For this project, I used publicly available Electronic Health Records (EHRs) datasets. The MIT Media Lab for Computational Physiology has developed MIMIC-IIIv1.4 dataset based on 46,520 patients who stayed in critical care units of the Beth Israel Deaconess Medical Center of Boston between 2001 and 2012. MIMIC-IIIv1.4 dataset is freely available to researchers across the world. A formal request should be made directly to www.mimic.physionet.org, to gain access to the data. There is a required course on human research ‘Data or Specimens Only Research’ prior to data access request. I have secured one here -www.citiprogram.org/verify/?kb6607b78-5821-4de5-8cad-daf929f7fbbf-33486907. We built flexible and better performing model using the same 17 variables used in the SAPS II severity prediction model. The question ‘Can we improve the prediction performance of widely used severity scores using a more flexible model?’ is the central question of our project.
Linked repositories: Exploratory-Data-Analysis-Clinical-Deterioration, Data-Wrangling-MIMICIII-Database, Clinical-Deterioration-Prediction-Model--Inferential-Statistics, Clinical-Deterioration-Prediction-Model--Ensemble-Algorithms-, Clinical-Deterioration-Prediction-Model--Logistic-Regression, Clinical-Deterioration-Prediction-Model---KNN