvx6dTsfw4cOlP48Z2bp1K+PGjWPfvn0kJyeze/durK2tuXTpEsnJyeTn59OlSxf69++PjY2NJL4eg6qqzJo1i7KyMqZOnQpAQkICWq2WRo0a4ebmRmhoKMuWLePZZ5/F0tKyRv2858+fT2RkJLVr1yY5OZnu3btTWVlprCSsiZOba7KXXnqJrVu3cv78eRo2bIjBYKBhw4ZUVFSwa9cuKisrjS0q9Hp9tftd1uv1BAYGVquJ2UL8O0lJSWzdupX9+/fz+eefk5OTw8WLF+nfv/8jFbTCvGi1WhISEigrK6Nhw4ZotVpjBdizzz5LcnIyEyZMqFHtD8QfQ3p+mYHi4mJ++OEHjh49SlhYGO3bt2fmzJnk5eXh7OxMZmYm06ZNq3E9P1RVZfbs2QwePBidToe3tzeFhYWsXr2aoqIiBg8ejKurK3q93tSh/o9mz55N7dq1GTNmDPBLb5a9e/dy7do1xowZY1zMVO3kC/OlKAoTJkwgJCSEUaNGAXD48GFWrFiBwWDg9ddf55lnnqGgoIDKyspqlaQV/ztVVUlJScHX15dt27Zx79493N3diYiI4MyZM1y8eJHTp0+Tn59PQkKCPK+PSVEU5s+fT1ZWFg0aNKB///589dVX3L59m9mzZ6PX640796WlpRgMBlOH/EQVFhby0Ucfcf/+fV599VVGjBhBixYtuHbtGtHR0VRUVNChQwdiY2NNHar4jeLj4ykuLubq1atoNBpu3brFyJEjcXJyIj09nR9++IG33nqrWlV8CWHOqu6pKyoquHHjBgUFBcyfPx93d3fmzp1r6vDEYzh27BiffvopnTp14i9/+QuA8QSUEL+VVH5VU6qqkpOTQ1lZGXZ2dvj7+1NWVsalS5fIyclh7NixREVF0bRpU3r06IGnp6epQ37ijh8/zqJFi3BycmLVqlVotVq8vLyIiYnh9OnTHD16FHd3d5ycnEwd6v/oyJEj9O3bF3t7e2N5rqOjI4sXLyY0NNTYu0x28s2boii8/vrr5OfnM3PmTOOOore3NykpKdjY2DBkyBAqKyuxsrKSJuhm5Ny5c0yaNInAwECaNm1KTk4OV69eJSwsjI4dO9KuXTsGDRpEv379pGfIY1IUhYkTJ+Lp6cnEiRPZs2cP27Zt4+bNmyxatMi4mPl1BVR1q5L5vRRFYdGiRXh4eNC9e3cuXbrE0qVLadiwITNnzqRevXrY29tz5coVOnXqJElWM5KVlcW2bdv4+OOPUVWVzZs3c+7cOZKTkykuLmbChAlS9S3EY1JVlU2bNmFlZWVcE2g0GhwcHHB1daVPnz588sknnD59mg4dOpg4WvFbqKrKkiVLOH36NBqNhtzcXPz9/WnQoAHffvst1tbW+Pv7yxpK/Nck+VVNzZgxg/Hjx7N3715u377N/v37sbOzIz8/n2PHjlFWVsYzzzyDg4NDtWiO+keoXbs2P/74I+Hh4bz00kvMnTuXPXv2cPnyZVq2bMnly5dp165dtfv+79y5g62tLV999RVubm74+/ujqiqqqmJnZ8ft27dNPn5XPBlVR1tLS0sJDw/n7t27uLi4GH8nq3b3W7ZsKdV9ZsjFxYWAgABWrFhB/fr1adKkCffv3+fEiRNoNBrj1LPqeFzJnCiKwtSpU3Fzc2PMmDFotVoKCgrIzc019s2ztrZ+ZIhATfl5V/U30+v19OrVC61WS+PGjbl9+zbp6ekMHjwYf39/goOD6dixo1w3zMD69evJyMggNDQUPz8/0tLS2LZtG8nJybz33nsMHjyYwMBAmjRpUm0374QwJ9999x0ffvihMamcnp5OWFjYI495/vnnCQkJkY0qM3Hv3j3ef/99kpKS8PLy4osvviA5OZmUlBTu3r3Ljh078PT0rHGnnsQfT5Jf1dDGjRtxdXWlVq1aFBYWMmLECB48eMD9+/c5c+YMqamp5OXl0b59+xp37ANg2rRpuLu74+npibOzM/fu3cPb25vDhw8zevSj/KXTAAAgAElEQVRokpOTefDgAaNGjap2Uy2/+eYbzp49S2hoKG5ubqxduxY/Pz/c3d3RaDTs2bOHnTt38txzz0kPjRrgp59+orS0lHfffZfCwkLOnDlDXl4eHh4exgqvTZs20b59+2qXpBX/u+vXrxuTDN7e3nh4eLB8+XICAgLo0qUL6enpXL16lUaNGqHT6WpMIsZURo8eTXFxMbNnzwZg3rx55OTkMGLECI4dO0Zqaipubm41rk9eVbWbl5cXEydOBH7pL+fn50erVq24ceMGn3/+OZ07d5ZjHWZAVVUOHTpEfn4+ly9f5uHDhwQFBWEwGEhISGD69OmEhoai1+txc3OTRKYQT0hwcDAGg4GoqCiioqKYM2cOR48eJTMzkzp16hivHZL4Mh+2trZ06dKFQ4cO0bx5c959911at26Nra0tfn5+ODk50alTJ3lOxX9Nkl/VUHZ2Nunp6URGRnL37l0yMzMZN24cLVq0oFOnTrz44ou0atWqxi0Eqpw8eRJHR0d8fHzIy8tjzZo1JCUl8dZbb9GkSRO6detGZGQk9vb2pg71Xzx8+JD09HRu3rxJw4YNcXJyYuHChdy/f59jx46RmJjI+++/b6wYEeZJVVWuXr2Kk5MT7dq1A8DPz4+CggLS0tLIz8/HxcUFZ2dnunfvLolOMxIfH8+RI0dwdHQ0VmV4e3vj4uLClClT6NGjB0FBQTRr1kye1yegvLycvLw88vLy8PLyIiEhgStXrjB58mTq1KlDZmYmaWlpdO3atcYdGZ4yZQolJSW8++67ACxevJiDBw/Su3dvdDodUVFR5OXlUa9ePezs7Ewcrfh3FEVh/PjxeHh40LlzZwoKCjh79ixlZWW0bNmSnTt3UqtWLcLDwyVZLsQTVlpayoEDB/Dy8iIiIoKffvqJRo0akZWVxRdffEGfPn2k+t4MqKrKrl27CAwMpLy8nDp16tC0aVNmzZpFaWkpzZs3x8/Pj7CwMFq2bFkt14Gi+pPkVzXk6+uLhYUFKSkpuLu7k5aWxsGDB+nUqROWlpZYWlrW6Oaoly5dYtu2bfTo0QNXV1cePHhAYWEhQ4cONU5pqa674L6+vtSpU4ejR49SWFhIy5YtadasGQ8fPsTBwYGhQ4dSr149U4cpHkPVIufIkSPEx8fTvXt3401VQEAAhYWFHDt2jIqKCgIDA2tUb6KngUaj4cqVK9y6dYtatWoZE2D16tXjzp07BAUF4evrW+MSMaai1WoJCgqitLSU+fPnc/36dVatWoVOp2Pr1q1s3bqVSZMmGXsk1gSqqlJYWIilpSUpKSkEBgbyzTffcOPGDRYvXoxOpyMpKYn09HSef/552dmu5qr6Prq5uTFixAgsLS1xcXGhpKSEEydOYG1tTXh4OBcvXjRWiwohfj9VVUlKSuLWrVsoioKLiwuurq5MnDiR3bt3M2HCBHr27EmbNm3o1q2bbB6YiU8//ZQPP/yQ3NxcLl68iMFgIDg4mHbt2rFkyRKys7Np0qQJgEzsFL+bJL+qiaVLl1JaWoqvry8AXl5eGAwGzpw5Q//+/cnKymL37t01tlFjTk6O8VhYZGQkBw8eRKPR4Ofnh729PSkpKTRt2rRaNoYdNWoUiYmJpKenU1JSgru7O3q9ntu3b3Pz5k1iY2Np3LgxoaGhcszBzKmqyrhx4wgKCmLGjBkMGDCArKwssrOzURQFGxsbAgICUBSFpk2bYmtrK4kvM6GqKhYWFjg7O1O3bl3OnTtHVlYWer0eV1dX9uzZwz/+8Q969eolFV9PmE6nw8/PD4PBQE5ODuHh4Zw6dYr169czY8YM/Pz8TB3iE1PV46u4uJgePXqgqipLly7l/v37LF26FL1ez44dO1i7di1DhgyRne1qrur5TE1NJSgoiKioKHQ6HTY2Nri6uhorUioqKhg0aJAkMoV4TFUbkDdu3OD+/fssXryYwMBAIiMjefDgAU2aNKFr166UlZWh1WqxsrKS+zAz4ejoyO3bt6lfvz4uLi7ExcWRm5uLnZ0dvXv3ZtWqVXTp0kU2H8VjkeRXNVBWVsa1a9f45z//SZ06dfDy8gLAw8ODBw8esGfPHt58803jYrqmWbt2LfPnz8fX1xeNRoOdnR0PHz7k/v37NGrUiDp16rB7925atGhR7RadlZWV3Lt3j+PHj5OdnY29vT2ffvop169f58cff2T37t04OjoSFhaGhYWFXIDN3P3797lw4QITJkwgLy+PKVOmsH79ev75z39SUVFBaGiocSFfHRO14n9WVYVTWVkJ/DKowNbWluvXr7Nz504OHTrEzp07mTdvHj4+PiaOtmbSarXG4SCzZs3i0KFDfPjhhzUu8fX222/j6urKyJEjAQgJCcHNzY2TJ0/SuHFjfvzxR/7+978bpzyK6u3LL79Eq9Xy2WefsWPHDo4ePUpkZCTW1tZYW1vj7OwMQOfOnatdj1IhzE3VkCE/Pz8mT55MTEwMLi4uLFy4kOjoaJycnPjkk0/o2bOncUNd7rurt6qNRwAbGxtu3bpFp06dCA8PZ+/evURERLBy5UrKy8t5//33ZQNBPDYLVVVVUwchoKSkhF27drF//34GDRpEs2bNANi7dy9JSUnMnDmz2h71e1yZmZmcPHmSXbt2YWtrS1hYGLGxsbz55pu88847REREmDrEf6usrIy9e/dy8OBBRowYQUBAAPn5+Vy8eJELFy4QExNjrOgT5klVVa5du2bs4RUYGEjt2rUpLCxk8eLFpKamEh8fz4wZM6SxvZnZuHEjd+/e5aWXXjLeVJ0+fZrz588TGxtLQUEB165dIzw8HE9PTxNHW/NVXQsjIiJqVOJLVVVeeeUVIiMjGT16NAArV67Ez8+Pjh07smXLFlatWoWNjU2NS/rVZPn5+cYjVWVlZUyfPh1bW1veeOMNY19WRVHkiI4QT8DUqVMpLCxk0aJFwC8b0Fqtlvj4eLZv386nn37Kxx9/zPDhw3FzczNxtOK3+PDDD0lPT2fNmjUAfPXVV6xduxZfX1/GjBlDdHQ0ZWVlZGdn16j2B8J0pPKrmtDpdNSrV4+KigoSExOpqKggPT2ddevWMW7cOFxcXEwd4hOlKApr1qzhyJEjZGZmEhUVxeDBg/Hy8uLrr79GURROnz6Nt7c3oaGhQPXdvdFqtXh5eVFcXMzGjRuxt7fH398fd3d3wsPD5diKmauq1jAYDISHh9OlSxdcXFxo2bIlw4cPR6vVkpqayqlTp+jQoUONnMBak2VmZpKZmcmVK1cIDg4mNzeXsWPH0q1bN8LDw3F2diYgIEB2G/8kOp2O4ODgGjfQZd++fRw4cIAhQ4bg5ubG0qVLSU1N5ZVXXkGr1RISEkJ4eDi9evWSiq9qrmpKZ9X05meffZaKigosLS1p3749e/bs4dChQzzzzDNYW1tX23sXIcxN1VRtT09P3NzcjCcqfHx8uHjxIh06dCA2NlZ6fJmJgoIC2rdvz/bt29m3b59xoFlKSgrNmzenW7dulJaWYjAY5DkVT4wkv6qRquNSderUITExkXv37jFu3DgCAwNNHdoTVXXjaDAY8PT0pLKykg8++ABXV1eaNWvGs88+i5OTExUVFbRp0wZHR8dqf/Oo1+upX78+iqLw3Xff4eHhgYeHh6nDEo9JURSmTJmCk5MTw4YNA8DOzg4/Pz9ycnI4cuQIqamprF+/nilTpsiulBny8/NDq9Vy/vx5Ll26hI2NDf369SMyMvKRcnzx56lpP/OioiI8PT2xsrIiJSWF9evXU1JSwsKFC9HpdGzZsoUVK1YwePBgHBwcTB2u+DdUVWXixIn4+voyffp0OnTogF6vp6ysDL1ej0ajoW3bthw+fJjGjRvXyFYVQvzZKioq0Gg0BAcHo9FoWLt2LW5ubsY2BAcPHiQ5OZm2bdtiMBhq3DWkJlq1ahXff/89UVFRDBw4kPj4eGMC7OHDh2RkZNCuXTsZECKeOEl+VTNarRZfX186d+5M+/btjf0iapL58+fj6OhIXFwcoaGhhIeHExgYyGeffUbjxo2pW7cu9vb2NG/e3Kx2/3U6Hb6+vhgMBho0aFDt+pOJ/46qqvztb3/D09OTCRMmAP9vMIW3tzdZWVmsW7eOkpISxowZU+OS1DWVqqq8+uqrHDt2jAcPHnDnzh0iIiIoLi6mtLSU+/fv06JFC7RaLVDzEjHiz1PVmHn79u1UVFTQq1cvbt++zYkTJ3j++efx8/Nj586dbNmyhYkTJxoni4rqKykpidzcXMaPHw/ArFmz2LhxI6tXr6ZFixbY29sbE2CS+BLi8aiqSl5eHjY2NsYG9sHBweh0Or7++mtCQkI4duwY8fHxTJ482VgNJqo/Ly8vkpOTuXDhAqGhoTz//PNs3LiRlJQUhg0bxjfffEPbtm1lYIF44iSdWk3p9XpTh/CHKC8vp7i4mO7duwMYG0w3a9YMNzc3ioqKTBneY7O2tubZZ5+VF+oaID4+ntzcXF544QUAli9fTlpaGq+99hoajQZfX18+/fRTE0cp/lsWFhY4OjqyZcsW8vPzqV27Nt9++y23b99Gr9eTlZWFwWBgwIAB8ncsfjdFUZg6dSoeHh50796dl19+maioKDp37oxGo+Hs2bP8+OOPXL9+nalTp0qPLzPh4uLC4cOHef/993n48CE3btxg4cKFfPXVV3z11VfMmDHD1CEKUWNs3ryZefPmsWPHDpycnCgrK8PS0pIePXpgYWHBpEmTsLGxYc6cOfIaagaqqukVRcHFxYVx48axZMkSvvzyS1588UXWrFlD3759+fjjj1mzZo1UfYk/hFR+iT/Fr3dvTpw4gaOjI76+vqiqilarxcLCgkOHDhEcHGz2TSplwWzeFEXhk08+ITo6msLCQtLT00lMTOTOnTssXboUjUbDjh07iI+Pp2nTpjV2EEVN1rp1a6ytrbly5Qrz58+nV69eREdHG3v0PPfcc9SpU8fUYQozpaoqo0ePpn79+sTFxeHk5ERhYSEBAQHGPpYZGRkcO3aMadOm4e/vb+qQxX8we/ZsFEWhadOmODs7U1BQQKNGjZgyZQp2dnbk5+eTk5NDixYt5B5AiCckNDSU8vJy5s6dS9euXbGzszNWgAUFBeHj48PAgQOlT6KZmD59Oh988AEnT54kPz+f7OxsmjZtyt69e7l+/Trh4eEMGTKEwMBAuQcTfxhJfok/xebNmxk7dix9+/altLSUDRs2PNIcfNeuXezdu5eBAwfKUQFhMlX96GrVqkWvXr1o3Lgxx48f5/z587zxxhu4urqye/du1q9fz7hx43B1dTV1yOI3UBSFnTt3UlFRgbOzM1qtlujoaNLS0vjyyy9p0aIFvr6+eHt7ExsbK83txWNJTEzkxIkTvPbaazg4ODBnzhzi4+M5efIkZ86c4cqVK/j4+DBy5EjpE2gmcnJy2LBhAy4uLrRt25ZmzZphY2NDUVERBw8eZP369bz66qtydFWIJ6CoqMh4AqZJkyZs3ryZDRs20K1bt0cSYD4+PpIkMRNlZWWUlpaSlZWFoii4urqSlJTErVu3OHr0KP/85z+5f/8+HTp0kOb24g9loaqqauogxNNh2bJlHDx4kG+//ZYVK1aQnp6Oo6Mj7u7uHDhwgDlz5sgOuDAZRVF4/fXXOXLkCKdPnza+v6ysjMWLF2NnZ0dFRQXHjx/nnXfeoX79+iaMVvw3vvvuO+bPn0/dunXp168frq6u9OrVC/il6equXbtYuXKlWfUYFNVXbm4u69atQ6/Xk5GRgaIoTJo0ibS0NLKzszl8+DCTJk2S5Hk1pygKK1euxN/fnyZNmnDq1ClWr17Na6+9RmhoKFu3biUpKQmNRsPbb78tfR+FeAJWrVqFm5sbnTt3xtLSkuXLl5OVlYWjoyNJSUl88cUXuLi4mDpM8TsUFhZy4MABfv75Z/z9/enWrRsAV65cobi4GFtbW3x9fU0cpajpJPkl/nAVFRXGc9vPP/88tWrVYtmyZWRlZZGWloalpSUhISF4eXmZOFLxNBs7diyhoaHk5eVx6tQpVqxYYdxRLCkp4eOPPyYtLY2ZM2dKktbMFBQUsGnTJuNE1k8//ZRatWrRu3dvvLy8uHTpEjExMTKhVfxuiqKwdOlSCgsLadu2LX5+fmzevJnDhw8TFxdH48aNH3msRqMxYbTiP6mqAq6srMTT05OKigomT57Mli1b2LJlC2+88QYhISHGx8uAGyEej6qq/PDDD1y8eJHLly/To0cPfvzxR+7evcu8efOwsLBgzpw5pKSksGHDBjQajRwxruZUVWXq1Km0bduWBg0a4O3tTXFxMT/88APJycmEhYXRt29fU4cpnjJy7FH8YebOnYutrS2enp7AL5VfOp0OHx8fli9fTt++fYmMjMTPz0+OGQmTKikpoXbt2vTr14+YmBjS0tJYvXo1Xbt2xdLSEp1OR7NmzejYsaMkSMyEqqpcuXIFBwcHVFVlw4YNODg4EBkZybFjxwgICODu3bt8/vnnTJ8+nbp165o6ZGGmFEXh7bffRq/X06VLF8LCwsjNzSUyMpL8/Hzu3r1LWVkZ3t7exs+RRVv1pSgK06dPx9XVlXfffReDwcCdO3do1qwZISEh6PV6lixZQkBAAP7+/tL3UYjHpCgKcXFxWFhYMHLkSIqKiti8eTM3btxgzpw5WFtbA9CqVSs6duyIra2tvIaagbt377Jy5Uqsra1ZuHAhVlZWlJSU0KZNG0pLSzl79izZ2dmPbCQI8UeT5Jd44lRVRVVV0tPT2b59OxEREXz99ddcuXKFuXPnEhMTw8WLF/nqq6/o3bs3FhYWchETJqGqKpcuXaKoqAhXV1djn4HWrVtz4cIF1q5dS6dOnTAYDGi1WuMNmKj+9u3bx4oVK6hfvz6enp6EhoYyb948du3axdixYxk4cCCxsbH06tVL+kuIxzJp0iTc3d2ZOHEi7u7ufP7550yZMgVXV1e6dOnCiRMnePjwIWFhYeh0OrneVXMvvPACGo2GWbNmAb8cmz527Bg6nQ47OzuCg4MJDAzEx8dHNu6EeEyKojB06FA0Gg3vvPMOAMHBwRgMBu7fv0/dunWxs7PDysoKACsrK3kNNSNnz56lU6dOvP766yQmJrJs2TIePnzIw4cP8ff3p02bNnJvLf5UkvwST5SiKEyePJnKykqef/557ty5w/Lly8nNzWXJkiXGox6tWrWiXbt2snsjTEZRFMaNG0dqaipHjx5l7dq1eHp6GvsNtG7dmuPHj7N582Z69uwpv6dmxsXFhYqKCnbu3ImbmxtBQUFcvHiRmJgYunbtSkVFBRqNBktLS3luxWM5evQob731FgAJCQmcPn2aRYsW8d5779GgQQM6d+5MWFiYJFnNQHFxMXXr1iUhIYHWrVsTHx/PTz/9RL169bh06RKbN29m3bp1jBkzRnoECvGYVFVl7Nix2NrakpGRgZeXl7Gfqp+fH8XFxWzZsoW6devi6+srm+VmQFVVkpKScHV1pVatWtjZ2REfH0/dunX56aefePPNNykoKCA3N5du3bpJ70vxp5Pkl3hiFEXhrbfewtXVlZdeegmA6OhoLC0tuXTpEo0aNcLOzs544ZJMvzAVVVUZN24cgYGBTJ06lc6dO+Pt7c3kyZMJDg7Gx8cHgA4dOhATEyMTSM2EoijMmjWLffv24e3tTevWrcnJyWHnzp0EBATg6enJggUL6Ny5s7FiQ26kxe+lqir5+fksXrwYf39/vLy8CAgIoH379jg6OpKdnY2LiwthYWFyvTMDCQkJbNmyhYEDB+Ln58fLL79MUVER3377Le3bt6dLly707NmT3r17yzVBiMekqipnz56lsrKSKVOmEBISwvTp0/Hw8DD2VQ0ODsbCwoLw8HDpq2cm5s2bx/z583FycsLX15fAwEAOHTrEnj17iIuLo1mzZkRFRdGiRQscHBxMHa54CknySzwRVZPyGjRowN/+9jcA1q5dS3FxMZ06deLu3bt89tlnhIeHyyhwYXJXr17l0qVLTJo0CYDy8nLj8bg9e/bQqlUrVFVFq9ViY2Nj4mjFb1E1Ua927dp4e3vzwQcf0L9/f/z9/SksLGTr1q2Eh4fj5uZGcHCwLF7FY7OwsMBgMKDRaLh+/Tp169albt266HQ6duzYwbZt23jhhReMgzNE9VZaWkpubi7Jycn069ePiIgIEhISiI2NpW7duiiKgk6nw2AwmDpUIcyaqqr07dsXRVEYPXo0AJ6engQFBfHee+/h6emJn58fAIGBgZL4MiP+/v6cP38evV7P9evXCQsLIz8/nzNnzjBmzBgANBoNWq3WxJGKp5Ukv8QTsX37dg4ePMgbb7yBg4MDixcv5uzZswwdOhStVkt0dDQGg4H69evL0Q9hctevXychIYEuXboYFzIWFhYUFhaSkZFBx44d5cJsRhRFYezYsQQGBhIXF0dUVBRZWVk0adIEe3t7wsPDycrK4vDhwwwdOlSa24snytnZmZMnT3LixAlu3LhBRkYGCQkJzJo1i3r16pk6PPEbKIqCu7s7rq6ubNq0icuXL9OrVy+Cg4N5+eWXiY2Nxc3NzdRhCmH2FEVhxowZFBQUEBkZSWRkJBUVFQD4+PgQFBTE+PHjCQwMNB6BFOajsrKS1NRU7OzsMBgMnD9/nu7du5OWloalpaWxtYgQpiLJL/FYVFXlxIkTxqRWSkoKmzZtori4mHnz5qHX60lISGD9+vW88sor0hxWmIyqqly/fh0bGxs8PT1JTU0lICAAR0dH48jskydPcuPGDWJiYmSMthlZtWoV58+fZ8aMGVhaWjJ79mwSExPJzMwkIyOD4uJifHx86NWrl1ThiCeuVq1aBAcHY2lpyZkzZ7C1teWvf/2rLNzMwDvvvINGozE+V+vWrePatWv4+vpy4sQJunfvTnR0NC4uLtjb25s4WiHM3+TJk/Hw8GDUqFGsWbOGNm3aGPv/qqqKt7c3UVFReHt7y9+cGVAUhUWLFqHX67G3t8fOzo66dety6NAhAgICyMrK4tSpU+h0Orp27SotAITJSfJLPJbU1FRmzJhBgwYNiIiI4Pbt2yQnJ/PKK6/g7e3Njh07SExMlOawwqQURWHEiBEcO3aMTz75hAEDBnD58mX27duHtbU1iqJw5MgR1q1bx9ixY3F2dpbElxmprKykoqKCe/fuER8fT3Z2NpMnTwbg1q1bHDlyhF69ekl/CfGHsba2pl69erRu3ZrIyEhZtJmJhw8f8vXXXxMcHMyOHTu4cOECn3zyCe7u7pw+fZq0tDT69esnrx1CPAF5eXno9XoGDRqEo6MjqampREREYGdnh6IoaDQaVFXFy8tLXkPNxL59+5g1axYXLlxg//79BAUF4ejoiI2NDdHR0djZ2ZGXl8fgwYNlHSiqBQtVVVVTByHM2+HDh/nss88YMmQIwcHBJCUlUVhYSHFxMRcuXGDy5MnGs/tC/NkURWHq1Kk4OTkxfvx43nzzTVq3bk3v3r1Zu3YtWVlZ3LhxA2tra1599VUCAgJMHbL4HY4cOcKePXtITU1lwYIFxqEFACUlJcYx6UKIp5uqqhw+fBj4ZaLcqVOnmDt3Lm5ubmzYsMH4uPT0dJydnWXBJsQf5IMPPuDu3bssWrQI+OVvUzYezUt5eTl///vfycrKIi0tjbCwMHJzczlx4gStW7cmLi6O4uJiqfgS1YZUfonH5u3tjYuLC2vXrsXb25uWLVty7tw5Dhw4wHvvvWec2iLEn61qqqOTk5Oxuf3PP/+MqqpERkYSFRVFbGws3bp1o3379jg7O5s4YvFbDR48mKysLK5du0bDhg3x9vbG09OTBw8eUFRUhMFgMC5atVqt3FALIVAUhTFjxpCRkcGFCxeMlXouLi6cPHmSBg0a4OLiAoCTk5Ms2IT4A1QluWJiYjh69Ci5ubmEhITIddpMKIrChg0bOHnyJDk5OQQFBVFWVoa1tTVubm50796dU6dOkZOTQ0xMjPR6FtWKJL/EY1NVFR8fH5ydnZk7dy5t2rQhJiaGnj174uHhYerwxFMsJSWF77//nmHDhuHm5saCBQtITEzk4sWLHD16lC+//BI7OzsCAgKkwb0Zyc/P5+DBg9SrV4+UlBT27NnDgwcPCA8Px8fHh8OHD1NaWkpQUJAkvoQQRhMmTCAgIIAZM2bQqlUr7O3tKSoqwtXVFV9fX2bMmEFISIjcuwjxB6rq7wWQnZ1NVlYWYWFh6PV6E0cm/hNFUZg4cSJlZWW4urqyY8cOKisrcXJyQq/Xk5GRgYeHB3/9619p27at9FkV1Y4kv8Rjs7CwoLy8nHr16vHgwQMKCwuJjo6WHVNhMqqqkpaWRmBgIA4ODuzatYt//OMf5ObmsmrVKp577jlCQkIwGAw0a9ZMekuYGYPBQGZmJsePH2fJkiWcPXuWzZs3s3nzZmMPt/79+2Nra2vqUIUQ1URZWRkpKSlMnDjR+D6tVsvt27fZunUrXbt2xd3dHX9/fxnOI8QfzMLCAgsLCzw9PQkPD5fqIDMxY8YMPD09GT9+PA0bNqRp06acOHGCyspKevbsya1bt0hNTaVJkyZyDyaqJZ2pAxDmT1EUli1bRnFxMUeOHGHFihWmDkk8xRRF4Y033kCv13PhwgXWrFmDVqtlw4YNvPjii9ja2mJra4uTkxOhoaGmDlf8Roqi8NZbb9GrVy9iY2MZPnw4OTk5JCQkkJGRwdKlS8nLy+PcuXP06dNHGlQLIR5RWFhIcnIyx48fp3Hjxuh0v9wCFxQUcPr0aYYPH063bt1MHKUQTxepDDIv1tbWDB06FPhlQ8HFxYU+ffowatQo2rVrR7du3bCyspI+q6LakuSXeGwajYbevXtz9epVBg8ejLe3t6lDEk8pRVGYPn06gYGBxMXFsWzZMrZv386oUaPIzc1l//79VFRUEBsbK5WJZkRRFP72t78RFBREbGws8MuEx8rKSq/AtaUAAAnNSURBVBYvXsyKFSsICgoCICoqyrioFUKIKg4ODgwcOJATJ07g4uJiHIqRmZmJhYUFpaWl8tohhBD/i/z8fI4fP87Zs2dp0aIFWq2WyspKfH19adOmDba2ttStW9fUYQrxb2lMHYCoGerXr0+7du3w9fU1dSjiKfbGG2+QnZ1NXFwc8MsUGktLSwAGDBhAYGAgycnJyJBb81GV+Lpy5cojU2P1ej0jR47Ex8fnkQWrLF6FEP+bzp07U1xczLp160hMTGTLli18++23xMXFyREdIYT4/yiKwtdff01KSgrW1tYMHz6cnTt3cvnyZbRaLVqtlj179pCWlib31sIsSM8vIUSNUF5eTl5eHnl5eXh5eZGQkMCVK1eIi4szNrOPiIigUaNG1KpVy8TRit9q5syZODs7M2jQIE6dOsXNmzcJCwsDfim/P3fuHDqdjqCgIGlsL4T4t2rVqkVwcDA6nY4ffviBkpISRo0aRUBAgKlDE0KIaqVq8/H27dukpKRQXl7OM888w507d0hMTOTBgwecOnWKzZs38+677+Ll5WXqkIX4jyxUSdMKIWqIkpISdu/ezerVq7G2tmbDhg3AL4kxnU4nyREzoqoqd+/eJT09ndatW1NRUcH333/P6dOn8ff3Z8CAAQDs27eP4OBguekSQgghhHgCFEVh2rRpODs7ExcXx86dOzl79iyTJk2ioKCA5ORkTp48iaOjIx06dKBevXqmDlmI30Qqv4QQNYZOp8PPzw+DwUBOTg7e3t64uLig1Wol8WVmNm7cyJo1a+jTpw92dnZoNBo8PT0pKyvjwoULXL58mcjISPz8/GQymxBCCCHEEzJ69GiKioqYPXs2AHv37iU1NZWAgACsrKwICQmhVatWREdHy8R0YVYk+SWEqFG0Wi3+/v6oqsratWvx9PTEw8PD1GGJ/8KhQ4fo1q0bly9fZteuXYSFhVG7dm30ej2enp4UFBRw8+ZNGjZsiMFgMHW4QgghhBA1wv/fRmTjxo0cPnwYvV7P+fPnWbp0KSkpKcTGxmJpaSmby8KsyLFHIUSNVFxcTFJSEo0bN8bV1dXU4Yjf6OjRo2zZsoUWLVrQo0cPFi5cyI0bNxg/fjyenp7AL89tZWWl9G4TQgghhHjCft1GxMbGhvXr1xs/duXKFRwcHKTiS5glqfwSQtRIer2ewMBASZCYGUdHRywsLDh58iS5ubm8/PLLnD9/nu+//54GDRpQp04d9Hq9cYqnEEIIIYR4cn7dRiQ7OxtPT0/jRrKDgwNWVlYmjlCI30eSX0KIGktKsc2Dqqrk5ORQVlaGnZ0dAQEBlJeXk56eTlZWFkOHDuXo0aMkJyfTpk0bNBqNqUMWQgghhKixft1G5Msvv5Q2IqJG0Jk6ACGEEE+3GTNmEB8fT7169Wjfvj3l5eWEhISg1WrZu3cvVlZWTJs2jZycHHQ6uWwJIYQQQvzRrKys6NSpE1qtFm9vb1OHI8Rjk1WEEEIIk9m4cSPh4eGUlJTw888/07VrV5KTk7l+/Tpnz54lPT2d4uJiWrVqhaOjo6nDFUIIIYR4alhbW/Pss8/KaQpRI0jySwghhMm4ublx4sQJYmNjKS4uZvv27UyZMgWAoqIiFEWhqKgIW1tbE0cqhBBCCPH0kcSXqClk2qMQQgiTSk5O5uDBg9jY2HDq1Cns7e2ZP3++3GwJIYQQQgghngjpGiyEEOJPtXTpUg4ePGh8u3nz5rRv356cnByGDx+Og4MD06ZNM2GEQgghhBBCiJpEjj0KIYT405SVleHk5ERiYiKWlpY0b94cgMaNG3Pz5k3+/ve/M2XKFCoqKkwcqRBCCCGEEKKmkOSXEEKIP42lpSV9+vTB2tqaDRs2YGFhQbNmzQCoVasWer0eW1tbLC0tTRypEEIIIYQQoqaQ5JcQQog/lZWVFV27dgXgm2++4c6dOwDEx8czY8YMSXwJIYQQQgghnihpeC+EEMIkysrKSE5O5rvvvqN27doMGzaMwMBAU4clhBBCCCGEqGEk+SWEEMKkysvLsbCwQKeTYmQhhBBCCCHEkyfJLyGEEEIIIYQQQghRY2lMHYAQQgghhBBCCCGEEH8USX4JIYQQQgghhBBCiBpLkl9CCCGEEEIIIYQQosaS5JcQQgghhBBCCCGEqLFktJYQQgghnmo//fQT48aNIyAgAIDCwkK8vLyIi4ujX79+NGzY8JHHr127lhUrVuDk5MSgQYMe+Vj79u3ZuXMnBoOB8+fPs3DhQvLz87G0tKROnTpMmzYNV1dXli5davz8wsJCFi5cSFpaGhqNBltbW9566y3q16/PTz/9xOjRo9m2bRvu7u4AfPTRR/j5+dG3b98/5wckhBBCCGHmJPklhBBCiKde8+bNWbhwofHt8ePHk5SUREBAAF9//fV//fXu3r3LhAkTWLZsGX5+fgDs3buXefPmsWDBgkceO336dBo1asS0adMAuHDhAqNHj+a7774DQK/XM3nyZNasWYOFhcXv/RaFEEIIIZ5acuxRCCGEEOJXysrKuHv3LrVr1/7dX2PLli0MGDDAmPgC6NixIx999NEjj8vJySEjI4MhQ4YY3xcSEkK7du3Ys2cP8Etirk6dOnz77be/Ox4hhBBCiKeZVH4JIYQQ4qmXnJzMkCFDyM7ORqPRMHDgQFq0aMGcOXMeSUw1bNiQt99++z9+vZs3b9KmTRsASkpKGDlyJACZmZns3bv3kcd5e3v/y+d7e3tz+/ZtvLy8AJg5cyYDBgwgNjb2sb5PIYQQQoinkSS/hBBCCPHUqzr2+ODBA4YNG2ZMOv3eY4/u7u7cvHkTACsrK+PXiImJeeRxLi4u3L59+18+/9q1a/j7+xvfdnBwYMqUKbz99ttER0f/1/EIIYQQQjzN5NijEEIIIcT/5eDgwPz585k2bRr37t373V+nd+/exMfHc+XKFeP7UlNTKSoqeuRxbm5u+Pj4PHKk8dy5cyQlJdG5c+dHHtu+fXvq169PQkLC745LCCGEEOJpJJVfQgghhBC/EhAQwJAhQ1izZg2XLl165NgjwAcffADAypUriY+PB8DW1vaRCjF3d3c++ugj5s6dS2FhIaWlpdSuXZvVq1f/y/83d+5c5s2bx4ABA9BqtdSuXZsVK1b8jz3Hpk6dSnJy8pP8doUQQgghajwLVVVVUwchhBBCCCGEEEIIIcQfQY49CiGEEEIIIYQQQogaS5JfQgghhBBCCCGEEKLGkuSXEEIIIYQQQgghhKixJPklhBBCCCGEEEIIIWosSX4JIYQQQgghhBBCiBpLkl9CCCGEEEIIIYQQosaS5JcQQgghhBBCCCGEqLEk+SWEEEIIIYQQQgghaqz/A0We+KCsXRWLAAAAAElFTkSuQmCC\n",
3183
      "text/plain": [
3184
       "<Figure size 1440x576 with 2 Axes>"
3185
      ]
3186
     },
3187
     "metadata": {},
3188
     "output_type": "display_data"
3189
    }
3190
   ],
3191
   "source": [
3192
    "plt.figure(figsize=(20,8))\n",
3193
    "ax=sns.countplot(data=saps, x='RELIGION', hue='hdeath')\n",
3194
    "ncount = len(saps)\n",
3195
    "ax2=ax.twinx()\n",
3196
    "ax2.yaxis.tick_left()\n",
3197
    "ax.yaxis.tick_right()\n",
3198
    "ax.yaxis.set_label_position('right')\n",
3199
    "ax2.yaxis.set_label_position('left')\n",
3200
    "ax2.set_ylabel('Frequency [%]')\n",
3201
    "\n",
3202
    "ax.set_xticklabels(ax.get_xticklabels(),rotation=45)\n",
3203
    "\n",
3204
    "for p in ax.patches:\n",
3205
    "    x=p.get_bbox().get_points()[:,0]\n",
3206
    "    y=p.get_bbox().get_points()[1,1]\n",
3207
    "   # ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y), \n",
3208
    "            #ha='center', va='bottom') # set the alignment of the text\n",
3209
    "\n",
3210
    "# Use a LinearLocator to ensure the correct number of ticks\n",
3211
    "ax.yaxis.set_major_locator(ticker.LinearLocator(11))\n",
3212
    "\n",
3213
    "# Fix the frequency range to 0-100\n",
3214
    "ax2.set_ylim(0,100)\n",
3215
    "ax.set_ylim(0,ncount)\n",
3216
    "ax.set_title('ICU Patient Religion and ICU mortality')\n",
3217
    "# And use a MultipleLocator to ensure a tick spacing of 20\n",
3218
    "ax2.yaxis.set_major_locator(ticker.MultipleLocator(20))\n",
3219
    "\n",
3220
    "# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars\n",
3221
    "ax2.grid(None)\n"
3222
   ]
3223
  },
3224
  {
3225
   "cell_type": "code",
3226
   "execution_count": 41,
3227
   "metadata": {},
3228
   "outputs": [
3229
    {
3230
     "data": {
3231
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABL8AAAI1CAYAAAA3h1gTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVRV5eLG8edwmBREJOcZHAo1cbqaCZaWOZRDDoB6Ha4aZtZNzVlBUxHNsTRxuFlGKjiQeevezHmOzJuUpllGKGlqogmoDIfz+8Pl+UmKoMJBd9/PWq519vTuZx/2Pz7r3fuYrFarVQAAAAAAAIABORR1AAAAAAAAAKCwUH4BAAAAAADAsCi/AAAAAAAAYFiUXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwCAIta6dWt99913tuXt27erT58+6ty5s55//nkNGzZMZ86ckSQlJSWpYcOGt4zx3nvvaezYsbesT0pKkq+vrzp37mz716lTJ61bty7PXDt27NDbb78tSdq6daumTZt2r5eolJQU9e3b966OWbBggR599FGtX78+x/orV66oYcOGGjx48F3n6Ny5sy5fvpzvPLGxsbmeZ8eOHQoKClKnTp30/PPP6/XXX9dvv/0mKf/Xey/fS2EbPHiwYmNjb1kfFxenF154wbacnp6u+fPnq0uXLurcubM6duyopUuXymq1Srr+95syZcot47zwwguKi4srvAu4ycKFC7Vly5Y893v00UeVnJyc4z6/+f4HAAAPN8eiDgAAAP7fv//9b0VGRioyMlLVqlWT1WrV0qVL1bdvX3322Wf3NKarq6s++eQT2/LZs2f1wgsvqF69enrsscdyPe67777TH3/8IUl65pln9Mwzz9zT+SXpjz/+yFHw5VfFihX1ySefqFu3brZ1X3zxhYoXL35POW58D0lJSfeU54azZ89qzJgxio2NVaVKlSRJkZGRGjZsmKKjo/N9vff6vRQ1q9WqV155Rd7e3oqJiZGLi4suXryowYMH68qVKxo2bFhRR5R0vbCrWbNmvve/+T6/+f4HAAAPN8ovAAAeIPPmzdPUqVNVrVo1SZLJZFJISIgqVKigjIyMAjlHuXLlVK1aNf3yyy+qWrWqJk+erMTERF26dElubm6aPXu2UlJSFB0dLYvFohIlSqhatWratGmTlixZopSUFIWHh+v48ePKzMxU8+bNNXr0aDk6Ourxxx9XSEiI9u7dq3PnzmnQoEHq1auXxo0bp2vXrqlz586KjY3Vu+++q82bN8vJyUmlSpVSRESEypYte0vWgIAAbdmyRb/99pvKly8vSfr444/VqVMn/fzzz5KkhIQETZkyRWlpaTp//rwee+wxzZ8/Xy4uLqpXr56eeeYZHTt2TLNnz1b37t21f//+W/J8/PHHiomJUWZmpv744w+99NJL6tWrV67f4cWLF5WZmakrV67Y1vXr189WJuZ3/D/vV6dOHe3fv19eXl6Srs9I2r9/v1xcXDRu3DglJibKwcFBdevW1ZQpU+TgkHMS//bt27VkyRJlZGQoOTlZXbp00bBhwxQXF6d58+apSpUq+vHHH5WVlaU333xTjRs31tmzZzV27FidO3dOFStW1IULF/K8hw4cOKCff/5ZS5culdlsliSVKlVKb731ln799dc8j7+dsWPHytXVVcePH9eFCxfUunVreXp6avv27Tp//rymTZum5s2bKyUlRW+++aaOHTsmk8mkgIAAjRgxQo6Ojjn+3h07dtThw4f11ltvyWw2q2bNmrneJzfExsZq06ZNeuWVV3Lc/99++63at2+vwMBASdKiRYt06dIljR8//p6uFQAA2BePPQIA8IC4ePGifv31VzVq1CjHepPJpE6dOsnd3b1AzvPNN9/o5MmT8vPz065du+Th4aGYmBht2rRJ9erV08qVK+Xn56fg4GB16NBBw4cPz3H89OnTVbduXcXGxmrDhg26ePGi3n//fUlSRkaGSpUqpejoaL3zzjuKiIhQenq6IiIibDPQzp07pxUrVmj9+vWKjY1VixYt9O233942q6Ojo9q3b6+NGzdKkk6fPq20tDTVqlXLts+aNWvUpUsXrVmzRl988YWSkpK0Y8cOSVJmZqZatWqlTZs26fHHH7cdc3Oea9euae3atVq6dKk2bNigefPmadasWXf8Dh977DEFBgbqxRdfVIcOHTRx4kRt375dAQEBdzX+zfvdKJFuZ/PmzUpLS9Mnn3xie2T11KlTOfaxWq1avny5ZsyYodjYWMXExGjp0qVKTk6WJH377bcaMGCANmzYoK5du2revHmSpClTpsjPz0+fffaZJk6cqISEhDteuyQdPnxY9evXvyVz9erV1aJFizyPz83333+vFStW6KOPPtLy5ctVvHhxRUdHq2/fvlq2bJkkadq0afL09NS///1vrV+/Xj/88IOWL18uKeff+9VXX1W9evU0evRotWnT5o73yZ/9+f7v3bu31qxZI0nKzs7WunXrFBwcfM/XCQAA7IuZXwAAPCBuzOLJzs7Oc58/y87OznXbjZlFkmSxWFSqVCnNmjVLFSpUUIUKFVSlShVFRUUpMTFRX3311W3fKXazHTt26LvvvrOVMNeuXcux/cZjY3Xr1lVGRkaO2VHS9Zlnjz32mF588UW1bNlSLVu2VPPmzXM9X+fOnTVhwgSFhITok08+UZcuXXJsHzVqlPbu3atly5bpl19+0blz53Kcs0mTJne8Hjc3Ny1evFg7d+7UL7/8omPHjt2S+XbGjh2rwYMH66uvvtKBAwf01ltvKSoqSitXriyQ8W/WuHFjzZs3T3369NGTTz6pfv362WYH3mAymbR48WLt2LFDn376qU6cOCGr1aqrV69Kuv4Iqa+vrySpTp06+vjjjyVJ+/bt05gxYyRJ1apVU7NmzfLM4+DgYHu3V25MJtNt12dnZ+da9LVq1UpOTk4qU6aMihcvbisTq1atqkuXLkmSdu3apdWrV8tkMsnZ2VnBwcFasWKFQkJCJOX+987rPrmTVq1aKTw8XMeOHdPZs2dVuXJl+fj45OtYAABQ9Ci/AAB4QJQsWVLVq1dXfHy8nnzyyRzbXn/9dQ0ZMkRVqlTRtWvXlJ6enuNxrQsXLsjT0/O24/75nV83W7VqldasWaPevXurY8eO8vT0VFJS0h1zZmdn6+2331aNGjUkSZcvX85RdNzIdWPdn0sSBwcHffTRR/ruu++0f/9+TZ8+XQEBARo9evRtz1e/fn1ZLBYdPXpU//nPfxQVFaVt27bZto8YMUIWi0Xt27fX008/rTNnzuQ4Z17vB/vtt98UFBSkwMBANW7cWO3atdP27dvveMzWrVt16dIldevWTW3btlXbtm01fPhwPfXUU/r+++9VqlSp+xpfUo7HXKtUqaLNmzcrLi5OX375pf7xj39oypQpat26tW2fK1eu6MUXX9Szzz6rJk2aqFu3btqyZYvtu3B1dbXtazKZbOtv/ixdn22XFz8/P61YsUIWiyVHkfXtt98qKipKs2bNUqlSpWyPpt7sTveqs7NzjuXbZcnOzs5xv2VnZysrK8u2nNvfO6/75E7MZrOCgoK0bt06nTt3jllfAAA8ZHjsEQCAB8irr76q8PBwJSYmSro+U2vRokU6duyYfHx85ObmpsaNG2vFihW2Y86ePavPP/9cTz311F2fb8+ePXrxxRfVo0cPeXt7a9u2bbJYLJKu/4f/5lLhBn9/f33wwQeyWq3KyMjQkCFD9NFHH93xPI6OjrJYLLJarTp27JheeOEF1ahRQ4MHD1b//v3zfOl7586dNX36dHl7e99SnOzZs0dDhw5Vhw4dJEnx8fG2a8hPnsOHD8vLy0uvvPKK/P39bcXUncZwc3PT3Llz9dNPP9nWnTp1SmazWVWrVs33+DfvJ0leXl627+LTTz+1jb1q1SqNGzdO/v7+GjVqlPz9/fX999/nyJSYmKjU1FQNGzZMrVu3VlxcnDIyMu44k1C6/l61mJgYSdcfK83PLzE2bNhQPj4+tsdaJen333/XtGnTVLlyZUnSk08+qf379+vEiRO24zZs2CB3d/f7mjXl7++vjz76yHb/rVmz5pay+Iab7+G7vU/+fP/36NFDW7Zs0ZEjR9SmTZt7zg8AAOyPmV8AADxAOnbsKKvVqhEjRigrK0vp6emqW7euVqxYYZsVM3v2bE2fPl3PP/+8HBwcZDab9c9//jNfj6v92YABAxQWFmZ7hLFBgwY6fvy4JOmJJ57QyJEjNXXqVNWtW9d2zIQJExQeHq6OHTsqMzNTTz75pAYNGnTH85QpU0b169fX888/r5UrV6p9+/bq1q2bihcvLldXV02cOPGOx3fq1Enz58/XokWLbtk2fPhwDR06VMWLF5e7u7v+9re/6eTJk/nO8/7776tcuXJq166dTCaTmjZtKi8vL1sBeTtPPPGEQkNDNWbMGKWkpMhsNqtMmTJatmyZSpYsKXd393yNX61atRzfy8SJEzVlyhR5eHjoySefVJkyZSRJXbp00VdffaUOHTqoWLFiqlChgvr06ZMj06OPPqqnn35a7du3l7Ozs2rXrq2aNWsqMTHxlhlVN5s0aZLGjRun9u3bq3z58nf8BdCbvfPOO5o3b566du0qs9ms7OxsdenSRQMHDpQkeXt7a+rUqRo9erSysrKUkZGhypUra9myZbk+opsfEydO1LRp02z3X0BAgF5++eXb7tu6dWvNnTtXmZmZd32f3Hz/h4aG6pFHHlG9evVUo0YNOTk53XN+AABgfyZrfud7AwAAAH9RycnJ6t69u1auXKkKFSoUdRwAAHAXeOwRAAAAuIM1a9aoQ4cOGjhwIMUXAAAPIWZ+AQAAAAAAwLAKbeZXfHy87V0UiYmJ6tmzp3r16qVJkybZXry6cOFCde/eXcHBwfr2228LKwoAAAAAAADuw5IlSxQUFKSuXbtq7dq1tvXTp0/X6tWrc+ybnJys5557zvbDODds3rxZb7zxhm25T58+tn8tWrTQ7NmzCyV7obzwftmyZdq4caOKFSsmSYqIiNCwYcPUrFkzhYWFaevWrapYsaK++uorrV27VmfOnNFrr72m9evXF0YcAAAAAAAA3KO4uDh98803Wr16ta5evarly5crOTlZo0eP1i+//GL7wRtJ2r17t+bMmaPff/89xxjTpk3Tnj175Ovra1sXFRUl6fqvZr/++usaMmRIoeQvlJlfVatW1YIFC2zLR44cUdOmTSVJLVu21L59+3Tw4EH5+/vLZDKpYsWKslgsSk5OLow4AAAAAAAAuEd79uxR7dq1NXToUL388st6+umnlZaWptdee02dO3fOsa+Dg4Pef/99eXp65ljfqFEjTZ48+bbjh4eHa9SoUXJzcyuU/IUy86tt27ZKSkqyLVutVplMJkmSm5ubUlJSlJqamuOLuLHey8vrlvFiYmIUExMjSfrhhx9Uvnz5wogNAAAAAADwl5SUlKS6devaloOCghQUFCRJunjxok6fPq3FixcrKSlJQ4YM0eeff64qVapo165dOcZp0aLFbcfv0KGD4uLibll/7NgxpaWlqXnz5gV4NTkVSvn1Zw4O/z/BLC0tTR4eHnJ3d1daWlqO9SVKlLjt8Td/4X5+ftq6dWvhBgYAAAAAAPgL8fPzU2xs7G23eXp6ysfHR87OzvLx8ZGLi4uSk5P1yCOP3Pd5N27cqB49etz3OHdSaC+8v1mdOnVs7d6uXbvUpEkTNWrUSHv27FF2drZOnz6t7Ozs2876AgAAAAAAQNFp3Lixdu/eLavVqrNnz+rq1au3PNZ4r7788ksFBAQUyFi5scvMrzFjxig0NFRz586Vj4+P2rZtK7PZrCZNmigoKEjZ2dkKCwuzRxQAAAAAAADchVatWunAgQPq3r27rFarwsLCZDabC2Ts8+fPq1SpUgUyVm5MVqvVWqhnKGB+fn6Kj48v6hgAAAAAAACGYeS+xS4zvwpbZmamkpKSdO3ataKOcluurq6qXLmynJycijoKAAAAAADAX4ohyq+kpCSVKFFC1atXt/2q5IPCarXqwoULSkpKkre3d1HHAQAAAAAA+EuxywvvC9u1a9f0yCOPPHDFlySZTCY98sgjD+ysNAAAAAAAACMzRPkl6YEsvm54kLMBAAAAAAAYmWHKr9uJjY3V7Nmzc90+e/ZsxcbG3vW4MTExyszMVFxcnIYPH34/EQEAAAAAAFCIDF1+FZYlS5YoOzu7qGMAAAAAAAAgD4Z44f2dxMfHa8CAAUpOTlbPnj3l6empyMhIeXl5KTMzUz4+PpKkOXPm6MCBA7Jarerfv7/at2+vr776SgsXLpR0/b1iM2fO1Ndff63z589r+PDh6tevnxITEzVo0CAlJyerVatWeu2114rycgEAAAAAAHATw5dfjo6Oeu+99/Trr78qJCREGRkZWrt2rTw9PRUSEiJJ2rlzp5KSkhQdHa309HQFBgaqRYsW+vHHHzVr1iyVK1dOixcv1ueff64hQ4YoMjJS8+bN06FDh5Senq5FixbJYrHo6aefpvwCAAAAAAB4gBi+/KpTp45MJpPKlCmjpKQk+fj4qFSpUpKkhg0bSpKOHz+uI0eOqE+fPpKkrKwsnT59WuXKlVN4eLiKFy+us2fPqlGjRreMX6tWLTk7O0u6XrQBAAAAAADgwWH4tubmX1r09PRUSkqKkpOT5eXlpe+++07ly5eXj4+PmjVrpqlTpyo7O1uLFi1S5cqV1b9/f23ZskXu7u4aM2aMrFarbcwb7/zilxwBAAAAAAAeXIYvv27m6OioiIgIDRw4UCVLlrTN1GrdurW++uor9erVS1euXNGzzz4rd3d3de7cWYGBgfLw8FDp0qV17tw5SVKTJk0UEhKioUOHFuXlAAAAAAAAIA8m643pTA8JPz8/xcfH51h39OhR+fr6FlGi/HkYMgIAAAAAgL+m2/UtRuFQ1AEAAAAAAACAwkL5BQAAAAAAAMOi/AIAAAAAAIBhUX4BAAAAAADAsCi/AAAAAAAAYFiUXwAAAAAAADAsQ5Zf6ZkWu46XnZ2tsLAwBQUFqU+fPkpMTCzQ8wMAAAAAAODeOBZ1gMLg4mRW41EfFth4B2f1veP2LVu2KCMjQzExMTp06JBmzJihyMjIAjs/AAAAAAAA7o0hZ37Z28GDBxUQECBJatCggQ4fPlzEiQAAAAAAACBRfhWI1NRUubu725bNZrOysrKKMBEAAAAAAAAkyq8C4e7urrS0NNtydna2HB0N+UQpAAAAAADAQ4XyqwA0atRIu3btkiQdOnRItWvXLuJEAAAAAAAAkAz6wnt7a9Omjfbu3avg4GBZrVZNnz69qCMBAAAAAABABi2/0jMtef5C492O5+JkznW7g4ODpkyZUmDnAwAAAAAAQMEw5GOPdyqqHoTxAAAAAAAAYB+GLL8AAAAAAAAAifILAAAAAAAABkb5BQAAAAAAAMOi/AIAAAAAAIBhUX4BAAAAAADAsAxZflmz0otkvPj4ePXp06dAzw0AAAAAAIB751jUAQqDydFFJ6c8XmDjVQ37Ls99li1bpo0bN6pYsWIFdl4AAAAAAADcH0PO/CoKVatW1YIFC4o6BgAAAAAAAG5iyJlfRaFt27ZKSkoq6hgAAAAAAAAFrkuXLipRooQkqXLlymrVqpXeeustVahQQZL02muvqUmTJpo8ebJ++OEHOTs7a9q0aapWrZoOHTqk8PBwmc1m+fv769VXX73tmBEREYWSnfILAAAAAAAAuUpPv/4u9KioKNu6efPmadSoUWrbtq1t3RdffKGMjAzFxMTo0KFDmjFjhiIjIzVp0iQtWLBAVapUUUhIiI4cOaKaNWveMmZhofwCAAAAAABAro4dO6arV69qwIABysrK0ogRI3TkyBEdPXpUK1asUP369TVy5EgdPHhQAQEBkqQGDRro8OHDSk1NVUZGhqpWrSpJ8vf31/79+5WVlXXLmA0aNCiU/JRfAAAAAAAAf3EWi0Vdu3a1LQcFBSkoKEiS5OrqqoEDB6pHjx765Zdf9NJLLykoKEjt2rVT5cqVNWnSJEVHRys1NVXu7u62Mcxm8y3r3NzcdOrUqduO+fnnn8vRseCrKkOWX9as9Hz9QuPdjGdydMlzv8qVK2vNmjUFdl4AAAAAAAB7MJvNio2Nve02b29vVatWTSaTSd7e3vL09NQLL7xge9/XM888o02bNqlEiRJKS0uzHZednS13d/cc69LS0uTh4XHbMc+fP28bsyAZ8tce81NUFeV4AAAAAAAAD4t169ZpxowZkqSzZ88qJSVFPXr00G+//SZJ2r9/v+rWratGjRpp165dkqRDhw6pdu3acnd3l5OTk06ePCmr1ao9e/aoSZMmt4yZmpqqMmXKFEp+Q878AgAAAAAAQMHo3r27xo0bp549e8pkMikiIkJXrlzRq6++KldXV9WoUUOBgYEym83au3evgoODZbVaNX36dEnSm2++qZEjR8piscjf319+fn7y9fXNMeb06dML5ZFHSTJZrVZroYxcSPz8/BQfH59j3dGjR+Xr61tEifLnYcgIAAAAAAD+mm7XtxiFYR57fJA7vAc5GwAAAAAAgJEZovxydXXVhQsXHsiSyWq16sKFC3J1dS3qKAAAAAAAAH85hnjnV+XKlZWUlKTz588XdZTbcnV1VeXKlYs6BgAAAAAAwF+OIcovJycneXt7F3UMAAAAAAAAPGAM8dgjAAAAAAAAcDuUXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwAAAAAAAIZF+QUAAAAAAADDovwCAAAAAACAYVF+AQAAAAAAwLAovwAAAAAAAGBYlF8AAAAAAAAwLMovAAAAAAAAGBblFwAAAAAAAAyL8gsAAAAAAACGRfkFAAAAAAAAw6L8AgAAAAAAgGFRfgEAAAAAAMCwKL8AAAAAAABgWJRfAAAAAAAAMCzKLwAAAAAAABgW5RcAAAAAAAAMi/ILAAAAAAAAhkX5BQAAAAAAAMOi/AIAAAAAAIBhUX4BAAAAAADAsCi/AAAAAAAAYFiUXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwAAAAAAAIZF+QUAAAAAAADDovwCAAAAAACAYVF+AQAAAAAAwLAc7XWizMxMjR07Vr/++qscHBw0depUOTo6auzYsTKZTKpVq5YmTZokBwf6OAAAAAAAgAfNhQsX1LVrVy1fvlwZGRmaNGmSzGazqlevrvDwcDk4OOi9997TZ599JpPJpJdffllt2rTRpUuXNGrUKKWmpsrT01PTpk3TI488Yhs3NDRUJUuW1MiRIwslt92app07dyorK0vR0dEaOnSo5s+fr4iICA0bNkyrVq2S1WrV1q1b7RUHAAAAAAAA+ZSZmamwsDC5urpKkhYuXKihQ4dq9erVysjI0I4dO3T58mVFRUUpOjpay5cv1/Tp0yVJS5YsUePGjbV69Wr16dNHc+fOtY0bHR2t48ePF2p2u5Vf3t7eslgsys7OVmpqqhwdHXXkyBE1bdpUktSyZUvt27fPXnEAAAAAAACQTzNnzlRwcLDKli0rSfL19dWlS5dktVqVlpYmR0dHFStWTBUrVtTVq1d19epVmUwmSdJPP/2kli1bSpIaNWqkgwcPSpK++eYbxcfHKygoqFCz2+2xx+LFi+vXX39V+/btdfHiRS1evFgHDhywfRFubm5KSUm57bExMTGKiYmRJDk7O+vo0aP2ig0AAAAAAGB4FotFXbt2tS0HBQXZSqnY2Fh5eXkpICBAS5culSRVr15dU6ZMUWRkpEqUKKFmzZpJkipUqKDnn39eFotFgwcPlnS9KNu2bZvq1Kmjbdu26dq1azp37pwWLlyohQsX6r///W+hXpvdyq8PPvhA/v7+euONN3TmzBn169dPmZmZtu1paWny8PC47bE3f+F+fn7y9fW1S2YAAAAAAIC/ArPZrNjY2NtuW79+vUwmk/bv36+jR49qzJgxOnbsmD7++GPVqlVLK1eu1IwZM+Tv769z587ZXms1cOBANWrUSCEhIQoPD1f//v0VEBCg8uXL6/PPP9fFixcVEhKi8+fP69q1a/Lx8clRwBUUu5VfHh4ecnJykiSVLFlSWVlZqlOnjuLi4tSsWTPt2rVLTzzxhL3iAAAAAAAAIB9Wrlxp+9ynTx9NnjxZQ4cOlbu7uySpbNmy+t///qeSJUvK1dVVzs7OMplMKlGihC5fvqyvv/5anTt31hNPPKFNmzapUaNG6tu3r/r27Svp+syyn3/+uVCKL8mO5Vf//v01fvx49erVS5mZmRo+fLjq1aun0NBQzZ07Vz4+Pmrbtq294gAAAAAAAOAeTZs2TcOHD5ejo6OcnJw0depUVa5cWfv27VNgYKAcHBzUqFEjtWjRQidPntSYMWMkXS/KbrwI315MVqvVatcz3ic/Pz/Fx8cXdQwAAAAAAADDMHLfYrdfewQAAAAAAADsjfILAAAAAAAAhkX5BQAAAAAAAMOi/AIAAAAAAIBhUX4BAAAAAADAsCi/AAAAAAAAYFiUXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwAAAAAAAIZF+QUAAAAAAADDovwCAAAAAACAYVF+AQAAAAAAwLAovwAAAAAAAGBYlF8AAAAAAAAwLMovAAAAAAAAGBblFwAAAAAAAAyL8gsAAAAAAACGRfkFAAAAAAAAw6L8AgAAAAAAgGFRfgEAAAAAAMCwKL8AAAAAAABgWJRfAAAAAAAAMCzKLwAAAAAAABgW5RcAAAAAAAAMi/ILAAAAAAAAhkX5BQAAAAAAAMOi/AIAAAAAAIBhUX4BAAAAAADAsCi/AAAAAAAAYFiUXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwAAAAAAAIZF+QUAAAAAAADDcizqAAAAAAAAAHjwXbhwQV27dtXy5cuVkZGhqVOnymw2y9nZWTNnztT58+c1ffp02/6HDh3Su+++q5o1a2r06NGyWq0qWbKk5syZo2LFiunTTz/VihUrZDabVbt2bU2ePFkODgU/T4uZXwAAAAAAALijzMxMhYWFydXVVZIUHh6u0AV1CTAAACAASURBVNBQRUVFqU2bNlq2bJl8fX0VFRWlqKgo9erVS88995xatmypDz74QO3bt9fKlStVq1YtrVu3TteuXdP8+fP14YcfKjo6Wqmpqdq+fXuhZKf8AgAAAAAAwB3NnDlTwcHBKlu2rCRp7ty58vX1lSRZLBa5uLjY9r1y5YoWLFigCRMmSJJ8fX11+fJlSVJqaqocHR3l7Oys6OhoFStWTJKUlZWVY4yCRPkFAAAAAADwF2exWNS1a1fbv5iYGNu22NhYeXl5KSAgwLbuRgn2v//9Tx999JH69+9v27Zu3Tq1a9dOXl5ekqTy5ctr5cqVev7557Vr1y61a9dODg4OKl26tCQpKipKV65cUYsWLQrl2kxWq9VaKCMXEj8/P8XHxxd1DAAAAAAAAMO4U9/Su3dvmUwmmUwmHT16VNWrV1dkZKQOHDigyMhILVq0SFWqVLHt36NHD73zzjuqUKGCJOnFF1/UiBEjFBAQoB07dmjVqlVaunSpsrOzNWvWLCUkJGjevHm2WWAFjRfeAwAAAAAAIFcrV660fe7Tp48mT56sffv2KSYmRlFRUfL09LRtT0lJUUZGhq34kiQPDw+VKFFC0vUZYzcegQwLC5Ozs7MWLVpUKC+6v4HyCwAAAAAAAPmWnZ2t8PBwVahQQa+99pok6W9/+5v++c9/KiEhQZUqVcqxf2hoqKZMmaLs7GxZrVaFhYXpyJEjWrdunZo0aaJ+/fpJkvr27as2bdoUeF4eewQAAAAAAPiLM3LfwgvvAQAAAAAAYFiUXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwAAAAAAAIZF+QUAAAAAAADDovwCAAAAAACAYVF+AQAAAAAAwLAovwAAAAAAAGBYlF8AAAAAAAAwLMovAAAAAAAAGBblFwAAAAAAAAyL8gsAAAAAAACGRfkFAAAAAAAAw6L8AgAAAAAAgGFRfgEAAAAAAMCwKL8AAAAAAABgWJRfAAAAAAAAMCzKLwAAAAAAABgW5RcAAAAAAAAMi/ILAAAAAAAAhkX5BQAAAAAAAMOi/AIAAAAAAIBhUX4BAAAAAADAsCi/AAAAAAAAYFiUXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwAAAAAAAIZF+QUAAAAAAADDovwCAAAAAACAYVF+AQAAAAAAwLAovwAAAAAAAGBYlF8AAAAAAAAwLMovAAAAAAAAGBblFwAAAAAAAAzL0Z4nW7JkibZt26bMzEz17NlTTZs21dixY2UymVSrVi1NmjRJDg70cQAAAAAAAA8Ki8WiiRMnKiEhQWazWREREXJzc9PEiRN1+fJlWSwWvfXWW6patap27typd999V5JUp04dTZo0ScuWLdPu3bslSZcvX9bvv/+uvXv3atu2bXr33Xfl6Oiobt26KTAwsFDy2638iouL0zfffKPVq1fr6tWrWr58uSIiIjRs2DA1a9ZMYWFh2rp1q9q0aWOvSAAAAAAAAMjD9u3bJUnR0dGKi4tTRESESpYsqY4dO6pDhw768ssv9fPPP8vLy0uzZs3Shx9+KC8vLy1btkwXL15USEiIQkJCJEmDBw/WyJEjlZmZqYiICK1bt07FihVTz5491apVK5UpU6bA89ut/NqzZ49q166toUOHKjU1VaNHj9aaNWvUtGlTSVLLli21d+/e25ZfMTExiomJkSQ5Ozvr6NGj9ooNAAAAAABgeBaLRV27drUtBwUFKSgoSJL07LPP6umnn5YknT59WqVLl1ZcXJweffRR9e/fX5UqVdKECRN08OBB1a5dWzNnztSpU6fUo0cPeXl52cb84osv5OHhoYCAAB07dkxVq1ZVyZIlJUmNGzfW119/rfbt2xf4tdmt/Lp48aJOnz6txYsXKykpSUOGDJHVapXJZJIkubm5KSUl5bbH3vyF+/n5ydfX116xAQAAAAAADM9sNis2NjbX7Y6OjhozZow2b96sd955R7GxsfLw8NAHH3yghQsXatmyZfL29lZcXJw2bNig4sWLq3fv3mrQoIG8vb0lXX8d1ty5cyVJqampKlGihG18Nzc3paamFsq12e0FW56envL395ezs7N8fHzk4uKSo+xKS0uTh4eHveIAAAAAAADgLsycOVObNm1SaGioSpQoodatW0uSWrdurcOHD8vT01OPP/64ypQpIzc3NzVp0sT29N5PP/0kDw8PVatWTZLk7u6utLQ029hpaWk5yrCCZLfyq3Hjxtq9e7esVqvOnj2rq1evqnnz5oqLi5Mk7dq1S02aNLFXHAAAAAAAAOTDhg0btGTJEklSsWLFZDKZ1LRpU+3cuVOSdODAAdWsWVP16tXT8ePHlZycrKysLMXHx6tmzZqSpH379qlly5a2MWvUqKHExERdunRJGRkZ+vrrr9WwYcNCyW+3xx5btWqlAwcOqHv37rJarQoLC1PlypUVGhqquXPnysfHR23btrVXHAAAAAAAAOTDc889p3Hjxql3797KysrS+PHj5evrq4kTJyo6Olru7u6aM2eOSpYsqTfeeEODBg2SJLVr1061a9eWJCUkJKhFixa2MZ2cnDR27FgNHDhQVqtV3bp1U7ly5Qolv8lqtVoLZeRC4ufnp/j4+KKOAQAAAAAAYBhG7lvs9tgjAAAAAAAAYG+UXwAAAAAAADAsyi8AAAAAAAAYFuUXAAAAAAAADIvyCwAAAAAAAIZF+QUAAAAAAADDovwCAAAAAACAYVF+AQAAAAAAwLAcc9vg7+9/xwNNJpN2795d4IEAAAAAAACAgpJr+eXt7a2oqKhcD+zTp0+hBAIAAAAAAAAKSq6PPS5ZsiTH8rVr13T58uVctwMAAAAAAAAPmlxnfhUvXtz2ee3atdq5c6csFosqVqyo0NDQHNsBAAAAAACAB1GuM7/+85//2D4fPnxYCxYs0KJFi/Tdd9/ZJRgAAAAAAABwv3Kd+ZWVlaXhw4erb9++6tixo0JCQpSenq7g4GB75gMAAAAAAADuWa7lV6dOndSuXTu9//77OnnypMLCwlSlShV7ZgMAAAAAAADuS67l17lz5/Tf//5XXl5e6tChg1asWCFXV1cNHjxYJUqUsGdGAAAAAAAA4J7k+s6vN954Q5UqVZKLi4uWLl2qiRMnqlOnTnrzzTftmQ8AAAAAAAC4Z7mWX5mZmTKZTDKZTLJYLJKk2rVra/bs2XYLBwAAAAAAANyPXMuvt99+W6dOndLVq1c1ceJEe2YCAAAAAAAACkSu5VdUVJT69++vwMBAFS9e/JbtzAADAAAAAADAgy7XF97HxsbqzJkzt91mtVoVFxenkSNHFlowAAAAAAAA4H7lWn7Nnz//jgcGBwcXeBgAAAAAAACgIOVafjVt2tSeOQAAAAAAAIACl+s7vwAAAAAAAICHXZ7l1++//26PHAAAAAAAAECBy/Wxxxtee+01eXl5qXv37nrqqafk4MBkMQAAAAAAADwc8iy/Vq9erRMnTmjdunWKjIxU8+bN1b17d1WpUsUe+QAAAAAAAIB7lq9pXGXLllWVKlXk6uqq48ePKzw8XG+//XZhZwMAAAAAAADuS57l1+uvv66goCBdvnxZs2bNUmRkpBYvXqydO3faIx8AAAAAAAD+4tauXZtj+cMPP8z3sXk+9hgYGKgGDRrIzc1N586ds61fvXr1XUQEAAAAAAAA7s6nn36qbdu2KS4uTl9++aUkyWKx6Mcff1Tfvn3zNUae5dc333yj3bt3a+zYsZo2bZrq1aunkJAQubi43F96AAAAAAAA4A4CAgJUpkwZXbp0SUFBQZIkBweHu3oXvclqtVrvtEPXrl0VGxtrWw4ODlZ0dPQ9Rr5/fn5+io+PL7LzAwAAAAAAGM3D0LdcuHBB6enptuWKFSvm67g8Z36ZTCZlZGTI2dlZmZmZyqMrAwAAAAAAAArUm2++qZ07d6ps2bKyWq0ymUz5npyVZ/kVHBysjh07qnbt2vr55581aNCg+w4MAAAAAAAA5Fd8fLy2bNkiB4c8f7vxFnmWXz169NAzzzyjU6dOqUqVKvLy8rqnkAAAAAAAAMC9qFatmtLT01WsWLG7PjbP8uvo0aOKiYnJ8UxlRETEXZ8IAAAAAAAADx+LxaKJEycqISFBZrNZERERslqtGjt2rEwmk2rVqqVJkybJwcFBL7/8si5duiQnJye5uLjoX//6l44cOaKXX35Z1atXlyT17NlTHTp0UEREhA4ePCgHBweNGTNGjRs3zjXDmTNn1KpVK1WrVk2SCvaxx7Fjx+rvf/+7ypcvn68BAQAAAAAAYBzbt2+XJEVHRysuLs5Wfg0bNkzNmjVTWFiYtm7dqjZt2ujkyZP67LPPZDKZbMd///33+sc//qEBAwbY1h07dkzffPON1q5dq8TERI0YMSLHDy7+2Zw5c+45f57lV+nSpdWjR497PgEAAAAAAAAeXs8++6yefvppSdLp06dVunRp7dixQ02bNpUktWzZUnv37lXDhg11+fJlvfzyy7p8+bJCQkLUqlUrHT58WAkJCdq6dauqVaum8ePHq2zZsnJ1dVVGRoZSU1Pl6Hjniurjjz++Zd2rr76ar/x5ll+VKlXS0qVL5evra2vt/P398zU4AAAAAAAAHnwWi0Vdu3a1LQcFBSkoKMi27OjoqDFjxmjz5s165513tH37dltP5ObmppSUFGVmZmrAgAHq27ev/vjjD/Xs2VP169dX/fr11aNHD9WrV0+RkZF69913NWTIEDk4OKh9+/ZKSUnR1KlT75ivdOnSkiSr1arvv/9e2dnZ+b62PMuvzMxMJSQkKCEhwbaO8gsAAAAAAMA4zGbzHR87lKSZM2dq5MiRCgwMzPFu+LS0NHl4eKh06dIKDg6Wo6OjHnnkEfn6+iohIUFt2rSRh4eHJKlNmzaaOnWqNmzYoNKlS+u9995TWlqaevXqpYYNG6pcuXK3PXdwcHCO5UGDBuX72vIsvyIiIpSQkKCTJ0/q0UcfVdmyZfM9OAAAAAAAAB5uGzZs0NmzZzV48GAVK1ZMJpNJ9erVU1xcnJo1a6Zdu3bpiSee0L59+7Ry5UotXbpUaWlp+vHHH+Xj46OBAwcqNDRU9evX1/79+1W3bl15eHioePHiMpvNcnNzk7Ozs9LS0nLNcPOkrPPnz+vMmTP5zp9n+fXRRx9p8+bN+uOPP/Tiiy8qMTFRYWFh+T4BAAAAAAAAHl7PPfecxo0bp969eysrK0vjx49XjRo1FBoaqrlz58rHx0dt27aV2WzWnj17FBgYKAcHB40YMUJeXl6aPHmypk6dKicnJ5UuXVpTp05VsWLF9L///U/BwcGyWCzq2LGjfHx8cs1wcxfl4uKi0aNH5zu/yWq1Wu+0Q8+ePbVq1Sr17dtXUVFR6tatm9avX5/vExQ0Pz8/xcfHF9n5AQAAAAAAjOZh6FsuXryoU6dOqXLlyvLy8sr3cQ557XCjG7vxEjNnZ+d7jAgAAAAAAADcvf/+978KDg7W4sWLFRQUpE8++STfx+b52OMLL7yg3r176/Tp03rppZf07LPP3ldYAAAAAAAA4G588MEHio2NlZubm1JTU9WvXz917tw5X8fmWX79/e9/V/PmzXX8+HF5e3vrscceu+/AAAAAAAAAQH6ZTCa5ublJktzd3eXi4pLvY/MsvxYuXGj7fOLECW3ZskWvvvrqPcQEAAAAAAAA7l7VqlU1Y8YMNWnSRAcPHlTVqlXzfWye5Vfp0qUlXX/31/fff6/s7Ox7TwoAAAAAAADcpcDAQB04cED79u3TZ599pn/961/5PjbP8is4ODjH8qBBg+4+IQAAAAAAAHCPZsyYoRkzZqhmzZr6xz/+obFjx2rlypX5OjbP8ishIcH2+fz58zpz5sy9JwUAAAAAAADukqOjo2rWrClJqlKlihwcHPJ/bF47hIWF2T67uLho9OjR9xARAAAAAAAAuDcVK1bU3Llz1aBBA3377bcqW7Zsvo81Wa1WayFmK3B+fn6Kj48v6hgAAAAAAACG8aD3Lenp6Vq9erUSEhJUo0YNBQcHy9nZOV/H5jnzq1OnTkpLS5OLi4vS09MlXX/5vclk0tatW+8vOQAAAAAAAJAHFxcX9e/f/56OzbP8atiwobp06aKGDRvqhx9+0Hvvvadp06bd08kAAAAAAAAAe8qz/Dpx4oQaNmwoSXr00Ud15syZfE8rAwAAAAAAAIpSnuVXiRIlNH/+fNWvX18HDx5UxYoV7ZELAAAAAAAAuG95/i7knDlz5O7urt27d6tKlSoKDw+3Ry4AAAAAAADgvuVZfrm4uKhkyZIqVaqUvL29dfnyZXvkAgAAAAAAAO5bnuVXWFiYTp8+rb179yotLU1jxoyxRy4AAAAAAADgvuVZfp08eVKvv/66nJ2d1bp1a6WkpNgjFwAAAAAAAHDf8iy/LBaLkpOTZTKZlJqaKgeHPA8BAAAAAAAAHgh5/trj8OHD1bNnT50/f15BQUGaMGGCPXIBAAAAAAAA9y3P8uvMmTPatGmTkpOTVapUKZlMJnvkAgAAAAAAAO5bns8wrlmzRpLk5eVF8QUAAAAAAICHSp4zvzIyMtSlSxd5e3vb3vc1Z86cQg8GAAAAAAAA3K88y6+RI0faIwcAAAAAAABQ4HItvxYtWqRXXnlFTZs21blz51S2bFl75gIAAAAAAADuW67v/Pryyy9tn5n9BQAAAAAAgIdRruWX1Wq97WcAAAAAAADgYZFr+XXzLzvyK48AAAAAAAB4GOX6zq8jR44oODhYVqtVP/30k+2zyWRSdHS0PTMCAAAAAAAA9yTX8mvjxo32zAEAAAAAAAAUuFzLr0qVKtkzBwAAAAAAAFDgcn3nFwAAAAAAAPCwo/wCAAAAAACAYVF+AQAAAAAAwLAovwAAAAAAAGBYlF8AAAAAAAAwLMovAAAAAAAAGJbdy68LFy7oqaee0okTJ5SYmKiePXuqV69emjRpkrKzs+0dBwAAAAAAAHeQmZmpUaNGqVevXurevbu2bt1q2/bvf/9bQUFBOfbPzs7WoEGDtHr16hzrT5w4ocaNGys9PV2S1KdPH9u/Fi1aaPbs2YWS367lV2ZmpsLCwuTq6ipJioiI0LBhw7Rq1SpZrdYcXx4AAAAAAACK3saNG+Xp6alVq1Zp2bJlmjp1qiTp6NGjWrdunaxWa47958+frz/++CPHutTUVM2cOVPOzs62dVFRUYqKitL06dNVrlw5DRkypFDyOxbKqLmYOXOmgoODtXTpUknSkSNH1LRpU0lSy5YttXfvXrVp0+aW42JiYhQTEyNJcnZ21tGjR+0XGgAAAAAAwOAsFou6du1qWw4KCrLN6GrXrp3atm1r22Y2m3Xx4kXNnj1b48ePV2hoqG3b559/LpPJpJYtW9rWWa1WhYaGasSIEXrllVduOXd4eLhGjRolNze3wrg0+5VfsbGx8vLyUkBAgK38slqtMplMkiQ3NzelpKTc9tibv3A/Pz/5+vraJzQAAAAAAMBfgNlsVmxs7G233SilUlNT9c9//lOvv/66JkyYoPHjx8vFxcW23/Hjx/Xpp5/qnXfe0bvvvmtbv3DhQj311FN67LHHbhn72LFjSktLU/PmzQv4iv6f3cqv9evXy2Qyaf/+/Tp69KjGjBmj5ORk2/a0tDR5eHjYKw4AAAAAAADy6cyZMxo6dKh69eql6tWrKzExUZMnT1Z6erp++uknhYeHy8nJSWfPnlW/fv3066+/ysnJSZUqVdLGjRtVvnx5rV+/XufPn9eAAQO0cuVKSdcfqezRo0ehZrdb+XXjoqTrLzSbPHmyZs2apbi4ODVr1ky7du3SE088Ya84AAAAAAAAyIfff/9dAwYMUFhYmG2G1meffSZJSkpK0ogRIzRhwoQcxyxYsEClS5dWy5YttXnzZtv61q1ba/ny5bblL7/8Ui+99FKh5rf7rz3ebMyYMVqwYIGCgoKUmZmZ4/lRAAAAAAAAFL3Fi/+PvTuPjvne/zj+msxkIquIUEVjjYpdrbWlpZZaakkIIWprr9S+L5eonbrcqtq1WpoqaqdaLUqUhlqiQihaRFFpbFlkm/n90WN+zW2vcisZJs/HOc4x32W8P3O+Znl9P8si3b59WwsWLLCtznj37t1H8tzXr19XgQIFHslz/TcG639Oyf+Yq1q1qmJiYuxdBgAAAAAAgMNw5LzFrj2/AAAAAAAAgJxE+AUAeGBZWVkaM2aMOnfurK5du+rixYv69ddfFR4erq5du6pz5866ePHiH85bvHixQkJC1KFDB61du1aStHfvXgUHB2vgwIGyWCySpEmTJik+Pj5X2wQAAADAseXahPcAgCff7t27JUmffPKJoqOjNX36dOXPn19t2rRRy5Yt9e233+r8+fPy8/OznRMdHa2jR49q1apVSk1NtU1u+fHHH+v999/XO++8o7i4OBmNRnl4eKh48eJ2aRsAAAAAx0T4BQB4YC+99JJeeOEFSdLPP/8sX19fRUdH69lnn1WPHj1UrFixP6zysm/fPpUrV079+vVTUlKSRo4cKUlyd3dXamqqUlNT5erqqnfffVdvvvlmLrcIAAAAgKNj2CMA4KGYTCaNGjVKkydPVvPmzXX58mV5eXnpgw8+0NNPP62lS5dmO/7GjRs6ceKE5s6dq4kTJ2r48OGyWq164403NGXKFBUvXlwXL17Uc889p61btyoiIkJHjx61U+sAAAAAOBrCLwDAQ5s5c6a++OILjR8/Xp6enmrcuLEkqXHjxjpx4kS2Y729vdWgQQOZzWaVLl1aLi4uSkxMVJkyZTRv3jy9/vrr+vTTT9W6dWvt27dPERERWrBggT2aBQAAAMABEX4BAB7Yxo0btXjxYkmSq6urDAaDateurT179kiSDh06pLJly2Y7p0aNGoqKipLVatW1a9eUmpoqb29v2/7Vq1erffv2kiSLxSKDwaDU1NRcahEAAAAAR8ecXwCAB9asWTONGTNGXbt2VWZmpsaOHauAgACNGzdOn3zyiTw8PDR79mxJ0siRIzV48GC9+OKLOnTokIKDg2W1WhURESGj0ShJSkpK0sGDB/X2229LkgoVKqQuXbooNDTUbm0EAAAA4FgMVqvVau8iHkbVqlUVExNj7zIAAAAAAAAchiPnLQx7BIA8IC0jy94l2E1ebjsAAAAAhj0CQJ7g4mxUjREr7F2GXRye1d3eJQAAAACwI3p+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAAwGERfgEAAAAAAMBhEX4BAAAAAADAYRF+AQAAAAAA4C/FxMQoLCxMknTq1Cl16tRJXbp00ZgxY2SxWCRJkZGRCgoKUnBwsHbv3i1JSklJUXh4uEJDQ9W7d28lJiZKknbs2KGXXnpJYWFhCgsL08GDB3OkblOOPCsAAAAAAAAcxtKlS7V582a5urpKkt59913169dPgYGBGjZsmL7++mtVq1ZNH3/8sTZu3Ki0tDS1atVKL7zwgtasWaOKFSuqf//+Wr9+vRYsWKBx48YpNjZWI0aMUPPmzXO0dnp+AQAAAAAA4L78/Pw0b9482+OAgADdvHlTVqtVycnJMplM8vHx0aZNm+Ts7KyEhAR5eXnJYDCoR48eCg8PlyT9/PPP8vX1lSTFxsZq3bp1Cg0N1YwZM5SZmZkjtRN+AQAAAAAA5HFZWVnq0KGD7c/q1auz7W/evLlMpv8fQFiyZElNnTpVL7/8sn799VfVqVNHkmQymfTRRx8pJCQkW48uo9Go7t2766OPPlJgYKAkqX79+ho/frwiIyOVkpKiTz75JEfaRvgFAAAAAACQxxmNRq1fv972JyQk5L7HT506VZGRkfr888/Vrl07zZgxw7avW7duioqK0qFDh/Ttt9/atq9YsUKRkZEaMGCAJCkoKEjPPPOMDAaDmjRpopMnT+ZI2wi/AAAAAAAA8FDy588vDw8PSVLhwoV1+/ZtnT9/Xv3795fVapWzs7PMZrOcnJy0ePFibdy4UZLk5uYmo9Eoq9WqV155RVevXpUkHThwQBUrVsyRWpnwHgAAAAAAAA9lypQpGjJkiEwmk5ydnTV58mQVL15c5cuXV0hIiAwGgxo2bKjatWurdOnSGjVqlNatW6esrCxNmzZNBoNBU6ZMUf/+/ZUvXz6VKVNGnTp1ypFaDVar1Zojz5xDqlatqpiYGHuXAQBPnBojVti7BLs4PKu7vUsAAAAAHnuOnLcw7BEAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOi/ALAAAAAAAADovwCwAAAAAAAA6L8AsAAAAAAAAOy2TvAgA8nIyMDI0dO1aXL19Wenq6wsPDVbZsWY0ePVoGg0H+/v6aMGGCnJz+P9u2Wq1q1KiRSpYsKUmqVq2ahg0bpnfffVdRUVF68cUX1bdvxPhDUAAAIABJREFUX2VmZmro0KH697//LaPRaKcWAgAAAADw6BB+AU+YzZs3y9vbW7NmzdKNGzfUvn17lS9fXoMHD1adOnUUERGhnTt3qmnTprZzLl68qIoVK2rRokXZnmv//v1avXq1unbtqr59+2r16tUKCgoi+AIAAAAAOAyGPQJPmBYtWmjQoEG2x0ajUbGxsapdu7YkqVGjRtq/f3+2c2JjY3Xt2jWFhYXptdde0/nz5yVJJpNJ6enpcnJy0p07d3TkyBEFBgbmXmMAAAAAAMhhhF/AE8bd3V0eHh5KSkrSwIEDNXjwYFmtVhkMBtv+O3fuZDunUKFCev3117Vy5Ur94x//0IgRIyRJYWFhGjhwoHr06KElS5aod+/emjVrliZNmqSEhIRcbxsAAAAAAI8a4RfwBLpy5Yq6d++utm3bqk2bNtnm90pOTpaXl1e24ytVqqQmTZpIkmrWrKlr167JarWqadOmWrRokcqVK6ekpCT9+uuv8vHxUfv27bVy5cpcbRMAAAAAADmB8At4wiQkJKhXr14aMWKEgoODJUkVKlRQdHS0JGnv3r2qWbNmtnPeffddffjhh5KkuLg4FS1a1NZTTJIWLlyo8PBw3b17V0ajUQaDQcnJybnUIgAAAAAAcg7hF/CEWbRokW7fvq0FCxYoLCxMYWFhGjx4sObNm6eQkBBlZGSoefPmkqRevXopPT1dr7/+ug4dOqRu3bpp+vTpmj59uu35jh49qqJFi6pw4cKqV6+edu3apcmTJ9uCNQAAAAAAnmQGq9VqtXcRD6Nq1aqKiYmxdxkA8MSpMWKFvUuwi8Ozutu7BAAAAOCx58h5iym3/qGMjAyNHTtWly9fVnp6usLDw1W2bFmNHj1aBoNB/v7+mjBhQra5iwBHkpaRJRdno73LsJu83n4AAAAAeNLFxMToX//6l1auXKlTp05p8uTJMhqNMpvNmjlzpnx9ffXBBx9o27ZtkqTAwED1799fd+7c0YgRI5SUlKSMjAyNHj1a1atX13fffaeZM2fKYDCoUaNG6t+/f47UnWvh1+bNm+Xt7a1Zs2bpxo0bat++vcqXL6/BgwerTp06ioiI0M6dO9W0adPcKgnIVS7Oxjzb80ai9w0AAAAAPMmWLl2qzZs3y9XVVZI0depUjR8/XgEBAfrkk0+0dOlSdevWTZs3b9batWtlMBgUGhqql156STt27FDdunXVo0cPnT9/XsOGDdOGDRs0bdo0zZ07V88884zCwsLUuHFjVahQ4ZHXnmvhV4sWLWzzEEmS0WhUbGysateuLUlq1KiRvvnmmz8Nv1avXq3Vq1dLksxms06dOpU7RQOP2Nhmpe1dgt3w/9b+8ur1x7UHAAAA/LWsrCx16NDB9jgkJEQhISG2x35+fpo3b55GjhwpSZozZ44KFy5sO9fFxUVFihTRsmXLZDT+NuonMzNTLi4u6tGjh8xmc7ZjJWnNmjUymUxKTk5WUlKSvL29c6RtuRZ+ubu7S5KSkpI0cOBADR482Na17d7+O3fu/Om5v3/Bq1atqoCAgNwpGnjEur2fl3t+NbB3CXleXr3+uPYAAACAv2Y0GrV+/fr/ur958+aKj4+3Pb4XfB05ckQfffSRIiMj5ezsLB8fH1mtVr311luqUKGCSpUqZTvn+vXrGjFihMaOHStJMplMOnbsmIYOHaoyZcrIx8cnR9qWqxNsXblyRd27d1fbtm3Vpk2bbPN7JScny8vLKzfLAQAAAAAAwP/os88+04QJE7RkyRJbcJWWlqbhw4crOTlZEyZMsB17+vRp9ejRQ0OGDLGNApSkatWqadeuXapQoYKWLFmSI3XmWviVkJCgXr16acSIEQoODpYkVahQQdHR0ZKkvXv3qmbNmrlVDgAAAAAAAP5HmzZt0kcffaSVK1fqmWeekSRZrVa98cYbevbZZzVp0iTb8MezZ89q0KBBmj17tgIDA23HhoaG6tatW5J+GxGYU4sg5tqwx0WLFun27dtasGCBFixYIEn65z//qSlTpmjOnDkqXbp0tjnBAAAAAAAA8PjJysrS1KlT9fTTT2vAgAGSpFq1aikgIEAHDx5Uenq6oqKiJElDhw7VkiVLlJ6erqlTp0qSPDw8tHDhQvXq1UuvvfaazGazChUqpClTpuRIvQar1WrNkWfOIVWrVlVMTIy9ywD+J6z2CHvKq9cf1x4AAADw1xw5b8nVOb8AAAAAAACA3ET4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAAAAAAIdF+AUAAAAAAACHRfgFAAAAAAAAh0X4BQAAnhgxMTEKCwuTJF24cEFdunRRaGioJkyYIIvFku3YlJQUhYeHKzQ0VL1791ZiYqIkae3aterUqZPefPNN27HDhg1TUlJSrrUDAAAAuYfwCwAAPBGWLl2qcePGKS0tTZI0ffp0DR48WB9//LGsVqt27tyZ7fg1a9aoYsWK+vjjj9WqVSstWLBAkrRp0yZ98sknunbtmm7duqWvv/5aNWrUkIeHR663CQAAADmP8AsAADwR/Pz8NG/ePNvj2NhY1a5dW5LUqFEj7d+/P9vxPXr0UHh4uCTp559/lq+vryQpX758SktLU2ZmppycnLRu3Tp16tQpl1oBAACA3GaydwEAAAAPonnz5oqPj7c9tlqtMhgMkiR3d3fduXPnD+cYjUZ1795dZ86c0fLlyyVJffv21dChQ9WsWTNt3rxZQUFBWrZsma5cuaJXX31VpUuXzp0GAQAAIFfQ8wsAADyRnJz+/2tMcnKyvLy8/vS4FStWKDIyUgMGDJAk1axZUwsXLtTLL7+sw4cPy8/PT7/88osGDRqk+fPn50rtAAAAyD2EXwAA4IlUoUIFRUdHS5L27t2rmjVrZtu/ePFibdy4UZLk5uYmo9H4h/2vvfaa7t69KycnJxkMBqWkpORO8QAAAMg1hF8AAOCJNGrUKM2bN08hISHKyMhQ8+bNJUm9evVSenq6goKCtGXLFoWFhWnYsGGaNm2a7dz4+Hjdvn1bAQEBKl++vK5cuaLXX39d3bp1s1dzAAAAkEMMVqvVau8iHkbVqlUVExNj7zKA/0mNESvsXYLdHJ7V3d4l5Hl59frj2gMAAAD+2l/lLYsXL9auXbuUkZGhLl26qGPHjpKkadOmqVSpUurSpYvt2MTERHXu3FlbtmyRi4uL7ty5oxEjRigpKUkZGRkaPXq0qlevnuNtuoeeXwAAIMekZWTZuwS7yuvtBwAAjiE6OlpHjx7VqlWrtHLlSl29elWJiYnq06ePdu3ale3YqKgo9erVSwkJCbZty5cvV926dfXRRx9p+vTpmjRpUq7Wz2qPAAAgx7g4G/Nsr0OJnocAAMAx7Nu3T+XKlVO/fv2UlJSkkSNHKjk5WQMGDNDevXuzHevk5KTly5crKCjItq1Hjx4ym82SpKysLLm4uORq/YRfAAAAAAAAeVxWVpY6dOhgexwSEqKQkBBJ0o0bN/Tzzz9r0aJFio+PV3h4uD7//HM988wzfwi/6tev/4fnvrcq9/Xr1zVixAiNHTs2B1vyR4RfAAAAAAAAeZzRaNT69ev/dJ+3t7dKly4ts9ms0qVLy8XFRYmJiSpYsOADP//p06c1dOhQjRw5UrVr135UZT8Q5vwCAAAAAADAf1WjRg1FRUXJarXq2rVrSk1Nlbe39wOff/bsWQ0aNEizZ89WYGBgDlb65+j5BQAAAAAAgP/qxRdf1KFDhxQcHCyr1aqIiAgZjcYHPn/27NlKT0/X1KlTJUkeHh5auHBhTpX7B4RfAAAAAAAAuK+RI0f+6fYBAwb86fbfrwKZm0HXn2HYIwAAAAAAABwW4RcAAAAAAAAcFuEXAAAAAAAAHBbhFwAAAAAAABwW4RcAAAAAAAAcFuEXAAAAAAAAHBbhFwAAAAAAABwW4RcAAAAAAAAcFuEXAAD/g3bt2iksLExhYWEaM2ZMtn1r1qxRhw4d1KlTJ+3evVuSdOrUKQUHB6tnz55KSUmRJC1cuFBHjx7N9doBAACAvMRk7wIAAHjSpKWlSZJWrlz5h33Xr1/XypUrtW7dOqWlpSk0NFT169fXunXrNHnyZEVHR+ubb75R9erVFR8fr+rVq+d2+QD+pl9//VUdOnTQ+++/rzJlyti2b9y4Ue+99548PT3Vvn17dezYUVevXtXgwYNlNBo1Z84cPfXUU9q0aZNMJpNatWplx1YAAJB3EH4BAPCQ4uLilJqaql69eikzM1NDhw5VtWrVJEnHjx9X9erVZTabZTab5efnp7i4OLm5uSklJUUpKSlydXXVggUL1LdvXzu3BMDDysjIUEREhPLly5dte2JioubOnasNGzbIy8tLPXr00PPPP68vv/xSffr0kdVq1fbt29WlSxft2rVLb7/9tp1aAABA3sOwRwAAHlK+fPnUu3dvvffee5o4caKGDx+uzMxMSVJSUpI8PT1tx7q7uyspKUndunVTZGSkbt68KV9fX7m5uenkyZOaMGGCdu7caa+mAHhIM2fOVOfOnVW4cOFs2+Pj41W+fHl5e3vLyclJlStXVkxMzB+C7+XLl6t79+4yGAx2agEAAHkP4RcAAA+pVKlSeuWVV2QwGFSqVCl5e3vr+vXrkiQPDw8lJyfbjk1OTpanp6cKFy6sOXPmaOzYsVq6dKlef/11ffLJJ5o4caIiIyPt1RQAD2H9+vXy8fFRw4YN/7CvRIkSOnv2rBISEpSamqoDBw4oJSVFrVu31oEDB3Tw4EHVq1dPFy5ckNVqVUREhNauXWuHVgAAkPcQfgEA8JA+/fRTzZgxQ5J07do1JSUlqVChQpKkKlWq6PDhw0pLS9OdO3d07tw5lStXznbunj17VK1aNXl5ednmDrs3AT6Ax9u6deu0f/9+hYWF6dSpUxo1apQt+M6fP7/GjBmjAQMGaOzYsapYsaIKFCggd3d3TZ8+XVOnTtUHH3yg8PBwLVq0SBMmTNDXX3/N/38AAHIBc34BAPCQgoODNWbMGHXp0kUGg0HTpk3TypUr5efnpyZNmigsLEyhoaGyWq0aMmSIXFxcJElZWVlas2aNba6f+vXrq1OnTmrcuLE9mwPgAf2+l2ZYWJjefPNNW/CdmZmpmJgYRUZGKjMzUz179tSQIUNsx585c0YuLi7y8/NTWlqaDAaDsrKylJ6eLjc3t1xvCwAAeQnhFwAAD8lsNmv27NnZtj333HO2v3fq1EmdOnX6w3lGo1Hz58+3Pe7Xr5/69euXc4UCyHFbtmxRSkqKQkJC5OzsrA4dOsjFxUU9e/aUj4+P7bjFixcrIiJCktSuXTuFhISoUqVK8vb2tlfpAADkGYRfAAAAwENauXKlJKlMmTK2bf3791f//v3/9PjfB+ZBQUEKCgrK2QIBAIANc34BAByaNTPN3iXYVV5vP/KutIwse5dgV3m9/QAA/B49vwAADs1gctHFSZXtXYbd+EV8b+8SALtwcTaqxogV9i7Dbg7P6m7vEgAAeGzQ8wsAAAAAAAAOi/ALAAAAAAAADovwC8ATKyMjQyNGjFBoaKiCg4O1c+fObPt37dqloKAghYSEaM2aNZKkq1evqnPnzuratauuXbsmSdq0aZO2bduW6/UDAAAAAHIe4ReAJ9bmzZvl7e2tjz/+WEuXLtXkyZNt+zIyMjR9+nS9//77WrlypVavXq3r169r+/bt6tOnj3r06KHt27crLS1Nu3btUsuWLe3YEgB4ODExMQoLC/vD9o0bN6pNmzYKDQ3V2rVrJRH6AwAAMOE9gCdWixYt1Lx5c9tjo9Fo+/u5c+fk5+en/PnzS5Jq1Kih7777Tm5ubkpJSZHVapWrq6uWL1+u7t27y2Aw5Hr9APC/WLp0qTZv3ixXV9ds2xMTEzV37lxt2LBBXl5e6tGjh55//nl9+eWX6tOnj6xWq7Zv364uXbpo165devvtt+3UAgAAgNxFzy8ATyx3d3d5eHgoKSlJAwcO1ODBg237kpKS5Onpme3YpKQktW7dWgcOHNDBgwdVr149XbhwQVarVREREbZeEgDwOPPz89O8efP+sD0+Pl7ly5eXt7e3nJycVLlyZcXExNhC/5SUFEJ/AACQJxF+AXiiXblyRd27d1fbtm3Vpk0b23YPDw8lJyfbHicnJ8vT01Pu7u6aPn26pk6dqg8++EDh4eFatGiRJkyYoK+//lopKSn2aAYAPLDmzZvLZPpj5/0SJUro7NmzSkhIUGpqqg4cOKCUlBRCfwAAkOcRfj0CFotFERERCgkJUVhYmC5cuJBt/5IlS9S2bVt17dpVu3fvliSdOnVKwcHB6tmzp+3H9sKFC3X06NFcrx94UiUkJKhXr14aMWKEgoODs+0rU6aMLly4oJs3byo9PV3fffedqlevbtt/5swZubi4yM/PT2lpaTIYDMrKylJ6enpuNwMAHon8+fNrzJgxGjBggMaOHauKFSuqQIEChP4AACDPY86vR+Crr75Senq6Vq9erWPHjmnGjBlauHChJOn06dPaunWr7c5q586dVbduXa1bt06TJ09WdHS0vvnmG1WvXl3x8fHZfpwDuL9Fixbp9u3bWrBggRYsWCBJ6tixo1JTUxUSEqLRo0erd+/eslqtCgoK0lNPPWU7d/HixYqIiJAktWvXTiEhIapUqZK8vb3t0hYA+LsyMzMVExOjyMhIZWZmqmfPnhoyZIht//1Cfzc3NztWjieFxWLRm2++qdOnT8tsNmvKlCkqUaKEbf+ePXs0f/58SVKFChU0YcIEXbt2TYMHD5bRaNScOXP01FNPadOmTTKZTGrVqpW9mgIAyGMIvx6Bw4cPq2HDhpKkatWq6cSJE7Z9586dU+3ateXi4iLptyEJp0+f/sP8GwsWLFDfvn3tUj/wpBo3bpzGjRv3X/c3btxYjRs3/tN9s2fPtv09KChIQUFBj7w+AMgNW7ZsUUpKikJCQuTs7KwOHTrIxcVFPXv2lI+Pj+04Qn/8Xfe74ZuUlKRZs2ZpxYoV8vHx0dKlS3Xjxg3bKsssuPD3/VX4OGXKFB05ckTu7u6SpAULFig+Pl7jx4+Xp6en5s+fLzc3Ny1cuFB169blpjuAPIXw6xFISkqSh4eH7bHRaFRmZqZMJpOeffZZLVmyRElJScrIyNDRo0cVEhKibt26acaMGfL19ZWvr6/c3Nx08uRJLVu2TI0aNVKTJk3s2CIAAPA4K168uNasWSNJ2eY77N+/v/r37/+n5xD64++63w3fo0ePqly5cpo5c6YuXbqkjh07ysfHh1WWH6H7hY+SFBsbq2XLlmULvRltAgC/Yc6vR+A/J9a2WCy2iWjLlCmjrl276rXXXtPMmTNVtWpVFShQQIULF9acOXM0duxYLV26VK+//ro++eQTTZw4UZGRkfZqykP7q/nOpN+WXm/WrJnS0tIkSVevXlXnzp3VtWtXXbt2TZK0adMmbdu2LVdrR+6yZqbZuwS7yuvtB/KqvP5/P6+339H8txu+knTjxg1FR0dr+PDhWrp0qT788EP9+OOPLLjwCN0vfLRYLLpw4YIiIiLUuXNnffrpp5LkUKNN+N1hP3/12q9Zs0YdOnRQp06dmOMajy16fj0Czz33nHbv3q2WLVvq2LFjKleunG1fYmKibty4oVWrVunOnTvq1auX/P39bfv37NmjatWqycvLy/Ym/SRNPPtXd6CioqI0e/ZsJSQk2LbR/T1vMphcdHFSZXuXYTd+Ed/buwQAdsB7H+99juR+N3y9vb1VuXJlFSpUSJJUs2ZNnTp1SqVKldL06dMlSZMnT1Z4eLgmTZqkxYsXa+DAgWrVqhVzzj2g+402SUlJUbdu3dSzZ09lZWWpe/fuqlSpkkONNuF3h/3c77W/fv26Vq5cqXXr1iktLU2hoaGqX78+vQ7x2KHn1yPQtGlTmc1mde7cWdOnT9eYMWO0fPly7dy5UwUKFFB8fLyCgoL02muvaeTIkTIajZKkrKwsrVmzRp07d5Yk1a9fX506ddILL7xgx9Y8nPvdgZIkJycnLV++PNt8Iv95B4ru7wAAAI+/5557Tnv37pWkP9zwrVSpks6cOaPExETb4gtly5a17WeV5b/vfuGjq6urunfvLldXV3l4eKhu3bqKi4tzmNEmEr877Ol+r/3x48dVvXp1mc1meXp6ys/PT3FxcQ7V6xCOgZ5fj4CTk5MmTZqUbVuZMmVsf//PffcYjUbbijiS1K9fP/Xr1y9niswh97sDJf0W6P2n1q1ba8qUKXJyclLfvn21YMEC1axZUxEREapcubI6duyYa/UDAADgwTRt2lTffPONOnfuLKvVqmnTpmn58uXy8/NTkyZNNGzYMPXp00eS1KJFi2zhGAsu/H33G23y008/aciQIdqwYYMsFouOHDmi9u3b2/Y/6aNNJH532NP9XvukpCR5enra9rm7uyspKcmheh3CMRB+4W+53x2o/8bd3Z3u7wAAAE+Yv7rh26pVK7Vq1epPz2XBhb/vr8LHNm3aqFOnTnJ2dlbbtm1tU63cG21yb6jfvdEm/21F7McVvzvs536v/X/uS05Olqenp63XoSQNGzZMEyZM0KBBg7R8+XL16tWL8Au5Ls+FX2kZWXJxNtq7DLt51O2/3x2ov3K/7u98CAEAAAD/76/Cx9dee02vvfbaH85zhNEmEr877Ol+r32VKlX09ttvKy0tTenp6Tp37ly2/Y7Q6xCOwe7hl8Vi0ZtvvqnTp0/LbDZrypQpKlGiRI79ey7ORtUYsSLHnv9xd3hW90f6fH91B+p+6P4OAACQM6yZaTKYXOxdht3Yu/3ccH/07ed3h/381WsfFham0NBQWa1WDRkyRC4uv/3fc5Reh/hNbmc3j5rBarVa7VnAjh07tGvXLs2YMUPHjh3T4sWLs63a8Z+qVq2qmJiYv/VvEn7BXvL6tceKZ/aVV68/rj2uPXvi+rPv9ce1x7VnT3n9+gPw5Llf3vKw2c3jxu7h1/Tp01WlShXb/AANGzZUVFRUtmNWr16t1atXS5JiY2OVL1++XK8TAAAAAADAUd29e1cVK1a0PQ4JCVFISIikB8tuHmd2H/b4V6t2SNlfcAAAAAAAAOSeB8luHmdO9i7gf1m1AwAAAAAAALnjSc9u7B5+Pffcc9q7d68kPfSqHQAAAAAAAMhZT3p2Y/c5v+6tGHDmzBnbyhG/X7IXAAAAAAAA9vOkZzd2D78AAAAAAACAnGL3YY8AAAAAAABATiH8AgAAAAAAgMMi/ALw2GAUNgAAAADgUXty1qUE4NDS0tLk4uJi7zKAbKxWqwwGg73LAAAAfwOf5/hfWCwWTZ48WcWLF1fVqlVVs2ZNe5eEv4GeX3goKSkp2R7TUwd/170PlUOHDtm7FORxFotFs2fP1nvvvae33npLkviijFx3584dZWVl2R7zOYvcYrVaFRsbq9jYWN25c8fe5QB/y7p167R27Vrt27dP0m+f57yf4mFYLBYNHTpUTk5Oun79utatW6e7d+/auyz8Daz2iAdisVg0evRoWa1WOTs7q3r16mrdurVcXV25k4L/mcVi0ciRI/XUU09pxIgRkrgzB/uwWCwaMWKEChUqpCZNmmjFihWyWq1666235ObmJovFIicn7hch51gsFv3zn/9URkaGvLy8VLRoUfXp00cS74vIeRaLRf369VOhQoUUFxenGjVqyN/fXx06dLB3acBDO3z4sEqVKqUDBw4oNjZWJ0+e1Jw5c+Tj42Pv0vCEuPcbpXTp0nrjjTckSWPHjtXw4cO5jp5gxjfffPNNexeBx9u9L+RFihTR6NGjlZKSoosXL+ro0aOqVq2aTCZGz+LhWSwWDRo0SP7+/ho8eLAk6dNPP5XJZJKvr6+dq0NeYrFYNHz4cJUsWVLDhg1TsWLF1LJlS+3bt0/r169XmzZtCB6Qo+59zhYuXFhDhw6Vq6urjh8/rn379qlRo0Zcf8hR966/MmXKaNSoUXrhhRdkNpsVHR0tg8GgkiVL2rtE4IHNnDlTMTExatWqlcqVK6f69evrxIkT2rBhg2rXri13d3dZLBbeV3Ff8+bN0+7du/Xuu+9KkubMmaPPP/9cXl5eiouL0927d1WwYEF+Bz9hCL9wX1arVa+++qrKlCmjoUOHymg0yt/fXx4eHoqLi1Px4sVJv/E/WbZsmU6ePKmIiAiZzWa9/fbbOnTokLp16yYnJydlZGTIaDTau0zkAZs2bdL27ds1Y8YMmc1mpaeny2g0qkmTJtq6daueeuopFStWzN5lwkFZrVaFhoaqcuXKGjhwoFxcXOTn5yd/f38dO3ZMbm5uKlq0qL3LhAMbO3aszp8/r1mzZkmS3N3d5evrq4SEBF29elU1atSwc4XAg5k4caKOHDmixYsXS5Lt87xRo0aKi4vTqlWr9Morr9CTG/+V1WrVlStXVLRoUWVlZen777/Xvn37dOnSJbVt21YGg0Hbtm3TTz/9pOeee04eHh72LhkPgfAL9/Xzzz/r8OHDKliwoOrWrStJcnJyUsGCBbVx40alp6eratWqdq4STyKLxaLMzExdv35dq1ev1s2bNzVr1iyZTCZt375dO3bsUK1atbgzhxxjsVj05ZdfqlWrVvrhhx8UFRWlgIAAeXt7KysrS05OTvr+++8VEBCgIkWK2LtcOKjbt2/rq6++kqenpxo2bCjpt2tNIQsfAAAgAElEQVTTzc1Ne/bskclkUsWKFe1cJRxVYmKi3N3ddePGDSUlJal8+fKSJLPZLJPJpA0bNqhp06b0bsBjb8aMGfr+++9Vo0YN3b59W/7+/jIajbabqfXq1VNsbKyuXLmiSpUqMZwcf2CxWDRgwAC5u7urQYMG8vX11c6dO7Vnzx59+OGHql69uqpUqaJXXnlFL774ory9ve1dMh4SsTf+lMVi0bJly2QymTRgwADdvXtX06dPV3p6uiTJZDKpTp06cnd3t3OleNJkZmZKkmrVqqUGDRrYJtcNDw+Xs7Oztm3bptWrV6t169bcmUOOuTeXQ1xcnKTf7habzWa98847unbtmoxGo77++mv98MMPKlSokJ2rhSOyWCxasmSJUlNTNWfOHP36668aP368JMloNMrZ2Vn+/v7KyMiwc6VwRBaLRUOGDNHp06dVv359tW7dWlFRUVq7dq3tmMuXLyt//vwEBHjsffnll7Jarfrwww9Vp04dHT16VOvXr5ckOTs7236/tGzZ0vY9lOsav3dvfuuyZcuqTZs2kqTy5curX79+aty4sZYsWZLtdzAr1D+Z6PmFP7BYLBo1apSysrL08ssvy8fHR0WLFtXx48cVHR2tBg0aaO/evYqMjFS3bt1IvfFArFarsrKyZDKZbHfhihUrJh8fH6WmpkqSoqKi9OWXX2rcuHEqXbq0nSuGo/r9PIb35pu7evWqWrVqpaioKB07dkyXL1/Whg0bNH78ePn5+dm5YjiaewssGI1GtWjRQq6urqpZs6Z27dqlb775Ri+++KL27NmjVatWqVevXnzO4pGyWCwaM2aMChcurM6dO8tkMsnPz0/u7u7auXOnnJycFB8fr1WrVmngwIHcAMBjz8/PT4GBgTKZTCpYsKAyMzMVGxurX3/9VeXLl7dNo2E0GvX555+rdu3aMplMBGCQ9Nt74rBhw+Tv768BAwZIkqZNm6YbN26odu3aevrpp/XNN9/o1KlTqlOnjp2rxd/Bao/I5t4XoiJFimjIkCGSpD179igwMFA//PCDNm7cqCNHjsjZ2VmTJk1iElQ8sGXLlunjjz/W559/LrPZrIyMDDk7O0v6bVWejRs3KjY2VrNmzVKZMmXsXC0cldVqVd++feXr66upU6dK+m0SU6PRqEGDBkmSJkyYoGPHjunf//43ISweuXvBl5+fn+2a27t3rxo1aqTExETNnDlTp0+fVsGCBTV+/Hg+Z/FI3evd8Mwzz9h+5M2ZM0fNmjWTv7+/Dh8+rPnz5+vq1atatmyZSpUqZeeKgQd3b2Xm5ORkRUVF6dtvv1WlSpUUHBxs2/f775+A9NtncN++fXXs2DGZzWbNnTtXP/30k2bOnCmz2ayff/5Zt27dUuHChVWwYEF7l4u/gQH8yOYf//hHtuBr7ty5On78uAIDA+Xv76/WrVsrOTlZXbt25Qs5HkqfPn109epVde3aVZGRkbaJxc1mswoUKKBGjRpxhxk57ubNmypYsKBKlCihu3fvasWKFbpw4YL+9a9/SZLi4uI0ceJE3bx5k942yBGjRo2S2Wy2BV///ve/FRcXpwYNGsjHx0fDhw/XnDlz1KNHDz5n8cgtXrxYUVFROnDggCTpnXfe0blz5/Tss8/K2dlZZcqU0cCBA1W0aFE988wzdq4W+O++/PJL1atXL9sULPemy7g3Z1NWVpZtHrt7+wi+8Hvbtm1Ty5YtNXz4cHXu3FnPPfeckpKSbIsg3bs5P2jQICa3dwAMe4Sk3+6UXLhwQampqTpw4IDatGmj5cuX6/z585o7d66cnJx04MAB3b17VyEhISpcuLC9S8YTwGKxaPny5YqKipKvr6/atWunM2fOaN68eWrfvr3MZrM+/fRTLVq0SD179pSvr6+9S4YDGz9+vGrVqqVq1arp5MmTmjdvnn755RctXLhQRqNR27Zt09tvv63AwEDu7OGRs1qtOn36tJKTk3Xp0iXVqVNHS5Ys0eXLlzVnzhyZTCZFRUUpISFBr776KjcCkCNq1aqlEydOaO/evTp16pQuXLigWbNmyWw2a8uWLTp06JCaN2/OeyAea5mZmZo6daquXLmiKlWq2AIti8Uig8Gg9PR0ubq6qkyZMlzL+K9Onjypr776Sj/++KN69eolq9WqFStW6F//+pd8fHy0detWbdiwQW+88QYLHzkIwi/IYrFo0KBBunnzpsLDw5WYmKjRo0crIyND8+bNk5OTk7Zt26YlS5aoU6dOKlCggL1LxhPg93Pa+Pj4qF69eoqLi1NwcLDi4+O1ePFiGQwGbdy4URERESpevLi9S4aD+/bbb/Xee+8pKChI5cqV06VLl1S0aFHVq1dPX3/9tVatWqXJkydzLSJH7N27V+PHj9e0adN0+/ZtzZo1S0lJSZo7d65MJpO2bt2qDz/8UB07dqTXIR4pi8Wi6dOna+/evfrxxx81evRobdmyRTt37tSqVatkNBq1detWrVmzRr169eIGJx5rH374oQ4fPqzx48fr008/1dmzZ1W5cmU5OzvLyclJx48f1/r161WtWjXm9cJ9FSpUSPny5VNcXJxOnTqlrl27ymw2a/78+UpNTdUXX3yh8ePHMwWGAyH8yuMsFov69Okjk8mke5dCrVq1ZDabdeDAAYWGhtom3Z04caJKlChh34LxxBg1apSKFSumYcOGqVq1alq2bJkiIyN19uxZDRs2TMePH9f8+fO1aNEi+fv727tcOCiLxaINGzbIyclJ7du3V2Jiot5++221b99eFStW1I8//qiFCxdq//79mjx5Ml9wkGNKliypxMREffXVVxo4cKAyMzMVHx+vZs2aaceOHVq/fr0mTJjA5yweKYvFoqFDh8rLy0vPP/+8qlatqgIFCqhFixY6fPiwoqOjlZ6ernXr1mnChAm8B+Kx5+rqqvXr1ys5OVkDBw7U2rVrdf78eT3//PM6duyYJk6cqA4dOqhUqVIEX/gDi8WiEydO6O7du/L29lbx4sXl6empCxcuKCYmRr1799bNmzf10Ucf6a233uI90cEw4X0eZrVaNWTIEGVlZenmzZvq06ePAgMDbfsXLVqk9957T/7+/po6dSqTnuKBJSYmasaMGZo6daqcnZ21Y8cObd++XeHh4Vq2bJleeOEFtWzZUgkJCQx1RI6xWCwaMmSI7t69Kx8fH9WuXVvt27fX7NmzdeDAAS1ZskTJycn6+OOPFRwczEILeOQsFotmzpypsmXLqmPHjrp9+7Y++OADNW/eXM8++6zeeecd7dq1S25ubpoyZQpfsvHIvfvuu0pJSdHIkSNt25KSkvTDDz+oevXq6tu3r86cOaNly5Zx/eGxZ7VaZTAYdO7cOc2aNUsNGzZUcHCwRo0aJWdnZ509e1aDBw/O9nsG+L3Nmzdr5MiR8vLyUrt27XTx4kXVr19f586d06VLl1S7dm394x//UFJSEnN8OSB6fuVh27Ztk9lsVkREhJ566im9++67KlCggO3LT82aNeXr66vQ0FC+EOGhmEwm7dixQw0aNJCLi4ucnJzUuXNnFSxYUAcPHlSJEiVUunRpubq6clcOOcJisWjcuHEqVqyYpk6dqmvXrikxMVE1a9ZUvXr1dPnyZU2bNk1du3ZV48aNmRMEOeLSpUuaPn26zp8/ryNHjqhs2bI6ceKErly5opo1a6pOnToyGAzq0aMHN5iQI06cOKHnn39eRYsWVXp6uoxGo8xms9555x3ly5dPb7zxhlq0aMHk9nisbd26VeXKlbN9Z/Tx8VFAQIDWrl0rNzc3devWTbt27VLv3r3VqFEjO1eLx5HFYtHUqVPVpk0bPf3007p8+bK6d+8uf39/ZWRk6Ny5c7py5YouX76sJk2ayMvLy94lIwcQfuVhvr6+atiwoSTJz89PhQsX1pIlS+Tj42P7Eh4QEMAcX3hg77//vvbv36+6detqx44dOn78uBo1amS7hrZv367t27ere/fu8vT0JPhCjunWrZt8fHz0z3/+U9Jv8y2dO3dORYoUUZEiRfT888/LbDarSJEizK+EHGGxWOTt7a2CBQuqQYMGtt4Kd+/e1eeffy5PT0+VL19elSpV4hpEjomKitLu3bv18ssvy2g0KiMjQ0ajUVFRUSpbtqz8/Pzo3YDHWnp6ugYNGqSLFy/agi2LxaICBQrIYDDo9OnTatSokZo0aaJSpUrZeocB99wb/l2sWDE1btxYlSpVUlpamjZs2KBOnTqpbt26aty4sUJDQ9W4cWN++zowwq88xmq1at++fSpRooRcXV0lSVlZWXJyclLJkiVVqFAhzZo1S8WLF2eJdTyUjIwM3b17V8ePH9eNGzfUr18/LV68WLGxsUpISNDJkyf16aefasqUKcxpgxz3008/6dKlS2rWrJkWLVqkXbt2yWKx6Ntvv9Xy5cu1e/dujRw5ktABj5zVatX8+fOVlZUlb29vGY1GrVmzRoMHD1ZAQIA8PDwUHR0tk8mkOnXqyGQy2btkOJB7i83Exsbq119/1SuvvKKDBw/q+PHjev7552U0GrVnzx598cUX6tSpE70b8NgzGo0KCgrS0qVLbUGXwWCw3VA4evSoAgMDZTQa5eTkRPCFbCwWi/r3769z585pwIAB8vHxkSRVrVpVv/zyiz788ENVr17dtj1fvnxcQw6M8CuPmTZtmmbPnq1Tp04pMzNTmZmZeuqpp2z7S5YsaRuSxhciPAyj0ainn35a3t7e2rlzp5KSkjRmzBhdvHhRt27dksViUa9evRhCixxjtVr12WefyWw2q379+rpz544GDx4sq9Wqjz76SO3atVO7du1Ur149tWzZUu7u7vYuGQ7IYDAoOjpaFy5c0BdffKEWLVooNTVVa9euVdOmTVWyZElVqVJFDRo0UP78+e1dLhzIveCrYMGC8vPz0/79+1WnTh1VrlxZu3fv1po1a3T+/Hl99tlnmjRpEjei8FjbsWOHihYtKicnJ7m4uOjll1/W4sWLdfbsWQUEBOjEiRNauHChbdi4k5OTvUvGY8ZqtWrMmDHy9PRUs2bNFB0dLVdXV9t1Va1aNcXHx2vDhg1q0aIF4WkeQPiVxxQrVkzOzs4qUqSI3NzcNGbMGKWnp+vWrVu2UMLPz4/gCw/EarVq9OjRio2NlcFg0M8//2wbKnvw4EGlpKSoY8eOqlWrlqpVq0Y3YuQYi8WiAQMGKDY2VocPH1aBAgXUrl07paSk6KefflLTpk3l4uIiSfL29pabm5udK4ajsVqtioqK0g8//KDGjRurRIkSypcvnyZPnqzAwEBdvHhRJUuWVMGCBVWoUCGGmuGRuhd8+fv7a8iQIapUqZL27t2r6tWrq2TJkmrWrJkKFy6sMmXKqG3btgRfeKxt3bpVY8eO1aVLl3TlyhXdunVL/v7+at26tbZv367vvvtO27ZtU3h4uG0KF+A/3bhxQ2lpaerfv78KFCigK1eu6Pjx4/L09FSRIkXk5OSkWrVqqUGDBtwQzSMIv/KYtLQ0HTp0SF26dFG5cuW0c+dO+fr66rPPPtPevXvVvHlzEm88MIPBoEWLFmn79u0qXry4tmzZov3792vr1q26efOmtm/frvz58ysgIMB2PPCoWSwWjR8/XsWLF9e0adN08eJFXbt2TbVq1VLt2rV1/fp1vfXWWwoMDJSnp6e9y4UDslgsGjlypK5fv664uDgdOnRIv/zyi4KDgxUQEKAjR45oy5YtunXrlpo0aWLvcuGAli5dqrVr12rZsmWSpNmzZ2vLli0yGAw6fPiwEhISVKNGDZUsWZIbnHjsFS5cWJcvX1bBggVVsWJFjRkzRvHx8UpPT1fPnj3VsGFDNW3aVBUqVLB3qXgMWSwWvf/++7JYLGrYsKHMZrO8vLzk4+OjhIQEHT9+XC4uLipatKgMBoNtKiA4PsIvB2exWLRx40adPn1a5cuXl6enpy5duqRx48Zp//79GjNmjIKDgxUcHKwqVaowBAMPLDIyUqmpqRo6dKjOnDmj5ORkzZ8/Xy1atFDRokUVEBAgs9mstm3bMrk9clTv3r3l5uam8ePHS5IOHz6sS5cuyd/fX/nz59ezzz6r/Pnzq2jRovzoQ44YO3asSpQooWHDhumll15SoUKF9NNPP+nixYtq1qyZqlSpopdeekk1atSgByxyRKVKlXTr1i1t2bJF33//vX755Re9+uqrKlKkiA4ePKjLly+rcuXKfM/DY+38+fNyd3eXu7u7EhISVLFiRQUGBmrXrl0qXbq0vvrqK23ZskUvv/wy76X4U/dGAiQnJ/9fe3ceGPO973/8mT1BQhIkgiRkEVttUUJqDxqlimpTV7lKUVW9itRabSlNteG6TlpbLS0qGrETO6ENB9d6LBUiOWINsmeSmfn90V/nd/rrcvQcOkm8Hv/1OzOZ11RM5DWfz/vDzp07uX//Pi1btgR+XPnv4eFBeno6ly9fpnnz5pq7+YSxMZvNZmuHkMfDZDIxZswY3NzcyMrKomLFisyZMwez2czYsWOJiIggMjKSoqIiy3YgkYdx//59vvjiCzw8PAgNDaVZs2YMHjwYd3d3YmNjLffTiTvyuD148ICFCxeSk5PDuHHjWLFiBXv27MHOzo7KlStz48YNQkJCmDFjBs7OztaOK+VQVlYWsbGxTJ8+HTs7O8v1vXv3snDhQpYvX46jo6MVE0p5ZTabOXHiBHfv3qVZs2aYTCaWL1/OmjVrOHjwoGV7t9lsxmw2ayaSlGoffPABbm5uvP322wDs27ePDz74gJo1axIVFUVkZCQAFy9eJDg42JpRpZQymUxMnDiRmjVr8tZbb3Hp0iVWrFjxi5/PaWlpVK5cWYcePYFUdZZTP23BCAwMZMyYMVy9epWtW7dabq9ZsyYHDhwgMjJSxZc8tJ9miri6unL+/Hk6d+5MUlISAMuWLWP48OEMGzaMRYsWWTmpPCkqV67MgAED2LFjB1FRUdSoUYOEhARL8Xry5Elq1aql4ksem9zcXK5fv05JSQl2dnYYDAYcHR3p2LEj27dvR58xyuNgMpl45513qF69OmlpaRw9ehRbW1sGDBiAra0t06dP54MPPrCcXKYPoqQ0mzNnDgaDwVJ8AXTo0IGUlBRKSkqIjIykuLgYBwcHgoKCrJhUSrNp06Zx/fp1Pv74YwC2bdvG2bNnOXHiBI6Ojnh5eeHl5aWZh08wbXssp8aOHYurqyvvvvsuAF988QVHjhzB3d0dFxcXmjRpwv79+3n66ad1pKs8FLPZzPjx4/H39yc6Opp+/foRGBjI2bNn+fvf/46DgwPDhg1j165dNG/enEqVKun7Sh4Lk8nE9u3bKSoqonr16ri6ulK3bl2ys7MpKiqiefPmlsGlPx3uIfKo3b59GwcHBzw8PDh79ix79+6lY8eOlk+Xt2zZwl//+le6deumlV/yyEVHR1OnTh3eeecdnnvuOXx8fEhLS+PatWsMGjSIAwcOcODAAbp06WLtqCK/KyYmhtOnTzN//nwAEhISOHXqFI0aNSI7O5szZ87QvXt3y3ur/m0pv6agoID79+9ToUIFzGYzGzZs4OTJkwQGBnLlyhXi4uK4du0aoaGhmvH1BNPKr3LKzc0Ns9mMwWBgwYIFnDhxgmbNmhEfH8/du3fx9PTk008/1ckW8tAOHDiAh4cHo0ePBmDy5Mnk5+dz5MgRwsPDyc3Nxc7Ojv/+7/+2clIp7xITE/n444/x9fUlNDSUtm3b0qpVK4YOHUpiYiJTp05l4sSJ+mRPHguTycS4ceMsq2n8/f3p06cPW7ZsYcyYMURFRXHlyhU2bNjAzJkzdaqjPHKZmZnY2try5ptvWq4FBATQpEkTEhISeO2113j//ffJycmxYkqRf664uBiDwUBYWBhZWVns27ePbdu28eGHHwLQtWtXVqxYwfnz56lXr56KL/lNLi4uREREcPDgQZYtW8bdu3dJSEiw3D5y5EhsbW01K+4Jp5Vf5VTHjh3Zv38/ixYtoqCggC+//JLw8HC6d+/Oyy+/TMuWLfWXX/6QwsJCli9fztmzZ9m2bRtpaWnMmDEDNzc30tPTCQkJoUWLFlplI4+dr68v+fn5jBkzBoPBwLp161i7dq3l1J6GDRtSu3ZtlQ7yyJlMJqZMmUKNGjV47733qFq1KteuXWPPnj2MGDGC69evk5aWRlZWFm+99RYBAQHWjizliNls5u7du9jZ2bFr1y6effZZAAwGA3Z2dtSsWZNt27bRoUMHXFxc9AGnlGrz5s2jdu3aNGzYkAsXLpCYmMjBgweZP38+1apVw2Aw4ODgQK9evfDy8lLxJb9gMpmYNWsWZrMZV1dXPDw88PX1xcHBwTL+wt/fH4AKFSpoxZeo/CovzGYzs2bNwtvbm8LCQtzc3OjQoQPp6ekUFBTQtm1bbGxssLe3x8bGhooVK+qHiPwhVatWpVatWhQWFhIaGkp0dDSVKlXi+vXrGI1GhgwZorJBHhuz2Ux0dDRXrlwhLCyMxMRE8vPzadasGSkpKQQHB5ORkcGWLVt44403qFq1qrUjSzkUFRVF3bp1eeeddwDw8vIiKCiIy5cv4+rqSr9+/WjTpg1t27bFw8PDymmlvPnyyy9ZunQpUVFRfPPNN1y9epXWrVtbtoNt376dM2fOEBkZiYODg5XTivy2mJgYbty4Qb9+/XB3d8fX15eMjAxq1qxJSEgIbm5ulu/rfxxULvKP0tLSmDt3rmXnibu7O0ajkXbt2pGTk0NKSgoFBQUEBgZaO6qUEiq/yonk5GQ+++wz7OzsSE5OJjU1lSZNmtC2bVsuXbrEmjVrePrppy3lhIov+Vf4+fkRGhqKk5MT9+7d4/Dhw6xevZphw4ZRrVo1a8eTciwnJ4e5c+eSmpqKra0tUVFRJCQkkJiYyKhRo4iKiqJ169b06tWLypUrWzuulEP5+fmcPn2a+/fvExERgY2NDSaTiQoVKpCSksLt27ctx6mDfs7Ko/fUU09x8OBBAgIC6NmzJ4sXL+bixYvY29tz5MgR1qxZw7Rp06hevbq1o4r8pk8++YTc3FxmzZoFwOHDh/H29iYwMJDU1FROnz5NpUqV8PLysnJSKe1sbGw4c+YMUVFRvPDCCyQkJLBgwQKMRiM5OTkEBwfTunVrrfgSC5Vf5YSfnx8XL16kevXqDBs2jOnTp7Nv3z6OHDlC3759uXDhAmFhYVoCL/82g8HA9u3bWbZsGZcuXWLixIk6eUceOycnJ3x8fLC3tycvL48jR45QVFRE+/btiYyMxGw2Y2dnp8Hi8siZzWbWrFlDcXExvXv35tKlS3z11Vd06tQJJycnbGxsuHHjBoWFhTRv3lwn68ljYTKZMBqNpKamcvv2bcLCwujSpQvJycncuXOHW7duMXr0aG21lVItLi6O9evXs3z5cgBWrVrFpk2b6Ny5M97e3lSvXp3z58/TtGlTqlSpYuW0UloZjUaMRiMVKlTAaDSyYcMGfH19+f777xkxYgSZmZncuXOHHj16qESVn1H5VcYZjUZMJhO2trbY2dlZ9jYfOXKEIUOGcPXqVY4fP050dLS2YMgjYW9vT7169Xj22WeJiIigRo0a1o4k5ZTZbObevXuWT+xycnLYtWsXXbp0oaSkhNOnT3P8+HE6d+6sLbfy2MTExBAfH0+1atVwdnYmIiKC1NRU1q5dS48ePUhOTmblypUMHTpUszTlkTKbzcTGxhIUFITZbMbFxQU3Nzfmz59PgwYN8PPzo0OHDoSFhREWFoanp6e1I4v8LpPJRF5eHnl5eZw/f57du3czefJkvL29OXbsGIWFhTz33HP6XpZfZTKZGDNmDP/7v//Lli1baNOmDQEBARw6dIikpCTeeustnnnmGZo3b84zzzyjn8nyCyq/yiiTycTUqVPZs2cP9+/fJyAgABsbG2bMmMGWLVuYPHkyrVq1olOnTrRq1Qo3NzdrR5ZyxM7ODgcHB62ykcdq4MCBrFu3jqysLFq0aEGNGjWwtbXlwoULtGjRgtTUVK5du8Yrr7yiJe3y2Dg7O5OcnExhYSEPHjygSpUqdO3albS0NCZPnszFixeZMWMGderUsXZUKUfMZjOFhYV8++23nDhxgh07duDr60v9+vWxt7fH0dERX19fjEYjtra2WnEopdrVq1e5desWjRs3xsPDg40bNxIfH8/ixYvx9vbm+PHjxMTE0LRpU+rWrWvtuFIKmUwmJk+ejI+PDwMGDODUqVN4enri5+fHhQsXuHHjBiNHjgR+/D1Fs+Lk16j8KoN+Gvxco0YNwsPD+fbbb2natCmBgYE4OzsD8Morr1hO/3FycrJyYhGRP8ZoNJKdnU1GRgZHjhzh1q1bnDt3Djc3NypVqkTHjh0JCgrixRdf1JJ2eeTMZjPHjx/Hzc0Nf39/3NzccHV1paioiNOnT+Pl5UWnTp3Iyclh2LBh2momj9yiRYuIiYlh2bJlhIaGcvfuXb7++mtu3LjB/v37SU9Pp0OHDpbB9iq+pLR6//33SU5OZs2aNWRmZmJnZ0d4eDgFBQXY29tTXFxMbGwso0aNIjw83NpxpRQym828/fbbeHh4EB0djZubG3v37sXf3x9fX1+aNm3Knj178PLywsfHx9pxpRSzt3YA+WNMJhNDhgyhQ4cODB48GICdO3dy584dAgICCAkJYcuWLeTm5mobkIiUWXZ2dgwYMICaNWuyf/9+XF1dCQ4OJjY2ltu3b5OXl8eAAQOsHVPKqWnTprFt2zZat27NpEmT8PLyIj09nddee43NmzezcuVKBg0axNixY1U6yCNlNpu5efMmgwcP5m9/+xvDhw/n888/Z8iQIbRp04bi4mL+9re/kZmZyYMHD3SyrZRqMTExmM1m5syZQ25uLklJSVy5cgU3Nzf69evHwoULOXHiBLGxsYSFhVk7rpRSx44d4+7duwwaNAj4cXZcQUEBrVu3BqCkpISgoCCtwJZ/ysZsNputHUIe3mGV3FUAABZSSURBVN///nc6d+5MXFwcHTt2ZN68eaSmplpOegSYMmUKw4cPp3bt2lZOKyLy78nPz2f37t3s2bOHkSNH4uHhwa5du2jbtq3e4+SxycjIID4+ngcPHnD//n3atm3Lxo0badasGWPHjuWrr76iW7duOuVWHimTycSoUaOoWLEit27dolOnTnz55ZcEBwezcOFCS9FaWFhIQUGB5tlIqbZw4UISExPZunWr5Vp+fj5r1qzh/v37jB07lmPHjmFjY0Pz5s2tmFTKgvXr13P8+HHy8vIoLi5m/vz5ABQXF+Pg4EBJSQn29lrXI79P2x7LCJPJxOrVq2nbti3h4eFMnDiR/fv34+TkxIwZM7C3t7dsc+zUqROVK1e2dmQRkX+bg4MDfn5+lJSUsHTpUho2bEjnzp31HiePnNls5uLFi9jb2+Ph4cGxY8fo1q0bXbt2JScnh7t377J7926Cg4Pp0aOHTk+WR8pkMjFlyhT8/PyYNm0aQUFBlJSU4OnpyZkzZ0hKSuL555/HxsYGe3t7zTmUUi0jI4Pc3FycnJzIzc0lMDAQGxsby8/0xYsX061bN/z9/XVwkvwuk8mEjY0N9evXp7CwkJMnT9K3b1/LbLifFn/Y2tpaM6aUESq/ygCTycTYsWNxdHSkdevWeHt7ExoayuLFi+nbty+NGjWytN3afiEi5Y29vT1+fn44OzsTHBysLd3yWPzwww/Mnj2bmzdv4urqSqNGjZgyZQodO3YkNDSUJk2akJWVRUREhL4H5ZEbNWoUhYWFfPjhhwBUr16dSpUqkZmZSc+ePUlPT+ebb77h+eeft3JSkd93/Phxjh49yosvvkhRURHHjh3j1q1bNGjQAIDU1FROnTpF165ddXCS/CqTycSCBQsICQnB2dkZs9mMjY0NQUFBGI1GUlJSKCwspGbNmpa5hyIPQ+VXKWcymYiOjsbf358xY8YAcPr0aRo3bszTTz/Nhx9+iKOjI02aNFHxJSLlloODA0FBQSod5LHx9PSkTZs25OXlERsbS/369fH39+fkyZM0adIENzc3wsPDcXV1tXZUKWeKi4vJzs7m3r17eHh44OPjg9lsxtXVlatXr3LgwAFmz55NWFiYVhxKqVelShXWrVuHv78/jRs3xmAwcObMGYqKisjPz2fevHkMGDCAoKAga0eVUshkMvHuu+9iNpuJiIgAfjzQo6SkBFtbW+rXr8+tW7c4deoUbdq0Ufklf4jKr1JuwoQJmM1mpk6dCsDHH3/M0aNHad++PT4+PjRt2pS5c+fSs2dPHB0dVYCJSLml9zd53CpWrEi9evVo1qwZq1atIjs7mz179vD888/j4uKibRXyWNjZ2REcHExRUREbNmygSpUqlpmG6enp3Lx5k2eeeYaKFSvqfVBKNbPZjIODA5mZmeTm5tKwYUO8vb0pKSlh586dLFy4kPHjx+tUR/lVP23/rl69OtHR0QDs2rWLunXrYmtra1kB1qhRI5o3b64PROUP01S4UuzevXsUFRXRrl07srKyWLlyJXfu3GHmzJk4ODiQnJxMUFAQCQkJWjYsIiLyiAQHBzNlyhTS0tJIS0sjJydHw8XlsXJ2dqZ79+4AfPPNN3h4eHD37l3WrFnDpEmTVHpJqWc0Gi3zl4KDg/nkk0+oVq0arVu3pl27dtjZ2fHSSy8RGhpq5aRSWg0YMABPT08++ugjAObNm8fVq1fp1KnTLz580ips+VfotMdSyGQyMW7cONzd3Tlx4gSNGjXi5s2bFBUVsWjRIhwcHNi0aRPr169nxowZ+Pj4WDuyiIiIiPybCgsLSUpKYsmSJZhMJubPn4+/v7+1Y4n8ptjYWHr16kVAQMDPTtzbsmULCxcuZPTo0TRu3BgvLy/LY35awSMCP34/PHjwgMOHD/Ppp5+ydOlS9uzZw8mTJ/nkk09wcHDgwIEDVKlShaeeesracaUM08qvUsZsNjN+/Hjq1KnD6NGjAcjKyuKzzz6jTp06mEwmtmzZQmJiIpMnT1bxJSIiIlJOODs707VrV0wmE0899ZSKLyn1HB0dGT16NHFxcfj5+VFcXIyDgwM9evTA1dWVlJQUkpOTqVmzJt26dcPX11fFl1iYTCYmTJhAkyZNGDhwIAaDgZ49e9KwYUNWr14N/FikLl++nM8++8zKaaWs08qvUmb//v0kJyczefJkACZNmkRRUREHDx4kMDCQWrVqkZqaSkxMjOWIVxEREREpP7QyRsqSxYsXs27dOuLi4qhTp46lAIMfVzMWFBSwd+9eunTpgpubm5XTSmlhMpmYNGkSnp6ejB8/3nJ9x44dzJgxg8TERC5dusQXX3zB1KlT9buv/NtUfpUy58+fJzo6msaNG1NUVERGRgaxsbHs2rWLQ4cOERwcTJ8+ffDz87N2VBERERERecJs3bqVChUqWD6YB0hISGDx4sUsXrwYHx8fyxZIFbnya8xmM/3796dz586MGDECgCVLltCqVSsaNWrExo0bmTBhAvXq1WPu3LnUqVPHyomlPNC2x1ImJCSEcePGcebMGQICAujatSsA7u7u1KtXjzfeeEPD7UVERERE5E+XkpLCRx99REFBAU8//TR5eXlUqVLFsl339ddfJy4uznJiqYov+TU2NjaYTCYyMjIAiIuL4+TJk7z66qsA9OrViwoVKuDn56fiSx4ZrfwqpcxmMxkZGRiNRs6dO8fq1auZNm0aQUFB1o4mIiIiIiJPmC+//JKgoCAqV67M7NmzGT9+PE5OTty8eZOrV69y8eJF0tPTGTNmjE51lN+0du1a2rdvj5eXF0OGDOHy5cu0adOGWbNmAfxs26zIo6SVX6WUwWDg4MGD7N69G3t7exVfIiIiIiJiNdWqVWPGjBmsWrWKl19+mfnz5zNy5Eg6dOhguU9BQQEuLi7WCymlWnZ2Nn/961+5fv06AwYMYOnSpQwdOpSCggLLfWxtba2YUMozrfwqxQwGA0ajEaPRSKVKlawdR0REREREnjCXL1+mdu3aODo6smzZMgwGA6+//jpr164lKSmJ119/nZYtW2qLo/wuk8mEra0tWVlZ/OUvf6FChQr8x3/8B9WrV2fo0KHAj4cniDwuqlVLMUdHR1xcXFR8iYiIiIjIn27OnDkMHDiQ999/n+zsbJo3b05+fj7Z2dn079+fdu3asWDBArKzs60dVUo5W1tbjEYjHh4evPHGG+Tl5fH1119z584dFi9ebNlCK/K4aOWXiIiIiIiI/EJqaiorV64kKysLGxsbOnTowObNmy2HdAFkZmZSo0YNKyeV0mr+/Pk0adKEdu3aAWA0GrGzsyMrK4u4uDgAhg8fTtWqVa0ZU54AWvklIiIiIiIiFpmZmeTn5+Pr64u3tzfDhw9n+PDh2NjY4OHhwfbt29m5cycA3t7eVk4rpZXBYKBq1aps2LCB77//HvjxpMeSkhI8PDwYNGgQjo6OmvMlfwq76dOnT7d2CBEREREREbG+pKQkYmNjyc7OxtPTkxo1avDBBx/wwgsvEBoaSlBQEJcvX6ZLly5UrVpVs77kN9nZ2REUFERxcTGbN2+mcuXK+Pr6YmtrS3x8POfPn2fYsGEa8yN/Cm17FBEREREREYuzZ89y7tw54uPjmTx5MufOnePWrVuMGDECJycnCgsLcXZ2tnZMKSMKCwvZvn07+/bt44033uDGjRv8z//8Dx9++CH16tWzdjx5Qqj8EhERERERecLFxMRgMBg4c+YMAwYMoEGDBhQUFLBgwQL8/f05ceIECxcuxM3NzdpRpQwqLCwkKSmJxYsXU1BQwOeff05AQIC1Y8kTROWXiIiIiIjIE2zWrFnk5uYyceJEDh06xNWrV3nw4AGvv/46BQUFnD9/ntmzZzN79myaNWtm7bhSRv20Aqxx48YqvuRPp/JLRERERETkCZWUlMSOHTv49NNPLdeuXLnCunXrCA0NpWPHjsD/O6VP5N9hNps1J06sQscqiIiIiIiIPKEcHBwICQkBoKCgAIA6depQvXp1NmzYAPxYWKj4kkdBxZdYi8ovERERERGRJ8ypU6coKCjAZDKRlJREcXExLi4uFBYWAuDv709wcDCgwkJEyj6VXyIiIiIiIk+QY8eOsXr1ag4cOEDnzp0JDw/nvffeo6ioCGdnZ86fP8/nn39OkyZNrB1VROSR0MwvERERERGRJ8y6des4f/48LVq0ICAggC1btnDo0CFatmzJmTNnGDp0KO3bt7d2TBGRR0Lll4iIiIiIyBPg7t27uLi4UKFCBQC2b9/O2bNnqV+/PpGRkZw6dQo3NzeMRqNO4xORcsXe2gFERERERETk8Vq/fj0TJ04kICCAzp07U1JSQqdOncjOzubgwYPY2trSoUMHnJ2drR1VROSRU/klIiIiIiJSjqWkpNC0aVMGDx7M2bNn8fHx4cGDBxw4cIALFy6QlpbG6dOnCQ0NVfklIuWStj2KiIiIiIiUU5s2bWLr1q3ExcWRnp7Ozp07SUtLY/z48VSqVImcnBzs7e25du0a9erVs3ZcEZHHQqc9ioiIiIiIlFOVK1emWrVqANSqVYuIiAg8PT2JiYnhxo0buLq64uLiQnBwsJWTiog8Piq/REREREREypnU1FQAnJycqF69OgA2NjbUrl2bgQMH4uHhQWxsLAaDwXKbiEh5pZlfIiIiIiIi5ciFCxd46aWXWLhwIXZ2dsTHx2Nvb4+9vT3e3t7UqVOHFi1aEBAQgKOjo7Xjiog8dlr5JSIiIiIiUk4kJSVRs2ZN5s2bx9SpU0lKSsLX15eAgADS09PZunUrsbGxuLq64uPjY+24IiJ/Cg28FxERERERKQeuX7/OV199hYODA8OGDeP06dOMHz+eqKgoRo0ahclkwtbWlnv37uHu7m7tuCIifxqt/BIRERERESkHfHx8iIyMxMHBgUWLFhESEkJMTAwbN27ku+++w9b2x1//qlSpYuWkIiJ/Lq38EhERERERKcOOHj2Kp6cndevWBSA9PZ0dO3aQl5fHiBEjOHDgADNnziQxMVHFl4g8kVR+iYiIiIiIlFHHjx/nlVdewc7Ojv79+5OWlkbnzp05d+4cDx48wMvLi4kTJ5KdnY2Hh4e144qIWIW2PYqIiIiIiJRBhw8fxsfHh88//5z69evToEED3nzzTSpVqoTBYCA3N5fk5GTS0tJUfInIE00rv0RERERERMqYK1eusHDhQho0aEDHjh354YcfiIuLIzo6mubNm1uG29+8eRMvLy9rxxURsSq76dOnT7d2CBEREREREXl47u7uVKlShZMnT5KVlUXLli2pVasWcXFxeHl54efnB0CFChWwsbGxcloREeuyt3YAEREREREReTiXL18mICAAgNDQUMxmM7t372b//v307duXvLw85s6dS6NGjahcubLlhEcRkSeZ3glFRERERETKgOPHjzNz5ky+//57y7WWLVvSvn17Nm/ezJUrV+jduzcLFiygSpUqWvElIvJ/qfwSEREREREpA+rXr0+vXr1Yu3Yt3333HQBms5mwsDAaN25MamoqgGZ8iYj8f7TtUUREREREpAxwcXGhe/fuAMTHxwMQFhbGqVOnSElJoUePHtaMJyJSaum0RxERERERkTKksLCQXbt28Ze//IX27duTnJxMdHQ04eHh1o4mIlIqqfwSEREREREpgy5cuEBmZiaenp40btzY2nFEREotlV8iIiIiIiIiIlJuaeC9iIiIiIiIiIiUWyq/RERERERERESk3FL5JSIiIiIiIiIi5ZbKLxERERERERERKbdUfomIiIiIiIiISLllb+0AIiIiIn9ESkoKr776KrGxsURGRlqu9+zZk4YNGzJ79mxu3rxJ165dmT17Ns8++6zlcW+//TaBgYEA5OXlUatWLebMmYOjoyNt27bl0KFDDBo0CJPJRGpqKh4eHlSpUoU2bdowcuRIAN577z1OnjxJYmKi5bkHDhzI9OnTCQgI+Kf5s7KyeO+998jPz8dsNuPj48OUKVPYvn073377LUVFRfzwww80bNgQgDlz5uDl5fWrr2n27NmcPXuW27dvU1hYSO3atXF3d2fChAmMHTuWtWvXWp539erV3Llzh9GjR7N//36WLl2Kra0tRqORfv360atXr3/zT0ZERESkdFL5JSIiImVO3bp12bx5s6X8unDhAgUFBZbbExISePXVV1m1apWlKAJo3bo1sbGxlv9+55132LNnD927d7dcW758OQDvvvsukZGRtGvXznJbQUEBx48fJzg4mJSUFFq1avWHsy9evJg2bdoQFRUFwMyZM1mzZg2DBw+md+/eZGRkMHbsWFauXPmzx/3aa3r33Xctt6WmpjJu3DgAMjIyfjfD9OnT2bBhA25ubuTm5vL888/Ttm1bPD09//DrERERESnttO1RREREypyQkBAyMzPJzs4GYOPGjfTs2RMAs9nMhg0b+M///E+Ki4u5ePHir34Ng8HArVu3qFy58kM/77Zt2wgLC+OFF17g66+//pey16xZkx07dnD48GEKCwuJjo5m4MCBv/uYh31ND8vT05MVK1Zw6dIlKlasyLZt21R8iYiISLml8ktERETKpIiICHbu3InZbObUqVM0a9YMgO+++47g4GA8PDzo27fvz0qq77//noEDBxIZGUmfPn2IiIggLCzsoZ8zPj6eF198kTZt2nDu3Dlu3rz5h3NHRUXx3HPPsWTJEp555hnefPNNbt269buP+b3X9EfY2NgAEBcXR0FBAWPHjiU8PJwvvvgCs9n8L31NERERkdJO5ZeIiIiUST179mTr1q0cPXqU0NBQy/W1a9eSkZHBa6+9xqZNm9i2bRs5OTnAj9seV65cyddff42DgwO1atV66Oe7fPkyly5dYvbs2QwbNgwbGxtWr179h3OnpKTQu3dvlixZwqFDh2jcuDEfffTR7z7m917Tr3F2dsZgMPzsWn5+Pk5OTjx48IDr168zfvx4Nm3aREJCAgcPHmTv3r1/+LWIiIiIlAUqv0RERKRMql27Nvn5+axcudIyrP3evXucPHmS+Ph4lixZwooVK+jatSvr16//2WPd3d355JNPmDJlyj9ddfWT+Ph4/uu//oslS5awZMkSli9fzrfffvuLkumfWb58OQkJCQA4OjoSFBSEo6Pjb94/KyvroV7TP/L09CQvL48ffvgBAKPRyOHDh2ncuDEGg4G3336bzMxMAKpVq0bVqlV/N4OIiIhIWabyS0RERMqsyMhIMjMzqVOnDgBHjx6la9eu2NnZWe7Tv39/Vq1a9YttfYGBgQwcOJAZM2b80+cxGAxs2bLlZ8PzfXx8CAkJYceOHQCMGTOGPn360KdPHz7++OPf/Frvv/8++/bto3fv3rz88susX7+eCRMm/Ob9N2zY8NCv6Sc2NjbMmjWLSZMm8fLLL9O/f39atGhB69atqVatGlOmTOHNN9/kpZdeon///jRo0IDw8PB/+v9BREREpCyyMWvAg4iIiIiIiIiIlFP21g4gIiIiUt5cv36d6OjoX1xv2bIlb731lhUSiYiIiDy5tPJLRERERERERETKLc38EhERERERERGRckvll4iIiIiIiIiIlFsqv0REREREREREpNxS+SUiIiIiIiIiIuWWyi8RERERERERESm3/g/HnECCdoL34wAAAABJRU5ErkJggg==\n",
3232
      "text/plain": [
3233
       "<Figure size 1440x576 with 2 Axes>"
3234
      ]
3235
     },
3236
     "metadata": {},
3237
     "output_type": "display_data"
3238
    }
3239
   ],
3240
   "source": [
3241
    "plt.figure(figsize=(20,8))\n",
3242
    "ax=sns.countplot(data=saps, x='MARITAL_STATUS', hue='hdeath')\n",
3243
    "ncount = len(saps)\n",
3244
    "ax2=ax.twinx()\n",
3245
    "ax2.yaxis.tick_left()\n",
3246
    "ax.yaxis.tick_right()\n",
3247
    "ax.yaxis.set_label_position('right')\n",
3248
    "ax2.yaxis.set_label_position('left')\n",
3249
    "ax2.set_ylabel('Frequency [%]')\n",
3250
    "\n",
3251
    "ax.set_xticklabels(ax.get_xticklabels(),rotation=45)\n",
3252
    "\n",
3253
    "for p in ax.patches:\n",
3254
    "    x=p.get_bbox().get_points()[:,0]\n",
3255
    "    y=p.get_bbox().get_points()[1,1]\n",
3256
    "    ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y), \n",
3257
    "            ha='center', va='bottom') # set the alignment of the text\n",
3258
    "\n",
3259
    "# Use a LinearLocator to ensure the correct number of ticks\n",
3260
    "ax.yaxis.set_major_locator(ticker.LinearLocator(11))\n",
3261
    "\n",
3262
    "# Fix the frequency range to 0-100\n",
3263
    "ax2.set_ylim(0,100)\n",
3264
    "ax.set_ylim(0,ncount)\n",
3265
    "ax.set_title('ICU Patients Marital Status and ICU mortality')\n",
3266
    "# And use a MultipleLocator to ensure a tick spacing of 20\n",
3267
    "ax2.yaxis.set_major_locator(ticker.MultipleLocator(20))\n",
3268
    "\n",
3269
    "# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars\n",
3270
    "ax2.grid(None)\n"
3271
   ]
3272
  },
3273
  {
3274
   "cell_type": "code",
3275
   "execution_count": 79,
3276
   "metadata": {},
3277
   "outputs": [
3278
    {
3279
     "data": {
3280
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA98AAAJICAYAAAB451f/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVRV9f7/8dfhIKAgKplTjjgU6hUVr2YOpeVUmUbKoKFeB9LMcp4StBDR65jzcLWSUEgls0kz5yk0U1Iv5rVMwznRGFTG8/vDn+crCWHGPgg+H2ux1tnD57Pfewtr+Tqfz97bZLFYLAIAAAAAAIaxK+gCAAAAAAAo6gjfAAAAAAAYjPANAAAAAIDBCN8AAAAAABiM8A0AAAAAgMEI3wAAAAAAGIzwDQCQJLVt21ZHjhyxLm/btk0BAQHq0qWLXnjhBQ0dOlTnz5+XJMXHx6tRo0Z39bF8+XKNHTv2rvXx8fHy8PBQly5drD8vvfSS1q5dm2dd27dv13vvvSdJ2rJliyZPnny/p6ikpCT16tUrx23R0dHy8vLKVmOXLl00evRoSdIPP/yg4OBgSVJMTIxefPHFv3z8Ll26KDExMdftd57fnedtSy+++KJiYmLuWh8dHa3XXnvNupyYmKjJkyerc+fO6tKli7p27ao1a9ZYt48dO1bLly+/q59GjRopPj7emOL/YMKECTp69Oif7nPn7/Lq1au1dOlSSdKaNWsUERFheI0AgIeHfUEXAAB48Hz22WdatGiRFi1apGrVqslisWjp0qXq1auXvvjii/vq08nJSZ9++ql1+eLFi3rxxRdVv359PfHEE7m2O3LkiH7//XdJ0rPPPqtnn332vo4vSb///nu2Lxj+qEmTJlqyZEmO206ePKmLFy/e97ElZTv/nNx5fnee94MmNTVVr776qjp37qxPPvlE9vb2Onv2rPr06SNJ6t69e8EW+P/t3btXvr6+97y/v7+/9fPBgwdVu3ZtI8oCADykCN8AgLvMnj1bISEhqlatmiTJZDIpMDBQFStWVFpaWr4co3z58qpWrZp++eUXVa1aVZMmTdLp06d17do1OTs7a8aMGUpKSlJkZKQyMzNVsmRJVatWTZs2bdKSJUuUlJSk0NBQnThxQunp6WrevLlGjx4te3t7/eMf/1BgYKD27NmjS5cuqX///urRo4fGjRunmzdvqkuXLoqOjpbZbL6nWs+fP6+5c+cqKSlJ48aNU9euXXX9+nUNGzZMP//8s1JTUzV58mQ1adJEY8eOlYuLi3788UdduHBBjz/+uKZNmyZnZ2c9/vjj2rdvn9zc3LRkyRJrcK1WrZqmTp2qzZs3a9OmTXr99deznfcPP/ygTp06ycfHR5K0cOFCXbt2TePHj89W59q1axUVFaX09HT9/vvvGjBggHr06KHo6Ght3rxZdnZ2On36tJycnDRt2jTVrFlTJ0+e1Pjx43Xjxg25u7vr+vXreV6PL7/8UiVKlNCAAQOs6x577DHNmTNH6enpf+G34P8EBASoXr16Onz4sBISEuTj46PffvtN+/fv140bNzRnzhw9/vjjunDhgiZNmqSzZ8/KYrGoa9eu6t+/v+Lj49WzZ0/VrFlTZ8+elZeXly5duqSRI0fq3//+tywWi6ZPn660tDRdvnxZTz31lKZMmZKthnnz5unq1atq3ry5tm7dqj179sjJyUkrV65UcHCwWrRoIUl6++23VadOHfXu3fu+zhUA8HBi2jkAIJurV6/q7Nmzaty4cbb1JpNJL730klxcXPLlOIcOHdKZM2fk6empnTt3ytXVVVFRUdq0aZPq16+viIgIeXp6ys/PT88//7yGDRuWrf2UKVNUr149RUdHa/369bp69aref/99SVJaWprKlCmjyMhIzZ07V2FhYUpNTVVYWJh1BD6n4P3dd9/dNe183bp1qlixot588001adJEYWFhkqQLFy6oT58++vTTT+Xn56d58+ZZ+zl69KiWL1+uL7/8UmfPntXGjRuzHWfLli2Kjo5WVFSUPv/8c1WuXFkfffSRdfsfz7tnz576+OOPJUlZWVlau3at/Pz8svWZkpKiNWvWaOnSpVq/fr1mz56t6dOnW7cfOHBAQUFB+vzzz+Xp6WmdXj1y5Eh1795dn332mXr16qVz587l+W939OjRu34/JKlevXpq2LBhnu1zc/bsWUVGRmr69OmaPn26mjZtqujoaLVq1cp6fUaOHKlmzZrps88+0+rVq7VhwwbrbIwLFy7o9ddf16ZNmzRlyhSVK1dOM2bMkKenp1auXKk333xTa9as0RdffKGtW7fmOiW9Xbt2atu2rfr06aOePXvK39/fev2Tk5O1detWvfzyy/d9ngCAhxMj3wCAbOzsbn0vm5WVlec+f5SVlZXrttsjzpKUmZmpMmXKaPr06apYsaIqVqyoKlWqKDw8XKdPn9b+/ftzvKf8Ttu3b9eRI0es943fvHkz2/bb07fr1auntLS0exrR/bNp539UpUoVeXp6SpKeeOIJrVu3zrqtVatWcnBwkCTVqVPnrunj+/btU8eOHVWqVClJ0rhx4yTduq86J23atFFoaKiOHz+uixcvqnLlynJ3d8+2j7OzsxYvXqwdO3bol19+0fHjx7Odc7169VShQgVJUt26dbV582ZdvXpVP/74o7p27SpJ8vLyuqep1iaTSRaLJc99cpKVlZXrjIN27dpJunVtpVvXUZKqVq2q/fv36/r16/r++++1YsUKSVLJkiXl7e2tnTt3ytPTU/b29rmG/6lTp2rnzp1avHixdbbC9evXVbp06TzP19vbWwsWLFBCQoI2btyoZ555Rq6urnm2AwDgToRvAEA2pUqVUvXq1RUbG6unnnoq27a33npLgwYNUpUqVXTz5k2lpqbK0dHRuv3KlSu5hpk/3vN9p1WrVunjjz9Wz5491blzZ5UuXTrPh3JlZWXpvffeU82aNSXdegDYnYHvdl231+UVFv+qYsWKWT//MYw6OTnluk2SzGZztloTExP/9EFsZrNZvr6+Wrt2rS5dunTXqLd0a9TX19dXPj4+8vLyUseOHbVt27Z7qunOz/b2ef/XoGHDhjk+jGzLli367rvvNGbMGJUpU0bXrl3Ltj05OVmpqam5BtfbX1jcduc1lm79m//xWmZlZSkjI8PaPrf6X331VT3++ONq1aqVOnXqpNjY2Hv+nXB1dVXHjh21YcMGffbZZ5o4ceI9tQMA4E5MOwcA3OWNN95QaGioTp8+LenWSPXChQt1/Phxubu7y9nZWV5eXvrwww+tbS5evKiNGzfq6aef/svH2717t15++WV1795dNWrU0NatW5WZmSnpVvC8Ha7u1LJlS33wwQeyWCxKS0vToEGDsk3dzom9vb0yMzPvK4jnVsf9eOqpp7R582YlJydLunWv8QcffPCnx+vevbu++eYbHTt2zDpCfKejR4/Kzc1Nr7/+ulq2bGkN3revY07KlCmjevXqWZ9SfuzYMZ04cSLP+tu3b6/k5GQtW7bM2v+vv/6qqVOnWr8Mad26tb766ivrQ+osFos+/PBD/fOf/5Szs3Oex8iJi4uLPD09rcE/KSlJ69evv+tLottuX8PExEQdOXJEI0eOVPv27XXhwgWdOXPmT2d3/PH69+zZUytXrpTFYlGDBg3uq34AwMONkW8AwF06d+4si8Wi4cOHKyMjQ6mpqapXr54+/PBD6+jkjBkzNGXKFL3wwguys7OT2WzWm2++qWbNmv3l4/Xt21fBwcHWKeQNGza0hsAnn3xSI0eOVEhIiOrVq2dt8/bbbys0NFSdO3dWenq6nnrqKfXv3/9Pj/Poo4+qQYMGeuGFFxQREaEyZcpk2377nu87mc1mRUdHq2HDhlqwYIHeeOMNBQQE/OVzvNPTTz+tkydPWp+uXatWLYWEhOjrr7+27nPneQcFBemRRx5R/fr1VbNmzbtGhCWpRYsWWrt2rTp27CiTyaSmTZvKzc3N+gVKbmbNmqVx48YpMjJSVatWvWs6e04cHBz0/vvva/r06ercubPMZrPMZrMGDRokb29va/0DBgxQYGCgpFu3BdStW1czZ8685+uUkxkzZujdd99VdHS00tLS1LlzZ3l7e+vs2bN37duuXTuNGjVKkyZNUmBgoF5++WWVKFFC5cuXV+PGjXX69GnrFPc/at26taZOnSpJeu211/TEE0+oVKlSOc46AADgXpgs+T0PDwAA5LuEhAR169ZNERERqlixYkGX89A5c+aMAgICtHHjRhUvXrygywEAFEJMOwcA4AH38ccf6/nnn1e/fv0I3gXgvffek7+/v4KCggjeAID7xsg3AAAAAAAGM2zkOzY21npP3OnTp+Xv768ePXpo4sSJ1geczJ8/X926dZOfn59++OEHo0oBAAAAABQRS5Yska+vr7y9va0PDZWkKVOmaPXq1dn2TUhIUPv27ZWamppt/ebNmzVixAjrckBAgPWnRYsWmjFjRr7XbcgD15YtW6YNGzZYp2aFhYVp6NChatasmYKDg7VlyxZVqlRJ+/fv15o1a3T+/HkNGTIk2ztSAQAAAAC4U0xMjA4dOqTVq1frxo0bWrFihRISEjR69Gj98ssv6tevn3XfXbt2aebMmfrtt9+y9TF58mTt3r1bHh4e1nXh4eGSbr294/arVfObISPfVatW1bx586zLx44dU9OmTSXdenro3r17dfDgQbVs2VImk0mVKlVSZmamEhISjCgHAAAAAFAE7N69W3Xq1NHgwYM1cOBAPfPMM0pJSdGQIUPuemOJnZ2d3n//fZUuXTrb+saNG2vSpEk59h8aGqpRo0bd92sx/4whI98dOnRQfHy8ddlischkMkmSnJ2dlZSUpOTk5GwX4fZ6Nze3u/qLiopSVFSUJOnHH39UhQoVjCgbAAAAAFDA4uPjs71e1NfXV76+vpKkq1ev6ty5c1q8eLHi4+M1aNAgbdy4UVWqVNHOnTuz9dOiRYsc+3/++ecVExNz1/rjx48rJSVFzZs3z8ez+T82ec+3nd3/DbCnpKTI1dVVLi4uSklJyba+ZMmSOba/82J7enpqy5YtxhYMAAAAACgQnp6eio6OznFb6dKl5e7uLgcHB7m7u8vR0VEJCQl65JFH/vZxN2zYoO7du//tfnJjk1eN1a1b1/rNws6dO9WkSRM1btxYu3fvVlZWls6dO6esrKwcR70BAAAAAJAkLy8v7dq1SxaLRRcvXtSNGzfumlZ+v7799lu1atUqX/rKiU1GvseMGaOgoCDNmjVL7u7u6tChg8xms5o0aSJfX19lZWUpODjYFqUAAAAAAAqpNm3a6MCBA+rWrZssFouCg4NlNpvzpe/Lly+rTJky+dJXTgrde749PT0VGxtb0GUAAAAAAAxQVDOfTUa+AQAAAAC2k56ervj4eN28ebOgS8mVk5OTKleurGLFihV0KTZB+AYAAACAIiY+Pl4lS5ZU9erVrW+eepBYLBZduXJF8fHxqlGjRkGXYxM2eeAaAAAAAMB2bt68qUceeeSBDN6SZDKZ9MgjjzzQI/P5jfANAAAAAEXQgxq8b3vQ68tvhG8AAAAAeEhER0drxowZuW6fMWNGru/Y/jNRUVFKT09XTEyMhg0b9ndKLLII3wAAAACAv2XJkiXKysoq6DIeaDxwDQAAAAAeIrGxserbt68SEhLk7++v0qVLa9GiRXJzc1N6errc3d0lSTNnztSBAwdksVjUp08fderUSfv379f8+fMl3bqvfNq0afruu+90+fJlDRs2TL1799bp06fVv39/JSQkqE2bNhoyZEhBnu4Dg/ANAAAAAA8Re3t7LV++XGfPnlVgYKDS0tK0Zs0alS5dWoGBgZKkHTt2KD4+XpGRkUpNTZWPj49atGih//3vf5o+fbrKly+vxYsXa+PGjRo0aJAWLVqk2bNn6/Dhw0pNTdXChQuVmZmpZ555hvD9/xG+AQAAAOAhUrduXZlMJj366KOKj4+Xu7u7ypQpI0lq1KiRJOnEiRM6duyYAgICJEkZGRk6d+6cypcvr9DQUJUoUUIXL15U48aN7+q/du3acnBwkHQr6OMWrgQAAAAAPETufMp46dKllZSUpISEBLm5uenIkSOqUKGC3N3d1axZM4WEhCgrK0sLFy5U5cqV1adPH33zzTdycXHRmDFjZLFYrH3evuf7YXuK+b0ifAMAAADAQ8re3l5hYWHq16+fSpUqZR2pbtu2rfbv368ePXro+vXreu655+Ti4qIuXbrIx8dHrq6uKlu2rC5duiRJatKkiQIDAzV48OCCPJ0Hmsly+6uKQsLT01OxsbEFXQYAAAAAPLDi4uLk4eFR0GXkKac6i2rm41VjAAAAAAAYjPANAAAAAIDBCN8AAAAAABiM8A0AAAAAgMEI3wAAAAAAGIzwDQAAAACAwQjfAAAAAFDEpaZn2rS/rKwsBQcHy9fXVwEBATp9+nS+Hr8wsi/oAgAAAAAAxnIsZpbXqJX51t/B6b3+dPs333yjtLQ0RUVF6fDhw5o6daoWLVqUb8cvjBj5BgAAAADkq4MHD6pVq1aSpIYNG+ro0aMFXFHBI3wDAAAAAPJVcnKyXFxcrMtms1kZGRkFWFHBI3wDAAAAAPKVi4uLUlJSrMtZWVmyt3+473omfAMAAAAA8lXjxo21c+dOSdLhw4dVp06dAq6o4D3cXz0AAAAAAPJdu3bttGfPHvn5+clisWjKlCkFXVKBI3wDAAAAQBGXmp6Z5xPK/2p/jsXMuW63s7PTu+++m2/HKwqYdg4AAAAARdyfBeUHob+HAeEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAKCIs2SkFkh/sbGxCggIyNdjF1a85xsAAAAAijiTvaPOvPuPfOuvavCRPPdZtmyZNmzYoOLFi+fbcQszRr4BAAAAAPmuatWqmjdvXkGX8cBg5BsAAAAAkO86dOig+Pj4fO+3a9euKlmypCSpcuXKatOmjf7973+rYsWKkqQhQ4aoSZMmmjRpkn788Uc5ODho8uTJqlatmg4fPqzQ0FCZzWa1bNlSb7zxRo59hoWF5XvdhG8AAAAAQKGQmnrrXvPw8HDrutmzZ2vUqFHq0KGDdd3XX3+ttLQ0RUVF6fDhw5o6daoWLVqkiRMnat68eapSpYoCAwN17Ngx1apV664+jUD4BgAAAAAUCsePH9eNGzfUt29fZWRkaPjw4Tp27Jji4uL04YcfqkGDBho5cqQOHjyoVq1aSZIaNmyoo0ePKjk5WWlpaapataokqWXLltq3b58yMjLu6rNhw4b5XjvhGwAAAADwwMjMzJS3t7d12dfXV76+vpIkJycn9evXT927d9cvv/yiAQMGyNfXVx07dlTlypU1ceJERUZGKjk5WS4uLtY+zGbzXeucnZ3166+/5tjnxo0bZW+fv3GZ8A0AAAAARZwlI/WenlD+V/oz2TvmuV/lypX18ccf/6W+zWazoqOjc9xWo0YNVatWTSaTSTVq1FDp0qX14osvWu/3fvbZZ7Vp0yaVLFlSKSkp1nZZWVlycXHJti4lJUWurq459nn58mVrn/mFp50DAAAAQBF3L0G5IPu7V2vXrtXUqVMlSRcvXlRSUpK6d++uCxcuSJL27dunevXqqXHjxtq5c6ck6fDhw6pTp45cXFxUrFgxnTlzRhaLRbt371aTJk3u6jM5OVmPPvpovtfOyDcAAAAAoFDo1q2bxo0bJ39/f5lMJoWFhen69et644035OTkpJo1a8rHx0dms1l79uyRn5+fLBaLpkyZIkl65513NHLkSGVmZqply5by9PSUh4dHtj6nTJmS71POJclksVgs+d6rgTw9PRUbG1vQZQAAAADAAysuLk4eHh4FXUaecqqzqGY+pp0DAAAAQBH0oI+zPuj15TfCNwAAAAAUMU5OTrpy5coDG3AtFouuXLkiJyengi7FZrjnGwAAAACKmMqVKys+Pl6XL18u6FJy5eTkpMqVKxd0GTZD+AYAAACAIqZYsWKqUaNGQZeBOzDtHAAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwmL2tDpSenq6xY8fq7NmzsrOzU0hIiOzt7TV27FiZTCbVrl1bEydOlJ0d3wcAAAAAAHJ35coVeXt7a8WKFUpLS9PEiRNlNptVvXp1hYaGys7OTsuXL9cXX3whk8mkgQMHql27drp27ZpGjRql5ORklS5dWpMnT9Yjjzxi7TcoKEilSpXSyJEj871mmyXdHTt2KCMjQ5GRkRo8eLDmzJmjsLAwDR06VKtWrZLFYtGWLVtsVQ4AAAAAoBBKT09XcHCwnJycJEnz58/X4MGDtXr1aqWlpWn79u1KTExUeHi4IiMjtWLFCk2ZMkWStGTJEnl5eWn16tUKCAjQrFmzrP1GRkbqxIkThtVts/Bdo0YNZWZmKisrS8nJybK3t9exY8fUtGlTSVLr1q21d+9eW5UDAAAAACiEpk2bJj8/P5UrV06S5OHhoWvXrslisSglJUX29vYqXry4KlWqpBs3bujGjRsymUySpJMnT6p169aSpMaNG+vgwYOSpEOHDik2Nla+vr6G1W2zaeclSpTQ2bNn1alTJ129elWLFy/WgQMHrBfB2dlZSUlJObaNiopSVFSUJMnBwUFxcXG2KhsAAAAAYEOZmZny9va2Lvv6+lpDcXR0tNzc3NSqVSstXbpUklS9enW9++67WrRokUqWLKlmzZpJkipWrKgXXnhBmZmZeu211yTdCupbt25V3bp1tXXrVt28eVOXLl3S/PnzNX/+fH311VeGnZfNwvcHH3ygli1basSIETp//rx69+6t9PR06/aUlBS5urrm2PbOi+3p6SkPDw+b1AwAAAAAsC2z2azo6Ogct61bt04mk0n79u1TXFycxowZo+PHj+uTTz5R7dq1FRERoalTp6ply5a6dOmS9dbmfv36qXHjxgoMDFRoaKj69OmjVq1aqUKFCtq4caOuXr2qwMBAXb58WTdv3pS7u3u2LwDyg83Ct6urq4oVKyZJKlWqlDIyMlS3bl3FxMSoWbNm2rlzp5588klblQMAAAAAKGQiIiKsnwMCAjRp0iQNHjxYLi4ukqRy5crp+++/V6lSpeTk5CQHBweZTCaVLFlSiYmJ+u6779SlSxc9+eST2rRpkxo3bqxevXqpV69ekm6NrP/888/5HrwlG4bvPn36aPz48erRo4fS09M1bNgw1a9fX0FBQZo1a5bc3d3VoUMHW5UDAAAAACgCJk+erGHDhsne3l7FihVTSEiIKleurL1798rHx0d2dnZq3LixWrRooTNnzmjMmDGSbgX12w9iswWTxWKx2Oxo+cDT01OxsbEFXQYAAAAAwABFNfPxUm0AAAAAAAxG+AYAAAAAwGCEbwAAAAAADEb4BgAAAADAYIRvAAAAAAAMRvgGAAAAAMBghG8AAAAAAAxG+AYAAAAAwGCEbwAAAAAADEb4BgAAAADAYIRvAAAAAAAMRvgGAAAAAMBghG8AAAAAAAxG+AYAAAAAwGCEbwAAAAAADEb4BgAAAADAYIRvAAAAAAAMRvgGAAAAAMBghG8AAAAAAAxG+AYAAAAAwGCEbwAAAAAADEb4BgAAAADAYIRvAAAAAAAMRvgGAAAAAMBghG8AAAAAAAxG+AYAAAAAwGCEbwAAAAAADEb4BgAAAADAYIRvAAAAAAAMRvgGAAAAAMBghG8AAAAAAAxG+AYAAAAAwGCEbwAAAAAADEb4BgAAAADAYIRvAAAAAAAMZl/QBQAAAAAA8FdcuXJF3t7eWrFihdLS0hQSEiKz2SwHBwdNmzZNly9f1pQpU6z7Hz58WAsWLFCtWrU0evRoWSwWlSpVSjNnzlTx4sX1+eef68MPP5TZbFadOnU0adIk2dnl71g1I98AAAAAgEIjPT1dwcHBcnJykiSFhoYqKChI4eHhateunZYtWyYPDw+Fh4crPDxcPXr0UPv27dW6dWt98MEH6tSpkyIiIlS7dm2tXbtWN2/e1Jw5c7Ry5UpFRkYqOTlZ27Zty/e6Cd8AAAAAgEJj2rRp8vPzU7ly5SRJs2bNkoeHhyQpMzNTjo6O1n2vX7+uefPm6e2335YkeXh4KDExUZKUnJwse3t7OTg4KDIyUsWLF5ckZWRkZOsjvxC+AQAAAAAPjMzMTHl7e1t/oqKirNuio6Pl5uamVq1aWdfdDuHff/+9PvroI/Xp08e6be3aterYsaPc3NwkSRUqVFBERIReeOEF7dy5Ux07dpSdnZ3Kli0rSQoPD9f169fVokWLfD8vk8ViseR7rwby9PRUbGxsQZcBAAAAADDAn2W+nj17ymQyyWQyKS4uTtWrV9eiRYt04MABLVq0SAsXLlSVKlWs+3fv3l1z585VxYoVJUkvv/yyhg8frlatWmn79u1atWqVli5dqqysLE2fPl2nTp3S7NmzraPg+YkHrgEAAAAACoWIiAjr54CAAE2aNEl79+5VVFSUwsPDVbp0aev2pKQkpaWlWYO3JLm6uqpkyZKSbo2Y356CHhwcLAcHBy1cuDDfH7R2G+EbAAAAAFAoZWVlKTQ0VBUrVtSQIUMkSf/85z/15ptv6tSpU3rsscey7R8UFKR3331XWVlZslgsCg4O1rFjx7R27Vo1adJEvXv3liT16tVL7dq1y9damXYOAAAAAHhgFNXMxwPXAAAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAEj/afYAACAASURBVAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAg9kXdAHAw2zJkiXaunWr0tPT5e/vr/r16yskJERms1kODg6aNm2aypYta90/Ojpan3zyiSQpNTVVcXFx2rNnjzZt2qQ1a9aobt26mjRpkiRpxIgReuedd+Ti4lIQpwYAAADgDox8AwUkJiZGhw4d0urVqxUeHq4LFy4oNDRUQUFBCg8PV7t27bRs2bJsbby9vRUeHq7w8HDVq1dPEyZMkKurqz799FNFRkbq4sWL+v3337V9+3Z5eXkRvAEAAIAHBCPfQAHZvXu36tSpo8GDBys5OVmjR4+Wr6+vypUrJ0nKzMyUo6Njjm2PHDmikydPauLEiZIkJycnpaamKiMjQ3Z2dlq3bp1mz55ts3MBAAAA8OcI30ABuXr1qs6dO6fFixcrPj5egwYN0saNGyVJ33//vT766CNFRETk2HbJkiUaPHiwdXngwIEaPny42rdvrw0bNuiVV17Rf/7zH50/f169e/eWu7u7Tc4JAAAAQM6Ydg4UkNKlS6tly5ZycHCQu7u7HB0dlZCQoC+//FITJ07U0qVL5ebmdle7xMRE/fzzz3ryySet65o0aaJFixapU6dOOnjwoKpWrapLly7prbfe0oIFC2x5WgAAAAByQPgGCoiXl5d27doli8Wiixcv6saNG9q5c6c++ugjhYeHq0qVKjm2O3DggJ566qkcty1ZskQDBgzQzZs3ZWdnJ5PJpOvXrxt5GgAAAADuAdPOgQLSpk0bHThwQN26dZPFYlFwcLBGjBihihUrasiQIZKkf/7zn3rzzTc1evRoDR06VJUqVdKpU6dUuXLlu/qLj49XYmKiPDw8lJWVpfPnzyswMFBDhw619akBAAAA+AOTxWKxFHQRf4Wnp6diY2MLugwAAAAAgAGKauZj2jkAAAAAAAYjfAN/Q2p6ZkGXYDMP07kCAAAA+Y17voG/wbGYWV6jVhZ0GTZxcHqvgi4BAAAAKLQY+QYAAAAAwGCEbwAAAAAADEb4BgAAAADAYIRvAAAAAAAMRvgGAAAAAMBghG8AAAAAAAxG+AYAAAAAwGA2fc/3kiVLtHXrVqWnp8vf319NmzbV2LFjZTKZVLt2bU2cOFF2dnwfAAAAAAC4W2ZmpiZMmKBTp07JbDYrLCxMzs7OmjBhghITE5WZmal///vfqlq1qnbs2KEFCxZIkurWrauJEydq2bJl2rVrlyQpMTFRv/32m/bs2aOtW7dqwYIFsre31yuvvCIfH598r91m4TsmJkaHDh3S6tWrdePGDa1YsUJhYWEaOnSomjVrpuDgYG3ZskXt2rWzVUkAAAAAgEJk27ZtkqTIyEjFxMQoLCxMpUqVUufOnfX888/r22+/1c8//yw3NzdNnz5dK1eulJubm5YtW6arV68qMDBQgYGBkqTXXntNI0eOVHp6usLCwrR27VoVL15c/v7+atOmjR599NF8rd1mw8y7d+9WnTp1NHjwYA0cOFDPPPOMjh07pqZNm0qSWrdurb1799qqHAAAAABAIfPcc88pJCREknTu3DmVLVtW33//vS5evKg+ffros88+U9OmTXXo0CHVqVNH06ZNU48ePVS2bFm5ublZ+/n666/l6uqqVq1a6aefflLVqlVVqlQpOTg4yMvLS999912+126zke+rV6/q3LlzWrx4seLj4zVo0CBZLBaZTCZJkrOzs5KSknJsGxUVpaioKEmSg4OD4uLibFU2kKfx7d0LugSb4O8OAAAAtpCZmSlvb2/rsq+vr3x9fa3L9vb2GjNmjDZv3qy5c+cqOjparq6u+uCDDzR//nwtW7ZMNWrUUExMjNavX68SJUqoZ8+eatiwoWrUqCHp1i3Rs2bNkiQlJyerZMmS1v6dnZ2VnJyc7+dls/BdunRpubu7y8HBQe7u7nJ0dNSFCxes21NSUuTq6ppj2zsvtqenpzw8PGxSM3AvXl2xsqBLsImD01sWdAkAAAB4CJjNZkVHR//pPtOmTdPIkSPl4+OjkiVLqm3btpKktm3bavbs2WrUqJH+8Y9/WKeON2nSRHFxcapRo4ZOnjwpV1dXVatWTZLk4uKilJQUa98pKSnZwnh+sdm0cy8vL+3atUsWi0UXL17UjRs31Lx5c8XExEiSdu7cqSZNmtiqHAAAAABAIbN+/XotWbJEklS8eHGZTCY1bdpUO3bskCQdOHBAtWrVUv369XXixAklJCQoIyNDsbGxqlWrliRp7969at26tbXPmjVr6vTp07p27ZrS0tL03XffqVGjRvleu81Gvtu0aaMDBw6oW7duslgsCg4OVuXKlRUUFKRZs2bJ3d1dHTp0sFU5AAAAAIBCpn379ho3bpx69uypjIwMjR8/Xh4eHpowYYIiIyPl4uKimTNnqlSpUhoxYoT69+8vSerYsaPq1KkjSTp16pRatGhh7bNYsWIaO3as+vXrJ4vFoldeeUXly5fP99pNFovFku+9GsjT01OxsbEFXQZg5TXqYZl23qugSwAAAMBDoKhmPl6qDQAAAACAwQjfAAAAAAAYjPANAAAAAIDBCN8AAAAAABiM8A0AAAAAgMEI3wAAAAAAGIzwDQAAAACAwQjfAAAAAAAYzD63DS1btvzThiaTSbt27cr3ggAAAAAAKGpyDd81atRQeHh4rg0DAgIMKQgAAAAAgKIm12nnS5YsybZ88+ZNJSYm5rodAAAAAADkLNeR7xIlSlg/r1mzRjt27FBmZqYqVaqkoKCgbNsBAAAAAEDuch35/vLLL62fjx49qnnz5mnhwoU6cuSITQoDAAAAAKCoyHXkOyMjQ8OGDVOvXr3UuXNnBQYGKjU1VX5+frasDwAAAACAQi/X8P3SSy+pY8eOev/993XmzBkFBwerSpUqtqwNAAAAAIAiIdfwfenSJX311Vdyc3PT888/rw8//FBOTk567bXXVLJkSVvWCAAAAABAoZbrPd8jRozQY489JkdHRy1dulQTJkzQSy+9pHfeeceW9QEAAAAAUOjlGr7T09NlMplkMpmUmZkpSapTp45mzJhhs+IAAAAAACgKcg3f7733nn799VfduHFDEyZMsGVNAAAAAAAUKbmG7/DwcPXp00c+Pj45vtObEXAAAAAAAO5Nrg9ci46O1vnz53PcZrFYFBMTo5EjRxpWGAAAAAAARUWu4XvOnDl/2pD3fQMAAAAAcG9yDd9Nmza1ZR0AAAAAABRZud7zDQAAAAAA8kee4fu3336zRR0AAAAAABRZuU47v23IkCFyc3NTt27d9PTTT8vOjsFyAAAAAAD+ijzD9+rVq/XTTz9p7dq1WrRokZo3b65u3bqpSpUqtqgPAAAAAIBC756GscuVK6cqVarIyclJJ06cUGhoqN577z2jawMAAAAAoEjIM3y/9dZb8vX1VWJioqZPn65FixZp8eLF2rFjhy3qAwAAAADggbFmzZpsyytXrryndnlOO/fx8VHDhg3l7OysS5cuWdevXr36L5YIAAAAAEDh9Pnnn2vr1q2KiYnRt99+K0nKzMzU//73P/Xq1SvP9nmG70OHDmnXrl0aO3asJk+erPr16yswMFCOjo5/v3oAAAAAAAqBVq1a6dFHH9W1a9fk6+srSbKzs7vn56HlGb63bt2q6OhoSdLcuXPl5+enwMDAv1EyAAAAAACFS6lSpdSsWTM1a9ZMV65cUWpqqqRbo9/3Is/wbTKZlJaWJgcHB6Wnp8tisfy9igEAAAAAKKTeeecd7dixQ+XKlZPFYpHJZFJkZGSe7fIM335+furcubPq1Kmjn3/+Wf3798+XggEAAAAAKGxiY2P1zTffyM7unl4eZpVn+O7evbueffZZ/frrr6pSpYrc3Nzuu0gAAAAAAAqzatWqKTU1VcWLF/9L7fIM33FxcYqKirLOZ5eksLCwv14hAAAAAAB/Q2ZmpiZMmKBTp07JbDYrLCxMFotFY8eOlclkUu3atTVx4kTZ2dlp4MCBunbtmooVKyZHR0f95z//0bFjxzRw4EBVr15dkuTv76/nn39eYWFhOnjwoOzs7DRmzBh5eXnlWsP58+fVpk0bVatWTZLyb9r52LFj9eqrr6pChQr3eDkAAAAAAMh/27ZtkyRFRkYqJibGGr6HDh2qZs2aKTg4WFu2bFG7du105swZffHFFzKZTNb2//3vf/Wvf/1Lffv2ta47fvy4Dh06pDVr1uj06dMaPny49aHjOZk5c+Z91Z5n+C5btqy6d+9+X50DAAAAAJBfnnvuOT3zzDOSpHPnzqls2bLavn27mjZtKklq3bq19uzZo0aNGikxMVEDBw5UYmKiAgMD1aZNGx09elSnTp3Sli1bVK1aNY0fP17lypWTk5OT0tLSlJycLHv7P4/Jn3zyyV3r3njjjTxrzzN8P/bYY1q6dKk8PDys3xi0bNkyz44BAAAAAPirMjMz5e3tbV329fW1vldbkuzt7TVmzBht3rxZc+fO1bZt26xZ1dnZWUlJSUpPT1ffvn3Vq1cv/f777/L391eDBg3UoEEDde/eXfXr19eiRYu0YMECDRo0SHZ2durUqZOSkpIUEhLyp/WVLVtWkmSxWPTf//5XWVlZ93ReeYbv9PR0nTp1SqdOnbKuI3wDAAAAAIxgNpv/dNq3JE2bNk0jR46Uj49PtueTpaSkyNXVVWXLlpWfn5/s7e31yCOPyMPDQ6dOnVK7du3k6uoqSWrXrp1CQkK0fv16lS1bVsuXL1dKSop69OihRo0aqXz58jke28/PL9vyvb4RLM/wHRYWplOnTunMmTN6/PHHVa5cuXvqGAAAAACA/LR+/XpdvHhRr732mooXLy6TyaT69esrJiZGzZo1086dO/Xkk09q7969ioiI0NKlS5WSkqL//e9/cnd3V79+/RQUFKQGDRpo3759qlevnlxdXVWiRAmZzWY5OzvLwcFBKSkpudZw58D05cuXdf78+XuqPc/w/dFHH2nz5s36/fff9fLLL+v06dMKDg6+p84BAAAAAMgv7du317hx49SzZ09lZGRo/PjxqlmzpoKCgjRr1iy5u7urQ4cOMpvN2r17t3x8fGRnZ6fhw4fLzc1NkyZNUkhIiIoVK6ayZcsqJCRExYsX1/fffy8/Pz9lZmaqc+fOcnd3z7WGO/Owo6OjRo8efU+1mywWi+XPdvD399eqVavUq1cvhYeH65VXXtG6devu8dLkP09PT8XGxhbY8YE/8hq1sqBLsImD03sVdAkAAAB4CBSGzHf16lX9+uuvqly5stzc3O6pjV1eO9zO5rdvYHdwcPgbJQIAAAAAUHh99dVX8vPz0+LFi+Xr66tPP/30ntrlOe38xRdfVM+ePXXu3DkNGDBAzz333N8uFgAAAACAwuiDDz5QdHS0nJ2dlZycrN69e6tLly55tsszfL/66qtq3ry5Tpw4oRo1auiJJ57Il4IBAAAAAChsTCaTnJ2dJUkuLi5ydHS8p3Z5hu/58+dbP//000/65ptv7ukF4gAAAAAAFDVVq1bV1KlT1aRJEx08eFBVq1a9p3Z5hu/7fYE4AAAAAABFjY+Pjw4cOKC9e/fqiy++0H/+8597apdn+L7fF4gDAAAAAFDUTJ06VVOnTlWtWrX0r3/9S2PHjlVERESe7fIM3/f7AnEAAAAAAIoae3t71apVS5JUpUoV2dnl+RKxW+3y2uF+XyAOAAAAAEBRU6lSJc2aNUsNGzbUDz/8oHLlyt1TuzzDd3h4+N8uDgAAAACAoiAsLEyrV6/Wjh07VLNmTb3++uv31C7P8P3SSy8pJSVFjo6OSk1NlXTr4Wsmk0lbtmz5e1UDAAAAAFCIODo6qk+fPn+5XZ7hu1GjRuratasaNWqkH3/8UcuXL9fkyZPvp0YAAAAAAB5KeYbvn376SY0aNZIkPf744zp//rwcHBwMLwwAAAAAgKIiz/BdsmRJzZkzRw0aNNDBgwdVqVIlW9QFAAAAAECRkecz0WfOnCkXFxft2rVLVapUUWhoqC3qAgAAAACgyMgzfDs6OqpUqVIqU6aMatSoocTERFvUBQAAAABAkZFn+A4ODta5c+e0Z88epaSkaMyYMbaoCwAAAACAIiPP8H3mzBm99dZbcnBwUNu2bZWUlGSLugAAAAAAKDLyDN+ZmZlKSEiQyWRScnKy7OzybAIAAAAAAO6Q59POhw0bJn9/f12+fFm+vr56++23bVEXAAAAAABFRp7h+/z589q0aZMSEhJUpkwZmUwmW9QFAAAAAECRkecc8o8//liS5ObmRvAGAAAAAOA+5DnynZaWpq5du6pGjRrW+71nzpxpeGEAAAAAABQVeYbvkSNH2qIOAAAAAACKrFzD98KFC/X666+radOmunTpksqVK2fLugAAAAAAKDJyvef722+/tX5m9BsAAAAAgPuXa/i2WCw5fgYAAAAAAH9NruH7zieb85RzAAAAAADuX673fB87dkx+fn6yWCw6efKk9bPJZFJkZKQtawQAAAAAoFDLNXxv2LDBlnUAAAAAAFBk5Rq+H3vsMVvWAQAAAABAkZXrPd8AAAAAACB/EL4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwmM3D95UrV/T000/rp59+0unTp+Xv768ePXpo4sSJysrKsnU5AAAAAIBCIj09XaNGjVKPHj3UrVs3bdmyxbrts88+k6+vb7b9s7Ky1L9/f61evTrb+p9++kleXl5KTU2VJAUEBFh/WrRooRkzZuR77TYN3+np6QoODpaTk5MkKSwsTEOHDtWqVatksViyXTgAAAAAAO60YcMGlS5dWqtWrdKyZcsUEhIiSYqLi9PatWtlsViy7T9nzhz9/vvv2dYlJydr2rRpcnBwsK4LDw9XeHi4pkyZovLly2vQoEH5XrtNw/e0adPk5+encuXKSZKOHTumpk2bSpJat26tvXv32rIcAAAAAEAh0rFjR7311lvWZbPZrKtXr2rGjBkaP358tn03btwok8mk1q1bW9dZLBYFBQVp+PDhKl68+F39h4aGatSoUXJ2ds732u3zvcdcREdHy83NTa1atdLSpUsl3Tpxk8kkSXJ2dlZSUlKObaOiohQVFSVJcnBwUFxcnG2KBu7B+PbuBV2CTfB3BwAAAFvIzMyUt7e3ddnX19c6nfx2KE5OTtabb76pt956S2+//bbGjx8vR0dHa5sTJ07o888/19y5c7VgwQLr+vnz5+vpp5/WE088cddxjx8/rpSUFDVv3tyQ87JZ+F63bp1MJpP27dunuLg4jRkzRgkJCdbtKSkpcnV1zbHtnRfb09NTHh4eNqkZuBevrlhZ0CXYxMHpLQu6BAAAADwEzGazoqOjc91+/vx5DR48WD169FD16tV1+vRpTZo0SampqTp58qRCQ0NVrFgxXbx4Ub1799bZs2dVrFgxPfbYY9qwYYMqVKigdevW6fLly+rbt68iIiIk3ZrS3r17d8POy2bh+/YJSbduZp80aZKmT5+umJgYNWvWTDt37tSTTz5pq3IAAAAAAIXMb7/9pr59+yo4ONg6Qv3FF19IkuLj4zV8+HC9/fbb2drMmzdPZcuWVevWrbV582br+rZt22rFihXW5W+//VYDBgwwrPYCfdXYmDFjNG/ePPn6+io9PV0dOnQoyHIAAAAAAA+wxYsXKzExUQsXLrQ+nfzmzZv50vfly5dVpkyZfOkrJybLHx8H94Dz9PRUbGxsQZcBWHmNelimnfcq6BIAAADwECiqma9AR74BAAAAAHgYEL4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAAAwGOEbAAAAAACDEb4BAAAAADAY4RsAAAAAAIMRvgEAAAAAMBjhGwAAAAAAgxG+AQAAAACFSmxsrAICAiRJcXFx8vHxkb+/v8aNG6esrCxJUkREhF555RV169ZN27ZtkyRdv35dgwYNUo8ePdSvXz8lJCRIkr7++ms999xzCggIUEBAgPbv35/vNdvne48AAAAAABhk2bJl2rBhg4oXLy5Jmj9/vgYPHqynn35aI0aM0Pbt29WwYUOtWrVK6/8fe/cdVnX9/3/8fjiHKSAiDhyYaIaWC01zRWlqORpqYqZkaqW5Z4qIigMVR+7RMBVzW2Zm5cpVOVLJciWi5cI9GIKc8/794dfzyV9+0voIxyOP23V1XZz3wOcr38L7+RrP1+efk5GRQePGjXnmmWdYsmQJjz/+OF27dmXFihVMnz6dqKgofv31V/r160fDhg2zLW6NfIuIiIiIiIjTCAoKYsqUKfbPZcuW5fLlyxiGQWpqKhaLBX9/f1auXImrqyvnz5/H19cXk8lEu3bt6Ny5MwCnTp0iICAAgF9//ZXly5fTunVrRo8eTVZW1n2PW8m3iIiIiIiIPDCsVivNmjWz/7d48eLbzjds2BCL5T+TuB955BFGjhzJCy+8wIULF6hevToAFouF+Ph4wsPDbxvRNpvNREREEB8fT1hYGAC1atVi8ODBLFiwgLS0NBYtWnTf26XkW0RERERERB4YZrOZFStW2P8LDw//2+tHjhzJggUL+Prrr3n55ZcZPXq0/VybNm3YsmULO3fu5Mcff7QfnzdvHgsWLKBbt24ANG/enOLFi2MymahXrx779++/7+1S8i0iIiIiIiJOK2/evHh7ewNQsGBBrl69ytGjR+natSuGYeDq6oqbmxsuLi7MmjWLzz//HAAvLy/MZjOGYfDiiy9y5swZAH744Qcef/zx+x6nCq6JiIiIiIiI0xoxYgS9evXCYrHg6urK8OHDKVasGCEhIYSHh2MymahTpw7VqlUjODiY9957j+XLl2O1Whk1ahQmk4kRI0bQtWtXPDw8KFWqFC1btrzvcZoMwzDu+3fNRhUrViQhIcHRYYjYVek3z9Eh5Iif4iIcHYKIiIiI5AIPa86naeciIiIiIiIi2UzJt4iIiIiIiEg2U/ItIiIiIiIiks2UfIuIiIiIiIhkMyXfIiIiIiIiItlMybeIiIiIiIhINlPyLSIiIiIiIpLNlHyLiIiIiIiIZDMl3yIiIiIiIiLZTMm3iIiIiIiISDZT8i0iIiIiIiKSzZR8i4iIiIiIiGQzJd8iIiIiIiIi2UzJt4iIiIiIiEg2U/ItIiIiIiIiks2UfIuIiIiIiIhkMyXfIiIiIiIiItlMybeIiIiIiIhINlPyLSIiIiIiIpLNlHyLiIiIiIiIZDMl3yIiIiIiIiLZTMm3iIiIiIiISDZT8i0iIiIiIiKSzZR8i4iIiIiIiGQzJd8iIiIiIiIi2UzJt4iIiIiIiEg2U/ItIiIiIiIiks2UfIuIiIiIiIhkMyXfIiIiIiIiItlMybeIiIiIiIhINlPyLSIiIiIiIpLNlHyLiIiIiIiIZDMl3yIiIiIiIiLZTMm3iIiIiIiISDZT8i0iIiIiIiKSzZR8i4iIiIiIiGQzS079QTdu3CAyMpKTJ0+SmZlJ586dKV26NAMGDMBkMvHoo48yZMgQXFzUHyAiIiIiIiL/XUJCAuPGjWP+/PkcOHCA4cOHYzabcXNzY8yYMQQEBPDJJ5+wevVqAMLCwujatSvXrl2jX79+pKSkcOPGDQYMGEDlypXZtWsXY8aMwWQy8fTTT9O1a9f7HnOOJd9ffPEFfn5+xMXFcenSJV555RVCQkLo2bMn1atXJzo6mvXr11O/fv2cCklERERERESczAcffMAXX3yBp6cnACNHjmTw4MGULVuWRYsW8cEHH9CmTRu++OILli5dislkonXr1jz33HN8++23PPXUU7Rr146jR4/Sp08fPvvsM0aNGsWkSZMoXrw4bdu2pW7dupQrV+6+xp1jw8zPP/88PXr0sH82m838+uuvVKtWDYCnn36a77//PqfCEREREREREScUFBTElClT7J8nTJhA2bJlAbBarbi7u1O4cGE+/PBDzGYzLi4uZGVl4e7uTrt27WjVqtVt1wIsWbKE4sWLk5qaSkpKCn5+fvc97hwb+c6TJw8AKSkpdO/enZ49e9qH9W+dv3bt2h3vXbx4MYsXLwbAzc2NAwcO5EzQIvcgskGwo0PIEfp3JyIiIiI5wWq10qxZM/vn8PBwwsPD7Z8bNmzIiRMn7J8LFiwIwO7du4mPj2fBggW4urri7++PYRiMHTuWcuXKUbJkSfs9586do1+/fkRGRgJgsVjYu3cvvXv3plSpUvj7+9/3duVY8g1w+vRpunTpQuvWrWnatClxcXH2c6mpqfj6+t7xvj//z65YsaK9V0PkQdDm43mODiFH/BRX29EhiIiIiEguYDabWbFixT+656uvvmLGjBnMnj3bnjhnZGQQGRlJnjx5GDJkiP3aQ4cO0bt3b/r372+fiQ1QqVIlNmzYwMSJE5k9ezbdu3e/Pw36Pzk27fz8+fO0b9+efv360aJFCwDKlSvH9u3bAdi8eTNVq1bNqXBERERERETkIbBy5Uri4+OZP38+xYsXB8AwDN59910ee+wxYmJiMJvNABw5coQePXowfvx4wsLC7Ne2bt2aK1euADdnZWdHIfAcG/meOXMmV69eZfr06UyfPh2AQYMGMWLECCZMmEBwcDANCr+2xwAAIABJREFUGzbMqXBERERERETEyVmtVkaOHElgYCDdunUD4Mknn6Rs2bLs2LGDzMxMtmzZAkDv3r2ZPXs2mZmZjBw5EgBvb29mzJhB+/bteeutt3Bzc6NAgQKMGDHivsdqMgzDuO/fNRtVrFiRhIQER4chYlelX26Zdh7h6BBEREREJBd4WHM+baotIiIiIiIiks2UfIuIiIiIiIhkMyXfIiIiIiIiItlMybeIiIiIiIhINlPyLSIiIiIiIpLNlHyLiIiIiIiIZDMl3yIiIiIiIiLZTMm3iIiIiIiISDZT8i0iIiIiIiKSzZR8i4iIiIiIiGQzJd8iIiIiIiIi2UzJt4iIiIiIiEg2U/ItIiIiIiIiks2UfIuIiIiIiIhkMyXfIiIiIiIiItlMybeIiIiIiIhINlPyLSIiIiIiIpLNlHyLiIiIiIiIZDMl3yIiIiIiIiLZTMm3iIiIiIiISDZT8i0iIiIiIiKSzZR8i4iIiIiIiGQzJd8iIiIiIiIi2UzJt4iIiIiIiEg2U/ItIiIiIiIiks2UfIuIiIiIiIhkMyXfIiIiIiIiItlMybeIiIiIiIhINlPyLSIiIiIiIpLNlHyLiIiIiIiIZDMl3yIiIiIiIiLZTMm3iIiIiIiISDZT8i0iIiIiIiKSzZR8i4iIiIiIiGQzJd8iIiIikuMyMzPp06cPLVu2pH379hw7duy280uWLKFZs2a0bNmSjRs3AnDgwAFatGjBm2++SVpaGgAzZsxgz549OR2+iMg/puRbRERERHLckiVL8PLyYsmSJURFRTF8+HD7uXPnzjF//nwWLVrERx99xIQJE8jMzGT58uUMHz6csLAwtm3bxvnz5zlx4gSVK1d2YEtEJKfNmjWL8PBwmjVrxtKlS+3HR40axcKFC2+79uLFizRo0ICMjAwArl27RqdOnWjTpg3h4eE52nmn5FtEREREctyRI0d4+umnAQgODiYxMdF+7ueff6Zy5cq4ubnh4+NDUFAQBw8exMvLi7S0NNLS0vD09GT69Ol06tTJUU0QEQfYvn07e/bsYeHChcyfP58zZ85w8eJFOnbsyIYNG267dsuWLbRv357z58/bj82ZM4ennnqK+Ph4YmNjiYmJybHYlXyLiIiISI4rW7YsGzduxDAM9u7dS3JyMlarFYCUlBR8fHzs1+bJk4eUlBTatGnDggULuHz5MgEBAXh5ebF//36GDBnC+vXrHdUUEclBW7dupUyZMnTp0oVOnTrxzDPPkJqaSrdu3XjppZduu9bFxYU5c+bg5+dnP9auXTtatWoFgNVqxd3dPcdit+TYnyQiIiIi8n+aN29OYmIiERERhIaG8vjjj2M2mwHw9vYmNTXVfm1qaio+Pj4ULFiQCRMmANCnTx+GDBlCjx49mDNnDu3bt6devXoOaYuI3F9Wq5VmzZrZP4eHhxMeHg7ApUuXOHXqFDNnzuTEiRN07tyZr7/+muLFi7N58+bbvk+tWrX+8r19fX2Bm8tb+vXrR2RkZDa25HZKvkVEREQkx+3bt48qVaoQGRnJvn37+P333+3nKlSowPvvv09GRgaZmZkkJiZSpkwZ+/lNmzZRqVIlfH197es4bxVgExHnZzabWbFixR3P+fn5ERwcjJubG8HBwbi7u3Px4kXy589/z9//0KFD9O7dm/79+1OtWrX7FfZdKfkWkRy3YsUKPvvsMwAyMjI4cOAA27Ztw9fXlwMHDjBq1Cj7tXv37mXatGkUKFCAwYMH4+Pjw7Rp0/Dy8mLGjBk89dRTKrQjIuKESpQowaRJk/j444/x8fFh5MiRzJkzh6CgIOrVq0fbtm1p3bo1hmHQq1cv+9RQq9XKkiVLeP/994GbI1stW7akbt26jmyOiOSQKlWqMG/ePN58803Onj1Lenr6bdPK7+bIkSP06NGD999/n5CQkGyM9K9MhmEYOfon/o8qVqxIQkKCo8MQsavSb56jQ8gRP8VFZMv3HTZsGCEhIfapRH+2Zs0a1q1bx/jx4xkxYgTNmzdn+/btFC1alMqVKzNx4kRGjhyZLXGJiIiIiGPcLecbO3Ys27dvt3fO1alTB4ApU6YQEBDAa6+9dtv1devWZc2aNbi7u9O5c2cOHTpE0aJFgZvLXGbMmJF9jfkTjXyLiMPs27ePI0eOMGTIkL+cS0tLY8qUKcTHxwOowq2IiIiIANC/f/87Hu/Wrdsdj/+5CnpOJdp3omrnIuIws2bNokuXLnc8t2zZMp5//nn8/f0BVOFWROQBkHHD6ugQckxuaquI5AyNfIuIQ1y9epWjR4/y1FNP3fH8qlWrmDx5sv2zKtyKiDieu6tZy61ERP4ljXyLiEPs3LmTmjVr3vHctWvXyMzMJDAw8C/nVOH23s2aNYvw8HCaNWvG0qVL73jN4MGDGTduHHBzK5+IiAjCw8M5ePAgALt27WL27Nk5FrOIiIjIw0rJt4g4RFJSEsWKFbN/njNnjn36eFJSkr0Ixp/dqnDbqlUr4D8Vbp955pkcidmZbN++nT179rBw4ULmz5/PmTNn/nLNokWLOHz4sP3ztm3bqFu3LkOGDGHZsmUYhsG8efN44403cjJ0ERERkYeSpp2LiEN07Njxts9vvvmm/esKFSowffr0v9xjNpuZNm2a/XOXLl3+65rx3G7r1q2UKVOGLl26kJKS8pfCJHv27CEhIYHw8HCOHj0K3Cxql56eTlpaGl5eXqxatYr69evbt/cRERERkX9PI98ick+MrAxHh5CjnL29ly5d4pdffmHSpEkMGzaMvn37cmtnybNnzzJ16lSio6Nvu6dmzZpcuHCBhQsX0rJlS9atW0dISAjR0dF88MEHjmiGiIiIyENDI98ick9MFnd+jynv6DByTFD0PkeH8D/x8/MjODgYNzc3goODcXd35+LFi+TPn5+vv/6aS5cu8fbbb3Pu3DmuX79OcHAwzZo1IyoqCri5XjwiIoIZM2YQFRXF1KlTSUpKomTJkg5umYiIiIhz0si3iMhDqEqVKmzZsgXDMEhOTiY9PR0/Pz8AIiIiWLFiBfPnz+ftt9+mSZMmNGvWzH7vhQsXOHbsGFWrViU9PR2z2YzJZCI9Pd1RzRERERFxehr5FhF5CD377LPs3LmTFi1aYBgG0dHRfPXVV6SlpREeHv63986YMYNOnToB0Lp1azp06ECRIkUICQnJidBFREREHkpKvkVEHlL/f5G1O/nziPctt6aeA9SpU4c6derc17hEREREciNNOxcREZF7duHCBcLCwkhMTLzt+M8//0zr1q157bXX6N69OxkZGdo7XkRE5E+UfIuIPCAyblgdHUKOym3tfRjcuHGD6OhoPDw8bjtuGAaDBw8mNjaWhQsXUqdOHU6ePKm940VERP5E085FRB4Q7q5mqvSb5+gwcsxPcRGODkH+oTFjxtCqVau/jFwnJSXh5+fH3LlzOXz4MGFhYQQHB3Pq1CntHS8iIvJ/NPItIiIid7VixQr8/f3vWAPg0qVL7Nmzh9atWzNnzhx+/PFHfvjhB+0dLyIi8idKvkVEROSuli9fzvfff0/btm05cOAA7733HufOnQNu7itfokQJSpcujaurK3Xq1OGXX37BxcWFqKgoxo8fz+rVq+17x/fs2ZPTp0+TlJTk4FaJiIjkHCXfIiIiclcLFiwgPj6e+fPnU7ZsWcaMGUOBAgUAKF68OKmpqRw/fhy4WVTt0Ucftd+rveNFRESUfP8rVquVgQMH0qpVK15//XV+//33O143ePBgxo0bB6CKryIi8tBZtWoVixcvxs3NjZEjR9KnTx+aN29O4cKFeeaZZ+zX3Wnv+HPnzmnveBERyVVUcO1f2LhxIwCLFi1i+/btxMbGMmPGjNuuWbRoEYcPH+bJJ58EsFd8rVatGsuWLWPQoEHMmzePuLi4HI9fRETkfzF//nwASpUqZT9Wo0YNli1bdsfrtXe8iOQEq9VKVFQUSUlJmM1mYmNjCQoKsp/fsGED06ZNw2Kx0Lx5c1q2bMmZM2fo2bMnZrOZCRMmUKhQIVauXInFYqFx48YObI08jJR8/wvPPfecvUf/1KlTBAQE3HZ+z549JCQkEB4eztGjRwHw8vJSxVcRERERkWzydwNkN27cIDY2lmXLluHp6clrr73Gs88+y5o1a+jYsSOGYbBmzRpee+01NmzYwPvvv+/IpshDStPO/yWLxcJ7773H8OHDadiwof342bNnmTp1KtHR0bddr4qvIiKS03LbXuq5rb0icrvnnnuO4cOHA38dIEtMTCQoKIi8efPi5uZGlSpV2LVrF15eXqSlpZGWloanpydz5swhIiICk8nkqGbIQ0wj3/+DMWPG0LdvX1q2bMnq1avx8vLi66+/5tKlS7z99tucO3eO69evExwcTLNmzezT7mbNmmWv+BoVFcXUqVNJSkqiZMmSDm6RiIg8TLR3vIjkNrcGyNauXcvkyZPtx1NSUvDx8bF/zpMnDykpKTRp0oQRI0bg4uJCp06dmD59OlWrViU6Opry5cvz6quvOqIZ8pDSyPe/8PnnnzNr1iwAPD09MZlMmM1mACIiIlixYgXz58/n7bffpkmTJjRr1sx+ryq+ioiIiIhknzFjxvDNN98wePBg0tLSAPD29iY1NdV+TWpqKj4+PuTJk4fY2FhGjhzJJ598QufOnZk5cyZDhgzhu+++s98vcj8o+f4XGjRowP79+3n99dfp0KEDkZGRfPvttyxevPiu96riq4iIiIjI/fd3A2SlSpXi+PHjXL58mczMTHbt2kXlypXt9x4+fBh3d3eCgoLIyMjAZDJhtVrJzMx0SFvk4aRp5/+Cl5cXkyZNuut1fx7xvkUVX0VERERE7r8GDRowcOBAXn/9dbKysuwDZGlpaYSHhzNgwAA6dOiAYRg0b96cQoUK2e+dNWuWvWbTyy+/THh4OE888QR+fn6Oao48hHJV8p1xw4q7q9nRYeSI3NRWERGAhIQExo0bZ98G65ZvvvmG2bNnYzKZCA8P59VXXyU1NZXOnTuTkZHBsGHDCAkJYdeuXezevZu3337bQS0QEZH/xd0GyOrWrUvdunXveG78+PH2r5s3b07z5s3ve3wiuSr5zk2FZ1R0RkRykw8++IAvvvgCT0/P245brVbGjx/P8uXL8fLyolGjRtSrV49du3ZRt25dqlWrxrJlyxg0aBDz5s0jLi7OQS0QERGRh53WfIuIiNMLCgpiypQpfzluNpv56quv8PHx4fLly8DNCrdeXl6kp6eTlpaGl5cXq1aton79+ri7u+d06CIiuVpu2iIwN7VV7ixXjXyLiMjDqWHDhpw4ceKO5ywWC99++y0xMTGEhYVhsVioWbMm3333HQsXLqRXr16MHTuWbt26ER0dTfHixXnrrbdyuAXyILHZbAwdOpRDhw7h5ubGiBEjKFGihP38pk2bmDZtGgDlypVjyJAhJCcn07NnT8xmMxMmTKBQoUKsXLkSi8VC48aNHdUUeUDc7Zn66KOPWL16NSaTiU6dOlG/fn3OnDmTK54pzUyV3EQj3yIi8tBr0KABmzdv5saNG3z++ee4uLgQFRXF+PHjWb16NREREcyYMYOePXty+vRpkpKSHB2yONC6devIzMxk8eLF9OnTh9GjR9vPpaSkEBcXx8yZM1myZAlFixbl0qVLrFmzho4dO9KuXTvWrFlDRkYGGzZsoFGjRg5siTwo/u6Zunr1KvPnz2fRokV8/PHHjBo1CkDPlMhDSMm33JXNZiM6Oprw8HDatm3L8ePHbzv/ySef8Oqrr/Lqq68ydepUAM6cOUOrVq14/fXXSU5OBmDlypWsXr06x+MXkdwrJSWFNm3akJmZiYuLC56enri4/OdX34ULFzh27BhVq1YlPT0ds9mMyWQiPT3dgVGLo/3000/23UgqVarEL7/8Yj+3Z88eypQpw5gxY2jdujUBAQH4+/vj5eVFWloaaWlpeHp6MmfOHCIiIjCZTI5qhjxA/u6Z8vT0pEiRIqSnp5Oenm5/ZvRMyd+52/v5ggULaN68OS1atGDjxo2A3s8fBEq+5a7+rrf2jz/+4IsvvmDRokUsXryYrVu3cvDgQfXWiohDrVq1isWLF+Pt7U3Tpk15/fXXee211zCZTLz44ov262bMmEGnTp0AaN26NR06dODcuXOEhIQ4KnR5AKSkpODt7W3/bDabycrKAuDSpUts376dvn378sEHHzB37lySkpJo0qQJP/zwAzt27KBmzZocP34cwzCIjo5m6dKljmqKPCD+7pkCCAwMpHHjxrzyyitERNycmqxnSv7O372fX7x4kU8//ZRFixbxySefMHToUAzD0Pv5A0BrvuWu/q63tnDhwnz44YeYzTe3NcvKysLd3d3eW2sYhnprRSRHFCtWjCVLlgDQtGlT+/Hw8HDCw8PveE9UVJT96zp16th/1knu5u3tTWpqqv2zzWbDYrn5yuTn50f58uUpUKAAAFWrVuXAgQOULFmS2NhYAIYPH07nzp2JiYlh1qxZdO/encaNG+Pl5ZXzjZEHwt89U5s3b+bs2bOsX78egA4dOhAaGkqFChX0TMl/9Xfv5/7+/vb6ACdPnsTX1xeTyaT38weARr7lrv6ut9bV1RV/f38Mw2DMmDGUK1eOkiVLqrdWREScVmhoKJs3bwZg7969lClTxn7uiSee4PDhw1y8eJGsrCwSEhIoXbq0/fzhw4dxd3cnKCiIjIwMTCYTVquVzMzMHG+HPDj+7pnKmzcvHh4euLm54e7ujo+PD1evXrWf1zMld3K32RQWi4X4+HjCw8Np2LAhoNkUDwKNfMtd/V1vLUBGRgaRkZHkyZOHIUOGADe38lFvrYj8HSMrA5Mld2ztlZva+jCoX78+27Zto1WrVhiGwahRo5gzZw5BQUHUq1ePPn360LFjRwCef/752xKpWbNmER0dDcDLL79MeHg4TzzxBH5+fg5pizwY7vZMff/997Rs2RIXFxdCQ0OpVauW/V49U3Ind3s/B2jTpg0tW7bkrbfe4scff+Spp57S+7mDKfmWuwoNDWXjxo00atToL721hmHw7rvvUr16dd5+++2/3Pt3vbX6xy2Su5ks7vweU97RYeSIoOh9jg5B/gEXFxdiYmJuO1aqVCn7140bN/6vWz2NHz/e/nXz5s1p3rx59gQpTuVuz1T37t3p3r37He/VMyV38nfv50ePHmXChAlMmTIFV1dX3Nzcbis2qvdzx1HyLXf1d721NpuNHTt2kJmZyZYtWwDo3bs3lStXBtRbKyIiIs4pt81YyW3tdXZ3m00REhJCeHg4JpOJOnXqUK1aNfu9ej93HIcn3zabjaFDh3Lo0CHc3NwYMWIEJUqUcHRY8id3663dt++/j+iot1ZERHJKbkoeclNbHSU3zc4BzdBxNnd7P+/atStdu3a9473O/n7uzPmjw5PvP5fJ37t3L6NHj2bGjBmODktEREScTG5KlpQoiUhu5cz5o8Ornf9dmXz594ysDEeHkKNyW3tFRERExLnktvfV7GqvM+ePDh/5/m9l8v9crW/x4sUsXrwYgOvXr1OxYsUcj9PZVPp2/N0vEvkHKn47ngegvy7nLNfPmeyWq54pPU85Qs+U3E+56nkCPVM5QO/n9+769es0a9bM/jk8PJzw8HDg3vLHB5XDI7yXMvl//p8tIiIiIiIiudO95I8PKod354WGhrJ582aAv5TJFxEREREREbnFmfNHk2EYhiMDuFWt7vDhw/Yy+X+u1CciIiIiIiICzp0/Ojz5FhEREREREXnYOXzauYiIiIiIiMjDTsm3iIiIiIiISDZT8i0iInIPtErr4aG/S3lY6dkWebAp+RaR/9mNGzccHYLIfWcYBidPnuTMmTMAmEwmbDabg6OS+yEzM9PRIYjcN4Zh8OGHHwI3f04pAXcuUVFRDB8+3NFhSA5RwTX5V2w2G8uXL+fSpUuUKlWKwMBAypUr5+iwJIfZbDZGjRrFa6+95jRVJkXuhc1mo1+/fvbPN27cYPLkyfZzLi7qu3Y2t6rjGoZBoUKF6Ny5My4uLphMJkeHJvI/sVqtNGzYkJo1axITEwPcTMj1bDuH5ORk3n33XWrXrk2vXr0cHY5kM709yD9ms9no378/v//+Oy4uLiQmJhIXF2ffb09yB5vNxsCBAzGbzbcl3hoZFGdns9mIjIykRIkSjB8/ntjYWCwWC+3atQNQ4u2EDMMgMjKSggUL8tprr9G+fXvMZrN9BFw/t8SZmc1m1qxZw8GDBxk4cCCgEXBnUqhQIaZPn87333/PuHHjHB2OZDONfMs/NmLECHx9fenevTtw86Vm/fr1rFmzhqioKPLly+fgCCW73UpOChUqZO+lXbBgAc2aNcPT09PB0Yn8b958801CQ0Pp1q3bbcf79OlDcHAwXbp0cVBk8m/Fx8dz/PhxBg0aBEBcXByXLl3i5MmTREdHa+aOOB3DMFi+fDmhoaFYLBaCgoIAiIiIoEyZMkRFRdmv0wj4g8UwDMaOHcvly5epWbMmvr6+lC9fHoB27drx6quv0rZtWwdHKdnF4ugAxLlkZmaSmZnJyy+/DPxn+mXFihVZvHgxKSkpSr5zgf79+3Pu3DlGjx4NwOTJk9m3bx+tWrUCbj4nbm5ujgxR5F/LkycPx44ds3++fv06Hh4eNGrUiN9++81xgcm/VqJECQ4fPsykSZM4efIkR44cYdCgQWzevJkvv/ySHj16ODpEkX/k888/Z+zYsRQqVIjMzEwqVqyIj48PTZs2ZfDgwaSmphIbG6vE+wGUmppKYmIiP//8M4GBgSQkJGA2m8mbNy+urq6MHDkSq9Vqn20lDxcl33LPUlJS8Pb2Bv5TYCsrKws3NzcKFChAgQIFVHjrIWez2fj+++8JDw9n0KBBbNq0iUOHDnHs2DGmTZuG2Wxm3bp1XL9+nRdeeAGz2ezokEXuya36BS1atGDq1Kl06dKFLl26MG3aNDw8PAC4ePEi58+fx2q1aq2wEzAMg59//hl/f39CQ0M5cuQI586do2rVqowdOxaAo0ePcu7cOQdHKvLPNW7cmLNnz3L58mWqV69O0aJF2bx5M5mZmVSvXp3t27eTnJxMwYIF9bPqAePt7U1cXByDBg3Cz8+PuLg4/P392b9/PxcvXuTo0aOEhYU5OkzJJpp2Lvdk6dKl7N69myFDhhAfH8/69etZuHCh/fyaNWuYO3cu06ZNI3/+/A6MVLLLrQJUhQsXpl+/fuzatYvIyEh8fX1ZtmwZAKtXryY+Pp7Ro0dTokQJB0cscm9u1bEoXLgwffv2tR/v3r07hmEwZcoUNm7cyJw5cxg2bBglS5Z0YLRyL2w2G2+99RZ58+Zl8+bNzJ49m9DQUGw2G1euXMHLy4uNGzeyYMEChg4dqmnn4hQMwyArKwtXV1fg5qycSZMmYTKZaN68uf05zsrKwmazaQbaA8QwDD7++GNatmyJ1WrFz8+Ps2fPEh0dTZkyZejatSuurq7qKMkFzEOHDh3q6CDkwWcYBmfOnGHnzp106dKFgwcPMnv2bE6fPs3evXtZsWIFo0aNomjRoo4OVbKBzWbj7bff5uTJk0yZMgWAIkWKULlyZT7//HPKlStHYmIiCxYsICYmhkceecSxAYvcI5vNRq9evShdujQ9e/YEbk7nDAgIoHnz5qxevZopU6aQlJTEkCFDlHg7gVs1KYKDgxk6dCheXl789ttvVKtWjeTkZGbOnMkXX3zB999/z7BhwyhdurSjQxa5JwMGDODTTz/l0qVLXL16ldKlS1OtWjX27t3L3r178fHxoWDBgpjNZs08e8CsXLmSMWPGYDab+fbbb7FYLJQrV46wsDC+/PJL9u3bR6VKldRhkgso+Za/datQR8GCBSlWrBj79u3jhx9+YMCAAfj7+2MymfDy8uLNN9/US+lDyjAMevbsSaFChXBzc+O3336jevXqABQsWJBy5crRpUsXEhISGD16tJ4DcSqTJk0iMTHRvjZy4sSJ7Nq1i5deegmz2Wyf2tmxY0eNjjoBwzDo1asX3t7e9qrPmzZt4uLFi9SoUQM/Pz9KlizJCy+8wPPPP68OY3EaWVlZ7N27lytXrvD0008zc+ZMDh8+TEZGBq+//jrr1q0jJSWFChUqKPF+AAUEBLBnzx4ef/xxatWqRb9+/di3bx+XL1+madOmbNiwgaefflpFa3MBTTuX/6p9+/Z4e3tTp04dDMPg6aef5ujRo+zZswfDMGjfvj1eXl6ODlOy2aZNmzh79iyvvvoqycnJREdHExIScttelAcPHsTLy8tebVXkQWcYBqmpqRw7dozVq1dTvnx5du/eTUpKCjExMbi5ufHll1+SmppKeHi4o8OVe3ThwgX69+9PixYtaNiwIZMmTWLDhg34+fmRJ08ekpKSaNasGe+8846jQxX5x5KTk4mMjGTGjBmsX7/eXpMiX758VKtWjRdffJFChQo5Okz5P/9/pfmlS5cSEBBApUqV6Ny5M23btmX+/PlUrlyZd955Bz8/PwdGKzlFybf8V2PGjGHOnDl06NCB69evc+7cOQ4cOECBAgXYv38/HTt25N1338VkMmmNykNq8eLFuLi48Oqrr9qPnThxghEjRhASEmKfpivibL788ktGjBjBt99+y7Fjx4iPjycxMZFp06ZRuHBhvvzyS5YtW6ap5k7CZrMRExNDnz59OHDgAJ999hlXr17FZDLx/vvvY7FYSE5OJikpiSJFiqijUJzGH3/8gWEYBAQE4O7uzqxZszAMg8OHDxMREUGVKlX4/PPPqV27NgEBAY4OV/5k4sSJ7Nixw14jad26dcTFxVGwYEF69+5N5cqVgZvFPP39/R0ZquQgTTuXv1i4cCGHDh3i7bffxsPDw9672qhRI2rUqEHt2rUpWLAgL7/8Mr6+vkq8H0K3emsPHDhAYmIiqampFC9eHIvFgq+vL5UrV2b+/PmcPn2aatWMwit2AAAgAElEQVSqOTpckXtmGAbLli3jlVdeIS0tjbi4ONq3b09ISAgXLlzA09OT77//nm+++YaoqCiCg4MdHbLchc1mY8CAAeTNm5e6detStGhRihUrxp49e6hRowYhISFYLBa8vb0pVqwYefPmdXTIIndls9no0qUL27ZtY8uWLdSvXx8PDw8uXrzI6NGj6dKlC3Xq1AEgJCREMxEfQDVq1GDnzp2sWLGCJk2aEBwczPHjxwkICCA8PJzMzEzMZrOmmucySr7FzjAMduzYwblz5zh27BhXr16lVatWnDp1itjYWBo1akTRokUpUKAAVatWxcfHx9EhSzaZMGEC8+bN47333uPq1avs2bOHjIwMgoKCMJvN+Pr68tRTT1GuXDk9B+I0bDYbffv2xdXVlerVq1O9enXOnj3LuHHjiIiIoHDhwixevJitW7cyfPhwrfF2AreKqxUtWpTevXsD8PXXX1OxYkUCAwPZtGkTycnJFC9eXC+44jQMw6B37948+uijxMTEUL16dfLly0dGRgaPPfYYAAUKFCA4OPgvU5vFsQzDYNKkSWzbts2+RPObb75h5cqVNG3aFC8vL3bs2EHDhg21Nj+XcnF0APJgsNls9OjRg99++422bdtSvnx5EhISWL16Nb1796Zhw4Y0bdqUlJQUR4cqOaBPnz64urrSr18/GjVqZF8P+91335GZmQncrHYeGBjo4EhF7o3NZmPQoEEEBQXRrVs3AFJTU+nZsyf169enXbt2FC9enG7dujFr1iwl3k5i6NChHDx4kO7duwMwfvx4vvvuO9zc3KhatSrNmjXjyJEjWCwWB0cqcu9OnDhBQECA/bm+NSX5t99+47vvviM9PZ21a9cCKPF+gNzqDMzKyqJEiRKEhIQAMGXKFPz9/enZsyePP/44165d4+zZs2jlb+6k30aCzWajffv2BAUF0aZNGwCaNGmCYRgkJCRgMpns+w9eunQJb29vB0cs2enGjRu4uroyZcoUGjRowIgRI4iKisJsNrNlyxbMZjP16tVzdJgi/0j//v05fPgwsbGxAIwaNQo/Pz/effddevToQXp6Op07d+bTTz/FxUX90s4gOTmZ+vXrAze38Tl16hSnT59m1KhRmM1mvvzyS0qXLk1UVJS27xGncuXKFfbs2cP58+cJCAiwJ9i//PILBw4cYNiwYZw+fdrBUcr/b/z48RQoUMA+C+eTTz7h8uXLuLm5ERsbyzvvvENcXByzZs3S75lcTNPOc7lb0zCvXLnC77//Tu3ate3r4R577DGuXr3KDz/8QFZWFuHh4Vor95Cy2WxMmTKFYsWK2attzpo1C4vFwoULF9i6dSudO3cmKyuLypUra22ZOJ3ChQuzb98+DMNg69atnDhxgn79+tmn/dWuXZu6devq2XYSs2fPZvfu3Tz55JMUK1aMTz/9lB07djB//nzMZjOrV68mPj6e+vXrU6BAAUeHK3JPoqOjKV++PI888ghHjhzB09PTvs0nQFJSEmfOnCEsLExLvh5AJ06cwNPTkxMnTjBz5ky2bNlCjRo1SEhIwMvLi65du1KmTBl8fX0dHao4kJLvXG7Dhg1kZmYSFxdHVlYWsbGx1KhRg3z58gFQpkwZMjMzqVKlil5KH2Jjx47lgw8+wN/fn7JlyzJr1iwSExMZP348TZo0Yc6cOfz888907NhRz4E4hVvrIEeOHMmxY8do0KABjz76KBMmTCAhIYF58+ZhNpvJzMy079jg4eGhKZxOomDBgmzbto2LFy9SsWJFHnvsMa5cuYJhGBw7dowlS5YQExOjgnniVLZs2cLHH3/M888/z40bN9i6dStXrlzB3d2dXbt2sWjRIrp160b+/PkdHarcwfnz5/nhhx84ceIExYsX5/3336d8+fL88ccfWCwWQkJC1Gki2most7t+/ToeHh72z5988glLlixh2rRp2l4nF0lISCAyMhJ3d3f8/f1xc3NjypQptxUDOX36tNZ4i9PZt28fEyZMoHHjxrRo0YL9+/cTGxvLSy+9RIsWLRwdnvwPbu3BXrduXV5++WUuXLjAtGnT+P333/noo4/0O0ycgs1mY9WqVTzxxBOUKlWKyZMn8+OPPzJ79mx+/fVXdu7cyYEDB/Dw8ODdd99VPYoHzDvvvEOxYsUoX748zz33HN7e3mRlZWEymTCbzXz99dfEx8czcuRISpQo4ehw5QGgke9cyDAM1q5dS6lSpTCZTLi4uNi3O6hUqRJZWVlERUVRr149+xRkefgYhsHu3bvx9fUlKCgIPz8/AgMDMQwDV1dXateubS9SZDKZ1FsrTsNmszF//nz27t1LUFAQNWvW5KOPPiIrK4tnnnmGsmXL8v777wPwxBNPODhauVdLlixh7969VKhQAYB58+Zx7do1bDYb165dIyQkhIoVK9KmTRu95IpTsNls9OrVi/3793Pw4EHS09OJiIjg0KFDfPjhh7zxxhs8/fTT1K1blwYNGmgf7wdMSkoK69evx8PDA1dXVyZPnkxWVhYHDhxg06ZNrFq1io0bN2oWjtxGyXcuNGfOHEaPHo2rqyvr1q37y/qTSpUq4ebmxiOPPKI13g+x6OhoJk6cyMGDB+2dLidPnuStt95i//79LF++nGrVqpEnTx5Hhypyz2w2G7179+batWvkzZuX4OBgHnvsMUqXLs2cOXOwWq2EhYVRqVIlHn30Ua29cwKGYfDll19itVo5fvw4169f5+uvv+bIkSNMnjyZGjVqEB8fT1ZWFvXr17cvmxJ5kNlsNqKioihatCijRo3i5MmTXL58mSpVqlCnTh2OHj1KbGwsTZs2xcfHR9tSPYDc3Nzw9vZm8+bNxMTEcPr0aT777DN+/vlnDhw4QO3atenSpYs6A+U2Sr5zIavVyq5du6hduzZms5mhQ4dy+vRp0tPTKVq0KBaLhQoVKijxfsiVKVMGs9mM2Wxm/fr15M2bl7Vr15KcnEzfvn3Zv38/FSpUUPItTiUmJobAwEAiIyMJDQ3F39+fq1ev4uPjQ+3atYmLi8PT05NatWop8XYCNpuNPn36EBgYyIsvvkhKSgpffPEFe/bs4eOPPwawbyumzhRxJq1bt6ZgwYIMHDgQgK1bt3Ls2DEKFy5MoUKFqFWrFi4uLhQpUkTvYw+wgIAATp48SXJyMjt37qRv37507NiRzMxMWrZsqYKP8hdKvnOhIkWKcO3aNSpXrkylSpX46quvCA0NZerUqVy4cIHQ0FBcXV0dHaZkA8MwOHz4MBaLBX9/f3766ScaNmxIgwYNuHbtGhcvXmTt2rWULVuWli1bKvEWp/PTTz/Rtm1bvLy8uHHjBmazmYyMDAYPHszzzz9PaGgopUqVUpLmBGw2G++++y7u7u706tULi8VCYGAgHh4e9mJ5t6Zy5smTRz+vxGmkp6dz/PhxTp06xQsvvMC0adNYt24dN27cYNu2bcyfP5/vvvuOAQMGaPnfA87NzY0ff/yRSZMmER0dTWhoKO7u7oSGhqpArdyR9vnOpTw9PYmJicHPz4/Bgwfz5JNP0qRJE0wmk35YPMSOHDnCmDFjqFSpEnXr1qVp06b07duXsWPHUr9+fSpVqoSXl5cKFYnTOX78OEWLFmXv3r0EBwfzyiuvYDabsVqteHh44OHhgc1ms68XlgebzWajf//+nD9/npIlS/Lzzz/z6KOP4uPjQ506dQDYuHEjmZmZNGrUyMHRitwbm83GuHHjePHFF+nbty8zZ84kLCyMxx9/nM8//9x+XVJSEj4+PtoL+gF3a1eN7t27c+7cOXsHoGEYWiYg/5VGvnOJWz8gbqlYsSJr1qyhQoUKvPLKK9y4cQNfX1+NHDzk8ufPT82aNUlNTWXixImULVuWRx55hISEBCpWrIivry+1a9dWcTVxGjabjYEDB+Ll5cVjjz1GYGAgixYtIn/+/JQoUQIXFxc2bdrE1q1badiwoToXncTatWuxWq2MGzeOAwcOsGPHDvLnz0/+/Pnx8vKiYMGCWCwWqlatqr9TcQo2m40BAwbg7u7OK6+8gouLC9WqVePKlSucPHmShg0b2mcd5suXT8+1EzCZTBiGgdVqZd26dWRkZFC5cmVtWSl/S8n3Q65nz54APProo/YEPCsrCxcXFwzDICUlhWrVqqmHLhfJkycPjz32GJUrV+bTTz/l6tWrbNiwgZdeeglPT0/1tIvTsNlsREZG4u/vT7t27YCbL60+Pj7MmjWL8+fPk5CQwMqVKxk6dCjFihVzbMByV4ZhsGrVKuBmZ2Hp0qUJDQ3lt99+Y/fu3eTLl4/8+fOTJ08egoOD1WEsTsFms9GvXz+KFStGv379AFi+fDlBQUHUrl2bM2fOMH78eOrVq6ek28nc2lIsODiYUqVKaZmA3JWS74dYQkICefLkYdq0aQQGBlKqVCmsVitmsxmTycSxY8eYO3cur7zyCq6uruqpy2Xy589PtWrVCAwM5Ndff6VmzZoq6iJOwzAMevbsSdGiRenbty8A06dPx83NjbCwMMqXL09ycjLu7u60a9dOSymcwK1K9VeuXMHT05OlS5fyxx9/EBISQu3atTlw4ADbtm0jMDCQQoUK6XeWOI3o6GguX77MiBEjAJg8eTJbt26lWbNmmM1mypUrh2EYlChRQjPPnJS/v78Sb7knJsMwDEcHIfffrWnFjRs3xsPDg65duzJw4ECee+45AD777DMOHz5Mu3btKFSokIOjFRH5Z5YuXcry5cuZMmUKBQoUYOrUqfzyyy9MnToVi8VCWlqaRpCczIABAyhSpAjdu3cH4NKlS4wdO5YiRYrQrVs34OZWmU2aNFEFYXEKhmFw9uxZTp8+zcSJE+nWrRtbtmzhxIkTjBkzBovFwvr167l8+TIvv/yyZiGK5AJKvh9if/zxBxMnTqR///4cP36cyMhI4uLiSE1NZfLkyYwaNYpHH33U0WGKiPwjly5dws3NjenTp+Pl5cXp06ftHY4AX331FT/99BO9e/fGy8tLI6ROYsSIEURFRQGQkZGBu7s7Z86c4Z133mHMmDGEhIQ4OEKRf2bw4MHs2LGDuXPncvLkScaOHYvFYmHOnDm4ubnx1VdfER8fz+jRowkKCnJ0uCKSAzTt/CFis9mYP38+a9euxd3dnZCQELy9vTlx4gRhYWE88sgjdO3ald27dzNhwgRKly7t6JBFRO6ZzWajV69efPPNN+zZs4devXqxY8cOfv31V3r37k2BAgX4+uuvWbhwIT169KBgwYJKvJ3ArfojkydPJjg4mGLFimE2m8nKyiJv3rwcOXKEunXr4unp6ehQRf6RxMREduzYwc6dO2nQoAF169Zl8+bNPP7442zfvp0VK1YwdOhQHnnkEUeHKiI5RFuNPSRsNhvvvfceefPmpXjx4vaXFF9fX7755hsqV65MWFgYH330Efny5aNEiRIOjlhE5N7ZbDYGDx5MiRIl6NWrF+Hh4ezevZt33nmH9PR0fvzxR7777ju2b9/OsGHDtMbbiZhMJnx8fIiIiGDv3r0UKVKEoKAgXF1dWbduHUlJSWiSnjijtm3bYhgGvr6+DB8+nKioKPr06UP//v3x8PBg7Nix9r3qRSR30LTzh0RcXByenp507drVfiwjI4MbN27w008/8e233xIZGanKsCLidAzD4I033uCxxx5j0KBBAIwbN47Q0FDq1q3LlStXmDBhAomJiQwbNoxSpUo5OGL5N5KTk1m4cCEpKSmULFkSV1dXVq1axdChQ/V3Kk7BZrOxceNGypYtS5EiRcjMzGTChAkUL16cEiVK8NFHH9G3b188PT1xdXWlePHijg5ZRHKY9hR6SNhsNp555hkArFYrABcvXqRDhw4UKVKEKlWqaORARJzSpUuXKFy4MG5ubgDMnj2bP/74g7CwMADy5s1L//79mTx5spI0J1aoUCHeeOMNatWqxZEjR7h69ao6U8SpjB07li5dutgLq124cIHu3buTmJhIQEAATZs2ZfLkyRQrVkyJt0gupWnnTswwDBITEyldujQZGRlcuHABwL6dWGBgIMHBwfj6+tK0aVNcXV0dHLGIyD/z+++/4+vrS+fOnfniiy9o2rQpjzzyCFOmTAFudjyaTCby5MmjmT0PgXz58vHss8/y7LPPOjoUkX+sU6dOmEwmvv32W3bt2sW2bdswDIOgoCCuXr1Ks2bNqF+/vr0jUURyH418O7G1a9cSGxvLsWPHCAsLIyoqiiNHjth/qH/zzTckJiZisViUeIuIU7HZbPTv359hw4YxduxYihYtyquvvkqVKlXIly/fbdeqqJqIONL169cB8PPz45133qFu3bokJSXRrVs33NzcWLlyJWPHjsVqteLt7e3gaEXEkbTm2wkZhsGlS5fw9/cnPj6e3bt3ExkZyc6dO5k6dSrPP/88WVlZbN++nZEjR2rKnog4FcMw6NWrF2XLluWdd94hMzOTa9euYbVaOXPmDNu3b+fQoUMMHTpUL7Ii4jCGYdCjRw+8vLx4/fXXKVGiBL6+vqSkpDB8+HB8fHyIioriypUrXL9+nUKFCjk6ZBFxMCXfTmjlypXExMTw1VdfUahQIebOncvevXsZMGAAKSkpHD16lCtXrlC9enWtKRIRp3Ps2DGWLVtG3759sdlsDBgwgKNHjxIYGEiVKlWoXr0669ato1WrVhQoUMDR4YpILta7d2+sVivp6emUKFECf39/OnToQEpKCuPHj8fV1RXt6isit2jNtxN66aWXOHXqFBEREcydO5c33ngDuFnxvF27dtSvX9/BEYqI/HsZGRls2rSJa9euce3aNa5cucKHH37Ipk2bSEpKomzZspQpUwaz2ezoUEUkl7LZbLi4uPDUU09hNptp3rw5n376KSNHjuTEiRNcuHCBnj17qoNQRG5jHqruOKdgGAa///47fn5+ADz55JOYzWaGDBlCw4YNqVWrFsePH2fr1q3Url0bs9msdZAi4pQCAgIIDAykcOHCVKxYkW7duuHh4cHRo0fZuXMnTz/9NO7u7o4OU0RysVvvWB4eHkyZMoW0tDR27tzJwIEDqVOnDsnJyVSoUIEiRYo4OFIReZBo2rmTGDduHEuXLqVmzZpYrVaqVq1KrVq1mDZtGseOHWPGjBkUKlSIK1eukDdvXkeHKyJyzwzDYOPGjVSvXh0vL6/bOg4TEhLw9vZm7969LF++nOHDh6uOhYg4VFZWFhaLxT76vXjxYubOnUtMTAxVq1Z1dHgi8gBTtXMnERoayhNPPEGFChUoW7YsVquVCRMmYLVa2b9/P23btiUrK0uJt4g4FZvNRq9evTh8+DB58uT5y4ydw4cPM3ToULZs2aI9n0XEYQzDIDY2FgCLxYLVasXF5eZrdKlSpfD29qZKlSr2a0VE7kQj307kq6++4scff6R27do0aNDAfvz06dP8v/buOzqqOnH/+HtmUiG9kEZIyISEBAwKrgT1Cx664cACiliW0EGlBGRBUVzBQ2gqFkBxRQmiSBfBpYpYQCkxqEiooYg0IYAphEySe39/cMz351d31waXMM/rr2TuTfKc/HHPPPNpdrtdu2iKSI1iGAZ9+/YlJCSE559/Hrj8pvX/FvCqqioArfEWEUsNGTKES5cu8frrrwP/OwIOMGrUKOrWrcvIkSOtjCgi1zit+b6GDRgwAJfLxffff098fDwNGjSgsrKSdevWAZfPk6xVqxb+/v46bkdEahTDMHjkkUew2WwcOHCAlJSU6rWRP5bvH4u43W6vHmESEbFKp06d2LJlC/Pnz6dbt27Y7XZcLhcOh4Pw8HBuv/12ateubXVMEbmGqXxfo06cOMGiRYuIiIhg586drFmzhqCgIJo3b05ERARLly4lNDSUevXqaWM1Ealxtm7disvl4umnnyY6OpqnnnqKpKQkYmNjq0u3nm0iYiXTNHn//feprKykvLycwMBA2rVrR35+Pm+++SZdunSpnpETFRWl4i0i/5WmnV/DXnjhBU6ePMnUqVMZOXIkBw4cwDAMBg0aREFBAZmZmTrCQkRqpJKSkp/M2Fm3bh3Tpk1j0qRJNG/e/Benn4uIXE3Lly/n6aefJiIiguDgYOrUqYOvry/t2rVj7NixNGvWjNmzZ1sdU0RqEI18X0NM0+TEiRNUVlbi6+tL/fr1OXz4MAA7duxg3LhxNG7cmN27d9O3b18VbxGpUQzDYPLkyWzatIlPP/2UgwcPVm9QlJiYSHR0NI888ghNmzYlJibG4rQi4u5SUlLw8PCgoqKCxx57jKZNm2KaJkVFRVRVVVFSUkKLFi3w9/e3OqqI1BAa+b5GGIbB6NGjcblcxMTEkJGRQVJSEqNGjeLrr7/mlVdeoXHjxgC4XC68vLwsTiwi8usZhsGjjz5KbGwsGRkZuFwuHn30UVq2bMno0aOr79u4cSOJiYnExcVZmFZE3JVpmpw7d47Q0NDq1yZOnEhRURFZWVnVHwy6XC5M08Tb29uqqCJSA2nk+xpgGAZjx46lXr16ZGVl8fnnnxMaGkpSUhIpKSkUFBTw17/+FR8fH2w2m3b8FZEaZ8GCBZimyciRIwkJCSE8PJzOnTvzwgsvEB4eTkJCAqZpkpCQQFBQkNVxRcRNTZgwgddffx0fHx8KCgpISkqiZcuW5Ofn8/7775OamkpQUBAOh6N6p3MRkV9L28dazDRNBg4cSL169Rg2bBjBwcHY7XYKCwsxDIOwsDBM02Tv3r1a/ygiNdb58+erdzM3DAOXy4W/vz9t2rShrKwMQM84EbFccHAwLpcLDw8Pli9fzt///nfWrVtHVlYWYWFhzJs3j8rKSqtjikgNpfJtsYqKCi5cuFD95nPmzJmcPXuWu+66C7vdTkBAAB06dND6RxGpcUzTJD8/H7i8prukpASXy4Xdbq9eOmO326vP8dYqKBGx2oABA2jWrBnt27dn8ODB7Ny5k5UrV9K5c2eaNm3K4MGDNeItIr+b1nxbxDRNDh48SEBAACEhIfTq1QuXy0VycjKTJ08GLhdzT09Pi5OKiPw+27ZtY/DgwcyZM4eYmBiefvpp7r//flJTUwkNDWXNmjXMnTuX5557jtjYWKvjiogbMk2TkydPcunSJRISEigtLeWZZ57B19eX06dP06NHD1q0aMGKFSto0aIFERERVkcWkRpM5dsChmHwxBNPUFRURGRkJE8++SRlZWWMGDGCyMhIJkyYAKCjdkSkxlu9ejXPP/88M2fOpLi4mEWLFnH27Fnq169Pfn4+2dnZOJ1Oq2OKiBsyDIMhQ4bg7e3N8ePHmTt3Ln5+fuTm5jJkyBDGjh1L165drY4pItcRle+rzDRNHn/8cZKTk+nTpw8Ax48fx+FwEB4ezoMPPkhISAhTp061NqiIyO9UUFCA0+ms/gDxww8/JDs7m1deeYWkpCT279+PzWYjKChIRyaKiCVM02TEiBEkJCSQlZXFuXPnCAkJqV4G+MYbb9CsWTPS09MxDAO7XSs1ReSP06KVq2z//v0A3H333QCMGTOGb7/9FtM0SU1NZdasWTz00EOcPXuWsLAwK6OKiPxmEydOZO3atbRo0YILFy7Qrl07EhMTue+++xgxYgSTJk3ixhtvtDqmiLi5o0ePEhwcTFZWFgCBgYGYpsm+ffsoKyvDZrMxa9Ys0tPTVbxF5E+j8n2V/DgCVL9+fby8vBgwYAD16tWjsLCQl19+GcMwmDFjBl5eXsyZM0fTzUWkxvnss8+oW7cu0dHRJCYmEhAQQGlpKc8++yxxcXEcOXKECRMm8M477+Dt7a3nnIhYpqqqikOHDnH69GkiIiKw2+3YbDa+++471q9fz0svvcRdd91ldUwRuc6ofF8l2dnZ5OXlsXz5cgYPHkx+fj7h4eE0atQIDw8PVqxYwXfffUdpaSm1atWyOq6IyG9SUlJCfn4+f/nLX2jevDmTJ0+mf//+tGrViszMTBwOB/369SMkJAQfHx+r44qImxo2bBh9+vShWbNmxMTEcOTIEcLDw6tHt39cEmOaJnXq1LE4rYhcbxzjx48fb3WI693ixYsJCwvj0KFDrFmzhvvvvx+n08n58+fZt28fn376KcuXL2f8+PFERERoNEhEagzTNDl16hShoaHUrl2bGTNm0LZtWxo2bMirr76Kv78/cXFxOBwOQkND9eGiiFjq/PnzTJkyhVatWlGnTh3mzZuHp6cnxcXF7N69m4ULFzJ06FBCQ0P1fkxE/nQq31fBmTNnKCgo4H/+53/YtWsXK1asoFu3buTm5vLJJ59w/PhxxowZox1/RaTGWbt2LYMHD6ZNmzY0aNCA0NBQdu7cSUZGBiEhIcycOZOYmBji4+OtjioibsowDJYuXYrD4aB169aEhIQwduxY+vXrR5MmTdi9ezcbN27ku+++IysriwYNGlgdWUSuU9rt/Ar7cYfMXbt2MWPGDDp27MiyZcsIDg5m5syZgM7zFpGabe7cuSxZsoRZs2YRFRXFK6+8Qr9+/QgMDOTjjz8mMTGRmJgYq2OKiBsyDIPhw4dTWVmJw+Ggc+fOdOzYkcWLF/Pyyy/z6quvkpycTHl5OTabDS8vL6sji8h1TNs3XiEzZszgo48+ql5D9Pnnn3PhwgUOHz7M/fffz9GjR3n44YcBcDgcVkYVEfnNTp48Wf113759yczM5OGHH6a4uJjU1FQmTJiAy+WiVatWKt4iYgnDMHjyySdxOp3Mnj2bW2+9lT179gBwzz33MGTIEHr06MGuXbvw9vZW8RaRK04brl0BLpeLsLAwVq1aRWhoKNu3b2ffvn0sXryYb775hhUrVjBkyBBuuOEGAB1hISI1ylNPPcWnn37KHXfcQVFREW3btuWWW27h22+/ZeTIkUyfPh273U5JSQkhISFWxxURNzVo0CD8/PzIzs4GoLi4mGPHjnHgwAHi4uLo0aMHUVFR+Pv7W5xURNyFpp1fIZcuXWLt2rXMmzcPb29vFi5cWH0tNzeXhBmHTugAABBdSURBVIQEvSkVkRrFNE2++uorTp48yUsvvUTPnj25ePEiFRUVbN68mdjYWFavXs3NN9/MG2+8oVEkEbFMQUEBGzdu5MiRIwwfPpylS5fyySef4OnpSVBQEPv37yc1NZVnnnlGzyoRuWpUvq8gl8vFe++9x+bNmxk4cCCNGze2OpKIyO/21VdfkZWVxfz58ykoKGDBggUMHTqUtLQ0ysrK8PDwID8/n8jISCIiIqyOKyJuyDAM/vGPf9CmTRuaNGnC2rVrWbBgAWFhYeTk5FTft3fvXurUqaOBEBG5qrTb+RXkcDhwOp2YpklOTg4xMTFER0dbHUtE5DczDIOoqChq1arF8uXL6devH5WVlbz55pvUrVuXunXr4uHhQWRkJH5+flbHFRE3ZBgGTzzxBAEBAfTq1QtfX18SExNxuVyUlJSQmppKYGAgAGFhYfj6+lqcWETcjcr3Febh4UG9evXw8fEhJSVFb0pFpEYxTZMnnniCo0ePkpKSQuPGjTl06BCenp60adOG8vJyXnvtNRo2bEhkZKTVcUXETZmmSZ8+fUhOTmbUqFEA5OTkkJKSQlJSEuXl5cybN4+kpCTCwsIsTisi7kobrl0Fvr6+ZGRkYLPZrI4iIvKblJSUsHPnTg4ePMjnn3/OsGHDKC8vZ8OGDTRt2pSePXvi6elJeHi41VFFxI0dPnwY0zSrp5HPnj2b3NxcevfujZ+fH23atMHhcBAUFGRxUhFxZ1rzLSIiv6iqqgqHw8GaNWvw8PCgqKiIU6dO4XK5+Ne//sUDDzxA3759rY4pIkJFRQV79uzh3XffZffu3cTHxzNt2rSf3PPjM01ExCo640pERH5m2rRpbNy4kdOnT9O4cWOWLVtGeno6AwYMoH379kRGRlJQUEBZWZnVUUXETZmmyQ8//EB5eTmenp40bNiQ7t27ExAQQL169arvq6qqAlDxFhHLaeRbRER+5p133uHMmTMcPXqUQYMGceLECd59910mTJhAcHAwx48fx8PDQ7uai4hlsrKyOHbsGPXr1yczM5OEhAT8/f355ptvWL58OT4+PowZM8bqmCIi1bTmW0REgMs7Ba9Zs4aysjJuvvlmDMPg3LlzjB49mn79+hEQEMCRI0cIDg4mJibG6rgi4ubatGnD0aNHcTqd5OTkYJom6enpdOjQgfbt27Njxw7OnTun48RE5JqhkW8REcEwDB599FFCQ0Px9PSksLCQ8PBwHnjgAUpLS9mwYQPLli0jNjaWOXPmWB1XRNxYQUEBTqeTvXv3MnToUFauXMmOHTuYOXMmANHR0fj5+TFu3DgdJyYi1xSVbxER4cknnyQyMpIhQ4YAl9/cbtq0CZvNRv/+/XG5XBQXF1NSUkJcXJzFaUXEXX399dfMmTOHp556itDQUJYsWcLXX3/NyZMnGT58OGlpaezatYuIiAjq1KljdVwRkZ/QhmsiIm7u4sWL2O12evfuDVzexMjpdHLTTTexcuVKzp07h5eXF6GhoSreImIJ0zQpLy8nLS2N1q1bM3fuXMrLy6lbty7bt29n4MCBpKWlAXDDDTeoeIvINUnlW0TEjZWWllJZWcnRo0cpLS0FLh/ZA9CsWTPS0tLw8vKyMqKICOPGjWPVqlUAtG/fnqioKEpKSmjRogXp6el89tlnaDKniFzrVL5FRNzUW2+9xYYNGwgICOCWW25hypQpXLp0qbpsr169miNHjlQf0yMiYhWXy0X9+vUB8PX1pby8nKVLlwLQunVrXC4XLpfLyogiIv+VdjsXEXFj+fn5+Pr60qVLF5YvX85DDz3Evffey+nTp1m9ejXZ2dkEBgZaHVNE3FRhYWH1RpD+/v4A2Gw2MjMzyc7O5oMPPuDWW28lNTUVb29vi9OKiPxnjvHjx4+3OoSIiFx9aWlpXLhwgby8POx2O506daKqqopjx45RXl7OkCFDSEhIsDqmiLipJUuWsGHDBho1asSXX37Jli1biIyM5NSpU0RHR+Pt7U1RURGpqan4+flZHVdE5L/SbuciIm7CNE2ysrKoX78+TqeTpKQknE4nS5cupbi4mISEBNq2bWt1TBERAHJzc9m6dSt2u53t27fj4+ND7dq12bt3L+Hh4Zw9e5acnBzCwsKsjioi8qto2rmIiJs4efIkHh4eLF68mISEBOLi4jh27Fj1tYqKChwOB3fccQdweWqniMjVZBgG77zzDmfOnCEjI4P09HQ2btzI0aNHWbhwIRERERQVFWGz2SgtLVXxFpEaRdPORUTcwKhRo4iPj6dTp07Va7ifeuop7rzzTlJTU0lOTsZut9OhQwcCAwNVvEXkqjMMg9GjR1NVVYXdbqdx48akpqYSGBhIeXk5+/btIzY2lvDwcLy9vTXVXERqHE07FxFxA4MGDWLq1KkEBwdz5MgRVqxYQWFhIcOGDdN5uCJyTXjuuefw8vJi2LBh1a8ZhsHx48f5/vvv2bhxI0FBQfTv3x+Hw2FhUhGR30dHjYmIXOfKyso4f/485eXlAMTHx3PXXXcRHh5OdnY2Z8+etTihiLg70zQpKyujdevWANVHHJ44cYJnnnmGyMhIOnXqxN13363iLSI1lsq3iMh1auTIkXzyySf4+vri5eXFoUOH2L17NwCxsbF07NiR2267DcMwLE4qIu7OZrMRFhbG3r17MQyjumDXrVsXuFzGGzVqREhIiJUxRUT+EG24JiJyHSorKyMjI4OJEyfy7LPPUlFRwapVq/jiiy+Iiori4sWLpKSkMGbMGK2bFJFrQmRkJB9//DFNmjQhJiYGX19f1q1bx4kTJ6hdu7bV8URE/jCt+RYRuc68++67fPPNN4wcOZLc3FzGjx+Pn58fq1atoqioiKqqKvLy8mjcuDGRkZFWxxURN2SaJr1796Zjx46EhYXRvn17AObOncuBAwe4dOkSCQkJbN68mezsbJxOp8WJRUT+OJVvEZHrTF5eHlu3bqW8vJz+/fuzf/9+Ro8ezZQpU2jevLnV8UREuHDhAkOHDqVdu3Z89NFHxMXFkZ6eTtu2bSksLOTIkSMUFxeTnJxMbGys1XFFRP4UOmpMROQ6ExUVRXh4OAcPHiQvL4+2bdvSsGFDsrKyaNasGdHR0VZHFBE35+Pjw/79+zl9+jQvvvgiH330EQsXLmTlypVUVVXhdDpJT0+vPhpRROR6oPItInIdyMzMZNGiRRw5coRjx44REREBXJ7auWXLFnr06EGjRo2IiooiKCjI4rQi4s5M08Rms3HjjTeSm5vLxYsX2bp1K9nZ2SQmJlJYWMhNN92Ev7+/1VFFRP5U2nBNRKSG++GHH+jevTsvvvgie/bsITw8nClTplBUVERFRQX79+/H4XAwfPhwq6OKiGCz2QCw2+2UlZUxffp0XnzxRZKTk0lOTqaiogJPT0+LU4qI/PlUvkVEarC33nqL0tJSunTpwsSJE5k1axa33347vXv35ocffuDMmTPk5eXRokULq6OKiJsyTZNdu3bhdDp/smt5rVq1yMzMpKCggODg4OrXVbxF5HqlaeciIjVYSUkJ+/bto7CwkKZNmxIdHc2zzz5LTEwMDRo0ICQkhEaNGmndpIhYZtOmTcyfP5/Q0FDq1KmDp6cnhmFgGAbh4eHk5+fj5+dHXFxc9ai4iMj1SOVbRKQGi42NxcfHh7y8PM6fP8/tt99OZGQk06ZNo2HDhtpcTUQsV79+fby9vVm/fj21atUiNDQUb29v7HY7mzdvJjc3l65du2qNt4hc9zTtXESkhpkxYwZNmjShZcuWANx8880ArFq1iqioKDp06IBpmjrDW0QsYxgGQ4cOJSwsjNLSUiZPnkxxcTFr1qzBNE1atWrF6tWreeutt5g6daqeVyLiFlS+RURqEJfLRVhYGO+99x5eXl6kp6cDlwv48ePHWblyJS1btqRjx44WJxURd2UYBuPGjcPpdNKnTx9ycnI4cOAA3bp1w8/Pj40bN/LZZ5+Rm5vL1KlTdY63iLgNlW8RkRrEy8uLbt264evry8KFC7HZbDRv3hyA2rVrU6tWLQzDsDiliLizoUOHUlVVxaRJkwDYsWMHBQUFHDt2jNmzZ1NRUcGKFSuYNm0aTqfT4rQiIleP1nyLiNQwHh4exMfHU1lZyXvvvUdlZSX79u1jwYIFjBgxgjp16lgdUUTcVEVFBUVFRRQXFxMTE8P777/P+fPnmTp1KoWFhaxfv56hQ4fSunVrIiIirI4rInJVaeRbRKQG8vHxISMjg5CQEBYtWkRAQAD/+Mc/aNCggdXRRMSNeXp6cvfdd+Pv789jjz2Gt7c3ixcvBiAlJYXCwkIqKyt/cuSYiIi7UPkWEamhvLy8aNmyJS1atMBms+HhoUe6iFjPx8eHO++8E5fLxebNmzl27BiHDx9m2bJlPPbYY3pWiYjbspmmaVodQkRERESuL5cuXWL9+vXMmTMH0zSZMWMG8fHxVscSEbGMPnoUERERkT+dj48P7du3xzAM0tLSVLxFxO1p5FtERERErhjTNLHZbFbHEBGxnN3qACIiIiJy/VLxFhG5TOVbRERERERE5ApT+RYRERERERG5wlS+RURERERERK4w7XYuIiLyO23bto0RI0aQmJj4i9f37NlDfHw8vr6+dOnShVOnThEWFsZ9991Xfc8999zD9OnT2b59OzNnzmTlypX4+fkBMHLkSO69916aN2/ObbfdxpYtWwD44IMPmDdvHnD5OKf+/fvTsWNHtm3bxsKFC3nwwQeZOHEiAF9++SVpaWnY7Xa6d+/O9OnTefvtt6lXrx4AH374If/85z95++23cTgcV+x/JSIi4u5UvkVERP6A9PR0nn/++V+81qtXL8aPH4/T6QRgxowZ//F3lZWVMWnSJCZNmvRv78nLyyMnJ4dXX32V2rVrc/78eXr27PmTDwCSk5OZP38+AK1bt+aNN97A29sbuLz51eOPP878+fMpKipi2rRpvPbaayreIiIiV5imnYuIiFwjunbtyqFDh9i0adO/vWfJkiX07t2b2rVrAxAcHMySJUuqC/6v+RvBwcEsWrSIqVOn8uCDDxIbG/un5BcREZF/TyPfIiIif8DWrVvp1atX9fetWrViwIAB//b+nJwcVq9eXf39wYMHq792OBxMmTKFgQMHcuONN/7iz3///fc/K8uBgYG/KfOECRPo2bMnN9xwA127dv1NPysiIiK/j8q3iIjIH/Cfpp3/kj59+vxszff/Lz4+nszMTCZMmPCL5yNHR0dz8uRJGjZsWP3aF198QVhY2K/OEBISQrNmzcjIyPjVPyMiIiJ/jKadi4iIXGP+9re/ceHCBbZu3fqza927d+f111/n4sWLABQWFvL4449TVlZ2tWOKiIjIb6CRbxERkT/g/047B3jttdfw8fH53b/TZrMxadIkOnfu/LNrN910E/fccw/9+vXDw8ODS5cu8cgjj9CwYUO2bdv2u/+miIiIXFk20zRNq0OIiIiIiIiIXM807VxERERERETkClP5FhEREREREbnCVL5FRERERERErjCVbxEREREREZErTOVbRERERERE5ApT+RYRERERERG5wlS+RURERERERK4wlW8RERERERGRK+z/AYaIl3sXIE3KAAAAAElFTkSuQmCC\n",
3281
      "text/plain": [
3282
       "<Figure size 1152x576 with 2 Axes>"
3283
      ]
3284
     },
3285
     "metadata": {},
3286
     "output_type": "display_data"
3287
    }
3288
   ],
3289
   "source": [
3290
    "plt.figure(figsize=(16,8))\n",
3291
    "ax=sns.countplot(data=saps, x='ETHNICITY', hue='hdeath')\n",
3292
    "ncount = len(saps)\n",
3293
    "ax2=ax.twinx()\n",
3294
    "ax2.yaxis.tick_left()\n",
3295
    "ax.yaxis.tick_right()\n",
3296
    "ax.yaxis.set_label_position('right')\n",
3297
    "ax2.yaxis.set_label_position('left')\n",
3298
    "ax2.set_ylabel('Frequency [%]')\n",
3299
    "\n",
3300
    "ax.set_xticklabels(ax.get_xticklabels(),rotation=45)\n",
3301
    "\n",
3302
    "for p in ax.patches:\n",
3303
    "    x=p.get_bbox().get_points()[:,0]\n",
3304
    "    y=p.get_bbox().get_points()[1,1]\n",
3305
    "    ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y), \n",
3306
    "            ha='center', va='bottom') # set the alignment of the text\n",
3307
    "\n",
3308
    "# Use a LinearLocator to ensure the correct number of ticks\n",
3309
    "ax.yaxis.set_major_locator(ticker.LinearLocator(11))\n",
3310
    "\n",
3311
    "# Fix the frequency range to 0-100\n",
3312
    "ax2.set_ylim(0,100)\n",
3313
    "ax.set_ylim(0,ncount)\n",
3314
    "ax.set_title('ICU Patient Ethnicity and ICU mortality')\n",
3315
    "# And use a MultipleLocator to ensure a tick spacing of 20\n",
3316
    "ax2.yaxis.set_major_locator(ticker.MultipleLocator(20))\n",
3317
    "\n",
3318
    "# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars\n",
3319
    "ax2.grid(None)\n"
3320
   ]
3321
  },
3322
  {
3323
   "cell_type": "code",
3324
   "execution_count": 45,
3325
   "metadata": {},
3326
   "outputs": [
3327
    {
3328
     "data": {
3329
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABL8AAAIQCAYAAABg5syWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxN1/7/8ffJiQwyiAhKEySGNqiYSl1DS6uGFq2SBJdqKVW0qKlIomSghmoNMVw6pEjQ1O2tXqrmoU1xK7fUcFUMKRdXKEkjwznn94ef85VWJMigu6/n45HH4+xhrf3Z+5x/vK21tslms9kEAAAAAAAAGJBDaRcAAAAAAAAAFBfCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAFBK2rVrpx9++MG+vWXLFvXt21fdunXTM888oxEjRujs2bOSpNTUVDVq1Oh3fSxdulTjx4//3f7U1FQFBgaqW7du9r+uXbtqzZo1Bda1detWvffee5KkTZs2KTIy8m5vUVevXlW/fv1ueSwpKUnPPvvsXfd9P7ty5Yr9ubdv314NGjSwb0+fPr20yytQfr8rSXrooYeUlpZm3/7ss88UEhKibt26qXPnzgoLC9OVK1ck5f8dT5kyRXPnzi2e4n/j5t/z7fTt21fr16/XuXPnFBoaKkk6ffq0hg8fXtwlAgCAYuZY2gUAAADpH//4h2JjYxUbG6vq1avLZrNp8eLF6tevn9atW3dXfbq4uOjvf/+7ffvcuXN69tlnVb9+fT388MP5tvvhhx/0yy+/SJKefPJJPfnkk3d1fUn65Zdf8gR8fxaenp72Z5+UlKSpU6fm+S6MYuHChdq+fbvmz58vHx8f5eTkKDo6Wq+++qpWrFhR2uVJyvt7LozKlSsrPj5eknTmzBmlpKQUV2kAAKCEEH4BAHAfePfddzV16lRVr15dkmQymTRo0CBVqVJF2dnZRXKNypUrq3r16jpx4oSqVaumyZMn6+TJk7p8+bLc3Nw0c+ZMXb16VfHx8bJYLPLw8FD16tW1YcMGLVq0SFevXlVUVJSOHj2qnJwctWjRQmPHjpWjo6MeeeQRDRo0SLt27dL58+c1cOBA9e7dW2+99ZauXbumbt26KTExUWaz+Za1JSYmauPGjXJwcNDJkyfl4uKi6dOnq2bNmvrqq68UGxsrk8kks9mssWPH6tFHH1Xfvn3Vp08fdezYUZLybNevX19PPvmkDh8+rJkzZ+rIkSNKSEhQTk6OfvnlF73yyivq3bv3ba974cIFRURE6Pjx43JwcFBoaKj69et32+dQWC+99JI6deqk4OBgSdKCBQt0+fJlPfzww1q/fr2sVqvOnDmjypUra9q0aapcuXKhr5uSkqIpU6YoIyNDFy5c0MMPP6w5c+bI2dk53+8pJydHkZGR2r17typUqKAKFSrIw8Pjtvfw66+/atGiRfrss8/k4+MjSSpTpozGjh2rjRs33tXvNjExUV999VWe+w8ODtYnn3yiEydO6KWXXtLLL78sSZo/f77WrVsns9ksf39/hYWFqWLFiurbt6/KlSun48ePq3Pnznl+z4MHD77l7z4gIMBeQ2pqqrp06aK9e/dq0qRJOnfunAYMGKCmTZvq2LFjmjVrliRp7969ioyM1Nq1a+/4PgEAQMli2iMAAKXs0qVL+vnnn9W4ceM8+00mk7p27Sp3d/ciuc7333+vU6dOKSgoSNu3b5enp6cSEhK0YcMG1a9fX8uXL1dQUJBCQ0PVuXNnjRw5Mk/76Oho1atXT4mJiVq7dq0uXbqkDz74QJKUnZ2t8uXLKz4+Xu+//75iYmKUlZWlmJgY+wi0/IKvG/bs2aOwsDB98cUXCgoK0uLFiyVJ77zzjiIiIpSYmKg33nhDSUlJBd5rTk6O2rZtqw0bNiggIECrV6/W4sWLtXbtWr377ruaMWNGgdd9++23VaNGDa1fv14JCQlatWqVTp48edvnUFh9+vTRqlWrJElWq1Vr1qyxT7Xbs2ePJk6cqC+//FL16tVTVFRUgc//ZqtWrdJzzz2nVatW6auvvlJqaqq2bt0qKf/vacWKFTpx4oTWrVunZcuW2afb3s7x48fl4uKiGjVq5Nnv6uqqrl27ysnJ6Y6eyQ179+7V22+/rc8//1z//e9/tW7dOn300UdasmSJ5syZI6vVqk8//VQ7duzQmjVr9I9//EO1a9fOM03T09NTX375pYYNG5bn95zf7/5WzGazIiMjVa1aNS1dulTBwcHaunWrLl++bH/ON74zAABwf2PkFwAApczB4fr/RVmt1gLP+S2r1ZrvsRsjriTJYrGofPnymjFjhqpUqaIqVarIz89PcXFxOnnypL777rtbril2s61bt+qHH36wrxt27dq1PMdvTI+sV6+esrOz9euvv962v9+qV6+eHnjgAUlS3bp1tXHjRknSM888o2HDhunxxx9Xy5Yt9corrxSqv6ZNm0qS3NzctHDhQm3btk0nTpzQ4cOH89SW33V3796tMWPGSJI8PDz0xRdfFOo5FEbbtm0VFRWlw4cP69y5c/L19VVAQID279+vli1byt/fX5IUHBxs/w4Le90xY8Zo165dWrJkiU6cOKHz58/nud9bfU/ffPONnn32WTk5OcnJyUldunTRkSNHbnsPDg4Ot/3N3jjnVm73u33kkUdUpUoVSZKvr69atWolBwcH+fn5KSsrS5mZmdq+fbu6d++usmXLSpL69eunhQsX2keb3fjuf6tjx453/Lu/oUKFCnriiSf097//Xc8995x27typiIiIQrUFAACli/ALAIBSVq5cOdWoUUPJycn6y1/+kufYG2+8oSFDhsjPz0/Xrl1TVlaWnJ2d7ccvXrwoLy+vW/b72zW/brZixQqtWrVKffr0UZcuXeTl5aXU1NTb1mm1WvXee++pZs2akq4v6m4ymezHb9R1Y5/NZivgzn9f7w0mk8nefuTIkXrhhRe0a9cuJSYmatmyZfYA6OZr5OTk5OnvRjDy3//+VyEhIQoODlaTJk3UsWNHbdmypcDrOjo65rm/06dPq3z58gU+h8Iwm80KCQnRmjVrdP78+TwjiG4eIWe1Wu3bhb3uqFGjZLFY1KlTJz3xxBM6e/ZsnudUmO+poFF6klSrVi3l5ubqxIkTeUZ/ZWVladiwYYqMjFT58uXtI6VudvHiRdWuXfuW/f52xNitppNardY89261WpWbm2vfvvHd/9bd/O5v1qdPH02ePFmOjo56+umn5ebmVui2AACg9DDtEQCA+8CwYcMUFRWlkydPSro+UmvBggU6fPiwAgIC5ObmpiZNmuijjz6ytzl37pzWr1+vxx9//I6vt3PnTj3//PPq2bOn/P39tXnzZlksFknXg4+bg4QbWrVqpQ8//FA2m03Z2dkaMmSIPvnkk9tex9HRURaL5Y6DsBtyc3PVrl07ZWZmqlevXoqIiNCRI0eUnZ0tb29vHThwQJJ07NixfEcqHThwQN7e3nrttdfUqlUre/B1437z06JFC3366aeSrr+18sUXX9SJEyfu6jncSs+ePfX111/r4MGDat++vX3/t99+q3PnzkmS4uPj1bZtW0mFf/47d+7U0KFD1blzZ0lScnJygffaunVrrV27VllZWcrKytKXX35ZYP1OTk565ZVXNHHiRP3vf/+TdH1aZXR0tDIzM1W5cmUFBATIyckpT3/Hjh1TUlKSWrZsWeA1blfvp59+ah/RFhcXp0cfffSWUy1v/j3f7nd/K2azOU+o2rhxYzk4OGjp0qVMeQQA4A+EkV8AANwHunTpIpvNplGjRik3N1dZWVmqV6+ePvroI/s/6GfOnKno6Gg988wzcnBwkNls1uuvv67mzZvf8fVefvllhYeH20dQNWzYUEePHpUkPfbYYxo9erSmTp2qevXq2dtMnDhRUVFR6tKli3JycvSXv/xFAwcOvO11KlasqAYNGuiZZ57R8uXLVb58+Tuq09HRURMmTNDo0aPtI7Gio6Pl5OSkIUOGaPz48dq2bZsCAgLynerWsmVLrVmzRh07dpTJZFKzZs3k7e1tDxrzEx4ersmTJ9u/m8GDB6t+/fp39RxupUKFCqpfv75q1qypMmXK2PdXrlxZY8aM0YULF1SrVi1NmTJFUuGf/8iRIzV06FCVLVtW7u7uevTRR3Xq1Knb1hIaGqpTp07p2WeflZeXl/3FCwV59dVX5erqqgEDBki6PuqrWbNmWrBggaTr0x4XLVqkadOmKTY2VjabTWXLltU777zzu7XC7kSPHj109uxZ9ezZU1arVdWrV9fMmTNvee7Nv+fb/e5vpVatWnJ2dlaPHj20evVqmUwmde/eXV9++eVt35gKAADuLybb3f5XLAAAAO5aWlqaevTooeXLl9vXuEpMTLS/XRP3n9zcXA0bNkxdu3a1j6wDAAD3P6Y9AgAAlLBVq1apc+fOGjBggD34wv3t2LFjatGihcqXL6+OHTuWdjkAAOAOMPILAAAAAAAAhlVsI7+Sk5PVt29fSdLJkyfVq1cv9e7dWxEREfbXYs+bN089evRQaGio/v3vfxdXKQAAAAAAALgHixYtUkhIiLp3767Vq1fb90dHR2vlypV5zk1LS9PTTz+trKysPPs3btyoN998077dt29f+1/Lli3zXcPzXhXLgvdLlizR559/LldXV0lSTEyMRowYoebNmys8PFybNm1S1apV9d1332n16tU6e/ashg8fbn+jEgAAAAAAAO4PSUlJ+v7777Vy5UplZmZq2bJlSktL09ixY3XixAn7y28kaceOHZo1a5b9bdA3REZGaufOnQoMDLTvi4uLkySdPn1ab7zxhoYMGVIs9RdL+FWtWjXNnTtXY8eOlSQdPHhQzZo1kyS1adNGu3btkr+/v1q1aiWTyaSqVavKYrEoLS1N3t7ev+svISFBCQkJkqQjR47ogQceKI6yAQAAAAAA/pRSU1PzvOk7JCREISEhkqSdO3eqTp06Gjp0qNLT0zV27FhlZGRo+PDh2r59e55+HBwc9MEHH+iFF17Is79x48Z66qmn7PnOzaKiojRmzBi5ubkVw50VU/jVoUMHpaam2rdtNptMJpMkyc3NTVevXlV6erq8vLzs59zYf6vw6+YHHhQUpE2bNhVH2QAAAAAAAH9KQUFBSkxMvOWxS5cu6cyZM1q4cKFSU1M1ZMgQrV+/Xn5+fr8Lv1q2bHnLPjp37qykpKTf7T98+LAyMjLUokWLe7+JfBRL+PVbDg7/t7RYRkaGPD095e7uroyMjDz7PTw8SqIcAAAAAAAAFJKXl5cCAgLk5OSkgIAAOTs7Ky0tTRUqVLjnvj///HP17NmzCKrMX7EteH+zunXr2tO97du3q2nTpmrcuLF27twpq9WqM2fOyGq13nLUFwAAAAAAAEpPkyZNtGPHDtlsNp07d06ZmZl5ZvPdi2+//VatW7cukr7yUyIjv8aNG6ewsDDNnj1bAQEB6tChg8xms5o2baqQkBBZrVaFh4eXRCkAAAAAAAC4A23bttWePXvUo0cP2Ww2hYeHy2w2F0nfFy5cUPny5Yukr/yYbDabrVivUMSCgoKUnJxc2mUAAAAAAADkkZOTo9TUVF27dq20S8mXi4uLfH19VaZMmTz7jZy3lMjILwAAAAAAAKNLTU2Vh4eHatSoYX/x3/3EZrPp4sWLSk1Nlb+/f2mXU2JKZM0vAAAAAAAAo7t27ZoqVKhwXwZfkmQymVShQoX7emRacSD8AgAAAAAAKCL3a/B1w/1eX3Eg/AIAAAAAAIBhEX4BAAAAAAAUo8TERM2cOTPf4zNnzlRiYuId95uQkKCcnBwlJSVp5MiR91KioRF+AQAAAAAA/AEtWrRIVqu1tMu47/G2RwAAAAAAgGKWnJysl19+WWlpaerVq5e8vLwUGxsrb29v5eTkKCAgQJI0a9Ys7dmzRzabTf3791enTp303Xffad68eZKuL6o/ffp07d27VxcuXNDIkSP14osv6uTJkxo4cKDS0tLUtm1bDR8+vDRv975C+AUAAAAAAFDMHB0dtXTpUv38888aNGiQsrOztXr1anl5eWnQoEGSpG3btik1NVXx8fHKyspScHCwWrZsqf/85z+aMWOGKleurIULF2r9+vUaMmSIYmNj9e6772r//v3KysrSggULZLFY9MQTTxB+3YTwCwAAAAAAoJjVrVtXJpNJFStWVGpqqgICAlS+fHlJUqNGjSRJR48e1cGDB9W3b19JUm5urs6cOaPKlSsrKipKZcuW1blz59S4cePf9V+7dm05OTlJuh604f/wNAAAAAAAAIqZyWSyf/by8tLVq1eVlpYmb29v/fDDD3rggQcUEBCg5s2ba+rUqbJarVqwYIF8fX3Vv39/ff3113J3d9e4ceNks9nsfd5Y8+vm/pEX4RcAAAAAAEAJcnR0VExMjAYMGKBy5crZR2q1a9dO3333nXr37q1ff/1VTz31lNzd3dWtWzcFBwfL09NTPj4+On/+vCSpadOmGjRokIYOHVqat3PfM9luxIV/EEFBQUpOTi7tMgAAAAAAAPI4dOiQAgMDS7uMAt2qTiPnLQ6lXQAAAAAAAABQXAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAoBhk5Vju6/7+LBxLuwAAAAAAAAAjci5jVpMxHxdZf/tm9CvwHKvVqsmTJ+vIkSNycnJSZGSkqlevXmQ1/BEx8gsAAAAAAMAgvv76a2VnZyshIUFvvvmmpk2bVtollTrCLwAAAAAAAIPYt2+fWrduLUlq2LChDhw4UMoVlT7CLwAAAAAAAINIT0+Xu7u7fdtsNis3N7cUKyp9hF8AAAAAAAAG4e7uroyMDPu21WqVo+Ofe8l3wi8AAAAAAACDaNy4sbZv3y5J2r9/v+rUqVPKFZW+P3f0BwAAAAAAUEyyciyFekPjnfTnXMZ823Pat2+vXbt2KTQ0VDabTdHR0UV2/T8qwi8AAAAAAIBiUFBQVRz9OTg4aMqUKUV63T86pj0CAAAAAADAsAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAoBjYcrPu6/7+LBxLuwAAAAAAAAAjMjk669SUR4qsv2rhPxTqvOTkZM2cOVNxcXFFdu0/MsIvAAAAAAAAg1iyZIk+//xzubq6lnYp9w2mPQIAAAAAABhEtWrVNHfu3NIu477CyC8AAAAAAACD6NChg1JTU4u83+eee04eHh6SJF9fX7Vt21bvvPOOqlSpIkkaPny4mjZtqsmTJ+vIkSNycnJSZGSkqlevrv379ysqKkpms1mtWrXSsGHDbtlnTExMkdctEX4BAAAAAADgNrKyri+0f/MaYu+++67GjBmjDh062Pd99dVXys7OVkJCgvbv369p06YpNjZWERERmjt3rvz8/DRo0CAdPHhQtWrV+l2fxYXwCwAAAAAAAPk6fPiwMjMz9fLLLys3N1ejRo3SwYMHdejQIX300Udq0KCBRo8erX379ql169aSpIYNG+rAgQNKT09Xdna2qlWrJklq1aqVvvnmG+Xm5v6uz4YNGxZL/YRfAAAAAAAAxcCWm1XoNzQWtj+To3OR9Xczi8Wi7t2727dDQkIUEhIiSXJxcdGAAQPUs2dPnThxQq+88opCQkLUsWNH+fr6KiIiQvHx8UpPT5e7u7u9D7PZ/Lt9bm5uOn369C37XL9+vRwdiz6qIvwCAAAAAAAoBkUdVBW2P19fX61ateqO+jabzUpMTLzlMX9/f1WvXl0mk0n+/v7y8vLSs88+a1/v68knn9SGDRvk4eGhjIwMezur1Sp3d/c8+zIyMuTp6XnLPi9cuGDvsyjxtkcAAAAAAADka82aNZo2bZok6dy5c7p69ap69uyp//73v5Kkb775RvXq1VPjxo21fft2SdL+/ftVp04dubu7q0yZMjp16pRsNpt27typpk2b/q7P9PR0VaxYsVjqZ+QXAAAAAAAA8tWjRw+99dZb6tWrl0wmk2JiYvTrr79q2LBhcnFxUc2aNRUcHCyz2axdu3YpNDRUNptN0dHRkqS3335bo0ePlsViUatWrRQUFKTAwMA8fUZHRxfLlEdJMtlsNlux9FxMgoKClJycXNplAAAAAAAA5HHo0CE9/PDDMplMpV1Kvmw2mw4fPqzAwMA8+42ctzDtEQAAAAAAoAi4uLjo4sWLul/HGdlsNl28eFEuLi6lXUqJYtojAAAAAABAEfD19VVqaqouXLhQ2qXky8XFRb6+vqVdRoki/AIAAAAAACgCZcqUkb+/f2mXgd9g2iMAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAAAACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADMuxpC6Uk5Oj8ePH6+eff5aDg4OmTp0qR0dHjR8/XiaTSbVr11ZERIQcHMjjAAAAAAAA7jcXL15U9+7dtWzZMmVnZysiIkJms1k1atRQVFSUHBwctHTpUq1bt04mk0mvvvqq2rdvr8uXL2vMmDFKT0+Xl5eXIiMjVaFCBXu/YWFhKleunEaPHl0sdZdY0rRt2zbl5uYqPj5eQ4cO1Zw5cxQTE6MRI0ZoxYoVstls2rRpU0mVAwAAAAAAgELKyclReHi4XFxcJEnz5s3T0KFDtXLlSmVnZ2vr1q26cuWK4uLiFB8fr2XLlik6OlqStGjRIjVp0kQrV65U3759NXv2bHu/8fHxOnr0aLHWXmIjv/z9/WWxWGS1WpWeni5HR0ft379fzZo1kyS1adNGu3btUvv27X/XNiEhQQkJCZIkJycnHTp0qKTKBgAAAAAAMDyLxaLu3bvbt0NCQhQSEmLfnj59ukJDQ7V48WJJUmBgoC5fviybzaaMjAw5OjrK1dVVVatWVWZmpjIzM2UymSRJx44d08iRIyVJjRs31pQpUyRJ33//vZKTkxUSEqLjx48X272VWPhVtmxZ/fzzz+rUqZMuXbqkhQsXas+ePfYH4ebmpqtXr96y7c0PPCgoSIGBgSVVNgAAAAAAgOGZzWYlJibe8lhiYqK8vb3VunVre/hVo0YNTZkyRbGxsfLw8FDz5s0lSVWqVNEzzzwji8WiwYMHS7oelG3evFl169bV5s2bde3aNZ0/f17z5s3TvHnz9M9//rNY763Ewq8PP/xQrVq10ptvvqmzZ8/qxRdfVE5Ojv14RkaGPD09S6ocAAAAAAAAFMKnn34qk8mkb775RocOHdK4ceN0+PBhffbZZ6pdu7aWL1+uadOmqVWrVjp//rx9WasBAwaocePGGjRokKKiotS/f3+1bt1aDzzwgNavX69Lly5p0KBBunDhgq5du6aAgIA8o8+KSomFX56enipTpowkqVy5csrNzVXdunWVlJSk5s2ba/v27XrsscdKqhwAAAAAAAAUwvLly+2f+/btq8mTJ2vo0KFyd3eXJFWqVEn/+te/VK5cObm4uMjJyUkmk0keHh66cuWK9u7dq27duumxxx7Thg0b1LhxY/Xr10/9+vWTdH1k2fHjx4sl+JJKMPzq37+/JkyYoN69eysnJ0cjR45U/fr1FRYWptmzZysgIEAdOnQoqXIAAAAAAABwlyIjIzVy5Eg5OjqqTJkymjp1qnx9fbV7924FBwfLwcFBjRs3VsuWLXXq1CmNGzdO0vWg7MZC+CXFZLPZbCV6xXsUFBSk5OTk0i4DAAAAAADAMIyctziUdgEAAAAAAABAcSH8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAAAACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsBxLuwAAAAAAAADc/y5evKju3btr2bJlys7O1tSpU2U2m+Xk5KTp06frwoULio6Otp+/f/9+zZ8/X7Vq1dLYsWNls9lUrlw5zZo1S66urvriiy/00UcfyWw2q06dOpo8ebIcHIp+nBYjvwAAAAAAAHBbOTk5Cg8Pl4uLiyQpKipKYWFhiouLU/v27bVkyRIFBgYqLi5OcXFx6t27t55++mm1adNGH374oTp16qTly5erdu3aWrNmja5du6Y5c+bo448/Vnx8vNLT07Vly5ZiqZ3wCwAAAAAAALc1ffp0hYaGqlKlSpKk2bNnKzAwUJJksVjk7OxsP/fXX3/V3LlzNXHiRElSYGCgrly5IklKT0+Xo6OjnJycFB8fL1dXV0lSbm5unj6KEuEXAAAAAADAn5zFYlH37t3tfwkJCfZjiYmJ8vb2VuvWre37boRg//rXv/TJJ5+of//+9mNr1qxRx44d5e3tLUl64IEHtHz5cj3zzDPavn27OnbsKAcHB/n4+EiS4gvFf8cAACAASURBVOLi9Ouvv6ply5bFcm8mm81mK5aei0lQUJCSk5NLuwwAAAAAAADDuF3e0qdPH5lMJplMJh06dEg1atRQbGys9uzZo9jYWC1YsEB+fn7283v27Kn3339fVapUkSQ9//zzGjVqlFq3bq2tW7dqxYoVWrx4saxWq2bMmKGUlBS9++679lFgRY0F7wEAAAAAAJCv5cuX2z/37dtXkydP1u7du5WQkKC4uDh5eXnZj1+9elXZ2dn24EuSPD095eHhIen6iLEbUyDDw8Pl5OSkBQsWFMtC9zcQfgEAAAAAAKDQrFaroqKiVKVKFQ0fPlyS9Oijj+r1119XSkqKHnzwwTznh4WFacqUKbJarbLZbAoPD9fBgwe1Zs0aNW3aVC+++KIkqV+/fmrfvn2R18u0RwAAAAAAgD85I+ctLHgPAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAAAACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiOJXmxRYsWafPmzcrJyVGvXr3UrFkzjR8/XiaTSbVr11ZERIQcHMjjAAAAAAAA7hcWi0WTJk1SSkqKzGazYmJi5ObmpkmTJunKlSuyWCx65513VK1aNW3btk3z58+XJNWtW1cRERFasmSJduzYIUm6cuWK/ve//2nXrl3avHmz5s+fL0dHR73wwgsKDg4ulvpLLPxKSkrS999/r5UrVyozM1PLli1TTEyMRowYoebNmys8PFybNm1S+/btS6okAAAAAAAAFGDLli2SpPj4eCUlJSkmJkblypVTly5d1LlzZ3377bc6fvy4vL29NWPGDH388cfy9vbWkiVLdOnSJQ0aNEiDBg2SJA0ePFijR49WTk6OYmJitGbNGrm6uqpXr15q27atKlasWOT1l1j4tXPnTtWpU0dDhw5Venq6xo4dq1WrVqlZs2aSpDZt2mjXrl23DL8SEhKUkJAgSXJyctKhQ4dKqmwAAAAAAADDs1gs6t69u307JCREISEhkqSnnnpKTzzxhCTpzJkz8vHxUVJSkh566CH1799fDz74oCZOnKh9+/apTp06mj59uk6fPq2ePXvK29vb3udXX30lT09PtW7dWocPH1a1atVUrlw5SVKTJk20d+9ederUqcjvrcTCr0uXLunMmTNauHChUlNTNWTIENlsNplMJkmSm5ubrl69esu2Nz/woKAgBQYGllTZAAAAAAAAhmc2m5WYmJjvcUdHR40bN04bN27U+++/r8TERHl6eurDDz/UvHnztGTJEvn7+yspKUlr165V2bJl1adPHzVs2FD+/v6Sri+HNXv2bElSenq6PDw87P27ubkpPT29WO6txBbY8vLyUqtWreTk5KSAgAA5OzvnCbsyMjLk6elZUuUAAAAAAADgDkyfPl0bNmxQWFiYPDw81K5dO0lSu3btdODAAXl5eemRRx5RxYoV5ebmpqZNm9pn7x07dkyenp6qXr26JMnd3V0ZGRn2vjMyMvKEYUWpxMKvJk2aaMeOHbLZbDp37pwyMzPVokULJSUlSZK2b9+upk2bllQ5AAAAAAAAKIS1a9dq0aJFkiRXV1eZTCY1a9ZM27ZtkyTt2bNHtWrVUv369XX06FGlpaUpNzdXycnJqlWrliRp9+7datOmjb3PmjVr6uTJk7p8+bKys7O1d+9eNWrUqFjqL7Fpj23bttWePXvUo0cP2Ww2hYeHy9fXV2FhYZo9e7YCAgLUoUOHkioHAAAAAAAAhfD000/rrbfeUp8+fZSbm6sJEyYoMDBQkyZNUnx8vNzd3TVr1iyVK1dOb775pgYOHChJ6tixo+rUqSNJSklJUcuWLe19lilTRuPHj9eAAQNks9n0wgsvqHLlysVSv8lms9mKpediEhQUpOTk5NIuAwAAAAAAwDCMnLeU2LRHAAAAAAAAoKQRfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMNyzO9Aq1atbtvQZDJpx44dRV4QAAAAAAAAUFTyDb/8/f0VFxeXb8O+ffsWS0EAAAAAAABAUcl32uOiRYvybF+7dk1XrlzJ9zgAAAAAAABwv8l35FfZsmXtn1evXq1t27bJYrGoatWqCgsLy3McAAAAAAAAuB/lO/Lryy+/tH8+cOCA5s6dqwULFuiHH34okcIAAAAAAACAe5XvyK/c3FyNHDlS/fr1U5cuXTRo0CBlZWUpNDS0JOsDAAAAAAAA7lq+4VfXrl3VsWNHffDBBzp16pTCw8Pl5+dXkrUBAAAAAAAA9yTf8Ov8+fP65z//KW9vb3Xu3FkfffSRXFxcNHjwYHl4eJRkjQAAAAAAAMBdyXfNrzfffFMPPvignJ2dtXjxYk2aNEldu3bV22+/XZL1AQAAAAAAAHct3/ArJydHJpNJJpNJFotFklSnTh3NnDmzxIoDAAAAAAAA7kW+4dd7772n06dPKzMzU5MmTSrJmgAAAAAAAIAikW/4FRcXp/79+ys4OFhly5b93XFGgAEAAAAAAOB+l++C94mJiTp79uwtj9lsNiUlJWn06NHFVhgAAAAAAABwr/INv+bMmXPbhqGhoUVeDAAAAAAAAFCU8g2/mjVrVpJ1AAAAAAAAAEUu3zW/AAAAAAAAgD+6AsOv//3vfyVRBwAAAAAAAFDk8p32eMPw4cPl7e2tHj166PHHH5eDA4PFAAAAAAAA8MdQYPi1cuVK/fTTT1qzZo1iY2PVokUL9ejRQ35+fiVRHwAAAAAAAHDXCjWMq1KlSvLz85OLi4uOHj2qqKgovffee8VdGwAAAAAAAHBPCgy/3njjDYWEhOjKlSuaMWOGYmNjtXDhQm3btq0k6gMAAAAAAMCf3OrVq/Nsf/zxx4VuW+C0x+DgYDVs2FBubm46f/68ff/KlSvvoEQAAAAAAADgznzxxRfavHmzkpKS9O2330qSLBaL/vOf/6hfv36F6qPA8Ov777/Xjh07NH78eEVGRqp+/foaNGiQnJ2d7616AAAAAAAA4DZat26tihUr6vLlywoJCZEkOTg43NFa9CabzWa73Qndu3dXYmKifTs0NFTx8fF3WfK9CwoKUnJycqldHwAAAAAAwGj+CHnLxYsXlZWVZd+uWrVqodoVOPLLZDIpOztbTk5OysnJUQFZGQAAAAAAAFCk3n77bW3btk2VKlWSzWaTyWQq9OCsAsOv0NBQdenSRXXq1NHx48c1cODAey4YAAAAAAAAKKzk5GR9/fXXcnAo8N2Nv1Ng+NWzZ089+eSTOn36tPz8/OTt7X1XRQIAAAAAAAB3o3r16srKypKrq+sdty0w/Dp06JASEhLyzKmMiYm54wsBAAAAAADgj8disWjSpElKSUmR2WxWTEyMbDabxo8fL5PJpNq1aysiIkIODg569dVXdfnyZZUpU0bOzs7629/+poMHD+rVV19VjRo1JEm9evVS586dFRMTo3379snBwUHjxo1TkyZN8q3h7Nmzatu2rapXry5JRTvtcfz48frrX/+qBx54oFAdAgAAAAAAwDi2bNkiSYqPj1dSUpI9/BoxYoSaN2+u8PBwbdq0Se3bt9epU6e0bt06mUwme/sff/xRL730kl5++WX7vsOHD+v777/X6tWrdfLkSY0aNSrPCxd/a9asWXddf4Hhl4+Pj3r27HnXFwAAAAAAAMAf11NPPaUnnnhCknTmzBn5+Pho69atatasmSSpTZs22rVrlxo1aqQrV67o1Vdf1ZUrVzRo0CC1bdtWBw4cUEpKijZt2qTq1atrwoQJqlSpklxcXJSdna309HQ5Ot4+ovrss89+t2/YsGGFqr/A8OvBBx/U4sWLFRgYaE/tWrVqVajOAQAAAAAAcP+zWCzq3r27fTskJEQhISH2bUdHR40bN04bN27U+++/ry1btthzIjc3N129elU5OTl6+eWX1a9fP/3yyy/q1auXGjRooAYNGqhnz56qX7++YmNjNX/+fA0ZMkQODg7q1KmTrl69qqlTp962Ph8fH0mSzWbTjz/+KKvVWuh7KzD8ysnJUUpKilJSUuz7CL8AAAAAAACMw2w233baoSRNnz5do0ePVnBwcJ614TMyMuTp6SkfHx+FhobK0dFRFSpUUGBgoFJSUtS+fXt5enpKktq3b6+pU6dq7dq18vHx0dKlS5WRkaHevXurUaNGqly58i2vHRoammd74MCBhb63AsOvmJgYpaSk6NSpU3rooYdUqVKlQncOAAAAAACAP7a1a9fq3LlzGjx4sFxdXWUymVS/fn0lJSWpefPm2r59ux577DHt3r1by5cv1+LFi5WRkaH//Oc/CggI0IABAxQWFqYGDRrom2++Ub169eTp6amyZcvKbDbLzc1NTk5OysjIyLeGmwdlXbhwQWfPni10/QWGX5988ok2btyoX375Rc8//7xOnjyp8PDwQl8AAAAAAAAAf1xPP/203nrrLfXp00e5ubmaMGGCatasqbCwMM2ePVsBAQHq0KGDzGazdu7cqeDgYDk4OGjUqFHy9vbW5MmTNXXqVJUpU0Y+Pj6aOnWqXF1d9a9//UuhoaGyWCzq0qWLAgIC8q3h5izK2dlZY8eOLXT9JpvNZrvdCb169dKKFSvUr18/xcXF6YUXXtCnn35a6AsUtaCgICUnJ5fa9QEAAAAAAIzmj5C3XLp0SadPn5avr6+8vb0L3c6hoBNuZGM3FjFzcnK6yxIBAAAAAACAO/fPf/5ToaGhWrhwoUJCQvT3v/+90G0LnPb47LPPqk+fPjpz5oxeeeUVPfXUU/dULAAAAAAAAHAnPvzwQyUmJsrNzU3p6el68cUX1a1bt0K1LTD8+utf/6oWLVro6NGj8vf318MPP3zPBQMAAAAAAACFZTKZ5ObmJklyd3eXs7NzodsWGH7NmzfP/vmnn37S119/rWHDht1FmQAAAAAAAMCdq1atmqZNm6amTZtq3759qlatWqHbFhh++fj4SLq+9tePP/4oq9V695UCAAAAAAAAdyg4OFh79uzR7t27tW7dOv3tb38rdNsCw6/Q0NA82wMHDrzzCgEAAAAAAIC7NG3aNE2bNk21atXSSy+9pPHjx2v58uWFaltg+JWSkmL/fOHCBZ09e/buKwUAAAAAAADukKOjo2rVqiVJ8vPzk4ODQ+HbFnRCeHi4/bOzs7PGjh17FyUCAAAAAAAAd6dq1aqaPXu2GjZsqH//+9+qVKlSoduabDabrRhrK3JBQUFKTk4u7TIAAAAAAAAM437PW7KysrRy5UqlpKSoZs2aCg0NlZOTU6HaFjjyq2vXrsrIyJCzs7OysrIkXV/83mQyadOmTfdWOQAAAAAAAFAAZ2dn9e/f/67aFhh+NWrUSM8995waNWqkI0eOaOnSpYqMjLyriwEAAAAAAAAlqcDw66efflKjRo0kSQ899JDOnj1b6GFlAAAAAAAAQGkqMPzy8PDQnDlz1KBBA+3bt09Vq1YtiboAAAAAAACAe1bgeyFnzZold3d37dixQ35+foqKiiqJugAAAAAAAIB7VmD45ezsrHLlyql8+fLy9/fXlStXSqIuAAAAAAAA4J4VGH6Fh4frzJkz2rVrlzIyMjRu3LiSqAsAAAAAAAC4ZwWGX6dOndIbb7whJycntWvXTlevXi2JugAAAAAAAIB7VmD4ZbFYlJaWJpPJpPT0dDk4FNgEAAAAAAAAuC8U+LbHkSNHqlevXrpw4YJCQkI0ceLEkqgLAAAAAAAAuGcFhl9nz57Vhg0blJaWpvLly8tkMpVEXQAAAAAAAMA9K3AO46pVqyRJ3t7eBF8AAAAAAAD4Qylw5Fd2draee+45+fv729f7mjVrVrEXBgAAAAAAANyrAsOv0aNHl0QdAAAAAAAAQJHLN/xasGCBXnvtNTVr1kznz59XpUqVSrIuAAAAAAAA4J7lu+bXt99+a//M6K+ScfHiRT3++OP66aef7Puio6O1cuXK351rsVj01ltvKTQ0VH369NGpU6ckSdu3b1ePHj30+uuvy2q1SpKmTJmi1NTUkrkJAAAAAACA+0i+4ZfNZrvlZxSPnJwchYeHy8XFRZKUlpamgQMHavPmzbc8f8uWLZKk+Ph4vf7664qJiZEkrVixQsuWLVOlSpV0+PBhHTlyRO7u7vL19S2ZGwEAAAAAALiP5Bt+3fxmR97yWPymT5+u0NBQ+/TSjIwMDR8+XN26dbvl+U899ZSmTp0qSTpz5ox8fHwkSW5ubsrMzFRmZqZcXV21ePFivfLKKyVzEwAAAAAAAPeZfNf8OnjwoEJDQ2Wz2XTs2DH7Z5PJpPj4+JKs0fASExPl7e2t1q1ba/HixZIkPz8/+fn5afv27fm2c3R01Lhx47Rx40a9//77kqTXXntNkZGRqlu3rk6dOqXGjRvriy++0KFDh/T888+rUaNGJXJPAAAAAAAA9wOTLZ85jT///HO+jR588MFiK6ggQUFBSk5OLrXrF4c+ffrIZDLJZDLp0KFDqlGjhmJjY1WxYkXNnTtXPj4+6tWrV77tL1y4oODgYK1bt05ly5aVdH1NsBEjRigyMlITJkzQe++9pyFDhmjJkiUldVsAAAAAAOAPwoh5yw35jvwqzYDrz2b58uX2z3379tXkyZNVsWLF27ZZu3atzp07p8GDB8vV1VUmk0lms9l+PCEhQc8//7wkyWq1ymQyKTMzs3huAAAAAAAA4D6V75pfuD+NHTtWZ86c0dNPP60ff/xRffr00YABAzRhwgQ5OztLktLT0/Xdd9+pXbt2KleunCpWrKhevXqpR48epVw9AAAAAABAycp32uP9ysjD8AAAAAAAAEqDkfMWRn4BAAAAAADAsAi//r+sHEtpl2B4PGMAAAAAAFDS8l3w/s/GuYxZTcZ8XNplGNq+Gf1KuwQAAAAAAPAnw8gvAAAAAAAAGFaJh18XL17U448/rp9++kknT55Ur1691Lt3b0VERMhqtZZ0OQAAAAAAALiNnJwcjRkzRr1791aPHj20adMm+7F//OMfCgkJyXO+1WrVwIEDtXLlyjz7f/rpJzVp0kRZWVmSpL59+9r/WrZsqZkzZxZL/SUafuXk5Cg8PFwuLi6SpJiYGI0YMUIrVqyQzWbL8/AAAAAAAABQ+j7//HN5eXlpxYoVWrJkiaZOnSpJOnTokNasWSObzZbn/Dlz5uiXX37Jsy89PV3Tp0+Xk5OTfV9cXJzi4uIUHR2typUra8iQIcVSf4mu+TV9+nSFhoZq8eLFkqSDBw+qWbNmkqQ2bdpo165dat++/e/aJSQkKCEhQZLk5OSkQ4cOFUt9E54OKJZ+cV1xfW8AAAAAAODeWCwWde/e3b4dEhJiH9HVsWNHdejQwX7MbDbr0qVLmjlzpiZMmKCwsDD7sfXr18tkMqlNmzb2fTabTWFhYRo1apRee+213107KipKY8aMkZubW3HcWsmFX4mJifL29lbr1q3t4ZfNZpPJZJIkubm56erVq7dse/MDDwoKUmBgYLHU+NdlLHhfnPbNaFXaJQAAAAAAgFswm81KTEy85bEboVR6erpef/11vfHGG5o4caImTJggZ2dn+3lHjx7VF198offff1/z58+375837/+xd+fxMZ39/8ffk8kmIiK1liTWWougdk3sRW9VQRRRtFoaRWnsIrXv1drrrqh9r13b21bka21tIbR20SCaWJKQyGR+f/hlbrrSW2Zk8no+Hh6POefMOT5n2ss5857rus4M+fv7q0yZMr879unTp5WUlKRatWo94zP6L6uFX2vWrJHBYNC+ffsUHR2tgQMHKj4+3rI9KSlJHh4e1ioHAAAAAAAATyg2NlYhISHq0KGDihYtqkuXLik8PFwpKSk6e/asxowZIycnJ12/fl1vv/22rl69KicnJxUuXFgbNmxQwYIFtWbNGsXFxalbt25asmSJpIdDKtu2bZuptVst/Mo4KenhhGbh4eGaNGmSDhw4oBo1amj37t2qWbOmtcoBAAAAAADAE7h586a6deumsLAwSw+tzZs3S5JiYmLUr18/DR069LF9pk+frrx58+rVV1/Vf/7zH8v6Bg0aaP78+Zbl/fv3q3v37plav9Wf9viogQMHavr06QoKCtKDBw8eGz8KAAAAAAAA25szZ47u3LmjWbNmWZ7OeP/+/Wdy7Li4OOXJk+eZHOvPGMy/nZL/OVepUiUdO3YsU45dNZQ5vzLTD5M627oEAAAAAADwBzIzb7E1m/b8AgAAAAAAADIT4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAALAqk8mkwYMHq3379urYsaMuX76skydPql69egoODlZwcLC2bNnyh/v+5z//Uf/+/S3Lq1atUrt27RQeHm5Z179/fyUmJmb2aQAAACCLcLR1AQAAIHvZuXOnJGn58uU6cOCAxo0bpwYNGqhr167q1q3bn+43evRo7d27V2XLlrWsW79+vZYvX66QkBDdvn1bR44cUdWqVeXu7p7p5wEAAICsgfALAABYVaNGjRQQECBJ+uWXX5Q3b15FRUXpwoUL2r59u3x9fTVkyJDfBVhVqlRRo0aNtGLFCss6V1dXpaSkKC0tTQ4ODlqzZo0+/fRTa54OAAAAnnMMewQAAFbn6OiogQMHatSoUWratKkqVqyoAQMGaMmSJfL29tbMmTN/t0/z5s1lMBgeW9ejRw/169dPTZo00YYNGxQYGKh///vfGjFihM6fP2+t0wEAAMBzjPALAADYxIQJE/Ttt99q+PDhqlu3ripUqCBJaty4sU6dOvVEx6hWrZpmz56tZs2a6YcffpCPj49u3LihPn36/GGABgAAgOyH8AsAAFjVunXrNHfuXElSjhw5ZDAY1KtXLx0/flyStG/fPpUvX/6pjjl37lx1795d9+/fl4ODgwwGg5KTk5957QAAAMh6mPMLAABYVZMmTTR48GB17NhRaWlpGjJkiAoVKqRRo0bJyclJefPm1ahRoyRJ3bp105w5c+Ts7Pynx4uJidGdO3dUtmxZpaenKzY2Vu+995769u1rrVMCAADAc8xgNpvNti7iaVSqVEnHjh3LlGNXDV2YKcfFQz9M6mzrEgAAAAAAwB/IzLzF1hj2CAAAAAAAALtF+AUAQDaV8sBk6xLsHp8xAACA7THnFwAA2ZSLk5Eh/5mMIf8AAAC2R88vAAAAAAAA2C3CLwAAAAAAANgtwi8AAAAAAADYLcIvAAAAAAAA2C3CLwAAAAAAANgtwi8AAAAAAADYLcIvAAAAAAAA2C3CLwAAAAAAANgtwi8AAAAAAADYLcIvAAAAAAAA2C3CLwAAAAAAANgtwi8AAAAAAADYLcIvAAAAAAAA2C3CLwAAAAAAANgtwi8AAAAAAADYLcIvAAAAAAAA2C3CLwAAAAAAANgtwi8AAAAAAAD8rWPHjik4OFiSFB0drXbt2umtt97S4MGDlZ6eLklasmSJAgMD1aZNG+3cuVOSlJycrJ49e6pDhw565513FB8fL0n67rvv1KhRIwUHBys4OFgHDx7MlLodM+WoAAAAAAAAsBvz5s3Thg0blCNHDknSjBkzFBISIn9/f/Xv31+7du1S5cqVtXTpUq1bt04pKSlq0aKFAgICtHLlSpUvX169evXS2rVrNWvWLA0bNkwnT55UaGiomjZtmqm10/MLAAAAAAAAf8nHx0fTp0+3LJctW1a3bt2S2WxWUlKSHB0d5eXlpfXr18vJyUk3b96Uh4eHDAaDunTpop49e0qSfvnlF+XNm1eSdPLkSa1Zs0YdOnTQ+PHjlZaWlim1E34BAAAAAABkcyaTSa1bt7b8WbFixWPbmzZtKkfH/w4gLFq0qMaMGaNmzZrp119/VY0aNSRJjo6OWrx4sYKCgh7r0WU0GtW5c2ctXrxY/v7+kqQ6depo+PDhWrJkiZKTk7V8+fJMOTfCLwAAAAAAgGzOaDRq7dq1lj9BQUF/+f4xY8ZoyZIl+uabb9SqVSuNHz/esq1Tp07as2ePDh06pP3791vWL1y4UEuWLNGHH34oSQoMDJS3t7cMBoMaNmyoU6dOZcq5EX4BAAAAAADgqeTOnVvu7u6SpPz58+vOnTs6f/68evXqJbPZLCcnJzk7O8vBwUFz587VunXrJElubm4yGo0ym81q2bKlrl27Jknat2+fypcvnym1MuE9AAAAAAAAnsro0aP10UcfydHRUU5OTho1apSKFCmiMmXKKCgoSAaDQfXq1VP16tVVvHhxDRw4UGvWrJHJZNLYsWNlMBg0evRo9erVS66uripRooTatWuXKbUazGazOVOOnEkqVaqkY8eOZcqxq4YuzJTj4qEfJnW2dQkAgN/g2pe5uPYBAICsIjPzFltj2CMAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXzcY8kAAAIABJREFUAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOwW4RcAAAAAAADsFuEXAAAAAAAA7BbhFwAAAAAAAOyWo7X+ogcPHmjIkCG6evWqUlNT1bNnT5UsWVKDBg2SwWBQqVKlNGLECDk4kMcBAAAAAAA8b44dO6bJkydr0aJFio6O1qhRo2Q0GuXs7KwJEyYob968WrBggTZv3ixJ8vf3V69evXT37l2FhoYqMTFRDx480KBBg+Tn56fDhw9rwoQJMhgMevXVV9WrV69Mqdtq4deGDRvk6empSZMmKSEhQW+++abKlCmjvn37qkaNGgoLC9P27dvVuHFja5UEAAAAAACAJzBv3jxt2LBBOXLkkCSNGTNGw4cPV9myZbV8+XLNmzdPnTp10oYNG7Rq1SoZDAZ16NBBjRo10nfffaeaNWuqS5cuOn/+vPr376+vv/5aY8eO1WeffSZvb28FBwerQYMGKleu3DOv3Wrh12uvvaamTZtalo1Go06ePKnq1atLkl599VVFRkb+Yfi1YsUKrVixQpLk7Oys6OjoTKlxSJPimXJcPJRZ/90AAP8c177MxbUPAABkFSaTSa1bt7YsBwUFKSgoyLLs4+Oj6dOna8CAAZKkqVOnKn/+/JZ9XVxcVLBgQf373/+W0WiUJKWlpcnFxUVdunSRs7PzY++VpJUrV8rR0VFJSUlKTEyUp6dnppyb1cKvnDlzSpISExPVu3dv9e3b19K1LWP73bt3/3DfRz/wSpUqqWzZsplSY6f5CzPluHjoh0l1bV0CAOA3uPZlLq59AAAgqzAajVq7du2fbm/atKliYmIsyxnB148//qjFixdryZIlcnJykpeXl8xmsyZOnKhy5cqpWLFiln3i4uIUGhqqIUOGSJIcHR119OhR9evXTyVKlJCXl1emnJtVJ9iKjY1V586d9cYbb+hf//rXY/N7JSUlycPDw5rlAAAAAAAA4B/asmWLRowYoS+++MISXKWkpOjjjz9WUlKSRowYYXnvmTNn1KVLF3300UeWUYCSVLlyZe3YsUPlypXTF198kSl1Wi38unnzprp166bQ0FC1adNGklSuXDkdOHBAkrR7925Vq1bNWuUAAAAAAADgH1q/fr0WL16sRYsWydvbW5JkNpv1wQcfqHTp0ho5cqRl+OPZs2fVp08fTZkyRf7+/pb3dujQQbdv35b0cERgZj0E0WrDHufMmaM7d+5o1qxZmjVrliRp6NChGj16tKZOnarixYs/NicYAAAAAAAAnj8mk0ljxoxRoUKF9OGHH0qSXnnlFZUtW1YHDx5Uamqq9uzZI0nq16+fvvjiC6WmpmrMmDGSJHd3d82ePVvdunVT9+7d5ezsrHz58mn06NGZUq/BbDabM+XImaRSpUo6duxYphy7aijznmSmHyZ1tnUJAIDf4NqXubj2AQCArCIz8xZbs+qcXwAAAAAAAIA1EX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BgKTU1FT1799f7dq1U7du3XTx4sXHtq9cuVKtW7dWu3bttHPnTklSdHS02rRpo65duyo5OVmSNHv2bB05csTa5QMAAAAA/gThFwDoYbjl5uamlStXatiwYRo1apRlW1xcnBYtWqTly5fryy+/1NSpU5Wamqo1a9Zo1KhR8vf3V2RkpG7evKmYmBj5+fnZ8EwAAAAA4NmbO3eugoKC1Lp1a61atcqyfuzYsVq2bNlj742Pj1eTJk2UkpIiSbp796569OihTp06KSgoyOodBgi/AEDS2bNn9eqrr0qSihcvrnPnzlm2HT9+XH5+fnJ2dlauXLnk4+Oj06dPy83NTcnJyUpOTlaOHDk0a9Ys9ejRw1anAAAAAACZ4sCBAzpy5IiWLVumRYsW6dq1a4qPj9e7776rHTt2PPbePXv2qFu3brp586ZlXUREhGrWrKnFixdr3LhxGjlypFXrJ/wCAElly5bVzp07ZTabdfToUV2/fl0mk0mSlJiYqFy5clnemzNnTiUmJqpTp05asmSJbt26pbx588rNzU2nTp3SiBEjtH37dludCgAAAAA8U3v37tVLL72kkJAQ9ejRQwEBAUpKStKHH36oN95447H3Ojg4KCIiQp6enpZ1Xbp0Ufv27SVJJpNJLi4uVq3f0ap/GwA8pwIDA3Xu3Dl17txZVapUUfny5WU0GiVJ7u7uSkpKsrw3KSlJuXLlUv78+TV16lRJUv/+/TVixAj16dNHERER6tatmxo2bGiTcwEAAACAp2UymdS6dWvLclBQkIKCgiRJCQkJ+uWXXzRnzhzFxMSoZ8+e+uabb+Tt7a3du3c/dpw6der87tgeHh6SHk4pExoaqiFDhmTimfwe4RcASDpx4oSqVq2qIUOG6MSJE7p8+bJlW8WKFTVt2jSlpKQoNTVV586d00svvWTZ/v3336ty5cry8PCwjGnPmAAfAAAAALICo9GotWvX/uE2T09PFS9eXM7OzipevLhcXFwUHx+vF1544YmPf+bMGfXr108DBgxQ9erVn1XZT4TwCwAk+fr66rPPPtP8+fOVK1cujRkzRhEREfLx8VHDhg0VHBysDh06yGw266OPPrJ00zWZTFq5cqWmTZsm6eGvHO3atVODBg1seToAAAAA8MxUrVpVCxcuVNeuXXXjxg3du3fvsWGNf+fs2bPq06ePpk2bpjJlymRipX+M8AvZztq1a/X1119LklJSUhQdHa3IyEhLN8wlS5Zo7dq1MhgMCgkJUf369XXt2jX17dtXRqNRU6dOVYECBbR+/Xo5OjqqRYsWtjwdPCNeXl5asGDBY+u6du1qed2uXTu1a9fud/sZjUbNnDnTshwSEqKQkJBMqxMAAAAArK1+/fo6dOiQ2rRpI7PZrLCwMMs0MU9iypQpSk1N1ZgxYyQ9nFpm9uzZmVXu7xjMZrPZan/bM1CpUiUdO3YsU45dNXRhphwXD/0wqbOtS/idTz75RGXKlLGMY46Pj1dwcLDWrVunlJQUtWjRQrt27dKCBQvk7e0ts9msq1ev6q233tKAAQM0bdo0GQwGG59F1pbywCQXpyf/RxP/DJ8z/gzXvsz1PF77AAAA/khm5i22Rs8vZFsnTpzQ2bNnNWLECMs6Ly8vS4+uq1evysPDQwaDQW5ubkpOTpbZbFaOHDkUERGhzp07E3w9Ay5ORr58WwFfwAEAAABkVw62LgCwlblz5/7h8DRHR0ctXrxYQUFBatq0qSTp9ddf1759+3Tw4EHVrl1bly5dsnT1XLVqlbVLBwAAAAAAT4jwC9nSnTt3dP78edWsWfMPt3fq1El79uzRoUOHtH//fuXMmVPjxo3TmDFjtGDBAvXs2VNz5szRiBEjtGvXLp7sBwAAAADAc4rwC9nSoUOHVLt27d+tP3/+vHr16iWz2SwnJyc5OzvLweG/zeSnn36Si4uLfHx8lJKSIoPBIJPJpNTUVGuWDwAAAAAAnhBzfiFbunDhgooUKWJZjoiIkI+Pjxo2bGiZAN9gMKhevXqqXr265X1z585VWFiYJKlVq1YKCgpShQoVnuoRrwAAAAAAwHoIv5Atvfvuu48td+3a1fK6V69e6tWr1x/uN2XKFMvrwMBABQYGZk6BAAAAAADgmWDYIwAAAAAAAOwW4ResxpyWYusSsgU+ZwAAAAAA/othj7Aag6OLLo982dZl2D2fsBO2LgEAAAAAgOcGPb8AAAAAAABgtwi/AAAAAAAAYLcIvwAAAAAAAGC3CL8AAAAAAABgtwi/AAAAAAAAYLcIvwAAAAAAAGC3CL8AAAAAAABgtwi/AAAAAAAAYLcIvwAAAAAAAGC3CL8AAACAbObBgwcKDQ1Vhw4d1KZNG23fvv2x7Rs2bNCbb76pwMBALV26VJKUlJSkzp07KygoSKdPn5YkHT58WF988YXV6wcA4GkQfgEAANixvws5jh8/rg4dOuitt95S7969lZKSQsiRDWzYsEGenp5aunSp5s2bp1GjRj22feLEiYqIiNCyZcsUERGh27dvKzIyUg0aNNCIESO0evVqmc1mLVy4UG+//baNzgIAgCfjaOsCAAAAkHkyQo5JkyYpISFBb775pho2bChJMpvNGj58uD7//HP5+vpq1apVunr1qs6ePasGDRqoevXqWr16tYYOHaqFCxdq0qRJNj4bPCuvvfaamjZtalk2Go2PbS9durTu3r0rR0dHmc1mGQwGubm56d69e0pOTpabm5s2btyoxo0by8XFxdrlAwDwVOj5BQAAYMdee+019enTx7L8aMhx4cIFeXp66quvvlKnTp1069YtFS9enJAjG8iZM6fc3d2VmJio3r17q2/fvo9tL1WqlAIDA9WiRQsFBATIw8NDtWvX1q+//qply5apXbt22rZtm8qUKaOwsDDNmzfPRmcCAMDfI/wCAACwY38VciQkJOjIkSPq0KGDIiIitH//fu3bt4+QI5uIjY1V586d9cYbb+hf//qXZf3p06e1a9cubd++XTt27FB8fLy2bt0qBwcHDRs2TFOmTNHmzZvVuXNnzZ49W3379lVsbKwuXLhgw7MBAODPEX4BAADYuT8LOTw9PeXr66uSJUvKyclJ9erVU1RUFCFHNnDz5k1169ZNoaGhatOmzWPbcuXKJVdXV7m4uMhoNMrLy0t37tyxbP/111918eJFVatWTffu3ZPRaJTBYNC9e/esfRoAADwRwi8AAAA79lchh7e3t5KSknTp0iVJDye1L1WqlGU7IYf9mjNnju7cuaNZs2YpODhYwcHB2rBhg1asWKHChQsrKCjI8iCEu3fv6s0337TsO3v2bPXo0UOS1KFDB73zzjuKi4tTmTJlbHU6AAD8JSa8BwAAsGOPhhyzZs2SJLVt21b37t1TUFCQxowZo/79+8tsNsvPz08BAQGWff8o5HjxxRcJOezAsGHDNGzYsD/d/tZbb+mtt976030z1KtXT/Xq1Xvm9QEA8CwRfgEAANixvws5atWqpdWrV//pvhkIOZ6dlAcmuTgZ//6N+Mf4jPE8S09PV3h4uM6cOSNnZ2eNHj1avr6+lu1ffPGFNm/eLHd3d7377ruqX7++oqOjNXz4cOXKlUszZ86Um5ubZs+erZo1a8rPz8+GZwNkDYRfAACr+KsbvejoaI0dO9by3qNHj2rmzJnKly8fN3rI0sxpKTI48oTEzJQVP2MXJ6Oqhi60dRl27YdJnW1dAvCntm3bptTUVK1YsUJHjx7V+PHjNXv2bEnSmTNntGnTJq1atUqS1L59e9WsWVNr1qzRqFGjdODAAUVGRsrPz08xMTHcDwFPiPALAGAVf3WjV7ZsWS1atEiStHXrVuXPn1+vvvqqRo8ezY0esjSDo4suj3zZ1mXYNZ+wE7YuAQCeyg8//GDpSVu5cmVFRUVZtp07d07Vq1eXi8vDUN/X11dnzpyRm5ubkpOTlZycrBw5cmjWrFmWYekA/h4T3gMArOKvbvQyJCcna/r06Ro6dKgkcaMHAMjS0tPTFRYWpqCgIAUHB1seLpFhwYIFatu2rdq2basZM2ZIkq5du6b27durY8eOun79uiRp/fr12rx5s9XrR+ZITEyUu7u7ZdloNCotLU2SVLp0aR0+fFiJiYlKSEjQkSNHdO/ePXXq1ElLlizRrVu3lDdvXrm5uenUqVMaMWKEtm/fbqtTeW7R9vBbhF8AAKv4qxu9DKtXr9Zrr70mLy8vSeJGDwCQpT3a67l///4aP368ZduVK1e0YcMGLV++XCtWrNDevXt1+vRpbd26Ve+++666dOmirVu3KiUlRTt27FDz5s1teCZ4ltzd3ZWUlGRZTk9Pl6Pjw0FZJUqUUMeOHdW9e3dNmDBBlSpVUp48eZQ/f35NnTpVQ4YM0bx58/Tee+9p+fLl+uSTT7RkyRJbncpzi7aH3yL8AgBYxV/d6GXYuHGj2rZta1nmRg8AkJX9Va/nggUL6t///reMRqMcHByUlpYmFxeX3/V6joiIUOfOnWUwGGx1GnjGqlSpot27d0t6OM/pSy+9ZNkWHx+vhIQELVu2TEOHDlVsbKxKlSpl2f7999+rcuXK8vDwUEpKiqSHPefxONoefovwCwBgFX91oydJd+/eVWpqqgoVKvS7fbnRAwBkRX/V69nJyUleXl4ym82aMGGCypUrp2LFiun111/Xvn37dPDgQdWuXVuXLl2S2WxWWFiYZRJ0ZG2NGzeWs7Oz2rdvr3Hjxmnw4MGKiIjQ9u3blSdPHsXExCgwMFDdu3fXgAEDZDQ+fHKpyWTSypUr1b59e0lSnTp11K5dOwUEBNjwbJ5PtD38FhPeAwCsonHjxoqMjFT79u1lNps1duxYRUREyMfHRw0bNtSFCxdUuHDh3+2XcaM3bdo0Sf+90WvQoIG1TwEAgKfyd72eU1JSNGTIEOXMmVMjRoyQJOXMmVPjxo2TJI0aNUo9e/bUyJEjNXfuXPXu3VstWrSQm5ubdU8Ez5SDg4NGjhz52LoSJUpYXv92Wwaj0aiZM2dalkNCQhQSEpI5RWZxtD38FuEXAMAq/u5Gr2LFipo1a9bv9uNGDwCQVVWpUkU7d+5U8+bNf9fr2Ww264MPPlCNGjX03nvv/W7fn376SS4uLvLx8VFKSooMBoNMJpNSU1P5Ag78DdoefovwCwCyAXNaigyOLrYuw67xGQMAfuuvej2np6fr4MGDSk1N1Z49eyRJ/fr1k5+fnyRp7ty5CgsLkyS1atVKQUFBqlChgjw9PW12PlldygOTXJyMti7Drj0vnzFtD79l8/ArPT1d4eHhOnPmjJydnTV69Gj5+vrauiwAsCsGRxddHvmyrcuwaz5hJ2xdAgDgOfN3vZ5PnPjza8eUKVMsrwMDAxUYGPjsC8xmXJyMqhq60NZl2LUfJnW2dQmSaHuZIatnNzaf8P6vHkEKAAAAAAAA28rq2Y3BbDabbVnAuHHjVLFiRbVo0UKSVK9ePUvXwwwrVqzQihUrJEknT56Uq6ur1esEAAAAAACwV/fv31f58uUty0FBQQoKCpL0ZNnN88zmwx7/7BGkjz6J4dEPHAAAAAAAANbzJNnN88zmwx7/7hGkAAAAAAAAsJ2snt3YPPyqUqWKdu/eLUm/ewQpAAAAAAAAbCurZzc2n/Mr44kBP/30k+URpI8+hQEAAAAAAAC2k9WzG5uHXwAAAAAAAEBmsfmwRwAAAAAAACCzEH4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAADA/5eUlGR5zfTIwLOVnp7+2DJtDNZC+IXnym//MfyzdQCevSVLlmjz5s22LgOwe390XePmH3g+nDlzRnv37tXVq1d17949GQwGW5cE2JWMNjVu3DilpqbSxmA1hF94bqSnp8vBwUHXr1/XV199pXXr1unq1atycHDgSwGQyRISEmQ0GhUVFaXvv//e1uUAdivjWnfjxg2tW7dO3377rZKSkmQwGLjWAc+B4sWLa/ny5WratKl27txp63IAu5Hxw09G2HXr1i2tX7/eliUhmyH8wnMjI/gaOnSocuTIoePHj2v8+PGKj4/nFwEgE6WlpSlPnjyqVq2arly5oq1bt2rXrl22LguwSxnXusGDByspKUnbt2/XuHHjlJKSwrUOsCGTySRJcnJyUuvWreXn56eYmJjHhkAC+OccHB5GD0eOHJEktWrVSrdv37ZlSchmCL9gc48O/9i/f78CAgJUq1YtXbhwQdWrV9eJEyf4NRzIRI6OjoqLi9OIESNUpUoVFSlSRIcPH6YHGPAMxcTEWF5v3LhRTZo0kb+/v27cuKGiRYvq6NGjNqwOyN7S09NlNBoVFxennTt3qkiRIlq0aJGio6P11Vdf6ZtvvtHNmzdtXSaQJWUEy5K0ZcsWzZgxQ2PHjpWjo6O2bNmi//u//7NhdchOjOHh4eG2LgLZl8lkktFo1M2bN7VixQoZjUYdOXJEW7Zs0cCBA2UymbRv3z7VqVPH8msBgGcjLCxM5cqVk7u7u44fP66kpCT17t1bJUuW1KVLl/T9998rV65c8vHxsXWpQJZ269YtrV27VpcvX1ZKSooSExN15swZrVu3TgMHDlRaWpqOHz+uV155hWsdYGUZQ5Hj4+PVt29fXblyRceOHZPBYFDXrl313XffadeuXfL391fu3LltXS6QpWR810tPT9ehQ4fk5eWlLl266NChQ0pMTNTPP/8sZ2dn1ahRQ+np6fSARqZytHUByN4ygq9+/frpvffek5+fnzZs2KAiRYro4sWLWrp0qYYNGyZHR/5XBZ617t27y8PDQ8ePH1fRokW1Z88excTEqEiRIsqZM6ccHR310ksv2bpMIMvz9PRUnjx5NHbsWL3//vtq06aNli1bpqpVqyomJkbLli1TWFiYjEajrUsFsh0HBwfdvn1bX375pZo3b64OHTpo79692rp1q+7du6fw8HAlJSUpZ86cti4VyFLMZrMl+Orfv7+Sk5NVoEABNWnSRKGhoUpLS1POnDm1dOlSderUSV5eXrYuGXaOnl+wiUeT/Z9++kmfffaZXn/9dZUqVUo1atRQUlKSbt26pbffflulSpWycbWAfTGZTHJwcFDu3Ll14MABBQcHKygoSL6+vho4cKASEhK0ZcsWjRgxQi+++KKtywWyrIy2Jj287pnNZsXGxurFF19Uly5dFBMTo2vXrundd9/lWgdY2aP3oqdPn9amTZtUoEABlSlTRj4+PnJ0dNTBgwdVtWpVubu727haIGtJSUmxdF4YO3asSpcurR49emjLli06f/68kpOTVa5cOZUvX16nT5+Wu7u7fH19bVw17J3BzGRKsLJHu5dfvnxZ5cqV04EDBzRw4EBNmjRJderUsXWJgN36bfsrX768Dh8+rAEDBmjhwoVydHRUfHy88uTJw3BH4H/w6FMdlyxZooCAAPn5+em7777Tt99+q5IlS6pixYpc8wAbePRaePjwYZUpU0bR0dHatWuX6tevr9q1a8vV1VWpqalyc3OzdblAljJ9+nTFxcWpcuXKat26tVatWqXSpUtr2bJlCggI0M6dO3Xr1i0NHjxYXl5eGjx4sAYOHChvb29blw47R88vWJ3BYNCNGzfUu3dv/fLLL9q8ebNatWqlGjVq6L333tMrr7yiwoUL27pMwC79tv1t2rRJLVu2VNWqVdWxY0c1bNhQVapUYV4T4H9kMBgUFxen/v37q2DBgpo7d67y58+v+vXry93dXVu3blXLli1pa4ANGAwGXb9+Xe+//77y5s2rmTNnqly5cipSpIg2b96snDlzqmTJknJ2drZ1qUCWMmXKFP3yyy9q1aqVhg4dqrp166pYsWK6cuWKPD099dprr2nZsmXq06ePXnrpJbm4uKhRo0YMeYRV0PMLVnfv3j317dtXQUFBevHFFzVt2jR5eHioV69eiouLk5eXl4oVK2brMgG7RPsDMtejk/tOmjRJFStWVLNmzfTuu+/q9OnT6tmzp1q3bi1HR0c5OTnZulwgWzKbzZo/f74KFiyoFi1a6I033lBAQICCg4N18eJFeXt7q0CBArYuE8hShgwZIicnJ33yySeSpE8//VSvvvqqqlatqn379qlv374qVKiQQkJC1LhxYxtXi+yIRwrBKh59xK2Li4tee+01eXh46Msvv9Sbb76p+/fva+TIkXr55Zf54g08Y7Q/wHoyHuRy4cIFNWvWTLGxserXr58+//xz/etf/9KOHTv04MEDgi/Ayh69FhoMBr3wwguWibYjIiLk4+OjRYsWqVq1agRfwFM6d+6coqKiVKZMGUnS2rVrdfToUct9Za1atbRw4UJ99tlnaty4seh/A1tg2CMyXcav4NevX9fcuXPl4uIiNzc3XbhwQfXr15erq6tOnTqloUOHytPT09blAnaF9gdYx6OTZ0dGRmry5Ml6++23ZTQaFRsbK5PJpJ07d2r48OEqWLCgjasFsh8HBwddu3ZN06ZNU3x8vHx8fHTjxg0lJibK29tbc+bMUe/evRl+BfwD7u7uKlWqlP7v//5Pa9as0dmzZzVx4kR5eXkpLS1NDg4Oyps3r+VeM+N6CViTo60LgP0zGo2Ki4tTaGioypcvL2dnZ1WrVk3ffPONduzYoStXruizzz7jqXJAJqD9AZkvMTFR7u7uSk1NlcFgUOPGjXXixAndunVL3t7eun//vmbPnq2JEyfSuxKwsowfge7fv6+JEycqd+7cunz5sqKiotSsWTPFxcXp0KFDmjJlikqUKGHrcoEs5cyZM5b58SpXrixJmjZtmurUqWMJkjOeegzYGnN+IdNUU8GHAAARcElEQVTMmDFDISEhMhgM2rhxo6KiojR48GClp6crKipKV65cUbFixfTCCy/QvRx4xmh/gHVs2bJFPj4+KlasmFavXq2oqCgNHz5cs2fPliQNHDhQknT37l3lypXLlqUC2U7GUx3j4uK0efNmJSYmqlevXrp48aK2bt2q2NhYDRgwQDlz5qQnCvCUxo8fLzc3N/Xu3duyLi0tTT/88IM2bdqkokWL6p133rFhhcDjiGHxzJnNZplMJjVu3FjJyclKS0tTvnz59Ouvv0p6mP5HRkbq559/Vrly5fjiDTxDtD/AetLT01WrVi2VL19ey5cvV8mSJVWyZElNnDhROXLk0N69e3X+/HlJIvgCrMxsNsvBwUEJCQkaNmyYoqKidPr0aa1bt04+Pj5q0qSJChUqpJSUFIIv4B9IT09XiRIltGHDBiUnJ0uSHB0d5efnp+bNmys6OlpXr161cZXAf9HzC8/csmXL9M033+jzzz/XypUrtXXrVi1fvlyDBw+W0WiUr6+vDhw4oPDwcBUvXtzW5QJ2hfYHWFdcXJy+++473bhxQ7ly5VKXLl107do1nT9/XrNmzdKMGTOUN29eW5cJZEuJiYmaMWOGHB0d9fHHH+ubb75RVFSUfH191bZtWx4+AfwDS5culZ+fn9LS0vTOO++oQoUKmj9//mPvSU1NVXJyMvPJ4rnChPd4ptLT01WxYkX9/PPP2rFjh0JDQ3Xx4kWtXLlSkyZNUo4cOeTk5KT27dvzxRt4xmh/QOYzm806ceKE8uTJI7PZrPDwcBUtWlQ1a9bUyZMnderUKVWsWFFly5ZVy5Yt6fEFWJnJZJKDg4PMZrPu37+vgwcPKiEhQT4+PqpSpYri4+N16dIlvfzyy8qRI4etywWylOTkZJ06dUobN26Uq6urqlWrpvPnzytXrlzy9fW1zO9lNBrl6upq42qBx9HzC8/Mo/MqTJ8+XRcuXFChQoU0btw4TZ48WT/++KMWL17ML2xAJqD9AZkvPT1dISEhcnV11ZEjR/Tiiy8qV65cmjRpkjw8PHT48GF9++23KlCggLp27SqDwcBEv4AVZVwLb9y4oQULFqhq1aqqUKGCVqxYIWdnZ/n7+6t06dJKTk6Wu7u7rcsFshSz2SyDwaBbt25p586d2rNnjz766CPdvXtXEyZMULt27dS8eXOGEeO5Rc8vPDMGg0GJiYn68MMPFRAQoPfee0+XLl3Shg0bFBYWppiYGBUtWlQeHh62LhWwO7Q/IHOlp6dr+PDh8vb2Vnh4uJycnGQ2m5WSkqJffvlFVapUUZEiRZQrVy7VqlWLCbQBGzAYDIqPj1dYWJg8PT21ePFi5cuXTwEBAfrxxx9148YNVaxYkR5fwFPK6FEpSQ8ePJC7u7uljdWuXVtVq1bVrFmz5O/vr5w5c9q4WuCP0fML/7OMX9mkh/8YjhkzRj179lSBAgV09+5d9ejRQ2XLltWwYcNsXClgf2h/gHV88MEHSk9P15w5cyRJkydPVpkyZVStWjV98sknKlmypPr06SNHR0cbVwpkPxnXwtTUVPXt21elSpXSRx99pJ9//lljxoxRkyZNVLduXbm7u8vLy8vW5QJZSkaPr/T0dH388cfKmzevUlNTVblyZbm4uGj9+vUaMGCA8ufPT49KPNfoi4//yYMHD+Tg4KA7d+7o9OnTio+PV2pqqnbu3KkbN25o//79KlmypLp06WLrUgG7Q/sDrOPBgweqXbu2PD09dfr0ac2bN0+xsbFq1KiRChYsqGHDhikmJkZ37tyxdalAtpMRfF2/fl2HDx9W1apVtWnTJv30008qVaqUBg0apJ07dypPnjwEX8A/YDAYZDKZNGTIEPn5+aldu3Y6e/asYmJi5Ovrq4YNG+r+/fsEX3ju0fML/1jGrwBXrlzRJ598ooIFC+qFF16Qp6enoqKilCdPHkVFRWncuHEqVqyYrcsF7ArtD7Cu+/fv69tvv9X8+fOVI0cOLV++3LLe1dVVJpNJRqPRxlUC2dPt27f18ccfKyAgQB07dtSCBQu0a9cuDRw4UGXLllVqaqqcnZ1tXSaQpezatUsJCQmqW7eu8uXLpxkzZsjf319ffvmlGjZsKKPRqPz588vPz4/rH7IE+ubjqZnNZg0aNEglSpRQ165dFRERoXfeeUeenp4KDQ3VBx98oObNm6tAgQJKSEhQnjx5bF0yYDdof4BtuLq6qlmzZkpNTdXevXsVFRWlChUqWJ5mxcT2gHU9Oux/z549kmSZa6hLly5KSUnR1KlTNXPmTIYjA09pypQpunLligoVKqSiRYsqX758Sk1NVVBQkEaPHq2aNWuqR48eGjRoEMEXsgwmvMdTu3v3rqZNm6ZLly4pISFBcXFx8vDw0JIlSzRo0CBFRUUpLS1NxYsXl6urKxP+As8Q7Q+wHaPRqBIlSshsNmvBggUqXLiwXnzxRUmirQFWlNHT8tatWzp//rx8fHyUlpam69evKyUlRb6+vqpWrZpl8m3aJ/Dk5s2bp9u3b2vs2LGqW7eubty4oejoaDVp0kSOjo76+eeftWbNGr3//vuqU6eOrcsFnhg/g+CpeXh4aNCgQTp06JCMRqOOHz9uedSts7Ozvv/+e7Vo0UISXwaAZ432B9iWq6urGjduLKPRKG9vb1uXA2RLRqNRsbGxGjJkiHx8fCRJL7/8stLT07V7924ZjUbVrVtXuXPntnGlQNZiMpn066+/6pVXXlFKSoqmT5+uzZs3q2LFiho+fLg2btwoFxcX3b9/nzn0kOXQ8wtPxGw2KyEhwfJo6Lt372rbtm3y9/dXvnz5dPXqVSUnJys6Olp9+vRRiRIlbFwxYD9of8DzxcnJSaVKlWJyX8DKHn3q3Oeff662bdsqICBA8+bNU6VKlVS/fn3du3dP1atXl5ubm63LBbIcBwcH3bt3T2FhYfr555/166+/avLkyWrfvr1ltEHRokUt96RAVkLPLzyR4OBgJSUlqXHjxurRo4cqVaqkli1b6uTJk6pVq5auX78uT09Pvf/++5b5TwA8G7Q/4PlDz0rA+gwGg+7evStXV1elp6dr7969OnfunCZPnqzdu3frxIkTatu2ra3LBLK0xo0bq2zZsnJxcZGjo6Py5MmjH3/8UQcOHNAbb7xh6/KAf4zwC3/LZDKpQYMG2r59u1avXq3ExETlyZNHhQsXlre3typXrix3d3flzZuXL97AM0b7AwDgvxPcjxo1Sr6+vmrdurX69u2rZs2aSZJ27Nih8ePH27hKwD4UKVJE169f11dffSVXV1dt3bpVH3/8scqUKWPr0oB/jGGP+FsODg4qV66ccufOLZPJpHz58qlMmTKaOXOm/vOf/8jNzU0NGjSgezmQCWh/AIDsLGOoo8lkkoODg8qWLavIyEjVqFFDlStX1rFjxxQVFaU+ffqoZMmSti4XsCvXr1+XyWRSu3btVKtWLVuXA/xPDGaz2WzrIpA1JCcna/v27dqxY4d69uwpLy8vbdu2TXXq1GHSXyCT0f4AANlVUlKSZs+erfLly8vf319Tp05Vy5YtVbFiRaWmpkqSnJ2dbVwlAOB5Rs8vPDEnJyf5+voqLS1N8+fPV/ny5dWwYUOepANYAe0PAJCdZPT0Sk9PV3x8vJycnDR//nw9ePBA+/bt07Fjx1S3bl25u7vLaDTaulwAwHOOOb/wVFxdXdW0aVM5OTmpQIECti4HyFZofwCA7CA9PV1Go1HXr1/XxIkT5enpqQoVKmjp0qU6ffq0YmJidPnyZTk68lUGAPBkGPaIfyRj/gUA1kf7AwDYu/j4ePXv31+NGjVSjRo1FBISopYtWyokJMSy3cvLy8ZVAgCyCn4uwT/CF2/Admh/AAB7k56erunTp+vevXuqVq2a8ufPLx8fH3Xs2FGSNHfuXM2aNUupqalydnYm+AIAPBUHWxcAAAAAIPtKT0/XoEGDdO/ePTVt2lR16tTRqVOndPPmTd2+fVuSFBUVZXkNAMDTYtgjAAAAAJsJDQ1VoUKF1K9fP0kPe3ktX75csbGxql+/vooWLaoTJ04oPDxcJUuWtHG1AICsiJ5fAAAAAGwmd+7cluDr66+/VnR0tFasWKHy5csrX758aty4scaNG0fwBQD4x5jzCwAAAIDVmc1m3b17V/v379eBAwdUo0YNvf7662revLlcXFxUv359lStXTlWqVLF1qQCALI6eXwAAAACszmAwyMPDQ506ddKxY8d08eJFOTk5ycXFRVu2bNHu3btVqlQpW5cJALADzPkFAAAAwGauX7+uZcuWKSkpSUWLFpWLi4s2bdqksLAwFS9e3NblAQDsAOEXAAAAAJtKSEjQsWPHtHfvXvn6+qpevXoqWrSorcsCANgJwi8AAAAAAADYLeb8AgAAAAAAgN0i/AIAAAAAAIDdIvwCAAAAAACA3SL8AgAAAAAAgN0i/AIAAAAAAIDdIvwCAAAAAACA3XK0dQEAAADWEhMTo379+ql48eJKTEzUjBkzLNvq1KmjyMhIpaena8KECfrpp5/k4OAgJycnDR06VN7e3goODlZ4eLhKlCghSUpJSVGzZs20Y8cODRo0SCdPnpSnp6fMZrNu3bqlrl27KjAw0PJ39OjRQ5I0Z84cy7oGDRqoS5cu6ty5syTp3LlzCg8P16JFiyRJK1as0IYNG+Tg4KAHDx7oo48+Uo0aNTR9+nRt2rRJ+fPntxyrdu3a6tmzZ+Z9gAAAAFkQ4RcAAMiWfvjhB61bt06tWrV6bP2ePXt048YNRURESJK2bdumsWPHavbs2X97zNDQUL366quSpFu3bun1119X69atZTAYFBsbq+TkZD148EBXrlyRt7e3Zb8FCxaobt26Kl68+GPH27x5syIjI7VgwQI5OTnpypUr6tSpk77++mtJUpcuXfTWW2/9T58DAACAvWPYIwAAyJb69++v6dOn69q1a4+tL1iwoKKiorRlyxbFx8erYcOG+uyzz576+Ddv3pSzs7MMBoMkafXq1WrYsKFatWqlpUuXPvbeQYMGadCgQTKZTI+tX758uXr06CEnJydJkre3t9atWycvL6+nrgcAACC7IvwCAADZUv78+dWnTx8NHTr0sfWlS5fWqFGjtG3bNr3++usKDAzU0aNHn+iYkyZNUocOHRQQEKBx48ZZQrP09HRt2rRJb7zxhlq0aKEtW7bo/v37lv38/f310ksvad68eY8d78aNG4/1EJOkPHnyWF4vWLBAwcHBlj+RkZFP9RkAAABkBwx7BAAA2VbLli21bdu2x3pinT59WsWKFdPUqVNlNpsVGRmpvn37KjIyUi4uLnrw4IHlvUlJSXJ1dbUsZwx7/P777zV58mT5+PhIejiUMikpSf3795f0MAzbuHGj2rZta9l30KBBCgwMtOwjSYULF1ZsbKxy5cplWbd3716VLl1aEsMeAQAAngQ9vwAAQLYWHh6u+fPnKykpSZK0b98+TZ06VSaTSQaDQaVKlVKOHDlkMBhUvnx5ffvtt5Z9d+/erZdffvl3x/T391fDhg01fPhwSQ+HPI4ePVpffvmlvvzyS02bNu13Qx/d3d01cuRIjRkzxrIuMDBQs2bNUlpamiTpwoULGjp0qBwcuIUDAAB4UvT8AgAA2ZqXl5cGDRqkkJAQSVJwcLAmTJigVq1ayd3dXQ4ODpo4caIkqXv37goLC1Pr1q3l7OwsT09PjRo16g+P+8EHH6h169b6+uuvdezYMX366aeWbVWrVlVKSop+/PHHx/apUaOGWrRooejoaElSixYtFBcXpw4dOsjJyUkmk0mTJk3SCy+8IOnhsMctW7ZY9i9WrJhGjhz57D4cAAAAO2Awm81mWxcBAAAAAAAAZAb6zAMAAAAAAMBuEX4BAAAAAADAbhF+AQAAAAAAwG4RfgEAAAAAAMBuEX4BAAAAAP5fO3YgAwAAADDI3/oeX2EEsCW/AAAAANiSXwAAAABsBZAWmRgzvVWBAAAAAElFTkSuQmCC\n",
3330
      "text/plain": [
3331
       "<Figure size 1440x576 with 2 Axes>"
3332
      ]
3333
     },
3334
     "metadata": {},
3335
     "output_type": "display_data"
3336
    }
3337
   ],
3338
   "source": [
3339
    "plt.figure(figsize=(20,8))\n",
3340
    "ax=sns.countplot(data=saps, x='INSURANCE', hue='hdeath')\n",
3341
    "ncount = len(saps)\n",
3342
    "ax2=ax.twinx()\n",
3343
    "ax2.yaxis.tick_left()\n",
3344
    "ax.yaxis.tick_right()\n",
3345
    "ax.yaxis.set_label_position('right')\n",
3346
    "ax2.yaxis.set_label_position('left')\n",
3347
    "ax2.set_ylabel('Frequency [%]')\n",
3348
    "\n",
3349
    "ax.set_xticklabels(ax.get_xticklabels(),rotation=45)\n",
3350
    "\n",
3351
    "for p in ax.patches:\n",
3352
    "    x=p.get_bbox().get_points()[:,0]\n",
3353
    "    y=p.get_bbox().get_points()[1,1]\n",
3354
    "    ax.annotate('{:.1f}%'.format(100.*y/ncount), (x.mean(), y), \n",
3355
    "            ha='center', va='bottom') # set the alignment of the text\n",
3356
    "\n",
3357
    "# Use a LinearLocator to ensure the correct number of ticks\n",
3358
    "ax.yaxis.set_major_locator(ticker.LinearLocator(11))\n",
3359
    "\n",
3360
    "# Fix the frequency range to 0-100\n",
3361
    "ax2.set_ylim(0,100)\n",
3362
    "ax.set_ylim(0,ncount)\n",
3363
    "ax.set_title('ICU Patient Insurance Type and ICU mortality')\n",
3364
    "# And use a MultipleLocator to ensure a tick spacing of 20\n",
3365
    "ax2.yaxis.set_major_locator(ticker.MultipleLocator(20))\n",
3366
    "\n",
3367
    "# Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars\n",
3368
    "ax2.grid(None)\n"
3369
   ]
3370
  },
3371
  {
3372
   "cell_type": "markdown",
3373
   "metadata": {},
3374
   "source": [
3375
    "## Results 3: \n",
3376
    "### Distributions and Comparisions \n",
3377
    "\n",
3378
    "+ ICU patients distributed towards higher SAPSII total score. Majority proportion of ICU patients with a total SAPSII score of 70 and above have deceased. \n",
3379
    "+ The percentile of score cumulative distribution shows after SAPSII total score of 30,the percentile of ICU patients increased faster platuing at SAPSII total score of 80. \n",
3380
    "+ There is an overlaping normal distribution of SAPSII total score between female and male ICU patients, showing no distirbutional diffrence between male and female ICU patients' SAPSII total score.   \n",
3381
    "+ Patients with underlying disease are distributed to the right of the SAPSII total score scale. In other words, those with prexisting chronic diesaes had higher SAPSII score. \n",
3382
    "+ Metastatic cancer is the most common underlying chronic disease among ICU patients in this study. \n",
3383
    "+ The distribution of outside normal blood bicarbonate level picked after SAPSII score of 40 and continued to stay high, showing strong relationship with hospital death. The distribution of outside normal blood sodium and blood potassium level picked up at early SAPSII score of 30 showing the prevalence of abnormal sodium and potassium level is common among ICU patients and may have little contribution to the classification of surviving and deceased ICU patients in this study. \n",
3384
    "+ Population of ICU patients with extreme heart rate (experianced cardiac arrest) are distributed to the extreme right of SAPSII total score, the majority scoring an average of 75 in their SAPSII score\n",
3385
    "+ There is 'no' diffrence in the distribution of hospital death by religion denomination. Majority of the ICU patients are member of the catholic church. \n",
3386
    "+ also the distribution of hospital death is proportional to patients' marital status and ethinicity. \n",
3387
    "+ We observe distribution of high hospital death among medicare insurance holders, here the key player is likely age and underlying diease, not insurance type. Generally, Medicare is available for people age 65 or older, younger people with disabilities and people with End Stage Renal Disease (permanent kidney failure requiring dialysis or transplant). "
3388
   ]
3389
  },
3390
  {
3391
   "cell_type": "markdown",
3392
   "metadata": {},
3393
   "source": [
3394
    "## 4. Regressions "
3395
   ]
3396
  },
3397
  {
3398
   "cell_type": "code",
3399
   "execution_count": 179,
3400
   "metadata": {},
3401
   "outputs": [
3402
    {
3403
     "data": {
3404
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG1CAYAAAAoSvpaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3RU1d7G8e/0lJkACSGEKKihKBYQwUZTAgKhKQJBsV5AVPCVIs1CExERUMArWK4o6r0Coqig0qQICiKKiqI0pUMSQsKkZzLn/SOXuUYhhDIzIXk+a7mSU+ac35wJzrP22Wdvk2EYBiIiIiLid+ZgFyAiIiJSUSh4iYiIiASIgpeIiIhIgCh4iYiIiASIgpeIiIhIgCh4iYiIiASIgpdUOPXq1aNTp0506dKFW2+9lbZt23L77bfz008/Bbu0E1qxYgXjx4/3y7ELCgqYNGkSnTp1onPnznTq1IlZs2bx11Fm3n77berVq8fmzZuLrR8xYgTNmzf3XcuOHTvy0EMPceTIEQAyMzN58sknfce/9dZbmT9/vu/1M2bMYNy4cQBs2LCBjh07/q3GhQsX0qVLF7p06cK1117rO1+XLl349ttvS3x/I0eO5Ndffy1xn927d9O4ceMTbtuxYwd9+vShU6dOdOrUibvvvpvvv/++xOOVVZs3b6ZNmzYn3HbHHXewfPly3/K3335L7969fZ9pv3792LFjBwAej4d69epx7NixYsdYvHgx99133wmP7+/ruGzZMiZMmHBGry3p8xfxB2uwCxAJhrfeeovIyEjf8r/+9S/Gjx/P3Llzg1jViSUkJJCQkOCXY7/11lvs27ePDz/8EKvVitvt5t5776VKlSokJSX59nvvvffo1KkTb731Fg0bNix2jPvuu4/evXv7lidOnMjYsWOZPn06U6ZMISwsjI8//hiTycThw4dJSkoiNjaWZs2alarGW2+9lVtvvRUoCnp16tQpdr6SrFu3jnvuuadU+55I//79GT58OK1atQJg/fr19O3bly+++IKIiIgzPm5Ztn79ekaOHMk///lP6tevD8CHH35Ir169+Pzzz3G5XKd9TH9fxzZt2pw0VIqUNQpeUuF5PB4OHjxIpUqVfOtmzpzJ0qVL8Xq9xMXFMXr0aGJiYti9ezePP/44GRkZREdHYxgGnTt35tprr6VXr17Ex8ezf/9+3n77bfbt28fkyZPJycnBbDYzYMAAbr75ZlJSUhg+fDhHjx4FoGXLlgwcOPCk6z/44AOWLFnCK6+8wqFDhxgzZgz79+/HMAxuvfVW+vTpw759+7jvvvto2bIlP/zwA8eOHWPo0KG0adOGw4cP88ADD/Dqq68SExNT7L2npKRQUFBAfn4+VqsVl8vFpEmT8Hq9vn02bNhARkaG73gHDx4kNjb2pNfzhhtu4Pnnn/cdPyoqioKCAux2OzExMcyYMYPKlSufs8/vwIEDjB07lgMHDgDQtWtX7r//fiZPnkxaWhoDBw5k8uTJ5OfnM3XqVPLy8khJSaFFixY8/fTTJR47NTWV7Oxs3/L111/P1KlTMZuLbhasWLGCadOmYRgG4eHhjBs3jrp167JkyRJmzpyJ1+vF6XQycuRIrrzySl544QW2bNlCcnIy9evXZ+LEibz88sssX74cr9fLhRdeyOjRo4mOji5WR1ZWFqNHj2bPnj2kp6fjdDp54YUXqFWrFnfccQdNmjRh06ZNHDx4kGbNmjF27FhMJhPvvPMOc+bMweVyUbdu3VJdz+nTpzNgwABf6AK47bbbCA0NLfZ3cTpKuo67d+/m9ttv97Ve/nl5/vz5LFy4kKysLCpXrkxmZiYPPvggrVu3BopCvsPh4IILLmDlypUMHjyYe+65h9WrV2Oz2fB4PNx00028/fbbpKWlnfbnL+IXhkgFU7duXaNjx45Gx44djaZNmxqtWrUynn76aSM1NdUwDMP48MMPjYEDBxoFBQWGYRjGe++9Z/Tp08cwDMPo0aOH8e677xqGYRg7duwwGjRoYCxYsMDYu3evUbduXWPjxo2GYRhGenq6ccsttxh79+41DMMwDh06ZLRo0cLYv3+/8dJLLxlPPfWUYRiGkZWVZQwcONA4duzYSdcvWLDAeOCBBwzDMIxevXoZb7zxhmEYhnHs2DGjU6dOxqJFi3zn/+KLLwzDMIzPP//cuOmmm055LQ4ePGjcdtttxpVXXmncddddxtSpU42ff/652D7/93//Z0ycONEwDMPo27evMWnSJN+24cOHG6+//rpvOScnxxg4cKAxbtw4wzAMY+vWrcYtt9xiXH311cY//vEP46WXXjJ27drl23/69OnG2LFjDcMwjPXr1xsdOnQosd6/ns8wDCMpKcl46623DMMwjIyMDKNjx47GZ599ZhiGYTRv3tz45ZdffO/j+OfjdruNJk2aGFu3bjX++OMP45prrjnh+RYuXGhcc801RrNmzYxHH33UeOedd4z09HTDMIo+02uuucbYunWrYRiG8emnnxr9+vUztm3bZjRt2tT32X/55ZdG06ZNjczMTGPq1KlGYmKi4fF4DMMwjPnz5xuDBw/2/a298847Rr9+/f5Wx+LFi41nnnnGt/zEE0/4lnv27GkMHjzYKCwsNI4dO2bceOONxsaNG40ff/zRaNq0qZGammp4vV7j8ccfN1q3bn3C99mzZ09j2bJlhmEYxpVXXlnsM/qrgoICo27dukZGRkax9YsWLTLuvffe076Of73+f16eN2+ecd111xlut9swDMOYO3eu8dBDD/nqaNq0qbFnzx5j3rx5vvVJSUm+97JixQrjrrvuMgzjzD5/EX9Qi5dUSMdvNf7888888MADXHfddURFRQGwcuVKfvrpJ26//XYAvF4vOTk5ZGRk8OOPP/LOO+8AEB8fz/XXX+87ptVq9d2G27x5MykpKfTv39+33WQy8dtvv9G8eXMeeOABDh48yI033siQIUNwuVwnXX9cdnY23333HW+88QYALpeLrl27smbNGho0aIDNZqNly5YA1K9fn/T09FNeh+rVq/PBBx+wY8cONmzYwIYNG0hKSmLEiBH06tWLlJQUVqxYwYIFC4Ci235jxoyhf//+hIWFAfDmm2/y8ccfA1BYWEiTJk0YPHgwAJdeeimff/45P//8Mxs3bmTdunXMmjWLadOm+W47nY3MzEx++ukn3n77bQAiIiLo0qULa9asoV27dsX2ff7551m9ejUzZ85k165d5OXlkZWVRWho6EmP36VLF9q1a8e3337Lxo0bmT9/PjNnzmTevHls3ryZyy67jEsvvRSA9u3b0759e+bMmUPTpk254IILAGjWrBmVKlVi69atADRs2BCLxQLAqlWr+OWXX4r9reXn5/+tjsTERGrWrMmcOXPYs2cPGzdupEmTJr7tN998M2azGZfLxYUXXkh6ejq7du2iefPmvr/rpKQkvvnmm1NeU7PZXGLL1vHWvr/yer2+9/VXJV3HU7n00ktxOp0AdOjQwdeS+f3331OnTh0uvPBC1q9f79u/e/fufPDBB7Ru3ZoPPviA7t27A2f2+Yv4g4KXVGiXX345I0eOZMSIEVx22WVccMEFeL1e+vTpw5133glAfn4+GRkZvi8V408dz//8RWO327Fai/5JFRYWEh8fX6wj+eHDh4mMjMRms7FixQq+/vpr1q9fT/fu3Xnttde46qqrTrj+OK/X+7dO716vF4/HA4DNZvN9KZpMplK9/0mTJtG9e3dq165N7dq16dWrFx999BGvvfYavXr18n0xPvTQQ77zZWZm+vr8wN/7eB3n8XgYN24cgwcP5oorruCKK67g/vvv5+WXX2bu3LnnJHidKCD8+ZocZxgGPXv25IorrqB58+Z06NCB77///m/X88+2b9/OokWLGDRoEE2bNqVp06YMHDiQu+++m6VLl1KjRo2/nXfbtm14vd6/XX+v10tBQQGAL7BC0d/Jgw8+SI8ePQDIy8v7W6d1KHq44cMPP+TOO++kU6dOOJ1OUlJSfNtDQkJ8v//53Cf7Wy1JgwYN+OGHH4iPjy+2fvTo0bRr144bbriBSpUqkZ6eXqx/1pEjR054C/lU17FVq1bF6jx+nY778/UKDw+nTZs2LFq0iA0bNvhC1Z8lJiYyadIkdu7cyXfffceUKVPO6PMX8Rc91SgVXseOHbnqqqt49tlngaIWivfff5/MzEwApk2bxrBhw3A6nTRq1IgPPvgAgL179/L111+fMOQ0bNiQ3bt3s3HjRgC2bt1K27ZtOXz4MJMnT+bll1+mdevWPPHEE9SuXZvt27efdP1xTqeTBg0a8O677wLgdrtZuHAhN9544xm/97S0NKZNm0ZOTg5Q9EW9fft26tevT2FhIfPnz2fs2LF88cUXfPHFF6xatYp+/foxZ86cU35pWa1Wfv/9d15++WXfl6nH42Hnzp3F+g+djYiICOrXr89//vMfAI4dO8bHH3/suyZWq5WCggKOHj3Kr7/+6uuntn//fvbt21diy07VqlX597//zbJly3zrjh496uuf1bBhQ7Zt28bOnTsBWLp0KSNHjuSGG25g9erV7Nu3D4C1a9eSmprKlVde+bdzNGvWjHnz5vn+1l544QVGjhz5t/3Wrl3L7bffTrdu3ahVqxarVq06ZX+r5s2bs2bNGg4fPgwUdZAvjYcffpjp06fzyy+/+NbNnz+fFStWUK9ePd+x58yZ46shPT2dhQsX0qJFi78d71TXMSIigtzcXHbt2gXAokWLSqyvR48eLFiwgB9//NHX1+vPQkNDadeuHSNGjCAxMRGHw3FGn7+Iv6jFSwR46qmn6Ny5M19++SXdu3fn8OHD9OjRA5PJRGxsLBMnTgTgueee44knnuDf//43MTExXHDBBcVaG46LjIxk+vTpTJo0iby8PAzDYNKkSVxwwQXce++9jBgxgo4dO2K326lXrx4dOnQgIyPjhOv//EU0efJkxo0bxwcffEB+fj6dOnWia9eu7N+//6TvraTO9aNHj+aFF16gc+fO2O12PB4P119/PaNGjWLlypV4vV46depU7DX33Xcfc+bMYfXq1ae8rtOmTeP555+nbdu2vs7Zbdq0KXYL9mxNnTqVcePGMX/+fAoKCnzDVkDR026DBw/m6aefpnfv3nTp0oXQ0FBiY2O5+uqr2b1799+uyXFVqlThzTffZOrUqTz77LOEhobicDgYMGAA1157LVDUYjh06FAKCwtxuVxMnjyZ+Ph4nnzySfr3709hYSGhoaHMmjXLd7vsz+644w6Sk5N9T5DWqFHjhMMi9O7dm9GjR/Pee+8BRa1Sx4PKyVx22WW+zubh4eFcddVVpbqe1113HWPHjmXcuHHk5OSQn59PrVq1ij0J/NRTT/Hcc8/RsWNHX0ta165d6dKlyxldx8GDB9O7d28iIyNp27ZtifU1aNAAr9dLYmIidrv9hPv06NGDrl27+jrPR0ZGnvbnL+IvJkNtrSKlNnPmTG655Rbi4+Nxu9107tyZ1157jdq1awe7NBEROQ+oxUvkNFx00UUMGjQIs9lMYWEhffv2VegSEZFSU4uXiIiISICoc72IiIhIgCh4iYiIiATIedHH67rrriMuLi7YZYiIiIic0v79+9mwYcMJt50XwSsuLs43dpKIiIhIWda1a9eTbtOtRhEREZEAUfASERERCRAFLxEREZEAUfASERERCRAFLxEREZEAUfASERERCRAFLxEREZEAUfASERERCRAFLxEREZEAUfASERERCRAFLxEREZEAUfASERERCRAFLxEREZEAUfASERERCRAFLxEREZEAUfASERGRcmn5ruUkvpvIil0rgl2KjzXYBYiIiIj4w9jVY1m7Zy3ufDcJlyQEuxxALV4iIiJSTrnz3MV+lgUKXiIiIiIBouAlIiIi5Y47z82RnCMAHMk5UmZavRS8REREpFxZu2ctcVPjOHDsAAAHjh0gbmoca/esDXJlCl4iIiJSjrjz3CS+m4g7340XLwBevLjzi9Zn5mcGtT4FLxERESk35v48F6/hPeE2r+Fl7pa5Aa6oOAUvERERKTe2H9lOVkHWCbdlFWSxI21HgCsqTsFLREREyo06UXUIt4WfcFu4LZzakbUDXFFxCl4iIiJSbiRdnoTZdOJ4YzaZSboiKcAV/aWGoJ5dRERE5BxyOVx82utTXHYX5v/GHDNmXPai9U67M6j1KXiJiIhIudKsZjMODDlAXEQcAHERcRwYcoBmNZsFuTIFLxERESmHnHYnkaGRAESGRga9pes4BS8RERGRAFHwEhEREQkQBS8RERGRAFHwEhERkXLJ5XAV+1kWKHiJiIhIuTSm5Rja127PmJZjgl2KjzXYBYiIiIj4Q8IlCSRckhDsMopRi5eIiIhIgCh4iYiIiASIgpeIiIhIgCh4iYiIiASIgpeIiIhIgCh4iYiIiASIgpeIiIhIgCh4iYiIiASIgpeIiIhIgCh4iYiIiASIgpeIiIhIgCh4iYiIiASIX4KX1+tl1KhRJCUlcffdd7N79+4T7tOnTx/+85//+KMEERERkTLHL8Fr+fLl5OfnM3fuXIYMGcLEiRP/ts+LL75IRkaGP04vIiIiUib5JXht2rSJ5s2bA9CwYUO2bNlSbPvnn3+OyWSiRYsW/ji9iIiISJnkl+CVmZmJ0+n0LVssFjweDwDbtm1j0aJFPProo/44tYiIiEiZZfXHQZ1OJ1lZWb5lr9eL1Vp0qoULF3L48GHuvfde9u/fj81mIy4uTq1fIiIiUu75JXg1atSIlStXkpiYyObNm6lbt65v27Bhw3y/z5gxg6pVqyp0iYiISIXgl+DVpk0b1q1bR8+ePTEMgwkTJjB79mxq1qxJQkKCP04pIiIiUub5JXiZzWbGjRtXbF18fPzf9nvkkUf8cXoRERGRMkkDqIqIiIgEiIKXiIiISIAoeImIiIgEiIKXiIiISIAoeImIiIgEiIKXiIiISIAoeImIiIicQ17De9JtCl4iIiIi50h6bjqGYZx0u4KXiIiIyDmQX5jPkewjJe6j4CUiIiJyDqRkpVBoFJa4j4KXiIiIyFlKz00nqyCL/2z5T4n7KXiJiIiInIXjtxg/3/E5Y1aNKXFfBS8RERGRs5CSlcLhrMOnDF2g4CUiIiJyxjJyM8jKz2L0qtEczT2Ky+4qcX8FLxEREZEzkF+YT2p2Kh9t+4jlu5YD8FTLp0p8jYKXiIiIyBlIyUphv3s/T69+GoA2l7Shc93OJb5GwUtERETkNKXnppOZn8kTXzyBO99NlZAqjL1pLCaTqcTXKXiJiIiInIY8Tx5Hso8w7+d5rN2zFoAxN40hKizqlK9V8BIREREpJcMwSMlK4Y+MP5i4biIAHet2pF3tdgCYTWbMppPHKwUvERERkVJKz00nsyCTx5c/TnZBNtFh0TzV4n8d6iNDI0u83ajgJSIiIlIKeZ480nLSeGvzW3xz4BsAxrcaT+WQygCEWcOoElKlxGMoeImIiIicwvFbjL8d+Y2p66cC0KN+D2666CYALCYL0eHR6lwvIiIicraO5h4lIy+DYcuGkV+YzwURFzC82XAATJioGlYVh9VxyuMoeImIiIiUINeTS1pOGjO/ncnPKT9jwsRzrZ/DaXcCEG4Lp1JIpVIdS8FLRERE5CSO32LcfGgzs76dBcD9V99P4xqNAbCarUSHR5f6eApeIiIiIieRlpPG0dyjDFs2jEKjkDqRdRh43UCg6BZjdFg0Nout1MdT8BIRERE5gdyCXI7mHmXK11P4Pf13rGYrk9pM8vXlinBE4HKUPCn2Xyl4iYiIiPyF1/CSnJXMur3rmPPDHAAGXDuA+tH1AbCb7VQNq3rax1XwEhEREfmLtOw0krOTGbF8BAANYhrQt1FfoOgWY7XwaljMltM+roKXiIiIyJ9k52dzNPco41aP41DmIUKtoUxqMwmr2QpAlZAqhNnDzujYCl4iIiIi/1XoLSQlO4XF2xfzybZPABjRbAQXVb4IgBBLCJFhkWd8fAUvERERkf86kn2EPRl7GLNqDAAta7Uk6fIkoGgC7Grh1UqcBPtUFLxEREREgMy8TI7mHmXkipFk5GVQOaQyz7R6xjcNUGRoJCG2kLM6h4KXiIiIVHger4fU7FTe/eld1u1dB8DTNz/tGxy1NBNgl4aCl4iIiFR4KVkpbD2ylUnrJgHQ9dKu3BJ/C1A0AXY1Z7VTToBdGgpeIiIiUqEdyztGWk4aQ5cOJa8wjzhXHE+0eAL47+j04dHYLfZzci4FLxEREamw8gvzSclK4aVvXjrhBNguu4sIR8Q5O5+Cl4iIiFRIxyfA3rB/A69segWAvo360iSuCVA0Ov3pTIBdGgpeIiIiUiEdzT3KocxDDFs2DAODy6Mv55HrHgHObnT6kih4iYiISIWTW5BLWk4a49aMY797PyHWEJ6/5XlfX66zGZ2+JApeIiIiUqEcnwD7k98+4ePfPgZgeNPhxFeJByDUGkpUWJRfzq3gJSIiIhXKkewj7ErfxehVowG4qdZN3HHFHcB/h44IPzdDR5yIgpeIiIhUGFn5WRzJPsLwZcNx57uJDI3kmYSi0elNmIgKi8Jhdfjt/ApeIiIiUiF4vB5SslJ4/fvX+ebANwBMaDWBqmFVAXDanVQOqezXGhS8REREpEJIyUph08FNTNswDYCeV/Tk5otvBvwzdMSJKHiJiIhIuZeRm8HhzMM8tvQxPF4P8VXiGdF0BPC/0emtZqvf61DwEhERkXItz5NHanYq478czx8Zf2Az25hyyxRCbaEARIZGEm4PD0gtCl4iIiJSbh0fnX7x9sUs2LoAgMdufIzLoi8DioaOiAyNDFg9Cl4iIiJSbqXlpLHz6E6eWvkUAM0ubMY9De4B/D90xIkoeImIiEi5lJ2fTUpWCkOXDeVY3jGqhFTh2dbPYjaZff26/Dl0xIkoeImIiEi5U+gtJDkrmVe/e5WNBzYC8GzCs1QLrwaAy+4iwhER8LoUvERERKTcSclKYeOBjUzfMB2AXlf28g0d4bA4AjJ0xIkoeImIiEi5cizvGAfcBxi8dDCFRiF1IuswrOkwAMwmM9XCq2ExW4JSm4KXiIiIlBv5hfkkZyYzatUo9h3bh8PiYGrbqYRYQ4CioSOODyMRDApeIiIiUi4YhkFyZjLzf5nP4u2LARjZfCR1o+oCEG4Lp0pIlWCWqOAlIiIi5UNaThpbUrbw9JqnAWhzSRt6Xt4TAKvZGvChI05EwUtERETOe9n52RzKPMTgJYPJ8eQQ64xlfKvxmEwmTJioFlYNm8UW7DIVvEREROT85vF6SM5K5vmvnmdr6lbMJjOTb5lM5ZDKAFQOqYzT4QxylUUUvEREROS8lpKVwtJdS3nrh7cA6N+kP41rNAaKpgSKCosKZnnFKHiJiIjIeSs9N50daTsYsXwEAI1rNObBxg8C/5sSyGwqO3Gn7FQiIiIichpyPbkczjzMkKVDOJp7lMqOykxuMxmr2VrUryu8WsCnBDoVBS8RERE573gNL8mZycz4ZoZvSqAJrScQ64oFoJKjEi6HK5glnpCCl4iIiJx3jmQfYeXulby88WUA7m1wLwkXJwAQYgmhanjVYJZ3UgpeIiIicl5x57nZmbaToUuHYmBwefTlPHbjY8B/+3U5y1a/rj8rm1WJiIiInEB+YT6Hsw4zdPlQUrJTCLeF82K7F7Fb7JgwUTWsqm96oLJIwUtERETOC8enBJr17SzW7lkLwPhW46lZqSYAEY4IKoVUCmaJp6TgJSIiIueFtJw01u1dx4vrXwSgR/0eJNZJBP7bryusbPbr+jMFLxERESnzsvKz2Jm2k0FLBlFoFFInsg6PN38c+F+/LovZEuQqT03BS0RERMo0j9fD4czDDF8+nIOZBwmzhTGt3TRCbaHnRb+uP1PwEhERkTLreL+umZtmsmr3KgDG3DSG+Mh44Pzo1/VnfgleXq+XUaNGkZSUxN13383u3buLbX/33Xe5/fbb6datGytXrvRHCSIiIlIOHM09yqrdq3jh6xcA6F6/O13qdQGK+nVFh0cHs7zTZvXHQZcvX05+fj5z585l8+bNTJw4kZkzZwKQlpbGv//9bxYuXEheXh4dOnTgpptuwmQy+aMUEREROU9l52ez/ch2Bi8ZTKFRSN2oujzZ4kmg7I/XdTJ+qXbTpk00b94cgIYNG7JlyxbftsjISD766CNsNhupqalEREQodImIiEgxHq+HQ5mHGLpsKIezDvv6dYVYQzBhIjo8+rzp1/VnfglemZmZOJ1O37LFYsHj8fiWrVYr77zzDklJSbRt29YfJYiIiMh56ni/rn9u/Cdf7vkSgKdvfppLqlwCFM3DGOGICGaJZ8wvwcvpdJKVleVb9nq9WK3F72reddddfPnll2zcuJH169f7owwRERE5D6XlpPHFH1/w4oai8bqSLk+iY92OAIRaQ8vsPIyl4Zfg1ahRI9asWQPA5s2bqVu3rm/brl27GDBgAIZhYLPZsNvtmM3n1/1ZERER8Y+s/Cx+Tf2VQUsG4TW8XFb1Mp5o/gQAVrOVGGfMedev68/80rm+TZs2rFu3jp49e2IYBhMmTGD27NnUrFmThIQELr30UpKSkjCZTDRv3pxrr73WH2WIiIjIeaSgsIAD7gMMWjKI1OxUXHYX09tPx2F1YMJEtbBq2C32YJd5VvwSvMxmM+PGjSu2Lj4+3vf7gAEDGDBggD9OLSIiIuchwzBIzkpm0leT2HhgIwATW0/0zcMYGRqJ0+Es6RDnhfO3rU5ERETKjbScND767SNe/+51APo06kPrS1oDEG4LJzI0MpjlnTMKXiIiIhJU7jw3mw9tZsTyEQA0qdGEQdcPAsButhPjjCk3Q08peImIiEjQ5Hny2JOxh0c+ewR3vpuqYVWZ2nYqVrMVs8lMjDMGq9kvPaOCQsFLREREgsJreEnOSmbM6jFsTd2K2WRm6i1TqRZezTf5dagtNNhlnlMKXiIiIhIUKVkpzPlhDu//8j4Ag64fxHUXXAcUTX5dOaRyMMvzCwUvERERCbiM3AzW7lnL2NVjAUi4OIE+jfoARYOknm+TX5eWgpeIiIgEVG5BLtuObOP/Pv8/CrwFXFTpIp5r/aI8iIkAACAASURBVBxmk7lcDJJakvL5rkRERKRM8ng9vkFSD7gPEGoNZUbiDFwOV7kZJLUkCl4iIiISEMcnv37+q+dZt3cdAM+0eoa6UUVTC5aXQVJLouAlIiIiAZGWk8bC3xYya9MsAO5tcC8d6nYAwGlzlptBUkui4CUiIiJ+l5mXyXcHv2P48uEANK7RmKE3DgXAYXGUq0FSS6LgJSIiIn6V58lj59GdPPzpw2TmZxIdFs2LbV/EZrFhMVmIccZgMVuCXWZAKHiJiIiI33gNL4fchxi2bBg70nZgM9uY3n460eHRRZ3pw6sRYg0JdpkBo+AlIiIifpOSlcK0b6axdNdSAJ5s8SSNYhsBRZ3pXQ5XMMsLOAUvERER8Yv03HQ+/u1jXlz/IgDd63cn6fIkoOJ0pv8rBS8RERE557Lzs9l0YBNDlg7BwKBBTANGtRyFyWSqUJ3p/0rBS0RERM6pgsICdh3dxUOLH8Kd7yY6LJoZ7Wdgt9grXGf6v1LwEhERkXPGMAwOuQ/x2LLH2J62HavZyrT204pauCpgZ/q/UvASERGRcyYlK4Up66ewZOcSAJ5o/gTXxF4DVMzO9H+l4CUiIiLnREZuBgu2LmDahmlAUWf6O664AwCX3VUhO9P/lYKXiIiInLWcghy+2vsVjy17DIBGsY18nelDLCFUC69WITvT/5WCl4iIiJwVj9fDrym/0m9RP7ILsol1xqoz/UkoeImIiMgZMwyDfRn76P9Zf/Ye20uINYR/Jv6TqmFVMWEiJjwGh9UR7DLLDAUvEREROWMpWSmMXj2ar/d9DcCzCc9yebXLMWEiKiwKp8MZ5ArLFgUvEREROSPpuen86/t/MeeHOQD0u6YfiXUSAYhwRKgz/QkoeImIiMhpy87P5rPtnzF61WgAbqp1E49e9ygAYdYwosOjg1lemaXgJSIiIqclvzCfjQc20v/T/hR4C6gdWZspbadgMVuwm+1Ud1XHbFLEOBFdFRERESk1r+Flx5Ed9P2kL0dzj1I5pDKzOszCaXdiMVmo7qqO1WwNdpllloKXiIiIlNrBYwd5+NOH2Z62HZvZxkvtX+LCShf6nmCsyNMBlYaCl4iIiJTKkewjjFo1itW7VwMw+qbRNIlroicYT4OCl4iIiJySO8/Nq5te5Y3NbwBwf8P76V6/OwCVHJX0BGMpKXiJiIhIiXILcvlk2ye+Jxhb1mrJ0BuHAhBuC9cTjKdBwUtEREROqqCwgK/2fsXDix/2PcE4te1ULGYLIZYQqjuraw7G06DgJSIiIifkNbz8mvIr//j4H2TkZRAVGsUrHV/BaXdiNVup7qquORhPk4KXiIiInNDe9L3845N/sDtjNw6Lg5c7vMwFERdgMVmIdcZit9iDXeJ5R8FLRERE/iY1K5WBSwby7YFvAZjYeiINqzfEhIlq4dUItYUGucLzk4KXiIiIFOPOc/PMl8+w8LeFAAy6fpBvDsbI0EhcDlcwyzuvKXiJiIiIT3Z+Nm98/wYvbngRgK6XdqXfNf2AomEjosKiglneeU/BS0RERADI8+SxaPsihi4rGiri2rhrGXvzWEwmE+G2cKqFVwtyhec/BS8RERGh0FvIV3u/ot8n/SjwFnBx5YuZ0X4Gdotdw0acQwpeIiIiFZxhGGxJ3sI9C+8hPS+dqNAoXuv0GpVDKmM32zVsxDmk4CUiIlLB7U7fzT0L72HfsX2EWEOY1XEWF1a6EIvJQnVXdQ0bcQ4peImIiFRgyZnJ9F3Ulx8P/4jZZGZq26lcFXMVJkxUd1YnxBoS7BLLFQUvERGRCupY3jGGLhvK8l3LAXiy+ZMkXJzgG6sr3B4e5ArLH2tpdnrppZd45513sFr/t/vatWv9VpSIiIj4V3Z+Ns+tfY45P84B4B8N/0Gvq3phwkRkaCSVQioFucLyqVTBa+XKlaxatYqQEDU3ioiInO/yPHm89v1rTFg7AYC28W0Z2rRoCAmN1eVfpbrVGBUVVay1S0RERM5PHq+HBb8sYOjSoqDVuEZjnm/zPGaTGZfdRXR4dJArLN9KTFODBw/GZDKRmprKbbfdRp06dXxjeEyZMiUgBYqIiMi54TW8LN+5nAcWPUCBt4A6kXV4OfFlHFYHYdYwYpwxGqvLz0oMXj179gxUHSIiIuJHhmHw7f5vuWfhPWQVZFHdWZ3XOr1GpZBKRQOkuqpjNumZO38r8Qpfc801NGzYkDlz5nD11VfTsGFDrrrqKl566aVA1SciIiLnwK8pv9JzQU9SslOIcETweqfXiXXF+gZItZrVpSgQSrzKCxYsYNasWaSmptKuXTsMw8BisXDNNdcEqj4RERE5S7uP7ubOD+7k9/TfsVvszOwwkzpRdbCarRogNcBKDF49evSgR48evP/++3Tr1i1QNYmIiMg5kpyZzD0f3cPmw5sxYWLKLVNoXKNx0aj04RogNdBK1a7YpEkTXnnlFQoKCgBITk5m3Lhxfi1MREREzk56bjp9PunDmt1rABjVchS3xN+CCRMx4TGE2cOCXGHFU6pedMOHDwfgu+++Y9++faSnp/u1KBERETk77lw3j37+KJ9s+wSAR659hDuvvLModDljcDqcQa6wYipV8AoJCaFfv37ExMQwceJEUlNT/V2XiIiInKGcghzGrB7DnB+KRqW/68q76N+kPyZMRIVFEeGICHKFFVepgpdhGKSkpJCVlUV2djYZGRn+rktERETOQK4nlylfT2Hq+qkAdKjTgSdaPIHJZKJKSBUiQyODXGHFVqrgNWDAAJYtW0aXLl1ISEigRYsW/q5LRERETlOeJ483vnuDUStHAdCsZjMmtp6I2WSmsqMyVcOrBrlCKXXn+ssuu4z9+/ezfPlywsM1W7mIiEhZUlBYwNyf5zJwyUAMDBrENGBG+xnYLXYi7BGaCqiMKFXwWrJkCTNnzqSwsJB27dphMpl4+OGH/V2biIiIlILH6+HjXz+m36J+vqmAXun4CmG2MJw2p6YCKkNKdatx9uzZzJs3j8qVK/Pwww+zfPlyf9clIiIipVDoLWTZzmXc9/F95HpyuTDiQt7o8gZVQqsQZg2juqu6QlcZUqrgZTabsdvtmEwmTCYToaGh/q5LRERETsFrePly95f0+qAXmfmZxITHMPvW2VQLr0aoNZRYV6zmXyxjSvVpNG7cmMGDB3P48GFGjRrFlVde6e+6REREpASGYbBx/0aSFiRxNPcoVUKqMPvW2VwYcSEhlhBiXbFYzJZglyl/Uao+XoMHD2bNmjXUr1+f+Ph4br75Zn/XJSIiIidhGAY/HPqB7vO7k5yVjNPu5F+d/0V8lXgcFgexrlhNel1GlfipLFy4sNhy1apVycjIYOHChdx6661+LUxERERO7JeUX+g2vxt7j+0lxBrCKx1f4fJql2M324l1xWKz2IJdopxEicFr586dAGzevJnQ0FCuvvpqfvrpJzwej4KXiIhIEPyW+htd53Vl59Gd2Mw2/pn4TxrXaIzVbCXWFYvdYg92iVKCEoPXkCFDAOjduzevvvqqb/0//vEP/1YlIiIif7MrbRfd5nVj25FtWM1WprefTrOazbCardRw1sBhdQS7RDmFUnWuT0tL49ixY77fNUm2iIhIYO1O3023+d3YkrIFs8nMlFum0OriVlhMFmKdsYTYQoJdopRCqXrePfTQQ3Tr1g2n04nb7ebZZ5/1d10iIiLyX/uP7af7/O58f+h7TJh4rvVztKvdzhe6Qm0a5ul8UaoWr/T0dGw2Gzt37iQ/P5/hw4f7uy4REREBDroPkvR+EhsPbARgfKvxdK7XGYvJQnVndcLsYUGuUE5HqVq83nvvPV599VWio0s3z5PX62XMmDH89ttv2O12xo8fT61atXzb33zzTRYvXgxAy5YtGTBgwBmULiIiUr4dyjxE0vtJrNu7DoBRLUfRrX43zCYzMeExhNs1d/L5plQtXlWqVCEuLg673e77ryTLly8nPz+fuXPnMmTIECZOnOjbtnfvXj7++GPee+895s6dy9q1a/n111/P7l2IiIiUM4czD9Njfg++3PMlACObjaTXlb18ocvpcAa5QjkTJbZ4TZ06FYD8/Hx69+5N/fr1ffM9DR48+KSv27RpE82bNwegYcOGbNmyxbetevXqvP7661gsRaPpejweHA49hSEiInJccmYySe8nFQtd9zW8DxMmYsJjcDlcQa5QzlSJweviiy8u9rO0MjMzcTr/l8QtFgsejwer1YrNZiMyMhLDMJg0aRL169c/7eOLiIiUVylZKSS9n8Tq3asBGNF0xP9Cl1Oh63xXYvC67bbbzuigTqeTrKws37LX68Vq/d+p8vLyePzxxwkPD2f06NFndA4REZHyJjkzmZ4LerJq9yoAht04jPuvvh8TJqo7qyt0lQN+mbK8UaNGrFmzBiga9b5u3bq+bYZh8PDDD1OvXj3GjRvnu+UoIiJSkSVnJnPHgjtY+cdKAB678TF6N+qt0FXO+GUGzTZt2rBu3Tp69uyJYRhMmDCB2bNnU7NmTbxeL9988w35+fl8+WXRvevBgwdz9dVX+6MUERGRMu9w5mF6vN+DNbuLGi2G3DCEvo366vZiOeSX4GU2mxk3blyxdfHx8b7ff/rpJ3+cVkRE5LxzwH2AHvN7+IaMGHrjUPo06uN7elGhq3zxS/ASERGRU9t3bB/d5nVjw/4NADze/HHubXCvQlc5puAlIiISBHvS99B1Xlc2HdwEFA2O+udxuhS6yicFLxERkQD7I/0Pus7t6pt7cdzN4+hxeQ8sJosGRy3nFLxEREQCaFvqNrrO68rPKT9jwsSEhAl0vayrb+5FTQNUvil4iYiIBMiWw1u4bd5t7EjbgcVkYWLrib4Jr2OdsZrwugJQ8BIREQmA7w58x23zbmNPxh5sZhsvtH2BNvFtFLoqGAUvERERPzIMg/V713P7/Ns5mHmQEGsIL7V/iea1mmMxWajhqkGoLTTYZUqAKHiJiIj4iWEYrPp9FT0W9CA1O5VwWzivdHyFJnFNsJqt1HDWIMQWEuwyJYD8MmWQiIhIRec1vCzatojb5t1GanYqlRyVePPWN2kS1wS72U4N14lD1/Jdy0l8N5EVu1YEoWrxN7V4iYiInGOF3kLe2/IefT/pS44nh6jQKN7o8gaXVr0Uh8VBrCsWu8V+wteOXT2WtXvW4s53k3BJQoArF39T8BIRETmHPF4Pr256lYGfD6TAW0CcK47ZXWZTq3ItQiwhxLpisVlsJ329O89d7KeULwpeIiIi50h+YT6Tv5rMk188iYFBncg6/Kvzv4hxxhBmDaO6qzpWs756KzJ9+iIiIudATkEOo1aOYvLXkwFoGNOQVzq9QuWQyoTbwqnurI7FbAlylRJsCl4iIiJnKTMvk//7/P+YvXk2AM0ubMaMxBmE2cKIsEdQzVkNs+nUz7O589wcyTkCwJGcI7jz3JqzsZzRU40iIiJn4UjWEe5YcIcvdLWv3Z6ZHWcSbgunsqMyMc6YUoWutXvWEjc1jgPHDgBw4NgB4qbGsXbPWr/WL4Gl4CUiInKG9mbspeN7HVm0fREAd115F1NumYLD4iAyNJJqzmqYTKZTHsed5ybx3UTc+W68eAHw4sWdX7Q+Mz/Tr+9DAkfBS0RE5Az8kvILt7xzC+v3rQdgyA1DeLLFk1jNVqLDo4kKiyr1seb+PBev4T3hNq/hZe6WueekZgk+9fESERE5DYZhsH7ferrP785+934sJgvPtHqG2y67DbPJTLXwakQ4Ik7rmNuPbCerIOuE27IKstiRtuNclC5lgIKXiIhIKXkNL4u3LeaehfeQnptOmC2Mae2m0aJWi7Oa7LpOVB3CbeEnDF/htnBqR9Y+F+VLGaBbjSIiIqXg8Xp4bdNrdJvfjfTcdCJDI3nr1rdoUasFdrOduIi4MwpdAEmXJ520A77ZZCbpiqSzKV3KEAUvERGRU8gtyGX0ytE8uPhB8gvzuajSRbx3+3tcFXMVodZQ4iLiCLGe+WTXLoeLT3t9isvuwvzfr2YzZlz2ovVOu/NcvRUJMgUvERGRErjz3PT9pC8T1k4AoFFsI/7T7T/UqlwLp81JDVeNEqcAKq1mNZtxYMgB4iLiAIiLiOPAkAM0q9nsrI8tZYeCl4iIyEkccB+gy3tdeOend4CiMbre7PImUaFRVHJUItYVe05Ho3fanUSGRgIQGRqplq5ySJ3rRURETmDL4S30XNCTn1N+BqBPoz4MuWEIFpOFqLAoX0ASOR0KXiIiIn/iNbys2LWCuz68i+SsZMwmM6NajuKOK+7AYrIQHR592sNFiByn4CUiIvJfHq+H2d/P5tHPHyXHk4PT7uSFti/4nlyMccYQagv1aw3H52bUHI3lk/p4iYiIUPTk4pNfPMkDix4gx5NDnCuO925/jxa1WhBiCaFGRA2/hy6AMS3H0L52e8a0HOP3c0ngqcVLREQqvLTsNPot6sf7W98H4OrqV/Nyh5eLOrjbnMQ4Y85pJ/qSJFySQMIlCQE5lwSegpeIiFRo21K3cecHd7Lp4CYAOtfrzPibxxNiDaFKSBWiwqJKNdG1SGkoeImISIVkGAZf7PqCuxfezcHMgwA8et2jPNT4ISxmC9Fh0VQKqRTkKqW8UfASEZEK5/j0P4OXDibXk0uYLYxJrSfRJr4NVrOVWGdsQPpzScWj4CUiIhVKdn42w5cP56WNLwFwQcQFvJz4MvWq1iPUGkqMMwa7xR7kKqW8UvASEZEKY2/GXu7/6H5W/L4CgOvirmNau2lUCa2Cy+6iWni1gHWil4pJwUtERMo9wzD4as9X3L3wbn5P/x2Au668ixHNRmC32IkMjSQqLCrIVUpFoOAlIiLlmsfr4Y3v32DQkkFkF2RjM9sYfdNoutfvjsVkoVp4NQ1WKgGj4CUiIuVWVl4WQ5cNZeammQBUd1ZnRvsZXBVzFQ6LgxhnDCHWkCBXKRWJgpeIiJRLvx/9nbs/vJt1e9cBcG2Na3mx3YtEhUUFfFBUkeMUvEREpFzxGl6W7VxG7497s9+9H4D7GtzHYzc+5uvPFRkaqUFRJSgUvEREpNzI8+Qx+avJjF09lgJvASHWEMbfPJ5O9TphNVupFlYNp8MZ7DKlAlPwEhGRcuGQ+xD9Fvfj498+BuDiyhczvf106kbV1fhcUmYoeImIyHnNMAzW71vP3R/ezc6jOwFoX7s941uNx2V3UclRiarhVTGbzEGuVETBS0REzmMFhQXM+nYWI1aM8A0VMaLZCHpd2Qur2UrVsKqab1HKFAUvERE5L6VkptD/s/7M/2U+ALHOWKa1m0aD6g00VISUWQpeIiJyXjEMg7V71nL/R/f7bi3efNHNTEiYQFRoFC67i+jwaA0VIWWSbniLiEiZsXzXchLfTWTFrhUn3J7vyWfyV5Np83Ybdh7dic1sY2SzkczsMJOqYVWJDo+muqu6QpeUWWrxEhGRMmPs6rGs3bMWd76bhEsSim3bl7GPBxc/yOLtiwG4IOICXmj7wv9GoQ+PIcSmW4tStil4iYhImeHOcxf7CUUDoi7etpiHFj/kGxC1bXxbxrcaTyVHJSIcEVQNq6pWLjkvKHiJiEiZlZmfyVNfPMX0b6bjNbyEWEMY0WwEPS/vidVsJTo8mghHRLDLFCk1BS8RESkT3HlujuQcASAtJ42v937NgM8G8N3B7wC4tOqlTLllCrUjaxNqDaVaeDUcVkcwSxY5bQpeIiISdGv3rCXx3USyCrIAOOg+yI1v3Ojbfl+D+xhy4xAcFgdVQqoQFRaluRblvKTgJSIiQeXOc5P4biKFRiEWLHjx4jE8AJgwMaP9DNrEt8FuthMdHk24PTzIFYucOQUvEREJqrk/zyUyJJKcwhySC5KLbXNYHLjz3L6xuaxmfW3J+U1/wSIiElS703eTnJ1Mjifnb9tCbaF4vB5iXbFBqEzk3FPwEhGRoPAaXpbsWMKsTbNOGLriXHGEWcOo4aoRhOpE/EPBS0REAi4tO42RK0by+vev4zW8f9tut9jJLsjmWN4xelzRIwgViviHpgwSEZGAMQyDJTuW0OS1Jrz63at4DS+XVb2MCa0mEGGPwG6xA1DoLcTj9fBpr09x2p1Brlrk3FGLl4iIBER6TjojVozgte9ew2t4sZqtPNT4Ifpd0w+7xU6vq3rR/I3m7Dm2hxquGvzS/xeFLil3FLxERMSvDMPgs+2f8cjnj7Dr6C4A6kXV47nWz3FZ9GU4LA6iw6IJs4dRJbQKe47tITI0UqFLyiUFLxER8ZvkzGSGLR/GnB/mYGBgNVvpd00/Hmz8oG8w1MiwSMwm9XyRikHBS0REzjmv4WX+z/MZtGQQBzMPAnB59OWMbzWe+tH1i7Vy/ZnL4Sr2U6S8UfASEZFzak/6HgYuGciHv34IFA2C+sh1j3B/w/uxmW0ltnKNaTmGKV9PYcgNQwJdtkhAKHiJiMg54Sn0MPPbmYxaNYr03HQArq1xLU+3epqLKl9EiCWE6PBoQm2hJz1GwiUJJFySEKiSRQJOwUtERM7apgObGPDpANbvXw+A0+7ksRsfI+nyJKxma1ErV2ikJraWCk/BS0REztixvGOMXTWWGd/MoMBbAED72u15vPnjVAuvRpg1jOjwaBxWR5ArFSkbFLxEROS0GYbBB1s/YOiyofye/jtQNMXP6JtG07JWSywmC1XDqlIppFKQKxUpWxS8RETktGxL3cagJYP4dMenAFjNVu5veD/9m/QnzBaGy+4iKiwKm8UW5EpFyh4FLxERKZWs/CyeXfssU7+e6pvUunGNxoxqMYp6VevhsDioGlaVcHt4kCsVKbsUvEREpESGYbDw14U8tvQxdqUXjTxfNawqw5oOo3PdzkWd50OrUCWkijrPi5yCgpeIiJzUT4d/4rGlj7F011IALCYLd111F49c+wgRjgicdidRYVG+ya1FpGQKXiIi8jdpOWmMWTWGWd/O8j2t2LhGY55q8RSXVr0Uh8VBVGgUTofmUxQ5HX4JXl6vlzFjxvDbb79ht9sZP348tWrVKrZPWloaPXv25JNPPsHh0GPGIiJlQUFhAa9/9zpjVo8hOSsZgFhnLMOaDqN97fZYzVYiQyOpHFJZtxVFzoBfgtfy5cvJz89n7ty5bN68mYkTJzJz5kzf9i+//JIpU6aQmprqj9OLiMhpMgyDz3d8zogVI/jx8I9A0VQ/fRv1pU+jPoTZwohwRBAZGqmnFUXOgl+C16ZNm2jevDkADRs2ZMuWLcW2m81mZs+eze233+6P04uIyGn48dCPjFgxgs92fOZb1752e4Y1HUacK45QayhRYVElTvUjIqXjl+CVmZmJ0/m/+/4WiwWPx4PVWnS6pk2b+uO0IiJyGg66DzJ61Wje3Pymrx/XVTFXMbzpcBrXaIzdbCcqLAqXwxXkSkXKD78EL6fTSVZWlm/Z6/X6QpeIiASXO8/NlK+m8OKGF8nIywCKRp0ffMNgEuskYjPbqBxSmSqhVTCbzEGuVqR88cu/qEaNGrFmzRoANm/eTN26df1xGhGR88byXctJfDeRFbtWBK2GfE8+L33zEvVeqsfYNWPJyMvAaXcy5IYhfNbrMzrX60xkSCQ1K9UkKixKoUvED/zSDNWmTRvWrVtHz549MQyDCRMmMHv2bGrWrElCQoI/TikiUqaNXT2WtXvW4s53k3BJYP8/6PV6mffLPEatHMX2tO0A2Mw27rjyDh5q/BBRoVGE28KJDIskxBoS0NpEKhq/BC+z2cy4ceOKrYuPj//bfl988YU/Ti8iUqa489z8kf4HAH+k/4E7zx2QflOGYfDZjs8Ys2oMGw9s9K3vVLcTj17/KDUjahaNxxUWpWl+RAJEHa9ERPxo7Z61JL6bSNb/t3fv0U1Vif7Av3mck8dJ0vRdKPRFC9gCl/dDStFBEeEqig5VuLj8gXNFcalQWMLMiLhgQHRU1DUzoo4OIi7qVPBysczgA5Dy6AX7w6E8SguFlqaFvmiTtE2a5Nw/Opyxl4IgTULb72etrCR7h3N2DqdZ37XPPnu728a92hptiH0jFrmzc5Eel+63/e4+uxvLdy3H3rK9Sll6XDqyxmUhNTIVOo0OYYYwmEQT5+MiCiAGLyIiP7G77Ji6aSrsbrtS5oMPdndbuS3LBpPYuTO/55/Px/Jdy5UlfgBgWMwwPD/2eYztMxaiWkSoIRQWnYWBiygIGLyIiPwk+1g2fLKvwzqf7EN2YTbmDZ/XKfs6VHEIK79bie2ntkOGDAAYGDEQC8cuxMT4iRA0AkL1oQjRh3DQPFEQMXgREflJcW0xnK3ODuucrU6U1JXc9D46ClyJ1kQ8O+ZZTEmeokwNYdVboVFrbnp/RHRzGLyIiPwkJTwFkiB1GL4kQUJyWPLP3vah84ewcm/7wJUQkoCnRz+NaSnToNPoYNVbEaIPgVbNn3qiWwX/GomI/CQzLROL/r6owzq1So3MQZk3vM295/ZiTd6adsv7/N/AFaILgdVgZeAiugXxr5KIyE/MOjNyZ+cqdzX64IMaakiihNzZudc9sF6WZew8vRNr8tZgz7k9SnlHgStEH8JFrIluYQxeRER+lB6XDluWDal/SEV5YzliLbE4vuD4dYUur8+LbUXbsHbfWuRX5Cvl/cP7Y/6I+ZiSPAWiRmTgIupCGLyIiPzMJJoQb41HeWM54q3xPxm6XB4XPv7hY7x58E2cqDmhlA+OGoynRj2FOxPuhKAWGLiIuiAGLyKiAFgxcQVeP/A6ssZlXfUzl5ov4d3v38UfDv0B5xvPK+WjY0dj/oj5uL3v7RA0/wpcHMNF1PXwr5aIKAAmJU266hqNZy+dxTv57+CjIx+hvqUeAKCCCpP7TcYTw5/AkOghENUiQvQhsOgsnBaCqAtj8CIiCpL88/l48+Cb2HJiC1p9rQAAUSPiwYEPYu6wuUi0JrYNmteHwKwzc+JTom6AwYuIKIA8Pg+2FW3DcZpTfgAAGaZJREFUuoPr2q2jaNVb8eigRzF78GxESVEwaA2w6q2QRIlL+xB1IwxeREQBUNtUi/cL3sd737+H0kulSnmiNRGPD30c0wdMhyRKMAkmhOhDYBAMQWwtEfkLgxcRdSlfn/kabxx4A1njsq46ZupWcvTCUbyV/xY2F25uN4P9mNgxmDtsLjLiM5Q7FC16C0SNGMTWEpG/MXgRUZfy8p6XkVeWB7vbfssGL7fXjZzjOXjv+/faTXiq1+oxfcB0/MeQ/8CA8AHK+C2TaOKAeaIegsGLiLoMu8uOs5fOAmi7E9DussOsMwe3UT9y7tI5vHv4XWz4YQMqHZVKeaw5FrMHz8ZDqQ8hzBAGSZBg0VkgiVIQW0tEwcDgRURdQl5ZnrL0DgDYGm2IfSMWubNzkR6XHrR2eX1e5Bbn4v2C97GjZAc8Po9Slx6XjkcHPYo7E+6ETtu2pI9ZZ+blRKIejMGLiG55dpcdUzdNhd1tV8p88MHubiu3Zdmue93DzlLWUIYPCj7Axz98jHMN55Ryq86KGakz8EjaI0iwJkCv1SuXEzkdBBExeBHRLS/7WDZ8sq/DOp/sQ3ZhNuYNn+f3drR6W7GtaBs+/P8fYueZne16t4b3Go7MtEzcm3wvjIIRFp0FZtEMvaD3e7uIqOtg8CKiW15xbXG7OwJ/zNnqREldiV/3X3ixEB8UfIDswmxUOauUcqvOiukDp2Nm2kykhKVAr9XDorNwsDwRXRWDFxHd8lLCUyAJUofhSxIkJIcld/o+65vr8enRT7Hhhw04ZDvUrm507GjMTJ2Jyf0mQxIlmEUze7eI6LoweBHRLS8zLROL/r6owzq1So3MQZmdsh+P14Ptp7bj4398jB0lO9DiaVHqepl64cHbHsSMgTMQb42HQWtQ7kzk2C0iul4MXkR0yzPrzMidnavc1eiDD2qoIYkScmfn3vTA+kMVh7Dhhw346/G/4qLzolIuakRMTpqMGbfNwLg+42AQDDCJJphEE3Ra3c1+LSLqgRi8iKhLSI9Lhy3LhtQ/pKK8sRyxllgcX3D8Z4euopoifHL0E/z12F9RVFvUrm5U71GYPmA67km+B6H6UJhEE8yiGQbBwHUTieimMHgRUZdhEk2It8ajvLEc8db4Gw5dNrsNnx79FNmF2ThcebhdXUJIAu4feD/uH3A/4kPiYdQaYdKZIAkSB8oTUadh8CKiLmXFxBV4/cDryBqXdV2fr7JXYfOxzcg5noMD5w+0m5Yi0hiJqSlT8e/9/x1Dooa0u5QoaAR/fQUi6sEYvIioS5mUNOkn12i84LiAz45/hpzjOdhXtg9e2avUmUUzJvebjPv634cxsWOUsCWJEvRa3pVIRP7F4EVE3cL5hvP47Phn2HpiK/af39+uZ0sSJExKmoR7k+/FhLgJkAQJZp0ZkiBxCggiCigGLyLqsopri5FzPAdbT27FYdthyJCVOqNgxC8SfoF7U+5FRlxG2wB5nRlGwQiDYAhiq4moJ2PwIqIuQ5Zl/E/F/+DzE59j+6ntOFFzol29RWfBLxJ+gcnJkzGh7wSYdea2y4js2SKiWwSDFxHd0lo8LdhZshPbTm3DjpIdsNlt7erDDeGYlDgJk/tNxtg+Y2EWzZBEiWGLiG5JDF5EdMuxNdrwRdEX2H5qO3af3Y1mT3O7+oSQBNzV7y5MSpyEYTHDIAkSJFGCUTByYlMiuqUxeBH1QF+f+RpvHHgDWeOyfvIOwUDw+DzIK8vDl6e+xN9K/obC6sJ29WqVGkNjhuKO+DtwV9JdSAlLaevV+mfY0qr5U0ZEXQN/rYh6GLvLjqe+fAoldSUoritGwX8WwKwzB7wdFY0V+LL4S+wo3oFdZ3ehwdXQrt4kmjAhbgLuSLgDE+MnIlqKhiRKMGgNMIpGro9IRF0SgxdRD5JXlqesdwgAZ+rOIPaNWOTOzkV6XLpf993U2oTdZ3cjtzgXX5/5+oplegCgf1h/TIifgIz4DIzsPRIWsW0RaoNg4BxbRNQtMHgR9RB2lx1TN02F3W1Xynzwwe5uK7dl2W56sekf8/q8OGw7jL+V/A3fln6L/Ip8uLyudp+RBAnj+o5DRlwGJsZPRFxInDLdg0Ew8BIiEXU7/FUj6iGyj2W3m1T0x3yyD9mF2Zg3fN7P3r4syzhefRw7T+/EN6XfIK8s74rLh2qVGoOjBmN83Hik903HsJhhsOgsStBirxYRdXcMXkQ9RHFtMZytzg7rnK1OlNSV3ND2ZFlGUW0Rvjr9Fb4t/RZ7y/aitrn2is/Fh8RjbJ+xGNd3HMb3HY9oKRpGwQi9Vg+DYOBYLSLqURi8iHqIlPAUSILUYfiSBAnJYcnX/Pc+2YfCi4X49sy32FO2B/vK9qG6qfqKz0UaIzEmdowStBKsCe2CFi8fElFPxl9Aoh4iMy0Ti/6+qMM6tUqNzEGZ7cpcHhcO2w5jz7k92Fu2FwfKD1xx6RAAwgxhGBM7BqNjR2Ncn3EYED5AGael1+ohaAS/fB8ioq6IwYsoyOwuO17a/RL+6+R/4YGBD2DFHSv8Mr2DWWdG7uxc5a5GH3xQQw1JlJA7OxfNrc345sw3+O7cd9hXvg9Hqo5cMRgeAKKkKIzqPQoje4/EmNgxSI1IhVFs69Fi0CIiujYGL6IgUqZ3aHXCJ/uwLn8d3i9432/TO6THpcOWZcOwd4ehpL4EEVIEMuIz8NjWx1B6qbTDf5NgTcDwXsMxuvdojIodhZTQFBhFI3QaHfSCnpcOiYhuAH8xiYKkw+kd5M6f3kGWZZQ3luPg+YPYX74fhyoOobyxHABw0XkROcdzlM8KagGpkakY0WsERvQegZG9R6KvpS90Wh30Gj30gp6D4YmIbgKDF1GQ+Gt6hwuOCzhsO4z8inwcqjiEgsoCXGy62OFno6QoDIsZhqExQzG813AMjR6KUEModFoddBod1z0kIupkDF5EQdIZ0ztUOapQUFmAw7bDOGw7jILKAlTYKzr8rEFrQFpUGoZED2kLWjHDkWRNgl7QKyFLo9bc1HciIqJrY/AiCpIbmd7BJ/tQWl+KI1VHUFBZgILKAhypOoIqZ1WH29aqtRgQPgCDogYhLTINw3sNx+CowZBESQlZHARPRBR4DF5EQXK16R1UUEFUi2jyNOHpL5/GkaojOHrxKBxuR4fb0aq1SAlLQWpkKtIi0zA0Zij+LfrfEKIPgagRodPqIGpEf38dIiK6DgxeREFiEAx4d9q7WLBjARpbGuGDDyqoIENGvasez+549sp/ozVgQPgADIwYiEFRgzAkeggGRw2GRW+BqBYhakWGLCKiWxiDF5GfeX1elF4qxbGLx3C8+jiOXjyKwouFKKotgtvrbvdZGbLyOkqKwoDwAbgt4jakRbaNzRoQPgAG0aCELE7lQETUtfBXm6iTtHhaUFxbjJM1J3Gy5iSOVx/HsepjOFV7qsOJSC8zCkbESDFwtjpxV9JdmJYyDUOihyDGFANRIyoPlUoVwG9DRET+wOBF3UYgZoCXZRk2uw2nak+hqLYIRTVFOFl7EqdqTuFsw9mrTg8BADqNDkmhSUgOS0b/8P64LeI2DIoahKTQJOi1bRORihqRdxYSEXVjDF7ULXTmDPCyLKO6qRoldSUori3GqdpTOFV7CsV1xThdf/qqg9wvkwQJ/cL6IdGaiJSwFAyMGIi0yLS2gCXoIagFBiwioh6KwYu6vJ8zA7zH58H5xvM4U38Gp+tO43T9aZTUlaCkrgRn6s+021ZHVFCht7k3Eq2JSAxNRL/QfhgYMRCpkanoY+kDUSMqPVi8REhERJcxeFGXd60Z4D1eDxbvXIwEawJK60tx5tIZnKk/g7KGMnh8np/cdqQxEvHWeCRYE5BoTURyaNtlwpTwFFh0FggaAYJaYO8VERFdFwYv6pK8Pi8qHZU4d+kc/rvov+H2uiGqRbh97e8SbPY2Y/3366+6HRVUiDHFID4kHnEhcUgMTUSSNQnJ4clIDk1GqCGU4YqIiDoNgxddwe6yI/tYNopri5ESnoLMtMxOH6R+LT7Zh2pnNc43nsf5xvMobyxHeUO58nyu4Rxsdhu8sve6tmfQGpAUmoRYSyziQ+KREJKApLAkJIUmIdGaCEmQoNVoIagFXhYkIiK/YvCidi4PUm/1tqLF2wK9Ro9Ff1/0swapd6S5tRmVjkrY7DZUNFagwl7R7vl843nYHLYr5re6FqveCofbARVU8Pg8kCFDo9Kgt7k3zIIZu//fbuWyoFqlvunvQERE9HMxeJGio0HqLd4WtHhbrjpIHWi7C9DutuOC4wIqHZWotFei0lGJKkeV8t5mt8Fmt6G+pf6G2mTQGtDL1AsxphjEWmIRa45FXEgc4kLi0DekL+IscbDqrSioKsCsnFmwOWxo9bUCABpaGvDpQ58iUoq8uQNDRETUSRi8SHGtQepurxvzt89Hv9B+uOC80PZwXECVowpVjio0e5pveH9WnRXRpmhES9HoZe6F3qbe6G3p3S5chRvCIWgEaNXaa14GvL3v7ShcUIgVu1Zga9FWPDjgQay4c0WHQZGIiChYGLx6CK/Pi/qWetQ01aCmqQbVzmpUN1Wj2lnd9r6pGgfKD6DF06KsF/hjLq8Lm45uuq59hepDEWGMQJQUhWhTNGKkGPQ291YeseZYxFpiIYkStGptp13+M4km/P6e3+P39/y+U7ZHRETU2Ri8uhhZltHsaUZdcx3qmutQ21T7r9fNtahtqm17/ufry0GrrrnuijB1I1RQIcIYgURrIiKMEYiUIhFjikG0FI0Ycwx6mdp6rGJMMTCKRmhUGg5UJyIi+j8YvIJAlmU43A5carnU7lHfUt/23FyvvL8cqi6/rm+uv+a6f9dLEiSEG8IRZghDuDEcEcYIhOhCsO3UNvhkH+qa6uCRPdCqtAg3hsOgNeDo00d56Y6IiOgmMHjdIK/PC4fbgUZXo/JocDW0Pbc0KO8bWhranl0NuNRySXl/+fX1ToVwPSw6C6x6K0L1oQgzhCmPcEM4woxhiDRGItIYiSgpCuGGcESZoiAJUoc9UnPK5mDqpqnwoW2slw8+NLU2IWdmDkMXERHRTer2wcvj88DpdsLZ6oTD7YDdZYfD7VAedrddKbv82u62K68bXY3tXjtbnX5pp1EwwqKzIEQXAqveqjyHGkKVQBVqCEWY/p89VFIEIgwRCDeEQ6vpvP/G9Lh02LJsHKRORETkB10ieNU112H94fVwtjrhdDvR1NqkvHa2Otu/drcFrMtBq8XT4vf2CWoBZp0ZZtEMs84Mi84Ci2hpC1L6ECVEWXQWhBnCEKIPadc7FWoIhagR/d7O68VB6kRERP7RJYJX6aVSzP9yfqduU6/VQxIkmEQTJFGCSTDBJJpgEAxocDXA6/UiQorA0OihCDeGt4WpHwWpEH1bmDKLZui1eg4kJyIiop/UJYKXoBbQL7QfDIIBkiDBoDXAKBhhFI1twUmQ2h6XA5SurexyL5RJNLXrkZIEqcN19/LK8jBt0zR4ZS+crU5IgoTdZ3d32qztRERE1LN1ieA1JHoItjy7xa/76GjW9svjua41azsRERHR9fLLwnU+nw/Lly9HZmYm5syZg3PnzrWr/+yzzzBjxgzMnDkTu3bt8kcTbti1Zm33yT5kF2YHuEVERETU3filx+vrr7+G2+1GdnY2jhw5gldeeQV/+tOfAADV1dXYuHEjPv/8c7hcLsyaNQvjx4+HKAZ3cHlxbfFV71h0tjpRUlcS4BYRERFRd+OXHq/vv/8eEyZMAAAMHToUhYWFSt0//vEPDBs2DKIowmw2Iy4uDidPnvRHM25ISngKJEHqsE4SJCSHJQe4RURERNTd+CV4ORwOmEz/Gg+l0Wjg8XiUOrPZrNRJkgSHw+GPZtyQzLTMq64ZqFapkTkoM8AtIiIiou7GL8HLZDLB6fzXZTufzwetVtthndPpbBfEgsWsMyN3di7Molnp+ZIECWaxrZwD64mIiOhm+WWM1/Dhw7Fr1y5MnToVR44cQf/+/ZW6IUOGYN26dXC5XHC73Th9+nS7+mC6PGt7dmE2SupKkByWjMxBmQxdRERE1Cn8Erzuvvtu7Nu3D4888ghkWcbq1avx0UcfIS4uDpMmTcKcOXMwa9YsyLKMhQsXQqfT+aMZP4tJNGHe8HnBbgYRERF1QypZluVgN+KnzJgxA1u2+HceLyIiIqLOcK3c4pcxXkRERER0JQYvIiIiogBh8CIiIiIKEAYvIiIiogBh8CIiIiIKEAYvIiIiogBh8CIiIiIKEAYvIiIiogBh8CIiIiIKEAYvIiIiogBh8CIiIiIKEAYvIiIiogBh8CIiIiIKEAYvIiIiogDRBrsB16OiogIzZswIdjOIiIiIflJFRcVV61SyLMsBbAsRERFRj8VLjUREREQBwuBFREREFCAMXkREREQBwuBFREREFCAMXkREREQBwuBFREREFCBdYh6v7qS1tRW//vWvUVFRAbfbjaeeegrJyclYunQpVCoVUlJS8NJLL0GtZibuLF6vF7/97W9RWloKjUaDNWvWQJZlHvMAqK2txYwZM/Dhhx9Cq9XymPvZAw88ALPZDADo06cPMjMz8bvf/Q4ajQbp6el45plngtzC7mX9+vX49ttv0draikcffRSjR4/mOe5HW7ZswdatWwEALpcLJ06cwMaNG7veOS5TQOXk5MirVq2SZVmW6+rq5IkTJ8pPPvmkfPDgQVmWZfnFF1+Ud+7cGcwmdjtfffWVvHTpUlmWZfngwYPy/PnzecwDwO12y08//bQ8efJkuaSkhMfcz1paWuTp06e3K7v//vvlc+fOyT6fT37iiSfkwsLCILWu+zl48KD85JNPyl6vV3Y4HPLbb7/NczyAVqxYIW/evLlLnuOM4gE2ZcoUPPfcc8p7jUaDY8eOYfTo0QCAjIwM7N+/P1jN65buuusurFy5EgBgs9kQERHBYx4Aa9euxSOPPIKoqCgA4DH3s5MnT6K5uRlz587FY489hkOHDsHtdiMuLg4qlQrp6ek4cOBAsJvZbeTl5aF///5YsGAB5s+fjzvuuIPneIAcPXoUJSUlmDZtWpc8xxm8AkySJJhMJjgcDjz77LN4/vnnIcsyVCqVUm+324Pcyu5Hq9XihRdewMqVK3HPPffwmPvZli1bEBYWhgkTJihlPOb+pdfrMW/ePPz5z3/Gyy+/jGXLlsFgMCj1POadq76+HoWFhXjrrbfw8ssvY/HixTzHA2T9+vVYsGABHA4HTCaTUt5VjjnHeAVBZWUlFixYgFmzZuG+++7Da6+9ptQ5nU5YLJYgtq77Wrt2LRYvXoyZM2fC5XIp5Tzmne/zzz+HSqXCgQMHcOLECbzwwguoq6tT6nnMO19iYiLi4+OhUqmQmJgIs9mMS5cuKfU85p3LarUiKSkJoigiKSkJOp0OVVVVSj2Pt380NjbizJkzGDt2LBwOB5xOp1LXVY45e7wCrKamBnPnzsWSJUvw8MMPAwBSU1ORn58PAPjuu+8wcuTIYDax2/niiy+wfv16AIDBYIBKpcKgQYN4zP1o06ZN+OSTT7Bx40bcdtttWLt2LTIyMnjM/SgnJwevvPIKAODChQtobm6G0WhEWVkZZFlGXl4ej3knGjFiBPbu3QtZlpXjPW7cOJ7jfnbo0CHcfvvtAACTyQRBELrcOc5FsgNs1apV2LFjB5KSkpSy3/zmN1i1ahVaW1uRlJSEVatWQaPRBLGV3UtTUxOWLVuGmpoaeDwe/OpXv0K/fv3w4osv8pgHwJw5c7BixQqo1Woecz9yu91YtmwZbDYbVCoVFi9eDLVajdWrV8Pr9SI9PR0LFy4MdjO7lVdffRX5+fmQZRkLFy5Enz59eI772QcffACtVovHH38cAHDkyJEud44zeBEREREFCC81EhEREQUIgxcRERFRgDB4EREREQUIgxcRERFRgDB4EREREQUIJ1AlIrqK7du3Y8OGDdBoNOjfv78yLQYR0c/FXxAiog60tLRg3bp1+Pjjj7F582Y4HA7s2rUr2M0ioi6OPV5E1C2UlpZi2bJl0Gq10Gg0ePXVV/H222+jqqoK9fX1yMjIwPPPP4+lS5dClmVUVlaiqakJa9euRZ8+ffDcc8/B4XCgpaUFS5YswahRo7B582ZlvUOPxwOdThfkb0lEXR2DFxF1C/v370daWhqWLl2Kw4cPo6GhAUOHDsUvf/lLuFwuJXgBQN++fbF27Vrs2bMHr732GrKyslBTU4O//OUvqK2txdmzZ6FWqxEREQEA2LhxI5qamjB+/PhgfkUi6gYYvIioW3j44Yfx/vvv44knnoDZbMYzzzyDo0eP4uDBgzCZTHC73cpnx44dCwAYNmwYVq9ejZSUFMyePRuLFi2Cx+PBnDlzAAA+nw+vvfYaSktL8c4770ClUgXluxFR98ExXkTULXzzzTcYMWIENmzYgClTpmD69Okwm814/fXXMXfuXLS0tODyCmnHjh0DABQUFCAlJQVFRUVwOp1477338Morr2DlypUAgOXLl8PlcuGPf/yjcsmRiOhmcK1GIuoWysrKsGTJEmg0GqjVaixcuBArVqyAJEkwGAyorKzEhg0b8Oabb6K6uhqtra3w+XxYs2YNoqKisGTJEthsNgiCgMzMTKSkpOChhx7CyJEjlZ6uxx57DHfffXeQvykRdWUMXkTUoyxduhRTp05FRkZGsJtCRD0QLzUSERERBQh7vIiIiIgChD1eRERERAHC4EVEREQUIAxeRERERAHC4EVEREQUIAxeRERERAHyv4h2vVF8wRG1AAAAAElFTkSuQmCC\n",
3405
      "text/plain": [
3406
       "<Figure size 720x504 with 1 Axes>"
3407
      ]
3408
     },
3409
     "metadata": {},
3410
     "output_type": "display_data"
3411
    }
3412
   ],
3413
   "source": [
3414
    "# Logistic Regression plots - regplot\n",
3415
    "fig, ax=plt.subplots(figsize=(10,7))\n",
3416
    "sns.regplot(data=saps, x= 'saps2', y='hdeath', logistic=True, color='g', x_bins=10, ax=ax)\n",
3417
    "ax.set (title='Regression: SAPSII Total Score and ICU Survival')\n",
3418
    "plt.show()\n"
3419
   ]
3420
  },
3421
  {
3422
   "cell_type": "code",
3423
   "execution_count": 180,
3424
   "metadata": {},
3425
   "outputs": [
3426
    {
3427
     "data": {
3428
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABZYAAALICAYAAADsTaUOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3iUVfr/8fdkkkkPSQiCSxNDExSp0jtIByGiFFlAlKKggkQCiEAo0lVA44KKiFIEaYILfAGpG0BQkKIIuNKEkEJCkklmMuX3R37MElIIJYDyeV3XXsuc55nnnGdmsnvmnvvcx+B0Op2IiIiIiIiIiIiIiOST270egIiIiIiIiIiIiIj8tSiwLCIiIiIiIiIiIiI3RYFlEREREREREREREbkpCiyLiIiIiIiIiIiIyE1RYFlEREREREREREREbooCyyIiIiIiIiIiIiJyUxRYFhEAKlSoQIcOHejUqRPPPPMMrVq1IiwsjMOHD9/roeVoy5YtTJw4sUCuvXLlSgYMGOB6fOXKFSZOnJjl9Vm+fLnreEREBJ9++mm261SrVo1z585la4+IiKBhw4aua7Vv355BgwYRHx9/w7G9+OKLJCQkAPDyyy9z8uTJW7lFAJYvX85XX32V5zldunShbdu2OJ3OW+6noBw+fJhmzZrleKxXr15s2LDB9fjHH3+kX79+dOrUiQ4dOtC/f39+++031/EKFSq4XterNmzYQK9evXK8/qlTp+jfvz8dOnSgQ4cOvPDCC+zfv/8O3FWm2/l8nzt3jmrVqt2xsYiIiNwMzSn/JyMjg2nTptGhQwc6duxIhw4d+Pjjj295XrVt2zY++OCDG553dR4UExNDt27dbqqPa9+/q+PevHkzcOfnGLnNtc6dO8djjz1Gp06dXP/p2LEjK1asuGN9320xMTEMHDjwhu99t27dstx3lSpVXJ/PQ4cOERYWRps2bejduzeXLl0qkLHu3buX9u3bZ2vP7TvPtVJSUnjppZdIT0+/Y+NJSEigQoUKOR67fkynTp1iyJAhrs/u9XP0Zs2aZfvfory+U1y6dIk33njDNefv2rWr6+/hTjh8+DCvvfbaLT8/p+8wIneb+70egIjcPxYuXEhwcLDr8aeffsrEiRNZtmzZPRxVzpo3b07z5s0LvB+LxcILL7xAhw4dWLVqFe7u7pw/f54+ffoA0LVr11u6bp8+fejXr5/r8ZQpUxg/fjyzZ8/O83m7d+92/Xv+/Pm31PdVBw4coFy5crkeP3ToEFarFQ8PD3bu3EmjRo1uq7975YcffiA8PJy5c+fy+OOPA7B27Vp69erFv//97yyf+fx67bXXeOONN2jZsqWrjwEDBrBlyxYCAwNve8x36/MtIiJSEDSnzLRw4ULOnTvnmkMmJyfTu3dvgoKCeP7552/6eocPHyYpKSnf5xctWpSlS5fedD/Xvn+HDh2id+/e7Nu376avczu8vLxYs2aN63FMTAzt27fn8ccfp2LFind1LHfC22+/zZAhQzAYDNmO/fzzz+zZs4f+/ftneb+2bNnCzJkzef3117Farbz22mvMmjWLGjVqsHjxYkaPHn3b3wfuND8/P9q3b88HH3zAiBEj7mrfv//+O7179+bdd9+lYcOGAERHRzNw4ECWLFmS5/ee3Lz99tvUq1eP999/H4CTJ0/SvXt3ypQpQ2ho6G2P+Yknnrjh9z+R+50CyyKSI5vNxoULFyhUqJCrLSoqik2bNuFwOChevDhjx46laNGinD59mlGjRpGUlESRIkVwOp107NiRp556ip49exIaGsr58+dZtGgR586dY8aMGaSlpeHm5sbgwYNp2rQpsbGxjBgxgsuXLwPQuHFj3njjjVzbV65cycaNG/nXv/7FxYsXGTduHOfPn8fpdPLMM8/w0ksvce7cOfr06UPjxo05dOgQV65cITw8nJYtWxITE0P//v2ZN28eRYsWzfV1+O677/Dx8eHll192tRUvXpz333+fjIyMO/Z6161bl+nTpwPw/fff869//Qur1UpCQgLPPPMMb7zxBiNHjgSgd+/ezJs3j549e/LBBx/wxBNPsHXrVqKiosjIyMDLy4sRI0ZQrVo15syZw/nz54mNjeX8+fMULVqU6dOnc+jQIbZu3cru3bvx8vKiZ8+e2ca0ZMkSmjRpQlBQEAsXLswSWF65ciXz5s3Dy8uLOnXq8MUXX3Ds2DEg98/JtcxmM+PGjeP06dMkJibi6+vLjBkzePTRR+nVqxdVq1blxx9/5MKFC9StW5cJEybg5ubG4sWLWbhwIX5+fpQvXz5fr+3s2bN55ZVXXEFlgI4dO+Lp6Yndbr+5N+r/i42NxWw2ux7XqlWL999/H6PRyLlz5+jQoQM//fQTQJbHK1euZMWKFaSlpeHn50dGRgZ9+/alVatWAK7PQGhoKBs3biQiIoJu3bqxc+dOTCYTdrudJk2a8Pnnn5OcnMz06dOxWq3ExsZSr149Jk+efEv3IyIiUlAe5DllbGwsGRkZWK1W3N3d8ff3Z9q0aTgcDv7880/at2/P9u3b8ff3x+l00rp1az744APOnDlDVFQUBoMBo9HIW2+9hclkYunSpdjtdvz9/Rk6dCgffvgh69evx2g0UqZMGcaMGUORIkVc/V87B7HZbEyfPp1t27ZhNBqpVq0aY8eOxWQy5fn+JSYmEhwcjLt71tBBRkYGU6ZMITo6GqPRSJUqVRg5ciR+fn6cOHGCyMhIEhMTMRgMvPjiizzzzDMAfPDBB3z77bcEBgZSunTpfH+OihYtSunSpfnjjz84duxYlvnUokWLWL58OUuWLMHhcBAYGMiYMWMIDQ1l//79TJkyBYfDAcCAAQNo1apVru0RERGUK1fOlQBy7eNmzZpRpUoVjh8/zrBhw6hSpQqRkZFcuHCBjIwM2rVrx8CBA7ON/dChQ8THx1OlShVXW0pKCmvWrGH58uX4+vpmy9xOTExk7NixREVF4e/vz4EDB/Dz86NGjRoAPPvss0yePJnLly/z5ZdfcubMGWJiYoiNjaVy5crUrl2b1atXc+7cOcLDw2nfvj1z5szJ13n58fPPPzNu3DgyMjIoVaoUf/75JxEREdSuXZs2bdowY8YM+vXrR3BwMJMnT+bQoUOkpqbidDqZOHEiNWrUICIiAj8/P44fP87FixepUKECU6dOxdfXl02bNvHee+/h7e2dZQ6fl/nz5xMWFuYKKkPmd6yZM2fi5eWVr2tcLzY2lvT0dBwOB25ubpQtW5aoqCgCAgKAzIzh6Oho1w8xVx+fOHGCSZMm4ePjQ2pqKuXKlePxxx/nxRdfBGDx4sXs27eP7t27M2HCBJYsWULjxo3ZuHGj62+4a9euDB48mFKlShEZGUlqaiqxsbFUrFiR999/H09Pz1u6J5E7TYFlEXHp3bs3AJcvX8bT05OmTZvy7rvvArB69Wp+++03li9fjru7O8uWLePtt99m/vz5vPXWW3Tq1IkePXpw6tQpwsLC6NixIwAXL15k5syZ1KxZk6SkJEaOHMmnn35KiRIliImJ4bnnnqNChQqsWrWKEiVK8Nlnn2E2mxk9ejTJycl8/fXXObZfa/jw4TRv3py+ffuSnJxMz549efjhh3nyySc5e/YsDRo0YMyYMWzcuJHJkyfTsmVLihYtmiULIjdHjhyhevXq2dorV658uy+3S3p6OqtXr6Z27do4nU4+++wzpkyZwiOPPEJMTAxNmzbln//8J++++y4rV67MlgX0xx9/8N577/HFF18QFBTEiRMn6Nu3L5s2bQJg//79rF69Gj8/PwYOHMjSpUt57bXX2LJlC+XKlcsxqJyYmMh3333HihUrCAoKYtasWZw8eZKyZcty8uRJZsyYwcqVKylWrBhz5851BWjz+pxca8eOHQQEBLgyl9555x2++uorxowZA8CZM2dYtGgRZrOZNm3asG/fPgoVKsTcuXNZs2YNRYoU4Z133snX63vkyBHGjh2brf1qMPdWvPPOO4wfP57p06dTo0YNatWqRfv27fH3979hJtHJkyfZunUrfn5+fPPNN6xcuZJWrVpht9tZu3YtixYt4scffwSgTJkylCtXjq1bt9K6dWt27dpFiRIlCA0NZdiwYbz22mvUrl2b1NRUmjdvzpEjR+5IxrSIiMjt0JwyU9++fXnllVeoU6cOTz75JNWrV6dVq1ZUqlQJgDp16rB27Vp69uzJnj17CAwMpGLFigwePJgZM2ZQtWpVdu3axd69exk8eDDdunXj8uXLDB06lG+++YadO3eyYsUKfHx8mDNnTp6lChYvXszRo0dZs2YNJpOJYcOG8d1337kCvte/f25ubpjNZs6ePUtkZCRublmraEZFRXHp0iXWrFmD0Whk9OjRTJs2jXfeeYdBgwbx1ltv8fTTTxMTE0PXrl0pXbo08fHxbNq0idWrV+Pl5cWrr76a78/UTz/9xJkzZ3jyySeJjo7OMp/at28fq1ev5quvvsLb25tdu3YxePBg/v3vfzNnzhz69u1Lu3bt+PXXX1m2bBmtWrXKtf1GypUr58pe/ec//0mfPn1o1qwZFouFl19+mVKlStG2bdssz9mwYQNNmzZ1PZ48eTJbt26lVatWvPfee5QpUyZbP/Pnz6dx48Y88cQTQObnv1ixYq7jJpOJ4OBgYmJigMyViGvWrMHDw4NGjRoREhLCV199xebNm5k+fborYJzf886cOUOnTp2yjOnChQuUK1cOm83GkCFDiIyMpHHjxuzZs8e1mhPA09OTxx9/nO3bt/Poo49y6dIlli1bhpubG/PmzWP+/PmuAPmRI0f44osvMBgMPPfcc2zYsIHGjRszatQoli5dStmyZfnXv/51w/fl6rWGDx+erb1x48b5en5O3nrrLcLDw1mwYAHVq1enRo0adOjQIcsPOLk5ceIEmzdvpnjx4uzZs4dJkya5AsurVq1i6NChrnP9/f1p2bIla9eupV+/fpw6dYq4uDgaNmzI9OnTeeaZZ+jUqRMZGRl06dKFbdu23dZ3GZE7SYFlEXG5GrA8evQo/fv3p3bt2hQuXBjIzKI9fPgwYWFhADgcDtLS0khKSuLnn3/myy+/BDIzLevUqeO6pru7O1WrVgXg4MGDxMbGZplEGgwGjh8/TsOGDenfvz8XLlygXr16vPnmm/j7++fafpXZbObHH3/ks88+AzL/T7lLly7s2LGDJ598Eg8PD9dkolKlSiQmJt7Ua2IwGG5YCy2nJW1XXyOj0Zjjsc8//5y1a9cCYLfbqVWrFsOGDcNgMPDxxx+zbds21q1bx6lTp3A6naSlpeXa/+7du7l06VKWCZ3BYODMmTMAPPXUU/j5+QGZr0F+llCuXLmSsmXLurKC69WrxxdffEFkZCS7du2ifv36rsntCy+8wJw5c4DcPyfXa926NSVLlmTRokWcPn2affv2ZanZ17RpU9zc3PDz86N06dIkJSVx7Ngx6tev75rIPf/88+zateuG9+Lm5ubKRslNTu/h1cyEnLRv356WLVty4MABfvjhB7755huioqLytcS3QoUKrvejbdu2TJs2jdjYWI4dO8YjjzzCI4884gosQ2ZGyqpVq2jdujUrV67kueeeAzLLp+zYsYOPP/6Y33//HYvFgtlsVmBZRETuOc0pMxUrVoyVK1dy8uRJ9u7dy969e3n++eeJiIigZ8+e9OzZk+nTp9OzZ0+WLVtG9+7dAWjXrh2DBw+mcePG1K9fP8vKuat27NhBly5d8PHxATKDnB9//DFWqzXHsfznP/+hU6dOrszNq8HRnFybxHDs2DH69u1LaGholozsHTt2MHToUDw8PIDMus6vvvoqf/zxBxaLhaeffhrIzDR++umn2blzJ0lJSbRs2dI1DwoLC2PRokU5jiE9Pd0V2LTb7QQFBTF9+nQefvhhIOt8atu2bZw+fTpLPekrV66QmJhImzZtiIyMZOvWrdSrV49hw4YB5Np+IzVr1gQyPy8//PADSUlJrrrXZrOZX3/9NVtg+ffff8/S5ubmluU/17NYLHz99desXLnS1eZwOLLNV51Op+u7Rr169Vyf54ceesiVtVuqVKksn9X8nleqVKlsP5hEREQAuPYpufr3UKdOnWxlJkqUKMF///tfwsLCKFSoEEuXLuXs2bPs3bsXX19f13kNGzZ0Zc2XL1+epKQkDhw4QPny5SlbtiyQOeefNWtWttfpegaD4Zbm/E6nM9c5f926ddm2bRsHDx5k//79fP/993z44YcsXLgwSwZ6Th5++GGKFy8OQO3atbFYLBw+fBhvb28SEhKoW7dulhIzXbt2Zfz48fTr149vvvmGsLAw3NzcCA8PZ/fu3cyfP58//viDS5cuZVk5KXKvKbAsItlUrlyZkSNHEhERwWOPPUaJEiVwOBy89NJL9OjRAwCr1UpSUpJrMnNt8PXaYKrJZHItnbPb7YSGhmbZ+C4mJobg4GA8PDzYsmUL0dHR7Nmzh65duzJ//nyqVKmSY/tVDocjW+DX4XBgs9kA8PDwcE0UcgsA56Vq1ao5bnC3ZcsW9u/fz4gRIwgKCsr25SIlJQWLxeJaJnW962ssX2U2m+ncuTMtWrSgZs2ahIWFsXnz5jyD2w6Hg7p162b5gnDhwgUeeugh/u///i/L0q/8BMqdTidLly4lKSnJtZFFWloa+/btY+jQoRiNxlzf79w+J9dbvHgxX3/9NT179qRDhw4EBgZm2egwtzHn1m9eqlatyqFDh7KVzhg/fjwtW7akXr16rvfw2kzw+Pj4HIO0p06dYtWqVQwfPpx69epRr149Xn/9dfr06cPGjRtp3bp1lnFeXzLl6hdAAG9vb1q1asW6dev46aefcqzZ3aZNG6ZMmcKpU6f44YcfmDJlCpAZ0K9QoQINGzakTZs2HDp06L7cZFFERB5cD/qcctq0aXTt2pWyZctStmxZevbsyZo1a5g/fz49e/akXr16pKWlER0dzf79+5k6dSoAQ4cOJSwsjN27d7Ny5Uo+++yzbBvXXR9ovHasObm+lEVcXBwOh4OHHnooz3uoVKkSNWrU4MCBA1mCozn1n5GRgd1uzzEAenVs+Z3LXV9j+XrXzqccDgedOnUiPDzc9fjSpUsUKlSIbt260bRpU3bv3s3OnTuZO3cuGzZsyLX9+rlybvO4q5+XpUuX4u3tDWRuMpdTeYLrrxkREcHgwYNZs2YNr732GgEBAfzzn/907d2xY8cOKlasSMmSJV3Pefjhh7Ns1peRkUFiYqIr2H99SZPr3++r8nteXq7/LnC17VoeHh4YjUa2bdvGpEmT6Nu3L82bN+fRRx91JddA/ub8+R1j1apVOXjwYJbscIC5c+dSqlQpOnbsmOP3tri4uBzn/PHx8cyZM4cxY8ZQs2ZNatasycCBAxk9ejSrV6/OFli+/kedaz+jBoOBZ5991pUt/uyzz2b7O6lZsyY2m42ff/6ZdevWuRJWhg0bht1up02bNjRp0oQLFy5ozi/3lZx/lhGRB1779u2pUqWKa9ligwYNWLFiBSkpKUBmfbS33noLPz8/qlev7vpF/ezZs0RHR+c44a5atSqnT5/mhx9+AOCXX36hVatWxMTEMGPGDD766CNatGjB6NGjKVu2LCdOnMi1/So/Pz+efPJJV/A3OTmZ1atXU69evTvyOjz99NOkpKQwf/58V7mHs2fPMmXKFNeGDY0aNeLf//63ayma0+lk4cKF1KpVK8sv8vlx+vRpUlJSeOONN2jWrBl79+7FarW6fn03Go3ZvjTUrVuX3bt3c+rUKQC2b99Ox44db7gbc07XgswM6Pj4eDZv3szWrVvZunUrO3fupEiRIixbtowGDRoQHR3tut9rv9Tl9jm53q5du+jcuTNdu3alTJkybN269Yb1juvXr8/u3bu5ePEikLmELD8GDRrE3LlzOXLkiKvtaj3Fq8HmRo0asWjRItfrnJSUxKpVq3JcOhcSEsLXX3/Nhg0bXG2JiYnExMRQqVIlAgICyMjI4OTJkwCsX78+z/E999xzrFq1ih9//DHHJW2enp60a9eOiIgInn76aby9vbly5QqHDx9m+PDhPP3001y8eJEzZ87cMEtDRETkbnuQ55QJCQl88MEHrtVbTqeTEydOuEphGAwGevTowejRo2nfvj2enp7YbDaaNWtGWloa3bt3Z+zYsRw/fhyr1Zpl7tawYUO++eYbV+biokWLqFWrVq41k+vWrcu6detc88px48bdcI4CmcG1I0eOuEoyXNWwYUOWLFlCRkYGDoeDr776ivr16/Poo4/i7u7uKskWExPDxo0bqVevHo0aNWLDhg1cuXIFh8ORr7J0+dGgQQPWr1/vCrwuWbLEVY6lW7du/PLLL3Tp0oUJEyZw5coVYmNjc20PCgpyzRljYmJy3bTQz8+PqlWrsmDBAiAzQ7p79+5s2bIl27llypRxrSS89vlXf2gYNmyYax4PsG/fPurWrZvl/CeffJLExETXqrZvvvmGqlWr5prEUpBCQ0MxmUzs2LEDyKy3/Ntvv2X5Wz137hxlypRh9+7dNG3alB49evD444+zefPmG875a9WqxcmTJ/n1118BsmRu56Vfv34sX748y4rGHTt2sGjRIteGj40aNWLJkiWuIHBaWhrLli3Lcc5fqFAh/vOf//DFF1+4ArlpaWmcOXPG9TccHBzM4cOHAVi3bl2e4+vcuTNbt25l48aNdOnSJcdzunbtyoQJE6hQoYIrO3/Xrl28+uqrrh92Dh06dMv7xIgUBGUsi0iuxowZQ8eOHdm5cyddu3Z11a8zGAw8/PDDrszJqVOnMnr0aBYvXkzRokUpUaJEjhskBAcHM3v2bKZNm4bFYsHpdDJt2jRKlChB7969iYiIoH379phMJipUqEC7du1ISkrKsf3a/+OeMWMGkZGRrFy5EqvVSocOHejSpQvnz5/P9d7yu3mfyWRiwYIFTJ8+nQ4dOmA0GjEajQwaNMg1IahTpw4vv/wy/fv3BzKX7lWqVImZM2fe9GteoUIFmjRpQps2bTCZTK5lYKdPn6ZUqVK0bt2aXr16uUpPAJQtW5bIyEiGDRuG0+nE3d2dqKioGwa1GzVq5HoPBwwY4GpfsmQJzz33XJbloe7u7gwYMIDZs2fTr18/Ro4cSb9+/TCZTDz22GOuTI28PifXevHFF3nnnXdc2TdVq1Z1LavL67UJDw+nd+/e+Pr63nD52VU1a9Zk4sSJTJo0CbPZ7Npk5IsvviAkJASA0aNHM2XKFNq3b+/KuOjUqROdO3fOdr1ChQqxcOFCZs6cybRp0/D29sZkMjFgwADXl4Dw8HBefvllgoODad26dZ7je/zxxzEajbRu3TrXTTi6du3Kl19+ybhx4wAICAigf//+dO7cGR8fH4oWLUr16tU5ffp0luwWERGR+8GDOqccO3Ys7733Hh07dsRkMmGz2ahTp06WfSI6d+7M1KlTef7554HMOdeoUaMYPnw47u7uGAwGJk+ejMlkok6dOgwfPpwJEyYwevRoLly4QNeuXXE4HJQuXZoZM2bkOs5u3bpx/vx5unTpgtPp5Kmnnsq2YdxVV2ssQ2YWZv/+/albt26W1WWDBg1i6tSpPPPMM9hsNqpUqcKYMWPw8PDgo48+YuLEicyZMwe73c6rr77qKmty/PhxwsLCCAgIoGLFiq7NFG9HgwYNePnll3nxxRcxGAz4+fkxd+5cDAYDw4cPZ/Lkybz//vsYDAYGDx5MiRIlcm3v1asXw4cPp1WrVpQoUSJLOZbrzZgxgwkTJtChQwesVivt27d31QS/VqtWrZg0aRKvvfZajtepVq1alpJwp0+fzrZhnYeHB3PnziUyMpK0tDQCAwNdGe53m7u7O3PmzGHs2LHMmjWLRx55hJCQENffqtVq5eDBg0yaNIknnniCN998kw4dOmCz2ahfv75r487cBAcHM2PGDIYPH46Hhwe1atXK17hKly7Nxx9/zPvvv8/UqVNxOBwEBwcTFRXlSiYZOHAgs2bNonPnzq4fapo3b57lu9C19/npp58yffp0Fi1ahI+PDwaDgc6dO/Pss88C8PbbbxMZGUlAQAD16tXLs/ZykSJFqFSpEjabLdfvn8888wyzZs3KUvpj6NChvPrqq/j4+ODn50etWrWy/VAhci8ZnMqhF5HbFBUVxdNPP01oaCjJycl07NiR+fPnu+piyd/L2bNnWbNmDa+88gpubm5s2rSJ+fPnZ8lcFhEREblZD+Kccv369axatYpPPvnkXg9FClC/fv14/fXX850Ycb+bOnUq/fr1IyQkhAsXLtCpUyc2b95MQEAAK1eu5MSJE4wYMeJeD1NE7gJlLIvIbXvkkUcYOnQobm5u2O12Xn755b/1F4AHXbFixbh06ZIrg9vf35/Jkyff62GJiIjIX9yDNqfs1asXCQkJfPTRR/d6KFLAxo8fz4QJE/j4449vad+X+03x4sXp06cP7u7uOJ1OJk6cSEBAAKmpqaxbt465c+fe6yGKyF2ijGURERERERERERERuSkFkrF8dTOA48ePYzKZmDhxIqVLl3Yd//zzz10bBTRu3JjBgweTnJxMeHg4KSkpZGRkEBERQbVq1di0aRPTpk1zFS4fMmQITz31VEEMW0RERERERERERETyoUACy5s3b8ZqtbJs2TIOHjzIlClTiIqKAjJrc65du5bly5e7dsFt0aIFmzZtok6dOvTp04fff/+dN998k1WrVnH06FHCw8Np1apVQQxVRERERERERERERG5SgQSWDxw4QMOGDQGoWrUqR44ccR0rVqwYn3zyCUajEQCbzYanpyd9+vTBZDIBYLfb8fT0BODo0aP88ssvLFy4kCpVqrh2x81N7dq1KV68eEHcloiIiIj8jZ0/f569e/fe62EUGM2TRURERORm5TVHLpDAckpKCn5+fq7HRqMRm82Gu7s7Hh4eBAcH43Q6mTZtGpUqVaJMmTKuc2NjYwkPD2fUqFEA1K9fnxYtWlCiRAnGjh3L0qVLeeGFF3Ltu3jx4qxcubIgbktERERE/sa6dOlyr4dQoDRPFhEREZGbldcc2a0gOvTz8yM1NdX12OFwZMkytlgsDB8+nNTUVMaOHetqP378OH369GHo0KGuOs/zJ38AACAASURBVMphYWGULFkSg8FA8+bNOXbsWEEMWURERERERERERETyqUACy9WrV2fHjh0AHDx4kPLly7uOOZ1OXnnlFSpUqEBkZKSrJMbJkyd5/fXXmTlzJo0bN3ad27FjRy5evAhAdHQ0lStXLoghi4iIiIiIiIiIiEg+FUgpjJYtW7J79266deuG0+lk8uTJLFiwgFKlSuFwONi3bx9Wq5WdO3cCMGzYMObNm4fVamXSpElAZtZzVFQUEydOZPDgwXh5eREaGspzzz1XEEMWERERERERERERkXwqkMCym5sbkZGRWdpCQ0Nd/z58+HC250RFReV4rQYNGtCgQYM7O0ARERERERERERERuWUFUgpDRERERERERERERP6+FFgWERERERERERERkZuiwLKIiIiIiIiIiIiI3BQFlkVERERERERERETkpiiwLCIiIiIiIiIiIiI3RYFlEREREREREREREbkpCiyLiIiIiIiIiIiIyE1RYFlEREREREREREREbooCyyIiIiIiIiIiIiJyU9zv9QBERERERO4lh9NBbGosDqfjXg9FREREROS+kWxJxmq35npcgWUREREReWBZbBZiUmJIt6ff66GIiIiIiNwXbA4bcalxJFuT8zxPgWUREREReSAlW5K5lHoJu9N+r4ciIiIiInJfSLYkE2+Ox+rIPVP5KgWWRUREROSB4nQ6iTPHkZieiBPnvR6OiIiIiMg9Z3fYiTPHccVyJd9zZAWWRUREROSBkWHPICYlBrPNfK+HIiIiIiJyX0i1phKbGpuvLOVrKbAsIiIiIg+EFEsKl8yXsDls93ooIiIiIiL3nN1hJ94cT5Il6ZZW8imwLCIiIiJ/a06nk4S0BBLSEnKdMOe127WIiIiIyN/NrWYpX8vtDo5HREREROS+kmHP4M/kP4lPi88xqOx0Oln5y0rqfFLnHoxOREREROTusjvsxKbG8mfynzcMKu88vTPP48pYFhEREZG/pVRrKjGpMbmWvki2JDNu2zjWnVh3l0cmIiIiInL3pVpTiTPHYbFb8jwvIS2ByTsn8+1v39KOdrmep8CyiIiIiPyt5Kf0xcGLB3lz05ucu3IOgBaPtoCDd3OUIiIiIiJ3R35rKTudTtb9to5JOydxOf3yDa+rwLKIiIiI/G1k2DO4lHqJ1IzUHI87nA7mH5jPB3s/wO6042n0ZGTDkXSr3I0RK0cU6NgcDgfjxo3j+PHjmEwmJk6cSOnSpV3HP//8c9avXw9A48aNGTx4MMnJyYSHh5OSkkJGRgYRERFUq1aNTZs2MW3aNB5++GEAhgwZwlNPPVWg4xcRERGRv5781lK+kHyBsdvGsv30dgD8TH6MqD+CPT/uyfU5CiyLiIiIyN9CiiWFS+ZLuZa+iEmJYcTmEUSfiwagXHA5ZrWaRfnC5e/K+DZv3ozVamXZsmUcPHiQKVOmEBUVBcDZs2dZu3Yty5cvx2Aw0KNHD1q0aMGmTZuoU6cOffr04ffff+fNN99k1apVHD16lPDwcFq1anVXxi4iIiIify35zVJ2OB0sObKEGf+ZgTnDDGSu5nun0TsU9SvKHhRYFhEREZH70ObfNzMrehZv1n2T5o82v6Vr5Kf0xZb/bmHUllEkpicC0P3x7kQ0iMDL3euWx36zDhw4QMOGDQGoWrUqR44ccR0rVqwYn3zyCUajEQCbzYanpyd9+vTBZDIBYLfb8fT0BODo0aP88ssvLFy4kCpVqjB8+HDc3TW1FxEREZHMhIs4c9wNs5RPJpzk7a1v89PFnwAo7F2Ydxq/Q6vQVhgMhhv2o9mniIiIiNwz47ePZ9eZXSRbk28psGy1W7mUcgmzzZzj8bSMNKbunsqSI0sAKORZiEnNJtEytOVtjftWpKSk4Ofn53psNBqx2Wy4u7vj4eFBcHAwTqeTadOmUalSJcqUKeM6NzY2lvDwcEaNGgVA/fr1adGiBSVKlGDs2LEsXbqUF1544a7fk4iIiIjcP2wOG/HmeK5YruSZpWy1W5l3YB4f7/+YDEcGAF0qdmFEgxEEegXmuz8FlkVERETknkm2JGf575t9bqw5NtfSF7/G/cqbm97kZMJJAJ4q/hTTW06nmF+xWx/wbfDz8yM19X+1nx0OR5YsY4vFwqhRo/D19WXs2LGu9uPHjzNs2DDeeustVx3lsLAwAgICAGjevDkbN268S3chIiIiIvejZEsy8eb4G2Yp/3jhR97e+janLp8CoGRASSKbRlKvZL2b7lOBZRERERH5S3E4HcSb40lMT8wxE8PpdPLFz18wffd0MhwZuLu583rt1+lXrR9GN+M9GHGm6tWr8/3339O2bVsOHjxI+fL/q+3sdDp55ZVXqF27Nv3793e1nzx5ktdff53333+fihUrus7t2LEjS5cupVixYkRHR1O5cuW7fj8iIiIicu/ZHDbiUuNItibnmaWcYk1hZvRMlhxeghMnRoORvtX6MrjWYLw9vG+pbwWWRUREROQvw2KzcCn1Emm2tByPx5njGLllJDtO7wCgdKHSzHh6BlWKVrmbw8xRy5Yt2b17N926dcPpdDJ58mQWLFhAqVKlcDgc7Nu3D6vVys6dOwEYNmwY8+bNw2q1MmnSJCAz6zkqKoqJEycyePBgvLy8CA0N5bnnnruXtyYiIiIi98AVyxXizHG5ruC7avPvm4ncHklMagwAlYtUZmKziVQqUum2+ldgWURERET+EpLSk4gzx2F32nM8/v1/v2fU1lEkpCUAmXXiRjcajZ/JL8fzr+VmcLujY82xDzc3IiMjs7SFhoa6/n348OFsz4mKisrxWg0aNKBBgwZ3doAiIiIi8pdgtVuJS40jNSM1zyzlmJQYJu6YyKbfNwHg5e7Fa0+9Ru+qvXF3u/2wsALLIiIiInJfszvsxKbG5rq87/oN+vxN/oxvMp525dvl6/re7t4U8S1yV4LLIiIiIiK3IzE9kXhzfK7JFpBZOm7pkaXMjJ5JijUFgAYlGzCu6ThKBpS8Y2MpkMCyw+Fg3LhxHD9+HJPJxMSJEyldurTr+Oeff8769esBaNy4MYMHDyY9PZ3w8HDi4+Px9fVl6tSpBAcHs3XrVj788EPc3d0JCwvTMj8RERGRv4lkSzLxafEAxKfFk2xJxt/TP8s5aRlpXEq9hMVuyfEax2KP8eamN/n98u8APPWPp5jacir/8P/HDft3M7gR5BVEsHcwBoPhNu9GRERERKTgWGwW4syZWcp5ORF/gjHfj+Gniz8BEOwdzMgGI+lQvsNNz3m9jF55ZjYXSGB58+bNWK1Wli1bxsGDB5kyZYprGd/Zs2dZu3Yty5cvx2Aw0KNHD1q0aEF0dDTly5dnyJAhrF+/no8++ogRI0bw7rvvsmLFCry9venevTtNmzalSJEiBTFsEREREblLdp3ZRduv2pJqzZwY/3nlT4rPKs53Pb+jQanMEg8JaQkkpCXgcDqyPd/hdPDZT5/x/p73b2mDPi+jF0V8i9zyRiUiIiIiIneD0+nkcvplLqddzjNL2WKzELU/ik9+/IQMRwaQWRrurfpvEeQddFN9Gg1GgryDCPIKynNVX4Gs9ztw4AANGzYEoGrVqhw5csR1rFixYnzyyScYjUbc3Nyw2Wx4enpmeU6jRo2Ijo7m1KlTlCpVikKFCmEymahRowb79+8viCGLiIiIyF2SbEmm7VdtSbYm4yAzaOzAQbI1mfaL25OYlsifV/4kzhyXY1D5QvIF+q7py/T/TCfDkcEjgY+w7Nll9K/R/4ZBZQMGgr2CKVGohILKIiIiInJf2vz7Ztp+1ZZ///Zvzl05l+c+IwDRZ6PpsKQDUfujyHBkULpQaT5/5nPebfHuTQWVDRjw8/CjZKGS+VrVVyAZyykpKfj5/W+TFKPRiM1mw93dHQ8PD4KDg3E6nUybNo1KlSpRpkwZUlJS8PfPXPro6+tLcnJylrar7SkpKQUxZBERERG5S5YdXZZjwNjL3Yvi/sX5/NDntC3XNsfnrv9tPeO2j+OK5QoAz1d+nogGEfh4+NywX0+jJ0V8iuBjuvG5IiIiIiL3yvht49l1dhexqbF8FfZVruclpCUwdddUVh9fDYC7mzsvVX+JQTUH4eXudVN9mtxMFPYpnK00XV4KJLDs5+dHaur/6n04HA7c3f/XlcViYdSoUfj6+jJ27Nhsz0lNTSUgICDbdVJTU7MEmkVERETkr+dE/IlsteGMBiP/8P8HfyT9wS+xv2QLLF+xXGH89vGs+20dkFkrbkLTCbR4tMUN+zNgoJBnIQr7FM5XmQwRERERkXvFbDW79iFJycg5wdbpdLLq11VM3T2VxPREAKoVq8aEphMoV7jcTfV3dd+RQK/Am54rF0hguXr16nz//fe0bduWgwcPUr58edcxp9PJK6+8Qu3atenfv3+W52zfvp0qVaqwY8cOatSoQWhoKKdPnyYxMREfHx/2799Pv379CmLIIiIiInKXlCtcDl8P3yzBZTeDG6cTT2MymihVqFSW8/ec20PE5ggupFwAoEnpJkxqPokQn5Ab9mVyMxHiE4Kfp98NzxURERERuVfsDjvx5niSLEk4ceZ63u+Xf2fctnHsPb8XAH+TP+H1wulauWue9ZCvZ8CAr4cvhX0K4+nueUtjLpDAcsuWLdm9ezfdunXD6XQyefJkFixYQKlSpXA4HOzbtw+r1crOnTsBGDZsGN27d2fEiBF0794dDw8PZs6ciYeHBxEREfTr1w+n00lYWBhFixYtiCGLiIiIyF3yfOXnGbZxGL4evmQ4MrDara4NRtwMbq5sZavdynt73mPBTwtw4sTb3ZuIBhE8X/n5G9Z7M2DA3+RPiG9InjtZi4iIiIjca8mWZOLN8Vgd1lzPsdgs/OvAv5h3YJ5r7tyuXDtGNhhJEd8iN9Wfp9GTYO/gmyp7kZMCmWW7ubkRGRmZpS00NNT178OHD+f4vNmzZ2dra9asGc2aNbuzAxQRERGRe8bf058NPTfw8rcv82v8r0BmINjHw4d5Hebha/Ll17hfCf+/cH6L/w2AJx56guktp1MmqMwNr+/u5k6ITwgBngEFeh8iIiIiIrcjw55BnDmOFGuKK0s5xZriKm+RmJ5IijWFwzGHGbdtHH8k/QFAiYASvNP4HRqXbnxT/RkNRgK9AgnyDrqp7ObcKH1DRERERO6qtIw0igcU58suX9J2cVsuplykqF9RvuvxHV7uXsw7MI/Ze2eT4cjAaDAysOZABtUchIfRI8/rGjDgZ/IjxCfkhueKiIiIiNwrTqeTJEsS8eZ47E67q33/n/vp/21/zBlmAC6mXOSp+U+5znF3c6dftX4MqjkIbw/vfPd3J8pe5ESBZRERERG5K5xOJ5fTL5OQloDD6cDX5EugVyAXUy4S6BVIQloCIzaP4MCFAwA8UugRprWcxpPFnrzhtY0GI0V8iyhLWURERETua+kZ6cSaY0mzpWVpT7Gm0P/b/tk2ub4aVK5atCoTmk2gfOHy3AyTm4nCPoVvu+xFThRYFhEREZECl2HP4FLqpWwT5asS0xPpuLSjKzujxxM9CK8Xjo+Hzw2v7evhSxHfIpiMpjs6ZhERERGRO8XhdJBgTiDRkojD6ch2/LsT3+XYDuDh5kGXx7rcVFDZzeBGkFfQHSt7kRMFlkVERESkQF2xXCHOHIfNYct27GrbxZSLADzk+xCTm02mYemGN7yu0WCksE9hAr0C7+yARURERETuoFRrKnHmOCx2S67nnIw/mS2L+aoMRwbnrpzLV19X9y4J8Qm5o2UvcqLAsoiIiIgUCLvDTpw5jiuWK67NSK614eQG/nv5v67H7cq1453G7+QrUOzj7kMR3yIFPlkWEREREblVNoeNeHN8rvNhyCwXt+W/W1h1fFWu1/F296ZUoVI37M/kZiLYJ/iulYdTYFlERERE7jiz1UysOTbHrIzE9EQm7JjAut/Wudr+4f8PZrWadcPrGg1Ggr2DCfQKxGAw3NExi4iIiIjcKXmt2rvq3JVzTNwxke//+D7Pa7kZ3Ghbrm2ex4O8ggj0CsToZrzlMd8sBZZFRERE5I5xOp0kpCWQkJaQY1bG9tPbeXvr21xKvQRk1kdOzUjNV1aFspRFRERE5H5ntVuJS40jNSM11yxlq93Kgp8W8NH+j0i3pQPQsFRDOlfszJjvx2DOMOPE6SprMa/DPHxNvtmuczfLXuREgWURERERuSPSbenEpmbf4Royd7metnsay44uA8DHw4eRDUay6pdV/HjxR3w9sk+Ur1KWsoiIiIjc75xOJ5fTL3M57TJ2pz3X86LPRRO5PZLfL/8OZO4xMqrhKFqHtsZgMNDkkSa0XdyWiykXKepXlO96fJdjUPlul73IiQLLIiIiInJbnE4niemJJKQl5DiJ3nd+HyO3jHRtOFLrH7V4t/m7lCxUkpIBJfns4Ge8WPXFHK+tLGURERERud+lZaQRmxpLuj0913NiU2OZunsq3/72LZCZPNGrSi+G1B6Cn8nPdZ6vyZdAr0Auplwk0CswW1D5atmLIO8g3AxuBXND+aTAsoiIiIjcMqvdSmxqLKkZqdmOpWWkMTN6Jot+XgSAyWhiWJ1h9K7a2zUJrluyLnVL1s32XGUpi4iIiMj9zuawkWBOIMmSlGvZC7vDztIjS3lvz3skW5MBqFasGuOajKNiSMV892XAgJ/Jj2Dv4Psm6UKBZRERERG5JUnpScSZ43LMUj5w4QAjN4/kdNJpAJ546AmmtJhC2eCyN7yur4fvPasTJyIiIiKSH/nZnO/gxYOM3z6eY7HHAAj0CiS8XjhdHutyU9nGnkZPCnsXxs/T78Yn30UKLIuIiIjITbE5bMSmxpJiTcmWmZFuS+eDPR+w4OACnDjxcPNg8FODean6S7i75T31NBqMhPiEUMirUEEOX0RERETklllsFuLMca4N9nKSkJbArOhZLD+23NX2bKVnGV53OEHeQfnuy4CBEJ8QgryC7stVfAosi4iIiEi+JVuSiTXH5piZ8XPMz4zYPMK1EUmlIpWY0nwKFUIq5HlNA4bMLGXfEExGU4GMW0RERETkdjicDi6nXSYxPTHXzfkcTgcrjq1g5n9mkmhJBDLnxGMbj6Vqsar57uvqxtbB3sEEewff/uALiALLIiIiInJDdoedeHN8jvXjLDYLc/bN4dOfPsXhdODu5s7AGgMZWHMgHkaPPK/r7uZOiE/IPd3NWkREREQkL6nWVOLMcVjsllzPOXLpCOO3j+fnmJ8B8Df580adN+j+eHeMbsZ89+Vl9GJ8k/F8+MOHvFn3zdsee0FSYFlERERE8mS2mok1x+Y4kT508RAjt4zk1OVTAJQPLs+UFlOo/FDlPK9pwIC/yZ8Q35AblsgQEREREbkXbA4b8eZ4rliu5Fr2IjE9kff2vMeyI8tc5zxT4RnC64cT4hOS776MBiOFfQpTyLMQpQJL0a58uztyDwVJs3gRERERyZHD6SDBnMDl9Ms5ZinP3jebz376DIfTgdFgpH+N/rxS65UblrMwuZko7FMYf0//ghy+iIiIiMgtS0pPIj4tPtfN+RxOB98c+4YZ0TNITM8se1E+uDxjm4yl5j9q5rsfAwYCPAMo7FP4L5dw8dcarYiIiIjcFem2dC6lXCLdnp7t2KGLh4jYEuGqpVy+cHmmNM9flnIhz0IU9il8U8sBRURERETulnRbOnGpcZht5lzPORxzmMgdka6yF34mP16r/Ro9n+h5U8Fhb3dvQnxC8Pbwvu1x3wsKLIuIiIiIi9Pp5HL6ZRLSEnA4HVmOpdvS+WDvB3x+8HNXlvKAmgMYVHPQDbOUPY2ehPiE4GvyLcjhi4iIiIjcErvDnrk5nyUx2zz4qstpl3lvz3t8ffRr14q+ThU6EV4vnCK+RfLdl7ubO4W9CxPgGYDBYLgj478XFFgWERERESCzvEVsamyO2Rn7/9zP6C2j+SPpDwAqFK7Au83fzVeWcqBXIIV9CuNmcCuIYYuIiIiI3JYrliskmBOwOqw5Hrc77Cw/tpz3ot8j0fL/y14ULs/YxjdX9sLN4EYhz0IEewf/LVbwKbAsIiIiIiSmJxJvjsfutGdpT7Wm8t6e9/jy5y9x4sTdzZ1BNQfRv0b/fGUpF/Epgo/JpyCHLiIiIiJySyw2C/HmeFIzUnPdnO+nCz8xYccEjsYeBW6t7IUBAz4ePhT2KYyXu9cdG/+9psCyiIiIyAMsw55BbGpsjpPp6LPRjN46mvPJ5wGoXKQyk5tPpmJIxTyv6WZwI8griCDvIGUpi4iIiMh9x+6wk5ieyOX0y7mWvYgzxzHzPzNZ+etKV1uXil14s96bhPiE5LsvT6Mnwd7Bf8uNqxVYFhEREXlAXbFcIc4cl22n62RLMtP/M51lR5cBYDKaGPLUEF6s9uINszK83b0p4lMEL4+/TybGneJwOBg3bhzHjx/HZDIxceJESpcu7Tr++eefs379egAaN27M4MGDSU9PJzw8nPj4eHx9fZk6dSrBwcFs3bqVDz/8EHd3d8LCwnjuuefu1W2JiIiI/KUkW5KJN8fnWvYiw57B4iOLmb13NinWFCAzwWJMozFUe7havvsxGowEeQcR6BX4t022UGBZRERE5AGTV5bylv9uYdy2cVxKvQRAtWLVmNR8EqFBoXle02gwEuwdTKBX4F96A5KCtHnzZqxWK8uWLePgwYNMmTKFqKgoAM6ePcvatWtZvnw5BoOBHj160KJFC6KjoylfvjxDhgxh/fr1fPTRR4wYMYJ3332XFStW4O3tTffu3WnatClFiuR/wxgRERGRB026LZ14czzmDHOuZS+iz0YzaeckTiScACDQM5ChdYfStVLXfNdENmDA3+RPYZ/CeBg97tj470cKLIuIiIg8QHLLUo43xzNx50S+O/EdkJl5/EadN+hVpVeek2gDBnw9fAnxDblhzeUH3YEDB2jYsCEAVatW5ciRI65jxYoV45NPPsFozHytbTYbnp6eHDhwgJdeegmARo0a8dFHH3Hq1ClKlSpFoUKFAKhRowb79++nTZs2d/mORERERO5/NoeNy2mXSbIk5Vr24tyVc0zbPY2NpzYCmXPc5x9/njdqv0GQd1C++/J296awd+EHZo8RBZZFREREHgC5ZSk7nU6+/e1bJu2cRGJ65g7X9UrWI7JpJCUDSuZ5TZObicI+hf+W9eIKQkpKCn5+fq7HRqMRm82Gu7s7Hh4eBAcH43Q6mTZtGpUqVaJMmTKkpKTg75/5+vr6+pKcnJyl7Wp7SkrKXb8fERERkfuZ0+kkyZJEQlpCtqSKq9Jt6Xzy4yfMOzAPi90CQI2Ha/B2o7epVKRSvvsyuZkI9gnG3+T/QK3eU2BZRERE5G8uKT2J+LT4bBPqP5P/ZNy2cWw/vR2AAM8AIupH0OWxLnlOiA0YCPQKJNg7ON9LAgX8/PxITU11PXY4HLi7/286brFYGDVqFL6+vowdOzbbc1JTUwkICMh2ndTU1CyBZhEREZEHndlqJj4tnjRbWo7HnU4nm05tYuruqa6Nqh/yfYi36r1F+/Lt8x0cNhqMBHoFEugV+EDOixVYFhEREfmbstqtxKbGZqsjZ3fYWXx4MbP2zMKcYQbg6UefZkzjMTzk+1Ce19TmfLeuevXqfP/997Rt25aDBw9Svnx51zGn08krr7xC7dq16d+/f5bnbN++nSpVqrBjxw5q1KhBaGgop0+fJjExER8fH/bv30+/fv3uxS2JiIiI3FesdisJ5gSSrcm51lE+HnecSTsnsff8XgA83DzoW7UvA2sOxNfkm69+rtZRDvYJfqDLwRVIYPlGO14DJCQk0K1bN7799ls8PT2ZN28eO3fuBODKlSvExcWxe/duFixYwIoVKwgODgZg/PjxPProowUxbBEREZG/havL/uLN8did9izHTsSf4O2tb3Mw5iAAIT4hjGk0htZlW+d5TaPBSGGfwhTyLPRALe+7k1q2bMnu3bvp1q0bTqeTyZMns2DBAkqVKoXD4WDfvn1YrVbXnHjYsGF0796dESNG0L17dzw8PJg5cyYeHh5ERETQr18/nE4nYWFhFC1a9B7fnYiIiMi943A6SExP5HLa5Wzz36sS0xOZvXc2S44scdVablK6CSMbjuSRwEfy1Y8BA17uXg9UHeW8FEhgOa8drwF27tzJzJkziYuLc7X179/flZ0xYMAAhg8fDsDRo0eZOnUqjz/+eEEMVURERORvxWKzZGYp28xZ2q12Kx/v/5h5B+aR4cgA4NlKz/JWvbco5FUo1+sZMOBn8iPEJ+Rvv6t1QXNzcyMyMjJLW2hoqOvfhw8fzvF5s2fPztbWrFkzmjVrdmcHKCIiIvIXlGJJIT4t3lUj+Xo2h41lR5cxe89sEi2Ze4qUCSzDqIajaFS6Ub770f4i2RVIYDmvHa8hc1K9YMECwsLCsj1306ZNBAQEuJ5/9OhR5s2bR2xsLE2aNGHAgAEFMWQRERGRvzSn08nl9Ms5ZmkcuHCAMVvHcOryKQBKFypNZNNI6pSok+c1TW4mQnxC8PP0y/M8EREREZG7zWKzEG+Oz7Y59bX2nNvDpJ2T+C3+NwD+H3t3HhhVefUP/Htn3zd2kIAiCAQiEESQTUitgtZigxBkUdksKi5gVGx/VVsr6luoVRHB2oiKLKLoq9KCCMoioGEnLLLIInsymX2fe39/zDtXhqxQJiTh+/nHcu8zzzy3BXtyOPcck8aEh254CKOyRlW7hUWyj7Jdb4dCUFyy89cHaUksVzbxGgB69+5d4WfnzJmDmTNnyr++/fbbcc8998BkMuHhhx/G6tWrMWDAgHQcm4iIiKhOCkVDOBs4W2Y4iTfsxYwNM7Bg1wIAiaB4XNdxeKjHQ9CpKu6RrBAUsGltcBgcDJ6JiIiIqFYRJRGlwVKUhkrllhbnO+Y+hlfWv4IVh1YASLyFl9sxF4/3fBwNDQ2r9T0CBFi0Fjj0Dr65TQ5AgAAAIABJREFUV4G0JJarmnhdkQMHDsBiscj9mCVJwr333itPue7fvz92797NxDIREREREkG1M+CEK+xKCaqTU67/suYvOBs4CwDIbJSJvw78Kzo06lDpngaVAQ2NDStNPBMRERERXQ6esAfOgBMRMVLufV/Eh7mb56JgWwEi8cSark274g99/4DOTTpX6zsECNCr9GhoaMiB1VVIS2K5sonXlfnuu+/Qr98vvU18Ph/uuOMOLFu2DAaDAZs2bSq3fQYRERHRlSYQCeBs4GyZXnInvSfx/LfPY/Xh1QAAvUqPx3o+hlFZo6BSVBz6KQUlGhoawqK1cDgfEREREdUqoVgIJYESBKKBctteiJKIz/Z+hhkbZsiFFU1NTZF/Uz5ub3t7teNbrVILh97BPsrVlJbEcmUTr3Nycir83E8//ZTSJsNsNuPxxx/HmDFjoNFo0KtXL/Tv3z8dRyYiIiKqE+JiHCWBErjD7pSgOi7GMX/nfPx9498RiCYG9/Vv1R/P9n8WLSwtKtxPgACzxowGhgZ8xY+IiIiIapW4GEdpsLTMG3rn2nJyC15c+yJ2nkkMQtapdBjfdTzGdxsPvVpfre9RCko49A5YdVa2grsAaUksVzXxOmnVqlUpv3722WfLrBkyZAiGDBlyaQ9IREREVAdV9Orf7rO78afVf5KD6YaGhvhD3z9g0LWDKq3O0Cq1aGhoCKPGmNZzExERERFdCEmS4I14URwoRkyMlbvmhPcE/vbd3/Dl/i/la7e3vR1P3PQEmpubV+t7FIICVq0Vdr290rf7qHz8b4yIiIiolovEIygJlMAX8aVUKfsjfry26TW8t+M9uYJjWMdheOKmJ2DVWSvcTykoYdfbYdfZ2faCiIiIiGqVYDSYaHsRC5R73x/x4+0tb+NfW/8lt4Xr1LgTpvWZhu7Nu1frOwQIMKqNcBgcnC3yX2BimYiIiKiWkiQJ7rAbJYESxKV4yr2Vh1biL2v+glO+UwCAax3X4vmbn680mBYgwKQxoYGhATRKTVrPTkRERER0ISLxCJwBJ7wRb4V9lP933/9ixoYZOOM/AwBoZGiEJ256Anded2e1W1jolDo0MDTgW3uXABPLRERERLVQKBZCsb+4TKXGSe9J/GXNX/D1T18DSLSzePCGBzG269hKk8VapRYN9A1g0prSem4iIiIiogsRF+NwhVxwhVxliimSCk8U4sW1L6LobBGARGw7tutYTOg2odoJYo1CA7vezmHVlxATy0RERES1iCiJcAacZQaUxMQYPtjxAf6x6R/ycL4+Lfvg2ZufRYY1o8L9FIICdp0ddr2dg0iIiIiIqNaQJAmesAclwZIK+ygfcx/D/3z3P1h+cLl87fa2t2Nqr6mVDqg+l1JQwqazwaazQalQXpKzUwITy0RERES1hC/sQ0mwRO4Vl7Tt1DY8+82z2Fu8F0BiON+0PtNwe9vbK6y2ECDAoDaggaEB+8YRERERUa3ij/hREihBKB4q97437MWbhW/i/e3vIypGAQDXN7ke0/pMQ9dmXav1HQpBAYvGArveDrVSfcnOTr9gYpmIiIjoMovGoygJlJTpJ+cKuTBzw0wsLloMCRIECBjeaTim9JxS6XA+lUKFhoaGsGgtNXF8IiIiIqJqCcfCcAadZYZSJ8XEGBYXLcZrm15DaagUANDM1AxTe03F7e1ur9YbeBzMV3OYWCYiIiK6TJKv/xUHilP6yUmShM/2fYaX178MZ9AJAOjYqCOev/l5ZDXJqnA/AQKsWiscBgdUCoZ5RERERFQ7xMQYXEFXmXZvSZIkYc2RNXjlu1dwwHkAAGBQGzAxeyLu73J/tRPEepUeDr2Dg/lqCH/iICIiIroMKhrOd8B5AM9/8zy+P/E9AMCoNuKxno/hns73VJos1qv0aGhoCL1an9ZzExERERFVlyRJcIfdcAadFfZR3lu8Fy+vfxnfHfsOQKJY4ncdfofHej6GxsbG1foejUIDh8EBs8bMwXw1iIllIiIiohokSiJKg6UoDZWmVGv4I37M+mEW5m2fJwfdg64dhGl9pqGJqUmF+6kUKjTQN+B0ayIiIiKqVSqaH5J0xn8Gr258FZ/s+URui3FTy5vwVO+n0L5h+2p9h1JQwq63w6azcVD1ZcDEMhEREVENKS+4liQJyw8ux/R103HKdwoA0MraCv+v3/9D31Z9K9xLIShg1Vph19vZ9oKIiIiIao1QLISSQAkC0UC5fZQD0QD+tfVfeGfrOwhEE2/vtbG3wVO9n0K/Vv2qVSyhEBSwaW2w6W2MhS8j/jdPRERElGYVDec77DqMv3z7F6w7tg4AoFVq8UD3BzC+63hoVdpy9xIgyG0vdGoOIyEiIiKi2iEmxuAMOOGJeMrtoxwX41i6dyle3fgqzgbOAgAcegcm95iMYZnDqpUgFiDArDHDYXBAo9Rc8megC8PEMhEREVGaJHvKlQRKUobzBaNBzN0yF29vfhtRMQoAuLnVzfhjvz+ipbVlhfsle8dZtJa0n52IiIiIqDpESYQr5EJpsDQl5j3XuqPr8PL6l/FjyY8AAI1Sg3uvvxcPZD8As9Zc5XcIEGBQG+DQOzhTpBZhYpmIiIgoDULREM4GziIYC8rXJEnC1z99jRfXvojj3uMAgBbmFnim7zPIuTqnwtf+FIICdl2id5xSoayR8xMRERERVcUb9qIkUIKIGCn3/r7ifXjlu1ew7ug6+dpvr/stHuv5GJqbm1frO/QqPew6O0xa0yU5M106TCwTERERXUJxMQ5n0AlXyFWm7cULa17A2qNrASSG7jUzNcMf+/4RN199c7l7CRBgVBvRwNCgwtYYREREREQ1LRAJoCRYglAsVG4f5dO+0/jHpn9g6d6lcluMHi164KneT6FT407V+o7k23pmjZlDqmspJpaJiIiILpHyKjaC0SDe2vwW3tnyjtz2om9GXziDThSdLcLcLXPLTSxrlVo00DdgZQYRERER1RrhWBjOoBO+iK/chLIv4sPbm9/Gu9vfRSgWAgBcY78GT970JG5ufXO1EsQqhQp2nR1WnRUKQXHJn4EuHSaWiYiIiP5L4VgYxYHilMnXkiRhxcEVeGn9SzjhPQEgte3FkEVDAAD+qD9lL6WghEPvgE1nY2UGEREREdUKMTEGV9AFV9hV7mC+SDyCxUWL8cb3b6A0VAoAaGhoiMk9JmNox6HVGsynFJSw6Wxs/1aHMLFMREREdJFESURpsBSlodKUAPuA8wBeWPMCNvy8AUBiOMn4buMxsdvECoeNKAQFLBoLHAZHtQJvIiIiIqJ0kyQpMZgvVIqYGCv3/oqDKzBjwwwccR8BkOiJPK7rONzf9X6YNFW/fZeMg+16O9RK9SV/Bkof/tRCREREdBF8YR9KgiUIx8PyNW/Yi9e/fx0f7PhAnog9oPUATOszDa1srSrcK9lHWafSpf3cRERERETV4Q174Qw6U+Ldc/1w/Af8z3f/g+2ntwNIJIjv7ng3Hu7xMBobG1e5vwABJo0Jdr2dcXAdxcQyERER0QWIxCMoCZSk9JUTJRFL9yzFjA0zUBIsAQC0srbCH/r+Af1b9690P7VCjRaWFmk/NxERERFRdYSiIZQES1LavJ1rf8l+zNgwA6sPr5avDWg9APk35aONo02V+wsQoFfp4dA7YNAYLunZqWYxsUxERERUDaIkJl4DDJbK1cgAsOP0Dryw5gW5UsOgNmBS90m4r8t90Cg15e6lFJRyuwsOJCEiIiKi2iAaj8IZdMIT9pSbUD7lO4XXNr2GpXuXym3gujTpgvze+ejevHuV+wsQoFPpYNfZOaC6nmBimYiIiKgK5bW9OOM/g5kbZmLp3qXytTva3oH83vloampa7j4CBFi1Vtj1digFDiQhIiIiossvLsbhCrngCrlSCiiSPGEP3t78NuZtnyfHw62trTGl1xT8us2vqzVwWqvUwq63w6K1XPLz0+XDxDIRERFRBcKxMEoCJfBH/XLVRiQewXvb38OsH2YhEA0AANo3bI8/9v0jbmhxQ7n7JF/3a2hoCJ2a/eOIiIiI6PKTJAmesAelwVJExEiZ++FYGB/s+ABzNs+BO+wGADQ0NMRDNzyEuzveXa1BexqFRk4oVycBTXULE8tERERE5xElEaXB0jJVG98c/gbT107HYfdhAIBNZ8PjPR/H3R3vhlJRfgWyRqGBw+BIqc7whr1yL+aSYAm8YS/MWnP6HoiIiIiI6Bz+iB/OoBPBWLDMvbgYx6d7P8Vr37+GU75TABLt3sZ1HYf7u9wPo8ZY5f4qhQoOfSIGZuu3+ouJZSIiIqJzeMIeOAPOlKqNg86DmL5uOtYeXQsg0SN5ZNZIPHzDw7DqrOXuoxSUsOvtsOlsKcH0uqPrMHj+YPgjfgDACc8JtJjZAstGLkOfjD5pfDIiIiIiutKFoiE4g86UN/KSJEnCqsOr8PcNf8d+534AiUHTeZ3yMKn7JDQwNKhy/2QMbNVaKyy8oPqDiWUiIiIiAKFYCCWB1OnXrpALb3z/Bj7c+aFcudy7ZW880/cZXOu4ttx9BAiwaC1w6B1lXg/0hr0YPH8wvBGvfE2ECG8kcf3E1BMwaTjIpL4SRRHPPfcc9u3bB41GgxdeeAGtWrVKWeN0OpGXl4fPP/8cWq0Wc+fOxdq1ib/Q8Hg8KC4uxvr161FQUIAlS5bA4XAAAJ5//nlcc801Nf5MREREVDdE4hE4A054I95yB/MVnijE3777G7ae2gogEdPe0e4OPNrzUbS0tKxyf6WghFVrhU1vk4dUU/3H/6WJiIjoihYTYygNlsIddsvTrWNiDAt3LcTrm16HK+wCALSytsKTvZ9EztU55faHS/ZRbmBoAL1aX+53LSpaJH/H+URJxKJdizCu27hL9GRU26xcuRKRSASLFi3Ctm3b8NJLL2H27Nny/bVr12LGjBkoLi6Wr02cOBETJ04EADzwwAN44oknAABFRUV4+eWX0alTp5p9CCIiIqpTyot1z7W3eC9mbpiJb498K1/rm9EXU3tNRYdGHarcXyEoEgllna1aPZepfmFimYiIiK5IkiTBHXbDGXQiJsbk6+uOrsP0ddNxwHkAAGDSmPBg9wcx+vrR0Cg15e6lVWrh0Duq7JO8v2Q//FF/uff8Ub/8nVQ/bd68GX379gUAdOnSBbt27Uq5r1AoUFBQgNzc3DKfXbFiBSwWi/z5oqIizJ07F2fPnsXNN9+MBx54IP0PQERERHVGXIzDFXKVmRmSdMx9DK9uehVf/vilXMHcpUkXTOk1BTdedWOV+ysEBcwaM+x6e4UxMtV/TCwTERHRFScQCaAkWJIyrOSg8yBeXv+yXK0hQMDdHe/GYz0fq7CfnEqhgl1nh1VnrdZQkrYN2sKoNpabXDaqjRW216D6wefzwWT6pdWJUqlELBaDSpUIyXv37l3hZ+fMmYOZM2fKv7799ttxzz33wGQy4eGHH8bq1asxYMCA9B2eiIiI6gRREuEOuVEaKk0pnkg66z+L2YWzsahokXz/Wse1eLzn4xW+mXcuAQJMGhPsejt0Kl1anoHqjrQkli+mf5wkSejXrx9at24NIFHFMXXqVKxatQqzZs2CSqVCbm4uhg0blo4jExER0RUgGo+iJFCS0lvOGXRi1vezsGDXArmao0fzHnim7zMVvv6nEBSwaW0X3ENueOZwTFk+pcI9h3cafoFPRHWJyWSC3//LXyqIoignlStz4MABWCwWOZ6WJAn33nsvzOZEhXz//v2xe/duJpaJiIiuYJIkwRP2oDRYmjKEOskdcuOfW/6J93a8h1AsBABobm6OyT0m47fX/bbKQXsCBBjUBjj0jgrbvtGVJy2J5YvpH3f06FFkZmbirbfekq9Fo1FMnz4dS5YsgV6vx4gRIzBgwAA0atQoHccmIiKiekqURLhCLpQGS+XkcSQewfwd8/Fm4ZvwhD0AgAxrBp686Un86ppfVdhH2awxw2FwXNQrf2atGctGLsPg+YPhj/ghQoQCChg1RiwbuYyD++q5bt26YfXq1Rg8eDC2bduGdu3aVetz3333Hfr16yf/2ufz4Y477sCyZctgMBiwadOmcttnEBER0ZXBG/bCGXQiHA+XuReIBvDe9vfwzy3/lAdI23V2/L777zGi0whoVdpK907OEXHoHTBoDGk5P9VdaUksX0z/uKKiIpw+fRqjR4+GTqfDtGnTEIlEkJGRAavVCgDIzs5GYWEhBg0alI5jExERUT3kC/tQEiyRA21JkvD1T1/jlfWv4Ij7CADArDHjwRsexKisUeUmjKszmK+6+mT0wYmpJ9BxVkcc8xxDC0sL7H5oN5PKV4BbbrkF69evR15eHiRJwosvvoiCggJkZGQgJyenws/99NNPKW0yzGYzHn/8cYwZMwYajQa9evVC//79a+IRiIiIqBbxhX0oDZUiFAvJb+MlReIRLC5ajNmFs1EcSBR2mjQmjO06Fvdef2+VsacAATqVDnadHSYt41QqX1oSyxfTP65Ro0aYOHEiBg0ahMLCQuTn52PatGnyK34AYDQa4fP50nFkIiIiqmdCsRCcASf8Ub8caO88vRMvr38ZP5z4AQCgFJTI65SHh3s8DIfeUe4+OqUOdr29ysF8F8KkMcGhd+CY5xgcegeTylcIhUKBP//5zynX2rRpU2bdqlWrUn797LPPllkzZMgQDBky5NIekIiIiOqEQCSA0lApAtFAmYRyTIzhs72fYdYPs3DcexxAYtD0yKyRmNhtIux6e5X7pyP+pfopLYnli+kf16lTJyiViX4u3bt3x+nTp8vs4/f7UxLNREREROeLiTGUBkvhDrshSiIA4IT3BGZumInPf/xcXtevVT881fupCgfmqRVqOPQOWLSWKoeYEBERERGlWygagjOYWjiRJEoi/nPgP3ht02v4yfUTgEQRxdCOQ/HQDQ+hialJlftrldpEQlljZvxL1ZKWxPLF9I974403YLPZMGHCBOzduxfNmzdHmzZtcOTIEbhcLhgMBhQWFmLcuHHpODIRERHVcckJ2M6gU+6j7Iv4MKdwDt7d/i4i8cQQk+saXIen+zyNm1reVO4+SkEJm84Gm85W5RATIiIiIqJ0C8fCKA2WpgygTpIkCd8e+RZ/3/h37C3eCyDRxuI31/0Gk3tMRoY1o8r9NQoN7Ho7CyrogqUlsXwx/eMmTpyI/Px8fPvtt1AqlZg+fTrUajWefvppjBs3DpIkITc3F02aVP03LERERHRlOX9gSTQexeLdi/HG92/AGXQCABoZGuHxno9jSPsh5SaMFYICFo0Fdr0daqW6Rs9PRERERHS+aDyK0mApPBGP/CbeuTb+vBGvbnwVW09tla/dcs0teOTGR9CuQdVFniqFSn5DTyEoLunZ6cqQlsTyxfSPs1qtmDt3bpk1AwcOxMCBAy/9IYmIiKjOC0aDKAmUIBgLQoIESZKw8tBK/G3D33DYdRgAoFfpMb7beIztOhYGddlJ1gIEGNVGOAwO6FS6Gn4CIiIiIqJUcTEOV8gFV8glv4l3ri0nt+DVja9i0/FN8rU+Lfvg0Z6PIqtJVpX7qxQq2HQ2WLVWvqFH/5W0JJaJiIiI0qm81wG3ntyKV757BVtObgGQqEDO7ZCLR258BI2NjcvskZx03UDfAAZN2YQzEREREVFNEiVRTijHxFiZ+7vO7MI/Nv0Da46ska9lN8vGozc+ihuvurHK/dnyjS41JpaJiIiozoiJMbiCLrjCLvl1wCOuI5ixYQaWH1wur+vfqj/yb8pH2wZty91Hq9TCoXdw0jURERERXXaSJMEddsMVdCEiRsrc/7HkR7y26TV8degr+Vqnxp3w2I2PoU9Gnyr7IisFJaxaK2x6G1QKpgLp0uHvJiIiIqr1yhvMVxIowZs/vImFRQvlio7MRpnI752PXlf1KnefZB85q9bKwSREREREdFlJkgRfxJcyK+RcB0sP4o3v38C/9/9bfkvvugbX4dGej2Jg64FVxrMKQZFIKOtsnCFCacHEMhEREdVakiTBG/HCGXDK1Rv+iB8F2wrwztZ3EIgGAADNzc3xeM/HcUe7O8odPMLX/oiIiIioNvGFf0koJ5PGSUdcR/DGD2/gix+/kN/Su9p2NR658RHcdu1tVQ7aSw6ltult0Cg1aXsGIiaWiYiIqFZKBtuheAhAYir2R7s/wqwfZqE4UAwAsGqt+H3332Nk55HQqrRl9khWadj19lr32l+yDQfbcRARERFdOQKRAJxBpzx8+lzHPMfw5g9v4rO9n8lv6WVYM/DQDQ/hN+1+U2WBhEJQwKwxw6azlRsbE11qtesnLCIiIrriBaNBOINOBKIBSJAgSRJWHFyBmRtn4rDrMIBEj+Qx14/BxOyJsGgtZfYQIMCsMcOut9faoPq5/s9hxoYZmNpr6uU+ChERERGl2fkx7rmOe47jrcK38MneT+QWby3MLfDgDQ9iSPshVRZIJGNfm94GnUqXtmcgOh8Ty0RERFQrhGNhlAZL4Y145WB7w88bMOO7Gdh5ZieARBXGXe3vwiM3PoKmpqZl9hAgwKg2wqF3QKeu3UF1zjU5yLkm53Ifg4iIiIjSKBQLoTRYCl/EVyahfMJ7IpFQ3vMJomIUANDU1BSTuk/C7zr8rso2FgIEmDQm2HX2Wh/7Uv3ExDIRERFdVpF4BK6gC56IR+4hV3SmCDM3zMS6Y+vkdQNaD8DUXlPRtkHbMnsIEKBT6dBA3wAGjaHGzk5EREREVJ5wLAxXyAVP2FMmoXzKdwpzNs/BR0UfyQnlxsbGeCD7Adzd8e4q37hjQplqCyaWiYiI6LKIiTG4gi64wi45oXzEdQSvbnoVy/Yvk9dlN8vG1JumIrtZdrn7aJVaOPQO9iomIiIiosuuvKKJpNO+05i7eS4WFS2SE8qNDI0wMXsihmcOr1ZCmS0vqDZhYpmIiIhqVFyMwxVywRVyyUNJTvtO483CN7Fk9xK5r1y7Bu0wtddU9G/VH4IglNlHo9DArrfDorWUe5+IiIiIqKZUJ6G8ePdiROIRAEBDQ0NM6DYBeZ3yqkwSM6FMtRUTy0RERFQjREmEO+RGaahUTh6XBksxd8tczN8xH+F4GEBiUMkjNz5S4eRrlUIFm84Gm84GhaCo0WcgIiIiIjpXNB6FK+SCO+wuk1A+5TuVSCgXLZYrlBvoG8gJZb1aX+neCkEBk9rEhDLVWkwsExERUVpJkgRP2IPSYCkiYqJCwxfx4d1t7+JfW/8Ff9QPIBFkT+o+CcM7DS93UIlSUMKms8Gqs1Y5GZuIiIiIKJ2i8SjcITfcYbf8Fl7SSe9JzN0yN6WHcrJCeXjm8GollM0aM2w6W5XtMYguJ/5URkRERGmTTCgnq5HDsTAW7FqAtwrfQmmoFABg1pgxvtt4jM4aDaPGWGYPhaCAVWuFTWeDWqm+JOdaeWglZm6Yiam9piLnmpxLsicRERER1X+VJZSPe45j7pa5+Hj3xyk9lMd3G1/thLJFY4FVZ2VCmeoEJpaJiIjokvNH/HAGnQjFQpAgIRKP4JM9n+DNH97Eaf9pAIBOpcOYrDEY120cbDpbmT2SlRp2vb3cCub/xvPfPo91R9fBG/EysUxEREREVaosoXzMcwxzCudg6d6lcsu3RoZGmJCdqFCuqo2FUlDCok0klC913EuUTkwsExER0SUTioZQEixBIBqABAlxMY7Pf/wcr3//On72/AwAUCvUuDvzbkzqPgmNjY3L7CFAgEljgl1vT1svOW/Ym/JPIiIiIqLyVJZQPuo+itmFs/HZ3s/ke42NjTGx20TcnXl3tRLKVq0VVp31kr2ZR1STmFgmIiKi/1o4FkZpsBTeiBcSJIiSiOUHl+O1Ta/hUOkhAIkK5CHth+ChGx7CVZaryuwhQIBRbYRdb6/yNUEiIiIionSqLKF8sPQg5hTOwRc/fiHfa2pqionZEzG0w9Aq21hwdgjVF/zdS0RERBft/CnYkiRh1eFVeH3T69hTvEdeN7jtYEzuMRnX2K8ps4cAAQa1AQ69gwllIiIiIrqsKkso7yveh7c2v4V/7/83JEgAgObm5ngg+wH8rsPvqmxjoVKo5AplJpSpPuDvYiIiIrpgMTEGV9AlB9ySJGHt0bV4bdNr2Hlmp7xu4NUD8eiNj6J9w/Zl9kgmlO06OwwaQ00en4iIiIgoxfnx7bmKzhRhduFsfHXoK/laS0tLPND9Afz2ut9WmVDWKDSw6qywaC1QKpRpOT/R5cDEMhEREVVbXIzDFXLBFXLJCeWNP2/EPzb9A1tPbZXX9c3oi0dufARZTbLK7CFAgF6lh11vh1FjrMnjExERERGlqKxCeevJrXir8C18c+Qb+drVtqvx++6/xx3t7qiy6lij0MCmt8GitUAhKNJxfKLLiollIiIiqpIoiXJCOTnp+ofjP+C171/D98e/l9f1uqoXJt84GdnNssvswYQyEREREdUWyZZunrAnJaEsSRI2Hd+E2YWzsfHnjfL1do52mHTDJNza5tZKq44FCNAoNbDr7TBrzBAEIa3PQXQ5MbFMREREFRIlEe6QG66QC1ExCgAoPFGI179/PSXQ7t68Ox698VH0aNGjzB5MKBMRERFRbRGJR+QKZVES5euSJGHNkTWYXTg75U28zEaZmNR9EnKuyam06liAAJ1KB5vOBpPGxIQyXRGYWCYiIqIyREmEJ+yBK+hCRIwAADaf3IzXN72ODT9vkNd1bdoVk3tMxk0tbyoTPNfWhLI37EVJsAQAUBIsgTfshVlrvsynIiIiIqJ0CsfCcIfc8EQ8KQllURLx1cGv8Nbmt7D77G75erdm3TCp+yT0zehbaZI4GfPadDaYtKa0PgNRbcPEMhEREckkSYIn7EFpsFROKG85uQWvf/86vjv2nbyuS5MumHzjZPRu2bvChHJtDK7XHV2HwfMHwx/xAwBOeE6gxcwWWDZyGfpk9LnMpyMiIiKiSy0UC8H0clVHAAAgAElEQVQdcsMb8aYklKPxKL7c/yXmbJ6DQ6WH5Ou9W/bG77v/Hjc0v6HKhLJRbYRNZ+MgarpiMbFMRERE5SaUC08UYtYPs1ISyllNsjC5x+RyKzcECDCoDbDpbLWqQjnJG/Zi8PzB8Ea88jURIryRxPUTU0/ApKldiXAiIiIiujihaAiukAu+qC8loRyKhfDxno/xzpZ3cNx7XL4+oPUATOo+Cdc3vb7SfRWCAia1CTadDTq1Lm3nJ6oLmFgmIiK6giUTyq6QC+F4GADw/fHv8cb3b2DT8U3yus6NO2PyjZPRL6NfhQllu85eq6s1FhUtSvmh4lyiJGLRrkUY121cDZ+KiIiIiC6lYDSYSChHfJAgydd9ER8W7FqAd7e9i+JAMYBEknhw28GY2G0irmt4XaX7KgQFLBoLrDortCptWp+BqK5gYpmIiOgKJEkSvBEvSoOlCMfDkCQJG49vxKzvZ+GHEz/I665vcj0e6vFQhQllo9oIu94OvVpf049wwfaX7Ic/6i/3nj/qxwHngRo+ERERERFdKv6IH66QC4FoICWh7Aw6MW/7PHy480N4wh4AgFqhxl3t78L4buPRytaq0n2VghJWrRVWnRVqpTqtz0BU11QrsfzGG2/ggw8+gEr1y/J169al7VBERESUHuUllNcdXYfZhbOx+eRmeV3Xpl3x0A0PoU9Gn3ITyiaNCXadvU69/te2QVsY1cZyk8tGtRHXOq69DKeiuuxCY2RRFPHcc89h37590Gg0eOGFF9CqVeoPs06nE3l5efj888+h1WohSRL69euH1q1bAwC6dOmCqVOnYtWqVZg1axZUKhVyc3MxbNiwtDwjERFRbecL++AKuRCMBVMSysc9x1GwrQAf7f4IoVgIAKBX6TE8czjGdh2LJqYmle6rUqjkhLJKwbpMovJU60/G6tWr8c0330Cnqzs/PBIREdEvzm95IUkSVh9ejdmFs7Hj9A55XXazbDzc42H0uqpXmYSy3E9Ob4NOVfdiguGZwzFl+ZRy7ykEBYZ3Gl7DJ6K67kJj5JUrVyISiWDRokXYtm0bXnrpJcyePVu+v3btWsyYMQPFxcXytaNHjyIzMxNvvfWWfC0ajWL69OlYsmQJ9Ho9RowYgQEDBqBRo0aX7uGIiIhqsWSxhCv4f7HtOQnlg86DmLt5Lr7Y/wViYgwAYNVaMSprFEZljYJD76h0b41CA5veBovWAoWgSOtzENV11UosN2jQIKUSoyoXU43h9XqRn58Pn8+HaDSKp59+Gl27dsWKFSvwyiuvoFmzZgCAyZMno0ePHhfwiERERFcuURITCeWgCxExAlES8dXBrzC7cDb2FO+R1/Vo0QMP3vAgerboWW5C2awxw6az1el+cmatGctGLsPg+YPhj/ghQoQCChg1RiwbuYyD++iCXWiMvHnzZvTt2xdAovJ4165dKfcVCgUKCgqQm5srXysqKsLp06cxevRo6HQ6TJs2DZFIBBkZGbBarQCA7OxsFBYWYtCgQZfgqYiIiGqvc4slIvFISkJ526ltmLt5Lr7+6Wv5WmNjY9zf5X4MyxxWaawnQIBWqYVNb4NZYy4TDxNR+SqNhKdMmQJBEFBcXIy77roLbdu2lf9wzZgxo8LPXUw1RkFBAXr27In77rsPhw4dwtSpU7F06VIUFRUhPz8ft95663/7rERERFeMuBiHJ+yBO+RGRIwgJsawbP8yzN08F/ud++V1fTL6YFL3SejevHuZPZIDSmx6GzRKTU0eP236ZPTBiakn0HFWRxzzHEMLSwvsfmg3k8p0QS42Rvb5fDCZfvm9plQqEYvF5OR07969y3ymUaNGmDhxIgYNGoTCwkLk5+dj2rRpMJvN8hqj0Qifz3epHo+IiKjWOb9YIkmSJKw5ugZvb347ZU5IK2srjO82HkPaD6k0jhUgQK/Sw6azwaRlPEh0oSpNLOfl5V3UphdTjXHfffdBo0n8YY/H49BqExVRRUVF2LNnD+bNm4esrCw88cQTF1QZQkREdCWJi3G4w264Qi7ExBgi8Qg+3fsp3t7yNo66j8rrBrQegAdveBBZTbLK7FHfB5SYNCY49A4c8xyDQ+9gUpku2MXGyCaTCX7/Lz2+RVGsMq7t1KkTlEolAKB79+44ffp0mX38fn9KopmIiKi+OD+2TYqJMfx7/7/x9pa3sa9kn3w9s1EmJmRPwK+v+TWUCmWF+yZnhli1Vhg0hrQ+A1F9Vmkkm52djXg8jilTpuDvf/87JEmCKIqYOHEi3nvvvQo/dzHVGBaLBQBw9uxZ5Ofn45lnnpHX/upXv8JVV12FZ599FgsXLsSoUaMu/EmJiIjqsZgYgzuUCLrjUhzBaBCLdy/GO1vewWn/aQCJAPrXbX6NSd0noUOjDmX2UApK2HQ2DighqsLFxsjdunXD6tWrMXjwYGzbtg3t2rWr8rveeOMN2Gw2TJgwAXv37kXz5s3Rpk0bHDlyBC6XCwaDAYWFhRg3btylfEQiIqLL6vzYNikQDeCTPZ/gX1v/hePe4/L1Xlf1wsTsieXOCTlXssWbVWetkzNDiGqbSn9q/Pjjj/HWW2+huLgYt912GyRJglKpRHZ2dqWbXkw1BgDs27cPU6ZMwZNPPin3Uc7NzZWTzjk5OVi+fHmV+xAREV0povEo3CE33GE34lIc3rAXH+78EO9ufxfOoBNAImF853V3YkL2BLSxtymzh0qhSiSUtdZKKzuIKOFiY+RbbrkF69evR15eHiRJwosvvoiCggJkZGQgJyen3M9MnDgR+fn5+Pbbb6FUKjF9+nSo1Wo8/fTTGDduHCRJQm5uLpo0qXyyPRERUV0QiUfgDrnhCXtSEsrOoBPzd8zHBzs/gCvkApAomrj12lsxvut4dG7SudJ9k2/kWXSWetPijag2qDTbO2zYMAwbNgxLlizB0KFDq73pxVRjHDhwAI8++iheffVVtG/fHkCiV86dd96JhQsXomnTptiwYQMyMzOrfQ4iIqL66vyguzhQjHnb5uHDXR/CF0n0WtUoNcjtkIvx3cbjKstVZfbQKDSw6qywaC1MKBNdgIuNkRUKBf785z+nXGvTpuxf9qxatUr+z1arFXPnzi2zZuDAgRg4cOAFnJqIiKj2CsVCcIfc8Ea8ECVRvn7MfQwF2wrw8Z6PEYqFACRi3Lva34WxXceita11pfsy3iVKr2q953rDDTdgzpw5iEajAIAzZ86UCYrPdTHVGDNmzEAkEsFf//pXAImq59mzZ+OFF17Aww8/DJ1OhzZt2mDYsGEX+oxERET1xvlB98+en/HO1nfw8e6PEY6HAQAGtQF5mXm4v+v9aGxsXGYPrVILm84Gs9YMhaCo6UcgqjcuNEYmIiKiVMFoEK6QC76IDxIk+frO0zvxztZ3sPzgcjnRbNFacE/nezA6azQaGhpWuKcAIRHv6m0wa8yVtsYgov9OtRLLTz31FAYMGIAtW7agcePGCAQCla6/mGqM2bNnl7tXnz590KdPn+ock4iIqN46P+jeX7Ifb295G1/8+IX8mqBNa8Po60djVNYo2HS2lM8nA2y73g6TxsQAm+gSuNAYmYiIiBJ8YR9cIReCsaCcUBYlEWuPrMU/t/4T3x//Xl7bzNQM93W5D0M7Dq106LIAAQa1AVatFSYthzMT1YRqJZZ1Oh0eeOABHD58GNOnT8c999yT7nMRERERgEAkAFfIBX/UDwkSNp/cjLc3v43Vh1fLa5oYm2Bs17EYljkMBnXqVGsBAvQqPaw6K8xac00fn6heY4xMRERUfZIkwRfxoTRYinA8LCeUI/EIPt/3Of617V844Dwgr2/fsD3Gdh2LwdcOhlqprnBfhaCASW2CVWeFXq1P+3MQ0S+qlViWJAlnz56F3+9HIBCA2+1O97mIiIiuaOdWccSlOL45/A3e3vI2tpzcIq9pbW2NCdkTcOd1d5YZQpKs2LDpbDBqjDV9fKIrAmNkIiKiqsXFOLwRL1xBFyJiRL7uDrmxqGgR3t/xPs74z8jXb2p5E8Z3HY+bWt5U6Vt2SkEJi9YCi9YCrUqb1mcgovJVK7H88MMP46uvvsJvf/tb5OTkYMiQIek+FxER0RXn/CqOcDyMZfuX4Z9b/on9zv3yuqwmWZjQbQJyrs4pM4SEFRvVk6zeZhU3/TcYIxMREVUsGo/CE/bAHXYjJsbk68c8xzBv2zx8vOdjBKKJNlJKQYnBbQdjXNdx6NCoQ6X7ahQaWHSJhLJKUa20FhGlSbWH93Xo0AHHjx/HypUrYTSy8omIiOhSESUR3rAXrpAL4XgYvogPi4sW491t7+K0/7S8rk9GH0zoNgE3trixTPUGKzYuzHP9n8OMDTMwtdfUy30UqsMYIxMREZUVioXgCXngiXjkwXsAsP3Udryz9R18degr+bpRbcSwzGEYc/0YNDc3r3DPcwfymTQmDqAmqiWqlVhevnw5Zs+ejXg8jttuuw2CIODBBx9M99mIiIjqtZgYgyfsgSvkQkyM4bTvNN7b8R4W7loIX8QHIFGBPOjaQZjQbUK51RsqhQpWrRVWnZUVGxcg55oc5FyTc7mPQXUcY2QiIqJfBCIBuMNu+KN+OXEcF+P4+qevUbCtIKWlW1NTU4zJGoNhmcMqfYNMgACj2girzsr2bkS1ULV+Ai0oKMDixYsxbtw4PPjgg8jNzWXQTEREdJEi8Qg8ocRrgXEpjgPOA3hn6zv4fN/niIpRAIBepcfQjkNxb5d70dLSMuXzAgRolBpYdVZYtBZWbBBdJoyRiYjoSpds5eYOuRGMBeWBfL6ID5/s+QTzts/Dz56f5fUdG3XE2C5jcdu1t1U5kM+iscCis0Cn0qX9OYjo4lQrsaxQKKDRaCAIAgRBgF7Pno1EREQXKhQLwR1ywxvxIi7GsfH4RhRsLcC3R76V1zj0DozKGoV7Ot0Du96e8nkBAvQqPaw6K0waU6XDTIgo/RgjExHRlUqSJHkgXzgelhPKp3yn8N7297C4aDG8Ea+8fkDrAbi3y73o2aJnpTFs8m08i9ZSaeKZiGqHaiWWu3fvjilTpuD06dP405/+hM6dO6f7XERERPWGP+KHO5R4LfDbI9/ib9/9DaFYCEfcR+Q1raytcH/X+3FX+7vKVGUoBAWMaiNsOhsH8hHVIoyRiYjoSpNs5eYJeRARI/L1Had3YN62efjPwf/Ig/q0Si2GtB+Ce7vcizb2NhXumXwbz6azwaw18208ojqkWonlKVOmYM2aNejYsSPatGmDAQMGpPtcREREdVrytUBXyJUYYBL24KPdH2HmhplyuwsA6NasG8Z2GYuBVw+EUqFM2YMD+YhqN8bIRER0pQjHwomEctiDuBQHkOifvPLQSry7/d2U/skNDQ0xsvNI5HXKg0PvqHBPAQIMagOs2kT/ZL6NR1T3VJpY/vTTT1N+3bBhQ7jdbnz66acYMmRIWg9GRERUF8XFOLwRL9whN8LxMI55juH97e9jye4l8Ef98jqzxox/3vlPdGnapcweGoUGFl0iocyBfES1D2NkIiK6UpQ3kM8X8WHJ7iV4b/t7OO49Lq+9rsF1uK/Lfbij3R3QKDUV7qkUlDBrzOyfTFQPVPrT6sGDBwEA27Ztg16vR9euXbFz507EYjEGzUREROeIxCPwhr1whVyIS3FsPbkVBdsK8NWhr+QgXK/SQ6fSoTRUihaWFilJZQECdCodrDorzBozKzaIajHGyEREVJ+JkigP5AvFQnL/5KPuo3h/x/v4ePfHcsGEAAE3t765Wv2TWTxBVP9U+id56tSpAIBx48Zh7ty58vWxY8em91RERER1RDAahDvkhi/qQyQewYqDK/Dutnex/fR2eU0TYxOMyhqF4ZnDMebTMSgNlcr3kv2TrVorDBrD5XgEIrpAjJGJiKg+isaj8IQ9cIfdcp9kSZKw8fhGzNs2D98c/kZOMutVevyuw+8w5voxaG1rXeGeyeIJm87G4dNE9VC1/orI6XTC4/HAYrHA6XTC5XKl+1xERES1VrJ/sjvkRjAWhCvkwuLdizF/x3yc9J2U12U2ysT9Xe7HbdfeBrVSLfdcBgBPyAOtUoumpqbsn0xURzFGJiKi+uDcQonkm3ahWAif//g53tv2Hn50/iivbW5ujlGdR2Fox6Gw6qwV7qkQFDCpTbDqrBw+TVSPVSuxPGnSJAwdOhQmkwlerxfTp09P97mIiIhqnZgYgzec6J8cFaM4UHoA729/H5/u/RTBWBBAoioj55oc3N/lfmQ3y5arMgpPFGLyssnwRrwAgLOBs+g2pxs+G/EZ+mT0uWzPREQXjzEyERHVVRW1uzjpPYkFuxZgUdEiuSACALKbZePe6+9FzjU5lbaxUClUsGqtMGvNlfZZJqL6oVqJZZfLBbVajYMHD8Jms+Gpp57C119/ne6zERER1QqhWAjesBeesAcxMYb1x9Zj3vZ5WHNkjbzGqDZiaMehGJ01Gi2tLVM+H4gG8Pw3z8Oqs8IVTgToUTEKZ8iJwfMH48TUEzBpTDX6TET032OMTEREdU1F7S42n9yM93e8j68OfoW4FAcAqBVqDG47GGOuH4NOjTtVuKcAAVqlNjErRGuGQlDUyLMQ0eVXrcTywoULMXfuXDRq1Cjd5yEiIqoVJEmCP+KHJ+yBP+qHL+LDp/s+xQc7PsCh0kPyupaWlhh9/WjkdsgtkxxOTrze+PNGuEIunAmcKfM9oiRi0a5FGNdtXNqfiYguLcbIRERUVwQiAXjCnpR2F+FYGMv2L8P7O95H0dkieW1DQ0PkZeYhr1MeGhkr/v+45KwQi9YCo8aY9mcgotqnWollu92OFi1apPssREREl12y3YUn7EEkHsFR91HM3zkfS3YvkdtYAECP5j1wb5d7MaD1ACgVypQ9zp94XXSmqNykMgD4o34ccB5I6zMRUXowRiYiotqsonYXp3ynsGBnot3FuUOlOzXuhDHXj8GgawdV2sZCpVDBorHAorOw3QXRFa7SxPLMmTMBAJFIBOPGjUPHjh3lXpFTpkxJ/+mIiIhqSCgWgifkgTfiRUyMYePPG/H+jvex6qdVchCuVWrxm+t+g9FZo9G+YfuUzwsQoFfpYdFZYNaYUyZet23QFka1Ef6ov8z3GtVGXOu4Nr0PR0SXFGNkIiKqzSprd/He9vew8tBKud2FSqHCr9v8GmOyxqBL0y4pMey52O6CiMpTaWL56quvTvknERFRfSJJEnwRHzxhDwLRALwRLz7b+xnm75yPg6UH5XVNTU0xsvNIDO04FA69I2WPZLsLi9YCnVpX7vcMzxyOKcvLTzYpBAWGdxp+6R6KiNKOMTIREdVGwWgQ7pA7pd1FMBrEF/u/wAc7PsDe4r3y2oaGhhieORzDM4ejialJhXsqBAVMahMsWgsMGkPan4GI6pZKE8t33XVXTZ2DiIioxiSrOLxhLyJiBIdKD+HDnR/ikz2fpFQVd2/eHaOzRuNX1/wqZfq1AAEapQYWrQVmrbnSydgAYNaasWzkMgyePxj+iB8iRCiggFFjxLKRyzi4j6iOYYxMRES1hSiJchu3c9tdHHUfxYKdC/Dxno/hDrvl9dc3uR6jskbhtmtvq7LdhVWbqE5muwsiqki1eiwTERHVB+cOLYnGo1h9eDU+3Pkh1h9bL6/RqXS4s92dGJk1sky7C4WggEFlkAeUVPSqYHn6ZPTBiakn0HFWRxzzHEMLSwvsfmg3k8pEREREdMEi8Qg8IQ88EY/c7kKURKw9uhbzd8zHmiNr5CSzWqHG4LaDMSprFLKaZFW4Z7K1m1VnhVFjZLsLIqoSE8tERFSvxcU4vBEvPCEPwvEwSoIl+KjoIywsWogT3hPyuqssV2Fk55H4XYffwaazpeyhFJRyxYZWpb3os5g0Jjj0DhzzHIND72BSmYiIiIiqTZIk+CN+eCNe+KN+ud2FK+TC0j1L8eGuD3HUfVRe38zUDCM6jcDdmXeXaed2ruq0diMiKg8Ty0REVC8Fo0F4w155GN+2U9vw4a4P8e/9/0ZUjMrr+mb0xT2d70H/Vv2hVCjl68kBJclhfOfeIyIiIiKqKTExJre7iMQjciXyrjO78OHOD/HFj18gHA/L63td1Qujskbh5tY3V9iy7UJbuxERlYf/5iAionrj/B5z/qgfX/z4BRbsWoDdZ3fL6yxaC3I75GJEpxFoZWuVskey3UXyFUAiIiIiosshGA0m2rhFfIhLcQBAOBbGsv3L8OGuD7Hj9A55rVFtxJD2QzCy80i0cbSpcE+FoIBRbYRZY77g1m5EROdjYpmIiOq8UCwkJ5TjUhz7S/Zjwa4F+GzfZ/BFfPK6zEaZuKfzPbi97e3Qq/Upe1yqdhdVMWvNKf8kIiIiIkqKi3H4Ir7yh/HtWoBP9nwCV8glr2/naId7su7Bb9r9ptI2axzGR0TpwMQyERHVSaIkJoLukAfBWBDheBgrDq7Agl0LUHiiUF6nUWow+NrBGNF5BK5vcn1KVUbyFUCrzlpj7S6e6/8cZmyYgam9pqb9u4iIiIiobji/UAJItMD45vA3WLBrAdYdXSevVSlU+HWbX2Nk55HIbpZdYdWxQlBAr9LDorXApDGxOpmILjkmlomIqE4Jx8KJoPv/JmAfcR3BoqJF+GTPJygNlcrrWllbIa9THu5qfxfsenvKHslXAC1aS423u8i5Jgc51+TU6HcSERERUe0jSiL8ET/cITeCsaBcnXzWfxYf7f4Ii4oW4ZTvlLy+makZhmUOw9COQ9HY2LjCfZPVySaNKa1v4hERMbFMRES1XjLo9oQ9CEQDiMQj+Pqnr7GoaBG+O/advE4pKDHw6oEY0WkEerXsBYWgSNlHrVDLA0r4CiARERERXQ7nF0oAiXh308+bsGDXAnz909fydQDok9FHHjZd0ZA9VicT0eWQlsSyKIp47rnnsG/fPmg0Grzwwgto1Sp1OJLT6UReXh4+//xzaLVahEIh5Ofno6SkBEajES+//DIcDgdWrVqFWbNmQaVSITc3F8OGDUvHkYmIqBY6P+g+5jmGJUVLsGTPEhQHiuV1zUzNcHfm3RjaYSiamJqk7CFAgEFtYJBNRJfdxcTIXq8X+fn58Pl8iEajePrpp9G1a1esWLECr7zyCpo1awYAmDx5Mnr06HE5HouIiKpBkiS5d3IwFoQoiQAAZ9CJT/d+ikW7FuGw+7C83qazIbdDLvI65SHDmlHhviqFChaNJe1zQoiIypOWxPLKlSsRiUSwaNEibNu2DS+99BJmz54t31+7di1mzJiB4uJfkgILFixAu3btMHnyZHz55Zd488038dRTT2H69OlYsmQJ9Ho9RowYgQEDBqBRo0bpODYREdUC51cnh+NhrPppFRYXLcb6Y+vldQpBgf6t+mN45nD0a9WvTH9kpaCUq5N1Kl1NPwYRURkXEyMXFBSgZ8+euO+++3Do0CFMnToVS5cuRVFREfLz83HrrbdejkchIqJqisQjcu/kqBgFkEgybz65GYuKFuE/B/6DSDwir89ulo28Tnm4tc2tFSaKBQjQq/Sw6qwwaoxl3tIjIqopaUksb968GX379gUAdOnSBbt27Uq5r1AoUFBQgNzc3JTPjB8/HgDQr18/vPnmmzh48CAyMjJgtVoBANnZ2SgsLMSgQYPScWwiIrqMQrEQfGFfSu/kxbsXY+mepSgJlsjrGhsbY2jHobi7491obm6esocAATqVTq5OrolhfERE1XUxMfJ9990HjSbRuicej0OrTSQZioqKsGfPHsybNw9ZWVl44oknoFKxyx0RUW2QrE72hr0IxAJydbIr5MKnez/F4qLFOFh6UF5v0phwV/u7MDxzONo2aFvhviycIKLaJi3Rp8/ng8lkkn+tVCoRi8XkYLd3797lfsZsNgMAjEYjvF5vyrXkdZ/Pl44jExHRZSBKYuKVwFDilcBQLIQVB1dgyZ4l2PjzRnldsjp5WOYw9GvVr0xvOaWghFljhllrhl6tr+nHICKqlouJkS0WCwDg7NmzyM/PxzPPPCOv/dWvfoWrrroKzz77LBYuXIhRo0bVwFMQEVFFwrGwnFCOilFIkCqtTu7cuDPyOuVhcNvBMKgN5e6ZrE626BKFE6xOJqLaJC2JZZPJBL/fL/9aFMUqKyjO/Yzf74fFYimzj9/vT0k0ExFR3RSMBuENe+GNeBGX4thbvBdLdi/B/+77X7jDbnldM1MzDO04FEM7DkVTU9OUPVidTER1zcXEyACwb98+TJkyBU8++aTcRzk3N1dOOufk5GD58uXpOTQREVWqourk0mApPtv3GT7a/REOOA/I641qI35z3W8wPHM4OjbqWOG+rE4morogLYnlbt26YfXq1Rg8eDC2bduGdu3aVesz3377LbKysrBmzRpkZ2ejTZs2OHLkCFwuFwwGAwoLCzFu3Lh0HJmIiNIsJsbk6uRwPAxvxIsvf/wSH+3+CDvP7JTXqRQqDGw9EEM7DkWfjD7l9k5mdTIR1UUXEyMfOHAAjz76KF599VW0b98eQCKJceedd2LhwoVo2rQpNmzYgMzMzHQfn4iIzpGsTnaH3YiJMQCJfz//cOIHLCpahBUHV6RUJ3dq3Al5mYnqZKPGWO6eycIJq87K6mQiqhPSkli+5ZZbsH79euTl5UGSJLz44osoKChARkYGcnJyyv3MiBEj8NRTT2HEiBFQq9WYMWMG1Go1nn76aYwbNw6SJCE3NxdNmjRJx5GJiCgNJElCIBpIVHFEvIiLcfxw4gd8vPtj/OfgfxCKheS1rW2t8f/Zu/PgKO4zb+Df7pnpOSVAoAMJSaCLSxLivk8ZMIdtjB3iENupVNa75Te7W+X1m3LKOdZxsGPvu86bTW3sWleqqJSTis1rbMc22NgcNiAOg8QpdCOBkEAnGM3ZPd39/jHuRmONBHbQgfh+qlRCmv79pieVhJ+/fvp5vjPlO9gwaQPGuMZE7SNAgN1iNw/ZrE4moprbkjMAACAASURBVDvRtzkjv/LKK5BlGS+88AKASNXza6+9hi1btuCf//mf4XA4kJ2djU2bNg3kRyEiuisZ1cnXQ5E2bkZ1cmegE+9WvItt57ah4VqDeb1RnbxpyiZMTer9XwAahRPx9ng4bKxOJqI7h6Druj7YN3E7bdy4Ee+8885g3wYRDTG7z+/Gbw//Fk/PfxrFWbH/4Z1uH2P6tdFf7or3Ct6tfBfvVLyDC19eMK9zWB24N/tefGfqdzBz7EwIghC1j0WwwCN5EG+PZ3UyEfW74X6OHO6fj4iov4TCIXSFuswh00BkVsihxkP4f+f+H/ac3wNFU8zrpyVPw6apm7AmZ81Nq5PZ1o2Ihrq+zpAcHU1Ed4Vfff4rHLx4EF1yF4PlfqLpGnyyz+wvFwwHsad+D96teBcHLh4wKzqAyGH7ockPYW3uWsTZo3vnG9XJxoCSrw/qIyIiIiLqb8bZ9nroOvyKHzoiNXmXuy5je8V2vFPxDpq6mszr46Q4PDDxAXxn6ncwacykXvc1eydLcaxOJqI7Hv9pnYjuCl2hrqjvdPsElIDZ6kJRFZS3lePdinfxYfWHuBa6Zl6X4EzAAxMfwMbJG5E3umdfUfZOJiIiIqLBFgwH4Q15o6qTZVXGvvp9eLvibRy4cMAMmQFgTuocPDz1YazOXt3rkD0BApxWp1k4wd7JRDRcMFgmIqJvTFEVc/p1SA2h3d+OD6o/wPaK7ajuqDavswgWLMlcgo2TN2LZ+GWQLFLUPnwEkIiIiIgGm6qp5tk2EA6YwXFtZy3ePvc2/lb1N3QGOs3rRztH48HJD+LhyQ9jwqgJMfcUIMAqWs1zrt1qH5DPQkQ0kBgsE9Gw1xXqQkegAwDQEehAV6irR/sFujnjcUCv7IVP8SEYDmJf/T68WxlpdWFUdABATkIONk7aiPsn3o9Ed2KPvayiFfFS5JDNRwCJiIiIaDD45W5DpnUVAOCVvfio9iNsP7cdJ66cMK8VBRGLMxbjO1O+g2Xjl8FmscXcUxREuG1uxElxcEvuHjNEiIiGEwbLRDSsHbx4EGv/shY+2QcAaL7ejLTfpmHn93diUcaiQb67O0P3A3dYC+NM6xm8V/kedlTviGp1EW+Px7rcddg4eSMKkgp6HKJFQYTL6kKcPXLI5iOARERERDTQwlo4MogvdB2yKkOHDl3XUXq5FNsrtuPj2o/hV/zm9enx6XhoykN4cNKDSPGkxNxTgADJIiHOHoc4Ka7X0JmIaLhhsExEw1ZXqAtr/7IWXfKNvsoaNHTJkd83P90Mj+QZxDscukLhkPk4oKIpaO5qxgfVH+BvVX9DbWeteZ1FsGBRxiJsmLQBxROKezziJ0CATbRFDtn2uB6tMIiIiIiI+puu6+aTd17Faw6VbvG24L3K9/BOxTto+LLBvN5usWNV9io8POVhzEmb02tBhDEjxCN54JJcA/FRiIiGFAbLRDRsvVX+lnlo/DpN1/DW2bfwoxk/GuC7GroUVYFP8aEr1IVgOIguuQuf1n2K96rew9FLR6OGlOQl5OHByQ/ivrz7Yra6sAgWeCQP4qTIID4+AkhEREREA01WZXSFusxiCR06ZFXG3vq9eKfiHRy4eCDqnxcKkgqwcfJGrMtdhxGOETH37D6Iz21zc0YIEd3VGCwT0bBV01EDn+KL+ZpP8UVV3t6tVE01w+RAOABZlXG48TD+VvU37D6/G4FwwLw2wZmA9XnrsWHiBkxJnNIjLDYO2XH2OA7iIyIiIqJB8fXzraZr0HUd59rO4Z2Kd/Bh9YdR7dxGOUbhgYkPYOPkjZg4ZmLMPbs/hcdBfERENzBYJqJhK3d0Ltw2d8xw2W1zIychZxDuavB1fxTQp/gQ1sIobyvH+1XvY0fNDrT7281rJYuEe7LuwQMTH8DC9IU9+sXxkE1EREREg03XdfiVyFwQr+w1B/F1+DvwQfUH2F6xHdUd1eb1xiC+h6c8jGXjl/Xark0URHhsHngkDwfxERHFwGCZiIat7079Lv5t17/FfE0URHw3/7sDfEeDyy/7I9UbchdUTcXF6xfxYfWHeL/qfZy/ej7q2lmps7Bh4gaszlmNeHt8j72MVhceyQOXzcVDNhERERENuGA4CJ/s69Hq4vOGz/FO5TvYf2E/wlrYvD57VDY2Tt6I+yfejyR3Usw9BQiwW+yId8TDI3lgFRmbEBH1hv8PSUTDVpw9Dju/vxNr/7IWPtkHDRpEiHBLbuz8/s67YnDf1w/bHYEOfFT7ET6s/hBll8uirs0elY0HJj6A9XnrkRaf1mMvURDNVhfsJ0dEREREgyGshc0h08FwEDp06LqO8rZyvFvxLj6s+RDXgjdaXcRJcViXtw4PTX4IBUkFvRZEWAQL4u2RMNlpcw7UxyEiuqMxWCaiYW1RxiI0P92MKX+YgsbrjUiLT8O5H58b1qGyrMqRxwBDXoTUEHyKD3vO78EH1R+gpLEkqmoj0ZWI9Xnrcf/E+zF5zOSYfZMli2S2uujtMUEiIiIiov6i6VpUKzdj4F6rrxUfVH2A9yrfQ3VndKuLhekL8eCkB1GcVQyH1RFzX6NwIt4eD7fkhiiIA/J5iIiGCwbLRDTseSQPEpwJaLzeiARnwrAMlY3KDW/Ii6AaRDAcRMnFEnxY8yH2nN8TNYTPbXNjVfYqrM9bj/nj5veoPBYgwCJaECfFsWKDiIiIiAaFrusIKIFIdbLcZfZNDigB7Knfg/cq30NJY4kZMgNATkIONkzagPvz7keyJznmvkbhhEfyIM4ex8IJIqK/A4NlIrorxNnjor4PB8bEa2/IC3/YD0VVcKz5GHZU78AndZ9ETbu2iTYsHb8U9+Xdh2Xjl8Ws2jCGk7glNys2iIiIiGhQxOqbrOkaSptL8V7Ve/io5qOo4dwj7SOxLm8dHpz0IPKT8vtsdWEUTrgk10B9HCKiYY3BMhHdFZ5b+hxeOfwKnp7/9GDfyt9F0zX4Zb/5GGBYC+N0y2nsqNmBnTU70eZvM68VIGDuuLlYn7seq7JXYYRjRI/9jMf/jEF87JtMRERERANNUZXIkOlufZMBoP5qPf5W9Te8X/U+mrqazOuNookNEzdg6filvVYdc0YIEVH/YrBMRHeF4qxiFGcVD/ZtfCu6rsOv+CN95RQvwmoYFe0VZpjc/ZANANOSp2Fd3jqsyVkTc9q1MenaY/ewbzIRERERDYqvP31ntLToDHRiZ81O/K3qbzjdcjpqTUFSATZM2oC1uWuR4EyIuS/PukREA4fBMhHREGT0lPMpvkhPOU1FTWcNdtbsxI6aHWi41hB1fV5CHtblrcO63HVIH5HeY7/uveTckrvXASZERERERP1F13X4ZF8kUJa9Zt/kYDiIvfV78X7V+zhw8UDUsOnUuFTcn3c/7p94P7ITsmPuK0CATbSZT+E5bDzrEhENBAbLRERDRPcw2Sf7oGgK6q7W4aPaj/BxzcdRk64BYPzI8VibuxZrc9Yid3Ruj/04hI+IiIiIhgK/7I8qmNChQ9VUfNH8Bd6veh+7andF9U32SB6szl6NByY+gNlps3ud/WH0TXZLbrhsrl77KxMRUf9gsExENIiMMNmvRPomK5qC+mv1+Kj2I3xU8xGqOqqirk+LS4uEyblrMXnM5JiHZ4tgMas1eMAmIiIiosEQawifruuo6qjC+1Xv48PqD9HiazGvt4pWLM5YjPsn3o8VE1b0+oSdKIhwWV2RvskcOE1ENKgYLBMRDbBYYfL5q+exq24XPq79GBXtFVHXj/WMxZqcNbg3514UJhfGDIpFQYTHFmlzwQM2EREREQ2GUDhk9k0OqSFzCN+l65ewo3oHPqj+ADWdNVFrpqdMx31592FN7po++yY7rA7E2SNP4llFRhlEREMB/9+YiGgAGAP4jDA5rIVRe7UWH9d+jF21u3pUJie7k7EmZw3W5K5BYXJhzKBYFES4bW6zMplTromIiIhooCmqYobJQTUYNYTv49qP8UH1Byi7XBa1JnNEJu6feD/uy7sPmSMzY+7bfUaIR/LAbrX3+2chIqJvhsEyEVE/0XQNfvmrMFnxIqyGUdVRhU/qPsGuul09qjWS3clYnbMa9+bci+kp0/sMk92SG26bm2EyEREREQ04VVMjPZNDXQiEA2aY7JN92Fu/FztqdvQYwjfGNQZrc9fivrz7UJBUEPMpPM4IISK6szBYJiK6jVRNhV/xm9OuVU3FmdYz+KTuE3xS9wkavmyIuj41LhWrs1djdfZqTEuZdtMw2WVz8dE/IiIiIhpwmq7BJ/vglb3wKT4zTJZVGQcvHsSH1R9ib/1eBMIBc43b5saq7FW4L+8+zB03t9dzrEWwmE/iuSU3Z4QQEd0hmE4QEf2dwlrYDJP9ih+yKuPElRP4tO5TfHr+UzR1NUVdPy5+HFZlr8KanDW9VmuwzQURERERDTZd182CCa/shaqrACLFFMeaj2FH9Q7sqtuFL0Nfmmtsog1Lxy/Futx1tzyEj+ddIqI7E4NlIqJvQVGVG2Fy2I9gOIijl47i0/OfYk/9HrT726OuzxqVhVXZq7A6ezUmj5nMMJmIiIiIhiRj0LRP8aFL7oKqqdChQ9d1nGo5hR01O/BRzUdo87eZa0RBxNy0uViftx6rslch3h4fc29REOGwOOCxe+C2uWGz2AbqYxERUT9gsExEdItC4ZAZJgfVILyyFwcvHsSn5z/Fvvp96JK7oq6fNGaSGSbnJOTE3JNhMhERERENBQElYLa6UDTFDJOrOqqwo3oHdtTs6PEk3rTkaVibuxZrc9ciyZ0Uc18BAuwWOzz2yBA+ySINxMchIqIBwGCZiKgXuq4jGA6aYXJIDaEj0IF99fuwu343Si6WIKSGzOsFCJg+djpWZq3EyqyVSB+RHnNf47E/o1KDYTIRERERDYagEjTbXMiqDB06AKCusw47a3ZiZ+1OnL96PmpN3ug8rM9dj7W5a3s97woQIFkks2dyb+0wiIjozsZgmYioG03X4Jf9kTBZ8SGshXHx+kXsOb8He87vwfHLx81BJQBgFa2YmzYXK7NXonhCca+VGhbBApfNxcpkIiIiIhpUwXDQrEzuHiZf/PJiJEyu2YmqjqqoNRkjMrAudx3W5a5D7ujcmPsKEGATbWaY7LQ5+/2zEBHR4OqXYFnTNDz33HOoqqqCJEnYsmULMjMzzde3bduGN998E1arFU8++SSWL1+OF154AZWVlQCAtrY2xMfHY9u2bdiyZQvKysrgdrsBAK+++iri4uL647aJ6C719eF7qqbiTOsZ7Knfgz31e1DdUR11vcvmwuKMxViZtRJLxy+N2UNOgGC2uXBLbobJRERERDRojDDZeArPCJMvXb+Ej2s/xke1H+Fs69moNalxqViTswZrc9diauLUmDNCBAiwilbESXFmZXKs64iIaHjql2B59+7dkGUZb731Fk6ePImXXnoJr732GoBIaPzGG29g+/btCIVC2Lx5MxYuXIif/exnAABFUbB582b8+te/BgCUl5fjj3/8IxISEvrjVonoLhUMB80+ckE1aA7f21O/B3vr96LF1xJ1fYIzASsmrMDKrJWYP24+7FZ7jz2Ng7VH8sBpdcIluSAK4kB9JCIiIiIiUygcirS5CHmjwuTLXZfNMPlUy6moNYmuRNybcy/W5a7DtJRpMc+yAgRYREskTLZFKpMZJhMR3Z36JVguLS3F4sWLAQBFRUU4e/bGv/k8ffo0pk+fDkmSIEkSMjIyUFlZicLCQgDAn//8ZyxcuBATJ06Epmm4cOECfvnLX6K9vR0PP/wwHn744f64ZSIa5ozp1kaLC1mV0RHowP4L+7G3fi8OXDwAv+KPWjN+5HgUTyhGcVYxipKLYlYcd+8f57K5WKVBRES9utlTfQDQ2dmJRx55BB988AHsdjuCwSB+8pOfoKOjA263Gy+//DISEhKwd+9e/OEPf4DVasVDDz2ETZs2DdKnIqKhpLcw+Yr3Cj6u/Rgf136ME1dORK0Z7RyN1TmrcW/2vZiVOqvXM69FtMBj85hP4/HMS0RE/RIse71eeDwe82eLxYJwOAyr1Qqv1xvVysLtdsPr9QIAZFnGm2++ibfffhsA4Pf78eijj+KHP/whVFXF448/jvz8fEyaNKk/bpuIhpmwFjarkn2KD6qmou5aHfbV78Pe+r04ceVEVL9kAQKKUoqwYsIKFGcVI3tUdsx9RUGEw+Iwe8dxGAkREd2Kvp7qA4ADBw7glVdeQXt7u/m7v/71r8jLy8O//Mu/YMeOHXj11VfxzDPP4De/+Q3efvttOJ1OfO9738Py5cuRmJg4GB+LiAaZMWw6VmXyrrpdMcPkUY5RWJW9Cmty12BO6pxew2RREBEnxcFlc8EtuRkmExFRlH4Jlj0eD3w+n/mzpmmwWq0xX/P5fGbQfPjwYcyePdv82el04vHHH4fTGWn6P2/ePFRWVjJYJqJeGQdrv+w3W1yUNpdiX8M+fNbwGS58eSHqeqfViYUZC7F8/HIsG78MY1xjeuxpHKqNA7XL5oJV5OxTIiL6Zvp6qg8ARFHE1q1b8dBDD0Wt+Yd/+AcAwJIlS/Dqq6+irq4OGRkZGDFiBABg5syZOH78ONasWTNAn4SIBltvPZObu5rxSd0nMcPkkY6RWJW1Cvfm3Iu54+bGPM8yTCYiom+iX5KRGTNmYN++fVi7di1OnjyJvLw887XCwkL87ne/QygUgizLqKurM18/dOgQlixZYl7b0NCAp556Cu+++y40TUNZWRkefPDB/rhlIrpDaboGv+xHIBypTFY0Be3+duy/sB/7Gvbh4MWD8Cm+qDVJ7iSsmLACK8avwLxx83rtl2wTbZGqZPZLJiKi26Cvp/oAYOHChTHXGEUXbrcbXV1dfT4BSETDV1AJwqf0DJMbv2zErrpd2FW3C6dbTket+TZhMs+9RER0q/olWF65ciVKSkrwyCOPQNd1vPjii9i6dSsyMjJQXFyMxx57DJs3b4au63jqqadgt0dCnfr6emzYsMHcJzs7G/fddx82bdoEm82GBx54ALm5uf1xy0R0BwmFQwiEA2agHNbCKG8rx2cNn+HzC5/jTMsZ86BtKEgqwPIJy7F8/HJMHjM5ZuWFKIiQRAluyQ23zQ2HjS0uiIjo9unrqb5bWePz+RAfH9/nE4BENLwYYbJX9kJWZfOMW3+1Hp/UfYJddbtQ3lYetWaUYxRWZq1kmExERP2uX4JlURTx/PPPR/0uO/tGr9JNmzbFHDDy+uuv9/jdE088gSeeeOL23yQR3TE0XUNACUT6JX81eK9L7sKhxkP4rOEz7L+wH23+tqg1LpsLC9IXYPn45ViauRSJ7th9J0VBhMsaOUy7bC5IFmkgPhIREd2F+nqqr681n3/+OQoLC7F//37MnDkT2dnZuHDhAq5duwaXy4Xjx4/jRz/60QB8AiLqb7qum20uvLIXiqZAhw5d11HTWYNdtbvwSd0nqO6sjlo3xjXGDJNnpc5imwsiIhoQbBJKREOSrMoIKIFIv2TFD1VTUd1Zjf0X9uPzC5+j7HIZwlo4ak3GiAwszVyKZeOXYU7anJghsTHR2m2L9Ep22Vwxh5UQERHdbjd7qi+W733ve3jmmWfwve99DzabDa+88gpsNht++tOf4kc/+hF0XcdDDz2E5OTkAf40RHS76LpunnmN1m5GmFzeVm5WJjdca4hal+ROwurs1VidvRozxs7odQCfRbTAY/MwTCYiotuOwTIRDQm9VSUfuXQE+y/sx/4L+3HZezlqjU20YVbqLCzNXIql45diwsgJN21x4bQ64bQ5eaAmIqIBd7On+gx79+41/+x0OvH73/++xzUrVqzAihUrbv9NEtGA0HQNPtkXCZMVH1RNhQ4dqqbixJUT+KTuE+w+vxtNXU1R69Li0rA6ezVWZa/CtJRpMdtXdA+TjcHTPPsSEVF/YLBMRIPm672SVU1FZUclDlw8gAMXDqDschkUTYlak+JJwdLMpViSuQTzxs2DR/L02FeAAEEQ2OKCiIiIiIaMsBY2q5L9ih+qrgKIPKl39NJRfHr+U+w+vxsdgY6odRNGTjDD5CmJU2KGxAIEWEUrPJLHfCqPYTIREfU3BstENGBUTYVf8Zt94xRNwdXgVRxqPISDFw/iwMUDaPW1Rq2xilbMSJmBJeOXYEnGEuSNzuv1MG0TbVFVyWxxQURERESDSVZlM0wOhAPQdA0A4JN9OHDxAD49/yk+b/gcXXJX1LopiVOwMmslVmWvQvao7D7Pv0aYzKfyiIhooDFYJqJ+Ywwf8St+BJQAgmoQsirjdMtpHLx4EAcvHsSZ1jPmAduQGpeKxRmLb6kq2Wl1mgdph9UxUB+NiIiIiCimUDhkhslBNWiedTsDndhbvxe7z+9GSWMJZFU21wgQMH3sdKzKWoV7su9Benx6zL0FCJAskhkmO6wOhslERDRoGCwT0W0VCofMMNmv+KHpGhqvN6LkYglKGktw+NJhXA9dj1ojWSTMSZ2DxZmLsThjMbJGZbEqmYiIiIjuCLquR2aFhAPwyl7IqgwdOgCg8Xoj9pzfgz3n9+D45eNRBRU20Ya54+ZiZdZKrJiwAknupJj7CxBgt9jhltxw29xw2FhMQUREQwODZSL6uyiqgmA4iIASgF/xQ9EUc+heSWMJDl08hIYvG3qsy0nIwaL0RViUsQiz02bHrDYWIEAUxEhVsuSC0+qE3WofgE9FRERERNQ7o8VbQAnAq3jN4Xu6rqOivQK7z+/G7vO7UdVRFbXOZXNhccZirMxaiaXjlyLeHh9zf1EQzTDZqEwmIiIaahgsE9E3ompqpK3FV1XJsiYjFA7hdOtpHG48jJLGEpy6csocRmIYaR+J+enzsTBjIRalL8LYuLEx9xcFMVKVbHPDaYtUJceadk1ERERENJAUVYnql2ycdxVVwbHmY9hzfg/2NuxFc1dz1LoEZwJWTFiB4gnFWJC+oNeQ2CioMMJkDp8mIqKhjsEyEfVJ1VQEw0EzSA6pIWiahrqrdTjUeAgljSX4oukL+BRf1Dpj6N6CjAVYmL4QUxOnxmxbYVQldw+SeYgmIiIioqHAOAP7ZF/kHPxVKwuv7MX+C/ux5/wefH6h5/C9jBEZuCfrHtyTdQ+Kkot6bd9mnIONMNkq8h/RiYjozsG/tYgoSqyBe7qu44r3Cg5fOoxDjYdw+NJhtPpae6zNScjB/HHzsSB9AeakzYk5dA+IHKAdFofZ3oJDR4iIiIhoKNB1/UaLC9kLRVPMfslN15uwr2Ef9tXvw9Gmo1A0JWptYXKhWZmcm5Db68wQI0x2SS64bW7ODCEiojsWg2Wiu5wRJBt9kgPhADRdw9XgVRxrOmaGyfXX6nusTXQlYn76fCwYtwAL0hcg2ZMc8z2M6dVGfziXzcUDNBERERENCUa/ZJ/sg0/xQdM16NCh6RrOtp7F3vq92NewD5XtlVHrbKIN89Pno3hCMZaPX97nWdgqWiNhss0Fl+RiqzciIhoWGCwT3YWMIDmoBOEP+6FqKryyF6WXS3H40mEcvXQU59rOmdUZBrfNjTlpczBv3DzMHzcfeaPz+qzEcNlckfYWHLpHRERERENIKByCX/FHqpO/KqwAgIASwKFLh/BZ/WfY17APbf62qHUjHSOxLHMZlk9YjkUZi3p9Qk+A0GP4Hp/QIyKi4YbBMtFdIBgOIhQOIaAEzCA5EA7gxJUTOHrpKI42HcXpltMIa+GodTbRhqKUIsxPn4/54+ajIKkANost5nsYk6tdtkh7C6fNycMzEREREQ0Juq5HzsKKHz7FB1mVzSKKK94r+KzhM+yr34fDlw4jpIai1k4YOQErJqzAigkrMD1lep/9ko3heyysICKiuwGDZaJhKFaQHFJDOHXlFI42HcXRS0dxsuUkZFWOWicKIvKT8jEvbR7mjZuHGWNnwGlzxnwPAQJsou1GVbLNyWEjRERERDRkhLUwAkqg1xYX+xr24bOGz3Cu7VzUOotgwcyxM7F8wnIsG78MWaOyYu7fvV+yW3LzPExERHcd/q1HdIfTdR0hNdSjtUVIDeF0y2kcbTqKL5q+wInLJ3pUXwDAxNETMXfcXMwfNx+zU2cjzh4X833Y3oKIiIiIhrreWlx4ZS9KLpbgs4bP8PmFz9ER6IhaF2+Px5KMJVg+YTkWZyzGCMeImPsbxRVGiwunzcl+yUREdNdisEx0h9F1PVKNHA6YA/dUXUUwHMTpltP4ovmLPoPk3IRczE2bi7nj5mJ26myMco6K+T4CBAiCYLa1cFqd7A1HRERERENKby0udF1H/bV67L+wH581fIbjzcehaErU2qxRWVg2fhmWZS7DjLEz+mz55rA44JJcZr9kIiIiYrBMNORpuoagEkRQjVQkG5UXfsWPk1dO4ovmL3C86XjM1hYAkJOQg9mpszEnbQ7mps3FaNfomO9jBMkOiwNOWyREZgUGEREREQ01vbW4kFUZXzR9YVYlX/zyYtQ6m2jD7LTZZpicOTIz5v7dn9Qz+iX3FjoTERHdzRgsEw0xYS2MoBJESI30SA6qQei6juuh6yi7XIZjzcdwvPk4zrSe6TFsD4gEyXPS5mBO2hzMTp2NMa4xMd/HCJKNgXt2ix1Om7PXYSRERERERIPBeGLPH/bDL/sRVINmi4vmrmbsv7Afn1/4HEcuHYFf8UetTXQlYknmEizNXIqFGQvhkTwx34MtLoiIiL45BstEgywUDkV6JH9VjaxoCjRdQ7u/Hcebj5tfle2V5uRqgwABE8dMNCuSZ6XOQoIzIeb7dA+SjbYWDJKJiIiIaCgKa2H4FT+CShBexQtVU6FDh6IqKLtchs8vfI79F/ajprMmap0AAYXJhVg6fimWZS7D5MTJvQbEbHFBRET092GwTDSANF1DKPzVoL1wJEhWNRWaruHilxdxvPk4Si+XorS5FA1fNvRYbxEsmJI4BbNTZ2N22mzMHyQcHQAAIABJREFUHDuz18EiQOSw3D1IdtgcnFRNREREREOOrusIhoORoXtfPbVnVCVf8V7B/gv7sf/CfhxqPASf4otaO8I+AosyFmFJ5hIszljcZ+s3URDhtrkjLS5sTp6NiYiI/g78W5SoHymqYlYkd29roWgKKtoqUHalDKXNpSi7XIY2f1uP9XaLHdOSp2FW2izMTp2NacnT4Jbcvb6fKIiQRCnS2sJq52GZiIiIiIYsRVUQCAfgl/3wh/1mVbKsyii7XIb9F/bjwIUDqO6s7rF2SuIUs8VFYXJhr2deAQIkiwS37UaLCw6jJiIiuj2YOBHdRr21tfDKXpy4fAJlV8pQdrkMp66cQiAc6LE+3h6PmWNnYsbYGZiZOhMFSQWQLFLM94rV2oIVyUREREQ0VGm6Fim2CAfhk32QNdmsSm78shEHLh7AgYsHYvZKjrfHY0H6AizJWIJFGYuQ7Enu9X1EQYTT6jQH79mt9n79XERERHcrJlBE35Kma+aQva+3tbjUdQlll8tw4vIJnLhyAtUd1eahubvUuFTMSImEyLNSZyEnIafXHnBGkOywRHojO6wOOKwO9kgmIiIioiHLbAGnBOBX/NB0DTp0+BU/jjUdi4TJFw7EbAM3NXEqFmcuxpLMJZiWPK3PqmSbaDMrkl02F8/IREREA4DBMtEtklU5UpFs9Ej+qq1FSA2hvLUcJ66cMIPkWG0tREHEpDGTzIrkGWNnIMWT0uv7GT3gnFYnHDYHHJZIRTKnUxMRERHRUKWoSlSQrGgKdOjQdR1VHVU4cPEADl48iNLmUiiaErV2pGMkFmUswuKMxViUsQhjXGN6fZ+owXtWFxw2Dt4jIiIaaAyWiWLoPmTP+B7Ww9B0DS3eFpRdKcPJyydx8spJlLeV9zgUA4BH8qAouQjTx07H9JTpmJYyDR7J0+t7GpUWRksLh8UBu9XOHnBERERENGT11d6i3d+OQ42HUHKxBCWNJT2KL0RBxLTkaVicuRiLMxZjauLUXiuNBQiwila4bC6zMpkt4IiIiAYX/yYmQqQ3sqzK5qN6ITVkTqY+13YOJ6+cxMmWkzh15RQuey/H3CM9Ph0zxs4wg+TchNw+D8aCIEASJbOthWSR2P+NiIiIiIY0XdcRCofgD/sRUAIIhAPQdd0culfaXIqDjQdRcrEEFe0VPdanxqViUfoiLMpYhPnp8xFvj+/1vYyn95w2J1xWF4suiIiIhhgGy3TXUVTFHLIXCocQVINmb+TG6404deUUTrVEviraKmJWIzusDhQkFaAopQhFKUWYnjIdo12je31Po62F0RfZbrFz0B4RERER3RGMJ/gCSgD+sB+qpprtLao7qiNVyY0lONZ8DMFwMGqt0+rE7LTZWJQRCZOzRmb1Gg4LECBZpEhF8leBMnslExERDV1MtWhYUzU1OkT+qqWFruv4MvQlTrecxqmWUzh9JfL9avBqzH0yRmRgWvI0FKUUYVryNEwaMwk2i63X9xUFEVbByrYWRERERHTH6a1PMgC0+lrNIPlw4+GYs0WmJk7FwvSFWJixEDPGzoBkkWK+j1F8YbS3cFgdfIKPiIjoDtIvwbKmaXjuuedQVVUFSZKwZcsWZGZmmq9v27YNb775JqxWK5588kksX74c165dw+rVq5GXlwcAuOeee/CDH/wg5rVEsRh9kUNqCHI40tZC1mRzwF5leyVOt5w2w+SGaw0x93HZXChIKjD7IhelFCHBmdDr+xptLewWO5xWJySrZLa2ICIiIiIa6lRNNfsk+xV/VJ9kr+zF8ebjONR4CIcaD6Gms6bH+mR3shkkL0hf0OfZ2Ri657Q5zTCZxRdERER3pn4Jlnfv3g1ZlvHWW2/h5MmTeOmll/Daa68BANra2vDGG29g+/btCIVC2Lx5MxYuXIhz585h/fr1+MUvfmHu09u1ksTA7m5nhMWyKt8YsvdVX2RVV1F/tR6nW07jTOsZnGk902tLC1EQkZuQi2nJ01CYUohpydOQPSq7z0fuBAiwiBY4rU6zrYXdaudjekRERER0R9B0DUEliEA4EAmU1aDZJ1lRFZxuPY3DjYdxqPEQTrWcQlgLR6132VyYmzYXC9IXYGH6QmSNurX2Fg6rg0P3iIiIhpF++Ru9tLQUixcvBgAUFRXh7Nmz5munT5/G9OnTIUkSJElCRkYGKisrcfbsWZSXl+PRRx9FQkICfv7zn+PMmTMxry0sLOyP26YhygiRjd7IRois6Ro0XUNTV1MkQG6JhMjlreXwKb6Ye431jEVhciEKkwtRkFSA/KR8uCV3r+/dvRrZ6I/MIXtEREREdCcxhlIbQXL3gXu6rqOqowpHLh3B4cbD+KL5C/gVf9R6i2BBYXIhFqQvwPxx8zEtZdpN21u4bW5zSDXPzkRERMNTvwTLXq8XHo/H/NlisSAcDsNqtcLr9SIuLs58ze12w+v1IisrC/n5+ViwYAHef/99bNmyBcXFxTGvpeGrrxBZh44WbwvOtJ7B2daz5vdrwWsx9xphH4H8pHwUJBWgMCUSJCe5k/p8/+69ke1WO6uRiYiIiOiOo+s6QuFQVJBsnKcBoPF6I440HsHhS4dx5NIRdAQ6euyRk5CD+ePmY0H6AsxJmwOP5OlxDXCjEMMYtmc81cf2FkRERMNfvwTLHo8HPt+NilFN02C1WmO+5vP5EBcXh8LCQjidTgDAypUr8fvf/x4PPPBAzGtpeLiVELm8rRzlreUobyvH2dazMYeDAJFp01MSp6AgqQAFyQUoSCpAxoiMPg+0RjWF3WKH0+Y0K5HZG5mIiIiI7iTGubr7wL3uQXKrrxVHLx3FkaZIVXJTV1OPPVI8KZg/bj7mjZuH+ePmI9mT3Ov7iYIISYxub8FCDCIiortPvwTLM2bMwL59+7B27VqcPHnSHMgHAIWFhfjd736HUCgEWZZRV1eHvLw8PPPMM1i1ahXWrl2Lw4cPY+rUqb1eS3ceY7CeokVCZGPIntHOosUXCZHPtZ67aYgsWSRMHjMZ+Un55lfWqKw+e7UZlRSSKJnVyJJFYjUFERERDZhvM+D6hRdeQGVlJYDI/JH4+Hhs27YNW7ZsQVlZGdzuSEuvV199lQUYd5HuQXJQCcIf9kPVVDNIvhq4imPNx3Dk0hEcuXQEdVfreuwxwj4Cc9PmYl76PCwYtwDjR47vs0+yTbTBZXOZ7S1sFlu/fkYiIiIa+volWF65ciVKSkrwyCOPQNd1vPjii9i6dSsyMjJQXFyMxx57DJs3b4au63jqqadgt9vx9NNP49lnn8Vf//pXOJ1ObNmyBYmJiTGvpaFN1dTIUD01BDkc+W4M1tN0DZe6LqGircKsRD7Xdi7m43cAYBNtmDhmIqYmTkV+Uj6mJk5F7ujcPquKjRCZLS2IiIhoKPk2A65/9rOfAQAURcHmzZvx61//GgBQXl6OP/7xj0hISBi0z0MDxwiSQ+FQpCL5a0FyV6gLx5qPmVXJVe1V5msGl82FWamzMC9tHuaNm4dJYyb1ejY2nuxzWp1wSS5z1ggRERFRd/0SLIuiiOeffz7qd9nZ2eafN23ahE2bNkW9np6ejjfeeKPHXrGupaFDURXIqhwJkr+qQlY0BbquI6yFUX+tHufazplfFe0VuB66HnOvbxMiA5FH8YyDr91qhyRGWlqwioKIiIiGkm8z4NoYWv3nP/8ZCxcuxMSJE6FpGi5cuIBf/vKXaG9vx8MPP4yHH354UD4T9Y+bVSR7ZS9Km0txtOkovmj6AuVt5dB0LWoPySKhKKUIc9PmYn76fBQmFfZ5PhYFEQ6L40afZJsDoiD26+ckIiKiO1u/BMs0/Oi6blYhGz2RQ2oIqq5C13X4FT+qO6pR0V6Bc23nUNleiaqOKgTDwZj7OawOTB4zGVMSp2BK4hTkJ+Uje1T2TcNgAQIsgiWqnQX7IhMREdGd4NsMuAYAWZbx5ptv4u233wYA+P1+PProo/jhD38IVVXx+OOPIz8/H5MmTRrYD0S3jTFsL6gGzWF7Xw+Syy6X4YumL3C06SjKW8uh6mrUHlbRisLkwkh7i3HzUJRS1GeVsSiIZnsLo09yX63liIiIiL6OJwfqIayFIYdlyJpstrKQVdkcANLub0dFWwUqOypR2VaJivYK1F+r71ElYYiT4swA2fiaMHLCTdtSxAqRjSCZiIiI6E7zbQZcA8Dhw4cxe/Zs82en04nHH3/cHHw9b948VFZWMli+g+i6HqlG/urr68P2jIrkL5q/iFQkxwiSLYIF+Un5mJM2B3PS5mDm2JlwS+5e39Pok+y0Oc0+ySzOICIior8Hg+W7mPGI3dfbWYT1MHRdh6IpqL9ab1YfV7RXoKq9qtehekBkmvTkMZMxacwkTEmcgsljJmNc/LibDsgTIMAiWuCwsBKZiIiIhqdvM+AaAA4dOoQlS5aY1zY0NOCpp57Cu+++C03TUFZWhgcffHDAPw/dOk3XEFSCCKqR1haBcCAqSL4eum4GyceajsVsbSEKIqYmTsWctDmYO24uZo6dCY/kifV2AG70Se4+cI99komIiOh2YrB8lzDCY0VTegzU06GjM9CJ6o7qSIjcXoXKjkrUdtZCVuWY+1kEC7JGZWHSmElmiDxpzCQkOPseIGMM1jMqkSWLBLvFDskqMUQmIiKiYe3bDLgGgPr6emzYsMHcJzs7G/fddx82bdoEm82GBx54ALm5uYP1sSgGVVPNauSAEkBQDZrnbgDoDHRGBcmV7ZU9hu1ZBAumJk3F7NTZmJs2FzPGzkCcPS7W2wGIDpIdVoc5f+RmBR5ERERE3xaD5WFG1dRIiNytjUVIDUUqIr6qUD5/9Twq2ytR3VGNqo6qm1Yhx0lxmDhmolmJPGnMJOQm5N60JYURIttEmxke2y2RKmQO1iMiIqK7zbcZcA0Ar7/+eo/fPfHEE3jiiSdu/03St6KoCoLhIELhEALhQFQBBwC0eFtwvPk4jjUfw/Hm46jprOmxh1W0Ij8xH7PSZpmtLW6lItkYtOe0RqqSGSQTERHRQGGwfIcyhul9vQpZ0RToug5VV9HU1YTqjuqor4ZrDQhr4Zh7ChCQMSIDk8ZMwsQxEyMh8uhJSI1LvaVWFoIgwG6x36hAFiPtLG7WS5mIiIiI6E5iDLI22loommK2rtB1HRe/vIjjzcdx/PJxHG8+jotfXuyxh020YVrKNMxKnYU5qXNQlFJ00x7JDJKJiIhoKGGwfAeQVflGKwtV6dHGosPfEQmOO6tR01ET+eqsgU/x9brnSPtI5I3Jw8TREyNfYyYiJyEHLpurz3sxAmRREM0Q2W61w2aJVCXzYEtEREREw4mu6wiFQ2Z/ZH/YD1VTzWpkVVNR3VFtBsmlzaUxnwZ0Wp2YPnY6ZqXOwqyxszAtZVqfPY9jBcl2qx2iIPbbZyUiIiL6JhgsDyFGcGxUIMtqpApZhw5d13E1eBW1nbWo6axBbUctqjurUdtZi85AZ6972kQbchJykDc6z/yaOHoiktxJt1yF3L2VhSRK7IdMRERERMNW9/7Ixlf3QXuhcAhnWs+gtLkUxy8fx4nLJ9Ald/XYJ94ej5ljZ2JW6izMTp2NKYlT+mwHx4pkIiIiutMwWB4ENwuQvwx9iZrOGtR11pnfqzuq++yDLEBA5ohM5I7OjXwl5CJvdB4yR2TetJ9xrCrk7iEyqyKIiIiIaLiSVTlSkfzVoD1Zk6P6I18LXsOJyyfMauSzrWehaEqPfZLdyZiVOgszU2di1thZyB2d2+c5WoAAi2gxA2Tji0EyERER3SkYLPcToweyESAbrSy6B8gdgQ6cv3oetZ21qO2sRd3VOtR01PQZIANAalwqchJykJtwI0DOGpUFp8150/uK1QvZJto4UI+IiIiIhj1N13r0Rw5rYTNENvojl10uQ9nlMpReLkXd1bqYe2WNysLMsTMjVclpszAublyfobCAyJOATlskSLZb7WwlR0RERHc0Bst/J03Xeg+Q9UiA3OJrQd3VOtR11pnfa6/23cICAFI8KcgZlYPshGyzCjknIafP6dAGI0CWxEjbiu4BsmSReIAlIiIiomFPURUzSA4oAYTUUFRbC1mVca7tHE5cPhEJk6+Uod3f3mMfq2jF1MSpmJkaCZJnjJ2BBGdCn+8tCiJsog0um8sMktlOjoiIiIYTBsu3KKyFe4THsipD0RSzOrnxeiPOXz1vfhkhcl9D9IBIBXLWqCzkjMpBzuicyPeEHMTZ4256X1/vg2yz2GCz3AiQ2caCiIiIiO4Guq5Hhlx/1dYiGA5C0RRoumZe0xnoxMkrJ82K5LOtZxFSQz32ipPiMH3sdMwYOwMzx85EQVJBn08HGmdyh8UBp80Ju8UOh80Bq8h/3CIiIqLhiyedbmK1r1A05UZlg67jeug66q/VRwXI56+ex8UvL8bstWYQBRHp8emRADkhEhxnjcpC1qisb1SB3L3q2GaxRQJlTocmIiIioruMMWSve1uL7tXImq6htrMWJy6fiITJV8rQcK0h5l7j4sdhxtgZmJ4yHTPHzryl/sjdB+05LA44bA6eyYmIiOiuclcGy4qqRCqQu1UfK6piDupQNAXNXc2ov1pvhsjGn2/W/9husWP8yPHITshG9qhsZI3KQvaobIwfOR52q/2m9/b1FhasQCYiIiIigtnSIhQOxRyy1xXqwqmWUzh55SROXDmBU1dOoUvu6rGPTbRhSuIUM0iePnY6ktxJfb63KIiwClb2RyYiIiLqZtgGy6qmQlblqABZURVzeJ6maegIdKDhywYzNG64FvnzzaqPASDBmWAGx1mjsjBh1ARkjcpCqicVFtHS51ojPBYg9Kg+Zg9kIiIiIrrbda9GDoVDCIQDUDU1qhr5/NXzOHElUo186sop1HbWmq93N9o5GkUpRZg+djqmp0xHflI+HFZHr+/dva2FESI7rA4OuiYiIiL6mmEXLOu6joarDQjrYei6ji65Cw3XGnDh2gUzPDa+YlUwdGcTbcgYkREJjUfeCI8njJyAEY4RN70X41BqESw9AmTjOwNkIiIiIrpb7D6/G789/Fs8Pf9pFGcVA4jujWz0R/56NfK14DWcajmFU1e++mqJXY0sCiLyRudFguSUSI/k9Pj0Ps/cAgRYRAucVmckRGZbCyIiIqJbMuyC5SveK/jfn/5vMzzuCHTcdE2SOwkTRk7AhFETIt+/+nNqXOpNB24IiBxSv96+QrJIZoB8swpmIiIiIqLhrivUhR/v/DGqO6pR11mHTx/7FBbRgmA4GNUbWVEVVHdU3wiSW06h/lp9zD1HOkZiesp0FKUUoSilCAVJBXBL7l7voXvbOYc1EiDbLfZballHRERERNGGXbDc7G3GkYojPX4fb49H5ohMTBg1AeNHjjcD5IwRGX0ePg3GIdQqWG8Ex6w+JiIiIiLqlaqpCIVDONp0FP9rx/9C/dVIQFx7tRZTXp2C/1n/P0iLT8PpltNmiFzeVo5gONhjL4tgwaQxkzAtZVokSE4uQsaIjJtWIxtD9oyWFnar/abFI0RERER0c8PuROW2ubEmZw3GjxyP8SPHI3NEJjJHZmKUY9RNg18jPBYhRg3Os4k2WEUrJIvE6mMiIiIiohg0XYMcls22FkZLi65QF+77633wKb6oa32KD4+9+1jMvshA5KnCouQiFKYUoii5CPlJ+XDanL2+v3GWt4k2M0jmkD0iIiKi/jPsguW80Xn4P/f+n14PqLEG5xmhsVWMVCOzgoGIiIiIqHdGX2RZlW/0RlaDUX2RZVVGZXsl/nTyTzErkAGY1zqsDuQn5aMwuRDTkiMVySmelD7vgdXIRERERINrWJ66jODYCI/NdhXdqo851ZmIiIiI6OZ0XY8EyGrIrEj+el9kTddQf7UeZ1rP4EzLGZxuPY2KtgoomnLT/TdO2ohfr/h1n4Fw997ITlskSJYsEquRiYiIiAbRsAuWRUFEWlzaoFcex5p4TUREREQ01IXCkUpkWZURDAd7hMi6rqOpq8kMkc+0nkF5a3lUq4vu4u3x8MpeaLrW4zWn1YkZY2f0OLeLggirYDWrkI0Be2xLR0RERDR0DLtgGUCfvdcGQleoC0/ueBK1nbWo6axB2T+WIc4eN6j3RERERETUnVGJ3FeIDAAt3hacbTuLs61ncablDM62nsXV4NWYe8bb41GQVICC5AIUJheiIKkALpsLS7YuiRk8W0Ur1ueth0WwwGF1wGF1RCqRv6pIJiIiIqKha1gGy4Pp4MWDWPuXtfDJkYPz+c7zSPttGnZ+fycWZSwa5LsjIiIioruVDh3XQ9ehqEqvIXKHvwNnW8+aQfLZ1rNo9bXG3M9hdWBK4pRIkJwUCZIzRmTEbE3x+n2v4x8/+EcEwgFougZJlJCTkINX172KiWMmsqUFERER0R2IwfJt1BXqwtq/rEWX3GX+ToOGLjny++anm+GRPIN4h0RERER0twprYVzxXjF/7gx04mzrWZS3lUe+t5bjsvdyzLU20YZJYyYhPynf/MpJyLmlvshWwYoV41eg6p+rsOJPK1DdWY3xI8fj6BNHeTYmIiIiuoMxWL6N3ip/K2bvOCAy0OSts2/hRzN+NMB3RUREREQEXA9dxx+O/QHlreUobyuPCpm7s4pW5I3Ow9TEqchPykdBUgFyR+f22Zqie4hst9qj+iJ3D59fXfcqXjn8Cp6e/zRDZSIiIqI7HIPl26imo6bXoSU+xYfaztoBviMiIiIiooiGaw3Yf3R/1O8sggW5o3PNEDk/KR8TR0+E3Wrvcy9REM2+yJJFMkNkm8XW57rirGIOtiYiIiIaJhgs30a5o3Phtrljhstumxs5CTmDcFdERERERJGq4sljJmNq0lQzSL7VEFkURDgsDrMSWbJKHK5HREREdJfrl2BZ0zQ899xzqKqqgiRJ2LJlCzIzM83Xt23bhjfffBNWqxVPPvkkli9fjubmZjz77LNQVRW6ruP5559HVlYWtm7dirfffhsJCQkAgF/96lfIysrqj9v+u3136nfxb7v+LeZroiDiu/nfHeA7IiIiIiKKmJo0Ff/3kf/b5zUCBFhEixkiSxbJ/E5ERERE1F2/BMu7d++GLMt46623cPLkSbz00kt47bXXAABtbW144403sH37doRCIWzevBkLFy7Ef/3Xf+HRRx/FPffcgwMHDuC3v/0t/vu//xvl5eV4+eWXkZ+f3x+3elvF2eOw8/s7sfYva+GTfdCgQYQIt+TGzu/vZB85IiIiIho0oiBG/SxAiFQiWx03WlowRCYiIiKiW9QvwXJpaSkWL14MACgqKsLZs2fN106fPo3p06dDkiRIkoSMjAxUVlbimWeeQVxcHABAVVXY7ZFH8srLy/H666+jra0Ny5Ytwz/90z/1xy3fNosyFqH56WbM+J8ZqOmsQXZCNsr+qYyhMhERERENOrfNbYbIRpBMRERERPRtiDe/5Jvzer3weG4EqRaLBeFw2HzNCJABwO12w+v1IiEhATabDefPn8fLL7+MH//4xwCAdevW4bnnnsOf/vQnlJaWYt++ff1xy7eVR/LgtXWvYU3OGry27jWGykREREQ06GyiDWnxaRjtGo04exxDZSIiIiL6u/RLxbLH44HPd2OAnaZpsFqtMV/z+Xxm0HzkyBH86le/wn/8x38gKysLuq7jBz/4gfn60qVLce7cOSxfvrw/bvu24sRrIiIiIiIiIiIiGq76pWJ5xowZ2L9/PwDg5MmTyMvLM18rLCxEaWkpQqEQurq6UFdXh7y8PBw5cgQvvPAC/vjHP6KgoABApLp5/fr18Pl80HUdR48evSN6LRMRERERERERERENZ/1Ssbxy5UqUlJTgkUcega7rePHFF7F161ZkZGSguLgYjz32GDZv3gxd1/HUU0/BbrfjxRdfhKIo+OlPfwoAmDBhAp5//nk89dRTePzxxyFJEubPn4+lS5f2xy0TERERERERERER0S3ql2BZFEU8//zzUb/Lzs42/7xp0yZs2rQp6vX3338/5l4bNmzAhg0bbv9NEhERERENIE3T8Nxzz6GqqgqSJGHLli3IzMw0X9+2bRvefPNNWK1WPPnkk1i+fDmuXbuG1atXm08A3nPPPfjBD34Q81oiIiIiooHUL8EyERERERFF2717N2RZxltvvYWTJ0/ipZdewmuvvQYAaGtrwxtvvIHt27cjFAph8+bNWLhwIc6dO4f169fjF7/4hblPb9dKkjRYH42IiIiI7kL90mOZiIiIiIiilZaWYvHixQCAoqIinD171nzt9OnTmD59OiRJQlxcHDIyMlBZWYmzZ8+ivLwcjz76KP71X/8Vra2tvV5LRERERDSQWLFMRERERDQAvF4vPB6P+bPFYkE4HIbVaoXX60VcXJz5mtvthtfrRVZWFvLz87FgwQK8//772LJlC4qLi2NeS0REREQ0kFixTEREREQ0ADweD3w+n/mzpmmwWq0xX/P5fIiLi8O8efMwd+5cAJEB2efOnev1WiIiIiKigcRgmYiIiIhoAMyYMQP79+8HAJw8edIcyAcAhYWFKC0tRSgUQldXF+rq6pCXl4ef//zn2LVrFwDg8OHDmDp1aq/XEhERERENJLbCICIiIiIaACtXrkRJSQkeeeQR6LqOF198EVu3bkVGRgaKi4vx2GOPYfPmzdB1HU899RTsdjuefvppPPvss/jrX/8Kp9OJLVu2IDExMea1REREREQDicEyEREREdEAEEURzz//fNTvsrOzzT9v2rQJmzZtino9PT0db7zxRo+9Yl1LRERERDSQ2AqDiIiIiIiIiIiIiL6RYVex3NTUhI0bNw72bRARERHRHaapqWmwb6Ff8ZxMRERERN9UX2dkQdd1fQDvhYiIiIiIiIiIiIjucGyFQURERERERERERETfCINlIiIiIiIiIiIiIvpGGCwTERERERERERER0TfCYJmIiIiIiIiIiIiIvhEGy0RERERrU3ECAAAgAElEQVRERERERET0jTBYJiIiIiIiIiIiIqJvxDrYN3Cn0zQNzz33HKqqqiBJErZs2YLMzEzz9W3btuHNN9+E1WrFk08+ieXLlw/i3Q5diqLg2WefRVNTE2RZxpNPPoni4mLz9a1bt+Ltt99GQkICAOBXv/oVsrKyBut2h7QNGzYgLi4OADBu3Dj85je/MV/jfx9vzTvvvIN3330XABAKhVBRUYGSkhLEx8cDALZs2YKysjK43W4AwKuvvmr+Z07AqVOn8J//+Z944403cOHCBfz0pz+FIAjIzc3Fv//7v0MUb/w7zWAwiJ/85Cfo6OiA2+3Gyy+/bP7v/G73/9m77/goqvWP459NA0xCiSIiTekXEBEQVEqkhChJaCEkAQICElBAehPpSBOwoFJygcsNHaQIKCog1YiCgoDiRZAqhhIS0kjb+f0xv6wJKSShhPJ9v16+kj0ze/bZnYmcefbMc9J+jr/99hsTJ07E3t4eJycnpk2bxmOPPZZu/+z+9h9maT/Ho0eP0rt3b5566ikAAgMDadmypW1fnY9ZS/s5Dhw4kMuXLwNw/vx5nn32Wd5//33bvoZh0LhxY9vnXKtWLQYPHpwfYUs+0zj5wXOzY/qf//yHzZs3A+Du7k7fvn3zK1TJhZsd19R9goODadasGYGBgfkUqeTGzY7rzp07+eSTTwCoVq0aY8eOxWKx5Fe4kkM3O64LFixg8+bNWCwWevfujYeHRz5GK7mRdryd1vbt2/nkk09wcHDA19eXDh065FOEWTDklnz11VfG8OHDDcMwjJ9//tno3bu3bdvFixcNb29vIyEhwbh27Zrtd8lozZo1xqRJkwzDMIyIiAjD3d093fbBgwcbhw8fzofI7i/Xr183Wrdunek2nY95M27cOGPFihXp2gICAowrV67kU0T3tvnz5xve3t6Gn5+fYRiG0atXL+P77783DMMwRo8ebXz99dfp9l+4cKHx0UcfGYZhGJs2bTImTpx4dwO+R934OXbq1Mn49ddfDcMwjOXLlxuTJ09Ot392f/sPsxs/x1WrVhkLFizIcn+dj5m78XNMFRkZabRq1coIDw9P137q1CmjV69edzNEuUdpnPzgye6Ynjlzxmjbtq2RnJxspKSkGP7+/sZvv/2WX6FKLmR3XFPNnDnTaN++vbFs2bK7HZ7kUXbHNTo62vDy8rJd08yfP1/XN/eJ7I5rVFSU4e7ubiQkJBiRkZHGyy+/nF9hSi5lNd5OTEw0mjdvbkRGRhoJCQlGu3btjIsXL+ZTlJlTKYxbdODAARo1agSYM3KOHDli2/bLL7/w3HPP4eTkhKurK2XLluXYsWP5Feo97ZVXXqF///62x/b29um2Hz16lPnz5xMYGMi8efPudnj3jWPHjhEfH0/37t3p0qULBw8etG3T+Zh7hw8f5o8//sDf39/WZrVaOX36NGPGjCEgIIA1a9bkY4T3nrJlyzJ79mzb46NHj1KvXj0AGjduzHfffZdu/7T/D23cuDFhYWF3L9h72I2f46xZs/jXv/4FQEpKCgUKFEi3f3Z/+w+zGz/HI0eOsGPHDjp16sTbb79NTExMuv11Pmbuxs8x1ezZs+ncuTOPP/54uvajR48SHh5OUFAQPXv25OTJk3crVLnHaJz84MnumD7xxBP8+9//xt7eHjs7O5KTkzP8eyX3puyOK8CWLVuwWCw0btw4P8KTPMruuP78889UrlyZadOm0bFjRx577DHdpXWfyO64FipUiCeffJL4+Hji4+M1A/0+ktV4+8SJE5QtW5YiRYrg5OREnTp12L9/fz5EmDUllm9RTEwMLi4utsf29vYkJyfbtqW9Pd7Z2TnDRayYnJ2dcXFxISYmhrfeeosBAwak2+7l5cW4ceNYvHgxBw4c4Ntvv82nSO9tBQsWpEePHixYsIDx48czZMgQnY+3YN68efTp0yddW1xcHJ07d+a9997j3//+N8uWLdOFcBqenp44OPxTZckwDNuAxtnZmejo6HT7pz0vM9v+sLrxc0xN3P30008sWbKE1157Ld3+2f3tP8xu/Bxr1qzJsGHDWLp0KWXKlLHd/plK52PmbvwcAa5cuUJYWBjt2rXLsH/x4sUJDg4mNDSUXr16MXTo0LsVqtxjNE5+8GR3TB0dHXFzc8MwDKZNm0a1atV4+umn8ytUyYXsjuv//vc/Nm3alG4SkNwfsjuuV69eZd++fQwZMoSQkBAWL17Mn3/+mV+hSi5kd1wBSpYsiZeXF23btqVLly75EaLkQWbjbbg/xkuqsXyLXFxciI2NtT22Wq22k+HGbbGxsarDmo0LFy7Qp08fOnbsiI+Pj63dMAy6du1q++zc3d359ddfVYcvE08//TTlypXDYrHw9NNPU7RoUS5dukTJkiV1PubStWvXOHnyJC+88EK69kKFCtGlSxcKFSoEwAsvvMCxY8eoWrVqfoR5z0tbTzk2NtZWpzpV2vMys+3yjy+++II5c+Ywf/78DDNKsvvbl394eHjYzjEPDw8mTpyYbrvOx5zbsmUL3t7eGe4wAqhRo4atvW7duoSHh6f7kkkeHhonP3iyO6Zgrk3x9ttv4+zszNixY/MjRMmD7I7r+vXrCQ8Pp2vXrpw/fx5HR0dKlSql2cv3geyOa9GiRXnmmWcoXrw4YP57/dtvv+nLoPtAdsd1165dXLx4kW3btgHQo0cPateuTc2aNfMlVrl198N4STOWb1Ht2rXZtWsXAAcPHqRy5cq2bTVr1uTAgQMkJCQQHR3NiRMn0m2Xf1y+fJnu3bszdOhQ2rdvn25bTEwM3t7exMbGYhgG+/bto0aNGvkU6b1tzZo1TJ06FYDw8HBiYmJsgwWdj7nz448/8tJLL2VoP3XqFB07diQlJYWkpCR++uknqlevng8R3h+qVavGvn37AHOgU7du3XTba9euzc6dO23b69Spc9djvB9s2LCBJUuWEBoaSpkyZTJsz+5vX/7Ro0cPfvnlFwDCwsIy/O3qfMy5sLCwLJMKH3/8MYsXLwbMMi1PPvmkksoPKY2THzzZHVPDMHjzzTepUqUKEyZMyPSLJ7k3ZXdchw0bxurVqwkNDaVt27a89tprSirfJ7I7rjVq1OB///sfERERJCcnc+jQISpWrJhfoUouZHdcixQpQsGCBXFycqJAgQK4urpy7dq1/ApVboMKFSpw+vRpIiMjSUxMZP/+/Tz33HP5HVY6mrF8izw8PNi7dy8BAQEYhsHkyZNZtGgRZcuWpVmzZgQFBdGxY0cMw2DgwIGqM5aFuXPncu3aNT799FM+/fRTAPz8/IiPj8ff35+BAwfSpUsXnJycePHFF3F3d8/niO9N7du3Z+TIkQQGBmKxWJg8eTKhoaE6H/Pgzz//pHTp0rbHaf+ufXx86NChA46OjrRu3ZpKlSrlY6T3tuHDhzN69GhmzZpF+fLl8fT0BKB79+7MnTuXwMBAhg8fTmBgII6OjsycOTOfI773pKSk8O6771KyZEn69esHwPPPP89bb73FsGHDGDBgQKZ/+5ndSvWwGzduHBMnTsTR0ZHHHnvMNmNZ52Pu/fnnnxm+5Ej9HIODgxk6dCg7d+7E3t6eKVOm5FOUkt80Tn7wZHdMrVYrP/zwA4mJiezevRuAQYMG3XMXwJLRzf5W5f50s+M6ePBgXn/9dcBc80hf7t0fbnZcv/vuOzp06ICdnR21a9emQYMG+R2y5MHGjRuJi4vD39+fESNG0KNHDwzDwNfXlxIlSuR3eOlYDMMw8jsIEREREREREREREbl/qBSGiIiIiIiIiIiIiOSKEssiIiIiIiIiIiIikitKLIuIiIiIiIiIiIhIriixLCIiIiIiIiIiIiK5osSyiIiIiIiIiIiIiOSKQ34HICIit9f8+fP573//y7Zt2yhQoAAAmzdvZunSpQDY29tTtWpVhg4dipOTE02bNqVkyZLY2f3zXePw4cOpUaNGvsQvIiIiIpJTa9eu5eTJkwwZMuSW+pk8eTJPP/00gYGBACxdupS1a9disVjo06cPTZo0Sbf/6dOnGTFiBBaLhUqVKjF27Nh042kRkYeBEssiIg+YjRs30rJlSzZv3ky7du3YuXMnq1atYu7cuRQuXBjDMJgyZQrr16+nQ4cOACxcuNCWhBYREREReVhEREQwbNgwTp06RY8ePWxty5YtY/369SQkJODl5cXLL7+MxWKxPW/KlCkMGDCA+vXrM2bMGLZt24aHh0d+vQ0RkXyhxLKIyANk3759lC1bloCAAIYOHUq7du0IDQ1l2LBhFC5cGACLxcLIkSPTDYxFRERERO5XBw8epGvXrsTExNCvXz+mT59O3bp1OX78OEWKFGHWrFk88sgjmT43NjaWfv36sWvXLlubm5sbGzZswMHBgfPnz1O4cOEMY+ejR49Sr149ABo3bszevXuVWBaRh44SyyIiD5DVq1fj5+dH+fLlcXJy4tChQ5w7d45y5coB8PPPPzNr1iySkpIoWbIk77//PgDdu3e33bpnZ2fH4sWL8+09iIiIiIjkRqFChZg/fz4RERH4+flhtVrx8fHh+eefZ/r06axcuZJu3bpl+twyZcpQpkyZdIllAAcHB5YsWcLs2bMJCgrK8DzDMGzJZmdnZ6Kjo2//GxMRuccpsSwi8oCIiopi165dREREEBoaSkxMDEuWLKFkyZKcO3eOqlWr8txzzxEaGsqJEycYN26c7bkqhSEiIiIi96s6depgsVh49NFHcXV1JTo6mueffx6A2rVrZ0ga51Tnzp3p0KEDPXv25Pvvv+eFF16wbUtbTzk2NtZ2d6CIyMNEleVFRB4Qn3/+Ob6+vixcuJAFCxawatUq9u7dS6tWrZg+fXq6WRQ//PBDPkYqIiIiInL7HD58GIBLly4RFxeHYRgcO3YMgAMHDlCxYsVc9Xfy5En69u2LYRg4Ojri5OSUYWG+atWqsW/fPgB27dpF3bp1b8M7ERG5v2jGsojIA2L16tVMnz7d9rhQoUK0aNGC8PBw/P39efPNNwFzRkXVqlWZNm2abd+0pTAAunTpohpxIiIiInJfuH79Ol26dCEuLo4JEyYwatQoQkJC+Ouvv3jyyScZOHBgrvorX748VatWxd/fH4vFQqNGjahXrx5//PEHS5YsYdy4cQwfPpzRo0cza9Ysypcvj6en5x16dyIi9y6LYRhGfgchIiIiIiIiInI7NG3alC+//FKl3kRE7jDNWBYRERERERGRB9Zff/3F8OHDM7Q///zzvPXWW/kQkYjIg0EzlkVEREREREREREQkV7R4n4iIiIiIiIiIiIjkihLLIiIiIiIiIiIiIpIrSiyLiIiIiIiIiIiISK4osSwiIiIiIiIiIiIiuaLEsoiIiIiIiIiIiIjkihLLIiIiIiIiIiIiIpIrSiyLiIiIiIiIiIiISK4osSwiIiIiIiIiIiIiuaLEsoiIiIiIiIiIiIjkihLLIiIiIiIiIiIiIpIrSiyLZKNKlSr4+PjQunVr2rRpg6enJ76+vhw+fDi/Q8vUtm3bmDRp0h3pOykpienTp+Pj40OrVq3w8fFh7ty5GIaRp/527NjBhx9+eNP9goKC2LJlC+Hh4QQEBOTqNdIev9S4t27dCsC5c+d47rnn8hR7ZrZs2UJQUFCG9nPnzvGvf/2L1q1b2/5r1aoVa9asuW2vfbeFh4fTu3dvDMMgICAg3XurWbOm7Rw8dOgQvr6+vPrqq3Tt2pWLFy9m2l9iYiJjxoyhRYsWtGnThg8//BCr1QrAsWPHCAgIwNvbm4CAAMLCwu7Y+6pSpQoRERHp2tauXUuvXr1u+twhQ4Zw4sSJOxUaCxYsYMSIEZluuzHudevW4e/vT+vWrWnZsiWjR4/m2rVrAOzbtw9vb+8MfUyYMIHZs2dn2v+OHTvw9/enVatWeHl50b9/f/7+++/b8K5MH374IevXr8/Tc3N6fERERG4XXR+kd+LECfr162cba3fu3Jn9+/ffcr9pxyY9e/bkjz/+uOU+UyUlJdGwYUNef/31DNu6d+9uG1etXr2apUuX5vl1mjZtelfOi6yuQzKL4dtvvyUoKIjWrVvj5eXFgAEDuHDhApD19VF249CDBw8SFBSEj48P3t7evP766xw/fvw2vCvT8uXLmT9/fp6em9W4V0RuL4f8DkDkXrd48WLc3NxsjxcsWMCkSZNYuXJlPkaVuWbNmtGsWbM70vfixYs5d+4c69atw8HBgejoaLp27UqxYsXw9/fPdX+HDx8mKioqx/uXKFGCFStW5Pp10h6/Q4cO0bVrV3744Ydc93MrChYsyIYNG2yPw8PD8fb2pkaNGlStWvWuxnI7vPPOO/Tr1w+LxZLumGzbto2ZM2fSv39/EhMTeeutt5g1axZ16tRh2bJljBo1ipCQkAz9zZ07l/Pnz7Nx40acnJwYPXo0y5Yto3Pnzrz55pv06dMHX19fLl26ROfOnVmyZAnFixe/m2/5pvr378/gwYNZuXIlFosl3+KYO3cuu3bt4pNPPuGxxx4jKSmJyZMn07t3b5YtW5br/sLDwxk+fDhr166lVKlSAMyZM4cBAwbk6e8xM/37978t/YiIiNwtuj4wnTx5kq5duzJlyhQaNWoEQFhYGL1792b58uVUqlTptrxOZuPHW/HNN99QtWpVjhw5wokTJ6hQoYJt2969e22/Hzhw4La9h3vBxo0bmTNnDnPmzKFcuXIYhsH8+fPp0qULmzdvznV/iYmJ9OrVi4ULF1K9enUANmzYQM+ePdm2bRv29va3HHNgYOAt9yEid5YSyyK5kJyczIULFyhSpIitbc6cOXz99ddYrVZKlSrF2LFjKVGiBKdPn+btt98mKiqK4sWLYxgGrVq1ol69enTq1IkKFSpw/vx5QkNDOXfuHDNmzCA+Ph47Ozv69u1LkyZNuHTpEsOHD+fq1asAuLu7M2DAgCzb165dy1dffcW8efP4+++/GTduHOfPn8cwDNq0acPrr7/OuXPneO2113B3d+fQoUNcu3aNoUOH4uHhQXh4OMHBwcyfP58SJUqke++XLl0iKSmJxMREHBwccHV1Zfr06VitVv766y+8vb3ZuXMnrq6uGIbBK6+8wocffsiZM2eYM2cOFosFe3t7hg0bhpOTEytWrCAlJQVXV1cGDhzIJ598wubNm7G3t+fpp59m9OjR6ZKH586dw8fHh59//pnk5GTee+89duzYgb29Pc899xxjx47Fyckp2+MXGRmJm5sbDg7p/9eXlJTE1KlTCQsLw97enpo1azJy5EhcXFw4fvw4EyZMIDIyEovFQvfu3WnTpg1gzrTcuHEjRYsWpVy5cjk+j0qUKEG5cuU4deoUv/76K2vWrCE+Ph4XFxdCQ0NZvXo1y5cvx2q1UrRoUUaPHk2FChXYv38/U6dOtc3m7dWrF56enlm2jxgxgkqVKtGjRw+AdI+bNm1KzZo1+f333xk0aBA1a9ZkwoQJXLhwgaSkJLy8vOjdu3eG2A8dOsSVK1eoWbNmhs927NixzJkzB1dXVw4cOICLiwt16tQBoH379kyePJmrV69SrFixdM89evQoXl5eFChQAIDmzZuzYMECWrZsyYULF2yfd/HixalSpQq7d++mVKlSzJo1i5IlS/Lnn39SqFAhgoODCQ0N5c8//6RFixa8/fbb7Nu3L0f75URERAQjR47kzJkzFC1alOLFi1OpUiX69etHmTJlcHV1Zdu2bTRv3jzd8/78808mTJhAbGwsly5domrVqnzwwQcUKFCAZ555huDgYPbu3cvFixd5/fXX6dixI0lJSUyaNInvvvuORx99lEcffRRXV9ds44uLi2PevHmsW7eOxx57DABHR0eGDRvGN998Q2JiYo7eZ1pXr14lKSmJuLg4W1vXrl1tX4ik/X/OjY9HjBhBZGQkZ8+epUGDBqxZs4avvvrK9nft5+dH3759+fLLL6lUqRIuLi58++23zJ07FzBnQL322mvs2LGDdevWsXLlSpKSkoiKiqJnz5507Ngx1+9HRETkdnuYrw9CQkLw9fW1JZUBXnzxRWbOnEnBggUB80vvbdu2cf36deLj4xk+fDgeHh7Mnj2bgwcPcvHiRapUqcK4ceMYNWoUx44d4/HHH8fe3t42jmzatCkffvgh1atXZ/LkyRw6dIjY2FgMw2DSpEnUqVOH2NhYJk2axE8//YS9vT3Nmzdn4MCBmX7hv3z5clq2bEnZsmVZvHgxEyZMAGDkyJGAOdbp0aMH27dvZ+/evRQsWBBPT0/GjBnDlStXuHTpEqVKleKDDz7g0Ucf5c8//2TMmDFERERgZ2fHG2+8QcuWLW2vFxsbS3BwMLVq1WLo0KHpYrl8+XKW/TZt2pS2bdsSFhbGhQsXaN26NQMGDADydh3y/vvvM3HiRNv+FouF4OBgSpYsmadxYnx8PNHR0enGia1atcLFxYWUlBT279/PxIkT2bRpE2DOIE59nPb4V6pUiQMHDvDJJ59Qo0YNAAYMGEC9evW4cuUKV69epWnTpkybNo2NGzcCcO3aNZo1a8bWrVv56aefmDdvHomJiURERNCmTRvb5yQid54SyyI30bVrV8BMsBQoUIAmTZowZcoUANavX8///vc/Vq9ejYODAytXruSdd94hJCSEYcOG0bp1azp27MiJEyfw9fWlVatWAPz999/MnDmTunXrEhUVxciRI1mwYAGlS5cmPDycDh06UKVKFdatW0fp0qVZuHAhcXFxjBo1iujoaFatWpVpe1pDhgyhWbNmdOvWjejoaDp16kTJkiV59tlnOXv2LA0bNmT06NF89dVXTJ48GQ8PD0qUKJFuZm1a3bp148033+SFF17g2WefpXbt2nh6elKtWjUAXnjhBT7//HM6derE999/T9GiRalatSp9+/ZlxowZ1KpViz179rBv3z769u1LQEAAV69eZeDAgXz22Wfs3r2bNWvW8MgjjzB79mxGjBjBggULMo1l2bJlHD16lA0bNuDk5MSgQYP44osvbAnIG4+fnZ0dcXFxnD17lgkTJmBnl74K0Jw5c7h48SIbNmzA3t6eUaNGMX36dMaMGcMbb7zBsGHDaNGiBeHh4fj5+VGuXDmuXLnC119/zfr16ylYsCB9+vTJ8Tn1888/c+bMGZ599lnCwsL4448/2L59Oy4uLvzwww+sX7+epUuXUqhQIfbs2WNLvs2ePZtu3brh5eXFsWPHWLlyJZ6enlm230ylSpX44IMPAOjSpQuvvfYaTZs2JSEhgZ49e1K2bNl0g2Iwb7Vr0qRJhr5CQkJwd3fnmWeeAcxz/IknnrBtd3Jyws3NjfDw8AyJ5Zo1a/LFF1/g6emJo6MjGzdu5OLFi7i5uVG6dGnWrVtH+/btOXv2LAcOHKB69eqUKlWKw4cPM3bsWKpVq8brr7/O/Pnz+e9//0tMTAyNGze2JdRzsl/qhVLq+ZIqKiqKKlWqADBp0iQqVqzIvHnzuHjxIu3atUs3i6Vhw4Z88803GRLLq1atok2bNrRu3ZqkpCTatWvHjh078PT0JDExkWLFirFixQqOHDlCYGAgvr6+rFixglOnTrF582aSk5Pp3LnzTRPLJ0+epGDBgjz11FPp2gsVKmT7f09uVa1alQ4dOtC2bVvKli1L7dq1efHFF3N0fgFcv37dNgMmKiqKzz//nB49enDixAkuX75Mo0aN+PLLLwHw8vJixowZXLp0ieLFi7N27VratWvH9evXWb16NfPnz6dYsWIcPHiQbt26KbEsIiL5RtcHpiNHjjBkyJAM7e7u7gCcP3+e7777jtDQUAoWLMjmzZv56KOP8PDwsG3ftGkTDg4OTJ48mYIFC7JlyxauXr1K27ZtbYnlVIcOHeLixYusXLkSOzs75s+fT0hICHXq1OGjjz4iISGBL774gpSUFLp3784PP/xA/fr10/Xxxx9/8PPPP/PRRx9RvXp1goKCGDhwIMWKFWPKlCmsXbvWNiP9+++/p1KlSnTq1InFixdTq1YtgoODMQyD4OBgNmzYQPfu3Rk0aBDt27enU6dOXLhwgaCgIBo3bgxATEyMbVJHcHBwhs9q8+bNWfYL5sSBZcuWER4ejoeHB76+vvz++++5vg65evUq58+fp3bt2unaLRaL7RyMjIy8aT9pFSlShKFDh/L666/z2GOPUbt2berXr4+Xl9dNJ/xA+uP/0UcfsXbtWmrUqEFUVBRhYWFMnDiR//znPwA0aNCA2NhYDh8+zDPPPMOmTZtwd3encOHCLFy4kKlTp/LUU08RHh5OkyZN6NKlS67ei4jknRLLIjeROrA4evQowcHB1K9fn0cffRQwa1QdPnwYX19fAKxWK/Hx8URFRfHLL7+wZMkSACpUqMALL7xg69PBwYFatWoBZl2qS5cupRsQWCwWfv/9dxo1akRwcDAXLlzgpZdeYvDgwbi6umbZniouLo6ffvqJhQsXAuDq6kq7du3YtWsXzz77LI6OjrYBX7Vq1XI0iHjiiSdYu3Ytf/zxB/v27WPfvn34+/szYsQIOnXqRKdOnXjvvffo1KkTK1eutN225OXlRd++fXF3d6dBgwb07NkzQ9+7du2iXbt2PPLII4CZ5Jw7d26W35x/9913tG7d2jYTIjU5mpm0tyr++uuvdOvWjQoVKqSbcbFr1y4GDhyIo6MjYNZ17tOnD6dOnSIhIYEWLVoA5kzjFi1asHv3bqKiovDw8MDFxQUAX19fQkNDM43h+vXrtG7dGoCUlBSKFSvGe++9R8mSJQGzVl9qPzt27OD06dPp6klfu3aNyMhIXn31VSZMmMD27dt56aWXGDRoEECW7TdTt25dwDxffvzxR6Kiomx1r+Pi4jh27FiGxPLJkycztCUkJLBq1SrWrl1ra7NarRlmiBiGkektcT179uT9998nICCAwoUL07JlS/73v/8BZtJ/2rRpLF68mCpVquDu7m47TqVLl7Z9sVG2bFlcXR6sJ/cAACAASURBVF1tCWxnZ2dbqZWc7Jd6Ptx4a2vqLB+AnTt3sm7dOgAef/xxXnnllXTvo3Tp0rYkaVpDhw5l7969hISEcOrUKS5evJhuZkfq7anVq1cnMTGRuLg4wsLC8Pb2xsnJCScnJ3x8fPj9998z9J2WnZ2dbdZ6dvtkxmq1ZrltxIgR9OrVix9++IEff/yR6dOnExoamqOag2kvCP38/Bg/fjw9evTgs88+w9fXN91ruri44OHhweeff85rr73Gxo0bWbp0Kc7OzsydO5edO3dy6tQpjh07lu7zExERudt0ffBPTNmNPUqVKsX06dPZuHEjp0+fts00TlWrVi3bnYRhYWG8/fbbWCwW3NzcbMnntJ577jmKFCnCihUrOHv2LPv27cPZ2Rkwrw9GjhyJvb099vb2ts/5RsuXL6dJkyYUK1aMYsWKUbp0aVatWnXTNRu6du3K/v37WbRoEadOneL48eM8++yzREZGcuzYMfz8/AAoWbKkbU0XMMeBDg4OWSY6s+o3Veo4sUSJEjz66KO2pGtOr0NSpY65sjteeRknduvWDT8/P3788Ud+/PFHQkJCCAkJydF6MmmPv6+vL+3bt2fEiBFs2rSJpk2bpjt/LRYLvr6+rFu3jmeeeYa1a9cybNgwLBYLc+fOZceOHWzatIkTJ05gGAbx8fE3fX0RuT2UWBbJoerVqzNy5EhGjBjBv/71L0qXLo3VarXdug5mnamoqChb8iztwnZpE2pOTk62f0RTUlKoUKECq1evtm0PDw/Hzc0NR0dHtm3bRlhYGN9//z1+fn6EhIRQs2bNTNtTWa3WDIvqWa1WkpOTAfP2+NTBQU7rwU6fPh0/Pz8qVqxIxYoV6dSpExs2bCAkJIROnTrx0ksvER8fT1hYGPv372fatGkADBw4EF9fX/bu3cvatWtZuHBhhoHGjUnItLFm5sZSFpcvX8ZqtfL4449n+x6qVatGnTp1OHDgQLrkaGavn5SUREpKSqbJ0dTYsjq+N7qxxvKNUhPqqa/dunVr221yVquVixcvUqRIEQICAmjSpAl79+5l9+7dfPzxx2zZsiXLdovFki7GpKSkTF839XxZsWIFhQoVAsyyD6mlKdK6sU8wE/NVq1alTJkytraSJUumW6wvKSmJyMhISpQoQc+ePW3b3nrrLWrWrEm3bt0YPnw4YNZ/K1u2rC22OXPm2I559+7dadq0KUCGmRA3nhepcrrfzTg4OKR77zcOsB0cHDIddA8aNIiUlBReffVVXn75ZS5cuJCun9TPOfVcy2xBzJzUqKtYsSLJycmcOnUq3azlhIQE+vbty6RJkyhWrFimF4pXrlzJtIbgtm3biIyMxNfXF09PTzw9PRk4cCDu7u78+uuvOT7HwPwiIzk5mV9++YVNmzZlWoeyQ4cOttIvFSpUoEyZMvz999/4+/vToUMH6tSpwyuvvMK33357089DRETkTnvYrw9q1arFwYMHM9zN9vHHH1O2bFkqVKjAm2++yWuvvUaDBg14/vnnGT9+vG2/tOOE7D6bVDt27ODdd9+lW7duNGvWjPLly/P5558D5jgsbdwXLlygYMGC6e6Ui4uLs93xmDqejImJYcmSJXTv3t02eSEz7733Hr/88gu+vr7Ur1+f5ORkDMOwHbO0r33y5EmefPJJAN544w327dvHe++9x+jRo3Pcb6q04/G0466cXoekKlKkCE899RSHDh3ipZdeSretf//+vPHGG5QpU4br16+TkJCQ7nWvXLlC0aJFM/R54MABfv75Z15//XWaNGlCkyZNGDRoEN7e3uzduxc3N7ccjxNLlSpFtWrV2LFjB2vXrs20VF379u1p27Ytfn5+REdHU69ePeLi4mjbti3Nmzenbt26+Pr6snXr1jwvMC8iuZf5104ikilvb29q1qxpu9WtYcOGrFmzhpiYGMCsdTVs2DBcXFyoXbu2bQbn2bNnCQsLy3SQVqtWLU6fPs2PP/4IwG+//Yanpyfh4eHMmDGDTz/9lObNmzNq1CgqVqzI8ePHs2xP5eLiwrPPPmubURgdHc369eszDCJyIyIigg8//ND27a9hGBw/ftw2E9RisdCxY0dGjRqFt7c3BQoUIDk5maZNmxIfH09gYCBjx47l999/JzExEXt7e9tAtlGjRnz22We2WYihoaE8//zzWd5C9eKLL7Jp0yYSExOxWq2MGzcuRwtOXLlyhSNHjtjKNaRq1KgRy5cvJykpCavVytKlS2nQoAHly5fHwcGBr7/+GjAH9F999RUvvfQSjRs3ZsuWLVy7dg2r1Zpt4jg3GjZsyObNm22J1+XLl9tutwwICOC3336jXbt2TJw4kWvXrnHp0qUs24sVK8aRI0dssWe1aKGLiwu1atVi0aJFgDlDOjAwkG3btmXY9+mnn+bMmTPp2n744QdefPHFdG2pMzh++uknAD777DNq1apF4cKFCQkJYcOGDWzYsIFmzZqxfft2xowZg2EYxMbG8p///AcfHx8AxowZY5v18dNPP3H8+PFbOo9vhbu7u+1LkatXr7J169Z0f9Pnzp2jfPnyGZ63Z88e+vTpY/sy49ChQ6SkpGT7Wo0aNWL9+vUkJCTYbuu8GScnJ3r27MmoUaO4fPkyYF7MTp48mfj4eEqUKEH58uVxcnJK11/qXQgNGjTI0KezszOzZs1KtxL72bNnsbe3p2zZsri5uXH8+HESEhJISkqyze7Oip+fHxMnTqRKlSq2Gftppc7U+uSTT2wzf44cOYKbmxtvvvkmDRs2tCWVb/YZioiI3A0P8/VBjx49WL16NXv27LG17dq1i9DQUKpWrcqPP/5IjRo16NatG/Xq1WPbtm1Z/vvdqFEj1qxZg9VqJSoqKtNx6N69e2nSpAkdO3akRo0abN261dbfiy++yLp167BarbZFpFM/v1SpNYl3797N9u3b2b59O1u3biUuLo4tW7YApLtGSfv7nj176Nq1K23atOHRRx/lu+++IyUlBRcXF6pXr8769esBM6EdGBhoK0NSs2ZNxo0bx5YtW9J9Tqmy6jc7eb0O6du3L++++y6nT58GzLHUp59+yrFjxyhfvjzOzs7UqVOHxYsX254THh7Oli1bbLPZ03Jzc2POnDns37/f1nbp0iViYmKoXLkybm5u/PXXX1y5cgXDMG56vdahQwdCQkKIj4/PUAYFzFnbNWvWZMyYMbRv3x6A06dPExMTw4ABA2jatCn79u2zXSOKyN2hGcsiuTR69GhatWrF7t278fPzs9U8s1gslCxZkqlTpwIwbdo0Ro0axbJlyyhRogSlS5e2lW5Iy83NjY8++ojp06eTkJCAYRhMnz6d0qVL07VrV0aMGGG7Jb5KlSp4eXkRFRWVaXvqwggAM2bMYMKECaxdu5bExER8fHxo164d58+fz/K9Zbc4x9ixY3n//fdp1aoVTk5OJCcn88ILLzBmzBjbPm3btmXatGn4+/sD5syBt99+myFDhthmEUyePBknJydeeOEFhgwZwsSJExk1ahQXLlzAz88Pq9VKuXLlmDFjRpZxBgQEcP78edq1a4dhGNSrV4+goKBM901bMzcxMZHg4GBefPFFzp07Z9vnjTfeYNq0abRp04bk5GRq1qzJ6NGjcXR05NNPP2XSpEnMnj2blJQU+vTpY7tt8ffff8fX15fChQtTtWpV22Ipt6Jhw4b07NmT7t27Y7FYcHFx4eOPP8ZisTBkyBAmT57MBx98gMVioW/fvpQuXTrL9qCgIIYMGYKnpyelS5dOd7vljWbMmMHEiRPx8fEhMTERb2/vTOvyenp68u677/LWW2/Z2k6fPm1baCOVo6MjH3/8MRMmTCA+Pp6iRYvaZrHfyNfXl0OHDuHt7U1KSgodOnSwlZmYMGEC77zzDp988gmPPPIIc+bMyTC75W4ZOXIk77zzDj4+PhQtWpQnn3wy3d/07t276dy5c4bnDRw4kD59+vDII4/g4uLC888/nyE5f6OAgADOnDmDt7d3rhZl6d27N4UKFbLVl05ISKBevXp8+umngDnLet68eUydOpU5c+ZgGAaPPPII06dPz1CbGcza6aNHj2b48OFER0djb29P8eLFCQkJoUiRIrbZR6+++irFixenfv362ZbsaNOmDbNmzWLWrFlZ7uPn52e7MAZsC/+98sorWCwW6tWrh5ubm+2iSEREJL89rNcH5cqVY+7cuXzwwQdMmzYNq9VqSzamJha//vprXn31VaxWK02aNCEqKsqWdE+rX79+jB07lldffRU3NzcqV66cYZ+AgAAGDx6Mj48PycnJNGjQwLZIYmrStHXr1qSkpNCyZUtbObtUy5cvp1u3bulm+BYuXJigoCDbxIZXXnmFoKAgZs+eTePGjW3Hrk+fPkyfPp0PP/wQR0dHateubRvPzZw5k/HjxxMaGorFYuHdd99Ntwi5m5sbY8eO5e2332bjxo3pFnrMrt+suLu75+k6xMfHB8MwGDRoEMnJySQkJFC9enUWL15sm9AzY8YMJk+ejJeXF3Z2dtjb2/PWW29lqFUN5oSTTz75hPfff5+///6bAgUK4OrqyuTJk22TLQICAvD19aV48eK8/PLLHD58OMv4mjZtyvjx4zMtnZjKz8+P/v37M2fOHMAsKfjyyy/z6quv4uTkROXKlalYsSKnT5/OUZ1nEbl1FkP3CIjcEXPmzKFFixZUqFCB6OhoWrVqRUhICBUrVszv0O6YzZs3s27dOv7973/ndyhyB/Xo0YP+/ftTs2bN/A7lrlq6dCnVqlXjueeeIzExkY4dO9KvXz/c3d05c+YMQ4YMYeXKlTm+fVREREQeLg/j9YGIiDzYNGNZ5A556qmnGDhwIHZ2dqSkpNCzZ88HetAYFBRERESEbWakPLjGjx/PxIkTmTt37kOVRK1YsSITJ0601eB+5ZVXbLcFfvDBB0yaNOmh+jxEREQkdx626wMREXnwacayiIiIiIiIiIiIiOSKFu8TERERERERERERkVxRYllEREREREREREREcuWBq7Fcv359SpUqld9hiIiIiMh95vz58+zbty+/w7hjNE4WERERkdzKboz8wCWWS5Uqxdq1a/M7DBERERG5z7Rr1y6/Q7ijNE4WERERkdzKboysUhgiIiIiIiIiIiIikitKLIuIiIiIiIiIiIhIriixLCIiIiIiIiIiIiK5osSyiIiIiIiIiIiIiOSKEssiIiIiIiIiIiIikitKLIuIiIiIiIiIiIhIriixLCIiIiIiIiIiIiK5osSyiIiIiIiIiIiIiOSKEssiIiIiIiIiIiIikitKLIuIiIiIiIiIiIhIriixLCIiIiIiIiIiIiK5osSyiIiIiIiIiDy8tm6Fli1h27b8jkRE5L7ikN8B3HaGATEx4OKS35GIiIiIiIiIyL1u/HjYsweio6FZs/yORkTkvvHgzVg2DPj7b/jrL0hIyO9oREREREREROReFh2d/qeIiOTIgzdjGf6ZtRwXB0WKQLFi4PBgvlURERERERERERGRu+3Bm7GcltUKV6/CmTMQGWkmnEVERERERERERETklty1xLLVamXMmDH4+/sTFBTE6dOnM+wTERFBixYtSPj/EhYpKSlMmjSJgIAA2rVrx7fffpu3F09OhosX4exZcyaziIiIiIiIiIiIiOTZXUssb926lcTERFauXMngwYOZOnVquu27d++me/fuXL582da2YcMGkpOTWbFiBXPmzMk0GZ0r16/DhQtm/eXr12+tLxEREREREREREZGH1F1LLB84cIBGjRoBUKtWLY4cOZI+EDs7Fi1aRNGiRW1te/bs4YknniA4OJh33nmHpk2b3nogqfWXz52DS5fM2cwiIiIiIiIiIiIikmN3LbEcExODi4uL7bG9vT3JaZK6DRo0oFixYumec/XqVU6fPs28efPo2bMnI0eOvH0Bqf6yiIiIiIiIiIiISJ7ctcSyi4sLsbGxtsdWqxUHB4dsn1O0aFFefvllLBYL9erV49SpU7c/sLT1l9PEJyIiIiIiIiIiIiKZu2uJ5dq1a7Nr1y4ADh48SOXKlW/6nDp16rBz504Ajh07RsmSJe9cgNevm7WXL1yAxMQ79zoiIiIi8lDKy2LWqb755hsGDx5se3zw4EH8/PwICAjg448/vuOxi4iIiIjc6K4llj08PHByciIgIIApU6YwcuRIFi1axLZt27J8TocOHTAMgw4dOjB69GjGjx9/8xe6dAmiovIWpGFAdLQ5e/nKFbNchoiIiIjIbZCXxawBJk2axMyZM7GmGZuOHTuWmTNnsnz5cg4dOsTRo0fvynsQEREREUmVfS2K28jOzo4JEyaka6tQoUKG/bZv32773cnJiSlTpuTuhc6dAw8PeOMN6NgRnJxyH2xKiplYjo4GNzcoXDj3fYiIiIiIpJHTxax9fX3TtdeuXZvmzZuzcuVKwFy7JDExkbJlywLQsGFDwsLCqF69+l14FyIiIiIiprs2Y/musbMzF+ObMgW8vGDLlrwvzJeYCOHhcP68WSpDRERERCSP8rKYNUDLli2xWCxZ9uPs7Ex0dPQdilpEREREJHMPXmK5enVzprK9PZw5A/37Q2Ag/PRT3vozDHNRv3PnzDIbaQb/IiIiIiI5lZfFrHPST2xsLIV1h52ISN5ER5t3LMM/dy6LiEiOPHiJZQcHGDcONm6Epk3Ntp9/NpPLb70Fp07lrV+rFa5eNZPVkZF5nwUtIiIiIg+lvCxmnRkXFxccHR05c+YMhmGwZ88e6tateztDFRF5OOzZA6VKwV9/mY//+st8vGdP/sYlInKfePASy6kqVIA5cyA0FGrUMNu++sosjzFpEkRE5K3f5GS4eNGcwRwXd/viFREREZEHWl4Ws87K+PHjGTJkCO3bt6datWo8++yzdyBiEZEHWHQ0tGxp/kxdHNVq/ac9JiZ/4xMRuQ/ctcX78k29erB6NWzeDO+/b9ZLDg2FdeugVy/o0gUKFsx9v/HxZl+uruYCf3lZJFBEREREHhp5Wcw6Vf369alfv77tca1atVi1atXtD1JE5GGxcuU/CeUbWa3m9h497m5MIiL3mQd3xnJadnbg4wNffgnDhkHhwua3jzNngqenmWROScl9v4YB167B2bNmLaas/lESERERERERkXvH8ePmekqZiY2FP/64u/GIiNyHHo7EcqoCBcxvHL/5Brp1A0dH+PtvGDEC2rXLex2llBQzsXz2rAr9i4iIiIiIiNzrKlUCZ+fMtzk7Q8WKdzceEZH70MOVWE5VtKiZTP7yS7PmMsCxY2bSuVs3+PXXvPWbkGAmqs+fhy++MOsy5aFmnoiIiIiIiIjcQf7+5t3NmbGzM7eLiEi2Hs7EcqoyZWDWLFizxqzFDPDdd9C2LQwdaiaIc8swzNtmxo41E9djx97emEVERERERETk1ri6mhPCXF3/STDb2f3T7uKSv/GJiNwHHu7EcqpnnoH//hfmzzdvhwH4/HOz/vK0aRAZmfs+U1eQjYgwn28Yty9eEREREREREbk1DRvCX39BqVLm41KlzMcNG+ZvXCIi9wklllNZLODuDhs2wOTJUKIEJCXBwoXQvLmZdL5+Pff9GgZcvGjWX85qYQARERERERERuftcXMDNzfzdzU0zlUVEckGJ5RvZ24OvL3z1FQwaZP6jEh0NM2eaM5g/+8xcrC+3rl83v/m8cMGsxSwiIiIiIiIiIiJyn3rwEst2dubifFkV4c+pQoWgVy/45hvo2hUcHc2F+d5+G1q3hm+/zX15C8Mwk9Rnz8Lly3lLUIuIiIiIiIiIiIjkswcvsQxQvDiULQtFitx6gtnNzUwmf/kl+PiYbcePQ+/eEBQEBw/mvk+r1ay9fPo0REWp/rKIiIiIiIiIiIjcVx7MxDKAk5NZJ7lMGShc2KyhfCvKlIEZM2DdOmjQwGz78Ufw94d+/eDEiX/2jYn5Z8G/yMh/FvK7UXIyhIfDuXMQF3dr8YmIiIiIiIiIiIjcJQ9uYjlVgQLwxBNmYtjV9dYTzNWqmQv6LVwI1aubbV9/bc5mHj3a/L1xYzNhDObPxo1h//6s+4yPh/PnzfrLiYm3Fp+IiIiIiIiIiIjIHfbgJ5ZTFSwIJUtC6dLmgny3mmBu0ADWrIH33zfLbqSkwKpV5uzl2Nh/ylsYhvk4ONj8mZXU+stnzsCVK6q/LCIiIiIiIiIiIveshyexnKpQIXjySShVCpydby3BbGcHLVvC5s0wZozZX1asVvjii5v3abWaiWXVXxYREREREREREZF71MOXWE71yCNmcvnJJ83fbyXB7OQEnTpB+/ZZ7xMfb85Gzqm09Zezm+ksIiIiIiIiIiIicpc55HcA+c7Z2fwvJgauXoXr1/M+S7hiRXNGdHx8xm0Wi1nqwjByl8SOj4e//jJjdHMzS3qIiIiIiIiIiIiI5KOHd8byjVxczAX+SpQwF/zLi5YtzfIYmTEMWL4c/P3h++9z169hmInvc+fg4kUt8CciIiIiIiIiIiL5SonlGxUubC7GV6KEWeIiN1xcYP789LWbLRZzFnPt2ubjQ4ega1fo0QOOHMld/1YrREbC2bNa4E9ERERERERERETyjRLLmbFYoEgRM8H8+OO5SzDXrQu7d5uJaTB/7t1rzlZeuvSfBPOePeDrC/37w8mTuYsvJeWfBf6uXjUTziIiIiIiIiIiIiJ3iRLL2bGzg6JFc59gdnY2nwfmT2dn8/e6dWHZMpg3DypXNtu2bAFvb3jnHfj779zFl5wMly6ZM5ijo3P3XBEREREREREBV9f0P0VEJEeUWM6JtAnm4sVzXyIjLYsFXn4ZNmyA996D0qXNGcirV4OHB0ydChERueszIcFMSp89C7GxeY9NRERERERE5GEzbhy8+qr5U0REckyJ5dyws4NixW5PgtnODlq1gi+/hDFj4LHHzEX5Fi2C5s3h44/NBftyyjAgPh7++sv87/r1vMcmIiIiIiIi8rBo1gy++ML8KSIiOabEcl6kTTDntgbzjZycoFMn+OYbGDTIXDwwNhZmzzYTzP/5jzkjOacMw0xInzsHFy9CUlLeYxMRERERERERERHJhBLLtyKvNZgz88gj0KsXbN0KwcFQsKC5MN+UKeDpaZbKSE7OeX9WK0RGwpkz5kJ/KSl5j01EREREREREREQkDSWWb4fbmWAuUgQGDzZnMHfqBI6OcOGCubiflxds3mwmjXMqJcVMLJ89C1FR5oxmERERERERERERkVugxPLtlDbBXLSo2ebsnLe+Hn/crL385ZfQpo256N+pU2a5jDZt4Ntvc5ckTkyE8HAzwZyb2s0iIiIiIiIiIiIiN1Bi+U6ws4NJk+CVV2D06FubwVymDEybBhs3QosWZtvvv0Pv3hAQAN9/n7v+rl83Z0CfOwdxcXmPS0RERERERERERB5aSizfKc2ambONW7c2ZzCXKHFrCeZKlcwF/dasgYYNzbaDB6FrV3jtNfP3nDIMM6l8/ryZZL5+Pe9xiYiIiIiIiIiIyENHieW7wc7OrJ1crpyZYC5QIO99PfMMLFgAS5ZA7dpmW1gY+Pubs5h/+y3nfRkGREeb5THCw81yGSIiIiJyR1itVsaMGYO/vz9BQUGcPn06wz4RERG0aNGChIQEAK5fv06/fv3o2LEjPXv2JCIiAoBFixbh5eVFUFAQQUFBnDx58q6+FxERERERJZbvJovFTDCnzmC+lQTz88/DsmUwfz5Ur262ffutWX95wAA4cSLnfRmGubDfmTNw6RIkJeU9LhERERHJ1NatW0lMTGTlypUMHjyYqVOnptu+e/duunfvzuXLl21ty5cvp3Llyixbtow2bdrw6aefAnD06FGmTZtGaGgooaGhlC9f/q6+FxERERERJZbzQ9oE8xNP5D3BbLGAuzt89plZJqNiRbP9yy/B2xtGjDBnI+eU1QpXr5oJ5itXICUlb3GJiIiISAYHDhygUaNGANSqVYsjR46k225nZ8eiRYsomroI9A3Pady4MWFhYYCZWJ4/fz6BgYHMmzfvLr0DEREREZF/KLGcnywWKFz49iSYW7SAzz+H6dPNBf+sVli3zlxAcOxY+PvvnPeXkmImlk+fNhPNVmve4hIRERERm5iYGFxcXGyP7e3tSU5Otj1u0KABxYoVy/AcV1dXAJydnYmOjgbAy8uLcePGsXjxYg4cOMC33357F96BiIiIiMg/lFi+F9yuBLO9vblY4JdfwsSJULIkJCfDihXg4QHvvgtpbq28qeRkszTGmTNmqQzDyFtcIiIiIoKLiwuxsbG2x1arFQcHhxw/JzY2lsKFC2MYBl27dsXNzQ0nJyfc3d359ddf72jsIiIiIiI3UmL5XpI2wVyiBDg55a0fR0fo0AG+/hpGj4bixc2F+f77X2jeHGbMMGci51Riorm435kzcO1a3mISERERecjVrl2bXbt2AXDw4EEqV66co+fs3LkTgF27dlGnTh1iYmLw9vYmNjYWwzDYt28fNWrUuKOxi4iIiIjcSInle1FqDeZy5W4twezkBJ07wzffwLBhULQoxMdDSAg0awYffpi7RHFCgplgPnsWYmLyFpOIiIjIQ8rDwwMnJycCAgKYMmUKI0eOZNGiRWzbti3L5wQGBnL8+HECAwNZuXIlffv2xdXVlYEDB9KlSxc6duxIxYoVcXd3v4vvREREREQELIbxYNU3aNeuHWvXrs3vMG4vq9VMAEdGmrOH8yomxpy1vHAh/H99PlxdoVs36NoV0tT8uymLBR55BNzcoFChvMckIiIico94IMeRaTzo709EREREbr/sxpCasXw/sLMzZxuXLWuWtbhJLb4subjAm2/C9u3mT2dnM8H80UfmDOb58yEuLmd9GQbExsK5c3DhAly/nreYRERERERERERE5L6jxPL9xM4OihUzS2Q89ljeE8yFC0P//rBtG/Tsac44joyEmTPNGsyLFpklM3LCMMzktGod1wAAIABJREFU9LlzZpmMW5lRLSIiIiIiIiIiIvcFJZbvR/b2ZgmKcuXg0UfNx3lRrBgMGQJbt5rlMAoUgCtXYOpU8PAwy2YkJOSsL6sVoqLM+suXL0Nyct5iEhERERERERERkXueEsv3M3t7M7H81FO3lmB+7DEYMcJc5C8oCBwd4dIlePddM8G8dGnOZyKnpEBEBJw+bf60WvMWk4iIiIiIiIiIiNyzlFh+EKQmmG91BnOJEvDOO+YM5sBAM8EcHg4TJkCLFrBiRe4SzJcvw5kz5kzmB2uNSBERERERERERkYeaEssPEgeH/2PvzsOjrO+9j39mkkwyySRA2AUSwBrFhcNirYrIJqtYWZTVWIuPdcPjQVtxwdSDClSK+hxrtR4lPsWFXaooomyC1C5GqWKLCy1hl0AISSbLJJn7+ePbIaAkmYQwhOT9uq7fBZnkvvndvXp53Xz8+vnVT8Dcrp30yCPS6tXSuHF23337pF/+Uho2TFq8WCorC+9egYCF0zt3Svn5ddsPAAAAAAAAgAYlYsFyMBhURkaGxo8fr/T0dGVnZ3/vZ3JzczVkyBCVfqfXd/v27erdu/f3PkcV6itg7tBBevRR6d13pTFj7D579kgPPywNHSotWRJ+wFxaagHzrl2S31+3/QAAAAAAAABoECIWLK9Zs0aBQECLFi3Svffeqzlz5hz3/U2bNmnKlCk6ePDgcZ8XFhbqV7/6lTweT6S22niEAubOna1HOTq6bvfp1EmaPVtatUoaPVpyuy1gnjFDGj5cWrYsvIDZcaTiYmnvXru+uLhu+wEAAAAAAABwWkUsWM7KylLfvn0lST169NDWrVuP34jbrczMTDVv3vzoZ47j6OGHH9Y999wjr9cbqa02PlFRUnKyBcytW0t1DelTU6U5cyxgvvZaC5h37ZIefLD2AbPfL+3ebSEzATMAAAAAAABwRolYsFxYWCifz3f066ioKJWXlx/9uk+fPmrRosVx1/zmN79Rv379dN5550Vqm42b2y21aCGlpNhBfbGxdbtP587SE09Ib78tXXPNyQXMhYUWMO/bJ5WU1G0/AAAAAAAAACIqYsGyz+eT/5hu3WAwqOgaqhnefPNNLVu2TOnp6crJydGUKVNO9TabBrdbatbMAub27SWvV3K5an+frl2lX/9aWrny5APmggK7loAZAAAAAAAAaPAiFiz36tVLGzdulCRt2bJFaWlpNV7z/vvva8GCBVqwYIFat26t+fPnn+ptNi0ul5SYaB3K7dtL8fF1C5jPPrv6gHnp0toHzPv324F/AAAAAAAAABqciAXLgwcPlsfj0YQJEzR79mw98MADyszM1Nq1ayO1BVTH55M6dpQ6dLDf12fA/NBD0rBh0pIlUiBQ830cR8rPt2sPHAjvGgAAAAAAAAARU30XRT1yu92aOXPmcZ+dffbZ3/u5devWnfD6qj5HPYuPt1VSIh0+bB3IjlO7e4QC5jvukJ57zoLm3bulGTPs61tvlUaPrvkQwWBQysuzkLlZM6l5cykmpu7PBgAAAAAAAKBeRGxiGWeYuDirx+jUyUJddx3+r9K1qzR3rvTOO9KoUVJUlLRnj5SRIQ0dKr3+enjTyMGghdw7d0qHDknHHPoIAAAAAAAAIPIIllG9uDipbVsLmFu0sHC4trp0kX71K2nVKmnMGLvH3r3SI49IV10lvfJKeH3KFRUWLGdn268VFbXfCwAAAAAAAICTRrCM8MTGSq1bS6mpUsuWUnQdWlRSU6XZs6V335Wuu87u8e230qOPSoMGSS+/LBUX13yfUMC8Y4eUm0vADAAAAAAAAEQYwTJqJzraguXOnaU2bSxwrq2UFOnxx6XVq6Xx4603OSfHQudBg6SXXpL8/prvU1EhHTxoE8y5uVaZAQAAAAAAAOCUI1hG3bjddpheSorUrp3k9UouV+3u0bGjNHOm9P770uTJFjAfOiQ98YQ0cKD0/PN2eGBNysstYN6xw7qYCZgBAAAAAACAU4pgGSfH5ZKSkqyD+ayzpISE2gfM7dvbgX5r10rp6TYFnZcnPfWUNGCA9JvfSEeO1Hyf8nKbfCZgBgAAAAAAAE4pgmXUn4QEqUMHm0ROSrKp5tpo21aaMcMC5ilTbAo6P1965hmbYH7qKau8qEkoYN65k4AZAAAAAAAAOAUIllH/vF6rx+jUyeoyahswt24tTZ8urVsn3XabBdaFhVaNMXCg9KtfWXBck0CgMmDOyyNgBgAAAAAAAOoJwTJOndhYO+AvNdUO/IuOrt31ycnStGkWME+dalPQxcXS/PkWMD/6qLRvX833CQSkAwcqA2bHqdvzAAAAAAAAAJBEsIxIiImxYDk11YJmj6d21zdvLt11lwXM99wjtWhhYfErr0iDB1t9xq5dNd8nFDBnZ1tnMwEzAAAAAAAAUCcEy4icqCgLiVNT7cA+r7d2B/0lJkq33moB8wMPWGVGWZm0ZIk0dKj0i19I33xT830CAenbb22COT+fgBkAAAAAAACoJYJlRJ7LZSFxp04WMMfH1y5gjo+XbrrJDvnLyJDOOkuqqJDefFMaOVL6z/+U/v73mu9TWirt328BMxPMAAAAAAAAQNgIlnF6+XxSx45Shw72+9oEzLGx0uTJ0urV0uOP2yS049jXo0dLt9wiffJJzfcpLbUJ5lBFBof8AQAAAAAAANUiWEbDEB9vk8edOtkhfe5a/F/T45Guu05atUp68kkpLc0+37hRmjhRSk+XNm+ueSL52IqMvDwCZgAAUK+CwaAyMjI0fvx4paenKzs7+3s/k5ubqyFDhqi0tFSSVFJSorvuukuTJk3SLbfcotzcXEnSunXrNHbsWI0fP16LFy+O6HMAAAAAEsEyGpq4OKldOwuYmzevXcAcFSVdfbX0hz9Izz4rXXSRff6Xv0hTpkjXXy+tWVNzYHzsIX+5uVazAQAAcJLWrFmjQCCgRYsW6d5779WcOXOO+/6mTZs0ZcoUHTx48Ohnr7/+utLS0vTaa69p1KhR+u1vf6uysjLNnj1b8+fP14IFC7Ro0SLl5ORE+nEAAADQxBEso2GKjZXatJFSUqTkZAuNw+V2S1ddZYf6vfSSdMkl9vnnn0t33in9+MfWx1xeXv19ysqkgwelHTukQ4fsawAAgDrKyspS3759JUk9evTQ1q1bj/u+2+1WZmammjdvfsJrrrzySn300Ufavn27UlJS1KxZM3k8HvXu3Vsff/xx5B4EAAAAEMEyGjqPR2rVyvqTW7aUoqPDv9blkq64QlqwQHrtNal/f/v866+lX/xCGjpUWrjQOparU1FhwfLOnVJOTs0/DwAAcAKFhYXy+XxHv46KilL5Mf+iu0+fPmrRosX3rklMTJQkJSQkqKCg4LjPQp8XFhae4t0DAAAAxyNYxpkhOtqC5dRUm2T2eGp3fe/e0u9+J61YIQ0fbqHz7t3SL38pDRpkk801/YWsokI6fFjatUvav18qKan78wAAgCbH5/PJ7/cf/ToYDCq6hn9pfuw1fr9fSUlJ37uP3+8/LmgGAAAAIoFgGWeWqCjrXk5NtS7muDgLicPVrZv09NN20N+YMRZY5+RITzwhDRwo/c//WHhcnWBQys+3gHnfPqm4+OSeCQAANAm9evXSxo0bJUlbtmxRWujA4Rqu+eCDDyRJGzduVO/evXX22WcrOztbeXl5CgQC+vjjj9WzZ89TuncAAADguwiWcWZyuaSkJOtgbt9eio+vXcDcpYs0e7Yd5nfjjRZQHzlih/4NHGjf27+/+ns4jlRQYJPPe/ZIx0wOAQAAfNfgwYPl8Xg0YcIEzZ49Ww888IAyMzO1du3aKq+ZOHGivv76a02cOFGLFi3S1KlTFRMTo/vvv18333yzJkyYoLFjx6pt27YRfBIAAABAcjmO45zuTdSnMWPGaPny5ad7GzgdioulvDwLeIPB2l2bmyv9/vfSK69YWCxJMTHStddKN98sde1a8z1cLsnrlZo1k3y+2gXdAADgtGvs75GN/fkAAABQ/6p7h2RiGY2H12vTy506SS1aWG1GuJKTpf/6L2nDBunnP7cDA8vKpKVLpREjpP/8T+k7J7d/j+NIRUU26bxrl9VlNK5/bwMAAAAAAABIIlhGYxQbK7VubT3MrVrV7qA/n0+65RZp3Trpv//bQmrHkVavlsaOlX76U+mjj6oPjB3HDvbbv1/KzrYp6oqKk38uAAAAAAAAoIEgWEbjFR1tk8ihg/683vDrKWJjpQkTpHfflZ58UjrvPPv8j3+UbrpJuu46C5trCowDAenAAQuYDx0iYAYAAAAAAECjQLCMxi900F+nTlKHDlJiouQO8//60dHS1VdLK1ZIL7wgXXyxfb51q9VjjBghLVliAXJ1ysstWN6xw34tLz+pRwIAAAAAAABOJ4JlNC3x8XXrYXa5pH79pFdflV5/XRo40D7fsUOaMcO+fvFFqbCw+vtUVFiwnJ0tHTxoPc4AAAAAAADAGYZgGU3TyfQw9+olPfectHKlNHq0TTXn5Ehz50r9+0vz5tnX1amokHJzLWDOyal54hkAAAAAAABoQAiW0bSFephTUqyHOS4u/B7mc86R5syR3n9fuvFG63AuKLDKjAEDpIcflv71r+rvEQxKhw9LO3daF3Np6ck/EwAAAAAAAHCKESwDknUuJyVZwHzWWZLPF37AfNZZ0kMPSevXW+9yixZWcbF4sTR8uH322WfV3yMYlPLypF27pP37pZKSk38mAAAAAAAA4BQhWAa+KyHBwuJOnaRmzcI/6K9FC+nOOy1gzsiQOnaUHEdavVq6/nopPV364AP7rCrBoJSfbwHzvn1ScXH9PBMAAAAAAABQjwiWgarExUlt29oUc3Jy+Af9eb3S5MkWKD/1lHT++fb5X/4i/exn0jXXSG+8UX2vsuNYrcbu3dKePTUfCggAAAAAAABEEMEyUBOPxw74Cx30Fx0d3nXR0dKIEdLy5VJmptSnj33+9dfS/fdLV10lvfRS9aGx40h+v00v79xp08zVTTwDAAAAAAAAEUCwDIQrdNBf5842yRwbG14Ps8slXX65NH++TSqPHGnTz99+Kz3xhNSvnzR3rn1dFcex3uX9+6XsbDvwr6Ki3h4NAAAAAAAAqA2CZaC23G7rXk5Jkdq1k+Ljwz/o7/zzpXnzpPfes85lr9cmll98URo0yCaZv/qq+nsEAlJOjrRjh3TokB0UCAAAAAAAAEQQwTJQVy6XlJhoh/R17Gi/D/egv44dpRkz7KC/u++WWra0gPiNN6yD+ZZbpD/9qfrai4oKC5azs23auaSkfp4LAAAAAAAAqAHBMlAfvF6pfXupUyepRYvwD/pr0UK64w4LmGfOtJoNSdq4UfrJT6SxY6W335bKy6u+RzAoHTki7dplB/35/Sf9OAAAAAAAAEB1CJaB+hQbK7VuXfuD/mJjpfHjpVWrpGeflXr2tM+/+EK65x5p8GDp5ZfDO+hv714LmQsKOOgPAAAAAAAApwTBMnAqfPegv7i48HqY3W7pqqukhQttDR1q1+3dK82eLfXvL/361zUf9FdcbAf97dxp08wEzAAAAAAAAKhHBMvAqRQ66K9TJ6vKSEgI/6C/nj2l//kfafVqafJkC6cLCqT//V876O+++6Rt26q+3nGk0lILobOzpcOHrZcZAAAAAAAAOEkEy0AkuFySzyd16GAhc1JS+Af9paZKGRnShg120F+rVnbQ3x/+IF17rXTTTdIHH1Q/lRwISDk50o4dduBfWVk9PBQAAAAAAACaKoJlINLi4qR27aSUFKvLqO1Bf+vWSY89Jv3gB/b5Rx9JP/uZNHKktGSJTSlXpaLCguXsbJtkLik5+ecBAAAAAABAk0OwDJwuHo9NH3fubAf+xcaGV5MRGytdf7301lvSCy9Il11mn3/zjTRjhjRwoB0AmJtb9T2CQete3rVL2rOn+kMBAQAAAAAAgO8gWAZOt6gom0ZOSbFJ5vj48A/669dPevllacUK6cc/tkMDDx60bub+/a1CY/v2qu/hOJLfL+3bZ1PMR45Y6AwAAAAAAABUg2AZaChcLikxUerY0VazZuH3MHfrJs2dazUZP/uZdTiXlkqLFkkjRthnH31UdQ/zsQf9hXqYA4F6ezQAAAAAAAA0LgTLQEPk9Upt29rBfS1bht/D3LatdO+9dtDfww/bFLRkh/vddJMd9rd8efWhcXm5Bcs7d0r790vFxSf7NAAAAAAAAGhkIhYsB4NBZWRkaPz48UpPT1d2dvb3fiY3N1dDhgxR6b8PHysoKNBtt92mG264QePHj9enn34aqe0CDUNMjAXLnTtLbdqE38OckCDdcIP07rvWt3zxxfb5l19KDzwgDRgQXg9zfr60e7d1MRcUVD3xDAAAAAAAgCYlYsHymjVrFAgEtGjRIt17772aM2fOcd/ftGmTpkyZooMHDx79LDMzU5deeqleeeUVzZ49WzNnzozUdoGGJSpKat689j3MUVHSVVdJr74qLV0qjRz5/R7mGTOkr7+u+h6OY1PLoR7m3FybagYAAAAAAECTFbFgOSsrS3379pUk9ejRQ1u3bj1+I263MjMz1bx586Of3XTTTZowYYIkqaKiQrGxsZHaLtAwfbeHOSkp/B7miy6S5s2T1q61zuVmzaxXeckSC5xvvtkqM6o7vC8QsFA6O1s6cEAqKamf5wIAAAAAAMAZJTpSf1BhYaF8Pt/Rr6OiolReXq7oaNtCnz59vndNUlKSJCknJ0e/+MUv9OCDD0Zms8CZwOu1FQhYTcWRI+FNErdrZz3Mt98uvfGG9Pvf24F9H35oq2tX6cYbpVGj7P4nUlEh5eXZnxkfbwG3zxfeFDUAAE1UMBjUI488oi+//FIej0ePPfaYUlNTj35/8eLFWrhwoaKjo3X77bdrwIAB2rVrl+6//345jqOzzjpLjz76qLxerx577DF98sknSkhIkCT99re/VWJi4ul6NAAAADRBEZtY9vl88vv9R78OBoNHQ+XqfPnll7rppps0bdo0XXLJJadyi8CZyeOp7GFu2zb8Hub4eGnyZGnVKun556XLLrPP//lP6ZFHpH79bMJ5//6q7+E4kt9vP0NNBgAA1aquGi4nJ0cLFizQwoUL9dJLL+nJJ59UIBDQ3LlzNWHCBL322mv60Y9+pMzMTEnSF198oRdffFELFizQggULCJUBAAAQcRELlnv16qWNGzdKkrZs2aK0tLQar/nmm2909913a968eerXr9+p3iJwZnO7rd4iJUVq394O8AsnYHa77TC/l1+W3nxTGjvWwuojR6QXXpAGDpSmTZO2bKn6Ho5DTQYAADWorhrus88+U8+ePeXxeJSYmKiUlBRt27ZN33zzja688kpJ9j6dlZWlYDCo7OxsZWRkaMKECVq6dOlpeR4AAAA0bRGrwhg8eLA2b96sCRMmyHEczZo1S5mZmUpJSdGgQYNOeM28efMUCAT0+OOPS7Kp5+eeey5SWwbOTC6X1VL4fBbu5ufbqq47OeTcc6VZs6wqY+FC6bXXLCx+5x1b3btbTcbQoRY+n8ixNRler9VkJCZSkwEAaPKqq4YrLCw8buo4ISFBhYWF6tatm9atW6fRo0dr7dq1Ki4uVlFRkW644Qb99Kc/VUVFhW688UZdeOGFOu+8807HYwEAAKCJiliw7Ha7NXPmzOM+O/vss7/3c+vWrTv6e0Jk4CTFxdlKTragNz9fKiur+bqWLaU775RuucUC5d//XvriC+mzz6Sf/1x64glp0iRp/Hi794k4jlRUZCs31wLmpCQpjAocAAAao+qq4b77Pb/fr8TERE2fPl2PPvqoVq5cqcsuu0wtWrSQ1+vVjTfeKO+/z0K49NJLtW3bNoJlAAAARFTEqjAAnEbR0ZU9zO3bW79yOBPEHo8d4rdsmfTqqzap7HZb1cXTT1sP84MPStu2VX+fUE3Gjh3St99KxcX18VQAAJxRqquG6969u7KyslRaWqqCggJt375daWlp+uMf/6g777xTL730ktxuty6//HLt2LFDkyZNUkVFhcrKyvTJJ5/oggsuOF2PBQAAgCaK0UGgKXG5rJYiMbGyJqOgwOorarru4ott7dljIfOSJXb9smW2LrnEajIGDpSiok58n2CwcnI6Ls46oX0+C6sBAGjkaqqGS09P16RJk+Q4jqZNm6bY2Fh16dJFDz74oDwej8455xxlZGQoJiZG11xzjcaNG6eYmBhde+21Ouecc0734wEAAKCJcTmO45zuTdSnMWPGaPny5ad7G8CZo7zcwuX8fJssDvcfCUVF0h/+IC1YIG3fXvl5hw5Wk3HddVLz5jXfJzraAubExKp7mwEAiIDG/h7Z2J8PAAAA9a+6d0jGBIGmLjpaatFCSkmxmozExPAmiOPjpYkTpbfflubPl/r3t8/37JHmzrWajIwM6auvqr9Pebl06JC0c6e0b590TL8kAAAAAAAAGiaqMAAYl8tqKXw+m1wuKLDaivLymq/r08fWjh3SK69Iy5dbQLxoka1LL5XS06UBA6qvySgokAoLpdjYypqMqn4eAAAAAAAApw0TywC+z+Oxw/66dKndYX+dO0szZkgbN9qvnTvb53/6k3TnndLgwdKLL0p5eVXfw3Gs//nbby2oPnhQKi2th4cCAAAAAABAfanzxPJvfvMbvfLKK4qOrrzFhx9+WC+bAtBA1PWwP5/PJpQnT5Y+/NB6mDdurKzJeOYZ6ZprpBtukM47r+r7VFRIubkWRMfHS0lJUkJCeCE3AACnGO/DAAAAaMrqHCyvX79eGzZsUFxcXH3uB0BDFRdnKzk5/MP+3G7pyitt/etf0quvVtZkLFli64c/tID5qqus7/lEgkGryPD7bZo6KcnC7qp+HgCACOB9GAAAAE1ZnaswWrZsedx0BoAm4ruH/fl84R3216VLZU1GRobUtat9/te/SnffLQ0aJD33nB3kVxXHsVqMnBwpO1s6cMAmqQEAOA14HwYAAEBTVus34XvuuUcul0sHDx7U6NGjdc4558j17/8sfd68efW+QQAN1LGH/ZWWVh72F05NxuTJ0qRJ0kcfWU3G+vXS/v3S009Lzz4rDR9uU8zdu1dde1FRYRUZR45IXq8d9peQEF7IDQDASeB9GAAAAKhDsDxhwoRTsQ8AZ7LYWFuhmowjRyxsrq4mw+WSLr/c1q5d0uuvS0uX2rVvvmnrwgstYB4xwu5/Io4jFRXZio62gDkx0SozAAA4BXgfBgAAAOpQhdG7d2/16NFDv//979WzZ0/16NFD3bt3129+85tTsT8AZxK324LdlBSpQwfrQg5ngrhTJ+m++6QPPpAef1zq1s0+37pVuv9+62ieO1favbv6+5SXW5XGzp3Svn3WyQwAQD3jfRgAAACow8TysmXL9Pzzz+vgwYMaNmyYHMdRVFSUevfufSr2B+BMFR9vq6zMDvorKLDD/qrj9UrXXSeNHSt9+qkd9vfuu1Z58eKL0ksvSf37W43GFVdUHVoHg/bnFRba5HJoijkqqt4fEwDQ9PA+DAAAANQhWB43bpzGjRunpUuX6rrrrjsVewLQmMTESC1bVtZk5OdLxcU112T06mVr+nRp8WJp0SI7rG/9elupqdLEidKYMRYcn0josL8DB2ySOTHRpqjj4k7NswIAmgTehwEAAIA6BMshP/zhD/W73/1OZWVlkqQDBw5o5syZ9bYxAI2My2WhblKSVFJSOcVc02F/bdpIU6dKt94qrV1rU8x/+YuUnS3NmWMH/o0caVPMF1xQ9X047A8AUM94HwYAAEBTVudEZfr06ZKkTz75RLt371ZeXl69bQpAIxcXZ4FxaqrUurXVVbhc1V8TEyMNGyYtWCCtXGlBcny8hdRLl9rk8vjx0ooVNqVcldBhf/v2STt22CRzdT8PAEAVeB8GAABAU1bnYDkuLk633nqr2rZtqzlz5ujgwYP1uS8ATUF0tNSihQXM7drZBHFNAbMknXOO9MtfSps2SRkZ0g9+YJ9v2WLVGf36Sb/+tbRrV/X3CR32t2uXtHevTVBXV9EBAMAxeB8GAABAU1bnYNlxHOXk5Mjv96uoqEhHjhypz30BaEpcLus/7tBBSkmxPuZwDtrz+aTJk22CecECafhwC6sPH5b+93+lwYOln/3MOpmrq9wIBu2gv/37rWLj0KGaDxoEADR5vA8DAACgKatzx/LUqVP1/vvv69prr9WgQYM0atSo+twXgKYqNtZWixYW9ubnW91FTYf9XXKJrQMH7LC/xYulb7+VPvjAVocOVpVx3XV2mOCJOI4FyocOWTgdH2+Bt88X3iQ1AKBJ4X0YAAAATdlJHd7XrVs37dmzR2vWrFFCQkJ97gtAUxcVZQfsNWsmFRdXHvYXDFZ/Xeiwv9tus0nl11+XNm+W9uyRnnxSeuYZacgQaeJE6eKLqw6MQ1PMfr9NQSclWcAcG1v/zwoAOCPxPgwAAICmrM7B8urVq/Xcc8+poqJCw4YNk8vl0h133FGfewMA4/XaatnSAub8fKmsrPop5uhoq8IYPNgO6Vu4UFq+XDpyRHr7bVs/+IE0YYI0apRNJp+I49ifFZpi9norp5jddW4TAgA0ArwPAwAAoCmrcyqSmZmpxYsXq3nz5rrjjju0Zs2a+twXAHxfdLT1L6emSu3bhx/udu4s3X+/tHGjNHu21L27ff7NN9Jjj0l9+0oPPSRt3Vr9fYJBm2Dev9/C6oMHpdLSk30qAMAZivdhAAAANGV1Dpbdbrc8Ho9cLpdcLpe8Xm997gsAquZyWah81llSp042yezx1NyDHBcnjRkjLVli08vjxtkEcnGxtHSpNHasrSVLpKKi6u9VXi7l5ko7d1rNRjg1HQCARoX3YQAAADRldQ6WL774Yt1zzz369ttvlZGRoYsuuqg+9wUA4YmNtWA5NVVq1y78KeYLLpAefVTatEnKyJDOOcc+37pVmjHDppjFYZJgAAAgAElEQVRnzpS+/LL6+ziOTTHv21c5xVxSctKPBQBo+HgfBgAAQFNW547le+65Rxs3btT555+vs88+WwMGDKjPfQFA7bhc1n2cmCgFAjZBXFBQcxdzYqI0ebI0aZKUlSUtWiS9+64d3Pfqq7Z69ZLGj5eGDbOp56qEppi/28UcFVX/zwsAOO14HwYAAEBTVutgecWKFcd93apVKx05ckQrVqzQqFGj6m1jAFBnHo9NMScn2zRxfr5VW1RXVeFySRdfbOvBB6UVK+zAvx07pE8+sTVrlh30N368dPbZVd/LcezPKyqyCeZQ4M1/Ig0AjQLvwwAAAEAdguXt27dLkrZs2SKv16uePXvq888/V3l5OS/SABqWUBezz1c5xXzkiE0WV6dFC+mnP5Vuukn6058sYF6zxq79f//P1g9/aAHz0KEWZFelokLKy7NrY2OlpCTbT3Sd/4MRAMBpxvswAAAAUIdg+d5775Uk3XzzzXrhhReOfj5lypT62xUA1Ldjp5gLC22Kubi45inmyy6zdfCgHfi3eLG0a5f017/aeuwxOxDw+uulrl2rvpfjWPdySYndy+ezKeb4+JoPHQQANCi8DwMAAAAncXhfbm6u8vPzj/4+Ly+v3jYFAKdMqIu5QwepUycLm2Niag53W7WSfvYz6b33pPnzbVI5OtqmkefPl4YPl9LTpbfekkpLq79XMGjB9t690s6d1sscCNTfMwIAIoL3YQAAADRldf5vsW+//XZdd9118vl8Kigo0OzZs+tzXwBw6sXG2gpNMRcU1NzF7HZLffrYOnCgcop5zx7pL3+x1by5dTGPG1dzF3Npqa3cXJteDh34xxQzADR4vA8DAACgKavzxHJeXp5iYmK0fft2BQIBTZ8+vT73BQCRE5piPussKSXFppjD6UBu00a67TbrX37ppeOnmF9+WRoxQpo0yQ4CLCmp/l7BoIXb+/ZJ//qX1WXUdA0A4LSq7ftwMBhURkaGxo8fr/T0dGVnZx/3/cWLF2vMmDEaN26c1q9fL0natWuXJk+erEmTJunnP/+5iouLq/xZAAAAIJLqPLG8cOFCvfDCC2rdunV97gcATq9ju5gLCiqnmB2n6mvcbumKK2zl5FROMe/eLWVl2Xr8cenHP7Yp5nPPrX4P5eU2wXz4sOT12oF/CQlSVFT9PisA4KTU9n14zZo1CgQCWrRokbZs2aI5c+boueeekyTl5ORowYIFWrZsmUpLSzVp0iT16dNHc+fO1YQJE3TNNddoyZIlyszM1PXXX3/Cn/VUd5gsAAAAUM/qPLHcokULdejQQR6P5+gCgEbD5bJAt0MHm2JOTg5virl1a+nWW6X337fu5WHDrMM5P1965ZXKcHnJEsnvr/5ejmOh9v790o4dVr3x70k1AMDpV9v34aysLPXt21eS1KNHD23duvXo9z777DP17NlTHo9HiYmJSklJ0bZt2/TNN9/oyiuvlCT16tVLWVlZVf4sAAAAEEm1nlh+8sknJUmBQEA333yzzj//fLn+3QV6zz331O/uAKAhOLaL2e+XjhyxgLemKeZQF/OhQ9Ibb1iYvGOH9Le/2Zo1Sxo5Urr+eumii6rvVa6osIqNI0dsL0lJ1sUcTtgNAKhXdX0fLiwslM/nO/p1VFSUysvLFR0drcLCQiUmJh79XkJCggoLC9WtWzetW7dOo0eP1tq1a1VcXFzlzwIAAACRVOtEokuXLsf9CgBNhtttXcyJidZ/XFhoQW9FRfXXtWwp/Z//I918s/TXv1pNxurVNo28eLGtc8+1gPmaa+zwv6o4jv3ZJSUWWPt8tp/4+Pp9VgBAler6Puzz+eQ/5r9WCQaDiv73vyD87vf8fr8SExM1ffp0Pfroo1q5cqUuu+wytWjRosqfBQAAACKp1sHy6NGjT8U+AODMEhdnKznZAub8/JqnmF0u6ZJLbM2YIb31loXKX30lffml9Nhj0hNPSEOGWMh8ySUWZlelosKC7fx864YOhd4xMfX/vACAo+r6PtyrVy+tX79eI0aM0JYtW5SWlnb0e927d9fTTz+t0tJSBQIBbd++XWlpaVq1apXuvPNOnXfeeZo/f74uv/zyKn8WAAAAiCT+G2oAOBlut9VSJCVVTjHn59sBfNVp3lxKT5duuEH6/HOryVi50qaYV660lZIiXXedNGqU1LZt1fdyHKm01FZurk0vJybagX/VBdMAgIgaPHiwNm/erAkTJshxHM2aNUuZmZlKSUnRoEGDlJ6erkmTJslxHE2bNk2xsbHq0qWLHnzwQXk8Hp1zzjnKyMhQTEzMCX8WAAAAiCSX41Q3XnfmGTNmjJYvX366twGgKQsGw+9iPpbfL73zjrRsmfTpp5WfR0VJV15pU8z9+oXfqxwdXdnFHBdX++cAgCamsb9HNvbnAwAAQP2r7h2SiWUAqG8n6mIOZ4o5IcHC4+uvl77+Wlq6VFqxwg7tW7/eVuvW0rXXSmPHSl27Vn+/8nKbYD582A78S0y0kJmqDAAAAAAAcJL4b6QB4FSKi5NatZI6d5bat7eaCper5uvOOUd64AFp0ybp6aelK66w63JypBdflIYPlyZNkpYvt/qM6oQO/MvJkbKzpb17LegOBuvlEQEAAAAAQNPDxDIAREJdp5g9HguRhw+X9uyR3njDwuQ9e6SsLFuPPipdfbX1Mf/Hf1QfXAeD9mcXFlrFRqgqw+ut3+cFAAAAAACNGhPLABBpdZ1i7tBBmjpVWrNGysy0MNnjsYnlJUuk8eOlESNsojknp+b7VVRYTcbu3TbJnJsrBQIn/XgAAAAAAKDxY2IZAE6Xuk4xu93S5ZfbysuTVq60A//+/nfpn/+U5s6VnnzSDvobO9Z+ra5X2XGk0lJbubk2vRzqY3bz7x8BAAAAAMD3ESwDQEMQF2crOVny+y1gLiqy0Lc6zZtLN9xg6+9/t5qMN9+UjhyR1q2z1bKlHfg3Zox1N1cnGLQ/3++3qoxQ8E1VBgAAAAAAOAajaADQkISmmDt0kFJSLBSOiQmvKuP886UZM+zAv6eeqjzw79Ahaf58aeRI62F+7TULrmtSUWET0bt3Szt3Wm1GTdPUAAAAAACgSWBiGQAaqthYW8nJVpNRUGBTzMFgzdeNGGFr715pxQo79G/nTunzz23NmSMNHmxTzJdeatPJVXEcq+ooKbGQOiHBwu+EhPACbwAAAAAA0OhEbGI5GAwqIyND48ePV3p6urKzs7/3M7m5uRoyZIhKS0slSSUlJbrrrrs0adIk3XLLLcrNzY3UdgGg4XC5LMg96ywpNdUO/ouNDS/UPess6Y47pPfek155xYLk+HjrU165UpoyRRo40Cacd+yo+X7BoAXc+/bZgX+HDtm9AAAAAABAkxKxYHnNmjUKBAJatGiR7r33Xs2ZM+e472/atElTpkzRwYMHj372+uuvKy0tTa+99ppGjRql3/72t5HaLgA0TDExNsGcmip17Ggdy9VNG4e4XNIPfyjNni19+KE0a5Z08cX2vf37peefl4YOlSZOlJYssQnp6jiOFAhYsLxzp7Rnj9VrVFSc/DMCAAAAAIAGL2LBclZWlvr27StJ6tGjh7Zu3Xr8RtxuZWZmqnnz5ie85sorr9RHH30Uqe0CQMPn9Upt2khdukjt21s1hTuMf6wnJEhjx0qvvmqTzHfcYZPNkvTJJ9bT3KeP9POfS3/8Y81hsePYYX/799vU87ff2tc1HTwIAAAAAADOWBHrWC4sLJTP5zv6dVRUlMrLyxUdbVvo06fPCa9JTEyUJCUkJKigoCAymwWAM0nowL/ERJsiLiiwVVZWc7ibmirdfbd0113Sn/8sLVtmYXNJifTWW7batZNGjbLVpUv196uokI4csenlmBjJ57MVF1d/zwsAAAAAAE67iAXLPp9Pfr//6NfBYPBoqBzONX6/X0lJSad0jwBwxvN4pJYtrS6jqMgCZr+/5qljt1u67DJbBQXSu+/agX9ZWZVVGc8/L/XsaQHziBFSdf9MDlVl5OZKhw9bJ3TowD+Pp36fGQAAAAAARFzEqjB69eqljRs3SpK2bNmitLS0sK754IMPJEkbN25U7969T+keAaDRcLksxG3XzqaS27Sx6oxwDvxLTJSuv1567bXvV2V8+qn0y19aVcZ//Ze0YYNUXl79/RzHJqBzcuhjBgAAAACgkYjYxPLgwYO1efNmTZgwQY7jaNasWcrMzFRKSooGDRp0wmsmTpyo6dOna+LEiYqJidG8efMitV0AaDyio+2Qv+bNLeAtKAg/2P1uVcaKFRY2FxVJq1bZatVKuuYam2Q+77zq7xcM2gS132+HDiYkVK5w+qEBAAAAAECD4HKcxnW60pgxY7R8+fLTvQ0AaNhCAW9+vlRcbF+Hy++3cPmNNyxsPla3btK110ojR0qtW4d3P5fLQuZQH3O4k9UAUM8a+3tkY38+AAAA1L/q3iEjNrEMAGhATubAv4QEafRoW3v2SG++aZPMO3ZI//iHrblzrS5j1Chp0KDqD+9zHKvTyMuzg/9iYir7mDn0DwAAAACABolgGQCauu8e+FdYaCucqowOHaTbb5duu036298sYH7nHQuIN2605fNJw4bZJPPFF1dfeRE69O/QITv4LzbWrk9IsN8DAAAAAIAGgWAZAGBCB/4lJFhvcmGhTTGXlNRcleFyST162HrwQTvUb8UK6YMP7D5Ll9rq0MH6mK+9Vuratfp7hg79KymxkDkurjJkjompt8cGAAAAAAC1R7AMAPi+qCipWTNbpaWVU8yBQM1VGR6PNGSIrdxc6e23pT/8Qfr8c6vOeP55WxddZAHz1VfbtHR1gkGbpi4qsonn+PjKkDkqqv6eGwAAAAAAhIVgGQBQvdhYWy1b2kF/hYV26F84VRnJyVJ6uq3t262P+c03pb17LWj+/HNpzhypb1/pxz+WBg6suVc5GKwMuqOiKqesExKqr9kAAAAAAAD1hmAZABA+r9dWy5aS329VGUVFNVdlSNLZZ0vTpkl33y19/LFNMb/7rgXE69fbSkiQhg61kPlHP6o5KK6osJA7P99C5tChf/HxVs8BAAAAAABOCYJlAEDtud0W4iYmWj1GqI85nKoMt1u65BJbDz9sgfIf/iBt2mRh9fLlttq1k0aOtJD53HNr3lNFhZSXZwcHRkdXhsxeb/08MwAAAAAAOIpgGQBwcjweq7xITraqjIICW+FUZcTFScOH28rNlVatsqqMLVuk/fulF1+0lZZmAfPIkVL79tXf03GksjK73+HDtr9QH3NNNRsAAAAAACAslFECAOqP1yu1aSN16WIBcG16j5OTpcmTpUWLpNWrpbvuklJT7XtffSX9+tfSgAHW17xkidVf1MRx7PDBQ4ekXbuknTstcA4E6v6MAAAAAACAYBkAcAqEqjI6dJBSUqyTOTY2/N7jzp2lqVMtYF6yxMLk5GQLiv/yF2nGDOnyyyt/prS05ns6jlRSIh08aAHz7t1WnVFWdlKPCgAAAABAU0QVBgDg1PJ4LFhu2dKC3cJCW2VlNfcxu1xS9+62pk+X/vhHq8pYu9ZqN95/35bPJw0ZYnUZl1xiB/lVJxi0QweLiiwEj4+36eqEBOtnBgAAAAAA1eJvzwCAyImLs9WypQXDoUP/wuljjomR+vWz5fdbuPzWW9LmzXaf0KF/rVtLV18tXXONdMEFNU9JB4OVYTchM4BTKBgM6pFHHtGXX34pj8ejxx57TKmhyh9Jixcv1sKFCxUdHa3bb79dAwYM0N69e3XffffJcRw1a9ZM8+bNk9frVWZmppYuXark5GRJ0n//93+ra9eup+vRAAAA0ATxN2YAQOS5XBbgxsdLrVpZUFxYaL8GgzVfn5Bg08k//rH1J69aJa1cKX36qZSTI738sq3OnS1gHjnSfl+TE4XMPp/9SsgM4CStWbNGgUBAixYt0pYtWzRnzhw999xzkqScnBwtWLBAy5YtU2lpqSZNmqQ+ffro5Zdf1vDhwzV58mQ99dRTWrp0qdLT0/XFF1/oV7/6lS688MLT/FQAAABoqvhbMgDg9Ar1MScmSuXllcFucXHNVRmSTT/fcIOtXbssYH7rLWn7dmnHDumZZ2xdeKGFzMOHS23b1nzfqkLmhISaqzYA4ASysrLUt29fSVKPHj20devWo9/77LPP1LNnT3k8Hnk8HqWkpGjbtm3q1q2b9u/fL0kqLCxUu3btJElffPGFXnjhBeXk5Kh///669dZbI/9AAAAAaNIIlgEADUd0tNS8ua3S0spgNxAIL2Tu1Em6/XbpttukbdssYH77bWn/fmnrVltz5lgP88iR1svcvHnN9/1uyJyQUDnJTMgMIEyFhYXy+XxHv46KilJ5ebmio6NVWFioxMTEo99LSEg4GiTPmzdPK1euVCAQ0NSpUyVJV199tSZNmiSfz6epU6dq/fr1GjBgQMSfCQAAAE2X+3RvAACAE4qNtWnk1FSpY0epRQsLnmvqTJbsZ7p1k+67T1q/XlqwQBo/3kJkx5H+/Gfp4YelK66wEHrlSjvILxzBoPVC79tnE9H79oXfEw2gSfP5fPL7/Ue/DgaDiv53zc53v+f3+5WYmKgnnnhCs2fP1ttvv62HHnpI06dPl+M4+slPfqLk5GR5PB7169dPf//73yP+PAAAAGjaCJYBAA2f12uH8nXpIrVvLyUlhT8p7HbbhPLMmdKmTdLvfmeVGPHxUlmZBc/33itdfrk0bZq0Zo1NSIejouL4kHn/fik/n5AZwAn16tVLGzdulCRt2bJFaWlpR7/XvXt3ZWVlqbS0VAUFBdq+fbvS0tKUlJR0dJK5TZs2ys/PV2FhoUaOHCm/3y/HcfTnP/+ZrmUAAABEHFUYAIAzh8tlFRQ+n4W3oUP/iorCO/TP45H697dVVCRt2GB1GZs2WafzO+/YSkyUBg+Wrr5auvTS8A7uq6iwUDk/30Lv+HirzODgPwD/NnjwYG3evFkTJkyQ4ziaNWuWMjMzlZKSokGDBik9PV2TJk2S4ziaNm2aYmNj9fDDD2vmzJkKBoNyHEcZGRlKTEzUtGnTdOONN8rj8eiyyy5Tv379TvfjAQAAoIlxOU44pZVnjjFjxmj58uWnexsAgEgqK7OQuaBAKikJr4/5WEeOSO+/b6HyRx8dH1InJ0tDh1rI3Lu3TUDXhtttE9ehTuaYmNpdDyBiGvt7ZGN/PgAAANS/6t4hGaECAJz5YmJO7tC/Zs2k666zdfCgtHq19S5/8omUmyu9/rqttm2l4cMtZL7oovD6noNBC739fguZ4+IqQ2aP5+SfHQAAAACA04BgGQDQuMTGVh78V1JSOclcVhZeyNyqlTR5sq29e6VVq6S335a++EL69lvp5ZdtdewojRhh67zzwg+Zi4pshULmhARbhMwAAAAAgDMIwTIAoPGKi7OVnGwdyqGQuaIivJD5rLOkm2+2tWNHZQfz119Lu3dLL7xgq3NnC5ivvlr6wQ/C29uxIfOhQxaG+3yEzAAAAACAMwLBMgCg8XO5rHoiPt4mkkPVFIWFFjKHo3Nn6Y47bH31lQXMq1ZZ4Lxjh/Tb39pKS7O6jOHDpS5dwrt3MGjBd3Hx8SFzfLz9HgAAAACABoZgGQDQtLhcFtr6fFLr1pUBs99//KF91UlLs3X33dI//lE5ybxnj4XOX30l/d//K3XrZgHzsGFSamp49z42ZHa5jq/LIGQGAAAAADQQBMsAgKbL7ZYSE22Vl1dWZZSUhBcyu1zS+efbuvde6bPPLGB+911p/34Lnf/xD+nJJ6ULLrCAefhwqVOn8PbnOMdPMhMyAwAAAAAaCIJlAAAkKTpaatbMViBgU8yFhVJpaXh9zC6X9B//YWv6dGnLFqvKePdd6cABO/zviy+kefOkCy+snGTu2DG8/Z0oZKYuAwAAAABwmhAsAwDwXR6PHfiXnGzTy6G6jEAgvJDZ7ZZ69bL1wAPSJ59UhswHD0pbt9qaO1e66CILmYcOrVvIfGxdRny8/R4AAAAAgFOMYBkAgOrExdlq2dJC5tAkc1lZ+CHzxRfbevBBKSvLQubVq23y+PPPbT3xhIXMw4ZZyFyXugyXy6aXQ3UZhMwAAAAAgFOEYBkAgHB9N2QOTTKHGzJHRUmXXGJrxgzpr3+1KebVq6Xc3MqQee5cq8sYNsxWbULmkhJbublSTExlXYbXa8EzAAAAAAD1gGAZAIDacrksqPV6LWQuLq48+K+iIvyQ+dJLbT38cGXI/N57Nskcqsv49a8rD/4bOlRKTQ1vj45j1R25udLhw/bnhULm+HibpAYAAAAAoI4IlgEAOBkuV2VY26qVVFRUGTIHg3ULmT/+uDJkPnjw+IP/unWzgHnoUKlr1/D26DhSebmUlycdOWKhcqiTOSHB/nwAAAAAAGqBYBkAgPriclX2G4dC5sJCC5orKsK7R1SU9KMf2ZoxwzqZ33vP6jIOHJD+8Q9bTz8tpaVVhsw/+EF4VReOY3vJz7fldlcGzAkJUjSvBgAAAACAmvG3RwAATgW326onfD4Lco8NmYPB8O5xbCfzgw9Kn35qAfPq1dL+/dJXX9l65hmpS5fKkLlbt/D7lIPBygMJ3W7rkA5VZng8dX9+AAAAAECjRrAMAMCpFhUlJSbaCoXMfn/tJpndbql3b1v33y999lllyLxnj/Svf0nPP2+rUydp8GALmbt3D79PORi0vRUV2TWxsZWVGXFxdX9+AAAAAECjQ7AMAEAkHRsyB4MWLoemmcPtZHa7pR49bN13n/Uvh+oyduyQdu2S5s+31batNGSIrd69w+9TDgbtUMLiYpt+9ngqJ5nj4sKfiAYAAAAANEoEywAAnC5ud2XI3Lp15SRzbUJml0u68EJb06ZZNcbq1RY0f/219O230oIFtpKTpauuspD5Rz8Kv+rCcaTSUlu5udbDHJpkjo8PfyIaAAAAANBoECwDANAQHNvJHAqZi4qkgoLahcznnmvrP/9T+uc/pffft6D5iy8sFF682FZiojRggIXMV1wheb3h7dNxpLIyKS9POnLE9n1syMzhfwAAAADQJPC3PwAAGprvhszH1mVUVIQXMktS167Srbfa2r1bWrPGQuZPP7XA+s03bcXFSVdeab3M/ftLSUnh3d9xbD/5+bZCh/8lJFhQTS8zAAAAADRaBMsAADRkLlfVk8y1CZk7dpRuusnWgQPS2rU2zfynP0klJVad8d57UkyM1WQMGSINGiS1ahX+Xo89/C/UyxyaZvZ66WUGAAAAgEaEYBkAgDOFy2VBbUKCBb7FxTbN7PdbPUW4IXObNtLEibby8qQNG2yS+cMPpUDAfv3wQ+mXv5R69bJJ5quukjp1Cn+vx/YyHz5shwYeW5kR7iGCAAAAAIAGiWAZAIAzkctVGdK2amVTx6GD/2oTMjdvLo0aZcvvlzZtsknmDRvsXllZtubMkc47rzJkPvfc8CeQHUcqL7dO5lAvc2jv8fHhHyIIAAAAAGgwCJYBADjTuVxWNeH1fj9kDgTCD5kTEqRhw2wFAlaT8f77Vptx6JC0bZutZ56x6eWrrrLVs2ftJpCDQdtbYaGFzMdWZsTFUZkBAAAAAGcAgmUAABqbuDhbLVtayBw6+K+0NPyQ2eOxA/2uvFJ65BE78G/NGguad++Wdu2SMjNtJSdLAwdayHz55VJsbPh7DQZtjyUlUm6uFB19fGWG212n/wkAAAAAAKcWwTIAAI1ZKGROTrZguajIpplLSizUDUdUlHTxxbamT5e+/NJC5jVrpH/8wwLhpUttxcdLffvawX/9+0vNmoW/V8exGo+8vBNXZsTE1Ol/AgAAAABA/SNYBgCgqYiNtdWihVVdhELm4uLwQ2aXy7qWzztPmjrVppfXrrWQ+eOP7Z6rV9uKipJ++EMLmQcNkjp0CH+vjiNVVEgFBbbcbtv7sZUZAAAAAIDThmAZAICmyOOx1by5HawXCpn9/vBDZknq2FH6yU9s5eZKH3xgIfOHH9pU9J/+ZOvxxy2MHjTIKjO6datdl3IwaAF4cbFdFxNTGTJ7vVRmAAAAAECERSxYDgaDeuSRR/Tll1/K4/HoscceU2pq6tHvL168WAsXLlR0dLRuv/12DRgwQHv37tV9990nx3HUrFkzzZs3T16vN1JbBgCgaYiOlpKSbFVUfD9kDreXOTlZGj3aVnGxtHmzTTOvXy8dPlx5+N+zz0rt21sv86BBNtXs8YS/X8exietAwGoz3O7jQ2YqMwAAAADglItYsLxmzRoFAgEtWrRIW7Zs0Zw5c/Tcc89JknJycrRgwQItW7ZMpaWlmjRpkvr06aOXX35Zw4cP1+TJk/XUU09p6dKlSk9Pj9SWAQBoeqKipMREW8Gghcyhw/8qKsIPmb1em0y+6iq77tNPKyszdu6U9u2TXn3Vls9nhwQOGmS/JiWFv99QZUZ+vi2322oyQiEz/0IaDUh9DlqsW7dOzz77rKKjozV27FiNGzfuND4ZAAAAmqKIBctZWVnq27evJKlHjx7aunXr0e999tln6tmzpzwejzwej1JSUrRt2zZ169ZN+/fvlyQVFhaqXbt2kdouAABwuy309fmk1q1tCjk0zRwIhB8yH3v43333Sd98I61bZ0Hz3/5mofU779iKjrYJ5oEDpQEDpE6darfnY8PwYyszvF4Lm6nMwGlUX4MWEyZM0OzZs7V06VJ5vV5NnDhRAwYMUOvWrU/zEwIAAKApiViwXFhYKJ/Pd/TrqKgolZeXKzo6WoWFhUpMTDz6vYSEhKNB8rx587Ry5UoFAgFNnTo1UtsFAADHcrksmI2Pl1q1sv7kUMhcWlq7w//OOcfWrbdKBw5IGzZYyPzHP1pg/dFHth5/XEpLq6zMuPDC2gXDJ6rMCD1DfDyVGYi4+hq02L59u1JSUtSsWTNJUu/evfXxxx9r+PDhkX8oAAAANFkRC5Z9Pp/8fv/Rr4PBoKKjo0/4Pb/fr64iNTEAACAASURBVMTERGVkZGj27Nnq27evNmzYoOnTp+uFF16I1JYBAEBV4uJsJSdbcBsKmYuLa3f4X5s20rhxtoqKrJd53ToLm3Nzpa++svX88zY13b+/TTJffnntai5ClRkFBbbcbik2tjJkjour3WGCQB3U16DF9u3bT/izAAAAQCRFLFju1auX1q9frxEjRmjLli1KS0s7+r3u3bvr6aefVmlpqQKBgLZv3660tDQlJSUdfWlu06aN8vPzI7VdAAAQLo/HVvPmUllZZchcVFS7kDk+Xho82FZFhdVkrFtna/t2KSdHWrLEVmysdNllNs3cv7/Utm3t9hwMWgheXGwBdnT08ZUZUVG1ux8QhvoatLjnnntO+LMAAABAJEUsWB48eLA2b96sCRMmyHEczZo1S5mZmUpJSdGgQYOUnp6uSZMmyXEcTZs2TbGxsXr44Yc1c+ZMBYNBOY6jjIyMSG0XAADURUyM1KyZrYqKypDZ77cwtza9zL162fr5z6UdOyorM7KyrH5jwwZbknTBBTbJPGCA/b4208eOY4F4Xt73KzO8XguxgXpQX4MWZ599trKzs5WXl6f4+Hh9/PHHuvnmm0/XYwEAAKCJcjlOuH/DOzOMGTNGy5cvP93bAAAAxzr2UL3CQgud6/oKcuSItGmTtH699MEHVm1xrDZtbIq5f//aV2Z8l8tl09ihaWavlwMAG7FT/R4ZDAb1yCOP6Kuvvjo6aLFx48ajgxaLFy/WokWL5DiObr31Vg0dOlTffPPNcYMWDz30kM4//3ytW7dOzz77rBzH0dixYzV58uTT/nwAAABofKp7hyRYBgAAkeU4VkERmmYOBOoeMpeV2QTzhv/f3p2HR13dexz/TFYgGyC4G6VsgpgLCZtC8ALXR6t4a9kJhCrcKnqtLbQP3LqBLF6hRp8HUVoUbRssQqvFK3qvW4WwBIQgUJZAVQoSKqIQYbInc+4fp5ONZJKZZGYyyfv1POeR/H6/OTnn/ILMfDh8f5ts0Pz3v9c8Hx0tDR1aVZv5iit8H7fDYUNld7kMdjO3Oq39fWRrnx8AAACan6f3kAErhQEAACDJBrTuUhNdukjFxVUhc0mJd3WZIyNtcDx0qPRf/yUdO2YD5o8/riqZsXmzbU8+KV1/fVXIfOON3tVSdj8A0Om0jd3MAAAAANowgmUAABBc7drZ1rmz3b1cVOTbw/8kqVs322bMqCqZsWmTlJVlv87Nte3Xv5Y6dZJGjLBB8/DhUny8d9/LGBtcl5TU3M3sbu3aedcfAAAAAIQQgmUAANByREXZVv3hf+7dzN7WZU5IkMaMsa28XNq7t+qBf3/7m3TunPTWW7aFh0spKdItt9iguXt37x8AWHs3c2RkVcmM9u2lCN52AQAAAGg9+IQDAABapvBwKS7OtqbWZY6IkAYOtO0Xv5C+/NKWx9i0Sdq50/b3ySe2/epX0lVX2YD5llukIUO8331sjO2ztFTKz7e7maOjawbN3gTXAAAAANDCECwDAICWr3Zd5pKSqt3MRUXel8y45hpp2jTbCgul7OyqoPn0aSkvT3rtNdvatbM1nN1lM666yvvxu1x2nEVFVWUz3PNp146HAAIAAAAIOQTLAAAg9ERH29apky1z4a7LXFBgQ1xvdjN36CCNHm2bMdKRIzZg3rzZls8oLq4qobFwodSzp5SaanczJyfb0h3ecJfNuHDBNvdDAN0hc4cO3j1UEAAAAACCgGAZAACEtoiI5iuZ4XBI119v26xZtg7z1q02ZN6yxZa1+NvfbHvlFSkmRho2zO5mHjFCuuwy78df/SGAkt3N3K6dLZfhDpspmwEAAACghSFYBgAArUftkhnFxVUlM4qLvS+Z0amTdNddtlVUSPv2SVlZth08aMPr99+3TbKBtDtk7t/fPsDPWy5X1ZjPnqVsBgAAAIAWiWAZAAC0Xu3a2da5s1RWVrWTubDQ+5A5PNyWvkhOln72M+nrr+0u5qwsu6vZ6ZRyc21btUqKjbW7mVNTm7ab2VPZjPbt7Y5tAAAAAAgwPokAAIC2ITJSSkiwraKialdwQYH92puSGZJ06aXSuHG2lZXZeszu3cy5uTZofu892ySpd++q3cwDBvi2m7mushnR0TZobt/ehs1hYd73CwAAAABeIlgGAABtT3h489VllmxIPGiQbT//uXT6tA2Yt2yRtm2zIfORI7a99JKtzXzzzTZkTk2VrrjCt3m4XHbsRUV2N3NYmA2Y3S06mvrMAAAAQHOr7/OCt8eb+zXN2Z/DYY97eB3BMgAAaNvqqsvsDpqLirwvmSHZshcTJthWfTfzli3S4cM2wP7gA9skqUcPGzCnpkoDB/pWR9ldNsPptM3hsAF69d3M1GcGAMC/QjE88rU/d+jUXP0157jdf7Fe17lArrc31/j6/X0911LvnadzTemrOefUUgRqjGVl9Z4iWAYAAKjOXZe5UyepvLwqZHY6bcjc1N3M1Wszb98unT8vffaZba++ar/3kCE2ZB4+XLruOt92HRtjx3/+vG0Ohx1L9aDZl3IcABov2KGPP/qr77yngMmX/nw5Xt95TwGTL/35etzbaxpzbUv+WfJ1XT2d88c99FeQGGyhMMa6hOq4gTaKYBkAAKA+ERFVJTMuvbSq7IS7ZIYvu5mr12YuL5f277dB85Yt0oEDdsf05s22SdJVV1XtZh461D4U0BfG2DGXlkr5+bZsRu0HAYaH+9Y3QkNFhf2LjepaQlDZkr5XcwdnLUWojLO2UB03AABtBMEyAABAY1QvmXHJJTagde9mLiz0bTdzRISUnGzbT38qnT1razJv2SJt3Sp9+62Ulye9/rptERH2wX/Dh9vWt6/vD+tzuWyIXVxs5+ZwVAXMPAiwdXK57F8qAAAAAM2AYBkAAMAXUVG2JSTYwM5dk7mw0LcHAEpS587SXXfZ5nJJubk2YN6yRdqzx+5w3rXLtuees+U6hg2zIfOwYXY3tC/cOzXdIXntBwG6y4PwIEAAAAAA/0SwDAAA0FRhYbZEhbtMRXM8ADAszO5I7ttXuu8+W+N5504bNG/dKp04IZ07J23caJsk9epVtZs5JcWGwb7w9CBAd+mMqCjf+gYAAADQKhAsAwAANLfqDwCsqKi5m7mszLfdzLGx0ujRtkk2WN6yxZbO2LHD1n0+etS2V16RoqPtAwPdu5l79vR9x3HtBwGGhdV8ECD1mQEAAIA2h2AZAADAn8LDqx4AKNndzO6g2dfdzJKUmChNnWpbWZm0d6/dybxtm30IYElJ1e5mSera1QbMN99sW9euvs/J5bL9l5TYXdNhYTZIdwfNlM0AAAAAWj2CZQAAgEBy72aWmm83c2Sk3Z08aJA0e7YNe7Ozbci8dav01VfSmTPShg22SVLv3jZoHjZMGjjQ97IZUlWN6er1mWNiqkLm6Gjf+wYAAADQIhEsAwAABEtdu5mbWptZsiU47rjDNmOkL76wIfO2bdInn9j+jxyx7ZVXbL3klBS7k3nYMKlPHxsO+8Jdn9ldNsPhsP27azO3by9FVHsL+uGH0rPPSj//eVWZDwAAAAAtHsEyAABAS1FXbebiYls/2dfdzA6H1L27bdOnS6WltmyGO2g+cMAey862LSPDfv+bbqoqm3HVVb7PyZiqshmSDayjo6uC5ieftLuqL1wgWAYAAABCCMEyAABAS1R9N3PXrjaYrb2b2ZegOSpKGjzYttmzpfx8+/C/7dtt0HzypC2l8e67tknStddWhcxDhkgJCb7Py+Wqqi/tcEjffGOP5+fbubVvT31mAAAAIAQQLAMAAISC6GjbOnasCmfdu5lLS30vm9Gxo3T77bZJ0okTNmDevt0GzufPS8eP27Z2rd1xfMMNNmS+6SYpOdn3GsrVg/Hycikvz/bfvn1VfWYeBAgAAAC0SATLAAAAocb9cLyYGOmSS2yZjOLiqgfolZf7tptZkhITbZsyxZbjOHjQhszbt0t79tjv9de/2vab39hQeeBAaehQGzb36WN3W/vCXZ/Z6bTN/SDA6vWZo6MJmgEAAIAWgGAZAAAg1EVG2lb7IYDu5mvZjPBwKSnJtlmzbF85OXZH844d0qFDtkSHu15zRobdAT14sN3NfNNN0nXX1R8EO522BIZk/+t0SrGxVefdQfOFC7Y5HHZM1Xc0EzQDAIC2xJi6m/tcfddUP+5+b9jY6+u6xn2srr4a02djmj/6a8waVm/ufxXYXGveHPewMfevoXtYV1/1XecBwTIAAEBrU/0hgNXLZhQW2iDY17IZ7dtLw4fbJklnz9qA2f3gvy+/tAHx++/bJkmXX24D5qFD7X8vu8we371buu8+OyZJOn1aGjFCWrXK7oCuizF2N3btoLlDh6rdzO3a+TY3AAgl3oYmtYORuq6pr9/ax+sLRxr62pcwo7H91e6roTl6WkNv1sLT8YbWvKH76O2aN7Y/T+FWY/pr7P1r6Gey9v1ryvo05jpv76mnPptjbI3pr66fAyAY7ryz3lMEywAAAK1Z7bIZ5eU2zHUHzWVlNT/YeKNzZ+mOO2yTbLDsDpl37LDB81dfSX/+s22S1K2bDY7/539syO1mjK0Xfd990pYtdrwNMcbO5/x522oHze4dzS2Ey+XSggULdOTIEUVFRWnx4sW69tprK8+vX79er7/+uiIiIvTAAw9o5MiRWrJkiXJzcyVJZ86cUXx8vNavX6/Fixdrz549ivnnOr344ouKc+9Yr38Adld4Yz8M1/7a2w/Q9Z3z5TXN0V9982tsONLca1TX8ebuz5vXNDQeb3ZaNdS/tzvl6jru/pn2dT61jzcmmGyof2/vm6/9AQAsh6Nxrfa1DX1d/XhYWMP9VT9W17mwMM/fw9Px2uc99dVQf3X11ZgxePhLDYJlAACAtiQiQoqPt02y4W71+sy+ls2QpGuusW3iRNvP0aNVO5o/+cT2f+yYbfVxuaR335UmTPD++xtzcdAcGVnzQYBBDJo//PBDlZaWat26ddq7d6+efvpprVy5UpINjTMzM/XGG2+opKREaWlpGjZsmB599FFJUllZmdLS0rRo0SJJ0sGDB/Xyyy+rc+fOjR/AgQNSSkqzzwsAgqp6OOJLSFNfgNTQ9Q2da2yw05S+GjPf5uivrmPeBGWevq4ebPmy1nX11ZT1qf1zUNf1Dc3Pm/Vujv4aume1zzc2TGxMf41d84burac19zROBMacOfWeIlgGAABoy6KjbUtIsMFs7frMvu6QCwuTrr/etnvusTujDxywQfO6ddI//lH364qKpDfekK6+WhowoGmlLYyRSktt++47+yEkiEFzTk6OUlNTJUn9+/fXgQMHKs/t379fAwYMUFRUlKKiopSYmKjc3FwlJSVJktasWaNhw4apd+/ecrlcOn78uJ544gl98803Gj9+vMaPHx+webQ43gYG1c95E0Z56q/2B+KGXuPpuDf9NeX7NGZ9fA00PAUCvuzaqi/UaMyurcb22VDQ0lB/3v5cNaa/xu6Sq299GnvvvLkfTVnzun4WmvozCQAIKoJlAAAAWA5H1YPxJPvgPHd95oICGw77Wt8vMtIGxQMG2JIcS5bYfuvy6ac2jI6KstcPGWJbUpI95qv6guZ27arm7EdOp1Ox1R5OGB4ervLyckVERMjpdNYoZRETEyOn0ylJKi0t1euvv64//elPkqTCwkJNmzZN9957ryoqKjR9+nT169dP119/vecB9OghPfecd0GV5F245W1I1RznAAAAEBQEywAAAKhbeLgUG2tbly42kHXvZC4stMGzL7uZ77hDevrpus9FREjdu0tHjtjvt3OnbZINf1NSqoLmG26w1/uqetB8/rzfH4oTGxurgoKCyq9dLpci/jn+2ucKCgoqg+bs7GwNGjSo8uv27dtr+vTpav/PMHzo0KHKzc1tOFju0EHq1685pwQAAIA2LCzYAwAAAECIiIqyJTMuv1zq1s2Wq+jSxQaWtWskehIbK61aZR/QV31HakyM9Lvf2Qf7ZWdLy5dLaWk2aJZsoL11q5SRYes4Dx5sH/a3erUts1FR4Z95N5Pk5GRlZWVJkvbu3atevXpVnktKSlJOTo5KSkp04cIFff7555Xnt2/frhEjRlRe+/e//11paWmqqKhQWVmZ9uzZoxtuuCGwkwEAAECbx45lAAAAeK962YzOnavKZrh3MzdUNmPgQGnLFrt7+auvpMsusw/ti4mx5zt3lm67zTZJ+vpr+wDAnTttneYTJ2x5js2bbZOkuDjb79ChNnTu3dvuum4hbr31Vm3btk2TJ0+WMUZPPfWUXn31VSUmJmr06NFKT09XWlqajDGaPXu2ov9Z//nYsWO6++67K/vp3r277rrrLk2cOFGRkZH6wQ9+oJ49ewZrWgAAAGijHMb4+tjvlmns2LF68803gz0MAACAtq201NZQLiz0XDbjBz+QcnPtQ/7eeqvx/Z86VRU079wp5eVdfE1Cgg2aBw+2pTN696568FQdxs6dqzc3bGj8GELM2Lvu0psZGcEeBgAAAELI2Dlz9ObGjXWeY8cyAAAAml9UlG3x8TZQLimp2tFcVGR3Mzdlf8OVV0p3322bJJ08aQNmd9j8j3/YB/R99JFtUs2guQXuaAYAAABCCcEyAAAA/MvhkNq1s61TJxsoFxfbgNnDDmKvXH21bePG2f5rB81ffXVx0BwfX/UwwMGDm2ccAAAAQBtBsAwAAIDAql2fWbL/veSSqsDZGN93NDsc0jXX2DZ+fM2geedOadcuu6P5/Hnp449tk2xZDgAAAACNQrAMAACA4FmwQMrIkH7+cxssS7ZMhjtg9mfQ/MknNmT+5JO6azQDAAAAqBfBMgAAAIJn9GjbqgsLkzp0sE3yb9A8bpw9dvq0DbgBAAAANArBMgAAAFo2fwfNknTZZc0zVgAAAKCNIFgGAABAaAlE0AwAAADAI4JlAAAAhDZPQbM7bCZoBgAAgD85HMEeQdP4MH6CZQAAALQutYPmioqau5lLSmz4DACAr9pggBQ0dY21ofE7HJ6v8eVcc/cX6O8X6PH7em1zj7+hPuvbeBDI9W/odYEaY33noqLqvTxgwbLL5dKCBQt05MgRRUVFafHixbr22msrz69fv16vv/66IiIi9MADD2jkyJEqLCzUggULdPLkSZWVlenxxx9XUlJSoIYMAACA1iA8XIqNtU2SystrBs2lpexmRv1CKXypSyiN39cwoaWELy3l+/ljjI3p15drAxmA1RfOtKR7GsgxejrXkn4mAbRoAQuWP/zwQ5WWlmrdunXau3evnn76aa1cuVKSdObMGWVmZuqNN95QSUmJ0tLSNGzYMK1evVo9e/bUsmXLlJubq9zcXIJlAAAANE1EhBQXZ5sklZXZkLm1f7ANC5M6dbK/bq7wqLHXB3o3VksIjxp6XbB3HzV0LtA77AAAQMgJWLCck5Oj1NRUSVL//v114MCBynP79+/XgAEDFBUVpaioKCUmJio3N1dbt27V97//fc2cOVMxMTGaP39+oIYLAACAtiIy0rbWHnqFh0tduwZ7FAAAAGglwgL1jZxOp2Ld//xQUnh4uMrLyyvPxbl3jEiKiYmR0+nUuXPndP78ea1evVqjRo3S0qVLAzVcAAAAAAAAAEA9AhYsx8bGqqCgoPJrl8uliIiIOs8VFBQoLi5OHTt21KhRoyRJI0eOrLHLGQAAAAAAAAAQHAELlpOTk5WVlSVJ2rt3r3r16lV5LikpSTk5OSopKdGFCxf0+eefq1evXkpJSdHmzZslSbt27VKPHj0CNVwAAAAAAAAAQD0CVmP51ltv1bZt2zR58mQZY/TUU0/p1VdfVWJiokaPHq309HSlpaXJGKPZs2crOjpa999/vx577DFNmjRJERERlMIAAAAAAAAAgBYgYMFyWFiYFi5cWONY9+7dK389ceJETZw4scb5jh07asWKFQEZHwAAAAAAAACgcQJWCgMAAAAAAAAA0DoQLAMAAAAAAAAAvEKwDAAAAAAAAADwCsEyAAAAAAAAAMArBMsAAAAAAAAAAK8QLAMAAAAAAAAAvEKwDAAAAAAAAADwSkSwB9Dc8vLyNHbs2GAPAwAAACEmLy8v2EPwK94nAwAAwFue3iM7jDEmgGMBAAAAAAAAAIQ4SmEAAAAAAAAAALxCsAwAAAAAAAAA8ArBMgAAAAAAAADAKwTLAAAAAAAAAACvECwDAAAAAAAAALxCsAwAAAAAAAAA8ArBchO5XC498cQTmjRpktLT03X8+PEa59evX6+xY8dq4sSJ+vjjj4M0Snirofv629/+VhMmTNCECRO0YsWKII0S3mrovrqv+Y//+A+tXbs2CCOEtxq6p5s3b9bEiRM1ceJELViwQMaYII0U3mjovq5evVpjx47VuHHj9MEHHwRplPDVvn37lJ6eftHxv/zlLxo3bpwmTZqk9evXB2FkbU9xcbF+8pOfKC0tTT/+8Y919uzZi65ZsWKFxo8fr8mTJ2v//v2SpOPHj2vKlClKS0vT/Pnz5XK56r328OHDmjhxoqZMmaJf/vKXldeGskCs27fffqsHHnhAU6dO1eTJk3XixInATdBPArFubm+//bYmTZrk/0kFQKB+n6alpSk9PV0zZ87UN998E7gJNjNfPp+fPXtWM2bMUFpamn72s5+pqKjI62tDnb/X7dSpU7rnnnuUnp6uadOm6YsvvgjsBP3E3+vmtmvXLt1yyy2BmVQA+HvdCgsLNXfuXKWlpWnChAkX/RkRqgLx+3TatGmaOnWqHnzwwcb//82gSd577z0zb948Y4wxn376qZk1a1blua+//tqMGTPGlJSUmPPnz1f+Gi2fp/t64sQJ88Mf/tCUl5ebiooKM2nSJHP48OFgDRVe8HRf3TIyMsz48ePNH/7wh0APDz7wdE8vXLhg7rzzTvPtt98aY4xZtWpV5a/Rsnm6r99995255ZZbTElJicnPzzf/+q//GqxhwgerVq0yY8aMMRMmTKhxvLS01Pzbv/2byc/PNyUlJWbs2LHm66+/DtIo245XXnnFLF++3BhjzMaNG82iRYtqnD9w4IBJT083LpfL5OXlmbFjxxpjjLn//vvNjh07jDHGPP744+b999+v99oHH3zQbNq0yRhjzJw5c8xHH30UqOn5TSDWbd68eeadd94xxhiTnZ1tPv744wDNzn8CsW7GGHPo0CEzffr0i/4/E6oCsW5Tp041hw4dMsYYs3btWvPUU08FanrNzpfP54sWLTJvvPGGMcaY3/zmN+bVV1/16trWwN/rNnfuXPPBBx8YY4zJysoy//mf/xn4SfqBv9fNGGNOnTplZs2aZW6++ebAT9BP/L1uy5cvN6tWrTLGGHP48GHz5z//OfCT9AN/r9uSJUvMmjVrjDHGPPvss+b3v/99o8bFjuUmysnJUWpqqiSpf//+OnDgQOW5/fv3a8CAAYqKilJcXJwSExOVm5sbrKHCC57u6+WXX66XX35Z4eHhCgsLU3l5uaKjo4M1VHjB032VpP/7v/+Tw+HQiBEjgjE8+MDTPf3000/Vq1cvLV26VGlpaerSpYs6d+4crKHCC57ua/v27XXllVeqqKhIRUVFcjgcwRomfJCYmKjnn3/+ouOff/65EhMTlZCQoKioKKWkpGj37t1BGGHbUv332ogRI5SdnX3R+eHDh8vhcOjKK69URUWFzp49q4MHD2rw4MGVr9u+fXu91/bp00f5+fkyxqigoEAREREBn2dzC8S67dmzR6dPn9Y999yjt99+u/J1oSwQ63bu3Dk988wzeuSRRwI+P38JxLo9++yz6tOnjySpoqIipD/b+PL5vPYab9++3atrWwN/r9u8efMqd9yG+s9Ydf5et5KSEs2fP18LFiwIxvT8xt/rtnXrVkVGRmrmzJl68cUXK18X6vy9bn369NH58+clSU6ns9Hv2UL/nV2QOZ1OxcbGVn4dHh6u8vJyRUREyOl0Ki4urvJcTEyMnE5nMIYJL3m6r5GRkercubOMMVq2bJn69u2rbt26BXG0aCxP9/Xo0aPauHGjli9frhdeeCGIo4Q3PN3Tc+fOaefOndqwYYM6dOigqVOnqn///vx+DQGe7qskXXHFFbrzzjtVUVGh+++/P1jDhA9uu+02nTx58qLjvGfyvz/+8Y/63e9+V+PYJZdcUrnuMTExunDhQo3zTqdTHTt2rPzafY0xpvIvddzH6rv2uuuu08KFC7Vy5UrFxcVpyJAh/pqiXwRr3fLy8hQfH6/f/va3WrFihV566SX99Kc/9dc0m10w1i0/P78yVA7V0CpYP2/XXnutJGnPnj1as2aNXnvtNb/MLxB8+Xxe/Xj1tWrsta2Bv9fNvbnjiy++0NKlS1vN5y1/r9vChQs1Y8YMXXbZZYGbVAD4e93OnTun8+fPa/Xq1dqwYYOWLl2qZcuWBW6CfuLvdbv88suVkZGhjRs3qrS0VA899FCjxkWw3ESxsbEqKCio/NrlclV+8K19rqCgoMbNQ8vl6b5KUklJiR555BHFxMRo/vz5wRgifODpvm7YsEGnT5/Wj370I+Xl5SkyMlJXXXUVu5dbOE/3tGPHjrrxxhvVtWtXSdLAgQN1+PBhguUQ4Om+ZmVl6euvv9ZHH30kSZo5c6aSk5OVlJQUlLGiefCeyf/cz4ao7qGHHqpc94KCAsXHx9c4X999CQsLq3EsPj6+3muXLFmi1157TT179tRrr72mp59+OqTeOwVr3Tp27KhRo0ZJkkaNGqXnnnuu2efmT8FYN6fTqePHj2vBggUqKSnRZ599piVLlujRRx/1xxT9Ilg/b5L07rvvauXKlVq1alVI/wsvXz6fu4+3a9euwbWq69rWwN/rJkk7duzQk08+qWXLlul73/tegGbmX/5ct8jISO3evVsnTpzQCy+8oO+++06zZ88OuT8P6uLvn7fqf4aOHDlSq1atCtDM/Mvf6/bEE0/ov//7v5WamqpNr8eo6wAAB7NJREFUmzZp3rx5jVo7SmE0UXJysrKysiRJe/fuVa9evSrPJSUlKScnRyUlJbpw4YI+//zzGufRcnm6r8YYPfjgg+rdu7cWLlyo8PDwYA0TXvJ0X+fOnas//vGPyszM1A9/+EPdc889hMohwNM97devn44ePaqzZ8+qvLxc+/btU48ePYI1VHjB031NSEhQu3btFBUVpejoaMXFxVX+ky2Eru7du+v48ePKz89XaWmpdu/erQEDBgR7WK1ecnKyNm/eLMn+pU1KSspF57du3SqXy6VTp07J5XKpc+fO6tu3r3bu3Fn5uoEDB9Z7bUJCQuXumksvvbRV/H4NxLqlpKRUfo9du3a1ij+//L1uSUlJeuedd5SZmalnn31WPXr0CKlQuT6B+Hl76623tGbNGmVmZuqaa64J+Bybky+fz+taY2+ubQ38vW47duzQkiVL9PLLL+vGG28Myhz9wZ/rlpSUpPfee0+ZmZnKzMxUQkJCqwiVJf//vLXGP0Ml/69bfHx85V8EefOezWGMMc081zbF5XJpwYIFOnr0qIwxeuqpp5SVlaXExESNHj1a69ev17p162SM0f3336/bbrst2ENGI3i6ry6XS3PmzFH//v0rr58zZw4fgENAQ79f3Z5//nl16dJFU6ZMCeJo0RgN3dN33nlHq1evliTdfvvtuu+++4I8YjRGQ/d1+fLl2rJli8LCwpScnKy5c+dSazmEnDx5UnPmzNH69ev19ttvq7CwUJMmTdJf/vIXvfDCCzLGaNy4cZo6dWqwh9rqFRUVad68eTpz5owiIyOVkZGhrl27atmyZbr99tuVlJSk559/XllZWXK5XPrlL3+pgQMH6tixY3r88cdVVlam733ve1q8eLHCw8PrvHb37t165plnKsuJLVq0SFdffXWwp94kgVi3vLw8PfbYYyoqKlJsbKwyMjKUkJAQ7Kk3SSDWza36/2dCnb/XbcCAAbrpppt0xRVXVO6+HTRokB5++OEgz9w3vnw+/+abbzRv3jwVFBSoU6dOysjIUIcOHby6NtT5e93+/d//XaWlpZX/krBbt25auHBhkGfddP5et+qGDRumbdu2BWmmzcvf65afn6/HHntMZ86cUUREhJYuXRry7z0k/6/bZ599poULF8rlcskYo0cffVR9+/ZtcFwEywAAAAAAAAAAr1AKAwAAAAAAAADgFYJlAAAAAAAAAIBXCJYBAAAAAAAAAF4hWAYAAAAAAAAAeIVgGQAAAAAAAADgFYJlAAgxb775pp555hmfX3/w4EGlpqYqPT1d6enpevfdd2ucLy4u1k9+8hOlpaXpxz/+sc6ePdvUIQMAAAB+05T3xxUVFXr44YeVlZVV4/jx48c1ZsyYOl+zd+9eTZgwQZMnT9aKFSt8+r4A0BoQLANAG3Po0CHde++9yszMVGZmpu64444a59euXatevXrpD3/4g+6++269+OKLQRopAAAA4D8nTpzQtGnT9Ne//rXG8Q0bNmj27Nk6d+5cna+bP3++MjIytHbtWu3bt08HDx4MxHABoMUhWAaAELR371796Ec/0rhx47Rp0ybdcccdeuKJJzRlyhTNmjVLhYWF9b72wIED2rRpk6ZOnapHHnlETqezxvmcnBylpqZKkkaMGKHs7Gy/zgUAAABoqn379mnGjBm6++67tW7dOo0ZM0YPPfSQ5syZU+9rCgsLtXjxYg0ZMqTG8YSEBK1Zs6bO1zidTpWWlioxMVEOh0PDhw/n/TKANisi2AMAAHivffv2WrVqlc6ePasJEybI5XLprrvu0qBBg7Rs2TKtW7dO9957b52vTUpK0oQJE9SvXz+tXLlSL7zwgubNm1d53ul0Ki4uTpIUExOjCxcuBGROAAAAgK8iIiK0evVq5eXl6b777lNxcbEefPBB9e3bt97XXH/99XUeHzlyZL2vcTqdio2Nrfw6JiZGX375pe8DB4AQxo5lAAhBKSkpcjgcuuSSSxQXF6ewsDANGjRIkpScnKxjx47V+9pbb71V/fr1q/z1oUOHapyPjY1VQUGBJKmgoEDx8fF+mgUAAADQPPr27SuHw6GuXbuquLhYktStW7dm/z7V3ytLvF8G0LYRLANACHLXgTtz5owKCwtljFFubq4kW8qiR48e9b525syZ2r9/vyQpOztbN9xwQ43zycnJ2rx5syQpKytLKSkp/pgCAAAA0GwcDsdFx8LCmj/yiI2NVWRkpE6cOCFjjLZu3aqBAwc2+/cBgFBAKQwACEHFxcWaPn26CgsLtXDhQj366KN66aWXdOrUKV155ZWaPXt2va9dsGCBFi1apMjISHXp0kWLFi2SJM2YMUO//vWvNWXKFM2bN09TpkxRZGSkMjIyAjUtAAAAoEXKzs5WTk6OHnroIT355JP6xS9+oYqKCg0fPlz/8i//EuzhAUBQOIwxJtiDAAA0zahRo/S///u/io6ODvZQAAAAAABAG8COZQBohU6dOlXjgXxugwYN0sMPPxyEEQEAAACBt3//fv3qV7+66Pj3v/99paWlBWFEANB6sGMZAAAAAAAAAOAVHt4HAAAAAAAAAPAKwTIAAAAAAAAAwCsEywAAAAAAAAAArxAsAwAAAAAAAAC8QrAMAAAAAAAAAPDK/wPn4WwV88K94gAAAABJRU5ErkJggg==\n",
3429
      "text/plain": [
3430
       "<Figure size 1440x720 with 4 Axes>"
3431
      ]
3432
     },
3433
     "metadata": {},
3434
     "output_type": "display_data"
3435
    }
3436
   ],
3437
   "source": [
3438
    "plt.figure(figsize=(20,10))\n",
3439
    "plt.subplot(2, 2, 1)\n",
3440
    "_ = sns.regplot(data=saps, x= 'AGE', y='hdeath',logistic=True, color='g', x_bins=10)\n",
3441
    "_ = plt.title('Regression: ICU Patient Age and ICU Survival')\n",
3442
    "plt.subplot(2, 2, 2)\n",
3443
    "_ = sns.regplot(data=saps, x= 'bp_13.0', y='hdeath', logistic=True, color='g', x_bins=10)\n",
3444
    "_ = plt.title('Regression: Systolic Blood Pressure (<70mmHg)and ICU Survival')\n",
3445
    "plt.subplot(2, 2, 3)\n",
3446
    "_ = sns.regplot(data=saps, x= 'bp_5.0', y='hdeath', logistic=True, color='r', x_bins=10)\n",
3447
    "_ = plt.title('Regression: Systolic Blood Pressure (70-99mmHg) and ICU Survival')\n",
3448
    "plt.subplot(2, 2, 4)\n",
3449
    "_ = sns.regplot(data=saps, x= 'hr_11.0', y='hdeath' , logistic=True, color='r', x_bins=10)\n",
3450
    "_ = plt.title('Regression: Cardiac Attack and ICU Survival')\n",
3451
    "plt.tight_layout()"
3452
   ]
3453
  },
3454
  {
3455
   "cell_type": "code",
3456
   "execution_count": 181,
3457
   "metadata": {},
3458
   "outputs": [
3459
    {
3460
     "data": {
3461
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAALICAYAAADyhJW9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXhTZdo/8G+Wplu6JQ3oCyoKFmRxKqMim+xbadmLdZAL3PAno4PjoJYRFYFBBEQRFJVXGQdhpMWitGVRKAoURBZRUBHF1yoI7WnSpkmbNjk55/dHk0MCXdICXb+f6/KSnpOT8yQ5hfvcuZ/7UcmyLIOIiIiIiIiIiIiIqI7UjT0AIiIiIiIiIiIiImqemGAmIiIiIiIiIiIionphgpmIiIiIiIiIiIiI6oUJZiIiIiIiIiIiIiKqFyaYiYiIiIiIiIiIiKhemGAmIiIiIiIiIiIionphgpnoKurcuTOSkpIwduxYjBs3DiNGjMDEiRNx/Pjxxh5alXbt2oWFCxdelefOyMjAI488ovxcUlKChQsX+r0/6enpyv7U1FS8++67lzzPbbfdhjNnzlyyPTU1Ff3791eeKzExEY8++ijMZnOtY3vggQdgsVgAAA8//DB+/vnn+rxEAEB6ejrWr19f5b7Bgwdf8tkfP34cgwcPrvLxV/PzqM22bduQnJyMESNGICkpCX/961/x448/BnTsqlWrsHPnzss6v+9n4uvi6+hquZrnqekznzp1KrZv3678fPToUTz44IMYO3YskpKSMGPGDJw6dUrZ37lz50vep+3bt2Pq1KlVPv/p06cxY8YMJCUlISkpCffddx8OHz58BV5Vpcu5Zs+cOYPbbrvtio2FiIgaHmPfCxj71u6///0v3nnnnUueZ+XKlZg/f36txx88eBCJiYmXbJ8/fz5WrlxZp7HUFJ/V5OLY7WL5+flISUmp8/PWdL7Bgwdj7NixGDt2LEaPHo0lS5bAbrcDqHwdf/vb367Y+Zqa6n4fLr5m8vPzkZqaiqSkJIwZMwbJycl+9ydVfW4WiwWdO3eu8rx2ux1z585Vnu/i39/LdbnXSVX3mUQNTdvYAyBq6d5//30YDAbl53fffRcLFy7Exo0bG3FUVRsyZAiGDBly1c9TUVGB++67D0lJSdi8eTO0Wi3Onj2L6dOnAwCSk5Pr9bzTp0/Hgw8+qPy8ePFivPjii3j99ddrPC43N1f585o1a+p1bq8jR47g5ptvvqzn8Gqoz+NiH3zwAT766CMsXboUnTp1AgB88cUXeOCBB/C///u/uOWWW2o8/uDBg8px9eX7mbRWhw4dwlNPPYVVq1ahe/fuAIAtW7Zg6tSp2LZtm9/fK4H629/+hieeeALDhg1TzvHII49g165diI6OvuwxN9Y1S0RETQdj30sx9q3avffee0Wepylr27YtPvzwwyv6nE8//TRGjhwJAHC5XFi4cCFmz56Nt956Cz169Kj182/pLBYLUlJSMGvWLLz00ktQqVQ4efIk7r//foSGhqJv3751fs5XXnkFYWFh2LJlC1QqFfLz83HPPffg2muvRb9+/S57zFfjOiFqaEwwEzUgURRx7tw5REVFKdtWr16NTz/9FJIkoV27dnjhhRfQtm1b5OXl4Z///CesVitMJhNkWcaYMWNw5513YsqUKejYsSPOnj2LdevW4cyZM1i2bBkcDgfUajUee+wxDBo0CIIg4JlnnkFRUREAYMCAAXjiiSeq3Z6RkYEdO3bg7bffxvnz5zFv3jycPXsWsixj3LhxeOihh3DmzBlMnz4dAwYMwDfffIOSkhI89dRTGDZsGPLz8zFjxgy88847aNu2bbXvw9atWxEWFoaHH35Y2dauXTu89tprcLlcV+z97t27N5YuXQoA2L17N95++204nU5YLBaMGzcOTzzxBObMmQMAmDZtGt555x1MmTIFK1asQI8ePZCTk4PVq1fD5XIhJCQEzzzzDG677TasXLkSZ8+ehSAIOHv2LNq2bYulS5fim2++QU5ODnJzcxESEoIpU6bUabwZGRnYtGkTHA4H9Ho9xo8fr3weU6dORXx8PI4ePYpz586hd+/eWLBgAdRqNd566y3s2rUL5eXlcDgceOaZZzBs2DCsXLkSx44dQ0FBAeLi4nDixAk8//zzSlD17LPPIi4uDtOmTVPG4HQ68eqrryItLQ0dO3ZUtg8YMAAPP/wwXn31VbzzzjuYOnUqpkyZogS33p/NZjNOnDiBJUuWQKPRYNeuXQgODsbJkydhNpvRt29fzJ07F0FBQejcuTMOHDig3IR6f/Z+Zt7P5Nprrw3o/cvPz8f8+fNx7tw5uFwujB49Gv/v//0/LF++HKWlpXjuuecAVCbLV61ahfT0dBw9erTK353qlJWVYd68ecjLy0NxcTHCw8OxbNky3HTTTTV+Rhs2bMD7778PvV6PuLi4gF7P66+/jpkzZyrJZQAYM2YMgoOD4Xa7A3qOiwmCgLKyMuXnO+64A6+99ho0Gg3OnDmDpKQkfP311wDg9/PF16bL5cL999+PESNGAIDymXXs2BE7duxAamoqUlJSsHfvXuh0OrjdbgwcOBD//ve/YbPZsHTpUjidTgiCgD59+mDRokX1ej1ERNS0Mfat1Bpj35kzZ2LQoEFITk7G119/jZSUFOzcuRPXXXcd3nzzTZSWliIkJARFRUXo3bu33/MAwC+//IKpU6dCEATExsZi+fLlaNOmTZ3fk/rGZ9Vdp1OnTkVUVBR++eUXvwT56tWr8fPPP+OVV14BABw+fBgLFy7EqlWrlHiquvexTZs2+PbbbzFv3jy4XC5cf/31+OOPP5CamopevXrV+PqCgoIwZ84c9O3bF6dPn0ZhYSEWLFiArKwsHD58GIsXL4YkSQCARx55BCNGjIDT6cSyZctw6NAhuN1udO3aFXPnzoVer6/2uiktLcWcOXOQl5cHtVqNbt26Yf78+VCr1dVeNxer6Z6luvfl8OHDWLBgAVQqFXr06KG8lpps2LABPXv2xLhx45RtXbp0weuvv47IyMhaj6+KIAgwGo1wuVzQ6XRo27YtVq5cqRRoDB48WPk98v05JibG7++vnj17Iiws7JL7kldffRVJSUk4fPgwBg8ejDfeeEO5B3jiiSdw5513Yvjw4Xj++edhNpshCILyd4jRaKzXayK60tgig+gqmzZtGpKSktCvXz8lGfPSSy8BAD7++GOcOnUK6enp+OSTTzBgwADMnTsXQOU306NHj0ZWVhbmzp2LY8eOKc95/vx5zJw5Ezt27EBwcDDmzJmDJUuWYPPmzXjzzTcxb948/PHHH0hLS0P79u2xefNmrF+/Hnl5ebDZbNVu9zV79mz06tULmZmZ+O9//4stW7YgOzsbAPD777+jX79+2LRpE/7xj38oyaG2bdvik08+qTHABoATJ06gZ8+el2zv1q0b4uPj6/lO+ysvL8fHH3+MXr16QZZlvPfee1i8eDEyMjKwceNGvPPOO7BYLMpn8f777/slMn/99Vclmfrxxx9jwYIFePzxx5Xk3OHDh7FixQps374doaGh+PDDDzFs2DAMHjwY06dPr3Ny2evnn3/GunXrsG7dukv2/fbbb1i3bh22bNmCPXv24KuvvsLZs2exf/9+rFu3DpmZmfj73//uV7Vw9uxZbN68Ga+88gruvfdepKWlAaic5pWTk4Px48f7nePUqVMICgrySy579e7dG0eOHKlx/FOmTEH37t3x9NNPK1Wy3377Ld577z1s3boVp0+frrWCqbrPpDZPPfUUJk6cqCRD9+/fj61btyI5ORnZ2dlwOp0AgM2bN2Py5MmwWq3V/u5UZ8+ePYiMjMTGjRuxY8cOdO/e3W9aaFWf0Q8//IBVq1YpleFBQUEBvZ7qfk9GjBgBk8kU8Pvi6/nnn8fChQvRr18/zJo1Cx988AF69OiBiIiIWo/1vTaTk5ORkZEBAHC73diyZYtf9dWNN96Im2++GTk5OQCAffv2oX379ujYsSP+85//4G9/+xvS09ORnZ2NnJwcnDhxol6vh4iImh7GvpdqjbHv8OHDsXfvXgDA3r17YTKZsH//fgBATk6Ocm0AqPJ5fv/9d+V8kZGRl9WOoK7xWU3XKQBERkZi69atfi3JJk+ejM8//xzFxcUAgLS0tCpbHlT1PoqiiMcffxyzZs1CZmYmpk6dih9++CHg1xcSEoIOHTr4tVEDKttG3H///cjIyMCiRYvw5ZdfAgDeeecdaDQaZGRkYMuWLWjTpg2WLVtW43Xz2WefobS0FJ988gk2bdoEoPIzqu268artnqWq98XpdGLWrFlITU1Vru3y8vJa34/qft/uuOOOaltg1Oaxxx7Dl19+ibvuugsPPvgg3njjDej1elx33XW1Huv799fMmTOrvC/x0mg0yv0MAFitVhw4cABJSUnIzs5GfHw8Nm7ciF27diEkJASffPJJvV4P0dXACmaiq8w7TfC7777DjBkz0KtXL+Vbxt27d+P48eOYOHEiAECSJDgcDlitVnz77bf44IMPAFRWBd51113Kc2q1WiUYPXbsGARBwF//+ldlv0qlwo8//oj+/ftjxowZOHfuHPr06YN//OMfiIiIqHa7V1lZGY4ePYr33nsPABAREYEJEyZgz549+NOf/oSgoCAMGDAAANC1a1clkAqUSqWCLMu1PqYqkiRBo9FUue/f//43tmzZAqAy6XXHHXfgySefhEqlwltvvYXPP/8cWVlZOH36NGRZhsPhqPb8ubm5KCgoUKYuesf022+/AQDuvPNO6PV6AJXvgdVqrfH1VPeaZFmGWn3hu77OnTsrz3uxQYMGQa1WQ6/X44YbboDVasVdd92FJUuWIDMzE3l5efjmm29QWlqqHBMfHw+ttvKv+gkTJuCNN96AxWLB9u3bMXDgwCq/xRdFscrzO53Oaj+XmowfPx7h4eEAgLFjx2LXrl2477776vw8NSkrK8OhQ4dgtVqxYsUKZdvJkyeRkJCAzp07IycnB71798aXX36Jf/3rXzh8+HC1vzvVGTlyJK677jqsW7cOeXl5+Oqrr/wqNKr6jL7//nv07dtXSQrfc8892LdvX62vSa1W11qlUdXnIUmS3zXlKzExEcOGDcORI0dw6NAhfPTRR1i9enVA05Z9r82EhAQsWbIEgiDg+++/R4cOHdChQwccPXpUefykSZOwefNmjBw5EhkZGUrwvHjxYuzZswdvvfUWfvnlF1RUVKCsrOyKtOggIqLGx9j3Uq0x9h00aBBeeukliKKIffv24dFHH0Vubi4GDhwIi8WCHj164Isvvqj2+L59+yqz3Lp06VLl2hzVxTsXx0J1jc+qu069br/99kvOaTQaMXDgQHzyyScYN24c9u3bhxdeeEGpmveq6n30Joa919hdd91V53YhKpUKoaGhfttGjRqF+fPnIycnB3369MGTTz4JAPj8889hs9mUhL/L5YLRaKzxuvnzn/+MV199FVOnTkWfPn0wbdo03HDDDVi/fn21102XLl2Ube3atavxnqW690Wr1aJ3794AKuPY559/PqD3oj6/bxffl/nq0qULtm/fju+++w6HDh1Cbm4u3nrrLaxYsaLW3t2+f39dd911Vd6X+F4nEydOxKRJk5CamoqsrCwMHjwYERERmDZtGg4fPoy1a9fi119/xU8//YQ//elPtb0dRA2GCWaiBtKtWzfMmTMHqampuOWWW9C+fXtIkoSHHnoIf/nLXwBUJvCsVqsSRPr+w+gbWOp0OiVp6Ha70bFjR79v9fPz82EwGBAUFIRdu3bhwIED+PLLL5GcnIw1a9bg1ltvrXK7lyRJl/yjLEmSkngMCgpS/vGtT8IxPj6+ysVAdu3ahcOHD+OZZ55BTEzMJcG73W5HRUVFtVObLu5D51VWVobx48dj6NChuP322zFx4kTs3LmzxsBDkiT07t0br732mrLt3LlzaNOmDT777DNl+h4QWBADoMrXVFhY6JdYCwsLq/b4qs753XffYebMmZg+fTr69u2LO+64Ay+++GKVzxcZGYmRI0diy5YtyMzMxAsvvHDJObzB7A8//HBJr+WDBw/6JVN9X3NN0zt9r93qAjfvt/j15b1mP/zwQyW4tlgsCA4OBlBZVfLxxx/DbDZj6NChCA8Pr/F3JzMzs8rzbNiwAWlpaZgyZQqSkpIQHR3tt9BIdddFdb/LNYmPj8c333xzyZTNF198EcOGDUOfPn2Ua8q316XZbK4yWXv69Gls3rwZs2fPRp8+fdCnTx/MmjUL06dPx44dOzBy5MgaP1Pfayk0NBQjRoxAVlYWvv766yp7R44aNQqLFy/G6dOncejQISxevBgAcN9996Fz587o378/Ro0ahW+++Sag3x8iImpeGPte0Bpj36ioKNxyyy3YvXs37HY7xo4dizfffBM7d+7E0KFDa30fvZ93Teer6j0DKmMh3wRtXeOz6q5Tr+ri9SlTpmDevHnQarUYPnw4wsPDL0kwVzUWjUZzyesLNF4EAIfDgdOnT6NTp044e/assj0lJQWDBg1Cbm4u9u7di1WrVmH79u2QJAn//Oc/lYR2aWmp8oV/ddfNddddh88++wwHDx7El19+ifvvvx/z58+v8brxVds9SyCfEeB/XVQnPj4ex44du6Sg5cMPP4TD4cD9998f0H2ZlyiKmD9/Pp588kl0794d3bt3x/33348333wTGzduVBLMvmP1vbfx/fsLqPq+xPc6adeuHbp27YrPP/8cGRkZ+Oc//wmgsiXdt99+i4kTJ6JXr14QRZExNDUpbJFB1IASExNx6623KlPTvFPtvKv+rlixAk8//TT0ej169uypTI35/fffceDAgSoDsfj4eOTl5eHQoUMAKhODI0aMQH5+PpYtW4Y333wTQ4cOxbPPPotOnTrhp59+qna7l16vx5/+9CclELbZbPj444/Rp0+fK/I+DB8+HHa7HWvWrFF6yf7+++9YvHix0prh7rvvxrZt25Cfnw+g8h/s999/H3fccYdSDRuovLw82O12PPHEExg8eDAOHjwIp9OpVIdqNJpLqnZ79+6N3NxcnD59GkBlf6wxY8bUOi2rqufyuvvuu/Hf//5XCTgcDgc2btyoBHf1cejQISXIufPOO7Fr164a+/NOmTIF//nPfyDLMm699dZL9gcHB2P27Nl4+umnldcOVFY6vPvuu5g1axYAwGAwKG0Nfv75Z7+q34vfg23btsHpdKKiogKbN29WehwbDAZlteOsrCy/cdT0PlZFr9cjPj4ea9euBVC5Uvu9996LXbt2Aaicevndd98hLS1NqaSt6XenOvv27cP48eORnJyMG2+8ETk5ObX2Q+7bty9yc3Nx/vx5AJVT4QLx6KOPYtWqVX7tI7y9Ir1J57vvvhvr1q1TrmWr1YrNmzdXeU3FxsYiLS3Nb8Xs4uJi5Ofno2vXroiMjITL5VJWkvdOC67O5MmTsXnzZhw9etRvmqtXcHAwRo8ejdTUVAwfPhyhoaEoKSnB8ePHMXv2bAwfPhznz5/Hb7/9FlA/PSIian4Y+1ZqrbHvsGHDsHz5cvTu3Rt6vR4dOnTAmjVrMHz48Do9T3Vuuukm6HQ6bN26Vdn2888/4+DBg7Uu5FZTfFbddVqbnj17Qq1W4913362yPUZ1OnbsCJ1Ohz179gCobC936tSpgL7MKC8vx6JFi3D33Xejffv2fvtSUlLwww8/YMKECViwYAFKSkogCAL69euH9evXK9fEc889h+XLl9d43WzYsAFz5sxBv3798NRTT6Ffv374/vvvA75u6nrPAlTOnpNlWal037VrV0CzRu+55x589dVX2LJli5KAPXHiBF5//XW/GDojI0NplSOKItavX19lDK3VavF///d/ePPNN5UCDFEUcfr0aXTt2hWA/73RwYMHIQhCteOr6r7kYpMnT8aaNWuU6nGg8j5k2rRpGDduHIxGI/bv31/vdVmIrgZWMBM1sOeeew5jxozB3r17kZycjPz8fEyePBkqlQrXXnutUuX38ssv49lnn8WGDRvQtm1btG/f3u+bXS+DwYDXX38dS5YsQUVFBWRZxpIlS9C+fXtMmzYNqampSExMhE6nQ+fOnTF69GhYrdYqt/sm+ZYtW4b58+cjIyMDTqcTSUlJmDBhgt+34hcLdKETnU6HtWvXYunSpUhKSoJGo4FGo8Gjjz6KCRMmAKicGvbwww9jxowZACqDp65duyoLZ9RF586dMXDgQIwaNQo6nQ5xcXHo1KkT8vLycP3112PkyJGYOnUqVq5cqRzTqVMn5ZtqWZah1WqxevXqWgP8u+++W/kMH3nkEb993gXnxo8frwTRQ4YMueRxdZGYmIhPP/0Uo0aNgiRJGDRoEKxWqxIQX6xLly6IioqqMehNSUlBbGws5s6di5KSEoiiiBtvvBHvvfeeUtX86KOPIjU1FV988QVuuukmv6mCgwcPxvLly5UALCQkBH/5y19QUlKCESNGKNMN586di/nz5yMyMhJ9+vTx6yvs+5lcXMG7d+9ev0rqiIgI7NmzB8uWLcOCBQuQlJQEp9OJxMREjBkzBkDlNZeQkID9+/crifWafne++uqrKt+bBx54AM8//7zSey4+Pv6SfncX69y5M5566ilMmzYN4eHhVSb2q3L77bdj4cKF+Ne//oWysjJl0Zf//Oc/iI2NBVC5UOPixYuRmJioVLqMHTv2kt7aQGUl0fvvv49XXnkFS5YsQWhoKHQ6HR555BFl6uFTTz2Fhx9+GAaDQVnAsTrdu3eHRqPByJEjlUrxiyUnJ+ODDz7AvHnzAFRW0c+YMQPjx49HWFgY2rZti549eyIvLy+gHnZERNT8MPZtvbHv0KFDsWDBAsyePRsAlMRmVf1xfZ8nUGq1Gm+//TYWL16M1atXQ5ZlhIWFYcmSJejQoUONx9YUn9V0ndZmwoQJ2Lp1q197iNpotVqsXLkSL7zwApYvX44OHTogNja2yusfAJYsWYLVq1dDrVZDFEX06dMHzz777CWPmz17NhYtWoTXXnsNKpUKjz32GNq3b4+ZM2fi5Zdfxvjx4+F2u3HLLbcgNTUVYWFh1V4348aNw1dffYWEhASEhobi2muvVRY8DOS6qes9C1A5c+CNN97AvHnzsHz5ctxyyy0BLWgXHR2NdevWYenSpXj77behVqsRGhqKf/3rX8oXDxMmTEBBQQHuvfdeaDQalJeXo1evXn69tn2tWLECS5cuxYgRIxAaGgpJkjBs2DClVc/s2bMxb948bNy4Ed26dUO3bt2qHV9V9yUXGzx4MF588UW/hUH/+te/YsmSJVixYgWCgoLQs2dPpYUNUVOgkllTT9QkrV69GsOHD0fHjh1hs9kwZswYrFmzBp06dWrsoVEz9ttvv2Hq1KnKAhpXW2pqKm6++eYqp28SEREReTH2peZOFEU89thjGDNmDBISEup07Msvv4wHH3wQsbGxOHfuHMaOHYudO3dW2x6FiKipYQUzURPVoUMH/P3vf4darYbb7cbDDz/MAJsuy4oVK5CWloYXX3yxQZLLRERERIFi7EvN2c8//4x7770XQ4cOrXUWWFXatWuH6dOnQ6vVQpZlLFy4kMllImpWWMFMRERERERERERERPXCRf6IiIiIiIiIiIiIqF6YYCYiIiIiIiIiIiKiemlxPZh79eqFdu3aNfYwiIiIiKiZO3v2LA4ePNjYw7hsjI+JiIiI6EqoLj5ucQnmdu3aISMjo7GHQURERETN3IQJExp7CFcE42MiIiIiuhKqi4/ZIoOIiIiIiIiIiIiI6oUJZiIiIiIiIiIiIiKqFyaYiYiIiIiIiIiIiKhemGAmIiIiIiIiIiIionphgpmIiIiIiIiIiIiI6oUJZiIiIiIiIiIiIiKqFyaYiYiIiIiIiIiIiKhemGAmIiIiIiIiIiIionphgpmIiIiIiIiIiIiI6oUJZiIiIiIiIiIiIiKqFyaYiYiIiIiIiIiIiKhemGAmIiIiIiIiIiIiamJ2WixI+PZb7Coqauyh1Ejb2AMgIiIiImpqRElq7CEQERERUSv3Yl4e9lmtsLndGBIT09jDqRYTzEREREREHg63GzZRhN3thtzYgyEiIiKiVs0min7/b6qYYCYiIiKiVk2SZdhFEVZRRLksQwagauxBERERERE1E0wwExEREVGrVCFJsIkiSkQRTbsmhIiIiIio6WKCmYiIiIhaDVmWYXe7USKKKJMktsEgIiIiIrpM6oY6kSRJeP7553HPPfdg6tSpyMvLu+QxFosFw4cPR0VFBQDAZrPhoYcewpQpUzB9+nQIgtBQwyUiIiKiFqRCkmB2OvF/DgfOOZ0oZXKZiIiIiOiKaLAE886dO+F0OrFx40b84x//wOLFi/327927Fw888AAKCwuVbRkZGYiLi8P69euRkJCAd999t6GGS0RERETNnCzLsIki/igvx+/l5TAH2ArDLcs4UVp61cdHRERERNQSNFiC+ciRI+jfvz8AID4+HidOnPAfiFqNtWvXIjo6WtkWFxeHUk9wb7fbodWyowcRERFRS7XTYkHCt99iV1HRZT2P01OtnFdejvNOJ+ySBCmA485UVGDFmTMYdOwYJnz33WWNgYiIiIiotWiwjK3dboder1d+1mg0EEVRSRr37dv3kmNiYmKQm5uLhIQEWK1WrF+/vqGGS0REREQN7MW8POyzWmFzuzEkJqZOx8qyjFK3GzZRRGmACWWgMhmdU1yM9IIC5JaUsG0GEREREVEdNViCWa/XK9XIQGVP5toqkletWoWHHnoIKSkpOHnyJB5//HFkZmZe7aESERERUSOwiaLf/wPhkiTYRBElbjdcshxwgvi0w4FNgoCPCwth8TmfKSgIE2NjMclkwqq6DJ6IiIiIqJVqsARzz549sXv3biQkJODYsWOIi4ur9ZjIyEhEREQAAIxGo1+CmoiIiIhaJ1mWUeZ2o6SO1coOtxs7ioqQLgg4bLMp29UABkRHI9lkwoDoaGhVKqiuysiJiIiIiFqeBkswDxs2DLm5uUhJSYEsy1i0aBHWrl2L66+/HkOGDKnymFmzZmHu3LnYsGEDRFHEggULGmq4RERERNSAbKIIs6eS2CyKsIkiIi6a7Zhmvq4AACAASURBVCZKEmyexLKzDtXK35eWIl0QkGk2w+Z2K9vb6XSYZDJhosmEtjrdlXopREREREStSoMlmNVqNebPn++3rWPHjpc8LicnR/lz27ZtsWbNmqs+NiIiIiJqPPuKi5Fw/DhKPcnfPyoq0O7AAWzt0QP9oqOVamW72x1wtbJNFJFlsSC9oADflZUp24NUKgyNicFkkwl3RUZCrWKtMhERERFRTSTPeifVabAEMxERERHRxWyiiITjx/0qi2UAYRoN/nrqFDZ26waNShVQtbIsyzhqt2OTIGCbxQKHdCEd3TEkBMkmE8bGxsIQFHTlXwgRERERUQtT7llE2+Z21xiPM8FMRERERI1mY0EBJFmGCoAKgARAq1LBKUk47XDgo8JCJJtMNT6HxeXCJ4WFSBcEnC4vV7aHqNUYZTAg2WRCT70eKlYrExERERHVSJQk2D0zCCt82tKpaziGCWYiIiIiajS/OBwI12jQVqfDbxUVkGQZLllGkacf828OR5XHSbKMAyUlSBcE7Cwqgku+UFPRLSwMyW3aINFguKSPMxERERER+ZM9LTBsdVxE24sRNxERERE1inK3GzeGhCAIQF5FBdyy/8S7UJUK14eG+m3LdzrxkSBgkyDgrNOpbI/QaJBkNCLZZELX8PDLHhtrnYmIiIiopSt3u1HqqVYWgYAX0b4YE8xERERE1GAkWYZdFGEVRZTLMv4cGYlit/uS5DIAqFUqJBgMEGUZXxQXI10Q8EVxsV9Fxe0REUg2mTAiJgahGs1lj08DIFKjgV6rZZKZiIiIiFoctycet7ndcEhSvZPKvphgJiIiIqKrrtztVnq5iT7b9RoN3omLw4xTp1DmCXBVAMLUaizo0AFv//EHMgoLIbhcyjEGrRbjYmORbDLhposqnOtD7TlfhFaLcI0GavZqJiIiIqIWRJZllHnicbvbDXfth9QJE8xEREREdFVInl5uJaKoJI+rcntkJPbedhsSjh/HeacTkRoN4sLC8OQvvyiPUQHoGxWFZJMJg6OjoVPXtMxI7VQAdCoVIjzVypf7fERERERETY1TkmDzVCu7fBbsu9KYYCYiIiKiK6pCkpQ2GGLtDwcA/FFRgQqpsvmF1e3GIZsNAHCNToeJsbGYYDKhfXDwZY9Ng8p+zRFa7RVpqUFEREREdDXYRBFmz8LXZlGETRQDWsDat8jDUY8F++qDCWYiIiIiumyyLCstMAINZEvdbmyzWJBeUIBjpaV++4bGxCDZZEL/qChoLrNlhRpAqFqNSLbAICIiIqJmYF9xMRKOH0epu7KZxR8VFWh34AC29uiBftHRVR7jcLuVauUr3QKjNkwwExEREVG9eafdBVqtLMsyTpSWIl0QkGU2o1S6kIoOUqngkmV0Cg3FGzfffFnjYgsMIiIiImqObKKIhOPHYXNfSBNLAGxuNxKOH8cfvXtD76lkdkmSUuThvIotMGrDBDMRERER1Ym3Wtnm6a0cSLWyVRSRaTYjXRBwsqxM2a5TqTDcYECyyYRFeXn40eGA9jIqjL0tMPRaLcLYAoOIiIiImpmNBQWQ5KpTxRoAmwsLMS42FnZRRGkDtcCoDRPMRERERBQQlyShpA6LhMiyjMM2G9IEATssFlT4BMo3h4Yi2WTCGKMRMUFBAAC9JyEcXsdqY28LjAiNBuFa7WW31CAiIiIiaiw/ORx+s/yAynj3f4KDoVOp8I3Nhl6RkY0zuGowwUxERERE1ZI9i4TY6lAhUehy4ePCQqQLAn4tL1e2h6nVSDAaMdlkwq3h4VBdlAh+vF07vHf+PB645ppaz+FtgaH3LNjHFhhERERE1BLcHBqKcLUabgCiLEOUZahVKhSJIiRJQoxO19hDvAQTzERERER0CZent7LN7Q6on5tblpFrtWKTIGBXcTFEn2rlW8PDMdlkwiijUalSrkrvqCj0joqq8TxsgUFERERELdlkkwmv/v47SmUZZzzFGqIsQ3S7Ea5WI8FgaOQRXooJZiIiIiJSlHqSyna3O6Bq5T8qKpBRWIiPBAF/OJ3K9kiNBmNjYzHJZEKXsLDLGhNbYBARERFRS+eUJNg9sfjzN9yAB0+dUuJxFSpnA74TF4fwJlhkwQQzERERUSsnShJsdVh92iVJ2F1cjDRBwD6r1e/xd0ZEYLLJhGEGA0Iuo22FCkCQSqVUKwezBQYRERERtTDVLZ59W2Qk9t52GxKOH8d5pxNtdTps7dGjSSaXASaYiYiIiFqtMk8wawuwWvnX8nKkCwI2CwLMoqhsjw0KwnhPtXKHkJDLGpMGlYv96TUahGk0l/RpJiIiIiJq7io81cologgRqLLAI1yjQbRWi/NOJ6K12iabXAaYYCYiIiJqVdyyDJsnmK0IoFq5XJKww2LBJkHAVzabsl0NoH9UFCa3aYMBUVEIusxq5VC1GpFsgUFERERELZTkWTy7xFOtXFsc3pwwwUxERETUCjh8qpXdATz+ZFkZ0gsKsMVsRon7whH/o9NhosmEibGxuDY4uN7jYQsMIiIiImoNyn3icLH2hzdLTDATERERtVBuWVam3pUHUK1sd7uRbTYjXRBwvLRU2R6kUmFwdDSSTSb0iYq6rApjtsAgIiIiopaurnF4c8cEMxEREVELU+6ZehdItbIsyzhmtyNdELDNYkGZdKEb840hIUg2mTAuNhbGoKB6j8fbAsNbrcwWGERERETUEtV11mBLwQQzERERUQsgeaokrAFWSRS5XNjiqVb+yeFQtgerVBhpMGBymzb4s15f7wpjtsAgIiIiotZAlCTYPQUegaxx0txYRRGfWiz42m6v9jFMMBMRERE1Y96ebiUBVElIsoyDNhs2FRTg06IiOOUL4e8tYWFINpmQZDQiUlv/EFGDyhWvI9gCo1aSJGHevHn48ccfodPpsHDhQtxwww1+j7FYLEhJSUFmZiaCg4Nhs9nw97//HQ6HA0FBQVi6dClMJlMjvQIiIiKi1qvMp1pZqv3hzUqZ243dxcXIMpux12qFy3PfML6axzPBTERERNTMeFegtooiHAGsQF3gdGJzYSE2CQJ+q6hQtoer1UiKjUWyyYRuYWGXVa3MFhh1t3PnTjidTmzcuBHHjh3D4sWLsXr1amX/3r178corr6CwsFDZlpGRgbi4ODz99NNIS0vDu+++i9TU1MYYPhEREVGr45IkJansbGHVyk5JQq7ViiyLBTlFRX6t88LUagyJian2WCaYiYiIiJqJCklS2mDUtgK1KMvYW1yMdEHA58XFftXNPfV6JJtMGGkwIEyjqddYfFtghGs0CKnn87RmR44cQf/+/QEA8fHxOHHihN9+tVqNtWvXYuLEicq2uLg4/PLLLwAAu90O7WVUmxMRERFR7WRPcYdNFFEqSS2qWlmSZRyy2ZBtNmOHxYJi94W7hiCVCv2jopBkNGJgdDT0Gg2eruZ5GJESERERNWHegLZEFFEWQEB7pqICmwQBGYKAfJdL2R6t1WKc0YjkNm3QKTS03uNRA9BrNNB7EstsgVF/drsder1e+Vmj0UAURSVp3Ldv30uOiYmJQW5uLhISEmC1WrF+/foGGy8RERFRa+L0qVZ2taBqZVmWcaK0FNkWC7LNZhT43DOoAPSKjESi0YjhMTGICrCYocESzPXpMed2u/HSSy/hxIkTcDqdePzxxzFo0KCGGjIRERFRo/FOvysJIKB1ShJ2FhVhkyBgf0mJ32P7REYi2WTC0JgY6Oq50J4KQIhKhUitFuEaDbRcsO+K0Ov1KC0tVX6WJKnWiuRVq1bhoYceQkpKCk6ePInHH38cmZmZV3uoRERERK2CJMuwe6qVHS2sWvm0w4FssxnZZjN+9WmbBwC3hocj0WjEKIMBbXS6Oj93gyWY69Nj7pNPPoEoivjwww+Rn5+Pbdu2NdRwiYiIiBpFmada2R7AYiGnHQ5sEgRsLixEkXihaUaboCBMiI3FJJMJ14WE1GscbIFx9fXs2RO7d+9GQkICjh07hri4uFqPiYyMREREBADAaDT6JaiJiIiIqH7K3W7YPXF4ba3ompNzFRXItliQZTbjh7Iyv32dQkORaDRitMGA6+t5z+DVYAnm+vSY27dvH+Li4jBjxgzIsoznnnuuoYZLRERE1GDcslxZrSyKqKilWtnhdmO7xYI0QcBRu13ZrgEwIDoaySYT7o6OhraerSvYAqPhDBs2DLm5uUhJSYEsy1i0aBHWrl2L66+/HkOGDKnymFmzZmHu3LnYsGEDRFHEggULGnjURERERC2DW5ZR6pkxGMjC2c2FxeXCdosF2RYLDttsfvva6XRIMBqRaDSic2joFYv1GyzBXJ8ec0VFRcjLy8Pbb7+NQ4cOYc6cOewzR0RERC1GuadKwuZ2+y3CV5XvSkuRLgjINJth91l8o31wMJJNJoyPjUXbekxnAy60wIjQaqFnC4wGo1arMX/+fL9tHTt2vORxOTk5yp/btm2LNWvWXPWxEREREbVUDk8LjEBi8ObC7nZjZ1ERss1m5Fqtfq/LoNUiwWDAaKMRt+n1V6WApMESzPXpMRcdHY2BAwdCpVLhzjvvxK+//nqVR0lERER0dUmyDLsowiqKKK+lWtkmisg0m5EuCPjeZ0pbkEqF4TExSDaZ0CsyEup6BIkqVAaC3qQyW2AQERERUUslSpLSAqO2GYPNRYUkYU9xMbIsFuwuKkKFfOFV6TUaDIuJQaLRiLsiI+s9uzFQDZZgrk+PuT//+c/44osvMGLECJw8eRLXXnttA4yUiIiI6Mqr8C7aV0tfN1mWccRuxyZBwDaLBeXShU7MnUJDkWwyYYzRCENQUL3GoQYQrlYjwrNgH1tgEBEREVFLJMsySj3VyqUtZME+UZZxsKQEWWYzPi0q8pvZqFOpMCg6GolGIwZERyO4AWclNliCuT495iZPnowXXngBkydPhizLePHFFxtquERERESXTfasQl0SwCrUFpcLHxcWIl0Q8Et5ubI9VK3GKIMBk00mxNdzShtbYBARERFRa1EhSbB7WmC4Wki1ssPtxsK8PGw1m2H2WdxbA6B3VBSSjEYMjYmBvpFmJTZYgrk+PeZ0Oh1eeumlqz42IiIioivJ5a1WriWolWQZB0pKkCYI2FVUBJfPtLbu4eFINpmQaDTWK1BUoTLgjGQLDCIiIiJq4bxt6FrSgn0/lpVBcDoBAHkVFViXn6/s66nXI9FoxEiDAcZ6zmy8khoswUxERETU0pV6KiXsbneN1crnnU5kCAI2CQLOeoJGAIjQaDDGaESyyYRbwsPrNQZvCwy9J7HMFhhERERE1FK1tAX7fi8vR7bFgiyzGT85HH77uoSFIdFoRILBgHbBwY00wqoxwUxERER0GURJgs3TBsNZQ7WyKMv4vLgYmwQBXxQX+yWgb4+IQLLJhBExMQitZ7VysEqlVCuzBQYRERERtVTe+NvWQhbsE5xObLNYkG0241hpqd++YJUKFbKMrmFh2Ny9eyONsHZMMBMRERHVQ5knqVxbtfJv5eXYJAjIKCyE4HIp2w1aLcbHxmKSyYSbQkPrfH62wCAiIiKi1qKlLdhXIor4tKgI2WYzviwp8Xs9bYKCkGAwYLTRCLsoYm1+Ph645ppGG2sgmGAmIiIiClCg1coVkoTPioqQLgj4sqRE2a4C0DcqCpNNJgyKjoauHpXGbIFBRERERK1FS1qwz+F2Y3dxMbItFnxRXOy3/kqURoPhBgMSjUbcEREBjU+M3yc6ujGGWydMMBMRERHVosynt1tN1RKnysqQLgjYUliIYveFLnDX6HSYGBuLiSZTvfqleVtgRHiSykFsgUFERERELVRLWrDPJUnYX1KCTLMZu4qKUCZduJsIVasxJDoao41G9IuKqlfxSVPBBDMRERFRFQKtVi51u7HVYsGmggK/nmlalQqDoqORbDKhX1SUXxVCoLSoXPgvQqtlCwwiIiIiatFayoJ9kizjiM2GTLMZO4qKUCyKyr4glQr9oqKQaDRicHQ0wlpIjM8EMxEREZGPQKqVZVnG8dJSpAsCssxmv0qEG4KDMclkwvjYWJh0ujqfXw0gTK1GhFaLcI0GarbAICIiIqIWqqUs2CfLMr4vK0OW2YytFgvOO53KPhWAOyMikGg0YrjBgGhty0vHtrxXRERERFRHgVYrW0URmWYz0goK8KPDoWzXqVQYYTAg2WTCnRERde6LzBYYRERERNRaeBfss3v+a84L9v2fw4FsiwWZZjN+LS/329cjPByJRiNGGQxoW4/Ck+aECWYiIiJqtQKtVj5ksyFNELDDYoHTZzGOuNBQTDaZMCY2FlH1qETQAIjUaKDXahHaQqbHERERERFVpaUs2Hfe6cRWsxlZZjO+Kyvz23dTSAgSjUaMNhrRISSkkUbY8JhgJiIiolYl0GrlQpcLmwsLsamgAL9WVCjbw9RqJBqNSDaZ0CM8vM7VympULugRyRYYRERERNTCSZ5q5RJRhEOSmm21cpHLhR1FRcgym3HYZvO7h/gfnQ4JRiMSDQZ0CQur8/1BS8AEMxEREbUKgVQru2UZ+6xWpAsCdhcXQ/SpVo4PD8ekNm2QYDAgvI7VxipUttHQexbsa84rRBMRERER1abc0/6iRBQh1v7wJqnU7cYuT1I5t6TE794gRqvFKIMBo41G9NTrW33RCBPMRERE1GKJkqQEtjUtGnK2ogIZgoCPCgtxzmdBjmiNBkmxsUg2mdA5LKzO59cASlK5pawQTURERERUFUmWYRdFlLjdcEhSs2yB4ZQk7LFakWU2Y3dxMcp9FvMOU6sxPCYGo41G9I6M5LopPphgJiIiohbH4Ukq291uuKt5jFOSsLu4GGmCgFyr1S8AvisyEskmE4bFxCC4joGjGkCIWo1IjQbhWi00rbyagYiIiIhatnLPTMGSGmLvpswty/iqpASZZjM+KypCifvCq9CpVBgQHY1EoxEDo6MRwqRylZhgJiIiohbB7amYsNZSrfyLw4FNgoCPCwthFi9M2DMFBWFCbCwmmky4oY4Lcvi2wNBrtXVOShMRERERNSfe2LtEFFHeDBfsk2UZ35aWItNsxnaLBYLLpexTA+gTGYnRRiOGxcQgoh6LebdENZXN8B0iIiKiZi2QiolyScJ2iwXpgoDDNpuyXQ3g7qgoJLdpgwFRUXWe5qYBEOFJKrMFBhERERG1dA6fdU2aY7XyT2VlyLJYkG0243efhbwB4Da9HolGI0YaDIgNCmqkETYdKlTeL4VrNAjXaBBaw70SE8xERETU7ATa3+1kWRnSCgqwxWyGzWeqWzudDhNNJkw0mXCNTlenc6sBhKrViNRqEa7RtPoFPYiIiIioZXPLcmVBRy0zBZuqMxUV2Go2I9NsximHw29f59BQJBqNSDAa0T44uJFG2HSoUJks1ms0CNVoEBbg/Q4TzERERNRsBLIatd3tRrbZjDRBwInSUmV7kEqFwdHRmNymDfpERtYpMextgeGtVtaxBQYRERERtXBlnmrlmtY1aaoKXS5sM5uRbbHga7vdb991wcEYbTQi0WDAzfVYyLul8W33F6bRIESthqqORTRMMBMREVGTJssybJ7gtqyaamVZlnHMbke6IGCrxQKHz2rPN4aEYLLJhLGxsTDWcaobW2AQERERUWsiSpISeze3amWbKOKzoiJkmc04UFICyWefKSgIowwGJBqNuDU8vM4J1JbGuzB5uCepfLlryDDBTERERE2SU5Jg8yzaV121cpHLhU/MZmwSBPzkM90tRK3GKIMBk0wm/Fmvr1MA6W2BEaHRIFyrhaaVB59ERERE1PKVevoq291uv8RsU1cuSdhdXIxssxlfFBfDKV9IiUdqNBhuMCDRYMCdkZGtPq5XAwjzSSrXdf2ZmjDBTERERE2GLMso9bTAKJOkKoNbSZZxsKQE6YKAT4uK4PIJIruGhWGSyYQkoxGRdVjt2XdaWARbYBARERFRK+DyFHTY3G44m1G1skuSsL+kBNlmM3YWFaHUZ/ZiiFqNQdHRSDQacXdUVKuO672L9HlbX4RpNFctyc4EMxERETU6b3Bb4nbDVU1wm+90YnNhITYJgt+Kz3qNBolGIyabTOgWHl6n87IFBhERERG1Jt6CDpsoorSago6mSJJlHLXbkWU2Y7vFgiLxwhxHrUqFfpGRGG00YkhMDMJbcVyvQuXaM+FqtZJUboh2IEwwExERUaOpbSqeKMvYU1yMdEHAF8XFfouL9NTrkWwyYaTBUKfkMFtgEBEREVFrUyFJsHti7+oKOpoaWZZxsqwMmWYztlosOOd0KvtUAO6IiMBooxEjYmIQU8e1VloSFYBglQrhGg3CNRqENEKCnQlmIiIialDehUNKRLHaqXi/V1RgkyAgQxBQ4HIp26O1WoyPjcUkkwmdQkMDPqf3m3xvtfLlLmJBRERERNTUST7t5xzNqFr51/JyZJnNyDab8Ut5ud++bmFhSDQakWA04hqdrpFG2Pi8RTPhGg1Cr8AifZeLCWYiIiJqEGWeqXi2aqqVnZKEnUVFSBcE7C8p8dvXNzISk0wmDI2JqVMfNW/PsYgGnB5GRERERNSYHG437J72c+7aH94k5Dud2Go2I8tiwYnSUr99N4aEINFoxGiDATfWocikJfH2U/ZWKYeq1dA2oaIZJpiJiIjoqnHLcmVvZVFERTXVyj87HEgvKMDHZjOKfXqptQkKwkSTCRNNJlwXHBzwOVUAQlQqRGi10Gs0TSrwIiIiIiK6GlySBLunoKO6uLupKRZF7LBYkGU245DN5jfma3Q6JBgMSDIacUtYWKssFGmsfsr1wQQzERERXXHlnql4tmqqJsrcbmy3WJAmCPjable2awAMjI5GssmE/tHR0NYhgNKicsG+CK22UfqOERERERE1JFmWYfdUKzeXBftK3W7kFBUh22LBPqsVLvlCWjlaq8VIT1K5p14PdRNNpl5NKgA6lQp6T0I5RK1uskllXw2WYJYkCfPmzcOPP/4InU6HhQsX4oYbbvB7jMViQUpKCjIzMxHsU6l0+vRpTJ48Gfv37/fbTkRERE2HJMuwiyKsoojyKqomZFnGd2VlSCsoQJbZjFLpQgh8XXAwkk0mjI+NRZs69FJTAwhTqxGh1SJco2mVQSgRERERtS7lnkWyS0QRbqDJVys7JQl7rVZkm83IKS6Gw+c+IEytxtCYGCQajegTGYmgVjj7UI0Li/SFNdIifZerwRLMO3fuhNPpxMaNG3Hs2DEsXrwYq1evVvbv3bsXr7zyCgoLC/2Os9vtePnll6FrxY27iYiImjJvgGv1BLgXKxFFZJrNSBcE/FBWpmwPUqkwIiYGk9q0Qa+IiICTw77f6kdotXXqyUxERERE1By5PcUcJdUUczQ1blnGVzYbss1mfGqxwOq+cKcQpFJhQHQ0RhsMGBQdjdBmmFC9XN5CGW9Subkn1hsswXzkyBH0798fABAfH48TJ0747Ver1Vi7di0mTpyobJNlGc899xyefPJJzJw5s6GGSkRERLXwXZG6TJKqrFY+YrcjraAA2y0WVPhMfbs5NBTJJhPGGI2ICQoK+JwaQEkqhzaTqWJERERERJfDu1C2vRks2CfLMo6XliLLbMZWiwWCy6XsUwO4KzISo41GDI+JQaS2dXXtvXiRvjCNBpoWdD/TYJ+m3W6HXq9XftZoNBBFEVrPBdW3b99Ljlm1ahUGDBiALl26NNQwiYiIqAYVkqS0wRCr2G9xubC5sBDpgoD/Ky9Xtoeq1UgwGDC5TRv8KTw84OSw2nNshEaDcK22RQVhRERERERVcXpibpvbDWczqFb+2eFAltmMbLMZv1VU+O2LDw/HaKMRowwGmFpZd4KLF+kLbcEt/RoswazX61FaWqr8LEmSklyuzpYtW3DNNdfgo48+giAIeOCBB7B+/fqrPVQiIiLy4V08pEQU4ahi8RBJlrG/pARpBQXIKS72W6ijR3g4kk0mjDYaoQ9w6ps3EIvQaKDXahHczKeLERERERHVxjtD0OaZIdjUF+w7W1GBbLMZ2RYLTvq0wQOAuNBQjDYaMdpgwHUhIY00wsahwkX9lFvJzMsGSzD37NkTu3fvRkJCAo4dO4a4uLhaj/nss8+UPw8ePBjvvffe1RwiERER+XBKEmyeyglXFZUT551OfCQI+EgQcNbpVLZHajQYYzQiuU0bdAkLC/h8GlROGYvwBGOtIRAjIiIiotbNd8G+qmYINiVmlwvbLRZkmc04arf77Wun0yHRaMRooxGd63AP0BJ4Z12Ge6qUW2OBTIMlmIcNG4bc3FykpKRAlmUsWrQIa9euxfXXX48hQ4Y01DCIiIioBt5q5eoqJ1yShC+sVqQXFGCP1eq3/46ICCSbTBhhMCAkwKBKBSBEpUKkVotwjQbaVhiMEREREVHr0pwW7LO73fjMk1Q+UFLi1wc6NigIowwGJBqNdWqD19z59lMO87S/aO33MQ2WYFar1Zg/f77fto4dO17yuJycnCqPr247ERERXb7aqpXzysuxSRCwubDQb7EOo1aL8SYTJsXG4sbQ0IDOpUJltXKkVgu9RoOQVrhqNBERERG1LrIso8xTrdzUF+wrlyR8XlyMbLMZnxcXw+nTAi9Co8GwmBgkGY24MzIS2laUVPb2Uw71zLhsqf2U66N1LdlIREREitqqlSskCZ9aLEgXBBy02ZTtKgD9o6KQbDJhYHQ0dAF+W68GEK5WQ+9JLLeWCgciIiIiar2ay4J9LknCgZISZJvN+KyoCKXShbuDYJUKgzxJ5f5RUa2mBURr7adcH0wwExERtTK1VSv/WFaGdEHAlsJCWN0Xaiuu1ekwyWTChNhY/E9wcEDn8gZlEZ6kclArCUaJiIiIqPWSPIUc9ia+YJ8kyzhqtyPbbMY2iwVF4oUu0BoAfaOikGg0YkhMTMALdjd37KdcP0wwExERtQK1VSvb3W5sM5uRLgj4prRU2a5VqTA4OhrJJhP6/v3txQAAIABJREFURkVBE+A39lpUTp/Ta7UIbSXBKBERERG1bs1hwT5ZlnGyrAxZFgu2ms34w2exbgC4PSICiUYjRsTEwBAU1EijbDi+/ZTDNRqEqtWtvp9yfTDBTERE1IJ5q5W9Qa5vtbIsy/i2tBTpgoBssxllPtPgOgQHY1KbNhgfG4vYAANLNYAwtRoRngX72JOMiIiIiFo6tyxXzg5s4gv25ZWXI8tsRrbZjNPl5X77uoaFIdFoRILBgGsDnKnYnLGf8pXHBDMREVELU1u1crEoIrOwEGmCgFMOh7I9WKXCCIMBk00m3B4REVB/MbbAICIiIqLWprks2JfvdGKbxYIssxnHfWYpApUFJaONRiQajbgpwMW6mzP2U766mGAmIiJqIWrqrSzLMg7abEgXBHxqsfitBN0lLAyTTSYkGo2I0tYeGqhQ2ZMt0pNUDmELDCIiIiJqBWpby6QpKBZFfGqxINNsxiGbzW+MbYOCMNpoxGijEd3Cwlp8gpX9lBsOE8xERETNmCzLKPVUK5dWUa0sOJ3YXFiITYKAvIoKZXuYWo0koxHJJhO6h4cHFFyqAeg1Gug9/claekBKRERERCT5xNtNdcG+MrcbOcXFyDKbsc9qhcunmCRao8EIgwGJRiNuj4ho0a0g2E+58TDBTERE1Ay5vL2Vq6iecMsy9lmtSBME7C4q8puyd5tej0kmE0YZDAgPoPLYO5XMW63MAI2I/j97dx8kR13nD/w93T2zO487M729gkiiBiKoIAmCQAgQQoBkNwgku7/IlVWUXHmlpWVdKMSzDs1RCGhVTurKkpMqL1d61kE2ESS74SkmBIicYnAPopcoURRQ2J7umZ3nh374/bE9k55kNsk+zc7svl9V1mWnZ2e/Vp3hsx/e38+HiIhoISg6TeWMabbkwr6yZeGlsTEMaxp+nkqh4NqnEhAErI7F0CfLuCISgW8e1/DuecoBJ6k8n5vorYoNZiIiojZRnfWWniCt/E6phJ2qip2JBN51bYOOiiI+3d2NjYqCpYHAaf0sCUBYFBGWJI7AIJollmVhy5YtOHLkCHw+H+677z4sXry47j26rmPTpk3YtWsXOjo6YJomHnjgARw6dAjlchlf/vKXsWrVqjn6b0BERDS/GJZV22XSigv7TNvGK5kMhjUNz+g6xsxjURKvx4OrurrQJ8u4JhpFYB7X8O55ykGO7GsJbDATERG1OMOykHbSE+XjCt2yZWFfKoXtqooDY2N1zy6LRNCvKFgTi53WvDEB42mHsCQhyH/zTzTr9uzZg3K5jMceewwjIyN48MEH8fDDD9eev/jii9i6dSsSiUTttZ/97GcwDAOPPvoo3nvvPTz11FNzcXQiIqJ5Je80lVtxYZ9t23g9l8OwpmG3rmO0Uqk98wD4VCSCPlnG9bHYae1TaVfuecoBUZzXqex2NH//P4+IiKjNVdPKWdM8Ia38x0IBg6qKJxIJ6MaxS3uK14tbu7uxQVGwuLPzlD/DA8Dn8SAsighJEgs1oiY6ePAgVq5cCQC46KKLcOjQobrngiBg27Zt2LBhQ+21l156CUuXLsXnP/952LaNe+65p6lnJiIimi8My0LGqbePD3G0gqOFAoY0DcOaVrdLBQA+EQyiV5axNh5Hj883RyecXZyn3F7YYCYiImoh1Wt5Yw0K3YJp4plkEoOqil9nMrXXBQBXdXWhv6cHV3d1wXsahZeI8YV9YUmCXxC4sI9oDmSzWYRCodrXoijCMAxITvpoxYoVJ3xPMpnEn//8Z/zgBz/AK6+8gn/6p3/CT37yk6admYiIqJ1VR85lTLNhiGOu/bVUwrCuY0jTcDifr3t2jt+PXmdZ36LTCJK0I85Tbl9sMBMREbWAgiutfPy1vP/L5TCoqnhS05BxzVk7y+fDRkXBrYqCM04jueDB+LWyalpZZLFGNKdCoRByuVzta8uyas3liUSjUVxzzTXweDy49NJL8eabb87yKYmIiNpfdUF2o5Fzc02vVPCU01R+NZute3aWz4deWUavLOMjfv+8DIUIGL9RyXnK7Y0NZiIiojli2jYyhoG0YaB0XKGbNU0MaRoGVRWHXA0or8eD62Ix9CsKLo9ETvlv9KspgGpT+XRmMRNRcyxfvhz79u3DunXrMDIygqVLl57yey6++GLs378fN9xwAw4fPowzzzyzCSclIiJqP62cVs6aJvYkk9ilaXh5bKwuYBKXJKyLx9Ery1gWCs3bpjLnKc8vbDATERE1WdFJK2eOSyvbto3fZLMYVFU8pesoWMfK4A93dqJfUXBzdzfiXu8pf4aI8XllYadom4+FKVG7W7NmDQ4cOIBNmzbBtm3cf//92LZtGxYtWoTVq1c3/J6BgQF885vfxMDAAGzbxr/8y780+dREREStrVXTyiXLwv5UCkOahudTKZTsYycLiSKuj8XQK8u4LBKBNM9qd85Tnv/YYCYiImoC07aRddLKxeMKXb1SwZNOWvmNQqH2eqcgYF08jo2KguWnkV7wAOj0eBCRJARFkUUbUYsTBAH33ntv3WtLliw54X179+6t/dnn8+GBBx6Y9bMRERG1E9u2kTNNZAwDOctqmbSyYdv4n3QaQ5qG55JJZF3j7nweD1ZFo+iTZVwdjc67m4acp7ywsMFMREQ0i4pOoZs+Lq1sOcXmoKriuWQSFVeC4WOBAPp7etAXjyN8inmsHoynlSOShBBnlhERERHRAlKyLGSdtHKlRdLK1VuJQ5qGp3UdmmHUnokArujqQp8s47pYDKF5VrsLADo8HgQ4T3nBYYOZiIhohlnVtLJpomBZdYXue+UyfppIYIeq4u1SqfZ6SBRxkyxjo6LgY8HgKX+GACAoCAg7aWWOwCAiIiKihcBdaxdbJK1s2zaOFAoY0jTs1jS8Uy7XPb84FEKvLGNtPH5a4+7aiQAg4KSUOU954WKDmYiIaIZMlFY2bBv7UykMqir2p1J1RfDFoRAGenpwQywG/yn+Db8H44mAsJNW9rJ4IyIiIqIFouDU2sfvMZlLfykWMazrGNK0ulF3AHB+IIBeWUZvPI73d3TM0QlnXvUGZXVBX0AUITLssuCxwUxERDQNpm0jZxgYazBb+a1iETtUFTsTCaiVSu31mCThlu5ubFQULPH7T/kzRAARUURIkk7ZhCYiIiIimi8qloWs01gutcgIjNFyGbt1HcOahtdyubpnizs60CvL6JPl06rz24UH4zOjQ84sZb8g8AYl1WGDmYiIaAomSiuXLQvPJZMYVFW8nE7XXvcAWBGJYGNPD1ZHo6e8OiYA8AtCbWEfF2IQERER0UJg2zaypolsCy3sGzMMPJtMYkjT8Kt0uu5MiteL3ngcvbKMC4LBedN4FTC+dLyaVJ5vSwhpZrHBTEREdJpONlv5D/k8BlUVP0skkHJth36f14sNioINioIPnOJqXHXTclgUEZYkzi8jIiIiogWjaJrImibShgETmPO0ct40sS+VwpCm4cWxsbql3F2iiBucpvIl4fC8GBHhwbF5ytWmssTfR+g0scFMRER0Cu5i13C9njdN7NZ17FBV/Cabrb0uArgmGkW/omBlNArpFAWniPElfyGnkJsvqQciIiIiopMxqwGOBuPm5kLZsnBgbAxDuo69ySTy1rGssl8QsDoaRa8s48qurnkRBqnOUw655inz5iRNBRvMREREDVi2jZzTVM670sq2beNQLodBVcWQpiHnKjoXdXSgX1Fwc3c3eny+k36+B0Cnx4OIJCEkSfMi9UBEREREdDryzri5bAss7LNsG69kMhjWNDyj63W3Eb0eD67s6kKfLOPaaBSBebAPpTpPuZpS5jxlmglsMBMREbmULAtZZ2mfO62cNgzs0jRsV1Uczudrr3s9HtwQi6G/pweXhsOn/Df+EjDeVBZFdM6DApWIiIiI6HSUnTo7Y5ooz3Fa2bZt/Dafx5CmYbem4T3XQm4PgEvDYfTJMq6PxxGV2r91JgDocDWV+XsIzbT2/18JERHRNFUXiWSctLLlev1gNovto6N4WtdRcs1dW+r3o19RsF6WEfN6T/r51VlmYaexzIQAERERES0ElmthX74FFvYdLRQwrGkY1jS8WSrVPbsgGESfLGNtPI73neI2Yjuo/g5SHX0xH0Z6UOtqWoPZsixs2bIFR44cgc/nw3333YfFixfXvUfXdWzatAm7du1CR0cHMpkM7rrrLmSzWVQqFXzta1/DsmXLmnVkIiKa58qWhYyToqi4UhRapYLHEwkMqireLBZr7w8IAtbJMvoVBZ84xYbo6sK+iCgixIV9RERERLSATLTDZC78rVTCsK5jWNPwO9dNRAD4cGcn+mQZfbKMxZ2dc3TCmVFd0hcSRfhFEUFR5Bg+apqmNZj37NmDcrmMxx57DCMjI3jwwQfx8MMP156/+OKL2Lp1KxKJRO21bdu24bLLLsPtt9+OP/7xj7jzzjvx+OOPN+vIREQ0D9nObOWMYSDnSlGYto0DY2PYoar4eSoFw5VWvjAYxEZFQa8sI3SK62Rc2EdEREREC5Fp2+PhjRZY2KdXKnha1zGs6/h1JlP37EyfD72yjL54HOcFAm1dr1dDLSFnljJ//6C50rQG88GDB7Fy5UoAwEUXXYRDhw7VPRcEAdu2bcOGDRtqr91+++3wOdcSTNNER0dHs45LRETzzERp5b+VStiZSGCnquKv5XLt/RFRxKe7u7FRUXBeIHDSz+bCPiIiIiJaiGzbRt5JK8/1wr6saWJPMolhTcOBsbG6s8QkCWvjcfTKMpaHQqfcm9LKOE+ZWlHTGszZbBahUKj2tSiKMAwDkjMsfcWKFSd8TyQSAQCoqoq77roLX//615tzWCIimheqaeX0cTPfKpaF51MpbFdVvDg2VpeuuDQcRr+i4Pp4HJ0nGWvhwXhamQv7iIiIiGihaZWFfSXLwgupFIZ0HfuSybqdKUFBwJpYDL2yjMsjEXjbeGQd5ylTq2tagzkUCiGXy9W+tiyr1lw+mSNHjmDz5s346le/iksvvXQ2j0hERPPERGnlN4tF7FBVPJ5IIOHaFN3t9eKW7m5s6O7Gh/z+k362gPFiNcSFfURERES0gFiu8EZhDhf2GbaNX6bTGNI0PJdMImMeyyr7PB5cE42iV5ZxTTR60sBIK3PPU642lXlLklpZ0xrMy5cvx759+7Bu3TqMjIxg6dKlp/yeN954A1/5ylfw0EMP4bzzzmvCKYmIqF1NNFu5aFl4VtcxqKr4lWv+mgBgZVcX+hUF10SjJ000eDBerFbTyu2cfiAiIiIimoyCU2Nn5nAEhm3bGMlmMazreErX68IiIoDLIxH0yTKui8UQPo0wYytyz1MOODOVGWahdtG0/9WtWbMGBw4cwKZNm2DbNu6//35s27YNixYtwurVqxt+z9atW1Eul/Gtb30LwHgK2r0YkIiIqOKkldPHpZUP5/MYHB3Fk5qGtCvV8H6fDxsUBRu6u3HmKWb7iwDCooiwJMHPERhEREREtEBUXDcC53IExu/zeQxpGoZ1HW+XSnXPloVC6JNl3BiPo9vrnaMTTg/nKdN80bQGsyAIuPfee+teW7JkyQnv27t3b+3PbCYTEVEj1WUiGWeZSDWtnDVN7NY0bFdVvO4ayyR5PFgdjaJfUXBFV9dJr5d5APgFAWFR5MI+IiIiIlowLNseX9Z33P6SZnurVMKwpmFY0/D7QqHu2Uf8fvTJMtbJMj5wirBIq6rOUw6KIvycp0zzRHveGyAiogWpUVrZtm38by6HQVXFbk1D3jpWCn+wsxMDioKbu7shnyLVIIEL+4iIiIho4Sk4TeWMacKYozOo5TKe0nUMaxpGXEERADi7owO9soy+eBznBgJzdMKp4zxlWgjYYCYiopY20WzlZKWCJzUNO1S1LtnQ4fHgxngc/YqCT4bDJ51bVk0PhLmwj4iIiIgWkIplIevU2KU5GoGRNgw8m0xiWNPwP+l0XWJa8XqxNh7HelnGBcFg29Xp1R0uQc5TpgWCDWYiImpJZdfct2pa2bJt/DKTwY7RUTyTTKJiHyuFzwsEMKAoWC/LiJxksUd1eUZ1tjKvpBERERHRQmC5ghtzNQKjYJrYl0phWNexP5Wqq+cjoojr43H0yTIuDYfbLuXLecq0kLHBTERELaNa9KYNAwVX0TtaLuPxRAI7VBV/cS33CAgC1ssy+hUFHz9FsqF6LS0kiggyrUxEREREC0TRaSrP1QiMimXhF+k0hjQNe5LJupF2nYKAa6NR9MoyrurqaqvwR3X0RUAQaqMvvG10fqKZxAYzERHNuaKzrC9tGLWi17RtvDQ2hu2qin3JJEzX+5eFQuhXFNwYjyN4kmSAB+MpgupsZYkFHxEREREtAIZlITOHIzAs28bBTAZDuo6ndR0p41hrW/J4cGUkgj5ZxrWx2Enr+VbjwXgjLeiapywwuELEBjMREc0N07aRcxb2FSyrVvS+XSphp6pip6rivUql9v6oJOFmWcZGRTnlcg8JqI3A4NU0IiIiIloIJtpd0syf/7t8HkOaht26jnfL5dozD4BLwmH0yjJuiMUQO8UC7lYioH6ecifnKROdgA1mIiJqquoVvbRp1lLJZcvCz1Mp7BgdxYF0ui5hcXkkggFFwXWx2EmvzLkX9gWZJCAiIiKiBcJ9G9AEmp5W/lOhgGFdx5Cm4U/FYt2zjwUCWC/LWCfLeJ/P1+STTZ0AwC8ItaZyO43uIJoLbDATEdGsM20bWcNA2jBQdF3RO1ooYIeq4olEArrr2pzi9WJDdzc2KgrO7uyc8HOr25nDoogQF/YRERER0QIxUX3dLO+Wy9itaRjSNPw2n6979sHOTqyXZfTG4/iQ39/kk02NB4CI8dEXfmdnS7stGSSaS2wwExHRrGmUVi6YJp7WdQyqKg5ms7X3CgCujkbRryi4OhqFdJKCTsT4wr6wJCHAERhEREREtADYto28k1bOuurrZklWKngmmcSQpuHXmUxdU/sMnw/r4nGsl2WcHwi0xQiJalilmlL2c/QF0ZSxwUxERDPKtu3aFb28a7by73I5bFdV7NI0ZM1j5fAHOjqwUVFwa3f3Sa/NeTB+Ta2aVmaigIiIiIgWgrJlIWMYyJgmKk1OK+dMEz9PJjGsaXgpnYZhH/vpUUnCjU5TeXko1BYj6gQAnc7oC78gcF8L0QyZcoP5e9/7Hv7rv/4LknTsI1566aUZORQREbWfauE7ZhioDrvIGAZ2aRp2qGrd1Tmvx4M1sRj6FQWXRSITFqPVLc0RZ64yC0AiamWsj4mIaKZYzsK+tGGg0OSFfWXLwgtjYxjWNOxNpVC0jv30gCDgulgMfbKMKyIReFt8RJ0Hx3a1VMdftPqZidrRlBvM+/btw/PPP4/Ok8zGJCKi+a3RpmrbtvFqNotBVcVTul5XkC7p7MRATw9ukmXET7I5WgAQdC3s41U1ImoHrI+JiGi6Go2YawbTtvGrdBpDuo5ndR1p141Dr8eDa6JR9Moyrunqgr/FQx/VecohZ/RFgAvAiWbdlBvMsizXpTOIiGjhMCwLaeeaXtm5pqdXKvhZIoFBVcVR1/ZovyBgbTyOfkXBslBowmaxe2FfWJKYLCCitsP6mIiIpsK07fERGE1e2GfbNl7L5TCkaXhK16FWKrVnAoDLIhH0yjKuj8UQafF/vnkw3ggPCgKCksR5ykRNNum/ITZv3gyPx4NEIoFbbrkF5557bu1/tFu3bp3xAxIRUWuoLhXJOEtFLIxf3Xs5ncZ2VcXPk0lUXDPZPh4Mol9R0CfLCJ0k5SACtbnKXNhHRO2I9TEREU1F3kkrN3th3x/yeQzpOoY1DW+VSnXPLgoG0SfLuDEeh3KS/SitoBpQqSaVO9lUJpozk24wb9q0aTbOQURELariWipSTSu/Wy7jp6qKHaqKd8rl2nvDooj1sowBRcH5weCEn1ld2BcRRQS5sI+I2hzrYyIiOl2NautmeLtUwm5Nwy5Nw+8LhbpnS/1+9Mky1skyzu7oaNKJpqa6pC8gCONNZQZUiFrCpBvMF198MUzTxObNm/Hd734Xtm3Dsix8/vOfx49+9KPZOCMRETVZo9nKhm3j+VQKO1QV+1OpukUjnwyH0a8ouCEWm3AmW/XaWjWt3MERGEQ0T7A+JiKik7FtG1nTRNZVWzdDolLB07qOIU3Db7LZumdn+XxYL8volWUsDQSadKKpcS/pC3BJH1FLmnSDeefOnfj3f/93JBIJ3HjjjbBtG6Io4uKLL56N8xERURM1SlT8pVjEDlXFTxOJurlscUnCzd3d6FcUfNjvn/Azqws2qlfXeG2NiOYb1sdERNRI0RktlzYMmEBT0soZw8BzySSGNA0vp9N1zexurxdr43H0yTI+EQy2bF1eXdIXdC3p441HotY26QbzwMAABgYGsGPHDmzcuHE2zkRERE2Wc5rK1dnKJcvCnmQS21UV/5NO197nAbCiqwv9ioJro1H4JkgPVK+ucQQGES0ErI+JiKjKtG1kndq6YFlNaSoXLQvPp1IY0jTsT6VQdu1FCYsiro/F0CfLuDQSgdSidXl1nnK1qcwlfUTtZcprQC+55BL84Ac/QMVJs42OjuLee++dsYMREdHsMiwLGSdRUU0r/yGfx6Cq4meJBFLmsVUjZ/h82NDdjVsVBR+YYC6be8kGR2AQ0ULE+piIaOHKOyMwMk1a2FexLLycTmNY0/BcMomcdSyr3OHx4FqnqXxVV9eEoZC5JmD8rNWmMucpE7WvKTeY7777bqxatQqvvvoqenp6kM/nZ/JcREQ0S/JOU7maVs6ZJp7SdQyOjmIkl6u9TwSwKhbDgKLgyq6uCVPIIlCbqxxgUUhECxjrYyKihaViWbURGM1Y2GfZNl7NZjGsaXhK15E0jNozyePBikgEvbKM1bEYQi1al3OeMtH8NOUGc2dnJ/7hH/4Bb775Jh544AHcdtttM3kuIiKaQcenlS3bxuu5HHaoKoY0rS7xsLijAxsVBbd0d0Px+Rp+ngDALwgIcwQGEVEN62Miovmv0TLs2f55h/N57NI07NZ1/K1crnt+STiMXlnGDbEY4l7vLJ9m8jhPmWhhmHKD2bZtqKqKXC6HfD6PsbGxmTwXERFNk23byJtm3WzlMcPALk3DoKrisCtZ5/N4cEM8jn5FwaXhcMN5Zx4AXo8HYVFEWJJa9qodEdFcYX1MRDR/lSyrNgKj0oS08p+LRQxpGoY0DX8sFuuefTQQQJ8sY108jjMnGF83lzhPmWjhmXKD+Utf+hKee+45fPrTn8bq1atx8803z+S5iIhoiiqWhYxT/FbTyq9kMhhUVTyj6yi5ln4s9fvRryi4qbsbUanxPxIEACFRRNgpEFkcEhE1xvqYiGh+sZy0ctowUGhCWvm9chm7NQ1Duo5DrtF1APDBzk70xePolWV82O+f5ZNMHucpEy1s01ryd/755+Odd97Bnj17EAwGZ/JcREQ0CY2u6iUqFTyeSGDH6CjeLJVq7w0IAnplGQOKgguCwQnTyh0eDyKShJAoQmJamYjolFgfExHND0Wnrs6YJoxTv31aUoaBZ3QdQ5qGVzKZumT0+7xe9MoyemUZHwsEWi7owXnKRFQ15QbzM888g4cffhimaeLGG2+Ex+PBF7/4xZk8GxERnULZlVau2DYM28ZLY2PYoarYm0rBcKWVPxEMor+nB2vj8QmXfkhAbQQGUwdERJPD+piIqH0ZzsK+jGGgOMsjMPKmib2pFIY0DS+NjaHiqtmjoogb4nH0yTI+GQ5DaKGmMucpE9FEptxg3rZtG7Zv34477rgDX/ziF7Fhw4aTFtCWZWHLli04cuQIfD4f7rvvPixevLjuPbquY9OmTdi1axc6OjpQLBZx1113QdM0BINBfPvb30Y8Hp/qkYmI5gXbtmvFb95JK/+1VMJOVcXORKJu8UeXKOKm7m70Kwo+Egg0/Lxq8iAsSQiKYksVsURE7WSy9TEREc2t6i3ArGtnyWwpWxZeGhvDkKZhbyqFgmvJdkAQsDoWQ58s44pIpKV2nXCeMhGdjik3mAVBgM/ng8fjgcfjgf8UM4D27NmDcrmMxx57DCMjI3jwwQfx8MMP156/+OKL2Lp1KxKJRO21//7v/8bSpUvx5S9/GcPDw/j+97+Pf/7nf57qkYmI2lrRKXzThgED40XqvlQKg6qKl8bG6lIWnwqHMdDTgzWxGDoaFKhc2EdENPMmWx8TEdHcaNbCPtPZhTKsaXhG1zFmmrVnXo8HV3V1oU+WsSoahb+Fbg9ynjIRTdaUG8yf/OQnsXnzZrz33nv4xje+gQsuuOCk7z948CBWrlwJALjoootw6NChuueCIGDbtm3YsGFD3ff8/d//PQDgqquuwve///2pHpeIqC2Zto2sYSDtuqr3p0IBg6qKJxIJaMaxqXDdXi9u7e7GRkXB4s7Ohp/HhX1ERLNnsvUxERE1T7WuzpgmCpY1a01l27bxei6HIU3Dbl2HWqnUngkAPhWJoFeWcX0shq4JlmzPBc5TJqLpmPLfZps3b8YLL7yAj370o1iyZAlWrVp10vdns1mEQqHa16IowjAMSM5fqCtWrGj4PeFwGAAQDAaRyWSmelwioraSd0ZgZE0TJoCiZeEZXcegquIV19+FAoCrurrQ39ODq7u6GhaCXNhHRNQck62PpzJCruro0aMYGBjAL37xi7rXiYio3vF19Ww5Wihgl6Zht6bhz64F28D4LpReWcbaeBw9Pt8snuL0cZ4yEc2kSTeYn3jiibqvu7u7MTY2hieeeAI333zzhN8XCoWQy+VqX1uWVWsun8735HI5RCKRyR6XiKhtVFwL+8pOWvlwPo/B0VE8qWlIu67UneXzYYOi4Nbubpw5QWNBxLGFfa105Y6IaL6Zan08lRFywHgI49vf/jZ8LdKkICJqNWXXCIzyLI7AeKdUwrCmYVjXcTifr3t2jt+PPllGbzyORROttmYKAAAgAElEQVTcLmw2zlMmotky6Qbz0aNHAQAjIyPw+/1YtmwZXn/9dRiGcdICevny5di3bx/WrVuHkZERLF269JQ/a/ny5di/fz8uvPBCvPDCC7j44osne1wiopZWXdiXNQzknIV9WdPEbk3DdlXF665/Mef1eHBtNIp+RcEVXV0NEwYeAJ3VtLIkMYVARNQEU62PpzJCzrZt3HPPPdi8eTMXCBIRuVjOwj73IuzZoFUqeFrXMaRpeDWbrXt2ls+HXllGryzjI35/SzRvq7cZQ5ynTESzaNIN5jvvvBMAcMcdd+CRRx6pvf65z33upN+3Zs0aHDhwAJs2bYJt27j//vuxbds2LFq0CKtXr274PZ/5zGdw99134zOf+Qy8Xi+2bt062eMSEbWk4xeLWLaN/83lsH10FE/pOvKurdIf6uxEv6Lg5u5uyF5vw8+TcCytzKKRiKi5plofT2WE3Pe+9z1cffXVOO+882bi6EREbe/4RdizIWuaeE7XMaTreHlsrG7UhixJWBuPo1eWsSwUapmmcqeTVA5KUsOl30REM2nKM5h1XUc6nUYkEoGu60ilUid9vyAIuPfee+teW7JkyQnv27t3b+3Pfr8f//Zv/zbVIxIRtRSrurDPtVgkWangSU3DoKriD4VC7b0dHg/WxuPo7+nBxRMUqtVFHGFJQlAUIbRAMUtEtJBNtj6eygi5J598EmeccQZ27twJVVXxuc99Dj/5yU9m5PxERO2i0SLsmVayLDyfSmFY07AvlULZPvZTQqKI62Mx9MoyLotEILVAHS7ASSpLEgKiyKYyETXVlBvMX/jCF7Bx40aEQiFkMhk88MADM3kuIqJ5o+hc1Us7i0Us28YvMxnsGB3FM8kkKq5i9fxAAP2KgvWyjEiDJkN1blpYFBGSJPhYOBIRtYzJ1sdTGSH33HPP1f587bXX4j/+4z+mfW4ionZg2zbyTlp5thb2GbaNl8fGMKzreC6ZRNa1A6XD48E10Sj6ZBlXR6Mt0cAVAHQKwnhSWRT5uwERzZkpN5hTqRS8Xi+OHj2KaDSKu+++Gz//+c9n8mxERG2rUapitFzG44kEdqgq/uLaLB0UBKzv7ka/ouDjwWDDzxMxnpQIO4kEIiJqPZOtj6cyQo6IaKGZ7YV9tm3jN9kshjQNT+s6NOPYoA0RwBVdXeiTZVwXiyHUAnV4talcnanMpjIRtYIpN5gfffRRPPLII1AUZSbPQ0TU1o5PKxu2jRdTKQyqKp5PpeqSFstDIWxUFKyNxxs2jT0A/IJQSytzYR8RUWubbH08lRFyp/M6EVG7s1yLsGdjYZ9t2zhSKGBI07Bb0/BOuVz3/OJQCL2yjLXxOOIT7EBpJgHjvxdUk8peNpWJqMVMucEci8Vw1llnzeRZiIjaUqO08lulEnaqKn6qqnivUqm9NypJuKW7GxsVBef4/Sd8lgfjSYmIJCHELc9ERG2F9TER0fTM9sK+vxSLGNI0DOs63nDtPwHGR9X1yTLWxeN4f0fHLPz0yak2latJZTaViaiVTbrB/K//+q8AgHK5jDvuuAMf/ehHa8unNm/ePLOnIyJqYcenlcuWhT3JJHaoKg6k03XvXRGJYKOi4LpYrOE1NgHjozJCTmO5FbZPExHR6WF9TEQ0dYZlIevU1bOxsG+0XMZuXcewpuE112JVAFjc0YFeWUafLGNJg/BHs1WXeFeTyhKbykTUJibdYP7Qhz5U93+JiBaSRmnlo4UCBlUVTyQSSLpmtvV4vdigKNigKDi7QQrCvbAvLElMJRARtSnWx0REkzPbC/vGDAPP6jqGdB2/TKfrmtY9Xi/WxePolWVcEAzOebCj2lSuJpXZVCaidjTpBvMtt9wyG+cgImppBSdVkXEK4Lxp4mldx6Cq4tVstvY+EcA10Sj6FQUro1FIDQpWEag1lf0cgUFE1PZYHxMRnZ6Sa2FfZYbTynnTxL5UCkOahhfHxlCxj316lyjihngcfbKMT4bDc7rbxAPn9qKTUvYLApvKRNT2pjyDmYhovqte10sbBkpOAXwol8OgqmJI05A1j2Utzu7oQL+i4ObubrzP5zvhs6oz1CKShKAoQuAIDCIiIiJaAEzbRs4ZK1ec4YV9ZcvCgbExDOk69iaTyFvHPt0vCFgdjaJXlnFlV1fDMXXNUt2zUk0pB/j7ABHNM2wwExEdJ+9KK1sA0oaBXZqGHaqK3+Xztfd5PR5cH4uhv6cHnwqHTygSqyMwQk5aeS6LWiIiIiKiZpnNERiWbeOVTAbDmoZndB0pV+jD6/Hgyq4urJdlrIpGEZjD24LV3wWCTkPZLwhzPo6DiGi2sMFMRASgYlm1pnLZtmHZNg5msxgcHcXTySSKrjTEuX4/+hUFN8kyYl7vCZ9VHYERkqQ5LWqJiIiIiJpptkZg2LaNQ7kchnUduzUN71UqtWceAJeGw1gvy1gTjyMqzV2bo3prsZpS7mDAhIgWCDaYiWjBsm17PFVhGMg51/X0SgWPJxIYVFX8qVisvdcvCFgXj6NfUXBRKHRC+sDjvCciighK0pzOdSMiIiIiapbqEuyMaaJgWTM6V/looYBhTcOwpuHNUqnu2QXBIPpkGWvj8YYj6pqB85SJiMaxwUxEC87xyQrTtvGLdBrbR0exN5WqWwjy8WAQA4qCXllG6Lg0sgfjf4lGJAkhSWJCgYiIiIgWhNkcgfG3UgnDuo4hTcP/ucbTAcCSzk70yTJ6ZRmLOztn8KeePg/GR3EEnaSyn/OUiYjYYCaihcGybeSchX15J1nxbrmMnaqKnaqKd8rl2nvDooibZBn9ioLzg8ETPksAEBQEhCQJIVHkLDUiIiIiWhCKrqbyTI7A0CsVPK3rGNZ1/DqTqXv2fp8P62QZffE4zgsE5qT2rjaVw87oi07OUyYiqsMGMxHNa0VnYV/aSVZULAv7x8YwODqKF8bG6rZYXxIOY6Oi4MZ4HJ3HpZGrSzrCzsI+L9PKRERERLQAVCwLWaemLs1gUzlrmtiTTGJY03BgbKwuBR2XJKyNx9Ery1gWCs1JQvj4prKfu1WIiCbEBjMRzTvVOXBpw0DRKYL/XCxih6ri8UQCqmspSFyScEt3NzYqCj7s95/wWQKAkCjWCksmFYiIiIhovmu0q2QmlCwLL6RSGNJ17EsmUXKNpgsKAtbEYuiVZVzR1QVpjprKPo8HITaViYgmhQ1mIpo3Ck6yIuOklUuWheeSSWwfHcUvXVftPABWdHVhQFGwKhqFr0FaucPjGZ+tLIpc1EFEREREC0J1BEbaMGACM5JWNmwbv0ynMaRpeC6ZRMY8llX2eTy4JhpFnyzj6mj0hFuEzSBgvPYPVsdfsKlMRDRpbDATUVszbXu8qexKK/8+n8d2VcWTiQTGXAXsmT4fNnR341ZFwVkdHSd8lgjURmAwrUBEREREC0Gj23/TZds2RrJZDOs6dmsaNMOoPRMBXB6JoE+WcV0shrDU3LaEB+NNZb8gIOiklI8PnBAR0eSwwUxEbSnvpJWrW6tzponduo7B0VH8by5Xe5/k8eDaaBQbFQVXdnVBPO6qnQdAZzWtLEknPCciIiIimm9s2x6vp00TOaeenglH8nkMaxqGNK1uiTYALA+F0CfLuDEeh+z1ztBPPD3V0RdBUYRfEOAXxTmZ60xENF+xwUxEbcOwLGRcC0Ys28bruRwGVRVDmoa8dWw63Ac7OrCxpwc3yzIUn++Ez5KA2ggMXoMjIiIiooWgbFm1kXKVGUorv1UsYljXMaRp+EOhUPfsI34/+mQZvbLc8AbhbDo+pdzBlDIR0axhg5mIWpo7XZE1TVgAUoaBXYkEtqsqfu8qYjs8HtwQj6NfUXBJOHzCQj4PxovMLklCkKkFIiIiIloALNtGzpmrXJihhX1quYynnKay+/YgAJzd0YE+WUafLOOcBku0Z5MIIOA0lQPcpUJE1DRsMBNRS6q40hVlJ638q0wGg6qKZ3QdZdfG6Y/4/Rjo6cF6WUZXgxluTCsTERER0UJTMM3x2cozNAIjbRh4NpnEkKbhl+l0XaNa8XqxLh5HnyzjgmDwhKDHbKnOUw6KYq2pzJF3RETNxwYzEbUM20lXZAwDOSddoZbLeDyRwE5VxZulUu29AUHAelnGRkVpWMRWr8RFmFYmIiIiogXCsCxknbRyaQZGYBRME/tSKQzrOvanUqi4Qh4RUcQN8Th6ZRmXhsNNa+xWm8ohV1OZtT4R0dxig5mI5tzxs+AM28ZLY2MYVFXsS6VguArZZaEQNioK1sbjCB6XRvYA8Ho8CIsiQpLEOWtERERENO81CmlMR8Wy8It0GkOahj3JZN2ek05BwOpoFL2yjJVdXfA1qd72YHz8RdhpKAdEsWkpaSIiOjU2mIloTjSaBfdOqYSdqoqdiQTedW2djooiburuRr+iYGkgcMJnCRhPNIedMRgsNomIiIhovis6O0oyhgEDmFZa2bJtHMxkMKTreFrXkTKM2jPJ48GVkQj6ZBnXxmInhDxmSzU8EnIayn5BYJ1PRNSi2GAmoqaqFsJppxAuWxb2plIYVFUcGBurK4wvi0QwoCi4LhY7IY1cLTgjTlq5WekJIiIiIqK5Ytr2+Fxlw0BxmiMwbNvG7/J5DGkadut6XcDDA+CScBh9sozrYzHEvN5pn/10uJvKQVFEJ5vKRERtgQ1mIpp11UI4Y5ooWBZsAH8sFLBDVfF4IgHdlZBQvF7c2t2NDYqCxZ2dJ3xWdd5amFfjiIiIiGgBsG0beSekkZ2BhX1/KhQwrOvYpWl4s1ise/bxYBB98TjWyTLe5/NN8yedHg+ADo+ntqiPS7mJiNpP0xrMlmVhy5YtOHLkCHw+H+677z4sXry49nz79u149NFHIUkSvvCFL2DVqlX461//iq9+9auwbRtdXV3YunUr/H5/s45MRNNUcK7sZZxCuGhZeFrXsUNV8UomU3ufAOCqri709/Tg6q4ueBuklX0eDyLOCIzjnxMRERERzTfH7ymZTlr53XIZuzUNQ5qG3+bzdc8+1NmJPllGbzyODzXp920Bx5rKATaViYjaXtMazHv27EG5XMZjjz2GkZERPPjgg3j44YcBAKqq4sc//jF27tyJUqmE2267DStWrMB//ud/Yu3atfi7v/s7fPe738WOHTvw2c9+tllHJqIpaLS5+nA+j+2jo3hS05Axj2UuzvL5sEFRsEFRcEaDhEQ1rRyRJARYdBIRERHRPGcdd/NvOgv7kpUKnkkmMaRp+HUmU9egPsPnQ288jj5ZxvmBQFNuBQoA/IJQaypzxB0R0fzRtAbzwYMHsXLlSgDARRddhEOHDtWevfbaa1i2bBl8Ph98Ph8WLVqEw4cP4/zzz8e7774LAMhmszjjjDOadVwimqS8k1auXtvLmiaGNA2DqopDuVztfV6PB9dGoxjo6cEVkQiE44pZd1o5LIqQWHgSERER0Tx3/M2/qcqZJn6eTGJY0/BSOg3DPtZWjkoS1jpN5eWh0Al1+GwQAARdTWXW9kRE81PTGszZbBahUKj2tSiKMAwDkiQhm80iHA7XngWDwVpDeevWrRgaGkK5XMaXvvSlZh2XiE5DxZVWLts2LNvGSDaL7aqKp3QdBetY5uLDnZ3oVxTc3N2NeIMlIe7ZykGJ4+GJiIiIaH4rW1YtrVyexgiMsmXhhbExDGka9qVSKLpq8IAgYE0shl5ZxhWRyKyPmvPgWF0fcP4jcmcKEdG817QuTigUQs6VYrQsC5LTRDr+WS6XQzgcxje+8Q088MADWLlyJZ5//nncfffdeOSRR5p1ZCJqwLZt5JyERc65tqdXKnjSSSu/USjU3tspCFgbj6NfUbA8FDrh6h3TykRERES0kFhOLZ02jGmNwDBtG79Kp7FL0/BcMom0awyd1+PB1dEo+mQZq6JRdDahqez1eBAUhFpTmYu4iYgWlqY1mJcvX459+/Zh3bp1GBkZwdKlS2vPLrzwQjz00EMolUool8s4evQoli5dikgkUks29/T0IJ1ON+u4RHSc45eMmLaNX6bT2K6qeC6ZRMV1/e5jgQA2KgrWyzLCDdLITCsTERER0UKSN81aWnmqIzBs28ZruRx2aRqe1nWolUrtmQDg8kgEvbKMNbEYIrNcY3tQv6TPz30pREQLWtM6O2vWrMGBAwewadMm2LaN+++/H9u2bcOiRYuwevVqfPazn8Vtt90G27bxj//4j+jo6MA999yDe++9F5ZlwbZtfOMb32jWcYkIzpIRpxjOOwmL98pl/DSRwA5VxdulUu29IVHEellGv6LgY8HgCZ9VTSuHRRFhSZr163lERERERHOp5IzAyE5zBMYf8nkMaRqGdR1vuepvAFgWCqE3HsdaWUZ3gzF0M0nA+A3FalO5g/U8ERE5mtZgFgQB9957b91rS5Ysqf15YGAAAwMDdc/POecc/OhHP2rK+YjomKJp1mYrGwAM28YLqRS2qyr2p1J1V/mWh0IYUBTcGI83TC6408q8LkdERERE85lp28gZBtKmieI0RmC8XSphWNMwpGn4vWsEHQAs9fvRJ8tYJ8s4u6Nj+oc+CQHjc5yrTWWGRIiIqBHeTSciAE5a2SmGC5YFG8BbxSJ2JBL4qapi1HUFLyZJuKW7GxsVBUv8/hM+i2llIiIiIloobNseH4Hh/GeqIzASlQqecpLKv8lm6559oKMDffE4emUZSwOB6R96AlzSR0REU8EGM9ECV3AW9lXnwZUtC3uSSWxXVbzsmnvuAbAiEsHGnh6sjkbha9A05mxlIiIiIlooqiMwqjtKpjICI2MYeC6ZxJCm4eV0ui7x3O31Ym08jj5ZxieCwVm7CcglfURENF3sABEtQIZl1UZglJxi+I1CAYOjo3hC05AyjNp73+f14lZFwUZFwQcaXMGrppUjkoSwKEJiWpmIiIiI5inTufWXcd36m6yiZWFfKoVhTcP+VApl17LssCji+lgMfbKMT0Uis5Yertbw1aRypyCwqUxERFPGBjPRAlG9updxru5ZGN9m/ZSuY1BV667hiQCuiUYx0NODK7u6IDUoNplWJiIiIqKFYCZGYFQsCy+n0xjSNOxJJpGzjmWVOwUBq6JR9MkyrurqanhTcCZ4AHR4PAiKIoKiiM4G+1OIiIimgl0honmubFm1ERgV24Zl2/htPo/to6MY0rS64vbsjg70Kwpu6e5Gj893wmcxrUxEREREC8V0R2BYto1Xs1kMaRqe1nUkXbcEJY8HKyIR9MoyVsdiCM1Ss1eAq6ksSehg/U5ERLOADWaieciybeScERgFZ3t12jCwS9MwqKr4v3y+9l6vx4MbYjFs7OnBp8JhCA3SyiKctLIkITDHSYc9uo5/fftt3Hn22Vgdi83pWYiIiIhofjEsCznn1t9URmDYto3/y+cxpGnYrev4W7lc9/yScBi9sowbYjHEvd6ZO7iLgPFUdDWpPFuJaCIioio2mInmkaJrYZ+B8QL3YDaLwdFRPJ1MouhKK5/r96NfUXCTLCPWoLitppW7JAmhFkor/8uf/4yXxsaQMU02mImIiIho2mwnnJF1jZKbrDeLRQxpGoY1DX8sFuuefSwQQK8sY108jjMb7DSZCQIAv6up7G2R2p2IiBYGNpiJ2lx10UjaMFB0ru5plQqeSCQwqKr4k6vA9QsC1sXjGOjpmXATtYDx5SKtkFZuJONcLcy4rhgSEREREU1W0dVUnsoIjPfKZezWNAzpOg7lcnXPPtjZib54HL2yjA/7/TN3aBcBQEAQaov6WiUQQkRECw8bzERtquBKK5sYH4vxi3Qa20dHsTeVQsW1jfqCYBADioJ1stxwvhtnKxMRERHRQmBYFrJOHV2cQlM5Wang2WQSQ5qGVzKZuu9/n9eLXllGnyzjo4FAwzDHdHgwProu6DSUA6IIcYZ/BhER0VSwwUzURqoFcdowUHIK4nfLZexQVfxUVfGOa8ZbRBRxkyyjv6cH5wUCDT+vlWYrn46MYUBzksuaYSBjGAhL/GuMiIiIiCZWHYGRMQzknP0kk5EzTexNJjGs63hxbAyGK8gRFUXcEI9jvSzj4gn2mUxHNQhSbSr7BWHGG9dERETTxc4MURvIOwVx1kkrVywLz6dSGFRVvDg2VlckXxoOY6Oi4IZ4HJ0NksgejG+SjrTYbOVTeSmVwrrXX0fONAEAfy2VcNbLL2P3BRfgymh0jk9HRERERK2mOgIjbRgwgUmllcuWhRfHxjCsadibSqHg2mUSEASsjsXQJ8u4IhKZ8SV61Xq9Ok+5sw2CIEREtLCxwUzUogzLQsZpLFfTym8Wi9ihqng8kUCiUqm9V5Yk3KIo2NjdjQ9NMONNxLHZyv42K1IzhoF1r7+OjNNcBgALQMY0se711/HXyy9HiElmIiIiogWv4hqBUZrkCAzTtvGrTAbDmoZndR1jrtrT6/Hgqq4u9MkyVkWjM15PC3A1lSUJHW0SAiEiIgLYYCZqKbZtj6eVXRusS5aFZ3Qdg6qKX2Uytfd6AKzs6sKAouCaaLThpmh3WjksSW07o+2x0VFYduNfDyzbxmOqijvOPLPJpyIiIiKiVmC5RmDkJzkCw7ZtvJ7LYUjTsFvXobpCHAKAT0Ui6JVlXB+LoWsGAw0e5/P9glCbpzzTSWgiIqJmYYOZqAWULQtZw0DatcH6SD6PQVXFk4lEXXri/T4fNigKbu3uxvs7Ohp+XnW2cqQN08qN/KFQQM5q/KtCzrLwRj7f5BMRERER0VyybRsFp4auLr2ejDcKBQxpGoY1DX8pleqefSIYRK8sY208jh6fb8bO7MF4EjooCPA7TeWZntlMREQ0F9hgJpojlm0ja5rIupIWWdPEbk3DoKritVyu9l7J48HqaBT9ioIruroaJpHbdbby6TjX70dQEBo2mYOCgHMmWGJIRERERPNLydVUrkxyBMY7pRKGNQ3Duo7DxwUUzvX70SvL6I3Hsaizc8bOKwDoFAQEnKQy5ykTEdF8xAYzUZMVnet7GdOEgfH0xWu5HLarKnZrGvKuJuoHOzvRryi4pbsbstfb8PPmW1q5kf/X04PNR482fCZ4PPh/itLkExEREU2fZVnYsmULjhw5Ap/Ph/vuuw+LFy+ue4+u69i0aRN27dqFjo4OZDIZ3HXXXchms6hUKvja176GZcuWzdF/A6LmMFxzlYuTbCprlQqe1nUMaRpezWbrnp3l86FXltEny/jIDAUWqqMvgqJYayrPp+AHERFRI2wwEzVBtShOu5aNpAwDTyYSGFRV/L5QqL23w+PBjfE4+hUFnwyH4VlgaeVGwpKE3RdcgHWvv46cM5u6WrjvvuACLvgjIqK2tGfPHpTLZTz22GMYGRnBgw8+iIcffrj2/MUXX8TWrVuRSCRqr23btg2XXXYZbr/9dvzxj3/EnXfeiccff3wujk80q6q3/XKGgdwk5ypnTRPPOU3ll9PpuvEZsiRhnZNUvigUalhrT5YHx0IfQWf0xUx8LhERUbtgV4ZoltjOspGsa2Gfbdv4ZSaDQVXFs7qOsmtx3Uf8fgz09GC9LE+4QEQEEBZFhOdxWnkiV0aj+Ovll+Ojr7yCt0olnNXRgd9dcgmby0RE1LYOHjyIlStXAgAuuugiHDp0qO65IAjYtm0bNmzYUHvt9ttvh8+ZCWuaJjom2MdA1I6mM1e5ZFl4PpXCsKZhXypVV2eHRBHXx2Lok2V8KhKBNENNZcn57ACbykREtMCxM0M0wxrNhVPLZTyeSGCHquLPriUiAUHAelnGRkXBBcHghGnlTo8HYUlCWJIazl9eKEKShLgk4a1SCXFJYnOZiIjaWjabRSgUqn0tiiIMw4Dk/PNtxYoVJ3xPJBIBAKiqirvuugtf//rXm3NYollUNE3kTHPSc5UN28bLY2MY1nU8q+t1+zo6PB5cE41ivSzjqmgUHTNw46+6pK/aVPYLApvKREREYIOZaEaYtl1rKhcsC7bz2ktjY9iuqtiXTNYlMJaFQtioKFgbjyM4QRJ5IaeViYiIFoJQKISca6mvZVm15vLJHDlyBJs3b8ZXv/pVXHrppbN5RKJZU3FGyGUnOVfZsm38JpvFsKbhKV2Hbhi1ZyKAK7q60CfLuC4WQ2gGamgPAJ/TVA5ySR8REVFDbDATTZFt28i7RmBUG8jvlErYqarYmUjg3XK59v6oKOLT3d3YqChYOsESkWpaOeKkcxdyWnkiYecX7zDTy0RE1OaWL1+Offv2Yd26dRgZGcHSpUtP+T1vvPEGvvKVr+Chhx7Ceeed14RTEs2caigj64QyTneusm3bOFIoYEjTsFvT8I6rxgaAi0Mh9Moy1sbjiE+wGHsyBIwnoKvzlNlUJiIiOjl2aIgmqWxZyBw3AqNsWdibSmFwdBQH0um6BMblkQj6FQXXxWITXs0TAUSctDIL2JPb8sEPYutbb+HOs8+e66MQERFNy5o1a3DgwAFs2rQJtm3j/vvvx7Zt27Bo0SKsXr264fds3boV5XIZ3/rWtwCMp6DdiwGJWo1V3UsyhWV9fykWMaRpGNI0HC0W656dHwigT5axLh7H+2dgFrkAoFMQEHSSyr55vkSbiIhoJrHBTHQarONGYFQL46OFAnaoKp5IJOqu5yleLzZ0d2ODomBRZ2fDz/QA8AsCIqKIINPKp211LIbVsdhcH4OIiGjaBEHAvffeW/fakiVLTnjf3r17a39mM5naRcE0a6GMySzrGy2XsVvXMaRpeN01QgYAFnd0oFeW0SfLWOL3T/uMAsbr8WpSmU1lIiKiqWGDmegkGhXGBdPEM8kkBlUVv85kau8VAFwdjaJfUXB1NDrhdmoJGB+Bwet2RERERDSPlF3LrsuTmKs8Zhh4VtexS9Pwq0ym7vt6vF70yjJ643F8fIKl2JMhYnzRdrWpLLGpTERENG1sMBMdp7pwJG0YdYXx73I5DKoqdmkaMuaxHMYHOjqwUVFwa3c33ufzNfxMAeOFbDgMK60AACAASURBVFiSEBRFCEwrExEREdE8YNo2cg1u+p1K3jSxL5XCkKbhxbExVOxjbeUuUcQN8Tj6ZBmfDIenddPPg/FaPOQ0lFmLExERzTw2mIkwvjgk56SV3bPhsqaJXZqGwdFR/Dafr73f6/HgulgMA4qCyyKRhkWqx3lf2JmtzCt3RERERDQfTLTs+lTKloUDY2MY0nXsTSaRt461o/2CgNWxGPricazo6ppW7ezBeFLZ3VSebvKZiIiIJta0BrNlWdiyZQuOHDkCn8+H++67D4sXL6493759Ox599FFIkoQvfOELWLVqFfL5PLZs2YK3334blUoF99xzDy688MJmHZkWgJLrGl91YZ9t23g1m8UOVcVTuo6Cq/Bd0tmJgZ4e3CTLE26oFgAEXWllFrNERERENB8UTXM8lOGqnU/Fsm28kslgWNPwjK4j5boJ6PV4cGVXF9bLMlZFowhMY3xctakcdprKAdbhRERETdO0BvOePXtQLpfx2GOPYWRkBA8++GBtSYmqqvjxj3+MnTt3olQq4bbbbsOKFSvwwx/+EOeeey6+853v4PDhwzh8+DAbzDRt1U3WacNA3rJqhbFeqeBniQQGVbVuS7VfELA2Hke/omBZKNSwUGVamYiIiIjmo2pTOWeaKJ1mU9m2bRzK5TCs69itaXivUqk98wC4NBzGelnGmngcUWnqv5JWx1+EnZQym8pERERzo2kN5oMHD2LlypUAgIsuugiHDh2qPXvttdewbNky+Hw++Hw+LFq0CIcPH8ZLL72EtWvX4o477kAwGMQ3v/nNZh2X5qGic4UvbRgwnNcs28bL6TQGVRV7ksm62W8fCwQw0NOD3ngc4QkKX/ds5RALWiIiIiKaB0qWhZxhIDuJpjIAHC0UMKRpGNY0/LlUqnt2YTCIXlnG2nh8wr0lp6s6/iLI8RdEREQtoWkN5mw2i1AoVPtaFEUYhgFJkpDNZhEOh2vPgsEgstkskskk0uk0fvjDH+KJJ57At7/9bXznO99p1pFpHrBsG1nDQNpZOlItjt8rl7FTVbEzkcDbruI3LIpYL8voVxR8NBic8HMlAF2SxLQyEREREc0LhrPoOmMYKE6iqfy3UgnDuo4hTcP/uXaWAOPj5XplGX2yjMWdnVM+m3umsp+L+oiIiFpO0xrMoVAIuVyu9rVlWZCcVOjxz3K5HMLhMKLRKK699loAwKpVq/DII48067jU5opOcZx2LR0xbBv7UykMqir2p1J1G64/GQ6jX1FwQywG/wSz3zwYTytHnNnKLGqJiIiIqJ1VR8dlj1t0fSp6pYKnnabywWy27tn7fb5aU/kjfv+U08XVEXTVRX1+QWBSmYiIqEU1rcG8fPly7Nu3D+vWrcPIyAiWLl1ae3bhhRfioYceQqlUQrlcxtGjR7F06VJcfPHF2L9/Pz7+8Y/jlVdewTnnnNOs41Ibmiit/JdisZZWVl3z3+KShJu7u7FRUbDE75/wc0WMp5VDoojOaSweISIiIiKaa7Zto+BadG2e+lsAAFnTxJ7k/2fvzqObKNv+gX+TTNckXRICjwdBBS0qUtnEp5TFgoBA2NuCCI/Ig6Cv+LMI0rqgsojgCqKAoiIvLwqyqRQEZRGkIALKpgKKsi9NJ12StM029++PNjGFblToAt/POZ7TzCQzdyapvebiuq87G+myjB25uSVeZ5AkPGAwwGw0opVOV+VCDBWAEJXK3/qCsTcREVHdUG0J5m7duiEjIwNDhgyBEALTp0/HwoUL0bhxY3Tt2hXDhw/H0KFDIYTAuHHjEBISgjFjxuCFF17A4MGDIUkSZs6cWV3DpTqktGplp6JgY3Y2PrdY8ENenv+5KgDxERFIql8fXaKiymxvoQIQqlIVJZYlidXKRERERFSn+Rbrs3m9cFeyBYZTUbAtJwdrZBnf5eTAGbBeiVatRneDAb0NBsRFRkKqYrysRkBSWZIQwvZzREREdU61JZjVajWmTJlSYlvTpk39PycnJyM5ObnE/qioKLz77rvVMj6qW7xCwObxXNIj7vf8fCy3WPBlVhZyvH/XVTQICsIgkwmDTCbcGBJS5nE1ACI0GugliRUTRERERFSnuRWlKKl8GX2VPUJgV14e0mUZ32Rnwx4QUwerVEiIikJvoxGdo6IQWsVksBpAqFrtb3/BNU2IiIjqtmpLMBNdCfnFAbI9oFo53+vF11Yrllss+DmgB5wGQEJ0NJJMJnSMjISmjKoKFYAwtRoRGg2rlYmIiIioTvP1VbZ5PMivZF9lIQT22e1Il2Wsz85GVkBbOQ2AuMhImA0G3B8dDb1UtVtINYpibl/7iyAmlYmIiK4ZTDBTredSFH9S2VVceSGEwCGHA8stFqTLMhzK36Fz45AQJJlMGFCvHkzBwWUeVwIQwd7KRERERHQNyC9erO9y+iofyc9HuixjrSzjjMtVYl9rnQ5moxEPGAwwBgVVaUy+pLKvUplJZSIiomsTE8xUK3mFgKM4QC4IqLzI9XiQLsv43GLB4fx8//ODVSp0j45GUv36aKfXl1mFrAIQrlYjQpKg1WhYrUxEREREdVZV+iqfKixEutWKtbKM3wsKSuy7PTwcvQ0G9DYa0bCctnLlCUwqazUaSEwqExERXfOYYKZaw7ei9cUtMIQQ2GOzYbnFgvVWa4nFRWLCwpBkMqFvvXqIKme6ngT4F+zjwiFEREREVFdVpa+yxeXC11Yr0mUZ+x2OEvsah4Sgt9EIs9GIW8PCqjQmVioTERFd35hgphrnVBT/dL7Ayosstxurs7KwwmLB8cJC//PD1Wr0NhqRZDIhVquFqowqZF+gq5ck6DWaMp9HRERERFSb+Wb32b3eSvdVzvN48E12NtJlGbvy8kq8xhQUhF4GA8xGI1qUE0+XJ3ChPvZUJiIiur4xwUw1whck53m9KAwIkr1CICM3F8stFmzOyYEnoFr5bq0WiSYTehmN0JXTM5nVykRERERU14nixfrsxW0wKtNXucDrxZacHKTLMrbl5sIdEEtHaDToUdz+op1eX+YC2OUJTCqHazQIZqxNREREYIKZqllZi4+cdTqxKisLKy0WnA1YYCRSo0HfevWQaDLh9vDwMo/L3spEREREdC3I93r9a5F4gQpbYLgVBTvy8rBGlrEpOxv5AYtfh6nV6BIVhd5GIzpGRlYpIawCEKJSQV8cZzOpTERERBdjgpmuOldACwxXQAsMt6JgS04OPrdYsD03t0Tw3E6vR7LJhO4GQ7lVyBKACEmCntXKRERERFRHXe5ifUrxGiXpsowN2dnI8Xj8+ySVCh0jI9HbYECX6Ghoy5n5VxYVihbR9rW/CK3CMYiIiOj6wQQzXRVK8ZS+PI8HBRf1ifuroAArsrKw2mKBHBAM1wsKwsB69TDIZMLNoaFlHpvVykRERERU113uYn1CCPyan490WcY6qxXnA2b9qQDco9fDbDSie3Q0ooOCLns8KgBBxUllHZPKREREdBmYYKYrqqC4BUbeRS0wChUFG6xWrLBY8KPN5t+uBtApMhJJ9eujc2RkuYuDsFqZiIiIiOoyrxDIL04qV3axvj8LCrBWlpFutZZY+BoA7tJqYTYY0MtoRIPg4MsejwqABoBeo4FWkhCmVnNhbCIiIrpsTDDTP+ZRFNiKA2XnRdUXh/PzsTwzE1/JMvK8f6ecGwYHY6DJhEH16uGGkJAyj81qZSIiIiKqy3yL9fkW7KvMYn3nXS6slWWslWX8kp9fYl+T0FD0NhphNhrLnfVXFhWKijz0xe0vwjUaJpWJiIjoH2GC+SrZaLXirdOnMb5RI3SNjq7p4VxxvkDZ5vHAcVH1hd3rxVpZxnKLBQcdDv92SaVC16goJJlMaB8ZWe7K1b5qZU7PIyIiIqK6qOCixa0raoGR7XZjQ3Y20mUZe2y2Es+/ITgYvQwG9DEacXt4eJUSwhoA2uKkMgs3iIiI6EpigvkqmXziBLbn5sLm9V5TCebC4sqLPI+nRKAshMB+hwOfZ2bia6u1xOrVN4eGItlkQv969WAspx+cCkUrXUdoNNBJEoNeIiIiIqpTCgMqlV2V6Kts93qxKTsba2UZGXl58Ii/XxEtSXjAYIDZaERrna5KsbEaRbMB9ZKEcI2m3AIPIiIioqpigvkqsRUvXmcLWMSurvIKUdRXuZQFSHI8HnyZlYUVFguOFhT4t4eoVHjAYECSyYS2en25VRasViYiIiKiusqpKHB4PLB7vZe0iyuNS1GwLTcX6bKMLTk5KAwozAhXq9EtOhpmoxFxERHlrk9SFjWKijZ0xZXKEtcuISIioquMCearwObxQC5OLMseD2weD/RS3bvUvgVILu4VpwiBXTYbVmRm4pvsbLgCKi1uDw9HssmEPkYjIsp5z6xWJiIiIqK6yq0o/nZxFxdglMYrBHbl5SFdlvFNdjZsAWuTBKlUuC8qCr2NRiRERSG0iknl0ICkclUS00RERERVVfeynrXc9pwc9Dp4EI7ioPGs04mGO3diXYsW6BAVVcOjq5hbUWAr7hV38bS+TJcLq4urlU86nf7tWrUaZqMRSSYT7tJqWa1MRERERNccrxBwFMfJBRetQVIaXwu5dFnGeqsVFrfbv08NIC4iAr2NRnSLji63MKMsKgChKhV0xYthBzOpTERERDWECeYryObxoNfBgyUqEhQANq8XvQ4exNm4OOhqYSWzErBgX/5FwbJHCGzPzcXnmZn4LienRCVzK50OSSYTehoMCC8nWeyrVo4sDn5ZrUxEREREdYEvTvb95634JTian4+1soy1VitOBRRlAEXxc2+DAT2NRtQrZ22SsviSylqNBlpJQgiTykRERFQL1L5sZx22LDMTiih9gpwiBJZZLPjvDTdU86jK5lvZOq+UYPm004kVFgtWWSy4EFBtESVJ6G80Iql+fdwaFlbu8VmtTERERER1jQhIKl/cKq4sp5xOrJNlpMtyiXVJACAmLAxmoxG9jEY0Cgm57PGoULS+iY5JZSIiIqqlmGC+gn4vKIBDKX2ynENR8Ed+fjWP6FJuRYG9uFr54kVIXIqCTTk5WJ6ZiR15eSX2tY+IQJLJhPujo8udfsfeykRERERU1wghUFC8WJ+tOKlcUV/lLLcbXxdXKv9st5fYd2NICMwGA3objYgJD7/s8TCpTERERHUJE8xX0G1hYdCq1aUmmbVqNW6tQnB5JShCwF5crXxxCwwAOFZQgOUWC77IykJ28eKEAFA/KAgDTSYk1quHRqGh5Z5DAyBCo4FeklitTERERER1QkFApbK7Eov12TwefJOdjbWyjJ15eSXi6npBQehpMKCP0YjYCtYlKQ2TykRERFRXMcF8BQ2uXx9PHztW6j61SoXBJlO1jsfXAsPm9cJz0b58rxfrrVYst1jwU0DFhQZA56goJJlM6BQVBamcwNjXAy5CkqBntTIRERER1QGXm1QuVBRsycnBWlnG1pwcuAJa4uk1GvQwGGA2GNAuIgKay4yH1ShOKksSwjUaJpWJiIioTmKC+QrSSxLWtWiBXgcPwuH1QkFR0KjVaLCuRYtqWeCvvBYYAPCLw4HPLRakyzLsAYsR3hgSgiSTCQPq1UOD4OByz6FBUTCtlySEsVqZiIiIiGq5Aq8X+cVJZVclkspuRcGOvDyslWV8m52N/IAZiqFqNRKiomA2GtEpMrLc9nGlURcfQ6fRIFyjuezXExEREdU2TDBfYR2ionA2Lg537t6NU04nGoaE4Nd77rmqyWXf6ta2Mlpg2DwefCXLWGGx4NeAPtBBKhW6R0cjyWTCvRER5VYgqwAE+6qVNRpIDISJiIiIqJYSQqBQUS6rUlkRAj/Z7UiXZay3Wku0jpNUKsRHRMBsNKJLdDR0l1lk4Wt/oZckaJlUJiIiomsME8xXgU6SYJAknHI6YZCkq5ZcLixOKpfWAkMIgb12O5ZnZmJ9djYKA6oubg0LQ5LJhL5GIwxBQeWeQw1Ap9FAX9wLjoiIiIiotrrc9hdCCPyWn490WcY6qxXnXK4S++/R69HbaESP6OgK4+aLqVBU0KHXaKDVaLhOCREREV2zmDG8SvTFyVj9FU7KehQFtnJaYFjdbnyRlYXlFgv+LCz0bw9Tq9HTYECyyYSWOl25i474gmHfon1BrLAgIiIiolqqMCCpXJn2FwBwvLAQ6bKMdFnGXwExMwA0Dw+H2WhEL6MR/6qgdVxpfO3ktMUtMC53sT8iIiKiuqbaEsyKouDll1/GkSNHEBwcjGnTpuGmm27y7//888+xdOlSSJKExx9/HAkJCf59u3fvxoQJE7B169bqGu4/9vLNN+PNU6cwvlGjf3wsIQTsxQv2OUppgaEIgR15eVhusWBTdjbcAQuPNA8PR3L9+jAbjRVO5VMDCFerEVE8dY/BMBERERHVRi5Fgd3jgd3rLbXoojQXXC6sk2WkW6045HCU2HdzaCjMBgN6G41oEhZ22eNRA9Cq1dAVx9Fc/JqIiIiuJ9WWYN64cSNcLheWLVuGffv2YcaMGZg3bx4AwGKxYPHixVi5ciWcTieGDh2K+Ph4BAcH49y5c/j444/h8VzcBKJ26xodja7R0f/oGIXFlRh5Hg+8wCWB83mXCystFqy0WHAmYDqfXqNBX6MRiSYT7tRqyz1H4NQ9vSSxHxwRERER1UouX0/l4pl8FxddlCbb7cY32dlIl2XsttlKxNMNgoLQ22iE2WjEneHhl11coULRLEFftTLXKCEiIqLrVbUlmPfu3YuOHTsCAFq2bIlDhw759x04cACtWrVCcHAwgoOD0bhxYxw+fBjNmjXDSy+9hKlTp2LgwIHVNdQa5VEU2ItbYBSWUo3hVhRszc3F8sxMbMvNLRFYt9XrkWQyoUd0NMIqWa2slyToWK1MRERERLWQO2ChvsJSZvKVxuH1YnN2NtZarfg+NxeegNl9UZKEBwwGmA0GtNHrL7vSOLA4QydJCGFSmYiIiKj6Esx2ux06nc7/WKPRwOPxQJIk2O126PV6/z6tVgu73Y4pU6Zg5MiRaNCgQXUNs0YIIfyBs93rLTVwPllYiOUWC1ZnZcHidvu3GyQJ/evVQ5LJVKnpfBKAyOKFBxkQExEREVFt41QU5Bf3Va5sUtmlKPg+NxdrZRmbc3JQELDAdbhajfujo2E2GtE+IqJK64v4+irrJAlhajWLM4iIiIgCVFuCWafTwRHQ60xRFEjFC+BdvM/hcCAoKAh79uzByZMn8d577yE3Nxfjxo3D22+/XV1Dvup8C5LYyljl2qko+DY7G8stFvyQl+ffrgIQHxmJZJMJCVFRFba1UKNo+l4Eq5WJiIiIqBbyxcWOy+ip7BUCP9psWCvL2GC1Is/r9e8LUqnQOSoKvQ0GJERFVTi7rzSBM/7CNRpoGEMTERERlaraEsytW7fGli1b0KtXL+zbtw8xMTH+fbGxsZg1axacTidcLheOHTuG2NhYbNiwwf+c+Pj4ayK57BUCdo8HNq8XBYpSavB8ND8fyy0WfJWVhZyAQPmG4GAMqlcPA00mNAwJqfBcrFYmIiIiotpICIHCgPYXpRVblPW6gw4H0mUZ66zWEjP71ADujYhAb6MRPaKjESFd/q2OCkCISuVvI1eVamciIiKi6021JZi7deuGjIwMDBkyBEIITJ8+HQsXLkTjxo3RtWtXDB8+HEOHDoUQAuPGjUNIJRKodYUQAgWKAlvxStfeUp7j8HqxzmrFisxM7Auo5pZUKiRERSHJZEKHyMgKKydYrUxEREREtdG3ViveOHUKY264Aa31+konlQHgj4ICpMsy1soyTjqdJfbdrdXCbDSip8EAU3DwZY9LhaKbIl9SObQK1c5ERERE17NqSzCr1WpMmTKlxLamTZv6f05OTkZycnKZr8/IyLhqY7taXMVJ5bJaYPgqMFZYLFgjy8gP6BV3c0gIEuvXR3+jscJAmYuNEBEREVFt5Cu0cHg8eO7PP7HHbofsduPTO++s8LVnnE6slWWkyzKOFBSU2HdbWBjMRiN6GwxoFBpapbFpAOg0Gug0GoSzMIOIiIioyqotwXy9UC5qgVHaoiS5Hg/WyDI+z8wsESwHq1ToYTAg2WTCPXp9hUFuYF84VisTERERUW0ghEC+14v84rVGvAAEAHtxMYVDKXvZPtntxnqrFWtkGT/b7SX2NQwOLkoqG41oFh5epbGxrzIRERHRlccE8xWS7/X6E8ultcAQQmC3zYbPLRZssFrhEn/XM8eEhSHZZELfevUQWUGvuMBqZb0kVbjAHxERERHR1eZLKvt6KvuSypVh93rxrdWKdFnGzry8ErG0UZLQq7hSuaVOV6WCChWKWsjpNBpo2VeZiIiI6IpjgvkfcCmKP6nsKqOHXJbbjVUWC1ZaLDge0C8uXK2G2WhEksmEFlotq5WJiIiIrjOKouDll1/GkSNHEBwcjGnTpuGmm24q8Ryr1YohQ4ZgzZo1CAkJQWFhIZ555hnIsgytVouZM2fCYDDU0DsACgKSypfTU7lQUbA1JwdrZRlbcnJKFF/oNRp0i46G2WjEvRERkKqYVA4uLsrQsoUcERER0VXFBPNlUoSAw+tFnsdTZgsMrxDYnpuL5RYLtuTkwBMQMN+t1SLJZEIvoxHaSiwgEgQgQpJYrUxERER0jdm4cSNcLheWLVuGffv2YcaMGZg3b55///fff48333wTWVlZ/m2fffYZYmJi8OSTT2Lt2rWYO3cuXnjhhWodd2FAUrmsIouL2b1eZLtcAIDjBQVo/9NPJVplhKhUSIiOhtlgQKeoqColhH0z/Xx9lblYHxEREVH1YIK5kgqKW2DkldECAyhaiGSlxYJVWVk4VxxAA0CkRoN+9eoh0WSqVL84NYqm8UWwWpmIiIjomrV371507NgRANCyZUscOnSoxH61Wo2FCxdi0KBBJV4zatQoAECnTp0wd+7cahmrL6ns8HrhvIxKZUUIfHbhAqafPAmP71hCAEJADaBDZCR6G424PzoauiokhFUouqHRFVcqh6nVjJ2JiIiIqhkTzOVwKwrsXi9sHk+ZgbRLUbAlJwefWyzIyM0t8Zx/R0QgyWRCt+joSlVhSAAiJQk6TuMjIiIiuubZ7XbodDr/Y41GA4/HA6l4TY74+PhSX6PX6wEAWq0WNpvtqo2vKpXKQFE/5iMFBVgjy0iXZZwPKLwIFKpSYdatt1ZqVl8gFQAN4G9/waQyERERUc1igvkiQgjYi6uVHWW0wACAPwsKsMJiwRdZWZA9Hv92U1AQBtarh0EmE24KDa3wfCoU9VaOkCRoNRqoGRwTERERXRd0Oh0cDof/saIo/uRyZV7jcDgQERFxRcdU1aQyAJwsLER6cVL5WGFhhc8XANZZrUgymSp1fA3gX6hPy1l+RERERLUGE8zFCosD6TyPp8xVrwsVBeutVqywWLA7oFpEDaBTZCSS6tdH58jISq1MrUFxtTL7wxERERFdl1q3bo0tW7agV69e2LdvH2JiYir1mq1btyI2Nhbbtm1DmzZt/vE4/klS+YLLha+tVqTLMg4GJMsB4OaQEERLEn6+aLtPgRA4WVBQ7vHVKJlUZjEGERERUe1zXSeYvULA7vHA5vWiQFHKDKYP5+fj88xMfCXLsHn/7sDcMDgYA00mJJpM+FdwcIXnU6FoKqCvDQYDZCIiIqLrV7du3ZCRkYEhQ4ZACIHp06dj4cKFaNy4Mbp27Vrqax588EGkpqbiwQcfRFBQEN58880qndulKLB7PLBfZk9lAMj1ePCN1Yo1sowfbbYSr60fFITeRiPMRiOah4djucWCw/n5KBCXniFMpULjsLBLtqtRNMPP11dZw5iZiIiIqFa7LhPM+cV9le3lLNhn93qxVpbxucWCQwFVF0EqFbpGRyPJZEL7iIhKJYl9PeIiJInVykREREQEoGgRvylTppTY1rRp00uet3nzZv/PYWFheOedd6p0Po+iwOH1wub1orCcVnClyfd6sSUnB2tkGdtzc+EOSBhHaTToYTCgt9GItnp9iYRwL6MRM06eBEpJMKtVKvQyGIp+BhDqSyprNJWaEUhEREREtcN1k2D2VWnYypn6J4TAPrsdyy0WfG21Il/5O+y+JTQUySYT+tWrB2NQUIXnUwEIUakQIUnQs/KCiIiIiGqIAHCusLDc9UVK41IUbM/NxVpZxqacHBQExMbhajW6REfDbDAgPjISwWUkhHUaDT6IicHoo0eRXzxj0LcGyUfNmsEgSf7F+rjINREREVHddE0nmBUhiqo0PB7klxNQZ7vd+FKWscJiwe8BfeBC1Wr0NBiQaDKhjU5XqYVE1CiqVtZLEsJZrUxERERENUwRAjalcqllrxDYY7MhXZaxwWpFbkB7uCCVCh0jI2E2GpEQFVXpWLdtRAS+b9UKvQ4exHmXCzcEB2NHq1aoHxyMMMbLRERERHXeNZlgLvB6Yfd4kFdOCwxFCOzKy8NyiwXfZGeXmOZ3Z3g4kkwmmI1GRFSwkjdQVIURrFL522BIrL4gIiIiojpCCIFDDgfSZRnrrFZkut3+fSoA90ZEwGwwoJvBgKhKxMalidBoYJQknHe5YAoKwk2l9F4mIiIiorrpmkswKwDOOJ1lVitnulxYlZWFFRYLTjmd/u06jQZmoxHJJhOaa7WVOpcagFathl6SoNVoKlXhTERERERUGxwrKMBaWUa6LONEQFwMALFaLXobjehpMKBBJRazLo0aQJha7W+BITFWJiIiIromXXMJZgCX9Ff2CIHvc3LwucWCrTk5JaqaW+t0SDaZ0MNgqPQ0P1+1sl6Syuw3R0RERERU25xzOrHWakW6LOO3/PwS+5qGhsJsNKK30YibQkOrdHwVgFCVCjpJgu6ixfr0xdXP+ipWQRMRERFR7XRNR3ennE6ssFiwymIpMdUvWpIwoF49JJpMaFrJ6Xm+xUgiioNlVisTERERUV3gEQKfXriAdFnGXru9xL6GwcHoZTTC4F1dLAAAIABJREFUbDSiWVhYlWJcFYr6M+s1Gmg1GoSWUbTx8s03481TpzC+UaOqvA0iIiIiqqWuuQSzEAJrZRnLLRbsyMsrsS8+IgJJ9euja1RUpSuPJQARkgQ9V7YmIiIiojrokMOBdSdO+B8bJAk9DQb0NhrRSqeDuopJZQ3gb39RmZmAXaOj0TU6+rLPRURERES12zWXYD7kcOCrY8f8j+sHBWGQyYRBJhMahYRU6hgqFPWLi9BooJOkKgXdRERERES1hVatRneDAb0NBsRFRla5H7IaRWuXaIv/Y5xMRERERNdcgtkjBDQA7ouKQnL9+uhwGQG0BkUrXOslqcypfUREREREdUmTsDCsad0aoVWcjefrq6wvbhUncVYfEREREQW45hLMjUND8WnLljBVcrVrX8AcIUnQSRI0rMIgIiIiomtIhEZz2cnlyvZVJiIiIiK65hLMxqAg1A8Ohqjgeb6ecXpJQhgDZiIiIiIiaFDUAkOn0SCcC1sTERERUSVccwnm8qgAhBRXK+tZrUxEREREBDWAcLUa+uLF+hgjExEREdHluC4SzL5KDH0lV7gmIiIiIrqWBfZV1mo0CGJfZSIiIiKqoms2wawCEOyrVuZiJERERER0nWNfZSIiIiK6Gq7JBLNeo0EEq5WJiIiIiKACEMm+ykRERER0lVxzCWY1gH+FhNT0MIiIiIiIagW1SoUGjI+JiIiI6CqptgSzoih4+eWXceTIEQQHB2PatGm46aab/Ps///xzLF26FJIk4fHHH0dCQgLOnj2L5557Dl6vF0IITJkyBU2aNKmuIRMRERERERERERFROaqtMfHGjRvhcrmwbNkyjB8/HjNmzPDvs1gsWLx4MZYuXYqPPvoIb731FlwuF2bPno1hw4Zh8eLFGDNmDN56663qGi4RERERERERERERVaDaKpj37t2Ljh07AgBatmyJQ4cO+fcdOHAArVq1QnBwMIKDg9G4cWMcPnwYqamp0Ov1AACv14sQTu0jIiIiIiIiIiIiqjWqLcFst9uh0+n8jzUaDTweDyRJgt1u9yeSAUCr1cJut8NgMAAA/vzzT8ycORPvvfdedQ2XiIiIiIiIiIiIiCpQbS0ydDodHA6H/7GiKJAkqdR9DofDn3D+4Ycf8MQTT+C1115j/2UiIiIiIiIiIiKiWqTaEsytW7fGtm3bAAD79u1DTEyMf19sbCz27t0Lp9MJm82GY8eOISYmBj/88ANeeeUVfPjhh2jRokV1DZWIiIiIiIiIiIiIKqHaWmR069YNGRkZGDJkCIQQmD59OhYuXIjGjRuja9euGD58OIYOHQohBMaNG4eQkBBMnz4dbrcbaWlpAIBbbrkFU6ZMqa4hExEREREREREREVE5qi3BrFarL0kON23a1P9zcnIykpOTS+z/6quvqmVsRERERERERERERHT5qq1FBhERERERERERERFdW5hgJiIiIiIiIiIiIqIqYYKZiIiIiIiIiIiIiKqECWYiIiIiIiIiIiIiqpJqW+Svupw5cwYDBw6s6WEQERERUR135syZmh7CFcH4mIiIiIiuhLLiY5UQQlTzWIiIiIiIiIiIiIjoGsAWGURERERERERERERUJUwwExEREREREREREVGVMMFMRERERERERERERFXCBDMRERERERERERERVQkTzERERERERERERERUJUwwExEREREREREREVGVMMF8hSmKghdffBGDBw/G8OHDceLEiZoeEpXD7XbjmWeewdChQ5GYmIhNmzbV9JCoEmRZRufOnXHs2LGaHgqV4/3338fgwYMxcOBALF++vKaHQ+Vwu90YP348hgwZgqFDh/J3qxbbv38/hg8fDgA4ceIEHnzwQQwdOhQvvfQSFEWp4dERlY7xMQVi/E0XY2xPPrx/IB/en9Q9TDBfYRs3boTL5cKyZcswfvx4zJgxo6aHROX46quvEBUVhU8//RQLFizA1KlTa3pIVAG3240XX3wRoaGhNT0UKseuXbvw888/47PPPsPixYtx/vz5mh4SlWPr1q3weDxYunQpnnjiCcyaNaumh0SlWLBgAV544QU4nU4AwKuvvoqUlBR8+umnEEIwSUO1FuNjCsT4mwIxticf3j9QIN6f1D1MMF9he/fuRceOHQEALVu2xKFDh2p4RFSeBx54AE899ZT/sUajqcHRUGXMnDkTQ4YMQf369Wt6KFSO7du3IyYmBk888QQee+wx3HfffTU9JCrHLbfcAq/XC0VRYLfbIUlSTQ+JStG4cWPMmTPH//iXX35Bu3btAACdOnXCjh07ampoROVifEyBGH9TIMb25MP7BwrE+5O6h5/QFWa326HT6fyPNRoNPB4PfxlqKa1WC6Doc/t//+//ISUlpYZHROVZtWoVDAYDOnbsiA8++KCmh0PlyM7OxtmzZzF//nycPn0ajz/+ONavXw+VSlXTQ6NShIeH48yZM+jZsyeys7Mxf/78mh4SlaJHjx44ffq0/7EQwv87pdVqYbPZampoROVifEyBGH+TD2N7CsT7BwrE+5O6hxXMV5hOp4PD4fA/VhSFwXMtd+7cOfznP/9Bv3790KdPn5oeDpVj5cqV2LFjB4YPH47ffvsNqampsFgsNT0sKkVUVBQ6dOiA4OBgNGnSBCEhIbBarTU9LCrDJ598gg4dOmDDhg348ssvkZaW5m/DQLWXWv13GOdwOBAREVGDoyEqG+NjuhjjbwIY21NJvH+gQLw/qXuYYL7CWrdujW3btgEA9u3bh5iYmBoeEZUnKysLI0eOxDPPPIPExMSaHg5VYMmSJfi///s/LF68GHfccQdmzpwJk8lU08OiUrRp0wbff/89hBC4cOECCgoKEBUVVdPDojJERERAr9cDACIjI+HxeOD1emt4VFSRO++8E7t27QIAbNu2DW3btq3hERGVjvExBWL8TT6M7SkQ7x8oEO9P6h6WDlxh3bp1Q0ZGBoYMGQIhBKZPn17TQ6JyzJ8/H3l5eZg7dy7mzp0LoGgRJS4yQfTPJCQkYPfu3UhMTIQQAi+++CJ7LNZiI0aMwHPPPYehQ4fC7XZj3LhxCA8Pr+lhUQVSU1MxadIkvPXWW2jSpAl69OhR00MiKhXjYwrE+JuISsP7BwrE+5O6RyWEEDU9CCIiIiIiIiIiIiKqe9gig4iIiIiIiIiIiIiqhAlmIiIiIiIiIiIiIqoSJpiJiIiIiIiIiIiIqEqYYCYiIiIiIiIiIiKiKmGCmYiIiIiIiIiIiIiqRKrpARAR0dWxa9cuLF26FG+//bZ/2xtvvIEmTZrgvvvuw8yZM3H27Fl4vV7ccMMNSEtLg8lkqsERExERERHVvM8++wxZWVl48skna3ooRER1AhPMRETXGSEExo4di5EjR+L+++8HAOzYsQNjxozB8uXLodFoaniERERERERERFRXsEUGEdF1JicnB3q93p9cBoD27dujcePG2L17dw2OjIiIiIjo6lu1ahXeeOMNAIDT6USXLl2wZ88eDBw4EI888gg2btxYwyMkIqpbmGAmIrrOGAwGNGrU6JLtjRo1wtmzZ2tgRERERERENevVV1/Fm2++iYULF+LGG2+s6eEQEdUpTDATEV2jQkND4XK5SmzLz8/HmTNncObMmUuef+LECdxwww3VNTwiIiIiohonhAAAXLhwAbfccgsAoHXr1jU5JCKiOocJZiKia1TTpk3x22+/ITMzE0DR9L/du3fDbDYjKysLmzdv9j9327ZtOHHiBNq1a1dTwyUiIiIiqhYhISGwWCwAgF9++QUAYDKZcOzYMQDAwYMHa2xsRER1kUr4/rmOiIiuOd988w3mzZuH0NBQuN1uJCcnIzk5GbIsY/r06Th9+jQA4F//+heee+45NGjQoIZHTERERER0deXl5eF//ud/4PV60bx5c+zatQtvv/020tLSoNVqodVqcccdd+DJJ5+s6aESEdUJTDATERERERERERERUZWwRQYRERERERERERERVQkTzERERERERERERERUJUwwExEREREREREREVGVMMFMRERERERERERERFXCBDMRERERERERERERVQkTzERERERERERERERUJUwwExEREREREREREVGVMMFMRERERERERERERFXCBDMRERERERERERERVQkTzERERERERERERERUJUwwExEREREREREREVGVMMFMRERERERERERERFXCBDNRHdWsWTP06dMH/fr1Q//+/dGjRw8MGjQIBw8erOmhlWrTpk2YNm3aVTl2WloaOnbsiH79+qFv37544IEHMHXqVHg8HgDA8OHDsX79+it2vlatWuH06dOXbB8+fDi6dOniH0fPnj3x7rvv+vc/+uij+OOPP67IGNLS0vDRRx9dkWNV5IUXXsChQ4cu6zVz5szBlClTrtKIquc869evx/Dhw0vd16VLlxK/a1u2bMHw4cPRr18/9O7dGykpKTh37hwA4PTp02jVqtUlx/joo4+QlpZW6vH37duH4cOHo0+fPjCbzRg1ahR+//33K/Cuinz22Wf44IMPqvTaXbt2wWw2X7GxEBHR9YGx699WrVqFMWPG+B/n5eVh2rRpJa7P8uXL/fvLivvKikkDY+P+/fvDbDbj8ccfhyzLFY5t5MiRsFqtAP557Lp8+XIsWbKkzP0bN27EsGHD8MADD6B79+4YMmQItm7dWuFxy4qtaoLX68XChQsxcOBA9OvXD7169cLrr78Ol8tV7WPJzMxESkoK+vTpgz59+iApKQkbN26s8vEu/p5Wl/Ji5GbNmvm/nwCwevVqDB482H/tJ02ahLy8PABlx6xTpkzBnDlzSj3+d999h8GDB6Nv377o3bs3nnrqKZw/f/4KvKsis2fPxhdffFGl19bU50FUWVJND4CIqm7RokUwGAz+xx999BGmTZuGZcuW1eCoSte1a1d07dr1qh1/xIgR+O9//wsAcDqdGDJkCNatW4e+fftetXOWZuLEiXjggQcAFN0s9OrVC3FxcWjTpg0WLFhQrWO5Unbs2IHBgwfX9DBqrTVr1mDevHmYN28ebrrpJggh8MEHH+A///kP1q5de9nHc7lcGDNmDD7++GM0b94cAPDll1/i0UcfxaZNm6DRaP7xmB988MF/fAwiIqLLxdj1Uk6nE8OGDUOfPn2wevVqSJKEM2fOYMSIEQCApKSkKh03MDYGgBkzZmDy5Ml45513yn1dRkaG/+d/Grvu3bsXt912W6n7li1bhkWLFmHWrFmIiYkBABw+fBijRo3C3LlzERsb+4/OXV1efvll5ObmYtGiRdDr9cjPz8eECRPw/PPP4/XXX6/Wsbzwwgto3749Zs2aBQD4448/8OCDD+KWW25B06ZNq3Us1WH+/PnYtm0b3nvvPdSrVw9utxvTp0/HY489hk8//fSyj3fhwgWkpqZi1apVaNiwIQBg3rx5SElJwdKlS6/ImJ966qkrchyi2ogJZqJrhMfjwblz5xAZGenfNm/ePHzzzTdQFAUNGzbESy+9hAYNGuDEiRN47rnnkJubC5PJBCEE+vbti3bt2uGhhx5C06ZNcebMGSxevBinT5/GG2+8gYKCAqjVaowdOxYJCQmwWCxITU1FdnY2AKBz585ISUkpc/uqVauwYcMGvP/++zh//jxefvllnDlzBkII9O/fH6NGjcLp06cxYsQIdO7cGfv370deXh6eeeYZdOvWDRcuXMDo0aPxwQcfoEGDBuVei/z8fLhcLphMpkv2bdy4Ee+++y4URYFWq8Wzzz6L2NhYuN1uzJgxAzt37oRGo0FsbCyeffZZ6HQ67NmzB1OnToVKpUKLFi2gKEqlPhOHwwEAiI6OBlBU9Tp79my0aNECK1aswMKFC6FWqxEdHY2ZM2eiQYMGmD59Ovbv3w+HwwEhBKZNm4Y2bdogLS0NOTk5OHXqFO677z4ARUH7hg0bYLfbER8fj9TUVEiShD179uC1115DQUEBgoKCkJKSgk6dOmHVqlX49ttvoVarceLECYSGhmLmzJlo2rQp9u3b56+2sFgsaN++PaZPn463334bmZmZmDBhAl577TU0adIEr7zyCo4ePQq32424uDhMnDgRklT5PyfHjh3DK6+8gpycHHi9XgwfPhyJiYkYP348mjdvjpEjRwIAPv30U/z444+YNWsWNm/ejHnz5sHtdiM0NBSpqanlVq5kZWXhxRdfhCzLsFgsaNiwIWbNmgWj0YguXbpgwIAB2LlzJ86dO4d+/fohJSUFQFFVwZo1axAVFYWbbrqpUu/n7bffxtSpU/3PV6lUGD16NG644YYqVa8UFBTAZrMhPz/fv61v377Q6XTwer3+72N6ejqAouoM3+M5c+Zg3759yMzMxG233Ya9e/fivffew1133QUASElJQbt27SDLMrKzs9GlSxfMnDkTa9asAVD0jyJdu3bFxo0b8dNPP+H999+Hy+WC1WpF//79/deJiIjon2LsWmTdunUIDw/Ho48+6t/mi1vcbvcVu95xcXH+hOeWLVtK/Rv/7LPPAgAefvhhfPDBB3jooYf8sWtZsdicOXNw5swZWCwWnDlzBg0aNMDrr7+O/fv3Y/PmzcjIyEBoaCgeeugh/1hcLhfeeustfPjhh/7kMgDcfvvtmDx5sj/WLis+DXTs2DE8//zzcLlcEEIgMTERDz30EAoKCvDSSy9h//790Ov1uPXWWwEUJdp///13TJkyBTk5OVCpVBg5ciT69++Pfv36IS0tDXFxcUhPT8ezzz6L3bt3IzQ0FM8//zyaN2+OoUOH+s99+vRprFmzBtu3b4dOpwMAhIeHY/Lkyfjpp58AADabDZMnT8bhw4ehUqnQsWNHPP3005AkCS1atMAjjzyCHTt2ID8/H2PHjsX69etx9OhR1K9fH/Pnz0d4eDhWrFiBZcuWwe12Izc3F48++miJcfhYLBYUFhZCURSo1WrceuutmDdvHiIiIgAA+/fvx7Rp0/z3CBMnTkRcXFyljm+z2Sp1D/DXX39hypQpcDgcsFgsuP322zFr1iyEhISgRYsWGD16NDIyMpCZmYlRo0Zh6NChcLvdmDZtGnbs2AGj0Qij0Qi9Xl/u9zk/Px/vv/8+Vq9ejXr16gGA/z19++23VYrBs7Oz4Xa7S8TgDz/8MG6//XYAKPH/hIsfB96rxcfHY8WKFdiwYYP/fjQpKQljx47F119/jdtuuw06nQ5btmzB/PnzARR9j0eMGIHvvvsOq1evrtTnTVTrCCKqk2JiYoTZbBZms1nEx8eLLl26iKlTp4qsrCwhhBCrV68WKSkpwu12CyGEWLp0qRg1apQQQojk5GSxZMkSIYQQf/zxh7j77rvFypUrxalTp0RMTIzYvXu3EEKInJwc0b17d3Hq1CkhhBDnz58XnTp1EmfOnBHvvvuumDRpkhBCCIfDIVJSUkReXl6Z21euXClGjx4thBDioYceEh9//LEQQoi8vDzRp08fkZ6e7j//5s2bhRBCrF+/Xtx3330VXovU1FTRoUMH0bdvX2E2m0VsbKx4+OGHhdPpFEIIMWzYMPH111+LP/74Q7Rv316cPHlSCCHEjh07RHx8vLDZbGL27Nli7NixwuVyCa/XK9LS0sSkSZOE0+kU7du3Fzt27BBCCLFmzRoRExPjvyaBhg0bJhISEkTfvn1Fr169RPPmzcUzzzwjFEURQgiRkJAgDhw4IH777Tdx7733irNnzwohhFi4cKGYNGmS+Omnn8STTz4pvF6vEEKI999/X4wZM8b/Hh9++OES73nAgAHC4XAIp9Mphg0bJpYsWSKsVquIi4sT+/btE0IIcfToUdGuXTtx8uRJsXLlStGmTRtx7tw5IYQQU6ZMERMnThRCCDFu3Djxww8/CCGEsNvt4t577xUHDx4sMW4hhEhLSxP/+7//K4QQwuPxiAkTJogPPvjgkmvxzjvviMmTJ1+y3e12i169eolDhw4JIYo+/549e4qff/5Z7Ny5U5jNZv9zExMTRUZGhvjrr7+E2WwWVqvV/57i4+OFw+Eo8zyffPKJeP/994UQQiiKIkaNGiU++ugj//uZMWOGEKLoO92iRQtx8uRJ8e2334pevXoJm80m3G63GD16tBg2bNglxw68JlarVcTExIj8/PxSnyeEEKdOnRItW7a8ZPuHH34oUlNTS33Nxx9/LGJjY0WXLl3EhAkTxPLly/3n+OGHH0Tv3r39zw18/M4774gePXr4f+9nz57tvz45OTmiXbt2Ii8vz3/dFEUp8fkuWbJEjB8/XiiKIoYNGyb++usv/3W64447hCzLl5yfiIioMhi7/i3w2FOmTBEzZ84s9/mpqaniww8/vGR7y5YtS41JL35+QUGBSElJEVOmTCn3b7wQRZ+T72dfjFBRLNa1a1dhs9mEEEKMGTNGzJ49u9xx//rrr6Jdu3blvmchyo5PA2OrZ5991h/zZWZmipSUFOH1esUbb7whnn76aeH1eoXNZhN9+vQRqampwu12i65du4oNGzb433/Hjh3FTz/9JObMmeOPESdOnCji4+PF999/LxRFEfHx8SIzM7PE+NavXy8GDRpU7nuYOHGimDp1qlAURTidTjFy5Ej/eGNiYsSiRYuEEEVxf6tWrcT58+eF1+sVAwYMEF999ZWw2+0iOTnZf+1//vnnUuNKIf6+t2nXrp147LHHxIIFC8T58+eFEEK4XC4RHx8vtmzZIoQQ4uDBg8JsNgubzVbm8QO/p5W9B5gxY4b44osv/Oc0m81i/fr1/ve7ePFi//nvuusuUVhYKD755BPxn//8RzidTuFwOMSAAQPKjJF938+DBw+Kf//73+Ve+7Ji1smTJ4t33nmn1Ne8+uqronnz5qJnz57i+eefF+np6f7/JwVej4sfX3yvNnHiRP93/48//hD33Xef8Hq9/t8Jm80m2rZt6/9Ovfbaa+Ktt94q9/O++PxEtQ0rmInqMN80w19++QWjR4/GvffeC6PRCKCoMuHgwYMYNGgQAEBRFBQUFCA3NxcHDhzA//3f/wEAmjZtin//+9/+Y0qShJYtWwIoqhqwWCx44okn/PtVKhWOHDmCjh07YvTo0Th37hzat2+P8ePHQ6/Xl7ndJz8/Hz/99BM+/vhjAIBer8fAgQOxbds23H333QgKCkLnzp0BAHfeeSdycnIqdS0CpwHm5+dj3LhxmDZtWon+vD/88AP+/e9/o1GjRgCKKjkMBgMOHTqEbdu2Ydy4cQgKCgJQ1E/5iSeewNGjRyFJEuLi4gAAZrMZL774YpnjCGyRYbVa/ZUrgf2ydu7ciQ4dOuCGG27wj90nMjISS5cuxalTp7Br1y5otVr/vjZt2pQ4V79+/RAeHg6gqMJ169ataNiwIRo3boy7774bAHDbbbehdevW+PHHH6FSqdC8eXP861//8l/fb7/9FkBRNce2bdswf/58/Pnnn3A6nSX+9d7nu+++w8GDB7FixQoAQGFhYZnXojTHjx/HyZMn8dxzz/m3FRYW4tdff8WDDz4Ip9OJgwcPIiwsDFarFXFxcfj000+RmZlZ4jqpVCqcPHmyzPM8/PDD2LNnDxYuXIjjx4/j999/918TAP4prw0aNIDRaERubi527tyJbt26+StQBg0ahMWLF5f7ftTqoqUMyqtq9z3nYr7qktI88sgjSEpKwu7du7F7924sWLAACxYs8F/38rRs2dJfTTJo0CAkJiYiLS0N6enp6NKlS4nfR5VKhUGDBmH16tVo0aIFVq1ahYkTJ0KlUmH+/Pn47rvvkJ6ejmPHjkEIgYKCggrPT0REVBbGrpdSqVQQQlT4nNIoilJm66xPPvkEX331FYCiPsH33HMPnn766Sr9jfdVnJYVi7Vr184fP915553Izc0t9/2U9n6HDh0Kh8OBwsJCxMbG4vXXXy8zPo2KivK/rlu3bkhNTcWBAwcQFxeHF154AWq1Glu3bsWzzz4LtVoNnU6HAQMG4MiRIzh+/DicTie6d+8OoCgW7N69O77//nv06NEDTz/9NCZOnIg9e/ZgxIgRyMjIgFarRePGjS+ZHalWqyuc2bht2zZ89tlnUKlUCA4OxpAhQ7Bo0SKMHj0aANCjRw8AQOPGjRETE+Ovdr/xxhuRm5sLrVaL+fPnY+vWrTh+/DgOHz5caowOFN3bfPfdd9i3bx/27NmDLVu24L333sOiRYug0WigVqv9MyHvuusu/wy2yhy/svcAzzzzDDIyMrBgwQIcP34cmZmZJY7ni8GbN28Ol8uF/Px87Ny5E2azGcHBwQgODkafPn1w5MiRcq9rZa59VWLwtLQ0jBkzBj/++CN2796N1157DYsXLy63l7hP4L1aUlISJk+ejP/+979YuXIlBg0aVOKcOp0O3bp1w1dffYURI0ZgzZo1WLJkyWV93kS1DRPMRNeA5s2b49lnn0VaWhruuOMO3HjjjVAUxT/tCCiaipabm+sPQgMDu8DANDg42J+c8nq9aNq0aYlFRi5cuACDwYCgoCBs2rQJO3fuxA8//ICkpCQsWLAAsbGxpW73URTlkqBSURT/gnxBQUH+P75lBdMVCQ8PR1JSEt58881LznPxMYUQ8Hg8l+xTFMU/LfHi8Va2HYTBYIDZbMb27dtLJJg1Gk2JcxUWFuLMmTM4deoUXnnlFTzyyCPo2rUrmjRp4r8x8L2vQIGfmxACkiTB6/WW+R6DgoIQGhrq3x54QzNs2DA0a9YMHTt2RM+ePbF///5Sg39FUTB79mx/H7e8vLzL+py8Xi/0ej2+/PJL/7asrCzo9XqoVCokJibiyy+/RFBQEBITE6FSqaAoCuLi4vz95ADg3LlzqF+/vj9BfrHXX38dBw4cwKBBg3DvvffC4/GUeD8hISGlXoeyfi/KEhkZiZtvvhn79+9H+/btS+x76qmn8Pjjj6NRo0YoLCyE0+kscV5ZlkvcIPns3bsXP//8M0aNGoWEhAQkJCTg6aefhtlsRkZGBgzrGI+UAAAgAElEQVQGQ4lxXjx9NvB70rBhQ9x555347rvvsGrVqhKJfZ/ExEQMGDAASUlJsNlsaNeuHfLz8zFgwADcf//9aNu2LQYNGoSNGzdWeANMRERUGYxd/9ayZctSk1ebNm3Cnj17kJqaiujo6EsS13a7HU6n09/+4GIX92D2qcrf+IpisbLiy7I0bdoUQggcPXrU3yLD1zPX13YAqFx8mpCQgA0bNmDHjh3YuXMn3nvvPaxatQqSJJV4ru8zKi9WbtasGdxuNzZt2oSbb74ZCQkJGDduHCRJ8ieCA8XGxuLPP/+E3W73J9iBou/cpEmT8M4775R6j+H77gDwF7dc/LPP+fPnMXjwYCQnJ6NNmzZ44IEHsGXLlkueJ8sy5syZg0mTJqFt27Zo27YtHnvsMTz//PP44osvkJycfMn7Pnr0KCIiIip1/MreAzz99NPwer3o2bMn7rvvPpw7d67UGNz32tK+K5WJwW+99VZ4PB4cP34cN998s3+70+nE2LFjMW3atFJ/b3zXqrTe4Js2bUJOTg4GDRqEHj16oEePHhg3bhw6d+6MX3/99ZLvdnkxeNu2beHxeHDgwAGkp6eX2mc+OTkZkyZNQtOmTdG0aVM0atSo0p83UW1U+j/bEFGdYzabERsbi1dffRUA0KFDB6xYsQJ2ux1AUW/ZiRMnQqfToXXr1li1ahUA4NSpU9i5c2epAULLli1x4sQJ7N69GwDw22+/oUePHrhw4QLeeOMNzJ07F/fffz+ef/553Hrrrfj999/L3O6j0+lw9913+wNpm82GL7744pLk3D+hKAq2bdt2yeIgcXFx2L59O06dOgUA/h68d999Nzp27IjPPvsMbrcbiqJgyZIliI+PR7NmzSCE8K9ovWnTpgqrMnzcbjcyMjIuGce9996LnTt3IjMzEwCwdOlSvP7668jIyEBCQgKGDh2Ku+66Cxs3boTX6y3z+GvXroXL5YLT6cTq1avRqVMntGzZEn/++ScOHDgAAPj999+xe/dutGvXrszj5OXl4eDBg5gwYQK6d++O8+fP4+TJk/6qAI1G4w+EO3TogE8++QRCCLhcLjz++OP+iqLKuOWWWxAaGupPMJ87dw5msxmHDh0CAAwYMACbN2/Ghg0bMHDgQABFn1tGRgaOHTsGANi6dSv69u1bbvX09u3b8fDDD6N///4wGo3YsWNHudcSADp16oT169cjLy8PiqKUSIKXZ+zYsXjllVdw4sQJAEU3LnPnzsXhw4fRpEkTaLVatGnTBosWLfK/5sKFC1i/fr2/4imQwWDAvHnzsGfPHv82i8UCu92OmJgYGAwGnD17FrIsQwhR4UKCycnJWLBgAQoKCi6pggeKKndiY2Px4osvIjExEQBw4sQJ2O12pKSkoEuXLti1axdcLlel+48TERFVhLFrke7du8Nut2PBggX+WOXUqVOYMWOGP5nXqVMnfP3117hw4QKAoqTcokWLcM8995SY7VYZFf2ND4z7fKoSi5V1LKAoyThhwgRMmDABf/zxh3+7LMvIyMiAWq2uMD71GT9+PNatW4fevXvjpZdegk6nw8mTJ9G5c2esXLnSXwmfnp4OlUqFJk2aQJIkfPPNNwCKYrINGzb4P8/7778fb775JuLj4/8/e3cfHVV95w/8fR9mJvOYZO7cgA9FEUULahUfUHlSCirgUBWTRc927TlW2iJuT7GsVtsflCIi3brbWqG19mB39+ypCWpLBKulchDRVaGyC7TFaltk7ZbcuUkmM5PJzNyH3x8zuclIyMMkkwd4v87xFL7fufd+r6Htdz58vp8PJk2ahGQyicbGRifjubtx48YhGo3i4Ycfdv7cJpNJrFmzBlVVVaioqMDMmTPxH//xH87eub6+fkB/dg4dOoRwOIzly5dj5syZTrDxk/vayspKvPnmm/i3f/s3JwiaTqfx0UcfYcqUKTjvvPMgCILTxPHw4cO4++678dvf/rZf9+/vd4A33ngD9913HxYuXAggX/e5rz34rFmz8Itf/AKZTAaZTAY7duzo89+L2+3Gvffei0ceeQSxWAxA/i+l1q9fj3Q6jXHjxuG8886D2+0uut8HH3yAt99+GzNmzDjhnn6/H0888UTRn8ljx45BkiRMmDAB4XAYf/zjH5HJZJDL5Zy/CDmZ2tpafOc738GFF17onFztrvPkxVNPPeU08+zvz5toNGIGM9Ep5Fvf+hYWL16MPXv2oLa2FsePH3f+tvqMM87Ahg0bAACPP/44HnnkEfznf/4nxo0bh7PPPrso86BTOBzGD37wA2zcuBGZTAa2bWPjxo04++yzcffdd+Ohhx5yjjNdeOGFWLRoEeLxeI/jnQ3JAOCf//mfsXbtWrzwwgvIZrOIRqO4/fbb8fHHH5/03fpqlNJ5DFAQBKTTaUydOhWrV68u+sz555+P1atXY8WKFTBNExUVFfjRj36EYDCIr3zlK3j88cdx6623wjAMXHrppfjWt74Fl8uFp556CmvWrMETTzyBT3/6085Rzp5s3LgRmzdvdtZxzTXX4Mtf/nLRZy688EKsWrUKX/ziFwEAqqpi/fr1SCaTeOCBBxCNRmEYBmbMmOE0uunJ2Wef7RwnnD9/Pm677TYIgoDvf//7+M53voOOjg4IgoDHHnsMEydOxHvvvdfjfUKhEJYtW4bbbrsNPp8P48aNw7Rp03D06FFce+21mD9/PlatWoU1a9bgkUcewaOPPopoNIpcLofrrrvOeY9Pqq+vx4svvlj03j//+c+xadMmPProo3jmmWdgGAa++tWvOoFPVVUxZcoUGIbh/JzPP/98rF27FitXrnQytTdv3tzrF6r77rsPGzduxPe//324XC5Mmzat15IaQL6pz5EjR7BkyRKEQiFcdNFFTsOf3kSjUdi2jZUrV8IwDGQyGUydOhU/+9nP4Ha7AeT/zK9fvx6LFi2CKIqQJAn/+I//iOnTp59wv4kTJ+Kpp57Cv/zLv+Bvf/sbPB4PgsEg1q9fj/POOw8AsHTpUixZsgSqquL666/HwYMHT7q+uXPn4tvf/nZR86BPqq2txVe/+lVs3rwZQP5ndf3112PBggVwu92YPHkyzj//fBw9etR5JyIiosE6nfeundxuN7Zs2YLvfve7iEajkCQJkiThK1/5ivOX7ddccw3uvfdep6xCR0cHpkyZcsJpvf7o7f/jJ0yYgJtvvhmf//zn8eSTTzrXlLIXA/KB8c6fYffTfED+L8DHjRuHRx99FM3NzUin03C73Zg3bx7uvvvuXvenneXuAGD58uV45JFH8Nxzz0GSJMybNw9XXXUVLr30UqxduxbRaBTBYBCKoqCiogIulwubNm3CunXr8OSTT8I0Tdx3331O2ZX58+fjpz/9qRMEvu6663DkyJEeA4QAsHr1amzatAlLly6FJEnIZrOYN28e7r//fgDAN7/5Taxbt87ZO8+aNeuE7wa96WwYd/PNN0MQBFx99dUIh8M4evSosy8E8icsf/rTn+K73/0u/v3f/x0+nw+CIOC2225zEgiefPJJrF+/Hhs3boTL5cKTTz6JqVOnYtu2bT3ev7v+fgf42te+hvvuuw8+nw+BQABXXXVVn3vwpUuX4qOPPsItt9wyoEbbX/7yl+H1ep1M/Uwmg6uvvhqbNm0CkM9a//GPf4wNGzZg8+bNsG0bPp8PGzduLMp67nTNNdfgW9/6Fh588EEkEglIkgRVVfGTn/wElZWVmDFjBq666iosWLAAqqpi+vTpvZbyuPXWW/HEE0/giSeeOOlnamtrnb/gAnr/eRONdoLN865Ep53NmzfjxhtvxKRJk5BIJLB48WL85Cc/cborExERERGNFty70kBt374dgUAAc+bMgWVZuP/++zFjxgynBAsREQ0tZjATnYbOPfdcfO1rX4MoijBNE/feey836EREREQ0KnHvSgN1wQUX4P/9v/+HJ554ArlcDtOnT3fKEBAR0dBjBjMRERERERERERERlYRN/oiIiIiIiIiIiIioJAwwExEREREREREREVFJTrkazNOnT8dZZ5010ssgIiIiojHu448/xttvvz3Syxg07o+JiIiIaCicbH98ygWYzzrrLLzwwgsjvQwiIiIiGuNuv/32kV7CkOD+mIiIiIiGwsn2xyyRQUREREREREREREQlYYCZiIiIiIiIiIiIiErCADMRERERERERERERlYQBZiIiIiIiIiIiIiIqCQPMRERERERERERERFQSBpiJiIiIiIiIiIiIqCQMMBMRERERERERERFRSRhgJiIiIiIiIiIiIqKSMMBMRERERERERERERCVhgJmIiIiIiIiIiIiISiKX46aWZWHNmjU4cuQI3G431q1bh3POOceZf/bZZ7F9+3YAwJw5c7BixQo8/fTT2LNnDwCgra0NsVgMe/fuxZYtW7B161aEw2EAwLe//W2cd9555Vg2EREREREREREREQ1AWQLMO3fuRDabxXPPPYcDBw5gw4YN2Lx5MwDg2LFj2LZtGxoaGiAIAu666y7MmzcPy5Ytw7JlywAAX/rSl/D1r38dAHD48GE8/vjjuPjii8uxVCIiIiIaJZqbd+J///cJfOpTD6C6+rMjvRwiIiIiIuqHsgSY9+/fj1mzZgEALrvsMhw6dMiZGz9+PJ555hlIkgQAMAwDHo/HmX/11VcRCoWc6w8fPoynn34amqbh+uuvx5e+9KVyLJmIiIiIRtjRo99GPP4GTDPBADMRERER0ShhWTkYRuKk82UJMCeTSQQCAef3kiTBMAzIsgyXy4VwOAzbtrFx40ZMmTIFEydOdD774x//GE888YTz+0WLFuGuu+5CIBDAihUrsGvXLtxwww3lWDYRERERjaDOTWtvm1ciIiIiIhoehpGCYbTBslK9fq4sTf4CgQBSqa4HW5YFWe6KZWcyGXz9619HKpXC6tWrnfEPPvgAoVDIqdds2zbuvvtuhMNhuN1uzJkzB7/73e/KsWQiIiIiIiIiIiKi05plGcjlWpBOH0U2+1dYVgKA1es1ZQkwT5s2Da+//joA4MCBA5g8ebIzZ9s2li9fjgsvvBBr1651SmUAwJtvvonZs2c7v08mk7jllluQSqVg2zbefvtt1mImIiIiIiIiIiIiGkKmmUYmcxwdHX9BLqfBtjMA7H5dW5YSGfPnz8fevXuxdOlS2LaN9evXY8uWLZgwYQIsy8I777yDbDaLPXv2AABWrlyJyy+/HH/+858xY8YM5z7BYBBf+9rX8A//8A9wu9249tprMWfOnHIsmYiIiIiIiIiIiOi0YdsmDCMJw4gPKKD8SWUJMIuiiLVr1xaNTZo0yfn1wYMHe7yue7mMTrfeeituvfXWoV0gERERERERERER0WnINDtgGAmYZhsAc9D3K0uAmYiIiIiIiIiIiIhGB9u2YJopGEYclpXGQLKVLSuLdPrDk84zwExERERERERERER0CrKsLAwjAcOIAzAGdG06/SE0bStisRdhGC0AbuvxcwwwExEREREREREREZ0ibNsuZCu3wbLaAVj9vtY002hpeQVNTfVIJvd3mxFPeg0DzERERERERERERERjnGXlnNrKtp3DQMpgtLf/AU1N9dD1bTDNhDPu8ZwNVb0DkcgdAL7X47UMMBMRERERjQDLsrBmzRocOXIEbrcb69atwznnnOPMP/vss9i+fTsAYM6cOVixYgVs28bs2bNx7rnnAgAuu+wyPPDAAyOxfCIiIiIaJUyzHYbRBtNMYmDZykno+nZoWj1SqUPOuCC4UF09D6pah1DoGgiCCGYwExERERGNMjt37kQ2m8Vzzz2HAwcOYMOGDdi8eTMA4NixY9i2bRsaGhogCALuuusuzJs3D16vF1OnTsWPfvSjEV49EREREY0k2zYLtZXbYNsZ9Ddb2bZtpFL/jaamejQ3v1wooZFXUXEeVLUWkcitcLnC/V4LA8xERERENOLym2O98GsdhpGALAdHeFXltX//fsyaNQtAPhP50KGurJHx48fjmWeegSRJAADDMODxeHD48GEcP34cn//851FRUYFvfOMbOO+880Zk/UREREQ0/Eyzo5CtnABg9vs6w2hFLPZLaNpWpNPvO+OiWIHq6ptRU1OLQOAKCIIw4DUxwExEREREI6q19Q0cPLgQppkCAGQyf8Vbb52FSy7ZgaqqmSO8uvJJJpMIBALO7yVJgmEYkGUZLpcL4XAYtm1j48aNmDJlCiZOnIhYLIZly5ZhwYIF2LdvH1atWoXnn39+BN+CiIiIiMrNti0YRhKGEYdtd6D/2coWEol30NTUgJaWV2HbWWfO5/s0VLUWihKFLIcGtT4GmImIiIhoxBhGohBcTnQbtWCa+fFrr/0rZDlw0uvHskAggFQq5fzesizIctf2PJPJ4OGHH4bf78fq1asBABdffLGT1XzllVfi+PHjsG27pEwTIiIiIhrdLCvjlMEAjH5fl81qiMVehKY1IJP5yBkXRT8U5Raoai38/ouHbA/JADMRERERjZimpudg2z03IrFtC5r2HM44455hXtXwmDZtGnbt2oWFCxfiwIEDmDx5sjNn2zaWL1+O6dOnY9myZc74D3/4Q1RVVeHee+/FH/7wB5x55pkMLhMRERGdQmzbhmkmYBiJQn3k/mYrm4jH34Cm1aOlZRe6l88IBC6HqtYiHL4ZkuQf8jUzwExEREREIyad/iMsK9XjnGWl0N7+wTCvaPjMnz8fe/fuxdKlS2HbNtavX48tW7ZgwoQJsCwL77zzDrLZLPbs2QMAWLlyJZYtW4ZVq1Zh9+7dkCQJjz322Ai/BRERERENBcvKFrKV4xhItnIm81do2lbEYs8jm/2bMy5JVYhEPgdVrYXPd8EgVyf2GphmgJmIiIiIRozXewFE0d9jkFkU/fD5zh+BVQ0PURSxdu3aorFJkyY5vz548GCP1z399NNlXRcRERERDY98tnIKhtFWyFbu+WTfJ1lWDq2tu6Bp9YjH30D3LOdQ6Bqoah2qq+dBFD2DWJ0AQfBAloOQpABE0XXSTzLATEREREQjpqbm7/Dhhyt7nBMEEar6d8O8IiIiIiKi8rKsHAyjDaaZgG3n0N8yGB0df4GmNUDTXoRh6M64y6UiErkdqroEFRXnDHJ1EiQpBFkOQJK8/bqCAWYiIiIiGjGyHMQll+woNPpLIZ+1kT+Cd8klO07ZBn9EREREdHrJZyu3F7KVO/e9vYvH38T//d9P4fdPQTJ5AInEO91mRVRWzkZNTS0qK+f0mmHcNxGi6IUshyBJfgiCOKCrGWAmIiIiohFVVTUT1177V7z77hRkMsfg8ZyFq676HYPLRERERDTmWZZRaNrXBtvOor/Zyu3tR/CnP/0TcjkNbW1vOONu95lQ1SWIRJbA4zljECsTIAhuSFIAshyEKLpLvhMDzEREREQ04mQ5AFkOI5M5BlkOM7hMRERERGNaPls5AdNMoL+1lU0zBV3fAU2rRyr1P0Vz1dU3QVVrUVl5HQRBGsTKpG5BZS8EQRjEvfIYYCYiIiIi+gTLyo70EoiIiIhojLFtE4bRma2cQX+ylW3bRip1EJpWD13fXmj2lycILth2Dl7v+bjggh8MYmUCRNELSQpClgODDFCfiAFmIiIiIiIAtm116+Ldgf4eXyQiIiKi05tpdjhN+wCzX9cYRhyx2DZoWj3S6fedcUFwIxy+Capah6NH1yGdPgJBKCWEK0AQXJCkICTJD0mqKOEe/cMAMxERERGd1kwz3e34YucXgsEfFSQiIiKiU5dtWzCMJEyzDZaVRn+zlROJd6Fp9WhufqVQkznP650MVa1DJBKFLFfBNJMwjDgAIJdrhWkmIUn9KSMnQhT9kOVgoWFf+fe1DDATERER0WnHsrKFLwSJATVbISIiIqLTm2VlnDIYgNGva3I5HbHYi9C0BnR0/MUZF0UfFGURVLUOfv8lTjC4rW0f3n9/mVMuI5c7jvfem43Jk59GKHRlD08QIAgeyHIIkhSAKA5vyJcBZiIiIiI6LXSVwEgUNuv9a7ZCRERERKc327YLGcVthX1kf7KVLcTje6FpDWht/Q1suysY7fd/BqpaC0VZcEJWsmkmC8HlVPe7wbJSeP/9Zbj88j2QJH9hXIIkhQrZyuUrgdEXBpiJiIiI6JSWL4GRP77Y35p4RERERET5U2+d2cq5fl2Tzf4NmvY8NO15ZLMfO+OSFEIk8jmo6h3w+S466fW6vgO23XMihG3baGn5DWpq7upWAkMc0DuVAwPMRERERHTKsaycU1eZJTCIiIiIqL/y2cqpbtnKfZ96s6wc4vHdaGpqQDz+etE1weDVUNVahMM3QhT7zjLu6DgK205/YlSA210DSQrANDtQUXHmwF6qzBhgJiIiIqJTAktgEBEREVGpuhIU2mDbOfQnQaGj4yNo2lbEYi8gl9OccVkOIxK5DapaC6934oDWUVFxDgTBCyAL2wYAE4IgF2o/t6Oi4owB3W84MMBMRERERGMaS2AQERERUakMIwXTTMA0k+hftnIWLS2/hqbVo63tv7rNCKisnAlVrUVV1Q0QRXdJ61GUW/C3v/0bABMdHUcBALadg2G0QpKCUNW/K+m+5cQAMxERERGNOSyBQURERESlsiwDppmvrdzfvWR7+x+haQ2IxX4J02x1xt3u8YhElkBVl8DjOavEFQkQBBckKYiKinNw0UU/w8GDN3VblwhJ8uOSS3ZAlgO93WhEMMBMRERERKOCLAeL/vOT8iUwkjCMJEtgEBEREdGA5U++tRWylfs++Waa7Whufhma1oBk8r1uMxKqq2+AqtahsnImBEEqcUUiJClQ+McPQRAAAFVV1+Laa/+Kd9+dgkzmGDyes3DVVb8blcFloEwBZsuysGbNGhw5cgRutxvr1q3DOeec48w/++yz2L59OwBgzpw5WLFiBWzbxuzZs3HuuecCAC677DI88MADeO211/DUU09BlmUsWbIEdXV15VgyEREREY2wc89dg2PHvodPfeqBovHhLoGRTv8Z8fgbZX8OEREREZWfbZswjM5s5Qz6k62cSh1CU1M9dP0lWFbKGfd4JkBVaxGJ3Aa3Wy1xRQIEoQKyHIQkBSCKPYdnZTkAWQ4jkzkGWQ6P2uAyUKYA886dO5HNZvHcc8/hwIED2LBhAzZv3gwAOHbsGLZt24aGhgYIgoC77roL8+bNg9frxdSpU/GjH/3IuU8ul8Njjz2GrVu3wuv14s4778QNN9wAVS31B0hEREREo1V19WdRXf1ZAPkSGPls5US/vwgMRjbbhObmHYjFtqG9/XBh9NayPpOIiIiIysc0OwrZygn0J0nBMBLQ9W3QtK1ob/+dMy4IboTDN0JVaxEMXg1BEEtckQxZDhWylStKvMfoVJYA8/79+zFr1iwA+UzkQ4cOOXPjx4/HM888A0nKp44bhgGPx4PDhw/j+PHj+PznP4+Kigp84xvfQDabxYQJE1BZWQkAuOKKK7Bv3z4sWLCgHMsmIiIiohE03CUwTDOJ5uZXoeuNhQYtXc9zu88s67OJiIiIaOjZtgXDSMIw4rDtDvSVpGDbNpLJ30LTGtDc/DIsq8OZ83ovgKrWQlEWw+WqLnFFIkTRV8hW9g8iOD26lSXAnEwmEQh0pW1LkgTDMCDLMlwuF8LhMGzbxsaNGzFlyhRMnDgRsVgMy5Ytw4IFC7Bv3z6sWrUK3/jGNxAMdtXg8/v9SCaT5VgyEREREY2QrhIYCQBGWZ9lWVnE468jFtuG1tZdhaYueZJUiXD4ZkQiixEIXAHgobKuhYiIiIiGRj5bOdHvkmq5XDNisV9C0xrQ0fGhMy6KXoTDC1FTUwe//zNOTeSBESAIbkhSELIchCi6SrhHXl89SkaLsgSYA4EAUqmu+iSWZUGWux6VyWTw8MMPw+/3Y/Xq1QCAiy++2MlqvvLKK3H8+PET7pNKpYoCzkREREQ0Ng1nCQzbtpBI7IOuN6K5+RWYZtyZEwQPqqvnQlGiqKycBVF0d86UbT1ERERENHj5028pGEZb4fRbX9nKFtra/guaVo+Wlp2w7Zwz5/NNRU1NHRTlFkhSqbWOpUJQOQBJ8pV4j2In61Ey2pQlwDxt2jTs2rULCxcuxIEDBzB58mRnzrZtLF++HNOnT8eyZcuc8R/+8IeoqqrCvffeiz/84Q8488wzMWnSJBw9ehStra3w+XzYt28f7rnnnnIsmYiIiIjKbLhLYLS3/wG63ghd345s9v+6zYgIha6FokQRDs8fxJcIIiIiIhpulpVxymD05/RbNnscsdiL0LQGZDL/64xLUhCKEoWq1sLvn1LiakSIYgUkKQRZ9kMQpBLv07PuPUpGs7IEmOfPn4+9e/di6dKlsG0b69evx5YtWzBhwgRYloV33nkH2WwWe/bsAQCsXLkSy5Ytw6pVq7B7925IkoTHHnsMLpcLDz30EO655x7Yto0lS5Zg3Lhx5VgyEREREZXJcJbAyGT+Cl1/CbreiHT6/aI5v//iQlB50SC6fhMRERHRcLNt2zn91p9EBds20Nr6OjStAa2tu9G9bEYgcAVqaupQXX0TJMlbwmoECILLyVYWRU8J9zi1lCXALIoi1q5dWzQ2adIk59cHDx7s8bqnn376hLG5c+di7ty5Q7tAIiIiIiqr4SyBYRitaG7+FXS9EYnEvqI5j2cCFCUKRYnC651YtjUQERER0dCzrBwMow2mmSiUtOh9T5nJHIOmbYWmvYBcrskZl+VqRCK3QlVr4fVO6uUOvREhSQFIUhCS5CuxPvOpqSwBZiIiIiI6/XTVwetfZslgWFYHWlpeg643Ih7fU1RDT5YVKMpCKEoUfv+l3PwTERERjSH5bOX2Qm3lFPraU1pWFi0tO6FpDWhre7NoLhSaAVW9A9XV87r12hgIAYJQAVkOQZL8EEWGUnvCfytERERENCjDVQLDtk20tf1XoVnfq4UvHHmi6EN19TwoymJUVsk0LMgAACAASURBVF4LQeA2l4iIiGgssSwDppmAYbTBtrPoK1s5nf4QmrYVsdiLMIwWZ9zlqoGq3g5VvQMez6dKWIkAQCoElQOQpIoS7nF64c6biIiIiAZsuEpg2LaNVOpQIai8A7mc5swJgoxQaCYikSiqquYOWbduIiIiIho+ndnKpplEX9nKpplGS8sraGqqRzK5v9uMiKqqOVDVOlRVzS4x2UCEKPohywFIUoCn4AaAAWYiIiIi6pfhLIHR0fERdH0bdL0RHR1/KZoLBC4vNOtbAJcrXLY1EBEREVF52LYJw+jMVu47WSGV+j00rR663lg4NZfn8ZwNVb0DkcjtcLvHlbASAYLgdrKVRdFVwj2IAWYiIiIi6tVwlcDI5XTo+g7oeiNSqf8umvN6zy8061tU4lFHIiIiIhpp+X1lorCvNPv4bBK6/hI0rQGp1CFnXBBcqK6eB1WtQyh0DQRBLGElEiQpCFkOQpK8JVxP3THATEREREQnGK4SGKaZQkvLr6HrLyEefxPdv2i4XOOgKIugKIvh813EY4pEREREY1A+WzlZyFbuQG/7Stu2kUwegKY1oLl5Bywr7cxVVJwHVa1DJPK5Ek+xiRBFr9Owr7TANPWEAWYiIiIiAjB8JTAsK4d4/A3oeiNaW38Dy+pw5iQpiHD4JihKFMHgVRAEqSxr6BuD2URERESDYZodhWzlNvSVrZzLtUDXt0HTGpBO/9EZF8UKhMMLoKp3IBC4ooSEAwGC4HKylUXRPfAXoT4xwExERER0muva/JevBEY+G+W3hWZ9L8MwWp05QXCjquoGKEoUVVVzRnDjn6/Bl+8W7geDzEREREQD05WwEC9kH/eWrWwhkXgHTU0NaGl5FbaddeZ8vk9DVWuhKFHIcqiElUiFPV0AkuTjSbgyY4CZiIiI6DQ0XCUw0ukPEIs1Qtcbkc1+3G1GQCg0HYoSRXX1jSV+cRgKxUFlSaoYoXUQERERjV2WlXGa9vWVsJDNaojFXoSmNSCT+cgZF0U/FOUW1NTUwe+/uIRVCBCECshyCLIcGMGTcKcfBpiJiIiIThO2bReCyklYVgrlKoGRzR6Hrr8EXW9Ee/vvi+Z8vilOs77SOn0PBQaViYiIiAara2/ZVshWPvne0rZNxONvQNPq0dKyC91LZgQCl0NVaxEOL4Ak+Qa4CgGAVKirHOC+boQwwExERER0ihuOEhiG0YaWllcQizUikXgH3TOi3e6zEIlEoSiL4fVOKsvz+8agMhEREdFQsKyss7e07Rx6OwmXyXwMTXsesdjzyGb/5oxLUhUikc9BVWvh811QwipEiKIfshwsNOxjCYyRxAAzERER0SloOEpgWFYGra27C836dhW+YOTJchXC4YVQlCgCgctHaNPf1dRFknyQJO8IrIGIiIho7MtnK3c2g+79JJxlZdHauguaVo94fC+670NDoWugqnWorp4HUfQMcBUCBMHjZCuLIsOaowV/EkRERESniOEogdHZjCXfrO+VQlZ0nihWoKpqHiKRKEKhGRBF15A/v2+dQeXOTGUGlYmIiIhKZVm5btnKWfSWtJBO/xma1oBY7BcwDN0Zd7lURCK3Q1XvQEXFhBJWIUOSgoVsZZ5CG40YYCYiIiIa40yzw6l/l69nN7TZyrZto739D9D1bdD17cjljneblVBZeV2hWd88SJJ/SJ/dPwwqExEREQ0l02yHYbTBNJPoPVu5A83Nr0LTGgpl0jqJqKycjZqaWlRWzikh8aCzBEagUAJDLOU1aJgwwExEREQ0BlmW4QSVy1UCI5P5X6dZXzr9QdGc3/+ZQrO+BXC5IkP+7L4xqExEREQ0lLr2l/E+s5Xb248UspW3wTTjzrjbfSZUdQlU9Q643eMHuILOEhjBQgmMkTgNR6VggJmIiIhojBhI7btS5XLNaG5+GbreiGTyvaK5iopzC0HlKCoqzhnyZ/eNNZWJiIiIhpppprtlK5u9fC4FXd8BTatHKvU/zrggyKiq+ixUtRaVlddBEKQBrkCCJIUK2crc341FDDATERERjXLlLoFhmmm0tr4GXW9EPL4Htm04cy6X6jTr8/svHoFmfQwqExEREQ012zZhGJ2n4Tpwsv2lbdtIpQ5C0+qh69thWe3OXEXFuVDVWkQit8HlUga4AhGi6CsElQMsgTHGMcBMRERENAp1HVFM9LrpL5VtG4jH34SuN6KlZWfRlwVR9CMcvgmKEkUoNL2ELJTB6h5U9rOZCxEREdEQMc2OQtO+zsSFnhlGHLHYNmhaPdLp951xQfAgHL4JqlqHYPDKASYfCBAEd6FhXwCi6C79RWhUYYCZiIiIaJToLIFhmsk+G6qUev9U6r8RizWiuXkHDKPZmRMEFyorZyMSiaKq6gaI4nAHdTu/cAQYVCYiIiIaQrZtwTCSMM02WFYavWUrJxLvQtPq0dz8SqEOc57XOxmqWodIZDFkuXKAK5CcoLIk+Up/ERq1GGAmIiIiGmH5EhgpmGYCtp3DUGcrp9N/gq43QtdfQibzUdFcMHgVFCWKcPgmyHLVkD63bwwqExEREZWLZWVgGIlCmTXjpJ/L5WKIxV5EU9NWZDJ/ccZF0QdFWQRVrYPff8mAs5VF0VuorewfgRNxNJwYYCYiIiIaAZ1170wz0WsmSamy2SY0N+9ALLYN7e2Hi+a83smFZn23wOM5c0if2zcGlYmIiIjKJX8iLlFoCt2Ok2crm4jH34SmNaC19TdFPTj8/kuhqrVQlIWQpMAAnt5V5ixfAsMzuJehMYMBZiIiIqJhkt/wt8M0EzDNFHqre1cK00yiuflV6Hoj2tr+C91LbLjdZ0BRboGiROHzXTikz+0bg8pERERE5WRZ2W7ZyrmTfi6T+T/EYs9D055HNvtXZ1ySQohEPgdVvQM+30UDfLpY2Ofl93rD3xSaRhoDzERERERlVs4SGJaVRTz+eqFZ3y7YdsaZk6RKhMM3Q1GiCAavGObu3AwqExEREZVTZ/8Ow2grZCv33L/DsnKIx3ejqake8fieos8Fg1dDVWsRDt84wB4cAgTBA1kOQZICEEWGGE9n/OkTERERlYFlGU5QeahLYNi2hURiP3S9Ec3Nv4Jpxp05QfCguvoGKEoUlZWzh7k7N4PKREREROVmWTkYRgKm2dZr8kJHx0fQtAbEYi8il9OccVlWoKq3IRK5A17vxAE+XSrUVQ5AkrylvwSdUhhgJiIiIhoinVkkppmEaSZxsiySUrW3Hyk069tedKQREBEKXVNo1nfjAGvlDRaDykRERETDwTBShVJrJ99nWlYGLS2/hqY1FEqmdRJQWTkTqlqHqqobIIquATxZhCh6C9nK/mE+FUdjAQPMRERERINUzhIYmcz/FYLKjUin3y+a8/svLgSVF8LtrhmyZ/aNQWUiIiKi4ZA/FZevrWzbWZxsn5lOf4CmpnrEYr+EabY64273eEQiS6CqS+DxnDWAJ3ft92Q5OMyn4misYYCZiIiIqAT5zX4ShpGAbXdgKIPKhtGK5uZXoOuNSCTeLZrzeCZAUaJQlFvg9Z43ZM/sG4PKRERERMPFNNsLZTASOFm2smm2o7n5ZWhaA5LJ97rNSKiungtVrUVl5UwIgjSAJ0vdGvb52LCP+qUsAWbLsrBmzRocOXIEbrcb69atwznnnOPMP/vss9i+fTsAYM6cOVixYgUSiQRWrVqFZDKJXC6Hhx56CJdffjleffVVbNy4EWeccQYA4P7778fVV19djmUTERER9aqcJTAsqwMtLa9B1xsRj+8pZELnybICRVkIRYnC7790GDf6DCoTERERDRfbNmEYndnKGZwsgSGVOoSmpnro+kuwrJQz7vFMgKrWIhK5DW63OoAnCxCECshyvrbywALSRGUKMO/cuRPZbBbPPfccDhw4gA0bNmDz5s0AgGPHjmHbtm1oaGiAIAi46667MG/ePLz66qu45ppr8IUvfAF/+tOf8MADD+DFF1/E4cOHsWrVKtx0003lWCoRERFRn/IlMJIwjDYAJoYqW9m2TbS1/VehWd+rRV8QRNGH6ur5hWZ910IQhuvgGYPKRERERMPJNNPdspXNHj9jGAno+jZo2la0t//OGRcEF6qrb0JNTS2CwasHUB9ZACAV6ioHuOejQSnLN5X9+/dj1qxZAIDLLrsMhw4dcubGjx+PZ555BpKU/9sQwzDg8XjwhS98AW53vp6LaZrweDwAgMOHD+P3v/89fvazn+HSSy/F17/+dcgyK3sQERFReZWrBIZt20ilDhWCyjuKOnoLgozKyllQlCiqquYOY2duAYLgKQSUGVQeLqWc+uvo6MCqVaug6zr8fj8ef/xxhMPhkXoFIiIiKlE+WzlZyFbuea9p2zaSyf1oampAS8uvYFkdzpzXewFUtRaKshguV/UAnixCFP2Q5XwZDJbAoKFQlkhtMplEINDVvVySJBiGAVmW4XK5EA6HYds2Nm7ciClTpmDixInOZzVNw6pVq/Dwww8DAGbMmIF58+bh7LPPxurVq/Hzn/8cf//3f1+OZRMREdFprrMEhmEkCtnEQ1cCo6PjI+j6Nuh6Izo6/lI0FwhMg6LcgnB4AVyu4QoWMqg80ko59ffWW29h8uTJuP/++7F9+3Zs2rQJ3/zmN0f4TYiIiKi/TLOjkK3ceTLuRLlcM2KxX0DTGtDR8SdnXBS9CIcXoqamDn7/ZwYQHM7v+2Q5CEkKQBRdg38Rom7KEmAOBAJIpbqOeFqWVZR1nMlk8PDDD8Pv92P16tXO+JEjR7By5Ur80z/9k1NnecmSJQiFQgCAz372s3jllVfKsWQiIiI6jZWrBEYup0PXd0DXG5FK/XfRnNd7fqFZ3yJ4PJ8akuf1jUHl0aSUU3/79+/HF7/4RQDA7NmzsWnTpuFfOBEREQ2IbVswjCRMsw2WlUbP2coW2tregqY1oKVlZ1E/Dr//YqhqHRRlESQpcMK1JydBkoKFwPJwnYyj01FZAszTpk3Drl27sHDhQhw4cACTJ0925mzbxvLlyzF9+nQsW7bMGf/ggw/w1a9+Ff/6r/+Kiy66yPns4sWL8fOf/xzjx4/HW2+9halTp5ZjyURERHSaKVcJDNNMoaVlZ6FZ35vonpnictVAUW6BoiyGz3fRMB1JZE3l0aqUU3/JZBLBYBAA4Pf7kUgkRmr5RERE1IfiJAajx89ks8cRi70ATduKTOZ/nXFJCkJRFkNVa+H3f3oATxUhit5CYDkwgJrMRKUrS4B5/vz52Lt3L5YuXQrbtrF+/Xps2bIFEyZMgGVZeOedd5DNZrFnzx4AwMqVK/H0008jm83i0UcfBZDPgt68eTPWrVuHFStWoKKiApMmTUJdXV05lkxERESngXKVwLCsHNra9iIWa0Rr628KmSl5khREOHwTFCWKYPCqYerKzaDyWFDKqb/u16RSKeekHxEREY0Otm0V9pvxXrKVDbS2vg5Nq0dr625035MGAlegpqYO1dU3DSDrWIAguJygsih6huRdiPqrLAFmURSxdu3aorFJkyY5vz548OAJ13TWm/ukmTNnYubMmUO7QCIiIjqtdGWPJJDPHhl8tnK+6cp7hWZ9L8MwWpw5QXChquqGQrO+OcO0yWdQeawp5dTftGnTsHv3blx66aV4/fXXccUVV4zE0omIiOgT+pOtnMkcg6Y9D017AbnccWdclqsRidwGVb0DXu+kHq/tmVjY+wUhST427KMRU5YAMxEREdFIK1cJjHT6w0KzvpeKjjECAoLBqxGJRFFdfRNkeTgySxlUHstKOfV355134sEHH8Sdd94Jl8uF733veyP8FkRERKev/mQrW1YWLS07oWlb0da2t2guFJqBmppaVFV9FqLo7udTBQhCRbeGfQzt0cjjn0IiIiI6ZZSrBEY2exy6vh263oj29t8Vzfl8n3aa9bnd44fkeb1jUPlUUcqpPwD4wQ9+UNZ1ERERUe/6k62cTn8ITWtALPaLopNuLlcNVHUJVHXJABs9y5DlUGEPyP0fjS4MMBMREdGYV7zJNzEU2cqGkUBLyyvQ9Ua0tb1ddE+3+ywoShSRSBRe7/mDflbfGFQmIiIiGkn9yVY2zTSam38FTWtAMrm/24yIqqo5UNU6VFXNhiD0NxwnQhR9hWxlPxv20ajFADMRERGNSeUogWFZGbS27oauv4TW1l2w7awzJ8tVCIcXQFGiCASmDUONOwaViYiIiEZaf7KVU6nfQdMaoOuNMM2EM+52n4WamlpEIrfD7R7Xzyd27gGDkOUgRNE1+JcgKjMGmImIiGjM6CyBYZpJmGYSQ1ECw7ZNJBLvFpr1vVL0pUAUK1BVNQ+RSBSh0Ixh2OAzqExEREQ00vqXrZyErr+EpqZ6tLcfdsYFwYXq6nlQ1TqEQtcMIOtYcoLKkuQdmhchGiYMMBMREdGoN9QlMGzbRnv776HrjdD17UVdvAEJlZXXQVGiqK6eB0nyD+pZfRMgCC6n+ze/UBARERGNjL6ylW3bRjJ5AJpWj+bmlwvB57yKiklQ1VpEIp+DyxXu5xNFiKK3EFj2QxCkoXkRomHGADMRERGNSuUogZHJHIOuv4RYrBEdHR8Wzfn9nyk061sAlysy6Gf1jkFlIiIiotGgP9nKuVwLdP2X0LStSKf/6IyLYgXC4QVQ1doBlFDr2gfKcgCi6Bm6lyEaIQwwExER0ajRtcFPwrJSGIoSGLlcM5qbX4auNyKZfK9orqLi3EJQOYqKinMG/azeMahMRERENFpYVgaGkeglW9lCIvEOmpoa0NLyalFvDp9vClS1FooShSwH+/lEqVACLb8XLH8/D6LhwwAzERERjTjTTMMwkoX6xz03Txno/Vpbf4NYrBFtbW/Atrvu6XKpCIcXQlGi8PsvLvPmvjOo3FlTmUFlIiIiopGS7+eRL4GRz1Y+MZkhm9UQi70ITWtAJvORMy6KfkQiUahqHfz+qf18ogBBqIAshyBJfogiw3B0auKfbCIiIhoRlpV1gsr5jJDB1lU2EI+/BV3fhpaWnbCsdmdOFP0Ih2+EokQLzVbKWd+OQWUiIiKi0SS/70x023cWs20T8fgb0LR6tLTsQr7nR14gcDlUtRbh8AJIkq8fTxMASIWgcoBNm+m0wAAzERERDZuuEhgnzxoZ2P1spFL/U2jWtwOGoTtzguBCZeWsQrO+uRDFcm7ui4PKoljBY49EREREIyifrdy572xHT/vOTOZjaNrziMWeRzb7N2dckqoQiXwOqloLn++Cfj5RhCj6IcsBSFKAe0E6rTDATERERGVnmu3dSmCYfX6+L+n0nwtB5ZeQyRwtmgsGrywElW+Cy1U96GedXPegsg+i6OUXCSIiIqIRZlm5QrZyG2w7h0+ekrOsLFpbd0HT6hGP7y2aD4WugarWobp6Xj+b7wkQBLeTrSyKriF9F6KxggFmIiIiKouhLoGRzWpobt4OXW9EKnWoaM7rnVxo1rcIHs9Zg3pO7/JB5Xx2ip9BZSIiIqJRIJ+t3F7IVu65UXQ6/WdoWgNisV8UnXpzuVREIrdDVZcMoOmzBEkKQpaDLIdGBAaYiYiIaAgNdQkM00yiufnX0PVGtLW9VXQ/t/sMKMotUJQofL4LB7fwXgkAZEhSgEFlIiIiolHEsgyYZgKG0dZjQoNldaC5+RVoWgMSiXe7zYiorJyNmppaVFbO6WfmsQBR9EKSQpBlf5l7ehCNLQwwExER0aCZZrqQrdyGwZbAsKws4vE90PVGtLS8BtvOOHOSVIlw+GYoShTB4BUQBHGQKz+ZfHOWfGYKg8pEREREo0k+WzlRKL92YkJDe/uRQrbyLwv70zy3+yyo6hKo6hK43eP78aTOkmhByHKgn2UziE4/DDATERFRSSwrB9NMwjAShSBw6SUwbNtCMvlbxGLb0Nz8Ckyz1ZkTBA+qq2+AokRRWTkbougegtX3hEFlIiIiotHKtk0YRme28ol7T9NMQtdfhqbVI5X6H2dcEFyoqpqLmpo6hELX9TNBQYIk+SFJQUiSj3tCoj4wwExERET9lq9vl4RhJE9a324g2tvfh65vg65vRzb7124zIkKha6AoUYTDN0KSAoN6zsl1BZUlyccvEERERESjTP6kXKLHZtG2bSOVOghNq4eub4dltTtzFRXnQlXrEIncCpdL6ceTBAhCBWQ5BFkOsAQG0QAwwExERER9Ms2Obht7Y1D3ymT+Cl1/CbreiHT6/aI5n28qIpHFCIcXwu2uGdRzTo5BZSIiIqLRLJ+tnCxkK3fgk9nKhhFHLLYNmtaAdPqIMy4IHoTDN0FV6xAMXtmPPV5+XyjLIUhSAJJUMeTvQnQ6YICZiIiIetTVNGXwJTAMoxXNza9A1xs/0WAF8Hg+BUWJQlGi8HrPG+SqT6YzqBwoHHdkUJmIiIhotOlKajixr4dt20gk3oWmNaC5+ZWiPh1e74WoqamDokQhy5X9eJIIUfRDloOQJD/3hUSDxAAzEREROWzbgmmmhqQEhmV1oLV1F2KxRsTjr8O2c86cLIcRDi9EJBKF3/+ZMm3qGVQmIiIiGu1s23KaRVtWGp9MasjldMRiL0LTGtDR8RdnXBR9UJRFUNU6+P2X9CtbWRA8haByAKLoGvJ3ITpdMcBMREREhdp2yUGXwLBtE21tb0PXG9HS8ipMM+nMiaIP1dXzCs36roMglGMbwqAyERER0VhgWRmnad8n95+2bSIefxOa1oDW1t/Atrvm/f7PQFVroSgL+tmnQ4Ik5esqS5J3aF+CiAAwwExERHTasqxsIaicHFQJDNu20d5+GLFYI5qbtyOX05w5QZARCs1EJBJFVdVcSJJviFbfXfegso/HHImIiIhGqa6G0YlCQ77i03LZ7N+gaVuhaS8gm/3YGZekECKRz0FV74DPd1E/niRCFL2F2sp+CII4tC9CREUYYCYiIjqNdJXA6DyCWHoJjI6Oj6DrjdD1RnR0/LloLhC4HIoSRTi8AC5XeJCr7okAQOzWqI9BZSIiIqLRyrJyMIw2mGaiUDbNLpqLx3ejqake8fgedN+fBoNXQ1XvQDh8E0SxrwZ8AgTBDUkKQpYDEEV3Wd6FiE7EADMREdFpwDTbu5XAMPv8/Mnkcs1obt6BWKwRqdSBormKikmIRKJQlFvg8XxqkCvuSWdQubP8BYPKRERERKOZYaRgmolC2bTixIaOjo+gaQ2IxV4sOgEnywpU9Taoai0qKs7tx1PyJ9nytZXLcVqOiPrCADMREdEpKl/XrrMERhallsAwzRRaWn4DXW9EPL4X3QPULlcNFOUWKEoUPt+nyxDw/WRQ2ccjjkRERESjmGUZhTIY8RP2oJaVQUvLr9HUVI9E4u1uVwmorJwJVa1DVdUN/WjAJ0AUvU62siBI5XgVIuonBpiJiIhOIbZtOpnKPXXh7i/LyqGtbS9isUa0tv6mcK88SQqiuvpGRCJRBINXl2FDz6AyERER0ViTbxqd6PHEXHv7HwvZyr+EabY64273GYhElkBVl8DjObOPJwgQBFehRJofktRXyQwiGi4MMBMREY1x+WYpKZhmEqaZQqklMGzbRjL5HnS9Ec3NL8MwWpw5QXChqup6KEoUVVXXQxQ9Q7R65wlgUJmIiIhobOlMbjCMNth2B7onN5hmO5qbX4amNSCZfM8ZFwQZVVU3QFVrUVk5sx/JCiJE0V8ogcESaUSjUVkCzJZlYc2aNThy5AjcbjfWrVuHc845x5l/9tlnsX37dgDAnDlzsGLFCnR0dGDVqlXQdR1+vx+PP/44wuEwXnvtNTz11FOQZRlLlixBXV1dOZZMREQ05phmRyGwfGKzlIFIpz9ALJZv1te9WzcgIBi8GpFIFNXVN0GWQ0Oy7mJSIajsY4dvIiIiojHCNDsK2cpt+GRyQyp1CE1N9dD1l2BZKWfc45kAVa1FJHIb3G61jycIEAQPZDkESQpAFJkfSTSaleW/oTt37kQ2m8Vzzz2HAwcOYMOGDdi8eTMA4NixY9i2bRsaGhogCALuuusuzJs3D2+99RYmT56M+++/H9u3b8emTZvw4IMP4rHHHsPWrVvh9Xpx55134oYbboCq9vU/RERERKemrpp2iROyRAYimz0OXd8OXW9Ee/vviuZ8vk9DUaJQlEVwu8cPwao/SXKa9DGoTERERDQ22LYF00zBMOInlGIzjDboeiM0bWvR3lIQXKiuvgk1NbWF0mp97fvkQl3lIEtgEI0hZQkw79+/H7NmzQIAXHbZZTh06JAzN378eDzzzDOQpPwRCMMw4PF4sH//fnzxi18EAMyePRubNm3Chx9+iAkTJqCyshIAcMUVV2Dfvn1YsGBBOZZNREQ0KuVLYCRhGMlCFojV5zU9MYwEWlpega43oq3tbXT/UuB2nwVFiSISicLrPX9oFl6EQWUiIiKisaizcbRhxAEYzni+vNp+NDU1oKXlV7CsDmfO670AqloLRVkMl6u6jyeIEEVftxIY3CcSjTVlCTAnk0kEAgHn95IkwTAMyLIMl8uFcDgM27axceNGTJkyBRMnTkQymUQwGAQA+P1+JBKJorHO8WQyWY4lExERjTr5RinJbo1SBp6tbFlZtLbuhq43orV1V6GTd54sVyEcXgBFiSIQmFaGenYMKhMRERGNRV0JDglYVju6Jzjkcs2IxX4BTWtAR8efnHFR9CIcXghVrUUgcFkfe0sBguAuZCsHIIru8r0MEZVdWQLMgUAAqVRXnR3LsiDLXY/KZDJ4+OGH4ff7sXr16hOuSaVSCIVCJ9wnlUoVBZyJiIhONZaV61YCI4NSgsq2bSGReLfQrO+VQm28PFGsQFXVZ6EoUVRWzijDZp5BZSIiIqKxyrJyMIy2E3p82LaFtra3oGn1aGn5TWEuz++/pJCtvAiSFDjJnTtJTlBZknzlexEiGlZlCTBPmzYNu3btwsKFC3HgwAFMnjzZmbNtG8uXL8f06dOxbNmyomt2796NSy+9FK+/6dAkbwAAIABJREFU/jquuOIKTJo0CUePHkVrayt8Ph/27duHe+65pxxLJiIiGjFd9exOzBDp/z1stLf/Abq+Dbq+Hbnc8W6zIiorr4OiRFFdPa8fG/+B6h5U9vWjEzgRERERjSaGkYJhtJ1Qji2bPQ5Nex6atrWoGbQkBaEoi1FTUwef76I+7i5AFL2QpBBk2c+9ItEpqCwB5vnz52Pv3r1YunQpbNvG+vXrsWXLFkyYMAGWZeGdd95BNpvFnj17AAArV67EnXfeiQcffBB33nknXC4Xvve978HlcuGhhx7CPffcA9u2sWTJEowbN64cSyYiIhp2ptn+iRIYA5fJfAxdfwm63oh0+o9Fc37/pYVmfQvhckWGYMXdMahMRERENJblm0cnYBhthTJqndnKBlpbX4em1aO1dTe6B5yDwSuhqrUIh2+GKPbWhE+AILi6lcDwlPVdiGhklSXALIoi1q5dWzQ2adIk59cHDx7s8bof/OAHJ4zNnTsXc+fOHdoFEhERjZDOJimmmSzayA9ELteC5uaXoeuNSCZ/WzTn8ZyLSCQKRbkFFRXnDs2iHVKhAUuAQWUiIiKiMSrf56MNpplE9ySHTOYYNG0rNO0F5HJNzrgsVyMSuQ2qege83kk93LE7EZIUKPzjL0OPDyIajcoSYCYiIqIutm06mcr57toDL4Fhmmm0tr4GXW9EPL4Htt3VwdvliiAcXghFicLvv2SIN/IiRNHPoDIRERHRGNa5HzWMeFGfD8vKoqVlJzStAW1tb3a7QkAoNAM1NXegquqzffTtECAIFZDlICQpAFFkqInodMP/1hMREZVBvvN2O0wzeUJ2SP/vYSAefwu63oiWll8X6jPniaIf4fCNUJRbEApdA0EYyv9LZ1CZiIiI6FRgmh1O077u+9F0+kNo2lbEYi/CMFqccZerBqq6BKq6BB7Pp/q4uwxZDhWylXsrl0FEpzoGmImIiIaQaXbANFMndN7uL9u2kUr9D3S9Ebq+A4ahO3OC4EJl5axCs765fdS9GygGlYmIiIhOBbZtwTA6ayt3oHM/appptLS8gqameiST+7tdIaGqag5UtQ5VVbP6SFwQCyXTgoUSGGI5X4WIxggGmImIiAYp3yAldcImfiDS6T8XgsovIZM5WjQXDF4JRYkiHL4Zslw1RKsGOoPKkuRnR28iIiKiMS6frZyAabahe7ZyKvV7aFo9dL2xkMmc5/GcDVW9A5HI7XC7x/VyZwGC4HaylUXRVb6XIKIxiQFmIiKiEuRLYKS6lcAYeF3lbFZDc/N26HojUqlDRXNe72QoShSKsggez1lDtGqgM+tEkgIMKhMRERGNcfls5SRMsw2WlUZXtnISuv4SNK2haJ8pCC5UV8+DqtYVyqz1loEsQZKChWxlb3lfhIjGNAaYiYiIBmCwJTBMM4nm5l9D1xvR1vYWugem3e4zoCiLoChR+HwXDeGqu4LKkuRj4xUiIiKiMS6/J03CMNoA5Js/27aNZPIANK0ezc0vFwLOeRUV50FV6xCJ/H/27jxIjvq8H/+7j7mPnZmeXmwuYcuWMSAHxGGDEJcQCKGVwavdyK44cYUYV1z2NxWwYjuVigk/AjhVclIpx7Kpb9gvxrHRgSEaIQ4LySAEdjgiB2QjG2yOgHZnpufYuWf6+P0xPb0zq9VqV9pLu+9XVQptfz7d85kqRzz78PTzfBouV2ycJ4sQRZ+dWA6yBQYRTQh/wyQiIjqG1tRtwyh0VIZMlGnWkc/vs4f17bEndzdJUhix2GooSg9CoYumMIhnUpmIiIhoPrEs02nL1hz+3IxJG40sNO0/kUptR6XyO2e/KHoRi90AVe1DMLgMgiAc5ckCBMHlJJVF0TP9X4aI5hX+tklERDSGE22BYVkmisVXkE7vQCbzJAwj56wJghuRyNWIx9ehq+sKiKJ7ik7NpDIRERHRfGOaNWdo30i1solC4ZdIJrchm33KfrOuye8/B6raB0XpgSyHxnmyZMeNrSHPR0tAExGNj795EhERtel83dDAZKuVy+XfOsP66vX321YEhMOfgqL0IBq97hjB/mS0ksrNYX1MKhMRERGd/I5WrVyvp5BO/xSp1HbUau84+0UxgHi8B6rah0DgvHGeLEAQvJDlsN0Cg/M4iOjE8bdQIiJa8ExTt5PKBVhWFZNNKtdqh5HJ7EQ6nUClcqhjze8/1x7Wt+YY07kno9UbL8ikMhEREdE80qxWLkLX8xipVjaQz+9DKrUN2exeNIsgmoLBC6Cq/YjFVkOS/Ed5qgBAtof1BSFJ3un+GkS0wPA3UiIiWpBGqkKKMM0SJtsCQ9fzyGSehKYlUCi8iPaktMdzhp1UXgufb/EUnZhJZSIiIqL5qNmarWhXK1fQiktrtfeQSj2MdPph1OuDzn5JiiAevwmquh5+/0fHebIIUQzYieUAW2AQ0bThb6dERLSgGEbFGdjXqgqZKNOsIpfbi3Q6gXz+2Y5ed7IcQyy2BvF4DwKBP5qiAJ5JZSIiIqL5yjTr0PUCDKNgx5UWTLOOXG4vUqmtyOf3o72IIRy+FKrah2h01TgzPAQIgsdOKocYPxLRjODfNERENO+ZZqOtBUYNk2mBYVkGhod/CU1LIJt9yh741ySKfkSj10JRehAOXwpRdE3BaduTyv4peiYRERERzQWtQdIjvZWb1cqVyh+QSm1DOv0odF1z9rtcKuLxz0BV18PrPXOcJ0uQpGZfZUnyTe+XICIahQlmIiKal0ZaYBQ6gveJ3WuhXD6IdDqBTOYxNBopZ00QZITDlyMe70Ekcs04ve4mo5VUbg3qY1KZiIiIaD4Zu1q5ikzmSaRS2+yWay0iurquQHd3H7q6rhwnNmwOex5pgSHOwDchIjrShBLM3/3ud/GjH/0Isjyy/bnnnpu2QxERER0vwyi3tcAwjrm/XbX6DjQtAU1LoFr9Q8daMHgBFKUHsdgNcLliU3BSEaLobWt/waQy0cmOMTMREbUbqVYudMz8KJdfRzK5DZq2A4Yx7Ox3u0+DqvZCVXvhdn/gKE8VIAhuSFIIshwcp1UGEdHMmVCCee/evfj5z38Or5eTRomIaO5pVoQU7YqQOibTAqPR0JDJPI50OoFS6UDHmte7GPF4c1ifx3PGFJyUSWWi+YwxMxERAc32bM1q5WGnWtkwitC0XUiltqFU+h9nryC4EIlcg+7ufoTDl41ThSxBkoJ2tfJUvEFHRDR1JpRgVhSloxKDiIhotlmWAV0vwTAKHdO2J8IwSshmn4amJezhKSOVzi5XNxRlLRSlB37/x6dgWJ9oD1ppJZVZZUI0XzFmJiJauJrVymW7t3KzWtmyLJRK/4NUahs07TG7bVuT13sWVLUf8fhNcLmUozxVsNuohSHLAQiCNCPfhYhossaNgG+77TYIgoB0Oo2bb74ZH/3oR51ftDdt2jQjByQiImppBe6GUbSH7U28BYZpNjA8/Dw0bQey2aftpHSTJAURjV6PeLwHodAlUxC8CxAELyQpAFkOQBQ9J/g8IprLGDMTES1cpqnDMArQ9WHnTTpdzyGdTiCV2opK5bfOXkHwIBZbDVXtQyh00VEKGQQIgqutBQbjSCKa+8ZNMG/YsGGmzkFERHRUpllra4HRfM1wIizLQrF4AJqWQCazC7qeddaaryNeBUXpQSRy1RQE7wIEwWO/usikMtFCcrwxs2mauOOOO3Do0CG43W7cddddWLRoUceeTCaDDRs2IJFIwOPxwLIsXHHFFTjrrLMAAOeffz5uv/32E/0KREQ0Sc1q5YI996NZrVwovIhUaisymSftZHOTz/cxdHf3Q1F6IMtdR3miaLdRC9oD+070LToiopkzboL5wgsvhGEYuO222/DP//zPsCwLpmni1ltvxQ9/+MOZOiMRES1AzRYYxbYWGBPvq1ypvGkP69uJWu3dthUBodDFUJR1iMWuGyfAn6jWkJXmLwKSxL6rRAvR8cbMu3fvRr1ex5YtW3DgwAHce++92Lx5s7O+b98+bNq0Cel02rn2zjvv4Nxzz8X3v//9af1ORER0pGZ82qpWrgGw0GikkU4/gmRyO2q1t5y9ouiHoqyFqvYhEFg6TrWy1+6rHIQoss0SEZ2cxv3b6+GHH8b3v/99pNNprF69GpZlQZIkXHjhhTN1PiIiWkBak7abLTBKmEwLjHp9CJq2C5qWQLl8sGPN7z8bitIc1nf0idwTxaQyEXU63pj55ZdfxooVKwA0K5Ffe+21jnVRFDEwMIDe3l7n2sGDBzE0NITPf/7z8Hq9+OY3v4kPf/jDU/+liIjIYRhVZ2gfYMCyDOTz+5FKbUcu9zQsS3f2BgJ/hO7uPsRiayBJgaM8UYYsh+14krEkEZ38xk0w9/f3o7+/H9u3b8f69etn6kxERLTAGEbV6as8mRYYul5ANvskNG0nhod/0XGf231a27C+j57gCUd64TGpTESjHW/MXCwWEQwGnZ8lSYKu686gwOXLlx9xj6qquPXWW3HDDTfgpZdewsaNG/Hwww+f+JcgIqIOlmXCMErQ9bzzNl29PohUajtSqYdRr7/v7JWkLsTj66CqffD7P3aUJ4oQRb9drRyAIIgz8j2IiGbChN6/uPjii/GDH/wAjUYDAJBMJnHnnXdO68GIiGh+aw5EKULXC7CsKiaaVDbNOnK5Z6BpCeRyezv628lyBLHYDVCUtQgGl51g4N5KKrcqlX0n8CwiWggmGzMHg0GUSiXnZ9M0neTy0Zx33nmQpOYg0osuughDQ0OwLIu9OomIpkhr9oeu5wHoMM0G8vlnkExuRT6/D4Dp7A2FLoGq9iEWuw6iOFYBQuvNtxBkOQRRdM3U1yAimlETSjB//etfx9VXX41XXnkF3d3dKJfL030uIiKah1otMHS9ANMsoT1AH/8+E4XCi/awvift1xObRNGLSORaxOM9CIcvgyi6T+CEAgC5bVCfj0kbIpqwycbMy5Ytw969e7FmzRocOHAAS5YsOeZnfPe730UkEsEXv/hFvP766zj11FP59xQR0QlqxqhF6PqwXa1solp9G6nUdqTTj6DRSDl7ZVmBqt4MVe2D13vWUZ4o2UnlICTJPxNfgYhoVk0owez1evGlL30Jb731Fu655x587nOfm+5zERHRPNJqgaHrzb51E6lWtiwLlcohpNM7kMk8hnp9sG1VQlfXZVCUHkSj147T324iBIz8EsCkMhEdv8nGzKtWrcL+/fuxYcMGWJaFu+++GwMDAzjzzDOxcuXKMe+59dZbsXHjRjzzzDOQJAn33HPPdHwVIqIFwTTrdm/lAiyrAdOsIpv9GZLJrSgUftm2U0BX1+VQ1X5EIlcdpaBBgCj6IElhyHIAgiDN1NcgIpp1E0owW5aFVCqFUqmEcrmMfD4/3eciIqKT3PG2wKjV3oOm7YSmJVCp/K5jLRD4hD2sbw1crvgJnK6VVG61v/AzqUxEJ2yyMbMoike00Fi8ePER+/bs2eP8uaurC/fdd9/UHJiIaAEaeaNuGKZZBmCiXP4dUqmtSKd3wDByzl63+4OIx3uhqr3weE4d42kjczpkOQhR9MzY9yAimksmlGD+yle+gp/97Gf49Kc/jZUrV+Kmm26a7nMREdFJ6HhbYDQaWWSzTyCdTqBYfLljzeM5C/F4DxRl7TivIU6EAEBsSyoHmFQmoinFmJmIaO4yzQZ0fdipVjaMEjKZXUgmt6FUOuDsEwQZkcjVUNU+dHVdfpRK5FZMGWRMSUSESQz5+/jHP4733nsPu3fvRiAw/qvIpmnijjvuwKFDh+B2u3HXXXdh0aJFHXsymQw2bNiARCIBj8eD++67D/v27QMADA8PI51OY//+/RgYGMD27dsRi8UAAP/wD/+AD3/4w8fzXYmIaJocTwsMw6ggl9sDTUsgn98Hy9KdNZcrjlhsDRSlB4HA0hMM2kdXKnNiNxFNj8nGzERENL2axQ9lu1q5BMsyUCq9hlRqGzRtp10Q0eTxLIKqrkc8fjPcbnWMpwkQBA9kOQxJCkIUJ5ROISJaECb0N+KTTz6JzZs3wzAMrF69GoIg4Mtf/vJR9+/evRv1eh1btmzBgQMHcO+992Lz5s3O+r59+7Bp0yak02nn2q233opbb70VAPClL30JX/va1wAABw8exLe//W2cd955x/UFiYhoehxPCwzL0pHPvwBNSyCb/Zn9WmKTKPoRjV5nD+v7FAThRIJ2yalSblaVMKlMRNNvsjEzERFNj2a1cqu3ch26noemJZBKbUO5/BtnnyC4EYtdB1XtRyh0yVGKGmS7BUYIkuSduS9BRHQSmdBv7wMDA9i6dStuueUWfPnLX0Zvb++4wfLLL7+MFStWAADOP/98vPbaax3roihiYGAAvb29R9z71FNPIRwOO/cfPHgQ9913H1KpFK666ip86UtfmvCXIyKiqXU8LTAsy0Kp9Co0bQcymcfRaIz8x0VBkNHVtQKKsg6RyNWQJN8JnE6EKAacad0crEJEM22yMTMREU2d0XGqZRkoFl9GMrkN2ewTMM2qs9fnW2JXK38ashwZ42kiRNFvJ5VZrEBEdCwTSjCLogi32w1BECAIAny+8RMAxWIRwWDQ+VmSJOi6Dlluftzy5cuPeu8PfvADfOc733F+vvHGG/G5z30OwWAQX/nKV7B3715cffXVEzk2ERFNkeNpgVGtvoV0OgFN24la7a2OtWDwQsTjPYhGV8Plip7AyZhUJqK5Y7IxMxERnbiRauVhWFYDjYaGdPpRpFLbUK3+3tknij7EYmvQ3d2PQOCPxqhWFiAI7raBfe6Z/SJERCexCSWYL7roItx2220YGhrC3//932Pp0qXj7g8GgyiVRnoZmabpJJfH88YbbyAcDjv9mi3Lwp/92Z8hFAoBAK688kr8+te/ZoKZiGgGmGajrQVGDRNJKjcaaWjaY9C0BEqlVzvWfL6PQlGaw/o8ntNO4GTNpHKrpzL73xHRXDHZmJmIiI6frpdgGAUYRhGWpWN4+AWkUluRzT4Ny2o4+wKB86Cq/VCUGyFJwTGe1JzX0axW9s/cFyAimkcm9Fv5bbfdhmeffRbnnHMOFi9efMwE77Jly7B3716sWbMGBw4cwJIlSyZ0mOeffx5XXHGF83OxWMTatWuxa9cu+P1+/PKXvxyzrQYREU0NyzLbXi0sYyItMAyjiGx2N9LpBIaHn++4x+3+ABRlLRSlBz7fx05gWN9IUlmWA6xUJqI5abIxMxERTU5zBkgBuj4My6qjXh9EKvUwUqntqNffc/ZJUgiKsg6q2odA4ONjPEmAKPqcamXGlkREJ2bcBPOjjz7a8XM8Hkc+n8ejjz6Km2666aj3rVq1Cvv378eGDRtgWRbuvvtuDAwM4Mwzz8TKlSuPet8f/vCHjvYZoVAIf/3Xf40//dM/hdvtxqWXXoorr7xyot+NiIgmwLIsmGYFul6EYRTQbIExPtOsI59/DpqWQC63p6OnnSSFEYuthqL0IBS66AR61rH9BRGdHI43ZiYiookxjAp0fdiuVq4hl3sGqdQ25HLPoL24IRS6CKrah2j0+jFmewgQBFdbCwzPjH4HIqL5bNwE85tvvgkAOHDgAHw+Hy644AK8+uqr0HV93GBZFEXceeedHdcWL158xL49e/Z0/Pytb33riD033XQTA3MiomlgmjUnqdx8jXD8FhiWZaFYfAWalkAm8zh0PeesCYIbkcjViMfXoavrihPoWcekMhGdfI43ZiYioqOzLAO6XoSu52FZNVSr7yCV2o50+mE0GilnnyzHEI/fBFXtg8/34TGeJEKSgvb/BU7gjToiIjqacRPMt99+OwDglltuwX333edc//M///PpPRUREU2LVqBuGAWYZgUT6atcLv8WmrYTmraz49VDQEA4/EkoSg+i0eshy6HjPJVkT+lmUpmITk6MmYmIpo5hVJ2hfaZZQTa7G6nUNrsVW4uAcHg5urv7EIlcM0ZxgwBB8ECWw5CkIGd2EBFNswn9LZvJZDA8PIxwOIxMJoNcLnfsm4iIaE6wLAuGUbaHoJQwkRYYtdphZDI7kU4nUKkc6ljz+8+1+yrfCLf7lOM8FZPKRDT/MGYmIjo+lmXaRRDNpHKl8gZSqW1Ipx+FrmedfS7XKVDVXqhqLzye08d4kmy3wAhBkrwz9wWIiBa4CSWY//Iv/xLr169HMBhEoVDAPffcM93nIiKiEzTZFhi6nkcm8yQ0LYFC4cWO/R7PGVCUHijKWvh8R7Y8mhi2vyCi+Y0xMxHR5DTj1YLdX7mATOYJpFLbUCy+3LZLQiRyFVS1D5HICgjC6DSGCFH02dXKgROY/0FERMdrQgnmXC4Hl8uFN998E5FIBF//+tfx9NNPT/fZiIhokibbAsM0a8jl9trD+p6xE9FNshxFLLYGitKDYPD84+xXJ0IU/ZCkIGQ5wKQyEc1rjJmJiI6t+XZdAbpegGmWUSodRCq1DZqWsAdON3k8p0NV+xCP3zzGW3PtA/tCJzD/g4iIpsKEEswPPfQQ7rvvPqiqOt3nISKiSRppgVGEYRRxrBYYlmVgePi/oGk7kM0+Zd/TJIo+RKPXQlF6EA5fBlF0HceJmlUkrUEq7HlHRAsFY2ZaCDKZ3fjf//0OzjjjdkSjK2f7OHQSab1dp+t5GEYOmrYTyeRWlMsHnT2C4EI0ei1UtR/h8KfGqEZuvREX4sA+IqI5ZEK/9UejUZx22mnTfRYiIpoEw6jCMEoTaoFhWRbK5V9D0xLQtMfQaCTbViV0dV1uD+tbCUnyH8dpRIiity2pfDyJaSKikxtjZloI3n77H5DPPwfDKDDBTMfULIQo2kP7SigWX0EqtRWZzOP223ZNXu9idHf3Q1HWweWKjXqKAEFwtw3sY5xJRDTXjJtg/s53vgMAqNfruOWWW3DOOec4/4Xwtttum/7TERFRB9PUnSDdsqo4VguMavVdO6mcQLX6+461YPACKEoPYrEbxgjkJ0KAIHjtnsoBvppIRAsWY2ZaSHS90PFPorGYZt1OKhdQryehaY8ildqOSuV3zh5R9CIWuwGq2odgcNkY1ciS3QIjeJwFEERENFPGTTB/6EMf6vgnERHNvGblR8nuU1cCYI67v9HIIJN5HJqWQLH43x1rXu+H7WF9PfB6zziO0wgQBI/TU1kUPcfxDCKi+YUxMxFRZ8xqGAUMD7+AVGobstmnOuZ8+P3nQFXXQ1F6IMvhUU9pFTCEIctBzu8gIjpJjJtgvvnmm2fqHERENEqzBUYRuj6MZl/lo1crG0YZ2ezT0LQE8vnn0N6H2eVSoShroSg98PvPOY5edUwqExGNhzEzES1kptmwk8rDqNXeQzr9U6RS21CrvevskaQgFGUtVLUfgcC5YzxFdlpgSJJ35g5PRERTgpOXiIjmkMm0wDDNBoaHn7eH9T3d0cdOkoKIRq+DoqxDOHzJcVR/MKlMREREnXS9AF3X7D9r0PUCZDk0y6ei2aLrzVkgup5HPv8MksmtyOV+jvZCh2BwGVS1D7HY6jHaXIgQRb89sC/IgX1ERCcxJpiJiGbZyPCT4jFbYFiWhWLxv6FpCWQyj0PXs86aILgQiVwJRelBJHIVRHGy1R/NASqtQX2sHiEiIqKWXO45vPrqGhhGCQBQq72PF144DUuX7kIkcvksn45mSrMYogBdH0a1+gekUtuRTj+Men3Q2SPLESjKTeju7oPP95FRT2jFm83eypzhQUQ0PzDBTEQ0SybTAqNSedMe1rez43VDQEAodDEUZR1isesgy12TPAWTykRERDQ+XS/YyeX2wX4mDKN5/dJL34csB2ftfDT9DKMMXS+g0dCQyz2NVGor8vn9aI9fw+FLoar9iEavHSNxzIF9RETzGRPMREQzyDQbbS0wahgvqVyvD0HTdkHTEiiXD3as+f1n28P61sLt/sAkTyFAEFx2Upl97oiIiGh8yeQWWNbYb1hZlolUags++MFbZvhUNN1GWrcNo1x+HanUVqTTjzptUoDmrI94/DNQ1fXwes8c9QQRouizE8sBDuwjIprHmGAmIppmlmXaE7WP3QJD1wvIZp+CpiUwPPwLtCeg3e7T7GF9a+H3L5nkKQQ0h6eEIEkBiKKXfe6IiIhoQiqV39kxzJFMs4Ry+Y0ZPhFNp5Fq5TQymV1IpbahUHixbYeIrq4r0N3dh0jkKghCe1qhVcjQaoHBOR5ERAsBE8xERNOkGZwX7ddJjaPuM8068vlnkU7vQC63F5ZVd9YkKQJFWQ1F6UEwuAyCIE7iBAJGXkcMQBR9TCoTERHRpPl8H4UoBsZMMotiAH7/6D67dLKxLMMe4jiMUulXSCa3QtN2wDCGnT1u92lQ1V6oau8Yb9CJbW/HBRhzEhEtMEwwExFNIdOs2Unlop0oHrsFhmWZKBRehKbtRCbzREfwLggeRKMroSg96Oq6fJLDT1pJ5VZPZT8DfCIiIjoh3d1/jDffvG3MNUEQoap/PMMnoqliGBXo+jDq9UFoWgKp1FaUSq86680h0tdAVfvQ1bV8VLGDAEHwQJbDkKQgRJHpBSKihYr/BiAiOkEj/ekKsKwqjp5UtlAuvw5N24FMZlfHtG1ARDh8GeLxHkSj10KSJjMoh0llIiIimj6yHMLSpbvsQX+tdl8iJCmApUt3ccDfSaZVrdxo5FEsvohUags0bRdMs+zs8Xo/BFXtQzx+E1wuZdQTJEhS2B7Y55vZwxMR0ZzEBDMR0XGYTF/lWu1/oWk7oWk7Uan8rmMtEFgKRelBLLYGbrc6iROMtL+QJD+TykRERDStIpHLceml7+PFF89BrfYuPJ7TcPHFv2Zy+STSrFYuoFZ7F+n0I0iltqFS+a2zLggexGKr0d3dj2DwwlGxpQBR9Du9lSfXto2IiOY7JpiJiCahGZgX7ZYWR++r3Ghkkc0+gXQ6gWLx5Y41j2cRFKUHirIWPt+HJvHp7KlMREREs0eWg5DlGGq1dyHLMSZmMv8eAAAgAElEQVSXTwLt1crDw88hldqCTObJjpkffv/ZUNV+KEoPZDncdjcH9hER0cQwwUxEdAymWXeG9Y3XV9kwKsjl9kLTdiCffw6W1XDWZFmBoqyBoqxDILB0Eolhtr8gIiIioslpVStXq39AOr0dyeR21GpvOeui6Iei9EBV148Rm4oQxQBkOcSBfURENCFMMBMRjaFZ7VGCYRRgmhUcrQWGZekYHv4F0ukEstmnOnrXiaIf0egqe1jfpRCEif6Vy6QyERERzU2yHOr4J80dzfi1iEYji1zuaaRSW5HL7YFl6c6eQOCP0N3dh1hsDSQp0HZ3a2BfCJIU4sA+IiKaFP5bg4jIZlkWDKMMwyjCMIo4WgsMy7JQKr0KTUsgk9mFRiPtrAmCjK6uFVCUdYhErp7E4BMBzWE5rZ7KrBYhIiKiueess+7Au+9uwhln3D7bRyGbYVSh6wWUy68jnd6GVOph1OvvO+uS1IV4fB1UtQ9+/8dG3d1qvxbiwD4iIjpuTDAT0YJnmrW2FhgNHK0FRrX6lj2sL4Fq9a2OtWDwQsTjPYhGV8Plik7i00dXKnNgChEREc1d0ehKRKMrZ/sYC55lmXa1soZMZhdSqW3I5/eh/a27UOgSqGo/YrHrRvVPFiCKPkhSGLIcgCBIM35+IiKaX5hgJqIFyTR1GEZ7C4yxk8qNRhqatguatgOl0qsdaz7fR+1hfTfC4zl9Ep8u2QnlgF2pzKQyERERER1bq1q5VPofpFJbkU4/gkYj5ay7XHHE4zdDVdfD6z2r7c5mCzZZDtvFDd6ZPjoREc1jTDAT0YJhWaadVC7ZLTDG7qtsGEVks7uRTicwPPx8xz63+wOIxW5EPL4OPt/HJtHGQoIo+iHLraQyK0WIiIiI6NhGqpWT0LQEksktKBR+2bZDQFfXCqhqHyKRqyGKrra11sC+ICQpyBZsREQ0LZhgJqJ5rzlFu9kCo9lX+chqZdOsI59/DpqWQC63B6ZZddYkKYRYbDUUpQeh0MWTqDhuD+j9TCoTERER0YS1qpULhZeQSj2EdHoHDCPnrLvdH0A8vh6q2guP59S2OwUIgtvprdyZcCYiIpp6TDAT0bxkmvW2vsp1jJVUtiwLxeIr9rC+x6HrIwG7ILgRiVwNRVmLSOTKUX3rxiNCFP2QpCB72hERERHRpLSqlev1w0inf4pkcitKpQPOuiDIiESugaquR1fX5aNizdbAvmZxAxER0UyZlgSzaZq44447cOjQIbjdbtx1111YtGhRx55MJoMNGzYgkUjA4/HAsixcccUVOOusswAA559/Pm6//Xbs2bMH//Zv/wZZltHb24v+/v7pODIRzQOtFhi6Pmz3VR67BUal8gbS6QQ0LYF6/b22FQHh8KegKD2IRq+DLIcm+MkjSWVJ8kMU+d/uiIiIiGjiWtXK+fx+pFIPQdN2wjRLzrrHswiquh7x+M1wu9W2O1sD+5qJZRY3EBHRbJiWLMju3btRr9exZcsWHDhwAPfeey82b97srO/btw+bNm1COp12rr3zzjs499xz8f3vf9+51mg0cM8992D79u3w+Xz47Gc/i6uvvhqqqoKIqGWkBcYwmi0wjlSvD0HTdkLTEiiXf9Ox5vefaw/rWwO3+5QJfqpoB/NBSFKASWUiIiIimpRWcUS1+g5Sqa1IpbZ1xKmC4EYsdh1UtR+h0CVt/ZM5sI+IiOaWacmIvPzyy1ixYgWAZiXya6+91rEuiiIGBgbQ29vrXDt48CCGhobw+c9/Hl6vF9/85jdRr9dx5plnoqurCwBw4YUX4qWXXsINN9wwHccmopPIRFpg6PowstknkU4nUCj8V8cej+d0O6ncA59v8QQ/VYQoetuSyuxnR0RERESTY5o1NBrDyOX2IJl8CNnsEx3zP3y+JVDVPsTj6yDLkbY7ObCPiIjmpmlJMBeLRQSDQednSZKg6zpkuflxy5cvP+IeVVVx66234oYbbsBLL72EjRs34pvf/CZCoZFX1AOBAIrF4nQcmYhOAiMtMAowzTLGaoFhmjXkcs/Yw/r2wrIazposRxGLrYGi9CAYPH+CQbkAQfDagXwAouieui9ERERERAtCK46tVP6AZPLHSKW2oVr9vbMuin4oyhqoaj8CgU90VCtzYB8REc1105JgDgaDKJVG+kWZpukkl4/mvPPOgyQ1+0VddNFFGBoaOuI5pVKpI+FMRAtDswVGAYZRwFgtMCzLwPDwf0HTdiCbfQqGMfIfokTRh2h0JRRlHcLhyyYYlLcC+SBkOTiJAX9ERERERCOa1cp5ZDJPIJX6CbLZpzsKIAKBpVDVPijKjZCkYNudHNhHREQnj2lJMC9btgx79+7FmjVrcODAASxZsuSY93z3u99FJBLBF7/4Rbz++us49dRTsXjxYrz99tvI5XLw+/146aWXcMstt0zHkYlojjlWCwzLslAu/xqaloCmPYZGI9m2KqGra7k9rG8lJCkwgU8UIAguSFIIkhRgLzsiIiIiOi6tauVy+RCGhv4DqdS2jsHSkhSCoqxDd3c//P6z2+5sDewLQ5YDHNhHREQnjWlJMK9atQr79+/Hhg0bYFkW7r77bgwMDODMM8/EypUrx7zn1ltvxcaNG/HMM89AkiTcc889cLlc+MY3voFbbrkFlmWht7cXp5wy0QFcRHSyGWmBMQzTrGCsFhjV6rt2UjnR8VohAAQC5yMe70EsdgNcLmUCn9gckDJSHeKbku9BRERERAtPs1o5i3R6B1Kph5DLPYP2eDYUugiq2odYbDVEsVXMMFLkwDfniIjoZDUtCWZRFHHnnXd2XFu8+MghWnv27HH+3NXVhfvuu++IPddccw2uueaaqT8kEc0JlmXBNCtOtfJYLTAajQwymcehaQkUi//dseb1fsgZ1uf1njmBT2wllYN2pbKfA1KIiIiI6LhYlgXDKKJYfBVDQw8inX4YjUbKWZflGOLxm6CqffD5Ptx2p2jHo82YlPEoERGdzKYlwUxEdCyGUYVhlOwWGA2MboFhGGVks09D0xIYHt4Py9KdNZdLRSx2I+LxdfD7z5lAQM6kMhERERFNHdOso15PI5V6GKnUTzA8/ELbqoCuruVQ1T5EIte0DYluDY8OQZKCEEX+Ok5ERPMD/41GRDPGNBt2C4wCLKuKI/sq68jn90PTEshmn4Zplp01SQoiGr0eitKDcPiSCfSkY1KZiIiIiKZOq1q5UHgFg4MPQNMega7nnHWX6xSoai9UtRcez+ltd8qQ5bAdl3LOBxERzT9MMBPRtLIsA4ZRhq4X7ISxOWrdQqn0K6TTCWQyu6DrGWdNEFyIRK6EoqxDJHLVBHrSMalMRERERFPLNOuo1YaQSm1FMvljFIuvtK1KiESuQnd3P7q6VrQVQYgQRb895yMIQRBn4+hEREQzgglmIppyzeqOMgyjCMMoYqy+ypXK7+1hfTtRq73TsRYKXQJF6UEsdj1kuesYnyag2cMuBEnys4cdEREREZ2wZjxbQj7/PIaGHoCm7bDj2iaP53Soah/i8ZvhdrcG0bcP7Au1tcYgIiKa35hgJqIpY5o1Z1jfWH2V6/UkMpldSKd3oFw+2LHm8y1BPL4OsdhaeDwfPMYntZLK7ZXKrAohIiIiohNjmnVUq+8jmfwPJJM/6YhZBcGFaHQVVLUf4fAn2+JPqW1gH9+gIyKihYcJZiI6IZZlOEll06xgdFJZ1wvIZn9mD+v7BdpbZLjdp0JRboSi9MDv/9gEPk1yAvdmpTKTykRERER0YizLgq4XkcvtwdDQg8hkdtlxbZPXuxjd3f1QlHVwuWL21dbAvjBkOTiB+SBERETzFxPMRDRprVcGmy0wShjdAsM068jnn7WH9e2BZdWdNUnqQiy2GvH4OgSDyyaQJJbsKuUAk8pERERENGVMs45K5W0MDT2IVOohVCq/c9ZE0YtY7Aaoap8ds7aqkmWnBQYH9hERETUxwUxEE2YYVRhGEbo+jGZSeaRa2bJMFAovQdMSyGSehGHknTVB8CAavQaK0oOurhUT6EfXHIoiSUHIcoAVIUREREQ0JZrVygVkMk9gaOiHyGafslu7Nfn956K7uw+x2FrIcsi+KtgD+8IseCAiIhoDE8xENC7TrMMwStD1AiyrhtEtMMrl1+1hfY+hXj/ctiIiHL7UHta3CpIUPMYniRBFn9NXWRT51xMREc1vpmnijjvuwKFDh+B2u3HXXXdh0aJFHXsymQw2bNiARCIBj8eDarWKjRs3QtM0BAIBfPvb30YsFjvKJxBRi2nWUS7/DoODDyCV2tIxZFqSglCUHqhqHwKBc+2rAgDZaYEhip5ZOTcREdHJgBkcIjqCaep2C4wCTLOK9r7JAFCrvQdN2wlN24lK5bcda4HAUjupvAZut3qMTxIhit62pLJrar8IERHRHLZ7927U63Vs2bIFBw4cwL333ovNmzc76/v27cOmTZuQTqedaz/5yU+wZMkSfPWrX8Vjjz2G733ve/i7v/u72Tg+0ZzXrFbOIZ1OYGjoQeRye9He2i0YXAZV7UMsthqS5LevihDFgN0CI8CBfURERBPABDMRAWi2uGi2vyjBNEsYnVRuNLLIZp9AOp1Asfhyx5rHswiK0gNFWQuf70PH+KTWQJRWUvlY7TKIiIjmp5dffhkrVqwAAJx//vl47bXXOtZFUcTAwAB6e3s77vmLv/gLAMAVV1yB733vezN3YKKThGnWUCz+GkNDA0gmt6LRGHLWZDkCRbkJ3d198Pk+Yl8VIAhuuwVGkEUPREREk8QEM9ECZxhl6HoRhlHA6GF9hlFBLrcXmrYD+fxzHf3pZFmBoqyBoqxDILD0GNUdAgTB4/RU5iuGREREQLFYRDA40kJKkiToug5Zboboy5cvH/OeUKjZFzYQCKBQKMzMYYnmOMsy0WhkkUptx9DQjzA8vB/trd3C4Uuhqv2IRq9tK3CQ2gb2+Wbl3ERERPMBE8xEC5Bp1pykcjNp3D6sT8fw8C+QTieQzT4F0yw7a6LoRzS6yh7WdykEYby/QkaSypLk55RtIiKiUYLBIEqlkvOzaZpOcnki95RKJYTD4Wk9I9FcZxhVFIsHcPjwvyOd/il0PeOsuVwq4vFeqOp6eL1n2FcFe+5HCLIc5DBpIiKiKcAEM9ECYVmGk1Q2zQo6k8oWSqVXoWkJZDK70GiM9HoUBBldXSugKD2IRK45RnVH8/XCVk9lJpWJiIiObtmyZdi7dy/WrFmDAwcOYMmSJRO655lnnsEnPvEJPPvss7jwwgtn4KREc4tlmajVUkiltiCZ/BEKhRfbVkVEIldCVfsQiVwJQZCRzz+Pt9/+/3Daaf8HirKGMSoREdEUY4KZaB6zLMse1leEYZQwugVGtfo2NC0BTUugWn2rYy0YXGYP61sNl2u86fQCBMHVllTm64VEREQTsWrVKuzfvx8bNmyAZVm4++67MTAwgDPPPBMrV64c857Pfvaz+PrXv47PfvazcLlc2LRp0wyfmmj2GEYV+fwvMDh4PzTtP2EYw86a230aVLUXqtoLt/sD9lUBoujH4cP3YXj4BQAGurs/MytnJyIims+YYCaahwyjag/sKwDQ0V6t3GikoWm7oGkJlEr/03Gf17sY8XhzWJ/HcwaOTsBIz7oARNHHCdtERESTJIoi7rzzzo5rixcvPmLfnj17nD/7fD7867/+67SfjWiusCwD1ephJJP/gWTyxx3xqyC4EIlcg+7ufoTDl0EQRHtFhix3QZaDEEUPDKPZ8q0ZGxMREdFUY4KZaJ4wTd1JKltWFe1JZcMoIpvdDU1LIJ9vVm+0uFynQFFuhKL0wO//+DiJ4lZSuVWp7GdSmYiIiIimha6Xkcs9g6GhAWjaYx1zQbzeD0FV+xCP3wSXS7GvihBFnz2wL8Q4lYiIaAYxwUx0ErMsE4ZRgq4XYZolAKazZpoN5PPPQdMSyOWehmlWnTVJCiEWWw1FWYtQ6OJxhpsIAMS2pHKAwToRERERTQvLMlCpvIOhoR8imfwxKpXfOmuC4EEsthqq2odQ6CI7Jm21ags51cpEREQ085hgJjoJGUbFGdjXbIHRZFkWisVX7GF9j0PXc86aILgRiVxtD+u7EqLoPsrTRyeV/W2vGxIRERERTS1dLyGTeRJDQw8gk3kCllV31vz+s6Gq/VCUHshy2L4qQhQDdrUyCyCIiIhmGxPMRCcJ06w7SeVm0D3SAqNSeQPpdHNYX73+XttdAsLhT0JRehCNXtcWlI9FcqqUm4E6k8pEREREND1MU0el8nsMDg4gmfwJarW3nTVR9ENReqCqfQgEzmurVnbb1cohiKJr9g5PREREHZhgJprDLMuArpdgGAWYZgXtLTDq9UFo2k5o2k6Uy7/puM/vPweK0gNFuRFu9ynjfAKTykREREQ0c3S9gHR6J4aGHkAu9zQsa+RtvEDgfHR39yEWuwGSFLCvNmeANKuV/bNzaCIiIhoXE8xEc4xlWTCMMgyjCMMoon0gn64PI5N5Epq2A4XCi2ivYna7T0M83gNFWQef78gJ9COYVCYiIiKimWOaOsrl3+Dw4fuRSm1Fvf6+syZJXYjHPw1V7YPfv8S+KkAQvJDlMGQ5OM68kGPT9QJ0XbP/rEHXC5Dl0Il8HSIiIhqFCWaiOcI0a20tMBpoJY9Ns4Zc7uf2sL6f22tNshxFLLYGirIWweAF4/Sfa/WpC9o9lY8/SCciIiIimohGI49U6qcYGnoA+fyzaC+OCIU+CVXtQyx2XdtwPgmSFLarlb0n/Pm53HN49dU1MIwSAKBWex8vvHAali7dhUjk8hN+PhERETUxwUw0i5otMIptLTAs53qh8F9IpxPIZp+yh/k1iaIP0ehKKMo6hMOXjdN/ToQo+u1XCgNMKhMRERHRtDPNBgqFX2Fw8H6k09vRaKScNZcrjnj8Zqjqeni9Z9lXBYiiz04sB6fs7TpdL9jJ5ULbVROG0bx+6aXvQ5aDU/JZRERECx0TzEQzrNkCo2S3wCih1QLDsiyUy7+BpiWgaTvRaCTb7pLQ1bXcHta3sq0n3WiiHaAHIUkBiCL/X5yIiIiIppdlWWg0NCSTWzE09CAKhV+0rQro6loBVe1HJHJVW3GEDFkO23HriVcrj5ZMboFlmWOuWZaJVGoLPvjBW6b8c4mIiBYiZp+IZohhVJ2+yu0tMKrVd5HJ7EQ6nUC1+mbHPYHA+YjHexCL3QCXSznKk0UIgsd+lTDAidpERERENCNMs47h4RcxOPjvSKUegWHknDW3+4NQ1fWIxz8Dj+dU+2rzDbtW3Dqds0Aqld/BNEtHOXcJ5fIb0/bZRERECw0TzETTyDR1GEYRul6AZVXRSio3GhlkMo9D0xIoFv+74x6v9ywoyjooSg+83jOP8uTm4BNJavZVFkX39H4RIiIiIiI0q5Xr9UEMDf0EQ0MPolQ64KwJgoxI5Gqoah+6ui63W7QJEAQ3JCkEWQ7NWDGEz/dRiGJgzCSzKAbg939kRs5BRES0EExLgtk0Tdxxxx04dOgQ3G437rrrLixatKhjTyaTwYYNG5BIJODxeFAoFLBx40YUi0U0Gg184xvfwAUXXICnnnoK//RP/4QPfvCDAICvfvWruOSSS6bj2ERTwrJMGEYJul60A9rmq3mGUUY2+zQ0LYHh4f2wLN25x+VSEYvdiHi8B37/uUcZ1teeVA60DUMhIiIiIppehlFFLrcPg4P3Q9MSHYlbj2eRXa18M9xu1b4q2bNAQpAk/4yft7v7j/Hmm7eNuSYIIlT1j2f4RERERPPXtCSYd+/ejXq9ji1btuDAgQO49957sXnzZmd937592LRpE9LptHNtYGAAn/rUp/CFL3wBv//973H77bfjkUcewcGDB7Fx40Zcf/3103FUoiljGBVnYF+zr7IFy9KRz++HpiWQzT4N0yw7+0UxgFjseihKD8LhTx5lCB+TykREREQ0OyzLRK32HgYHf4hk8kcol1931gTBjVjsOqhqP0KhS+wCiWbsKsvNauXZHDItyyEsXbrLHvTXKvoQIUkBLF26iwP+iIiIptC0JJhffvllrFixAgBw/vnn47XXXutYF0URAwMD6O3tda594QtfgNvdfM3fMAx4PM1E2sGDB/Gb3/wGDzzwAD7xiU/ga1/7GmSZnT1objDNBnS9YPdVrqGZVLZQKv0K6XQCmcwu6HrG2S8ILnR1XYF4vAeRyNUQxbEGmggQBI9d8cGkMhERERHNLF2vIJfbjcOH70cm87gd5zb5fEugqn2Ix9dBliP2VQmSFLarlad+YN/xikQux6WXvo8XXzwHtdq78HhOw8UX/5rJZSIioik2LZnaYrGIYHDkX9qSJEHXdScxvHz58iPuCYfDAIBUKoWNGzfib//2b5291157LU4//XR861vfwkMPPYQ/+ZM/mY5jE03ISAuMgl2R3GyBUan8HpqWgKbtRK32Tsc9odDFUJQexGLXtwXi7Vq96YKQpMCcCsyJiIiIaP6zLBOVylsYHBxAMvljVKu/d9ZE0Q9FWQNV7Ucg8AmnWlkUfXZiOTitA/tOhCwHIcsx1GrvQpZjTC4TERFNg2lJMAeDQZRKIz25TNOcUNXxoUOHcNttt+Fv/uZvnD7Lvb29TvJ55cqVePLJJ6fjyETHZBjlUS0wgHo9iUxmF9LpHSiXD3bs9/k+BkVZC0VZ2zY5ux2TykREREQ0u3S9DE17DENDA8hmd8OyGs5aILAUqtoPRVkDSQoCEABIkOUue9A037QjIiKiaUowL1u2DHv37sWaNWtw4MABLFmy5Jj3vPHGG/irv/or/Mu//AvOPvtsAM0JxevWrcNDDz2ED3zgA3jhhRdw7rnnTseRicZkmvW2Fhh1ABYMo4hM5il7WN8v0KpgBgC3+1Q7qdwDv3+s/90LEAQXJCnEpDIRERERzQrLMlAq/RaDg/cjmXwI9fr/OmuSFIKifBrd3X3w+8+2r4oQRb/dAiN4lIHUREREtFBNS4J51apV2L9/PzZs2ADLsnD33XdjYGAAZ555JlauXDnmPZs2bUK9Xsc//uM/AmhWQW/evBl33XUXvvKVr8Dr9WLx4sXo7++fjiMTOSzLsCuVizDNCgATpllHPv+sPaxvb0cfOkmKIBa7HvH4OgSDy8Z4PbCVVG5VKvtm9PsQEREREQGArheQSj2CoaH/h1zuGbQXSoRCF0NV+xCLXW/PCWm9bdcc2CeKrlk7NxEREc1t05JgFkURd955Z8e1xYsXH7Fvz549zp83b9485rMuv/xyXH755VN7QKJRLKtZmWwYJRhGEYAJyzJRKLwMTUsgk3kChpF39guCB9HoNVCUHnR1rYAoukc9sfn6YDMgD0AUfaz0ICIiIqIZZ1kGisVXcfjwvyOV2opGI+msyXIM8fhNUNU++Hwftq9KdmFEEJLkZwxLRERExzQtCWaik4VhVEb1VbZQLh+yh/U9hnr9/bbdIsLhyxCP9yAavdbuQ9dOACC2tb9gQE5EREREs6PRyCGZ3IqhoQcwPPx824qAcHg5urvXIxJZaRdKCBAEr9MCQxTn16+Jshzq+CcRERFNrfkVORBNgGnWnBYYrb7Ktdr70LSd0LQEKpXfduwPBJZCUXoQi62B262O8USprf2Ff85O0CYiIiKi+c00dRQKL+Hw4f+LdPph6HrOWXO5ToGq9kJVe+HxnG5flZ0WGPN5NshZZ92Bd9/dhDPOuH22j0JERDQvMcFMC8JIX+UCTLMKwISu55DJPAFNS6BQeKljv8ezCIrSA0VZC5/vQ2M8UbIHnTQTy0wqExEREdFsqdfTGBr6DwwN/RDF4ittKxIikavQ3d2Prq7LIQgymgP7fJDl8IKJY6PRlYhGx54FRERERCeOCWaatyzLtHsqj/RVNs0qstk90LQE8vl9sKyGs1+WFSjKGijKOgQCS8dob9Gcni1JQchyAIIgzej3ISIiIiJqMU0d+fx+HD78f6Fpj9rxbpPHcwZUtQ/x+M1wu7sxMnS6NbBv9PwQIiIiouPHBDPNO4ZRhq6XnL7KltXA8PAvkE4nkM0+BdMsO3tF0Y9odJU9rO9Su6qjnQhR9Dp9ledbPzoiIiIiOnlYloVa7TCGhh7E0NCDKJcPOmuC4EI0eh26u/sQCn3SrkwW2wb2BTgfhIiIiKYFs2U0L4zuq2xZJkqlV6FpCWQyu9BopJ29giCjq2sFFKUHkcg1kCTfqKcJEASP3YsuwAoPIiIiIppVhlFHNrsHg4P/jkzmMZhmxVnz+T4CVe2DoqyDyxVDM5Z12y0wQiyQICIiomnHaINOWqap2+0vCnaQbaFafRualoCmJVCtvtWxPxhcZg/rW20H3+1GXhtsDuubv0NOiIiIiGjus6xmbDs4+ACSyR+hUnnDWRNFL2KxNVDVPgSDF9iVya1q5RBkOTB7ByciIqIFhwlmOqlYlgXDKELXizDNEgATjUYamrYLmrYTpdKvOvb7fB9xhvWNTMtuEQBIThAuSf6Z+hpERERERGMyjAo07QkMDt6PbPbJjpkhfv+56O7uQyy2FrIcAquViYiIaC5gBEInBcOo2C0wmn2VDaOIbPZn9rC+FwAYzl6X6xQoylooSg/8/rPH6DUnOX3o2IuOiIiIiGabZZkol9/A4OD9SCZ/glrtHWdNkoJQlB6oah8CgXNbV+3B0yEWSRAREdGsY4KZ5izTrDtJZcuqwzTryOefg6YlkMs9DdOsOnslKYRYbDUUpQeh0MX2UJN2kpNQbiaVR68TEREREc0sXS8gnd6BwcH/h1xuL9qLJoLBZVDVPsRiq+0ksgBB8EKWQ5DlEARBmrVzExEREbVjgpnmFMsyoOsjfZUty0Cx+Io9rO9x6HrO2SsIbkQiV9vD+q4cYxifCFH0O5UdDMKJiIiIaLaZpo5S6aBdrbwFjcaQsybLESjKTeju7oPP9xH7qgRJCtsxLeeEEBER0dzDBDPNusNO+a8AACAASURBVGZf5RIMowjDKAEwUKm8gXS6OayvXn+vbbeAcPiTUJQeRKPXQZbDo54mQhR9TgsM9qEjIiIiotlmWRYajRzS6YcxOPgAhof3A7Cc9XD4MqhqH6LRa+2iiVa1chiyHGShBBEREc1pzL7RrDGMqj2wbxiAgXp9EJq2E5qWQLn8m469fv859rC+G+F2nzLqSa0AvJVUHl3JTEREREQ080yzjkLhFQwO3o9U6mHoesZZc7lUqGov4vH18HrPsK+yWpmIiIhOPkww04wa6atchGXVoOt5ZDJPQtN2oFB4Ee2VHB7P6fawvnXw+RaPelJzYvbIsD4G4EREREQ0+yzLQr2eQjL5EJLJB1EovNS2KiISuRKq2odI5EoIggxAsN/AC0OWA6xWJiIiopMOE8w07Ub3VTbNCnK5Z6BpO5DL/RyW1XD2ynIEsdgaKEoPgsELIAhC25MEALJd0RGAJPlm/LsQEREREY3FMKoYHv4FDh++H5r2nzCMYWfN7T4Nqroeqtrb9jaeDFkO2wUTLJYgIiKikxcTzDQtRvoql+xq5ToKhf9COp1ANvsUDKPg7BVFHyKRlYjHexAOL4coutqeJKD5qmCrUtk/KulMRERERDQ7LMtAtXoYyeSPkUz+CKXSq86aILgQja6EqvYjHL4UgiCiVa0sy12QpIB9jYiIiOjkxgQzTSnDqMAwStD1YViWjnL519C0BDTtsY4J2YCErq7L7GF910KSAqOeNDqpzOCbiIiIiOYGXS8jl3sGQ0MD0LTHYJplZ83r/RBUtQ/x+E1wuRS0CiZkuQuyHIQoembt3ERERETTgQlmOmGmWXNaYFhWHbXaO9C0nUinE6hW3+zYGwj8kT2sb40dcLcTIYp+uwWGn/3niIiIiGjOMM0GqtV3MTT0IJLJH6NS+a2zJggexGKr0d3dj2DwQvuNu/bYNsi38IiIiGjeYoKZjotp6jCM5rA+06yg0dCQyTwOTUugWPzvjr1e71l2UrkHXu+iUU8SIYpeu1o5CFHk/ySJiIiIaG6wLAu6XkQm8xSSyQeQyTwJy6o7637/2VDVfijKWshyF5qDqF2QpBBkOQRRdM/e4YmIiIhmCLN5NGGWZcIwitD1Ekyz2Vs5l9uDdDqB4eHnYFm6s9flUhGL3Yh4vAd+/7lHDOsTBLcdeAf4miARERERzSmmWUO5/CaGhn6IZPIh1GpvO2ui6Iei9EBV+xAInOdUKzcLJkKcGUJEREQLDhPMNK7msL6yPayvAMuqIZ9/HpqWQDa7u6PfnCgGEItdD0XpQTj8yVEtLlrVHEFOyiYiIiKiOceyTOj6MNLpBJLJB5HL7e0ooAgGL4CqrkcsdoM9P0SAIHjsFhghvolHRERECxajIBpTa1hfswVGHaXSr+xhfbug65qzTxBc6Oq6AoqyFtHoNRDF0Yljya7kCLCag4iIiIjmHMOoolT6DQYHB5BOb0e9fthZk6QI4vF1UNU++P1LWlchSUFnbggRERHRQscEMzlGD+urVN6Epu2EpiVQq73TsTcUuhiK0oNY7HrIcmTUk0SIYgCyHIQkBSAI4sx9CSIiIiKiY7AsA/V6Fun0I0gmf4R8fh8Ay1kPhT6J7u5+RKOr7HZurWrlMOeGEBEREY3CyGiBGz2sr14fQiazC+n0DpTLBzv2+nxL7GF9a+HxnDrqSa1hfc1qZQbdRERERDTXGEYFhcL/YGjofqTTP0WjkXbWXK444vHPQFXXtw2mZrUyERER0bEwC7gAHTmsb/j/b+/eo6Mu7zyOf34zkwmTmVzIZEAUwyVIXUUErEWk0uVWKiWFCqQQLq1Sd6WeuupaoVQsl3AreuyWBRa15Vi8kBRWF2q1W8RCVYoCRS4WZLOARbpkMiGQmSSTufz2jwxjEgJKIJkkvF/neE7ye37zy3fy+ISHL0++X5WV/UE+32adPbtDUjR+r93eRW73GLnduUpJ+VKDJ9We5KjddLvokg0AAIBWJxoNKxTyqqTkNyopeVkVFTvrjBpKT79LHk+eMjL+URZLkjitDAAAcGnYLV0lPmvW99lp5TNntsea9b0t0wzG77Va05WZ+Q253blKTb2tQYkLQ4ZhjzXqc9KsDwAAAK3Oub1vRcUHsdrK/6VI5Ex83G7vIo9ngrKyxis5uUvs6rnTymmyWh2JCRwAAKANIsHczp1r1hcO19ZVrqjYJZ9vs8rK3qy3yTaMZHXsOFRud67S04c0OI1syDCS6jTrI6kMAACA1icarVEw+H8qKVmvkpJXFAjsjY8Zhk0ZGcPk8UxUevpgGYZVtfvcDrLZUmWzpcauAQAA4FI0S4I5Go1q3rx5Onz4sOx2uwoKCtStW7d695SVlWnSpEnavHmzkpOTVV1drR/96Efy+XxyOp1atmyZMjMztXXrVq1cuVI2m03jx49XXl5ec4TcrjRs1ldZeUg+32b5fK+rpuZknTstSksbFGvWN1JWq6vOmKHaUxypstmcslgcMgyjhd8JAAAAcHGmGVU47NeZM+/o1Klfy+f7raLRQHw8ObmbOnWaqKysbyspKSt21SqrNS3WlJrTygAAAJejWRLMW7ZsUU1NjQoLC7V3714tXbpUq1evjo//6U9/0tNPP63S0s+aarzyyivq3bu3fvjDH+r111/XqlWrNGvWLC1ZskQbNmyQw+HQ5MmTNXToUHk8nuYIu01r2KwvGPxUPt9v5fNtVlXVx/XudTr7xJLKo2W3d2rwJGud8hdOksoAAABolSKRalVXn1BJyUvyetersvJQfMww7MrM/Lo8njylpn4ltqc1ZLE4YollJ6eVAQAArpBmSTDv3r1bd911lySpX79+OnDgQL1xi8WitWvXavz48fVe8/3vf1+SNGTIEK1atUrFxcXKzs5Wenq6JOm2227Trl27dPfddzdH2G2OaUYUiVQqHK5QNFqpcLhMZWVvyufbrIqKXfXuTU7OltudK7c7Vw5HjwZPsshiccZOcDgb1FwGAAAAWodoNKxwuEKnT7+lkpIXVVb2Zr1eIg5Hb3k8E5WV9S3ZbBmxq7Z4wz5KvQEAAFx5zZJg9vv9crk+K7dgtVoVDodls9V+ucGDBzf6mtTUVEmS0+lURUVFvWvnrvv9/uYIuc0wzagikUD8v2g0oNOnt8rn26wzZ/4k0wzF77XZ3HK7R8vtzpXT2bfBaWSLLJYO8brKdMcGAABAa3SuYV919VGdOvWivN4iVVcfjY9bLClyu0fL48mrs+e1yGJxxBLLHKAAAABoTs2SVXS5XAoEPqt7Fo1G48nlL/KaQCCgtLS0854TCATqJZyvFrWb6nNJZb9Ms0Znz/451qzvv+vVmLNYUtSx48hYs75BMoy633dDhpEc647tatDIDwAAAGg9otEahUJnVFb2hkpKXlF5+Vv1DlM4nbfI48mT2z26Ti8Rm2y29NheNzkxgQMAAFxlmiXBPGDAAL399tsaPXq09u7dq969e3+h12zbtk19+/bV9u3bddtttyknJ0fHjx9XeXm5UlJStGvXLs2YMaM5Qm6VIpEqhcP+WLO+sAKB/bGk8u8UCnnj9xmGTWlpX1VWVq4yMobJak2p8xRDhpEUP6nMrwUCAAC0Dp/XGLuoqEjr16+XzWbTzJkzNXToUJWXl2vUqFHx/fWIESP03e9+N1Fv4YqrPVjhVyBwWCUlL8rr3aCamk/j41Zrmtzub6lTp4lKSbkxdtWQxZISL4NBDxEAAICW1SwJ5pEjR+rdd9/VpEmTZJqmFi9erLVr1yo7O1vDhw9v9DWTJ0/WrFmzNHnyZCUlJenpp59WUlKSZs+erRkzZsg0TY0fP16dO3dujpBbjWg0GEsq155Urq4+Lp9vk3y+zaquPlbvXperf6xZ391KSsqsM2Kotllfqmw2pywWBxttAACAVuZijbG9Xq/WrVunjRs3KhgMKj8/X4MHD9ZHH32kMWPGaO7cuQmO/sqKRKoVDpertPS/5PUWqrx8m6RofDw19XZ5PBOVmTlKFsu5AxO1tZVttlROKwMAACRQsySYLRaLFixYUO9aTk7Oefdt3bo1/rHD4dAvfvGL8+4ZNmyYhg0bduWDbEWi0bAiEb/C4QqZZrVCoVL5fL+Tz7dZgcCH9e7t0CFHWVm5crvHKDn5+gZPssZOKZ9r1kdSGQAAoLW6WGPsffv2qX///rLb7bLb7crOztahQ4d04MABHTx4UFOnTlVmZqaeeOIJderUKVFv4bKYZkThsF+BwAGdOvWiSks31vstPZstU1lZ4+TxTJTD0TN21YjVVk6ntjIAAEArQWe3ZhAOV+jo0Z/K5/svZWWNU/fu82Sz1a8dfa5ZXzjsVzQaUCRSodOnt8Sa9b0nKRK/Nympk9zuMXK7c5WS8g+NNOtzxE8rG4a1Zd4kAAAALsvFGmNfqNl1z5491adPH915553atGmTCgoKGj2k0ZpFIlWqqSlVaemr8nrX6+zZHXVGDaWnD5bHM1EZGcPq9AyxxUtgUPINAACgdSHBfIWVl7+j/ftHKxIJSIrqxImf6+9/f0633PKG0tPvVDT6WV3laLRaZ8++q9LSzSovf0vRaFX8OVZrqjIzR8ntzlVq6u0NEseGDKODbDaXrFaXLJakFn+fAAAAuDwXa4x9oWbXffv2lcPhkFRblq6tJJdrf2OvQmfP7lZJyUvy+V5TOFweH09K6iyPZ7w8nvFKTu4au1q3tjKnlQEAAForEsxXUDhcEUsuV9S7brOl6+OPH9BNNxXKMGzy+/fEmvW9oXD4dPw+w0hSRsZQud25ysj4WoNacjTrAwAAaE8u1hi7b9+++vnPf65gMKiamhoVFxerd+/emjVrlr7+9a9r9OjR2rFjh26++eYEvoOLq23YF1AweEqlpRvk9RbK7/9LnTusysj4x9hp5SF1DlRQWxkAAKAtIcF8BZWUFMo0TVmtLkWj1TLNsAzDolCoTMGgV0eO/EDV1cUKBk/UeZWh1NSvKCsrVx07jpLNltbgqeea9blo1gcAANCOfF5j7GnTpik/P1+maeqRRx5RcnKy/vVf/1Vz5szRK6+8IofDoYKCgkS/jfOca1p99uwOlZS8LJ9vsyIRf3w8Ofl6eTwTlZU1Tnb7uQbenFYGAABoq0gwX0HB4EklJ3dWJFKlSKRSkmSaYZlmWJJ05sy2+L0pKf8gtztXbvc3Zbdf0+BJFlkszlgJDDbYAAAA7dHnNcbOy8tTXl5evfHrr79e69ata5H4LoVpRhUO+xUMnpDX+xt5vb9RZeXB+LhhJKljx5HyePKUljawzv6W08oAAABtHQnmy1Tb/TqgSMQvq9Whqqq/S6ps9F6bLUMezyRlZeXK4ejVYNQii6VDvASGxcLUAAAAoHWLRKoUCp3VmTPb5PUWqqzsjXp9RTp0yFGnTnlyu7+lpKTM2FUj1qQ6TTabi8MUAAAAbRxZzCYwzagikUD8v2i0UuXl21RW9qYulFw2jA7q2/ct2WyuulfrNOtz1umSDQAAALRO5xr2VVUdV2lpkbze36iq6n/i4xaLQ5mZd8vjmSiXq3+dEm/WWFI5lX4iAAAA7QgJ5i+otklJpSIRvyIRv0wzpIqKnfL5fquyst+f19ivLovFqd69n40llw0Zhl1Wq4tmfQAAAGgTzjXsC4XOqLz8LXm9hTp9+g8yzVD8npSUm9Wp00RlZo6RzZYau3ruQMW508rWxr8AAAAA2iwSzBdhmqai0apYCYwKmWZYlZUfyefbLJ/vdYVCp+rcbVV6+p1yu3OVlnan/vrXKQoGjys5uZv69HlNVmtavFmf1epI2HsCAAAAvqhIpFqRSEBVVcXyetfL692gYPBv8XGr1SW3O1ceT56czpvqvJLTygAAAFcLEsyNqG3SF4ifVA4GP5HP91uVlm5WdXVxvXudzltjzfruVlJSVvx69+7z9X//t1bXXfegHI5esWZ9RsMvBQAAALQq53qMhMNlKiv7b3m9RSov/6OkSPwel2uAPJ48ZWZ+o87hibq1lZ2cVgYAALhKkGCOOXc6ozapXKNQyKeysjfl822W37+n3r0dOnSPJZVz1aFDtwZPqm3Wl5U1TtdcM5WNNQAAANqESKRS4bBflZV/lddbJK93Y73f2LPZMpSV9W15PBMaNKzmtDIAAMDV7KpOMEejNYpEAgqHK2SaQUUilSov3yqfb7POnPmTTDMcvzcpyaPMzNFyu3PldPZpcBr5XF3l2hIYNOsDAABAWxCNhhQOVygU8un06TdVUlKks2fflWTG70lLu1Mez0R17Diizj637mlllwzDkpD4AQAAkHhXXYK5tut1baO+aLRaplmjM2d2yOfbrNOn/6BotDJ+r8XiVGbm12N1lQfKMOp+uwzVntagrjIAAADajtqGfX6Fw34FAvvl9RaqtPQ1hcNl8XuSkjzKyhovj2eCOnS4vs6rbbLZ0mINqzmtDAAAgKskwXyujlxtUrlSphlRILAv1qzvdwqHffF7DSNJ6elD5HaPUceOw2SxNNw4W2Ibahd1lQEAANBmnCsJV1NTorKy38rrLVJFxa46d1iUkfE1eTwTlZHxtTqHKzitDAAAgAtrtwlm04zGyl/4FY0GJEVVVXU0llT+rYLB4/XuT029XW53rjIzR8lmy2jwtNq6yudOK1NXGQAAAG2HqerqE/L796ikpEg+3yZFIhXxUbv9Onk8E+TxjJfd3rnO665cbeVwuEIlJYWqqjoih+MGder0HdlsqZf1TAAAALQO7TDBbCoYPKVIxC8pEjuh8TuVlm5SZeXBenc6HL1jzfrGKDn52gbPMWQYybJaXdRVBgAAQJsVCnm1f/9oBQL749cMI0kdOw6Xx5OntLRBdU4lX/nTyuXl72j//tGKRkMyzWoZRgcVFz+qW275nTIyvnrZzwcAAEBitcsEc03NSZWV/V4+32adPftnSdH4qN3eRW73GLnduUpJ+VKD1xoyjKQ6JTCoKwcAAIC2rbr6bwoEPpEkdejQQx5PnrKyxikpKbPOXVfutHJd4XCF9u8fXe/EtGlWKxKp1v79ozVo0EnZbK4r9vUAAADQ8tpdgrm6+pj27Bkk0wzGr1mt6crM/Ibc7lylpt7WyEmMz5r1WSwO6ioDAACg3TAMQ273OHXqNFEu12119rrNX1u5pKRQphltdMw0o/J6C9Wly4wr/nUBAADQctpdgjkUOi3TDMowktWx41C53blKTx/SSIkLiywWp2y2c836aFYCAACA9sfp7KucnGV1rjTPaeXGVFUdifVDOV80GlBl5f8069cHAABA82t3CeakpAz16PEDZWaOlNXa8NftPmvWZ7U6ZbG0u7cPAAAANGCothRcB9lsaS3atNrhuEEWi7PRJLPF4lRKSq8WiQMAAADNp91lWGvryt0jyYxdMWQY9lgJDKcsluREhgcAAAC0KMOwKDm5q6xWR4t/7U6dvqPi4kcbHTMMizye77RwRAAAALjS2mldCEOSTTZbppKTu8rh6Ca7PZPkMgAAAK5CRkKSy5Jks6Xqllt+J6s1VZ/91cMiq7X2Og3+AAAA2r52d4JZMmS3XxOrq0yzPgAAACCRMjK+qkGDTurYsXkqLX1VWVnfVvfu80guAwAAtBPtMsHMZhUAAABoPWw2l3r1ekq9ej2V6FAAAABwhbXTEhkAAAAAAAAAgOZGghkAAAAAAAAA0CQkmAEAAAAAAAAATdIsNZij0ajmzZunw4cPy263q6CgQN26dYuPFxUVaf369bLZbJo5c6aGDh2qRYsW6dChQ5Ikr9ertLQ0FRUVqaCgQHv27JHT6ZQkrVq1Sqmpqc0RNgAAAAAAAADgEjRLgnnLli2qqalRYWGh9u7dq6VLl2r16tWSapPH69at08aNGxUMBpWfn6/BgwfrJz/5iSQpFAopPz9fCxculCQdPHhQzz//vDIzM5sjVAAAAAAAAABAEzVLiYzdu3frrrvukiT169dPBw4ciI/t27dP/fv3l91uV2pqqrKzs+MnlyXpxRdf1ODBg/WlL31J0WhUx48f15NPPqlJkyZpw4YNzREuAAAAAAAAAKAJmuUEs9/vl8vlin9utVoVDodls9nk9/vrlbhwOp3y+/2SpJqaGq1fvz6eSK6srNTUqVN17733KhKJaPr06erTp49uvPHG5ggbAAAAAAAAAHAJmuUEs8vlUiAQiH8ejUZls9kaHQsEAvGE844dO3T77bfHP3c4HJo+fbocDodcLpfuuOOOeqedAQAAAAAAAACJ0ywJ5gEDBmj79u2SpL1796p3797xsb59+2r37t0KBoOqqKhQcXFxfPy9997TkCFD4vceO3ZM+fn5ikQiCoVC2rNnj26++ebmCBkAAAAAAAAAcImapUTGyJEj9e6772rSpEkyTVOLFy/W2rVrlZ2dreHDh2vatGnKz8+XaZp65JFHlJycLEk6evSoxo0bF39OTk6OcnNzlZeXp6SkJI0dO1Y33HBDc4QMAAAAAAAAALhEzZJgtlgsWrBgQb1rOTk58Y/z8vKUl5d33uueffbZ867df//9uv/++698kAAAAAAAAACAy9IsJTIAAAAAAAAAAO1fs5xgTqRPP/1U99xzT6LDAAAAQBv36aefJjqEK4L9MQAAAK6EC+2PDdM0zRaOBQAAAAAAAADQDlAiAwAAAAAAAADQJCSYAQAAAAAAAABNQoIZAAAAAAAAANAkJJgBAAAAAAAAAE1CghkAAAAAAAAA0CQkmAEAAAAAAAAATWJLdABtXTQa1bx583T48GHZ7XYVFBSoW7du8fGioiKtX79eNptNM2fO1NChQxMYbfv2eXNRUFCgPXv2yOl0SpJWrVql1NTURIXb7n344Yd66qmntG7dunrXt27dqpUrV8pms2n8+PHKy8tLUIRXjwvNxdq1a7VhwwZlZmZKkubPn6+ePXsmIsR2LxQKac6cOfr0009VU1OjmTNnavjw4fFx1kXL+by5YF20nEgkoieeeEJHjx6V1WrVkiVLlJ2dHR9nXbQfn7dHQ9sxbty4+P65a9euWrJkSYIjwqWouyc8fvy4Zs+eLcMwdMMNN+inP/2pLBbOn7UFdefx4MGDeuCBB9S9e3dJ0uTJkzV69OjEBoiLamwv2qtXL9ZjG9PYPF5zzTVX9XokwXyZtmzZopqaGhUWFmrv3r1aunSpVq9eLUnyer1at26dNm7cqGAwqPz8fA0ePFh2uz3BUbdPF5sLSTp48KCef/75eNIAzee5557Tpk2b5HA46l0PhUJasmSJNmzYIIfDocmTJ2vo0KHyeDwJirT9u9BcSLVrYtmyZerTp08CIru6bNq0SRkZGVq+fLlOnz6tb3/72/GkJuuiZV1sLiTWRUt6++23JUnr16/Xzp07tWTJkvif26yL9uXz9mhoG4LBoCSd9w/WaBsa7gmXLFmihx9+WAMHDtSTTz6pt956SyNHjkxwlPg8Defxo48+0r333qv77rsvwZHhi2psL3rjjTeyHtuYxubxwQcfvKrXI/8kcpl2796tu+66S5LUr18/HThwID62b98+9e/fX3a7XampqcrOztahQ4cSFWq7d7G5iEajOn78uJ588klNmjRJGzZsSFSYV4Xs7GytWLHivOvFxcXKzs5Wenq67Ha7brvtNu3atSsBEV49LjQXUm0i7dlnn9XkyZO1Zs2aFo7s6vKNb3xD//Iv/xL/3Gq1xj9mXbSsi82FxLpoSSNGjNDChQslSSdPnlRWVlZ8jHXRvlxsj4a249ChQ6qqqtJ9992n6dOna+/evYkOCZeg4Z7w4MGD+spXviJJGjJkiN57771EhYZL0HAeDxw4oD/+8Y+aMmWK5syZI7/fn8Do8EU0thdlPbY9jc3j1b4eSTBfJr/fL5fLFf/carUqHA7Hx+qWYHA6nVfd/2At6WJzUVlZqalTp2r58uV6/vnn9fLLL5Psb0ajRo2SzXb+L0iwJlreheZCkr75zW9q3rx5euGFF7R79+74aUJceU6nUy6XS36/Xw899JAefvjh+BjromVdbC4k1kVLs9lsmjVrlhYuXKhRo0bFr7Mu2peL7dHQdnTo0EEzZszQL3/5S82fP1+PPfYY89iGNNwTmqYpwzAk1f6MraioSFRouAQN57Fv3756/PHH9dJLL+n666/XypUrExgdvojG9qKsx7ansXm82tcjCebL5HK5FAgE4p9Ho9H4D/yGY4FAgJq/zehic+FwODR9+nQ5HA65XC7dcccdJJgTgDXRepimqe9+97vKzMyU3W7X1772NX300UeJDqtd+/vf/67p06dr7Nixys3NjV9nXbS8C80F6yIxli1bpt///veaO3euKisrJbEu2puL7dHQdvTo0UPf+ta3ZBiGevTooYyMDHm93kSHhSaqW981EAgoLS0tgdGgqUaOHBkv6zVy5Ej2LW1Ew70o67FtajiPV/t6JMF8mQYMGKDt27dLkvbu3avevXvHx/r27avdu3crGAyqoqJCxcXF9cZxZV1sLo4dO6b8/HxFIhGFQiHt2bNHN998c6JCvWrl5OTo+PHjKi8vV01NjXbt2qX+/fsnOqyrkt/v15gxYxQIBGSapnbu3EnN2WZUWlqq++67Tz/60Y80YcKEemOsi5Z1sblgXbSs1157LV6GxOFwyDCMeMkS1kX7crE9GtqODRs2aOnSpZKkU6dOye/3Uxe9Dbvpppu0c+dOSdL27dv15S9/OcERoSlmzJihffv2SZJ27NjB33HbgMb2oqzHtqexebza16NhmqaZ6CDasnNdsT/++GOZpqnFixdr+/btys7O1vDhw1VUVKTCwkKZpql//ud/rvfrn7iyPm8unnvuOb355ptKSkrS2LFjNXny5ESH3K6dOHFCjz76qIqKirR582ZVVlbqO9/5jrZu3aqVK1fKNE2NHz9eU6ZMSXSo7d6F5uK1117TunXrZLfbNWjQID300EOJDrXdKigo0BtvvKGePXvGr02cOFFVhBtSoQAABm5JREFUVVWsixb2eXPBumg5lZWV+vGPf6zS0lKFw2Hdf//9qqqq4s+LdqixPVpOTk6iw8Ilqqmp0Y9//GOdPHlShmHoscce04ABAxIdFi5B3T3h0aNHNXfuXIVCIfXs2VMFBQXn9SVA61R3Hg8ePKiFCxcqKSlJWVlZWrhwYb2SRGh9GtuL/uQnP1FBQQHrsQ1pbB4ffvhhLV++/KpdjySYAQAAAAAAAABNQokMAAAAAAAAAECTkGAGAAAAAAAAADQJCWYAAAAAAAAAQJOQYAYAAAAAAAAANAkJZgAAAAAAAABAk5BgBoBWZOfOnRo0aJCmTZumqVOnatKkSSouLtaiRYt08uTJJj93xYoVeuWVV65gpJ8pLCxUKBRqlmcDAAAAAIDWzZboAAAA9d1xxx165plnJEnvvPOOfvazn2nNmjUJjurC1qxZo3HjxiU6DAAAAAAAkAAkmAGgFTt79qyuu+46TZs2TfPmzVNGRoZmz56tiooKmaapZcuWqUOHDpo3b56CwaDKy8v14IMPasSIERozZoy6d+8uu92uHj16aMuWLXrjjTdUXV2tJ554Qn379tWmTZv0wgsvyG63q3v37lqwYIE2b96sbdu2qbq6Wp988onuv/9+3XPPPXr//ff17//+75Kk6upqLVu2TLt27ZLX69UjjzyiVatW6emnn9YHH3wg0zT1ve99T3fffXeCv4MAAABA7f718ccfV0lJibp06aIPPvhAK1eu1KJFi2Sapjp37qynnnpKGzdu1GuvvSaLxaIBAwZo1qxZiQ4dAFo9EswA0Mr8+c9/1rRp01RTU6PDhw9rzZo1OnLkiCRp9erVGjZsmCZPnqwdO3Zo3759ysrK0r333quBAwdqz549WrFihUaMGKHKykr94Ac/0E033aQVK1bouuuu04IFC3TkyBE9/vjj+tWvfqUVK1bo1Vdflcvl0uLFi1VYWKiUlBT5/X798pe/1LFjx/TAAw/onnvu0ZEjR7R8+XJ17txZ//Ef/6E333xTM2fO1OrVq/XMM89o27ZtOnHihNavX69gMKi8vDwNHjxYaWlpCf6OAgAA4GpXWFiorl276he/+IWKi4s1ZswYzZ07V88884xycnL00ksvqbi4WP/5n/+puXPnql+/fnr55ZcVDodls5E6AYCL4ackALQydUtk/O///q8mTZqkbt26SZKOHj2qCRMmSJIGDRokSTpy5IhWr16tDRs2yDAMhcPh+LN69OgR//j222+XJN1www3yer3629/+pl69esnlcsXH33nnHd1666268cYbJUldunRRTU2NJKlz585atGiRUlJSdOrUKQ0YMKBe3B9//LEOHjyoadOmSZLC4bBOnjxJghkAAAAJV1xcrCFDhkiScnJylJmZKZ/Pp5ycHEnSlClTJElLlizRr371Kz311FPq16+fTNNMWMwA0FbQ5A8AWrGsrKx6n+fk5Gj//v2SpA8++EDLly/Xv/3bv2ns2LFavny5Bg4cWG8TbLF89mN+3759kqTDhw/r2muvVdeuXVVcXKzKykpJ0vvvvx9PSBuGcV4sTzzxhBYvXqylS5eqU6dO8a9jGIai0ah69uypgQMHat26dXrhhRd09913q2vXrlfwuwEAAAA0Te/evfWXv/xFkvTJJ5/o9OnT6tSpk44dOyZJevbZZ/WHP/xBRUVFmj9/vl588UX99a9/jb8GAHBhnGAGgFbmXIkMi8WiQCCg2bNn69VXX5UkPfDAA5ozZ442bdokSVq8eLE+/PBDLVq0SGvWrFGXLl10+vTpRp974sQJTZ8+XTU1NVqwYIEyMzP1wx/+UNOnT5fFYlF2drYee+wxvf76642+fuzYscrLy1NaWpqysrJUUlIiSfryl7+sf/qnf9Kvf/1rvf/++8rPz1dlZaVGjBgRPx0NAAAAJNKECRM0e/ZsTZkyRddee62Sk5M1f/58zZkzRxaLRR6PR9/73vdUXl6uCRMmqGPHjurcubNuvfXWRIcOAK2eYfL7HgAAAAAAoB3bs2ePKisr9dWvflXHjh3T97//fW3ZsiXRYQFAu0CCGQAAAAAAtGter1ePPvqoQqGQwuGwHnrooXhNZgDA5SHBDAAAAAAAAABoEpr8AQAAAAAAAACahAQzAAAAAAAAAKBJSDADAAAAAAAAAJqEBDMAAAAAAAAAoElIMAMAAAAAAAAAmuT/ATuk3FPTKuzMAAAAAElFTkSuQmCC\n",
3462
      "text/plain": [
3463
       "<Figure size 1440x720 with 4 Axes>"
3464
      ]
3465
     },
3466
     "metadata": {},
3467
     "output_type": "display_data"
3468
    }
3469
   ],
3470
   "source": [
3471
    "plt.figure(figsize=(20,10))\n",
3472
    "plt.subplot(2, 2, 1)\n",
3473
    "_ = sns.regplot(data=saps, x= 'UO', y='hdeath' , color='c', x_bins=10)\n",
3474
    "_ = plt.title('Regression: ICU Patient Urinary Output Level and ICU Survival')\n",
3475
    "plt.subplot(2, 2, 2)\n",
3476
    "_ = sns.regplot(data=saps, x= 'ud', y='hdeath' , color='c', x_bins=10)\n",
3477
    "_ = plt.title('Regression: ICU Patient with Underlying Disease and ICU Survival')\n",
3478
    "plt.subplot(2, 2, 3)\n",
3479
    "_ = sns.regplot(data=saps, x= 'Bicarbonate', y='hdeath' , color='y', x_bins=10)\n",
3480
    "_ = plt.title('Regression: Blood Bicarbonate Level and ICU Survival')\n",
3481
    "plt.subplot(2, 2, 4)\n",
3482
    "_ = sns.regplot(data=saps, x= 'gcs', y='hdeath' , color='y', x_bins=10)\n",
3483
    "_ = plt.title('Regression: ICU Patient Galsgow Coma Scale and ICU Survival')\n",
3484
    "plt.tight_layout()"
3485
   ]
3486
  },
3487
  {
3488
   "cell_type": "markdown",
3489
   "metadata": {},
3490
   "source": [
3491
    "## Results 4\n",
3492
    "### Logistic Regression Plots \n",
3493
    "\n",
3494
    "+ There is a strong positive relationship between SAPSII total score and the probability of hospital mortality. The probability of hospital mortality starts to escalate after SAPSII total score of 50.   \n",
3495
    "+ Values in x-axis are SAPSII scores for the specific variable - not the actual values. For example age values are not exact patient age, rather SAPSII score that corspondes to the patient age. \n",
3496
    "+ Patient age, extreme levels of systolic blood pressure (less than 70mmHg), blood bicarbonate level, pateint's galsgow comma score, urinary output level, and presence of underliying chronic diseas is stronlgy associated with hospital death. This relationship diminishes when control for 'CHILD' variable. \n",
3497
    "+ Although we have seen strong positive correlation between cardiac arrest and hospital death, the logistic regression plot did not show the same.\n",
3498
    "+ For patients above 80 years old, their age increases their likelihood of hospital death by about 20%. \n",
3499
    "+ Patients with extream blood pressure (less than 70mmHg) the first 24 hours of their hospital stay increased their likelihood of hospital mortality by 17%. \n",
3500
    "+ Patients with sever urinary output level (less than 500mL) within the first 24 hours of their ICU stay increased their likelihood of hospital mortality by around 16%. \n",
3501
    "+ patients with low blood bicarbonate levels within the first 24 hours of ICU stay increased their chances of hospital mortability by  around 15%\n",
3502
    "+ patients with underlying disease like AIDS increased their likelihood of hopital mortality by around 8%\n",
3503
    "+ patients with very low GCS (<6) within the first 24 hours of hospital stay increased their chances of hospitality mortality by around 20%"
3504
   ]
3505
  },
3506
  {
3507
   "cell_type": "code",
3508
   "execution_count": null,
3509
   "metadata": {},
3510
   "outputs": [],
3511
   "source": []
3512
  }
3513
 ],
3514
 "metadata": {
3515
  "kernelspec": {
3516
   "display_name": "Python 3",
3517
   "language": "python",
3518
   "name": "python3"
3519
  },
3520
  "language_info": {
3521
   "codemirror_mode": {
3522
    "name": "ipython",
3523
    "version": 3
3524
   },
3525
   "file_extension": ".py",
3526
   "mimetype": "text/x-python",
3527
   "name": "python",
3528
   "nbconvert_exporter": "python",
3529
   "pygments_lexer": "ipython3",
3530
   "version": "3.7.4"
3531
  }
3532
 },
3533
 "nbformat": 4,
3534
 "nbformat_minor": 2
3535
}