[2ea2fa]: / COVID19_ICU_Prediction.ipynb

Download this file

34133 lines (34133 with data), 3.0 MB

{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "COVID19_ICU_Prediction.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9svAv52TXlj5"
      },
      "source": [
        "#**Machine Learning Project**\n",
        "\n",
        "***Title: Predicting ICU admission of confirmed COVID-19 cases***\n",
        "\n",
        "The COVID-19 pandemic has shown us the\n",
        "unpreparedness of our current healthcare system and\n",
        "services. We need to optimize the allocation of medical\n",
        "resources to maximize the utilization of resources. We are\n",
        "preparing this Machine Learning model based on the\n",
        "clinical data of confirmed COVID-19 cases. This will help\n",
        "us to predict the need of ICU for a patient in advance. By\n",
        "this information hospitals can plan the flow of operations\n",
        "and take critical decisions like shifting patient to another\n",
        "hospital or arrangement of resources within the time so\n",
        "that the lives of patients can be saved.\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HYhZSsn9tXbE"
      },
      "source": [
        "##Libraries and Packages\n",
        "List of all the packages that is used in the notebook"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "cvYWlx6jYN-f"
      },
      "source": [
        "import tensorflow as tf\n",
        "import pandas as pd\n",
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "from sklearn.manifold import TSNE \n",
        "from sklearn.decomposition import PCA \n",
        "\n",
        "pd.set_option('display.max_columns', None)\n"
      ],
      "execution_count": 1,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6Q52XpjzxJMR"
      },
      "source": [
        "Downloading Dataset\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8EmfUSufxOKO",
        "outputId": "06688cdc-4f08-425f-c393-e044058a8ab7"
      },
      "source": [
        "!wget -O \"Kaggle_Sirio_Libanes_ICU_Prediction.xlsx\" \"https://drive.google.com/uc?export=download&id=1_shaH6SQajy1zrnALzim9jGaRmF3PLIn\""
      ],
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "--2020-12-20 22:41:48--  https://drive.google.com/uc?export=download&id=1_shaH6SQajy1zrnALzim9jGaRmF3PLIn\n",
            "Resolving drive.google.com (drive.google.com)... 108.177.11.100, 108.177.11.113, 108.177.11.102, ...\n",
            "Connecting to drive.google.com (drive.google.com)|108.177.11.100|:443... connected.\n",
            "HTTP request sent, awaiting response... 302 Moved Temporarily\n",
            "Location: https://doc-0c-80-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/rjbv35t6bjnqa6t8rv92guj4pokeirq3/1608504075000/04245606460885426616/*/1_shaH6SQajy1zrnALzim9jGaRmF3PLIn?e=download [following]\n",
            "Warning: wildcards not supported in HTTP.\n",
            "--2020-12-20 22:41:49--  https://doc-0c-80-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/rjbv35t6bjnqa6t8rv92guj4pokeirq3/1608504075000/04245606460885426616/*/1_shaH6SQajy1zrnALzim9jGaRmF3PLIn?e=download\n",
            "Resolving doc-0c-80-docs.googleusercontent.com (doc-0c-80-docs.googleusercontent.com)... 142.250.97.132, 2607:f8b0:400c:c18::84\n",
            "Connecting to doc-0c-80-docs.googleusercontent.com (doc-0c-80-docs.googleusercontent.com)|142.250.97.132|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 1047506 (1023K) [application/wps-office.xlsx]\n",
            "Saving to: ‘Kaggle_Sirio_Libanes_ICU_Prediction.xlsx’\n",
            "\n",
            "Kaggle_Sirio_Libane 100%[===================>]   1023K  --.-KB/s    in 0.01s   \n",
            "\n",
            "2020-12-20 22:41:50 (98.6 MB/s) - ‘Kaggle_Sirio_Libanes_ICU_Prediction.xlsx’ saved [1047506/1047506]\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8tDv4H2mu5Z-"
      },
      "source": [
        "##Reading Dataset\n",
        "Reading the dataset from the given CSV file."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 455
        },
        "id": "Jw8EV6XavIT2",
        "outputId": "3b8b76cb-906c-4e31-bc09-99b1f469069f"
      },
      "source": [
        "data = pd.read_excel(\"Kaggle_Sirio_Libanes_ICU_Prediction.xlsx\")\n",
        "data"
      ],
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>PATIENT_VISIT_IDENTIFIER</th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>AGE_PERCENTIL</th>\n",
              "      <th>GENDER</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>WINDOW</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>60th</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.420290</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0-2</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>60th</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.443299</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.025641</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.714286</td>\n",
              "      <td>0.838384</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.313433</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>0.246377</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>2-4</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>60th</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>4-6</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>60th</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.318681</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.275362</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>6-12</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>60th</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.243021</td>\n",
              "      <td>-0.338537</td>\n",
              "      <td>-0.213031</td>\n",
              "      <td>-0.317859</td>\n",
              "      <td>0.033779</td>\n",
              "      <td>0.665932</td>\n",
              "      <td>-0.283951</td>\n",
              "      <td>-0.376923</td>\n",
              "      <td>-0.188679</td>\n",
              "      <td>-0.379310</td>\n",
              "      <td>0.035714</td>\n",
              "      <td>0.631579</td>\n",
              "      <td>-0.340206</td>\n",
              "      <td>-0.4875</td>\n",
              "      <td>-0.572650</td>\n",
              "      <td>-0.857143</td>\n",
              "      <td>0.098901</td>\n",
              "      <td>0.797980</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>0.286486</td>\n",
              "      <td>0.298507</td>\n",
              "      <td>0.272727</td>\n",
              "      <td>0.362319</td>\n",
              "      <td>0.947368</td>\n",
              "      <td>-0.339130</td>\n",
              "      <td>0.325153</td>\n",
              "      <td>0.114504</td>\n",
              "      <td>0.176471</td>\n",
              "      <td>-0.238095</td>\n",
              "      <td>-0.818182</td>\n",
              "      <td>-0.389967</td>\n",
              "      <td>0.407558</td>\n",
              "      <td>-0.230462</td>\n",
              "      <td>0.096774</td>\n",
              "      <td>-0.242282</td>\n",
              "      <td>-0.814433</td>\n",
              "      <td>ABOVE_12</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>...</th>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1920</th>\n",
              "      <td>384</td>\n",
              "      <td>0</td>\n",
              "      <td>50th</td>\n",
              "      <td>1</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.012346</td>\n",
              "      <td>-0.292308</td>\n",
              "      <td>0.056604</td>\n",
              "      <td>-0.525424</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>0.012346</td>\n",
              "      <td>-0.292308</td>\n",
              "      <td>0.056604</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>0.175258</td>\n",
              "      <td>-0.0500</td>\n",
              "      <td>0.145299</td>\n",
              "      <td>-0.428571</td>\n",
              "      <td>0.714286</td>\n",
              "      <td>0.919192</td>\n",
              "      <td>-0.299145</td>\n",
              "      <td>-0.502703</td>\n",
              "      <td>-0.164179</td>\n",
              "      <td>-0.575758</td>\n",
              "      <td>0.246377</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0-2</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1921</th>\n",
              "      <td>384</td>\n",
              "      <td>0</td>\n",
              "      <td>50th</td>\n",
              "      <td>1</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.717277</td>\n",
              "      <td>-0.717277</td>\n",
              "      <td>-0.717277</td>\n",
              "      <td>-0.717277</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.982208</td>\n",
              "      <td>-0.982208</td>\n",
              "      <td>-0.982208</td>\n",
              "      <td>-0.982208</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.244898</td>\n",
              "      <td>0.244898</td>\n",
              "      <td>0.244898</td>\n",
              "      <td>0.244898</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.782516</td>\n",
              "      <td>-0.782516</td>\n",
              "      <td>-0.782516</td>\n",
              "      <td>-0.782516</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.960280</td>\n",
              "      <td>-0.960280</td>\n",
              "      <td>-0.960280</td>\n",
              "      <td>-0.960280</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.862197</td>\n",
              "      <td>-0.862197</td>\n",
              "      <td>-0.862197</td>\n",
              "      <td>-0.862197</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.064990</td>\n",
              "      <td>-0.064990</td>\n",
              "      <td>-0.064990</td>\n",
              "      <td>-0.064990</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.158537</td>\n",
              "      <td>-0.158537</td>\n",
              "      <td>-0.158537</td>\n",
              "      <td>-0.158537</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.897773</td>\n",
              "      <td>-0.897773</td>\n",
              "      <td>-0.897773</td>\n",
              "      <td>-0.897773</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.848590</td>\n",
              "      <td>-0.848590</td>\n",
              "      <td>-0.848590</td>\n",
              "      <td>-0.848590</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.686722</td>\n",
              "      <td>-0.686722</td>\n",
              "      <td>-0.686722</td>\n",
              "      <td>-0.686722</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.913165</td>\n",
              "      <td>-0.913165</td>\n",
              "      <td>-0.913165</td>\n",
              "      <td>-0.913165</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.906238</td>\n",
              "      <td>-0.906238</td>\n",
              "      <td>-0.906238</td>\n",
              "      <td>-0.906238</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.479306</td>\n",
              "      <td>-0.479306</td>\n",
              "      <td>-0.479306</td>\n",
              "      <td>-0.479306</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997387</td>\n",
              "      <td>-0.997387</td>\n",
              "      <td>-0.997387</td>\n",
              "      <td>-0.997387</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.992378</td>\n",
              "      <td>-0.992378</td>\n",
              "      <td>-0.992378</td>\n",
              "      <td>-0.992378</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.869210</td>\n",
              "      <td>-0.869210</td>\n",
              "      <td>-0.869210</td>\n",
              "      <td>-0.869210</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979571</td>\n",
              "      <td>-0.979571</td>\n",
              "      <td>-0.979571</td>\n",
              "      <td>-0.979571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.113208</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.113208</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>-0.1250</td>\n",
              "      <td>-0.008547</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.472527</td>\n",
              "      <td>0.838384</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.567568</td>\n",
              "      <td>-0.298507</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.072464</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>2-4</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1922</th>\n",
              "      <td>384</td>\n",
              "      <td>0</td>\n",
              "      <td>50th</td>\n",
              "      <td>1</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.169811</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.169811</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.059829</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.472527</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.343284</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.072464</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>4-6</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1923</th>\n",
              "      <td>384</td>\n",
              "      <td>0</td>\n",
              "      <td>50th</td>\n",
              "      <td>1</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.209877</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.188679</td>\n",
              "      <td>-0.661017</td>\n",
              "      <td>0.285714</td>\n",
              "      <td>0.473684</td>\n",
              "      <td>0.209877</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.188679</td>\n",
              "      <td>-0.655172</td>\n",
              "      <td>0.285714</td>\n",
              "      <td>0.473684</td>\n",
              "      <td>0.340206</td>\n",
              "      <td>-0.1250</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.571429</td>\n",
              "      <td>0.560440</td>\n",
              "      <td>0.797980</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.567568</td>\n",
              "      <td>-0.358209</td>\n",
              "      <td>-0.696970</td>\n",
              "      <td>0.043478</td>\n",
              "      <td>0.473684</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>6-12</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1924</th>\n",
              "      <td>384</td>\n",
              "      <td>0</td>\n",
              "      <td>50th</td>\n",
              "      <td>1</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.983255</td>\n",
              "      <td>-0.983255</td>\n",
              "      <td>-0.983255</td>\n",
              "      <td>-0.983255</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.306122</td>\n",
              "      <td>0.306122</td>\n",
              "      <td>0.306122</td>\n",
              "      <td>0.306122</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825160</td>\n",
              "      <td>-0.825160</td>\n",
              "      <td>-0.825160</td>\n",
              "      <td>-0.825160</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.962617</td>\n",
              "      <td>-0.962617</td>\n",
              "      <td>-0.962617</td>\n",
              "      <td>-0.962617</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.157233</td>\n",
              "      <td>-0.157233</td>\n",
              "      <td>-0.157233</td>\n",
              "      <td>-0.157233</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.850521</td>\n",
              "      <td>-0.850521</td>\n",
              "      <td>-0.850521</td>\n",
              "      <td>-0.850521</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.935974</td>\n",
              "      <td>-0.935974</td>\n",
              "      <td>-0.935974</td>\n",
              "      <td>-0.935974</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.801134</td>\n",
              "      <td>-0.801134</td>\n",
              "      <td>-0.801134</td>\n",
              "      <td>-0.801134</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.463284</td>\n",
              "      <td>-0.463284</td>\n",
              "      <td>-0.463284</td>\n",
              "      <td>-0.463284</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991997</td>\n",
              "      <td>-0.991997</td>\n",
              "      <td>-0.991997</td>\n",
              "      <td>-0.991997</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.807229</td>\n",
              "      <td>-0.807229</td>\n",
              "      <td>-0.807229</td>\n",
              "      <td>-0.807229</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.888448</td>\n",
              "      <td>-0.888448</td>\n",
              "      <td>-0.888448</td>\n",
              "      <td>-0.888448</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.185185</td>\n",
              "      <td>-0.539103</td>\n",
              "      <td>-0.107704</td>\n",
              "      <td>-0.610169</td>\n",
              "      <td>0.050595</td>\n",
              "      <td>0.662281</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.538462</td>\n",
              "      <td>-0.075472</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.071429</td>\n",
              "      <td>0.631579</td>\n",
              "      <td>-0.175258</td>\n",
              "      <td>-0.3750</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.785714</td>\n",
              "      <td>0.186813</td>\n",
              "      <td>0.777778</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.470270</td>\n",
              "      <td>-0.149254</td>\n",
              "      <td>-0.515152</td>\n",
              "      <td>0.101449</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>-0.652174</td>\n",
              "      <td>-0.644172</td>\n",
              "      <td>-0.633588</td>\n",
              "      <td>-0.647059</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>-0.838384</td>\n",
              "      <td>-0.701863</td>\n",
              "      <td>-0.585967</td>\n",
              "      <td>-0.763868</td>\n",
              "      <td>-0.612903</td>\n",
              "      <td>-0.551337</td>\n",
              "      <td>-0.835052</td>\n",
              "      <td>ABOVE_12</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "<p>1925 rows × 231 columns</p>\n",
              "</div>"
            ],
            "text/plain": [
              "      PATIENT_VISIT_IDENTIFIER  AGE_ABOVE65 AGE_PERCENTIL  GENDER  \\\n",
              "0                            0            1          60th       0   \n",
              "1                            0            1          60th       0   \n",
              "2                            0            1          60th       0   \n",
              "3                            0            1          60th       0   \n",
              "4                            0            1          60th       0   \n",
              "...                        ...          ...           ...     ...   \n",
              "1920                       384            0          50th       1   \n",
              "1921                       384            0          50th       1   \n",
              "1922                       384            0          50th       1   \n",
              "1923                       384            0          50th       1   \n",
              "1924                       384            0          50th       1   \n",
              "\n",
              "      DISEASE GROUPING 1  DISEASE GROUPING 2  DISEASE GROUPING 3  \\\n",
              "0                    0.0                 0.0                 0.0   \n",
              "1                    0.0                 0.0                 0.0   \n",
              "2                    0.0                 0.0                 0.0   \n",
              "3                    0.0                 0.0                 0.0   \n",
              "4                    0.0                 0.0                 0.0   \n",
              "...                  ...                 ...                 ...   \n",
              "1920                 0.0                 0.0                 0.0   \n",
              "1921                 0.0                 0.0                 0.0   \n",
              "1922                 0.0                 0.0                 0.0   \n",
              "1923                 0.0                 0.0                 0.0   \n",
              "1924                 0.0                 0.0                 1.0   \n",
              "\n",
              "      DISEASE GROUPING 4  DISEASE GROUPING 5  DISEASE GROUPING 6  HTN  \\\n",
              "0                    0.0                 1.0                 1.0  0.0   \n",
              "1                    0.0                 1.0                 1.0  0.0   \n",
              "2                    0.0                 1.0                 1.0  0.0   \n",
              "3                    0.0                 1.0                 1.0  0.0   \n",
              "4                    0.0                 1.0                 1.0  0.0   \n",
              "...                  ...                 ...                 ...  ...   \n",
              "1920                 0.0                 0.0                 0.0  0.0   \n",
              "1921                 0.0                 0.0                 0.0  0.0   \n",
              "1922                 0.0                 0.0                 0.0  0.0   \n",
              "1923                 0.0                 0.0                 0.0  0.0   \n",
              "1924                 0.0                 0.0                 0.0  0.0   \n",
              "\n",
              "      IMMUNOCOMPROMISED  OTHER  ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  \\\n",
              "0                   0.0    1.0             NaN           NaN          NaN   \n",
              "1                   0.0    1.0             NaN           NaN          NaN   \n",
              "2                   0.0    1.0        0.605263      0.605263     0.605263   \n",
              "3                   0.0    1.0             NaN           NaN          NaN   \n",
              "4                   0.0    1.0        0.000000      0.000000     0.000000   \n",
              "...                 ...    ...             ...           ...          ...   \n",
              "1920                0.0    1.0             NaN           NaN          NaN   \n",
              "1921                0.0    1.0        0.605263      0.605263     0.605263   \n",
              "1922                0.0    1.0             NaN           NaN          NaN   \n",
              "1923                0.0    1.0             NaN           NaN          NaN   \n",
              "1924                0.0    1.0        0.605263      0.605263     0.605263   \n",
              "\n",
              "      ALBUMIN_MAX  ALBUMIN_DIFF  BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  \\\n",
              "0             NaN           NaN                 NaN               NaN   \n",
              "1             NaN           NaN                 NaN               NaN   \n",
              "2        0.605263          -1.0           -1.000000         -1.000000   \n",
              "3             NaN           NaN                 NaN               NaN   \n",
              "4        0.000000          -1.0           -0.871658         -0.871658   \n",
              "...           ...           ...                 ...               ...   \n",
              "1920          NaN           NaN                 NaN               NaN   \n",
              "1921     0.605263          -1.0           -1.000000         -1.000000   \n",
              "1922          NaN           NaN                 NaN               NaN   \n",
              "1923          NaN           NaN                 NaN               NaN   \n",
              "1924     0.605263          -1.0           -1.000000         -1.000000   \n",
              "\n",
              "      BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  \\\n",
              "0                 NaN              NaN               NaN               NaN   \n",
              "1                 NaN              NaN               NaN               NaN   \n",
              "2           -1.000000        -1.000000              -1.0         -1.000000   \n",
              "3                 NaN              NaN               NaN               NaN   \n",
              "4           -0.871658        -0.871658              -1.0         -0.863874   \n",
              "...               ...              ...               ...               ...   \n",
              "1920              NaN              NaN               NaN               NaN   \n",
              "1921        -1.000000        -1.000000              -1.0         -0.717277   \n",
              "1922              NaN              NaN               NaN               NaN   \n",
              "1923              NaN              NaN               NaN               NaN   \n",
              "1924        -1.000000        -1.000000              -1.0         -1.000000   \n",
              "\n",
              "      BE_VENOUS_MEAN  BE_VENOUS_MIN  BE_VENOUS_MAX  BE_VENOUS_DIFF  \\\n",
              "0                NaN            NaN            NaN             NaN   \n",
              "1                NaN            NaN            NaN             NaN   \n",
              "2          -1.000000      -1.000000      -1.000000            -1.0   \n",
              "3                NaN            NaN            NaN             NaN   \n",
              "4          -0.863874      -0.863874      -0.863874            -1.0   \n",
              "...              ...            ...            ...             ...   \n",
              "1920             NaN            NaN            NaN             NaN   \n",
              "1921       -0.717277      -0.717277      -0.717277            -1.0   \n",
              "1922             NaN            NaN            NaN             NaN   \n",
              "1923             NaN            NaN            NaN             NaN   \n",
              "1924       -1.000000      -1.000000      -1.000000            -1.0   \n",
              "\n",
              "      BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  BIC_ARTERIAL_MIN  \\\n",
              "0                     NaN                NaN               NaN   \n",
              "1                     NaN                NaN               NaN   \n",
              "2               -0.317073          -0.317073         -0.317073   \n",
              "3                     NaN                NaN               NaN   \n",
              "4               -0.317073          -0.317073         -0.317073   \n",
              "...                   ...                ...               ...   \n",
              "1920                  NaN                NaN               NaN   \n",
              "1921            -0.317073          -0.317073         -0.317073   \n",
              "1922                  NaN                NaN               NaN   \n",
              "1923                  NaN                NaN               NaN   \n",
              "1924            -0.317073          -0.317073         -0.317073   \n",
              "\n",
              "      BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  BIC_VENOUS_MEDIAN  BIC_VENOUS_MEAN  \\\n",
              "0                  NaN                NaN                NaN              NaN   \n",
              "1                  NaN                NaN                NaN              NaN   \n",
              "2            -0.317073               -1.0          -0.317073        -0.317073   \n",
              "3                  NaN                NaN                NaN              NaN   \n",
              "4            -0.317073               -1.0          -0.414634        -0.414634   \n",
              "...                ...                ...                ...              ...   \n",
              "1920               NaN                NaN                NaN              NaN   \n",
              "1921         -0.317073               -1.0          -0.170732        -0.170732   \n",
              "1922               NaN                NaN                NaN              NaN   \n",
              "1923               NaN                NaN                NaN              NaN   \n",
              "1924         -0.317073               -1.0          -0.317073        -0.317073   \n",
              "\n",
              "      BIC_VENOUS_MIN  BIC_VENOUS_MAX  BIC_VENOUS_DIFF  BILLIRUBIN_MEDIAN  \\\n",
              "0                NaN             NaN              NaN                NaN   \n",
              "1                NaN             NaN              NaN                NaN   \n",
              "2          -0.317073       -0.317073             -1.0          -0.938950   \n",
              "3                NaN             NaN              NaN                NaN   \n",
              "4          -0.414634       -0.414634             -1.0          -0.979069   \n",
              "...              ...             ...              ...                ...   \n",
              "1920             NaN             NaN              NaN                NaN   \n",
              "1921       -0.170732       -0.170732             -1.0          -0.982208   \n",
              "1922             NaN             NaN              NaN                NaN   \n",
              "1923             NaN             NaN              NaN                NaN   \n",
              "1924       -0.317073       -0.317073             -1.0          -0.983255   \n",
              "\n",
              "      BILLIRUBIN_MEAN  BILLIRUBIN_MIN  BILLIRUBIN_MAX  BILLIRUBIN_DIFF  \\\n",
              "0                 NaN             NaN             NaN              NaN   \n",
              "1                 NaN             NaN             NaN              NaN   \n",
              "2           -0.938950       -0.938950       -0.938950             -1.0   \n",
              "3                 NaN             NaN             NaN              NaN   \n",
              "4           -0.979069       -0.979069       -0.979069             -1.0   \n",
              "...               ...             ...             ...              ...   \n",
              "1920              NaN             NaN             NaN              NaN   \n",
              "1921        -0.982208       -0.982208       -0.982208             -1.0   \n",
              "1922              NaN             NaN             NaN              NaN   \n",
              "1923              NaN             NaN             NaN              NaN   \n",
              "1924        -0.983255       -0.983255       -0.983255             -1.0   \n",
              "\n",
              "      BLAST_MEDIAN  BLAST_MEAN  BLAST_MIN  BLAST_MAX  BLAST_DIFF  \\\n",
              "0              NaN         NaN        NaN        NaN         NaN   \n",
              "1              NaN         NaN        NaN        NaN         NaN   \n",
              "2             -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "3              NaN         NaN        NaN        NaN         NaN   \n",
              "4             -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "...            ...         ...        ...        ...         ...   \n",
              "1920           NaN         NaN        NaN        NaN         NaN   \n",
              "1921          -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "1922           NaN         NaN        NaN        NaN         NaN   \n",
              "1923           NaN         NaN        NaN        NaN         NaN   \n",
              "1924          -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "\n",
              "      CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  CALCIUM_MAX  CALCIUM_DIFF  \\\n",
              "0                NaN           NaN          NaN          NaN           NaN   \n",
              "1                NaN           NaN          NaN          NaN           NaN   \n",
              "2           0.183673      0.183673     0.183673     0.183673          -1.0   \n",
              "3                NaN           NaN          NaN          NaN           NaN   \n",
              "4           0.326531      0.326531     0.326531     0.326531          -1.0   \n",
              "...              ...           ...          ...          ...           ...   \n",
              "1920             NaN           NaN          NaN          NaN           NaN   \n",
              "1921        0.244898      0.244898     0.244898     0.244898          -1.0   \n",
              "1922             NaN           NaN          NaN          NaN           NaN   \n",
              "1923             NaN           NaN          NaN          NaN           NaN   \n",
              "1924        0.306122      0.306122     0.306122     0.306122          -1.0   \n",
              "\n",
              "      CREATININ_MEDIAN  CREATININ_MEAN  CREATININ_MIN  CREATININ_MAX  \\\n",
              "0                  NaN             NaN            NaN            NaN   \n",
              "1                  NaN             NaN            NaN            NaN   \n",
              "2            -0.868365       -0.868365      -0.868365      -0.868365   \n",
              "3                  NaN             NaN            NaN            NaN   \n",
              "4            -0.926398       -0.926398      -0.926398      -0.926398   \n",
              "...                ...             ...            ...            ...   \n",
              "1920               NaN             NaN            NaN            NaN   \n",
              "1921         -0.934890       -0.934890      -0.934890      -0.934890   \n",
              "1922               NaN             NaN            NaN            NaN   \n",
              "1923               NaN             NaN            NaN            NaN   \n",
              "1924         -0.944798       -0.944798      -0.944798      -0.944798   \n",
              "\n",
              "      CREATININ_DIFF  FFA_MEDIAN  FFA_MEAN   FFA_MIN   FFA_MAX  FFA_DIFF  \\\n",
              "0                NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1                NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "2               -1.0   -0.742004 -0.742004 -0.742004 -0.742004      -1.0   \n",
              "3                NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "4               -1.0   -0.859275 -0.859275 -0.859275 -0.859275      -1.0   \n",
              "...              ...         ...       ...       ...       ...       ...   \n",
              "1920             NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1921            -1.0   -0.782516 -0.782516 -0.782516 -0.782516      -1.0   \n",
              "1922             NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1923             NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1924            -1.0   -0.825160 -0.825160 -0.825160 -0.825160      -1.0   \n",
              "\n",
              "      GGT_MEDIAN  GGT_MEAN   GGT_MIN   GGT_MAX  GGT_DIFF  GLUCOSE_MEDIAN  \\\n",
              "0            NaN       NaN       NaN       NaN       NaN             NaN   \n",
              "1            NaN       NaN       NaN       NaN       NaN             NaN   \n",
              "2      -0.945093 -0.945093 -0.945093 -0.945093      -1.0       -0.891993   \n",
              "3            NaN       NaN       NaN       NaN       NaN             NaN   \n",
              "4      -0.669393 -0.669393 -0.669393 -0.669393      -1.0       -0.891993   \n",
              "...          ...       ...       ...       ...       ...             ...   \n",
              "1920         NaN       NaN       NaN       NaN       NaN             NaN   \n",
              "1921   -0.960280 -0.960280 -0.960280 -0.960280      -1.0       -0.862197   \n",
              "1922         NaN       NaN       NaN       NaN       NaN             NaN   \n",
              "1923         NaN       NaN       NaN       NaN       NaN             NaN   \n",
              "1924   -0.962617 -0.962617 -0.962617 -0.962617      -1.0       -0.891993   \n",
              "\n",
              "      GLUCOSE_MEAN  GLUCOSE_MIN  GLUCOSE_MAX  GLUCOSE_DIFF  \\\n",
              "0              NaN          NaN          NaN           NaN   \n",
              "1              NaN          NaN          NaN           NaN   \n",
              "2        -0.891993    -0.891993    -0.891993          -1.0   \n",
              "3              NaN          NaN          NaN           NaN   \n",
              "4        -0.891993    -0.891993    -0.891993          -1.0   \n",
              "...            ...          ...          ...           ...   \n",
              "1920           NaN          NaN          NaN           NaN   \n",
              "1921     -0.862197    -0.862197    -0.862197          -1.0   \n",
              "1922           NaN          NaN          NaN           NaN   \n",
              "1923           NaN          NaN          NaN           NaN   \n",
              "1924     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "\n",
              "      HEMATOCRITE_MEDIAN  HEMATOCRITE_MEAN  HEMATOCRITE_MIN  HEMATOCRITE_MAX  \\\n",
              "0                    NaN               NaN              NaN              NaN   \n",
              "1                    NaN               NaN              NaN              NaN   \n",
              "2               0.090147          0.090147         0.090147         0.090147   \n",
              "3                    NaN               NaN              NaN              NaN   \n",
              "4              -0.320755         -0.320755        -0.320755        -0.320755   \n",
              "...                  ...               ...              ...              ...   \n",
              "1920                 NaN               NaN              NaN              NaN   \n",
              "1921           -0.064990         -0.064990        -0.064990        -0.064990   \n",
              "1922                 NaN               NaN              NaN              NaN   \n",
              "1923                 NaN               NaN              NaN              NaN   \n",
              "1924           -0.157233         -0.157233        -0.157233        -0.157233   \n",
              "\n",
              "      HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  \\\n",
              "0                  NaN                NaN              NaN             NaN   \n",
              "1                  NaN                NaN              NaN             NaN   \n",
              "2                 -1.0           0.109756         0.109756        0.109756   \n",
              "3                  NaN                NaN              NaN             NaN   \n",
              "4                 -1.0          -0.353659        -0.353659       -0.353659   \n",
              "...                ...                ...              ...             ...   \n",
              "1920               NaN                NaN              NaN             NaN   \n",
              "1921              -1.0          -0.158537        -0.158537       -0.158537   \n",
              "1922               NaN                NaN              NaN             NaN   \n",
              "1923               NaN                NaN              NaN             NaN   \n",
              "1924              -1.0          -0.292683        -0.292683       -0.292683   \n",
              "\n",
              "      HEMOGLOBIN_MAX  HEMOGLOBIN_DIFF  INR_MEDIAN  INR_MEAN   INR_MIN  \\\n",
              "0                NaN              NaN         NaN       NaN       NaN   \n",
              "1                NaN              NaN         NaN       NaN       NaN   \n",
              "2           0.109756             -1.0   -0.932246 -0.932246 -0.932246   \n",
              "3                NaN              NaN         NaN       NaN       NaN   \n",
              "4          -0.353659             -1.0   -0.979925 -0.979925 -0.979925   \n",
              "...              ...              ...         ...       ...       ...   \n",
              "1920             NaN              NaN         NaN       NaN       NaN   \n",
              "1921       -0.158537             -1.0   -0.957340 -0.957340 -0.957340   \n",
              "1922             NaN              NaN         NaN       NaN       NaN   \n",
              "1923             NaN              NaN         NaN       NaN       NaN   \n",
              "1924       -0.292683             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "\n",
              "       INR_MAX  INR_DIFF  LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  \\\n",
              "0          NaN       NaN             NaN           NaN          NaN   \n",
              "1          NaN       NaN             NaN           NaN          NaN   \n",
              "2    -0.932246      -1.0        1.000000      1.000000     1.000000   \n",
              "3          NaN       NaN             NaN           NaN          NaN   \n",
              "4    -0.979925      -1.0       -0.963023     -0.963023    -0.963023   \n",
              "...        ...       ...             ...           ...          ...   \n",
              "1920       NaN       NaN             NaN           NaN          NaN   \n",
              "1921 -0.957340      -1.0       -0.897773     -0.897773    -0.897773   \n",
              "1922       NaN       NaN             NaN           NaN          NaN   \n",
              "1923       NaN       NaN             NaN           NaN          NaN   \n",
              "1924 -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "\n",
              "      LACTATE_MAX  LACTATE_DIFF  LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  \\\n",
              "0             NaN           NaN                NaN              NaN   \n",
              "1             NaN           NaN                NaN              NaN   \n",
              "2        1.000000          -1.0          -0.835844        -0.835844   \n",
              "3             NaN           NaN                NaN              NaN   \n",
              "4       -0.963023          -1.0          -0.762843        -0.762843   \n",
              "...           ...           ...                ...              ...   \n",
              "1920          NaN           NaN                NaN              NaN   \n",
              "1921    -0.897773          -1.0          -0.848590        -0.848590   \n",
              "1922          NaN           NaN                NaN              NaN   \n",
              "1923          NaN           NaN                NaN              NaN   \n",
              "1924     1.000000          -1.0          -0.850521        -0.850521   \n",
              "\n",
              "      LEUKOCYTES_MIN  LEUKOCYTES_MAX  LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  \\\n",
              "0                NaN             NaN              NaN                NaN   \n",
              "1                NaN             NaN              NaN                NaN   \n",
              "2          -0.835844       -0.835844             -1.0          -0.914938   \n",
              "3                NaN             NaN              NaN                NaN   \n",
              "4          -0.762843       -0.762843             -1.0          -0.643154   \n",
              "...              ...             ...              ...                ...   \n",
              "1920             NaN             NaN              NaN                NaN   \n",
              "1921       -0.848590       -0.848590             -1.0          -0.686722   \n",
              "1922             NaN             NaN              NaN                NaN   \n",
              "1923             NaN             NaN              NaN                NaN   \n",
              "1924       -0.850521       -0.850521             -1.0          -0.634855   \n",
              "\n",
              "      LINFOCITOS_MEAN  LINFOCITOS_MIN  LINFOCITOS_MAX  LINFOCITOS_DIFF  \\\n",
              "0                 NaN             NaN             NaN              NaN   \n",
              "1                 NaN             NaN             NaN              NaN   \n",
              "2           -0.914938       -0.914938       -0.914938             -1.0   \n",
              "3                 NaN             NaN             NaN              NaN   \n",
              "4           -0.643154       -0.643154       -0.643154             -1.0   \n",
              "...               ...             ...             ...              ...   \n",
              "1920              NaN             NaN             NaN              NaN   \n",
              "1921        -0.686722       -0.686722       -0.686722             -1.0   \n",
              "1922              NaN             NaN             NaN              NaN   \n",
              "1923              NaN             NaN             NaN              NaN   \n",
              "1924        -0.634855       -0.634855       -0.634855             -1.0   \n",
              "\n",
              "      NEUTROPHILES_MEDIAN  NEUTROPHILES_MEAN  NEUTROPHILES_MIN  \\\n",
              "0                     NaN                NaN               NaN   \n",
              "1                     NaN                NaN               NaN   \n",
              "2               -0.868747          -0.868747         -0.868747   \n",
              "3                     NaN                NaN               NaN   \n",
              "4               -0.868747          -0.868747         -0.868747   \n",
              "...                   ...                ...               ...   \n",
              "1920                  NaN                NaN               NaN   \n",
              "1921            -0.913165          -0.913165         -0.913165   \n",
              "1922                  NaN                NaN               NaN   \n",
              "1923                  NaN                NaN               NaN   \n",
              "1924            -0.935974          -0.935974         -0.935974   \n",
              "\n",
              "      NEUTROPHILES_MAX  NEUTROPHILES_DIFF  P02_ARTERIAL_MEDIAN  \\\n",
              "0                  NaN                NaN                  NaN   \n",
              "1                  NaN                NaN                  NaN   \n",
              "2            -0.868747               -1.0            -0.170732   \n",
              "3                  NaN                NaN                  NaN   \n",
              "4            -0.868747               -1.0            -0.365854   \n",
              "...                ...                ...                  ...   \n",
              "1920               NaN                NaN                  NaN   \n",
              "1921         -0.913165               -1.0            -0.170732   \n",
              "1922               NaN                NaN                  NaN   \n",
              "1923               NaN                NaN                  NaN   \n",
              "1924         -0.935974               -1.0            -0.170732   \n",
              "\n",
              "      P02_ARTERIAL_MEAN  P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  \\\n",
              "0                   NaN               NaN               NaN   \n",
              "1                   NaN               NaN               NaN   \n",
              "2             -0.170732         -0.170732         -0.170732   \n",
              "3                   NaN               NaN               NaN   \n",
              "4             -0.365854         -0.365854         -0.365854   \n",
              "...                 ...               ...               ...   \n",
              "1920                NaN               NaN               NaN   \n",
              "1921          -0.170732         -0.170732         -0.170732   \n",
              "1922                NaN               NaN               NaN   \n",
              "1923                NaN               NaN               NaN   \n",
              "1924          -0.170732         -0.170732         -0.170732   \n",
              "\n",
              "      P02_ARTERIAL_DIFF  P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  P02_VENOUS_MIN  \\\n",
              "0                   NaN                NaN              NaN             NaN   \n",
              "1                   NaN                NaN              NaN             NaN   \n",
              "2                  -1.0          -0.704142        -0.704142       -0.704142   \n",
              "3                   NaN                NaN              NaN             NaN   \n",
              "4                  -1.0          -0.230769        -0.230769       -0.230769   \n",
              "...                 ...                ...              ...             ...   \n",
              "1920                NaN                NaN              NaN             NaN   \n",
              "1921               -1.0          -0.857988        -0.857988       -0.857988   \n",
              "1922                NaN                NaN              NaN             NaN   \n",
              "1923                NaN                NaN              NaN             NaN   \n",
              "1924               -1.0          -0.704142        -0.704142       -0.704142   \n",
              "\n",
              "      P02_VENOUS_MAX  P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  \\\n",
              "0                NaN              NaN                   NaN   \n",
              "1                NaN              NaN                   NaN   \n",
              "2          -0.704142             -1.0             -0.779310   \n",
              "3                NaN              NaN                   NaN   \n",
              "4          -0.230769             -1.0             -0.875862   \n",
              "...              ...              ...                   ...   \n",
              "1920             NaN              NaN                   NaN   \n",
              "1921       -0.857988             -1.0             -0.779310   \n",
              "1922             NaN              NaN                   NaN   \n",
              "1923             NaN              NaN                   NaN   \n",
              "1924       -0.704142             -1.0             -0.779310   \n",
              "\n",
              "      PC02_ARTERIAL_MEAN  PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  \\\n",
              "0                    NaN                NaN                NaN   \n",
              "1                    NaN                NaN                NaN   \n",
              "2              -0.779310          -0.779310          -0.779310   \n",
              "3                    NaN                NaN                NaN   \n",
              "4              -0.875862          -0.875862          -0.875862   \n",
              "...                  ...                ...                ...   \n",
              "1920                 NaN                NaN                NaN   \n",
              "1921           -0.779310          -0.779310          -0.779310   \n",
              "1922                 NaN                NaN                NaN   \n",
              "1923                 NaN                NaN                NaN   \n",
              "1924           -0.779310          -0.779310          -0.779310   \n",
              "\n",
              "      PC02_ARTERIAL_DIFF  PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  \\\n",
              "0                    NaN                 NaN               NaN   \n",
              "1                    NaN                 NaN               NaN   \n",
              "2                   -1.0           -0.754601         -0.754601   \n",
              "3                    NaN                 NaN               NaN   \n",
              "4                   -1.0           -0.815951         -0.815951   \n",
              "...                  ...                 ...               ...   \n",
              "1920                 NaN                 NaN               NaN   \n",
              "1921                -1.0           -0.730061         -0.730061   \n",
              "1922                 NaN                 NaN               NaN   \n",
              "1923                 NaN                 NaN               NaN   \n",
              "1924                -1.0           -0.754601         -0.754601   \n",
              "\n",
              "      PC02_VENOUS_MIN  PC02_VENOUS_MAX  PC02_VENOUS_DIFF  PCR_MEDIAN  \\\n",
              "0                 NaN              NaN               NaN         NaN   \n",
              "1                 NaN              NaN               NaN         NaN   \n",
              "2           -0.754601        -0.754601              -1.0   -0.875236   \n",
              "3                 NaN              NaN               NaN         NaN   \n",
              "4           -0.815951        -0.815951              -1.0   -1.000000   \n",
              "...               ...              ...               ...         ...   \n",
              "1920              NaN              NaN               NaN         NaN   \n",
              "1921        -0.730061        -0.730061              -1.0   -0.906238   \n",
              "1922              NaN              NaN               NaN         NaN   \n",
              "1923              NaN              NaN               NaN         NaN   \n",
              "1924        -0.754601        -0.754601              -1.0   -0.801134   \n",
              "\n",
              "      PCR_MEAN   PCR_MIN   PCR_MAX  PCR_DIFF  PH_ARTERIAL_MEDIAN  \\\n",
              "0          NaN       NaN       NaN       NaN                 NaN   \n",
              "1          NaN       NaN       NaN       NaN                 NaN   \n",
              "2    -0.875236 -0.875236 -0.875236      -1.0            0.234043   \n",
              "3          NaN       NaN       NaN       NaN                 NaN   \n",
              "4    -1.000000 -1.000000 -1.000000      -1.0            0.574468   \n",
              "...        ...       ...       ...       ...                 ...   \n",
              "1920       NaN       NaN       NaN       NaN                 NaN   \n",
              "1921 -0.906238 -0.906238 -0.906238      -1.0            0.234043   \n",
              "1922       NaN       NaN       NaN       NaN                 NaN   \n",
              "1923       NaN       NaN       NaN       NaN                 NaN   \n",
              "1924 -0.801134 -0.801134 -0.801134      -1.0            0.234043   \n",
              "\n",
              "      PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  PH_ARTERIAL_MAX  PH_ARTERIAL_DIFF  \\\n",
              "0                  NaN              NaN              NaN               NaN   \n",
              "1                  NaN              NaN              NaN               NaN   \n",
              "2             0.234043         0.234043         0.234043              -1.0   \n",
              "3                  NaN              NaN              NaN               NaN   \n",
              "4             0.574468         0.574468         0.574468              -1.0   \n",
              "...                ...              ...              ...               ...   \n",
              "1920               NaN              NaN              NaN               NaN   \n",
              "1921          0.234043         0.234043         0.234043              -1.0   \n",
              "1922               NaN              NaN              NaN               NaN   \n",
              "1923               NaN              NaN              NaN               NaN   \n",
              "1924          0.234043         0.234043         0.234043              -1.0   \n",
              "\n",
              "      PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  PH_VENOUS_MIN  PH_VENOUS_MAX  \\\n",
              "0                  NaN             NaN            NaN            NaN   \n",
              "1                  NaN             NaN            NaN            NaN   \n",
              "2             0.363636        0.363636       0.363636       0.363636   \n",
              "3                  NaN             NaN            NaN            NaN   \n",
              "4             0.393939        0.393939       0.393939       0.393939   \n",
              "...                ...             ...            ...            ...   \n",
              "1920               NaN             NaN            NaN            NaN   \n",
              "1921          0.424242        0.424242       0.424242       0.424242   \n",
              "1922               NaN             NaN            NaN            NaN   \n",
              "1923               NaN             NaN            NaN            NaN   \n",
              "1924          0.363636        0.363636       0.363636       0.363636   \n",
              "\n",
              "      PH_VENOUS_DIFF  PLATELETS_MEDIAN  PLATELETS_MEAN  PLATELETS_MIN  \\\n",
              "0                NaN               NaN             NaN            NaN   \n",
              "1                NaN               NaN             NaN            NaN   \n",
              "2               -1.0         -0.540721       -0.540721      -0.540721   \n",
              "3                NaN               NaN             NaN            NaN   \n",
              "4               -1.0         -0.471295       -0.471295      -0.471295   \n",
              "...              ...               ...             ...            ...   \n",
              "1920             NaN               NaN             NaN            NaN   \n",
              "1921            -1.0         -0.479306       -0.479306      -0.479306   \n",
              "1922             NaN               NaN             NaN            NaN   \n",
              "1923             NaN               NaN             NaN            NaN   \n",
              "1924            -1.0         -0.463284       -0.463284      -0.463284   \n",
              "\n",
              "      PLATELETS_MAX  PLATELETS_DIFF  POTASSIUM_MEDIAN  POTASSIUM_MEAN  \\\n",
              "0               NaN             NaN               NaN             NaN   \n",
              "1               NaN             NaN               NaN             NaN   \n",
              "2         -0.540721            -1.0         -0.518519       -0.518519   \n",
              "3               NaN             NaN               NaN             NaN   \n",
              "4         -0.471295            -1.0         -0.666667       -0.666667   \n",
              "...             ...             ...               ...             ...   \n",
              "1920            NaN             NaN               NaN             NaN   \n",
              "1921      -0.479306            -1.0         -0.333333       -0.333333   \n",
              "1922            NaN             NaN               NaN             NaN   \n",
              "1923            NaN             NaN               NaN             NaN   \n",
              "1924      -0.463284            -1.0         -0.444444       -0.444444   \n",
              "\n",
              "      POTASSIUM_MIN  POTASSIUM_MAX  POTASSIUM_DIFF  SAT02_ARTERIAL_MEDIAN  \\\n",
              "0               NaN            NaN             NaN                    NaN   \n",
              "1               NaN            NaN             NaN                    NaN   \n",
              "2         -0.518519      -0.518519            -1.0               0.939394   \n",
              "3               NaN            NaN             NaN                    NaN   \n",
              "4         -0.666667      -0.666667            -1.0               0.848485   \n",
              "...             ...            ...             ...                    ...   \n",
              "1920            NaN            NaN             NaN                    NaN   \n",
              "1921      -0.333333      -0.333333            -1.0               0.939394   \n",
              "1922            NaN            NaN             NaN                    NaN   \n",
              "1923            NaN            NaN             NaN                    NaN   \n",
              "1924      -0.444444      -0.444444            -1.0               0.939394   \n",
              "\n",
              "      SAT02_ARTERIAL_MEAN  SAT02_ARTERIAL_MIN  SAT02_ARTERIAL_MAX  \\\n",
              "0                     NaN                 NaN                 NaN   \n",
              "1                     NaN                 NaN                 NaN   \n",
              "2                0.939394            0.939394            0.939394   \n",
              "3                     NaN                 NaN                 NaN   \n",
              "4                0.848485            0.848485            0.848485   \n",
              "...                   ...                 ...                 ...   \n",
              "1920                  NaN                 NaN                 NaN   \n",
              "1921             0.939394            0.939394            0.939394   \n",
              "1922                  NaN                 NaN                 NaN   \n",
              "1923                  NaN                 NaN                 NaN   \n",
              "1924             0.939394            0.939394            0.939394   \n",
              "\n",
              "      SAT02_ARTERIAL_DIFF  SAT02_VENOUS_MEDIAN  SAT02_VENOUS_MEAN  \\\n",
              "0                     NaN                  NaN                NaN   \n",
              "1                     NaN                  NaN                NaN   \n",
              "2                    -1.0             0.345679           0.345679   \n",
              "3                     NaN                  NaN                NaN   \n",
              "4                    -1.0             0.925926           0.925926   \n",
              "...                   ...                  ...                ...   \n",
              "1920                  NaN                  NaN                NaN   \n",
              "1921                 -1.0            -0.333333          -0.333333   \n",
              "1922                  NaN                  NaN                NaN   \n",
              "1923                  NaN                  NaN                NaN   \n",
              "1924                 -1.0             0.345679           0.345679   \n",
              "\n",
              "      SAT02_VENOUS_MIN  SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  SODIUM_MEDIAN  \\\n",
              "0                  NaN               NaN                NaN            NaN   \n",
              "1                  NaN               NaN                NaN            NaN   \n",
              "2             0.345679          0.345679               -1.0      -0.028571   \n",
              "3                  NaN               NaN                NaN            NaN   \n",
              "4             0.925926          0.925926               -1.0       0.142857   \n",
              "...                ...               ...                ...            ...   \n",
              "1920               NaN               NaN                NaN            NaN   \n",
              "1921         -0.333333         -0.333333               -1.0      -0.085714   \n",
              "1922               NaN               NaN                NaN            NaN   \n",
              "1923               NaN               NaN                NaN            NaN   \n",
              "1924          0.345679          0.345679               -1.0       0.200000   \n",
              "\n",
              "      SODIUM_MEAN  SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  TGO_MEDIAN  TGO_MEAN  \\\n",
              "0             NaN         NaN         NaN          NaN         NaN       NaN   \n",
              "1             NaN         NaN         NaN          NaN         NaN       NaN   \n",
              "2       -0.028571   -0.028571   -0.028571         -1.0   -0.997201 -0.997201   \n",
              "3             NaN         NaN         NaN          NaN         NaN       NaN   \n",
              "4        0.142857    0.142857    0.142857         -1.0   -0.999067 -0.999067   \n",
              "...           ...         ...         ...          ...         ...       ...   \n",
              "1920          NaN         NaN         NaN          NaN         NaN       NaN   \n",
              "1921    -0.085714   -0.085714   -0.085714         -1.0   -0.997387 -0.997387   \n",
              "1922          NaN         NaN         NaN          NaN         NaN       NaN   \n",
              "1923          NaN         NaN         NaN          NaN         NaN       NaN   \n",
              "1924     0.200000    0.200000    0.200000         -1.0   -0.997761 -0.997761   \n",
              "\n",
              "       TGO_MIN   TGO_MAX  TGO_DIFF  TGP_MEDIAN  TGP_MEAN   TGP_MIN   TGP_MAX  \\\n",
              "0          NaN       NaN       NaN         NaN       NaN       NaN       NaN   \n",
              "1          NaN       NaN       NaN         NaN       NaN       NaN       NaN   \n",
              "2    -0.997201 -0.997201      -1.0   -0.990854 -0.990854 -0.990854 -0.990854   \n",
              "3          NaN       NaN       NaN         NaN       NaN       NaN       NaN   \n",
              "4    -0.999067 -0.999067      -1.0   -0.983994 -0.983994 -0.983994 -0.983994   \n",
              "...        ...       ...       ...         ...       ...       ...       ...   \n",
              "1920       NaN       NaN       NaN         NaN       NaN       NaN       NaN   \n",
              "1921 -0.997387 -0.997387      -1.0   -0.992378 -0.992378 -0.992378 -0.992378   \n",
              "1922       NaN       NaN       NaN         NaN       NaN       NaN       NaN   \n",
              "1923       NaN       NaN       NaN         NaN       NaN       NaN       NaN   \n",
              "1924 -0.997761 -0.997761      -1.0   -0.991997 -0.991997 -0.991997 -0.991997   \n",
              "\n",
              "      TGP_DIFF  TTPA_MEDIAN  TTPA_MEAN  TTPA_MIN  TTPA_MAX  TTPA_DIFF  \\\n",
              "0          NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "1          NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "2         -1.0    -0.825613  -0.825613 -0.825613 -0.825613       -1.0   \n",
              "3          NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "4         -1.0    -0.846633  -0.846633 -0.846633 -0.846633       -1.0   \n",
              "...        ...          ...        ...       ...       ...        ...   \n",
              "1920       NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "1921      -1.0    -0.869210  -0.869210 -0.869210 -0.869210       -1.0   \n",
              "1922       NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "1923       NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "1924      -1.0    -0.846633  -0.846633 -0.846633 -0.846633       -1.0   \n",
              "\n",
              "      UREA_MEDIAN  UREA_MEAN  UREA_MIN  UREA_MAX  UREA_DIFF  DIMER_MEDIAN  \\\n",
              "0             NaN        NaN       NaN       NaN        NaN           NaN   \n",
              "1             NaN        NaN       NaN       NaN        NaN           NaN   \n",
              "2       -0.836145  -0.836145 -0.836145 -0.836145       -1.0     -0.994912   \n",
              "3             NaN        NaN       NaN       NaN        NaN           NaN   \n",
              "4       -0.836145  -0.836145 -0.836145 -0.836145       -1.0     -0.996762   \n",
              "...           ...        ...       ...       ...        ...           ...   \n",
              "1920          NaN        NaN       NaN       NaN        NaN           NaN   \n",
              "1921    -0.879518  -0.879518 -0.879518 -0.879518       -1.0     -0.979571   \n",
              "1922          NaN        NaN       NaN       NaN        NaN           NaN   \n",
              "1923          NaN        NaN       NaN       NaN        NaN           NaN   \n",
              "1924    -0.807229  -0.807229 -0.807229 -0.807229       -1.0     -0.888448   \n",
              "\n",
              "      DIMER_MEAN  DIMER_MIN  DIMER_MAX  DIMER_DIFF  \\\n",
              "0            NaN        NaN        NaN         NaN   \n",
              "1            NaN        NaN        NaN         NaN   \n",
              "2      -0.994912  -0.994912  -0.994912        -1.0   \n",
              "3            NaN        NaN        NaN         NaN   \n",
              "4      -0.996762  -0.996762  -0.996762        -1.0   \n",
              "...          ...        ...        ...         ...   \n",
              "1920         NaN        NaN        NaN         NaN   \n",
              "1921   -0.979571  -0.979571  -0.979571        -1.0   \n",
              "1922         NaN        NaN        NaN         NaN   \n",
              "1923         NaN        NaN        NaN         NaN   \n",
              "1924   -0.888448  -0.888448  -0.888448        -1.0   \n",
              "\n",
              "      BLOODPRESSURE_DIASTOLIC_MEAN  BLOODPRESSURE_SISTOLIC_MEAN  \\\n",
              "0                         0.086420                    -0.230769   \n",
              "1                         0.333333                    -0.230769   \n",
              "2                              NaN                          NaN   \n",
              "3                              NaN                          NaN   \n",
              "4                        -0.243021                    -0.338537   \n",
              "...                            ...                          ...   \n",
              "1920                      0.012346                    -0.292308   \n",
              "1921                      0.086420                    -0.384615   \n",
              "1922                      0.086420                    -0.230769   \n",
              "1923                      0.209877                    -0.384615   \n",
              "1924                     -0.185185                    -0.539103   \n",
              "\n",
              "      HEART_RATE_MEAN  RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  \\\n",
              "0           -0.283019              -0.593220         -0.285714   \n",
              "1           -0.132075              -0.593220          0.535714   \n",
              "2                 NaN                    NaN               NaN   \n",
              "3                 NaN                    NaN         -0.107143   \n",
              "4           -0.213031              -0.317859          0.033779   \n",
              "...               ...                    ...               ...   \n",
              "1920         0.056604              -0.525424          0.535714   \n",
              "1921        -0.113208              -0.593220          0.142857   \n",
              "1922        -0.169811              -0.593220          0.142857   \n",
              "1923        -0.188679              -0.661017          0.285714   \n",
              "1924        -0.107704              -0.610169          0.050595   \n",
              "\n",
              "      OXYGEN_SATURATION_MEAN  BLOODPRESSURE_DIASTOLIC_MEDIAN  \\\n",
              "0                   0.736842                        0.086420   \n",
              "1                   0.578947                        0.333333   \n",
              "2                        NaN                             NaN   \n",
              "3                   0.736842                             NaN   \n",
              "4                   0.665932                       -0.283951   \n",
              "...                      ...                             ...   \n",
              "1920                0.789474                        0.012346   \n",
              "1921                0.578947                        0.086420   \n",
              "1922                0.736842                        0.086420   \n",
              "1923                0.473684                        0.209877   \n",
              "1924                0.662281                       -0.160494   \n",
              "\n",
              "      BLOODPRESSURE_SISTOLIC_MEDIAN  HEART_RATE_MEDIAN  \\\n",
              "0                         -0.230769          -0.283019   \n",
              "1                         -0.230769          -0.132075   \n",
              "2                               NaN                NaN   \n",
              "3                               NaN                NaN   \n",
              "4                         -0.376923          -0.188679   \n",
              "...                             ...                ...   \n",
              "1920                      -0.292308           0.056604   \n",
              "1921                      -0.384615          -0.113208   \n",
              "1922                      -0.230769          -0.169811   \n",
              "1923                      -0.384615          -0.188679   \n",
              "1924                      -0.538462          -0.075472   \n",
              "\n",
              "      RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  OXYGEN_SATURATION_MEDIAN  \\\n",
              "0                   -0.586207           -0.285714                  0.736842   \n",
              "1                   -0.586207            0.535714                  0.578947   \n",
              "2                         NaN                 NaN                       NaN   \n",
              "3                         NaN           -0.107143                  0.736842   \n",
              "4                   -0.379310            0.035714                  0.631579   \n",
              "...                       ...                 ...                       ...   \n",
              "1920                -0.517241            0.535714                  0.789474   \n",
              "1921                -0.586207            0.142857                  0.578947   \n",
              "1922                -0.586207            0.142857                  0.736842   \n",
              "1923                -0.655172            0.285714                  0.473684   \n",
              "1924                -0.586207            0.071429                  0.631579   \n",
              "\n",
              "      BLOODPRESSURE_DIASTOLIC_MIN  BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  \\\n",
              "0                        0.237113                      0.0000       -0.162393   \n",
              "1                        0.443299                      0.0000       -0.025641   \n",
              "2                             NaN                         NaN             NaN   \n",
              "3                             NaN                         NaN             NaN   \n",
              "4                       -0.340206                     -0.4875       -0.572650   \n",
              "...                           ...                         ...             ...   \n",
              "1920                     0.175258                     -0.0500        0.145299   \n",
              "1921                     0.237113                     -0.1250       -0.008547   \n",
              "1922                     0.237113                      0.0000       -0.059829   \n",
              "1923                     0.340206                     -0.1250       -0.076923   \n",
              "1924                    -0.175258                     -0.3750       -0.247863   \n",
              "\n",
              "      RESPIRATORY_RATE_MIN  TEMPERATURE_MIN  OXYGEN_SATURATION_MIN  \\\n",
              "0                -0.500000         0.208791               0.898990   \n",
              "1                -0.500000         0.714286               0.838384   \n",
              "2                      NaN              NaN                    NaN   \n",
              "3                      NaN         0.318681               0.898990   \n",
              "4                -0.857143         0.098901               0.797980   \n",
              "...                    ...              ...                    ...   \n",
              "1920             -0.428571         0.714286               0.919192   \n",
              "1921             -0.500000         0.472527               0.838384   \n",
              "1922             -0.500000         0.472527               0.898990   \n",
              "1923             -0.571429         0.560440               0.797980   \n",
              "1924             -0.785714         0.186813               0.777778   \n",
              "\n",
              "      BLOODPRESSURE_DIASTOLIC_MAX  BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  \\\n",
              "0                       -0.247863                   -0.459459       -0.432836   \n",
              "1                       -0.076923                   -0.459459       -0.313433   \n",
              "2                             NaN                         NaN             NaN   \n",
              "3                             NaN                         NaN             NaN   \n",
              "4                       -0.076923                    0.286486        0.298507   \n",
              "...                           ...                         ...             ...   \n",
              "1920                    -0.299145                   -0.502703       -0.164179   \n",
              "1921                    -0.247863                   -0.567568       -0.298507   \n",
              "1922                    -0.247863                   -0.459459       -0.343284   \n",
              "1923                    -0.162393                   -0.567568       -0.358209   \n",
              "1924                    -0.247863                   -0.470270       -0.149254   \n",
              "\n",
              "      RESPIRATORY_RATE_MAX  TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  \\\n",
              "0                -0.636364        -0.420290               0.736842   \n",
              "1                -0.636364         0.246377               0.578947   \n",
              "2                      NaN              NaN                    NaN   \n",
              "3                      NaN        -0.275362               0.736842   \n",
              "4                 0.272727         0.362319               0.947368   \n",
              "...                    ...              ...                    ...   \n",
              "1920             -0.575758         0.246377               0.789474   \n",
              "1921             -0.636364        -0.072464               0.578947   \n",
              "1922             -0.636364        -0.072464               0.736842   \n",
              "1923             -0.696970         0.043478               0.473684   \n",
              "1924             -0.515152         0.101449               0.842105   \n",
              "\n",
              "      BLOODPRESSURE_DIASTOLIC_DIFF  BLOODPRESSURE_SISTOLIC_DIFF  \\\n",
              "0                        -1.000000                    -1.000000   \n",
              "1                        -1.000000                    -1.000000   \n",
              "2                              NaN                          NaN   \n",
              "3                              NaN                          NaN   \n",
              "4                        -0.339130                     0.325153   \n",
              "...                            ...                          ...   \n",
              "1920                     -1.000000                    -1.000000   \n",
              "1921                     -1.000000                    -1.000000   \n",
              "1922                     -1.000000                    -1.000000   \n",
              "1923                     -1.000000                    -1.000000   \n",
              "1924                     -0.652174                    -0.644172   \n",
              "\n",
              "      HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  TEMPERATURE_DIFF  \\\n",
              "0           -1.000000              -1.000000         -1.000000   \n",
              "1           -1.000000              -1.000000         -1.000000   \n",
              "2                 NaN                    NaN               NaN   \n",
              "3                 NaN                    NaN         -1.000000   \n",
              "4            0.114504               0.176471         -0.238095   \n",
              "...               ...                    ...               ...   \n",
              "1920        -1.000000              -1.000000         -1.000000   \n",
              "1921        -1.000000              -1.000000         -1.000000   \n",
              "1922        -1.000000              -1.000000         -1.000000   \n",
              "1923        -1.000000              -1.000000         -1.000000   \n",
              "1924        -0.633588              -0.647059         -0.547619   \n",
              "\n",
              "      OXYGEN_SATURATION_DIFF  BLOODPRESSURE_DIASTOLIC_DIFF_REL  \\\n",
              "0                  -1.000000                         -1.000000   \n",
              "1                  -1.000000                         -1.000000   \n",
              "2                        NaN                               NaN   \n",
              "3                  -1.000000                               NaN   \n",
              "4                  -0.818182                         -0.389967   \n",
              "...                      ...                               ...   \n",
              "1920               -1.000000                         -1.000000   \n",
              "1921               -1.000000                         -1.000000   \n",
              "1922               -1.000000                         -1.000000   \n",
              "1923               -1.000000                         -1.000000   \n",
              "1924               -0.838384                         -0.701863   \n",
              "\n",
              "      BLOODPRESSURE_SISTOLIC_DIFF_REL  HEART_RATE_DIFF_REL  \\\n",
              "0                           -1.000000            -1.000000   \n",
              "1                           -1.000000            -1.000000   \n",
              "2                                 NaN                  NaN   \n",
              "3                                 NaN                  NaN   \n",
              "4                            0.407558            -0.230462   \n",
              "...                               ...                  ...   \n",
              "1920                        -1.000000            -1.000000   \n",
              "1921                        -1.000000            -1.000000   \n",
              "1922                        -1.000000            -1.000000   \n",
              "1923                        -1.000000            -1.000000   \n",
              "1924                        -0.585967            -0.763868   \n",
              "\n",
              "      RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "0                     -1.000000             -1.000000   \n",
              "1                     -1.000000             -1.000000   \n",
              "2                           NaN                   NaN   \n",
              "3                           NaN             -1.000000   \n",
              "4                      0.096774             -0.242282   \n",
              "...                         ...                   ...   \n",
              "1920                  -1.000000             -1.000000   \n",
              "1921                  -1.000000             -1.000000   \n",
              "1922                  -1.000000             -1.000000   \n",
              "1923                  -1.000000             -1.000000   \n",
              "1924                  -0.612903             -0.551337   \n",
              "\n",
              "      OXYGEN_SATURATION_DIFF_REL    WINDOW  ICU  \n",
              "0                      -1.000000       0-2    0  \n",
              "1                      -1.000000       2-4    0  \n",
              "2                            NaN       4-6    0  \n",
              "3                      -1.000000      6-12    0  \n",
              "4                      -0.814433  ABOVE_12    1  \n",
              "...                          ...       ...  ...  \n",
              "1920                   -1.000000       0-2    0  \n",
              "1921                   -1.000000       2-4    0  \n",
              "1922                   -1.000000       4-6    0  \n",
              "1923                   -1.000000      6-12    0  \n",
              "1924                   -0.835052  ABOVE_12    0  \n",
              "\n",
              "[1925 rows x 231 columns]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 3
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "sGhc7h-hOXTz"
      },
      "source": [
        "##Data Pre-Processing\n",
        "Converting the data into usable format.\n",
        "Following modifications has been done to the data to get most out of it:\n",
        "1. Binary hotcoding to convert not float columns.\n",
        "2. Marking Window 0-2 as 1 if the patient was admitted to ICU in any of the future windows. \n",
        "3. Removing all the records of the windows in which patients were actually admitted to the ICU (windows with ICU label 1 before the step 2).\n",
        "4. Filling the NaN values of window 0-2 with the help of mean of values in all the windows of that patient.\n",
        "5. Removing all the rows still having NaN values.\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 603
        },
        "id": "zoW7Q52iOdlx",
        "outputId": "63c87a59-2850-4b79-a126-b0843ef8bf19"
      },
      "source": [
        "print(data.dtypes)\n",
        "data.select_dtypes(object)"
      ],
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "PATIENT_VISIT_IDENTIFIER        int64\n",
            "AGE_ABOVE65                     int64\n",
            "AGE_PERCENTIL                  object\n",
            "GENDER                          int64\n",
            "DISEASE GROUPING 1            float64\n",
            "                               ...   \n",
            "RESPIRATORY_RATE_DIFF_REL     float64\n",
            "TEMPERATURE_DIFF_REL          float64\n",
            "OXYGEN_SATURATION_DIFF_REL    float64\n",
            "WINDOW                         object\n",
            "ICU                             int64\n",
            "Length: 231, dtype: object\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_PERCENTIL</th>\n",
              "      <th>WINDOW</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>60th</td>\n",
              "      <td>0-2</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>60th</td>\n",
              "      <td>2-4</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>60th</td>\n",
              "      <td>4-6</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>60th</td>\n",
              "      <td>6-12</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>60th</td>\n",
              "      <td>ABOVE_12</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>...</th>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1920</th>\n",
              "      <td>50th</td>\n",
              "      <td>0-2</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1921</th>\n",
              "      <td>50th</td>\n",
              "      <td>2-4</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1922</th>\n",
              "      <td>50th</td>\n",
              "      <td>4-6</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1923</th>\n",
              "      <td>50th</td>\n",
              "      <td>6-12</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1924</th>\n",
              "      <td>50th</td>\n",
              "      <td>ABOVE_12</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "<p>1925 rows × 2 columns</p>\n",
              "</div>"
            ],
            "text/plain": [
              "     AGE_PERCENTIL    WINDOW\n",
              "0             60th       0-2\n",
              "1             60th       2-4\n",
              "2             60th       4-6\n",
              "3             60th      6-12\n",
              "4             60th  ABOVE_12\n",
              "...            ...       ...\n",
              "1920          50th       0-2\n",
              "1921          50th       2-4\n",
              "1922          50th       4-6\n",
              "1923          50th      6-12\n",
              "1924          50th  ABOVE_12\n",
              "\n",
              "[1925 rows x 2 columns]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 4
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "os1VJzJnQpjh",
        "outputId": "4c5e995a-8016-4b1c-d24e-41b9ee129bf6"
      },
      "source": [
        "without_ICU_column = data.drop('ICU', axis = 1)       #seperating the ICU lable column\n",
        "ICU_column = data['ICU']\n",
        "colums_to_convert = data.select_dtypes(object).columns   #finding columns that are not of type float or int\n",
        "colums_to_convert"
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Index(['AGE_PERCENTIL', 'WINDOW'], dtype='object')"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 5
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 249
        },
        "id": "bCGGUrAiRHbq",
        "outputId": "5ab0d36b-d58b-408e-f6ad-963d6303abfe"
      },
      "source": [
        "without_ICU_column = pd.get_dummies(without_ICU_column, columns = colums_to_convert)      #performing hotcoding\n",
        "without_ICU_column.head()"
      ],
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>PATIENT_VISIT_IDENTIFIER</th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>GENDER</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>WINDOW_0-2</th>\n",
              "      <th>WINDOW_2-4</th>\n",
              "      <th>WINDOW_4-6</th>\n",
              "      <th>WINDOW_6-12</th>\n",
              "      <th>WINDOW_ABOVE_12</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.420290</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.00000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.443299</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.025641</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.714286</td>\n",
              "      <td>0.838384</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.313433</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>0.246377</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>-1.00000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.318681</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.275362</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.243021</td>\n",
              "      <td>-0.338537</td>\n",
              "      <td>-0.213031</td>\n",
              "      <td>-0.317859</td>\n",
              "      <td>0.033779</td>\n",
              "      <td>0.665932</td>\n",
              "      <td>-0.283951</td>\n",
              "      <td>-0.376923</td>\n",
              "      <td>-0.188679</td>\n",
              "      <td>-0.379310</td>\n",
              "      <td>0.035714</td>\n",
              "      <td>0.631579</td>\n",
              "      <td>-0.340206</td>\n",
              "      <td>-0.4875</td>\n",
              "      <td>-0.572650</td>\n",
              "      <td>-0.857143</td>\n",
              "      <td>0.098901</td>\n",
              "      <td>0.797980</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>0.286486</td>\n",
              "      <td>0.298507</td>\n",
              "      <td>0.272727</td>\n",
              "      <td>0.362319</td>\n",
              "      <td>0.947368</td>\n",
              "      <td>-0.33913</td>\n",
              "      <td>0.325153</td>\n",
              "      <td>0.114504</td>\n",
              "      <td>0.176471</td>\n",
              "      <td>-0.238095</td>\n",
              "      <td>-0.818182</td>\n",
              "      <td>-0.389967</td>\n",
              "      <td>0.407558</td>\n",
              "      <td>-0.230462</td>\n",
              "      <td>0.096774</td>\n",
              "      <td>-0.242282</td>\n",
              "      <td>-0.814433</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "   PATIENT_VISIT_IDENTIFIER  AGE_ABOVE65  GENDER  DISEASE GROUPING 1  \\\n",
              "0                         0            1       0                 0.0   \n",
              "1                         0            1       0                 0.0   \n",
              "2                         0            1       0                 0.0   \n",
              "3                         0            1       0                 0.0   \n",
              "4                         0            1       0                 0.0   \n",
              "\n",
              "   DISEASE GROUPING 2  DISEASE GROUPING 3  DISEASE GROUPING 4  \\\n",
              "0                 0.0                 0.0                 0.0   \n",
              "1                 0.0                 0.0                 0.0   \n",
              "2                 0.0                 0.0                 0.0   \n",
              "3                 0.0                 0.0                 0.0   \n",
              "4                 0.0                 0.0                 0.0   \n",
              "\n",
              "   DISEASE GROUPING 5  DISEASE GROUPING 6  HTN  IMMUNOCOMPROMISED  OTHER  \\\n",
              "0                 1.0                 1.0  0.0                0.0    1.0   \n",
              "1                 1.0                 1.0  0.0                0.0    1.0   \n",
              "2                 1.0                 1.0  0.0                0.0    1.0   \n",
              "3                 1.0                 1.0  0.0                0.0    1.0   \n",
              "4                 1.0                 1.0  0.0                0.0    1.0   \n",
              "\n",
              "   ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  ALBUMIN_MAX  ALBUMIN_DIFF  \\\n",
              "0             NaN           NaN          NaN          NaN           NaN   \n",
              "1             NaN           NaN          NaN          NaN           NaN   \n",
              "2        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "3             NaN           NaN          NaN          NaN           NaN   \n",
              "4        0.000000      0.000000     0.000000     0.000000          -1.0   \n",
              "\n",
              "   BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2           -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4           -0.871658         -0.871658        -0.871658        -0.871658   \n",
              "\n",
              "   BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  BE_VENOUS_MEAN  BE_VENOUS_MIN  \\\n",
              "0               NaN               NaN             NaN            NaN   \n",
              "1               NaN               NaN             NaN            NaN   \n",
              "2              -1.0         -1.000000       -1.000000      -1.000000   \n",
              "3               NaN               NaN             NaN            NaN   \n",
              "4              -1.0         -0.863874       -0.863874      -0.863874   \n",
              "\n",
              "   BE_VENOUS_MAX  BE_VENOUS_DIFF  BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  \\\n",
              "0            NaN             NaN                  NaN                NaN   \n",
              "1            NaN             NaN                  NaN                NaN   \n",
              "2      -1.000000            -1.0            -0.317073          -0.317073   \n",
              "3            NaN             NaN                  NaN                NaN   \n",
              "4      -0.863874            -1.0            -0.317073          -0.317073   \n",
              "\n",
              "   BIC_ARTERIAL_MIN  BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  BIC_VENOUS_MEDIAN  \\\n",
              "0               NaN               NaN                NaN                NaN   \n",
              "1               NaN               NaN                NaN                NaN   \n",
              "2         -0.317073         -0.317073               -1.0          -0.317073   \n",
              "3               NaN               NaN                NaN                NaN   \n",
              "4         -0.317073         -0.317073               -1.0          -0.414634   \n",
              "\n",
              "   BIC_VENOUS_MEAN  BIC_VENOUS_MIN  BIC_VENOUS_MAX  BIC_VENOUS_DIFF  \\\n",
              "0              NaN             NaN             NaN              NaN   \n",
              "1              NaN             NaN             NaN              NaN   \n",
              "2        -0.317073       -0.317073       -0.317073             -1.0   \n",
              "3              NaN             NaN             NaN              NaN   \n",
              "4        -0.414634       -0.414634       -0.414634             -1.0   \n",
              "\n",
              "   BILLIRUBIN_MEDIAN  BILLIRUBIN_MEAN  BILLIRUBIN_MIN  BILLIRUBIN_MAX  \\\n",
              "0                NaN              NaN             NaN             NaN   \n",
              "1                NaN              NaN             NaN             NaN   \n",
              "2          -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "3                NaN              NaN             NaN             NaN   \n",
              "4          -0.979069        -0.979069       -0.979069       -0.979069   \n",
              "\n",
              "   BILLIRUBIN_DIFF  BLAST_MEDIAN  BLAST_MEAN  BLAST_MIN  BLAST_MAX  \\\n",
              "0              NaN           NaN         NaN        NaN        NaN   \n",
              "1              NaN           NaN         NaN        NaN        NaN   \n",
              "2             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "3              NaN           NaN         NaN        NaN        NaN   \n",
              "4             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "\n",
              "   BLAST_DIFF  CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  CALCIUM_MAX  \\\n",
              "0         NaN             NaN           NaN          NaN          NaN   \n",
              "1         NaN             NaN           NaN          NaN          NaN   \n",
              "2        -1.0        0.183673      0.183673     0.183673     0.183673   \n",
              "3         NaN             NaN           NaN          NaN          NaN   \n",
              "4        -1.0        0.326531      0.326531     0.326531     0.326531   \n",
              "\n",
              "   CALCIUM_DIFF  CREATININ_MEDIAN  CREATININ_MEAN  CREATININ_MIN  \\\n",
              "0           NaN               NaN             NaN            NaN   \n",
              "1           NaN               NaN             NaN            NaN   \n",
              "2          -1.0         -0.868365       -0.868365      -0.868365   \n",
              "3           NaN               NaN             NaN            NaN   \n",
              "4          -1.0         -0.926398       -0.926398      -0.926398   \n",
              "\n",
              "   CREATININ_MAX  CREATININ_DIFF  FFA_MEDIAN  FFA_MEAN   FFA_MIN   FFA_MAX  \\\n",
              "0            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "1            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "2      -0.868365            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "3            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "4      -0.926398            -1.0   -0.859275 -0.859275 -0.859275 -0.859275   \n",
              "\n",
              "   FFA_DIFF  GGT_MEDIAN  GGT_MEAN   GGT_MIN   GGT_MAX  GGT_DIFF  \\\n",
              "0       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "2      -1.0   -0.945093 -0.945093 -0.945093 -0.945093      -1.0   \n",
              "3       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "4      -1.0   -0.669393 -0.669393 -0.669393 -0.669393      -1.0   \n",
              "\n",
              "   GLUCOSE_MEDIAN  GLUCOSE_MEAN  GLUCOSE_MIN  GLUCOSE_MAX  GLUCOSE_DIFF  \\\n",
              "0             NaN           NaN          NaN          NaN           NaN   \n",
              "1             NaN           NaN          NaN          NaN           NaN   \n",
              "2       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "3             NaN           NaN          NaN          NaN           NaN   \n",
              "4       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "\n",
              "   HEMATOCRITE_MEDIAN  HEMATOCRITE_MEAN  HEMATOCRITE_MIN  HEMATOCRITE_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2            0.090147          0.090147         0.090147         0.090147   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4           -0.320755         -0.320755        -0.320755        -0.320755   \n",
              "\n",
              "   HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  \\\n",
              "0               NaN                NaN              NaN             NaN   \n",
              "1               NaN                NaN              NaN             NaN   \n",
              "2              -1.0           0.109756         0.109756        0.109756   \n",
              "3               NaN                NaN              NaN             NaN   \n",
              "4              -1.0          -0.353659        -0.353659       -0.353659   \n",
              "\n",
              "   HEMOGLOBIN_MAX  HEMOGLOBIN_DIFF  INR_MEDIAN  INR_MEAN   INR_MIN   INR_MAX  \\\n",
              "0             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "1             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "2        0.109756             -1.0   -0.932246 -0.932246 -0.932246 -0.932246   \n",
              "3             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "4       -0.353659             -1.0   -0.979925 -0.979925 -0.979925 -0.979925   \n",
              "\n",
              "   INR_DIFF  LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  LACTATE_MAX  \\\n",
              "0       NaN             NaN           NaN          NaN          NaN   \n",
              "1       NaN             NaN           NaN          NaN          NaN   \n",
              "2      -1.0        1.000000      1.000000     1.000000     1.000000   \n",
              "3       NaN             NaN           NaN          NaN          NaN   \n",
              "4      -1.0       -0.963023     -0.963023    -0.963023    -0.963023   \n",
              "\n",
              "   LACTATE_DIFF  LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  LEUKOCYTES_MIN  \\\n",
              "0           NaN                NaN              NaN             NaN   \n",
              "1           NaN                NaN              NaN             NaN   \n",
              "2          -1.0          -0.835844        -0.835844       -0.835844   \n",
              "3           NaN                NaN              NaN             NaN   \n",
              "4          -1.0          -0.762843        -0.762843       -0.762843   \n",
              "\n",
              "   LEUKOCYTES_MAX  LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  LINFOCITOS_MEAN  \\\n",
              "0             NaN              NaN                NaN              NaN   \n",
              "1             NaN              NaN                NaN              NaN   \n",
              "2       -0.835844             -1.0          -0.914938        -0.914938   \n",
              "3             NaN              NaN                NaN              NaN   \n",
              "4       -0.762843             -1.0          -0.643154        -0.643154   \n",
              "\n",
              "   LINFOCITOS_MIN  LINFOCITOS_MAX  LINFOCITOS_DIFF  NEUTROPHILES_MEDIAN  \\\n",
              "0             NaN             NaN              NaN                  NaN   \n",
              "1             NaN             NaN              NaN                  NaN   \n",
              "2       -0.914938       -0.914938             -1.0            -0.868747   \n",
              "3             NaN             NaN              NaN                  NaN   \n",
              "4       -0.643154       -0.643154             -1.0            -0.868747   \n",
              "\n",
              "   NEUTROPHILES_MEAN  NEUTROPHILES_MIN  NEUTROPHILES_MAX  NEUTROPHILES_DIFF  \\\n",
              "0                NaN               NaN               NaN                NaN   \n",
              "1                NaN               NaN               NaN                NaN   \n",
              "2          -0.868747         -0.868747         -0.868747               -1.0   \n",
              "3                NaN               NaN               NaN                NaN   \n",
              "4          -0.868747         -0.868747         -0.868747               -1.0   \n",
              "\n",
              "   P02_ARTERIAL_MEDIAN  P02_ARTERIAL_MEAN  P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  \\\n",
              "0                  NaN                NaN               NaN               NaN   \n",
              "1                  NaN                NaN               NaN               NaN   \n",
              "2            -0.170732          -0.170732         -0.170732         -0.170732   \n",
              "3                  NaN                NaN               NaN               NaN   \n",
              "4            -0.365854          -0.365854         -0.365854         -0.365854   \n",
              "\n",
              "   P02_ARTERIAL_DIFF  P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  P02_VENOUS_MIN  \\\n",
              "0                NaN                NaN              NaN             NaN   \n",
              "1                NaN                NaN              NaN             NaN   \n",
              "2               -1.0          -0.704142        -0.704142       -0.704142   \n",
              "3                NaN                NaN              NaN             NaN   \n",
              "4               -1.0          -0.230769        -0.230769       -0.230769   \n",
              "\n",
              "   P02_VENOUS_MAX  P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  PC02_ARTERIAL_MEAN  \\\n",
              "0             NaN              NaN                   NaN                 NaN   \n",
              "1             NaN              NaN                   NaN                 NaN   \n",
              "2       -0.704142             -1.0             -0.779310           -0.779310   \n",
              "3             NaN              NaN                   NaN                 NaN   \n",
              "4       -0.230769             -1.0             -0.875862           -0.875862   \n",
              "\n",
              "   PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  PC02_ARTERIAL_DIFF  \\\n",
              "0                NaN                NaN                 NaN   \n",
              "1                NaN                NaN                 NaN   \n",
              "2          -0.779310          -0.779310                -1.0   \n",
              "3                NaN                NaN                 NaN   \n",
              "4          -0.875862          -0.875862                -1.0   \n",
              "\n",
              "   PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  PC02_VENOUS_MIN  PC02_VENOUS_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2           -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4           -0.815951         -0.815951        -0.815951        -0.815951   \n",
              "\n",
              "   PC02_VENOUS_DIFF  PCR_MEDIAN  PCR_MEAN   PCR_MIN   PCR_MAX  PCR_DIFF  \\\n",
              "0               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "2              -1.0   -0.875236 -0.875236 -0.875236 -0.875236      -1.0   \n",
              "3               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "4              -1.0   -1.000000 -1.000000 -1.000000 -1.000000      -1.0   \n",
              "\n",
              "   PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  PH_ARTERIAL_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2            0.234043          0.234043         0.234043         0.234043   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4            0.574468          0.574468         0.574468         0.574468   \n",
              "\n",
              "   PH_ARTERIAL_DIFF  PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  PH_VENOUS_MIN  \\\n",
              "0               NaN               NaN             NaN            NaN   \n",
              "1               NaN               NaN             NaN            NaN   \n",
              "2              -1.0          0.363636        0.363636       0.363636   \n",
              "3               NaN               NaN             NaN            NaN   \n",
              "4              -1.0          0.393939        0.393939       0.393939   \n",
              "\n",
              "   PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  PLATELETS_MEAN  \\\n",
              "0            NaN             NaN               NaN             NaN   \n",
              "1            NaN             NaN               NaN             NaN   \n",
              "2       0.363636            -1.0         -0.540721       -0.540721   \n",
              "3            NaN             NaN               NaN             NaN   \n",
              "4       0.393939            -1.0         -0.471295       -0.471295   \n",
              "\n",
              "   PLATELETS_MIN  PLATELETS_MAX  PLATELETS_DIFF  POTASSIUM_MEDIAN  \\\n",
              "0            NaN            NaN             NaN               NaN   \n",
              "1            NaN            NaN             NaN               NaN   \n",
              "2      -0.540721      -0.540721            -1.0         -0.518519   \n",
              "3            NaN            NaN             NaN               NaN   \n",
              "4      -0.471295      -0.471295            -1.0         -0.666667   \n",
              "\n",
              "   POTASSIUM_MEAN  POTASSIUM_MIN  POTASSIUM_MAX  POTASSIUM_DIFF  \\\n",
              "0             NaN            NaN            NaN             NaN   \n",
              "1             NaN            NaN            NaN             NaN   \n",
              "2       -0.518519      -0.518519      -0.518519            -1.0   \n",
              "3             NaN            NaN            NaN             NaN   \n",
              "4       -0.666667      -0.666667      -0.666667            -1.0   \n",
              "\n",
              "   SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  SAT02_ARTERIAL_MIN  \\\n",
              "0                    NaN                  NaN                 NaN   \n",
              "1                    NaN                  NaN                 NaN   \n",
              "2               0.939394             0.939394            0.939394   \n",
              "3                    NaN                  NaN                 NaN   \n",
              "4               0.848485             0.848485            0.848485   \n",
              "\n",
              "   SAT02_ARTERIAL_MAX  SAT02_ARTERIAL_DIFF  SAT02_VENOUS_MEDIAN  \\\n",
              "0                 NaN                  NaN                  NaN   \n",
              "1                 NaN                  NaN                  NaN   \n",
              "2            0.939394                 -1.0             0.345679   \n",
              "3                 NaN                  NaN                  NaN   \n",
              "4            0.848485                 -1.0             0.925926   \n",
              "\n",
              "   SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  \\\n",
              "0                NaN               NaN               NaN                NaN   \n",
              "1                NaN               NaN               NaN                NaN   \n",
              "2           0.345679          0.345679          0.345679               -1.0   \n",
              "3                NaN               NaN               NaN                NaN   \n",
              "4           0.925926          0.925926          0.925926               -1.0   \n",
              "\n",
              "   SODIUM_MEDIAN  SODIUM_MEAN  SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  \\\n",
              "0            NaN          NaN         NaN         NaN          NaN   \n",
              "1            NaN          NaN         NaN         NaN          NaN   \n",
              "2      -0.028571    -0.028571   -0.028571   -0.028571         -1.0   \n",
              "3            NaN          NaN         NaN         NaN          NaN   \n",
              "4       0.142857     0.142857    0.142857    0.142857         -1.0   \n",
              "\n",
              "   TGO_MEDIAN  TGO_MEAN   TGO_MIN   TGO_MAX  TGO_DIFF  TGP_MEDIAN  TGP_MEAN  \\\n",
              "0         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "1         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "2   -0.997201 -0.997201 -0.997201 -0.997201      -1.0   -0.990854 -0.990854   \n",
              "3         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "4   -0.999067 -0.999067 -0.999067 -0.999067      -1.0   -0.983994 -0.983994   \n",
              "\n",
              "    TGP_MIN   TGP_MAX  TGP_DIFF  TTPA_MEDIAN  TTPA_MEAN  TTPA_MIN  TTPA_MAX  \\\n",
              "0       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "1       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "2 -0.990854 -0.990854      -1.0    -0.825613  -0.825613 -0.825613 -0.825613   \n",
              "3       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "4 -0.983994 -0.983994      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "\n",
              "   TTPA_DIFF  UREA_MEDIAN  UREA_MEAN  UREA_MIN  UREA_MAX  UREA_DIFF  \\\n",
              "0        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "1        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "2       -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "3        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "4       -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "\n",
              "   DIMER_MEDIAN  DIMER_MEAN  DIMER_MIN  DIMER_MAX  DIMER_DIFF  \\\n",
              "0           NaN         NaN        NaN        NaN         NaN   \n",
              "1           NaN         NaN        NaN        NaN         NaN   \n",
              "2     -0.994912   -0.994912  -0.994912  -0.994912        -1.0   \n",
              "3           NaN         NaN        NaN        NaN         NaN   \n",
              "4     -0.996762   -0.996762  -0.996762  -0.996762        -1.0   \n",
              "\n",
              "   BLOODPRESSURE_DIASTOLIC_MEAN  BLOODPRESSURE_SISTOLIC_MEAN  HEART_RATE_MEAN  \\\n",
              "0                      0.086420                    -0.230769        -0.283019   \n",
              "1                      0.333333                    -0.230769        -0.132075   \n",
              "2                           NaN                          NaN              NaN   \n",
              "3                           NaN                          NaN              NaN   \n",
              "4                     -0.243021                    -0.338537        -0.213031   \n",
              "\n",
              "   RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  OXYGEN_SATURATION_MEAN  \\\n",
              "0              -0.593220         -0.285714                0.736842   \n",
              "1              -0.593220          0.535714                0.578947   \n",
              "2                    NaN               NaN                     NaN   \n",
              "3                    NaN         -0.107143                0.736842   \n",
              "4              -0.317859          0.033779                0.665932   \n",
              "\n",
              "   BLOODPRESSURE_DIASTOLIC_MEDIAN  BLOODPRESSURE_SISTOLIC_MEDIAN  \\\n",
              "0                        0.086420                      -0.230769   \n",
              "1                        0.333333                      -0.230769   \n",
              "2                             NaN                            NaN   \n",
              "3                             NaN                            NaN   \n",
              "4                       -0.283951                      -0.376923   \n",
              "\n",
              "   HEART_RATE_MEDIAN  RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  \\\n",
              "0          -0.283019                -0.586207           -0.285714   \n",
              "1          -0.132075                -0.586207            0.535714   \n",
              "2                NaN                      NaN                 NaN   \n",
              "3                NaN                      NaN           -0.107143   \n",
              "4          -0.188679                -0.379310            0.035714   \n",
              "\n",
              "   OXYGEN_SATURATION_MEDIAN  BLOODPRESSURE_DIASTOLIC_MIN  \\\n",
              "0                  0.736842                     0.237113   \n",
              "1                  0.578947                     0.443299   \n",
              "2                       NaN                          NaN   \n",
              "3                  0.736842                          NaN   \n",
              "4                  0.631579                    -0.340206   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  RESPIRATORY_RATE_MIN  \\\n",
              "0                      0.0000       -0.162393             -0.500000   \n",
              "1                      0.0000       -0.025641             -0.500000   \n",
              "2                         NaN             NaN                   NaN   \n",
              "3                         NaN             NaN                   NaN   \n",
              "4                     -0.4875       -0.572650             -0.857143   \n",
              "\n",
              "   TEMPERATURE_MIN  OXYGEN_SATURATION_MIN  BLOODPRESSURE_DIASTOLIC_MAX  \\\n",
              "0         0.208791               0.898990                    -0.247863   \n",
              "1         0.714286               0.838384                    -0.076923   \n",
              "2              NaN                    NaN                          NaN   \n",
              "3         0.318681               0.898990                          NaN   \n",
              "4         0.098901               0.797980                    -0.076923   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  RESPIRATORY_RATE_MAX  \\\n",
              "0                   -0.459459       -0.432836             -0.636364   \n",
              "1                   -0.459459       -0.313433             -0.636364   \n",
              "2                         NaN             NaN                   NaN   \n",
              "3                         NaN             NaN                   NaN   \n",
              "4                    0.286486        0.298507              0.272727   \n",
              "\n",
              "   TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "0        -0.420290               0.736842                      -1.00000   \n",
              "1         0.246377               0.578947                      -1.00000   \n",
              "2              NaN                    NaN                           NaN   \n",
              "3        -0.275362               0.736842                           NaN   \n",
              "4         0.362319               0.947368                      -0.33913   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "0                    -1.000000        -1.000000              -1.000000   \n",
              "1                    -1.000000        -1.000000              -1.000000   \n",
              "2                          NaN              NaN                    NaN   \n",
              "3                          NaN              NaN                    NaN   \n",
              "4                     0.325153         0.114504               0.176471   \n",
              "\n",
              "   TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  BLOODPRESSURE_DIASTOLIC_DIFF_REL  \\\n",
              "0         -1.000000               -1.000000                         -1.000000   \n",
              "1         -1.000000               -1.000000                         -1.000000   \n",
              "2               NaN                     NaN                               NaN   \n",
              "3         -1.000000               -1.000000                               NaN   \n",
              "4         -0.238095               -0.818182                         -0.389967   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_DIFF_REL  HEART_RATE_DIFF_REL  \\\n",
              "0                        -1.000000            -1.000000   \n",
              "1                        -1.000000            -1.000000   \n",
              "2                              NaN                  NaN   \n",
              "3                              NaN                  NaN   \n",
              "4                         0.407558            -0.230462   \n",
              "\n",
              "   RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "0                  -1.000000             -1.000000   \n",
              "1                  -1.000000             -1.000000   \n",
              "2                        NaN                   NaN   \n",
              "3                        NaN             -1.000000   \n",
              "4                   0.096774             -0.242282   \n",
              "\n",
              "   OXYGEN_SATURATION_DIFF_REL  AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "0                   -1.000000                   0                   0   \n",
              "1                   -1.000000                   0                   0   \n",
              "2                         NaN                   0                   0   \n",
              "3                   -1.000000                   0                   0   \n",
              "4                   -0.814433                   0                   0   \n",
              "\n",
              "   AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  AGE_PERCENTIL_50th  \\\n",
              "0                   0                   0                   0   \n",
              "1                   0                   0                   0   \n",
              "2                   0                   0                   0   \n",
              "3                   0                   0                   0   \n",
              "4                   0                   0                   0   \n",
              "\n",
              "   AGE_PERCENTIL_60th  AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "0                   1                   0                   0   \n",
              "1                   1                   0                   0   \n",
              "2                   1                   0                   0   \n",
              "3                   1                   0                   0   \n",
              "4                   1                   0                   0   \n",
              "\n",
              "   AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th  WINDOW_0-2  WINDOW_2-4  \\\n",
              "0                   0                         0           1           0   \n",
              "1                   0                         0           0           1   \n",
              "2                   0                         0           0           0   \n",
              "3                   0                         0           0           0   \n",
              "4                   0                         0           0           0   \n",
              "\n",
              "   WINDOW_4-6  WINDOW_6-12  WINDOW_ABOVE_12  \n",
              "0           0            0                0  \n",
              "1           0            0                0  \n",
              "2           1            0                0  \n",
              "3           0            1                0  \n",
              "4           0            0                1  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 6
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 249
        },
        "id": "NqK7eIDgTn4r",
        "outputId": "4565e34c-7fdd-463b-8abe-6286231709f1"
      },
      "source": [
        "data_expand = pd.concat([without_ICU_column, ICU_column], axis = 1)         #adding the ICU column again at the last position\n",
        "data_expand.head(5)"
      ],
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>PATIENT_VISIT_IDENTIFIER</th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>GENDER</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>WINDOW_0-2</th>\n",
              "      <th>WINDOW_2-4</th>\n",
              "      <th>WINDOW_4-6</th>\n",
              "      <th>WINDOW_6-12</th>\n",
              "      <th>WINDOW_ABOVE_12</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.420290</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.00000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.443299</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.025641</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.714286</td>\n",
              "      <td>0.838384</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.313433</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>0.246377</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>-1.00000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.318681</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.275362</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-0.871658</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-0.863874</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-0.414634</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-0.979069</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-0.926398</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-0.859275</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-0.669393</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-0.979925</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-0.963023</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-0.762843</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-0.643154</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-0.875862</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>0.574468</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-0.999067</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-0.983994</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-0.996762</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.243021</td>\n",
              "      <td>-0.338537</td>\n",
              "      <td>-0.213031</td>\n",
              "      <td>-0.317859</td>\n",
              "      <td>0.033779</td>\n",
              "      <td>0.665932</td>\n",
              "      <td>-0.283951</td>\n",
              "      <td>-0.376923</td>\n",
              "      <td>-0.188679</td>\n",
              "      <td>-0.379310</td>\n",
              "      <td>0.035714</td>\n",
              "      <td>0.631579</td>\n",
              "      <td>-0.340206</td>\n",
              "      <td>-0.4875</td>\n",
              "      <td>-0.572650</td>\n",
              "      <td>-0.857143</td>\n",
              "      <td>0.098901</td>\n",
              "      <td>0.797980</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>0.286486</td>\n",
              "      <td>0.298507</td>\n",
              "      <td>0.272727</td>\n",
              "      <td>0.362319</td>\n",
              "      <td>0.947368</td>\n",
              "      <td>-0.33913</td>\n",
              "      <td>0.325153</td>\n",
              "      <td>0.114504</td>\n",
              "      <td>0.176471</td>\n",
              "      <td>-0.238095</td>\n",
              "      <td>-0.818182</td>\n",
              "      <td>-0.389967</td>\n",
              "      <td>0.407558</td>\n",
              "      <td>-0.230462</td>\n",
              "      <td>0.096774</td>\n",
              "      <td>-0.242282</td>\n",
              "      <td>-0.814433</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>0</td>\n",
              "      <td>1</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "   PATIENT_VISIT_IDENTIFIER  AGE_ABOVE65  GENDER  DISEASE GROUPING 1  \\\n",
              "0                         0            1       0                 0.0   \n",
              "1                         0            1       0                 0.0   \n",
              "2                         0            1       0                 0.0   \n",
              "3                         0            1       0                 0.0   \n",
              "4                         0            1       0                 0.0   \n",
              "\n",
              "   DISEASE GROUPING 2  DISEASE GROUPING 3  DISEASE GROUPING 4  \\\n",
              "0                 0.0                 0.0                 0.0   \n",
              "1                 0.0                 0.0                 0.0   \n",
              "2                 0.0                 0.0                 0.0   \n",
              "3                 0.0                 0.0                 0.0   \n",
              "4                 0.0                 0.0                 0.0   \n",
              "\n",
              "   DISEASE GROUPING 5  DISEASE GROUPING 6  HTN  IMMUNOCOMPROMISED  OTHER  \\\n",
              "0                 1.0                 1.0  0.0                0.0    1.0   \n",
              "1                 1.0                 1.0  0.0                0.0    1.0   \n",
              "2                 1.0                 1.0  0.0                0.0    1.0   \n",
              "3                 1.0                 1.0  0.0                0.0    1.0   \n",
              "4                 1.0                 1.0  0.0                0.0    1.0   \n",
              "\n",
              "   ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  ALBUMIN_MAX  ALBUMIN_DIFF  \\\n",
              "0             NaN           NaN          NaN          NaN           NaN   \n",
              "1             NaN           NaN          NaN          NaN           NaN   \n",
              "2        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "3             NaN           NaN          NaN          NaN           NaN   \n",
              "4        0.000000      0.000000     0.000000     0.000000          -1.0   \n",
              "\n",
              "   BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2           -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4           -0.871658         -0.871658        -0.871658        -0.871658   \n",
              "\n",
              "   BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  BE_VENOUS_MEAN  BE_VENOUS_MIN  \\\n",
              "0               NaN               NaN             NaN            NaN   \n",
              "1               NaN               NaN             NaN            NaN   \n",
              "2              -1.0         -1.000000       -1.000000      -1.000000   \n",
              "3               NaN               NaN             NaN            NaN   \n",
              "4              -1.0         -0.863874       -0.863874      -0.863874   \n",
              "\n",
              "   BE_VENOUS_MAX  BE_VENOUS_DIFF  BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  \\\n",
              "0            NaN             NaN                  NaN                NaN   \n",
              "1            NaN             NaN                  NaN                NaN   \n",
              "2      -1.000000            -1.0            -0.317073          -0.317073   \n",
              "3            NaN             NaN                  NaN                NaN   \n",
              "4      -0.863874            -1.0            -0.317073          -0.317073   \n",
              "\n",
              "   BIC_ARTERIAL_MIN  BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  BIC_VENOUS_MEDIAN  \\\n",
              "0               NaN               NaN                NaN                NaN   \n",
              "1               NaN               NaN                NaN                NaN   \n",
              "2         -0.317073         -0.317073               -1.0          -0.317073   \n",
              "3               NaN               NaN                NaN                NaN   \n",
              "4         -0.317073         -0.317073               -1.0          -0.414634   \n",
              "\n",
              "   BIC_VENOUS_MEAN  BIC_VENOUS_MIN  BIC_VENOUS_MAX  BIC_VENOUS_DIFF  \\\n",
              "0              NaN             NaN             NaN              NaN   \n",
              "1              NaN             NaN             NaN              NaN   \n",
              "2        -0.317073       -0.317073       -0.317073             -1.0   \n",
              "3              NaN             NaN             NaN              NaN   \n",
              "4        -0.414634       -0.414634       -0.414634             -1.0   \n",
              "\n",
              "   BILLIRUBIN_MEDIAN  BILLIRUBIN_MEAN  BILLIRUBIN_MIN  BILLIRUBIN_MAX  \\\n",
              "0                NaN              NaN             NaN             NaN   \n",
              "1                NaN              NaN             NaN             NaN   \n",
              "2          -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "3                NaN              NaN             NaN             NaN   \n",
              "4          -0.979069        -0.979069       -0.979069       -0.979069   \n",
              "\n",
              "   BILLIRUBIN_DIFF  BLAST_MEDIAN  BLAST_MEAN  BLAST_MIN  BLAST_MAX  \\\n",
              "0              NaN           NaN         NaN        NaN        NaN   \n",
              "1              NaN           NaN         NaN        NaN        NaN   \n",
              "2             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "3              NaN           NaN         NaN        NaN        NaN   \n",
              "4             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "\n",
              "   BLAST_DIFF  CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  CALCIUM_MAX  \\\n",
              "0         NaN             NaN           NaN          NaN          NaN   \n",
              "1         NaN             NaN           NaN          NaN          NaN   \n",
              "2        -1.0        0.183673      0.183673     0.183673     0.183673   \n",
              "3         NaN             NaN           NaN          NaN          NaN   \n",
              "4        -1.0        0.326531      0.326531     0.326531     0.326531   \n",
              "\n",
              "   CALCIUM_DIFF  CREATININ_MEDIAN  CREATININ_MEAN  CREATININ_MIN  \\\n",
              "0           NaN               NaN             NaN            NaN   \n",
              "1           NaN               NaN             NaN            NaN   \n",
              "2          -1.0         -0.868365       -0.868365      -0.868365   \n",
              "3           NaN               NaN             NaN            NaN   \n",
              "4          -1.0         -0.926398       -0.926398      -0.926398   \n",
              "\n",
              "   CREATININ_MAX  CREATININ_DIFF  FFA_MEDIAN  FFA_MEAN   FFA_MIN   FFA_MAX  \\\n",
              "0            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "1            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "2      -0.868365            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "3            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "4      -0.926398            -1.0   -0.859275 -0.859275 -0.859275 -0.859275   \n",
              "\n",
              "   FFA_DIFF  GGT_MEDIAN  GGT_MEAN   GGT_MIN   GGT_MAX  GGT_DIFF  \\\n",
              "0       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "2      -1.0   -0.945093 -0.945093 -0.945093 -0.945093      -1.0   \n",
              "3       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "4      -1.0   -0.669393 -0.669393 -0.669393 -0.669393      -1.0   \n",
              "\n",
              "   GLUCOSE_MEDIAN  GLUCOSE_MEAN  GLUCOSE_MIN  GLUCOSE_MAX  GLUCOSE_DIFF  \\\n",
              "0             NaN           NaN          NaN          NaN           NaN   \n",
              "1             NaN           NaN          NaN          NaN           NaN   \n",
              "2       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "3             NaN           NaN          NaN          NaN           NaN   \n",
              "4       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "\n",
              "   HEMATOCRITE_MEDIAN  HEMATOCRITE_MEAN  HEMATOCRITE_MIN  HEMATOCRITE_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2            0.090147          0.090147         0.090147         0.090147   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4           -0.320755         -0.320755        -0.320755        -0.320755   \n",
              "\n",
              "   HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  \\\n",
              "0               NaN                NaN              NaN             NaN   \n",
              "1               NaN                NaN              NaN             NaN   \n",
              "2              -1.0           0.109756         0.109756        0.109756   \n",
              "3               NaN                NaN              NaN             NaN   \n",
              "4              -1.0          -0.353659        -0.353659       -0.353659   \n",
              "\n",
              "   HEMOGLOBIN_MAX  HEMOGLOBIN_DIFF  INR_MEDIAN  INR_MEAN   INR_MIN   INR_MAX  \\\n",
              "0             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "1             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "2        0.109756             -1.0   -0.932246 -0.932246 -0.932246 -0.932246   \n",
              "3             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "4       -0.353659             -1.0   -0.979925 -0.979925 -0.979925 -0.979925   \n",
              "\n",
              "   INR_DIFF  LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  LACTATE_MAX  \\\n",
              "0       NaN             NaN           NaN          NaN          NaN   \n",
              "1       NaN             NaN           NaN          NaN          NaN   \n",
              "2      -1.0        1.000000      1.000000     1.000000     1.000000   \n",
              "3       NaN             NaN           NaN          NaN          NaN   \n",
              "4      -1.0       -0.963023     -0.963023    -0.963023    -0.963023   \n",
              "\n",
              "   LACTATE_DIFF  LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  LEUKOCYTES_MIN  \\\n",
              "0           NaN                NaN              NaN             NaN   \n",
              "1           NaN                NaN              NaN             NaN   \n",
              "2          -1.0          -0.835844        -0.835844       -0.835844   \n",
              "3           NaN                NaN              NaN             NaN   \n",
              "4          -1.0          -0.762843        -0.762843       -0.762843   \n",
              "\n",
              "   LEUKOCYTES_MAX  LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  LINFOCITOS_MEAN  \\\n",
              "0             NaN              NaN                NaN              NaN   \n",
              "1             NaN              NaN                NaN              NaN   \n",
              "2       -0.835844             -1.0          -0.914938        -0.914938   \n",
              "3             NaN              NaN                NaN              NaN   \n",
              "4       -0.762843             -1.0          -0.643154        -0.643154   \n",
              "\n",
              "   LINFOCITOS_MIN  LINFOCITOS_MAX  LINFOCITOS_DIFF  NEUTROPHILES_MEDIAN  \\\n",
              "0             NaN             NaN              NaN                  NaN   \n",
              "1             NaN             NaN              NaN                  NaN   \n",
              "2       -0.914938       -0.914938             -1.0            -0.868747   \n",
              "3             NaN             NaN              NaN                  NaN   \n",
              "4       -0.643154       -0.643154             -1.0            -0.868747   \n",
              "\n",
              "   NEUTROPHILES_MEAN  NEUTROPHILES_MIN  NEUTROPHILES_MAX  NEUTROPHILES_DIFF  \\\n",
              "0                NaN               NaN               NaN                NaN   \n",
              "1                NaN               NaN               NaN                NaN   \n",
              "2          -0.868747         -0.868747         -0.868747               -1.0   \n",
              "3                NaN               NaN               NaN                NaN   \n",
              "4          -0.868747         -0.868747         -0.868747               -1.0   \n",
              "\n",
              "   P02_ARTERIAL_MEDIAN  P02_ARTERIAL_MEAN  P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  \\\n",
              "0                  NaN                NaN               NaN               NaN   \n",
              "1                  NaN                NaN               NaN               NaN   \n",
              "2            -0.170732          -0.170732         -0.170732         -0.170732   \n",
              "3                  NaN                NaN               NaN               NaN   \n",
              "4            -0.365854          -0.365854         -0.365854         -0.365854   \n",
              "\n",
              "   P02_ARTERIAL_DIFF  P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  P02_VENOUS_MIN  \\\n",
              "0                NaN                NaN              NaN             NaN   \n",
              "1                NaN                NaN              NaN             NaN   \n",
              "2               -1.0          -0.704142        -0.704142       -0.704142   \n",
              "3                NaN                NaN              NaN             NaN   \n",
              "4               -1.0          -0.230769        -0.230769       -0.230769   \n",
              "\n",
              "   P02_VENOUS_MAX  P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  PC02_ARTERIAL_MEAN  \\\n",
              "0             NaN              NaN                   NaN                 NaN   \n",
              "1             NaN              NaN                   NaN                 NaN   \n",
              "2       -0.704142             -1.0             -0.779310           -0.779310   \n",
              "3             NaN              NaN                   NaN                 NaN   \n",
              "4       -0.230769             -1.0             -0.875862           -0.875862   \n",
              "\n",
              "   PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  PC02_ARTERIAL_DIFF  \\\n",
              "0                NaN                NaN                 NaN   \n",
              "1                NaN                NaN                 NaN   \n",
              "2          -0.779310          -0.779310                -1.0   \n",
              "3                NaN                NaN                 NaN   \n",
              "4          -0.875862          -0.875862                -1.0   \n",
              "\n",
              "   PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  PC02_VENOUS_MIN  PC02_VENOUS_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2           -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4           -0.815951         -0.815951        -0.815951        -0.815951   \n",
              "\n",
              "   PC02_VENOUS_DIFF  PCR_MEDIAN  PCR_MEAN   PCR_MIN   PCR_MAX  PCR_DIFF  \\\n",
              "0               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "2              -1.0   -0.875236 -0.875236 -0.875236 -0.875236      -1.0   \n",
              "3               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "4              -1.0   -1.000000 -1.000000 -1.000000 -1.000000      -1.0   \n",
              "\n",
              "   PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  PH_ARTERIAL_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2            0.234043          0.234043         0.234043         0.234043   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4            0.574468          0.574468         0.574468         0.574468   \n",
              "\n",
              "   PH_ARTERIAL_DIFF  PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  PH_VENOUS_MIN  \\\n",
              "0               NaN               NaN             NaN            NaN   \n",
              "1               NaN               NaN             NaN            NaN   \n",
              "2              -1.0          0.363636        0.363636       0.363636   \n",
              "3               NaN               NaN             NaN            NaN   \n",
              "4              -1.0          0.393939        0.393939       0.393939   \n",
              "\n",
              "   PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  PLATELETS_MEAN  \\\n",
              "0            NaN             NaN               NaN             NaN   \n",
              "1            NaN             NaN               NaN             NaN   \n",
              "2       0.363636            -1.0         -0.540721       -0.540721   \n",
              "3            NaN             NaN               NaN             NaN   \n",
              "4       0.393939            -1.0         -0.471295       -0.471295   \n",
              "\n",
              "   PLATELETS_MIN  PLATELETS_MAX  PLATELETS_DIFF  POTASSIUM_MEDIAN  \\\n",
              "0            NaN            NaN             NaN               NaN   \n",
              "1            NaN            NaN             NaN               NaN   \n",
              "2      -0.540721      -0.540721            -1.0         -0.518519   \n",
              "3            NaN            NaN             NaN               NaN   \n",
              "4      -0.471295      -0.471295            -1.0         -0.666667   \n",
              "\n",
              "   POTASSIUM_MEAN  POTASSIUM_MIN  POTASSIUM_MAX  POTASSIUM_DIFF  \\\n",
              "0             NaN            NaN            NaN             NaN   \n",
              "1             NaN            NaN            NaN             NaN   \n",
              "2       -0.518519      -0.518519      -0.518519            -1.0   \n",
              "3             NaN            NaN            NaN             NaN   \n",
              "4       -0.666667      -0.666667      -0.666667            -1.0   \n",
              "\n",
              "   SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  SAT02_ARTERIAL_MIN  \\\n",
              "0                    NaN                  NaN                 NaN   \n",
              "1                    NaN                  NaN                 NaN   \n",
              "2               0.939394             0.939394            0.939394   \n",
              "3                    NaN                  NaN                 NaN   \n",
              "4               0.848485             0.848485            0.848485   \n",
              "\n",
              "   SAT02_ARTERIAL_MAX  SAT02_ARTERIAL_DIFF  SAT02_VENOUS_MEDIAN  \\\n",
              "0                 NaN                  NaN                  NaN   \n",
              "1                 NaN                  NaN                  NaN   \n",
              "2            0.939394                 -1.0             0.345679   \n",
              "3                 NaN                  NaN                  NaN   \n",
              "4            0.848485                 -1.0             0.925926   \n",
              "\n",
              "   SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  \\\n",
              "0                NaN               NaN               NaN                NaN   \n",
              "1                NaN               NaN               NaN                NaN   \n",
              "2           0.345679          0.345679          0.345679               -1.0   \n",
              "3                NaN               NaN               NaN                NaN   \n",
              "4           0.925926          0.925926          0.925926               -1.0   \n",
              "\n",
              "   SODIUM_MEDIAN  SODIUM_MEAN  SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  \\\n",
              "0            NaN          NaN         NaN         NaN          NaN   \n",
              "1            NaN          NaN         NaN         NaN          NaN   \n",
              "2      -0.028571    -0.028571   -0.028571   -0.028571         -1.0   \n",
              "3            NaN          NaN         NaN         NaN          NaN   \n",
              "4       0.142857     0.142857    0.142857    0.142857         -1.0   \n",
              "\n",
              "   TGO_MEDIAN  TGO_MEAN   TGO_MIN   TGO_MAX  TGO_DIFF  TGP_MEDIAN  TGP_MEAN  \\\n",
              "0         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "1         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "2   -0.997201 -0.997201 -0.997201 -0.997201      -1.0   -0.990854 -0.990854   \n",
              "3         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "4   -0.999067 -0.999067 -0.999067 -0.999067      -1.0   -0.983994 -0.983994   \n",
              "\n",
              "    TGP_MIN   TGP_MAX  TGP_DIFF  TTPA_MEDIAN  TTPA_MEAN  TTPA_MIN  TTPA_MAX  \\\n",
              "0       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "1       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "2 -0.990854 -0.990854      -1.0    -0.825613  -0.825613 -0.825613 -0.825613   \n",
              "3       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "4 -0.983994 -0.983994      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "\n",
              "   TTPA_DIFF  UREA_MEDIAN  UREA_MEAN  UREA_MIN  UREA_MAX  UREA_DIFF  \\\n",
              "0        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "1        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "2       -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "3        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "4       -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "\n",
              "   DIMER_MEDIAN  DIMER_MEAN  DIMER_MIN  DIMER_MAX  DIMER_DIFF  \\\n",
              "0           NaN         NaN        NaN        NaN         NaN   \n",
              "1           NaN         NaN        NaN        NaN         NaN   \n",
              "2     -0.994912   -0.994912  -0.994912  -0.994912        -1.0   \n",
              "3           NaN         NaN        NaN        NaN         NaN   \n",
              "4     -0.996762   -0.996762  -0.996762  -0.996762        -1.0   \n",
              "\n",
              "   BLOODPRESSURE_DIASTOLIC_MEAN  BLOODPRESSURE_SISTOLIC_MEAN  HEART_RATE_MEAN  \\\n",
              "0                      0.086420                    -0.230769        -0.283019   \n",
              "1                      0.333333                    -0.230769        -0.132075   \n",
              "2                           NaN                          NaN              NaN   \n",
              "3                           NaN                          NaN              NaN   \n",
              "4                     -0.243021                    -0.338537        -0.213031   \n",
              "\n",
              "   RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  OXYGEN_SATURATION_MEAN  \\\n",
              "0              -0.593220         -0.285714                0.736842   \n",
              "1              -0.593220          0.535714                0.578947   \n",
              "2                    NaN               NaN                     NaN   \n",
              "3                    NaN         -0.107143                0.736842   \n",
              "4              -0.317859          0.033779                0.665932   \n",
              "\n",
              "   BLOODPRESSURE_DIASTOLIC_MEDIAN  BLOODPRESSURE_SISTOLIC_MEDIAN  \\\n",
              "0                        0.086420                      -0.230769   \n",
              "1                        0.333333                      -0.230769   \n",
              "2                             NaN                            NaN   \n",
              "3                             NaN                            NaN   \n",
              "4                       -0.283951                      -0.376923   \n",
              "\n",
              "   HEART_RATE_MEDIAN  RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  \\\n",
              "0          -0.283019                -0.586207           -0.285714   \n",
              "1          -0.132075                -0.586207            0.535714   \n",
              "2                NaN                      NaN                 NaN   \n",
              "3                NaN                      NaN           -0.107143   \n",
              "4          -0.188679                -0.379310            0.035714   \n",
              "\n",
              "   OXYGEN_SATURATION_MEDIAN  BLOODPRESSURE_DIASTOLIC_MIN  \\\n",
              "0                  0.736842                     0.237113   \n",
              "1                  0.578947                     0.443299   \n",
              "2                       NaN                          NaN   \n",
              "3                  0.736842                          NaN   \n",
              "4                  0.631579                    -0.340206   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  RESPIRATORY_RATE_MIN  \\\n",
              "0                      0.0000       -0.162393             -0.500000   \n",
              "1                      0.0000       -0.025641             -0.500000   \n",
              "2                         NaN             NaN                   NaN   \n",
              "3                         NaN             NaN                   NaN   \n",
              "4                     -0.4875       -0.572650             -0.857143   \n",
              "\n",
              "   TEMPERATURE_MIN  OXYGEN_SATURATION_MIN  BLOODPRESSURE_DIASTOLIC_MAX  \\\n",
              "0         0.208791               0.898990                    -0.247863   \n",
              "1         0.714286               0.838384                    -0.076923   \n",
              "2              NaN                    NaN                          NaN   \n",
              "3         0.318681               0.898990                          NaN   \n",
              "4         0.098901               0.797980                    -0.076923   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  RESPIRATORY_RATE_MAX  \\\n",
              "0                   -0.459459       -0.432836             -0.636364   \n",
              "1                   -0.459459       -0.313433             -0.636364   \n",
              "2                         NaN             NaN                   NaN   \n",
              "3                         NaN             NaN                   NaN   \n",
              "4                    0.286486        0.298507              0.272727   \n",
              "\n",
              "   TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "0        -0.420290               0.736842                      -1.00000   \n",
              "1         0.246377               0.578947                      -1.00000   \n",
              "2              NaN                    NaN                           NaN   \n",
              "3        -0.275362               0.736842                           NaN   \n",
              "4         0.362319               0.947368                      -0.33913   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "0                    -1.000000        -1.000000              -1.000000   \n",
              "1                    -1.000000        -1.000000              -1.000000   \n",
              "2                          NaN              NaN                    NaN   \n",
              "3                          NaN              NaN                    NaN   \n",
              "4                     0.325153         0.114504               0.176471   \n",
              "\n",
              "   TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  BLOODPRESSURE_DIASTOLIC_DIFF_REL  \\\n",
              "0         -1.000000               -1.000000                         -1.000000   \n",
              "1         -1.000000               -1.000000                         -1.000000   \n",
              "2               NaN                     NaN                               NaN   \n",
              "3         -1.000000               -1.000000                               NaN   \n",
              "4         -0.238095               -0.818182                         -0.389967   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_DIFF_REL  HEART_RATE_DIFF_REL  \\\n",
              "0                        -1.000000            -1.000000   \n",
              "1                        -1.000000            -1.000000   \n",
              "2                              NaN                  NaN   \n",
              "3                              NaN                  NaN   \n",
              "4                         0.407558            -0.230462   \n",
              "\n",
              "   RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "0                  -1.000000             -1.000000   \n",
              "1                  -1.000000             -1.000000   \n",
              "2                        NaN                   NaN   \n",
              "3                        NaN             -1.000000   \n",
              "4                   0.096774             -0.242282   \n",
              "\n",
              "   OXYGEN_SATURATION_DIFF_REL  AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "0                   -1.000000                   0                   0   \n",
              "1                   -1.000000                   0                   0   \n",
              "2                         NaN                   0                   0   \n",
              "3                   -1.000000                   0                   0   \n",
              "4                   -0.814433                   0                   0   \n",
              "\n",
              "   AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  AGE_PERCENTIL_50th  \\\n",
              "0                   0                   0                   0   \n",
              "1                   0                   0                   0   \n",
              "2                   0                   0                   0   \n",
              "3                   0                   0                   0   \n",
              "4                   0                   0                   0   \n",
              "\n",
              "   AGE_PERCENTIL_60th  AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "0                   1                   0                   0   \n",
              "1                   1                   0                   0   \n",
              "2                   1                   0                   0   \n",
              "3                   1                   0                   0   \n",
              "4                   1                   0                   0   \n",
              "\n",
              "   AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th  WINDOW_0-2  WINDOW_2-4  \\\n",
              "0                   0                         0           1           0   \n",
              "1                   0                         0           0           1   \n",
              "2                   0                         0           0           0   \n",
              "3                   0                         0           0           0   \n",
              "4                   0                         0           0           0   \n",
              "\n",
              "   WINDOW_4-6  WINDOW_6-12  WINDOW_ABOVE_12  ICU  \n",
              "0           0            0                0    0  \n",
              "1           0            0                0    0  \n",
              "2           1            0                0    0  \n",
              "3           0            1                0    0  \n",
              "4           0            0                1    1  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 7
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 531
        },
        "id": "h6cspkGYpYr1",
        "outputId": "2e97ae74-f193-4785-d197-93918f7721e7"
      },
      "source": [
        "column_names = data_expand.columns\n",
        "arr = data_expand.to_numpy()\n",
        "print(arr)\n",
        "i=0\n",
        "ICU_admitted_rows = []\n",
        "while(i<len(arr)):            #loop to record the rows in which patient is admitted to the ICU and adding 1 label to the previous rows.\n",
        "  for j in range(5):\n",
        "    if(arr[i+j][-1]==1):\n",
        "      for k in range(j):\n",
        "        arr[i+k][-1]=1\n",
        "      for toremove in range(i+j,i+5):\n",
        "        ICU_admitted_rows.append(toremove)\n",
        "      break\n",
        "  i+=5\n",
        "print(ICU_admitted_rows)\n",
        "deletedcount = 0\n",
        "for rowToRemove in ICU_admitted_rows:             #removing the rows in which patient was admitted to the ICU\n",
        "  arr = np.delete(arr, rowToRemove-deletedcount, axis=0)\n",
        "  deletedcount+=1\n",
        "df = pd.DataFrame(arr, columns = column_names)\n",
        "df.head(10)"
      ],
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "[[  0.   1.   0. ...   0.   0.   0.]\n",
            " [  0.   1.   0. ...   0.   0.   0.]\n",
            " [  0.   1.   0. ...   0.   0.   0.]\n",
            " ...\n",
            " [384.   0.   1. ...   0.   0.   0.]\n",
            " [384.   0.   1. ...   1.   0.   0.]\n",
            " [384.   0.   1. ...   0.   1.   0.]]\n",
            "[4, 5, 6, 7, 8, 9, 14, 58, 59, 69, 72, 73, 74, 79, 85, 86, 87, 88, 89, 92, 93, 94, 99, 122, 123, 124, 135, 136, 137, 138, 139, 141, 142, 143, 144, 147, 148, 149, 157, 158, 159, 183, 184, 187, 188, 189, 192, 193, 194, 197, 198, 199, 202, 203, 204, 205, 206, 207, 208, 209, 222, 223, 224, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 261, 262, 263, 264, 268, 269, 270, 271, 272, 273, 274, 278, 279, 310, 311, 312, 313, 314, 317, 318, 319, 321, 322, 323, 324, 338, 339, 343, 344, 349, 354, 367, 368, 369, 387, 388, 389, 394, 397, 398, 399, 408, 409, 411, 412, 413, 414, 424, 425, 426, 427, 428, 429, 432, 433, 434, 436, 437, 438, 439, 443, 444, 448, 449, 450, 451, 452, 453, 454, 474, 484, 498, 499, 501, 502, 503, 504, 512, 513, 514, 516, 517, 518, 519, 520, 521, 522, 523, 524, 527, 528, 529, 530, 531, 532, 533, 534, 539, 545, 546, 547, 548, 549, 559, 569, 582, 583, 584, 585, 586, 587, 588, 589, 596, 597, 598, 599, 603, 604, 624, 627, 628, 629, 663, 664, 668, 669, 684, 689, 694, 696, 697, 698, 699, 704, 707, 708, 709, 711, 712, 713, 714, 720, 721, 722, 723, 724, 728, 729, 742, 743, 744, 748, 749, 758, 759, 764, 778, 779, 782, 783, 784, 788, 789, 798, 799, 807, 808, 809, 822, 823, 824, 829, 834, 844, 873, 874, 879, 880, 881, 882, 883, 884, 894, 897, 898, 899, 914, 919, 944, 956, 957, 958, 959, 962, 963, 964, 969, 974, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1017, 1018, 1019, 1030, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1049, 1061, 1062, 1063, 1064, 1069, 1074, 1076, 1077, 1078, 1079, 1088, 1089, 1094, 1096, 1097, 1098, 1099, 1104, 1111, 1112, 1113, 1114, 1130, 1131, 1132, 1133, 1134, 1136, 1137, 1138, 1139, 1144, 1154, 1159, 1164, 1165, 1166, 1167, 1168, 1169, 1171, 1172, 1173, 1174, 1176, 1177, 1178, 1179, 1195, 1196, 1197, 1198, 1199, 1204, 1214, 1216, 1217, 1218, 1219, 1229, 1244, 1254, 1262, 1263, 1264, 1276, 1277, 1278, 1279, 1283, 1284, 1299, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1318, 1319, 1327, 1328, 1329, 1334, 1337, 1338, 1339, 1350, 1351, 1352, 1353, 1354, 1379, 1394, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1439, 1441, 1442, 1443, 1444, 1447, 1448, 1449, 1456, 1457, 1458, 1459, 1464, 1489, 1512, 1513, 1514, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1538, 1539, 1544, 1549, 1552, 1553, 1554, 1575, 1576, 1577, 1578, 1579, 1584, 1593, 1594, 1602, 1603, 1604, 1614, 1618, 1619, 1626, 1627, 1628, 1629, 1639, 1645, 1646, 1647, 1648, 1649, 1689, 1697, 1698, 1699, 1713, 1714, 1719, 1738, 1739, 1764, 1786, 1787, 1788, 1789, 1794, 1795, 1796, 1797, 1798, 1799, 1804, 1809, 1810, 1811, 1812, 1813, 1814, 1819, 1821, 1822, 1823, 1824, 1830, 1831, 1832, 1833, 1834, 1837, 1838, 1839, 1861, 1862, 1863, 1864, 1866, 1867, 1868, 1869, 1882, 1883, 1884, 1895, 1896, 1897, 1898, 1899, 1904, 1914]\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>PATIENT_VISIT_IDENTIFIER</th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>GENDER</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>WINDOW_0-2</th>\n",
              "      <th>WINDOW_2-4</th>\n",
              "      <th>WINDOW_4-6</th>\n",
              "      <th>WINDOW_6-12</th>\n",
              "      <th>WINDOW_ABOVE_12</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.420290</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.535714</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>0.443299</td>\n",
              "      <td>0.0000</td>\n",
              "      <td>-0.025641</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.714286</td>\n",
              "      <td>0.838384</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.313433</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>0.246377</td>\n",
              "      <td>0.578947</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.318681</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.275362</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>2.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-0.93895</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>2.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6</th>\n",
              "      <td>2.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.489712</td>\n",
              "      <td>-0.685470</td>\n",
              "      <td>-0.048218</td>\n",
              "      <td>-0.645951</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.935673</td>\n",
              "      <td>-0.506173</td>\n",
              "      <td>-0.815385</td>\n",
              "      <td>-0.056604</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.947368</td>\n",
              "      <td>-0.525773</td>\n",
              "      <td>-0.5125</td>\n",
              "      <td>-0.111111</td>\n",
              "      <td>-0.714286</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.959596</td>\n",
              "      <td>-0.435897</td>\n",
              "      <td>-0.491892</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.575758</td>\n",
              "      <td>NaN</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.547826</td>\n",
              "      <td>-0.533742</td>\n",
              "      <td>-0.603053</td>\n",
              "      <td>-0.764706</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.959596</td>\n",
              "      <td>-0.515528</td>\n",
              "      <td>-0.351328</td>\n",
              "      <td>-0.747001</td>\n",
              "      <td>-0.756272</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.961262</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7</th>\n",
              "      <td>2.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.612654</td>\n",
              "      <td>-0.828846</td>\n",
              "      <td>0.037736</td>\n",
              "      <td>-0.720339</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.799342</td>\n",
              "      <td>-0.604938</td>\n",
              "      <td>-0.846154</td>\n",
              "      <td>0.028302</td>\n",
              "      <td>-0.724138</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.815789</td>\n",
              "      <td>-0.505155</td>\n",
              "      <td>-0.6625</td>\n",
              "      <td>-0.179487</td>\n",
              "      <td>-0.642857</td>\n",
              "      <td>0.604396</td>\n",
              "      <td>0.797980</td>\n",
              "      <td>-0.572650</td>\n",
              "      <td>-0.762162</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.696970</td>\n",
              "      <td>0.101449</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.704348</td>\n",
              "      <td>-0.693252</td>\n",
              "      <td>-0.541985</td>\n",
              "      <td>-0.941176</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.797980</td>\n",
              "      <td>-0.658863</td>\n",
              "      <td>-0.563758</td>\n",
              "      <td>-0.721834</td>\n",
              "      <td>-0.926882</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.801293</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>3.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>9</th>\n",
              "      <td>3.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "   PATIENT_VISIT_IDENTIFIER  AGE_ABOVE65  GENDER  DISEASE GROUPING 1  \\\n",
              "0                       0.0          1.0     0.0                 0.0   \n",
              "1                       0.0          1.0     0.0                 0.0   \n",
              "2                       0.0          1.0     0.0                 0.0   \n",
              "3                       0.0          1.0     0.0                 0.0   \n",
              "4                       2.0          0.0     0.0                 0.0   \n",
              "5                       2.0          0.0     0.0                 0.0   \n",
              "6                       2.0          0.0     0.0                 0.0   \n",
              "7                       2.0          0.0     0.0                 0.0   \n",
              "8                       3.0          0.0     1.0                 0.0   \n",
              "9                       3.0          0.0     1.0                 0.0   \n",
              "\n",
              "   DISEASE GROUPING 2  DISEASE GROUPING 3  DISEASE GROUPING 4  \\\n",
              "0                 0.0                 0.0                 0.0   \n",
              "1                 0.0                 0.0                 0.0   \n",
              "2                 0.0                 0.0                 0.0   \n",
              "3                 0.0                 0.0                 0.0   \n",
              "4                 0.0                 0.0                 0.0   \n",
              "5                 0.0                 0.0                 0.0   \n",
              "6                 0.0                 0.0                 0.0   \n",
              "7                 0.0                 0.0                 0.0   \n",
              "8                 0.0                 0.0                 0.0   \n",
              "9                 0.0                 0.0                 0.0   \n",
              "\n",
              "   DISEASE GROUPING 5  DISEASE GROUPING 6  HTN  IMMUNOCOMPROMISED  OTHER  \\\n",
              "0                 1.0                 1.0  0.0                0.0    1.0   \n",
              "1                 1.0                 1.0  0.0                0.0    1.0   \n",
              "2                 1.0                 1.0  0.0                0.0    1.0   \n",
              "3                 1.0                 1.0  0.0                0.0    1.0   \n",
              "4                 0.0                 0.0  0.0                0.0    1.0   \n",
              "5                 0.0                 0.0  0.0                0.0    1.0   \n",
              "6                 0.0                 0.0  0.0                0.0    1.0   \n",
              "7                 0.0                 0.0  0.0                0.0    1.0   \n",
              "8                 0.0                 0.0  0.0                1.0    1.0   \n",
              "9                 0.0                 0.0  0.0                1.0    1.0   \n",
              "\n",
              "   ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  ALBUMIN_MAX  ALBUMIN_DIFF  \\\n",
              "0             NaN           NaN          NaN          NaN           NaN   \n",
              "1             NaN           NaN          NaN          NaN           NaN   \n",
              "2        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "3             NaN           NaN          NaN          NaN           NaN   \n",
              "4        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "5             NaN           NaN          NaN          NaN           NaN   \n",
              "6             NaN           NaN          NaN          NaN           NaN   \n",
              "7             NaN           NaN          NaN          NaN           NaN   \n",
              "8             NaN           NaN          NaN          NaN           NaN   \n",
              "9             NaN           NaN          NaN          NaN           NaN   \n",
              "\n",
              "   BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2                -1.0              -1.0             -1.0             -1.0   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4                -1.0              -1.0             -1.0             -1.0   \n",
              "5                 NaN               NaN              NaN              NaN   \n",
              "6                 NaN               NaN              NaN              NaN   \n",
              "7                 NaN               NaN              NaN              NaN   \n",
              "8                 NaN               NaN              NaN              NaN   \n",
              "9                 NaN               NaN              NaN              NaN   \n",
              "\n",
              "   BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  BE_VENOUS_MEAN  BE_VENOUS_MIN  \\\n",
              "0               NaN               NaN             NaN            NaN   \n",
              "1               NaN               NaN             NaN            NaN   \n",
              "2              -1.0              -1.0            -1.0           -1.0   \n",
              "3               NaN               NaN             NaN            NaN   \n",
              "4              -1.0              -1.0            -1.0           -1.0   \n",
              "5               NaN               NaN             NaN            NaN   \n",
              "6               NaN               NaN             NaN            NaN   \n",
              "7               NaN               NaN             NaN            NaN   \n",
              "8               NaN               NaN             NaN            NaN   \n",
              "9               NaN               NaN             NaN            NaN   \n",
              "\n",
              "   BE_VENOUS_MAX  BE_VENOUS_DIFF  BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  \\\n",
              "0            NaN             NaN                  NaN                NaN   \n",
              "1            NaN             NaN                  NaN                NaN   \n",
              "2           -1.0            -1.0            -0.317073          -0.317073   \n",
              "3            NaN             NaN                  NaN                NaN   \n",
              "4           -1.0            -1.0            -0.317073          -0.317073   \n",
              "5            NaN             NaN                  NaN                NaN   \n",
              "6            NaN             NaN                  NaN                NaN   \n",
              "7            NaN             NaN                  NaN                NaN   \n",
              "8            NaN             NaN                  NaN                NaN   \n",
              "9            NaN             NaN                  NaN                NaN   \n",
              "\n",
              "   BIC_ARTERIAL_MIN  BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  BIC_VENOUS_MEDIAN  \\\n",
              "0               NaN               NaN                NaN                NaN   \n",
              "1               NaN               NaN                NaN                NaN   \n",
              "2         -0.317073         -0.317073               -1.0          -0.317073   \n",
              "3               NaN               NaN                NaN                NaN   \n",
              "4         -0.317073         -0.317073               -1.0          -0.317073   \n",
              "5               NaN               NaN                NaN                NaN   \n",
              "6               NaN               NaN                NaN                NaN   \n",
              "7               NaN               NaN                NaN                NaN   \n",
              "8               NaN               NaN                NaN                NaN   \n",
              "9               NaN               NaN                NaN                NaN   \n",
              "\n",
              "   BIC_VENOUS_MEAN  BIC_VENOUS_MIN  BIC_VENOUS_MAX  BIC_VENOUS_DIFF  \\\n",
              "0              NaN             NaN             NaN              NaN   \n",
              "1              NaN             NaN             NaN              NaN   \n",
              "2        -0.317073       -0.317073       -0.317073             -1.0   \n",
              "3              NaN             NaN             NaN              NaN   \n",
              "4        -0.317073       -0.317073       -0.317073             -1.0   \n",
              "5              NaN             NaN             NaN              NaN   \n",
              "6              NaN             NaN             NaN              NaN   \n",
              "7              NaN             NaN             NaN              NaN   \n",
              "8              NaN             NaN             NaN              NaN   \n",
              "9              NaN             NaN             NaN              NaN   \n",
              "\n",
              "   BILLIRUBIN_MEDIAN  BILLIRUBIN_MEAN  BILLIRUBIN_MIN  BILLIRUBIN_MAX  \\\n",
              "0                NaN              NaN             NaN             NaN   \n",
              "1                NaN              NaN             NaN             NaN   \n",
              "2           -0.93895         -0.93895        -0.93895        -0.93895   \n",
              "3                NaN              NaN             NaN             NaN   \n",
              "4           -0.93895         -0.93895        -0.93895        -0.93895   \n",
              "5                NaN              NaN             NaN             NaN   \n",
              "6                NaN              NaN             NaN             NaN   \n",
              "7                NaN              NaN             NaN             NaN   \n",
              "8                NaN              NaN             NaN             NaN   \n",
              "9                NaN              NaN             NaN             NaN   \n",
              "\n",
              "   BILLIRUBIN_DIFF  BLAST_MEDIAN  BLAST_MEAN  BLAST_MIN  BLAST_MAX  \\\n",
              "0              NaN           NaN         NaN        NaN        NaN   \n",
              "1              NaN           NaN         NaN        NaN        NaN   \n",
              "2             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "3              NaN           NaN         NaN        NaN        NaN   \n",
              "4             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "5              NaN           NaN         NaN        NaN        NaN   \n",
              "6              NaN           NaN         NaN        NaN        NaN   \n",
              "7              NaN           NaN         NaN        NaN        NaN   \n",
              "8              NaN           NaN         NaN        NaN        NaN   \n",
              "9              NaN           NaN         NaN        NaN        NaN   \n",
              "\n",
              "   BLAST_DIFF  CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  CALCIUM_MAX  \\\n",
              "0         NaN             NaN           NaN          NaN          NaN   \n",
              "1         NaN             NaN           NaN          NaN          NaN   \n",
              "2        -1.0        0.183673      0.183673     0.183673     0.183673   \n",
              "3         NaN             NaN           NaN          NaN          NaN   \n",
              "4        -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "5         NaN             NaN           NaN          NaN          NaN   \n",
              "6         NaN             NaN           NaN          NaN          NaN   \n",
              "7         NaN             NaN           NaN          NaN          NaN   \n",
              "8         NaN             NaN           NaN          NaN          NaN   \n",
              "9         NaN             NaN           NaN          NaN          NaN   \n",
              "\n",
              "   CALCIUM_DIFF  CREATININ_MEDIAN  CREATININ_MEAN  CREATININ_MIN  \\\n",
              "0           NaN               NaN             NaN            NaN   \n",
              "1           NaN               NaN             NaN            NaN   \n",
              "2          -1.0         -0.868365       -0.868365      -0.868365   \n",
              "3           NaN               NaN             NaN            NaN   \n",
              "4          -1.0         -0.912243       -0.912243      -0.912243   \n",
              "5           NaN               NaN             NaN            NaN   \n",
              "6           NaN               NaN             NaN            NaN   \n",
              "7           NaN               NaN             NaN            NaN   \n",
              "8           NaN               NaN             NaN            NaN   \n",
              "9           NaN               NaN             NaN            NaN   \n",
              "\n",
              "   CREATININ_MAX  CREATININ_DIFF  FFA_MEDIAN  FFA_MEAN   FFA_MIN   FFA_MAX  \\\n",
              "0            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "1            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "2      -0.868365            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "3            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "4      -0.912243            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "5            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "6            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "7            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "8            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "9            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "\n",
              "   FFA_DIFF  GGT_MEDIAN  GGT_MEAN   GGT_MIN   GGT_MAX  GGT_DIFF  \\\n",
              "0       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "2      -1.0   -0.945093 -0.945093 -0.945093 -0.945093      -1.0   \n",
              "3       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "4      -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "5       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "6       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "7       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "8       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "9       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "\n",
              "   GLUCOSE_MEDIAN  GLUCOSE_MEAN  GLUCOSE_MIN  GLUCOSE_MAX  GLUCOSE_DIFF  \\\n",
              "0             NaN           NaN          NaN          NaN           NaN   \n",
              "1             NaN           NaN          NaN          NaN           NaN   \n",
              "2       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "3             NaN           NaN          NaN          NaN           NaN   \n",
              "4       -0.780261     -0.780261    -0.780261    -0.780261          -1.0   \n",
              "5             NaN           NaN          NaN          NaN           NaN   \n",
              "6             NaN           NaN          NaN          NaN           NaN   \n",
              "7             NaN           NaN          NaN          NaN           NaN   \n",
              "8             NaN           NaN          NaN          NaN           NaN   \n",
              "9             NaN           NaN          NaN          NaN           NaN   \n",
              "\n",
              "   HEMATOCRITE_MEDIAN  HEMATOCRITE_MEAN  HEMATOCRITE_MIN  HEMATOCRITE_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2            0.090147          0.090147         0.090147         0.090147   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4            0.144654          0.144654         0.144654         0.144654   \n",
              "5                 NaN               NaN              NaN              NaN   \n",
              "6                 NaN               NaN              NaN              NaN   \n",
              "7                 NaN               NaN              NaN              NaN   \n",
              "8                 NaN               NaN              NaN              NaN   \n",
              "9                 NaN               NaN              NaN              NaN   \n",
              "\n",
              "   HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  \\\n",
              "0               NaN                NaN              NaN             NaN   \n",
              "1               NaN                NaN              NaN             NaN   \n",
              "2              -1.0           0.109756         0.109756        0.109756   \n",
              "3               NaN                NaN              NaN             NaN   \n",
              "4              -1.0           0.158537         0.158537        0.158537   \n",
              "5               NaN                NaN              NaN             NaN   \n",
              "6               NaN                NaN              NaN             NaN   \n",
              "7               NaN                NaN              NaN             NaN   \n",
              "8               NaN                NaN              NaN             NaN   \n",
              "9               NaN                NaN              NaN             NaN   \n",
              "\n",
              "   HEMOGLOBIN_MAX  HEMOGLOBIN_DIFF  INR_MEDIAN  INR_MEAN   INR_MIN   INR_MAX  \\\n",
              "0             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "1             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "2        0.109756             -1.0   -0.932246 -0.932246 -0.932246 -0.932246   \n",
              "3             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "4        0.158537             -1.0   -0.959849 -0.959849 -0.959849 -0.959849   \n",
              "5             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "6             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "7             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "8             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "9             NaN              NaN         NaN       NaN       NaN       NaN   \n",
              "\n",
              "   INR_DIFF  LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  LACTATE_MAX  \\\n",
              "0       NaN             NaN           NaN          NaN          NaN   \n",
              "1       NaN             NaN           NaN          NaN          NaN   \n",
              "2      -1.0             1.0           1.0          1.0          1.0   \n",
              "3       NaN             NaN           NaN          NaN          NaN   \n",
              "4      -1.0             1.0           1.0          1.0          1.0   \n",
              "5       NaN             NaN           NaN          NaN          NaN   \n",
              "6       NaN             NaN           NaN          NaN          NaN   \n",
              "7       NaN             NaN           NaN          NaN          NaN   \n",
              "8       NaN             NaN           NaN          NaN          NaN   \n",
              "9       NaN             NaN           NaN          NaN          NaN   \n",
              "\n",
              "   LACTATE_DIFF  LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  LEUKOCYTES_MIN  \\\n",
              "0           NaN                NaN              NaN             NaN   \n",
              "1           NaN                NaN              NaN             NaN   \n",
              "2          -1.0          -0.835844        -0.835844       -0.835844   \n",
              "3           NaN                NaN              NaN             NaN   \n",
              "4          -1.0          -0.382773        -0.382773       -0.382773   \n",
              "5           NaN                NaN              NaN             NaN   \n",
              "6           NaN                NaN              NaN             NaN   \n",
              "7           NaN                NaN              NaN             NaN   \n",
              "8           NaN                NaN              NaN             NaN   \n",
              "9           NaN                NaN              NaN             NaN   \n",
              "\n",
              "   LEUKOCYTES_MAX  LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  LINFOCITOS_MEAN  \\\n",
              "0             NaN              NaN                NaN              NaN   \n",
              "1             NaN              NaN                NaN              NaN   \n",
              "2       -0.835844             -1.0          -0.914938        -0.914938   \n",
              "3             NaN              NaN                NaN              NaN   \n",
              "4       -0.382773             -1.0          -0.908714        -0.908714   \n",
              "5             NaN              NaN                NaN              NaN   \n",
              "6             NaN              NaN                NaN              NaN   \n",
              "7             NaN              NaN                NaN              NaN   \n",
              "8             NaN              NaN                NaN              NaN   \n",
              "9             NaN              NaN                NaN              NaN   \n",
              "\n",
              "   LINFOCITOS_MIN  LINFOCITOS_MAX  LINFOCITOS_DIFF  NEUTROPHILES_MEDIAN  \\\n",
              "0             NaN             NaN              NaN                  NaN   \n",
              "1             NaN             NaN              NaN                  NaN   \n",
              "2       -0.914938       -0.914938             -1.0            -0.868747   \n",
              "3             NaN             NaN              NaN                  NaN   \n",
              "4       -0.908714       -0.908714             -1.0            -0.412965   \n",
              "5             NaN             NaN              NaN                  NaN   \n",
              "6             NaN             NaN              NaN                  NaN   \n",
              "7             NaN             NaN              NaN                  NaN   \n",
              "8             NaN             NaN              NaN                  NaN   \n",
              "9             NaN             NaN              NaN                  NaN   \n",
              "\n",
              "   NEUTROPHILES_MEAN  NEUTROPHILES_MIN  NEUTROPHILES_MAX  NEUTROPHILES_DIFF  \\\n",
              "0                NaN               NaN               NaN                NaN   \n",
              "1                NaN               NaN               NaN                NaN   \n",
              "2          -0.868747         -0.868747         -0.868747               -1.0   \n",
              "3                NaN               NaN               NaN                NaN   \n",
              "4          -0.412965         -0.412965         -0.412965               -1.0   \n",
              "5                NaN               NaN               NaN                NaN   \n",
              "6                NaN               NaN               NaN                NaN   \n",
              "7                NaN               NaN               NaN                NaN   \n",
              "8                NaN               NaN               NaN                NaN   \n",
              "9                NaN               NaN               NaN                NaN   \n",
              "\n",
              "   P02_ARTERIAL_MEDIAN  P02_ARTERIAL_MEAN  P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  \\\n",
              "0                  NaN                NaN               NaN               NaN   \n",
              "1                  NaN                NaN               NaN               NaN   \n",
              "2            -0.170732          -0.170732         -0.170732         -0.170732   \n",
              "3                  NaN                NaN               NaN               NaN   \n",
              "4            -0.170732          -0.170732         -0.170732         -0.170732   \n",
              "5                  NaN                NaN               NaN               NaN   \n",
              "6                  NaN                NaN               NaN               NaN   \n",
              "7                  NaN                NaN               NaN               NaN   \n",
              "8                  NaN                NaN               NaN               NaN   \n",
              "9                  NaN                NaN               NaN               NaN   \n",
              "\n",
              "   P02_ARTERIAL_DIFF  P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  P02_VENOUS_MIN  \\\n",
              "0                NaN                NaN              NaN             NaN   \n",
              "1                NaN                NaN              NaN             NaN   \n",
              "2               -1.0          -0.704142        -0.704142       -0.704142   \n",
              "3                NaN                NaN              NaN             NaN   \n",
              "4               -1.0          -0.704142        -0.704142       -0.704142   \n",
              "5                NaN                NaN              NaN             NaN   \n",
              "6                NaN                NaN              NaN             NaN   \n",
              "7                NaN                NaN              NaN             NaN   \n",
              "8                NaN                NaN              NaN             NaN   \n",
              "9                NaN                NaN              NaN             NaN   \n",
              "\n",
              "   P02_VENOUS_MAX  P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  PC02_ARTERIAL_MEAN  \\\n",
              "0             NaN              NaN                   NaN                 NaN   \n",
              "1             NaN              NaN                   NaN                 NaN   \n",
              "2       -0.704142             -1.0              -0.77931            -0.77931   \n",
              "3             NaN              NaN                   NaN                 NaN   \n",
              "4       -0.704142             -1.0              -0.77931            -0.77931   \n",
              "5             NaN              NaN                   NaN                 NaN   \n",
              "6             NaN              NaN                   NaN                 NaN   \n",
              "7             NaN              NaN                   NaN                 NaN   \n",
              "8             NaN              NaN                   NaN                 NaN   \n",
              "9             NaN              NaN                   NaN                 NaN   \n",
              "\n",
              "   PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  PC02_ARTERIAL_DIFF  \\\n",
              "0                NaN                NaN                 NaN   \n",
              "1                NaN                NaN                 NaN   \n",
              "2           -0.77931           -0.77931                -1.0   \n",
              "3                NaN                NaN                 NaN   \n",
              "4           -0.77931           -0.77931                -1.0   \n",
              "5                NaN                NaN                 NaN   \n",
              "6                NaN                NaN                 NaN   \n",
              "7                NaN                NaN                 NaN   \n",
              "8                NaN                NaN                 NaN   \n",
              "9                NaN                NaN                 NaN   \n",
              "\n",
              "   PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  PC02_VENOUS_MIN  PC02_VENOUS_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2           -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4           -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "5                 NaN               NaN              NaN              NaN   \n",
              "6                 NaN               NaN              NaN              NaN   \n",
              "7                 NaN               NaN              NaN              NaN   \n",
              "8                 NaN               NaN              NaN              NaN   \n",
              "9                 NaN               NaN              NaN              NaN   \n",
              "\n",
              "   PC02_VENOUS_DIFF  PCR_MEDIAN  PCR_MEAN   PCR_MIN   PCR_MAX  PCR_DIFF  \\\n",
              "0               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "1               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "2              -1.0   -0.875236 -0.875236 -0.875236 -0.875236      -1.0   \n",
              "3               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "4              -1.0   -0.939887 -0.939887 -0.939887 -0.939887      -1.0   \n",
              "5               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "6               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "7               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "8               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "9               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "\n",
              "   PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  PH_ARTERIAL_MAX  \\\n",
              "0                 NaN               NaN              NaN              NaN   \n",
              "1                 NaN               NaN              NaN              NaN   \n",
              "2            0.234043          0.234043         0.234043         0.234043   \n",
              "3                 NaN               NaN              NaN              NaN   \n",
              "4            0.234043          0.234043         0.234043         0.234043   \n",
              "5                 NaN               NaN              NaN              NaN   \n",
              "6                 NaN               NaN              NaN              NaN   \n",
              "7                 NaN               NaN              NaN              NaN   \n",
              "8                 NaN               NaN              NaN              NaN   \n",
              "9                 NaN               NaN              NaN              NaN   \n",
              "\n",
              "   PH_ARTERIAL_DIFF  PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  PH_VENOUS_MIN  \\\n",
              "0               NaN               NaN             NaN            NaN   \n",
              "1               NaN               NaN             NaN            NaN   \n",
              "2              -1.0          0.363636        0.363636       0.363636   \n",
              "3               NaN               NaN             NaN            NaN   \n",
              "4              -1.0          0.363636        0.363636       0.363636   \n",
              "5               NaN               NaN             NaN            NaN   \n",
              "6               NaN               NaN             NaN            NaN   \n",
              "7               NaN               NaN             NaN            NaN   \n",
              "8               NaN               NaN             NaN            NaN   \n",
              "9               NaN               NaN             NaN            NaN   \n",
              "\n",
              "   PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  PLATELETS_MEAN  \\\n",
              "0            NaN             NaN               NaN             NaN   \n",
              "1            NaN             NaN               NaN             NaN   \n",
              "2       0.363636            -1.0         -0.540721       -0.540721   \n",
              "3            NaN             NaN               NaN             NaN   \n",
              "4       0.363636            -1.0         -0.399199       -0.399199   \n",
              "5            NaN             NaN               NaN             NaN   \n",
              "6            NaN             NaN               NaN             NaN   \n",
              "7            NaN             NaN               NaN             NaN   \n",
              "8            NaN             NaN               NaN             NaN   \n",
              "9            NaN             NaN               NaN             NaN   \n",
              "\n",
              "   PLATELETS_MIN  PLATELETS_MAX  PLATELETS_DIFF  POTASSIUM_MEDIAN  \\\n",
              "0            NaN            NaN             NaN               NaN   \n",
              "1            NaN            NaN             NaN               NaN   \n",
              "2      -0.540721      -0.540721            -1.0         -0.518519   \n",
              "3            NaN            NaN             NaN               NaN   \n",
              "4      -0.399199      -0.399199            -1.0         -0.703704   \n",
              "5            NaN            NaN             NaN               NaN   \n",
              "6            NaN            NaN             NaN               NaN   \n",
              "7            NaN            NaN             NaN               NaN   \n",
              "8            NaN            NaN             NaN               NaN   \n",
              "9            NaN            NaN             NaN               NaN   \n",
              "\n",
              "   POTASSIUM_MEAN  POTASSIUM_MIN  POTASSIUM_MAX  POTASSIUM_DIFF  \\\n",
              "0             NaN            NaN            NaN             NaN   \n",
              "1             NaN            NaN            NaN             NaN   \n",
              "2       -0.518519      -0.518519      -0.518519            -1.0   \n",
              "3             NaN            NaN            NaN             NaN   \n",
              "4       -0.703704      -0.703704      -0.703704            -1.0   \n",
              "5             NaN            NaN            NaN             NaN   \n",
              "6             NaN            NaN            NaN             NaN   \n",
              "7             NaN            NaN            NaN             NaN   \n",
              "8             NaN            NaN            NaN             NaN   \n",
              "9             NaN            NaN            NaN             NaN   \n",
              "\n",
              "   SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  SAT02_ARTERIAL_MIN  \\\n",
              "0                    NaN                  NaN                 NaN   \n",
              "1                    NaN                  NaN                 NaN   \n",
              "2               0.939394             0.939394            0.939394   \n",
              "3                    NaN                  NaN                 NaN   \n",
              "4               0.939394             0.939394            0.939394   \n",
              "5                    NaN                  NaN                 NaN   \n",
              "6                    NaN                  NaN                 NaN   \n",
              "7                    NaN                  NaN                 NaN   \n",
              "8                    NaN                  NaN                 NaN   \n",
              "9                    NaN                  NaN                 NaN   \n",
              "\n",
              "   SAT02_ARTERIAL_MAX  SAT02_ARTERIAL_DIFF  SAT02_VENOUS_MEDIAN  \\\n",
              "0                 NaN                  NaN                  NaN   \n",
              "1                 NaN                  NaN                  NaN   \n",
              "2            0.939394                 -1.0             0.345679   \n",
              "3                 NaN                  NaN                  NaN   \n",
              "4            0.939394                 -1.0             0.345679   \n",
              "5                 NaN                  NaN                  NaN   \n",
              "6                 NaN                  NaN                  NaN   \n",
              "7                 NaN                  NaN                  NaN   \n",
              "8                 NaN                  NaN                  NaN   \n",
              "9                 NaN                  NaN                  NaN   \n",
              "\n",
              "   SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  \\\n",
              "0                NaN               NaN               NaN                NaN   \n",
              "1                NaN               NaN               NaN                NaN   \n",
              "2           0.345679          0.345679          0.345679               -1.0   \n",
              "3                NaN               NaN               NaN                NaN   \n",
              "4           0.345679          0.345679          0.345679               -1.0   \n",
              "5                NaN               NaN               NaN                NaN   \n",
              "6                NaN               NaN               NaN                NaN   \n",
              "7                NaN               NaN               NaN                NaN   \n",
              "8                NaN               NaN               NaN                NaN   \n",
              "9                NaN               NaN               NaN                NaN   \n",
              "\n",
              "   SODIUM_MEDIAN  SODIUM_MEAN  SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  \\\n",
              "0            NaN          NaN         NaN         NaN          NaN   \n",
              "1            NaN          NaN         NaN         NaN          NaN   \n",
              "2      -0.028571    -0.028571   -0.028571   -0.028571         -1.0   \n",
              "3            NaN          NaN         NaN         NaN          NaN   \n",
              "4       0.085714     0.085714    0.085714    0.085714         -1.0   \n",
              "5            NaN          NaN         NaN         NaN          NaN   \n",
              "6            NaN          NaN         NaN         NaN          NaN   \n",
              "7            NaN          NaN         NaN         NaN          NaN   \n",
              "8            NaN          NaN         NaN         NaN          NaN   \n",
              "9            NaN          NaN         NaN         NaN          NaN   \n",
              "\n",
              "   TGO_MEDIAN  TGO_MEAN   TGO_MIN   TGO_MAX  TGO_DIFF  TGP_MEDIAN  TGP_MEAN  \\\n",
              "0         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "1         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "2   -0.997201 -0.997201 -0.997201 -0.997201      -1.0   -0.990854 -0.990854   \n",
              "3         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "4   -0.995428 -0.995428 -0.995428 -0.995428      -1.0   -0.986662 -0.986662   \n",
              "5         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "6         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "7         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "8         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "9         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "\n",
              "    TGP_MIN   TGP_MAX  TGP_DIFF  TTPA_MEDIAN  TTPA_MEAN  TTPA_MIN  TTPA_MAX  \\\n",
              "0       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "1       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "2 -0.990854 -0.990854      -1.0    -0.825613  -0.825613 -0.825613 -0.825613   \n",
              "3       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "4 -0.986662 -0.986662      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "5       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "6       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "7       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "8       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "9       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "\n",
              "   TTPA_DIFF  UREA_MEDIAN  UREA_MEAN  UREA_MIN  UREA_MAX  UREA_DIFF  \\\n",
              "0        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "1        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "2       -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "3        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "4       -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "5        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "6        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "7        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "8        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "9        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "\n",
              "   DIMER_MEDIAN  DIMER_MEAN  DIMER_MIN  DIMER_MAX  DIMER_DIFF  \\\n",
              "0           NaN         NaN        NaN        NaN         NaN   \n",
              "1           NaN         NaN        NaN        NaN         NaN   \n",
              "2     -0.994912   -0.994912  -0.994912  -0.994912        -1.0   \n",
              "3           NaN         NaN        NaN        NaN         NaN   \n",
              "4     -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "5           NaN         NaN        NaN        NaN         NaN   \n",
              "6           NaN         NaN        NaN        NaN         NaN   \n",
              "7           NaN         NaN        NaN        NaN         NaN   \n",
              "8           NaN         NaN        NaN        NaN         NaN   \n",
              "9           NaN         NaN        NaN        NaN         NaN   \n",
              "\n",
              "   BLOODPRESSURE_DIASTOLIC_MEAN  BLOODPRESSURE_SISTOLIC_MEAN  HEART_RATE_MEAN  \\\n",
              "0                      0.086420                    -0.230769        -0.283019   \n",
              "1                      0.333333                    -0.230769        -0.132075   \n",
              "2                           NaN                          NaN              NaN   \n",
              "3                           NaN                          NaN              NaN   \n",
              "4                           NaN                          NaN              NaN   \n",
              "5                           NaN                          NaN              NaN   \n",
              "6                     -0.489712                    -0.685470        -0.048218   \n",
              "7                     -0.612654                    -0.828846         0.037736   \n",
              "8                           NaN                          NaN              NaN   \n",
              "9                           NaN                          NaN              NaN   \n",
              "\n",
              "   RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  OXYGEN_SATURATION_MEAN  \\\n",
              "0              -0.593220         -0.285714                0.736842   \n",
              "1              -0.593220          0.535714                0.578947   \n",
              "2                    NaN               NaN                     NaN   \n",
              "3                    NaN         -0.107143                0.736842   \n",
              "4                    NaN               NaN                     NaN   \n",
              "5                    NaN               NaN                     NaN   \n",
              "6              -0.645951               NaN                0.935673   \n",
              "7              -0.720339          0.357143                0.799342   \n",
              "8                    NaN               NaN                     NaN   \n",
              "9                    NaN               NaN                     NaN   \n",
              "\n",
              "   BLOODPRESSURE_DIASTOLIC_MEDIAN  BLOODPRESSURE_SISTOLIC_MEDIAN  \\\n",
              "0                        0.086420                      -0.230769   \n",
              "1                        0.333333                      -0.230769   \n",
              "2                             NaN                            NaN   \n",
              "3                             NaN                            NaN   \n",
              "4                             NaN                            NaN   \n",
              "5                             NaN                            NaN   \n",
              "6                       -0.506173                      -0.815385   \n",
              "7                       -0.604938                      -0.846154   \n",
              "8                             NaN                            NaN   \n",
              "9                             NaN                            NaN   \n",
              "\n",
              "   HEART_RATE_MEDIAN  RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  \\\n",
              "0          -0.283019                -0.586207           -0.285714   \n",
              "1          -0.132075                -0.586207            0.535714   \n",
              "2                NaN                      NaN                 NaN   \n",
              "3                NaN                      NaN           -0.107143   \n",
              "4                NaN                      NaN                 NaN   \n",
              "5                NaN                      NaN                 NaN   \n",
              "6          -0.056604                -0.517241                 NaN   \n",
              "7           0.028302                -0.724138            0.357143   \n",
              "8                NaN                      NaN                 NaN   \n",
              "9                NaN                      NaN                 NaN   \n",
              "\n",
              "   OXYGEN_SATURATION_MEDIAN  BLOODPRESSURE_DIASTOLIC_MIN  \\\n",
              "0                  0.736842                     0.237113   \n",
              "1                  0.578947                     0.443299   \n",
              "2                       NaN                          NaN   \n",
              "3                  0.736842                          NaN   \n",
              "4                       NaN                          NaN   \n",
              "5                       NaN                          NaN   \n",
              "6                  0.947368                    -0.525773   \n",
              "7                  0.815789                    -0.505155   \n",
              "8                       NaN                          NaN   \n",
              "9                       NaN                          NaN   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  RESPIRATORY_RATE_MIN  \\\n",
              "0                      0.0000       -0.162393             -0.500000   \n",
              "1                      0.0000       -0.025641             -0.500000   \n",
              "2                         NaN             NaN                   NaN   \n",
              "3                         NaN             NaN                   NaN   \n",
              "4                         NaN             NaN                   NaN   \n",
              "5                         NaN             NaN                   NaN   \n",
              "6                     -0.5125       -0.111111             -0.714286   \n",
              "7                     -0.6625       -0.179487             -0.642857   \n",
              "8                         NaN             NaN                   NaN   \n",
              "9                         NaN             NaN                   NaN   \n",
              "\n",
              "   TEMPERATURE_MIN  OXYGEN_SATURATION_MIN  BLOODPRESSURE_DIASTOLIC_MAX  \\\n",
              "0         0.208791               0.898990                    -0.247863   \n",
              "1         0.714286               0.838384                    -0.076923   \n",
              "2              NaN                    NaN                          NaN   \n",
              "3         0.318681               0.898990                          NaN   \n",
              "4              NaN                    NaN                          NaN   \n",
              "5              NaN                    NaN                          NaN   \n",
              "6              NaN               0.959596                    -0.435897   \n",
              "7         0.604396               0.797980                    -0.572650   \n",
              "8              NaN                    NaN                          NaN   \n",
              "9              NaN                    NaN                          NaN   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  RESPIRATORY_RATE_MAX  \\\n",
              "0                   -0.459459       -0.432836             -0.636364   \n",
              "1                   -0.459459       -0.313433             -0.636364   \n",
              "2                         NaN             NaN                   NaN   \n",
              "3                         NaN             NaN                   NaN   \n",
              "4                         NaN             NaN                   NaN   \n",
              "5                         NaN             NaN                   NaN   \n",
              "6                   -0.491892        0.000000             -0.575758   \n",
              "7                   -0.762162        0.000000             -0.696970   \n",
              "8                         NaN             NaN                   NaN   \n",
              "9                         NaN             NaN                   NaN   \n",
              "\n",
              "   TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "0        -0.420290               0.736842                     -1.000000   \n",
              "1         0.246377               0.578947                     -1.000000   \n",
              "2              NaN                    NaN                           NaN   \n",
              "3        -0.275362               0.736842                           NaN   \n",
              "4              NaN                    NaN                           NaN   \n",
              "5              NaN                    NaN                           NaN   \n",
              "6              NaN               1.000000                     -0.547826   \n",
              "7         0.101449               1.000000                     -0.704348   \n",
              "8              NaN                    NaN                           NaN   \n",
              "9              NaN                    NaN                           NaN   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "0                    -1.000000        -1.000000              -1.000000   \n",
              "1                    -1.000000        -1.000000              -1.000000   \n",
              "2                          NaN              NaN                    NaN   \n",
              "3                          NaN              NaN                    NaN   \n",
              "4                          NaN              NaN                    NaN   \n",
              "5                          NaN              NaN                    NaN   \n",
              "6                    -0.533742        -0.603053              -0.764706   \n",
              "7                    -0.693252        -0.541985              -0.941176   \n",
              "8                          NaN              NaN                    NaN   \n",
              "9                          NaN              NaN                    NaN   \n",
              "\n",
              "   TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  BLOODPRESSURE_DIASTOLIC_DIFF_REL  \\\n",
              "0              -1.0               -1.000000                         -1.000000   \n",
              "1              -1.0               -1.000000                         -1.000000   \n",
              "2               NaN                     NaN                               NaN   \n",
              "3              -1.0               -1.000000                               NaN   \n",
              "4               NaN                     NaN                               NaN   \n",
              "5               NaN                     NaN                               NaN   \n",
              "6               NaN               -0.959596                         -0.515528   \n",
              "7              -1.0               -0.797980                         -0.658863   \n",
              "8               NaN                     NaN                               NaN   \n",
              "9               NaN                     NaN                               NaN   \n",
              "\n",
              "   BLOODPRESSURE_SISTOLIC_DIFF_REL  HEART_RATE_DIFF_REL  \\\n",
              "0                        -1.000000            -1.000000   \n",
              "1                        -1.000000            -1.000000   \n",
              "2                              NaN                  NaN   \n",
              "3                              NaN                  NaN   \n",
              "4                              NaN                  NaN   \n",
              "5                              NaN                  NaN   \n",
              "6                        -0.351328            -0.747001   \n",
              "7                        -0.563758            -0.721834   \n",
              "8                              NaN                  NaN   \n",
              "9                              NaN                  NaN   \n",
              "\n",
              "   RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "0                  -1.000000                  -1.0   \n",
              "1                  -1.000000                  -1.0   \n",
              "2                        NaN                   NaN   \n",
              "3                        NaN                  -1.0   \n",
              "4                        NaN                   NaN   \n",
              "5                        NaN                   NaN   \n",
              "6                  -0.756272                   NaN   \n",
              "7                  -0.926882                  -1.0   \n",
              "8                        NaN                   NaN   \n",
              "9                        NaN                   NaN   \n",
              "\n",
              "   OXYGEN_SATURATION_DIFF_REL  AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "0                   -1.000000                 0.0                 0.0   \n",
              "1                   -1.000000                 0.0                 0.0   \n",
              "2                         NaN                 0.0                 0.0   \n",
              "3                   -1.000000                 0.0                 0.0   \n",
              "4                         NaN                 1.0                 0.0   \n",
              "5                         NaN                 1.0                 0.0   \n",
              "6                   -0.961262                 1.0                 0.0   \n",
              "7                   -0.801293                 1.0                 0.0   \n",
              "8                         NaN                 0.0                 0.0   \n",
              "9                         NaN                 0.0                 0.0   \n",
              "\n",
              "   AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  AGE_PERCENTIL_50th  \\\n",
              "0                 0.0                 0.0                 0.0   \n",
              "1                 0.0                 0.0                 0.0   \n",
              "2                 0.0                 0.0                 0.0   \n",
              "3                 0.0                 0.0                 0.0   \n",
              "4                 0.0                 0.0                 0.0   \n",
              "5                 0.0                 0.0                 0.0   \n",
              "6                 0.0                 0.0                 0.0   \n",
              "7                 0.0                 0.0                 0.0   \n",
              "8                 0.0                 1.0                 0.0   \n",
              "9                 0.0                 1.0                 0.0   \n",
              "\n",
              "   AGE_PERCENTIL_60th  AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "0                 1.0                 0.0                 0.0   \n",
              "1                 1.0                 0.0                 0.0   \n",
              "2                 1.0                 0.0                 0.0   \n",
              "3                 1.0                 0.0                 0.0   \n",
              "4                 0.0                 0.0                 0.0   \n",
              "5                 0.0                 0.0                 0.0   \n",
              "6                 0.0                 0.0                 0.0   \n",
              "7                 0.0                 0.0                 0.0   \n",
              "8                 0.0                 0.0                 0.0   \n",
              "9                 0.0                 0.0                 0.0   \n",
              "\n",
              "   AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th  WINDOW_0-2  WINDOW_2-4  \\\n",
              "0                 0.0                       0.0         1.0         0.0   \n",
              "1                 0.0                       0.0         0.0         1.0   \n",
              "2                 0.0                       0.0         0.0         0.0   \n",
              "3                 0.0                       0.0         0.0         0.0   \n",
              "4                 0.0                       0.0         1.0         0.0   \n",
              "5                 0.0                       0.0         0.0         1.0   \n",
              "6                 0.0                       0.0         0.0         0.0   \n",
              "7                 0.0                       0.0         0.0         0.0   \n",
              "8                 0.0                       0.0         1.0         0.0   \n",
              "9                 0.0                       0.0         0.0         1.0   \n",
              "\n",
              "   WINDOW_4-6  WINDOW_6-12  WINDOW_ABOVE_12  ICU  \n",
              "0         0.0          0.0              0.0  1.0  \n",
              "1         0.0          0.0              0.0  1.0  \n",
              "2         1.0          0.0              0.0  1.0  \n",
              "3         0.0          1.0              0.0  1.0  \n",
              "4         0.0          0.0              0.0  1.0  \n",
              "5         0.0          0.0              0.0  1.0  \n",
              "6         1.0          0.0              0.0  1.0  \n",
              "7         0.0          1.0              0.0  1.0  \n",
              "8         0.0          0.0              0.0  0.0  \n",
              "9         0.0          0.0              0.0  0.0  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 8
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 989
        },
        "id": "ubeiQml1zNfi",
        "outputId": "6a7333e2-6a85-4e17-d0dc-9aa302e39a6d"
      },
      "source": [
        "#Filling missing values\n",
        "pd.options.mode.chained_assignment = None \n",
        "edited_dfs_list = []\n",
        "max_patient_id = df['PATIENT_VISIT_IDENTIFIER'].max()\n",
        "for i in range(int(max_patient_id)):                      #keeping only the first window that is 0-2 for every patient and filling NaN values with mean of all windows\n",
        "  tempdf = df[df['PATIENT_VISIT_IDENTIFIER']==i]\n",
        "  if(len(tempdf)!=0):\n",
        "    tempdf.fillna(tempdf.mean(), inplace=True)\n",
        "    tempdf = tempdf.iloc[[0]]\n",
        "    edited_dfs_list.append(tempdf)\n",
        "\n",
        "  \n",
        "final_data = pd.concat(edited_dfs_list)\n",
        "final_data.head(30)"
      ],
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>PATIENT_VISIT_IDENTIFIER</th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>GENDER</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>WINDOW_0-2</th>\n",
              "      <th>WINDOW_2-4</th>\n",
              "      <th>WINDOW_4-6</th>\n",
              "      <th>WINDOW_6-12</th>\n",
              "      <th>WINDOW_ABOVE_12</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-2.857143e-01</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.420290</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>2.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.551183</td>\n",
              "      <td>-0.757158</td>\n",
              "      <td>-0.005241</td>\n",
              "      <td>-0.683145</td>\n",
              "      <td>3.571429e-01</td>\n",
              "      <td>0.867507</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.830769</td>\n",
              "      <td>-0.014151</td>\n",
              "      <td>-0.620690</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.881579</td>\n",
              "      <td>-0.515464</td>\n",
              "      <td>-0.587500</td>\n",
              "      <td>-0.145299</td>\n",
              "      <td>-0.678571</td>\n",
              "      <td>0.604396</td>\n",
              "      <td>0.878788</td>\n",
              "      <td>-0.504274</td>\n",
              "      <td>-0.627027</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>0.101449</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.626087</td>\n",
              "      <td>-0.613497</td>\n",
              "      <td>-0.572519</td>\n",
              "      <td>-0.852941</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.878788</td>\n",
              "      <td>-0.587195</td>\n",
              "      <td>-0.457543</td>\n",
              "      <td>-0.734417</td>\n",
              "      <td>-0.841577</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.881277</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>3.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.132620</td>\n",
              "      <td>-0.484650</td>\n",
              "      <td>-0.448553</td>\n",
              "      <td>-0.506215</td>\n",
              "      <td>-1.197619e-01</td>\n",
              "      <td>0.652398</td>\n",
              "      <td>-0.102881</td>\n",
              "      <td>-0.482051</td>\n",
              "      <td>-0.459119</td>\n",
              "      <td>-0.494253</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>0.666667</td>\n",
              "      <td>-0.127148</td>\n",
              "      <td>-0.329167</td>\n",
              "      <td>-0.435897</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>0.216117</td>\n",
              "      <td>0.629630</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.506306</td>\n",
              "      <td>-0.263682</td>\n",
              "      <td>-0.454545</td>\n",
              "      <td>-0.024155</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>-0.692754</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-0.582697</td>\n",
              "      <td>-0.784314</td>\n",
              "      <td>-0.682540</td>\n",
              "      <td>-0.723906</td>\n",
              "      <td>-0.769565</td>\n",
              "      <td>-0.685906</td>\n",
              "      <td>-0.689698</td>\n",
              "      <td>-0.776583</td>\n",
              "      <td>-0.682540</td>\n",
              "      <td>-0.724145</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>13</th>\n",
              "      <td>4.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.236838</td>\n",
              "      <td>-0.101680</td>\n",
              "      <td>0.144491</td>\n",
              "      <td>-0.539451</td>\n",
              "      <td>1.891420e-01</td>\n",
              "      <td>0.852390</td>\n",
              "      <td>0.251029</td>\n",
              "      <td>-0.102564</td>\n",
              "      <td>0.160377</td>\n",
              "      <td>-0.540230</td>\n",
              "      <td>0.226190</td>\n",
              "      <td>0.833333</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.048433</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.293694</td>\n",
              "      <td>0.019900</td>\n",
              "      <td>-0.535354</td>\n",
              "      <td>0.072464</td>\n",
              "      <td>0.912281</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.811861</td>\n",
              "      <td>-0.725191</td>\n",
              "      <td>-0.901961</td>\n",
              "      <td>-0.761905</td>\n",
              "      <td>-0.959596</td>\n",
              "      <td>-0.884058</td>\n",
              "      <td>-0.826611</td>\n",
              "      <td>-0.839287</td>\n",
              "      <td>-0.896057</td>\n",
              "      <td>-0.766042</td>\n",
              "      <td>-0.960291</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>18</th>\n",
              "      <td>5.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.078189</td>\n",
              "      <td>-0.494587</td>\n",
              "      <td>-0.454228</td>\n",
              "      <td>-0.495292</td>\n",
              "      <td>-1.375661e-01</td>\n",
              "      <td>0.835283</td>\n",
              "      <td>-0.090535</td>\n",
              "      <td>-0.492308</td>\n",
              "      <td>-0.449686</td>\n",
              "      <td>-0.494253</td>\n",
              "      <td>-0.136905</td>\n",
              "      <td>0.833333</td>\n",
              "      <td>0.010309</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.418803</td>\n",
              "      <td>-0.404762</td>\n",
              "      <td>0.252747</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-0.282051</td>\n",
              "      <td>-0.553153</td>\n",
              "      <td>-0.482587</td>\n",
              "      <td>-0.535354</td>\n",
              "      <td>-0.246377</td>\n",
              "      <td>0.894737</td>\n",
              "      <td>-0.843478</td>\n",
              "      <td>-0.820041</td>\n",
              "      <td>-0.821883</td>\n",
              "      <td>-0.980392</td>\n",
              "      <td>-0.904762</td>\n",
              "      <td>-0.966330</td>\n",
              "      <td>-0.873174</td>\n",
              "      <td>-0.799242</td>\n",
              "      <td>-0.856110</td>\n",
              "      <td>-0.979689</td>\n",
              "      <td>-0.904177</td>\n",
              "      <td>-0.967019</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>23</th>\n",
              "      <td>6.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-0.944798</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.471698</td>\n",
              "      <td>-0.471698</td>\n",
              "      <td>-0.471698</td>\n",
              "      <td>-0.471698</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.475610</td>\n",
              "      <td>-0.475610</td>\n",
              "      <td>-0.475610</td>\n",
              "      <td>-0.475610</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.916184</td>\n",
              "      <td>-0.916184</td>\n",
              "      <td>-0.916184</td>\n",
              "      <td>-0.916184</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.858921</td>\n",
              "      <td>-0.858921</td>\n",
              "      <td>-0.858921</td>\n",
              "      <td>-0.858921</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.947579</td>\n",
              "      <td>-0.947579</td>\n",
              "      <td>-0.947579</td>\n",
              "      <td>-0.947579</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.750095</td>\n",
              "      <td>-0.750095</td>\n",
              "      <td>-0.750095</td>\n",
              "      <td>-0.750095</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.636849</td>\n",
              "      <td>-0.636849</td>\n",
              "      <td>-0.636849</td>\n",
              "      <td>-0.636849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.951807</td>\n",
              "      <td>-0.951807</td>\n",
              "      <td>-0.951807</td>\n",
              "      <td>-0.951807</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.144033</td>\n",
              "      <td>-0.266667</td>\n",
              "      <td>-0.284591</td>\n",
              "      <td>-0.550847</td>\n",
              "      <td>2.678571e-01</td>\n",
              "      <td>0.377193</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.220513</td>\n",
              "      <td>-0.270440</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>0.238095</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.030928</td>\n",
              "      <td>-0.141667</td>\n",
              "      <td>-0.236467</td>\n",
              "      <td>-0.535714</td>\n",
              "      <td>0.516484</td>\n",
              "      <td>0.313131</td>\n",
              "      <td>-0.373219</td>\n",
              "      <td>-0.452252</td>\n",
              "      <td>-0.393035</td>\n",
              "      <td>-0.575758</td>\n",
              "      <td>0.120773</td>\n",
              "      <td>0.824561</td>\n",
              "      <td>-0.953623</td>\n",
              "      <td>-0.852761</td>\n",
              "      <td>-0.893130</td>\n",
              "      <td>-0.911765</td>\n",
              "      <td>-0.888889</td>\n",
              "      <td>-0.380471</td>\n",
              "      <td>-0.961353</td>\n",
              "      <td>-0.879195</td>\n",
              "      <td>-0.927077</td>\n",
              "      <td>-0.913413</td>\n",
              "      <td>-0.890700</td>\n",
              "      <td>-0.360825</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>28</th>\n",
              "      <td>7.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.966510</td>\n",
              "      <td>-0.966510</td>\n",
              "      <td>-0.966510</td>\n",
              "      <td>-0.966510</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.052411</td>\n",
              "      <td>-0.052411</td>\n",
              "      <td>-0.052411</td>\n",
              "      <td>-0.052411</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.024390</td>\n",
              "      <td>-0.024390</td>\n",
              "      <td>-0.024390</td>\n",
              "      <td>-0.024390</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.967378</td>\n",
              "      <td>-0.967378</td>\n",
              "      <td>-0.967378</td>\n",
              "      <td>-0.967378</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.713789</td>\n",
              "      <td>-0.713789</td>\n",
              "      <td>-0.713789</td>\n",
              "      <td>-0.713789</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.655602</td>\n",
              "      <td>-0.655602</td>\n",
              "      <td>-0.655602</td>\n",
              "      <td>-0.655602</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.789916</td>\n",
              "      <td>-0.789916</td>\n",
              "      <td>-0.789916</td>\n",
              "      <td>-0.789916</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995708</td>\n",
              "      <td>-0.995708</td>\n",
              "      <td>-0.995708</td>\n",
              "      <td>-0.995708</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.979040</td>\n",
              "      <td>-0.979040</td>\n",
              "      <td>-0.979040</td>\n",
              "      <td>-0.979040</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.934605</td>\n",
              "      <td>-0.934605</td>\n",
              "      <td>-0.934605</td>\n",
              "      <td>-0.934605</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.865060</td>\n",
              "      <td>-0.865060</td>\n",
              "      <td>-0.865060</td>\n",
              "      <td>-0.865060</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.974174</td>\n",
              "      <td>-0.974174</td>\n",
              "      <td>-0.974174</td>\n",
              "      <td>-0.974174</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028472</td>\n",
              "      <td>-0.421855</td>\n",
              "      <td>-0.492833</td>\n",
              "      <td>-0.484956</td>\n",
              "      <td>-1.600914e-01</td>\n",
              "      <td>0.812627</td>\n",
              "      <td>-0.020576</td>\n",
              "      <td>-0.415385</td>\n",
              "      <td>-0.540881</td>\n",
              "      <td>-0.471264</td>\n",
              "      <td>-0.154762</td>\n",
              "      <td>0.807018</td>\n",
              "      <td>0.051546</td>\n",
              "      <td>-0.233333</td>\n",
              "      <td>-0.487179</td>\n",
              "      <td>-0.428571</td>\n",
              "      <td>0.238095</td>\n",
              "      <td>0.912458</td>\n",
              "      <td>-0.270655</td>\n",
              "      <td>-0.513514</td>\n",
              "      <td>-0.358209</td>\n",
              "      <td>-0.515152</td>\n",
              "      <td>-0.246377</td>\n",
              "      <td>0.859649</td>\n",
              "      <td>-0.866667</td>\n",
              "      <td>-0.832311</td>\n",
              "      <td>-0.633588</td>\n",
              "      <td>-0.941176</td>\n",
              "      <td>-0.888889</td>\n",
              "      <td>-0.966330</td>\n",
              "      <td>-0.891551</td>\n",
              "      <td>-0.817431</td>\n",
              "      <td>-0.686446</td>\n",
              "      <td>-0.939068</td>\n",
              "      <td>-0.888823</td>\n",
              "      <td>-0.966710</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>33</th>\n",
              "      <td>8.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990654</td>\n",
              "      <td>-0.990654</td>\n",
              "      <td>-0.990654</td>\n",
              "      <td>-0.990654</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.039832</td>\n",
              "      <td>-0.039832</td>\n",
              "      <td>-0.039832</td>\n",
              "      <td>-0.039832</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.012195</td>\n",
              "      <td>-0.012195</td>\n",
              "      <td>-0.012195</td>\n",
              "      <td>-0.012195</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.952572</td>\n",
              "      <td>-0.952572</td>\n",
              "      <td>-0.952572</td>\n",
              "      <td>-0.952572</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.786404</td>\n",
              "      <td>-0.786404</td>\n",
              "      <td>-0.786404</td>\n",
              "      <td>-0.786404</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.724066</td>\n",
              "      <td>-0.724066</td>\n",
              "      <td>-0.724066</td>\n",
              "      <td>-0.724066</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851140</td>\n",
              "      <td>-0.851140</td>\n",
              "      <td>-0.851140</td>\n",
              "      <td>-0.851140</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.798110</td>\n",
              "      <td>-0.798110</td>\n",
              "      <td>-0.798110</td>\n",
              "      <td>-0.798110</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.522029</td>\n",
              "      <td>-0.522029</td>\n",
              "      <td>-0.522029</td>\n",
              "      <td>-0.522029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.600000</td>\n",
              "      <td>-0.600000</td>\n",
              "      <td>-0.600000</td>\n",
              "      <td>-0.600000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.998134</td>\n",
              "      <td>-0.998134</td>\n",
              "      <td>-0.998134</td>\n",
              "      <td>-0.998134</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997332</td>\n",
              "      <td>-0.997332</td>\n",
              "      <td>-0.997332</td>\n",
              "      <td>-0.997332</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.185185</td>\n",
              "      <td>-0.630769</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>4.642857e-01</td>\n",
              "      <td>0.738346</td>\n",
              "      <td>-0.185185</td>\n",
              "      <td>-0.630769</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>0.464286</td>\n",
              "      <td>0.771930</td>\n",
              "      <td>0.010309</td>\n",
              "      <td>-0.325000</td>\n",
              "      <td>-0.196581</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.670330</td>\n",
              "      <td>0.865320</td>\n",
              "      <td>-0.435897</td>\n",
              "      <td>-0.740541</td>\n",
              "      <td>-0.462687</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>0.188406</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.946128</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.946233</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>38</th>\n",
              "      <td>9.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.944357</td>\n",
              "      <td>-0.944357</td>\n",
              "      <td>-0.944357</td>\n",
              "      <td>-0.944357</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.897579</td>\n",
              "      <td>-0.897579</td>\n",
              "      <td>-0.897579</td>\n",
              "      <td>-0.897579</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.025157</td>\n",
              "      <td>-0.025157</td>\n",
              "      <td>-0.025157</td>\n",
              "      <td>-0.025157</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.054878</td>\n",
              "      <td>-0.054878</td>\n",
              "      <td>-0.054878</td>\n",
              "      <td>-0.054878</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.845114</td>\n",
              "      <td>-0.845114</td>\n",
              "      <td>-0.845114</td>\n",
              "      <td>-0.845114</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-0.634855</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.936575</td>\n",
              "      <td>-0.936575</td>\n",
              "      <td>-0.936575</td>\n",
              "      <td>-0.936575</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994140</td>\n",
              "      <td>-0.994140</td>\n",
              "      <td>-0.994140</td>\n",
              "      <td>-0.994140</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-0.444444</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.161905</td>\n",
              "      <td>0.161905</td>\n",
              "      <td>0.161905</td>\n",
              "      <td>0.161905</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994261</td>\n",
              "      <td>-0.994261</td>\n",
              "      <td>-0.994261</td>\n",
              "      <td>-0.994261</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.984947</td>\n",
              "      <td>-0.984947</td>\n",
              "      <td>-0.984947</td>\n",
              "      <td>-0.984947</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.886747</td>\n",
              "      <td>-0.886747</td>\n",
              "      <td>-0.886747</td>\n",
              "      <td>-0.886747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.050505</td>\n",
              "      <td>-0.114685</td>\n",
              "      <td>-0.461407</td>\n",
              "      <td>-0.534669</td>\n",
              "      <td>-1.055195e-01</td>\n",
              "      <td>0.784689</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.481132</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>-0.089286</td>\n",
              "      <td>0.763158</td>\n",
              "      <td>0.030928</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.376068</td>\n",
              "      <td>-0.571429</td>\n",
              "      <td>0.219780</td>\n",
              "      <td>0.909091</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.297297</td>\n",
              "      <td>-0.522388</td>\n",
              "      <td>-0.484848</td>\n",
              "      <td>-0.202899</td>\n",
              "      <td>0.868421</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.815951</td>\n",
              "      <td>-0.900763</td>\n",
              "      <td>-0.794118</td>\n",
              "      <td>-0.833333</td>\n",
              "      <td>-0.959596</td>\n",
              "      <td>-0.869565</td>\n",
              "      <td>-0.831735</td>\n",
              "      <td>-0.904071</td>\n",
              "      <td>-0.808065</td>\n",
              "      <td>-0.835604</td>\n",
              "      <td>-0.959202</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>43</th>\n",
              "      <td>10.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.872611</td>\n",
              "      <td>-0.872611</td>\n",
              "      <td>-0.872611</td>\n",
              "      <td>-0.872611</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.224319</td>\n",
              "      <td>-0.224319</td>\n",
              "      <td>-0.224319</td>\n",
              "      <td>-0.224319</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-0.957340</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851294</td>\n",
              "      <td>-0.851294</td>\n",
              "      <td>-0.851294</td>\n",
              "      <td>-0.851294</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.890041</td>\n",
              "      <td>-0.890041</td>\n",
              "      <td>-0.890041</td>\n",
              "      <td>-0.890041</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875550</td>\n",
              "      <td>-0.875550</td>\n",
              "      <td>-0.875550</td>\n",
              "      <td>-0.875550</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.462004</td>\n",
              "      <td>-0.462004</td>\n",
              "      <td>-0.462004</td>\n",
              "      <td>-0.462004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-0.751669</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996189</td>\n",
              "      <td>-0.996189</td>\n",
              "      <td>-0.996189</td>\n",
              "      <td>-0.996189</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.847411</td>\n",
              "      <td>-0.847411</td>\n",
              "      <td>-0.847411</td>\n",
              "      <td>-0.847411</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.744578</td>\n",
              "      <td>-0.744578</td>\n",
              "      <td>-0.744578</td>\n",
              "      <td>-0.744578</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.971322</td>\n",
              "      <td>-0.971322</td>\n",
              "      <td>-0.971322</td>\n",
              "      <td>-0.971322</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.259259</td>\n",
              "      <td>-0.292308</td>\n",
              "      <td>-0.754717</td>\n",
              "      <td>-0.661017</td>\n",
              "      <td>1.071429e-01</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>0.259259</td>\n",
              "      <td>-0.292308</td>\n",
              "      <td>-0.754717</td>\n",
              "      <td>-0.655172</td>\n",
              "      <td>0.107143</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>0.381443</td>\n",
              "      <td>-0.050000</td>\n",
              "      <td>-0.589744</td>\n",
              "      <td>-0.571429</td>\n",
              "      <td>0.450549</td>\n",
              "      <td>0.919192</td>\n",
              "      <td>-0.128205</td>\n",
              "      <td>-0.502703</td>\n",
              "      <td>-0.805970</td>\n",
              "      <td>-0.696970</td>\n",
              "      <td>-0.101449</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>48</th>\n",
              "      <td>11.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.849965</td>\n",
              "      <td>-0.849965</td>\n",
              "      <td>-0.849965</td>\n",
              "      <td>-0.849965</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.303983</td>\n",
              "      <td>-0.303983</td>\n",
              "      <td>-0.303983</td>\n",
              "      <td>-0.303983</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-0.353659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.907152</td>\n",
              "      <td>-0.907152</td>\n",
              "      <td>-0.907152</td>\n",
              "      <td>-0.907152</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.867903</td>\n",
              "      <td>-0.867903</td>\n",
              "      <td>-0.867903</td>\n",
              "      <td>-0.867903</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.867220</td>\n",
              "      <td>-0.867220</td>\n",
              "      <td>-0.867220</td>\n",
              "      <td>-0.867220</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.679017</td>\n",
              "      <td>-0.679017</td>\n",
              "      <td>-0.679017</td>\n",
              "      <td>-0.679017</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.803815</td>\n",
              "      <td>-0.803815</td>\n",
              "      <td>-0.803815</td>\n",
              "      <td>-0.803815</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.845783</td>\n",
              "      <td>-0.845783</td>\n",
              "      <td>-0.845783</td>\n",
              "      <td>-0.845783</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.977720</td>\n",
              "      <td>-0.977720</td>\n",
              "      <td>-0.977720</td>\n",
              "      <td>-0.977720</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.037037</td>\n",
              "      <td>-0.246154</td>\n",
              "      <td>-0.415094</td>\n",
              "      <td>-0.389831</td>\n",
              "      <td>7.857143e-01</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>0.037037</td>\n",
              "      <td>-0.246154</td>\n",
              "      <td>-0.415094</td>\n",
              "      <td>-0.379310</td>\n",
              "      <td>0.785714</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>0.195876</td>\n",
              "      <td>-0.012500</td>\n",
              "      <td>-0.282051</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.868132</td>\n",
              "      <td>0.878788</td>\n",
              "      <td>-0.282051</td>\n",
              "      <td>-0.470270</td>\n",
              "      <td>-0.537313</td>\n",
              "      <td>-0.454545</td>\n",
              "      <td>0.449275</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>51</th>\n",
              "      <td>12.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.949045</td>\n",
              "      <td>-0.949045</td>\n",
              "      <td>-0.949045</td>\n",
              "      <td>-0.949045</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.091463</td>\n",
              "      <td>-0.091463</td>\n",
              "      <td>-0.091463</td>\n",
              "      <td>-0.091463</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.028537</td>\n",
              "      <td>0.028537</td>\n",
              "      <td>0.028537</td>\n",
              "      <td>0.028537</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.861143</td>\n",
              "      <td>-0.861143</td>\n",
              "      <td>-0.861143</td>\n",
              "      <td>-0.861143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.927771</td>\n",
              "      <td>-0.927771</td>\n",
              "      <td>-0.927771</td>\n",
              "      <td>-0.927771</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.989603</td>\n",
              "      <td>-0.989603</td>\n",
              "      <td>-0.989603</td>\n",
              "      <td>-0.989603</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.506008</td>\n",
              "      <td>-0.506008</td>\n",
              "      <td>-0.506008</td>\n",
              "      <td>-0.506008</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997481</td>\n",
              "      <td>-0.997481</td>\n",
              "      <td>-0.997481</td>\n",
              "      <td>-0.997481</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.833398</td>\n",
              "      <td>-0.833398</td>\n",
              "      <td>-0.833398</td>\n",
              "      <td>-0.833398</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.934940</td>\n",
              "      <td>-0.934940</td>\n",
              "      <td>-0.934940</td>\n",
              "      <td>-0.934940</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.254870</td>\n",
              "      <td>-0.815043</td>\n",
              "      <td>-0.265269</td>\n",
              "      <td>-0.537979</td>\n",
              "      <td>-1.087302e-01</td>\n",
              "      <td>0.874074</td>\n",
              "      <td>-0.251029</td>\n",
              "      <td>-0.820513</td>\n",
              "      <td>-0.264151</td>\n",
              "      <td>-0.540230</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.877193</td>\n",
              "      <td>-0.106529</td>\n",
              "      <td>-0.541667</td>\n",
              "      <td>-0.310541</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.164835</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-0.418803</td>\n",
              "      <td>-0.783784</td>\n",
              "      <td>-0.353234</td>\n",
              "      <td>-0.515152</td>\n",
              "      <td>-0.173913</td>\n",
              "      <td>0.912281</td>\n",
              "      <td>-0.884058</td>\n",
              "      <td>-0.836401</td>\n",
              "      <td>-0.786260</td>\n",
              "      <td>-0.882353</td>\n",
              "      <td>-0.750000</td>\n",
              "      <td>-0.959596</td>\n",
              "      <td>-0.899181</td>\n",
              "      <td>-0.779583</td>\n",
              "      <td>-0.850639</td>\n",
              "      <td>-0.870968</td>\n",
              "      <td>-0.749307</td>\n",
              "      <td>-0.960463</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>56</th>\n",
              "      <td>13.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.944532</td>\n",
              "      <td>-0.944532</td>\n",
              "      <td>-0.944532</td>\n",
              "      <td>-0.944532</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.871196</td>\n",
              "      <td>-0.871196</td>\n",
              "      <td>-0.871196</td>\n",
              "      <td>-0.871196</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.813780</td>\n",
              "      <td>-0.813780</td>\n",
              "      <td>-0.813780</td>\n",
              "      <td>-0.813780</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.010482</td>\n",
              "      <td>0.010482</td>\n",
              "      <td>0.010482</td>\n",
              "      <td>0.010482</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.803785</td>\n",
              "      <td>-0.803785</td>\n",
              "      <td>-0.803785</td>\n",
              "      <td>-0.803785</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.815353</td>\n",
              "      <td>-0.815353</td>\n",
              "      <td>-0.815353</td>\n",
              "      <td>-0.815353</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.842737</td>\n",
              "      <td>-0.842737</td>\n",
              "      <td>-0.842737</td>\n",
              "      <td>-0.842737</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.688847</td>\n",
              "      <td>-0.688847</td>\n",
              "      <td>-0.688847</td>\n",
              "      <td>-0.688847</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.527370</td>\n",
              "      <td>-0.527370</td>\n",
              "      <td>-0.527370</td>\n",
              "      <td>-0.527370</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994775</td>\n",
              "      <td>-0.994775</td>\n",
              "      <td>-0.994775</td>\n",
              "      <td>-0.994775</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.984756</td>\n",
              "      <td>-0.984756</td>\n",
              "      <td>-0.984756</td>\n",
              "      <td>-0.984756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754217</td>\n",
              "      <td>-0.754217</td>\n",
              "      <td>-0.754217</td>\n",
              "      <td>-0.754217</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.956289</td>\n",
              "      <td>-0.956289</td>\n",
              "      <td>-0.956289</td>\n",
              "      <td>-0.956289</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.358025</td>\n",
              "      <td>-0.461538</td>\n",
              "      <td>-0.712264</td>\n",
              "      <td>-0.576271</td>\n",
              "      <td>-8.035714e-02</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>-0.358025</td>\n",
              "      <td>-0.461538</td>\n",
              "      <td>-0.712264</td>\n",
              "      <td>-0.568966</td>\n",
              "      <td>-0.080357</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>-0.164948</td>\n",
              "      <td>-0.206250</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.307692</td>\n",
              "      <td>0.868687</td>\n",
              "      <td>-0.529915</td>\n",
              "      <td>-0.605405</td>\n",
              "      <td>-0.768657</td>\n",
              "      <td>-0.606061</td>\n",
              "      <td>-0.217391</td>\n",
              "      <td>0.710526</td>\n",
              "      <td>-0.947826</td>\n",
              "      <td>-0.963190</td>\n",
              "      <td>-0.992366</td>\n",
              "      <td>-0.970588</td>\n",
              "      <td>-0.940476</td>\n",
              "      <td>-0.979798</td>\n",
              "      <td>-0.951087</td>\n",
              "      <td>-0.960738</td>\n",
              "      <td>-0.991567</td>\n",
              "      <td>-0.970357</td>\n",
              "      <td>-0.939045</td>\n",
              "      <td>-0.979816</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>60</th>\n",
              "      <td>14.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.895288</td>\n",
              "      <td>-0.895288</td>\n",
              "      <td>-0.895288</td>\n",
              "      <td>-0.895288</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.953951</td>\n",
              "      <td>-0.953951</td>\n",
              "      <td>-0.953951</td>\n",
              "      <td>-0.953951</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.061224</td>\n",
              "      <td>0.061224</td>\n",
              "      <td>0.061224</td>\n",
              "      <td>0.061224</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.842887</td>\n",
              "      <td>-0.842887</td>\n",
              "      <td>-0.842887</td>\n",
              "      <td>-0.842887</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.967290</td>\n",
              "      <td>-0.967290</td>\n",
              "      <td>-0.967290</td>\n",
              "      <td>-0.967290</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.169811</td>\n",
              "      <td>-0.169811</td>\n",
              "      <td>-0.169811</td>\n",
              "      <td>-0.169811</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.207317</td>\n",
              "      <td>-0.207317</td>\n",
              "      <td>-0.207317</td>\n",
              "      <td>-0.207317</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.863097</td>\n",
              "      <td>-0.863097</td>\n",
              "      <td>-0.863097</td>\n",
              "      <td>-0.863097</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.770954</td>\n",
              "      <td>-0.770954</td>\n",
              "      <td>-0.770954</td>\n",
              "      <td>-0.770954</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.820328</td>\n",
              "      <td>-0.820328</td>\n",
              "      <td>-0.820328</td>\n",
              "      <td>-0.820328</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.940828</td>\n",
              "      <td>-0.940828</td>\n",
              "      <td>-0.940828</td>\n",
              "      <td>-0.940828</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.857845</td>\n",
              "      <td>-0.857845</td>\n",
              "      <td>-0.857845</td>\n",
              "      <td>-0.857845</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>0.393939</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.428571</td>\n",
              "      <td>-0.428571</td>\n",
              "      <td>-0.428571</td>\n",
              "      <td>-0.428571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.728395</td>\n",
              "      <td>-0.728395</td>\n",
              "      <td>-0.728395</td>\n",
              "      <td>-0.728395</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.542857</td>\n",
              "      <td>-0.542857</td>\n",
              "      <td>-0.542857</td>\n",
              "      <td>-0.542857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996268</td>\n",
              "      <td>-0.996268</td>\n",
              "      <td>-0.996268</td>\n",
              "      <td>-0.996268</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994665</td>\n",
              "      <td>-0.994665</td>\n",
              "      <td>-0.994665</td>\n",
              "      <td>-0.994665</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.725301</td>\n",
              "      <td>-0.725301</td>\n",
              "      <td>-0.725301</td>\n",
              "      <td>-0.725301</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.992214</td>\n",
              "      <td>-0.992214</td>\n",
              "      <td>-0.992214</td>\n",
              "      <td>-0.992214</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.234568</td>\n",
              "      <td>-0.553846</td>\n",
              "      <td>-0.641509</td>\n",
              "      <td>-0.389831</td>\n",
              "      <td>-1.785714e-01</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-0.234568</td>\n",
              "      <td>-0.553846</td>\n",
              "      <td>-0.641509</td>\n",
              "      <td>-0.379310</td>\n",
              "      <td>-0.178571</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-0.030928</td>\n",
              "      <td>-0.262500</td>\n",
              "      <td>-0.487179</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.274725</td>\n",
              "      <td>0.919192</td>\n",
              "      <td>-0.470085</td>\n",
              "      <td>-0.686486</td>\n",
              "      <td>-0.716418</td>\n",
              "      <td>-0.454545</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>62</th>\n",
              "      <td>15.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.957091</td>\n",
              "      <td>-0.957091</td>\n",
              "      <td>-0.957091</td>\n",
              "      <td>-0.957091</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.893843</td>\n",
              "      <td>-0.893843</td>\n",
              "      <td>-0.893843</td>\n",
              "      <td>-0.893843</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.437100</td>\n",
              "      <td>-0.437100</td>\n",
              "      <td>-0.437100</td>\n",
              "      <td>-0.437100</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.766355</td>\n",
              "      <td>-0.766355</td>\n",
              "      <td>-0.766355</td>\n",
              "      <td>-0.766355</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.810056</td>\n",
              "      <td>-0.810056</td>\n",
              "      <td>-0.810056</td>\n",
              "      <td>-0.810056</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.324948</td>\n",
              "      <td>-0.324948</td>\n",
              "      <td>-0.324948</td>\n",
              "      <td>-0.324948</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.390244</td>\n",
              "      <td>-0.390244</td>\n",
              "      <td>-0.390244</td>\n",
              "      <td>-0.390244</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.897195</td>\n",
              "      <td>-0.897195</td>\n",
              "      <td>-0.897195</td>\n",
              "      <td>-0.897195</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.555041</td>\n",
              "      <td>-0.555041</td>\n",
              "      <td>-0.555041</td>\n",
              "      <td>-0.555041</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.804722</td>\n",
              "      <td>-0.804722</td>\n",
              "      <td>-0.804722</td>\n",
              "      <td>-0.804722</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.834320</td>\n",
              "      <td>-0.834320</td>\n",
              "      <td>-0.834320</td>\n",
              "      <td>-0.834320</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.889571</td>\n",
              "      <td>-0.889571</td>\n",
              "      <td>-0.889571</td>\n",
              "      <td>-0.889571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.388658</td>\n",
              "      <td>-0.388658</td>\n",
              "      <td>-0.388658</td>\n",
              "      <td>-0.388658</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.515152</td>\n",
              "      <td>0.515152</td>\n",
              "      <td>0.515152</td>\n",
              "      <td>0.515152</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.674232</td>\n",
              "      <td>-0.674232</td>\n",
              "      <td>-0.674232</td>\n",
              "      <td>-0.674232</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991789</td>\n",
              "      <td>-0.991789</td>\n",
              "      <td>-0.991789</td>\n",
              "      <td>-0.991789</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.977515</td>\n",
              "      <td>-0.977515</td>\n",
              "      <td>-0.977515</td>\n",
              "      <td>-0.977515</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.792771</td>\n",
              "      <td>-0.792771</td>\n",
              "      <td>-0.792771</td>\n",
              "      <td>-0.792771</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.953051</td>\n",
              "      <td>-0.953051</td>\n",
              "      <td>-0.953051</td>\n",
              "      <td>-0.953051</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.131687</td>\n",
              "      <td>-0.635897</td>\n",
              "      <td>-0.182390</td>\n",
              "      <td>-0.367232</td>\n",
              "      <td>9.020562e-16</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-0.111111</td>\n",
              "      <td>-0.661538</td>\n",
              "      <td>-0.169811</td>\n",
              "      <td>-0.344828</td>\n",
              "      <td>0.017857</td>\n",
              "      <td>0.631579</td>\n",
              "      <td>0.020619</td>\n",
              "      <td>-0.350000</td>\n",
              "      <td>-0.094017</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>0.828283</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.708108</td>\n",
              "      <td>-0.343284</td>\n",
              "      <td>-0.424242</td>\n",
              "      <td>-0.173913</td>\n",
              "      <td>0.631579</td>\n",
              "      <td>-0.956522</td>\n",
              "      <td>-0.938650</td>\n",
              "      <td>-0.969466</td>\n",
              "      <td>-0.970588</td>\n",
              "      <td>-0.964286</td>\n",
              "      <td>-0.969697</td>\n",
              "      <td>-0.965217</td>\n",
              "      <td>-0.921477</td>\n",
              "      <td>-0.978136</td>\n",
              "      <td>-0.971138</td>\n",
              "      <td>-0.963786</td>\n",
              "      <td>-0.969072</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>66</th>\n",
              "      <td>16.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.146751</td>\n",
              "      <td>0.146751</td>\n",
              "      <td>0.146751</td>\n",
              "      <td>0.146751</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.103659</td>\n",
              "      <td>0.103659</td>\n",
              "      <td>0.103659</td>\n",
              "      <td>0.103659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-0.958595</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.857088</td>\n",
              "      <td>-0.857088</td>\n",
              "      <td>-0.857088</td>\n",
              "      <td>-0.857088</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.781120</td>\n",
              "      <td>-0.781120</td>\n",
              "      <td>-0.781120</td>\n",
              "      <td>-0.781120</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.907763</td>\n",
              "      <td>-0.907763</td>\n",
              "      <td>-0.907763</td>\n",
              "      <td>-0.907763</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986011</td>\n",
              "      <td>-0.986011</td>\n",
              "      <td>-0.986011</td>\n",
              "      <td>-0.986011</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.619493</td>\n",
              "      <td>-0.619493</td>\n",
              "      <td>-0.619493</td>\n",
              "      <td>-0.619493</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995894</td>\n",
              "      <td>-0.995894</td>\n",
              "      <td>-0.995894</td>\n",
              "      <td>-0.995894</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990663</td>\n",
              "      <td>-0.990663</td>\n",
              "      <td>-0.990663</td>\n",
              "      <td>-0.990663</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.849747</td>\n",
              "      <td>-0.849747</td>\n",
              "      <td>-0.849747</td>\n",
              "      <td>-0.849747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.848193</td>\n",
              "      <td>-0.848193</td>\n",
              "      <td>-0.848193</td>\n",
              "      <td>-0.848193</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.961223</td>\n",
              "      <td>-0.961223</td>\n",
              "      <td>-0.961223</td>\n",
              "      <td>-0.961223</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.118166</td>\n",
              "      <td>-0.404212</td>\n",
              "      <td>-0.360288</td>\n",
              "      <td>-0.569814</td>\n",
              "      <td>4.464286e-03</td>\n",
              "      <td>0.748120</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.358491</td>\n",
              "      <td>-0.563218</td>\n",
              "      <td>-0.011905</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>0.168385</td>\n",
              "      <td>-0.208333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.523810</td>\n",
              "      <td>0.318681</td>\n",
              "      <td>0.878788</td>\n",
              "      <td>-0.133903</td>\n",
              "      <td>-0.531532</td>\n",
              "      <td>-0.388060</td>\n",
              "      <td>-0.575758</td>\n",
              "      <td>-0.033816</td>\n",
              "      <td>0.807018</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.877301</td>\n",
              "      <td>-0.801527</td>\n",
              "      <td>-0.921569</td>\n",
              "      <td>-0.801587</td>\n",
              "      <td>-0.952862</td>\n",
              "      <td>-0.850932</td>\n",
              "      <td>-0.869128</td>\n",
              "      <td>-0.830714</td>\n",
              "      <td>-0.918757</td>\n",
              "      <td>-0.802677</td>\n",
              "      <td>-0.952903</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>71</th>\n",
              "      <td>18.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.898089</td>\n",
              "      <td>-0.898089</td>\n",
              "      <td>-0.898089</td>\n",
              "      <td>-0.898089</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.064990</td>\n",
              "      <td>0.064990</td>\n",
              "      <td>0.064990</td>\n",
              "      <td>0.064990</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.085366</td>\n",
              "      <td>0.085366</td>\n",
              "      <td>0.085366</td>\n",
              "      <td>0.085366</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.827801</td>\n",
              "      <td>-0.827801</td>\n",
              "      <td>-0.827801</td>\n",
              "      <td>-0.827801</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.874750</td>\n",
              "      <td>-0.874750</td>\n",
              "      <td>-0.874750</td>\n",
              "      <td>-0.874750</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.513422</td>\n",
              "      <td>-0.513422</td>\n",
              "      <td>-0.513422</td>\n",
              "      <td>-0.513422</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-0.471295</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.993216</td>\n",
              "      <td>-0.993216</td>\n",
              "      <td>-0.993216</td>\n",
              "      <td>-0.993216</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>73</th>\n",
              "      <td>19.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.923600</td>\n",
              "      <td>-0.923600</td>\n",
              "      <td>-0.923600</td>\n",
              "      <td>-0.923600</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.428571</td>\n",
              "      <td>0.428571</td>\n",
              "      <td>0.428571</td>\n",
              "      <td>0.428571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.905166</td>\n",
              "      <td>-0.905166</td>\n",
              "      <td>-0.905166</td>\n",
              "      <td>-0.905166</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.748401</td>\n",
              "      <td>-0.748401</td>\n",
              "      <td>-0.748401</td>\n",
              "      <td>-0.748401</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978972</td>\n",
              "      <td>-0.978972</td>\n",
              "      <td>-0.978972</td>\n",
              "      <td>-0.978972</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.869646</td>\n",
              "      <td>-0.869646</td>\n",
              "      <td>-0.869646</td>\n",
              "      <td>-0.869646</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.023061</td>\n",
              "      <td>-0.023061</td>\n",
              "      <td>-0.023061</td>\n",
              "      <td>-0.023061</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.036585</td>\n",
              "      <td>0.036585</td>\n",
              "      <td>0.036585</td>\n",
              "      <td>0.036585</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.714175</td>\n",
              "      <td>-0.714175</td>\n",
              "      <td>-0.714175</td>\n",
              "      <td>-0.714175</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.609959</td>\n",
              "      <td>-0.609959</td>\n",
              "      <td>-0.609959</td>\n",
              "      <td>-0.609959</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.807923</td>\n",
              "      <td>-0.807923</td>\n",
              "      <td>-0.807923</td>\n",
              "      <td>-0.807923</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-0.999244</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.732977</td>\n",
              "      <td>-0.732977</td>\n",
              "      <td>-0.732977</td>\n",
              "      <td>-0.732977</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.998880</td>\n",
              "      <td>-0.998880</td>\n",
              "      <td>-0.998880</td>\n",
              "      <td>-0.998880</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-0.996570</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.874659</td>\n",
              "      <td>-0.874659</td>\n",
              "      <td>-0.874659</td>\n",
              "      <td>-0.874659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.778313</td>\n",
              "      <td>-0.778313</td>\n",
              "      <td>-0.778313</td>\n",
              "      <td>-0.778313</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.998073</td>\n",
              "      <td>-0.998073</td>\n",
              "      <td>-0.998073</td>\n",
              "      <td>-0.998073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.234568</td>\n",
              "      <td>0.123077</td>\n",
              "      <td>-0.811321</td>\n",
              "      <td>-0.186441</td>\n",
              "      <td>-1.071429e-01</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>-0.234568</td>\n",
              "      <td>0.123077</td>\n",
              "      <td>-0.811321</td>\n",
              "      <td>-0.172414</td>\n",
              "      <td>-0.107143</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>-0.030928</td>\n",
              "      <td>0.287500</td>\n",
              "      <td>-0.641026</td>\n",
              "      <td>-0.071429</td>\n",
              "      <td>0.318681</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-0.470085</td>\n",
              "      <td>-0.210811</td>\n",
              "      <td>-0.850746</td>\n",
              "      <td>-0.272727</td>\n",
              "      <td>-0.275362</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>77</th>\n",
              "      <td>20.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.965463</td>\n",
              "      <td>-0.965463</td>\n",
              "      <td>-0.965463</td>\n",
              "      <td>-0.965463</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.907997</td>\n",
              "      <td>-0.907997</td>\n",
              "      <td>-0.907997</td>\n",
              "      <td>-0.907997</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.820780</td>\n",
              "      <td>-0.820780</td>\n",
              "      <td>-0.820780</td>\n",
              "      <td>-0.820780</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-0.697095</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.883553</td>\n",
              "      <td>-0.883553</td>\n",
              "      <td>-0.883553</td>\n",
              "      <td>-0.883553</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.941399</td>\n",
              "      <td>-0.941399</td>\n",
              "      <td>-0.941399</td>\n",
              "      <td>-0.941399</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.572764</td>\n",
              "      <td>-0.572764</td>\n",
              "      <td>-0.572764</td>\n",
              "      <td>-0.572764</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-0.629630</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-0.997761</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.082703</td>\n",
              "      <td>-0.613317</td>\n",
              "      <td>-0.367722</td>\n",
              "      <td>-0.556042</td>\n",
              "      <td>1.575461e-01</td>\n",
              "      <td>0.785441</td>\n",
              "      <td>-0.061728</td>\n",
              "      <td>-0.600000</td>\n",
              "      <td>-0.374214</td>\n",
              "      <td>-0.551724</td>\n",
              "      <td>0.160714</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-0.024055</td>\n",
              "      <td>-0.425000</td>\n",
              "      <td>-0.396011</td>\n",
              "      <td>-0.535714</td>\n",
              "      <td>0.390110</td>\n",
              "      <td>0.893939</td>\n",
              "      <td>-0.242165</td>\n",
              "      <td>-0.614414</td>\n",
              "      <td>-0.378109</td>\n",
              "      <td>-0.242424</td>\n",
              "      <td>0.050725</td>\n",
              "      <td>0.868421</td>\n",
              "      <td>-0.773913</td>\n",
              "      <td>-0.758691</td>\n",
              "      <td>-0.735369</td>\n",
              "      <td>-0.588235</td>\n",
              "      <td>-0.809524</td>\n",
              "      <td>-0.944444</td>\n",
              "      <td>-0.830435</td>\n",
              "      <td>-0.731427</td>\n",
              "      <td>-0.816184</td>\n",
              "      <td>-0.573477</td>\n",
              "      <td>-0.812629</td>\n",
              "      <td>-0.943902</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>82</th>\n",
              "      <td>21.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.884817</td>\n",
              "      <td>-0.884817</td>\n",
              "      <td>-0.884817</td>\n",
              "      <td>-0.884817</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851736</td>\n",
              "      <td>-0.851736</td>\n",
              "      <td>-0.851736</td>\n",
              "      <td>-0.851736</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.260204</td>\n",
              "      <td>0.260204</td>\n",
              "      <td>0.260204</td>\n",
              "      <td>0.260204</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.897381</td>\n",
              "      <td>-0.897381</td>\n",
              "      <td>-0.897381</td>\n",
              "      <td>-0.897381</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.696162</td>\n",
              "      <td>-0.696162</td>\n",
              "      <td>-0.696162</td>\n",
              "      <td>-0.696162</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.881133</td>\n",
              "      <td>-0.881133</td>\n",
              "      <td>-0.881133</td>\n",
              "      <td>-0.881133</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.884544</td>\n",
              "      <td>-0.884544</td>\n",
              "      <td>-0.884544</td>\n",
              "      <td>-0.884544</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.197065</td>\n",
              "      <td>-0.197065</td>\n",
              "      <td>-0.197065</td>\n",
              "      <td>-0.197065</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.164634</td>\n",
              "      <td>-0.164634</td>\n",
              "      <td>-0.164634</td>\n",
              "      <td>-0.164634</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.080010</td>\n",
              "      <td>0.080010</td>\n",
              "      <td>0.080010</td>\n",
              "      <td>0.080010</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.863654</td>\n",
              "      <td>-0.863654</td>\n",
              "      <td>-0.863654</td>\n",
              "      <td>-0.863654</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.830913</td>\n",
              "      <td>-0.830913</td>\n",
              "      <td>-0.830913</td>\n",
              "      <td>-0.830913</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.907363</td>\n",
              "      <td>-0.907363</td>\n",
              "      <td>-0.907363</td>\n",
              "      <td>-0.907363</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.822485</td>\n",
              "      <td>-0.822485</td>\n",
              "      <td>-0.822485</td>\n",
              "      <td>-0.822485</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.842911</td>\n",
              "      <td>-0.842911</td>\n",
              "      <td>-0.842911</td>\n",
              "      <td>-0.842911</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.469697</td>\n",
              "      <td>0.469697</td>\n",
              "      <td>0.469697</td>\n",
              "      <td>0.469697</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.723632</td>\n",
              "      <td>-0.723632</td>\n",
              "      <td>-0.723632</td>\n",
              "      <td>-0.723632</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.740741</td>\n",
              "      <td>-0.740741</td>\n",
              "      <td>-0.740741</td>\n",
              "      <td>-0.740741</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.166667</td>\n",
              "      <td>-0.166667</td>\n",
              "      <td>-0.166667</td>\n",
              "      <td>-0.166667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-0.257143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986517</td>\n",
              "      <td>-0.986517</td>\n",
              "      <td>-0.986517</td>\n",
              "      <td>-0.986517</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.970274</td>\n",
              "      <td>-0.970274</td>\n",
              "      <td>-0.970274</td>\n",
              "      <td>-0.970274</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.963767</td>\n",
              "      <td>-0.963767</td>\n",
              "      <td>-0.963767</td>\n",
              "      <td>-0.963767</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.323045</td>\n",
              "      <td>-0.691453</td>\n",
              "      <td>-0.341195</td>\n",
              "      <td>-0.500942</td>\n",
              "      <td>2.132937e-01</td>\n",
              "      <td>0.717105</td>\n",
              "      <td>-0.382716</td>\n",
              "      <td>-0.707692</td>\n",
              "      <td>-0.320755</td>\n",
              "      <td>-0.551724</td>\n",
              "      <td>0.178571</td>\n",
              "      <td>0.710526</td>\n",
              "      <td>-0.154639</td>\n",
              "      <td>-0.418750</td>\n",
              "      <td>-0.290598</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.406593</td>\n",
              "      <td>0.868687</td>\n",
              "      <td>-0.401709</td>\n",
              "      <td>-0.708108</td>\n",
              "      <td>-0.417910</td>\n",
              "      <td>-0.363636</td>\n",
              "      <td>0.202899</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.871166</td>\n",
              "      <td>-0.870229</td>\n",
              "      <td>-0.735294</td>\n",
              "      <td>-0.702381</td>\n",
              "      <td>-0.949495</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.842953</td>\n",
              "      <td>-0.902250</td>\n",
              "      <td>-0.709677</td>\n",
              "      <td>-0.703201</td>\n",
              "      <td>-0.949539</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>87</th>\n",
              "      <td>22.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.821990</td>\n",
              "      <td>-0.821990</td>\n",
              "      <td>-0.821990</td>\n",
              "      <td>-0.821990</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-0.883935</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.773987</td>\n",
              "      <td>-0.773987</td>\n",
              "      <td>-0.773987</td>\n",
              "      <td>-0.773987</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.989486</td>\n",
              "      <td>-0.989486</td>\n",
              "      <td>-0.989486</td>\n",
              "      <td>-0.989486</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.918063</td>\n",
              "      <td>-0.918063</td>\n",
              "      <td>-0.918063</td>\n",
              "      <td>-0.918063</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.232704</td>\n",
              "      <td>0.232704</td>\n",
              "      <td>0.232704</td>\n",
              "      <td>0.232704</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.146341</td>\n",
              "      <td>0.146341</td>\n",
              "      <td>0.146341</td>\n",
              "      <td>0.146341</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.874656</td>\n",
              "      <td>-0.874656</td>\n",
              "      <td>-0.874656</td>\n",
              "      <td>-0.874656</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.780224</td>\n",
              "      <td>-0.780224</td>\n",
              "      <td>-0.780224</td>\n",
              "      <td>-0.780224</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.578838</td>\n",
              "      <td>-0.578838</td>\n",
              "      <td>-0.578838</td>\n",
              "      <td>-0.578838</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-0.897959</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-0.857988</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.151515</td>\n",
              "      <td>0.151515</td>\n",
              "      <td>0.151515</td>\n",
              "      <td>0.151515</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.468625</td>\n",
              "      <td>-0.468625</td>\n",
              "      <td>-0.468625</td>\n",
              "      <td>-0.468625</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-0.997014</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.812048</td>\n",
              "      <td>-0.812048</td>\n",
              "      <td>-0.812048</td>\n",
              "      <td>-0.812048</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978645</td>\n",
              "      <td>-0.978645</td>\n",
              "      <td>-0.978645</td>\n",
              "      <td>-0.978645</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.004703</td>\n",
              "      <td>-0.158425</td>\n",
              "      <td>-0.289982</td>\n",
              "      <td>-0.556901</td>\n",
              "      <td>-4.634354e-02</td>\n",
              "      <td>0.850877</td>\n",
              "      <td>-0.037037</td>\n",
              "      <td>-0.141026</td>\n",
              "      <td>-0.301887</td>\n",
              "      <td>-0.540230</td>\n",
              "      <td>-0.047619</td>\n",
              "      <td>0.885965</td>\n",
              "      <td>0.037801</td>\n",
              "      <td>-0.041667</td>\n",
              "      <td>-0.242165</td>\n",
              "      <td>-0.523810</td>\n",
              "      <td>0.260073</td>\n",
              "      <td>0.360269</td>\n",
              "      <td>-0.179487</td>\n",
              "      <td>-0.290090</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.535354</td>\n",
              "      <td>-0.072464</td>\n",
              "      <td>0.929825</td>\n",
              "      <td>-0.762319</td>\n",
              "      <td>-0.766871</td>\n",
              "      <td>-0.826972</td>\n",
              "      <td>-0.882353</td>\n",
              "      <td>-0.769841</td>\n",
              "      <td>-0.387205</td>\n",
              "      <td>-0.796273</td>\n",
              "      <td>-0.765969</td>\n",
              "      <td>-0.867952</td>\n",
              "      <td>-0.878136</td>\n",
              "      <td>-0.770475</td>\n",
              "      <td>-0.397254</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>92</th>\n",
              "      <td>23.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-0.934890</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-0.044025</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.048780</td>\n",
              "      <td>-0.048780</td>\n",
              "      <td>-0.048780</td>\n",
              "      <td>-0.048780</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779452</td>\n",
              "      <td>-0.779452</td>\n",
              "      <td>-0.779452</td>\n",
              "      <td>-0.779452</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.699170</td>\n",
              "      <td>-0.699170</td>\n",
              "      <td>-0.699170</td>\n",
              "      <td>-0.699170</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.613233</td>\n",
              "      <td>-0.613233</td>\n",
              "      <td>-0.613233</td>\n",
              "      <td>-0.613233</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.287049</td>\n",
              "      <td>-0.287049</td>\n",
              "      <td>-0.287049</td>\n",
              "      <td>-0.287049</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.922892</td>\n",
              "      <td>-0.922892</td>\n",
              "      <td>-0.922892</td>\n",
              "      <td>-0.922892</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.047512</td>\n",
              "      <td>-0.464569</td>\n",
              "      <td>-0.183819</td>\n",
              "      <td>-0.534669</td>\n",
              "      <td>1.664863e-01</td>\n",
              "      <td>0.770335</td>\n",
              "      <td>-0.024691</td>\n",
              "      <td>-0.461538</td>\n",
              "      <td>-0.179245</td>\n",
              "      <td>-0.540230</td>\n",
              "      <td>0.202381</td>\n",
              "      <td>0.771930</td>\n",
              "      <td>-0.037801</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.156695</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.355311</td>\n",
              "      <td>0.885522</td>\n",
              "      <td>-0.259259</td>\n",
              "      <td>-0.563964</td>\n",
              "      <td>-0.233831</td>\n",
              "      <td>-0.434343</td>\n",
              "      <td>0.082126</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>-0.779710</td>\n",
              "      <td>-0.832311</td>\n",
              "      <td>-0.801527</td>\n",
              "      <td>-0.803922</td>\n",
              "      <td>-0.746032</td>\n",
              "      <td>-0.946128</td>\n",
              "      <td>-0.832197</td>\n",
              "      <td>-0.817330</td>\n",
              "      <td>-0.851997</td>\n",
              "      <td>-0.797519</td>\n",
              "      <td>-0.750556</td>\n",
              "      <td>-0.946315</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>97</th>\n",
              "      <td>24.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.263158</td>\n",
              "      <td>0.263158</td>\n",
              "      <td>0.263158</td>\n",
              "      <td>0.263158</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-0.512195</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.969649</td>\n",
              "      <td>-0.969649</td>\n",
              "      <td>-0.969649</td>\n",
              "      <td>-0.969649</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>0.081633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-0.923567</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.880597</td>\n",
              "      <td>-0.880597</td>\n",
              "      <td>-0.880597</td>\n",
              "      <td>-0.880597</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996495</td>\n",
              "      <td>-0.996495</td>\n",
              "      <td>-0.996495</td>\n",
              "      <td>-0.996495</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.735568</td>\n",
              "      <td>-0.735568</td>\n",
              "      <td>-0.735568</td>\n",
              "      <td>-0.735568</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-0.228512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-0.256098</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.842024</td>\n",
              "      <td>-0.842024</td>\n",
              "      <td>-0.842024</td>\n",
              "      <td>-0.842024</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.925311</td>\n",
              "      <td>-0.925311</td>\n",
              "      <td>-0.925311</td>\n",
              "      <td>-0.925311</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.514793</td>\n",
              "      <td>-0.514793</td>\n",
              "      <td>-0.514793</td>\n",
              "      <td>-0.514793</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958412</td>\n",
              "      <td>-0.958412</td>\n",
              "      <td>-0.958412</td>\n",
              "      <td>-0.958412</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>0.848485</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754339</td>\n",
              "      <td>-0.754339</td>\n",
              "      <td>-0.754339</td>\n",
              "      <td>-0.754339</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.827160</td>\n",
              "      <td>0.827160</td>\n",
              "      <td>0.827160</td>\n",
              "      <td>0.827160</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-0.891008</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-0.879518</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.981960</td>\n",
              "      <td>-0.981960</td>\n",
              "      <td>-0.981960</td>\n",
              "      <td>-0.981960</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.358491</td>\n",
              "      <td>NaN</td>\n",
              "      <td>2.142857e-01</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.358491</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.214286</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.516484</td>\n",
              "      <td>0.878788</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.492537</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.014493</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>99</th>\n",
              "      <td>25.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.960784</td>\n",
              "      <td>-0.960784</td>\n",
              "      <td>-0.960784</td>\n",
              "      <td>-0.960784</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.924763</td>\n",
              "      <td>-0.924763</td>\n",
              "      <td>-0.924763</td>\n",
              "      <td>-0.924763</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.877801</td>\n",
              "      <td>-0.877801</td>\n",
              "      <td>-0.877801</td>\n",
              "      <td>-0.877801</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.647477</td>\n",
              "      <td>-0.647477</td>\n",
              "      <td>-0.647477</td>\n",
              "      <td>-0.647477</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.948403</td>\n",
              "      <td>-0.948403</td>\n",
              "      <td>-0.948403</td>\n",
              "      <td>-0.948403</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-0.817505</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.134871</td>\n",
              "      <td>-0.134871</td>\n",
              "      <td>-0.134871</td>\n",
              "      <td>-0.134871</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.215447</td>\n",
              "      <td>-0.215447</td>\n",
              "      <td>-0.215447</td>\n",
              "      <td>-0.215447</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.250953</td>\n",
              "      <td>-0.250953</td>\n",
              "      <td>-0.250953</td>\n",
              "      <td>-0.250953</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.784859</td>\n",
              "      <td>-0.784859</td>\n",
              "      <td>-0.784859</td>\n",
              "      <td>-0.784859</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.854772</td>\n",
              "      <td>-0.854772</td>\n",
              "      <td>-0.854772</td>\n",
              "      <td>-0.854772</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.816460</td>\n",
              "      <td>-0.816460</td>\n",
              "      <td>-0.816460</td>\n",
              "      <td>-0.816460</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.730309</td>\n",
              "      <td>-0.730309</td>\n",
              "      <td>-0.730309</td>\n",
              "      <td>-0.730309</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.375887</td>\n",
              "      <td>0.375887</td>\n",
              "      <td>0.375887</td>\n",
              "      <td>0.375887</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.243436</td>\n",
              "      <td>-0.243436</td>\n",
              "      <td>-0.243436</td>\n",
              "      <td>-0.243436</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.530864</td>\n",
              "      <td>-0.530864</td>\n",
              "      <td>-0.530864</td>\n",
              "      <td>-0.530864</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.888889</td>\n",
              "      <td>0.888889</td>\n",
              "      <td>0.888889</td>\n",
              "      <td>0.888889</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.187302</td>\n",
              "      <td>-0.187302</td>\n",
              "      <td>-0.187302</td>\n",
              "      <td>-0.187302</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994930</td>\n",
              "      <td>-0.994930</td>\n",
              "      <td>-0.994930</td>\n",
              "      <td>-0.994930</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986916</td>\n",
              "      <td>-0.986916</td>\n",
              "      <td>-0.986916</td>\n",
              "      <td>-0.986916</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-0.855422</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.971810</td>\n",
              "      <td>-0.971810</td>\n",
              "      <td>-0.971810</td>\n",
              "      <td>-0.971810</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.107248</td>\n",
              "      <td>-0.378179</td>\n",
              "      <td>-0.443974</td>\n",
              "      <td>-0.651332</td>\n",
              "      <td>1.327745e-01</td>\n",
              "      <td>0.753849</td>\n",
              "      <td>-0.127572</td>\n",
              "      <td>-0.364103</td>\n",
              "      <td>-0.440252</td>\n",
              "      <td>-0.655172</td>\n",
              "      <td>0.119048</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>-0.010309</td>\n",
              "      <td>-0.191667</td>\n",
              "      <td>-0.367521</td>\n",
              "      <td>-0.619048</td>\n",
              "      <td>0.333333</td>\n",
              "      <td>0.878788</td>\n",
              "      <td>-0.339031</td>\n",
              "      <td>-0.445045</td>\n",
              "      <td>-0.467662</td>\n",
              "      <td>-0.616162</td>\n",
              "      <td>0.101449</td>\n",
              "      <td>0.807018</td>\n",
              "      <td>-0.884058</td>\n",
              "      <td>-0.795501</td>\n",
              "      <td>-0.852417</td>\n",
              "      <td>-0.882353</td>\n",
              "      <td>-0.706349</td>\n",
              "      <td>-0.952862</td>\n",
              "      <td>-0.900621</td>\n",
              "      <td>-0.781879</td>\n",
              "      <td>-0.882743</td>\n",
              "      <td>-0.878136</td>\n",
              "      <td>-0.711137</td>\n",
              "      <td>-0.952402</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>104</th>\n",
              "      <td>26.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.140461</td>\n",
              "      <td>0.140461</td>\n",
              "      <td>0.140461</td>\n",
              "      <td>0.140461</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.730784</td>\n",
              "      <td>-0.730784</td>\n",
              "      <td>-0.730784</td>\n",
              "      <td>-0.730784</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.558091</td>\n",
              "      <td>-0.558091</td>\n",
              "      <td>-0.558091</td>\n",
              "      <td>-0.558091</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.826731</td>\n",
              "      <td>-0.826731</td>\n",
              "      <td>-0.826731</td>\n",
              "      <td>-0.826731</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.874858</td>\n",
              "      <td>-0.874858</td>\n",
              "      <td>-0.874858</td>\n",
              "      <td>-0.874858</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-0.913253</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.011767</td>\n",
              "      <td>-0.514183</td>\n",
              "      <td>-0.204746</td>\n",
              "      <td>-0.546610</td>\n",
              "      <td>2.313988e-01</td>\n",
              "      <td>0.667215</td>\n",
              "      <td>-0.037037</td>\n",
              "      <td>-0.538462</td>\n",
              "      <td>-0.216981</td>\n",
              "      <td>-0.551724</td>\n",
              "      <td>0.226190</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>0.030928</td>\n",
              "      <td>-0.312500</td>\n",
              "      <td>-0.239316</td>\n",
              "      <td>-0.535714</td>\n",
              "      <td>0.472527</td>\n",
              "      <td>0.831650</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.556757</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-0.424242</td>\n",
              "      <td>0.159420</td>\n",
              "      <td>0.719298</td>\n",
              "      <td>-0.739130</td>\n",
              "      <td>-0.803681</td>\n",
              "      <td>-0.687023</td>\n",
              "      <td>-0.764706</td>\n",
              "      <td>-0.809524</td>\n",
              "      <td>-0.939394</td>\n",
              "      <td>-0.776398</td>\n",
              "      <td>-0.771568</td>\n",
              "      <td>-0.751333</td>\n",
              "      <td>-0.756272</td>\n",
              "      <td>-0.810979</td>\n",
              "      <td>-0.938802</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>109</th>\n",
              "      <td>28.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>110</th>\n",
              "      <td>29.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.814579</td>\n",
              "      <td>-0.814579</td>\n",
              "      <td>-0.814579</td>\n",
              "      <td>-0.814579</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.190776</td>\n",
              "      <td>-0.190776</td>\n",
              "      <td>-0.190776</td>\n",
              "      <td>-0.190776</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.231707</td>\n",
              "      <td>-0.231707</td>\n",
              "      <td>-0.231707</td>\n",
              "      <td>-0.231707</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.765160</td>\n",
              "      <td>-0.765160</td>\n",
              "      <td>-0.765160</td>\n",
              "      <td>-0.765160</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.807054</td>\n",
              "      <td>-0.807054</td>\n",
              "      <td>-0.807054</td>\n",
              "      <td>-0.807054</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.813926</td>\n",
              "      <td>-0.813926</td>\n",
              "      <td>-0.813926</td>\n",
              "      <td>-0.813926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.734594</td>\n",
              "      <td>-0.734594</td>\n",
              "      <td>-0.734594</td>\n",
              "      <td>-0.734594</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.671562</td>\n",
              "      <td>-0.671562</td>\n",
              "      <td>-0.671562</td>\n",
              "      <td>-0.671562</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.296296</td>\n",
              "      <td>-0.296296</td>\n",
              "      <td>-0.296296</td>\n",
              "      <td>-0.296296</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.988430</td>\n",
              "      <td>-0.988430</td>\n",
              "      <td>-0.988430</td>\n",
              "      <td>-0.988430</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.975991</td>\n",
              "      <td>-0.975991</td>\n",
              "      <td>-0.975991</td>\n",
              "      <td>-0.975991</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.711172</td>\n",
              "      <td>-0.711172</td>\n",
              "      <td>-0.711172</td>\n",
              "      <td>-0.711172</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.821687</td>\n",
              "      <td>-0.821687</td>\n",
              "      <td>-0.821687</td>\n",
              "      <td>-0.821687</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990363</td>\n",
              "      <td>-0.990363</td>\n",
              "      <td>-0.990363</td>\n",
              "      <td>-0.990363</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.615385</td>\n",
              "      <td>-0.660377</td>\n",
              "      <td>-0.525424</td>\n",
              "      <td>1.785714e-01</td>\n",
              "      <td>0.894737</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.615385</td>\n",
              "      <td>-0.660377</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>0.178571</td>\n",
              "      <td>0.894737</td>\n",
              "      <td>-0.175258</td>\n",
              "      <td>-0.312500</td>\n",
              "      <td>-0.504274</td>\n",
              "      <td>-0.428571</td>\n",
              "      <td>0.494505</td>\n",
              "      <td>0.959596</td>\n",
              "      <td>-0.589744</td>\n",
              "      <td>-0.729730</td>\n",
              "      <td>-0.731343</td>\n",
              "      <td>-0.575758</td>\n",
              "      <td>-0.043478</td>\n",
              "      <td>0.894737</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>112</th>\n",
              "      <td>30.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.972266</td>\n",
              "      <td>-0.972266</td>\n",
              "      <td>-0.972266</td>\n",
              "      <td>-0.972266</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.397959</td>\n",
              "      <td>0.397959</td>\n",
              "      <td>0.397959</td>\n",
              "      <td>0.397959</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.934183</td>\n",
              "      <td>-0.934183</td>\n",
              "      <td>-0.934183</td>\n",
              "      <td>-0.934183</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.890130</td>\n",
              "      <td>-0.890130</td>\n",
              "      <td>-0.890130</td>\n",
              "      <td>-0.890130</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-0.292683</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.039555</td>\n",
              "      <td>0.039555</td>\n",
              "      <td>0.039555</td>\n",
              "      <td>0.039555</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779838</td>\n",
              "      <td>-0.779838</td>\n",
              "      <td>-0.779838</td>\n",
              "      <td>-0.779838</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.703320</td>\n",
              "      <td>-0.703320</td>\n",
              "      <td>-0.703320</td>\n",
              "      <td>-0.703320</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.853141</td>\n",
              "      <td>-0.853141</td>\n",
              "      <td>-0.853141</td>\n",
              "      <td>-0.853141</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.656805</td>\n",
              "      <td>-0.656805</td>\n",
              "      <td>-0.656805</td>\n",
              "      <td>-0.656805</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-0.797546</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.988658</td>\n",
              "      <td>-0.988658</td>\n",
              "      <td>-0.988658</td>\n",
              "      <td>-0.988658</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>0.424242</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.546061</td>\n",
              "      <td>-0.546061</td>\n",
              "      <td>-0.546061</td>\n",
              "      <td>-0.546061</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.574074</td>\n",
              "      <td>-0.574074</td>\n",
              "      <td>-0.574074</td>\n",
              "      <td>-0.574074</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.475309</td>\n",
              "      <td>0.475309</td>\n",
              "      <td>0.475309</td>\n",
              "      <td>0.475309</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996761</td>\n",
              "      <td>-0.996761</td>\n",
              "      <td>-0.996761</td>\n",
              "      <td>-0.996761</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.881928</td>\n",
              "      <td>-0.881928</td>\n",
              "      <td>-0.881928</td>\n",
              "      <td>-0.881928</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.982500</td>\n",
              "      <td>-0.982500</td>\n",
              "      <td>-0.982500</td>\n",
              "      <td>-0.982500</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.120424</td>\n",
              "      <td>-0.493199</td>\n",
              "      <td>-0.565949</td>\n",
              "      <td>-0.529986</td>\n",
              "      <td>-2.043371e-01</td>\n",
              "      <td>0.890907</td>\n",
              "      <td>-0.078189</td>\n",
              "      <td>-0.487179</td>\n",
              "      <td>-0.556604</td>\n",
              "      <td>-0.494253</td>\n",
              "      <td>-0.166667</td>\n",
              "      <td>0.947368</td>\n",
              "      <td>-0.085911</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.512821</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>0.164835</td>\n",
              "      <td>0.878788</td>\n",
              "      <td>-0.304843</td>\n",
              "      <td>-0.477477</td>\n",
              "      <td>-0.567164</td>\n",
              "      <td>-0.494949</td>\n",
              "      <td>-0.256039</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.785507</td>\n",
              "      <td>-0.734151</td>\n",
              "      <td>-0.824427</td>\n",
              "      <td>-0.823529</td>\n",
              "      <td>-0.817460</td>\n",
              "      <td>-0.878788</td>\n",
              "      <td>-0.816149</td>\n",
              "      <td>-0.692251</td>\n",
              "      <td>-0.845347</td>\n",
              "      <td>-0.819342</td>\n",
              "      <td>-0.816042</td>\n",
              "      <td>-0.883579</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>117</th>\n",
              "      <td>31.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.560976</td>\n",
              "      <td>-0.560976</td>\n",
              "      <td>-0.560976</td>\n",
              "      <td>-0.560976</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.813163</td>\n",
              "      <td>-0.813163</td>\n",
              "      <td>-0.813163</td>\n",
              "      <td>-0.813163</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.094340</td>\n",
              "      <td>-0.094340</td>\n",
              "      <td>-0.094340</td>\n",
              "      <td>-0.094340</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.195122</td>\n",
              "      <td>-0.195122</td>\n",
              "      <td>-0.195122</td>\n",
              "      <td>-0.195122</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.631904</td>\n",
              "      <td>-0.631904</td>\n",
              "      <td>-0.631904</td>\n",
              "      <td>-0.631904</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.921162</td>\n",
              "      <td>-0.921162</td>\n",
              "      <td>-0.921162</td>\n",
              "      <td>-0.921162</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.649460</td>\n",
              "      <td>-0.649460</td>\n",
              "      <td>-0.649460</td>\n",
              "      <td>-0.649460</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.443787</td>\n",
              "      <td>-0.443787</td>\n",
              "      <td>-0.443787</td>\n",
              "      <td>-0.443787</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.865031</td>\n",
              "      <td>-0.865031</td>\n",
              "      <td>-0.865031</td>\n",
              "      <td>-0.865031</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.116068</td>\n",
              "      <td>-0.116068</td>\n",
              "      <td>-0.116068</td>\n",
              "      <td>-0.116068</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.652870</td>\n",
              "      <td>-0.652870</td>\n",
              "      <td>-0.652870</td>\n",
              "      <td>-0.652870</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-0.407407</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.802469</td>\n",
              "      <td>0.802469</td>\n",
              "      <td>0.802469</td>\n",
              "      <td>0.802469</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-0.314286</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.964542</td>\n",
              "      <td>-0.964542</td>\n",
              "      <td>-0.964542</td>\n",
              "      <td>-0.964542</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.946265</td>\n",
              "      <td>-0.946265</td>\n",
              "      <td>-0.946265</td>\n",
              "      <td>-0.946265</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.556627</td>\n",
              "      <td>-0.556627</td>\n",
              "      <td>-0.556627</td>\n",
              "      <td>-0.556627</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.946036</td>\n",
              "      <td>-0.946036</td>\n",
              "      <td>-0.946036</td>\n",
              "      <td>-0.946036</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>119</th>\n",
              "      <td>32.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.950460</td>\n",
              "      <td>-0.950460</td>\n",
              "      <td>-0.950460</td>\n",
              "      <td>-0.950460</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.949474</td>\n",
              "      <td>-0.949474</td>\n",
              "      <td>-0.949474</td>\n",
              "      <td>-0.949474</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.280922</td>\n",
              "      <td>-0.280922</td>\n",
              "      <td>-0.280922</td>\n",
              "      <td>-0.280922</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.329268</td>\n",
              "      <td>-0.329268</td>\n",
              "      <td>-0.329268</td>\n",
              "      <td>-0.329268</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.962359</td>\n",
              "      <td>-0.962359</td>\n",
              "      <td>-0.962359</td>\n",
              "      <td>-0.962359</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.840093</td>\n",
              "      <td>-0.840093</td>\n",
              "      <td>-0.840093</td>\n",
              "      <td>-0.840093</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.826763</td>\n",
              "      <td>-0.826763</td>\n",
              "      <td>-0.826763</td>\n",
              "      <td>-0.826763</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.881553</td>\n",
              "      <td>-0.881553</td>\n",
              "      <td>-0.881553</td>\n",
              "      <td>-0.881553</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.866163</td>\n",
              "      <td>-0.866163</td>\n",
              "      <td>-0.866163</td>\n",
              "      <td>-0.866163</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-0.455274</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.611111</td>\n",
              "      <td>-0.611111</td>\n",
              "      <td>-0.611111</td>\n",
              "      <td>-0.611111</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.992759</td>\n",
              "      <td>-0.992759</td>\n",
              "      <td>-0.992759</td>\n",
              "      <td>-0.992759</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.830673</td>\n",
              "      <td>-0.830673</td>\n",
              "      <td>-0.830673</td>\n",
              "      <td>-0.830673</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.925301</td>\n",
              "      <td>-0.925301</td>\n",
              "      <td>-0.925301</td>\n",
              "      <td>-0.925301</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986740</td>\n",
              "      <td>-0.986740</td>\n",
              "      <td>-0.986740</td>\n",
              "      <td>-0.986740</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.090698</td>\n",
              "      <td>-0.457045</td>\n",
              "      <td>-0.113021</td>\n",
              "      <td>-0.501594</td>\n",
              "      <td>1.252526e-01</td>\n",
              "      <td>0.744919</td>\n",
              "      <td>-0.098765</td>\n",
              "      <td>-0.461538</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>0.071429</td>\n",
              "      <td>0.763158</td>\n",
              "      <td>-0.072165</td>\n",
              "      <td>-0.250000</td>\n",
              "      <td>-0.119658</td>\n",
              "      <td>-0.464286</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>0.838384</td>\n",
              "      <td>-0.239316</td>\n",
              "      <td>-0.486486</td>\n",
              "      <td>-0.119403</td>\n",
              "      <td>-0.484848</td>\n",
              "      <td>0.260870</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>-0.730435</td>\n",
              "      <td>-0.785276</td>\n",
              "      <td>-0.717557</td>\n",
              "      <td>-0.882353</td>\n",
              "      <td>-0.607143</td>\n",
              "      <td>-0.898990</td>\n",
              "      <td>-0.784348</td>\n",
              "      <td>-0.750153</td>\n",
              "      <td>-0.789978</td>\n",
              "      <td>-0.878136</td>\n",
              "      <td>-0.609948</td>\n",
              "      <td>-0.899078</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "     PATIENT_VISIT_IDENTIFIER  AGE_ABOVE65  GENDER  DISEASE GROUPING 1  \\\n",
              "0                         0.0          1.0     0.0                 0.0   \n",
              "4                         2.0          0.0     0.0                 0.0   \n",
              "8                         3.0          0.0     1.0                 0.0   \n",
              "13                        4.0          0.0     0.0                 0.0   \n",
              "18                        5.0          0.0     0.0                 0.0   \n",
              "23                        6.0          1.0     1.0                 0.0   \n",
              "28                        7.0          0.0     0.0                 0.0   \n",
              "33                        8.0          0.0     0.0                 0.0   \n",
              "38                        9.0          1.0     0.0                 0.0   \n",
              "43                       10.0          1.0     0.0                 0.0   \n",
              "48                       11.0          1.0     0.0                 0.0   \n",
              "51                       12.0          0.0     1.0                 0.0   \n",
              "56                       13.0          0.0     0.0                 0.0   \n",
              "60                       14.0          1.0     1.0                 0.0   \n",
              "62                       15.0          0.0     0.0                 0.0   \n",
              "66                       16.0          0.0     0.0                 0.0   \n",
              "71                       18.0          0.0     0.0                 0.0   \n",
              "73                       19.0          1.0     0.0                 0.0   \n",
              "77                       20.0          0.0     1.0                 0.0   \n",
              "82                       21.0          1.0     0.0                 0.0   \n",
              "87                       22.0          1.0     0.0                 0.0   \n",
              "92                       23.0          0.0     1.0                 0.0   \n",
              "97                       24.0          1.0     1.0                 0.0   \n",
              "99                       25.0          1.0     0.0                 0.0   \n",
              "104                      26.0          0.0     0.0                 0.0   \n",
              "109                      28.0          0.0     0.0                 0.0   \n",
              "110                      29.0          1.0     0.0                 0.0   \n",
              "112                      30.0          1.0     1.0                 0.0   \n",
              "117                      31.0          1.0     0.0                 0.0   \n",
              "119                      32.0          0.0     1.0                 0.0   \n",
              "\n",
              "     DISEASE GROUPING 2  DISEASE GROUPING 3  DISEASE GROUPING 4  \\\n",
              "0                   0.0                 0.0                 0.0   \n",
              "4                   0.0                 0.0                 0.0   \n",
              "8                   0.0                 0.0                 0.0   \n",
              "13                  0.0                 0.0                 0.0   \n",
              "18                  0.0                 0.0                 0.0   \n",
              "23                  0.0                 0.0                 0.0   \n",
              "28                  0.0                 0.0                 0.0   \n",
              "33                  0.0                 0.0                 0.0   \n",
              "38                  0.0                 0.0                 0.0   \n",
              "43                  0.0                 0.0                 0.0   \n",
              "48                  0.0                 0.0                 0.0   \n",
              "51                  0.0                 0.0                 0.0   \n",
              "56                  0.0                 0.0                 0.0   \n",
              "60                  0.0                 0.0                 0.0   \n",
              "62                  0.0                 0.0                 0.0   \n",
              "66                  0.0                 0.0                 0.0   \n",
              "71                  0.0                 0.0                 0.0   \n",
              "73                  0.0                 0.0                 0.0   \n",
              "77                  0.0                 0.0                 0.0   \n",
              "82                  0.0                 0.0                 0.0   \n",
              "87                  0.0                 0.0                 0.0   \n",
              "92                  0.0                 0.0                 0.0   \n",
              "97                  0.0                 0.0                 0.0   \n",
              "99                  0.0                 0.0                 0.0   \n",
              "104                 0.0                 0.0                 0.0   \n",
              "109                 0.0                 0.0                 0.0   \n",
              "110                 0.0                 1.0                 1.0   \n",
              "112                 0.0                 0.0                 0.0   \n",
              "117                 0.0                 0.0                 0.0   \n",
              "119                 0.0                 0.0                 0.0   \n",
              "\n",
              "     DISEASE GROUPING 5  DISEASE GROUPING 6  HTN  IMMUNOCOMPROMISED  OTHER  \\\n",
              "0                   1.0                 1.0  0.0                0.0    1.0   \n",
              "4                   0.0                 0.0  0.0                0.0    1.0   \n",
              "8                   0.0                 0.0  0.0                1.0    1.0   \n",
              "13                  0.0                 0.0  0.0                0.0    1.0   \n",
              "18                  0.0                 0.0  0.0                0.0    1.0   \n",
              "23                  0.0                 0.0  0.0                1.0    1.0   \n",
              "28                  0.0                 0.0  1.0                0.0    1.0   \n",
              "33                  0.0                 0.0  0.0                0.0    0.0   \n",
              "38                  0.0                 0.0  0.0                0.0    0.0   \n",
              "43                  0.0                 0.0  0.0                0.0    1.0   \n",
              "48                  0.0                 0.0  0.0                0.0    0.0   \n",
              "51                  0.0                 0.0  0.0                0.0    1.0   \n",
              "56                  0.0                 0.0  0.0                0.0    0.0   \n",
              "60                  0.0                 0.0  0.0                1.0    1.0   \n",
              "62                  0.0                 0.0  0.0                1.0    1.0   \n",
              "66                  0.0                 0.0  0.0                0.0    0.0   \n",
              "71                  0.0                 0.0  0.0                0.0    0.0   \n",
              "73                  0.0                 0.0  1.0                1.0    1.0   \n",
              "77                  0.0                 0.0  0.0                0.0    0.0   \n",
              "82                  0.0                 0.0  0.0                0.0    1.0   \n",
              "87                  1.0                 0.0  1.0                0.0    1.0   \n",
              "92                  0.0                 0.0  0.0                0.0    0.0   \n",
              "97                  0.0                 0.0  0.0                0.0    1.0   \n",
              "99                  0.0                 0.0  0.0                0.0    1.0   \n",
              "104                 0.0                 0.0  0.0                0.0    1.0   \n",
              "109                 0.0                 0.0  0.0                0.0    1.0   \n",
              "110                 1.0                 0.0  1.0                0.0    1.0   \n",
              "112                 0.0                 0.0  0.0                0.0    1.0   \n",
              "117                 0.0                 0.0  0.0                0.0    1.0   \n",
              "119                 0.0                 0.0  0.0                0.0    0.0   \n",
              "\n",
              "     ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  ALBUMIN_MAX  ALBUMIN_DIFF  \\\n",
              "0          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "4          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "8         -0.263158     -0.263158    -0.263158    -0.263158          -1.0   \n",
              "13         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "18         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "23         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "28         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "33         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "38         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "43         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "48         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "51         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "56         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "60         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "62         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "66         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "71         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "73         1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "77         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "82         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "87         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "92         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "97         0.263158      0.263158     0.263158     0.263158          -1.0   \n",
              "99         0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "104        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "109             NaN           NaN          NaN          NaN           NaN   \n",
              "110        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "112        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "117        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "119        0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "\n",
              "     BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  \\\n",
              "0             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "4             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "8             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "13            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "18            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "23            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "28            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "33            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "38            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "43            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "48            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "51            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "56            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "60            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "62            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "66            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "71            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "73            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "77            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "82            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "87            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "92            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "97            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "99            -0.960784         -0.960784        -0.960784        -0.960784   \n",
              "104           -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "109                 NaN               NaN              NaN              NaN   \n",
              "110           -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "112           -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "117           -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "119           -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "\n",
              "     BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  BE_VENOUS_MEAN  BE_VENOUS_MIN  \\\n",
              "0                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "4                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "8                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "13               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "18               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "23               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "28               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "33               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "38               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "43               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "48               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "51               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "56               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "60               -1.0         -0.895288       -0.895288      -0.895288   \n",
              "62               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "66               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "71               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "73               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "77               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "82               -1.0         -0.884817       -0.884817      -0.884817   \n",
              "87               -1.0         -0.821990       -0.821990      -0.821990   \n",
              "92               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "97               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "99               -1.0         -1.000000       -1.000000      -1.000000   \n",
              "104              -1.0         -1.000000       -1.000000      -1.000000   \n",
              "109               NaN               NaN             NaN            NaN   \n",
              "110              -1.0         -1.000000       -1.000000      -1.000000   \n",
              "112              -1.0         -1.000000       -1.000000      -1.000000   \n",
              "117              -1.0         -1.000000       -1.000000      -1.000000   \n",
              "119              -1.0         -1.000000       -1.000000      -1.000000   \n",
              "\n",
              "     BE_VENOUS_MAX  BE_VENOUS_DIFF  BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  \\\n",
              "0        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "4        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "8        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "13       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "18       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "23       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "28       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "33       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "38       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "43       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "48       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "51       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "56       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "60       -0.895288            -1.0            -0.317073          -0.317073   \n",
              "62       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "66       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "71       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "73       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "77       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "82       -0.884817            -1.0            -0.317073          -0.317073   \n",
              "87       -0.821990            -1.0            -0.317073          -0.317073   \n",
              "92       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "97       -1.000000            -1.0            -0.317073          -0.317073   \n",
              "99       -1.000000            -1.0            -0.333333          -0.333333   \n",
              "104      -1.000000            -1.0            -0.317073          -0.317073   \n",
              "109            NaN             NaN                  NaN                NaN   \n",
              "110      -1.000000            -1.0            -0.317073          -0.317073   \n",
              "112      -1.000000            -1.0            -0.317073          -0.317073   \n",
              "117      -1.000000            -1.0            -0.317073          -0.317073   \n",
              "119      -1.000000            -1.0            -0.317073          -0.317073   \n",
              "\n",
              "     BIC_ARTERIAL_MIN  BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  BIC_VENOUS_MEDIAN  \\\n",
              "0           -0.317073         -0.317073               -1.0          -0.317073   \n",
              "4           -0.317073         -0.317073               -1.0          -0.317073   \n",
              "8           -0.317073         -0.317073               -1.0          -0.317073   \n",
              "13          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "18          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "23          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "28          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "33          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "38          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "43          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "48          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "51          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "56          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "60          -0.317073         -0.317073               -1.0          -0.268293   \n",
              "62          -0.317073         -0.317073               -1.0          -0.512195   \n",
              "66          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "71          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "73          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "77          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "82          -0.317073         -0.317073               -1.0          -0.292683   \n",
              "87          -0.317073         -0.317073               -1.0          -0.073171   \n",
              "92          -0.317073         -0.317073               -1.0          -0.317073   \n",
              "97          -0.317073         -0.317073               -1.0          -0.512195   \n",
              "99          -0.333333         -0.333333               -1.0          -0.317073   \n",
              "104         -0.317073         -0.317073               -1.0          -0.317073   \n",
              "109               NaN               NaN                NaN                NaN   \n",
              "110         -0.317073         -0.317073               -1.0          -0.317073   \n",
              "112         -0.317073         -0.317073               -1.0          -0.365854   \n",
              "117         -0.317073         -0.317073               -1.0          -0.560976   \n",
              "119         -0.317073         -0.317073               -1.0          -0.317073   \n",
              "\n",
              "     BIC_VENOUS_MEAN  BIC_VENOUS_MIN  BIC_VENOUS_MAX  BIC_VENOUS_DIFF  \\\n",
              "0          -0.317073       -0.317073       -0.317073             -1.0   \n",
              "4          -0.317073       -0.317073       -0.317073             -1.0   \n",
              "8          -0.317073       -0.317073       -0.317073             -1.0   \n",
              "13         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "18         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "23         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "28         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "33         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "38         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "43         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "48         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "51         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "56         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "60         -0.268293       -0.268293       -0.268293             -1.0   \n",
              "62         -0.512195       -0.512195       -0.512195             -1.0   \n",
              "66         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "71         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "73         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "77         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "82         -0.292683       -0.292683       -0.292683             -1.0   \n",
              "87         -0.073171       -0.073171       -0.073171             -1.0   \n",
              "92         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "97         -0.512195       -0.512195       -0.512195             -1.0   \n",
              "99         -0.317073       -0.317073       -0.317073             -1.0   \n",
              "104        -0.317073       -0.317073       -0.317073             -1.0   \n",
              "109              NaN             NaN             NaN              NaN   \n",
              "110        -0.317073       -0.317073       -0.317073             -1.0   \n",
              "112        -0.365854       -0.365854       -0.365854             -1.0   \n",
              "117        -0.560976       -0.560976       -0.560976             -1.0   \n",
              "119        -0.317073       -0.317073       -0.317073             -1.0   \n",
              "\n",
              "     BILLIRUBIN_MEDIAN  BILLIRUBIN_MEAN  BILLIRUBIN_MIN  BILLIRUBIN_MAX  \\\n",
              "0            -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "4            -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "8            -0.972789        -0.972789       -0.972789       -0.972789   \n",
              "13           -0.935113        -0.935113       -0.935113       -0.935113   \n",
              "18           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "23           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "28           -0.966510        -0.966510       -0.966510       -0.966510   \n",
              "33           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "38           -0.944357        -0.944357       -0.944357       -0.944357   \n",
              "43           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "48           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "51           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "56           -0.944532        -0.944532       -0.944532       -0.944532   \n",
              "60           -0.953951        -0.953951       -0.953951       -0.953951   \n",
              "62           -0.957091        -0.957091       -0.957091       -0.957091   \n",
              "66           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "71           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "73           -0.923600        -0.923600       -0.923600       -0.923600   \n",
              "77           -0.965463        -0.965463       -0.965463       -0.965463   \n",
              "82           -0.851736        -0.851736       -0.851736       -0.851736   \n",
              "87           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "92           -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "97           -0.969649        -0.969649       -0.969649       -0.969649   \n",
              "99           -0.924763        -0.924763       -0.924763       -0.924763   \n",
              "104          -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "109                NaN              NaN             NaN             NaN   \n",
              "110          -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "112          -0.972266        -0.972266       -0.972266       -0.972266   \n",
              "117          -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "119          -0.938950        -0.938950       -0.938950       -0.938950   \n",
              "\n",
              "     BILLIRUBIN_DIFF  BLAST_MEDIAN  BLAST_MEAN  BLAST_MIN  BLAST_MAX  \\\n",
              "0               -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "4               -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "8               -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "13              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "18              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "23              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "28              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "33              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "38              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "43              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "48              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "51              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "56              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "60              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "62              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "66              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "71              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "73              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "77              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "82              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "87              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "92              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "97              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "99              -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "104             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "109              NaN           NaN         NaN        NaN        NaN   \n",
              "110             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "112             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "117             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "119             -1.0          -1.0        -1.0       -1.0       -1.0   \n",
              "\n",
              "     BLAST_DIFF  CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  CALCIUM_MAX  \\\n",
              "0          -1.0        0.183673      0.183673     0.183673     0.183673   \n",
              "4          -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "8          -1.0        0.326531      0.326531     0.326531     0.326531   \n",
              "13         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "18         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "23         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "28         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "33         -1.0        0.081633      0.081633     0.081633     0.081633   \n",
              "38         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "43         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "48         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "51         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "56         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "60         -1.0        0.061224      0.061224     0.061224     0.061224   \n",
              "62         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "66         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "71         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "73         -1.0        0.428571      0.428571     0.428571     0.428571   \n",
              "77         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "82         -1.0        0.260204      0.260204     0.260204     0.260204   \n",
              "87         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "92         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "97         -1.0        0.081633      0.081633     0.081633     0.081633   \n",
              "99         -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "104        -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "109         NaN             NaN           NaN          NaN          NaN   \n",
              "110        -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "112        -1.0        0.397959      0.397959     0.397959     0.397959   \n",
              "117        -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "119        -1.0        0.357143      0.357143     0.357143     0.357143   \n",
              "\n",
              "     CALCIUM_DIFF  CREATININ_MEDIAN  CREATININ_MEAN  CREATININ_MIN  \\\n",
              "0            -1.0         -0.868365       -0.868365      -0.868365   \n",
              "4            -1.0         -0.912243       -0.912243      -0.912243   \n",
              "8            -1.0         -0.968861       -0.968861      -0.968861   \n",
              "13           -1.0         -0.913659       -0.913659      -0.913659   \n",
              "18           -1.0         -0.891012       -0.891012      -0.891012   \n",
              "23           -1.0         -0.944798       -0.944798      -0.944798   \n",
              "28           -1.0         -0.912243       -0.912243      -0.912243   \n",
              "33           -1.0         -0.868365       -0.868365      -0.868365   \n",
              "38           -1.0         -0.923567       -0.923567      -0.923567   \n",
              "43           -1.0         -0.872611       -0.872611      -0.872611   \n",
              "48           -1.0         -0.849965       -0.849965      -0.849965   \n",
              "51           -1.0         -0.949045       -0.949045      -0.949045   \n",
              "56           -1.0         -0.871196       -0.871196      -0.871196   \n",
              "60           -1.0         -0.842887       -0.842887      -0.842887   \n",
              "62           -1.0         -0.893843       -0.893843      -0.893843   \n",
              "66           -1.0         -0.883935       -0.883935      -0.883935   \n",
              "71           -1.0         -0.898089       -0.898089      -0.898089   \n",
              "73           -1.0         -0.905166       -0.905166      -0.905166   \n",
              "77           -1.0         -0.907997       -0.907997      -0.907997   \n",
              "82           -1.0         -0.897381       -0.897381      -0.897381   \n",
              "87           -1.0         -0.883935       -0.883935      -0.883935   \n",
              "92           -1.0         -0.934890       -0.934890      -0.934890   \n",
              "97           -1.0         -0.923567       -0.923567      -0.923567   \n",
              "99           -1.0         -0.877801       -0.877801      -0.877801   \n",
              "104          -1.0         -0.913659       -0.913659      -0.913659   \n",
              "109           NaN               NaN             NaN            NaN   \n",
              "110          -1.0         -0.814579       -0.814579      -0.814579   \n",
              "112          -1.0         -0.934183       -0.934183      -0.934183   \n",
              "117          -1.0         -0.813163       -0.813163      -0.813163   \n",
              "119          -1.0         -0.950460       -0.950460      -0.950460   \n",
              "\n",
              "     CREATININ_MAX  CREATININ_DIFF  FFA_MEDIAN  FFA_MEAN   FFA_MIN   FFA_MAX  \\\n",
              "0        -0.868365            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "4        -0.912243            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "8        -0.968861            -1.0   -0.194030 -0.194030 -0.194030 -0.194030   \n",
              "13       -0.913659            -1.0   -0.829424 -0.829424 -0.829424 -0.829424   \n",
              "18       -0.891012            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "23       -0.944798            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "28       -0.912243            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "33       -0.868365            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "38       -0.923567            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "43       -0.872611            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "48       -0.849965            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "51       -0.949045            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "56       -0.871196            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "60       -0.842887            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "62       -0.893843            -1.0   -0.437100 -0.437100 -0.437100 -0.437100   \n",
              "66       -0.883935            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "71       -0.898089            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "73       -0.905166            -1.0   -0.748401 -0.748401 -0.748401 -0.748401   \n",
              "77       -0.907997            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "82       -0.897381            -1.0   -0.696162 -0.696162 -0.696162 -0.696162   \n",
              "87       -0.883935            -1.0   -0.773987 -0.773987 -0.773987 -0.773987   \n",
              "92       -0.934890            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "97       -0.923567            -1.0   -0.880597 -0.880597 -0.880597 -0.880597   \n",
              "99       -0.877801            -1.0   -0.647477 -0.647477 -0.647477 -0.647477   \n",
              "104      -0.913659            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "109            NaN             NaN         NaN       NaN       NaN       NaN   \n",
              "110      -0.814579            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "112      -0.934183            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "117      -0.813163            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "119      -0.950460            -1.0   -0.742004 -0.742004 -0.742004 -0.742004   \n",
              "\n",
              "     FFA_DIFF  GGT_MEDIAN  GGT_MEAN   GGT_MIN   GGT_MAX  GGT_DIFF  \\\n",
              "0        -1.0   -0.945093 -0.945093 -0.945093 -0.945093      -1.0   \n",
              "4        -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "8        -1.0   -0.316589 -0.316589 -0.316589 -0.316589      -1.0   \n",
              "13       -1.0   -0.938084 -0.938084 -0.938084 -0.938084      -1.0   \n",
              "18       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "23       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "28       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "33       -1.0   -0.990654 -0.990654 -0.990654 -0.990654      -1.0   \n",
              "38       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "43       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "48       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "51       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "56       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "60       -1.0   -0.967290 -0.967290 -0.967290 -0.967290      -1.0   \n",
              "62       -1.0   -0.766355 -0.766355 -0.766355 -0.766355      -1.0   \n",
              "66       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "71       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "73       -1.0   -0.978972 -0.978972 -0.978972 -0.978972      -1.0   \n",
              "77       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "82       -1.0   -0.881133 -0.881133 -0.881133 -0.881133      -1.0   \n",
              "87       -1.0   -0.989486 -0.989486 -0.989486 -0.989486      -1.0   \n",
              "92       -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "97       -1.0   -0.996495 -0.996495 -0.996495 -0.996495      -1.0   \n",
              "99       -1.0   -0.948403 -0.948403 -0.948403 -0.948403      -1.0   \n",
              "104      -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "109       NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "110      -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "112      -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "117      -1.0   -0.958528 -0.958528 -0.958528 -0.958528      -1.0   \n",
              "119      -1.0   -0.949474 -0.949474 -0.949474 -0.949474      -1.0   \n",
              "\n",
              "     GLUCOSE_MEDIAN  GLUCOSE_MEAN  GLUCOSE_MIN  GLUCOSE_MAX  GLUCOSE_DIFF  \\\n",
              "0         -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "4         -0.780261     -0.780261    -0.780261    -0.780261          -1.0   \n",
              "8         -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "13        -0.851024     -0.851024    -0.851024    -0.851024          -1.0   \n",
              "18        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "23        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "28        -0.851024     -0.851024    -0.851024    -0.851024          -1.0   \n",
              "33        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "38        -0.897579     -0.897579    -0.897579    -0.897579          -1.0   \n",
              "43        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "48        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "51        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "56        -0.813780     -0.813780    -0.813780    -0.813780          -1.0   \n",
              "60        -0.851024     -0.851024    -0.851024    -0.851024          -1.0   \n",
              "62        -0.810056     -0.810056    -0.810056    -0.810056          -1.0   \n",
              "66        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "71        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "73        -0.869646     -0.869646    -0.869646    -0.869646          -1.0   \n",
              "77        -0.817505     -0.817505    -0.817505    -0.817505          -1.0   \n",
              "82        -0.884544     -0.884544    -0.884544    -0.884544          -1.0   \n",
              "87        -0.918063     -0.918063    -0.918063    -0.918063          -1.0   \n",
              "92        -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "97        -0.735568     -0.735568    -0.735568    -0.735568          -1.0   \n",
              "99        -0.817505     -0.817505    -0.817505    -0.817505          -1.0   \n",
              "104       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "109             NaN           NaN          NaN          NaN           NaN   \n",
              "110       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "112       -0.890130     -0.890130    -0.890130    -0.890130          -1.0   \n",
              "117       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "119       -0.891993     -0.891993    -0.891993    -0.891993          -1.0   \n",
              "\n",
              "     HEMATOCRITE_MEDIAN  HEMATOCRITE_MEAN  HEMATOCRITE_MIN  HEMATOCRITE_MAX  \\\n",
              "0              0.090147          0.090147         0.090147         0.090147   \n",
              "4              0.144654          0.144654         0.144654         0.144654   \n",
              "8             -0.203354         -0.203354        -0.203354        -0.203354   \n",
              "13             0.358491          0.358491         0.358491         0.358491   \n",
              "18             0.291405          0.291405         0.291405         0.291405   \n",
              "23            -0.471698         -0.471698        -0.471698        -0.471698   \n",
              "28            -0.052411         -0.052411        -0.052411        -0.052411   \n",
              "33            -0.039832         -0.039832        -0.039832        -0.039832   \n",
              "38            -0.025157         -0.025157        -0.025157        -0.025157   \n",
              "43            -0.224319         -0.224319        -0.224319        -0.224319   \n",
              "48            -0.303983         -0.303983        -0.303983        -0.303983   \n",
              "51            -0.044025         -0.044025        -0.044025        -0.044025   \n",
              "56             0.010482          0.010482         0.010482         0.010482   \n",
              "60            -0.169811         -0.169811        -0.169811        -0.169811   \n",
              "62            -0.324948         -0.324948        -0.324948        -0.324948   \n",
              "66             0.146751          0.146751         0.146751         0.146751   \n",
              "71             0.064990          0.064990         0.064990         0.064990   \n",
              "73            -0.023061         -0.023061        -0.023061        -0.023061   \n",
              "77            -0.228512         -0.228512        -0.228512        -0.228512   \n",
              "82            -0.197065         -0.197065        -0.197065        -0.197065   \n",
              "87             0.232704          0.232704         0.232704         0.232704   \n",
              "92            -0.044025         -0.044025        -0.044025        -0.044025   \n",
              "97            -0.228512         -0.228512        -0.228512        -0.228512   \n",
              "99            -0.134871         -0.134871        -0.134871        -0.134871   \n",
              "104            0.140461          0.140461         0.140461         0.140461   \n",
              "109                 NaN               NaN              NaN              NaN   \n",
              "110           -0.190776         -0.190776        -0.190776        -0.190776   \n",
              "112           -0.220126         -0.220126        -0.220126        -0.220126   \n",
              "117           -0.094340         -0.094340        -0.094340        -0.094340   \n",
              "119           -0.280922         -0.280922        -0.280922        -0.280922   \n",
              "\n",
              "     HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  \\\n",
              "0                -1.0           0.109756         0.109756        0.109756   \n",
              "4                -1.0           0.158537         0.158537        0.158537   \n",
              "8                -1.0          -0.219512        -0.219512       -0.219512   \n",
              "13               -1.0           0.304878         0.304878        0.304878   \n",
              "18               -1.0           0.243902         0.243902        0.243902   \n",
              "23               -1.0          -0.475610        -0.475610       -0.475610   \n",
              "28               -1.0          -0.024390        -0.024390       -0.024390   \n",
              "33               -1.0          -0.012195        -0.012195       -0.012195   \n",
              "38               -1.0          -0.054878        -0.054878       -0.054878   \n",
              "43               -1.0          -0.292683        -0.292683       -0.292683   \n",
              "48               -1.0          -0.353659        -0.353659       -0.353659   \n",
              "51               -1.0          -0.091463        -0.091463       -0.091463   \n",
              "56               -1.0           0.012195         0.012195        0.012195   \n",
              "60               -1.0          -0.207317        -0.207317       -0.207317   \n",
              "62               -1.0          -0.390244        -0.390244       -0.390244   \n",
              "66               -1.0           0.103659         0.103659        0.103659   \n",
              "71               -1.0           0.085366         0.085366        0.085366   \n",
              "73               -1.0           0.036585         0.036585        0.036585   \n",
              "77               -1.0          -0.256098        -0.256098       -0.256098   \n",
              "82               -1.0          -0.164634        -0.164634       -0.164634   \n",
              "87               -1.0           0.146341         0.146341        0.146341   \n",
              "92               -1.0          -0.048780        -0.048780       -0.048780   \n",
              "97               -1.0          -0.256098        -0.256098       -0.256098   \n",
              "99               -1.0          -0.215447        -0.215447       -0.215447   \n",
              "104              -1.0           0.109756         0.109756        0.109756   \n",
              "109               NaN                NaN              NaN             NaN   \n",
              "110              -1.0          -0.231707        -0.231707       -0.231707   \n",
              "112              -1.0          -0.292683        -0.292683       -0.292683   \n",
              "117              -1.0          -0.195122        -0.195122       -0.195122   \n",
              "119              -1.0          -0.329268        -0.329268       -0.329268   \n",
              "\n",
              "     HEMOGLOBIN_MAX  HEMOGLOBIN_DIFF  INR_MEDIAN  INR_MEAN   INR_MIN  \\\n",
              "0          0.109756             -1.0   -0.932246 -0.932246 -0.932246   \n",
              "4          0.158537             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "8         -0.219512             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "13         0.304878             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "18         0.243902             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "23        -0.475610             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "28        -0.024390             -1.0   -0.967378 -0.967378 -0.967378   \n",
              "33        -0.012195             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "38        -0.054878             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "43        -0.292683             -1.0   -0.957340 -0.957340 -0.957340   \n",
              "48        -0.353659             -1.0   -0.907152 -0.907152 -0.907152   \n",
              "51        -0.091463             -1.0   -0.958595 -0.958595 -0.958595   \n",
              "56         0.012195             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "60        -0.207317             -1.0   -0.932246 -0.932246 -0.932246   \n",
              "62        -0.390244             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "66         0.103659             -1.0   -0.958595 -0.958595 -0.958595   \n",
              "71         0.085366             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "73         0.036585             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "77        -0.256098             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "82        -0.164634             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "87         0.146341             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "92        -0.048780             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "97        -0.256098             -1.0   -0.932246 -0.932246 -0.932246   \n",
              "99        -0.215447             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "104        0.109756             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "109             NaN              NaN         NaN       NaN       NaN   \n",
              "110       -0.231707             -1.0   -0.606023 -0.606023 -0.606023   \n",
              "112       -0.292683             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "117       -0.195122             -1.0   -0.959849 -0.959849 -0.959849   \n",
              "119       -0.329268             -1.0   -0.962359 -0.962359 -0.962359   \n",
              "\n",
              "      INR_MAX  INR_DIFF  LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  \\\n",
              "0   -0.932246      -1.0        1.000000      1.000000     1.000000   \n",
              "4   -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "8   -0.959849      -1.0       -0.828421     -0.828421    -0.828421   \n",
              "13  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "18  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "23  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "28  -0.967378      -1.0        1.000000      1.000000     1.000000   \n",
              "33  -0.959849      -1.0       -0.952572     -0.952572    -0.952572   \n",
              "38  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "43  -0.957340      -1.0        1.000000      1.000000     1.000000   \n",
              "48  -0.907152      -1.0        1.000000      1.000000     1.000000   \n",
              "51  -0.958595      -1.0        0.028537      0.028537     0.028537   \n",
              "56  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "60  -0.932246      -1.0       -0.863097     -0.863097    -0.863097   \n",
              "62  -0.959849      -1.0       -0.897195     -0.897195    -0.897195   \n",
              "66  -0.958595      -1.0        1.000000      1.000000     1.000000   \n",
              "71  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "73  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "77  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "82  -0.959849      -1.0        0.080010      0.080010     0.080010   \n",
              "87  -0.959849      -1.0       -0.874656     -0.874656    -0.874656   \n",
              "92  -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "97  -0.932246      -1.0        1.000000      1.000000     1.000000   \n",
              "99  -0.959849      -1.0       -0.250953     -0.250953    -0.250953   \n",
              "104 -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "109       NaN       NaN             NaN           NaN          NaN   \n",
              "110 -0.606023      -1.0        1.000000      1.000000     1.000000   \n",
              "112 -0.959849      -1.0        0.039555      0.039555     0.039555   \n",
              "117 -0.959849      -1.0        1.000000      1.000000     1.000000   \n",
              "119 -0.962359      -1.0        1.000000      1.000000     1.000000   \n",
              "\n",
              "     LACTATE_MAX  LACTATE_DIFF  LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  \\\n",
              "0       1.000000          -1.0          -0.835844        -0.835844   \n",
              "4       1.000000          -1.0          -0.382773        -0.382773   \n",
              "8      -0.828421          -1.0          -0.729239        -0.729239   \n",
              "13      1.000000          -1.0          -0.702202        -0.702202   \n",
              "18      1.000000          -1.0          -0.706450        -0.706450   \n",
              "23      1.000000          -1.0          -0.916184        -0.916184   \n",
              "28      1.000000          -1.0          -0.713789        -0.713789   \n",
              "33     -0.952572          -1.0          -0.786404        -0.786404   \n",
              "38      1.000000          -1.0          -0.845114        -0.845114   \n",
              "43      1.000000          -1.0          -0.851294        -0.851294   \n",
              "48      1.000000          -1.0          -0.867903        -0.867903   \n",
              "51      0.028537          -1.0          -0.861143        -0.861143   \n",
              "56      1.000000          -1.0          -0.803785        -0.803785   \n",
              "60     -0.863097          -1.0          -0.770954        -0.770954   \n",
              "62     -0.897195          -1.0          -0.555041        -0.555041   \n",
              "66      1.000000          -1.0          -0.857088        -0.857088   \n",
              "71      1.000000          -1.0          -0.835844        -0.835844   \n",
              "73      1.000000          -1.0          -0.714175        -0.714175   \n",
              "77      1.000000          -1.0          -0.820780        -0.820780   \n",
              "82      0.080010          -1.0          -0.863654        -0.863654   \n",
              "87     -0.874656          -1.0          -0.780224        -0.780224   \n",
              "92      1.000000          -1.0          -0.779452        -0.779452   \n",
              "97      1.000000          -1.0          -0.842024        -0.842024   \n",
              "99     -0.250953          -1.0          -0.784859        -0.784859   \n",
              "104     1.000000          -1.0          -0.730784        -0.730784   \n",
              "109          NaN           NaN                NaN              NaN   \n",
              "110     1.000000          -1.0          -0.765160        -0.765160   \n",
              "112     0.039555          -1.0          -0.779838        -0.779838   \n",
              "117     1.000000          -1.0          -0.631904        -0.631904   \n",
              "119     1.000000          -1.0          -0.840093        -0.840093   \n",
              "\n",
              "     LEUKOCYTES_MIN  LEUKOCYTES_MAX  LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  \\\n",
              "0         -0.835844       -0.835844             -1.0          -0.914938   \n",
              "4         -0.382773       -0.382773             -1.0          -0.908714   \n",
              "8         -0.729239       -0.729239             -1.0          -0.836100   \n",
              "13        -0.702202       -0.702202             -1.0          -0.641079   \n",
              "18        -0.706450       -0.706450             -1.0          -0.340249   \n",
              "23        -0.916184       -0.916184             -1.0          -0.858921   \n",
              "28        -0.713789       -0.713789             -1.0          -0.655602   \n",
              "33        -0.786404       -0.786404             -1.0          -0.724066   \n",
              "38        -0.845114       -0.845114             -1.0          -0.634855   \n",
              "43        -0.851294       -0.851294             -1.0          -0.890041   \n",
              "48        -0.867903       -0.867903             -1.0          -0.867220   \n",
              "51        -0.861143       -0.861143             -1.0          -0.697095   \n",
              "56        -0.803785       -0.803785             -1.0          -0.815353   \n",
              "60        -0.770954       -0.770954             -1.0          -0.786307   \n",
              "62        -0.555041       -0.555041             -1.0           0.080913   \n",
              "66        -0.857088       -0.857088             -1.0          -0.781120   \n",
              "71        -0.835844       -0.835844             -1.0          -0.827801   \n",
              "73        -0.714175       -0.714175             -1.0          -0.609959   \n",
              "77        -0.820780       -0.820780             -1.0          -0.697095   \n",
              "82        -0.863654       -0.863654             -1.0          -0.830913   \n",
              "87        -0.780224       -0.780224             -1.0          -0.578838   \n",
              "92        -0.779452       -0.779452             -1.0          -0.699170   \n",
              "97        -0.842024       -0.842024             -1.0          -0.925311   \n",
              "99        -0.784859       -0.784859             -1.0          -0.854772   \n",
              "104       -0.730784       -0.730784             -1.0          -0.558091   \n",
              "109             NaN             NaN              NaN                NaN   \n",
              "110       -0.765160       -0.765160             -1.0          -0.807054   \n",
              "112       -0.779838       -0.779838             -1.0          -0.703320   \n",
              "117       -0.631904       -0.631904             -1.0          -0.921162   \n",
              "119       -0.840093       -0.840093             -1.0          -0.826763   \n",
              "\n",
              "     LINFOCITOS_MEAN  LINFOCITOS_MIN  LINFOCITOS_MAX  LINFOCITOS_DIFF  \\\n",
              "0          -0.914938       -0.914938       -0.914938             -1.0   \n",
              "4          -0.908714       -0.908714       -0.908714             -1.0   \n",
              "8          -0.836100       -0.836100       -0.836100             -1.0   \n",
              "13         -0.641079       -0.641079       -0.641079             -1.0   \n",
              "18         -0.340249       -0.340249       -0.340249             -1.0   \n",
              "23         -0.858921       -0.858921       -0.858921             -1.0   \n",
              "28         -0.655602       -0.655602       -0.655602             -1.0   \n",
              "33         -0.724066       -0.724066       -0.724066             -1.0   \n",
              "38         -0.634855       -0.634855       -0.634855             -1.0   \n",
              "43         -0.890041       -0.890041       -0.890041             -1.0   \n",
              "48         -0.867220       -0.867220       -0.867220             -1.0   \n",
              "51         -0.697095       -0.697095       -0.697095             -1.0   \n",
              "56         -0.815353       -0.815353       -0.815353             -1.0   \n",
              "60         -0.786307       -0.786307       -0.786307             -1.0   \n",
              "62          0.080913        0.080913        0.080913             -1.0   \n",
              "66         -0.781120       -0.781120       -0.781120             -1.0   \n",
              "71         -0.827801       -0.827801       -0.827801             -1.0   \n",
              "73         -0.609959       -0.609959       -0.609959             -1.0   \n",
              "77         -0.697095       -0.697095       -0.697095             -1.0   \n",
              "82         -0.830913       -0.830913       -0.830913             -1.0   \n",
              "87         -0.578838       -0.578838       -0.578838             -1.0   \n",
              "92         -0.699170       -0.699170       -0.699170             -1.0   \n",
              "97         -0.925311       -0.925311       -0.925311             -1.0   \n",
              "99         -0.854772       -0.854772       -0.854772             -1.0   \n",
              "104        -0.558091       -0.558091       -0.558091             -1.0   \n",
              "109              NaN             NaN             NaN              NaN   \n",
              "110        -0.807054       -0.807054       -0.807054             -1.0   \n",
              "112        -0.703320       -0.703320       -0.703320             -1.0   \n",
              "117        -0.921162       -0.921162       -0.921162             -1.0   \n",
              "119        -0.826763       -0.826763       -0.826763             -1.0   \n",
              "\n",
              "     NEUTROPHILES_MEDIAN  NEUTROPHILES_MEAN  NEUTROPHILES_MIN  \\\n",
              "0              -0.868747          -0.868747         -0.868747   \n",
              "4              -0.412965          -0.412965         -0.412965   \n",
              "8              -0.784714          -0.784714         -0.784714   \n",
              "13             -0.812725          -0.812725         -0.812725   \n",
              "18             -0.846339          -0.846339         -0.846339   \n",
              "23             -0.947579          -0.947579         -0.947579   \n",
              "28             -0.789916          -0.789916         -0.789916   \n",
              "33             -0.851140          -0.851140         -0.851140   \n",
              "38             -0.936575          -0.936575         -0.936575   \n",
              "43             -0.875550          -0.875550         -0.875550   \n",
              "48             -0.897959          -0.897959         -0.897959   \n",
              "51             -0.927771          -0.927771         -0.927771   \n",
              "56             -0.842737          -0.842737         -0.842737   \n",
              "60             -0.820328          -0.820328         -0.820328   \n",
              "62             -0.804722          -0.804722         -0.804722   \n",
              "66             -0.907763          -0.907763         -0.907763   \n",
              "71             -0.874750          -0.874750         -0.874750   \n",
              "73             -0.807923          -0.807923         -0.807923   \n",
              "77             -0.883553          -0.883553         -0.883553   \n",
              "82             -0.907363          -0.907363         -0.907363   \n",
              "87             -0.897959          -0.897959         -0.897959   \n",
              "92             -0.846339          -0.846339         -0.846339   \n",
              "97             -0.868747          -0.868747         -0.868747   \n",
              "99             -0.816460          -0.816460         -0.816460   \n",
              "104            -0.826731          -0.826731         -0.826731   \n",
              "109                  NaN                NaN               NaN   \n",
              "110            -0.813926          -0.813926         -0.813926   \n",
              "112            -0.853141          -0.853141         -0.853141   \n",
              "117            -0.649460          -0.649460         -0.649460   \n",
              "119            -0.881553          -0.881553         -0.881553   \n",
              "\n",
              "     NEUTROPHILES_MAX  NEUTROPHILES_DIFF  P02_ARTERIAL_MEDIAN  \\\n",
              "0           -0.868747               -1.0            -0.170732   \n",
              "4           -0.412965               -1.0            -0.170732   \n",
              "8           -0.784714               -1.0            -0.170732   \n",
              "13          -0.812725               -1.0            -0.170732   \n",
              "18          -0.846339               -1.0            -0.170732   \n",
              "23          -0.947579               -1.0            -0.170732   \n",
              "28          -0.789916               -1.0            -0.170732   \n",
              "33          -0.851140               -1.0            -0.170732   \n",
              "38          -0.936575               -1.0            -0.170732   \n",
              "43          -0.875550               -1.0            -0.170732   \n",
              "48          -0.897959               -1.0            -0.170732   \n",
              "51          -0.927771               -1.0            -0.170732   \n",
              "56          -0.842737               -1.0            -0.170732   \n",
              "60          -0.820328               -1.0            -0.170732   \n",
              "62          -0.804722               -1.0            -0.170732   \n",
              "66          -0.907763               -1.0            -0.170732   \n",
              "71          -0.874750               -1.0            -0.170732   \n",
              "73          -0.807923               -1.0            -0.170732   \n",
              "77          -0.883553               -1.0            -0.170732   \n",
              "82          -0.907363               -1.0            -0.170732   \n",
              "87          -0.897959               -1.0            -0.170732   \n",
              "92          -0.846339               -1.0            -0.170732   \n",
              "97          -0.868747               -1.0            -0.170732   \n",
              "99          -0.816460               -1.0            -0.268293   \n",
              "104         -0.826731               -1.0            -0.170732   \n",
              "109               NaN                NaN                  NaN   \n",
              "110         -0.813926               -1.0            -0.170732   \n",
              "112         -0.853141               -1.0            -0.170732   \n",
              "117         -0.649460               -1.0            -0.170732   \n",
              "119         -0.881553               -1.0            -0.170732   \n",
              "\n",
              "     P02_ARTERIAL_MEAN  P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  P02_ARTERIAL_DIFF  \\\n",
              "0            -0.170732         -0.170732         -0.170732               -1.0   \n",
              "4            -0.170732         -0.170732         -0.170732               -1.0   \n",
              "8            -0.170732         -0.170732         -0.170732               -1.0   \n",
              "13           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "18           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "23           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "28           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "33           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "38           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "43           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "48           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "51           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "56           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "60           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "62           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "66           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "71           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "73           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "77           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "82           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "87           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "92           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "97           -0.170732         -0.170732         -0.170732               -1.0   \n",
              "99           -0.268293         -0.268293         -0.268293               -1.0   \n",
              "104          -0.170732         -0.170732         -0.170732               -1.0   \n",
              "109                NaN               NaN               NaN                NaN   \n",
              "110          -0.170732         -0.170732         -0.170732               -1.0   \n",
              "112          -0.170732         -0.170732         -0.170732               -1.0   \n",
              "117          -0.170732         -0.170732         -0.170732               -1.0   \n",
              "119          -0.170732         -0.170732         -0.170732               -1.0   \n",
              "\n",
              "     P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  P02_VENOUS_MIN  P02_VENOUS_MAX  \\\n",
              "0            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "4            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "8            -0.633136        -0.633136       -0.633136       -0.633136   \n",
              "13           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "18           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "23           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "28           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "33           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "38           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "43           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "48           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "51           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "56           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "60           -0.940828        -0.940828       -0.940828       -0.940828   \n",
              "62           -0.834320        -0.834320       -0.834320       -0.834320   \n",
              "66           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "71           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "73           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "77           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "82           -0.822485        -0.822485       -0.822485       -0.822485   \n",
              "87           -0.857988        -0.857988       -0.857988       -0.857988   \n",
              "92           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "97           -0.514793        -0.514793       -0.514793       -0.514793   \n",
              "99           -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "104          -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "109                NaN              NaN             NaN             NaN   \n",
              "110          -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "112          -0.656805        -0.656805       -0.656805       -0.656805   \n",
              "117          -0.443787        -0.443787       -0.443787       -0.443787   \n",
              "119          -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "\n",
              "     P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  PC02_ARTERIAL_MEAN  \\\n",
              "0               -1.0             -0.779310           -0.779310   \n",
              "4               -1.0             -0.779310           -0.779310   \n",
              "8               -1.0             -0.779310           -0.779310   \n",
              "13              -1.0             -0.779310           -0.779310   \n",
              "18              -1.0             -0.779310           -0.779310   \n",
              "23              -1.0             -0.779310           -0.779310   \n",
              "28              -1.0             -0.779310           -0.779310   \n",
              "33              -1.0             -0.779310           -0.779310   \n",
              "38              -1.0             -0.779310           -0.779310   \n",
              "43              -1.0             -0.779310           -0.779310   \n",
              "48              -1.0             -0.779310           -0.779310   \n",
              "51              -1.0             -0.779310           -0.779310   \n",
              "56              -1.0             -0.779310           -0.779310   \n",
              "60              -1.0             -0.779310           -0.779310   \n",
              "62              -1.0             -0.779310           -0.779310   \n",
              "66              -1.0             -0.779310           -0.779310   \n",
              "71              -1.0             -0.779310           -0.779310   \n",
              "73              -1.0             -0.779310           -0.779310   \n",
              "77              -1.0             -0.779310           -0.779310   \n",
              "82              -1.0             -0.779310           -0.779310   \n",
              "87              -1.0             -0.779310           -0.779310   \n",
              "92              -1.0             -0.779310           -0.779310   \n",
              "97              -1.0             -0.779310           -0.779310   \n",
              "99              -1.0             -0.825287           -0.825287   \n",
              "104             -1.0             -0.779310           -0.779310   \n",
              "109              NaN                   NaN                 NaN   \n",
              "110             -1.0             -0.779310           -0.779310   \n",
              "112             -1.0             -0.779310           -0.779310   \n",
              "117             -1.0             -0.779310           -0.779310   \n",
              "119             -1.0             -0.779310           -0.779310   \n",
              "\n",
              "     PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  PC02_ARTERIAL_DIFF  \\\n",
              "0            -0.779310          -0.779310                -1.0   \n",
              "4            -0.779310          -0.779310                -1.0   \n",
              "8            -0.779310          -0.779310                -1.0   \n",
              "13           -0.779310          -0.779310                -1.0   \n",
              "18           -0.779310          -0.779310                -1.0   \n",
              "23           -0.779310          -0.779310                -1.0   \n",
              "28           -0.779310          -0.779310                -1.0   \n",
              "33           -0.779310          -0.779310                -1.0   \n",
              "38           -0.779310          -0.779310                -1.0   \n",
              "43           -0.779310          -0.779310                -1.0   \n",
              "48           -0.779310          -0.779310                -1.0   \n",
              "51           -0.779310          -0.779310                -1.0   \n",
              "56           -0.779310          -0.779310                -1.0   \n",
              "60           -0.779310          -0.779310                -1.0   \n",
              "62           -0.779310          -0.779310                -1.0   \n",
              "66           -0.779310          -0.779310                -1.0   \n",
              "71           -0.779310          -0.779310                -1.0   \n",
              "73           -0.779310          -0.779310                -1.0   \n",
              "77           -0.779310          -0.779310                -1.0   \n",
              "82           -0.779310          -0.779310                -1.0   \n",
              "87           -0.779310          -0.779310                -1.0   \n",
              "92           -0.779310          -0.779310                -1.0   \n",
              "97           -0.779310          -0.779310                -1.0   \n",
              "99           -0.825287          -0.825287                -1.0   \n",
              "104          -0.779310          -0.779310                -1.0   \n",
              "109                NaN                NaN                 NaN   \n",
              "110          -0.779310          -0.779310                -1.0   \n",
              "112          -0.779310          -0.779310                -1.0   \n",
              "117          -0.779310          -0.779310                -1.0   \n",
              "119          -0.779310          -0.779310                -1.0   \n",
              "\n",
              "     PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  PC02_VENOUS_MIN  PC02_VENOUS_MAX  \\\n",
              "0             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "4             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "8             -0.779141         -0.779141        -0.779141        -0.779141   \n",
              "13            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "18            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "23            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "28            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "33            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "38            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "43            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "48            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "51            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "56            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "60            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "62            -0.889571         -0.889571        -0.889571        -0.889571   \n",
              "66            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "71            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "73            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "77            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "82            -0.797546         -0.797546        -0.797546        -0.797546   \n",
              "87            -0.546012         -0.546012        -0.546012        -0.546012   \n",
              "92            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "97            -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "99            -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "104           -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "109                 NaN               NaN              NaN              NaN   \n",
              "110           -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "112           -0.797546         -0.797546        -0.797546        -0.797546   \n",
              "117           -0.865031         -0.865031        -0.865031        -0.865031   \n",
              "119           -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "\n",
              "     PC02_VENOUS_DIFF  PCR_MEDIAN  PCR_MEAN   PCR_MIN   PCR_MAX  PCR_DIFF  \\\n",
              "0                -1.0   -0.875236 -0.875236 -0.875236 -0.875236      -1.0   \n",
              "4                -1.0   -0.939887 -0.939887 -0.939887 -0.939887      -1.0   \n",
              "8                -1.0   -0.503592 -0.503592 -0.503592 -0.503592      -1.0   \n",
              "13               -1.0   -0.990926 -0.990926 -0.990926 -0.990926      -1.0   \n",
              "18               -1.0   -0.997732 -0.997732 -0.997732 -0.997732      -1.0   \n",
              "23               -1.0   -0.750095 -0.750095 -0.750095 -0.750095      -1.0   \n",
              "28               -1.0   -0.999244 -0.999244 -0.999244 -0.999244      -1.0   \n",
              "33               -1.0   -0.798110 -0.798110 -0.798110 -0.798110      -1.0   \n",
              "38               -1.0   -0.994140 -0.994140 -0.994140 -0.994140      -1.0   \n",
              "43               -1.0   -0.462004 -0.462004 -0.462004 -0.462004      -1.0   \n",
              "48               -1.0   -0.679017 -0.679017 -0.679017 -0.679017      -1.0   \n",
              "51               -1.0   -0.989603 -0.989603 -0.989603 -0.989603      -1.0   \n",
              "56               -1.0   -0.688847 -0.688847 -0.688847 -0.688847      -1.0   \n",
              "60               -1.0   -0.857845 -0.857845 -0.857845 -0.857845      -1.0   \n",
              "62               -1.0   -0.388658 -0.388658 -0.388658 -0.388658      -1.0   \n",
              "66               -1.0   -0.986011 -0.986011 -0.986011 -0.986011      -1.0   \n",
              "71               -1.0   -0.513422 -0.513422 -0.513422 -0.513422      -1.0   \n",
              "73               -1.0   -0.999244 -0.999244 -0.999244 -0.999244      -1.0   \n",
              "77               -1.0   -0.941399 -0.941399 -0.941399 -0.941399      -1.0   \n",
              "82               -1.0   -0.842911 -0.842911 -0.842911 -0.842911      -1.0   \n",
              "87               -1.0   -0.997732 -0.997732 -0.997732 -0.997732      -1.0   \n",
              "92               -1.0   -0.613233 -0.613233 -0.613233 -0.613233      -1.0   \n",
              "97               -1.0   -0.958412 -0.958412 -0.958412 -0.958412      -1.0   \n",
              "99               -1.0   -0.730309 -0.730309 -0.730309 -0.730309      -1.0   \n",
              "104              -1.0   -0.874858 -0.874858 -0.874858 -0.874858      -1.0   \n",
              "109               NaN         NaN       NaN       NaN       NaN       NaN   \n",
              "110              -1.0   -0.734594 -0.734594 -0.734594 -0.734594      -1.0   \n",
              "112              -1.0   -0.988658 -0.988658 -0.988658 -0.988658      -1.0   \n",
              "117              -1.0   -0.116068 -0.116068 -0.116068 -0.116068      -1.0   \n",
              "119              -1.0   -0.866163 -0.866163 -0.866163 -0.866163      -1.0   \n",
              "\n",
              "     PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  PH_ARTERIAL_MAX  \\\n",
              "0              0.234043          0.234043         0.234043         0.234043   \n",
              "4              0.234043          0.234043         0.234043         0.234043   \n",
              "8              0.234043          0.234043         0.234043         0.234043   \n",
              "13             0.234043          0.234043         0.234043         0.234043   \n",
              "18             0.234043          0.234043         0.234043         0.234043   \n",
              "23             0.234043          0.234043         0.234043         0.234043   \n",
              "28             0.234043          0.234043         0.234043         0.234043   \n",
              "33             0.234043          0.234043         0.234043         0.234043   \n",
              "38             0.234043          0.234043         0.234043         0.234043   \n",
              "43             0.234043          0.234043         0.234043         0.234043   \n",
              "48             0.234043          0.234043         0.234043         0.234043   \n",
              "51             0.234043          0.234043         0.234043         0.234043   \n",
              "56             0.234043          0.234043         0.234043         0.234043   \n",
              "60             0.234043          0.234043         0.234043         0.234043   \n",
              "62             0.234043          0.234043         0.234043         0.234043   \n",
              "66             0.234043          0.234043         0.234043         0.234043   \n",
              "71             0.234043          0.234043         0.234043         0.234043   \n",
              "73             0.234043          0.234043         0.234043         0.234043   \n",
              "77             0.234043          0.234043         0.234043         0.234043   \n",
              "82             0.234043          0.234043         0.234043         0.234043   \n",
              "87             0.234043          0.234043         0.234043         0.234043   \n",
              "92             0.234043          0.234043         0.234043         0.234043   \n",
              "97             0.234043          0.234043         0.234043         0.234043   \n",
              "99             0.375887          0.375887         0.375887         0.375887   \n",
              "104            0.234043          0.234043         0.234043         0.234043   \n",
              "109                 NaN               NaN              NaN              NaN   \n",
              "110            0.234043          0.234043         0.234043         0.234043   \n",
              "112            0.234043          0.234043         0.234043         0.234043   \n",
              "117            0.234043          0.234043         0.234043         0.234043   \n",
              "119            0.234043          0.234043         0.234043         0.234043   \n",
              "\n",
              "     PH_ARTERIAL_DIFF  PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  PH_VENOUS_MIN  \\\n",
              "0                -1.0          0.363636        0.363636       0.363636   \n",
              "4                -1.0          0.363636        0.363636       0.363636   \n",
              "8                -1.0          0.363636        0.363636       0.363636   \n",
              "13               -1.0          0.363636        0.363636       0.363636   \n",
              "18               -1.0          0.363636        0.363636       0.363636   \n",
              "23               -1.0          0.363636        0.363636       0.363636   \n",
              "28               -1.0          0.363636        0.363636       0.363636   \n",
              "33               -1.0          0.363636        0.363636       0.363636   \n",
              "38               -1.0          0.363636        0.363636       0.363636   \n",
              "43               -1.0          0.363636        0.363636       0.363636   \n",
              "48               -1.0          0.363636        0.363636       0.363636   \n",
              "51               -1.0          0.363636        0.363636       0.363636   \n",
              "56               -1.0          0.363636        0.363636       0.363636   \n",
              "60               -1.0          0.393939        0.393939       0.393939   \n",
              "62               -1.0          0.515152        0.515152       0.515152   \n",
              "66               -1.0          0.363636        0.363636       0.363636   \n",
              "71               -1.0          0.363636        0.363636       0.363636   \n",
              "73               -1.0          0.363636        0.363636       0.363636   \n",
              "77               -1.0          0.363636        0.363636       0.363636   \n",
              "82               -1.0          0.469697        0.469697       0.469697   \n",
              "87               -1.0          0.151515        0.151515       0.151515   \n",
              "92               -1.0          0.363636        0.363636       0.363636   \n",
              "97               -1.0          0.848485        0.848485       0.848485   \n",
              "99               -1.0          0.363636        0.363636       0.363636   \n",
              "104              -1.0          0.363636        0.363636       0.363636   \n",
              "109               NaN               NaN             NaN            NaN   \n",
              "110              -1.0          0.363636        0.363636       0.363636   \n",
              "112              -1.0          0.424242        0.424242       0.424242   \n",
              "117              -1.0          0.363636        0.363636       0.363636   \n",
              "119              -1.0          0.363636        0.363636       0.363636   \n",
              "\n",
              "     PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  PLATELETS_MEAN  \\\n",
              "0         0.363636            -1.0         -0.540721       -0.540721   \n",
              "4         0.363636            -1.0         -0.399199       -0.399199   \n",
              "8         0.363636            -1.0         -0.564753       -0.564753   \n",
              "13        0.363636            -1.0         -0.457944       -0.457944   \n",
              "18        0.363636            -1.0         -0.292390       -0.292390   \n",
              "23        0.363636            -1.0         -0.636849       -0.636849   \n",
              "28        0.363636            -1.0         -0.564753       -0.564753   \n",
              "33        0.363636            -1.0         -0.522029       -0.522029   \n",
              "38        0.363636            -1.0         -0.751669       -0.751669   \n",
              "43        0.363636            -1.0         -0.751669       -0.751669   \n",
              "48        0.363636            -1.0         -0.516689       -0.516689   \n",
              "51        0.363636            -1.0         -0.506008       -0.506008   \n",
              "56        0.363636            -1.0         -0.527370       -0.527370   \n",
              "60        0.393939            -1.0         -0.428571       -0.428571   \n",
              "62        0.515152            -1.0         -0.674232       -0.674232   \n",
              "66        0.363636            -1.0         -0.619493       -0.619493   \n",
              "71        0.363636            -1.0         -0.471295       -0.471295   \n",
              "73        0.363636            -1.0         -0.732977       -0.732977   \n",
              "77        0.363636            -1.0         -0.572764       -0.572764   \n",
              "82        0.469697            -1.0         -0.723632       -0.723632   \n",
              "87        0.151515            -1.0         -0.468625       -0.468625   \n",
              "92        0.363636            -1.0         -0.287049       -0.287049   \n",
              "97        0.848485            -1.0         -0.754339       -0.754339   \n",
              "99        0.363636            -1.0         -0.243436       -0.243436   \n",
              "104       0.363636            -1.0         -0.455274       -0.455274   \n",
              "109            NaN             NaN               NaN             NaN   \n",
              "110       0.363636            -1.0         -0.671562       -0.671562   \n",
              "112       0.424242            -1.0         -0.546061       -0.546061   \n",
              "117       0.363636            -1.0         -0.652870       -0.652870   \n",
              "119       0.363636            -1.0         -0.455274       -0.455274   \n",
              "\n",
              "     PLATELETS_MIN  PLATELETS_MAX  PLATELETS_DIFF  POTASSIUM_MEDIAN  \\\n",
              "0        -0.540721      -0.540721            -1.0         -0.518519   \n",
              "4        -0.399199      -0.399199            -1.0         -0.703704   \n",
              "8        -0.564753      -0.564753            -1.0         -0.777778   \n",
              "13       -0.457944      -0.457944            -1.0         -0.592593   \n",
              "18       -0.292390      -0.292390            -1.0         -0.666667   \n",
              "23       -0.636849      -0.636849            -1.0         -0.962963   \n",
              "28       -0.564753      -0.564753            -1.0         -0.703704   \n",
              "33       -0.522029      -0.522029            -1.0         -0.777778   \n",
              "38       -0.751669      -0.751669            -1.0         -0.444444   \n",
              "43       -0.751669      -0.751669            -1.0         -0.629630   \n",
              "48       -0.516689      -0.516689            -1.0         -0.666667   \n",
              "51       -0.506008      -0.506008            -1.0         -0.592593   \n",
              "56       -0.527370      -0.527370            -1.0         -0.666667   \n",
              "60       -0.428571      -0.428571            -1.0         -0.703704   \n",
              "62       -0.674232      -0.674232            -1.0         -0.481481   \n",
              "66       -0.619493      -0.619493            -1.0         -0.481481   \n",
              "71       -0.471295      -0.471295            -1.0         -0.481481   \n",
              "73       -0.732977      -0.732977            -1.0         -0.518519   \n",
              "77       -0.572764      -0.572764            -1.0         -0.629630   \n",
              "82       -0.723632      -0.723632            -1.0         -0.740741   \n",
              "87       -0.468625      -0.468625            -1.0         -0.518519   \n",
              "92       -0.287049      -0.287049            -1.0         -0.481481   \n",
              "97       -0.754339      -0.754339            -1.0         -0.777778   \n",
              "99       -0.243436      -0.243436            -1.0         -0.530864   \n",
              "104      -0.455274      -0.455274            -1.0         -0.592593   \n",
              "109            NaN            NaN             NaN               NaN   \n",
              "110      -0.671562      -0.671562            -1.0         -0.296296   \n",
              "112      -0.546061      -0.546061            -1.0         -0.574074   \n",
              "117      -0.652870      -0.652870            -1.0         -0.407407   \n",
              "119      -0.455274      -0.455274            -1.0         -0.611111   \n",
              "\n",
              "     POTASSIUM_MEAN  POTASSIUM_MIN  POTASSIUM_MAX  POTASSIUM_DIFF  \\\n",
              "0         -0.518519      -0.518519      -0.518519            -1.0   \n",
              "4         -0.703704      -0.703704      -0.703704            -1.0   \n",
              "8         -0.777778      -0.777778      -0.777778            -1.0   \n",
              "13        -0.592593      -0.592593      -0.592593            -1.0   \n",
              "18        -0.666667      -0.666667      -0.666667            -1.0   \n",
              "23        -0.962963      -0.962963      -0.962963            -1.0   \n",
              "28        -0.703704      -0.703704      -0.703704            -1.0   \n",
              "33        -0.777778      -0.777778      -0.777778            -1.0   \n",
              "38        -0.444444      -0.444444      -0.444444            -1.0   \n",
              "43        -0.629630      -0.629630      -0.629630            -1.0   \n",
              "48        -0.666667      -0.666667      -0.666667            -1.0   \n",
              "51        -0.592593      -0.592593      -0.592593            -1.0   \n",
              "56        -0.666667      -0.666667      -0.666667            -1.0   \n",
              "60        -0.703704      -0.703704      -0.703704            -1.0   \n",
              "62        -0.481481      -0.481481      -0.481481            -1.0   \n",
              "66        -0.481481      -0.481481      -0.481481            -1.0   \n",
              "71        -0.481481      -0.481481      -0.481481            -1.0   \n",
              "73        -0.518519      -0.518519      -0.518519            -1.0   \n",
              "77        -0.629630      -0.629630      -0.629630            -1.0   \n",
              "82        -0.740741      -0.740741      -0.740741            -1.0   \n",
              "87        -0.518519      -0.518519      -0.518519            -1.0   \n",
              "92        -0.481481      -0.481481      -0.481481            -1.0   \n",
              "97        -0.777778      -0.777778      -0.777778            -1.0   \n",
              "99        -0.530864      -0.530864      -0.530864            -1.0   \n",
              "104       -0.592593      -0.592593      -0.592593            -1.0   \n",
              "109             NaN            NaN            NaN             NaN   \n",
              "110       -0.296296      -0.296296      -0.296296            -1.0   \n",
              "112       -0.574074      -0.574074      -0.574074            -1.0   \n",
              "117       -0.407407      -0.407407      -0.407407            -1.0   \n",
              "119       -0.611111      -0.611111      -0.611111            -1.0   \n",
              "\n",
              "     SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  SAT02_ARTERIAL_MIN  \\\n",
              "0                 0.939394             0.939394            0.939394   \n",
              "4                 0.939394             0.939394            0.939394   \n",
              "8                 0.939394             0.939394            0.939394   \n",
              "13                0.939394             0.939394            0.939394   \n",
              "18                0.939394             0.939394            0.939394   \n",
              "23                0.939394             0.939394            0.939394   \n",
              "28                0.939394             0.939394            0.939394   \n",
              "33                0.939394             0.939394            0.939394   \n",
              "38                0.939394             0.939394            0.939394   \n",
              "43                0.939394             0.939394            0.939394   \n",
              "48                0.939394             0.939394            0.939394   \n",
              "51                0.939394             0.939394            0.939394   \n",
              "56                0.939394             0.939394            0.939394   \n",
              "60                0.939394             0.939394            0.939394   \n",
              "62                0.939394             0.939394            0.939394   \n",
              "66                0.939394             0.939394            0.939394   \n",
              "71                0.939394             0.939394            0.939394   \n",
              "73                0.939394             0.939394            0.939394   \n",
              "77                0.939394             0.939394            0.939394   \n",
              "82                0.939394             0.939394            0.939394   \n",
              "87                0.939394             0.939394            0.939394   \n",
              "92                0.939394             0.939394            0.939394   \n",
              "97                0.939394             0.939394            0.939394   \n",
              "99                0.888889             0.888889            0.888889   \n",
              "104               0.939394             0.939394            0.939394   \n",
              "109                    NaN                  NaN                 NaN   \n",
              "110               0.939394             0.939394            0.939394   \n",
              "112               0.939394             0.939394            0.939394   \n",
              "117               0.939394             0.939394            0.939394   \n",
              "119               0.939394             0.939394            0.939394   \n",
              "\n",
              "     SAT02_ARTERIAL_MAX  SAT02_ARTERIAL_DIFF  SAT02_VENOUS_MEDIAN  \\\n",
              "0              0.939394                 -1.0             0.345679   \n",
              "4              0.939394                 -1.0             0.345679   \n",
              "8              0.939394                 -1.0             0.580247   \n",
              "13             0.939394                 -1.0             0.345679   \n",
              "18             0.939394                 -1.0             0.345679   \n",
              "23             0.939394                 -1.0             0.345679   \n",
              "28             0.939394                 -1.0             0.345679   \n",
              "33             0.939394                 -1.0             0.345679   \n",
              "38             0.939394                 -1.0             0.345679   \n",
              "43             0.939394                 -1.0             0.345679   \n",
              "48             0.939394                 -1.0             0.345679   \n",
              "51             0.939394                 -1.0             0.345679   \n",
              "56             0.939394                 -1.0             0.345679   \n",
              "60             0.939394                 -1.0            -0.728395   \n",
              "62             0.939394                 -1.0            -0.160494   \n",
              "66             0.939394                 -1.0             0.345679   \n",
              "71             0.939394                 -1.0             0.345679   \n",
              "73             0.939394                 -1.0             0.345679   \n",
              "77             0.939394                 -1.0             0.345679   \n",
              "82             0.939394                 -1.0            -0.166667   \n",
              "87             0.939394                 -1.0            -0.407407   \n",
              "92             0.939394                 -1.0             0.345679   \n",
              "97             0.939394                 -1.0             0.827160   \n",
              "99             0.888889                 -1.0             0.345679   \n",
              "104            0.939394                 -1.0             0.345679   \n",
              "109                 NaN                  NaN                  NaN   \n",
              "110            0.939394                 -1.0             0.345679   \n",
              "112            0.939394                 -1.0             0.475309   \n",
              "117            0.939394                 -1.0             0.802469   \n",
              "119            0.939394                 -1.0             0.345679   \n",
              "\n",
              "     SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  \\\n",
              "0             0.345679          0.345679          0.345679               -1.0   \n",
              "4             0.345679          0.345679          0.345679               -1.0   \n",
              "8             0.580247          0.580247          0.580247               -1.0   \n",
              "13            0.345679          0.345679          0.345679               -1.0   \n",
              "18            0.345679          0.345679          0.345679               -1.0   \n",
              "23            0.345679          0.345679          0.345679               -1.0   \n",
              "28            0.345679          0.345679          0.345679               -1.0   \n",
              "33            0.345679          0.345679          0.345679               -1.0   \n",
              "38            0.345679          0.345679          0.345679               -1.0   \n",
              "43            0.345679          0.345679          0.345679               -1.0   \n",
              "48            0.345679          0.345679          0.345679               -1.0   \n",
              "51            0.345679          0.345679          0.345679               -1.0   \n",
              "56            0.345679          0.345679          0.345679               -1.0   \n",
              "60           -0.728395         -0.728395         -0.728395               -1.0   \n",
              "62           -0.160494         -0.160494         -0.160494               -1.0   \n",
              "66            0.345679          0.345679          0.345679               -1.0   \n",
              "71            0.345679          0.345679          0.345679               -1.0   \n",
              "73            0.345679          0.345679          0.345679               -1.0   \n",
              "77            0.345679          0.345679          0.345679               -1.0   \n",
              "82           -0.166667         -0.166667         -0.166667               -1.0   \n",
              "87           -0.407407         -0.407407         -0.407407               -1.0   \n",
              "92            0.345679          0.345679          0.345679               -1.0   \n",
              "97            0.827160          0.827160          0.827160               -1.0   \n",
              "99            0.345679          0.345679          0.345679               -1.0   \n",
              "104           0.345679          0.345679          0.345679               -1.0   \n",
              "109                NaN               NaN               NaN                NaN   \n",
              "110           0.345679          0.345679          0.345679               -1.0   \n",
              "112           0.475309          0.475309          0.475309               -1.0   \n",
              "117           0.802469          0.802469          0.802469               -1.0   \n",
              "119           0.345679          0.345679          0.345679               -1.0   \n",
              "\n",
              "     SODIUM_MEDIAN  SODIUM_MEAN  SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  \\\n",
              "0        -0.028571    -0.028571   -0.028571   -0.028571         -1.0   \n",
              "4         0.085714     0.085714    0.085714    0.085714         -1.0   \n",
              "8         0.200000     0.200000    0.200000    0.200000         -1.0   \n",
              "13        0.142857     0.142857    0.142857    0.142857         -1.0   \n",
              "18        0.085714     0.085714    0.085714    0.085714         -1.0   \n",
              "23       -0.257143    -0.257143   -0.257143   -0.257143         -1.0   \n",
              "28       -0.142857    -0.142857   -0.142857   -0.142857         -1.0   \n",
              "33       -0.600000    -0.600000   -0.600000   -0.600000         -1.0   \n",
              "38        0.161905     0.161905    0.161905    0.161905         -1.0   \n",
              "43        0.028571     0.028571    0.028571    0.028571         -1.0   \n",
              "48       -0.028571    -0.028571   -0.028571   -0.028571         -1.0   \n",
              "51        0.142857     0.142857    0.142857    0.142857         -1.0   \n",
              "56       -0.257143    -0.257143   -0.257143   -0.257143         -1.0   \n",
              "60       -0.542857    -0.542857   -0.542857   -0.542857         -1.0   \n",
              "62       -0.314286    -0.314286   -0.314286   -0.314286         -1.0   \n",
              "66       -0.142857    -0.142857   -0.142857   -0.142857         -1.0   \n",
              "71       -0.085714    -0.085714   -0.085714   -0.085714         -1.0   \n",
              "73        0.142857     0.142857    0.142857    0.142857         -1.0   \n",
              "77       -0.085714    -0.085714   -0.085714   -0.085714         -1.0   \n",
              "82       -0.257143    -0.257143   -0.257143   -0.257143         -1.0   \n",
              "87        0.142857     0.142857    0.142857    0.142857         -1.0   \n",
              "92        0.066667     0.066667    0.066667    0.066667         -1.0   \n",
              "97        0.028571     0.028571    0.028571    0.028571         -1.0   \n",
              "99       -0.187302    -0.187302   -0.187302   -0.187302         -1.0   \n",
              "104      -0.028571    -0.028571   -0.028571   -0.028571         -1.0   \n",
              "109            NaN          NaN         NaN         NaN          NaN   \n",
              "110      -0.200000    -0.200000   -0.200000   -0.200000         -1.0   \n",
              "112       0.085714     0.085714    0.085714    0.085714         -1.0   \n",
              "117      -0.314286    -0.314286   -0.314286   -0.314286         -1.0   \n",
              "119      -0.171429    -0.171429   -0.171429   -0.171429         -1.0   \n",
              "\n",
              "     TGO_MEDIAN  TGO_MEAN   TGO_MIN   TGO_MAX  TGO_DIFF  TGP_MEDIAN  TGP_MEAN  \\\n",
              "0     -0.997201 -0.997201 -0.997201 -0.997201      -1.0   -0.990854 -0.990854   \n",
              "4     -0.995428 -0.995428 -0.995428 -0.995428      -1.0   -0.986662 -0.986662   \n",
              "8     -0.989549 -0.989549 -0.989549 -0.989549      -1.0   -0.956555 -0.956555   \n",
              "13    -0.998507 -0.998507 -0.998507 -0.998507      -1.0   -0.991235 -0.991235   \n",
              "18    -0.997947 -0.997947 -0.997947 -0.997947      -1.0   -0.988948 -0.988948   \n",
              "23    -0.995428 -0.995428 -0.995428 -0.995428      -1.0   -0.986662 -0.986662   \n",
              "28    -0.995708 -0.995708 -0.995708 -0.995708      -1.0   -0.979040 -0.979040   \n",
              "33    -0.998134 -0.998134 -0.998134 -0.998134      -1.0   -0.997332 -0.997332   \n",
              "38    -0.994261 -0.994261 -0.994261 -0.994261      -1.0   -0.984947 -0.984947   \n",
              "43    -0.997014 -0.997014 -0.997014 -0.997014      -1.0   -0.996189 -0.996189   \n",
              "48    -0.996827 -0.996827 -0.996827 -0.996827      -1.0   -0.999619 -0.999619   \n",
              "51    -0.997481 -0.997481 -0.997481 -0.997481      -1.0   -0.996570 -0.996570   \n",
              "56    -0.994775 -0.994775 -0.994775 -0.994775      -1.0   -0.984756 -0.984756   \n",
              "60    -0.996268 -0.996268 -0.996268 -0.996268      -1.0   -0.994665 -0.994665   \n",
              "62    -0.991789 -0.991789 -0.991789 -0.991789      -1.0   -0.977515 -0.977515   \n",
              "66    -0.995894 -0.995894 -0.995894 -0.995894      -1.0   -0.990663 -0.990663   \n",
              "71    -0.995428 -0.995428 -0.995428 -0.995428      -1.0   -0.986662 -0.986662   \n",
              "73    -0.998880 -0.998880 -0.998880 -0.998880      -1.0   -0.996570 -0.996570   \n",
              "77    -0.997761 -0.997761 -0.997761 -0.997761      -1.0   -0.993521 -0.993521   \n",
              "82    -0.986517 -0.986517 -0.986517 -0.986517      -1.0   -0.970274 -0.970274   \n",
              "87    -0.997014 -0.997014 -0.997014 -0.997014      -1.0   -0.991235 -0.991235   \n",
              "92    -0.995428 -0.995428 -0.995428 -0.995428      -1.0   -0.986662 -0.986662   \n",
              "97    -0.995521 -0.995521 -0.995521 -0.995521      -1.0   -0.991235 -0.991235   \n",
              "99    -0.994930 -0.994930 -0.994930 -0.994930      -1.0   -0.986916 -0.986916   \n",
              "104   -0.995428 -0.995428 -0.995428 -0.995428      -1.0   -0.986662 -0.986662   \n",
              "109         NaN       NaN       NaN       NaN       NaN         NaN       NaN   \n",
              "110   -0.988430 -0.988430 -0.988430 -0.988430      -1.0   -0.975991 -0.975991   \n",
              "112   -0.997947 -0.997947 -0.997947 -0.997947      -1.0   -0.996761 -0.996761   \n",
              "117   -0.964542 -0.964542 -0.964542 -0.964542      -1.0   -0.946265 -0.946265   \n",
              "119   -0.997201 -0.997201 -0.997201 -0.997201      -1.0   -0.992759 -0.992759   \n",
              "\n",
              "      TGP_MIN   TGP_MAX  TGP_DIFF  TTPA_MEDIAN  TTPA_MEAN  TTPA_MIN  TTPA_MAX  \\\n",
              "0   -0.990854 -0.990854      -1.0    -0.825613  -0.825613 -0.825613 -0.825613   \n",
              "4   -0.986662 -0.986662      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "8   -0.956555 -0.956555      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "13  -0.991235 -0.991235      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "18  -0.988948 -0.988948      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "23  -0.986662 -0.986662      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "28  -0.979040 -0.979040      -1.0    -0.934605  -0.934605 -0.934605 -0.934605   \n",
              "33  -0.997332 -0.997332      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "38  -0.984947 -0.984947      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "43  -0.996189 -0.996189      -1.0    -0.847411  -0.847411 -0.847411 -0.847411   \n",
              "48  -0.999619 -0.999619      -1.0    -0.803815  -0.803815 -0.803815 -0.803815   \n",
              "51  -0.996570 -0.996570      -1.0    -0.833398  -0.833398 -0.833398 -0.833398   \n",
              "56  -0.984756 -0.984756      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "60  -0.994665 -0.994665      -1.0    -0.891008  -0.891008 -0.891008 -0.891008   \n",
              "62  -0.977515 -0.977515      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "66  -0.990663 -0.990663      -1.0    -0.849747  -0.849747 -0.849747 -0.849747   \n",
              "71  -0.986662 -0.986662      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "73  -0.996570 -0.996570      -1.0    -0.874659  -0.874659 -0.874659 -0.874659   \n",
              "77  -0.993521 -0.993521      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "82  -0.970274 -0.970274      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "87  -0.991235 -0.991235      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "92  -0.986662 -0.986662      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "97  -0.991235 -0.991235      -1.0    -0.891008  -0.891008 -0.891008 -0.891008   \n",
              "99  -0.986916 -0.986916      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "104 -0.986662 -0.986662      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "109       NaN       NaN       NaN          NaN        NaN       NaN       NaN   \n",
              "110 -0.975991 -0.975991      -1.0    -0.711172  -0.711172 -0.711172 -0.711172   \n",
              "112 -0.996761 -0.996761      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "117 -0.946265 -0.946265      -1.0    -0.846633  -0.846633 -0.846633 -0.846633   \n",
              "119 -0.992759 -0.992759      -1.0    -0.830673  -0.830673 -0.830673 -0.830673   \n",
              "\n",
              "     TTPA_DIFF  UREA_MEDIAN  UREA_MEAN  UREA_MIN  UREA_MAX  UREA_DIFF  \\\n",
              "0         -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "4         -1.0    -0.836145  -0.836145 -0.836145 -0.836145       -1.0   \n",
              "8         -1.0    -0.937349  -0.937349 -0.937349 -0.937349       -1.0   \n",
              "13        -1.0    -0.903614  -0.903614 -0.903614 -0.903614       -1.0   \n",
              "18        -1.0    -0.884337  -0.884337 -0.884337 -0.884337       -1.0   \n",
              "23        -1.0    -0.951807  -0.951807 -0.951807 -0.951807       -1.0   \n",
              "28        -1.0    -0.865060  -0.865060 -0.865060 -0.865060       -1.0   \n",
              "33        -1.0    -0.874699  -0.874699 -0.874699 -0.874699       -1.0   \n",
              "38        -1.0    -0.886747  -0.886747 -0.886747 -0.886747       -1.0   \n",
              "43        -1.0    -0.744578  -0.744578 -0.744578 -0.744578       -1.0   \n",
              "48        -1.0    -0.845783  -0.845783 -0.845783 -0.845783       -1.0   \n",
              "51        -1.0    -0.934940  -0.934940 -0.934940 -0.934940       -1.0   \n",
              "56        -1.0    -0.754217  -0.754217 -0.754217 -0.754217       -1.0   \n",
              "60        -1.0    -0.725301  -0.725301 -0.725301 -0.725301       -1.0   \n",
              "62        -1.0    -0.792771  -0.792771 -0.792771 -0.792771       -1.0   \n",
              "66        -1.0    -0.848193  -0.848193 -0.848193 -0.848193       -1.0   \n",
              "71        -1.0    -0.898795  -0.898795 -0.898795 -0.898795       -1.0   \n",
              "73        -1.0    -0.778313  -0.778313 -0.778313 -0.778313       -1.0   \n",
              "77        -1.0    -0.913253  -0.913253 -0.913253 -0.913253       -1.0   \n",
              "82        -1.0    -0.855422  -0.855422 -0.855422 -0.855422       -1.0   \n",
              "87        -1.0    -0.812048  -0.812048 -0.812048 -0.812048       -1.0   \n",
              "92        -1.0    -0.922892  -0.922892 -0.922892 -0.922892       -1.0   \n",
              "97        -1.0    -0.879518  -0.879518 -0.879518 -0.879518       -1.0   \n",
              "99        -1.0    -0.855422  -0.855422 -0.855422 -0.855422       -1.0   \n",
              "104       -1.0    -0.913253  -0.913253 -0.913253 -0.913253       -1.0   \n",
              "109        NaN          NaN        NaN       NaN       NaN        NaN   \n",
              "110       -1.0    -0.821687  -0.821687 -0.821687 -0.821687       -1.0   \n",
              "112       -1.0    -0.881928  -0.881928 -0.881928 -0.881928       -1.0   \n",
              "117       -1.0    -0.556627  -0.556627 -0.556627 -0.556627       -1.0   \n",
              "119       -1.0    -0.925301  -0.925301 -0.925301 -0.925301       -1.0   \n",
              "\n",
              "     DIMER_MEDIAN  DIMER_MEAN  DIMER_MIN  DIMER_MAX  DIMER_DIFF  \\\n",
              "0       -0.994912   -0.994912  -0.994912  -0.994912        -1.0   \n",
              "4       -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "8       -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "13      -1.000000   -1.000000  -1.000000  -1.000000        -1.0   \n",
              "18      -1.000000   -1.000000  -1.000000  -1.000000        -1.0   \n",
              "23      -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "28      -0.974174   -0.974174  -0.974174  -0.974174        -1.0   \n",
              "33      -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "38      -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "43      -0.971322   -0.971322  -0.971322  -0.971322        -1.0   \n",
              "48      -0.977720   -0.977720  -0.977720  -0.977720        -1.0   \n",
              "51      -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "56      -0.956289   -0.956289  -0.956289  -0.956289        -1.0   \n",
              "60      -0.992214   -0.992214  -0.992214  -0.992214        -1.0   \n",
              "62      -0.953051   -0.953051  -0.953051  -0.953051        -1.0   \n",
              "66      -0.961223   -0.961223  -0.961223  -0.961223        -1.0   \n",
              "71      -0.993216   -0.993216  -0.993216  -0.993216        -1.0   \n",
              "73      -0.998073   -0.998073  -0.998073  -0.998073        -1.0   \n",
              "77      -0.994912   -0.994912  -0.994912  -0.994912        -1.0   \n",
              "82      -0.963767   -0.963767  -0.963767  -0.963767        -1.0   \n",
              "87      -0.978645   -0.978645  -0.978645  -0.978645        -1.0   \n",
              "92      -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "97      -0.981960   -0.981960  -0.981960  -0.981960        -1.0   \n",
              "99      -0.971810   -0.971810  -0.971810  -0.971810        -1.0   \n",
              "104     -0.978029   -0.978029  -0.978029  -0.978029        -1.0   \n",
              "109           NaN         NaN        NaN        NaN         NaN   \n",
              "110     -0.990363   -0.990363  -0.990363  -0.990363        -1.0   \n",
              "112     -0.982500   -0.982500  -0.982500  -0.982500        -1.0   \n",
              "117     -0.946036   -0.946036  -0.946036  -0.946036        -1.0   \n",
              "119     -0.986740   -0.986740  -0.986740  -0.986740        -1.0   \n",
              "\n",
              "     BLOODPRESSURE_DIASTOLIC_MEAN  BLOODPRESSURE_SISTOLIC_MEAN  \\\n",
              "0                        0.086420                    -0.230769   \n",
              "4                       -0.551183                    -0.757158   \n",
              "8                       -0.132620                    -0.484650   \n",
              "13                       0.236838                    -0.101680   \n",
              "18                      -0.078189                    -0.494587   \n",
              "23                      -0.144033                    -0.266667   \n",
              "28                      -0.028472                    -0.421855   \n",
              "33                      -0.185185                    -0.630769   \n",
              "38                       0.050505                    -0.114685   \n",
              "43                       0.259259                    -0.292308   \n",
              "48                       0.037037                    -0.246154   \n",
              "51                      -0.254870                    -0.815043   \n",
              "56                      -0.358025                    -0.461538   \n",
              "60                      -0.234568                    -0.553846   \n",
              "62                      -0.131687                    -0.635897   \n",
              "66                       0.118166                    -0.404212   \n",
              "71                            NaN                          NaN   \n",
              "73                      -0.234568                     0.123077   \n",
              "77                      -0.082703                    -0.613317   \n",
              "82                      -0.323045                    -0.691453   \n",
              "87                       0.004703                    -0.158425   \n",
              "92                      -0.047512                    -0.464569   \n",
              "97                            NaN                          NaN   \n",
              "99                      -0.107248                    -0.378179   \n",
              "104                      0.011767                    -0.514183   \n",
              "109                           NaN                          NaN   \n",
              "110                     -0.407407                    -0.615385   \n",
              "112                     -0.120424                    -0.493199   \n",
              "117                           NaN                          NaN   \n",
              "119                     -0.090698                    -0.457045   \n",
              "\n",
              "     HEART_RATE_MEAN  RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  \\\n",
              "0          -0.283019              -0.593220     -2.857143e-01   \n",
              "4          -0.005241              -0.683145      3.571429e-01   \n",
              "8          -0.448553              -0.506215     -1.197619e-01   \n",
              "13          0.144491              -0.539451      1.891420e-01   \n",
              "18         -0.454228              -0.495292     -1.375661e-01   \n",
              "23         -0.284591              -0.550847      2.678571e-01   \n",
              "28         -0.492833              -0.484956     -1.600914e-01   \n",
              "33         -0.320755              -0.593220      4.642857e-01   \n",
              "38         -0.461407              -0.534669     -1.055195e-01   \n",
              "43         -0.754717              -0.661017      1.071429e-01   \n",
              "48         -0.415094              -0.389831      7.857143e-01   \n",
              "51         -0.265269              -0.537979     -1.087302e-01   \n",
              "56         -0.712264              -0.576271     -8.035714e-02   \n",
              "60         -0.641509              -0.389831     -1.785714e-01   \n",
              "62         -0.182390              -0.367232      9.020562e-16   \n",
              "66         -0.360288              -0.569814      4.464286e-03   \n",
              "71               NaN                    NaN               NaN   \n",
              "73         -0.811321              -0.186441     -1.071429e-01   \n",
              "77         -0.367722              -0.556042      1.575461e-01   \n",
              "82         -0.341195              -0.500942      2.132937e-01   \n",
              "87         -0.289982              -0.556901     -4.634354e-02   \n",
              "92         -0.183819              -0.534669      1.664863e-01   \n",
              "97         -0.358491                    NaN      2.142857e-01   \n",
              "99         -0.443974              -0.651332      1.327745e-01   \n",
              "104        -0.204746              -0.546610      2.313988e-01   \n",
              "109              NaN                    NaN               NaN   \n",
              "110        -0.660377              -0.525424      1.785714e-01   \n",
              "112        -0.565949              -0.529986     -2.043371e-01   \n",
              "117              NaN                    NaN               NaN   \n",
              "119        -0.113021              -0.501594      1.252526e-01   \n",
              "\n",
              "     OXYGEN_SATURATION_MEAN  BLOODPRESSURE_DIASTOLIC_MEDIAN  \\\n",
              "0                  0.736842                        0.086420   \n",
              "4                  0.867507                       -0.555556   \n",
              "8                  0.652398                       -0.102881   \n",
              "13                 0.852390                        0.251029   \n",
              "18                 0.835283                       -0.090535   \n",
              "23                 0.377193                       -0.160494   \n",
              "28                 0.812627                       -0.020576   \n",
              "33                 0.738346                       -0.185185   \n",
              "38                 0.784689                        0.086420   \n",
              "43                 0.789474                        0.259259   \n",
              "48                 0.684211                        0.037037   \n",
              "51                 0.874074                       -0.251029   \n",
              "56                 0.684211                       -0.358025   \n",
              "60                 0.789474                       -0.234568   \n",
              "62                 0.605263                       -0.111111   \n",
              "66                 0.748120                        0.086420   \n",
              "71                      NaN                             NaN   \n",
              "73                 0.842105                       -0.234568   \n",
              "77                 0.785441                       -0.061728   \n",
              "82                 0.717105                       -0.382716   \n",
              "87                 0.850877                       -0.037037   \n",
              "92                 0.770335                       -0.024691   \n",
              "97                 0.684211                             NaN   \n",
              "99                 0.753849                       -0.127572   \n",
              "104                0.667215                       -0.037037   \n",
              "109                     NaN                             NaN   \n",
              "110                0.894737                       -0.407407   \n",
              "112                0.890907                       -0.078189   \n",
              "117                     NaN                             NaN   \n",
              "119                0.744919                       -0.098765   \n",
              "\n",
              "     BLOODPRESSURE_SISTOLIC_MEDIAN  HEART_RATE_MEDIAN  \\\n",
              "0                        -0.230769          -0.283019   \n",
              "4                        -0.830769          -0.014151   \n",
              "8                        -0.482051          -0.459119   \n",
              "13                       -0.102564           0.160377   \n",
              "18                       -0.492308          -0.449686   \n",
              "23                       -0.220513          -0.270440   \n",
              "28                       -0.415385          -0.540881   \n",
              "33                       -0.630769          -0.320755   \n",
              "38                       -0.076923          -0.481132   \n",
              "43                       -0.292308          -0.754717   \n",
              "48                       -0.246154          -0.415094   \n",
              "51                       -0.820513          -0.264151   \n",
              "56                       -0.461538          -0.712264   \n",
              "60                       -0.553846          -0.641509   \n",
              "62                       -0.661538          -0.169811   \n",
              "66                       -0.384615          -0.358491   \n",
              "71                             NaN                NaN   \n",
              "73                        0.123077          -0.811321   \n",
              "77                       -0.600000          -0.374214   \n",
              "82                       -0.707692          -0.320755   \n",
              "87                       -0.141026          -0.301887   \n",
              "92                       -0.461538          -0.179245   \n",
              "97                             NaN          -0.358491   \n",
              "99                       -0.364103          -0.440252   \n",
              "104                      -0.538462          -0.216981   \n",
              "109                            NaN                NaN   \n",
              "110                      -0.615385          -0.660377   \n",
              "112                      -0.487179          -0.556604   \n",
              "117                            NaN                NaN   \n",
              "119                      -0.461538          -0.132075   \n",
              "\n",
              "     RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  OXYGEN_SATURATION_MEDIAN  \\\n",
              "0                  -0.586207           -0.285714                  0.736842   \n",
              "4                  -0.620690            0.357143                  0.881579   \n",
              "8                  -0.494253           -0.142857                  0.666667   \n",
              "13                 -0.540230            0.226190                  0.833333   \n",
              "18                 -0.494253           -0.136905                  0.833333   \n",
              "23                 -0.517241            0.238095                  0.736842   \n",
              "28                 -0.471264           -0.154762                  0.807018   \n",
              "33                 -0.586207            0.464286                  0.771930   \n",
              "38                 -0.517241           -0.089286                  0.763158   \n",
              "43                 -0.655172            0.107143                  0.789474   \n",
              "48                 -0.379310            0.785714                  0.684211   \n",
              "51                 -0.540230           -0.107143                  0.877193   \n",
              "56                 -0.568966           -0.080357                  0.684211   \n",
              "60                 -0.379310           -0.178571                  0.789474   \n",
              "62                 -0.344828            0.017857                  0.631579   \n",
              "66                 -0.563218           -0.011905                  0.754386   \n",
              "71                       NaN                 NaN                       NaN   \n",
              "73                 -0.172414           -0.107143                  0.842105   \n",
              "77                 -0.551724            0.160714                  0.789474   \n",
              "82                 -0.551724            0.178571                  0.710526   \n",
              "87                 -0.540230           -0.047619                  0.885965   \n",
              "92                 -0.540230            0.202381                  0.771930   \n",
              "97                       NaN            0.214286                  0.684211   \n",
              "99                 -0.655172            0.119048                  0.754386   \n",
              "104                -0.551724            0.226190                  0.684211   \n",
              "109                      NaN                 NaN                       NaN   \n",
              "110                -0.517241            0.178571                  0.894737   \n",
              "112                -0.494253           -0.166667                  0.947368   \n",
              "117                      NaN                 NaN                       NaN   \n",
              "119                -0.517241            0.071429                  0.763158   \n",
              "\n",
              "     BLOODPRESSURE_DIASTOLIC_MIN  BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  \\\n",
              "0                       0.237113                    0.000000       -0.162393   \n",
              "4                      -0.515464                   -0.587500       -0.145299   \n",
              "8                      -0.127148                   -0.329167       -0.435897   \n",
              "13                      0.237113                    0.000000        0.048433   \n",
              "18                      0.010309                   -0.291667       -0.418803   \n",
              "23                      0.030928                   -0.141667       -0.236467   \n",
              "28                      0.051546                   -0.233333       -0.487179   \n",
              "33                      0.010309                   -0.325000       -0.196581   \n",
              "38                      0.030928                    0.000000       -0.376068   \n",
              "43                      0.381443                   -0.050000       -0.589744   \n",
              "48                      0.195876                   -0.012500       -0.282051   \n",
              "51                     -0.106529                   -0.541667       -0.310541   \n",
              "56                     -0.164948                   -0.206250       -0.555556   \n",
              "60                     -0.030928                   -0.262500       -0.487179   \n",
              "62                      0.020619                   -0.350000       -0.094017   \n",
              "66                      0.168385                   -0.208333       -0.333333   \n",
              "71                           NaN                         NaN             NaN   \n",
              "73                     -0.030928                    0.287500       -0.641026   \n",
              "77                     -0.024055                   -0.425000       -0.396011   \n",
              "82                     -0.154639                   -0.418750       -0.290598   \n",
              "87                      0.037801                   -0.041667       -0.242165   \n",
              "92                     -0.037801                   -0.291667       -0.156695   \n",
              "97                           NaN                         NaN       -0.230769   \n",
              "99                     -0.010309                   -0.191667       -0.367521   \n",
              "104                     0.030928                   -0.312500       -0.239316   \n",
              "109                          NaN                         NaN             NaN   \n",
              "110                    -0.175258                   -0.312500       -0.504274   \n",
              "112                    -0.085911                   -0.291667       -0.512821   \n",
              "117                          NaN                         NaN             NaN   \n",
              "119                    -0.072165                   -0.250000       -0.119658   \n",
              "\n",
              "     RESPIRATORY_RATE_MIN  TEMPERATURE_MIN  OXYGEN_SATURATION_MIN  \\\n",
              "0               -0.500000         0.208791               0.898990   \n",
              "4               -0.678571         0.604396               0.878788   \n",
              "8               -0.547619         0.216117               0.629630   \n",
              "13              -0.500000         0.362637               0.925926   \n",
              "18              -0.404762         0.252747               0.925926   \n",
              "23              -0.535714         0.516484               0.313131   \n",
              "28              -0.428571         0.238095               0.912458   \n",
              "33              -0.500000         0.670330               0.865320   \n",
              "38              -0.571429         0.219780               0.909091   \n",
              "43              -0.571429         0.450549               0.919192   \n",
              "48              -0.285714         0.868132               0.878788   \n",
              "51              -0.500000         0.164835               0.925926   \n",
              "56              -0.500000         0.307692               0.868687   \n",
              "60              -0.285714         0.274725               0.919192   \n",
              "62              -0.285714         0.362637               0.828283   \n",
              "66              -0.523810         0.318681               0.878788   \n",
              "71                    NaN              NaN                    NaN   \n",
              "73              -0.071429         0.318681               0.939394   \n",
              "77              -0.535714         0.390110               0.893939   \n",
              "82              -0.500000         0.406593               0.868687   \n",
              "87              -0.523810         0.260073               0.360269   \n",
              "92              -0.500000         0.355311               0.885522   \n",
              "97                    NaN         0.516484               0.878788   \n",
              "99              -0.619048         0.333333               0.878788   \n",
              "104             -0.535714         0.472527               0.831650   \n",
              "109                   NaN              NaN                    NaN   \n",
              "110             -0.428571         0.494505               0.959596   \n",
              "112             -0.547619         0.164835               0.878788   \n",
              "117                   NaN              NaN                    NaN   \n",
              "119             -0.464286         0.362637               0.838384   \n",
              "\n",
              "     BLOODPRESSURE_DIASTOLIC_MAX  BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  \\\n",
              "0                      -0.247863                   -0.459459       -0.432836   \n",
              "4                      -0.504274                   -0.627027        0.000000   \n",
              "8                      -0.247863                   -0.506306       -0.263682   \n",
              "13                     -0.076923                   -0.293694        0.019900   \n",
              "18                     -0.282051                   -0.553153       -0.482587   \n",
              "23                     -0.373219                   -0.452252       -0.393035   \n",
              "28                     -0.270655                   -0.513514       -0.358209   \n",
              "33                     -0.435897                   -0.740541       -0.462687   \n",
              "38                     -0.247863                   -0.297297       -0.522388   \n",
              "43                     -0.128205                   -0.502703       -0.805970   \n",
              "48                     -0.282051                   -0.470270       -0.537313   \n",
              "51                     -0.418803                   -0.783784       -0.353234   \n",
              "56                     -0.529915                   -0.605405       -0.768657   \n",
              "60                     -0.470085                   -0.686486       -0.716418   \n",
              "62                     -0.384615                   -0.708108       -0.343284   \n",
              "66                     -0.133903                   -0.531532       -0.388060   \n",
              "71                           NaN                         NaN             NaN   \n",
              "73                     -0.470085                   -0.210811       -0.850746   \n",
              "77                     -0.242165                   -0.614414       -0.378109   \n",
              "82                     -0.401709                   -0.708108       -0.417910   \n",
              "87                     -0.179487                   -0.290090       -0.333333   \n",
              "92                     -0.259259                   -0.563964       -0.233831   \n",
              "97                           NaN                         NaN       -0.492537   \n",
              "99                     -0.339031                   -0.445045       -0.467662   \n",
              "104                    -0.162393                   -0.556757       -0.194030   \n",
              "109                          NaN                         NaN             NaN   \n",
              "110                    -0.589744                   -0.729730       -0.731343   \n",
              "112                    -0.304843                   -0.477477       -0.567164   \n",
              "117                          NaN                         NaN             NaN   \n",
              "119                    -0.239316                   -0.486486       -0.119403   \n",
              "\n",
              "     RESPIRATORY_RATE_MAX  TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  \\\n",
              "0               -0.636364        -0.420290               0.736842   \n",
              "4               -0.636364         0.101449               1.000000   \n",
              "8               -0.454545        -0.024155               0.754386   \n",
              "13              -0.535354         0.072464               0.912281   \n",
              "18              -0.535354        -0.246377               0.894737   \n",
              "23              -0.575758         0.120773               0.824561   \n",
              "28              -0.515152        -0.246377               0.859649   \n",
              "33              -0.636364         0.188406               0.789474   \n",
              "38              -0.484848        -0.202899               0.868421   \n",
              "43              -0.696970        -0.101449               0.789474   \n",
              "48              -0.454545         0.449275               0.684211   \n",
              "51              -0.515152        -0.173913               0.912281   \n",
              "56              -0.606061        -0.217391               0.710526   \n",
              "60              -0.454545        -0.333333               0.789474   \n",
              "62              -0.424242        -0.173913               0.631579   \n",
              "66              -0.575758        -0.033816               0.807018   \n",
              "71                    NaN              NaN                    NaN   \n",
              "73              -0.272727        -0.275362               0.842105   \n",
              "77              -0.242424         0.050725               0.868421   \n",
              "82              -0.363636         0.202899               0.789474   \n",
              "87              -0.535354        -0.072464               0.929825   \n",
              "92              -0.434343         0.082126               0.842105   \n",
              "97                    NaN        -0.014493               0.684211   \n",
              "99              -0.616162         0.101449               0.807018   \n",
              "104             -0.424242         0.159420               0.719298   \n",
              "109                   NaN              NaN                    NaN   \n",
              "110             -0.575758        -0.043478               0.894737   \n",
              "112             -0.494949        -0.256039               1.000000   \n",
              "117                   NaN              NaN                    NaN   \n",
              "119             -0.484848         0.260870               0.842105   \n",
              "\n",
              "     BLOODPRESSURE_DIASTOLIC_DIFF  BLOODPRESSURE_SISTOLIC_DIFF  \\\n",
              "0                       -1.000000                    -1.000000   \n",
              "4                       -0.626087                    -0.613497   \n",
              "8                       -0.692754                    -0.730061   \n",
              "13                      -0.826087                    -0.811861   \n",
              "18                      -0.843478                    -0.820041   \n",
              "23                      -0.953623                    -0.852761   \n",
              "28                      -0.866667                    -0.832311   \n",
              "33                      -1.000000                    -1.000000   \n",
              "38                      -0.826087                    -0.815951   \n",
              "43                      -1.000000                    -1.000000   \n",
              "48                      -1.000000                    -1.000000   \n",
              "51                      -0.884058                    -0.836401   \n",
              "56                      -0.947826                    -0.963190   \n",
              "60                      -1.000000                    -1.000000   \n",
              "62                      -0.956522                    -0.938650   \n",
              "66                      -0.826087                    -0.877301   \n",
              "71                            NaN                          NaN   \n",
              "73                      -1.000000                    -1.000000   \n",
              "77                      -0.773913                    -0.758691   \n",
              "82                      -0.826087                    -0.871166   \n",
              "87                      -0.762319                    -0.766871   \n",
              "92                      -0.779710                    -0.832311   \n",
              "97                            NaN                          NaN   \n",
              "99                      -0.884058                    -0.795501   \n",
              "104                     -0.739130                    -0.803681   \n",
              "109                           NaN                          NaN   \n",
              "110                     -1.000000                    -1.000000   \n",
              "112                     -0.785507                    -0.734151   \n",
              "117                           NaN                          NaN   \n",
              "119                     -0.730435                    -0.785276   \n",
              "\n",
              "     HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  TEMPERATURE_DIFF  \\\n",
              "0          -1.000000              -1.000000         -1.000000   \n",
              "4          -0.572519              -0.852941         -1.000000   \n",
              "8          -0.582697              -0.784314         -0.682540   \n",
              "13         -0.725191              -0.901961         -0.761905   \n",
              "18         -0.821883              -0.980392         -0.904762   \n",
              "23         -0.893130              -0.911765         -0.888889   \n",
              "28         -0.633588              -0.941176         -0.888889   \n",
              "33         -1.000000              -1.000000         -1.000000   \n",
              "38         -0.900763              -0.794118         -0.833333   \n",
              "43         -1.000000              -1.000000         -1.000000   \n",
              "48         -1.000000              -1.000000         -1.000000   \n",
              "51         -0.786260              -0.882353         -0.750000   \n",
              "56         -0.992366              -0.970588         -0.940476   \n",
              "60         -1.000000              -1.000000         -1.000000   \n",
              "62         -0.969466              -0.970588         -0.964286   \n",
              "66         -0.801527              -0.921569         -0.801587   \n",
              "71               NaN                    NaN               NaN   \n",
              "73         -1.000000              -1.000000         -1.000000   \n",
              "77         -0.735369              -0.588235         -0.809524   \n",
              "82         -0.870229              -0.735294         -0.702381   \n",
              "87         -0.826972              -0.882353         -0.769841   \n",
              "92         -0.801527              -0.803922         -0.746032   \n",
              "97         -1.000000                    NaN         -1.000000   \n",
              "99         -0.852417              -0.882353         -0.706349   \n",
              "104        -0.687023              -0.764706         -0.809524   \n",
              "109              NaN                    NaN               NaN   \n",
              "110        -1.000000              -1.000000         -1.000000   \n",
              "112        -0.824427              -0.823529         -0.817460   \n",
              "117              NaN                    NaN               NaN   \n",
              "119        -0.717557              -0.882353         -0.607143   \n",
              "\n",
              "     OXYGEN_SATURATION_DIFF  BLOODPRESSURE_DIASTOLIC_DIFF_REL  \\\n",
              "0                 -1.000000                         -1.000000   \n",
              "4                 -0.878788                         -0.587195   \n",
              "8                 -0.723906                         -0.769565   \n",
              "13                -0.959596                         -0.884058   \n",
              "18                -0.966330                         -0.873174   \n",
              "23                -0.380471                         -0.961353   \n",
              "28                -0.966330                         -0.891551   \n",
              "33                -0.946128                         -1.000000   \n",
              "38                -0.959596                         -0.869565   \n",
              "43                -1.000000                         -1.000000   \n",
              "48                -1.000000                         -1.000000   \n",
              "51                -0.959596                         -0.899181   \n",
              "56                -0.979798                         -0.951087   \n",
              "60                -1.000000                         -1.000000   \n",
              "62                -0.969697                         -0.965217   \n",
              "66                -0.952862                         -0.850932   \n",
              "71                      NaN                               NaN   \n",
              "73                -1.000000                         -1.000000   \n",
              "77                -0.944444                         -0.830435   \n",
              "82                -0.949495                         -0.826087   \n",
              "87                -0.387205                         -0.796273   \n",
              "92                -0.946128                         -0.832197   \n",
              "97                -1.000000                               NaN   \n",
              "99                -0.952862                         -0.900621   \n",
              "104               -0.939394                         -0.776398   \n",
              "109                     NaN                               NaN   \n",
              "110               -1.000000                         -1.000000   \n",
              "112               -0.878788                         -0.816149   \n",
              "117                     NaN                               NaN   \n",
              "119               -0.898990                         -0.784348   \n",
              "\n",
              "     BLOODPRESSURE_SISTOLIC_DIFF_REL  HEART_RATE_DIFF_REL  \\\n",
              "0                          -1.000000            -1.000000   \n",
              "4                          -0.457543            -0.734417   \n",
              "8                          -0.685906            -0.689698   \n",
              "13                         -0.826611            -0.839287   \n",
              "18                         -0.799242            -0.856110   \n",
              "23                         -0.879195            -0.927077   \n",
              "28                         -0.817431            -0.686446   \n",
              "33                         -1.000000            -1.000000   \n",
              "38                         -0.831735            -0.904071   \n",
              "43                         -1.000000            -1.000000   \n",
              "48                         -1.000000            -1.000000   \n",
              "51                         -0.779583            -0.850639   \n",
              "56                         -0.960738            -0.991567   \n",
              "60                         -1.000000            -1.000000   \n",
              "62                         -0.921477            -0.978136   \n",
              "66                         -0.869128            -0.830714   \n",
              "71                               NaN                  NaN   \n",
              "73                         -1.000000            -1.000000   \n",
              "77                         -0.731427            -0.816184   \n",
              "82                         -0.842953            -0.902250   \n",
              "87                         -0.765969            -0.867952   \n",
              "92                         -0.817330            -0.851997   \n",
              "97                               NaN            -1.000000   \n",
              "99                         -0.781879            -0.882743   \n",
              "104                        -0.771568            -0.751333   \n",
              "109                              NaN                  NaN   \n",
              "110                        -1.000000            -1.000000   \n",
              "112                        -0.692251            -0.845347   \n",
              "117                              NaN                  NaN   \n",
              "119                        -0.750153            -0.789978   \n",
              "\n",
              "     RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "0                    -1.000000             -1.000000   \n",
              "4                    -0.841577             -1.000000   \n",
              "8                    -0.776583             -0.682540   \n",
              "13                   -0.896057             -0.766042   \n",
              "18                   -0.979689             -0.904177   \n",
              "23                   -0.913413             -0.890700   \n",
              "28                   -0.939068             -0.888823   \n",
              "33                   -1.000000             -1.000000   \n",
              "38                   -0.808065             -0.835604   \n",
              "43                   -1.000000             -1.000000   \n",
              "48                   -1.000000             -1.000000   \n",
              "51                   -0.870968             -0.749307   \n",
              "56                   -0.970357             -0.939045   \n",
              "60                   -1.000000             -1.000000   \n",
              "62                   -0.971138             -0.963786   \n",
              "66                   -0.918757             -0.802677   \n",
              "71                         NaN                   NaN   \n",
              "73                   -1.000000             -1.000000   \n",
              "77                   -0.573477             -0.812629   \n",
              "82                   -0.709677             -0.703201   \n",
              "87                   -0.878136             -0.770475   \n",
              "92                   -0.797519             -0.750556   \n",
              "97                         NaN             -1.000000   \n",
              "99                   -0.878136             -0.711137   \n",
              "104                  -0.756272             -0.810979   \n",
              "109                        NaN                   NaN   \n",
              "110                  -1.000000             -1.000000   \n",
              "112                  -0.819342             -0.816042   \n",
              "117                        NaN                   NaN   \n",
              "119                  -0.878136             -0.609948   \n",
              "\n",
              "     OXYGEN_SATURATION_DIFF_REL  AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "0                     -1.000000                 0.0                 0.0   \n",
              "4                     -0.881277                 1.0                 0.0   \n",
              "8                     -0.724145                 0.0                 0.0   \n",
              "13                    -0.960291                 1.0                 0.0   \n",
              "18                    -0.967019                 1.0                 0.0   \n",
              "23                    -0.360825                 0.0                 0.0   \n",
              "28                    -0.966710                 0.0                 1.0   \n",
              "33                    -0.946233                 0.0                 0.0   \n",
              "38                    -0.959202                 0.0                 0.0   \n",
              "43                    -1.000000                 0.0                 0.0   \n",
              "48                    -1.000000                 0.0                 0.0   \n",
              "51                    -0.960463                 0.0                 1.0   \n",
              "56                    -0.979816                 0.0                 0.0   \n",
              "60                    -1.000000                 0.0                 0.0   \n",
              "62                    -0.969072                 0.0                 0.0   \n",
              "66                    -0.952903                 0.0                 0.0   \n",
              "71                          NaN                 0.0                 1.0   \n",
              "73                    -1.000000                 0.0                 0.0   \n",
              "77                    -0.943902                 0.0                 0.0   \n",
              "82                    -0.949539                 0.0                 0.0   \n",
              "87                    -0.397254                 0.0                 0.0   \n",
              "92                    -0.946315                 0.0                 0.0   \n",
              "97                    -1.000000                 0.0                 0.0   \n",
              "99                    -0.952402                 0.0                 0.0   \n",
              "104                   -0.938802                 0.0                 1.0   \n",
              "109                         NaN                 0.0                 0.0   \n",
              "110                   -1.000000                 0.0                 0.0   \n",
              "112                   -0.883579                 0.0                 0.0   \n",
              "117                         NaN                 0.0                 0.0   \n",
              "119                   -0.899078                 0.0                 0.0   \n",
              "\n",
              "     AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  AGE_PERCENTIL_50th  \\\n",
              "0                   0.0                 0.0                 0.0   \n",
              "4                   0.0                 0.0                 0.0   \n",
              "8                   0.0                 1.0                 0.0   \n",
              "13                  0.0                 0.0                 0.0   \n",
              "18                  0.0                 0.0                 0.0   \n",
              "23                  0.0                 0.0                 0.0   \n",
              "28                  0.0                 0.0                 0.0   \n",
              "33                  0.0                 0.0                 1.0   \n",
              "38                  0.0                 0.0                 0.0   \n",
              "43                  0.0                 0.0                 0.0   \n",
              "48                  0.0                 0.0                 0.0   \n",
              "51                  0.0                 0.0                 0.0   \n",
              "56                  0.0                 0.0                 1.0   \n",
              "60                  0.0                 0.0                 0.0   \n",
              "62                  0.0                 0.0                 1.0   \n",
              "66                  1.0                 0.0                 0.0   \n",
              "71                  0.0                 0.0                 0.0   \n",
              "73                  0.0                 0.0                 0.0   \n",
              "77                  0.0                 1.0                 0.0   \n",
              "82                  0.0                 0.0                 0.0   \n",
              "87                  0.0                 0.0                 0.0   \n",
              "92                  0.0                 1.0                 0.0   \n",
              "97                  0.0                 0.0                 0.0   \n",
              "99                  0.0                 0.0                 0.0   \n",
              "104                 0.0                 0.0                 0.0   \n",
              "109                 0.0                 1.0                 0.0   \n",
              "110                 0.0                 0.0                 0.0   \n",
              "112                 0.0                 0.0                 0.0   \n",
              "117                 0.0                 0.0                 0.0   \n",
              "119                 1.0                 0.0                 0.0   \n",
              "\n",
              "     AGE_PERCENTIL_60th  AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "0                   1.0                 0.0                 0.0   \n",
              "4                   0.0                 0.0                 0.0   \n",
              "8                   0.0                 0.0                 0.0   \n",
              "13                  0.0                 0.0                 0.0   \n",
              "18                  0.0                 0.0                 0.0   \n",
              "23                  0.0                 1.0                 0.0   \n",
              "28                  0.0                 0.0                 0.0   \n",
              "33                  0.0                 0.0                 0.0   \n",
              "38                  0.0                 0.0                 1.0   \n",
              "43                  0.0                 0.0                 1.0   \n",
              "48                  0.0                 0.0                 1.0   \n",
              "51                  0.0                 0.0                 0.0   \n",
              "56                  0.0                 0.0                 0.0   \n",
              "60                  1.0                 0.0                 0.0   \n",
              "62                  0.0                 0.0                 0.0   \n",
              "66                  0.0                 0.0                 0.0   \n",
              "71                  0.0                 0.0                 0.0   \n",
              "73                  0.0                 1.0                 0.0   \n",
              "77                  0.0                 0.0                 0.0   \n",
              "82                  0.0                 1.0                 0.0   \n",
              "87                  1.0                 0.0                 0.0   \n",
              "92                  0.0                 0.0                 0.0   \n",
              "97                  0.0                 0.0                 1.0   \n",
              "99                  0.0                 0.0                 0.0   \n",
              "104                 0.0                 0.0                 0.0   \n",
              "109                 0.0                 0.0                 0.0   \n",
              "110                 0.0                 1.0                 0.0   \n",
              "112                 0.0                 0.0                 1.0   \n",
              "117                 0.0                 0.0                 0.0   \n",
              "119                 0.0                 0.0                 0.0   \n",
              "\n",
              "     AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th  WINDOW_0-2  WINDOW_2-4  \\\n",
              "0                   0.0                       0.0         1.0         0.0   \n",
              "4                   0.0                       0.0         1.0         0.0   \n",
              "8                   0.0                       0.0         1.0         0.0   \n",
              "13                  0.0                       0.0         1.0         0.0   \n",
              "18                  0.0                       0.0         1.0         0.0   \n",
              "23                  0.0                       0.0         1.0         0.0   \n",
              "28                  0.0                       0.0         1.0         0.0   \n",
              "33                  0.0                       0.0         1.0         0.0   \n",
              "38                  0.0                       0.0         1.0         0.0   \n",
              "43                  0.0                       0.0         1.0         0.0   \n",
              "48                  0.0                       0.0         1.0         0.0   \n",
              "51                  0.0                       0.0         1.0         0.0   \n",
              "56                  0.0                       0.0         1.0         0.0   \n",
              "60                  0.0                       0.0         1.0         0.0   \n",
              "62                  0.0                       0.0         1.0         0.0   \n",
              "66                  0.0                       0.0         1.0         0.0   \n",
              "71                  0.0                       0.0         1.0         0.0   \n",
              "73                  0.0                       0.0         1.0         0.0   \n",
              "77                  0.0                       0.0         1.0         0.0   \n",
              "82                  0.0                       0.0         1.0         0.0   \n",
              "87                  0.0                       0.0         1.0         0.0   \n",
              "92                  0.0                       0.0         1.0         0.0   \n",
              "97                  0.0                       0.0         1.0         0.0   \n",
              "99                  1.0                       0.0         1.0         0.0   \n",
              "104                 0.0                       0.0         1.0         0.0   \n",
              "109                 0.0                       0.0         1.0         0.0   \n",
              "110                 0.0                       0.0         1.0         0.0   \n",
              "112                 0.0                       0.0         1.0         0.0   \n",
              "117                 1.0                       0.0         1.0         0.0   \n",
              "119                 0.0                       0.0         1.0         0.0   \n",
              "\n",
              "     WINDOW_4-6  WINDOW_6-12  WINDOW_ABOVE_12  ICU  \n",
              "0           0.0          0.0              0.0  1.0  \n",
              "4           0.0          0.0              0.0  1.0  \n",
              "8           0.0          0.0              0.0  0.0  \n",
              "13          0.0          0.0              0.0  0.0  \n",
              "18          0.0          0.0              0.0  0.0  \n",
              "23          0.0          0.0              0.0  0.0  \n",
              "28          0.0          0.0              0.0  0.0  \n",
              "33          0.0          0.0              0.0  0.0  \n",
              "38          0.0          0.0              0.0  0.0  \n",
              "43          0.0          0.0              0.0  0.0  \n",
              "48          0.0          0.0              0.0  1.0  \n",
              "51          0.0          0.0              0.0  0.0  \n",
              "56          0.0          0.0              0.0  1.0  \n",
              "60          0.0          0.0              0.0  1.0  \n",
              "62          0.0          0.0              0.0  1.0  \n",
              "66          0.0          0.0              0.0  0.0  \n",
              "71          0.0          0.0              0.0  1.0  \n",
              "73          0.0          0.0              0.0  1.0  \n",
              "77          0.0          0.0              0.0  0.0  \n",
              "82          0.0          0.0              0.0  0.0  \n",
              "87          0.0          0.0              0.0  0.0  \n",
              "92          0.0          0.0              0.0  0.0  \n",
              "97          0.0          0.0              0.0  1.0  \n",
              "99          0.0          0.0              0.0  0.0  \n",
              "104         0.0          0.0              0.0  0.0  \n",
              "109         0.0          0.0              0.0  1.0  \n",
              "110         0.0          0.0              0.0  1.0  \n",
              "112         0.0          0.0              0.0  0.0  \n",
              "117         0.0          0.0              0.0  1.0  \n",
              "119         0.0          0.0              0.0  0.0  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 9
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 249
        },
        "id": "KhMGh228J4Yg",
        "outputId": "ff583d95-a9cc-4b1d-a8b4-a615de05377e"
      },
      "source": [
        "final_data = final_data.drop(['GENDER','PATIENT_VISIT_IDENTIFIER','WINDOW_0-2',\t'WINDOW_2-4',\t'WINDOW_4-6',\t'WINDOW_6-12',\t'WINDOW_ABOVE_12'],axis = 1)\n",
        "final_data.head()"
      ],
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-0.945093</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>0.090147</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>0.109756</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-0.518519</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-0.997201</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-0.990854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-0.825613</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-0.994912</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.283019</td>\n",
              "      <td>-0.586207</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>0.898990</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>-0.420290</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>0.144654</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>0.158537</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-0.703704</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.551183</td>\n",
              "      <td>-0.757158</td>\n",
              "      <td>-0.005241</td>\n",
              "      <td>-0.683145</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.867507</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.830769</td>\n",
              "      <td>-0.014151</td>\n",
              "      <td>-0.620690</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.881579</td>\n",
              "      <td>-0.515464</td>\n",
              "      <td>-0.587500</td>\n",
              "      <td>-0.145299</td>\n",
              "      <td>-0.678571</td>\n",
              "      <td>0.604396</td>\n",
              "      <td>0.878788</td>\n",
              "      <td>-0.504274</td>\n",
              "      <td>-0.627027</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.636364</td>\n",
              "      <td>0.101449</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.626087</td>\n",
              "      <td>-0.613497</td>\n",
              "      <td>-0.572519</td>\n",
              "      <td>-0.852941</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.878788</td>\n",
              "      <td>-0.587195</td>\n",
              "      <td>-0.457543</td>\n",
              "      <td>-0.734417</td>\n",
              "      <td>-0.841577</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.881277</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-0.263158</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-0.972789</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-0.194030</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-0.316589</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-0.203354</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-0.633136</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-0.777778</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-0.989549</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-0.956555</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.132620</td>\n",
              "      <td>-0.484650</td>\n",
              "      <td>-0.448553</td>\n",
              "      <td>-0.506215</td>\n",
              "      <td>-0.119762</td>\n",
              "      <td>0.652398</td>\n",
              "      <td>-0.102881</td>\n",
              "      <td>-0.482051</td>\n",
              "      <td>-0.459119</td>\n",
              "      <td>-0.494253</td>\n",
              "      <td>-0.142857</td>\n",
              "      <td>0.666667</td>\n",
              "      <td>-0.127148</td>\n",
              "      <td>-0.329167</td>\n",
              "      <td>-0.435897</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>0.216117</td>\n",
              "      <td>0.629630</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.506306</td>\n",
              "      <td>-0.263682</td>\n",
              "      <td>-0.454545</td>\n",
              "      <td>-0.024155</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>-0.692754</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-0.582697</td>\n",
              "      <td>-0.784314</td>\n",
              "      <td>-0.682540</td>\n",
              "      <td>-0.723906</td>\n",
              "      <td>-0.769565</td>\n",
              "      <td>-0.685906</td>\n",
              "      <td>-0.689698</td>\n",
              "      <td>-0.776583</td>\n",
              "      <td>-0.682540</td>\n",
              "      <td>-0.724145</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>13</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-0.935113</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-0.829424</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-0.938084</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>0.358491</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>0.304878</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-0.592593</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-0.998507</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-0.991235</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.236838</td>\n",
              "      <td>-0.101680</td>\n",
              "      <td>0.144491</td>\n",
              "      <td>-0.539451</td>\n",
              "      <td>0.189142</td>\n",
              "      <td>0.852390</td>\n",
              "      <td>0.251029</td>\n",
              "      <td>-0.102564</td>\n",
              "      <td>0.160377</td>\n",
              "      <td>-0.540230</td>\n",
              "      <td>0.226190</td>\n",
              "      <td>0.833333</td>\n",
              "      <td>0.237113</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.048433</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.293694</td>\n",
              "      <td>0.019900</td>\n",
              "      <td>-0.535354</td>\n",
              "      <td>0.072464</td>\n",
              "      <td>0.912281</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.811861</td>\n",
              "      <td>-0.725191</td>\n",
              "      <td>-0.901961</td>\n",
              "      <td>-0.761905</td>\n",
              "      <td>-0.959596</td>\n",
              "      <td>-0.884058</td>\n",
              "      <td>-0.826611</td>\n",
              "      <td>-0.839287</td>\n",
              "      <td>-0.896057</td>\n",
              "      <td>-0.766042</td>\n",
              "      <td>-0.960291</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>18</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>0.291405</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>0.243902</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-0.77931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-0.997947</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-0.988948</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.078189</td>\n",
              "      <td>-0.494587</td>\n",
              "      <td>-0.454228</td>\n",
              "      <td>-0.495292</td>\n",
              "      <td>-0.137566</td>\n",
              "      <td>0.835283</td>\n",
              "      <td>-0.090535</td>\n",
              "      <td>-0.492308</td>\n",
              "      <td>-0.449686</td>\n",
              "      <td>-0.494253</td>\n",
              "      <td>-0.136905</td>\n",
              "      <td>0.833333</td>\n",
              "      <td>0.010309</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.418803</td>\n",
              "      <td>-0.404762</td>\n",
              "      <td>0.252747</td>\n",
              "      <td>0.925926</td>\n",
              "      <td>-0.282051</td>\n",
              "      <td>-0.553153</td>\n",
              "      <td>-0.482587</td>\n",
              "      <td>-0.535354</td>\n",
              "      <td>-0.246377</td>\n",
              "      <td>0.894737</td>\n",
              "      <td>-0.843478</td>\n",
              "      <td>-0.820041</td>\n",
              "      <td>-0.821883</td>\n",
              "      <td>-0.980392</td>\n",
              "      <td>-0.904762</td>\n",
              "      <td>-0.966330</td>\n",
              "      <td>-0.873174</td>\n",
              "      <td>-0.799242</td>\n",
              "      <td>-0.856110</td>\n",
              "      <td>-0.979689</td>\n",
              "      <td>-0.904177</td>\n",
              "      <td>-0.967019</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "    AGE_ABOVE65  DISEASE GROUPING 1  DISEASE GROUPING 2  DISEASE GROUPING 3  \\\n",
              "0           1.0                 0.0                 0.0                 0.0   \n",
              "4           0.0                 0.0                 0.0                 0.0   \n",
              "8           0.0                 0.0                 0.0                 0.0   \n",
              "13          0.0                 0.0                 0.0                 0.0   \n",
              "18          0.0                 0.0                 0.0                 0.0   \n",
              "\n",
              "    DISEASE GROUPING 4  DISEASE GROUPING 5  DISEASE GROUPING 6  HTN  \\\n",
              "0                  0.0                 1.0                 1.0  0.0   \n",
              "4                  0.0                 0.0                 0.0  0.0   \n",
              "8                  0.0                 0.0                 0.0  0.0   \n",
              "13                 0.0                 0.0                 0.0  0.0   \n",
              "18                 0.0                 0.0                 0.0  0.0   \n",
              "\n",
              "    IMMUNOCOMPROMISED  OTHER  ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  \\\n",
              "0                 0.0    1.0        0.605263      0.605263     0.605263   \n",
              "4                 0.0    1.0        0.605263      0.605263     0.605263   \n",
              "8                 1.0    1.0       -0.263158     -0.263158    -0.263158   \n",
              "13                0.0    1.0        0.605263      0.605263     0.605263   \n",
              "18                0.0    1.0        0.605263      0.605263     0.605263   \n",
              "\n",
              "    ALBUMIN_MAX  ALBUMIN_DIFF  BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  \\\n",
              "0      0.605263          -1.0                -1.0              -1.0   \n",
              "4      0.605263          -1.0                -1.0              -1.0   \n",
              "8     -0.263158          -1.0                -1.0              -1.0   \n",
              "13     0.605263          -1.0                -1.0              -1.0   \n",
              "18     0.605263          -1.0                -1.0              -1.0   \n",
              "\n",
              "    BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  \\\n",
              "0              -1.0             -1.0              -1.0              -1.0   \n",
              "4              -1.0             -1.0              -1.0              -1.0   \n",
              "8              -1.0             -1.0              -1.0              -1.0   \n",
              "13             -1.0             -1.0              -1.0              -1.0   \n",
              "18             -1.0             -1.0              -1.0              -1.0   \n",
              "\n",
              "    BE_VENOUS_MEAN  BE_VENOUS_MIN  BE_VENOUS_MAX  BE_VENOUS_DIFF  \\\n",
              "0             -1.0           -1.0           -1.0            -1.0   \n",
              "4             -1.0           -1.0           -1.0            -1.0   \n",
              "8             -1.0           -1.0           -1.0            -1.0   \n",
              "13            -1.0           -1.0           -1.0            -1.0   \n",
              "18            -1.0           -1.0           -1.0            -1.0   \n",
              "\n",
              "    BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  BIC_ARTERIAL_MIN  \\\n",
              "0             -0.317073          -0.317073         -0.317073   \n",
              "4             -0.317073          -0.317073         -0.317073   \n",
              "8             -0.317073          -0.317073         -0.317073   \n",
              "13            -0.317073          -0.317073         -0.317073   \n",
              "18            -0.317073          -0.317073         -0.317073   \n",
              "\n",
              "    BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  BIC_VENOUS_MEDIAN  BIC_VENOUS_MEAN  \\\n",
              "0          -0.317073               -1.0          -0.317073        -0.317073   \n",
              "4          -0.317073               -1.0          -0.317073        -0.317073   \n",
              "8          -0.317073               -1.0          -0.317073        -0.317073   \n",
              "13         -0.317073               -1.0          -0.317073        -0.317073   \n",
              "18         -0.317073               -1.0          -0.317073        -0.317073   \n",
              "\n",
              "    BIC_VENOUS_MIN  BIC_VENOUS_MAX  BIC_VENOUS_DIFF  BILLIRUBIN_MEDIAN  \\\n",
              "0        -0.317073       -0.317073             -1.0          -0.938950   \n",
              "4        -0.317073       -0.317073             -1.0          -0.938950   \n",
              "8        -0.317073       -0.317073             -1.0          -0.972789   \n",
              "13       -0.317073       -0.317073             -1.0          -0.935113   \n",
              "18       -0.317073       -0.317073             -1.0          -0.938950   \n",
              "\n",
              "    BILLIRUBIN_MEAN  BILLIRUBIN_MIN  BILLIRUBIN_MAX  BILLIRUBIN_DIFF  \\\n",
              "0         -0.938950       -0.938950       -0.938950             -1.0   \n",
              "4         -0.938950       -0.938950       -0.938950             -1.0   \n",
              "8         -0.972789       -0.972789       -0.972789             -1.0   \n",
              "13        -0.935113       -0.935113       -0.935113             -1.0   \n",
              "18        -0.938950       -0.938950       -0.938950             -1.0   \n",
              "\n",
              "    BLAST_MEDIAN  BLAST_MEAN  BLAST_MIN  BLAST_MAX  BLAST_DIFF  \\\n",
              "0           -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "4           -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "8           -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "13          -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "18          -1.0        -1.0       -1.0       -1.0        -1.0   \n",
              "\n",
              "    CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  CALCIUM_MAX  CALCIUM_DIFF  \\\n",
              "0         0.183673      0.183673     0.183673     0.183673          -1.0   \n",
              "4         0.357143      0.357143     0.357143     0.357143          -1.0   \n",
              "8         0.326531      0.326531     0.326531     0.326531          -1.0   \n",
              "13        0.357143      0.357143     0.357143     0.357143          -1.0   \n",
              "18        0.357143      0.357143     0.357143     0.357143          -1.0   \n",
              "\n",
              "    CREATININ_MEDIAN  CREATININ_MEAN  CREATININ_MIN  CREATININ_MAX  \\\n",
              "0          -0.868365       -0.868365      -0.868365      -0.868365   \n",
              "4          -0.912243       -0.912243      -0.912243      -0.912243   \n",
              "8          -0.968861       -0.968861      -0.968861      -0.968861   \n",
              "13         -0.913659       -0.913659      -0.913659      -0.913659   \n",
              "18         -0.891012       -0.891012      -0.891012      -0.891012   \n",
              "\n",
              "    CREATININ_DIFF  FFA_MEDIAN  FFA_MEAN   FFA_MIN   FFA_MAX  FFA_DIFF  \\\n",
              "0             -1.0   -0.742004 -0.742004 -0.742004 -0.742004      -1.0   \n",
              "4             -1.0   -0.742004 -0.742004 -0.742004 -0.742004      -1.0   \n",
              "8             -1.0   -0.194030 -0.194030 -0.194030 -0.194030      -1.0   \n",
              "13            -1.0   -0.829424 -0.829424 -0.829424 -0.829424      -1.0   \n",
              "18            -1.0   -0.742004 -0.742004 -0.742004 -0.742004      -1.0   \n",
              "\n",
              "    GGT_MEDIAN  GGT_MEAN   GGT_MIN   GGT_MAX  GGT_DIFF  GLUCOSE_MEDIAN  \\\n",
              "0    -0.945093 -0.945093 -0.945093 -0.945093      -1.0       -0.891993   \n",
              "4    -0.958528 -0.958528 -0.958528 -0.958528      -1.0       -0.780261   \n",
              "8    -0.316589 -0.316589 -0.316589 -0.316589      -1.0       -0.891993   \n",
              "13   -0.938084 -0.938084 -0.938084 -0.938084      -1.0       -0.851024   \n",
              "18   -0.958528 -0.958528 -0.958528 -0.958528      -1.0       -0.891993   \n",
              "\n",
              "    GLUCOSE_MEAN  GLUCOSE_MIN  GLUCOSE_MAX  GLUCOSE_DIFF  HEMATOCRITE_MEDIAN  \\\n",
              "0      -0.891993    -0.891993    -0.891993          -1.0            0.090147   \n",
              "4      -0.780261    -0.780261    -0.780261          -1.0            0.144654   \n",
              "8      -0.891993    -0.891993    -0.891993          -1.0           -0.203354   \n",
              "13     -0.851024    -0.851024    -0.851024          -1.0            0.358491   \n",
              "18     -0.891993    -0.891993    -0.891993          -1.0            0.291405   \n",
              "\n",
              "    HEMATOCRITE_MEAN  HEMATOCRITE_MIN  HEMATOCRITE_MAX  HEMATOCRITE_DIFF  \\\n",
              "0           0.090147         0.090147         0.090147              -1.0   \n",
              "4           0.144654         0.144654         0.144654              -1.0   \n",
              "8          -0.203354        -0.203354        -0.203354              -1.0   \n",
              "13          0.358491         0.358491         0.358491              -1.0   \n",
              "18          0.291405         0.291405         0.291405              -1.0   \n",
              "\n",
              "    HEMOGLOBIN_MEDIAN  HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  HEMOGLOBIN_MAX  \\\n",
              "0            0.109756         0.109756        0.109756        0.109756   \n",
              "4            0.158537         0.158537        0.158537        0.158537   \n",
              "8           -0.219512        -0.219512       -0.219512       -0.219512   \n",
              "13           0.304878         0.304878        0.304878        0.304878   \n",
              "18           0.243902         0.243902        0.243902        0.243902   \n",
              "\n",
              "    HEMOGLOBIN_DIFF  INR_MEDIAN  INR_MEAN   INR_MIN   INR_MAX  INR_DIFF  \\\n",
              "0              -1.0   -0.932246 -0.932246 -0.932246 -0.932246      -1.0   \n",
              "4              -1.0   -0.959849 -0.959849 -0.959849 -0.959849      -1.0   \n",
              "8              -1.0   -0.959849 -0.959849 -0.959849 -0.959849      -1.0   \n",
              "13             -1.0   -0.959849 -0.959849 -0.959849 -0.959849      -1.0   \n",
              "18             -1.0   -0.959849 -0.959849 -0.959849 -0.959849      -1.0   \n",
              "\n",
              "    LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  LACTATE_MAX  LACTATE_DIFF  \\\n",
              "0         1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "4         1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "8        -0.828421     -0.828421    -0.828421    -0.828421          -1.0   \n",
              "13        1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "18        1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "\n",
              "    LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  LEUKOCYTES_MIN  LEUKOCYTES_MAX  \\\n",
              "0           -0.835844        -0.835844       -0.835844       -0.835844   \n",
              "4           -0.382773        -0.382773       -0.382773       -0.382773   \n",
              "8           -0.729239        -0.729239       -0.729239       -0.729239   \n",
              "13          -0.702202        -0.702202       -0.702202       -0.702202   \n",
              "18          -0.706450        -0.706450       -0.706450       -0.706450   \n",
              "\n",
              "    LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  LINFOCITOS_MEAN  LINFOCITOS_MIN  \\\n",
              "0              -1.0          -0.914938        -0.914938       -0.914938   \n",
              "4              -1.0          -0.908714        -0.908714       -0.908714   \n",
              "8              -1.0          -0.836100        -0.836100       -0.836100   \n",
              "13             -1.0          -0.641079        -0.641079       -0.641079   \n",
              "18             -1.0          -0.340249        -0.340249       -0.340249   \n",
              "\n",
              "    LINFOCITOS_MAX  LINFOCITOS_DIFF  NEUTROPHILES_MEDIAN  NEUTROPHILES_MEAN  \\\n",
              "0        -0.914938             -1.0            -0.868747          -0.868747   \n",
              "4        -0.908714             -1.0            -0.412965          -0.412965   \n",
              "8        -0.836100             -1.0            -0.784714          -0.784714   \n",
              "13       -0.641079             -1.0            -0.812725          -0.812725   \n",
              "18       -0.340249             -1.0            -0.846339          -0.846339   \n",
              "\n",
              "    NEUTROPHILES_MIN  NEUTROPHILES_MAX  NEUTROPHILES_DIFF  \\\n",
              "0          -0.868747         -0.868747               -1.0   \n",
              "4          -0.412965         -0.412965               -1.0   \n",
              "8          -0.784714         -0.784714               -1.0   \n",
              "13         -0.812725         -0.812725               -1.0   \n",
              "18         -0.846339         -0.846339               -1.0   \n",
              "\n",
              "    P02_ARTERIAL_MEDIAN  P02_ARTERIAL_MEAN  P02_ARTERIAL_MIN  \\\n",
              "0             -0.170732          -0.170732         -0.170732   \n",
              "4             -0.170732          -0.170732         -0.170732   \n",
              "8             -0.170732          -0.170732         -0.170732   \n",
              "13            -0.170732          -0.170732         -0.170732   \n",
              "18            -0.170732          -0.170732         -0.170732   \n",
              "\n",
              "    P02_ARTERIAL_MAX  P02_ARTERIAL_DIFF  P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  \\\n",
              "0          -0.170732               -1.0          -0.704142        -0.704142   \n",
              "4          -0.170732               -1.0          -0.704142        -0.704142   \n",
              "8          -0.170732               -1.0          -0.633136        -0.633136   \n",
              "13         -0.170732               -1.0          -0.704142        -0.704142   \n",
              "18         -0.170732               -1.0          -0.704142        -0.704142   \n",
              "\n",
              "    P02_VENOUS_MIN  P02_VENOUS_MAX  P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  \\\n",
              "0        -0.704142       -0.704142             -1.0              -0.77931   \n",
              "4        -0.704142       -0.704142             -1.0              -0.77931   \n",
              "8        -0.633136       -0.633136             -1.0              -0.77931   \n",
              "13       -0.704142       -0.704142             -1.0              -0.77931   \n",
              "18       -0.704142       -0.704142             -1.0              -0.77931   \n",
              "\n",
              "    PC02_ARTERIAL_MEAN  PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  \\\n",
              "0             -0.77931           -0.77931           -0.77931   \n",
              "4             -0.77931           -0.77931           -0.77931   \n",
              "8             -0.77931           -0.77931           -0.77931   \n",
              "13            -0.77931           -0.77931           -0.77931   \n",
              "18            -0.77931           -0.77931           -0.77931   \n",
              "\n",
              "    PC02_ARTERIAL_DIFF  PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  PC02_VENOUS_MIN  \\\n",
              "0                 -1.0           -0.754601         -0.754601        -0.754601   \n",
              "4                 -1.0           -0.754601         -0.754601        -0.754601   \n",
              "8                 -1.0           -0.779141         -0.779141        -0.779141   \n",
              "13                -1.0           -0.754601         -0.754601        -0.754601   \n",
              "18                -1.0           -0.754601         -0.754601        -0.754601   \n",
              "\n",
              "    PC02_VENOUS_MAX  PC02_VENOUS_DIFF  PCR_MEDIAN  PCR_MEAN   PCR_MIN  \\\n",
              "0         -0.754601              -1.0   -0.875236 -0.875236 -0.875236   \n",
              "4         -0.754601              -1.0   -0.939887 -0.939887 -0.939887   \n",
              "8         -0.779141              -1.0   -0.503592 -0.503592 -0.503592   \n",
              "13        -0.754601              -1.0   -0.990926 -0.990926 -0.990926   \n",
              "18        -0.754601              -1.0   -0.997732 -0.997732 -0.997732   \n",
              "\n",
              "     PCR_MAX  PCR_DIFF  PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  \\\n",
              "0  -0.875236      -1.0            0.234043          0.234043         0.234043   \n",
              "4  -0.939887      -1.0            0.234043          0.234043         0.234043   \n",
              "8  -0.503592      -1.0            0.234043          0.234043         0.234043   \n",
              "13 -0.990926      -1.0            0.234043          0.234043         0.234043   \n",
              "18 -0.997732      -1.0            0.234043          0.234043         0.234043   \n",
              "\n",
              "    PH_ARTERIAL_MAX  PH_ARTERIAL_DIFF  PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  \\\n",
              "0          0.234043              -1.0          0.363636        0.363636   \n",
              "4          0.234043              -1.0          0.363636        0.363636   \n",
              "8          0.234043              -1.0          0.363636        0.363636   \n",
              "13         0.234043              -1.0          0.363636        0.363636   \n",
              "18         0.234043              -1.0          0.363636        0.363636   \n",
              "\n",
              "    PH_VENOUS_MIN  PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  \\\n",
              "0        0.363636       0.363636            -1.0         -0.540721   \n",
              "4        0.363636       0.363636            -1.0         -0.399199   \n",
              "8        0.363636       0.363636            -1.0         -0.564753   \n",
              "13       0.363636       0.363636            -1.0         -0.457944   \n",
              "18       0.363636       0.363636            -1.0         -0.292390   \n",
              "\n",
              "    PLATELETS_MEAN  PLATELETS_MIN  PLATELETS_MAX  PLATELETS_DIFF  \\\n",
              "0        -0.540721      -0.540721      -0.540721            -1.0   \n",
              "4        -0.399199      -0.399199      -0.399199            -1.0   \n",
              "8        -0.564753      -0.564753      -0.564753            -1.0   \n",
              "13       -0.457944      -0.457944      -0.457944            -1.0   \n",
              "18       -0.292390      -0.292390      -0.292390            -1.0   \n",
              "\n",
              "    POTASSIUM_MEDIAN  POTASSIUM_MEAN  POTASSIUM_MIN  POTASSIUM_MAX  \\\n",
              "0          -0.518519       -0.518519      -0.518519      -0.518519   \n",
              "4          -0.703704       -0.703704      -0.703704      -0.703704   \n",
              "8          -0.777778       -0.777778      -0.777778      -0.777778   \n",
              "13         -0.592593       -0.592593      -0.592593      -0.592593   \n",
              "18         -0.666667       -0.666667      -0.666667      -0.666667   \n",
              "\n",
              "    POTASSIUM_DIFF  SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  \\\n",
              "0             -1.0               0.939394             0.939394   \n",
              "4             -1.0               0.939394             0.939394   \n",
              "8             -1.0               0.939394             0.939394   \n",
              "13            -1.0               0.939394             0.939394   \n",
              "18            -1.0               0.939394             0.939394   \n",
              "\n",
              "    SAT02_ARTERIAL_MIN  SAT02_ARTERIAL_MAX  SAT02_ARTERIAL_DIFF  \\\n",
              "0             0.939394            0.939394                 -1.0   \n",
              "4             0.939394            0.939394                 -1.0   \n",
              "8             0.939394            0.939394                 -1.0   \n",
              "13            0.939394            0.939394                 -1.0   \n",
              "18            0.939394            0.939394                 -1.0   \n",
              "\n",
              "    SAT02_VENOUS_MEDIAN  SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  \\\n",
              "0              0.345679           0.345679          0.345679   \n",
              "4              0.345679           0.345679          0.345679   \n",
              "8              0.580247           0.580247          0.580247   \n",
              "13             0.345679           0.345679          0.345679   \n",
              "18             0.345679           0.345679          0.345679   \n",
              "\n",
              "    SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  SODIUM_MEDIAN  SODIUM_MEAN  \\\n",
              "0           0.345679               -1.0      -0.028571    -0.028571   \n",
              "4           0.345679               -1.0       0.085714     0.085714   \n",
              "8           0.580247               -1.0       0.200000     0.200000   \n",
              "13          0.345679               -1.0       0.142857     0.142857   \n",
              "18          0.345679               -1.0       0.085714     0.085714   \n",
              "\n",
              "    SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  TGO_MEDIAN  TGO_MEAN   TGO_MIN  \\\n",
              "0    -0.028571   -0.028571         -1.0   -0.997201 -0.997201 -0.997201   \n",
              "4     0.085714    0.085714         -1.0   -0.995428 -0.995428 -0.995428   \n",
              "8     0.200000    0.200000         -1.0   -0.989549 -0.989549 -0.989549   \n",
              "13    0.142857    0.142857         -1.0   -0.998507 -0.998507 -0.998507   \n",
              "18    0.085714    0.085714         -1.0   -0.997947 -0.997947 -0.997947   \n",
              "\n",
              "     TGO_MAX  TGO_DIFF  TGP_MEDIAN  TGP_MEAN   TGP_MIN   TGP_MAX  TGP_DIFF  \\\n",
              "0  -0.997201      -1.0   -0.990854 -0.990854 -0.990854 -0.990854      -1.0   \n",
              "4  -0.995428      -1.0   -0.986662 -0.986662 -0.986662 -0.986662      -1.0   \n",
              "8  -0.989549      -1.0   -0.956555 -0.956555 -0.956555 -0.956555      -1.0   \n",
              "13 -0.998507      -1.0   -0.991235 -0.991235 -0.991235 -0.991235      -1.0   \n",
              "18 -0.997947      -1.0   -0.988948 -0.988948 -0.988948 -0.988948      -1.0   \n",
              "\n",
              "    TTPA_MEDIAN  TTPA_MEAN  TTPA_MIN  TTPA_MAX  TTPA_DIFF  UREA_MEDIAN  \\\n",
              "0     -0.825613  -0.825613 -0.825613 -0.825613       -1.0    -0.836145   \n",
              "4     -0.846633  -0.846633 -0.846633 -0.846633       -1.0    -0.836145   \n",
              "8     -0.846633  -0.846633 -0.846633 -0.846633       -1.0    -0.937349   \n",
              "13    -0.846633  -0.846633 -0.846633 -0.846633       -1.0    -0.903614   \n",
              "18    -0.846633  -0.846633 -0.846633 -0.846633       -1.0    -0.884337   \n",
              "\n",
              "    UREA_MEAN  UREA_MIN  UREA_MAX  UREA_DIFF  DIMER_MEDIAN  DIMER_MEAN  \\\n",
              "0   -0.836145 -0.836145 -0.836145       -1.0     -0.994912   -0.994912   \n",
              "4   -0.836145 -0.836145 -0.836145       -1.0     -0.978029   -0.978029   \n",
              "8   -0.937349 -0.937349 -0.937349       -1.0     -0.978029   -0.978029   \n",
              "13  -0.903614 -0.903614 -0.903614       -1.0     -1.000000   -1.000000   \n",
              "18  -0.884337 -0.884337 -0.884337       -1.0     -1.000000   -1.000000   \n",
              "\n",
              "    DIMER_MIN  DIMER_MAX  DIMER_DIFF  BLOODPRESSURE_DIASTOLIC_MEAN  \\\n",
              "0   -0.994912  -0.994912        -1.0                      0.086420   \n",
              "4   -0.978029  -0.978029        -1.0                     -0.551183   \n",
              "8   -0.978029  -0.978029        -1.0                     -0.132620   \n",
              "13  -1.000000  -1.000000        -1.0                      0.236838   \n",
              "18  -1.000000  -1.000000        -1.0                     -0.078189   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_MEAN  HEART_RATE_MEAN  RESPIRATORY_RATE_MEAN  \\\n",
              "0                     -0.230769        -0.283019              -0.593220   \n",
              "4                     -0.757158        -0.005241              -0.683145   \n",
              "8                     -0.484650        -0.448553              -0.506215   \n",
              "13                    -0.101680         0.144491              -0.539451   \n",
              "18                    -0.494587        -0.454228              -0.495292   \n",
              "\n",
              "    TEMPERATURE_MEAN  OXYGEN_SATURATION_MEAN  BLOODPRESSURE_DIASTOLIC_MEDIAN  \\\n",
              "0          -0.285714                0.736842                        0.086420   \n",
              "4           0.357143                0.867507                       -0.555556   \n",
              "8          -0.119762                0.652398                       -0.102881   \n",
              "13          0.189142                0.852390                        0.251029   \n",
              "18         -0.137566                0.835283                       -0.090535   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_MEDIAN  HEART_RATE_MEDIAN  RESPIRATORY_RATE_MEDIAN  \\\n",
              "0                       -0.230769          -0.283019                -0.586207   \n",
              "4                       -0.830769          -0.014151                -0.620690   \n",
              "8                       -0.482051          -0.459119                -0.494253   \n",
              "13                      -0.102564           0.160377                -0.540230   \n",
              "18                      -0.492308          -0.449686                -0.494253   \n",
              "\n",
              "    TEMPERATURE_MEDIAN  OXYGEN_SATURATION_MEDIAN  BLOODPRESSURE_DIASTOLIC_MIN  \\\n",
              "0            -0.285714                  0.736842                     0.237113   \n",
              "4             0.357143                  0.881579                    -0.515464   \n",
              "8            -0.142857                  0.666667                    -0.127148   \n",
              "13            0.226190                  0.833333                     0.237113   \n",
              "18           -0.136905                  0.833333                     0.010309   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  RESPIRATORY_RATE_MIN  \\\n",
              "0                     0.000000       -0.162393             -0.500000   \n",
              "4                    -0.587500       -0.145299             -0.678571   \n",
              "8                    -0.329167       -0.435897             -0.547619   \n",
              "13                    0.000000        0.048433             -0.500000   \n",
              "18                   -0.291667       -0.418803             -0.404762   \n",
              "\n",
              "    TEMPERATURE_MIN  OXYGEN_SATURATION_MIN  BLOODPRESSURE_DIASTOLIC_MAX  \\\n",
              "0          0.208791               0.898990                    -0.247863   \n",
              "4          0.604396               0.878788                    -0.504274   \n",
              "8          0.216117               0.629630                    -0.247863   \n",
              "13         0.362637               0.925926                    -0.076923   \n",
              "18         0.252747               0.925926                    -0.282051   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  RESPIRATORY_RATE_MAX  \\\n",
              "0                    -0.459459       -0.432836             -0.636364   \n",
              "4                    -0.627027        0.000000             -0.636364   \n",
              "8                    -0.506306       -0.263682             -0.454545   \n",
              "13                   -0.293694        0.019900             -0.535354   \n",
              "18                   -0.553153       -0.482587             -0.535354   \n",
              "\n",
              "    TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "0         -0.420290               0.736842                     -1.000000   \n",
              "4          0.101449               1.000000                     -0.626087   \n",
              "8         -0.024155               0.754386                     -0.692754   \n",
              "13         0.072464               0.912281                     -0.826087   \n",
              "18        -0.246377               0.894737                     -0.843478   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "0                     -1.000000        -1.000000              -1.000000   \n",
              "4                     -0.613497        -0.572519              -0.852941   \n",
              "8                     -0.730061        -0.582697              -0.784314   \n",
              "13                    -0.811861        -0.725191              -0.901961   \n",
              "18                    -0.820041        -0.821883              -0.980392   \n",
              "\n",
              "    TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  \\\n",
              "0          -1.000000               -1.000000   \n",
              "4          -1.000000               -0.878788   \n",
              "8          -0.682540               -0.723906   \n",
              "13         -0.761905               -0.959596   \n",
              "18         -0.904762               -0.966330   \n",
              "\n",
              "    BLOODPRESSURE_DIASTOLIC_DIFF_REL  BLOODPRESSURE_SISTOLIC_DIFF_REL  \\\n",
              "0                          -1.000000                        -1.000000   \n",
              "4                          -0.587195                        -0.457543   \n",
              "8                          -0.769565                        -0.685906   \n",
              "13                         -0.884058                        -0.826611   \n",
              "18                         -0.873174                        -0.799242   \n",
              "\n",
              "    HEART_RATE_DIFF_REL  RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "0             -1.000000                  -1.000000             -1.000000   \n",
              "4             -0.734417                  -0.841577             -1.000000   \n",
              "8             -0.689698                  -0.776583             -0.682540   \n",
              "13            -0.839287                  -0.896057             -0.766042   \n",
              "18            -0.856110                  -0.979689             -0.904177   \n",
              "\n",
              "    OXYGEN_SATURATION_DIFF_REL  AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "0                    -1.000000                 0.0                 0.0   \n",
              "4                    -0.881277                 1.0                 0.0   \n",
              "8                    -0.724145                 0.0                 0.0   \n",
              "13                   -0.960291                 1.0                 0.0   \n",
              "18                   -0.967019                 1.0                 0.0   \n",
              "\n",
              "    AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  AGE_PERCENTIL_50th  \\\n",
              "0                  0.0                 0.0                 0.0   \n",
              "4                  0.0                 0.0                 0.0   \n",
              "8                  0.0                 1.0                 0.0   \n",
              "13                 0.0                 0.0                 0.0   \n",
              "18                 0.0                 0.0                 0.0   \n",
              "\n",
              "    AGE_PERCENTIL_60th  AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "0                  1.0                 0.0                 0.0   \n",
              "4                  0.0                 0.0                 0.0   \n",
              "8                  0.0                 0.0                 0.0   \n",
              "13                 0.0                 0.0                 0.0   \n",
              "18                 0.0                 0.0                 0.0   \n",
              "\n",
              "    AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th  ICU  \n",
              "0                  0.0                       0.0  1.0  \n",
              "4                  0.0                       0.0  1.0  \n",
              "8                  0.0                       0.0  0.0  \n",
              "13                 0.0                       0.0  0.0  \n",
              "18                 0.0                       0.0  0.0  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 10
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 338
        },
        "id": "tKo_cr_32XPT",
        "outputId": "e259949b-7f71-4acf-ad48-55e2a60a71af"
      },
      "source": [
        "final_data.describe()"
      ],
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>count</th>\n",
              "      <td>352.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>351.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.000000</td>\n",
              "      <td>334.0</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>306.000000</td>\n",
              "      <td>313.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>306.000000</td>\n",
              "      <td>313.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>306.000000</td>\n",
              "      <td>313.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>306.000000</td>\n",
              "      <td>313.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>306.000000</td>\n",
              "      <td>313.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>315.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>306.000000</td>\n",
              "      <td>313.000000</td>\n",
              "      <td>316.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "      <td>352.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>mean</th>\n",
              "      <td>0.457386</td>\n",
              "      <td>0.105413</td>\n",
              "      <td>0.022792</td>\n",
              "      <td>0.091168</td>\n",
              "      <td>0.019943</td>\n",
              "      <td>0.128205</td>\n",
              "      <td>0.042735</td>\n",
              "      <td>0.193732</td>\n",
              "      <td>0.162393</td>\n",
              "      <td>0.831909</td>\n",
              "      <td>0.577424</td>\n",
              "      <td>0.577424</td>\n",
              "      <td>0.577424</td>\n",
              "      <td>0.577424</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.998666</td>\n",
              "      <td>-0.998666</td>\n",
              "      <td>-0.998666</td>\n",
              "      <td>-0.998666</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.967693</td>\n",
              "      <td>-0.967693</td>\n",
              "      <td>-0.967693</td>\n",
              "      <td>-0.967693</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.319167</td>\n",
              "      <td>-0.319167</td>\n",
              "      <td>-0.319167</td>\n",
              "      <td>-0.319167</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.323864</td>\n",
              "      <td>-0.323864</td>\n",
              "      <td>-0.323864</td>\n",
              "      <td>-0.323864</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.945793</td>\n",
              "      <td>-0.945793</td>\n",
              "      <td>-0.945793</td>\n",
              "      <td>-0.945793</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.993232</td>\n",
              "      <td>-0.993232</td>\n",
              "      <td>-0.993232</td>\n",
              "      <td>-0.993232</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.330115</td>\n",
              "      <td>0.330115</td>\n",
              "      <td>0.330115</td>\n",
              "      <td>0.330115</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.893221</td>\n",
              "      <td>-0.893221</td>\n",
              "      <td>-0.893221</td>\n",
              "      <td>-0.893221</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.726559</td>\n",
              "      <td>-0.726559</td>\n",
              "      <td>-0.726559</td>\n",
              "      <td>-0.726559</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.932968</td>\n",
              "      <td>-0.932968</td>\n",
              "      <td>-0.932968</td>\n",
              "      <td>-0.932968</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.851721</td>\n",
              "      <td>-0.851721</td>\n",
              "      <td>-0.851721</td>\n",
              "      <td>-0.851721</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.111532</td>\n",
              "      <td>-0.111532</td>\n",
              "      <td>-0.111532</td>\n",
              "      <td>-0.111532</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.146346</td>\n",
              "      <td>-0.146346</td>\n",
              "      <td>-0.146346</td>\n",
              "      <td>-0.146346</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.941465</td>\n",
              "      <td>-0.941465</td>\n",
              "      <td>-0.941465</td>\n",
              "      <td>-0.941465</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.563159</td>\n",
              "      <td>0.563159</td>\n",
              "      <td>0.563159</td>\n",
              "      <td>0.563159</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.770982</td>\n",
              "      <td>-0.770982</td>\n",
              "      <td>-0.770982</td>\n",
              "      <td>-0.770982</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.747070</td>\n",
              "      <td>-0.747070</td>\n",
              "      <td>-0.747070</td>\n",
              "      <td>-0.747070</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.833163</td>\n",
              "      <td>-0.833163</td>\n",
              "      <td>-0.833163</td>\n",
              "      <td>-0.833163</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.175150</td>\n",
              "      <td>-0.175150</td>\n",
              "      <td>-0.175150</td>\n",
              "      <td>-0.175150</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.696152</td>\n",
              "      <td>-0.696152</td>\n",
              "      <td>-0.696152</td>\n",
              "      <td>-0.696152</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.780171</td>\n",
              "      <td>-0.780171</td>\n",
              "      <td>-0.780171</td>\n",
              "      <td>-0.780171</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.765781</td>\n",
              "      <td>-0.765781</td>\n",
              "      <td>-0.765781</td>\n",
              "      <td>-0.765781</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.818596</td>\n",
              "      <td>-0.818596</td>\n",
              "      <td>-0.818596</td>\n",
              "      <td>-0.818596</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.232875</td>\n",
              "      <td>0.232875</td>\n",
              "      <td>0.232875</td>\n",
              "      <td>0.232875</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.379952</td>\n",
              "      <td>0.379952</td>\n",
              "      <td>0.379952</td>\n",
              "      <td>0.379952</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.501035</td>\n",
              "      <td>-0.501035</td>\n",
              "      <td>-0.501035</td>\n",
              "      <td>-0.501035</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.558346</td>\n",
              "      <td>-0.558346</td>\n",
              "      <td>-0.558346</td>\n",
              "      <td>-0.558346</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.928083</td>\n",
              "      <td>0.928083</td>\n",
              "      <td>0.928083</td>\n",
              "      <td>0.928083</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.299087</td>\n",
              "      <td>0.299087</td>\n",
              "      <td>0.299087</td>\n",
              "      <td>0.299087</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.090048</td>\n",
              "      <td>-0.090048</td>\n",
              "      <td>-0.090048</td>\n",
              "      <td>-0.090048</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.993567</td>\n",
              "      <td>-0.993567</td>\n",
              "      <td>-0.993567</td>\n",
              "      <td>-0.993567</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986554</td>\n",
              "      <td>-0.986554</td>\n",
              "      <td>-0.986554</td>\n",
              "      <td>-0.986554</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836616</td>\n",
              "      <td>-0.836616</td>\n",
              "      <td>-0.836616</td>\n",
              "      <td>-0.836616</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.852589</td>\n",
              "      <td>-0.852589</td>\n",
              "      <td>-0.852589</td>\n",
              "      <td>-0.852589</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.953361</td>\n",
              "      <td>-0.953361</td>\n",
              "      <td>-0.953361</td>\n",
              "      <td>-0.953361</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.042859</td>\n",
              "      <td>-0.339638</td>\n",
              "      <td>-0.246726</td>\n",
              "      <td>-0.496321</td>\n",
              "      <td>0.104692</td>\n",
              "      <td>0.740155</td>\n",
              "      <td>-0.043791</td>\n",
              "      <td>-0.341907</td>\n",
              "      <td>-0.245776</td>\n",
              "      <td>-0.488741</td>\n",
              "      <td>0.101438</td>\n",
              "      <td>0.743768</td>\n",
              "      <td>0.067534</td>\n",
              "      <td>-0.137126</td>\n",
              "      <td>-0.188963</td>\n",
              "      <td>-0.443044</td>\n",
              "      <td>0.399847</td>\n",
              "      <td>0.871122</td>\n",
              "      <td>-0.278547</td>\n",
              "      <td>-0.484893</td>\n",
              "      <td>-0.344516</td>\n",
              "      <td>-0.502129</td>\n",
              "      <td>-0.028106</td>\n",
              "      <td>0.781299</td>\n",
              "      <td>-0.888180</td>\n",
              "      <td>-0.894264</td>\n",
              "      <td>-0.885927</td>\n",
              "      <td>-0.916619</td>\n",
              "      <td>-0.884826</td>\n",
              "      <td>-0.955068</td>\n",
              "      <td>-0.909164</td>\n",
              "      <td>-0.886210</td>\n",
              "      <td>-0.916102</td>\n",
              "      <td>-0.914525</td>\n",
              "      <td>-0.885639</td>\n",
              "      <td>-0.955110</td>\n",
              "      <td>0.107955</td>\n",
              "      <td>0.119318</td>\n",
              "      <td>0.110795</td>\n",
              "      <td>0.107955</td>\n",
              "      <td>0.093750</td>\n",
              "      <td>0.085227</td>\n",
              "      <td>0.096591</td>\n",
              "      <td>0.102273</td>\n",
              "      <td>0.079545</td>\n",
              "      <td>0.096591</td>\n",
              "      <td>0.463068</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>std</th>\n",
              "      <td>0.498890</td>\n",
              "      <td>0.307523</td>\n",
              "      <td>0.149453</td>\n",
              "      <td>0.288259</td>\n",
              "      <td>0.140004</td>\n",
              "      <td>0.334795</td>\n",
              "      <td>0.202548</td>\n",
              "      <td>0.395786</td>\n",
              "      <td>0.369338</td>\n",
              "      <td>0.374481</td>\n",
              "      <td>0.121547</td>\n",
              "      <td>0.121547</td>\n",
              "      <td>0.121547</td>\n",
              "      <td>0.121547</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.013419</td>\n",
              "      <td>0.013419</td>\n",
              "      <td>0.013419</td>\n",
              "      <td>0.013419</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.096084</td>\n",
              "      <td>0.096084</td>\n",
              "      <td>0.096084</td>\n",
              "      <td>0.096084</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.031116</td>\n",
              "      <td>0.031116</td>\n",
              "      <td>0.031116</td>\n",
              "      <td>0.031116</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.082815</td>\n",
              "      <td>0.082815</td>\n",
              "      <td>0.082815</td>\n",
              "      <td>0.082815</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.043791</td>\n",
              "      <td>0.043791</td>\n",
              "      <td>0.043791</td>\n",
              "      <td>0.043791</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.110317</td>\n",
              "      <td>0.110317</td>\n",
              "      <td>0.110317</td>\n",
              "      <td>0.110317</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.079810</td>\n",
              "      <td>0.079810</td>\n",
              "      <td>0.079810</td>\n",
              "      <td>0.079810</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.097262</td>\n",
              "      <td>0.097262</td>\n",
              "      <td>0.097262</td>\n",
              "      <td>0.097262</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.173660</td>\n",
              "      <td>0.173660</td>\n",
              "      <td>0.173660</td>\n",
              "      <td>0.173660</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.136750</td>\n",
              "      <td>0.136750</td>\n",
              "      <td>0.136750</td>\n",
              "      <td>0.136750</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.117084</td>\n",
              "      <td>0.117084</td>\n",
              "      <td>0.117084</td>\n",
              "      <td>0.117084</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.212111</td>\n",
              "      <td>0.212111</td>\n",
              "      <td>0.212111</td>\n",
              "      <td>0.212111</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.223863</td>\n",
              "      <td>0.223863</td>\n",
              "      <td>0.223863</td>\n",
              "      <td>0.223863</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.054453</td>\n",
              "      <td>0.054453</td>\n",
              "      <td>0.054453</td>\n",
              "      <td>0.054453</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.744763</td>\n",
              "      <td>0.744763</td>\n",
              "      <td>0.744763</td>\n",
              "      <td>0.744763</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.115200</td>\n",
              "      <td>0.115200</td>\n",
              "      <td>0.115200</td>\n",
              "      <td>0.115200</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.141870</td>\n",
              "      <td>0.141870</td>\n",
              "      <td>0.141870</td>\n",
              "      <td>0.141870</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.110799</td>\n",
              "      <td>0.110799</td>\n",
              "      <td>0.110799</td>\n",
              "      <td>0.110799</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.070195</td>\n",
              "      <td>0.070195</td>\n",
              "      <td>0.070195</td>\n",
              "      <td>0.070195</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.128496</td>\n",
              "      <td>0.128496</td>\n",
              "      <td>0.128496</td>\n",
              "      <td>0.128496</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.010824</td>\n",
              "      <td>0.010824</td>\n",
              "      <td>0.010824</td>\n",
              "      <td>0.010824</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.049559</td>\n",
              "      <td>0.049559</td>\n",
              "      <td>0.049559</td>\n",
              "      <td>0.049559</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.222292</td>\n",
              "      <td>0.222292</td>\n",
              "      <td>0.222292</td>\n",
              "      <td>0.222292</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.044128</td>\n",
              "      <td>0.044128</td>\n",
              "      <td>0.044128</td>\n",
              "      <td>0.044128</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.090438</td>\n",
              "      <td>0.090438</td>\n",
              "      <td>0.090438</td>\n",
              "      <td>0.090438</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.188765</td>\n",
              "      <td>0.188765</td>\n",
              "      <td>0.188765</td>\n",
              "      <td>0.188765</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.157769</td>\n",
              "      <td>0.157769</td>\n",
              "      <td>0.157769</td>\n",
              "      <td>0.157769</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.135022</td>\n",
              "      <td>0.135022</td>\n",
              "      <td>0.135022</td>\n",
              "      <td>0.135022</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.300392</td>\n",
              "      <td>0.300392</td>\n",
              "      <td>0.300392</td>\n",
              "      <td>0.300392</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.202813</td>\n",
              "      <td>0.202813</td>\n",
              "      <td>0.202813</td>\n",
              "      <td>0.202813</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.017891</td>\n",
              "      <td>0.017891</td>\n",
              "      <td>0.017891</td>\n",
              "      <td>0.017891</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.015050</td>\n",
              "      <td>0.015050</td>\n",
              "      <td>0.015050</td>\n",
              "      <td>0.015050</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.043978</td>\n",
              "      <td>0.043978</td>\n",
              "      <td>0.043978</td>\n",
              "      <td>0.043978</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.074589</td>\n",
              "      <td>0.074589</td>\n",
              "      <td>0.074589</td>\n",
              "      <td>0.074589</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.131882</td>\n",
              "      <td>0.131882</td>\n",
              "      <td>0.131882</td>\n",
              "      <td>0.131882</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.236802</td>\n",
              "      <td>0.264567</td>\n",
              "      <td>0.257633</td>\n",
              "      <td>0.176096</td>\n",
              "      <td>0.237660</td>\n",
              "      <td>0.156718</td>\n",
              "      <td>0.239481</td>\n",
              "      <td>0.265640</td>\n",
              "      <td>0.266321</td>\n",
              "      <td>0.180155</td>\n",
              "      <td>0.240952</td>\n",
              "      <td>0.159115</td>\n",
              "      <td>0.207192</td>\n",
              "      <td>0.225559</td>\n",
              "      <td>0.242153</td>\n",
              "      <td>0.194649</td>\n",
              "      <td>0.160015</td>\n",
              "      <td>0.101621</td>\n",
              "      <td>0.184857</td>\n",
              "      <td>0.192835</td>\n",
              "      <td>0.213527</td>\n",
              "      <td>0.171294</td>\n",
              "      <td>0.209891</td>\n",
              "      <td>0.159679</td>\n",
              "      <td>0.138282</td>\n",
              "      <td>0.127159</td>\n",
              "      <td>0.139345</td>\n",
              "      <td>0.104626</td>\n",
              "      <td>0.134078</td>\n",
              "      <td>0.092444</td>\n",
              "      <td>0.114055</td>\n",
              "      <td>0.135249</td>\n",
              "      <td>0.097268</td>\n",
              "      <td>0.105600</td>\n",
              "      <td>0.132334</td>\n",
              "      <td>0.092310</td>\n",
              "      <td>0.310765</td>\n",
              "      <td>0.324624</td>\n",
              "      <td>0.314325</td>\n",
              "      <td>0.310765</td>\n",
              "      <td>0.291896</td>\n",
              "      <td>0.279617</td>\n",
              "      <td>0.295820</td>\n",
              "      <td>0.303438</td>\n",
              "      <td>0.270973</td>\n",
              "      <td>0.295820</td>\n",
              "      <td>0.499344</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>min</th>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.756098</td>\n",
              "      <td>-0.756098</td>\n",
              "      <td>-0.756098</td>\n",
              "      <td>-0.756098</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.927505</td>\n",
              "      <td>-0.927505</td>\n",
              "      <td>-0.927505</td>\n",
              "      <td>-0.927505</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.988166</td>\n",
              "      <td>-0.988166</td>\n",
              "      <td>-0.988166</td>\n",
              "      <td>-0.988166</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958621</td>\n",
              "      <td>-0.958621</td>\n",
              "      <td>-0.958621</td>\n",
              "      <td>-0.958621</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.489362</td>\n",
              "      <td>-0.489362</td>\n",
              "      <td>-0.489362</td>\n",
              "      <td>-0.489362</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.771429</td>\n",
              "      <td>-0.771429</td>\n",
              "      <td>-0.771429</td>\n",
              "      <td>-0.771429</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.654321</td>\n",
              "      <td>-0.880959</td>\n",
              "      <td>-0.830189</td>\n",
              "      <td>-0.932203</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.679012</td>\n",
              "      <td>-0.884615</td>\n",
              "      <td>-0.830189</td>\n",
              "      <td>-0.931034</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.515464</td>\n",
              "      <td>-0.587500</td>\n",
              "      <td>-0.803419</td>\n",
              "      <td>-0.857143</td>\n",
              "      <td>0.054945</td>\n",
              "      <td>0.040404</td>\n",
              "      <td>-0.760684</td>\n",
              "      <td>-0.891892</td>\n",
              "      <td>-0.865672</td>\n",
              "      <td>-0.939394</td>\n",
              "      <td>-0.594203</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>25%</th>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.963370</td>\n",
              "      <td>-0.963370</td>\n",
              "      <td>-0.963370</td>\n",
              "      <td>-0.963370</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.331633</td>\n",
              "      <td>0.331633</td>\n",
              "      <td>0.331633</td>\n",
              "      <td>0.331633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.927813</td>\n",
              "      <td>-0.927813</td>\n",
              "      <td>-0.927813</td>\n",
              "      <td>-0.927813</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.747335</td>\n",
              "      <td>-0.747335</td>\n",
              "      <td>-0.747335</td>\n",
              "      <td>-0.747335</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.227463</td>\n",
              "      <td>-0.227463</td>\n",
              "      <td>-0.227463</td>\n",
              "      <td>-0.227463</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.062672</td>\n",
              "      <td>0.062672</td>\n",
              "      <td>0.062672</td>\n",
              "      <td>0.062672</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.844398</td>\n",
              "      <td>-0.844398</td>\n",
              "      <td>-0.844398</td>\n",
              "      <td>-0.844398</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.901861</td>\n",
              "      <td>-0.901861</td>\n",
              "      <td>-0.901861</td>\n",
              "      <td>-0.901861</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.974953</td>\n",
              "      <td>-0.974953</td>\n",
              "      <td>-0.974953</td>\n",
              "      <td>-0.974953</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-0.200000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.984553</td>\n",
              "      <td>-0.984553</td>\n",
              "      <td>-0.984553</td>\n",
              "      <td>-0.984553</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.166713</td>\n",
              "      <td>-0.518956</td>\n",
              "      <td>-0.415094</td>\n",
              "      <td>-0.576824</td>\n",
              "      <td>-0.077068</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.523077</td>\n",
              "      <td>-0.417453</td>\n",
              "      <td>-0.568966</td>\n",
              "      <td>-0.080357</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>-0.072165</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.342593</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>0.289377</td>\n",
              "      <td>0.845118</td>\n",
              "      <td>-0.391738</td>\n",
              "      <td>-0.610811</td>\n",
              "      <td>-0.470771</td>\n",
              "      <td>-0.575758</td>\n",
              "      <td>-0.188406</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>50%</th>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.908553</td>\n",
              "      <td>-0.908553</td>\n",
              "      <td>-0.908553</td>\n",
              "      <td>-0.908553</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.102725</td>\n",
              "      <td>-0.102725</td>\n",
              "      <td>-0.102725</td>\n",
              "      <td>-0.102725</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.140244</td>\n",
              "      <td>-0.140244</td>\n",
              "      <td>-0.140244</td>\n",
              "      <td>-0.140244</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.798764</td>\n",
              "      <td>-0.798764</td>\n",
              "      <td>-0.798764</td>\n",
              "      <td>-0.798764</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-0.786307</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.860844</td>\n",
              "      <td>-0.860844</td>\n",
              "      <td>-0.860844</td>\n",
              "      <td>-0.860844</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891682</td>\n",
              "      <td>-0.891682</td>\n",
              "      <td>-0.891682</td>\n",
              "      <td>-0.891682</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-0.516689</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.057143</td>\n",
              "      <td>-0.057143</td>\n",
              "      <td>-0.057143</td>\n",
              "      <td>-0.057143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-0.995428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.988662</td>\n",
              "      <td>-0.988662</td>\n",
              "      <td>-0.988662</td>\n",
              "      <td>-0.988662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.869880</td>\n",
              "      <td>-0.869880</td>\n",
              "      <td>-0.869880</td>\n",
              "      <td>-0.869880</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.045578</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.274118</td>\n",
              "      <td>-0.525424</td>\n",
              "      <td>0.072368</td>\n",
              "      <td>0.752539</td>\n",
              "      <td>-0.037037</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.272013</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>0.071429</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>0.030928</td>\n",
              "      <td>-0.166667</td>\n",
              "      <td>-0.222222</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>0.887205</td>\n",
              "      <td>-0.282051</td>\n",
              "      <td>-0.513514</td>\n",
              "      <td>-0.365672</td>\n",
              "      <td>-0.515152</td>\n",
              "      <td>-0.024155</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-0.947826</td>\n",
              "      <td>-0.959100</td>\n",
              "      <td>-0.940840</td>\n",
              "      <td>-0.948529</td>\n",
              "      <td>-0.928571</td>\n",
              "      <td>-0.974747</td>\n",
              "      <td>-0.959079</td>\n",
              "      <td>-0.950031</td>\n",
              "      <td>-0.954748</td>\n",
              "      <td>-0.945869</td>\n",
              "      <td>-0.928670</td>\n",
              "      <td>-0.975021</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>75%</th>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.882696</td>\n",
              "      <td>-0.882696</td>\n",
              "      <td>-0.882696</td>\n",
              "      <td>-0.882696</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.858473</td>\n",
              "      <td>-0.858473</td>\n",
              "      <td>-0.858473</td>\n",
              "      <td>-0.858473</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.009146</td>\n",
              "      <td>0.009146</td>\n",
              "      <td>0.009146</td>\n",
              "      <td>0.009146</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.933501</td>\n",
              "      <td>-0.933501</td>\n",
              "      <td>-0.933501</td>\n",
              "      <td>-0.933501</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.729287</td>\n",
              "      <td>-0.729287</td>\n",
              "      <td>-0.729287</td>\n",
              "      <td>-0.729287</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.687241</td>\n",
              "      <td>-0.687241</td>\n",
              "      <td>-0.687241</td>\n",
              "      <td>-0.687241</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.798419</td>\n",
              "      <td>-0.798419</td>\n",
              "      <td>-0.798419</td>\n",
              "      <td>-0.798419</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.753403</td>\n",
              "      <td>-0.753403</td>\n",
              "      <td>-0.753403</td>\n",
              "      <td>-0.753403</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.405207</td>\n",
              "      <td>-0.405207</td>\n",
              "      <td>-0.405207</td>\n",
              "      <td>-0.405207</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.047619</td>\n",
              "      <td>0.047619</td>\n",
              "      <td>0.047619</td>\n",
              "      <td>0.047619</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-0.986662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.837096</td>\n",
              "      <td>-0.837096</td>\n",
              "      <td>-0.837096</td>\n",
              "      <td>-0.837096</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.826506</td>\n",
              "      <td>-0.826506</td>\n",
              "      <td>-0.826506</td>\n",
              "      <td>-0.826506</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.964345</td>\n",
              "      <td>-0.964345</td>\n",
              "      <td>-0.964345</td>\n",
              "      <td>-0.964345</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.215385</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.457627</td>\n",
              "      <td>0.250000</td>\n",
              "      <td>0.831236</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.225641</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.448276</td>\n",
              "      <td>0.250000</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>0.195876</td>\n",
              "      <td>-0.031250</td>\n",
              "      <td>-0.089744</td>\n",
              "      <td>-0.404762</td>\n",
              "      <td>0.494505</td>\n",
              "      <td>0.919192</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.362162</td>\n",
              "      <td>-0.238806</td>\n",
              "      <td>-0.454545</td>\n",
              "      <td>0.101449</td>\n",
              "      <td>0.870614</td>\n",
              "      <td>-0.798551</td>\n",
              "      <td>-0.810838</td>\n",
              "      <td>-0.793893</td>\n",
              "      <td>-0.862745</td>\n",
              "      <td>-0.793651</td>\n",
              "      <td>-0.944444</td>\n",
              "      <td>-0.836440</td>\n",
              "      <td>-0.791275</td>\n",
              "      <td>-0.849462</td>\n",
              "      <td>-0.857826</td>\n",
              "      <td>-0.795906</td>\n",
              "      <td>-0.944811</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>max</th>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.024390</td>\n",
              "      <td>0.024390</td>\n",
              "      <td>0.024390</td>\n",
              "      <td>0.024390</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.452514</td>\n",
              "      <td>0.452514</td>\n",
              "      <td>0.452514</td>\n",
              "      <td>0.452514</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.811321</td>\n",
              "      <td>0.811321</td>\n",
              "      <td>0.811321</td>\n",
              "      <td>0.811321</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.804878</td>\n",
              "      <td>0.804878</td>\n",
              "      <td>0.804878</td>\n",
              "      <td>0.804878</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.355082</td>\n",
              "      <td>-0.355082</td>\n",
              "      <td>-0.355082</td>\n",
              "      <td>-0.355082</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.737931</td>\n",
              "      <td>-0.737931</td>\n",
              "      <td>-0.737931</td>\n",
              "      <td>-0.737931</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.905660</td>\n",
              "      <td>0.830508</td>\n",
              "      <td>0.964286</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.962264</td>\n",
              "      <td>0.862069</td>\n",
              "      <td>0.964286</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.914530</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.978022</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.384615</td>\n",
              "      <td>0.405405</td>\n",
              "      <td>0.552239</td>\n",
              "      <td>0.636364</td>\n",
              "      <td>0.768116</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.217391</td>\n",
              "      <td>-0.447853</td>\n",
              "      <td>0.160305</td>\n",
              "      <td>-0.323529</td>\n",
              "      <td>-0.238095</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.456376</td>\n",
              "      <td>-0.531749</td>\n",
              "      <td>-0.299283</td>\n",
              "      <td>-0.285468</td>\n",
              "      <td>-0.091698</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "       AGE_ABOVE65  DISEASE GROUPING 1  DISEASE GROUPING 2  \\\n",
              "count   352.000000          351.000000          351.000000   \n",
              "mean      0.457386            0.105413            0.022792   \n",
              "std       0.498890            0.307523            0.149453   \n",
              "min       0.000000            0.000000            0.000000   \n",
              "25%       0.000000            0.000000            0.000000   \n",
              "50%       0.000000            0.000000            0.000000   \n",
              "75%       1.000000            0.000000            0.000000   \n",
              "max       1.000000            1.000000            1.000000   \n",
              "\n",
              "       DISEASE GROUPING 3  DISEASE GROUPING 4  DISEASE GROUPING 5  \\\n",
              "count          351.000000          351.000000          351.000000   \n",
              "mean             0.091168            0.019943            0.128205   \n",
              "std              0.288259            0.140004            0.334795   \n",
              "min              0.000000            0.000000            0.000000   \n",
              "25%              0.000000            0.000000            0.000000   \n",
              "50%              0.000000            0.000000            0.000000   \n",
              "75%              0.000000            0.000000            0.000000   \n",
              "max              1.000000            1.000000            1.000000   \n",
              "\n",
              "       DISEASE GROUPING 6         HTN  IMMUNOCOMPROMISED       OTHER  \\\n",
              "count          351.000000  351.000000         351.000000  351.000000   \n",
              "mean             0.042735    0.193732           0.162393    0.831909   \n",
              "std              0.202548    0.395786           0.369338    0.374481   \n",
              "min              0.000000    0.000000           0.000000    0.000000   \n",
              "25%              0.000000    0.000000           0.000000    1.000000   \n",
              "50%              0.000000    0.000000           0.000000    1.000000   \n",
              "75%              0.000000    0.000000           0.000000    1.000000   \n",
              "max              1.000000    1.000000           1.000000    1.000000   \n",
              "\n",
              "       ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  ALBUMIN_MAX  ALBUMIN_DIFF  \\\n",
              "count      334.000000    334.000000   334.000000   334.000000         334.0   \n",
              "mean         0.577424      0.577424     0.577424     0.577424          -1.0   \n",
              "std          0.121547      0.121547     0.121547     0.121547           0.0   \n",
              "min         -0.578947     -0.578947    -0.578947    -0.578947          -1.0   \n",
              "25%          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "50%          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "75%          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "max          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "\n",
              "       BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  \\\n",
              "count          334.000000        334.000000       334.000000       334.000000   \n",
              "mean            -0.998666         -0.998666        -0.998666        -0.998666   \n",
              "std              0.013419          0.013419         0.013419         0.013419   \n",
              "min             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "25%             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "50%             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "75%             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "max             -0.786096         -0.786096        -0.786096        -0.786096   \n",
              "\n",
              "       BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  BE_VENOUS_MEAN  BE_VENOUS_MIN  \\\n",
              "count             334.0        334.000000      334.000000     334.000000   \n",
              "mean               -1.0         -0.967693       -0.967693      -0.967693   \n",
              "std                 0.0          0.096084        0.096084       0.096084   \n",
              "min                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "25%                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "50%                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "75%                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "max                -1.0         -0.204188       -0.204188      -0.204188   \n",
              "\n",
              "       BE_VENOUS_MAX  BE_VENOUS_DIFF  BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  \\\n",
              "count     334.000000           334.0           334.000000         334.000000   \n",
              "mean       -0.967693            -1.0            -0.319167          -0.319167   \n",
              "std         0.096084             0.0             0.031116           0.031116   \n",
              "min        -1.000000            -1.0            -0.756098          -0.756098   \n",
              "25%        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "50%        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "75%        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "max        -0.204188            -1.0            -0.219512          -0.219512   \n",
              "\n",
              "       BIC_ARTERIAL_MIN  BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  \\\n",
              "count        334.000000        334.000000              334.0   \n",
              "mean          -0.319167         -0.319167               -1.0   \n",
              "std            0.031116          0.031116                0.0   \n",
              "min           -0.756098         -0.756098               -1.0   \n",
              "25%           -0.317073         -0.317073               -1.0   \n",
              "50%           -0.317073         -0.317073               -1.0   \n",
              "75%           -0.317073         -0.317073               -1.0   \n",
              "max           -0.219512         -0.219512               -1.0   \n",
              "\n",
              "       BIC_VENOUS_MEDIAN  BIC_VENOUS_MEAN  BIC_VENOUS_MIN  BIC_VENOUS_MAX  \\\n",
              "count         334.000000       334.000000      334.000000      334.000000   \n",
              "mean           -0.323864        -0.323864       -0.323864       -0.323864   \n",
              "std             0.082815         0.082815        0.082815        0.082815   \n",
              "min            -1.000000        -1.000000       -1.000000       -1.000000   \n",
              "25%            -0.317073        -0.317073       -0.317073       -0.317073   \n",
              "50%            -0.317073        -0.317073       -0.317073       -0.317073   \n",
              "75%            -0.317073        -0.317073       -0.317073       -0.317073   \n",
              "max             0.024390         0.024390        0.024390        0.024390   \n",
              "\n",
              "       BIC_VENOUS_DIFF  BILLIRUBIN_MEDIAN  BILLIRUBIN_MEAN  BILLIRUBIN_MIN  \\\n",
              "count            334.0         334.000000       334.000000      334.000000   \n",
              "mean              -1.0          -0.945793        -0.945793       -0.945793   \n",
              "std                0.0           0.043791         0.043791        0.043791   \n",
              "min               -1.0          -0.994767        -0.994767       -0.994767   \n",
              "25%               -1.0          -0.963370        -0.963370       -0.963370   \n",
              "50%               -1.0          -0.938950        -0.938950       -0.938950   \n",
              "75%               -1.0          -0.938950        -0.938950       -0.938950   \n",
              "max               -1.0          -0.293564        -0.293564       -0.293564   \n",
              "\n",
              "       BILLIRUBIN_MAX  BILLIRUBIN_DIFF  BLAST_MEDIAN  BLAST_MEAN   BLAST_MIN  \\\n",
              "count      334.000000            334.0    334.000000  334.000000  334.000000   \n",
              "mean        -0.945793             -1.0     -0.993232   -0.993232   -0.993232   \n",
              "std          0.043791              0.0      0.110317    0.110317    0.110317   \n",
              "min         -0.994767             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "25%         -0.963370             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "50%         -0.938950             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "75%         -0.938950             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "max         -0.293564             -1.0      1.000000    1.000000    1.000000   \n",
              "\n",
              "        BLAST_MAX  BLAST_DIFF  CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  \\\n",
              "count  334.000000       334.0      334.000000    334.000000   334.000000   \n",
              "mean    -0.993232        -1.0        0.330115      0.330115     0.330115   \n",
              "std      0.110317         0.0        0.079810      0.079810     0.079810   \n",
              "min     -1.000000        -1.0        0.000000      0.000000     0.000000   \n",
              "25%     -1.000000        -1.0        0.331633      0.331633     0.331633   \n",
              "50%     -1.000000        -1.0        0.357143      0.357143     0.357143   \n",
              "75%     -1.000000        -1.0        0.357143      0.357143     0.357143   \n",
              "max      1.000000        -1.0        0.693878      0.693878     0.693878   \n",
              "\n",
              "       CALCIUM_MAX  CALCIUM_DIFF  CREATININ_MEDIAN  CREATININ_MEAN  \\\n",
              "count   334.000000         334.0        334.000000      334.000000   \n",
              "mean      0.330115          -1.0         -0.893221       -0.893221   \n",
              "std       0.079810           0.0          0.097262        0.097262   \n",
              "min       0.000000          -1.0         -0.970276       -0.970276   \n",
              "25%       0.331633          -1.0         -0.927813       -0.927813   \n",
              "50%       0.357143          -1.0         -0.908553       -0.908553   \n",
              "75%       0.357143          -1.0         -0.882696       -0.882696   \n",
              "max       0.693878          -1.0          0.493277        0.493277   \n",
              "\n",
              "       CREATININ_MIN  CREATININ_MAX  CREATININ_DIFF  FFA_MEDIAN    FFA_MEAN  \\\n",
              "count     334.000000     334.000000           334.0  334.000000  334.000000   \n",
              "mean       -0.893221      -0.893221            -1.0   -0.726559   -0.726559   \n",
              "std         0.097262       0.097262             0.0    0.173660    0.173660   \n",
              "min        -0.970276      -0.970276            -1.0   -0.927505   -0.927505   \n",
              "25%        -0.927813      -0.927813            -1.0   -0.747335   -0.747335   \n",
              "50%        -0.908553      -0.908553            -1.0   -0.742004   -0.742004   \n",
              "75%        -0.882696      -0.882696            -1.0   -0.742004   -0.742004   \n",
              "max         0.493277       0.493277            -1.0    1.000000    1.000000   \n",
              "\n",
              "          FFA_MIN     FFA_MAX  FFA_DIFF  GGT_MEDIAN    GGT_MEAN     GGT_MIN  \\\n",
              "count  334.000000  334.000000     334.0  334.000000  334.000000  334.000000   \n",
              "mean    -0.726559   -0.726559      -1.0   -0.932968   -0.932968   -0.932968   \n",
              "std      0.173660    0.173660       0.0    0.136750    0.136750    0.136750   \n",
              "min     -0.927505   -0.927505      -1.0   -0.997664   -0.997664   -0.997664   \n",
              "25%     -0.747335   -0.747335      -1.0   -0.958528   -0.958528   -0.958528   \n",
              "50%     -0.742004   -0.742004      -1.0   -0.958528   -0.958528   -0.958528   \n",
              "75%     -0.742004   -0.742004      -1.0   -0.958528   -0.958528   -0.958528   \n",
              "max      1.000000    1.000000      -1.0    1.000000    1.000000    1.000000   \n",
              "\n",
              "          GGT_MAX  GGT_DIFF  GLUCOSE_MEDIAN  GLUCOSE_MEAN  GLUCOSE_MIN  \\\n",
              "count  334.000000     334.0      334.000000    334.000000   334.000000   \n",
              "mean    -0.932968      -1.0       -0.851721     -0.851721    -0.851721   \n",
              "std      0.136750       0.0        0.117084      0.117084     0.117084   \n",
              "min     -0.997664      -1.0       -0.929236     -0.929236    -0.929236   \n",
              "25%     -0.958528      -1.0       -0.891993     -0.891993    -0.891993   \n",
              "50%     -0.958528      -1.0       -0.891993     -0.891993    -0.891993   \n",
              "75%     -0.958528      -1.0       -0.858473     -0.858473    -0.858473   \n",
              "max      1.000000      -1.0        0.452514      0.452514     0.452514   \n",
              "\n",
              "       GLUCOSE_MAX  GLUCOSE_DIFF  HEMATOCRITE_MEDIAN  HEMATOCRITE_MEAN  \\\n",
              "count   334.000000         334.0          334.000000        334.000000   \n",
              "mean     -0.851721          -1.0           -0.111532         -0.111532   \n",
              "std       0.117084           0.0            0.212111          0.212111   \n",
              "min      -0.929236          -1.0           -0.903564         -0.903564   \n",
              "25%      -0.891993          -1.0           -0.227463         -0.227463   \n",
              "50%      -0.891993          -1.0           -0.102725         -0.102725   \n",
              "75%      -0.858473          -1.0            0.023061          0.023061   \n",
              "max       0.452514          -1.0            0.811321          0.811321   \n",
              "\n",
              "       HEMATOCRITE_MIN  HEMATOCRITE_MAX  HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  \\\n",
              "count       334.000000       334.000000             334.0         334.000000   \n",
              "mean         -0.111532        -0.111532              -1.0          -0.146346   \n",
              "std           0.212111         0.212111               0.0           0.223863   \n",
              "min          -0.903564        -0.903564              -1.0          -1.000000   \n",
              "25%          -0.227463        -0.227463              -1.0          -0.268293   \n",
              "50%          -0.102725        -0.102725              -1.0          -0.140244   \n",
              "75%           0.023061         0.023061              -1.0           0.009146   \n",
              "max           0.811321         0.811321              -1.0           0.804878   \n",
              "\n",
              "       HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  HEMOGLOBIN_MAX  HEMOGLOBIN_DIFF  \\\n",
              "count       334.000000      334.000000      334.000000            334.0   \n",
              "mean         -0.146346       -0.146346       -0.146346             -1.0   \n",
              "std           0.223863        0.223863        0.223863              0.0   \n",
              "min          -1.000000       -1.000000       -1.000000             -1.0   \n",
              "25%          -0.268293       -0.268293       -0.268293             -1.0   \n",
              "50%          -0.140244       -0.140244       -0.140244             -1.0   \n",
              "75%           0.009146        0.009146        0.009146             -1.0   \n",
              "max           0.804878        0.804878        0.804878             -1.0   \n",
              "\n",
              "       INR_MEDIAN    INR_MEAN     INR_MIN     INR_MAX  INR_DIFF  \\\n",
              "count  334.000000  334.000000  334.000000  334.000000     334.0   \n",
              "mean    -0.941465   -0.941465   -0.941465   -0.941465      -1.0   \n",
              "std      0.054453    0.054453    0.054453    0.054453       0.0   \n",
              "min     -1.000000   -1.000000   -1.000000   -1.000000      -1.0   \n",
              "25%     -0.959849   -0.959849   -0.959849   -0.959849      -1.0   \n",
              "50%     -0.959849   -0.959849   -0.959849   -0.959849      -1.0   \n",
              "75%     -0.933501   -0.933501   -0.933501   -0.933501      -1.0   \n",
              "max     -0.355082   -0.355082   -0.355082   -0.355082      -1.0   \n",
              "\n",
              "       LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  LACTATE_MAX  LACTATE_DIFF  \\\n",
              "count      334.000000    334.000000   334.000000   334.000000         334.0   \n",
              "mean         0.563159      0.563159     0.563159     0.563159          -1.0   \n",
              "std          0.744763      0.744763     0.744763     0.744763           0.0   \n",
              "min         -0.975884     -0.975884    -0.975884    -0.975884          -1.0   \n",
              "25%          0.062672      0.062672     0.062672     0.062672          -1.0   \n",
              "50%          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "75%          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "max          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "\n",
              "       LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  LEUKOCYTES_MIN  LEUKOCYTES_MAX  \\\n",
              "count         334.000000       334.000000      334.000000      334.000000   \n",
              "mean           -0.770982        -0.770982       -0.770982       -0.770982   \n",
              "std             0.115200         0.115200        0.115200        0.115200   \n",
              "min            -0.966010        -0.966010       -0.966010       -0.966010   \n",
              "25%            -0.842410        -0.842410       -0.842410       -0.842410   \n",
              "50%            -0.798764        -0.798764       -0.798764       -0.798764   \n",
              "75%            -0.729287        -0.729287       -0.729287       -0.729287   \n",
              "max            -0.020471        -0.020471       -0.020471       -0.020471   \n",
              "\n",
              "       LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  LINFOCITOS_MEAN  LINFOCITOS_MIN  \\\n",
              "count            334.0         334.000000       334.000000      334.000000   \n",
              "mean              -1.0          -0.747070        -0.747070       -0.747070   \n",
              "std                0.0           0.141870         0.141870        0.141870   \n",
              "min               -1.0          -0.977178        -0.977178       -0.977178   \n",
              "25%               -1.0          -0.844398        -0.844398       -0.844398   \n",
              "50%               -1.0          -0.786307        -0.786307       -0.786307   \n",
              "75%               -1.0          -0.687241        -0.687241       -0.687241   \n",
              "max               -1.0           0.080913         0.080913        0.080913   \n",
              "\n",
              "       LINFOCITOS_MAX  LINFOCITOS_DIFF  NEUTROPHILES_MEDIAN  \\\n",
              "count      334.000000            334.0           334.000000   \n",
              "mean        -0.747070             -1.0            -0.833163   \n",
              "std          0.141870              0.0             0.110799   \n",
              "min         -0.977178             -1.0            -0.990796   \n",
              "25%         -0.844398             -1.0            -0.901861   \n",
              "50%         -0.786307             -1.0            -0.860844   \n",
              "75%         -0.687241             -1.0            -0.798419   \n",
              "max          0.080913             -1.0            -0.070028   \n",
              "\n",
              "       NEUTROPHILES_MEAN  NEUTROPHILES_MIN  NEUTROPHILES_MAX  \\\n",
              "count         334.000000        334.000000        334.000000   \n",
              "mean           -0.833163         -0.833163         -0.833163   \n",
              "std             0.110799          0.110799          0.110799   \n",
              "min            -0.990796         -0.990796         -0.990796   \n",
              "25%            -0.901861         -0.901861         -0.901861   \n",
              "50%            -0.860844         -0.860844         -0.860844   \n",
              "75%            -0.798419         -0.798419         -0.798419   \n",
              "max            -0.070028         -0.070028         -0.070028   \n",
              "\n",
              "       NEUTROPHILES_DIFF  P02_ARTERIAL_MEDIAN  P02_ARTERIAL_MEAN  \\\n",
              "count              334.0           334.000000         334.000000   \n",
              "mean                -1.0            -0.175150          -0.175150   \n",
              "std                  0.0             0.070195           0.070195   \n",
              "min                 -1.0            -1.000000          -1.000000   \n",
              "25%                 -1.0            -0.170732          -0.170732   \n",
              "50%                 -1.0            -0.170732          -0.170732   \n",
              "75%                 -1.0            -0.170732          -0.170732   \n",
              "max                 -1.0             0.310976           0.310976   \n",
              "\n",
              "       P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  P02_ARTERIAL_DIFF  \\\n",
              "count        334.000000        334.000000              334.0   \n",
              "mean          -0.175150         -0.175150               -1.0   \n",
              "std            0.070195          0.070195                0.0   \n",
              "min           -1.000000         -1.000000               -1.0   \n",
              "25%           -0.170732         -0.170732               -1.0   \n",
              "50%           -0.170732         -0.170732               -1.0   \n",
              "75%           -0.170732         -0.170732               -1.0   \n",
              "max            0.310976          0.310976               -1.0   \n",
              "\n",
              "       P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  P02_VENOUS_MIN  P02_VENOUS_MAX  \\\n",
              "count         334.000000       334.000000      334.000000      334.000000   \n",
              "mean           -0.696152        -0.696152       -0.696152       -0.696152   \n",
              "std             0.128496         0.128496        0.128496        0.128496   \n",
              "min            -0.988166        -0.988166       -0.988166       -0.988166   \n",
              "25%            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "50%            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "75%            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "max             0.372781         0.372781        0.372781        0.372781   \n",
              "\n",
              "       P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  PC02_ARTERIAL_MEAN  \\\n",
              "count            334.0            334.000000          334.000000   \n",
              "mean              -1.0             -0.780171           -0.780171   \n",
              "std                0.0              0.010824            0.010824   \n",
              "min               -1.0             -0.958621           -0.958621   \n",
              "25%               -1.0             -0.779310           -0.779310   \n",
              "50%               -1.0             -0.779310           -0.779310   \n",
              "75%               -1.0             -0.779310           -0.779310   \n",
              "max               -1.0             -0.737931           -0.737931   \n",
              "\n",
              "       PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  PC02_ARTERIAL_DIFF  \\\n",
              "count         334.000000         334.000000               334.0   \n",
              "mean           -0.780171          -0.780171                -1.0   \n",
              "std             0.010824           0.010824                 0.0   \n",
              "min            -0.958621          -0.958621                -1.0   \n",
              "25%            -0.779310          -0.779310                -1.0   \n",
              "50%            -0.779310          -0.779310                -1.0   \n",
              "75%            -0.779310          -0.779310                -1.0   \n",
              "max            -0.737931          -0.737931                -1.0   \n",
              "\n",
              "       PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  PC02_VENOUS_MIN  PC02_VENOUS_MAX  \\\n",
              "count          334.000000        334.000000       334.000000       334.000000   \n",
              "mean            -0.765781         -0.765781        -0.765781        -0.765781   \n",
              "std              0.049559          0.049559         0.049559         0.049559   \n",
              "min             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "25%             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "50%             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "75%             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "max             -0.546012         -0.546012        -0.546012        -0.546012   \n",
              "\n",
              "       PC02_VENOUS_DIFF  PCR_MEDIAN    PCR_MEAN     PCR_MIN     PCR_MAX  \\\n",
              "count             334.0  334.000000  334.000000  334.000000  334.000000   \n",
              "mean               -1.0   -0.818596   -0.818596   -0.818596   -0.818596   \n",
              "std                 0.0    0.222292    0.222292    0.222292    0.222292   \n",
              "min                -1.0   -1.000000   -1.000000   -1.000000   -1.000000   \n",
              "25%                -1.0   -0.974953   -0.974953   -0.974953   -0.974953   \n",
              "50%                -1.0   -0.891682   -0.891682   -0.891682   -0.891682   \n",
              "75%                -1.0   -0.753403   -0.753403   -0.753403   -0.753403   \n",
              "max                -1.0    0.535350    0.535350    0.535350    0.535350   \n",
              "\n",
              "       PCR_DIFF  PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  \\\n",
              "count     334.0          334.000000        334.000000       334.000000   \n",
              "mean       -1.0            0.232875          0.232875         0.232875   \n",
              "std         0.0            0.044128          0.044128         0.044128   \n",
              "min        -1.0           -0.489362         -0.489362        -0.489362   \n",
              "25%        -1.0            0.234043          0.234043         0.234043   \n",
              "50%        -1.0            0.234043          0.234043         0.234043   \n",
              "75%        -1.0            0.234043          0.234043         0.234043   \n",
              "max        -1.0            0.404255          0.404255         0.404255   \n",
              "\n",
              "       PH_ARTERIAL_MAX  PH_ARTERIAL_DIFF  PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  \\\n",
              "count       334.000000             334.0        334.000000      334.000000   \n",
              "mean          0.232875              -1.0          0.379952        0.379952   \n",
              "std           0.044128               0.0          0.090438        0.090438   \n",
              "min          -0.489362              -1.0         -0.090909       -0.090909   \n",
              "25%           0.234043              -1.0          0.363636        0.363636   \n",
              "50%           0.234043              -1.0          0.363636        0.363636   \n",
              "75%           0.234043              -1.0          0.363636        0.363636   \n",
              "max           0.404255              -1.0          1.000000        1.000000   \n",
              "\n",
              "       PH_VENOUS_MIN  PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  \\\n",
              "count     334.000000     334.000000           334.0        334.000000   \n",
              "mean        0.379952       0.379952            -1.0         -0.501035   \n",
              "std         0.090438       0.090438             0.0          0.188765   \n",
              "min        -0.090909      -0.090909            -1.0         -0.991989   \n",
              "25%         0.363636       0.363636            -1.0         -0.615487   \n",
              "50%         0.363636       0.363636            -1.0         -0.516689   \n",
              "75%         0.363636       0.363636            -1.0         -0.405207   \n",
              "max         1.000000       1.000000            -1.0          0.329773   \n",
              "\n",
              "       PLATELETS_MEAN  PLATELETS_MIN  PLATELETS_MAX  PLATELETS_DIFF  \\\n",
              "count      334.000000     334.000000     334.000000           334.0   \n",
              "mean        -0.501035      -0.501035      -0.501035            -1.0   \n",
              "std          0.188765       0.188765       0.188765             0.0   \n",
              "min         -0.991989      -0.991989      -0.991989            -1.0   \n",
              "25%         -0.615487      -0.615487      -0.615487            -1.0   \n",
              "50%         -0.516689      -0.516689      -0.516689            -1.0   \n",
              "75%         -0.405207      -0.405207      -0.405207            -1.0   \n",
              "max          0.329773       0.329773       0.329773            -1.0   \n",
              "\n",
              "       POTASSIUM_MEDIAN  POTASSIUM_MEAN  POTASSIUM_MIN  POTASSIUM_MAX  \\\n",
              "count        334.000000      334.000000     334.000000     334.000000   \n",
              "mean          -0.558346       -0.558346      -0.558346      -0.558346   \n",
              "std            0.157769        0.157769       0.157769       0.157769   \n",
              "min           -0.962963       -0.962963      -0.962963      -0.962963   \n",
              "25%           -0.666667       -0.666667      -0.666667      -0.666667   \n",
              "50%           -0.555556       -0.555556      -0.555556      -0.555556   \n",
              "75%           -0.481481       -0.481481      -0.481481      -0.481481   \n",
              "max            0.222222        0.222222       0.222222       0.222222   \n",
              "\n",
              "       POTASSIUM_DIFF  SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  \\\n",
              "count           334.0             334.000000           334.000000   \n",
              "mean             -1.0               0.928083             0.928083   \n",
              "std               0.0               0.135022             0.135022   \n",
              "min              -1.0              -1.000000            -1.000000   \n",
              "25%              -1.0               0.939394             0.939394   \n",
              "50%              -1.0               0.939394             0.939394   \n",
              "75%              -1.0               0.939394             0.939394   \n",
              "max              -1.0               0.969697             0.969697   \n",
              "\n",
              "       SAT02_ARTERIAL_MIN  SAT02_ARTERIAL_MAX  SAT02_ARTERIAL_DIFF  \\\n",
              "count          334.000000          334.000000                334.0   \n",
              "mean             0.928083            0.928083                 -1.0   \n",
              "std              0.135022            0.135022                  0.0   \n",
              "min             -1.000000           -1.000000                 -1.0   \n",
              "25%              0.939394            0.939394                 -1.0   \n",
              "50%              0.939394            0.939394                 -1.0   \n",
              "75%              0.939394            0.939394                 -1.0   \n",
              "max              0.969697            0.969697                 -1.0   \n",
              "\n",
              "       SAT02_VENOUS_MEDIAN  SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  \\\n",
              "count           334.000000         334.000000        334.000000   \n",
              "mean              0.299087           0.299087          0.299087   \n",
              "std               0.300392           0.300392          0.300392   \n",
              "min              -0.925926          -0.925926         -0.925926   \n",
              "25%               0.345679           0.345679          0.345679   \n",
              "50%               0.345679           0.345679          0.345679   \n",
              "75%               0.345679           0.345679          0.345679   \n",
              "max               1.000000           1.000000          1.000000   \n",
              "\n",
              "       SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  SODIUM_MEDIAN  SODIUM_MEAN  \\\n",
              "count        334.000000              334.0     334.000000   334.000000   \n",
              "mean           0.299087               -1.0      -0.090048    -0.090048   \n",
              "std            0.300392                0.0       0.202813     0.202813   \n",
              "min           -0.925926               -1.0      -0.771429    -0.771429   \n",
              "25%            0.345679               -1.0      -0.200000    -0.200000   \n",
              "50%            0.345679               -1.0      -0.057143    -0.057143   \n",
              "75%            0.345679               -1.0       0.047619     0.047619   \n",
              "max            1.000000               -1.0       1.000000     1.000000   \n",
              "\n",
              "       SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  TGO_MEDIAN    TGO_MEAN  \\\n",
              "count  334.000000  334.000000        334.0  334.000000  334.000000   \n",
              "mean    -0.090048   -0.090048         -1.0   -0.993567   -0.993567   \n",
              "std      0.202813    0.202813          0.0    0.017891    0.017891   \n",
              "min     -0.771429   -0.771429         -1.0   -0.999627   -0.999627   \n",
              "25%     -0.200000   -0.200000         -1.0   -0.996827   -0.996827   \n",
              "50%     -0.057143   -0.057143         -1.0   -0.995428   -0.995428   \n",
              "75%      0.047619    0.047619         -1.0   -0.994588   -0.994588   \n",
              "max      1.000000    1.000000         -1.0   -0.693944   -0.693944   \n",
              "\n",
              "          TGO_MIN     TGO_MAX  TGO_DIFF  TGP_MEDIAN    TGP_MEAN     TGP_MIN  \\\n",
              "count  334.000000  334.000000     334.0  334.000000  334.000000  334.000000   \n",
              "mean    -0.993567   -0.993567      -1.0   -0.986554   -0.986554   -0.986554   \n",
              "std      0.017891    0.017891       0.0    0.015050    0.015050    0.015050   \n",
              "min     -0.999627   -0.999627      -1.0   -0.999619   -0.999619   -0.999619   \n",
              "25%     -0.996827   -0.996827      -1.0   -0.993521   -0.993521   -0.993521   \n",
              "50%     -0.995428   -0.995428      -1.0   -0.988662   -0.988662   -0.988662   \n",
              "75%     -0.994588   -0.994588      -1.0   -0.986662   -0.986662   -0.986662   \n",
              "max     -0.693944   -0.693944      -1.0   -0.794970   -0.794970   -0.794970   \n",
              "\n",
              "          TGP_MAX  TGP_DIFF  TTPA_MEDIAN   TTPA_MEAN    TTPA_MIN    TTPA_MAX  \\\n",
              "count  334.000000     334.0   334.000000  334.000000  334.000000  334.000000   \n",
              "mean    -0.986554      -1.0    -0.836616   -0.836616   -0.836616   -0.836616   \n",
              "std      0.015050       0.0     0.043978    0.043978    0.043978    0.043978   \n",
              "min     -0.999619      -1.0    -0.961853   -0.961853   -0.961853   -0.961853   \n",
              "25%     -0.993521      -1.0    -0.846633   -0.846633   -0.846633   -0.846633   \n",
              "50%     -0.988662      -1.0    -0.846633   -0.846633   -0.846633   -0.846633   \n",
              "75%     -0.986662      -1.0    -0.837096   -0.837096   -0.837096   -0.837096   \n",
              "max     -0.794970      -1.0    -0.629428   -0.629428   -0.629428   -0.629428   \n",
              "\n",
              "       TTPA_DIFF  UREA_MEDIAN   UREA_MEAN    UREA_MIN    UREA_MAX  UREA_DIFF  \\\n",
              "count      334.0   334.000000  334.000000  334.000000  334.000000      334.0   \n",
              "mean        -1.0    -0.852589   -0.852589   -0.852589   -0.852589       -1.0   \n",
              "std          0.0     0.074589    0.074589    0.074589    0.074589        0.0   \n",
              "min         -1.0    -0.978313   -0.978313   -0.978313   -0.978313       -1.0   \n",
              "25%         -1.0    -0.898795   -0.898795   -0.898795   -0.898795       -1.0   \n",
              "50%         -1.0    -0.869880   -0.869880   -0.869880   -0.869880       -1.0   \n",
              "75%         -1.0    -0.826506   -0.826506   -0.826506   -0.826506       -1.0   \n",
              "max         -1.0    -0.455422   -0.455422   -0.455422   -0.455422       -1.0   \n",
              "\n",
              "       DIMER_MEDIAN  DIMER_MEAN   DIMER_MIN   DIMER_MAX  DIMER_DIFF  \\\n",
              "count    334.000000  334.000000  334.000000  334.000000       334.0   \n",
              "mean      -0.953361   -0.953361   -0.953361   -0.953361        -1.0   \n",
              "std        0.131882    0.131882    0.131882    0.131882         0.0   \n",
              "min       -1.000000   -1.000000   -1.000000   -1.000000        -1.0   \n",
              "25%       -0.984553   -0.984553   -0.984553   -0.984553        -1.0   \n",
              "50%       -0.978029   -0.978029   -0.978029   -0.978029        -1.0   \n",
              "75%       -0.964345   -0.964345   -0.964345   -0.964345        -1.0   \n",
              "max        1.000000    1.000000    1.000000    1.000000        -1.0   \n",
              "\n",
              "       BLOODPRESSURE_DIASTOLIC_MEAN  BLOODPRESSURE_SISTOLIC_MEAN  \\\n",
              "count                    315.000000                   315.000000   \n",
              "mean                      -0.042859                    -0.339638   \n",
              "std                        0.236802                     0.264567   \n",
              "min                       -0.654321                    -0.880959   \n",
              "25%                       -0.166713                    -0.518956   \n",
              "50%                       -0.045578                    -0.384615   \n",
              "75%                        0.086420                    -0.215385   \n",
              "max                        1.000000                     1.000000   \n",
              "\n",
              "       HEART_RATE_MEAN  RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  \\\n",
              "count       316.000000             306.000000        313.000000   \n",
              "mean         -0.246726              -0.496321          0.104692   \n",
              "std           0.257633               0.176096          0.237660   \n",
              "min          -0.830189              -0.932203         -0.500000   \n",
              "25%          -0.415094              -0.576824         -0.077068   \n",
              "50%          -0.274118              -0.525424          0.072368   \n",
              "75%          -0.132075              -0.457627          0.250000   \n",
              "max           0.905660               0.830508          0.964286   \n",
              "\n",
              "       OXYGEN_SATURATION_MEAN  BLOODPRESSURE_DIASTOLIC_MEDIAN  \\\n",
              "count              316.000000                      315.000000   \n",
              "mean                 0.740155                       -0.043791   \n",
              "std                  0.156718                        0.239481   \n",
              "min                 -1.000000                       -0.679012   \n",
              "25%                  0.684211                       -0.160494   \n",
              "50%                  0.752539                       -0.037037   \n",
              "75%                  0.831236                        0.086420   \n",
              "max                  1.000000                        1.000000   \n",
              "\n",
              "       BLOODPRESSURE_SISTOLIC_MEDIAN  HEART_RATE_MEDIAN  \\\n",
              "count                     315.000000         316.000000   \n",
              "mean                       -0.341907          -0.245776   \n",
              "std                         0.265640           0.266321   \n",
              "min                        -0.884615          -0.830189   \n",
              "25%                        -0.523077          -0.417453   \n",
              "50%                        -0.384615          -0.272013   \n",
              "75%                        -0.225641          -0.132075   \n",
              "max                         1.000000           0.962264   \n",
              "\n",
              "       RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  OXYGEN_SATURATION_MEDIAN  \\\n",
              "count               306.000000          313.000000                316.000000   \n",
              "mean                 -0.488741            0.101438                  0.743768   \n",
              "std                   0.180155            0.240952                  0.159115   \n",
              "min                  -0.931034           -0.500000                 -1.000000   \n",
              "25%                  -0.568966           -0.080357                  0.684211   \n",
              "50%                  -0.517241            0.071429                  0.754386   \n",
              "75%                  -0.448276            0.250000                  0.842105   \n",
              "max                   0.862069            0.964286                  1.000000   \n",
              "\n",
              "       BLOODPRESSURE_DIASTOLIC_MIN  BLOODPRESSURE_SISTOLIC_MIN  \\\n",
              "count                   315.000000                  315.000000   \n",
              "mean                      0.067534                   -0.137126   \n",
              "std                       0.207192                    0.225559   \n",
              "min                      -0.515464                   -0.587500   \n",
              "25%                      -0.072165                   -0.291667   \n",
              "50%                       0.030928                   -0.166667   \n",
              "75%                       0.195876                   -0.031250   \n",
              "max                       1.000000                    1.000000   \n",
              "\n",
              "       HEART_RATE_MIN  RESPIRATORY_RATE_MIN  TEMPERATURE_MIN  \\\n",
              "count      316.000000            306.000000       313.000000   \n",
              "mean        -0.188963             -0.443044         0.399847   \n",
              "std          0.242153              0.194649         0.160015   \n",
              "min         -0.803419             -0.857143         0.054945   \n",
              "25%         -0.342593             -0.547619         0.289377   \n",
              "50%         -0.222222             -0.500000         0.362637   \n",
              "75%         -0.089744             -0.404762         0.494505   \n",
              "max          0.914530              1.000000         0.978022   \n",
              "\n",
              "       OXYGEN_SATURATION_MIN  BLOODPRESSURE_DIASTOLIC_MAX  \\\n",
              "count             316.000000                   315.000000   \n",
              "mean                0.871122                    -0.278547   \n",
              "std                 0.101621                     0.184857   \n",
              "min                 0.040404                    -0.760684   \n",
              "25%                 0.845118                    -0.391738   \n",
              "50%                 0.887205                    -0.282051   \n",
              "75%                 0.919192                    -0.162393   \n",
              "max                 1.000000                     0.384615   \n",
              "\n",
              "       BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  RESPIRATORY_RATE_MAX  \\\n",
              "count                  315.000000      316.000000            306.000000   \n",
              "mean                    -0.484893       -0.344516             -0.502129   \n",
              "std                      0.192835        0.213527              0.171294   \n",
              "min                     -0.891892       -0.865672             -0.939394   \n",
              "25%                     -0.610811       -0.470771             -0.575758   \n",
              "50%                     -0.513514       -0.365672             -0.515152   \n",
              "75%                     -0.362162       -0.238806             -0.454545   \n",
              "max                      0.405405        0.552239              0.636364   \n",
              "\n",
              "       TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "count       313.000000             316.000000                    315.000000   \n",
              "mean         -0.028106               0.781299                     -0.888180   \n",
              "std           0.209891               0.159679                      0.138282   \n",
              "min          -0.594203              -1.000000                     -1.000000   \n",
              "25%          -0.188406               0.736842                     -1.000000   \n",
              "50%          -0.024155               0.789474                     -0.947826   \n",
              "75%           0.101449               0.870614                     -0.798551   \n",
              "max           0.768116               1.000000                     -0.217391   \n",
              "\n",
              "       BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "count                   315.000000       316.000000             306.000000   \n",
              "mean                     -0.894264        -0.885927              -0.916619   \n",
              "std                       0.127159         0.139345               0.104626   \n",
              "min                      -1.000000        -1.000000              -1.000000   \n",
              "25%                      -1.000000        -1.000000              -1.000000   \n",
              "50%                      -0.959100        -0.940840              -0.948529   \n",
              "75%                      -0.810838        -0.793893              -0.862745   \n",
              "max                      -0.447853         0.160305              -0.323529   \n",
              "\n",
              "       TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  \\\n",
              "count        313.000000              316.000000   \n",
              "mean          -0.884826               -0.955068   \n",
              "std            0.134078                0.092444   \n",
              "min           -1.000000               -1.000000   \n",
              "25%           -1.000000               -1.000000   \n",
              "50%           -0.928571               -0.974747   \n",
              "75%           -0.793651               -0.944444   \n",
              "max           -0.238095               -0.090909   \n",
              "\n",
              "       BLOODPRESSURE_DIASTOLIC_DIFF_REL  BLOODPRESSURE_SISTOLIC_DIFF_REL  \\\n",
              "count                        315.000000                       315.000000   \n",
              "mean                          -0.909164                        -0.886210   \n",
              "std                            0.114055                         0.135249   \n",
              "min                           -1.000000                        -1.000000   \n",
              "25%                           -1.000000                        -1.000000   \n",
              "50%                           -0.959079                        -0.950031   \n",
              "75%                           -0.836440                        -0.791275   \n",
              "max                           -0.333333                        -0.456376   \n",
              "\n",
              "       HEART_RATE_DIFF_REL  RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "count           316.000000                 306.000000            313.000000   \n",
              "mean             -0.916102                  -0.914525             -0.885639   \n",
              "std               0.097268                   0.105600              0.132334   \n",
              "min              -1.000000                  -1.000000             -1.000000   \n",
              "25%              -1.000000                  -1.000000             -1.000000   \n",
              "50%              -0.954748                  -0.945869             -0.928670   \n",
              "75%              -0.849462                  -0.857826             -0.795906   \n",
              "max              -0.531749                  -0.299283             -0.285468   \n",
              "\n",
              "       OXYGEN_SATURATION_DIFF_REL  AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "count                  316.000000          352.000000          352.000000   \n",
              "mean                    -0.955110            0.107955            0.119318   \n",
              "std                      0.092310            0.310765            0.324624   \n",
              "min                     -1.000000            0.000000            0.000000   \n",
              "25%                     -1.000000            0.000000            0.000000   \n",
              "50%                     -0.975021            0.000000            0.000000   \n",
              "75%                     -0.944811            0.000000            0.000000   \n",
              "max                     -0.091698            1.000000            1.000000   \n",
              "\n",
              "       AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  AGE_PERCENTIL_50th  \\\n",
              "count          352.000000          352.000000          352.000000   \n",
              "mean             0.110795            0.107955            0.093750   \n",
              "std              0.314325            0.310765            0.291896   \n",
              "min              0.000000            0.000000            0.000000   \n",
              "25%              0.000000            0.000000            0.000000   \n",
              "50%              0.000000            0.000000            0.000000   \n",
              "75%              0.000000            0.000000            0.000000   \n",
              "max              1.000000            1.000000            1.000000   \n",
              "\n",
              "       AGE_PERCENTIL_60th  AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "count          352.000000          352.000000          352.000000   \n",
              "mean             0.085227            0.096591            0.102273   \n",
              "std              0.279617            0.295820            0.303438   \n",
              "min              0.000000            0.000000            0.000000   \n",
              "25%              0.000000            0.000000            0.000000   \n",
              "50%              0.000000            0.000000            0.000000   \n",
              "75%              0.000000            0.000000            0.000000   \n",
              "max              1.000000            1.000000            1.000000   \n",
              "\n",
              "       AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th         ICU  \n",
              "count          352.000000                352.000000  352.000000  \n",
              "mean             0.079545                  0.096591    0.463068  \n",
              "std              0.270973                  0.295820    0.499344  \n",
              "min              0.000000                  0.000000    0.000000  \n",
              "25%              0.000000                  0.000000    0.000000  \n",
              "50%              0.000000                  0.000000    0.000000  \n",
              "75%              0.000000                  0.000000    1.000000  \n",
              "max              1.000000                  1.000000    1.000000  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 11
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "kfSdCEh82kY7"
      },
      "source": [
        "final_data = final_data.dropna(axis = 0)            #Now we must have to drop the rows having nan values as there is no data in any window to fill it."
      ],
      "execution_count": 12,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8Cx2OLK16x_u"
      },
      "source": [
        "##Data Analysis\n",
        "Visualising the pre preoessed data and trying to get the intution about different characterstics."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 338
        },
        "id": "O9m8qwov2tmx",
        "outputId": "a00ce6fd-7aa9-4e0e-fff4-445db7fdb81a"
      },
      "source": [
        "final_data.describe()"
      ],
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>count</th>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.0</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "      <td>293.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>mean</th>\n",
              "      <td>0.412969</td>\n",
              "      <td>0.095563</td>\n",
              "      <td>0.023891</td>\n",
              "      <td>0.085324</td>\n",
              "      <td>0.020478</td>\n",
              "      <td>0.116041</td>\n",
              "      <td>0.047782</td>\n",
              "      <td>0.170648</td>\n",
              "      <td>0.163823</td>\n",
              "      <td>0.808874</td>\n",
              "      <td>0.578828</td>\n",
              "      <td>0.578828</td>\n",
              "      <td>0.578828</td>\n",
              "      <td>0.578828</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.998479</td>\n",
              "      <td>-0.998479</td>\n",
              "      <td>-0.998479</td>\n",
              "      <td>-0.998479</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.971320</td>\n",
              "      <td>-0.971320</td>\n",
              "      <td>-0.971320</td>\n",
              "      <td>-0.971320</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.316796</td>\n",
              "      <td>-0.316796</td>\n",
              "      <td>-0.316796</td>\n",
              "      <td>-0.316796</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.321152</td>\n",
              "      <td>-0.321152</td>\n",
              "      <td>-0.321152</td>\n",
              "      <td>-0.321152</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.944446</td>\n",
              "      <td>-0.944446</td>\n",
              "      <td>-0.944446</td>\n",
              "      <td>-0.944446</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.992285</td>\n",
              "      <td>-0.992285</td>\n",
              "      <td>-0.992285</td>\n",
              "      <td>-0.992285</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.332045</td>\n",
              "      <td>0.332045</td>\n",
              "      <td>0.332045</td>\n",
              "      <td>0.332045</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.892396</td>\n",
              "      <td>-0.892396</td>\n",
              "      <td>-0.892396</td>\n",
              "      <td>-0.892396</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.721727</td>\n",
              "      <td>-0.721727</td>\n",
              "      <td>-0.721727</td>\n",
              "      <td>-0.721727</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.930257</td>\n",
              "      <td>-0.930257</td>\n",
              "      <td>-0.930257</td>\n",
              "      <td>-0.930257</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.859128</td>\n",
              "      <td>-0.859128</td>\n",
              "      <td>-0.859128</td>\n",
              "      <td>-0.859128</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.113694</td>\n",
              "      <td>-0.113694</td>\n",
              "      <td>-0.113694</td>\n",
              "      <td>-0.113694</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.148398</td>\n",
              "      <td>-0.148398</td>\n",
              "      <td>-0.148398</td>\n",
              "      <td>-0.148398</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.943534</td>\n",
              "      <td>-0.943534</td>\n",
              "      <td>-0.943534</td>\n",
              "      <td>-0.943534</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.582525</td>\n",
              "      <td>0.582525</td>\n",
              "      <td>0.582525</td>\n",
              "      <td>0.582525</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.772004</td>\n",
              "      <td>-0.772004</td>\n",
              "      <td>-0.772004</td>\n",
              "      <td>-0.772004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.741621</td>\n",
              "      <td>-0.741621</td>\n",
              "      <td>-0.741621</td>\n",
              "      <td>-0.741621</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.835662</td>\n",
              "      <td>-0.835662</td>\n",
              "      <td>-0.835662</td>\n",
              "      <td>-0.835662</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.174020</td>\n",
              "      <td>-0.174020</td>\n",
              "      <td>-0.174020</td>\n",
              "      <td>-0.174020</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.695438</td>\n",
              "      <td>-0.695438</td>\n",
              "      <td>-0.695438</td>\n",
              "      <td>-0.695438</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779820</td>\n",
              "      <td>-0.779820</td>\n",
              "      <td>-0.779820</td>\n",
              "      <td>-0.779820</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.762111</td>\n",
              "      <td>-0.762111</td>\n",
              "      <td>-0.762111</td>\n",
              "      <td>-0.762111</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.827216</td>\n",
              "      <td>-0.827216</td>\n",
              "      <td>-0.827216</td>\n",
              "      <td>-0.827216</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.235906</td>\n",
              "      <td>0.235906</td>\n",
              "      <td>0.235906</td>\n",
              "      <td>0.235906</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.373444</td>\n",
              "      <td>0.373444</td>\n",
              "      <td>0.373444</td>\n",
              "      <td>0.373444</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.495099</td>\n",
              "      <td>-0.495099</td>\n",
              "      <td>-0.495099</td>\n",
              "      <td>-0.495099</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.564425</td>\n",
              "      <td>-0.564425</td>\n",
              "      <td>-0.564425</td>\n",
              "      <td>-0.564425</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.931672</td>\n",
              "      <td>0.931672</td>\n",
              "      <td>0.931672</td>\n",
              "      <td>0.931672</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.301416</td>\n",
              "      <td>0.301416</td>\n",
              "      <td>0.301416</td>\n",
              "      <td>0.301416</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.077133</td>\n",
              "      <td>-0.077133</td>\n",
              "      <td>-0.077133</td>\n",
              "      <td>-0.077133</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.993438</td>\n",
              "      <td>-0.993438</td>\n",
              "      <td>-0.993438</td>\n",
              "      <td>-0.993438</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986212</td>\n",
              "      <td>-0.986212</td>\n",
              "      <td>-0.986212</td>\n",
              "      <td>-0.986212</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836803</td>\n",
              "      <td>-0.836803</td>\n",
              "      <td>-0.836803</td>\n",
              "      <td>-0.836803</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.854512</td>\n",
              "      <td>-0.854512</td>\n",
              "      <td>-0.854512</td>\n",
              "      <td>-0.854512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958309</td>\n",
              "      <td>-0.958309</td>\n",
              "      <td>-0.958309</td>\n",
              "      <td>-0.958309</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.044813</td>\n",
              "      <td>-0.353956</td>\n",
              "      <td>-0.246903</td>\n",
              "      <td>-0.502897</td>\n",
              "      <td>0.104200</td>\n",
              "      <td>0.747809</td>\n",
              "      <td>-0.045815</td>\n",
              "      <td>-0.356395</td>\n",
              "      <td>-0.245879</td>\n",
              "      <td>-0.495243</td>\n",
              "      <td>0.101170</td>\n",
              "      <td>0.751497</td>\n",
              "      <td>0.061275</td>\n",
              "      <td>-0.152414</td>\n",
              "      <td>-0.193791</td>\n",
              "      <td>-0.451487</td>\n",
              "      <td>0.396461</td>\n",
              "      <td>0.872175</td>\n",
              "      <td>-0.275483</td>\n",
              "      <td>-0.491120</td>\n",
              "      <td>-0.339977</td>\n",
              "      <td>-0.506516</td>\n",
              "      <td>-0.024089</td>\n",
              "      <td>0.791974</td>\n",
              "      <td>-0.879784</td>\n",
              "      <td>-0.886325</td>\n",
              "      <td>-0.876972</td>\n",
              "      <td>-0.913923</td>\n",
              "      <td>-0.877858</td>\n",
              "      <td>-0.952023</td>\n",
              "      <td>-0.902344</td>\n",
              "      <td>-0.877666</td>\n",
              "      <td>-0.909516</td>\n",
              "      <td>-0.911811</td>\n",
              "      <td>-0.878712</td>\n",
              "      <td>-0.952054</td>\n",
              "      <td>0.122867</td>\n",
              "      <td>0.129693</td>\n",
              "      <td>0.116041</td>\n",
              "      <td>0.112628</td>\n",
              "      <td>0.102389</td>\n",
              "      <td>0.095563</td>\n",
              "      <td>0.102389</td>\n",
              "      <td>0.088737</td>\n",
              "      <td>0.068259</td>\n",
              "      <td>0.061433</td>\n",
              "      <td>0.358362</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>std</th>\n",
              "      <td>0.493210</td>\n",
              "      <td>0.294494</td>\n",
              "      <td>0.152970</td>\n",
              "      <td>0.279842</td>\n",
              "      <td>0.141870</td>\n",
              "      <td>0.320822</td>\n",
              "      <td>0.213669</td>\n",
              "      <td>0.376845</td>\n",
              "      <td>0.370748</td>\n",
              "      <td>0.393861</td>\n",
              "      <td>0.122129</td>\n",
              "      <td>0.122129</td>\n",
              "      <td>0.122129</td>\n",
              "      <td>0.122129</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.014321</td>\n",
              "      <td>0.014321</td>\n",
              "      <td>0.014321</td>\n",
              "      <td>0.014321</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.090151</td>\n",
              "      <td>0.090151</td>\n",
              "      <td>0.090151</td>\n",
              "      <td>0.090151</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.007051</td>\n",
              "      <td>0.007051</td>\n",
              "      <td>0.007051</td>\n",
              "      <td>0.007051</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.077980</td>\n",
              "      <td>0.077980</td>\n",
              "      <td>0.077980</td>\n",
              "      <td>0.077980</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.045846</td>\n",
              "      <td>0.045846</td>\n",
              "      <td>0.045846</td>\n",
              "      <td>0.045846</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.117776</td>\n",
              "      <td>0.117776</td>\n",
              "      <td>0.117776</td>\n",
              "      <td>0.117776</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.078696</td>\n",
              "      <td>0.078696</td>\n",
              "      <td>0.078696</td>\n",
              "      <td>0.078696</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.102629</td>\n",
              "      <td>0.102629</td>\n",
              "      <td>0.102629</td>\n",
              "      <td>0.102629</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.184035</td>\n",
              "      <td>0.184035</td>\n",
              "      <td>0.184035</td>\n",
              "      <td>0.184035</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.145172</td>\n",
              "      <td>0.145172</td>\n",
              "      <td>0.145172</td>\n",
              "      <td>0.145172</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.089202</td>\n",
              "      <td>0.089202</td>\n",
              "      <td>0.089202</td>\n",
              "      <td>0.089202</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.206982</td>\n",
              "      <td>0.206982</td>\n",
              "      <td>0.206982</td>\n",
              "      <td>0.206982</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.219247</td>\n",
              "      <td>0.219247</td>\n",
              "      <td>0.219247</td>\n",
              "      <td>0.219247</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.045584</td>\n",
              "      <td>0.045584</td>\n",
              "      <td>0.045584</td>\n",
              "      <td>0.045584</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.727411</td>\n",
              "      <td>0.727411</td>\n",
              "      <td>0.727411</td>\n",
              "      <td>0.727411</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.116851</td>\n",
              "      <td>0.116851</td>\n",
              "      <td>0.116851</td>\n",
              "      <td>0.116851</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.145799</td>\n",
              "      <td>0.145799</td>\n",
              "      <td>0.145799</td>\n",
              "      <td>0.145799</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.112248</td>\n",
              "      <td>0.112248</td>\n",
              "      <td>0.112248</td>\n",
              "      <td>0.112248</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.061538</td>\n",
              "      <td>0.061538</td>\n",
              "      <td>0.061538</td>\n",
              "      <td>0.061538</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.129847</td>\n",
              "      <td>0.129847</td>\n",
              "      <td>0.129847</td>\n",
              "      <td>0.129847</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.004268</td>\n",
              "      <td>0.004268</td>\n",
              "      <td>0.004268</td>\n",
              "      <td>0.004268</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.044664</td>\n",
              "      <td>0.044664</td>\n",
              "      <td>0.044664</td>\n",
              "      <td>0.044664</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.212602</td>\n",
              "      <td>0.212602</td>\n",
              "      <td>0.212602</td>\n",
              "      <td>0.212602</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.016481</td>\n",
              "      <td>0.016481</td>\n",
              "      <td>0.016481</td>\n",
              "      <td>0.016481</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.080393</td>\n",
              "      <td>0.080393</td>\n",
              "      <td>0.080393</td>\n",
              "      <td>0.080393</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.190213</td>\n",
              "      <td>0.190213</td>\n",
              "      <td>0.190213</td>\n",
              "      <td>0.190213</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.149514</td>\n",
              "      <td>0.149514</td>\n",
              "      <td>0.149514</td>\n",
              "      <td>0.149514</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.114085</td>\n",
              "      <td>0.114085</td>\n",
              "      <td>0.114085</td>\n",
              "      <td>0.114085</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.281543</td>\n",
              "      <td>0.281543</td>\n",
              "      <td>0.281543</td>\n",
              "      <td>0.281543</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.198448</td>\n",
              "      <td>0.198448</td>\n",
              "      <td>0.198448</td>\n",
              "      <td>0.198448</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.019001</td>\n",
              "      <td>0.019001</td>\n",
              "      <td>0.019001</td>\n",
              "      <td>0.019001</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.015631</td>\n",
              "      <td>0.015631</td>\n",
              "      <td>0.015631</td>\n",
              "      <td>0.015631</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.042996</td>\n",
              "      <td>0.042996</td>\n",
              "      <td>0.042996</td>\n",
              "      <td>0.042996</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.075219</td>\n",
              "      <td>0.075219</td>\n",
              "      <td>0.075219</td>\n",
              "      <td>0.075219</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.081395</td>\n",
              "      <td>0.081395</td>\n",
              "      <td>0.081395</td>\n",
              "      <td>0.081395</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.218544</td>\n",
              "      <td>0.235538</td>\n",
              "      <td>0.242663</td>\n",
              "      <td>0.155605</td>\n",
              "      <td>0.235370</td>\n",
              "      <td>0.109896</td>\n",
              "      <td>0.221651</td>\n",
              "      <td>0.236684</td>\n",
              "      <td>0.252579</td>\n",
              "      <td>0.159340</td>\n",
              "      <td>0.239179</td>\n",
              "      <td>0.113073</td>\n",
              "      <td>0.192080</td>\n",
              "      <td>0.200578</td>\n",
              "      <td>0.229122</td>\n",
              "      <td>0.172518</td>\n",
              "      <td>0.159219</td>\n",
              "      <td>0.095568</td>\n",
              "      <td>0.175010</td>\n",
              "      <td>0.176385</td>\n",
              "      <td>0.202344</td>\n",
              "      <td>0.156722</td>\n",
              "      <td>0.207794</td>\n",
              "      <td>0.110598</td>\n",
              "      <td>0.139821</td>\n",
              "      <td>0.128382</td>\n",
              "      <td>0.140858</td>\n",
              "      <td>0.105279</td>\n",
              "      <td>0.134992</td>\n",
              "      <td>0.095003</td>\n",
              "      <td>0.115414</td>\n",
              "      <td>0.136461</td>\n",
              "      <td>0.098022</td>\n",
              "      <td>0.106116</td>\n",
              "      <td>0.133200</td>\n",
              "      <td>0.094880</td>\n",
              "      <td>0.328846</td>\n",
              "      <td>0.336540</td>\n",
              "      <td>0.320822</td>\n",
              "      <td>0.316678</td>\n",
              "      <td>0.303678</td>\n",
              "      <td>0.294494</td>\n",
              "      <td>0.303678</td>\n",
              "      <td>0.284851</td>\n",
              "      <td>0.252622</td>\n",
              "      <td>0.240534</td>\n",
              "      <td>0.480340</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>min</th>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-0.578947</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-0.365854</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-0.994767</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.020408</td>\n",
              "      <td>0.020408</td>\n",
              "      <td>0.020408</td>\n",
              "      <td>0.020408</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-0.970276</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.918977</td>\n",
              "      <td>-0.918977</td>\n",
              "      <td>-0.918977</td>\n",
              "      <td>-0.918977</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-0.997664</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-0.929236</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-0.903564</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-0.975884</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-0.966010</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-0.977178</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-0.990796</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.952663</td>\n",
              "      <td>-0.952663</td>\n",
              "      <td>-0.952663</td>\n",
              "      <td>-0.952663</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-0.825287</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.191489</td>\n",
              "      <td>0.191489</td>\n",
              "      <td>0.191489</td>\n",
              "      <td>0.191489</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-0.991989</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-0.962963</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-0.925926</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.714286</td>\n",
              "      <td>-0.714286</td>\n",
              "      <td>-0.714286</td>\n",
              "      <td>-0.714286</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-0.999627</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-0.999619</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-0.961853</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-0.978313</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.654321</td>\n",
              "      <td>-0.880959</td>\n",
              "      <td>-0.811321</td>\n",
              "      <td>-0.932203</td>\n",
              "      <td>-0.437500</td>\n",
              "      <td>0.315789</td>\n",
              "      <td>-0.679012</td>\n",
              "      <td>-0.884615</td>\n",
              "      <td>-0.811321</td>\n",
              "      <td>-0.931034</td>\n",
              "      <td>-0.464286</td>\n",
              "      <td>0.263158</td>\n",
              "      <td>-0.515464</td>\n",
              "      <td>-0.587500</td>\n",
              "      <td>-0.803419</td>\n",
              "      <td>-0.857143</td>\n",
              "      <td>0.054945</td>\n",
              "      <td>0.040404</td>\n",
              "      <td>-0.760684</td>\n",
              "      <td>-0.891892</td>\n",
              "      <td>-0.850746</td>\n",
              "      <td>-0.939394</td>\n",
              "      <td>-0.463768</td>\n",
              "      <td>0.315789</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>25%</th>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.962323</td>\n",
              "      <td>-0.962323</td>\n",
              "      <td>-0.962323</td>\n",
              "      <td>-0.962323</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.336735</td>\n",
              "      <td>0.336735</td>\n",
              "      <td>0.336735</td>\n",
              "      <td>0.336735</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.929229</td>\n",
              "      <td>-0.929229</td>\n",
              "      <td>-0.929229</td>\n",
              "      <td>-0.929229</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.744136</td>\n",
              "      <td>-0.744136</td>\n",
              "      <td>-0.744136</td>\n",
              "      <td>-0.744136</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-0.220126</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-0.268293</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.068451</td>\n",
              "      <td>0.068451</td>\n",
              "      <td>0.068451</td>\n",
              "      <td>0.068451</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-0.842410</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.902361</td>\n",
              "      <td>-0.902361</td>\n",
              "      <td>-0.902361</td>\n",
              "      <td>-0.902361</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.975614</td>\n",
              "      <td>-0.975614</td>\n",
              "      <td>-0.975614</td>\n",
              "      <td>-0.975614</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-0.615487</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-0.666667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-0.171429</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-0.996827</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-0.993521</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-0.898795</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.984620</td>\n",
              "      <td>-0.984620</td>\n",
              "      <td>-0.984620</td>\n",
              "      <td>-0.984620</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.519963</td>\n",
              "      <td>-0.405189</td>\n",
              "      <td>-0.577008</td>\n",
              "      <td>-0.080357</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>-0.160494</td>\n",
              "      <td>-0.523077</td>\n",
              "      <td>-0.415094</td>\n",
              "      <td>-0.568966</td>\n",
              "      <td>-0.089286</td>\n",
              "      <td>0.684211</td>\n",
              "      <td>-0.072165</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.341880</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>0.285714</td>\n",
              "      <td>0.845118</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.610811</td>\n",
              "      <td>-0.462687</td>\n",
              "      <td>-0.575758</td>\n",
              "      <td>-0.188406</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>50%</th>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.908402</td>\n",
              "      <td>-0.908402</td>\n",
              "      <td>-0.908402</td>\n",
              "      <td>-0.908402</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.104822</td>\n",
              "      <td>-0.104822</td>\n",
              "      <td>-0.104822</td>\n",
              "      <td>-0.104822</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.146341</td>\n",
              "      <td>-0.146341</td>\n",
              "      <td>-0.146341</td>\n",
              "      <td>-0.146341</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.799923</td>\n",
              "      <td>-0.799923</td>\n",
              "      <td>-0.799923</td>\n",
              "      <td>-0.799923</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.776971</td>\n",
              "      <td>-0.776971</td>\n",
              "      <td>-0.776971</td>\n",
              "      <td>-0.776971</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.862145</td>\n",
              "      <td>-0.862145</td>\n",
              "      <td>-0.862145</td>\n",
              "      <td>-0.862145</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.899433</td>\n",
              "      <td>-0.899433</td>\n",
              "      <td>-0.899433</td>\n",
              "      <td>-0.899433</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.514019</td>\n",
              "      <td>-0.514019</td>\n",
              "      <td>-0.514019</td>\n",
              "      <td>-0.514019</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-0.555556</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-0.995521</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.988567</td>\n",
              "      <td>-0.988567</td>\n",
              "      <td>-0.988567</td>\n",
              "      <td>-0.988567</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-0.846633</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-0.874699</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-0.978029</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.044719</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.273192</td>\n",
              "      <td>-0.525424</td>\n",
              "      <td>0.071429</td>\n",
              "      <td>0.744874</td>\n",
              "      <td>-0.037037</td>\n",
              "      <td>-0.384615</td>\n",
              "      <td>-0.270440</td>\n",
              "      <td>-0.517241</td>\n",
              "      <td>0.071429</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>0.030928</td>\n",
              "      <td>-0.175000</td>\n",
              "      <td>-0.222222</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>0.885522</td>\n",
              "      <td>-0.270655</td>\n",
              "      <td>-0.513514</td>\n",
              "      <td>-0.358209</td>\n",
              "      <td>-0.515152</td>\n",
              "      <td>-0.024155</td>\n",
              "      <td>0.789474</td>\n",
              "      <td>-0.913043</td>\n",
              "      <td>-0.926380</td>\n",
              "      <td>-0.893130</td>\n",
              "      <td>-0.941176</td>\n",
              "      <td>-0.904762</td>\n",
              "      <td>-0.973064</td>\n",
              "      <td>-0.928261</td>\n",
              "      <td>-0.918769</td>\n",
              "      <td>-0.920938</td>\n",
              "      <td>-0.939068</td>\n",
              "      <td>-0.908793</td>\n",
              "      <td>-0.973368</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>75%</th>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>0.605263</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-0.938950</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.881104</td>\n",
              "      <td>-0.881104</td>\n",
              "      <td>-0.881104</td>\n",
              "      <td>-0.881104</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-0.742004</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-0.958528</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.865922</td>\n",
              "      <td>-0.865922</td>\n",
              "      <td>-0.865922</td>\n",
              "      <td>-0.865922</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>0.023061</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>0.012195</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.946048</td>\n",
              "      <td>-0.946048</td>\n",
              "      <td>-0.946048</td>\n",
              "      <td>-0.946048</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.736964</td>\n",
              "      <td>-0.736964</td>\n",
              "      <td>-0.736964</td>\n",
              "      <td>-0.736964</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.684647</td>\n",
              "      <td>-0.684647</td>\n",
              "      <td>-0.684647</td>\n",
              "      <td>-0.684647</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.806723</td>\n",
              "      <td>-0.806723</td>\n",
              "      <td>-0.806723</td>\n",
              "      <td>-0.806723</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-0.170732</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-0.704142</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.774291</td>\n",
              "      <td>-0.774291</td>\n",
              "      <td>-0.774291</td>\n",
              "      <td>-0.774291</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>0.234043</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>0.363636</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.403204</td>\n",
              "      <td>-0.403204</td>\n",
              "      <td>-0.403204</td>\n",
              "      <td>-0.403204</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-0.481481</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>0.939394</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>0.066667</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-0.994588</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.986280</td>\n",
              "      <td>-0.986280</td>\n",
              "      <td>-0.986280</td>\n",
              "      <td>-0.986280</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.836512</td>\n",
              "      <td>-0.836512</td>\n",
              "      <td>-0.836512</td>\n",
              "      <td>-0.836512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.831325</td>\n",
              "      <td>-0.831325</td>\n",
              "      <td>-0.831325</td>\n",
              "      <td>-0.831325</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.966876</td>\n",
              "      <td>-0.966876</td>\n",
              "      <td>-0.966876</td>\n",
              "      <td>-0.966876</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230605</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.457627</td>\n",
              "      <td>0.248397</td>\n",
              "      <td>0.830409</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.230769</td>\n",
              "      <td>-0.132075</td>\n",
              "      <td>-0.448276</td>\n",
              "      <td>0.250000</td>\n",
              "      <td>0.842105</td>\n",
              "      <td>0.195876</td>\n",
              "      <td>-0.050000</td>\n",
              "      <td>-0.094017</td>\n",
              "      <td>-0.404762</td>\n",
              "      <td>0.494505</td>\n",
              "      <td>0.919192</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.365766</td>\n",
              "      <td>-0.238806</td>\n",
              "      <td>-0.454545</td>\n",
              "      <td>0.101449</td>\n",
              "      <td>0.877193</td>\n",
              "      <td>-0.785507</td>\n",
              "      <td>-0.803681</td>\n",
              "      <td>-0.786260</td>\n",
              "      <td>-0.852941</td>\n",
              "      <td>-0.785714</td>\n",
              "      <td>-0.939394</td>\n",
              "      <td>-0.831621</td>\n",
              "      <td>-0.783383</td>\n",
              "      <td>-0.839287</td>\n",
              "      <td>-0.851852</td>\n",
              "      <td>-0.785121</td>\n",
              "      <td>-0.940644</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>max</th>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-0.786096</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-0.204188</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-0.219512</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-0.073171</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-0.293564</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>0.693878</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>0.493277</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.199255</td>\n",
              "      <td>-0.199255</td>\n",
              "      <td>-0.199255</td>\n",
              "      <td>-0.199255</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.530398</td>\n",
              "      <td>0.530398</td>\n",
              "      <td>0.530398</td>\n",
              "      <td>0.530398</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.463415</td>\n",
              "      <td>0.463415</td>\n",
              "      <td>0.463415</td>\n",
              "      <td>0.463415</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-0.606023</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-0.020471</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>0.080913</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-0.070028</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>0.310976</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>0.372781</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-0.779310</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-0.546012</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>0.535350</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>0.404255</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>0.329773</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>0.222222</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>0.969697</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-0.693944</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-0.794970</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-0.629428</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-0.455422</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>-0.236287</td>\n",
              "      <td>-0.236287</td>\n",
              "      <td>-0.236287</td>\n",
              "      <td>-0.236287</td>\n",
              "      <td>-1.0</td>\n",
              "      <td>0.555556</td>\n",
              "      <td>0.476923</td>\n",
              "      <td>0.660377</td>\n",
              "      <td>0.830508</td>\n",
              "      <td>0.964286</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.555556</td>\n",
              "      <td>0.476923</td>\n",
              "      <td>0.962264</td>\n",
              "      <td>0.862069</td>\n",
              "      <td>0.964286</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.628866</td>\n",
              "      <td>0.575000</td>\n",
              "      <td>0.692308</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.978022</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.350427</td>\n",
              "      <td>0.048649</td>\n",
              "      <td>0.552239</td>\n",
              "      <td>0.636364</td>\n",
              "      <td>0.768116</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.217391</td>\n",
              "      <td>-0.447853</td>\n",
              "      <td>0.160305</td>\n",
              "      <td>-0.323529</td>\n",
              "      <td>-0.238095</td>\n",
              "      <td>-0.090909</td>\n",
              "      <td>-0.333333</td>\n",
              "      <td>-0.456376</td>\n",
              "      <td>-0.531749</td>\n",
              "      <td>-0.299283</td>\n",
              "      <td>-0.285468</td>\n",
              "      <td>-0.091698</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>1.000000</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "       AGE_ABOVE65  DISEASE GROUPING 1  DISEASE GROUPING 2  \\\n",
              "count   293.000000          293.000000          293.000000   \n",
              "mean      0.412969            0.095563            0.023891   \n",
              "std       0.493210            0.294494            0.152970   \n",
              "min       0.000000            0.000000            0.000000   \n",
              "25%       0.000000            0.000000            0.000000   \n",
              "50%       0.000000            0.000000            0.000000   \n",
              "75%       1.000000            0.000000            0.000000   \n",
              "max       1.000000            1.000000            1.000000   \n",
              "\n",
              "       DISEASE GROUPING 3  DISEASE GROUPING 4  DISEASE GROUPING 5  \\\n",
              "count          293.000000          293.000000          293.000000   \n",
              "mean             0.085324            0.020478            0.116041   \n",
              "std              0.279842            0.141870            0.320822   \n",
              "min              0.000000            0.000000            0.000000   \n",
              "25%              0.000000            0.000000            0.000000   \n",
              "50%              0.000000            0.000000            0.000000   \n",
              "75%              0.000000            0.000000            0.000000   \n",
              "max              1.000000            1.000000            1.000000   \n",
              "\n",
              "       DISEASE GROUPING 6         HTN  IMMUNOCOMPROMISED       OTHER  \\\n",
              "count          293.000000  293.000000         293.000000  293.000000   \n",
              "mean             0.047782    0.170648           0.163823    0.808874   \n",
              "std              0.213669    0.376845           0.370748    0.393861   \n",
              "min              0.000000    0.000000           0.000000    0.000000   \n",
              "25%              0.000000    0.000000           0.000000    1.000000   \n",
              "50%              0.000000    0.000000           0.000000    1.000000   \n",
              "75%              0.000000    0.000000           0.000000    1.000000   \n",
              "max              1.000000    1.000000           1.000000    1.000000   \n",
              "\n",
              "       ALBUMIN_MEDIAN  ALBUMIN_MEAN  ALBUMIN_MIN  ALBUMIN_MAX  ALBUMIN_DIFF  \\\n",
              "count      293.000000    293.000000   293.000000   293.000000         293.0   \n",
              "mean         0.578828      0.578828     0.578828     0.578828          -1.0   \n",
              "std          0.122129      0.122129     0.122129     0.122129           0.0   \n",
              "min         -0.578947     -0.578947    -0.578947    -0.578947          -1.0   \n",
              "25%          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "50%          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "75%          0.605263      0.605263     0.605263     0.605263          -1.0   \n",
              "max          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "\n",
              "       BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  \\\n",
              "count          293.000000        293.000000       293.000000       293.000000   \n",
              "mean            -0.998479         -0.998479        -0.998479        -0.998479   \n",
              "std              0.014321          0.014321         0.014321         0.014321   \n",
              "min             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "25%             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "50%             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "75%             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "max             -0.786096         -0.786096        -0.786096        -0.786096   \n",
              "\n",
              "       BE_ARTERIAL_DIFF  BE_VENOUS_MEDIAN  BE_VENOUS_MEAN  BE_VENOUS_MIN  \\\n",
              "count             293.0        293.000000      293.000000     293.000000   \n",
              "mean               -1.0         -0.971320       -0.971320      -0.971320   \n",
              "std                 0.0          0.090151        0.090151       0.090151   \n",
              "min                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "25%                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "50%                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "75%                -1.0         -1.000000       -1.000000      -1.000000   \n",
              "max                -1.0         -0.204188       -0.204188      -0.204188   \n",
              "\n",
              "       BE_VENOUS_MAX  BE_VENOUS_DIFF  BIC_ARTERIAL_MEDIAN  BIC_ARTERIAL_MEAN  \\\n",
              "count     293.000000           293.0           293.000000         293.000000   \n",
              "mean       -0.971320            -1.0            -0.316796          -0.316796   \n",
              "std         0.090151             0.0             0.007051           0.007051   \n",
              "min        -1.000000            -1.0            -0.365854          -0.365854   \n",
              "25%        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "50%        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "75%        -1.000000            -1.0            -0.317073          -0.317073   \n",
              "max        -0.204188            -1.0            -0.219512          -0.219512   \n",
              "\n",
              "       BIC_ARTERIAL_MIN  BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  \\\n",
              "count        293.000000        293.000000              293.0   \n",
              "mean          -0.316796         -0.316796               -1.0   \n",
              "std            0.007051          0.007051                0.0   \n",
              "min           -0.365854         -0.365854               -1.0   \n",
              "25%           -0.317073         -0.317073               -1.0   \n",
              "50%           -0.317073         -0.317073               -1.0   \n",
              "75%           -0.317073         -0.317073               -1.0   \n",
              "max           -0.219512         -0.219512               -1.0   \n",
              "\n",
              "       BIC_VENOUS_MEDIAN  BIC_VENOUS_MEAN  BIC_VENOUS_MIN  BIC_VENOUS_MAX  \\\n",
              "count         293.000000       293.000000      293.000000      293.000000   \n",
              "mean           -0.321152        -0.321152       -0.321152       -0.321152   \n",
              "std             0.077980         0.077980        0.077980        0.077980   \n",
              "min            -1.000000        -1.000000       -1.000000       -1.000000   \n",
              "25%            -0.317073        -0.317073       -0.317073       -0.317073   \n",
              "50%            -0.317073        -0.317073       -0.317073       -0.317073   \n",
              "75%            -0.317073        -0.317073       -0.317073       -0.317073   \n",
              "max            -0.073171        -0.073171       -0.073171       -0.073171   \n",
              "\n",
              "       BIC_VENOUS_DIFF  BILLIRUBIN_MEDIAN  BILLIRUBIN_MEAN  BILLIRUBIN_MIN  \\\n",
              "count            293.0         293.000000       293.000000      293.000000   \n",
              "mean              -1.0          -0.944446        -0.944446       -0.944446   \n",
              "std                0.0           0.045846         0.045846        0.045846   \n",
              "min               -1.0          -0.994767        -0.994767       -0.994767   \n",
              "25%               -1.0          -0.962323        -0.962323       -0.962323   \n",
              "50%               -1.0          -0.938950        -0.938950       -0.938950   \n",
              "75%               -1.0          -0.938950        -0.938950       -0.938950   \n",
              "max               -1.0          -0.293564        -0.293564       -0.293564   \n",
              "\n",
              "       BILLIRUBIN_MAX  BILLIRUBIN_DIFF  BLAST_MEDIAN  BLAST_MEAN   BLAST_MIN  \\\n",
              "count      293.000000            293.0    293.000000  293.000000  293.000000   \n",
              "mean        -0.944446             -1.0     -0.992285   -0.992285   -0.992285   \n",
              "std          0.045846              0.0      0.117776    0.117776    0.117776   \n",
              "min         -0.994767             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "25%         -0.962323             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "50%         -0.938950             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "75%         -0.938950             -1.0     -1.000000   -1.000000   -1.000000   \n",
              "max         -0.293564             -1.0      1.000000    1.000000    1.000000   \n",
              "\n",
              "        BLAST_MAX  BLAST_DIFF  CALCIUM_MEDIAN  CALCIUM_MEAN  CALCIUM_MIN  \\\n",
              "count  293.000000       293.0      293.000000    293.000000   293.000000   \n",
              "mean    -0.992285        -1.0        0.332045      0.332045     0.332045   \n",
              "std      0.117776         0.0        0.078696      0.078696     0.078696   \n",
              "min     -1.000000        -1.0        0.020408      0.020408     0.020408   \n",
              "25%     -1.000000        -1.0        0.336735      0.336735     0.336735   \n",
              "50%     -1.000000        -1.0        0.357143      0.357143     0.357143   \n",
              "75%     -1.000000        -1.0        0.357143      0.357143     0.357143   \n",
              "max      1.000000        -1.0        0.693878      0.693878     0.693878   \n",
              "\n",
              "       CALCIUM_MAX  CALCIUM_DIFF  CREATININ_MEDIAN  CREATININ_MEAN  \\\n",
              "count   293.000000         293.0        293.000000      293.000000   \n",
              "mean      0.332045          -1.0         -0.892396       -0.892396   \n",
              "std       0.078696           0.0          0.102629        0.102629   \n",
              "min       0.020408          -1.0         -0.970276       -0.970276   \n",
              "25%       0.336735          -1.0         -0.929229       -0.929229   \n",
              "50%       0.357143          -1.0         -0.908402       -0.908402   \n",
              "75%       0.357143          -1.0         -0.881104       -0.881104   \n",
              "max       0.693878          -1.0          0.493277        0.493277   \n",
              "\n",
              "       CREATININ_MIN  CREATININ_MAX  CREATININ_DIFF  FFA_MEDIAN    FFA_MEAN  \\\n",
              "count     293.000000     293.000000           293.0  293.000000  293.000000   \n",
              "mean       -0.892396      -0.892396            -1.0   -0.721727   -0.721727   \n",
              "std         0.102629       0.102629             0.0    0.184035    0.184035   \n",
              "min        -0.970276      -0.970276            -1.0   -0.918977   -0.918977   \n",
              "25%        -0.929229      -0.929229            -1.0   -0.744136   -0.744136   \n",
              "50%        -0.908402      -0.908402            -1.0   -0.742004   -0.742004   \n",
              "75%        -0.881104      -0.881104            -1.0   -0.742004   -0.742004   \n",
              "max         0.493277       0.493277            -1.0    1.000000    1.000000   \n",
              "\n",
              "          FFA_MIN     FFA_MAX  FFA_DIFF  GGT_MEDIAN    GGT_MEAN     GGT_MIN  \\\n",
              "count  293.000000  293.000000     293.0  293.000000  293.000000  293.000000   \n",
              "mean    -0.721727   -0.721727      -1.0   -0.930257   -0.930257   -0.930257   \n",
              "std      0.184035    0.184035       0.0    0.145172    0.145172    0.145172   \n",
              "min     -0.918977   -0.918977      -1.0   -0.997664   -0.997664   -0.997664   \n",
              "25%     -0.744136   -0.744136      -1.0   -0.958528   -0.958528   -0.958528   \n",
              "50%     -0.742004   -0.742004      -1.0   -0.958528   -0.958528   -0.958528   \n",
              "75%     -0.742004   -0.742004      -1.0   -0.958528   -0.958528   -0.958528   \n",
              "max      1.000000    1.000000      -1.0    1.000000    1.000000    1.000000   \n",
              "\n",
              "          GGT_MAX  GGT_DIFF  GLUCOSE_MEDIAN  GLUCOSE_MEAN  GLUCOSE_MIN  \\\n",
              "count  293.000000     293.0      293.000000    293.000000   293.000000   \n",
              "mean    -0.930257      -1.0       -0.859128     -0.859128    -0.859128   \n",
              "std      0.145172       0.0        0.089202      0.089202     0.089202   \n",
              "min     -0.997664      -1.0       -0.929236     -0.929236    -0.929236   \n",
              "25%     -0.958528      -1.0       -0.891993     -0.891993    -0.891993   \n",
              "50%     -0.958528      -1.0       -0.891993     -0.891993    -0.891993   \n",
              "75%     -0.958528      -1.0       -0.865922     -0.865922    -0.865922   \n",
              "max      1.000000      -1.0       -0.199255     -0.199255    -0.199255   \n",
              "\n",
              "       GLUCOSE_MAX  GLUCOSE_DIFF  HEMATOCRITE_MEDIAN  HEMATOCRITE_MEAN  \\\n",
              "count   293.000000         293.0          293.000000        293.000000   \n",
              "mean     -0.859128          -1.0           -0.113694         -0.113694   \n",
              "std       0.089202           0.0            0.206982          0.206982   \n",
              "min      -0.929236          -1.0           -0.903564         -0.903564   \n",
              "25%      -0.891993          -1.0           -0.220126         -0.220126   \n",
              "50%      -0.891993          -1.0           -0.104822         -0.104822   \n",
              "75%      -0.865922          -1.0            0.023061          0.023061   \n",
              "max      -0.199255          -1.0            0.530398          0.530398   \n",
              "\n",
              "       HEMATOCRITE_MIN  HEMATOCRITE_MAX  HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  \\\n",
              "count       293.000000       293.000000             293.0         293.000000   \n",
              "mean         -0.113694        -0.113694              -1.0          -0.148398   \n",
              "std           0.206982         0.206982               0.0           0.219247   \n",
              "min          -0.903564        -0.903564              -1.0          -1.000000   \n",
              "25%          -0.220126        -0.220126              -1.0          -0.268293   \n",
              "50%          -0.104822        -0.104822              -1.0          -0.146341   \n",
              "75%           0.023061         0.023061              -1.0           0.012195   \n",
              "max           0.530398         0.530398              -1.0           0.463415   \n",
              "\n",
              "       HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  HEMOGLOBIN_MAX  HEMOGLOBIN_DIFF  \\\n",
              "count       293.000000      293.000000      293.000000            293.0   \n",
              "mean         -0.148398       -0.148398       -0.148398             -1.0   \n",
              "std           0.219247        0.219247        0.219247              0.0   \n",
              "min          -1.000000       -1.000000       -1.000000             -1.0   \n",
              "25%          -0.268293       -0.268293       -0.268293             -1.0   \n",
              "50%          -0.146341       -0.146341       -0.146341             -1.0   \n",
              "75%           0.012195        0.012195        0.012195             -1.0   \n",
              "max           0.463415        0.463415        0.463415             -1.0   \n",
              "\n",
              "       INR_MEDIAN    INR_MEAN     INR_MIN     INR_MAX  INR_DIFF  \\\n",
              "count  293.000000  293.000000  293.000000  293.000000     293.0   \n",
              "mean    -0.943534   -0.943534   -0.943534   -0.943534      -1.0   \n",
              "std      0.045584    0.045584    0.045584    0.045584       0.0   \n",
              "min     -1.000000   -1.000000   -1.000000   -1.000000      -1.0   \n",
              "25%     -0.959849   -0.959849   -0.959849   -0.959849      -1.0   \n",
              "50%     -0.959849   -0.959849   -0.959849   -0.959849      -1.0   \n",
              "75%     -0.946048   -0.946048   -0.946048   -0.946048      -1.0   \n",
              "max     -0.606023   -0.606023   -0.606023   -0.606023      -1.0   \n",
              "\n",
              "       LACTATE_MEDIAN  LACTATE_MEAN  LACTATE_MIN  LACTATE_MAX  LACTATE_DIFF  \\\n",
              "count      293.000000    293.000000   293.000000   293.000000         293.0   \n",
              "mean         0.582525      0.582525     0.582525     0.582525          -1.0   \n",
              "std          0.727411      0.727411     0.727411     0.727411           0.0   \n",
              "min         -0.975884     -0.975884    -0.975884    -0.975884          -1.0   \n",
              "25%          0.068451      0.068451     0.068451     0.068451          -1.0   \n",
              "50%          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "75%          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "max          1.000000      1.000000     1.000000     1.000000          -1.0   \n",
              "\n",
              "       LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  LEUKOCYTES_MIN  LEUKOCYTES_MAX  \\\n",
              "count         293.000000       293.000000      293.000000      293.000000   \n",
              "mean           -0.772004        -0.772004       -0.772004       -0.772004   \n",
              "std             0.116851         0.116851        0.116851        0.116851   \n",
              "min            -0.966010        -0.966010       -0.966010       -0.966010   \n",
              "25%            -0.842410        -0.842410       -0.842410       -0.842410   \n",
              "50%            -0.799923        -0.799923       -0.799923       -0.799923   \n",
              "75%            -0.736964        -0.736964       -0.736964       -0.736964   \n",
              "max            -0.020471        -0.020471       -0.020471       -0.020471   \n",
              "\n",
              "       LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  LINFOCITOS_MEAN  LINFOCITOS_MIN  \\\n",
              "count            293.0         293.000000       293.000000      293.000000   \n",
              "mean              -1.0          -0.741621        -0.741621       -0.741621   \n",
              "std                0.0           0.145799         0.145799        0.145799   \n",
              "min               -1.0          -0.977178        -0.977178       -0.977178   \n",
              "25%               -1.0          -0.836100        -0.836100       -0.836100   \n",
              "50%               -1.0          -0.776971        -0.776971       -0.776971   \n",
              "75%               -1.0          -0.684647        -0.684647       -0.684647   \n",
              "max               -1.0           0.080913         0.080913        0.080913   \n",
              "\n",
              "       LINFOCITOS_MAX  LINFOCITOS_DIFF  NEUTROPHILES_MEDIAN  \\\n",
              "count      293.000000            293.0           293.000000   \n",
              "mean        -0.741621             -1.0            -0.835662   \n",
              "std          0.145799              0.0             0.112248   \n",
              "min         -0.977178             -1.0            -0.990796   \n",
              "25%         -0.836100             -1.0            -0.902361   \n",
              "50%         -0.776971             -1.0            -0.862145   \n",
              "75%         -0.684647             -1.0            -0.806723   \n",
              "max          0.080913             -1.0            -0.070028   \n",
              "\n",
              "       NEUTROPHILES_MEAN  NEUTROPHILES_MIN  NEUTROPHILES_MAX  \\\n",
              "count         293.000000        293.000000        293.000000   \n",
              "mean           -0.835662         -0.835662         -0.835662   \n",
              "std             0.112248          0.112248          0.112248   \n",
              "min            -0.990796         -0.990796         -0.990796   \n",
              "25%            -0.902361         -0.902361         -0.902361   \n",
              "50%            -0.862145         -0.862145         -0.862145   \n",
              "75%            -0.806723         -0.806723         -0.806723   \n",
              "max            -0.070028         -0.070028         -0.070028   \n",
              "\n",
              "       NEUTROPHILES_DIFF  P02_ARTERIAL_MEDIAN  P02_ARTERIAL_MEAN  \\\n",
              "count              293.0           293.000000         293.000000   \n",
              "mean                -1.0            -0.174020          -0.174020   \n",
              "std                  0.0             0.061538           0.061538   \n",
              "min                 -1.0            -1.000000          -1.000000   \n",
              "25%                 -1.0            -0.170732          -0.170732   \n",
              "50%                 -1.0            -0.170732          -0.170732   \n",
              "75%                 -1.0            -0.170732          -0.170732   \n",
              "max                 -1.0             0.310976           0.310976   \n",
              "\n",
              "       P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  P02_ARTERIAL_DIFF  \\\n",
              "count        293.000000        293.000000              293.0   \n",
              "mean          -0.174020         -0.174020               -1.0   \n",
              "std            0.061538          0.061538                0.0   \n",
              "min           -1.000000         -1.000000               -1.0   \n",
              "25%           -0.170732         -0.170732               -1.0   \n",
              "50%           -0.170732         -0.170732               -1.0   \n",
              "75%           -0.170732         -0.170732               -1.0   \n",
              "max            0.310976          0.310976               -1.0   \n",
              "\n",
              "       P02_VENOUS_MEDIAN  P02_VENOUS_MEAN  P02_VENOUS_MIN  P02_VENOUS_MAX  \\\n",
              "count         293.000000       293.000000      293.000000      293.000000   \n",
              "mean           -0.695438        -0.695438       -0.695438       -0.695438   \n",
              "std             0.129847         0.129847        0.129847        0.129847   \n",
              "min            -0.952663        -0.952663       -0.952663       -0.952663   \n",
              "25%            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "50%            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "75%            -0.704142        -0.704142       -0.704142       -0.704142   \n",
              "max             0.372781         0.372781        0.372781        0.372781   \n",
              "\n",
              "       P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  PC02_ARTERIAL_MEAN  \\\n",
              "count            293.0            293.000000          293.000000   \n",
              "mean              -1.0             -0.779820           -0.779820   \n",
              "std                0.0              0.004268            0.004268   \n",
              "min               -1.0             -0.825287           -0.825287   \n",
              "25%               -1.0             -0.779310           -0.779310   \n",
              "50%               -1.0             -0.779310           -0.779310   \n",
              "75%               -1.0             -0.779310           -0.779310   \n",
              "max               -1.0             -0.779310           -0.779310   \n",
              "\n",
              "       PC02_ARTERIAL_MIN  PC02_ARTERIAL_MAX  PC02_ARTERIAL_DIFF  \\\n",
              "count         293.000000         293.000000               293.0   \n",
              "mean           -0.779820          -0.779820                -1.0   \n",
              "std             0.004268           0.004268                 0.0   \n",
              "min            -0.825287          -0.825287                -1.0   \n",
              "25%            -0.779310          -0.779310                -1.0   \n",
              "50%            -0.779310          -0.779310                -1.0   \n",
              "75%            -0.779310          -0.779310                -1.0   \n",
              "max            -0.779310          -0.779310                -1.0   \n",
              "\n",
              "       PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  PC02_VENOUS_MIN  PC02_VENOUS_MAX  \\\n",
              "count          293.000000        293.000000       293.000000       293.000000   \n",
              "mean            -0.762111         -0.762111        -0.762111        -0.762111   \n",
              "std              0.044664          0.044664         0.044664         0.044664   \n",
              "min             -1.000000         -1.000000        -1.000000        -1.000000   \n",
              "25%             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "50%             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "75%             -0.754601         -0.754601        -0.754601        -0.754601   \n",
              "max             -0.546012         -0.546012        -0.546012        -0.546012   \n",
              "\n",
              "       PC02_VENOUS_DIFF  PCR_MEDIAN    PCR_MEAN     PCR_MIN     PCR_MAX  \\\n",
              "count             293.0  293.000000  293.000000  293.000000  293.000000   \n",
              "mean               -1.0   -0.827216   -0.827216   -0.827216   -0.827216   \n",
              "std                 0.0    0.212602    0.212602    0.212602    0.212602   \n",
              "min                -1.0   -1.000000   -1.000000   -1.000000   -1.000000   \n",
              "25%                -1.0   -0.975614   -0.975614   -0.975614   -0.975614   \n",
              "50%                -1.0   -0.899433   -0.899433   -0.899433   -0.899433   \n",
              "75%                -1.0   -0.774291   -0.774291   -0.774291   -0.774291   \n",
              "max                -1.0    0.535350    0.535350    0.535350    0.535350   \n",
              "\n",
              "       PCR_DIFF  PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  PH_ARTERIAL_MIN  \\\n",
              "count     293.0          293.000000        293.000000       293.000000   \n",
              "mean       -1.0            0.235906          0.235906         0.235906   \n",
              "std         0.0            0.016481          0.016481         0.016481   \n",
              "min        -1.0            0.191489          0.191489         0.191489   \n",
              "25%        -1.0            0.234043          0.234043         0.234043   \n",
              "50%        -1.0            0.234043          0.234043         0.234043   \n",
              "75%        -1.0            0.234043          0.234043         0.234043   \n",
              "max        -1.0            0.404255          0.404255         0.404255   \n",
              "\n",
              "       PH_ARTERIAL_MAX  PH_ARTERIAL_DIFF  PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  \\\n",
              "count       293.000000             293.0        293.000000      293.000000   \n",
              "mean          0.235906              -1.0          0.373444        0.373444   \n",
              "std           0.016481               0.0          0.080393        0.080393   \n",
              "min           0.191489              -1.0         -0.090909       -0.090909   \n",
              "25%           0.234043              -1.0          0.363636        0.363636   \n",
              "50%           0.234043              -1.0          0.363636        0.363636   \n",
              "75%           0.234043              -1.0          0.363636        0.363636   \n",
              "max           0.404255              -1.0          1.000000        1.000000   \n",
              "\n",
              "       PH_VENOUS_MIN  PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  \\\n",
              "count     293.000000     293.000000           293.0        293.000000   \n",
              "mean        0.373444       0.373444            -1.0         -0.495099   \n",
              "std         0.080393       0.080393             0.0          0.190213   \n",
              "min        -0.090909      -0.090909            -1.0         -0.991989   \n",
              "25%         0.363636       0.363636            -1.0         -0.615487   \n",
              "50%         0.363636       0.363636            -1.0         -0.514019   \n",
              "75%         0.363636       0.363636            -1.0         -0.403204   \n",
              "max         1.000000       1.000000            -1.0          0.329773   \n",
              "\n",
              "       PLATELETS_MEAN  PLATELETS_MIN  PLATELETS_MAX  PLATELETS_DIFF  \\\n",
              "count      293.000000     293.000000     293.000000           293.0   \n",
              "mean        -0.495099      -0.495099      -0.495099            -1.0   \n",
              "std          0.190213       0.190213       0.190213             0.0   \n",
              "min         -0.991989      -0.991989      -0.991989            -1.0   \n",
              "25%         -0.615487      -0.615487      -0.615487            -1.0   \n",
              "50%         -0.514019      -0.514019      -0.514019            -1.0   \n",
              "75%         -0.403204      -0.403204      -0.403204            -1.0   \n",
              "max          0.329773       0.329773       0.329773            -1.0   \n",
              "\n",
              "       POTASSIUM_MEDIAN  POTASSIUM_MEAN  POTASSIUM_MIN  POTASSIUM_MAX  \\\n",
              "count        293.000000      293.000000     293.000000     293.000000   \n",
              "mean          -0.564425       -0.564425      -0.564425      -0.564425   \n",
              "std            0.149514        0.149514       0.149514       0.149514   \n",
              "min           -0.962963       -0.962963      -0.962963      -0.962963   \n",
              "25%           -0.666667       -0.666667      -0.666667      -0.666667   \n",
              "50%           -0.555556       -0.555556      -0.555556      -0.555556   \n",
              "75%           -0.481481       -0.481481      -0.481481      -0.481481   \n",
              "max            0.222222        0.222222       0.222222       0.222222   \n",
              "\n",
              "       POTASSIUM_DIFF  SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  \\\n",
              "count           293.0             293.000000           293.000000   \n",
              "mean             -1.0               0.931672             0.931672   \n",
              "std               0.0               0.114085             0.114085   \n",
              "min              -1.0              -1.000000            -1.000000   \n",
              "25%              -1.0               0.939394             0.939394   \n",
              "50%              -1.0               0.939394             0.939394   \n",
              "75%              -1.0               0.939394             0.939394   \n",
              "max              -1.0               0.969697             0.969697   \n",
              "\n",
              "       SAT02_ARTERIAL_MIN  SAT02_ARTERIAL_MAX  SAT02_ARTERIAL_DIFF  \\\n",
              "count          293.000000          293.000000                293.0   \n",
              "mean             0.931672            0.931672                 -1.0   \n",
              "std              0.114085            0.114085                  0.0   \n",
              "min             -1.000000           -1.000000                 -1.0   \n",
              "25%              0.939394            0.939394                 -1.0   \n",
              "50%              0.939394            0.939394                 -1.0   \n",
              "75%              0.939394            0.939394                 -1.0   \n",
              "max              0.969697            0.969697                 -1.0   \n",
              "\n",
              "       SAT02_VENOUS_MEDIAN  SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  \\\n",
              "count           293.000000         293.000000        293.000000   \n",
              "mean              0.301416           0.301416          0.301416   \n",
              "std               0.281543           0.281543          0.281543   \n",
              "min              -0.925926          -0.925926         -0.925926   \n",
              "25%               0.345679           0.345679          0.345679   \n",
              "50%               0.345679           0.345679          0.345679   \n",
              "75%               0.345679           0.345679          0.345679   \n",
              "max               1.000000           1.000000          1.000000   \n",
              "\n",
              "       SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  SODIUM_MEDIAN  SODIUM_MEAN  \\\n",
              "count        293.000000              293.0     293.000000   293.000000   \n",
              "mean           0.301416               -1.0      -0.077133    -0.077133   \n",
              "std            0.281543                0.0       0.198448     0.198448   \n",
              "min           -0.925926               -1.0      -0.714286    -0.714286   \n",
              "25%            0.345679               -1.0      -0.171429    -0.171429   \n",
              "50%            0.345679               -1.0      -0.028571    -0.028571   \n",
              "75%            0.345679               -1.0       0.066667     0.066667   \n",
              "max            1.000000               -1.0       1.000000     1.000000   \n",
              "\n",
              "       SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  TGO_MEDIAN    TGO_MEAN  \\\n",
              "count  293.000000  293.000000        293.0  293.000000  293.000000   \n",
              "mean    -0.077133   -0.077133         -1.0   -0.993438   -0.993438   \n",
              "std      0.198448    0.198448          0.0    0.019001    0.019001   \n",
              "min     -0.714286   -0.714286         -1.0   -0.999627   -0.999627   \n",
              "25%     -0.171429   -0.171429         -1.0   -0.996827   -0.996827   \n",
              "50%     -0.028571   -0.028571         -1.0   -0.995521   -0.995521   \n",
              "75%      0.066667    0.066667         -1.0   -0.994588   -0.994588   \n",
              "max      1.000000    1.000000         -1.0   -0.693944   -0.693944   \n",
              "\n",
              "          TGO_MIN     TGO_MAX  TGO_DIFF  TGP_MEDIAN    TGP_MEAN     TGP_MIN  \\\n",
              "count  293.000000  293.000000     293.0  293.000000  293.000000  293.000000   \n",
              "mean    -0.993438   -0.993438      -1.0   -0.986212   -0.986212   -0.986212   \n",
              "std      0.019001    0.019001       0.0    0.015631    0.015631    0.015631   \n",
              "min     -0.999627   -0.999627      -1.0   -0.999619   -0.999619   -0.999619   \n",
              "25%     -0.996827   -0.996827      -1.0   -0.993521   -0.993521   -0.993521   \n",
              "50%     -0.995521   -0.995521      -1.0   -0.988567   -0.988567   -0.988567   \n",
              "75%     -0.994588   -0.994588      -1.0   -0.986280   -0.986280   -0.986280   \n",
              "max     -0.693944   -0.693944      -1.0   -0.794970   -0.794970   -0.794970   \n",
              "\n",
              "          TGP_MAX  TGP_DIFF  TTPA_MEDIAN   TTPA_MEAN    TTPA_MIN    TTPA_MAX  \\\n",
              "count  293.000000     293.0   293.000000  293.000000  293.000000  293.000000   \n",
              "mean    -0.986212      -1.0    -0.836803   -0.836803   -0.836803   -0.836803   \n",
              "std      0.015631       0.0     0.042996    0.042996    0.042996    0.042996   \n",
              "min     -0.999619      -1.0    -0.961853   -0.961853   -0.961853   -0.961853   \n",
              "25%     -0.993521      -1.0    -0.846633   -0.846633   -0.846633   -0.846633   \n",
              "50%     -0.988567      -1.0    -0.846633   -0.846633   -0.846633   -0.846633   \n",
              "75%     -0.986280      -1.0    -0.836512   -0.836512   -0.836512   -0.836512   \n",
              "max     -0.794970      -1.0    -0.629428   -0.629428   -0.629428   -0.629428   \n",
              "\n",
              "       TTPA_DIFF  UREA_MEDIAN   UREA_MEAN    UREA_MIN    UREA_MAX  UREA_DIFF  \\\n",
              "count      293.0   293.000000  293.000000  293.000000  293.000000      293.0   \n",
              "mean        -1.0    -0.854512   -0.854512   -0.854512   -0.854512       -1.0   \n",
              "std          0.0     0.075219    0.075219    0.075219    0.075219        0.0   \n",
              "min         -1.0    -0.978313   -0.978313   -0.978313   -0.978313       -1.0   \n",
              "25%         -1.0    -0.898795   -0.898795   -0.898795   -0.898795       -1.0   \n",
              "50%         -1.0    -0.874699   -0.874699   -0.874699   -0.874699       -1.0   \n",
              "75%         -1.0    -0.831325   -0.831325   -0.831325   -0.831325       -1.0   \n",
              "max         -1.0    -0.455422   -0.455422   -0.455422   -0.455422       -1.0   \n",
              "\n",
              "       DIMER_MEDIAN  DIMER_MEAN   DIMER_MIN   DIMER_MAX  DIMER_DIFF  \\\n",
              "count    293.000000  293.000000  293.000000  293.000000       293.0   \n",
              "mean      -0.958309   -0.958309   -0.958309   -0.958309        -1.0   \n",
              "std        0.081395    0.081395    0.081395    0.081395         0.0   \n",
              "min       -1.000000   -1.000000   -1.000000   -1.000000        -1.0   \n",
              "25%       -0.984620   -0.984620   -0.984620   -0.984620        -1.0   \n",
              "50%       -0.978029   -0.978029   -0.978029   -0.978029        -1.0   \n",
              "75%       -0.966876   -0.966876   -0.966876   -0.966876        -1.0   \n",
              "max       -0.236287   -0.236287   -0.236287   -0.236287        -1.0   \n",
              "\n",
              "       BLOODPRESSURE_DIASTOLIC_MEAN  BLOODPRESSURE_SISTOLIC_MEAN  \\\n",
              "count                    293.000000                   293.000000   \n",
              "mean                      -0.044813                    -0.353956   \n",
              "std                        0.218544                     0.235538   \n",
              "min                       -0.654321                    -0.880959   \n",
              "25%                       -0.160494                    -0.519963   \n",
              "50%                       -0.044719                    -0.384615   \n",
              "75%                        0.086420                    -0.230605   \n",
              "max                        0.555556                     0.476923   \n",
              "\n",
              "       HEART_RATE_MEAN  RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  \\\n",
              "count       293.000000             293.000000        293.000000   \n",
              "mean         -0.246903              -0.502897          0.104200   \n",
              "std           0.242663               0.155605          0.235370   \n",
              "min          -0.811321              -0.932203         -0.437500   \n",
              "25%          -0.405189              -0.577008         -0.080357   \n",
              "50%          -0.273192              -0.525424          0.071429   \n",
              "75%          -0.132075              -0.457627          0.248397   \n",
              "max           0.660377               0.830508          0.964286   \n",
              "\n",
              "       OXYGEN_SATURATION_MEAN  BLOODPRESSURE_DIASTOLIC_MEDIAN  \\\n",
              "count              293.000000                      293.000000   \n",
              "mean                 0.747809                       -0.045815   \n",
              "std                  0.109896                        0.221651   \n",
              "min                  0.315789                       -0.679012   \n",
              "25%                  0.684211                       -0.160494   \n",
              "50%                  0.744874                       -0.037037   \n",
              "75%                  0.830409                        0.086420   \n",
              "max                  1.000000                        0.555556   \n",
              "\n",
              "       BLOODPRESSURE_SISTOLIC_MEDIAN  HEART_RATE_MEDIAN  \\\n",
              "count                     293.000000         293.000000   \n",
              "mean                       -0.356395          -0.245879   \n",
              "std                         0.236684           0.252579   \n",
              "min                        -0.884615          -0.811321   \n",
              "25%                        -0.523077          -0.415094   \n",
              "50%                        -0.384615          -0.270440   \n",
              "75%                        -0.230769          -0.132075   \n",
              "max                         0.476923           0.962264   \n",
              "\n",
              "       RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  OXYGEN_SATURATION_MEDIAN  \\\n",
              "count               293.000000          293.000000                293.000000   \n",
              "mean                 -0.495243            0.101170                  0.751497   \n",
              "std                   0.159340            0.239179                  0.113073   \n",
              "min                  -0.931034           -0.464286                  0.263158   \n",
              "25%                  -0.568966           -0.089286                  0.684211   \n",
              "50%                  -0.517241            0.071429                  0.754386   \n",
              "75%                  -0.448276            0.250000                  0.842105   \n",
              "max                   0.862069            0.964286                  1.000000   \n",
              "\n",
              "       BLOODPRESSURE_DIASTOLIC_MIN  BLOODPRESSURE_SISTOLIC_MIN  \\\n",
              "count                   293.000000                  293.000000   \n",
              "mean                      0.061275                   -0.152414   \n",
              "std                       0.192080                    0.200578   \n",
              "min                      -0.515464                   -0.587500   \n",
              "25%                      -0.072165                   -0.291667   \n",
              "50%                       0.030928                   -0.175000   \n",
              "75%                       0.195876                   -0.050000   \n",
              "max                       0.628866                    0.575000   \n",
              "\n",
              "       HEART_RATE_MIN  RESPIRATORY_RATE_MIN  TEMPERATURE_MIN  \\\n",
              "count      293.000000            293.000000       293.000000   \n",
              "mean        -0.193791             -0.451487         0.396461   \n",
              "std          0.229122              0.172518         0.159219   \n",
              "min         -0.803419             -0.857143         0.054945   \n",
              "25%         -0.341880             -0.547619         0.285714   \n",
              "50%         -0.222222             -0.500000         0.362637   \n",
              "75%         -0.094017             -0.404762         0.494505   \n",
              "max          0.692308              1.000000         0.978022   \n",
              "\n",
              "       OXYGEN_SATURATION_MIN  BLOODPRESSURE_DIASTOLIC_MAX  \\\n",
              "count             293.000000                   293.000000   \n",
              "mean                0.872175                    -0.275483   \n",
              "std                 0.095568                     0.175010   \n",
              "min                 0.040404                    -0.760684   \n",
              "25%                 0.845118                    -0.384615   \n",
              "50%                 0.885522                    -0.270655   \n",
              "75%                 0.919192                    -0.162393   \n",
              "max                 1.000000                     0.350427   \n",
              "\n",
              "       BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  RESPIRATORY_RATE_MAX  \\\n",
              "count                  293.000000      293.000000            293.000000   \n",
              "mean                    -0.491120       -0.339977             -0.506516   \n",
              "std                      0.176385        0.202344              0.156722   \n",
              "min                     -0.891892       -0.850746             -0.939394   \n",
              "25%                     -0.610811       -0.462687             -0.575758   \n",
              "50%                     -0.513514       -0.358209             -0.515152   \n",
              "75%                     -0.365766       -0.238806             -0.454545   \n",
              "max                      0.048649        0.552239              0.636364   \n",
              "\n",
              "       TEMPERATURE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "count       293.000000             293.000000                    293.000000   \n",
              "mean         -0.024089               0.791974                     -0.879784   \n",
              "std           0.207794               0.110598                      0.139821   \n",
              "min          -0.463768               0.315789                     -1.000000   \n",
              "25%          -0.188406               0.736842                     -1.000000   \n",
              "50%          -0.024155               0.789474                     -0.913043   \n",
              "75%           0.101449               0.877193                     -0.785507   \n",
              "max           0.768116               1.000000                     -0.217391   \n",
              "\n",
              "       BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "count                   293.000000       293.000000             293.000000   \n",
              "mean                     -0.886325        -0.876972              -0.913923   \n",
              "std                       0.128382         0.140858               0.105279   \n",
              "min                      -1.000000        -1.000000              -1.000000   \n",
              "25%                      -1.000000        -1.000000              -1.000000   \n",
              "50%                      -0.926380        -0.893130              -0.941176   \n",
              "75%                      -0.803681        -0.786260              -0.852941   \n",
              "max                      -0.447853         0.160305              -0.323529   \n",
              "\n",
              "       TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  \\\n",
              "count        293.000000              293.000000   \n",
              "mean          -0.877858               -0.952023   \n",
              "std            0.134992                0.095003   \n",
              "min           -1.000000               -1.000000   \n",
              "25%           -1.000000               -1.000000   \n",
              "50%           -0.904762               -0.973064   \n",
              "75%           -0.785714               -0.939394   \n",
              "max           -0.238095               -0.090909   \n",
              "\n",
              "       BLOODPRESSURE_DIASTOLIC_DIFF_REL  BLOODPRESSURE_SISTOLIC_DIFF_REL  \\\n",
              "count                        293.000000                       293.000000   \n",
              "mean                          -0.902344                        -0.877666   \n",
              "std                            0.115414                         0.136461   \n",
              "min                           -1.000000                        -1.000000   \n",
              "25%                           -1.000000                        -1.000000   \n",
              "50%                           -0.928261                        -0.918769   \n",
              "75%                           -0.831621                        -0.783383   \n",
              "max                           -0.333333                        -0.456376   \n",
              "\n",
              "       HEART_RATE_DIFF_REL  RESPIRATORY_RATE_DIFF_REL  TEMPERATURE_DIFF_REL  \\\n",
              "count           293.000000                 293.000000            293.000000   \n",
              "mean             -0.909516                  -0.911811             -0.878712   \n",
              "std               0.098022                   0.106116              0.133200   \n",
              "min              -1.000000                  -1.000000             -1.000000   \n",
              "25%              -1.000000                  -1.000000             -1.000000   \n",
              "50%              -0.920938                  -0.939068             -0.908793   \n",
              "75%              -0.839287                  -0.851852             -0.785121   \n",
              "max              -0.531749                  -0.299283             -0.285468   \n",
              "\n",
              "       OXYGEN_SATURATION_DIFF_REL  AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "count                  293.000000          293.000000          293.000000   \n",
              "mean                    -0.952054            0.122867            0.129693   \n",
              "std                      0.094880            0.328846            0.336540   \n",
              "min                     -1.000000            0.000000            0.000000   \n",
              "25%                     -1.000000            0.000000            0.000000   \n",
              "50%                     -0.973368            0.000000            0.000000   \n",
              "75%                     -0.940644            0.000000            0.000000   \n",
              "max                     -0.091698            1.000000            1.000000   \n",
              "\n",
              "       AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  AGE_PERCENTIL_50th  \\\n",
              "count          293.000000          293.000000          293.000000   \n",
              "mean             0.116041            0.112628            0.102389   \n",
              "std              0.320822            0.316678            0.303678   \n",
              "min              0.000000            0.000000            0.000000   \n",
              "25%              0.000000            0.000000            0.000000   \n",
              "50%              0.000000            0.000000            0.000000   \n",
              "75%              0.000000            0.000000            0.000000   \n",
              "max              1.000000            1.000000            1.000000   \n",
              "\n",
              "       AGE_PERCENTIL_60th  AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "count          293.000000          293.000000          293.000000   \n",
              "mean             0.095563            0.102389            0.088737   \n",
              "std              0.294494            0.303678            0.284851   \n",
              "min              0.000000            0.000000            0.000000   \n",
              "25%              0.000000            0.000000            0.000000   \n",
              "50%              0.000000            0.000000            0.000000   \n",
              "75%              0.000000            0.000000            0.000000   \n",
              "max              1.000000            1.000000            1.000000   \n",
              "\n",
              "       AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th         ICU  \n",
              "count          293.000000                293.000000  293.000000  \n",
              "mean             0.068259                  0.061433    0.358362  \n",
              "std              0.252622                  0.240534    0.480340  \n",
              "min              0.000000                  0.000000    0.000000  \n",
              "25%              0.000000                  0.000000    0.000000  \n",
              "50%              0.000000                  0.000000    0.000000  \n",
              "75%              0.000000                  0.000000    1.000000  \n",
              "max              1.000000                  1.000000    1.000000  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 13
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 331
        },
        "id": "TwgYY2hO4Na8",
        "outputId": "1972dd0d-c21b-4dea-ad3c-48f49b2015d3"
      },
      "source": [
        "ICU_admission_distribution = final_data['ICU'].value_counts()\n",
        "print(\"Total Patients after pre processing: \", sum(ICU_admission_distribution))\n",
        "print(\"Distribution of ICU admissions\")\n",
        "print(\"Patients who were not admitted to ICU: \",ICU_admission_distribution[0])\n",
        "print(\"Patients who were admitted to ICU: \",ICU_admission_distribution[1])\n",
        "labels= ['Admitted to ICU', 'Not Admitted to ICU']\n",
        "colors=['tomato', 'deepskyblue']\n",
        "sizes= [ICU_admission_distribution[1], ICU_admission_distribution[0]]\n",
        "plt.pie(sizes,labels=labels, colors=colors, startangle=90, autopct='%1.1f%%')\n",
        "plt.title(\"ICU Distribution of data\")\n",
        "plt.axis('equal')\n",
        "plt.show()"
      ],
      "execution_count": 14,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Total Patients after pre processing:  293\n",
            "Distribution of ICU admissions\n",
            "Patients who were not admitted to ICU:  188\n",
            "Patients who were admitted to ICU:  105\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD3CAYAAAAdfCMIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd5xU1fnH8c+z9N67IgqioCiKXcGxj70EW6yJE2PUaGLUJJbE+lNDNMYSjWKMsZtYY1ljG8SOIsUuKKiIShUQhIV9fn/cu7Isu+xsmTkzs9/36zUvdmfuPfd7l9155pxbjrk7IiIiJaEDiIhIflBBEBERQAVBRERiKggiIgKoIIiISEwFQUREABUEaURmNtLMPmzE9p4ysxPir080s5case1jzOx/jdVeHba7s5l9bGZLzOyQDJb/p5ldlotsIioIRcLMZpjZnpW+72Nmt5nZbDNbbGYfmNnFZtbOzAaYmZtZ8ypt1PjmY2YXmVlZ3NZiM/vIzG4wsz4Vy7j7eHffJIOsF5nZXbUt5+77uvsdtS2XwfbW2l93v9vd925o2/VwCXCDu7d390cas2EzS5tZqjHblKZFBaEImVlX4FWgDbCju3cA9gI6AwMb0PT9cVtdgUOB3sBblYtCY7BIsf5ubgC8GzqESHWK9Y+uqTsLWAwc6+4zANz9c3c/092nNLRxdy9z93eBI4E5wG8AzCxhZl9ULGdmvzWzWXGP4kMz28PMksB5wJHxsMnkeNm0mV1uZi8DS4GNqvnEa3Gv5Nu4x7NHpReq9pAq90JejP9dGG9zx6pDUGa2k5lNiNueYGY7VXotbWaXmtnL8b78z8y61/TzMbOfmdk0M5tvZo+ZWd/4+enARsB/4xytqll3KzObGG/nfqB1pde6mNnjZjbHzBbEX68Xv3Y5MBK4IW77hvj5v5rZ52a2yMzeMrORNeUWUUEoTnsCD7l7eTY34u6rgEeJ3ojWYGabAKcD28a9in2AGe5eCvwfUW+jvbtvWWm144CTgQ7AzGo2uT0wHegO/BF4KO4N1WZU/G/neJuvVsnaFXgCuA7oBlwDPGFm3Sot9mPgJ0BPoCVwdnUbMrPdgSuAI4A+8X7cB+DuA4HPgAPjHMurrNsSeAS4k6gX9m/gR5UWKQFuJ+pl9AeWATfEbZ8PjAdOj9s+PV5nAjA8bu8e4N9m1hqRaqggFKduwOwcbetLojebqlYBrYChZtbC3We4+/Ra2vqnu7/r7ivdvaya178Bro17KPcDHwL7Nyh9ZH/gY3e/M972vcAHwIGVlrnd3T9y92XAA0RvstU5BviHu0+M3/B/D+xoZgMyyLED0ILV+/gfojd0ANx9nrs/6O5L3X0xcDmw67oadPe74vVWuvvVRP8ntR7nkaZJBaE4zSP6dFqTlfG/Lao83wKo7o14XfoB86s+6e7TgF8BFwHfmNl9FUMn6/B5La/P8jXvxjgTqK3NTPRl7R7JTKJ9q/BVpa+XAu0zacvdlxD9f/SrYfmq61a3jwCYWVsz+7uZzTSzRURDYZ3NrFlNDZrZ2Wb2fjwUthDoRNTDElmLCkJxehY4dB0HZmcTvfEPqPL8hlQ/VFOtuP0DiYYq1uLu97j7LkRDHA5cVfFSDU3WduvdfmZmlb7vT9RDAfgOaFvptd51aPfLOGNl/YFZtaxXa1tm1o6ox5ZJW7Opfh8r/Ibo0/327t6R1UNhFcuvsZ/x8YJziYavurh7Z+DbSsuLrEEFoThdA3QE7jCzDQDMrJ+ZXWNmW8Rj/w8Cl5tZNzNrYWZHA0OBp2pr3Myam9kQ4F6iN95rqllmEzPbPT5w+j3ReHfFMY2vgQH1OJOoJ3BGnPdwYAjwZPzaJOCo+LVtgNGV1psTb3ujGtp9EhhsZj+O9+1Iop/F43XMB9HP5CdmNjze9/8DXq84uF+LV4l6bxX7eBiwXaXXOxD9HBfGxz3+WGX9r1lzHzvE7c0BmpvZH4h+L0SqpYJQhNx9PrATUS/gdTNbDDxH9OlwWrzYqURDPVOIxuZPB/Z396/X0fSRZrYkbucxoqGQEe7+ZTXLtgKuBOYSDbf0JBpPh+hgKcA8M5tYh117Hdg4bvNyYLS7z4tfu5DolNoFwMVEB1ABcPel8fIvm9lCM9uhcqNxGwcQfQKfR/Sp+gB3n1uHbBVtPRtneZDoE/9A4KgM110BHAacSPR/cyTwUKVFriU6lXgu8BpQWqWJvwKj4zOQrgOejpf5iKjn9z21D8tJE2aaIEdEREA9BBERiakgiIgIoIIgIiIxFQQREQFUEEREJKaCICIigAqCiIjEVBBERARQQRARkZgKgoiIACoIIiISU0EQERFABUFERGIqCCIiAkDz0AFE6iSV7E00s1sPormcqz46Ek0F2mxil4HzRux/Yw+i+Z1XEU19ubDKYwHRxDIzgBme4Ptc7o5IPlFBkPyTSrYhmsR+CDCIaFKcQUSTzXTItJlys2nxeplyS/MN8ClRgfiIaCa2tz3BjDq0I1KQVBAkrFTSgE2B7Ymmi9we2IIwv5sG9Iofa8yqZmkWEBcHYALwgidY1+xyIgVHBUFyL5UcAOwH7AuMBDoFzZOZLsBu8QMAS/Me8Hz8SHuCBYGyiTQKFQTJvlSyBTCKqAjsR9QjKAZD48fpQLmlmUA0B/KDnmB60GQi9aCCINkRDQXtBhwPHEp0sLeYlRANd20PXGVpJgP/ISoO7wdNJpIhFQRpXKnkJsAJwDFA/8BpQtoyflxqaSYBtwJ3eYJFYWOJ1EwFQRoulWwNHAucDGwbOE0+Gg7cCIyxNA8At3iCVwNnElmLCoLUXyrZAzgNOJXougBZt7bAicCJlmYqcC1wpycoC5pKJKaCIHWXSm4KnAUcB7QOnKZQDQNuAy62NFcDt3qC7wJnkiZOBUEyl0oOAy4DDiQ6Z18abj3gL8AFluZ64HpPMD9wJmmidC8jqV0quQGp5L+ILsw6CBWDbOgGXAR8amkutDTtAueRJkgFQWqWSnYnlfwL8CHR8JB+X7KvI3AJMM3S/NzSNAsdSJoO/YHL2lLJVqSS5wPTgV8BrQInaop6AzcDkyzN3qHDSNOggiBrSiX3AqYSHSso9ovJCsHmwNOW5t+WpnfoMFLcdFBZItEppH8Fjg4dRao1GtjT0pwLjPUEHjqQFB/1EARSyWOB91ExyHedgVuAtKXZJHQYKT7qITRlqWR34B9Ep5FK4RgFTLY0FwBXq7cgjUU9hKYqldwNmIyKQaFqBYwBnrI0vUKHkeKggtDUpJLNSCUvBZ4F+oaOIw22D1FvQWciSYOpIDQlqeT6wAvABej/vpj0AkotzZ8sTYvQYaRw6U2hqYhOJ51ENEOZFB8DzgGetTTdQ4eRwqSC0BSkkqcATwJdQ0eRrBsFvGFpNgsdRAqPzjIqZqlkCXA10dXG0nRsCLxqaY72BE+EDiOFQz2EYpVKtgceQcWgqeoAPGZpfhM6iBQOFYRilEr2A8ajU0qbuhLgz5bmmtBBpDCoIBSbVHIA8BLRtI0iAL+2NGMtrb93WTf9ghSTVHIgMA4YEDiJ5J+TgHt1WqqsiwpCsUglBxMVg/6ho0jeOgJ4xNK0CR1E8pMKQjFIJYcQFYN+oaNI3tuP6GCz5riQtaggFLpUcjMgDbpXvmRsT6LhI83GJmtQQShk0a0ongZ6ho4iBedQYKylNT+2rKaCUKhSyc7AU2iYSOrvROAvoUNI/lBBKESpZCuii850ewJpqDMtzR9Ch5D8oIJQaFJJA/4F7Bo6ihSNiy3NkaFDSHgqCIXnz0SnD4o0ptstzYjQISQsFYRCkkoeB5wVOoYUpTZE1yjobLUmTAWhUKSSmwM3h44hRW09oqKgaxSaKBWEQpBKdgQeBNqGjiJFb3vgb6FDSBgqCIXhH8Dg0CGkyfippTk6dAjJPRWEfJdKngX8KHQMaXJutjQbhg4huaWCkM9SyW2Bq0LHkCapI3CPpTWrYlOigpCvoovPbkfTnEo4OwAXhQ4huaOCkL/+gK5ElvB+b2lGhg4huaGCkI9SyRHAuaFjiBC9R4y1NK1DB5HsU0HIN6lkSzRUJPllMPDH0CEk+1QQ8s+FwLDQIUSqONvS+r0sdioI+SSaBvO3oWOIVKM50amomj+hiGVUEMzsEDNzM9t0HcukzWybTDdsZtuY2XXx1wkz26nK9oZm2lal9ZZU81xnMzu1IW2Z2WAze9LMPjaziWb2gJn1MrMTzeyGKuvV6edQxZ9Bk6BL3toJOCl0CMmeTHsIRwMvxf82Cnd/093PiL9NEP2yVTgEqHNBqEFnoM4FoYKZtQaeAG5y943dfWuiS/t7NFK+SCq5B3Bgo7Yp0vgutTTtQoeQ7Ki1IJhZe2AXok8GR1V6vo2Z3Wdm75vZw0R3S6x4bYmZjTGzd83sWTPbLv7k/ImZHRQvkzCzx81sAHAK8Gszm2RmuwIHAWPi7wfGj1Ize8vMxlf0VMxsQzN71cymmtllNezClcDAuK0xFhljZu/E69V2H/gfA6+6+38rnnD3tLu/U9vPLmOpZAlwTaO1J5I9vYGzQ4eQ7Mikh3AwUOruHwHzzKzinum/AJa6+xCiMxAq30u9HfC8u28GLAYuA/Yimsf1ksqNu/sMort4/sXdh7v7OOAx4Jz4++nALcAv3X0E0S9jxc23/kr0yX0YMLuG/L8DpsdtnQMcBgwHtiSabHyMmfVZx/5vDry1jtcbw0nAFlnehkhjOdvS9AodQhpfJgXhaOC++Ov7WD1sNAq4C8DdpwBTKq2zAiiNv54KjHP3svjrAXUJGPdQdgL+bWaTgL8DFW/gOwP3xl/fmWGTuwD3uvsqd/8aGAdsW5dMlXgdn19bKtkBuLSe2xcJoT06DbUorfNcdzPrCuwODDMzB5oBbmbn1NJumbtXvCmWA8sB3L3czOp6fn0JsNDdh9fweuZvvvXzLjVPVzkP6FLlua7A3Dq0/2vQpy0pOD+zNNd6go9CB5HGU1sPYTRwp7tv4O4D3H194FNgJPAi0fg6ZrY5DRvyWAx0qO57d18EfGpmh8fbMjPbMl7uZVYf1zgmw7bHA0eaWTMz60HU03ljHdnuAXYys/0rnjCzUfE+TwB2NrPe8fPbAK2Az2vZ30g0z8GvMlpWJL80R/c5Kjq1FYSjgYerPPdg/PxNQHsze5/ouEBDxtn/CxwaH/gdSTQ0dY6ZvW1mA4ne7E8ys8lEn9gPjtc7EzjNzKYC/apr2N3nAS/HB5HHxPszBZgMPA+c6+5f1RTM3ZcBBwC/jE87fY/orKU58ZDTmcCT8XDWtcDR7l6e4X7/krV7GCKF4gjdIru42OqRHcmpVLItMBPoHjpKsXqz66Bp2+53w6DQOYrc3zzBaaFDSOPQlcrhnISKgRS+n1ianqFDSONQQQghlWwGnBU6hkgjaEM0bCpFQAUhjMOo4+m3InnsVEvTPnQIaTgVhDBODh1ApBF1phFvayPhqCDkWiq5IbBH6BgijSwVOoA0nApC7p0EuoWwFJ3tLK3brxQ6FYRcig4mnxg6hkiWqJdQ4FQQcms/ariATqQIHKu5lwubCkJuaXIRKWZdiOYykQKlgpAr0X2L9g0dQyTLDg8dQOpPBSF39gNahg4hkmVJS6+eLEsKiwpC7qgrLU1BWyAZOoTUT13nJpD6SCVbkqPhou9XrmLUE2+wvLycleXO6A17c/HWgzjxxamMm72ATi2j//J/jtqc4d06rrX+uW98yBOfz6HcYa9+3fjrDpuyotw5+JmJfPHdck4dsj6nDu0PwMkvvcspm67P1t3XbkeatMNY+y7JUgBUEHJjDyAn75qtmpXw/H7b0r5Fc8rKy9nl8TfYd73oHnpjthvM6A1717juK18v4OWvFzLl0J0B2OXx1xn31QIWrVjJLr26cN7wjdj5v69z6tD+TJ63iFXuKgZSnQMtTQtPUBY6iNSNhoxyI2fDRWZG+xZRnS8rd8rKyzO+Cs4wvl9VzorycpaXl1PmTq82LWlRYixdtYqycv9heroLJ07j0q11Z2mpVidqnmVQ8pgKQm7sX/sijWdVuTP84VfoefcL7NW3G9v37AzA+W99zBYPvcyvX/uA5avWnsNnx16d2a1PV/rcm6bPPWn26dedIZ3bs1e/bsxYvIwdHnuNMzbrz2Mzv2Hrbh3p206nnEuNdg8dQOpOQ0bZlkoOJMcXozUrMSYduhMLl5dx6HNv8878xVyxzWB6t2nJinLn5Jfe5aopn/CHrdb8hD9t0Xe8v3AJXxwVfbjb66k3Gf9Vd0b27sI9u0WzlpaVl7NP6Vs8uudWnPXaB3z23fccP6gvB22gW+LLGnYLHUDqTj2E7BsZasOdW7Vgtz5dKZ01lz5tW2FmtGpWwk8G9+ONOYvWWv7hGd+wQ8/OtG/RnPYtmrPv+t159ZuFayzzt/c+5/hBfXltzkI6tWzO/bttydXvzMjRHkkB2Ua3xC48KgjZl9OCMGfZChYuj47lLVu5imdmzWPTTu2YvXQ5AO7OIzO/ZvMua/+t9m/fmnFfzWdleTll5eWMm72AIZ3b/fD6guVlPP75HI7fuC9LV5ZTYoZZtB2RKpoDu4QOIXWjIaPsy2lBmL1sOSeMm8oqd8odjtioFwf078nuT05gzvcrcIfh3Tpw884bA/DmnG+5+YPPGTtyc0YP6M3zX85n2EOvYAbJft05sP/qoaBL3p7O+cM3osSMffp148b3PmPYQy9zyqbr53IXpXDsBpSGDiGZM3evfSmpn1SyF/BV6BhN1ZtdB03bdr8bdCpUOK95gh1Dh5DMacgou4IdPxDJA1tYWu8xhUT/Wdm1begAIgG1BTYOHUIyp4KQXZuFDiAS2PDQASRzKgjZNTR0AJHAVBAKiApCtqSSbYEBoWOIBKaCUEBUELJnCGR8GyGRYjUsdADJnApC9mi4SAT6WloTQxUKFYTsGRI6gEgeMKB/6BCSGRWE7BkQOoBInhgQOoBkRgUhe2qeiUakadkgdADJjApC9vQKHUAkTwwIHUAyo4KQPeohiER0DKFAqCBkQyrZEugSOoZInugeOoBkRgUhO3qhaxBEKnQNHUAyo4KQHTp+ILKaessFQgUhO9rVvohIk9ExdADJjApCdujKTJHVNLdygVBByA4VBJHV1GMuECoI2aGCILKa3mcKhP6jskMFQUQKjgpCdqgg5IFn+2z9degMAoCHDiCZaR46QJHSzzWwY3c+N333gN1Ghc4hgApCwdAbV3Z8HzpAU7Wkeevvhu//tynTO/RNhM4iP1BBKBAqCNmxJHSApmha+z5fbHHATUuXNW+9Y+gssgYVhAKhYwjZoYKQYw+tv9Pbgw++re2y5q0Hh84ia1kWOoBkRj2E7FgcOkBTcsY2vxh3/SYH7YyZfp/z0/zQASQz+gPKDvUQcuD7khbLd0heO2Fy14G7hs4i67QgdADJjApCdqggZNnnbbt/vfkBf5+7qGW7XUJnkVqpIBQIHUPIjkWhAxSzZ3sPf2fAIXewqGW7zUJnkYxoyKhAqCBkw9jSRcDS0DGK0cXDjnlprz2u2Li8pJluMV441EMoEBoyyp5ZwMahQxSLMitZuceeV708vtcwHS8oPLpivECoIGSPCkIjmdOq4/yhB946c27rTioGhemT0AEkMxoyyp6ZoQMUg9e6bfJh3x/ds3Ru605bhc4i9fZp6ACSGRWE7NEfQQNdt8lBr+6YvHa9lSXN1wudRRpEPYQCoSGj7FFBqKdVWPlhu/7hxcfW3zEROos0WBnwRegQkhkVhOz5OHSAQvRti7aLNj/g7x980a5HInQWaRSfeYJVoUNIZlQQsmcqUI6G5TL2TqcNPt1mv+t9ebOW24XOIo3mo9ABJHN6s8qWsaVLgGmhYxSKuzbc/c1hB9zcdXmzlhuFziKN6u3QASRz6iFk1yRAd9+sxYk7/iZ9x0Z7jsJMH1CKz8TQASRzKgjZ9TZwROgQ+eq7Zq2Wjtjvhkkfdlo/ETqLZI0KQgFRQcgudZdrMD2azOa7pc1b7xQ6i2TNAk/obLtCoi56dqkgVOOxfttP2vjg21ovbd56k9BZJKv0+19gVBCyaWzpN8CM0DHyyVlb/+zFgxMXbe5W0j10luCWLIQ/jobjN4UThsC7r65+7YGrYTeDb+euvd60SXDajnDiZnDSFvD8/atfu+yY6Llbz1v93J2XwUuPZG8/avZ6iI1K/WnIKPueB34aOkRoy0uar9h5n2tef6vb4FGhs+SN68+E7ZJw8X+gbAUsj2+Q+83nMOF/0Kt/9eu1agu//xestzHM/RJ+PgK22we+/gxatYHbpsDZe8GSb6M2338djrsgd/u12vMhNir1px5C9j0bOkBos9p0/ab36Ps+fKvb4JGhs+SNJd/ClBdhv5Oi71u0hPado69v/DX8/E+AVb/u+oOjYgDQvS907gkL50DzFrB8GZSXw8oyaNYMbv8DnHhx1nenGsuBl0NsWOpPPYTsew5wavzrLm7pnsPe23PPK7usKmk2LHSWvPLVp9C5B1z1E5g+GQaPgNP/Cm89C937waAtM2vn/Tdg5QroOxBKSqI2T94a9j4OZk2LisPgrbO7L9V7xRMsC7FhqT8VhGwbW/oNqeRUYIvQUXLt8s2PeumCLU/YBrPWobPknVUr4aOJ8MvrYej20fDRHRfB5BdhzP8ya2PebLjiOPjdHVExADj92tWvn3cgnPV3uOtymDYZttkLDvhZo+9KDZ7L1Yak8WjIKDea1B/HSitZtfueV467YPiJu6gY1KDHetFj6PbR97uOjgrEV59Caks4agDM+SL6tD//q7XX/24R/H5/OOlyGLrD2q+/9GjU61i2BGZNh4segHH/ge9zNpFfk/qdLxYqCLnxTOgAuTK3ZYcF/Q67e/ILvYdrMpt16dobeq4Pn30YfT/xuWho5+Fv4L4Z0aPHenDLxGjZyspWwIWHwt7HR4WkqpVl8OC1cNS50TEFi0cry1dFw0vZNw+YkIsNSeNSQciNF4DFoUNk25tdN/647+h7F3/TpkuQQeuCc8b1cHl8mui0SXDMeTUv++GbMCYVfZ1+IDogXfpPSA2PHtMmrV72kRthnxOgdVsYuEV0ptFPh0U9hooD19n1qO5wWpjM3UNnaBpSyTuBY0PHyJabNt7/tVO3O31zzNqHziLB7ecJngodQupOB5Vz536KsCCUgx8+6oIXH1p/51GYNckzqWQNC9Cp1gVLBSF3nib6Y+kSOkhjWdS8zeItDrj5vZnte+l4gVR4zBOUhQ4h9aNjCLkytrQMeDh0jMbyfsf1Z/Y6/P5vZrbvtX3oLJJX/hM6gNSfCkJu3Rc6QGO4d0Dizc0OvKXT981aDgydRfLKHCDDiygkH2nIKLeeB2YDfUIHqa/UDr9K3zZwn5GYNQudRfLO7Z4gJ+e1Snaoh5BLY0tXAbeGjlEfS5u1XDb0wFtevm1QMqFiINVwCvR3W1ZTQci9m6GwDrp92q7Xlz1H3z/j/U79dw6dRfLW857QHOKFTgUh18aWzqaADi4/0XfbyYMOub3Fdy3aDAmdRfLa30MHkIZTQQjjhtABMnHuVieNP2C3S4aWW0mP0Fkkr30NBJmBRxqXrlQOJZWcBGR4j+PcWmHNynbZ55rXJnTfRPMXSCb+6AkuCR1CGk49hHDyspfwZZuuc3qNvu99FQPJ0Hfk6e+y1J0KQjj/Aj4PHaKy8T02e7//oXeuXNiqQ5Obu0HqbawnmB86hDQOFYRQxpauAC4PHaPClZsd8fKovf+84aqSZgV7jYTk3HJgTCYLmpmb2dWVvj/bzC6qZZ1DzGxoLctMMrMaL/g0s4SZPZ5JxkrrjK3YrpmdV+n5zmZ2al3aite7yMzOrub5Wvevtrbin+MH8c9hgpkdHz8/w8y6V1ouo5+DCkJY/wBmhAyw0kpW7b3H/437/VY/3VmT2Ugd3e4JZmW47HLgsMpvUhk4BKjxDdPMhgDNgJFm1q4O7a6Tu6fc/b3428r3JO8M1LkgrMM69682ZnYKsBewnbsPB/aggVP1qiCEFN3f6LJQm5/XssPC9Q+7a9IzfbbWzemkrpYDV9Zh+ZXALcCvq75gZgPM7Hkzm2Jmz5lZfzPbCTgIGBN/+q3uNilHA3cS3S7j4ErtJeNPzROBwyo9f5GZ3WFm481sppkdZmZ/MrOpZlZqZi3i5dJmto2ZXQm0ibd/d7y/A+Pvx8TLnhN/Mp9iZhdX2tb5ZvaRmb0EbFLNPq+1f2Y23Mxei9t62MxquxHmecAv3H0RgLsvcvc7allnnVQQwrsDmJ7rjU7sOmhanx/d8+1XbbqOyPW2pShc7wlm1nGdG4FjzKxT1baAO9x9C+Bu4Dp3fwV4DDjH3Ye7e3V/I0cS3R/sXqLigEW93FuBA4ERQJXp5hgI7E70ZnwX8IK7DwOWAftXXtDdfwcsi7d/DPA7YHr8/TlmtjewMbAdMBwYYWajzGwEcFT83H7AtlWD17B//wJ+G/8cpgJ/rOkHaWYdgQ7u/klNy9SHCkJoY0tXQm5P2btl0L6vj9j3+t5lzVpskMvtStGYRz2Of8WfZP8FnFHlpR2Be+Kv7wR2qa0tM9sGmOvunxHN37yVmXUFNgU+dfePPTqn/q4qqz7l7mVEb7jNgNL4+anAgDru0t7x421gYrztjYGRwMPuvjTe58cy2J9OQGd3Hxc/dQcwqo55KqvueoJarzFQQcgPdxH9QmVVOfgRI89L/3z7M7bTzGbSAJd4goX1XPda4CSgoWP+RwObmtkMoh52R+BHGay3HMDdy4EyX30hVjl1v9mnAVfEn/CHu/sgd7+tjm3US1xolpjZRjUsMo81517pCsytrV0VhHwwtrQcOI0MKnh9LW7eZsmgQ/75+r83GJXQzGbSAB8DN9V3ZXefDzxAVBQqvEI0xAJwDDA+/nox0KFqG2ZWAhwBDHP3Ae4+gOgYwtHAB8CASsccjq5v1lhZxbGFavI8DfzU4g9XZtbPzHoCLwKHmFkbM+tANHxVnR/ac/dvgQVmVnH9z3HAuBrWq3AFcGM8fISZta84ywhIx21g0c0ojyWa232dVBDyxdjS14Dbs9H0Bx3Xm9lr9H2zP23fe4dstC9Nym8bYUa0q4HKZxv9EviJmetumfIAAAZESURBVE0hehM7M37+PuAcM3u7ykHlkcAsd/+y0nMvEp2x0wU4GXgiPqj8TQOz3gJMMbO73X0e8LKZvWNmY9z9f0RDXa+a2VSiyYE6uPtEoilzJwNPARNqaLvq/p1AdJB5CtHxh9qGkm8iepOfYGbvEBXS8vi1S4FBZjaZaEhrGmsPn61Ft67IJ6lkD+BDGnGazQf6j3zrqJHnDXSzzo3VpjRZT3pizQOvUlzUQ8gnY0vnABc2VnOnbPfLcUeOPG+4ioE0giXAKaFDSHZpxrT8cxPR+OpW9W1gWUmL77fb97q33umyoa4vkMbye0/k161WpPFpyCgfpZJbAG8Areq66ox2PWcPO+DmBUtatK33FZAiVbwCjPTED+PTUqQ0ZJSPxpZOAS6o62qlfUZMGXjIP5urGEgjWgH8TMWgaVBByF/XEJ06lpHztzxh/L67X7apJrORRnahJ3iv9sWkGGjIKJ+lkv2BKUDVS/1/sMKalSX2HvPqqz2GNuSqRpHqPA3s64nsXR8j+UUFId+lksdQw/nDX7fuPHfogbfMmt+qY17OvCYF7StgS080+Dx+KSAaMsp3Y0vvZvV9Xn7wSvchH6x32N3LVQwkC8qBY1UMmh4VhMJwMvBOxTfXbHroKzvvc80GK0ua9QuYSYrXlZ7gudAhJPc0ZFQoUslBq7DXDtjtkqml/bZNhI4jResZouMGq0IHkdxTQSggWz00ba9JXQeVop6dZMcHwI4NuJOpFDgVhAJjaX4D/Dl0Dik684HtPcG00EEkHH3SLDCe4GqydFdUabLKgB+pGIgKQmE6GXg8dAgpGqd6IvOLIKV4qSAUIE+wkmiCkPG1LStSiws8wdjQISQ/6BhCAbM0nYhmVdK1CFIfV3mC34UOIflDBaHAWZrewEvAwNqWFankRk9weugQkl80ZFTgPMFXwJ7Ap6GzSMG4g2jaSpE1qCAUAU8wAxhFNP2myLrcDZykG9ZJdVQQioQn+IKoKEwNnUXy1vXAcboKWWqiYwhFxtJ0Jbpt8Tahs0heudgTXBQ6hOQ3FYQiZGk6Ao8CicBRJDwHfuUJrgsdRPKfhoyKkCdYBOwN/CN0FglqOdEQkYqBZEQ9hCJnac4BrkTFv6mZDRzmCV4LHUQKhwpCE2BpDiY6u6Rd6CySExOAQz3BrNBBpLDoU2MT4AkeBXYBPgmdRbLuLmCUioHUh3oITUh8q4tbgcNDZ5FGVwb8zhNcEzqIFC4VhCbI0vwCuAZoHTqLNIpPgKM8wYTQQaSwqSA0UZZmS+B+YJPQWaRB7gJOi88sE2kQFYQmzNK0A64ATkPHkwrNAuAUT/BA6CBSPFQQBEuzEzAWGBI6i2Tk38CZnmB26CBSXFQQBABL0wq4EDgXaBE4jlRvBtHw0JOhg0hxUkGQNViaLYC/ATuHziI/WAn8BbjIEywNHUaKlwqCVMvSHA5cBWwYOksT9wxwtieYEjqIFD8VBKlRPIx0BnA+0ClwnKZmItF1Bc+EDiJNhwqC1MrSdCc6vnAyunYh2z4BLgDu0yQ2kmsqCJIxS9ML+A3wC6B94DjFZhrwZ+B2T7AidBhpmlQQpM7iSXjOiB9dAscpdG8SHat5yBOUhw4jTZsKgtSbpekA/BQ4FRgcOE4hcaJZ7f7kCV4IHUakggqCNJilMWBP4OfAQeg6hprMAm4nGhbSnWcl76ggSKOKjzOcAPwY2DJwnHxQBvwXuA14WhPcSz5TQZCssTQbA0cQ3W67KRWH5cCzwMPAo55gbuA8IhlRQZCcsDSDgdFAEtiB4htWWgw8CTwEPOUJFgfOI1JnKgiSc/FdVnclOu6wJ7A5YEFD1d0S4CUgDYwD3vQEK4MmEmkgFQQJztL0ALYFRlR6rBc01JpWAh8Ak4FJwHjgLRUAKTYqCJKXLE1PYGuiCXw2AgbGjwFk72rpxcCn8WM6MCV+vOcJlmdpmyJ5QwVBCkp8ims/oBfQtcqjG9CGaLKfqo+VwKJqHvOJTged5Qm+zeW+iOQbFQQREQE0baKIiMRUEEREBFBBEBGRmAqCiIgAKggiIhJTQRAREUAFQUREYioIIiICqCCIiEhMBUFERAAVBBERiakgiIgIoIIgIiIxFQQREQFUEEREJKaCICIigAqCiIjE/h9zJlhvSkhsEQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 314
        },
        "id": "BlpxitpY09CT",
        "outputId": "089d22b8-3aa7-4de7-b8e2-202a85cbe70a"
      },
      "source": [
        "Age_distribution = final_data['AGE_ABOVE65'].value_counts()\n",
        "print(\"Age Distribution\")\n",
        "print(\"Patients below age 65: \",Age_distribution[0])\n",
        "print(\"Patients above age 65: \",Age_distribution[1])\n",
        "labels= ['Below 65', 'Above 65']\n",
        "colors=['lightgreen', 'violet']\n",
        "sizes= [Age_distribution[0], Age_distribution[1]]\n",
        "plt.pie(sizes,labels=labels, colors=colors, startangle=90, autopct='%1.1f%%')\n",
        "plt.axis('equal')\n",
        "plt.title(\"Age Distribution of data\")\n",
        "plt.show()\n",
        "\n"
      ],
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Age Distribution\n",
            "Patients below age 65:  172\n",
            "Patients above age 65:  121\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAD3CAYAAAC+eIeLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZgU1b3G8e8PEBARKRQFAi5xA4xARFQQ3Ld7JSgRtxjEm2ti4tYmRpOobYzjEjWJVuKC0Whc4pKoJOiNEZSoYMAdcAN3UEFFKBZh2GbO/aMKGMYBpme66/Tyfp6nH4bu6uq3Buad06e765hzDhERSUcL3wFERCqJSldEJEUqXRGRFKl0RURSpNIVEUmRSldEJEUqXcmJmV1kZrfncX9fmtnXk6//bGZX5HHfo80sm6/95fC4PzKzz5Jj27oR239oZoelkU38U+mWCDN72swiM2tT4MdYbmZLzGyxmb1sZj+v+5jOuaucc6c3cl+b3M451945934esp9mZpPq7fuHzrmq5u47xxybAb8DjkiObX6e9+/MbJd87lPSpdItAWa2IzAEcMCwAj/c2c65LYGuwPnAScA/zczy+SBm1iqf+ysi2wFtgTd8B5HipNItDacCU4A/A6Pq3mBmW5vZo8nI9EUzu6LuiM/MeprZeDNbYGYzzeyExjygc26pc+5p4pIfCByd7O8yM7s3+bqtmd1rZvPNbGHy+NuZ2ZXEvyRuTJ5i35hs78zsLDN7B3inznV1R27bJHmXmNkzZrZDst2OybZry3rNaNrMegGjgYHJ4y1Mbl9vusLMvm9m7ybfi7Fm1q3Obc7Mfmhm7yTHctOGftGYWRszu8HM5iSXG5LrdgNmJpstNLMJG7j/SDOblXzfLq532z5mNjnJMNfMbjSz1sltzyabTUuO80QzC8zsMTOblzwTeszMum/gn1WKgEq3NJwK/CW5HGlm29W57SZgKdCFuJDXlrKZbQGMB+4DtiUetd5sZr0b+8DOudnAS8QlWt8oYCugB7A18EOg2jl3MTCReNTc3jl3dp37HAvsC2wowylAFbANMDU55k1lfCt57MnJ43Wsv42ZHQJcDZxAPIqfBTxQb7OhwACgT7LdkRt4yIuB/YB+QF9gH+AS59zbwB7JNh2dc4c0kKM3cAswEuhG/H2rW5I1wI+Jj38gcChwZnKcByTb9E2O80Hin+E7gR2A7YFq4MYN5JYioNItcmY2mPgH6q/OuZeB94DvJLe1BI4DfumcW+acexO4q87dhwIfOufudM6tds69CjwMHJ9jjDlApwauX0VcGrs452qccy875xZvYl9XO+cWOOeqN3D7/znnnnXOrSAut4Fm1iPHvA05BbjDOfdKsu9fJPvesc42v3bOLUx+0fybuFQ3tK/LnXOfO+fmAb8iLtHGGAE8VucYs0DtmhuT7+GU5N/rQ+BW4MAN7cw5N98593Dy778EuHJj24t/Kt3iNwoY55z7Ivn7fawbzXYGWgEf1dm+7tc7APsmT1UXJk+7TyEeFefia8CCBq6/B3gCeCB5mn1t8kLSxnzU2Nudc18mj9ttw5s3Wjfi0W3dfc8nPrY1Pq3z9TKgfWP2lXzd2IzdWP8YlyY5ADCz3ZIpgk/NbDFwFfGot0Fm1s7Mbk2mKxYDzwIdk1/IUoRUukXMzDYnfpp7YPJD+CnxU8++ZtYXmAesZv2np3VHhR8BzzjnOta5tHfO/SiHDD2A/sTTBetxzq1yzv3KOdcbGEQ8sj51zc0b2OWmTmu3Nr+ZtSceYc8hnkIBaFdn27q/PDa13znEv4TW7HsL4lH6J5u43yb3Rfy0fk4j7zuX9Y+xXZJjjVuAGcCuzrkOwEXAxl7EPB/YHdg32X7NFEReX/iU/FHpFrdjief4ehM/1e0H9CIuwFOdczXAI8BlyYinJ+tKD+AxYLfkhZvNksuA5IWnjUr2dyDwD+AF4J8NbHOwme2ZjKoWE083rHmq/Bnw9SYc83+b2eDkxaMqYIpz7qPkafwnwHfNrKWZfQ/Yuc79PgO6r3nRqQH3A/9jZv0sfgvcVcDzyVP4XN0PXGJmnc1sG+BS4N5G3vchYGidY7yc9X8OtyT+Xn6Z/HvW/wVZ//u6JfE87kIz6wT8MuejkVSpdIvbKOBO59xs59ynay7EL5SckrySfzbxi1mfEj/dvx9YAZDM8R1B/ALanGSba4CNvdf3RjNbQvzDfQPxHPBRzrnaBrbtQlwii4G3gGeSDAAhMCJ5Rf33ORzzfcTFsYB4hP3dOrd9H7iA+On4HsB/6tw2gfhtWp+a2RfU45x7knj+9GHi0ebOxN+XpriC+MXF6cBrwCvJdZvknHsDOIv4OOcCEfBxnU1+SjxnvwS4DXiw3i4uA+5KpotOIP432hz4gvgdLv9q0hFJakwnMS8vZnYN0MU5N2qTG4tI6jTSLXEWvw+3j8X2Af4XGOM7l4g0rFw/FVRJtiSeUuhGPCXwW+J5WBEpQppeEBFJkaYXRERSpNIVEUmRSldEJEUqXRGRFKl0RURSpNIVEUmRSldEJEUqXRGRFKl0RURSpNIVEUmRSldEJEU64Y0UjTAKOxOvqrB9nUsX4vP/blb3csrNpyxtWdtyc+KTvK8mXlniC+LVNBq6fB5kg5pUD0ikASpdSU0YhS2IV8/tx7rVa3vU+XPzxu6rRW2L+ay/zM2mrIiqopnAm/Uu7wTZYHUO+xFpFpWuFEwYhe2Il1sfnFz2Azp4itOGeGn1PvWuXxVVRW8DLwJPA/8OssHslLNJBdGpHSVvkumBwXUu3ySeDsi7kTeOnG9YLiPdXHxIvPTQ08DTQTb4sECPIxVII11pljAKvwGMBI4hXpW2HOyYXEYBRFXRh8Srcfw1yAZTvKWSsqCRruQsjMJuxIsnjuSrT9dTUeCR7sbMIl6M869BNnjBw+NLiVPpSqOEUbglcBzx6rwH4/nthh5Lt64Pgb8BdwfZ4HXPWaREqHRlg8IobAUcSVy0w4B2fhOtUySlW9e/gT8AY/XWNNkYzenKVySj2h8B5wFdPccpFQcnlw+jquhm4PYgG0SeM0kR0khX1krefZABzgI6eo6zUUU40q1vGfAXIAyywRu+w0jxUOkKYRR2AX4BnE4RTSFsTAmU7hq1wANANsgG7/sOI/5peqGChVHYCfgZcDYlUrYlqAXxOz2Oj6qi24HLg2zwqedM4pFGuhUombP9SXLx9QmxZimhkW59y4DfA9dqzrcy6SxjFSaMwu8A7wGXUaKFW+LaAT8H3o+qoguiqkjPNiuMSrdChFHYPYzCR4lf3OnsO4/QEbgWeDmqivbxHUbSo9+yZS6MQgN+QPwDrpFt8ekDTI6qoj8AlwTZ4EvfgaSwNNItY2EU7gJMAEajwi1mLYjfqvdGVBUd7TuMFJZGumUojMKWwI+By8nhHLXi3fbAY1FV9CBwbpANPvcdSPJPI90yk5z1azJwHSrcUnUiMC2qig7zHUTyT6VbRsIo/AnwCjDAdxZpti7AE1FVdJXe4VBe9I9ZBsIobA3cCpzmOYrkVwviTwoOiaqiE4JsMNd3IGk+jXRLXBiF2xKf4eo0z1GkcAYDr0RV0RDfQaT5VLolLIzCvsRrew3ynUUKrgswIaqKzvMdRJpHpVuiwigcDjxH/Iq3VIZWwPVRVfT7qCrSz26J0j9cCQqjMAs8DGzhO4t4cQ7wQFQVtfEdRHKnF9JKSBiFmwN3ACf5ziLeHQ9sG1VFxwTZYJHvMNJ4GumWiDAKtyZeFlyFK2scCEyMqqKv+Q4ijafSLQFhFG4FjEPvv5Wv2pP43A29fQeRxlHpFrkwCtsDjwN7+c4iRasH8IyKtzSodItYMoc7FhjoO4sUvW2A8VFV9HXfQWTjVLpFKvmU2SPEK8yKNEY34KmoKuruO4hsmEq3CIVR2Ip4McOjfGeRkrMj8GRUFW3rO4g0TKVbZMIobAHcBQz3nUVK1u7AuKgqCnwHka9S6RaRZJWHPxKvHivSHH2Bx6OqSB+gKTIq3eJyPfC/vkNI2dgXuDuqisx3EFlHpVskwij8AfGSLSL59G3gYt8hZB2VbhEIo3Bf4A++c0jZujyqiob6DiExla5nyflwHwJa+84iZcuAv0RVUU/fQUSl61Xy1rAHAb2vUgqtA/D3qCrSqtCeqXT9uhI4yHcIqRi7E4949XPvkb75noRReDhwge8cUnGGAj/xHaKSqXQ9SOZx7yaeaxNJ2xU6OY4/Kt2UJR+AuIt4zSsRH9oAd2lpdz9Uuun7MTqngvi3N3CR7xCVSKWbojAKtweu8J1DJHFJVBXpPM0pU+mm67fA5r5DiCQ2I55m0AKXKVLppiSMwkOAEb5ziNTzDeCXvkNUEpVuCpIPQehjvlKszo+qop19h6gUKt10nA3oLTpSrFoD1/kOUSlUugWWvCf3Mt85RDZheFQVHeQ7RCVQ6Rber4GtfIcQaYTr9RHhwtM3uICSUzae5juHSCP1A/7Hd4hyp9ItkOSTZ39AH/WV0nJFVBVt6TtEOVPpFs6pwADfIURy1AW40HeIcqbSLYBklKv/uFKqztZot3BUuoVxJHqLmJSujsAZvkOUK5VuYeh8pVLqfhxVRVpCqgBUunkWRuE3gMN95xBppm7ASN8hypFKN/80ypVycYHet5t/+obmURiF2wHf8Z1DJE92B471HaLcqHTz60zis/KLlAu9CyfPVLp5EkZhW+BHvnOI5Nm+UVX0Dd8hyolKN39GAp19hxApgFG+A5QTlW7+nOc7gEiBfDeqilr6DlEuVLp5EEZhf/RhCClfXYAjfIcoFyrd/NArvFLumjTFYGbHmpkzs551rjvIzB7LX7RNZjAzu9LM3jazt8zs3Do5FpnZ1ORyaRp5VLr5odKVcndMVBV1bML9TgYmJX/6chrQA+jpnOsFPFDntonOuX7J5fI0wqh0mymMwp2JF/cTKWdtgRNyuYOZtQcGA/8LnFTv5g5m9n9mNtPMRptZi+Q+J5vZa2b2upldk1z3QzO7rs5+TzOzG5Ovv2tmLyQj1VvNrKG55x8BlzvnagGcc5/nchz5ptJtPo1ypVLkOlo9BviXc+5tYL6Z9a9z2z7AOcSvhewMfNvMugHXAIcQn1B9gJkdCzwMDK9z3xOBB8ysV/L1/s65fkANcEoDOXYGTjSzl8zscTPbtc5tA81sWnL9HjkeX5OodJtv+KY3ESkLg6OqKJelp05m3VP5B1i/tF9wzr3vnKsB7iceEQ8AnnbOzXPOrQb+AhzgnJsHvG9m+5nZ1kBP4DngUKA/8KKZTU3+/vUGcrQBljvn9gZuA+5Irn8F2ME515d4wYG/53BsTdYqjQcpV8mikwN95xBJSSvi05b+dVMbmlkn4hHrnmbmgJaAM7MLkk1cvbvU/3t9DxBPb8wAxjjnnJkZcJdz7hebuO/HwCPJ12OAOwGcc4vXPrhz/zSzm81sG+fcF5vYX7NopNs8w9D3UCrL0EZuNwK4xzm3g3NuR+dcD+ADYEhy+z5mtlMyl3si8YttLwAHmtk2ydzsycAzyfZjiKcr6o6enwJGmNm2EBe9me3QQJa/AwcnXx8IvJ1s3yUpbsxsH+Kf5fmNPL4mU2E0j+ZzpdIcGVVFjVn372TioqzrYdZNMbwI3Ai8RVzGY5xzc4GfA/8GpgEvO+f+AeCci5Jtd3DOvZBc9yZwCTDOzKYD44GuDWT5NXCcmb0GXA2cnlw/AnjdzKYBvwdOcs5tasTdbJbCY5SlMArbA/OIX9WVlI28ceR8w7b2naNC9Q2ywXTfIUqVRrpNdwQqXKlMh/kOUMpUuk03ZNObiJQllW4zqHSbbh/fAUQ80Tt2mkGl2wRhFLYCvuk7h4gnHaOqaCffIUqVSrdpvgFs7juEiEd7+Q5QqlS6TaOpBclJTW0NB958ICfdG5+C4Lbnb6P/Df3pdGkn5i9t+K2hHy38iINuOYgDbj6AgX8YyJ0v3gnAitUrGHH3CAbdOIg/vfCntduf94/zmDZnWuEPJqbSbSKVbtP03/QmIuuMnjya3Trvtvbv+26/L2NGjaFHxx4bvM927bfjie8/wbNnPsv4H4znhok3MHfxXCa8O4H9tt+PSWdO4sGpDwLw+qevU+Nq6Nutb8GPJaHSbSKVbtPorGLSaJ8s+oTxb49nZP+Ra6/r07UP2wfbb/R+rVu1pk2reJ3TlTUrqY1PkkWrFq2oXlXNqtpVuOTTs1c9dRUXHXJRgY6gQSrdJlLpNk0qZyOS8nDR4xdx2ZGX0cJy/3H7eNHHDL5pMHv+dk8ygzN07dCVg3c+mNkLZ3PEH4/gjP3O4PEZj9Onax+6dmjow1gFs21UFXVL8wHLhU54k6MwCrsDuZxpSSrYEzOfoPMWnenXrR+TPpiU8/27b9WdSWdNYu7iuYy8fyTD9hjGtu235bbjbwNgVc0qRtw9gnu/cy8XP34xHy/6mJP6ncR/9fyvfB9KQ74JzEnjgcqJRrq509SCNNrzs5/n8ZmP0/d3fTn9b6cz8YOJnPHQGTnvp2uHrvTctieTZ01e7/o/vfAnTux3Ii999BId2nbgjhPu4KbnbspX/E3ZJa0HKicq3dxpakEa7dLDL+WNn77BtJ9M4/bjb2fITkO4dcStjbrvJ4s+oXpVNQALqxfy/Ozn2XWbdeffXli9kCdmPsFJfU+ielU1LawFhrF89fKCHEsDuqf1QOVEpZs7/UeTZrt1yq3s8Zs9mLN4DkNuHsK5fz8XgFc/eXXt12/Pe5vD/3g4Q24awtA7hnLW/mfRe7t1i05f+/S1nH/g+bRo0YJDdjmEybMms/9N+3NC35xW1WkO/Sw0gc4ylqMwCu8CTvWdo9LpLGNF4bkgGwz2HaLUaKSbO/2gi8Q00m0ClW7uOvkOIFIkukVVkTokR/qG5U4jXZHYZsB2vkOUGpVu7jTSFVlHUww5UunmIIxCAwLfOUSKSHvfAUqNSjc3WxEvJS0iMS1ZlSOVbm40nyuyvja+A5QalW5uNJ8rsj6NdHOk0s2NRroi61Pp5kilmxv9BxNZn6YXcqTSzc1S3wEk5sxV+84ggAYiOVPp5kalWySmD5j+oe8MAkBr3wFKjUo3N8t8B5DY9AHT91/RZsV03zkEPePIkUo3NxrpFgvDnhz25OYOt9p3lAq3xHeAUqPSzY1Kt4jM327+rnO7z33Od44Kp9LNkUo3NyrdIvP0fz/dv9Zq5/rOUcFUujlS6eZGpVtkVrde3f6lwS996DtHBVPp5kilm4NMkFkNrPSdQ9Y3o++MgdXtql/2naNCqXRzpNLNnUa7RWjcseO2drgVvnNUIJVujlS6uVPpFqFFnRbtOPvrs6f4zlGBFvkOUGpUurlb6DuANGzSEZP2rW1RO9t3jgqyKMgGKt0cqXRz947vANKwmlY1bZ879LnPfeeoIB/4DlCKWvkOUILeAoan8UC/6vsr2rZvi7U0WrZqyfkTzufj1z7mbz/5G6tWrKJlq5aMuG4EO/TfYb37vTPxHcZcPGbt3z9/53NOvf1U+hzdh3t+cA9z3pzDHkfuwdDsUADG/WYcXXp1oc/RfdI4rIL6YPcP9u73fL8pWy7ecj/fWSqASrcJVLq5m5Hmg5019izab71uRZRHf/koR154JL0P782b499k7GVjOefRc9a7z65DduXCZy8EYGm0lCv7X0nPg3sy5405bNZ2M3426WfcPPxmqhdXs3LZSma9PIsjfnpEmodVUOOPGd9j+D3Dlxq2he8sZe593wFKkaYXcveW10c3WL5kOQDVi6vZqstWG9182j+m0euwXrRu15oWrVqwavkqamtrqVldQ4sWLXj86sc56udHpZE8NV9u9eXX3uv13ku+c1QAlW4TaKSbuxmAA6zQD2RmjD5uNBgMGjWIQacNYvhVwxk9YjRjLx2Lc47MvzIb3cerY17loDMPAqDL7l3YYust+M1Bv2HACQOY98E8XK2jR98ehT6U1E0+aPKgHd/e8b1WNa129p2ljKl0m8Ccc74zlJwwCmcDBW+qhXMW0rFbR5bMW8It376F4645jqljp7LLoF3oO6wvr455lcl3T+bMMWc2eP9Fny7i2iHXcvmbl9Nys6+up3nbybdxwu9O4Pn7nmfO63PY/aDdGThqYKEPKzXdP+g+9ZD/O6Sf7xxlbPcgG7ztO0Sp0fRC06QyxdCxW0cAtuy8JXsevSezXp7Fi/e/SJ9vxS949Tu2H7NenrXB+0/9+1T6HN2nwcJ97Z+v0b1vd1YsXcEXH3zBaXeextSxU1m5rHw+cPfxTh/3izpFOiFOYawCPvQdohSpdJum4KW7YumKtXO3K5auYOa/Z9K1V1c6dOnAu8+9C8A7z75D5507b3Afrzz8Cnsdt9dXrq9ZVcMzo5/h0HMPZdXyVZjFMyWu1rF6VXmdKfHJY57czeH0XtL8mx5kg/L5DZ0izek2TcFLd8m8Jdwx8g4AalfXsteIveh1WC/atG/DI794hNrVtbRq04oTrz8RgNmvzuY/d/6Hk35/EgDzZ89n4ZyF7Lz/V6c0J94+kQEnDaB1u9Z026MbK6tXcs3+19Dr8F6026pdoQ8tVdVbVHd+q+9bz/ae1vsA31nKzPO+A5Qqzek2QRiFBwJP+84hjeSoPfmPJ8/cbNVmvXxHKSOnBtngHt8hSpGmF5rmDd8BJAdGiwlHT6h1uFrfUcqIRrpNpNJtgkyQ+QKY6TuHNN5n3T/b44vtvtCLavkRoY/DN5lKt+me8h1AcvPUt57a0+G+8J2jDLwQZAPNSzaRSrfpJvgOILlZ2XZlx2n7TEv1Y9xlSlMLzaDSbbp/A5ojLDFauj0vnvUdoJSlUrpmVmNmU81smpm9YmaDGnGfL/OcobWZ/dHM3jazGWZ2XHL9aWY2L8k31cxOb8z+MkFmATAtnxklBVq6vbkWo9JtlrTep1vtnOsHYGZHAlcDB6b02GtcDHzunNvNzFoAnerc9qBz7uwm7PMJ4Jt5SSepSZZuf6bbx93S/j9YDv4VZINVvkOUMh/TCx2IX/0EwMwuMLMXzWy6mf2q/sYWu87MXjez18zsxOT6m8xsWPL1GDO7I/n6e2Z2ZQOP+z3issc5V+tcXl5QeSwP+xAPtHR7kz3qO0CpS6t0N0+eus8AbgeqAMzsCGBXYB+gH9DfzOp/cujbyW19gcOA68ysKzARGJJs8zWgd/L1EOo9/TGzjsmXVcn0xt/MbLs6mxyXlP5DZpbLiWwmA/Ny2F6KRLJ0+4ZPXCENqQH+6TtEqUurdKudc/2ccz2Bo4C7Lf7A/xHJ5VXgFaAncQnXNRi43zlX45z7DHgGGEBSumbWG3gT+Cwp44HAf+rtoxXQHfiPc24v4rL8TXLbo8COzrk+wHjgrsYeVCbI1KL/hCVrRt8Z+2np9pw8F2SDBb5DlLrUpxecc5OBbYDOxOekvTop5H7OuV2cc39q5H4+AToSl/izxCV8AvClc67+stDzgWXAI8nf/wbslexnvnNrl+6+Heif4yHp6VYJ09LtORnrO0A5SL10zawn0JK4CJ8Avmdm7ZPbvmZm29a7y0TgRDNraWadgQOAF5LbpgDnsa50f5r8uR4Xn2DiUeCg5KpDiUfHJKPjNYaR+8lsxgHLc7yPFAkt3Z4TDTDyIO053anAg8CoZLpgHHAfMNnMXgMeArasd98xwHTit2dNAC50zn2a3DYRaOWce5d4eqITDZRu4mfAZWY2HRgJnJ9cf66ZvWFm04BzgdNyObBMkFmSHJOUKC3d3iiv6ITl+aGzjOVBGIX7Ec8TS4naaeZOLw0ZP2Rv3zmK2DlBNrjRd4hyoE+k5UEmyEwBpvrOIU33we4f7L2kwxJ9vLVhK4ifkUoeqHTz5xbfAaR5xh07rofDLfWdowiN1bsW8kelmz9/If6IpJSopR2Wdnu317sv+s5RhEb7DlBOVLp5kgkySwGdSb/ETTloyv6rW65+z3eOIjIzyAY6o14eqXTzS1MMJc61dJs9e9Sz9d/nXclu9R2g3Kh08ygTZN5gw29ZkxKhpdvX+hL4s+8Q5Ualm38a7ZYBLd0OwE1BNog2vZnkQqWbfw+jk+CUvOotqju/2e/NSj5f8lLgt75DlCOVbp5lgsxK4HrfOaT5Xt7/5cGrNluV68fCy8XoIBto8FAAKt3CuAH42HcIaabKXbq9GrjOd4hypdItgEyQqQYu8Z1Dmq9Cl27/Y5ANPvMdolypdAvnHrSGWlmosKXblwPX+A5RzlS6BZKc4PwC3zmk+Va2Xdlx2r7TZvrOkZLbgmygZYwKSKVbQJkgM574nMFS4qbvPX3QijYryv2ZyxfAL32HKHcq3cK7AKi0F2LKj2HjjxnfrsyXbv+F3pdbeCrdAssEmdfIYd01KV4Ltl2w69zuc8v1RbUXgEYtlSXNo9JNxyXEa7RJiSvTpdtrgbOCbKAVDVKg0k1BJsjMAX7nO4c0X5ku3f6nIBu85DtEpVDppudqYIbvENJ8M/rO2G9Zu2XlUlILgF/4DlFJVLopyQSZZcB3gJW+s0jzjT92fOcyWbr9wiAbzPcdopKodFOUCTKvok+qlYVFnRbtMHvn2aW+GOnfg2ygF89SptJN32+Ap3yHkOabdPik/Up46fY5wOm+Q1QilW7KMkHGAaOI59KkhNW0qmn73KHPfe47RxM4YJSmFfxQ6XqQCTKfAN/3nUOar0SXbr8+yAZP+g5RqVS6nmSCzCPA7b5zSPOV2NLt09C7FbxS6fp1HvC27xDSPMnS7aXwFrJq4DtBNtA7aDxS6XqULNt+CrDKdxZpnikHTRlU5Eu3O+C0IBu86TtIpVPpepYJMi8BP/adQ5qnBJZuvyzIBn/1HUJUukUhE2RuIl7iR0pYES/dfl+QDS73HUJiKt3icT4wxncIaZ4iXLp9MvA93yFkHZVukUhWmjgFKLW3H0kdRbZ0+yzg2CAblMPHlcuGSreIJAtafgt413cWaboiWbp9CTA0yAal+OGNsqbSLTKZIDMPOBz4xHcWaSKjxYShE5zHpduXEhfu654eXzZCpVuEMkHmQ+LirZQVaMvOZ1/7rLenpduXAUcH2eBZD48tjaDSLVKZIPMWcBSw2HcWaRoPS7dXA98KssEzKT6m5EilW8QyQQpj5xMAAAQESURBVOZlYCjwpe8skruUl25fDgwLssGElB5PmkilW+QyQWYicCDwqe8skruUlm5fDhyjk9iUBpVuCcgEmVeAgYDvV8QlV4Vfun0ZMDzIBuMKtH/JM5VuiUheXNsf0AskJWbBtgt2ndujIEu3zwUODLLBvwqwbykQlW4JyQSZCDgCeNB3FsnN0/+V96XbXwP20yq+pUelW2IyQWYFcDJwne8s0nh5Xrr9CWBwkA1KdamgimbOOd8ZpInCKDwT+AP65VkyRtwx4qV2y9rt3YxdjAbOCbJBoeaIpcBUuiUujMJhwP1AO99ZZNO2WrDVrGH3DetiWJsc71oD/CzIBr8tRC5Jj0ZIJS4TZMYSv8D2hu8ssmnJ0u1TcrzbR8AhKtzyoNItA5kgMxXYG7ieeIUAKWKTDp+0b02LmsbO744B+uljveVD0wtlJozCQ4A/Az08R5GN2GnmTi8NGT9kY3O7y4GfBNnglrQySTo00i0zmSAzAdgTuNd3FtmwTSzd/gYwQIVbnjTSLWNhFI4gfrV7a99Z5Ku2WLzFnG/f/e2tDNsiuaoWuBm4MMgG1R6jSQFppFvGMkHmIeJRrz6xVITqLd0+HRgUZINzVLjlTSPdChFG4RnAVUAn31lkHaux6Pg7j/9V2+Vtb9J7byuDSreChFG4FXAhcB56X69vDvgL8LNMkJnjO4ykR6VbgcIo7ApcCpwOtPIcpxK9BJybCTKTfQeR9Kl0K1gYhbsCVwDHA+Y5TiV4D7gS+HMmyOgHr0KpdIUwCvsDVxOvyyb59yJwLfBIJsj4WqxSioRKV9YKo/BQ4vId4DtLmXgcuDYTZJ72HUSKh0pXviKMwgOAs4DhwGae45SaVcADwHWZIPOa7zBSfFS6skHJC27fB84AunmOU+yWALcB12eCzMe+w0jxUunKJoVR2Ar4b2AU8erErf0mKhqrgaeBh4AHM0Fmod84UgpUupKTMAq3Jl65YhTxmc0qzSrgSeKi/UcmyMz3nEdKjEpXmiyMwl2I12w7DDgY6Og3UcGsIF4i52FgrEa00hwqXcmLMApbAv2JC/gwYBCQ6+oIxeRzYCJx0T6WCTJLPOeRMqHSlYIIo3BzYAjrSrgfxfsBjAXEnxJbe8kEmY/8RpJypdKVVIRR2B7YDdg1udT9Os1TTy4GXiH+wMKagn0/xceXCqfSFe/CKOzE+mW8E9CeeHqibXJpU+/PNV+3IV5lIap3WQDMAT6pd5mnj+CKTypdEZEU6STmIiIpUumKiKRIpSsikiKVrohIilS6IiIpUumKiKRIpSsikiKVrohIilS6IiIpUumKiKRIpSsikiKVrohIilS6IiIpUumKiKRIpSsikiKVrohIilS6IiIp+n/kjd/bMTdbxwAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 712
        },
        "id": "8l05_l_a4mKc",
        "outputId": "f3b73fb5-d1bd-4535-ab10-50a7573db264"
      },
      "source": [
        "ICU_Admitted_data = final_data[final_data['ICU']==1]\n",
        "Age_distribution = ICU_Admitted_data['AGE_ABOVE65'].value_counts()\n",
        "print(\"Age Distribution\")\n",
        "print(\"Patients below age 65: \",Age_distribution[0])\n",
        "print(\"Patients above age 65: \",Age_distribution[1])\n",
        "labels= ['Below 65', 'Above 65']\n",
        "colors=['orange', 'cyan']\n",
        "sizes= [Age_distribution[0], Age_distribution[1]]\n",
        "plt.pie(sizes,labels=labels, colors=colors, startangle=90, autopct='%1.1f%%')\n",
        "plt.axis('equal')\n",
        "plt.title(\"Age Distribution of ICU Admitted patients\")\n",
        "plt.show()\n",
        "\n",
        "x = [[],[]]\n",
        "x[0].append(final_data['AGE_PERCENTIL_10th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_20th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_30th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_40th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_50th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_60th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_70th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_80th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_90th'].value_counts()[1])\n",
        "x[0].append(final_data['AGE_PERCENTIL_Above 90th'].value_counts()[1])\n",
        "\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_10th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_20th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_30th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_40th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_50th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_60th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_70th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_80th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_90th'].value_counts()[1])\n",
        "x[1].append(ICU_Admitted_data['AGE_PERCENTIL_Above 90th'].value_counts()[1])\n",
        "\n",
        "a = []\n",
        "c=1\n",
        "for i in x[0]:\n",
        "  a.extend([c*10]*i)\n",
        "  c+=1\n",
        "plt.hist(a, 20, label='Total')\n",
        "b = []\n",
        "c=1\n",
        "for i in x[1]:\n",
        "  b.extend([c*10]*i)\n",
        "  c+=1\n",
        "print(x)\n",
        "plt.hist(b, 20, label='ICU Admitted')\n",
        "plt.xticks([10,20,30,40,50,60,70,80,90,100],['AGE_PERCENTIL_10th','AGE_PERCENTIL_20th','AGE_PERCENTIL_30th','AGE_PERCENTIL_40th','AGE_PERCENTIL_50th','AGE_PERCENTIL_60th','AGE_PERCENTIL_70th','AGE_PERCENTIL_80th','AGE_PERCENTIL_90th','AGE_PERCENTIL_Above 90'], rotation = 70)\n",
        "plt.legend()\n",
        "plt.ylabel('Frequency')\n",
        "plt.title('Age Distribution Total and ICU Admitted')\n",
        "plt.show()"
      ],
      "execution_count": 16,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Age Distribution\n",
            "Patients below age 65:  45\n",
            "Patients above age 65:  60\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAD3CAYAAAC+eIeLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd7wU5dn/8c91Dk1AiiAoCGJBsKCIgmLsSYgaC1GDchRFYowm0ZTHqIkdY9Ro/KnRJ4bHqBGyWIMmxliS2AugSLEnVrCAAgKCIuX6/XHPCcvhtN2zu/eW7/v12tfZndmduWZ39nvuuWd2xtwdEREpjKrYBYiIVBKFrohIASl0RUQKSKErIlJACl0RkQJS6IqIFJBCN4/M7BdmdlMOp/eZmW2d3L/VzH6Zw2nfaGbn52p6Gcz3NDObnyxbt0LPP1NmdpGZTcrytceZ2cO5rqnOPN4xs6/lcx5p8/q7mZ1YiHmVk7IMXTN7zMwWm1nbPM/jCzNbZmZLzewFMzsnfZ7u/it3P7mZ02ryee7e0d3fykHtY83sqTrTPtXdL2nptDOsozVwNTAiWbaFdcb3MzM3s1Zpw4aZ2QNm9qmZLTKzaWZ2UjJug+VKhjcZRMk/sdVmtnlulm5D7v4ndx+RNk83s23THu9vZvPyNf+WqO+fjbsf7O5/zMG06/3cylXZha6Z9QP2ARw4PM+z+6G7bwxsDvwPcCzwgJlZLmeSHjplpifQDni5OU82s+HAv4DHgW2BbsBpwMEtKcLMOgBHAUuA41syLZEmuXtZ3YALgKcJLaj764zrBvwVWApMB34JPJU2fiDwCLAIeB0Y1ch8HgNOrjOsL7ACODR5fBEwKbnfDpgELAQ+TebfE7gUWAN8AXwGXJ8834EfAP8G3k4btm1y/1bgxqTeZYQg2jIZ1y95bqu69QLbJ/Nak8zv07Tp/TLt+d8F/pO8F38BeqWNc+DUpLZPgRsAa+B9agtcA3yQ3K5Jhm0HLE+m9Rnwr3peu95yAE8BNzTymYxN/zzThr8DfK2R150AzAV+BLxUZ9xWyXu7LHmvr0/7TGvrOyl5/eLkfRkKzE7em+vrqw94Innt8mT5TwQ+B9Ymjz8DehEaRucAbybrzp3AJmnTHAO8m4w7t7FlbWydScZfmyzHUuAFYJ9k+EHAl8CqpK5Z9X0HgHHAq8n78FCdade7ztDw+ngI8EpS5/vAmbGzJVe36AXkfIFCUHwf2C1ZSXqmjbs9ubUHdkhWsNovQYfk8UlAK2BX4BNghwbms94Klzb8CeCK5P5FaV/Q7xECvz1QndTXqaFpJSvpI8AmwEZpw9JDdxmwLyHErk1bln40ELrJ/bHUCSfSQhc4MFn2Icm0fws8Uae2+4EuhH80HwMHNfA+jQeeA3oAmwLPAJc0VGed1/53fPK+rQEOaOSz32C5kuHv0Hjo/hP4NeGf4Gpgt7RxzxL+gbdN3utlbBi6NxL+qY4gBMi9yfL2BhYA+9VXX/rnmTzeH5hXp7YfJe/fFkkNvwcmJ+N2IARV7TpwdVJ/Y6Fb7zqTjD+e0DBpRdhy+whoV3ddbmCdOoLw3ds+ef15wDPNWWfq+9yAD1kX+l2BIbGzJVe3supeMLO9gS2BO939BULroCYZV03YhLzQ3Ve4+ytAen/UocA77n6Lu6929xeBe4BvZ1jGB4SgrGsVYYXe1t3XuPsL7r60iWld5u6L3P3zBsb/zd2fcPeVhFbOcDPrk2G99TkOuNndZyTT/nky7X5pz7nc3T919/eAR4HBjUxrvLsvcPePgYsJrbNMdSW0+j7M4rUNMrO+wAFAyt3nEwL4hLRxQ4Hz3X2luz9B+MdZ1yXu/oW7P0xouU5Olvd94EnCP/BsnQqc6+7zks/iIuDopMvpaMLWXO06cD6hpdyYBtcZd5/k7guT9f83hGAekEGdl7n7q+6+GvgVMNjMtkx7TnPXGQjflx3MrJO7L3b3Gc2so+iVVegSNtEedvdPksepZBiEVlYrQmu2Vvr9LYE9kh00n5rZp4TA2CzDGnoTNsnrmkjY5LrdzD4ws18nO5IaM7e54939s2S+vTIptgG9CJus6dNeSFi2Wh+l3V8BdGzOtJL72dS4mBAoje3oWg3U9562JnyJ6zMGeNXdZyaP/wTUJJ9NL2Cxuy9Pe/67dScAzE+7/3k9jxt6b5pjS2BK2jr5KqHF3zOpL30dWE74nBrT4DpjZmea2atmtiSZV2egewZ1XptW5yJC90E26wyEBtIhwLtm9njSn18WymYHjZltBIwCqs2s9sNtC3Qxs12Alwhfyi2AN5Lx6a3CucDj7v71FtTQh9BtcEXdce6+itDKuzhpMT5A6Df+A2HTqz5NnQLuv/WbWUdCC/sDwiYuhE3y2tZ0+j+Ppqb7AeFLVDvtDoRW+vtNvK6xadXuLOubDMuIu68ws2cJX8ZHG3jae0BfMzNPtkvNrD1hU7++sITQqu2bts60IizrIcBMoKuZdUgL3r40/f5lq77pzgXGufvTdUeY2YeEzfnax+0JtTem3nXGzPYBzgK+Crzs7mvNbDEhOBuqrW6dl7r7n5p4Xn02mLa7TweOSP75/ZDQl52LrbjoyqmlO5LQAtiBsNkymLBCPgmc4O5rgD8DF5lZezMbSLIZmbgf2M7MxphZ6+Q21My2pwnJ9PYD7gOmEQK17nMOMLNBSTfHUkLLq3ZTcD6wdRbLfIiZ7W1mbYBLgOfcfW6yGf8+cLyZVZvZOGCbtNfNB7ZIXlefycBJZjY4OQTuV8BUd38nixonA+eZ2aZm1p2wozOr41wJoTDWzH5We0yvme1iZrcn46cS/uGcY2btkn8WlwPPU0/oJq2nbYBhrFtndiJsIZ3g7u8mr73YzNok3VeHZVl7fep+7vOBbmbWOW3YjcCltZvpyft4RDLubuDQtHVgPE1/p+tdZ4CNCY2Sj4FWZnYB0KlObf3MrKHp3wj83Mx2TOrsbGbN7Zpbb31M3uvjzKxz0lhZStPdJiWjnEL3ROAWd3/P3T+qvRH2Nh+X9IH9kLDJ9BFhc38ysBLA3ZcRdoQcS2iJfURosTZ2rO/1ZraMsNJcQ+gDPsjd61tBNiN8SZYSNhEfT2qAsEPjaAvHFl+XwTKngAsJm3K7sf7hTt8FfkbY3NyRsAOr1r8ILc+PzOwT6nD3fxD6B+8h9KFuQ3hfsvFLQnDNBuYAM5JhGXP3Zwg7+Q4E3jKzRcAEkn9yST/lN0l2SAFvETadR9W2fOs4EbjP3efUWWeuJYTZJoR9AnsQ3uMLgduyqb0BFwF/TDbJR7n7a4R18q1kWK+klr8ADyfr2nNJPbj7y4QjXFKEz2lxstyNaWideQh4kLAV+C7hn1d699Zdyd+FZrZB/6q7TyF8X243s6WELcvmHspX3/o4BngnmdaphK6+smD1r4uVwcyuADZzd/2qRsqemd1KODrivNi1VLJyauk2ycwGmtnOFgwDvgNMiV2XiFSOstmR1kwbEzbfehG6BH5D6IcVESmIiu5eEBEptIrqXhARiU2hKyJSQApdEZECUuiKiBSQQldEpIAUuiIiBaTQFREpIIWuiEgBKXRFRApIoSsiUkAKXRGRAqq0E95IMUv99yoPtbdN69zvQrj0Tiug1ch9p7x53xYjtyKcED799inhXLDr3XzdFTVEolHoSuGlrCvhCg07Jn9r7zf3elwALGnduYpwZdtmsXCF47mEE33XhvFLwLPe9LXFRHJCoSv5FVqvexOuuDuEELC5uHhmNront7pX53ULV0x4mnCFjaeB1z1/10KTCqbQldxKWRtgT9ZdVmcPoKFrsRULI1xqfAAwLhm20OBZ1oXwdA9X9hVpEYWutFzKehOuxHww8BXCVYhLXTfg0OQG8KXBI4RrjN3nsLzBV4o0QqEr2UnZJsDRhAs37kP5HwnThnDRy28CKyxcLHIy8KDDl1Erk5Ki0JXmS1kH4HBC0H6DcCRBJWpPuDryscBiC1dNngw85mV0qXDJD4WuNC1lOwA/AUYDHSJXU2y6Aicntw8M7gRu8XDJeZENlPsmobREyr5Gyv5OOKzqZBS4TekF/BiYZfCQwVdjFyTFRy1dWV84+mA08FNg58jVlLIRwAiDGcCVwF0OayLXJEVALV0JUtaBlJ0DvAPcigI3V4YQ+ntfNxhrUB27IIlLoVvpUlZNyk4G/g1cBmweuaJytQ1wC/CqwRiFb+VS6FaylB0MzAT+D4VtofQHbgNeNjgydjFSeArdSpSywaTsEeABws9ypfAGAPcY/NWgb+xipHAUupUkZT1I2a3AC8DXIlcjwaGEVu9P1OVQGRS6lSJlxwKvACeiz73YdASuBqZZ2PEmZUxfvnIXWre1v5jqFrscadQQQvBebTomumwpdMvZutatdtiUjmrCr/9esXUn25EyotAtR2rdloO+hJ1sdxh0il2M5I5Ct9yk7CDgZdS6LRejCF0OA2MXIrmh0C0XKasiZRcDfyPDy95I0RtACN4jYhciLafQLQfh3LYPABegz7RcbQxMMRhv4UoXUqL0BS11KdsRmE44v62UNwPOJ/T1do5djGRHoVvKUnYY4TpeW8cuRQrqm8B0gx1iFyKZU+iWqpT9D3AvYbNTKk9/YKrBUbELkcwodEtRyi4FrkKfX6XrCNxt8IvYhUjz6STmpSRlBlwDnBG7FCkqlxpUO1wSuxBpmkK3VKSsmnAKxpNilyJFabwBCt7ip9AtBSlrDfwJ+HbsUqSoKXhLgEK32KVsI+Bu4JDYpUhJUPAWOYVuMQst3HsJFzkUaS4FbxHT3u9iFXaa3YwCV7Iz3sIPKaTIKHSL1+XA8bGLkJKm4C1CCt1ilLIzgLNilyFlYbzpEMOiotAtNin7NvD/YpchZeVqUzdV0VDoFpOU7QtMRJ+L5FY14WToA2IXIvpyF4+U9QfuA9rGLkXKUhfC2cm6xi6k0il0i0HK2gF3Eb4YIvnSH7jd9L2PSm9+cbgW2CV2EVIRRgAXxS6ikil0Y0vZaOCU2GVIRTnP4KDYRVQqhW5MKdsOmBC7DKk4BkyycMVhKTCFbizhnAp3Ec6JKlJo3YC7DNrELqTSKHTjuQ7YOXYRUtGGAWfHLqLSKHRjSNmhwMmxyxABzjXYLnYRlUShW2gp6wDcELsMkURb4MbYRVQShW7hXYJ2YEhxOcBgbOwiKoVCt5BSths6+YgUp6sMuscuohIodAslXONsAuF38CLFphvwm9hFVAKFbuGcAQyJXYRII04w+GrsIsqdQrcQUtYXXTpFSsPvDNrFLqKcKXQL4zKgQ+wiRJqhP3Bu7CLKmUI331K2E3Bs7DJEMnC2Qb/YRZQrhW7+jUfvs5SW1uhyUXmjMMinlA0BvhW7DJEsjDPYPHYR5Uihm1+/jF2ASJbaAmfGLqIcKXTzJWVfAQ6OXYZIC3zPwvG7kkMK3fxRK1dKXQfgx7GLKDcK3XwIV/XdP3YZIjlwukHn2EWUE4VufpweuwCRHOkM/CB2EeVEoZtrKdscGBm7DJEc+olB+9hFlAuFbu6dArSKXYRIDnUHvhe7iHKh0M2llLVCV/aV8vRjCxe0lBZS6ObWSKBX7CJE8qAvsHfsIsqBQje3vh+7AJE8Gh27gHKg0M2VlA0EDohdhkgefdu0v6LFFLq5c2LsAkTyrDswInYRpU6hmztHxS5ApADUxdBCCt1cSNmOhJM/i5S7kQYbxS6ilCl0c+PI2AWIFEhH4PDYRZQyhW5uKHSlkqiLoQUUui2Vsq2AwbHLECmggw26xC6iVBUkdM1sjZnNNLNZZjbDzPZqxms+y3ENbcxsgpm9YWavmdlRyfCxZvZxUt9MMzs5w0mrlSuVpg1a77NWqGPuPnf3wQBm9g3C1XH3K9C8a50LLHD37cysCtgkbdwd7v7DLKerlU8q0Qjg5thFlKIY3QudgMW1D8zsZ2Y23cxmm9nFdZ9swZVm9pKZzTGzY5LhN5jZ4cn9KWZ2c3J/nJldWs98xxHCHndf6+6ftHhJUtYZ2LPF0xEpPYVuNJWNQoXuRsmm+2vATcAlAGY2gnCo1TBCv+huZrZvndcemYzbBfgacKWZbQ48CeyTPKc3sENyfx/gifQJmFlt/9MlSffGXWbWM+0pRyWhf7eZ9clgufZG/eJSmTYzGBC7iFJUqMD43N0Hu/tA4CDgNjMzwibKCOBFYAYwkA2Pd90bmOzua9x9PvA4MJQkdM1sB+AVYH4SxsOBZ+pMoxWwBfCMuw8BngWuSsb9Fejn7jsDjwB/zGC56v6DEKkk+8cuoBQVvJXm7s8Sfk64KeFUcZclgTzY3bd19z80czrvE/agHkRo2T4JjAI+c/dldZ6+EFgB/Dl5fBcwJJnOQndfmQy/Cdgtg8VR6EolUxdDFgoeumY2EKgmBOFDwDgz65iM621mPeq85EngGDOrNrNNCUE3LRn3HOHCebWhe2bydz3u7oQW7f7JoK8SWsckreNahwOvNmtBUtaWJLhFKtRXYhdQigp19MJGZjYzuW/Aie6+BnjYzLYHng29DXwGHA8sSHvtFEKXwSzAgbPc/aNk3JPACHf/j5m9SzgiYYPQTZwNTDSza4CPgZOS4WckO+RWA4uAsc1cpl0Jh86IVKq+Bj0d5scupJRYaARKxlL2I+Ca2GVUsgO++q8nHut5gLp44jrM4f7YRZQS7XnP3h6xCxApAsNiF1BqFLrZ009/RcKRRJIBhW42UlYFbF2IWa1ZC7v+Ag69Mjw+7gYYcCbsdDaMmwCrVtf/urMnh+fsdDbc8ey64cfdADufA7+4Y92wX06Be5/P3zJIWcvkaB9BoZutPkDbQszo2gdh+7RLXR73FXjtSphzOXz+Jdz02Iav+duLMOMdmPkrmHoxXPUALF0Bs9+DjdrA7Mth+luwZAV8uBimvgkjdy/E0kgZ2tSgfewiSolCNzvbFmIm8xbC32bCyWlXXjtkMJiF27BtYN6iDV/3yvuw70BoVQ0d2sHOfeDB2dC6OgT12rWwag1UV8EFd8PFuuaFtEwmv+KseArd7BQkdH88EX49Gqpsw3GrVsPEp+CgnTcct0tfeHAWrFgJnyyDR1+BuQth+96waScYci4ctiv85yNY6zBkq/wvi5Q1hW4GdGXP7OQ9dO+fAT06w25bwWOvbDj++7eE1uw+AzccN2Ln0H2w10UhZIf3D61agGvGrHveYVfB778Dl94Ls96Dr+8E3z0wL4sj5W2L2AWUErV0s5P30H36DfjLC9DvR3Ds9fCvV+D4/w3jLr4HPl4GVx/X8OvPHQkzL4NHfg7usN3m64+/7/kQ6J99AW8ugDvPgLunhdaxSIbU0s2AQjc7eQ/dy46FedfDO9fC7T+EA3eASd+Hmx6Fh+bA5B9CVQOf3pq1sDA5+8Ts92D2XBgxaN34VavhmgfhrENDH6+lve7LBo6GEGmEQjcD6l7ITr9YMz71ZtiyOwy/MDw+cihccCQ8/xbc+E+46bshVPcZH8Z32ggmnRZ2qtW64RE4cR9o3xZ27gsrvoRBZ4eddF06FH6ZpOQpdDOgnwFnKmWtgFWxyxD9DLiIvOQwqOmnCah7IRudYxcgUmTU0s2AQjdznWIXIFJkOhtsHLuIUqHQzZxCV2RDvZp+ioBCNxsKXZENtY5dQKlQ6GZOoSsiWVPoZk470kQkawrdzGmHgYhkTaGbOR3YLCJZU+hm7ovYBUgws+vgLrFrEMmUQjdzOiVMEfhL78Nmftqmaz0nthQpbgrdzCl0i8ApwyasjV2DSDYUuplT90Jkj/bY/+X5G202JHYdItlQ6GZOLd3Ixg6/dXnsGkSypdDNnFq6EU3rNvSN99r31WW/i8+a2AWUCoVu5tTSjWjM8ImfYFbPVeMksvmxCygVCt3M1XP9XSmElzrv+PYbG2+3Z+w6ZAMrXN+LZlPoZu599AOJKMYMn/g+Zlpni8/c2AWUEq3AmarxVWhTquDe7Lj1vJldB+8Ru44W6dcPBg2CwYNh993DsGOOCY8HDw7jBw+u/7XjxkGPHrDTTusPP/ts2HlnOOGEdcMmTYJrrsnHEjREoZsBhW52tJIV2AnDb3sLs9I/feCjj8LMmfD88+HxHXeExzNnwlFHwZFH1v+6sWPhwQfXH7ZkCcyYAbNnQ5s2MGcOfP453HIL/OAHeV2MOvR9yIBCNztayQro/Y16LXim+17DYteRV+5w550wenT94/fdFzbZZP1hVVWwalV47YoV0Lo1XHUVnH56uF848wo5s1Kn0M2OQreAxu1586uYtYtdR4uZwYgRsNtuMGHC+uOefBJ69oT+/Zs/vY03hkMOgV13hc03h86dYepUGDkyt3U3Td+HDOgS7NnRf/YC+bht90UPbzZit9h15MRTT0Hv3rBgAXz96zBwYGjBAkye3HArtzFnnRVuACefDOPHw003wcMPh77e887LXf0NU+hmQC3d7GglK5DvDfv9bMw6xq4jJ3r3Dn979IBvfQumTQuPV6+GP/857FTL1osvhm6GAQPgrrtCV8Wbb8K//93yupum70MGFLrZeTN2AZVgSetOS+/dYuSusevIieXLYdmydfcffnjdkQj/+Edo9W6xRfbTP/98uOSS0Me7JvlxWFVV6OvNP235ZUChm505wKrYRZS7M3a77kW3qvK4PNL8+bD33rDLLjBsGHzzm3DQQWHc7bdv2LXwwQehv7bW6NEwfDi8/noI5z/8Yd24e+8Nh6D16gVduoTDzgYNgi++CPPLryUOS/I9k3Ji7jrOPyspexFo4KBKaanl1e1XbDxq2Qq3qu6xa5FGPe6wf+wiSolautl7IXYB5eycwZdPV+CWhGmxCyg1Ct3sKXTzZGVVmy9/1/+07WLXIc0yPXYBpUahm70ZsQsoVxcPunDqmqpWm8euQ5ql2S1dMxtpZm5mA9OG7W9m9+entHprMDO71MzeMLNXzeyMtDqWmNnM5HZBvmrQcbrZmwWsRu9hTq226jVXbX/mlrHrkGZZ4PBuBs8fDTyV/L0wPyU1aSzQBxjo7mvNrEfauCfd/dB8F6CWbrZq/AvgldhllJurtj/zuVVVbfrGrkOa5dnmPtHCsdZ7A98Bjq0zupOZ/c3MXjezGy05k5yZjTazOWb2kpldkQw71cyuTJvuWDO7Prl/vJlNS1qqvzez6npKOQ0Y7+5rAdx9QSYLnAsK3ZZ5LnYB5WQt5hcNumiz2HVIsz2ewXOPAB509zeAhWaW/ivDYcDpwA7ANsCRZtYLuAI4kHCU0FAzGwncA3wr7bXHALeb2fbJ/a+4+2DClSyOq6eObYBjzOx5M/u7maX/7nq4mc1Khu+YwbJlRKHbMg/FLqCc/K7/aVNXVrfbJnYd0myPZfDc0cDtyf3bk8e1prn7W+6+BphMaBEPBR5z94/dfTXwJ2Bfd/8YeMvM9jSzbsBA4Gngq8BuwHQzm5k83rqeOtoCX7j77sD/ATcnw2cAW7r7LsBvgXszWLaMqD+yZf5B+JFE6Z9ysAicPfiK8vghRGX4lLBfo0lmtgmhxTrIzByoBtzMfpY8pe6PBZr68cDtwCjgNWCKu7uFSzj90d1/3sRr5wF/Tu5PAW4BcPel/525+wNm9r9m1t3dP2liehlTS7clanwp4b+stNCkfsc9v7x1x+1j1yHN9qTD2mY+92hgortv6e793L0P8DawTzJ+mJltlfTlHkPY2TYN2M/Muid9s6NZ150xhdBdkd56/idwdO2OMTPbxMzq2yF7L3BAcn8/4I3k+ZslwY2ZDSNk48JmLl9GFLot90DsAsrB6bv/tm3sGiQj/8zguaMJQZnuHtZ1MUwHrgdeJYTxFHf/EDgHeJTQon7B3e8DcPfFyXO3dPdpybBXgPOAh81sNvAIUN9hh5cDR5nZHOAy4ORk+NHAS2Y2C7gOONbz9HNd/Qy4pVK2E+FcDJKl+3ofPnPkfvfpJ9WlYy3Qx+GD2IWUIrV0W6rGX0KntmuRU4ZNaO5mqhSHJxS42VPo5sbfYxdQqh7tsf/LCzbqOSR2HZKRVOwCSplCNzfui11AqRo7/NblsWuQjHwJ3B27iFKm0M2Nh4APYxdRaqZ1G/rGe+37Do1dh2TkIYfFsYsoZQrdXKjxNcDE2GWUmjHDJ35CcpiOlAx1LbSQQjd3bm76KVLrpc47vv3GxtvtGbsOychy4C+xiyh1Ct1cqfHXyeAEIJXu+L0mvU9yYhMpGfc5FOSia+VMK31uqbXbDG923HrerC67qJVbetS1kAMK3dy6A7UEmnTC8Nvewkzn/SgtC4GHYxdRDhS6uVTjy9DhNI2at1Hv+c9032tY7DokYze6roCdEwrd3Pvf2AUUs3F73vwaZu1i1yEZWQ5cE7uIcqHQzbUanwo8EbuMYvRx2+6LHtns67vHrkMyNsEh56c4rFQK3fy4InYBxeh7w34/B7MOseuQjKwErmzyWdJsOstYvqRsNjAodhnFYknrTku7Hr3Y3ap0ovLScqOH64pJjqilmz+/il1AMTljt+tmKHBLzmq01ZZzCt38uZNwouWKt7y6/YqJW43ZKXYdkrGUwzuxiyg3Ct18qfG1wCWxyygGZ+96xfNuVd1j1yEZWYu21vJCfbr5lLIqwlUldohdSiwrq9p82WHU8oVrqlrVd+kUKV53ebj4o+SYWrr5FFq7P4ldRkwXDbpoqgK3JKmVmydq6RZCyqYAI2OXUWirrXpN+2NWvL+qqk3f2LVIRm52+E7sIsqVWrqF8VPgi9hFFNqV2//sOQVuyfkY+FnsIsqZQrcQavxt4NexyyiktZhfPOjCzWLXIRn7qcOi2EWUM4Vu4VwOvBu7iEL5Xf/Tpq6sbrdN7DokI/9wmBS7iHKnPt1CStlRVMhZyDqOWvba8lYdB8auQ5rtc2CQw5uxCyl3aukWUo3fAzwSu4x8u63fmOkK3JJziQK3MNTSLbSU9QNmAZ3iFpI/XY9eNOfTNl113onS8RIwROfLLQy1dAutxt8BfhC7jHy5r/fhMxW4JcWBUxS4haPQjaHGJ1Gm15s6ZY8J2nQqLb93XVC1oBS68XyfMjua4Z89D3x5Qbueu8auQ5rtbeCc2EVUGoVuLDW+BBhDOLFIWThpz1uWx65Bmm0lcLTDktiFVBqFbkw1/sn7hS0AAAVgSURBVCTh+N2S91y3PV6f277P0Nh1SLOd4TAjdhGVSKEb34XAc7GLaKkTht+2CDOLXYc0y20OE2IXUakUurHV+GrgSGBu7FKyNafzTm//e+P+e8SuQ5plDrr8TlQK3WJQ4x8ChwGfxS4lG2P2mvg+ZlqXit8nwBEOK2IXUsn0RSkWNT4LOI4S27H2Zset583qssueseuQJq0CjvJwxIJEpNAtJjX+F+Cs2GVkYszwiW9h1ip2HdKk7zs8EbsI0c+Ai1PKJgDfjV1GU+Zt1Ht+n5Fzu2DWNnYt0qjrHH4UuwgJ1NItTj8A/hW7iKaM2/Pm1xS4RW8SFX7JqGKjlm6xSlkn4CGgKPtLP27bfVGPIxe0xaxD7FqkQZOAE73E9hOUO7V0i1WNLwW+QZEew3vKsAmzFbhFTYFbpNTSLXZF2OJd0rrT0q5HL3a3qs6xa5F6KXCLmFq6xa4IW7yn7/7bFxW4RUuBW+TU0i0VRdLiXV7dfsXGo5Z97lbVLWYdUi8FbglQS7dUrGvxRj336Vm7/nq6ArcoKXBLhFq6pSZl7YHbgKMKPeuVVW2+7DBq+cI1Va02L/S8pVETgbEK3NKglm6pqfEVwLeJcErICwddPFWBW1TWAueiFm5JUUu3lKXsRMIp+trke1arrNXq9ses+HB1Ves++Z6XNMunQI3D32MXIplRS7eU1fgfga8DC/M9q6u2P3OqArdovATsrsAtTWrploOUbQvcDwzIx+TXULW2wzHL315Z3W6bfExfMnIXcJKDLo1UotTSLQc1/h/CoWR35WPyv9vutKkK3OjWAuc4jFLglja1dMtNysYCvwU65mqSHUZ99vqKVh3y0oqWZlkEjHZ4OHYh0nJq6ZabGr8VGEyOfsF2W78x0xW4Ub0IDFXglg+Fbjmq8TeBfYDxwJqWTOqM3a9rl5OaJFMrCCe0H+bwVuxiJHcUuuWqxldT4xcC+5LlJVqmbDHyxSVtugzKbWHSDH8HdnS40mF17GIktxS65a7GnwEGEX5M8WUmLz112I3q8C+s+cCxDoc4vBO7GMkPhW4lqPHl1PjPgZ1o5rGd/+x54MsL2vUckt/CJOGEH7kMdLgjdjGSXzp6oRKl7DDgGmDrhp7S94h3p8/t0Hdo4YqqWK8A33N4KnYhUhhq6VaiGv8rsANwPmGHzXqe67bH6wrcvFsGnAfsqsCtLGrpVrqU9QEuAE4EWgNsd+jrz/6703bDo9ZVvj4DrgN+4+H4W6kwCl0JUrYlcO7sLoP22+XgWdtipq2g3FpO+NHKVV6Ac2VI8VLoynoGLH29zxudBvwUOJkc/qqtgi0EbgB+6/BJ7GIkPoWu1MugK3AacAbQM3I5pegt4GrgFq+n31wql0JXGmXQFjie0Oe7dxgkDVgN/AO4BbjHW/hrQClPCl1pNoM+wLHAaGDXyOUUCweeBiYDd6oLQZqi0JWsGAwkhO9ooH/kcmKYSQja2x3ei12MlA6FrrSYwe5ADXAM0CtyOfn0H0LQTnZ4NXYxUpoUupIzFn5ssyvwFWCv5O8WUYtqmf8AzyS3pz1cJkekRRS6kldJP3B6CO8CVEctqn4rgRdIAhZ4xmFB3JKkHCl0paAMOgB7EEJ4ACGU+xBaxHm/qjHwOTAPmJvcXiaE7AseglckrxS6UhQsHIrWg3UhXBvEtfc7EX6mnH6rJhymtSrtthpYzLpQXe+mX4NJbApdEZEC0u/rRUQKSKErIlJACl0RkQJS6IqIFJBCV0SkgBS6IiIFpNAVESkgha6ISAEpdEVECkihKyJSQApdEZECUuiKiBSQQldEpIAUuiIiBaTQFREpIIWuiEgB/X/hWF7EUQPXEgAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "stream",
          "text": [
            "[[36, 38, 34, 33, 30, 28, 30, 26, 20, 18], [6, 7, 11, 8, 13, 11, 13, 14, 12, 10]]\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAF9CAYAAAD1K0SPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3debxUdf3H8dcbRBHBDdFURMgVTQQEXDOXzC23yiU1NVNcstL0V+ovlzLNSnOrTPulmSmilbuWS26lpqCIW4YLCgIuuOECCn5+f3y/F4fbhZm5987Mufe+n4/HPO7MnJlz3rPc+ZzzPd/zPYoIzMzMFqVbowOYmVnxuViYmVlZLhZmZlaWi4WZmZXlYmFmZmW5WJiZWVkuFl2QpBMl/V87zu9dSZ/O138v6cftOO/fSDqpveZXT+39XpRZVkhasx7LaitJA3PexVr5/Pnft1qQdKqkP9Zq/h2Vi0UdSbpb0puSlqjxMmZLmiXpHUnjJR1fusyIOCMiDqlwXmUfFxG9I+L5dsh+kKR/NJv34RFxWlvn3Ww5v8k/OO9K+lDSRyW3b13E8yZL+nx7ZqmH5p+jpKUlnSvppfyan8u3V8jT/6vwVPIDKmmr/Nzv1+aVJKXft5YKckf9nIrOxaJOJA0EPgsEsGuNF3dURPQBVgaOBfYBbpGk9lxIa9cMGy0XoN4R0Rs4AxjbdDsidmx0vlqStDhwJ7A+sAOwNLApMBMY1cbZHwi8ARzQxvlYAblY1M8BwIPA70n/VPNJ6ivpxrwl8LCkH5euYUtaV9Ltkt6Q9IykvSpZYES8FxF3k4rTpsDOeX7z1xIl9ZT0R0kzJb2Vl7+SpNNJxe2Xee3zl/nxIembkiYBk0ruK10TXSHnnSXpHkmr58f9V/ND01qvpMHAb4BN8/LeytMXWHOUdKikZ/N7cYOkVUqmhaTDJU3Kr+VX1RZISbtKejI//+6cC0mXAwOAG3O+7+X7r5E0Q9Lbku6VtH6Fy1lD0t/z+/66pCskLVsyfbKk4yRNzPMeK6lnyfT/kTRd0jRJB1fxEg/Ir2OPiHgqIj6OiFcj4rSIuKWK+TR/PUsBXwG+CawlaUTJtO6Szsqv83ny97Bk+t35O39/fm9vzP8TV5T8TwwseXxIWlPSaGA/4Hslz1vY57RJnv9bkh6TtFXJ/Abl7+ksSbcDK7T2fejMXCzq5wDginzZXtJKJdN+BbwHfIpUSOYXk/xPeDtwJbAiaSvh15LWq3TBEfESMI7049/cgcAywGpAX+Bw4IOI+F/gPtJWSu+IOKrkObsDGwMLy7AfcBrpn25Cfs3lMj6dl/1AXt6yzR8jaRvgJ8BepK2mF4Grmj3si8BIYEh+3Pblll0y/7WBMcDRQD/gFtKPzuIR8TXgJWCXnO9n+Wm3AmuRPptHKnmtTYvLr2UVYDDp/T+12WP2Iq39D8qv56CccwfgOGC7vOxqmlw+D/w1It6t4jmV+BLwLnAN8DcWXCE6lPS5DANGkIpKc/sAXwNWBdYAHgAuBZYHngZOaf6EiLiY9H7/LH8mu7T0OUlaFbgZ+HGe33HAnyX1y7O6EhhP+r6e1iy7ZS4WdSBpC2B14OqIGA88B+ybp3UHvgycEhHvR8RTwGUlT/8iMDkiLo2IuRHxKPBnYM8qY0wj/aM09xGpSKwZEfMiYnxEvFNmXj+JiDci4oOFTL85Iu6NiDnA/5K2FlarMm9L9gMuiYhH8rxPyPMeWPKYMyPirVwg7wKGVjH/vXP22yPiI+AsYElgs4U9ISIuiYhZOc+pwIaSlim3oIh4Ni9nTkS8BvwC+Fyzh50fEdMi4g3gxpLXshdwaUQ8ERHv8d9FZlH6AtOreHylDiQ1580j/fjuI6lHnrYXcG5ETMmv5SctPP/SiHguIt4mFeDnIuKOiJhLKkDD2pBtf+CWiLglb0ndTlp52knSANLKxUn5s7iX9F5bMy4W9XEgcFtEvJ5vX8knay/9gMWAKSWPL72+OrBx3nx+KzfP7EfaCqnGqqT25OYuJ60JXpWbNH5W8k++MFMqnZ7XYN8grUG31SqkrYnSec8kvbYmM0quvw/0bsP8Pya9llVbenBuXjlTaQfxO8DkPKlsM0Zu6rtK0sv5uX9s4XkLey2rsOBn8CKVm0naKluUeUDz70AP0orFf8krAlvzyVbV9UBPPmluqiTvKyXXP2jhdjWfY3OrA3s2+x/agvQ+rAK8mYvuovJ1eS4WNSZpSdKa1edy2/YM4BjSGuiGwGvAXKB/ydNK18KnAPdExLIll94RcUQVGVYDNiI1Ky0gIj6KiB9GxHqkNegv8skOyoUNSVxuqOL5+SX1Jm3RTCM1tQH0KnlsadErN99ppH/8pnkvRVpTfrnM8yrVfP4ivZam+TfPty+wG6lpZxlgYNNTK1jWGXl+G0TE0qS130r3r0xnwe/IgAqfB3AHqRl0qUU85iU+eS1NBrHwH9GvkX5Lbszf7+dJxaJphagtectp6TvT/L4pwOXN/oeWiogzc7blmr0f7Zmv03CxqL3dSWtq65GaEYaS2qjvAw7Im+1/AU6V1EvSuizYm+QmYG1JX5PUI19GNu14XZQ8v8+R1vQeIrXBN3/M1pI2yM1h75DWHj/Ok18BWtOffSdJWyj1vDkNeDA3QbxG+uHdP6+VH0xqn27yCtA/P68lY4CvSxqq1BX4DOBfETG5FRlbcjWws6Rt89bVscAc4P6SfKXvR588fSapAJ5RxbL6kNr4385t6v9TZc6DJK0nqRcttOcvwuWkH88/K3Wc6JZ3Jp8oaaf8mLHADyT1z9M/D+wC/Gkh8zwQ+CGffL+HkppWd5LUN+f9dp7fcsDxVeQtp6XvaPP7/gjsImn7/L3rqdTNt39EvEhqkvqhpMVzk/Eu7Ziv03CxqL0DSe2xL0XEjKYL8EtgP6WeQUeR1kxnkP6Zx5B+hIiIWcAXSDsAp+XH/BRY1LEav5Q0i/RPcy5pH8cOuVmluU+RfgTeIe1IvCdnADgP+IrSsSHnV/GaryT9gL1B2qLZv2TaoaQfxpmk7pv3l0z7O/AkMEPS6zQTEXcAJ+XXM51UaPapItciRcQzOesFwOukH41dIuLD/JCfkH5E35J0HPAH0tr2y8BTpN5ulfohMBx4m7Tz9S9V5LyV9Ln+HXg2/630uXNIW0L/JnWceIe0IrEC8K/8sB+RPpd/AG8CPwP2i4gnms9P0iakrbFflX6/I+KGnO2rwG9JTZ2PkToBVPxaK/A7YL38mVyX71vgc4qIKaQtwBNJW/JTSN/Bpt+/fUkdNt4gfW//0I75Og355EfFI+mnwKciwr0yzKwQvGVRALk5YIiSUcA3gGsbncvMrEmHPAK3E+pDanpahdR0dDZpP4OZWSG4GcrMzMpyM5SZmZXVIZqhVlhhhRg4cGCjY5iZdSjjx49/PSL6lX9keR2iWAwcOJBx48Y1OoaZWYciqd2ORnczlJmZleViYWZmZblYmJlZWR1in4WZFcdHH33E1KlTmT17dqOjWNazZ0/69+9Pjx7lBoxuPRcLM6vK1KlT6dOnDwMHDkTte6Zea4WIYObMmUydOpVBgwbVbDluhjKzqsyePZu+ffu6UBSEJPr27VvzLT0XCzOrmgtFsdTj83CxMDOzsrzPwszaZODxN7fr/CafufMip8+cOZNtt90WgBkzZtC9e3f69UsHKT/00EMsvvgn584699xzGT16NL169WpxXk222morzjrrLEaMGNHG9J2Xi0UNteWfqNw/jFlX1bdvXyZMmADAqaeeSu/evTnuuONafOy5557L/vvvX7ZYWHluhjKzDu/OO+9k2LBhbLDBBhx88MHMmTOH888/n2nTprH11luz9dZbA3DEEUcwYsQI1l9/fU45pZqz0ZqLhZl1aLNnz+aggw5i7NixPP7448ydO5cLL7yQb3/726yyyircdddd3HXXXQCcfvrpjBs3jokTJ3LPPfcwceLEBqfvOFwszKxDmzdvHoMGDWLttdcG4MADD+Tee+9t8bFXX301w4cPZ9iwYTz55JM89dRT9YzaoXmfhZl1CS+88AJnnXUWDz/8MMsttxwHHXSQj0KvgrcszKxD6969O5MnT+bZZ58F4PLLL+dzn/scAH369GHWrFkAvPPOOyy11FIss8wyvPLKK9x6660Ny9wRecvCzNqk0T33evbsyaWXXsqee+7J3LlzGTlyJIcffjgAo0ePZocddpi/72LYsGGsu+66rLbaamy++eYNzd3RdIhzcI8YMSI64smP3HXWOqOnn36awYMHNzqGNdPS5yJpfES0y8EjboYyM7OyXCzMzKwsFwszMyur0+/g9n4DM7O285aFmZmVVbNiIamnpIckPSbpSUk/zPf/XtILkibky9BaZTAzs/ZRy2aoOcA2EfGupB7APyQ1HQXzPxHxpxou28zq5dRl2nl+b5d9SO/evXn33XcB+M9//sPRRx/NpEmT6NOnD2uuuSYXXHABt956K+PGjeOXv/zl/Octaijy119/nZVXXpkLLrhg/nEa/xWtzCi3Ldlss824//77mTx5Mvfffz/77rsvABMmTGDatGnstNNOFc+r3GuopZptWUTybr7ZI1+Kf1CHmXUYs2fPZuedd+aII45g0qRJPPLIIxx55JG89tprVc/rmmuuYZNNNmHMmDHtmvH+++8HYPLkyVx55ZXz758wYQK33HJLuy6rlmq6z0JSd0kTgFeB2yPiX3nS6ZImSjpH0hILee5oSeMkjWvNB29mnd+VV17Jpptuyi677DL/vq222orPfOYzVc9rzJgxnH322bz88stMnTp1/v2nn346a6+9NltssQXPPPPMAss55phjGDFiBIMHD+bhhx/mS1/6EmuttRY/+MEP5j+ud+/eABx//PHcd999DB06lJ/+9KecfPLJjB07lqFDhzJ27Fjee+89Dj74YEaNGsWwYcO4/vrrAfjggw/YZ599GDx4MHvssQcffPBB1a+tPdS0N1REzAOGSloWuFbSZ4ATgBnA4sDFwPeBH7Xw3IvzdEaMGOEtEjP7L0888QQbbbRRm+czZcoUpk+fzqhRo9hrr70YO3Ysxx57LOPHj+eqq65iwoQJzJ07l+HDhy+wvMUXX5xx48Zx3nnnsdtuuzF+/HiWX3551lhjDY455hj69u07/7FnnnkmZ511FjfddBMAK6200gLNZCeeeCLbbLMNl1xyCW+99RajRo3i85//PBdddBG9evXi6aefZuLEiQwfPrzNr7c16tIbKiLeAu4CdoiI6bmJag5wKTCqHhnMrGuRVPH9Y8eOZa+99gJgn332md8Udd9997HHHnvQq1cvll56aXbdddcFntd0e4MNNmD99ddn5ZVXZoklluDTn/40U6ZMqSrvbbfdxplnnsnQoUPZaqutmD17Ni+99BL33nsv+++/PwBDhgxhyJAhVc23vdRsy0JSP+CjiHhL0pLAdsBPJa0cEdOVPrHdgSdqlcHMOrf111+fe+65p8Vpffv25c0331zgvjfeeIMVVljhvx47ZswYZsyYwRVXXAHAtGnTmDRpUtnlL7FEakXv1q3b/OtNt+fOnVvx6wCICP785z+zzjrrVPW8eqnllsXKwF2SJgIPk/ZZ3ARcIelx4HFgBeDHNcxgZp3Yvvvuy/3338/NN39y8O29997LE088wciRI/nnP//JjBkzABg3bhxz5sxhtdVWW2Ae//nPf3j33Xd5+eWXmTx5MpMnT+aEE05gzJgxbLnlllx33XV88MEHzJo1ixtvvLHVWUuHS2/p9vbbb88FF1xA0+Cujz76KABbbrnl/B3jTzzxRMPO7lezLYuImAgMa+H+bWq1TEt81LrVVQVdXWtlySWX5KabbuLoo4/m6KOPpkePHgwZMoTzzjuPlVZaifPOO4+ddtqJjz/+mN69ezNmzBi6dVtwHXnMmDHsscceC9z35S9/mb333puTTz6Zvffemw033JAVV1yRkSNHtjrrkCFD6N69OxtuuCEHHXQQBx544PxmpxNOOIGTTjqJo48+miFDhvDxxx8zaNAgbrrpJo444gi+/vWvM3jwYAYPHtwu+2hao9MPUd7IH85GLdvFwmrJQ5QXk4coNzOzhnOxMDOzslwszKxqHaH5uiupx+fhYmFmVenZsyczZ850wSiIiGDmzJn07Nmzpsvp9OezsPppy4518M71jqJ///5MnTq1VeMvWW307NmT/v3713QZLhZmVpUePXowaNCgRsewOnMzlJmZleViYWZmZblYmJlZWS4WZmZWlouFmZmV5WJhZmZluViYmVlZLhZmZlaWi4WZmZXlYmFmZmW5WJiZWVk1KxaSekp6SNJjkp6U9MN8/yBJ/5L0rKSxkhavVQYzM2sftdyymANsExEbAkOBHSRtAvwUOCci1gTeBL5RwwxmZtYOalYsInk33+yRLwFsA/wp338ZsHutMpiZWfuo6RDlkroD44E1gV8BzwFvRcTc/JCpwKoLee5oYDTAgAEDahnTOoG2nEujK55Hw++XVaumO7gjYl5EDAX6A6OAdat47sURMSIiRvTr169mGc3MrLy69IaKiLeAu4BNgWUlNW3R9AderkcGMzNrvVr2huonadl8fUlgO+BpUtH4Sn7YgcD1tcpgZmbto5b7LFYGLsv7LboBV0fETZKeAq6S9GPgUeB3NcxgZmbtoGbFIiImAsNauP950v4LMzPrIHwEt5mZleViYWZmZblYmJlZWS4WZmZWlouFmZmVVdPhPsxs0TzshnUU3rIwM7OyXCzMzKwsFwszMyvLxcLMzMpysTAzs7JcLMzMrCwXCzMzK8vFwszMynKxMDOzslwszMysLA/3YWZ105bhTcBDnDSStyzMzKysmhULSatJukvSU5KelPSdfP+pkl6WNCFfdqpVBjMzax+1bIaaCxwbEY9I6gOMl3R7nnZORJxVw2WbmVk7qlmxiIjpwPR8fZakp4FVa7U8MzOrnbrss5A0EBgG/CvfdZSkiZIukbTcQp4zWtI4SeNee+21esQ0M7OFqHmxkNQb+DNwdES8A1wIrAEMJW15nN3S8yLi4ogYEREj+vXrV+uYZma2CDUtFpJ6kArFFRHxF4CIeCUi5kXEx8BvgVG1zGBmZm1Xy95QAn4HPB0Rvyi5f+WSh+0BPFGrDGZm1j5q2Rtqc+BrwOOSJuT7TgS+KmkoEMBk4LAaZjAzs3ZQUbGQtEFEPF7NjCPiH4BamHRLNfMxM7PGq7QZ6teSHpJ0pKRlaprIzMwKp6JiERGfBfYDViMdXHelpO1qmszMzAqj4h3cETEJ+AHwfeBzwPmS/i3pS7UKZ2ZmxVBRsZA0RNI5wNPANsAuETE4Xz+nhvnMzKwAKu0NdQHwf8CJEfFB050RMU3SD2qSzMzMCqPSYrEz8EFEzAOQ1A3oGRHvR8TlNUtnZmaFUOk+izuAJUtu98r3mZlZF1BpsegZEe823cjXe9UmkpmZFU2lxeI9ScObbkjaCPhgEY83M7NOpNJ9FkcD10iaRjoq+1PA3jVLZWZmhVJRsYiIhyWtC6yT73omIj6qXSwzMyuSagYSHAkMzM8ZLomI+ENNUpmZWaFUOpDg5aQTFk0A5uW7A3CxMDPrAirdshgBrBcRUcswZmZWTJX2hnqCtFPbzMy6oEq3LFYAnpL0EDCn6c6I2LUmqczMrFAqLRan1jKEmZkVW6VdZ++RtDqwVkTcIakX0L220czMrCgqHaL8UOBPwEX5rlWB62oVyszMiqXSHdzfBDYH3oH5J0JacVFPkLSapLskPSXpSUnfyfcvL+l2SZPy3+Xa8gLMzKz2Ki0WcyLiw6YbkhYjHWexKHOBYyNiPWAT4JuS1gOOB+6MiLWAO/NtMzMrsEqLxT2STgSWzOfevga4cVFPiIjpEfFIvj6LdJa9VYHdgMvywy4Ddm9NcDMzq59Ke0MdD3wDeBw4DLiFdOa8ikgaCAwD/gWsFBHT86QZwEoLec5oYDTAgAEDKl2UmVmLBh5/c6ufO/nMndsxScdUaW+oj4Hf5ktVJPUG/gwcHRHvSCqdb0hqsTkrIi4GLgYYMWKEjxw3M2ugSseGeoEW9lFExKfLPK8HqVBcERF/yXe/ImnliJguaWXg1Sozm5lZnVUzNlSTnsCewPKLeoLSJsTvgKcj4hclk24ADgTOzH+vrzitmZk1REU7uCNiZsnl5Yg4FyjXiLc58DVgG0kT8mUnUpHYTtIk4PP5tpmZFVilzVDDS252I21pLPK5EfEP0ln1WrJtRenMzKwQKm2GOrvk+lxgMrBXu6cxM7NCqrQ31Na1DmJmZsVVaTPUdxc1vdkObDMz62Sq6Q01ktSTCWAX4CFgUi1CmZlZsVRaLPoDw/OwHUg6Fbg5IvavVTAzMyuOSovFSsCHJbc/ZCHDdJiZ2SfaMswIFGeokUqLxR+AhyRdm2/vzieDAZqZWSdXaW+o0yXdCnw23/X1iHi0drHMzKxIKh2iHKAX8E5EnAdMlTSoRpnMzKxgKj2t6inA94ET8l09gD/WKpSZmRVLpVsWewC7Au8BRMQ0oE+tQpmZWbFUWiw+jIggD1MuaanaRTIzs6KptFhcLekiYFlJhwJ30IoTIZmZWcdUtjdUPi/FWGBd4B1gHeDkiLi9xtnMzKwgyhaLfOrTWyJiA8AFwsysC6q0GeoRSSNrmsTMzAqr0iO4Nwb2lzSZ1CNKpI2OIbUKZmZmxbHIYiFpQES8BGxfpzxmZlZA5ZqhrgOIiBeBX0TEi6WXRT1R0iWSXpX0RMl9p0p6udk5uc3MrODKFYvSc2h/usp5/x7YoYX7z4mIoflyS5XzNDOzBihXLGIh18uKiHuBN6pOZGZmhVOuWGwo6R1Js4Ah+fo7kmZJeqeVyzxK0sTcTLXcwh4kabSkcZLGvfbaa61clJmZtYdFFouI6B4RS0dEn4hYLF9vur10K5Z3IbAGMBSYDpy9iGVfHBEjImJEv379WrEoMzNrL9UMUd5mEfFKRMyLiI9Jw4WMqufyzcysdepaLCStXHJzD+CJhT3WzMyKo9KD8qomaQywFbCCpKnAKcBWkoaSdpZPBg6r1fLNzKz91KxYRMRXW7j7d7VanpkV3+Se+7ZxDm+3Sw6rXl2boczMrGNysTAzs7JcLMzMrCwXCzMzK8vFwszMyqpZbyizempbL5uu18PG75dVy1sWZmZWlouFmZmV5WJhZmZluViYmVlZ3sFtZl2Cd+q3jbcszMysLBcLMzMry8XCzMzKcrEwM7OyXCzMzKws94bqhNzro+PwZ2UdhbcszMysrJoVC0mXSHpV0hMl9y0v6XZJk/Lf5Wq1fDMzaz+13LL4PbBDs/uOB+6MiLWAO/NtMzMruJoVi4i4F3ij2d27AZfl65cBu9dq+WZm1n7qvYN7pYiYnq/PAFZa2AMljQZGAwwYMKAO0czM2l/bOjFAUToyNGwHd0QEEIuYfnFEjIiIEf369atjMjMza67exeIVSSsD5L+v1nn5ZmbWCvUuFjcAB+brBwLX13n5ZmbWCrXsOjsGeABYR9JUSd8AzgS2kzQJ+Hy+bWZmBVezHdwR8dWFTNq2Vss0M7Pa8BHcZmZWlouFmZmV5WJhZmZluViYmVlZLhZmZlaWz2dh7aazDGtgZv/NWxZmZlaWi4WZmZXlYmFmZmW5WJiZWVkuFmZmVpZ7Q9VQ23oHuWeQmRWHtyzMzKwsFwszMyvLxcLMzMpysTAzs7I6/Q5u72Q2M2s7b1mYmVlZDdmykDQZmAXMA+ZGxIhG5DAzs8o0shlq64h4vYHLNzOzCrkZyszMympUsQjgNknjJY1u6QGSRksaJ2nca6+9Vud4ZmZWqlHFYouIGA7sCHxT0pbNHxARF0fEiIgY0a9fv/onNDOz+RpSLCLi5fz3VeBaYFQjcpiZWWXqXiwkLSWpT9N14AvAE/XOYWZmlWtEb6iVgGslNS3/yoj4awNymJlZhepeLCLieWDDei/XzMxaz11nzcysLBcLMzMry8XCzMzKcrEwM7OyXCzMzKwsFwszMyvLxcLMzMpysTAzs7JcLMzMrCwXCzMzK8vFwszMynKxMDOzslwszMysLBcLMzMry8XCzMzKcrEwM7OyXCzMzKwsFwszMyvLxcLMzMpqSLGQtIOkZyQ9K+n4RmQwM7PK1b1YSOoO/ArYEVgP+Kqk9eqdw8zMKteILYtRwLMR8XxEfAhcBezWgBxmZlYhRUR9Fyh9BdghIg7Jt78GbBwRRzV73GhgdL65DvBMKxe5AvB6K5/bnpxjQUXIUYQM4BzNOceC2pJj9Yjo1x4hFmuPmdRCRFwMXNzW+UgaFxEj2iGSc3SyHEXI4BzO0VFyNKIZ6mVgtZLb/fN9ZmZWUI0oFg8Da0kaJGlxYB/ghgbkMDOzCtW9GSoi5ko6Cvgb0B24JCKerOEi29yU1U6cY0FFyFGEDOAczTnHggqRo+47uM3MrOPxEdxmZlaWi4WZmZXlYmFm1slJUlvn4WKxCJIK8f4UKEebv3DtoQg5CvSZOEeJInw3oDjvR5OICEk92jIP7+A2M+uk8lh8XwLWB2YDHwEPAv+KiLlVzcvFYkGSekTER5K2AdYE3gCmk8azeqUL5lgsd3ceShp25VngNeCViJjTlXIU6DNxjgVzNPy7kXMU4v1olukwYBdgIvAi8Kl8eR44v5r3x8WiBZIWAx4DJpCq8RxgGulI8+si4s0umOMB4B1AwEukgysnAg/V8ce64TkK9pk4x4I5ivIdbfj7UZLnb8A5EfHX3Ay1Eqmgfp1UUE+MiA8qmVdhx4ZqBElbAq8CqwJ3RMR3JC1NGil30/z3D10oxzBgBjAcmBARh0paDvgCsH2+7NEVchToM3GOBXM0/LuRcxTi/WjBFcChkqZFxERgKjBV0l3ArcBg4JFKZuQtixKS/of0JfuItPP/WxExqWT6shHxliRFDd+4AuU4kfRlmgcsDnw3ImaUTF8hIl6X1C0iPu7MOQr0mTjHgjka/t3IyynE+9FCrqWA00jj8T0PjAf+CcwCJgP9I+L9iublYpHkXhTLkt7UQcARpC/f88AdwG0R8UYdvvxFydENWJfU9roasCdpreRp4CHSDrJ3ukKOAn0mzrFgjoZ/N3KOQiCfhkwAAB0BSURBVLwfZTJ+FhhGaoLaJme7PSLOldQ9IuaVnYeLxYIkfZE0ZtXfSWfyG0HajOwWEft2wRyfBZYCXiB92dYCBgBvRsT3ulKOAn0mzrFgjoZ/N3KOQrwfOUvfvOyDgH+R9udMz5c5QL+mLbCKi1hE+JLep92AnYB7gIH5vu6knWWjgDXyfd26SI5t8pftHmBA0zKB5UhtwKO6So4CfSbOUbDvRpHej2aZLgTOIvWEupN08qRLgC+3dp6FOnCkUXIPhlnAD0k7yk6UtG1EzIv0zh9CqsZEbds9i5KjJ7AE8BPSGtIBkkZFxMeRenNsQOqG1+lzFOgzcY4FczT8u5FzFOL9aMFGwNkRcWNEbAtcB0wBvilp59bM0M1QJfKbuBHwJvAVYGlgErBKRGzRBXMcAmxGagPejLTz7m1gw4gY1ZVyFOgzcY4FczT8u5FzFOL9yFmWJW1V3A3cBiwDXBERoyRtDBwFfDMi3qlqvl29WOSdZKOA3Ulv7mzgKdKXbsM87R8RcX+lO4I6eA4BnwZ2JbW9vktac1qB1B68NmnH4S2dPUeBPhPnWDBHw78bOUch3o+FZNsG+A4wE+gFPBURP5I0Ejg3Ijavep4uFvoWqcvbi6QKPJd0sModEXFbF8xxOKn99XXSEAGvkvphXxURT3elHAX6TJxjwRwN/27kHIV4PxZG0prAUOB+0tHs8yT9Bng9In5QdQGr1w6Xol6AvwJbltxel1SRHwPOAXp0sRx3AFuX3N4I+AWpT/b/1PFzaXiOAn0mzlGw70aR3o8q8vYibe30ybdVzfO79A5upUG2HgSOlDQYICL+HRHnkb6Ag0hd8LpKjsVJ7aw7SFol5xgfEd8l9ToZIal/V8hRoM+kKDkWK0iOhn83co5CfC6LIql7zglARLwfEQ9FxKx8u6pmJTdDSb2BE4EPgSdIayevkNr6pgCrRsTsOuU4idRzYmIDc6wK/AD4D3AvaVybD/LlJWD1OuY4gTQo3H05x2zg/XrlaPR3o6n/e4Fy9AH+l/Q5NPJ/ZVXS/8ozNPY72hs4mfQ/+xgNej8q1daDArt8sQCQ9Gngy6SDed4DBpJ2lt0aEWfUa+dU/mc8mNQO+x5p7aRvA3IMAr5LOjJ2MqnP+JrAuIj4Xh1zbAwcQHofngd6kD6jmueQ1Csi3s/vxZ55ubOB1Un9+OvymUhaJSKm5RxfIR2B+37OsXwdc6wXEU9JGgB8FViDBnxHSwrXasD3SN/LF0nf0TWo/3e0J3AgMJJUrAZQx8+lWZZuEfFx7g01Etga+HVETG2X+btYfEJSP9IP9VTS2sJrETG7rRW5zDKXBT4DbEf6ot8oaUVS3/F65liBdMTpDqQdhQ8qDcg2hHSg08vA9IiYpdqOwfRpYFBE3FlyX3/Spv1sUtGYUcscktYGNomIP5Tc15P0A/0+8DFpJ+GcGn8mGwJHAsdEHr8n9wQaStqRCum7UescI0jt88dExOX5vqbv6BTS51KP92NVUg+o3YCfR8Sdee1+CGlFYgYwrQ7f0eVJPa52IvXCujwiZkhah/T/+hF1eD9ayNVULP5M6iX2PeCMiLhI0nrApIj4qNXz76rFQtIBpC53D5F6Vcyp14faLEfTQUX/Iq0Z/SUibm5Ajl+Q1hCfA/oAV5P+GSYBf476DfF8KmnT/h5SD5dzSD1N1oqI6+qU4TfAixHxk/wDNQTYmfQZXVOvpgVJlwHP5DXUDUhHJX8RuAa4KKrsJ9+GHOfwyZbVs8CZEfFWPZbdLMeFpEL9AKmL7H3AaOAW4JKocEC8dshxNul/5XrgMNKR5A8APwduqVWRqjDbisANpP03/wD2zFuml5MKR6t7i3XlIcp/D4wjtXeOB/4u6fmImC7pu8CUiLimDjl2Az5LOpBoL+AkSc9ExLOSvkZam7+jDjm2BbbPa0jPAiuS/gEOIh0pe2kdMgCMJf0430lqcrmDNEDbPyTdUKd/xC1JxQHSkbndgceBfUhDONRrqOnewE35+nnAn4AzSEcFrynpyDo1cWxBWnFYiXTE9OmSTo2I1xb9tHa3ObBTREzNKxUAfyS9H/2AU+qUY0dSb6xXJN0PHENqBfgKaWWrbt13W7AuaStwE+DlXChWBoa3pVAAXbPrLGlI4wtJXcm2Iv0j3kVamz6EtJNsWLSie1mVOTYDbm5238nAhfn6P4H165Bjc1LTE6R9NQ+WTBtJWnPrW8fPZyTpCNQlSc0L00lj788k7bys5bI3IhWGr5PWGp8qmbYJcHO93gvS/pqrSWv1Y5pNewBYrQ4ZtgduKLndH7iIdBDaVnX8TqxAWsHbhPRjPa1kWi/SsQSr1CFHX+Ay0pYupCL1cL5+JPBLYMl6vS/NsjW1FP2a1GryU9KKzkXAz/K07q2df1fdsphCekMjIu4G7s47lzcl9QSaFRGPQvXdy6r0InCJ8pj7+b4/AKdJOgiYGxFP1inHGfl6D1JbZ5PZwFIRMbOGy58v7xB8OLeT70saPuGhiNhN0nJR+zONTSE1J6xOGuvn2pJp7wG96/VeAFeSjlQ+A+glaTRpS2Mk6SsxpQ4ZXgJ+BKn7bKS1+m+R1qaPk7R41OEAtEjnpLiHNBjeraSWgBUj4lXS0dIfRcS0OuSYKekB4EFJ40nfl7vz5AeBfaPCM8+1l5L9Iqvl/W3fIfWoPIK0D/KPwFVNL6HVy6ntb1Dx5R2Gity8IennwAcRcXL+56jqpOZtzNI90lGWRwHnA4dHxMX17FHRQqbfknaM/azOPTt6A+eSeoftFxFj8v112WGYd2gPJq04PJvv+w3wXET8vI69bXqTmid3JTUDPUjap3R7RIyt93ej9P1XOvHQvyPiL3X8XJYh9TranVTEHiM1k94TEefU8XPpR2p2uh94MtI5wC8kbfGcVu/fjpzp86RWkp9ExB/zfaUrom2bf1cvFqWUxnrZAng08oErNV5ei/9gubfFjcBXImJ6PXM0u94P+DFwUl6DqztJO0XELXVcnuC/t+SUTpF5Kukfsd5t9U0ZBpCawB6t4zIXWQRq2euo3LLyTv8vk7a2JtTrx7ml15yL+u7AjRHxdj1ytETScNJW3wxSR4R22wp2sViIRq7NN8tR9zWUIuRYRCGt24/TwjRqi7PkdtOxBg17L0qLahE+k5ypnlu+La5UNCJHCys2TQe0LgH8MNrpOIsuPdxHS/TJ4fG7KQ3E1ZAMJTl2aWCObiU5dq1njhb+AZpy7N6I90NJo96L5j88Tf+3DXkvYP7n09Ac+fupRvzPRlaSpSE5SL3zkHSipO/n/UlHAk+Sejj+vN0W5C2Llkl6GPhc1KnvtnN0nBxFyOAcztFsmQeTes1NIe3TWoPUOeGeiLivPbaGu2pvqEXK7X5PF+BL5xwFy1GEDM7hHHlZpU1QV5HOq/1iS9Pbo9m0SzVDNdtUbD5tZUk98s2DSF1rnaOL5ChCBudwjmpj5eX/mHTc2N8kTZP0I0l92rt3WpcpFkp9sqOp/Te3d/bI1wcBp8Qn46ZsCDzsHF0jRxEyOIdzVJlJkcaBWhHYJWdYN19fl3SgbbvqMsUCuE7SPZKOlLR8pBO7N33A3yH1HGjqx31iDXszOEfxchQhg3M4R8VKthq2JI1jNlmpF9Z40hHm367FQrvEhXSY/v7AX0jDOVwDfClPGwcMdY6umaMIGZzDOVqZrRdwOXBsyX0/Ac7K11s9vEfzS5foDSVpu4i4veR20/krtiMNWhcRsXKeVsshlp2jYDmKkME5nKONGYeSDp7dmDQy8pvAjyPiGbXnMTCNqoh1rLzdSUP1zgKuAz7fbPpm5PPoAos5R9fJUYQMzuEcrcmV/65GGj/t+6STLi0BbFiz5dbrBTbqQhr3fjFgZeA04AXSofC/BtZzjq6bowgZnMM52pDvMeBnpJ5QU0kDLK5cs+U1+gXX4Q0dB+zYwpfg/4B5wBXO0TVzFCGDczhHlZlWzH/XpmTo+HzfqaSzGdZm2fV+sXV+Ywfm6rvQc0GQx8CnHXcEOUfxcxQhg3M4RytyXQ08BfwuXwaUTNsPuCtfb/fz33T2I7gPAHoCoyW9ThqZ8rnSB0QeAz9q293NOYqXowgZnMM5qhIRe0naHvgq6Qyb60i6FPgQ2AD4RX5oN9LWT7vp1L2hJP2TNNR3AKuSTuTzMmmQracj4mXn6Jo5ipDBOZyjLZTOufI14Euk5rHpwMio0YjInbZYSNoE+G1EbCBpCWA90pnP1iStMXQjjfde0/NFOEfxchQhg3M4RytyLRcRb0paDFghImaUTOsDDImIf6pGQ6R35mKxNOl0oNNL37x8/3DSOXR/6xxdL0cRMjiHc1SZ6TOkc2l3J50tsTfp9LpPAm+RjuTeKSJeqlmGTlwsngL+BlwQEc87h3MUKYNzOEc1JO0CXEA67uNO4K/A14HRpKaopSLir7XM0JnHhjqKdM7i8ZKelnSspF7O4RwFyeAczlGxiLiRtG9iBtArN4ENIA3rcV9E/FXptNA1DdHpL6Tzat9J2ly7CdjWOZyjKBmcwzkqyNEt/92MtNXzR+BV8pHjTdNreel0XWeVxpxfHtiU1L7Xl3QAy2XAisBOwN3Ane06bopzFD5HETI4h3O0RtOyIuJ+STsBJ5KGQ18PmFiPLJ1un4WkQ0k7gh4lNbP9X/77Lqm9bzlSn+kPpZoOQOYcBctRhAzO4RxtzNgt0nkslgIOAw4BDouI+2q97E63ZQFMIq0JvEk6B+0c4HbglYiYXfrAGn/YzlG8HEXI4BzO0WolWxjvAb+QNAmYACCpR3xyno1216m2LHK1DVIR3BhYn7QTqAfpgJUZwJ8j4m3n6Fo5ipDBOZyjvTTfspHUD/hCRFxRs2V2smJxEqno/1jSYhExV9IA0tGNGwD9SANt1bR9zzmKl6MIGZzDOdqTJJF2bM+TdArwWERcV7MFNt/j3ZEvpHbFDfP188ljzZdMXyr/bfdBtpyj2DmKkME5nKOG+e8mdamt2TI6zXEWSofofxwRj0nqDWxFOmtU0/TfAitAbdsbnaN4OYqQwTmco5XZuuctiKbbyn+XlbRkvj4CmBoR79cyS6cpFsBepL7QAN8AHomIOUDTqRCHRcSLztElcxQhg3M4R8WUDwKMiHkREUq688lv9mmkM+VBOs3rBbXO1JmKxe3AB5L+BhwOvCBp2TztAOA2mN+X2jm6Vo4iZHAO56jGMZL+Lel4SatHMi/S/onBwN4R8Z/82AeBh2sdqFPs4Ja0HNAjIl6VtBawDbAbIOAB0nlqvxQRTzXvReAcnTtHETI4h3O0ItfiwBeBXUmDF74MXBsRF0s6Hlg1Ir5VjyzzM3WSYnE+qWvbn0qqLZJGArsDK0XEIc7R9XIUIYNzOEeVmdYAXo/cTVfSiqQCtivQn3Tk9oiIeEQ1Go68RZXuCS/qBViadFBKj3xbJdcHUXLKQ2rb28Y5CpajCBmcwzlaket/gY9JY1Lt3WzaesDoemUpvXSGfRb7k8ZG+ShX2YhPjmL8FHCKpB5Q854MzlG8HEXI4BzOUTGlky1dRjpfxQ3ADyS9KWmspM0j4qmIuLgeWZrrDMViFun8s5B6li2mdCYpgFWA4fnLoJaf7hydOEcRMjiHc1TjcNJ5NN6PiPMiYgPSgYFTgLGSZip17627zlAsbgKWl7RjRMxtuuRp+wNj8vVav1bnKF6OImRwDueoxo7AJaV3RMTkiDguIvqTDhZ8V7U+d0ULOssO7i8AlwJvkMZ5nwB8lXSi9R1LvgDO0cVyFCGDczhHhVkGkka8/RnwPOmUqc9Es8EB69kra4HlduRioU/OiTsFeAHYh9Qvehapve/OiJimGo897xzFy1GEDM7hHFVmOpF0cqNbgHWAuaSeWk8DT0bEC/XIsTAdtlhIGg6cSzpb1HvA5RFxR8n0gREx2Tm6Xo4iZHAO52hFrv8Au0TEM5LWA4YC65J2di8B3BARf6t3rvn5OnCx+DXwIqldcTNyzwbS0MJDgdsi4lDn6Ho5ipDBOZyjykyLAUMi4pFm9/cEPkM6veuNEfGcm6GqJGkysGZTm6KkB0knLLkaeJzUX/qJOmzOOkfBchQhg3M4R5WZfkHaT/LT5gWjKDrkmfKUjnBcDpgk6TpgLGlc972aP7bGXzrnKFiOImRwDudohYuAY4GbJH0EXAWcGxHT65hh0aIBRwK21wXYBLgSmAl8BBwKLO8czlGEDM7hHK3MNpzUQ+s94Gbg0EZnioiOVyyAPsDppLWB0vt3J40O+THNDpF3jq6RowgZnMM5WpFrKWAIaeynbYGTgD2BP+RMT9Y7U0uXDrfPQtJRwOciYk9JGwLrRMTVJdOXJJ3IZE4tdwQ5R/FyFCGDczhHlZl6A6+Ruu8uRipazwArkbYqlgBeiojnVc9BA1vQEfdZbA+cka8fB5SOFDmcNPjXw1Dz8Vyco3g5ipDBOZyjGsuQDgZcAngECODvwLORT8DUpJGFoilAh7kAawLvA/3z7fuAZUumX08aex5qO1qlcxQsRxEyOIdztCLXckAPUhfeI0lHb/8KOBU4jLT1U5cs5S4dbctiKdKm2ZmSBgH9gLdLpq9C+tCJ/Ek4R5fJUYQMzuEcFVM6ZeuFEbE9cH/uwrs8aQf3Z4BNgXH1yFKJjrjPYjnSWsJw0onVlwSeIp0U5MOIOKQe/aOdo3g5ipDBOZyjijwnActExHGSdgRGRcQPS6b3iYhZ9chSiQ6zZSFpZdKJ1VckHThzBfAn0slARpJGazzGObpejiJkcA7naIUdgSPy9YNJY1IBIGl/YA5wTQNytajDbFlIuoi0JvAm6bSCTwDfiojIvRiWi4hpztH1chQhg3M4R5WZhgPXApvnu24ANomID/P0O4AzI+KOevXMKqfDbFkAG0XECJjf3ewqYG3SEL4fAB84R5fNUYQMzuEc1ZgF3E06d8ViwDtAL6Wjt9cEloo8uGERCgV0kJMfKY05v6GkgyStTurV8KmIeCZPr0vRc47i5ShCBudwjlZ4IyIOJA2LfglpBNyrgR8BPwHuzfm6Nyjff+kQzVCS+pP6SH8GGAisDrwfEVs4R9fOUYQMzuEcVWb6AukI7b9ExK0l968P7ADsDBwWEZPqucO9nA5RLGD+GsCywCBSn+SNgcVJm3OnRMRLztE1cxQhg3M4RxV5xgLXR8SV+fbiEfGh0nDki0fEO/XMU6kOUyxKSepB6tmwJmmc9/MinZe2rofDO0fxchQhg3M4xyKWvzQwPiLWana/SAXteODiiHiu1lmq1SGLRSlJS+adVM7hHIXL4BzO0WyZ6wBnAYcD00n7jT9uamqS9CRp/KrX65mrEh1iB3cZcyD1S5Y0wDmco2AZnMM55ss71ieS9kl8HBFzSwrFLsALEfG6pML9Nnf4LYsmkh4Ato6I2c7hHEXL4BzOUbK8AaSeT58inXxpDLAbaX/KJRExtt7Nc5UoXPUqJekISUssYnq3/HcT4KlafdjOUbwcRcjgHM5RZabFJa1FOghwE9IJl9YE/o+0w/3EiBgLBRhhtiVRgNEMW7oAnwUm5utLAdu38Jju+e8vSQfeOEcXyFGEDM7hHK3INYZ0pPYY4DvNpi1LGn22biPeVnsp8pbFXsBv8vXRpINXAJC0jKRV45PquzkwwTm6TI4iZHAO56iYpE1JI9t+l7QlsYWkUyX9UtJE4DpgYOTKUUiNrlaLqMIvkis+cBOwRcm0s4GT8/XlgJHO0XVyFCGDczhHlZl+DxxZcvtw4FnSeSuGAtvVI0dbLoUcG0rSZ0inGdwu9xBYD3is5CEjSScGISLeBB52jq6RowgZnMM5WmEgsJekjUln6/sscEBE3N/0AKkYAwYuTCF7Q+UDZ4aQPtjBpDf6AeA5oC+wT0Rs5RxdL0cRMjiHc7Qy21rAt4CvkHpCnQ2cE3Ue8ba1CrdlkXsp9AWmRsR4ScsD65IO0d8Y2BK4LD+2Zt3LnKN4OYqQwTmcoxW5jgVuinSMxbeBb0vajLT/Yoqk6yPiS/XI0iaNbgdroW1vX+B84LP59pLAmvn6MqQThvR0jq6XowgZnMM5qsy0DGnfRI98+xvNM5RkXKye2ap+LY0O0MKb+zdg55Lb3wfuAP4IfME5um6OImRwDueoMtOhwC/z9a2BCfm6SC07O1Dg7rKll0J1nZW0NrByRNxccvdoUleza4HdJPVzjq6XowgZnMM5WuEoYFK+viNwMcw/odGXgYPy9cIrVLEAhpF2RgGgNLTwsRFxFfAgsAFQjwG2nKN4OYqQwTmco2KSegHjgc8qDUt+WL7dZBfg+vzYwpzkaGGKVixuA0ZK2lfSYpEG2bouT/sy8O+ICNV+kC3nKF6OImRwDueoWES8DxxBOvvdtcCNwAmSLpJ0GOn4iqvzY4s3vEczheoNFRFvSvoR8EWgm6RnSCNDLgHsB5zgHF0zRxEyOIdzVEPSzsAIYDLpNKk3ko77GE4qYP+KiHn17JnVFoU6zkL5FIKS9gH2Bl7OkzYjbVLe5RxdM0cRMjiHc1SRZwvg58DjQG+gP7B3RExXOiNeX+DdiHi7KXs987VGYbYsJJ0AzFM6cOXvwF2kYXuvIh2+X5eTlDhH8XIUIYNzOEeVvgr8KiL+mDP+irSD+5JII9w2FTM6QqGAguyzkDQcOB1YA7ibdABNT9JOqR1JIzK+4BxdL0cRMjiHc7TC3sCGSsOPQDre4nUALWLo9EJrdN/d3Ay2GHAg8DR56F7gSOCqfL2Xc3TNHEXI4BzOUWWmXqQDBM8gjSb7F2AmsFq9s7Tr62p0gGZv8gakfsh7Af8gj8QIdHOOrp2jCBmcwzmqyNONtFWzAfB14ArgT6QDBAs/wmyLr6nRAfIbKz7Z2b4p8FfgY2Az5+jaOYqQwTmco40ZuwP9gFHAieSTMZFPwNRRLoXqDVVK0iHAJsB5EfG4czhHkTI4h3O0Ru4JNSeK+sO7CIXYwb0Ql5HGoV8J0ljvzuEcBcrgHM5RtYiYHREhaVVJezU6TzUKu2VhZtbZNB2AJ+kUYHxE3NToTJUq8paFmVmHIemLkgYu6jHxyZHaXyCNiNthuFiYmbWPs0nHUyBpO0mLlzaBNY1LJWlT4KlIB+d1GC4WZmZtpHTmu+ci4jGlM/RdQBqJPPL0gSUP3480dHqH4mJhZtZ2hwD/ztd3B+6OiI8AJK0HXBGfDOvxV+Ch+kdsGxcLM7O26w30lHQgcCxpfKomXwLugflNUTd3xK6zhRlI0MysAzuVNBz5YGAKsIGkpUknO/oyaWBBYP5Z8jocd501M2uDXBR6RcSMfH0N0kGBnwZWB1aMiK0kqaMWCnCxMDNrtVwcLgBuBa6NiDmSVicNQd4N+CzwRkQ82lFOcrQwboYyM2u9/YF5wJ8iYm4+p8bvSGfHGx8R5zU9sCMXCvAObjOzttgX+F1EzM23v0XaqvgtMFjS5g1L1s68ZWFm1gqS+pG2Kh4uuftm4PGImCbpGGDp/NgOvb8CvM/CzKzVJF0IfAicEBHvl9y/LKn77EbRQU6bWo6LhZlZK0laEzgBeBR4EHiT1Lx/ALB6RBzQ0XdsN3GxMDNrA0m7AV8B+gCvAdsCvwcuj4gXJHXrDFsXLhZmZq3QfD+EpFWB5UhjRH3QuGS14WJhZlYlSSeQdm4PAcYBc0lbFv8hHcV9V0T8s3EJ25+7zpqZVUHScOB00pHaNwGrkQrFycA+wFLApIYFrBEXCzOz6kwEvg5sCawUEccCb5OO4N4TOC0iXm1kwFpwsTAzq0JEzI2Iy4C9gPXzubT3BS7ND+lQJzWqlIuFmVkVlEXE46QCcTCwGfAeQGfo+dQS7+A2M2sjSYeQRpo9LxeRTsdbFmZmbXcZ8BiwEqStj8bGaX/esjAzs7K8ZWFmZmW5WJiZWVkuFmZmVpaLhZmZleViYWZmZf0/HIrYZpQDiVYAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 410
        },
        "id": "Vhv-Hwzx7mCi",
        "outputId": "e439380f-9308-489c-93c8-6076010d0650"
      },
      "source": [
        "Diesease_Grouping_1 = final_data['DISEASE GROUPING 1'].value_counts()\n",
        "Diesease_Grouping_2 = final_data['DISEASE GROUPING 2'].value_counts()\n",
        "Diesease_Grouping_3 = final_data['DISEASE GROUPING 3'].value_counts()\n",
        "Diesease_Grouping_4 = final_data['DISEASE GROUPING 4'].value_counts()\n",
        "Diesease_Grouping_5 = final_data['DISEASE GROUPING 5'].value_counts()\n",
        "Diesease_Grouping_6 = final_data['DISEASE GROUPING 6'].value_counts()\n",
        "HTN_total = final_data['HTN'].value_counts()\n",
        "Immunocompromised_total = final_data['IMMUNOCOMPROMISED'].value_counts()\n",
        "Other_total = final_data['OTHER'].value_counts()\n",
        "\n",
        "ICU_Diesease_Grouping_1 = ICU_Admitted_data['DISEASE GROUPING 1'].value_counts()\n",
        "ICU_Diesease_Grouping_2 = ICU_Admitted_data['DISEASE GROUPING 2'].value_counts()\n",
        "ICU_Diesease_Grouping_3 = ICU_Admitted_data['DISEASE GROUPING 3'].value_counts()\n",
        "ICU_Diesease_Grouping_4 = ICU_Admitted_data['DISEASE GROUPING 4'].value_counts()\n",
        "ICU_Diesease_Grouping_5 = ICU_Admitted_data['DISEASE GROUPING 5'].value_counts()\n",
        "ICU_Diesease_Grouping_6 = ICU_Admitted_data['DISEASE GROUPING 6'].value_counts()\n",
        "HTN_ICU = ICU_Admitted_data['HTN'].value_counts()\n",
        "Immunocompromised_ICU = ICU_Admitted_data['IMMUNOCOMPROMISED'].value_counts()\n",
        "Other_ICU = ICU_Admitted_data['OTHER'].value_counts()\n",
        "\n",
        "x = np.array([[Diesease_Grouping_1[1],Diesease_Grouping_2[1],Diesease_Grouping_3[1],Diesease_Grouping_4[1],Diesease_Grouping_5[1],Diesease_Grouping_6[1],HTN_total[1], Immunocompromised_total[1]],[ICU_Diesease_Grouping_1[1],ICU_Diesease_Grouping_2[1],ICU_Diesease_Grouping_3[1],ICU_Diesease_Grouping_4[1],ICU_Diesease_Grouping_5[1],ICU_Diesease_Grouping_6[1],HTN_ICU[1], Immunocompromised_ICU[1]]])\n",
        "a = []\n",
        "c=1\n",
        "for i in x[0]:\n",
        "  a.extend([c]*i)\n",
        "  c+=1\n",
        "plt.hist(a, 15, label='Total')\n",
        "b = []\n",
        "c=1\n",
        "for i in x[1]:\n",
        "  b.extend([c]*i)\n",
        "  c+=1\n",
        "print(x)\n",
        "plt.hist(b, 15, label='ICU Admitted')\n",
        "plt.xticks([1,2,3,4,5,6,7,8,9],['Diesease_Grouping_1','Diesease_Grouping_2','Diesease_Grouping_3','Diesease_Grouping_4','Diesease_Grouping_5','Diesease_Grouping_6', 'Hypertension', 'Immunocompromised'], rotation = 70)\n",
        "plt.legend()\n",
        "plt.ylabel('Frequency')\n",
        "plt.title('Disease Distribution Total and ICU Admitted')\n",
        "plt.show()"
      ],
      "execution_count": 17,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "[[28  7 25  6 34 14 50 48]\n",
            " [12  5 14  5 17  5 26 22]]\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAFoCAYAAABQVZB6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3debwe893/8ddbJCIklog1NEEQIZI0UUqtVftaO220Wne1fmppS922trfe9LZTShdUiaBVaqul9iqCWGMrIYktYtckhM/vj+9cyeQ4SU5yneuaOWfez8fjPM65tpn3Ndd1PjPzne98RxGBmZlVx0JFBzAzs+Zy4TczqxgXfjOzinHhNzOrGBd+M7OKceE3M6sYF/4GkfQbSccVnaM9SFpF0oeSurTT9GYuG0mbSZrYHtPNpvcVSc+21/Saqb2XxTzmdbGk/2nGvNqDpDslfWcBX9vQ/0VJ/SSFpIUbNY/25sK/ACSNlzRV0geS3pX0T0nfkzRzeUbE9yLiF0XmbAtJB0j6NCvsH0p6SdJFktaoPSciXomIxSPi0zZM6955zbM9l032D7d6btr3RMSa7THt3Dy+kls+H2Xz/DD3s8ocXneipD+1Z5ZmaO1zlLSvpDHZ+31N0k2SNs4e+9xKpC3FUMmLkp5uzDtJ8t+31lauHfVzqocL/4LbMSJ6Al8ATgaOAn5fbKQFdn9ELA4sAXwVmAo8LGmd9p5Re+01NFO2Mlk8W0aDsruXrN0XEa8Uma/RJB0BnAn8ElgOWAU4D9i5zklvAiwLrCppRJ3Tsvngwl+niHgvIq4D9gJG1oplfitI0jKSrs/2Dt6WdE9t70DSipL+LGlytrV9aG3aktaXdH/2utcknSupW/aYJJ0h6U1J70t6IjfvRSSdKukVSW9ku7qLtuG9fBoR/46I7wN3ASdm05tt6y3bInwx2+N5SdJ+kgYCvwE2zLYK380th/Ml3SjpI2DzOWwhHiPprWxvar/c/bPt4ue3RiXdnd39WDbPvVpu0UkamE3jXUlPSdop99jFkn4t6YbsvTwgabV5LacWuVeUdF32ub4g6bvZ/dsAxwB7Zdkey+7/lqRx2fxelPRf8zGvsyRNyD7vhyV9JffYiZKulPTHbNpPSRqee3yopEeyx0YD3ds4zyWAnwM/iIi/RMRHEfFJRPwtIn7c1uxzMBK4Frgx+zs/360kPSPpPUnnAso9doCk+7Lv/7vZcvxydv+E7H9iZO75F0v6H0mLATcBK2rW3tq+tP45LSHp99n/3aTs9V2yx7pk/19vSXoR2L7O5dB0LvztJCIeBCYCX2nl4SOzx/qQtpiOAUKp+P8NeAxYCdgSOEzS1tnrPgUOB5YBNswe/3722NdIW0xrkLbU9wSmZI+dnN0/BFg9m/bx8/mW/tLae8n+ec4Gts32eL4MjI2IccD3yPYeImLJ3Mv2BU4CegKtNQUtn73HlUgF4EJJ82yuiYhNsj/Xy+Y5ukXWrqTlewtpy/L/AZe1mPbewM+ApYAXspzz4wrSZ7sisDvwS0lbRMTNpC3k0Vm29bLnvwnsAPQCvgWcIWlYG+f1EOkzXRq4HLhKUr6A75TlWRK4DjgXQGlj4a/ApdlrrwK+3sZ5bkhaSVzTxue3iaQepOV1Wfazt2Zt1CxD+v4dS/pe/BvYqMUkvgQ8DvQmLYsrgBGk7/v+wLmSFs+/ICI+ArYFXs3trV1O65/TxcCMbHpDSf9vtQ2Q75I+w6HA8Ox9dCgu/O3rVdI/VkufACsAX8i2lu6JNEjSCKBPRPw8Ij6OiBeB35KKERHxcET8KyJmRMR44AJg09w0ewJrAYqIcRHxmiQBBwGHR8TbEfEB6Yu9dzu9F4DPgHUkLRoRr0XEU/OY1rURcV9EfBYR0+bwnOMiYnpE3AXcQFqR1WsDYHHg5Gz5/gO4Htgn95xrIuLBiJhBKkBD2jpxSSuTCtJRETEtIsYCvwO+OafXRMQN2V5VZO/1FlrfWGjttX+KiCnZ9+E0YBEgvxK7NyJuzI7FXArUitgGQFfgzOz7dzVpJdIWvYG3suXTnnYDppPe/w1ZvtqW83bAUxFxdUR8Qmpmer3F61+KiIuy9zoaWBn4efYdugX4mFS055uk5bIMh2V7OG8CZzDrf2hP0rKcEBFvA/+7IPMpkgt/+1oJeLuV+/+PtDV5S7ZbenR2/xdIu53v1n5IewPLAUhaQ6mJ6HVJ75MK+DIAWRE7F/g18KakCyX1Iu1V9CC10demeXN2f93vJdtq2ou0df9a1kyy1jymNWEej7+TTbfmZdIWdL1WBCZExGctpr1S7na+oPyHtKKYn+nXVq5zmv5sJG0r6V9Z09C7pAKzTFtmJulHWTPRe9lrl2jx2pbvpbtS89yKwKSYfUTGl9syT9Je5DKae4+VGaTCndeVtIHw2eefDqQ9uyuzldg04M/Mau5Zkdx3Jsvd8jv0Ru7vqdnzWt43P59l3hey/K/l/ocuIO01fi4fbV+WpeHC306UDk6tRCtNGRHxQUQcGRGrknbHj5C0JenL81JELJn76RkR22UvPR94BhgQEb1IKwXlpnt2RHwRWJvUtPNj4C3Sl35QbppLZAcm58euwD2tPRARf4+IrUh7Mc+Q9lIA5jTU67yGgF0qa0KqWYW0xwHwEWlFVrP8PKaV9yqwsnK9rbJpT5qPacxr+ktL6jmH6c/2viUtQipwpwLLZc1hN5L7TOcka8//CWlrc6nste+15bXAa8BK2d5gPmdb3E/aMt9lLs95BejX4r7+fH6lC4CkvsAWwP7ZRs3rpOaS7bJmntdIW/C15yt/u06tfRdb3jeB9J6Xyf0P9YqI2oH92fLR9mVZGi78dZLUS9IOpDbGP0XEE608ZwdJq2df4PdIbfefAQ8CH0g6StKi2UGjdTSrh0NP4H3gw2yr+uDcNEdI+lLWjv0RMA34LPtH+y2p7XjZ7Lkr5Y4bzO29dJHUX9I5wGaktu+Wz1lO0s5ZoZ4OfMisrbo3gL61ttr59DNJ3bICtwOpHRpgLLCbpB5K3TYPbPG6N4BV5zDNB0hbvj+R1FXSZsCOpM+qbhExAfgn8L+SuksanOWrdQ18A+iXW/F0IzXPTAZmSNqW1HbcFj1JW9aTgYUlHU86TtAW92evPTRbDrsB67flhRHxHun40K8l7ZJ9Dl2zPZdfZU/7M7C9pK9l36EVSe3zc1rO3wCeIzVTDcl+1iAdK9mH1PQzSNJu2Z7GoczfCn9u3gB6Kx20zt8383OKiNdITVCnZf/fC0laTVKtmfVK0rLsK2kp4Gg6GBf+Bfc3SR+Qtg7+GziddLCuNQOA20hF8n7gvIi4I2uf3IH0xX+JtLX+O9IuPMCPSAdGPyAV8/zBy17Zfe+QdjWnkJqUIHUtfQH4V9ZEdBuztwW3tKGkD0krmTuzaY9obSVG+s4cQdrafZt0zKG2QvoH8BTwuqS35jK/ll7P3serpHb270XEM9ljZ5Daa98ALskezzsRuCTbJZ/tuEBEfEwq9NuSlu15wDdz024P+5C2dl8lHQA9ISJuyx6rrbymSHokaxI6lFQ43iF9tte1cT5/JzXZPUf6vKcx7yY0YOZy2A04gPSZ7UU6eNom2fGEI0jFfHI230NIB4zJjvHsQ2rrfpv0HX+AVjYcMiNJ/wOv539IvcJGRsRbwB6kTgpTSP8/97U17zzeyzPAKODF7DuzIi0+p+zvb5JW1E+TPqurSXu4kP7v/k7qlPEI87Esy0LhC7GYmVWKt/jNzCrGhd/MrGJc+M3MKsaF38ysYlz4zcwqpkOMH73MMstEv379io5hZtahPPzww29FxOfO2u8Qhb9fv36MGTOm6BhmZh2KpFaHk3BTj5lZxbjwm5lVjAu/mVnFdIg2/tZ88sknTJw4kWnT5jS8uzVb9+7d6du3L127thyh18zKpMMW/okTJ9KzZ0/69evH7KPNWhEigilTpjBx4kT69+9fdBwzm4uGNvUoXT/1CUljJY3J7lta0q2Sns9+L7Ug0542bRq9e/d20S8JSfTu3dt7YGYdQDPa+DePiCERUbvw89HA7RExALidOsaydtEvF38eZh1DEQd3dyaNq072e25X9imtKVOmMGTIEIYMGcLyyy/PSiutNPP2xx9/PNtzzzzzTP7zn//Mc5qbbbaZz1cws4ZrdBt/kK4zG8AFEXEh6ZJzr2WPv052fdmWJB1Eumg4q6wy7yub9Tv6hnYJXDP+5O3n+njv3r0ZO3YsACeeeCKLL744P/rRj1p97plnnsn+++9Pjx49Wn3crDNqz//Jef0/2vxp9Bb/xhExjHQFpB9I2iT/YHYR5VavBBMRF0bE8IgY3qfP/F4nvBi33347Q4cOZd111+Xb3/4206dP5+yzz+bVV19l8803Z/PNNwfg4IMPZvjw4QwaNIgTTjih4NRmVjUNLfwRMSn7/SbpsnTrA29IWgEg+/1mIzM0y7Rp0zjggAMYPXo0TzzxBDNmzOD888/n0EMPZcUVV+SOO+7gjjvuAOCkk05izJgxPP7449x11108/vjjBac3syppWOGXtJiknrW/SReVfpJ0jdGR2dNGAtc2KkMzffrpp/Tv35811lgDgJEjR3L33Xe3+twrr7ySYcOGMXToUJ566imefvrpZkY1s4prZBv/csA1WU+PhYHLI+JmSQ8BV0o6kHTR6D3nMo1O56WXXuLUU0/loYceYqmlluKAAw5wF0gza6qGbfFHxIsRsV72MygiTsrunxIRW0bEgIj4akS83agMzdSlSxfGjx/PCy+8AMCll17KpptuCkDPnj354IMPAHj//fdZbLHFWGKJJXjjjTe46aabCstsZtXUYc/cLZvu3btz0UUXscceezBjxgxGjBjB9773PQAOOuggttlmm5lt/UOHDmWttdZi5ZVXZqONNio4uZlVjVLHmnIbPnx4tOzfPm7cOAYOHFhQIpsTfy5W4+6cxZP0cO7k2Zk8OqeZWcW4qcfMKsV7It7iNzOrHBd+M7OKceE3M6sYF34zs4px4a/D4osvPvPv5557ju22244BAwYwbNgw9txzT9544w0uvvhiDjnkkNleN7fhl9966y26du3Kb37zmznO98QTT+TUU0+dr6xf/vKXARg/fjyXX375zPvHjh3LjTfeOF/TAg8hbdaRdZ5ePScu0c7Te6/NT502bRrbb789p59+OjvuuCMAd955J5MnT57v2V511VVssMEGjBo1auYJYO3hn//8JzCr8O+7775AKvxjxoxhu+22a7d5mVm5eYu/HVx++eVsuOGGM4s+pC3iddZZZ76nNWrUKE477TQmTZrExIkTZ95/0kknscYaa7Dxxhvz7LPPzjafww8/nOHDhzNw4EAeeughdtttNwYMGMCxxx4783m1vZOjjz6ae+65hyFDhnDKKadw/PHHM3r0aIYMGcLo0aP56KOP+Pa3v83666/P0KFDufbaNIbe1KlT2XvvvRk4cCC77rorU6dOne/3Zmbl0Hm2+Av05JNP8sUvfrHu6UyYMIHXXnuN9ddfnz333JPRo0dz5JFH8vDDD3PFFVcwduxYZsyYwbBhw2abX7du3RgzZgxnnXUWO++8Mw8//DBLL700q622Gocffji9e/ee+dyTTz6ZU089leuvvx6A5ZZbjjFjxnDuuecCcMwxx7DFFlvwhz/8gXfffZf111+fr371q1xwwQX06NGDcePG8fjjjzNs2LC636+ZFcNb/A02p+vQtnb/6NGj2XPPNFjp3nvvzahRowC455572HXXXenRowe9evVip512mu11tdvrrrsugwYNYoUVVmCRRRZh1VVXZcKECfOV95ZbbuHkk09myJAhbLbZZkybNo1XXnmFu+++m/333x+AwYMHM3jw4PmarpmVh7f428GgQYO46667Wn2sd+/evPPOO7Pd9/bbb7PMMst87rmjRo3i9ddf57LLLgPg1Vdf5fnnn5/n/BdZZBEAFlpooZl/127PmDGjze8DICL485//zJprrjlfrzOzjsNb/O1g33335Z///Cc33DDrVPC7776bJ598khEjRnDffffx+uuvAzBmzBimT5/OyiuvPNs0nnvuOT788EMmTZrE+PHjGT9+PD/96U8ZNWoUm2yyCX/961+ZOnUqH3zwAX/7298WOGt+iOjWbm+99dacc8451Abve/TRRwHYZJNNZvYGevLJJ33VMLMOzIW/HSy66KJcf/31nHPOOQwYMIC1116b8847jz59+rDccstx1llnsd122zFkyBAOO+wwRo0axUILzb7oR40axa677jrbfV//+tcZNWoUw4YNY6+99mK99dZj2223ZcSIEQucdfDgwXTp0oX11luPM844g80335ynn3565sHd4447jk8++YTBgwczaNAgjjvuOCBdJ/jDDz9k4MCBHH/88e1yTMPMiuFhma1d+XOxmrIOhlbWXI3gYZnNzAxw4TczqxwXfjOziunQhb8jHJ+oEn8eZh1Dhy383bt3Z8qUKS42JRERTJkyhe7duxcdxczmocOewNW3b18mTpy4QAOhWWN0796dvn37Fh3DzOahwxb+rl270r9//6JjmJl1OB22qcfMzBaMC7+ZWcW48JuZVYwLv5lZxbjwm5lVjAu/mVnFuPCbmVWMC7+ZWcU0vPBL6iLpUUnXZ7f7S3pA0guSRkvq1ugMZmY2SzO2+H8IjMvdPgU4IyJWB94BDmxCBjMzyzS08EvqC2wP/C67LWAL4OrsKZcAuzQyg5mZza7RW/xnAj8BPstu9wbejYgZ2e2JwEoNzmBmZjkNK/ySdgDejIiHF/D1B0kaI2mMR+A0M2s/jdzi3wjYSdJ44ApSE89ZwJKSaqOC9gUmtfbiiLgwIoZHxPA+ffo0MKaZWbU0rPBHxE8jom9E9AP2Bv4REfsBdwC7Z08bCVzbqAxmZvZ5RfTjPwo4QtILpDb/3xeQwcyssppyIZaIuBO4M/v7RWD9ZszXzMw+z2fumplVjAu/mVnFuPCbmVWMC7+ZWcW48JuZVYwLv5lZxbjwm5lVjAu/mVnFuPCbmVWMC7+ZWcW48JuZVYwLv5lZxbjwm5lVjAu/mVnFuPCbmVWMC7+ZWcW48JuZVYwLv5lZxbjwm5lVjAu/mVnFNOVi62adSb+jb2iX6Yw/eft2mY7Z/PIWv5lZxbjwm5lVjAu/mVnFuPCbmVWMC7+ZWcW48JuZVYwLv5lZxbSp8Etat9FBzMysOdq6xX+epAclfV/SEg1NZGZmDdWmwh8RXwH2A1YGHpZ0uaStGprMzMwaos1t/BHxPHAscBSwKXC2pGck7daocGZm1v7a2sY/WNIZwDhgC2DHiBiY/X3GHF7TPWseekzSU5J+lt3fX9IDkl6QNFpSt3Z6L2Zm1gZt3eI/B3gEWC8ifhARjwBExKukvYDWTAe2iIj1gCHANpI2AE4BzoiI1YF3gAPreQNmZjZ/2lr4twcuj4ipAJIWktQDICIube0FkXyY3eya/QRpL+Hq7P5LgF0WMLuZmS2Athb+24BFc7d7ZPfNlaQuksYCbwK3Av8G3o2IGdlTJgIrtT2umZnVq62Fv3tu653s7x7zelFEfBoRQ4C+wPrAWm0NJukgSWMkjZk8eXJbX2ZmZvPQ1sL/kaRhtRuSvghMbetMIuJd4A5gQ2BJSbULwPQFJs3hNRdGxPCIGN6nT5+2zsrMzOahrVfgOgy4StKrgIDlgb3m9gJJfYBPIuJdSYsCW5EO7N4B7A5cAYwErl3A7GZmtgDaVPgj4iFJawFrZnc9GxGfzONlKwCXSOpC2rO4MiKul/Q0cIWk/wEeBX6/gNnNzGwBzM81d0cA/bLXDJNERPxxTk+OiMeBoa3c/yKpvd/MzArQpsIv6VJgNWAs8Gl2dwBzLPxmZlZObd3iHw6sHRHRyDBmZtZ4be3V8yTpgK6ZmXVwbd3iXwZ4WtKDpKEYAIiInRqSyszMGqathf/ERoZolH5H39Bu0xp/8vbtNi0zsyK1tTvnXZK+AAyIiNuycXq6NDaamZk1QluHZf4uaWC1C7K7VgL+2qhQZmbWOG09uPsDYCPgfZh5UZZlGxXKzMwap62Ff3pEfFy7kY21466dZmYdUFsL/12SjgEWza61exXwt8bFMjOzRmlr4T8amAw8AfwXcCNzvvKWmZmVWFt79XwG/Db7MTOzDqytY/W8RCtt+hGxarsnMrNOYXz3fdtxau+147RsfsbqqekO7AEs3f5xzMys0drUxh8RU3I/kyLiTNIF2M3MrINpa1PPsNzNhUh7APMzlr+ZmZVEW4v3abm/ZwDjgT3bPY0Vpr3GNfKYRmbl19ZePZs3OoiZmTVHW5t6jpjb4xFxevvEMTOzRpufXj0jgOuy2zsCDwLPNyKUmZk1TlsLf19gWER8ACDpROCGiNi/UcHMzKwx2jpkw3LAx7nbH2f3mZlZB9PWLf4/Ag9Kuia7vQtwSWMimZlZI7W1V89Jkm4CvpLd9a2IeLRxsczMrFHa2tQD0AN4PyLOAiZK6t+gTGZm1kBtvfTiCcBRwE+zu7oCf2pUKDMza5y2bvHvCuwEfAQQEa8CPRsVyszMGqethf/jiAiyoZklLda4SGZm1kht7dVzpaQLgCUlfRf4Nr4oi5l1QL5OQBsKvyQBo4G1gPeBNYHjI+LWBmczM7MGmGfhj4iQdGNErAu42JuZdXBtbeN/RNKIhiYxM7OmaGsb/5eA/SWNJ/XsEWlnYHCjgpmZWWPMtfBLWiUiXgG2nt8JS1qZNNTDcqTeQBdGxFmSliYdM+hHdkGXiHhnfqdvZmYLZl5NPX8FiIiXgdMj4uX8zzxeOwM4MiLWBjYAfiBpbeBo4PaIGADcnt02M7MmmVfhV+7vVednwhHxWkQ8kv39ATAOWAnYmVkDvF1CGvDNzMyaZF6FP+bw93yR1A8YCjwALBcRr2UPvY6HdzYza6p5HdxdT9L7pC3/RbO/YdbB3V7zmoGkxYE/A4dFxPvptIAk6yra6gpF0kHAQQCrrLLKPN+ImZm1zVy3+COiS0T0ioieEbFw9nftdluKfldS0b8sIv6S3f2GpBWyx1cA3pzDvC+MiOERMbxPnz7z967MzGyO5mdY5vmSnfH7e2Bci4uxXweMzP4eCVzbqAxmZvZ5be3HvyA2Ar4BPCFpbHbfMcDJpLF/DgReBvZsYAYzM2uhYYU/Iu5l9l5BeVs2ar5mZjZ3DWvqMTOzcnLhNzOrGBd+M7OKceE3M6sYF34zs4px4TczqxgXfjOzimnkCVxmnVL7Xay7Y16o2zo+b/GbmVWMC7+ZWcW48JuZVYwLv5lZxbjwm5lVjAu/mVnFuPCbmVWMC7+ZWcW48JuZVYwLv5lZxbjwm5lVjAu/mVnFeJA2AzzwWEfX7+gb2m1a40/evt2mZeXkLX4zs4px4TczqxgXfjOzinHhNzOrGBd+M7OKceE3M6sYF34zs4rp1P34269vOrh/upl1Ft7iNzOrGBd+M7OKceE3M6uYhhV+SX+Q9KakJ3P3LS3pVknPZ7+XatT8zcysdY3c4r8Y2KbFfUcDt0fEAOD27LaZmTVRwwp/RNwNvN3i7p2BS7K/LwF2adT8zcysdc1u418uIl7L/n4dWK7J8zczq7zCDu5GRAAxp8clHSRpjKQxkydPbmIyM7POrdmF/w1JKwBkv9+c0xMj4sKIGB4Rw/v06dO0gGZmnV2zC/91wMjs75HAtU2ev5lZ5TWyO+co4H5gTUkTJR0InAxsJel54KvZbTMza6KGjdUTEfvM4aEtGzVPMzObN5+5a2ZWMS78ZmYV48JvZlYxLvxmZhXjwm9mVjEu/GZmFePCb2ZWMS78ZmYV06kvtl5G/Y6+od2mNf7k7dttWmZWHd7iNzOrGBd+M7OKceE3M6sYt/Fbafl4iFljeIvfzKxiXPjNzCrGhd/MrGLcxt9k47vv245Te68dp1U+XlZt52Vl88Nb/GZmFePCb2ZWMS78ZmYV48JvZlYxLvxmZhXjwm9mVjEu/GZmFePCb2ZWMS78ZmYV48JvZlYxLvxmZhXjwm9mVjEu/GZmFePCb2ZWMS78ZmYV48JvZlYxhRR+SdtIelbSC5KOLiKDmVlVNb3wS+oC/BrYFlgb2EfS2s3OYWZWVUVs8a8PvBARL0bEx8AVwM4F5DAzq6QiCv9KwITc7YnZfWZm1gSKiObOUNod2CYivpPd/gbwpYg4pMXzDgIOym6uCTy7ALNbBnirjriN5nz1cb76OF/9yp5xzYjo2fLOhQsIMglYOXe7b3bfbCLiQuDCemYkaUxEDK9nGo3kfPVxvvo4X/3KnlHSmNbuL6Kp5yFggKT+kroBewPXFZDDzKySmr7FHxEzJB0C/B3oAvwhIp5qdg4zs6oqoqmHiLgRuLEJs6qrqagJnK8+zlcf56tf2TO2mq/pB3fNzKxYHrLBzKxiXPjNzCrGhd8aRpK/X2YtSPpcv/pm8z+mNUxEfAagTNF5OoJsUS3ayn2lWH6SukhapsV9pcjWEUjqCvxE0rckfVFS9yJyFNKrp8yycws+jYhPi87SGkmrAl8CtgNuAK4GPqsV2aJJWgvYBNgROCUi7o0S9SCQtCWwODAGmJyNF4WkhSNiRqHhku2AXsCo2h1lWn7AfqTxtg6BWcutmctPUpeI+FRSf2BTYBVgdEQsyNn9zbYcMB0YCGwEvCrpCeBx4Plm/R+7V08Lko4DXgGeAF6OiCkFR5qNpOuAF4HngS8D50fEvcWmmkXSzcBdwKdAD+BRYF/g+oi4tMhsAJJGAVuRThp8Ebgc+BrwZkT8pchsAJJuBU6PiJskDQC2yX4uj4jLik0Hku4DfhkRN0jaHDgQWJHUPfvciJjWxCyPALcDSwFfAd4EbgFOA6aWbIU5G0mnAWsBAsYBS5K+j/+IiPsbHiAi/JP9AP2Az4A/AL8D/hvYCVg3e/wSYMOC8z2Wu/1N4BFgqez2L4H1Csz3BWBs9vfiwEfAT4CDgbHA7iX4jAeRVkxHAL8CbgWmAWdmy7dbwcvv37nbfweOB34IPAzsUvCy60kq8N2z208AmwO7ZMvxl0CXBmeobaz2A27O3b8osAdpRTCg6O/ZPN7DwsBzudtDgN+TRjUYln+fjfpxG//svs3zWsYAABt5SURBVAD8D3AYaVd7EdKX6SBJxwA7kLZgi7IBcHftRkT8kfRFP1jSIqRmgmcKygawIXB99vc6wA0R8auIOB/4f8B+RR/wjXSW+HHAYhHxE+AE4A2gD+mfr8gmsyHAB5KOlPQbYKGI+HlEnAX8CPhmkcsvIj4gff/+KGkb0kbIHRHx14jYirQSaHR7f236GwBvShouqVtETI2IqyJiy4h4vsEZ6rUqMCFrFiUixkbEgcD7pJUpkVX/RnEb/+zGkJp33icV1NslLU8aHfQM4NaImFZrYywg3wPAO5IWjYip2X0XA0eStqzHRsR0SQtFMW3+9wO1ZqfXgGNzj60OvBsRnxWYr3YhoAeAL0vai7QHcHFEnCBp+Ujt1UXl+xdwNNAfWB74U+6xfsD7RS+/iDg52wjaDVhB0sGk3F8FJmXLr2H/H7n3vR7p//IE4G9ZE9TEiHivEfNtL9mB8OdJe3O/kHQDaY9zbeCdiPikGZ+v2/jnINuyitqaN2t7/XVE/LXAwt8qSacAPwY2i4i7iywMcyLpFlLb9c1lyJf1nPkTsCswOCKeLDJPnqQepHbzdyPirey+vwNnFLn8JCkiQlIf0t7vJkA3YApp3K0LIuLxZuWTtDCpbX9fYADwb+D7ETG90fOul6TepJXnKqTsrwK/iYjnXPhLIvuCDYyIJwrOodZ2ASWtCJwTEV8vINY8SVoD+GZEHDvPJzeZpA0i4l9zWrZNzjKnz3dl0vI7qYBYc5X1rPkwIiY3YV4LZXs8GwMjgC+S9jAvJR0c3SgirizDZ9lSrifSxqS9o+VJvfLuBj7O7cE3J0/Jlk9p5bZ2Fm32h9QWuX+KxSLio6LztFS2fC23qjrA51vL1yMi/lN0FlLt+NxWqaTu0cCePdmxrHuBa4AXSD2yepNWjB80ar7tJWuSOo3UseDHEXFNdrzkwYh4u1k5fHC37WoHlQ7NdtNKo8UBvx+UMF/+gF8p8rVStMr8+YpZ+Q4pOl8ksy2/3Hfwh43Il5v+HsCEiPglcBXwfeAp0nGuUpO0OvBRpG7DbzNrhOKTSf37m8aFvxWt9ZzItlZ7AHuSPrTCtMwXEZ/l8u1F+fJFmfNB6T/fyi+/3IrmFeDtbM8nIp2AN4nUdFL2YUIWBh6T9DvghawjxrqklcG4ZgYp80Jquuyg1cwvmWbpkj1lT9KFYwppH3M+56tiPklLKhsmIiLuJh1QflrSHyX9F+ls4qvbc56NEBHPkHoLrgZMlHQ6cBLZWdq55dhwlW/jz7WdrgH8L3AP6fTpf7VsS1XqWfGNiHjT+RY43/7NOBDofJ0nn1K323Gkbo/LRsS9SgeVdyd16bwgIh5qz3m2F806ttWfdI7IZGBj0nkIk0nv65/ZnkvTuB9/ajsN0slPywKbkfqc7yXpIeCeiHhW0gqkftRNK6qdMN97zSxaztdp8j1Nasc/DFhH0tdIBfMy4PWssJauJ08LpwAPRMRpksaTlulzEfFyEWEqv8UPM0fMe4o0+FlP0gk0RwKfAC+RjsK/BywXES85n/M5X3PzSRJp7KcNgKGk/u8Lk44nnFLmHj3Z8nuUNLjd2sB5pOFM7gdOKqKXm9v4k3WAlyLinYh4JSLuAr5HaktchNTt6j9F/NM5n/NVOZ/SOTQA3yKNY3N7RJxKWvH8hXS2bumKfraiqlmV1Dy2KfBz0ln2u5EGC2xqE0+NC3/yAvCepFsk7SWpH6n98GXSUA2DC8wGzlcv56tPYfli1lDPh5BG30TS/5IO5j4bEb9p1LzrkR0XWS37+1ngQeAg4IqIuBPYmbQy/UQF9ERy4ScNPhURe5KOrn8RuJl0ZuBppC2b6wqM53x1cr76FJWvttUsaTPSlv2zko4i9Xl/hHROSClrmNLZ1vtLWljSQcDvImLXiPij0sVXtgB+XVi+qrbxa9Yp1GuQRpUcTxod70NSX+EgtSEeBfyq2e1wzud8zjczy4akk5w+Ix1rOJY0lv0vImKrMh7YVRoLqhuwNGkF2Q2YQOrOeQNpp6Bp1y74XL6SLa+mUxp8bQawGGnX9UnS0Kj3Rhqls1DOVx/nq09Z8kkaRtpKHhURk5QG/bskIi5TyQZNzMv2WhYhHSfZlDSq6OrAzyPi5qJyVbI7Z65v8gBgRkRsm92/FWnsj6NIB2MK+cdzPuerer5c//fepEtRvgdcCExVulj5vcAVAGUr+rnlVyv4y0bETcCYbE9gM1JT1RwH5mu0ShZ+0hCyM0jdq3pIWi8iHouIW4FbVfxAYs7nfFXPVyuGZ5C6QI4njWP/TPb3GWUr+DkLkS49+nPS1v0XJF1GGoP/N9lKACjuesqVLPy5ngKLkM4G/JmkJ0l9bR+IiIkq9mIXzud8lc6XbTEvB/SPiOGSRpCONQwHtgZ+CpSuGyfMtgeyCelyo5MkrUK6BOltkg6NdFW6wlSujV/SrsB/gNuyg1fdSG1vw0iXXuwB/KCoLS7nc76q58s18+wD7BgR++YeW5zUn//uOU+hOLlmnq6kvvqfArdHxDu55ywc6UplhR2UruIW/wRgInCUpF1IZ9FdHRG3Zl2wVo2Ijwr8UJzP+SqdL7cnsTSwuaQ7SUMw3xjpJLFSFv1MrZnnF6S2/GlAf0kTgOdIx0Y+heKaeaCCW/w1SqP97QBsQ7ru6qPAnyPi2kKDZZyvPs5XnzLkyw6ErkQ61rARsDJpqIODooRn69YonW38IPAd0rWS1yJdLKYX6fKjTR2CuTWVKvy53bCZVxCStBSwFPB1UtvhthHxifM5n/M1P1+umacvs84IHkdqzx9A2uO4rFHzr4dmnfuwOWk5/SS7fyHSexkM/KmoYzd5VSv8tS/VgaSxP14lrZmvjzRWdu15hexmO5/zOd/MedxEGgDum6Q2/eckLRkR7zZyvu1B0tmkISbuBU6IiDsKjvQ5pTzduVGyL/WKwDGkI+yjSbtgf8vW0rXnFbI2dD7nq3K+bMsYSVuThnj+PjAuK/qrAqMkLdaIebeniDiUWRdTv0DSq5Iuk9Qj25sqXGUO7mpW97ONgFsj4gnSGYh/ljSOdPWgwtbMzud8Vc+XawLpBzwg6cTcPNcFPskOLBfW1XVONPsJZ/2APsANEXGK0lnHB0aLC9cUqTJb/LkvyiBgS0k/lbRedt9yZEfaNWsYWOdzPucrJt/FpHH/9wH+IenLpJEtR2ePl2KrOS+3/E4B/g/YCfiepGMi4pGI+EFx6T6vUm38AJI2IV1QYrXsrhGkLmynRwn6BjtffZyvPkXnUxqQrSfpXIIDgUVJZxE/BJxdZBfIOckdFB9KGj9osKTlSePw/zdwE3BemfZSKlH4c7thOwBTIuJ+SUuTvuCbkL5oU4HnI+JC53M+52tuPqWhl0UqlEdHxJjs/r7AIhHx70bMtz1J2hQYGRHfzt23OXBwpGGtS6MSbfy5Ne1AYBtJ00nDo46OiJskDSJ1VWv29Uydz/kqn0/pLNfPSNfUHQrsLWlJ4I5Iw0P8UtJvo7grkLXVNNK4PH8GriGNZLo/aSjpmd09C8w3UyW2+GuULoDQmzQ06k6kE0P+HRF7ZI8XetDI+ZyvivlyexzHkppHxgIbk8YKmgKMiIh123u+7SHXzLMFsE1E/ETSd0jHSrYCLgXOj4j3a88tNHCm02/x5xd2pAsfTJL0BmlY1GOAF7PnFfJP53zOV/V8ueluQLrIymPALaQTttYArs0ylGaLOUekkURXBt7I7rsauCoiDs8vt7IUfahAr55sbdxV0oOSfiZp9YiYERGvA8uSxs+AWcPAOp/zOV+T8kkzL684gNSWPzaSZ0jdIU+LbJiIEhb92rkPXUkrrN0lbRAR70bEe7XHi03Yuk7f1KNZp1HvQNp93ZJ0JaFHgO2B9SKikCvdO5/zOd/MHDsBZ2XzvQC4P0o8Hk9NrplqK2A70jJ8hdT19MqIeLvQgHPQ6Qt/jdJVexYG3iUNPLU8cGdEvFR026rzOV/V80kaSDq4PJQ0KudnpKaT30bEG3N7bRko9YIS8DZpBXAC8K9IZ/GWTqct/LmDLkuTTqpYitS09RHp4tBPOJ/zOV9x+XIZRDpJrHZt3xWANUln654QxV6NrFW57MsA55JWml1Iy++UiHhCUreI+LgMK/aWOnPhr+3C/jewCnA26UPZgbRVcWQUOOCT8zlf1fPlmkmOI12icH/ShVduzB7vVmQz2Nzksh9BGnXzJOAT0tb++sBRZd5T6bQHd3MHgtYBRkXEUxExPiLOJZ2QsmNx6ZyvXs5XnzLkywrnosA+ETGS1L7/Unaw+VzSWPyllNuCX510tu7z2fI7j9Qldrfi0s1bpy38MLNf8jXA2ZL2yG5D6iL2aPacwsb9cD7ncz42J43HMwz4KNJFSrqRrl71SoPnXRelYRl2Io0aepCkHtlDC5FdJUzZiKNl0ymbenK7sYeRLnW2IumA1RDSGONPR8Rhzud8zldsPqUzdL8DbEva8/idpKOBgRExUuXsuz+T0pASu5CaeEaQzt79Z0TsVWiweeiUhb9G0g2ky7RNkrQsacCn3sCjtYNKUeACcD7nc76Z4/QcT9pSnpT9PjkiHivjgdGabIv/nYiYnm3Zr0XqAvsVUrv/TyLiyiIzzkmnO3M3d7R9CKlL2DcknRsRb2ZPebn23CL+6ZzP+aqeL3dgdDFgC1Jvnq8D/Uk1aUzMOtu1VEU/l31D0gXV15B0M3AXcB9wJulA+YbAC8UlnbtOV/hzX9bFSWcbbg+sJOl20hggk6Kga5o6n/M532zF/FrSimZdYEngVlL3zVIV+xZqy+8w0jg81wAHkFZcPwQuzg7w3llEuLbqVE09khYn7W7NiIix2X2rkNrgtiT1Dz4wCupD7XzOV/V8uT2OQcDvI2KD7P4VgZ8DD0TEbxs1//Yi6RvAixFxX+6+9YFpEfF4mZuoAIiITvMDHAH8FhiS3V6FdNBo2ez2hsBCzud8zldMPqBL9nsP4A+k5p0e2X1fJR0YhWyjtEw/ueybAueTztI9h3TuQ7ei883PT2fb4n8A+FZEPJ3dPpf0xXoFuDsiRhV5QM35nM/5Zma5CPgycA8witTUswnwTEScX8Yt5tzeyl2k0UMfIPWEGkoanfPcKOnB3JY6TRu/0nU5iYinpZl9jzcDDgZ6Ad+UdHdETHI+53O+5ufLHRhdMZvvCsB3gZ+SRgIdB1ypNG7Qh43KsSByRb8n8AxpjP23Jd1LGm7ii+TOfShq5d5WpTy5YAEtThrHm8gA20fEPaSDVr2L+qdzPudzvtkO6h5IOvj5SUQcA3yNdLD0DeB04MSyFc5cnh1JTT0/k9Qf+CwiXo6Iv0R2hbCyZW9NZyr8/wIGSTpYaXxsIqLWNe0QZq2Nuzif8zlfcfki4hfA74DTJG0eEZ9FxD8ijWS5LXBRozPU4VbSQeglSMcofiVp92xPoMPobG3865E+lOeBG0ldrzYibVF8PyKeLLLt0Pmcr6r5as1Lta1hpROe9gRGAmdFxM3tPc/2km+6yVaM65Cae3oB+wB7AXtHxITiUs6fTlX4ASQNJ32Z1iO1GQKcExFPFpdqFuerj/PVp+h8kg4hnZ27OqkdfyiwN/BL0slP08vWVKJZQ1wcQjogvRiwGvB34KdR0hFE56bTFf48Sb0i4v3s79IdcHG++jhffZqVT9ISpFrzrqQzSHsaz5CGNZgEvE46g/cvEXFNIzK0B0ljSF1iHwF6AMeReiH9WiUfU6ilTlf4s11ItfYhSFomIt4qIFY+g/PVwfnqU0Q+Sd8EtgbuB65trUlE0kaktv1BUeCZzXMiaV3g1xGxSe6+QaTzIraODnCZyLzOdHAXSD0H8l/qWtui0hmKJxaVq8b56uN89Sko39PAbaS++n+QdJak70laJ/ecd4CLSlr0Fels5uclXSppzeyhwaRB2j5QSYdfnpMOFXZeJC3UygdQu30A6aSLwnSCfH9vbqLZOV99isoXEWMi4iJSF85VSUNBrwr8P0lnS1oi0kllpzRi/u1BUi/SCKJvA3+V9CzpTOOza08pKtuC6DRNPWrlMm0tjsbfTdolm+p8zud8zc+ndInFRSLi2GyreU2gV0T8qcjeTnOSO6i7M7BeRPw899g6ZTlgvyA69BZ/bjd1L+ASSY9IWq32eO5LvSEwodn/dM7nfFXOJ2kJSRdIGpjdtSlwcTbvZyPiOmB0drtURT9Ty3QYMAbSCjS7LySV9tKQ8xQlGDBoQX6YtbfSl3Tm4SrAa8BSpFOo92PW4E8Hkw1M5XzO53zNyUcaEmZkNv/XSM0kXZq5HNrhPSwB3EGLQdiAvwBDi863oD8deos/sztwJenycWMi4h3SuB/fjYj/ZM+5iex0dedzPudrTr6ImBERl0TEEGAQ8DNgkqR7JX0XZu2VlNhU0tb+RZLWlrSUpAHA2hHxaMHZFliHHaQtstUuqT/wssCPgP/L7tud1Ne2NjDUeOdzPucrLl9EvA2cBZyVFc6fSXozIq5t9LzrEREfSzoZOBLYF1ibdInK02DWcYACIy6QTnFwV9IfSadNn0PqFvY10hbNc2U4aOR8zud8HUftoLekhUlXB1uUtPJcltQjaQLweqQDv6U7Ma8tOmThr31ZJW0NPBUREyV9EdgNmAJcFxGFXe/S+ZzP+TquXG+eo0gXp1mZdE3dt4DfxazrE3dYHbLw12Rd0A6OiKck7Uga5+OW7LHC18TO53zO13FJeo500Ps/ShenPwp4H/hhREwrNl19Olwbf25rZjvg3exL/W3SCSiLS1o+Iv5Y1Jfa+ZzP+To+pbH2Xwb6k/aaxgL7SHoY6AZ06MLf4Xr15NojewH/kfTfwHDSgZdDge2LygbOVy/nq0/Z83UE2d7QS8DNwFGStpK0taTDgTcj4n11sCEaWurI4a8jjQHyVeCCiJhIGjnvOkjtdAVmA+erl/PVp+z5Squ2NxQRpwH3kQ6MH0A60/i47Gll74Y6Vx2qjX9u7ZKSViBdEWeHorpXOV99nK8+Zc9XdrmDuquQLrG4BHBhFDyiaiN0yMIv6WBgBGlc7zHAE8BLwPuRRsor5MCV8zmf83VcueV3F+k8h37A5qQL1lxDulDMp51ixRklOH24LT/MWkmtQvpQNiWdAn4x8CSpj/Kyzud8zle+fB3lB1gGuKPFffuRms02Ljpfe/10pDb+Wpva10kDO70L3BkRB5CuH7pEFNu/1vnq43z1KXu+UssdrB0KvCfp65L6AETEZRGxdkTcW1zC9tVhunPGrN4KU4F/ABuT1sIAk0nX75zZnc35nM/5ypOv7HLLZBVSp5c9gb6SxpEuD/l8dMBr685Jh2rjz5PUD/gr6YSKpYE9ImJcWdovna8+zlefsucrk1zbfi/SntOHwEbANqQVwXTgiIh4r8CY7apDFP7cSSmrkkYZXJP0pe4GDAE+jIh7nM/5nK98+ToKSXuSum0+SLoa3gOky0UOjYjbCozW7jpE4a+RdANptMHtSOOOvAD0jojXCw2Wcb76OF99yp6v7CStAaxBGoFzDdKK8wnS+DzvFJmtvZX+4K408ypCOwHvAb8ApkbEONLZib+StKjzOZ/zlS9f2dWWH0BEPBcR1wMXkc55WIx0sLd0F4CvV+kP7ubaI5ckXQnnG8AN2X1bA0tHxNQCD6o5n/M5X8cl0mUUTwCei4hRETEZmKx0acVhEfFhZzs2Uvot/pxbSQdcjgdeyg5e7QeMyh4v+hRq56uP89Wn7PlKKbcynA6cKGmKpMskfZU0ttGz2eOdavmVuo0/d7R9kYiYrnTlngOBrsAmpF2y84taEzuf8zlf55KtMH9AGtjuauC8zrj8Okrhvwj4dUSMyT6YL5COvE8r8kNxPudzvo4rt/z2Jx3MfQ4YGxFPFhyt4Urbxp/7UFYmdacaozRG9pmkS59Njoin5z4V53M+57PPa7H8jgGuJ43Ls7WkCaQmnqsj4qMiczZKadv4c1sqOwFjJA0DDiF1r3oBOLaobOB89XK++pQ9X9nllt8I4KqI+AlwEHAe6SIrwzpr0YcSF/6c64GPgF8BkyLiWFIb5ngoxbjizlcf56tP2fOV3ZPAepJ2iIhPI+L+iPg58COYvbtnZ1LqNv4aSYOB7sBDQE/gJuCgSJeVK7yblfM5n/N1HJp1pvP6wO9JJ731Iw1jfRswKiKe6MzLrpRt/Jp1QYRhpNEGe5EdXZfUAzg9Ip6C2XbZnM/5nK8E+TqQrwGXRsSvJHUnDWy3P6lL7B6dedmVsqknZl3o4BLgLuBbQA+loVNXBv5SVDZwvno5X33Knq/sYlbf/SWBFZWuuPVpRNwWaRjr/WG2oZo7ndK9sVqbmqQtSReUuBV4IiIeBnqTTqXu5XzO53zly9dRSOoLrAAMBL4PfF3SUEm9I2I6zLaC6HRKV/hzu1fdgLHAWaSr3QN8CRgfEe8VtTZ2Pudzvo4ta7ufGBH7Ad8mHQjfitQTapsiszVLqb4cWTsbABFxE2lXbDdgiqQDgcNJWzRQwCnUzud8ztcpLCxpD0m/IF1U/fqIOBA4GXgYOnczD5SsV4+k/UjXCX2G1EvhGdIaeCTwCnBbRNzifM7nfOXLV3a53jwHA/8FnA+sDqxFumDNNRFxdZEZm6Vshb8f8BrwHWBv0qXjriFd/Hh69pzCulg5n/M5X8cn6QjgsYi4XdKSQF/S2EbTIuIPVViGpSr8eZLWJY02uDFpl3YK6fJnUwoNlnG++jhffcqer2xqxTxrLvsmMBg4JSImZI93IdXDGUXmbJbSFH6li0V8BdiFNE7G3yLiRUldgQ2BtSPiN87nfM5Xvnxllzv34UjSFcr6koa3eIjUJfapiPigyIzNVKbCfz7pWqH3kXa7BgGPAYdFOotukdrurPM5n/OVK19HoXR5yu9GxKuSdgS2Ja1QT4qIK4pN10QRUfgPqb3yRrIVUXZfL+D/gNFAF+dzPucrZ76y/wALZb9XI3WB3bnF472BXtnfama2on7K0mVpJ2adcr6YpG4R8T6pe9ViwKbFxnO+Ojlffcqer9Ri1olYi5F6Qv1S0uWSfiBp1UjHRT7InluOJpAGK7zwS1qatEUzHiAiPoqIjyV1zz6Qt4FVsucW0Xfa+ZzP+TooSUtIukDSwIh4PCL2JvXdvxVYBxglacuqFPyZit7lALoA+5B2wZ4nXRRhmdzjj+VvO5/zOV958pX9hzQQ5chs+T0DHAUslXt8OLBI0Tmb/VOag7sAkpYBDgB+TDriPglYLCJ2r5184XzO53zlzFd2kvqQlt+PgHHAJRFxURX67bdUqsKfJ2kN4Gjg5oi4stYdq+hcNc5XH+erT9nzlV22/H4GXBER1xadp9lKW/jNzKwxCj+4a2ZmzeXCb2ZWMS78ZmYV48JvZlYxLvxmZhXjwm9mVjH/H/j88chYLGoEAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "DWbzzfLoEN_B",
        "outputId": "fdcb9332-42ca-47cc-f835-c27701992e97"
      },
      "source": [
        "import seaborn as sns\n",
        "corr = final_data.corr()\n",
        "corr.shape\n",
        "plt.subplots(figsize=(100,100))\n",
        "ax = sns.heatmap(\n",
        "    corr, \n",
        "    vmin=-1, vmax=1, center=0,\n",
        "    cmap=sns.diverging_palette(20, 220, n=200),\n",
        "    square=True\n",
        ")\n",
        "ax.set_xticklabels(\n",
        "    ax.get_xticklabels(),\n",
        "    rotation=90,\n",
        "    horizontalalignment='right'\n",
        ");\n",
        "corr.tail()\n"
      ],
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>DISEASE GROUPING 1</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>DISEASE GROUPING 5</th>\n",
              "      <th>DISEASE GROUPING 6</th>\n",
              "      <th>HTN</th>\n",
              "      <th>IMMUNOCOMPROMISED</th>\n",
              "      <th>OTHER</th>\n",
              "      <th>ALBUMIN_MEDIAN</th>\n",
              "      <th>ALBUMIN_MEAN</th>\n",
              "      <th>ALBUMIN_MIN</th>\n",
              "      <th>ALBUMIN_MAX</th>\n",
              "      <th>ALBUMIN_DIFF</th>\n",
              "      <th>BE_ARTERIAL_MEDIAN</th>\n",
              "      <th>BE_ARTERIAL_MEAN</th>\n",
              "      <th>BE_ARTERIAL_MIN</th>\n",
              "      <th>BE_ARTERIAL_MAX</th>\n",
              "      <th>BE_ARTERIAL_DIFF</th>\n",
              "      <th>BE_VENOUS_MEDIAN</th>\n",
              "      <th>BE_VENOUS_MEAN</th>\n",
              "      <th>BE_VENOUS_MIN</th>\n",
              "      <th>BE_VENOUS_MAX</th>\n",
              "      <th>BE_VENOUS_DIFF</th>\n",
              "      <th>BIC_ARTERIAL_MEDIAN</th>\n",
              "      <th>BIC_ARTERIAL_MEAN</th>\n",
              "      <th>BIC_ARTERIAL_MIN</th>\n",
              "      <th>BIC_ARTERIAL_MAX</th>\n",
              "      <th>BIC_ARTERIAL_DIFF</th>\n",
              "      <th>BIC_VENOUS_MEDIAN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>BIC_VENOUS_MIN</th>\n",
              "      <th>BIC_VENOUS_MAX</th>\n",
              "      <th>BIC_VENOUS_DIFF</th>\n",
              "      <th>BILLIRUBIN_MEDIAN</th>\n",
              "      <th>BILLIRUBIN_MEAN</th>\n",
              "      <th>BILLIRUBIN_MIN</th>\n",
              "      <th>BILLIRUBIN_MAX</th>\n",
              "      <th>BILLIRUBIN_DIFF</th>\n",
              "      <th>BLAST_MEDIAN</th>\n",
              "      <th>BLAST_MEAN</th>\n",
              "      <th>BLAST_MIN</th>\n",
              "      <th>BLAST_MAX</th>\n",
              "      <th>BLAST_DIFF</th>\n",
              "      <th>CALCIUM_MEDIAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CALCIUM_MIN</th>\n",
              "      <th>CALCIUM_MAX</th>\n",
              "      <th>CALCIUM_DIFF</th>\n",
              "      <th>CREATININ_MEDIAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>CREATININ_MIN</th>\n",
              "      <th>CREATININ_MAX</th>\n",
              "      <th>CREATININ_DIFF</th>\n",
              "      <th>FFA_MEDIAN</th>\n",
              "      <th>FFA_MEAN</th>\n",
              "      <th>FFA_MIN</th>\n",
              "      <th>FFA_MAX</th>\n",
              "      <th>FFA_DIFF</th>\n",
              "      <th>GGT_MEDIAN</th>\n",
              "      <th>GGT_MEAN</th>\n",
              "      <th>GGT_MIN</th>\n",
              "      <th>GGT_MAX</th>\n",
              "      <th>GGT_DIFF</th>\n",
              "      <th>GLUCOSE_MEDIAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>GLUCOSE_MIN</th>\n",
              "      <th>GLUCOSE_MAX</th>\n",
              "      <th>GLUCOSE_DIFF</th>\n",
              "      <th>HEMATOCRITE_MEDIAN</th>\n",
              "      <th>HEMATOCRITE_MEAN</th>\n",
              "      <th>HEMATOCRITE_MIN</th>\n",
              "      <th>HEMATOCRITE_MAX</th>\n",
              "      <th>HEMATOCRITE_DIFF</th>\n",
              "      <th>HEMOGLOBIN_MEDIAN</th>\n",
              "      <th>HEMOGLOBIN_MEAN</th>\n",
              "      <th>HEMOGLOBIN_MIN</th>\n",
              "      <th>HEMOGLOBIN_MAX</th>\n",
              "      <th>HEMOGLOBIN_DIFF</th>\n",
              "      <th>INR_MEDIAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>INR_MIN</th>\n",
              "      <th>INR_MAX</th>\n",
              "      <th>INR_DIFF</th>\n",
              "      <th>LACTATE_MEDIAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LACTATE_MIN</th>\n",
              "      <th>LACTATE_MAX</th>\n",
              "      <th>LACTATE_DIFF</th>\n",
              "      <th>LEUKOCYTES_MEDIAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LEUKOCYTES_MIN</th>\n",
              "      <th>LEUKOCYTES_MAX</th>\n",
              "      <th>LEUKOCYTES_DIFF</th>\n",
              "      <th>LINFOCITOS_MEDIAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>LINFOCITOS_MIN</th>\n",
              "      <th>LINFOCITOS_MAX</th>\n",
              "      <th>LINFOCITOS_DIFF</th>\n",
              "      <th>NEUTROPHILES_MEDIAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>NEUTROPHILES_MIN</th>\n",
              "      <th>NEUTROPHILES_MAX</th>\n",
              "      <th>NEUTROPHILES_DIFF</th>\n",
              "      <th>P02_ARTERIAL_MEDIAN</th>\n",
              "      <th>P02_ARTERIAL_MEAN</th>\n",
              "      <th>P02_ARTERIAL_MIN</th>\n",
              "      <th>P02_ARTERIAL_MAX</th>\n",
              "      <th>P02_ARTERIAL_DIFF</th>\n",
              "      <th>P02_VENOUS_MEDIAN</th>\n",
              "      <th>P02_VENOUS_MEAN</th>\n",
              "      <th>P02_VENOUS_MIN</th>\n",
              "      <th>P02_VENOUS_MAX</th>\n",
              "      <th>P02_VENOUS_DIFF</th>\n",
              "      <th>PC02_ARTERIAL_MEDIAN</th>\n",
              "      <th>PC02_ARTERIAL_MEAN</th>\n",
              "      <th>PC02_ARTERIAL_MIN</th>\n",
              "      <th>PC02_ARTERIAL_MAX</th>\n",
              "      <th>PC02_ARTERIAL_DIFF</th>\n",
              "      <th>PC02_VENOUS_MEDIAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PC02_VENOUS_MIN</th>\n",
              "      <th>PC02_VENOUS_MAX</th>\n",
              "      <th>PC02_VENOUS_DIFF</th>\n",
              "      <th>PCR_MEDIAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PCR_MIN</th>\n",
              "      <th>PCR_MAX</th>\n",
              "      <th>PCR_DIFF</th>\n",
              "      <th>PH_ARTERIAL_MEDIAN</th>\n",
              "      <th>PH_ARTERIAL_MEAN</th>\n",
              "      <th>PH_ARTERIAL_MIN</th>\n",
              "      <th>PH_ARTERIAL_MAX</th>\n",
              "      <th>PH_ARTERIAL_DIFF</th>\n",
              "      <th>PH_VENOUS_MEDIAN</th>\n",
              "      <th>PH_VENOUS_MEAN</th>\n",
              "      <th>PH_VENOUS_MIN</th>\n",
              "      <th>PH_VENOUS_MAX</th>\n",
              "      <th>PH_VENOUS_DIFF</th>\n",
              "      <th>PLATELETS_MEDIAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>PLATELETS_MIN</th>\n",
              "      <th>PLATELETS_MAX</th>\n",
              "      <th>PLATELETS_DIFF</th>\n",
              "      <th>POTASSIUM_MEDIAN</th>\n",
              "      <th>POTASSIUM_MEAN</th>\n",
              "      <th>POTASSIUM_MIN</th>\n",
              "      <th>POTASSIUM_MAX</th>\n",
              "      <th>POTASSIUM_DIFF</th>\n",
              "      <th>SAT02_ARTERIAL_MEDIAN</th>\n",
              "      <th>SAT02_ARTERIAL_MEAN</th>\n",
              "      <th>SAT02_ARTERIAL_MIN</th>\n",
              "      <th>SAT02_ARTERIAL_MAX</th>\n",
              "      <th>SAT02_ARTERIAL_DIFF</th>\n",
              "      <th>SAT02_VENOUS_MEDIAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MIN</th>\n",
              "      <th>SAT02_VENOUS_MAX</th>\n",
              "      <th>SAT02_VENOUS_DIFF</th>\n",
              "      <th>SODIUM_MEDIAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>SODIUM_MIN</th>\n",
              "      <th>SODIUM_MAX</th>\n",
              "      <th>SODIUM_DIFF</th>\n",
              "      <th>TGO_MEDIAN</th>\n",
              "      <th>TGO_MEAN</th>\n",
              "      <th>TGO_MIN</th>\n",
              "      <th>TGO_MAX</th>\n",
              "      <th>TGO_DIFF</th>\n",
              "      <th>TGP_MEDIAN</th>\n",
              "      <th>TGP_MEAN</th>\n",
              "      <th>TGP_MIN</th>\n",
              "      <th>TGP_MAX</th>\n",
              "      <th>TGP_DIFF</th>\n",
              "      <th>TTPA_MEDIAN</th>\n",
              "      <th>TTPA_MEAN</th>\n",
              "      <th>TTPA_MIN</th>\n",
              "      <th>TTPA_MAX</th>\n",
              "      <th>TTPA_DIFF</th>\n",
              "      <th>UREA_MEDIAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>UREA_MIN</th>\n",
              "      <th>UREA_MAX</th>\n",
              "      <th>UREA_DIFF</th>\n",
              "      <th>DIMER_MEDIAN</th>\n",
              "      <th>DIMER_MEAN</th>\n",
              "      <th>DIMER_MIN</th>\n",
              "      <th>DIMER_MAX</th>\n",
              "      <th>DIMER_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEAN</th>\n",
              "      <th>HEART_RATE_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MEDIAN</th>\n",
              "      <th>HEART_RATE_MEDIAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEDIAN</th>\n",
              "      <th>TEMPERATURE_MEDIAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEDIAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MIN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>OXYGEN_SATURATION_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>RESPIRATORY_RATE_MAX</th>\n",
              "      <th>TEMPERATURE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF_REL</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF_REL</th>\n",
              "      <th>HEART_RATE_DIFF_REL</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF_REL</th>\n",
              "      <th>TEMPERATURE_DIFF_REL</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF_REL</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_30th</th>\n",
              "      <th>AGE_PERCENTIL_40th</th>\n",
              "      <th>AGE_PERCENTIL_50th</th>\n",
              "      <th>AGE_PERCENTIL_60th</th>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_70th</th>\n",
              "      <td>0.402675</td>\n",
              "      <td>0.081684</td>\n",
              "      <td>-0.052838</td>\n",
              "      <td>0.138639</td>\n",
              "      <td>0.189637</td>\n",
              "      <td>0.053387</td>\n",
              "      <td>0.029902</td>\n",
              "      <td>0.116127</td>\n",
              "      <td>0.154684</td>\n",
              "      <td>0.049643</td>\n",
              "      <td>0.033136</td>\n",
              "      <td>0.033136</td>\n",
              "      <td>0.033136</td>\n",
              "      <td>0.033136</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.002242</td>\n",
              "      <td>-0.002242</td>\n",
              "      <td>-0.002242</td>\n",
              "      <td>-0.002242</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.055450</td>\n",
              "      <td>0.055450</td>\n",
              "      <td>0.055450</td>\n",
              "      <td>0.055450</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.013313</td>\n",
              "      <td>-0.013313</td>\n",
              "      <td>-0.013313</td>\n",
              "      <td>-0.013313</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.042387</td>\n",
              "      <td>0.042387</td>\n",
              "      <td>0.042387</td>\n",
              "      <td>0.042387</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.043088</td>\n",
              "      <td>0.043088</td>\n",
              "      <td>0.043088</td>\n",
              "      <td>0.043088</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.022161</td>\n",
              "      <td>-0.022161</td>\n",
              "      <td>-0.022161</td>\n",
              "      <td>-0.022161</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.033941</td>\n",
              "      <td>-0.033941</td>\n",
              "      <td>-0.033941</td>\n",
              "      <td>-0.033941</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.012805</td>\n",
              "      <td>0.012805</td>\n",
              "      <td>0.012805</td>\n",
              "      <td>0.012805</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.019508</td>\n",
              "      <td>-0.019508</td>\n",
              "      <td>-0.019508</td>\n",
              "      <td>-0.019508</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.009802</td>\n",
              "      <td>-0.009802</td>\n",
              "      <td>-0.009802</td>\n",
              "      <td>-0.009802</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.007641</td>\n",
              "      <td>-0.007641</td>\n",
              "      <td>-0.007641</td>\n",
              "      <td>-0.007641</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.189385</td>\n",
              "      <td>-0.189385</td>\n",
              "      <td>-0.189385</td>\n",
              "      <td>-0.189385</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.181559</td>\n",
              "      <td>-0.181559</td>\n",
              "      <td>-0.181559</td>\n",
              "      <td>-0.181559</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.121959</td>\n",
              "      <td>0.121959</td>\n",
              "      <td>0.121959</td>\n",
              "      <td>0.121959</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.080602</td>\n",
              "      <td>0.080602</td>\n",
              "      <td>0.080602</td>\n",
              "      <td>0.080602</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.035692</td>\n",
              "      <td>-0.035692</td>\n",
              "      <td>-0.035692</td>\n",
              "      <td>-0.035692</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.019683</td>\n",
              "      <td>-0.019683</td>\n",
              "      <td>-0.019683</td>\n",
              "      <td>-0.019683</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.031877</td>\n",
              "      <td>-0.031877</td>\n",
              "      <td>-0.031877</td>\n",
              "      <td>-0.031877</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.046734</td>\n",
              "      <td>-0.046734</td>\n",
              "      <td>-0.046734</td>\n",
              "      <td>-0.046734</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.035907</td>\n",
              "      <td>0.035907</td>\n",
              "      <td>0.035907</td>\n",
              "      <td>0.035907</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.068907</td>\n",
              "      <td>-0.068907</td>\n",
              "      <td>-0.068907</td>\n",
              "      <td>-0.068907</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.034507</td>\n",
              "      <td>-0.034507</td>\n",
              "      <td>-0.034507</td>\n",
              "      <td>-0.034507</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.062130</td>\n",
              "      <td>0.062130</td>\n",
              "      <td>0.062130</td>\n",
              "      <td>0.062130</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.049093</td>\n",
              "      <td>0.049093</td>\n",
              "      <td>0.049093</td>\n",
              "      <td>0.049093</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.084124</td>\n",
              "      <td>0.084124</td>\n",
              "      <td>0.084124</td>\n",
              "      <td>0.084124</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.092542</td>\n",
              "      <td>-0.092542</td>\n",
              "      <td>-0.092542</td>\n",
              "      <td>-0.092542</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.030214</td>\n",
              "      <td>-0.030214</td>\n",
              "      <td>-0.030214</td>\n",
              "      <td>-0.030214</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.001932</td>\n",
              "      <td>0.001932</td>\n",
              "      <td>0.001932</td>\n",
              "      <td>0.001932</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.007141</td>\n",
              "      <td>-0.007141</td>\n",
              "      <td>-0.007141</td>\n",
              "      <td>-0.007141</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.037360</td>\n",
              "      <td>-0.037360</td>\n",
              "      <td>-0.037360</td>\n",
              "      <td>-0.037360</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.010614</td>\n",
              "      <td>0.010614</td>\n",
              "      <td>0.010614</td>\n",
              "      <td>0.010614</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.018319</td>\n",
              "      <td>0.018319</td>\n",
              "      <td>0.018319</td>\n",
              "      <td>0.018319</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.066917</td>\n",
              "      <td>0.066917</td>\n",
              "      <td>0.066917</td>\n",
              "      <td>0.066917</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.080082</td>\n",
              "      <td>0.080082</td>\n",
              "      <td>0.080082</td>\n",
              "      <td>0.080082</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.028426</td>\n",
              "      <td>-0.028426</td>\n",
              "      <td>-0.028426</td>\n",
              "      <td>-0.028426</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.061789</td>\n",
              "      <td>0.084698</td>\n",
              "      <td>-0.131850</td>\n",
              "      <td>0.068438</td>\n",
              "      <td>-0.080325</td>\n",
              "      <td>-0.072574</td>\n",
              "      <td>-0.059360</td>\n",
              "      <td>0.086414</td>\n",
              "      <td>-0.129918</td>\n",
              "      <td>0.060472</td>\n",
              "      <td>-0.091464</td>\n",
              "      <td>-0.040348</td>\n",
              "      <td>-0.036504</td>\n",
              "      <td>0.085011</td>\n",
              "      <td>-0.117564</td>\n",
              "      <td>0.048441</td>\n",
              "      <td>-0.070054</td>\n",
              "      <td>-0.038569</td>\n",
              "      <td>-0.035095</td>\n",
              "      <td>0.077661</td>\n",
              "      <td>-0.138762</td>\n",
              "      <td>0.074757</td>\n",
              "      <td>-0.060933</td>\n",
              "      <td>-0.043424</td>\n",
              "      <td>-0.002392</td>\n",
              "      <td>-0.009271</td>\n",
              "      <td>-0.033103</td>\n",
              "      <td>0.042641</td>\n",
              "      <td>0.012466</td>\n",
              "      <td>0.019395</td>\n",
              "      <td>-0.001520</td>\n",
              "      <td>-0.011538</td>\n",
              "      <td>-0.018430</td>\n",
              "      <td>0.049075</td>\n",
              "      <td>0.016294</td>\n",
              "      <td>0.022468</td>\n",
              "      <td>-0.126406</td>\n",
              "      <td>-0.130378</td>\n",
              "      <td>-0.122369</td>\n",
              "      <td>-0.120324</td>\n",
              "      <td>-0.114068</td>\n",
              "      <td>-0.109784</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.105393</td>\n",
              "      <td>-0.091415</td>\n",
              "      <td>-0.086408</td>\n",
              "      <td>0.052805</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <td>0.372051</td>\n",
              "      <td>0.061864</td>\n",
              "      <td>-0.048820</td>\n",
              "      <td>-0.052347</td>\n",
              "      <td>0.039624</td>\n",
              "      <td>0.111784</td>\n",
              "      <td>-0.069903</td>\n",
              "      <td>0.081773</td>\n",
              "      <td>-0.008411</td>\n",
              "      <td>-0.031463</td>\n",
              "      <td>0.001602</td>\n",
              "      <td>0.001602</td>\n",
              "      <td>0.001602</td>\n",
              "      <td>0.001602</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.033199</td>\n",
              "      <td>-0.033199</td>\n",
              "      <td>-0.033199</td>\n",
              "      <td>-0.033199</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.036012</td>\n",
              "      <td>0.036012</td>\n",
              "      <td>0.036012</td>\n",
              "      <td>0.036012</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.012301</td>\n",
              "      <td>-0.012301</td>\n",
              "      <td>-0.012301</td>\n",
              "      <td>-0.012301</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.031392</td>\n",
              "      <td>0.031392</td>\n",
              "      <td>0.031392</td>\n",
              "      <td>0.031392</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.023247</td>\n",
              "      <td>0.023247</td>\n",
              "      <td>0.023247</td>\n",
              "      <td>0.023247</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.020476</td>\n",
              "      <td>-0.020476</td>\n",
              "      <td>-0.020476</td>\n",
              "      <td>-0.020476</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.106084</td>\n",
              "      <td>-0.106084</td>\n",
              "      <td>-0.106084</td>\n",
              "      <td>-0.106084</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.187437</td>\n",
              "      <td>0.187437</td>\n",
              "      <td>0.187437</td>\n",
              "      <td>0.187437</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.028170</td>\n",
              "      <td>0.028170</td>\n",
              "      <td>0.028170</td>\n",
              "      <td>0.028170</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.030858</td>\n",
              "      <td>-0.030858</td>\n",
              "      <td>-0.030858</td>\n",
              "      <td>-0.030858</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.006491</td>\n",
              "      <td>-0.006491</td>\n",
              "      <td>-0.006491</td>\n",
              "      <td>-0.006491</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.050288</td>\n",
              "      <td>-0.050288</td>\n",
              "      <td>-0.050288</td>\n",
              "      <td>-0.050288</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.044214</td>\n",
              "      <td>-0.044214</td>\n",
              "      <td>-0.044214</td>\n",
              "      <td>-0.044214</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.066156</td>\n",
              "      <td>0.066156</td>\n",
              "      <td>0.066156</td>\n",
              "      <td>0.066156</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.072293</td>\n",
              "      <td>0.072293</td>\n",
              "      <td>0.072293</td>\n",
              "      <td>0.072293</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.045179</td>\n",
              "      <td>-0.045179</td>\n",
              "      <td>-0.045179</td>\n",
              "      <td>-0.045179</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.124717</td>\n",
              "      <td>-0.124717</td>\n",
              "      <td>-0.124717</td>\n",
              "      <td>-0.124717</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.017195</td>\n",
              "      <td>-0.017195</td>\n",
              "      <td>-0.017195</td>\n",
              "      <td>-0.017195</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.016702</td>\n",
              "      <td>0.016702</td>\n",
              "      <td>0.016702</td>\n",
              "      <td>0.016702</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.008631</td>\n",
              "      <td>0.008631</td>\n",
              "      <td>0.008631</td>\n",
              "      <td>0.008631</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.037350</td>\n",
              "      <td>0.037350</td>\n",
              "      <td>0.037350</td>\n",
              "      <td>0.037350</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.038268</td>\n",
              "      <td>-0.038268</td>\n",
              "      <td>-0.038268</td>\n",
              "      <td>-0.038268</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.008421</td>\n",
              "      <td>-0.008421</td>\n",
              "      <td>-0.008421</td>\n",
              "      <td>-0.008421</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.035351</td>\n",
              "      <td>-0.035351</td>\n",
              "      <td>-0.035351</td>\n",
              "      <td>-0.035351</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.097817</td>\n",
              "      <td>0.097817</td>\n",
              "      <td>0.097817</td>\n",
              "      <td>0.097817</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.176491</td>\n",
              "      <td>-0.176491</td>\n",
              "      <td>-0.176491</td>\n",
              "      <td>-0.176491</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.119943</td>\n",
              "      <td>-0.119943</td>\n",
              "      <td>-0.119943</td>\n",
              "      <td>-0.119943</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.021159</td>\n",
              "      <td>0.021159</td>\n",
              "      <td>0.021159</td>\n",
              "      <td>0.021159</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.062060</td>\n",
              "      <td>0.062060</td>\n",
              "      <td>0.062060</td>\n",
              "      <td>0.062060</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.004862</td>\n",
              "      <td>-0.004862</td>\n",
              "      <td>-0.004862</td>\n",
              "      <td>-0.004862</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.166311</td>\n",
              "      <td>0.166311</td>\n",
              "      <td>0.166311</td>\n",
              "      <td>0.166311</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.073675</td>\n",
              "      <td>0.073675</td>\n",
              "      <td>0.073675</td>\n",
              "      <td>0.073675</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.090077</td>\n",
              "      <td>-0.090077</td>\n",
              "      <td>-0.090077</td>\n",
              "      <td>-0.090077</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.246949</td>\n",
              "      <td>0.246949</td>\n",
              "      <td>0.246949</td>\n",
              "      <td>0.246949</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.066066</td>\n",
              "      <td>0.066066</td>\n",
              "      <td>0.066066</td>\n",
              "      <td>0.066066</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.010905</td>\n",
              "      <td>0.065313</td>\n",
              "      <td>-0.090179</td>\n",
              "      <td>0.008452</td>\n",
              "      <td>-0.009846</td>\n",
              "      <td>-0.060254</td>\n",
              "      <td>-0.011728</td>\n",
              "      <td>0.073211</td>\n",
              "      <td>-0.063178</td>\n",
              "      <td>0.012784</td>\n",
              "      <td>-0.009997</td>\n",
              "      <td>-0.050306</td>\n",
              "      <td>0.016969</td>\n",
              "      <td>0.073879</td>\n",
              "      <td>-0.095074</td>\n",
              "      <td>0.017877</td>\n",
              "      <td>0.015329</td>\n",
              "      <td>0.011042</td>\n",
              "      <td>-0.057432</td>\n",
              "      <td>0.036275</td>\n",
              "      <td>-0.112635</td>\n",
              "      <td>-0.016837</td>\n",
              "      <td>-0.033501</td>\n",
              "      <td>-0.093839</td>\n",
              "      <td>-0.092799</td>\n",
              "      <td>-0.056737</td>\n",
              "      <td>-0.027386</td>\n",
              "      <td>-0.048452</td>\n",
              "      <td>-0.061946</td>\n",
              "      <td>-0.053039</td>\n",
              "      <td>-0.090933</td>\n",
              "      <td>-0.070643</td>\n",
              "      <td>-0.063098</td>\n",
              "      <td>-0.054256</td>\n",
              "      <td>-0.062087</td>\n",
              "      <td>-0.053039</td>\n",
              "      <td>-0.116793</td>\n",
              "      <td>-0.120463</td>\n",
              "      <td>-0.113063</td>\n",
              "      <td>-0.111174</td>\n",
              "      <td>-0.105393</td>\n",
              "      <td>-0.101435</td>\n",
              "      <td>-0.105393</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.084463</td>\n",
              "      <td>-0.079836</td>\n",
              "      <td>0.117203</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <td>0.322705</td>\n",
              "      <td>0.050118</td>\n",
              "      <td>0.134898</td>\n",
              "      <td>0.062662</td>\n",
              "      <td>-0.039135</td>\n",
              "      <td>0.113210</td>\n",
              "      <td>-0.060631</td>\n",
              "      <td>0.093065</td>\n",
              "      <td>0.099587</td>\n",
              "      <td>-0.006109</td>\n",
              "      <td>0.013411</td>\n",
              "      <td>0.013411</td>\n",
              "      <td>0.013411</td>\n",
              "      <td>0.013411</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.008328</td>\n",
              "      <td>0.008328</td>\n",
              "      <td>0.008328</td>\n",
              "      <td>0.008328</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.001137</td>\n",
              "      <td>0.001137</td>\n",
              "      <td>0.001137</td>\n",
              "      <td>0.001137</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.135710</td>\n",
              "      <td>-0.135710</td>\n",
              "      <td>-0.135710</td>\n",
              "      <td>-0.135710</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.023979</td>\n",
              "      <td>-0.023979</td>\n",
              "      <td>-0.023979</td>\n",
              "      <td>-0.023979</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.012834</td>\n",
              "      <td>0.012834</td>\n",
              "      <td>0.012834</td>\n",
              "      <td>0.012834</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.212447</td>\n",
              "      <td>0.212447</td>\n",
              "      <td>0.212447</td>\n",
              "      <td>0.212447</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.008451</td>\n",
              "      <td>-0.008451</td>\n",
              "      <td>-0.008451</td>\n",
              "      <td>-0.008451</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.011321</td>\n",
              "      <td>0.011321</td>\n",
              "      <td>0.011321</td>\n",
              "      <td>0.011321</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.018527</td>\n",
              "      <td>0.018527</td>\n",
              "      <td>0.018527</td>\n",
              "      <td>0.018527</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.041682</td>\n",
              "      <td>-0.041682</td>\n",
              "      <td>-0.041682</td>\n",
              "      <td>-0.041682</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.046688</td>\n",
              "      <td>-0.046688</td>\n",
              "      <td>-0.046688</td>\n",
              "      <td>-0.046688</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.075065</td>\n",
              "      <td>-0.075065</td>\n",
              "      <td>-0.075065</td>\n",
              "      <td>-0.075065</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.092330</td>\n",
              "      <td>-0.092330</td>\n",
              "      <td>-0.092330</td>\n",
              "      <td>-0.092330</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.003333</td>\n",
              "      <td>0.003333</td>\n",
              "      <td>0.003333</td>\n",
              "      <td>0.003333</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.157023</td>\n",
              "      <td>-0.157023</td>\n",
              "      <td>-0.157023</td>\n",
              "      <td>-0.157023</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.067807</td>\n",
              "      <td>0.067807</td>\n",
              "      <td>0.067807</td>\n",
              "      <td>0.067807</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.024487</td>\n",
              "      <td>-0.024487</td>\n",
              "      <td>-0.024487</td>\n",
              "      <td>-0.024487</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.068433</td>\n",
              "      <td>0.068433</td>\n",
              "      <td>0.068433</td>\n",
              "      <td>0.068433</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.006427</td>\n",
              "      <td>0.006427</td>\n",
              "      <td>0.006427</td>\n",
              "      <td>0.006427</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.026206</td>\n",
              "      <td>-0.026206</td>\n",
              "      <td>-0.026206</td>\n",
              "      <td>-0.026206</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.157444</td>\n",
              "      <td>-0.157444</td>\n",
              "      <td>-0.157444</td>\n",
              "      <td>-0.157444</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.038205</td>\n",
              "      <td>-0.038205</td>\n",
              "      <td>-0.038205</td>\n",
              "      <td>-0.038205</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.011468</td>\n",
              "      <td>0.011468</td>\n",
              "      <td>0.011468</td>\n",
              "      <td>0.011468</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.051011</td>\n",
              "      <td>0.051011</td>\n",
              "      <td>0.051011</td>\n",
              "      <td>0.051011</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.033351</td>\n",
              "      <td>0.033351</td>\n",
              "      <td>0.033351</td>\n",
              "      <td>0.033351</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.031250</td>\n",
              "      <td>-0.031250</td>\n",
              "      <td>-0.031250</td>\n",
              "      <td>-0.031250</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.134179</td>\n",
              "      <td>0.134179</td>\n",
              "      <td>0.134179</td>\n",
              "      <td>0.134179</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.012351</td>\n",
              "      <td>0.012351</td>\n",
              "      <td>0.012351</td>\n",
              "      <td>0.012351</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.093800</td>\n",
              "      <td>-0.093800</td>\n",
              "      <td>-0.093800</td>\n",
              "      <td>-0.093800</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.052278</td>\n",
              "      <td>-0.052278</td>\n",
              "      <td>-0.052278</td>\n",
              "      <td>-0.052278</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.032935</td>\n",
              "      <td>-0.032935</td>\n",
              "      <td>-0.032935</td>\n",
              "      <td>-0.032935</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.045916</td>\n",
              "      <td>-0.045916</td>\n",
              "      <td>-0.045916</td>\n",
              "      <td>-0.045916</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.052318</td>\n",
              "      <td>0.052318</td>\n",
              "      <td>0.052318</td>\n",
              "      <td>0.052318</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.065191</td>\n",
              "      <td>0.065191</td>\n",
              "      <td>0.065191</td>\n",
              "      <td>0.065191</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.007696</td>\n",
              "      <td>-0.007696</td>\n",
              "      <td>-0.007696</td>\n",
              "      <td>-0.007696</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.035194</td>\n",
              "      <td>0.213388</td>\n",
              "      <td>-0.042347</td>\n",
              "      <td>0.020020</td>\n",
              "      <td>0.006909</td>\n",
              "      <td>-0.033732</td>\n",
              "      <td>0.032509</td>\n",
              "      <td>0.212713</td>\n",
              "      <td>-0.037758</td>\n",
              "      <td>0.020266</td>\n",
              "      <td>0.017651</td>\n",
              "      <td>-0.036191</td>\n",
              "      <td>0.070790</td>\n",
              "      <td>0.227708</td>\n",
              "      <td>0.005969</td>\n",
              "      <td>0.028998</td>\n",
              "      <td>0.042049</td>\n",
              "      <td>-0.013238</td>\n",
              "      <td>-0.006645</td>\n",
              "      <td>0.173577</td>\n",
              "      <td>-0.087677</td>\n",
              "      <td>-0.025425</td>\n",
              "      <td>-0.055713</td>\n",
              "      <td>-0.093220</td>\n",
              "      <td>-0.090489</td>\n",
              "      <td>-0.078546</td>\n",
              "      <td>-0.137506</td>\n",
              "      <td>-0.075868</td>\n",
              "      <td>-0.124175</td>\n",
              "      <td>-0.028338</td>\n",
              "      <td>-0.085449</td>\n",
              "      <td>-0.081142</td>\n",
              "      <td>-0.147246</td>\n",
              "      <td>-0.075906</td>\n",
              "      <td>-0.125159</td>\n",
              "      <td>-0.029484</td>\n",
              "      <td>-0.101302</td>\n",
              "      <td>-0.104485</td>\n",
              "      <td>-0.098067</td>\n",
              "      <td>-0.096428</td>\n",
              "      <td>-0.091415</td>\n",
              "      <td>-0.087981</td>\n",
              "      <td>-0.091415</td>\n",
              "      <td>-0.084463</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.069247</td>\n",
              "      <td>0.136393</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_Above 90th</th>\n",
              "      <td>0.305029</td>\n",
              "      <td>0.303608</td>\n",
              "      <td>0.053050</td>\n",
              "      <td>0.074493</td>\n",
              "      <td>-0.036992</td>\n",
              "      <td>0.262335</td>\n",
              "      <td>0.009324</td>\n",
              "      <td>0.148417</td>\n",
              "      <td>0.078771</td>\n",
              "      <td>0.124363</td>\n",
              "      <td>-0.156210</td>\n",
              "      <td>-0.156210</td>\n",
              "      <td>-0.156210</td>\n",
              "      <td>-0.156210</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.027218</td>\n",
              "      <td>-0.027218</td>\n",
              "      <td>-0.027218</td>\n",
              "      <td>-0.027218</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.068960</td>\n",
              "      <td>0.068960</td>\n",
              "      <td>0.068960</td>\n",
              "      <td>0.068960</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.010085</td>\n",
              "      <td>-0.010085</td>\n",
              "      <td>-0.010085</td>\n",
              "      <td>-0.010085</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.026674</td>\n",
              "      <td>-0.026674</td>\n",
              "      <td>-0.026674</td>\n",
              "      <td>-0.026674</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.013805</td>\n",
              "      <td>-0.013805</td>\n",
              "      <td>-0.013805</td>\n",
              "      <td>-0.013805</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.016787</td>\n",
              "      <td>-0.016787</td>\n",
              "      <td>-0.016787</td>\n",
              "      <td>-0.016787</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.008727</td>\n",
              "      <td>-0.008727</td>\n",
              "      <td>-0.008727</td>\n",
              "      <td>-0.008727</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.048913</td>\n",
              "      <td>0.048913</td>\n",
              "      <td>0.048913</td>\n",
              "      <td>0.048913</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.051167</td>\n",
              "      <td>-0.051167</td>\n",
              "      <td>-0.051167</td>\n",
              "      <td>-0.051167</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.064201</td>\n",
              "      <td>-0.064201</td>\n",
              "      <td>-0.064201</td>\n",
              "      <td>-0.064201</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.182894</td>\n",
              "      <td>0.182894</td>\n",
              "      <td>0.182894</td>\n",
              "      <td>0.182894</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.168841</td>\n",
              "      <td>-0.168841</td>\n",
              "      <td>-0.168841</td>\n",
              "      <td>-0.168841</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.184098</td>\n",
              "      <td>-0.184098</td>\n",
              "      <td>-0.184098</td>\n",
              "      <td>-0.184098</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.019227</td>\n",
              "      <td>-0.019227</td>\n",
              "      <td>-0.019227</td>\n",
              "      <td>-0.019227</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.002241</td>\n",
              "      <td>0.002241</td>\n",
              "      <td>0.002241</td>\n",
              "      <td>0.002241</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.059318</td>\n",
              "      <td>0.059318</td>\n",
              "      <td>0.059318</td>\n",
              "      <td>0.059318</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.062136</td>\n",
              "      <td>-0.062136</td>\n",
              "      <td>-0.062136</td>\n",
              "      <td>-0.062136</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.062926</td>\n",
              "      <td>0.062926</td>\n",
              "      <td>0.062926</td>\n",
              "      <td>0.062926</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.013694</td>\n",
              "      <td>0.013694</td>\n",
              "      <td>0.013694</td>\n",
              "      <td>0.013694</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.107393</td>\n",
              "      <td>0.107393</td>\n",
              "      <td>0.107393</td>\n",
              "      <td>0.107393</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.030621</td>\n",
              "      <td>0.030621</td>\n",
              "      <td>0.030621</td>\n",
              "      <td>0.030621</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.035268</td>\n",
              "      <td>0.035268</td>\n",
              "      <td>0.035268</td>\n",
              "      <td>0.035268</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.058987</td>\n",
              "      <td>-0.058987</td>\n",
              "      <td>-0.058987</td>\n",
              "      <td>-0.058987</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.028983</td>\n",
              "      <td>-0.028983</td>\n",
              "      <td>-0.028983</td>\n",
              "      <td>-0.028983</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.098350</td>\n",
              "      <td>-0.098350</td>\n",
              "      <td>-0.098350</td>\n",
              "      <td>-0.098350</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.028189</td>\n",
              "      <td>-0.028189</td>\n",
              "      <td>-0.028189</td>\n",
              "      <td>-0.028189</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.138645</td>\n",
              "      <td>0.138645</td>\n",
              "      <td>0.138645</td>\n",
              "      <td>0.138645</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.017347</td>\n",
              "      <td>0.017347</td>\n",
              "      <td>0.017347</td>\n",
              "      <td>0.017347</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.035564</td>\n",
              "      <td>-0.035564</td>\n",
              "      <td>-0.035564</td>\n",
              "      <td>-0.035564</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.078044</td>\n",
              "      <td>-0.078044</td>\n",
              "      <td>-0.078044</td>\n",
              "      <td>-0.078044</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.035721</td>\n",
              "      <td>-0.035721</td>\n",
              "      <td>-0.035721</td>\n",
              "      <td>-0.035721</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.103004</td>\n",
              "      <td>-0.103004</td>\n",
              "      <td>-0.103004</td>\n",
              "      <td>-0.103004</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.067098</td>\n",
              "      <td>-0.067098</td>\n",
              "      <td>-0.067098</td>\n",
              "      <td>-0.067098</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.236355</td>\n",
              "      <td>0.236355</td>\n",
              "      <td>0.236355</td>\n",
              "      <td>0.236355</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.075485</td>\n",
              "      <td>0.075485</td>\n",
              "      <td>0.075485</td>\n",
              "      <td>0.075485</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.148409</td>\n",
              "      <td>0.055248</td>\n",
              "      <td>0.002933</td>\n",
              "      <td>0.152784</td>\n",
              "      <td>0.016918</td>\n",
              "      <td>0.008539</td>\n",
              "      <td>-0.144490</td>\n",
              "      <td>0.049881</td>\n",
              "      <td>0.003529</td>\n",
              "      <td>0.156166</td>\n",
              "      <td>0.015435</td>\n",
              "      <td>0.009033</td>\n",
              "      <td>-0.118053</td>\n",
              "      <td>0.064086</td>\n",
              "      <td>0.024762</td>\n",
              "      <td>0.170116</td>\n",
              "      <td>0.029084</td>\n",
              "      <td>0.045574</td>\n",
              "      <td>-0.140688</td>\n",
              "      <td>0.060473</td>\n",
              "      <td>-0.016091</td>\n",
              "      <td>0.112055</td>\n",
              "      <td>0.006042</td>\n",
              "      <td>-0.018779</td>\n",
              "      <td>-0.042366</td>\n",
              "      <td>-0.003984</td>\n",
              "      <td>-0.059618</td>\n",
              "      <td>-0.067668</td>\n",
              "      <td>-0.029522</td>\n",
              "      <td>-0.054236</td>\n",
              "      <td>-0.014615</td>\n",
              "      <td>-0.007365</td>\n",
              "      <td>-0.058710</td>\n",
              "      <td>-0.071135</td>\n",
              "      <td>-0.029038</td>\n",
              "      <td>-0.053933</td>\n",
              "      <td>-0.095753</td>\n",
              "      <td>-0.098762</td>\n",
              "      <td>-0.092696</td>\n",
              "      <td>-0.091147</td>\n",
              "      <td>-0.086408</td>\n",
              "      <td>-0.083162</td>\n",
              "      <td>-0.086408</td>\n",
              "      <td>-0.079836</td>\n",
              "      <td>-0.069247</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.105210</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>ICU</th>\n",
              "      <td>0.240516</td>\n",
              "      <td>0.047593</td>\n",
              "      <td>0.116123</td>\n",
              "      <td>0.128431</td>\n",
              "      <td>0.143218</td>\n",
              "      <td>0.107020</td>\n",
              "      <td>-0.000569</td>\n",
              "      <td>0.152904</td>\n",
              "      <td>0.092280</td>\n",
              "      <td>-0.016866</td>\n",
              "      <td>-0.051499</td>\n",
              "      <td>-0.051499</td>\n",
              "      <td>-0.051499</td>\n",
              "      <td>-0.051499</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.090883</td>\n",
              "      <td>0.090883</td>\n",
              "      <td>0.090883</td>\n",
              "      <td>0.090883</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.071562</td>\n",
              "      <td>0.071562</td>\n",
              "      <td>0.071562</td>\n",
              "      <td>0.071562</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.069185</td>\n",
              "      <td>0.069185</td>\n",
              "      <td>0.069185</td>\n",
              "      <td>0.069185</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.128091</td>\n",
              "      <td>-0.128091</td>\n",
              "      <td>-0.128091</td>\n",
              "      <td>-0.128091</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.106479</td>\n",
              "      <td>0.106479</td>\n",
              "      <td>0.106479</td>\n",
              "      <td>0.106479</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.087800</td>\n",
              "      <td>0.087800</td>\n",
              "      <td>0.087800</td>\n",
              "      <td>0.087800</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.281260</td>\n",
              "      <td>-0.281260</td>\n",
              "      <td>-0.281260</td>\n",
              "      <td>-0.281260</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.219298</td>\n",
              "      <td>0.219298</td>\n",
              "      <td>0.219298</td>\n",
              "      <td>0.219298</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.101017</td>\n",
              "      <td>0.101017</td>\n",
              "      <td>0.101017</td>\n",
              "      <td>0.101017</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.075144</td>\n",
              "      <td>0.075144</td>\n",
              "      <td>0.075144</td>\n",
              "      <td>0.075144</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.186633</td>\n",
              "      <td>0.186633</td>\n",
              "      <td>0.186633</td>\n",
              "      <td>0.186633</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.064099</td>\n",
              "      <td>-0.064099</td>\n",
              "      <td>-0.064099</td>\n",
              "      <td>-0.064099</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.069985</td>\n",
              "      <td>-0.069985</td>\n",
              "      <td>-0.069985</td>\n",
              "      <td>-0.069985</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.125135</td>\n",
              "      <td>0.125135</td>\n",
              "      <td>0.125135</td>\n",
              "      <td>0.125135</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.206652</td>\n",
              "      <td>-0.206652</td>\n",
              "      <td>-0.206652</td>\n",
              "      <td>-0.206652</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.116605</td>\n",
              "      <td>0.116605</td>\n",
              "      <td>0.116605</td>\n",
              "      <td>0.116605</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.257798</td>\n",
              "      <td>-0.257798</td>\n",
              "      <td>-0.257798</td>\n",
              "      <td>-0.257798</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.196802</td>\n",
              "      <td>0.196802</td>\n",
              "      <td>0.196802</td>\n",
              "      <td>0.196802</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.034177</td>\n",
              "      <td>-0.034177</td>\n",
              "      <td>-0.034177</td>\n",
              "      <td>-0.034177</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.033937</td>\n",
              "      <td>-0.033937</td>\n",
              "      <td>-0.033937</td>\n",
              "      <td>-0.033937</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.025753</td>\n",
              "      <td>-0.025753</td>\n",
              "      <td>-0.025753</td>\n",
              "      <td>-0.025753</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.151272</td>\n",
              "      <td>-0.151272</td>\n",
              "      <td>-0.151272</td>\n",
              "      <td>-0.151272</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.342681</td>\n",
              "      <td>0.342681</td>\n",
              "      <td>0.342681</td>\n",
              "      <td>0.342681</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.044200</td>\n",
              "      <td>0.044200</td>\n",
              "      <td>0.044200</td>\n",
              "      <td>0.044200</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.052446</td>\n",
              "      <td>0.052446</td>\n",
              "      <td>0.052446</td>\n",
              "      <td>0.052446</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.205424</td>\n",
              "      <td>-0.205424</td>\n",
              "      <td>-0.205424</td>\n",
              "      <td>-0.205424</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.066486</td>\n",
              "      <td>0.066486</td>\n",
              "      <td>0.066486</td>\n",
              "      <td>0.066486</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.081891</td>\n",
              "      <td>-0.081891</td>\n",
              "      <td>-0.081891</td>\n",
              "      <td>-0.081891</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.126787</td>\n",
              "      <td>-0.126787</td>\n",
              "      <td>-0.126787</td>\n",
              "      <td>-0.126787</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.270175</td>\n",
              "      <td>-0.270175</td>\n",
              "      <td>-0.270175</td>\n",
              "      <td>-0.270175</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.082663</td>\n",
              "      <td>0.082663</td>\n",
              "      <td>0.082663</td>\n",
              "      <td>0.082663</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.027607</td>\n",
              "      <td>-0.027607</td>\n",
              "      <td>-0.027607</td>\n",
              "      <td>-0.027607</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.071808</td>\n",
              "      <td>0.071808</td>\n",
              "      <td>0.071808</td>\n",
              "      <td>0.071808</td>\n",
              "      <td>NaN</td>\n",
              "      <td>0.284436</td>\n",
              "      <td>0.284436</td>\n",
              "      <td>0.284436</td>\n",
              "      <td>0.284436</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.000577</td>\n",
              "      <td>-0.000577</td>\n",
              "      <td>-0.000577</td>\n",
              "      <td>-0.000577</td>\n",
              "      <td>NaN</td>\n",
              "      <td>-0.207844</td>\n",
              "      <td>0.045025</td>\n",
              "      <td>-0.005338</td>\n",
              "      <td>0.145838</td>\n",
              "      <td>0.211525</td>\n",
              "      <td>-0.142736</td>\n",
              "      <td>-0.211201</td>\n",
              "      <td>0.048844</td>\n",
              "      <td>-0.002806</td>\n",
              "      <td>0.149432</td>\n",
              "      <td>0.217863</td>\n",
              "      <td>-0.164226</td>\n",
              "      <td>-0.014702</td>\n",
              "      <td>0.170446</td>\n",
              "      <td>0.154358</td>\n",
              "      <td>0.268190</td>\n",
              "      <td>0.365030</td>\n",
              "      <td>0.103800</td>\n",
              "      <td>-0.374781</td>\n",
              "      <td>-0.122936</td>\n",
              "      <td>-0.202084</td>\n",
              "      <td>-0.029763</td>\n",
              "      <td>-0.015819</td>\n",
              "      <td>-0.285522</td>\n",
              "      <td>-0.460225</td>\n",
              "      <td>-0.453095</td>\n",
              "      <td>-0.521195</td>\n",
              "      <td>-0.404924</td>\n",
              "      <td>-0.486424</td>\n",
              "      <td>-0.232002</td>\n",
              "      <td>-0.432704</td>\n",
              "      <td>-0.459113</td>\n",
              "      <td>-0.561299</td>\n",
              "      <td>-0.430631</td>\n",
              "      <td>-0.492607</td>\n",
              "      <td>-0.229166</td>\n",
              "      <td>-0.149620</td>\n",
              "      <td>-0.140198</td>\n",
              "      <td>-0.026319</td>\n",
              "      <td>-0.086137</td>\n",
              "      <td>0.052805</td>\n",
              "      <td>0.023384</td>\n",
              "      <td>0.052805</td>\n",
              "      <td>0.117203</td>\n",
              "      <td>0.136393</td>\n",
              "      <td>0.105210</td>\n",
              "      <td>1.000000</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                          AGE_ABOVE65  DISEASE GROUPING 1  DISEASE GROUPING 2  \\\n",
              "AGE_PERCENTIL_70th           0.402675            0.081684           -0.052838   \n",
              "AGE_PERCENTIL_80th           0.372051            0.061864           -0.048820   \n",
              "AGE_PERCENTIL_90th           0.322705            0.050118            0.134898   \n",
              "AGE_PERCENTIL_Above 90th     0.305029            0.303608            0.053050   \n",
              "ICU                          0.240516            0.047593            0.116123   \n",
              "\n",
              "                          DISEASE GROUPING 3  DISEASE GROUPING 4  \\\n",
              "AGE_PERCENTIL_70th                  0.138639            0.189637   \n",
              "AGE_PERCENTIL_80th                 -0.052347            0.039624   \n",
              "AGE_PERCENTIL_90th                  0.062662           -0.039135   \n",
              "AGE_PERCENTIL_Above 90th            0.074493           -0.036992   \n",
              "ICU                                 0.128431            0.143218   \n",
              "\n",
              "                          DISEASE GROUPING 5  DISEASE GROUPING 6       HTN  \\\n",
              "AGE_PERCENTIL_70th                  0.053387            0.029902  0.116127   \n",
              "AGE_PERCENTIL_80th                  0.111784           -0.069903  0.081773   \n",
              "AGE_PERCENTIL_90th                  0.113210           -0.060631  0.093065   \n",
              "AGE_PERCENTIL_Above 90th            0.262335            0.009324  0.148417   \n",
              "ICU                                 0.107020           -0.000569  0.152904   \n",
              "\n",
              "                          IMMUNOCOMPROMISED     OTHER  ALBUMIN_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                 0.154684  0.049643        0.033136   \n",
              "AGE_PERCENTIL_80th                -0.008411 -0.031463        0.001602   \n",
              "AGE_PERCENTIL_90th                 0.099587 -0.006109        0.013411   \n",
              "AGE_PERCENTIL_Above 90th           0.078771  0.124363       -0.156210   \n",
              "ICU                                0.092280 -0.016866       -0.051499   \n",
              "\n",
              "                          ALBUMIN_MEAN  ALBUMIN_MIN  ALBUMIN_MAX  \\\n",
              "AGE_PERCENTIL_70th            0.033136     0.033136     0.033136   \n",
              "AGE_PERCENTIL_80th            0.001602     0.001602     0.001602   \n",
              "AGE_PERCENTIL_90th            0.013411     0.013411     0.013411   \n",
              "AGE_PERCENTIL_Above 90th     -0.156210    -0.156210    -0.156210   \n",
              "ICU                          -0.051499    -0.051499    -0.051499   \n",
              "\n",
              "                          ALBUMIN_DIFF  BE_ARTERIAL_MEDIAN  BE_ARTERIAL_MEAN  \\\n",
              "AGE_PERCENTIL_70th                 NaN           -0.002242         -0.002242   \n",
              "AGE_PERCENTIL_80th                 NaN           -0.033199         -0.033199   \n",
              "AGE_PERCENTIL_90th                 NaN            0.008328          0.008328   \n",
              "AGE_PERCENTIL_Above 90th           NaN           -0.027218         -0.027218   \n",
              "ICU                                NaN            0.090883          0.090883   \n",
              "\n",
              "                          BE_ARTERIAL_MIN  BE_ARTERIAL_MAX  BE_ARTERIAL_DIFF  \\\n",
              "AGE_PERCENTIL_70th              -0.002242        -0.002242               NaN   \n",
              "AGE_PERCENTIL_80th              -0.033199        -0.033199               NaN   \n",
              "AGE_PERCENTIL_90th               0.008328         0.008328               NaN   \n",
              "AGE_PERCENTIL_Above 90th        -0.027218        -0.027218               NaN   \n",
              "ICU                              0.090883         0.090883               NaN   \n",
              "\n",
              "                          BE_VENOUS_MEDIAN  BE_VENOUS_MEAN  BE_VENOUS_MIN  \\\n",
              "AGE_PERCENTIL_70th                0.055450        0.055450       0.055450   \n",
              "AGE_PERCENTIL_80th                0.036012        0.036012       0.036012   \n",
              "AGE_PERCENTIL_90th                0.001137        0.001137       0.001137   \n",
              "AGE_PERCENTIL_Above 90th          0.068960        0.068960       0.068960   \n",
              "ICU                               0.071562        0.071562       0.071562   \n",
              "\n",
              "                          BE_VENOUS_MAX  BE_VENOUS_DIFF  BIC_ARTERIAL_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th             0.055450             NaN            -0.013313   \n",
              "AGE_PERCENTIL_80th             0.036012             NaN            -0.012301   \n",
              "AGE_PERCENTIL_90th             0.001137             NaN            -0.135710   \n",
              "AGE_PERCENTIL_Above 90th       0.068960             NaN            -0.010085   \n",
              "ICU                            0.071562             NaN             0.069185   \n",
              "\n",
              "                          BIC_ARTERIAL_MEAN  BIC_ARTERIAL_MIN  \\\n",
              "AGE_PERCENTIL_70th                -0.013313         -0.013313   \n",
              "AGE_PERCENTIL_80th                -0.012301         -0.012301   \n",
              "AGE_PERCENTIL_90th                -0.135710         -0.135710   \n",
              "AGE_PERCENTIL_Above 90th          -0.010085         -0.010085   \n",
              "ICU                                0.069185          0.069185   \n",
              "\n",
              "                          BIC_ARTERIAL_MAX  BIC_ARTERIAL_DIFF  \\\n",
              "AGE_PERCENTIL_70th               -0.013313                NaN   \n",
              "AGE_PERCENTIL_80th               -0.012301                NaN   \n",
              "AGE_PERCENTIL_90th               -0.135710                NaN   \n",
              "AGE_PERCENTIL_Above 90th         -0.010085                NaN   \n",
              "ICU                               0.069185                NaN   \n",
              "\n",
              "                          BIC_VENOUS_MEDIAN  BIC_VENOUS_MEAN  BIC_VENOUS_MIN  \\\n",
              "AGE_PERCENTIL_70th                 0.042387         0.042387        0.042387   \n",
              "AGE_PERCENTIL_80th                 0.031392         0.031392        0.031392   \n",
              "AGE_PERCENTIL_90th                -0.023979        -0.023979       -0.023979   \n",
              "AGE_PERCENTIL_Above 90th          -0.026674        -0.026674       -0.026674   \n",
              "ICU                               -0.128091        -0.128091       -0.128091   \n",
              "\n",
              "                          BIC_VENOUS_MAX  BIC_VENOUS_DIFF  BILLIRUBIN_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th              0.042387              NaN           0.043088   \n",
              "AGE_PERCENTIL_80th              0.031392              NaN           0.023247   \n",
              "AGE_PERCENTIL_90th             -0.023979              NaN           0.012834   \n",
              "AGE_PERCENTIL_Above 90th       -0.026674              NaN          -0.013805   \n",
              "ICU                            -0.128091              NaN           0.106479   \n",
              "\n",
              "                          BILLIRUBIN_MEAN  BILLIRUBIN_MIN  BILLIRUBIN_MAX  \\\n",
              "AGE_PERCENTIL_70th               0.043088        0.043088        0.043088   \n",
              "AGE_PERCENTIL_80th               0.023247        0.023247        0.023247   \n",
              "AGE_PERCENTIL_90th               0.012834        0.012834        0.012834   \n",
              "AGE_PERCENTIL_Above 90th        -0.013805       -0.013805       -0.013805   \n",
              "ICU                              0.106479        0.106479        0.106479   \n",
              "\n",
              "                          BILLIRUBIN_DIFF  BLAST_MEDIAN  BLAST_MEAN  \\\n",
              "AGE_PERCENTIL_70th                    NaN     -0.022161   -0.022161   \n",
              "AGE_PERCENTIL_80th                    NaN     -0.020476   -0.020476   \n",
              "AGE_PERCENTIL_90th                    NaN      0.212447    0.212447   \n",
              "AGE_PERCENTIL_Above 90th              NaN     -0.016787   -0.016787   \n",
              "ICU                                   NaN      0.087800    0.087800   \n",
              "\n",
              "                          BLAST_MIN  BLAST_MAX  BLAST_DIFF  CALCIUM_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th        -0.022161  -0.022161         NaN       -0.033941   \n",
              "AGE_PERCENTIL_80th        -0.020476  -0.020476         NaN       -0.106084   \n",
              "AGE_PERCENTIL_90th         0.212447   0.212447         NaN       -0.008451   \n",
              "AGE_PERCENTIL_Above 90th  -0.016787  -0.016787         NaN       -0.008727   \n",
              "ICU                        0.087800   0.087800         NaN       -0.281260   \n",
              "\n",
              "                          CALCIUM_MEAN  CALCIUM_MIN  CALCIUM_MAX  \\\n",
              "AGE_PERCENTIL_70th           -0.033941    -0.033941    -0.033941   \n",
              "AGE_PERCENTIL_80th           -0.106084    -0.106084    -0.106084   \n",
              "AGE_PERCENTIL_90th           -0.008451    -0.008451    -0.008451   \n",
              "AGE_PERCENTIL_Above 90th     -0.008727    -0.008727    -0.008727   \n",
              "ICU                          -0.281260    -0.281260    -0.281260   \n",
              "\n",
              "                          CALCIUM_DIFF  CREATININ_MEDIAN  CREATININ_MEAN  \\\n",
              "AGE_PERCENTIL_70th                 NaN          0.012805        0.012805   \n",
              "AGE_PERCENTIL_80th                 NaN          0.187437        0.187437   \n",
              "AGE_PERCENTIL_90th                 NaN          0.011321        0.011321   \n",
              "AGE_PERCENTIL_Above 90th           NaN          0.048913        0.048913   \n",
              "ICU                                NaN          0.219298        0.219298   \n",
              "\n",
              "                          CREATININ_MIN  CREATININ_MAX  CREATININ_DIFF  \\\n",
              "AGE_PERCENTIL_70th             0.012805       0.012805             NaN   \n",
              "AGE_PERCENTIL_80th             0.187437       0.187437             NaN   \n",
              "AGE_PERCENTIL_90th             0.011321       0.011321             NaN   \n",
              "AGE_PERCENTIL_Above 90th       0.048913       0.048913             NaN   \n",
              "ICU                            0.219298       0.219298             NaN   \n",
              "\n",
              "                          FFA_MEDIAN  FFA_MEAN   FFA_MIN   FFA_MAX  FFA_DIFF  \\\n",
              "AGE_PERCENTIL_70th         -0.019508 -0.019508 -0.019508 -0.019508       NaN   \n",
              "AGE_PERCENTIL_80th          0.028170  0.028170  0.028170  0.028170       NaN   \n",
              "AGE_PERCENTIL_90th          0.018527  0.018527  0.018527  0.018527       NaN   \n",
              "AGE_PERCENTIL_Above 90th   -0.051167 -0.051167 -0.051167 -0.051167       NaN   \n",
              "ICU                         0.101017  0.101017  0.101017  0.101017       NaN   \n",
              "\n",
              "                          GGT_MEDIAN  GGT_MEAN   GGT_MIN   GGT_MAX  GGT_DIFF  \\\n",
              "AGE_PERCENTIL_70th         -0.009802 -0.009802 -0.009802 -0.009802       NaN   \n",
              "AGE_PERCENTIL_80th         -0.030858 -0.030858 -0.030858 -0.030858       NaN   \n",
              "AGE_PERCENTIL_90th         -0.041682 -0.041682 -0.041682 -0.041682       NaN   \n",
              "AGE_PERCENTIL_Above 90th   -0.064201 -0.064201 -0.064201 -0.064201       NaN   \n",
              "ICU                         0.075144  0.075144  0.075144  0.075144       NaN   \n",
              "\n",
              "                          GLUCOSE_MEDIAN  GLUCOSE_MEAN  GLUCOSE_MIN  \\\n",
              "AGE_PERCENTIL_70th             -0.007641     -0.007641    -0.007641   \n",
              "AGE_PERCENTIL_80th             -0.006491     -0.006491    -0.006491   \n",
              "AGE_PERCENTIL_90th             -0.046688     -0.046688    -0.046688   \n",
              "AGE_PERCENTIL_Above 90th        0.182894      0.182894     0.182894   \n",
              "ICU                             0.186633      0.186633     0.186633   \n",
              "\n",
              "                          GLUCOSE_MAX  GLUCOSE_DIFF  HEMATOCRITE_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th          -0.007641           NaN           -0.189385   \n",
              "AGE_PERCENTIL_80th          -0.006491           NaN           -0.050288   \n",
              "AGE_PERCENTIL_90th          -0.046688           NaN           -0.075065   \n",
              "AGE_PERCENTIL_Above 90th     0.182894           NaN           -0.168841   \n",
              "ICU                          0.186633           NaN           -0.064099   \n",
              "\n",
              "                          HEMATOCRITE_MEAN  HEMATOCRITE_MIN  HEMATOCRITE_MAX  \\\n",
              "AGE_PERCENTIL_70th               -0.189385        -0.189385        -0.189385   \n",
              "AGE_PERCENTIL_80th               -0.050288        -0.050288        -0.050288   \n",
              "AGE_PERCENTIL_90th               -0.075065        -0.075065        -0.075065   \n",
              "AGE_PERCENTIL_Above 90th         -0.168841        -0.168841        -0.168841   \n",
              "ICU                              -0.064099        -0.064099        -0.064099   \n",
              "\n",
              "                          HEMATOCRITE_DIFF  HEMOGLOBIN_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                     NaN          -0.181559   \n",
              "AGE_PERCENTIL_80th                     NaN          -0.044214   \n",
              "AGE_PERCENTIL_90th                     NaN          -0.092330   \n",
              "AGE_PERCENTIL_Above 90th               NaN          -0.184098   \n",
              "ICU                                    NaN          -0.069985   \n",
              "\n",
              "                          HEMOGLOBIN_MEAN  HEMOGLOBIN_MIN  HEMOGLOBIN_MAX  \\\n",
              "AGE_PERCENTIL_70th              -0.181559       -0.181559       -0.181559   \n",
              "AGE_PERCENTIL_80th              -0.044214       -0.044214       -0.044214   \n",
              "AGE_PERCENTIL_90th              -0.092330       -0.092330       -0.092330   \n",
              "AGE_PERCENTIL_Above 90th        -0.184098       -0.184098       -0.184098   \n",
              "ICU                             -0.069985       -0.069985       -0.069985   \n",
              "\n",
              "                          HEMOGLOBIN_DIFF  INR_MEDIAN  INR_MEAN   INR_MIN  \\\n",
              "AGE_PERCENTIL_70th                    NaN    0.121959  0.121959  0.121959   \n",
              "AGE_PERCENTIL_80th                    NaN    0.066156  0.066156  0.066156   \n",
              "AGE_PERCENTIL_90th                    NaN    0.003333  0.003333  0.003333   \n",
              "AGE_PERCENTIL_Above 90th              NaN   -0.019227 -0.019227 -0.019227   \n",
              "ICU                                   NaN    0.125135  0.125135  0.125135   \n",
              "\n",
              "                           INR_MAX  INR_DIFF  LACTATE_MEDIAN  LACTATE_MEAN  \\\n",
              "AGE_PERCENTIL_70th        0.121959       NaN        0.080602      0.080602   \n",
              "AGE_PERCENTIL_80th        0.066156       NaN        0.072293      0.072293   \n",
              "AGE_PERCENTIL_90th        0.003333       NaN       -0.157023     -0.157023   \n",
              "AGE_PERCENTIL_Above 90th -0.019227       NaN        0.002241      0.002241   \n",
              "ICU                       0.125135       NaN       -0.206652     -0.206652   \n",
              "\n",
              "                          LACTATE_MIN  LACTATE_MAX  LACTATE_DIFF  \\\n",
              "AGE_PERCENTIL_70th           0.080602     0.080602           NaN   \n",
              "AGE_PERCENTIL_80th           0.072293     0.072293           NaN   \n",
              "AGE_PERCENTIL_90th          -0.157023    -0.157023           NaN   \n",
              "AGE_PERCENTIL_Above 90th     0.002241     0.002241           NaN   \n",
              "ICU                         -0.206652    -0.206652           NaN   \n",
              "\n",
              "                          LEUKOCYTES_MEDIAN  LEUKOCYTES_MEAN  LEUKOCYTES_MIN  \\\n",
              "AGE_PERCENTIL_70th                -0.035692        -0.035692       -0.035692   \n",
              "AGE_PERCENTIL_80th                -0.045179        -0.045179       -0.045179   \n",
              "AGE_PERCENTIL_90th                 0.067807         0.067807        0.067807   \n",
              "AGE_PERCENTIL_Above 90th           0.059318         0.059318        0.059318   \n",
              "ICU                                0.116605         0.116605        0.116605   \n",
              "\n",
              "                          LEUKOCYTES_MAX  LEUKOCYTES_DIFF  LINFOCITOS_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th             -0.035692              NaN          -0.019683   \n",
              "AGE_PERCENTIL_80th             -0.045179              NaN          -0.124717   \n",
              "AGE_PERCENTIL_90th              0.067807              NaN          -0.024487   \n",
              "AGE_PERCENTIL_Above 90th        0.059318              NaN          -0.062136   \n",
              "ICU                             0.116605              NaN          -0.257798   \n",
              "\n",
              "                          LINFOCITOS_MEAN  LINFOCITOS_MIN  LINFOCITOS_MAX  \\\n",
              "AGE_PERCENTIL_70th              -0.019683       -0.019683       -0.019683   \n",
              "AGE_PERCENTIL_80th              -0.124717       -0.124717       -0.124717   \n",
              "AGE_PERCENTIL_90th              -0.024487       -0.024487       -0.024487   \n",
              "AGE_PERCENTIL_Above 90th        -0.062136       -0.062136       -0.062136   \n",
              "ICU                             -0.257798       -0.257798       -0.257798   \n",
              "\n",
              "                          LINFOCITOS_DIFF  NEUTROPHILES_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                    NaN            -0.031877   \n",
              "AGE_PERCENTIL_80th                    NaN            -0.017195   \n",
              "AGE_PERCENTIL_90th                    NaN             0.068433   \n",
              "AGE_PERCENTIL_Above 90th              NaN             0.062926   \n",
              "ICU                                   NaN             0.196802   \n",
              "\n",
              "                          NEUTROPHILES_MEAN  NEUTROPHILES_MIN  \\\n",
              "AGE_PERCENTIL_70th                -0.031877         -0.031877   \n",
              "AGE_PERCENTIL_80th                -0.017195         -0.017195   \n",
              "AGE_PERCENTIL_90th                 0.068433          0.068433   \n",
              "AGE_PERCENTIL_Above 90th           0.062926          0.062926   \n",
              "ICU                                0.196802          0.196802   \n",
              "\n",
              "                          NEUTROPHILES_MAX  NEUTROPHILES_DIFF  \\\n",
              "AGE_PERCENTIL_70th               -0.031877                NaN   \n",
              "AGE_PERCENTIL_80th               -0.017195                NaN   \n",
              "AGE_PERCENTIL_90th                0.068433                NaN   \n",
              "AGE_PERCENTIL_Above 90th          0.062926                NaN   \n",
              "ICU                               0.196802                NaN   \n",
              "\n",
              "                          P02_ARTERIAL_MEDIAN  P02_ARTERIAL_MEAN  \\\n",
              "AGE_PERCENTIL_70th                  -0.046734          -0.046734   \n",
              "AGE_PERCENTIL_80th                   0.016702           0.016702   \n",
              "AGE_PERCENTIL_90th                   0.006427           0.006427   \n",
              "AGE_PERCENTIL_Above 90th             0.013694           0.013694   \n",
              "ICU                                 -0.034177          -0.034177   \n",
              "\n",
              "                          P02_ARTERIAL_MIN  P02_ARTERIAL_MAX  \\\n",
              "AGE_PERCENTIL_70th               -0.046734         -0.046734   \n",
              "AGE_PERCENTIL_80th                0.016702          0.016702   \n",
              "AGE_PERCENTIL_90th                0.006427          0.006427   \n",
              "AGE_PERCENTIL_Above 90th          0.013694          0.013694   \n",
              "ICU                              -0.034177         -0.034177   \n",
              "\n",
              "                          P02_ARTERIAL_DIFF  P02_VENOUS_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                      NaN           0.035907   \n",
              "AGE_PERCENTIL_80th                      NaN           0.008631   \n",
              "AGE_PERCENTIL_90th                      NaN          -0.026206   \n",
              "AGE_PERCENTIL_Above 90th                NaN           0.107393   \n",
              "ICU                                     NaN          -0.033937   \n",
              "\n",
              "                          P02_VENOUS_MEAN  P02_VENOUS_MIN  P02_VENOUS_MAX  \\\n",
              "AGE_PERCENTIL_70th               0.035907        0.035907        0.035907   \n",
              "AGE_PERCENTIL_80th               0.008631        0.008631        0.008631   \n",
              "AGE_PERCENTIL_90th              -0.026206       -0.026206       -0.026206   \n",
              "AGE_PERCENTIL_Above 90th         0.107393        0.107393        0.107393   \n",
              "ICU                             -0.033937       -0.033937       -0.033937   \n",
              "\n",
              "                          P02_VENOUS_DIFF  PC02_ARTERIAL_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                    NaN             -0.068907   \n",
              "AGE_PERCENTIL_80th                    NaN              0.037350   \n",
              "AGE_PERCENTIL_90th                    NaN             -0.157444   \n",
              "AGE_PERCENTIL_Above 90th              NaN              0.030621   \n",
              "ICU                                   NaN             -0.025753   \n",
              "\n",
              "                          PC02_ARTERIAL_MEAN  PC02_ARTERIAL_MIN  \\\n",
              "AGE_PERCENTIL_70th                 -0.068907          -0.068907   \n",
              "AGE_PERCENTIL_80th                  0.037350           0.037350   \n",
              "AGE_PERCENTIL_90th                 -0.157444          -0.157444   \n",
              "AGE_PERCENTIL_Above 90th            0.030621           0.030621   \n",
              "ICU                                -0.025753          -0.025753   \n",
              "\n",
              "                          PC02_ARTERIAL_MAX  PC02_ARTERIAL_DIFF  \\\n",
              "AGE_PERCENTIL_70th                -0.068907                 NaN   \n",
              "AGE_PERCENTIL_80th                 0.037350                 NaN   \n",
              "AGE_PERCENTIL_90th                -0.157444                 NaN   \n",
              "AGE_PERCENTIL_Above 90th           0.030621                 NaN   \n",
              "ICU                               -0.025753                 NaN   \n",
              "\n",
              "                          PC02_VENOUS_MEDIAN  PC02_VENOUS_MEAN  \\\n",
              "AGE_PERCENTIL_70th                 -0.034507         -0.034507   \n",
              "AGE_PERCENTIL_80th                 -0.038268         -0.038268   \n",
              "AGE_PERCENTIL_90th                 -0.038205         -0.038205   \n",
              "AGE_PERCENTIL_Above 90th            0.035268          0.035268   \n",
              "ICU                                -0.151272         -0.151272   \n",
              "\n",
              "                          PC02_VENOUS_MIN  PC02_VENOUS_MAX  PC02_VENOUS_DIFF  \\\n",
              "AGE_PERCENTIL_70th              -0.034507        -0.034507               NaN   \n",
              "AGE_PERCENTIL_80th              -0.038268        -0.038268               NaN   \n",
              "AGE_PERCENTIL_90th              -0.038205        -0.038205               NaN   \n",
              "AGE_PERCENTIL_Above 90th         0.035268         0.035268               NaN   \n",
              "ICU                             -0.151272        -0.151272               NaN   \n",
              "\n",
              "                          PCR_MEDIAN  PCR_MEAN   PCR_MIN   PCR_MAX  PCR_DIFF  \\\n",
              "AGE_PERCENTIL_70th          0.062130  0.062130  0.062130  0.062130       NaN   \n",
              "AGE_PERCENTIL_80th         -0.008421 -0.008421 -0.008421 -0.008421       NaN   \n",
              "AGE_PERCENTIL_90th          0.011468  0.011468  0.011468  0.011468       NaN   \n",
              "AGE_PERCENTIL_Above 90th   -0.058987 -0.058987 -0.058987 -0.058987       NaN   \n",
              "ICU                         0.342681  0.342681  0.342681  0.342681       NaN   \n",
              "\n",
              "                          PH_ARTERIAL_MEDIAN  PH_ARTERIAL_MEAN  \\\n",
              "AGE_PERCENTIL_70th                  0.049093          0.049093   \n",
              "AGE_PERCENTIL_80th                 -0.035351         -0.035351   \n",
              "AGE_PERCENTIL_90th                  0.051011          0.051011   \n",
              "AGE_PERCENTIL_Above 90th           -0.028983         -0.028983   \n",
              "ICU                                 0.044200          0.044200   \n",
              "\n",
              "                          PH_ARTERIAL_MIN  PH_ARTERIAL_MAX  PH_ARTERIAL_DIFF  \\\n",
              "AGE_PERCENTIL_70th               0.049093         0.049093               NaN   \n",
              "AGE_PERCENTIL_80th              -0.035351        -0.035351               NaN   \n",
              "AGE_PERCENTIL_90th               0.051011         0.051011               NaN   \n",
              "AGE_PERCENTIL_Above 90th        -0.028983        -0.028983               NaN   \n",
              "ICU                              0.044200         0.044200               NaN   \n",
              "\n",
              "                          PH_VENOUS_MEDIAN  PH_VENOUS_MEAN  PH_VENOUS_MIN  \\\n",
              "AGE_PERCENTIL_70th                0.084124        0.084124       0.084124   \n",
              "AGE_PERCENTIL_80th                0.097817        0.097817       0.097817   \n",
              "AGE_PERCENTIL_90th                0.033351        0.033351       0.033351   \n",
              "AGE_PERCENTIL_Above 90th         -0.098350       -0.098350      -0.098350   \n",
              "ICU                               0.052446        0.052446       0.052446   \n",
              "\n",
              "                          PH_VENOUS_MAX  PH_VENOUS_DIFF  PLATELETS_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th             0.084124             NaN         -0.092542   \n",
              "AGE_PERCENTIL_80th             0.097817             NaN         -0.176491   \n",
              "AGE_PERCENTIL_90th             0.033351             NaN         -0.031250   \n",
              "AGE_PERCENTIL_Above 90th      -0.098350             NaN         -0.028189   \n",
              "ICU                            0.052446             NaN         -0.205424   \n",
              "\n",
              "                          PLATELETS_MEAN  PLATELETS_MIN  PLATELETS_MAX  \\\n",
              "AGE_PERCENTIL_70th             -0.092542      -0.092542      -0.092542   \n",
              "AGE_PERCENTIL_80th             -0.176491      -0.176491      -0.176491   \n",
              "AGE_PERCENTIL_90th             -0.031250      -0.031250      -0.031250   \n",
              "AGE_PERCENTIL_Above 90th       -0.028189      -0.028189      -0.028189   \n",
              "ICU                            -0.205424      -0.205424      -0.205424   \n",
              "\n",
              "                          PLATELETS_DIFF  POTASSIUM_MEDIAN  POTASSIUM_MEAN  \\\n",
              "AGE_PERCENTIL_70th                   NaN         -0.030214       -0.030214   \n",
              "AGE_PERCENTIL_80th                   NaN         -0.119943       -0.119943   \n",
              "AGE_PERCENTIL_90th                   NaN          0.134179        0.134179   \n",
              "AGE_PERCENTIL_Above 90th             NaN          0.138645        0.138645   \n",
              "ICU                                  NaN          0.066486        0.066486   \n",
              "\n",
              "                          POTASSIUM_MIN  POTASSIUM_MAX  POTASSIUM_DIFF  \\\n",
              "AGE_PERCENTIL_70th            -0.030214      -0.030214             NaN   \n",
              "AGE_PERCENTIL_80th            -0.119943      -0.119943             NaN   \n",
              "AGE_PERCENTIL_90th             0.134179       0.134179             NaN   \n",
              "AGE_PERCENTIL_Above 90th       0.138645       0.138645             NaN   \n",
              "ICU                            0.066486       0.066486             NaN   \n",
              "\n",
              "                          SAT02_ARTERIAL_MEDIAN  SAT02_ARTERIAL_MEAN  \\\n",
              "AGE_PERCENTIL_70th                     0.001932             0.001932   \n",
              "AGE_PERCENTIL_80th                     0.021159             0.021159   \n",
              "AGE_PERCENTIL_90th                     0.012351             0.012351   \n",
              "AGE_PERCENTIL_Above 90th               0.017347             0.017347   \n",
              "ICU                                   -0.081891            -0.081891   \n",
              "\n",
              "                          SAT02_ARTERIAL_MIN  SAT02_ARTERIAL_MAX  \\\n",
              "AGE_PERCENTIL_70th                  0.001932            0.001932   \n",
              "AGE_PERCENTIL_80th                  0.021159            0.021159   \n",
              "AGE_PERCENTIL_90th                  0.012351            0.012351   \n",
              "AGE_PERCENTIL_Above 90th            0.017347            0.017347   \n",
              "ICU                                -0.081891           -0.081891   \n",
              "\n",
              "                          SAT02_ARTERIAL_DIFF  SAT02_VENOUS_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                        NaN            -0.007141   \n",
              "AGE_PERCENTIL_80th                        NaN             0.062060   \n",
              "AGE_PERCENTIL_90th                        NaN            -0.093800   \n",
              "AGE_PERCENTIL_Above 90th                  NaN            -0.035564   \n",
              "ICU                                       NaN            -0.126787   \n",
              "\n",
              "                          SAT02_VENOUS_MEAN  SAT02_VENOUS_MIN  \\\n",
              "AGE_PERCENTIL_70th                -0.007141         -0.007141   \n",
              "AGE_PERCENTIL_80th                 0.062060          0.062060   \n",
              "AGE_PERCENTIL_90th                -0.093800         -0.093800   \n",
              "AGE_PERCENTIL_Above 90th          -0.035564         -0.035564   \n",
              "ICU                               -0.126787         -0.126787   \n",
              "\n",
              "                          SAT02_VENOUS_MAX  SAT02_VENOUS_DIFF  SODIUM_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th               -0.007141                NaN      -0.037360   \n",
              "AGE_PERCENTIL_80th                0.062060                NaN      -0.004862   \n",
              "AGE_PERCENTIL_90th               -0.093800                NaN      -0.052278   \n",
              "AGE_PERCENTIL_Above 90th         -0.035564                NaN      -0.078044   \n",
              "ICU                              -0.126787                NaN      -0.270175   \n",
              "\n",
              "                          SODIUM_MEAN  SODIUM_MIN  SODIUM_MAX  SODIUM_DIFF  \\\n",
              "AGE_PERCENTIL_70th          -0.037360   -0.037360   -0.037360          NaN   \n",
              "AGE_PERCENTIL_80th          -0.004862   -0.004862   -0.004862          NaN   \n",
              "AGE_PERCENTIL_90th          -0.052278   -0.052278   -0.052278          NaN   \n",
              "AGE_PERCENTIL_Above 90th    -0.078044   -0.078044   -0.078044          NaN   \n",
              "ICU                         -0.270175   -0.270175   -0.270175          NaN   \n",
              "\n",
              "                          TGO_MEDIAN  TGO_MEAN   TGO_MIN   TGO_MAX  TGO_DIFF  \\\n",
              "AGE_PERCENTIL_70th          0.010614  0.010614  0.010614  0.010614       NaN   \n",
              "AGE_PERCENTIL_80th          0.166311  0.166311  0.166311  0.166311       NaN   \n",
              "AGE_PERCENTIL_90th         -0.032935 -0.032935 -0.032935 -0.032935       NaN   \n",
              "AGE_PERCENTIL_Above 90th   -0.035721 -0.035721 -0.035721 -0.035721       NaN   \n",
              "ICU                         0.082663  0.082663  0.082663  0.082663       NaN   \n",
              "\n",
              "                          TGP_MEDIAN  TGP_MEAN   TGP_MIN   TGP_MAX  TGP_DIFF  \\\n",
              "AGE_PERCENTIL_70th          0.018319  0.018319  0.018319  0.018319       NaN   \n",
              "AGE_PERCENTIL_80th          0.073675  0.073675  0.073675  0.073675       NaN   \n",
              "AGE_PERCENTIL_90th         -0.045916 -0.045916 -0.045916 -0.045916       NaN   \n",
              "AGE_PERCENTIL_Above 90th   -0.103004 -0.103004 -0.103004 -0.103004       NaN   \n",
              "ICU                        -0.027607 -0.027607 -0.027607 -0.027607       NaN   \n",
              "\n",
              "                          TTPA_MEDIAN  TTPA_MEAN  TTPA_MIN  TTPA_MAX  \\\n",
              "AGE_PERCENTIL_70th           0.066917   0.066917  0.066917  0.066917   \n",
              "AGE_PERCENTIL_80th          -0.090077  -0.090077 -0.090077 -0.090077   \n",
              "AGE_PERCENTIL_90th           0.052318   0.052318  0.052318  0.052318   \n",
              "AGE_PERCENTIL_Above 90th    -0.067098  -0.067098 -0.067098 -0.067098   \n",
              "ICU                          0.071808   0.071808  0.071808  0.071808   \n",
              "\n",
              "                          TTPA_DIFF  UREA_MEDIAN  UREA_MEAN  UREA_MIN  \\\n",
              "AGE_PERCENTIL_70th              NaN     0.080082   0.080082  0.080082   \n",
              "AGE_PERCENTIL_80th              NaN     0.246949   0.246949  0.246949   \n",
              "AGE_PERCENTIL_90th              NaN     0.065191   0.065191  0.065191   \n",
              "AGE_PERCENTIL_Above 90th        NaN     0.236355   0.236355  0.236355   \n",
              "ICU                             NaN     0.284436   0.284436  0.284436   \n",
              "\n",
              "                          UREA_MAX  UREA_DIFF  DIMER_MEDIAN  DIMER_MEAN  \\\n",
              "AGE_PERCENTIL_70th        0.080082        NaN     -0.028426   -0.028426   \n",
              "AGE_PERCENTIL_80th        0.246949        NaN      0.066066    0.066066   \n",
              "AGE_PERCENTIL_90th        0.065191        NaN     -0.007696   -0.007696   \n",
              "AGE_PERCENTIL_Above 90th  0.236355        NaN      0.075485    0.075485   \n",
              "ICU                       0.284436        NaN     -0.000577   -0.000577   \n",
              "\n",
              "                          DIMER_MIN  DIMER_MAX  DIMER_DIFF  \\\n",
              "AGE_PERCENTIL_70th        -0.028426  -0.028426         NaN   \n",
              "AGE_PERCENTIL_80th         0.066066   0.066066         NaN   \n",
              "AGE_PERCENTIL_90th        -0.007696  -0.007696         NaN   \n",
              "AGE_PERCENTIL_Above 90th   0.075485   0.075485         NaN   \n",
              "ICU                       -0.000577  -0.000577         NaN   \n",
              "\n",
              "                          BLOODPRESSURE_DIASTOLIC_MEAN  \\\n",
              "AGE_PERCENTIL_70th                           -0.061789   \n",
              "AGE_PERCENTIL_80th                           -0.010905   \n",
              "AGE_PERCENTIL_90th                            0.035194   \n",
              "AGE_PERCENTIL_Above 90th                     -0.148409   \n",
              "ICU                                          -0.207844   \n",
              "\n",
              "                          BLOODPRESSURE_SISTOLIC_MEAN  HEART_RATE_MEAN  \\\n",
              "AGE_PERCENTIL_70th                           0.084698        -0.131850   \n",
              "AGE_PERCENTIL_80th                           0.065313        -0.090179   \n",
              "AGE_PERCENTIL_90th                           0.213388        -0.042347   \n",
              "AGE_PERCENTIL_Above 90th                     0.055248         0.002933   \n",
              "ICU                                          0.045025        -0.005338   \n",
              "\n",
              "                          RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  \\\n",
              "AGE_PERCENTIL_70th                     0.068438         -0.080325   \n",
              "AGE_PERCENTIL_80th                     0.008452         -0.009846   \n",
              "AGE_PERCENTIL_90th                     0.020020          0.006909   \n",
              "AGE_PERCENTIL_Above 90th               0.152784          0.016918   \n",
              "ICU                                    0.145838          0.211525   \n",
              "\n",
              "                          OXYGEN_SATURATION_MEAN  \\\n",
              "AGE_PERCENTIL_70th                     -0.072574   \n",
              "AGE_PERCENTIL_80th                     -0.060254   \n",
              "AGE_PERCENTIL_90th                     -0.033732   \n",
              "AGE_PERCENTIL_Above 90th                0.008539   \n",
              "ICU                                    -0.142736   \n",
              "\n",
              "                          BLOODPRESSURE_DIASTOLIC_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                             -0.059360   \n",
              "AGE_PERCENTIL_80th                             -0.011728   \n",
              "AGE_PERCENTIL_90th                              0.032509   \n",
              "AGE_PERCENTIL_Above 90th                       -0.144490   \n",
              "ICU                                            -0.211201   \n",
              "\n",
              "                          BLOODPRESSURE_SISTOLIC_MEDIAN  HEART_RATE_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                             0.086414          -0.129918   \n",
              "AGE_PERCENTIL_80th                             0.073211          -0.063178   \n",
              "AGE_PERCENTIL_90th                             0.212713          -0.037758   \n",
              "AGE_PERCENTIL_Above 90th                       0.049881           0.003529   \n",
              "ICU                                            0.048844          -0.002806   \n",
              "\n",
              "                          RESPIRATORY_RATE_MEDIAN  TEMPERATURE_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                       0.060472           -0.091464   \n",
              "AGE_PERCENTIL_80th                       0.012784           -0.009997   \n",
              "AGE_PERCENTIL_90th                       0.020266            0.017651   \n",
              "AGE_PERCENTIL_Above 90th                 0.156166            0.015435   \n",
              "ICU                                      0.149432            0.217863   \n",
              "\n",
              "                          OXYGEN_SATURATION_MEDIAN  \\\n",
              "AGE_PERCENTIL_70th                       -0.040348   \n",
              "AGE_PERCENTIL_80th                       -0.050306   \n",
              "AGE_PERCENTIL_90th                       -0.036191   \n",
              "AGE_PERCENTIL_Above 90th                  0.009033   \n",
              "ICU                                      -0.164226   \n",
              "\n",
              "                          BLOODPRESSURE_DIASTOLIC_MIN  \\\n",
              "AGE_PERCENTIL_70th                          -0.036504   \n",
              "AGE_PERCENTIL_80th                           0.016969   \n",
              "AGE_PERCENTIL_90th                           0.070790   \n",
              "AGE_PERCENTIL_Above 90th                    -0.118053   \n",
              "ICU                                         -0.014702   \n",
              "\n",
              "                          BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  \\\n",
              "AGE_PERCENTIL_70th                          0.085011       -0.117564   \n",
              "AGE_PERCENTIL_80th                          0.073879       -0.095074   \n",
              "AGE_PERCENTIL_90th                          0.227708        0.005969   \n",
              "AGE_PERCENTIL_Above 90th                    0.064086        0.024762   \n",
              "ICU                                         0.170446        0.154358   \n",
              "\n",
              "                          RESPIRATORY_RATE_MIN  TEMPERATURE_MIN  \\\n",
              "AGE_PERCENTIL_70th                    0.048441        -0.070054   \n",
              "AGE_PERCENTIL_80th                    0.017877         0.015329   \n",
              "AGE_PERCENTIL_90th                    0.028998         0.042049   \n",
              "AGE_PERCENTIL_Above 90th              0.170116         0.029084   \n",
              "ICU                                   0.268190         0.365030   \n",
              "\n",
              "                          OXYGEN_SATURATION_MIN  BLOODPRESSURE_DIASTOLIC_MAX  \\\n",
              "AGE_PERCENTIL_70th                    -0.038569                    -0.035095   \n",
              "AGE_PERCENTIL_80th                     0.011042                    -0.057432   \n",
              "AGE_PERCENTIL_90th                    -0.013238                    -0.006645   \n",
              "AGE_PERCENTIL_Above 90th               0.045574                    -0.140688   \n",
              "ICU                                    0.103800                    -0.374781   \n",
              "\n",
              "                          BLOODPRESSURE_SISTOLIC_MAX  HEART_RATE_MAX  \\\n",
              "AGE_PERCENTIL_70th                          0.077661       -0.138762   \n",
              "AGE_PERCENTIL_80th                          0.036275       -0.112635   \n",
              "AGE_PERCENTIL_90th                          0.173577       -0.087677   \n",
              "AGE_PERCENTIL_Above 90th                    0.060473       -0.016091   \n",
              "ICU                                        -0.122936       -0.202084   \n",
              "\n",
              "                          RESPIRATORY_RATE_MAX  TEMPERATURE_MAX  \\\n",
              "AGE_PERCENTIL_70th                    0.074757        -0.060933   \n",
              "AGE_PERCENTIL_80th                   -0.016837        -0.033501   \n",
              "AGE_PERCENTIL_90th                   -0.025425        -0.055713   \n",
              "AGE_PERCENTIL_Above 90th              0.112055         0.006042   \n",
              "ICU                                  -0.029763        -0.015819   \n",
              "\n",
              "                          OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "AGE_PERCENTIL_70th                    -0.043424                     -0.002392   \n",
              "AGE_PERCENTIL_80th                    -0.093839                     -0.092799   \n",
              "AGE_PERCENTIL_90th                    -0.093220                     -0.090489   \n",
              "AGE_PERCENTIL_Above 90th              -0.018779                     -0.042366   \n",
              "ICU                                   -0.285522                     -0.460225   \n",
              "\n",
              "                          BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  \\\n",
              "AGE_PERCENTIL_70th                          -0.009271        -0.033103   \n",
              "AGE_PERCENTIL_80th                          -0.056737        -0.027386   \n",
              "AGE_PERCENTIL_90th                          -0.078546        -0.137506   \n",
              "AGE_PERCENTIL_Above 90th                    -0.003984        -0.059618   \n",
              "ICU                                         -0.453095        -0.521195   \n",
              "\n",
              "                          RESPIRATORY_RATE_DIFF  TEMPERATURE_DIFF  \\\n",
              "AGE_PERCENTIL_70th                     0.042641          0.012466   \n",
              "AGE_PERCENTIL_80th                    -0.048452         -0.061946   \n",
              "AGE_PERCENTIL_90th                    -0.075868         -0.124175   \n",
              "AGE_PERCENTIL_Above 90th              -0.067668         -0.029522   \n",
              "ICU                                   -0.404924         -0.486424   \n",
              "\n",
              "                          OXYGEN_SATURATION_DIFF  \\\n",
              "AGE_PERCENTIL_70th                      0.019395   \n",
              "AGE_PERCENTIL_80th                     -0.053039   \n",
              "AGE_PERCENTIL_90th                     -0.028338   \n",
              "AGE_PERCENTIL_Above 90th               -0.054236   \n",
              "ICU                                    -0.232002   \n",
              "\n",
              "                          BLOODPRESSURE_DIASTOLIC_DIFF_REL  \\\n",
              "AGE_PERCENTIL_70th                               -0.001520   \n",
              "AGE_PERCENTIL_80th                               -0.090933   \n",
              "AGE_PERCENTIL_90th                               -0.085449   \n",
              "AGE_PERCENTIL_Above 90th                         -0.014615   \n",
              "ICU                                              -0.432704   \n",
              "\n",
              "                          BLOODPRESSURE_SISTOLIC_DIFF_REL  \\\n",
              "AGE_PERCENTIL_70th                              -0.011538   \n",
              "AGE_PERCENTIL_80th                              -0.070643   \n",
              "AGE_PERCENTIL_90th                              -0.081142   \n",
              "AGE_PERCENTIL_Above 90th                        -0.007365   \n",
              "ICU                                             -0.459113   \n",
              "\n",
              "                          HEART_RATE_DIFF_REL  RESPIRATORY_RATE_DIFF_REL  \\\n",
              "AGE_PERCENTIL_70th                  -0.018430                   0.049075   \n",
              "AGE_PERCENTIL_80th                  -0.063098                  -0.054256   \n",
              "AGE_PERCENTIL_90th                  -0.147246                  -0.075906   \n",
              "AGE_PERCENTIL_Above 90th            -0.058710                  -0.071135   \n",
              "ICU                                 -0.561299                  -0.430631   \n",
              "\n",
              "                          TEMPERATURE_DIFF_REL  OXYGEN_SATURATION_DIFF_REL  \\\n",
              "AGE_PERCENTIL_70th                    0.016294                    0.022468   \n",
              "AGE_PERCENTIL_80th                   -0.062087                   -0.053039   \n",
              "AGE_PERCENTIL_90th                   -0.125159                   -0.029484   \n",
              "AGE_PERCENTIL_Above 90th             -0.029038                   -0.053933   \n",
              "ICU                                  -0.492607                   -0.229166   \n",
              "\n",
              "                          AGE_PERCENTIL_10th  AGE_PERCENTIL_20th  \\\n",
              "AGE_PERCENTIL_70th                 -0.126406           -0.130378   \n",
              "AGE_PERCENTIL_80th                 -0.116793           -0.120463   \n",
              "AGE_PERCENTIL_90th                 -0.101302           -0.104485   \n",
              "AGE_PERCENTIL_Above 90th           -0.095753           -0.098762   \n",
              "ICU                                -0.149620           -0.140198   \n",
              "\n",
              "                          AGE_PERCENTIL_30th  AGE_PERCENTIL_40th  \\\n",
              "AGE_PERCENTIL_70th                 -0.122369           -0.120324   \n",
              "AGE_PERCENTIL_80th                 -0.113063           -0.111174   \n",
              "AGE_PERCENTIL_90th                 -0.098067           -0.096428   \n",
              "AGE_PERCENTIL_Above 90th           -0.092696           -0.091147   \n",
              "ICU                                -0.026319           -0.086137   \n",
              "\n",
              "                          AGE_PERCENTIL_50th  AGE_PERCENTIL_60th  \\\n",
              "AGE_PERCENTIL_70th                 -0.114068           -0.109784   \n",
              "AGE_PERCENTIL_80th                 -0.105393           -0.101435   \n",
              "AGE_PERCENTIL_90th                 -0.091415           -0.087981   \n",
              "AGE_PERCENTIL_Above 90th           -0.086408           -0.083162   \n",
              "ICU                                 0.052805            0.023384   \n",
              "\n",
              "                          AGE_PERCENTIL_70th  AGE_PERCENTIL_80th  \\\n",
              "AGE_PERCENTIL_70th                  1.000000           -0.105393   \n",
              "AGE_PERCENTIL_80th                 -0.105393            1.000000   \n",
              "AGE_PERCENTIL_90th                 -0.091415           -0.084463   \n",
              "AGE_PERCENTIL_Above 90th           -0.086408           -0.079836   \n",
              "ICU                                 0.052805            0.117203   \n",
              "\n",
              "                          AGE_PERCENTIL_90th  AGE_PERCENTIL_Above 90th  \\\n",
              "AGE_PERCENTIL_70th                 -0.091415                 -0.086408   \n",
              "AGE_PERCENTIL_80th                 -0.084463                 -0.079836   \n",
              "AGE_PERCENTIL_90th                  1.000000                 -0.069247   \n",
              "AGE_PERCENTIL_Above 90th           -0.069247                  1.000000   \n",
              "ICU                                 0.136393                  0.105210   \n",
              "\n",
              "                               ICU  \n",
              "AGE_PERCENTIL_70th        0.052805  \n",
              "AGE_PERCENTIL_80th        0.117203  \n",
              "AGE_PERCENTIL_90th        0.136393  \n",
              "AGE_PERCENTIL_Above 90th  0.105210  \n",
              "ICU                       1.000000  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 18
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAFJUAABVUCAYAAACg33F+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzcPYvcVRjG4fsZx96IjailX8BCLVPFl8baxmATC/EzxJdvIIKSIoiNvYUgadRKsBM702kQLFZsbI9FtliEJLvMsH9vvC6YYs5ZztzVlr9ZawUAAAAAAAAAAAAAAAAAAAAAAAAAgC67rQcAAAAAAAAAAAAAAAAAAAAAAAAAAHBxopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAADgHGbm9sz8MTM/P+B+Zubjmbk7Mz/NzAtn7q7PzC+nn+vH2CMqCQAAAAAAAAAAAAAAAAAAAAAAAABwPp8nefUh968lef70cyPJp0kyM08muZnkpSQvJrk5M1cOHSMqCQAAAAAAAAAAAAAAAAAAAAAAAABwDmut75OcPORP3kjyxbrvhyRPzMzTSV5JcmetdbLW+jPJnTw8TnkuopIAAAAAAAAAAAAAAAAAAAAAAAAAAMfxTJJfz3z/7fTsQecH2R/6AAAAAAAAAAAAAAAAAAAAAAAAAMB/ydX3P1lbbwA6fffBe+8kuXHm6NZa69ZWex5FVBIAAAAAAAAAAAAAAAAAAAAAAAAAIMlpQPKQiOS9JM+d+f7s6dm9JFf/df7tAb+TJNkd+gAAAAAAAAAAAAAAAAAAAAAAAAAAAEmSr5K8Nfe9nOSvtdbvSb5Jcm1mrszMlSTXTs8Osj/0AQAAAAAAAAAAAAAAAAAAAAAAAACA/4OZ+TLJ1SRPzcxvSW4meTxJ1lqfJfk6yetJ7ib5O8nbp3cnM/NRkh9Pn/pwrXVy6B5RSQAAAAAAAAAAAAAAAAAAAAAAAACAc1hrvfmI+5Xk3Qfc3U5y+5h7dsd8DAAAAAAAAAAAAAAAAAAAAAAAAACAyyEqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIX2Ww8AAAAAAAAAAAAAAAAAAAAAAAAAOKaZ2XoCwKXYbT0AAAAAAAAAAAAAAAAAAAAAAAAAAICLE5UEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoNB+6wEAAAAAAAAAAAAAAAAAAAAAAAAAx7Sb2XoCwKXYbT0AAAAAAAAAAAAAAAAAAAAAAAAAAICLE5UEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoNB+6wEAAAAAAAAAAAAAAAAAAAAAAAAAxzSz9QKAy7HbegAAAAAAAAAAAAAAAAAAAAAAAAAAABcnKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBov/UAAAAAAAAAAAAAAAAAAAAAAAAAgGN6bLfbegLApfDfDgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIX2Ww8AAAAAAAAAAAAAAAAAAAAAAAAAOKaZ2XoCwKXYbT0AAAAAAAAAAAAAAAAAAAAAAAAAAICLE5UEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoNB+6wEAAAAAAAAAAAAAAAAAAAAAAAAAx7SbrRcAXI7d1gMAAAAAAAAAAAAAAAAAAAAAAAAAALg4UUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAIB/2LmDEwBCIAiCKOYf88VwIC4NVRHMa54NAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQWd6AAAAAAAAAAAAAAAAAAAAAAAAAMBNe+3pCQBPeDsAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAgUUkAAAAAAAAAAAAAAAAAAAAAAAAAgCBRSQAAAAAAAAAAAAAAAAAAAAAAAACAIFFJAAAAAAAAAAAAAAAAAAAAAAAAAICgMz0AAAAAAAAAAAAAAAAAAAAAAAAA4Ka91vQEgCf29AAAAAAAAAAAAAAAAAAAAAAAAAAAAP4TlQQAAAAAAAAAAAAAAAAAAAAAAAAACBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAIEpUEAAAAAAAAAAAAAAAAAAAAAAAAAAgSlQQAAAAAAAAAAAAAAAAAAAAAAAAACBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAIEpUEAAAAAAAAAAAAAAAAAAAAAAAAAAgSlQQAAAAAAAAAAAAAAAAAAAAAAAAACBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAIEpUEAAAAAAAAAAAAAAAAAAAAAAAAAAgSlQQAAAAAAAAAAAAAAAAAAAAAAAAACBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAIEpUEAAAAAAAAAAAAAAAAAAAAAAAAAAgSlQQAAAAAAAAAAAAAAAAAAAAAAAAACBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAIEpUEAAAAAAAAAAAAAAAAAAAAAAAAAAgSlQQAAAAAAAAAAAAAAAAAAAAAAAAACBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAIEpUEAAAAAAAAAAAAAAAAAAAAAAAAAAgSlQQAAAAAAAAAAAAAAAAAAAAAAAAACDrTAwAAAAAAAAAAAAAAAAAAAAAAAABuWmt6AcAbe3oAAAAAAAAAAAAAAAAAAAAAAAAAAAD/iUoCAAAAAAAAAAAAAAAAAAAAAAAAAASJSgIAAAAAAAAAAAAAAAAAAAAAAAAABIlKAgAAAAAAAAAAAAAAAAAAAAAAAAAEiUoCAAAAAAAAAAAAAAAAAAAAAAAAAASJSgIAAAAAAAAAAAAAAAAAAAAAAAAABIlKAgAAAAAAAAAAAAAAAAAAAAAAAAAEiUoCAAAAAAAAAAAAAAAAAAAAAAAAAASJSgIAAAAAAAAAAAAAAAAAAAAAAAAABIlKAgAAAAAAAAAAAAAAAAAAAAAAAAAEiUoCAAAAAAAAAAAAAAAAAAAAAAAAAASJSgIAAAAAAAAAAAAAAAAAAAAAAAAABIlKAgAAAAAAAAAAAAAAAAAAAAAAAAAEiUoCAAAAAAAAAAAAAAAAAAAAAAAAAASJSgIAAAAAAAAAAAAAAAAAAAAAAAAABIlKAgAAAAAAAAAAAAAAAAAAAAAAAAAEiUoCAAAAAAAAAAAAAAAAAAAAAAAAAASJSgIAAAAAAAAAAAAAAAAAAAAAAAAABIlKAgAAAAAAAAAAAAAAAAAAAAAAAAAEiUoCAAAAAAAAAAAAAAAAAAAAAAAAAASd6QEAAAAAAAAAAAAAAAAAAAAAAAAAN+21picAPLGnBwAAAAAAAAAAAAAAAAAAAAAAAAAA8J+oJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEDQmR4AAAAAAAAAAAAAAAAAAAAAAAAAcNPee3oCwBPeDgAAAAAAAAAAAAAAAAAAAAAAAAAgSFQSAAAAAAAAAAAAAAAAAAAAAAAAACBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAIEhUEgAAAAAAAAAAAAAAAAAAAJrJ2EEAACAASURBVAAAAAAgSFQSAAAAAAAAAAAAAAAAAAAAAAAAACBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAIEhUEgAAAAAAAAAAAAAAAAAAAAAAAAAgSFQSAAAAAAAAAAAAAAAAAAAAAAAAACBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAIEhUEgAAAAAAAAAAAAAAAAAAAAAAAAAgSFQSAAAAAAAAAAAAAAAAAAAAAAAAACBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAIEhUEgAAAAAAAAAAAAAAAAAAAAAAAAAgSFQSAAAAAAAAAAAAAAAAAAAAAAAAACBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAIEhUEgAAAAAAAAAAAAAAAAAAAAAAAAAgSFQSAAAAAAAAAAAAAAAAAAAAAAAAACBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAIEhUEgAAAAAAAAAAAAAAAAAAAAAAAAAgSFQSAAAAAAAAAAAAAAAAAAAAAAAAACDoTA8AAAAAAAAAAAAAAAAAAAAAAAAAuGmv6QUAb+zpAQAAAAAAAAAAAAAAAAAAAAAAAAAA/CcqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAkKgkAAAAAAAAAAAAAAAAAAAAAAAAAECQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQdKYHAAAAAAAAAAAAAAAAAAAAAAAAANy01pqeAPDEnh4AAAAAAAAAAAAAAAAAAAAAAAAAAMB/opIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQaKSAAAAAAAAAAAAAAAAAAAAAAAAAABBopIAAAAAAAAAAAAAAAAAAAAAAAAAAEGikgAAAAAAAAAAAAAAAAAAAAAAAAAAQWd6AAAAAAAAAADAx869B0t61nUC//7OmZlkJslkbrlMLjgwAcIiMJuwsrCRq0BYBWTBhcAuBrVSu7VZV0uRsqJLZC0sNpRy1ZVVlLXkZlCuyqXKpCRLUIZsyBDAwJAYEEMyuU2uc332j7xT2x7PJHPCs9Pz0p9PVdfpft7n/b6/t0+f7j5vv/0DAAAAAAAAAAAAAOhpvuamXQLAYeHZDgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIQ0lQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIQ0lQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIQ0lQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCElk27AAAAAAAAAAAAAAAAAAAAAAAAAICeqqZdAcDhMTftAgAAAAAAAAAAAAAAAAAAAAAAAAAAWDpNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIQ0lQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCElk27AAAAAAAAAAAAAAAAAAAAAAAAAICe5qqmXQLAYTE37QIAAAAAAAAAAAAAAAAAAAAAAAAAAFg6TSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIQ0lQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIQ0lQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghJZNuwAAAAAAAAAAAAAAAAAAAAAAAACAnqpq2iUAHBZz0y4AAAAAAAAAAAAAAAAAAAAAAAAAAICl01QSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIQ0lQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFNJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAEdJUEgAAAAAAAAAAAAAAAAAAAAAAAABghDSVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYISWTbsA+H7wzIvf0XrkXPzS5/aISZI8duMJ3bK+fdud3bI2rlndLesr3/lut6ynbD69S87nv/GtLjlJsnHNcd2yjj36qG5Z6+f2d8uaBcefdHKXnBtv3tElZ1Y84sQNXXLc70vX476/a+fODpXMluNW93l9veX2fq/5s+CEtcd3yXG/L02v+/3vb7mtS86sOPWEdV1ybt3+t11yZsn6zY/9njOu+/ZNHSqZLY85rc/7+J23ej+5FKvX93kff/uN13fJmRVrH/HILjmea5am1/PMTV+8skvOrDj57Kd2yXG/L12P+/6Gm27pUMls2XRyn88J7rjpO11yZsWak0/pkrPztlu75MyK1evWd8m55avXdMmZFSc87oldcu68664uObPi+OP6fIZ46ze/3iVnlqx/1KO/54wddzgevFQb1vQ5JnzrN77WJWdWrD/jzC45Pvdbml6f+X33tju65MyKk9at6ZKzveN5TLNi8yknfc8ZHu9L1+sx/90vfaFLzqw46Un/okvOt292vGApTjuxz/GCO77T77zQWbDmlD7n497+rRu65MyKtadv6pLjvI6l63Fexz/scB7TUm3c0OdcJp+BLE2vz0AcL1iaXscLPnnVtV1yZsW5Zz2+S45zhJem1znCPc8f+9q9/b5DtXlPv8fD3RtO65a1du+9XXL23d8nJ0nmj1rZLavn7/CMdk+3rHvWbuyWdfyefnXt37OnS87y1X3+npNk2y393jucuWJft6xbj+q3jycfPdctq+3r85jfe1e/Y69/l35/0xtv73ecZtkZT+iWNXf7zd2y9t3T5xyK+ZWruuQkyfyx/b4XvveOfsc4a8XR3bLmli/vljW/6tguOXvuvL1LTtJ3//be3e95ea7ja/6R+Dvc+eWtXXKSJK1LK4skSc3Nd8vqqZb1a33zhfk+nw/ct2dvl5wkWTHf735fdVS/x/vcXHXLOq5jP4unnrm5X2EAADOm35EmAAAAAAAAAAAAAAAAAAAAAAAAAAAOG00lAQAAAAAAAAAAAAAAAAAAAAAAAABGaNm0CwAAAAAAAAAAAAAAAAAAAAAAAADoaX6upl0CwGExN+0CAAAAAAAAAAAAAAAAAAAAAAAAAABYOk0lAQAAAAAAAAAAAAAAAAAAAAAAAABGSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIAR0lSSf6SqfryqWlWdOTH2Q1V1eVV9vaquqqpPVNUThmUXV9XfV9XVE5c1D7GNtwzrzE2MnV9VtwzrX1tVl1bVqmFZVdWvDNu/rqouq6rHD8suq6rnL8j/uar6naraVFX3Lajt1cOcFVX1riHva1X10kXquLqqfqbXfQsAAAAAAAAAAAAAAAAAAAAAAAAAPS2bdgEccc5LcsXw8/VVdVKSDyZ5ZWvtc0lSVeck2Zxk27DOb7XW3nwo4UMjyZck+VaSZyS5bGLxB1prFw7z3pvk5Un+IMl/SvK0JE9qrd1bVc9L8tGhseT7krwiyacmcl6R5JeG69tba1sWKeWiJDe31h4z1LRusToAAAAAAAAAAAAAAAAAAAAAAAAA4Eg1N+0COHJU1bFJzkny03mgMWOSXJjkPQcaSiZJa+2K1tqHH+Zmnpnk2iS/kwcaVy5Wx7IkxyS5fRh6XZILW2v3Dtv/dJLPJXlVkkuT/GhVrRjW3ZTklCSffYg6firJbwx5+1trO5a6I1V1QVVtraqt3/ni/17q6gAAAAAAAAAAAAAAAAAAAAAAAADwPdFUkkkvTvLJ1tp1SW6tqrOTPD7JVQ+x3s9X1dXD5bKHmHtekvcl+bM80Axy+cSyl1fV1Un+Psm6JB+rqtVJjmmtfXNBztYkj2+t3Zbkb5K8YBh/RZIPttbacHvzRG1XV9UPV9WaYdl/q6qrqupPquqkieyXVtU1VXVpVZ1+sB1prb2rtfbk1tqTTzn7Xz3EbgMAAAAAAAAAAAAAAAAAAAAAAABAX5pKMum8JO8frr9/uP2PVNVfV9VXq+qtE8O/1VrbMlyedbDwqlqR5F8n+XBrbWeSv07y/IkpH2itbUlycpJtSV57iHW/Lw80k8zw830Ty7ZP1LaltfbZJMuSnJbkc621s5JcmeTNw/yPJdnUWntiks8kec8h1gAAAAAAAAAAAAAAAAAAAAAAAAAAh5WmkiRJqmpdkmcn+b2quiEPNHT8t0muTXLWgXmttack+dUkxz+MzTw/yZok24ZtnJNFGle21loeaO749KH55D1V9agF084eakuSjyR5TlWdlWRVa+2LD1HHrUnuTfKnw+0/ybCPrbVbW2u7hvHfG7YDAAAAAAAAAAAAAAAAAAAAAAAAAEccTSU54GVJ/qi19gOttU2ttdOTXJ/kM0nOr6qnTcxd9TC3cV6SnxnyNyV5ZJLnVtVieeck2T5cvyTJ26pqZZJU1Y8My9+bJK21u5NcluTdSd73UEVMNK185jD0nCRfGbI3Tkx9UZKvHvruAQAAAAAAAAAAAAAAAAAAAAAAAMDhs2zaBXDEOC/JmxaMfWgYf3mSN1XVqUluTrIjyRsm5v18Vf27ids/3lq7YTJoaBx5bpL/cGCstXZPVV2R5IXD0Mur6pw80Oz020nOH8bfnmRtkm1VtS/JTUle3Fq7b2IT70vyZ0lesWAfNlfV1RO3391ae1uS1yX5o6p6S5JbkrxmWP6zVfWiJHuT3DZRAwAAAAAAAAAAAAAAAAAAAAAAAAAcUTSVJEnSWnvWImNvm7j5jIOsd3GSiw8h/94k6xYZ/zcTN//wIOu2JL82XA6W/+EktWDshiQrDzL/75I8fZHxX07yywfbDgAAAAAAAAAAAAAAAAAAAAAAAAAcKeamXQAAAAAAAAAAAAAAAAAAAAAAAAAAAEu3bNoF8P2nqp6f5E0Lhq9vrb1kGvUAAAAAAAAAAAAAAAAAAAAAAAAAwPcjTSXprrX2qSSfmnYdh9PFL31un5wPfaZLTpK87Sdf3C3rtnvu65a16YR13bJa6xaVbd/6bpecb958a5ecJFm98qhuWVXVLWv9Si8d07BmftoVzKbjO/4dsgRt/7QrmFlH7d8z7RJmkvt9OlavmJt2CTNp2bHHT7uEmXTC6mOmXcLM2j2/fNolzKS5o1ZOuwQ4bI4+5RHTLmEmHXXixmmXMJPWr3KcZlqq/P80DTXvoPA0HH3qpmmXMJPm9u+bdgkzaW7DydMuYSbdsvOeaZcwOhvW9DmmuH+99/HTsDf9zlXg0K3cv3vaJcykE47yHn4ajtp977RLGKE1XVKOPvn0LjkwBu3YPn83LM3eY9dOu4SZtHzthmmXMJOOyd5plzCz2h7/P02D+306HrPxhGmXMJM6fpWHJdjf8Xlm04Z+fzv70vE97p5+7x/mVx3bJWf3Mf3+d6o7bumWtWnD+m5Zu/b328f9+/p9Rjp/zHHdsnanz3HOuXvu6JKTJKeu7Xf++dyqo7tlpePnfrWiX1133N/nOXDV3n7fczn9pI6f063v93e4t+Pf4cqVq7plrVjf57Vn7523d8lJknQ8r6Od1O+81/m7O+5jR/vuvbtLztzyft9F6HkuWs9zl/fu7Pd60VOv3+FxZ27pkpMk+3ff3y3rSD03cf+efq89T1/b57n0rvt3dclJkuVzR+a5uNu+fVO3rE0bHNcHADgSHJnvPAEAAAAAAAAAAAAAAAAAAAAAAAAAeFCaSgIAAAAAAAAAAAAAAAAAAAAAAAAAjJCmkgAAAAAAAAAAAAAAAAAAAAAAAAAAI6SpJAAAAAAAAAAAAAAAAAAAAAAAAADACGkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwQppKTlFV7auqq6vq2qr6UlX9QlXNDcueWVUfH66fVFUfH+Z8par+fBjfVFX3DRkHLq+eyN9SVa2qzl2w3YuGbV4zrPOUYfzyqvrbiaxLD1L3uVX1N1X1tWHeB6rqEcOyP6yq64fxL1XVcybWW1FVb6mqb1TV16vqI1V12sS+fHnBdi6uql9cJPeqqnrqxPjLJurfOrH+k6vq8onbPzTM+fqQ8YmqesIi+3dmVV1ZVbsObB8AAAAAAAAAAAAAAAAAAAAAAAAAjjTLpl3AjLuvtbYlSarqxCTvTbI6yesXzHtDks+01t46zH3ixLLtBzIWcV6SK4afnxzWfWqSH0tyVmttV1VtSLJiYp1Xtda2/pOkQVX9YJK3J3lRa+2rw9iLkmxKcuMw7bWttUur6llJ3pXk0cP4G5Mcl+SxrbV9VfWaJH96oKnlITiQ+7wkv5vkiYvMObGqXtBa+4sFdZ+U5INJXtla+9wwdk6SzUm2Lci4LcnPJvnxQ6wLAAAAAAAAAAAAAAAAAAAAAAAAAA67uWkXwANaazcnuSDJhVVVCxZvTPLtibnXPFTekPETSc5P8tyqOnoia0drbdeQtaO19p0llPq6JG880FByyPhoa+2vFpl7ZZJTh3pWJXlNkp9vre0b1vuDJLuSPHsJ20+Sv0pyxkGWXZLkokXGL0zyngMNJYftX9Fa+/DCia21m1trX0iyZ4l1AQAAAAAAAAAAAAAAAAAAAAAAAMBho6nkEaS19s0k80lOXLDonUl+v6ouq6qLquqUiWWbq+rqicsPD+NPS3J9a217ksuT/Ogw/ukkp1fVdVX121X1jAXb+uOJrEsWKfPxSa46xF06N8mBpo1nJLmxtbZzwZytQ+ZSvDDJtoMsuzLJ7qp61oLxpdQNAAAAAAAAAAAAAAAAAAAAAAAAAEc8TSVHoLX2qSSPSvI/k5yZ5P9U1QnD4u2ttS0Tl88O4+clef9w/f3D7bTW7k5ydpILktyS5ANVdf7E5l41kfXaB6urqtYPzSevq6pfnFh0SVVdl+S9Sd50qLt5COOXVNXVQ+0//SBZv57kVx5sY1X111X11ap66yHWt1jGBVW1taq2fuzSDzzcGAAAAAAAAAAAAAAAAAAAAAAAAAB4WDSVPIJU1aOS7Ety88JlrbXbWmvvba39+yRfSPL0B8mZT/LSJP+1qm5I8vYk51bVcUPWvtba5a211ye5cJh7qK5NctaQc2trbUuSdyU5dmLOa1trj0nyuiTvHsa2J3nEgRomnD1k3ppk7YJl65LsWJC7pbX23Nbalw9WYGvtL5OsTPIvF6t7mPOUJL+a5PgH2dcH1Vp7V2vtya21J7/wZS9/uDEAAAAAAAAAAAAAAAAAAAAAAAAA8LBoKnmEqKoTkvyPJO9orbUFy55dVauG68cl2ZzkxgeJe06Sa1prp7fWNrXWfiDJh5K8pKoeW1WPnpi7JcnfLaHU/57koqp63MTYqoPMfUeSuap6fmvtniTvSfKbQ9PLVNWrh3X/srV2d5J/qKpnD8vWJTk3yRVLqG3Sryf5pYnb70xyflU97RDqBgAAAAAAAAAAAAAAAAAAAAAAAIAj3rJpFzDjVlbV1UmWJ9mb5I+S/OYi885O8o6q2psHGoH+XmvtC1W1KcnmIeOAdyf550n+bEHGh5L8xyTXJnl7Va0ZtvmNJBdMzPvjqrpvuL6jtfYjkyGttW1V9V+S/K+qWp1kRx5ocPn6hUW31lpVHWju+Kkkv5zkzUmuq6r9Sb6W5CUTTTRfneSdVXXgPvi11tr2Re6Ph9Ra+/OqumXi9k1V9fIk4JEVuAAAIABJREFUb6qqU5PcPNT+hoXrVtXJSbYmWZ1kf1X9XJJ/1lrb+XBqAQAAAAAAAAAAAAAAAAAAAAAAAID/HzSVnKLW2vyDLLs8yeXD9UuSXLLInBuSrDzEbX00yUeHm087yJxnHmLWJ5J84iDLzl9w+0N5oKFlWmu7kvzn4bLYul9J8qxDyV1sfGH9rbWzF9z+fJJnLJazYN5NSU57qHkAAAAAAAAAAAAAAAAAAAAAAAAAME1z0y4AAAAAAAAAAAAAAAAAAAAAAAAAAICl01QSAAAAAAAAAAAAAAAAAAAAAAAAAGCENJUEAAAAAAAAAAAAAAAAAAAAAAAAABghTSUBAAAAAAAAAAAAAAAAAAAAAAAAAEZo2bQLgO8Hj914Qpect/3ki7vkJMnPvucj3bJ+/4Kf6JZ12933dst63KkndstaM98n55S1q/sEJbn7/l3dstauWtkta/dyLx3TUMvc79Mwt3/ftEuYTaXv+bS0vXunXcJMquUrpl0CHDY17zl+Gm66465plzA6a1cfN+0S+B7sX3nMtEuYSeuO7XfsgUO3987bpl3CuGw8tUvM3rvu7JLD0tx5/55plzA6x3U6XF3Ll/cJYkn2VqcPLliSXfvbtEsYlV7/OXm8M0vWrDp62iXMrGWOTU7F3H33TLuEcel1XNLnrVPhvI7paKscz5+Wts+xmmmYn6tplwCHzdHzHu/TsH/X/dMuYSbVCscLpmV+5applzCbynM8s2Pnff2+FzQLNqzpkzPX8dzsXXv7fadk3fJ+z3/HdPwYf9/yo7rkHHXPzi45SdLzmzx79u/vlrVmWcfXsI6Hcfct6/eYX7bjpi45tarfeZz7W7/P8ef37u6WdfKqfn+Id+/u912etUf3eTzsXXVsl5wkuWdPv/07dn+/19aeZ0TNrejzXJokbV+fZ8HqWFN1/Oxpxe77umWl4//T++7v99335Ws3dMlpe/o9Z+3vmLXv3n6fAc8dob/D+XV9+kak5321Zn23rCP1FLn5jucX9HoPeHzr+H3bjm9yb9rd75f4hNNO7pZ1726fHwIAHAmcQQoAAAAAAAAAAAAAAAAAAAAAAAAAMEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAAjJCmkgAAAAAAAAAAAAAAAAAAAAAAAAAAI6SpJAAAAAAAAAAAAAAAAAAAAAAAAADACGkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwQppKTlFV7auqq6vq2qr6UlX9QlXNDcueWVUfH66fVFUfH+Z8par+fBjfVFX3DRkHLq+eyN9SVa2qzl2w3YuGbV4zrPOUYfzyqvrbiaxLD1L3uVX1N1X1tWHeB6rqEcOyP6yq64fxL1XVcybWW1FVb6mqb1TV16vqI1V12sS+fHnBdi6uql9cJPeqqnrqxPjLJurfOrH+k6vq8onbPzTM+fqQ8YmqesIi+/eq4b7ZVlWfq6onHcKvEwAAAAAAAAAAAAAAAAAAAAAAAAAOq2XTLmDG3dda25IkVXVikvcmWZ3k9QvmvSHJZ1prbx3mPnFi2fYDGYs4L8kVw89PDus+NcmPJTmrtbarqjYkWTGxzqtaa1v/SdKgqn4wyduTvKi19tVh7EVJNiW5cZj22tbapVX1rCTvSvLoYfyNSY5L8tjW2r6qek2SPz3Q1PIQHMh9XpLfTfLEReacWFUvaK39xYK6T0rywSSvbK19bhg7J8nmJNsWZFyf5Bmttdur6gXDPhxqjQAAAAAAAAAAAAAAAAAAAAAAAABwWGgqeYRord1cVRck+UJVXbxg8cYkn56Ye81D5VVVJfmJJM9N8tmqOrq1dv+QtaO1tmvI2rHEUl+X5I0HGkoOGR89yNwrk5w61LMqyWuSPLK1tm9Y7w+q6qeSPDvJ9iXU8FdJzjjIskuSXJTkLxaMX5jkPQcaSg7bv2KxgMk5ST6f5LQl1AYAAAAAAAAAAAAAAAAAAAAAAMCUPdCKC+D739y0C+D/aa19M8l8khMXLHpnkt+vqsuq6qKqOmVi2eaqunri8sPD+NOSXN9a257k8iQ/Oox/OsnpVXVdVf12VT1jwbb+eCLrkkXKfHySqw5xl85N8uHh+hlJbmyt7VwwZ+uQuRQvTLLtIMuuTLK7/i97dx9k2V3Wi/77dM9MMpPM5D0IgRAJL3IF7kC4IikQEkTDEfGkxELkGsPFShX3wqUseZETJMrlcAqHosQkHs1BBLxQwCUiKYKCJc7FlKCMGBICGBgJORzAZBIgmclkZrrnuX/M6nLfpmfSDSvZ0/TnU9U1e63fb33Xs/fu3r167bWfqTpv0fqV1D3pJfneBpUAAAAAAAAAAAAAAAAAAAAAAAAAMHWaSq4C3f2xJI9I8t+S/FiSf66q04bhnd29deLr74b1L0zyvuH2+4bldPfuJOckuSTJ7UneX1UXT+zuRRNZrzpSXVV1ytB88uaqeuXE0LaqujnJe5O8ebl3cxnrt1XV9UPtLzlC1huTvO5IO6uqf6iqL1bV244w57xhP685zPglVbWjqnb83+9+15F2BwAAAAAAAAAAAAAAAAAAAAAAAACj01TyKFJVj0gyn+S2xWPdfWd3v7e7fzXJZ5L81BFyZpP8YpLXV9UtSS5PckFVbR6y5rt7e3dfluRlw9zluinJk4acO7p7a5Krkhw/MedV3f3oHGrG+I5h3c4kZy7UMOGcIfOOJCctGjs5ya5FuVu7+9nd/fnDFdjdn0iyMclPLlX3MOcpSX47yQlLZVTVE5K8PckvdPcdh9nPVd395O5+8v960a8drhwAAAAAAAAAAAAAAAAAAAAAAAAAuF9oKnmUqKrTkvxRkiu6uxeNnV9Vm4bbm5OcneTWI8Q9K8kN3f2w7j6rux+e5OokF1bVY6rqURNztyb52gpK/b0kl1bVYyfWbTrM3CuSzFTVz3b3niTvSvLWoellquqiYdtPdPfuJN+sqvOHsZOTXJDkuhXUNumNSV49sXxlkour6tz7qruqzkzy50l+tbtv/j73DwAAAAAAAAAAAAAAAAAAAAAAAAD3q3XTLmCN21hV1ydZn2QuyZ8leesS885JckVVzeVQI9C3d/dnquqsJGcPGQvekeSJST60KOPqJC9NclOSy6vqxGGfX0lyycS891TV3uH2ru7+6cmQ7r6xql6R5N1VtSXJrhxqcHnZ4qK7u6tqobnjx5K8NslbktxcVQeTfCnJhRNNNC9KcmVVLTwGv9vdO5d4PO5Td3+0qm6fWP5WVb0gyZur6owktw21v2GJzV+f5JQkf1hVSTLX3U/+fuoAAAAAAAAAAAAAAAAAAAAAAAAAgPuLppJT1N2zRxjbnmT7cHtbkm1LzLklycZl7uuaJNcMi+ceZs4zl5l1bZJrDzN28aLlq3OooWW6e1+Slw9fS237hSTnLSd3qfWL6+/ucxYtfzrJM5bKWTTv15P8+n3NAwAAAAAAAAAAAAAAAAAAAAAAAIBpmpl2AQAAAAAAAAAAAAAAAAAAAAAAAAAArJymkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq9C6aRcAPwy+fud3R8m5c8/eUXKS5E8u+aXRsl5y1f8zWtZ/+o/nj5a178D8aFmbj90wSs7nv/5vo+QkyXOf+NjRsu7ae+9oWWf07GhZa8MJo6T03NwoOaxMH9g/7RLWpj447QrgAXWwatolrElfvn2cY/i14kknnDhKTq0f57iblXnISZunXcKaNTvj/3OZhtkD+6ZdwiozzmvEP331f4ySs1b87BPHOV+w7sRTRslhZdaffNq0S1iTjt3gLa1p2XPQ360rsWWkHMc0KzXOMc36Wcfw0zC7f7z3SNcGf+evZsfN9LRLWLPm5r3/NA0HNx437RLWpL3l76eVGOsY3nUdU/LdO6ZdweqzZZzjyZ4f79o9lu+e/QemXQI8cFxDNh0e9+nwuE/PjOvip6HWrZ92CWvSnn2ui5+G0447dtolrEljXk9zcM94n8c68N3vjJa1/sSTR8uq3SPVNeLv1ZlTf2S0rIP3jPcczt1912hZ644f68zkiM9hktmNm0bJqeNGfE9z93jvJ8/vuXu0rHVbxrm+Pkk2HRjx+zTjHGuN+Vq6f8TX0vm9e0bLWr9lnOs4k2T+nt2jZY1lzO/RgyO+xte+o/MakXXHHT9a1ljfD2O9JifJ7Iif5Rn1M7cjnhMZ8zk8ONLvi4P7xnv9m5kf7/2Bmc3jvT7U/vGuc5wf8fXhtnvHeR9rzM8E/ciG8a7FPf7YY0bLmj843rVMY2YBAPD986kYAAAAAAAAAAAAAAAAAAAAAAAAAIBVSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIBVSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIBVSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIBVSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIBVSFPJKaqq+aq6vqpuqqrPVdVvVtXMMPbMqvrIcPtBVfWRYc4Xquqjw/qzqmrvkLHwddFE/taq6qq6YNF+Lx32ecOwzVOG9dur6l8msj54mLovqKp/rKovDfPeX1VnDmPvrKqvDus/V1XPmthuQ1X9flV9paq+XFUfrqqHTtyXzy/az+9U1SuXyP1sVT11Yv3zJ+rfMbH9k6tq+8TyTwxzvjxkXFtVj1/i/v3CxGOzo6qetoynEwAAAAAAAAAAAAAAAAAAAAAAAAAeUOumXcAat7e7tyZJVZ2e5L1JtiS5bNG8NyT56+5+2zD3CRNjOxcylvDCJNcN//7VsO1Tkzw3yZO6e19VnZpkw8Q2L+ruHd+TNKiqxyW5PMnzuvuLw7rnJTkrya3DtFd19wer6rwkVyV51LD+TUk2J3lMd89X1YuT/PlCU8tlWMj9mSR/nOQJS8w5vaqe091/uajuByX5QJJf6e6/H9Y9LcnZSW5clPE3Sa7p7h4e6w8k+bFl1ggAAAAAAAAAAAAAAAAAAAAAAAAAD4iZaRfAId19W5JLkrysqmrR8IOTfH1i7g33lTdk/FKSi5M8u6qOncja1d37hqxd3f2NFZT6miRvWmgoOWRc092fXGLup5KcMdSzKcmLk/xGd88P2/1pkn1Jzl/B/pPkk0keeZixbUkuXWL9y5K8a6Gh5LD/67r7LxZP7O7d3d3D4nFJevEcAAAAAAAAAAAAAAAAAAAAAAAAAJg2TSWPIt39r0lmk5y+aOjKJH9SVX9bVZdW1UMmxs6uqusnvp4+rD83yVe7e2eS7Ul+blj/8SQPq6qbq+oPq+oZi/b1nomsbUuU+eNJPrvMu3RBkoWmjY9Mcmt337Vozo4hcyV+PsmNhxn7VJL9VXXeovUrqTtVdWFVfSnJtUn+txXWBwAAAAAAAAAAAAAAAAAAAAAAAAD3u3XTLoD71t0fq6pH5FCTxuck+eeqetwwvLO7ty6x2QuTvG+4/b4kFyW5urt3V9U5SZ6e5Lwk76+q3+rudw5zX9TdO5ZTV1WdkuRvkmxKclV3v2UY2lZVb0ry0CRPXe7dXMb6bVX1uiS3J3nJEbLemOR1SV5zhNr/IcmWJB/v7ld8z067P5TkQ1X1U0n+ryQ/vUTGJUkuSZLXvuE/58IXvPAIJQEAAAAAAAAAAAAAAAAAAAAAAPBAmamadgkAD4iZaRfAvxsaR84nuW3xWHff2d3v7e5fTfKZJD91hJzZJL+Y5PVVdUuSy5NcUFWbh6z57t7e3Zcledkwd7luSvKkIeeOoaHlVUmOn5jzqu5+dA41dXzHsG5nkjMXaphwzpB5R5KTFo2dnGTXotyt3f3s7v784Qrs7k8k2ZjkJ5eqe5jzlCS/neSEI9zXdPcnkzyiqk5dYuyq7n5ydz9ZQ0kAAAAAAAAAAAAAAAAAAAAAAAAAHmiaSh4lquq0JH+U5Iru7kVj51fVpuH25iRnJ7n1CHHPSnJDdz+su8/q7ocnuTrJhVX1mKp61MTcrUm+toJSfy/JpVX12Il1mw4z94okM1X1s929J8m7krx1aHqZqrpo2PYT3b07yTer6vxh7OQkFyS5bgW1TXpjkldPLF+Z5OKqOve+6q6qR1Ydai9dVU9KckwONb0EAAAAAAAAAAAAAAAAAAAAAAAAgKPGumkXsMZtrKrrk6xPMpfkz5K8dYl55yS5oqrmcqgR6Nu7+zNVdVaSs4eMBe9I8sQkH1qUcXWSlya5KcnlVXXisM+vJLlkYt57qmrvcHtXd//0ZEh331hVr0jy7qrakmRXDjW4vGxx0d3dVbXQ3PFjSV6b5C1Jbq6qg0m+lOTCiSaaFyW5sqoWHoPf7e6dSzwe96m7P1pVt08sf6uqXpDkzVV1RpLbhtrfsMTmv5jkoqo6kGRvkhcsbvQJAAAAAAAAAAAAAAAAAAAAAAAAANOmqeQUdffsEca2J9k+3N6WZNsSc25JsnGZ+7omyTXD4rmHmfPMZWZdm+Taw4xdvGj56hxqaJnu3pfk5cPXUtt+Icl5y8ldav3i+rv7nEXLn07yjKVyFs17c5I339c8AAAAAAAAAAAAAAAAAAAAAAAAAJimmWkXAAAAAAAAAAAAAAAAAAAAAAAAAADAymkqCQAAAAAAAAAAAAAAAAAAAAAAAACwCmkqCQAAAAAAAAAAAAAAAAAAAAAAAACwCmkqCQAAAAAAAAAAAAAAAAAAAAAAAACwCq2bdgHww+DBJ24ZJees004eJSdJ7tx9z2hZ/+k/nj9a1pv+4hOjZf3Br/3CaFlz8wdHyfmZxz96lJwkWT87O1rWCZs2jpZVNTdaFstX6/zKZg0pfc+n5eD+e6ddwpo0c3B+2iWsSY867YRpl7Am3Xuwpl3CqrN5hIy79+4fIWVtOWGMBz7J/jmv8dNQ6zdMu4Q16cEnjvSDw4rMbDhm2iWsSTNeZ6bi63d+d9olrDqnnjjO3z3H1Tjnz1mZPe0c2UqM805d8u09zo+txAmbxzkG3DfrmGYaZpymmYr5dY4lp2XdrN+t0zCzd8+0S1hdtozzu3XDuvGuN2H5XNcxHeu2nDjtEtas2eOcE56GUzdvmnYJ8IDZ1/5wXYmxXpX7eL9bp8I1k1NTI16vz/J9994D0y5hVdk80psgY37GiOXbvd/nb1ZirGOagzXeseRpxx07Wtbc3Hg/h6O+3zB31ygx9246bpScJDk+PVrWKZvGey9y7sB457x7xOu+es/do2Xdu2mca03WzY13rclJx434uch7xntdHvPv1tkRP8tz7+w4rw/Hrx/v75RTjxnvuHtu/3hZ8xvG+97KPeO9PsxvGedz5jP37h0lZ2wHe7zXh9lNx4+WlRHrGuun5+C9R+d1TO05XLaq8c7pH9w43rFWjfiatf+Y8V5L14+YdcZIOTvv3jdSUnLvceN9lnHzwRE/JzYz3u/8uw+63hgA4Gjg3WcAAAAAAAAAAAAAAAAAAAAAAAAAgFVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgFVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgFVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgFVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgFVIU8kpqqr5qrq+qm6qqs9V1W9W1cww9syq+shw+0FV9ZFhzheq6qPD+rOqau+QsfB10UT+1qrqqrpg0X4vHfZ5w7DNU4b126vqXyayPniYui+oqn+sqi8N895fVWcOY++sqq8O6z9XVc+a2G5DVf1+VX2lqr5cVR+uqodO3JfPL9rP71TVK5fI/WxVPXVi/fMn6t8xsf2Tq2r7xPJPDHO+PGRcW1WPP8Lz879U1dxCPgAAAAAAAAAAAAAAAAAAAAAAAAAcTdZNu4A1bm93b02Sqjo9yXuTbEly2aJ5b0jy1939tmHuEybGdi5kLOGFSa4b/v2rYdunJnlukid1976qOjXJholtXtTdO74naVBVj0tyeZLndfcXh3XPS3JWkluHaa/q7g9W1XlJrkryqGH9m5JsTvKY7p6vqhcn+fOFppbLsJD7M0n+OMkTlphzelU9p7v/clHdD0rygSS/0t1/P6x7WpKzk9y4xP2cTfLmJB9fZm0AAAAAAAAAAAAAAAAAAAAAAAAA8ICamXYBHNLdtyW5JMnLqqoWDT84ydcn5t5wX3lDxi8luTjJs6vq2ImsXd29b8ja1d3fWEGpr0nypoWGkkPGNd39ySXmfirJGUM9m5K8OMlvdPf8sN2fJtmX5PwV7D9JPpnkkYcZ25bk0iXWvyzJuxYaSg77v667/+IwOS9PcnWS21ZYGwAAAAAAAAAAAAAAAAAAAAAAAAA8IDSVPIp0978mmU1y+qKhK5P8SVX9bVVdWlUPmRg7u6qun/h6+rD+3CRf7e6dSbYn+blh/ceTPKyqbq6qP6yqZyza13smsrYtUeaPJ/nsMu/SBUkWmjY+Msmt3X3Xojk7hsyV+PkkNx5m7FNJ9lfVeYvWL7vuqjojyYVJ/usK6wIAAAAAAAAAAAAAAAAAAAAAAACAB4ymkqtAd38sySOS/LckP5bkn6vqtGF4Z3dvnfj6u2H9C5O8b7j9vmE53b07yTlJLklye5L3V9XFE7t70UTWq45UV1WdMjSfvLmqXjkxtK2qbk7y3iRvXu7dXMb6bVV1/VD7S46Q9cYkrzvSzqrqH6rqi1X1tiWGfz/Ja7r74H1kXFJVO6pqx3ve/a4jTQUAAAAAAAAAAAAAAAAAAAAAAACA0a2bdgH8u6p6RJL5JLcleezkWHffmUNNGt9bVR9J8lNJ/ukwObNJfjHJL1TVpUkqySlVtbm77+7u+STbk2yvqhuT/FqSdy6zzJuSPCnJ57r7jiRbh4aSx0/MeVV3f7CqXp7kHTnUxHJnkjMXapiYe06SjyS5I8lJi/Z1cpKvLs69rwK7+xNV9cYkP7lE3R8e5jylqp6f5LlLRDw5yfuqKklOTfIfqmquu/9i0X6uSnJVknz9tjsO1xQTAAAAAAAAAAAAAAAAAAAAAAAAAO4XM9MugEOq6rQkf5Tkiu7uRWPnV9Wm4fbmJGcnufUIcc9KckN3P6y7z+ruhye5OsmFVfWYqnrUxNytSb62glJ/L8mlVTXZ9HLTYeZekWSmqn62u/ckeVeStw5NL1NVFw3bfqK7dyf5ZlWdP4ydnOSCJNetoLZJb0zy6onlK5NcXFXn3lfd3f2jw+N2VpIPJvnfFzeUBAAAAAAAAAAAAAAAAAAAAAAAAIBpWzftAta4jVV1fZL1SeaS/FmSty4x75wkV1TVXA41An17d3+mqs5KcvaQseAdSZ6Y5EOLMq5O8tIkNyW5vKpOHPb5lSSXTMx7T1XtHW7v6u6fngzp7hur6hVJ3l1VW5LsyqEGl5ctLrq7u6oWmjt+LMlrk7wlyc1VdTDJl5JcONFE86IkV1bVwmPwu929c4nH4z5190er6vaJ5W9V1QuSvLmqzkhy21D7G76ffAAAAAAAAAAAAAAAAAAAAAAAAI5eM1XTLgHgAaGp5BR19+wRxrYn2T7c3pZk2xJzbkmycZn7uibJNcPiuYeZ88xlZl2b5NrDjF28aPnqHGpome7el+Tlw9dS234hyXnLyV1q/eL6u/ucRcufTvKMpXIO53D7BQAAAAAAAAAAAAAAAAAAAAAAAIBpm5l2AQAAAAAAAAAAAAAAAAAAAAAAAAAArJymkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq9C6aRcAPwy+8I1/Gy2re5ycx55x+jhBSfYdmB8t6w9+7RdGy/o/3/Xh0bKu+vXnj5b191++ZZSccx911ig5STI3P95zuGnmwGhZLF/PzU27hDXp9v0jvSivEadtqPHC+uB4WSzb/OaTpl3CmtQH9k+7hDWpRzw+Yvk2rPN/W6zE/rnxfh8ed+yG0bJYvmMP3DvtEtak+Xt2T7uE1WXLllFi1s/OjpLDyvQB52mm4eD+fdMuYVWZ2XDMaFnf2bN3tCyWr0d8Dlm+49f7+2kaTmznaabh2NkRzy2zbAe9BbIiMyN+m84ecDy5MptHSdk/55zwNHy7nS9YiROmXQA/EO/5rUytH+99i7m7vjNa1ppwwomjxBzc5z2Qafj2Ho/7SpyweZxjyfmDrmOahtr1zWmXsLqcOM7R5OycY5qVmF833jFNz3nfbxrm79kz7RJWl5GOJWfHPNnGsj30ZGcepuHYDeunXcKaNOZ7ILfeeddoWQ/ffPxoWbfcMd75kIdv2jhKzqb5/TlwzDhZ+0Z8Er/5nbtHyzrrpHF+FybJLXd8d7SsMzeO87gnyfp1453XPzDSezP/49vjPVaPOGHTaFlfv3O8us4+ZbzvreNG+pxEz8+n1o3ze+xb94x3TutHjhvvtfT23feMlnXKuvHaNWw4ONLnSNevH+887oif85s9bpxzdkkyv3u8n8Mx9fHj/UzXnpGORcb8rGaNd13bWngOD97+jVFyZvaNd/3smNeEzt797dGysuHY0aLGOi4985iNox3T7L53vOuFxvzEzNfvvHO0rIeNeEwDAMD3z6eR4CgyVkNJpmeshpIAq9FoTTg1lASAJOM14dRQEgCYprGacGooCQBM01ifXdRQEgAOGasJp4aSAMA0jdWEU0NJAOCHwViNe/jhMFbzJaZnrIaSTI//GGj1G62hJFMzVkNJpscxDQAAq5GmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmklNUVfNVdX1V3VRVn6uq36yqmWHsmVX1keH2g6rqI8OcL1TVR4f1Z1XV3iFj4euiifytVdVVdcGi/V467POGYZu3TxoOAAAgAElEQVSnDOu3V9W/TGR98DB1X1BV/1hVXxrmvb+qzhzG3llVXx3Wf66qnjWx3Yaq+v2q+kpVfbmqPlxVD524L59ftJ/fqapXLpH72ap66sT650/Uv2Ni+ydX1faJ5Z8Y5nx5yLi2qh6/xP17ZlV9d+JxeP0ynk4AAAAAAAAAAAAAAAAAAAAAAAAAeECtm3YBa9ze7t6aJFV1epL3JtmS5LJF896Q5K+7+23D3CdMjO1cyFjCC5NcN/z7V8O2T03y3CRP6u59VXVqkg0T27you3d8T9Kgqh6X5PIkz+vuLw7rnpfkrCS3DtNe1d0frKrzklyV5FHD+jcl2ZzkMd09X1UvTvLnC00tl2Eh92eS/HGSJywx5/Sqek53/+Wiuh+U5ANJfqW7/35Y97QkZye5cYmcv+vu5y6zLgAAAAAAAAAAAAAAAAAAAAAAAAB4wM1MuwAO6e7bklyS5GVVVYuGH5zk6xNzb7ivvCHjl5JcnOTZVXXsRNau7t43ZO3q7m+soNTXJHnTQkPJIeOa7v7kEnM/leSMoZ5NSV6c5De6e37Y7k+T7Ety/gr2nySfTPLIw4xtS3LpEutfluRdCw0lh/1f191/scJ9AwAAAAAAAAAAAAAAAAAAAAAAAMBRQVPJo0h3/2uS2SSnLxq6MsmfVNXfVtWlVfWQibGzq+r6ia+nD+vPTfLV7t6ZZHuSnxvWfzzJw6rq5qr6w6p6xqJ9vWcia9sSZf54ks8u8y5dkGShaeMjk9za3XctmrNjyFyJn09y42HGPpVkf1Wdt2j9SupOkqdW1eeq6i+rasn6quqSqtpRVTs+evUHVhANAAAAAAAAAAAAAAAAAAAAAAAAAD+4ddMugPvW3R+rqkfkUJPG5yT556p63DC8s7u3LrHZC5O8b7j9viQXJbm6u3dX1TlJnp7kvCTvr6rf6u53DnNf1N07llNXVZ2S5G+SbEpyVXe/ZRjaVlVvSvLQJE9d7t1cxvptVfW6JLcneckRst6Y5HVJXnOE2v8hyZYkH+/uVywa/myShw+P1X/IocaYj/qewrqvSnJVknz8+i8crn4AAAAAAAAAAAAAAAAAAAAAAAAAuF/MTLsA/t3QOHI+yW2Lx7r7zu5+b3f/apLPJPmpI+TMJvnFJK+vqluSXJ7kgqraPGTNd/f27r4sycuGuct1U5InDTl3DA0tr0py/MScV3X3o3OoqeM7hnU7k5y5UMOEc4bMO5KctGjs5CS7FuVu7e5nd/fnD1dgd38iycYkP7lU3cOcpyT57SQnLLH9Xd29e7j90STrq+rUw+0PAAAAAAAAAAAAAAAAAAAAAAAAAKZBU8mjRFWdluSPklzR3b1o7Pyq2jTc3pzk7CS3HiHuWUlu6O6HdfdZ3f3wJFcnubCqHlNVj5qYuzXJ11ZQ6u8lubSqHjuxbtNh5l6RZKaqfra79yR5V5K3Dk0vU1UXDdt+Ymji+M2qOn8YOznJBUmuW0Ftk96Y5NUTy1cmubiqzr2vuqvqR6qqhts/kUM/J3d8n3UAAAAAAAAAAAAAAAAAAAAAAAAAwP1i3bQLWOM2VtX1SdYnmUvyZ0neusS8c5JcUVVzOdTg8O3d/ZmqOivJ2UPGgnckeWKSDy3KuDrJS5PclOTyqjpx2OdXklwyMe89VbV3uL2ru396MqS7b6yqVyR5d1VtSbIrhxpcXra46O7uqlpo7vixJK9N8pYkN1fVwSRfSnLhRBPNi5JcWVULj8HvdvfOJR6P+9TdH62q2yeWv1VVL0jy5qo6I8ltQ+1vWGLz5yd56fB4703yy4sbfQIAAAAAAAAAAAAAAAAAAAAAAADAtGkqOUXdPXuEse1Jtg+3tyXZtsScW5JsXOa+rklyzbB47mHmPHOZWdcmufYwYxcvWr46hxpaprv3JXn58LXUtl9Ict5ycpdav7j+7j5n0fKnkzxjqZxF865IcsV9zQMAAAAAAAAAAAAAAAAAAAAAAACAaZqZdgEAAAAAAAAAAAAAAAAAAAAAAAAAAKycppIAAAAAAAAAAAAAAAAAAAAAAAAAAKuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAKvQumkXAD8MnnL2w0bJufG//9soOUly4uxoUdl87IbRsubmD46WddWvP3+0rEve/sFRcv7LLz9nlJwkefDmY0fLuv2e/aNlrdt03GhZrEDVtCtYk06d7WmXAA+o9fv2TruEVeaEUVJq/XjHWixfzY54wMyyldeZFeljNk67BH5Q/n6aipl1TnlOw5aN453HYPm+3Y5pVmKcI/jkrtljRkpaO04cIeOJp4/1DLJS9x6Yn3YJq8pY36k973Gfhu+U8zQrMcbre5Ic3HvPSElrxJYt066AH0DPzU27hDVrdsb7rdNwwibnC6Zhdm68a0RYgRnnaVhb5jYeP+0S1qSTyvmCaZidmZl2CWvSus1jnXlgJebXOT82Fe1a1WmZWb9+2iWsSZvm/d06Dcf6fp+K2f2umVyZzdMu4HucuXG8a9HGvGb8R08er665u74zSs7s/nuTE04ZJWtMDz/+6DzGPeuk8c6tzO+5e7Ss9bPjXPe6fna8v6V/9Lij8zl8xInjXSM8991vj5e1+eRxcvaP977mg7dsGi1r38Hx/n469ZgRz/ncM15dPdLvi70Hx3t/dN/ciOcl9x4YLWrjseMdOxw8ON5n348b6b26PevH+zzJgRHv35h9Ao47SvsXbB7r/dbTHjJOzshmRnw/eX7TeD+HMz3ea83uvePcx+NH/B49Ze7e0bKqxvsddvKZDx4ta12c5wQAOBq4ygUAAADgKKQJJwAAAAAAAAAAAABHvaOwoSQAAAAAwFqjqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCqkqeQUVdV8VV1fVTdV1eeq6jeramYYe2ZVfWS4/aCq+sgw5wtV9dFh/VlVtXfIWPi6aCJ/a1V1VV2waL+XDvu8YdjmKcP67VX1LxNZHzxM3RdU1T9W1ZeGee+vqjOHsXdW1VeH9Z+rqmdNbLehqn6/qr5SVV+uqg9X1UMn7svnF+3nd6rqlUvkfraqnjqx/vkT9e+Y2P7JVbV9YvknhjlfHjKurarHH+Y+PnPiufl/7+OpBAAAAAAAAAAAAAAAAAAAAAAAAIAH3LppF7DG7e3urUlSVacneW+SLUkuWzTvDUn+urvfNsx9wsTYzoWMJbwwyXXDv381bPvUJM9N8qTu3ldVpybZMLHNi7p7x/ckDarqcUkuT/K87v7isO55Sc5Kcusw7VXd/cGqOi/JVUkeNax/U5LNSR7T3fNV9eIkf77Q1HIZFnJ/JskfJ3nCEnNOr6rndPdfLqr7QUk+kORXuvvvh3VPS3J2khsXzT0xyR8muaC7bx2eGwAAAAAAAAAAAAAAAAAAAAAAAAA4qsxMuwAO6e7bklyS5GVVVYuGH5zk6xNzb7ivvCHjl5JcnOTZVXXsRNau7t43ZO3q7m+soNTXJHnTQkPJIeOa7v7kEnM/leSMoZ5NSV6c5De6e37Y7k+T7Ety/gr2nySfTPLIw4xtS3LpEutfluRdCw0lh/1f191/scTcX0ny59196zDvthXWBwAAAAAAAAAAAAAAAAAAAAAAAAD3O00ljyLd/a9JZpOcvmjoyiR/UlV/W1WXVtVDJsbOrqrrJ76ePqw/N8lXu3tnku1Jfm5Y//EkD6uqm6vqD6vqGYv29Z6JrG1LlPnjST67zLt0QZKFpo2PTHJrd9+1aM6OIXMlfj7JjYcZ+1SS/VV13qL1K6n70UlOqqrtVfVPVXXRUpOq6pKq2lFVO975p3+6zGgAAAAAAAAAAAAAAAAAAAAAAAAAGMe6aRfAfevuj1XVI3KoSeNzkvxzVT1uGN7Z3VuX2OyFSd433H5fkouSXN3du6vqnCRPT3JekvdX1W919zuHuS/q7h3LqauqTknyN0k2Jbmqu98yDG2rqjcleWiSpy73bi5j/baqel2S25O85AhZb0zyuiSvOULt/5BkS5KPd/crFg2vS3JOkmcl2ZjkU1X16e6++f9XWPdVSa5Kku/efffh6gcAAAAAAAAAAAAAAAAAAAAAAACA+8XMtAvg3w2NI+eT3LZ4rLvv7O73dvevJvlMkp86Qs5skl9M8vqquiXJ5UkuqKrNQ9Z8d2/v7suSvGyYu1w3JXnSkHPH0NDyqiTHT8x5VXc/OoeaOr5jWLczyZkLNUw4Z8i8I8lJi8ZOTrJrUe7W7n52d3/+cAV29ydyqBnkTy5V9zDnKUl+O8kJS0R8PcnHuntPd+9K8skk//Ph9gcAAAAAAAAAAAAAAAAAAAAAAAAA06Cp5FGiqk5L8kdJrujuXjR2flVtGm5vTnJ2kluPEPesJDd098O6+6zufniSq5NcWFWPqapHTczdmuRrKyj195JcWlWPnVi36TBzr0gyU1U/2917krwryVuHppepqouGbT/R3buTfLOqzh/GTk5yQZLrVlDbpDcmefXE8pVJLq6qc5dR94eTPK2q1g2P+1OSfPH7rAMAAAAAAAAAAAAAAAAAAAAAAAAA7hfrpl3AGrexqq5Psj7JXJI/S/LWJeadk+SKqprLoUagb+/uz1TVWUnOHjIWvCPJE5N8aFHG1UlemuSmJJdX1YnDPr+S5JKJee+pqr3D7V3d/dOTId19Y1W9Ism7q2pLkl051ODyssVFd3dX1UJzx48leW2StyS5uaoOJvlSkgsnmmhelOTKqlp4DH63u3cu8Xjcp+7+aFXdPrH8rap6QZI3V9UZSW4ban/DEtt+sar+KskNSQ7m0OP9+e+nDgAAAAAAAAAAAAAAAAAAAAAAAAC4v2gqOUXdPXuEse1Jtg+3tyXZtsScW5JsXOa+rklyzbB47mHmPHOZWdcmufYwYxcvWr46hxpaprv3JXn58LXUtl9Ict5ycpdav7j+7j5n0fKnkzxjqZwlcpd8zAEAAAAAAAAAAAAAAAAAAAAAAADgaDEz7QIAAAAAAAAAAAAAAAAAAAAAAAAAAFg5TSUBAAAAAAAAAAAAAAAAAAAAAAAAAFahddMuAAAAAAAAAAAAAAAAAAAAAAAAAGBMM1XTLgHgAaGpJIzg01/576Pk/Ottd4ySkyQPOWnLaFmf//q/jZb1M49/9GhZf//lW0bL+i+//JxRcl77vr8cJScZr6YkmamZ0bKOO2bDaFlrweaRcvrAgZGSWIkDx2ycdgnwgKrZ8X5fsHwHZ2anXcKa9M277512CavK5hPGyen5g+MEsSL37ncsOS277/XYr8QJI/0BtccpzxUZ6wzSrXd8e6SkteGM004eJeeUTceMksPKnHSM15lp2DXvDfyVGukwPht7bqQkVmL/jNeaaThl4/ppl7Am7d/gXPw0zB90nmYafL9Pz4G5+WmXsCbNOIyfivl1ruuYBtd1TMfMhmOnXcKaNXu3c8IrcuI4Z2p23r1vlJy14kkPGifH30/TMXOs1/hpmD3gdWblRniju73OTMtBx/FTcc+sv1tXYqz3/L7x7e+OlLQ2jHVdR633/T4NY56XvHXveO+XP3T/naNl7TlmrE8rJRtH+n04N+J5+A3rxru+/mu794+WdebG8Y7bds+M9/ow1nOYJPNzR9+x6TfvGe/+PWzdeJ8h+Pa6TaNlnTRiY5O5+XF+FjfNj/ez843vjve35uk93nN48MRTR8uav2u81/hjNo7zvXXMnu+MkpMkm44d7/t9zHM+B74z3uM+c8x4dfVIn+fesOfuUXKSZOOIj/vMhvGuXZ67e8SfnTGfw4PjPIfzt31jlJwkqRHfE5s5brxjydo33uvy/Ii/D/fPjfMcfvee8e7f+hHfxz94sEfL2vud8V5ruser63/aMl6vFACAtUbXGAAAAAAAAAAAAAAAAAAAAAAAAACAVUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAVUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAVUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAVUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAVWjdtAuA+0tV7e7u4yeWL07y5CTfTPJLw+rHJ7lxuP2OJCcneXWSs7r7tqVyAAAAAAAAAAAAAAAAAAAAAAAAAOBoMDPtAuCB1t3/ubu3dvfWJHsXbnf3HwxTdiX5zSmWCAAAAAAAAAAAAAAAAAAAAAAAAAD3SVNJ+F7vSPKCqjp52oUAAAAAAAAAAAAAAAAAAAAAAAAAwOGsm3YBcD/aWFXXTyyfnOSaZWy3O4caS74iyWX3R2EAAAAAAAAAAAAAAAAAAAAAAAAA8IOamXYBcD/a291bF76SvH4F2/5Bkl+rqs2Hm1BVl1TVjqra8dGrP/ADFwsAAAAAAAAAAAAAAAAAAAAAAAAAK7Fu2gXA0ai7v1NV703yfxxhzlVJrkqSj/3zF/qBqg0AAAAAAAAAAAAAAAAAAAAAAAAAEk0l4UjemuQz8XMCAAAAAAAAAAAAAAAAAAAAAAAAwFFoZtoFwNGqu3cl+VCSY6ZdCwAAAAAAAAAA8P+xd//Rdtb1nejfn5OTEEISSIiKKBqnWNHKNBYWzvLSDkU7OqutUI2ViFSsaxhXbevFlqmoc8sax7Fz0aHD1Jkpt14yjZaogA71jk61levPjo01gD8qSHEUxl+AgCHk9/f+cZ70bnfPj33Ik+wczuu11l7neb7P93l/P3ufc3b22T8+AQAAAAAAAAAAAACGTY67ADhcWmsrh/Y3J9k8x5wrhvbfkOQNh6VAAAAAAAAAAAAAAAAAAAAAAAAAADgEE+MuAAAAAAAAAAAAAAAAAAAAAAAAAACA+dNUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgAZocdwHwWPDEE1b1krP62GN6yUmSHbt295b1C895Zm9ZS5cs6S3reU9f31vWE1ct7yXn7Rf8015ykuTyrR/pLevKV/x8b1mT93+nt6xFYe0J466AQ3BMtXGXACwC333w4XGXsKAcv6qfx96Mx4E9u8ZdwqK0cqn/U2Rc7n9457hLWFCe9Li1veTsPXCglxzm5wnH+zd6HB74q0+Ou4QFZdXzf6GXnAe3/2UvOYvJqn/8okPOWDrZ33PLsBBM7nxo3CUsLCcc30vM/kc8hp+X4/t5DWTprh295Cwe/fy8Mx4P794z7hIWnMeNuwAOSXv4h+MuYWHp6TWQiUe89jQvqz2vtZDtXLJs3CUsOB5NLmynrjlu3CUAj3H7d3qeZt5OXHfIEffs3NdDIYvL6p5yHlrS3+c3FoO+3hW/e9/+npKYj5XL/byPw+5W4y5hQenrWZq93/lWT0nJU1b38562JJlYvrK3rJ0/7O/9uKtP6Oc6Tuz4QS85SXJgT3+fi3zKqv4+1zWxvJ/PHybJjoce6S1r1cq+Hh0lE4/0816F/bv6+xld39PPaJJUj59t3dvj93Dy+P6u47E9/V23f3d/38OTlq/oLWti+Zresh7c1d9rt6vXHPrfhgft/cG9veQsWdvfK63V4/1ynyaWLu0tq6q/z1wcOLaf53GX9fjvTtvf399hfd6XTizr7++Uo/F7WDse7CUnSSaP6+81zX09vo6/7MT+7mvue2Rvb1lPXNXP/cO3HujvtffHH9ffz3uft9Vxy/t7vfXAAZ/JBwA4GmgqCQAAAAAAAAAAAAAAAAAAAAAAADymVPkPYIDFob+W+wAAAAAAAAAAAAAAAAAAAAAAAAAAHDGaSgIAAAAAAAAAAAAAAAAAAAAAAAAALECaSgIAAAAAAAAAAAAAAAAAAAAAAAAALECaSgIAAAAAAAAAAAAAAAAAAAAAAAAALECaSh4mVbWj+7q+qlpV/euBY+uqam9V/UG3f0U359SBOf97N3bmYN7A8YuHzt9ZVY8fXr/bfnJV/dequqOq7qyqf19VywaOn1VVn6yqr1XVF6vqj6pqRXfs/Kq6taq+WlW3VdX5A+dt7tZdNTD2+13d67r9/VW1vaq+VFUfGMgdHP/TqjphIOMnquovunruqKp/WVU1cL1bVb1gYP753djGbv/mgdvtV7u6b+3WOm+g9ru6GrZX1WcH8r/f3Q53VNV/r6rnjf6dBwAAAAAAAAAAAAAAAAAAAAAAAIAjQ1PJI+OuJD8/sP+yJF8emnNbkgvmmDObe5P81vBg14zxxiQfaq09PcmPJ1mZ5G3d8Sck+UCS32mtPaO19pwkH02yqqp+Msk7kpzXWntmkhcneUdV/cOBJb6e5GCjxokk5ya5Z+D4I621Da21ZyfZk+S104zfn+R1XcaxSW5K8nuttWck+ckkz0vyawOZw7fVpiS3THPdn5zkzUnObq39wyT/KMmtA1Mu62rY0FobbBz5vtbac7rb6/eS3FhVzxzOBwAAAAAAAAAAAAAAAAAAAAAAAIBx0lTyyNiZ5KtVdWa3//Ik7x+a86H8/80ZfyzJg5lqFDmq/zvJy6tq7dD4uUl2tdauTZLW2v4klyb51apakalmjv+ltfa5gye01q5vrX03yW8n+Tettbu68buSvD3JZQP5W7vrkyTnJPlMkn0z1PipJKdOM/65JE/qtl+R5DOttT/r1tyZ5NeTvHEo56yqWlpVK7vM7dPkPj7JD5Ps6LJ2HLwuo2qtfSLJNUkumc95AAAAAAAAAAAAAAAAAAAAAAAAAHC4aSp55GxNckFVnZJkf5L/NXT8oSTfqqpnJ7kgyfvmmb8jU40lXz80/hNJvjA40Fp7KMk3M9WM8dnDx2c7N8m2bvyg25M8rqrWJNmUqev591TVZJJ/muS2ofElSZ6f5KZZ6r0zycqqWn1wKMnHk7wwU404b8r0bkny3SR3VdW1VfWLQ8evrKrt3eW9M2QkyV8nOW2W4wAAAAAAAAAAAAAAAAAAAAAAAABwxGkqeeR8NMnPZfaGkVu74+cn+eAImW1o/+okr6qqVY+2yEfpxkzV/dwknxo6dmxVbc9UM8pvJnn30Ph3kjwhycfmuebB2+qCJNdNN6G1tj/Ji5JszFTzy6uq6oqBKZe11jZ0lwtnWaumHay6pKq2VdW266+brSclAAAAAAAAAAAAAAAAAAAAAAAAAPRPU8kjpLW2J8kXkvxWkutnmPbhJBcl+WZr7aGhY49U1bKB/bVJ7h1a44Ekf5LkdQPDX0lyxuC8qlqd5ClJvp7ky8PHZzu32//y0Nj7krw1ycdaaweG6x5o3Pgb3e3wd+NJnpqppo0Ha56u3n+QZMfgbdJa+3yS05Osa63dPkP9aVM+31p7e6YaUL50prmzeE6Sr06TfU1r7czW2pkbN83WkxIAAAAAAAAAAAAAAAAAAAAAAAAA+qep5JH1ziS/01q7f7qDrbWdSX4nydumOfz/JnllklTVsUl+Ocknppn375L88yST3f6fJ1lRVb/Snbukq2Nzt94fJHlVVT33YEBVvaSqnpDkHUkur6r13fj6JG/qzh+s+38meXOS/zjblZ9OV8NvJvmtqppM8t4kZ1fVCwau69VJ/s9pTn9jV8+0qurkqvqpgaENSf7nfOqrqn+c5JIk/9d8zgMAAAAAAAAAAAAAAAAAAAAAAACAw21y7in0pbX25SRfnmPO1hkOvT7JH1bVbyapJH/cWvvkNOffW1UfTHJpt9+q6peS/Meq+peZaiT639I1Y2ytfbeqLkjyjqp6fJIDST6Z5KPdsd9J8qdVtTTJ3iT/orW2fZp1/3CEm2Cm6/zFqro1yabW2paqOi/Jf6iqdyVZkmRLpppfDp/3kTmil3bX6+Qku5J8P8lrB45fWVVvGdg/q/v68qo6O8mKJHcleWlr7auP5roBAAAAAAAAAAAAAAAAAAAAAAAAwOGiqeRh0lpb2X39RpJnT3N8c5LN3fYVM2ScM7B9T5JfmGHeFUP7b0jyhoH9byX5xVlq/VySn57h2I1Jbpzh2MUzjK8f2F45w5yVQ/u/OLB9W5JzZjhvc7rbbaZaBm+3JOfOkHPxdONd9t/LBwAAAAAAAAAAAAAAAAAAAAAAAICjzcS4CwAAAAAAAAAAAAAAAAAAAAAAAAAAYP40lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIA0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIA0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIAmx10APBasXH5MLzlV1UtOkqxZcWxvWQ89squ3rON7rGvf/v29ZX1/555eciaqv169V77i53vLuuxP/p/esj702pf0lsXoaunScZewKP1g975xl7DgrOohY18t6SGFR+Nhfx7My+qectau7O/xEaN73Orjxl3C4nT8ieOuYFHac9/3x13CwnP8Cf3ErFjeSw7zc8ykxzTjsG//gXGXsCitfvaZ4y5hUXK7j8cJni4YmwN7do+7hEXpwN694y5hUWor+niGk/na/8jOcZewKC3d/ci4S1iAjj/khBNX9PPeAlgo/Ns6Hgfcx4/FxHLPB4/D5BJPGIzLkhUrx10CHDHHVBt3CYvSvoceGHcJC0tPr3HvOa6fHObH+5jGZ/WBfj5DwPwcM+lx/Di4rxmPyV0Pj7uEBebQn4dPkmVrH99LTpLsX9rf8/oHHri3t6wnHNPf+8/373iol5wlK/t6d32ypPX3d1iv38MH7+st66Rl/T2fuH/njt6yJlf39DfBRH//3tdkf5+p2/dAj9/DXn8PH+wtKz19vvVAj+/7372vv88BL+/x+YKVPT6/vHdXf5/BXnbi43rJ+faD/T0OWb6sv/dmr1jS3+foly3r7z6+9fg+6J27+3nf18O7+/ubtc/v4bE99kI4psfPTR+N38OVK/t5fH0IGz8AACAASURBVJsktaS//gX7TujnfiZJluzs775mbY+/0w/t6efnYc1x/f173/b193n1Pt9/9O2H+nvv3hNXec0cAOBo0N9fDwAAAAAAAAAAAAAAAAAAAAAAAAAAHDGaSgIAAAAAAAAAAAAAAAAAAAAAAAAALECaSgIAAAAAAAAAAAAAAAAAAAAAAAAALECT4y4AAAAAAAAAAAAAAAAAAAAAAAAAoE9VNe4SAI6IiXEXAAAAAAAAAAAAAAAAAAAAAAAAAADA/GkqyYJQVU+uqv9aVXdU1Z1V9e+r6oVVtb277Kiqr3Xbf1xV51TVh4cyNlfVxm775oH526vq+m78iqq6pxv7SlVtGsf1BQAAAAAAAAAAAAAAAAAAAAAAAIC5aCrJUa+qKsmNST7UWnt6kh9PsjLJC1prG1prG5JsS3Jht/8rI0YfnL+htbZxYPyqLvO8JH9YVUt7vDoAAAAAAAAAAAAAAAAAAAAAAAAA0AtNJVkIzk2yq7V2bZK01vYnuTTJr1bVisO1aGvtjiQ7k6w5XGsAAAAAAAAAAAAAAAAAAAAAAAAAwKM1Oe4CYAQ/keQLgwOttYeq6ptJTk1y6wzn/XRVbR/Yf0qSDw/sv7eqHum2P9Zau2zw5Kr6qSR3tNa+d0jVAwAAAAAAAAAAAAAAAAAAAAAAAMBhMDHuAuAw+lRrbcPBS5Kbho5fOHB8sKHkpVX15ST/I8nbZgqvqkuqaltVbbvuPX98GMoHAAAAAAAAAAAAAAAAAAAAAAAAgJlNjrsAGMFXkmwcHKiq1UmekuTrh2G9q1pr76iqFyd5d1X9WGtt1/Ck1to1Sa5Jkr/99vfaYagDAAAAAAAAAAAAAAAAAAAAAAAAAGY0Me4CYAR/nmRFVf1KklTVkiTvTLK5tbbzcC3aWrspybYkrzpcawAAAAAAAAAAAAAAAAAAAAAAAADAo6WpJEe91lpL8ktJXlZVdyS5PcmuJG86xOj3VtX27vLxGeb8qyRvqCq/KwAAAAAAAAAAAAAAAAAAAAAAAAAcVSbHXQCMorX2rSS/OMvxc4b2b05y89DYxTPNHxi/Ymj/C0meMa9iAQAAAAAAAAAAAAAAAAAAAAAAAOAImBh3AQAAAAAAAAAAAAAAAAAAAAAAAAAAzJ+mkgAAAAAAAAAAAAAAAAAAAAAAAAAAC5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAC5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAC9DkuAuAx4ITJw70k3Nsf7+Se5b2l/WktqS3rKp9vWWtmNjbW9bkiuN6yTnumGW95CTJ5P3f6S3rQ699SW9Z5//nG3vLWgxuvuLXe8nZ//APe8lZNNae2EvMsUuX9pLDPD1w77grWHhWrxp3BRyCB//s+nGXsKCs++XX9JLz8K49veQsFmtWj7sCDsW+Ex437hIWrQN/+bFxl7CwvHhTLzH7vvT5XnIWjZ/5J73ErLr7a73kLBpPPqmXmB/0+LzdYnB8TzkP7a+ekhaPPh5O7tvxUA8pi8yJ63qJeWTpsb3kLBYn9JRTazyOH4fvP/TwuEtYUNb09LzkshP9vI+Dx5Lz19fjScZjxTFe9xsH/7bOT1//ttaktwSOw4Fdu8ZdwsLTwz+uSx/xfMG8rennUc0PD/g/7eejr5dbH9jfU9Ai0dft/u0fuo+fj1U9/fE0cUI/7wFkfibKayDjsOcrXxh3CQvP887tJWbv/d/vJWfROOnkXmKWPXRfLzmLxrq1vcQsO9DfZ3kYXVvhPd7j0OffTnt37+wt68Qen7c7cGw/n4NLksljV/SS84Oj9L3ZvX4Pl/T3+trR+D1Mkvt27u4lZ+mS5b3kJMnenmpKkuN7/Jun1+9h6++Oa2dPUfv29lfT7n39PQ45tsffw73H9vchiWWr+nrHUHLfw/08F/WE4/v7GT3Qeovq1Z7JY/oL6/HltdUT/dzXrF7W3/Pw++rofI/Innpsfw937uvxe7i/n14WSdL29Xcfv+TB+3vL2rvuSb1lrVzez3tE9uzr8Xaf7O99K/t7vF9e+0h/38MDS/t5DiOJN2oBABwC7+oCAAAAAAAAAAAAAAAAAAAAAAAAAFiANJUEAAAAAAAAAAAAAAAAAAAAAAAAABhRVb2oqr5WVV+vqjdOc/yqqtreXW6vqgcGju0fOHbTodYyeagBAAAAAAAAAAAAAAAAAAAAAAAAAACLQVUtSfKuJD+X5O4kf1VVN7XWvnJwTmvt0oH5v5HkOQMRj7TWNvRVz0RfQQAAAAAAAAAAAAAAAAAAAAAAAAAAj3FnJfl6a+1vW2t7kmxNct4s8zclue5wFaOpJAAAAAAAAAAAAAAAAAAAAAAAAABAkqq6pKq2DVwuGZrypCTfGti/uxubLuupSZ6W5C8Ghpd3uX9ZVecfar2ThxoAAAAAAAAAAAAAAAAAAAAAAAAAcDRZMlHjLgFYoFpr1yS5pqe4C5Jc31rbPzD21NbaPVX1D5L8RVXd1lq789EuMHHIJXLUqKrzq6pV1Wnd/vqq+tI08zZX1V1Vtb2q/qaqfnfg2Deqat3A/jlV9eFu++Iu/wXTrLmx27+5qs4cyLphYO7Gqto8S/2j5n+tq317VV3fjV9RVfd0Y3dU1Y1V9ayBnL+rq9vf0OW+aKiGVlXvHNj/7aq6YqaaAQAAAAAAAAAAAAAAAAAAAAAAAFhU7klyysD+k7ux6VyQ5LrBgdbaPd3Xv01yc5LnHEoxmko+tmxK8unu61wua61tSLIhyauq6mkjrnFbpn4wB9e8ZZb5Zww2d+wp/8LW2obusnFg/Kpu7OlJ3peprquPm2GdmW6r3UleMthYEwAAAAAAAAAAAAAAAAAAAAAAAAA6f5Xk6VX1tKpalqn+eTcNT6qq05KsSfK5gbE1VXVMt70uyf+W5CuHUoymko8RVbUyydlJXpMfbco4l+Xd14dHnP+pJGdV1dJuzVOTbJ9l/juTvHke9cw3f1qttfcl+bMkrxg+VlWV5GVJLk7yc1W1fODwviTXJLl0vmsCAAAAAAAAAAAAAAAAAAAAAAAA8NjWWtuX5NeT/PckX03y/tbal6vqX1XViwemXpBka2utDYw9M8m2qrolySeS/F5rTVNJkiTnJfloa+32JPdV1RlzzL+yqrYnuTtTP2jfG3GdluTjSV7Yrfn3OqIOeX+Sn6qqU3vMf29Vbe8uV86S9ddJTptm/HlJ7mqt3Znk5iQ/P3T8XUkurKrjZyu0qi6pqm1VtW3zli2zTQUAAAAAAAAAAAAAAAAAAAAAAADgMaK19t9aaz/eWvux1trburH/o7V208CcK1prbxw677OttdNbaz/ZfX33odaiqeRjx6YkW7vtrd3+bC5rrW1IclKS51fV87rxNs3c4bGtmep6ekGS6+ZYZ3+SK5NcPse8+eRf2Frb0F0umyWnZhif9bZqrT2U5I+T/OZsRbbWrmmtndlaO/Piiy6abSoAAAAAAAAAAAAAAAAAAAAAAAAA9G5y3AVw6KpqbZJzk5xeVS3Jkkw1gnzXXOe21nZU1c1Jzk7y2ST3JVmT5N5uytqB7YPnfL6qTk+ys7V2e9VMvRv/zpZMNZX80ijX51Hkz+Q5SbYNDlTVkiQvTXJeVb05U40nT6yqVa21Hw5M/f0kf53k2ke7OAAAAAAAAAAAAAAAAAAAAAAAAAAcThPjLoBebEyypbX21Nba+tbaKUnuSnLKXCdW1WSS5ya5sxu6OclF3bElSV6Z5BPTnPrGJG8apbjW2t4kVyW5dJT5882fTlW9NMk/SXLd0KHnJ7m1tXZKd1s9NckNSX5pqOb7k7w/yWsebQ0AAAAAAAAAAAAAAAAAAAAAAAAAcDhpKvnYsCnJB4fGbkhyeZJnVNXdA5eXdcevrKrtSW5NcluSG7vxtyY5tapuSfLFJF9P8p7hBVtrH2mtTddscibvTjI56uQ58t9bVdu7y8cHxi/txu7IVDPMc1tr3x86d6bbatM067wzybpRawYAAAAAAAAAAAAAAAAAAAAAAACAI2nkJn8cvVprPzvN2NVJrp7hlA/MkvVgklfMcGxzks3TjF88sH3OwPb6ge3dSU6ead1Hkz8054okV8ySffC8V09z7KYkN3XbKwfGv5tkxWw1AwAAAAAAAAAAAAAAAAAAAAAAAMC4TIy7AAAAAAAAAAAAAAAAAAAAAAAAAAAA5m9y3AWw+FTVq5O8fmj4M621142jHgAAAAAAAAAAAAAAAAAAAAAAAABYiCbGXQCLT2vt2tbahqGLhpI9W7bnkXGXsCitWNJf1r61J/UXBgAAAAAAAAAAAAAAAAA9W7N82bhL4Ciyd//+3rKWLunxA5uMbHJJf+0Hjpmc7C2L0f3g4V29ZU1Ub1HMR/X3ezjZ+rtfZnQrJnv8HvZ4v8zolvX4Pdyz70BvWQAAMBt/PcBj1J5lx467hEVpZ4/Pq03e/53+wgAAAAAAAAAAAAAAAACgZz/YtWfcJXAU6bMRZJ8NKhndvv39Nb7avW9fb1mMbs1xy3vLOtB6i2I+Wn+/h/tKg95x2NljE8E+75cZXZ+NIPtsUAkAALPxyBMAAAAAAAAAAAAAAAAAAAAAAAAAYAHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAHSVHIRqqrzq6pV1Wnd/vqq+tI08zZX1V1Vtb2q/qaqfnfg2Deqat3A/jlV9eFu++Iu/wXTrLmx27+5qs4cyLphYO7Gqto8S/2j5n+tq317VV0/lLG9qrZOc33vqapjuv11VfWN2W9NAAAAAAAAAAAAAAAAAAAAAAAAABgPTSUXp01JPt19nctlrbUNSTYkeVVVPW3ENW5LcsHQmrfMMv+MqnrWiNmj5l/YWtvQXTYeHKyqZyZZkuSnq+q4oXP2J/nVedQBAAAAAAAAAAAAAAAAAAAAAAAAAGOhqeQiU1Urk5yd5DX50aaMc1nefX14xPmfSnJWVS3t1jw1yfZZ5r8zyZvnUc988wdtSrIlyZ8lOW/o2O8nubSqJucKqapLqmpbVW3bvGXLPEoHAAAAAAAAAAAAAAAAAAAAAAAAgEM3Z+M8HnPOS/LR1trtVXVfVZ2R5L5Z5l9ZVW/JVNPGq1tr3xtxnZbk40lemOT4JDcledos89+f5Neq6tQe899bVY902x9rrV3Wbb88yc8lOS3JbyT5k4Fzvpnk00kuSvKnsxbQ2jVJrkmSB7/7nTZi3QAAAAAAAAAAAAAAAAAAAAAAAADQi4lxF8ARtynJ1m57a7c/m8taaxuSnJTk+VX1vG58uiaKw2Nbk1zQXa6bY539Sa5Mcvkc8+aTf2FrbUN3uSxJqurMJPe21r6Z5M+TPKeq1g6d9/Ykl8XvBwAAAAAAAAAAAAAAAAAAAAAAAABHMU3zFpGueeK5Sf6oqr6RqcaJv5yk5jq3tbYjyc1Jzu6G7kuyZmDK2iT3Dp3z+SSnJ1nXWrt9hBK3JPmZJKeMMPfR5CdTTTRP667/nUlWJ3npUO4dSbZn6rYBAAAAAAAAAAAAAAAAAAAAAAAAgKOSppKLy8YkW1prT22trW+tnZLkrozQxLGqJpM8N1ONGJOpBpMXdceWJHllkk9Mc+obk7xplOJaa3uTXJXk0lHmzze/qiYy1Sjy9O76r09yXqYaTQ57W5LfnkcdAAAAAAAAAAAAAAAAAAAAAAAAAHBEaSq5uGxK8sGhsRuSXJ7kGVV198DlZd3xK6tqe5Jbk9yW5MZu/K1JTq2qW5J8McnXk7xneMHW2kdaa9M1m5zJu5NMjjp5jvz3VtX27vLxJD+d5J7W2v8amPPJJM+qqicO5X45yV/Po24AAAAAAAAAAAAAAAAAAAAAAAAAOKJGbt7Hwtda+9lpxq5OcvUMp3xglqwHk7xihmObk2yeZvzige1zBrbXD2zvTnLyTOs+mvwh/2jonP1JTup2Lx469pLZ6gAAAAAAAAAAAAAAAAAAAAAAAACAcZoYdwEAAAAAAAAAAAAAAAAAAAAAAAAAAMzf5LgLgJlU1auTvH5o+DOttdeNox4AAAAAAAAAAAAAAAAAAAAAAAAAOJpoKslRq7V2bZJrx10HAAAAAAAAAAAAAAAAAAB/35rly/KDXXvGXQYAAAAAwKI2Me4CAAAAAAAAAAAAAAAAAACAhUdDSQAAAACA8dNUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgAdJUkllV1flV1arqtG5/fVV9aZp5m6vqrqraXlV/U1W/O3DsG1W1bmD/nKr6cLd9cZf/gmnW3Njt31xVZw5k3TAwd2NVbZ6l/sOaDwAAAAAAAAAAAAAAAAAAAAAAAADjoqkkc9mU5NPd17lc1lrbkGRDkldV1dNGXOO2JBcMrXnLLPPPqKpnjZh9JPIBAAAAAAAAAAAAAAAAAAAAAAAA4IjTVJIZVdXKJGcneU1+tCnjXJZ3Xx8ecf6nkpxVVUu7NU9Nsn2W+e9M8uZ51HNY8qvqkqraVlXbNm/ZMo9yAAAAAAAAAAAAAAAAAAAAAAAAAODQTY67AI5q5yX5aGvt9qq6r6rOSHLfLPOvrKq3ZKpp49Wtte+NuE5L8vEkL0xyfJKbkjxtlvnvT/JrVXXqOPNba9ckuSZJHvzud9qItQAAAAAAAAAAAAAAAAAAAAAAAHCYTVSNuwSAI2Ji3AVwVNuUZGu3vbXbn81lrbUNSU5K8vyqel43Pl3DxeGxrUku6C7XzbHO/iRXJrl8jnlHMh8AAAAAAAAAAAAAAAAAAAAAAAAAjihNJZlWVa1Ncm6SP6qqbyS5LMkvJ5mz7XJrbUeSm5Oc3Q3dl2TNwJS1Se4dOufzSU5Psq61dvsIJW5J8jNJThlh7mHPBwAAAAAAAAAAAAAAAAAAAAAAAIAjTVNJZrIxyZbW2lNba+tba6ckuSsjNFmsqskkz01yZzd0c5KLumNLkrwyySemOfWNSd40SnGttb1Jrkpy6Sjzj1A+AAAAAAAAAAAAAAAAAAAAAAAAABwxmkoyk01JPjg0dkOSy5M8o6ruHri8rDt+ZVVtT3JrktuS3NiNvzXJqVV1S5IvJvl6kvcML9ha+0hrbbpmkzN5d5LJUScf7nwAAAAAAAAAAAAAAAAAAAAAAAAAOJI0zGNarbWfnWbs6iRXz3DKB2bJejDJK2Y4tjnJ5mnGLx7YPmdge/3A9u4kJ8+07pHIBwAAAAAAAAAAAAAAAAAAAAAAAIBxmRh3AQAAAAAAAAAAAAAAAAAAAAAAAAAAzN/kuAuAPlTVq5O8fmj4M621142jHgAAAAAAAAAAAAAAAAAAAAAAAAA43DSV5DGhtXZtkmvHXQcAAAAAAAAAAAAAAAAAAAAAAAAAHCkT4y4AAAAAAAAAAAAAAAAAAAAAAAAAAID501QSAAAAAAAAAAAAAAAAAAAAAAAAAGAB0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAB0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAB0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAB0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAB0lSSH1FV51dVq6rTuv31VfWlaeZtrqq7qmp7Vf1NVf3uwLFvVNW6gf1zqurD3fbFXf4LpllzY7d/c1WdOZB1w8DcjVW1eZb658zvxtZV1d6qeu3A2KqqurOqnt7tL62q26rquSPfgAAAAAAAAAAAAAAAAAAAAAAAAABwhGgqybBNST7dfZ3LZa21DUk2JHlVVT1txDVuS3LB0Jq3zDL/jKp61ojZo+a/LMlfZuB6ttZ+mOTyJH/QDf12ks+21v7HPNYGAAAAAAAAAAAAAAAAAAAAAAAAgCNCU0n+TlWtTHJ2ktfkR5syzmV59/XhEed/KslZVbW0W/PUJNtnmf/OJG+eRz2j5G9K8ltJnlRVTz442Fp7f5JU1b9I8tpMNZkEAAAAAAAAAAAAAAAAAAAAAAAAgKOOppIMOi/JR1trtye5r6rOmGP+lVW1PcndSba21r434jotyceTvLBb86Y55r8/yU9V1al95FfVKUme2Fr7fJf98qHzX5/k3yb51621+2dapKouqaptVbVt85YtI5YGAAAAAAAAAAAAAAAAAAAAAAAAAP3QVJJBm5Js7ba3dvuzuay1tiHJSUmeX1XP68bbNHOHx7YmuaC7XDfHOvuTXJnk8jnmjZr/8kw1kzw4b/h6vijJt5M8e7YFWmvXtNbObK2defFFF82jNAAAAAAAAAAAAAAAAAAAAAAAAAA4dJPjLoCjQ1WtTXJuktOrqiVZkqlGkO+a69zW2o6qujnJ2Uk+m+S+JGuS3NtNWTuwffCcz1fV6Ul2ttZur6q5ltmSqaaSXxrl+syRvynJSVV1Ybd/clU9vbV2R1WdnOQ3k5yV5BNV9e7W2q2jrAkAAAAAAAAAAAAAAAAAAAAAAAAAR9LEuAvgqLExyZbW2lNba+tba6ckuSvJKXOdWFWTSZ6b5M5u6OYkF3XHliR5ZZJPTHPqG5O8aZTiWmt7k1yV5NJR5s+UX1U/nmRla+1J3fVcn+TtmWo0mW6Nf9NauzvJG5K8q0boeAkAAAAAAAAAAAAAAAAAAAAAAAAAR9rkuAvgqLEpyb8dGrshyeVJnlFVdw+MH2zseGVVvSXJsiR/nuTGbvytSf5TVd2SpJJ8NMl7hhdsrX1knjW+O8lbRp08Q/6mJB8cGrshyfuq6nNJntKtk9ban1bVP0vyK0n+yzxrBQAAAAAAAAAAAAAAAAAAAAAAYEyqatwlABwRmkqSJGmt/ew0Y1cnuXqGUz4wS9aDSV4xw7HNSTZPM37xwPY5A9vrB7Z3Jzl5pnVHzL9+mmO3Jnlmt/uxoWMvnm09AAAAAAAAAAAAAAAAAAAAAAAAABiXiXEXAAAAAAAAAAAAAAAAAAAAAAAAAADA/E2OuwB4NKrq1UlePzT8mdba68ZRDwAAAAAAAAAAAAAAAAAAAAAAAAAcaZpKsiC11q5Ncu246wAAAAAAAAAAAAAAAAAAAAAAAACAcZkYdwEAAAAAAAAAAAAAAAAAAAAAAAAAAMxftdb+P3buP8ryu6wT/Pvprph0TJoQEn4YsukxoHEO7mmH7MTkyCEhMolHOYCYI+0YSI5H5uwGIz8M6DCrOUd+OBNdFsT12KMS2lnsjLRgZFdcFpJdWDOZzYQmAUE0pk9AxaRDSAi0JDTP/lHfci81Val7q7/p25V6vc65p+738/l8n8+7bt26datu3WfeGeCJwDcSAAAAAAAAAAAAAAAAAAAAAMD61LwDAE88P/vuP9QbCliXd1z5oxvqucmWeQcAAAAAAAAAAAAAAAAAAAAAAAAAAGB2mkoCAAAAAAAAAAAAAAAAAAAAAAAAAGxAmkoCAAAAAAAAAAAAAAAAAAAAAAAAAGxAmkoCAAAAAAAAAAAAAAAAAAAAAAAAAGxAmkoCAAAAAAAAAAAAAAAAAAAAAAAAAGxAmkryLarqJVXVVXXOcLyjqj61wrrrq+ruqtpfVZ+tql+amDtQVadNHF9YVR8crl8x1P/BFfb8seH45qo6d6LWvom1P1ZV1z9G/iuq6r6q+kRV/WVV/WlVXbAs9+Q+fzF8Dvsnxg9PjO2vqh0z35AAAAAAAAAAAAAAAAAAAAAAAAAA8DjTVJLldiX5+PBxLdd0984kO5O8sqr+yZR73Jnk5cv2/ORjrH9uVf3TKWsnyQ3d/X3d/ewkv5LkD6vqe1ZZ+y+7e+dwed8wdmhibGd3H5hhbwAAAAAAAAAAAAAAAAAAAAAAAAA4KjSV5B9V1UlJfiDJT+Vbmz6u5YTh41enXP+xJP+8qo4b9nxWkv2Psf7Xkrxphjz/qLtvSrI7yavWcz4AAAAAAAAAAAAAAAAAAAAAAAAAHKs0lWTSi5N8qLs/l+T+qnruGuuvq6r9Sb6QZG933zvlPp3k/0xyybDnjWus/49J/llVPWvK+svdnuScVeb+16raP1yeMoxtmxh7/2pFq+pVVXVbVd22e/fudUYDAAAAAAAAAAAAAAAAAAAAAAAAgPVZmHcAjim7krxjuL53OH7XY6y/prvfV1UnJflIVV3Q3X+WxaaRyy0f25vk6iRPSvL6JP/6MfY5nOS6JL+Q5E/W/Cz+a/UYc/+yu29bNnaou3euVbS7dydZ6ia50ucMAAAAAAAAAAAAAAAAAAAAAAAAAI8bTSVJklTVqUlekOR7q6qTbM1io8TfWOvc7n64qm5O8gNJ/izJ/UmenOTgsOTUietL5/znqvreJF/r7s9VPVbfxyTJ72WxqeSnpv2cJnxfks+s4zwAAAAAAAAAAAAAAAAAAAAAAAAAOGZtmXcAjhk/luT3uvus7t7R3WcmuTvJmWudWFULSc5LctcwdHOSy4e5rUl+MslNK5z680n+9TThuvvRJG9P8tpp1k9ke36SVyX597OcBwAAAAAAAAAAAAAAAAAAAAAAAADHOk0lWbIryfuXje1L8gtJvruqvjBxuWyYv66q9ie5I8mdSf5wGP/lJM+qqk8m+USSv0ryH5Zv2N1/0t0rNZtcze8kWZhi3Y9X1f6q+lwWm1a+rLs/M8M+AAAAAAAAAAAAAAAAAAAAAAAAAHDMq+6edwZ4IvCNBAAAAAAAAAAAAAAAAAAAAACwPjXvAMATz8+++w/1hgLW5R1X/uiGem6yMO8AAAAAAAAAAAAAAAAAAAAAAAAAAGPaumVD/SXuGwAAIABJREFU9YQDWDdNJdmQqurKJD+7bPj/6e6r5pEHAAAAAAAAAAAAAAAAAAAAAAAAAI42TSXZkLr73UnePe8cAAAAAAAAAAAAAAAAAAAAAAAAADAvmkrCCO659+AodU7ZOkqZJEktjPft3d/4xmi1jtVcqRqlTD/66Ch1xlbHHTdarcNf/cpotTaDJ5+5Y5Q6F177rlHqbBY3X/vqUer8/Ze+PEqdzeRpp55yxDUu//X/MEKSzeX3fuYnR6nzdwe/NEqdzeIZp506Sp2HvnT/KHU2i+2nPmWUOl956KFR6mwWJ2/fPkqd+//6L0eps5k85TuffcQ1PKeZ3RjPaZLkofvH+XvBZrH9KaeNUufglx8cpc5mcdopTxqlzoEv3jdKnc1ix9NPH6XOVx70GD+Lk580zuP7g1/x97FZPenkk4+4ht+dZjfW70/33/UXo9TZLJ5y9nePUsfvrbMZ6/dWz+FnM9Zz+Ace8rN1Fk/efuQ/V5PkU9f9/Ch1NpPnXPMrR1zjy1/82xGSbC6nPP07RqnzV+/9rVHqbBbP+ol/NUodf5uczVh/l7zvAX8fm8XpTx7n72Ne557dGK9z+/vY7Mb6G5nH+NmM9Rjv96fZjPX703/66R8Zpc5m8f3//oOj1PH/BbMZ438LkuShg/eOUmcz2X7aU4+4hsf32Y31GO9/Jmcz1v9M+r+O2Yz1fx1+f5rNWL87ud1nM9btfsz+bH1wvP97+Idt47w+miQLW8d5Q2Md/JtR6iTJ1qedOVqtUR2jX8PjFkZ8U+p9I30dTz9jnDojWzj08Gi1Dh23bbRaW7ZsGa3WCY/+wyh1tpxwwih1kuSbW8a7jx7+0nj/q3p4+zj/W5UkC1vH+xoe/vvPj1LnuO3jPH9Pjt33hY95P+3Dh0erVSP9bO1HHxmlTpKkxruPjtpzYMT3vo/pmPwajmnE+8MjW8f7Gn7b4fF6NPzVA18dpc6zn/rkUeok494fDh93/Gi1tn5jvFxfeuSbo9Ua6/0WAACb0XjP+AEAAAAAAAAAAAAAAAAAAAAAAAAAOGo0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lZyTqjpcVfur6pNVdXtVXTCM76iqQ8Pc0uUVa9TaWVVdVZeussenquqPq+qUqrp1GLunqu6b2GNHVR2oqjsnxt451Lm+qu6eyHvxxB43V9W5U2R5eMrb5drh/GdNjL1mGDt3OF4r5yer6nNVtaeqnjlR50BVnTZx/JKh7jkTYzuGsZ+ZGHtXVV0xTX4AAAAAAAAAAAAAAAAAAAAAAAAAOFoW5h1gEzvU3TuTpKouSfK2JM8f5u5ampvSriQfHz5+aJU93pPkqu4+bzi+Ism53f3qpcVVlSQXdffBFfa4prvfV1UXJdmd5NkzZpnFnUlenuTNw/FlST69bM1aOSvJa5J8tKqe092PrJH1lybG703ys1X1W6ucBwAAAAAAAAAAAAAAAAAAAAAAAABzt2XeAUiSbE/ywHpOHJonXpbkiiQvrKoTVll6S5Iz1pVuyjozZFnLB5K8eKh5dpIHk6zUQHJVvejtSb6Y5IdWyHpSkh9I8lNZbGA56b4kH0nyypmTAwAAAAAAAAAAAAAAAAAAAAAAAMBRoqnk/Gyrqv1V9dkkv53klyfmzh7mli7Pe4w6FyS5u7vvSnJzkh9evqCqtia5OMmNU+S6aWLf164wf2kWmz6uK8uUHkry+ap6ThYbPt6wjpxLbk9yzgrjL07yoe7+XJL7q+q5y+b/bZKfG267FVXVq6rqtqq67b179jzmJwQAAAAAAAAAAAAAAAAAAAAAAAAAY1uYd4BN7FB370ySqjo/yZ6hiWKS3LU0N4VdSfYO1/cmeUWSfcPxtqran+SMJJ9J8uEp6l3U3QdXGL+uqt6a5JlJzl9HllntzWJDyUuy2BDzyilzLlerjO9K8o6JvXYl+S9Lk93911V1a5KfWK1wd+9OsjtJ7rn3YE+RBQAAAAAAAAAAAAAAAAAAAAAAAABGo6nkMaC7b6mq05KcPst5VbU1ycuSvLiq3pTFBopPqaqTu/srGRpXVtWJSf40yVVJ3rnOmNd09/uq6meS/G6S586YZVYfTHJdktu6+6Gq1XpDrun7knxkWdZTk7wgyfdWVSfZmqSr6ppl5741yfuS/F/r3RwAAAAAAAAAAAAAAAAAAAAAAAAAHi9b5h2ApKrOyWJjw/tnPPXiJHd095ndvaO7z0qyL8lLJxd199eSXJ3k9VV1pI1E35VkS1Vdsp4s0xoyvzHJW9Zzfi26Oskzknxo2fSPJfm97j5ryHpmkruTPG9Zhs8m+fMkL1pPBgAAAAAAAAAAAAAAAAAAAAAAAAB4PGkqOT/bqmp/Ve1PckOSV3b34WHu7KW54XL1KjV2JXn/srF9w/i36O5PJLljpbllbprYd88KdTrJm5O8YcYsJ1bVFyYur1sjR7p7b3ffPmPO66rqk0k+l+S/S3JRdz8yY9ZJb0nyzLWyAgAAAAAAAAAAAAAAAAAAAAAAAMDRtjDvAJtVd29dZfxAkm1T1rhyhbEbk9w4XD9p2dyLJq5fn+T6ZfM7VtnnimXH+7LYhDHdfeEwvFaWqRqYdve1q4xfOHF9qpwrzC+dd9EKc++cOHzOxPgno/kqAAAAAAAAAAAAAAAAAAAAAAAAAMcgzfIAAAAAAAAAAAAAAAAAAAAAAAAAADaghXkHYDpVdWuS45cNX97dd84jz5GqqjcluWzZ8B9091vmkQcAAAAAAAAAAAAAAAAAAAAAAAAANhpNJTeI7j5v3hnGNDSP1EASAAAAAAAAAAAAAAAAAAAAAACA0VVq3hEAjoot8w4AAAAAAAAAAAAAAAAAAAAAAAAAAMDsNJUEAAAAAAAAAAAAAAAAAAAAAAAAANiANJUEAAAAAAAAAAAAAAAAAAAAAAAAANiANJUEAAAAAAAAAAAAAAAAAAAAAAAAANiANJUEAAAAAAAAAAAAAAAAAAAAAAAAANiANJUEAAAAAAAAAAAAAAAAAAAAAAAAANiANJUEAAAAAAAAAAAAAAAAAAAAAAAAANiANJU8xlXV4araX1WfrKrbq+qCYXxHVR0a5pYur1ij1s6q6qq6dJU9PlVVf1xVp1TVrcPYPVV138QeO6rqQFXdOTH2zqHO9VV190Teiyf2uLmqzp0iy8NT3i7XDuc/a2LsNcPYucPxijmHuYXh8/qVZXVvrqrbJo7Praqbp8kEAAAAAAAAAAAAAAAAAAAAAAAAAEfTwrwDsKZD3b0zSarqkiRvS/L8Ye6upbkp7Ury8eHjh1bZ4z1Jruru84bjK5Kc292vXlpcVUlyUXcfXGGPa7r7fVV1UZLdSZ49Y5ZZ3Jnk5UnePBxfluTTy9aslvOFST6X5LKq+oXu7om5p1bVD3X3n6wzFwAAAAAAAAAAAAAAAAAAAAAAAAA87rbMOwAz2Z7kgfWcWIudIC9LckWSF1bVCassvSXJGetKN2WdGbKs5QNJXjzUPDvJg0lWaiC5kl1J3pHkniTnL5u7Lsmb1pkJAAAAAAAAAAAAAAAAAAAAAAAAAI4KTSWPfduqan9VfTbJbyf55Ym5s4e5pcvzHqPOBUnu7u67ktyc5IeXL6iqrUkuTnLjFLlumtj3tSvMX5rFpo/ryjKlh5J8vqqek+TlSW6YJufQxPIHk/xxkt/PYoPJSbckeaSqLnqszavqVVV1W1Xd9t49e9b5KQAAAAAAAAAAAAAAAAAAAAAAAADA+izMOwBrOtTdO5Okqs5Psmdoopgkdy3NTWFXkr3D9b1JXpFk33C8rar2JzkjyWeSfHiKehd198EVxq+rqrcmeWaS89eRZVZ7s9hQ8pIsNsS8coqcP5Lkpu4+VFX7kvyPVfWa7j48sebNSf5NkjeutnF3706yO0nuufdgrzM/AAAAAAAAAAAAAAAAAAAAAAAAAKzLlnkHYHrdfUuS05KcPst5VbU1ycuS/GJVHUjy60kuraqThyVLjSvPSlJJrjqCmNd093dlsRnj764jy6w+mOTyJPd090NTnrMryQ8O+/+XJE9J8oLJBd390STbknz/OnMBAAAAAAAAAAAAAAAAAAAAAAAAwONKU8kNpKrOSbI1yf0znnpxkju6+8zu3tHdZyXZl+Slk4u6+2tJrk7y+qpaOMK470qypaouWU+WaQ2Z35jkLdOsr6rtSZ6X5L8Z9t+RxSaau1ZY/uYkb1hPLgAAAAAAAAAAAAAAAAAAAAAAAAB4vGkqeezbVlX7q2p/khuSvLK7Dw9zZy/NDZerV6mxK8n7l43tywqNFLv7E0nuWGlumZsm9t2zQp3Oyk0Z18pyYlV9YeLyujVypLv3dvftU+Z8aZKPdvfXJ9b8UZIXVdXxy+r+70nuW2t/AAAAAAAAAAAAAAAAAAAAAAAAAJiHhXkH4LF199ZVxg8k2TZljStXGLsxyY3D9ZOWzb1o4vr1Sa5fNr9jlX2uWHa8L4sNI9PdFw7Da2WZqtFpd1+7yviFE9dXzJnkPcvO+VKS04fDC5fNPXeaPAAAAAAAAAAAAAAAAAAAAAAAAABwtE3VwA8AAAAAAAAAAAAAAAAAAAAAAAAAgGPLwrwDMK6qujXJ8cuGL+/uO+eR50hV1ZuSXLZs+A+6+y3zyAMAAAAAAAAAAAAAAAAAAAAAAAAAxwpNJZ9guvu8eWcY09A8UgNJAAAAAAAAAAAAAAAAAAAAAAAAAFhmy7wDAAAAAAAAAAAAAAAAAAAAAAAAAAAwO00lAQAAAAAAAAAAAAAAAAAAAAAAAAA2IE0lAQAAAAAAAAAAAAAAAAAAAAAAAAA2IE0lAQAAAAAAAAAAAAAAAAAAAAAAAAA2IE0lAQAAAAAAAAAAAAAAAAAAAAAAAAA2IE0lAQAAAAAAAAAAAAAAAAAAAAAAAAA2IE0lAQAAAAAAAAAAAAAAAAAAAAAAAAA2IE0ln0Cq6nBV7a+qT1bV7VV1wTC+o6oODXNLl1esUWtnVXVVXbrKHp+qqj+uqlOq6tZh7J6qum9ijx1VdaCq7pwYe+dQ5/qqunsi78UTe9xcVedOkeXhKW+Xa4fznzUx9pph7Nzh+EBVnTZc76r6tYm1P1dV106zFwAAAAAAAAAAAAAAAAAAAAAAAAAcLQvzDsCoDnX3ziSpqkuSvC3J84e5u5bmprQryceHjx9aZY/3JLmqu88bjq9Icm53v3ppcVUlyUXdfXCFPa7p7vdV1UVJdid59oxZZnFnkpcnefNwfFmST6+y9utJfrSq3rZKbgAAAAAAAAAAAAAAAAAAAAAAAACYuy3zDsDjZnuSB9ZzYi12grwsyRVJXlhVJ6yy9JYkZ6wr3ZR1Zsiylg8kefFQ8+wkDyZZrWHkN7LY5PK1j1Wwql5VVbdV1W3v3bNnnbEAAAAAAAAAAAAAAAAAAAAAAAAAYH0W5h2AUW2rqv1JTkjyjCQvmJg7e5hb8jPd/bFV6lyQ5O7uvquqbk7yw0n2TS6oqq1JLk7yO1PkuqmqDg/X39Pdb182f2kWmz6uK8uUHkry+ap6ThabS96Q5MrHWP8bSe6oqn+32oLu3p3F5pO5596DvY5MAAAAAAAAAAAAAAAAAAAAAAAAALBumko+sRzq7p1JUlXnJ9kzNFFMkruW5qawK8ne4freJK/I/9/Icalx5RlJPpPkw1PUu6i7D64wfl1VvTXJM5Ocv44ss9qb5OVJLsliQ8xVm0p290NVtSfJ1UkOrXM/AAAAAAAAAAAAAAAAAAAAAAAAAHjcbJl3AB4f3X1LktOSnD7LeVW1NcnLkvxiVR1I8utJLq2qk4clS40rz0pSSa46gpjXdPd3JXljkt9dR5ZZfTDJ5Unu6e6Hplj/Pyf5qSTfvs79AAAAAAAAAAAAAAAAAAAAAAAAAOBxo6nkE1RVnZNka5L7Zzz14iR3dPeZ3b2ju89Ksi/JSycXdffXklyd5PVVtXCEcd+VZEtVXbKeLNMaMr8xyVumXP+lJP8xi40lAQAAAAAAAAAAAAAAAAAAAAAAAOCYoqnkE8u2qtpfVfuT3JDkld19eJg7e2luuFy9So1dSd6/bGzfMP4tuvsTSe5YaW6Zmyb23bNCnU7y5iRvmDHLiVX1hYnL69bIke7e2923r7Vuwq8lOW2G9QAAAAAAAAAAAAAAAAAAAAAAAABwVCzMOwDj6e6tq4wfSLJtyhpXrjB2Y5Ibh+snLZt70cT165Ncv2x+xyr7XLHseF8WG0amuy8chtfKMlVT1O6+dpXxCyeu75i4ftLE9b9PcuI0+wAAAAAAAAAAAAAAAAAAAAAAAADA0TRVUz4AAAAAAAAAAAAAAAAAAAAAAAAAAI4tC/MOwPxU1a1Jjl82fHl33zmPPEeqqt6U5LJlw3/Q3W+ZRx4AAAAAAAAAAAAAAAAAAAAAAAAAeDxpKrmJdfd5884wpqF5pAaSAAAAAAAAAAAAAAAAAABHQZ92Rurg38w7BgAAAADAprZl3gEAAAAAAAAAAAAAAAAAAICNR0NJAAAAAID501QSAAAAAAAAAAAAAAAAAAAAAAAAAGAD0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGADWph3AAAAAAAAAAAAAAAAAAAAAAAAAIAxbamadwSAo2LLvAMAAAAAAAAAAAAAAAAAAAAAAAAAADA7TSUBAAAAAAAAAAAAAAAAAAAAAAAAADYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAADYgTSU3sKo6XFX7q+qTVXV7VV0wjO+oqkPD3NLlFWvU2llVXVWXrrLHp6rqj6vqlKq6dRi7p6rum9hjR1UdqKo7J8beOdS5vqrunsh78cQeN1fVuVNkeXjK2+Xa4fxnTYy9Zhh7zH2q6swh56nD8ZOH4x3T7A0AAAAAAAAAAAAAAAAAAAAAAAAAR8vCvANwRA51984kqapLkrwtyfOHubuW5qa0K8nHh48fWmWP9yS5qrvPG46vSHJud796aXFVJclF3X1whT2u6e73VdVFSXYnefaMWWZxZ5KXJ3nzcHxZkk+vtU93f76qfjPJryR51fBxd3cfWGcOAAAAAAAAAAAAAAAAAAAAAAAAAHhcbJl3AEazPckD6zmxFjtBXpbkiiQvrKoTVll6S5Iz1pVuyjozZFnLB5K8eKh5dpIHk/xjo8s19nl7ku+vqtck+YEkv7pK1ldV1W1Vddt79+xZZ0wAAAAAAAAAAAAAAAAAAAAAAAAAWJ+FeQfgiGyrqv1JTkjyjCQvmJg7e5hb8jPd/bFV6lyQ5O7uvquqbk7yw0n2TS6oqq1JLk7yO1PkuqmqDg/X39Pdb182f2kWmz6uK8uUHkry+ap6ThabS96Q5Mpp9unuR6vqmiQfSvIvuvvRlTbo7t1JdifJPfce7HVkBAAAAAAAAAAAAAAAAAAAAAAAAIB12zLvAByRQ929s7vPyWKjxj1VVcPcXcPc0mW1hpJJsivJ3uH63uF4yVLjyi8meVqSD0+R66KJfScbSl5XVZ9L8t4k/3YdWWa1N8nLk7wkyftn3OeHkvxdkuccwf4AAAAAAAAAAAAAAAAAAAAAAAAA8LjRVPIJortvSXJaktNnOa+qtiZ5WZJfrKoDSX49yaVVdfKw5FB370xyVpJKctURxLymu78ryRuT/O46sszqg0kuT3JPdz807T5VtTPJC5N8f5LXVtUz1rk/AAAAAAAAAAAAAAAAAAAAAAAAADxuNJV8gqiqc5JsTXL/jKdenOSO7j6zu3d091lJ9iV56eSi7v5akquTvL6qFo4w7ruSbKmqS9aTZVpD5jcmecu0+1RVJfnNJK/p7nuSXJfkV9ezPwAAAAAAAAAAAAAAAAAAAAAAAAA8njSV3Ni2VdX+qtqf5IYkr+zuw8Pc2Utzw+XqVWrsSvL+ZWP7hvFv0d2fSHLHSnPL3DSx754V6nSSNyd5w4xZTqyqL0xcXrdGjnT33u6+fYZ9fjrJPd394WH8f0nyPVX1/LX2AgAAAAAAAAAAAAAAAAAAAAAAAICjaWHeAVi/7t66yviBJNumrHHlCmM3JrlxuH7SsrkXTVy/Psn1y+Z3rLLPFcuO92WxkWO6+8JheK0sUzVB7e5rVxmfap8kuyfGDyf5Z9PsCwAAAAAAAAAAAAAAAAAAAAAAAABH01RN+gAAAAAAAAAAAAAAAAAAAAAAAAAAOLYszDsAR09V3Zrk+GXDl3f3nfPIc6Sq6k1JLls2/Afd/ZZ55AEAAAAAAAAAAAAAAAAAAAAAAACAo0lTyU2ku8+bd4YxDc0jNZAEAAAAAAAAAAAAAAAAAAAAAAAAYFOq7p53Bngi8I0EAAAAAAAAAAAAAAAAAAAAALA+Ne8AwBPPNXv+SG8oYF2ue8WLN9Rzky3zDgAAAAAAAAAAAAAAAAAAAAAAAAAAwOw0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IA0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2IAW5h2A9auqw0nuTFJJDid5dXf/WVXtSPKZJH8xsfx/6u49j1FrZ5JPJPmh7v7QCnssJLk7yeVJ/jTJ8UlOTbItyd8My1+S5OYkXxnyJMn/3d1XV9X1SZ6f5MEh7+u6+yPDHjcn+bnuvm2NLA9390lT3C7XJvnpJPcl+fYh/7/p7j9fvl9VHViW939I8rf5r2+/f97dj6y1NwAAAAAAAAAAAAAAAAAAAAAAAPNXNe8EAEeHppIb26Hu3pkkVXVJkrdlsXFjkty1NDelXUk+Pnz80MT45B7vSXJVd583HF+R5NzufvXS4lr8CXpRdx9cYY9ruvt9VXVRkt1Jnj1jllm8vbt/dcj040k+WlXf2933rbD2W/IOTTlnvf0AAAAAAAAAAAAAAAAAAAAAAAAA4KjaMu8AjGZ7kgfWc2ItdoK8LMkVSV5YVSessvSWJGesK92UdWbIMrXuviHJ/5HkJ460FgAAAAAAAAAAAAAAAAAAAAAAAAAcKzSV3Ni2VdX+qvpskt9O8ssTc2cPc0uX5z1GnQuS3N3ddyW5OckPL19QVVuTXJzkxily3TSx72tXmL80yQfWm2Wdbk9yzipzS3lvnRibvP1+Y6WTqupVVXVbVd22e/fukWICAAAAAAAAAAAAAAAAAAAAAAAAwHQW5h2AI3Kou3cmSVWdn2RPVT1nmLtraW4Ku5LsHa7vTfKKJPuG421VtT/JGUk+k+TDU9S7qLsPrjB+XVW9Nckzk5y/jixHoh5jbqW8a95+3b07yVI3yT6ScAAAAAAAAAAAAAAAAAAAAAAAAAAwqy3zDsA4uvuWJKclOX2W86pqa5KXJfnFqjqQ5NeTXFpVJw9LlhpXnpXFxoxXHUHMa7r7u5K8McnvriPLkfi+LDbFBAAAAAAAAAAAAAAAAAAAAAAAAIAnBE0lnyCq6pwkW5PcP+OpFye5o7vP7O4d3X1Wkn1JXjq5qLu/luTqJK+vqoUjjPuuJFuq6pL1ZJlVVb0syb9I8vtHUgcAAAAAAAAAAAAAAAAAAAAAAAAAjiWaSm5s26pqf1XtT3JDkld29+Fh7uylueFy9So1diV5/7KxfcP4t+juTyS5Y6W5ZW6a2HfPCnU6yZuTvGHGLCdW1RcmLq97jAyvHfb/yyQ/meQF3X3fGrkBAAAAAAAAAAAAAAAAAAAAAAAAYMOoxf5+wBHyjQQAAAAAAAAAAAAAAAAAAAAAsD417wDAE88bfu+P9IYC1uXfXf7iDfXcZMu8AwAAAAAAAAAAAAAAAAAAAAAAAAAAMLuFeQfg6KmqW5Mcv2z48u6+cx55jlRVvSnJZcuG/6C73zKPPAAAAAAAAAAAAAAAAAAAAAAAAABwNGkquYl093nzzjCmoXmkBpIAAAAAAAAAAAAAAAAAAAAAAAAAbEqaSsII7rn34Ch1nrTt+FHqJMmWbx4erVY/+shotcZ03yM9Wq3Tto5T69Hjt41SJ0mOr/E+vwe+/o3Ram077rjRam0Gpz/5SaPU+fsvfXmUOpvF0049ZZQ6F177rlHqbCY3X/vqI67h/j67se7zv/mnHxulzmbx31/yvFHqfOWhh0aps1mcvH37KHW+8qDHmlmc/KRxHmf+9pabRqmzmXzH+RcdcY2HvnT/CEk2l+2nPmWUOg8dvHeUOpvF9tOeOkodP1tnM9bP1r87+KVR6mwWzzjt1FHqeJyZzViPMw/+/RdHqbOZPOlpTz/iGn9zn8eZWZ1x+jiPNZ7Hz2aM5/BJ8sBDXxmlzmbx5O0nj1LHc8nZjPVc0v19NmPd393usxvjtv+Lz//dCEk2l+8+8xmj1HGfn43HmvkY63Y/+OUHR6mzWZx2yjj/1/HgV9zfZ/Wkk4/8Pv/uj94yQpLN5coXnD9KnS9/8W9HqbNZnPL07xilzv1//Zej1NksnvKdzx6ljtdbZzPWa60H//LPR6mzWZz27H86Sh2vPc1ujNefvNY6u7Febz3wxftGqbNZ7Hj66aPU8XrrbMZ4rTVxf5/VWPd3r3PPZqzXuMf82frN8d7alZNrvPd2fXXEtwWf8G3jvE9sIePdWA8/Mt5ttRm+hiceP957/cZ6T+qDXx/vva1bt9RotU46bstotb423qeYb1vYOlqtsb4X/+HweN883zg83o114uHx3uv88JZvG63WqN+HI93l65Gvj1MoyeHjxnvve31tvNdTHj3+20erdcKW8e7z39wyzvf0mF/DOm68+/vhrz08Wq0+cZzXR5Nkocd7rBnra/jNL4/3t+WtJ540Wq2v9ng/D7c9emi0WltPHO97eqyf09/85jfHKZRkYet4P+8B5txZAAAgAElEQVS/bWG8r+HD//DoaLW6x3ssfeZTx3mtAQBgMxrv2SIAAAAAAAAAAAAAAAAAAAAAAAAAAEeNppIAAAAAAAAAAAAAAAAAAAAAAAAAABuQppIAAAAAAAAAAAAAAAAAAAAAAAAAABuQppIAAAAAAAAAAAAAAAAAAAAAAAAAABuQppIAAAAAAAAAAAAAAAAAAAAAAAAAABuQppIAAAAAAAAAAAAAAAAAAAAAAAAAABuQppLHkKo6XFX7q+qTVXV7VV0wjO+oqkPD3NLlFavUeHdV/atlYy+pqj9ZtsfS5eeH8Zur6raJc86tqpsnjn+gqv5zVX12uLxqYu76qvqxZXs+PHzcUlXvrKpPVdWdVfX/VtU/eYzb4EBVfWzZ2P6q+tRw/cKqenDZ5/CDyz63Tw+34eurasvEeR9cVvcDVfWflo1dW1Vfq6qnLv9cAAAAAAAAAAAAAAAAAAAAAAAAAOBYsjDvAHyLQ929M0mq6pIkb0vy/GHurqW5Nfx+kl9I8lsTYy8fxr9ljxU8tap+qLv/ZHKwqp6e5L1JXtLdt1fVaUn+tKr+prv/tzXy/HiS70jy33b3N6vqmUm+usY5J1fVmd39+ar6nhXmP9bdP7LC+OTt99Qh8/Ykv7R8YVWdkuS5SR6uqu/s7r+emD6Y5PVJ3rhGTgAAAAAAAAAAAAAAAAAAAAAAAACYG00lj13bkzywjvM+kuQ9VfWM7v67qv+PnfuPtrSs7gT/3bcKsURQfoiiplPKciSRYGmZVhlZojHLZCIT2jFQdKtUpmehMyaT1hURR9caaVGj4qg0TLdoA6JNBRJauwELuwetEUcCFlgGVNJZaMVA02oR5IeWosWeP+57zeHk1v1RnKpbt+rzWetd93328zz72e+pU/ceuLDroCSvSHLGAvZ+MMk7kmwci78pySXdfUuSdPe2qjozybuSzNdU8qgkd3f3w8PeOxdQxxWZbkZ5bpLTMt0Q83UL2PcL3f39qjojyVer6l2zLHl1kquSfC/TTTffOzJ3UZL1VfX+7v67xZwLAAAAAAAAAAAAAAAAAAAAAADA0lsxNbXUJQDsEb7b7V1WVdWWqro9ySeSvHtk7uhhbuY6YbYE3b0jyZVJThlCJyXZ1N33j50xc506sv2GJA9V1cvG0j4nyc1jsc1DfD5XJDlpOOtDVfW8Bey5MtNNH2fqv2ps/oSxZzh6tiTd/e0kK5IcOcv0TLPKDcP9qAcz3Vjyj+YqsqrOqKrNVbX5sksvnfOBAAAAAAAAAAAAAAAAAAAAAAAAAGDSVi51ATzC9u5ekyRV9eIkl1bVscPcHTNzC7AhyblJPppkXZJPzXbGTpyT5J1J3raIuntnse6+s6qeneTlw3VdVf1ed183R757ktxbVeuSfCvJj8fmr+/uVy2ivkeoqicneVaSL3d3V9XPqurY7r5tZNl5SbZU1bk7y9PdFya5MEm++/1ts70GAAAAAAAAAAAAAAAAAAAAAAAAALDbTC11Acyuu29IckSSJ+3C9q8kOaqqnpvk+CTXLOLcLyRZleRFI+FvJlk7tnRtkm8M9/ckOXRmoqoOS7JtJOdPu3tjd781yXuTnLyAUi5PckGmG2Tukqp6ZpIdSb4/NnXKUO93qmprktVJThtd0N0/THJZkjft6vkAAAAAAAAAAAAAAAAAAAAAAAAAsDtpKrmXqqpjkqzIdMPGRenuznRTxk8m2djdP1lkinOSnDkyviDJ+qpaM9R2eJL3J/nAML8pyalV9ZhhvD7JF4e1z6+qpw73U0mOS/I3C6jhM0P+zy+y9gxnPSnJv0ly/vB6jDotyW919+ruXp3pBpnrZknzfyV5Q5KVu1IDAAAAAAAAAAAAAAAAAAAAAAAAAOxOmuXtXVZV1ZbhvpKc3t07qipJjh6ZS5KLuvu8OXJtyHRjyLPmOCNJru3uR6zp7s9V1Q9GxndX1WuTfLyqDh5q+0h3XzXMX11Va5PcXFU7ktyR5I3D9iOHfQcO45uSnD/XizDkfCDTjSszPP+oE8ae4Zzu/vORZzsgyc+TfCrTjSF/oapWJ/nlJH8xctZ3quq+qnrhWA3bquozSd48X70AAAAAAAAAAAAAAAAAAAAAAAAAsKdpKrkX6e4VO4lvTbJqkbm2ZLr540LPOHFsvHZs/KUkvz7HeWcnOXuW+LVJrl1Q0dPrV88S25rk2OF+U5In7GTvrM82sm/TMHzaLPPPH25vHIu/Jclb5ikbAAAAAAAAAAAAAAAAAAAAAAAAAPa4qaUuAAAAAAAAAAAAAAAAAAAAAAAAAACAxVu51AWw66rqxiQHjoVf1923LkU9i7GcawcAAAAAAAAAAAAAAAAAAAAAAACAvYGmkstYd79wqWvYVcu5dgAAAAAAAAAAAAAAAAAAAAAAAADYG0wtdQEAAAAAAAAAAAAAAAAAAAAAAAAAACyeppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppLLVFXtqKotVfX1qrqlqo4f4quravswN3O9fic5Lq6qN4zFTq6qjWNnzFxnDfFNVbV5ZM8LqmrTyPglVXVTVd0+XGeMzF1SVa8ZO/PB4etUVZ1XVbdV1a1V9dWqesYcr8HWqrp+LLalqm4b7k+sqvvGnuEVY8/aVXXMSGz1EPvDkdj5VbV+Z3UAAAAAAAAAAAAAAAAAAAAAAAAAwFJYudQFsMu2d/eaJKmqVyZ5X5KXDnN3zMzNY0OStyf52Ehs3RB/xBmzOLKqfru7N44Gq+opSS5LcnJ331JVRyT5fFXd1d3XzFPPqUmemuS47n64qp6e5Efz7Dm4qn6pu/+2qn5llvnru/tVO9l7WpIvD1//z5H495P8UVV9rLsfmud8AAAAAAAAAAAAAAAAAAAAAAAAAFgSU0tdABNxSJJ7d2HfdUmOqaqjkqSqDkryiiSfXcDeDyZ5xyzxNyW5pLtvSZLu3pbkzCRnLSDnUUnu7u6Hh713dvd8z3VFpptRJtPNITfMsfYXqurxSV6S5J9nupHmqB9k+rU5fSG5AAAAAAAAAAAAAAAAAAAAAAAAAGApaCq5fK2qqi1VdXuSTyR598jc0cPczHXCbAm6e0eSK5OcMoROSrKpu+8fO2PmOnVk+w1JHqqql42lfU6Sm8dim4f4fK5IctJw1oeq6nkL2HNlkleP1H/V2PwJY89w9BD/3STXdvd/SXJPVa0d2/f+JH9cVSt2dnBVnVFVm6tq82WXXrqAUgEAAAAAAAAAAAAAAAAAAAAAAABgclYudQHssu3dvSZJqurFSS6tqmOHuTtm5hZgQ5Jzk3w0ybokn5rtjJ04J8k7k7xtEXX3zmLdfWdVPTvJy4fruqr6ve6+bo589yS5t6rWJflWkh+PzV/f3a+aZd9pmX7mJPnTYfyLZpjd/e2qujHJP93pg3RfmOTCJPnu97fN9lwAAAAAAAAAAAAAAAAAAAAAAAAAsNtoKrkP6O4bquqIJE/ahe1fSXJUVT03yfGZbiy50HO/UFXnJHnRSPibSdYm+Q8jsbVJvjHc35Pk0JmJqjosybaRnD9NsjHJxqr6XpKTk8zVVDJJLk9yQZL1C6l7OPPlSX6tqjrJiiRdVW8dW/reJH+e5P9dSF4AAAAAAAAAAAAAAAAAAAAAAAAA2JOmlroAHr2qOibTjRHvWeze7u5MN2X8ZJKN3f2TRaY4J8mZI+MLkqyvqjVDbYcneX+SDwzzm5KcWlWPGcbrk3xxWPv8qnrqcD+V5Lgkf7OAGj4z5P/8Amt+TZJPdfcvd/fq7v6lJN9JcsLoou6+PdNNMk9aYF4AAAAAAAAAAAAAAAAAAAAAAAAA2GNWLnUB7LJVVbVluK8kp3f3jqpKkqNH5pLkou4+b45cGzLdGPKsOc5Ikmu7+xFruvtzVfWDkfHdVfXaJB+vqoOH2j7S3VcN81dX1dokN1fVjiR3JHnjsP3IYd+Bw/imJOfP9SIMOR/IdOPKDM8/6oSxZzgnyWkz60dcuZP4e5J8bb4aAAAAAAAAAAAAAAAAAAAAAAAAAGBP01RymeruFTuJb02yapG5tmS6+eNCzzhxbLx2bPylJL8+x3lnJzl7lvi1Sa5dUNHT61fPEtua5NjhflOSJ8yy9c9n2TfadPPYkfjXk0wttCYAAAAAAAAAAAAAAAAAAAAAAAAA2FM0ywMAAAAAAAAAAAAAAAAAAAAAAAAAWIZWLnUB7BlVdWOSA8fCr+vuW5einsVYzrUDAAAAAAAAAAAAAAAAAAAAAAAAwO6iqeR+ortfuNQ17KrlXDsAAAAAAAAAAAAAAAAAAAAAAAAA7C5TS10AAAAAAAAAAAAAAAAAAAAAAAAAAACLp6kkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKnkPq6qdlTVlqr6elXdUlXHD/HVVbV9mJu5Xr+THBdX1RvGYidX1caxM2aus4b4pqraPLLnBVW1aWT8kqq6qapuH64zRuYuqarXjJ354PB1qqrOq6rbqurWqvpqVT1jjtdga1VdPxbbUlW3DfcnVtXVw/36qnq4qo4bWXtbVa3eWX4AAAAAAAAAAAAAAAAAAAAAAAAAWAorl7oAdrvt3b0mSarqlUnel+Slw9wdM3Pz2JDk7Uk+NhJbN8QfccYsjqyq3+7ujaPBqnpKksuSnNzdt1TVEUk+X1V3dfc189RzapKnJjmuux+uqqcn+dE8ew6uql/q7r+tql+ZZ+2dSd4xnAMAAAAAAAAAAAAAAAAAAAAAAAAAe6WppS6APeqQJPfuwr7rkhxTVUclSVUdlOQVST67gL0fzHSDxnFvSnJJd9+SJN29LcmZSc5aQM6jktzd3Q8Pe+/s7vme64r8fZPI0/L3DTFnc3WS51TVsxdQCwAAAAAAAAAAAAAAAAAAAAAAAAAsCU0l932rqmpLVd2e5BNJ3j0yd/QwN3OdMFuC7t6R5Mokpwyhk5Js6u77x86YuU4d2X5Dkoeq6mVjaZ+T5Oax2OYhPp8rkpw0nPWhqnreAvZcmeTVI/VfNcfah5N8IMn/MVfCqjqjqjZX1ebLLr10ASUAAAAAAAAAAAAAAAAAAAAAAAAAwOSsXOoC2O22d/eaJKmqFye5tKqOHebumJlbgA1Jzk3y0STrknxqtjN24pwk70zytkXU3TuLdfedVfXsJC8fruuq6ve6+7o58t2T5N6qWpfkW0l+PM/5lyV5R1U9Y6cFdl+Y5MIk+e73t81WLwAAAAAAAAAAAAAAAAAAAAAAAADsNlNLXQB7TnffkOSIJE/ahe1fSXJUVT03yfFJrlnEuV9IsirJi0bC30yydmzp2iTfGO7vSXLozERVHZZk20jOn3b3xu5+a5L3Jjl5AaVcnuSCTDfInK/mnyf5UBbXCBMAAAAAAAAAAAAAAAAAAAAAAAAA9piVS10Ae05VHZNkRaYbNj5uMXu7u6vq8iSfTLKxu3+yyOPPSfJvknx7GF+Q5Maq+vfdvaWqDk/y/iT/cpjflORfVNUnu/uhJOuTfHF4jucn+W/d/V+rairJcUn+cgE1fCbJUUk+n+SpC1h/SZIzkxy8gLUAAAAAAAAAAAAAAAAAAAAAAADsJapqqUsA2CM0ldz3raqqLcN9JTm9u3cMP+iOHplLkou6+7w5cm3IdJPFs+Y4I0mu7e5HrOnuz1XVD0bGd1fVa5N8vKoOHmr7SHdfNcxfXVVrk9xcVTuS3JHkjcP2I4d9Bw7jm5KcP9eLMOR8INONKxf0g767H6qq85J8dN7FAAAAAAAAAAAAAAAAAAAAAAAAALCHaSq5j+vuFTuJb02yapG5tmS6+eNCzzhxbLx2bPylJL8+x3lnJzl7lvi1Sa5dUNHT61fPEtua5NjhflOSTcP9JUkuGVl3XpK5Gm0CAAAAAAAAAAAAAAAAAAAAAAAAwJKYWuoCAAAAAAAAAAAAAAAAAAAAAAAAAABYvJVLXQB7l6q6McmBY+HXdfetS1HPYizn2gEAAAAAAAAAAAAAAAAAAAAAAABgsTSV5BG6+4VLXcOuWs61AwAAAAAAAAAAAAAAAAAAAAAAAMBiTS11AQAAAAAAAAAAAAAAAAAAAAAAAAAALJ6mkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkvugqtpRVVuq6utVdUtVHT/EV1fV9mFu5nr9TnJcXFVvGIudXFUbx86Yuc4a4puqavPInhdU1aaR8Uuq6qaqun24zhiZu6SqXjN25oPD16mqOq+qbquqW6vqq1X1jDleg61Vdf1YbEtV3TYW+0hV3VVVUyOxt1TVRSPjf1ZV1+zsLAAAAAAAAAAAAAAAAAAAAAAAAABYCiuXugB2i+3dvSZJquqVSd6X5KXD3B0zc/PYkOTtST42Els3xB9xxiyOrKrf7u6No8GqekqSy5Kc3N23VNURST5fVXd193xNG09N8tQkx3X3w1X19CQ/mmfPwVX1S939t1X1K+OTQyPJf5LkbzP9+nxxmDovyeaq+u+TfCPJOUl+Y56zAAAAAAAAAAAAAAAAAAAAAAAAAGCPmlrqAtjtDkly7y7suy7JMVV1VJJU1UFJXpHkswvY+8Ek75gl/qYkl3T3LUnS3duSnJnkrAXkPCrJ3d398LD3zu6e77muyHQzyiQ5LX/fEHPGiZluGvmvh/kMuX+e5H9LckGSDyS5qLu/PZ68qs6oqs1VtfmySy9dwCMAAAAAAAAAAAAAAAAAAAAAAAAAwORoKrlvWlVVW6rq9iSfSPLukbmjh7mZ64TZEnT3jiRXJjllCJ2UZFN33z92xsx16sj2G5I8VFUvG0v7nCQ3j8U2D/H5XJHkpOGsD1XV8xaw58okrx6p/6qx+ZlGk59J8jtVdcDMRHd/Jcm3Mt1I8wOzJe/uC7v7Bd39gn/6+tcvoBwAAAAAAAAAAAAAAAAAAAAAAAAAmBxNJfdN27t7TXcfk+S3klxaVTXM3THMzVzXz5FnQ5J1w/26YTx+xsx1+djec5K8c5F1985i3X1nkmcneXuSh5NcV1W/MU++e5LcW1XrMt0g8sczE1X1mCT/Q5LPDo0yb0zyypH5xyd5QZIDkjxpkc8BAAAAAAAAAAAAAAAAAAAAAAAAALudppL7uO6+IckR2bXGiF9JclRVPTfJ8UmuWcS5X0iyKsmLRsLfTLJ2bOnaJN8Y7u9JcujMRFUdlmTbSM6fdvfG7n5rkvcmOXkBpVye5II8siFmMt1A8olJbq2qrUlekuS0kfmzk3w6yXuSfHgB5wAAAAAAAAAAAAAAAAAAAAAAAADAHqWp5D6uqo5JsiLTDRsXpbs7000ZP5lkY3f/ZJEpzkly5sj4giTrq2rNUNvhSd6f5APD/KYkp1bVY4bx+iRfHNY+v6qeOtxPJTkuyd8soIbPDPk/PxY/Lcn/0t2ru3t1kmck+c2qelxV/VqS3xlquzDJ6qr6zQU+MwAAAAAAAAAAAAAAAAAAAAAAAADsESuXugB2i1VVtWW4rySnd/eOqkqSo0fmkuSi7j5vjlwbMt0Y8qw5zkiSa7v7EWu6+3NV9YOR8d1V9dokH6+qg4faPtLdVw3zV1fV2iQ3V9WOJHckeeOw/chh34HD+KYk58/1Igw5H8h0c8gMz5+qelyS3xrJne7+UVV9OclJSf4wyZtnmmhW1f+a5NKqWtPdD813JgAAAAAAAAAAAAAAAAAAAAAAAADsCZpK7oO6e8VO4luTrFpkri2Zbv640DNOHBuvHRt/Kcmvz3He2UnOniV+bZJrF1T09PrVs8S2Jjl2GB42y/yrh9vLx+Kbk/zqQs8GAAAAAAAAAAAAAAAAAAAAAAAAgD1BU0kAAAAAAAAAAAAAAAAAAAAAAABgn1K11BUA7BmaSpKqujHJgWPh13X3rUtRz2Is59oBAAAAAAAAAAAAAAAAAAAAAAAA4NHQVJJ09wuXuoZdtZxrBwAAAAAAAAAAAAAAAAAAAAAAAIBHo7p7qWuAfYG/SAAAAAAAAAAAAAAAAAAAAAAAu6aWugBg3/OODVfrDQXskvec9qpl9dlkaqkLAAAAAAAAAAAAAAAAAAAAAAAAAABg8TSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSV3AdV1Y6q2lJVX6+qW6rq+CG+uqq2D3Mz1+t3kuPiqnrDWOzkqto4dsbMddYQ31RVm0f2vKCqNo2MX1JVN1XV7cN1xsjcJVX1mrEzHxy+TlXVeVV1W1XdWlVfrapnzPEabB3W3VpV36yqc6rqsSOvw23D/YlVdd/Ic/w/Q/xdVXXXSPxPFvTiAwAAAAAAAAAAAAAAAAAAAAAAAMAesnKpC2C32N7da5Kkql6Z5H1JXjrM3TEzN48NSd6e5GMjsXVD/BFnzOLIqvrt7t44GqyqpyS5LMnJ3X1LVR2R5PNVdVd3XzNPPacmeWqS47r74ap6epIfzbPnZd29raoen+TC4VlOn2Xd9d39qlniH+7uc+c5AwAAAAAAAAAAAAAAAAAAAAAAAACWxNRSF8Bud0iSe3dh33VJjqmqo5Kkqg5K8ookn13A3g8meccs8TcluaS7b0mS7t6W5MwkZy0g51FJ7u7uh4e9d3b3gp6rux9M8sYkJ1fVYQvZsxBVdUZVba6qzRdeeOGk0gIAAAAAAAAAAAAAAAAAAAAAAADAgqxc6gLYLVZV1ZYkj810M8aXj8wdPczN+MPuvn48QXfvqKork5yS5KNJTkqyqbvvHztjxvu6+/Lh/oYk/6SqXpbkgZE1z0nyybGjNg/x+VyR5MtVdUKmG15+uru/toB9M89zf1V9J8mzknxvbPqEkWf5s+5+z3D/5qp67XD/tu7+/FjOC5PMdJPshdYCAAAAAAAAAAAAAAAAAAAAAAAAAJOgqeS+aXt3r0mSqnpxkkur6thh7o6ZuQXYkOTcTDeVXJfkU7OdsRPnJHlnkrctou7ZGjN2knT3nVX17Ew3yHx5kuuq6ve6+7pF5K+dxK/v7lfNEv9wd5+7iPwAAAAAAAAAAAAAAAAAAAAAAAAAsMdMLXUB7F7dfUOSI5I8aRe2fyXJUVX13CTHJ7lmEed+IcmqJC8aCX8zydqxpWuTfGO4vyfJoTMTVXVYkm0jOX/a3Ru7+61J3pvk5IXWU1UHJ1md5L8sdA8AAAAAAAAAAAAAAAAAAAAAAAAA7M00ldzHVdUxSVZkumHjonR3J7k8ySeTbOzunywyxTlJzhwZX5BkfVWtGWo7PMn7k3xgmN+U5NSqeswwXp/ki8Pa51fVU4f7qSTHJfmbhRRRVY9P8n8n+Wx337vIZwAAAAAAAAAAAAAAAAAAAAAAAACAvdLKpS6A3WJVVW0Z7ivJ6d29o6qS5OiRuSS5qLvPmyPXhkw3hjxrjjOS5NrufsSa7v5cVf1gZHx3Vb02ycer6uChto9091XD/NVVtTbJzVW1I8kdSd44bD9y2HfgML4pyflzvQhJvljTDz2V5DNJ3j3PegAAAAAAAAAAAAAAAAAAAAAAAABYNqq7l7oG2Bf4iwQAAAAAAAAAAAAAAAAAAAAAsGtqqQsA9j3v2HC13lDALnnPaa9aVp9Nppa6AAAAAAAAAAAAAAAAAAAAAAAAAAAAFm/lUhfA0quqG5McOBZ+XXffuhT1LMZyrh0AAAAAAAAAAAAAAAAAAAAAAAAAHg1NJUl3v3Cpa9hVe0vtD9x//2QS9cOTyZMkNTW5XPtDXfu4n9eKySX74bbJ5doPHPqPnjGRPK/7V5+eSJ79xaf+8LUTyfO9v/vhRPLsT5582BMfdY4T33X+BCrZv2x61x9MJI/3/OJM4v2eJPff42frYhxy+BETyTOxz/D7iYMPOWQieX54910TybO/eOJRT5tIngfu8/19sQ5+gu/xS2FS3+O3/fC+ieTZXxzxxCdMJM93v+/9vhj/6EifaZbCpD7T3Hv/AxPJsz859JCDH3UOn2kWb1Kfae773n+bSJ79xROe/JSJ5PHPT4szqX9+uu8B3+MX4wkHP/rv74n3+2JN6v1+xxX/diJ59idHn/LPH3UO7/fFm9R73uf4xZnEZ/jE675Yk3rd/c5vcSb1O78PX/XFieTZn7z5pJc96hw+wy/epD7H+x6/OJP6Hn//390zkTz7i0MOO3wieW5+6+snkmd/sfaDl04kzz3f/uuJ5NlfHP7MZ00kj38Xv3iT+Hfxfse9eJP6Pfed3/ezdTGefuRkfrb6HL84k/oM73d+izOp3/l5vy/OpN7vk/zvmFYdcMDEcq188N6J5coTJvM9OUmmamKp8vAPJ/Oz9YEDHz+RPIk/w8Wa1J/hfQccNJE8SXLAisn9f5EH/Xz7xHL97LGTe5/WBP8MH/PwzyeS50cPT66oxz9mcq0Mfj6h92iSTB06mf+OM0mmHt4xsVwP3UyWP6QAACAASURBVPODieRZedBkfq4mycM/ndzfnRWPm9z3h0nqHZP7/9VrQj97+mc/m0ieJNnxkx9PLNfKgyb3/W+S9sY/w5rgz7C91YM/m9zr/vgDJteD4s77JvOef/oTHjeRPJP20LbvTSzXY4548sRy3f/Q5N4PT3vSYRPLBTBjxdQE+x0B7MV8twMAAADYC2kyAAAAAAAAAAAAAMDeblLNCAEAAAAA2HWaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSu4hVbWjqrZU1der6paqOn6Ir66q20bW/eOq+lJV/VVVfa2qPlFVj5sn92er6i/GYu+qqruGM79ZVadV1e8P4y1V9VBV3Trc/0lVra+qH4zMb6mqXx3q2z6S59KqOmA448SqunqBtfzxAl+nrqpPj4xXDnVdPYznq/NrVfWtqrqpqtaP5FlfVeePnbWlqv50LHbJ8LodOIyPqKqtC6kdAAAAAAAAAAAAAAAAAAAAAAAAAPaklUtdwH5ke3evSZKqemWS9yV56eiCqnpykj9Lsq67bxhir0lycJIfz5a0qp6YZG2SB6vqmd397ZHpD3f3uVX1rCQ3Jzm8uy8e9m1N8rLu3jaM1ye5vLv/YCz/6iR3dPeaqlqR5D8nOSXJv1tkLQv1oyTHVtWq7t6e5DeT3DW2Zq46nzeMn5nk31dVzTzz2PpfSbIiyQlVdVB3/2hkekeS/znJv96F+gEAAAAAAAAAAAAAAAAAAAAAAABgj5ha6gL2U4ckuXeW+JuSfHKmoWSSdPefd/f35sj16iRXJfnTJOtmW9Ddf53pppSH7nLF03l2JLkpydN2tZYF+lyS3xnuT0uyYbEJhoaWb0nyv+9kyWlJPpXkPyX53bG5jyR5c1VpugoAAAAAAAAAAAAAAAAAAAAAAADAXktTyT1nVVVtqarbk3wiybtnWXNskpsXmXem6eKG4f4fqKrnJ/nr7v7+PLlOHWqcuVaN5XlskhcmuXZXa1mgP02ybjjvuCQ3LqbOEbckOWYnc6cO58xW63eTfDnJ6+YqsqrOqKrNVbX54osvnmspAAAAAAAAAAAAAAAAAAAAAAAAAEzcyqUuYD+yvbvXJElVvTjJpVV17KNJWFVPTvKsJF/u7q6qn1XVsd1927DkzVX1+0n+uyQnLSDl5d39B2NnJMnRVbUlyTOSXNPdf7kLtSxYd/9lVa3OdLPHzy2izn9Q1qzBqhck2dbd362qu5JcVFWHdfffjSx7X5L/kOSaOeq8MMmFSfLA/ff3Th8IAAAAAAAAAAAAAAAAAAAAAAAAAHaDqaUuYH/U3TckOSLJk8amvpFk7SJSnZLk0CTfqaqtSVZnuhHjjA9393OS/E9J/m1VPXYXS75jaIh5dJK1VfU/7kIti/Ufk5ybZMOjyPG8JN+aJX5akmOGOu9IckimX6Nf6O6/TrIl088FAAAAAAAAAAAAAAAAAAAAAAAAAHsdTSWXQFUdk2RFknvGps5PcnpVvXBk7aur6sk7SXVakt/q7tXdvTrTDSnXjS/q7v+YZHOS0x9N3d29LclZSd6+q7UswkVJzu7uW3dlc1WtznRTyn81Fp/KdKPIXxup9XczewPM9yT54105HwAAAAAAAAAAAAAAAAAAAAAAAAB2N00l95xVVbWlqrYkuTzJ6d29Y3RBd38v040Yz62qv6qqbyV5ZZIHxpMNTRN/OclfjOz/TpL7RptSjviXSd4yNFXcmVNnahyu42dZ89kkj6uqExZZyzur6s6Za44aZvbf2d3nLbLOo6vqa8PrdkWS87r74rG9JyS5q7v/60jsS0l+taqOGqvhG0luma9WAAAAAAAAAAAAAAAAAAAAAAAAAFgKK5e6gP1Fd6/YSXxrkmNHxjdkuvHhfPm2JnnaLPHnD7c3jsVvTvLskfHqsflLklyyk+NG6+skzx2Z2zR8na+Wd+0k9/iex88S2zRzzjx1rpoj7+i+F43N7UjylGG4fmzu1XNXDAAAAAAAAAAAAAAAAAAAAAAAAABLY2qpCwAAAAAAAAAAAAAAAAAAAAAAAAAAYPFWLnUBzK+qfj/JH42F/7/uftNS1PNoVdXhSa6bZeo3uvuePV0PAAAAAAAAAAAAAAAAAAAAAAAAACxHmkouA919cZKLl7qOSRkaR65Z6joAAAAAAAAAAAAAAAAAAAAAAAAAYDmbWuoCAAAAAAAAAAAAAAAAAAAAAAAAAABYPE0lAQAAAAAAAAAAAAAAAAAAAAAAAACWoZVLXQAAAAAAAAAAAAAAAAAAAAAAAADAJE2llroEgD1iaqkLAAAAAAAAAAAAAAAAAAAAAAAAAABg8TSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhjSV3AtV1Y6q2lJVX6+qW6rq+CG+uqpuG1n3j6vqS1X1V1X1tar6RFU9bp7cn62qvxiLvauq7hrO/GZVnVZVvz+Mt1TVQ1V163D/J1W1vqp+MDK/pap+dahv+0ieS6vqgOGME6vq6gXW8scLfJ26qj49Ml451HX1MJ61zpH1/6KqflJVTxiJnTjkPWkkdnVVnbiQmgAAAAAAAAAAAAAAAAAAAAAAAABgT1m51AUwq+3dvSZJquqVSd6X5KWjC6rqyUn+LMm67r5hiL0mycFJfjxb0qp6YpK1SR6sqmd297dHpj/c3edW1bOS3Jzk8O6+eNi3NcnLunvbMF6f5PLu/oOx/KuT3NHda6pqRZL/nOSUJP9ukbUs1I+SHFtVq7p7e5LfTHLX2Jp/UOeI05J8Ncmrk1w8Er8zyTuSXLULNQEAAAAAAAAAAAAA8P+zc/dBltf1veDfn5lRAXkGGY0mjiKB1VFHSYlSoYIao/e6JgYNzMREYLPLrbuQWBitaEIloxbx1oYrXpdUNpRxgBsv4LNEDatJliK6iDvqgPhACDLrhbijgzzKxMDw2T/615WTQ89Mn+7DNM28XlWn5vd9+H2+73Ome7o5dH8AAAAAAAAAANgrVix1APbo4CR3zTF/dpJLZxtKJkl3f6y7t+2m1imZaZR4RZL1c23o7lsy05TysAUnnqmzM8lXkjx9oVnm6XNJXjtcb0hy+XxuqqqjkxyY5LzhvlE3JLmnql61iFwAAAAAAAAAAAAAAAAAAAAAAAAA8KjSVPKxaf+q2lJV30nywSTvmWPP2iRfnbDubNPFy/PIRopJkqp6cZJbuvsHe6h12pBx9rH/WJ39kpyQ5OqFZpmnK5KsH857QZLr55lz/XDv3yc5tqpWj913fmYaTu5SVZ1VVZuravOmTZsW8RQAAAAAAAAAAAAAAAAAAAAAAAAAYHKrljoAc9rR3euSpKpeluSyqlq7mIJD08Rjknyxu7uqHqyqtd1907Dl3Ko6M8nPJnndPEpe2d3njJ2RJEdX1ZYkz0ry2e6+cQFZ5q27b6yqNZlpTPm5+eQcbEjyq939cFV9PMmvJblopO61VZWq+vndnH1xkouT5L577+1JswMAAAAAAAAAAAAAAAAAAAAAAADAYqxY6gDsXndfl+TIJE8ZW/pmkuMnKHVqksOS3FZVW5OsyUxjxVkXdvfzkrwhyV9U1X4LjHzr0BDz6CTHV9UvLyDLpK5KckGSy+ezuaqen5mmll8Yzl+/i/PPT3LeInIBAAAAAAAAAAAAAAAAAAAAAAAAwKNGU8nHuKo6LsnKJHeOLV2U5PSqOmFk7ylVtXoXpTYkeU13r+nuNZlpSLl+fFN3X5Vkc5LTF5O7u7cneUeSdy40ywQ+lORd3f2Nee7fkGTj7Pnd/VNJfqqqnjm6qbs/n5nmly9YRDYAAAAAAAAAAAAAAAAAAAAAAAAAeFRoKvnYtH9VbamqLUmuTHJ6d+8c3dDd2zLTiPGCqrq5qr6d5NVJ7hsvVlVrkjwzyZdH7r8tyT2jTSlHvDvJW6tqdx8fp81mHB4nzrHnU0kOqKqTJsxyXlXdPvvYTYbZ+2/v7g9MkHN9kk+O7ftk5m5seX6Sn95TBgAAAAAAAAAAAAAAAAAAAAAAAADY21YtdQAeqbtX7mJ+a5K1I+Prkpw019457nv6HPMvHi6vH5v/apJjR8ZrxtYvSXLJLo4bzddJXjiyds3w556ybNxF7fF7Dpxj7prZc3aT89lz3PfWOXKmu69KUvPJAwAAAAAAAAAAAAAAAAAAAAAAAAB704qlDgAAAAAAAAAAAAAAAAAAAAAAAAAAwORWLXUApquqzkzylrHpL3X32UuRZ7Gq6ogkfzvH0iu7+869nQcAAAAAAAAAAAAAAAAAAAAAAAAAHis0lXyc6e5NSTYtdY5pGRpHrlvqHAAAAAAAAAAAAAAAAAAAAAAAAADwWLNiqQMAAAAAAAAAAAAAAAAAAAAAAAAAADA5TSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSWXsaraWVVbquqGqvpaVZ04zK+pqptG9r2kqq6tqpur6utV9cGqOmAPtT9VVV8em9tYVXcMZ36rqjZU1ZnDeEtV/UtVfWO4/k9VdUZV/XBkfUtVPXfIt2OkzmVV9YThjJOr6jPzzPK2eb5OXVV/OTJeNeT6zDA+o6ouGqn7QFUdNbL//vmcAwAAAAAAAAAAAAAAAAAAAAAAAAB7k6aSy9uO7l7X3S9M8s4k7x3fUFWrk3w0ye9197Hd/aIkVyc5aFdFq+rQJMcnOaSqnj22fGF3r0vyK0n+PMlfDhnWJfmnJC8fxu8Y9l85uz48vjXM3zrc8/wkz0hy6gKyzNePk6ytqv2H8auS3LGb/duT/O4CzwIAAAAAAAAAAAAAAAAAAAAAAACAvUJTycePg5PcNcf82Uku7e7rZie6+2PdvW03tU5J8ldJrkiyfq4N3X1LkgeSHLbgxDN1dib5SpKnLzTLPH0uyWuH6w1JLt/N3g8lOa2qDl/EeQAAAAAAAAAAAAAAAAAAAAAAAADwqNJUcnnbv6q2VNV3knwwyXvm2LM2yVcnrDvbdPHy4foRqurFSW7p7h/sodZpQ8bZx/5jdfZLckKSqxeaZZ6uSLJ+OO8FSa7fzd77M9NY8i27K1hVZ1XV5qravGnTpkVEAwAAAAAAAAAAAAAAAAAAAAAAAIDJrVrqACzKju5elyRV9bIkl1XV2sUUrKrVSY5J8sXu7qp6sKrWdvdNw5Zzq+rMJD+b5HXzKHlld58zdkaSHF1VW5I8K8lnu/vGBWSZt+6+sarWZKYx5efmccsHkmypqgt2U/PiJBcnyX333tuTZgIAAAAAAAAAAAAAAAAAAAAAAACAxVix1AGYju6+LsmRSZ4ytvTNJMdPUOrUJIclua2qtiZZk5lGjLMu7O7nJXlDkr+oqv0WGPnWoSHm0UmOr6pfXkCWSV2V5IIkl+9pY3ffneS/JTl7EecBAAAAAAAAAAAAAAAAAAAAAAAAwKNGU8nHiao6LsnKJHeOLV2U5PSqOmFk7ylVtXoXpTYkeU13r+nuNZlpSLl+fFN3X5Vkc5LTF5O7u7cneUeSdy40ywQ+lORd3f2Nee5/X5L/kGTVIs4EAAAAAAAAAAAAAAAAAAAAAAAAgEeFppLL2/5VtaWqtiS5Msnp3b1zdEN3b8tMI8YLqurmqvp2klcnuW+8WFWtSfLMJF8euf+2JPeMNqUc8e4kb62q3X0cnTabcXicOMeeTyU5oKpOmjDLeVV1++xjNxlm77+9uz+wp30j+7cn+WSSJ833HgAAAAAAAAAAAAAAAAAAAAAAAADYW1YtdQAWrrtX7mJ+a5K1I+Prkpw019457nv6HPMvHi6vH5v/apJjR8ZrxtYvSXLJLo4bzddJXjiyds3w556ybNxF7fF7Dpxj7prZc0ZzdvfGsX1vTfLW+ZwDAAAAAAAAAAAAAAAAAAAAAAAAAHvTiqUOAAAAAAAAAAAAAAAAAAAAAAAAAADA5FYtdQCWRlWdmeQtY9Nf6u6zlyLPYlXVEUn+do6lV3b3nXs7DwAAAAAAAAAAAAAAAAAAAAAAAAA82jSV3Ed196Ykm5Y6x7QMjSPXLXUOAAAAAAAAAAAAAAAAAAAAAAAAANhbVix1AAAAAAAAAAAAAAAAAAAAAAAAAAAAJqepJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMrRqqQMwmarameQbSSrJziTndPf/XVVrknymu9cO+16S5IIkq5M8kOSrSX6nux/YTe1PJXlqd790ZG5jkv8lyQ+TPDHJe5Lsl+Qtw5bnJrl5yHJ1ku8k+ZMkd4yU/vUhw7eHvU9MsjnJb3X3g1V1cpK3dff/OI8s93f3BfN4nTrJh7v7N4bxqiTfT3L9PM75QJLt3f3uYfwHSX6qu8/e07kAAAAAAAAAAAAAAAAAAAAAAAAsvaqlTgCwd2gqufzs6O51SVJVr07y3iS/MLqhqlYn+WiS9d193TD3xiQHZaa54yNU1aFJjk9yf1U9u7u/O7J8YXdfUFXHZKY55RHdvWm4b2uSl3f39mF8RpIru/ucsfprktza3euqamWSLyQ5NcmHJ8wyXz9Osraq9u/uHUlelX/b6HJ355yXZEtV/eUw/p+TvGgBGQAAAAAAAAAAAAAAAAAAAAAAAADgUbNiqQOwKAcnuWuO+bOTXDrbUDJJuvtj3b1tN7VOSfJXSa5Isn6uDd19S2aaUh624MQzdXYm+UqSpy80yzx9Lslrh+sNSS6fzzndfW+SP0hy0fD4w+6+exE5AAAAAAAAAAAAAAAAAAAAAAAAAGDqNJVcfvavqi1V9Z0kH0zynjn2rE3y1QnrzjZdvHy4foSqenGSW7r7B3uoddqQcfax/1id/ZKckOTqhWaZpyuSrB/Oe0GS6+d7TndfnpnmmQd393+dq3hVnVVVm6tq86ZNmxYREwAAAAAAAAAAAAAAAAAAAAAAAAAmt2qpAzCxHd29Lkmq6mVJLquqtYspWFWrkxyT5Ivd3VX1YFWt7e6bhi3nVtWZSX42yevmUfLK7j5n7IwkObqqtiR5VpLPdveNC8gyb919Y1WtyUzDyM9Nck5VPSPJ05I8XFUHdvf9c9S/OMnFSXLfvff2pPkAAAAAAAAAAAAAAAAAAAAAAAAAYDFWLHUAFq67r0tyZJKnjC19M8nxE5Q6NclhSW6rqq1J1mSmEeOsC7v7eUnekOQvqmq/BUa+dWiIeXSS46vqlxeQZVJXJbkgyeUTnvNfkvxRko8MfwIAAAAAAAAAAAAAAAAAAAAAAADAY4qmkstYVR2XZGWSO8eWLkpyelWdMLL3lKpavYtSG5K8prvXdPeazDSkXD++qbuvSrI5yemLyd3d25O8I8k7F5plAh9K8q7u/sZ8z6mqf5fkqCSXJXlPklOq6rmLyAAAAAAAAAAAAAAAAAAAAAAAAAAAU6ep5PKzf1VtqaotSa5Mcnp37xzd0N3bMtMg8YKqurmqvp3k1UnuGy9WVWuSPDPJl0fuvy3JPaNNKUe8O8lbq2p3HzunzWYcHifOsedTSQ6oqpMmzHJeVd0++9hNhtn7b+/uD4zO7eGcX0jy/iT/a8/4cZK3Z6ZRJwAAAAAAAAAAAAAAAAAAAAAAAAA8Zqxa6gBMprtX7mJ+a5K1I+Prkpw019457nv6HPMvHi6vH5v/apJjR8ZrxtYvSXLJLo4bzddJXjiyds3w556ybNxF7fF7Dpxj7pp5nnPs2PwnknxiPucCAAAAAAAAAAAAAAAAAAAAAAAAwN6yYqkDAAAAAAAAAAAAAAAAAAAAAAAAAAAwuVVLHYC9p6rOTPKWsekvdffZS5FnsarqiCR/O8fSK7v7zr2dBwAAAAAAAAAAAAAAAAAAAAAAAAD2Jk0l9yHdvSnJpqXOMS1D48h1S50DAAAAAAAAAAAAAAAAAAAAAAAAAJbCiqUOAIwon5IALF+rDz90KnWu2XjOVOoAwHJ36NOevtQRAAAW7bCDD5pKnYMOmc77DgAAC3H0qb81lTre7wGAGee+7uVTqXPIQdN53wEAYCGm9f8ujjz0kKnUAQBYSisOPWKpIwAw4qEf37fUEVikesITljoCi9Q7dy51BBbp9nseWOoIAAAwserupc4Ajwc+kQAAAAAAAAAAAAAAAAAAAAAAFqaWOgDw+POuj/y13lDAgvzRqf9uWX1vsmKpAwAAAAAAAAAAAAAAAAAAAAAAAAAAMDlNJQEAAAAAAAAAAAAAAAAAAAAAAAAAliFNJQEAAAAAAAAAAAAAAAAAAAAAAAAAliFNJQEAAAAAAAAAAAAAAAAAAAAAAAAAliFNJQEAAAAAAAAAAAAAAAAAAAAAAAAAliFNJZeZqtpZVVuq6oaq+lpVnTjMr6mqm0b2vaSqrq2qm6vq61X1wao6YA+1P1VVXx6b21hVdwxnfquqNlTVmcN4S1X9S1V9Y7j+T1V1RlX9cGR9S1U9d8i3Y6TOZVX1hOGMk6vqM/PM8rYJX6dvDq/V71bVivHz5sh72TB/SVXdNjL/O/M5FwAAAAAAAAAAAAAAAAAAAAAAAAD2llVLHYCJ7ejudUlSVa9O8t4kvzC6oapWJ/lokvXdfd0w98YkByV5YK6iVXVokuOT3F9Vz+7u744sX9jdF1TVMUm+muSI7t403Lc1ycu7e/swPiPJld19zlj9NUlu7e51VbUyyReSnJrkwxNmma/R1+moJP8tycFJ/miOvY/IO3h7d39sAWcDAAAAAAAAAAAAAAAAAAAAAAAAwKNOU8nl7eAkd80xf3aSS2cbSibJPJojnpLkr5JsS7I+yR+Pb+juW6rqgSSHJfnBQkN3986q+kqSpy80y4Tn/aCqzkry/1TVxsXUGjXUPCtJ/vzP/zxnnXXWtEoDAAAAAAAAAAAAAAAAAAAAAACwCFW11BEA9gpNJZef/atqS5L9kjwtySvm2LM2yaUT1t2Q5N2ZaeT48czRyLGqXpzklu7eU0PJ06rq50fGLxurs1+SE5K8ZaFZJtXd362qlUmO2kPe/9Ldm4brP6mq84br3+zub4zVvDjJxbPDxWYEAAAAAAAAAAAAAAAAAAAAAAAAgEloKrn87OjudUlSVS9LcllVrV1MwapaneSYJF/s7q6qB6tqbXffNGw5t6rOTPKzSV43j5JXdvc5Y2ckydFDQ8xnJflsd9+4gCyPhkfkHby9uz/2KJ4LAAAAAAAAAAAAAAAAAAAAAAAAAAu2YqkDsHDdfV2SI5M8ZWzpm0mOn6DUqUkOS3JbVW1NsibJhpH1C7v7eUnekOQvqmq/BUa+dWiIeXSS46vqlxeQZUGq6tlJdib5wWJrAQAAAAAAAAAAAAAAAAAAAAAAAMBjgaaSy1hVHZdkZZI7x5YuSnJ6VZ0wsveUqlq9i1Ibkrymu9d095rMNKRcP76pu69KsjnJ6YvJ3d3bk7wjyTsXmmUSVfWUJP9Hkou6uxdTCwAAAAAAAAAAAAAAAAAAAAAAAAAeKzSVXH72r6otVbUlyZVJTu/unaMbuntbZhoxXlBVN1fVt5O8Osl948Wqak2SZyb58sj9tyW5Z7Qp5Yh3J3lrVe3uY+e02YzD48Q59nwqyQFVddKEWc6rqttnH7vJMPs6fTPJ3yT5fJJ37WY/AAAAAAAAAAAAAAAAAAAAAAAAACwr1d1LnQEeD3wiAQAAAAAAAAAAAAAAAAAAAAAsTC11AODx590fvVpvKGBB/vDXXrOsvjdZsdQBAAAAAAAAAAAAAAAAAAAAAAAAAACY3KqlDsDeU1VnJnnL2PSXuvvspcizWFV1RJK/nWPpld19597OAwAAAAAAAAAAAAAAAAAAAAAAAAB7k6aS+5Du3pRk01LnmJahceS6pc6RJD+8656p1HnSww9OpU6S9EMPTa3WND38L/88tVo7DzpsarWe8JMdU6lTK1dMpc60/dg/90vmaUcePpU639/+o6nU2VdM63X/s//z76dSZ1/yH1990qJrbPvR3VNIsm9ZffihU6lz8saLplJnX3HNxnOmUueue++bSp19xWEHHzSVOvfc53WfxCEHTed1v+t7t02lzr7isJ951lTq3LPt/5tKnX3JIaufOpU622/51lTq7CuOPOa5U6mzbcv1U6mzr1i97oSp1Ln7n/77VOrsKw79qZ+eSp1779w+lTr7ioOPOHIqdXxtndw0vrZ6v2By03q/wMf8ZKb1veRd/33rVOrsKw776TVTqeO9+MlM6734H/2/351KnX3F4c989lTq3HfvvVOpsy856OCDp1Lnzu/eMpU6+4ojnn3MVOrcd4/vJydx0CHT+V7y7Zd9eip19hV/8uZfmUqdO//xO1Ops6844jnHTaXO9run8/Nj+4ojDz1kKnW2fPd7U6mzL1n37J+ZSh3vF0xmWu8X+Dd+MtP6N/7e7T+YSp19xcFHHjWVOj+4cfNU6uwrjnrBz02lznXfuXUqdfYlLzvu6EXX8N+sk5vWf7d6T3gy03pP2M9MTmZaPzN59/fvmEqdfcWhT3v6VOr4WdXJTOtnVW//wZ1TqZMkVTW1WvvdN71cq548ndcqme7vJkmsYQAAIABJREFU+q049Iip1Ln/n6f3O5bTNM2/wyccPJ33x5Jk544HplZr1SHT+Xr/k4d7KnWSZOWK6f2+5sPbp/ee1sr9D5harWn+Ha7cb7+p1PlRPWkqdabt8P7J1GqtPHB6n4f90PT+3frxw9P52vOTh3ZOpU6S/OTB6f2++oH7Te9j68Gd03uO/zLF12vVlH7PfMUUvw+Z5vPb74nT+331h6f49eKx+Hd42JP3n0qdZLrP74k/nt57USsPOHBqtWrV9D627n/w4anUWTHF70Om+Tn9pH5s9hF58O7pvdc2rZ8XAgDYFz02u58BAAAA7OM04QQAAAB4fNFQEgBmaMIJAAAA8PgyrYaSAAAAAAAsnKaSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKaSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKaSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKaSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKaSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKaSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKaSS6yqdlbVlqq6oaq+VlUnDvNrquqmkX0vqaprq+rmqvp6VX2wqg6Yo96aqrq9qlaMzW+pqhOqamNV3TGMZx+HVtXJVdVV9bqRez5TVScP10+sqvdX1T9W1S1V9emqesZcWYe5jVX1tuH6pVV1/XDWt6tq425ejzOGHL84Mvf6Ye6Nw/ia4XWYzf+xkTNnn9stVfWJqnruSJ1rqurnRsbrhrqvGcvQVfWfR8Zv211mAAAAAAAAAAAAAAAAAAAAAAAAAFgKmkouvR3dva67X5jknUneO76hqlYn+WiS3+vuY7v7RUmuTnLQ+N7u3prke0lOGrn/uCQHdff1w9SFw5mzj7uH+duT/MEucv7xcN6x3X1Mkk8l+URV1Tye46VJzurudUnWJvnIHvZ/I8n6kfGGJDeM7XnTSP43jszPPrdjklyZ5O+q6im7OGdDki8Of476SZJTqurIPeQEAAAAAAAAAAAAAAAAAAAAAAAAgCWjqeRjy8FJ7ppj/uwkl3b3dbMT3f2x7t62izqX5982ZVyf5Ip5nH9Dknuq6lWjk1V1QJIzk5zb3TuH8zdlpvniK+ZR96gk3x/u29nd39rD/r9P8pKqekJVHZjkOUm2zOOcf6O7r0zy+SS/Pr42NMP8tSRnJHlVVe03svxQkouTnLu7+lV1VlVtrqrNl11yyaTxAAAAAAAAAAAAAAAAAAAAAAAAAGBRVi11ALJ/VW1Jsl+Sp2XuJo1rk1w6Qc2PJNlSVb/d3Q8lOS0zDRRnnVtVvzFc39XdLx9ZOz/Je5J8YWTuOUm+1933jp2zOcnzkty6hzwXJrm5qq5JcnVmGmT+8272d5K/SfLqJIckuSrJs8b2fLiqdgzXX+jut++i1teSHDfH/IlJbuvuW4dcr03y8ZH1P01yY1X9b7sM2X1xZppP5od33dO7eT4AAAAAAAAAAAAAAAAAAAAAAAAAMHWaSi69Hd29Lkmq6mVJLquqtYsp2N3bquqmJK+sqm1JHurum0a2XNjdF+zi3murKlX185Mcubv57n53VX04yS8l+fUkG5KcvIeaVyT5ncw0lfzdJL8/tv6m7t48j2y1i/kNwxmzZ705I00lu/veqrpsyLDjkbcDAAAAAAAAAAAAAAAAAAAAAADwWLVyxa5aUAE8vqxY6gD8q+6+LsmRSZ4ytvTNJMdPWO7yJOuHx+UT3nt+kvNGxrcm+ZmqOmhs3/FDtjuTHDa2dniS7bOD7r61u/8sySuTvLCqjthdgO7+SpLnJzmyu/9hwvyjXpTk26MTVbUyyRuS/GFVbU3yvyd5zRzP7/1JfivJkxdxPgAAAAAAAAAAAAAAAAAAAAAAAAA8KjSVfAypquOSrMxMk8ZRFyU5vapOGNl7SlWt3k25TyT590lOS3LFJDm6+/OZaRL5gmH84ySXJnnf0JAxVfXmJAck+bvuvj/J96vqFcPa4Ulek+SLw/i1VTXbrvmYJDuT3D2PKO9I8vuTZB9VVW9I8kt5ZFPNVya5sbt/urvXdPczk3w8ya+OburuHyX5SGYaSwIAAAAAAAAAAAAAAAAAAAAAAADAY8qqpQ5A9q+qLcN1JTm9u3f+aw/GpLu3VdX6JBdU1VFJHk5ybZKrd1W0u++uquuSPLW7vzu2fG5V/cbI+PVzlDg/yadHxu9MckGSf6iqh5N8J8mvdncP629O8qdV9b5h/K7uvnW4/s0kF1bVA0keSvKm7t65q+wjz+Gvd7P84araMVxv7+5fHHtuT05yU5JXdPcPx+7dkOSTY3MfT/Ifk1w2Nv+fk5yzp6wAAAAAAAAAAAAAAAAAAAAAAAAAsLdpKrnEunvlLua3Jlk7Mr4uyUkT1n5Es8ju3phk4xzbtya5ZmTfVZlpcjk7/kmS3x4ec531rSQv38Xa+gkyX5Lkkjnmzxi5PnkX927M3M9t/L4z51i7KslVw/WBI/Pbkhywp9wAAAAAAAAAAAAAAAAAAAAAAAAAsLetWOoAAAAAAAAAAAAAAAAAAAAAAAAAAABMbtVSB2DhqurMJG8Zm/5Sd5+9FHkmsZyzAwAAAAAAAAAAAAAAAAAAAAAAAMBjgaaSy1h3b0qyaalzLMRyzg4AAAAAAAAAAAAAAAAAQPLw3XdmxaFHLHUMAAAAAIB92oqlDgAAAAAAAAAAAAAAAAAAACw/GkoCAAAAACw9TSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhTSWXiaraWVVbquqGqvpaVZ04zK+pqptG9r2kqq6tqpur6utV9cGqOmCOemuq6vaqWjE2v6WqTqiqjVV1xzCefRxaVSdXVVfV60bu+UxVnTxcP7Gq3l9V/1hVt1TVp6vqGXNlHeY2VtXbhuuXVtX1w1nfrqqNu3k9zhhy/OLI3OuHuTcO42uG12E2/8fmeK5XjM1dMjzvJw3jI6tq665yAAAAAAAAAAAAAAAAAAAAAAAAAMBS0VRy+djR3eu6+4VJ3pnkveMbqmp1ko8m+b3uPra7X5Tk6iQHje/t7q1JvpfkpJH7j0tyUHdfP0xdOJw5+7h7mL89yR/sIucfD+cd293HJPlUkk9UVc3jOV6a5KzuXpdkbZKP7GH/N5KsHxlvSHLD2J43jeR/4+xkVf0PSVYmOamqnjx2z84k/9M88gIAAAAAAAAAAAAAAAAAAAAAAADAktFUcnk6OMldc8yfneTS7r5udqK7P9bd23ZR5/L826aM65NcMY/zb0hyT1W9anSyqg5IcmaSc7t753D+piQ/SfKKedQ9Ksn3h/t2dve39rD/75O8pKqeUFUHJnlOki3zOCeZaUD5X5N8PsmvjK29P8m5VbVqnrUAAAAAAAAAAAAAAAAAAAAAAAAAYK/TVHL52L+qtlTVd5J8MMl75tizNslXJ6j5kSSvH2meeFpmGk3OOnc4c0tV/V9j956f5Lyxueck+V533zs2vznJ8+aR58IkN1fVJ6vqP1TVfnvY30n+JsmrM9MY8qo59nx45Dn8ycj8aZlpoHl5ZhpMjvpeki8m+c3dHV5VZ1XV5qrafNkll+whKgAAAAAAAAAAAAAAAAAAAAAAAABM16o9b+ExYkd3r0uSqnpZksuqau1iCnb3tqq6Kckrq2pbkoe6+6aRLRd29wW7uPfaqkpV/fwkR+5uvrvfXVUfTvJLSX49M80eT95DzSuS/E6SQ5L8bpLfH1t/U3dvHp2oqp9Lsr27v1dVdyT5UFUd3t0/Gtn23iSfTvLZXT6Z7ouTXJwkP7zrnl09NwAAAAAAAAAAAAAAAAAAAAAAAAB4VKxY6gBMrruvS3JkkqeMLX0zyfETlrs8yfrhcfmE956f5LyR8a1JfqaqDhrbd/yQ7c4kh42tHZ5k++ygu2/t7j9L8sokL6yqI3YXoLu/kuT5SY7s7n+YZ+4NSY6rqq1D5oOTvGGs7i1JtiQ5dZ41AQAAAAAAAAAAAAAAAAAAAAAAAGCv0lRyGaqq45KszEyTxlEXJTm9qk4Y2XtKVa3eTblPJPn3SU5LcsUkObr785lpEvmCYfzjJJcmeV9VrRzOf3OSA5L8XXffn+T7VfWKYe3wJK9J8sVh/NqqqqH8MUl2Jrl7HlHekeT355O5qlZkplHk87t7TXevSfIrmWk0Oe78JG+bT10AAAAAAAAAAAAAAAAAAAAAAAAA2NtWLXUA5m3/qtoyXFeS07t757/2YEy6e1tVrU9yQVUdleThJNcmuXpXRbv77qq6LslTu/u7Y8vnVtVvjIxfP0eJ85N8emT8ziQXJPmHqno4yXeS/Gp397D+5iR/WlXvG8bv6u5bh+vfTHJhVT2Q5KEkb+runbvKPvIc/no3yx+uqh3D9fYk70lyR3f/08iea5M8t6qeNlb3m1X1tSQv3lMGAAAAAAAAAAAAAAAAAAAAAAAAANjbNJVcJrp75S7mtyZZOzK+LslJE9Z+RLPI7t6YZOMc27cmuWZk31WZaXI5O/5Jkt8eHnOd9a0kL9/F2voJMl+S5JI55s8YuT55F7e/dOyenUmeOgzPGFs7Zb6ZAAAAAAAAAAAAAAAAAAAAAAAAAGBvWrHUAQAAAAAAAAAAAAAAAAAAAAAAAAAAmNyqpQ7Ao6+qzkzylrHpL3X32UuRZxLLOTsAAAAAAAAAAAAAAAAAAAAAAAAAPJo0ldwHdPemJJuWOsdCLOfsAAAAAAAAAAAAAAAAAAAAAAAAAPBoWrHUAQAAAAAAAAAAAAAAAAAAAAAAAAAAmJymkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5Cmko8zVbWzqrZU1Q1V9bWqOnGYX1NVN43se0lVXVtVN1fV16vqg1V1wBz11lTV7VW1Ymx+S1WdUFUbq+qOYTz7OLSqTq6qrqrXjdzzmao6ebh+YlW9v6r+sapuqapPV9Uz5so6zG2sqrcN1y+tquuHs75dVRt383qcMeT4xZG51w9zbxzG11TVzw3XW6vq4yN731hVl8zjpQcAAAAAAAAAAAAAAAAAAAAAAACAvUpTycefHd297v9n5/6DLS2rO9F/V3fLr2ujICBOlGmDBhwJdIJXEhWDoBMmKSdqTLqJUbAml1hXMw4m9xrAqsEkYPQSSCiZ3GKc0GAlIFGJhFSM+SEjRkKmJY2iorGV8mIMAcIPDahwet0/+j263Tnn9NnN7t6c7s+nale/z3rXs5717nP69OE0vbr7uCRnJ3nHeEJVPTXJHyZ5a3cf1d0/lOTDSdaO53b3HUm+kuTEkf1HJ1nb3TcPoYuHM+df9w/xO5Ocu0ifFwznHdXdz07yR0k+WFW1jGe8IsmZ3b0+yTFJrtlB/qeTbBxZn5bk1iXyj6+qf7eMPgAAAAAAAAAAAAAAAAAAAAAAAABgZgyV3LMdmOS+BeJvTHJFd980H+ju93f3XYvUuSrfO5RxY5Krl3H+rUkeqKqXjQar6oAkr09yVnfPDedfnuRbSU5eRt3Dknxt2DfX3Z/dQf6NSZ5fVU+oqicmeVaSLUvk/1YWH4YJAAAAAAAAAAAAAAAAAAAAAAAAAI8Lhkruefavqi1VdXuS9yT59QVyjknyyQlqXpPkFVW1ZlhvyPZBk/POGs7cUlUfHdt7fpK3jcWeleQr3f3gWHxzkucuo5+Lk3y+qq6tql+sqv12kN9J/iLJjyf5qSTX7SD/miQ/XFXPWiqpqs6sqs1VtfnKTZuW0TYAAAAAAAAAAAAAAAAAAAAAAAAATM+aHaewwjzc3euTpKp+NMmVVXXMYynY3XdV1W1JTqmqu5I82t23jaRc3N0XLrL3Y1WVqnrRJEcuFe/uX6uq30/y75P8XJLTkpy0g5pXJ/nPSZ6U5JeTnLNE7lyS/yfJ2Un+dNEmuy9LclmS3H3fA4v1DAAAAAAAAAAAAAAAAAAAAAAAAAC7xKpZN8Cu0903JTkkyaFjtz6T5PgJy12VZOPwumrCvecnedvIemuSI6pq7Vje8UNv9yY5aOzewUnumV9099bu/t0kpyQ5rqqeslQD3f23SX4wySHd/YVl9PzeJC9O8oxl5AIAAAAAAAAAAAAAAAAAAAAAAADAbmeo5B6sqo5OsjrbhzSOeneS06vqhJHcV1XVU5co98EkP5FkQ5KrJ+mjuz+S7UMijx3W/5LkiiQXVdXq4fzXJTkgyV919zeSfK2qTh7uHZzk1CQfH9Y/WVU1lH92krkk9y+jlV9Ncs4ye34kycVJzlpOPgAAAAAAAAAAAAAAAAAAAAAAAADsbmtm3QBTt39VbRmuK8np3T333RmMSXffVVUbk1xYVYcl2ZbkY0k+vFjR7r6/qm5Kcnh3f2ns9llV9fMj61csUOL8JB8aWZ+d5MIkX6iqbUluT/LK7u7h/uuSXFpVFw3rt3f31uH6tUkurqqHkjya5DXdPbdY7yPP8Kc7yhnzP5K8bcI9AAAAAAAAAAAAAAAAAAAAAAAAALBbGCq5h+nu1YvE70hyzMj6piQnTlj7Xw2L7O7zkpy3QPodSW4Yybsu24dczq+/leSXhtdCZ302yUsWubdxgp43Jdm0QPyMkeuTRq7XjfX4b5Z7FgAAAAAAAAAAAAAAAAAAAAAAAADsToZKAgAAAAAAAAAAAAAAAAAAAAAAAHuUqpp1CwC7haGSfEdVvT7Jm8fCf93db5xFP5NYyb0DAAAAAAAAAAAAAAAAAAAAAAAAwM4wVJLv6O7Lk1w+6z52xkruHQAAAAAAAAAAAAAAAAAAAAAAAAB2xqpZNwAAAAAAAAAAAAAAAAAAAAAAAAAAwOQMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMldwDVNVcVW2pqlur6paqesEQX1dVt43kPb+qPlZVn6+qv6uq91TVAQvUW1dVd1bVqrH4lqo6oarOq6qvDuv515Or6qSq6qp6+cie66vqpOF6n6r67ar6YlX9fVV9qKqevlCvQ+y8qvqV4fpHqurm4azPVdV5S7wfZwx9vHQk9ooh9uqR2CFV9UhVvWEktraqtlbVs4f1E6rq01V1wo4+DgAAAAAAAAAAAAAAAAAAAAAAAACwOxkquWd4uLvXd/dxSc5O8o7xhKp6apI/TPLW7j6qu38oyYeTrB3P7e47knwlyYkj+49Osra7bx5CFw9nzr/uH+J3Jjl3kT4vGM47qrufneSPknywqmoZz3hFkjO7e32SY5Jcs4P8TyfZOLI+LcmtYzk/k+RvhntJku7+era/h+8eQr+S5BMjzw0AAAAAAAAAAAAAAAAAAAAAAAAAjwuGSu55Dkxy3wLxNya5ortvmg909/u7+65F6lyV7x3KuDHJ1cs4/9YkD1TVy0aDVXVAktcnOau754bzL0/yrSQnL6PuYUm+Nuyb6+7P7iD/xiTPr6onVNUTkzwryZaxnNOS/HKS76uqp88Hu/uaoef/O8kbsn3IJAAAAAAAAAAAAAAAAAAAAAAAAAA8rhgquWfYv6q2VNXtSd6T5NcXyDkmyScnqHlNkldU1ZphvSHbB03OO2s4c0tVfXRs7/lJ3jYWe1aSr3T3g2PxzUmeu4x+Lk7y+aq6tqp+sar220F+J/mLJD+e5KeSXDd6s6qekeRp3f232f6sG8b2vznJO5P8Rnf/80IHVNWZVbW5qjZfuWnTMh4BAAAAAAAAAAAAAAAAAAAAAAAAAKbHUMk9w8Pdvb67j05yapIrq6oeS8HuvivJbUlOqar1SR7t7ttGUi4ezlzf3S8Z2/uxJKmqF01y5FLx7v61JM9L8pEkP5fkw8uoeXWSjcPrqrF7G7J9mOR83mlj909N8rVsH8a5cGPdl3X387r7ea8744xltAMAAAAAAAAAAAAAAAAAAAAAAAAA02Oo5B6mu29KckiSQ8dufSbJ8ROWuyqLD2XckfOTvG1kvTXJEVW1dizv+KG3e5McNHbv4CT3zC+6e2t3/26SU5IcV1VPWaqB7v7bJD+Y5JDu/sLY7dOSnFFVdyS5LsmxVfXsJKmqf5PkPyd5fpKfqKpjd/CsAAAAAAAAAAAAAAAAAAAAAAAAALDbGSq5h6mqo5OszvYhjaPeneT0qjphJPdVVfXUJcp9MMlPJNmQ5OpJ+ujuj2T7kMhjh/W/JLkiyUVVtXo4/3VJDkjyV939jSRfq6qTh3sHJzk1yceH9U9WVQ3ln51kLsn9y2jlV5OcMxqoqh9I8sTu/r7uXtfd65K8I9sHTSbJxUku6O47k7wlyaUjZwMAAAAAAAAAAAAAAAAAAAAAAADA48KaWTfAVOxfVVuG60pyenfPjc5B7O67qmpjkgur6rAk25J8LMmHFyva3fdX1U1JDu/uL43dPquqfn5k/YoFSpyf5EMj67OTXJjkC1W1LcntSV7Z3T3cf122D3C8aFi/vbu3DtevTXJxVT2U5NEkr+nuucV6H3mGP10gfFqSa8diH0jyvuF5j0jyP4b9f1xV/8fQ2xU7Og8AAAAAAAAAAAAAAAAAAAAAAAAAdhdDJfcA3b16kfgdSY4ZWd+U5MQJa/+rYZHdfV6S8xZIvyPJDSN512X7kMv59beS/NLwWuiszyZ5ySL3Nk7Q86YkmxaInzFcvn+Be59K8pxh+edj9/7jcs8GAAAAAAAAAAAAAAAAAAAAAAAAgN1l1awbAAAAAAAAAAAAAAAAAAAAAAAAAABgcmtm3QCzVVWvT/LmsfBfd/cbZ9HPJFZy7wAAAAAAAAAAAAAAAAAAAAAAAADwWBkquZfr7suTXD7rPnbGSu4dAAAAAAAAAAAAAAAAAAAAAAAAAB4rQyUBAAAAHocOOuKZs24BAAAAAAAAAAAAAJa07f57s+rJT5l1GwAAAAALWlU16xYAdovq7ln3AHsCv5EAAAAAAAAAAAAAAAAAAAAAAHaOyW/A1P3mtX9uNhSwU371lS9bUd+brJp1AwAAAAAAAAAAAAAAAAAAAAAAAAAATM5QSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQyT1AVc1V1ZaqurWqbqmqFwzxdVV120je86vqY1X1+ar6u6p6T1UdsEC9dVV1Z1WtGotvqaoTquq8qvrqsJ5/PbmqTqqqrqqXj+y5vqpOGq73qarfrqovVtXfV9WHqurpC/U6xM6rql8Zrn+kqm4ezvpcVZ23xPtxRlXdPTzj31fVn82/J8P9TVX16uH6huH9mH+O+fhcfe/zrVvuxwMAAAAAAAAAAAAAAAAAAAAAAAAAdoc1s26AqXi4u9cnSVX9eJJ3JPmx0YSqemqSP0yysbtvGmKvTrI2yUOjud19R1V9JcmJSf7nkHt0krXdfXNV/YckF3f3hWNnJMmdSc5N8scL9HnBcN5R3T1XVa9P8sGqOmEZz3hFkp/t7luranWSo3aQ/77uftPQ10uGc17S3Z9bIPc13b15LPad9xQAAAAAAAAAAAAAAAAAAAAAAAAAHo9WzboBpu7AJPctEH9jkivmB0omSXe/v7vvWqTOVUk2jqw3Jrl6GeffmuSBqnrZaLCqDkjy+iRndffccP7lSb6V5ORl1D0sydeGfXPd/dll7MmQ/9EklyU5c7l7AAAAAAAAAAAAAAAAAAAAAAAAAODxzlDJPcP+VbWlqm5P8p4kv75AzjFJPjlBzWuSvKKq1gzrDdk+aHLeWcOZW6rqo2N7z0/ytrHYs5J8pbsfHItvTvLcZfRzcZLPV9W1VfWLVbXf8h7jO25JcvQi935/5FmeMsT2H4ldu9CmqjqzqjZX1ebLLrtswnYAAAAAAAAAAAAAAAAAAAAAAAAA4LFZs+MUVoCHu3t9klTVjya5sqqOeSwFu/uuqrotySlVdVeSR7v7tpGUi7v7wkX2fqyqUlUvmuTIpeLd/WtV9ftJ/n2Sn0tyWpKTJqhfS9x7TXdvHot95z1dTHdflmR+muRi/QMAAAAAAAAAAAAAAAAAAAAAAADALrFq1g0wXd19U5JDkhw6duszSY6fsNxVSTYOr6sm3Ht+kreNrLcmOaKq1o7lHT/0dm+Sg8buHZzknvlFd2/t7t9NckqS46rqKRP080NJPjdBPgAAAAAAAAAAAAAAAAAAAAAAAAA8rhkquYepqqOTrM72IY2j3p3k9Ko6YST3VVX11CXKfTDJTyTZkOTqSfro7o9k+5DIY4f1vyS5IslFVbV6OP91SQ5I8lfd/Y0kX6uqk4d7Byc5NcnHh/VPVlUN5Z+dZC7J/cvppap+LMmZSf77JM8AAAAAAAAAAAAAAAAAAAAAAAAAAI9na2bdAFOxf1VtGa4ryendPffdGYxJd99VVRuTXFhVhyXZluRjST68WNHuvr+qbkpyeHd/aez2WVX18yPrVyxQ4vwkHxpZn53kwiRfqKptSW5P8sru7uH+65JcWlUXDeu3d/fW4fq1SS6uqoeSPJrkNd09t1jvSTZU1YuyfWjll5P8dHd/bonOtyM4AAAgAElEQVR8AAAAAAAAAAAAAAAAAAAAAAAAAFhR6rvz/IDHwG8kAAAAAAAAAAAAAAAAAAAAAICdU7NuANjz/Oa1f242FLBTfvWVL1tR35usmnUDAAAAAAAAAAAAAAAAAAAAAAAAAABMbs2sG2C2qur1Sd48Fv7r7n7jLPqZxEruHQAAAAAAAAAAAAAAAAAAAAAAAAAeK0Ml93LdfXmSy2fdx85Yyb0DAAAAAAAAAAAAAAAAAAAAAAAAwGNlqCRMwd33PTCVOvtue2QqdZKknrDP1Gptq5parVXb5qZWqx/59tRqTev92rZq9VTqJMldD/zL1God/MT9p1brgY+8f2q19gZH/ux/mkqdB//53qnU2VscePBTplLn6w8+OJU6e5O1Bx74mGs8eO89U+hk73LgUw6ZSp37Hvz6VOrsLQ46cO1U6px03runUmdvccN5b5pKHX+2TmZaf7Y+cNc/TqXO3uRJTz38Mdfw9X1y0/oaf+F1fzmVOnuLX/mPp0ylzl/eevtU6uwtTjnu6KnUufOf/Nk6iacfNp0/W6f1c8m9xaEHPWkqdXy+T24an/OfvuPOKXSyd/nBdU+fSp2vP3D/VOrsLdY+6clTqXPHP949lTp7i3WHHzqVOvd95ctTqbO3OOiIZ06lzhfu9POCSfzA0x/7zwqS5J77fS85qUOe/Ni/n/RzmslN6+c03vvJTOt9973kZHwvORvT+l7S3z1Nbhp///S1e/55Cp3sXZ52yMFTqXP3Z2+dSp29xaH/7rip1Pnq3T7nJ/F9h07n891/P01mGv/tlPg7kElN6+9A/H8dk5vG/9dx9cc/OYVO9i4bX3T8VOr8ry/4mfAk/vcfmM7PhL3vk5nW++5n8ZOZ1s/i/XxsMtP6+dj9X/vqVOokST86vX/rd3ftN7VaB/1v0/t3Yvut6qnUeWh6/2Qw+35zej/T77npNfbPq6f3vj/pgOl9Puxb0/kYJsk3t03n35HuO/etqdRJkp7bNrVa//Ct6dV68hQ/hvvt84Sp1ZqW+sb0/gzb9sj0vpY+uO90/g4rme7vw9XffnhqtXrfKX2teWh6/z5527e/ObVa07Rqn+l9DLun9/Vh9f4HTKXONP8N/dzDD02t1jTt6R/Dbd+c3u+dnpve19J+4nS+706Sux+c3teap07xj8NVU/oYPvTo9D6v9lkzvRkU07Smp/f98t0PTe/r1vc/7bCp1QIA2NusmnUDAAAAAAAAAAAAAAAAAAAAAAAAAABMbs2sGwAAAAAAAAAAAAAAAAAAAAAAAACYptWratYtAOwWq2bdAAAAAAAAAAAAAAAAAAAAAAAAAAAAkzNUEgAAAAAAAAAAAAAAAAAAAAAAAABgBTJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBTJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBTJU8nGuquaqaktV3VpVt1TVC4b4uqq6bbg+qaquX2DvDVX1vLHYd3Kr6oyqunuof3tVnTWSt6mqXj229xsjZz880tcnquqoRepvq6pjR2rcVlXrlnjeO6rqxrHYlrFnfWCIzb9eOvZefWbo65eratVi71FV/VFV/c1Y7LyqeqiqDht/bgAAAAAAAAAAAAAAAAAAAAAAAAB4PDFU8vHv4e5e393HJTk7yTumXP993b0+yQuTnFtVz1jmvq0jfV2R5JxF8u5Mcu6EPa2d76OqnrPA/RuHs+dffzHE59+r5yZ5WZL/kOS/LnRAVT05yfFJnlRV3z92+54kvzxhzwAAAAAAAAAAAAAAAAAAAAAAAACwWxkqubIcmOS+XVG4u+9N8sUkT9uJ7Uv1dX2S51bVURPUuybJhuH6tCRXTdpQd/9TkjOTvKmqaoGUVyX54yRXJ9k4du/3kmyoqoOXOqOqzqyqzVW1+cpNmyZtEQAAAAAAAAAAAAAAAAAAAAAAAAAekzWzboAd2r+qtiTZL9sHPp68Kw6pqiOGMz61zC1HDn2tTXJAkhMWyduW5F1Jzkly+jJrfyDJ5UkuTPLyJK9J8tqR+ycOZ8/76e7eOl6ku79UVauTHLbAGacl+bUkdw3nXTBy7xvZPljyzUn+62JNdvdlSS5Lkrvve6B3/FgAAAAAAAAAAAAAAAAAAAAAAAAAMD2rZt0AO/Rwd6/v7qOTnJrkyqqqKdbfUFWfSvLFJP+tu785xBcakjga2zr0dWSS/5JhuOIi/iDJj1TVM5fZ071J7quqjUk+l+Shsfs3DmfPv/7VQMmlVNVTkzw7yce7+wtJHqmqY8bSLklyelWtnaQ2AAAAAAAAAAAAAAAAAAAAAAAAAOwuhkquIN19U5JDkhw6xbLv6+5jk7wgyW9W1eFD/N4kB80nVdXBSe5ZpMZ1SV682AHd/WiS30ry1kn6SnJpkqsm2PM9qur7k8wl+aexWz+b7c/25aq6I8m6JKeNJnT3/dk+DPONO3s+AAAAAAAAAAAAAAAAAAAAAAAAAOxKhkquIFV1dJLV2T7wcaq6e3OS9yZ58xC6IcmGqtpnWJ+R5KOLbH9Rkq07OGJTkpdm+QMxr03yriR/tsz871FVhyb5f5O8u7t77PZpSU7t7nXdvS7J8Uk2LlDmoiS/mGTNzvQAAAAAAAAAAAAAAAAAAAAAAAAAALuSYXmPf/tX1ZbhupKc3t1zVTWed0pV3Tmy/pnh1z+pqkeG65uSXLrEWe9McktVXdDd11fV8Uk+WVVz2T408g0juUcOfVWSbyf5haUeoru/XVWXJPmdpfJG8r8+9JMFnvXEkfckSX6ju9+f775XT0jyaLYPybxodGNVrUvyb5P8zchZX66qB6rqhLEe7qmqa5OctZyeAQAAAAAAAAAAAAAAAAAAAAAAAGB3MlTyca67Vy8SvyPJMcP1DUn2XyDtpEXK3jDs25Rk00jNf0hy+Mj67UnevsjZC50338ti9S9JcskiPc3nrFvkvNFnfdIiexd8r8b7SvJ9C9z/4eHy5rH4W5K8ZameAQAAAAAAAAAAAAAAAAAAAAAAAGAWVs26AQAAAAAAAAAAAAAAAAAAAAAAAAAAJrdm1g2wd6qqm5PsOxZ+bXd/ehb9AAAAAAAAAAAAAAAAAAAAAAAAAMBKY6gkM9HdJ8y6BwAAAAAAAAAAAAAAAAAAdt4Bq5OH5mbdBQAAAADA3m3VrBsAAAAAAAAAAAAAAAAAAABWHgMlAQAAAABmz1BJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAVaM2sGwAAAAAAAAAAAAAAAAAAAAAAAACYpqqadQsAu8WqWTcAAAAAAAAAAAAAAAAAAAAAAAAAAMDkDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJXcg1TVXFVtqapbq+qWqnrBEF9XVbcN1ydV1fUL7L2hqp43FvtOblWdUVV3D/Vvr6qzRvI2VdWrx/Z+Y+Tsh0f6+kRVHbVI/W1VdexIjduqat0Sz3tHVd04Ftsy9qwPDLH510tHcl9RVV1VR4/E1g2xXxqJvbuqzlisDwAAAAAAAAAAAAAAAAAAAAAAAACYBUMl9ywPd/f67j4uydlJ3jHl+u/r7vVJXpjk3Kp6xjL3bR3p64ok5yySd2eScyfsae18H1X1nAXu3zicPf/6i5F7pyX5+PDrqH9K8uaq2mfCXgAAAAAAAAAAAAAAAAAAAAAAAABgtzFUcs91YJL7dkXh7r43yReTPG0nti/V1/VJnltVR01Q75okG4br05JctZxNVfXEJC9K8p+SbBy7fXeSv0xy+g5qnFlVm6tq85WbNk3QMgAAAAAAAAAAAAAAAAAAAAAAAAA8dmtm3QBTtX9VbUmyX7YPfDx5VxxSVUcMZ3xqmVuOHPpam+SAJCcskrctybuSnJMdDHQc8YEklye5MMnLk7wmyWtH7p84nD3vp7t7a5KfSvLh7v5CVd1bVcd39ydH8t6Z5E+r6vcWO7i7L0tyWZLcfd8Dvcx+AQAAAAAAAAAAAAAAAAAAAAAAAGAqVs26Aabq4e5e391HJzk1yZVVVVOsv6GqPpXki0n+W3d/c4gvNFBxNLZ16OvIJP8lwyDGRfxBkh+pqmcus6d7k9xXVRuTfC7JQ2P3bxzOnn9tHeKnJbl6uL56WH+3+e4vJbk5yc8tsw8AAAAAAAAAAAAAAAAAAAAAAAAA2K3WzLoBdo3uvqmqDkly6BTLvq+731RVz0vykaq6rrv/MdsHOx40n1RVBye5Z5Ea1yW5fIm+H62q30ry1kn6SnJpkjOWkzz0d3KSH6yqTrI6SVfV/zWWekGS9yf5nxP0AgAAAAAAAAAAAAAAAAAAAAAAAAC7xapZN8CuUVVHZ/uwxHunXbu7Nyd5b5I3D6Ebkmyoqn2G9RlJPrrI9hcl2bqDIzYleWmWPxDz2iTvSvJny8x/dZL3dve/7e513f2MJF9OcuJoUnffnuSzSV6+zLoAAAAAAAAAAAAAAAAAAAAAAAAAsNusmXUDTNX+VbVluK4kp3f3XFWN551SVXeOrH9m+PVPquqR4fqmJJcucdY7k9xSVRd09/VVdXyST1bVXLYPjXzDSO6RQ1+V5NtJfmGph+jub1fVJUl+Z6m8kfyvD/1kgWc9ceQ9SZLfSHLafP6IDywSPz/J3y2nDwAAAAAAAAAAAAAAAAAAAAAAAADYnQyV3IN09+pF4nckOWa4viHJ/guknbRI2RuGfZuSbBqp+Q9JDh9Zvz3J2xc5e6Hz5ntZrP4lSS5ZpKf5nHWLnDf6rE9aYOv7F9g3etYxI/Fbk6xaqg8AAAAAAAAAAAAAAAAAAAAAAAAAmAXD8gAAAAAAAAAAAAAAAAAAAAAAAAAAVqA1s24AdqSqbk6y71j4td396Vn0AwAAAAAAAAAAAAAAAAAAAAAAAACPB4ZK8rjX3SfMugcAAAAAAAAAAAAAAAAAAL7XAauTh+Zm3QUAAAAAwN5t1awbAAAAAAAAAAAAAAAAAAAAVh4DJQEAAAAAZs9QSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQSQAAAAAAAAAAAAAAAAAAAAAAAACAFchQyb1QVc1V1ZaqurWqbqmqFwzxdVV123B9UlVdv8DeG6rqeWOx7+RW1RlVdfdQ//aqOmskb1NVvXps7zdGzn54pK9PVNVRi9TfVlXHjtS4rarWLfG8d1TVjWOxLQs9687UBwAAAAAAAAAAAAAAAAAAAAAAAIBZMFRy7/Rwd6/v7uOSnJ3kHVOu/77uXp/khUnOrapnLHPf1pG+rkhyziJ5dyY5d8Ke1s73UVXP2UHuztQHAAAAAAAAAAAAAAAAAAAAAAAAgN3KUEkOTHLfrijc3fcm+WKSp+3E9qX6uj7Jc6vqqAnqXZNkw3B9WpKrlsjdmfoAAAAAAAAAAAAAAAAAAAAAAAAAsFsZKrl32r+qtlTV7Unek+TXd8UhVXVEkv2SfGqZW44c+tqa5C1JLlokb1uSdyU5Z4J2PpDkVcP1y5P88RK5y6pfVWdW1eaq2nzlpk0TtAIAAAAAAAAAAAAAAAAAAAAAAAAAj92aWTfATDzc3euTpKp+NMmVVXXMFOtvqKoXJzk6yZu6+5tDvBfIHY1tHelrQ5LLkpy6yBl/kOTcqnrmMnu6N8l9VbUxyeeSPLSD/B3W7+7Lhh5z930PLPRsAAAAAAAAAAAAAAAAAAAAAAAAALDLrJp1A8xWd9+U5JAkh06x7Pu6+9gkL0jym1V1+BC/N8lB80lVdXCSexapcV2SFy92QHc/muS3krx1kr6SXJrkqh0l7mR9AAAAAAAAAAAAAAAAAAAAAAAAANhtDJXcy1XV0UlWZ/vAx6nq7s1J3pvkzUPohiQbqmqfYX1Gko8usv1FSbbu4IhNSV6a5Q/EvDbJu5L82TLzJ60PAAAAAAAAAAAAAAAAAAAAAAAAALvNmlk3wEzsX1VbhutKcnp3z1XVeN4pVXXnyPpnhl//pKoeGa5vSnLpEme9M8ktVXVBd19fVccn+WRVzWX70Mg3jOQeOfRVSb6d5BeWeoju/nZVXZLkd5bKG8n/+tBPFnjWx1wfAAAAAAAAAAAAAAAAAAAAAAAAAHYnQyX3Qt29epH4HUmOGa5vSLL/AmknLVL2hmHfpiSbRmr+Q5LDR9ZvT/L2Rc5e6Lz5Xharf0mSSxbpaT5n3SLnjT7rTtcHAAAAAAAAAAAAAAAAAAAAAAAAgFlYNesGAAAAAAAAAAAAAAAAAAAAAAAAAACY3JpZNwDTUlU3J9l3LPza7v70LPoBAAAAAAAAAAAAAAAAAAAAAAAAgF3JUEn2GN19wqx7AAAAAAAAAAAAAAAAAAAAAAAAAIDdZdWsGwAAAAAAAAAAAAAAAAAAAAAAAAAAYHKGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSu4lqmquqrZU1a1VdUtVvWCIr6uq24brk6rq+gX23lBVzxuLfSe3qs6oqruH+rdX1VkjeZuq6tVje78xcvbDI319oqqOWqT+tqo6dqTGbVW1bonnvaOqbhyLbZl/1pHYb1fVV6tq1UjsLVX1eyPr11TVnyx2FgAAAAAAAAAAAAAAAAAAAAAAAADMgqGSe4+Hu3t9dx+X5Owk75hy/fd19/okL0xyblU9Y5n7to70dUWScxbJuzPJuRP2tHa+j6p6zvjNYZDkK5P8f0l+bOTWJUl+uKpeWFVPTvIbSX5pwrMBAAAAAAAAAAAAAAAAAAAAAAAAYJcyVHLvdGCS+3ZF4e6+N8kXkzxtJ7Yv1df1SZ5bVUdNUO+aJBuG69OSXDV2/6Qkn0nyu8P9JEl3P5rk/0xyaZJ3Jfm97v7SBOcCAAAAAAAAAAAAAAAAAAAAAAAAwC63ZtYNsNvsX1VbkuyX7QMfT94Vh1TVEcMZn1rmliOHvtYmOSDJCYvkbcv2AY/nJDl9mbU/kOTyJBcmeXmS1yR57cj9+UGTH0pyQVU9obsfSZLu/kRVfS7JS5M8Z6HiVXVmkjOT5MKLfjuvO+OMZbYFAAAAAAAAAAAAAAAAAAAAAADArlSpWbcAsFsYKrn3eLi71ydJVf1okiur6pgp1t9QVS9OcnSSN3X3N4d4L5A7Gts60teGJJclOXWRM/5/du4+2K67ug/+d13JtuTG8ju2Q4iFiWORGlCwW4qbgEgBq2laCk9srEmK+YOhaUuTmuBSSso4IQ0hbuqxk3SmenjAODS85gkBWo8yBdSGwXYrjBy7tYGARGNjJ7b8DrIty6t/6Kg9vdW9uudqS8dX9/OZuaO91/791m+drXPP3edt/V6Sd1fV8xdY064kD1XVZUnuTPK9/Qeq6tgkP5nk7d39WFXdkuTiJJ8bHf++JBcmOSbJ6Unu/r9uRPfmUb25/6FHDnQ7AQAAAAAAAAAAAAAAAAAAAAAAAOCwmZl2ARx53X1TktOyr1niUD7e3S9OclGSX6+qM0fxXUlO3j+oqk5J8sAcOT6T5BVzLdDdTyf5zSTvnKSuJL+T5KOz4hcnOSnJ7VW1M8mPJdk0dvyXk3wkyb9Mcs0E6wEAAAAAAAAAAAAAAAAAAAAAAADAEaGp5DJUVeuSrMi+ho+D6u5tSX43yS+MQluTvLGqjh3tvznJF+eY/mNJvnmQJa5P8uosvCHmHyT5jSRbZsU3JXlLd6/t7rVJnp/kNVV1fFW9KMnfSvL+JJuTrK2q1yxwPQAAAAAAAAAAAAAAAAAAAAAAAAA4IlZOuwCOmNVVtX20XUku7+69VTV73N+oqrvH9i8Z/fvvq2rPaPumJL8zz1rvT3JrVf1ad3+uqi5I8pWq2pt9TSN/bmzsC0Z1VZKnkrxlvhvR3U9V1XVJrp1v3Nj4x0b1ZP9trarjk2wcr6O7v1tVX0ryt5P84yRXdPcTo/H/IMkNVbW+u59ayLoAAAAAAAAAAAAAAAAAAAAAAAAAcLhpKrlMdPeKOeI7k5w/2t6aZPUBhm2YI+3W0bzrk1w/lvM7Sc4c2//lJL88x9oHWm9/LXPlvy7JdXPUtH/M2jnWO3+0e8oBjr9htPnxWfFtSX5kvvUAAAAAAAAAAAAAAAAAAAAAAAAA4EibmXYBAAAAAAAAAAAAAAAAAAAAAAAAAABMbuW0C4BDUVW3JDluVvjvdfft06gHAAAAAAAAAAAAAAAAAAAAAAAAAI4UTSVZ0rr7ZdOuAQAAAAAAAAAAAAAAAAAAAAAAAACmYWbaBQAAAAAAAAAAAAAAAAAAAAAAAAAAMLnq7mnXAEcDv0gAAAAAAAAAAAAAAAAAAAAAAItT0y4AOPr85me+oDcUsCi/+Hd+Ykldm8xMuwAAAAAAAAAAAAAAAAAAAAAAAAAAACanqSQAAAAAAAAAAAAAAAAAAAAAAAAAwBKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwBKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwBKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwBKkqeQyUVV7q2p7Vd1WVbdW1UWj+NqqumO0vaGqPneAuVur6sJZsf81tqreXFX3j/LfVVVXjI27vqp+etbcx8fW3j1W15er6rw58j9TVS8ey3FHVa2d5/burKrbRz//vap+tapWzXGbHxnVsL2q/uMoflVV3TMW//WFn20AAAAAAAAAAAAAAAAAAAAAAAAAOPw0lVw+dnf3+u5+SZJ3JXnfwPk/3t3rk/z1JO+uquctcN43x+r6cJJ/Pse4u5O8e8KaXtXdL0ryV5Ock+TfzjHuj0c1rO/uV4/FrxmL/7MJ1wYAAAAAAAAAAAAAAAAAAAAAAACAw0pTyeVpTZKHDkfi7t6V5E+TnLWI6fPV9bkkf7mqzltETY8n+bkkf7eqTllEXQAAAAAAAAAAAAAAAAAAAAAAAADwrKOp5PKxuqq2V9VdST6Q5L2HY5Gq+sEkq5L8yQKnvGBU1zeTvD3Jv55j3DNJfiPJP19MXd39aJIdSc49wOEfH9WwvarePRa/Yix+8exJVfXWqtpWVds2b968mLIAAAAAAAAAAAAAAAAAAAAAAAAAYNFWTrsAjpjd3b0+Sarq5UluqKrzB8z/xqp6RZJ1Sd7W3U+M4n2AseOxb47V9cYkm5NsnGON30vy7qp6/iJrrDnif9zdP3WA+DXd/a/mStbdm7Ov3uTAtxMAAAAAAAAAAAAAAAAAAAAAAAAADhtNJZeh7r6pqk5LcvqAaT/e3W+rqguT/FFVfaa770uyK8nJ+wdV1SlJHpgjx2eSfGieup+uqt9M8s5Ji6uqE5KsTfL1JCdOOh8AAAAAAAAAAAAAAAAAAAAAAIClY6Zq2iUAHBEz0y6AI6+q1iVZkX0NHwfV3duS/G6SXxiFtiZ5Y1UdO9p/c5IvzjH9x5J88yBLXJ/k1ZmgIWZVfV+Sf5Pk09390ELnAQAAAAAAAAAAAAAAAAAAAAAAAMCz2cppF8ARs7qqto+2K8nl3b23/u8uyn+jqu4e279k9O+/r6o9o+2bkvzOPGu9P8mtVfVr3f25qrogyVeqam/2NY38ubGxLxjVVUmeSvKW+W5Edz9VVdcluXa+cSNfrH03cCbJHyR57wLmAAAAAAAAAAAAAAAAAAAAAAAAAMCSUN097RrgaOAXCQAAAAAAAAAAAAAAAAAAAABgcWraBQBHn2s++0W9oYBFueJvv2pJXZvMTLsAAAAAAAAAAAAAAAAAAAAAAAAAAAAmt3LaBcChqKpbkhw3K/z3uvv2adQDAAAAAAAAAAAAAAAAAAAAAAAAAEeKppIsad39smnXAAAAAAAAAAAAAAAAAAAAAAAAAADToKkkDOCe+x8cJM+aY2cGyTO0b9z/yGC5zj39xMFy9d69g+WqFSsGyXPvY08Mkmdop6/5S4Pl+u4TTw2Wazn4geecOkiexx59dJA8y8UJa9YMkuexRx4eJM9ycsKJJx1yDvf3yQ11n3/ksccGybNcnHjCCYPkefTBXYPkWS7WnDLM39YNV/32IHmWi61XvW2QPB5nJjfEY81Djzrvkzp5zTCP8Tvvu3+QPMvF2jNPHyTPnz/oOn4SZ5xy6NfwiceaSQ31OPPAXbcPkme5OG3diwbJ47xPbohz7/WCyQ31esH9Dw33HsFycPrJw7wPcu8Dw7z3tFycddopg+T5kx1/Nkie5eLFz3/eIHm8Fj+ZIV6HT7xOsxhDvE7jmmZyQ13TeN46maGetzrvkxnqvPvbOpmh/rZ6jJ/cEI/x7u+TG+o+v+tb3xgkz3Jx6jnnDpLHeyCTGeo9EM+fJjPU52lcS05mqGvJu//C55gmNcTnhF3TTG6w63jnfiLO+3QMdd695zeZod7z83rBZIZ6Pfjh+74zSJ4kefLY44fL9fTTg+U6cfVxg+XK9747XK6B1Mrhvvb85Mwxg+XavWfPYLmerf+HQ537vd97fJA8SfLE6mEeG5LkyaeH+z7qicevGizXij1PDpZrqP/DZ54Y7nuyTxwz3Ll6eu8zg+Ua8vvce4f8PZwZ5rvOTx27epA8SbJqpgfL1XuG+35yD3h/GNLMqmHu898b7iErxw9zt0oy7OPDs9VQ/4dD9kF4thqqP0OSPDPQ41+SzDxzdJ/7u/78ocFyrTvj5MFy7do93PXyUN8vAgBYjp6dHewAAAAAAAAAAAAAAAAAAAAAAAAAAJiXppIAAAAAAAAAAAAAAAAAAAAAAAAAAEuQppIAAPRGy1IAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAEuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAEuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAEuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAEuQppLLWFXtrartVXVbVd1aVReN4mur6o555n26qm6eFTuvqraO8t1ZVZur6uLR/vaqeryqvjbavmGOvBuqqqvqLWOx9aPYO0b711fVjrG8Xx7F31xV91fVV6vqG1W1Zf/tGZv302P7p1XVnqr6uVk17Kyq3x/b/+mqun6BpxQAAAAAAAAAAAAAAAAAAAAAAAAAjhhNJZe33d29vrtfkuRdSd53sAlVdVKSC5KcWFXnjB26Lsk1o3wvTPJb3b1ltL8+ybYkPzPaf9M8S9yR5NKx/U1Jbps15sr9ebv7orH4x7v7R7v73CS/nuT/r6oXzrHOJUluHuWf7YKq+pF5agQAAAAAAAAAAAAAAAAAAAAAAACAqdNUkv3WJHloAePekOSzST6W5LKx+FlJ7t6/0923L7KObydZVVVnVFUl2ZjkxkmTdPcXk2xO8tY5hmxK8otJnltVPzDr2G8mefekawIAAAAAAAAAAAAAAAAAAAAAAADAkaSp5PK2uqq2V9VdST6Q5L0LmLMpyUdHP5vG4tck+UJV3VhVV1TVSYdQ16eSXJLkoiS3Jnly1vGrR3Vvr6p/N0+eW5Osmx2squclOau7/0uSTyR546whn0jy0qr6ofmKrKq3VtW2qtr2kRs+PP8tAgAAAAAAAAAAAAAAAAAAAAAAAICBaSq5vO3u7vXdvS7JxiQ3VFXNNbiqzkhybpIvdffXk+ypqvOTpLs/lOSFST6ZZEOSm6vquEXW9Ynsayq5v4HlbFeO6l7f3T8zT565bssbR2skycfyfzbHTJK9Sa5O8q75iuzuzd19YXdf+LNvuny+oQAAAAAAAAAAAAAAAAAAAAAAAAAwOE0lSZJ0901JTkty+jzDLk1ycpIdVbUzydqMNWTs7u909we7+3VJnk5y/iJruS/JniSvSfL5xeQY+dEkdx4gvinJm0e34TNJXlxV584a87tJXpHkeYewPgAAAAAAAAAAAAAAAAAAAAAAAAAcNppKkiSpqnVJViTZNc+wTUk2dvfa7l6b5IIkl43mb6yqY0bbZyY5Nck9h1DSe5K8s7v3LmZyVb0yyVuT/L+z4j+c5Pu6+7ljt+N9GWuOmSTdvSfJNUmuWMz6AAAAAAAAAAAAAAAAAAAAAAAAAHC4rZx2AUzV6qraPtquJJd3996qSpLzqurusbHXJjk7yc37A929o6oeqaqXJXltkmur6onR4Su7+77FFtbdX57n8NVV9Utj+3919O8bq+rHkhyfZEeS/6e775w1d1OSP5gV+/0kH0/yK7Pi/1+SXwoAAAAAAAAAAAAAAAAAAAAAAABLyoqZmnYJAEeEppLLWHevmCO+M8kxBzh09QHGvnS0eUuSt8+z1oYF1LM1ydYDxK8a237zHNOvH/3MlXv/vE8d4NifJHnhaHvtWPzJJN8/X80AAAAAAAAAAAAAAAAAAAAAAAAAMC0z0y4AAAAAAAAAAAAAAAAAAAAAAAAAAIDJrZx2ASw/VXVxkvfPCu/o7tdPox4AAAAAAAAAAAAAAAAAAAAAAAAAWIo0leSI6+4tSbZMuw4AAAAAAAAAAAAAAAAAAAAAAAAAWMpmpl0AAAAAAAAAAAAAAAAAAAAAAAAAAACT01QSAAAAAAAAAAAAAAAAAAAAAAAAAGAJ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAJ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAJ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAJ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAJ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAJ0lSSBamqvVW1vapuq6pbq+qiUXxtVd0xz7xPV9XNs2LnVdXWUb47q2pzVV082t9eVY9X1ddG2zfMkXdDVXVVvWUstn4Ue8do//qq2jGW98sLqO2qqvpeVT1nLPb4JOcKAAAAAAAAAAAAAAAAAAAAAAAAAI6EldMugCVjd3evT5KqujjJ+5K8cr4JVXVSkguSPF5V53T3t0aHrktyTXf/4Wjci7r79iRbRvtbk7yju7cdpKY7klya5AOj/U1Jbps15sru/tQEtSXJA0l+Mck7D7I+AAAAAAAAAAAAAAAAAAAAAAAAAEzNzLQLYElak+ShBYx7Q5LPJvlYksvG4mcluXv/zqih5GJ8O8mqqjqjqirJxiQ3LnDuXLUlyQeTvLGqTpkvQVW9taq2VdW2j9zw4QlLBwAAAAAAAAAAAAAAAAAAAAAAAIBDo6kkC7W6qrZX1V1JPpDkvQuYsynJR0c/m8bi1yT5QlXdWFVXVNVJh1DXp5JckuSiJLcmeXLW8atHdW+vqn+3gNqS5PHsayz5C/Mt3N2bu/vC7r7wZ990+SHcBAAAAAAAAAAAAAAAAAAAAAAAAACYnKaSLNTu7l7f3euSbExyQ1XVXIOr6owk5yb5Und/Pcmeqjo/Sbr7Q0lemOSTSTYkubmqjltkXZ/IvqaS+5tEznblqO713f0zB6ttzHVJLq+qExZZFwAAAAAAAAAAAAAAAAAAAAAAAAAcVppKMrHuvinJaUlOn2fYpUlOTrKjqnYmWZt9jR/35/hOd3+wu1+X5Okks5s6LrSW+5LsSfKaJJ9f4LR5axvlfTjJ7yX5R4upCwAAAAAAAAAAAAAAAAAAAAAAAAAON00lmVhVrUuyIsmueYZtSrKxu9d299okFyS5bDR/Y1UdM9o+M8mpSe45hJLek+Sd3b13gePnrG2Wf53k7ydZeQi1AQAAAAAAAAAAAAAAAAAAAAAAAMBhoVkeC7W6qraPtivJ5d29t6qS5Lyqunts7LVJzk5y8/5Ad++oqkeq6mVJXpvk2qp6YnT4yu6+b7GFdfeX5zl8dVX90tj+pQepbTzvA1X1B0muWGxtAAAAAAAAAAAAAAAAAAAAAAAAAHC4aCrJgnT3ijniO5Mcc4BDVx9g7EtHm7ckefs8a21YQD1bk2w9QPyqse03zzH9uQepbTz+9sxTKwAAAAAAAAAAAAAAAAAAAAAAAABMi6aSAAAAAAAAAAAAAAAAAAAAAAAAwFGlqqZdAsARoakkz2pVdXGS988K7+ju10+jHgAAAAAAAAAAAAAAAAAAAAAAAAB4ttBUkme17t6SZMu06wAAAAAAAAAAAAAAAAAAAAAAAACAZ5uZaRcAAAAAAAAAAAAAAAAAAAAAAAAAAMDkNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiCNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiCNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiCNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiCNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiCNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiCNJVkUFW1t6q2V9VtVXVrVV00iq+tqjvmmffpqrp5Vuy8qto6yndnVW2uqotH+9ur6vGq+tpo+4Y58m6oqq6qt4zF1o9i7xjtX19VPz3a3lpV28bGXlhVWw/ppAAAAAAAAAAAAAAAAAAAAAAAAADAYbBy2gVw1Nnd3euTpKouTvK+JK+cb0JVnZTkgiSPV9U53f2t0aHrklzT3X84Gvei7r49yZbR/tYk7+jubQdIO+6OJJcm+cBof1OS2+YZ/5yq+pvdfeNB8gIAAAAAAAAAAAAAAAAAAAAAAADA1MxMuwCOamuSPLSAcW9I8tkkH0ty2Vj8rCR3798ZNZRcjG8nWVVVZ1RVJdmYZL6GkVcneffBklbVW6tqW1Vt+8gNH15kaQAAAAAAAAAAAAAAAAAAAAAAAACwOCunXQBHndVVtT3JquxrCvkTC5izKcmvJPnzJL+f5NdG8WuSfKGqvpzkj5J8qLsfXmRdn0pySZKvJrk1yZPzjL0pyeur6lVJHptrUHdvTrI5Se65/8FeZF0AAAAAAAAAAAAAAAAAAAAAAAAAsCgz0y6Ao87u7l7f3euSbExyQ1XVXIOr6owk5yb5Und/Pcmeqjo/Sbr7Q0lemOSTSTYkubmqjltkXZ/IvqaSm5J8dAHjfzXJLy1yLQAAAAAAAAAAAAAAAAAAAAAAAAA47DSV5LDp7puSnJbk9HmGXZrk5CQ7qmpnkrXZ1/hxf47vdPcHu/t1SZ5Ocv4ia7kvyZ4kr0ny+QWM/0KS1Un+2mLWAwAAAAAAAAAAAAAAAAAAAAAAAIDDTVNJDpuqWpdkRZJd8wzblGRjd6/t7rVJLkhy2Wj+xqo6ZrR9ZpJTk9xzCCW9J8k7u3vvAsf/apJ/egjrAQAAAAAAAAAAAAAAAAAAAAAAAMBhs3LaBXDUWV1V20fbleTy7t5bVUlyXlXdPTb22iRnJ7l5f6C7d1TVI1X1siSvTXJtVT0xOnxld9+32MK6+8sTjv8PVXX/YtcDAAAAAAAAAAAAAAAAAAAAAAAAgMNJU0kG1d0r5ojvTHLMAQ5dfYCxLx1t3pLk7fOstWEB9WxNsvUA8avGtt88V87uvuBgawAAAAAAAAAAAAAAAAAAAAAAAADANMxMuwAAAAAAAAAAAAAAAAAAAAAAAAAAACa3ctoFwBCq6uIk758V3tHdr59GPQAAAAAAAAAAAAAAAAAAAAAAAABwuGkqyVGhu7ck2TLtOgAAAAAAAAAAAAAAAAAAAAAAAADgSJmZdgEAAAAAAAAAAAAAAAAAAAAAAAAAAExOU0kAAAAAAAAAAAAAAAAAAAAAAAAAgCVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgCVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgCVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgCVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgCVIU0kOWVXtrartVXVbVd1aVReN4mur6o555n26qm6eFTuvqraO8t1ZVZur6uLR/vaqeryqvjbavmGOvBuqqqvqLWOx9aPYO8ZiK6vq/qr69bHYiqr6SlW9Yiz2R1V1yeLODgAAAAAAAAAAAAAAAAAAAAAAAAAcHppKMoTd3b2+u1+S5F1J3newCVV1UpILkpxYVeeMHbouyTWjfC9M8lvdvWW0vz7JtiQ/M9p/0zxL3JHk0rH9TUlumzXmNUm+nuSSqqok6e69Sf5hkt+uqmOqalOSZ7r7kwe7TQAAAAAAAAAAAAAAAAAAAAAAAABwJGkqydDWJHloAePekOSzST6W5LKx+FlJ7t6/0923L7KObydZVVVnjBpGbkxy46wxm5Jcm+R/JHn52Jq3JLkpyVVJfi3J2xZZAwAAAAAAAAAAAAAAAAAAAAAAAAAcNppKMoTVVbW9qu5K8oEk713AnE1JPjr62TQWvybJF6rqxqq6oqpOOoS6PpXkkiQXJbk1yZP7D1TVqiSvzr7GlrNrSJJ3JfknSX6vu//0QMmr6q1Vta2qtn3khg8fQpkAAAAAAAAAAAAAAAAAAAAAAAAAMDlNJRnC7u5e393rkmxMckNV1VyDq+qMJOcm+VJ3fz3Jnqo6P0m6+0NJXpjkk0k2JLm5qo5bZF2fyL6mkvsbWI77qSRf7O7dSX4/yd+tqhVjx1+R5JEk58+VvLs3d/eF3X3hz77p8kWWCAAAAAAAAAAAAAAAAAAAAAAAAACLo6kkg+rum5KcluT0eYZdmuTkJDuqameStdnX+HF/ju909we7+3VJns48jR0PUst9SfYkeU2Sz886vCnJq0frfyXJqUl+Ikmq6i8l+Y3R/nOq6icXsz4AAAAAAAAAAAAAAAAAAAAAAAAAHE6aSjKoqlqXZEWSXfMM25RkY3ev7e61SS5Ictlo/saqOma0fWb2NXu85xBKek+Sd3b33rEa1yT58SQ/OFbDP8r/bmz5niSf6O67kvzDJNdU1apDqAEAAAAAAAAAAAAAAAAAAAAAAAAABrdy2gVwVFhdVdtH25Xk8u7eW1VJcl5V3T029tokZye5eX+gu3dU1SNV9bIkr01ybVU9MTp8ZXfft9jCuvvLBwi/PskXuvvJsdgfJvmNqnrJ6PhLRvO/WlVbkrwzyS8vtg4AAAAAAAAAAAAAAAAAAAAAAAAAGJqmkhyy7l4xR3xnkmMOcOjqA4x96WjzliRvn2etDQuoZ2uSrQeIXzW2++FZxx5Mcvpo94dnHfv5g60JAAAAAAAAAAAAAAAAAAAAAAAAAEfazLQLAAAAAAAAAAAAAAAAAAAAAAAAAABgciunXQAsVlVdnOT9s8I7uvv106gHAAAAAAAAAAAAAAAAAAAAAAAAAI4kTSVZsrp7S5It064DAAAAAAAAAAAAAAAAAAAAAAAAAKZhZtoFAAAAAAAAAAAAAAAAAAAAAAAAAAAwueruadcARwO/SAAAAAAAAAAAAAAAAAAAAAAAi1PTLgA4+vzWf/hPekMBi/KPf/KVS+raZGbaBQAAAAAAAAAAAAAAAAAAAAAAAAAAMLmV0y4AAAAAAAAAAAAAAAAAAAAAAAAAYEhVNe0SAI6ImWkXAAAAAAAAAAAAAAAAAAAAAAAAAADA5DSVBAAAAAAAAAAAAAAAAAAAAAAAAABYgjSVBAAAAAAAAAAAAAAAAAAAAAAAAABYgjSV5JBV1d6q2l5Vt1XVrVV10Si+tqrumGfep6vq5lmx86pq6yjfnVW1uaouHu1vr6rHq+pro+0b5si7oaoeqaqvjsb+56r6qbHjV1XVO0bb11fVjrH8Pz+K76yq28fiFw1xrgAAAAAAAAAAAAAAAAAAAAAAAABgKCunXQBHhd3dvT5JquriJO9L8sr5JlTVSUkuSPJ4VZ3T3d8aHbouyTXd/YejcS/q7tuTbBntb03yju7edpCa/ri7f2o0Z32ST1fV7u7+/AHGXtndnzpA/FXd/cBB1gEAAAAAAAAAAAAAAAAAAAAAAACAqZiZdgEcddYkeWgB496Q5LNJPpbksrH4WUnu3r8zaih5SLp7e5JfSfK2Q80FAAAAAAAAAAAAAAAAAAAAAAAAAM8WmkoyhNVVtb2q7krygSTvXcCcTUk+OvrZNBa/JskXqurGqrqiqk4aqMZbk6yb49jVo/q3V9WLxuJfHMVuOdCkqnprVW2rqm2bN28eqEwAAAAAAAAAAAAAAAAAAAAAAAAAWJiV0y6Ao8Lu7l6fJFX18iQ3VNX5cw2uqjOSnJvkS93dVbWnqs7v7ju6+0NVtSXJxiSvS/L3q+ol3f3kIdZY8xy7srs/dYD4q7r7gbkmdffmJPu7SfahFAcAAAAAAAAAAAAAAAAAAAAAAAAAk5qZdgEcXbr7piSnJTl9nmGXJjk5yY6q2plkbZJNYzm+090f7O7XJXk6yZwNKifwo0nuHCAPAAAAAAAAAAAAAAAAAAAAAAAAADwraCrJoKpqXZIVSXbNM2xTko3dvba71ya5IMllo/kbq+qY0faZSU5Ncs8h1vTiJP8iye8cSh4AAAAAAAAAAAAAAAAAAAAAAAAAeDZZOe0COCqsrqrto+1Kcnl3762qJDmvqu4eG3ttkrOT3Lw/0N07quqRqnpZktcmubaqnhgdvrK771tETT9eVV9NcnySv0jy8939+UXkAQAAAAAAAAAAAAAAAAAAAAAAAIBnperuadcARwO/SAAAAAAAAAAAAAAAAAAAAAAAi1PTLgA4+vz2jf9ZbyhgUd72N1+xpK5NZqZdAAAAAAAAAAAAAAAAAAAAAAAAAAAAk1s57QJgsarq4iTvnxXe0d2vn0Y9AAAAAAAAAAAAAAAAAAAAAAAAAHAkaSrJktXdW5JsmXYdAAAAAAAAAAAAAAAAAAAAAAAAADANmkrCAHZ982uD5Fn5fScOkidJasXMcLmOOXawXE88U4PlOnblgLfxyd2D5Om9zwySJ0meeeqJwXLlxFOHy8VETl5zwiB5dn3rG4PkWS5OPefcQfJ856YvDpJnOfn+l7/qkHM8fO89A1SyvJx01nMHyfPQ/9gxSJ7l4uQffP4geR758/sGybNcnHjGmYPkeeSxxwbJs1yceMIw1zQbrvrtQfIsJ1uvetsh5/A4M7mhHmse+rOdg+RZLk5+3tpB8jz64K5B8iwXa04Z5jWDRx/4i0HyLBdrTnvOIHlu33n3IHmWixet/YFB8vz3b3veOqkfOfvQn7cO9Tr8cnLqC84bJM9//brXCybxV354mNcLHnvk4UHyLBcnnHjSIHm2fWPnIHmWiwvPXTtIHs+dJjPUc6dv3esaflLnnHXo1/G7/vSuASpZXk79oXWD5Ln3gQcHybNcnHXaKYPk8VgzmSEeZ5LkL/5k2yB5lovnvPjCQfJ4n3tyQ7zPfd9XbhqgkuXlzAtePkiee+73t3USzz19mL+tX/uzewfJs1yc97yzBsnjvE9mqPP+2KOPDpJnuThhzZpB8tz6p98eJM9y8tIfOvuQc/iM8OSG+pyw6/jJDPZZVa8JT2So14S93zqZod5r9XmayQz1eZqb7vrmIHmSZO1pJw+Wa/eepwfLderMcN9fe/qxYd6bfvj44c7VvQ8P9znvFzxnmOfkSfLYE08Nlus5K4f7P9z7+HDPn3atGua99yefHu7+fuaJw3yOPUlWDvid25nd3x0s155Hh3utrU8b5prta/feP0ieZNjH0ge/+73Bcp19/DGD5XpmoO8nJ8n9M6sHyzWUE1YN9x3zbw342vL5P3DGYLm+9+SewXKtOnaY+9aDjw93f191zHD393sfHu7vztkDPj489fTewXIdf9ww5+v+R4f7WzGks05YNViuIftGrHz8ocFy1cph/g9njj1ukDxJsve7w13jrjxxuN+dIT32324dLNf3X/QTg+UCAFhuhnsFDAAAAAAAAAAAAAAAAAAAAAAAAACAI0ZTSQAAAAAAAAAAAAAAAAAAAAAAAACAJUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAJUhTSYD/yc79B2talneC/37bVkT5Ib9ESNQe8UeSQkKEWmN2rDQ/nNVyJgoj0F1TkzCZSKp2jGsMyY4lJhiT0qpJJsqSlGETB5Ls2FhRZgxLZWM0VNA1jmBaA1gqrYigMYhRoiii3PvHeTr7zjvnnD6neenDoT+fqrv6ea77vq/nut8+/fZbffpcAAAAAAAAAAAAAAAAAAAAAAAAAJvQ1o0uAAAAAAAAAAAAAAAAAAAAAAAAAGCRHrOlG10CwAGxZaMLAAAAAAAAAAAAAAAAAAAAAAAAAABg/TSVfBRp+5S2u9ruaXtT2+vaPnuae03bb7c9cmb99rbXLpPnsW3f0vYzbT/W9sNtXzLN3d722Lbb2t48t+/SthdP11e2va/t4TPzb2072h67yhlG2z+aud/a9u69dba9cLrfPTN+aKrnW23/uu0n2/63thfO5Lmw7eVzz9rddtdc7Mq2d7U9ZLo/tu3tq73uAAAAAAAAAAAAAAAAAAAAAAAAALARNJV8lGjbJNckuX6McdIY47Qkr0ty/LRkZ5KPJjl3DenelOSEJCePMZ6X5OVJDl99y7JuS/Kyqb4tSc5Mctc+9nwzycltD53uX7TMnqvHGKfOjFun+J4xxo+MMX4wyY4kr2n7b5Z7SNsfTPKYJC9s+8S56e8l+ek1nA8AAAAAAAAAAAAAAAAAAAAAAAAANoymko8eZyR5YIzx9r2BMcbHxxg3tD0pyWFJLslSc8kVtX1Cklcm+bkxxv1Tni+PMd61HzXtSnLBdL09yYeSfHcN+65L8tLpemeSd673wWOMzyZ5bZJXr7BkZ5I/TPJnmRpfznhrkp9vu3W9zwUAAAAAAAAAAAAAAAAAAAAAAACAA0VTyUePk5PctMLcjiw1eLwhyXPaHr9KnmcmuWOMce8Cavp0kuPaHpWlJo671rhvV5IdbR+f5JQkH5mbv6Dt7plx6Ap5PpbkB1aYu2B6zjvzPzbavCPJB5P869WKbHtR2xvb3njVrqtXWwoAAAAAAAAAAAAAAAAAAAAAAAAAC7d1owvggNiZ5JwxxoNt353kvCSXP8ScY43x92SpqeXzk/zsmhKP8Ym227JU93XLLLl6jPGq2UDb5VItH2xPT/KVMcYdbe9K8o62R48xvjqz7M1J/muS/3uVOq9IckWS3LPnUyu9HgAAAAAAAAAAAAAAAAAAAAAAAADwsNiy0QWwMLckOW0+2Pa5SZ6V5H1tb89Sg8edq+S5LcnT2h6xj+fdk+SoudjRSb4yF7s6yZuSvG+M8eA+cs56b5LfSPLOdeyZ9yNJPrlMfGeSH5hejz1JjkjyL2cXjDE+k2R3kvMfwvMBAAAAAAAAAAAAAAAAAAAAAAAA4GGjqeSjxweSHNL2or2BtqckuSzJpWOMbdM4McmJbZ++XJIxxn1Jfj/J29o+bspzXNvz5tZ9I8mX2p45rTk6yYuTfHBu3eeTvD7J76zzPO9I8sYxxt+sc1+merZlqSnl/zEX35KlRpHP3fuaJHlZlm+0+etJLt6f5wMAAAAAAAAAAAAAAAAAAAAAAADAw01TyUeJMcZIck6Ss9vuaXtLkjcn2Z7kmrnl1yTZMV2f1fbOmfGCJJckuTvJrW1vTnJtknuXeexPJnlD291Zamr5xjHGnmVq+93l4vs4z51jjMtWmL6g7e6Z8WNT/KS2f932k0neleSyMcZ/mtv7wiR3jTG+OBP7yyQ/1PaEuRpuSfKx9dQNAAAAAAAAAAAAAAAAAAAAAAAAAAfK1o0ugMWZGiWev4Z1r525PXSFZb80jfm922aub01yxgrPuHCF+Lbl4jPzhy0Tuz7J9dP1lUmuXGH7SmeZ3/ejc3PfS/KU6fbCublzV6sXAAAAAAAAAAAAAAAAAAAAAAAAADbKlo0uAAAAAAAAAAAAAAAAAAAAAAAAAACA9du60QVw8Gl7TJL3LzN11hjjngNdDwAAAAAAAAAAIoKF2gAAIABJREFUAAAAAAAAAAAAAABsRppKcsBNjSNP3eg6AAAAAAAAAAAAAAAAAAAAAAAAAGAz27LRBQAAAAAAAAAAAAAAAAAAAAAAAAAAsH6aSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAArFHbF7f9VNvb2v77ZeYvbHt3293T+JmZuZ9q+5lp/NRDrWXrQ00AAAAAAAAAAAAAAAAAAAAAAAAAAHAwaPuYJL+d5EVJ7kzy0bbvHWPcOrf06jHGq+b2Hp3kV5KcnmQkuWna+/f7W8+W/d0IAAAAAAAAAAAAAAAAAAAAAAAAAHCQ+Z+S3DbG+OwY4ztJdiV52Rr3/i9J3jfG+OrUSPJ9SV78UIrRVBIAAAAAAAAAAAAAAAAAAAAAAAAAYG2+L8kXZu7vnGLz/mXbT7T947ZPXefeNdNU8iDU9iltd7Xd0/amtte1ffY095q232575Mz67W2vXSbPY9u+pe1n2n6s7YfbvmSau73tsW23tb15bt+lbS+erq9se1/bw2fm39p2tD12lTOMtn80c7+17d1762x74XS/e2b80Mz6lc452v6Lmdi1bbev8aUFAAAAAAAAAAAAAAAAAAAAAADgEWBLaxiGsV+j7UVtb5wZF+3H29CfJNk2xjglyfuSXLXYd7n/n6aSB5m2TXJNkuvHGCeNMU5L8rokx09Ldib5aJJz15DuTUlOSHLyGON5SV6e5PDVtyzrtiQvm+rbkuTMJHftY883k5zc9tDp/kXL7Ll6jHHqzLh1Zm6lc96Z5PX7cQYAAAAAAAAAAAAAAAAAAAAAAAAANrkxxhVjjNNnxhVzS+5K8tSZ++/PXC+8McY9Y4z7p9vfS3LaWveul6aSB58zkjwwxnj73sAY4+NjjBvanpTksCSXZKnp4oraPiHJK5P83N4v1jHGl8cY79qPmnYluWC63p7kQ0m+u4Z91yV56XS9M8k71/KwfZzz40m+3vZFa8kFAAAAAAAAAAAAAAAAAAAAAAAAwEHlo0me1faftH1ckh1J3ju7oO0JM7c/keST0/X/k+SftT2q7VFJ/tkU22+aSh58Tk5y0wpzO7LU4PGGJM9pe/wqeZ6Z5I4xxr0LqOnTSY6bvqh3TjWsxa4kO9o+PskpST4yN39B290z49Apvq9z/nqWGk6uqu1FbW9se+NVu65eY8kAAAAAAAAAAAAAAAAAAAAAAAAAbFZjjO8meVWWmkF+Msm7xhi3tP3Vtj8xLXt121vafjzJq5NcOO39apI3Zakx5UeT/OoU229bH8pmHnV2JjlnjPFg23cnOS/J5Q8x51hj/D1Zavb4/CQ/u6bEY3yi7bYs1X3dMkuuHmO8apn4quccY/xl27T9p/t4/hVJrkiSe/Z8aqVzAgAAAAAAAAAAAAAAAAAAAAAAAPAoMsa4LnM98MYYvzxz/bokr1th7zuSvGNRtWgqefC5Jckr5oNtn5vkWUne1zZJHpfkc1m5qeRtSZ7W9ogxxr2rPO+eJEfNxY6ecs+6OslNSa6amj3u6xx7vTfJbyTZnuSYfS1exzl/PcklSb671kIAAAAAAAAAAAAAAAAAAAAAAAAA4EDastEFcMB9IMkhbS/aG2h7SpLLklw6xtg2jROTnNj26cslGWPcl+T3k7yt7eOmPMe1PW9u3TeSfKntmdOao5O8OMkH59Z9Psnrk/zOOs/zjiRvHGP8zRrX78wazjnG+LMsNcM8ZZ31AAAAAAAAAAAAAAAAAAAAAAAAAMABoankQWaMMZKck+Tstnva3pLkzUm2J7lmbvk1SXZM12e1vXNmvCDJJUnuTnJr25uTXJvk3mUe+5NJ3tB2d5aaWr5xjLFnmdp+d7n4Ps5z5xjjshWmL2i7e2b82HSe1c4569eTPHU99QAAAAAAAAAAAAAAAAAAAAAAAADAgbJ1owvgwBtjfDHJ+WtY99qZ20NXWPZL05jfu23m+tYkZ6zwjAtXiG9bLj4zf9gyseuTXD9dX5nkymW2PmOZfbPnvH4m/t4kXa0OAAAAAAAAAAAAAAAAAAAAAAAAANgoWza6AAAAAAAAAAAAAAAAAAAAAAAAAAAA1m/rRhcAK2l7TJL3LzN11hjjngNdDwAAAAAAAAAAAAAAAAAAAAAAAAA8kmgqySPW1Djy1I2uAwAAAAAAAAAAAAAAAAAAAAAAAAAeibZsdAEAAAAAAAAAAAAAAAAAAAAAAAAAAKyfppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppKsqu1T2u5qu6ftTW2va/vsae41bb/d9siZ9dvbXrtMnse2fUvbz7T9WNsPt33JNHd722Pbbmt789y+S9tePF1f2fa+tofPzL+17Wh77CpnGG3/aOZ+a9u799bZ9sK2l8887762T55Z/431v3IAAAAAAAAAAAAAAAAAAAAAAAAA8PDSVJIVtW2Sa5JcP8Y4aYxxWpLXJTl+WrIzyUeTnLuGdG9KckKSk8cYz0vy8iSHr75lWbcledlU35YkZya5ax97vpnk5LaHTvcv2seeryT5hf2oDQAAAAAAAAAAAAAAAAAAAAAAAAAOGE0lWc0ZSR4YY7x9b2CM8fExxg1tT0pyWJJLstRcckVtn5DklUl+boxx/5Tny2OMd+1HTbuSXDBdb0/yoSTfXcO+65K8dLremeSdq6x9R5IL2h69WsK2F7W9se2NV+26eg0lAAAAAAAAAAAAAAAAAAAAAAAAAMDiaCrJak5OctMKczuy1ODxhiTPaXv8KnmemeSOMca9C6jp00mOa3tUlppD7lrjvl1JdrR9fJJTknxklbXfyFJjyf9ttYRjjCvGGKePMU7/qR0XrLYUAAAAAAAAAAAAAAAAAAAAAAAAABZOU0n2184ku8YYDyZ5d5LzFpBzrDH+niw1tXx+lppa7jvxGJ9Isi1LdV+3hi2XJfmptoevJT8AAAAAAAAAAAAAAAAAAAAAAAAAHGhbN7oAHtFuSfKK+WDb5yZ5VpL3tU2SxyX5XJLLV8hzW5KntT1ijHHvKs+7J8lRc7Gjp9yzrk5yU5KrxhgPTjWsxXuT/EaS7UmOWW3hGONrbf9zkn+31uQAAAAAAAAAAAAAAAAAAAAAAAAAcCBt2egCeET7QJJD2l60N9D2lCSXJbl0jLFtGicmObHt05dLMsa4L8nvJ3lb28dNeY5re97cum8k+VLbM6c1Ryd5cZIPzq37fJLXJ/mddZ7nHUneOMb4mzWu/49JfjaarwIAAAAAAAAAAAAAAAAAAAAAAADwCKSpJCsaY4wk5yQ5u+2etrckeXOS7UmumVt+TZId0/VZbe+cGS9IckmSu5Pc2vbmJNcmuXeZx/5kkje03Z2lppZvHGPsWaa2310uvo/z3DnGuGwd678yneuQ9TwHAAAAAAAAAAAAAAAAAAAAAAAAAA6ErRtdAI9sY4wvJjl/DeteO3N76ArLfmka83u3zVzfmuSMFZ5x4QrxbcvFZ+YPWyZ2fZLrp+srk1w5XV86t+61SWbPBgAAAAAAAAAAAAAAAAAAAAAAAACPCFs2ugAAAAAAAAAAAAAAAAAAAAAAAAAAANZv60YXAIvQ9pgk719m6qwxxj0Huh4AAAAAAAAAAAAAAAAAAAAAAAAAeLhpKsmjwtQ48tSNrgMAAAAAAAAAAAAAAAAA4GDxpPv+Pl97wlEbXQYAAAAAwEFty0YXAAAAAAAAAAAAAAAAAAAAbD4aSgIAAAAAbDxNJQEAAAAAAAAAAAAAAAAAAAAAAAAANiFNJQEAAAAAAAAAAAAAAAAAAAAAAAAANiFNJQEAAAAAAAAAAAAAAAAAAAAAAAAANiFNJQEAAAAAAAAAAAAAAAAAAAAAAAAANiFNJQEAAAAAAAAAAAAAAAAAAAAAAAAANiFNJQEAAAAAAAAAAAAAAAAAAAAAAAAANiFNJfnvtH1K211t97S9qe11bZ89zb2m7bfbHjmzfnvba5fJ89i2b2n7mbYfa/vhti+Z5m5ve2zbbW1vntt3aduLp+sr297X9vCZ+be2HW2PXeUMo+0fzdxvbXv3fJ1t/0vbv5qLXdb2l2fuX9/2t/f9ygEAAAAAAAAAAAAAAAAAAAAAAADAgaWpJP+obZNck+T6McZJY4zTkrwuyfHTkp1JPprk3DWke1OSE5KcPMZ4XpKXJzl89S3Lui3Jy6b6tiQ5M8ld+9jzzSQntz10un/R/J62T0pyWpIj2z5jZuqSJBe2fcYU/5kkr9+PugEAAAAAAAAAAAAAAAAAAAAAAADgYaWpJLPOSPLAGOPtewNjjI+PMW5oe1KSw7LUdHHnaknaPiHJK5P83Bjj/inPl8cY79qPmnYluWC63p7kQ0m+u4Z91yV56XS9M8k75+bPTfInU/4de4NjjHuz1ETy8mn88hjja8s9oO1FbW9se+NVu65e02EAAAAAAAAAAAAAAAAAAAAAAAAAYFE0lWTWyUluWmFuR5YaMN6Q5Dltj18lzzOT3DE1aHyoPp3kuLZHZak55K417tuVZEfbxyc5JclH5ub3Npp8Z+aaZI4x3pnkqCRHjDH+cKUHjDGuGGOcPsY4/ad2XLDSMgAAAAAAAAAAAAAAAAAAAAAAAAB4WGgqyVrtTLJrjPFgkncnOW8BOcca4+/JUlPL52epqeW+E4/xiSTbslT3dbNzU0PMZyX54Bjj00keaHvyzPz3JzkhyYltD1vL8wAAAAAAAAAAAAAAAAAAAAAAAADgQNu60QXwiHJLklfMB9s+N0tNGN/XNkkel+RzSS5fIc9tSZ7W9ogxxr2rPO+eJEfNxY6ecs+6OslNSa4aYzw41bAW703yG0m2JzlmJn7+9NzPTbmOyFLzyddP829L8itJfnD69RfX+kAAAAAAAAAAAAAAAAAAAAAAAAA23pa196sC2NS2bHQBPKJ8IMkhbS/aG2h7SpLLklw6xtg2jROTnNj26cslGWPcl+T3k7yt7eOmPMe1PW9u3TeSfKntmdOao5O8OMkH59Z9PksNH39nned5R5I3jjH+Zi6+M8mL954nyWlJdkw1vCTJk5P8QZI3JTm37Q+t87kAAAAAAAAAAAAAAAAAAAAAAAAA8LDTVJJ/NMYYSc5JcnbbPW1vSfLmJNuTXDO3/JpMjRiTnNX2zpnxgiSXJLk7ya1tb05ybZJ7l3nsTyZ5Q9vdWWpq+cYxxp5lavvd5eL7OM+dY4zLZmNttyV5epK/mln3uSRfb/vjSd6a5H8dS76Z5BeTXL6e5wIAAAAAAAAAAAAAAAAAAAAAAADAgbB1owvgkWWM8cUk569h3Wtnbg9dYdkvTWN+77aZ61uTnLHCMy5cIb5tufjM/GHLxK5Pcv10+33LzD9vunzOXPw9Sd6z2vMAAAAAAAAAAAAAAAAAAAAAAAAAYCNs2egCAAAAAAAAAAAAAAAAAAAAAAAAAABYv60bXQDsj7bHJHn/MlNnjTHuOdD1AAAAAAAAAAAAAAAAAAAAAAAAAMCBpqkkm9LUOPLUja4DAAAAAAAAAAAAAAAAAAAAAAAAADZKxxgbXQM8GviDBAAAAAAAAAAAAAAAAAAAAACwf7rRBQCPPv/n+z6kNxSwX175ov95U3022bLRBQAAAAAAAAAAAAAAAAAAAAAAAAAAsH6aSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEKaSvLfafuUtrva7ml7U9vr2j57mntN22+3PXJm/fa21y6T57Ft39L2M20/1vbDbV8yzd3e9ti229rePLfv0rYXT9dXtr2v7eEz829tO9oeu8oZvtd2d9tb2n687S+03TJfb9sL2949rd3d9g9mnvu5mfirH8prCgAAAAAAAAAAAAAAAAAAAAAAAAAPh60bXQCPHG2b5JokV40xdkyxH05yfJJPJ9mZ5KNJzk3yn/aR7k1JTkhy8hjj/rbHJ/nx/SjrtiQvS/JHU2PIM5PctY893xpjnDrV/+Qk/znJEUl+ZZm1V48xXrVM/BfHGH+8H/UCAAAAAAAAAAAAAAAAAAAAAAAAwAGxZaML4BHljCQPjDHevjcwxvj4GOOGticlOSzJJVlqLrmitk9I8sokPzfGuH/K8+Uxxrv2o6ZdSS6Yrrcn+VCS76518xjj75JclORVU9NMAAAAAAAAAAAAAAAAAAAAAAAAAHhU0FSSWScnuWmFuR1ZavB4Q5LntD1+lTzPTHLHGOPeBdT06STHtT0qS80sd603wRjjs0kek+TJy0xf0Hb3NP7NTPw/zMSfu1zethe1vbHtjVdcccV6ywIAAAAAAAAAAAAAAAAAAAAAAACAh2TrRhfAprEzyTljjAfbvjvJeUkuf4g5xxrj78lSU8vnJ/nZh/jMeVePMV61TPwXxxh/vNrGMcYVSfZ2k1zpLAAAAAAAAAAAAAAAAAAAAAAAAADwsNBUklm3JHnFfLDtc5M8K8n72ibJ45J8Lis3lbwtydPaHjHGuHeV592T5Ki52NFT7llXJ7kpyVVTU8t9nWO+/mck+V6Sv0vyg+vaDAAAAAAAAAAAAAAAAAAAAAAAAACPUFs2ugAeUT6Q5JC2F+0NtD0lyWVJLh1jbJvGiUlObPv05ZKMMe5L8vtJ3tb2cVOe49qeN7fuG0m+1PbMac3RSV6c5INz6z6f5PVJfme9B2p7XJK3J7l8jDHWux8AAAAAAAAAAAAAAAAAAAAAAAAAHqk0leQfTU0Xz0lydts9bW9J8uYk25NcM7f8miQ7puuz2t45M16Q5JIkdye5te3NSa5Ncu8yj/3JJG9ouztLTS3fOMbYs0xtv7tcfAWHtt091f/nSf4syRvXuBcAAAAAAAAAAAAAAAAAAAAAAAAANoUu9REEHiJ/kAAAAAAAAAAAAAAAAAAAAAAA9k83ugDg0ef3/vz/1RsK2C8/c/aPbarPJls2ugAAAAAAAAAAAAAAAAAAAAAAAAAAANZv60YXAPuj7TFJ3r/M1FljjHsOdD0AAAAAAAAAAAAAAAAAAAAAAAAAcKBpKsmmNDWOPHWj6wAAAAAAAAAAAAAAAAAAAAAAAACAjaKpJCzAp+/824XkOe6IJy4kT5L87df+YWG5Tjzq8IXl+odvfWdhuZ74+MctLNeifPs7Dyws12GP3bKwXN+55+6F5fruk45bWK6DwfFHP2kheb781a8tJM/BYlGv+71fvWcheQ4mRxx9zEPO8Q9f9/W+XocfuZiv+a9/eTGfaQ4WRx7/lIXk+ft7F/e57WBw1BGL+WzqdV+fRb3u3mfWbxHvNdsvvXwBlRxcrr/0VQvJ86WvfHUheQ4WJxx79ELyfPZLf7eQPAeLZ5zw5IXkufvvv76QPAeL4446ciF57vnsZxaS52BxzDOetZA8Xvf1W8Rr7zP8+i3sc/w/eO3X48jDF/O67/nilxeS52Bx0onHLyTP175010LyHCyedML3LSTPor7XerB49vcv5t8lv/r5zy4kz8Hk6Kc/4yHn8L2n9VvE956S5O5bP76QPAeL437ohxeSx/f91mdR3/Pz72Prs6h/H/vUF760kDwHk+c89YSHnMPfreu3qL9bv/bFLywkz8HiSSc+dSF5Pnbb5xeS52DxvGc+fSF5vNesz6LeZ3yWXJ9FfZb0/r5+i3iP9z2Q9VvU90C816zPwv6vqu89rcuivvd05V/81ULyHCwuPONHF5LHe/z6LOr9/Wt/+8WF5EmSL3z7wYXletqhi/tR3m9sWdzP1B2+ZXFnXJQHv3P/wnJ94f6xsFwHw+/hg/d/ayF5HvPExf086p577l1YrpOOOWJhue6+b3E/J3vUEw9dWK6tWczX/He/vrj/A/13OWRhuZ48vr2wXFuOOnZhucY3Fvd1Op64oK/Try/u37T62MW9Z33vmwv8fDQW9x6/yDM+5ugF/Qz2fd9cTJ4kD35ncX92Hrx/cbkWaZG/hz1qMb+H/ebi3hsW6f5DFtfP4vEPLO7roVsfea1vvvfYxf0d9vmv/P3Ccj392KMWlmuRvTHuuGdxP1Py/Of8k4XlAgA42CyuYxkAAAAAAAAAAAAAAAAAAAAAAAAAAAeMppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAJuQppKbSNuntN3Vdk/bm9pe1/bZbb/VdnfbW9v+QdvHTuu3t/36NLd3nD2T7+VtR9sfmO4/Mq25o+3dM3u2tb297bHTutH2N2fyXNz20un60rYXT9dXtr2r7SHT/bFtb1/lfNum3L82Ezu27QNtL5/Jf9fcmZ40c9a/bvuptn/Z9p/P5PnHuqb7rdMZ3zJXw/Vtb5y5P73t9ev6jQIAAAAAAAAAAAAAAAAAAAAAAACAA0BTyU2ibZNck+T6McZJY4zTkrwuyfFJ9owxTk3y3CTfn+T8ma03jDFOnRl/PjO3M8kHp18zxnj+lOeXk1w9s+f2uXLuT3Lu3iaT+/C9JD+9jqN+LslLZ+7PS3LL3JrfmjvT16b4DWOMHxljPCfJq5Nc3vasFZ7zoiSfTnLe9NrOenLbl6yjZgAAAAAAAAAAAAAAAAAAAAAAAAA44DSV3DzOSPLAGOPtewNjjI8n+cLM/feS/Lck37evZG0PS/JPk/zbJDvWWct3k1yR5OfXsPatSX6+7dY15r4vySfbnj7dX5DkXeusL2OM3Ul+NcmrVliyM8nbktyR5AVzc/8hyevX+0wAAAAAAAAAAAAAAAAAAAAAAAAAOJA0ldw8Tk5y02oL2j4+yfOT/OlM+IVtd8+Mk6b4y5L86Rjj00nuaXvaOuv57ST/qu2R+1h3R5IPJvnX68i9K8mOtk9N8r0kX5yb//mZ8/zFKnk+luQH5oPT63R2kj9J8s4sNZic9eEk32l7xmpFtr2o7Y1tb7z6//rD1U8EAAAAAAAAAAAAAAAAAAAAAAAAAAumqeSjw0ltdyf5cpIvjTE+MTN3wxjj1JmxZ4rvzFLzxky/zjdWXNUY494kf5Dk1WtY/uYkv5i1f739aZIXJdmR5Opl5n9r5jyrNX7sCvF/nuQvxhjfSvLuJC9v+5i5Nb+W5JLVihxjXDHGOH2McfoF/2o9PTMBAAAAAAAAAAAAAAAAAAAAAAAA4KHTVHLzuCXJaSvM7RljnJrkpCSntf2J1RK1PTrJmUl+r+3tWWr4eH7blZowruStSf5tkieutmiM8Zkku5Ocv5akY4zvJLkpyS8k+eN11jTrR5J8cpn4ziRnT2e/KckxWXo9Zmv4QJJDk/zoQ3g+AAAAAAAAAAAAAAAAAAAAAAAAADxsNJXcPD6Q5JC2F+0NtD0lyVP33o8xvpLk3yd53T5yvSLJH44xnj7G2DbGeGqSzyV54XoKGmN8Ncm7stRYcl9+PcnF60j/m0n+9+kZ6za9Nm9I8ttz8SOydM6nTWffluTfZanR5LxfS/JL+/N8AAAAAAAAAAAAAAAAAAAAAAAAAHi4aSq5SYwxRpJzkpzddk/bW5K8Ocnfzi39L0me0HZvg8gXtt09M16RpQaK18zte3eWb6y4L7+Z5Ng11H9Lko+tNekY45YxxlUrTP/83Jm2TfEXtv3rtp/KUjPJV48x3j+395wkHxhj3D8T+69J/kXbQ+ZquC7J3WutGQAAAAAAAAAAAAAAAAAAAAAAAAAOpK0bXQBrN8b4YpLzl5k6eWbNSPLDM3NHLrP+j5fJfdnM9ZVJrpyb3zZzfdjM9ZeTPGHm/tKZ6wvncpy7TC2z87dn5izL1TPlv3R+TZLbs/xZ/4e6klw1N/fVJMdNt9vn5k5brWYAAAAAAAAAAAAAAAAAAAAAAAAA2ChbNroAAAAAAAAAAAAAAAAAAAAAAAAAAADWb+tGF8DBp+1zk/zhXPj+McbzN6IeAAAAAAAAAAAAAAAAAAAAAAAAHl0es6UbXQLAAaGpJAfcGONvkpy60XUAAAAAAAAAAAAAAAAAAAAAAAAAwGa2ZaMLAAAAAAAAAAAAAAAAAAAAAAAAAABg/TSVBAAAAAAAAAAAAAAAAAAAAAAAAADYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAADYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAADYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAADYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAADYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAADYhDSVfBRq+5S2u9ruaXtT2+vaPrvtt9rubntr2z9o+9hp/fa2X5/m9o6zZ/K9vO1o+wPT/UemNXe0vXtmz7a2t7c9dlo32v7mTJ6L2146XV/a9uLp+sq2d7U9ZLo/tu3tq5xv25T712Zix7Z9oO3lM/nvmjvTk2bWv3Wa3zITu7Dtg21PmYnd3Hbb/v1OAAAAAAAAAAAAAAAAAAAAAAAAAMDDR1PJR5m2TXJNkuvHGCeNMU5L8rokxyfZM8Y4Nclzk3x/kvNntt4wxjh1Zvz5zNzOJB+cfs0Y4/lTnl9OcvXMntvnyrk/ybl7m0zuw/eS/PQ6jvq5JC+duT8vyS1za35r7kxfS5KpkeQ5Sb6Q5Mfn9tyZ5PXrqAMAAAAAAAD4/9i5/2i/6/o+4M9XiAURBTFWW6VcpbbWgY0NO9gRy48PAAAgAElEQVQdcw4oTrtSqRRiMmtLy0a3s85Ki6POrc02KZ2ViUxXl/ZMfhzXYHXQVjvWWuUUuqoHaJRGVzyRDCZCDVSiEvkRX/sj37t9dndv7v0mX/LN5T4e53zO/bxf7/f79X59br65+d4k9wUAAAAAAAAAAAAAAABMhaaSTz5nJHmsu98/G+juz2ZfA8XZ8d4kn0nyvMWSVdUxSV6R5IIkG8es5fEkW5JctIS1VyS5qKpWLzH3w0m+UFWnjsZvSPKhJe49PfsaUP5mRo0yBz6a5G9V1fcvMRcAAAAAAAAAAAAAAAAAAAAAAAAATIWmkk8+Jye5bX8LquqoJKcluXEQXl9V2wbXSaP42Ulu7O47kzxQVevGrOd9Sd5YVccusu7uJLckedMYubcm2VhVJyTZm+TeOfMXDZ7nk4P4piS/k+T6JD9aVU8ZzH07yTuT/PPFDq+qC6vq1qq69boPXjtG2QAAAAAAAAAAAAAAAAAAAAAAAABw8DSVXFlOqqptSe5P8pXu/txg7ubuXju4dozim7KveWNGHzeNc2B3705yTZI3L2H5ZUnemqW/Lm9M8uokG5NcN8/8uwfPc0aSVNV3JPl7SW4Y1fbpJK+Zs+8/J3l5Vb1gf4d395buPrW7T33DG8fphQkAAAAAAAAAAAAAAAAAAAAAAAAAB2/1tAtg4rYnOXeBuR3dvbaq1iT5s6p6XXf//kKJqur4JK9MckpVdZIjknRVvbW7e4yarkhye5IP7G9Rd39x1PRyw1KSdvejVXVbkl9K8pIkr1vCttckOS7JHVWVJEcn2ZPko4O8j1fV5UkuWUodAAAAAAAAAAAAAAAAAAAAAAAAADANq6ZdABP3iSRHVtWFs4GqemmSE2bH3b0ryS8nedsiuc5Ncm13n9jdM919QpK7kqwfp6DufjDJh5JcsITllya5eIz0lye5ZHTGUmxK8g9GzzOT5AVJXl1VR89Zd1WSM5M8e4xaAAAAAAAAAAAAAAAAAAAAAAAAAOCQ0VTySaa7O8nrk5xZVTuqanuSy5LcN2fpDUmOrqrZBpHrq2rb4Do3+xowXj9n30dG8XFdnmTNEurfnuT2pSbt7u3dffUC0xfNeaaXJHltko8N9n8zyS1JfmxO3keTXJnkO5daCwAAAAAAAAAAAAAAAAAAAAAAAAAcSqunXQCT1933Jtkwz9TJgzWd5AcHc8fOs/7D8+S+cnB/VZKr5szPDO6PGdzfn+TowXjz4P78OTnOmaeW4fzODJ5lvnpG+TfPXZPk+Hn2Dc+7ahC/MvsaSwIAAAAAAAAAAAAAAAAAAAAAAADAYWfVtAsAAAAAAAAAAAAAAAAAAAAAAAAAAGB8q6ddACykqk5Jcu2c8CPdfdo06gEAAAAAAAAAAAAAAAAAAAAAAACAw4mmkhy2uvuOJGunXQcAAAAAAAAAAAAAAAAAAAAAAAAAHI40lQQAAAAAAAAAAAAAAAAAAAAAAACeVKpq2iUAHBKrpl0AAAAAAAAAAAAAAAAAAAAAAAAAAADj01QSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lRyhauq51bV1qraUVW3VdUfVtX3VdWeqtpWVZ+vqmuq6imj9adX1UOjudnrzEG+H6+qrqoXj8afHq25u6q+OtgzU1U7q2rNaF1X1eWDPBdX1ebR/eaqunh0f1VVfbmqjhyN11TVzv0838wo9zsGsTVV9VhVvfdg8wMAAAAAAAAAAAAAAAAAAAAAAADAtGgquYJVVSW5PslN3X1Sd69L8rYkz0myo7vXJjklyfOTbBhsvbm71w6ujw/mNiW5ZfQx3X3aKM+vJLlusGfnnHIeSXLObJPJRexN8rNjPOpdSX50MD4vyfYJ5gcAAAAAAAAAAAAAAAAAAAAAAACAQ05TyZXtjCSPdff7ZwPd/dkk9wzGe5N8JsnzFktWVcckeUWSC5JsHLOWx5NsSXLREtZekeSiqlq9xNwPJ/lCVZ06Gr8hyYcmmB8AAAAAAAAAAAAAAAAAAAAAAAAADjlNJVe2k5Pctr8FVXVUktOS3DgIr6+qbYPrpFH87CQ3dvedSR6oqnVj1vO+JG+sqmMXWXd3kluSvGmM3FuTbKyqE5LsTXLvweavqgur6taquvW6D147RikAAAAAAAAAAAAAAAAAAAAAAAAAcPBWT7sADlsnVdW2JC9I8rHu/txg7ubuPmuePZuSvGd0v3U03m/TyqHu3l1V1yR5c5I9iyy/LMnvJfnYEtPfmOTfJLk/yXVLWL9o/u7ekmRLktz5v+7rJdYBAAAAAAAAAAAAAAAAAAAAAAAAABOxatoFMFXbk6xbYG5Hd69NclKSdVX1uv0lqqrjk7wyyW9X1c4kb02yoapqzJquSHJBkqftb1F3fzHJtiQblpK0ux/NvgaXv5Tkw0tYP1Z+AAAAAAAAAAAAAAAAAAAAAAAAADjUNJVc2T6R5MiqunA2UFUvTXLC7Li7dyX55SRvWyTXuUmu7e4Tu3umu09IcleS9eMU1N0PJvlQ9jWWXMylSS4eI/3lSS4ZnbEU4+YHAAAAAAAAAAAAAAAAAAAAAAAAgENGU8kVrLs7yeuTnFlVO6pqe5LLktw3Z+kNSY6uqtkGkeuratvgOjfJpiTXz9n3kVF8XJcnWbOE+rcnuX2pSbt7e3dfPc76cfIDAAAAAAAAAAAAAAAAAAAAAAAAwKG0etoFMF3dfW+SDfNMnTxY00l+cDB37DzrPzxP7isH91cluWrO/Mzg/pjB/f1Jjh6MNw/uz5+T45x5ahnO78zgWear52DyAwAAAAAAAAAAAAAAAAAAAAAAAMC0rJp2AQAAAAAAAAAAAAAAAAAAAAAAAAAAjG/1tAuASaiqU5JcOyf8SHefNo16AAAAAAAAAAAAAAAAAAAAAAAAAOCJpqkkTwrdfUeStdOuAwAAAAAAAAAAAAAAAAAAAAAAAAAOlVXTLgAAAAAAAAAAAAAAAAAAAAAAAAAAgPFpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAxpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAxpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAxpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAxpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAxpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAxpKrnCVNVzq2prVe2oqtuq6g+r6vuqak9Vbauqz1fVNVX1lNH606vqodHc7HXmIN+PV1VX1YtH40+P1txdVV8d7Jmpqp1VtWa0rqvq8kGei6tq8+h+c1VdPLq/qqq+XFVHjsZrqmrnfp5vZpT7HYPYmqp6rKreO2fttqraOif2+1X1U4Pxb1XVW8f/TAMAAAAAAAAAAAAAAAAAAAAAAADAE0tTyRWkqirJ9Ulu6u6TuntdkrcleU6SHd29NskpSZ6fZMNg683dvXZwfXwwtynJLaOP6e7TRnl+Jcl1gz0755TzSJJzZptMLmJvkp8d41HvSvKjg/F5SbYPF1TVDyQ5Isn6qnraYOrNSf5VVR1XVX8nyWlJ3j3G2QAAAAAAAAAAAAAAAAAAAAAAAABwSGgqubKckeSx7n7/bKC7P5vknsF4b5LPJHneYsmq6pgkr0hyQZKNY9byeJItSS5awtorklxUVauXmPvhJF+oqlNH4zck+dCcNZuSXJvkj5KcPRscNb/ckuSdSX4zyc939+PzHVJVF1bVrVV163UfvHaJpQEAAAAAAAAAAAAAAAAAAAAAAADAZGgqubKcnOS2/S2oqqOSnJbkxkF4fVVtG1wnjeJnJ7mxu+9M8kBVrRuznvcleWNVHbvIuruT3JLkTWPk3ppkY1WdkGRvknvnzL9htOZ3sq/B5NC7krw2yV92958udEB3b+nuU7v71De8cZzSAAAAAAAAAAAAAAAAAAAAAAAAAODgaSrJrJOqaluS+5N8pbs/N5i7ubvXDq4do/im7GvMmNHHuc0Z96u7dye5Jsmbl7D8siRvzdJfszcmeXWSjUmuG05U1alJdnX33Un+JMnLqur4wZKXjs55cVX5PQIAAAAAAAAAAAAAAAAAAAAAAADAYUnDvJVle5J1C8zt6O61SU5Ksq6qXre/RKMmjK9M8ttVtTP7Gj5uqKoas6YrklyQ5Gn7W9TdX0yyLcmGpSTt7keT3Jbkl5J8eM70puxrGLkzyY4kz0jyE0kyaiL5H5L8ZJIvJvnHS3wOAAAAAAAAAAAAAAAAAAAAAAAAADikNJVcWT6R5MiqunA2UFUvTXLC7Li7dyX55SRvWyTXuUmu7e4Tu3umu09IcleS9eMU1N0PJvlQ9jWWXMylSS4eI/3lSS4ZnZHk/zSN3JDklFHdM0nOzr5Gk0nyc0m+2N03JfnFJJdU1bPHOBMAAAAAAAAAAAAAAAAAAAAAAAAADglNJVeQ7u4kr09yZlXtqKrtSS5Lct+cpTckObqqZhtErq+qbYPr3Oxrwnj9nH0fyf9tzjiOy5OsWUL925PcvtSk3b29u6+eE16f5Mvdfe8g9qdJXlJVJya5JKPGlaM1VyR551LPBAAAAAAAAAAAAAAAAAAAAAAAAIBDZfW0C+DQGjVK3DDP1MmDNZ3kBwdzx86z/sPz5L5ycH9VkqvmzM8M7o8Z3N+f5OjBePPg/vw5Oc6Zp5bh/M4MnmWBel4+Z25vkueOhjNz5v7d/s4DAAAAAAAAAAAAAAAAAAAAAAAAgGlZNe0CAAAAAAAAAAAAAAAAAAAAAAAAAAAY3+ppFwAHoqpOSXLtnPAj3X3aNOoBAAAAAAAAAAAAAAAAAAAAAAAAgENNU0mWpe6+I8naadcBAAAAAAAAAAAAAAAAAAAAAAAAANNS3T3tGuDJwG8kAAAAAAAAAAAAAAAAAAAAAIADU9MuAHjyueqTn9IbCjgg55/x8mX13mTVtAsAAAAAAAAAAAAAAAAAAAAAAAAAAGB8mkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDq6ddAAAAAAAAAAAAAAAAAAAAAAAAAMAkVWraJQAcEqumXQAAAAAAAAAAAAAAAAAAAAAAAAAAAOPTVHIFqqrnVtXWqtpRVbdV1R9W1fdV1Z6q2lZVn6+qa6rqKaP1p1fVQ6O52evMQb4fr6quqhePxp8erbm7qr462DNTVTuras1oXVfV5YM8F1fV5tH95qq6eHR/VVV9uaqOHI3XVNXO/TzfzOhZ/qKqvlBVn6mq8wfz51fVewfnfHlQ46+P4jdV1V8N4udO6NMPAAAAAAAAAAAAAAAAAAAAAAAAABOxetoFcGhVVSW5PsnV3b1xFPvBJM9JsqO711bVEUn+OMmGJB8cbb25u89aIO2mJLeMPv5qd582ynt+klO7++cH5w/3PZLknKq6rLt3LVL63iQ/m+Q3l/ioO7r7ZaMzX5jkv1RVdfcH5ln77u5+1zzxN3b3rUs8DwAAAAAAAAAAAAAAAAAAAAAAAAAOqVXTLoBD7owkj3X3+2cD3f3ZJPcMxnuTfCbJ8xZLVlXHJHlFkguSbByzlseTbEly0RLWXpHkoqoauxFqd38pyS8mefO4e/enqi6sqlur6tYtW7ZMMjUAAAAAAAAAAAAAAAAAAAAAAAAALGrsBn0seycnuW1/C6rqqCSnJfmFQXh9VW0bjH+iu3ckOTvJjd19Z1U9UFXrunu/+ed4X5LPVdU7F1l3d5JbkrwpyR+MkX/W7UlevMDcRVX1k6P7S7r7v43uP1hVe0b3r+ruB4abuntL9jXFTJI+gJoAAAAAAAAAAAAAAAAAAAAAAAAA4IBpKsnQSaPGkS9I8rHu/txg7ubuPmuePZuSvGd0v3U0XnJTye7eXVXXJHlzkj2LLL8sye8l+dhS8w/Ufube3d3vmif+xu6+9QDOAgAAAAAAAAAAAAAAAAAAAAAAAIAnnKaSK8/2JOcuMLeju9dW1Zokf1ZVr+vu318oUVUdn+SVSU6pqk5yRJKuqrd2d49R0xVJbk/ygf0t6u4vjppebhgj96yXJfnCAewDAAAAAAAAAAAAAAAAAAAAAAAAgMPSqmkXwCH3iSRHVtWFs4GqemmSE2bH3b0ryS8nedsiuc5Ncm13n9jdM919QpK7kqwfp6DufjDJh5JcsITllya5eJz8VTWT5F1J/v04+wAAAAAAAAAAAAAAAAAAAAAAAADgcKap5ArT3Z3k9UnOrKodVbU9yWVJ7puz9IYkR1fVbIPI9VW1bXCdm2RTkuvn7PvIKD6uy5OsWUL925PcvoR8J1XVX1TVF7KvYeWV3f2BA6gLAAAAAAAAAAAAAAAAAAAAAAAAAA5Lta/HIHCQ/EYCAAAAAAAAAAAAAAAAAAAAADgwNe0CgCefqz/5ab2hgAPy02ectqzem6yadgEAAAAAAAAAAAAAAAAAAAAAAAAAAIxv9bQLgANVVackuXZO+JHuPm0a9QAAAAAAAAAAAAAAAAAAAAAAAADAoaSpJMtWd9+RZO2060iS3Q/smkieR494ykTyTNoRq1ZNLNejj++dWK6jHvvWxHLl6KdNJM03vvXYRPIkyYPffHhiuY49+qiJ5fr2p/54YrlWgpnXbZpInkl9nVkpnvGsNRPJs3vXX08kz0ryjDXfedA5vN7HN6nX/K4vfn4ieVaKNS96yUTyvOv3/2QieVaKi1/3qonk2XnfVyeSZ6WYee6zJ5Lnb+7ZOZE8K8UzT5iZSJ6v7HpwInlWku9ac/xE8py++b0TybNS3LT55yeS5x++f+tE8qwUv/WPNk4kz/0Pfm0ieVaK5xx/3ETy+LN1PJP6s/Vr9907kTwryXHP/e6DzvFX93xlApWsLN9/wndNJI+vNeOZ1Neaz//PL08kz0rxkhOfN5E8X3/Ie5pxPP3Yybyn8Xofz6Re77u+9tBE8qwka4479qBz7H7wgQlUsrI84/hnTSTPQ1//+kTyrBTHPv3pE8nzwJe+OJE8K8WzXviiieS56Y6/mkieleL0U75/Inm8lxzfJN5P/s1uX9/H9cxnTOZrvL8THs+k/k7Y15rxTOr71q/+je+fxvHsZx78906J9/DjmtR7eP8GMr5J/BvIh//8LyZQycpy7g+/bCJ5/mib/zM5jr+7djL/Z3LHvfdPJM9KcdJ3P2cieb5wt6/x4/iB7zn4r++J71vHNanvWb927z0TyZMke/dM7me7vvbUyXyPkiTHHHXkxHJN8ufzHj7iOyaS56mPfnMieZJk77cm93xfO+oZE8v1ZP81PHrvoxPJkyTffnRyz3dfT+b5kuTpE/w1fMYEf9L/m9+uieQ56uHJ/X3I3oe/MbFc3zp+Mn9GJ8nTnzq518O3vza5fwdeddxk/n20vz65v0vsvZP7ufCVYNV3TObnufvbk/u89+OT+9n3dE8uV03ma9akTezXcO/kPu81wR4U90/w5fAdq4+YWK5nPXVyz9iPTea9SD1lcn9WPNKTe71PsvfHqj2Te+/9Nz2518OkfpYRAGAlmty7RQAAAAAmRvMeAAAAAAAAAAAAAA53k2pGCAAAAADAgdNUEgAAAAAAAAAAAAAAAAAAAAAAAABgGdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgGdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgGdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgGdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgGdJUkgNSVXuratvgmqmq06vqoUHs44P1N1TVp5aQd3NVdVV97yD2llHs1NF4Z1XdMTjnylH8qqq6q6o+W1V3VtU1VfX8QZ6dVbVmMP7xUd4XD2Izo9g/HcTeW1XnH8SnCwAAAAAAAAAAAAAAAAAAAAAAAAAmbvW0C2DZ2tPda4eBqppJcnN3nzUnflySdUm+UVUv7O4vLZL7jiQbk7xjND4vyfY5a87o7l3z7H1rd3+4qirJW5J8oqpO7u5H51m7Kckto4+/Ooj/dZJfqKr/uMA+AAAAAAAAAAAAAAAAAAAAAAAADmNHrKpplwBwSKyadgGsCOck+YMkW7OvWeRibkhydpJU1UlJHkoyXwPJBfU+705yX5IfmTtfVcckeUWSC+ap6atJ/iTJT49zJgAAAAAAAAAAAAAAAAAAAAAAAAAcSppKcqCeWlXbRtf1g/j6Qfzto9imJL8zujYtIffuJPdU1cnZ1/DxunnWfHJwzkX7yXV7khfPEz87yY3dfWeSB6pq3Zz5f5vk4qo6YqHEVXVhVd1aVbd+4Opr9vtAAAAAAAAAAAAAAAAAAAAAAAAAADBpq6ddAMvWnu5eO0/85u4+a3ZQVc9J8qIkt3R3V9VjVXVyd//lIvm3Zl9DydckeVWSn5kzf0Z371pCnbVAfFOS9wzO2pTkttnJ7v5SVX06yd9fKHF3b0myJUl2P7Crl1ALAAAAAAAAAAAAAAAAAAAAAAAAAEzMqmkXwJPehiTPTHJXVe1MMpN9DRwX89Ekb0pyd3fvPojzX5bkC8NAVR2f5JVJfntU01uTbKiquQ0ofy3JJVm4MSUAAAAAAAAAAAAAAAAAAAAAAAAATI2mkjzRNiV5bXfPdPdMknVJNi62qbsfzr6GjpceyKG1z5uTfFeSG+dMn5vk2u4+cVTXCUnuSrJ+Tg3/I8nnk/zYgdQAAAAAAAAAAAAAAAAAAAAAAAAAAE8kTSV5wlTVTJITk3xqNtbddyV5qKpOW2x/d2/t7tsXmP5kVW0bXdcM4r9RVZ9NcmeSv53kjO5+dM7eTUmunxP7yCg+16VJnr9YrQAAAAAAAAAAAAAAAAAAAAAAAABwqK2edgEsT919zDyxm5LcNBjvTPK8edb90H7ybl4gfvrgfmaBNecvlHfOvjPmmbtyMDx5EP9sNF8FAAAAAAAAAAAAAAAAAAAAAAAA4DCkWR4AAAAAAAAAAAAAAAAAAAAAAAAAwDK0etoFsDJV1duTnDcn/Lvdfek06gEAAAAAAAAAAAAAAAAAAAAAAACA5UZTSaZi1DxSA0kAAAAAAAAAAAAAAAAAAAAAAAAAOECrpl0AAAAAAAAAAAAAAAAAAAAAAAAAAADj01QSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lSSJ1RV7a2qbYNrpqpOr6qHBrGPD9bfUFWfWkLezVXVVfW9g9hbRrFTR+OdVXXH4JwrB2tXV9VXq+rX5+S9qapuHYxPraqbDvLTAAAAAAAAAAAAAAAAAAAAAAAAAAATt3raBfCkt6e71w4DVTWT5ObuPmtO/Lgk65J8o6pe2N1fWiT3HUk2JnnHaHxeku1z1pzR3bvm2fvqJHcmOa+q3tbdPZj7zqr6ke7+r4ucDwAAAAAAAAAAAAAAAAAAAAAAAABTs2raBcDAOUn+IMnW7GsWuZgbkpydJFV1UpKHkszXQHI+m5K8J8ndSX54ztxvJHn7EvMAAAAAAAAAAAAAAAAAAAAAAAAAwFSsnnYBPOk9taq2je7v6u7Xj+7XD+K/292XZl+jx3+d5P4kH0nya4vk3p3knqo6OfuaS16X5GfmrPlkVe0d3V/d3e+uqqOSnJnk55IcNzr3vw/2/HmS11fVGUm+vtDhVXVhkguT5IrLL8/P/PRPLVIuAAAAAAAAAAAAAAAAAAAAAAAAh8KqqmmXAHBIaCrJE21Pd6+dJ35zd581O6iq5yR5UZJburur6rGqOrm7/3KR/FuTbEzymiSvyv/fVPKM7t41J3ZWkk92956q+kiSf1lVb+nuvYM170jyL5JcstDB3b0lyZYk2f3Arl6kTgAAAAAAAAAAAAAAAAAAAAAAAACYqFXTLgBGNiR5ZpK7qmpnkpkkm5aw76NJ3pTk7u7evcSzNiU5c3TObUmeleSVwwXd/YkkT03y8iXmBAAAAAAAAAAAAAAAAAAAAAAAAIBDSlNJDhebkry2u2e6eybJuiQbF9vU3Q8nuSTJpUs5pKqekWR9ku8ZnPVPMn8Dy3ck+WdLqh4AAAAAAAAAAAAAAAAAAAAAAAAADrHV0y4AqmomyYlJPjUb6+67quqhqjqtuz+9v/3dvXU/05+sqr2j+88l+ZMkn+juRwZrfi/JO6vqyDl5/7Cqvrr0JwEAAAAAAAAAAAAAAAAAAAAAAACAQ0dTSZ5Q3X3MPLGbktw0GO9M8rx51v3QfvJuXiB++uB+ZoHtV8/Z82CSZ4+Gp8+ZW7dQDQAAAAAAAAAAAAAAAAAAAAAAAAAwTaumXQAAAAAAAAAAAAAAAAAAAAAAAAAAAONbPe0CYH+q6u1JzpsT/t3uvnQa9QAAAAAAAAAAAAAAAAAAAAAAAADA4UJTSQ5ro+aRGkgCAAAAAAAAAAAAAAAAAAAAAAAAwByrpl0AAAAAAAAAAAAAAAAAAAAAAAAAAADj01QSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAZ0lSSw0ZV7a2qbYNrpqpOr6qHBrGPD9bfUFWfWkLezVXVVfW9g9hbRrFTR+OdVbVmdN9VdQHbucUAACAASURBVPlg7cVVtXmiDwsAAAAAAAAAAAAAAAAAAAAAAAAAB0lTSQ4ne7p77eDaOYrfPIidmSRVdVySdUmOraoXLiH3HUk2DsbnJdm+wNpHkpwz22QSAAAAAAAAAAAAAAAAAAAAAAAAAA5HmkqyXJ2T5A+SbM3/2yxyITckOTtJquqkJA8l2bXA2seTbEly0cGXCQAAAAAAAAAAAAAAAAAAAAAAAABPDE0lOZw8taq2ja7rB/H1g/jbR7FNSX5ndG1aQu7dSe6pqpOzrwnldYusf1+SN1bVsQstqKoLq+rWqrr1A1dfs4QSAAAAAAAAAAAAAAAAAAAAAAAAAGByVk+7ABjY091r54nf3N1nzQ6q6jlJXpTklu7uqnqsqk7u7r9cJP/W7Gso+Zokr0ryMwst7O7dVXVNkjcn2bPAmi1JtiTJ7gd29SJnAwAAAAAAAAAAAAAAAAAAAAAAAMBErZp2AXAANiR5ZpK7qmpnkpkkm5aw76NJ3pTk7u7evYT1VyS5IMnTDqxMAAAAAAAAAAAAAAAAAAAAAAAAAHjirJ52AXAANiV5bXf/eZJU1QuSfDzJ2/e3qbsfrqpLkty5lEO6+8Gq+lD2NZb8TwdXMgAAAAAAAAAAAAAAAAAAAAAAAIdKVU27BIBDYtW0C4BxVNVMkhOTfGo21t13JXmoqk5bbH93b+3u28c48vIka8YsEwAAAAAAAAAAAAAAAAAAAAAAAACecKunXQDM6u5j5ondlOSmwXhnkufNs+6H9pN38wLx0wf3M/PV0d33Jzl6v4UDAAAAAAAAAAAAAAAAAAAAAAAAwBSsmnYBAAAAAAAAAAAAAAAAAAAAAAAAAACMb/W0C4BJqaq3JzlvTvh3u/vSadQDAAAAAAAAAAAAAAAAAAAAAAAAAE8kTSV50hg1j9RAEgAAAAAAAAAAAAAAAAAAAAAAAIAVYdW0CwAAAAAAAAAAAAAAAAAAAAAAAAAAYHyaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEP/m527D9Krvu4D/j2LeLUl8S5jG7OBuIltnBLMWIkLhRi/tcGOTRwj0boh04bGNRm/pAkz9bihSdwE1y2tbRJH7aSQdMAmITCxPVOTxNEMDEYZmSoB7MQkSJZsg0EY82KwBej0Dz1Kn25WQru60qPVfj4zz+y959x7fudZPbt79z7aY6gkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgkE1NVz1bVhrHHdFWdV1WPjsX+ZOz4m6vqjj2oe0VVdVV9/1jsvaPYWWOxM0axN43FTq6qjVV17Gj/mNH+9FDPGwAAAAAAAAAAAAAAAAAAAAAAAACGYKgkk/RUd58x9tg0it86FntdklTV0UlelWR5VZ26B7XvSrJqbP+nktwz45jVSW4bfUySdPeWJL+V5DdGod9IsmasNwAAAAAAAAAAAAAAAAAAAAAAAAA4IBgqyUJxYZJPJ/lk/v9hkbtyc5KfSJKqOi3Jo0m27kxWVWXHoMlLkry+qo4YO/eqJD9SVe9NcnaSjwzQPwAAAAAAAAAAAAAAAAAAAAAAAAAMylBJJunIqtowetw0Fj9nLP6BUWx1kutHj9V7UPuxJFuq6vTsGEL5qRn51yTZ2N1/m2Rtkh/fmejup5P8YnYMl3zvaP/vqapLq2p9Va3/n9f+7h60BAAAAAAAAAAAAAAAAAAAAAAAAADDWTLpBljUnuruM2aJ39rdF+zcqaoVSV6a5Lbu7qp6uqpO7+67n6P+J7NjoOQbk5yf5GfGcqtH+Z3H/YskN47l/0mS+5OcnuSPZyve3WuSrEmSxx7e2s/RCwAAAAAAAAAAAAAAAAAAAAAAAAAMamrSDcAeeEeSY5JsrKpNSaazYyjkc/lMkncm2dzdj+0MVtUhSX4yyb8f1ftYkjdV1dJR/owkr0/yI0neV1UnDfZMAAAAAAAAAAAAAAAAAAAAAAAAAGAghkqyEKxO8qbunu7u6SSvSrLquU7q7ieTXJ7kQzNS5yf5y+4+eVTzlCQ3JnlbVVWS30ry3u7enOQ/JfnIcE8FAAAAAAAAAAAAAAAAAAAAAAAAAIZhqCQHtKqaTnJKkjt2xrp7Y5JHq2rlc53f3Z/s7jtnhFcnuWlG7MZR/GeTbO7uPx7FfzPJy6rq3Hk9AQAAAAAAAAAAAAAAAAAAAAAAAADYR5ZMugEWr+5+/iyxtUnWju1vSvKiWY47czd1r9hF/LzR5s/MkvujJH802l0zFn82yS7XAgAAAAAAAAAAAAAAAAAAAAAAAIBJmZp0AwAAAAAAAAAAAAAAAAAAAAAAAAAAzN2SSTcA81VVH0jyUzPCv9/dH5pEPwAAAAAAAAAAAAAAAAAAAAAAAACwPxkqyYI1Gh5pgCQAAAAAAAAAAAAAAAAAAAAAAAAAi9LUpBsAAIBxy447ftItAMAB4ZiTpyfdAgAAAAADWnbscZNuAQAOCEuXHz3pFgAAAAAY0FHPbpt0CwAAAAAAi15196R7gIOBLyQAAAAAAAAAAAAAAAAAAAAAgPmpSTcAHHyuv3W92VDAvKw+56wFdW0yNekGAAAAAAAAAAAAAAAAAAAAAAAAAACYO0MlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlmZiqeraqNow9pqvqvKp6dCz2J2PH31xVd+xB3Suq6uuj8++tqj+sqpeP5ddW1Vmj7U1VddfYeq8Z9fHUjN4O2zefBQAAAAAAAAAAAAAAAAAAAAAAAACYnyWTboBF7anuPmM8UFXTSW7t7gtmxI9O8qokT1TVqd1933PUvqq7PzI696Ikn6+qV3b3Q7Mc+2PdvXVGD387szcAAAAAAAAAAAAAAAAAAAAAAAAAOJBMTboB2EMXJvl0kk8mWTWXE7v7U0luSXLxPugLAAAAAAAAAAAAAAAAAAAAAAAAACbCUEkm6ciq2jB63DQWP2cs/oFRbHWS60eP1fNY684kP7iL3J+N1lo3FjttrIerZzupqi6tqvVVtX7NmjXzaAkAAAAAAAAAAAAAAAAAAAAAAAAA5m/JpBtgUXuqu8+YJX5rd1+wc6eqViR5aZLburur6umqOr27757DWrWb3I9199YZsb/dRW9/p7vXJNk5TbLn0AsAAAAAAAAAAAAAAAAAAAAAAAAA7LWpSTcAe+AdSY5JsrGqNiWZTrJ6jjV+OMmXh20LAAAAAAAAAAAAAAAAAAAAAAAAACbHUEkWgtVJ3tTd0909neRVSVbt6clV9ZNJ3pDk+n3THgAAAAAAAAAAAAAAAAAAAAAAAADsf4ZKckCrqukkpyS5Y2esuzcmebSqVu7m1PdV1YaqujfJP0/y2u5+aF/2CgAAAAAAAAAAAAAAAAAAAAAAAAD7U3X3pHuAg4EvJAAAAAAAAAAAAAAAAAAAAACA+alJNwAcfK6/db3ZUMC8rD7nrAV1bTI16QYAAAAAAAAAAAAAAAAAAAAAAAAAAJi7JZNuAOarqj6Q5KdmhH+/uz80iX4AAAAAAAAAAAAAAAAAAAAAAAA4MFTVpFsA2C8MlWTBGg2PPCAGSD6yeeMgdaYOP3KQOkmy/cjnDVbrkKe/N1itOvSwwWo9++QTg9WaWjLMt8PvDPht9ent2werdfhAzy9Jnrn7zwertRi86B+/YZA6W7/96CB1Fovjj14+SJ3HH3tskDqLydJlywap4zU/N0O95r+5Yd0gdRaLFWesHKTOn/7FXw1SZ7E4/x/+4CB1vvmtbw9SZ7FYcezRg9R57FsPD1JnsVh27HGD1Lnv/gcHqbOYnHrSiYPU+dlPfHKQOovFf/+5VYPUOe+Kjw9SZ7FYe8Vlg9Tx+9PcDPW706PffGCQOovF8hUvGKTO44+6lpyrpcv3/nry/q3fGqCTxeWk448dpM63v7FlkDqLxdEvPHmQOl/5mu/xc/EPXjzQ93jXNHMy1DXNX2+5f5A6i8UPnHzSIHUe2+p+wVwtO36Y+wXukc3NUPfIXMfPzRDX8Eny0Jf/cpA6i8UJL/uhQercsuFLg9RZLN5wxssHqeM97rkZ6j3uRx9/fJA6i8nypUsHqfPlzd8YpM5i8bKXvHCQOt7nnpvB3ud+eOsgdRaLZccdP0gd92nmZqj7NO4Hz90Q94Tv/JuvDtDJ4nLm958ySJ0N920epM5iccapLxmkjvf95mao9/w2P+iaZi5ecuIw1zRe73Mz1Ot9yPvBzzw2XK0Heri/qTtsySGD1TrhiOH+5qyffnqQOlNHHDFInWTYf8MHc/hgtYYcZPGCow4drNZg/4ZHHjVInSR59jvD3QPc8r0erNaQf6950tLhXvND2f7d7w5W65kB/w0fPmyY+5tJctRhw33tLBtwWsP27w3zua+p4X5WdA/3t85VU4PVGlIdOtzrYSjbtw33t/0HqiFfD0P+G9Yhw3z9DPm9tA4Z7nP11Se2DVZr6RHDXR8d87zhfh7W954aps6AczH62WcHq5Xtw9Xa/swzg9V6Ymq418OLTxzm/wsBACxGB+Zv3gAALFr+2AYAdjBgAAAAAODg4n4PAOzg/wUAAAAAHFyGGkYIAAAAAMD8GSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSrJHquqFVV1XVXdV1VfrKovVNXbRrlXV9Xaqrq3qu6sqs9W1Sural1VbaiqzVX10Gh7Q1VN72KNTVV164zYhqq6e7R9XlU9OlZnQ1W9bpR7drR/T1X9RVX9QlVNjZ33mRl1b66qO2bErqiqJ6vqxLHYE3v/2QMAAAAAAAAAAAAAAAAAAAAAAACAYS2ZdAMsDFVVSW5Ocm13XzyKnZLkLVW1IskNSS7u7ttHubOTnNbdK0f7lyQ5q7sv24PlllbVyd29papeNkv+1u6+YJb4U919xmi9E5Ncl2RZkl+e5fkcneRVSZ6oqlO7+76x9NYkv5Dk8j3oFQAAAAAAAAAAAAAAAAAAAAAAAAAmYmrSDbBgvDbJtu7+xM5Ad3+1uz+W5LLsGDZ5+1jutu6+eZ5r3ZDkotH26iTXz7VAdz+Y5NIkl40GYs50YZJPJ/lkklUzcr+T5KKqOnZ3a1TVpVW1vqrWX3PdnFsEAAAAAAAAAAAAAAAAAAAAAAAAgL1iqCR76hVJ7pxHbj5uzI6hj0ny5uwY/jjunKraMPY4bbYi3X1fkkOSnDhLeuewyutH2+OeyI7Bku/ZXZPdvaa7z+rusy65eGYJAAAAAAAAAAAAAAAAAAAAAAAAANi3lky6ARamqro6ydlJtiXZMiO3LsmyJLd0924HM+7Cw0keqapVSb6c5MkZ+Vu7+4J51N3Z34okL01yW3d3VT1dVad3991jh300yYaq+sh81wEAAAAAAAAAAAAAAAAAAAAAAACAfWlq0g2wYNyT5MydO9397iTnJzlhltzKJB9Msnwv1vtUkquTXD/fAlV1apJnkzw4I/WOJMck2VhVm5JMJ1k9fkB3fzvJdUnePd/1AQAAAAAAAAAAAAAAAAAAAAAAAGBfMlSSPfX5JEdU1bvGYkeNPl6d5JKqes0sufm6KcmHk3xuPidX1QlJPpHk493dM9Krk7ypu6e7ezrJq5KsmqXMf0nyr5MsmU8PAAAAAAAAAAAAAAAAAAAAAAAAALAvGZbHHunurqq3Jrmqqn4pyUNJvpPk8u5+oKouSnJlVb0oyYNJtib5lb1Y7/EkVyZJVc1Mn1NVG8b2f627/yDJkaP4oUmeSfJ72TEY8u9U1XSSU5LcMbbWxqp6tKpWzuhha1XdlOR9830eAAAAAAAAAAAAAAAAAAAAAAAAALCvGCrJHuvu+5Os2kXujiTn7ubca5JcswdrTM8S25Tk9NH22iTLd3HuIbupuzbJ2tHui2bJnznaXDcj/v4k73+OtgEAAAAAAAAAAAAAAAAAAAAAAABgv5uadAMAAAAAAAAAAAAAAAAAAAAAAAAAAMzdkkk3wOJUVeuSHD4j/M7uvmsS/QAAAAAAAAAAAAAAAAAAAAAAAADAQmOoJBPR3Ssn3QMAAAAAAAAAAAAAAAAAAPNXhx6afvrpSbcBAAAAALCoGSoJAAAAAAAAAAAAAAAAAADMmYGSAAAAwIHskKmadAsA+8XUpBsAAAAAAAAAAAAAAAAAAAAAAAAAAGDuDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiADJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiADJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiADJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiADJVkcFW1oqquq6r7quqLVfWFqnrbKPfqqlpbVfdW1Z1V9dmqemVVrauqDVW1uaoeGm1vqKrpXayxqapunRHbUFV3j7bPq6pHx+psqKrXjR371qrqqvrBsdj0KPbzY7GPV9Ulg36CAAAAAAAAAAAAAAAAAAAAAAAAAGAASybdAAeXqqokNye5trsvHsVOSfKWqlqR5IYkF3f37aPc2UlO6+6Vo/1LkpzV3ZftwXJLq+rk7t5SVS+bJX9rd1+wi3NXJ7lt9PGXx+IPJnlPVf12d2/bgx4AAAAAAAAAAAAAAAAAAAAAAAAAYCKmJt0AB53XJtnW3Z/YGejur3b3x5Jclh3DJm8fy93W3TfPc60bklw02l6d5Po9Oamqnp/k7CT/MsmqGemHkvxpkp+eZ08AAAAAAAAAAAAAAAAAAAAAAAAAsF8YKsnQXpHkznnk5uPGJBeOtt+c5NMz8udU1Yaxx2mj+E8k+d/d/ZUkD1fVq2acd2WSf1tVh+xu8aq6tKrWV9X6a67bo3mWAAAAAAAAAAAAAAAAAAAAAAAAADCYJZNugINbVV2d5Owk25JsmZFbl2RZklu6+z3zKP9wkkeqalWSLyd5ckb+1u6+YJbzVif5b6PtT472v7gz2d33jXq7eHeLd/eaJGuS5JHNG3se/QMAAAAAAAAAAAAAAAAAAAAAAADAvE1NugEOOvckOXPnTne/O8n5SU6YJbcyyQeTLN+L9T6V5Ook1+/JwVV1bJLXJvkfVbUpyS8meUdV1YxD/2OSy5PMjAMAAAAAAAAAAAAAAAAAAAAAAADAAcFQSYb2+SRHVNW7xmJHjT5eneSSqnrNLLn5uinJh5N8bg+Pf3uS3+vuU7p7urtPTrIxyTnjB3X3XyX5UpI372V/AAAAAAAAAAAAAAAAAAAAAAAAALBPGCrJoLq7k7w1yblVtbGq/jzJtUku7+4HklyU5Ner6m+q6vbsGPL48b1Y7/HuvrK7t82SPqeqNow93p5kdXYMohx34yg+04eSvHi+vQEAAAAAAAAAAAAAAAAAAAAAAADAvrRk0g1w8Onu+5Os2kXujiTn7ubca5JcswdrTM8S25Tk9NH22iTLZzn1D2Y576Nju6ePxf8iBq8CAAAAAAAAAAAAAAAAAAAAAAAAcIAyMA8AAAAAAAAAAAAAAAAAAAAAAAAAYAFaMukGYHeqal2Sw2eE39ndd02iHwAAAAAAAAAAAAAAAAAAAAAAAAA4UBgqyQGtu1dOugcAAAAAAAAAAAAAAAAAAAAAAAAAOBBNTboBAAAAAAAAAAAAAAAAAAAAAAAAAADmzlBJAAAAAAAAAAAAAAAAAAAAAAAAAIAFyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAFyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAFaMmkGwAAAAAAAAAAAAAAAAAAAAAAAAAYUlVNugWA/WJq0g0AAAAAAAAAAAAAAAAAAAAAAAAAADB3hkoCAAAAAAAAAAAAAAAAAAAAAAAAACxAhkoyMVW1oqquq6r7quqLVfWFqnrbKPfqqlpbVfdW1Z1V9dmqemVVrauqDVW1uaoeGm1vqKrpXayxqapunRHbUFV3j7bPq6rPjLYvqartVfVDY8fevavaAAAAAAAAAAAAAAAAAAAAAAAAADBJSybdAItTVVWSm5Nc290Xj2KnJHlLVa1IckOSi7v79lHu7CSndffK0f4lSc7q7sv2YLmlVXVyd2+pqpc9x7FfS/KBJBfN53kBAAAAAAAAAAAAAAAAAAAAAAAAwP4yNekGWLRem2Rbd39iZ6C7v9rdH0tyWXYMm7x9LHdbd988z7VuyP8bErk6yfW7OfYzSV5RVT8wz7UAAAAAAAAAAAAAAAAAAAAAAAAAYL8wVJJJeUWSO+eRm48bk1w42n5zkk/v5tjtST6c5N89V9GqurSq1lfV+muu292cSgAAAAAAAAAAAAAAAAAAAAAAAAAY3pJJNwBJUlVXJzk7ybYkW2bk1iVZluSW7n7PPMo/nOSRqlqV5MtJnnyO469L8oGq+r7dHdTda5KsSZJHNm/sefQFAAAAAAAAAAAAAAAAAAAAAAAAAPM2NekGWLTuSXLmzp3ufneS85OcMEtuZZIPJlm+F+t9KsnVSa5/rgO7+5kk/znJ5XuxHgAAAAAAAAAAAAAAAAAAAAAAAADsU4ZKMimfT3JEVb1rLHbU6OPVSS6pqtfMkpuvm5J8OMnn9vD4a5K8LjuGXAIAAAAAAAAAAAAAAAAAAAAAAADAAcdQSSaiuzvJW5OcW1Ubq+rPk1yb5PLufiDJRUl+var+pqpuT/L2JB/fi/Ue7+4ru3vbHh6/LclHk5w43zUBAAAAAAAAAAAAAAAAAAAAAAAAYF9aMukGWLy6+/4kq3aRuyPJubs595ok1+zBGtOzxDYlOX20vTbJ2tlqdvdHs2OwJAAAAAAAAAAAAAAAAAAAAAAAAAAccKYm3QAAAAAAAAAAAAAAAAAAAAAAAAAAAHO3ZNINwBCqal2Sw2eE39ndd02iHwAAAAAAAAAAAAAAAAAAAAAAAADY1wyV5KDQ3Ssn3QMAAAAAAAAAAAAAAAAAAAAAAAAA7E9Tk24AAAAAAAAAAAAAAAAAAAAAAAAAAIC5M1QSAAAAAAAAAAAAAAAAAAAAAAAAAGABMlQSAAAAAAAAAAAAAAAAAAAAAAAAAGABMlQSAAAAAAAAAAAAAAAAAAAAAAAAAGABMlQSAAAAAAAAAAAAAAAAAAAAAAAAAGABMlQSAAAAAAAAAAAAAAAAAAAAAAAAAGABMlQSAAAAAAAAAAAAAAAAAAAAAAAAAGABMlSS/aqqVlTVdVV1X1V9saq+UFVvG+VeXVVrq+reqrqzqj5bVa+sqnVVtaGqNlfVQ6PtDVU1vYs1NlXVrTNiG6rq7hmx/1pVX6+qqbHY+6vqd8b2/1lVfXbIzwEAAAAAAAAAAAAAAAAAAAAAAAAADGHJpBtg8aiqSnJzkmu7++JR7JQkb6mqFUluSHJxd98+yp2d5LTuXjnavyTJWd192R4st7SqTu7uLVX1sll6mUrytiRbkpyb5M9GqY8mWV9V/yjJPUl+Lcn5833OAAAAAAAAAAAAAAAAAAAAAAAAALCvTE26ARaV1ybZ1t2f2Bno7q9298eSXJYdwyZvH8vd1t03z3OtG5JcNNpeneT6GfnzsmNo5G+N8jvXfCbJv0lydZIPJ/md7r5vnj0AAAAAAAAAAAAAAAAAAAAAAAAAwD5jqCT70yuS3DmP3HzcmOTC0fabk3x6Rn7noMmbkvx4VR26MzEabPnlJK/LjsGSs6qqS6tqfVWtv+a6mTMrAQAAAAAAAAAAAAAAAAAAAAAAAGDfWjLpBli8qurqJGcn2ZZky4zcuiTLktzS3e+ZR/mHkzxSVauyY0Dkk2O1D0vyT5O8v7sfH631xiSfGeWfn+SsJIcmOSHJ12ZboLvXJFmTJI9s3tjz6BEAAAAAAAAAAAAAAAAAAAAAAAAA5m1q0g2wqNyT5MydO9397iTnZ8fgxpm5lUk+mGT5Xqz3qSRXJ7l+RvyNSY5OcldVbcqOwZarx/L/Icn/SvKhJFftxfoAAAAAAAAAAAAAAAAAAAAAAAAAsM8YKsn+9PkkR1TVu8ZiR40+Xp3kkqp6zSy5+bopyYeTfG5GfHWSf9Xd0909neT7kry+qo6qqlcm+fEkVyZZk2S6ql6/l30AAAAAAAAAAAAAAAAAAAAAAAAAwOCWTLoBFo/u7qp6a5KrquqXkjyU5DtJLu/uB6rqoiRXVtWLkjyYZGuSX9mL9R7PjuGQqaqMPh6V5E1Jfm7suO9U1W1J3pzk55O8r7u/Ozr+XUl+t6rO6O5t8+0FAAAAAAAAAAAAAAAAAAAAAAAAAIZmqCT7VXffn2TVLnJ3JDl3N+dek+SaPVhjepbYpiSnj3aPnSV/4WjzUzPi65O8/LnWBAAAAAAAAAAAAAAAAAAAAAAAAID9bWrSDQAAAAAAAAAAAAAAAAAAAAAAAAAAMHdLJt0AzFdVrUty+IzwO7v7rkn0AwAAAAAAAAAAAAAAAAAAAAAAAAD7k6GSLFjdvXLSPQAAAAAAAAAAAAAAAAAAAAAAAADApExNugEAAAAA/r5lxx436RYAAAAAAAAAAAAAYLfq0EMn3QIAAAAAwKJX3T3pHuBg4AsJAAAAAAAAAAAAAAAAAAAAAGB+atINAAefP/jC/zEbCpiXt//oDy+oa5OpSTcAAAAAAAAAAAAAAAAAAAAAAAAAAMDcGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAFbYg9AAAIABJREFUALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAAGSrJflVVK6rquqq6r6q+WFVfqKq3jXKvrqq1VXVvVd1ZVZ+tqldW1bqq2lBVm6vqodH2hqqa3sUam6rqrtHjS1X1a1V1xCg3XVV3j7bPq6pHx+r9ySh+RVV9fSz+G/vnswMAAAAAAAAAAAAAAAAAAAAAAAAAe27JpBtg8aiqSnJzkmu7++JR7JQkb6mqFUluSHJxd98+yp2d5LTuXjnavyTJWd192R4s92PdvbWqnp9kTZLfTvLTsxx3a3dfMEv8qu7+yNyeIQAAAAAAAAAAAAAAAAAAAAAAAAeCqdSkWwDYLwyVZH96bZJt3f2JnYHu/mqSj1XVr2bHsMnbx3K37e2C3f1EVf1cki1Vdeze1gMAAAAAAAAAAAAAAAAAAAAAAACAA8XUpBtgUXlFkjvnkdsr3f1Yko1JXjpL+pyq2jB6fGAs/r6x+Btnq1tVl1bV+qpav2bNmn3ROgAAAAAAAAAAAAAAAAAAAAAAAADs0pJJN8DiVVVXJzk7ybYkW2bk1iVZluSW7n7PEMvtIn5rd18wS/yq7v7I7gp295okO6dJ9t40BwAAAAAAAAAAAAAAAAAAAAAAAABzNTXpBlhU7kly5s6d7n53kvOTnDBLbmWSDyZZvreLVtXSJNNJvrK3tQAAAAAAAAAAAAAAAAAAAAAAAADgQGGoJPvT55McUVXvGosdNfp4dZJLquo1s+Tmraqen+Q3k9zc3Y/sbT0AAAAAAAAAAAAAAAAAAAAAAAAAOFAsmXQDLB7d3VX11iRXVdUvJXkoyXeSXN7dD1TVRUmurKoXJXkwydYkvzLP5f6sqio7BqfelORX9/4ZAAAAAAAAAAAAAAAAAAAAAAAAAMCBo7p70j3AwcAXEgAAAAAAAAAAAAAAAAAAAADA/NSkGwAOPn/4hQ1mQwHzcuGPnrGgrk2mJt0AAAAAAAAAAAAAAAAAAAAAAAAAAABzt2TSDcB8VdW6JIfPCL+zu++aRD8AAAAAAAAAAAAAAAAAAAAAAAAAsD8ZKsmC1d0rJ90DAAAAAAAAAAAAAAAAAAAAAAAAAEyKoZIwgK987YFJt/D3HPv8Iwer9cWNXx+s1klHLx2s1qGHHDJYrWVHHjFInc0PPzJInSRZsXy4z9Uzz24frNbSr/31YLUWg5N+5NxB6mx64KFB6iwW0y84YZA692/91iB1FpOTjj92r2tsfnDrAJ0sLi858fhB6nz7G1sGqbNYHP3Ckwep87UHHx6kzmLx4hOPG6TOI489PkidxeKYZcNcmz629cFB6iwmy44/ca9rPPTIowN0sriccMzyQep881vfHqTOYrHi2KMHqfP4Y48NUmexWLps2SB1zrvi44PUWSzWXnHZIHUef9T3mblYutz3mUkZ4nuNa8m5G+JaMkkevu/eQeosFsed+tJB6rg3OTdD3JdMkm8/8I1B6iwWR7/ghYPU8R7I3Az1Hoj7wXM3xD1h9wrmbqj7BY897P2nuVh23DDvPW2990uD1Fksjn/pywep42fr3Az1s9V7fnM3xPt+993vfsFcnXrSMPcLXE/OzVD/v8D7fnMz1Ht+j2zZNEidxeKYk6cHqeP3p7kZ6ncnr/e5G+I171py7ob6P2R+ts7NUD9bvc89N0O9z33LBvdp5uINZwxzn8b73HMz1Hvcj2zeOEidJDnkqOcNVqsH/Nuu7UcO19eSfnaQOtu/+91B6iTJ9m3D1Zo6bJi/GRzatsOG+9vPw7c/PVit7U9vG6jQMK+rJJk64qjBag2pDz1ssFrbe7BSg+lHhnuvYcnznj9Yre3PPDNYrT5quL/fPeTp7w1Wa/u2YWpNHXroIHV2FBvub7n76eG+Z2XAn9N58jvD1RpILRluDMiQtYb8mV8Dvk4HfW0NZPv3nhqs1tThw107PD1grUOHfI5HDvcz//7HnhykzknLDtDrkAGvl+97bLhaQzrj1JdMugUAgAVratINAAAAAAAAAAAAAAAAAAAAAAAAAAAwd4ZKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQIZKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQIZKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQIZKAgAAAAAAAAAAAAAAAPxf9u492u+6vBP9+0kikExEbgo6FAOR2lEZWSMzLItW6m08WqdGZSTtlKFW7VitVGdsHKVzsCNHpktPteKN8SjShULXcGvRU3sGG4VVpnJpalCqEAgXR1BuAhIuJs/5Y38z8+uveyfZOz+ys83rtdZ35fd7ns/3+Tyf717Z2Ql7PwAAAAAAAAAsQIZKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQIZKLnBVdXBVfaGqbqqqa6rqyqpaVVXHV9WlY2tPrqozx2Jrq+qY4fXyqvp0VW0Yaq2tqmOH3KFVdUlV3TDkP1pVew25ZVV1blWtr6rrquqKqlo+5DZX1bqR6z3bOMvaqrq1qmokdnFVPTi8XlFVm8bqnTTkNg77r6+qb1fVB6pqn5H7rhvb6yNV9b2qWjQSO7mqtlTVPx2JXVdVK2bzMQEAAAAAAAAAAAAAAAAAAAAAAACAXcFQyQVsGL54cZKvd/cR3f28JCcmOXSOJT+T5J4kRw61fj3JQcM+Fya5uLuPTPKzSZYnOX2475Qkd3b3Ud39nCS/keSxIbepu48euc7YTg/3JTluON9+SZ46lt8wVu+ckdwvdvdRSf5FkiOSfHq6DYZBkquS3JbkRWPp25O8bzs9AgAAAAAAAAAAAAAAAAAAAAAAAMC8M1RyYXtxkke7+1NbA919S3d/bLaFqmplkmOTnNrdW4ZaN3f3l4Z9Hu7uzw3xzUnemeSNVbUsU4MfvzfSw3e6+5E5num8TA3GTJLXZmqY5ax094NJ/l2S11TVAdMsOT7Jt5J8MsnqsdylSZ5dVc+c7b4AAAAAAAAAAAAAAAAAAAAAAAAAsCstme8G2CnPTnLtBGutGwZGTpe7ZjTQ3fdX1a1JnpHks0n+oqpen+SyJJ/v7huGpUurat3IrR/s7vO30cdlSf5rVS3O1HDJtyT5vZH8yrF6v93dl48XGfq7OcmRSe4cS69O8sUklyT5v6rqCd392JDbkuQPkrw3yb/dRp+pqrcM/eX3z/iDvOFXf21bywEAAAAAAAAAAAAAAAAAAAAAANhFFi+q+W4BYJcwVPKnSFV9PMkLkjya5N3TLOkZbp0pvkO6e11VHZHk5UlemuSqqnp+d1+fZFN3Hz2LcpuTXJGpgZJLu3tj1d/7Q3nDLOr9gz/Nq2qvJK9M8q7ufqCq/jrJv0xy6ciyLyR5X1Udvq3i3X1WkrOS5Lu337FTzxAAAAAAAAAAAAAAAAAAAAAAAAAAZstQyYXtW0let/VNd7+tqg5KcvUM6+9Osv9Y7IAkdyW5L8lzq2pxd28eW/PtJK8fDVTVvkkOS3LjsPeDSS5McmFVbcnU4Mbr53KoJOcluSjJaXO8P1X1xCQrknw3yZNGUv8yyX5J1g/DKpcl2ZSRoZLd/ZOq+nCSNXPdHwAAAAAAAAAAAAAAAAAAAAAAAAAeb4vmuwF2yleT7FNVbx2JLdvG+quSHFdVhyRJVR2TZO8kt3X3hkwNo3x/DdMWq2pFVb0qyWVJllXVSUN8cZIPJzm7ux+qquOqav8ht1eSZyW5ZSfOdXmSDyb54lxurqrlST6R5OLuvncsvTrJm7p7RXevSHJ4kpdV1fhzOzvJS5M8eS49AAAAAAAAAAAAAAAAAAAAAAAAAMDjzVDJBay7O8lrkryoqm6uqm8k+XySNcOSl1TV7VuvJEckOSXJl6tqXZKPJFnd3VuG9W9KcnCSG6vqukwNVvzBsM+qJCdU1Q1Jvpvk4STvHe5bmeRrVbU+yd9kajjlBUNuaVWtG7nO2JFzdfeHuvuuadIrx+q9YyT3l0Pf30hya5LfHL1xGBz5iiRfGtnrx0muSPLqsR4eTfJHSZ6yvX4BAAAAAAAAAAAAAAAAAAAAAAAAYD4sme8G2Dnd/f0kJ86QXjpD/JIZat2f5M0z5G7L2ODFkdw5Sc6ZIbd4hh6mW3v8DPHlw68bM8OZunvFNupuTPKc4e0B0+RfO/L27JH4H2VqsCQAAAAAAAAAAAAAAAAAAAAAAAAA7HYWzXcDAAAAAAAAAAAAAAAAAAAAAAAAAADM3pL5boA9T1VdlOTwsfCa7v7KfPQDAAAAAAAAAAAAAAAAAAAAAAAAAAuRoZLsct29ar57AAAAAAAAAAAAAAAAAABg5yzaZ59sefjh+W4DAAAAAGCPtmi+GwAAAAAAAAAAAAAAAAAAABYeAyUBAAAAAOafoZIAAAAAAAAAAAAAAAAAAAAAAAAAAAuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAAAuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAAAuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAAAuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAAAuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAAAuQoZJ7kKo6uKq+UFU3VdU1VXVlVa2qquOr6tKxtSdX1ZljsbVVdczwenlVfbqqNgy11lbVsUPu0Kq6pKpuGPIfraq9htyyqjq3qtZX1XVVdUVVLR9ym6tq3cj1nm2cZW1V3VpVNRK7uKoeHF6vqKpNY/VOGll7dFV1Vb1irG5X1YdH3v+Hqjpt1g8bAAAAAAAAAAAAAAAAAAAAAAAAAB5nS+a7AXaNYfjixUk+392/MsSenuRfJbl3DiU/k+TmJEd295aqOjzJs4Z9Lkzyye7+5apanOSsJKcneXeSU5Lc2d1HDT08M8ljQ81N3X30LHq4L8lxSa6oqv2SPHUsv2Eb9VYnuWL49c9H4o8keW1VfbC775pFLwAAAAAAAAAAAAAAAAAAAAAAAACwSy2a7wbYZV6c5NHu/tTWQHff0t0fm22hqlqZ5Ngkp3b3lqHWzd39pWGfh7v7c0N8c5J3JnljVS3L1ODH74308J3ufmSOZzovyYnD69dmapjljvRfSU5IcnKSl1XVPiPpn2RqCOY7d6DOW6rq6qq6+vxz/3g2fQMAAAAAAAAAAAAAAAAAAAAAAADATjNUcs/x7CTXTrDWumFg5HS5a0YD3X1/kluTPCPJZ5Osqaorq+oDVXXkyNKlVbVu5HrDdvq4LMkvVNXiTA2XPH8sv3Ks3guH+M8nubm7NyRZm+RVY/d9PMmvVtWTtrV5d5/V3cd09zFv+NVf206rAAAAAAAAAAAAAAAAAAAAAAAAADBZS+a7AeZHVX08yQuSPJrk3dMs6RlunSm+Q7p7XVUdkeTlSV6a5Kqqen53X59kU3cfPYtym5NckamBkku7e2NVjeY3zFBvdZLzhtfnJTkpyQUjPd5fVeckeUeSTbPoBwAAAAAAAAAAAAAAAAAAAAAAAAB2GUMl9xzfSvK6rW+6+21VdVCSq2dYf3eS/cdiByS5K8l9SZ5bVYu7e/PYmm8nef1ooKr2TXJYkhuHvR9McmGSC6tqS5JXJrl+LofK1FDIi5KctiOLq2pxpp7DL1fV+5JUkgOr6ond/cDI0o8kuTbJ5+bYFwAAAAAAAAAAAAAAAAAAAAAAAAA8rhbNdwPsMl9Nsk9VvXUktmwb669KclxVHZIkVXVMkr2T3NbdGzI1jPL9VVVDfkVVvSrJZUmWVdVJQ3xxkg8nObu7H6qq46pq/yG3V5JnJbllJ851eZIPJvniDq5/SZJvdvfPdPeK7n56kguSrBpd1N33JPmTJL+xE70BAAAAAAAAAAAAAAAAAAAAAAAwD6rK5XK55nQtNIZK7iG6u5O8JsmLqurmqvpGks8nWTMseUlV3b71SnJEklOSfLmq1iX5SJLV3b1lWP+mJAcnubGqrktydpIfDPusSnJCVd2Q5LtJHk7y3uG+lUm+VlXrk/xNpoZTXjDkllbVupHrjB05V3d/qLvvmia9cqzeO5KsTnLR2LoLhvi4Dyc5aHs9AAAAAAAAAAAAAAAAAAAAAAAAAMB8WDLfDbDrdPf3k5w4Q3rpDPFLZqh1f5I3z5C7LcmrZ8idk+ScGXKLZ+hhurXHzxBfPvy6MTOfafyeP03yp6P3D6/vTLJsR3sCAAAAAAAAAAAAAAAAAAAAAAAAgF1p0Xw3AAAAAAAAAAAAAAAAAAAAAAAAAADA7C2Z7wZgW6rqoiSHj4XXdPdX5qMfAAAAAAAAAAAAAAAAAAAAAAAAANhdGCrJbq27V813DwAAAAAAAAAAAAAAAAAA/EOL9tknWx5+eL7bAAAAAADYoy2a7wYAAAAAAAAAAAAAAAAAAICFx0BJAAAAAID5Z6gkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMACZKgk/0BVHVxVX6iqm6rqmqq6sqpWVdXxVXXp2NqTq+rMsdjaqjpmeL28qj5dVRuGWmur6tghd2hVXVJVNwz5j1bVXkNuWVWdW1Xrq+q6qrqiqpYPuc1VtW7kes82zrK2qm6tqhqJXVxVDw6vV1TVdcPr46uqq+rVI2svrarjd/KRAgAAAAAAAAAAAAAAAAAAAAAAAMDEGSrJ3zMMX7w4yde7+4jufl6SE5McOseSn0lyT5Ijh1q/nuSgYZ8Lk1zc3Ucm+dkky5OcPtx3SpI7u/uo7n5Okt9I8tiQ29TdR49cZ2ynh/uSHDecb78kT93G2tuTvG/WpwQAAAAAAAAAAAAAAAAAAAAAAACAXcxQSca9OMmj3f2prYHuvqW7PzbbQlW1MsmxSU7t7i1DrZu7+0vDPg939+eG+OYk70zyxqpalqnBj98b6eE73f3IHM90XqYGYybJazM1zHImf5vkR1X1sjnuBQAAAAAAAAAAAAAAAAAAAAAAAAC7hKGSjHt2kmsnWGvdMDByutw1o4Huvj/JrUmekeSzSdZU1ZVV9YGqOnJk6dKqWjdyvWE7fVyW5BeqanGmhkuev531pyc5dTtrUlVvqaqrq+rq88/94+0tBwAAAAAAAAAAAAAAAAAAAAAAAICJWjLfDbB7q6qPJ3lBkkeTvHuaJT3DrTPFd0h3r6uqI5K8PMlLk1xVVc/v7uuTbOruo2dRbnOSKzI1UHJpd2+sqm3t/fWqSlW9YDs9npXkrCT57u137NR5AQAAAAAAAAAAAAAAAAAAAAAAAGC2DJVk3LeSvG7rm+5+W1UdlOTqGdbfnWT/sdgBSe5Kcl+S51bV4u7ePLbm20lePxqoqn2THJbkxmHvB5NcmOTCqtqS5JVJrp/LoZKcl+SiJKft4PrTk5ya5Cdz3A8AAAAAAAAAAAAAAAAAAAAAAAAAHleL5rsBdjtfTbJPVb11JLZsG+uvSnJcVR2SJFV1TJK9k9zW3RsyNYzy/VVVQ35FVb0qyWVJllXVSUN8cZIPJzm7ux+qquOqav8ht1eSZyW5ZSfOdXmSDyb54o4s7u6/yNSwzH+6E3sCAAAAAAAAAAAAAAAAAAAAAAAAwOPGUEn+nu7uJK9J8qKqurmqvpHk80nWDEteUlW3b72SHJHklCRfrqp1ST6SZHV3bxnWvynJwUlurKrrkpyd5AfDPquSnFBVNyT5bpKHk7x3uG9lkq9V1fokf5Op4ZQXDLmlVbVu5DpjR87V3R/q7rtm8ThOT/Izs1gPAAAAAAAAAAAAAAAAAAAAAAAAALvMkvlugN1Pd38/yYkzpJfOEL9khlr3J3nzDLnbkrx6htw5Sc6ZIbd4hh6mW3v8DPHlw68bkzxneL02ydqRNX+apHZ0LwAAAAAAAAAAAAAAAAAAAAAAAADYlQyVBAAAAAAAAAAAAAAAAAAAAAAAAH6qVNV8twCwSxgqyU+FqrooyeFj4TXd/ZX56AcAAAAAAAAAAAAAAAAAAAAAAAAAHm+GSvJTobtXzXcPAAAAAAAAAAAAAAAAAAAAAAAAALArLZrvBgAAAAAAAAAAAAAAAAAAAAAAAAAAmD1DJQEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJQEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJQEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJQEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJQEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJQEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJUmSVNXBVfWFqrqpqq6pqiuralVVHV9Vl46tPbmqzhyLra2qY4bXy6vq01W1Yai1tqqOHXKHVtUlVXXDkP9oVe015JZV1blVtb6qrquqK6pq+ZDbXFXrRq73bOMsa6vq1qqqkdjFVfXg2LrfqaqHq+pJI7HXVtVlI+9fMOy3ZC7PFQAAAAAAAAAAAAAAAAAAAAAAAAAeL4ZKkmH44sVJvt7dR3T385KcmOTQOZb8TJJ7khw51Pr1JAcN+1yY5OLuPjLJzyZZnuT04b5TktzZ3Ud193OS/EaSx4bcpu4+euQ6Yzs93JfkuOF8+yV56jRrVie5Kslrtwa6+8Ikj1TVr1TVE5J8IslvdfdPZvkMAAAAAAAAAAAAAAAAAAAAAAAAAOBxZagkSfLiJI9296e2Brr7lu7+2GwLVdXKJMcmObW7twy1bu7uLw37PNzdnxvim5O8M8kbq2pZpgY/fm+kh+909yNzPNN5mRqMmUwNjbxwmj6XJzk1U8MlR709yQeSnJbkqu7+qzn2AAAAAAAAAAAAAAAAAAAAAAAAAACPG0MlSZJnJ7l2grXWDQMjp8tdMxro7vuT3JrkGUk+m2RNVV1ZVR+oqiNHli6tqnUj1xu208dlSX6hqhZnarjk+WP5EzM1ePLyJM+sqoNHerppWP/2JGtm2qCq3lJVV1fV1eef+8fbaQcAAAAAAAAAAAAAAAAAAAAAAAAAJmvJfDfA7qeqPp7kBUkeTfLuaZb0DLfOFN8h3b2uqo5I8vIkL01yVVU9v7uvT7Kpu4+eRbnNSa7I1PDIpd29sapG86uTrOruLVV1QZITkpyZJMMgypcleTDJ05PcNUO/ZyU5K0m+e/sdO3V2AAAAAAAAAAAAAAAAAAAAAAAAAJgtQyVJkm8led3WN939tqo6KMnVM6y/O8n+Y7EDMjV88b4kz62qxd29eWzNt5O8fjRQVfsmOSzJjcPeDya5MMmFVbUlySuTXD+XQyU5L8lFSU4b2/OoJEcm+f+GQZN7Jbk5w1DJJL+VZH2SU5N8fBhsaWgkAAAAAAAAAAAAAAAAAAAAAAAAALuVRfPdALuFrybZp6reOhJbto31VyU5rqoOSZKqOibJ3klu6+4NmRpG+f4aJjZW1YqqelWSy5Isq6qThvjiJB9OcnZ3P1RVx1XV/kNuryTPSnLLTpzr8iQfTPLFsfjqJKd194rhelqSp1XV04czvSvJ73b3nyf5XpI37UQPAAAAAAAAAAAAAAAAAAAAAAAAAPC4WDLfDTD/urur6jVJ/rCqfjfJD5P8OMmaYclLqur2kVtOSHJKki9X1aIkDyZZ3d1bhvybMjUs8saq2pTkriTvHvZZleQTVfV7mRpq+uUk7x3uW5nkk8MwykVJvpTkgiG3tKrWjfTw5939nu2dK8mHpkmdmOSVY7GLhvhzk/xBd/9wiP9Oksur6oLuvmdb+wEAAAAAAAAAAAAAAAAAAAAAAADArmSoJEmS7v5+poYqTmfpDPFLZqh1f5I3z5C7LcmrZ8idk+ScGXKLZ+hhurXHzxBfPvx6xDS5d81wz21JVuzo3gAAAAAAAAAAAAAAAAAAAAAAAACwqyya7wYAAAAAAAAAAAAAAAAAAAAAAAAAAJi9JfPdAMxVVV2U5PCx8Jru/sp89AMAAAAAAAAAAAAAAAAAAAAAAAAAu5KhkixY3b1qvnsAAAAAAAAAAAAAAAAAAAAAAAAAgPmyaL4bAAAAAAAAAAAAAAAAAAAAAAAAAABg9qq757sH+GngNxIAAAAAAAAAAAAAAAAAAAAAwNzUfDcA/PT5s6vWmw0FzMmr//lRC+prk0Xz3QAAAAAAAAAAAAAAAAAAAAAAAAAAALNnqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqCRJkqo6uKq+UFU3VdU1VXVlVa2qquOr6tKxtSdX1ZljsbVVdczwenlVfbqqNgy11lbVsUPu0Kq6pKpuGPIfraq9htyyqjq3qtZX1XVVdUVVLR9ym6tq3cj1nm2cZW1VfaeqvllVf1dVZ1bVfiP5B4dfV1TVprG6ew3n++FI7JxJPWcAAAAAAAAAAAAAAAAAAAAAAAAAmJQl890A86+qKsnFST7f3b8yxJ6e5F8luXcOJT+T5OYkR3b3lqo6PMmzhn0uTPLJ7v7lqlqc5Kwkpyd5d5JTktzZ3UcNPTwzyWNDzU3dffQsevjV7r56GFj5wSSXJHnRNOs2jNedajPnd/fbZ7EfAAAAAAAAAAAAAAAAAAAAAAAAAOxSi+a7AXYLL07yaHd/amugu2/p7o/NtlBVrUxybJJTu3vLUOvm7v7SsM/D3f25Ib45yTuTvLGqliV5apLvjfTwne5+ZCfOle5+NMnvJjmsqp67M7UAAAAAAAAAAAAAAAAAAAAAAAAAYHdiqCRJ8uwk106w1rphYOR0uWtGA919f5JbkzwjyWeTrKmqK6vqA1V15MjSpVW1buR6w442NPTyt0l+bpr0ypGaHx+Jv2Ek/uvT1a2qt1TV1VV19VlnnbWj7QAAAAAAAAD0PnbnAAAgAElEQVQAAAAAAAAAAAAAAADARCyZ7wbY/QzDFV+Q5NEk755mSc9w60zxHdLd66rqiCQvT/LSJFdV1fO7+/okm7r76J0oXzPEN8xQ9/zufvt2+j0rydZpkjt1dgAAAAAAAAAAAAAAAAAAAAAAAACYLUMlSZJvJXnd1jfd/baqOijJ1TOsvzvJ/mOxA5LcleS+JM+tqsXdvXlszbeTvH40UFX7JjksyY3D3g8muTDJhVW1Jckrk1w/l0ON7LE4yVE7WwcAAAAAAAAAAAAAAAAAAAAAAAAAdieL5rsBdgtfTbJPVb11JLZsG+uvSnJcVR2SJFV1TJK9k9zW3RsyNYzy/VVVQ35FVb0qyWVJllXVSUN8cZIPJzm7ux+qquOqav8ht1eSZyW5ZWcOVlVPSPLBobdv7kwtAAAAAAAAAAAAAAAAAAAAAAAAANidGCpJuruTvCbJi6rq5qr6RpLPJ1kzLHlJVd2+9UpyRJJTkny5qtYl+UiS1d29ZVj/piQHJ7mxqq5LcnaSHwz7rEpyQlXdkOS7SR5O8t7hvpVJvlZV65P8TaaGU14w5JZW1bqR64ztHOvcqvpmkuuS/KMkvzzHxwMAAAAAAAAAAAAAAAAAAAAAAAAAu6WamvMH7CS/kQAAAAAAAAAAAAAAAAAAAAAA5qbmuwHgp8+fXbXebChgTl79z49aUF+bLJrvBgAAAAAAAAAAAAAAAAAAAAAAAAAAmL0l890AzFVVXZTk8LHwmu7+ynz0AwAAAAAAAAAAAAAAAAAAAAAAAAC7kqGSLFjdvWq+ewAAAAAAAAAAAAAAAAAAAAAAAACA+WKoJEzAHddcOZE6+zztsInUSZKf/OieidVast+BE6u1aK+9J1arH3tsYrXu7cUTqXPgssmd776rvj6xWvs+55iJ1ZrUs9pTrDjkyROp88CP7ptInT3FE5+030Tq3H/XDyZSZ0+y70FP2ekaD9x//wQ62bM8cd99J1Ln/rvvmkidPcW+Bx40kTo/vPdHE6mzp3jy/k+aSJ27/m79ROrsKQ76uaMmUmf9xtsnUmdPctSKQ3e6xt033TCBTvYsBx5x5ETq3HvbxonU2VPs/zMrJlLnR3feMZE6e4onHXzIROr4e+vsTOrvrcefduZE6uwp1p729onUecnvf2IidfYkl/2n39rpGr6mmb1JfU3z/bsm998b9gRPPeiAidTZeMcPJ1JnTzGpf4u//tb/OZE6e4p/ctjTJlLH55nZmdTnmR898MBE6uxJnvTEJ+50DX9nnb1J/b3V55rZmdTnmtt/cPdE6uwpDn3KZL4/595bb55InT3F/ocdPpE6vr9g9ibx/QV3b/jOBDrZsxy48pkTqXPv/b6enI399935ryUT/14wW753b35M7Hv3fB/TrEzq+5g2/M87J1JnT7LyaQfvdA1fS87eJL6WTHzv3mxN6nv3/Nk6O5P6s/WeW26aSJ09xQFPP2Iidfw7zexM6t9prr3xlonUSZJnHLB8YrXueGhyPwd3yLInTKzW5iV7TaTOQ49M7nw/fODBidVaeeBkftYiSb7/wMMTq3XIPosmVqv3XjqxWpP6OD7w8KMTqZMkT1myZWK1Ni3ZZ2K1lm2e3BlryeR+1H9StTbeO7nfh4ceMJmvI5Pk9nsm9zX8U/ebzL/ZJcljP9k8sVpbejJ1FtVk6iST/T39k82Te1Z7P2H3HJOxfJ/J/Jz5oprcB/HeH2+aWK3NWyb3eXmvJbvnz6tP6mP4/fsm93Oy+y2b3J/3k7T3BD+GSx/98cRq/fgJ/2gidZ5wx8aJ1EmSvZ8yme+1S5LeMrnPpbvrTJL9Dpnc8wIA2NPsnn9bBgAAAAAAAAAAAAAAAAAAAAAAAJijSQ5eB9idTe5/ZwMAAAAAAAAAAAAAAAAAAAAAAAAAwC5jqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAJkqOTjrKoeHHt/clWdObw+raq+V1XrRq79qur4quqqetPIfUcPsf8wEltSVT+sqjOG9+8bqbN55PU7hvxbqurvhusbVfWCkVpPqKozquqGqrq2qq6sqv9jyG2sqvVV9c2q+lpVPX30fFV11Mhe91TVzcPr/15VK6pq09gZT9rG89pYVZePxdZV1XXD6+Or6kdj9V465Lae+VtV9bdV9e+ratHIfZeO1b24qv7HWOy0qnqoqp4y08cQAAAAAAAAAAAAAAAAAAAAAAAAAHYHS+a7AfKH3f2h0UBVJcl1Sf51ks8M4dVJ/nbs3pcl+W6SE6rqP3b36UlOH2o82N1Hj9T8pSS/meQF3X1XVf2zJBdX1b/o7juS/OckT03ynO5+pKoOTvKikb1+cbjv/UlOTfLmrYnuXp/k6GGfs5Nc2t3/bXi/IsmG0V52wBOr6me6+7aq+ifT5C/v7l+aJr5p6z7DUMgvJNk3yf85vrCq9kvyvCQPVtUR3X3TSPquJP8+yZpZ9AwAAAAAAAAAAAAAAAAAAAAAAAAAu9Si+W6AGd2SZJ+qOrimpky+Isn/O7ZmdZKPJrk1yfO3U29Nknd3911J0t3XJvl8krdV1bJMDYn87e5+ZMjf2d1/Mk2dK5P84zmeaUf9SZI3DK9XJ/nibAt09w+SvCXJ24fnN+61Sf4syXlJThzLfTbJG6rqgNnuCwAAAAAAAAAAAAAAAAAAAAAAAAC7iqGSj7+lVbVu65Xk98fy7xzJ/+VY7r8lOSHJzye5NskjWxNVtU+Sl2ZqMOIXMzV8cVueneSasdjVQ/wZSW7t7vt34DyvSHLxDqwbtXL0GVTVC7ez/oJMDX1Mkldn6oyjXjhWb+V0Rbr7piSLkzxlmvTWYZXTPbsHMzVY8pRtNVlVb6mqq6vq6j++cLaPBAAAAAAAAAAAAAAAAAAAAAAAAAB2zpL5bmAPsKm7j976pqpOTnLMSP4Pu/tDM9z7J0nOT/JzmRp++PMjuV9K8pfdvamqLkjye1X1O929eaLd/29/WVUHZGrg4u/N8t4No89gB9yd5N6qOjHJ9UkeGstf3t2/NMse/peqOjjJkUmu6O6uqseq6jndfd3Isj9Ksq6qZvrYpLvPSnJWktxxzZU9134AAAAAAAAAAAAAAAAAAAAAAAAAYC4WzXcDzKy770jyWJKXJblsLL06yUuramOSa5IcmOTF2yj37STPG4s9L8m3ktyY5LCq2ncb9/9ikqcnWZfk/Tt4hJ1xfpKPZ2qY5pxU1RFJNif5wVjqXyfZP8nNw/Nbkann+b90931JvpDkbXPdHwAAAAAAAAAAAAAAAAAAAAAAAAAeT4ZK7v7+U5I13b15a2AY/vjCJId194ruXpGp4Yerpy+RJPmDJP+lqg4cahyd5OQkn+juh5L8P0k+WlV7DfknV9UJowW6+ydJfifJSVV1wITON5OLhp6/Mpebq+rJST6V5Mzu7rH06iSvGHl2z0ty4jRl/u8kv5lkyVx6AAAAAAAAAAAAAAAAAAAAAAAAAIDHk6GS8++dVbVu5Foxmuzuv+rui8fuWZXkq939yEjskiSvrqq9p9uku/80yWeT/FVV/V2S/5rk33T394clpyb5YZJvV9V1SS5Ncv80db6f5IuZGmK5o1aOnfEd27uhux/o7v/S3Y9Ok37hWL3XD/Glw/tvJfnvSf4iyftHbxye79OT/I+RvW5O8qOqOnash7syNdxy2mcKAAAAAAAAAAAAAAAAAAAAAAAAAPNpyXw38NOuu5ePvT87ydnD69OSnDbNbRuTrJ2m1ujaz4/l7kny5Jn2HWKfTPLJGfp8NMnvDtd4bsXY+9+eaZ/uPnns/cYkS6fbc4Y+VkwT25jkOcPrtUmeNMO9i7dRd23+9zP9x9Pk/9nw8q/H4u9K8q7ttA0AAAAAAAAAAAAAAAAAAAAAAAAAu9yi+W4AAAAAAAAAAAAAAAAAAAAAAAAAAIDZWzLfDbBnqqq/TrL3WPjXunv9fPQDAAAAAAAAAAAAAAAAAAAAAAAAAAuNoZLMi+4+dr57AAAAAAAAAAAAAAAAAAAAAAAAAICFbNF8NwAAAAAAAAAAAAAAAAAAAAAAAAAAwOwZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAAZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAAtme8GAAAAAAAAAAAAAAAAAAAAAACA/5+d+4/ytK7uBP++bSM/BDQQJGqUnqCJETQd4ZgNCxMwMCETOFF3UHuihs36YzdEI46Gkwhuo2ECjhkGYvQMMaZdc0LgoKIhOnElkCEH16RhWkH0qGiLoig/lAa7bbS9+0c9pU++U1VdBV+6uujX65zn8Hw+9/O5n/s8VV3VXU1fAKbpUatWLXcJALuEr3YAAAAAAAAAAAAAAAAAAAAAAAAAACuQppIAAAAAAAAAAAAAAAAAAAAAAAAAACuQppIAAAAAAAAAAAAAAAAAAAAAAAAAACuQppK7kaq6f2J8elW9fbhfX1W3V9Wm0fW4qjq+qrqqXj7at3aYe/1obnVV3VlV5w/jN47y7Bjdv2aIv7KqPjtc/1RVx45y7VVV51fV56vqxqr6eFX96hDbXFU3VdWnquofquqw8fNV1TNHZ91TVV8a7j9WVWuqatvEM75sgfe1uaqum5jbVFU3D/fHV9W9E/lOHK193vCenj6aWzPMvXo09/aqOn0RH0IAAAAAAAAAAAAAAAAAAAAAAAAA2GVWL3cBLMmF3f228URVJcnNSV6Y5F3D9Lokn5zYe1KSzyU5rap+v7vPS3LekOP+7l47ynlKklclOba776qqZye5sqqe0913JHlLkickObK7t1fVoUl+aXTWCcO+c5OcneQVs4HuvinJ2uGcDUmu6u4rhvGaJLeOa1mEA6rqyd39lar62Tni13X3KfPsXZfkH4f//t+j+W8m+d2q+q/d/cASagEAAAAAAAAAAAAAAAAAAAAAAACAXWbVchfAVHw5yT5VdWjNdJk8OclHJtasS3JRktuS/OJO8p2V5A3dfVeSdPeNSd6T5Iyq2i8zTSJf3d3bh/g3uvvyOfJ8PMmTHuQzLdblSV403K9LculiNlXV/kmOTfJ/JHnxRPjOJFcn+c0p1QgAAAAAAAAAAAAAAAAAAAAAAAAAU6ep5O5l36raNHslefNE/MxR/JqJ2BVJTktyTJIbk2yfDVTVPklOTPI3mWm6uG4ndRyR5IaJuY3D/FOT3NbdWxbxPCcnuXIR68YOH7+DqjpuJ+vfl+QFw/2pmXnGseMm8h0+zP96kv/W3Z9LcndVHTWx74Ikr6+qR813cFW9sqo2VtXG975/qY8JAAAAAAAAAAAAAAAAAAAAAAAAAA/N6uUugH9hW3evnR1U1elJjh7FL+zut82z9/IklyV5emYaRx4zip2S5Jru3lZV70tyTlW9trt3TLX6H7mmqg5Kcn+Sc5a499bxO1iEu5N8q6penOQzSbZOxK/r7lPm2LcuyUXD/V8P4x820uzuL1bVJ5L8+/kO7u5LklySJHfc8PFeQs0AAAAAAAAAAAAAAAAAAAAAAAAA8JCtWu4CmI7uviPJ95KclOTqifC6JCdW1ebMNE48OMlzF0h3S5KjJuaOSvLpJF9I8pSqOnCB/SckOSzJpiTnLvIRHorLkvxpZppp7tTQ8PK5Sd41vJM3JHlhVdXE0v+Y5Kwkk/MAAAAAAAAAAAAAAAAAAAAAAAAAsOw0lXxkeVOSs7p7x+zE0PzxuCRP6e413b0myRmZaTQ5n7cmuaCqDh5yrE1yepJ3dPfWJH+e5KKqevQQP6SqThsn6O7vJ3ltkpcNTRwfTh8Yav67Ra7/d0ne292HDe/kyUm+lJn39EPd/dnMNNg8dZrFAgAAAAAAAAAAAAAAAAAAAAAAAMA0aCq5spxZVZtG15pxsLuv7+4rJ/Y8P8nfd/f20dwHk5xaVXvPdUh3fyjJu5NcX1WfTfJnSV7S3V8flpyd5M4kt1TVzUmuSrJljjxfT3JpZppYLtbhE8/4mp1t6O77uvuC7n5gjvBxE/n+XWYaan5gYt37MnejzfOS/OQS6gcAAAAAAAAAAAAAAAAAAAAAAACAXWL1chfAj3T3/hPjDUk2DPfrk6yfY9vmJNfOkWu89j0TsXuSHDLfucPcO5O8c546H0jye8M1GVszMX71fOd09+kT481J9p3rzHnqWDPH3OYkRw731yZ57Bxbr5hj38Wj4ZGj+U9G81UAAAAAAAAAAAAAAAAAAAAAAAAAdkOa5QEAAAAAAAAAAAAAAAAAAAAAAAAArECrl7sA2Jmq+kSSvSemX9rdNy1HPQAAAAAAAAAAAAAAAAAAAAAAAACwO9BUkt1ed//CctcAi3X31u05eL/JHqgAAAAAAAAAAAAAAAAA8Miz3957Zev27y13GQAAAAAAe7RVy10AwCOJhpIAAAAAAAAAAAAAAAAA7Ck0lAQAAAAAWH6aSgIAAAAAAAAAAAAAAAAAAAAAAAAArECaSgIAAAAAAAAAAAAAAAAAAAAAAAAArECaSgIAAAAAAAAAAAAAAAAAAAAAAAAArECaSgIAAAAAAAAAAAAAAAAAAAAAAAAArECaSgIAAAAAAAAAAAAAAAAAAAAAAAAArECrl7sAAAAAAAAAAAAAAAAAAAAAAAAAgGmqquUuAWCXWLXcBbB0VXX/xPj0qnr7cL++qm6vqk2j63FVdXxVdVW9fLRv7TD3+tHc6qq6s6rOH8ZvHOXZMbp/zRB/ZVV9drj+qaqOHeXaq6rOr6rPV9WNVfXxqvrVIba5qm6qqk9V1T9U1WHj56uqZ47OuqeqvjTcf6yq1lTVtolnfNkC72tzVV03Mbepqm4e7o+vqqtG7/IHVfWs0dqbq2rNUj5GAAAAAAAAAAAAAAAAAAAAAAAAAPBwW73cBfCwuLC73zaeGLol35zkhUneNUyvS/LJib0nJflcktOq6ve7+7wk5w057u/utaOcpyR5VZJju/uuqnp2kiur6jndfUeStyR5QpIju3t7VR2a5JdGZ50w7Ds3ydlJXjEb6O6bkqwdztmQ5KruvmIYr0ly67iWRTigqp7c3V+pqp/dydqvJnljkhctIT8AAAAAAAAAAAAAAAAAAAAAAAAA7FKrlrsAdqkvJ9mnqg6tmS6TJyf5yMSadUkuSnJbkl/cSb6zkryhu+9Kku6+Mcl7kpxRVftlpknkq7t7+xD/RndfPkeejyd50oN8psW6PD9qErkuyaULrL0qyRFV9TMLJayqV1bVxqra+N73XzmlMgEAAAAAAAAAAAAAAAAAAAAAAABgcTSVXJn2rapNs1eSN0/EzxzFr5mIXZHktCTHJLkxyfbZQFXtk+TEJH+TmaaL63ZSxxFJbpiY2zjMPzXJbd29ZRHPc3KSpXZlPHz8DqrquJ2sf1+SFwz3p2bmGefzgyRvTfIHCyXs7ku6++juPvqlL3jeogsHAAAAAAAAAAAAAAAAAAAAAAAAgGlYvdwF8KBs6+61s4OqOj3J0aP4hd39tnn2Xp7ksiRPz0zjyGNGsVOSXNPd26rqfUnOqarXdveOqVb/I9dU1UFJ7k9yzhL33jp+B4twd5JvVdWLk3wmydadrP+rJG+sqn+1xLoAAAAAAAAAAAAAAAAAAAAAAAAAYJdYtdwFsGt19x1JvpfkpCRXT4TXJTmxqjYnuSHJwUmeu0C6W5IcNTF3VJJPJ/lCkqdU1YEL7D8hyWFJNiU5d5GP8FBcluRPM9NMc0Hd/f0kf5zkrIe7KAAAAAAAAAAAAAAAAAAAAAAAAAB4MDSV3DO9KclZ3b1jdmJo/nhckqd095ruXpPkjMw0mpzPW5NcUFUHDznWJjk9yTu6e2uSP09yUVU9eogfUlWnjRMMzRtfm+RlVXXQlJ5vPh8Yav67Ra7fkOTEJIc8XAUBAAAAAAAAAAAAAAAAAAAAAAAAwIOlqeQj05lVtWl0rRkHu/v67r5yYs/zk/x9d28fzX0wyalVtfdch3T3h5K8O8n1VfXZJH+W5CXd/fVhydlJ7kxyS1XdnOSqJFvmyPP1JJdmponlYh0+8Yyv2dmG7r6vuy/o7gcWc8Cw7uIkj19CXQAAAAAAAAAAAAAAAAAAAAAAAACwS6xe7gJYuu7ef2K8IcmG4X59kvVzbNuc5No5co3Xvmcidk+SQ+Y7d5h7Z5J3zlPnA0l+b7gmY2smxq+e75zuPn1ivDnJvnOdOU8da+aY25zkyOH+2gzvZvwuh/HFmWksCQAAAAAAAAAAAAAAAAAAAAAAAAC7lVXLXQAAAAAAAAAAAAAAAAAAAAAAAAAAAEu3erkLgGmpqk8k2Xti+qXdfdNy1AMAAAAAAAAAAAAAAAAAAAAAAAAADydNJXnE6O5fWO4aAAAAAAAAAAAAAAAAAAD2FPvtvVe2bv/ecpcBAAAAALBHW7XcBQAAAAAAAAAAAAAAAAAAACuPhpIAAAAAAMtPU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBVIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgBVIU8kVoqrunxifXlVvH+7XV9XtVbVpdD2uqo6vqq6ql4/2rR3mXj+aW11Vd1bV+cP4jaM8O0b3rxnir6yqzw7XP1XVsaNce1XV+VX1+aq6sao+XlW/OsQ2V9VNVfWpqvqHqjps/HxV9czRWfdU1ZeG+49V1Zqq2jbxjC9b4H1trqrrJuY2VdXNE3P/ZXh3q0Zzr6uqd4/Gv1FVf7vzjxIAAAAAAAAAAAAAAAAAAAAAAAAA7Dqrl7sApubC7n7beKKqkuTmJC9M8q5hel2ST07sPSnJ55KcVlW/393nJTlvyHF/d68d5TwlyauSHNvdd1XVs5NcWVXP6e47krwlyROSHNnd26vq0CS/NDrrhGHfuUnOTvKK2UB335Rk7XDOhiRXdfcVw3hNklvHtSzCAVX15O7+SlX97GRwaCT5/CRfGWq8ZghdnGRjVf2vST6d5A+T/PISzgUAAAAAAAAAAAAAAAAAAAAAAGAZzbThAnjkW7XcBfCw+3KSfarq0JrpMnlyko9MrFmX5KIktyX5xZ3kOyvJG7r7riTp7huTvCfJGVW1X2aaRL66u7cP8W909+Vz5Pl4kic9yGdarMuTvGi4X5fk0on48ZlpGvnOIZ4k6e7vJ/ntJH+a5K1J3t3dX5xMXlWvrKqNVbXxve+/cvrVAwAAAAAAAAAAAAAAAAAAAAAAAMACNJVcOfatqk2zV5I3T8TPHMWvmYhdkeS0JMckuTHJ9tlAVe2T5MQkf5OZpovrsrAjktwwMbdxmH9qktu6e8sinufkJEvtxHj4+B1U1XE7Wf++JC8Y7k/NzDOOzTaa/ECSX6uqvWYD3X19ks9k5t28da7k3X1Jdx/d3Ue/9AXPW+KjAAAAAAAAAAAAAAAAAAAAAAAAAMBDs3q5C2DRtnX32tlBVZ2e5OhR/MLufts8ey9PclmSp2emieIxo9gpSa7p7m1V9b4k51TVa7t7x1Sr/5FrquqgJPcnOWeJe28dv4NFuDvJt6rqxZlpELl1NlBVj07yb5O8rrvvq6pPJPmVJFcN8f0z8373SnJIkq8usVYAAAAAAAAAAAAAAAAAAAAAAAAAeFitWu4CePh19x1JvpfkpCRXT4TXJTmxqjYnuSHJwUmeu0C6W5IcNTF3VJJPJ/lCkqdU1YEL7D8hyWFJNiU5d5GP8FBcluRPM9NMc+xXkjwuyU3Dsx+bmXcx69wkf5nkvCQXPvxlAgAAAAAAAAAAAAAAAAAAAAAAAMDSaCq553hTkrO6e8fsxND88bgkT+nuNd29JskZ+ZfNFSe9NckFVXXwkGNtktOTvKO7tyb58yQXVdWjh/ghVXXaOEF3fz/Ja5O8rKoOmtLzzecDQ81/NzG/LsnLR8/9r5KcVFX7VdUzk/xakguSXJJkTVWd9DDXCQAAAAAAAAAAAAAAAAAAAAAAAABLoqnkI8eZVbVpdK0ZB7v7+u6+cmLP85P8fXdvH819MMmpVbX3XId094eSvDvJ9VX12SR/luQl3f31YcnZSe5McktV3ZzkqiRb5sjz9SSXZqaJ5WIdPvGMr9nZhu6+r7sv6O4HZueqar8kJyf529G67yT5xySnJnlnkjO7+7vd/YMk/1dGjTIBAAAAAAAAAAAAAAAAAAAAAAAAYHewerkLYHG6e/+J8YYkG4b79UnWz7Ftc5Jr58g1Xvueidg9SQ6Z79xh7p2Zabw4V50PJPm94ZqMrZkYv3q+c7r79Inx5iT7znXmPHWsmWNuc5Ijh+FBc8RfMNxeNjG/MckzFns2AAAAAAAAAAAAAAAAAAAAAAAAAOwKq5a7AAAAAAAAAAAAAAAAAAAAAAAAAAAAlm71chcAD0VVfSLJ3hPTL+3um5ajHgAAAAAAAAAAAAAAAAAAAAAAAADYVTSVZEXr7l9Y7hoAAAAAAAAAAAAAAAAAAAAAAAAAYDlUdy93DfBI4BcSAAAAAAAAAAAAAAAAAAAAAMCDU8tdAPDI89FNt+gNBTwo/2btM1bU701WLXcBAAAAAAAAAAAAAAAAAAAAAAAAAAAsnaaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSK0RV3T8xPr2q3j7cr6+q26tq0+h6XFUdX1VdVS8f7Vs7zL1+NLe6qu6sqvOH8RtHeXaM7l8zxF9ZVZ8drn+qqmNHufaqqvOr6qika5MAACAASURBVPNVdWNVfbyqfnWIba6qm6rqU1X1D1V12Pj5quqZo7PuqaovDfcfq6o1VbVt4hlftsD7mj3rpqq6par+sKr2GWJrqurm4f74qrp3lPNj87zT8x/Kxw8AAAAAAAAAAAAAAAAAAAAAAAAApm31chfA1FzY3W8bT1RVktyc5IVJ3jVMr0vyyYm9JyX5XJLTqur3u/u8JOcNOe7v7rWjnKckeVWSY7v7rqp6dpIrq+o53X1HkrckeUKSI7t7e1UdmuSXRmedMOw7N8nZSV4xG+jum5KsHc7ZkOSq7r5iGK9Jcuu4lkWYPWv/JJck+a9JfnOOddd19ylzzP9P7xQAAAAAAAAAAAAAAAAAAAAAAAAAdherlrsAHnZfTrJPVR1aM10mT07ykYk165JclOS2JL+4k3xnJXlDd9+VJN19Y5L3JDmjqvbLTJPIV3f39iH+je6+fI48H0/ypAf5TEvS3fcn+T+TPK+qDtoVZwIAAAAAAAAAAAAAAAAAAAAAAADAw01TyZVj36raNHslefNE/MxR/JqJ2BVJTktyTJIbk2yfDVTVPklOTPI3SS7NTIPJhRyR5IaJuY3D/FOT3NbdWxbxPCcnuXIR68YOH7+DqjpusRuHmr6U5GlzhI8b5XzjaH78Tn9lclNVvbKqNlbVxksuuWSJjwIAAAAAAAAAAAAAAAAAAAAAAAAAD83q5S6ARdvW3WtnB1V1epKjR/ELu/tt8+y9PMllSZ6emcaRx4xipyS5pru3VdX7kpxTVa/t7h1Trf5Hrqmqg5Lcn+ScJe69dfwOHoSaZ/667j5ljvmF3mm6+5Iks90k+yHUBQAAAAAAAAAAAAAAAAAAAAAAAABLtmq5C+Dh1913JPlekpOSXD0RXpfkxKranOSGJAcnee4C6W5JctTE3FFJPp3kC0meUlUHLrD/hCSHJdmU5NxFPsJDVlUHJFmT5HO76kwAAAAAAAAAAAAAAAAAAAAAAAAAeDhpKrnneFOSs7p7x+zE0PzxuCRP6e413b0myRmZaTQ5n7cmuaCqDh5yrE1yepJ3dPfWJH+e5KKqevQQP6SqThsn6O7vJ3ltkpdV1UFTer55VdX+Sd6R5Mru/tbDfR4AAAAAAAAAAAAAAAAAAAAAAAAA7Aqrl7sApubMqnrJaPy8cbC7r59jz/OT/H13bx/NfTDJW6tq74n52TwfqqonJbm+qjrJfUle0t1fH5acneQPk9xSVd9N8p3MNLSczPP1qro0M00s37LIZzy8qjaNxu/u7osXWH9NVVVmmqd+YAnnAAAAAAAAAAAAAAAAAAAAAAAAAMBur7p7uWuARwK/kAAAAAAAAAAAAAAAAAAAAAAAHpxa7gKAR56PbrpFbyjgQfk3a5+xon5vsmq5CwAAAAAAAAAAAAAAAAAAAAAAAAAAYOlWL3cB8FBU1SeS7D0x/dLuvmk56gEAAAAAAAAAAAAAAAAAAAAAAACAXUVTSVa07v6F5a4BAAAAAAAAAAAAAAAAAAAAAAAAAJaDppIwBXfc8PGp5Nn78U+YSp4k+f59904t114HHTK1XKv2evTUcv3gge1Ty7XlUXtPJc+P7T29L6v3bvr/ppbrwCOPnlquLTtqarn2BD/5+IOnkufe++6bSp49xWMPOGAqee79xh1TybMneeyhP/GQc3xri8/3pfqxA33OL4dpfL4nyVe/efdU8uwppvW99a7P3jSVPHuKH3/6M6eS55Yv3z6VPHuSZxz2pIec4+4vfn4KlexZDv6pp00lz7fv+NpU8uwpHvcTT5xKnvvu/fZU8uwpDnjs46aS574tW6aSZ09xwIEHTiXPL7/5HVPJs6e4+k2/PZU8x69/+1Ty7EmuXf87DzmH39Ms3bR+T/ONe3xvXYpDD5rO99bb77xnKnn2FE865KCp5Ln1a9+YSp49xeFPPHQqeXydWZppfZ3xs/ilm8bP4rfc4+fBS3XgQdP5mbDvrUszre+tX7/Le1+KJ/z4dN77t7/2lank2VM87olPnkqeLXd9cyp59iQH/vjjH3IOPy9Yumn9vMDP4pdmWj+L93uapZnW72l8vi/N1P7uyXtfkmm9d/8f09JN4/9l2nL3XVOoZM9y4ME/PpU8/ty6NNP6c6uv8Uszra/x/vy0NNP6s9M9X/7iVPLsKQ467Kemkmfj5zdPJU+S/Mzjp/NrMEnu3PrA1HIdvOoHU8v1g30fM5U83/nu9J7vm1vun1qupx3y2Knl2l0/htlvOh/DJNm6/XtTyXPfFD8fDt1raqmy9VHT+7et+z7wnanlWrX3vlPLVaun8+9bv3TP9P4++Yk/Np3/XzJJvnnv9L4+PGGKdU3r106S7OjpfH1Ylen9O+DvbJ/er+kdP5je179HrVo1tVxV03tfB+wzva810zLNr8vT/BiumuJ73x0/hnfeN73vFQc9Zr+p5dr6wPS+Zj1m7+l9vj/m+9umlmvbXtP53rr6m9P7u/dp9hHZsW3r1HLtrj1JpvXviwAA9kTT+9MyAAAAAAAAAAAAAAAAAAAAAAAAAAC7jKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKaSu1BV3T8xPr2q3j7cr6+q26tq0+h6XFUdX1VdVS8f7Vs7zL1+GFdVnV1Vn6+qz1XVNVV1xGj9/lX1zqq6tapurKobquoVQ2xNVd08R60/WVUfHHLeWlUXVdWjh9jxVXXvUOOnqupjVfX4eZ5p62xsrncwx7ldVX85Gq+uqjur6qpR/jsn3tMzhufYVlX/o6o+U1X/VFWnz/WuR3ObquqvJ+Y2DB+HvYfxj1fV5oVqBgAAAAAAAAAAAAAAAAAAAAAAAIDloKnk7uXC7l47ur49zN+c5IWjdeuSfHI0PiPJMUl+rrt/OskfJflQVe0zxN+V5FtJntbdz05ycpKD5iuiqirJ+5Nc2d1PS/LTSfZPct5o2XVDjc9K8s9DDXO5K8l/2NmDj3wnyZFVte8wPinJ7RNrLpt4T7cM87d29893988meXGS11bV/z7PM/5skkclOa6qHjMR3pHkt5ZQMwAAAAAAAAAAAAAAAAAAAAAAAADscppKrgxfTrJPVR06NHw8OclHRvGzkvxOd29Nku7+aJLrk/xGVR2e5DlJzu7uHwzxO7v7ggXOe26S73b3XwzrdyQ5M8lvVdV+44VDPQdkpmnlXN6d5EVVNW8Tyzl8OMmvDffrkly6hL1Jku7+YpLXJXnNPEvWJXlvko8m+fWJ2H9JcmZVrV7quQAAAAAAAAAAAAAAAAAAAAAAAACwq2gquWvtW1WbZq8kb56InzmKXzMRuyLJaUmOSXJjku1JUlUHJnnM0ERxbGOSI4brk7MNJRfpiCQ3jCe6e0uS25I8dZg6bniG25KcmJnmkXO5f4j97hLO/+skL66qfZI8K8knJuIvGr/Hqtp3njw3Jnn6PLEXDedcmpkGk2O3JfnHJC9dqMiqemVVbayqje99/5ULLQUAAAAAAAAAAAAAAAAAAAAAAACAqdNUctfa1t1rZ68kb5qIXziKnzARuzwzTSXXZaYR4oNSVW8cGjF+7cHmGFw31PnkJH+R5K0LrL04yW9W1QGLSdzdn0qyJjPP+uE5llw2fo/dvW2eVDXnZNXRSe7q7tuSXJ3k56vqoIllf5TkDVng10h3X9LdR3f30S99wfMWfigAAAAAAAAAAAAAAAAAAAAAAAAAmDJNJVeI7r4jyfeSnJSZRoiz81uSfKeqfmpiy1FJPp3kliQ/V1WrhvXnDQ0tD1zguFuG/T9UVQcmeUqSL8yx/kNJ/vUCtX87yV8lOWOBM+fK+bY8hAaaSX4+yWfmmF+X5OlVtTnJrZl5F//beEF3fz7JpiQvfAjnAwAAAAAAAAAAAAAAAAAAAAAAAMDDZvVyF8CSvCnJ47t7R1WN5/9Tkour6rTu3lZVJyY5NsmrhvHGJH9YVecMe/dJUv9z+h+6Osn5VfWy7v5/qupRSf44yYbu3jpxdoazbt1J7f85yT9n8Z9z707y7e6+qaqOX+SeH6qqNZlpSvknE/OrMtMo8pnd/bVh7oQk5yT5s4k05yX526WeDQAAAAAAAAAAAAAAAAAAAAAAwPJ6VK1a7hIAdglNJXcvZ1bVS0bj542D3X39PPv+JMmPJbmpqnYkuSPJr3f3tiH+8sw0nvxCVd2dZFuS3xvt/5mq+uq4jiTPT/KOqjonyaokH07yB6M1x1XVpsw0p7x3OGNe3X1XVX1gyL1T3f3VJBfPE35RVR07Gv92kq8lObyq/keSfZLcl+Ti7t4wsfe4JLfPNpQc/Pckz6iqJ0zU8OmqujHJsxdTMwAAAAAAAAAAAAAAAAAAAAAAAADsSppK7kLdvf/EeEOSDcP9+iTr59i2Ocm1c+RaP7rvJOcO11znbknyqnlim5PsNU/Jp86z59okj50ntiH/8pnGsdcled08Z82u2X+OuWszvINx/jnsu0De8b7/ZSK2I8lPDMPTJ2IvWKheAAAAAAAAAAAAAAAAAAAAAAAAAFguq5a7AAAAAAAAAAAAAAAAAAAAAAAAAAAAlm71chfAnqeqDk5y9RyhX+7uu3d1PQAAAAAAAAAAAAAAAAAAAAAAAACwEmkqyS43NI5cu9x1AAAAAAAAAAAAAAAAAAAAAAAAAMBKtmq5CwAAAAAAAAAAAAAAAAAAAAAAAAAAYOk0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIE0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIE0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIE0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIE0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIE0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIE0ldxNVdX9E+PTq+rtw/36qrq9qjaNrsdV1fFV1VX18tG+tcPc64dxVdXZVfX5qvpcVV1TVUeM1u9fVe+sqlur6saquqGqXjHE1lTVzXPU+pNV9cEh561VdVFVPXqIHV9V9w41fqqqPlZVj5/nmbbOxuZ6B3Oc21X1l6Px6qq6s6quGuW/c+I9PWO0/rVV9d2qeuxobvYdnjqau6qqjl+oFgAAAAAAAAAAAAAAAAAAAAAAAADY1TSVXLku7O61o+vbw/zNSV44WrcuySdH4zOSHJPk57r7p5P8UZIPVdU+Q/xdSb6V5Gnd/ewkJyc5aL4iqqqSvD/Jld39tCQ/nWT/JOeNll031PisJP881DCXu5L8h509+Mh3khxZVfsO45OS3D6x5rKJ93TLKLZuqOcFE3u+muSNS6gDAAAAAAAAAAAAAAAAAAAAAAAAAHY5TSUfeb6cZJ+qOnRo+Hhyko+M4mcl+Z3u3pok3f3RJNcn+Y2qOjzJc5Kc3d0/GOJ3dvcFC5z33CTf7e6/GNbvSHJmkt+qqv3GC4d6DshM08q5vDvJi6pq3iaWc/hwkl8b7tcluXQxm4Zn3T/J2cO+sU8mubeqTlpCHQAAAAAAAAAAAAAAAAAAAAAAAACwS2kqufvat6o2zV5J3jwRP3MUv2YidkWS05Ick+TGJNuTpKoOTPKY7v7ixPqNSY4Yrk/ONpRcpCOS3DCe6O4tSW5L8tRh6rjhGW5LcmJmmkfO5f4h9rtLOP+vk7y4qvZJ8qwkn5iIv2j8Hqtq32H+xcPe65L8TFUdOrHvvMw0nJxXVb2yqjZW1cb3vv/KJZQMAAAAAAAAAAAAAAAAAAAAAAAAAA+dppK7r23dvXb2SvKmifiFo/gJE7HLM9NUcl2SSx9sAVX1xqER49cebI7BdUOdT07yF0neusDai5P8ZlUdsJjE3f2pJGsy86wfnmPJZeP32N3bhvl1Sf56aKD5vsy8r3He/54kVXXsAmdf0t1Hd/fRL33B8xZTLgAAAAAAAAAAAAAAAAAAAAAAAABMjaaSj0DdfUeS7yU5KcnVo/ktSb5TVT81seWoJJ9OckuSn6uqVcP684aGlgcucNwtw/4fqqoDkzwlyRfmWP+hJP96gdq/neSvkpyxwJlz5XxbFtlAs6qemeRpSf7fqtqc5MWZaTI56bwkZy+hDgAAAAAAAAAAAAAAAAAAAAAAAADYZTSVfOR6U5KzunvHxPx/SnJxVe2bJFV1YpJjk/xVd38hycYkf1hVjxri+ySpBc65Osl+VfWyYf2jkvxxkg3dvXWO9ccmuXUntf/nJK9Ksnon62a9O8m53X3TItevS7K+u9cM1xOTPLGqDhsv6u6PJvmxJM9aZF4AAAAAAAAAAAAAAAAAAAAAAAAA2GUW27SP3c+ZVfWS0fh542B3Xz/Pvj/JTKPEm6pqR5I7kvx6d28b4i/PTOPJL1TV3Um2Jfm90f6fqaqvjutI8vwk76iqczLTqPTDSf5gtOa4qtqUmeaU9w5nzKu776qqDwy5d6q7v5rk4nnCL6qqY0fj307y4iT/dmLdB4b5T0zMn5fkg4upAwAAAAAAAAAAAAAAAAAAAAAAAAB2JU0ld1Pdvf/EeEOSDcP9+iTr59i2Ocm1c+RaP7rvJOcO11znbknyqnlim5PsNU/Jp86z59okj50ntiH/8pnGsdcled08Z82u2X+OuWszvINx/gk/Nce+8VnXjuY/lJlmmAAAAAAAAAAAAAAAAAAAAAAAAACwW9FUEgAAAAAAAAAAAAAAAAAAAAAAAHhEqarlLgFgl9BUkt1aVR2c5Oo5Qr/c3Xfv6noAAAAAAAAAAAAAAAAAAAAAAAAAYHehqSS7taFx5NrlrgMAAAAAAAAAAOD/Z+fuozSrqzvRf3d1g7w0zZviMGJsIcDMxZdO4nJWFA2JsCQ311GZmwiJUVZicO5IVFRklhBCMqLjW4xIjMNkKQtnAXojEq6XXDPpkXXxmnhtTSPIRMNLh8BIaJAXeRGl2fNHnTYnlarqqu6HKqr781nrrDrnt/fZv32e7q5+uqprAwAAAAAAAAAAAMCTzdRyNwAAAAAAAAAAAAAAAAAAAAAAAAAAwOIZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAIZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAIZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAIZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAIZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAIZKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAIZKrnCVdWDM65PraoLh/PzquqOqto0Og6oquOqqqvqDaP71g9r7xiuq6rOqaq/qapvV9UXq+qYUf6aqvrDqrq5qr5eVV+rqt8YYuuq6oZZej2sqv5kqHlzVX2kqvYcYsdV1f1Dj9+oqj+vqkPmeKaHt8Vmew1m2ber6r+MrldX1Zaq+vwk6gMAAAAAAAAAAAAAAAAAAAAAAADAcjBUctf34e5ePzruG9ZvSPJLo7xTklw3un5TkhcleX53H5XkvUmuqqq9hvgfJbk3yZHd/ZNJTkxy0FxNVFUluSLJld19ZJKjkqxJcv4o7dqhx+cl+erQw2zuTvL27T34yENJnlNVew/XJyS5Y578xdYHAAAAAAAAAAAAAAAAAAAAAAAAgCVnqOTu62+T7FVVTx8GPp6Y5E9H8bOSnN7dDydJd/9Zki8n+ZWqOiLJC5Oc092PD/Et3f2+efb7uSTf7+5PDvlbk5yR5Neqap9x4tDPfpkeWjmbTyR5TVXNOcRyFlcn+YXh/JQkl82TuyP1AQAAAAAAAAAAAAAAAAAAAAAAAGBJGSq58u1dVZu2HUl+d0b8jFH8izNif5zkF5O8KMnXkzyaJFW1Nsm+3X3LjPyNSY4Zjuu2DZRcoGOSfG280N0PJLktyY8PSy8ZnuG2JMdnerjjbB4cYm9ZxP6XJzm5qvZK8rwkX5knd0H1q+q0qtpYVRs/dcWVi2gFAAAAAAAAAAAAAAAAAAAAAAAAAHaeoZIr3yPdvX7bkeTcGfEPj+I/OyP2mUwPlTwlyWU72kBVnT0MrfwfO1pjcO3Q5zOTfDLJ++fJvSDJ66tqv4UU7u5vJFmX6We9egG3bLd+d1/U3S/o7hf86kmvWkgbAAAAAAAAAAAAAAAAAAAAAAAAADAxhkruxrr7ziQ/THJCkg2j9QeSPFRVh8+45aeSfDPJjUmeX1VTQ/75w0DLtfNsd+Nw/49U1dokP5bkplnyr0ry0nl6vy/JpUneNM+es9X8YBYwQHMH6wMAAAAAAAAAAAAAAAAAAAAAAADAkjFUknOTnNXdW2esfyDJBVW1d5JU1fFJjk1yaXfflGRjkndX1aohvleSmmefDUn2qarXDfmrknwoycXd/fAs+ccmuXk7vf9ekjcmWb2dvG0+keR3uvv6BeYvtj4AAAAAAAAAAAAAAAAAAAAAAAAALBnD8nZ9Z1TVa0fXrxoHu/vLc9z30SQHJrm+qrYmuTPJK7v7kSH+hkwPnrypqu5J8kiSd47uP7qqbh/3keTVST5WVb+V6YGmVyd51yjnJVW1KdPDKe8f9phTd99dVZ8bam9Xd9+e5IKF5O5IfQAAAAAAAAAAAAAAAAAAAAAAAABYSoZKrnDdvWbG9cVJLh7Oz0ty3iy3bU5yzSy1zhudd5LfGY7Z9n0gyRvniG1OssccLb9ijnuuSbL/HLGL84+faRx7W5K3zbHXtpw1s6xdk+E12Nn6AAAAAAAAAAAAAAAAAAAAAAAAALAcppa7AQAAAAAAAAAAAAAAAAAAAAAAAAAAFm/1cjcAk1BVByfZMEvoZd19z1L3AwAAAAAAAAAAAAAAAAAAAAAAAABPNEMl2SUMgyPXL3cfO+vRu76Tpxxy6HK3wU6499HHcuBTfGoFAAAAAAAAAAAAAAAAYNe371575qHv/2C52wAAgIl57JBnZvVdf7fcbQAwIVO13B0ALI2p5W4A+AcGSq58BkoCAAAAAAAAAAAAAAAAsLswUBIAgF2NgZIAAKxEhkoCAAAAAAAAAAAAAAAAAAAAAAAAAKxAhkoCAAAAAAAAAAAAAAAAAAAAAAAAAKxAhkoCAAAAAAAAAAAAAAAAAAAAAAAAAKxAhkoCAAAAAAAAAAAAAAAAAAAAAAAAAKxAhkoCAAAAAAAAAAAAAAAAAAAAAAAAAKxAhkoCAAAAAAAAAAAAAAAAAAAAAAAAAKxAhkquQFX14IzrU6vqwuH8vKq6o6o2jY4Dquq4quqqesPovvXD2juG66qqc6rqb6rq21X1xao6ZpS/pqr+sKpurqqvV9XXquo3hti6qrphll4Pq6o/GWreXFUfqao9h9hxVXX/0OM3qurPq+qQOZ7p4W2x2V6DWfbtqvovo+vVVbWlqj4/I+/KqvrLGWsXVNW5o+uzq+oP5tsPAAAAAAAAAAAAAAAAAAAAAAAAAJaaoZK7pg939/rRcd+wfkOSXxrlnZLkutH1m5K8KMnzu/uoJO9NclVV7TXE/yjJvUmO7O6fTHJikoPmaqKqKskVSa7s7iOTHJVkTZLzR2nXDj0+L8lXhx5mc3eSt2/vwUceSvKcqtp7uD4hyR0z+jsgyU8l2b+qDh+FzklyalUdPqy/IcnZi9gbAAAAAAAAAAAAAAAAAAAAAAAAAJ5whkruXv42yV5V9fRh4OOJSf50FD8ryend/XCSdPefJflykl+pqiOSvDDJOd39+BDf0t3vm2e/n0vy/e7+5JC/NckZSX6tqvYZJw797JfpoZWz+USS11TVnEMsZ3F1kl8Yzk9JctmM+ElJ/q8klyc5edtidz+Q6SGSFw7HuaPBnOOeT6uqjVW18VNXXLmItgAAAAAAAAAAAAAAAAAAAAAAAABg5xkquTLtXVWbth1JfndG/IxR/IszYn+c5BeTvCjJ15M8miRVtTbJvt19y4z8jUmOGY7rtg2UXKBjknxtvDAMbLwtyY8PSy8ZnuG2JMdnenjkbB4cYm9ZxP6XJzm5qvZK8rwkX5kR3zZo8rLhfNznZUkOTLK2uz81W/Huvqi7X9DdL/jVk161iLYAAAAAAAAAAAAAAAAAAAAAAAAAYOcZKrkyPdLd67cdSc6dEf/wKP6zM2KfyfRQyW0DFXdIVZ09DK38HztaY3Dt0Oczk3wyyfvnyb0gyeurar+FFO7ubyRZl+lnvXocq6qnJzkyyZe6+9tJflhVzxnFD0tyaJJ/XlVrFvE8AAAAAAAAAAAAAAAAAAAAAAAAALAkDJXczXT3nUl+mOSEJBtG6w8keaiqDp9xy08l+WaSG5M8v6qmhvzzh4GWa+fZ7sbh/h+pqrVJfizJTbPkX5XkpfP0fl+SS5O8aZ49Z6v5wfzTAZq/lOTAJLdW1eb8w/DJbT6S5LczPYTztxexHwAAAAAAAAAAAAAAAAAAAAAAAAAsCUMld0/nJjmru7fOWP9Akguqau8kqarjkxyb5NLuvinJxiTvrqpVQ3yvJDXPPhuS7FNVrxvyVyX5UJKLu/vhWfKPTXLzdnr/vSRvTLJ6O3nbfCLJ73T39TPWT0lyYnev6+51mR5+efLQ588nOSTJJUn+Q5KTqup/WeB+AAAAAAAAAAAAAAAAAAAAAAAAALAkFjqYj5XljKp67ej6VeNgd395jvs+muTAJNdX1dYkdyZ5ZXc/MsTfkOnBkzdV1T1JHknyztH9R1fV7eM+krw6yceq6rcyPcT06iTvGuW8pKo2ZXo45f3DHnPq7rur6nND7e3q7tuTXDBeq6p1SZ6V5C9HebdW1f1V9TNJfj/J/97dneShqjozyYVJfm4hewIAAAAAAAAAAAAAAAAAAAAAAADAUjBUcgXq7jUzri9OcvFwfl6S82a5bXOSa2apdd7ovJP8znDMtu8DSd44R2xzkj3maPkVc9xzTZL954hdnH/8TOPY25K8bY69uuWD2QAAIABJREFUtuWsmWXtmvzDa/CMWeI/OZwePWP9iiRXzLcfAAAAAAAAAAAAAAAAAAAAAAAAACy1qeVuAAAAAAAAAAAAAAAAAAAAAAAAAACAxVu93A3Ajqqqg5NsmCX0su6+Z6n7AQAAAAAAAAAAAAAAAAAAAAAAAIClZKgkK9YwOHL9cvcBAAAAAAAAAAAAAAAAAAAAAAAAAMuhunu5e4BdgT9IAAAAAAAAAAAAAAAAAAAAAAA7ppa7AWDXc8313zIbCtghxz336BX13mRquRsAAAAAAAAAAAAAAAAAAAAAAAAAAGDxDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBDJVcgarqwRnXp1bVhcP5eVV1R1VtGh0HVNVxVdVV9YbRfeuHtXcM11VV51TV31TVt6vqi1V1zCh/TVX9YVXdXFVfr6qvVdVvDLF1VXXDLL0eVlV/MtS8uao+UlV7DrHjqur+ocdvVNWfV9UhczzTw9tis70Gs+y7daj7zaq6rqreXlVTo30/P9pny+i1umRYv7iqbh2tv3kxv0YAAAAAAAAAAAAAAAAAAAAAAAAA8EQzVHLX9OHuXj867hvWb0jyS6O8U5JcN7p+U5IXJXl+dx+V5L1JrqqqvYb4HyW5N8mR3f2TSU5MctBcTVRVJbkiyZXdfWSSo5KsSXL+KO3aocfnJfnq0MNs7k7y9u09+MgjQ91jkpyQ5OeT/PYcuZ8evVavG62fOVq/YBF7AwAAAAAAAAAAAAAAAAAAAAAAAMATzlDJ3cvfJtmrqp4+DHw8McmfjuJnJTm9ux9Oku7+syRfTvIrVXVEkhcmOae7Hx/iW7r7ffPs93NJvt/dnxzytyY5I8mvVdU+48Shn/0yPbRyNp9I8pqqmnOI5Vy6+64kpyU5fdhnIqrqtKraWFUbL7rookmVBQAAAAAAAAAAAAAAAAAAAAAAAIAFWb3cDbBD9q6qTaPrg5JcNbo+o6peO5zf290/O4r9cZJfTPJXSb6e5NEkqaq1Sfbt7ltm7LUxyTFJtiS5bttAyQU6JsnXxgvd/UBV3Zbkx4ellwzPcnCSh5K8a45aD2Z6sORbkvz2InrYtu8tVbUqySGzhF9TVccO5x/ZNgQzyQeq6pzh/Fe7+/oZNS9Ksm2aZC+2JwAAAAAAAAAAAAAAAAAAAAAAAADYGYZKrkyPdPf6bRdVdWqSF4ziH+7uD85x72eSfDrJv0hyWZIX7UgDVXV2podTHtLd/3xHagyu7e7/bah5VpL3J/m3c+RekGRTVc31bDvq0919+izrZ3b3H094LwAAAAAAAAAAAAAAAAAAAAAAAACYiKnlboCl1d13JvlhkhOSbBitP5Dkoao6fMYtP5Xkm0luTPL8qpoa8s8fBluunWe7G4f7f6Sq1ib5sSQ3zZJ/VZKXztP7fUkuTfKmefac1fBcW5Pctdh7AQAAAAAAAAAAAAAAAAAAAAAAAODJyFDJ3dO5Sc7q7q0z1j+Q5IKq2jtJqur4JMcmubS7b0qyMcm7q2rVEN8rSc2zz4Yk+1TV64b8VUk+lOTi7n54lvxjk9y8nd5/L8kbk6zeTt6PVNXTknw8yYXd3Qu9DwAAAAAAAAAAAAAAAAAAAAAAAACezBY8mI8V5Yyqeu3o+lXjYHd/eY77PprkwCTXV9XWJHcmeWV3PzLE35DpwZM3VdU9SR5J8s7R/UdX1e3jPpK8OsnHquq3Mj3E9Ook7xrlvKSqNmV6OOX9wx5z6u67q+pzQ+357D3U3SPJY0k+lemBlAAAAAAAAAAAAAAAAAAAAAAAAACwS6juXu4eYFfgDxIAAAAAAAAAAAAAAAAAAAAAwI6p5W4A2PVcc/23zIYCdshxzz16Rb03mVruBgAAAAAAAAAAAAAAAAAAAAAAAAAAWLzVy90A7KiqOjjJhllCL+vue5a6HwAAAAAAAAAAAAAAAAAAAAAAAABYSoZKsmINgyPXL3cfSbL5zi0TqXPwPk+ZSJ0kuf/7P5xYrb32nNynitu/e//Eat330CMTq/UTh+w/kTp3b62J1EmSPVavmlitAyZXKo89+MDkiu0GDnrW4ROp88B3zcpdjLUHHTyROnds+e5E6uxOnvG0g3a6xvfuv28Cnexe9tv/gInU+fvveu0X4+kHTeZ1v37z7ROps7t47rrDJlLnew94T7MY+61dO5E699z8rYnU2Z0cfMTRO13j3ge+N4FOdi8Hrt1vInW+9XffmUid3cXRzzx0InW+c7f38Ytx6FN3/j18kjxw910TqbO7WPvUQyZS555b/mYidXYXBx9+5ETqeN0XbxKv/XHnXTiBTnYv15x3+kTq+PfT4kzq30933ze576fsDp56wGS+z3P/3985kTq7i/2f/s8mUsfXJRdnUl+X9PWCxZvE1wt8nlm8SX2u2XKvv1sX42kHTubvVu8lF8d7yeUxqfeSD9xz90Tq7E7WHvzUna7hveTiTer9pP/LtDiT+r9Mvha/OJP6Wrx/Py3OpL7X6mvxizOp74F4T7N4k3hPc8t3fH5frMMPnczn+Nvu8nt+MX7skJ3//Z4kf/KV6yZSZ3fxyn/1/InUmdTPPe0u1v2zp02kjv/HtDiT+n9M933njonUSZJV++w7sVqPf//7E6tVqyf3s36P1GRqPf744xOpkyR7/3ByPzP4pP013GOPidV66PHJ/TzjpOw71ROrtXX1nhOrtTqT62uSJvmzwJP6mdQ9H7x3InWSpPac3M9N9w9/MLFak7R6/8n8HTZJj90/ufchPcHP8b1168RqTdLUBP9unXrK3hOp8/gPJvf3jl/DRdaa0K9hb53c5/dV+07m665J8tgDk/v+2uq1k/m+U5Lc/+jkfm+tndBvhzsfntyv4b5Pmdx7mjV7Te695NTjk3vdv/O9yX3eOuqwyfx/IQCA3dHUcjcAAAAAAAAAAAAAAAAAAAAAAAAAAMDiGSoJAAAAAAAAAAAAAAAAAAAAAAAAALACGSoJAAAAAAAAAAAAAAAAAAAAAAAAALACrV7uBgAAAAAAAAAAAAAAAAAAAAAAAAAmqaqWuwWAJTG13A0AAAAAAAAAAAAAAAAAAAAAAAAAALB4hkoCAAAAAAAAAAAAAAAAAAAAAAAAAKxAhkqyQ6rqweHjuqrqqvrNUezCqjp1OL+4qm6tqk1VdV1VvWw7da+pqtuqqkZrV87Y75Gh3rbjdUNsc1VdPxw3VtW7q2qv0X03zNjr96vqjqqaGq2dWlWPV9XzRms3VNW6HX6xAAAAAAAAAAAAAAAAAAAAAAAAAOAJYKgkk3BXkrdU1Z5zxM/s7vVJ3prk4wuod1+SFydJVR2Q5NAZ8Zu7e/3ouGQU+9nufm6SFyY5PMl/mm2DYZDkq5P8XZKfmRG+PcnZC+gTAAAAAAAAAAAAAAAAAAAAAAAAAJaNoZJMwpYkG5K8fjt5f5HkGQuod3mSk4fzk5JcsdiGuvvBJP82yauq6qBZUo5L8s0kf5jklBmxzyc5pqqOXuy+AAAAAAAAAAAAAAAAAAAAAAAAALBUDJVkUt6X5B1VtWqenBOTXLmAWhuSvHSodXKST8+IH1FVm0bHS2Yr0t0PJLk1yZGzhE9JclmSzyX5haraYxR7PMn7k7xrviar6rSq2lhVGy/91CULeCwAAAAAAAAAAAAAAAAAAAAAAAAAmJzVy90Au4buvqWqvpLkl2cJf6Cq3pPksCQ/vYByW5N8KdMDJffu7s1VNY7f3N3rF9ha/ZOFqj2T/K9J3tbd3xv6fnmSz4/SLk1ydlU9e67C3X1RkouSZPOdW3qB/QAAAAAAAAAAAAAAAAAAAAAAAADAREwtdwPsUt6T5Kz800GOZ3b3UUPsEwusdXmSC5J8Zkebqar9kqxL8u0ZoZcnOSDJ9VW1OcmxSU4ZJ3T3Y0k+NPQMAAAAAAAAAAAAAAAAAAAAAAAAAE86hkoyMd3910luTPKKOVIuTDJVVS9fQLlrk7w3yWU70ktVrUnysSRXdve9M8KnJHlDd6/r7nVJnp3khKraZ0bexUmOT/K0HekBAAAAAAAAAAAAAAAAAAAAAAAAAJ5IhkoyaecnOWy2QHd3kncneef2ivS0D3b33bOEj6iqTaPjzaPYF6vqhiT/f5LbkrxxfOMwOPLEJP/3aK+HknwpM4ZhdvcPklyQ5JDt9QsAAAAAAAAAAAAAAAAAAAAAAAAAS231cjfAytTda4aPm5M8Z7R+XUbDSrv71Bn3fTbJZ+epe9wC9tt7jpx189Qd93nQLPGTRpcXj9YvyPRgSQAAAAAAAAAAAAAAAAAAAAAAAAB4UpnafgoAAAAAAAAAAAAAAAAAAAAAAAAAAE82q5e7AXZPVfW5JM+esXxWd39hOfoBAAAAAAAAAAAAAAAAAAAAAAAAgJXGUEmWRXe/erl7AAAAAAAAAAAAAAAAAAAAAAAAAICVbGq5GwAAAAAAAAAAAAAAAAAAAAAAAAAAYPEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIEMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIFWL3cD7Pqq6sHuXlNV65LcmuTN3f3RIXZhko3dfXFVXZzkZ5Lcn6SSvK27N8xT95okhyd5Vnf3sHZlkuNH+/33JN8a3fZ73X3JkLs+yV8l+fnu/n9GdXvIe/tw/Y4ka7r7vJ17JQAAAAAAAAAAAAAAAAAAAAAAAFgKq6amlrsFgCXhsx1L7a4kb6mqPeeIn9nd65O8NcnHF1DvviQvTpKqOiDJoTPiN3f3+tFxySh2SpIvDR/HHk1yUlU9dQH7AwAAAAAAAAAAAAAAAAAAAAAAAMCyMFSSpbYlyYYkr99O3l8kecYC6l2e5OTh/KQkVyykiaqqJL+Y5NQkJ1TVXqPwY0kuSnLGQmoBAAAAAAAAAAAAAAAAAAAAAAAAwHIwVJLl8L4k76iqVfPknJjkygXU2pDkpUOtk5N8ekb8iKraNDpeMqy/KMmt3X1zkmuS/MKM+/4gya9U1f5zbVxVp1XVxqraeOmnLllAqwAAAAAAAAAAAAAAAAAAAAAAAAAwOauXuwF2P919S1V9JckvzxL+QFW9J8lhSX56AeW2JvlSpgdK7t3dm6tqHL+5u9fPct8pSS4fzi9P8roknx31+EBVXZLkzUkemeM5LkpyUZJsvnNLL6BXAAAAAAAAAAAAAAAAAAAAAAAAAJiYqeVugN3We5KclaRmrJ/Z3UcNsU8ssNblSS5I8pmFJFfVqiT/Jsm5VbU5yUeTnFhV+81I/f0kv55k3wX2AQAAAAAAAAAAAAAAAAAAAAAAAABLxlBJlkV3/3WSG5O8Yo6UC5NMVdXLF1Du2iTvTXLZArd/WZJvdPczu3tddz8ryWeTvHpGj9/N9KDKX19gXQAAAAAAAAAAAAAAAAAAAAAAAABYMoZKspzOT3LYbIHu7iTvTvLO7RXpaR/s7rtnCR9RVZtGx5uTnJLkczPyPjusz/ShJE/dXg8AAAAAAAAAAAAAAAAAAAAAAAAAsNRWL3cD7Pq6e83wcXOS54zWr8tosGl3nzrjvs9metjjXHWPW8B+ey+wx6uSXDW+fzj/+yT7LKQGAAAAAAAAAAAAAAAAAAAAAAAAACylqe2nAAAAAAAAAAAAAAAAAAAAAAAAAADwZLN6uRuA7amqzyV59ozls7r7C8vRDwAAAAAAAAAAAAAAAAAAAAAAAAA8GRgqyZNed796uXsAAAAAAAAAAAAAAAAAAAAAAAAAgCebqeVuAAAAAAAAAAAAAAAAAAAAAAAAAACAxTNUEgAAAAAAAAAAAAAAAAAAAAAAAABgBTJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBTJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBTJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBTJUEgAAAAAAAAAAAAAAAAAAAAAAAABggarqxKr6VlXdVFX/fpb426rqxqr6RlVtqKpnjWJbq2rTcFy1s72s3tkCAAAAAAAAAAAAAAAAAAAAAAAAAAC7g6paleQPkpyQ5PYkX62qq7r7xlHaXyV5QXc/XFX/R5L3J3nNEHuku9dPqp+pSRWCnVVVDw4f11VVV9VvjmIXVtWpw/nFVXXrMFn1uqp62XbqXlNVt1VVjdaunLHfDcP5ccPerxjlfr6qjpvkswIAAAAAAAAAAAAAAAAAAAAAAACwIr0wyU3dfUt3/yDJ5UleOU7o7i9298PD5V8mOeyJasZQSZ6s7krylqrac474mcN01bcm+fgC6t2X5MVJUlUHJDl0ntzbk5y9iF4BAAAAAAAAAAAAAAAAAAAAAAAA2AVU1WlVtXF0nDYj5RlJ/m50ffuwNpdfT/Kno+u9hrp/WVWv2tl+V+9sAXiCbEny/yV5fZL/PE/eX2T+P0DbXJ7k5CRfSnJSkiuSHDNH7nVJ9qiqE7r7vy64YwAAAAAAAAAAAAAAAAAAAAAAAJ4Uqpa7A2Cl6u6Lklw0iVpV9dokL0jyM6PlZ3X3HVV1eJL/VlXXd/fNO7rH1M42CU+g9yV5R1WtmifnxCRXLqDWhiQvHWqdnOTT28k/P8k58yWMJ8he+qlLFtACAAAAAAAAAAAAAAAAAAAAAAAAACvcHUmeObo+bFj7R6rq+CRnJ/nX3f3otvXuvmP4eEuSa5L8xM40s3pnboYnUnffUlVfSfLLs4Q/UFXvyfQfoJ9eQLmtSb6U6YGSe3f35ppnhHR3/79Vlao6dp6cH02Q3Xznll5ADwAAAAAAAAAAAAAAAAAAAAAAAACsbF9NcmRVPTvTwyRPzoyZeVX1E0n+U5ITu/uu0fqBSR7u7ker6qlJXpzk/TvTzNTO3AxL4D1JzkoycwLkmd191BD7xAJrXZ7kgiSfWWD++UnOWWAuAAAAAAAAAAAAAAAAAAAAAAAAALu47n4syelJvpDkvyf5THd/s6p+t6r+9ZD2gSRrkvyfVbWpqq4a1v9lko1VdV2SLyb5j9194870s3pnboYnWnf/dVXdmOQVmZ7IOtOFSX6tql7e3V/YTrlrk7w3yWUL3PvPquo/JDl0MT0DAAAAAAAAAAAAAAAAAAAAAAAAsOvq7quTXD1j7dzR+fFz3PflJM+dZC9TkywGT5Dzkxw2W6C7O8m7k7xze0V62ge7++5F7v3MReQDAAAAAAAAAAAAAAAAAAAAAAAAwJJYvdwNwDbdvWb4uDnJc0br12U0ALW7T51x32eTfHaeusctdL/uvibJNaOcq5LUYp4DAAAAAAAAAAAAAAAAAAAAAAAAAJbC1PZTAAAAAAAAAAAAAAAAAAAAAAAAAAB4slm93A3ApFTV55I8e8byWd39heXoBwAAAAAAAAAAAAAAAAAAAAAAAACeSIZKssvo7lcvdw8AAAAAAAAAAAAAAAAAAAAAAAAAsFSmlrsBAAAAAAAAAAAAAAAAAAAAAAAAAAAWz1BJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAVyFBJlk1VPTh8XFdVXVW/OYpdWFWnDucXV9WtVbWpqq6rqpdtp+41VXVbVdVo7cpt+43W3lpV36+q/UdrJ1XVhtH1scO+q3f6gQEAAAAAAAAAAAAAAAAAAAAAAABgggyV5MniriRvqao954if2d3rk7w1yccXUO++JC9Okqo6IMmhs+SckuSrSU7attDdVyR5tKp+uar2SPKxJP+uux9b8JMAAAAAAAAAAAAAAAAAAAAAAAAAwBIwVJIniy1JNiR5/Xby/iLJMxZQ7/IkJw/nJyW5YhysqiOSrElyTqaHS46dnuTdSc5L8tXu/vIC9gMAAAAAAAAAAAAAAAAAAAAAAACAJWWoJE8m70vyjqpaNU/OiUmuXECtDUleOtQ6OcmnZ8RPzvTgyWuTHF1VT98W6O5bhvzTk5w11wZVdVpVbayqjZd+6pIFtAQAAAAAAAAAAAAAAAAAwP9k7/6DLa3r/MC/P5fu5ocIDSgg6nCF4DhWSxhxYsxK2VuKoGCmYI3S2Q1LspSbGkliCI7lOJs4lVErqzVlXBxTWAWUugFSM4OrDAmJrp1AaiDTaivgzyA9A7QoIDR02/wQPvtHn9463rl9f/F0n3v7vl5Vp3jO9/t93s/nPH3u6afPPecDAAAAAADDWTPpAmCv7v5RVd2R5O/OMv3xqvpokpclecMC4p5Nclv2NI88vLu3VdX4/KYkF3T3c1X1x0n+TpIrk2TUiPLsJDuTnJzk4X3Ue1WSq5Jk24MP9QJqAgAAAAAAAAAAAAAAAAAAAAAA4ACY+uW+UwAHralJFwAzfDTJB5LM/Jv4/d39ytHc1QvMuj7Jp5L8u/HBqnpNktOS/Keq2pY9jSc3jS35rSR3Jvnfkny6ylUBAAAAAAAAAAAAAAAAAAAAAAAAAMuPppIsK939vSTfSfKOfSy5MslUVZ2zgLhbk3wsyXUzxjcl+XB3T49uJyU5qapOrqoTk1ye5Le7+z8keSDJpUt5LAAAAAAAAAAAAAAAAAAAAAAAAACwP2kqyXL0kSQvm22iuzvJ7yf57flCeo9PdPfDM6YuSnLjjLEbR+N/kOT/7O6HRuPvS/Khqjp2EfUDAAAAAAAAAAAAAAAAAAAAAAAAwH63ZtIFsHp195Gj/25LsmFs/FsZa3ja3ZfM2O+Pk/zxHLkb5zneKbPMXb6Pfe5LMr2vYwEAAAAAAAAAAAAAAAAAAAAAAADApEzNvwQAAAAAAAAAAAAAAAAAAAAAAAAAgOVmzaQLgKWqqhuTvGLG8Ae6+5ZJ1AMAAAAAAAAAAAAAAAAAAAAAAAAAB5KmkqxY3X3BpGsAAAAAAAAAAAAAAAAAAAAAAAAAgEmp7p50DXAw8IMEAAAAAAAAAAAAAAAAAAAAALA0NekCgIPPn33vHr2hgCV5w6tOXVHXJlOTLgAAAAAAAAAAAAAAAAAAAAAAAAAAgMXTVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVJKJqqqdo/9OV1VX1T8am7uyqi4ZbV9bVfdW1daq+lZVvXme3M1V9f2q+nZVfW+UtX4fx909yt17W1dVl1TVQ2Njn9svJwAAAAAAAAAAAAAAAAAAAAAAAAAAlkhTSZaTnyb5J1W1bh/z7+/uM5K8L8m/WUDe/9zdpyc5PclTSf6ffay7p7vPGLs9PRq/YWzs4sU8EAAAAAAAAAAAAAAAAAAAAAAAAADY3zSVZDl5KMlXk/yv86z7syQvXWjoqEnkbyf5lar660sv75dV1XuqaktVbbnqqquGigUAAAAAAAAAAAAAAAAAAAAAAACABVkz6QJghn+V5N9X1dVzrDk3yRcXE9rdz1bVt5K8Ksm3ZkyfWlVbR9v/tbvfO9p+d1W9cbT9r7v7mhmZVyXZ202yF1MPAAAAAAAAAAAAAAAAAAAAAAAAADxfmkqyrHT3j6rqjiR/d5bpj1fVR5O8LMkblhBf+xi/p7vPmGX8hu6+bAnHAQAAAAAAAAAAAAAAAAAAAAAAAID9bmrSBcAsPprkA/mrTSDf392vHM1dvZjAqjokyWuSfHeQCgEAAAAAAAAAAAAAAAAAAAAAAABgwjSVZNnp7u8l+U6Sd+xjyZVJpqrqnIXkVdXaJB9Lcl93f3uYKgEAAAAAAAAAAAAAAAAAAAAAAABgsjSVZLn6SJKXzTbR3Z3k95P89jwZ/3dVfTvJXUlekOQ3B60QAAAAAAAAAAAAAAAAAAAAAAAAACao9vTnA54nP0gAAAAAAAAAAAAAAAAAAAAAAEtTky4AOPj82ffu0RsKWJI3vOrUFXVtMjXpAgAAAAAAAAAAAAAAAAAAAAAAAAAAWLw1ky4Ano+qujHJK2YMf6C7b5lEPQAAAAAAAAAAAAAAAAAAAAAAAABwoGgqyYrW3RdMuoYkeezB7YPkVE0NkpMktXbtYFm7nqvBsl5Qzw2W1esOHSzryWeeHSTn8P7FIDlDe+7ppwbL2r328MGyVoOXvOjYQXIeuef7g+SsFsed+quD5Gz/s68NkrOanPSG//F5Z+z4yYMDVLK6HH3CiYPkOPeLM9R5f2LHY4PkrBYvPHr9IDkPPbpjkJzV4sXHHD1Izp//4N5BclaL33jlzP+HwtLseOKJQXJWk6Nf+MJBch69b9sgOavFMS+fHiTnse33DZKzWqw/6eWD5Dzyox8OkrNaHHfKaYPk/Pjhnw2Ss1oM9T7NT37mGn6xTjj2+V/HP/H44wNUsrq88KijBsnZ+OErB8lZLTZ/+LJBclxLLs5Q15Je4xdniNf3JPnZX/xokJzV4tiTTxkk5/6fPjJIzmrysuOPe94Z/u20eEP9+2nbgw8NkrNaTJ/44kFyvvuXw3yeZrX4tV85aZCcn3zrzwfJWS1O+Ou/MUiOa/jFG+I6/se3/+fnX8gq85K/+aZBcrw3uThDvTfpPbLFGer9sR/c7/M0i/HKl/k8zSQM9Xma79/340GvWdMWAAAgAElEQVRyVpNffflLnneG98cWb6j3yLxXszhDvU/z+MM/HSRntTjqRccPkuMzwosz1GeEvV+wOEP9zu/hx4b7jPC6Z58ZLKvWDPdV3md3/3ywrH7m6cGynn7BMNelh0wN913Gdb8Y7jt1tXbdYFnL9c/wycOH+bf0C6Z6kJwkee7JAc/Vs8N8hzRJ6pBDBsvqXwz4ndT1Lxok5mc7hzvvxx55xGBZTz493OvykWuH+z73c08+OVjWoz3Mc+vx3cPVtHbA5/uup4Z7zTr+6CMHy1o7NdzzYe2aYc7X9keHez94zYCPb8g/wxcfNeCf4YDP00PXDpP15NPDvb4/PeDfYccdOVyfgGeeHa5vxNSO4T7LNNTf+buOPGaQnCSZynDXuIf9bLjPYqx96fRgWU/dO1wvhONPf91gWQAAq81w/wIEAAAAYDCacAIAAAAAAAAAAACw3A3VUBIAAAAAgKXTVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAXSVPIgU1U755j7ZFU9UFVTM8Yvrqq7qurOqvpmVV1RVZ+uqq1V9Z2q2j3a3lpV7xzt88Wqun20fc7Y/M6q+v5o+3NVtbGqdozNb62qt8xRY1fVF8bur6mqh6rqptH9S0b3x/NeXVXTozq/WVXfrar/VlWXjOVcUlVXzjjW1qq6fsbYtaNzdOjo/ouqatv8Zx4AAAAAAAAAAAAAAAAAAAAAAAAADqw1ky6AA2PUSPKCJPcleVOSr43G35bkfUne2t3bR80UL+7u947mp5Pc1N1njGWtT3Jmkp1VdUp335LkltHc5iRXdPeW0f2NSW7t7vMXWOquJBuq6vDu3p3k7CQPzFhzQ3dfNuPxTSe5p7t/fXT/lCR/UlXV3dfMcj5+LckhSc6qqhd0966x6WeT/IMkn1lgzQAAAAAAAAAAAAAAAAAAAAAAAABwwE1NugAOmI1J7s6eRombxsY/mD1NILcnSXc/1d2fnSfrwiRfTnJ9kouGLzU3JzlvtL0pyXWLDejuHyW5PMk/3seSTUk+n+Q/JvnNGXOfTPJPq2rOpqtV9Z6q2lJVW679/BcWWyIAAAAAAAAAAAAAAAAAAAAAAAAAPC+aSq4ee5sz3pjkvKpaOxrfkOTrS8y6Lr/coHJfzqqqrWO3U+dZf32Si6rqsCSnJ7ljxvy7Z+Qdvo+cbyR51T7m3j06zmyP4S+T3Jbk781VZHdf1d2v6+7XXfL3/pe5lgIAAAAAAAAAAAAAAAAAAAAAAADA4DSVXAWqal2Styf5Ync/nj1NGs9ZYtYJSU5Lclt3/yDJM1W1YZ7dbu3uM8Zu98y1uLu/nWQ6e5o93jzLkhtm5O3eV7n7eAyvS/Jwd/9lkq8m+fWqOnbGso8leX/8jAAAAAAAAAAAAAAAAAAAAAAAAACwTGmYtzqck2R9kjuraluSN2ZPw8YkuTvJmYvIeleSY5LcO8qaHssa0peSfCLJdc8j49eTfHeW8U1JXjWq/54kRyX5n8YXdPcPk2zNnscLAAAAAAAAAAAAAAAAAAAAAAAAAMuOppKrw6Ykl3b3dHdPJ3lFkrOr6ogkH0vy8ao6MUmqal1VXTpP1rljWWcmuWg/1Hx1kt/r7juXsnNVTWdPU8r/a8b4VPY0inzN2GP4zczeGPMjSa5YyvEBAAAAAAAAAAAAAAAAAAAAAAAAYH9bM+kCGNwRVXX/2P0/THJukn+4d6C7d1XVbUne0d03VNUJSb5SVZWks6eh418xatR4cpLbx7LuraodVfX67r5jHzWdVVVbx+7/fnf/0VwPorvvT/KpfUy/u6reOHb/t5JsT3JqVX0zyWFJnkjyqe6+dmYtSR7o7u1jY/8lyaur6iUzari7qr6R5LVz1QoAAAAAAAAAAAAAAAAAAAAAAAAAk6Cp5EGmu6dmGf7oLOsuHNu+Jsk1+8jblmTD2PZLZ1nz2rHtjTPmNic5egGl711/5Cxjm5NsHm1fm+Tafex++By54/v9zRlzzyY5cXT3khlzFwYAAAAAAAAAAAAAAAAAAAAAAAAAliFNJQEAAAAAAAAAAAAAAAAAAAAAAICDylRNTboEgANCU0kOuKo6LslXZ5l6c3c/cqDrAQAAAAAAAAAAAAAAAAAAAAAAAICVSFNJDrhR48gzJl0HAAAAAAAAAAAAAAAAAAAAAAAAAKxkU5MuAAAAAAAAAAAAAAAAAAAAAAAAAACAxdNUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUchWrqp1zzH2yqh6oqqkZ4xdX1V1VdWdVfbOqrqiqT1fV1qr6TlXtHm1vrap3jvb5YlXdPto+Z2x+Z1V9f7T9uaraWFU7xua3VtVb5qixq+oLY/fXVNVDVXXT6P4lo/vjea8eW/++qnqyqo4eG9s4yn3H2NhNVbVxUScXAAAAAAAAAAAAAAAAAAAAAAAAAPazNZMugOVn1EjygiT3JXlTkq+Nxt+W5H1J3trd26vq0CQXd/d7R/PTSW7q7jPGstYnOTPJzqo6pbtvSXLLaG5zkiu6e8vo/sYkt3b3+QssdVeSDVV1eHfvTnJ2kgdmrLmhuy/bx/6bkvx5kguTXDM2fn+SDyX58gLrAAAAAAAAAAAAAAAAAAAAAAAAAIADbmrSBbAsbUxyd5LPZE/jxb0+mD1NILcnSXc/1d2fnSfrwuxpznh9kouGLzU3JzlvtL0pyXUL2amqTk1yZJLfzS8/xiT5VpIdVXX2UEUCAAAAAAAAAAAAAAAAAAAAAAAAwNA0lWQ2e5sz3pjkvKpaOxrfkOTrS8y6Ln+1eeNszqqqrWO3U+dZf32Si6rqsCSnJ7ljxvy7Z+QdPhq/aLTvrUl+tapOmLHfR7Kn4eQ+VdV7qmpLVW259vNfWMBDAwAAAAAAAAAAAAAAAAAAAAAAAIDhrJl0ASwvVbUuyduTXN7dT1TVHUnOSXLTErJOSHJaktu6u6vqmara0N13zbHbrd19/kKP0d3frqrp7GlYefMsS27o7stmGd+U5ILufq6q/jjJ30ly5Vjuf6mqVNUb5zj2VUmuSpLHHtzeC60ZAAAAAAAAAAAAAAAAAAAAAAAAAIagqSQznZNkfZI7qypJjkiyO3uaSt6d5Mwk/+8Cs96V5Jgk946yjsqeZo4fGrbkfCnJJ5JsTHLcfIur6jXZ0+zyP43qWpfk3ow1lRz5SJLfTfKLAWsFAAAAAAAAAAAAAAAAAAAAAAAAgEFMTboAlp1NSS7t7ununk7yiiRnV9URST6W5ONVdWKSVNW6qrp0nqxzx7LOTHLRfqj56iS/1913LnD9piQf3ltXd5+U5KSqOnl8UXf/x+xpinn6sOUCAAAAAAAAAAAAAAAAAAAAAAAAwPOnqeTqdkRV3T92+50k5yb5070LuntXktuSvKO7b05yZZKvVNXdSb6R5KjZgqtqOsnJSW4fy7o3yY6qev0cNZ1VVVvHbu+c70F09/3d/al9TL97Rt7fyp7GljfOWHdjZm94+ZEkL5+vBgAAAAAAAAAAAAAAAAAAAAAAAAA40NZMugAmp7tnayr60VnWXTi2fU2Sa/aRty3JhrHtl86y5rVj2xtnzG1OcvQCSt+7/shZxjYn2TzavjbJtbPsesos+10+dnfz2PiXktRCawIAAAAAAAAAAAAAAAAAAAAAAACAA2W2poIAAAAAAAAAAAAAAAAAAAAAAAAAACxzayZdAMylqo5L8tVZpt7c3Y8c6HoAAAAAAAAAAAAAAAAAAAAAAAAAYLnQVJJlbdQ48oxJ1wEAAAAAAAAAAAAAAAAAAAAAAAAAy42mkgAAAAAAAAAAAAAAAAAAAAAAAMBBZaomXQHAgTE16QIAAAAAAAAAAAAAAAAAAAAAAAAAAFg8TSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSWZV1XtnGPuk1X1QFVNzRi/uKruqqo7q+qbVXVFVX26qrZW1Xeqavdoe2tVvXO0zxer6vbR9jlj8zur6vuj7c9V1caq2jE2v7Wq3jJHjV1VXxi7v6aqHqqqm0b3L6mqK0fbH66qn1fV8Qt5/AAAAAAAAAAAAAAAAAAAAAAAAAAwKWsmXQAr16iR5AVJ7kvypiRfG42/Lcn7kry1u7dX1aFJLu7u947mp5Pc1N1njGWtT3Jmkp1VdUp335LkltHc5iRXdPeW0f2NSW7t7vMXWOquJBuq6vDu3p3k7CQPzLH+4ST/LMkHFpgPAAAAAAAAAAAAAAAAAAAAAAAAAAfc1KQLYEXbmOTuJJ9Jsmls/IPZ0wRye5J091Pd/dl5si5M8uUk1ye5aPhSc3OS80bbm5JcN8faq5O8u6qO3Q91AAAAAAAAAAAAAAAAAAAAAAAAAMAgNJXk+djbnPHGJOdV1drR+IYkX19i1nX55QaV+3JWVW0du506z/rrk1xUVYclOT3JHXOs3Zk9jSX/yVyBVfWeqtpSVVuu/fwXFlAyAAAAAAAAAAAAAAAAAAAAAAAAAAxnzaQLYGWqqnVJ3p7k8u5+oqruSHJOkpuWkHVCktOS3NbdXVXPVNWG7r5rjt1u7e7zF3qM7v52VU1nT8PKmxewy6eSbK2qT8yReVWSq5LksQe390JrAQAAAAAAAAAAAAAAAAAAAAAAAIAhTE26AFasc5KsT3JnVW1L8sbsadiYJHcnOXMRWe9KckySe0dZ02NZQ/pSkk8kuW6+hd39WJJ/m+S9+6EOAAAAAAAAAAAAAAAAAAAAAAAAAHjeNJVkqTYlubS7p7t7OskrkpxdVUck+ViSj1fViUlSVeuq6tJ5ss4dyzozyUX7oeark/xed9+5wPV/kOR/T7JmP9QCAAAAAAAAAAAAAAAAAAAAAAAAAM+LppIsxBFVdf/Y7XeSnJvkT/cu6O5dSW5L8o7uvjnJlUm+UlV3J/lGkqNmC66q6SQnJ7l9LOveJDuq6vVz1HRWVW0du71zvgfR3fd396fmWze2/uEkNyY5dKH7AAAAAAAAAAAAAAAAAAAAAAAAAMCBsmbSBbD8dfdszUc/Osu6C8e2r0lyzT7ytiXZMLb90lnWvHZse+OMuc1Jjl5A6XvXHznL2OYkm0fb1ya5drT94RnrLk9y+UKPBQAAAAAAAAAAAAAAAAAAAAAAAAAHymzNAgEAAAAAAAAAAAAAAAAAAAAAAAAAWObWTLoAGEJVHZfkq7NMvbm7HznQ9QAAAAAAAAAAAAAAAAAAAAAAAADA/qapJAeFUePIMyZdBwAAAAAAAAAAAAAAAAAAAAAAAAAcKFOTLgAAAAAAAAAAAAAAAAAAAAAAAAAAgMXTVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAVaM+kCAAAAAAAAAAAAAAAAAAAAAAAAAIZUVZMuAeCAmJp0AQAAAAAAAAAAAAAAAAAAAAAAAAAALJ6mkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5CmksyqqnbOMffJqnqgqqZmjF9cVXdV1Z1V9c2quqKqPl1VW6vqO1W1e7S9tareOdrni1V1+2j7nLH5nVX1/dH256pqY1XtGJvfWlVvmaPGrqovjN1fU1UPVdVNM9b9/8cfG/tUVf3zsfsfqqpPL/TcAQAAAAAAAAAAAAAAAAAAAAAAAMCBsGbSBbCyjBpJXpDkviRvSvK10fjbkrwvyVu7e3tVHZrk4u5+72h+OslN3X3GWNb6JGcm2VlVp3T3LUluGc1tTnJFd28Z3d+Y5NbuPn+Bpe5KsqGqDu/u3UnOTvLAjMcy8/g/Gk39bpKtY00pL03y6ws8LgAAAAAAAAAAAAAAAAAAAAAAAAAcEFOTLoAVZ2OSu5N8JsmmsfEPZk8TyO1J0t1Pdfdn58m6MMmXk1yf5KLhS83NSc4bbW9Kct1Cjt/djyf5UJIrR7d/3t2P7Yf6AAAAAAAAAAAAAAAAAAAAAAAAAGDJNJVksfY2Z7wxyXlVtXY0viHJ15eYdV1+uUHlvpxVVVvHbqfOs/76JBdV1WFJTk9yx0KP393XJTkmyVHd/fnZwqvqPVW1paq2XPv5LyygfAAAAAAAAAAAAAAAAAAAAAAAAAAYzppJF8DKUVXrkrw9yeXd/URV3ZHknCQ3LSHrhCSnJbmtu7uqnqmqDd191xy73drd5y/0GN397aqazp6GkTcv5vhV9bIkL0nyXFUd2d07Z8m/KslVSfLYg9t7oXUBAAAAAAAAAAAAAAAAAAAAAAAAwBCmJl0AK8o5SdYnubOqtiV5Y/Y0bEySu5OcuYisdyU5Jsm9o6zpsawhfSnJJ5Jct8jj/+sk/yLJvxv9FwAAAAAAAAAAAAAAAAAAAAAAAACWFU0lWYxNSS7t7ununk7yiiRnV9URST6W5ONVdWKSVNW6qrp0nqxzx7LOTHLRfqj56iS/1913LvT4VfW2JMcn+VySf5nkwqp69X6oDQAAAAAAAAAAAAAAAAAAAAAAAACWTFNJ9uWIqrp/7PY7Sc5N8qd7F3T3riS3JXlHd9+c5MokX6mqu5N8I8lRswVX1XSSk5PcPpZ1b5IdVfX6OWo6q6q2jt3eOd+D6O77u/tTizj+m5J8Mslv9R67krx/9NgAAAAAAAAAAAAAAAAAAAAAAAAAYNlYM+kCWJ66e7aGox+dZd2FY9vXJLlmH3nbkmwY237pLGteO7a9ccbc5iRHL6D0veuPnGVsc5LNo7tzHf9XZ4z/SZI/WeixAQAAAAAAAAAAAAAAAAAAAAAAAOBAmK1xIAAAAAAAAAAAAAAAAAAAAAAAAAAAy9yaSRcAS1VVxyX56ixTb+7uRw50PQAAAAAAAAAAAAAAAAAAAAAAAABwIGkqyYo1ahx5xqTrAAAAAAAAAAAAAAAAAAAAAAAAAIBJmJp0AQAAAAD8Vb/xyldMugQAAAAAAIDBHfPy6UmXAAAAAMCA1u16bNIlAAAAAACsetXdk64BDgZ+kAAAAAAAAAAAAAAAAAAAAAAAlqYmXQBw8Nnyw216QwFL8rrTplfUtcnUpAsAAAAAAAAAAAAAAAAAAAAAAAAAAGDxNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiBNJVkVlW1c465T1bVA1U1NWP84qq6q6rurKpvVtUVVfXpqtpaVd+pqt2j7a1V9c7RPl+sqttH2+eMze+squ+Ptj9XVRurasfY/NaqesscNT47WnN3VX2rqv7Z3npHWTeNti+pqofGMj83Gr+2qu4dG//Hz/+sAgAAAAAAAAAAAAAAAAAAAAAAAMBw1ky6AFaWUWPGC5Lcl+RNSb42Gn9bkvcleWt3b6+qQ5Nc3N3vHc1PJ7mpu88Yy1qf5MwkO6vqlO6+Jckto7nNSa7o7i2j+xuT3Nrd5y+w1N17j1VVxyf5t0mOSvIvZll7Q3dfNsv4+7v7jxZ4PAAAAAAAAAAAAAAAAAAAAAAAAAA4oKYmXQArzsYkdyf5TJJNY+MfzJ4mkNuTpLuf6u7PzpN1YZIvJ7k+yUXDl7pHd/80yXuSXFZVtb+OAwAAAAAAAAAAAAAAAAAAAAAAAAAHkqaSLNamJNcluTHJeVW1djS+IcnXl5h1XX65QeW+nFVVW8dupy70QN39oySHJDl+lul3j2X+/bHxj4+Nv2bmTlX1nqraUlVbrrrqqoWWAgAAAAAAAAAAAAAAAAAAAAAAAACDWDPpAlg5qmpdkrcnuby7n6iqO5Kck+SmJWSdkOS0JLd1d1fVM1W1obvvmmO3W7v7/CUVP7cbuvuyWcbf391/tK+duvuqJHu7SfZ+qAsAAAAAAAAAAAAAAAAAAAAAAAAA9mlq0gWwopyTZH2SO6tqW5I3Jtk0mrs7yZmLyHpXkmOS3DvKmh7LGlxVnZLk2SQ/3V/HAAAAAAAAAAAAAAAAAAAAAAAAAIADSVNJFmNTkku7e7q7p5O8IsnZVXVEko8l+XhVnZgkVbWuqi6dJ+vcsawzk1y0P4quqhcn+TdJruzu3h/HAAAAAAAAAAAAAAAAAAAAAAAAAIADbc2kC2DZOqKq7h+7/4dJzk3yD/cOdPeuqrotyTu6+4aqOiHJV6qqknSSq2cLrqrpJCcnuX0s696q2lFVr+/uO/ZR01lVtXXs/u939x/tY+3ho7Vrk/wiyeeT/MG+Hy4AAAAAAAAAAAAAAAAAAAAAAAAArCzV3ZOuAQ4GfpAAAAAAAAAAAAAAAAAAAAAAAJamJl0AcPDZ8sNtekMBS/K606ZX1LXJ1KQLAAAAAAAAAAAAAAAAAAAAAAAAAABg8dZMugBYqqo6LslXZ5l6c3c/cqDrAQAAAAAAAAAAAAAAAAAAAAAAAIADSVNJVqxR48gzJl1Hkjz+s+F6WNYhhwyW9YsaJuuQZ54aJCdJdvXUYFlHrh0uq599drCsp6eGe2ld8/PHB8l57plnBslJkjrmxYNlrQbHHPXCQXKeeHyY58Jq8cKjjhos69HHnxgs62A31PM9SR778QODZR3s1r/kpYNlPXrftsGyVoNjXj49SM62Bx8aJGe1mD5xmGuRHz/8s0FyVouXvOjYwbKe2PHYYFkHuxcevX6wrHu2/2SwrIPdqSedMFjWd/7CNc1ivPrkYa5rfnD/g4PkrBavfNmJg+T4u3Vxhvq71bXk4gx1LZkkDzzkOb9QL33xcNeSDz+2Y7Csg92L1h89WJb3CxZnqPcLNn74ykFyVovNH75skJz/fNcPBslZLd604ZWD5LzlX/7hIDmrxVf+j98aLMs1zcINeU3zlz99eLCsg92vHP+iwbIef/ing2WtBke96PhBch57cPsgOavF+hNPGiRnyw+3DZKzWrzutOnBsh5/xGv8Qh113HCv8X73tHBD/u7pS//t24NlrQZ/+2+cPkjOf/3ufx8kZ7X4H37trw2S89Cj3pdcjBcfM8x7k37HvThD/p57x0/8vnWhjj5hmN+1Jl5rFmOo15nE+zSLNdR7NT6bvThDfT7b55gWZ6jPMfk8zeIM+VnVoX7PfcgRRw6SkyT//dFdg2Ude+QRg2UdU8N9p+7nh6wbLOuwnw9zfTR16OGD5CTJPU8M9x3LIf8Mj11bg2U9fcjawbKG+l5kkkwdNsz5+tFjw/0cHrFuuOf7iUcMd953PTfc8+Gw3cP9GR7ygmGuaf7i8d2D5CTJ8UcN9xq/btdw71M/efhw34sc8jvYqYGy+rlhcpL8Ysejg2WlhvvZGer5niS9drjXmqHU08P9ffjsrgH/fbhM/wyX4+vyL448ZpCcJDn0ueH6Fzz89HCvD8f2cM/TIa8nh3oNfKKH62UxNdxTND9/erjnw5DveQMArDYDvhsAPF/LsaEki7McG0oCS+dDS4sz1PnSUHJxnC9gJfGlvsUZ6nz5ss3iOF8AzEfzpcUZ6nxpKLk4zhcA83FNszhDnS+NChbH+QJWEg0lF2eo8+V3T4vjfAEwHw0lF2eo86Wh5OI4XwDMx/84cTKWY0NJJmc5NpRkcZZjQ0kWZ1k2lGRRlmNDSRZnOTaUZHGWY0NJAACYj3/FAwAAAAAAAAAAAAAAAAAAAAAAAACsQJpKAgAAAAAAAAAAAAAAAAAAAAAAAACsQJpKAgAAAAAAAAAAAAAAAAAAAAAAAACsQJpKAgAAAAAAAAAAAAAAAAAAAAAAAACsQJpKAgAAAAAAAAAAAAAAAMD/x869B2le1/eCf3+awRGOMEDwAurJIHgBkR1gzlrlDfXoxj2Ki9aaEVciZ7VMjpKiMLiJkaoQTBQtERZRs2gSNKdUKLxQiJddKUdxl3AROjCiJbdRBw3CyFVAkPnsH/Mbfeqxe6aneZieZl6vql893+vn+/n9nmbq6ab7AwAAAAAAAIvQkoVOAAAAAAAAAAAAAAAAAAAAAAAAAGCSpqoWOgWAbWJqoRPYkVXVvTOMnVxVt1TV9Mi1R1UdW1Vnja1dXVUrh/baqtp7aB9eVTdX1aFVtayqPlNVN1TVjUN72UiMZ1XVV6vq+qq6qqrOq6ojqupHVbXLyLqLquo9Izk9WFXXDu1Th/xuG8v7oKqaqqozq2rNsP6KqtpvM89kbVVdMjY2XVVrhvZLq+qusXNeMcw9PPS/X1X/VlV/UVVTI/u+Mhb3y1X1rzM8//uq6kmbe58AAAAAAAAAAAAAAAAAAAAAAAAAYKEpKrl9Or27V4xcd851Y1UdkuT8JKu6++ok/5jkpu4+oLv3T3Jzkk8Nax+f5KIkn+juZ3b3YUk+nmR9ki8mee+w7qgkO3f3BzbllORnSV429P9qOP7csbyvS7Iqyb5JDunu5yV5XZIt3c9uVfX04ewDZ5i/ZOycbw7j9w/95yZ5ZZL/OcnfzPKc9khyeJJlVfWMsenbk/zFFnIEAAAAAAAAAAAAAAAAAAAAAAAAgAWlqORjy4FJvpzkmO6+vKoOyMbCie8bWXNKkpVVtX+SNyW5tLsv3DTZ3au7e82w7g1VtXp+k2gAACAASURBVCLJqUneOc+c9kny8+7eMMRf1913bGHPedlYjDJJjk7yua09tLt/keTtSY6rqpphyeuTXJjk80neODb3T0lWVdVemzujqt5eVVdW1ZX//OlPb22KAAAAAAAAAAAAAAAAAAAAAAAAAPCIKCq5fTqhqqaH61tbse+CJMd193eH/kFJprv74U0LhvZ0kucmOTjJ92YK1N33JTkxyXeSfL67r5/D+atG8p6uql2ysUDkkUP/tKo6dA5xvpCNRR+T5MhsLP446sVj5+w/yz3clGSnJE+aYXpTscrPDe1R92ZjYcnjN5dkd5/d3Su7e+V/fctbNntDAAAAAAAAAAAAAAAAAAAAAAAAADBpikpun07v7hXD9bJhrGdZOzr+zSRvq6qdJpFEd1+Y5M4kH5/jlnNH8l7R3fd397okz07yniQbklxcVf95C3HWJ7mjqt6Y5AdJ7hubv2TsnBvnfldJVT05yTOTfLe7f5Tkoao6eGzZmUneUlW7bU1sAAAAAAAAAAAAAAAAAAAAAAAAANhWFJVcPNYn2XNsbK8kt4/0jxteNxWBvC7Jiqr67fs8tFcMc99PcvgWzt0wXPPW3b/u7q9197uTvD/JUXPYdm6SjyX53HzPrapnJHk4yS/Gpv44G5/lzVW1NsnyJEeP5Xxnks8meed8zwcAAAAAAAAAAAAAAAAAAAAAAACAR5OikovHFUleWFVPSZKqWplkaZKfjqzZkORNSZ5TVad09w1Jrk5y0siak5JcNcx9NskLqurVmyar6iVVdfCkkq6qw6pq36E9leSQJD+ew9YvJflQkm/M89wnJvmHJGd1d49NH53kVd29vLuXZ2NhzTfOEOYjSf40yZL55AAAAAAAAAAAAAAAAAAAAAAAAAAAjybF8hbWrlW1bqT/keH1hKp688j4Ud29tqqOT/LVoTjjvUmO7u4NowG7+4Gqem2Sb1fVrUnemuSjVXXjsOTSYSzdfX9VvSbJGVV1RpKHklyT5Ph53s+qqnrRSP8dSXZP8smqWjqMXZ7krC0F6u57knwwSapqfPrFVTU90v+77j4/yS7D+M5JfpPkX/K7Z5oh1vIkf5jkX0fOurmq7qqq54/lcHtVfSnJCVvKFwAAAAAAAAAAAAAAAAAAAAAAAAC2NUUlF1B3T80ydfIs6y9IcsEsc8tH2nclWTEy/ebf2/C7tT9M8qrNzC+fy3h3n5PknFnCfH22+HM5r7vXJjl4aK9OsmyWvTttJu7qJKuH7lNnmD9saF42Nv6uJO/aQtoAAAAAAAAAAAAAAAAAAAAAAAAAsM3NVtQQAAAAAAAAAAAAAAAAAAAAAAAAAIDt2JKFToAdU1VdlmTp2PAx3X3tQuQDAAAAAAAAAAAAAAAAAAAAAAAAAIuNopIsiO5+/kLnAAAAAAAAAAAAAAAAAADA/O368IO5b6fHLXQaAAAAAAA7tKmFTgAAAAAAAAAAAAAAAAAAAFh8FJQEAAAAAFh4ikoCAAAAAAAAAAAAAAAAAAAAAAAAACxCikoCAAAAAAAAAAAAAAAAAAAAAAAAACxCikoCAAAAAAAAAAAAAAAAAAAAAAAAACxCikoCAAAAAAAAAAAAAAAAAAAAAAAAACxCikoCAAAAAAAAAAAAAAAAAAAAAAAAACxCikoCAAAAAAAAAAAAAAAAAAAAAAAAACxCikouElV17wxjJ1fVLVU1PXLtUVXHVtVZY2tXV9XKob22qvYe2odX1c1VdWhVLauqz1TVDVV149BeNhLjWVX11aq6vqquqqrzquqIqvpRVe0ysu6iqnrPSE4PVtW1Q/vUIb/bxvI+qKqmqurMqlozrL+iqvbbzDNZW1WXjI1NV9Waof3Sqrpr7JxXjKw9qqq6qp4zMrZ8GPvzkbGzqurYOb1RAAAAAAAAAAAAAAAAAAAAAAAAALCNKCq5+J3e3StGrjvnurGqDklyfpJV3X11kn9MclN3H9Dd+ye5OcmnhrWPT3JRkk909zO7+7AkH0+yPskXk7x3WHdUkp27+wObckrysyQvG/p/NRx/7lje1yVZlWTfJId09/OSvC7Jlu5nt6p6+nD2gTPMXzJ2zjdH5o5O8t3hddQvkhxfVY/bwtkAAAAAAAAAAAAAAAAAAAAAAAAAsGCWLHQCLJgDk3w6yTHdfXlVHZDk8Gws7LjJKUluqKr9kxyR5NLuvnDTZHevTpKqOiXJ1VV1fpJTkxw5z5z2SfLz7t4wxF83hz3nDTl/OBuLQ34uyTFb2lRVT0jyoiQvS3Jhkr8Zmb4tyf+b5C1JPrmZGG9P8vYkOeMjp+W/vuUtc0gXAAAAAAAAAAAAAAAAAAAAAACAR9vUVC10CgDbxNRCJ8AjdkJVTQ/Xt7Zi3wVJjuvu7w79g5JMd/fDmxYM7ekkz01ycJLvzRSou+9LcmKS7yT5fHdfP4fzV43kPV1Vu2Rjgcgjh/5pVXXoHOJ8Icnrh/aR2VggctSLx87Zfxj/X5J8vbt/lGR9VR0+tu+DSU6sqp1mO7i7z+7uld29UkFJAAAAAAAAAAAAAAAAAAAAAAAAALY1RSUXv9O7e8VwvWwY61nWjo5/M8nbNlc0cWt094VJ7kzy8TluOXck7xXdfX93r0vy7CTvSbIhycVV9Z+3EGd9kjuq6o1JfpDkvrH5S8bOuXEYPzrJ54f254f+6P3clOSyJG+a4/0AAAAAAAAAAAAAAAAAAAAAAAAAwDa1ZKET4FGxPsmeY2N7Jbl9pH9ckn/IxiKQf5rkuiQrqmqquzckSVVNJVkxzD0xyRFbOHfDcM1bd/86ydeSfK2qbk1yVJKLt7Dt3CQfS3LsXM6oqr2SvDzJ86qqk+yUpKvq3WNL35/k/CTfnvMNAAAAAAAAAAAAAAAAAAAAAAAAAMA2MrXQCfCouCLJC6vqKUlSVSuTLE3y05E1G5K8KclzquqU7r4hydVJThpZc1KSq4a5zyZ5QVW9etNkVb2kqg6eVNJVdVhV7Tu0p5IckuTHc9j6pSQfSvKNOR71vyb5l+7+w+5e3t1PT3JzkhePLuruH2ZjQc0j5xgXAAAAAAAAAAAAAAAAAAAAAAAAALaZJQudAHO2a1WtG+l/ZHg9oarePDJ+VHevrarjk3x1KM54b5Kju3vDaMDufqCqXpvk21V1a5K3JvloVd04LLl0GEt3319Vr0lyRlWdkeShJNckOX6e97Oqql400n9Hkt2TfLKqlg5jlyc5a0uBuvueJB9Mkqoan35xVU2P9P8uydGb1o/4wizjf5+NxTYBAAAAAAAAAAAAAAAAAAAAAAAAYLuiqOQi0d1Ts0ydPMv6C5JcMMvc8pH2XUlWjEy/+fc2/G7tD5O8ajPzy+cy3t3nJDlnljBfny3+XM7r7rVJDh7aq5Msm2Hr+TPsO3Oke/DI+L8lme3ZAwAAAAAAAAAAAAAAAAAAAAAAAMCCUSwPAAAAAAAAAAAAAAAAAAAAAAAAAGARWrLQCcCWVNVlSZaODR/T3dcuRD4AAAAAAAAAAAAAAAAAAAAAAAAAsD1QVJLtXnc/f6FzAAAAAAAAAAAAAAAAAAAAAAAAAIDtzdRCJwAAAAAAAAAAAAAAAAAAAAAAAAAAwNZTVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBFSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBFSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBFSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBFSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBFSVPIxpqrunWHs5Kq6paqmR649qurYqjprbO3qqlo5tNdW1d5D+/CqurmqDq2qZVX1maq6oapuHNrLRmI8q6q+WlXXV9VVVXVeVR1RVT+qql1G1l1UVe8ZyenBqrp2aJ865HfbWN4HVdVUVZ1ZVWuG9VdU1X6beSZrq+qSsbHpqloztF9aVV8Z2sdW1YaqOmRk7ZqqWr517wQAAAAAAAAAAAAAAAAAAAAAAAAAPLoUldxxnN7dK0auO+e6cSiweH6SVd19dZJ/THJTdx/Q3fsnuTnJp4a1j09yUZJPdPczu/uwJB9Psj7JF5O8d1h3VJKdu/sDm3JK8rMkLxv6fzUcf+5Y3tclWZVk3ySHdPfzkrwuyZbuZ7eqevpw9oFbWLtuU54AAAAAAAAAAAAAAAAAAAAAAAAAsL1SVJItOTDJl5Mc092XV9UBSQ5P8r6RNackWVlV+yd5U5JLu/vCTZPdvbq71wzr3lBVK5KcmuSd88xpnyQ/7+4NQ/x13X3HFvacl43FKJPk6CSf28zaryR5blU9e575AQAAAAAAAAAAAAAAAAAAAAAAAMCjTlHJHccJVTU9XN/ain0XJDmuu7879A9KMt3dD29aMLSnkzw3ycFJvjdToO6+L8mJSb6T5PPdff0czl81kvd0Ve2SjQUijxz6p1XVoXOI84Ukrx/aRya5cDNrNyT5UJK/3lzAqnp7VV1ZVVf+86c/PYcUAAAAAAAAAAAAAAAAAAAAAAAAAGBylix0Amwzp3f3h8fGepa1o+PfTPK2qvrGaCHJ+eruC6vqziQfn+OWc7v7uLGxdVX17CQvH66Lq+oN3X3xZuKsT3JHVb0xyQ+S3LeFcz+b5L1Vtd9sC7r77CRnJ8ndv1w/27MEAAAAAAAAAAAAAAAAAAAAAAAAgEeFopI7tvVJ9hwb2yvJ7SP945L8QzYWgfzTJNclWVFVU929IUmqairJimHuiUmO2MK5G4Zr3rr710m+luRrVXVrkqOSbK6oZJKcm+RjSY6dQ/zfVNVpSf7ykeQJAAAAAAAAAAAAAAAAAAAAAADAtjdVtdApAGwTUwudAAvqiiQvrKqnJElVrUyyNMlPR9ZsSPKmJM+pqlO6+4YkVyc5aWTNSUmuGuY+m+QFVfXqTZNV9ZKqOnhSSVfVYVW179CeSnJIkh/PYeuXknwoyTfmeNQ5SV6RjYUyAQAAAAAAAAAAAAAAAAAAAAAAAGC7smShE2Didq2qdSP9jwyvJ1TVm0fGj+rutVV1fJKvDsUZ701ydHdvGA3Y3Q9U1WuTfLuqbk3y1iQfraobhyWXDmPp7vur6jVJzqiqM5I8lOSaJMfP835WVdWLRvrvSLJ7kk9W1dJh7PIkZ20pUHffk+SDSVJzqB7d3Q9W1ZlJ/s+tTRoAAAAAAAAAAAAAAAAAAAAAAAAAHm2KSj7GdPfULFMnz7L+giQXzDK3fKR9V5IVI9Nv/r0Nv1v7wySv2sz88rmMd/c5Sc6ZJczXZ4s/l/O6e22Sg4f26iSrZzqzu89McuZczwIAAAAAAAAAAAAAAAAAAAAAAACAbWW2AoQAAAAAAAAAAAAAAAAAAAAAAAAAAGzHlix0AjApVXVZkqVjw8d097ULkQ8AAAAAAAAAAAAAAAAAAAAAAAAAPJoUleQxo7ufv9A5AAAAAAAAAAAAAAAAAAAAAAAAAMC2MrXQCQAAAAAAAAAAAAAAAAAAAAAAAAAAsPUUlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIQUlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIQUlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIQUlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIQUlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIQUlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIQUlXwMqKp7Zxg7uapuqarpkWuPqjq2qs4aW7u6qlYO7bVVtffQPryqbq6qQ6tqWVV9pqpuqKobh/aykRjPqqqvVtX1VXVVVZ1XVUdU1Y+qapeRdRdV1XtGcnqwqq4d2qcO+d02lvdBVTVVVWdW1Zph/RVVtd9mnsnaqrpkbGy6qtaMjZ0xPKepkbF3VdU/jfT/t6q6aC7vBQAAAAAAAAAAAAAAAAAAAAAAAABsK4pKPrad3t0rRq4757qxqg5Jcn6SVd19dZJ/THJTdx/Q3fsnuTnJp4a1j09yUZJPdPczu/uwJB9Psj7JF5O8d1h3VJKdu/sDm3JK8rMkLxv6fzUcf+5Y3tclWZVk3ySHdPfzkrwuyZbuZ7eqevpw9oEz3OPUEOenSY4YmTozyWFV9cKq2iPJ3yX587k+OwAAAAAAAAAAAAAAAAAAAAAAAADYFhSVZCYHJvlykmO6+/KqOiDJ4UneN7LmlCQrq2r/JG9Kcml3X7hpsrtXd/eaYd0bqmpFklOTvHOeOe2T5OfdvWGIv66779jCnvOysRhlkhyd5HNj8y9N8v0knxjmN+X+myTvSPKxJB9K8k/dfdM88wYAAAAAAAAAAAAAAAAAAAAAAACAR4Wiko9tJ1TV9HB9ayv2XZDkuO7+7tA/KMl0dz+8acHQnk7y3CQHJ/neTIG6+74kJyb5TpLPd/f1czh/1Uje01W1SzYWiDxy6J9WVYfOIc4Xkrx+aB+Z5MKx+U2FJr+U5NVVtfNI3v9fkh8keUU2Fpb8PVX19qq6sqqu/OdPf3oO6QAAAAAAAAAAAAAAAAAAAAAAAADA5CxZ6AR4VJ3e3R8eG+tZ1o6OfzPJ26rqG6OFJOeruy+sqjuTfHyOW87t7uPGxtZV1bOTvHy4Lq6qN3T3xZuJsz7JHVX1xmwsEHnfpomqelyS/5LkXd19T1VdluSPknxlmH9CkpVJdk7yxCTrZrivs5OcnSR3/3L9bM8VAAAAAAAAAAAAAAAAAAAAAAAAAB4VUwudANvc+iR7jo3tleT2kf6mgo6bikBel2RFVf3262Vorxjmvp/k8C2cu2G45q27f93dX+vudyd5f5Kj5rDt3CQfS/K5sfE/SrJHkmuram2SFyU5emT+b5P89yR/n+T0R5I3AAAAAAAAAAAAAAAAAAAAAAAAADwaFJXc8VyR5IVV9ZQkqaqVSZYm+enImg1J3pTkOVV1SnffkOTqJCeNrDkpyVXD3GeTvKCqXr1psqpeUlUHTyrpqjqsqvYd2lNJDkny4zls/VKSDyX5xtj40Une1t3Lu3t5kv2SvLKqdq2q5yV5dZIPJjk7yfKqeuVk7gQAAAAAAAAAAAAAAAAAAAAAAAAAJmPJQifAROxaVetG+h8ZXk+oqjePjB/V3Wur6vgkXx2KM96b5Oju3jAasLsfqKrXJvl2Vd2a5K1JPlpVNw5LLh3G0t33V9VrkpxRVWckeSjJNUmOn+f9rKqqF43035Fk9ySfrKqlw9jlSc7aUqDuvicbi0OmqjK87prkVUn+bGTdr6rqu0mOTPLnSU7o7geG9f8tyWeqakV3PzjPewIAAAAAAAAAAAAAAAAAAAAAAGAb2VR3CuCxTlHJx4Dunppl6uRZ1l+Q5IJZ5paPtO9KsmJk+s2/t+F3a3+YjYUaZ5tfPpfx7j4nyTmzhPn6bPHncl53r01y8NDda4b51w/Nc8fGr0xy0FzPBgAAAAAAAAAAAAAAAAAAAAAAAIBtYbZihAAAAAAAAAAAAAAAAAAAAAAAAAAAbMeWLHQC8EhU1WVJlo4NH9Pd1y5EPgAAAAAAAAAAAAAAAAAAAAAAAACwrSgqyaLW3c9f6BwAAAAAAAAAAAAAAAAAAAAAAAAAYCFMLXQCAAAAAPy+3ZbtsdApAAAAAAAAAAAAAMBm7frwgwudAgAAAADADq+6e6FzgMcC/yEBAAAAAAAAAAAAAAAAAAAAAMxPLXQCwGPPtWvXqQ0FzMvzlj9tUX02mVroBAAAAAAAAAAAAAAAAAAAAAAAAAAA2HqKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKKSj4GVNW9M4ydXFW3VNX0yLVHVR1bVWeNrV1dVSuH9tqq2ntoH15VN1fVoVW1rKo+U1U3VNWNQ3vZSIxnVdVXq+r6qrqqqs6rqiOq6kdVtcvIuouq6j0jOT1YVdcO7VOH/G4by/ugqpqqqjOras2w/oqq2m8zz2TtsO7aqrquqv6uqh4/zC2vqjVD+6VVddfIWd+c5fmd+sjeJQAAAAAAAAAAAAAAAAAAAAAAAACYrCULnQCPqtO7+8OjA1U1p41VdUiS85Os6u6rq+r8JGu6+0+G+b9N8qkkbxiKNV6U5F3dfeEw/9Ik65N8Mcl7k5xUVUcl2bm7P5DkA8O6tUle1t23D/1jk5zb3ceN5XN0kn2THNLdG6rqaUl+tYXbeFl3315VT0hydpL/K8lbZlh3SXe/Zobx33t+AAAAAAAAAAAAAAAAAAAAAAAAALC9UFSSmRyY5NNJjunuy6vqgCSHJ1k1suaUJDdU1f5Jjkhy6aaCkknS3auTpKpOSbKpKOWpSY6cZ077JPl5d28Y4q+b68buvreq/izJT6tqr3meDwAAAAAAAAAAAAAAAAAAAAAAAADblamFToBH1QlVNT1c39qKfRckOa67vzv0D0oy3d0Pb1owtKeTPDfJwUm+N1Og7r4vyYlJvpPk8919/RzOXzWS93RV7ZLkvCRHDv3TqurQrbifdPfdSW5O8swZpl88ctZ7R8ZHn98fjW+qqrdX1ZVVdeXZZ5+9NekAAAAAAAAAAAAAAAAAAAAAAAAAwCO2ZKET4FF1end/eGysZ1k7Ov7NJG+rqm+MFpKcr+6+sKruTPLxOW45t7uPGxtbV1XPTvLy4bq4qt7Q3RdvRSo1y/gl3f2aGcZnen6/1d1nJ9lUTXK25woAAAAAAAAAAAAAAAAAAAAAAAAAj4qphU6AbW59kj3HxvZKcvtIf1NBx01FIK9LsqKqfvv1MrRXDHPfT3L4Fs7dMFzz1t2/7u6vdfe7k7w/yVFz3VtVuyVZnuRHjyQHAAAAAAAAAAAAAAAAAAAAAAAAANheKCq547kiyQur6ilJUlUrkyxN8tORNRuSvCnJc6rqlO6+IcnVSU4aWXNSkquGuc8meUFVvXrTZFW9pKoOnlTSVXVYVe07tKeSHJLkx3Pc+4RsLJD55e6+Y1I5AQAAAAAAAAAAAAAAAAAAAAAAAMBCWrLQCTARu1bVupH+R4bXE6rqzSPjR3X32qo6PslXh+KM9yY5urs3jAbs7geq6rVJvl1VtyZ5a5KPVtWNw5JLh7F09/1V9ZokZ1TVGUkeSnJNkuPneT+rqupFI/13JNk9ySeraukwdnmSs7YQ51tVVdlYPPVLSd43z3wAAAAAAAAAAAAAAAAAAAAAAAAAYLtT3b3QOcBjgf+QAAAAAAAAAAAAAAAAAAAAAADmpxY6AeCx59q169SGAublecuftqg+m0wtdAIAAAAAAAAAAAAAAAAAAAAAAAAAAGy9JQudADwSVXVZkqVjw8d097ULkQ8AAAAAAAAAAAAAAAAAAAAAAAAAbCuKSrKodffzFzoHAAAAAAAAAAAAAAAAAAAAAAAAAFgIikrCBNz2g2smEufxT10+kThJ8usNPbFYO+80NbFYd/zqgYnF2qMfnFisO+txE4nzB7vsPJE4SfLw/fdNLFbvutvEYt12968mFmtH8KynPWUice5ef/tE4uwodv+DvScS5567755InB3Jbrvv/ohj3HXPPRPIZMeybLfJ/Dv/89t/OZE4O4p99t5rInHu+MnNE4mzo9jzP+43kTjX3PzTicTZURyy39MnEufK69dOJM6OZOUzlz/iGHf+/JZHnsgOZo99njqROPfcdedE4uwodlu2x0Ti+By/dSbxGT5J7vz3n00kzo5ij6fsO5E4P/iJ5741DvyPk3nuN/7s1onE2ZHsv++TH3GMu2799wlksmNZ9uTJ/Gzy1l/6TLM1nrzXZD7TfHvNjyYSZ0dxxMHPmkicl5581kTi7ChWn3zcROL43mnrTOp7p9vvvGsicXYke++x7BHH8Jlm603qM43/B7J1JvX/QNb9Yv1E4uwonvakP5hInFu+839PJM6O4qkv+Z8mEse/8VtvEv/G+3nw1pvUz4QvvOLaicTZURz5n543kTg3/fwXE4mzo3jGPk+aSBzfP22dSXzvlPh5wdaa1M8LvnH1dROJsyP5o0MPesQx/P7Y1pvU75Dd/Uvft26N3feazPetfr9g60zq9wvuvt1nya2x+96T+Szp5wVbZ3v8efCuD0/ub9emdtl1YrEevu/eicV64JYfTyTOv+85md+7TJK9n/AfJhbrCRt+PbFYO03yPZzg3w1O6j1MJvc+/uHee04kTpLUryb3M8CpnSf3t58bHnpoYrEeuGXt5GI9bTK/PzFJk/yb2wc21MRiLd0wuffw/nWT+77uF8v2mUic/7B0Mn8znSRTNbnn/vCGDROLtevjJve1NTU1ub+j33WnycRZf//kvkY39ORqDjz0m4cnFmv3XZZOLNYkPWHnyXw9XPfvd0wkTpI8dc/J/P+dJNmtJ/e1VROsQfGrCZa+2eU3k6lnMcnPfw+uv21isXbeYzK/05EkPcHPNPf95IaJxdrnP71oYrEAAHY0k/uUDgAAAAAAAAAAAAAAAAAAAAAAAADANqOoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSo5Hamqu6dYezkqjpxaJ9TVbdU1dKhv3dVrR3ay6vq/qqaHrkeN8wdVVXXVNUPquraqjpq7IwTq+qHw54rqupPhvHVVbWyqi4b5n5SVbeNxF9eVcuq6jNVdUNV3Ti0lw37p6rqzKpaM5x7RVXtt5n7X1tVl4yNTVfVmqH90qq6a+weXzHMPTz0v19V/1ZVf1FVUyP7vjIW98tV9a8zPOv7qupJm3tPAAAAAAAAAAAAAAAAAAAAAAAAAGChLVnoBJiXh5P870k+McPcjd29YnSgqv6HJB9O8sruvnko6vj/VNVNqoTOGgAAIABJREFU3X1NVf1Zklcm+R+7++6q2j3J60ZjdPfzh1jHJlnZ3ceNxD8/yZru3lSI8m+TfCrJG5KsSrJvkkO6e0NVPS3Jr7Zwf7tV1dO7+6dVdeAM85d092tmGL9/070PRSE/m2T3JH8zvrCq9khyeJJ7q+oZ3X3TyPTtSf4iyV9uIU8AAAAAAAAAAAAAAAAAAAAAAAAAWDBTC50A83JGkhOqaq5FQU9M8v7uvjlJhtcPJHn3MP/XSf5bd989zN/d3Z+eS+CqOiAbizO+b2T4lCQrq2r/JPsk+Xl3bxhir+vuO7YQ9rxsLEaZJEcn+dxcchnV3b9I8vYkx1VVzbDk9UkuTPL5JG8cm/unJKuqaq+tPRcAAAAAAAAAAAAAAAAAAAAAAAAAthVFJRennyT5bpJjZpjbv6qmh+tjw9hzk3xvbN2VSZ5bVbsn2a27b5pnLgclme7uhzcNDO3p4dzzkhw55HNaVR06h5hfyMaij0lyZDYWfxz14pF7nB6KV/6e4Z52SvKkGaY3Fav83NAedW82FpY8fnNJVtXbq+rKqrryM+edv9kbAgAAAAAAAAAAAAAAAAAAAAAAAIBJW7LQCTBvH0hyQZKLxsZv7O4VC5DPjLp7XVU9O8nLh+viqnpDd1+8mW3rk9xRVW9M8oMk943NX9Ldr5lvTlX15CTPTPLd7u6qeqiqDu7uNSPLzkwyXVUfni1Od5+d5Owkue0H1/R88wEAAAAAAAAAAAAAAAAAAAAAAACA+Zha6ASYn+6+Psl0kj+ew/Lrkhw+NnZ4ku93991J7q2qZ8wzleuSrKiq334tDe0Vw1y6+9fd/bXufneS9yc5ag5xz03ysSSfm2deGe7p4SS/GJv64yR7Jrm5qtYmWZ7k6NEF3X1nks8meed8zwcAAAAAAAAAAAAAAAAAAAAAAACAR5Oikovb3yc5cQ7rPpzkPVW1PEmG179Octow/4EkH6uq3Yf5J1TVn8wlge6+IcnVSU4aGT4pyVXdfUNVHVZV+w5xp5IckuTHcwj9pSQfSvKNueQxrqqemOQfkpzV3T02fXSSV3X38u5eno0FNt84Q5iPJPnTJEvmkwMAAAAAAAAAAAAAAAAAAAAAAAAAPJoUy9v+7FpV60b6H5ltYXd/v6quSnLY5gJ293RV/WWSC6tq5yQPJfk/unt6WPKJJE9IckVVPTTMnzZztBm9NclHq+rGoX/pMJYkT0ryyapaOvQvT3LWlgJ29z1JPpgkVTU+/eKqmh7p/113n59kl2F85yS/SfIvGXt+Q0HNP0zyryNn3VxVd1XV88dyuL2qvpTkhC3lCwAAAAAAAAAAAAAAAAAAAAAAAADbmqKS25nuntrC/LFj/dePtNcmOXiWfV9M8sVZ5jrJh4ZrfO6lY/1zkpwzNnZHkjfPEvvrSb4+09ws65fPMLY2w3119+oky2bZu9Nm4q5OsnroPnWG+U2FOS8bG39XkndtIW0AAAAAAAAAAAAAAAAAAAAAAAAA2OY2W8AQAAAAAAAAAAAAAAAAAAAAAAAAAIDt05KFToAdU1VdlmTp2PAx3X3tQuQDAAAAAAAAAAAAAAAAAAAAAAAAAIuNopIsiO5+/kLnAAAAAAAAAAAAAAAAAAAAwP/Pzv0HW1pWd6L/rkMDIzYgBI2gjq2ojKKkhb6SSoa6aPQm944kSInIRAmlc7060XFwIF4ZkmCMMlKgiDDOJZnYYe4dAuUvCjPijJSk8F6HgHrkp8qvFptCBGxoUH73un/0287O9pzufWDTm6Y/n6q3zvuu53nWs559mtOb3XUWAAAAANsyTSUBAAAAAAAAAAAAAAAAAAAAAACAp5UdqmZdAsBWMTfrAgAAAAAAAAAAAAAAAAAAAAAAAAAAWDpNJQEAAAAAAAAAAAAAAAAAAAAAAAAAtkGaSgIAAAAAAAAAAAAAAAAAAAAAAAAAbIM0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2AZpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsA3SVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBukqeQ2rKruXyB2clUdP9yvrqrbqmrn4Xmvqloz3K+oqgeqan7k2mkYO7yqrqqq66vq6qo6fGyP46vqe8OaK6rqmCF+aVWtqqrLh7Fbq+rOkfwrqmr3qjq3qm6sqpuG+92H9XNVdWZVXTPse0VVvWgz519TVZeNxear6prh/tCqunfsjK8fmXt4VXVV/ZOR2Ioh9r6R2FlVdeyk3xcAAAAAAAAAAAAAAAAAAAAAAAAA2Bo0lXz6eyzJOxYZu6m7V45cD1fVryU5LcnvdffLk/xuktOq6oAkqap3J3lDktd098okv5WkRpN298HD2J8kOX8k/5ok/zHJzd39ku7eN8ktSf5yWHpUkn2SHNDdr0rypiT3bOF8u1bVC4baXr7A+GVjZ/zayNjRSb4xfB31kyTv39RkEwAAAAAAAAAAAAAAAAAAAAAAAACeijSVfPo7I8lxVbVswvnHJ/lYd9+SJMPXU5KcMIyfmOQ93b1+GF/f3X89SeKqekmSg5J8ZCT8Z0lWVdW+SfZOcnt3bxhyr+3udVtIe0E2NqNMNjaHPG/CWpYn+adJ3pnkrWPDdya5JMkfbCHHu6rqyqq68twLPjfJtgAAAAAAAAAAAAAAAAAAAAAAAAAwNZpKPv3dmuQbSd6+wNi+VTU/XGcPsf2TfGts3pVJ9q+q3ZLs2t03P85aXpFkvrsf2xQY7ueHfS9IcthQz+lV9eoJcn4+yRHD/WFJLhobP2TkjPND88ok+b0kF3f3D5LcXVUHja37eJLjq2qHxTbu7nO6e1V3rzrmLW+eoFQAAAAAAAAAAAAAAAAAAAAAAAAAmJ5lsy6AreKUJBcm+dux+E3dvXIG9Syou9dW1X5JXjdcl1TVkd19yWaW3Z1kXVW9Ncn1SX4+Nn5Zd79xgXVHJ/nUcP83w/Mvmml2981VdXmSf/74TgMAAAAAAAAAAAAAAAAAAAAAAAAATy5NJbcD3X1DVc0necsE069LclCS747EDkpybXevr6r7q+rF3X3z4yjluiQrq2quuzckSVXNJVk5jKW7H0rylSRfqao7khyeZHNNJZPk/CRnJzl2kiKqas9sbFr5qqrqJDsk6ao6YWzqx5J8LsnfTZIXAAAAAAAAAAAAAAAAAAAAAAAAALamuVkXwFbz0STHTzDvtCQfqqoVSTJ8PTHJ6cP4KUnOrqrdhvHlVXXMJAV0941JvpPkpJHwSUm+3d03VtWBVbXPkHcuyQFJfjhB6i8mOTXJVyepI8mbk/yn7n5hd6/o7hckuSXJIWP1fi8bm10eNmFeAAAAAAAAAAAAAAAAAAAAAAAAANhqls26AJ6QXapq7cjzJxab2N3XVtW3kxy4uYTdPV9VH0xyUVXtmOSRJH/U3fPDlM8kWZ7kiqp6ZBg/feFsC3pnkk9X1U3D8zeHWJI8J8lfVNXOw/PfJzlrSwm7+74kH0+SqhofPqSq5kee/zzJ0Zvmj/j8IvGPZmMjTAAAAAAAAAAAAAAAAAAAAAAAAAB4StFUchvW3XNbGD927PmIkfs1SV65yLovJPnCImOd5NThGh87dOx5dZLVY7F1Sd62SO6Lk1y80Ngi81csEFuT4VzdfWmS3RdY+rkF1p058vjKkfh3k2z2dQYAAAAAAAAAAAAAAAAAAAAAAACAWdAsDwAAAAAAAAAAAAAAAAAAAAAAAABgG7Rs1gXAllTV5Ul2Hgu/vbuvnkU9AAAAAAAAAAAAAAAAAAAAAAAAAPBUoKkkT3ndffCsawAAAAAAAAAAAAAAAAAA4B967rrb8uM9njfrMgAAAAAAtmtzsy4AAAAAAAAAAAAAAAAAAADY9mgoCQAAAAAwe5pKAgAAAAAAAAAAAAAAAAAAAAAAAABsg5bNugAAAAAAAAAAAAAAAAAAAAAAAACAaaqqWZcAsFXMzboAAAAAAAAAAAAAAAAAAAAAAAAAAACWTlNJAAAAAAAAAAAAAAAAAAAAAAAAAIBtkKaSAAAAAAAAAAAAAAAAAAAAAAAAAADbIE0lAQAAAAAAAAAAAAAAAAAAAAAAAAC2QZpKbgeq6v4FYidX1fHD/eqquq2qdh6e96qqNcP9iqp6oKrmR66dhrHDq+qqqrq+qq6uqsPH9ji+qr43rLmiqo4Z4pdW1aqqunwYu7Wq7hzJv6Kqdq+qc6vqxqq6abjffVg/V1VnVtU1w75XVNWLNnP+NVV12VhsvqquGe4PraovD/fHVtWGqjpgZO41VbViyS88AAAAAAAAAAAAAAAAAAAAAAAAADyJNJVkk8eSvGORsZu6e+XI9XBV/VqS05L8Xne/PMnvJjltUzPGqnp3kjckeU13r0zyW0lqNGl3HzyM/UmS80fyr0nyH5Pc3N0v6e59k9yS5C+HpUcl2SfJAd39qiRvSnLPFs63a1W9YKjt5VuYuzbJv93CHAAAAAAAAAAAAAAAAAAAAAAAAACYKU0l2eSMJMdV1bIJ5x+f5GPdfUuSDF9PSXLCMH5ikvd09/phfH13//UkiavqJUkOSvKRkfCfJVlVVfsm2TvJ7d29Yci9trvXbSHtBdnYjDJJjk5y3mbmfjnJ/lW13xbqfFdVXVlVV557wee2sD0AAAAAAAAAAAAAAAAAAAAAAAAATJemkmxya5JvJHn7AmP7VtX8cJ09xPZP8q2xeVdmYzPG3ZLs2t03P85aXpFkvrsf2xQY7ueHfS9IcthQz+lV9eoJcn4+yRHD/WFJLtrM3A1JTs3GxpiL6u5zuntVd6865i1vnqAEAAAAAAAAAAAAAAAAAAAAAAAAAJgeTSUZdUqSE/LLfy5u6u6Vw/WHM6jrH+jutUn2S/KhbGwAeUlV/dYWlt2dZF1VvTXJ9Ul+voX5/znJr1fVi55ovQAAAAAAAAAAAAAAAAAAAAAAAADwZNBUkl/o7huSzCd5ywTTr0ty0FjsoCTXdvf6JPdX1YsfZynXJVlZVb/48zncrxzG0t0PdfdXuvuEJB9LcvgEec9PcnaS87Y0sbsfTXJ6kg8uvXwAAAAAAAAAAAAAAAAAAAAAAAAAePJpKsm4jyY5foJ5pyX5UFWtSJLh64nZ2IgxSU5JcnZV7TaML6+qYyYpoLtvTPKdJCeNhE9K8u3uvrGqDqyqfYa8c0kOSPLDCVJ/McmpSb46SR1JVid5fZJnTzgfAAAAAAAAAAAAAAAAAAAAAAAAALaaZbMugK1il6paO/L8icUmdve1VfXtJAduLmF3z1fVB5NcVFU7JnkkyR919/ww5TNJlie5oqoeGcZPXzjbgt6Z5NNVddPw/M0hliTPSfIXVbXz8Pz3Sc7aUsLuvi/Jx5OkqrZYQHc/XFVnJvnUEuoGAAAAAAAAAAAAAAAAAAAAAAAAgK1CU8ntQHfPbWH82LHnI0bu1yR55SLrvpDkC4uMdZJTh2t87NCx59VJVo/F1iV52yK5L05y8UJji8xfsUBsTYZzdfelSS5dqJbuPjPJmZPuBQAAAAAAAAAAAAAAAAAAAAAAAABby2abDQIAAAAAAAAAAAAAAAAAAAAAAAAA8NS0bNYFwLRU1eVJdh4Lv727r55FPQAAAAAAAAAAAAAAAAAAAAAAAADwZNJUkqeN7j541jUAAAAAAAAAAAAAAAAAAGwvnrvutvx4j+fNugwAAAAAgO3a3KwLAAAAAAAAAAAAAAAAAAAAtj0aSgIAAAAAzJ6mkgAAAAAAAAAAAAAAAAAAAAAAAAAA2yBNJQEAAAAAAAAAAAAAAAAAAAAAAAAAtkGaSgIAAAAAAAAAAAAAAAAAAAAAAAAAbIOWzboAAAAAAAAAAAAAAAAAAAAAAAAAgGmaq5p1CQBbxdysCwAAAAAAAAAAAAAAAAAAAAAAAAAAYOk0lXyaqqr7F4idXFXHD/erq+q2qtp5eN6rqtYM9yuq6oGqmh+5dhrGDq+qq6rq+qq6uqoOH9vj+Kr63rDmiqo6ZohfWlWrquryYezWqrpzJP+Kqtq9qs6tqhur6qbhfvdh/VxVnVlV1wz7XlFVL9rM+ddU1WVjsfmqumYsdsbwOsyNxD5QVX818vz7VfW3E770AAAAAAAAAAAAAAAAAAAAAAAAALBVLJt1AczUY0nekeQzC4zd1N0rRwNV9WtJTkvyhu6+ZWjq+N+q6ubuvqqq3p3kDUle093rq2q3JG8azdHdBw+5jk2yqrvfO5L/c0mu6e5NjSg/nOQvkxyZ5Kgk+yQ5oLs3VNXzk/xsC+fbtape0N0/qqqXjw8OjSTflORHSf7nJF8fhs5McmVV/WaSa5P8eZLf2sJeAAAAAAAAAAAAAAAAAAAAAAAAALBVzc26AGbqjCTHVdWkzUWPT/Kx7r4lSYavpyQ5YRg/Mcl7unv9ML6+u/96ksRV9ZIkByX5yEj4z5Ksqqp9k+yd5Pbu3jDkXtvd67aQ9oJsbEaZJEcnOW9s/NBsbBr5mWE8Q+5Hk/zLJGcnOTXJX3X3zZOcAwAAAAAAAAAAAAAAAAAAAAAAAAC2Fk0lt2+3JvlGkrcvMLZvVc0P19lDbP8k3xqbd2WS/atqtyS7PoHmi69IMt/dj20KDPfzw74XJDlsqOf0qnr1BDk/n+SI4f6wJBeNjW9qNPnFJP+sqnYc2fv/S3J9ktdnY2PJX1JV76qqK6vqynMv+NwkZwQAAAAAAAAAAAAAAAAAAAAAAACAqVk26wKYuVOSXJjkb8fiN3X3yhnUs6DuXltV+yV53XBdUlVHdvclm1l2d5J1VfXWbGwQ+fNNA1W1U5L/LckHuvu+qro8yW8n+fIwvjzJqiQ7Jnl2krUL1HROknOS5M7rr+onfkoAAAAAAAAAAAAAAAAAAAAAAAAAmJymktu57r6hquaTvGWC6dclOSjJd0diByW5trvXV9X9VfXi7r75cZRyXZKVVTXX3RuSpKrmkqwcxtLdDyX5SpKvVNUdSQ5PsrmmkklyfpKzkxw7Fv/tJM9KcnVVJckuSR7I0FQyyYeT/N9J7kjyySRHPo4zAQAAAAAAAAAAAAAAAAAAAAAAAMCTZm7WBfCU8NEkx08w77QkH6qqFUkyfD0xyenD+ClJzq6q3Ybx5VV1zCQFdPeNSb6T5KSR8ElJvt3dN1bVgVW1z5B3LskBSX44QeovJjk1yVfH4kcn+RfdvaK7VyR5UZI3VNUuVfWqJP8syceTnJNkRVW9YZJzAAAAAAAAAAAAAAAAAAAAAAAAAMDWsmzWBfCk2aWq1o48f2Kxid19bVV9O8mBm0vY3fNV9cEkF1XVjkkeSfJH3T0/TPlMkuVJrqiqR4bx0xfOtqB3Jvl0Vd00PH9ziCXJc5L8RVXtPDz/fZKztpSwu+/LxuaQqaoMX3dJ8jtJ3j0y72dV9Y0khyV5X5LjuvvBYf57kpxbVSu7++ElnAcAAAAAAAAAAAAAAAAAAAAAAAAAnjSaSj5NdffcFsaPHXs+YuR+TZJXLrLuC0m+sMhYJzl1uMbHDh17Xp1k9VhsXZK3LZL74iQXLzS2yPwVC8TW5H+ca88Fxje9BuePxa9M8opJ9wYAAAAAAAAAAAAAAAAAAAAAAACArWGzjQcBAAAAAAAAAAAAAAAAAAAAAAAAAHhqWjbrAuCJqKrLk+w8Fn57d189i3oAAAAAAAAAAAAAAAAAAAAAAAAAYGvRVJJtWncfPOsaAAAAAAAAAAAAAAAAAAAAAAAAAGAW5mZdAAAAAAAAAAAAAAAAAAAAAAAAAAAAS1fdPesa4OnAf0gAAAAAAAAAAAAAAAAAAAAAAI9PzboA4Onn+z+6XW8o4HHZ7wV7b1PvTeZmXQAAAAAAAAAAAAAAAAAAAAAAAAAAAEunqSQAAAAAAAAAAAAAAAAAAAAAAAAAwDZIU0kAAAAAAAAAAAAAAAAAAAAAAAAAgG2QppIAAAAAAAAAAAAAAAAAAAAAAAAAANsgTSUBAAAAAAAAAAAAAAAAAAAAAAAAALZBy2ZdAE+Oqrq/u5ePxU5Ocn93n1ZVq5O8IcmLu/uhqtoryZXdvaKqViS5Psn3R5a/prsfrqrDk/xZkh2TPJrkj7v7SyN7HJ/kXyR5MMkjST7d3edW1aVJjk9ydpKdk+yZ5BlJbhuWHp5kXZJPJ/mNJJXk/03yvu6+t6rmkpyR5HVJesj/lu6+ZZHzr0ly3/C4Q5IvJPnz7n5wON+Xu/uVVXVokguTbMpzV3e/fnit/vckdw7xi7v7/1xoLwAAAAAAAAAAAAAAAAAAAAAAAJ5aqmrWJQBsFZpKbt8eS/KOJJ9ZYOym7l45GqiqX0tyWpI3dPctVfWiJP+tqm7u7quq6t3Z2KjyNd29vqp2S/Km0RzdffCQ69gkq7r7vSP5P5fkmu4+Znj+cJK/THJkkqOS7JPkgO7eUFXPT/KzLZzvtd19V1UtT3JOkv8ryR8sMO+y7n7jAvFPdvdpW9gDAAAAAAAAAAAAAAAAAAAAAAAAAGZibtYFMFNnJDmuqiZtLnp8ko919y1JMnw9JckJw/iJSd7T3euH8fXd/deTJK6qlyQ5KMlHRsJ/lmRVVe2bZO8kt3f3hiH32u5eN0nu7r4/ybuTHF5Ve06yBgAAAAAAAAAAAAAAAAAAAAAAAACe6jSV3L7dmuQbSd6+wNi+VTU/XGcPsf2TfGts3pVJ9q+q3ZLs2t03P85aXpFkvrsf2xQY7ueHfS9IcthQz+lV9eqlJB8aXd6S5KULDB8yctZ/OxI/biT+2+OLqupdVXVlVV15zjnnLKUcAAAAAAAAAAAAAAAAAAAAAAAAAHjCls26AGbulCQXJvnbsfhN3b1yBvUsqLvXVtV+SV43XJdU1ZHdfckS0tQi8cu6+40LxD/Z3adtpqZzkmzqJtlLqAMAAAAAAAAAAAAAAAAAAAAAAAAAnrC5WRfAbHX3DUnmk7xlgunXJTloLHZQkmu7e32S+6vqxY+zlOuSrKyqX/yZHO5XDmPp7oe6+yvdfUKSjyU5fNLkVbVrkhVJfvA46wMAAAAAAAAAAAAAAAAAAAAAAACApxRNJUmSjyY5foJ5pyX5UFWtSJLh64lJTh/GT0lydlXtNowvr6pjJimgu29M8p0kJ42ET0ry7e6+saoOrKp9hrxzSQ5I8sNJclfV8iT/PsmXunvdJGsAAAAAAAAAAAAAAAAAAAAAAAAA4Klu2awL4EmzS1WtHXn+xGITu/vaqvp2kgM3l7C756vqg0kuqqodkzyS5I+6e36Y8pkky5NcUVWPDOOnL5xtQe9M8umquml4/uYQS5LnJPmLqtp5eP77JGdtId/Xq6qysXnqF5N8ZAm1AAAAAAAAAAAAAAAAAAAAAAAAAMBTWnX3rGuApwP/IQEAAAAAAAAAAAAAAAAAAAAAPD416wKAp58frP2x3lDA4/Ky5z93m3pvMjfrAgAAAAAAAAAAAAAAAAAAAAAAAAAAWLplsy4AnoiqujzJzmPht3f31bOoBwAAAAAAAAAAAAAAAAAAAAAAAAC2Fk0l2aZ198GzrgEAAAAAAAAAAAAAAAAAAAAAAAAAZkFTSZiCe++7byp55jY8NpU8SfJo7TC1XDs8/MDUcj20w85Ty/WPdqip5drwwM+nkufhnZ4xlTxJsuOD908t12NTOl+S7PQrz55aru3Brrs/ayp51q2fzs+Z7cUeu+06lTxe96Wbxmt/z+23TaGS7cuz9n7eVPL89Ic3TyXP9mLPF754Knl+sPbHU8mzvXjZ8587lTz33XvPVPJsL6b2nuZHa6aSZ3uyxwtWPOEcfs4s3bR+1lz3Q+9rluIVL5zOe5rv/+j2qeTZXuz3gr2nkmfNj++cSp7txYrnTufzldvv+ulU8mwv9t5rz6nkueOn3ksu1a/u+cTfT3rdl24ar3vi84KlmtbnBa//yL+fSp7txdf++F9OJY/PC5ZmWp8XHHryWVPJs7249OT3TiXPbXd6L7lUz3v2E38/efPtP5lCJduXF+/9nKnkufcOn5Etxe6/Op3Px3wmvDTT+Dw4Sf7r/HVTybO9+F9WvmIqebyXXLppvJ/0ui/dtN7HX3r196eSZ3tx6Kv2m0qeK35wy1TybC/+p5e9aCp57rrn3qnk2V7s9azdp5LHv3MvzbT+jfuuG7yXXKq9XvrE30/6nGbppvE5TeLfuZdqWv/Ofec6f7cuxbP3mM7frVevWTuVPNuLV614/lTy+Bm/NNP6+X73zTdMJU+S7Lj7HlPL9YOfTu/3xHZ7xj+aWq49l0/nd+F23GFuKnmS5NE7p/f/A8ueOZ3fL0qSG9Y/OLVc0/we7r7L9HI9I9P5/dYND07vdxl3mOL38Ps/md7nibvstOPUcu3xzCn+Tuqy6fxecf10ev+uueNu03k/kyQ/vP/hqeXaa/kuU8v1zLmeWq7ecafp5PnZ9H4vcm7Z9NpR9GMbppbr0SmesXaY3u/kL9t1Sn/me3p/rqZpw8MPTS3XNH/3/an4Paxl0/u74pF1d00t10PPnM6/FSXJ8h2n9x7w7gcemVquPWo672lqij//pplr/cPT+1k6Tbffs35quVa9dMXUcgEAbG+m9y4dAAAAAAAAAAAAAAAAAAAAAAAAAICtRlNJAAAAAAAAAAAAAAAAAAAAAAAAAIBtkKaSAAAAAAAAAAAAAAAAAAAAAAAAAADbIE0lAQAAAAAAAAAAAAAAAAAAAAAAAAC2QZpKAgAAAAAAAAAAAAAAAAAAAAAAAABsgzSVBAAAAAAAAAAAAAAAAAAAAAAAAADYBmkqOUVV1VV1+sjz8VV18nB/clXdVlXzI9ezqurYqjprLM+lVbWqqi4f5t1aVXeOrFtRVWuq6uqquqqq/q6qXjiy/vlVdWFV3VBVN1XVp6pqp2Hs0Kq6d8hzfVX96Uj8y2N1rK6qN4/WNNyvqaq9xuYeO1bjfFW9oqrmqurMqrpmqPeKqnrRZl7DNVV12VhsvqquWaD+Tdfrh7HHhudrq+q7VfVvqmrpgenXAAAgAElEQVRuM+f7UlX997HYyVX186p6zkjs/sXqBQAAAAAAAAAAAAAAAAAAAAAAAIBZ0VRyuh5KcsR4w8URn+zulSPXPZtL1t0Hd/fKJH+S5PyRdWuGKa/t7gOSXJrkpCSpqkryhSRf6u6XJnlZkuVJPjqS+rIh76okb6uqAx/XaX/Z+WPnuy7JUUn2SXJAd78qyZuSbPbcSXatqhcM53n5AuOXje3ztSH+wPC8f5I3JPlfk/zpQhtU1bOSHJRk96p68djwXUn+zQTnBQAAAAAAAAAAAAAAAAAAAAAAAICZ0VRyuh5Nck6S47byvt9M8rzh/nVJHuzuzyZJdz821POOqtpldFF3/yzJt5K85Emsbe8kt3f3hmHPtd29bgtrLsjGZpRJcnSS85a6aXf/JMm7krx3aLQ57ogkFyX5myRvHRv7qyRHVdWeS90XAAAAAAAAAAAAAAAAAAAAAAAAALYWTSWn7+wkv19Vuy8wdlxVzQ/X16e45+8k+dJwv382Nor8he5en+TWjDWPrKpfSfLrSa4dQoeM1Def5HeXWMdRo+ur6hnZ2CDysOH59Kp69QR5Pp+NTR+T5LBsbP446pCxffZdKEl335xkhyTPWWB4U7PK84b7UfdnY2PJ92+uyKp6V1VdWVVXrv7sZzd7IAAAAAAAAAAAAAAAAAAAAAAAAACYtmWzLuDpprvXV9W5Sf5VkgfGhj/Z3aeNL1ks1QTbfb2q9szGJoh/vIQyD6mq7yTZkOTfdfe1VXVoksu6+42bJlXV6iXkTJLzu/u9Y7G1VbVfktcN1yVVdWR3X7KZPHcnWVdVb01yfZKfj43/gzqXqqp+NclLk3yju7uqHqmqV3b3NSPTzkwyX1Xj369f6O5zkpyTJPfed98k3y8AAAAAAAAAAAAAAAAAAAAAAAAAmJq5WRfwNHVGkncmeeYEc+9OssdYbM8kd02w9rVJXphkPsmHh9h1SQ4anVRVuyX5x0luHEKXdferu/ug7v4PE+zzhHT3Q939le4+IcnHkhw+wbLzk5yd5LzHu29VvTjJY0l+Mjb0lmx8zW+pqjVJViQ5eqzme5L85yR/+Hj3BwAAAAAAAAAAAAAAAAAAAAAAAIAnk6aST4Lu/mmSC7KxseSWXJHkN6vquUlSVauS7JzkRxPu9WiSf53kmKraM8klSXapqmOGfDskOT3J6u7++VLP8kRV1YFVtc9wP5fkgCQ/nGDpF5OcmuSrj3PfZyf5D0nO6u4eGz46ye9094ruXpGNTTjfukCaTyT5P5Isezw1AAAAAAAAAAAAAAAAAAAAAAAAAMCTSVPJJ8/pSfYaix1XVfMj14ruviPJ+5P8l6qaT3JGkqO7e8OkG3X37UnOS/KHQwPFNyU5sqpuSPKDJA8mOXEKZxp1VVWtHa5PDLGjxs73G0mek+SiqromyVVJHk1y1gRnuq+7P97dDy8wfMjYPm8e4s8Ynq9N8rUk/zXJh0cXVtWKJC9M8t9H9rolyb1VdfBYDXdlY3PLnbdULwAAAAAAAAAAAAAAAAAAAAAAAABsbctmXcDTSXcvH7m/I8kuI88nJzl5kXUXJrlwM3lXJ1k9Flsx9vy+kfsfJTlskVyXJrl0knh3Hztyf+hie49YvUj84kXiC9X3S7m7e02SV47Uufsia3fYTN5L8z/O97wFxg8cbi8fi38gyQe2UDYAAAAAAAAAAAAAAAAAAAAAAAAAbHVzsy4AAAAAAAAAAAAAAAAAAAAAAAAAAIClWzbrAtg+VdXlSXYeC7+9u6+eRT0AAAAAAAAAAAAAAAAAAAAAAAAAsK3RVJKZ6O6DZ10DAAAAAAAAAAAAAAAAAAAAAAAAAGzL5mZdAAAAAAAAAAAAAAAAAAAAAAAAAAAAS6epJAAAAAAAAAAAAAAAAAAAAAAAAADANkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAbZCmkgAAAAAAAAAAAAAAAAAAAAAAAAAA2yBNJQEAAAAAAAAAAAAAAAAAAAAAAAAAtkGaSgIAAAAAAAAAAAAAAAAAAAAAAAAAbIM0lQQAAAAAAAAAAAAAAAAAAAAAAAAA2AZpKjkjVdVVdfrI8/FVdfJwf3JV3VZV8yPXs6rq2Ko6ayzPpVW1qqouH+bdWlV3jqxbUVVrqurqqrqqqv6uql44sv75VXVhVd1QVTdV1aeqaqdh7NCqunfIc31V/elI/MtjdayuqjeP1jTcr6mqvcbmHjtW43xVvaKq5qrqzKq6Zqj3iqp60WZewzVVddlYbL6qrlmg/k3X60fmHj58H/7JSGzFEHvfSOysqjp2sToAAAAAAAAAAAAAAAAAAAAAAAAAYBY0lZydh5IcMd5wccQnu3vlyHXP5pJ198HdvTLJnyQ5f2TdmmHKa7v7gCSXJjkpSaqqknwhyZe6+6VJXpZkeZKPjqS+bMi7KsnbqurAx3XaX3b+2PmuS3JUkn2SHNDdr0rypiSbPXeSXavqBcN5Xr7A+GVj+3xtZOzoJN8Yvo76SZL3b2quCQAAAAAAAAAAAAAAAAAAAAAAAABPRZpKzs6jSc5JctxW3vebSZ433L8uyYPd/dkk6e7HhnreUVW7jC7q7p8l+VaSlzyJte2d5Pbu3jDsuba7121hzQXZ2Iwy2dgc8rxJNqqq5Un+aZJ3Jnnr2PCdSS5J8gcT1g0AAAAAAAAAAAAAAAAAAAAAAAAAW52mkrN1dpLfr6rdFxg7rqrmh+vrU9zzd5J8abjfPxsbRf5Cd69PcmvGmkdW1a8k+fUk1w6hQ0bqm0/yu0us46jR9VX1jGxsEHnY8Hx6Vb16gjyfT3LEcH9YkovGxg8Z22ffIf57SS7u7h8kubuqDhpb9/Ekx1fVDottXFXvqqorq+rK1Z/97ASlAgAAAAAAAAAAAAAAAAAAAAAAAMD0LJt1Aduz7l5fVecm+VdJHhgb/mR3nza+ZLFUE2z39araM8n9Sf54CWUeUlXfSbIhyb/r7mur6tAkl3X3GzdNqqrVS8iZJOd393vHYmurar8krxuuS6rqyO6+ZDN57k6yrqremuT6JD8fG/8HdY44Osmnhvu/GZ5/0WCzu2+uqsuT/PPFNu7uc5KckyT33nffJN8DAAAAAAAAAAAAAAAAAAAAAAAAAJgaTSVn74wk307y2Qnm3p1kj7HYnknummDta5Pck+T/SfLhJB9Icl2SN49OqqrdkvzjJDcmeU0Wb8r4pOjuh5J8JclXquqOJIcn2VxTySQ5P8nZSY6dZI+huebrkryqqjrJDkm6qk4Ym/qxJJ9L8ncTHwAAAAAAAAAAAAAAAAAAAAAAAICZ22GuZl0CwFYxN+sCtnfd/dMkFyR55wTTr0jym1X13CSpqlVJdk7yown3ejTJv05yzNBY8ZIku1TVMUO+HZKcnmR1d/98qWd5oqrqwKraZ7ifS3JAkh9OsPSLSU5N8tUJt3pzkv/U3S/s7hXd/YIktyQ5ZHRSd38vGxtvHjZhXgAAAAAAAAAAAAAAAAAAAAAAAADYajSVfGo4PcleY7Hjqmp+5FrR3XckeX+S/1JV80nOSHJ0d2+YdKPuvj3JeUn+sLs7yZuSHFlVNyT5QZIHk5w4hTONuqqq1g7XJ4bYUWPn+40kz0lyUVVdk+SqJI8mOWuCM93X3R/v7ocXGD5kbJ83Jzk6GxtRjvr8EB/30STPn/CcAAAAAAAAAAAAAAAAAAAAAAAAALDVLJt1Adur7l4+cn9Hkl1Gnk9OcvIi6y5McuFm8q5OsnostmLs+X0j9z9KctgiuS5Ncukk8e4+duT+0MX2HrF6kfjFi8QXqu+Xcnf3miSvHKlz9wWWfm6BdWeOPL5yJP7d/5+duw/WrCzvBf27mwakg3wJfqCGRvwKAqcFSlJ6qAETSxyDURKFnkQDiePJHDGKY2pMNIqZ4zkmI0EZ9RhOKR1Hw0cqERWJ5owlsc0ognEPtFAJgh1sNAqIX4AicM8fe3Xm9WX33u/u/Xbv3vR1Va1irWc9z/381urdu3a/dN/RfBUAAAAAAAAAAAAAAAAAAAAAAACAXZBmeQAAAAAAAAAAAAAAAAAAAAAAAAAAK9Dq5Q4AC6mqq5PsPTb88u6+fjnyAAAAAAAAAAAAAAAAAAAAAAAAAMCuQFNJdnndfcJyZwAAAAAAAAAAAAAAAAAAAAAAAACAXc2q5Q4AAAAAAAAAAAAAAAAAAAAAAAAAAMDiaSoJAAAAAAAAAAAAAAAAAAAAAAAAALACaSoJAAAAAAAAAAAAAAAAAAAAAAAAALACaSoJAAAAAAAAAAAAAAAAAAAAAAAAALACaSoJAAAAAAAAAAAAAAAAAAAAAAAAALACaSoJAAAAAAAAAAAAAAAAAAAAAAAAALACaSoJAAAAAAAAAAAAAAAAAAAAAAAAALACaSq5i6uqrqrzRq7fUFXnDufnVtVtVTUzchxQVWdW1XvG6lxVVcdX1dXDvFur6vaRdWuranNVXV9V11XV31fVYSPrn1BVH6uqm6rq5qp6d1XtNdw7qaq+P9S5sareOjJ+xViODVX166OZhvPNVXXw2NwzxzLOVNWRVbWqqi6oqk1D3muq6vB53uHmqto4NjZTVZvGcw57PlhVx4zM3VRVaxf8xQIAAAAAAAAAAAAAAAAAAAAAAACAnUhTyV3fT5KcNt5wccT53b1u5PjefMW6+4TuXpfkLUkuHVm3eZhycncfk+SqJG9OkqqqJH+T5PLufkqSpybZN8nbR0pvHOoen+Q3q+rY7Xrah7p07PluSHJ6kkOTHNPdRyd5SZJ5nzvJI6vqicPz/MICc7ckedNSgwMAAAAAAAAAAAAAAAAAAAAAAADAjqSp5K7v/iQXJjlnJ+/7hSSPH86fm+TH3X1RknT3A0Oe366qNaOLuvvuJF9O8uQdmO1xSb7V3Q8Oe27p7rsWWHNZZptRJsn6JBfPM/eKJM+oqqfNV7CqXlVV11bVtRsuumjC6AAAAAAAAAAAAAAAAAAAAAAAAAAwHZpKrgzvTfIbVbX/HPfOqaqZ4fjsFPc8Jcnlw/kzMtso8t909w+S3Jqx5pFV9agkv5jkq8PQiSP5ZpK8aJE5Th9dX1X7ZLZB5KnD9XlV9cwJ6vx1ktOG81OTfGKeuQ8m+dMkfzhfwe6+sLuP7+7jzzzrrAkiAAAAAAAAAAAAAAAAAAAAAAAAAMD0rF7uACysu39QVR9K8ntJ7h27fX53v3N8ybZKTbDdZ6vqoCQ/SvJHi4h5YlV9JbMNGd/R3V+tqpOSbOzuX9k6qao2LKJmklza3WePjW2pqqclee5wfKaqXtrdn5mnzp1J7qqqM5LcmOSeBfb9yyRvqqrDF5kXAAAAAAAAAAAAAAAAAAAAAAAAAHaKVcsdgIm9K8nvJPm5CebemeTAsbGDktwxwdqTkxyWZCbJ24axG5IcNzqpqvZL8vNJvjYMbezuZ3b3cd39/gn2WZLu/kl3/213/36S/5zkxRMsuzTJe5NcPEH9+5Ocl+R/W1JQAAAAAAAAAAAAAAAAAAAAAAAAANhBNJVcIbr7u0kuy2xjyYVck+Q5VfXYJKmq45PsneQbE+51f5LXJXlFVR2U5DNJ1lTVK4Z6e2S24eKG7r5nsc+yVFV1bFUdOpyvSnJMkn+ZYOlHk/xpkk9PuNWGJL+c5JDtiAkAAAAAAAAAAAAAAAAAAAAAAAAAO9Tq5Q7AopyX5OyxsXOq6jdHrl/c3Zur6rVJrhyaLv4oyfrufnDSjbr7W1V1cZJXd/f/XlUvSfK+qvqjzDYjvTLJHy7paR7quqramvGyJNclOb2q/v3InP+YZL8k/62q9h7GvpTkPQsV7+4fJvmTJKmqBcN0931VdUGSd0/8BAAAAAAAAAAAAAAAAAAAAAAAACy7SXpNATwcaCq5i+vufUfOv51kzcj1uUnO3ca6jyX52Dx1NyTZMDa2duz6NSPn30hy6jZqXZXkqknGu/vMkfOTtrX3iA3bGP/UNsbnyveQ2t29OclR4znH30t3X5Dkgkn3AgAAAAAAAAAAAAAAAAAAAAAAAICdZdVyBwAAAAAAAAAAAAAAAAAAAAAAAAAAYPFWL3cAmJaqujrJ3mPDL+/u65cjDwAAAAAAAAAAAAAAAAAAAAAAAADsSJpK8rDR3ScsdwYAAAAAAAAAAAAAAAAAgN3FTx94MHvusWq5YwAAAAAA7NZ8SgsAAAAAAAAAAAAAAAAAACyahpIAAAAAAMvPJ7UAAAAAAAAAAAAAAAAAAAAAAAAAACuQppIAAAAAAAAAAAAAAAAAAAAAAAAAACuQppIAAAAAAAAAAAAAAAAAAAAAAAAAACuQppIAAAAAAAAAAAAAAAAAAAAAAAAAACuQppIAAAAAAAAAAAAAAAAAAAAAAAAAACuQppIAAAAAAAAAAAAAAAAAAAAAAAAAACuQppK7oKrqqjpv5PoNVXXucH5uVd1WVTMjxwFVdWZVvWeszlVVdXxVXT3Mu7Wqbh9Zt7aqNlfV9VV1XVX9fVUdNrL+CVX1saq6qapurqp3V9Vew72Tqur7Q50bq+qtI+NXjOXYUFW/PpppON9cVQePzT1zLONMVR1ZVauq6oKq2jTkvaaqDp/nHW6uqo1jYzNVtWls7F3D+1w1Mvb6qvrgyPVvVNUnt7UXAAAAAAAAAAAAAAAAAAAAAAAAACwHTSV3TT9Jctp4w8UR53f3upHje/MV6+4TuntdkrckuXRk3eZhysndfUySq5K8OUmqqpL8TZLLu/spSZ6aZN8kbx8pvXGoe3yS36yqY7fraR/q0rHnuyHJ6UkOTXJMdx+d5CVJ5n3uJI+sqicOz/ML4zeHRpIvSfKNJP/DyK0LkhxbVc+pqgOS/Kckr1nyUwEAAAAAAAAAAAAAAAAAAAAAAADAFGkquWu6P8mFSc7Zyft+Icnjh/PnJvlxd1+UJN39wJDnt6tqzeii7r47yZeTPHkHZntckm9194PDnlu6+64F1lyW2WaUSbI+ycVj909K8tUk/3W4n6H2/Un+Y5L3JvnTJB/s7lvGi1fVq6rq2qq6dsNFFy3+iQAAAAAAAAAAAAAAAAAAAAAAAABgCTSV3HW9N8lvVNX+c9w7p6pmhuOzU9zzlCSXD+fPyGyjyH/T3T9IcmvGmkdW1aOS/GJmGzQmyYkj+WaSvGiROU4fXV9V+2S2QeSpw/V5VfXMCer8dZLThvNTk3xi7P7WRpMfTfLCqtpz643u/n+S3JjklzPbWPIhuvvC7j6+u48/86yzFvWAAAAAAAAAAAAAAAAAAAAAAAAAALBUmkruooYGjh9K8ntz3D6/u9cNx8lbl2yr1ATbfbaqbkvygsw2WZzUiVX1lSR/l+Qd3b21qeTGkXzrknx8ETWT5NLR9d19b3dvSfK0JH+Q5MEkn6mqX1qgzp1J7qqqMzLbIPKerTeqaq8k/2OSy4d3fXWS54/c3zfJ8Un2THLIIvMDAAAAAAAAAAAAAAAAAAAAAAAAwA63erkDMK93JfnHJBdNMPfOJAeOjR2U5I4J1p6c5HtJPpLkbUlen+SGJL8+Oqmq9kvy80m+luRZmW0e+SsT1J+K7v5Jkr9N8rdV9e0kL07ymQWWXZrkvUnOHBt/fpIDklxfVUmyJsm9Sa4Y7r8tyYeTfDvJ+UleuvQnAAAAAAAAAAAAAAAAAAAAAAAAAIDpWbXcAdi27v5uksuS/M4E069J8pyqemySVNXxSfZO8o0J97o/yeuSvKKqDspss8Y1VfWKod4eSc5LsqG771nssyxVVR1bVYcO56uSHJPkXyZY+tEkf5rk02Pj65O8srvXdvfaJIcneV5Vramqo5O8MMmfJLkwydqqet50ngQAAAAAAAAAAAAAAAAAAAAAAAAApkNTyV3feUkOHhs7p6pmRo613f3tJK9NcmVVzSR5V5L13f3gpBt197eSXJzk1d3dSV6S5KVVdVOSf07y4yR/OIVnGnVdVW0Zjj8bxk4fe75nJ3l0kk9U1aYk1yW5P8l7JnimH3b3n3T3fVvHqmpNklOSfHJk3t1JPp/k1CT/Nck53f3j4f39L0neXVV7TeeRAQAAAAAAAAAAAAAAAAAAAAAAAGDpVi93AB6qu/cdOf92kjUj1+cmOXcb6z6W5GPz1N2QZMPY2Nqx69eMnH8js00W56p1VZKrJhnv7jNHzk/a1t4jNmxj/FPbGJ8r30Nqd/fmJEcNlwfNcf+04fTSsfFrkxw56d4AAAAAAAAAAAAAAAAAAAAAAAAAsDNoKgkAAAAAAAAAAAAAAAAAAAAAAAA8rKyqWu4IADuFppKsaFV1dZK9x4Zf3t3XL0ceAAAAAAAAAAAAAAAAAAAAAAAAANhZNJVkRevuE5Y7AwAAAAAAAAAAAAAAAAAAAAAAAAAsh+ru5c4ADwd+IwEAAAAAAAAAAAAAAAAAAAAAbJ9a7gDAw8/mf71dbyhgu6x97CEr6meTVcsdAAAAAAAAAAAAAAAAAAAAAAAAAACAxdNUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUEgAAAAAAAAAAAAAAAAAAAAAAAABgBdJUchdUVV1V541cv6Gqzh3Oz62q26pqZuQ4oKrOrKr3jNW5qqqOr6qrh3m3VtXtI+vWVtXmqrq+qq6rqr+vqsNG1j+hqj5WVTdV1c1V9e6q2mu4d1JVfX+oc2NVvXVk/IqxHBuq6tdHMw3nm6vq4LG5Z45lnKmqI6tqVVVdUFWbhrzXVNXh87zDrc91fVXdUFX/qaoeMdxbW1Wb5niOmar6v7fxnt+x6F9IAAAAAAAAAAAAAAAAAAAAAAAAANiBNJXcNf0kyWnjDRdHnN/d60aO781XrLtP6O51Sd6S5NKRdZuHKSd39zFJrkry5iSpqkryN0ku7+6nJHlqkn2TvH2k9Mah7vFJfrOqjt2up32oS8ee74Ykpyc5NMkx3X10kpckmfe5h+c6OsmzkjwpyZ9vY97Gkb1+eWR89D2/cYnPBAAAAAAAAAAAAAAAAAAAAAAAAABTpankrun+JBcmOWcn7/uFJI8fzp+b5MfdfVGSdPcDQ57frqo1o4u6++4kX07y5B2Y7XFJvtXdDw57bunuuyZZ2N0/SvK7SV5cVQftwIwAAAAAAAAAAAAAAAAAAAAAAAAAsNNoKrnrem+S36iq/ee4d05VzQzHZ6e45ylJLh/On5HZRpH/prt/kOTWjDWPrKpHJfnFJF8dhk4cyTeT5EWLzHH66Pqq2ifJZUlOHa7Pq6pnLqbgkP3rSZ4yx+3RvG8aGR99z88fX1RVr6qqa6vq2gsvvHAxcQAAAAAAAAAAAAAAAAAAAAAAAABgyVYvdwDm1t0/qKoPJfm9JPeO3T6/u985vmRbpSbY7rNVdVCSHyX5o0XEPLGqvpLkwSTv6O6vVtVJSTZ2969snVRVGxZRM0ku7e6zx8a2VNXTkjx3OD5TVS/t7s8som5tY/xn8o6Y6z3/m+6+MMnWbpKTvGcAAAAAAAAAAAAAAAAAAAAAAAAAmJpVyx2Aeb0rye8k+bkJ5t6Z5MCxsYOS3DHB2pOTHJZkJsnbhrEbkhw3Oqmq9kvy80m+Ngxt7O5ndvdx3f3+CfZZku7+SXf/bXf/fpL/nOTFk66tqkcmWZvkn3dQPAAAAAAAAAAAAAAAAAAAAAAAAADYqTSV3IV193eTXJbZxpILuSbJc6rqsUlSVccn2TvJNybc6/4kr0vyiqo6KMlnkqypqlcM9fZIcl6SDd19z2KfZamq6tiqOnQ4X5XkmCT/MuHafZO8L8nl3X3XjksJAAAAAAAAAAAAAAAAAAAAAAAAADuPppK7vvOSHDw2dk5VzYwca7v720lem+TKqppJ8q4k67v7wUk36u5vJbk4yau7u5O8JMlLq+qmJP+c5MdJ/nAKzzTquqraMhx/NoydPvZ8z07y6CSfqKpNSa5Lcn+S9yxQ+7PD/C8luTXJf5hydgAAAAAAAAAAAAAAAAAAAAAAAABYNjXbOxBYIr+RAAAAAAAAAAAAAAAAAAAAAAC2Ty13AODhZ/O/3q43FLBd1j72kBX1s8mq5Q4AAAAAAAAAAAAAAAAAAAAAAAAAAMDirV7uALAUVXV1kr3Hhl/e3dcvRx4AAAAAAAAAAAAAAAAAAAAAAAAA2Fk0lWRF6+4TljsDAAAAAAAAAAAAAAAAAAAAAAAAACwHTSVhCu685aap1Fl18GOnUmdXtqqmV+vBnl6taXngwQeXO8Kc9vzJvVOrdVfvMbVau4O1jz1kKnU2/R9vnEqd3cVRv/+OqdS56wc/nEqd3cmB+z1yyTVuvuwDU0iyezniZb8zlTo//MEPplJnd/HI/fabSp07vvf9qdTZXRx8wP5TqfP9H/oevxj7P3Lp39+T5JZvfWcqdXYnT3rco5dc47v/cssUkuxeDjrsSVOp43v84kzre/wP7vC9ZjH2O3jp32eS5Hvf/MZU6uwuDjj0iVOp42eaxZnWzzQ+L1i8aXxe4L0v3jTee5Js+c6dU6mzu3jCox81lTq33f7dqdTZXTz+kIOmUsfP8IszrZ/hfb0vzrS+3k869z1TqbM7uercs5dc41t3+HpfrMcdPJ2v+f/23/9hKnV2F//z854zlTr+39PiTOv/Pfnz0+JM689O1739nKnU2Z0c86bzl1zD52OLN63PyG6/y5+fFuOQA6fz5yefxS/OtD6L/5/e/aGp1Nld/OVrXzGVOv5+weJM4+8WJMnN3/z2VOrsTo449DFLruFn+MWb1s/xt37njqnU2V38/KMPnkodn5EtzrQ+H/Pnp8Xx9wuWx7S+v2/+19unUidJ9l/ziKnVmqa6Z3pfW3vss2YqdTZ9a3p/t+BxB0zns9JkN/k1XLPv1Gpt+uZ0fv88/qDpfBaSJPvvs/fUak3VPXdPrdSqR0zv6/Q7d/9kKnX2WLVqKnWSXX1qGbEAACAASURBVPf34ap7d81fw3/6zvemUueIx0zn7zDtylb3A8sdYYe6vx7+/5Z7dabYKKCn9+/7+4HpfG09sHqvqdTZld119/T6Fxz4c/tMrdb9W6bz76j2fvTjplInSR7Ya3rPt6v269jjp9P5OSRJ9nvUdD6HAgDYHU3vUx0AAAAAAAAAAAAAAAAAAAAAAAAAAHYaTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAFYgTSV3sKp6oKpmqmpTVf1VVa0Zxk+pqn+qqq9V1RtH5n9kGN9UVR+sqj0n2OPyqvri2Ni5VXXbsPcNVbW+qs4armeq6r6qun44f0dVnVlVt4/cn6mqI6tqbVXdO1LnQ1szVdVJVXXFhFneMOH76qr68Mj16iHXFcP1Qjm/UlU3VtWXqurMkTpnVtV7xvaaqapLxsY2DO9t7+H64KraPEl2AAAAAAAAAAAAAAAAAAAAAAAAANiZNJXc8e7t7nXdfVSS+5L8blXtkeS9SV6Q5Mgk66vqyGH+R5I8PcnRSfZJ8sr5ilfVAUmOS7J/VT1p7Pb53b0uya8m+fMkHx6yrEvyzSQnD9dbm1peuvX+cNwwjN88rDk6yROSvGw7skzq7iRHVdU+w/Xzktw2Nme+nM/s7l9IckaS11XVWdvI+gtJ9khyYlX93NjtB5L89nbmBwAAAAAAAAAAAAAAAAAAAAAAAICdQlPJnWtjkicneVaSr3X3Ld19X5JLMtv4Md19ZQ+SfCmzTRznc1qSTww1zphrQnfflOSeJAcuJXx3PzBkevz2ZpnQlUleOJyvT3LxYgt09y1JXp/k97YxZX2S/yvJ32V49yPeleScqlq92H0BAAAAAAAAAAAAAAAAAAAAAAAAYGfRVHInGRoUviDJ9ZltyviNkdtbMtaosar2TPLyJJ9aoPTWposXD+dz7X1skpu6+zsL1Dq9qmZGjn3G6jwiyQnzZFowy4QuSXLGsN8xSa5eTM4R/5jk6du4d/qwz1xZb03y+cy+/22qqldV1bVVde1fXHzJfFMBAAAAAAAAAAAAAAAAAAAAAAAAYOpWL3eA3cA+VTUznG9M8oEkL5pg3fuSfK67N25rQlU9JslTkny+u7uqflpVR3X3pmHKOVV1VpKnJjl1gj0v7e6zx/ZIkiOGZzg8ySe7+7rtyDKx7r6uqtZmttnjlYvI+ZBYcw5WHZ/kju6+tapuS/LBqjqou787Mu2/JPlYkk/Ok/PCJBcmyZ233NTbfCAAAAAAAAAAAAAAAAAAAAAAAAAA2AFWLXeA3cC93b1uOF7T3fcluS3JE0fmPGEYS5JU1VuTHJLk9QvUflmSA5N8vao2J1mb2UaMW53f3c9I8mtJPlBVj9jOZ7i5u9clOSLJcVU1V1PMhbIs1seTvDPJxUuo8cwkN84xvj7J04ecNyfZL7Pv6N90901JZjL7XAAAAAAAAAAAAAAAAAAAAAAAAACwy9FUcnlck+QpVXV4Ve2V5IzMNlFMVb0yyfOTrO/uBxeosz7JKd29trvXJjluqPUzuvvjSa5N8ltLCd3ddyR5Y5I/2N4si/DBJG/r7uu3Z3FVrc1sU8r/c2x8VWYbRR49kvVXM3cDzLcnecP27A8AAAAAAAAAAAAAAAAAAAAAAAAAO5qmksugu+9PcnaSTye5Mcll3f3V4fb7kzwmyReqaqaq3jJXjaFp4mFJvjhS9+tJvl9VJ8yx5I+TvH5oqrgtpw97bj2ePcecy5OsqaoTF5nlzVW1ZesxT4at67d09wWLzHlEVX2lqm5MclmSC7r7orG1Jya5rbu/OTL2uSRHVtXjxjJ8Nck/LpQVAAAAAAAAAAAAAAAAAAAAAAAAAJbD6uUO8HDX3ftuY/zKJFfOMT7Rr0l3b07y+DnGjx1Orx4b/3KSp41crx27vyHJhm1sd9TIvE7y70buXTX8d6Es526j9viah7yv7r5q6z4L5Nxnnrqj635x7N4DSR47XJ45du+0+RMDAAAAAAAAAAAAAAAAAAAAAAAAwPJYtdwBAAAAAAAAAAAAAAAAAAAAAAAAAABYvNXLHYCFVdVZSV47NvwP3f3q5cizVFX1qCSfmePWL3X3nTs7DwAAAAAAAAAAAAAAAAAAAAAAAACsRJpKrgDdfVGSi5Y7x7QMjSPXLXcOAAAAAAAAAAAAAAAAAAAAAAAAAFjJVi13AAAAAAAAAAAAAAAAAAAAAAAAAAAAFk9TSQAAAAAAAAAAAAAAAAAAAAAAAACAFUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAFWj1cgcAAAAAAAAAAAAAAAAAAAAAAAAAmKZVq2q5IwDsFKuWOwAAAAAAAAAAAAAAAAAAAAAAAAAAAIunqSQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqeQupKoeqKqZqtpUVX9VVWuG8VOq6p+q6mtV9caR+R8ZxjdV1Qeras8J9ri8qr44NnZuVd027H1DVa2vqrOG65mquq+qrh/O31FVZ1bV7SP3Z6rqyKpaW1X3jtT50NZMVXVSVV0xYZY3TPi+uqo+PHK9esh1xXA9Z86R+a+rqh9X1f4jYycNdU8dGbuiqk6aJBMAAAAAAAAAAAAAAAAAAAAAAAAA7CyaSu5a7u3udd19VJL7kvxuVe2R5L1JXpDkyCTrRxojfiTJ05McnWSfJK+cr3hVHZDkuCT7V9WTxm6f393rkvxqkj9P8uEhy7ok30xy8nC9tanlpVvvD8cNw/jNw5qjkzwhycu2I8uk7k5yVFXtM1w/L8ltY3O2lTNJ1ie5JslpY2u2JHnTdmYCAAAAAAAAAAAAAAAAAAAAAAAAgJ1CU8ld18YkT07yrCRf6+5buvu+JJdktvFjuvvKHiT5UmabOM7ntCSfGGqcMdeE7r4pyT1JDlxK+O5+YMj0+O3NMqErk7xwOF+f5OJJFlXVEUn2TfLmYd2o/zfJ96vqeUvIBQAAAAAAAAAAAAAAAAAAAAAAAAA7lKaSu6CqWp3kBUmuz2xTxm+M3N6SsUaNVbVnkpcn+dQCpbc2Xbw4D22kuLXWsUlu6u7vLFDr9KqaGTn2GavziCQnzJNpwSwTuiTJGcN+xyS5esKcZwxrNyZ5WlU9Zmzd2zPbcHKbqupVVXVtVV37FxdfsoRHAAAAAAAAAAAAAAAAAAAAAAAAAIDFW73cAfgZ+1TVzHC+MckHkrxognXvS/K57t64rQlD08SnJPl8d3dV/bSqjuruTcOUc6rqrCRPTXLqBHte2t1nj+2RJEcMz3B4kk9293XbkWVi3X1dVa3NbGPKKyfJOVif5CXd/WBV/XWSlyZ5z0jdz1VVqurfz7P3hUkuTJI7b7mpF5sdAAAAAAAAAAAAAAAAAAAAAAAAAJZi1XIH4Gfc293rhuM13X1fktuSPHFkzhOGsSRJVb01ySFJXr9A7ZclOTDJ16tqc5K1mW2suNX53f2MJL+W5ANV9YjtfIabu3tdkiOSHFdVczXFXCjLYn08yTuTXDzJ5Ko6OrNNLf/7sP8Z29j/7UnevIRcAAAAAAAAAAAAAAAAAAAAAAAAALDDaCq567smyVOq6vCq2iuzDRA/niRV9cokz0+yvrsfXKDO+iSndPfa7l6b5Lih1s/o7o8nuTbJby0ldHffkeSNSf5ge7MswgeTvK27r59w/vok527dv7sPTXJoVR02Oqm7/y6zzS+PWUI2AAAAAAAAAAAAAAAAAAAAAAAAANghNJXcxXX3/UnOTvLpJDcmuay7vzrcfn+SxyT5QlXNVNVb5qpRVWuTHJbkiyN1v57k+1V1whxL/jjJ66tqvq+P04c9tx7PnmPO5UnWVNWJi8zy5qrasvWYJ8PW9Vu6+4JF5DwjyUfH5n00cze2fHuSJy6UAQAAAAAAAAAAAAAAAAAAAAAAAAB2ttXLHYD/X3fvu43xK5NcOcf4RL9+3b05yePnGD92OL16bPzLSZ42cr127P6GJBu2sd1RI/M6yb8buXfV8N+Fspy7jdrjax7yvrr7qq37zJPzSXOse/0cOdPdH09Sk+QBAAAAAAAAAAAAAAAAAAAAAAAAgJ1p1XIHAAAAAAAAAAAAAAAAAAAAAAAAAABg8VYvdwCmq6rOSvLaseF/6O5XL0eepaqqRyX5zBy3fqm779zZeQAAAAAAAAAAAAAAAAAAAAAAAABgV6Gp5MNMd1+U5KLlzjEtQ+PIdcudAwAAAAAAAAAAAAAAAAAAAAAAAAB2NauWOwAAAAAAAAAAAAAAAAAAAAAAAAAAAIunqSQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwAq0erkDAAAAAAAAAAAAAAAAAAAAAAAAAEzTqtRyRwDYKVYtdwAAAAAAAAAAAAAAAAAAAAAAAAAAABZPU8kVqKoeqKqZqtpUVX9VVWuG8VOq6p+q6mtV9caR+R8ZxjdV1Qeras8J9ri8qr44NnZuVd027H1DVa2vqrOG65mquq+qrh/O31FVZ1bV7SP3Z6rqyKpaW1X3jtT50NZMVXVSVV0xYZY3TPi+uqo+PHK9esh1xXB9ZlW9Z6TuPVX16JH5P5pkHwAAAAAAAAAAAAAAAAAAAAAAAADYmTSVXJnu7e513X1UkvuS/G5V7ZHkvUlekOTIJOur6shh/keSPD3J0Un2SfLK+YpX1QFJjkuyf1U9aez2+d29LsmvJvnzJB8esqxL8s0kJw/XW5taXrr1/nDcMIzfPKw5OskTkrxsO7JM6u4kR1XVPsP185LcNs/8O5L8r9u5FwAAAAAAAAAAAAAAAAAAAAAAAADsFJpKrnwbkzw5ybOSfK27b+nu+5JcktnGj+nuK3uQ5EuZbeI4n9OSfGKoccZcE7r7piT3JDlwKeG7+4Eh0+O3N8uErkzywuF8fZKL55n7wSSnV9VBS9gPAAAAAAAAAAAAAAAAAAAAAAAAAHYoTSVXsKpaneQFSa7PbFPGb4zc3pKxRo1VtWeSlyf51AKltzZdvHg4n2vvY5Pc1N3fWaDW6VU1M3LsM1bnEUlOmCfTglkmdEmSM4b9jkly9Txzf5TZxpKvna9gVb2qqq6tqmv/4uJLlhANAAAAAAAAAAAAAAAAAAAAAAAAABZv9XIHYLvsU1Uzw/nGJB9I8qIJ1r0vyee6e+O2JlTVY5I8Jcnnu7ur6qdVdVR3bxqmnFNVZyV5apJTJ9jz0u4+e2yPJDlieIbDk3yyu6/bjiwT6+7rqmptZhtTXjnBkguSzFTVO+epeWGSC5Pkzltu6sVmAgAAAAAAAAAAAAAAAAAAAAAAAIClWLXcAdgu93b3uuF4TXffl+S2JE8cmfOEYSxJUlVvTXJIktcvUPtlSQ5M8vWq2pxkbWYbMW51fnc/I8mvJflAVT1iO5/h5u5el+SIJMdV1VxNMRfKslgfT/LOJBcvNLG7v5fkL5O8egn7AQAAAAAAAAAAAAAAAAAAAAAAAMAOo6nkw8c1SZ5SVYdX1V5JzshsE8VU1SuTPD/J+u5+cIE665Oc0t1ru3ttkuOGWj+juz+e5Nokv7WU0N19R5I3JvmD7c2yCB9M8rbuvn7C+X+W5D8kWb2EPQEAAAAAAAAAAAAAAAAAAAAAAABgh9BU8mGiu+9PcnaSTye5Mcll3f3V4fb7kzwmyReqaqaq3jJXjapam+SwJF8cqfv1JN+vqhPmWPLHSV5fVfN9HZ0+7Ln1ePYccy5PsqaqTlxkljdX1ZatxzwZtq7f0t0XLDRvZP4dST6aZO9J1wAAAAAAAAAAAAAAAMD/x97dB2tal3eC/15NNwECgrz4EiBpDYwMgtMrFFoprUGNAeIaiRrp1kBgh0Vr1VgYs4XKaGsWd7Y0wUmpUbJKq9MFYoLKOEQtoyyta8CeVBtaDPIiiyCDggFUCC/ttX+c+yQPj+e1eejTh/58qu7q+3f9fvf1u+77Oefp0+fUuRoAAAAAAABgR1m51AWweN299yzxy5NcPkN8Qa9zd9+c5OAZ4s8eTq8ai//3JM8YGa8em9+QZMMs2x01sq6T/LuRuSuGP+erZf0sucev+YXn1d1XTO8zWmd3rx9b9+Ykb17IPgAAAAAAAAAAAAAAAAAAAAAAAACwI61Y6gIAAAAAAAAAAAAAAAAAAAAAAAAAAFi8lUtdAEujqs5I8qax8Ne7+/VLUc+jVVUHJPnbGaZe1N137eh6AAAAAAAAAAAAAAAAAAAAAAAAAOCxpqnkLqq7L0xy4VLXMSlD48g1S10HAAAAAAAAAAAAAAAAAAAAAAAAAOwoK5a6AAAAAAAAAAAAAAAAAAAAAAAAAAAAFk9TSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZWjlUhfAwlTVtiTXZOo1+06SP+ju+6rqxCT/OcluSf7v7v5Pw/qNSY5N8lCSq5O8trsfmmePzyZ5Snc/dyS2Psn/muRHSXZP8idJ9kjypmHJkUmuS7ItyReS/GOS9ya5bST1q5PcN9R93ZBnc5L/0N0PVdXxSd7S3f/zAmr5aXe/bwHPq5Ns7O7fH8Yrk9ye5KoF7PPnSe7s7ncP47cn+ZXufv18+wIAAAAAAAAAAAAAAAAAAAAAALD0qmqpSwDYIVYsdQEs2P3dvaa7j0ryYJLXVdVuST6Y5KRMNXdcV1VHDus3JjkiydFJ9kxy5lzJq2q/JMck2beqnj42fX53r0nysiQfSfJfhlrWJPlBkhcM43OG9Z+anh+Oa4f4jcM1Ryc5JMmrtqOWhfpZkqOqas9h/OI8stHlXPucm+T0qnr6ED8zydu3sw4AAAAAAAAAAAAAAAAAAAAAAAAAeExoKrk8bUpyWJLjktzQ3Td194NJLs5U48d09+U9SHJ1ppo4zuXlSf7rkGPtTAu6+/ok9yV54qMpvru3DTUdvL21LNDlSV4ynK9LctFC9unuezPVRPIDw/GO7r57PHlVnVVVm6tq88cvuvhRlAkAAAAAAAAAAAAAAAAAAAAAAAAAi6ep5DJTVSuTnJTkmkw1Zfz+yPStGWvUWFWrkpya5AvzpJ5uunjRcD7T3s9Ocn13/3CeXKdU1ZaRY8+xPHskec4cNc1bywJdnGTtsN+zkly10H26+6JMNc98Qnd/cqbk3X1Bdx/b3cf+wbpH0/sSAAAAAAAAAAAAAAAAAAAAAAAAABZPU8nlY8+q2pJkc5Jbknx0gdd9KMmV3b1ptgVV9eQkhyf5Wnd/N8lDVXXUyJKzq+rbmWrKeN4C9vxUd68ZOe4f4r8+3MMdSW7v7n/YjloWbMi/OlMNIy9fzD5VdUiSpyb5larae3v2BwAAAAAAAAAAAAAAAAAAAAAAAIDHkqaSy8f9I00a39jdDya5LcmhI2sOGWJJkqp6Z5KDkrx5ntyvSvLEJN+rqpvzr40Yp53f3c9M8ookH62qPbbzHm7s7jVJfj3JMVX1O9tRy2JdluR9SS5a5D7/Ock7k1wy/AkAAAAAAAAAAAAAAAAAAAAAAAAAOxVNJZe3byY5vKqeVlW7J1mbqSaKqaozk5yQZF13/3yePOuSnNjdq7t7dZJjhlyP0N2XJdmc5A8eTdHdfWeSc5K8dXtrWYSPJXlXd1+z0H2q6qQkT0ryiSR/kuTlVXXko6gBAAAAAAAAAAAAAAAAAAAAAAAAACZOU8llrLsfTvKGJF9M8p0kl3T3t4fpDyd5cpJvVNWWqnrHTDmqanWSX0vydyN5v5fknqp6zgyXvDvJm6tqro+dU4Y9p4/fmGHNZ5PsVVXPX2Qt51bVrdPHHDVMX39rd//5aGyeff59kvcn+d96ys+S/HGSD8y3FwAAAAAAAAAAAAAAAAAAAAAAAADsSCuXugAWprv3niV+eZLLZ4gv6LXt7puTHDxD/NnD6VVj8f+e5Bkj49Vj8xuSbJhlu6NG1nWSfzcyd8Xw53y1rJ8l9/g1v/C8uvuKBe7zjLH4pUkuXci+AAAAAAAAAAAAAAAAAAAAAAAAALCjrFjqAgAAAAAAAAAAAAAAAAAAAAAAAAAAWLyVS10AO05VnZHkTWPhr3f365einkerqg5I8rczTL2ou+/a0fUAAAAAAAAAAAAAAAAAAAAAAAAAwI6kqeQupLsvTHLhUtcxKUPjyDVLXQcAAAAAAAAAAAAAAAAAAAAAAAAALIXq7qWuAR4PfCIBAAAAAAAAAAAAAAAAAAAAAGyfWuoCgMef2370Y72hgO1y8EH7L6uvTVYsdQEAAAAAAAAAAAAAAAAAAAAAAAAAACyeppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppLLRFVtq6otVbW1qj5dVXsN8ROr6rqquqGqzhlZv3GIb62qj1XVqgXs8dmq+rux2Pqqum3Y+9qqWldVZwzjLVX1YFVdM5z/p6o6vap+NDK/paqOrKrVVXX/SJ5PTNdUVcdX1ecXWMtbFvm8vl1V36qqP6qqFeP7zVDvJ4b4hqr63kj8DxeyLwAAAAAAAAAAAAAAAAAAAAAAAADsKJpKLh/3d/ea7j4qyYNJXldVuyX5YJKTkhyZZF1VHTms35jkiCRHJ9kzyZlzJa+q/ZIck2Tfqnr62PT53b0mycuSfCTJfxlqWZPkB0leMIynm1p+anp+OK4d4jcO1xyd5JAkr9qOWhZq+nk9M8mLM/WM3jnL2tF6TxuJ//FI/M+3sw4AAAAAAAAAAAAAAAAAAAAAAAAAeEysXOoC2C6bkjwryXFJbujum5Kkqi7OVOPHa7v78unFVXV1ppo4zuXlSf5rkjuSrE3ynvEF3X19Vd2X5IlJfri9xXf3tqGmg7e3lkXu98OqOivJN6tq/aPJNWrIeVaSfOQjH8lZZ501qdQAAAAAAAAAAAAAAAAAAAAAAAA8CitqqSsA2DFWLHUBLE5VrUxyUpJrMtWU8fsj07dmrFFjVa1KcmqSL8yTel2Si4Zj3Sx7PzvJ9d09X0PJU6pqy8ix51iePZI8Z46a5q1lsYbGm7sledI89Z4xEn/vSPzoGXJe0N3HdvexGkoCAAAAAAAAAAAAAAAAAAAAAAAAsKOtXOoCWLA9q2rLcL4pyUeT/M4CrvtQkiu7e9NsC6rqyUkOT/K17u6qeqiqjururcOSs4dmi/8myUsXsOenuvsNY3skya8P9/C0JP+tu/9hO2p5LPxCvYM/7u6/egz3BQAAAAAAAAAAAAAAAAAAAAAAAIDttmKpC2DB7u/uNcPxxu5+MMltSQ4dWXPIEEuSVNU7kxyU5M3z5H5Vkicm+V5V3ZxkdZJ1I/Pnd/czk7wiyUerao/tvIcbu3tNkl9PckxVzdQUc75atktVPT3JtiQ/fLS5AAAAAAAAAAAAAAAAAAAAAAAAAGBnoKnk8vbNJIdX1dOqavcka5NcliRVdWaSE5Ks6+6fz5NnXZITu3t1d69OcsyQ6xG6+7Ikm5P8waMpurvvTHJOkrduby2LUVUHJflwkg90dz+aXAAAAAAAAAAAAAAAAAAAAAAAAACws9BUchnr7oeTvCHJF5N8J8kl3f3tYfrDSZ6c5BtVtaWq3jFTjqpaneTXkvzdSN7vJbmnqp4zwyXvTvLmqprrY+eUYc/p4zdmWPPZJHtV1fMXWcu5VXXr9DFHDXsOe387yZeTfCnJu+ZYDwAAAAAAAAAAAAAAAAAAAAAAAADLSnX3UtcAjwc+kQAAAAAAAAAAAAAAAAAAAAAAtk8tdQHA48/td/5Ybyhguzz1wP2X1dcmK5a6AAAAAAAAAAAAAAAAAAAAAAAAAAAAFm/lUhfAjlNVZyR501j46939+qWo59GqqgOS/O0MUy/q7rt2dD0AAAAAAAAAAAAAAAAAAAAAAAAAsCNVdy91DbDs3Xn3PRP5RPrRvT+bRJokyX577TGxXL+8YnLvE9tW7j6xXLs99MDEcvXDD08kz4O77zmRPEnyswcenFiuA/b6pYnlYnH2ecITJpLn7v/xg4nk2VXs95RfmUie675/+0Ty7EqecehTH3WOu2+/bQKV7Fr2e+rBE8lz103XTyTPruKApx8+kTz/dO9PJpJnV/HEJ+wzkTw/uffeieTZVUzqa5q7bvjHieTZVRxw2BETyXPvj/2/C4v1hP0PmEgez35xPPelMannfseP755Inl3Fk/ffbyJ57rnjf0wkz65i3yc/ZSJ5vM8s3iTea3y8L96kPuZ9v2BxJvX9glt+eOdE8uwqfvVJB04kj/eaxZnU+8xNt/9wInl2FU9/6pMmkuf2O388kTy7kqceuP+jznH8+g9MoJJdyxXr3zCRPL4XvziT+l78rf/PFyaSZ1dxyL8/cSJ5/AxkcSb1MxBfSy7eJL6e/Nq1N0ygkl3L8448bCJ5/N26OBP7Ofc9vhe/GPvsO5nvxd/2I/9+WoyDD3r0/3ZKktddcMlE8uwqPnzWqyaSx89AFm8SPwPxfZrFm8T3aRLv8Ys1qfd4H/OLM6mPd899cSb13O/5iX87Lca++zy+/+30/bsn93uDT9p374nlPSXt5QAAIABJREFUmqQHHto2kTx777FqInmSZMXPJ1NTktz8Tz+dWK5D9t93Yrm2/fznE8v10MOTeV57/dIEX8MJ/g78D+7ZOT8PJ/ka/vSfJ/M7qfuvqonkSZJaNbnfKf7+P03u79Yn/vLkfhd41crdJpZrUu+l+9Rkfmc6SfqXJvesHto2uY/3ST2rZLJ/9+S+ybzX1MqVE8mTJNtW7Zy/Y/7PDz40sVyT/LtnUq/hJK3YY3J9Iybpvsl9Gmb3Cb6X1s8m8zPzh/aY3N/3K3dbMbFcuz08uR4Udz4wuRfxwN0nd49POODAyX0xAjC4/c4fa7IGbJenHrj/svraZHJflQEAAAAwMZpwAgAAAAAAAAAAALCzm2RjLwAAAAAAto+mkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkkukqrZV1Zaq2lpVn66qvYb4iVV1XVXdUFXnjKzfOMS3VtXHqmrVLHlXV9WtVbViLL6lqp5TVeur6rZhPH3sV1XHV1VX1UtHrvl8VR0/nO9eVe8f6rq+qj5XVYeM7Ll1bL/1VfWW4fy5VXXVsNd3qmr9HM/l9KGO3xyJnTzEXjmMrxiexXT9fzWy5/S9XV9Vl1bVkSN5rqiqY0fGa4a8J47V0FX1pyPjt8xVMwAAAAAAAAAAAAAAAAAAAAAAAAAsBU0ll8793b2mu49K8mCS11XVbkk+mOSkJEcmWTfSFHFjkiOSHJ1kzyRnzpS0u29OckuS50/HquqIJPt091VD6Pxh7+nj7iF+a5K3z1Lve5Lsk+QZ3X14ks8mubSqagH3+vEkZ3X3miRHJblknvXXJFk7Ml6X5Ftja14zUv8rR+LT93Z4kk8l+UpVHTTLPuuSfG34c9QDSV5eVQfOUycAAAAAAAAAAAAAAAAAAAAAAAAALBlNJXcOm5IcluS4JDd0903d/WCSi5O8LEm6+/IeJLk6ySFz5Lsoj2zKuHbINZ9vJbmnql48GqyqvZKckeTs7t421HNhppovvnABeZ+U5Pbhum3dfe086zclOa6qVlXV3pl6NlsWsM8jdPenknwpyavH54ZmmL+X5PQkL66qPUamH05yQZKzF7snAAAAAAAAAAAAAAAAAAAAAAAAAOwomkousapameSkJNckOTjJ90embx1io+tXJTk1yRfmSHtJkpOH3ElySqYaTU47u6q2DMdXx649L8m5Y7HDktzS3feOxTcneeYcdUw7P8l1VfWZqnrtWAPHmXSSLyc5IVNNNS+bYc3GkXt47xy5/j7JETPEfyPJ97r7xiRXJHnJ2PwHk7ymqvadLXFVnVVVm6tq8yc2bJijBAAAAAAAAAAAAAAAAAAAAAAAAACYvJXzL+ExsmdVbRnONyX5aJLfWcB1H0pyZXdvmm1Bd99RVVuTvKiq7kjycHdvHVlyfne/b5Zrr6yqVNXzFnYbU5fNFe/ud1fVxiS/leTVSdYlOX6enBcn+cMk+yb5oyRvG5t/TXdvXkBtNUt83bDH9F6nJfnrfym8+96q+sRQw/0zJejuC5JckCR33n3PbM8AAAAAAAAAAAAAAAAAAAAAAAAAAB4Tmkounfu7e81ooKpuS3LoSOiQJLeNzL8zyUFJXruA/BclWZvkjuF8Mc5Lcm6Sh4fxjUl+tar26e6fjKw7Jsnnk9yV5IljOfZP8r3pQXffmOQvquovk/yoqg7o7rtmK6C7r66qo5Pc193frZqtN+S8/qckj2g+WVW7JXlFkpdV1dsz1XjygBnu7/1J/j7Jhdu7OQAAAAAAAAAAAAAAAAAAAAAAAAA8VlYsdQE8wjeTHF5VT6uq3TPVFPKyJKmqM5OckGRdd/98AbkuTfLbSU5JcvFiiujuL2WqSeSzhvHPknw8yZ8NDRlTVacl2SvJV7r7p0lur6oXDnP7JzkxydeG8UvqX7tCHp5kW5K7F1DKOUnetpjaR1XVK5L8Vn6xqeaLkvxDdx/a3au7+9eS/HWS3x1d1N0/TnJJkv+wvTUAAAAAAAAAAAAAAAAAAAAAAAAAwGNFU8mdSHc/nOQNSb6Y5DtJLunubw/TH07y5CTfqKotVfWOeXLdneQbSe7o7pvGps8eckwfq2dIcV6SQ0fGb03yz0m+W1XXJ/m9JL/b3T3Mn5bkP1bVliRfSfKu7r5xmDs1yXXD3CeTvKa7t835MKbu4W+6+6uzTG8cqf/LM9zb9Ul+P8kLu/tHY9euS/KZsdhfD/Fxf5rkwPlqBQAAAAAAAAAAAAAAAAAAAAAAAIAdbeVSF7Cr6u69Z4lfnuTyGeKLfq26++QZYuuTrJ9h+c1JrhhZd1mSGhk/kOSNwzHTXtcmecEsc2sXUfOGJBtmiJ8+cn78LNeuz8z3Nn7dGTPMXZbksuF875H4HUn2mq9uAAAAAAAAAAAAAAAAAAAAAAAAANjRVix1AQAAAAAAAAAAAAAAAAAAAAAAAAAALN7KpS6A7VdVZyR501j46939+qWoZzGWc+0AAAAAAAAAAAAAAAAAAAAAAAAAsDPQVHIZ6+4Lk1y41HVsj+VcOwAAAAAAAAAAAAAAAAAAAAAAAADsDFYsdQEAAAAAAAAAAAAAAAAAAAAAAAAAACyeppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppIAAAAAAAAAAAAAAAAAAAAAAAAAAMuQppI7uaraVlVbqmprVX26qvYa4idW1XVVdUNVnTOyfuMQ31pVH6uqVbPkXV1Vt1bVirH4lqp6TlWtr6rbhvH0sV9VHV9VXVUvHbnm81V1/HC+e1W9f6jr+qr6XFUdMrLn1rH91lfVW4bz51bVVcNe36mq9XM8l9OHOn5zJHbyEHvlML5ieBbT9f/VDPd68Vhsw3DfvzSMD6yqm2erAwAAAAAAAAAAAAAAAAAAAAAAAACWiqaSO7/7u3tNdx+V5MEkr6uq3ZJ8MMlJSY5Msq6qjhzWb0xyRJKjk+yZ5MyZknb3zUluSfL86VhVHZFkn+6+agidP+w9fdw9xG9N8vZZ6n1Pkn2SPKO7D0/y2SSXVlUt4F4/nuSs7l6T5Kgkl8yz/poka0fG65J8a2zNa0bqf+V0sKr+bZLdkjy/qn557JptSf6XBdQLAAAAAAAAAAAAAAAAAAAAAAAAAEtGU8nlZVOSw5Icl+SG7r6pux9McnGSlyVJd1/egyRXJzlkjnwX5ZFNGdcOuebzrST3VNWLR4NVtVeSM5Kc3d3bhnouTPJAkhcuIO+Tktw+XLetu6+dZ/2mJMdV1aqq2jtTz2bLAvZJphpQfjLJlzI8uxHvT3J2Va1cYC4AAAAAAAAAAAAAAAAAAAAAAAAA2OE0lVwmhgaHJyW5JsnBSb4/Mn3rEBtdvyrJqUm+MEfaS5KcPNI88ZRMNZqcdnZVbRmOr45de16Sc8dihyW5pbvvHYtvTvLMOeqYdn6S66rqM1X12qraY571neTLSU7IVGPIy2ZYs3HkHt47Ej8lUw00L8pUg8lRtyT5Wqae36yq6qyq2lxVmz+xYcM8pQIAAAAAAAAAAAAAAAAAAAAAAADAZK2cfwlLbM+q2jKcb0ry0SS/s4DrPpTkyu7eNNuC7r6jqrYmeVFV3ZHk4e7eOrLk/O5+3yzXXllVqarnLew2pi6bK97d766qjUl+K8mrM9Xs8fh5cl6c5A+T7Jvkj5K8bWz+Nd29eTRQVccmubO7b6mq25J8rKr27+4fjyz7P5N8Lsl/m/Vmui9IckGS3Hn3PbPdGwAAAAAAAAAAAAAAAAAAAAAAAAA8JjSV3Pnd391rRgNDI8RDR0KHJLltZP6dSQ5K8toF5L8oydokdwzni3FeknOTPDyMb0zyq1W1T3f/ZGTdMUk+n+SuJE8cy7F/ku9ND7r7xiR/UVV/meRHVXVAd981WwHdfXVVHZ3kvu7+blUtpO51SY6oqpuH8ROSvCLJX47kvX5o5vmqhSQEAAAAAAAAAAAAAAAAAAAAAAAAgB1txVIXwHb5ZpLDq+ppVbV7pppCXpYkVXVmkhOSrOvuny8g16VJfjvJKUkuXkwR3f2lTDWJfNYw/lmSjyf5s6rabajntCR7JflKd/80ye1V9cJhbv8kJyb52jB+Sf1rV8jDk2xLcvcCSjknydsWUnNVrchUo8iju3t1d69O8rJMNZocd16StywkLwAAAAAAAAAAAAAAAAAAAAAAAADsaCuXugAWr7sfrqo3JPlikt2SfKy7vz1MfzjJ/5fkG0N/xku7+91z5Lq7qr6R5CndfdPY9NlV9fsj45NnSHFeks+NjN+a5H1JvltVP0/yj0l+t7t7mD8tyQer6s+G8bu6+8bh/NQk51fVfUkeTvKa7t42W+0j9/A3c0xvrKr7h/M7k/xJktu6+wcja65McmRVPXUs77er6u+TPHu+GgAAAAAAAAAAAAAAAAAAAAAAAABgR9NUcifX3XvPEr88yeUzxBf9mnb3LzSL7O71SdbPsPzmJFeMrLssSY2MH0jyxuGYaa9rk7xglrm1i6h5Q5INM8RPHzk/fpbLnzt2zbYkTxmGp4/NvXyhNQEAAAAAAAAAAAAAAAAAAAAAALBzWLFixVKXALBDeLcDAAAAAAAAAAAAAAAAAAAAAAAAAFiGVi51ATz2quqMJG8aC3+9u1+/FPUsxnKuHQAAAAAAAAAAAAAAAAAAAAAAAAAeS5pK7gK6+8IkFy51HdtjOdcOAAAAAAAAAAAAAAAAAAAAAAAAAI+lFUtdAAAAAAAAAAAAAAAAAAAAAAAAAAAAi6epJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSp5ONEVW2rqi1VtbWqPl1Vew3xE6vquqq6oarOGVm/cYhvraqPVdWqWfKurqpbq2rFWHxLVT2nqtZX1W3DePrYr6qOr6quqpeOXPP5qjp+ON+9qt4/1HV9VX2uqg4Z2XPr2H7rq+otw/lzq+qqYa/vVNX6OZ7L6UMdvzkSO3mIvXIYX1FVxw7nN1fVX4+sfWVVbZjn8QMAAAAAAAAAAAAAAAAAAAAAAADADqep5OPH/d29pruPSvJgktdV1W5JPpjkpCRHJllXVUcO6zcmOSLJ0Un2THLmTEm7++YktyR5/nSsqo5Isk93XzWEzh/2nj7uHuK3Jnn7LPW+J8k+SZ7R3Ycn+WySS6uqFnCvH09yVnevSXJUkkvmWX9NkrUj43VJvjXH+mNGnhMAAAAAAAAAAAAAAAAAAAAAAAAA7JQ0lXx82pTksCTHJbmhu2/q7geTXJzkZUnS3Zf3IMnVSQ6ZI99FeWRTxrVDrvl8K8k9VfXi0WBV7ZXkjCRnd/e2oZ4LkzyQ5IULyPukJLcP123r7mvnWb8pyXFVtaqq9s7Us9kyx/o/zezNMAEAAAAAAAAAAAAAAAAAAAAAAABgp6Cp5ONMVa1MclKSa5IcnOT7I9O3DrHR9auSnJrkC3OkvSTJyUPuJDklU40mp51dVVuG46tj156X5Nyx2GFJbunue8fim5M8c446pp2f5Lqq+kxVvbaq9phnfSf5cpITMtVU87J51l+S5NlVddhci6rqrKraXFWbP7FhwwLKBgAAAAAAAAAAAAAAAAAAAAAAAIDJ0VTy8WPPqtqSqcaMtyT56AKv+1CSK7t702wLuvuOJFuTvKiq1iR5uLu3jiw5v7vXDMcLxq69Mkmq6nmLuJeeK97d705ybJIvJXl15m6IOe3iJGuH46J51m5L8t4kb52zyO4LuvvY7j72tNNPX0AJAAAAAAAAAAAAAAAAAAAAAAAAADA5K5e6ACbm/u5eMxqoqtuSHDoSOiTJbSPz70xyUJLXLiD/RZlqyHhH5m/KOO68JOcmeXgY35jkV6tqn+7+yci6Y5J8PsldSZ44lmP/JN+bHnT3jUn+oqr+MsmPquqA7r5rtgK6++qqOjrJfd393aqar+ZPZqqp5Nb5FgIAAAAAAAAAAAAAAAAAAAAAAADAUlix1AXwmPpmksOr6mlVtXummkJeliRVdWaSE5Ks6+6fLyDXpUl+O8kpSS5eTBHd/aVMNYl81jD+WZKPJ/mzqtptqOe0JHsl+Up3/zTJ7VX1wmFu/yQnJvnaMH5J/WtXyMOTbEty9wJKOSfJ2xZY80NJzk9y9kLWAwAAAAAAAAAAAAAAAAAAAAAAAMCOpqnk41h3P5zkDUm+mOQ7SS7p7m8P0x9O8uQk36iqLVX1jnly3Z3kG0nu6O6bxqbPHnJMH6tnSHFekkNHxm9N8s9JvltV1yf5vSS/2909zJ+W5D9W1ZYkX0nyru6+cZg7Ncl1w9wnk7ymu7fN+TCm7uFvuvur860b8dEkKxexHgAAAAAAAAAAAAAAAAAAAAAAAAB2GA3zHie6e+9Z4pcnuXyG+KJf++4+eYbY+iTrZ1h+c5IrRtZdlqRGxg8keeNwzLTXtUleMMvc2kXUvCHJhhnip4+cHz9yvnqsxl9Z6F4AAAAAAAAAAAAAAAAAAAAAAAAAsCOtWOoCAAAAAAAAAAAAAAAAAAAAAAAAAABYvJVLXQA7j6o6I8mbxsJf7+7XL0U9i7GcawcAAAAAAAAAAAAAAAAAAAAAAGCyVlQtdQkAO4SmkvyL7r4wyYVLXcf2WM61AwAAAAAAAAAAAAAAAAAAAAAAAMD2WLHUBQAAAAAAAAAAAAAAAAAAAAAAAAAAsHiaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSi5jVbWtqrZU1daq+nRV7TXET6yq66rqhqo6Z2T9xiG+tao+VlWrZsm7uqpuraoVY/EtVfWcqlpfVbcN4+ljv6o6vqq6ql46cs3nq+r44Xz3qnr/UNf1VfW5qjpkZM+tY/utr6q3DOfPraqrhr2+U1Xr53gupw91/OZI7OQh9sqR2IFV9VBVvW4ktk9V3VhVhw/jVVV1TVU9Z67XAgAAAAAAAAAAAAAAAAAAAAAAAAB2NE0ll7f7u3tNdx+V5MEkr6uq3ZJ8MMlJSY5Msq6qjhzWb0xyRJKjk+yZ5MyZknb3zUluSfL86VhVHZFkn+6+agidP+w9fdw9xG9N8vZZ6n1Pkn2SPKO7D0/y2SSXVlUt4F4/nuSs7l6T5Kgkl8yz/poka0fG65J8a2zN7yX5u2EuSdLdP0ny1iQfGEJvSfL/jtw3AAAAAAAAAAAAAAAAAAAAAAAAAOwUNJV8/NiU5LAkxyW5obtv6u4Hk1yc5GVJ0t2X9yDJ1UkOmSPfRXlkU8a1Q675fCvJPVX14tFgVe2V5IwkZ3f3tqGeC5M8kOSFC8j7pCS3D9dt6+5r51m/KclxVbWqqvbO1LPZMrZmXZI/SnJwVf3Ls+juS4aa//ckr8tUk0kAAAAAAAAAAAAAAAAAAAAAAAAA2KloKvk4UFUrk5yU5JokByf5/sj0rUNsdP2qJKcm+cIcaS9JcvKQO0lOyVSjyWlnV9WW4fjq2LXnJTl3LHZYklu6+96x+OYkz5yjjmnnJ7muqj5TVa+tqj3mWd9JvpzkhEw11bxsdLKqDk3y1O6+OlP3esrY9W9K8n8l+T+6+8czbVBVZ1XV5qra/IkNGxZwCwAAAAAAAAAAAAAAAAAAAAAAAAAwOZpKLm97VtWWTDVmvCXJRxd43YeSXNndm2Zb0N13JNma5EVVtSbJw929dWTJ+d29ZjheMHbtlUlSVc9bxL30XPHufneSY5N8KcmrM3dDzGkXJ1k7HBeNzZ2SqWaS0+vWjc2fmOT2JEfNWnD3Bd19bHcfe9rppy+gHAAAAAAAAAAAAAAAAOD/Z+fugzQvyzvRf69hBEHl3YgB3bEiBhF0KCk1a8hifAGihriRl9m8QE48xFNRVzYxxsVdJwrRRAyshRHJkUBZCeNbNG50fakIYZKiEoE0qxNRRDjIED0iLxoZGRiu88f8JnnOQ/f00z0P09PM51P1q3ru675/9/39PdM93fTQFwAAAAAAADA9K5c6ADtkU3evHi1U1cYkTxkpHZZk48j825I8MclvTLD/FdnakPE7eXhTxvmcl+StSR4cxjcneWpVPaG7fzCy7rlJ/irJ95IcMLbHgUlu2Tbo7puTvL+q/iTJd6vqoO7+3lwBuvsfquroJPd199eranR6TZJDquqXhvGPV9Xh3X1TVf14kjckeV6SK6vqg939vxf2+AAAAAAAAAAAAAAAAAAAAAAAAADwyFqx1AGYui8lObyqnlZVe2ZrU8hPJUlVvSbJCUnWdPdDE+z1F0l+LslpSdYtJER3fz5bm0Q+exj/MMnlSf6oqvYY8vxqkn2SfLG7/yXJP1fVzw5zByY5McnfDuOX1791hTw8yZYk90wQ5XeT/NfRQlU9I8nju/vQ7l7V3auSvDNbG00myQVJfr+7b0/yX5K8r8Y6UgIAAAAAAAAAAAAAAAAAAAAAAADAUtNU8lGmux9M8rokn0vy1SQf6e4Nw/TFSZ6U5Jqqmqmq/z7PXvckuSbJd7r7m2PTZw97bLtWzbLFeUmeMjJ+S5IfJfl6Vd2U5JQkr+ruHuZ/Ncl/q6qZJF9M8nvdffMw9ytJvjbMfSjJL3X3lu2+GVuf4X9195Vj5TVJPjFW+3iSNVX10iRPTfLB4f7/meTuIRsAAAAAAAAAAAAAAAAAAAAAAAAA7DJWLnUAFq+7Hz9H/TNJPjNLfcF/3t39C7PU1iZZO8vyW5NcNbLuU0lqZHx/ktcP12xn/VOSF80xd/oCMl+W5LJZ6mcOLz82y9z/TvLMYfiFsbmfn/RsAAAAAAAAAAAAAAAAAAAAAAAAANhZVix1AAAAAAAAAAAAAAAAAAAAAAAAAAAAFm7lUgdgaVXVryX5z2Plv+vu31yKPAuxnLMDAAAAAAAAAAAAAAAAAAAAAAAAwI7SVHI3191/muRPlzrHYizn7AAAAAAAAAAAAAAAAAAAAAAAAACwo1YsdQDg3zxx38ctdQR20J6bNy11BIBlb/8nH7rUEQBgl3DQ049Y6ggAADts3wMPmso++z3pkKnsAwCwlK5a+7qljgAAuwT/nQ8APBpM699AnnzwgVPZBwBgKe31mD2WOgIAAADAnKpcLpdrcddyU9291Bng0cAnEgAAAAAAAAAAAAAAAAAAAADA4izD9k3Aru7Oe+7VGwpYlIP3329ZfW+yYqkDAAAAAAAAAAAAAAAAAAAAAAAAAACwcJpKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ5pKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ5pKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ5pKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ5pKLmNVtaWqZqrqK1X10araZ6ifWFVfq6pvVNXvjqz/s6H+laq6tKoeM8e+q6rq9qpaMVafqarnV9Xaqto4jLdd+1fV8VXVVfXKkXv+qqqOH17vWVUXDrluqqq/rKrDRs78yth5a6vqt4fXL6iqvx/O+mpVrd3O+3JmVX23qv5xOOdzVfXvR+Yvq6pXD6+vGt6Tbc+xrb6l/v/Pt2qSPxMAAAAAAAAAAAAAAAAAAAAAAAAA2Fk0lVzeNnX36u4+KsnmJK+tqj2SvC/JSUmOTLKmqo4c1v9ZkiOSHJ1k7ySvmW3T7r41yW1JjttWq6ojkjyhu/9+KF0wnL3tumeo357knDny/n6SJyT5ye4+PMknk/xFVdUEz3p5krO6e3WSo5J8ZJ71H+7uY4Zz3jWc88w51v7SyHN8bKhtGnu+WyfICAAAAAAAAAAAAAAAAAAAAAAAAAA7jaaSjx7rkzw9yfOSfKO7v9ndm5OsS3JyknT3Z3qQ5B+SHLad/a5IcvrI+PRhr/nckOTeqnrpaLGq9knya0nO7u4tQ54/TXJ/kp+dYN8fS/LPw31buvufJrgnw/ork1yS5KxJ75lEVZ1VVddW1bWXXHLJNLcGAAAAAAAAAAAAAAAAAAAAAAAAgHlpKvkoUFUrk5yU5MtJDk3yrZHp24fa6PrHJPmVJJ/dzrYfSfILw95Jclq2Nprc5uyqmhmuK8fuPS/JW8dqT09yW3d/f6x+bZJnbSfHNhck+VpVfaKqfqOqHjvBPaOuT3LEHHN/NvIsBw21vUdqn5jtpu6+pLuP7e5jzzprqv0qAQAAAAAAAAAAAAAAAAAAAAAAAGBeK+dfwi5s76qaGV6vT/LBJD8/wX1/nOTq7l4/14Lu/k5VfSXJi6vqO0ke7O6vjCy5oLvPn+Peq6sqVfXTkz3G1tu2V+/ut1fVnyV5WZL/lGRNkuMXsH9tZ+6Xuvvasdqm7l69gP0BAAAAAAAAAAAAAAAAAAAAAAAAYKfSVHJ5e1jjw6ramOQpI6XDkmwcmX9bkicm+Y0J9r8iyelJvjO8Xojzkrw1yYPD+OYkT62qJ3T3D0bWPTfJXyX5XpIDxvY4MMkt2wbdfXOS91fVnyT5blUd1N3fmzDPMUm+usBnAAAAAAAAAADFE3hJAAAgAElEQVQAAAAAAAAAAAAAAIBd1oqlDsDUfSnJ4VX1tKraM1ubQn4qSarqNUlOSLKmux+aYK+/SPJzSU5Lsm4hIbr789naJPLZw/iHSS5P8kdVtceQ51eT7JPki939L0n+uap+dpg7MMmJSf52GL+8qmrY/vAkW5LcM0mWqvoPSc5K8icLeQYAAAAAAAAAAAAAAAAAAAAAAAAA2JWtXOoATFd3P1hVr0vyuSR7JLm0uzcM0xcn+X+SXDP0Z/yL7n77dva6p6quSXJId39zbPrsqvrlkfEvzLLFeUn+cmT8liTnJ/l6VT2U5MYkr+ruHuZ/Ncn7quqPhvHvdffNw+tfSXJBVd2X5MEkv9TdW+bKnuS0qvrpbG1aeUuSX+zur25nPQAAAAAAAAAAAAAAAAAAAAAAAAAsK/Vv/fyAHeATCQAAAAAAAAAAAAAAAAAAAABgcWqpAwCPPnfec6/eUMCiHLz/fsvqe5MVSx0AAAAAAAAAAAAAAAAAAAAAAAAAAICFW7nUAVhaVfVrSf7zWPnvuvs3lyLPQizn7AAAAAAAAAAAAAAAAAAAAAAAAACwo6q7lzoDLHvf+8aNU/lEeuigJ09jmyTJyj1WTG2vB7c8NLW9pplr84NbprbXHitqKvs8MMVMu6p99nrMUkdYVvZ7whOmss83/vwDU9lnd/H0//QbU9nn7u//YCr77E4O2HfHP+a97ws3jfc9SX5w7z1T2Wd38YT99p/KPj7mF2ZaH+/e94WZ1vv+z3feNZV9dhdPPvjAqezz3X+6YSr77E6eeORzprLPvT/wd81CTOu/n3xPszDT+p7m+9+7cyr77C72Pejgqezja+vCTOtr68bvet8X6tAn7vh7/927751Ckt3LEw/Ybyr73Prt705ln93FqkOeOJV9vn/n/zuVfXYX+x78Y1PZx9fWhZnW19Z7v/Ptqeyzu9jvSYdMZZ8/+cLfTWWf3cn/+dIXTmUfP5tcmGn9bPL4tRdNZZ/dxVVrXzeVffy8YGGm9fMCPx9bmGn9fOzaN66Zyj67i2MvvGIq+/i6unDT+trq+/iFmdb38d73hZnW+37Vl782lX12F8cf/ZNT2ce/tS7MtP6t1c/HFm4aPyPz8b5wU/v/C77//anss7t4wr77TmUf7/vCTOt9v+efN05ln93F/k8+dCr7+O/WhdkV/1/Vx++5cmp73f2jzVPba98HN01tr378dH4+liT33vejqeyz18o9prJPkjz+MdP7Xca7739wanvtqn+Gd/9wOrn2fsz0Pnceu+f0fpfxh1P8PHxCPzC1vTbvuffU9npwy673+62PWzG9Pgb3PDi9vab5ebjH46bzNSxJ7u/p/K7zY6b4u9y574dT2+qhvR83tb322Dy9P8OHHpze3/FV03nvV+y9z1T2SZKHNt03vb38GU7sR4957FT2YeH2/OF0/s28HrPnVPZJkgf2mt7nTn3ntqntlUOeOrWt9nxoit8vH3jQdL4gAoy48557NVkDFuXg/fdbVt+bTPEnAgAAAABMi1/WAAAAAHh08QvEALCVJpwAAAAAjy7TaigJAAAAAMDiaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAMaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAMrVzqAAAAAAAAAAAAAAAAAAAAAAAAAADTtMeKFUsdAWCn8LcdAAAAAAAAAAAAAAAAAAAAAAAAAMAypKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKnkFFTVlqqaqaqvVNVHq2qfoX5IVa2rqpur6rqq+kxVPWOYO6OqbhquM4baPlX16aq6sao2VNW7Jjx/pqrWjdUuq6pbhrkbqurFVXXOMJ4ZyTxTVW+oqrVVtXGkNlNV+1fV8VV17zC+sarOHznjzKq6aMIsr57gOVZVVVfVuSO1g6vqgW3nTJDzH6vqa1V1dVW9YmSftVX12yPjlVX13fH3uKquqqprR8bHVtVV82UHAAAAAAAAAAAAAAAAAAAAAAAAgJ1NU8np2NTdq7v7qCSbk7y2qirJJ5Jc1d0/0d3PTfKWJE+qqgOTvC3J85M8L8nbquqAYa/zu/uIJMckeWFVnbS9g6vqmUn2SHJcVT1ubPpN3b06yRuTXNzd5w05V49kXt3d7x3WXzBSW93d9wz19cM9xyR5RVW9cBFZJnVLkpePjE9JsmFszfZyHtPdP5nkDUkuqqoXz3HOS5N8Pckpw5/VqB+b730HAAAAAAAAAAAAAAAAAAAAAAAAgKWmqeT0rU/y9CQvSvJAd1+8baK7b+ju9UlOSPKF7r6ru+9O8oUkJ3b3fd195bB2c5Lrkxw2z3lrknwoyeeTnDzHmmuSHLoDz7Qt/6YkM9vZa5Is87kvyVer6thhfFqSjyx0k+6eSfL2JK+bY8maJP8jyW1Jfmps7t1JzpnvjKo6q6quraprL1+34IgAAAAAAAAAAAAAAAAAAAAAAAAAsEM0lZyiqlqZ5KQkX05yVJLr5lh6aJJvjYxvz1ijxqraP8krk/z1PMeelmRdkiuytVHibE5M8sl59kmSs6tqZriuHJ+sqgOSHJ7k6h3IMol1SU6vqqck2ZLkjoXkHHF9kiPGi1X12CQvSfI/58h6TZLNVfWi7YXs7ku6+9juPvaM00/d/hMBAAAAAAAAAAAAAAAAAAAAAAAAwJRpKjkde1fVTJJrk9yW5IM7stnQnPKKJO/t7m9uZ92xSe7s7tuytfnkMVV14MiSd1fV15P8eZI/mODoC7p79XCNNlQ8rqpuSLIxyee6+9uLyLIQn03y0iSnJ/nwAnI+LNYc9VckubK7NyX5eJJfqKo9xtacm+StC8wNAAAAAAAAAAAAAAAAAAAAAAAAADuNppLTsWmkyeHru3tzkg1JnjvH+o1JnjIyPmyobXNJkpu6+8J5zl2T5IiqujXJzUn2TfKLI/Nv6u5nJHlzkksnfpqHW9/dz0nyrCS/XlWrF5FlYsP7d12S30rysUUl3uqYJF+dpb4myUuGrNclOSjJz45l+GKSvZO8YAfOBwAAAAAAAAAAAAAAAAAAAAAAAIBHjKaSj5wvJtmrqs7aVqiqZ1fVcUk+l+RlVXVAVR2Q5GVDLVV1bpL9krxxe5tX1YokpyY5urtXdfeqJCdna8PEcRclWVFVJ+zIA3X3LUnela1NKhebZVLvSfLm7r5rMTdX1bOT/Lck7xur75vkuCRPHcn6m3NkPTfJ7yzmfAAAAAAAAAAAAAAAAAAAAAAAAAB4pGkq+Qjp7k7yqiQvqaqbq2pDkncm+fbQKPEdSb40XG/v7ruq6rAk5yQ5Msn1VTVTVa+Z44jjkmzs7jtGalcnObKqnjxLlkkaJJ49nLntWjXLmouT/MzY3CRZPlBVtw/XNfPkSHdv6O7LF5jzuKr6x6r6WrY2k3xDd//12L2vSvLF7r5/pPaXSV5ZVXuNZfhMku/OlxUAAAAAAAAAAAAAAAAAAAAAAAAAlsLKpQ7waNDdj5+jfkeSU+eYuzTJpWO125PUhGf+TZIXjNW2JDlkGJ45NvfxJB+fK3N3r02ydpajbk1y1ci6TUkOHYaXDVcWkmUu3X1rkqNmqf/rOfPk3G87e4/ec/nY3F1JnjgMjx+be+72MgMAAAAAAAAAAAAAAAAAAAAAAADAUlmx1AEAAAAAAAAAAAAAAAAAAAAAAAAAAFi4lUsdgPlV1TlJThkrf7S7z1uKPDuqqo5O8qGx8v3d/fylyAMAAAAAAAAAAAAAAAAAAAAAAAAAy5GmksvA0DxyWTaQnE13fznJ6qXOAQAAAAAAAAAAAAAAAADA4u23z2Nz730/WuoYAAAAAAC7tRVLHQAAAAAAAAAAAAAAAAAAAFh+NJQEAAAAAFh6mkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkruZFW1papmquorVfXRqtpnqB9SVeuq6uaquq6qPlNVzxjmzqiqm4brjKG2T1V9uqpurKoNVfWuCc+fqap1Y7XLquqWYe6GqnpxVZ0zjGdGMs9U1Ruqam1VbRypzVTV/lV1fFXdO4xvrKrzR844s6oumjDLqyd4jlVV1VV17kjt4Kp6YNs5c+UcWX/hML9ipHZmVT1UVc8eqX2lqlZN8v4CAAAAAAAAAAAAAAAAAAAAAAAAwM6iqeTOt6m7V3f3UUk2J3ltVVWSTyS5qrt/orufm+QtSZ5UVQcmeVuS5yd5XpK3VdUBw17nd/cRSY5J8sKqOml7B1fVM5PskeS4qnrc2PSbunt1kjcmubi7zxtyrh7JvLq73zusv2Cktrq77xnq64d7jknyiqp64SKyTOqWJC8fGZ+SZMPYmllzDo0kX5XkW0n+w9g9tyc5Z5GZAAAAAAAAAAAAAAAAAAAAAAAAAGCn0FRyaa1P8vQkL0ryQHdfvG2iu2/o7vVJTkjyhe6+q7vvTvKFJCd2933dfeWwdnOS65McNs95a5J8KMnnk5w8x5prkhy6A8+0Lf+mJDPb2WuSLPO5L8lXq+rYYXxako9MeO/x2dqA8v1DllF/leRZVfWTi8wFAAAAAAAAAAAAAAAAAAAAAAAAAI84TSWXSFWtTHJSki8nOSrJdXMsPTTJt0bGt2esUWNV7Z/klUn+ep5jT0uyLskVeXgjxW1OTPLJefZJkrOrama4rhyfrKoDkhye5OodyDKJdUlOr6qnJNmS5I4Jc64Zzv5EkpdX1WNG5h5K8odJ/uv2Dq6qs6rq2qq69vJ1k/ayBAAAAAAAAAAAAAAAAAAAAAAAAIDp0FRy59u7qmaSXJvktiQf3JHNhuaUVyR5b3d/czvrjk1yZ3fflq3NJ4+pqgNHlry7qr6e5M+T/MEER1/Q3auH60Uj9eOq6oYkG5N8rru/vYgsC/HZJC9NcnqSD0+Ss6r2TPJzST7Z3d9P8vdJThi778+TvKCqnjbXwd19SXcf293HnnH6qYuMDwAAAAAAAAAAAAAAAAAAAAAAAACLo6nkzrdppMnh67t7c5INSZ47x/qNSZ4yMj5sqG1zSZKbuvvCec5dk+SIqro1yc1J9k3yiyPzb+ruZyR5c5JLJ36ah1vf3c9J8qwkv15VqxeRZWLD+3ddkt9K8rEJbzshyf5Jvjxk+Okh0+i+DyZ5T7a+HwAAAAAAAAAAAAAAAAAAAAAAAACwy9FUctfwxSR7VdVZ2wpV9eyqOi7J55K8rKoOqKoDkrxsqKWqzk2yX5I3bm/zqlqR5NQkR3f3qu5eleTkjDVSHFyUZEVVnbAjD9TdtyR5V8aaMi4wy6Tek+TN3X3XhOvXJHnNyPlPS/LSqtpnbN1lSV6S5Ik7kA0AAAAAAAAAAAAAAAAAAAAAAAAAHhGaSu4CuruTvCrJS6rq5qrakOSdSb49NEp8R5IvDdfbu/uuqjosyTlJjkxyfVXNVNVr5jjiuCQbu/uOkdrVSY6sqifPkuXcJL8zT+yzhzO3XatmWXNxkp8Zm5skyweq6vbhumaeHOnuDd19+YQ5j0xyYpJPj9z/wyR/m+SVY/tuTvLeJD82XwYAAAAAAAAAAAAAAAAAAAAAAAAA2NlWLnWA3U13P36O+h1JTp1j7tIkl47Vbk9SE575N0leMFbbkuSQYXjm2NzHk3x8rszdvTbJ2lmOujXJVSPrNiU5dBheNlxZSJa5dPetSY6apf6v52wn54Gz3PcfR4aXjdTfm62NJQEAAAAAAAAAAAAAAAAAAAAAAABgl7JiqQMAAAAAAAAAAAAAAAAAAAAAAAAAALBwK5c6ANNVVeckOWWs/NHuPm8p8uyoqjo6yYfGyvd39/OXIg8AAAAAAAAAAAAAAAAAAAAAAAAA7Co0lXyUGZpHLssGkrPp7i8nWb3UOQAAAAAAAAAAAAAAAAAAAAAAAABgV7NiqQMAAAAAAAAAAAAAAAAAAAAAAAAAALBwmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkruoqpqS1XNVNVXquqjVbXPUD+kqtZV1c1VdV1VfaaqnjHMnVFVNw3XGUNtn6r6dFXdWFUbqupdE54/U1XrxmqXVdUtw9wNVfXiqjpnGM+MZJ6pqjdU1dqq2jhSm6mq/avq+Kq6dxjfWFXnj5xxZlVdNGGWV0/wHKuqqqvq3JHawVX1wLZzhpy/PbLvxqraa2TtrZO8ZwAAAAAAAAAAAAAAAAAAAAAAAACwM61c6gDMaVN3r06SqvqzJK+tqguSfCLJ5d19+jD3nCRPqqo7k7wtybFJOsl1VfWpJPcnOb+7r6yqPZP8dVWd1N3/a66Dq+qZSfZIclxVPa67fzgy/abu/lhVvSjJJd19eJLzhvv+ZVvmYbw2yQXdff7I/amqJFnf3a+oqr2T/GNVfaK7/26BWSZ1S5KXJ3nrMD4lyYbtrN+S5P9I8v5FnAUAAAAAAAAAAAAAAAAAAAAAAMASW1FLnQBg51ix1AGYyPokT0/yoiQPdPfF2ya6+4buXp/khCRf6O67uvvuJF9IcmJ339fdVw5rNye5Pslh85y3JsmHknw+yclzrLkmyaE78Ezb8m9KMrOdvSbJMp/7kny1qo4dxqcl+ch21l+Y5Oyq0nQVAAAAAAAAAAAAAAAAAAAAAAAAgF2WppK7uKGx4UlJvpzkqCTXzbH00CTfGhnfnrFGjVW1f5JXJvnreY49Lcm6JFdka1PH2ZyY5JPz7JNsbc44M1xXjk9W1QFJDk9y9Q5kmcS6JKdX1VOSbElyx3bW3pbkb5P8yvY2rKqzquraqrr28nXb61EJAAAAAAAAAAAAAAAAAAAAAAAAANO3cqkDMKe9q2pmeL0+yQeTvHaxmw3NKa9I8t7u/uZ21h2b5M7uvq2qNia5tKoO7O67hiXvrqrfT3JYkp+a4OgLuvv8WerHVdUN2dpQ8sLu/vYisizEZ5O8I8l3knx4gvXvTPKXST4914LuviTJJUnyvW/c2IvIBAAAAAAAAAAAAAAAAAAAAAAAAACLtmKpAzCnTd29erhe392bk2xI8tw51m9M8pSR8WFDbZtLktzU3RfOc+6aJEdU1a1Jbk6yb5JfHJl/U3c/I8mbk1w68dM83Prufk6SZyX59apavYgsExvev+uS/FaSj02w/qYkM0lOXcx5AAAAAAAAAAAAAAAAAAAAAAAAAPBI01Ryeflikr2q6qxthap6dlUdl+RzSV5WVQdU1QFJXjbUUlXnJtkvyRu3t3lVrcjWJopHd/eq7l6V5ORsbe447qIkK6rqhB15oO6+Jcm7srVJ5WKzTOo9Sd7c3XdNuP68JL+9A+cBAAAAAAAAAAAAAAAAAAAAAAAAwCNGU8llpLs7yauSvKSqbq6qDUnemeTbQ6PEdyT50nC9vbvvqqrDkpyT5Mgk11fVTFW9Zo4jjkuysbvvGKldneTIqnryLFnOTfI788Q+ezhz27VqljUXJ/mZsblJsnygqm4frmvmyZHu3tDdl8+3bnR9kusnXQ8AAAAAAAAAAAAAAAAAAAAAAAAAO9PKpQ7A7Lr78XPU70hy6hxzlya5dKx2e5Ka8My/SfKCsdqWJIcMwzPH5j6e5ONzZe7utUnWznLUrUmuGlm3Kcmhw/Cy4cpCssylu29NctQs9X89Z8i5rX7m2Lr/OMk5AAAAAAAAAAAAAAAAAAAAAAAAALCzrVjqAAAAAAAAAAAAAAAAAAAAAAAAAAAALNzKpQ7A0qiqc5KcMlb+aHeftxR5dlRVHZ3kQ2Pl+7v7+UuRBwAAAAAAAAAAAAAAAAAAAAAAAAAeaZpK7qaG5pHLsoHkbLr7y0lWL3UOAAAAAAAAAAAAAAAAAAAAAAAAANhZVix1AAAAAAAAAAAAAAAAAAAAAAAAAAAAFk5TSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACACVXViVX1tar6RlX97izze1XVh4f5v6+qVSNzbxnqX6uqE3Y0i6aSu5Cq2lJVM1X1lar6aFXtM9QPqap1VXVzVV1XVZ+pqmcMc2dU1U3DdcZQ26eqPl1VN1bVhqp614Tnz1TVurHaZVV1yzB3Q1W9uKrOGcYzI5lnquoNVbW2qjaO1Gaqav+qOr6q7h3GN1bV+SNnnFlVF02Y5dUTPMeqquqqOnekdnBVPTDhOZ+qql8dGf9JVb1pvnMBAAAAAAAAAAAAAAAAAAAAAAAAeHSrqj2SvC/JSUmOTLKmqo4cW/brSe7u7qcnuSDJHwz3Hpnk9CTPSnJikj8e9ls0TSV3LZu6e3V3H5Vkc5LXVlUl+USSq7r7J7r7uUnekuRJVXVgkrcleX6S5yV5W1UdMOx1fncfkeSYJC+sqpO2d3BVPTPJHkmOq6rHjU2/qbtXJ3ljkou7+7wh5+qRzKu7+73D+gtGaqu7+56hvn6455gkr6iqFy4iy6RuSfLykfEpSTZMeM4bkvze0Azz32fr+3vBInMAAAAAAAAAAAAAAAAAAAAAAAAA8OjxvCTf6O5vdvfmJOuSnDy25uQklw+vP5bkxUNvwZOTrOvu+7v7liTfGPZbNE0ld13rkzw9yYuSPNDdF2+b6O4bunt9khOSfKG77+ruu5N8IcmJ3X1fd185rN2c5Pokh81z3pokH0ry+Tz8A3Kba5IcugPPtC3/piQz29lrkizzuS/JV6vq2GF8WpKPTHJOd9+a5JIkf5jk/Ule190PLjIHAAAAAAAAAAAAAAAAAAAAAAAAAI8ehyb51sj49jy8t96/rhl62d2b5KAJ712QlTtyM4+MqlqZ5KQkn01yVJLr5lg67wdEVe2f5JVJ/sc8x56W5KVJjkjy+iR/PsuaE5N8cp59kuTsqvrl4fXd3f2isUwHJDk8ydU7kGUS65KcXlXfSbIlyR1JfnzCc85PcnOS9d09a86qOivJWUnynnf8Xs44/dRFxgQAAAAAAAAAAAAAAAAAAAAAAGCaVnQvdQRgmRrtMze4pLsvWao889FUcteyd1XNDK/XJ/lgktcudrOhOeUVSd7b3d/czrpjk9zZ3bdV1cYkl1bVgd1917Dk3VX1+0kOS/JTExx9QXefP0v9uKq6IVsbSl7Y3d9eRJaF+GySdyT5TpIPL/CcZydZkeSIqlrR3Q+Nbz58Yl+SJN/7xo2+cwAAAAAAAAAAAAAAAAAAAAAAAABY5kb7zM1hY5KnjIwPG2qzrbl96Au4X5LvTXjvgqzYkZuZuk3dvXq4Xt/dm5NsSPLcOdbP9wFxSZKbuvvCec5dk63NE29NcnOSfZP84sj8m7r7GUnenOTSiZ/m4dZ393OSPCvJr1fV6kVkmdjw/l2X5LeSfGzSc6pqRZI/TvLLSW5K8n8t5nwAAAAAAAAAAAAAAAAAAAAAAAAAHnW+lOTwqnpaVe2Z5PQknxpb86kkZwyvX53ki93dQ/30qtqrqp6W5PAk/7AjYTSV3PV9McleVXXWtkJVPbuqjkvyuSQvq6oDquqAJC8baqmqc7O1G+kbt7f50EDx1CRHd/eq7l6V5ORsbbo47qIkK6rqhB15oO6+Jcm7srVJ5WKzTOo9Sd7c3Xct4JzfyNZmnFcl+S9J3lxVT9yBDAAAAAAAAAAAAAAAAAAAAAAAAAA8CnT3g0lel629/76a5CPdvaGq3l5VPz8s+2CSg6rqG9na0+53h3s3JPlIkn9K8tkkv9ndW3Ykz8oduZlHXnd3Vb0qyYVV9eYkP0pya5I3dvddVfWObO1UmiRvH2qHJTknyY1Jrq+qJLmou//vWY44LsnG7r5jpHZ1kiOr6smzZDk3ye9kaF45h7Or6pdHxr8wy5qLk/x2Va1aYJYPVNWFw+tvdfdPbSfHtk+aDWPl7Z3z77K12eULhvvvGM77wyS/tr2zAAAAAAAAAAAAAAAAAAAAAAAAAHj06+7PJPnMWO2/j7z+UZJT5rj3vCTnTSuLppK7kO5+/Bz1O5KcOsfcpUkuHavdnqQmPPNvMjRQHKltSXLIMDxzbO7jST4+V+buXptk7SxH3ZrkqpF1m5IcOgwvG64sJMtcuvvWJEfNUp/0nFVjc380ybkAAAAAAAAAAAAAAAAAAAAAAAAAsDOtWOoAAAAAAAAAAAAAAAAAAAAAAAAAAAAs3MqlDsDOU1XnJDllrPzR7j5vKfLsqKo6OsmHxsr3d/fzlyIPAAAAAAAAAAAAAAAAAAAAAAAAAOxMmkruRobmkcuygeRsuvvLSVYvdQ4AAAAAAAAAAAAAAAAAAAAAAAAAWAorljoAAAAAAA/35IMPXOoIAAAAAAAAAAAAALBd++3z2KWOAAAAAACw26vuXuoM8GjgEwkAAAAAAAAAAAAAAAAAAAAAYHFqqQMAjz4/+P739YYCFuUJ++67rL43WbHUAQAAAAAAAAAAAAAAAAAAAAAAAAAAWDhNJQEAAAAAAAAAAAAAAAAAAAAAAAAAliFNJQEAAAAAAAAAAAD4/9i5+yhPy/JO8N+rbUEI2DS+RttA0gR5E9qBVceMK0R8wZGjbsSBwV2alUXP2Y1L9oiuwT0QlcQVPDpMZsfplZfBYxpFB3XQjcMRmOmox9g0RedxCmgAACAASURBVJr2JQjIazRCEyBIaKSv/aOeyvlZ6eqqan52ddGfzznP4bmv+76v+3qerq7qLqovAAAAAAAAAAAAYBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBHSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBHSVHIXUlVPVNVEVd1cVVdW1d5D/PlVdUVV3VpVN1TV16rq4GHutKq6ZbhOG2J7V9VXq+oHVbWpqj46x/MnquqKabHLqur2Ye6mqnpNVZ0zjCdGap6oqvdU1XlVdc9IbKKq9quqY6vqwWH8g6q6cOSM1VX1p3Os5W1zeI4Dq+rRqrqxqr5fVX9ZVau3dd426v3oEL++qn44Ep/1XAAAAAAAAAAAAAAAAAAAAAAAAADYmZYudAH8kke7e1WSVNVnk7y7qj6R5Kok/7G7Tx7mjkryvKq6L8m5SY5J0kluqKqvJHksyYXdfV1V7ZHkG1V1Qnf/fzMdXFWHJnlakldV1a919yMj02d39xeq6rgka7r7t5OcP+z7+6mah/F5ST7R3ReO7E9VJcm67n5TVe2V5Maquqq7vznPWubq1u5+6ZDvt5L8p6qq7r50G2v/Sb2DU7t7/Q6cDQAAAAAAAAAAAAAAAAAAAAAAAAC/cksWugBmtC7JQUmOS/J4d39qaqK7b+rudUlen+Sa7t7c3Q8kuSbJG7r759193bB2S5INSVbMct4pST6T5L8kefMMa76d5IVP4pmm6n80ycR2cs2llvmcd1uS/yPJe55sLgAAAAAAAAAAAAAAAAAAAAAAAADYVWgquQuqqqVJTkiyMckRSW6YYekLk9w1Mr470xo1VtV+SU5M8o1Zjv1XSa5IsjaTTR235Q1JvjRLniT5g6qaGK7rpk9W1fIkv53kvz2JWuZrQ5JDZpgbrff1I/HPjsSfNX1TVZ1ZVeurav2aNWvGVCYAAAAAAAAAAAAAAAAAAAAAAAAAzM3ShS6AX7JXVU0M9+uSXJzk3TuabGhOuTbJRd1923bWHZPkvu6+s6ruSXJJVe3f3ZuHJRdU1R8nWZHkn8/h6E9094XbiL+qqm7KZEPJT3b3T3aglh1VO1Dvqd29fqZN3b0myVQ3yX4yxQEAAAAAAAAAAAAAAAAAAAAAAADAfC1Z6AL4JY9296rh+v3u3pJkU5KjZ1h/T5IXjYxXDLEpa5Lc0t2fnOXcU5IcUlU/TnJrkmcm+b2R+bO7++Ak709yyZyf5p9a191HJTk8yTuratUO1LKjXprk+2PIAwAAAAAAAAAAAAAAAAAAAAAAAAC7hKULXQCzujbJH1fVmd29Jkmq6sgky5J8fZhbPqx9XZIPDGs+Mqw5Y3vJq2pJkrcneUl33zvEjkvyfyX5f6ct/9Mk/3NVvb67v76jD9Tdt1fVRzPZpPKUHaxlzqrqwCQXJvm3O5oDAAAAAAAAAAAAAAAAAAAAAACARaS3LnQFADvFkoUugO3r7k7y1iTHV9WtVbUpyZ8k+Ul3b07y4STfHa4PdffmqlqR5JwkhyXZUFUTVTVTc8lXJblnqonj4L8lOayqfn0btXwkyftmKfsPhjOnrgO3seZTSf77aXNzqeU/VNXdw/Xt7dSwsqpurKrvJ/l8kou6+9JZ6gYAAAAAAAAAAAAAAAAAAAAAAACARaMm+wQCT5LfSAAAAAAAAAAAAAAAAAAAAAAAO6YWugDgqefhB/9Obyhgh+y7bL9F9WeTJQtdAAAAAAAAAAAAAAAAAAAAAAAAAAAA87d0oQtg56mqc5KcNC18ZXefvxD1PFlV9ZIkn5kWfqy7X74Q9QAAAAAAAAAAAAAAAAAAAAAAAADAzlTdvdA1wFOB30gAAAAAAAAAAAAAAAAAAAAAADumFroA4Knn4Qf/Tm8oYIfsu2y/RfVnk6ULXQA8FTz80ENjyfOLMf7dZsmjj4wt19a9fm1sucZZ1wP9tLHlWrb3M8aSZ8kYvwT0Iw+PL9fe+44t188eGt+v4e7g4BXPH0uen27+u7Hk2V08b//9xpLngYfG9/twd7H8mU/+8433Pn/jeO9JcvblXx5Lnt3FBf/Tm8eS5+EHfY6fj32X+Ry/EMb1eea2v/nbseTZnfzWrz/3SefweWb+xvW55v7bbhlLnt3Fs37rt8eS52ff/6ux5NldPOfQI8eS575bvjeWPLuLZ//2YWPJc/ff3j+WPLuLFc991ljy/M19m8eSZ3fy68/e/0nnGNf34Xcn+z7zmWPJ8/077x1Lnt3Fob/xgrHk+bufeO/zsd/zx/PefW2dn3F9bX3grh+PJc/uYvmLDhxLHl9b528cX1vv/q9/PoZKdi8rXv2GseR56P77xpJnd/HMZz17LHmOPe9Px5Jnd3H9ef/bWPL87cYNY8mzu3juS/7ZWPLc93cPjiXP7uTZ+y170jl+8KmPjqGS3csh7/4/x5LH/3+an3H9v6efPeBzzXw8Z/mT/zyTJA9t9v2C+Xjm/uP5fsEdX7tyLHl2Fwe88aSx5Pnq+o1jybM7+ZfHvORJ5/CzBfM3rp8v8L3J+RnX9yb9XPz8jO3n4n28z8vYvhfv707zMq6/O93zs13z5zr2XbJ1bLl6jz3HlmvL3bePJc/W5/3GWPIkydat43tXj48x137j/DXcc6+x5RrXr2GS/OI5K8aS5+lLx/fvPp+2ZMn4cm15dGy5ao/x/HvUJHn0jh+NLdfSZ47nc+lDe47v36Nu7fH1bXnOr43vvY/z33P3Az8bW66/32s8P/O1dev43vuWXzwxtlz7PmOPseVa+rTxfa55+B8eG1uuxx7/xVjy/NoY39U/bBlPTUmy9x5PH1uucX69eOSxLWPLNa5fw/332XsseZJkSY3vc9bT/+Hvx5br8WfsM7Zce4zx6/TDNZ6P02c+7anfe+yxJeP7PV333TO2XOP69xYAALuj8X03DQAAAAAAAAAAAAAAAAAAAAAAAACAnUZTSQAAAAAAAAAAAAAAAAAAAAAAAACARUhTSQAAAAAAAAAAAAAAAAAAAAAAAACARUhTSQAAAAAAAAAAAAAAAAAAAAAAAACARUhTSQAAAAAAAAAAAAAAAAAAAAAAAACARUhTSQAAAAAAAAAAAAAAAAAAAAAAAACARUhTyV+hqnqiqiaq6uaqurKq9h7iz6+qK6rq1qq6oaq+VlUHD3OnVdUtw3XaENu7qr5aVT+oqk1V9dHtnPnqqvr2tNjSqvppVb2gqi6rqtuHuiaq6lvDmtVVtbWqjhzZd3NVHTjcL6uqy6vqR0Pdl1fVsmHu2Kq6etqZl1XV24b7N1XVjVV1U1V9r6retZ36z6uqrqqDRmJnDbFjhvGPq2rjyDNcNHLm7cM5fz3UuGIkz4+r6tkj47cMeQ8ZiR04xH5/JPanVbV6ppoBAAAAAAAAAAAAAAAAAAAAAAAAYCFoKvmr9Wh3r+ruI5JsSfLuqqokVyW5vrtXdvfRST6Q5HlVtX+Sc5O8PMnLkpxbVcuHXBd29yFJXprkd6rqhBnOXJdkRVUdMBI7Psmm7r53GJ891LWqu185su7uJOfMkPfiJLd190HdvTLJ7Uk+PdsLqKqnJ1mT5MTuPmqo//pZtm1McvLI+KQkm6atOW7kGd4zEj97OOfFSW5Mcm1V7THDOack+Yvhv6P+Nsn/vp19AAAAAAAAAAAAAAAAAAAAAAAAALDgNJXcedYlOSjJcUke7+5PTU10903dvS7J65Nc092bu/uBJNckeUN3/7y7rxvWbkmyIcmKbR3S3VuTfD6/3JTx5CRr51Dj1UkOr6oXjwar6qAkRyf58Ej4Q0mOqaqVs+TcN8nSJPcP9T3W3T+cZc+Xkrx5OHtlkgeT3DeH+v9RT/pEkp8k+ScNOKtqnyT/Isk788vvKkl+luQbSU7b3hlVdWZVra+q9Zdeeul8ygMAAAAAAAAAAAAAAAAAAAAAAACAJ01TyZ2gqpZmsrHhxiRHJLlhhqUvTHLXyPjuITaaa78kJ2ay6eFM1mZolFhVeyZ5Y5IvjsxfUFUTw/XZkfjWJB9L8ofT8h2WZKK7n5gKDPcTSQ7fTh3p7s1JvpLkjqpaW1WnVtVsH3cPJbmrqo4YnuNz21hz3cgz/MF2cm1Icsg24m9O8ufd/ddJ7q+qo6fN/99J3ltVT5spcXev6e5juvuY008/fbsPBAAAAAAAAAAAAAAAAAAAAAAAAADjpqnkr9ZeVTWRZH2SO5Nc/GSSDc0p1ya5qLtvm2ldd69Psk9VvTiTzSy/MzR3nHJ2d68arlOnbf+zJK+oqt+cR2m9vXh3n5HkNUn+Msl7k1wyh5xXZLKh5FuSXLWN+eNGnuET28lTM8RPGc6YOuuUXyp88v1+J8m/nkOtAAAAAAAAAAAAAAAAAAAAAAAAALDTLV3oAp7iHu3uVaOBqtqU5G0zrL8nybEj4xVJrh8Zr0lyS3d/cg5nr81kU8ZDh/s56e5fVNXHk7x/JPy9JKuqakl3b02SqlqSZNUw94wky6el2j/JfSN5NybZWFWfSXJ7ktWzlHJ1kguSrO/uh6pm6g05q5cm+cZooKr2T/K7SV5SVZ3kaUm6qs6etvePk3whyX/d0cMBAAAAAAAAAAAAAAAAAAAAAAAA4FdlyUIXsBu6NsmeVXXmVKCqjqyqVyX5epLXVdXyqlqe5HVDLFX1kSTLkpw1x3PWJnlHJpsnfnmeNV6W5Pgkz0mS7v5RkhuTfHBkzQeTbBjmbknygqo6dKj1gCRHJZmoqn2q6tiRfauS3DFbAd3980w2tjx/nrVnqKGq6j1Jfj3Jn0+bfluSz3T3Ad19YHe/KJONLl81rYYfZLJp5ok7UgMAAAAAAAAAAAAAAAAAAAAAAAAA/CppKrmTdXcneWuS46vq1qralORPkvykuzcn+XCS7w7Xh7p7c1WtSHJOksOSbKiqiao6Y5Zzvp/kkSTXdvcj06YvGHJMXXtM27slyUVJnjsSfmeSg4eab01y8BBLdz+WyQaWl1bVRJIvJDmjux9MUkneV1U/HOb+KMnqOb6rK7p7wwzT143Uf/m0Z7spyV8n+e+SHDc8z6hTklw1LfbFIT7d+UlWzKVeAAAAAAAAAAAAAAAAAAAAAAAAANiZli50AU9l3b3PDPF7k7x9hrlLklwyLXZ3Jpszzvf8VduIrZ5h+WXDNbXuokw2lpwaP5DJxpEznfXNJK/YRvzhJG+cY8np7vNmiB87cn/gDGtWz5J7at9x25i7aGR4xEj8pmi+CgAAAAAAAAAAAAAAAAAAAAAAAMAuSLM8AAAAAAAAAAAAAAAAAAAAAAAAAIBFaOlCF8COq6pzkpw0LXxld5+/EPXMx2KuHQAAAAAAAAAAAAAAAAAAAAAAAAB2BZpKLmJDA8ZF2YRxMdcOAAAAAAAAAAAAAAAAAECy5Kd3ZuvzfmOhywAAAAAA2K0tWegCAAAAAAAAAAAAAAAAAACAxUdDSQAAAACAhaepJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSp5C6gqp6oqomqurmqrqyqvYf486vqiqq6tapuqKqvVdXBw9xpVXXLcJ02xPauqq9W1Q+qalNVfXQ7Z766qr49Lba0qn5aVS+oqsuq6vahromq+tawZnVVba2qI0f23VxVBw73y6rq8qr60VD35VW1bJg7tqqunnbmZVX1tuH+TVV1Y1XdVFXfq6p3baf+86qqq+qgkdhZQ+yYYfzjqto48gwXTXvWn01/R1V1fVWtHxkfU1XXz1QHAAAAAAAAAAAAAAAAAAAAAAAAACwUTSV3DY9296ruPiLJliTvrqpKclWS67t7ZXcfneQDSZ5XVfsnOTfJy5O8LMm5VbV8yHVhdx+S5KVJfqeqTpjhzHVJVlTVASOx45Ns6u57h/HZQ12ruvuVI+vuTnLODHkvTnJbdx/U3SuT3J7k07O9gKp6epI1SU7s7qOG+q+fZdvGJCePjE9KsmnamuNGnuE9I/HXJvnrJCcN73rUc7fz3gAAAAAAAAAAAAAAAAAAAAAAAABgl6Cp5K5nXZKDkhyX5PHu/tTURHff1N3rkrw+yTXdvbm7H0hyTZI3dPfPu/u6Ye2WJBuSrNjWId29Ncnn88tNGU9OsnYONV6d5PCqevFosKoOSnJ0kg+PhD+U5JiqWjlLzn2TLE1y/1DfY939w1n2fCnJm4ezVyZ5MMl9c6g/SU5J8m+S3Jnkn0+buyAzN838R1V1ZlWtr6r1l1566RyPBQAAAAAAAAAAAAAAAAAAAAAAAIDx0FRyF1JVS5OckGRjkiOS3DDD0hcmuWtkfPcQG821X5ITk3xjO0euzdBUsqr2TPLGJF8cmb+gqiaG67Mj8a1JPpbkD6flOyzJRHc/MRUY7ieSHL6dOtLdm5N8JckdVbW2qk6tqtk+Ph9KcldVHTE8x+e2sea6kWf4g+FZn5Hk+CT/OZPv4JRpe76dZEtVHTdLzWu6+5juPub000+fpVQAAAAAAAAAAAAAAAAAAAAAAAAAGC9NJXcNe1XVRJL1Se5McvGTSTY0p1yb5KLuvm2mdd29Psk+VfXiTDaz/M7Q3HHK2d29arhOnbb9z5K8oqp+cx6l9fbi3X1Gktck+csk701yyRxyXpHJhpJvSXLVNuaPG3mGTwyxNyW5rrsfzWQTzbdU1dOm7ftIkg/O4XwAAAAAAAAAAAAAAAAAAAAAAAAAWBCaSu4aHh1pfPj73b0lyaYkR8+w/p4kLxoZrxhiU9YkuaW7PzmHs9dmsinjycP9nHT3L5J8PMn7R8LfS7Kqqv7x42q4XzXM3Z9k+bRU+ye5byTvxqH542uT/N4cSrk6yf+Y5M7ufmiO5Z+S5Piq+nGSG5I8K8nvji7o7muT7JXkFXPMCQAAAAAAAAAAAAAAAAAAAAAAAAA7laaSu65rk+xZVWdOBarqyKp6VZKvJ3ldVS2vquVJXjfEUlUfSbIsyVlzPGdtkndksqnil+dZ42VJjk/ynCTp7h8luTHJB0fWfDDJhmHuliQvqKpDh1oPSHJUkomq2qeqjh3ZtyrJHbMV0N0/z2Rjy/PnUnBVPTPJq5L8Rncf2N0HJvlfM9locrqPJHnfXPICAAAAAAAAAAAAAAAAAAAAAAAAwM62dKELYNu6u6vqrUk+WVXvT/IPSX6c5Kzu3lxVH07y3WH5h4bYiiTnJPlBkg1VlSR/2t2f3s4536+qR5Lc0N2PTJu+oKpGG0S+bNreLVV1UZJ/MxJ+Z5J/W1W3DuNvD7F092NV9Y4kl1bVM5I8nuSM7n6wqvZN8r6q+g9JHk3ySJLVs72nIe8V25m+rqqeGO7/Ksk3klzb3Y+NrPlyko9V1Z7T8n6tqn42lxoAAAAAAAAAAAAAAAAAAAAAAAAAYGfTVHIX0N37zBC/N8nbZ5i7JMkl02J3J6kdOH/VNmKrZ1h+2XBNrbsoyUUj4weSvGM7Z30zySu2EX84yRvnWHK6+7wZ4seO3B84w/b/OG3P5iTPGYbHTps7eq41AQAAAAAAAAAAAAAAAAAAAAAAAMDOtGShCwAAAAAAAAAAAAAAAAAAAAAAAAAAYP6WLnQB/OpV1TlJTpoWvrK7z1+IeuZjMdcOAAAAAAAAAAAAAAAAAAAAAADAwugnnljoEgB2Ck0ldwNDA8ZF2YRxMdcOAAAAAAAAAAAAAAAAAPBUtuSnd2br835jocsAAAAAANitLVnoAgAAAAAAAAAAAAAAAAAAgMVHQ0kAAAAAgIWnqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqeQiU1VPVNVEVd1cVVdW1d5D/PlVdUVV3VpVN1TV16rq4GHutKq6ZbhOG2J7V9VXq+oHVbWpqj66nTNfXVXfnhZbWlU/raoXVNVlVXX7UNdEVX1rWLO6qrZW1ZEj+26uqgOH+2VVdXlV/Wio+/KqWjbMHVtVV08787Kqettw/6aqurGqbqqq71XVu7ZT/3lV1VV10EjsrCF2zDD+cVU9e7jvqvr4yNr3VtV52/llAQAAAAAAAAAAAAAAAAAAAAAAAICdTlPJxefR7l7V3Uck2ZLk3VVVSa5Kcn13r+zuo5N8IMnzqmr/JOcmeXmSlyU5t6qWD7ku7O5Dkrw0ye9U1QkznLkuyYqqOmAkdnySTd197zA+e6hrVXe/cmTd3UnOmSHvxUlu6+6DuntlktuTfHq2F1BVT0+yJsmJ3X3UUP/1s2zbmOTkkfFJSTbNsPaxJP/DVJNJAAAAAAAAAAAAAAAAAAAAAAAAANgVaSq5uK1LclCS45I83t2fmpro7pu6e12S1ye5prs3d/cDSa5J8obu/nl3Xzes3ZJkQ5IV2zqku7cm+Xx+uSnjyUnWzqHGq5McXlUvHg1W1UFJjk7y4ZHwh5IcU1UrZ8m5b5KlSe4f6nusu384y54vJXnzcPbKJA8muW+Gtb/IZNPKP5glJwAAAAAAAAAAAAAAAAAAAAAAAAAsGE0lF6mqWprkhCQbkxyR5IYZlr4wyV0j47uH2Giu/ZKcmOQb2zlybYamklW1Z5I3JvniyPwFVTUxXJ8diW9N8rEkfzgt32FJJrr7ianAcD+R5PDt1JHu3pzkK0nuqKq1VXVqVc32sfxQkruq6ojhOT43y/p/l+TUqlo204KqOrOq1lfV+ksvvXSWdAAAAAAAAAAAAAAAAAAAAAAAAAAwXksXugDmba+qmhju1yW5OMm7dzTZ0JxybZKLuvu2mdZ19/qq2qeqXpzk0CTfGZo7Tjm7u78ww/Y/S3JOVf3mPErr7cW7+4yqekmS45O8N8lrk6yeJecVmWwo+fokr0ly+oyHdz9UVZcneU+SR2dYsybJmiR5+KGHZqoXAAAAAAAAAAAAAAAAAAAAAAAAAH4lNJVcfB7t7lWjgaralORtM6y/J8mxI+MVSa4fGa9Jckt3f3IOZ6/NZFPGQ4f7OenuX1TVx5O8fyT8vSSrqmpJd29NkqpakmTVMPeMJMunpdo/yX0jeTcm2VhVn0lye2ZvKnl1kguSrB+aRs5W+ieTbEhy6WwLAQAAAAAAAAAAAAAAAAAAAAAAAGBnW7LQBTAW1ybZs6rOnApU1ZFV9aokX0/yuqpaXlXLk7xuiKWqPpJkWZKz5njO2iTvSPK7Sb48zxovS3J8kuckSXf/KMmNST44suaDSTYMc7ckeUFVHTrUekCSo5JMVNU+VXXsyL5VSe6YrYDu/nkmG1ueP5eCu3tzks8needc1gMAAAAAAAAAAAAAAAAAAAAAAADAzqSp5FNAd3eStyY5vqpurapNSf4kyU+GxogfTvLd4fpQd2+uqhVJzklyWJINVTVRVWfMcs73kzyS5NrufmTa9AVDjqlrj2l7tyS5KMlzR8LvTHLwUPOtSQ4eYunuxzLZwPLSqppI8oUkZ3T3g0kqyfuq6ofD3B8lWT3Hd3VFd2+Yy9rBx5M8ex7rAQAAAAAAAAAAAAAAAAAAAAAAAGCnWLrQBTA/3b3PDPF7k7x9hrlLklwyLXZ3Jpszzvf8VduIrZ5h+WXDNbXuokw2lpwaP5DJxpEznfXNJK/YRvzhJG+cY8np7vNmiB87cn/gyP0+I/c/TbL3XM8CAAAAAAAAAAAAAAAAAAAAAAAAgJ1lyUIXAAAAAAAAAAAAAAAAAAAAAAAAAADA/C1d6ALYtVTVOUlOmha+srvPX4h65mMx1w4AAAAAAAAAAAAAAAAAAAAAAAAA86WpJL9kaMC4KJswLubaAQAAAAAAAAAAAAAAAAAAAAAAAGC+lix0AQAAAAAAAAAAAAAAAAAAAAAAAAAAzN/ShS4AAAAAAAAAAAAAAAAAAAAAAAAAYKy6F7oCgJ1iyUIXAAAAAAAAAAAAAAAAAAAAAAAAAADA/GkqCQAAAAAAAAAAAAAAAAAAAAAAAACwCGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwCGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwCGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwCGkquYurqieqaqKqbq6qK6tq7yH+/Kq6oqpuraobquprVXXwMHdaVd0yXKcNsb2r6qtV9YOq2lRVH93Oma+uqm9Piy2tqp9W1Quq6rKqun2oa6KqvjWsWV1VW6vqyJF9N1fVgcP9sqq6vKp+NNR9eVUtG+aOraqrp515WVW9bbh/U1XdWFU3VdX3qupd26n/vKrqqjpoJHbWEDtmJLZqiL1hJPai4dn2H8bLh/GBM50HAAAAAAAAAAAAAAAAAAAAAAAAAAtBU8ld36Pdvaq7j0iyJcm7q6qSXJXk+u5e2d1HJ/lAkucNzRDPTfLyJC9Lcm5VLR9yXdjdhyR5aZLfqaoTZjhzXZIVVXXASOz4JJu6+95hfPZQ16rufuXIuruTnDND3ouT3NbdB3X3yiS3J/n0bC+gqp6eZE2SE7v7qKH+62fZtjHJySPjk5JsmrbmlCR/Mfw3SdLddyX590mmmm5+NMma7v7xbHUCAAAAAAAAAAAAAAAAAAAAAAAAwM6kqeTisi7JQUmOS/J4d39qaqK7b+rudUlen+Sa7t7c3Q8kuSbJG7r759193bB2S5INSVZs65Du3prk8/nlpownJ1k7hxqvTnJ4Vb14NFhVByU5OsmHR8IfSnJMVa2cJee+SZYmuX+o77Hu/uEse76U5M3D2SuTPJjkvpF6KpONJlcneW1VPWNk7yeSvKKqzkryL5JcOMtZAAAAAAAAAAAAW3hGbQAAIABJREFUAAAAAAAAAAAAALDTaSq5SFTV0iQnJNmY5IgkN8yw9IVJ7hoZ3z3ERnPtl+TEJN/YzpFrMzSVrKo9k7wxyRdH5i+oqonh+uxIfGuSjyX5w2n5Dksy0d1PTAWG+4kkh2+njnT35iRfSXJHVa2tqlOraraP3YeS3FVVRwzP8blp869Mcnt335rk+iT/cuS8x5OcncnmkmcN43+iqs6sqvVVtf7SSy+dpRwAAAAAAAAAAAAAAAAAAAAAAAAAGC9NJXd9e1XVRJL1Se5McvGTSTY0p1yb5KLuvm2mdd29Psk+VfXiTDaz/M7Q3HHK2d29arhOnbb9z5K8oqp+cx6l9fbi3X1Gktck+csk701yyRxyXpHJhpJvSXLVtLlThvmpdadMmz8hyd9ksoHntgvrXtPdx3T3MaeffvocygEAAAAAAAAAAAAAAAAAAAAAAACA8Vm60AUwq0e7e9VooKo2JXnbDOvvSXLsyHhFkutHxmuS3NLdn5zD2Wsz2ZTx0OF+Trr7F1X18STvHwl/L8mqqlrS3VuTpKqWJFk1zD0jyfJpqfZPct9I3o1JNlbVZ5LcnmT1LKVcneSCJOu7+6GqynDu05L8XpI3V9U5SSrJs6pq3+5+uKpWJXltklck+YuquqK7/2auzw8AAAAAAAAAAAAAAAAAAAAAAAAAO8OShS6AHXJtkj2r6sypQFUdWVWvSvL1JK+rquVVtTzJ64ZYquojSZYlOWuO56xN8o4kv5vky/Os8bIkxyd5TpJ094+S3JjkgyNrPphkwzB3S5IXVNWhQ60HJDkqyURV7VNVx47sW5XkjtkK6O6fZ7Kx5fnTpl6T5K+6+0XdfWB3H5Dki0neWpOdJ/99krO6+85MNqW8cD4PDgAAAAAAAAAAAAAAAAAAAAAAAAA7g6aSi1B3d5K3Jjm+qm6tqk1J/iTJT7p7c5IPJ/nucH2ouzdX1Yok5yQ5LMmGqpqoqjNmOef7SR5Jcm13PzJt+oIhx9S1x7S9W5JclOS5I+F3Jjl4qPnWJAcPsXT3Y5lsYHlpVU0k+UKSM7r7wSSV5H1V9cNh7o+SrJ7ju7qiuzdMC5+S5KppsS8O8f8lyZ3dfc0Q/3+SHFpVr57LeQAAAAAAAAAAAAAAAAAAAAAAAACwsyxd6ALYvu7eZ4b4vUnePsPcJUkumRa7O5PNGed7/qptxFbPsPyy4Zpad1EmG0tOjR/IZOPImc76ZpJXbCP+cJI3zrHkdPd5M8SPHW5P38bcV5J8ZRiuGYk/keSfzfVsAAAAAAAAAAAAAAAAAAAAAAAAANhZlix0AQAAAAAAAAAAAAAAAAAAAAAAAAAAzN/ShS6AhVVV5yQ5aVr4yu4+fyHqmY/FXDsAAAAAAAAAAAAAAAAAAAAAAAAAPFmaSu7mhgaMi7IJ42KuHQAAAAAAAAAAAAAAAAAAAAAAAACerCULXQAAAAAAAAAAAAAAAAAAAAAAAAAAAPNX3b3QNcBTgd9IAAAAAAAAAAAAAAAAAAAAAAA7pha6AOCp56H779MbCtghz3zWsxfVn02WLHQBAAAAAAAAAAAAAAAAAAAAAAAAAADM39KFLgAAAAAAAAAAAAAAAAAAAAAAAABgrHrrQlcAsFMsWegCAAAAAAAAAAAAAAAAAAAAAAAAAACYP00lAQAAAAAAAAAAAAAAAAAAAAAAAAAWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAAAWIU0ld3FV9URVTVTVzVV1ZVXtPcSfX1VXVNWtVXVDVX2tqg4e5k6rqluG67QhtndVfbWqflBVm6rqo9s589VV9e1psaVV9dOqekFVXVZVtw91TVTVt4Y1q6tqa1UdObLv5qo6cLhfVlWXV9WPhrovr6plw9yxVXX1tDMvq6q3Dfdvqqobq+qmqvpeVb1rO/WfV1X3DLXdUlX/qaoOG5m/vqqOGe5/XFUbR57llVV1YFU9OhKbqKo95vLrBQAAAAAAAAAAAAAAAAAAAAAAAAA7i6aSu75Hu3tVdx+RZEuSd1dVJbkqyfXdvbK7j07ygSTPq6r9k5yb5OVJXpbk3KpaPuS6sLsPSfLSJL9TVSfMcOa6JCuq6oCR2PFJNnX3vcP47KGuVd39ypF1dyc5Z4a8Fye5rbsP6u6VSW5P8unZXkBVPT3JmiQndvdRQ/3Xz7LtE0Ntv53kc0murarnzLD2uJFn+dYQu3Uktqq7t8xWJwAAAAAAAAAAAAAAAAAAAAAAAADsTJpKLi7rkhyU5Lgkj3f3p6Ymuvum7l6X5PVJrunuzd39QJJrkryhu3/e3dcNa7ck2ZBkxbYO6e6tST6f5OSR8MlJ1s6hxquTHF5VLx4NVtVBSY5O8uGR8IeSHFNVK2fJuW+SpUnuH+p7rLt/OIdaMqz/XJL/kuRfz3UPAAAAAAAAAAAAAAAAAAAAAAAAAOzqNJVcJKpqaZITkmxMckSSG2ZY+sIkd42M7x5io7n2S3Jikm9s58i1GZpKVtWeSd6Y5Isj8xdU1cRwfXYkvjXJx5L84bR8hyWZ6O4npgLD/USSw7dTR7p7c5KvJLmjqtZW1alVNd+P3Q1JDplh7rrhOb4zEls58nz/blubqurMqlpfVevXrFkzz3IAAAAAAAAAAAAAAAAAAAAAAAAA4MlZutAFMKu9qmpiuF+X5OIk797RZENzyrVJLuru22Za193r/3927j7Y8rq+E/z701ygQZ5FHgSTNijRLA/XQMrEHRzIYNQd4ywTQbtmUmFrLMaaUUcnEmVJUmxGoy6TNZNxqhy2zKBMAiO4kqTGSKbEXpnVxDTYCGiM6WnE4blFHsSGbprP/NGnp86e6Xv7nu5f9+FyX6+qU3V/39/3+/5+zrl9z/3d0+d8quqwqvrJJK9M8hej5o47XdrdNyyw/A+TXF5VL52itF5svLvfXlWnJzk/yfuSvC7JxVPk1yLnzuvuzRNjG7t7frHA7r4qyc5ukgvVDwAAAAAAAAAAAAAAAAAAAAAAAAD7hKaSz31bJpsbVtVdSd6ywPx7k5w7dnxyknVjx1cl+U53/+4S9r42yduyo6nktUusN939TFX9TpL3jw1/M8l8Va3q7meTpKpWJZkfnVud5OiJqGOS/Pdmj919R5I7quqaJJsyXVPJVyVZP8V8AAAAAAAAAAAAAAAAAAAAAAAAAHhOWzXrAtgjNyc5uKou2TlQVWdU1TlJbkryC1V1dFUdneQXRmOpqg8mOTLJe5a4z7VJ/mGSn0/yR1PWeHWS85O8KEm6+2+SfD3Jr4/N+fUkt43OfSfJi6vqlaNafzzJmUk2VNVhVXXu2Lr5JN9daiFV9UvZ8TgsuTEmAAAAAAAAAAAAAAAAAAAAAAAAADzXaSq5DHV3J7kgyflVtbGq7kry4SQPdPcjSf5Fkr8c3X6rux+pqpOTXJ7kp5LcVlUbqurtu9nnW0meTHJzdz85cfrKUcbO20ETa7cm+b0kx40N/6Mkp45q3pjk1NFYuvvp7Ghg+e+qakOSG5K8vbsfS1JJfq2qvj06938kuXg3D9N7R3V9Z5T789398G7WAAAAAAAAAAAAAAAAAAAAAAAAAMCyUTv6EwJ7yQ8SAAAAAAAAAAAAAAAAAAAAAMCeqVkXADz/PL75Ib2hgD1yxLHHLatrk1WzLgAAAAAAAAAAAAAAAAAAAAAAAAAAgOnNzboAZquqLk9y4cTw9d39oVnUM43lXDsAAAAAAAAAAAAAAAAAAAAAAAAA7K3q7lnXAM8HfpAAAAAAAAAAAAAAAAAAAAAAAPZMzboA4Pnn8c0P6Q0F7JEjjj1uWV2bzM26AHg+ePCRRwfJOeTZrYPkJElq1WBRW2q4p4qD5g4YLGtIBzwzzGO/fe6gQXKSZNWWJwfLevbpLYNl1ZxfHdM46sUvGSTn4R88NkjOSvGio48cJGfzox73aR171N4/9kP9Xl1Jjj/mqEFyvv83fzVIzkrxwpe9YpCcux94eJCclWLNCS8aJOeJxzzXTOPwI4d5nnnoG+sHyVlJjjvj7L3O+C/3PzRAJSvLT5x43CA56+749iA5K8W5p//kIDl/tuGbg+SsFL8w/1OD5Limmc5Q1zQ/uGfTIDkrxdE/9tJBch6973uD5KwkQ7xG5nWa6Q3xOk2SPHj7Xw6Ss1Icf+bPDJKz/jt3D5KzUpz98jWD5Nz75T8bJGelOOm1vzBIjmv46Qx1Df+Dx58YJGclOfqIw/c644nHHx+gkpXl8COOGCTHa8LTGew14TtuGyRnpTju9J8eJOfcKz4+SM5Kse6Kdw6S430d0xvivR0b73twgEpWllNefPwgOY8/8v1BclaKI4554SA5HvfpDPW4u5aczlDXkl4Tns5Qrwff/5f/eZCcleTEn/lbe53x2BNep5nWkYfv/es0idfIpjXE62NJcs9DmwfJWSl+7LhjB8nxvo7pDPW+Dn+3Tue5+DdrzR04WNb3f/T0YFlbn9k+WNb3fzjM59de+uRw71U99KWnDpbVBw73Wb/Htgz3Pdzy9LbBsh558keDZf3EU8P8nn7mpJcPkpMkqwb8yP7mHw73WB10wHCfk334ieE+R3r6Cw8bJOeZJ4e7Vl514HDPpXNHHjNY1mNPPTd/Do994G8GyVl10OpBcgbXzw4WtfqkNYNl9bbhPt9fBx08SM5T9353kJyhPbv1qcGyVr/4xwfLqhruF8ZQ38NnnhjuteUDVh86WNZjB75gsKwXHjLcc/zDPxru5/CQA597vRAOO3C43h/P1HDXIUP2s/jyPcO99vCLP3P6YFkAACvNcFeeAAAAAAAAAAAAAAAAAAAAAAAAAADsN5pKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ5pKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ5pKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ5pKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQ3OzLgAAAAAAAAAAAAAAAAAAAAAAAABgSL392VmXALBfrJp1ASwfVbW9qjZU1Z1VdX1VHToaP6GqrquqjVV1a1V9vqpOrao1VbVltOabVfXpqjpwkfxzq6qr6u1jY/OjsfeNjq+uqk2jzA1V9ZXR+MVV9XBVfb2qvlNVN1XVa8Zyrq6qt4wdH1tV26rqHRM13F1Vnx07fktVXT3AwwcAAAAAAAAAAAAAAAAAAAAAAAAAg9JUkmls6e757j4tydYk76iqSvK5JOu6+5TuPivJZUmOH63Z2N3zSU5PcnKSi3azx50Tc9YmuX1izqWjOua7+zVj4/+hu1/V3S9P8pEk/09VvXKBfS5M8uej/ElnVdVP7aZOAAAAAAAAAAAAAAAAAAAAAAAAAJgpTSXZU7ckeVmS85Js6+5P7DzR3bd39y3jk7t7e5KvJTlpN7nfTbK6qo4fNax8Q5I/nba47v5SkquSXLLAlLVJfjXJSVV18sS530ly+bR7AgAAAAAAAAAAAAAAAAAAAAAAAMD+pKkkU6uquSRvTHJHktOS3LqENauTvDrJF5awxQ1JLkzymiS3JXl64vyVVbVhdPuDRXJuS/KKXdTykiQndvfXknwmyVsnpnwmyU9X1csWK7KqLqmq9VW1/ppPXb3oHQIAAAAAAAAAAAAAAAAAAAAAAACAoWkqyTQOqaoNSdYnuSfJJ5ew5pTRmgeT3N/d31jCms9kR1PJtUmu3cX5S7t7fnT7B4vk1ALjbx3tkSTXjfYZtz3JlUkuW6zI7r6qu8/u7rN/+VcuXmwqAAAAAAAAAAAAAAAAAAAAAAAAAAxOU0mmsWWsmeO7untrkruSnLXImo3dPZ/klCRnVdWbd7dJdz+QZFuS1yX54l7U+6ok39rF+NokF1fV3Un+OMkZVfXyiTnXJHltkpfsxf4AAAAAAAAAAAAAAAAAAAAAAAAAsM9oKsneujnJwVV1yc6Bqjqjqs4Zn9Tdm5N8IMllS8z9zSTv7+7te1JUVf3tJJck+b8nxk9Nclh3n9Tda7p7TZIPZ0ejyfF6tyX5WJL37sn+AAAAAAAAAAAAAAAAAAAAAAAAALCvaSrJXunuTnJBkvOramNV3ZUdTRof2MX0G5McOtlwcoHcr3T3jQucvrKqNozdDhqNv3V0/NdJ/vckv9Td35pYuzbJ5ybGPpuJppIjn0wyt7taAQAAAAAAAAAAAAAAAAAAAAAAAGAWNMxjybr7sAXG70ty0QLLThub10nOXCR/XZJ1uxi/YuzrixdYfvXotlD2znU37OLcN5K8cvT1mrHxp5O8eKFMAAAAAAAAAAAAAAAAAAAAAAAAAJilVbMuAAAAAAAAAAAAAAAAAAAAAAAAAACA6c3NugBWnqp6fZKPTgxv6u4LZlEPAAAAAAAAAAAAAAAAAAAAAAAAACxHmkqy33X3TUlumnUdAAAAAAAAAAAAAAAAAAAAAAAAALCcrZp1AQAAAAAAAAAAAAAAAAAAAAAAAAAATE9TSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSfaJqtpeVRuq6s6qur6qDh2Nn1BV11XVxqq6tao+X1WnVtWaqtoyWvPNqvp0VR24SP65VdVV9faxsfnR2PtGx1dX1aZR5oaq+spExo1V9ecTY1dU1Y+q6rixsR8O9bgAAAAAAAAAAAAAAAAAAAAAAAAAwFA0lWRf2dLd8919WpKtSd5RVZXkc0nWdfcp3X1WksuSHD9as7G755OcnuTkJBftZo87J+asTXL7xJxLR3XMd/drdg5W1VFJzkpyZFX9xMSazUl+dcn3FAAAAAAAAAAAAAAAAAAAAAAAAABmQFNJ9odbkrwsyXlJtnX3J3ae6O7bu/uW8cndvT3J15KctJvc7yZZXVXHjxpWviHJny6xpr+f5E+SXJfkbRPnfj/JW6vqmMUCquqSqlpfVeuv+dTVS9wWAAAAAAAAAAAAAAAAAAAAAAAAAIahqST7VFXNJXljkjuSnJbk1iWsWZ3k1Um+sIQtbkhyYZLXJLktydMT56+sqg2j2x+Mja9Ncu3otnZizQ+zo7HkP1ts4+6+qrvP7u6zf/lXLl5CqQAAAAAAAAAAAAAAAAAAAAAAAAAwHE0l2VcOqaoNSdYnuSfJJ5ew5pTRmgeT3N/d31jCms9kR1PJnU0iJ13a3fOj2z9Ikqo6PsnLk/zn7v7rJNuq6rSJdb+X5Feq6vAl1AAAAAAAAAAAAAAAAAAAAAAAAAAA+52mkuwrW8aaOb6ru7cmuSvJWYus2djd80lOSXJWVb15d5t09wNJtiV5XZIvLrG2i5IcnWRTVd2dZE12NKUcz300yR8m+adLzAQAAAAAAAAAAAAAAAAAAAAAAACA/UpTSfanm5McXFWX7ByoqjOq6pzxSd29OckHkly2xNzfTPL+7t6+xPlrk7yhu9d095rsaHT5tl3M+7+S/OMkc0vMBQAAAAAAAAAAAAAAAAAAAAAAAID9RlNJ9pvu7iQXJDm/qjZW1V1JPpzkgV1MvzHJoZMNJxfI/Up337jA6SurasPY7dQkP57kz8fWb0ryWFW9eiJ3c5LPJTl4KfcPAAAAAAAAAAAAAAAAAAAAAAAAAPanuVkXwPNTdx+2wPh9SS5aYNlpY/M6yZmL5K9Lsm4X41eMfX3xAstP2sW6nx59+RcT4/88yT9fqA4AAAAAAAAAAAAAAAAAAAAAAAAAmJVVsy4AAAAAAAAAAAAAAAAAAAAAAAAAAIDpzc26AFhMVb0+yUcnhjd19wWzqAcAAAAAAAAAAAAAAAAAAAAAAAAAnis0leQ5rbtvSnLTrOsAAAAAAAAAAAAAAAAAAOD/b9MLjstLn3xo1mUAAAAAAKxoq2ZdAAAAAAAAAAAAAAAAAAAAsPxoKAkAAAAAMHuaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSjJTVbW9qjZU1Z1VdX1VHToaP6GqrquqjVV1a1V9vqpOrao1VbVltOabVfXpqjpwkfxzq6qr6u1jY/OjsfeNjq+uqreMvl5XVevH5p5dVev22QMAAAAAAAAAAAAAAAAAAAAAAAAAAHtIU0lmbUt3z3f3aUm2JnlHVVWSzyVZ192ndPdZSS5Lcvxozcbunk9yepKTk1y0mz3unJizNsnti8w/rqreuAf3BQAAAAAAAAAAAAAAAAAAAAAAAAD2G00leS65JcnLkpyXZFt3f2Lnie6+vbtvGZ/c3duTfC3JSbvJ/W6S1VV1/Khh5RuS/Oki869Mcvnuiq2qS6pqfVWtv+ZTV+9uOgAAAAAAAAAAAAAAAAAAAAAAAAAMam7WBUCSVNVckjcm+UKS05LcuoQ1q5O8Osk/W8IWNyS5MMnXk9yW5OlF5n41yQVVdV6SJxaa1N1XJbkqSR585NFeQg0AAAAAAAAAAAAAAAAAAAAAAADsB93PzroEgP1i1awLYMU7pKo2JFmf5J4kn1zCmlNGax5Mcn93f2MJaz6THU0l1ya5dgnzP5jk15cwDwAAAAAAAAAAAAAAAAAAAAAAAABmQlNJZm1Ld8+Pbu/q7q1J7kpy1iJrNnb3fJJTkpxVVW/e3Sbd/UCSbUlel+SLS5h/c5JDkvzsUu4EAAAAAAAAAAAAAAAAAAAAAAAAAOxvmkryXHRzkoOr6pKdA1V1RlWdMz6puzcn+UCSy5aY+5tJ3t/d25c4/4NJfm2JcwEAAAAAAAAAAAAAAAAAAAAAAABgv9JUkuec7u4kFyQ5v6o2VtVdST6c5IFdTL8xyaGTDScXyP1Kd984RR2fT/LwUucDAAAAAAAAAAAAAAAAAAAAAAAAwP40N+sCWNm6+7AFxu9LctECy04bm9dJzlwkf12SdbsYv2Ls64vHvj53Yt5ZC2UDAAAAAAAAAAAAAAAAAAAAAAAAwCytmnUBAAAAAAAAAAAAAAAAAAAAAAAAAABMb27WBcAQqur1ST46Mbypuy+YRT0AAAAAAAAAAAAAAAAAAAAAAAAAsK9pKsnzQnfflOSmWdcBAAAAAAAAAAAAAAAAALBSbHrBcXnpkw/NugwAAAAAgBVt1awLAAAAAAAAAAAAAAAAAAAAlh8NJQEAAAAAZk9TSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSQAAAAAAAAAAAAAAAAAAAAAAAACAZUhTSfa7qtpeVRuq6s6qur6qDh2Nn1BV11XVxqq6tao+X1WnVtWaqtoyWvPNqvp0VR24SP65VdVV9faxsfnR2PvGxuaq6uGq+sjY2AGjvV87NvZnVXXh8I8EAAAAAAAAAAAAAAAAAAAAAAAAAOw5TSWZhS3dPd/dpyXZmuQdVVVJPpdkXXef0t1nJbksyfGjNRu7ez7J6UlOTnLRbva4c2LO2iS3T8x5XZK/TnLhaP909/Yk/yTJx6vqwKpam+TZ7r5+T+8sAAAAAAAAAAAAAAAAAAAAAAAAAOwLmkoya7ckeVmS85Js6+5P7DzR3bd39y3jk0dNH7+W5KTd5H43yeqqOn7UMPINSf50Ys7aJP8qyT1Jfm5sj79I8tUkVyT57STvnP5uAQAAAAAAAAAAAAAAAAAAAAAAAMC+pakkM1NVc0nemOSOJKcluXUJa1YneXWSLyxhixuSXJjkNUluS/L0RM75Sf4kybXZ0WBy3GVJ3pPkD7v7bxao5ZKqWl9V66/51NVLKAcAAAAAAAAAAAAAAAAAAAAAAAAAhqOpJLNwSFVtSLI+yT1JPrmENaeM1jyY5P7u/sYS1nwmO5pKrs2OxpHj3pTkS929Jclnk/yvVXXA2PnXJnksO5pd7lJ3X9XdZ3f32b/8KxcvoRwAAAAAAAAAAAAAAAAAAAAAAAAAGI6mkszClu6eH93e1d1bk9yV5KxF1mzs7vkkpyQ5q6revLtNuvuBJNuSvC7JFydOr01yflXdneTWJC9M8vNJUlUvSPJ/jo6Pq6r/Zap7BwAAAAAAAAAAAAAAAAAAAAAAAAD7wdysC4CRm5P8dlVd0t1XJUlVnZHkyCTf2zmpuzdX1QeSXJbkj5eQ+5tJjuvu7VWVUe4RSc5J8pLufno09r9lR6PJ/zRa85nu/quq+idJrquqm7v7qYHuKwAAAAAAAAAAAAAAAAAAAAAAAPtS96wrANgvVs26AEiS7u4kFyQ5v6o2VtVdST6c5IFdTL8xyaFVdc4Scr/S3TdODF+Q5OadDSVH/ijJL1bVmaPzHxqt/3qSm5K8f9r7BAAAAAAAAAAAAAAAAAAAAAAAAAD70tysC2Dl6e7DFhi/L8lFCyw7bWxeJzlzkfx1SdbtYvyKscNPTZx7JMmLRoenTpx790J7AQAAAAAAAAAAAAAAAAAAAAAAAMCsrJp1AQAAAAAAAAAAAAAAAAAAAAAAAAAATG9u1gXAnqqq1yf56MTwpu6+YBb1AAAAAAAAAAAAAAAAAAAAAAAAAMD+pKkky1Z335TkplnXAQAAAAAAAAAAAAAAAAAAAAAAAACzsGrWBQAAAAAAAAAAAAAAAAAAAAAAAAAAML3q7lnXAM8HfpAAAAAAAAAAAAAAAAAAAAAAAPZMzboA4Pnn0fvv1RsK2CNHnXjSsro2WTXrAgAAAAAAAAAAAAAAAAAAAADjek0VAAAgAElEQVQAAAAAmJ6mkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAy5Cmkux3VbW9qjZU1Z1VdX1VHToaP6GqrquqjVV1a1V9vqpOrao1VbVltOabVfXpqjpwkfxzq+qxqvp6VX27qr5cVW8aO39FVb1v9PXVVbVplL2hqt49Gr+7qu4YG3/Nvn5cAAAAAAAAAAAAAAAAAAAAAAAAAGAac7MugBVpS3fPJ0lV/UGSd1TVx5J8Lsmnuvtto3NnJjk+yfeSbOzu+ao6IMl/SnJRkj9YZI9buvtNo5z5JDdW1Zbu/uIu5l7a3TfsYvy87t68h/cRAAAAAAAAAAAAAAAAAAAAAAAAAPapVbMugBXvliQvS3Jekm3d/YmdJ7r79u6+ZXxyd29P8rUkJy11g+7ekOS3krxzkIoBAAAAAAAAAAAAAAAAAAAAAAAA4DlAU0lmpqrmkrwxyR1JTkty6xLWrE7y6iRfmHK725K8YoFzV1bVhtHt9LHxL43G/mKBWi6pqvVVtf6qq66ashwAAAAAAAAAAAAAAAAAAAAAAAAA2Dtzsy6AFemQqtow+vqWJJ9M8o7drDlltOalSf5jd39jyj1rkXOXdvcNuxg/r7s3L7Sou69KsrObZE9ZDwAAAAAAAAAAAAAAAAAAAAAAAADsFU0lmYUt3T0/PlBVdyV5yyJrNnb3fFUdm+T/q6o3d/cfT7Hnq5J8aw9qBQAAAAAAAAAAAAAAAAAAAAAAAIDnpFWzLgBGbk5ycFVdsnOgqs6oqnPGJ3X35iQfSHLZUoOr6owkv5Hk3wxUKwAAAAAAAAAAAAAAAAAAAAAAAADMnKaSPCd0dye5IMn5VbWxqu5K8uEkD+xi+o1JDp1sODnhnKr6elV9OzuaSb67u784eOEAAAAAAAAAAAAAAAAAAAAAAAAAMCO1o5cfsJf8IAEAAAAAAAAAAAAAAAAAAAAA7JmadQHA88+j99+rNxSwR4468aRldW0yN+sCAAAAAAAAAAAAAAAAAAAAAAAAAAbVz866AoD9QlNJlq2qen2Sj04Mb+ruC2ZRDwAAAAAAAAAAAAAAAAAAAAAAAADsT5pKsmx1901Jbpp1HQAAAAAAAAAAAAAAAAAAAAAAAAAwC5pKwgA23vfgIDkvOviAQXKSpOaG+/HuZ54ZLGvQurZtHSwrq4Z57HvbtkFyhrZq9erBsp596qnBslaCI48/YZCcX/7X/36QnJXimnf9w0FyHnviiUFyVpIjDz98rzM+9idfGqCSleW9v3jeIDmbH31skJyV4tijjhwk5/FHvj9IzkpxxDEvHCTniccfHyRnpTj8iCMGyXn0/nsHyVlJjjrxpL3O+Pb37h+gkpXlJ19y4iA5Tzz26CA5K8XhRx41SI5rmukMdU3zXx9yTTONk48b5prm8c0PDZKzUhxx7HGD5HjcpzfEY//49zcPUMnKcsQLjx0k5wffu3uQnJXi6JesGSTHv/npDPXv/bEHHxgkZ6UY6v9A/O00naH+dvrGh947SM5KcsblH9vrDM8z0xvquWb9e9YOkrNSnP271w6S43Wa6Qz1Os3DP/C4T+NFRw/zuJ97xccHyVlJ1l3xzr3OcC05vaGuJ+/f/MggOSvFicceM0iO363TGep36x0fuXSQnJXi9A9cOUjOo/d9b5CcleKoF79kkJxHH7hvkJyV5KgTXrzXGT943HtVp3X0EXv/XtXE79ZpDfW71Xv3pjPUe/c810xnqOcZf7dOZ6i/WYd8nnn62R4sqx4Z7v0mWw4b5u/MJDlyoM8zbt08zOcrk+SgFw3zHs7kufs9fOrwYd4/liRHHLRqsKyhvo9zx+39dfJO27Y/O1jWAY8P95rWU4cOc22UJC9YNdy/02e3Pj1IzgGHHDpITpI8U8N9bvrZzcP9f+uQP4eHrT5wsKxnHx3m/bgHvGCY65kkqQOG+x729u2DZW2fO2iwrGcGfK6pGibnoGcH/Gy/7+FUBvsePjPMc/JzWR043PdwyH4W331imF4Ixx423O/DF9Rw/0af7OGu/4a8DtmS4Z5rjj9mmL8PAQBWouGuFgEAAAAAAAAAAAAAAAAAAAAAAAAA2G80lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lZyBqtpeVRuq6s6qur6qDh2N/3Bi3sVV9fEl5G2oqusmxq6uqk2jc7dX1d+pqstHxxvGathQVe+uqiuq6t6xsQ1VdVRVnVtVj42O/6qq/uVi9S1Sy1uWcD/WVFVX1QfHxo6tqm0791lCnV+vqm9X1Zer6k1jOVdU1fvGjueq6uGq+shEDeuqav3Y8dlVtW53tQMAAAAAAAAAAAAAAAAAAAAAAADA/qap5Gxs6e757j4tydYk79jToKp6ZZIDkpxTVS+YOH1pd88neU+ST3T3h0b7zo/VMN/dvzea/7GxsfnufnQ0fstozauSvKmq/uc9qGWpNiX5u2PHFya5a2LOYnW+qrt/Msm7k3y8qv7OAvu8LslfJ7mwqmri3HFV9cY9rB8AAAAAAAAAAAAAAAAAAAAAAAAA9gtNJWfvliQv24v1a5Nck+TPkvy9BeZ8NclJe7FHkqS7tyTZsEjWUmrZnR8l+VZVnT06fmuSz0wb0t0bkvxWkncuMGVtkn+V5J4kPzdx7sokl0+7JwAAAAAAAAAAAAAAAAAAAAAAAADsT5pKzlBVzSV5Y5I7RkOHVNWGnbfsaIq4O29Ncl2Sa7OjUeKuvCHJjUvIeu/Y/l/aRb1HJ3l5ki/vRS1LcV2St1XVS5JsT3LfNHWOuS3JKyYHq2p1kvOT/MkCtX41ydaqOm+xIqvqkqpaX1Xrr/v31yx+jwAAAAAAAAAAAAAAAAAAAAAAAABgYHOzLmCFOmTUNDJJbknyydHXW7p7fuekqro4ydkLhVTV2Uk2d/c9VXVvkt+vqmO6+5HRlCur6reTnJzk55ZQ18e6+1/uYvycqro9OxpK/m53P7AHtUzjC0n+RZIHk/yHKer8H8paYPxNSb7U3Vuq6rNJfqOq3tPd28fmfDDJryd5/0Lh3X1VkquSZON9D/YS6gEAAAAAAAAAAAAAAAAAAAAAAACAwayadQEr1Jbunh/d3tXdW/cwZ22SV1TV3Uk2JjkiyS+Nnb+0u0/NjsaIv78X9d7S3Wcm+Z+S/KOqmt/FnN3VsmSjx+PWJL+a5IY9qniHVyX51i7G1yY5f1TrrUlemOTnJ2q4OckhSX52L/YHAAAAAAAAAAAAAAAAAAAAAAAAgH1GU8llqqpWJbkoyendvaa71yT5e9nRMHHSx5OsqqrX782e3b0pyUeyo0nlntayVL+T5P3d/cieLK6qM5L8RpJ/MzF+RJJzkvzYWK3/dIFaP5jk1/ZkfwAAAAAAAAAAAAAAAAAAAAAAAADY1zSVXL7OSXJvd983NvblJD9VVSeOT+zuztIaJL63qjaM3dbsYs4nkrx24txSavm3VfVfR7ev7qaOdPdd3f2pKes8p6q+XlXfzo5mku/u7i9OrL0gyc3d/fTY2B8l+cWqOniihs8neXh3tQIAAAAAAAAAAAAAAAAAAAAAAADALMzNuoCVqLsPW8p4d1+d5OoF5v6/SX52Ymx7khNGhxdPnPtsks8ustcVSa7YxVZ3J1k3Nm9LkpNGh+P1LbmWhXT33UlO28X4f99nN3UeuUj2+JpPTZx7JMmLRofnTpw7a7GaAQAAAAAAAAAAAAAAAAAAAAAAAGBWVs26AAAAAAAAAAAAAAAAAAAAAAAAAAAApjc36wLYvaq6PMmFE8PXd/eHZlHP3qqq05NcMzH8dHe/ehb1AAAAAAAAAAAAAAAAAAAAAAAAAMBypKnkMjBqHrksG0juSnffkWR+1nUAAAAAAAAAAAAAAAAAAAAAAADw/NTbt8+6BID9YtWsCwAAAAAAAAAAAAAAAAAAAAAAAAAAYHqaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEOaSgIAAAAAAAAAwH9j5+6jNK3LO8F/r6J9AXlRxHcTWkEFBS3H3lWToBB1fYkedhKJsHF3Oqtr3LPRlURkTnDP9ig4juBgGM6MMlHbkAiKbNQwezzuGUU7CZtzWi2mwZcoNBpBSRAFkR7Q5to/6m738UlX1VNVD11d9OdzznO87+v+3dfvez9UVz/Vdl8AAAAAAAAAAAAAALAOGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAOGSq5n6uq3VU1V1XXVdUVVXXIUL9rbN3mqrp4gn5zVXX5WG1rVe0crl1bVS+qqnOG87mRDHNV9eaq2lJVN4/U5qrq4VV1clXdMZx/vaouWCzfIllePcFzbKyqrqpzR2pHVdVP9+yzUM6R9e8brs+M1DZX1X1V9cyR2nVVtXGpTAAAAAAAAAAAAAAAAAAAAAAAAACwLxkquf/b1d2z3X1CknuTvHGljarq+CQHJTmpqh42dvms7p5N8pYk7+/u84Z9Z0cyzHb3RcP6C0dqs939o6G+bbjn2UleWVW/uoIsk9qZ5DdGzk9Lcv3Ymr3mHAZJ/vMkf5/khWP3fDfJOSvMBAAAAAAAAAAAAAAAAAAAAAAAAAD7hKGS68u2JMeu4v4zklya5LNJTl1gzTVJnrCKPZIk3b0rydwivSbJspS7k3ytqjYN569J8vEJ7z058wMo/8OQZdRVSZ5RVU9bYS4AAAAAAAAAAAAAAAAAAAAAAAAAuN8ZKrlOVNWGJC9PsmMoHVxVc3teSd4xQZvXJLk8yWX5p4MU93hZkk9O0OvMkf0/v5e8j0jylCRfXEWWSVye5PSq+qUku5PcMmHOM4a9/yLJb1TVg0au3ZfkPUn+aLGNq+oNVbW9qrZf/meXruIRAAAAAAAAAAAAAAAAAAAAAAAAAGD5Nqx1AJZ08DA0Mkm2JfngcLyru2f3LKqqzUk2LdSkqjYlua27v1NVNyf5UFUd2d23D0vOr6p3JXlikudPkOvC7r5gL/WTqurazA+UfF93f38FWZbjM0nemeTWJB+bJGdVPTjJK5L8QXf/uKr+NslLk1w1suyjSc6pqicttHF3X5LkkiS54ZZbewXZAQAAAAAAAAAAAAAAAAAAAAAAAGDFZtY6AEva1d2zw+tN3X3vCvuckeS4qropyQ1JDk/yWyPXz+rupyY5O8mHVpF3W3c/K8kzkryuqmb3smapLBMb3o8vJfnDJJ+Y8LaXJnl4kh1Dhl8bMo32/VmS92b+/QAAAAAAAAAAAAAAAAAAAAAAAACA/Y6hkgeAqppJ8ttJTuzujd29McmpGRukOLg4yUxVvXQ1e3b3ziTvzthQxmVmmdR7k5zd3bdPuP6MJK8f2f9JSV5SVYeMrdua5MVJHrWKbAAAAAAAAAAAAAAAAAAAAAAAAABwvzBU8sBwUpKbu/uWkdoXkzy9qh43urC7O8m5Sd62RM8zq2pu5LVxL2ven+QFY9cmyfKBqvru8LpmiRzp7uu7+yMT5nx6kpcl+U8j9/8kyV8ledVY33uTXJTk0UtlAAAAAAAAAAAAAAAAAAAAAAAAAIB9bcNaB2Bx3X3oJPXu3ppk6wJrv5DkeWO13UkeO5xuHrt2ZZIrF9lrS5Ite9nqpiRXj6zbleQJw+lovomzLKS7b0pywl7qP99nkZxH7uW+3xw53TpSvyjzgyUBAAAAAAAAAAAAAAAAAAAAAAAAYL8ys9YBAAAAAAAAAAAAAAAAAAAAAAAAAABYvg1rHYDpqqpzkpw2Vr6iu89bizyrVVUnJrl0rHxPdz93LfIAAAAAAAAAAAAAAAAAAAAAAAAAwP7CUMkHmGF45LocILk33b0jyexa5wAAAAAAAAAAAAAAAAAAAAAAAACA/c3MWgcAAAAAAAAAAAAAAAAAAAAAAAAAAGD5DJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiHDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiHDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiHDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiHDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiHDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiHDJV8gKiq3VU1V1XXVdUVVXXIUL9rbN3mqrp4gn5zVXX5WG1rVe0crl1bVS+qqnOG87mRDHNV9eaq2lJVN4/U5qrq4VV1clXdMZx/vaouWCzfIllePcFzbKyqrqpzR2pHVdVP9+wz5HzrSN+bq+ohI2tvWmofAAAAAAAAAAAAAAAAAAAAAAAAANjXDJV84NjV3bPdfUKSe5O8caWNqur4JAclOamqHjZ2+azunk3yliTv7+7zhn1nRzLMdvdFw/oLR2qz3f2job5tuOfZSV5ZVb+6giyT2pnkN0bOT0ty/SLrdyf5n1e4FwAAAAAAAAAAAAAAAAAAAAAAAADsE4ZKPjBtS3LsKu4/I8mlST6b5NQF1lyT5Amr2CNJ0t27kswt0muSLEu5O8nXqmrTcP6aJB9fZP37kpxZVRsWa1pVb6iq7VW1/fI/u3SF0QAAAAAAAAAAAAAAAAAAAAAAAABgZRYdmsf6MwxCfHmSzwylg6tqbmTJkUk+vUSb1yR5SZLjkrwpyUf3suZlST45QaQzq+q1w/EPu/uUsbyPSPKUJF9cRZZJXJ7k9Kq6NcnuJLckefwCa7+T5K+S/I9J/nKhht19SZJLkuSGW27tFeYCAAAAAAAAAAAAAAAAAAAAAAAAgBUxVPKBY3R45LYkHxyOd3X37J5FVbU5yaaFmlTVpiS3dfd3qurmJB+qqiO7+/ZhyflV9a4kT0zy/AlyXdjdF+ylflJVXZv5gZLv6+7vryDLcnwmyTuT3JrkYxOs/9dJPpXkP61gLwAAAAAAAAAAAAAAAAAAAAAAAAC4382sdQCmZld3zw6vN3X3vSvsc0aS46rqpiQ3JDk8yW+NXD+ru5+a5OwkH1pF3m3d/awkz0jyuqqa3cuapbJMbHg/vpTkD5N8YoL130wyl+S3V7IfAAAAAAAAAAAAAAAAAAAAAAAAANzfDJXk56pqJvNDFE/s7o3dvTHJqZkf7jju4iQzVfXS1ezZ3TuTvDvzQypXmmVS701ydnffPuH685K8dRX7AQAAAAAAAAAAAAAAAAAAAAAAAMD9xlBJRp2U5ObuvmWk9sUkT6+qx40u7O5Ocm6Sty3R88yqmht5bdzLmvcnecHYtUmyfKCqvju8rlkiR7r7+u7+yFLrRtcn+fKk6wEAAAAAAAAAAAAAAAAAAAAAAABgX9qw1gGYju4+dJJ6d29NsnWBtV9I8ryx2u4kjx1ON49duzLJlYvstSXJlr1sdVOSq0fW7UryhOF0NN/EWRbS3TclOWEv9Z/vM+TcU988tu43J9kHAAAAAAAAAAAAAAAAAAAAAAAAAPa1mbUOAAAAAAAAAAAAAAAAAAAAAAAAAADA8m1Y6wCsjao6J8lpY+Uruvu8tcizWlV1YpJLx8r3dPdz1yIPAAAAAAAAAAAAAAAAAAAAAAAAANzfDJU8QA3DI9flAMm96e4dSWbXOgcAAAAAAAAAAAAAAAAAwIHiwUc9JvfedutaxwAAAAAAOKDNrHUAAAAAAAAAAAAAAAAAAABg/TFQEgAAAABg7RkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDhkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDm1Y6wAAAAAAAAAAAAAAAAAAAAAAAAAAU9W91gkA9omZtQ4AAAAAAAAAAAAAAAAAAAAAAAAAAMDyGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAOGSoJAAAAAAAAAAAAAAAAAAAAAAAAALAOGSq5jlXV7qqaq6rrquqKqjpkqN81tm5zVV08Qb+5qrp8rLa1qnYO166tqhdV1TnD+dxIhrmqenNVbamqm0dqc1X18Ko6uaruGM6/XlUXLJZvkSyvnuA5NlZVV9W5I7WjquqnE+7z6ar6n0bO/2NVnbXUvgAAAAAAAAAAAAAAAAAAAAAAAACwLxkqub7t6u7Z7j4hyb1J3rjSRlV1fJKDkpxUVQ8bu3xWd88meUuS93f3ecO+syMZZrv7omH9hSO12e7+0VDfNtzz7CSvrKpfXUGWSe1M8hsj56cluX7Cfd6c5F8NwzB/Jclzk1y4whwAAAAAAAAAAAAAAAAAAAAAAAAAcL8wVPKBY1uSY1dx/xlJLk3y2SSnLrDmmiRPWMUeSZLu3pVkbpFek2RZyt1JvlZVm4bz1yT5+CT7dPdNSS5J8p4k/yHJ73f3z8Y3qKo3VNX2qtp++Z9dusKYAAAAAAAAAAAAAAAAAAAAAAAAALAyG9Y6AKtXVRuSvDzJZ4bSwVU1N7LkyCSfXqLNa5K8JMlxSd6U5KN7WfOyJJ+cINKZVfXa4fiH3X3KWN5HJHlKki+uIsskLk9yelXdmmR3kluSPH7CfS5IckOSbd2915zdfUnmh0/mhltu7RVmBAAAAAAAAAAAAAAAAAAAAAAAAIAVMVRyfRsdHrktyQeH413dPbtnUVVtTrJpoSZVtSnJbd39naq6OcmHqurI7r59WHJ+Vb0ryROTPH+CXBd29wV7qZ9UVddmfqDk+7r7+yvIshyfSfLOJLcm+dgy93lmkpkkx1XVTHfft4L9AQAAAAAAAAAAAAAAAAAAAAAAAOB+M7PWAViVXd09O7ze1N33rrDPGZkfnnhTkhuSHJ7kt0aun9XdT01ydpIPrSLvtu5+VpJnJHldVc3uZc1SWSY2vB9fSvKHST4x6T5VNZPk3yd5bZJvJvlfV7I/AAAAAAAAAAAAAAAAAAAAAAAAANyfDJU8wA0DFH87yYndvbG7NyY5NfNDF8ddnGSmql66mj27e2eSd2d+SOVKs0zqvUnO7u7bl7HP7yX5ZndfneQPkpxdVY9aRQYAAAAAAAAAAAAAAAAAAAAAAAAAmDpDJTkpyc3dfctI7YtJnl5Vjxtd2N2d5Nwkb1ui55lVNTfy2riXNe9P8oKxa5Nk+UBVfXd4XbNEjnT39d39kbHyYvscnflhl28d7r8lyfuSvGepvQAAAAAAAAAAAAAAAAAAAAAAAABgX9qw1gFYue4+dJJ6d29NsnWBtV9I8ryx2u4kjx1ON49duzLJlYvstSXJlr1sdVOSq0fW7UryhOF0NN/EWRbS3TclOWEv9Un32Th27d9Osi8AAAAAAAAAAAAAAAAAAAAAAAAA7Eszax0AAAAAAAAAAAAAAAAAAAAAAAAAAIDl27DWAdh3quqcJKeNla/o7vPWIs9qVdWJSS4dK9/T3c9dizwAAAAAAAAAAAAAAAAAAAAAAAAAsC8ZKnkAGYZHrssBknvT3TuSzK51DgAAAAAAAAAAAAAAAAAAAAAAAABYC9Xda50BHgj8QgIAAAAAAAAAAAAAAAAAAAAAWJla6wDAA88Pv7PTbChgRR7xy09aV59NZtY6AAAAAAAAAAAAAAAAAAAAAAAAAAAAy2eoJAAAAAAAAAAAAAAAAAAAAAAAAADAOmSoJAAAAAAAAAAAAAAAAAAAAAAAAADAOmSoJAAAAAAAAAAAAAAAAAAAAAAAAADAOmSoJAAAAAAAAAAAAAAAAAAAAAAAAADAOrRhrQOwclW1O8mOzP93/FqSf9Hdd1fVXd196Mi6zUk2dffvL9FvLsnXu/v0kdrWJC9MckeSSvIHSZ6X5LRhyYlDhiT5UJIjk/wvSf5xpPXJSWaTfCrJziQPTXJVd791oXyLZLmquz+xxHNsHN6Prw97/TjJv+/ureP7VdWWsbyf6e5/WVVXJ3lckl1D/dyl9gUAAAAAAAAAAAAAAAAAAAAAAGD/0N1rHQFgnzBUcn3b1d2zSVJVf57kjUn+7UoaVdXxSQ5KclJVPay7fzJy+azu/kRVnZLkku5+SpLzhvvu2pNhON+S5MLuvmCsf5Js6+5XVtXBSb5SVX/R3X+9zCyTuqG7nz30e3KS/6uqqrs/vJe1/yTv4He6e/sK9gYAAAAAAAAAAAAAAAAAAAAAAACA+93MWgdgarYlOXYV95+R5NIkn01y6gJrrknyhFXskSTp7l1J5hbpNUmW5ex3Y5I/SPLm1fYCAAAAAAAAAAAAAAAAAAAAAAAAgP2FoZIPAFW1IcnLk+wYSgdX1dyeV5J3TNDmNUkuT3JZ5oc67s3Lknxygl5njuz/+b3kfUSSpyT54iqyLNeXkxy3wLXRvC8dqf/5SP2R4zdV1RuqantVbb/kkkumFBMAAAAAAAAAAAAAAAAAAAAAAAAAJrNhrQOwKgcPQyOTZFuSDw7Hu7p7ds+iqtqcZNNCTapqU5Lbuvs7VXVzkg9V1ZHdffuw5PyqeleSJyZ5/gS5LuzuC/ZSP6mqrs38QMn3dff3V5BlpWoFeX+nu7cvdFN3X5JkzzTJXk04AAAAAAAAAAAAAAAAAAAAAAAAAFiumbUOwKrs6u7Z4fWm7r53hX3OSHJcVd2U5IYkhyf5rZHrZ3X3U5OcneRDq8i7rbufleQZSV5XVbN7WbNUlpV6dpKvTaEPAAAAAAAAAAAAAAAAAAAAAAAAAOwXDJU8wFXVTJLfTnJid2/s7o1JTs38cMdxFyeZqaqXrmbP7t6Z5N2ZH1K50iwTq6qNSS5I8u9W0wcAAAAAAAAAAAAAAAAAAAAAAAAA9ieGSnJSkpu7+5aR2heTPL2qHje6sLs7ydPZXxIAACAASURBVLlJ3rZEzzOram7ktXEva96f5AVj1ybJ8oGq+u7wumaRDMdU1Veq6mtJPp7kou7+8BK5AQAAAAAAAAAAAAAAAAAAAAAAAGDdqPk5gcAq+YUEAAAAAAAAAAAAAAAAAAAAALAytdYBgAee2799o9lQwIocefST19Vnk5m1DgAAAAAAAAAAAAAAAAAAAAAAAAAAwPJtWOsA7DtVdU6S08bKV3T3eWuRZ7Wq6sQkl46V7+nu565FHgAAAAAAAAAAAAAAAAAAAAAAAADYl6q71zoDPBD4hQQAAAAAAAAAAAAAAAAAAAAAsDK11gGAB57bv32j2VDAihx59JPX1WeTDWsdAB4Ibr39R1Pp85B7755KnyTpQw6bWq/c8YOptdpw+MOn1utnd07nfZ+mmQc/dGq97j7owVPrteGgg6bW60G77pxarwPBwx//S1Pp8+M79r+v9/3ZYUdM53vNhz93zVT6HEh+99efv+oed/z4x1NIcmA54rDp/L4/d+N3ptLnQDH75F+eSp/v3Xb7VPocKB531JFT6eP31uWZ1u+t3/+S31uX67HPWf3vrXfePr2f6Q4Uhx/5yKn0+eGdPtcsxyMOn85nGp8nl2danyVv/N4/TKXPgeLJj3v0VPr84IZvTKXPgeKRxzxtKn1+cOM3p9LnQPLIJz9l1T2m9efwB5LHHDmdz/Hf+3+/MJU+B4rHPe+FU+nj59blmdbPrT++0/8HshyHHX74VPr4el+eaX29+9lp+abx89NfffVbU0hyYPm1px87lT7+nGZ5pvXnNF9//7un0udAcdwb/+VU+txwy61T6XOgOObxj5lKH59plm8an2tO3nLxFJIcWK7e8vtT6eNrfnmm9Tn+H3Z8eSp9DhSPPvGfTaWPz5LLM63Pkp+d++pU+hwo/rvZp0+lz21f3zGVPgeSo447cdU9/svOv59CkgPLM580nb+f/eVvfXsqfQ4U/+zYo6fS584f3DaVPgeKwx951FT6+LuqyzOtv6t624/umEqfA8VRDz9iKn2m+f/59U/vnVqv+6bYa+ZB0/s3Z9+7+6dT6fPYB0/v31XPHHzI1Hr1vf91er123ze1XrVhev+0e1r/DZPkMRum84wHPWyK/7a1p/e+7941vX+/WzUztV63Tu8/YQ576HS+Pxz6oOk9X//sZ1PrNc3vpQdN8XvN9348ve81j3nQdPrMPHR6/9Z5qqb4a+eue6f3tXXog6f3fflnd0zns/eGI6bzmTTJVL+XTtPdu6fX65AN0/va2n3XdD7Hzzzk4Kn0Sab72WGadv9ken9+/pMHPWxqvQ6bmc7X/I+m+DV6333Tm2P2sIdMcQbFXT+cWq//evB0/j5hMr2fywEADkTT++kIAAAAAAAAAAAAAAAAAAAAAAAAAIB9xlBJAAAAAAAAAAAAAAAAAAAAAAAAAIB1yFBJAAAAAAAAAAAAAAAAAAAAAAAAAIB1yFBJAAAAAAAAAAAAAAAAAAAAAAAAAIB1yFBJAAAAAAAAAAAAAAAAAAAAAAAAAIB1yFBJAAAAAAAAAAAAAAAAAAAAAAAAAIB1yFDJ/UhV7a6quaq6rqquqKpDhvpdY+s2V9XFC/R4YVVdM1bbUFW3VtXjq2prVe0c9pmrqr8Z6XlfVT1z5L7rqmrjcHxEVf1pVX2rqm4Yjo8Yrp1cVVeN7bm1ql49HL+yqr5SVddW1Ver6vcWeQ+2VFVX1bEjtbcMtU3D+U1VtWPkGS4a2XPnsM/fDRmfONLnpqo6auT8vx/6HjdS2zjU3jRSu7iqNi+UGQAAAAAAAAAAAAAAAAAAAAAAAADWgqGS+5dd3T3b3SckuTfJG1fQY1uSJ1bV0SO1Fye5vrtvGc7PGvaZ7e5fGVn33STnLND3g0lu7O5ju/uYJDuT/MlSYarqQUkuSfKq7n5WkmcnuXqJ23YkOX3k/LQk14+tOWXkGd48Uj9r2OdpSb6S5HNV9eAF9jkjyV8N/zvqH5L874vcBwAAAAAAAAAAAAAAAAAAAAAAAABrbsNaB2BB25I8c7k3dfd9VfXxzA9l/DdD+fQkl01w+1VJXlBVT+vub+wpVtWxSZ6T5DUja9+R5FtVdcwSPQ/L/NfZD4Z89yT5xqJ3JJ9McmqSc4f+dyT56QT5f667O8mFVfXPk7w8yadGr1fVoUl+LckpSf4yyf85cvkfk/x1kn+R5D8uZ18AAAAAAAAAAAAAAAAAAAAAAADWXu/evdYRAPaJmbUOwD9VVRsyPwhxx1A6uKrm9rwyP9BxMZdlfpBkquohSV6R5MqR6+eP9Pvzkfp9Sd6T5I/G+j09yVx3//x3x+F4LskzFgvS3bcn+XSSb1fVZVX1O1W11NfdnUn+vqpOGJ7jY3tZ8/mRZzhzkV5fTnLcXuqnJvlMd/9dkh9U1XPGrv+bJG+tqoMWalxVb6iq7VW1/dKPbF3seQAAAAAAAAAAAAAAAAAAAAAAAABg6jasdQB+wcHD0Mgk2Zbkg8Pxru6e3bOoqjYn2bRQk+7eXlWHVtXTkhyf5G+H4Y57nNXdn1jg9o8mOaeqnrSM3L1YvbtfX1UnJnlxkrcmeUmSzUv0vDzzAyVfmuRFSX537Pop3X3bBNlqgfoZSf54ZK8zknzp58G7b6yqv03yPyzUuLsvSXJJktx6+48Weg8AAAAAAAAAAAAAAAAAAAAAAAAA4H5hqOT+5ReGR67SZZkfynj8cDyR7v5ZVb03ydkj5a8mma2qme6+L0mqaibJ7HDtoUkeMdbqyCQ/H/rY3TuS7KiqS5PszNJDJa9Kcn6S7d19Z9VCsyGX9Owk/3m0UFVHJvn1JCdWVSc5KElX1Vlj974rySeSfGGlmwMAAAAAAAAAAAAAAAAAAAAAAADA/WVmrQNwv7ksyWszPzzxU8u8d2uSFyd5VJJ097eSfCXJ20fWvD3Jl4dr30zy+Ko6Pkmq6ugkz0oyV1WHVtXJI/fNJvn2UgG6++7MD7Y8b5nZM2Soqnpzkscl+czY5VcnubS7j+7ujd39S5kfdHnSWIavZ35o5qtWkgEAAAAAAAAAAAAAAAAAAAAAAAAA7k+GSj5AdffXkvwkyee6+ydjl8+vqrmR14PH7r03yUVJHj1Sfl2Sp1bVDVV1Q5KnDrV09z2ZH2D54aqaS/KJJK/v7juSVJK3VdU3hmv/KsnmCZ/h8u7+8gKXPz+S/0/Hnu3aJH+X5L9JcsrwPKPOSPIXY7Urh/q485I8cZK8AAAAAAAAAAAAAAAAAAAAAAAAALAvbVjrAPz/uvvQSerdvTXJ1gn6ze6ltnmB5b/Qs7svyvxgyT3nP8z84MiF9vrrJM/bS/3HSV6xVNaR9VsWqJ88crxxgTWbl+i9575T9nLtopHTE0bq18bwVQAAAAAAAAAAAAAAAAAAAAAAAAD2Q4blAQAAAAAAAAAAAAAAAAAAAAAAAACsQxvWOgArV1XnJDltrHxFd5+3FnmWYz1nBwAAAAAAAAAAAAAAAAAAAAAAAID9gaGS69gwgHFdDmFcz9kBAAAAAAAAAAAAAAAAAAAAAAAAYH8ws9YBAAAAAAAAAAAAAAAAAAAAAAAAAABYPkMlAQAAAAAAAAAAAAAAAAAAAAAAAADWIUMlAQAAAAAAAAAAAAAAAAAAAAAAAADWIUMlAQAAAAAAAAAAAAAAAAAAAAAAAADWIUMlAQAAAAAAAAAAAAAAAAAAAAAAAADWIUMlAQAAAAAAAAAAAAAAAAAAAAAAAADWIUMlAQAAAAAAAAAAAAAAAAAAAAAAAADWIUMl16Gq2l1Vc1V1XVVdUVWHDPW7xtZtrqqLF+jxwqq6Zqy2oapurarHV9XWqto57DNXVX8z0vO+qnrmyH3XVdXG4fiIqvrTqvpWVd0wHB8xXDu5qq4a23NrVb16OH5lVX2lqq6tqq9W1e8t8h5sqaquqmNHam8ZapuG85uqasfIM1w09qz/WFXvHut7dVVtHznfVFVXL5QDAAAAAAAAAAAAAAAAAAAAAAAAANaKoZLr067unu3uE5Lcm+SNK+ixLckTq+rokdqLk1zf3bcM52cN+8x296+MrPtuknMW6PvBJDd297HdfUySnUn+ZKkwVfWgJJckeVV3PyvJs5NcvcRtO5KcPnJ+WpLrx9acMvIMbx6pvyTJ3yU5rapq7J5HV9XLl8oMAAAAAAAAAAAAAAAAAAAAAAAAAGvJUMn1b1uSY5d7U3ffl+Tj+cWhjKcnuWyC269K8oyqetposaqOTfKcJO8cKb8jyaaqOmaJnocl2ZDkB0O+e7r7G0vc88kkpw57H5PkjiS3TZA/Sc5I8sdJvpPk+WPXzs/CQzMBAAAAAAAAAAAAAAAAAAAAAAAAYL9gqOQ6VlUbkrw8yY6hdHBVze15ZX6g42IuyzBUsqoekuQVSa4cuX7+SL8/H6nfl+Q9Sf5orN/Tk8x19+49heF4LskzFgvS3bcn+XSSb1fVZVX1O1W11NfnnUn+vqpOGJ7jY3tZ8/mRZzhzeNaHJnlxkr/M/Htwxtg91yS5t6pOWWzzqnpDVW2vqu2XfmTrElEBAAAAAAAAAAAAAAAAAAAAAAAAYLo2rHUAVuTgYWhkkmxL8sHheFd3z+5ZVFWbk2xaqEl3b6+qQ6vqaUmOT/K3w3DHPc7q7k8scPtHk5xTVU9aRu5erN7dr6+qEzM/8PGtSV6SZPMSPS/P/EDJlyZ5UZLfHbt+SnffNlZ7ZZLPd/euqroyyf9RVW8ZHYaZ5Nwkb09y9oIP031JkkuS5Nbbf7TQswEAAAAAAAAAAAAAAAAAAAAAAADA/cJQyfXpF4ZHrtJlmR/KePxwPJHu/llVvTe/OHTxq0lmq2qmu+9LkqqaSTI7XHtokkeMtToyyc+HPnb3jiQ7qurSJDuz9FDJq5Kcn2R7d99ZVZPEPyPJr1XVTcP5I5P8epL/ZyTH56rq3CTPm6QhAAAAAAAAAAAAAAAAAAAAAAAAAOxrM2sdgDV3WZLXZn6o4qeWee/WJC9O8qgk6e5vJflKkrePrHl7ki8P176Z5PFVdXySVNXRSZ6VZK6qDq2qk0fum03y7aUCdPfdmR9sed4kgavq8CQnJfnl7t7Y3RuT/G+ZHzQ57twkb5ukLwAAAAAAAAAAAAAAAAAAAAAAAADsaxvWOgBrq7u/VlU/SfKl7v7J2OXzq2p0QOR/O3bvvVV1UZI/Him/Lsm/q6obhvNrhlq6+56qem2SD1fVQ5P8NMnru/uOqjosyduq6gNJdiX5SZLNEz7D5Ytc/nxV7R6O/0uS/5zkc919z8iaTyV5T1U9ZKzv/11V/zhJBgAAAAAAAAAAAAAAAAAAAAAAAADY1wyVXIe6+9BJ6t29NcnWCfrN7qW2eYHlv9Czuy9KctHI+Q+TvHaRvf46yfP2Uv9xklcslXVk/ZYF6iePHG9c4PaPjN1ze5JHDacnj117zqSZAAAAAAAAAAAAAAAAAAAAAAAAAGBfmlnrAAAAAAAAAAAAAAAAAAAAAAAAAAAALN+GtQ7A/a+qzkly2lj5iu4+by3yLMd6zg4AAAAAAAAAAAAAAAAAAAAAAAAA9ydDJQ8AwwDGdTmEcT1nBwAAAAAAAAAAAAAAAAAAAAAAAID708xaBwAAAAAAAAAAAAAAAAAAAAAAAAAAYPkMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIcMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIcMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIcMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIcMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIcMlQQAAAAAAAAAAAAAAAAAAAAAAAAAWIcMlXyAq6rdVTVXVddV1RVVdchQv2ts3eaquniBHi+sqmvGahuq6taqenxVba2qncM+c1X1NyM976uqZ47cd11VbRyOj6iqP62qb1XVDcPxEcO1k6vqqrE9t1bVq4fjV1bVV6rq2qr6alX93iLvwZaq6qo6dqT2lqG2aTi/qaqOGo67qt47svatVbVlwTcZAAAAAAAAAAAAAAAAAAAAAAAAANaAoZIPfLu6e7a7T0hyb5I3rqDHtiRPrKqjR2ovTnJ9d98ynJ817DPb3b8ysu67Sc5ZoO8Hk9zY3cd29zFJdib5k6XCVNWDklyS5FXd/awkz05y9RK37Uhy+sj5aUmuX2DtPUl+c8+QSQAAAAAAAAAAAAAAAAAAAAAAAADYHxkqeWDZluTY5d7U3fcl+Xh+cSjj6Ukum+D2q5I8o6qeNlqsqmOTPCfJO0fK70iyqaqOWaLnYUk2JPnBkO+e7v7GEvd8Msmpw97HJLkjyW0LrP1Z5odWnrlETwAAAAAAAAAAAAAAgP+PnfsPtrwu7wT/fi6N0C0I4o9EomsTSCHKj9YwMeUOJWNwUJSNOrrQo3E6JeW4O2wm40StEqvGyaypUYMxRMdJ75D0hNWWHy4zSkozkZWpNnFYOnqhQZNRBAP+IAjIzw5I97N/9Ld3jyd977kXTvfp2/16VZ3ic57P83m+z/d033vP5fZ9AAAAAAAAAGBmDJU8SFTVqiSvTrJtCK2uqvndj+wa6LiYzRmGSlbVYUnOSfKZkf0Pj9T75Eh8Z5IPJXnvWL0XJpnv7h27A8N6PsmLFmuku+9N8tkk36mqzVX15qqa9Hf5gSR3VNXJw31cPiH/40neXFVHLZRQVW+vqq1VtfWy/7hpQjkAAAAAAAAAAAAAAAAAAAAAAAAAmK5Vs26AvW71MDQySbYkuXRYb+/udbuTqmpDktMXKtLdW6vqiKo6MclJSa4fhjvu9q7uvmqB459KclFVHbeMvnuxeHdfUFWnJDkryW8keWWSDRNqfjq7BkqeneSXkvzqghfvfqCq/ijJryXZvkDOxiQbk+Sue3+0UL8AAAAAAAAAAAAAAAAAAAAAAAAAsFcYKnng+4nhkU/S5uwaynjSsF6S7n68qi5O8p6R8NeTrKuque7emSRVNZdk3bB3eJKnj5U6JskPR+puS7Ktqi5LclsmD5W8JsmHk2wdhkZOav2jSb6a5A8nJQIAAAAAAAAAAAAAAAAAAAAAAADAvmaoJMuxOclnkxyV5G3LPLspybuTHJkk3f2tqvpakvcl+c0h531JvjrsHZbk2Ko6qbu/UVXPT3JakvmqOiLJ6d193XBuXZLvTGqgux+pqvck+e9Labi7762qK7LrXv9gifcJAAAAAAAAAAAAAAAAAAAAAADArPXOWXcAsE8YKsmSDcMdH07yF9398Nj2h6vqfSPPf2Hs7GNVdUmS3x0Jvy3J71XVrcPzrwyxdPejVfWWJH9YVYcn+XGSC7r7/qo6Msm7q+r3k2xP8nCSDUu8h08vJW/ExUkuXOYZAAAAAAAAAAAAAAAAAAAAAAAAANjrDJU8wHX3EUuJd/emJJuWUG/dHmIbFkj/iZrdfUmSS0ae35fkLYtc68+S/OIe4g8mOWdSryP5718gfubIeu3I+oiR9V1J1iz1WgAAAAAAAAAAAAAAAAAAAAAAAACwr8zNugEAAAAAAAAAAAAAAAAAAAAAAAAAAJZv1awbYP9SVRcledNY+Mru/sAs+lmOldw7AAAAAAAAAAAAAAAAAAAAAAAAACyXoZL8hGEA44ocwriSewcAAAAAAAAAAAAAAAAAAAAAAACA5ZqbdQMAAAAAAAAAAAAAAAAAAAAAAAAAACyfoZIAAAAAAAAAAAAAAAAAAAAAAAAAACuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAACuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAACuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAACuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAACuQoZIAAAAAAAAAAAAAAAAAAAAAAAAAACuQoZIHmKraUVXzVXVzVV1ZVWuG+ENjeRuq6mML1Hh5VX1lLLaqqu6qqmOralNV3TZcZ76q/nyk5s6qOnXk3M1VtXZYH1VVf1RV36qqW4f1UcPemVV1zdg1N1XVG4f1a6vqa1V1Y1V9var+6SKvwfurqqvqhJHYrw+x00di64bYq0Zizxvu7Zjh+dOH52sXuh4AAAAAAAAAAAAAAAAAAAAAAAAAzIKhkgee7d29rrtPTvJYknc8gRpbkjy3qp4/EjsryS3d/b3h+buG66zr7peN5N2Z5KIF6l6a5NvdfUJ3H5/ktiT/YVIzVXVoko1Jzu3u05K8OMl1E45tS3L+yPM3JbllLGd9ki8P/02SdPcdST6R5N8OoX+bZGN33z6pTwAAAAAAAAAAAAAAAAAAAAAAAADYlwyVPLBtSXLCcg91984kV+QnhzKen2TzEo5fk+RFVXXiaLCqTkjy80n+zUj4N5OcXlXHT6h5ZJJVSe4Z+nu0u/9qwpn/lOSXh2sfn+T+JD8c6aeya9DkhiSvrKrDR87+TpJfrKpfT/L3k/z2hGsBAAAAAAAAAAAAAAAAAAAAAAAAwD5nqOQBqqpWJXl1km1DaHVVze9+ZNdAx8VszjBUsqoOS3JOks+M7H94pN4nR+I7k3woyXvH6r0wyXx379gdGNbzSV60WCPdfW+Szyb5TlVtrqo3V9Wkv7sPJLmjqk4e7uPysf2XJbmtu29Ncl2S14xc78dJ3pVdwyV/fXj+d1TV26tqa1Vtvew/bprQDgAAAAAAAAAAAAAAAAAAAAAAAABM16pZN8DUrR6GRibJliSXDuvt3b1ud1JVbUhy+kJFuntrVR1RVScmOSnJ9cNwx93e1d1XLXD8U0kuqqrjltF3Lxbv7guq6pQkZyX5jSSvTLJhQs1PZ9dAybOT/FKSXx3ZWz/s7857a35yaOark3w/yclJ/nSPjXVvTLIxSe6690cL9Q8AAAAAAAAAAAAAAAAAAAAAAAAAe4Whkgeenxge+SRtzq6hjCcN6yXp7ser6uIk7xkJfz3Juqqa6+6dSVJVc0nWDXuHJ3n6WKljkvxwpO62JNuq6rIkt2XyUMlrknw4ydbufqCqMlz3kCT/KMkvV9VFSSrJM6rqyO5+sKrWZdfQyl9M8uWq+nR3f3+p9w8AAAAAAAAAAAAAAAAAAAAAAAAA+8LcrBtgv7Y5yVuSvCLJf17m2U1JzkryrCTp7m8l+VqS943kvC/JV4e9byY5tqpOSpKqen6S05LMV9URVXXmyLl1Sb4zqYHufiS7Blt+YGzrl5Lc1N3P6+613f38JJ9J8vraNXnyE0l+vbv/OruGUv72cm4cAAAAAAAAAAAAAAAAAAAAAAAAAPaFVbNugP1Xd3+jqh5O8hfd/fDY9oeranRA5C+MnX2sqi5J8rsj4bcl+b2qunV4/pUhlu5+tKrekuQPq+rwJD9OckF3319VRyZ5d1X9fpLtSR5OsmGJ9/DpPYTXJ7l6LPaZJP9LksOT/HV3/+kQ/3dJfrWqXt7d/3Up1wQAAAAAAAAAAAAAAAAAAAAAAACAfcFQyQNMdx+xlHh3b0qyaQn11u0htmGB9J+o2d2XJLlk5Pl9Sd6yyLX+LMkv7iH+YJJzJvU6kv/+BeJnDstf3cPeZ5N8dni6cSS+I8lLlnptAAAAAAAAAAAAAAAAAAAAAAAAANhXDJUEAAAAAAAAAAAAAAAAAAAAAAAADizds+4AYJ8wVPIgV1UXJXnTWPjK7v7ALPpZjpXcOwAAAAAAAAAAAAAAAAAAAAAAAAA8WYZKHuSGAYwrcgjjSu4dAAAAAAAAAAAAAAAAAAAAAAAAAJ6s6u5Z9wAHAh9IAAAAAAAAAAAAAAAAAAAAAABPTM26AeDAc8+3/tJsKOAJecYJL1hR703mZt0AAAAAAAAAAAAAAAAAAAAAAAAAAADLZ6gkAAAAAAAAAAAAAAAAAAAAAAAAAMAKZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAKZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAKZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAKZKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAKZKjkAaaqdlTVfFXdXFVXVtWaIf7QWN6GqvrYAjVeXlVfGYutqqq7qurYqtpUVbcN15mvqj8fqbmzqk4dOXdzVa0d1kdV1R9V1beq6tZhfdSwd2ZVXTN2zU1V9cZh/dqq+lpV3VhVX6+qf7rIa/D+qvru0Ns3q+r/qqoXjuxfV1WnD+vbq2rbyL28rKrWVtX2kdh8VT1l8qsPAAAAAAAAAAAAAAAAAAAAAAAAAPuOoZIHnu3dva67T07yWJJ3PIEaW5I8t6qePxI7K8kt3f294fm7huus6+6XjeTdmeSiBepemuTb3X1Cdx+f5LYk/2FSM1V1aJKNSc7t7tOSvDjJdROO/c7Q288luTzJ/11Vz1og9x+M3MufD7FbR2LruvuxSX0CAAAAAAAAAAAAAAAAAAAAAAAAwL5kqOSBbUuSE5Z7qLt3Jrkiyfkj4fOTbF7C8WuSvKiqThwNVtUJSX4+yb8ZCf9mktOr6vgJNY9MsirJPUN/j3b3Xy2hlwz5lyf5L0n+8VLPLEVVvb2qtlbV1o0bN06zNAAAAAAAAAAAAAAAAAAAAAAAAABMtGrWDbB3VNWqJK9O8oUhtLqq5kdSjkny2UVKbE7yfyT5YFUdluScJO8c2f9wVb1vWN/S3W8e1juTfCjJe5P8k5H8FyaZ7+4duwPdvWPo6UVJHlioke6+t6o+m+Q7VXVtdg2u3DwMv1yqryZ5wQJ7X6qqHUke7e6XDrHjR16vP+vuf7aHvjYm2T1NspfRCwAAAAAAAAAAAAAAAAAAAAAAAAA8aYZKHnhGh0duSXLpsN7e3et2J1XVhiSnL1Sku7dW1RFVdWKSk5Jc3933jqS8q7uvWuD4p5JcVFXHLaPvhYYy9tDPBVV1SpKzkvxGklcm2bCM+rXI3j/o7h+OxW4dfb0AAAAAAAAAAAAAAAAAAAAAAAAAYH9jqOSBZ/sUhyFuTnJ+dg2V3LzUQ939eFVdv/X8FQAAIABJREFUnOQ9I+GvJ1lXVXPdvTNJqmouybph7/AkTx8rdUyS/2/YY3dvS7Ktqi5LcluWN1TyxUm2LiMfAAAAAAAAAAAAAAAAAAAAAAAAAPZrc7NugP3a5iRvSfKKJP95mWc3JTkrybOSpLu/leRrSd43kvO+JF8d9r6Z5NiqOilJqur5SU5LMl9VR1TVmSPn1iX5zlIbqap/lOQfZhmDMQEAAAAAAAAAAAAAAAAAAAAAAABgf7dq1g2w/+rub1TVw0n+orsfHtv+cFWNDoj8hbGzj1XVJUl+dyT8tiS/V1W3Ds+/MsTS3Y9W1VuS/GFVHZ7kx0ku6O77q+rIJO+uqt9Psj3Jw0k2TGj/Xwz1nprk5iSv6O67l3bnAAAAAAAAAAAAAAAAAAAAAAAAALD/q+6edQ9wIPCBBAAAAAAAAAAAAAAAAAAAAADwxNSsGwAOPPd86y/NhgKekGec8IIV9d5kbtYNAAAAAAAAAAAAAAAAAAAAAAAAAACwfKtm3QCzVVUXJXnTWPjK7v7ALPpZjpXcOwAAAAAAAAAAAAAAAAAAAAAAAAA8WdXds+4BVry7brxhKh9Ih//086ZRJknSO348xVo7plbrkKceObVaOx/926nVenz1EVOpc8iD902lzrQdsmY695ckD+6cm1qtg8HPPOuYqdS5694fTaXOweKnjjl6KnV+9IPvTaXOweTonz72Sde474EHp9DJweXpT5vO19f77/rBVOocLI76qZ+eSp27v37jVOocLJ71wtOmUueeb39zKnUOFs/42Z+bSp3v3n3vVOocLKb1XvJH37tjKnUOJkcfO53vz72PX55pvY//xl97H78cJ/0PT/49fOJzzXJN6/OM75+WZ1rfOz14v8/vy3XkUU/+c/wD994zhU4OLk875hlTqfP9H3ofvxzPeeZ03sd/9v+5aSp1Dhb/0y+cOpU6n7th21TqHCzO/XunTKXOddv+aip1DhZnnnLiVOrcfd/9U6lzMHnW04960jW8h18+PwOZjWn9DMT3T8szje+dEt8/LZfvnWZnGt8/+TyzfNP6XHPm+z82lToHi+vef+FU6vjZ0/JM62dP3scvz7Tew/vaujzT+v+SXvflm8Zr72ety+fnrbMxrc/xvm9dnml93/rDv/QzkOV45gum8zMQ/2Zyeab1byan+Z5mzY7Hplbrbw89fGq1pumwv53e18PvP37IVOocvWZ6r9U0/wwfOeQpU6s1Nze938877LFHplbrrh/XVOocc8SaqdRJkkMffXhqtXrN9H639fEdO6dW65AHpvf+6EdPmc7vkT7lkOl8PCfJ0w6Z3hyDB3ZM5+9okhy6anr3OM2Pw795fDqfH448fHqfs6bp0cen9/vqR03x68Ujj07vd/KP2Dmdrz2PPWX1VOokyWNTfN1/PMWZA089bHp/T6d5j9P6M7y/Vk2lTpLs3Dm9z6XTfN0P2zm9j53vPjy9920/s2Y6r/2O7dP7/P74Qw9MrdZhP/UzU6s1TX97521Tq/XsU0+f3hd9gMEPv/l1Q9aAJ+SZP/fCFfXexGQwAAAAgP2Qf1AKAAAAAAAAAAAAwP5uWgMlAQAAAAB44gyVBAAAAAAAAAAAAAAAAAAAAAAAAABYgQyVBAAAAAAAAAAAAAAAAAAAAAAAAABYgQyVBAAAAAAAAAAAAAAAAAAAAAAAAABYgQyVBAAAAAAAAAAAAAAAAAAAAAAAAABYgQyVBAAAAAAAAAAAAAAAAAAAAAAAAABYgQyVXAGqakdVzVfVzVV1ZVWtGeIPLXLmo1X13aqaq6pThvPzVXVvVd02rL9YVWuravvI/nxVvXWocXtVPXOs7oaqunss/7RF6s9V1SVD79uq6oaqOm6Rvm+vqi1jsfmqunlYn1lV949d/6yx1+mWqrqxqv5lVc2NnLtmrO5/qqr/NhZ7f1U9UlXPHokt+DoDAAAAAAAAAAAAAAAAAAAAAAAAwKysmnUDLMn27l6XJFX1ySTvSPKRhZKHQYqvT3JHkpd395eS7D6/Kck13X3V8Hxtklt311+iy7v7wrHYQvXXJzk2yandvbOqnpvk4Qn1j6yq53X3HVV10h72t3T3a/cQH32dnp3kU0meluRfjSdW1dFJfj7JQ1X1s9397ZHtHyb5l0neM6FPAAAAAAAAAAAAAAAAAAAAAAAAAJiZuVk3wLJtSXLChJwzk9yS5BNJ1u/thiZ4TpLvd/fOJOnuO7v7vglnrkhy3rBen2Tzci/a3X+T5O1JLqyq2kPKG5J8Lsmnk5w/tvcHSc6rqmOWe10AAAAAAAAAAAAAAAAAAAAAAAAA2FcMlVxBqmpVklcn2TYhdfcgxquTvKaqDp2Qf3xVzY88zpiQf95Y/upFcq9Icu6Qd3FVvXhC7ST5THYNfUySc7Nr+OOoM8auf/yeinT3t5MckuTZe9je/Rptzt8dvPlQdg2W/OeLNVlVb6+qrVW19bKrrl70hgAAAAAAAAAAAAAAAAAAAAAAAABg2lbNugGWZHVVzQ/rLUkuXSixqp6S5Jwk7+zuB6vq+iRnJ7lmkfq3dve6ZfRzeXdfuJTE7r6zqk5M8orhcW1Vvam7r13k2D1J7quq85N8I8kjY/tbuvu1y+j3J1TVTyX5uSRf7u6uqh9X1cndffNI2iVJ5qvqtxeq090bk2xMkrtuvKGfaD8AAAAAAAAAAAAAAAAAAAAAAAAA8EQYKrkybF/G0MezkxydZFtVJcmaJNuz+FDJvaq7H03y+SSfr6q7krwuyWJDJZPk8iQfT7LhiV63qn42yY4kf5PkpJGt/znJ05PcNrxGT0uyPslFIz3/qKo+leSfPdHrAwAAAAAAAAAAAAAAAAAAAAAAAMDeZKjkgWd9kgu6e3OSVNVTs2t44prufmRfN1NVL0nyg+7+XlXNJTk1yU1LOHp1kuck+ZMkxz6B6z4ryb9P8rHu7mF45G7rk7yqu78y5B6X5IsZGSo5+EiSG+LjBAAAAAAAAAAAAAAAAAAAAAAAAID90NysG+BJWVNVd4483pvkVUn+eHdCdz+c5MtJzl2kzvFVNT/y+LWRvZtG6n9kiJ03lv+yRWo/O8nnqurm7Bom+XiSj026se5+sLs/2N2P7WH7jLHrv3GIrx6e35JdQyL/S5J/PXqwqtYmeX6S/zZyrduS3F9VLx3r4YfZNdzysEn9AgAAAAAAAAAAAAAAAAAAAAAAAMC+tmrWDTBZdx+xQHxPQ0F/aw95bxhZbxjbuz3J6gXqr12gpU0LxPdU/wtJvrBQ/lKuOfR48rC+LslRC5w9ZJG61yW5bnj6M3vYf8mwvH4s/s4k75zQNgAAAAAAAAAAAAAAAAAAAAAAAADsc3saSggAAAAAAAAAAAAAAAAAAAAAAAAAwH5u1awb4OBUVdcnOWws/CvdvW0W/QAAAAAAAAAAAAAAAAAAAAAAAADASmOoJDPR3S+ddQ8AAAAAAAAAAAAAAAAAAAAAAAAAsJLNzboBAAAAAAAAAAAAAAAAAAAAAAAAAACWz1BJAAAAAAAAAAAAAAAAAAAAAAAAAIAVaNWsGwAAAAAAAAAAAAAAAAAAAAAAAACYqh07Zt0BwD4xN+sGAAAAAAAAAAAAAAAAAAAAAAAAAABYPkMlAQAAAAAAAAAAAAAAAAAAAAAAAABWIEMlAQAAAAAAAAAAAAAAAAAAAAAAAABWIEMlAQAAAAAAAAAAAAAAAAAAAAAAAABWIEMlDzBVtaOq5qvq5qq6sqrWDPGHFjnz0ar6blXNVdUpw/n5qrq3qm4b1l+sqrVVtX1kf76q3jrUuL2qnjlWd0NV3T2Wf9oi9eeq6pKh921VdUNVHbdI37dX1Zax2HxV3Tysz6yq+8euf9ZI7uuqqqvqBSOxtUPsfxuJfayqNiz5DwEAAAAAAAAAAAAAAAAAAAAAAAAA9oFVs26Aqdve3euSpKo+meQdST6yUHJVzSV5fZI7kry8u7+UZPf5TUmu6e6rhudrk9y6u/4SXd7dF47FFqq/PsmxSU7t7p1V9dwkD0+of2RVPa+776iqk/awv6W7X7vA2fVJvjz891+NxP8myT+vqt/v7scmXB8AAAAAAAAAAAAAAAAAAAAAAAAAZmJu1g2wV21JcsKEnDOT3JLkE9k1XHGWnpPk+929M0m6+87uvm/CmSuSnDes1yfZvJQLVdURSf5+krclOX9s++4k1yb5J0vsGwAAAAAAAAAAAAAAAAAAAAAAAAD2OUMlD1BVtSrJq5Nsm5C6exDj1UleU1WHTsg/vqrmRx5nTMg/byx/9SK5VyQ5d8i7uKpePKF2knwmyRuG9blJPje2f8bY9Y8f4r+c5Avd/d+T3FNVPz927oNJfqOqDlnowlX19qraWlVbL7vq6iW0CgAAAAAAAAAAAAAAAAAAAAAAAADTs2rWDTB1q6tqflhvSXLpQolV9ZQk5yR5Z3c/WFXXJzk7yTWL1L+1u9cto5/Lu/vCpSR2951VdWKSVwyPa6vqTd197SLH7klyX1Wdn+QbSR4Z29/S3a/dw7n1SX53WH96eP4XI718e3g9/vEi/W5MsjFJ7rrxhl705gAAAAAAAAAAAAAAAAAAAAAAAABgygyVPPBsX8bQx7OTHJ1kW1UlyZok27P4UMm9qrsfTfL5JJ+vqruSvC7JYkMlk+TyJB9PsmEp16iqY7JraOUpVdVJDknSVfWusdTfSnJVkv+65BsAAAAAAAAAAAAAAAAAAAAAAAAAgH1kbtYNMFPrk1zQ3Wu7e22S45K8sqrWzKKZqnpJVR07rOeSnJrkO0s4enWSDyX5kyVe6o1JLuvu5w/3/rwktyU5YzSpu/8yydeTnLvEugAAAAAAAAAAAAAAAAAAAAAAAACwzxgqefBYU1V3jjzem+RVSf54d0J3P5zky1l8iOLxVTU/8vi1kb2bRup/ZIidN5b/skVqPzvJ56rq5iQ3JXk8yccm3Vh3P9jdH+zux/awfcbY9d+YXcM0rx7L+8wQH/eBJM+d1AMAAAAAAAAAAAAAAAAAAAAAAAAA7GurZt0A09XdRywQ39MA0d/aQ94bRtYbxvZuT7J6gfprF2hp0wLxPdX/QpIvLJS/lGsOPZ48rK9LctQejl61h3OXjDw9eSR+YwxfBQAAAAAAAAAAAAAAAAAAAAAAAGA/ZFgeAAAAAAAAAAAAAAAAAAAAAAAAAMAKtGrWDcAkVXV9ksPGwr/S3dtm0Q8AAAAAAAAAAAAAAAAAAAAAAAAA7A8MlWS/190vnXUPAAAAAAAAAAAAAAAAAAAAAAAAALC/mZt1AwAAAAAAAAAAAAAAAAAAAAAAAAAALJ+hkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5ChkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5ChkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5ChkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5ChkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5ChkgAAAAAAAAAAAAAAAAAAAAAAAAAAK5ChkgepqtpRVfNVdXNVXVlVa4b4Q4uc+WhVfbeq5qrqlOH8fFXdW1W3DesvVtXaqto+sj9fVW8datxeVc8cq7uhqu4eyz9tkfpzVXXJ0Pu2qrqhqo5bpO/bq2rLWGy+qm4e1mdW1TUjveysqlNHcm+uqrXLf5UBAAAAAAAAAAAAAAAAAAAAAAAAYO9ZNesGmJnt3b0uSarqk0nekeQjCyVX1VyS1ye5I8nLu/tLSXaf35Tkmu6+ani+Nsmtu+sv0eXdfeFYbKH665Mcm+TU7t5ZVc9N8vCE+kdW1fO6+46qOmlC7p1JLkpy3jL6BwAAAAAAAAAAAAAAAAAAAAAAAIB9am7WDbBf2JLkhAk5Zya5Jcknkqzf2w1N8Jwk3+/unUnS3Xd2930TzlyR/39I5PokmxfJvSbJi6rqxCfdKQAAAAAAAAAAAAAAAAAAAAAAAADsJYZKHuSqalWSVyfZNiF19yDGq5O8pqoOnZB/fFXNjzzOmJB/3lj+6kVyr0hy7pB3cVW9eELtJPlMkjcM63OTfG6R3J1JPpTkvYsVrKq3V9XWqtp62VVXL6EFAAAAAAAAAAAAAAAAAAAAAAAAAJieVbNugJlZXVXzw3pLkksXSqyqpyQ5J8k7u/vBqro+ydlJrlmk/q3dvW4Z/Vze3RcuJbG776yqE5O8YnhcW1Vv6u5rFzl2T5L7qur8JN9I8siEy3wqyUVVddwifWxMsjFJ7rrxhl5K7wAAAAAAAAAAAAAAAAAAAAAAAAAwLYZKHry2L2Po49lJjk6yraqSZE2S7Vl8qORe1d2PJvl8ks9X1V1JXpdksaGSSXJ5ko8n2bCE+o9X1cVJ3vMkWwUAAAAAAAAAAAAAAAAAAAAAAACAvcJQSZZifZILuntzklTVU5PcVlVruvuRfd1MVb0kyQ+6+3tVNZfk1CQ3LeHo1Umek+RPkhy7hPxNSd6d5Mgn2CoAAAAAAAAAAAAAAAAAAAAAAAAA7DVzs26A/c6aqrpz5PHeJK9K8se7E7r74SRfTnLuInWOr6r5kcevjezdNFL/I0PsvLH8ly1S+9lJPldVN2fXMMnHk3xs0o1194Pd/cHufmxS7pD/WJJLhusBAAAAAAAAAAAAAAAAAAAAAAAAwH5l1awbYDa6+4gF4nsaNPpbe8h7w8h6w9je7UlWL1B/7QItbVogvqf6X0jyhYXyl3LNoceTh/V1Sa4b1ptGe+nuS7JrsCQAAAAAAAAAAAAAAAAAAAAAAAAA7Ff2NEAQAAAAAAAAAAAAAAAAAAAAAAAAAID93KpZNwDTUlXXJzlsLPwr3b1tFv0AAAAAAAAAAAAAAAAAAAAAAAAAwN5kqCQHjO5+6ax7AAAAAAAAAAAAAAAAAAAAAAAAAIB9ZW7WDQAAAAAAAAAAAAAAAAAAAAAAAAAAsHyGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECGSgIAAAAAAAAAAAAAAAAAAAAAAAAArECrZt0AAAAAAAAAAAAAAAAAAAAAAAAAwDR196xbANgn5mbdAPtOVe2oqvmqurmqrqyqNUP8oUXOfLSqvltVc1V1ynB+vqrurarbhvUXq2ptVW0f2Z+vqrcONW6vqmeO1d1QVXeP5Z+2SP25qrpk6H1bVd1QVcct0vftVbVlLDZfVTcvdH8jsXdW1R+MPH9zVf3xUl9nAAAAAAAAAAAAAAAAAAAAAAAAANgXVs26Afap7d29Lkmq6pNJ3pHkIwslD4MWX5/kjiQv7+4vJdl9flOSa7r7quH52iS37q6/RJd394VjsYXqr09ybJJTu3tnVT03ycMT6h9ZVc/r7juq6qRJ95fkS8PWJUm2VtX/mOSWJP97kl9axn0BAAAAAAAAAAAAAAAAAAAAAAAAwF43N+sGmJktSU6YkHNmdg1V/ESS9Xu7oQmek+T73b0zSbr7zu6+b8KZK5KcN6zXJ9k8tn9m9nB/3f14kv81yceTfCjJH3T3t5/sDQAAAAAAAAAAAAAAAAAAAAAAAADANBkqeRCqqlVJXp1k24TU3YMYr07ymqo6dEL+8VU1P/I4Y0L+eWP5qxfJvSLJuUPexVX14gm1k+QzSd4wrM9N8rmx/QXvr7v/PMk3kpyVXYMl/46qentVba2qrZdddfUS2gEAAAAAAAAAAAAAAAAAAAAAAACA6Vk16wbYp1ZX1fyw3pLk0oUSq+opSc5J8s7ufrCqrk9ydpJrFql/a3evW0Y/l3f3hUtJ7O47q+rEJK8YHtdW1Zu6+9pFjt2T5L6qOj+7BkQ+sntj0v1V1RFJTk9yaJJnJblzDz1tTLIxSe668YZeyn0AAAAAAAAAAAAAAAAAAAAAAAAAwLQYKnlw2b6MoY9nJzk6ybaqSpI1SbZn8aGSe1V3P5rk80k+X1V3JXldksWGSibJ5Uk+nmTDWHzS/f3rJP9nkruS/E6SNz35OwAAAAAAAAAAAAAAAAAAAAAAAACA6TFUkoWsT3JBd29Okqp6apLbqmpNdz+yr5upqpck+UF3f6+q5pKcmuSmJRy9OslzkvxJkmNH4gveX5Ljk7wmybokjyV5W1W9srv/dGo3BAAAAAAAAAAAAAAAAAAAAPD/snP/QZ7X9Z3gn6+eAWUyIoxIAos6KIi7ymRE43orZhG10M1SgDsWjETkMOVxKcus2XNNNH9QlXi524IYKZOtZctjQuI56CqobIGnU1IHt1WBMWlmWFcHyPDLdYkgv0YGCDOv+6M/k/ra6R66h+9MT08/HlXf6vfn9X6/X+/Xu3u6p+mhXwAAAPACTSx0ARwUVlTVgyOvTyV5T5L/vGdBd/8sya1Jzt5LntdU1eTI62Mjc1tG8v/REDt/2vp/tpfcxyb5ZlXdmalmks8l+fzzXay7n+zu/7O7n90TGxpH7u1+/z7Jx7v76e7eneR/TfK5qjr8+c4DAAAAAAAAAAAAAAAAAAAAAAAAgANl+UIXwIHT3Stnic/UXPR/n2Hd+0bGF0+buzfJEbPkXz1LSRtmic+U/6YkN822fi5nDjW+YXhcNcP8nvtdOy2+Ock/mevZAAAAAAAAAAAAAAAAAAAAAAAAAHAgzNRMEAAAAAAAAAAAAAAAAAAAAAAAAACAg9zyhS4AXoiq+sskL5oW/mB3b12IegAAAAAAAAAAAAAAAAAAAAAAAADgQNFUkkWtu//pQtcAAAAAAAAAAAAAAAAAAAAAAAAAAAthYqELAAAAAOAf+kcvX7XQJQAAAAAwRkcf+ZKFLgEADgrHHePfQAAAAAAOJcct37XQJQAAAAAALHnV3QtdAxwKfCIBAAAAAAAAAAAAAAAAAAAAAOybWugCgEPPT/7bFr2hgH3y8n+8ZlF9bzKx0AUAAAAAAAAAAAAAAAAAAAAAAAAAADB/mkoCAAAAAAAAAAAAAAAAAAAAAAAAACxCmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxCmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxCmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxCmkouIVW1q6omq+rOqvpKVa0Y4jv2suePq+pHVTVRVacO+yer6qdVtX0Yf6eqVlfVzpH5yaq6aMhxb1UdMy3vxVX1k2nrf3kv+Seq6sqh9q1VdXtVnbiXuu8d1m2tqu9X1R9U1YuHudVVdecwPqOqHh859ztD/LLh3nvi/8cL/wgAAAAAAAAAAAAAAAAAAAAAAAAAwPgsX+gCOKB2dvfaJKmqLya5NMkfzba4qiaSnJfkgST/vLu/m2TP/g1Jbuju/zQ8r05yz578c3Rtd390Wmy2/OuTHJ9kTXfvrqoTkvzsefK/o7sfrqqVSa5K8h+SfGiGdbd097+cIf7Z7r587tcBAAAAAAAAAAAAAAAAAAAAAAAAgANHU8ml65Yka55nzRlJ/muSa5OsT/Ld/VzT3hyX5MfdvTtJuvvBuW7s7h1VdWmSB6pq1f4qEAAAAAAAAAAAAAAAAAAAAAAAgINE90JXAHBATCx0ARx4VbU8yXuTbH2epeuTfCnJdUl+raoOe571r6mqyZHX259n/fnT1h+xl7VfTnL2sO6Kqnrj8+T+Od39RJLtSU6eYfrtIzV8eiT+8ZH4WdM3VdVHqmpzVW2+6qqr5lMOAAAAAAAAAAAAAAAAAAAAAAAAALxgyxe6AA6oI6pqchjfkuQLsy2sqsOT/Iskv93dT1bVXyY5K8kNe8l/T3evnUc913b3R+eysLsfrKpTkpw5vDZV1fu7e9M8zqtZ4rd097+cIf7Z7r58LzVdlWRPN0ntqAEAAAAAAAAAAAAAAAAAAAAAAAA4oDSVXFp2zqPp41lJjkqytaqSZEWSndl7U8n9qrufSXJjkhur6qEk5yaZU1PJqnpJktVJtiV56f6qEQAAAAAAAAAAAAAAAAAAAAAAAAAOlImFLoCD1vokv9Hdq7t7dZITk7y7qlYsRDFVdVpVHT+MJ5KsSXLfHPeuTPKnSa7v7kf3X5UAAAAAAAAAAAAAAAAAAAAAAAAAcOAsX+gCOCisqKoHR57/NMl7kly6J9DdP6uqW5OcneTaWfK8pqomR57/r+6+chhvqardw/jLSbYkOb+qTh9Z/5vd/V9myX1skv9YVS8anm9L8vnnudd3q6oy1Tz1uiS//zzrAQAAAAAAAAAAAAAAAAAAAAAAAGDRqO5e6BrgUOATCQAAAAAAAAAAAAAAAAAAAABg39RCFwAcen7y/Tv0hgL2ycv/yS8vqu9NJha6AAAAAAAAAAAAAAAAAAAAAAAAAAAA5m/5QhcAL0RV/WWSF00Lf7C7ty5EPQAAAAAAAAAAAAAAAAAAAAAAAABwoGgqyaLW3f90oWtIkgf/9pGFLuEfWDZRY8v11LN/N7Zcx7xkxdhyPfqzp8eW6+jaNZY89zz5zFjyJMlJR//C2HKN02PjeVctGa889pix5Hn0iSfHkmepOPrIl4wlzyN/c9dY8iwlL3v1yWPJ88RPD76/Ww9mR6562VjyPHL3D8aSZ6l42UmvG0ueH/3kp2PJs1T8o5evGkueh3762FjyLBW/uOqoseT54QM/HkuepeKUVxw3ljx/dfd9Y8mzlJx20qvGkufJx32tmY+XvHQ8X2t8jZ+fcX2N/8mjj48lz1Lx8qNfOpY89/6Pn4wlz1Kx+pdePpY8voefv3F8H//Ew387hkqWliOPOXYseZ584omx5FkqXnLkkWPJ8//9t7vHkmepeNs/Pmksef7mx77WzMerjxvP15nbt20fS56l4ldee+JY8jz23x8YS56l5KjjXzGWPH5eMD/j+nnB4w/9j7HkWSpe+ou/NJY8fl4wP+P6eYF/a52fcf1b68OP+fM+H8ccNZ4/73+79a/GkmcpOfa4hg4JAAAgAElEQVTU08aSx8/i52dcP4s/47LPjyXPUnHzZR8dS54nHnl4LHmWiiNfNp7/Z9L7fX7G9X73Pc38jeP7mkfv9/Ox+Tr6leP5GdlP7/ubseRZKla96tVjyePnBfMzrp8XbL7r3rHkWSrefPLqseTxb63zM65/a33sxz8aS54kWfYL4/ndlCR5/Onx/X7eOL2kx1fXU8sOH0ueI5792VjyJGP+GD5zcP5S3ZET46tr1+FHjCXPxM7xfQz/7kXjqSlJdjz97NhyTYzx93ePWja2VHli13jq+oVnxve7jOP8PNyZ8b2zdu/ePbZcR/zdzrHl6l8Yz9+H4/w87F1j/DtsYnwfw4nDxvP3TpKkx/fnYfdzz40lT9XEWPIk4/0Y1rLDxpdr+RhbnRyMH8Mxfv177m//+9hy7V41nv8fIEkOf3Z8X//G9b1kkrz48PH8OV323Pi+d/i7x8b3/58/fNjKseUap5UvftHYco3rd0gBAJai8f3XJAAAjIFfcgKAKZpwAgAAABxaNJQEgCkaVgEAAAAcWsbZBAgAAAAAgH2jqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqeRBqqp2VdVkVd1ZVV+pqhVD/ISq+npV3VVV91TV56rq8Ko6a1g/WVU7quqHw/iaYd+5VdVV9bqRMyaq6srhjK1VdXtVnTjMXTLEtgzz5wzxDVW1bhjfW1XHjOQ7o6puGMYXD+e9a2R+Tw3r9nLvm6vq/qqqkdj1VbVjGK+uqp0jd52sqotG6tk6vL5fVX9QVS8e2XfntLP+uKp+VFUTI7GLq2p3Va0Zid1ZVavn/tEDAAAAAAAAAAAAAAAAAAAAAAAAgP1PU8mD187uXtvdb0jybJJLh0aLX0tyfXefnOS1SVYm+Ux3f2tYvzbJ5iQXDs8XDfnWJ7l1eLvH+UmOT7Kmu09Ncl6Sx6rqhCSfTnJ6d69J8tYkW/bhDluTXDDyvD7JHXPY91iStyVJVR2V5Lhp8/fsuevwumZk7h3DXd6S5NVJ/sNMBwyNJM9L8kCSfz5t+sFM3R8AAAAAAAAAAAAAAAAAAAAAAAAADlqaSi4OtyQ5KcmZSZ7u7quTpLt3Jfl4kkuqasVsm6tqZZLTk3w4P9/k8bgkP+7u3UO+B7v70STHJnkyyY4hvqO7t+9j3W+pqsOGGk5KMjmHfRtH6nxfphppzkt370hyaZJzq2rVDEvOSPJfk/z7/HyjzSS5Icnrq+qUvZ1RVR+pqs1VtfmL1/zZfEsEAAAAAAAAAAAAAAAAAAAAAAAAgBdEU8mDXFUtT/LeJFuTvD7J90bnu/uJJPdnqmHjbM5JclN3b0vySFW9aYh/OcnZVTVZVVdU1RuH+B1JHkqyvaqurqqz97H8TvKdJGcNNXxjjvs2JfnVqlqWqeaS106bf81Q857X22c8fOp9sz3JyTNMr0/ypSTXJfm1qjpsZG53kn+X5FN7K7K7r+ruN3f3my+86ENzuhgAAAAAAAAAAAAAAAAAAAAAAAAAjMvyhS6AWR1RVZPD+JYkX0hy6T7mWp/kc8N44/D8ve5+sKpOSXLm8NpUVe/v7k1V9Z4kv5LknUk+W1Vv6u7LpuXtGc6aHtuY5GNJXprk3+R5GjUOdiW5NVMNJY/o7nuranT+nu5eO4c8SVL/IFB1eJJ/keS3u/vJqvrLTDW+vGFk2f+d5NNVdeIczwEAAAAAAAAAAAAAAAAAAAAAAOAg0bt2LXQJAAeEppIHr53TGydW1feTrJsWOzLJK5PcPVOSqlqVqYaRp1ZVJ1mWpKvqEz3lmSQ3Jrmxqh5Kcm6STd3dSW5LcltVfTvJ1Ukum5b+kSRHJ3l4eF41Mk6SdPdtVXVqkqe6e9u05pB7szHJdTOcOWdV9ZIkq5Nsy1RTyz3OSnJUkq1DPSuS7MxIU8nufq6qrkjyyX09HwAAAAAAAAAAAAAAAAAAAAAAAAD2p4mFLoB52ZRkRVVdlCRVtSzJFUk2dPdTs+xZl+TPu/tV3b26u1+RZHuSt1fVaVV1/JBrIsmaJPdV1fFVddpIjrVJ7psh981JPjhSy68n+e4M634nyafmd9XckuQPk3xpnvsy1LMyyZ8mub67H502vT7Jbwzvj9VJTkzy7qpaMW3dhiTvSvLyfakBAAAAAAAAAAAAAAAAAAAAAAAAAPYnTSUXke7uJOcleX9V3ZVkW5Kns/eGjeuTXDct9tUhfmySb1bVnUm2JHkuyeeTHJbk8qr6QVVNJjk/yW/NkPv3k5xUVXck+eskdyf5ixnqvrG7Z2o2Oauecnl3PzzD9GuqanLk9bGRue8O97ktyf1J/pfRjUPjyPck+c8jZ/0sya1Jzp5Ww7NJrszU+wkAAAAAAAAAAAAAAAAAAAAAAAAADirLF7oAZtbdK2eJP5BpzQ9nWHPGyPgdM8xfOfJ40wwp7kty5iy5Lx4ZP57kA7Os25Bkw972z7LvjFniK4e39yY5YpY1q/eS994kbxgeV80w/76Rxw0j8Ssz1VgSAAAAAAAAAAAAAAAAAAAAAAAAAA4qEwtdAAAAAAAAAAAAAAAAAAAAAAAAAAAA87d8oQtgaaqq65KcOC38ye7+1kLUAwAAAAAAAAAAAAAAAAAAAAAAAACLjaaSLIjuPm+hawAAAAAAAAAAAAAAAAAAYN+t2PVsnlp2+EKXAQAAAACwpE0sdAEAAAAAAAAAAAAAAAAAAMDio6EkAAAAAMDC01QSAAAAAAAAAAAAAAAAAAAAAAAAAGAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAR0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAR0lTyEFBVu6pqsqrurKqvVNWKIX5CVX29qu6qqnuq6nNVdXhVnTWsn6yqHVX1w2F8zbDv3KrqqnrdyBkTVXXlcMbWqrq9qk4c5i4ZYluG+XOG+IaqWjeM762qY0bynVFVNwzji4fz3jUyv6eGdXu5981VdX9V1Ujs+qraMYxXV9XOkbtOVtVFI2vXDme8Z1rerqorRp7/t6q6bJ4fFgAAAAAAAAAAAAAAAAAAAAAAAADYrzSVPDTs7O613f2GJM8muXRotPi1JNd398lJXptkZZLPdPe3hvVrk2xOcuHwvKfh4voktw5v9zg/yfFJ1nT3qUnOS/JYVZ2Q5NNJTu/uNUnemmTLPtxha5ILRp7XJ7ljDvseS/K2JKmqo5IcN23+nj13HV7XTDtj+j2T5Jkk7xttggkAAAAAAAAAAAAAAAAAAAAAAAAABxtNJQ89tyQ5KcmZSZ7u7quTpLt3Jfl4kkuqasVsm6tqZZLTk3w4P9/k8bgkP+7u3UO+B7v70STHJnkyyY4hvqO7t+9j3W+pqsOGGk5KMjmHfRtH6nxfphppPq+h6eb7k1yc5N1V9eKR6eeSXJWp9xcAAAAAAAAAAAAAAAAAAAAAAAAAHJQ0lTyEVNXyJO9NsjXJ65N8b3S+u59Icn+mGjbO5pwkN3X3tiSPVNWbhviXk5xdVZNVdUVVvXGI35HkoSTbq+rqqjp7H8vvJN9JctZQwzfmuG9Tkl+tqmWZai557bT51ww173m9fYj/syTbu/ueJDcn+bVp+/4kyYVV9dLZDq6qj1TV5qra/MVr/myO5QIAAAAAAAAAAAAAAAAAAAAAAADAeGgqeWg4oqomk2zOVNPIL7yAXOuTbBzGG4fndPeDSU5J8rtJdifZVFXv7O5dSd6TZF2SbUk+W1WXzZC35xDbmKnGkBck+dIc692V5NZhzxHdfe+0+Xu6e+3I65a93fPvC5tqwHlNko/NdnB3X9Xdb+7uN1940YfmWC4AAAAAAAAAAAAAAAAAAAAAAAAAjMfyhS6AsdjZ3WtHA1X1/Uw1ehyNHZnklUnunilJVa1KcmaSU6uqkyxL0lX1iZ7yTJIbk9xYVQ8lOTfJpu7uJLclua2qvp3k6iSXTUv/SJKjkzw8PK8aGSdJuvu2qjo1yVPdva2q5nr/jUmum+HMGVXVsiT/Ksk5VfXpJJXkZVX1ku5+cmTpHyf5q+E+AAAAAAAAAAAAAAAAAAAAAAAAAHBQmVjoAthvNiVZUVUXJX/fSPGKJBu6+6lZ9qxL8ufd/aruXt3dr0iyPcnbq+q0qjp+yDWRZE2S+6rq+Ko6bSTH2iT3zZD75iQfHKnl15N8d4Z1v5PkU/O7am5J8odJvjTH9e9MsqW7XzHc81VJvprkvNFF3f3TJF9O8uF51gMAAAAAAAAAAAAAAAAAAAAAAAAA+52mkoeo7u5MNUl8f1XdlWRbkqez94aN65NcNy321SF+bJJvVtWdSbYkeS7J55McluTyqvpBVU0mOT/Jb82Q+/eTnFRVdyT56yR3J/mLGeq+sbtnajY5q55yeXc/PMP0a6pqcuT1see553RXJDlmPvUAAAAAAAAAAAAAAAAAAAAAAAAAwIGwfKEL4IXr7pWzxB9Icvbz7D1jZPyOGeavHHm8aYYU9yU5c5bcF4+MH0/ygVnWbUiyYW/7Z9l3xizxlcPbe5McsbccI3u+keQbo/uH8UNJVswlBwAAAAAAAAAAAAAAAAAAAAAAAAAcSBMLXQAAAAAAAAAAAAAAAAAAAAAAAAAAAPO3fKELgOdTVdclOXFa+JPd/a2FqAcAAAAAAAAAAAAAAAAAAAAAAAAADgaaSnLQ6+7zFroGAAAAAAAAAAAAAAAAAAAAAAAAADjYTCx0AQAAAAAAAAAAAAAAAAAAAAAAAAAAzJ+mkgAAAAAAAAAAAAAAAAAAAAAAAAAAi5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAi5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAi5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAi5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAi5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAi5CmkktIVe2qqsmqurOqvlJVK4b4CVX19aq6q6ruqarPVdXhVXXWsH6yqnZU1Q+H8TXDvnOrqqvqdSNnTFTVlcMZW6vq9qo6cZi7ZIhtGebPGeIbqmrdML63qo4ZyXdGVd0wjC8eznvXyPyeGtbt5d43V9X9VVUjseurascwXl1Vd46c11V19sjaG6rqjBf0zgcAAAAAAAAAAAAAAAAAAAAAAACAMdNUcmnZ2d1ru/sNSZ5NcunQaPFrSa7v7pOTvDbJyiSf6e5vDevXJtmc5MLh+aIh3/oktw5v9zg/yfFJ1nT3qUnOS/JYVZ2Q5NNJTu/uNUnemmTLPtxha5ILRp7XJ7ljDvseS/K2JKmqo5Ict5e1Dw61AgAAAAAAAAAAAAAAAAAAAAAAAMBBS1PJpeuWJCclOTPJ0919dZJ0964kH09ySVWtmG1zVa1McnqSD+fnmzwel+TH3b17yPdgdz+a5NgkTybZMcR3dPf2faz7LVV12FDDSUkm57Bv40id78tUI83Z3JHk8ap69z7UBwAAAAAAAAAAAAAAAAAAAAAAAAAHhKaSS1BVLU/y3iRbk7w+yfdG57v7iST3Z6ph42zOSXJTd29L8khVvWmIfznJ2VU1WVVXVNUbh/gdSR5Ksr2qrq6qs/ex/E7ynSRnDTV8Y477NiX51apalqnmktc+z/rPJPm9vS2oqo9U1eaq2vzFa/5sjmUAAAAAAAAAAAAAAAAAAAAAAAAAwHhoKrm0HFFVk0k2Z6pp5BdeQK71STYO443Dc7r7wSSnJPndJLuTbKqqd3b3riTvSbIuybYkn62qy2bI23OIbcxUY8gLknxpjvXuSnLrsOeI7r53b4u7+/9Nkqo6fS9rruruN3f3my+86ENzLAMAAAAAAAAAAAAAAAAAAAAAAAAAxmP5QhfAAbWzu9eOBqrq+5lq9DgaOzLJK5PcPVOSqlqV5Mwkp1ZVJ1mWpKvqEz3lmSQ3Jrmxqh5Kcm6STd3dSW5LcltVfTvJ1Ukum5b+kSRHJ3l4eF41Mk6SdPdtVXVqkqe6e1tVzfX+G5NcN8OZs/lMkt9L8txcDwAAAAAAAAAAAAAAAAAAAAAAAACAA2VioQtgwW1KsqKqLkqSqlqW5IokG7r7qVn2rEvy5939qu5e3d2vSLI9ydur6rSqOn7INZFkTZL7qur4qjptJMfaJPfNkPvmJB8cqeXXk3x3hnW/k+RT87tqbknyh0m+NJfF3f3/ZKrB5Zp5ngMAAAAAAAAAAAAAAAAAAAAAAAAA+52mkktcd3eS85K8v6ruSrItydPZe8PG9Umumxb76hA/Nsk3q+rOJFuSPJfk80kOS3J5Vf2gqiaTnJ/kt2bI/ftJTqqqO5L8dZK7k/zFDHXf2N0zNZucVU+5vLsfnse2zyR5xXzOAQAAAAAAAAAAAAAAAAAAAAAAAIADYflCF8CB090rZ4k/kOTs59l7xsj4HTPMXznyeNMMKe5LcuYsuS8eGT+e5AOzrNuQZMPe9s+y74xZ4iuHt/cmecMwvjnJzSNrvpGk9pYfAAAAAAAAAAAAAAAAAAAAAAAAABaCppIAAAAAAAAAAAAAAAAAAAAAAADAoaV3L3QFAAeEppIcMqrquiQnTgt/sru/tRD1AAAAAAAAAAAAAAAAAAAAAAAAAMD+pKkkh4zuPm+hawAAAAAAAAAAAAAAAAAAAAAAAACAA2VioQsAAAAAAAAAAAAAAAAAAAAAAAAAAGD+NJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJU8hFXVrqqarKo7q+orVbViiJ9QVV+vqruq6p6q+lxVHV5VZw3rJ6tqR1X9cBhfM+w7t6q6ql43csZEVV05nLG1qm6vqhOHuUuG2JZh/pwhvqGq1g3je6vqmJF8Z1TVDcP44uG8d43M76lh3V7ufXNV3V9VNRK7vqp2TFv3r6vq6ap66UjsfVW1aeT59OF9sHz+HwEAAAAAAAAAAAAAAAAAAAAAAAAA2H80lTy07ezutd39hiTPJrl0aLT4tSTXd/fJSV6bZGWSz3T3t4b1a5NsTnLh8HzRkG99kluHt3ucn+T4JGu6+9Qk5yV5rKpOSPLpJKd395okb02yZR/usDXJBSPP65PcMYd9jyV5W5JU1VFJjpthzfoktyd5355Ad38tyTNV9YGqOizJnyb5ze5+bh9qBwAAAAAAAAAAAAAAAAAAAAAAAID9RlPJpeOWJCclOTPJ0919dZJ0964kH09ySVWtmG1zVa1McnqSD+fnmzwel+TH3b17yPdgdz+a5NgkTybZMcR3dPf2faz7LVV12FDDSUkm57Bv40id78tUI83R+7wmU800fy8/3yQzST6a5A+SXJbk9u7+L/tQNwAAAAAAAAAAAAAAAAAAAAAAAADsV5pKLgFVtTzJe5NsTfL6JN8bne/uJ5Lcn6mGjbM5J8lN3b0tySNV9aYh/uUkZ1fVZFVdUVVvHOJ3JHkoyfaqurqqzt7H8jvJd5KcNdTwjTnu25TkV6tqWaaaS147bf6CTDWevCXJKVX1i39/YPffDOs/muSTsx1QVR+pqs1VtfmL1/zZHMsCAAAAAAAAAAAAAAAAAAAAAAAAgPHQVPLQdkRVTSbZnKmmkV94AbnWZ6oJY4a365Okux9MckqS302yO8mmqnpnd+9K8p4k65JsS/LZqrpshrw9h9jGTDWBvCDJl+ZY764ktw57jujue2e6T3fvTvLVJO/fMzE0onx3kh1JXjXbAd19VXe/ubvffOFFH5pjWQAAAAAAAAAAAAAAAAAAAAAAAAAwHssXugD2q53dvXY0UFXfz1Sjx9HYkUlemeTumZJU1aokZyY5tao6ybIkXVWf6CnPJLkxyY1V9VCSc5Ns6u5OcluS26rq20muTnLZtPSPJDk6ycPD86qRcZKku2+rqlOTPNXd26pqrvffmOS66WcOuU5O8u0h1+FJtif5/LDkN5NsTfJ7Sf6kqv6n4S4AAAAAAAAAAAAAAAAAAAAAAAAAcNCYWOgCOOA2JVlRVRclSVUtS3JFkg3d/dQse9Yl+fPuflV3r+7uV2SqCePbq+q0qjp+yDWRZE2S+6rq+Ko6bSTH2iT3zZD75iQfHKnl15N8d4Z1v5PkU/O7am5J8odJvjQtvj7JZcNdVnf38UmOr6pXVdUvJfntJP+2u29K8qMkvzHPcwEAAAAAAAAAAAAAAAAAAAAAAABgv9NUconp7k5yXpL3V9VdSbYleTp7b9i4Psl102JfHeLHJvlmVd2ZZEuS55J8PslhSS6vqh9U1WSS85P81gy5fz/JSVV1R5K/TnJ3kr+Yoe4bu3umZpOz6imXd/fD06YumOE+1w3xP0ry77r7J0P8Xyf5dFWtms/ZAAAAAAAAAAAAAAAAAAAAAAAAALC/LV/oAth/unvlLPEHkpz9PHvPGBm/Y4b5K0ceb5ohxX1Jzpwl98Uj48eTfGCWdRuSbNjb/ln2nTFLfOXw9tUzzP32LHseSLJ6b+cBAAAAAAAAAAAAAAAAAAAAAAAAwEKYWOgCAAAAAAAAAAAAAAAAAAAAAAAAAACYv+ULXQDsq6q6LsmJ08Kf7O5vLUQ9AAAAAAAAAAAAAAAAAAAAAAAAAHAgaSrJotXd5y10DQAAAAAAAAAAAAAAAAAAAAAAAACwUDSVBAAAADgInfKK4xa6BAAAAAAAAAAAAADYqxW7ns1Tyw5f6DIAAAAAZtTdC10CwAFRvuDBWPhEAgAAAAAAAAAAAAAAAAAAAADYN7XQBQCHnofuuF1vKGCf/OIv/8qi+t5kYqELAAAAAAAAAAAAAAAAAAAAAAAAAABg/jSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhDSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhDSVPMRV1a6qmqyqO6vqK1W1YoifUFVfr6q7quqeqvpcVR1eVWcN6yerakdV/XAYXzPsO7equqpeN3LGRFVdOZyxtapur6oTh7lLhtiWYf6cIb6hqtYN43ur6piRfGdU1Q3D+OLhvHeNzO+pYd1e7n3zUPuWqvpBVX2+qo4amd8xvF1dVTtH7jw5vB8urqqfjMSuGc9HBAAAAAAAAAAAAAAAAAAAAAAAAADGQ1PJQ9/O7l7b3W9I8mySS6uqknwtyfXdfXKS1yZZmeQz3f2tYf3aJJuTXDg8XzTkW5/k1uHtHucnOT7Jmu4+Ncl5SR6rqhOSfDrJ6d29Jslbk2zZhztsTXLByPP6JHfMYd+Fw7lrkjyT5OuzrLtnz52H17ND/NqR2EWz7AUAAAAAAAAAAAAAAAAAAAAAAACABaGp5NJyS5KTkpyZ5OnuvjpJuntXko8nuaSqVsy2uapWJjk9yYfz800ej0vy4+7ePeR7sLsfTXJskieT7BjiO7p7+z7W/ZaqOmyo4aQkk3PdPDSJ/LdJXllVv7wP5wMAAAAAAAAAAAAAAAAAAAAAAADAQUdTySWiqpYneW+SrUlen+R7o/Pd/USS+zPVsHE25yS5qbu3JXmkqt40xL+c5OyqmqyqK6rqjUP8jiQPJdleVVdX1dn7WH4n+U6Ss4YavjHvBFONM+9I8roZpl8z1D5ZVX8yEj9/JP4/T99UVR+pqs1Vtfmqq66ab0kAAAAAAAAAAAAAAAAAAAAAAAAA8IIsX+gC2O+OqKrJYXxLki8kuXQfc61P8rlhvHF4/l53P1hVpyQ5c3htqqr3d/emqnpPkl9J8s4kn62qN3X3ZdPy9gxnTY9tTPKxJC9N8m+SfGof6q9Z4vd099oZ4td290dnS9bdVyXZ001ypjsAAAAAAAAAAAAAAAAAAAAAAAAAwH6jqeShb+f0holV9f0k66bFjkzyyiR3z5SkqlZlqmHkqVXVSZYl6ar6RE95JsmNSW6sqoeSnJtkU3d3ktuS3FZV307+f/buP9jSur4T/PvTtDQQfmkjhkBrb8SQVcz0KBmCqyU/JJKNFDpIYicqWNkhU6MhxAyRLDsstQsZKZJyZJ0kxZYJaH5AhCFiMhN1lLZK12HDj7YRMyIEAggqDciPgCDw2T/u01snt+7te8/tB2439/WqOnWf5/t8n8/3c37c0+eee+6788dJzptV/oEkL06yddh/ycR2kqS7/9+qem2Sx7v71qr58iHnVlW7JXltkr+b6kQAAAAAAAAAAAAAAAAAAAAAAAAA2EmtWu4GWBZfSLJXVb03+f8DF38vyaXd/fg857wzySe7+xXdvb671yW5I8mbqup1VfVjQ61VSX4qyT9U1Y9V1esmamxI8g9z1N6U5D0Tvbw7ybVzzDs7yf863VVNqupFSf59kru7e8u05wMAAAAAAAAAAAAAAAAAAAAAAADAzkio5ArU3Z3kHUlOqapvJbk1yQ+y/cDGjUmunjV21TB+YJLPVNXXk2xJ8nSSjyV5UZLfrar/XlWbk/xikl+fo/b/meTQqvpakpuS3JbkT+bo+79091xhk/P506rakuTrSX4kyUlTnAsAAAAAAAAAAAAAAAAAAAAAAAAAO7WayRcEdpBvJAAAAAAAAAAAAAAAAAAAAACApanlbgB44fnu1/5WNhSwJC/7Zz+9S702WbXcDQAAAAAAAD6YvCEAACAASURBVAAAAAAAAAAAAAAAAAAAML3Vy90A7IiqujrJ/zBr+EPd/dnl6AcAAAAAAAAAAAAAAAAAAAAAAAAAni9CJdmldfc7lrsHAAAAAAAAAAAAAAAAAAAAAAAAAFgOQiVhBN+/9+5R6vTe+49SZ6V45tlnR6u126pVo9QZs6cxrakerdZ9j/5gtForwU8c8qOj1Plv/+pto9RZKX7m//6rUeo88uADo9RZSfZ9ydodrnHDWe8doZOV5fUXfWKUOo9s/d4odVaKfQ84cJQ6W7//8Ch1VooD9t9vlDoPP/roKHVWiv322WeUOt+8+75R6qwkh607aIdreE0zvTFe0yTJ/Q95jp/GS188znP8Iw9sHaXOSrHv2gNGqfPQ3XeOUmelePG69aPUefTh749SZ6XYZ79x3n91u09vjNv+oUe8hp/Wi/cd53X8rfd8Z5Q6K8VY7wl7LTmdsV5Lep9mOmO9T+N2n85Yt/svfXSc95VXkj/79R3//cW3739whE5WloNf+pJR6my6+Zuj1Fkpjn7tYaPU8d7kdMZ6X9LPrdMZ6/2Cmz981ih1VpLXnn3RDtfwfsH0xnq/wG0/nbFud78Dmc5YvwM5+ryPjVJnpdh03gdGqePzBdMZ47MFSXLP97yGn9YhB+746/hHH3lkhE5Wln323XeUOj5DNp2xPkPmteR0xnot6b346fis6vIY63lmzN+17r56nL83S5Knnh7vb87WPPvD0Wqlx+nrmw/+4yh1kmT9SL8bSNyH07r1ocdHqfPKl43zfneSrO5nRqv1dO02Wq1VT4z3mB/TwzVObMCLRvp72yTZY/cXjVbrB0+N972z94vGu45j+sZ3HhqlzsvXjvN6Zme2asTH6bMj/m34WI/5MR/vO6sX+n24s2YO7KzGynpIkqfv+ftR6uy+7sdHqZMkz44X9bDTqsfG+6zC/j+2brRaAAArzc75jgcAAAAAAAAAAAAAAAAAAAAAAAAAANs1zn85AgAAAAAAAAAAAAAAAAAAAAAAALCz6GeXuwOA58Wq5W4AAAAAAAAAAAAAAAAAAAAAAAAAAIDpCZUEAAAAAAAAAAAAAAAAAAAAAAAAANgFCZUEAAAAAAAAAAAAAAAAAAAAAAAAANgFCZUEAAAAAAAAAAAAAAAAAAAAAAAAANgFCZWcUlWdU1W3VNWWqtpcVUcO46ur6v6q+vDEvM3D5ZmJ7TOqak1VXVFVt1XVdVW1fjjn+Kq6oapuHr4eu4h+NlRVV9UJs8a3rfn1qvpMVe0/rLW5qu4aet3W0/qqunNYd9vYxUOdS6vqjmHsa1V13MQam6rqiEX08tgib9vzhvMPnRg7cxg7YthfqM+vVdWtVfWJqjpkos6dVXXAxP7bh7o/OTG2fhj7tYmxj1XVaYvpHwAAAAAAAAAAAAAAAAAAAAAAAACeT0Ilp1BVRyV5W5LXdfdPJXlLkruHw8cnuTXJKVVV3X1Bd2/o7g1Jnti23d0XJ/mVJA9196FJPpLkwqHG1iQndvdrk5ya5JOLaGtjki8PXydtW/PwJA8meX93Hzn0c26SKyZ6unM455iJsTMmap01nHdmkj9cQi/TuDnJuyb2T0lyy6w52+vznyU5LMlNSb5YVbtP2ev3kvz6ds4DAAAAAAAAAAAAAAAAAAAAAAAAgJ2CUMnpHJRka3c/mSTdvbW77x2ObUzy0SR3JTlqgTonJbls2L4yyXFDEOVNE/VuSbJnVa2Zr0hVVWZCF09LcnxV7THP1K8mOXiBnhZj3jpT9LKQv8zM7ZOqemWShzMTtrloPeMjSb6T5Ofm6HXvJG/MTLjnu2Ydvj/JFzIT6gkAAAAAAAAAAAAAAAAAAAAAAAAAOy2hktP5XJJ1VXVrVf1+Vb05SYYAxbck+UySP89MwOT2HJzk7iTp7qczE5y4dtack5PcuC3Ach5vSHJHd9+eZFOSn589oap2S3JckmsW6ClJrq2qzcPlN+Y4fkJmQh+X1MsiPZLk7qo6PDOBj1csoc9tbkzyk3OMn5Tkb7r71iQPVNXrZx2/MMm/HW67eVXV6VV1fVVdf+mf/On2pgIAAAAAAAAAAAAAAAAAAAAAAADA6FYvdwO7ku5+bAggfFOSY5JcUVVnJ3ksybXd/URVXZXk31XVmd39zFLWqarXZCbY8GcXmLoxyeXD9uVJ3pvkqmF/z6ranJkAy79L8vlFLH1Md2+dY/yiqvqdJIckOWoJvUzr8swESr41M4GY71tkn7PVPOMbk3x0Yq2NSW7YdrC7/76qrkvyS9sr3t2XJLkkSb5/7929iH4AAAAAAAAAAAAAAAAAAAAAAAAAYDRCJac0BEVuSrKpqm5OcmqSp5K8saruHKatTXJs5g9y/HaSdUnuqarVSfZL8kCSVNUhSa5O8t7uvn2+PqpqtyQnJzmpqs7JTIDi2qrap7sfTfJEd2+oqr2SfDbJ+5NcvMSrfVZ3X1lVv5bkj5K8fspepvVXSS5Kcn13P1I1Xzbkgv55ki/M6vUlmblvXltVnWS3JF1VZ80693eSXJnkS0tdHAAAAAAAAAAAAAAAAAAAAAAAAACeS6uWu4FdSVUdVlWvmhjakOT+JG9K8vLuXt/d6zMT4LhxO6WuyUwYZZK8M8kXu7urav8kf53k7O7+ygLtHJdkS3evG9Z9RZKrkrxjclJ3P57kjCS/OQRY7oiPJVlVVW9dSi+LNfT8oSQXLOX8mnFGkoOS/M2sw+9M8snufsXQ67okd2TmPpzs4b8n+UaSE5fSAwAAAAAAAAAAAAAAAAAAAAAAAAA814RKTmfvJJdV1TeqakuSVyf5UmZCIZ+cmPfpJCdW1Zp56nw8ydqqui3JB5OcPYx/IMmhSc6tqs3D5cB5amxMcvWssasyR5hld9+UZMtcx2a5dmLdT8xRp5Ocn+S3puxlr6q6Z+LywQX6SHdf3t03TtnnRVX1tSS3JvnpJMd091NT9jrpgiSHLNQrAAAAAAAAAAAAAAAAAAAAAAAAACyH1cvdwK6ku29I8oY5Dl02a96DSV46sb/3rOM/SHLKHPXPz0xo42J6ed8cY9ckuWaeNU+c2L40yaWzjq+fZ53TZu1flZkQxnT30cPwQr0sKry0u8+bZ/zoie1F9TnH8W3nHTPHsYsndg+fGP9aBK8CAAAAAAAAAAAAAAAAAAAAAAAAsJMSmAcAAAAAAAAAAAAAAAAAAAAAAAAAsAtavdwNsLCqui7JmlnD7+num5ejnx1VVeckOWXW8Ke6+4Ll6AcAAAAAAAAAAAAAAAAAAAAAAAAAdkVCJXcB3X3kcvcwpiE8UoAkL0i7rVqVZ559drnbAAAAAAAAAAAAAAAAAIDn3GEv+ZF888F/XO42AAAAAABWtFXL3QDAC4lASQAAAAAAAAAAAAAAAABWCoGSAAAAAADLT6gkAAAAAAAAAAAAAAAAAAAAAAAAAMAuSKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAuSKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAuaPVyNwAAAAAAAAAAAAAAAAAAAAAAAAAwpn7m2eVuAeB5sWq5GwAAAAAAAAAAAAAAAAAAAAAAAAAAYHpCJQEAAAAAAAAAAAAAAAAAAAAAAAAAdkFCJZ9DVXVOVd1SVVuqanNVHTmMr66q+6vqwxPzNg+XZya2z6iqNVV1RVXdVlXXVdX64Zzjq+qGqrp5+HrsIvrZUFVdVSfMGt+25ter6jNVtf+w1uaqumvodVtP66vqzmHdbWMXD3Uurao7hrGvVdVxE2tsqqojFtHLY4u8bc8bzj90YuzMYeyIYX/OPue6D2b1ef3E/hFVtWkxPQEAAAAAAAAAAAAAAAAAAAAAAADA82n1cjfwQlVVRyV5W5LXdfeTVXVAkt2Hw8cnuTXJKVX12919QZILhvMe6+4NE3X+TZKHuvvQqnpXkguT/GKSrUlO7O57q+rwJJ9NcvACbW1M8uXh699MjD+xbc2quizJ+7t7WwDmaUmO6O4PTPSUJMd099Y51jiru6+sqmOSXJLkVVP2Mo2bk7wryfnD/ilJbpk1Z74+Z98HPXHswKr6ue7+L0vsCwAAAAAAAAAAAAAAAAAAAAAAAACec6uWu4EXsIOSbO3uJ5Oku7d2973DsY1JPprkriRHLVDnpCSXDdtXJjmuqqq7b5qod0uSPatqzXxFaiYJ8pQkpyU5vqr2mGfqV7NwOOVizFtnil4W8peZuX1SVa9M8nBmwjYXY3v3wUVJzlmoQFWdXlXXV9X1l/7Jny66aQAAAAAAAAAAAAAAAAAAAAAAAAAYg1DJ587nkqyrqlur6ver6s1JMgQoviXJZ5L8eWbCDbfn4CR3J0l3P52Z4MS1s+acnOTGbQGW83hDkju6+/Ykm5L8/OwJVbVbkuOSXLNAT0lybVVtHi6/McfxEzIT+rikXhbpkSR3V9XhSd6V5IrF9LmI++CrSZ6qqmO2t3h3X9LdR3T3Eae9+5eXeBUAAAAAAAAAAAAAAAAAAAAAAAAAYGmESj5HuvuxJK9PcnqS+5NcUVWnJXlbkmu7+4kkVyV5+xDmuCRV9ZokFyb51QWmbkxy+bB9ef5pkOKeVbU5yXeSvCzJ5xex9DHdvWG4fGRi/KKqujXJnw19TdvLtC7PTKDk25Ncvcg+F3MfnJ/kf9uBvgAAAAAAAAAAAAAAAAAAAAAAAADgOSVU8jnU3c9096bu/t+TfCDJyZkJUHxLVd2Z5IYka5Mcu50y306yLkmqanWS/ZI8MOwfkpkgxfd29+3zFRgCE09Ocu6w7v+V5ISq2meY8kR3b0jyiiSV5P1LusIzzurun0jyoSR/tIRepvVXSd6T5K7ufmSR5yx4H3T3F5PsmeRnltgXAAAAAAAAAAAAAAAAAAAAAAAAADynhEo+R6rqsKp61cTQhiT3J3lTkpd39/ruXp+ZAMeN2yl1TZJTh+13Jvlid3dV7Z/kr5Oc3d1fWaCd45Js6e51w7qvSHJVkndMTurux5OckeQ3hwDLHfGxJKuq6q1L6WWxhp4/lOSCxcyvqn2z+Pvg/CS/tZS+AAAAAAAAAAAAAAAAAAAAAAAAAOC5JlTyubN3ksuq6htVtSXJq5N8KTOhkE9OzPt0khOras08dT6eZG1V3Zbkg0nOHsY/kOTQJOdW1ebhcuA8NTYmuXrW2FWZI0ixu29KsmWuY7NcO7HuJ+ao05k7lHGhXvaqqnsmLh9coI909+XdfeMi+3xHFnkfdPd/zkwQKAAAAAAAAAAAAAAAAAAAAAAAAADsdFYvdwMvVN19Q5I3zHHoslnzHkzy0on9vWcd/0GSU+aof35mQhsX08v75hi7Jsk186x54sT2pUkunXV8/TzrnDZr/6rMBEamu48ehhfqZVFBp9193jzjR09sz9lntn8fHD3r2OsX0w8AAAAAAAAAAAAAAAAAAAAAAAAAPN8WFeAHAAAAAAAAAAAAAAAAAAAAAAAAAMDOZfVyN8C4quq6JGtmDb+nu29ejn52VFWdk+SUWcOf6u4LlqMfAAAAAAAAAAAAAAAAAAAAAAAAANhZCJV8genuI5e7hzEN4ZECJAEAAAAAAAAAAAAAAAAAdjKHveRH8s0H/3G52wAAAAAAWNFWLXcDAAAAAAAAAAAAAAAAAADArkegJAAAAADA8hMqCQAAAAAAAAAAAAAAAAAAAAAAAACwCxIqCQAAAAAAAAAAAAAAAAAAAAAAAACwCxIqCQAAAAAAAAAAAAAAAAAAAAAAAACwCxIqCQAAAAAAAAAAAAAAAAAAAAAAAACwCxIqCQAAAAAAAAAAAAAAAAAAAAAAAACwCxIqCQAAAAAAAAAAAAAAAAAAAAAAAACwCxIquROoqnOq6paq2lJVm6vqyGF8dVXdX1Ufnpi3ebg8M7F9RlWtqaorquq2qrquqtYP5xxfVTdU1c3D12MX0c+GquqqOmHW+LY1v15Vn6mq/Ye1NlfVXUOv23paX1V3DutuG7t4qHNpVd0xjH2tqo6bWGNTVR2xiF4eW+Rte95w/qETY2cOY0cM+3dW1QHDdlfV703M/bdVdd5i1gIAAAAAAAAAAAAAAAAAAAAAAACA55NQyWVWVUcleVuS13X3TyV5S5K7h8PHJ7k1ySlVVd19QXdv6O4NSZ7Ytt3dFyf5lSQPdfehST6S5MKhxtYkJ3b3a5OcmuSTi2hrY5IvD18nbVvz8CQPJnl/dx859HNukismerpzOOeYibEzJmqdNZx3ZpI/XEIv07g5ybsm9k9Jcss8c59M8i+3hUwCAAAAAAAAAAAAAAAAAAAAAAAAwM5KqOTyOyjJ1u5+Mkm6e2t33zsc25jko0nuSnLUAnVOSnLZsH1lkuOGIMqbJurdkmTPqlozX5GqqsyELp6W5Piq2mOeqV9NcvACPS3GvHWm6GUhf5mZ2ydV9cokD2cmbHMuTye5JMlvLFS0qk6vquur6vpL/+RPl9gaAAAAAAAAAAAAAAAAAAAAAAAAACyNUMnl97kk66rq1qr6/ap6c5IMAYpvSfKZJH+emYDJ7Tk4yd1J0t1PZyY4ce2sOScnuXFbgOU83pDkju6+PcmmJD8/e0JV7ZbkuCTXLNBTklxbVZuHy1xBjSdkJvRxSb0s0iNJ7q6qw5O8K8kVC8z/j0l+uar2296k7r6ku4/o7iNOe/cvL7E1AAAAAAAAAAAAAAAAAAAAAAAAAFgaoZLLrLsfS/L6JKcnuT/JFVV1WpK3Jbm2u59IclWStw9hjktSVa9JcmGSX11g6sYklw/bl+efhlnuWVWbk3wnycuSfH4RSx/T3RuGy0cmxi+qqluT/NnQ17S9TOvyzARKvj3J1dub2N2PJPlEkjN2YD0AAAAAAAAAAAAAAAAAAAAAAAAAeE6tXu4GSLr7mSSbkmyqqpuTnJrkqSRvrKo7h2lrkxyb+YMcv51kXZJ7qmp1kv2SPJAkVXVIZoIU39vdt8/XxxBaeXKSk6rqnCSVZG1V7dPdjyZ5ors3VNVeST6b5P1JLl7i1T6ru6+sql9L8keZCdacppdp/VWSi5Jc392PVNVC8/9DkhuT/PES1gIAAAAAAAAAAAAAAAAAAAAAAACA59yq5W5gpauqw6rqVRNDG5Lcn+RNSV7e3eu7e31mAhw3bqfUNZkJo0ySdyb5Ynd3Ve2f5K+TnN3dX1mgneOSbOnudcO6r0hyVZJ3TE7q7seTnJHkN4cAyx3xsSSrquqtS+llsYaeP5TkgkXOfzDJXyT5laWsBwAAAAAAAAAAAAAAAAAAAAAAAADPNaGSy2/vJJdV1TeqakuSVyf5UmZCIZ+cmPfpJCdW1Zp56nw8ydqqui3JB5OcPYx/IMmhSc6tqs3D5cB5amxMcvWssasyR5hld9+UZMtcx2a5dmLdT8xRp5Ocn+S3puxlr6q6Z+LywQX6SHdf3t03LjRvwu8lOWCK+QAAAAAAAAAAAAAAAAAAAAAAAADwvFm93A2sdN19Q5I3zHHoslnzHkzy0on9vWcd/0GSU+aof35mQhsX08v75hi7Jsk186x54sT2pUkunXV8/TzrnDZr/6rMBEamu48ehhfqZVGBqN193jzjR09sr5/Y3nti+7tJ9lrMOgAAAAAAAAAAAAAAAAAAAAAAAADwfFtUMB8AAAAAAAAAAAAAAAAAAAAAAAAAADuX1cvdAMujqq5LsmbW8Hu6++bl6GdHVdU5SU6ZNfyp7r5gOfoBAAAAAAAAAAAAAAAAAAAAAAAAgOeaUMkVqruPXO4exjSERwqQBAAAAAAAAAAAAAAAAAAAAAAAAGDFWLXcDQAAAAAAAAAAAAAAAAAAAAAAAAAAMD2hkgAAAAAAAAAAAAAAAAAAAAAAAAAAuyChkgAAAAAAAAAAAAAAAAAAAAAAAAAAuyChkgAAAAAAAAAAAAAAAAAAAAAAAAAAuyChkgAAAAAAAAAAAAAAAAAAAAAAAAAAuyChkgAAAAAAAAAAAAAAAAAAAAAAAAAAuyChksukqs6pqluqaktVba6qI4fx1VV1f1V9eGLe5uHyzMT2GVW1pqquqKrbquq6qlo/nHN8Vd1QVTcPX49dRD8bqqqr6oRZ49vW/HpVfaaq9h/W2lxVdw29butpfVXdOay7bezioc6lVXXHMPa1qjpuYo1NVXXEInp5bJG37XnD+YdOjJ05jG13napaN/T5kmH/xcP++sWsDQAAAAAAAAAAAAAAAAAAAAAAAADPF6GSy6CqjkrytiSv6+6fSvKWJHcPh49PcmuSU6qquvuC7t7Q3RuSPLFtu7svTvIrSR7q7kOTfCTJhUONrUlO7O7XJjk1yScX0dbGJF8evk7atubhSR5M8v7uPnLo59wkV0z0dOdwzjETY2dM1DprOO/MJH+4hF6mcXOSd03sn5LkloXW6e67k/xBkg8PQx9OcsnEdQMAAAAAAAAAAAAAAAAAAAAAAACAnYJQyeVxUJKt3f1kknT31u6+dzi2MclHk9yV5KgF6pyU5LJh+8okxw1BlDdN1LslyZ5VtWa+IlVVmQldPC3J8VW1xzxTv5rk4AV6Wox560zRy0L+MjO3T6rqlUkezkzY5mLW+UiSn6mqM5O8McnvLrEHAAAAAAAAAAAAAAAAAAAAAAAAAHjOrF7uBlaozyU5t6puTfJfk1zR3V8agg3fkuRXk+yfmYDJ/2c7dQ5OcneSdPfTVfVwkrWZCE9McnKSG7cFWM7jDUnu6O7bq2pTkp9PctXkhKraLclxST6+iOt3bVU9M2xf1t0fmXX8hMyEPi6pl0V6JMndVXV4ZsIlr0jyvsWs090/rKqzkvxNkp/t7h/OtUBVnZ7k9CT5yIX/Pqe9+5eX0CYAAAAAAAAAAAAAAAAAAAAAAACj62eXuwOA58Wq5W5gJerux5K8PjOBhPcnuaKqTkvytiTXdvcTmQk4fPsQ5rgkVfWaJBdmJqRyezYmuXzYvnzY32bPqtqc5DtJXpbk84tY+pju3jBcJgMlLxqCNP9s6GvaXqZ1eZJ3JXl7kqunXOfnktyX5PD5inf3Jd19RHcfIVASAAAAAAAAAAAAAAAAAAAAAAAAgOfb6uVuYKXq7meSbEqyqapuTnJqkqeSvLGq7hymrU1ybOYPcvx2knVJ7qmq1Un2S/JAklTVIZkJUnxvd98+Xx9DaOXJSU6qqnOSVJK1VbVPdz+a5Inu3lBVeyX5bJL3J7l4iVf7rO6+sqp+LckfZSZYc5pepvVXSS5Kcn13P1JVi1qnqjYkOT7JzyT5clVd3t33LekaAwAAAAAAAAAAAAAAAAAAAAAAAMBzZNVyN7ASVdVhVfWqiaENSe5P8qYkL+/u9d29PjMBjhu3U+qazIRRJsk7k3yxu7uq9k/y10nO7u6vLNDOcUm2dPe6Yd1XJLkqyTsmJ3X340nOSPKbQ4DljvhYklVV9dal9LJYQ88fSnLBYtepmeTJP0hyZnfflZlQyt9dyvoAAAAAAAAAAAAAAAAAAAAAAAAA8FwSKrk89k5yWVV9o6q2JHl1ki9lJhTyyYl5n05yYlWtmafOx5OsrarbknwwydnD+AeSHJrk3KraPFwOnKfGxiRXzxq7KnOEWXb3TUm2zHVslmsn1v3EHHU6yflJfmvKXvaqqnsmLh9coI909+XdfeMU6/yrJHd19+eH8d9P8j9W1ZsXWgsAAAAAAAAAAAAAAAAAAAAAAAAAnk+rl7uBlai7b0jyhjkOXTZr3oNJXjqxv/es4z9Icsoc9c/PTGjjYnp53xxj1yS5Zp41T5zYvjTJpbOOr59nndNm7V+VmSDHdPfRw/BCvSwqBLW7z5tnfFHrJLlkYvyZJK9bzLoAAAAAAAAAAAAAAAAAAAAAAAAA8HxaVEgfAAAAAAAAAAAAAAAAAAAAAAAAAAA7l9XL3QDPn6q6LsmaWcPv6e6bl6OfHVVV5yQ5Zdbwp7r7guXoBwAAAAAAAAAAAAAAAAAAAAAAAACeT0IlV5DuPnK5exjTEB4pQBIAAAAAAAAAAAAAAAAAAAAAAACAFWnVcjcAAAAAAAAAAAAAAAAAAAAAAAAAAMD0qruXuwd4IfCNBAAAAAAAAAAAAAAAAAAAAACwNLXcDQAvPN+5/iuyoYAl+dEj/qdd6rXJquVuAAAAAAAAAAAAAAAAAAAAAAAAAACA6QmVBAAAAAAAAAAAAAAAAAAAAAAAAADYBQmVBAAAAAAAAAAAAAAAAAAAAAAAAADYBQmVBAAAAAAAAAAAAAAAAAAAAAAAAADYBQmVBAAAAAAAAAAAAAAAAAAAAAAAAADYBQmVXCZVdU5V3VJVW6pqc1UdOYyvrqr7q+rDE/M2D5dnJrbPqKo1VXVFVd1WVddV1frhnOOr6oaqunn4euwi+tlQVV1VJ8wa37bm16vqM1W1/7DW5qq6a+h1W0/rq+rOYd1tYxcPdS6tqjuGsa9V1XETa2yqqiMW0ctji7xtz6uqbw9rfauq/lNVvXqu9ebo9w3D9XhiYmxzVe2+mLUBAAAAAAAAAAAAAAAAAAAAAAAA4PmyerkbWImq6qgkb0vyuu5+sqoOSLIttPD4JLcmOaWqfru7L0hywXDeY929YaLOv0nyUHcfWlXvSnJhkl9MsjXJid19b1UdnuSzSQ5eoK2NSb48fP2bifEntq1ZVZcleX93bwvAPC3JEd39gYmekuSY7t46xxpndfeVVXVMkkuSvGrKXqbxke7+3aGnX0zyxap6bXffP8fcf9LvEM55++RtDQAAAAAAAAAAAAAAAAAAAAAAAADbU1UvSXJFkvVJ7kzyC9390Kw5G5L8QZJ9kzyT5ILuvmI4dmmSNyd5eJh+Wndv3t6aq8ZrnykclGRrdz+ZJN29tbvvHY5tTPLRJHclOWqBOicluWzYvjLJcVVV3X3TRL1bkuxZVWvmK1IzSZCnJDktyfFVtcc8U7+ahcMpF2PeOlP0smjDN8jnkvzSjtYCAAAAAAAAAAAAAAAAAAAAAAAAgHmcneQLLMMbvAAAIABJREFU3f2qJF8Y9md7PMl7u/s1SU5I8h+qav+J42d194bhst1AyUSo5HL5XJJ1VXVrVf1+Vb05SYYAxbck+UySP89MwOT2HJzk7iTp7qczkya6dtack5PcuC3Ach5vSHJHd9+eZFOSn589oap2S3JckmsW6ClJrq2qzcPlN+Y4fkKSv1xqL0t0Y5KfnOfYtn6vmxh75cR1+I9znVRVp1fV9VV1/SWXXDJSmwAAAAAAAAAAAAAAAAAAAAAAAADsok5KctmwfVmSt8+e0N23dve3hu17k3wvyUuXuuDqpZ7I0nX3Y1X1+iRvSnJMkiuq6uwkjyW5trufqKqrkvy7qjqzu59ZyjpV9ZokFyb52QWmbkxy+bB9eZL3Jrlq2N+zqjZnJsDy75J8fhFLH9PdW+cYv6iqfifJIUmOWkIvO6K2c2yufm/v7g3bK9jdlyTZlibZO9IcAAAAAAAAAAAAAAAAAAAAAAAAAMuvqk5PcvrE0CVD9txivKy77xu2v5PkZQus9S+S7J7k9onhC6rq3CRfSHJ2dz+5vRpCJZfJEBS5Kcmmqro5yalJnkryxqq6c5i2NsmxmT/I8dtJ1iW5p6pWJ9kvyQNJUlWHJLk6yXu7+/Z5zk9V7Zbk5CQnVdU5mQlfXFtV+3T3o0me6O4NVbVXks8meX+Si5d4tc/q7iur6teS/FGS10/Zy47450mu38EaAAAAAAAAAAAAAAAAAAAAAAAA7AK6e7lbAHZRQ4DkvCGSVfVfk/zoHIfOmVWnq2reJ6OqOijJJ5Oc2t3PDsO/nZkwyt2HHj6U5P/YXr+rtneQ50ZVHVZVr5oY2pDk/iRvSvLy7l7f3eszE+C4cTulrslMGGWSvDPJF4cHzv5J/jozqaJfWaCd45Js6e51w7qvSHJVkndMTurux5OckeQ3hwDLHfGxJKuq6q1L6WVaVXVykp9N8uc7UgcAAAAAAAAAAAAAAAAAAAAAAACAla2739Ldh89x+XSS7w5hkdtCI783V42q2jczmYHndPd/m6h9X894MskfJ/kXC/UjVHJ57J3ksqr6RlVtSfLqJF/KTCjkkxPzPp3kxKpaM0+djydZW1W3JflgkrOH8Q8kOTTJuVW1ebgcOE+NjUmunjV2VeYIs+zum5JsmevYLNdOrPuJOep0kvOT/NaUvexVVfdMXD64nR5+Y1j/W0neneTY7r5/gb4BAAAAAAAAAAAAAAAAAAAAAAAAYKmuSXLqsH1qZjIF/4mq2j0zuXuf6O4rZx3bFkhZSd6e5OsLLVgz+X7ADvKNBAAAAAAAAAAAAAAAAAAAAACwNLXcDQAvPPf97ZdlQwFLctBPv3HJr02qam2Sv0jy8iT/kOQXuvvBqjoiyb/u7v+lqt6d5I+T3DJx6mndvbmqvpjkpZl5fbR5OOex7a4pVBJG4RsJAAAAAAAAAAAAAAAAAAAAAGBphEoCoxMqCSzVjoRKLofVy90Az5+qui7JmlnD7+num5ejnx1VVeckOWXW8Ke6+4Ll6AcAAAAAAAAAAAAAAAAAAAAAAAAAnk/VLUQXRuAbCQAAAAAAAAAAAAAAAAAAAABgaWq5GwBeeO772y/LhgKW5KCffuMu9dpk9XI3AC8ED9195yh1nt77xaPUSZI9dhvxuaifHa3Ukz1eX7X1vtFqrd5n/1HqrNpjj1HqjO3pR74/Wq1V+68drdZKsN8++4xS54G//9YodVaKtT/+qlHqbP3WN0aps5Ic8KpX73ANj/fpjfWY/96W60eps1Ic+FNHjFLn/oceHqXOSvHSF+83Sp2HHnl0lDorxYv3Hec1zaOPPDJKnZVkn3333eEajz483s8DK8U++43zM+LDj3qumcZYPz95rpnOGM8zSfLdBz3XTONlLxnneeaRB7aOUmel2HftAaPU8W/r9Mb4t9X7BdMb6/0Cj/npjPVa8vZ7vztKnZXilT/2slHqeLxPZ6zH+633fGeUOivFTxzyo6PU+fv7vjdKnZXkxw86cIdr/OtL/mKETlaWPzz9F0ap432a6Yz1Ps0//OdPjVJnpXjF/3zKKHW2ft/vnqZxwP7j/O7p+/fePUqdlWT/H1u3wzU+t9nnOqb1sxt2/HMdSXLf1gdHqbNSHHTAS0ap4z3h6Yz1nvA37x7vs6orwWHrDhqlztHnfWyUOivFpvM+MEodn6eZ3hifqbnre57fp/XyA8d5jvfe5HTGem/Sz63TGevnVs/x0xnrM5OPbPVe/DT2PWDH34dPxn281z+O91m07z2z22i19ttrvL9f2zPPjFKnVr9olDpJ8uSz42U8rH58vPvwu8+M9+fY+//InqPVGus+TEa8H0f8e9Qx/y7y0TV7j1Zrnz3WjFZr1RP/OFqtR2uc+3CP3cd7vL/oySdGq3XXE0+PVmvM59IxHw9PPzPO98+zPd5z6bPPjvc9/egPnhqt1u6rx/u3dUwvrnGelx/fbfdR6iTJiP+05gc//OFotXZbtWq0WmMa6z4cM3Pg8fH+uc9uq8bLenj8qfEeD2M+lz67dZz3fHY/YJzPJSbJY0+N92/YHk+M9xp3t73Ge330w4cfGq3WWJ+BBgBYiXbOn7QAAAAAAAAAAAAAAAAAAAAAAAAAANguoZIAAAAAAAAAAAAAAAAAAAAAAAAAALsgoZIAAAAAAMD/x869B2telfeC/36blgaFoIJEEJL2RAsTjSKQUjxa3nOZQMlElCY3qZopzKgnZ3I5BsaM0Zr2lJg4UaPOaCoJjCcSLB0kaIBkkD4x0YMCdkSMIZhguB2lkaAoF2nW/LF/ra9vdffeG9+wafvzqXrr/a1nrfX8nvXbfXnZ7H4AAAAAAAAAAAAAAAAAANgDaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAH0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAPpKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAeSFPJBWn7urbXtP1s261tnzHF17e9te2bZ9ZtnV7bZ65/te2Gtue1va7t5W03Tnte3PbKtldP7y/YTR1/0vaVc7GT2l40Xc/ec2vbM6b4lrZXzOw5ru2WmfGz236q7Rem1+kzc2e3PXnunndO7+vavqPt56b6P9328bup//q2H5+LbW37uen6eW3vmDvDi+bOdk3bv2v7G23Xzez7yFzeD7f9b3OxN7T9ZttD588CAAAAAAAAAAAAAAAAAAAAAAAAAA8l69e6gO8HbY9PckKSY8YY97Q9JMm+0/SLk1yb5GVtzxxjvCnJm6Z9d44xjp7J86okt48xntB2U5KzkpySZFuSE8cYN7d9SpJLkjxuF+Wcm+TMJO+ZiW2a4kly1+w95xza9mfGGBfNne+xSd6f5KQxxlXT+S5pe9MY46PLPJ5Tkhye5KljjPvbHpHkG8vsObDtkWOMG9r+6E7mPz7GOGEn8W+fbWoK+f4kP5Dkd+YXtn1kkmOT3Nn2340x/mlmeluS30jyW8vUCQAAAAAAAAAAAAAAAAAAAAAAAABrZt1aF/B94rAk28YY9yTJGGPbGOPmae7UJG9P8i9Jjl8mz0uSnDNdfzDJC9t2jPGZmXzXJNm/7YZd5Lg0yZPaHpYkbR+R5EVJPryCc/xuktftJP7qJGePMa5Kls6X5LVJzlhBzsOS3DLGuH/ae+MY4/Zl9nwgS80ok6Xnd+5u1u7UGOMrSU5P8pq23cmSn0tyYZI/y1LTzVl/nOSUto9e7X0BAAAAAAAAAAAAAAAAAAAAAAAA4MGiqeRi/GWSI9te2/bdbZ+bJG33y1JDxwuz1Bjx1GXyPC7JDUkyxrgvyR1JDp5b89IkV+1oYDlvjLE9yYeSvHwKnZhkyxjja9N4/7ZbZ16nzGz/ZJJ72z5/Lu2Tk1w5F7tiii/nA0lOnO711rZPX8GeD2Wp6eOO+i+cm3/O3Bl+ZGdJxhj/lGSfJIfuZHpHs8qdfV3uzFJjyf+4uyLbnt72irZXnP2n79/tgQAAAAAAAAAAAAAAAAAAAAAAAABg0TSVXIAxxp1Jjk1yepJbk5zX9rQkJyS5bIxxV5YaJZ7Udp8Hep+2T05yVpJXLrP03CSbputN03iHu8YYR8+8zpvbuznJb6+ytLGr2BjjxiRHJTkzyf1JLm37wmXy3Zbk9rabkvx9km/OzX987gxfXE2xbX8wyROT/M0Y49ok32r7lLll70jyirYH7irPGOO9Y4zjxhjHnfYLP7+aEgAAAAAAAAAAAAAAAAAAAAAAAADge6ap5IKMMbaPMbaMMX4nyWuSvDTJqUle1Pb6JFcmOTjJC3aT5qYkRyZJ2/VJDspSg8W0PSLJ+Ul+eQVNFD+R5LC2T0vyrCQfXcU5PpZk/yTPnAl/PktNM2cdm+Sa6fq2JI/aMdH20Um2zeS8Z4xx0RjjPyX5z0lOWkEp5yV5V767IeaqtP13SbYn+crc1Munev95+tpszNLX6tvGGP+a5P1JXv1A7w8AAAAAAAAAAAAAAAAAAAAAAAAA/5Y0lVyAtke1feJM6OgktyZ5TpIfGmNsHGNszFKDwlN3kmKHP0/yiun65CQfG2OMto/MUmPIM8YYf7tcPWOMkaWmjOckuWiMcfcqj7Q5yWtnxu9Kclrbo5Ok7cFJzkrylml+S5JT2u47jU9Lctm09pi2h0/X65I8NcmXVlDD+VP+S1ZZe6Z7PSbJ/53kndPzmHVqkp+e+bocm2TTTtL8n0lemWT9A6kBAAAAAAAAAAAAAAAAAAAAAAAAAP4taZa3GAck+YOp+eN9Sa5LckGSh48x7plZd0GSt7TdMBff4Y+SvK/tdUm+mu80OnxNkickeX3b10+xnxxjfGU3NZ2bpcaQZ8zF92+7dWZ88Rjju9aMMf6i7a0z41va/mKSP2x7YJImedsY48Jp/iNtj01yZdvtSb6Y5Fem7YdO+zZM408leedu6t5xz69nqXFl2s5PP2fuDJvHGB+cOdvDsvR1eF+WGkN+W9uNSX44yX+budc/t72j7TPmatjW9vwkv7ZcvQAAAAAAAAAAAAAAAAAAAAAAADyEbN++1hUAPCg0lVyAMcaVSZ61k6lz5tZ9NcljZsYHzM3fneRlO8m/OcnmVda0NUvNH+fj++xi/fPmxsfOjf86yU/s5n5vTPLGncQvTnLxiopeWr9xJ7Hrkzxlut6S5KBd7N3p2Wb2bZmGj9vJ/DHT5eVz8V9P8uvLlA0AAAAAAAAAAAAAAAAAAAAAAAAAD7p1a10AAAAAAAAAAAAAAAAAAAAAAAAAAACrt36tC+CBa3t5kg1z4V8aY1y9FvWsxp5cOwAAAAAAAAAAAAAAAAAAAAAAAAA8FGgquQcbYzxjrWt4oPbk2gEAAAAAAAAAAAAAAAAAAAAAAADgoWDdWhcAAAAAAAAAAAAAAAAAAAAAAAAAAMDqaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAH0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAPpKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAeSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIA9kKaSAAAAAAAAAAAAAAAAAAAAAAAAAAB7IE0lAQAAAAAAAAAAAAAAAAAAAAAAAAD2QJpKPsjavq7tNW0/23Zr22dM8fVtb2375pl1W6fX9pnrX227oe15ba9re3nbjdOeF7e9su3V0/sLdlPHn7R95VzspLYXTdez99za9owpvqXtFTN7jmu7ZWb87LafavuF6XX6zNzZbU+eu+ed0/u6tu9o+7mp/k+3ffxu6r++7cfnYlvbfm66fl7bO+bO8KK5s462T5qJbZxi/2Em9s62p+2qDgAAAAAAAAAAAAAAAAAAAAAAAABYK+vXuoC9Sdvjk5yQ5Jgxxj1tD0my7zT94iTXJnlZ2zPHGG9K8qZp351jjKNn8rwqye1jjCe03ZTkrCSnJNmW5MQxxs1tn5LkkiSP20U55yY5M8l7ZmKbpniS3DV7zzmHtv2ZMcZFc+d7bJL3JzlpjHHVdL5L2t40xvjoMo/nlCSHJ3nqGOP+tkck+cYyew5se+QY44a2P7qT+Y+PMU7Yxd5Tk/zN9P47M/GvJPmPbd8zxrh3mfsDAAAAAAAAAAAAAAAAAAAAAAAAwJpZt9YF7GUOS7JtjHFPkowxto0xbp7mTk3y9iT/kuT4ZfK8JMk50/UHk7ywbccYn5nJd02S/dtu2EWOS5M8qe1hSdL2EUlelOTDKzjH7yZ53U7ir05y9hjjqmTpfElem+SMFeQ8LMktY4z7p703jjFuX2bPB7LUjDJZen7n7mbtt7U9IMmzk/xPWWqkOevWLD2bV6wkFwAAAAAAAAAAAAAAAAAAAAAAAACsFU0lH1x/meTItte2fXfb5yZJ2/2y1NDxwiw1Rjx1mTyPS3JDkowx7ktyR5KD59a8NMlVOxpYzhtjbE/yoSQvn0InJtkyxvjaNN6/7daZ1ykz2z+Z5N62z59L++QkV87Frpjiy/lAkhOne7217dNXsOdDSX5upv4L5+afM3eGH5niL0ly8Rjj2iS3tT12bt9ZSX6z7T67u3nb09te0faKs//0/SsoFwAAAAAAAAAAAAAAAAAAAAAAAAAWR1PJB9EY484kxyY5PcmtSc5re1qSE5JcNsa4K0uNEk9arqHh7rR9cpYaI75ymaXnJtk0XW+axjvcNcY4euZ13tzezUl+e5WljV3Fxhg3JjkqyZlJ7k9yadsXLpPvtiS3t92U5O+TfHNu/uNzZ/jiFD81yZ9N13+WuSaeY4x/SnJ5kp/f7WHGeO8Y47gxxnGn/cJulwIAAAAAAAAAAAAAAAAAAAAAAADAwq1f6wL2NmOM7Um2JNnS9uokr0hyb5Jnt71+WnZwkhck+atdpLkpyZFJbmy7PslBWWqwmLZHJDk/yS/PNFHclU8kOazt05I8K99pMLmSc3ys7eYkz5wJfz5LTTMvmIkdm+Sa6fq2JI/aMdH20Um2zeS8J8lFSS5q++UkJyW5dJlSzkvyriSnraTu6Z4vSPLjbUeSfZKMtv9pbul/TvLBJP91JXkBAAAAAAAAAAAAAAAAAAAAAAAA4MG2bq0L2Ju0PartE2dCRye5NclzkvzQGGPjGGNjklcnOXU3qf48S80ok+TkJB8bY4y2j0zy0SRnjDH+drl6xhgjS00Zz0ly0Rjj7lUeaXOS186M35XktLZHJ0nbg5OcleQt0/yWJKe03Xcan5bksmntMW0Pn67XJXlqki+toIbzp/yXrLDmk5O8b4zxw9PzPjLJP2fpa/BtY4wvZKlJ5okrzAsAAAAAAAAAAAAAAAAAAAAAAAAADypNJR9cByQ5p+3n2342yY8l+a9Zagp5z8y6C5Kc2HbDLvL8UZKD216X5NeTnDHFX5PkCUle33br9Dp0mZrOTfK06X3W/jM5trZ98/zGMcZfZKkp5o7xLUl+Mckftv1Ckk8k+eMxxoXT/EeSfDzJlW23Jvn3SX5r2n5okgvbfi7JZ5Pcl+Sdy9SeMcbXxxhnjTHu3cn0c+bOcHKWmnWeP7fuQ9l5E883JTliuRoAAAAAAAAAAAAAAAAAAAAAAAAAYC2sX+sC9iZjjCuTPGsnU+fMrftqksfMjA+Ym787yct2kn9zks2rrGlrku4kvs8u1j9vbnzs3Pivk/zEbu73xiRv3En84iQXr6jopfUbdxK7PslTpustSQ7aydYP7mTfO2aGT5mJ/100XgUAAAAAAAAAAAAAAAAAAAAAAADgIUpTSQAAAAAAAAAAAAAAAAAAAAAAAOD7yhj3r3UJAA8KTSX3Am0vT7JhLvxLY4yr16Ke1diTawcAAAAAAAAAAAAAAAAAAAAAAACAf0uaSu4FxhjPWOsaHqg9ufYHYv2dt+e+Ax611mXwPbj/7ruzbr/91roMAAAAAAAAAAAAAAAAAPg3N+77Vrr+YWtdBgAALMy9276cfQ/5wbUuAwAAVmXdWhcAfIeGkns+DSUBAAAAAAAAAAAAAAAA2FtoKAkAwPcbDSUBANgTaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAH0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAPpKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAeSFNJAAAAAAAAAAAAAAAAAAAAAAAAAIA9kKaSAAAAAAAAAAAAAAAAAAAAAAAAAAB7IE0lAQAAAAAAAAAAAAAAAAAAAAAAAAD2QJpKPoS1fV3ba9p+tu3Wts+Y4uvb3tr2zTPrtk6v7TPXv9p2Q9vz2l7X9vK2G6c9L257Zdurp/cX7KaOP2n7yrnYSW0vmq5n77m17RlTfEvbK2b2HNd2y8z42W0/1fYL0+v0mbmz2548d887p/d1bd/R9nNT/Z9u+/jd1H9924/Pxba2/dx0/by2H5muT2t7f9unzqz93I7nBgAAAAAAAAAAAAAAAAAAAAAAAAAPFevXugB2ru3xSU5IcswY4562hyTZd5p+cZJrk7ys7ZljjDcledO0784xxtEzeV6V5PYxxhPabkpyVpJTkmxLcuIY4+a2T0lySZLH7aKcc5OcmeQ9M7FNUzxJ7pq955xD2/7MGOOiufM9Nsn7k5w0xrhqOt8lbW8aY3x0mcdzSpLDkzx1jHF/2yOSfGOZPQe2PXKMcUPbH11m7Y1JXjfdBwAAAAAAAAAAAAAAAAAAAAAAAAAektatdQHs0mFJto0x7kmSMca2McbN09ypSd6e5F+SHL9MnpckOWe6/mCSF7btGOMzM/muSbJ/2w27yHFpkie1PSxJ2j4iyYuSfHgF5/jdLDVonPfqJGePMa5Kls6X5LVJzlhBzsOS3DLGuH/ae+MY4/Zl9nwg32kSeWq+0xBzZz6S5Mltj9pdwrant72i7RVn/+n7V1A2AAAAAAAAAAAAAAAAAAAAAAAAACyOppIPXX+Z5Mi217Z9d9vnJknb/bLU0PHCLDVGPHWZPI9LckOSjDHuS3JHkoPn1rw0yVU7GljOG2NsT/KhJC+fQicm2TLG+No03r/t1pnXKTPbP5nk3rbPn0v75CRXzsWumOLL+UCSE6d7vbXt01ew50NJfm6m/gt3s/b+JG9J8r/tLuEY471jjOPGGMed9gs/v4ISAAAAAAAAAAAAAAAAAAAAAAAAAGBxNJV8iBpj3Jnk2CSnJ7k1yXltT0tyQpLLxhh3ZalR4klt93mg92n75CRnJXnlMkvPTbJput40jXe4a4xx9MzrvLm9m5P89ipLG7uKjTFuTHJUkjOz1ADy0rYvXCbfbUlub7spyd8n+eYy69+f5JltH7+qqgEAAAAAAAAAAAAAAAAAAAAAAADgQbJ+rQtg18YY25NsSbKl7dVJXpHk3iTPbnv9tOzgJC9I8le7SHNTkiOT3Nh2fZKDstRgMW2PSHJ+kl8eY3xxmXI+keSwtk9L8qx8p8HkSs7xsbabkzxzJvz5LDXNvGAmdmySa6br25I8asdE20cn2TaT854kFyW5qO2Xk5yU5NJlSjkvybuSnLaCmu9r+9Ykv7XcWgAAAAAAAAAAAAAAAAAAAAAAAABYC+vWugB2ru1RbZ84Ezo6ya1JnpPkh8YYG8cYG5O8Osmpu0n151lqRpkkJyf52BhjtH1kko8mOWOM8bfL1TPGGFlqynhOkovGGHev8kibk7x2ZvyuJKe1PTpJ2h6c5Kwkb5nmtyQ5pe2+0/i0JJdNa49pe/h0vS7JU5N8aQU1nD/lv2SFNZ+d5EVJHrPC9QAAAAAAAAAAAAAAAAAAAAAAAADwoFm/1gWwSwck+YOp+eN9Sa5LckGSh48x7plZd0GSt7TdMBff4Y+SvK/tdUm+mmTTFH9NkickeX3b10+xnxxjfGU3NZ2bpcaQZ8zF92+7dWZ88Rjju9aMMf6i7a0z41va/mKSP2x7YJImedsY48Jp/iNtj01yZdvtSb6Y5Fem7YdO+zZM408leedu6t5xz69nqXFl2i63PGOMe9u+I8nbl10MAAAAAAAAAAAAAAAAAAAAAAAAAA8yTSUfosYYVyZ51k6mzplb99Ukj5kZHzA3f3eSl+0k/+Ykm1dZ09YsNX+cj++zi/XPmxsfOzf+6yQ/sZv7vTHJG3cSvzjJxSsqemn9xp3Erk/ylOl6S5It0/XZSc6eWfeOJO9Y6b0AAAAAAAAAAAAAAAAAAAAAAAAA4MGybq0LAAAAAAAAAAAAAAAAAAAAAAAAAABg9davdQE8tLS9PMmGufAvjTGuXot6VmNPrh0AAAAAAAAAAAAAAAAAAAAAAAAAVktTSb7LGOMZa13DA7Un1w4AAAAAAAAAAAAAAAAAsKcZ930rXf+wtS4DAAAAAGCvtm6tCwAAAAAAAAAAAAAAAAAAAPY8GkoCAAAAAKw9TSUBAAAAAAAAAAAAAAAAAAAAAAAAAPZAmkoCAAAAAAAAAAAAAAAAAAAAAAAAAOyBNJUEAAAAAAAAAAAAAAAAAAAAAAAAANgDaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAH0lQSAAAAAAAAAAAAAAAAAAAAAAAAAGAPpKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAeSFPJh5C2r2t7TdvPtt3a9hlTfH3bW9u+eWbd1um1feb6V9tuaHte2+vaXt5247TnxW2vbHv19P6C3dTxJ21fORc7qe1F0/XsPbe2PWOKb2l7xcye49pumRk/u+2n2n5hep0+M3d225Pn7nnn9L6u7Tvafm6q/9NtH7+b+q9v+/G52Na2n5uLva3tTW3XzcR+ve0fz4x/oe1Hd3UvAAAAAAAAAAAAAAAAAAAAAAAAAFgr69e6AJa0PT7JCUmOGWPc0/aQJPtO0y9Ocm2Sl7U9c4zxpiRvmvbdOcY4eibPq5LcPsZ4QttNSc5KckqSbUlOHGPc3PYpSS5J8rhdlHNukjOTvGcmtmmKJ8lds/ecc2jbnxljXDR3vscmeX+Sk8YYV03nu6TtTWOM5Zo2npLk8CRPHWPc3/aIJN9YZs+BbY8cY9zQ9kd0wK8DAAAgAElEQVTnJ6dGkv9jkhuSPDfJZdPUO5Jc0fbfJ7kmyeYkL1zmXgAAAAAAAAAAAAAAAAAAAAAAAADwoFu31gXwbYcl2TbGuCdJxhjbxhg3T3OnJnl7kn9JcvwyeV6S5Jzp+oNJXti2Y4zPzOS7Jsn+bTfsIselSZ7U9rAkafuIJC9K8uEVnON3k7xuJ/FXJzl7jHFVsnS+JK9NcsYKch6W5JYxxv3T3hvHGLcvs+cDWWpGmSw9v3Pn5p+Xpefwf03zmXLfl+RVSd6V5C1J/niM8U87u0Hb09te0faKs//0/Ss4BgAAAAAAAAAAAAAAAAAAAAAAAAAsjqaSDx1/meTItte2fXfb5yZJ2/2y1NDxwiw1Rjx1NzmS5HFJbki+3SDxjiQHz615aZKrdjSwnDfG2J7kQ0lePoVOTLJljPG1abx/260zr1Nmtn8yyb1tnz+X9slJrpyLXTHFl/OBJCdO93pr26evYM+HkvzcTP0Xzs3vaDR5fpKfbfuwHRNjjE8k+fssPfe37OoGY4z3jjGOG2Mcd9ov/PwKSgIAAAAAAAAAAAAAAAAAAAAAAACAxdFU8iFijHFnkmOTnJ7k1iTntT0tyQlJLhtj3JWlRokntd3ngd6n7ZOTnJXklcssPTfJpul60zTe4a4xxtEzr/Pm9m5O8turLG3sKjbGuDHJUUnOTHJ/kkvbvnCZfLclub3tpiw1iPzmjom2+yb5H5J8eGqUeXmSn5qZPyDJcUkeluQxqzwHAAAAAAAAAAAAAAAAAAAAAAAAADwo1q91AXzHGGN7ki1JtrS9Oskrktyb5Nltr5+WHZzkBUn+ahdpbkpyZJIb265PclCWGiym7RFJzk/yy2OMLy5TzieSHNb2aUmele80mFzJOT7WdnOSZ86EP5+lppkXzMSOTXLNdH1bkkftmGj76CTbZnLek+SiJBe1/XKSk5Jcukwp5yV5V5LT5uI/leSRSa5umyQPT3JXko9M829M8l+SfDnJ7yd52TL3AQAAAAAAAAAAAAAAAAAAAAAAAIAH3bq1LoAlbY9q+8SZ0NFJbk3ynCQ/NMbYOMbYmOTVSU7dTao/z1IzyiQ5OcnHxhij7SOTfDTJGWOMv12unjHGyFJTxnOSXDTGuHuVR9qc5LUz43clOa3t0UnS9uAkZyV5yzS/JckpbfedxqcluWxae0zbw6frdUmemuRLK6jh/Cn/JXPxU5P8zzPP9PFJXtz24W1/PMnPTrW9N8nGti9e4ZkBAAAAAAAAAAAAAAAAAAAAAAAA4EGzfq0L4NsOSPIHU/PH+5Jcl+SCJA8fY9wzs+6CJG9pu2EuvsMfJXlf2+uSfDXJpin+miRPSPL6tq+fYj85xvjKbmo6N0uNIc+Yi+/fduvM+OIxxnetGWP8RdtbZ8a3tP3FJH/Y9sAkTfK2McaF0/xH2h6b5Mq225N8McmvTNsPnfZtmMafSvLO3dS9455fz1JzyLTN9P7wJD89kztjjG+0/ZskJyb5D0l+bUcTzbb/S5L/p+3RY4x7l7snAAAAAAAAAAAAAAAAAAAAAAAAADxYNJV8iBhjXJnkWTuZOmdu3VeTPGZmfMDc/N1JXraT/JuTbF5lTVuz1PxxPr7PLtY/b2587Nz4r5P8xG7u98Ykb9xJ/OIkF6+o6KX1G3cSuz7JU6bho3cy/3PT5Xlz8SuS/NhK7w0AAAAAAAAAAAAAAAAAAAAAAAAAD5Z1a10AAAAAAAAAAAAAAAAAAAAAAAAAAACrt36tC2Bttb08yYa58C+NMa5ei3pWY0+uHQAAAAAAAAAAAAAAAAAAAAAAAAC+V5pK7uXGGM9Y6xoeqD25dgAAAAAAAAAAAAAAAAAAAAAAAAD4XnWMsdY1wPcDv5EAAAAAAAAAAAAAAAAAAAAAAB6YrnUBwPefmz95md5QwANy+PHP36M+m6xb6wIAAAAAAAAAAAAAAAAAAAAAAAAAAFi99WtdAAAAAAAAAAAAAAAAAAAAAAAAAMBCjbHWFQA8KNatdQEAAAAAAAAAAAAAAAAAAAAAAAAAAKyeppIAAAAAAAAAAAAAAAAAAAAAAAAAAHsgTSUBAAAAAAAAAAAAAAAAAAAAAAAAAPZAmko+hLR9Xdtr2n627da2z5ji69ve2vbNM+u2Tq/tM9e/2nZD2/PaXtf28rYbpz0vbntl26un9xfspo4/afvKudhJbS+armfvubXtGVN8S9srZvYc13bLzPjZbT/V9gvT6/SZubPbnjx3zzun93Vt39H2c1P9n277+N3Uf/207uq2n2+7ue1+09zGtp+brp/X9o6Zc/x/U/wNbW+aib95N182AAAAAAAAAAAAAAAAAAAAAAAAAFgT69e6AJa0PT7JCUmOGWPc0/aQJPtO0y9Ocm2Sl7U9c4zxpiRvmvbdOcY4eibPq5LcPsZ4QttNSc5KckqSbUlOHGPc3PYpSS5J8rhdlHNukjOTvGcmtmmKJ8lds/ecc2jbnxljXDR3vscmeX+Sk8YYV03nu6TtTWOMjy7zeE5JcniSp44x7m97RJJvLLPn+WOMbW0PSPLe6Syv2Mm6j48xTthJ/PfHGL+3zD0AAAAAAAAAAAAAAAAAAAAAAAAAYM2sW+sC+LbDkmwbY9yTJGOMbWOMm6e5U5O8Pcm/JDl+mTwvSXLOdP3BJC9s2zHGZ2byXZNk/7YbdpHj0iRPantYkrR9RJIXJfnwCs7xu0let5P4q5OcPca4Klk6X5LXJjljBTkPS3LLGOP+ae+NY4zbV7AvY4w7k/xKkpPaPnolewAAAAAAAAAAAAAAAAAAAAAAAABgT6Cp5EPHXyY5su21bd/d9rlJ0na/LDV0vDDJuVlqMLk7j0tyQ5KMMe5LckeSg+fWvDTJVTsaWM4bY2xP8qEkL59CJybZMsb42jTev+3WmdcpM9s/meTets+fS/vkJFfOxa6Y4sv5QJITp3u9te3TV7Bn9jxfS/LPSZ64k+nnzJxjthnmr83Ef2pnedue3vaKtle8973vXU1JAAAAAAAAAAAAAAAAAAAAAAAAAPA9W7/WBbBkjHFn22OTPCfJ85Oc1/aMJHcmuWyMcVfbDyX539v+r1Pjx1Vr++QkZyX5yWWWnpvk95K8PcmmJO+bmbtrjHH0bvZuTvLbSX5rFaWNXcXGGDe2PSrJC6bXpW1fNsa4dBX5u4v4x8cYJ+wk/vtjjN/bbcFjvDfJjm6SO6sfAAAAAAAAAAAAAAAAAAAAAAAAAP7NaCr5EDI1itySZEvbq5O8Ism9SZ7d9vpp2cFZaqz4V7tIc1OSI5Pc2HZ9koOS3JYkbY9Icn6SXx5jfHGZcj6R5LC2T0vyrCw1llzpOT7WdnOSZ86EP5/k2CQXzMSOTXLNdH1bkkftmGj76CTbZnLek+SiJBe1/XKSk5KsqKlk2wOTbExybZaeBwAAAAAAAAAAAAAAAAAAAAAAAADs8datdQEsaXtU2yfOhI5OcmuS5yT5oTHGxjHGxiSvTnLqblL9eZaaUSbJyUk+NsYYbR+Z5KNJzhhj/O1y9YwxRpLzkpyT5KIxxt2rPNLmJK+dGb8ryWltj06StgcnOSvJW6b5LUlOabvvND4tyWXT2mPaHj5dr0vy1CRfWkkRbQ9I8u4kHx5j3L7KMwAAAAAAAAAAAAAAAAAAAAAAAADAQ9b6tS6AbzsgyR9MzR/vS3JdkguSPHyMcc/MuguSvKXthrn4Dn+U5H1tr0vy1SSbpvhrkjwhyevbvn6K/eQY4yu7qencLDWGPGMuvn/brTPji8cY37VmjPEXbW+dGd/S9heT/GHbA5M0ydvGGBdO8x9pe2ySK9tuT/LFJL8ybT902rdhGn8qyTt3U3eSXNa2WWqcen6S/2OZ9QAAAAAAAAAAAAAAAAAAAAAAAACwR+kYY61rgO8HfiMBAAAAAAAAAAAAAAAAAAAAADwwXesCgO8/N3/iY3pDAQ/I4c96wR712WTdWhcAAAAAAAAAAAAAAAAAAAAAAAAAAMDqrV/rAlhbbS9PsmEu/EtjjKvXop7V2JNrBwAAAAAAAAAAAAAAAAAAAAAAAIDvlaaSe7kxxjPWuoYHak+uHQAAAAAAAAAAAAAAAAAAAAAAAAC+V5pKwgLc9sV/WEiehz3qkIXkSZL777l7Ybky7l9cqgMeubBc+9x378JybV+/70Ly7POtexaSJ0m2f/POheW69xGLe+7r2oXl2hs85lEHLSTP17Z9ZSF59hY/cMihC8njua/eIp791+/41wVUsnc58KDF/Dn/yS98cSF59hbHP+lHFpLnji//94Xk2Vsc9IOPXUieG79y20Ly7C2OOPTgheS56rovLSTP3uSYJ/zw95zjX2++YQGV7F0eefiRC8nzr//95oXk2Vs88rGHLySPX/Ors6hf77ffcP1C8uwtHnXkxoXk+eLNX15Inr3Fjxz+gwvJ47Pk6i3i8+TXbtu2gEr2Lj9w8GL+n8M/3HDLQvLsLY468rCF5PH9gtVZ1PcLLvnM5xeSZ2/xU0//sYXk2faPnvtqHPLExTx3nyVXbxGfJ7/2VZ8lV+sHHr2Y703esu2rC8mztzjskEcvJM9Hr7h6IXn2Fj973I8vJM8tn/6bheTZWxz2E89eSB7fD169RXxPeNsX/DmzWoc8aUF/1vi7dVUW9Xfrtn+9YyF59haHPHIxP7vne8Krs6ifL7j9a19fSJ69xaN+4MCF5HneG965kDx7ky1veM33nMPPTK7eon5m0mea1VnUZxo/17E6fq5jbSzq5zo899VZ1HNf5J/v69atW1iu/b61uH/rN+7fvrBc992xmOf11QMes5A8SXLgfov5d35Jsn6ffRaWa99771pYrrH9WwvLdd/XFvd58rZHLOZnTQ496ICF5Fm4Oxb33/hd4K+te2+7dWG5th+2cSF57rlvcX/OLNJBD99vYbn2WeDv6W/dcfvCct22YTHf09pn3eL+HfD2+8cCcy3u36s/coG/HhZ5xoP2e9hC8nzlzsX9Gl2kb967uL/DHv2Ihy8s1xgPva/h9V/92kLyJIv98+/AexbXv+COhz1iYbkeve/iPnvff/c3F5Jn3Yb9F5InSfqwxX3Gvf+uxZwvWex/W3zz+msXluvw45+/sFwAAHubxX2yBgAAAAAAAAAAAAAAAAAAAAAAAADgQaOpJAAAAAAAAAAAAAAAAAAAAAAAAADAHkhTSQAAAAAAAAAAAAAAAAAAAAAAAACAPZCmkgAAAAAAAAAAAAAAAAAAAAAAAAAAe6D1a10AAAAAAAAAAAAAAAAAAAAAAAAAwEKN+9e6AoAHxbq1LgAAAAAAAAAAAAAAAAAAAAAAAAAAgNXTVPL7WNvXtb2m7Wfbbm37jLb7tn1b2+va/mPbC9oeMbNn+7T2mrZ/1/Y32q6b5p7X9iPT9Rva/ubc/a5ve8h0Pdr+l5m59W1v3bF/F/WeNu170UzspCl28jTe0vYfphq3tv3gTD03TbF/bPv/tv2xmTxb2h43Mz56yvvTczWMtm+dGf9m2zes+KEDAAAAAAAAAAAAAAAAAAAAAAAAwINEU8nvU22PT3JCkmPGGE9N8qIkNyT5z0n+f3buP9ruurwT/ftJAgVN8Ac/KhY0w8CgAzpIqI4uvQKV67i0olbHpLQWZryxs0AtV6djde4S122Z25FBR9GrzFTAX4Te+qPUwY7XwYzFenUFGsilxYhIEcZOCIiAMkEOz/3j7HT27HtOztnJJjuHvF5r7cX3+3w+n+f77JNDEjbJe1WS47v7uCRfTPL5qqrB0Ye6+6TuPiHJGUlekeS9uzHCT5KcWFUHD+7PSHLXIs5tSbJ26H5dkhtH9pw1mPGk7n79UP0Dg9pxSa5Kcm1VHT7Pc9YluW7wz2E7krxuZzgmAAAAAAAAAAAAAAAAAAAAAAAAAOyrhEo+fh2ZZHt370iS7t6e5L4k5yQ5v7tnBvXLMhukePpog+7elmR9kvOGQifHcU2SVw6u1yW5chFn/izJ86vqgKpameTYJJvHfXB3X5XkK0l+dXRt8F7ekOTsJGdU1UFDy48kuTTJ+eM+EwAAAAAAAAAAAAAAAAAAAAAAAAD2JqGSj19fSXJ0VW2tqo9W1UszG9B4R3ffP7J3U5IT5mrS3bclWZ7kiN2YYUOStYPQxucm+dYiznSSryZ5eZIzk1w9x57PVNXmwev9u+h1Q5JnzVF/UZLvd/f3kmzMfw++3OkjSc6qqiftatCqWl9Vm6pq0xUbrtrVVgAAAAAAAAAAAAAAAAAAAAAAAACYuBXTHoDHRnc/WFVrkrwkyWlJrkpy4SQfsVC9u2+qqtVJ1iW5ZozeG5K8LcmTkrwjybtH1s/q7k2L6FPz1NcNnrHzWW9K8rmdi919f1V9cjDDQ/M17+5Lk1yaJPd87zvzfT0AAAAAAAAAAAAAAAAAAAAAAAAA4DEhVPJxrLtnkmxMsrGqtiR5S5JnVNWq7n5gaOuaJF+aq0dVHZNkJsm2JM8eWronyZEj21cluW+kdnWSi5KcmuTQRc797ap6TpKfdvfWqvmyIRf0vCT/Q/hkVS1P8itJzqyq92Q2ePLQOb4mH0xyQ5LLdvfhAAAAAAAAAAAAAAAAAAAAAAAAAPBYWjbtAXhsVNXxVXXcUOmkJN9JckWSiwfhiqmqNyV5QpJr5+hxeJKPJbmku3tk+etJXl1VqwZ7X5fkxkGQ5bBPJHlfd28Z8y28K8m7xzzzt6rqV5L8z0muHFn6pSQ3dffR3b26u5+Z5HNJXju8qbvvTfKHSf7p7s4AAAAAAAAAAAAAAAAAAAAAAAAAAI+lFdMegMfMyiQfrqonJ3kkya1J1id5IMlFSbZW1aNJbkny2qHQyIOranOSAwbnPpXk4tHm3X1TVV2S5Lqq6iTbkrx5jn13JvnQuMN395d3sfyZqnpocL29u182uD6/qn4tyROT/L9JTu/uu0fOrkvyhZHa55L8sySfHKn/myTnjTs7AAAAAAAAAAAAAAAAAAAAAAAAAOwNQiUfp7r7+iQvmmf5rYPXXOeW76LnxiQbh+4/nuTj8+xdudD5OdYvT3L5HPWzh65PnefsBUku2EXvnefOmWPt6iRXD65XDtX/a5InzNcTAAAAAAAAAAAAAAAAAAAAAAAAAKZp2bQHAAAAAAAAAAAAAAAAAAAAAAAAAABgfCumPQD7n6o6J8nbR8rf6O5zpzEPAAAAAAAAAAAAAAAAAAAAAAAAACxFQiXZ67r7siSXTXsOAAAAAAAAAAAAAAAAAAAAAAAAAFjKlk17AAAAAAAAAAAAAAAAAAAAAAAAAAAAxidUEgAAAAAAAAAAAAAAAAAAAAAAAABgCRIqCQAAAAAAAAAAAAAAAAAAAAAAAACwBAmVBAAAAAAAAAAAAAAAAAAAAAAAAABYgoRKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQUIlAQAAAAAAAAAAAAAAAAAAAAAAAACWIKGSAAAAAAAAAAAAAAAAAAAAAAAAAABL0IppD8C+oarek+RXk8wkeTTJW5L8RZJ/neRVSTrJXyY5t7vvHJyZSbIlyQFJHknyySQf6O5Hq+rUJO/s7ldV1QVJHuzui4aed3uSU7p7e1V1ks90968N1lYk+WGSb3X3q+aZ9+wklyU5o7u/Oqi9JskXkryhu/+oqjYmOTLJQ4Njt3b364d6bE5yS3evHapdnuSMJMd0946qOizJpu5ePdYXFAAAAAAAAAAAAAAAAAAAAAAAgKnpmUenPQLAXiFUklTVCzMbHHnyUJDigUkuTLIqyfHdPVNV5yT5fFW9oLs7yUPdfdKgxxFJPpvkkCTvHXOEnyQ5saoO7u6HMhvqeNcizm1JsjbJVwf365LcOLLnrO7eNHqwqp6dZHmSl1TVE7v7J0PLM0n+SZL/c7y3AQAAAAAAAAAAAAAAAAAAAAAAAAB7z7JpD8A+4cgk27t7R5J09/Yk9yU5J8n53T0zqF+WZEeS00cbdPe2JOuTnFdVtRszXJPklYPrdUmuXMSZP0vy/Ko6oKpWJjk2yeZFPm9dkk8l+UqSM0fWPpjk/KoSugoAAAAAAAAAAAAAAAAAAAAAAADAPkuoJMlssOLRVbW1qj5aVS/NbEDjHd19/8jeTUlOmKtJd9+WZHmSI3Zjhg1J1lbVQUmem+RbizjTSb6a5OWZDYa8eo49n6mqzYPX+4fqbxw888rMBkwOuyPJdUl+fVcPr6r1VbWpqjZdseGqRYwLAAAAAAAAAAAAAAAAAAAAAAAAAJOzYtoDMH3d/WBVrUnykiSnJbkqyYWTfMRC9e6+qapWZzbg8Zoxem9I8rYkT0ryjiTvHlk/q7s3DReq6pQk27v7jqq6K8knquqp3X3v0LZ/leSPk/yH+R7c3ZcmuTRJ7vned+Z7jwAAAAAAAAAAAAAAAAAAAAAAAADwmFg27QHYN3T3THdv7O73JjkvyS8neUZVrRrZuibJzXP1qKpjkswk2TaydE+Sp4zUViW5b6R2dZKLklw5xtzfTvKcJId199ZFHluX5FlVdXuS7yU5JMmvjPT9bpLNSf7xYmcBAAAAAAAAAAAAAAAAAAAAAAAAgL1JqCSpquOr6rih0klJvpPkiiQXV9Xywb43JXlCkmvn6HF4ko8luaS7e2T560levTOgsqpel+TG7p4Z2feJJO/r7i1jvoV3JXn3YjZW1bLMBkU+p7tXd/fqJGdmNmhy1O8leeeYswAAAAAAAAAAAAAAAAAAAAAAAADAXrFi2gOwT1iZ5MNV9eQkjyS5Ncn6JA8kuSjJ1qp6NMktSV47FBp5cFVtTnLA4Nynklw82ry7b6qqS5JcV1WdZFuSN8+x784kHxp3+O7+8i6WP1NVDw2utyf535Pc1d3/ZWjP15P8/ao6cqTvzVV1Q5KTx50JAAAAAAAAAAAAAAAAAAAAAAAAAB5rQiVJd1+f5EXzLL918Jrr3PJd9NyYZOPQ/ceTfHyevSsXOj/H+uVJLp+jfvbQ9anzHP+HI2dmkjxtcHv2yNrr5psBAAAAAAAAAAAAAAAAAAAAAAAAAKZp2bQHAAAAAAAAAAAAAAAAAAAAAAAAAABgfCumPQDsSlWdk+TtI+VvdPe505gHAAAAAAAAAAAAAAAAAAAAAAAAAPYVQiXZp3X3ZUkum/YcAAAAAAAAAAAAAAAAAAAAAAAAALCvWTbtAQAAAAAAAAAAAAAAAAAAAAAAAAAAGJ9QSQAAAAAAAAAAAAAAAAAAAAAAAACAJUioJAAAAAAAAAAAAAAAAAAAAAAAAADAEiRUEgAAAAAAAAAAAAAAAAAAAAAAAABgCRIqCQAAAAAAAAAAAAAAAAAAAAAAAACwBAmVBAAAAAAAAAAAAAAAAAAAAAAAAABYgoRKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQUIlGUtVvaeqbq6qm6pqc1W9oKoOrKoPVtWtVfXdqvrjqjpq6MzMYO/NVXVjVb2jqpYN1k6tqi8Nri+oqneOPO/2qjpscN1V9emhtRVVdffO8/PMe/bg3MuGaq8Z1F4/uN9YVacMPe9zQ3tfX1WX7+GXDQAAAAAAAAAAAAAAAAAAAAAAAAAmTqgki1ZVL0zyqiQnd/dzk7wsyQ+SXJhkVZLju/u4JF9M8vmqqsHRh7r7pO4+IckZSV6R5L27McJPkpxYVQcP7s9Ictcizm1Jsnbofl2SG3exf01V/f3dmA8AAAAAAAAAAAAAAAAAAAAAAAAA9hqhkozjyCTbu3tHknT39iT3JTknyfndPTOoX5ZkR5LTRxt097Yk65OcNxQ6OY5rkrxycL0uyZWLOPNnSZ5fVQdU1cokxybZvIv9/ybJe3ZjNgAAAAAAAAAAAAAAAAAAAAAAAADYa4RKMo6vJDm6qrZW1Uer6qWZDWi8o7vvH9m7KckJczXp7tuSLE9yxG7MsCHJ2qo6KMlzk3xrEWc6yVeTvDzJmUmuXmD/HyY5uaqO3dWmqlpfVZuqatMVG65axBgAAAAAAAAAAAAAAAAAAAAAAAAAMDlCJVm07n4wyZok65PcneSqJKdO8hEL1bv7piSrk6xLcs0YvTckWTt4XbnA3pkk70/yO7va1N2Xdvcp3X3Kb6x94xijAAAAAAAAAAAAAAAAAAAAAAAAAMCeEyrJWLp7prs3dvd7k5yX5JeTPKOqVo1sXZPk5rl6VNUxmQ1u3DaydE+Sp4zUViW5b6R2dZKLsnA45PDc307ynCSHdffWRRz5VJL/KcnRi30GAAAAAAAAAAAAAAAAAAAAAAAAAOxNQiVZtKo6vqqOGyqdlOQ7Sa5IcnFVLR/se1OSJyS5do4ehyf5WJJLurtHlr+e5NU7Ayqr6nVJbuzumZF9n0jyvu7eMuZbeFeSdy9mY3f/LMkHkpw/5jMAAAAAAAAAAAAAAAAAAAAAAAAAYK9YMe0BWFJWJvlwVT05ySNJbk2yPskDSS5KsrWqHk1yS5LXDoVGHlxVm5McMDj3qSQXjzbv7puq6pIk11VVJ9mW5M1z7LszyYfGHb67vzzmkT9I8i/HfQ4AAAAAAAAAAAAAAAAAAAAAAAAA7A1CJVm07r4+yYvmWX7r4DXXueW76Lkxycah+48n+fg8e1cudH6O9cuTXD5H/eyh61OHrlcPXe9I8vT5egMAAAAAAAAAAAAAAAAAAAAAAADANC2b9gAAAAAAAAAAAAAAAAAAAAAAAAAAAIxvxbQHgEmoqnOSvH2k/I3uPnca8wAAAAAAAAAAAAAAAAAAAAAAAADAY23ZtAeASejuy7r7pJHXkguU/NmPtk97BPbQzAE/N+0RAAAAAAAAAAAAAAAAAGCveOqDd097BPYh23784LRHYA/93Irl0x6BPTTzaE97BPbQESsPnvYI7KHVTz1k2iOwhx7d8dC0RwAAgLEJlYR9yAFPOWzaI7CHlv9sx7RHAAAAAAAAAAAAAAAAAIC94t6Vh097BPYhRzxp5bRHYA/teGRm2iOwh5Yvq2mPwB7a9kgDLooAACAASURBVKAwu6Xu9nvvn/YI7KFlPyfcFQCApUeoJAAAAAAAAAAAAAAAAAAAAAAAAADAEiRUEgAAAAAAAAAAAAAAAAAAAAAAAABgCRIqCQAAAAAAAAAAAAAAAAAAAAAAAACwBAmVBAAAAAAAAAAAAAAAAAAAAAAAAABYgoRKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQUIlAQAAAAAAAAAAAAAAAAAAAAAAAACWIKGSLKiq3lNVN1fVTVW1uapeUFUHVtUHq+rWqvpuVf1xVR01dGZmsPfmqrqxqt5RVcsGa6dW1ZcG1xdU1TtHnnd7VR02uO6q+vTQ2oqqunvn+XnmPXtw7mVDtdcMaq8fqh1WVT+rqt8cqq2qqu9V1XGD+wOqaktVvWBPvoYAAAAAAAAAAAAAAAAAAAAAAAAAMGlCJdmlqnphklclObm7n5vkZUl+kOTCJKuSHN/dxyX5YpLPV1UNjj7U3Sd19wlJzkjyiiTv3Y0RfpLkxKo6eHB/RpK7FnFuS5K1Q/frktw4sucNSf6fwVqSpLsfSPI7SS4ZlN6Z5M+7+1vjjw4AAAAAAAAAAAAAAAAAAAAAAAAAjx2hkizkyCTbu3tHknT39iT3JTknyfndPTOoX5ZkR5LTRxt097Yk65OcNxQ6OY5rkrxycL0uyZWLOPNnSZ5fVQdU1cokxybZPLJnXZJ3JPmFqjpqaN4/TJKq+u0kv5nZkMn/n6paX1WbqmrTFRuuGuf9AAAAAAAAAAAAAAAAAAAAAAAAAMAeEyrJQr6S5Oiq2lpVH62ql2Y2oPGO7r5/ZO+mJCfM1aS7b0uyPMkRuzHDhiRrq+qgJM9N8q1FnOkkX03y8iRnJrl6eLGqjk5yZHd/O8kfJnnjyPm3J/n9JL/b3ffO+YDuS7v7lO4+5TfWjh4HAAAAAAAAAAAAAAAAAAAAAAAAgMeWUEl2qbsfTLImyfokdye5Ksmpk3zEQvXuvinJ6iTrklwzRu8NSdYOXleOrL0xs2GSO/etG1n/R0l+mOTEMZ4HAAAAAAAAAAAAAAAAAAAAAAAAAHvNimkPwL6vu2eSbEyysaq2JHlLkmdU1arufmBo65okX5qrR1Udk2QmybYkzx5auifJkSPbVyW5b6R2dZKLMhtoeegi5/52VT0nyU+7e2tVDS+vS/K0qjprcP/0qjquu79bVU9P8rYkz0/ytar6g0GwJQAAAAAAAAAAAAAAAAAAAAAAAEtA96PTHgFgr1g27QHYt1XV8VV13FDppCTfSXJFkouravlg35uSPCHJtXP0ODzJx5Jc0t09svz1JK+uqlWDva9LcuMgyHLYJ5K8r7u3jPkW3pXk3SPz/L0kK7v7F7p7dXevTvKvMhs0mSQfSHJhd9+Z5H9N8pEaSaQEAAAAAAAAAAAAAAAAAAAAAAAAgGlbMe0B2OetTPLhqnpykkeS3JpkfZIHklyUZGtVPZrkliSvHQqNPLiqNic5YHDuU0kuHm3e3TdV1SVJrquqTrItyZvn2Hdnkg+NO3x3f3mO8rokXxipfS7JVVX1zSTPSPIHg/N/UlX/S5I3ZTZIEwAAAAAAAAAAAAAAAAAAAAAAAAD2CUIl2aXuvj7Ji+ZZfuvgNde55bvouTHJxqH7jyf5+Dx7Vy50fo71y5NcPkf97MHlH82xdlOSZw9u/++RtVfP9ywAAAAAAAAAAAAAAAAAAAAAAAAAmJZl0x4AAAAAAAAAAAAAAAAAAAAAAAAAAIDxrZj2ALC7quqcJG8fKX+ju8+dxjwAAAAAAAAAAAAAAAAAAAAAAAAAsDcJlWTJ6u7Lklw27TkAAAAAAAAAAAAAAAAAAAAAAAAAYBqqu6c9Azwe+BcJAAAAAAAAAAAAAAAAAAAAAGD31LQHAB5/7vzPfyobCtgtR730Hy2p35ssm/YAAAAAAAAAAAAAAAAAAAAAAAAAAACMT6gkAAAAAAAAAAAAAAAAAAAAAAAAAMASJFQSAAAAAAAAAAAAAAAAAAAAAAAAAGAJEioJAAAAAAAAAAAAAAAAAAAAAAAAALAECZUEAAAAAAAAAAAAAAAAAAAAAAAAAFiChEoCAAAAAAAAAAAAAAAAAAAAAAAAACxBQiVZUFW9p6purqqbqmpzVb2gqg6sqg9W1a1V9d2q+uOqOmrozMxg781VdWNVvaOqlg3WTq2qLw2uL6iqd4487/aqOmxw3VX16aG1FVV1987z88x79mDPXwxm+49V9aKh9cur6vWD641V9Z3BrJuH6jNDtc1VtXoSX0sAAAAAAAAAAAAAAAAAAAAAAAAAmJQV0x6AfVtVvTDJq5Kc3N07BmGPBya5MMmqJMd390xVnZPk81X1gu7uJA9190mDHkck+WySQ5K8d8wRfpLkxKo6uLsfSnJGkrsWce6q7j5v8PzTBrOd1t1/Ncfes7p700jtb+cHAAAAAAAAAAAAAAAAAAAAAAAAgH3RsmkPwD7vyCTbu3tHknT39iT3JTknyfndPTOoX5ZkR5LTRxt097Yk65OcV1W1GzNck+SVg+t1Sa4c53B3fy3JpYMZJqaq1lfVpqradOmll06yNQAAAAAAAAAAAAAAAAAAAAAAAAAsSKgkC/lKkqOramtVfbSqXprk2CR3dPf9I3s3JTlhribdfVuS5UmO2I0ZNiRZW1UHJXlukm/tRo8bkjxrnrXPVNXmwevQQe3godoX5jrU3Zd29yndfcr69RPNqwQAAAAAAAAAAAAAAAAAAAAAAACABa2Y9gDs27r7wapak+QlSU5LclWSCyf5iIXq3X1TVa1Osi7JNbv5nNrF2lndvWmk9lB3n7SbzwIAAAAAAAAAAAAAAAAAAAAAAACAx5xQSRbU3TNJNibZWFVbkrwlyTOqalV3PzC0dU2SL83Vo6qOSTKTZFuSZw8t3ZPkyJHtq5LcN1K7OslFSU5NcuhuvI3nJfmr3TgHAAAAAAAAAAAAAAAAAAAAAAAAAPukZdMegH1bVR1fVccNlU5K8p0kVyS5uKqWD/a9KckTklw7R4/Dk3wsySXd3SPLX0/y6qpaNdj7uiQ3DoIsh30iyfu6e8tuvIeXJlmf5N+NexYAAAAAAAAAAAAAAAAAAAAAAAAA9lUrpj0A+7yVST5cVU9O8kiSWzMb0PhAkouSbK2qR5PckuS1Q6GRB1fV5iQHDM59KsnFo827+6aquiTJdVXVSbYlefMc++5M8qEx5n5jVb04s0GX30/yK939V2OcBwAAAAAAAAAAAAAAAAAAAAAAYKn620gsgMe3aj/hwST4FwkAAAAAAAAAAAAAAAAAAAAAYPfUtAcAHn/u3Phl2VDAbjnq1Fcsqd+bLJv2AAAAAAAAAAAAAAAAAAAAAAAAAAAAjG/FtAeA3VVV5yR5+0j5G9197jTmAQAAAAAAAAAAAAAAAAAAAAAAAIC9SagkS1Z3X5bksmnPkSQ/3H7vRPo8MY9MpE+S1IEHTaxX+tHJ9aplE2vVj/xsYr3SPaE+k/ta3fXTyX0/HH7IEyfW6+G/vH5ivfYHT3/R6RPp86P7H5hIn/3FUw5ZNZE+k/r5fX9y5GFP3eMe2+/78QQm2b8c9uQnTaTPAz++byJ99hernvTkifTZcJ1fW8ex9sVrJtLH9/t4JvX9fs9t351In/3Joccct8c9/F5yfJP6/eQfffMvJtJnf/H6Fz5vIn1uuPWvJ9Jnf3Hysc+cSJ87t90zkT77i6OOOHQife7fvm0iffYXhxx2xET63H/P9on02Z8ccuhhe9zjth/6fh/XMUdO5nv+3r++bSJ99hdPfeYxE+lz9498RjaOw58ymc/HfnTH9yfSZ3/xlGf8nYn0uetun8WP4xcO3/PP4ROfF+yOSXxe4P89jW8S/+8pSX78gO/5cTxp1WQ+H/OZ8Hgm8Xlw4vt9XJP6fvdr6/gm8WvrTd//wQQm2b889+8cPZE+9/0XX/txPPnpk/m6++/W8Uzqv1sfuP/+ifTZX6w65JCJ9Lljm8/ix/GMI/b8c/jEn6fZHZP4MzWnXnDJBCbZv2y84LyJ9Dn7I5+ZSJ/9xeXnnjWRPj/+r38zkT77iyf9/NMm0sdnk+OZ1OeSfi85nkn9XvJHP7h9In2SpB+d3N8TW7FyMu8vSWYO+LmJ9XpkZjLv8aDlNZE+SfLIjyf3c5Yfw/EctGwyf8dy5qc/mUifZLJ/h3TFIZP5M/FJ8kgtn1iv//bw5N7jASsmM9fyB340kT5J8ujPJvhj+MTJfKafJMsOfsLEej2Syf0cuPxnOybTaIJ/17kn+PNMT3CuZSvEZCyWH8PpmGTWQz/83ybWK8sm92vYw8sm92N44KOTy1WYlJkVB06s1533Tu7PhD5z1QRzRCbovpnJ9ZrUZ94AAPujyaW7AQAAAAAAAAAAAAAAAAAAAAAAAACw1wiVBAAAAAAAAAAAAAAAAAAAAAAAAABYgoRKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQUIlAQAAAAAAAAAAAAAAAAAAAAAAAACWIKGSAAAAAAAAAAAAAAAAAAAAAAAAAABLkFBJAAAAAAAAAAAAAAAAAAAAAAAAAIAlSKgkC6qqQ6tq8+D1N1V119D9z1fVZ6vqtqq6vqq+WVWvHTr74qr6dlXdMnitX+BZF1RVV9WxQ7XfGtROGdzfXlVbhmb40KB+eVV9v6purKqtVfXJqjpqqM/tVXXY0P1rBn2fNVRbPai9dah2SVWdvYdfRgAAAAAAAAAAAAAAAAAAAAAAAACYKKGSLKi77+nuk7r7pCQfS/KBwfXzknwxyde7+5juXpNkbZKjkqSqnpbks0l+s7ufleTFSd5SVa9c4JFbBn12ekOSm0f2nLZzpu5+21D9n3f3P0hyfJK/SHJtVR04z3PWJblu8M9h25K8fRfnAAAAAAAAAAAAAAAAAAAAAAAAAGDqhEqyJ05P8nB3f2xnobv/urs/PLg9N8nl3X3DYG17kt9O8q4F+n4xyZlJUlV/N8mPk2wfZ7Ce9YEkf5PkFaPrVbUysyGX/zT/Y4Blktyd5D8l+Y1xngkAAAAAAAAAAAAAAAAAAAAAAAAAe5NQSfbECUluWGD9+pHapkF9V+5P8oOqOjGzgY9XzbHna1W1efA6fxe9bkjyrDnqZyb50+7emuSeqlozsv77Sd5ZVcvna1xV66tqU1Vt+vQnr9jlGwIAAAAAAAAAAAAAAAAAAAAAAACASVsx7QF4/KiqjyR5cZKHu/sX97DdhswGSr48yS8lOWdk/bTu3r6Yseapr0vyb4eetS5DAZjdfVtVfSvJr87XuLsvTXJpkvxw+729iFkAAAAAAAAAAAAAAAAAAAAAAAAAYGKWTXsAlrSbk5y886a7z81sAOThg9JfJlkzcmbN4NxCvpTk15Pc0d3378GMz0vyV8OFqnpqktOT/Puquj3JP0/yj6tqNIDywiT/IvMHUwIAAAAAAAAAAAAAAAAAAAAAAADA1AiVZE9cm+SgqvpnQ7UnDF1/JMnZVXVSklTVoUl+P8m/Xqhxd/80s4GOv7c7g9WstyU5Msmfjiy/PsmnuvuZ3b26u49O8v0kLxmZ4ZbMBmP+8u7MAAAAAAAAAAAAAAAAAAAAAAAAAACPJaGS7Lbu7iSvSfLSqvp+VX07yRWZDYNMd/8wya8l+XdVdUuSP0/yie7+k0X239DdN8yz/LWq2jx4fXKo/v6qujHJ1iS/mOS07n545Oy6JF8YqX1uUB/1e0mOWsy8AAAAAAAAAAAAAAAAAAAAAAAAALA3rZj2ACwt3X3ByP0Pk6zdxf6vZzbccbf6D9VPHbpePc+esxfovfPcaXOsfWjo9sSh+o0RvgoAAAAAAAAAAAAAAAAAAAAAAADAPkhYHgAAAAAAAAAAAAAAAAAAAAAAAADAErRi2gOwf6qq9yR5w0j5/+ru35vGPAAAAAAAAAAAAAAAAAAAAAAAADx+9MzMtEcA2CuESjIVg/BIAZIAAAAAAAAAAAAAAAAAAAAAAAAAsJuWTXsAAAAAAAAAAAAAAAAAAAAAAAAAAADGJ1QSAAAAAAAAAAAAAAAAAAAAAAAAAGAJEioJAAAAAAAAAAAAAAAAAAAAAAAAALAECZUEAAAAAAAAAAAAAAAAAAAAAAAAAFiChEoCAAAAAAAAAAAAAAAAAAAAAAAAACxBQiUBAAAAAAAAAAAAAAAAAAAAAAAAAJYgoZIAAAAAAAAAAAAAAAAAAAAAAAAAAEuQUEkmpqoOrarNg9ffVNVdQ/c/X1Wfrarbqur6qvpmVb126OyLq+rbVXXL4LV+gWddUFVdVccO1X5rUDtlcH97VW0ZmuFDQ3tXVNXdVfV/jPTdWFWbhu5PqaqNE/jyAAAAAAAAAAAAAAAAAAAAAAAAAMBErZj2ADx+dPc9SU5KZkMfkzzY3RdVVSX58yRXdPevDtafmeTVg+unJflsktd09w1VdViS/1hVd3X3f9jFI7ckWZvkdwf3b0hy88ie07p7+xxnz0iyNckbqup3uruH1o6oqld095cX/eYBAAAAAAAAAAAAAAAAAAAAAAAAYC9bNu0B2C+cnuTh7v7YzkJ3/3V3f3hwe26Sy7v7hsHa9iS/neRdC/T9YpIzk6Sq/m6SHyeZK0ByLuuS/NskdyR54cja+5O8Z5F9AAAAAAAAAAAAAAAAAAAAAAAAAGAqhEqyN5yQ5IYF1q8fqW0a1Hfl/iQ/qKoTk6xNctUce75WVZsHr/OTpKoOSvKyJH+S5MrMBkwO+2aSh6vqtF09vKrWV9Wmqtr06U9escCoAAAAAAAAAAAAAAAAAAAAAAAAADBZK6Y9APufqvpIkhcnebi7f3EP223IbKDky5P8UpJzRtZP6+7tI7VXJfladz9UVZ9L8r9V1W9198zQnt9N8i+T/Iv5Htzdlya5NEl+uP3e3rO3AQAAAAAAAAAAAAAAAAAAAAAAAADjWTbtAdgv3Jzk5J033X1uZgMgDx+U/jLJmpEzawbnFvKlJL+e5I7uvn+R86xL8rKquj3J9UkOTXL68IbuvjbJwUn+4SJ7AgAAAAAAAAAAAAAA8P+xc/fBepflncC/VzjWFAVfIqIVa5aqY9WdBgJTlsFKsVS77bZQiyYVd+lsl5amu9VWoV27mu6WLi924y5lm4m7O1AtImrF2q2DXZGFrrQ2ILaijm150WJieRGw2BIM1/6R5+w882xyXpJfzpPD+XxmnuF3X/d9X/f1++XJk+RwzgUAAAAAAADAktJUkqVwfZLVVXXeWOzwsevLk5xTVeuSpKrWJLk4ySXzJe7ubya5IMmFCymkqo5M8ook39nda7t7bZJN2dNoctKvJzl/IXkBAAAAAAAAAAAAAAAAAAAAAAAAYKnNTLsAnvi6u6vqjCRbqur8JPcmeSR7mkGmu3dU1dlJ3l1VRySpJO/q7o8uMP/Vc0x/sqp2j67/PMknklzf3Y+OrflIkkuq6skTef+wqu5dSA0AAAAAAAAAAAAAAAAAAAAAAAAAsNQ0leSg6O7NE+MdSTbMsf7GJCfub/6x+Klj12v3sf3KiT0PJDlqNDx1Ym79QmsCAAAAAAAAAAAAAAAAAAAAAAAAgKW0atoFAAAAAAAAAAAAAAAAAAAAAAAAAACweDPTLgDmUlVvS3LWRPgD3X3hNOoBAAAAAAAAAAAAAAAAAAAAAAAAgEOFppIc0kbNIzWQBAAAAAAAAAAAAAAAAAAAAAAAAIAJmkoCAAAAAAAAAAAAAAAAAAAAAAAATyz9+LQrAFgSq6ZdAAAAAAAAAAAAAAAAAAAAAAAAAAAAi6epJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJAAAAAAAAAAAAAAAAAAAAAAAAADAMqSpJEuuqtZU1W2j186qumdsfHRVXVVVd1TVLVV1c1WdObb3lKr6dFV9cfQ6d56zNldVV9ULx2JvGsVOGI3vqqpnja67qn5zbO1bqmrz4A8BAAAAAAAAAAAAAAAAAAAAAAAAAA6QppIsue6+v7vXdfe6JFuTbBldH5fk2iQ3dvex3b0+yYYkxyRJVT0nyVVJfra7X5LklCQ/U1U/PM+RfzHKM+usJLfvY+2jSX58tskkAAAAAAAAAAAAAAAAAAAAAAAAAByqNJXkUHJakl3dvXU20N13d/dlo+GmJFd0962jufuSnJ/kl+fJe22SH0uSqvquJA8luW8fa7+VZFuSN+/vTQAAAAAAAAAAAAAAAAAAAAAAAADAUtBUkkPJy5LcOs/8LROx7aP4XB5O8pWqenmSDUneP8/6y5O8oaqeNteiqjq3qrZX1fb3/s6V86QEAAAAAAAAAAAAAAAAAAAAAAAAgGHNTLsA2JequjzJKUl2dfeJB5ju6uxpKPnqJK9K8lP7WtjdD1fV7yT5N0n+fo5125JsS5Id9z3QB1gfAAAAAAAAAAAAAAAAAAAAAAAAACzKqmkXAGNuT3L87KC7N2VPA8ijRqHPJ1k/sWf9aN98/iDJG5N8ubsfXsD6dyX5l0mesoC1AAAAAAAAAAAAAAAAAAAAAAAAALDkNJXkUHJ9ktVVdd5Y7PCx68uTnFNV65KkqtYkuTjJJfMl7u5vJrkgyYULKaS7H0hyTfY0lgQAAAAAAAAAAAAAAAAAAAAAAACAQ87MtAuAWd3dVXVGki1VdX6Se5M8kj3NINPdO6rq7CTvrqojklSSd3X3RxeY/+pFlvSbSX5+kXsAAAAAAAAAAAAAAAAAAAAAAAAAYEloKslUdffmifGOJBvmWH9jkhP3N/9Y/NSx67Vj108du/5aksMXehYAAAAAAAAAAAAAAAAAAAAAAAAALKVV0y4AAAAAAAAAAAAAAAAAAAAAAAAAAIDFm5l2ATCEqnpbkrMmwh/o7gunUQ8AAAAAAAAAAAAAAAAAAAAAAAAAHGyaSvKEMGoeqYEkAAAAAAAAAAAAAAAAAAAAAAAAACvGqmkXAAAAAAAAAAAAAAAAAAAAAAAAAADA4mkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDGkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDGkqyZKoqjVVddvotbOq7hkbH11VV1XVHVV1S1XdXFVnju09pao+XVVfHL3OneeszVXVVfXCsdibRrETxmLrRrHXjMWeX1V3VtUzR+NnjMZrh3weAAAAAAAAAAAAAAAAAAAAAAAAAHCgNJVkSXT3/d29rrvXJdmaZMvo+rgk1ya5sbuP7e71STYkOSZJquo5Sa5K8rPd/ZIkpyT5mar64XmO/ItRnllnJbl9Ys3GJH88+u9snV9J8ttJLhqFLkqyrbvvWuQtAwAAAAAAAAAAAAAAAAAAAAAAAMBBpakk03Zakl3dvXU20N13d/dlo+GmJFd0962jufuSnJ/kl+fJe22SH0uSqvquJA8luW92sqoqexpNnpPk9KpaPbZ3S5KTqupN2dPE8p37fXcAAAAAAAAAAAAAAAAAAAAAAAAAcJBoKsm0vSzJrfPM3zIR2z6Kz+XhJF+pqpcn2ZDk/RPzJye5s7v/OskNSX54dqK7H0vy1uxpLvmm0fj/U1XnVtX2qtr+3t+5cp5yAAAAAAAAAAAAAAAAAAAAAAAAAGBYmkpySKmqy6vqs1X1ZwOkuzp7GkqekeTDE3MbR/Oz6zZOzP9Qkh1JXr6v5N29rbtP6O4Tzv7n/2KAcgEAAAAAAAAAAAAAAAAAAAAAAABg4TSVZNpuT3L87KC7NyV5VZKjRqHPJ1k/sWf9aN98/iDJG5N8ubsfng1W1WFJXpvk7VV1V5LLkrymqo4Yza9LcnqSk5K8uaqeu/jbAgAAAAAAAAAAAAAAAAAAAAAAAICDS1NJpu36JKur6ryx2OFj15cnOWfU6DFVtSbJxUkumS9xd38zyQVJLpyYelWSP+/u53f32u5+QZIPJTmzqirJbyd5U3d/OcmlSd65f7cGAAAAAAAAAAAAAAAAAAAAAAAAAAfPzLQLYGXr7q6qM5Jsqarzk9yb5JHsaQaZ7t5RVWcneXdVHZGkkryruz+6wPxX7yW8McmHJ2IfSnJektVJvtzdfzSK/9ckP1VVr+zu/73I2wMAAAAAAAAAAAAAAAAAAAAAAACAg0ZTSZZcd2+eGO9IsmGO9TcmOXF/84/FTx1d/tRe5n4/ye+PhtvG4ruTHL/QswEAAAAAAAAAAAAAAAAAAAAAAABgqayadgEAAAAAAAAAAAAAAAAAAAAAAAAAACzezLQLgP1VVW9LctZE+APdfeE06gEAAAAAAAAAAAAAAAAAAAAAAACApaSpJMvWqHmkBpIAAAAAAAAAAAAAAAAAAAAAAAAArEjV3dOuAZ4I/EYCAAAAAAAAAAAAAAAAAAAAANg/Ne0CgCeer/yv39cbCtgvz/+BH11WfzdZNe0CAAAAAAAAAAAAAAAAAAAAAAAAAABYPE0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAACWoZlpFwAAAAAAAAAAAAAAAAAAAAAAAAAwqO5pVwCwJFZNuwAAAAAAAAAAAAAAAAAAAAAAAAAAABZPU0mWRFWtqarbRq+dVXXP2Pjoqrqqqu6oqluq6uaqOnNs7ylV9emq+uLode48Z20ey/+XVfV7VfXSsfkbquqE0fVdVfUXY7WcXFVrq+rvx2K3VdW3HbynAwAAAAAAAAAAAAAAAAAAAAAAAACLNzPtAlgZuvv+JOuSPU0fk/xdd7+zqirJp5JcdBAxHwAAIABJREFU2d0/OZp/QZIfHV0/J8lVSc7o7lur6llJrquqe7r7f85x5Jbufucox+uTXF9V/7i7793L2u/v7vtmB1W1Nslfd/e6A7ppAAAAAAAAAAAAAAAAAAAAAAAAADiIVk27AFa805Ls6u6ts4Huvru7LxsNNyW5ortvHc3dl+T8JL+80AO6+/1JPp7kJwerOklVnVtV26tq+7Zt24ZMDQAAAAAAAAAAAAAAAAAAAAAAAADzmpl2Aax4L0ty6zzzV07Eto/ii3FrkpfsY+6TVbU7yaPd/b2j2HdV1W2j6//T3ZsmN3X3tiSz3SR7kfUAAAAAAAAAAAAAAAAAAAAAAAAAwAHRVJJDSlVdnuSUJLu6+8QhU88x9/3dfd9E7K+7e92A5wMAAAAAAAAAAAAAAAAAAAAAAADAoFZNuwBWvNuTHD876O5NSV6V5KhR6PNJ1k/sWT/atxjHJfnCftYIAAAAAAAAAAAAAAAAAAAAAAAAAIccTSWZtuuTrK6q88Zih49dX57knKpalyRVtSbJxUkuWegBVfXaJD+Y5H0HXi4AAAAAAAAAAAAAAAAAAAAAAAAAHBpmpl0AK1t3d1WdkWRLVZ2f5N4kjyS5YDS/o6rOTvLuqjoiSSV5V3d/dJ7Ubx7te0qSzyU5rbvvPWg3AgAAAAAAAAAAAAAAAAAAAAAAAABLrLp72jXAE4HfSAAAAAAAAAAAAAAAAAAAAAAA+6emXQDwxPOVP/qI3lDAfnn+6T+2rP5usmraBQAAAAAAAAAAAAAAAAAAAAAAAAAAsHgz0y4A9ldVvS3JWRPhD3T3hdOoBwAAAAAAAAAAAAAAAAAAAAAAAACWkqaSLFuj5pGHRAPJB3d+dZA8/diuQfIkyWHffvhgubLqsMFS1WHD5dr9zUcGy7XqSU8aJM/jjz02SJ4kefiwJw+W68jHh3tvPfbAvYPlWgmOeun3DJJnx30PDJJnpXjus545SJ67dnq/L9ba5xx1wDn+5m/vH6CSleWYZ68ZJI/PmsUZ6rPmz7505yB5VooTX/yPBsnzjYceHCTPSnHE054+SJ4Hd9wzSJ6V4unPfd4gebzfF2+o9/zHb/v8IHlWih9c99JB8tx2x5cHybNSrDv2OwfJc+/XHxokz0px1DOeNkgez31xhnru/u20eEP8++nLf3vfAJWsLN/57GcNkuf+O/5ykDwrxZpjXzRIHu/5xRnq/f7wA742uRhHPnOYr0v6WvziDPF1+MTnzP4Y4rPmnnv9XXKxnnfUMF+L/8bDDw+SZ6U44sgjB8nz9a/cNUieleIZz187SJ6vP/yNQfKsFM848ohB8tz3oK/TLNaznn7gX6u59a/uHqCSleX4F75gkDw+axZnqM+aB+6+Y5A8K8UzX3DsIHke+ob3+2I87Yhh3u9f+pudg+RZKV58zHMGyeP/gSzeEP8P5JzLf3eASlaWKza9YZA8p27+rUHyrBQ3bP75QfI89DWf8YvxtKOH+Yz/2gO+h2wxjn7mMN8/5nv3Fmeo79sb8t+sh31ruJ/HGvJn6h4f8Gf9hvR4D5NnVQ2TJ0lq16PD5ZoZ8Mexa9VgqR6v4R7YUL+GM717mERJ+lvfGizXoL+GQxrw/fCtDPgbaCCDfpbODPNzwMmwz2r3448PlutJhw3zfnhs93A1HbZquPfokHZ9a7jPmiEdPjPM8xryPTrkn61D/VmRJP+wa7ifyV814Pt0qF/Df9g94MMa0JMfH+65Pzjgb8NnPHm4P6eH6kHRTxnmeyeS5JF/GO7PwyNXDffgh+zXcdhTh3teQ31vIgDASnRo/iseAAAAYIXThBMAAAAAAAAAAACAQ92QDaYAAAAAANg/mkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDmkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDM9MugOWhqtYk+cRo+Jwku5PcOxq/OsmWJCcl+XqSXUku6e4PV9WpST6S5M4kT05ydXf/2j7OODXJJ5P8q+7+b6PYuiSfSfLW7n5nVV2R5JVJHhpt+2Z3n1xV5yS5NMnfJHlqkjuS/Fp3f2qU54okf9DdHxyNn5VkR5J/3d1bx2q4K8kt3f3a0fgnkvxId5+z2GcGAAAAAAAAAAAAAAAAAAAAAADAdHT3tEsAWBKrpl0Ay0N339/d67p7XZKtSbaMro9Lcm2SG7v72O5en2RDkmPGtt80WntCkrOr6vg5jvpckteNjTcm+ezEmrfO1tLdJ4/F39/dx3X3i5JclOT3quq793HOWUn+ZJR/0vqqeukcNQIAAAAAAAAAAAAAAAAAAAAAAADA1GkqyYE6Lcmu7t46G+juu7v7ssmF3f1IkluSvHCOfHcnWV1VR1dVJXlNko8ttqju/mSSbUnO3ceSjUl+KcnzquqYibnfTPK2+c6oqnOrantVbb/iPe9dbIkAAAAAAAAAAAAAAAAAAAAAAAAAcEA0leRAvSzJrQtZWFVrkpyU5PZ5ln4wyVlJTh7lfnRi/tKqum30+t058tya5CV7qeP5SZ7b3Z9Ock2S108suSbJ8VU1V/PLdPe27j6hu084541nz31HAAAAAAAAAAAAAAAAAAAAAAAAADAwTSUZVFVdXlWfrao/Gwu/oqo+k+TjSS7q7vmaSl6TPU0lNyZ5317m39rd60avN8xVzj7irx+dkSRXj84ZtzvJpUl+ZZ46AQAAAAAAAAAAAAAAAAAAAAAAAGBqZqZdAMve7UleOzvo7k1V9awk28fW3NTdP7LQhN29s6oeS3J6kl9IcvJ+1nZcki/sJb4xyXOqarYh5XdU1Yu6+y/H1rwne5pKfm4/zwYAAAAAAAAAAAAAAAAAAAAAAACAg2rVtAtg2bs+yeqqOm8sdvgAed+e5ILu3r0/m6vqlUnOTfLuifiLkzy1u5/X3Wu7e22S/5g9jSb/n+5+LMmWJG/en/MBAAAAAAAAAAAAAAAAAAAAAAAA4GDTVJID0t2d5Iwkr6yqO6vq00muTHLBAeb9VHdfu4/pS6vqtrHXt43irx+Nv5Tk3yZ5bXd/YWLvxiQfnoh9KBNNJUf+e5KZ/b0HAAAAAAAAAAAAAAAAAAAAAAAAADiYNMxj0bp788R4R5IN+1h7Q5IbFph3r2vHz+vuc/ax/YrRa1+5Z/d9cC9zf57ku0fXa8fijyb5jrlqBgAAAAAAAAAAAAAAAAAAAAAAAIBpWTXtAgAAAAAAAAAAAAAAAAAAAAAAAAAAWLyZaRfAylNVr05y8UT4zu4+cxr1AAAAAAAAAAAAAAAAAAAAAAAAAMBypKkkS667r0ty3bTrAAAAAAAAAAAAAAAAAAAAAAAAAIDlbNW0CwAAAAAAAAAAAAAAAAAAAAAAAAAAYPE0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lQQAAAAAAAAAAAAAAAAAAAAAAAAAWIY0lWRwVbWmqm4bvXZW1T1j46Or6qqquqOqbqmqm6vqzNG+U6vqodG6L1TVO+Y449Sq6qr66bHYulHsLaPxFVV159jZn5rIcW1V/clEbHNVfbOqnj0W+7uhng0AAAAAAAAAAAAAAAAAAAAAAAAADEVTSQbX3fd397ruXpdka5Ito+vjklyb5MbuPra71yfZkOSYse03jdaekOTsqjp+jqM+l+R1Y+ONST47seats7V098mzwap6epL1SZ5WVcdO7LkvyS8t+IYBAAAAAAAAAAAAAAAAAAAAAAAAYAo0lWQpnZZkV3dvnQ10993dfdnkwu5+JMktSV44R767k6yuqqOrqpK8JsnHFljLjyf5aJKrs6ex5bj/keT1VfXMBeYCAAAAAAAAAAAAAAAAAAAAAAAAgCU3M+0CWFFeluTWhSysqjVJTkryH+ZZ+sEkZyX5zCj3oxPzl1bVr46ub+/uN4yuNyb590m+luRDSX5jbM/fZU9jyV9I8o45ajw3yblJsuWSi3POG8+ep1QAAAAAAAAAAAAAAAAAAAAAAACWQu/ePe0SAJaEppJMTVVdnuSUJLu6+8RR+BVV9Zkkjye5qLtvnyfNNUnen+QlSd6X5OSJ+bd29wcnzj06yYuS/HF3d1U9VlUv7+7PjS37L0luq6p37uvg7t6WZFuSPLjzqz1PnQAAAAAAAAAAAAAAAAAAAAAAAAAwqFXTLoAV5fYkx88OuntTklclOWpszU3dfVx3r+/urfMl7O6dSR5LcnqSTyywjtcleUaSO6vqriRrk2ycyPtgkquSbFpgTgAAAAAAAAAAAAAAAAAAAAAAAABYUppKspSuT7K6qs4bix0+QN63J7mgu3cvcP3GJK/p7rXdvTbJ+iQb9rLuPyX5mSQzA9QIAAAAAAAAAAAAAAAAAAAAAAAAAIPSVJIl092d5Iwkr6yqO6vq00muTHLBAeb9VHdfu4/pS6vqtrHXi5O8IMmfjO2/M8lDVfW9E3nvS/LhJE8+kPoAAAAAAAAAAAAAAAAAAAAAAAAA4GCYmXYBPLF19+aJ8Y4kG/ax9oYkNyww717Xjp/X3efsY/vz9rLv+NHln07EfzHJLy6kJgAAAAAAAAAAAAAAAAAAAAAAAABYSqumXQAAAAAAAAAAAAAAAAAAAAAAAAAAAIs3M+0CYC5V9eokF0+E7+zuM6dRDwAAAAAAAAAAAAAAAAAAAAAAAAAcKjSV5JDW3dcluW7adQAAAAAAAAAAAAAAAAAAAAAAAADAoWbVtAsAAAAAAAAAAAAAAAAAAAAAAAAAAGDxNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGNJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGNJVkaqpqTVXdNnrtrKp7xsZHV9VVVXVHVd1SVTdX1ZmjfadW1UOjdV+oqnfMccapVdVV9dNjsXWj2FtG4yuq6idG1zdU1faxtSdU1Q0H7SEAAAAAAAAAAAAAAAAAAAAAAAAAwH7SVJKp6e77u3tdd69LsjXJltH1cUmuTXJjdx/b3euTbEhyzNj2m0ZrT0hydlUdP8dRn0vyurHxxiSfnWP9s6vqh/bjlgAAAAAAAAAAAAAAAAAAAAAAAABgyWgqyaHotCS7unvrbKC77+7uyyYXdvcjSW5J8sI58t2dZHVVHV1VleQ1ST42x/pLk7xtvyoHAAAAAAAAAAAAAAAAAAAAAAAAgCWiqSSHopcluXUhC6tqTZKTktw+z9IPJjkrycmj3I/OsfbmJLuq6vvnOfvcqtpeVduveM97F1IuAAAAAAAAAAAAAAAAAAAAAAAAAAxmZtoFwHyq6vIkpyTZ1d0njsKvqKrPJHk8yUXdPV9TyWuSvD/JS5K8L3uaS87l15P8apIL9rWgu7cl2ZYkD+78as93HwAAAAAAAAAAAAAAAAAAAAAAAAAwpFXTLgD24vYkx88OuntTklclOWpszU3dfVx3r+/urfMl7O6dSR5LcnqSTyxg/fVJvj3JSYusHQAAAAAAAAAAAAAAAAAAAAAAAACWxMy0C4C9uD7Jb1TVed3926PY4QPkfXuSZ3f37qpayPpfT7I1yR0DnA0AAAAAAAAAAAAAAAAAAAAAAMBS6cenXQHAktBUkkNOd3dVnZFkS1Wdn+TeJI8kueAA835qkev/sKruPZAzAQAAAAAAAAAAAAAAAAAAAAAAAOBg0VSSQ0J3b54Y70iyYR9rb0hywwLz7nXt+Hndfc7Y9akT69Yv5BwAAAAAAAAAAAAAAAAAAAAAAAAAWGqrpl0AAAAAAAAAAAAAAAAAAAAAAAAAAACLNzPtAmAIVfXqJBdPhO/s7jOnUQ8AAAAAAAAAAAAAAAAAAAAAAAAAHGyaSvKE0N3XJblu2nUAAAAAAAAAAAAAAAAAAAAAAAAAwFJZNe0CAAAAAAAAAAAAAAAAAAAAAAAAAABYPE0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAACWIU0lWVJVtaaqbhu9dlbVPWPjo6vqqqq6o6puqaqbq+rM0b5Tq+qh0bovVNU75jjj1Krqqvrpsdi6UewtY7GZqrq3qi4aix02Ovv7xmIfr6qzhn8aAAAAAAAAAAAAAAAAAAAAAAAAALD/NJVkSXX3/d29rrvXJdmaZMvo+rgk1ya5sbuP7e71STYkOWZs+02jtSckObuqjp/jqM8led3YeGOSz06sOT3Jl5KcVVU1qm93kp9L8ltV9aSq2pjk8e7+wP7eMwAAAAAAAAAAAAAAAAAAAAAAAAAcDJpKcqg4Lcmu7t46G+juu7v7ssmF3f1IkluSvHCOfHcnWV1VR48aRr4myccm1mxM8p+TfDnJPxnL/6dJbk6yOclvJPn5/bkhAAAAAAAAAAAAAAAAAAAAAAAAADiYNJXkUPGyJLcuZGFVrUlyUpLb51n6wSRnJTl5lPvRsRyrk/xAko8meV/2NJgc9ytJ3pTkqu7+q33UcW5Vba+q7Ve8570LKR0AAAAAAAAAAAAAAAAAAAAAAAAABjMz7QJgb6rq8iSnJNnV3SeOwq+oqs8keTzJRd09X1PJa5K8P8lLsqdx5Mljcz+S5JPd/fdV9aEk/66q3tTdu0fz35fkoSQv31fy7t6WZFuSPLjzq72oGwQAAAAAAAAAAAAAAAAAAAAAAACAA7Rq2gXAyO1Jjp8ddPemJK9KctTYmpu6+7juXt/dW+dL2N07kzyW5PQkn5iY3pjkB6rqriS3JFmT5LQkqaqnJLlkNH52Vf3T/b0pAAAAAAAAAAAAAAAAAAAAAAAAADhYNJXkUHF9ktVVdd5Y7PAB8r49yQXdvXs2UFVHJnlFku/s7rXdvTbJpuxpNDm755ru/mKSn0uypapWD1ALAAAAAAAAAAAAAAAAAAAAAAAAAAxGU0kOCd3dSc5I8sqqurOqPp3kyiQXHGDeT3X3tRPhM5Nc392PjsU+kuSfVdX3jOYvHO3/TJLrDrQOAAAAAAAAAAAAAAAAAAAAAAAAABjazLQLYOXq7s0T4x1JNuxj7Q1Jblhg3r2unTjvyom5B/4vO/cerdld1gf8+5w5uRAyuQdylSMhkURIp4oL25rVcLFYCyVQ02Sk1LDahVgvrUC0q+gyWBVBLZZCm84fhK62EpDIVRGNmhqlhE7xQEJQaMhwCQbI5DITMrnMzNM/5h3Xy8uZmfOe2TPvnJzPZ6295t3Pb+/n9+w97/28+0ly+mj1gomxn1rOvAAAAAAAAAAAAAAAAAAAAAAAAABwOM3NugAAAAAAAAAAAAAAAAAAAAAAAAAAAKY3P+sCYKWq6gVJ3jgRvrO7XzKLegAAAAAAAAAAAAAAAAAAAAAAAADgcNJUklWruz+S5COzrgMAAAAAAAAAAAAAAAAAAAAAAAAAZmFu1gUAAAAA8K1OOvPsWZcAAAAAAAAAAAAAAPs1V7OuAAAAAACA6u5Z1wCPBx5IAAAAAAAAAAAAAAAAAAAAAAAro209MLgv/N5v6w0FrMhTfvDyVfXeZG7WBQAAAAAAAAAAAAAAAAAAAAAAAAAAMD1NJQEAAAAAAAAAAAAAAAAAAAAAAAAAViFNJQEAAAAAAAAAAAAAAAAAAAAAAAAAViFNJQEAAAAAAAAAAAAAAAAAAAAAAAAAViFNJQEAAAAAAAAAAAAAAAAAAAAAAAAAViFNJTmsqurUqlocLXdX1V1j60+uqt+qqs9X1f+tqv9dVS8Z7XdpVT0w2u4zVfUL+5lj77Z/UVV/VVV/WlUvHBu/pqpeO7r9jqq6c6yGnxrFt1TVrWPxv3uozw0AAAAAAAAAAAAAAAAAAAAAAAAATGN+1gWwtnT31iQbkj3NHZM82N2/XlWV5KNJ/lt3//Bo/ClJ/vHY7jd39wur6olJFqvqg939iX1MdXN3v3CUZ0OS91XVju7+oyW2vbq737NE/Dndfc9KjhMAAAAAAAAAAAAAAAAAAAAAAAAADrW5WRcAI89N8mh3X7s30N1f6O7/NLlhd38jyf9N8rTlJO7uxSS/mOQnBqoVAAAAAAAAAAAAAAAAAAAAAAAAAGZOU0mOFN+Z5BPL2bCqTk3yvUk+PUX+TyR5+j7Gfq2qFkfLM8fifzKK3bKPOl5ZVZuravOmTZumKAUAAAAAAAAAAAAAAAAAAAAAAAAADt78rAuApVTV25J8X5JHu/t7RuFLquovkuxO8qvdPU1TydrP2NXd/Z4l4s/p7nv2tVN3b0qyt5tkT1ELAAAAAAAAAAAAAAAAAAAAAAAAABw0TSU5Unw6yT/Zu9LdP15VpyXZPLbNzd39whXm/9tJPnMQ9QEAAAAAAAAAAAAAAAAAAAAAAADAEWVu1gXAyB8nObaqfmwsdtwQiavq4iQ/n+RtQ+QDAAAAAAAAAAAAAAAAAAAAAAAAgCPB/KwLgCTp7q6qy5K8uap+JsnXk3wjyc+uMOUlVfUX2dOY8mtJfqq7/2iYagEAAAAAAAAAAAAAAAAAAAAAAABg9qq7Z10DPB54IAEAAAAAAAAAAAAAAAAAAAAArEzNugDg8ecLv/fbekMBK/KUH7x8Vb03mZt1AQAAAAAAAAAAAAAAAAAAAAAAAAAATG9+1gXASlXVC5K8cSJ8Z3e/ZBb1AAAAAAAAAAAAAAAAAAAAAAAAcITonnUFAIeFppKsWt39kSQfmXUdAAAAAAAAAAAAAAAAAAAAAAAAADALmkrCALZv2zZInn7s0UHyJEmqhks1f9RguR54+LHBcq2bG+4Yj9s1zLl/aN3Rg+RJkkd27hos1zHz6wbLdfS2rYPlWgtOfer5g+S55/4HBsmzVpx20omD5Hngq3cPkmctOfHJZxx0jge2bx+gkrXlxPXrB8lz3zbnfhonnzDMef8/n71zkDxrxfdc8O2D5Nn+wP2D5Fkr1p940iB57vvSlkHyrCUnn7tw0Dm8tk5vqNfWO77y1UHyrBXnnfXkQfL89T33DpJnrTjztFMGyeO1dTpDvbY679Nx3mdniHP//ls+OUAla8uLn/23Bsmz7Z6vDZJnrTjhtCcNksf3NNMZ6nua++/+yiB51oqTzjhrkDxfv8/fQKZx+snD/A3EZ6fpDfH5yXmf3mCfWwf6Xcdasf6EEwbJ89V7fX6axpNPGeZz6xe/ds8gedaKb3vSaYPk8TwzvSGea7ZtdX+f1gmnDnOf33av35BN44RTTh0kj89P0xnq85PvaaYz1Pc0fjM5naF+M3n/V740SJ615KSzzj3oHH6rOr0hfquaOPfTGuq8X3rNWwfJs1bcdM1PDJLH59bpDPX9mM+t0xnqM+uQ7yWPqR4s18O7h7sO7phdjwyW6xsDXWJ81IDXrq2bmxss13wPd33ezhruGOd2fGOwXA/ODXc94zFHDXOMxwx43efuHQ8NlmvIaz+Huh41SeaecNxguXY9OMxz4I6jnzhInmTY54ddu4d7Xn5C7xws19cfGfJa4COv9cNDjw53XfiZ648dLNcjPdxzzde3Dfe8fPRA9/kh7wtD/h+efsJwzw+7du8eLNfW7cO9XsyvG+a9yOnHDvh43j3c88yQ7t053OPw+GOHe50e6v3kQ48M99g57uHhPpc//IRhPrMmyRN2PjxYrgfnjhks1zlPGuZvawAAa9Fw364CAAAAAAAAAAAAAAAAAAAAAAAAAHDYaCoJAAAAAAAAAAAAAAAAAAAAAAAAALAKaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAKaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAKaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAKaSoJAAAAAAAAAAAAAAAAAAAAAAAAALAKaSrJkqrq1KpaHC13V9VdVbVrtH57Vd1bVXeO1m+sqoWq2jE2fm1VzY1ynVZVj1XVq5Yx75aqunkitlhVt41uX1pVD4zVtlhVzx+N7a3v01X1yap6zVgNl1bVhybyvq+qPjYRu6aqHqqqJ43FHlzpeQQAAAAAAAAAAAAAAAAAAAAAAACAQ0VTSZbU3Vu7e0N3b0hybZI3d/e6UeyiJB9IcvVo/fmj3e4YbX9xkouSXDaKX57kY0k2LnP69VV1bpJU1YVLjN+8t7bRcuMovmO0/p1Jvj/JP0zyC0tNUFUnJfnuJCdW1VMnhu9J8ppl1goAAAAAAAAAAAAAAAAAAAAAAAAAM6GpJIPr7p1JPprkaaPQxuxp0nh2VZ2zjBTvTnLF2L7vXEENX0vyyiQ/UVW1xCYvTfLBJNcnuXJi7O1JrqiqU/Y3R1W9sqo2V9Xm6667btoSAQAAAAAAAAAAAAAAAAAAAAAAAOCgaCrJ4KrquCTPS3JrVZ2b5Mzu/ni+uVnk/tyQPU0fk+RF2dP8cdwlVbU4tpy3VJLu/nySdUmetMTw3maV7xzdHvdg9jSW/Nf7K7K7N3X3s7r7Wa94xSv2e0AAAAAAAAAAAAAAAAAAAAAAAAAAMDRNJRnSeVW1mOTPk/xud384e5pIvns0fn2+tYHjUrYmua+qrkzymSQPTYzf3N0bxpY7pimyqp6c5Pwkf9bdn03yWFU9Y2IURZv7AAAgAElEQVSztyT5kapaP01uAAAAAAAAAAAAAAAAAAAAAAAAADhc5mddAI8rd3T3honYxiRnVNXLRutnVdX53f25A+R6V5K3JblqpcVU1VOT7ErytSQXjg390yQnJ7mzqpLkhFGdr9u7QXffX1W/leTHVzo/AAAAAAAAAAAAAAAAAAAAAAAAABxKc7MugMevqrogyfHdfXZ3L3T3QpI3ZE8DxwN5b5I3JfnICuc+Pcm1Sd7a3T0xvDHJD4zV9N1JrlwizX9I8qPRfBUAAAAAAAAAAAAAAAAAAAAAAACAI5CmkhxKG7OnOeS4G7KMppLdvb2739jdjy4xfElVLY4tPzSKP2G0/ukkNyb5gySvH9+xqhaSPCXJx8bmujPJA1X17Ika7hnVf8yB6gUAAAAAAAAAAAAAAAAAAAAAAACAw21+1gVw5Ovua5aIXTWxviXJMyZi39TQcRT7VJIL9zPXwhKxv8nd3TclOXEf+67bT96bktw0Wj17ifHvGt28ZSL+6iSv3ldeAAAAAAAAAAAAAAAAAAAAAAAAAJiVuVkXAAAAAAAAAAAAAAAAAAAAAAAAAADA9OZnXQBrU1XdkuSYifDLu/vWWdQDAAAAAAAAAAAAAAAAAAAAAAAAAKuNppLMRHc/e9Y1AAAAAAAAAAAAAAAAAACwco/t3JWj5tfNugwAAAAAgDVNU0kAAAAAAAAAAAAAAAAAAGBqGkoCAAAAR7LetWvWJQAcFnOzLgAAAAAAAAAAAAAAAAAAAAAAAAAAgOlpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKslBq6pTq2pxtNxdVXdV1a7R+u1VdW9V3Tlav7GqFqpqx9j4tVU1N8p1WlU9VlWvWsa8W6rq5onYYlXdNrp9aVU9MFbbYlU9f2zby6qqq+rpY7GFUewnx2JvraqrBjhVAAAAAAAAAAAAAAAAAAAAAAAAADAYTSU5aN29tbs3dPeGJNcmeXN3rxvFLkrygSRXj9b3NnW8Y7T9xUkuSnLZKH55ko8l2bjM6ddX1blJUlUXLjF+897aRsuNY2Mbk/zZEnN9Lcm/rqqjl1kDAAAAAAAAAAAAAAAAAAAAAAAAABx2mkoyU929M8lHkzxtFNqY5DVJzq6qc5aR4t1Jrhjb953Lmbeqjk/yfUn+RZIrJ4a/nuSPkvzIAXK8sqo2V9Xm6667bjnTAgAAAAAAAAAAAAAAAAAAAAAAAMBgNJVkpqrquCTPS3JrVZ2b5Mzu/ni+uVnk/tyQ5KWj2y9K8sGJ8UuqanFsOW8Uf3GS3+/uzybZWlXfPbHfG5O8tqrW7Wvi7t7U3c/q7me94hWvWEapAAAAAAAAAAAAAAAAAAAAAAAAADAcTSWZlfOqajHJnyf53e7+cPY0kXz3aPz6JBuXkWdrkvuq6sokn0ny0MT4zd29YWy5YxTfOJpjybm6+/NJbknyw1MeFwAAAAAAAAAAAAAAAAAAAAAAAAAcFvOzLoA1647u3jAR25jkjKp62Wj9rKo6v7s/d4Bc70rytiRXLWfiqjolyXOTPLOqOsm6JF1VV09s+itJ3pPkfy0nLwAAAAAAAAAAAAAAAAAAAAAAAAAcTnOzLgCSpKouSHJ8d5/d3QvdvZDkDdnTaPJA3pvkTUk+sszpfijJf+/up4zmOjfJnUkuGd+ou/8yye1JXrTMvAAAAAAAAAAAAAAAAAAAAAAAAABw2GgqyZFiY/Y0hxx3Q5bRVLK7t3f3G7v70SWGL6mqxbHlh6ac65eTnHPg8gEAAAAAAAAAAAAAAAAAAAAAAADg8JqfdQE8vnT3NUvErppY35LkGROx1y+x36eSXLifuRaWiP1N7u6+KcmJS+z6niX2e8vY6jPG4p+M5qsAAAAAAAAAAAAAAAAAAAAAAAAAHIE0ywMAAAAAAAAAAAAAAAAAAAAAAAAAWIXmZ10AHEhV3ZLkmInwy7v71lnUAwAAAAAAAAAAAAAAAAAAAAAAAABHAk0lOeJ197NnXQMAAAAAAAAAAAAAAAAAAN/ssZ27ctT8ulmXAQAAAACwps3NugAAAAAAAAAAAAAAAAAAAGD10VASAAAAAGD2NJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiF5mddAAAAAAAAAAAAAAAAAAAAAAAAAMCgumddAcBhMTfrAgAAAAAAAAAAAAAAAAAAAAAAAAAAmJ6mkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5CmkgAAAAAAAAAAAAAAAAAAAAAAAAAAq5Cmkhw2VXVqVS2Olrur6q6q2jVav72q7q2qO0frN1bVQlXtGBu/tqrmRrlOq6rHqupVy5h3S1XdPBFbrKrbRrcvraoPjW5fVVW7q+risW1vq6qFIc8FAAAAAAAAAAAAAAAAAAAAAAAAABwsTSU5bLp7a3dv6O4NSa5N8ubuXjeKXZTkA0muHq0/f7TbHaPtL05yUZLLRvHLk3wsycZlTr++qs5Nkqq68ADbfjnJ65Z/ZAAAAAAAAAAAAAAAAAAAAAAAAABw+GkqyarQ3TuTfDTJ00ahjUlek+TsqjpnGSneneSKsX3fuZ9tP5TkO6vqO1ZYLgAAAAAAAAAAAAAAAAAAAAAAAAAccppKsipU1XFJnpfk1qo6N8mZ3f3xfHOzyP25IclLR7dflOSD+9l2d5I3Jfl3B6jplVW1uao2X3fddcsoAQAAAAAAAAAAAAAAAAAAAAAAAACGMz/rAuAAzquqxSSd5P3d/eGqem32NJNMkuuTvD3Jbxwgz9Yk91XVlUk+k+ShA2z/W0leV1Xfvq8NuntTkk1Jsn3btj7gkQAAAAAAAAAAAAAAAAAAAAAAAADAgDSV5Eh3R3dvmIhtTHJGVb1stH5WVZ3f3Z87QK53JXlbkqsONGl376yq30jys9MWDAAAAAAAAAAAAAAAAAAAAAAAAACHw9ysC4BpVNUFSY7v7rO7e6G7F5K8IXsaTR7Ie5O8KclHljndO5I8P8npKygVAAAAAAAAAAAAAAAAAAAAAAAAAA4pTSVZbTZmT3PIcTdkGU0lu3t7d7+xux9dzkSj7d6S5ElTVwkAAAAAAAAAAAAAAAAAAAAAAAAAh9j8rAtgberua5aIXTWxviXJMyZir19iv08luXA/cy0sEfub3N19U5KbRrffkeQdY9u9JXsaSwIAAAAAAAAAAAAAAAAAAAAAAADAEWVu1gUAAAAAAAAAAAAAAAAAAAAAAAAAADC9+VkXAEOpqluSHDMRfnl33zqLegAAAAAAAAAAAAAAAAAAAAAAAADgUNJUkseN7n72rGsAAAAAAAAAAAAAAAAAAAAAAAAAgMNlbtYFAAAAAAAAAAAAAAAAAAAAAAAAAAAwPU0lAQAAAAAAAAAAAAAAAAAAAAAAAABWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABWIU0lAQAAAAAAAAAAAAAAAAAAAAAAAABWIU0lOWSq6tSqWhwtd1fVXVW1a7R+e1XdW1V3jtZvrKqFqtoxNn5tVc2Ncp1WVY9V1auWMe+Wqrp5IrZYVbdNxH5zVNPcWOzVVfX2sfWXVdXvHvzZAAAAAAAAAAAAAAAAAAAAAAAAAIBhaSrJIdPdW7t7Q3dvSHJtkjd397pR7KIkH0hy9Wj9+aPd7hhtf3GSi5JcNopfnuRjSTYuc/r1VXVuklTVhZODo0aSL0nypSR/f2zoLUm+q6r+XlWdlOSXkvzkFIcNAAAAAAAAAAAAAAAAAAAAAAAAAIeFppIckbp7Z5KPJnnaKLQxyWuSnF1V5ywjxbuTXDG27zsnxi9N8ukk/yVjjSpH8/6rJG9L8qYkb+/uz6/sKAAAAAAAAAAAAAAAAAAAAAAAAADg0NFUkiNSVR2X5HlJbq2qc5Oc2d0fzzc3i9yfG5K8dHT7RUk+ODG+t9Hke5P8o6o6au9Ad380yWeSPD97Gkvuq8ZXVtXmqtp83XXXLe/AAAAAAAAAAAAAAAAAAAAAAAAAAGAg87MuACacV1WLSTrJ+7v7w1X12uxpJpkk1yd5e5LfOECerUnuq6ors6dB5EN7B6rq6CQ/mOTV3b29qm5J8oIkHxqNH5/kWUmOSnJ6ki8vNUF3b0qyKUm2b9vWKzhWAAAAAAAAAAAAAAAAAAAAAAAAAFgxTSU50tzR3RsmYhuTnFFVLxutn1VV53f35w6Q611J3pbkqon4C5KclOTWqkqS45LsyKipZJLXJ/kfSb6a5M1JLl/BcQAAAAAAAAAAAAAAAAAAAAAAAADAIaWpJEe0qrogyfHdffZY7PXZ02jyFw+w+3uTnJnkI0nOGotvTPIvu/udo3xPTHJnVR2X5Lwk/yjJhiSPJvkXVfX93f2HAx0SAAAAAAAAAAAAAAAAAAAAAAAAAAxibtYFwAFszJ7mkONuGMX3q7u3d/cbu/vRvbFR48gfSPK7Y9t9I8mfJXlRkv+S5Ke7++Hu3p3kx5L8x6o6+qCPBAAAAAAAAAAAAAAAAAAAAAAAAAAGND/rAlgbuvuaJWJXTaxvSfKMidjrl9jvU0ku3M9cC0vExnOfssT4S0c33zUR35zkon3NBQAAAAAAAAAAAAAAAAAAAAAAAACzMjfrAgAAAAAAAAAAAAAAAAAAAAAAAAAAmN78rAuAlaqqW5IcMxF+eXffOot6AAAAAAAAAAAAAAAAAAAAAAAAAOBw0lSSVau7nz3rGgAAAAAAAAAAAAAAAAAAAAAAAABgVuZmXQAAAAAAAAAAAAAAAAAAAAAAAAAAANOr7p51DfB44IEEAAAAAAAAAAAAAAAAAAAAALAyNesCgMefLe//Lb2hgBVZePEPr6r3JnOzLgAAAAAAAAAAAAAAAAAAAAAAAAAAgOlpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKskhVVWnVtXiaLm7qu6qql2j9dur6t6qunO0fmNVLVTVjrHxa6tqbpTrtKp6rKpetYx5t1TVraPl9qr6pao6djS2UFW3jW5fWlUPjNV44yh+zajWvfFfPZTnCQAAAAAAAAAAAAAAAAAAAAAAAACmNT/rAnh86+6tSTYkexo1Jnmwu39973hVvSPJh7r7PaP1hSR3dPeGqppP8sdJLkvyO0kuT/KxJBuTXLuM6Z/T3fdU1fFJNiX5r0l+ZIntbu7uFy4Rf/N4rQAAAAAAAAAAAAAAAAAAAAAAAKwO3btnXQLAYTE36wJgX7p7Z5KPJnnaKLQxyWuSnF1V50yR58Ekr0pyWVWdMnihAAAAAAAAAAAAAAAAAAAAAAAAADADmkpyxKqq45I8L8mtVXVukjO7++NJ3p3kimlydfe2JHcmOX+J4UuqanG0vG4s/tNj8RcsUd8rq2pzVW3etGnTNOUAAAAAAAAAAAAAAAAAAAAAAAAAwEGbn3UBsITzqmoxSSd5f3d/uKpemz3NJJPk+iRvT/IbU+atfcRv7u4XLhF/c3f/+r6SdfemJHu7SfaUtQAAAAAAAAAAAAAAAAAAAAAAAADAQdFUkiPRHd29YSK2MckZVfWy0fpZVXV+d39uOQmran2ShSSfTXLiYJUCAAAAAAAAAAAAAAAAAAAAAAAAwIzMzboAOJCquiDJ8d19dncvdPdCkjdkT6PJ5ex/fJL/nOR93X3foasUAAAAAAAAAAAAAAAAAAAAAAAAAA4fTSVZDTYmee9E7IYcuKnkn1TVbUk+nuSLSX70ENQGAAAAAAAAAAAAAAAAAAAAAAAAADNR3T3rGuDxwAMJAAAAAAAAAAAAAAAAAAAAAGBlatYFAI8/d77vf+gNBazIt1/2z1bVe5O5WRcAAAAAAAAAAAAAAAAAAAAAAAAAAMD05mddAByMqrolyTET4Zd3962zqAcAAAAAAAAAAAAAAAAAAAAAAAAADhdNJVnVuvvZs64BAAAAAAAAAAAAAAAAAAAAAAAAAGZBU0kYwO9/4tOD5LngzNMHyTO0bzzy6GC57n3wocFynXPKiYPlOvaoowbJ85X7HhgkT5Icf+wxg+U6/YQnDpbr6N07B8u1FpxwyqmD5Nn+wP2D5Fkr1p940iB5ttz99UHyrCULZxz8a9kDX717gErWlhOffMYgee7/67sGybNWnHTm2YPk+eyX3eenccE5w9zfvz7g+7a14PSTh3nvvfWOvxokz1py6nnfcdA53vEnHxugkrXlqud87yB5PvPFrwySZ6248NvOGiTPF792zyB51opve9Jpg+T5g8XbB8mzVvyDDRcNkufeL3x+kDxrxSlPeeogebZ+/nOD5FlLTn3q+Qedw/c00xvie5rEdzXTGup7mtu/4HuaaVz0lGG+p9l2z9cGybNWnHDakwbJc+uWLw+SZ6145sI5g+R5YPv2QfKsJSeuX3/QOf76nnsHqGRtOfO0UwbJ428g0xnqbyD3fWnLIHnWipPPXRgkj89P0xnqs9N927y2TuvkE7y2zsJQr633/OWtg+RZK057+jMHybP5c1sGybNWPOv8hUHy3HO/3xdM47SThvl9gdfW6Qzxupp4D78SQ7yP955mekO9p/nqvX6fPY0nnzLM77O3b9s2SJ61Yv0JJwyS59Jr3jpInrXipmt+YpA8fsc0naF+xzTkb1V3rB+mpiQ5bsdwny2+uGu4y4LP7R2D5Jk/frjr/HY+ONy5eviE4a7XfMJDw713GPT/MI8MlmvdsccOkqd37RokT5LcN3/cYLlOnds9WK7PbXt4sFxPO36Ya1uTZN1xw1xH+tj9w31OeWz9MO/fk2T+3uF+x7T12GHe3ybJyduH+73JUScNcz3q3EDXTCfJ7keHe57Z9fBwj51Bj/GxxwbLdfSpR16vgJ3bhnsNG/Jczc0P93q4e+dw174P9X+444vD/c57qOf3PbmOHyxXza0bLteA94ehct33yHD3qy9tHe5xuDDQd2NJ8sWt9w2Wa8ejw52v51588NfTAQCsVXOzLgAAAAAAAAAAAAAAAAAAAAAAAAAAgOlpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAppKsk3qaqFqrptInZNVb22qt5RVXdW1WJVfbKqnje2zU1V9VejscWqes9EjsWqun4Z87+jqh6qqvVjsd+sqq6q00bru8bmWayqfztRw6eq6i+r6q1VddJYngcn5vo3VfVwVZ04Frt0NNeLxmIfqqpLl3H6AAAAAAAAAAAAAAAAAAAAAAAAAOCw0VSSaV3d3RuS/Jsk106Mvay7N4yWH9obrKoLk6xLcklVPXEZc/y/JC8e7TuX5LlJ7hob3zE2z4bu/tWJGi5OcnGSR5K8fz/zbEzyf5K8dCL+5SSvW0adAAAAAAAAAAAAAAAAAAAAAAAAADAzmkqyUv87ydnL3HZjkv+e5A8yahZ5ANcnuWJ0+9Ikf55k5zTFdfejSX4mybdV1d+aHK+q85Icn+TnRvWN+2SSB6rq+6eZEwAAAAAAAAAAAAAAAAAAAAAAAAAOJ00lWakfSPK+idj/rKrF0fJrY/ErsqdR5DvzrQ0cl/LZJKdX1cmj7a+fGH/C2DyLVXXFt6ZIuntX9jSIfPoSw1eO8t6c5Duq6skT47+cPQ0n96mqXllVm6tq8+/9zm8f+KgAAAAAAAAAAAAAAAAAAAAAAAA4PLotFotlZcsqMz/rAjji7OtevDf+a1X1K0nOSfJ3JrZ5WXdvHg9U1bOS3NPdX6yqu5K8vapO6e57D1DH72RP48dnJ/nRibEd3b3hQAeyt4R9xDcmeUl3766qG5JcnuStewe7+0+rKlX1fftK3N2bkmxKkt//xKdX36MfAAAAAAAAAAAAAAAAAAAAAAAAgFVtbtYFcMTZmuTkidgpSe4Z3b66uy9I8rNJ3r6MfBuTPL2qtiS5I8kJSf7JMvZ7V5J/n+QPu3v3Mrb/FlW1Lskzk3xmIv7MJOcn+cNRXVeO6pz0y0l+biVzAwAAAAAAAAAAAAAAAAAAAAAAAMChpqkk36S7H0zy11X13CSpqlOS/ECSP5vY9K1J5qrqBfvKVVVzSf5pkmd290J3LyR5cZZu4DhZxxeSvC7Jf17JcVTVUUnekORL3f2pieGNSa7ZW1N3n5XkrKp6ykQNf5A9DTYvXkkNAAAAAAAAAAAAAAAAAAAAAAAAAHAoaSrJUv55kp+vqsUkf5zk9d19x/gG3d1JfinJz4yF/2dVLY6WG5NckuSu7v7K2DZ/muSiqjrzQEV093+dnHfkCWPzLFbVr07U8KkktyV5YvY0sZx0ZZL3TsTeO4pP+uUk5x6oVgAAAAAAAAAAAAAAAAAAAAAAAAA43OZnXQBHnu6+PclzlohfNbF+Q5IbRrcv3Ue6753YZ1eSM/Yz91X7iC+M3V63j232VcPe8eNH/z51ibFXj63eNBb/QJLaX14AAAAAAAAAAAAAAAAAAAAAAAAAmIW5/8/O/QfbXZd3An8/N0FFfsRQUBFtU6rWX7hZZWsdy26kdsBO3bgVDWlmNO3OYmdQq0WsBTvF3+2wiuyAI3HEtBQNCqiMU63aDuuPsXVje/EHVVRE22gLUQoiUUl49o97sGdO789wkpObvF4zZ/L9Pp/n83yee+7NyeFe7jPpBgAAAAAAAAAAAAAAAAAAAAAAAAAAWLqVk26AQ1NVXZrkGSPhi7v73ZPoBwAAAAAAAAAAAAAAAAAAAAAAAACWG0MlmYjuPnvSPQAAAAAAAAAAAAAAAAAAAAAAAADAcjY16QYAAAAAAAAAAAAAAAAAAAAAAAAAAFg6QyUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhQyUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhQyUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhQyUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhQyUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhQyUBAAAAAAAAAAAAAAAAAAAAAAAAAJYhQyXZK1W1pqq+NBK7oKpeWVVbq+qbVTVdVTdU1a8O5VxfVV8drE1X1dUjNaaratsizt9aVXdX1VFDsbdVVVfVsYP7PUPnTFfVq4dyj62qe6rqd0fq3lJV1wzdn1FVW5fw1AAAAAAAAAAAAAAAAAAAAAAAAADAfrFy0g1w0Dq3u6+uqmcm2ZLkMUNrm7p7++iGqnp8khVJTqmqI7r7hwuc8fUk65P8RVVNJTk1yY6h9V3dvXaOvc9P8rdJNiZ5x8jaU6vqCd194wLnAwAAAAAAAAAAAAAAAAAAAAAAAMDETE26AQ56n01ywiJzNya5IsnHMjMsciHbkmwYXK9L8pkku5dw1jlJTqiqR46svSXJ+QsVqKqzqmp7VW3/y2vfv8hjAQAAAAAAAAAAAAAAAAAAAAAAAGA8DJVkXzs9yQdHYldW1fTgceFQfENmBkW+NzNDHxdyU5Ljqmr1IH/byPrhQ+dMV9WGJKmqRyU5vrs/l+R9+ffBlPd5X5KnVNWj5zu8u7d098ndffKv/+bzF9EuAAAAAAAAAAAAAAAAAAAAAAAAAIzPykk3wLLVC8QvrKo3JXlkkqeP5Gzq7u3Dgao6OcnO7v52Ve1IcnlVHdPd31+gj2uTnJnkaUlePLK2q7vXzrJnQ2YGRyYzgygvT/KWofU9SS5M8odJPrLA+QAAAAAAAAAAAAAAAAAAAAAAAAAwEYZKsre+l2T1SOyYJN8cXJ/b3VdX1UszM7TxqQvU25jkcVV1y+D+6CTPS/LOBfZdleTzSf6su++tqsX0vjHJw6tq0+D+EVX1mO7+2lDOFZkZKvmlxRQEAAAAAAAAAAAAAAAAAAAAAADgwNF79ky6BYD9YmrSDbA8dfddSb5bVacmSVUdk+T0JJ8eSb0kyVRVnTZXraqaSvKCJCd195ruXpNkfWaGPy7Ux7eSnJ/k7Yvpu6oem+TI7j5h6Kw3j57V3fckuSjJKxZTFwAAAAAAAAAAAAAAAAAAAAAAAAD2t5WTboBl7YVJLq2qtw7uX9vd36iqnyZ0d1fVG5K8KslfDcJXVtWuwfXOJK9PsqO7vzNU+5NJnlBVx3f3d+drorsvm2Pp8KqaHrr/aJJdST4wkndNkquSvG4k/q4kr5nvbAAAAAAAAAAAAAAAAAAAAAAAAACYFEMl2WvdfWOSZ84S3zxyf01mBjemu9fNUe6XR/bsSfLwec7ePEd8zdD1irn2j+z5QpLHz7L/x0kesZgaAAAAAAAAAAAAAAAAAAAAAAAAALC/TU26AQAAAAAAAAAAAAAAAAAAAAAAAAAAlm7lpBuA+VTVpUmeMRK+uLvfPYl+AAAAAAAAAAAAAAAAAAAAAAAAAOBAYagkB7TuPnvSPQAAAAAAAAAAAAAAAAAA8B/tvuuOrDxy1aTbAAAAAAA4pE1NugEAAAAAAAAAAAAAAAAAAGD5MVASAAAAAGDyDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGDJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiGDJUEAMkJm0MAACAASURBVAAAAAAAAAAAAAAAAAAAAAAAAFiGDJVkn6uqNVX1pZHYBVX1yqraWlXfrKrpqrqhqn51KOf6qvrqYG26qq4eqTFdVdsWcf7Wqrq7qo4air2tqrqqjh3c3zXUa1fVS4dyL6mqzXv9BAAAAAAAAAAAAAAAAAAAAAAAAADAPmCoJAeCc7t7bZKXJ3nHyNqm7l47eJxxX7CqHp9kRZJTquqIRZzx9STrB3unkpyaZMccubcm+b2qesASPw4AAAAAAAAAAAAAAAAAAAAAAAAA2G8MleRA8tkkJywyd2OSK5J8LINhkQvYlmTD4Hpdks8k2T1H7m1J/jrJi+YrWFVnVdX2qtr+l9e+fzE9AwAAAAAAAAAAAAAAAAAAAAAAAMDYGCrJgeT0JB8ciV1ZVdODx4VD8Q2ZGRT53swMmFzITUmOq6rVg/xtC+T/aZJXVtWKuRK6e0t3n9zdJ//6bz5/ES0AAAAAAAAAAAAAAAAAAAAAAAAAwPisnHQDHBJ6gfiFVfWmJI9M8vSRnE3dvX04UFUnJ9nZ3d+uqh1JLq+qY7r7+wv0cW2SM5M8LcmL5224++aq+rskv7VATQAAAAAAAAAAAAAAAAAAAAAAAACYiKlJN8Ah4XtJVo/Ejkmyc3B9bnc/NskfJLl8EfU2JnlcVd2S5BtJjk7yvEXsuyrJ65N8vLvvXUT+mwY91SJyAQAAAAAAAAAAAAAAAAAAAAAAAGC/MlSSfa6770ry3ao6NUmq6pgkpyf59EjqJUmmquq0uWpV1VSSFyQ5qbvXdPeaJOszM2hyoT6+leT8JG9fZN9fSXJjkucsJh8AAAAAAAAAAAAAAAAAAAAAAAAA9qeVk26AQ8YLk1xaVW8d3L+2u79RVT9N6O6uqjckeVWSvxqEr6yqXYPrnUlen2RHd39nqPYnkzyhqo7v7u/O10R3X7bEvt+Y5B+WuAcAAAAAAAAAAAAAAAAAAAAAAAAA9jlDJdkvuvvGJM+cJb555P6aJNcMrtfNUe6XR/bsSfLwec7ePEd8zdD1kYM/b0nypKH4DUmm5qoNAAAAAAAAAAAAAAAAAAAAAADAAajvnXQHAPuFYXkAAAAAAAAAAAAAAAAAAAAAAAAAAMvQykk3AONSVZcmecZI+OLufvck+gEAAAAAAAAAAAAAAAAAAAAAAACAfclQSQ4a3X32pHsAAAAAAAAAAAAAAAAAADhU7L7rjqw8ctWk2wAAAAAAOKRNTboBAAAAAAAAAAAAAAAAAABg+TFQEgAAAABg8gyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVZOyqak1VfWkkdkFVvbKqtlbVN6tquqpuqKpfHcq5vqq+OlibrqqrR2pMV9W2RZy/tarurqqjhmJvq6quqmOHYs8dxB43FDu5qr5cVQ8Y3P9CVd1cVUfv3bMBAAAAAAAAAAAAAAAAAAAAAAAAAPuGoZJMwrndvTbJy5O8Y2RtU3evHTzOuC9YVY9PsiLJKVV1xCLO+HqS9YO9U0lOTbJjJGdjkk8P/kySdPf2JP83ySsHoUuTnN/ddy72gwMAAAAAAAAAAAAAAAAAAAAAAACA/cFQSSbps0lOWGTuxiRXJPlYBsMiF7AtyYbB9bokn0my+77Fqjoyya8k+Z9JzhzZe16S/1VVr0qysrvfu8geAQAAAAAAAAAAAAAAAAAAAAAAAGC/MVSSSTo9yQdHYldW1fTgceFQfENmBkW+NzMDJhdyU5Ljqmr1IH/byPr6JB/t7puSfK+qnnrfQnf/W5I/SfLmJGfPdUBVnVVV26tq+19e+/5FtAQAAAAAAAAAAAAAAAAAAAAAAAAA47Ny0g1wUOoF4hdW1ZuSPDLJ00dyNnX39uFAVZ2cZGd3f7uqdiS5vKqO6e7vL9DHtUnOTPK0JC8eWduY5OLB9bbB/eeH1p+d5F+TPCHJV2f9YLq3JNmSJB/9+y/P9TEDAAAAAAAAAAAAAAAAAAAAAAAAwD5hqCT7wveSrB6JHZPkm4Prc7v76qp6aZLLkzx1gXobkzyuqm4Z3B+d5HlJ3rnAvqsyMyjyz7r73qpKklTVMUlOTXJSVXWSFUm6qs7t7q6q30iyKslpST5QVX/V3XcvcBYAAAAAAAAAAAAAAAAAAAAAAAAA7FdTk26Ag09335Xku1V1avLTIY6nJ/n0SOolSaaq6rS5alXVVJIXJDmpu9d095ok6zMzaHKhPr6V5Pwkbx9ZOiPJFd39c4Oaj8rMwMtTqurwJG9NcnZ3fzHJhwY1AAAAAAAAAAAAAAAAAAAAAAAAAOCAYqgk+8oLk/xRVU0n+Zskr+3ubwwndHcneUOSVw2Fr6yq6cHjE0lOSbKju78zlPPJJE+oquMXaqK7Lxs9NzMDKT8wErtmEP+jJB/o7hsH8QuSbKyqxyx0FgAAAAAAAAAAAAAAAAAAAAAAAADsTysn3QAHp8FQxmfOEt88cn9NZgY6prvXzVHul0f27Eny8HnO3jxHfM3gcra+/s8ce36Q5MS5zgIAAAAAAAAAAAAAAAAAAAAAAACASZmadAMAAAAAAAAAAAAAAAAAAAAAAAAAACzdykk3AHurqi5N8oyR8MXd/e5J9AMAAAAAAAAAAAAAAAAAAAAAAAAA+5Ohkixb3X32pHsAAAAAAAAAAAAAAAAAAAAAAAAAgEmZmnQDAAAAAAAAAAAAAAAAAAAAAAAAAAAsXXX3pHuAg4G/SAAAAAAAAAAAAAAAAAAAAAAAe6cm3QBw8Ln5/ZebDQXslROf/zvL6r3J1KQbAAAAAAAAAAAAAAAAAAAAAAAAAABg6QyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhlZOugEOPlW1JsmHu/tJQ7ELktyV5ElJ/luSO5JUkt/v7r8e5Fyf5Pgkuwbbvt7dZwzVmE7yle4+c4Hztw7OuDPJ4Un+Nsl53f3Pg/Vbkpzc3Turak+SLw5tf26SNUk+lOSbg9jO7n7W4p8BAAAAAAAAAAAAAAAAAAAAAAAAANj3DJVkEs7t7qur6plJtiR5zNDapu7ePrqhqh6fZEWSU6rqiO7+4SLPqCQvT/I3VfWk7v7JSN6u7l47ctaaJJ/q7t9Y2ocFAAAAAAAAAAAAAAAAAAAAAAAAAPvP1KQb4JD22SQnLDJ3Y5IrknwsyfrFHtAzLkryL0meveQOAQAAAAAAAAAAAAAAAAAAAAAAAOAAZagkk3R6kg+OxK6squnB48Kh+IYk25K8NzMDJpfq75M8bpb44UPnfWAofspQ/PzZClbVWVW1vaq2b9myZS9aAgAAAAAAAAAAAAAAAAAAAAAAAIC9t3LSDXBQ6gXiF1bVm5I8MsnTR3I2dff24UBVnZxkZ3d/u6p2JLm8qo7p7u8voaeaI76ru9fOEv9Ud//GfAW7e0uS+6ZJzvUxAwAAAAAAAAAAAAAAAAAAAAAAAMA+MTXpBjgofS/J6pHYMUl2Dq7P7e7HJvmDJJcvot7GJI+rqluSfCPJ0Umet8Se/nOSf1ziHgAAAAAAAAAAAAAAAAAAAAAAAAA4YBkqydh1911JvltVpyZJVR2T5PQknx5JvSTJVFWdNletqppK8oIkJ3X3mu5ek2R9ZgZNLqhmvCzJ8Uk+utSPBQAAAAAAAAAAAAAAAAAAAAAAAAAOVIZKsq+8MMkfVdV0kr9J8tru/sZwQnd3kjckedVQ+Mqqmh48PpHklCQ7uvs7QzmfTPKEqjp+nvMvrKobktyU5L8keWZ3/+T+f1gAAAAAAAAAAAAAAAAAAAAAAAAAcGCombl+wP3kLxIAAAAAAAAAAAAAAAAAAAAAwN6pSTcAHHxufv/lZkMBe+XE5//OsnpvMjXpBgAAAAAAAAAAAAAAAAAAAAAAAAAAWLqVk24A9lZVXZrkGSPhi7v73ZPoBwAAAAAAAAAAAAAAAAAAAAAAAAD2J0MlWba6++xJ9wAAAAAAAAAAAAAAAAAAAAAAAAAAk2KoJIzBbbffMZY6VWMpkyS5c9ePx1bruCMeNLZad/1k99hqPegBh42t1oqf7BpLnTrsAWOpkyQ/7vF9Qaz80Q/HVqsffNTYah0KVh89nufrB3f821jqHCqOWvWQsdTZcdv3x1LnUHLCccfc7xp3/OAHY+jk0LLqqPG81njul2Zcz7vX+KUZ12v8D+68cyx1DhVHHX30WOrcufPWsdQ5lBx97EPvd43b7/T6vlTjeh/vuV+acT3v393pffxSHH/s/X8Pn3iNX6pxvL4nye3f/uZY6hwqVv/sz4+lzve/dfNY6hxKjvm5E+93Da/vSzeu1/jb/+mWsdQ5VKx+1Jqx1PE1vzTj+nq/41//ZSx1DhWrHvbwsdTxvfilGcf34RP/zbo3xvHfrb4Pv3Tj+l68r/ml8XPuyRjXz0C+8Z1/HUudQ8UvPOJhY6nj633pxvE1v/PfxvP/7R1Kjn3IqrHU8T5+acb1Pt7PuZdmXD/n9j5+acb1Ht7PnpZmbD978v3gJRvH94S9vi/duF7jvY9fmnH9d+ud39s5ljqHiqN/5tix1Pn2rZ73pfjZh47neV93wSVjqXOouP6Cl4ylzjjf00w95GfGVuv2H/5obLVWPXh8v+v3/bvuHkudhx7xwLHUSZLdd47x3+hV4/sc3nH3gfk5vO3O8f3e4PFHP3gsdXbfMcbvHR2gn8PVY/yd2x/s+snYaq160Hh+53bPXeP73uuKI8b3+6h33XPv2GqN8/eTx/n38GGrjhhbrXGpn4zv99XT4/sc7nnA4WOrdfeP7xlbrQc/cHxfW+Oy4p7xfQ579/jmBNx7+Pi+3g/Ez2H9cHzf85l64Pj+3cm9e8ZXq6bGVmrHD8f37+EJDx7TGJ2pFeOpk+QHe8Y3N+LoB45vTNAdPxrf351xvQ9Jxvf9PwCAQ5GhkgAAAAAAAAAAAAAAAAAAAAAAAMBBpbsn3QLAfjG+0e8AAAAAAAAAAAAAAAAAAAAAAAAAAOw3hkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDhkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDhkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDhkoCAAAAAAAAAAAAAAAAAAAAAAAAACxDhkoewqpqT1VNV9WXq+qGqjqnqqYGa+uq6sOD681V1VX1rKG9zx3EzhjcX19VXx3Um66qqwfxC6pqxyB2Y1VtXKCnrVV1d1UdNRR72+CsY0f6vu/x6pEevlBVX6mqS6rqIUN17ho56+VV9aOqWjUUWzc46zlDsQ9X1bq9eIoBAAAAAAAAAAAAAAAAAAAAAAAAYJ8xVPLQtqu713b3E5P8WpJnJ/njOXK/mOTMofuNSW4Yydk0qLe2u88Yil/U3WuTrE9yWVUdtkBfXx/kZjDk8tQkO2bp+77Hn4z08OQkT07y4yQfmuecjUn+X5LfHIn/c5LzF+gRAAAAAAAAAAAAAAAAAAAAAAAAACbKUEmSJN19a5KzkrykqmqWlE8l+aWqOqyqjkzy6CTTSzzja0nuTrJ6gdRtSTYMrtcl+UyS3Us86ydJXpXkZ6vqP42uV9UvJDkyyWsyM1xy2A1J7qiqX1vKmQAAAAAAAAAAAAAAAAAAAAAAAACwPxkqyU91981JViR56GzLST6R5LQk65NcN0vOlVU1PXhcOLpYVU9J8rXBAMv53JTkuKpanZmBj9tG1g8fOme6qjb8xxJJd+/JzIDIx82yfOag7qeS/GJVPWxk/Y2ZGTg5p6o6q6q2V9X2P9+6dYEPCQAAAAAAAAAAAAAAAAAAAAAAAADGa+WkG2BZ2ZbkZUlWJTknyXkj65u6e/ss+15RVb+d5LFJnrPIs67NzODHpyV58cjaru5eu8g6NUd8Y5L/0d33VtU1SZ6f5JL7Frv7k1WVqvqVuQp395YkW5Lkttvv6EX2AwAAAAAAAAAAAAAAAAAAAAAAAABjMTXpBjhwVNWJSfYkuXW29e7+XJKTkhzb3TctofRF3f3EJM9L8q6qetAi9lyV5PVJPt7d9y7hrJ+qqhWZ6fcfR+InJXlMko9X1S2ZGV65cZYSb0zymr05GwAAAAAAAAAAAAAAAAAAAAAAAAD2NUMlSZJU1XFJ3pHkku7ueVJfneS8vTmju69Lsj3JixaR+60k5yd5+96cVVWHJXlzkn/q7i+MLG9MckF3rxk8HpHkEVX1cyM9fCzJ6iRP3pseAAAAAAAAAAAAAAAAAAAAAAAAAGBfWjnpBpiow6tqOslhSXYnuSLJW+fb0N0fmWf5yqraNbje2d3PmiXndUneU1Xv7O57FzjrsgX6vs9Hu/vVQz38OMkDk3wiyfpZ9p+Z5NdHYh8YxP9uJP7GJB+ar08AAAAAAAAAAAAAAAAAAAAAAAAAmARDJQ9h3b1inrXrk1w/uN6aZOssOZuHrtfNUeeCkfvPJ/nFec7dPEd8zdD1rH3P1cPQ+pGDP0+cZe33h26vH4pfl6TmqwsAAAAAAAAAAAAAAAAAAAAAAAAAkzA16QYAAAAAAAAAAAAAAAAAAAAAAAAAAFi6lZNugENTVV2a5Bkj4Yu7+92T6AcAAAAAAAAAAAAAAAAAAAAAAAAAlhtDJZmI7j570j0AAAAAAAAAAAAAAAAAAAAAAAAAwHI2NekGAAAAAAAAAAAAAAAAAAAAAAAAAABYOkMlAQAAAAAAAAAAAAAAAAAAAAAAAACWIUMlAQAAAAAAAAAAAAAAAAAAAAAAAACWoZWTbgAAAAAAAAAAAAAAAAAAAAAAAABgrPbsmXQHAPvF1KQbAAAAAAAAAAAAAAAAAAAAAAAAAABg6QyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVBAAAAAAAAAAAAAAAAAAAAAAAAABYhgyVZEFVtaeqpqvqy1V1Q1WdU1VTg7V1VfXhwfXmquqqetbQ3ucOYmcM7q+vqq8O6k1X1dWD+AVVtWMQu7GqNi7Q09aquruqjhqKvW1w1rEjfd/3ePVQ7rFVdU9V/e5I3Vuq6pqh+zOqauv9ePoAAAAAAAAAAAAAAAAAAAAAAAAAYJ9YOekGWBZ2dffaJKmqhyZ5T5Kjk/zxLLlfTHJmkk8M7jcmuWEkZ1N3b59l70Xd/b+r6jFJPl9VV3f3PfP09fUk65P8xWDI5alJdszW9yyen+RvB/29Y2TtqVX1hO6+cZ6zAQAAAAAAAAAAAAAAAAAAAAAAAGCipibdAMtLd9+a5KwkL6mqmiXlU0l+qaoOq6ojkzw6yfQSz/hakruTrF4gdVuSDYPrdUk+k2T3Io/ZmOScJCdU1SNH1t6S5PxF1gEAAAAAAAAAAAAAAAAAAAAAAACAiTBUkiXr7puTrEjy0NmWk3wiyWlJ1ie5bpacK6tqevC4cHSxqp6S5GuDAZbzuSnJcVW1OjNDIreNrB8+dM50VW0Y1H9UkuO7+3NJ3pd/H0x5n/cleUpVPXq+w6vqrKraXlXb/3zr1gVaBQAAAAAAAAAAAAAAAAAAAAAAAIDxWjnpBjgobUvysiSrkpyT5LyR9U3dvX2Wfa+oqt9O8tgkz1nkWdcmOTPJ05K8eGRtV3evnWXPhswMjryv18uTvGVofU+SC5P8YZKPzHVwd29JsiVJbrv9jl5kvwAAAAAAAAAAAAAAAAAAAAAAAAAwFlOTboDlp6pOzMzgxVtnW+/uzyU5Kcmx3X3TEkpf1N1PTPK8JO+qqgctYs9VSV6f5OPdfe8iz9mYZHNV3ZLkuiRPrqrHjORckeS/JnnUImsCAAAAAAAAAAAAAAAAAAAAAAAAwH5lqCRLUlXHJXlHkku6u+dJfXWS8/bmjO6+Lsn2JC9aRO63kpyf5O2LqV1Vj01yZHef0N1runtNkjdnZtDkcN17klyU5BVL6x4AAAAAAAAAAAAAAAAAAAAAAAAA9o+Vk26AZeHwqppOcliS3UmuSPLW+TZ090fmWb6yqnYNrnd297NmyXldkvdU1Tu7+94Fzrpsgb7v89Eku5J8YCTvmiRXDc4c9q4kr5nvbAAAAAAAAAAAAAAAAAAAAAAAAACYFEMlWVB3r5hn7fok1w+utybZOkvO5qHrdXPUuWDk/vNJfnGeczfPEV8zdD1n3yN7vpDk8bPs/3GSRyymBgAAAAAAAAAAAAAAAAAAAAAAAADsb1OTbgAAAAAAAAAAAAAAAAAAAAAAAAAAgKVbOekGYD5VdWmSZ4yEL+7ud0+iHwAAAAAAAAAAAAAAAAAAAAAAAAA4UBgqyQGtu8+edA8AAAAAAAAAAAAAAAAAAAAAAAAAcCCamnQDAAAAAAAAAAAAAAAAAAAAAAAAAAAsnaGSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKGSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKGSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKGSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKGSAAAAAAAAAAAAAAAAAAAAAAAAAADL0MpJNwAAAAAAAAAAAAAAAAAAAAAAAAAwTt096RYA9oupSTfAwaWq9lTVdFV9uapuqKpzqmpqsLauqj48uN5cVV1Vzxra+9xB7IzB/fVV9dVBvemqunoQv6CqdgxiN1bVxgV62lpVd1fVUUOxtw3OOnZwf9fgzzWD+EuHci+pqs1je5IAAAAAAAAAAAAAAAAAAAAAAAAAYAwMlWTcdnX32u5+YpJfS/LsJH88R+4Xk5w5dL8xyQ0jOZsG9dZ29xlD8Yu6e22S9Ukuq6rDFujr64PcDIZcnppkxxy5tyb5vap6wAI1AQAAAAAAAAAAAAAAAAAAAAAAAGBiDJVkn+nuW5OcleQlVVWzpHwqyS9V1WFVdWSSRyeZXuIZX0tyd5LVC6RuS7JhcL0uyWeS7J4j97Ykf53kRfMVrKqzqmp7VW3/861bF9syAAAAAAAAAAAAAAAAAAAAAAAAAIzFykk3wMGtu2+uqhVJHjrbcpJPJDktyaok1yX5+ZGcK6tq1+D649197vBiVT0lydcGAyznc1OS/15Vq5NsTPIXSZ49T/6fJvlIVV0+V0J3b0myJUluu/2OXuB8AAAAAAAAAAAAAAAAAAAAAAAAABgrQyWZtG1JXpaZoZLnJDlvZH1Td2+fZd8rquq3kzw2yXMWeda1Sc5M8rQkL54vcTAM8++S/NYiawMAAAAAAAAAAAAAAAAAAAAAAADAfjU16QY4uFXViUn2JLl1tvXu/lySk5Ic2903LaH0Rd39xCTPS/KuqnrQIvZcleT1ST7e3fcuIv9NSf4gSS2hLwAAAAAAAAAAAAAAAAAAAAAAAADYLwyVZJ+pquOSvCPJJd3d86S+Osl5e3NGd1+XZHuSFy0i91tJzk/y9kXW/kqSG5M8Z296AwAAAAAAAAAAAAAAAAAAAAAAAIB9aeWkG+Cgc3hVTSc5LMnuJFckeet8G7r7I/MsX1lVuwbXO7v7WbPkvC7Je6rqnd197wJnXTbf+izemOQflrgHAAAAAPj/7Nx7nGVnVSf836ruzj3duZMAQoBAAnIJFxVRNCByGUFwRKGNSByYML6IToQoL97yYV4VJmAIEnEiSIOTcJkIgiigIBkRuTWxQyACCSQGAiEkJIGkO0lf1vtH7Z45llXVXZ1NTlfq+/186lN7P8+z17P2c06dOmefcxYAAAAAAAAAAAAAAAAAAPBdp6gko+ruVYv0XZjkwmF7Q5IN84w5ZWL7pAXinDFn/9NJjl9k3lMWaD92Yvug4feVSR480X5xkpmFYgMAAAAAAAAAAAAAAAAAAAAAAADAtCiWBwAAAAAAAAAAAAAAAAAAAAAAAACwDK2edgIwlqo6J8kPzWk+u7vfNI18AAAAAAAAAAAAAAAAAAAAAAAAAOC7SVFJ7jK6+4XTzgEAAAAAAAAAAAAAAAAAYKW49pbbctSB+047DQAAAACAFW1m2gkAAAAAAAAAAAAAAAAAAADLj4KSAAAAAADTp6gkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAypKgkd0hVba+qTVX1uaq6uKpeXFUzQ99JVfXeYfuUquqqesLEsc8Y2p457F9YVV8Y4m2qqguG9jOq6uqh7dKqWr+LnDZU1eaqOnii7TXDXEfMM/8JE22PGs5ln2H/flX15apaO86KAQAAAAAAAAAAAAAAAAAAAAAAAMA4Vk87AZa9Ld19YpJU1VFJzk+yNsnvzjP2kiTPTvLBYX99kovnjDm5uzfOc+xZ3f2qqrp/kk9X1QXdvXWRvC5P8vQk/3Mocvn4JFfPGbM+yT8Ov383Sbp7Y1X97yQvSfL7Sc5J8pvd/e1F5gIAAAAAAAAAAAAAAAAAAAAAAGBv0jumnQHAnWJm2glw19Hd1yY5NckvV1XNM+QjSb6/qtZU1UFJjkuyaYlzXJZkc5JDdzH0bUmeNWyflOSjSbbt7Bzm/+Ekz8tsoctJL0vyn6vq15Os7u63zjdBVZ1aVRurauNbNmxYymkAAAAAAAAAAAAAAAAAAAAAAAAAwB22etoJcNfS3V+uqlVJjpqvO8kHkzwpybok70lynzljzquqLcP233X36ZOdVfWIJJcNBSwX88UkP1lVhyZZn+R/JnnKRP/Tk7y/u79YVddX1SO7bLDwjQAAIABJREFU+9PDOdxYVa9I8sdJHrTIuZ6b5Nwk+eYNN/Uu8gEAAAAAAAAAAAAAAAAAAAAAAACAUc1MOwFWnLclefbw89Z5+k/u7hOHn8mCkqdV1eeSfCLJ7+3mXO8c5vmBJB+Z07d+yGVnTuvn9D8lyTeySFFJAAAAAAAAAAAAAAAAAAAAAAAAAJim1dNOgLuWqrpvku1Jrk3ywLn93f3JqnpIks3d/cWq2t3QZ3X3q6rqJ5O8saru19237uKYtyf5dJI3d/eOnXNV1WFJHp/kIVXVSVYl6ao6vbu7qp6aZF2SJyV5V1V9oLs3726iAAAAAAAAAAAAAAAAAAAAAAAAAHBnmJl2Atx1VNWRSf4kyeu6uxcZ+tIkL9uTObr7PUk2Jnnuboz91yS/meSP53Q9M8mfd/e9u/vY7v6eJFckeWxV7Z/kD5O8sLsvSfLuIQYAAAAAAAAAAAAAAAAAAAAAAAAA7FVWTzsBlr39q2pTkjVJtiX588wWZVxQd79vke7zqmrLsH1ddz9hnjEvT3J+Vf1pd+/YxVz/Y57m9UleOaftL4b2Jyd5V3dfOrSfkeTiqtrQ3ZctNhcAAAAAAAAAAAAAAAAAAAAAAAAA3JkUleQO6e5Vi/RdmOTCYXtDkg3zjDllYvukBeKcMWf/00mOX2TeUxZoP3bYfNw8fa9d4JjvJLnvQnMBAAAAAAAAAAAAAAAAAAAAAAAAwLTMTDsBAAAAAAAAAAAAAAAAAAAAAAAAAACWbvW0E4A9VVXnJPmhOc1nd/ebppEPAAAAAAAAAAAAAAAAAAAAAAAAANyZFJVk2eruF047BwAAAAAAAAAAAAAAAAAAAAAAAACYluruaecAdwX+kAAAAAAAAAAAAAAAAAAAAAAA9kxNOwHgrufy816vNhSwR447+ZeW1XOTmWknAAAAAAAAAAAAAAAAAAAAAAAAAADA0ikqCQAAAAAAAAAAAAAAAAAAAAAAAACwDCkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDCkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDCkqCQAAAAAAAAAAAAAAAAAAAAAAAACwDCkqyR1WVduralNVfa6qLq6qF1fVzNB3UlW9d9g+paq6qp4wcewzhrZnDvsXVtUXhnibquqCof2Mqrp6aLu0qtbvIqcNVXXFkM8Xq+otVXXPif4rq+qIOfnv/Dl2yPumibYPjr9yAAAAAAAAAAAAAAAAAAAAAAAAALDnVk87Ae4StnT3iUlSVUclOT/J2iS/O8/YS5I8O8nOIo3rk1w8Z8zJ3b1xnmPP6u5XVdX9k3y6qi7o7q2L5HV6d19QVZXkvyb5+6p6cHffvlD+O1XVsUk+0t1PXSQ+AAAAAAAAAAAAAAAAAAAAAAAAAEzNzLQT4K6lu69NcmqSXx6KOc71kSTfX1VrquqgJMcl2bTEOS5LsjnJobs5vrv7rCTXJHnKUuYCAAAAAAAAAAAAAAAAAAAAAAAAgL2VopKMrru/nGRVkqPm607ywSRPSvL0JO+ZZ8x5VbVp+DlzbmdVPSLJZUMBy6W4KMkJ87TvPzHfuybaHzvR/pvz5HFqVW2sqo3nnnvuElMBAAAAAAAAAAAAAAAAAAAAAAAAgDtm9bQTYEV6W5JfSbIuyYuTvGxO/8ndvXGe406rql9M8oAkT9uDeWuB9i3dfeI87R/p7qcuFKy7z02ys5pk70E+AAAAAAAAAAAAAAAAAAAAAAAAALDHZqadAHc9VXXfJNuTXDtff3d/MslDkhzR3V9cQuizuvt7k/x0kjdW1X5LTO3hSf5liccAAAAAAAAAAAAAAAAAAAAAAAAAwF5JUUlGVVVHJvmTJK/r7l5k6EuTvGxP5uju9yTZmOS5u5lTVdWvJDkmyfv3ZE4AAAAAAAAAAAAAAAAAAAAAAAAA2NusnnYC3CXsX1WbkqxJsi3Jnyf5w8UO6O73LdJ9XlVtGbav6+4nzDPm5UnOr6o/7e4dC8Q5s6p+O8kBST6e5HHdfftieQEAAAAAAAAAAAAAAAAAAAAAAADAclHdPe0c4K7AHxIAAAAAAAAAAAAAAAAAAAAAwJ6paScA3PVcft7r1YYC9shxJ//SsnpuMjPtBAAAAAAAAAAAAAAAAAAAAAAAAAAAWLrV004A7oiqOifJD81pPru73zSNfAAAAAAAAAAAAAAAAAAAAAAAAADgzqKoJMtad79w2jkAAAAAAAAAAAAAAAAAAAAAAAAAwDQoKgkjuOGqK0aJs2Pr7aPESZKZNfuMFmv1IYePFmtH1XixerRQo5kZ7/Sy9ZqvjBZrn8OOGi3WjdtHC7Ui3OuoI0aJc8O3vzNKnJXi0LUHjxLn69d9a5Q4K8kxRxx2h2Ncde11I2Sysoz1WPPVa68fJc5Kcc+jxnmOdOPXrx4lzkpxyDH3GCXOjdd8bZQ4K8UhR999lDgf+/yXRomzkvzgCfe7wzHc35durPv8jV8b73XdSnDI3b9nlDjfuenGUeKsFAevO2SUOGNdH1spDr3XfUaJc9Hl/zpKnJXiEcfde5Q4Gy+7cpQ4K8mj7n/sHY7htdPSjfX66bobbxolzkpxxCHrRolzw1euHCXOSnHo9xw7ShzXhJdmjOvBSXL9ly8bJc5Kcfh97z9KnCuv+eYocVaSY48+8g7H8Jp16cZ63eoxfmnGeoy/+pvWfSnuceQ46/7tb3nPbynWHjbOe37f+fa3R4mzkhy8du0djmHdl26MdU/8b12qsf63uka2NGNdH/vmDa6PLcWRh450fcxnJpfEZyanZ4zHeNeDl26sa8Iea5ZmrMca7z0tzVjvPV3/pS+MEmelOPx+x48Sx2P80oz1+H7SGa8bJU6SPPGhDxgt1i894QdHi5WbxrsG2Dt2jBJn68HjvPZNkme99n+OFuvHHzLOe2tJ8v/8+GNGi9U37J3v1W1fO8710l/8H+8YJU6S/Nj3HjdarOc95iGjxdp645h/h+N9YbOPGOd6yKlvuGCUOEnymAeM87m9JPn5H3rEaLEO2D7e97m7x3ksTZKt+x44Spxt28e7X435Xe5bbhtv3VeN+YXuER114L7TTuHf2VarRot17U03jxZr9aqZ0WKNaazbcMett44SJ0m+sXW0UDly7TiPM0lyzY3jXVs5usZ7fFi9bpznpju2bB4lTpLM7LffaLFu3THe49/M9V8fLdb2zeM9Phz10EeNFgsAYKXZO19pAQAAAAAAAAAAAAAAAAAAAAAAAACwKEUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAACWoTulqGRVba+qTVV1cVVdVFWPGdqPrarPzjP+nlX17qq6rKq+VFVnV9U+E/0/XFWfrKrPDz+nTvSdUVVXD/NdVlXvrKoHTfRfWFVfGHL5aFUdP0/7p6rqxIljrqyqS4aYm6rqtUP7o6vqE0Pbv1TVGUP73arqvUOsS6vqb4b2k6rqvXPOdUNVPXNPc1hgvTdU1RVDnC9W1Vuq6p5zYh0xsf+MquqqOmGibaaqXltVnx3m/VRV3WfifK+qqm9O5HNsVa0b5rp8uN3eUlXrdnFbT57/mqp6xXC7XVRVH6uqpyxynldW1UfmtG3aOc+w3jdN5Lipqp6wi/M+dmh70UTb66rqlIXyAAAAAAAAAAAAAAAAAAAAAAAAAIBpuFOKSibZ0t0ndvfDkvy/Sf5goYFVVUnemeQvu/v+SR6Q5KAkvzf0H53k/CT/pbtPSPLDSV5QVT8xEeasYb77J3l7kr+vqiMn+k8ecnlzkjPnaf/jOe1J8rgh5ond/StD25uTnNrdJyZ5cJJ3DO0vT/J33f2w7n5Qkpfueon2OIeFnD7EOT7JP2d2DfZZYOz6JP84/N7pWUnunuSh3f2QJD+V5Mbu/oHhfH8nydsn8rkyyRuTfLm7j+vu+yW5IskbdvfEk/y3JMckeXB3PyLJM5IcvItjDq6q70mSqnrgPP0fmcjxxO7+4C7OO0muTfKri6wXAAAAAAAAAAAAAAAAAAAAAAAAAEzdnVVUctLaJDcs0v/4JLd295uSpLu3JzktyX+qqgOSvDDJhu6+aOi/LsmvZ4HCjd399iR/m+Tn5un+hyTHzdP+sST32I1zOSrJ13fm2d2XDu3HJPnqRA6f2Y1Ye5rDonrWWUmuSfKUuf1VdVBmC3M+L8mzJ7qOSfL17t4xxPlqdy94u1XVcUkemdnCkDu9PMmjqup+u8pzuG3/c5IXdfdtw5zf6O53LH5k3pHZApjJbHHIt+5qrmG+hc47Sb6Z5ENJnrs7sQAAAAAAAAAAAAAAAAAAAAAAAACgqg6rqr+rqsuG34cuMG57VW0aft4z0X6fqvpEVV1eVW+vqn12NeedVVRy/yHZzyd5Q/5t4cG5vjfJpycbuvvbSa7KbAHIf9efZOPQvpCLkpwwT/vTklwyT/uTk/zlnLYPTyz6aUPbWUm+UFXvqqoXVNV+Q/s5Sd5YVR+uqt+sqrsvkttCdjeH3bXQGjw9yfu7+4tJrq+qRw7t70jytGGuV1fVw3cR/0FJNg1FQJP8n4Kgm7L4bbPTcUmuGm7rpfiLJP9x2H5akr+a0//YiTXbNFHgcqHz3umVSV5SVasWmriqTq2qjVW1ccP5u1XLEgAAAAAAAAAAAAAAAAAAAAAAAIC7rpcm+VB33z/Jh4b9+Wzp7hOHn5+caH9lkrO6+7gkNyR53q4mXH1HM95NW7r7xCSpqh9M8paqevCdNHeS1Jz986pqS5Irk7xoTvs+SQ5KcuKcYx7X3ddNNnT3y6vqvCRPTPJzSdYnOam7P1BV981sYcinJPnn4Xx7gfwm25eUwxLMXYOd1ic5e9h+27D/6e7+alUdn+Txw8+HqupnuvtDezj/d8v1SW6oqmcn+Zckm+f0f6S7nzrPcfOe987O7v5yVX0is7frvLr73CTnJskNV12x0G0LAAAAAAAAAAAAAAAAAAAAAAAAwMrw9CQnDdtvTnJhkt/YnQOrqjJb+29nDbw3JzkjyesXO25m6TneMd39sSRHJDlygSGXJnnkZENVrU1yrySXz9c/7H9ukWkfntmCgzudPFTkfEZ3f2WyPcl9M7t4f7SLU0mSdPeXuvv1SX4sycOq6vCh/VvdfX53PyfJp5L8SGYLIB46J8RhSSYLRS45h900dw1SVYdl9k7zhqq6MsnpSX52uDOlu2/r7vd19+lJfj/JMxaJf2mSE6vq/9ynhu0Th75duTzJvYbbeqnenuScJG/dncG7Ou8Jv5/ZP8CFCnICAAAAAAAAAAAAAAAAAAAAAAAAwE536+6vD9vXJLnbAuP2q6qNVfXxqtpZ5+/wJDd297Zh/6tJ7rGrCVffoXT3QFWdkGRVZgssHjDPkA8leUVV/UJ3v6WqViV5dZIN3b25qs5J8omqemd3bxqKOL4yycsXmO+nkzwxyYt3J7/u7qr67SRfqqoTuvvzi5zLTyT5m+7uJPdPsj3JjVX1+CQfH/I9OMn9klyV5LIkd6+qB3b3v1TVvZM8LMmmPc1hV4ZCiS9KckyS98/pfmaSP+/uF0yM/99JHltVNye5pru/NhSHfGiSzyw0T3dfXlX/nOS38n9vi99KctHQd+xieQ5r9cYkZ1fVC7r79qo6MslJ3f2/dnGa7xrO7wNJ7r6Lscki553Z22lnTp+vqkuTPC2zhUEBAAAAAAAAAAAAAAAAAAAAAABYBnrHjmmnACxTVXVqklMnms7t7nMn+j+Y5Oh5Dv3NyZ2hrmAvMM29u/vqqrpvkr+vqkuS3LQn+d5ZRSX3r6qdhRMryXO7e/tsvcMcX1VfnRh7WpKfSvLHQ2HFmSR/k+RlSdLdX6+qn0/yp0PBxkrymu7+q8kYw5gDk3w2yeO7+5u7m2x3b6mqVyc5PcnzhuYPV9X2Yfsz3f0LSZ6T5Kyq2pxkW5KTh/N6ZJLXVdW2If83dPenkmTI601VtV+SrUme393/7sZbQg4LOXNYvwOSfDzJ47r79jlj1me2IOekvxja353ZNd53aP9kktctMl+GPP+oqr407H9sIvdk/tt60m8l+f+SXFpVtya5Jcnv7GLOdPd3dp7HcJ+a9NiJ+16G+Iud99z230vyz7vKAQAAAAAAAAAAAAAAAAAAAAAAAIDlbyggee4i/U9YqK+qvlFVxwx1E49Jcu0CMa4efn+5qi5M8vDM1sQ7pKpWd/e2JPdMcvWu8r1Tikp296oF2q9MsmaBw562SLx/SPJ9C/SdkeSMRY49aXfau/vVE9vHLnDMsxdoPzPJmQv0fTTJo8fKYYE4p+yif2esx83T99qJ3fcvEmNDkg1z2m5I8vMLjL8y89/W/2tizO1Jfn342aX51mSY58HD9oVJ1s1z6AXzHDd53g+eaL84s4VBAQAAAAAAAAAAAAAAAAAAAAAAAGAx70ny3CSvGH6/e+6Aqjo0yebuvq2qjkjyQ0n+e3d3VX04yTOTvG2h4+dSLA8AAAAAAAAAAAAAAAAAAAAAAAAA4I57RZIfr6rLkjxh2E9VPaqq3jCMeWCSjVV1cZIPJ3lFd1869P1Gkl+rqsuTHJ7kjbuacPXIJ8CdqKrOyWxV0Ulnd/ebppHPd0tVfSLJvnOan9Pdl0wjHwAAAAAAAAAAAAAAAAAAAAAAAACYq7uvT/Jj87RvTPL8YfufkjxkgeO/nOT7lzKnopLLWHe/cNo53Bm6+wemnQMAAAAAAAAAAAAAAAAAAAAAAAAA7G0UlYQRfH7zjlHiHHvEkaPESZLbtm0fLdaOW24dLdaRB+43WqyrvvXt0WLda/9xHg6v2rJtlDhJcq+1h40Wa/uafUeLtfW2zaPFgr3djp52BivT/mvWTDuFFauqpp3CitTbtk47hRXptn0OmHYKK9KxRxw67RRWpK/cOs5r1pXkkJHibN/i9dM0bPv2jdNOYXlZN849ftUBB44Sh6U57rCDpp3CinT8UWP9p2ApPM5Mzz7bvW6dhlUHeIyfhgO23z7tFFakNetcL5iGdQeM974tLAcH7eMjUqwctdr7rdNwmw8YLNnBI8TorZ7DT4vXT9Ox6sAx/nJYqn1Wz0w7hRWpbhnvM8IrwtpxHh9mZtzfp6F3+FzHtKza5jnNNOxbXj9Nw5aDj5h2CivSzCGHTzuFFemJD33AaLH+9jNfHC3Wi57w6NFibVs33n1rTY/zHcQxr0o++WHHjxbr/Rd/YbRYv/zEx4wWK4eN9z3SmR3jfY909dbbRonzw8cfO0qcJHn/Z8a7DZ//o48cLdbMkXcfLdbqjPf8aFvG+V7QfzjxhFHiJMm7Nn52tFgveOzDR4tVa8Z7z3zMa9X7zYxzf9hx+3g5zew33lodPDPi+7Y93uvp3j5mrHEel7ff8p1R4iRJrVo1Wqxj9h/v++pjGvM2HMuO27aMFuuo1eP97Wy/7prRYq09eMTXPLfufddpbqrx1n3V7ePdR792w02jxbrnYUeNFmvmsKNHiwUAwJ7zrj8AAAAAAAAAAAAAAAAAAAAAAAAAwDKkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwDKkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwDKkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwDKkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwDKkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwDK0VxSVrKrtVbWpqi6uqouq6jFD+7FV9dl5xt+zqt5dVZdV1Zeq6uyq2mei/4er6pNV9fnh59SJvjOq6uphvsuq6p1V9aCJ/gur6gtDLh+tquPnaf9UVZ04ccyVVXXJEHNTVb12aH90VX1iaPuXqjpjaL9bVb13iHVpVf3N0H5SVb13zrluqKpn7mkOC6z3QnmdUlWvG7aPH+bbOebcqnrSRPybh1w2VdVbdnPdXzJPLjdPbD+gqv5muF0uqqp3VNXdFjiHk6qqq+r5E20nDm0vmVi7KyZy/qc5Mf6yqj4+p+2MqtpcVUfNlyMAAAAAAAAAAAAAAAAAAAAAAAAA7C1WTzuBwZbuPjFJqupJSf4gyY/ON7CqKsk7k7y+u59eVauSnJvk95KcXlVHJzk/yTO6+6KqOiLJB6rq6u7+6yHMWd39qiHes5L8fVU9pLu/OfSf3N0bh6KIZyb5yTntvzi0//hEao/r7uvmpPvmJD/b3RcPeR4/tL88yd9199lDDg9dwlotNYf5LJTXpNdmdp3ePeT4kO6+JMkHhv0Lk7ykuzcO+7uz7guqqv2S/HWSX+vuvxraTkpyZJJvLHDYZ5P8bJI3DPvrk1w8Z8zp3X3BPPMdkuSRSW6uqvt295cnuq9L8uIkv7GrvAEAAAAAAAAAAAAAAAAAAAAAAABgWmamncA81ia5YZH+xye5tbvflCTdvT3JaUn+U1UdkOSFSTZ090VD/3VJfj3JS+cL1t1vT/K3SX5unu5/SHLcPO0fS3KP3TiXo5J8fWee3X3p0H5Mkq9O5PCZ3Yi1pzksJa9Jc3O8ZBcxl7Tu8/i5JB/bWVByiHFhd392kWP+Ncl+VXW3odjok5O8bzfn+49J/irJ25I8e07fnyV5VlUdtpuxAAAAAAAAAAAAAAAAAAAAAAAAAOBOt7cUldy/qjZV1eeTvCHJf1tk7Pcm+fRkQ3d/O8lVmS0A+e/6k2wc2hdyUZIT5ml/WpL5iik+Oclfzmn78HAOm6rqtKHtrCRfqKp3VdULqmq/of2cJG+sqg9X1W9W1d0XyW0hu5vDfBbKa+6Yv6+q91XVaVV1yC7y2ZN1n/TgeY7fHRck+Zkkj8ns7XjbnP4zJ9bkvIn29UneOvysn3PMzZktLPmri01cVadW1caq2viX73jbHqQOAAAAAAAAAAAAAAAAAAAAAAAAAHtu9bQTGGzp7hOTpKp+MMlbqurBd+L8NWf/vKrakuTKJC+a075PkoOSnDjnmMd193WTDd398qGQ4ROT/Fxmixee1N0fqKr7ZrYw5FOS/PNwvr1AfpPtS8ph3mAL5DVnzJuq6gNDjk9P8oKqelh3zy3aOG3vSPL2zBYFfWtmi0tOOr27L5hsqKq7Jbl/kn/s7q6qrVX14O7+7MSw1ybZVFWvWmji7j43yblJ8rHPf2mh2w4AAAAAAAAAAAAAAAAAAAAAAAAAvitmpp3AXN39sSRHJDlygSGXJnnkZENVrU1yrySXz9c/7H9ukWkfnuRfJvZP7u4Tu/sZ3f2VyfYk903y5iR/tItTSZJ095e6+/VJfizJw6rq8KH9W919fnc/J8mnkvxIkuuTHDonxGFJJgtFLjmHpeQ1Z8zXuvvPuvvpSbYlWazQ556s+6TPzXP8LnX3NUm2JvnxJB/azcN+NrPrfEVVXZnk2MwW1pyMe2OS85O8cKk5AQAAAAAAAAAAAAAAAAAAAAAAAMCdYa8rKllVJyRZldkCi/P5UJIDquoXhvGrkrw6yYbu3pzknCSnVNWJQ//hSV6Z5L8vMN9PJ3likrfuTn7d3Ul+O8mjh1wXO5efqKoadu+fZHuSG6vq8VV1wDDm4CT3S3JVksuS3L2qHjj03TvJw5Js2tMclpLXnDFPrqo1w/bRSQ5PcvUiYZe07vM4P8ljquonJnL4kaparJDlTr+T5De6e/tuzrU+yZO7+9juPjazxSyfPc+4P0zygiSrdzMuAAAAAAAAAAAAAAAAAAAAAAAAANxp9pZieftX1c7CiZXkud29fah7eHxVfXVi7GlJfirJH1fVb2e2MObfJHlZknT316vq55P86VCwsZK8prv/ajLGMObAJJ9N8vju/ubuJtvdW6rq1UlOT/K8ofnDVbWzqOFnuvsXkjwnyVlVtTnJtiQnD+f1yCSvq6ptQ/5v6O5PJcmQ15uqar8kW5M8v7tvugM5zGehvCbHPDHJ2VV167B/endfs8ia7M66/1ZV/deJY+4553yemuQ1VfWa4dw/k+RXF5pz4th/WqT7zKr6rYn9n01y7yQfnzj+iqq6qap+YE7c66rqXZm9zwEAAAAAAAAAAAAAAAAAAAAAAADAXmWvKCrZ3asWaL8yyZoFDnvaIvH+Icn3LdB3RpIzFjn2pN1p7+5XT2wfu8Axz16g/cwkZy7Q99Ekjx4rhyXmtSHJhmH715L82iIxTpqnbcnr3t0HTWx/PsmTF8783xx3YZILF5hn5/YpCxx+j3mOe8Sw+Yk57YuuAwAAAAAAAAAAAAAAAAAAAAAAAABMy15RVBIAAAAAAAAAAAAAAAAAAAAAAABgNDu2TzsDgDuFopJ3YVV1TpIfmtN8dne/aRr57ImqelKSV85pvqK7f2oa+QAAAAAAAAAAAAAAAAAAAAAAAADA3kJRybuw7n7htHO4o7r7A0k+MO08AAAAAAAAAAAAAAAAAAAAAAAAAGBvo6gkjOB+W28aJc72HDpKnCQ5bE2NFmvrTTeOFmvbts2jxbr3wQeNFqvW7DNKnHve/q1R4iTJzH7jnd+OG68bLdbhq/3rmIqbrp92BsvL2oNHCXNwbRslDkuz+uYbpp3C8nPoulHC7PcdjzVLcuRho4T5Zu03SpyVYqxnzLdt8xg/DVu2WvdpuNf+nsNPy437HzLtFJaVw0eKc02P8xp/pRjrf2tv3zFSJJbims1bp53CsrJ2nKfw+ebm28cJtIIcPMLL1h233nrHg6w041wuSLkmPBWX33DLtFNYVh5x+BGjxJnZ/4BR4rA0X/zWzdNOYVl51Ej3d6bjKzd6fF+qB60b5/rKDbd6Hr8UB68dKc6M6wXTcP3m26adwrIy1v29vnXtOIFWkkPu+AvXHVs9vk/LrWu8z70UI12myU23uia8FGM9xt++zXOaabh2+6ppp7CsjPXO9H5bXYufhtUHjfSAxZLVKo8103DrjvHKiF6oAAAgAElEQVS+67ISjPOp+OSALeN872nlGOeTTDfc4n/rUqw7eJx7/C894QdHiZMkL3rCo0eL9bQ/fMtosV773KePFuuGW7aMEufhdx/rE4DJC35svHV/4eO/b7RYT3v1m0eL9UenPGO0WN+6ebzvaz786HFeXfzij4637mPeH551zvmjxfr9Zz1ltFg3bR7v/8Uj7nX0KHGe/f3fO0qcJHnWI44fLdaz/8cFo8V65fqfGC3WrbePd93uAevGuRbVO7aPEidJtn17vO+YZ914/y9W93jnuGPE776P9YqnVq8ZKVKSHu8a5/Yt463VqgPHesWT9F74PbFrsu9osQ7ZZ7z3ZQ4acd1v3zrefev2A8f7/s3MSPfTA2/5zihxkmRmzXh/08cfduBosXrf8fKa6R4tFgAAe25m2gkAAAAAAAAAAAAAAAAAAAAAAAAAALB0ikoCAAAAAAAAAAAAAAAAAAAAAAAAACxDikoCAAAAAAAAAAAAAAAAAAAAAAAAACxDikoCAAAAAAAAAAAAAAAAAAAAAAAAACxDikoCAAAAAAAAAAAAAAAAAAAAAAAAACxDikoCAAAAAAAAAAAAAAAAAAAAAAAAACxDikouI1V185z9U6rqdcP2GVV1dVVtmvg5ZGLsa4b+mTnHf3MY+/mqOq2qnjRx/M1V9YVh+y0L5HRSVd00EeNVc/qPqKqtVfVfhv1zhrGXVtWWibmeWVUbquqKibZ/WmQtTqmqrqonTLQ9Y2h75rB/4UT+m6rqgjkxNlXV2+a0bRjWad+J/K9cKA8AAAAAAAAAAAAAAAAAAAAAAAAAmJbV006AUZ3V3a+a2zgUkvypJF9J8qNJPjzR/fbu/uWqOjzJF5I8vLtPHI67MMlLunvjLub9SHc/tar2T/LPVfWu7v7o0PczST6eZH2SP+nuFw6xj03y3p1zDW1PTXJ6d/+b4o+LuCTJs5N8cNhfn+TiOWNOni//qnpgklVJHltVB3b3LRPd25P8pySv3808AAAAAAAAAAAAAAAAAAAAAAAAAOBONzPtBLhTnJTkc5ktkrh+vgHdfX2Sy5Mcs6eTdPeWJJuS3GOieX2SFye5R1Xdc09jL+AjSb6/qtZU1UFJjhvm3x3rk/x5kr9N8vQ5fa9JclpVKboKAAAAAAAAAAAAAAAAAAAAAAAAwF5LUcnlZf+q2rTzJ8nL5/SfNtH/4Yn29UnemuRdSX6iqtbMDVxV90qyX5LP7GlyVXVokvsn+Ydh/3uSHNPdn0zyjiTP2o0wZ06cw3m7GNtJPpjkSZktDPmeecacNxHvzIn2ZyV5W2bXZW6hzauS/GOS5yw2eVWdWlUbq2rjWy545y5SBQAAAAAAAAAAAAAAAAAAAAAAAIBxrZ52AizJlu4+cedOVZ2S5FET/Wd196smD6iqfZL8hyS/1t3fqapPZLYI43uHIc+qqh9JckKSX+7uW/cgr8dW1cWZLSj5mu6+ZmfszBaTTGYLOP5ZklfvItbp3X3BEuZ+W5JfSbIuyYuTvGxO/8ndvXGyoaoeleS67r6qqq5O8mdVdVh3f2ti2B8keXeSv15o4u4+N8m5SXLtJRf1EnIGAAAAAAAAAAAAAAAAAAAAAAAAgDtsZtoJ8F33pCSHJLmkqq5M8sNJ1k/0v727H5rkMUleUVVH78EcH+nuhyX53iTPq6qdhS/XJzllmPc9SR5aVfffs9OYX3d/MslDkhzR3V/czcPWJzlhyOtLSdYm+ek5cS9LsinJz46XLQAAAAAAAAAAAAAAAAAAAAAAAACMR1HJu771SZ7f3cd297FJ7pPkx6vqgMlB3b0xyZ8n+dU9nai7r0jyiiS/UVUPSHJQd99jYu4/yL8taDmWlyZ52e4MrKqZzBaKfMhEXk9fIK/fS/KSsZIEAAAAAAAAAAAAAAAAAAAAAAAAgDEpKnnXclpVbZr4eVCSJyf5650DuvuWJP+Y5GnzHP/KJL9YVQffgRz+JMmPZLZI47vm9P1Fdl1U8sw557DPribs7vd194cX6D5vItYHkzw2ydXd/bWJMf+Q5EFVdcycuJ9LctGu5gcAAAAAAAAAAAAAAAAAAAAAAACAaVg97QTYfd190Jz9DUk2DNtnJDljnsMOmyfOf5zY3TDR/rUkR0/sn7QbOV2Y5MKJ/S1J7rHA2M8keeCwfWWSB8/pP2VX802M3ZCJ3OeLsUj+j55zzPb83/M+ZU7f5FoBAAAAAAAAAAAAAAAAAAAAAAAAwF5jZtoJAAAAAAAAAAAAAAAAAAAAAAAAAACwdKunnQDLQ1U9Kckr5zRf0d0/9V2e9xeT/Oqc5o929wu/m/MCAAAAAAAAAAAAAAAAAAAAAAAAwN5OUUl2S3d/IMkHpjDvm5K86c6eFwAAAAAAAAAAAAAAAAAAAAAAgOWru6edAsCdQlFJGMHNR9xznEBbt40TJ8mBa0YLlTWHHDZarO2r9xkt1pXX3zharPscNs7D4S37HjxKnCTZ/J1bR4t1t333Hy3Wjv0PHC0Wu+/W/ddOO4UV6RZPlZZslHvqusPHiMIeWH3geP/H2H2HHjje/2l237r99512CivS4TM7pp3CinTzzHivw1aKdSPFOWg/jzXTsM/qVdNOYUVyvWA6jj5gxIuA7DbPaaajVrtOMy3bt2yedgrLy7pDRglz2EEHjBKHpdm++eZpp7C8rB3nvYu1++83ShyWpjZ/Z9opLD9r7/g19KPWHTRCIuyJtdu2TDuFFan3cX1sGm7ftn3aKaxIWw4a7/NV7L6ZNd4DAb779t2xddoprEjrDnC9YBp6h+eS07B9jddO07JjxucLpmHf7bdNO4UV6art3m9dirFe5XtOMyU3XT9aqG0jfrfhtc99+mixfuXN7x4t1rnPf+YocW6/9mujxEmSVSN+r2HM2/CPTnnGaLFetOEvR4v1xlN/ZrRYt1/3jVHi7H/kMaPESZJbbh/vs1ovf+aTRov10re9b7RYZz/nJ0eLlR5nvW4b8W96n8PvNlqs1zxnvMfS089/72ixzv6F8fK67Rv/Okqcmf3H++xRrRrxs6rXXTNaqNsOO2q0WGtqZrRYO24d5/N2224Z73MdtZe+/l29brz312rreNdxt4+09nfr8XKa2TpeEazOeH/T23eMd9/ab58R76cjLf2tB4/3XPKAfUdc99EiJV//1rdHi1VVo8V64EifTeT/Z+fO4y0rqzvh/1ZVMVQxg4iACoKIA0oppjVGE5wi6cQ4xAnt2CSmMd0aDUZi0mpeknQGY2xbokle2ihiK0IccEiUJCpvNFEjklIQNUrAKaggIhYUQ1Wt94+7yxyP9966t9hwqL7f7+dzPrX38zx7PWs/+9S99+xzzgIAVqLxXuECAAAAAAAAAAAAAAAAAAAAAAAAAHC7UVQSAAAAAAAAAAAAAAAAAAAAAAAAAGAnpKgkAAAAAAAAAAAAAAAAAAAAAAAAAMBOSFFJAAAAAAAAAAAAAAAAAAAAAAAAAICdkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAA7IUUlAQAAAAAAAAAAAAAAAAAAAAAAAAB2QopKLkFVbamqDVV1SVW9t6r2HdoPr6pNQ9+2x7OHvl+sqour6jPDcU8Y2s+sqsuHsRdV1Y9OtD9l2L6gqr5QVZ+uqk9W1fqpfP5XVX29qlZV1f0n5r5mIvbfDWPvV1UfGuJ9sapeXlU19J1UVVcN4z9fVadU1e7D9v0n5ju1qv7fBdZmcg0uraqzqmqXif41wxx/OOy/dCLfLRPbL6iq04bzmlzPfReY9/iq6qr6pYm29UPbi+dZ6w1V9Y9TMc6rqo9PtZ1WVTdU1Z0n2jbO/8wAAAAAAAAAAAAAAAAAAAAAAAAAgNlRVHJpNnX3+u4+Jsk1SZ430XfZ0LftcVZV3TXJS5M8vLsfkOShST4zccyp3b0+yW8kmbdYY5JndfexSf40ySu3NVbVqiRPSvLVJD/R3RdvmzvJe7bF7u7HVNXaoe0Pu/voJMcmeViS/zYxzznDsT825Hxgkl9N8qc159AkvzzkupDLhhj3T3LXJE+b6Htskn9J8tSqqu7+vYl8N02s2+nD+FdPree1i8x7ydRcJyb59NSYUydiPWxiHfdNclySfarqiKljrk7ya4vMCwAAAAAAAAAAAAAAAAAAAAAAAAAzp6jk8n0syaHbGXPnJN9LsjFJuntjd18+z7i/T3LPZc53fJLPJvmzzBVRXMwzk/xDd//NkMcNSZ6feQpEdve3k3wpycHd/YEkVyZ5dpJXJzmtu7+znbnS3VuS/NNUvicmeU2SryT50e3FWKYvJ9m9qg6qqkpyQpL3L/HYJyd5b5K3JXnGVN8bkjy9qvZfLEBVnVxVF1bVhWf/n7OWmToAAAAAAAAAAAAAAAAAAAAAAAAA3DqKSi5DVa1O8ugk75loPrKqNkw8HpHk00m+meTyqnpjVT1+gZCPT3LxdqY9Icl5E/snJjk7ybuS/HRV7bLIsfdL8qnJhu6+LMmeVbX31LndPcnuST4zNP1qkt9LcmB3v3k7OW6LsXuShyT5wMT+YzJXvPHsbL8IZpKcMrGWH17C+LcneWqShyW5KMlNU/2vnIj3lon2bes4X14bM1dY8oWLTdzdZ3T3g7v7wSf+p2cvIVUAAAAAAAAAAAAAAAAAAAAAAAAAGM+aWSewk1hbVRuSHJrkc0n+dqLvsu5eP31AVZ2Q5EcyV4Ty1VV1XHefNnS/sqpeluSqJM9ZYM63VNWuSfZMsn6IuWuS/5jkRd39var6RJLHJXnfrTi3p1fVjye5d5Lnd/eNSdLd/1ZVH1pi7COH9blHkr/q7m2FKX8myYe7e1NVvSPJy6vqV7t7yyKxXt3df7yM/M9Ncs6Q/9mZKy456dTufvtkQ1UdlOSoJB/t7q6qW6rqmO6+ZGLY6Uk2VNVycgEAAAAAAAAAAAAAAAAAAAAAAACA282qWSewk9g0FI48LEkled72Dug5/9Tdf5DkGUl+bqL71O5e392PnSpkOOlZSY5I8qYkfzK0PS7Jvkkurqorkjw8yYmLpHFpkuMmG6rqiCQbu/u6oemc7n5A5oox/mFV3WVi+NbhsT3bCmsemeS4qvrZof3EJI8Zcv1UkgOSPGoJ8Zasu7+R5JYkj03ywSUe9rQk+yW5fMjt8EytY3dfm+StWcK1BgAAAAAAAAAAAAAAAAAAAAAAAIBZUFRyGbr7hiQvSPJrVbVmoXFVdUhVPWiiaX2SL+/AfJ3k5UkeWlX3zlzhw1/q7sO7+/Ak90jy2Kpat0CItyR5eFU9ZshrbZLTk/zRPHNdmOTNSV643DwnYlyd5DeS/GZV7Z3kEUnuPpHv87J4Ecwd9VtJXtLdW5Y4/sQkJ0zkdVzmCn9O+59JnptkwWsNAAAAAAAAAAAAAAAAAAAAAAAAALOiqOQydfc/J/lM/r044pFVtWHi8YIkuyT546r6fFVtSPL07GCxxu7elORVSV6S5IQkfzXRd32SjyZ5/CLHPiHJy6rqC0kuTvLJJK9dYLpXJPmFqtprR3IdnJdkXZJTknyou2+a6Ht3ksdX1W6LHH/K1Hoevr0Ju/sfu/u8BbpfORXvXkkOS/LxieMvT/LdqnrIVNyrk7wryWL5AgAAAAAAAAAAAAAAAAAAAAAAAMBMrJl1AjuD7t5zan+yiOPaBQ571AKxTtpee3cfP9X3qkVye/Jisbv74iTHT7cPfWcmOXNi/9+S3GV7uU7FuCLJMRP7neTYBcZek+TAif3pdT0tyWnbm3MYe0GSC+ZpP21i+6QFDj90nuMeNGx+Yqr9RUletJScAAAAAAAAAAAAAAAAAAAAAAAAAOD2tGrWCQAAAAAAAAAAAAAAAAAAAAAAAAAAsHxrZp0AO4equn+SN08139TdD7mN531ckldMNV/e3U+6LecFAAAAAAAAAAAAAAAAAAAAAAAAgDs6RSVZku6+OMn6Gcx7fpLzb+95l2u/zTeMEmf1uj1HiZMkW3bZbbRYtfHa0WJl83WjhTps3drRYm2+bpxzXHvLLaPESZK9991/tFhbNo637mvWrhstFku3ZvXqWaewIu2+6y6zTmFFWlWzzmDl2nrzjbNOYUXafVXPOoWV6YbrZ53BzmWvvUYJs/l7I762WAHW7LXvKHH2WrV1lDgs3+63+N06Cwfu7pbnLKzpLbNOYUXasmbXWaewIm1du8esU1iRNpWf78u190hx+pabR4rEcuxXfrfOwo1f//KsU9i53OWQUcLsv+d47/mxdKu958cK03uOc6+N5bn5a5fPOoWdy30eMEqYb2/0Hsgs7LObz3Usx3dvGuc1z5U3jPdZrZVi7wPGibPbjd8bJ9CKMdL7fu05PxPt/dZZWBv3x2Zh83evmXUKO5+DD73VITZv8XOGleV6X2VblrHe87tbbxopEstxzcZxvm+2Uuy39zifVe2t4/1u3WXEz0R95/rx/h+e8UtPGS3Wya9/+2ixzj7h/qPEWTXiZ3PGvIZj/p/+i5OfOlqs55zxl6PFGusa7rLfgaPESZLdR3w+XHP9eNfw9Gc/YbRYL/o/7x0t1puedvw4gbaM939n6803jRbrhps3jxbrNSNew1Pe/J7RYv3p8UePEmfVHfQzAT3id9d23TLe/dIxv9lVI30PpMb83lOtGi3UluvHe39g66bxfi73iPdxx/p8wU03j/ccXXvzeM+H7/V4r8v32H2872Bff+N4n1Xdc+s4v8f22DLeuq/edZzXO0myddV4700fvN9Ydx6SL33j6tFiAQCw48Z7BQgAAADAaBThBAAAAAAA/m+kCCcAAADA/13GKkYIAAAAAMCOU1QSAAAAAAAAAAAAAAAAAAAAAAAAAGAnpKgkAAAAAAAAAAAAAAAAAAAAAAAAAMBOSFFJAAAAAAAAAAAAAAAAAAAAAAAAAICdkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAA7IUUlAQAAAAAAAAAAAAAAAAAAAAAAAAB2QopKAgAAAAAAAAAAAAAAAAAAAAAAAADshBSVnLGqOqCqNgyPb1TV1yf2e2J7Q1X9xnDMBVX1laqqiTjnVdXGYfvwqto0HHNpVf15Va2aat/2ePZwzBVVdXFVfaaq/r+qOmwqz/Oq6uPD9uMmjt9YVV8Yts+qqpOq6rVTx15QVQ/e3jxVtWW+811g3ZazBj9wrkP/+mF9T5iK21X1qon9F1fVaUu4lAAAAAAAAAAAAAAAAAAAAAAAAABwu1oz6wRWuu7+dpL1STIUL9zY3X887G/s7vULHHptkh9L8tGq2jfJwVP9l3X3+qpak+RDSZ6Y5KJt7QvEfGR3X11Vv53kZUn+y5DHvkmOS7Kxqo7o7vOTnD/0XZDkxd194bB/0hJOe955kmxaJLf5LGkNFjj2xCQfHf79wET7TUmeXFV/0N1XLyMXAAAAAAAAAAAAAAAAAAAAAAAAALhdrZp1AuywtyV5xrD95CTvnG9Qd29O8o9J7rmM2B9LcujE/pOTvHdqzjFMz7NcS1qDaVVVSZ6a5KQkj62q3Se6Nyc5I8kpS4hzclVdWFUXnvmWty4nbwAAAAAAAAAAAAAAAAAAAAAAAAC41RSVvGNbW1UbJh5Pn+j7YJIfr6rVmSuseM58AapqXZJHJ7l4aDpyKuYj5jnshCTnTeyfmOTs4XHirTynxeZZ7Hzns701WOhcH5bk8u6+LMkFSX566rjXJXlWVe2z2OTdfUZ3P7i7H3zSs565nVQBAAAAAAAAAAAAAAAAAAAAAAAAYFxrZp0Ai9rU3esX6NuS5KOZK6a4truvqKrJ/iOrakOSTvLu7n5/VR2e5LJFYn64qvZPsjHJy5Okqg5KclSSj3Z3V9UtVXVMd1+yQIxeQvsPzbOE853P9tZgoXM9Mcnbhu23JXl2knd8P9Hu66rqrCQvSLJpGfkAAAAAAAAAAAAAAAAAAAAAAAAAwO1m1awT4FZ5W5LTk5w7T99l3b2+ux/Y3actMd4jkxyWZEOS3x7anpZkvySXV9UVSQ7PXFHGhXx7GD9p/yRXb2eeHbXYGvyQqlqd5OeS/NZwPn+S5ISq2mtq6P9K8pwke9zK/AAAAAAAAAAAAAAAAAAAAAAAAADgNqGo5M7tI0n+IMnZYwXs7s1JfjXJs6tq/8wVkDyhuw/v7sOTHJfkGYuE+GSSH6uquyRJVT04yW5JvrqdeXbUctfg0Uk+0913G87psCTvSPKkqfyuyVyhyufcitwAAAAAAAAAAAAAAAAAAAAAAAAA4DazZtYJsKi1VbVhYv8D3f0b23a6u5P88TJjHjkV8w3dffrkgO6+sqrOTvK8JIcl+fhE3+VV9d2qekh3f2I6eHd/s6pemOSvq2pVko1JTuzurfOMnZznd7d3vvPZzhr80LkmeWCSd02Ne0eS/5rkrKn2VyV5/mLzAwAAAAAAAAAAAAAAAAAAAAAAAMCsKCp5B9Ldp03tr15g3PELtO85/HtFkmPm6b8iydoFjj18av9Xhs3fnWfsgxbLpbvfneTdy5xnwfNdIM4PzTu0T67BvOc6zzHvSfKeyeOH7W8mWbfUnAAAAAAAAAAAAAAAAAAAAAAAAADg9rRq1gkAAAAAAAAAAAAAAAAAAAAAAAAAALB8a2adACymqt6V5B5TzS/p7vNnkQ8AAAAAAAAAAAAAAAAAAAAAAAAA3FEoKskdWnc/adY5LMWWG28YJc7Ne+w7Spwk2e3660aLlVWrRwt147o9Rou1y5rx8lq9dpy8Nm/eMkqcJFm18TujxVq9596jxfrOjTePFmsl2Gukpa+rvz5OoJViv31GCbMmPUoclmfrtd+edQo7n732GiXMqn0PGCUOy3PDeH8+rAjjPNuZlWvX7TfrFHYq+94w3msCZuOG1bvOOoWdyjh/xSd9yy0jRWI5tt5446xT2LmM9IS/4SbP9+UY6y+R690fW7b9RrhHtnXr1lsfhB0y5nsXLJ2/JZdnrL8lv7HfoSNFWhnuMlKcXVavGikSy3HJle7FL9eP7nPrfyfedIsbwrPy3Ru8bl2O/fYe52781oPuPkocluce139r1insZI4cJcrNV39zlDgrygi/W++ya42QCDviys3jfXZvJRjr7or7Bcsz1v2CL1xz/UiRVoYfudM4cWrNLuMEYlmu2fPAWaew0xnjKb/7an/TzMpWHxOeiTG/B8LSrdlzrL+OWI4777HbrFNYkW7Za//RYo35V+kDDxnvs/o3f+vfRot19gn3Hy3WiR+4eJQ4Zz9/vJzGvIYPutudR4t105VfHS3W237mgaPF+k/v//Qocf7yhQ8aJU6SrOnx3l97yMHj/Xy45TtXjRbr9Y89ZrRYb//SOPeqf/ZB9x0lTpLsumq8P7zvscd43yi55Rvj/T983cOPGC3WCz7yxVHi/OkvPHmUOEmy69bxPqt6zS3jPR8O2OWOeb90y3euHiVO3+ngUeIkyW6rxrv38O11432ecJe1u48Wa/UtN40Wa/NIP+O/uWW8Ui5bR7yJcc/9xvs8bo34e3qPG8erjdE1znN+zPvUY37fotaMWCZol/Fetx6xarz/hwAA7DjfzgAAAAC4A1KEEwAAAAAAAAAAAIA7urEKSgIAAAAAsOMUlQQAAAAAAAAAAAAAAAAAAAAAAAAA2AkpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsBNaM+sEAAAAAAAAAAAAAAAAAAAAAAAAAEa1deusMwC4XayadQIAAAAAAAAAAAAAAAAAAAAAAAAAACyfopIAAAAAAAAAAAAAAAAAAAAAAAAAADuhFVlUsqruWlXvrqovVtVlVfWaqtpn2D5qGLNLVV1cVQ+pqo9W1U9NHP/UqvrAsH1QVb21qv61qj5VVR+rqicNfcdX1XerasPE4zFDX1fVqyZivriqTlsk56Or6oIhxueq6oyp/l+tqhuH8zhgYr5vVNXXJ/bvVVWXTB17WlW9eNg+s6ouH8Z+uqoevYPz7FpVGyeOu19VfaiqvjCs+8urqoa+k6pqa1U9YGL8JVV1+CLrcUVVfWSqbcO2c1ts7Yf+Jw7X4N4TbYcPbb8y0fbaqjppoTwAAAAAAAAAAAAAAAAAAAAAAAAAYFZWXFHJoZDhO5Oc191HJblXkj2TvCzJbyZ57TD0xUn+sbs/keSXk/zPqtq9qvZM8vtJnjfEOi/J33f3Ed19XJJnJLnrxJQf6e71E4+/G9pvSvLkqrrTElM/Pcmrhxj3SfInU/0nJvlkkid397e3zZfkzyeOW5/k5iXMdeow9leH45c9T3d/f56qWpvkPUn+sLuPTnJskocl+W8Tcb+W5KVLWol/t1dV3W2Y4z7z9C+09tvO46PDv5O+leSFVbXrMnMBAAAAAAAAAAAAAAAAAAAAAAAAgNvViisqmeRRSW7s7jcmSXdvSXJKkl9M8r4kqapfz1whyd8cxlyS5L1JXpLkt5Kc1d2XDbFu7u7vF17s7i9393TBx/lsTnLGMPdSHJy5wovb5rl423ZVHZl/L4w5XSTx1vhYkkNHmOeZSf6hu/8mSbr7hiTPT/IbE2Pel+R+VXX0MuKem+Tpw/aJSc5eykFDYdCHJ3lO5oqATroqyQeT/Odl5AEAAAAAAAAAAAAAAAAAAAAAAAAAt7uVWFTyfkk+NdnQ3dcl+UqSeyZ5YZJXJPkf3X3NxLDfzlxxxJ9K8kcTsS7aznyPqKoNE48jJ/pel+RZVbXPEvJ+dZIPVdX7q+qUqtp3ou8ZSd6W5CNJjq6qg5YQbylOSHLeCPPMt+aXJdmzqvYemrZmbl3/+zLye0eSJw/bj89c4c9JC639E5J8oLv/Jcm3q+q4qeNekeTFVbV6scmr6uSqurCqLjzrbecuI20AAAAAAAAAAAAAAAAAAAAAAAAAuPXWzDqBO6ATklyZ5JjJxu6+vqrOSbKxu2+a78Cqel2Shye5ubt/ZGj+SHf/zHzju/u6qjoryQuSbFosqe5+Y1WdP+T3hCTPrapjh12rpAQAACAASURBVFxOTPKk7t5aVe9I8tQkr10o1BLaX1lVv5/krkl+dKJ9OfPsiLcmeWlV3WOJ47+d5DtV9Ywkn0tyw1T/Qmt/YpLXDNtvG/a/X/Syu/+1qj6RuSKiC+ruM5KckSRXf/HShdYVAAAAAAAAAAAAAAAAAAAAAAAAAG4Tq2adwAxcmuS4yYaq2jvJ3ZNcnbkCj/8hyX+sqgdMHbt1eGzz2SQP2rbT3c9L8ugkBy4jn/+V5DlJ9tjewO7+t+5+Q3c/IcnmJMdU1f2THJXkb6vqiiTPyFyRxIV8O8l+U237Z+7ctzm1u++V5CVJ3pAkOzDPpPnW/IjMFei8buL8Nid51TDvUp2T5HVJzl7K4KraP8mjkrx+OI9Tkzytqmpq6O8PeUy3AwAAAAAAAAAAAAAAAAAAAAAAAMAdwkosKvnBJOuq6tlJUlWrM1fI8Mwkr07y+939tSQvSvK6eYoNTvpQkt2r6r9OtK1bTjLdfU2SczNXWHJBVXVCVe0ybN8lyQFJvp65wo6ndffhw+OQJIdU1WELzLcxyZVV9agh1v5JTkjy0XmGvzbJqqp63HLnmfKWJA+vqscMc65NcnqSP5pn7JlJHpOlF+Z81xDn/CWOf0qSN3f3YcN53C3J5UkeMTmouz+fuWKYj19iXAAAAAAAAAAAAAAAAAAAAAAAAAC4Xa24opLd3UmelOSpVfXFJP+S5MYkf5Pk7kn+Yhj33iTfSfLs7cR6YpKfqKrLq+qfkrwpyUsmhj2iqjZMPJ4yT6hXJbnTdlL/ySSXVNWnM1dA8dTu/kaSZ2SusOKkdw3tC3l2kpdX1YbMFcb87e6+bIHz+x9Jfn0H59kWZ1OSJyR5WVV9IcnFST6ZuaKV02NvzlzByTtvL+4w/nvd/YrhuGnzrf2J85zHO4b2ab+X5K5LyQMAAAAAAAAAAAAAAAAAAAAAAAAAbm9rZp3ALHT3V5M8fp6u86fG/ezU/mnzxLoyCxRW7O4LkuyzQN+eE9vfTLJuOzm/KMmL5mk/YoGxi+V8aZJHLjDPSVP778hc0cWFclpsnslzvDjJ8QvEOTPJmRP7p2eusOSCuvvwedquSHLMsH1B5l/7t89z3ORcx0y0fzorsPAqAAAAAAAAAAAAAAAAAAAAAAAAADsHBfMAAAAAAAAAAAAAAAAAAAAAAAAAAHZCa2adAD+oql6a5KlTzX/Z3b83i3xmrao+kWS3qeaf7+6LZ5EPAAAAAAAAAAAAAAAAAAAAAAAAANxRKCp5BzMUj1yRBSTn090PmXUOAAAAAAAAAAAAAAAAAAAAAAAAAHBHpKgkjGD1bmtHiVPXXjVKnCTZMlqkZNWd7jJarD3To8W6aet4scay65rVo8XaevNNo8Va3Xe8tWJ5Vh90t1mnsCJtvHnzrFPY6ew1Qozv7bbnCFFWlv1GirPxxltGirQy7DPGEz7Jbjd+b5xAK8a+o0SpNV4Oz8KV13q+L9eRhxx0q2OM+dqC5Vl78/WzTmEns/8oUVbtvvsocVierTffOOsUVqSrvrdx1insVA49cJyfM9+6zrov113vfMCtjrH2lk0jZMKOWL2qZp3CirT7Dd+ddQo7mXF+xt9pzz1GicPybL7qG7NOYeey1zg3Jg/ed+9R4rA8e+6+y6xTWLF2G/G9fJZu69ats05hRVp3j3vNOoUVadcDD551CivSqrXrZp3CirXvOvfiZ8F7T8s1zv2Cw0e6t8zy3BE/I3xHNtLHmLLX7ruOFInl2Pzda2adws5n73HubXkLZDZWr1o16xRWpM0bvfe0LAeN8z2qzdddO0qcFWOfcT4j/PTT/88ocZLkhGOPHi3Wcx/90NFird5jrL8Ak1Vrx3mP9Ozn33+UOEly4mvfOlqsO+o1HGvdk2TXEWO9+b/eZ5Q4//nPzhklTpI85ph7jhbrpIfcd7RYtct4r5/W7L3PaLF+9rBxfoe98M3vGSVOkvyHI8f7XuSzHvbA0WKt23u8ez5r9hrnd1iSvPbocc5x85bxvmW+OeP9Db9pxM8bXzXi96Z7xFgHrhvn5/LqzeN9D2TzruPUQUiSTTeP9/3DrXfUa7jHON9vPWKUKHO+ceN4771v2WW30WJddd1471scWOPdqFmzzzg/47duumGUOMm433O5cet4a7XqW18fLdbm631vEADgjsA7cQAAAAAAAAAAAAAAAAAAAAAAAAAAOyFFJQEAAAAAAAAAAAAAAAAAAAAAAAAAdkKKSgIAAAAAAAAAAAAAAAAAAAAAAAAA7IQUlQQAAAAAAAAAAAAAAAAAAAAAAAAA2AkpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsBNaM+sEAAAAAAAAAAAAAAAAAAAAAAAAAMbUW7fMOgWA28WqHT2wqrZU1Yaq+nRVXVRVDxvaD6+qS+YZf9eqendVfbGqLquq11TVrhP9D6+qf6qqzw+Pkyf6Tquqrw/zfbGq3llV953ov6CqvjDk8g9VdfQ87Z+sqvUTx1xRVRcPMTdU1elD+0Or6hND2+eq6rSh/aCqet8Q69Kq+uuh/fiqet/UuZ5ZVU/Z0RwWWO8zq+ryIc6/VNVZVXXXqVh3mth/YlV1Vd17om1VVZ1eVZcM836yqu4xcb5fqaqrJvI5vKr2Geb60nDdzqqqfbZzrSfPf5eq+sPhul1UVR+rqp9a5DyvqKqPTLVt2DbPsN7fnchxQ1U9Zujb9pz87LBOv1ZVqxa5TudV1cen2k6rqhuq6s4TbRsXyhcAAAAAAAAAAAAAAAAAAAAAAAAAZmWHi0om2dTd67v72CS/meQPFhpYVZXknUnO6+6jktwryZ5Jfm/ov0uStyb55e6+d5KHJ3luVf30RJhXD/MdleScJB+qqgMn+p815PKmJK+cp/1Pp9qT5JFDzPXd/YKh7U1JTu7u9UmOSXLu0P47Sf62u4/t7vsm+Y3tL9EO57CQU4c4Ryf558ytwa4LjD0xyUeHf7d5epJDkjygu++f5ElJru3uhwzn+1tJzpnI54okf5HkX7v7nt19ZJLLk7x+qSee5HeTHJzkmO5+UJInJtlrO8fsVVV3S5Kqus88/R+ZyHF9d//d0L7tOXm/JI9N8lNJ/p/5JqiqfZMcl2SfqjpiqvvqJL+2lJMDAAAAAAAAAAAAAAAAAAAAAAAAgFm5NUUlJ+2d5DuL9D8qyY3d/cYk6e4tSU5J8otVtS7J85Kc2d0XDf1XJ/n1LFC4sbvPSfI3SZ45T/ffJ7nnPO0fS3LoEs7lzkmu3JZnd186tB+c5GsTOXxmCbF2NIdF9ZxXJ/lG5gon/oCq2jNzhTmfk+QZE10HJ7myu7cOcb7W3Qtet6q6Z+YKL/7uRPPvJHlwVR25vTyHa/tfkvxKd980zPnN7j538SNzbuYKYCZzRTHP3t5c07r7W0lOTvL8oajptCcneW+St+UH1yhJ3pDk6VW1/3LnBQAAAAAAAAAAAAAAAAAAAAAAAIDby60pKrm2qjZU1eeTvD4/WHhw2v2SfGqyobuvS/KVzBWA/KH+JBcO7Qu5KMm952l/fJKL52k/Icl5U20fHs5hQ1WdMrS9OskXqupdVfXcqtp9aH9dkr+oqg9X1Uur6pBFclvIUnNYqoXW4AlJPtDd/5Lk21V13NB+bpLHD3O9qqoeuJ34902yYSgCmuT7BUE3ZPFrs809k3xluNbL8Y7MFX1M5q7ne6f6HzGxZhsWKnDZ3f+aZHXmCoVO21as8uxhe9LGzBWWfOFiSVbVyVV1YVVdeOZbl133EgAAAAAAAAAAAAAAAAAAAAAAAABulTW34thN3b0+SarqR5OcVVXHjJPWktTU/luqalOSK5L8ylT7rkn2TLJ+6phHdvfVkw3d/TtV9ZYkP5nkmZkrOHh8d59fVUdkrjDkTyX55+F8e4H8JtuXlcMyTK/BNicmec2w/bZh/1Pd/bWqOjrJo4bHB6vqqd39wR2c/7by7STfqapnJPlckhum+j/S3T+zo8Gr6qAkRyX5aHd3Vd1SVcd09yUTw05PsqGq/nihON19RpIzkuQ7X7l8oecBAAAAAAAAAAAAAAAAAAAAAAAAANwmVo0RpLs/luROSQ5cYMilSY6bbKiqvZPcPcmX5usf9j+7yLQPzFzBwW2e1d3ru/uJ3f3VyfYkRyR5U5I/2c6pJEm6+7Lu/rMkj05ybFUdMLRf091v7e6fT/LJJD+euQKI+02F2D/JZKHIZeewRNNrkKraP3MFI19fVVckOTXJ06qqhnO4qbvf392nJvn9JE9cJP6lSdZX1fefJ8P2+qFve76U5O7DtV6uc5K8LsnZO3BskmQoArolybemup6WuWt2+bBGh2eu8Ob3dfe1Sd6a5Hk7Oj8AAAAAAAAAAAAAAAAAAAAAAAAA3JZGKSpZVfdOsjpzBRbn88Ek66rq2cP41UleleTM7r4hc8UDT6qq9UP/AUlekeSPFpjv55L8ZJZYcLC7O8nLkzx0yHWxc/npbQUYkxyVuaKE11bVo6pq3TBmryRHJvlKki8mOaSq7jP0HZbk2CQbdjSH7ak5L0hycJIPTHU/Jcmbu/uw7j68u++W5PIkj6iqB1XVIUOMVUkekOTLC83T3V9K8s9JXjbR/LIkFw19ixqu7V8keU1V7TrMe2BVPXUJp/muzF3/85cw9odU1YFJ/jzJa4e1n3RikhOG9Tk8cwVMnzFPmP+Z5LlJ1uxIDgAAAAAAAAAAAAAAAAAAAAAAAABwW7o1RSXXVtWGqtqQ5Jwk/7m7twx9R1fV17Y9Mlfo8ElJnlpVX0zyL0luTPLfk6S7r0zyn5L876r6fJJ/TPKG7n7vxHynDPN9cRj7qO6+aqnJdvemzBWyPHWi+cPbzqGqzhrafj7JF4bzenOSZw3ndVySC6vqM0k+luT13f3J7r5pyOeNwzFvT/JL3f3dW5HDQl5ZVZ/O3Pr9SJJHdvfNU2NOzFxBxknvGNrvnOS9VXVJks8k2ZzktduZ8zlJ7lVVl1XVZUnuNbRt8wPXep6CkS9LclWSS4d535fkuu3Mme7+Xne/Yp7zS+YKZG6YeDxlaN/2nPxskr9L8jdJfnvywKo6PMlhST4+MdflSb5bVQ+ZyuHqzK3lbtvLFwAAAAAAAAAAAAAAAAAAAAAAAABub2t29MDuXr1A+xVJdlngsMcvEu/vM1cocb6+05Kctsixxy+lvbtfNbF9+ALHPGOB9lcmeeUCff+Q5KFj5bBAnJO2078t1iPn6Tt9YvcDi8Q4M8mZU23fyVzRzPnGX5H5r/VfToy5OcmvD4/tmm9NhnmOGbYvSLLPAsfO+5ycOO6CYffQefofNGx+Yqr9RUletJ20AQAAAAAAAAAAAAAAAAAAAAAAAOB2t2rWCQAAAAAAAAAAAAAAAAAAAAAAAAAAsHxrZp0AP6iqXpfkx6aaX9Pdb5xFPreVqvpEkt2mmn++uy+eRT4AAAAAAAAAAAAAAAAAAAAAAAAAsLNRVPIOprufN+scbg/d/ZBZ5wAAAAAAAAAAAAAAAAAAAAAAAAAAOzNFJWEEn79h6yhxDr/TAaPESZJbto6TU5JsveHG0WIdsG630WJdee33Rot12J67jhLnyxtvHiVOktx9r31Hi7Vll/HW/ZabbhgtFtzRbe1ZZ7Ayrd1ll1mnALer3rJl1imsSDet8rNmFo688/6zTmFF+upN/qhZrrFejW25cbzX0yzd5uuunXUKO5d9xnnGr9p191HisDxHHrD3rFNYkY46cJ9Zp7AirV63x6xTWLF23XzTrFNYkVbttnbWKaxIe271fJ+FNXvsNesUVqR91vkbfhZWbXU/eFb23GXVrFNYkcb87ApL17uM8xkYlucmHzBYtjH+Cuyb3YdfvnHuKa7bMt7n5Fi61V4/zcSua/wtOQtrbrhu1insXPYd572LNatXjxKH5WmvnWambnZPeHnG+VtkTbtHNgs37n3grFNYmfYZ73tiLN1j73/UaLE+8OkvjBbreY/6kdFibR7xubXLSD+Xx/xk9gnHHj1arFGv4aMfMlqsrfuP93N5zPef1mzePEqchx5191HiJMlfbfj8aLF+4eHrR4u16sBDRou1JuPdX16dGiXOT97/XqPESZLzLvzsaLFO/rFjR4tVu4/3nnnfMt790nUjvTTfctOmcQJl3M/u7bFuvNIWveUO+np61TjnuPl73x0lTpLUpvG+F37IbmN+3uSOeQ1rpO/k33LtNaPESZI7j/id2y1Xf2O0WOv2HPF7YjeN977f1hrn9+F3erz7pWtuGu9vtiuvHe/++V33v/NosbLviLEAANhhPuUCAAAAAAAAAAAAAAAAAAAAAAAAALATUlQSAAAAAAAAAAAAAAAAAAAAAAAAAGAnpKgkAAAAAAAAAAAAAAAAAAAAAAAAAMBOSFFJAAAAAAAAAAAAAAAAAAAAAAAAAICdkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAA7IUUlAQAAAAAAAAAAAAAAAAAAAAAAAAB2QrdZUcmq2lJVG6rq01V1UVU9bGg/vKoumWf8Xavq3VX1xaq6rKpeU1W7TvQ/vKr+qao+PzxOnug7raq+Psz3xap6Z1Xdd6L/gqr6wpDLP1TV0fO0f7Kq1k8cc0VVXTzE3FBVpw/tD62qTwxtn6uq04b2g6rqfUOsS6vqr4f246vqfVPnemZVPWVHc1hgvRfK66Sqeu2wffQw37YxZ1TV4ybibxxy2VBVZy1x3V88Ty4bJ7bvVVV/PVyXi6rq3Ko6aIFzOL6quqp+aaJt/dD24om1u3wi53+cOM+rquqfh7nO3/acm17zYf9OVXVLVf3yVA5XVNU7JvafUlVnLrTuAAAAAAAAAAAAAAAAAAAAAAAAADAra27D2Ju6e32SVNXjkvxBkp+Yb2BVVZJ3Jvmz7n5CVa1OckaS30tyalXdJclbkzyxuy+qqjslOb+qvt7dfzWEeXV3//EQ7+lJPlRV9+/uq4b+Z3X3hUNRxFcm+dmp9l8Y2h87kdoju/vqqXTflORp3f3pIc+jh/bfSfK33f2aIYcHLGOtlpvDfBbKa9LpmVundw853r+7L05y/rB/QZIXd/eFw/5S1n1BVbV7kr9K8qLufu/QdnySA5N8c4HDLknytCSvH/ZPTPLpqTGndvfb5zn2nO5+/jDPI5O8s6oe2d2fm2fsU5N8fIj/51N9x1XVfbv70sXODwAAAAAAAAAAAAAAAAAAAAAAAABmadXtNM/eSb6zSP+jktzY3W9Mku7ekuSUJL9YVeuSPC/Jmd190dB/dZJfT/Ib8wXr7nOS/E2SZ87T/fdJ7jlP+8eSHLqEc7lzkiu35TlRePDgJF+byOEzS4i1ozksJ69J0zlevJ2Yy1r3eTwzyce2FZQcYlzQ3ZcscsyXk+xeVQcNxUZPSPL+Jc73fd394cwVJj15gSEnJvm1JIdW1V2n+l6V5KXLnRMAAAAAAAAAAAAAAAAAAAAAAIA7iG4PDw+PHXvsZG7LopJrq2pDVX0+yeuT/O4iY++X5FOTDd19XZKvZK4A5A/1J7lwaF/IRUnuPU/745PMV0zxhCTnTbV9eDiHDVV1ytD26iRfqKp3VdVzq2r3of11Sf6iqj5cVS+tqkMWyW0hS81hPgvlNT3mQ1X1/qo6par23U4+O7Luk46Z5/ileHuSpyZ5WOau401T/a+cWJO3LBJn3udAVd0tycHd/U9Jzk3y9Kkh5yZ5UFXNV3x0Ms7JVXVhVV143rlvW/yMAAAAAAAAAAAAAAAAAAAAAAAAAGBka27D2Ju6e32SVNWPJjmrqo65DeebVlP7b6mqTUmuSPIrU+27JtkzyfqpYx7Z3VdPNnT37wyFDH8yyTOTnJjk+O4+v6qOyFxhyJ9K8s/D+S5UanSyfVk5zBtsgbymxryxqs4fcnxCkudW1bHdPV20cdbOTXJO5gpCnp254pKTTu3uty8hzvRzYJunD3MkyduSvCHJqyb6tyR5ZZLfTPL+hYJ39xlJzkiSj33+sp2vpCwAAAAAAAAAAAAAAAAAAAAAAAAAO7VVt8ck3f2xJHdKcuACQy5NctxkQ1XtneTuSb40X/+w/9lFpn1gks9N7D+ru9d39xO7+6uT7UmOSPKmJH+ynVNJknT3Zd39Z0keneTYqjpgaL+mu9/a3T+f5JNJfjzJt5PsNxVi/ySThSKXncNy8poa82/d/YbufkKSzUkWK/S5I+s+6bPzHL9d3f2NJLckeWySDy73+AnTz4FtTkxyUlVdkeQ9SR5QVUdNjXlz5q7f3W7F/AAAAAAAAAAAAAAAAAAAAAAAAABwm7ldikpW1b2TrM5cgcX5fDDJuqp69jB+dZJXJTmzu29I8rrMFQFcP/QfkOQVSf5ogfl+LslPJjl7Kfl1dyd5eZKHDrkudi4/XVU17B6VZEuSa6vqUVW1bhizV5Ijk3wlyReTHFJV9xn6DktybJINO5rDcvKaGnNCVe0ybN8lyQFJvr5I2GWt+zzemuRhVfXTEzn8eFUtVshym99K8pLu3rLEuX5AVf1EkpOT/O+p9nsl2bO7D+3uw7v78CR/kLlCk9/X3bckeXWSU3ZkfgAAAAAAAAAAAP5/du493vK6rhf/673nwswwzHARAfEyiogXVLyUZVZ4C0o5imkwWh7MjnWyNCyP5uX8qHM6aUiYqRUnE/GnCGWQ2oUuyi+tvJCNgJoaQV5C4yYwzH3m8/tjf6dWy7337D18YLHdz+fjsR6zvp/P9/v6vL/ftWfvtdde6w0AAAAAAAAAAADAXW35XZi9uqr2Nk6sJP+1tbZ76Ht4XFV9dWTfM5OcmuTtVfX6TDe7/JMkr0mS1tr1VfWjSf7v0LCxkry5tfbB0YxhnwOTXJ3kKa21G+ZbbGtta1Wdk+SVSV48DH+kqvY2NbyytfbCJD+W5Nyq2pJkV5IXDOf1uCRvrapdQ/2/21r7VJIMdb2zqlYl2ZnkJ1prt96JGmYyW12j+/xAkt+oqm3D9itba1+f45rM57q/rqp+buSY+46dzzOTvLmq3jyc+5VJXj7bmiPH/u0c02dX1etGtr9z+Pe0qnpSkjVJrk3yw621z48duzHJJWNj709yUZJfHht/R5LXBQAAAAAAAAAAAAAAAAAAAAAAAADuge6yppKttWWzjF+XZMUsh50yR95fJ/mOWebOSnLWHMeeOJ/x1to5I/c3zHLM6bOMn53k7Fnm/ibJd/WqYYF1nZ/k/OH+K5K8Yo6ME2cYW/B1b62tHbn/j0lOnr3y/3Tc5Ukun2WdvffPmOXw84fbbNl7j/uDGeauTPKw4f6GkfHtSe4zV80AAAAAAAAAAAAAAAAAAAAAAAAAMClTky4AAAAAAAAAAAAAAAAAAAAAAAAAAICFWz7pAliYqnpbku8ZG/6N1to7J1HP/qiqk5K8cWz42tbaqZOoBwAAAAAAAAAAAAAAAAAAAAAAAAAWI00lF5nW2ksnXcOd1Vq7LMllk64DAAAAAAAAAAAAAAAAAAAAAAAAABYzTSWhgwe3O7rkbN9zcJecJDl4eXXL2nX7bf2ydva5Vkmy4ZB+16uX+6/e0y1ratWqbll7br2pW9Zhy5Z1y2IBOj6GS8K6g7rEHFS7uuSwMMs33zLpEhafQ9Z3iVl1u+81C3L4oV1ibl62ukvOUnFIp5ytO3d2SmIhbt+2Y9IlLDpHdci4/2ov/0zKN1etm3QJi8phnXL+LQd0Sloaev1sZTKuv33bpEtYVA7q86tTbtjiOc1C9bj2e7b5el+wTl/ztWJlnyAW5Jrbt0+6hEXlsUf0yVm2ek2fIBbkS7f5Hr8Qj+/09c5kXHfL5kmXsOg8cn2f9wXcst3f/Raiz19bk4On+r2Hgvm7davnkgux/qA+X/F18791yVlSDr7zv7i23b7PTMqWZV4vWIhOL9Pk1u27OyUtDb2e0+zY5XvNJHxjt79zL0Svd1Sv3LG1U9JScue/yy9f670Fk1LLfa+ZhF3l8wiTsHrLNyddwiLT5z3Ct27xN5CFOKTT50B++ulP7JKTJD/zA/2yTjnnXd2yfvOMZ3fLunnzli45j73fvbvkJMlPPvW7umW99KlP6JZ1yq9f0C3r7S86tVvWzXf0ex7/qCP6/Hbx4hO/s0tOkvy3J/d7DH/0d36/W9b/et5J3bJu6fkY3r/Hu8+T077j4V1ykuRHHvOQblmnn/f+bllvev4zu2Vt2dHv8ynHrrvnvRa169Z+n/XbsrrXq6XJulVT3bJ2b+n32ffKii45Uyv7vSe+7er3Ndr29HudeuqAjp+j397vuXfb3eccv1H9zu/glf2y1h7Y69XzZFfHP1vsWtHvkw0r7ri9S85BHb83LFtzYLes4w7r9xi2lX2+ZyXJVGvdsgAA2H/9flsGAAAAAAAAAAAAAAAAAAAAAAAAAOBuo6kkAAAAAAAAAAAAAAAAAAAAAAAAAMAipKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAipKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAipKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAipKkkAAAAAAAAAAAAAAAAAAAAAAAAAMAipKnkPUBVbR7bPqOq3jrcP6uqvlZVm0ZuB4/s++Zhfmrs+BuGff+xqs6sqpNGjt9cVV8Y7l8wS00nVtWtIxlvGpu/V1XtrKqfGrbfNuz7uaraOrLWc6vq/Kq6dmTsb+e4FmdUVauqp42MPXsYe+6wfflI/Zuq6g9muFZfqqo/rKqHj+RcXlWPH9k+Ycg9eayGVlXnjGz/QlWdNVvNAAAAAAAAAAAAAAAAAAAAAAAAADAJmkouDue21k4YuX0zSYZGkqcm+UqS7x875qLW2glJvifJa5N8bu/xSa5I8oJh+4VzrPvRYf/HJHlmVX3PyNzzknw8ycYkaa29dNj3h5JcM1LrHwz7v3Jk7In7ON+rkpw+sr0xyWfG9nnBSN5zR8b3Xqtjk1yU5MNVdfgs62xM8rG95zBie5Ln6+eovwAAIABJREFUVNW99lEnAAAAAAAAAAAAAAAAAAAAAAAAAEyMppKL24lJPpvkt/KtjRGTJK21m5L8U5Kj9neR1trWJJuSHD0yvDHJzyc5uqruu7/Zs/hoku+sqhVVtTbJg4f1F6S1dlGSP0/y/PG5qqpMN8Y8I8nTq2rVyPSuJOclOXPhpQMAAAAAAAAAAAAAAAAAAAAAAADA3UNTyXuG1VW1ae8tyS+PzZ85Mv+RkfGNSS5MckmSZ1TVivHgqrp/klVJrtzf4qrqkCTHJvnrYft+SY5qrX0yycVJTptHzNkj5/CefezbkvxlkpOSPCvJB2bY5z0jeWfPkfXpJA+dYfyJSa5trV2T5PIkzxibf1uSF1TV+tmCq+olVXVFVV1xwcV/MEcJAAAAAAAAAAAAAAAAAAAAAAAAANDf8kkXQJJka2vthL0bVXVGksePzJ/bWnvT6AFVtTLJDyV5RWvt9qr6RKabMH5o2OW0qvq+TDdU/JnW2rb9qOt7q+ozmW4o+ebW2tf3Zme6mWSSvC/J7yU5Zx9Zr2ytLaTz4vuSvCzJ+iQ/n+Q1Y/MvaK1dMY+cmmV847DG3rVemOT9eydba7dV1QVDDVtnCmitnZfkvCS54fNXtnnUAgAAAAAAAAAAAAAAAAAAAAAAwN2g7dEaClgaNJVcvE5KcnCSq6oqSdZkuvnh3qaSF7XWfqaqHp/kz6vqAyNNIefro621Z1bVA5N8vKoubq1tynRDxiOr6gXDfvepqmNba1+602c1aK19sqoemWRLa+2Lwznuj8ck+U/NJ6tqWZIfTvKsqnptphtPHlZVB7XWbh/Z9c1JPp3knfu7OAAAAAAAAAAAAAAAAAAAAAAAAADcVaYmXQD7bWOSn2itbWitbUjywCRPr6o1ozu11q5I8u4kL9/fhVpr1yZ5Q5JXVdVDkqxtrR09svavDvX09uokr9nfg6vqh5P8QJILx6aemuTK1tr9hnN4QJL3Jzl1dKfW2s1JLk7y4v2tAQAAAAAAAAAAAAAAAAAAAAAAAADuKppKLg5nVtWmkdvDk5yc5I/37tBauyPJx5KcMsPxb0zyoqo66E7U8NtJvi/TzSMvGZt7f/bdVPLssXNYua8FW2t/2lr7yCzT7xnJ+suR8b3X6ktJfjTJU1prN4wdu5BzOCfJvfZVKwAAAAAAAAAAAAAAAAAAAAAAAADc3ZZPugCS1trase3zk5w/3D8ryVkzHHboDDnPGdk8f2T8X5McObJ94jxqujzJ5SPbW5McPcu+VyZ52HD/uiTHj82fsa/1RvY9PyO1z5QxW/1zXKvx4140w9wHknxguL92ZPwbSdbsq24AAAAAAAAAAAAAAAAAAAAAAAAAuLtNTboAAAAAAAAAAAAAAAAAAAAAAAAAAAAWbvmkC2CyquqkJG8cG762tXbqXbzui5K8fGz4b1prL70r1wUAAAAAAAAAAAAAAAAAAAAAAACAbxeaSi5xrbXLklw2gXXfmeSdd/e6AAAAAAAAAAAAAAAAAAAAAAAAAPDtQlNJ6OCOQ47qkrNn9+4uOUmSqX5Ry9eu65bVVh7QLeu6m27tlrXhkLVdcjZPreySkySbb9vaLevIlau6Ze1ZfWC3LOZv2+p+/w+Zvzs8VVqwLl+p6w/rkcJ+WLFu/aRLWJLWr+n3c5r5W7+63/NS5u/ey/dMuoQlqefvKUtFr5+Ia1f5XjMJVTXpEpakHStXT7qEJenIVR1fBGTeDpvynGYSasWKSZewZO3eumXSJSwu6w/uEnPo2jVdclgYX+8L1Onrfd1qr49NQm25fdIlLD7rDrrTEfc91Ovwk7JuV7+/vzN/7QCvF0zC1u07J13CkrTtIH/nnoRa7n0dkzI15bVJlo4D9vjZOgkHH+i55CS03b7eJ2H3Cu8tmJjynGYSprbeMekSFpcOr0smyZd3+/1pIQ7tlOM9wpPRbrmhX9ihh3eL+s0znt0t62fPv7Rb1jte8rwuOduv/0qXnCSZ6vjZtT0dH8O3v+jUblk//c5LumX1egyTZMcN13fJWX2vI7rkJH0/2/X6U5/WLevV7/uTblnn/uh/6Za1vPX5jHLP/9MrO349vPWMfv8PX3XhH3fLOudHT+mWtf0bX+6SM7Wq3/OQ6vi706pdN3XLSsevrZ72bOvz/qNdd/R7X0fPxzA7tneLmrqHvi+012N4ZHZ1yUmS2tGvB8We3f2u+66On1c6YMWyblm9vuZ3rOv3N+BVK/td944dSXL9zbd1TOvn4ev0VQAA2F/+AgoAAAAAAAAAAAAAAAAAAAAAAAAAsAhpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAhpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAhpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAhpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAhpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAgt2aaSVbW7qjZV1dVV9cGqOngY31BVW4e5vbcXDnM/XlVXVdWVw3HPGsbPr6prh30/XVXfPTL+3OH+5VX1har6TFV9qqpOGKvnzVX1taqaqqpHjqx980j2Xw77PqKqPjzkfamqXl9VNcydUVU3DPv/Y1WdWVWrhvuPHFnvlVX1O7Ncm9Fr8LmquqCqVozMLx/WeMOw/dqReneP3H9ZVZ01nNfo9Tx4lnVPrKpWVT8xMnbCMPYLM1zrTVX1t2Pn/Q/DNbmsqp44kvPvj8Wwfa+q2llVPzVWw3VV9f6R7edW1fkz1QsAAAAAAAAAAAAAAAAAAAAAAAAAk7Rkm0om2dpaO6G1dnySm5O8dGTummFu7+2CqrpvktcmeVJr7VFJvivJlSPHvLK1dkKSVyeZsVljkhe01h6d5O1Jzt47WFVTSU5N8pUk399au2rv2kk+sDe7tfa0qlo9jL2htXZckkcneWKSnx5Z56Lh2O8Zaj48yc8leXtNOzrJTw21zuaaIeORSe6b5EdG5p6e5ItJnldV1Vr7lZF6t45ct7cM+587dj2/Oce6V4+ttTHJZ8b2eeVI1hNHxi9qrT2mtXZskjck+cOqetgs6zwvyceH/HGPq6qHz1EjAAAAAAAAAAAAAAAAAAAAAAAAAEzcUm4qOervkhy9j33uneT2JJuTpLW2ubV27Qz7/XWSBy9wvROTfDbJb2XmJoejnp/kb1prfz7UsSXJz2SGBpGttZuS/FOSo1prf5bk+iQvTHJukrNaa7fsY6201nYn+eRYvRuT/EaSLyf57n1lLNC/JFlVVUdUVSU5OcmfLjSktfaRJOclecksu2xM8vNJjh4aho46J9PNOOdUVS+pqiuq6or3vvuChZYIAAAAAAAAAAAAAAAAAAAAAAAAAHfKkm8qWVXLkjw1yQdGho+pqk0jt+9N8pkk30hybVW9s6pOmSXylCRX7WPZk5NcOrK9McmFSS5J8oyqWjHHsY9I8vejA621a5Ksrap1Y+d2/ySrklw5DP1ckl9Jcnhr7d37qHFvxqokT0jyZyPbT0vywaHmfTXBTJIzR67lR+ax/x8keV6SJyb5dJLtY/Nnj+S9Z46cTyd56PhgVd0v0402P5nk4iSnje1ycZLHVtWczUFba+e11h7fWnv883/shXOfEQAAAAAAAAAAAAAAAAAAAAAAAAB0tpSbSq6uqk1Jvp7kiCR/MTJ3TWvthJHbR1truzPdDPK5Sb6Y5NyqOmvkmLOHvJckefEsa76nqq5N8tokb0uSqlqZ5IeSXNpauy3JJ5KcdCfP7bSqujLJPyV5e2ttW5K01v41yYeT/NY8Mo4ZzucbSa5vre1tTPnMJB9prW1N8v4kzx4ac87l3JFr+eR5rH1xpptK7m22Oe6VI3kvmCOnZhk/bVgjSd6Xb22MuTvJ2Ul+cR61AgAAAAAAAAAAAAAAAAAAAAAAAMBELOWmkltbayckeUCmmw++dF8HtGmfbK39apLTk/zwyPTeRodPb61dPUvEC5I8KMm7kvzmMHZSkoOTXFVV1yV5Ur61yeGozyV53OhAVT0oyeahKWWSXNRae1SSJyZ5Q1UdObL7nuG2L9cM1+eYJI+rqv8yjG9M8rSh1r9PcliSp8wjb95aa19PsjPJ05P81Z2IekySz88wvjHJGcM5fCDJo6rq2LF93p3k+5Lc706sDwAAAAAAAAAAAAAAAAAAAAAAAAB3maXcVDJJ0lrbkuRlSX6+qpbPtl9V3aeqHjsydEKSf9mP9VqS1yf5rqp6aKYbHP5Ea21Da21DkgcmeXpVrZkl4j1JnlRVTxvqWp3kLUl+bYa1rsh0c8SXL7TOkYwbk7w6yS9W1bok35vk/iP1vjRzN8HcX/8zyataa7v35+Cq+v4kL0nyf8fGH5JkbWvt6JFz+NWMnUNrbWeSc5OcuT/rAwAAAAAAAAAAAAAAAAAAAAAAAMBdbck3lUyS1to/JLky/9FY8Jiq2jRye1mSFUneVFX/WFWbkpyW/WzW2FrbmuScJK9KcnKSPx6ZuyPJx5KcMsexz0ryuqr6QpKrknwqyVtnWe6NSV5UVQftT62DS5OsyXSDxQ+31raPzP1RklOq6oA5jj9z7Hpu2NeCrbW/ba1dOsv02WN5K4fx04btLyZ5TZIfbq19fuzYjUkuGRt7f2ZujPmOJLM2GgUAAAAAAAAAAAAAAAAAAAAAAACASVqyDfNaa2vHtkebOK6e5bCnzJJ1xr7GW2snjs2dM0dtz5kru7V2VZITx8eHufOTnD+y/a9JjtxXrWMZ1yU5fmS7JXn0LPvenOTwke3x63pWkrP2teaw7+VJLp9h/KyR+2fMcvj5GTnvGTL2HvcHM8xdmeRhw/0NI+Pbk9xnrpoBAAAAAAAAAAAAAAAAAAAAAAAAYFKmJl0AAAAAAAAAAAAAAAAAAAAAAAAAAAALt3zSBTA5VfXIJO8eG97eWnvCXbzuSUneODZ8bWvt1LtyXQAAAAAAAAAAAAAAAAAAAAAAAAD4dqKp5BLWWrsqyQkTWPeyJJfd3eveldbvvKNLzrIDD+qSkyS7l6/sllWbv9ktq91xe7es+69e3S1rd6e6Vu/c2SUnSQ5au65b1u4tm7tlLV+9plsW87di+bJJl7AkrTlgxaRLWJKmatIVLF27t26ZdAlL0gHVJl3C0rSlz3P4JeOgPr+r7N58W5ecpWJZp98JDpra0yWHhVu1c9ukS1iSjlzjefwkHLCn32sizF87oN/rYyzAmgMnXcGSdMceLxgsVK9XmNvOHZ2SWIhDV/ian4RtX/uXSZewuBx5ny4x69es6pLDwixbs3bSJSxZu/d4rWYS2tqDJ13CkrTjq9dOuoTF5WGP6hJz8x3+5jcJ61ZOTbqEReW2HX1+Hl6/xeuSC7XusD45B+zwvWZh+jwXWTe1u0sOC9Q8h5+E1fH1Pgm7buv3nvEl4z73u9MRu3b7PjMpe8pr8ZOwearfZ12WgvWdcu6X7Z2SWIgbbvNe1YU4ZF2/z9X1MrWn3/PSmzf3+136HS95XresF5/3+92y3vfMx3TJWbm633tzuj6Gd2ztlnVPfQwvfEafjxuvOOTwLjlJsmp1v/eE9nz9/M0/9qxuWa/4fz/YLeuCjU/tltXLnl27umXdtrVf1jk/ekq3rDPf3e8xfNuJD+2SM7Wq43sxpvp9tnXP9n7fS/d0/Bxc9TzH1X3euVc9P/fU8fx2b761W9Y99b0rvd5fsGNXv+chPf8us2VZv9/LD+j42fdtO/p9j1/e6XX9VVv7fQ5u+Yp+71vZVf2u+1GH9Otn8U9fv7FbFgAA+887GQEAAADugTThBAAAAPj2oqEkAEzThBMAAADg20uvhpIAAAAAAOw/78wDAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJUEAAAAAAAAAAAAAAAAAAAAAAAAAFiENJW8i1TVYVW1abh9vaq+NrLdRu5vqqpXD8dcXlVfrqoaybm0qjYP9zdU1dbhmM9V1W9X1dTY+N7bC4djrquqq6rqyqr6/6rqAWN1XlpVHx/unzRy/Oaq+sJw/4KqOqOq3jp27OVV9fh9rVNVu2c631mu20KuwWznetVwff53Va0aOe7qsbXePDwuUyNjZ1TVnqp61MjY1VW1Ye5HHAAAAAAAAAAAAAAAAAAAAAAAAADuXssnXcC3q9baTUlOSJKqOivJ5tbam4btza21E2Y59JtJvifJx6rq4CRHjc1f01o7oaqWJ/lwkmcn+fTe8Vkyn9xau7GqfinJ65L8t6GOg5M8LsnmqnpQa+2yJJcNc5cn+YXW2hXD9hnzOO0Z10mydY7aZjKva7CPGtYmOS/J7yT5r+M7DY0kT03ylSTfn+QjI9NfTfLaJKctoGYAAAAAAAAAAAAAAAAAAAAAAAAAuFtNTboAvsX7kpw+3H9Okj+caafW2q4kf5vkwQvI/rskR49sPyfJB8fW7GF8nYWa1zWYS2ttc5KfSvLsqjp0hl1OTPLZJL+VZOPY3IeSPKKqjptrjap6SVVdUVVXnP+e9y60RAAAAAAAAAAAAAAAAAAAAAAAAAC4UzSVnIzVVbVp5HbayNxfJfm+qlqW6caKF80UUFVrkjw1yVXD0DFjmd87w2EnJ7l0ZHtjkguH23hjxTtjfJ25zncm+7oG8znXtNZuS3JtkmNnmN577pckeUZVrRiZ25Pk15K8Zq4iW2vntdYe31p7/BkveP4+TgkAAAAAAAAAAAAAAAAAAAAAAAAA+lo+6QKWqK2ttRNmmdud5GOZbqa4urV2XVWNzh9TVZuStCR/1Fr706rakOSaOTI/UlWHJtmc5PVJUlVHZLrZ4sdaa62qdlbV8a21q2fJaPMY/5Z15nG+M9nXNZjrXMfVtwxUrUzyQ0le0Vq7vao+keSkJB8a2e29SV5bVQ9cQN0AAAAAAAAAAAAAAAAAAAAAAAAAcLeZmnQBzOh9Sd6S5OIZ5q5prZ3QWntMa+2seeY9OckDkmxK8kvD2I8kOSTJtVV1XZINSTbOkXHTsP+oQ5PcuI919tdc12BequqgTJ/XF8emTkpycJKrhnN/UsbOvbW2K8k5SV61v+sDAAAAAAAAAAAAAAAAAAAAAAAAwF1JU8l7po8m+dUkF/YKHJok/lySF1bVoZluonhya21Da21DksclOX2OiE8l+Z6qOjJJqurxSQ5I8pV9rLO/7tQ1qKq1Sd6e5NLW2i1j0xuT/MTIuT8wydOras3YfucneVqSw/enBgAAAAAAAAAAAAAAAAAAAAAAAAC4K2kqORmrq2rTyO0No5Nt2ptaazcuIPOYscyXje/QWrs+000aX5rkAUk+PjJ3bZJbq+oJM4W31r6R5OVJ/qSqNiV5c5KNrbU9+1hnn+c7y3pzXYO5zvUjVXV1kk8m+XKSnxw9cGgceXKSPx5Z644kH0tyylgNO5K8Jcm991UvAAAAAAAAAAAAAAAAAAAAAAAAANzdlk+6gKWgtXbW2PayWfY7cZbxtcO/1yU5fob565KsnuXYDWPbPzvc/V8z7PvYuWpprf1Rkj9a4Dqznu8sOd+y7jA+eg3mda5jc9flP67doTPMP2dk8/yR8bdkurEkAAAAAAAAAAAAAAAAAAAAAAAAi0XbM+kKAO4WU5MuAAAAAAAAAAAAAAAAAAAAAAAAAACAhVs+6QJYmqrqkiQPHBt+VWvtsknUAwAAAAAAAAAAAAAAAAAAAAAAAACLjaaSTERr7dRJ19DTnp07u+TsyLIuOUmy/Mavd8tatnpNt6xta9Z3y1qxvN/1WrHswC45u3ft6ZKTJFNbb+uWtXzdwd2ybtqyvVvWUnDQuk5BN3ytU9AScXCf7zVTe3Z3yWFh9nzzpkmXsPgcdFCXmOXrD+2Sw8Js21OTLmFR6fPVntRyvw5Pwk2r+j0vXQoO2/bNLjl7tm/tksPCbVm2ctIlLCq9XjFonV6nYWH27Nwx6RKWpC3bfb0vxPpOTyZd94Xrde2ZjG2re73IyULsWLZi0iUsSV8/5OhJl7CoHNkpZ3W8Fj8JV//rDZMuYdH57nV3/mfizl2+3ifllju8RrYQh6zr8yR+1+H37ZLDwjxo242TLmGROaZLyo4bv9ElZ0lZf+f/bnTE8n7v1WJhvrHT37kXotdfSXevXN0piYX44i1bJl3CovL4e/XJqeVeH5uEmw7s9AAuIT2u2Kqp1iGF/bHHpZ+IA1b0+xwI87ds1apJl7AkHbWu3+exmL/d6w7rlrV8Z7/PUD3myH7voe35WtSFJz+yS07btSs/9hef7ZL17v/+sC45SbJ8165uWY86ouNjeMP13bIufMYJ3bI2/vGmLjmXvOLRXXKSZFnH/4ffeUS/z7buurXf31t/92kP75b1V1/r8/7z73vog7rkJMmKndu6ZR1zr37/D7f/6790y/rNJ27olvWyv/5Cl5y3ndHvY/wrd/f7f3jDjn7vRbv36o6vl7aOnw1vfd4XsOve/d7HtLxTTUnyb6v6PYaHHtjv+XLPc0ynrK/cenuXnCTZ0/q9iPGg9R3/vtbxxZXafHO3rNbpc4PL1vTpP5Eke7b1+3m4rOPnInevOKBb1gP3bO6WBQDA/puadAEAAAAAfCtNOAEAAAAAAAAAAAC4p+vVUBIAAAAAgP2nqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCKkqSQAAAAAAAAAAAAAAAAAAAAAAAAAwCL0bdVUsqruW1V/VFVfqqprquo3qmr9cP/YYZ8VVXVVVT2hqj5WVT84cvzzqurPhvtHVNV7q+qfq+rvq+rvqurUYe7Eqrq1qjaN3J42zLWqOmck8xeq6qw5aj6uqi4fMj5fVeeNzf9cVW0bzuOwkfW+XlVfG9l+SFVdPXbsWVX1C8P986vq2mHfz1TVU/dznZVVtXnkuEdU1Yer6gvDdX99VdUwd0ZV7amqR43sf3VVbZjjelxXVR8dG9u099z2ce13D9ufHc7x56tqauS4D43lXlpVH5/hmm2pqnuPjG0OAAAAAAAAAAAAAAAAAAAAAAAAANzDfNs0lRwaGf5hkktba8cmeUiStUlel+QXk7x12PUXkvxta+0TSX4qya9X1aqqWpvk/yR56ZB1aZK/bq09qLX2uCSnJ7nvyJIfba2dMHL7y2F8e5LnVNW95ln6W5KcO2Q8LMlvjs1vTPKpJM9prd20d70kvz1y3AlJdsxjrVcO+/7ccPyC12mt/fs6VbU6yQeSvKG1dlySRyd5YpKfHsn9apLXzutK/IeDqup+wxoPm2F+tmu/ddh+RJKnJ/nBJP/PTAtU1cFJHpdkfVU9aGz6xiQ/v8CaAQAAAAAAAAAAAAAAAAAAAAAAAOBu9W3TVDLJU5Jsa629M0laa7uTnJnkx5N8KEmq6n9kupHkLw77XJ3kg0leleR/JrmgtXbNkLWjtfbvjRdba//SWhtv+DiTXUnOG9aej6My3Xhx7zpX7b1fVcfkPxpjbpxn3nz8XZKjO6zz/CR/01r78yRprW1J8jNJXj2yz4eSPKKqjltA7sVJThvub0xy4QKOzVDLvyV5SZKfGZqEjntOph/792W6Yeio30tyWlUdutB1AQAAAAAAAAAAAAAAAAAAAAAAAODu8u3UVPIRSf5+dKC1dluSLyd5cJKXJ3ljkv/dWrt5ZLdfynRzxB9M8msjWZ/ex3rfW1WbRm7HjMy9LckLqmr9POo+N8mHq+pPq+rMqjp4ZO70TDc9/GiS46rqiHnkzcfJSS7tsM5M1/yaJGurat0wtCfT1/U1C6jv/Zlu+pgkp2S6+eOoua79aC3/nGRZknvPML23WeWF+dZGmpsz3Vjy5XMVWVUvqaorquqKd134vjlPCAAAAAAAAAAAAAAAAAAAAAAAAAB6Wz7pAu5GJye5Psnxo4OttTuq6qIkm1tr22c6sKreluRJSXa01r5jGP5oa+2ZM+3fWrutqi5I8rIkW+cqqrX2zqq6bKjvWUl+sqoePdSyMcmprbU9VfX+JM9L8tbZouYxfnZV/Z8k903y3SPjC1lnf7w3yWur6oHz3P+mJLdU1elJPp9ky9j8rNd+Poammccm+VhrrVXVzqo6vrV29chub0myqareNFtOa+28JOclyU3//KXZrj8AAAAAAAAAAAAAAAAAAAAAAAAA3CWmJl1AR59L8rjRgapal+T+SW7MdIPH70zyQ1X1qLFj9wy3vT6b5LF7N1prL03y1CSHL6CeNyd5cZID97Vja+1fW2u/11p7VpJdSY6vqkdmuvHhX1TVdUlOz3Tzx9nclOSQsbFDM33ue72ytfaQJK9K8ntJsh/rjJrpmj8o0w06bxs5v11JzhnWna+LkrwtyYULOOY/GWrZneTfxqZ+JNPX6trhnDdk7Jxba9/MdDPMl+7v+gAAAAAAAAAAAAAAAAAAAAAAAABwV/p2air5V0nWVNULk6SqlmW6keH5Sc5N8n9aa19N8ookb6uqmiPrw0lWVdV/Hxlbs5BiWms3J7k4040lZ1VVJ1fViuH+kUkOS/K1TDc5PKu1tmG43SfJfarqAbOstznJ9VX1lCHr0CQnJ/nYDLu/NclUVZ200HXGvCfJk6rqacOaq5O8JcmvzbDv+Umelvk35rxkyLlsnvv/J1V1eJLfTvLW1lobm96Y5OS955zpxpinzxDz60l+Msny/akBAAAAAAAAAAAAAAAAAAAAAAAAAO5K3zZNJYfGgacmeV5VfSnJF5NsS/LnSe6f5B3Dfh9MckuSF+4j69lJvr+qrq2qTyZ5V5JXjez2vVW1aeT23BmizkkJEmVCAAAgAElEQVRyr32U/gNJrq6qz2S6geIrW2tfz3STw0vG9r0kMzc/3OuFSV5fVZsy3Rjzl1pr18xyfv87yf/Yz3X25mxN8qwkr6uqLyS5KsmnMt20cnzfHZluOHnvfeUO+9/eWnvjcNy42a796mH7s0n+MtOP/S+NHlhVG5I8IMnHR9a6NsmtVfWEsRpuzPS1OGA+NQMAAAAAAAAAAAAAAAAAAAAAAADA3Wn5pAvoqbX2lSSnzDB12dh+/2Vs+6wZsq7PLI0VW2uXJ1k/y9zakfvfSLJmHzW/IskrZhh/0Cz7zlXz55I8eZZ1zhjbfn+S989R01zrjJ7jVUlOnCXn/CTnj2y/JdONJWfVWtsww9h1SY4f7l+e2a/9sjlyL09y+bB59Azzjx3ufmJsfMbHBwAAAAAAAAAAAAAAAAAAAAAAAAAmbWrSBQAAAAAAAAAAAAAAAAAAAAAAAAAAsHDLJ13AUlFVr03yvLHh32+t/cok6pm0qvpEkgPGhn+stXbVJOoBAAAAAAAAAAAAAAAAAAAAAAAAgMVGU8m7ydA8ckk2kJxJa+0Jk64BAAAAAAAAAAAAAAAAAAAAAAAAABYzTSWhgxXr1nfJmbrjm11ykqTWHNgv68CDumUt37WnW9bOXbu7Za1YNtUtq5fd27b1C5ta1i1qxbJV3bJYgMOPnnQFS9Kt2/t9n1kqevzEuHVFv59hS8UhnXK272mdkpaGXs+QDti9vVMSC7F7y+ZJl7C4HHavLjHbd+3qksPCLOv4Ox0Ls2b3jkmXsCRNrV4z6RKWpj1+f5qE27f5PrMQR3XKcd0Xrse1P3DK76yT4tpPxvItt026hMXl4D5/q3vAvXq90sZC7Nm2ZdIlLDKHdUk5+tA+/29YmDUHrJh0CUvW6hXeIjUJK5b3e68C87fr6GMnXcKStPze95l0CUuSv4FMzqFrvRY/CVNb75h0CYvLuj7fI445os/vYSxQ6/d+Y+bv3uvXTrqEJWn3Ft/fF2z9wV1iljd/556EA6Zq0iUsSW23r/dJ2HXrzZMuYXFZt65LzIt+5+IuOUnypOM2dMt60fd/R7es1Yf3ehdMsuKQw7vk/P7LH9slJ0n+629d1C3ru469f7esF5/4nd2yVt/riG5ZvR7DJLnkFY/uknPqr7+rS06SnPiwY7pl/fiT+/0/XH/0hm5ZPf+CePwtt3fJefOffrRLTpIcd59+X6M//NiHdstavq7P7xVJMrW632fhfue5D+ySs+WqT3TJSZKdK/p9la4/pM9nU5Jkx7aOn3Xu+D7oPTv6fE5sy3Vf7JKT9P17yvoj+n3WeU/Hx3D77p3dstrOPlkPOKzfz/vNUyu7Ze3u+H/61i39eiEc3LE3xrI1fV7nbDv7vWd8z+rV3bLu6Phe9tW3fr1b1gFH3a9bFsBdofnsG7BE3PO6qAEAAAAAAAAAAAAAAAAAAAAAAAAAsE+aSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEKaSgIAAAAAAAAAAAAAAAAAAAAAAAAALEL3qKaSVbW7qjZV1Weq6tNV9cRhfENVXT3D/vetqj+qqi9V1TVV9RtVtXJk/klV9cmq+sfh9pKRubOq6mvDel+qqj+sqoePzF9eVV8YavmbqjpuhvFPVdUJI8dcV1VXDZmbquotw/h3VdUnhrHPV9VZw/gRVfWhIetzVfUnw/iJVfWhsXM9v6qeu781zHK9z6+qa4ecL1bVBVV137Gse41sP7uqWlU9dGRsqqreUlVXD+t+qqoeOHK+X66qG0bq2VBV64e1/ml43C6oqvX7eKxHz39FVb1heNw+XVV/V1U/OMd5XldVHx0b27R3ndHrXVVnVNWeqnrUyL5XV9WG2fIBAAAAAAAAAAAAAAAAAAAAAAAAYBLuUU0lk2xtrZ3QWnt0kl9M8quz7VhVleQPk1zaWjs2yUOSrE3yK8P8kUnem+SnWmsPTfKkJD9ZVc8YiTl3WO/YJBcl+XBVHT4y/4KhlnclOXuG8bePjSfJk4fME1prLxvG3pXkJa21E5Icn+TiYfyXk/xFa+3RrbWHJ3n1vi/Rftcwm1cOOccl+YdMX4OVs+y7McnHhn/3Oi3JfZI8qrX2yCSnJvlma+0Jw/n+zyQXjdRzXZJ3JPnn1tqDW2vHJLk2ye/O98ST/K8kRyU5vrX22CTPTnLQPo45qKrulyRV9bB97PvVJK9dQD0AAAAAAAAAAAAAAAAAAAAAAAAAcLe7pzWVHLUuyS1zzD8lybbW2juTpLW2O8mZSX68qtYkeWmS81trnx7mb0zyPzJL48bW2kVJ/jzJ82eY/uskD55h/O+SHD2Pc7l3kuv31tla+9wwflSmGxjureHKeWTtbw1zatPOTfL1JD84Pl9VazPdmPPFSU4fmToqyfWttT1Dzldba7M+blX14CSPy3RjyL1+Ocnjq+qYfdU5PLb/LcnPtta2D2t+o7V28dxH5uJMN8BMpptiXjjHvh9K8oiqOm5f9QAAAAAAAAAAAAAAAAAAAAAAAADApNzTmkqurqpNVfWPSX43/7nx4LhHJPn70YHW2m1JvpzpBpDfMp/kimF8Np9O8tAZxk9JctUM4ycnuXRs7CPDOWyqqjOHsXOTfKGqLqmqn6yqVcP425K8o6o+UlWvrar7zFHbbOZbw3zNdg2eleTPWmtfTHJTVT1uGL84ySnDWudU1WP2kf/wJJuGJqBJ/r0h6KbM/djs9eAkXx4e64V4f5LnDPdPSfLBOfbdk+TXkrxmrsCqeklVXVFVV7zzggsWWA4AAAAAAAAAAAAAAAAAAAAAAAAA3DnLJ13AmK2ttROSpKq+O8kFVXX83bh+jW2/p6q2Jrkuyc+Oja9MsjbJCWPHPLm1duPoQGvtl6vqPUl+IMnzk2xMcmJr7bKqelCmG0P+YJJ/GM63zVLf6PiCaliA8Wuw18YkvzHcf9+w/fetta9W1XFJnjLc/qqqntda+6v9XP+uclOSW6rq9CSfT7JlH/u/N8lrq+qBs+3QWjsvyXlJctuN/zbbYwYA/z97dx5nWVXeC//3VFc33Q00zaCAOKCoOIB2hERijIJDwGuM84BGQ6LX5L0mKolEEzUfMhkN+qJGY67XRKJvVIwmOERDEpXXMYnEtIA4EnDAITLTdDfdXb3uH7U7OalUVVc1iz4U9f1+PufD3mut/axn71N9hr33eQAAAAAAAAAAAAAAAAAAAAAAALhVTIw7gbm01j6X5JAkd5hjyKVJjhttqKp1Se6a5Buz9Q/rX5pn2h/JdMHBXZ7VWtvQWntCa+3bo+1J7pHkz5P80W52JUnSWrustfaWJI9M8sCqOnhov6a19q7W2rOTfD7JwzJdAPHAGSEOSjJaKHLROSzQzGOQqjoo0wUj31ZVVyQ5I8nTqqqGfbi5tfbR1toZSV6V5AnzxL80yYaq+o+/vWF5w9C3O99IctfhuV6sc5O8Ocm7dzewtbYjyeuSvHQP5gEAAAAAAAAAAAAAAAAAAAAAAACAW91ttqhkVd0nyYpMF1iczceSrK2q5wzjV2S6COA5rbXNmS4eeFpVbRj6D07ymiR/OMd8T07yU1lAwcEkaa21JK9McsKQ63z78thdBRiT3CvJVJLrquoRVbV2GLN/kqOSfCvJ15PcqaruO/TdLckDk2zc0xx2p6a9MMnhSf52RvdTkryztXa31tqRrbW7JLk8yU9W1YOq6k5DjIkkD0jyzbnmaa19I8m/JnnFSPMrknxh6JvX8Nz+aZI3VNWqYd47VNVTF7Cbf53p5//8BYxNknOSPCpzFzYFAAAAAAAAAAAAAAAAAAAAAAAAgLG5rRWVXFNVG6tqY5Jzk/xca21q6Du6qr6z65HpQodPTPLUqvp6kq8l2ZrkN5Oktfa9JD+b5P9U1VeSfDbJn7XWPjQy3+nDfF8fxj6itfbDhSbbWtuS6UKWZ4w0f2LXPlTVO4a2Zyf56rBf70zyrGG/jktyYVVdlORzSd7WWvt8a+3mIZ+3D9u8L8nzWmvX34Ic5nJWVX0x08fvR5Oc1FrbNmPMqZkuyDjq/UP7HZN8qKouSXJRkh1J3rSbOZ+b5N5VdVlVXZbk3kPbLv/luZ6lYOQrkvwwyaXDvB9OcsNu5kxr7cbW2mtm2b+5xm9L8sZhHwEAAAAAAAAAAAAAAAAAAAAAAADgNmVy3AmMaq2tmKP9iiQr59jscfPE+2SmCyXO1ndmkjPn2fbEhbS31l43snzkHNs8Y472s5KcNUffZ5Kc0CuHOeKctpv+XbFOmqXvjSOrfztPjHOSnDOj7dpMF82cbfwVmf25/suRMduS/Prw2K3ZjskwzzHD8gVJLpgt32E/3xgAAAAAAAAAAAAAAAAAAAAAAAAAuI2ZGHcCAAAAAAAAAAAAAAAAAAAAAAAAAAAs3uS4E+DWV1VvTvITM5rf0Fp7+zjyubVU1T8l2WdG87NbaxePIx8AAAAAAAAAAAAAAAAAAAAAAAAAuDUpKrkMtNZeMO4c9obW2oPHnQMAAAAAAAAAAAAAAAAAAAAAAAAA7C2KSkIHF//whi5xjjjwgC5xkmRna91iZdOWbqEO3HdNt1hXXnt9t1h333dVlzjf27y9S5wkOXL9Qd1i1eTKbrG2b765Wyy4rVsxUeNOYVlauWLFuFNYtlZMTIw7hWWpTe0cdwrL0tY168adwrJ02AH7jzuFZemyq/t8Z11ONhywvkucndu2donD4kzddOO4U1ha1vV5T5xYvbZLHBbnjpM+S47Dof1OtbEIU5N9zuGyeDu3bh53CkvMwV2ieG8dj7rJ96dFWdfne/6KfZ0vGIcD1uwz7hSWpYme1/FZlNWrfJAfB9eexsNl7vHY7prfeDTHfVxW3nzTuFNYYvrcG7p9n373X7Jwk21q3CksSztuuG7cKSwtna5xMx5tR7/7z1mctmPHuFNYlnZuce1pUTrd13HtpGtPi3Fgr0AH9Ll2yOI88v737Bbrby/6ardYv/jIE7rFumlbv3Miq9fs2yVOz+9Ojzqm33P4Nxu/0i3W/zzpwd1i3dTxp92r1/S7BrJie5/fDZ5436O6xEmSC758WbdYpz38+G6xrrqx32eaqn4n9ntdm3no0Ud2iZMkf/X5S7rFesJ97tItVq3o92+nen63uA1eU27b+31v3XHTpm6xquN9bVMdv6esOvCQLnEmOp4P3nlzv981bL/umm6xamW/+0J7/naj13PYpvr921nd8TcSO2/o91lyzYGHdouVm7d1C7Wz03vr9R0vD0xM9du/b1/T7/z5XQ/u9731u9f2e40/1jlvAIA95s5dAAAAAAAAAAAAAAAAAAAAAAAAAIAlqN//zgYAAAAAAAAAAAAAAAAAAAAAAADgtqC1cWcAsFdMjDsBAAAAAAAAAAAAAAAAAAAAAAAAAAAWT1FJAAAAAAAAAAAAAAAAAAAAAAAAAIAlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIAlaEkVlayqqaraWFVfrKovVNVDhvYjq+qSWcbfuao+UFVfr6rLquoNVbVqpP+hVfXPVfWV4fH8kb4zq+rKYb6vV9VfVdX9RvovqKqvDrl8pqqOnqX981W1YWSbK6rq4iHmxqp649B+QlX909D25ao6c2g/tKo+PMS6tKo+MrSfWFUfnrGv51TVU/Y0hzmO91x5nVZVbxqWjx7m2zXmrVV18kj8TUMuG6vqHQs87i+ZJZdNI8v3rqqPDM/LF6rqvVV16Bz7cGJVtap63kjbhqHtJXMcuwtHxh5fVRfMdYwAAAAAAAAAAAAAAAAAAAAAAAAAYFwmx53AIm1prW1Ikqo6OckfJHn4bAOrqpL8VZK3tNYeX1Urkrw1ye8nOaOqDkvyriRPaK19oaoOSXJ+VV3ZWvubIczZrbXXDvGenuTjVXVsa+2HQ/+zWmsXDkURz0ryMzPaf35of/RIaie11q6ake6fJ3laa+2LQ55HD+2/k+TvW2tvGHJ4wCKO1WJzmM1ceY16Y6aP0weGHI9trV2c5Pxh/YIkL2mtXTisL+S4z6mqVif5myS/2lr70NB2YpI7JPnBHJtdkuRpSd42rJ+a5IvzTHPHqnpMa+2ju8sHAAAAAAAAAAAAAAAAAAAAAAAAAMZlYtwJ3ALrklw7T/8jkmxtrb09SVprU0lOT/ILVbU2yQuSnNNa+8LQf1WSX0/ystmCtdbOTfJ3SZ45S/cnk9xzlvbPJTliAftyxyTf25Vna+3Sof3wJN8ZyeGiBcTa0xwWk9eomTlevJuYizrus3hmks/tKig5xLigtXbJPNt8M8nqqjp0KDZ6SpL5CkaeleTlC8wHAAAAAAAAAAAAAAAAAAAAAAAAAMZiqRWVXFNVG6vqK0neluR35xl7/yT/MtrQWrshybcyXQDyv/UnuXBon8sXktxnlvbHJZmtmOIpSc6b0faJYR82VtXpQ9vZSb5aVX9dVb9YVauH9jcn+dOq+kRVvbyq7jRPbnNZaA6zmSuvmWM+XlUfrarTq2r9bvLZk+M+6phZtl+I9yV5apKHZPp5vHmesZ9Lsq2qTpovYFU9v6ourKoLP/De9+xBSgAAAAAAAAAAAAAAAAAAAAAAAACw5ybHncAibWmtbUiSqvrxJO+oqmP24vw1Y/0vqmpLkiuS/MqM9lVJ9kuyYcY2J7XWrhptaK39TlX9RZKfSvLMJKcmObG1dn5V3SPThSEfk+Rfh/1tc+Q32r6oHGYNNkdeM8a8varOH3J8fJJfrKoHttbmK9o4Du9Ncm6mi4K+O9PFJefze0lekeSlcw1orb01yVuT5DNf/sZczwkAAAAAAAAAAAAAAAAAAAAAAAAA3Comxp3AnmqtfS7JIUnuMMeQS5McN9pQVeuS3DXJN2brH9a/NM+0P5LkyyPrz2qtbWitPaG19u3R9iT3SPLnSf5oN7uSJGmtXdZae0uSRyZ5YFUdPLRf01p7V2vt2Uk+n+RhSa5OcuCMEAclGS0UuegcFpPXjDHfba39WWvt8Ul2JJmv0OeeHPdRX5pl+91qrX0/yfYkj07ysQWM/3iSNUlOWOxcAAAAAAAAAAAAAAAAAAAAAAAAALA3LNmiklV1nyQrMl1gcTYfS7K2qp4zjF+R5HVJzmmtbU7y5iSnVdWGof/gJK9J8odzzPfkJD+V5N0Lya+11pK8MskJQ67z7ctjq6qG1XslmUpyXVU9oqrWDmP2T3JUkm8l+XqSO1XVfYe+uyV5YJKNe5rDYvKaMeaUqlo5LB+W5OAkV84TdlHHfRbvSvKQqnrsSA4Pq6r5Clnu8ltJXtpam1rgXL+X5NcXOBYAAAAAAAAAAAAAAAAAAAAAAAAA9qrJcSewSGuqalfhxEryc621qaHu4dFV9Z2RsacneWKSP66qV2a6gOZHkvxmkrTWvldVP5vk/wwFGyvJ61trHxqNMYzZN8klSR7RWvvhQpNtrW2pqtclOSPJc4fmT1TVrqKGF7XWnpPk2UnOrqrNSXYkedawX8cleVNV7Rjyf1tr7fNJMuT19qpanWR7kue11q6/BTnMZq68Rsf8VJI3VNXWYf2M1tr35zkmCznur6iqF49sc+cZ+/PTSV5fVa8f9v2iJC+aa86RbT+7uzEzxn+kqhb8fAMAAAAAAAAAAAAAAAAAAAAAAADA3rSkikq21lbM0X5FkpVzbPa4eeJ9MsmPztF3ZpIz59n2xIW0t9ZeN7J85BzbPGOO9rOSnDVH32eSnNArh0XmdU6Sc4blX03yq/PEOHGWtkUf99bafiPLX0lyytyZ/5ftLkhywRzz7Fo+ba58W2vHLWQeAAAAAAAAAAAAAAAAAAAAAAAAANjbJsadAAAAAAAAAAAAAAAAAAAAAAAAAAAAizc57gQYv6p6c5KfmNH8htba28eRz56oqpOTvGZG8+WttSeOIx8AAAAAAAAAAAAAAAAAAAAAAAAAuLUpKklaay8Ydw63VGvt/CTnjzsPAAAAAAAAAAAAAAAAAAAAAAAAANhbFJWEDu6zaqpLnIm1q7vESZIVO7Z1izV1043dYtXmHd1i3eOAtd1i9XKXya3dYtWKFd1i7bju6m6xDqjqFmt5uEOXKJNbNnWJs2ysP6BLmP1WTnSJw+Lsu2PLuFNYtnZe9f1xp7C0rNu/S5jv3ryzS5zlos8rfHLzjj6f4VmcyRXeW8fhqIPXjTuFZev7bdW4U1hSDuwU59s3t06Rlof1406AW2TLZL/zictBr7/3zSu8vi9Wj8/xk/H6Pi5tyvencfi3624adwpLyoaDDu4SZ2Llyi5xWJyv/vt1405hSTn+AJ/il7LvXu/1fbGOXtfn3NZNW/vdQ7EcHNjplOKKba77LU6fa09XbdrcJc5ycfghB3WJs+KGa7rEWVY63NsxtcXf+6J1+jzZ1vZ5zWJxNvlMsyiHdIqzo/rdy8nC3bjPfuNOYUnpda011/e733jZ6HAP2eQ653vGpSb9pGocXG9dnF73TB484V7Vcbh+c7/fGC0HB3a6N/u5Dzm2S5wked7Dj+sW6+lvfle3WL/zlJO7xbrmpj7nVx58eJ/zbEly2oPv1y3Wzz90Q7dYP/u//7JbrFc+8VHdYvV6DpPkxw7t887zCyf9aJc4SXLaw4/vF+tPzu0W68wnP7pbrJ7vFyfc625d4jz4gH7nQx7y2BO6xXrpBz/dLdavPfbh3WLdvLPf/SaHb7+hS5zq+NuNNtXvs+SOG/vdI7LPHe/ULdbOrf3+HU6s2bdLnBVr+8RJkuzsdw/gzT+4slustfe4T7dYbXu/8+e9nsN/7/jacIdD+p0/mmz9/h527uxXc+CmyTXdYu1/c597FfbddH2XOEnfexPvd8Qdu8Xa3vE1foUaFAAAtwmqOQAAAAAAAAAAAAAAAAAAAAAAAAAALEGKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEGKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEGKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEGKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEGKSgIAAAAAAAAAAAAAAAAAAAAAAAAALEGKSt4OVdWmGeunVdWbhuUzq+rKqto48lg/Mvb1Q//EjO1/OIz9SlWdXlUnj2y/qaq+Oiy/Y46cTqyq60divHZG/yFVtb2qfmlYf/Mw9tKq2jIy11Oq6pyqunyk7bPzHIvTqqpV1aNG2p4wtD1lWL+gqo4flq+oqvePjH1KVZ2zoAMPAAAAAAAAAAAAAAAAAAAAAAAAAHvR5LgTYCzObq29dmbjUEjyiUm+neThST4x0n1ua+2Xq+rgJF9N8iOttQ3DdhckeUlr7cLdzPup1tpPV9WaJP9aVX/dWvvM0PfUJP+Y5NQkf9Jae8EQ+8gkH94119D200nOaK29b4H7e3GSZyT5h2H91CRfnGf8cVV1v9bapQuMDwAAAAAAAAAAAAAAAAAAAAAAAAB73cS4E+A25cQkX0rylkwXXvxvWmtXJ/lGksP3dJLW2pYkG5McMdJ8apJfS3JEVd15T2PP4VNJfqyqVlbVfknuOcw/l9cleXnnHAAAAAAAAAAAAAAAAAAAAAAAAACgK0Ulb5/WVNXGXY8kvzOj//SR/k+MtJ+a5N1J/jrJY6tq5czAVXXXJKuTXLSnyVXVgUnuleSTw/pdkhzeWvvnJO9N8vQFhDlrZB/+YjdjW5J/SHJykscn+eBuxr83yYOq6p7zDaqq51fVhVV14Z+/59wFpAwAAAAAAAAAAAAAAAAAAAAAAAAA/Sgqefu0pbW2YdcjyW/N6D97pP+kJKmqVUn+R5LzWms3JPmnTBdh3OXpVXVRkm8k+ePW2tY9yOsnq+qLSa5Mcn5r7fu7Yme6kGOSvCfTxS1354yRfXjWAsa/J8kzhse7dzN2KslZSX5jvkGttbe21o5vrR3/c89YSB1MAAAAAAAAAAAAAAAAAAAAAAAAAOhHUUl2OTnJ+iQXV9UVSR6a/1rc8dzW2gOSPCTJq6vqsD2Y41OttQcmuX+S51bVhqH91CSnDfN+MMkDqupee7Ybs2ut/XOSY5Mc0lr72gI2eWeShyW5S888AAAAAAAAAAAAAAAAAAAAAAAAAKAXRSXZ5dQkz2utHdlaOzLJ3ZM8uqrWjg5qrV2Y6YKLL9rTiVprlyd5dZKXVtW9k+zXWjtiZO4/yH8taNnLy5L85gJz3J7k7CSn3wp5AAAAAAAAAAAAAAAAAAAAAAAAAMAtpqjk8nR6VW0cedwvySlJ/mbXgNbaTUk+neRxs2z/miQ/X1X734Ic/iTJwzJdPPKvZ/S9P7svKnnWjH1YtbsJW2sfba19YhE5/mmSyUWMBwAAAAAAAAAAAAAAAAAAAAAAAIC9RsG826HW2n4z1s9Jcs6wfGaSM2fZ7KBZ4jxpZPWckfbvJjlsZP3EBeR0QZILRta3JDlijrEXJbnvsHxFkmNm9J+2u/lGxp6TkdxnizGaf2vtyJHlm5PcaaFzAQAAAAAAAAAAAAAAAAAAAAAAAMDeNDHuBAAAAAAAAAAAAAAAAAAAAAAAAAAAWLzJcSfA7UtVnZzkNTOaL2+tPfFWnvfnk7xoRvNnWmsvuDXnBQAAAAAAAAAAAAAAAAAAAAAAAIBxUVSSrlpr5yc5fwzzvj3J2/f2vAAAAAAAAAAAAAAAAAAAAAAAAAAwLopKQgdX73NAn0A33NQnTpLD1q7sFmty3fpusW5u1S3Wd665vluse6zft0ucayfXdomTJNtv2NIt1mH7rOkWa+eaPseKxdmyst9zuBz0etXaPNUp0DKyf4cY21fv1yEKe2LFmn7vYyzc+rWrx53CsnSA4z4WE1v6fedZNtbd8nfXH27e1iGR5WX/TvxwN6sAACAASURBVF/z91+9T59ALMo+k055jkNbuWrcKSxLa6e8xo/Dmm0+0yzeQeNOgFugVqwYdwrL0tpV3lvHYef27eNOYVlau6rfdU0WYbPPNIu2/y0/T3PHA1wDGZf9m9f4cahVzsWPwyqf4cdi69pOJ5ZZlKqJcaewbO2Y2jnuFJaliYl+91+ycK5zL1KHa9yJa63j4nzweOwox53lxXXu8fj6DVvHncKScvyhfeIcuK/zY+Ow/bqru8WauMOdusV61dMf0y3Wy97z0W6x3vicx3eJs/3aH3aJkyTV8V60ns/h7z715G6xXvaej3SL9fpn93kOk2TH9X2exwOOOLJLnCS56sbN3WKd+eRH94v1/r/vFuusZz62W6xe5+2mrvpBlzhJsubOd+8W67ee1O85/IMPfrxbrJ5/W9u+/PUucaa29Pu3U5P97uuoiX7fgbdff023WBMd33t23HBdlzhTHe/r6HnOZ3J9v/tBd9zQ8Tns+Dv6qZtu7BLnjuv7/dvZ2fGz1s7VHX9DuqrfcV+7T8fXmtbnGuK2dQd3iZMkqzveI7e943W6713X5+89Sa6+sd/r1v26RQIAWH7cUQcAAAAAAAAAAAAAAAAAAAAAAAAAsAQpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAQpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAQpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAQpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsARNjjsBAAAAAAAAAAAAAAAAAAAAAAAAgJ7azp3jTgFgr5gYdwK3J1U1VVUbq+qSqvpQVa0f2o+sqi1D367Hc4a+X6iqi6vqomG7xw/t51TV5cPYL1TVj4+0P2VYvqCqvlpVX6yqz1fVhhn5vL6qrqyqiao6dmTua0Zi/8Mw9v5V9fEh3ter6pVVVUPfaVX1w2H8V6rq9KpaPSwfOzLfGVX1v+c4NqPH4NKqekdVrRzpnxzmePWw/vKRfKdGll9YVWcO+zV6PNfPMe+JVdWq6nkjbRuGtpfMcUwvHBl7fFVdsMA/AQAAAAAAAAAAAAAAAAAAAAAAAADYaxSV7GtLa21Da+2YJNckecFI32VD367HO6rqzklenuShrbUHJDkhyUUj25zRWtuQ5GVJZi3WmORZrbUHJvnjJGftaqyqiSRPTPLtJA9vrV28a+4kH9wVu7X2qKpaM7S9urV2dJIHJnlIkv81Ms+5w7Y/MeR8hyQvTvLHNe2IJL805DqXy4YYxya5c5KnjfQ9OsnXkjy1qqq19vsj+W4ZOW5vHMafPeN4XjfPvJfMmOvUJF+cZ/wdq+ox8/QDAAAAAAAAAAAAAAAAAAAAAAAAwNgpKnnr+VySI3Yz5o5JbkyyKUlaa5taa5fPMu6TSe65yPlOTPKlJG/JdBHF+TwzyWdaa3835LE5yS9nlgKRrbWrk3wjyeGttb9N8r0kz0lydpIzW2vX7mautNamkvzzjHxPTfKGJN9K8uO7i7FI30yyuqoOrapKckqSj84z/qxMF86cV1U9v6ourKoLz/2Ld3ZKFQAAAAAAAAAAAAAAAAAAAAAAAAAWZnLcCdweVdWKJI9M8qcjzUdV1caR9V9J8tkkP0hyeVV9LMlftdY+NEvIxyW5eDfTnpLkvJH1U5O8O8kHkryqqla21rbPse39k/zLaENr7bKq2q+q1s3Yt7smWZ3koqHpxZkuEPn11tqCKitW1eokD07yopH1RyX5xSTrh9w/u5swp1fVzw7L17bWTtrN+PcleWqSf03yhSQ3zzP2c0meWFUnZbro56xaa29N8tYk+dp3vt92Mz8AAAAAAAAAAAAAAAAAAAAAAAAAdDUx7gRuZ9YMhSO/n+TQJH8/0ndZa23DyONTrbWpTBeDfEqSryU5u6rOHNnmrCHe85M8d445/6KqLk/y8iRvTpKqWpXkfyQ5r7V2Q5J/SnLyLdy3p1fVRUm+keSPW2tbk6S19t0kH0/ylgXE2FVY8wdJvtda21WY8qeTfKK1tiXJ+5M8YSjMOZ+zR47l7gpKJsl7M11Uclexzd35vSSvWMA4AAAAAAAAAAAAAAAAAAAAAAAAABgLRSX72tJa25DkbkkqyQt2t0Gb9s+ttT9I8owkTx7pPmMomvjo1tolc4R4VpJ7JPnzJH80tJ2cZH2Si6vqiiQPzXQxxblcmuS40YaqukeSTUNRyiQ5t7X2gCQPSfLqqjpsZPjO4bE7lw3H56gkx1XVzwztpyZ51JDrvyQ5OMkjFhBvwVpr30+yPcmjk3xsAeM/nmRNkhN65gEAAAAAAAAAAAAAAAAAAAAAAAAAvSgqeStorW1O8sIkv1ZVk3ONq6o7VdWDRpo2JPnmHszXkrwyyQlVdZ9MF2l8XmvtyNbakUnunuTRVbV2jhB/keShVfWoIa81Sd6Y5A9nmevCJO9M8qLF5jkS46okL0vyG1W1LslPJrnrSL4vyPxFMPfUbyV5aWttaoHjfy/Jr98KeQAAAAAAAAAAAAAAAAAAAAAAAADALaao5K2ktfavSS7KfxZHPKqqNo48XphkZZLXVtVXqmpjkqdnD4s1tta2JHldkpcmOSXJ34z03ZTk00keN8+2j0/yiqr6apKLk3w+yZvmmO41SX6+qvbfk1wH5yVZm+T0JB9vrd080veBJI+rqn3m2f70GcfzyN1N2Fr7bGvtvIUm2Fr7SJIfLnQ8AAAAAAAAAAAAAAAAAAAAAAAAAOxNk+NO4PaktbbfjPXRIo5r5tjsEXPEOm137a21E2f0vW6e3J40X+zW2sVJTpzZPvSdk+SckfXvJjlsd7nOiHFFkmNG1luSB84x9pokdxhZn3lcz0xy5u7mHMZekOSCWdrPHFk+bWT5xBnjjlvIPAAAAAAAAAAAAAAAAAAAAAAAAACwt02MOwEAAAAAAAAAAAAAAAAAAAAAAAAAABZvctwJcPtSVccmeeeM5ptbaw++lec9OclrZjRf3lp74q05LwAAAAAAAAAAAAAAAAAAAAAAAACMi6KSdNVauzjJhjHMe36S8/f2vLsctnqiS5xatbpLnCTZtG1Ht1hrt2/tFmvFtn6xjjp4fbdYO66/tkucA6u6xEmSyQMO6hZratP13WJNtqlusVi4iYk+rzMszqrJFeNOYdnq+HLKIkxt2TzuFJal1atWjjuFZWnF9pvHncISs3+XKNtvuKZLnOVi5bo+3wkO3HdNlzgs3jpn3sbi8P37nV9h4Xa2cWewPNWkF5pxmNjHe+s4XL91+7hTWHL2X9cnTtvR73oDC3fYWucLxmHrlVeMO4Wl5fAjuoTxvXU8Jlb77jQuUzt3jjuFZWnbKq8147Dlm98YdwpLyv7HPqhLnB/eeFOXOMvF0Z3i7DvhBNli3LSzz00BP3C6YNEO6BRnxQ1Xd4q0TBzY58ivdysTy8jEFp9pFmVdn/s6tl39wy5xlpU73eUWh9i6zYeasSn3Z4/DxJq1405hWbrnfq49jcONW7aNO4Ul5YA+H2nSdvb73dNk+p3zuX5zv9/UveHZP9Mt1q/+fx/qFuttjz6mS5zJdb3OYPR9Dq+9aUu3WGf/7G30OXzU/brE6fmuUx1/YNTz3+FZz3xst1hnvOtvusX64C8/rUucTa3fv52d2/r9dmPrin7fn8588qO7xXrNBy/oFuuFR/Q5Cdg6XpfeeRv9vdmqQw7tFmvrd7/VLdYBG07oEufmH3ynS5wk2dmx5sDU5k3dYu1zaJ97j5Jk65Xf7BbrgB/58S5xNk32+/67Zmu/32NtXdnvnqG1Ha+RXru13/vFuqk+sdZ0/BzSOv6GdKrjjzcOX9/pi1iSf/uB64cAALcFroACAHCboqAkAExThBMAAADg9kVBSQCYpggnAAAAwO1Lr4KSAAAAAADsOUUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIEUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIEUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIEUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIEUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIEUlAQAAAAAAAAAAAAAAAAAAAAAAAACWIEUll5CqOriqNg6P71fVlSPrbWR5Y1W9bNjmgqr6VlXVSJzzqmrTsHxkVW0Ztrm0qv6kqiZmtO96PGfY5oqquriqLqqq/7+q7jYjz/Oq6h+H5ZNHtt9UVV8dlt9RVadV1ZtmbHtBVR2/u3mqamq2/Z3juC3kGFwyLJ84HMvHjYz9cFWduOgnDAAAAAAAAAAAAAAAAAAAAAAAAABuRZPjToCFa61dnWRDklTVmUk2tdZeO6xvaq1tmGPT65L8RJJPV9X6JIfP6L+stbahqiaTfDzJE5J8YVf7HDFPaq1dVVW/neQVSf7nkMf6JMcl2VRV92itnZ/k/KHvgiQvaa1dOKyftoDdnnWeJFvmyW02uzsGo76T5OVJPrSI+AAAAAAAAAAAAAAAAAAAAAAAAACwVykquTy8J8kzknw6yZOS/FWS+88c1FrbUVWfTXLPTBeVXIjPJXnhyPqTMl2M8QfDnK/a87TnnWexFnQMBl9MsrKqHt1a+/u5AlbV85M8P0le/7qz8vPPec4tSA8AAAAAAAAAAAAAAAAAAAAAAIBudk6NOwOAvWJi3AnQzZqq2jjyePpI38eSPKyqVmS6sOK5swWoqrVJHpnk4qHpqBkxf3KWzU5Jct7I+qlJ3j08Tr2F+zTfPPPt72wWdAxG/H6SV8w3oLX21tba8a214xWUBAAAAAAAAAAAAAAAAAAAAAAAAGBvmxx3AnSzpbW2YY6+qSSfznQxxTWttSuqarT/qKramKQl+UBr7aNVdWSSy+aJ+YmqOijJpiSvTJKqOjTJvZJ8urXWqmp7VR3TWrtkjhhtAe3/bZ4F7O9sdncM/msCrX2yqlJVD13EHAAAAAAAAAAAAAAAAAAAAAAAAACw10yMOwH2mvckeWOS987Sd1lrbUNr7Udaa2cuMN5JSe6WZGOS3x7anpbkwCSXV9UVSY5Mcuo8Ma4exo86KMlVu5lnT813DGbz+0lecQvnBAAAAAAAAAAAAAAAAAAAAAAAAIBbhaKSy8enkvxBknf3Ctha25HkxUmeU1UHZbqA5CmttSNba0cmOS7JM+YJ8fkkP1FVhyVJVR2fZJ8k397NPHtqUcegtfZ3mS56+YBbMCcAAAAAAAAAAAAAAAAAAAAAAAAA3Comx50A3aypqo0j63/bWnvZrpXWWkvy2kXGPGpGzD9rrb1xdEBr7XtV9e4kL0hytyT/ONJ3eVVdX1UPbq3908zgrbUfVNWLknykqiaSbEpyamtt5yxjR+f53d3t72z28Bj8fpIPLHIbAAAAAAAAAAAAAAAAAAAAAAAAALjVKSq5RLXWzpyxvmKOcSfO0b7f8N8rkhwzS/8VSdbMse2RM9Z/ZVj83VnGPmi+XFprH8gcRRvnmWfO/Z0jzn+bd2j/b8egtXZBkgtGxnwwSS10LgAAAAAAAAAAAAAAAAAAAAAAAADYWybGnQAAAAAAAAAAAAAAAAAAAAAAAAAAAIs3Oe4EoJeq+uskd5/R/NLW2vnjyAcAAAAAAAAAAAAAAAAAAAAAAAAAbk2KSnK70Vp74tjmntrZJc51W7d1iZMkB65e1S3WjqzsFmvrin557Ts11S3Wjv0P6hOnY05rNm/qFis10S3U5n67uCzs3ynO6u1bO0ViMSbTxp3CsrRq545xp7BsrVi9etwpwF5Tk74Oj0M75Ihxp7Ck1FVXdonjM8343LSzxp3CkrJu3AnAEuQzzXg47uOxcnLFuFNYvtYfMu4MliWfJRen12fJrXe+d6dILIbX+PH495tuHncKS87+B9zyGJs63hOwXPT6JNLzWj4LN7lu/bhTWJaOPXi/caewLO3c5r11HPbveI8ci3PdKq81i9Hn7sTkhinnCxaj1/mC68s54cXo8NUpSXJj9bt3eTnoddynDj+yUyQWw/mx8dkR763jMLXp+nGnsLSs6/OpZsXafbvEYXEOWO0zzTj0vFe153vFg+56WLdYaX1+y5gkf/60E7vFet83ftAlzs/crd+xWtHxOXzAXQ/vFmuy9btu8Y5TH9kt1seuvK5LnGOuvbFLnCRZMdHvd5En3Otu3WLt6PSb4iT54C8/rVusn3nTe7vEOe/5j+8Sp7eDq99vznZef3W3WC95QL/XrX9b3ecK6d2u/VaXOEmy8+Z+v23d59B+79NTN/V7rVl9xJHdYn31d17QJc5dn3tGlzhJ3+tYqw+/a7dYU1s3d4u1+s537xar13N451e9s0ucJNmx/g7dYvX8vfrOlf2+ax6wpt85srapz9/8xMp+1yJ73rWytuPpxM1T/X5zdmzHz8sAAOy5fmfTAAAAAOhGEU4AAAAAAAAAAAAAbut6FZQEAAAAAGDPKSoJAAAAAAAAAAAAAAAAAAAAAAAAALAEKSoJAAAAAAAAAAAAAAAAAAAAAAAAALAEKSoJAAAAAAAAAAAAAAAAAAAAAAAAALAEKSoJAAAAAAAAAAAAAAAAAAAAAAAAALAEKSoJAAAAAAAAAAAAAAAAAAAAAAAAALAEKSo5j6q6c1V9oKq+XlWXVdUbquqAYflew5iVVXVxVT24qj5dVY8Z2f6pVfW3w/KhVfWuqvq3qvqXqvpcVT1x6Duxqq6vqo0jj0cNfa2qXjcS8yVVdeY8OR9dVRcMMb5cVW+d0f/iqto67MfBI/N9v6quHFm/d1VdMmPbM6vqJcPyOVV1+TD2i1X1yD2cZ1VVbRrZ7v5V9fGq+upw3F9ZVTX0nVZVO6vqASPjL6mqI+c5HldU1admtG3ctW/Dsf/wnsYHAAAAAAAAAAAAAAAAAAAAAAAAgHFRVHIOQyHDv0pyXmvtXknunWS/JK9I8htJ3jQMfUmSz7bW/inJLyX5f6tqdVXtl+RVSV4wxDovySdba/dorR2X5BlJ7jwy5adaaxtGHv8wtN+c5ElVdcgCU39jkrOHGPdN8kcz+k9N8vkkT2qtXb1rviR/MrLdhiTbFjDXGcPYFw/bL3qe1tp/zFNVa5J8MMmrW2tHJ3lgkock+V8jcb+T5OULOhL/af+qusswx313M3ZP4gMAAAAAAAAAAAAAAAAAAAAAAADAXqeo5NwekWRra+3tSdJam0pyepJfSPLhJKmqX890IcnfGMZckuRDSV6a5LeSvKO1dtkQa1tr7T8KL7bWvtlam1nwcTY7krx1mHshDs90YcRd81y8a7mqjsp/FsY8dYHxFuJzSY7oMM8zk3ymtfZ3SdJa25zkl5O8bGTMh5Pcv6qOXkTc9yZ5+rB8apJ3zzN2T+IDAAAAAAAAAAAAAAAAAAAAAAAAwF6nqOTc7p/kX0YbWms3JPlWknsmeVGS1yT5vdbaNSPDfjvTxREfk+QPR2J9YTfz/WRVbRx5HDXS9+Ykz6qqAxaQ99lJPl5VH62q06tq/UjfM5K8J8mnkhxdVYcuIN5CnJLkvA7zzHbML0uyX1WtG5p2Zvq4/uYi8nt/kicNy4/LdOHPuSw4flU9v6ourKoLz3nnOxeRDgAAAAAAAAAAAAAAAAAAAAAAAADccopK7rlTknwvyTGjja21m5Kcm+SdrbWbZ9uwqt5cVV+sqs+PNH+qtbZh5HHZSMwbkrwjyQt3l1Rr7e1J7pvkL5OcmOQfq2qfofvUJO9pre3MdKHFp84XagHtZ1XV15K8K9MFNndZzDx74l1JTqiquy9w/NVJrq2qZyT5cpLNPeK31t7aWju+tXb8ac9+9gJTAQAAAAAAAAAAAAAAAAAAAAAAAIA+JsedwG3YpUmeMtpQVeuS3DXJVZku8PhjST5RVX/aWrtoZOjO4bHLl5I8eddKa+0FVXVIkgsXkc/rk3whydt3N7C19t0kf5bkz6rqkiTHVNW2JPdK8vdVlSSrklye5E1zhLk6yYEz2g4attnljNba+6rqV4b5jquqYxc5z6hLkzxstKGq7pFkU2vthiFeWms7qup1SV66gJi7nJvkzUlO293APYwPAAAAAAAAAAAAAAAAAAAAAADAbURrbdwpAOwVE+NO4DbsY0nWVtVzkqSqViR5XZJzkpyd5FWtte8k+dUkb65dFQ9n9/Ekq6vq/xlpW7uYZFpr1yR5b5Lnzjeuqk6pqpX/l507D7esKu/E/31roqooiqIABZyIE0YFKppEo8YgLWI0RHGI4kCTxCb5xUSDLTFph4ekM2iMjRiHbqMRNY6JcyaSVunEaBTEEpQ4QMARIzMUVBVVt1b/cXf17+Tk3rr3Fos6XO/n8zznqbPXWvtd79771Ln77LPPOzw/LMnBSb6T5JQkZ7XWjhweRyQ5oqruNct8W5JcVVXHD7E2Jnl8kk/NMPz1SZZV1YkLnWfMu5I8qqoeO8y5JsnrkvzhDGPPTfLYJIfOI26SfGiIc948xy80PgAAAAAAAAAAAAAAAAAAAAAAAADsU4pKzqJNlxc+OcnTq+rrSb6WZFuSv0tyzyRvHcZ9LMn1SU6dI9aTk/xUVV1RVZ9L8vYkLxkZ9pNVtXnk8bQZQr0mySFzpP64JF+qqi9muoDima217yV5ZqYLK4760NA+m1OTvLyqNme6MOZvt9Yun2X7fjfJb+zlPLvjbE3ypCQvq6qvJrkkyQWZLlo5Pva2TBecvMtccYfxN7fWXjWsN5/xC4oPAAAAAAAAAAAAAAAAAAAAAAAAAPvaikkncGfWWvtWkpNm6DpvbNzPji2fNUOsqzJLYcXW2vlJDpylb93I839LsnaOnF+U5EUztN97lrF7yvnSJI+ZZZ7TxpY/kOQDe8hpT/OMbuMlSY6bJc65Sc4dWX5dpgs/zqq1duQMbVcmefDw/Pwk5+9tfAAAAAAAAAAAAAAAAAAAAAAAAACYlGWTTgAAAAAAAAAAAAAAAAAAAAAAAAAAgIVbMekE2DtV9dIkTx9r/vPW2u9NIp9Jq6rPJtlvrPm5rbVLJpEPAAAAAAAAAAAAAAAAAAAAAAAAANzRFJVcpIbikUuygORMWmsPm3QOAAAAAAAAAAAAAAAAAAAAAAAAALAvKSoJHey8+YYucdbu3NElTpLsXLuuW6wVGw7uFmvdymXdYqX6xdp5284ucdZO3dYlTpJMbd/WLdauA/sdw507prrFYv6WrV496RSWpG1TbdIpLDoHdIhxy67qEGVpWd8pznW1X6dIS8OGTnFqS59zySVjfY93mmTXtn7nWkvCgX3CfPWqq/sEWkIOPej27/ydN17XIZMlZn2fv66rb72xS5ylY2OXKN7jF6jTe3y73nv8gnQ6p7ny+i1d4iwVRx/Y5yz+iutu7hJnKTmmw75fteX6DpksMRv7vOav23JrlzhLxUGd3uNXb72pS5ylo8+5JJNR131/0iksLhv6nMQvX9bxe1vmbeNK34GwtNy0X59zo6Wi1xnNzlt8bl2Yw7pEWb5mbZc4LEzXe9FYkFXLl086hSVp/+3e4xemz32TK31+mojVq/zMYRK273SP8CQsv9l3IAvW6RoZk7F11f6TTmFR6XWv6o4b3EO2IJ3uL5ja4v6xBel0397pb/mLLnGS5AmbHtAt1jN//EHdYm3//ne7xcpUn3PAn33IA7vESZIXvvOj3WI97uj7d4v1jB/rt43br/pWt1g9PfoB9+4S57V/849d4iTJo446slushx3Y75rW1DX/1i3Wltbv92sfPv1JXeI8+c0f6RInSU44+n7dYj3tx4/pFuuIDf3uNVm+8dBusdZd2+f84SM39bu2smFtv+3LNf1+g71uda9f1CW7pnZ1i3W/l/9Jlzjnf6Pf3/tVq3p9ski2XLO9W6yD1nb8PrnfIex2DA9o/epGfHdLv/2+YW2/36tffU2/30XeY0W/a5PLO9bZ6GXZ1lv6Bev43fSK6/q91yz/+pe7xcrhT+0XCwBgiXGXCwAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIqSoJAAAAAAAAAAAAAAAAAAAAAAAAADAIjTxopJVNVVVm6vqi1V1UVU9Ymg/sqq+NMP4u1fVR6rq61V1eVWdU1WrRvofVVWfq6qvDI/TR/rOqqrvDPN9vao+WFUPHOk/v6q+OuTyT1V11AztF1TVppF1rqyqS4aYm6vqdUP7w6vqs0Pbv1TVWUP7XavqL4dYl1bVXw/tx1XVX45t67lV9bS9zWGW/X1uVV0xxPlaVb2jqu4+FuuQkeUnV1WrqgeMtC2rqtdV1ZeGeS+oqh8a2d5vVtXVI/kcWVUHDnNdNhy3d1TVgXMc69HtX1lVrxyO20VV9Zmq+uk9bOeVVfWPY22bx+epqtcOr4llI20vqqo/HVl+dlX91WxzAQAAAAAAAAAAAAAAAAAAAAAAAMAkTLyoZJKtrbVNrbVjk/xWkj+YbWBVVZIPJvlwa+1+Se6fZF2S3xv6D0vy7iS/3Fp7QJJHJfmlqnriSJizh/nul+R9ST5RVYeO9D97yOXtSV49Q/sbx9qT5DFDzE2ttRcMbW9PcnprbVOSByd5/9D+O0n+vrV2bGvtgUl+c+5dtNc5zObMIc5RSb6Q6X2wapaxpyT51PDvbs9IckSSY1prRyc5OckNrbWHDdv7iiTvG8nnyiRvTfKvrbX7ttbuk+SKJG+Z74Yn+e9JDk/y4NbaQ5I8OckBc6xzQFXdI0mq6ofHO4dCkicn+VaSnxrpel2Sh1TVI6tqQ5LfTfJrC8gVAAAAAAAAAAAAAAAAAAAAAAAAAO5wd4aikqPWJ7l+D/3HJ9nWWntbkrTWppKckeQXqmptkucnObe1dtHQf02S38gshRtba+9L8ndJnjVD9z8kue8M7Z9Jcrd5dR497AAAIABJREFUbMtdkly1O8/W2qVD++FJvj2Sw8XziLW3OexRm3Z2ku8l+enx/qpal+nCnL+Y5JkjXYcnuaq1tmuI8+3W2qzHrarum+ShmS4MudvvJPnRqrrPXHkOx/a/JPm11tr2Yc5/a629f89r5v2ZLoCZTBfFfM9Y/3FJvpzkTRkpmtla25nkV5K8IckfJvnT1tq/zpUnAAAAAAAAAAAAAAAAAAAAAAAAAOxLd4aikmuqanNVfSXJW/LvCw+Oe1CSz482tNZuSvLNTBeA/A/9SS4c2mdzUZIHzNB+UpJLZmh/fJIPj7V9ctiGzVV1xtB2dpKvVtWHquqXqmr10P6GJG+tqk9W1Uur6og95Dab+eYwX7Ptgycl+dvW2teSXFtVDx3a35/kpGGu11TVj8wR/4FJNg9FQJP8v4Kgm7PnY7PbfZN8czjWC/GBJE8Znp+U5GNj/bsLTX4oyROrauVIfp9O8i9JHpvpwpL/QVWdXlUXVtWFb3/vXPUtAQAAAAAAAAAAAAAAAAAAAAAAAKCvFZNOIMnW1tqmJKmqn0jyjqp68D6cv8aW31VVW5NcmeTXxtpXJVmXZNPYOo9prV0z2tBa+52qeleSxyV5VqYLGB7XWjuvqu6d6cKQP53kC8P2tlnyG21fUA4LML4PdjslyTnD8/cOy59vrX27qo5Kcvzw+HhVPb219vG9nP+Ocm2S66vqmZkuEHnr7o5hPz4hyYtaazdX1WeTnJjkL4f+dUl+NMnKJIcm+fZ48Nbam5O8OUmuvewrsx0/AAAAAAAAAAAAAAAAAAAAAAAAALhDLJt0AqNaa59Jckimi/jN5NIkDx1tqKr1Se6Z5LKZ+oflL+9h2h/JdMHB3Z7dWtvUWntya+1bo+1J7p3k7Un+eI5NSZK01i5vrb0pyX9KcmxVHTy0X9dae3dr7blJLkjy6EwXQDxoLMTGJKOFIhecwzyN74NU1cZMF4x8S1VdmeTMJD9XVTVsw/bW2t+01s5M8vtJnryH+Jcm2VRV/+/1NjzfNPTN5bIk9xyO9UK9L8kbkrxnrP3EJBuSXDJs36MyXTRzt99O8mdJfi/J2XsxLwAAAAAAAAAAAAAAAAAAAAAAAADcoe5URSWr6gFJlme6wOJMPp5kbVWdOoxfnuQ1Sc5trd2a6eKBp1XVpqH/4CSvSvKHs8z31CSPy38sODij1lpL8vIkDx9y3dO2PHF3AcYk90syleSGqjq+qtYOYw5Icp8k30zy9SRHVNUPD333SnJsks17m8NcatoLkhye5G/Hup+W5J2ttXu11o5srd0jyRVJfrKqHlJVRwwxliU5Jsk3ZpuntXZZki8kedlI88uSXDT07dFwbN+a5JyqWjXMe2hVPX0em/mhTB//88baT0nyvGHbjkzyQ0lOqKq1VXV0kidm+rXz5iRHVtUJ85gLAAAAAAAAAAAAAAAAAAAAAAAAAPaZFZNOIMmaqtpdOLGS/OfW2tRQj/Goqvr2yNgzkpyc5I1V9fJMF8X86yT/LUlaa1dV1XOS/MlQsLGSvLa19rHRGMOY/ZN8KcnxrbWr55tsa21rVb0myZlJfnFo/mRVTQ3PL26tnZrkuUnOrqpbk+xM8uxhux6a5PVVtXPI/y2ttQuSZMjrbVW1OsmOTBc9vPF25DCbVw/7b22Sf07ymNbabWNjTsl0UcVRHxjaP5Lpfbzf0P65JK/fw3wZ8vzjqrp8WP7MSO7JzMd61MuS/G6SS6tqW5JbkrxijjnTWrt593bsrvE5FPV8fJJfHhl3S1V9KslJSX4tyRmttW3D+P8vyTuqatMM+wkAAAAAAAAAAAAAAAAAAAAAAIA7m11t0hkA7BMTLyrZWls+S/uVSVbOstpJe4j3D0l+bJa+s5KctYd1j5tPe2vtNSPPj5xlnWfO0v7qJK+epe+fkjy8Vw6zxDltjv7dsR4zQ9/rRhb/dg8xzk1y7ljb9UmeM8v4KzPzsf7zkTG3JfmN4TGnmfbJMM+Dh8WNM/Q/ZXj6vrH2C5M8cD7zAgAAAAAAAAAAAAAAAAAAAAAAAMC+smzSCQAAAAAAAAAAAAAAAAAAAAAAAAAAsHArJp0Ad4yqekOSR441n9Nae9sk8rmjVNVnk+w31vzc1tolk8gHAAAAAAAAAAAAAAAAAAAAAAAAAPYVRSV/QLXWnj/pHPaF1trDJp0DAAAAAAAAAAAAAAAAAAAAAAAAAEyCopLQwTeypkuce9z18C5xkuSWHTu7xbrtlm3dYh2y3/Jusb53a7+8Dl+/tkuc7964vUucJDlsdZ+ckmT7zqmOsfq9tpi/Xcv6/d9h/nZO9fu/w/ytW+UUlaVl144dk05hSdq2cvWkU1hUDuwU58hDDuoUiYX4fvabdAqLTq9X6tStWzpFYiF23nLzpFNYZA7rEmXF/uu6xGFh7r6x119pFuKIg9ZPOoUlqVY5p5mUjev6Xatm/pbvf8CkU1iSDl6zctIpLEkr1zunmYQD17o+Ngm1ctWkU1iy9l/WJp3CkrSr2e+TsGylc5pJ2Fnu65iE5j6miVm/3Hv8JLheMBmrV/nbOgkrt2+ddAqLjOsri5n7xyZn+c7bJp3CkrRyhc9Pk7DjgI2TTmFJcg4/GY+4/726xfrQhV/qFusZDzmqW6xVB9+1W6xdt/X5Ldyqjtfhf/w+9+gW68MXfrlbrJ/7kft3i7XqkI7HsOM1spU7+vxe86gjDu0SJ0k+eEG//4ePeOLDu8Vac/cf6har1//Dnk44+n7dYv39JV/vFuv04/sdw+0dL3H2vFza67v8Y+7Z7/fq123pd53m8A39zo9Wdfxs0fN7zRXL++R1/8P7vZdu2dbvfeZuHe+hXXMnvfba6xhObbu1S5wkuVvHe/Wntt7ULdbGjp952tYb+8XqdM/xzVv7XTvab1WfeiRJctW1/fbVoRvu0i3WuqNc8wEAuDNYNukEAAAAAAAAAAAAAAAAAAAAAAAAAABYOEUlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAAAWIUUlAQAAAAAAAAAAAAAAAAAAAAAAAAAWoTt9UcmqmqqqzVX1xaq6qKoeMbQfWVVfmmH83avqI1X19aq6vKrOqapVI/2PqqrPVdVXhsfpI31nVdV3hvm+XlUfrKoHjvSfX1VfHXL5p6o6aob2C6pq08g6V1bVJUPMzVX1uqH94VX12aHtX6rqrKH9rlX1l0OsS6vqr4f246rqL8e29dyqetre5jDL/p4tr9Oq6vXD86OG+XaPeXNVnTgSf8uQy+aqesc89/uLZ8hly8jz+1fVXw/H5aKqen9V3XWWbTiuqlpVPW+kbdPQ9uKRthVVdXVVvXKkbXlVfb6qHj3S9ndV9fTZ9hkAAAAAAAAAAAAAAAAAAAAAAAAATMKKSScwD1tba5uSpKpOTPIHSX5qpoFVVUk+mORNrbUnVdXyJG9O8ntJzqyqw5K8O8mTW2sXVdUhSc6rqu+01v5qCHN2a+2PhnjPSPKJqjq6tXb10P/s1tqFQ1HEVyf52bH2nx/aTxhJ7TGttWvG0n17kp9rrX1xyPOoof13kvx9a+2cIYdjFrCvFprDTGbLa9TrMr2fPjLkeHRr7ZIk5w3L5yd5cWvtwmF5Pvt9VlW1OslfJXlRa+1jQ9txSQ5N8m+zrPalJD+X5C3D8ilJvjg25oQkX0vy9Kr6rTZtqqp+JcmfVNVDkzwtya7W2p/PlScAAAAAAAAAAAAAAAAAAAAAAAAA7EvLJp3AAq1Pcv0e+o9Psq219rYkaa1NJTkjyS9U1dokz09ybmvtoqH/miS/keQ3ZwrWWntfkr9L8qwZuv8hyX1naP9MkrvNY1vukuSq3Xm21i4d2g9P8u2RHC6eR6y9zWEheY0az/GSOWIuaL/P4FlJPrO7oOQQ4/zW2pf2sM43kqyuqrsOxUYfn+RvxsackuScJN9M8hMjsT+b6X14VpLfT/Kr88wTAAAAAAAAAAAAAAAAAAAAAAAAAPaZxVBUck1Vba6qryR5S5L/voexD0ry+dGG1tpNmS4aeN+Z+pNcOLTP5qIkD5ih/aQkMxVTfHySD4+1fXLYhs1VdcbQdnaSr1bVh6rql6pq9dD+hiRvrapPVtVLq+qIPeQ2m/nmMJPZ8hof84mq+puqOqOqNsyRz97s91EPnmH9+fiLJE9P8ohMH8ftuzuG7Xpsko8leU+mC0yO+q0kv57k3a21y2YKXlWnV9WFVXXhB9/77r1IDwAAAAAAAAAAAAAAAAAAAAAAAAD23opJJzAPW1trm5Kkqn4iyTuq6sH7cP4aW35XVW1NcmWSXxtrX5VkXZJNY+s8prV2zWhDa+13qupdSR6X5FmZLmp4XGvtvKq6d6YLQ/50ki8M29tmyW+0fUE5zBhslrzGxrytqs4bcnxSkl+qqmNba9vH403Y+5O8L9NFQd+T6eKSu/1Mkk+21rZW1QeSvLyqfr21NjX0PzrJjZkuaDmj1tqbk7w5SS667BuzHR8AAAAAAAAAAAAAAAAAAAAAAAAAuEMsm3QCC9Fa+0ySQ5IcOsuQS5M8dLShqtYnuWeSy2bqH5a/vIdpfyTJv4wsP7u1tqm19uTW2rdG25PcO8nbk/zxHJuSJGmtXd5ae1OS/5Tk2Ko6eGi/rrX27tbac5NckOkCh9cmOWgsxMYko4UiF5zDQvIaG/Pd1tqfttaelGRn9lB8MXu330d9eYb159Ra+16SHUlOSPLxse5Tkjy2qq5M8vkkByc5Pkmqav8kfzgs36WqnrDQuQEAAAAAAAAAAAAAAAAAAAAAAADgjraoikpW1QOSLM90gcWZfDzJ2qo6dRi/PMlrkpzbWrs1yRuSnFZVm4b+g5O8KtMFBGea76lJHpfkPfPJr7XWkrw8ycOHXPe0LU+sqhoW75dkKskNVXV8Va0dxhyQ5D5Jvpnk60mOqKofHvruleTYJJv3NoeF5DU25vFVtXJ4flimCzJ+Zw9hF7TfZ/DuJI+oqieO5PDoqtpTIcvdXpHkJa21qZF11yf5yST3bK0d2Vo7MsnzM11ocvc672+tfSXJryQ5u6pWzzNXAAAAAAAAAAAAAAAAAAAAAAAAANgnVkw6gXlYU1W7CydWkv/cWpsa6h4eVVXfHhl7RpKTk7yxql6e6aKZf53kvyVJa+2qqnpOkj8ZCjZWkte21j42GmMYs3+SLyU5vrV29XyTba1trarXJDkzyS8OzZ+sqt1FDS9urZ2a5LmZLlZ4a5KdSZ49bNdDk7y+qnYO+b+ltXZBkgx5vW0ocLgjyfNaazfejhxmMlteo2Mel+Scqto2LJ/ZWvveHvbJfPb7y6rq10fWufvY9vxMktdW1WuHbb84yQtnm3Nk3U/P0Hxykk+01raPtH0kyR9W1bFD/7HD+l+oqvOSvCTJb881HwAAAAAAAAAAAAAAAAAAAAAAAADsK3f6opKtteWztF+ZZOUsq520h3j/kOTHZuk7K8lZe1j3uPm0t9ZeM/L8yFnWeeYs7a9O8upZ+v4pycN75bDAvM5Ncu7w/EVJXrSHGMfN0Lbg/d5aWzfy/CtJHj975v9uvfOTnD/LPLu9fazvuiSHDov3H+t7wXzmBQAAAAAAAAAAAAAAAAAAAAAAAIB9admkEwAAAAAAAAAAAAAAAAAAAAAAAAAAYOFWTDoBJqOq3pDkkWPN57TW3jaJfPZGVZ2Y5FVjzVe01k6eRD4AAAAAAAAAAAAAAAAAAAAAAAAAsC8pKrlEtdaeP+kcbq/W2nlJzpt0HgAAAAAAAAAAAAAAAAAAAAAAAAAwCYpKQgeHX/+tPoEO3tAnTpJ1u7Z3izW19ZZusXbetrxbrMP2X9ct1vZdrUucu7RtXeIkybLVB3WLtfqmG7rFWrO83zFk/qauu3rSKSwuBxzQJczaqdu6xGFhdt5w7aRTWHzWr+8SZmPrd/7A/N20X5/3rKViY6c4O6d2dYrEQlx3y62TTmHRuXsOvt0xen5OYWG2bTxi0iksSdeu8rd1IW7/u8y0XTt3dorEQnz7uhsnncKictD6Pu8P379xS5c4S8khGw683THaDtdpJmXbbTsmncKS9I2btk46hUXl6E4XDLbtqj6BloheZ97f2OI9fiGOPmTSGXB7fOv6myedwqLzwE7fgdyws889AUtFn72eHLr/6k6RWIgVB/b6NoWF2HXN9yadwuLT4VrNLtcLJuamKZ+fFqLX39atce/eQvTa766PTcY3t/ruaSGO7hTnwLXO4Sdhxf6+456UWrFy0iksSVOdfrvBwqy4zufWBdnY5/ddW3a4V3Uhev1FfM4jH9IpUvJLP/kj3WI983/9RbdYr33uk7rFuvW2PufeP9TxnObZj+i3309/5LHdYj3zzR/oFuv1p53cLdZNHT8/3eeQPu9/T33IA7rESZInP+Ae3WK95KOf6hbrFU85oVusbcv7XXs4uPq8Hp7248d0iZMkpx//8G6xnn7OO7vF+h/POalbrK07+h3DIw/p8z3Pfiv6lZA48tB+v3W+4vvXdYt1z07vWUmyfNmybrFWLO8Ta1n1uw6/cd3abrFu2trv94e7On4+XLmi3/XzXsfwe1P7dYmTJGt39ns9HHhgr18QJDtv7fd7pTro0G6xdnX6jfKa2/q93nteh7rHio7vWSv7xdp6i/uiAADuDPqd4QEAAAAAAAAAAAAAAAAAAAAAAAAAsM8oKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAgpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAgpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAgpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAgpKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAgpKvkDoqq2jC2fVlWvH56fVVXfqarNI48NI2NfO/QvG1v/6mHsV6rqjKo6cWT9LVX11eH5O2bJ6biqunEkxh+N9R9SVTuq6peH5TcMYy+tqq0jcz2tqs6tqitG2j69h31xWlW1qnrsSNuTh7anzTb/0HZAVV1eVfcblldW1SVV9bC5jwIAAAAAAAAAAAAAAAAAAAAAAAAA7DuKSi4dZ7fWNo08bkiSoZDkyUm+leSnxtZ5X2ttU5JHJnlpkkt3r5/kwiTPHpZP3cO8/ziM/5EkP1NVjxzpe3qSf05ySpK01p4/jH1CkstHcv2LYfyZI22PmGN7L0nyzJHlU5J8cWzMv5t/yOHmJL+V5PVD04uTfLq19tk55gMAAAAAAAAAAAAAAAAAAAAAAACAfUpRSY5L8uUkb8pIccVRrbVrk1yW5PC9naS1tjXJ5iR3G2k+Jcl/TXK3qrr73saexT8m+fGqWllV65Lcd5h/1Izzt9benyRV9RtJfjnTRSYBAAAAAAAAAAAAAAAAAAAAAAAA4E5FUckfHGuqavPuR5LfGes/Y6T/kyPtpyR5T5IPJXliVa0cD1xV90yyOsnFe5tcVR2U5H5J/mFYvkeSw1trn0vy/iTPmEeYV49sw7vmGNuS/O8kJyZ5UpKPjuUz1/wvTPKqJL/bWrtulm06vaourKoL/+xDH51pCAAAAAAAAAAAAAAAAAAAAAAAAADcYRSV/MGxtbW2afcjySvG+s8e6X9MklTVqiRPSPLh1tpNST6b6SKMuz2jqi5OclmSN7bWtu1FXj9ZVV9M8p0k57XWvrc7dqaLOSbJezNd3HIuZ45sw7PnMf69SZ45PN4z1jfX/I9PclWSB88WvLX25tbaj7bWfvQ5J//sPNIBAAAAAAAAAAAAAAAAAAAAAAAAgH4UlVzaTkyyIcklVXVlkkfl3xdXfF9r7Zgkj0jyyqo6bC/m+MfW2rFJHpTkF6tq09B+SpLThnk/muSYqrrf3m3GzFprn0tydJJDWmtfG+uedf6qOiLJC5L8eJInVNUxPfMCAAAAAAAAAAAAAAAAAAAAAAAAgB4UlVzaTknyvNbaka21I5P8UJITqmrt6KDW2oVJ3pnkhXs7UWvtiiSvTPKSqrp/knWttbuNzP0H+fcFLXv5zST/bbRhHvOfneT3W2vfTvKiJG+oqroDcgMAAAAAAAAAAAAAAAAAAAAAAACAvaao5NJxRlVtHnk8MMnjk/zV7gGttVuSfCrJSTOs/6okP19VB9yOHP5nkkdnunjjh8b6PpC5i0q+emwbVs01YWvtb1prnxxrnnX+qjohyT2TvHVY/2NJrk9y6lxzAQAAAAAAAAAAAAAAAAAAAAAAAMC+tGLSCdBHa23d2PK5Sc4dnp+V5KwZVts4Q5ynjCyeO9L+3SSHjSwfN4+czk9y/sjy1iR3m2XsxUl+eHh+ZZIHj/WfNtd8I2PPzUjuM8T4iz3Nn+Tvx/p+dr5zAwAAAAAAAAAAAAAAAAAAAAAAAMC+smzSCQAAAAAAAAAAAAAAAAAAAAAAAAAAsHArJp0Ai19VnZjkVWPNV7TWTr6D5/35JC8ca/6n1trz78h5AQAAAAAAAAAAAAAAAAAAAAAAAODOQFFJbrfW2nlJzpvAvG9L8rZ9PS8AAAAAAAAAAAAAAAAAAAAAAAAA3BkoKgkdrLjv0V3i7Jya6hInSVZ2i5SsXH9gt1hTq9Z0i3X1llu7xTpkv2Vd4uzacEiXOEly47bbusVat3x5t1g71qzvFov5m1p/8KRTWJK2LFs16RQWnR5/MZYd1O+9lIVZvq7f33zm78C1qyedwpK0flWf8z8W5l5re35SYb78bZ2cA9Y4n5yEtau810xCW3vApFNYkg7fYL9PwuEHuT7G0rJupc9Pk3CX9esmncKStN+uHZNOYUk6ZN3aSaewJC3besukU1h81t/+8++D9u/3fTkLs37n1kmnsCTtTE06hSXpxm3OaRbigE4f87cd4L6OSVi+xrnkpKxc0e9+NOZv165dk05hSXJ9bDLcTzMZy2/z2Wnhbv/1gmXOaSbG59bJWNN2TjqFJena1RsmncKi0utT/mr3MU3E2ql+v8eqlf3OS191yhO7xTrz3X/ZLdY5pz6pS5wd3/tWlzhJsnb9xm6xanW/Y/hHz/qZbrFe8p6/6hbrNc85qVus7d/9Rpc4K9b3+7tTy/u9l/7XJ/5Ut1h/8NFPdIt11lNP6BZr143XdolzxIZ+/w+3t26h8j86vt5f9Gcf6xarZ15rt97YJc5dDux3f+m22/qdwx9zz8O7xfo///Kv3WI96O537RZr4/59Pucfsn7/LnGSvsdw3er9usX67GXf7Bbrfof1+91Mr2O4sW3vEidJlnX8HVzreM9Qx5dWVrR+dTamVvQ5f9i6X7/30gP36/fdWutYk+T7t/R7nR56t3t1iwVwh2i+bweWBne5AAAAAAAAAAAAAAAAAAAAAAAAAAAsQopKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQopKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQopKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQopKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQopKAgAAAAAAAAAAAAAAAAAAAAAAAAAsQopK3k5VNVVVm6vqS1X1saraMLQfWVVbh77dj1OHvl+oqkuq6uJhvScN7edW1RXD2Iuq6idG2p82PD+/qr5aVV+sqguqatNYPq+tqu9U1bKqOnpk7utGYv/vYeyDquoTQ7yvV9XLq6qGvtOq6uph/Feq6oyqWj08P3pkvjOr6n/Nsm9G98GlVfWOqlo50r9imOOVw/JLR/KdGnn+gqo6a9iu0f25YZZ5j6uqVlXPG2nbNLS9eLb5h7blVfX5qnr0SNvfVdXT53otAAAAAAAAAAAAAAAAAAAAAAAAAMC+pKjk7be1tbaptfbgJNclef5I3+VD3+7HO6rq7klemuRRrbVjkjw8ycUj65zZWtuU5DeTzFisMcmzW2vHJnljklfvbqyqZUlOTvKtJD/VWrtk99xJPro7dmvtsVW1Zmh7ZWvtqCTHJnlEkl8Zmed9w7qPHHI+NMmvJ3ljTbtbkl8ecp3N5UOMo5PcPcnPjfSdkORrSZ5eVdVa+72RfLeO7LfXDePPHtufN+xh3i+NzXVKki+Ojfl38ydJa21q2Aevr6qVVXVKkl2ttT/fw1wAAAAAAAAAAAAAAAAAAAAAAAAAsM8pKtnXZ5LcbY4xd0lyc5ItSdJa29Jau2KGcf+Q5L4LnO+4JF9O8qZMF1Hck2cl+afW2t8Nedya5FczQ4HI1tq1SS5Lcnhr7W+TXJXk1CRnJzmrtXb9HHPtLtb4ubF8T0lyTpJvJvmJuWIs0DeSrK6quw4FIx+f5G/Gxsw4f2vts5net2cl+f1M75f/oKpOr6oLq+rCd5x7buf0AQAAAAAAAAAAAAAAAAAAAAAAAGDPVkw6gR8UVbU8yX9K8taR5vtU1eaR5V9L8ukk/5bkiqr6eJIPttY+NkPIk5JcMse0j0/y4ZHlU5K8J8lHkvx+Va1sre2YZd0HJfn8aENr7fKqWldV68e27Z5JVie5eGj69UwXiPx6a+2dc+S4O8bqJA9L8sKR5ccm+aUkG4bcPz1HmDOq6jnD8+tba4+ZY/xfJHl6ki8kuSjJ9rF89jT/byX5VpLXttYumyl4a+3NSd6cJFdff2ObIxcAAAAAAAAAAAAAAAAAAAAAAAAA6GrZpBP4AbBmKBz5vSR3TfL3I32Xt9Y2jTz+sbU2lelikE9L8rUkZ1fVWSPrvHqId3qSX5xlzndV1RVJXprkDUlSVauSPCHJh1trNyX5bJITb+e2PaOqLk5yWZI3tta2JUlr7btJPpHkTfOIsbuw5r8luaq1trsw5c8k+WRrbWuSDyR58lCYc0/OHtmXcxWUTJL3Z7qo5O5im6Pmmv/RSW5M8uB5zAMAAAAAAAAAAAAAAAAAAAAAAAAA+5yikrff1tbapiT3SlJJnj/XCm0+XiDyAAAgAElEQVTa51prf5DkmUmeOtJ95lA08YTW2pdmCfHsJPdO8vYkfzy0nZhkQ5JLqurKJI/KdDHF2Vya5KGjDVV17yRbhqKUSfK+1toxSR6R5JVVddjI8F3DYy6XD/vnPkkeWlU/O7SfkuSxQ66fT3JwkuPnEW/eWmvfS7IjyQlJPj7WPev8VbV/kj8clu9SVU/omRcAAAAAAAAAAAAAAAAAAAAAAAAA9KCoZCettVuTvCDJf62qFbONq6ojquohI02bknxjL+ZrSV6e5OFV9YBMF0l8XmvtyNbakUl+KMkJVbV2lhDvSvKoqnrskNeaJK/LdDHF8bkuTPLOJC9caJ4jMa5J8ptJfquq1if5yST3HMn3+dlzEcy99YokL2mtTe1umMf8r0jy/tbaV5L8SpKzq2r1HZAbAAAAAAAAAAAAAAAAAAAAAAAAAOw1RSU7aq19IcnF+f+LE96nqjaPPF6QZGWSP6qqr1TV5iTPyF4Wa2ytbU3ymiQvSfL4JH810ndLkk8lOWkP6z4pycuq6qtJLklyQZLXzzLdq5L8fFUdsDe5Dj6cZG2SM5J8orW2faTvI0lOqqr99rD+GWP788i5Jmytfbq19uGx5pP3MP+xQ//vDet/Icl5md7HAAAAAAAAAAAAAAAAAAAAAAAAAHCnsWLSCSx2rbV1Y8ujRRzXzLLa8bPEOm2u9tbacWN9r9lDbk/ZU+zW2iVJjhtvH/rOTXLuyPJ3kxw2V65jMa5M8uCR5Zbk2FnGXpfk0JHl8f16VpKz5ppzGHt+kvNnaB9d/+17mP/+Y30vmM+8AAAAAAAAAAAAAAAAAAAAAAAAALAvLZt0AgAAAAAAAAAAAAAAAAAAAAAAAAAALNyKSSfA4ldVRyd551jz9tbaw+7geU9M8qqx5itaayffkfMCAAAAAAAAAAAAAAAAAAAAAAAAwJ2BopLcbq21S5JsmsC85yU5b1/PO5Nl13+/S5w1a9Z2iZMky1bt1y3W1K1busXKrbd0C3Xwio5vYbe2LmGmbrquS5wkWX/QId1i7di2rVusVQds6BaL+VuxfNmkU1iS1u63ctIpLFnLdk1NOoUlqe3cMekUlqTlt22ddAqLzAFdokx1PC9dEg7scw64a7vX+0Is229Nlzhty01d4iwpB/R5r9l1w7Vd4iwZnfb7elc8J2L5ju2TTmGR6fN637HTZ6dJuHW7z04LdVCHGCsO3NghCntjV8fry0vCgX3CrLrlhj6BloqNfT63bv32FV3iLBXrD+7zXdb+y/p8T8fCLFu9etIpLFkrVyyfdApL0vL9+3wOY2Ha9VdPOoXFZX2f1+l1t9zaJc5Scfcc3CXOutXuL1iILdv6XF+56mafWRfqgE6fW/e7zXvNwvT53Lpmh+9bWToOWN3vPmjmb8eN1086hcXnkLvc7hA7Ux0SYW9M7do16RSWpKu3+557IdZ3inPQzX1+97R0HNYlytU3uVd1IQ7qdH2stX7v723Hbd1ibbut3/0m55z6pG6xznjnR7vFesOj7t0lzoqOv13reQxv7XgMX/Ock7rFOuOdH+sW648fcWSXOMvW7N8lTpLUzp3dYm3f1e867llPPaFbrFd99PxusV58TJ+/Ycs3HtolTpIs73hLwNYd/f4f/o+O/w9f9Gf9/h9+4DmP7RJn27I+v0VIkltv6/demqzqFun+h/f7DfaV1/S7JrLfyj43s+/X8Tf0W7b1u8/7wLX97jc58tAed5dO++Y1/e6363UMl63r9/dwbcdzmmt39fu9+oFr+/2fvrXj5YJeV5cPaP3+7rSd/f4gto7nR4cc0PG8ze/CAQDuFFSoAgDgTkVBSQCYpggnAAAAwA8WBSUBYJoinAAAAAA/WHoVlAQAAAAAYO8pKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAitmHQCAAAAAAAAAAAAAAAAAAAAAAAAAD21XVOTTgFgn1g26QQAAAAAAAAAAAAAAAAAAAAAAAAAAFg4RSUBAAAAAAAAAAAAAAAAAAAAAAAAABYhRSUBAAAAAAAAAAAAAAAAAAAAAAAAABYhRSUBAAAAAAAAAAAAAAAAAAAAAAAAABYhRSXvxKrq4KraPDy+V1XfGVluI883V9VvDuucX1XfrKoaifPhqtoyPD+yqrYO61xaVf+zqpaNte9+nDqsc2VVXVJVF1fV/6mqe43l+eGq+ufh+Ykj62+pqq8Oz99RVadV1evH1j2/qn50rnmqamqm7Z1lv+1xH4y0/XpVbauqA0fanlJVHx9ZftQw34r5HTUAAAAAAAAAAAAAAAAAAAAAAAAA2DcUyrsTa61dm2RTklTVWUm2tNb+aFje0lrbNMuqNyR5ZJJPVdWGJIeP9V/eWts0FEr8RJInJ7lod/ssMR/TWrumqn47ycuS/Jchjw1JHppkS1Xdu7V2XpLzhr7zk7y4tXbhsHzaPDZ7xnmSbN1DbjOZax8kySlJLkjylCRvS5LW2ger6nlV9awkf57kjUl+ubW2cwFzAwAAAAAAAAAAAAAAAAAAAAAAAMAdbtmkE+AO8d4kzxyePyXJB2caNBRK/HSS+y4g9meS3G1k+SlJPjY2Zw/j8yzUHvdBVd0nybpMF648ZWzdX03yu0nOSnJBa+3TM01QVadX1YVVdeHb3/Pe25EqAAAAAAAAAP+XnTuPt+ws60T/e04NqarMA4QEhDBGIEAQ+kqjQIJMKsggCJEW49BoN4iES9RmuDfiiEAHkEgbFQI2Y4OBBpVoA7lERCSGgkAgQEwEImgSQshQ46nn/nFW6eZwTtU5lZXadTjf7+dzPlnrfd/1vM96986uvffa6wEAAAAAAAAAAAAAAGD5FJVcuTZW1eaJv6dP9H0wycOrak3mCiu+Y6EAVbUpyQ8luXRouvu8mA9b4LDHJXnPxP5pSd42/M0vznhrzJ9nT+e7kL2twTMyV3jyoiQnVtWxuzu6+x+H8c9N8quLTdDd53b3g7v7wT992pj1NAEAAAAAAAAAAAAAAAAAAAAAAABg79ZOOwH22ZbuPnmRvtkkf5O5wokbu/uqqprsv3tVbU7SSd7b3X9ZVSckuWIPMT9cVUcluSnJS5NkKMR4zyR/091dVTuq6qTu/swiMXoJ7d8xzxLOdyF7W4PTkjy5u3dV1buTPC3J64bzWpPk0UMOd0ly7TLmBQAAAAAAAAAAAAAAAAAAAAAAAID9YmbaCXCbeXuS1yZ55wJ9V3T3yd39wO4+a4nxTs1cgcXNSX59aPuJJEcmubKqrkpyQuaKNS7mumH8pKPy7UUbF5pnXy24BlV1v8wVw/zrIe9n5Nvz/q9JLk3yc0nOqXnVKAEAAAAAAAAAAAAAAAAAAAAAAADgQKCo5Hevi5L8TpK3jRWwu3cmeX6SZ1XVUZkrxPi47j6hu09I8qDMFWhczCeS/EBV3SFJqurBSQ5K8pW9zLOvFluD05KctTvv7j4+yfFVdZchtxck+ZXu/kCSq5P8/K3IAQAAAAAAAAAAAAAAAAAAAAAAAABuE2unnQD7bGNVbZ7Y/0B3/9rune7uJK9cZsy7z4v5hu5+7eSA7v5aVb0tyXOS3CXJ3030XVlVN1TV93f3x+cH7+5/qapfTvIXVTWT5KYkp3X3rgXGTs7zG3s734XsYQ2ekeRH5rWdP7Q/IMnvdfc1Q/vzk1xUVe/u7m/saT4AAAAAAAAAAAAAAAAAAAAAAAAA2J8UlVwhuvuseftrFhl3yiLthwz/vSrJSQv0X5Vk4yLHnjBv/5eGzd9YYOz37SmX7n5vkvcuc55Fz3eRON8x79C+ew3utkDfCxY55itJTlioDwAAAAAAAAAAAAAAAAAAAAAAAACmaWbaCQAAAAAAAAAAAAAAAAAAAAAAAAAAsHxrp50A7KuqOj/JXec1/2p3XzCNfAAAAAAAAAAAAAAAAAAAAAAAAABgf1JUkhWru5887Rx2m735xlHirD/6dqPESZKenR0t1phmDztqtFjrd+0cLVavWz9KnIM2bholTpLsuP7a0WKN+dy67uato8VaDQ4/9NBR4sz+y1dGibNqHHafUcLM1ChhWKbt110z7RRWnsOPGCXMzbs86ZfjsJHi9EEbR4rEctTMmmmnsCpdM+P5vhy327VllDh98FivWCzXzBFHTzuFVWnXNp9bp2HX9m3TTmFV2tXTzmB1mu1d004B9qvr2+en5Th8pDhbN3ofPw3/evhx005hRTl2pDhjXadjeS7/129OO4UV58EjfBe/bceBeR1/NdjWroEsxzhXuZObvKdZlrF+UXPM1780UqRV4q7fM0qYXd+8bpQ4q8oIv6k5dt0IebBP/nXnzLRTWFHG+VWH637TctnXr592CivK94/0O6ads76Ln4brDhrrG87VY4xfBazZ4Vrr8o3zyXXdGu9ppuGgtW5lm4Z1fsc0FccefvC0U1iVdhw03rpvmBnvxzn3Ony897jb/uWfRov1B6ecOFqs5130xVHivO7EB44SJ0k2jfiTh3seNuZj+OXRYp1zyveOFut5H7l8lDh/+NS7jhInSdLj/X943I5vjRZr++fGeb4nyfPuON4T9R83HDNKnEOuu2GUOEly+KYNo8U64Zjx7k/etGW8c3z3f3rUaLF+/H/+n1HivOhJjxwlTpKsqfE+O319dpz78ZPkyIPHu5/7jkeO993rth3j3Pv+tW+O95o1pquvHy+vYw4d7zE87sixrnKP9xhef/M49wQlydXbd4wW6y7HHDlarPVrx3t9mP3GePcV98w4ec1sHO9i5OwtN40Wa0xrN4z37/SNn71ktFiHPnS8f8cAAFYbV0ABAAAADkCKcAIAAAAAAAAAAABwoBuroCQAAAAAAPtOUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBVIUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBVIUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBVo7bQTAAAAAAAAAAAAAAAAAAAAAAAAABhTd087BYD9YmbaCQAAAAAAAAAAAAAAAAAAAAAAAAAAsHyKSs5TVXeqqvdW1Rer6oqqek1VHT5s33MYs66qLq2q76+qv6mqH544/mlV9YFh+9iqemtV/WNV/UNVfayqnjz0nVJVN1TV5om/Rw19XVWvmoj5wqo6aw85n1hVFw4xPldV587rf35VbR3O4+iJ+b5eVVdP7N+rqj4z79izquqFw/Z5VXXlMPZTVfVD+zjP+qq6aeK4+1bVh6rq8mHdX1pVNfSdXlW7qur+E+M/U1Un7GE9rqqqi+a1bV7g3F495DUz0faCqnrDxP4zq+rPF5sLAAAAAAAAAAAAAAAAAAAAAAAAAKZFUckJQyHDP0vynu6+Z5J7JTkkyUuS/LckrxuGvjDJ33b3x5P8YpL/XlUbquqQJL+d5DlDrPck+Uh33627H5TkGUnuNDHlRd198sTf/xnatyV5SlUds8TUX5vk7CHGvZP8/rz+05J8IslTuvu63fMl+R8Tx52cZPsS5jpzGPv84fhlz9Pd/zZPVW1M8r+T/G53n5jkAUkemuS/TsT9apIXL2kl/t2hVfU9wxz3nt85FJJ8cpKvJHnERNdrk3xfVf1AVR2R5DeT/NIy5wYAAAAAAAAAAAAAAAAAAAAAAACA25yikt/ukUm2dvcbk6S7Z5OckeRnk7w/SarqVzJXSPK/DWM+k+R9SX41yf+T5M3dfcUQa3t3/1vhxe7+p+6eX/BxITuTnDvMvRTHZa7w4u55Lt29XVV3z78XxjxtifGW4mNJ7jjCPD+Z5KPd/VdJ0t23JHlukl+bGPP+JPetqhOXEfedSZ4+bJ+W5G3z+k9J8tkkr5/Mt7t3Zq6g5TlJfi/JG7r7H5cxLwAAAAAAAAAAAAAAAAAAAAAAAADsF4pKfrv7JvmHyYbu/laSLye5R5JfTvLyJL/Z3d+YGPbrmSuO+MOZK0S4O9Yle5nvYVW1eeLv7hN95yR5ZlUdvoS8z07yoar6y6o6o6qOmOh7RpK3J7koyYlVdewS4i3F45K8Z4R5FlrzK5IcUlWHDU27MreuL1pGfu9O8pRh+wmZK/w5aXehyfOT/GhVrZuY/2+TfC7Jo/Lvj+d3qKpnV9XFVXXxm9/1Z8tIDQAAAAAAAAAAAAAAAAAAAAAAAABuPUUll+dxSb6W5KTJxu6+Ock7kvxpd29b6MCqOqeqPlVVn5hovqi7T574u2Ii5reSvDnJ8/aWVHe/Mcm9k/yvJKck+buqOmjoPi3J27t7V+YKLT5tT6GW0P6KqvpCkrdmrsDmbsuZZ1+8NclDququSxx/XZLrq+oZmSsQecvujqpan+RHkrxnWOePJ3nsRP8hSR6cZF2S2y02QXef290P7u4HP+upT1lsGAAAAAAAAAAAAAAAAAAAAAAAAADcJhSV/HaXJXnQZENVHZbkzkmuzVyBx/8ryY9U1f3nHbtr+Nvts0m+b/dOdz8nyQ9lD0UKF/DqJD+X5OC9Dezuf+7uN3T3E5PsTHJSVd0vyT2T/HVVXZXkGZkr/riY65IcOa/tqMyd+25ndve9kvxqkjckyT7MM2mhNb9bkpuGgo+7z29nklcN8y7VO5Kck+Rt89ofm+SIJJcO+f7gvHx/Pcn/TPJbSc5exnwAAAAAAAAAAAAAAAAAAAAAAAAAsN8oKvntPphkU1U9K0mqak3mChmel7nigr/d3V9N8oIk51RV7SHWh5JsqKr/MtG2aTnJdPc3krwzc4UlF1VVj6uqdcP2HZIcneTqzBVKPKu7Txj+jk9yfFXdZZH5bkrytap65BDrqCSPS/I3Cwx/XZKZqnrscueZ5y1JfrCqHjXMuTHJa5P83gJjz0vyqCy9MOf5Q5wL5rWfluTnd+eb5K5JHl1Vm4YCmT+a5OVJzk1yQlU9eonzAQAAAAAAAAAAAAAAAAAAAAAAAMB+o6jkhO7uJE9O8rSq+mKSLyTZmuSvktw5yZ8M496X5Pokz9pLrCcleURVXVlVf5/kTUl+dWLYw6pq88TfUxcI9aokx+wl9cck+UxVfSpzBRTP7O6vJ3lG5gorTjp/aF/Ms5K8tKo2Z64w5q939xWLnN9vJvmVfZxnd5wtSZ6Y5CVVdXmSS5N8InNFK+eP3Z65gpO331vcYfyN3f3y4bgkSVVtylyhzD+fGHdz5gpnPiHJ65Oc0d1bu3tXkv+S5DVVtX4pcwIAAAAAAAAAAAAAAAAAAAAAAADA/rJ22gkcaLr7K5krLjjfBfPG/di8/bMWiPW1LFJYsbsvTHL4In2HTGz/S5JNe8n5BUlesED73RYZu6ecL0ty6iLznD5v/91J3r2HnPY0z+Q5XprklEXinJfkvIn912ausOSiuvuEBdquSnLSsHvUAv1PGTbfMa/94iT32dN8AAAAAAAAAAAAAAAAAAAAAAAAADANM9NOAAAAAAAAAAAAAAAAAAAAAAAAAACA5Vs77QRYuqp6cZKnzWv+X939W9PIZ9qq6uNJDprX/FPdfek08gEAAAAAAAAAAAAAAAAAAAAAAACA/UlRyRVkKB65KgtILqS7v3/aOQAAAAAAAAAAAAAAAAAAAAAAAADAtCgqCSNYs3HTKHF23nD9KHGSpNYfNFqstYcdMVqsma1bRou1a9fsaLG27KpR4hx08zdHiZMka4663WixvnbDzaPFOvbwg0eLxdKtO+yoaaewKtX2bdNOYQU69FZHWHvwrY/Bvtm2c7x/W1mGW8b7d3pVOHSc14jt6zeOEgdWhBuum3YGK89h47zW9I3jfUZcFUZ6ja+ZNaPEYXlm1q2bdgqr0sw4X2mxTDOx8NOw84ZvTDuFleeww0YJ860tW0eJw/Icsm5m2imsSgcftH7aKaxKffON005hZRnps9Pdjz16lDgsz6G1c9oprFrr1vi3dRp27eppp7AqzazfMO0UVqU1rnNPxcwGz/dpOXSDz0/TMLPF7wuWZaRrfnc++vBR4rA8u9p7yWlY4+LTdPSuaWewau2YtfasHn7XwWqyc3a838Tv2r59tFg94n1wMyPdyzhmrD/4maeMEicZ9zGc3TbevYxjGvN7rTFjnXP6k0eJc8ulHx8lzthqxOtFs1tuGS1W7xrvfeldrv/yKHHe+63xyg/c/87HjRbroLXj5XX7w8f7Xn/rzHj3p7zoSY8cJc5vv+dDo8RJkuOPHOd3aElyhyPGW/fbH3bIaLG2bh/vWv6Jx49zb/i5HxrvtfQOIz7fD9s4Xv2COx8zXv2CHTvHey0d6zF8/P3vMUqcJLnmlvHel475Xuv6m8d7r3WHg8f7f3osNea19xHfO4ypd4z33Np69VWjxQIAYN/5xTQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwAq0dtoJVNVskkuTVJLZJM/t7r+tqhOSvL+7T5o3/k5Jzklyn8wVxXx/kjO7e/vQ/4NJ/nuSw4ZD/nt3nzv0nZXkPye5JsnBw7wv6e7Lhv4LkxyXZGuSm5L8bHdfPq99e5L/3N2bh2OuSnLjkHuSfKS7n1dVD0nymiQHDX/v6O6zqurYJH+S5HuSrEtyVXf/SFWdkuSF3f34iXM9b1iDd+1LDous93lJHpHkW0k2Jvm7JC/q7q9OxHpwd1877D8pyflJ7t3dnx/aZpK8Oskjk/SQ008keftwrkcNsa8epn1SkuuT/H6Sh2busf5okl/q7hv28FhPnv+6JL+R5MeHc92W5GXd/ZeLnOfuNUmSNUn+LMlvdvfWyfmGdX9vkiuHsdd296PmPVeS5APd/WsLzQUAAAAAAAAAAAAAAAAAAAAAAMABZteuaWcAsF9Mvahkki3dfXKSVNVjk/xO5ooefoeqqswVB3x9dz+xqtYkOTfJbyU5s6rukOStSZ7U3ZdU1TFJLqiqq7v7z4cwZ3f3K4d4T0/yoaq6X3fvLh74zO6+uKqeneQVSX5sXvvPDO2Pnkjt1N1FGCe8KclPdPenhjxPHNpfluSvu/s1Qw73X8ZaLTeHxZw5FGqsJM/P3BqctLsw5zynJfmb4b//79D29CTHJ7l/d+8aCn3e3N3fP5zT6ZkrTPnc3UGq6l1JPtPdzxr2fz3JHyd52hJz/o3MFdU8qbu3DcU5F3yeTDi1u6+tqkMy9zz5wyQ/vcC4iyaLeU74t+cKAAAAAAAAAAAAAAAAAAAAAAAAABxoZqadwDyHJbl+D/2PTLK1u9+YJN09m+SMJD9bVZuSPCfJed19ydB/bZJfSfJrCwXr7nck+askP7lA90eS3GOB9o8lueMSzuX2Sb62O8/uvmxoPy7JVydy+PQSYu1rDnvUc85O8vUkPzy/fyjG+INJfi7JMya6jkvyte7eNcT5ancv+rhV1T2SPChzhSF3e1mSB1fV3feW5/DY/uckv9Td24Y5/6W737m3Y4exNyX5xSRPqqqjlnIMAAAAAAAAAAAAAAAAAAAAAAAAABzoDoSikhuranNVfT7JH+fbCw/Od98k/zDZ0N3fSvLlzBWA/I7+JBcP7Yu5JMn3LtD+hCSXLtD+uCTvmdf24eEcNlfVGUPb2Ukur6rzq+oXqmrD0H5Okj+pqg9X1Yur6vg95LaYpeawVIutwROTfKC7v5Dkuqp60ND+ziRPGOZ6VVU9cC/x75Nk81AENMm/FQTdnD0/NrvdI8mXh8d6nwzHXpnkngt0P2xi7V480X7GRPtj5x9UVc+uqour6uI3vX1J9S0BAAAAAAAAAAAAAAAAAAAAAAAAYDRrp51Aki3dfXKSVNV/TPLmqjppP85f8/bfUlVbklyV5Jfmta9PckiSk+cdc2p3XzvZ0N0vq6q3JHlMkp9MclqSU7r7gqq6W+YKQ/5wkk8O59uL5DfZvqwclmH+Gux2WpLXDNtvH/b/obu/WlUnJnnk8PfBqnpad39wH+ffXxY7z4u6+/ELtJ/d3a9cLFh3n5vk3CS57kufX+zxAwAAAAAAAAAAAAAAAAAAAAAAAIDbxMy0E5jU3R9LckyS2y0y5LIkD5psqKrDktw5yZcW6h/2P7uHaR+Y5HMT+8/s7pO7+0nd/ZXJ9iR3S/KmJL+/l1NJknT3Fd39+iQ/lOQBVXX00P6N7n5rd/9Ukk8keXiS65IcOS/EUUkmC0UuO4clmr8GqaqjMlcw8o+r6qokZyb5iaqq4Ry2dfdfdveZSX47yZP2EP+yJCdX1b8934btk4e+vflSkjsPj/U+qapDk5yQ5Av7GgMAAAAAAAAAAAAAAAAAAAAAAAAADiQHVFHJqvreJGsyV2BxIR9MsqmqnjWMX5PkVUnO6+5bkpyT5PSqOnnoPzrJy5P83iLz/XiSxyR521Ly6+5O8tIkDxly3dO5/OjuAoxJ7plkNsk3q+qRVbVpGHNokrsn+XKSLyY5vqruPfTdJckDkmze1xz2puY8L8lxST4wr/upSf60u+/S3Sd09/ckuTLJw6rq+6rq+CHGTJL7J/mnxebp7i8l+WSSl0w0vyTJJUPfHg2P7Z8keU1VrR/mvV1VPW2J53lIkj9I8p7uvn4pxwAAAAAAAAAAAAAAAAAAAAAAAADAge5AKCq5sao2V9XmJO9I8tPdPTv0nVhVX939l7lCh09O8rSq+mKSLyTZmuRFSdLdX0vyn5L8UVV9PsnfJnlDd79vYr4zhvm+OIx9ZHdfs9Rku3tL5gpZnjnR/OHd51BVbx7afirJ5cN5/WmSZw7n9aAkF1fVp5N8LMkfd/cnunvbkM8bh2PeleTnu/uGW5HDYl5RVZ/K3Pr9hySndvf2eWNOS3L+vLZ3D+23T/K+qvpMkk8n2ZnkdXuZ8+eS3KuqrqiqK5Lca2jb7dse6wUKRr4kyTVJLhvmfX+Sb2uSLvsAACAASURBVO1lzg8PY/8+c4U7f2Ev4wEAAAAAAAAAAAAAAAAAAAAAAABgxVg77QS6e80i7VclWbfIYU/YQ7yPZK5Q4kJ9ZyU5aw/HnrKU9u5+1cT2CYsc84xF2l+R5BWL9H00yUPGymGROKfvpX93rFMX6HvtxO4H9hDjvCTnzWu7PnNFMxcaf1UWfqz/18SY7Ul+Zfjbqz2tyTDfScP2hUkuXGDMWUuZBwAAAAAAAAAAAAAAAAAAAAAAAACmZWbaCQAAAAAAAAAAAAAAAAAAAAAAAAAAsHxrp50At42qOifJD8xrfk13v3Ea+dxWqurjSQ6a1/xT3X3pNPIBAAAAAAAAAAAAAAAAAAAAAAAAgP1FUcnvUt39nGnnsD909/dPOwcAAAAAAAAAAAAAAAAAAAAAAAAAmAZFJWEEaw45bJxAu2bHiZOkama0WLtm1owWa1S9a7RQ23aOs/abNmwaJU6S1PZto8XasH68l/tdPVoolqHW+id7GmbXHTTtFFalXdu2TDuFVWvbjp3TTmFV2rV967RTWJU2zHhTMw2Hblg/7RRWpVpn3aelZ8f7nM/S9YjfF7AMB+r3R9/lbty6fdoprCjHjRTn5m3WfRp6l9f3aVm3xmv8VIx4nYelm6madgqr0oxrIKwifdDGaaewet1y87QzWFkOPXSUMNtH+i0GrATlsxOwH/TsjmmnAPvNLt8JT8WsHwlPRc96vk/LmhnfxU/DLdu9p5mGXSPen8LSjXlf0OowzveSY76lmdmwYbRYO7/1zdFi1Zp1o8Uay/pd472+78x4/0av2XTwaLF23nD9aLHGvPdzzN/urZ8d53Vrx7rxnqO9Y7zn1pjvvWvteOe4a8st48XaNs79KUdsut0ocZLkGzeNd5/YCbc7crRYW7ePdw/VLdvH+03hmpFeH44/cqT73pP88/XfGi3WnY46fLRYsyN+f3Tj1vHet23bOc5z644jPoZf/cYNo8U64uBjR4u1Y+d392O4a+t49wyOeul9xLeSY94n1rMj/j57pPeANWLtj5n14322GPN6UY2YFwAABwZXQAEAAAAAAAAAAAAAAAAAAAAAAAAAViBFJQEAAAAAAAAAAAAAAAAAAAAAAAAAViBFJQEAAAAAAAAAAAAAAAAAAAAAAAAAViBFJQEAAAAAAAAAAAAAAAAAAAAAAAAAViBFJQEAAAAAAAAAAAAAAAAAAAAAAAAAViBFJQEAAAAAAAAAAAAAAAAAAAAAAAAAVqADvqhkVc1W1eaq+lRVXVJVDx3aT6iqzyww/k5V9d6q+mJVXVFVr6mq9RP9P1hVf19Vnx/+nj3Rd1ZVXT3M98Wq+rOqus9E/4VVdfmQy0er6sQF2j9RVSdPHHNVVV06xNxcVa8d2h9SVR8f2j5XVWcN7cdW1fuHWJdV1V8M7adU1fvnnet5VfXUfc1hkfVeLK/Tq+p1w/aJw3y7x5xbVY+diH/TkMvmqnrzEtf9hQvkctPE9r2q6i+Gx+WSqnpnVR27yDmcUlU3VNUnhzw+UlWPX2i+YQ2vnMj9eYus2UMXWzMAAAAAAAAAAAAAAAAAAAAAAAAAmIa1005gCbZ098lJUlWPTfI7SR6x0MCqqiR/luT13f3EqlqT5Nwkv5XkzKq6Q5K3JnlSd19SVcckuaCqru7uPx/CnN3drxziPT3Jh6rqft19zdD/zO6+eCiK+IokPzav/WeG9kdPpHZqd187L903JfmJ7v7UkOeJQ/vLkvx1d79myOH+y1ir5eawkMXymvTazK3Te4cc79fdlya5YNi/MMkLu/viYX8p676oqtqQ5M+TvKC73ze0nZLkdkn+ZZHDLuruxw9jT07ynqra0t0fXGDsmd39rgXal7pmAAAAAAAAAAAAAAAAAAAAAAAAALDfzUw7gWU6LMn1e+h/ZJKt3f3GJOnu2SRnJPnZqtqU5DlJzuvuS4b+a5P8SpJfWyhYd78jyV8l+ckFuj+S5B4LtH8syR2XcC63T/K13Xl292VD+3FJvjqRw6eXEGtfc1hOXpPm53jpXmIua90X8JNJPra7oOQQ48Lu/sxSDu7uzZkr1vncJc4HAAAAAAAAAAAAAAAAAAAAAAAAAAe8lVBUcmNVba6qzyf54yS/sYex903yD5MN3f2tJF/OXAHI7+hPcvHQvphLknzvAu1PSLJQMcXHJXnPvLYPD+ewuarOGNrOTnJ5VZ1fVb9QVRuG9nOS/ElVfbiqXlxVx+8ht8UsNYeFLJbX/DEfqqq/rKozquqIveSzL+s+6aQFjl+uxR7HJHnFxNrcb6J995p9fKGDqurZVXVxVV183p/+z1uZHgAAAAAAAAAAAAAAAAAAAAAAAAAsz9ppJ7AEW7r75CSpqv+Y5M1VddJ+nL/m7b+lqrYkuSrJL81rX5/kkCQnzzvm1O6+drKhu19WVW9J8pgkP5nktCSndPcFVXW3zBWG/OEknxzOtxfJb7J9WTksGGyRvOaNeWNVXTDk+MQkv1BVD+jubXuLP0XzH8dJZ3b3uxZo3+Oadfe5Sc5Nkm9+/Z8Xe3wAAAAAAAAAAAAAAAAAAAAAAAAA4DYxM+0ElqO7P5bkmCS3W2TIZUkeNNlQVYcluXOSLy3UP+x/dg/TPjDJ5yb2n9ndJ3f3k7r7K5PtSe6W5E1Jfn8vp5Ik6e4ruvv1SX4oyQOq6uih/Rvd/dbu/qkkn0jy8CTXJTlyXoijkkwWPVx2DsvJa96Yf+7uN3T3E5PsTLKnQp/7su6TPrvA8cs1/3EEAAAAAAAAAAAAAAAAAAAAAAAAgBVtRRWVrKrvTbImcwUWF/LBJJuq6lnD+DVJXpXkvO6+Jck5SU6vqpOH/qOTvDzJ7y0y348neUySty0lv+7uJC9N8pAh1z2dy49WVQ2790wym+SbVfXIqto0jDk0yd2TfDnJF5McX1X3HvrukuQBSTbvaw7LyWvemMdV1bph+w5Jjk5y9R7CLmvdF/DWJA+tqh+dyOHhVbWnQpaT+d4/c2tyzhLnAwAAAAAAAAAAAAAAAAAAAAAAAIAD3tppJ7AEG6tqd+HESvLT3T071D08saq+OjH2jCRPTvIHVfXSzBXN/IskL0qS7v5aVf2nJH80FGysJK/u7vdNxhjGHJzkM0ke2d3XLDXZ7t5SVa9KcmaSnxuaP1xVs8P2p7v7WUl+KsnZVXVLkp1Jnjmc14OSvK6qdg75/3F3fyJJhrzeWFUbkuxI8vPdfcOtyGEhi+U1OeYxSV5TVVuH/TO7++t7WJOlrPtLqur5E8fcad75PD7Jq6vq1cO5fzrJLy82Z5KHVdUnk2xK8q9JntfdH9zDeAAAAAAAAAAAAAAAAAAAAAAAAABYUQ74opLdvWaR9quSrFvksCfsId5HkvyHRfrOSnLWHo49ZSnt3f2qie0TFjnmGYu0vyLJKxbp+2iSh4yVwzLzOi/JecP2C5K8YA8xTlmgbdnr3t2HTGx/PsnjFs/82467MMnhe+g/a2L79EXGnLCUuQAAAAAAAAAAAAAAAAAAAAAAAABgWmamnQAAAAAAAAAAAAAAAAAAAAAAAAAAAMu3dtoJMB1VdU6SH5jX/JrufuM08tkXVfXYJC+f13xldz95GvkAAAAAAAAAAAAAAAAAAAAAAAAAwP6kqOQq1d3PmXYOt1Z3X5DkgmnnAQAAAAAAAAAAAAAAAAAAAAAAAADToKgkjGDnN68bJU4fe+dR4iTJ+u1bRotV28aLtat3jRZrzcGHjhYrW3aMEmZmw4ZR4oxt05qadgrcSr1z57RTWJXqlhunncLKc9itf21es+ngERJhXxyy4aBppwD7Te/YPu0UVqV/vOYb005hxTnumKNudYzZm72nYXWpmpl2CqtS7xjnuxWWZ+fs7LRTWJVmd433HSdL157vU3PzNp+fpmLE6yksndf46ehZ687qscPzfWp2bXT9aRoO3bB+2imsTt5LToXPrVPi++Cp2bbTc34qZtZMOwPYb27c6nvJ5ThupDi+H5uO9h6eVea4Qw/Mey6+281u3TrtFFYnr/FTMeY17kNnRrz99vCjx4t17ddHC9Xbx3l9+MaOHiVOkmwZKackOXjTeI/hLRsPHy3Whp3j3I+aJLtGvPfzmu2HjRLn8COPGSVOkuy8+abxYt34zdFi1QH6Pc1Bx95xnEDXjvdaetwR490HfOW/jnc/wv3vPNan6SQZ75rY12fH+e3/HUZc9zsdNd7r399f8ZXRYj3xQfcdLdaODeO9bzvuiHFeS8eKM3asT/7T1aPFuvuxt/5+mdvCWOt1y5oRr5cfoPfBjXm9aGNG/Pw00n1UvW68x7DWrRst1s6bbhgtVq0ZMS/3rwEAHBD8og4AAAAAAAAAAAAAAAAAAAAAAAAAYAVSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAVSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAVSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAVSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAVSVBIAAAAAAAAAAAAAAAAAAAAAAAAAYAVSVPK7RFXdNG//9Kp63bB9VlVdXVWbJ/6OmBj76qF/Zt7x1wxjP19VZ1TVYyeOv6mqLh+237xITqdU1Q0TMV45r/+YqtpRVb847J8zjL2sqrZMzPXUqjqvqq6caPvbPazF7tw/WVVfrKoLquqhE/3nVdVTh+0LJ85j80T77Lz1OmHpjwYAAAAAAAAAAAAAAAAAAAAAAAAA3PbWTjsB9puzu/uV8xuHQpJPTvKVJI9I8uGJ7nd093Or6ugklyd5YHefPBx3YZIXdvfFe5n3ou5+fFVtTPLJqjq/uz869D0tyd8lOS3J/+ju5wyxT0jy/t1zDW2PT3Jmd79rief7ju5+7nDsqUn+rKpO7e7PLTD2mQucx5bJ+QEAAAAAAAAAAAAAAAAAAAAAAADgQDMz7QSYulOSfDbJ6zNX3PE7dPd1Sb6U5Lh9naS7tyTZnOSOE82nJfm/k9yxqu60r7GXMPeHk5yb5Nm31RwAAAAAAAAAAAAAAAAAAAAAAAAAsL8pKvndY2NVbd79l+Rl8/rPmOj/8ET7aUneluT8JD9aVevmB66qOyfZkOTT+5pcVR2Z5J5JPjLsf0+S47r775O8M8nTlxDmFRPn8JZlpnBJku9dpO8tE3GPHtom1/P8hQ6qqmdX1cVVdfGb3/muZaYDAAAAAAAAAAAAAAAAAAAAAAAAALfO2mknwGi2dPfJu3eq6vQkD57oP7u7Xzl5QFWtT/IjSV7Q3TdW1ceTPDbJ+4chT6+qh2euGONzu3vrPuT1sKr6VOYKSr66u7++O3bmikkmyduTvCHJq/YS68zu3tfqjbWHvmd298Xz2r5tPRfS3ecmOTdJrv38pb2PeQEAAAAAAAAAAAAAAAAAAAAAAADAPlFUcnV7bJIjklxaVUmyKcmW/HtRyXd093Or6sFJ/qqq/vdEUciluqi7H19Vd03yd1X1zu7enOS0JHeoqmcO446vqnt29xdv9Vkt7IFJPncbxQYAAAAAAAAAAAAAAAAAAAAAAOAA0rt2TTsFgP1iZtoJMFWnJfn57j6hu09Ictckj66qTZODuvviJH+a5Jf3daLuvjLJ7yb51aq6V5JDuvuOE3P/zpDP6KrqEUmeneSPbov4AAAAAAAAAAAAAAAAAAAAAAAAADANikquHmdU1eaJv/skeVySP989oLtvTvI3SZ6wwPEvT/IzVXXorcjhfyR5eOaKR54/r+/d2XtRyVfMO4f1exj79GHMF5K8KMmPd/fn9jlzAAAAAAAAAAAAAAAAAAAAAAAAADjArJ12Aoyjuw+Zt39ekvOG7bOSnLXAYUctEOcpE7vnTbT/c5I7TOyfsoScLkxy4cT+liR3XGTsp5Pce9i+KslJ8/pP39t8E2PPy0TuC/SfPrF9yiJjDlmoHQAAAAAAAAAAAAAAAAAAAAAAAAAOFDPTTgAAAAAAAAAAAAAAAAAAAAAAAAAAgOVbO+0EWPmq6rFJXj6v+crufvJtPO/PJPnlec0f7e7n3JbzAgAAAAAAAAAAAAAAAAAAAAAAAMCBQFFJbrXuviDJBVOY941J3ri/5wUAAAAAAAAAAAAAAAAAAAAAAACAA4GikjCCWr9hlDhrbrp+lDhJkpFyGtuaTYeMFmv2phtGi7Vxw6GjxNnxzW+MEidJZtatGy3W+vUHjRZr+9rxYrF0MxsOzP+nv9vtOOjgaacA+9WO2dlpp7AqzRyg79u+2/XsrmmnsCqddKdjp53C6tQ97QyA1WCTz0/TcNA6X/FPw5qZmWmnAPvV7Q8f73t9lm7nDSNeM1oNDj9ilDCb1o93bYal23nzjdNOYYW5wyhR1rbvg6dh2w7rPi1rtm+ZdgorzDi/oVi7Zs0ocVieDXc8YdoprEqza9dPO4VV6abtO6edwoozzit8cvgm17mnYWad15ppmPGd8FSsX+u95DQc4fV9KmbWuuY3Ldt3+q5mGrZ1TTuFFWWs9/Bj3p/C0s2u3zjtFFalNTMjvs70eL83HvPazLajbj9arPWzO0aJc/SIn1mvGfF3r2P+ZvywDSN+PjxmvN9U79pyy2ixbr9xnNet7VvH+2xRW8c7v4Nuf/xosXbcMN59pOtHfD7MjnT9/ZANh40SJxn3M/6djxnn9yFJ8v997h9Hi3Wv444ZLdaRB28aJc7tDxvxXu5d472WPvFB9x0t1nv/4bOjxTr1PncfLdZYnzWPPWK8x/DmrdtHi/Wok+45Wqz3X/K50WKdcu8D7zE8ZP143/ncsn2c92zJuHndOOJza2bDeHnt2r5tlDhbarycNuzYOlqsMet19IifedaP+DkFAIB951cuAAAAAAAAAAAAAAAAAAAAAAAAAAArkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKKSAAAAAAAAAAAAAAAAAAAAAAAAAAArkKKSt1JVzVbV5qr6TFW9r6qOGNpPqKotQ9/uv2cNfT9bVZdW1aeH4544tJ9XVVcOYy+pqv840f7UYfvCqrq8qj5VVZ+oqpPn5fPqqrq6qmaq6n4Tc39jIvb/Gcbet6o+NMT7YlW9tKpq6Du9qq4Zxn++qs6oqg3D9v0m5juzqv5wkbWZXIPLqurNVbVuon/tMMfvDvsvnsh3dmL7eVV11nBek+t5xCLznlJVN1TVJ4dz+0hVPX6i/6yqeuECa765qp43tF81PEa72x+6vGcGAAAAAAAAAAAAAAAAAAAAAAAAANy21k47ge8CW7r75CSpqjcleU6S3xr6rtjdt1tV3SnJi5N8X3ffUFWHJLndxJAzu/tdVfWYJH+Y5P4LzPnM7r64qn4mySuSPHqIPZPkyUm+kuQR3f3hJLtzOy/J+7v7XcP+xiT/O8l/6e6/qqpNSd6d5L8mOWeY5x3d/dyqOjrJ5UneleT5Sf6gqh6e5Pgkv5jkwXtYnyu6++SqWpPkr5P8RJK3DH2PTvKFJE+rqv/W3b+1e+2q6qbJtauqs5Kc3d2v3MNcky7q7scPx56c5D1VtaW7P7jA2DN3r8s8p3b3tUucDwAAAAAAAAAAAAAAAAAAAAAAAAD2q5lpJ/Bd5mNJ7riXMbdPcmOSm5Kku2/q7isXGPeRJPdY5nynJPlsktf//+zce5xlZ1kn+t9TfUl3p3MhIUISBppECEqA1uiACJoAShxBwBElMDKZcQY8B1TCIYoDnBPxLmAEyThmVAJ+AHEQwoBKVEhGQARCaEgMl5BJ5CqSEBKS9LXqOX/UamdTVFVXdVayU/T3+/nsT+/1vu963mddeu9da+/1JDnrAOs+Pcn7uvuvhjxuT/LcJC9cOLC7b0zy6STHd/c7k3wxyTOTnJ/kvO6+6QBzpbtnk3xwQb5nJXllks8k+Z4DxThY3b0jyUszv30AAAAAAAAAAAAAAAAAAAAAAAAA8E1BUcmRVNW6JI9N8j8nmk+uqh0Tj0cn+WiSLyW5rqpeU1VPXCLkE5NceYBpz0xy8cTyWUnemOStSX64qjYss+6Dk3x4sqG7r02ytaqOXLBt902yKcnHhqbnJfnVJMd19x8fIMf9MTYleXiSd04sPy7J24ecD1QEM0nOmdiXl65k3glXJHnQEn0vm4j7kIn2S4e2Dyy2UlU9q6our6rLX/vGP1llOgAAAAAAAAAAAAAAAAAAAAAAAABwx6yfdgLfBDZX1Y4kJyb5eJK/nui7tru3L1yhqs5M8t2ZL0J5flWd1t3nDd0vq6oXJ/lykp9aYs7XV9XGJFuTbB9ibkzyb5I8v7u/NhRCfHySd9yBbfuJqvq+zBdjfG5370qS7v5CVb17hbFPHvbP/ZP8eXfvL0z5hCSXdvfOqvqzJC+pqud19+wysc7v7pcf5LbUMn3ndvebF2k/o7tvWGql7r4wyYVJcuP/vqYPMi8AAAAAAAAAAAAAAAAAAAAAAAAAOCgz007gm8DOoXDk/TJfuPA5B1qh532wu389ydOS/NuJ7nO7e3t3/0B3X7VEiGckOSnJa5P87tD2+CRHJ7myqq5P8qgkZy2TxtVJTptsqKqTktza3bcMTW/q7ocmeWSS36iqe08MnxseB7K/sObJSU6rqh8Z2s9K8rgh1w8nOTbJY1YQ72B9R+aLfgIAAAAAAAAAAAAAAAAAAAAAAADANwVFJUfS3bcn+dkk/09VrV9qXFWdUFXfOdG0Pck/HsR8neQlSR5RVQ/KfJHG/9Td27p7W5L7J/mBqtqyRIjXJ3lUVT1uyGtzklcl+a1F5ro8yR8n+bnV5jkR44YkL0zyi1V1ZJJHJ7nvRL7PyfJFMA9aVT008/vqgjsjPgAAAAAAAAAAAAAAAAAAAAAAAABMw5LFD1m97v5IVX0s88UR35Pk5KraMTHkj5K8LcnLq+qEJLuSfDnJTx/kfDur6hVJfiHJmZNxuvu2qnpvkicmedMS6z4pye9W1QVJ1mW+cOSrl5juN5NcUVW/1t1fO5h8k1yc5Lwk5yR5d3fvnuh7W5LfqqrDFrRPOqeq/t3E8pO7+/olxj66qj6SZEuSf07ys939roPMGwAAAAAAAAAAAAAAAAAAAAAAgLWk56adAcBdQlHJO6i7ty5YfuLE4uYlVnvMErHOPlB7d5++oO8Vy+T2o8vF7u4rk5y+sH3ouyjJRRPLX0hy7wPluiDG9UlOnVjuJA9bYuxXkhw3sbxwv56X+YKUB9TdlyU5apn+8yaen73EmG0rmQsAAAAAAAAAAAAAAAAAAAAAAAAApmVm2gkAAAAAAAAAAAAAAAAAAAAAAAAAALB666edAGtfVT0kyR8vaN7d3Q+/k+d9fJLfXNB8XXc/5c6cFwAAAAAAAAAAAAAAAAAAAAAAAADuDhSV5A7r7iuTbJ/CvJckueSunncxMxs2TDuFbzC76/bRYq0/fOtosdJz48Ua0dzcOHnNHLZplDhJUjUzWqyeHXG/e+eYip6dnXYKh6RNMz3tFA5Zo75usWJ79nmtmYa+m34+gjvD7bv3TjuFNWXLYeP8rVkbNo4SB9aKuhtepzkk3H7btDNYW444YtoZcAdU1bRTOCTNrHdhclo2zIx3rZpV8FozFTPO96modeumnQLcpbZu8nfrNMzt2zftFA5JX9u1e9oprCnHjRSn9+4ZKRKrsc933Kuyft04n723bnS9YFp877c69xgrkN8XTMVYvy+FtWB2zm8mgTvfl2/x+4LVuOfRR40SZ26vz/DT4G+n1Rntb6cRjXlfw9y+8e712zDmPWdjxdm3LzXSbzu6756fS2fvpr+Rq5kRv28d69rD3Hj3pszuHO//ztyuXaPFmhnx99m7vvCZ0WJtOnHbKHHmxnz9G/H/9LoRf9fx4Pvca7RY199w02ixTrzHkaPE2bVnvO9Hx/zOb++m8c6tM7795NFiXXr1taPF+s7732eUOLv3jncMb9k53jHcOGJe3/dtJ40W67KPj3cMTztpnGM45jX9DevHe7+/edd4f6ccfth474c9O9733HXE0aPE2Tjmx9IR/zwc8/PRhqOPGS3Wvq99dbRYAAAcPHfFAABwt6KgJADM84NSAAAAgG8uCkoCwDxFOAEAAAC+uYxVUBIAAAAAgIOnqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqOTdXFUdW1U7hsc/VdXnJ5Z74vmOqnrhsM5lVfWZqqqJOBdX1a3D821VtXNY5+qq+m9VNbOgff/jmcM611fVlVX1sar6X1V1vwV5XlxVfz88f/zE+rdW1SeH56+rqrOr6tUL1r2sqr7rQPNU1exi27vEfrtsmPdjVfWJqnp1VR090b/Yvtj/2Djk+eWJttcd/FEEAAAAAAAAAAAAAAAAAAAAAAAAgPGtn3YCLK+7b0yyPUmq6rwkt3b3y4flW7t7+xKrfjXJ9yZ571BM8fgF/dd29/aqWp/k3UmenOSK/e1LxDyju2+oql9K8uIk/3nI4+gkpyW5tapO6u5Lklwy9F2W5AXdffmwfPYKNnvReZLsXCa3xTyjuy+vqo1Jfj3J25J8/yLjvmGbh3qcb+ru565iPgAAAAAAAAAAAAAAAAAAAAAAAAC4y8xMOwHuNH+S5GnD8x9N8pbFBnX3viR/l+RbVxH7/UlOnFj+0SRvXzDnGBbOc1C6e0+Sn09y36p62B3OalBVz6qqy6vq8ote/4axwgIAAAAAAAAAAAAAAAAAAAAAAADAiigqubZtrqodE4+fmOh7V5Lv8JEPmQAAIABJREFUq6p1mS/0+KbFAlTVliSPTXLl0HTygpiPXmS1M5NcPLF8VpI3Do+z7uA2LTfPctu7rO6eTfLRJA9apHtymy+YaP+Jifb/sEjMC7v7u7r7u85+xtNXmgoAAAAAAAAAAAAAAAAAAAAAAAAAjGL9tBPgDtnZ3duX6JtN8t7MF5Tc3N3XV9Vk/8lVtSNJJ3lbd/9lVW1Lcu0yMS+tqmOS3JrkJUlSVfdK8oAk7+3urqq9VXVqd1+1RIxeQfs3zLOC7V2JWqJ9qW1+U3c/9w7MBwAAAAAAAAAAAAAAAAAAAAAAAAB3mplpJ8Cd6k+SvCrJny7Sd213b+/u7+ju81YY74wk90uyI8kvDW0/nuQeSa6rquuTbEty1jIxbhzGTzomyQ0HmOcOqap1SR6S5ONjxAMAAAAAAAAAAAAAAAAAAAAAAACAaVNU8pvbe5L8epI3jhWwu/cleV6SZ1bVMZkvIHlmd2/r7m1JTkvytGVCfCjJ91bVvZOkqr4ryWFJPnuAeQ5aVW3I/H74bHd/7I7EAgAAAAAAAAAAAAAAAAAAAAAAAIC7i/XTToA7ZHNV7ZhYfmd3v3D/Qnd3kpevMubJC2L+UXe/anJAd3+xqt6Y5DlJ7pfk7yf6rquqm6vq4d39gYXBu/tLVfVzSf6iqmaS3JrkrO6eW2Ts5Dy/fKDtXcTrq2p35otW/k2SJx1g2wEAAAAAAAAAAAAAAAAAAAAAAABgzVBUcg3p7vMWLK9bYtzpS7RvHf69Psmpi/Rfn2TzEutuW7D8M8PTX15k7Hcul0t3vy3J21Y5z5Lbu0Scb5h3Qf+B9sVFSS5a6XwAAAAAAAAAAAAAAAAAAAAAAAAAcFdTVBIAAAAAAAAAAAAAAAAAAAAAAAD45jLX084A4C6hqCRrWlW9Ncn9FzT/QndfMo18AAAAAAAAAAAAAAAAAAAAAAAAAOCuoqgka1p3P2XaOSTJui1bR4kze/uto8RJkg33uOdoscbMa2a0SElvPXq0WIfv2zNKnK7xtnBu8+Gjxbp9997RYh05U6PFYuVq3bppp3BImpux36ehNmyYdgqHrPXrxnynZqXWbd4y7RQOSTObNk07hUPSpo1e41dj155xPsevO+a4UeKwejMbvdYAd66tmw6bdgqHpCM2bZx2CoekmcM2TzuFQ9aG9a6RTcO6w4+YdgqHpC1O96lYf8RR004B7jq33zbtDNaeI8Z5T6wRv8tn5Xbv3TftFA5JtdH1gmkoP6eZin03f2XaKaw9Rx45Spitc+P83o7VmdvnvXUafM89Hfeo2WmncEg6apPznUPLlvWuF0zDRt89TcXGY/2GbBq2HOa9dRq+5fDxro/17HifS8e8fDS36/bRYtUR49yf10nmbrphlFjHbRnvnrrMjHcLdWW8/9NjHsO5zeNc70mSmR7nnJ/bs3uUOEmyccT7ZGdGvF9z3y1fHS3WUdsfMVqsT770OaPEecBL/vsocZJk/Yj3RY5539Mxh493L89hG8Z7rRnr+7VTThjv89/uEa9LHn/0eK9Ze/aN9z79nfe/z2ixXvHn/2uUOM9+7HivDSceM94xPHbreK+lc3Nzo8X67pP+1WixxjqGp5/yzFHiJMlh68d7ndk3O95+P/Kw8fKa2zned0979o2zjXfX+203HH3MaLF673g1KLY+aPtosQAAOHh3z0+xAAAAAIc4NycBAAAAAAAAAAAAcHc3VkFJAAAAAAAOnqKSAAAAAAAAAAAAAAAAAAAAAAAAAABrkKKSAAAAAAAAAAAAAAAAAAAAAAAAAABrkKKSAAAAAAAAAAAAAAAAAAAAAAAAAABrkKKSAAAAAAAAAAAAAAAAAAAAAAAAAABrkKKSAAAAAAAAAAAAAAAAAAAAAAAAAABrkKKSC1TVfarqbVV1TVVdW1WvrKqjhucPGMZsqKorq+rhVfXeqvqhifWfWlXvHJ7fq6reUFX/u6o+XFXvr6qnDH2nV9XNVbVj4vG4oa+r6hUTMV9QVectk/MpVXXZEOPjVXXhgv7nVdWuYTuOnZjvn6rq8xPLD6yqqxase15VvWB4flFVXTeM/WhVPfYg59lYVbdOrPfgqnp3VX1y2O8vqaoa+s6uqrmqeujE+Kuqatsy++P64fhcWVVXV9WvVNWmoW/b/m1c5Bj8zcQ2T+b7G0vNBQAAAAAAAAAAAAAAAAAAAAAAAADToqjkhKGQ4VuSXNzdD0jywCRbk7w4yS8mefUw9AVJ/q67P5Dkp5P8dlVtqqqtSX4tyXOGWBcn+dvuPqm7T0vytCT3mZjyPd29feLxN0P77iQ/WlX3XGHqr0py/hDj25L87oL+s5J8KMmPdveN++dL8t8m1tueZM8K5jp3GPu8Yf1Vz9Pd/zJPVW1O8j+T/EZ3n5LkYUkemeT/noj7uSQvWtGe+D/O6O6HJPnXSU5K8vtLjJs8Bo+baJ/M94WrnBsAAAAAAAAAAAAAAAAAAAAAAAAA7nSKSn69xyTZ1d2vSZLunk1yTpL/mOQdSVJVP5/5QpK/OIy5Ksnbk/xCkv83yeu6+9oh1p7u/pfCi939j929sODjYvYluXCYeyWOz3zhxf3zXLn/eVWdnP9TGPOsFcZbifcnOXGEeZ6e5H3d/VdJ0t23J3lukslCju9I8uCqOmW1SXb3rZk/Xk+uqmNWuz4AAAAAAAAAAAAAAAAAAAAAAAAA3F0pKvn1Hpzkw5MN3X1Lks8k+dYkP5fkN5P8Snd/ZWLYL2W+OOIPJfmtiVhXHGC+R1fVjonHyRN9FyR5RlUdtYK8z0/y7qr6y6o6p6qOnuh7WpI/SfKeJKdU1b1WEG8lzkxy8QjzLLbPr02ytaqOHJrmMr9f/8vBJDocw+uSPGCR7slj8KKJ9nMm2h+/WNyqelZVXV5Vl7/mta87mNQAAAAAAAAAAAAAAAAAAAAAAAAA4KCtn3YCa8yZSb6Y5NTJxu6+rarelOTW7t692IpVdUGSRyXZ093fPTS/p7ufsNj47r6lql6X5GeT7Fwuqe5+TVVdMuT3pCTPrqqHDbmcleQp3T1XVX+W5KlJXr1UqBW0v6yqfi3JfZJ8z0T7auY5GG9I8qKquv9Brl9LtC91DM7v7pcvF7C7L0xyYZLccuMNS+07AAAAAAAAAAAAAAAAAAAAAAAAALhTzEw7gbuZq5OcNtlQVUcmuW+SGzJf4PFfJ/k3VfXQBevODY/9/iHJd+5f6O7nJHlskuNWkc/vJPmpJIcfaGB3f6G7/6i7n5RkX5JTq+ohSR6Q5K+r6vokT8t88cel3JjkHgvajsn8tu93bnc/MMkvJPmjJDmIeSYtts9PynyBzlsmtm9fklcM865KVR2RZFuST612XQAAAAAAAAAAAAAAAAAAAAAAAAC4u1JU8uu9K8mWqnpmklTVuswXMrwoyflJfq27P5fk+UkuqKpaJta7k2yqqv9rom3LapLp7q8k+dPMF5ZcUlWdWVUbhuf3TnJsks9nvrDjed29bXickOSEqrrfEvPdmuSLVfWYIdYxSc5M8t5Fhr86yUxVPX618yzw+iSPqqrHDXNuTvKqJL+1yNiLkjwuqyjMWVVbk/zXJBd3900rXQ8AAAAAAAAAAAAAAAAAAAAAAAAA7u4UlZzQ3Z3kKUmeWlXXJPlUkl1J/irJfZP84TDu7UluSvLMA8R6cpLvr6rrquqDSV6b5Bcmhj26qnZMPH5skVCvSHLPA6T+g0muqqqPJrkkybnd/U9JnpbkrQvGvnVoX8ozk7ykqnZkvjDmL3X3tUts368k+fmDnGd/nJ1JnpTkxVX1ySRXJvlQ5otWLhy7J/MFJ7/lQHGTXFpVVyX5YJLPJHn2CtYBAAAAAAAAAAAAAAAAAAAAAAAAgDVj/bQTuLvp7s8meeIiXZcsGPcjC5bPWyTWF7NEYcXuvizJUUv0bZ14/qUkWw6Q8/OTPH+R9pOWGLtczlcnOWOJec5esPxnSf5smZyWm2dyG69McvoScS5KctHE8qsyX1hySd29bZm+65OcOjy/LMlli4z5hnwBAAAAAAAAAAAAAAAAAAAAAAAA4O5mZtoJAAAAAAAAAAAAAAAAAAAAAAAAAACweuunnQArV1UvSvLUBc3/o7t/dRr5TFtVfSDJYQuaf7K7r5xGPgAAAAAAAAAAAAAAAAAAAAAAAABwV1JUcg0ZikcekgUkF9PdD592DgAAAAAAAAAAAAAAAAAAAAAAAAAwLYpKwgj23nzTKHFmNmwYJU6S9N49o8Vat3nLaLHmdu0aLVbddstosW7bsHmUOBtv+9oocZJk46ZNo8W6bfd458ORG2dGi8XKjfl/mpWrPbunncIadMQdjtB7946QBwdjpmraKRySvMZPx+2z085gbbnjr+7zvnLr7SNFOnTc48gR9v7tt93xGIeaI8Y563vOi800zPkcPxW13qXmafAZnkPJ3J7xri2zOl+4abxr8YeCex591ChxesPGUeKwOjfudG1yNY4Y53RPukcKxGrsq3XTTuGQ5G+n6ZkZ8XcPrNzhm3ymmYZdn//Haaewttz7hFHCbJzbN0ocVmf9UcdMO4VD1p6N4/zejtWp8tu9adi1x/WCabh9nc+SqzHWZZp/vnXnSJEOHUcceeS0U+AO2Bfft07DYa6RAWvI7Ij3idX68e4b3DdmXiP9xrTvefwocZJk3b7xfgO472s3jxZrZuNho8W6Ox7DJNn3LSeOEuf26z81SpwkmTlsvOtQ67YcPlqs2RH3++4vfW60WPf9qXNHiXPZP35hlDhJ8sDjjxst1pi/mbznkeOdD2N+xv3iV8f5rdaF7/7AKHGS5MR7jPe37/FHjxfrXkdvHS3W7r3jfc/z7Mc+YpQ4v/+uvx8lTjLufj/2iPG+ez9hxHNr3+zcaLHGOobp8XLaOeJ16g3rxvvN0I23j/e57Zj1430HctjsOHnVuvFqPewb8XfQNTve+bDu8LHuGkx2fubTo8XKad8zXiwAgEOMXxcBAAAAAAAAAAAAAAAAAAAAAAAAAKxBikoCAAAAAAAAAAAAAAAAAAAAAAAAAKxBikoCAAAAAAAAAAAAAAAAAAAAAAAAAKxBikoCAAAAAAAAAAAAAAAAAAAAAAAAAKxBikoCAAAAAAAAAAAAAAAAAAAAAAAAAKxBikoCAAAAAAAAAAAAAAAAAAAAAAAAAKxBBywqWVWzVbWjqj5aVVdU1SOH9m1VddUi4+9TVW+rqmuq6tqqemVVbZzof1RVfbCqPjE8njXRd15VfX6Y75qqektVfftE/2VV9ckhl/dV1SmLtH+oqrZPrHN9VV05xNxRVa8a2h9RVR8Y2j5eVecN7feqqncMsa6uqr8Y2k+vqncs2NaLqurHDjaHJfb3RVV13RDnU1X1uqq6z4JY95xYfnJVdVU9aKJtpqpeVVVXDfN+qKruP7G9n6mqL0/ks62qjhrm+vRw3F5XVUcd4FhPbv+GqvqN4bhdUVXvr6ofWmY79++TK4f9/CtVtWnhfMN+v3ki179Z5FzZUVW/scxcB3N+/Mu2AQAAAAAAAAAAAAAAAAAAAAAAAMDd0foVjNnZ3duTpKoen+TXk3z/YgOrqpK8JcnvdfeTqmpdkguT/GqSc6vq3knekOTJ3X3FUBzxkqr6fHf/+RDm/O5++RDvJ5K8u6oe0t1fHvqf0d2XD8UoX5bkRxa0/4eh/QcmUjuju29YkO5rk/x4d390yPOUof2lSf66u1855PDQFeyj/Vabw1LO7e43D/vzeZnfB6d2955Fxp6V5L3Dv//f0PYTSU5I8tDunhuKUt7W3Q8ftunsJN/V3c/dH6Sq3pzkqu5+5rD8S0n+IMlTV5jzLyc5Psmp3b27qu6VJc6TCWd09w1VtTXz58nvJ/n3i4x7T3c/YZH2fzlXVmCsYwMAAAAAAAAAAAAAAAAAAAAAAAAAdwszqxx/ZJKblul/TJJd3f2aJOnu2STnJPmPVbUlyXOSXNTdVwz9NyT5+SQvXCxYd78pyV8lefoi3X+b5FsXaX9/khNXsC3fkuSL+/Ps7quH9uOTfG4ih4+tINbB5rCsnnd+kn9K8kML+4dijI9K8lNJnjbRdXySL3b33BDnc9295HGrqm9NclrmC0Pu99Ik31VVJx8oz+HY/uckP9Pdu4c5v9Tdf3qgdYextyb56SRPrqpjVrLOHTDKsQEAAAAAAAAAAAAAAAAAAAAAAACAaVtJUcnNVbWjqj6R5A/y9YUHF3pwkg9PNnT3LUk+k/kCkN/Qn+TyoX0pVyR50CLtT0xy5SLtZya5eEHbpcM27Kiqc4a285N8sqreWlXPrqpNQ/sFSf6wqi6tqhdV1QnL5LaUleawUkvtgycleWd3fyrJjVV12tD+p0meOMz1iqr6jgPE//YkO4YioEn+pSDojix/bPb71iSfGY71QRnWvS7JAxbpfvTEvnvRRPs5E+2PX+FUox2bqnpWVV1eVZe/9o1/stLVAAAAAAAAAAAAAAAAAAAAAAAAAGAU61cwZmd3b0+SqvqeJK+rqlPv3LS+Ti1Yfn1V7UxyfZKfWdC+McnWJNsXrHNGd98w2dDdL62q1yf5wSRPT3JWktO7+5KqOinzxQd/KMlHhu3tJfKbbF9VDquwcB/sd1aSVw7P/2RY/nB3f66qTknymOHxrqp6ane/6yDnv6sstZ3v6e4nLNJ+fne/fIWxRz823X1hkguT5Mb/fc1S5wcAAAAAAAAAAAAAAAAAAAAAAAAA3ClmVjO4u9+f5J5JjltiyNVJTptsqKojk9w3yacX6x+W/2GZab8jyccnlp/R3du7+8nd/dnJ9iQnJXltkt89wKYkSbr72u7+vSSPTfKwqjp2aP9Kd7+hu38yyYeSfF+SG5PcY0GIY5JMFiNcdQ4rtHAfpKqOyXzByD+oquuTnJvkx6uqhm3Y3d1/2d3nJvm1JE9eJv7VSbZX1b+cD8Pz7UPfgXw6yX2HY31QquqIJNuSfOpgYxzAnXVsAAAAAAAAAAAAAAAAAAAAAAAAAGAqVlVUsqoelGRd5gssLuZdSbZU1TOH8euSvCLJRd19e5ILkpxdVduH/mOT/GaS31pivn+b5AeTvHEl+XV3J3lJkkcMuS63LT+8vwBjkgckmU3y1ap6TFVtGcYckeTkJJ9Jck2SE6rq24a++yV5WJIdB5vDgdS8n01yfJJ3Luj+sSR/3N336+5t3f2vklyX5NFV9Z1VdcIQYybJQ5P841LzdPenk3wkyYsnml+c5Iqhb1nDsf3DJK+sqo3DvMdV1VNXuJ1bk/zXJBd3900rWedgjHlsAAAAAAAAAAAAAAAAAAAAAAAAAGDaVlJUcnNV7aiqHUnelOTfd/fs0HdKVX1u/yPzhQ6fkuSpVXVNkk8l2ZXkvyRJd38xyb9L8t+r6hNJ/i7JH3X32yfmO2eY75ph7GO6+8sr3aDu3pn5QpbnTjRfun8bqup1Q9tPJvnksF1/nOQZw3adluTyqvpYkvcn+YPu/lB37x7yec2wzpuT/KfuvvkO5LCUl1XVRzO//747yRndvWfBmLOSvHVB258N7d+S5O1VdVWSjyXZl+TVB5jzp5I8sKquraprkzxwaNvv6471IgUjX5zky0muHuZ9R5JbDjDnpcPYD2a+cOezDzD+Dlvlsfn9ie19/52dGwAAAAAAAAAAAAAAAAAAAAAAAACsxvoDDejudUu0X59kwxKrPXGZeH+b+UKJi/Wdl+S8ZdY9fSXt3f2KiefblljnaUu0vyzJy5boe1+SR4yVwxJxzj5A//5YZyzS96qJxXcuE+OiJBctaLsp80UzFxt/fRY/1v9jYsyeJD8/PA5ouX0yzHfq8PyyJJctMua8lcwzjD19wfJKzo+zVxofAAAAAAAAAAAAAAAAAAAAAAAAAKZhZtoJAAAAAAAAAAAAAAAAAAAAAAAAAACweuunncChqqouSPK9C5pf2d2vmUY+d5aq+kCSwxY0/2R3X3knzPXWJPdf0PwL3X3J2HMBAAAAAAAAAAAAAAAAAAAAAAAAwLQpKjkl3f2caedwV+juh9+Fcz3lrpoLAAAAAAAAAAAAAAAAAAAAAAAAAKZNUUkYwcyGDaPEqXXrRomTJHN794wWa92GjaPFGlXPjRZq79w4sTZv2jRKnCTp2dnRYm3aON7L/b4a7zxlFWpm2hkckuru+vr3TW521+3TTuGQtWffeO89rNzsTuf8NGzxkWYqNo30txOrM7dn17RTOGT1vr3TTgHuMrXepeZpuOm2ndNOYU057h5HjRLna7vGu/Z6qDh+hBg90jVcVm/9jGuTHDrmuqedAvBNbnbDYdNO4ZA151r86hx55Chhdu3ZN0ocWAvG/N0XqzDi78dYHb8vmI6e9d0Th445l2k4hPSszzTTMlPTzuDQdPsen2mmYd8tX512CmvLUUePEmbd3t2jxDl0HDFKlDHvexr1ms+I1zFqZsS8Rrpf6bAR31j3bdw8Wqwa8fuBMX8TWmPeJzbi+bC+x7nms+7wcf4/J8nc7hF/Bz033jWtUe8FHvH7lLk947z3bNw4znthkty6a7z3w2O2bhkt1pjfY425jWO591Hj/T/83FduHi3W8UeP8z1kktw24m85b9k53jE88Zhxzq0x99UXv3rLaLGO2jLeffS79o73/3DM82H3vnHy6pHiJON+L3PY+vHewzZvHO8+sd473nv+zOaR3i/G/Ay/fsR76sb8jnTEz6XuoQIAuHtwFxgAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBq0ftoJAAAAAAAAAAAAAAAAAAAAAAAAAIype27aKQDcJWamnQAAAAAAAAAAAAAAAAAAAAAAAAAAAKunqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBqkqCQAAAAAAAAAAAAAAAAAAAAAAAAAwBo0SlHJqpqtqh1V9dGquqKqHjm0b6uqqxYZf5+qeltVXVNV11bVK6tq40T/o6rqg1X1ieHxrIm+86rq88N811TVW6rq2yf6L6uqTw65vK+qTlmk/UNVtX1ineur6soh5o6qetXQ/oiq+sDQ9vGqOm9ov1dVvWOIdXVV/cXQfnpVvWPBtl5UVT92sDkssb+Xyuvsqnr18PyUYb79Yy6sqsdPxL91yGVHVb1uhfv9BYvkcuvE8wdW1V8Mx+WKqvrTqrrXEttwelXdXFUfGfL426p6wmLzDfvwuoncf3aJffbIJebaVlU7hzFXV9XrqmrDgjx2TDwet3DbAAAAAAAAAAAAAAAAAAAAAAAAAODuZv1IcXZ29/YkqarHJ/n1JN+/2MCqqiRvSfJ73f2kqlqX5MIkv5rk3Kq6d5I3JHlyd19RVfdMcklVfb67/3wIc353v3yI9xNJ3l1VD+nuLw/9z+juy4eiiC9L8iML2v/D0P4DE6md0d03LEj3tUl+vLs/OuR5ytD+0iR/3d2vHHJ46Cr21WpzWMxSeU16Veb309uGHB/S3VcmuWRYvizJC7r78mF5Jft9SVW1KcmfJ3l+d799aDs9yXFJvrTEau/p7icMY7cnubiqdnb3uxYZe253v3mR9pXus2u7e/uwv/46yY8nef3CPAAAAAAAAAAAAAAAAAAAAAAAAABgrZi5E2IemeSmZfofk2RXd78mSbp7Nsk5Sf5jVW1J8pwkF3X3FUP/DUl+PskLFwvW3W9K8ldJnr5I998m+dZF2t+f5MQVbMu3JPni/jy7++qh/fgkn5vI4WMriHWwOawmr0kLc7zyADFXtd8X8fQk799fUHKIcVl3X7WSlbt7R+aLdT53hfMdlOF8+2AOft8DAAAAAAAAAAAAAAAAAAAAAAAAwN3CWEUlN1fVjqr6RJI/SPLLy4x9cJIPTzZ09y1JPpP5ApDf0J/k8qF9KVckedAi7U9MslgxxTOTXLyg7dJhG3ZU1TlD2/lJPllVb62qZ1fVpqH9giR/WFWXVtWLquqEZXJbykpzWMxSeS0c8+6q+suqOqeqjj5APgez3yedusj6q7XUcUySl03sm4dMtO/fZx9YyQTDvnp4kndOND96IvaOqjp5hbGeVVWXV9XlF73+DStZBQAAAAAAAAAAAAAAAAAAAAAAAABGs36kODu7e3uSVNX3JHldVZ06UuyVqAXLr6+qnUmuT/IzC9o3JtmaZPuCdc7o7hsmG7r7pVX1+iQ/mOTpSc5Kcnp3X1JVJ2W+MOQPJfnIsL29RH6T7avKYdFgS+S1YMxrquqSIccnJXl2VT2su3cfKP4ULTyOk87t7jcv0r6ifZbk5KrakeT+Sf68uz820fee7n7CahJNku6+MMmFSXLTZ69f6tgDAAAAAAAAAAAAAAAAAAAAAAAAwJ1iZuyA3f3+JPdMctwSQ65OctpkQ1UdmeS+ST69WP+w/A/LTPsdST4+sfyM7t7e3U/u7s9Otic5Kclrk/zuATYlSdLd13b37yV5bJKHVdWxQ/tXuvsN3f2TST6U5PuS3JjkHgtCHJNksujhqnNYTV4Lxnyhu/+ou5+UZF+S5Qp9Hsx+n/QPi6y/WguP45iuHQqfnpzktKr6kTtpHgAAAAAAAAAAAAAAAAAAAAAAAAC4S4xeVLKqHpRkXeYLLC7mXUm2VNUzh/HrkrwiyUXdfXuSC5KcXVXbh/5jk/xmkt9aYr5/m+QHk7xxJfl1dyd5SZJHDLkuty0/XFU1LD4gyWySr1bVY6pqyzDmiMwXKvxMkmuSnFBV3zb03S/Jw5LsONgcVpPXgjFnVtWG4fm9kxyb5PPLhF3Vfl/EG5I8sqp+eCKH76uq5QpZTub70MzvkwtWON9B6e4bkrwwyS/emfMAAAAAAAAAAAAAAAAAAAAAAAAAwJ1t/UhxNlfV/sKJleTfd/fsUPfwlKr63MTYc5I8Jcl/raqXZL6w5V8k+S9J0t1frKp/l+S/DwUbK8nvdPfbJ2MMYw5PclWSx3T3l1eabHfvrKpXJDk3yU8NzZeFZFtDAAAgAElEQVRW1ezw/GPd/cwkP5nk/Kq6Pcm+JM8Ytuu0JK+uqn1D/n/Q3R9KkiGv11TVpiR7k/yn7r75DuSwmKXymhzzg0leWVW7huVzu/ufltknK9nvL66q502sc58F2/OEJL9TVb8zbPvHkvzcUnMmeXRVfSTJliT/nORnu/tdy4wfy8VJzquqR0/kMVn481e6+82ZL346ee7+dnf/9l2QHwAAAAAAAAAAAAAAAAAAAAAAAAAc0ChFJbt73RLt1yfZsMRqT1wm3t8m+e4l+s5Lct4y656+kvbufsXE821LrPO0JdpfluRlS/S9L8kjxsphlXldlOSi4fnzkzx/mRinL9K26v3e3Vsnnn8iyZlLZ/51612W5Khl+s+beH72EmO2rXCu65OcOrHcSR42MWTRPLp7ZiXxAQAAAAAAAAAAAAAAAAAAAAAAAGAaFM0DAAAAAAAAAAAAAAAAAAAAAAAAAFiD1k87AZZWVRck+d4Fza/s7tdMI5+DUVWPT/KbC5qv6+6n3AlzPSTJHy9o3t3dDx97LgAAAAAAAAAAAAAAAAAAAAAAAACYNkUl78a6+znTzuGO6u5LklxyF811ZZLtd8VcAAAAAAAAAAAAAAAAAAAAAAAAADBtikrCCPbdessocTadcN9R4iTJ7O23jRar9+4ZL1bPjRYrNTNaqH2z4+Q1s/GwUeIkSa1bN1qszVWjxWI6et++aadwSJq9/dZpp7D2HHnkHQ6x/vCtIyTCwdi00Z8HHDrmdu2adgpry1HjhPniV8f52+lQcuJxx9zhGHO7ne9T0z3tDOAu4711lUZ6b52dG/FaGytmv09Hz85OO4VD1m27x/uOgJWrPbunncIac8QoUfbu81ozDXPOd+AuMLf58GmncEjasnHDtFM4JM3tcZ1mGvzdyqFmr3N+Kmqd91YOHbv27p12Coek2/fY79Mw6u/rWZU5P+uYiuOOdJ1mGua8t06F+0Cm459vHu8+kOM3j3ef2OzO20eLNabZ2742Spwbtxw9Spwk2Tni59ITDts0WqyeG/F6yIjfkc7eevNosf550x2/JyhJjrrXiaPESZK9X/3KaLF2f+nzo8Vaf/Qd/433fmPev7bp+HHuUb71hvHO0RPvMc55lSS37Bwvr62bxnuNP2rLeK81n79pnHsujhzxPezow+81WqyP/ON4/w8fd+oDRou1ce94n9uO3TrO3zzHHrFllDjJuOfoJ77wz6PFOmHE14d1M+PdRz/WMdxZ492rOTs33u84x7wesnvEz22H9XifteZG+uw9s2m8/zsZsdbD7G3j1REZ87unPV+5YbRYAAAcvPEqsgEAAAAAAAAAAAAAAAAAAAAAAAAAcJdRVBIAAAAAAAAAAAAAAAAAAAAAAAAAYA1SVBIAAAAAAAAAAAAAAAAAAAAAAAAAYA1SVBIAAAAAAAAAAAAAAAAAAAAAAAAAYA1aP+0EAAAAAAAAAAAAAAAAAAAAAAAAAMbUc7PTTgHgLjEz7QQAAAAAAAAAAAAAAAAAAAAAAAAAAFg9RSXvQlV164Lls6vq1cPz86rq81W1Y+Jx9MTY3xn6Zxas/+Vh7Ceq6pyqevzE+rdW1SeH569bIqfTq+rmiRgvX9B/z6raW1U/PSxfMIy9uqp2Tsz1Y1V1UVVdN9H2d8vsi/25f6SqrqmqS6rqkRP9F1XVjw3PL5vYjh0T7bML9te21W7jgn24//HtVbWtqq5aKn8AAAAAAAAAAAAAAAAAAAAAAAAAmLb1006Ar3N+d798YeNQSPIpST6b5PuTXDrR/abufm5VHZvkk0m+o7u3D+tdluQF3X35AeZ9T3c/oao2J/lIVb21u9839D01yd8nOSvJf+vu5wyxtyV5x/65hrYnJDm3u9+8wu19U3c/d1j3jCRvqaozuvvj/z879x5n2VnWif73VN87naSTEG5BaRICKBdbYACVYIAwYRwYLnKLcZg4evASDgISAZEz0RFBA5MRwdHMOZDgZLgcmITbSABJlCgDRGxIuEpMRK6SAEk63Z1OVz3zR+92NkVVdVVnde8u6vv9fNan93rfdz3v865dva9rP3OMPXOOdewcn/8OrPGf8xhby5ZFxgUAAAAAAAAAAAAAAAAAAAAAAACAiZiadAIsyqlJPp3kv2Rvccfv0d03Jvlikrsd6CTdvTPJtiQnjDWfkeTXkpxQVfc40NiLmPvyJBckec7BmmM0z1xrBAAAAAAAAAAAAAAAAAAAAAAAAIBlR1HJQ2tDVW3btyX57Vn9Lxjrv3ys/Ywkb05ySZJ/XVVrZgeuqh9Msj7Jpw40uao6JsnJSf5ytP8DSe7W3R9L8rYkz1xEmPPG1nDxElP4RJL7zdN38Vjc40Zt4+fzksVMMHuNI88cv1+qasMiYz2nqq6qqqve9La3L+YQAAAAAAAAAAAAAAAAAAAAAAAAABjM6kknsMLs7O6t+3aq6qwkDx3rP7+7Xz1+QFWtTfJTSV7Y3bdU1UeTnJ7kPaMhz6yqR2VvMcbndveuA8jrlKr6ZPYWW/zP3f31fbGzt5hkkrwlyRuSvGY/sc7p7gOtsFgL9J3Z3VfNavuu87kf860xSd7a3c/9rkRqoVT26u4LklyQJN/87Kd6kXkAAAAAAAAAAAAAAAAAAAAAAAAAwCCmJp0A+3V6ks1Jrq6q65M8MskZY/1v7e4HJfnxJK+qqrsewBwf7u4fSXL/JD9fVfsKNZ6R5KzRvO9K8qCqOvnAlrEoP5rkswcp9nxrBAAAAAAAAAAAAAAAAAAAAAAAAIBlSVHJw98ZSX6hu7d095Yk90ryuKraOD6ou69K8qdJfvVAJ+ru65K8KsmLq+o+STZ19wljc78y313QcjBV9ZNJnpPkvx6M+PuMr/FgzgMAAAAAAAAAAAAAAAAAAAAAAAAAB5uikoeXF1TVtrHth5M8Psl79w3o7luTXJnkiXMc/3tJfq6qjrwDOfxxkkdlb/HIS2b1vSP7Lyp53qw1rF1g7DNHY76Q5DeS/HR3f/aAM1+8P07yqKraMiuPfduPj9rvW1VfHtuefghyAwAAAAAAAAAAAAAAAAAAAAAAAIBFWT3pBFaS7t40a//CJBeObp+b5Nw5Djt2jjhPHdu9cKz9q0nuOrZ/6iJyuiLJFWP7O5OcMM/YTyX5odHt65M8YFb/Wfubb2zshRnLfY7+s8ZunzrPmE1ztc8x7orMv8aF8lizmPgAAAAAAAAAAAAAAAAAAAAAAAAAMAlTk04AAAAAAAAAAAAAAAAAAAAAAAAAAIClWz3pBDg0qur0JL83q/m67n7KQZ7355L86qzmv+rusw/CXBNZIwAAAAAAAAAAAAAAAAAAAAAAAABMgqKSK0R3X5bksgnM+8YkbzxEc01kjQAAAAAAAAAAAAAAAAAAAAAAAAAwCYpKwgCm1m0YJM6em78zSJwkmVq7frBY6ZnBQq3auGmwWNPbbxos1hHr1w4SZ88t3xokTpJMrV03WKx1a9YMFmt3DZcXi1cD3ocsXm88ctIpwCE1M9OTTmFFGvR1Gxzm7nmnYyadAhxaVZPOYEWqmpp0CiuS962TsXb1qkmnsCJNeXxnhTn+qOE+12fxpm+9ZdIpLC/H3WmQMEdt8B3IJEzv3DHpFFak1fF58CTs2n37pFNYsVbt3jnpFJaZYb4nXeN960Ssv/s9J53CijS9ephrj1iaHdOTzmD5GepKmCPW+ZufhFrtsu9JmJry3dMkrHLeJ+LYIzZOOoUVacrj+8T4rGYypmeG+30Ki+exZjJmNhwx6RRWpNWrDs/XkquOGO73KauPPnawWDMDfVe3ZsNw18TP9JDfYw33vDO1brg1Tg14vd2Qv9cc6j3BzK7hzlWtGe5zqI0n3m+wWHtuHu53pOvucsJgsaZ3DfN/+pgBf1O3Ye1wf+9D/u7po1/80mCxthw/3O8k7nTkMP8Pf/BOmweJkyS37xnusfSkuwz3HPaeT3x2sFiP+qETB4s1M9B7nrsfc9QgcZJk1+17Bos1ZF4f+vQXB4v1E/fdMlisHui1yPo1w31fPuTnpZvWD/e4/I2bdg8WK6uHuz67p4f5zGf77QO+Dhnwdy5DvrfomeG+cF1357sNFgsAgAN3eH5CDgAAAAAAAAAAAAAAAAAAAAAAAADAghSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhhSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhhSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhhSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhhSVBAAAAAAAAAAAAAAAAAAAAAAAAABYhlZEUcmqmq6qbVV1TVW9u6o2j9q3VNXOUd++7dmjvn9fVVdX1adGxz1p1H5hVV03GvuJqvqxsfanjW5fUVWfr6pPVtXHq2rrrHz+c1V9paqmquqBY3N/ayz2B0dj719VHxrF+7uqenlV1ajvrKr65mj856rqBVW1fnT7gWPznVNVfzLPuRk/B5+pqjdV1Zqx/tWjOV412n/ZWL7TY7efV1XnjtY1fj43zzPvqVV1U1X97Whtf1lVTxjrP7eqXjTHOd9WVc8btV8/uo/2tf/4Utc4lsd4zqeN+rbP9zcFAAAAAAAAAAAAAAAAAAAAAADAYazbZrPZDmxbZlZPOoFDZGd3b02SqrooydlJXjHqu3Zf3z5VdY8kL0vy4O6+qao2JTl+bMg53f32qvqXSf4kyYPmmPPM7r6qqn4uyXlJHjeKPZXkKUn+MclPdvflSfbldmGS93T320f7G5K8K8kvd/f7q2pjknck+ZUkrx/N89bufm5VHZfk80nenuT5Sf6oqh6V5O5JfinJQxc4P9d299aqWpXkA0mekeTiUd/jknwhydOr6qXd/Yp9566qto+fu6o6N8n53f3qBeYa9+HufsLo2K1JLq2qnd3953OMPWffeZnl0d19wyLmWmiN/5wHAAAAAAAAAAAAAAAAAAAAAAAAACwXU5NOYAI+kuSE/Yy5c5JbkmxPku7e3t3XzTHuL5Pce4nznZrk00n+S5Iz9nPszyT5q+5+/yiPHUmem+Qlswd2941Jvpjkbt39viRfS/LsJOcnObe7v72fudLd00k+NivfM5L8QZIvJfmx/cU4UN29LclvZ+/6Dpp51ggAAAAAAAAAAAAAAAAAAAAAAAAAy86KKipZVauSPDbJu8aaT6qqbWPbKUk+meQbSa6rqjdW1RPnCfnEJFfvZ9rHJ7l0bP+MJG9OckmSf11VaxY49v5J/ma8obuvTbKpqo6atbYfTLI+yadGTc9P8ookx3f3n+4nx30x1id5eJL3je2fluTdo5z3VwQzSV4wdi4vX8y8Yz6R5H7z9J03FveBY+2Xj9o+upgJZq9x5JRZfwMnLTLWc6rqqqq66qI3v2UxhwAAAAAAAAAAAAAAAAAAAAAAAADAYFZPOoFDZENVbUtyQpLPJvnAWN+13b119gFV9fgk/yJ7i1CeX1UP6e5zR93nVdVvJvlmkp+fZ86Lq2ptkk1Jto5irk3yU0le2N23jAohnp7kPXdgbc+sqkdlbzHG53b3riTp7q9W1YcWGfuk0fm5V5L3dve+wpRPSHJ5d++sqnckeXlVPb+7pxeIdX53v/oA11IL9J3T3W+fo/3R3X3DImLPt8Yk+XB3P2EpiSZJd1+Q5IIkufHv/66XejwAAAAAAAAAAAAAAAAAAAAAAAAA3BFTk07gENk5Khx5z+wtXHj2/g7ovT7W3a9M8qwkPz3WfU53b+3ux3X3NfOEODPJiUkuSvKHo7bTk2xOcnVVXZ/kkUnOWCCNzyR5yHhDVZ2YZHt33zxqemt3PyjJjyd5VVXddWz4zGjbn32FNU9K8pCq+jej9jOSnDbK9W+SHJfkMYuId6B+NHuLfh4M860RAAAAAAAAAAAAAAAAAAAAAAAAAJallVJUMknS3TuSPC/Jr1XV6vnGVdXdq+rBY01bk/zDAczXSV6e5BFVdb/sLdL4C929pbu3JLlXksdV1cZ5Qlyc5JFVddoorw1JXpvk9+eY66okf5rkV5ea51iMG5K8JMlLq+qoJKck+cGxfM/OwkUwD1hVPSh7z9XrD0b8fcbXeDDnAQAAAAAAAAAAAAAAAAAAAAAAAICDbUUVlUyS7v7bJJ/K/ymOeFJVbRvbnpdkTZJXV9XnqmpbkmfmAIs1dvfOJK9J8uIkj0/y3rG+W5NcmeSJCxz7pCS/WVWfT3J1ko8ned080/1ekp+rqiMPJNeRS5NsTPKCJB/q7tvG+t6Z5IlVtW6B418w63xuWWDsKVX1t6O1vT7J87r7z+9A7ot1aZKNVXXKWB7jOT9t1L6xqr48tr3wEOQGAAAAAAAAAAAAAAAAAAAAAAAAAIuyetIJHArdvWnW/ngRxw3zHPaYeWKdtb/27j51Vt9rFsjtqQvF7u6rk5w6u33Ud2GSC8f2v5rkrvvLdVaM65M8YGy/k/zIPGO/leT4sf3Z5/XcJOfub87R2CuSHL1A/7ljt8+aZ8yWRc51fRZe45x5dPeKK7oKAAAAAAAAAAAAAAAAAAAAAAAAwPKhaB4AAAAAAAAAAAAAAAAAAAAAAAAAwDK0etIJcGhU1QOT/Oms5tu6++EHed7Tk/zerObruvspB2GuiawRAAAAAAAAAAAAAAAAAAAAAAAAACZBUckVoruvTrJ1AvNeluSyQzTXRNaYJFNr1kxi2gVN79oxWKzVR2waLFZ6ZrhYA9ozPUxe69atHyROklRNDRarB1pfEs8crCire3rSKaxYgz5usWi79/ibn4Q+TF8fwcHgcWZp1q5eNUicWrN2kDiwXNRh+DnNStC33z7pFOCQqapJp7AiTa32weSkrFk1zOtSlshjDStIeZyZDJ9LTszGdd63TsLMnj2TTmFFuvW23ZNOYUXyvnUyhrr2aKVYvWqY66I2rh7u+iqWxvd+E+J1/ETMzDjvrBzdPekU4JCamvJ6chJuvGW437qsBHfafPQgcXw+Nhk7bnM9zVIcM+kE5jDk7xp6wP+HNeC1WkNdy147bsnUQNerHq6vS2du2zXpFA66oX5Hddv0cH+jM7uHO+99+3DfW0yt2zBYrF1f+YfBYq2/x72GCXSYfhyyZqDr65Pk5LveabBYX7rhO4PFutsxRw4S5/Y9w92Jt+y6bbBYQzr1h04aLNYVn712sFj/4sQfGCTOkN893bpruMe/VVPDfRf5E/fdMlisv/r89YPFesS97zlInKmZ4b5LWb92uGtob9k53N/DEeuG+71SzQz4PL1pmNoY6zPgd+8DnvfpncN9trJm87GDxZresX2wWAAAHDjfgAIAcFhRUBIA9vJjPAAAAIDvLwpKAsBeinACAAAAfH8ZqqAkAAAAAAAHTlFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFHJO6iqjquqbaPt61X1lbH9Hru9rapeMjrmiqr6UlXVWJxLq2r76PaWqto5OuYzVfXHVTU1q33f9uzRMddX1dVV9amq+ouquuesPC+tqv81un362PHbq+rzo9tvqqqzqup1s469oqoeur95qmp6rvXOc96uGM37qar6XFW9rqo2j/XPdS72bWtHeX5zrO1NC8x1YVVdNxr3yap67Bx57Ivz9lH7uVX1ooXuewAAAAAAAAAAAAAAAAAAAAAAAACYpNWTTmC56+4bk2xN9hYiTLK9u1892t/e3VvnOfQ7SX4iyZWjYop3m9V/bXdvrarVST6U5MlJPrGvfZ6Yj+7uG6rqt5L8ZpL/a5TH5iQPSbK9qk7s7suSXDbquyLJi7r7qtH+WYtY9pzzJNm5QG5zObO7r6qqtUlemeSdSX5yjnHfs+ZRPc63dvdzFznXOd399qp6dJILkpw8O48l5A0AAAAAAAAAAAAAAAAAAAAAAAAAE6eo5OS8JcmzklyZ5KlJ/keS+88e1N17quqvk9w7e4tKLsZHkjxvbP+pSd6d5BujOX/3wNNecJ4D0t27q+rXk3yxqn6kuz95x1Ob10eSnDBEoKp6TpLnJMl/euUrctaZPzNEWAAAAAAAAAAAAAAAAAAAAAAAAO6omZ50BgCHxNSkE/g+t6Gqto1tzxzr+/Mkj6qqVdlb6PGtcwWoqo1JHpvk6lHTSbNinjLHYY9PcunY/hlJ3jzazriDa1ponoXWu6Dunk7yyST3m6N7fM2vH2t/5lj7zx1gzkly8Vic85aQ8wXd/dDufqiCkgAAAAAAAAAAAAAAAAAAAAAAAAAcaqsnncD3uZ3dvXWevukkV2ZvQckN3X19VY33n1RV25J0knd2959V1ZYk1y4Q8/KqOjbJ9iQvT5KqukuSk5Nc2d1dVbdX1QO6+5p5YsxXVnm8/XvmWcR6F6PmaZ9vzW/t7ucuMvZ5VfW7Se6R5Mdm9Z3Z3VctNkkAAAAAAAAAAAAAAAAAAAAAAAAAOBxMTTqBFe4tSV6b5G1z9F3b3Vu7+0e7+9xFxnt0knsm2Zbkt0Ztz0hyTJLrqur6JFuSnLFAjBtH48cdm+SG/cxzh1TVqiQPTPLZIeLN4Zzuvk+SFyd5w0GaAwAAAAAAAAAAAAAAAAAAAAAAAAAOGUUlJ+vDSV6Z5M1DBezuPUmen+TZVXVs9haQfHx3b+nuLUkekuRZC4T4eJKfqKq7JklVPTTJuiT/uJ95DlhVrcne8/CP3f2pOxJrEV6XZKqqTj/I8wAAAAAAAAAAAAAAAAAAAAAAAADAQbV60gl8n9tQVdvG9t/X3S/Zt9PdneTVS4x50qyYb+ju144P6O6vVdWbk5yd5J5J/tdY33VVdVNVPby7Pzo7eHd/o6p+Ncn/rKqpJNuTnNHdM3OMHZ/nP+5vvXO4uKpuy96ilR9M8qT9rP0O6+6uqt9J8utJLhvLY+fo9g3dfdro9m9W1fPHjr3Hwc4PAAAAAAAAAAAAAAAAAAAAAAAAABZLUckBdfe5s/ZXzTPu1HnaN43+vT7JA+bovz7JhnmO3TJr//8e3fyPc4x98EK5dPc7k7xzifPMu9554nzPvLP693cuLkxy4SLnOmvW/juSvGOhPEb35bmLiQ8AAAAAAAAAAAAAAAAAAAAAAAAAkzA16QQAAAAAAAAAAAAAAAAAAAAAAAAAAFi61ZNOgO9vVXVJknvNan5xd192EOZ6fZKfmNX8B939xqHnAgAAAAAAAAAAAAAAAAAAAAAAAIBJU1SSg6q7n3II5zr7UM0126qNmwaJM71j+yBxkmTVsccPFmvm1lsGizU1WKSkN20eLNaRe3YPEqdnhlvhzIYjBou147bbB4t11FQNFovFq1WrJp3CijQz5bxPQq1ZM+kUVqzVq4Z8pmaxVm3YOOkUVqSp9esnncKKtHGdx/ilGOp1fB0z3PtDlmZqrceaSfD+iZVk0/p1k05hRTpy/dpJp7AiTa3bMOkUVqx1azy3TsKqI46cdAor0qY1Ph+bhNVHHj3pFFaknp6edAor045bJ53B8nPkMM+JVR7jJ+G22/dMOoUVqdb6vGASyuU0EzG9/aZJp7D8HHXUIGE2zQxzvR1LM7PHc+skrF/re+5JOKa8b52Eo9f7e2dl2bja5wWT4FrVyVh7nGvIJsE1k5Nx5yO+/z8fmx7wt35D/T5vOkl/+5uDxDr+iGF+q5kktWa4v4chv1+b2bVjsFhD/sYyPcwa+/bhfsu49pg7DRZrasDfaw75//DoH/2xwWJ9/reH+Zn1yS//r4PESZLVA17XO+RryWOPGO63POvWDFeuYajv1+579+Fe/9024OeSd9s8zGfUSbJ7z3CPyw858R6DxXrNe/9ikDi/+NhHDBInGfY+PG7TcI+l3T1YrEfc+56DxRrqPjz1Pj87SJwkWbd6uMeZ2wf8v3PUuuHymtk53HdPu6aH+dtaverw/BJ4zeZjB4s15Ou2TffbOlgsAAAOnG/iAAAAAA5DLigFAAAAAAAAAAAA4HA3VEFJAAAAAAAOnKKSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKKSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKKSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKKSAAAAAAAAAAAAAAAAAAAAAAAAAADLkKKSAAAAAAAAAAAAAAAAAAAAAAAAAADL0LIsKllV96iqd1bV31XVtVX1B1V19Oj2yaMxa6rq6qp6eFVdWVX/auz4p1fV+0a371JV/72q/r6q/qaqPlJVTxn1nVpVN1XVtrHttFFfV9VrxmK+qKrOXSDn+1bVFaMYn62qC2b1P7+qdo3WcdzYfF+vqq+M7d+nqq6Zdey5VfWi0e0Lq+q60dhPVtVjD3CetVW1fey4+1fVh6rq86Pz/vKqqlHfWVU1U1UPGht/TVVtWeB8XD+6f66uqs9U1e9U1fpR35Z9a5zjPvjg2JrH833VAnNdMcr7k1X18araOkce++K8duw8Pm2+mAAAAAAAAAAAAAAAAAAAAAAAAAAwacuuqOSokOH/SHJpd5+c5D5JNiX5zSQvTfK60dAXJfnr7v5okl9K8p+qan1VbUryu0nOHsW6NMlfdveJ3f2QJM9Kco+xKT/c3VvHtg+O2m9L8tSqutMiU39tkvNHMX4oyR/O6j8jyceTPLW7b9w3X5I/Hjtua5Ldi5jrnNHY54+OX/I83f3P81TVhiTvSvKq7r5vkh9J8uNJfmUs7peTvGxRZ+L/eHR3PzDJw5KcmORP5hk3fh+cNtY+nu9L9jPXmd39I0n+KMl5c+SxL87zlrgGAAAAAAAAAAAAAAAAAAAAAAAAAJiIZVdUMsljkuzq7jcmSXdPJ3lBkn+f5D1JUlW/nr2FJF86GuPxxn0AACAASURBVHNNkncneXGS/yfJm7r72lGs3d39z4UXu/sfunt2wce57ElywWjuxbhb9hZe3DfP1ftuV9VJ+T+FMc9YZLzF+EiSEwaY52eS/FV3vz9JuntHkucmGS/k+J4k96+q+y41ye7enr3315Or6tilHr9E33VOAAAAAAAAAAAAAAAAAAAAAAAAAGC5Wo5FJe+f5G/GG7r75iRfSnLvJL+a5PeS/E53f2ts2G9lb3HEf5Xk98difWI/851SVdvGtpPG+l6f5MyqOnoReZ+f5ENV9WdV9YKq2jzW96wkb0ny4ST3raq7LCLeYjw+yaUDzDPXOb82yaaqOmrUNJO95/U3DiTR0X14XZKT5+gevw9eNtb+grH20xc51exzkiSXj8VZbJHQVNVzquqqqrrqjRe9abGHAQAAAAAAAAAAAAAAAAAAAAAAAMAgVk86gYPg8Um+luQB443dfWtVvTXJ9u6+ba4Dq+r1SR6ZZHd3/4tR84e7+wlzje/um6vqTUmel2TnQkl19xur6rJRfk9K8otV9SOjXM5I8pTunqmqdyR5epLXzRdqEe3nVdXvJrlHkh8ba1/KPAfivyd5WVXd6wCPr3na57sPzu/uVy8y9sVVtTbJpiRbZ/U9urtvWGyS+3T3BUkuSJKbb7xhvvsFAAAAAAAAAAAAAAAAAAAAAAAAAA6KqUkncAA+k+Qh4w1VdVSSH0xyQ/YWeHxYkp+qqgfNOnZmtO3z6SQP3rfT3WcneWyS45eQz39O8vNJjtjfwO7+ane/obuflGRPkgdU1QOTnJzkA1V1fZJnZW/xx/ncmOSYWW3HZu/a9zmnu++T5MVJ3pAkBzDPuLnO+YnZW6Dz5rH17UnymtG8S1JVRybZkuQLSz12kc5McmKSi5L84UGaAwAAAAAAAAAAAAAAAAAAAAAAAAAOmeVYVPLPk2ysqmcnSVWtyt5ChhcmOT/J73b3l5O8MMnrq6oWiPWhJOur6pfH2jYuJZnu/laSt2VvYcl5VdXjq2rN6PZdkxyX5CvZW9jx3O7eMtrunuTuVXXPeebbnuRrVfWYUaxjkzw+yZVzDH9dkqmqOn2p88xycZJHVtVpozk3JHltkt+fY+yFSU7LEgpzVtWmJH+U5NLu/vZij1uq7u4kL0/yiKq638GaBwAAAAAAAAAAAAAAAAAAAAAAAAAOhWVXVHJUGPApSZ5eVX+X5AtJdiV5f5IfTPL/jca9O8m3kzx7P7GenOQnq+q6qvpYkouSvHhs2ClVtW1se9ocoV6T5E77Sf1fJrmmqj6Z5LIk53T315M8K8kls8ZeMmqfz7OTvLyqtmVvYczf6u5r51nf7yT59QOcZ1+cnUmelOQ3q+rzSa5O8vHsLVo5e+zu7C04eef9xU1yeVVdk+RjSb6U5BcXccwdMlrLa5KcMyuPfffvm8ba/6SqvjzaPnKwcwMAAAAAAAAAAAAAAAAAAAAAAACApVg96QQORHf/Y5InztF12axx/2bW/rlzxPpa5ims2N1XJDl6nr5NY7e/kWTjfnJ+YZIXztF+4jxjF8r5M0kePc88Z83af0eSdyyQ00LzjK/x6iSnzhPnwiQXju2/NnsLS86ru7cs0Hd9kgeMbl+R5Io5xnxPvgvEO3XW/mv2l8fs8wgAAAAAAAAAAAAAAAAAAAAAAAAAh5upSScAAAAAAAAAAAAAAAAAAAAAAAAAAMDSrZ50At9vquplSZ4+q/n/7+5XTCKfSauqjyZZN6v533b31QdhrkuS3GtW84u7+7Kh5wIAAAAAAAAAAAAAAAAAAAAAAACASVNUcmCj4pErsoDkXLr74YdwrqccqrkAAAAAAAAAAAAAAAAAAAAAAAAAYNIUlYQB3HzNVYPEOfJ+WweJkyTZcetgoWZu2zVYrKqNg8Wa+eZXB4uV4+8+SJjpfxoup9p+02CxNm06erBYO/ZMDRZrJThyoDh9++6BIrEUM9+5cdIpLD9H3vG/+lq1aoBEOBDHHLFh0imsSDO7hnuttSIM9LKmp6eHCcSSfPPm4d6nrBTHHDXAc+utNw+QyQozwHlPkp6+fZA4LI3n1iUa6Ll15radwwRiSb72HY/xS3GXYzcPEuebt3hNs1R3u9OxdziG59XJ2bV7z6RTWJFunalJp7CsHDVQnM98/dsDRVoZHn70MM+ttXrNIHFYmunVayedAhxSu9asn3QKy8pQVxgcu2m4a0RYvD23fGfSKSwvdx3mmqG1e24bJA5LM7XOd9yTclO5/HgphnpurSOGuhqNpZiemZl0CivS1Hqv4Sfh+m/57mmpHnjUHf90stb6e5+UXdM96RSWlaFeiRy/3mvJSdj5pb+fdArLypEPfPAgcVy7t0QDXbc35PVjQ14T9fWsGyzWXXq4ayhu2z1MrG9MD/f4fuJgkZLbv/OtwWJ9o4Z73XbXDHctxu49w10X/4833TJInHsed5dB4iTDXjP0TzPDfTd9583Dxdq+erjvU+7xu386SJwjB3ycmd61Y7BYX58e7rH02B7uc/2pTUcMFuvbtw7z3POEB917kDjJsM+tO1YNd63CprUDvrfo4T4DPPW+zx4m0IA59Z7hnnd2Dvj9wPo1w/2OdGpmuOfDU+/zs4PEeeL5/22QOEnyjp89bbBYq2u4axN3D/PSYa8arn7B1K3DJDbktwM94O+ma/fhWeth9VHD1bMAAODAHZ6vFgEAAAAAAAAAAAAAAAAAAAAAAAAAWJCikgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CikgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CikgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CikgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CikgAAAAAAAAAAAAAAAAAAAAAAAAAAy5CikoeJqnpyVXVV3W+s7WFVdUVV/V1VfaKq3ltVDxz1nVtVX6mqbWPb5nlin1pVN43GfLaq/sMc7fu200Z906P9a6rq3eOxq+pFVfW5Uf/Hq+rZo/YrqurzY7HePpbrjqq681iM7VV13NjYr89az9qq2j4au6WqrlnkeXx6VX26qmaq6qGz+l5aVV8c5Xj6qG1zVf3KrHP1nsXMBQAAAAAAAAAAAAAAAAAAAAAAAACTtHrSCfDPzkhy5ejf/1BVd0nytiQ/091/nSRV9cgkJyW5enTM+d396kXG/3B3P6GqjkiyrarePd4+x/id3b11NO9FSc5O8oqq+qUkj0vysO6+uaqOSvKUsePO7O6r5oh3Q5JfS/LifQ3dfWOSfXOcm2T7+HqqapFL+y7XJHlqkj8Zb6yqH07yrCT3T3L3JB+sqvsk2ZzkV5L80YFMBgAAAAAAAAAAAAAAAAAAAAAAAACTMjXpBEiqalOSRyb5+ewtfJgkz01y0b6CkknS3Vd296V3ZK7uvjXJ3yS59xIO+0iSE0a3fyPJL3f3zaN4N3f3RYuI8YYkz6yqY5eS71J192e7+/NzdD0pyVu6+7buvi7JF5M8LMmrkpxUVduq6rzR2E1V9faq+lxVXVwHWN0SAAAAAAAAAAAAAAAAAAAAAAAAAA4mRSUPD09K8r7u/kKSG6vqIUnun+QT+znuBaNiiNuq6vLFTFRVxyV5RJJPj5pOGYuxrapOmjV+VZLHJnlXVR2V5Mju/vsFprh4LNZ5Y+3bs7ew5K8uJs+D4IQk/zi2/+VR20uSXNvdW7v7nFHfjyZ5fpIfTnJikp+YK2BVPaeqrqqqqy5+9/88eJkDAAAAAAAAAAAAAAAAAAAAAAAAwBxWTzoBkiRnJPmD0e23jPa/S1V9NMlRSd7f3fsKM57f3a9e5BynVNXfJplJ8qru/nRVnZrkw939hDnGb6iqbdlbePGzST6Q5IhFzHNmd181T99rk2yrqsXmPCkf6+4vJ8noHGxJcuXsQd19QZILkuTLf/G+PpQJAgAAAAAAAAAAAAAAAAAAAAAAAHB4qapjk7w1e2vYXZ/kGd397VljHp3k/LGm+yV5VndfWlUXJvnJJDeN+s7q7m0LzTk1SOYcsNGd/pgk/29VXZ/knCTPSPLpJA/eN667H57k5UmOPsCpPtzdP9rdD+nuP17E+J3dvTXJPZNUkrO7++Yk26vqxANJoLu/k+S/Jzn7QI6/g76S5AfG9u8xapvLbWO3p6P4KgAAAAAAAAAAAAAAAAAAAAAAAAD795Ikf97dJyf589H+d+nuy7t766je32OS7Ejy/rEh5+zr319ByURRycPB05L8aXffs7u3dPcPJLkuyQeSnFVVPz42duOhTq67dyR5XpJfq6rVSV6Z5PVVdVSSVNWmqnr2EkL+pyS/mENfqPFdSZ5VVeuq6l5JTk7ysSS3JDnyEOcCAAAAAAAAAAAAAAAAAAAAAAAAwPefJyW5aHT7oiRP3s/4pyX5s1HdvwOiqOTknZHkkllt7xi1PzPJK6vqi1X119l7h79ubNwLqmrb2LblAOY/ZVaMp80e0N1/m+RTo5z+S5LLk3y8qq5J8uEkM2PDLx6L9cE5Yt0wWu+6JeZ536r68tj29LkGVdVTqurLSX4syXur6rLRvJ9O8rYkn0nyviRnd/d0d9+Y5K+q6pqqOm+JOQEAAAAAAAAAAAAAAAAAAAAAAADwfaSqnlNVV41tz1nC4Xfp7q+Nbn89yV32M/5ZSd48q+0VVfWpqjq/qvZbt2/1EpLjIOjuR8/R9tqx3Z+c57hzk5y7yDmuSHLFPO1Hz3PMpln7Txzb/f3RNvuYUxfIdXz/hUleuNCY8Ry6+/oka+aKPccxl+R7i3Tu63tFklfM0f4zs5quGOt77mLmBQAAAAAAAAAAAAAAAAAAAAAA4PDRM9OTTgFYprr7giQXzNdfVR9Mctc5ul42K05XVS8Q525JHpjksrHml2ZvMcq1oxxenOS3F8pXUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEXo7tPm66uqb1TV3br7a6Oikf+0QKhnJLmku28fi/210c3bquqNSV60v3ymFpk3y0BVnV5V22Ztl0w6r4Ohql4/x1p/btJ5AQAAAAAAAAAAAAAAAAAAAAAAALBivSvJvxvd/ndJ3rnA2DOSvHm8YVSIMlVVSZ6c5Jr9Tbj6gNLksNTdlyW5bNJ5HArdffakcwAAAAAAAAAAAAAAAAAAAAAAAACAMa9K8raq+vkk/5DkGUlSVQ9N8kvd/Quj/S1JfiDJX8w6/uKqOj5JJdmW5Jf2N6GikjCE7kHCzOzeNUicJJnafNxwsaZvHyzWzIYjBos1ddvOwWINpdauHyzW6iOOHCxWrZoaLNae6ZnBYsHhbtXGTZNOAQ6p3XumJ53CitQDvtYC4PBSq9ZMOoUVacj3wCze1LoNk05hRdq80XmfhGOP2DjpFFakVQN+XsrS7J72ecEkrN9586RTWGaOHSTKCcccNUgclub2b98w6RSWl6P8nS5nU+uH+z4ZloOpqkmnsCKtWu99KytHrXYJ7KTMzAxzzSRLs+efvjrpFJaXI+876Qy4A3b4WHJJhvoE/eiN3rdOQg/4G4KVw2dky9qMB/lJWLVxuN/ysHhT6zy3TsI3Brw0+84DfvawecDfnE3dPtz78g27bx0kzpCfFXx913C/XbvzmuGu4xzyPqzdwz0frtu9Y7BYMwP9Tnb71NpB4iTJ+ltvGSzW8XfaPFismW9/c7BYG3Z9a7BYezYfP0icr26/bZA4SXLCEcP9Pm/jnuG+e5paO9z1xhtv3z1YrK/sHuaJ7Js7hstp0J+bDXiudgx0rpJkzepVg8VaN9Drh50Drm/I3wxOzwx3H66aGu7/4fq1w71uG+o+fMfPnjZInCT56f/2wcFivePfPm6wWCxeD3gtbg15LcaAsWpquMdSAIDvF919Y5LHztF+VZJfGNu/PskJc4x7zFLn9AtrAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBlSFHJw0RVPbmquqruN9b2sKq6oqr+rqo+UVXvraoHjvrOraqvVNW2sW3zPLFPraqbRmM+W1X/YY72fdtpo77p0f41VfXu8dhV9aKq+tyo/+NV9exR+xVV9fmxWG8fy3VHVd15LMb2qjpubOzXZ61nbVVtH43dUlXXLPI8njfK7VNVdcmsvF9aVV8c5Xj6qG1zVf3KrHP1nsXMBQAAAAAAAAAAAAAAAAAAAAAAAACTpKjk4eOMJFeO/k1V3SXJ25L8Rnef3N0PTvLKJCeNHXN+d28d276zQPwPd/fWJA9N8rNV9eDx9rHtg6P2naP9ByT5VpKzR3n9UpLHJXnYKN5jk9TYPGeOxXraWPsNSX5tPKHuvnHf2CR/PGs9uxd11r7XB5I8oLsflOQLSV46yvuHkzwryf2TPD7JH1XVqiSbk/zKPLEAAAAAAAAAAAAAAAAAAAAAAAAA4LClqORhoKo2JXlkkp/P3sKHSfLcJBd191/vG9fdV3b3pXdkru6+NcnfJLn3Eg77SJITRrd/I8kvd/fNo3g3d/dFi4jxhiTPrKpjl5LvUnX3+7t7z2j3fyW5x+j2k5K8pbtv6+7rknwxycOSvCrJSVW1rarOG43dVFVvr6rPVdXFVVUBAAAAAAAAAAAAAAAAAAAAAAAAgMOMopKHhycleV93fyHJjVX1kCT3T/KJ/Rz3glExxG1VdfliJqqq45I8IsmnR02njMXYVlUnzRq/Ksljk7yrqo763+zde7BmdXkv+O+z+0ZfgcZLFCkJaMzoMKejHrRUJng7nOOQgybMQcRDzEmVt3Y0SDxJPDVHKhNL8EZJxZhypjTE4GEMRsVLRJKyZyDmqKgdA9FEBDNChRiIdNMX+rL7mT/67eR1Zzfut1ndbzf786l6q9f6rd96fs96b3ut9a71dJK13X3HQwxxzVisd421b8v+wpJvWkieA/lPSf54NH1yku+PLbtr1PbrSb7b3Ru6+y2jZT+T5FeSPDXJaUmeO1/wqnp1Vd1SVbdc8+k/nq8LAAAAAAAAAAAAAAAAAAAAAAAAABw2S6edAEmSC5O8bzR97Wj+R1TVl5OsS/KF7j5QmPHK7n73Asc4q6q+kWRfksu7+7aqOjvJTd197jz9V1bV5uwvvPitJDcmWb2AcS7q7lsOsuyqJJuraqE5H7Kq+i9J9ia55hBW/0p33zWKsznJqUluntupuz+Y5INJctemP+5DThYAAAAAAAAAAAAAAAAAAAAAAAAADoGiklNWVeuTvCDJGVXVSZYk6SRXJ3l6kk8lSXc/q6rOTzJfAciFOFjxyIPZ2d0bqmpVkhuSbOzuq6pqW1Wd1t13TJpAd99fVR9NsnHSdSdRVa/K/ufphd19oNjj3UlOGev2hFHbfHaNTc/G5wQAAAAAAAAAAAAAAAAAAAAAAACAo9DMtBMg5yf5SHc/sbtP7e5TktyZ5MYkr6qq54z1XXWkk+vuHUnemOTSqlqa5B1J3l9V65KkqtZU1cUThHxvktfkMBVqrKp/m+Q/J/n3o9wPuD7Jy6tqRVX9ZJInJ/lKkgeSrD0cuQAAAAAAAAAAAAAAAAAAAAAAAADA4aSo5PRdmOQTc9o+Pmq/IMk7qur2qvpS9heg/O2xfpdU1eaxx6mHMP5Zc2KcP7dDd38jyTdHOX0gyReTfLWqbk1yU5J9Y92vGYv1J/PEune0vSsmzPMpVXXX2ON/PUi/387+IpE3jnL43dG4tyX5WJK/SvL5JBu7e7a770vyZ1V1a1W9a8KcAAAAAAAAAAAAAAAAAAAAAAAAAGBqlk47gcWuu58/T9tVY7M/e5D1Lkty2QLH2JRk00Hajz/IOmvmzP/c2Ow7R4+565z9ELmOz785yZsfqs94Dt39vSTL5os9zzpPeohlb0/y9nnaXzGnadPYsjcsZFwAAAAAAAAAAAAAAAAAAAAAAAAAONJmpp0AAAAAAAAAAAAAAAAAAAAAAAAAAACTWzrtBBhOVZ2T5Io5zXd298umkc/hVFXvT/LcOc3v6+4PTyMfAAAAAAAAAAAAAAAAAAAAAAAAjiK9b9oZABwRiko+gnT3DUlumHYeR0J3b5x2DgAAAAAAAAAAAAAAAAAAAAAAAAAwTYpKwgBqZskwcZYMEydJ9vVgoTKz9oTBYtWO7YPF6uUrBos1s3f3MHFWrx0kTpLs3f7AcLFOePRgsXrv7GCxmEDNTDuDRWl7e94ntW7aCfCwLN9+/7RTOLasH2YfqdcMt68FR7vHrT1u2iksSrtWrJ52CovW3++ZdgbHluMHivO324Y5xl8sznjUMHH2rFg5TCA4BuzY7Qt+GvZudcw6seOHOd48aY3v+GnYu+bEaaewKK1t3/HTsGu182MAj1TLHtw27RSOMcOcIduyzDnhSdjzhkOzesXyaaewKO1b/xPTTgGOmCUzNe0UFqW1u+zDT26AH1wHuheBya3Y55wwi8eSVWumncLitM/9N9Pw6HXDnR+bvfeewWKtGfCes86ywWI90MPcYvykE/cNEidJZpcNd8/g0foa7psd7jXcsWS48zSnHT/M6zi7bLjt27d1uPfW0h7ue3nfcasGi/XgsuGusT9uz4ODxDlh1XA5ze7cOlis448/abBYvXO4e53v2zfcPYhPfNQwv1zsnR1wP2S4j/Sg1iwfrkzGlgeHOz7cOzvM99ayAWsOrFh6dNYvWHPcgPs0O4e7h2DPQPfRL63hznF+/D++eLBYv/CRGweL9fGLzxks1iPdkHVEMuB7a0jLThzo5hQAAB4WlZIAAAAAAAAAAAAAAAAAAAAAAAAAAI5BikoCAAAAAAAAAAAAAAAAAAAAAAAAAByDFJUEAAAAAAAAAAAAAAAAAAAAAAAAADgGKSoJAAAAAAAAAAAAAAAAAAAAAAAAAHAMUlQSAAAAAAAAAAAAAAAAAAAAAAAAAOAYpKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAxSFHJo0RVvbSquqp+eqztzKraVFXfqaqvV9Vnq+qM0bLLquruqto89jjhILHPrqotoz7fqqq3zdN+4PGi0bLZ0fytVfXp8dhV9atV9e3R8q9W1cWj9k1V9ddjsa4by3VHVT1mLMa2qjpprO89c7ZneVVtG/U9tapuXeDz+H9U1TdHMb5QVY8ftVdVXVVVt4+WP30s9ivG1n9VVf32wl41AAAAAAAAAAAAAAAAAAAAAAAAAJgeRSWPHhcmuXn0b6rqsUk+luSt3f3k7n56knckOX1snSu7e8PY4/6HiH9Td29I8swkrzxQVPFA+9jjT0btO0fz/2OSf0yycZTXa5O8OMmZo3gvTFJj41w0Fuv8sfZ7k1w6nlB333egb5LfnbM9uxf0rP1L7+ru/2kU8zNJ/uuo/d8lefLo8eokHxi1n5rkFXODAAAAAAAAAAAAAAAAAAAAAAAAAMDRTlHJo0BVrUnyvCS/nOTlo+Y3JLm6u790oF9339zdn3w4Y3X39iRfS/KkCVb78yQnj6bfmuR13b11FG9rd1+9gBgfSnJBVa2fJN9JHchrZHWSHk2fl+T3e7//nuSEqnpcksuTnFVVm6vqklHfx1fV56vqO1X1zsOZLwAAAAAAAAAAAAAAAAAAAAAAAAAcKkUljw7nJfl8d/9Nkvuq6hlJnpbk6z9mvUtGxRA3V9UXFzJQVZ2U5NlJbhs1nTUWY3NVnT6n/5IkL0xyfVWtS7K2u+94iCGuGYv1rrH2bdlfWPJNC8nz4aiqt1fV95NclOS/jppPTvL9sW53jdp+PclN3b2hu68cLduQ5IIkZ2R/IcxTDjLOq6vqlqq65Q+u/9zh2BQAAAAAAAAAAAAAAAAAAAAAAAAAOChFJY8OFya5djR97Wj+R1TVl6vqW1X1vrHmK0fFEDd09/N/zBhnVdU3knwhyeXdfaCo5E1jMTZ093dH7SuranOSe5I8NsmNC9yWi8ZivWXOsquS/GJVrV1grEPS3f+lu09Jck2SNxxCiD/t7i3d/WCSv0ryxIOM88HufmZ3P/OV//4lDyNjAAAAAAAAAAAAAAAAAAAAAAAAAJicopJTVlXrk7wgyf9VVd9L8pYk/yHJbUmefqBfdz8ryf+e5PhDHOqm7v6Z7n5Gd//uAvrv7O4N2V9QsZJs7O6tSbZV1WmHkkB335/ko0k2Hsr6h+CaJL8wmr47ySljy54wapvPrrHp2SRLh08NAAAAAAAAAAAAAAAAAAAAAAAAAB4eRSWn7/wkH+nuJ3b3qd19SpI7k9yY5FVV9ZyxvquOdHLdvSPJG5NcWlVLk7wjyfural2SVNWaqrp4gpDvTfKaHKZCjVX15LHZ85J8ezR9fZKLa79nJ9nS3X+X5IEkaw9HLgAAAAAAAAAAAAAAAAAAAAAAAABwOB2Wwn5M5MIkV8xp+/io/YIkV1TVyUl+kOTeJL851u+Sqnrl2PxLu/t7E45/VlVtHpv/re6+brxDd3+jqr45yukDSdYk+WpV7UmyJ8l7xrpfU1U7R9P3dveL5sS6t6o+keSSCfN8SlXdNTZ/SXf/4Tz9Lq+qpyTZl+Rvk7x21P65JC9JcnuSHUl+adT+zSSzVfUXSX4vyQ8nzAsAAAAAAAAAAAAAAAAAAAAAAAAApkJRySnr7ufP03bV2OzPHmS9y5JctsAxNiXZdJD24w+yzpo58z83NvvO0WPuOmc/RK7j829O8uaH6jOew6hQ5rL5Ys+zzi8cpL2TbJynfU+SF8xp/r2x5ecuZFwAAAAAAAAAAAAAAAAAAAAAAAAAONJmpp0AAAAAAAAAAAAAAAAAAAAAAAAAAACTWzrtBBhOVZ2T5Io5zXd298umkc/hVFXvT/LcOc3v6+4PTyMfAAAAAAAAAAAAAAAAAAAAAAAAADjSFJV8U70o9wAAIABJREFUBOnuG5LcMO08joTu3jjtHAAAAAAAAAAAAAAAAAAAAAAAAABgmhSVBH6s2r1rsFi7V6wcLNaSB344WKzZVWsHiVO7HhwkTpIsP+nRg8VasmP7cLG2/ONgsRaFx5w0SJjdS5YNEofJrNyzc9opLErb9uybdgrHnGH+iiVLVq0ZKBKT+Ietw/2dXgxOXDfQftuSJYPEYTIP7qtpp3DMGeIdf9ye4Y5TmMzypb5rpmHtcSumncKitGyX46fJHD9IlBW+Z6Zi9Yrl005hUVq67oRpp7Bo7Zl1rmYaVuzbM+0UFqVaMjPtFBalNcs879Pww+324Sc1xLnJHbMDJLLIDPUbCNOx5zi/PU3DSStdXzANtcz5gmmY3f7AtFM49hw/zDkWx63TsXy3/fjJDHMununYsdv3zDRsWbZ62ikcc04cIMbuGbf1TMv9ztVMZN1Acf5xr2vIJjHU814zri+YivIbyDTcc/9w5wvWrR3mnqAk2T3gfRKz+4b7TK8+bpjzidXD/WEd8vr6VWvWDxZr74D7DntnhjufOOg1ZPt6kDBbdgx37fLKEx87WKx9Q17Lvny4+2RXzQzzvCfJvoGO6/7h3vsHiZMk61cP94vf3gHfW7v3DhYqx68a7jO9fOkw+w9DXhOw9rjhtm/XgF+mDzy4e7BYQ14Xum7FMMf59+0Y7t7+lcuH+/1w14Dn7f5+yyP7Ndx9lP6M9fGLzxks1i/8/g2DxRoyr6HuG+xZJ48mMehvt+uHOxYDOKB7uGMvgKOZXyYAAAAAAAAAAAAAAAAAAAAAAAAAAI5BikoCAAAAAAAAAAAAAAAAAAAAAAAAAByDFJUEAAAAAAAAAAAAAAAAAAAAAAAAADgGKSoJAAAAAAAAAAAAAAAAAAAAAAAAAHAMUlQSAAAAAAAAAAAAAAAAAAAAAAAAAOAYpKgkAAAAAAAAAAAAAAAAAAAAAAAAAMAxSFHJo0RVvbSquqp+eqztzKraVFXfqaqvV9Vnq+qM0bLLquruqto89jjhILHPrqotoz7fqqq3zdN+4PGi0bLZ0fytVfXp8dhV9atV9e3R8q9W1cWj9k1V9ddjsa4by3VHVT1mLMa2qjpprO89c7ZneVVtG/U9tapunfD5vHT0fD5qNF9VdVVV3V5V36yqp4/FfsXYeq+qqt+eZCwAAAAAAAAAAAAAAAAAAAAAAAAAmIal006Af3JhkptH/76tqh6b5GNJXtHdX0qSqnpektOT/OVonSu7+90LjH9Td59bVauTbK6qT4+3z9N/Z3dvGI17dZKNSd5eVa9N8uIkZ3b31qpal+RlY+td1N23zBPv3iSXJvm1Aw3dfV+SA2NclmTb+PZU1QI37UdV1SlJ/k2S/2+s+d8lefLo8awkHxj9e2qSVyT56CENBgAAAAAAAAAAAAAAAAAAAAAAAABTMjPtBEiqak2S5yX55SQvHzW/IcnVBwpKJkl339zdn3w4Y3X39iRfS/KkCVb78yQnj6bfmuR13b11FG9rd1+9gBgfSnJBVa2fJN9DdGWS/5ykx9rOS/L7vd9/T3JCVT0uyeVJzqqqzVV1yajv46vq81X1nap65xHIFwAAAAAAAAAAAAAAAAAAAAAAAAAmpqjk0eG8JJ/v7r9Jcl9VPSPJ05J8/cesd8moGOLmqvriQgaqqpOSPDvJbaOms8ZibK6q0+f0X5LkhUmur6p1SdZ29x0PMcQ1Y7HeNda+LfsLS75pIXkeqqo6L8nd3f0XcxadnOT7Y/N3jdp+PclN3b2hu68cLduQ5IIkZ2R/IcxTDjLWq6vqlqq65Q+u/9yg2wEAAAAAAAAAAAAAAAAAAAAAAAAAP87SaSdAkuTCJO8bTV87mv8RVfXlJOuSfKG7DxRmvLK7373AMc6qqm8k2Zfk8u6+rarOzv6CiufO039lVW3O/sKL30pyY5LVCxjnou6+5SDLrkqyuaoWmvNEqmpVkrcm+TcPM9SfdveWUcy/SvLE/GhByiRJd38wyQeT5O7/9wv9MMcEAAAAAAAAAAAAAAAAAAAAAAAAgIkoKjllVbU+yQuSnFFVnWRJkk5ydZKnJ/lUknT3s6rq/CTzFYBciIMVjzyYnd29YVSo8YYkG7v7qqraVlWndfcdkybQ3fdX1UeTbJx03QU6PclPJvmLqkqSJyT5elWdmeTuJKeM9X3CqO0p88TZNTY9G58TAAAAAAAAAAAAAAAAAAAAAAAAAI5CM9NOgJyf5CPd/cTuPrW7T0lyZ5Ibk7yqqp4z1nfVkU6uu3ckeWOSS6tqaZJ3JHl/Va1LkqpaU1UXTxDyvUlek8NQqLG7/7K7HzN6Hk9NcleSp3f3PUmuT3Jx7ffsJFu6+++SPJBk7dC5AAAAAAAAAAAAAAAAAAAAAAAAAMDhNnhhPyZ2YZIr5rR9fNR+QZIrqurkJD9Icm+S3xzrd0lVvXJs/qXd/b0Jxz+rqjaPzf9Wd1833qG7v1FV3xzl9IEka5J8tar2JNmT5D1j3a+pqp2j6Xu7+0VzYt1bVZ9IcsmEeT6lqu4am7+ku/9wgvU/l+QlSW5PsiPJL43av5lktqr+IsnvJfnhhHkBAAAAAAAAAAAAAAAAAAAAAAAAwFQoKjll3f38edquGpv92YOsd1mSyxY4xqYkmw7SfvxB1lkzZ/7nxmbfOXrMXefsh8h1fP7NSd78UH3GcxgVylw2X+yH0t2njk13ko3z9NmT5AVzmn9vbPm5k44LAAAAAAAAAAAAAAAAAAAAAAAAAEfCzLQTAAAAAAAAAAAAAAAAAAAAAAAAAABgckunnQDDqapzklwxp/nO7n7ZNPI5nKrq/UmeO6f5fd394WnkAwAAAAAAAAAAAAAAAAAAAAAAAABHmqKSjyDdfUOSG6adx5HQ3RunncO4WjrMR2nfnj2DxEmSJTu3DxZrdtfOwWItW7FysFhZftxgoWZ6dphAq1ZndueOQULdt3O498P65SsGi7XnUScPFouFWz473PuBhVuyavW0U1i01iybmXYKi9JQ+zRM5rHLpp3B4rRvZsm0U1iUlm774bRTOKbsXXPiIHF8v0/PSSt9yU/DiauHO1/Aws2sXDXtFBallbuHOwe4OKwfJMrqvcOdL10Mti8d5pzwll0DncNdRNYOFGdmy30DRVokTjh+kDD37t43SJzFYt1Acbb7+XwiQz3vQ/4mthisHeZrJieuHvB3WyayfKlzkywey3c7fprMMF/y/7Bj9yBxFouh/rb23r3DBFokhvrtYvsy13VM6oSB4ty93XfNJNadNEycHUuWDxNokRjoKz5LZlzHNA1rjxvuulcWbv1y7/dpWb7P/uQ0nLjCOeFpWHOcfZppcA3ZdDh2msxQx04/UQM+7w8OF2v36qGOypPjlg/3W8P2Abdx9YNbB4nz6KpB4iRJdj04WKi9y4a5rjdJViwb7jV8cPdw+5K17R8HiXPCkPdj7RruPTrUdUxJsmrFcNcI//DBXYPFOn7lMO+tU5YOd61W79wyWKw68dGDxVo61D3FSXYMeGnb7D/+wyBxfmL1mkHiJEnPDvc5XJnhromaOW64fdwht3HfzmFirV863Hma3jPc38MVA352snS4v/m17+h7DVOP/HNtH7/4nMFi/cLvD1cm5Y9+6SWDxKklw+2z1ZD7uEepB1cOdUUhAAAPxyP/SATgCBqqoCTAYqagJADspwgnAPBIoAgnAMA/U1ASAPZThBMA4J8pKAkAPBIMVVASAAAAAIBDp2IPAAAAAAAAAAAAAAAAAAAAAAAAAMAxSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBj0NJpJwAAAAAAAAAAAAAAAAAAAAAAAAAwqH37pp0BwBExM+0EAAAAAAAAAAAAAAAAAAAAAAAAAACYnKKSAAAAAAAAAAAAAAAAAAAAAAAAAADHIEUlAQAAAAAAAAAAAAAAAAAAAAAAAACOQYpKHiWq6qVV1VX102NtZ1bVpqr6TlV9vao+W1VnjJZdVlV3V9XmsccJB4l9dlVtGfX5VlW9bZ72A48XjZbNjuZvrapPj8euql+tqm+Pln+1qi4etW+qqr8ei3XdWK47quoxYzG2VdVJY33vmbM9y6tq26jvqVV16wKfx7nPy0vGlv1GVd0+yvGcUdsJVfX6Oc/VZxYyFgAAAAAAAAAAAAAAAAAAAAAAAABM09JpJ8A/uTDJzaN/31ZVj03ysSSv6O4vJUlVPS/J6Un+crTOld397gXGv6m7z62q1Uk2V9Wnx9vn6b+zuzeMxr06ycYkb6+q1yZ5cZIzu3trVa1L8rKx9S7q7lvmiXdvkkuT/NqBhu6+L8mBMS5Lsm18e6pqgZv2L/yL56Wqnprk5UmeluTxSf6kqn4qyQlJXp/kdw51MAAAAAAAAAAAAAAAAAAAAAAAAACYhplpJ0BSVWuSPC/JL2d/4cMkeUOSqw8UlEyS7r65uz/5cMbq7u1JvpbkSROs9udJTh5NvzXJ67p76yje1u6+egExPpTkgqpaP0m+AzovybXdvau770xye5Izk1ye5PSq2lxV7xr1XVNV11XVt6vqmjpIdcuqenVV3VJVt/zBpz5zZLYCAAAAAAAAAAAAAAAAAAAAAAAAAEYUlTw6nJfk8939N0nuq6pnJHlakq//mPUuGRVD3FxVX1zIQFV1UpJnJ7lt1HTWWIzNVXX6nP5LkrwwyfVVtS7J2u6+4yGGuGYs1rvG2rdlf2HJNy0kz4fpDVX1zar6UFWdOGo7Ocn3x/rcNWr79STf7e4N3f2W0bKfSfIrSZ6a5LQkz51vkO7+YHc/s7uf+crzzj0sGwIAAAAAAAAAAAAAAAAAAAAAAAAAB6Oo5NHhwiTXjqavHc3/iKr6clV9q6reN9Z85agY4obufv6PGeOsqvpGki8kuby7DxSVvGksxobu/u6ofWVVbU5yT5LHJrlxgdty0Vist8xZdlWSX6yqtQuMdSg+kOT0JBuS/F2S9xxCjK90913dvS/J5iSnDpceAAAAAAAAAAAAAAAAAAAAAAAAAAxj6bQTWOyqan2SFyQ5o6o6yZIkneTqJE9P8qkk6e5nVdX5Sc49xKFu6u5J1t3Z3RuqalWSG5Js7O6rqmpbVZ3W3XdMmkB3319VH02ycdJ1Jxjj7w9MV9X/meQzo9m7k5wy1vUJo7b57Bqbno3PCQAAAAAAAAAAAAAAAAAAAAAAAABHoZlpJ0DOT/KR7n5id5/a3ackuTPJjUleVVXPGeu76kgn1907krwxyaVVtTTJO5K8v6rWJUlVramqiycI+d4kr8lhKtRYVY8bm31ZkltH09cneXlVraiqn0zy5CRfSfJAkrWHIxcAAAAAAAAAAAAAAAAAAAAAAAAAOJwOS2E/JnJhkivmtH181H5Bkiuq6uQkP0hyb5LfHOt3SVW9cmz+pd39vQnHP6uqNo/N/1Z3Xzfeobu/UVXfHOX0gSRrkny1qvYk2ZPkPWPdr6mqnaPpe7v7RXNi3VtVn0hyyYR5PqWq7hqbv6S7/3Cefu+sqg1JOsn3sr+AZbr7tqr6WJK/SrI3ycbunk1yX1X9WVXdmuSPk3x2wrwAAAAAAAAAAAAAAAAAAAAAAAAAYCoUlZyy7n7+PG1Xjc3+7EHWuyzJZQscY1OSTQdpP/4g66yZM/9zY7PvHD3mrnP2Q+Q6Pv/mJG9+qD7jOYwKZS6bL/Y86/zHh1j29iRvn6f9FXOaNo0te8NCxgUAAAAAAAAAAAAAAAAAAAAAAACAI21m2gkAAAAAAAAAAAAAAAAAAAAAAAAAADC5pdNOgOFU1TlJrpjTfGd3v2wa+RxOVfX+JM+d0/y+7v7wNPIBAAAAAAAAAAAAAAAAAAAAAAAAgCNNUclHkO6+IckN087jSOjujdPOYdxXl5w0SJz/+cRHDxInSfbs2zdYrB88ODtYrJMHi5TsWbFysFjbdu4eJM7uvTODxEmSx61dNlisrbuHez+sOW64vFi423+4fdopHFOeftKjBomzY7ivv0Vj7QAx7tqyY4Aoi8v/cPwJg8TZtme4vxeLwRDv9ySZWblqoEhMYmafL/lpqKX2JSfRe/dMOwUept4zzLEmk6ldO6edwrFl7TB7NX+31X78JNauWzdInO3LVg8SZ7EY5sgp2blsuPOSi8UQz/06v2hNTc86fpqG9b1r2iksSiv3PjjtFBalE8v3zDTsveuOaadw7Hnqv3rYIWr71gESWWTWDXPcunz7/YPEWTTWD3ME9UA5JzyJ4weKs3KZA6hp+NsH7EtO6owBLrlbO+M37mk5eZXvmmk4brm/rdPg+GlCAxw7Jcm+e+8ZJM6iMdCx074H/eY3uWHuI2A6Zne4PnsiA12rumRmuHsuWLhaah9+Ghw7TcfS49dPO4V5zewccF9rwMtL1wx1TfWy5YNd9zrka7ivarBYy7Y/MFisquH+Hi7t4c6R9UB/L5asWjNInGTY13DtgNeXVg/3Gq6bHe4akd42TKwhX8NevmKwWPvuv2+wWLMD3tsw3BYmfTTuL68a8FrVAb9L9+0e7rNTa4e6wjTZvXeY7+UVA343DHnv2r4B92l6dridmpk1w31vPTjbg8SZGfD9frSqJUsGi/VHv/SSwWL9/Ic/N0icIXPKgPs0QxryNfQ7FgDA0eEoPLMAAAAAgCKcAAAAAAAAAAAAABzt/EfqAAAAAADTp6gkAAAAAAAAAAAAAAAAAAAAAAAAAMAxSFFJAAAAAAAAAAAAAAAAAAAAAAAAAIBjkKKSAAAAAAAAAAAAAAAAAAAAAAAAAADHIEUlAQAAAAAAAAAAAAAAAAAAAAAAAACOQYpKAgAAAAAAAAAAAAAAAAAAAAAAAAAcgxSVBAAAAAAAAAAAAAAAAAAAAAAAAAA4BikqeZSoqpdWVVfVT4+1nVlVm6rqO1X19ar6bFWdMVp2WVXdXVWbxx4nHCT22VW1ZdTnW1X1tnnaDzxeNFo2O5q/tao+PR67qn61qr49Wv7Vqrp41L6pqv56LNZ1Y7nuqKrHjMXYVlUnjfW9Z872LK+qbaO+p1bVrRM8l//bKL/bquqdY+2/UVW3j3I8Z9R2QlW9fs5z9ZmFjgUAAAAAAAAAAAAAAAAAAAAAAAAA07J02gnwTy5McvPo37dV1WOTfCzJK7r7S0lSVc9LcnqSvxytc2V3v3uB8W/q7nOranWSzVX16fH2efrv7O4No3GvTrIxydur6rVJXpzkzO7eWlXrkrxsbL2LuvuWeeLdm+TSJL92oKG770tyYIzLkmwb356qWuCm/bOqen6S85L8q+7edaCQZVU9NcnLkzwtyeOT/ElV/VSSE5K8PsnvTDwYAAAAAAAAAAAAAAAAAAAAAAAAAEzRzLQTIKmqNUmel+SXs7/wYZK8IcnVBwpKJkl339zdn3w4Y3X39iRfS/KkCVb78yQnj6bfmuR13b11FG9rd1+9gBgfSnJBVa2fJN9D8Lokl3f3riTp7h+M2s9Lcm137+ruO5PcnuTMJJcnOb2qNlfVu0Z911TVdVX17aq6pg5S3bKqXl1Vt1TVLTd88rrDu1UAAAAAAAAAAAAAAAAAAAAAAAAAMIeikkeH85J8vrv/Jsl9VfWMJE9L8vUfs94lo2KIm6vqiwsZqKpOSvLsJLeNms4ai7G5qk6f039Jkhcmub6q1iVZ2913PMQQ14zFetdY+7bsLyz5poXk+TD8VPZv05er6v+pqn89aj85yffH+t01avv1JN/t7g3d/ZbRsp9J8itJnprktCTPnW+g7v5gdz+zu595zkvPPxzbAgAAAAAAAAAAAAAAAAAAAAAAAAAHtXTaCZAkuTDJ+0bT147mf0RVfTnJuiRf6O4DhRmv7O53L3CMs6rqG0n2Jbm8u2+rqrOT3NTd587Tf2VVbc7+wovfSnJjktULGOei7r7lIMuuSrK5qhaa86FYmmR99hfO/NdJPlZVp00Y4yvdfVeSjJ6DU5PcPGSSAAAAAAAAAAAAAAAAAAAAAAAAAPBwKSo5ZVW1PskLkpxRVZ1kSZJOcnWSpyf5VJJ097Oq6vwk8xWAXIiDFY88mJ3dvaGqViW5IcnG7r6qqrZV1WndfcekCXT3/VX10SQbJ113Ancl+aPu7iRfqap9SR6V5O4kp4z1e8KobT67xqZn43MCAAAAAAAAAAAAAAAAAAAAAAAAwFFoZtoJkPOTfKS7n9jdp3b3KUnuTHJjkldV1XPG+q460sl1944kb0xyaVUtTfKOJO+vqnVJUlVrquriCUK+N8lrcvgKNX4yyfOTpKp+KsnyJPcmuT7Jy6tqRVX9ZJInJ/lKkgeSrD1MuQAAAAAAAAAAAAAAAAAAAAAAAADAYXO4CvuxcBcmuWJO28dH7RckuaKqTk7yg+wvjvibY/0uqapXjs2/tLu/N+H4Z1XV5rH53+ru68Y7dPc3quqbo5w+kGRNkq9W1Z4ke5K8Z6z7NVW1czR9b3e/aE6se6vqE0kumTDPp1TVXWPzl3T3H87T70NJPlRVtybZneQXu7uT3FZVH0vyV0n2JtnY3bNJ7quqPxv1/+Mkn50wLwAAAAAAAAAAAAAAAAAAAAAAAACYCkUlp6y7nz9P21Vjsz97kPUuS3LZAsfYlGTTQdqPP8g6a+bM/9zY7DtHj7nrnP0QuY7PvznJmx+qz3gOo0KZy+aLPc86u5O88iDL3p7k7fO0v2JO06axZW9YyLgAAAAAAAAAAAAAAAAAAAAAAAAAcKTNTDsBAAAAAAAAAAAAAAAAAAAAAAAAAAAmt3TaCTCcqjonyRVzmu/s7pdNI5/Dqaren+S5c5rf190fnkY+AAAAAAAAAAAAAAAAAAAAAAAAAHCkKSr5CNLdNyS5Ydp5HAndvXHaOYzbuWfvIHEeeHDXIHGS5PgeJqckWTIzM1is7z4w3DY+bsnywWKtOW6YWFt2PDhInCT5/v3bB4t14uqVg8XavXffYLFYuCc/5sRpp7Ao7dvn/T4NTzh+1bRTWLRmBvybz8Lt8Ld1ImunnQAPy8zyFdNOYVGaXeZ5n5ZaNtxxKwvneZ+Ox62zHz8Ny+753rRTOLY8ev0gYZb+4PuDxFlUHvXwn/t7duwZIJHFZd0wb/lsX+Pc5CROGijOzIrhzuuzcEtW2qeZhlrqsoVpWPGYx007hUVpz3Frpp3CouV8wXSsW9LTTgGOmEetsS85DffPTjuDY8+6geLM7twxUCQmsWTv7mmnsCgtP+W0aaewKC1/1GOnncKi5LzkdMwudcw6Lb16qL0jJrFjl9/9JjHUL3U/3DXcPUaLwWDXqs4sGSoSE9g34DHrlhrud6zV2x8YLNaDa4f6ZTpZPTvM/Wu1dNkgcZJhX8Mf9nCfw7U7hrvXb/e64V7D43ZuHSzWklWrB4nTe4Y7h7FlwHOAq7dtGSzWkK/hyqrBYs0chb+JPbBzuPfDyt3D3Z+8c8Vwd6es7eH2cWdWDvN9WsuPGyROktS+4T6IPeB7dOeAf6eXD/iz5tIlw9yfV0uGew3Tw927NnPccHlt2zPc++G4DPddunTJMLEWwx2DPTvc90MtGW6/7Y9+6SWDxPn5D39ukDhJ8on/9L8MFisD7jsM+Ro+uNs5HwCAo4GqMQAAAAAAAAAAAAAAAAAAAAAAAAAAxyBFJQEAAAAAAAAAAAAAAAAAAAAAAAAAjkGKSgIAAAAAAAAAAAAAAAAAAAAAAAAAHIMUlQQAAAAAAAAAAAAAAAAAAAAAAAAAOAYpKgkAAAAAAAAAAAAAAAAAAAAAAAAAcAxSVBIAAAAAAAAAAAAAAAAAAAAAAAAA4BikqORRoqpeWlVdVT891nZmVW2qqu9U1der6rNVdcZo2WVVdXdVbR57nHCQ2GdX1ZZRn29V1dvmaT/weNFo2exo/taq+vR47Kr61ar69mj5V6vq4lH7pqr667FY143luqOqHjMWY1tVnTTW954527O8qraN+p5aVbcu8Hn8v8difK+qNo8t+42qun2U4zmjthOq6vVznqvPLGQsAAAAAAAAAAAAAAAAAAAAAAAAAJimpdNOgH9yYZKbR/++raoem+RjSV7R3V9Kkqp6XpLTk/zlaJ0ru/vdC4x/U3efW1Wrk2yuqk+Pt8/Tf2d3bxiNe3WSjUneXlWvTfLiJGd299aqWpfkZWPrXdTdt8wT794klyb5tQMN3X1fkgNjXJZk2/j2VNUCN+2fdfcFY+u/J8mW0fRTk7w8ydOSPD7Jn1TVTyU5Icnrk/zOxIMBAAAAAAAAAAAAAAAAAAAAAABwVOp9s9NOAeCImJl2AiRVtSbJ85L8cvYXPkySNyS5+kBBySTp7pu7+5MPZ6zu3p7ka0meNMFqf57k5NH0W5O8rru3juJt7e6rFxDjQ0kuqKr1k+R7qGp/Rcr/kOS/jZrOS3Jtd+/q7juT3J7kzCSXJzm9qjZX1btGfddU1XVV9e2quqYOpbolAAAAAAAAAAAAAAAAAAAAAAAAABxmikoeHc5L8vnu/psk91XVM5I8LcnXf8x6l4yKIW6uqi8uZKCqOinJs5PcNmo6ayzG5qo6fU7/JUlemOT6qlqXZG133/EQQ1wzFutdY+3bsr+w5JsWkucAzkry9939ndH8yUm+P7b8rlHbryf5bndv6O63jJb9TJJfSfLUJKclee58A1TVq6vqlqq65U+v/6PDsQ0AAAAAAAAAAAAAAAAAAAAAAAAAcFBLp50ASZILk7xvNH3taP5HVNWXk6xL8oXuPlCY8crufvcCxzirqr6RZF+Sy7v7tqo6O8lN3X3uPP1XVtXm7C+8+K0kNyZZvYBxLuruWw6y7Kokm6tqoTk/HBcm+W+HuO5XuvuuJBk9B6cmuXlup+7+YJIPJsm1N3+tD3EsAAAAAAAAAAAAAAAAAAAAAAAAADgkikpOWVWtT/KCJGdUVSdZkqSTXJ3k6Uk+lSTd/ayqOj/JfAUgF+JgxSMPZmd3b6iqVUluSLKxu6+qqm1VdVp33zFpAt0BCOLAAAAgAElEQVR9f1V9NMnGSdedRFUtTfLzSZ4x1nx3klPG5p8wapvPrrHp2ficAAAAAAAAAAAAAAAAAAAAAAAAAHAUmpl2AuT8JB/p7id296ndfUqSO5PcmORVVfWcsb6rjnRy3b0jyRuTXDoq1viOJO+vqnVJUlVrquriCUK+N8lrcngLNb4oybe7+66xtuuTvLyqVlTVTyZ5cpKvJHkgydrDmAsAAAAAAAAAAAAAAAAAAAAAAAAAHBaKSk7fhUk+Maft46P2C5K8o6pur6ovZX8Byt8e63dJ1f/P3p2Hy3aWdcL+PWdIQnIyQxDDkAYVGkEjYFSGFhQVR0CZIooo3aAGZdJGaf3M99nI4AAEEDttY9NeICIIggMRW3IJChKGiInMg8xqEjKczDnn+f7YdbDc7n2y65w3Z9U++76va1971Vtr/erZq6reWlO9uy6c+zntAB7/AasyHrF6hu5+X5L3z2p6WZK3Jrmgqi5K8rYke+dmf+Vc1l+skXXJ7O89csE671pVn5n7eeR+5n1Mkt9b9bgXJ3lNkn9I8uYkZ3X3nu6+NMlfV9VFVfWrC9YEAAAAAAAAAAAAAAAAAAAAAAAAAJPZMXUBW113P2iNtnPmbn7zOsudneTsDT7G+UnOX6f9+HWW2bXq9vfO3Xz+7Gf1Mg/cT63zt5+e5On7m2e+hu7+ZJKda2Wv83iPX6f92UmevUb7D65qOn/uvidv9HEBAAAAAAAAAAAAAAAAAAAAAAAA4FDaNnUBAAAAAAAAAAAAAAAAAAAAAAAAAAAsbsfUBTBOVX1Hkuetav5Edz98inpuSVX10iT3W9X8ou7+nSnqAQAAAAAAAAAAAAAAAAAAAAAAAIBDzaCSh5HuPi/JeVPXcSh091lT1wAAAAAAAAAAAAAAAAAAAAAAAAAAUzKoJAxwxPbtQ3J2bts2JCdJsmdc1JcdUcOyrjvm+GFZu6+7fljWyTddNyRn544jhuQkySnHHDksq2+6aVzWjp3Dsti4vvGGqUvYknYM6t9hs9hW4z7z2bgjduhr2Dr2XH3V1CVsPiff+qAj/vGSLw4oZGs58bhjh+Rc3z5bFzFmrSe9Z+BBEVhyR57y5VOXsCUdecrtpi5hSzrmyHHHXlnMttimmUTvnbqCLemGS/9l6hI2l+NPGBJTO1y2MIU9R9xq6hK2pB3bB14TwEJuPPKYqUuAQ2bXTn3NFI4p2/BT2Lu3py5hy7pp95VTl7Al3Xj5ZVOXsLmcdPKQGF3NNHbfMO66161g1LnW2ulY/BQ+c9kVU5ew6Yy6ruPq61yfvYgTjxuTc/R1tiUXc9KQlE9fevmQnK3ijqcc/HV7SXLVHudaFzGom8m2o44alJRsv2HcMZ9tO8d9H+voI8dlbT9izOfq3uvGfDcvGfsc7rh+3PWE248ed67hqCPGPYc7do45b5uMex733mrcuchte8Zts418H458Dntg1qhX/LZrrx6UlBw58Nx0Dfxu6/FHjvsuT9807gDSnmt2jwm69poxOUm2HTGuX66R78Mbx3325MZxUaPcdMO4v2/keycDv394dA08r3nt8u3j98DvJ4/8jkQt6fema+R3Wwdlvf7HvntITpI8/OV/MizrDU986LCska4aeKzN1foAAAfOFaQAAAAAAAAAAAAAAAAAAAAAAAAAAJuQQSUBAAAAAAAAAAAAAAAAAAAAAAAAADYhg0oCAAAAAAAAAAAAAAAAAAAAAAAAAGxCBpUEAAAAAAAAAAAAAAAAAAAAAAAAANiEDCoJAAAAAAAAAAAAAAAAAAAAAAAAALAJGVQSAAAAAAAAAAAAAAAAAAAAAAAAAGATMqjkkqiqh1VVV9Xd5trOqKrzq+ojVfXeqvqTqrrn7L6zq+qzVXXh3M8J62Q/sKqumM3zgar6pTXa9/08eHbfntnti6rqTfPZVfUzVfXB2f0XVNXjZu3nV9WH5rJeO1frNVV1ylzG7qo6eW7eL6z6e46oqt2zeU+rqos2uB5Pr6p3zjLeXVVnzNqrqs6pqo9W1fur6l5z2T84t/zjq+olG3vWAAAAAAAAAAAAAAAAAAAAAAAAAGA6O6YugC85M8nbZ79/qapum+Q1SX6wu/8mSarq/knukuTvZ8u8oLt/bYP5b+vu76mqY5JcWFVvmm9fY/5ru/v02eO+IslZSZ5dVT+e5NuSnNHdV1bVcUkePrfcY7v73WvkXZLkGUmeua+huy9Nsu8xzk6ye/7vqaoN/mn/xvOT/L/d/WdV9V2z2w9M8p1JvnL28w1JXjb7fVqSH0zyqgN5MAAAAAAAAAAAAAAAAAAAAAAAAACYyrapCyCpql1J7p/kCUkeM2t+cpJX7BtQMkm6++3d/YaDeazuvjrJe5J8xQKLvSPJqbPpZyX5ie6+cpZ3ZXe/YgMZL0/y6Ko6aZF6D0AnOW42fXySz82mH5rk//SKdyY5oapul+S5SR5QVRdW1dNm8355Vb25qj5SVc+/hesFAAAAAAAAAAAAAAAAAAAAAAAAgAOyY+oCSLIy4OGbu/vDVXVpVd07yVcnubnBGp9WVT80m/5idz/o5h6oqk5O8o1JfjnJbTIbUHFulh/o7o/Nzb89ybcm+V9VdVySY7v74/t5iFdW1bWz6bd098/OpndnZWDJpyT5pZur8yA8Ncl5VfVrWRk09b6z9lOTfHpuvs/M2n4uyc909/ckSVU9PsnpSb4uyfVJPlRVL+7u+WUzm/eJSZ6YJE/6r7+Qb3/YD9wifxAAAAAAAAAAAAAAAAAAAAAAAAAL6p66AoBDwqCSy+HMJC+aTb96dvvfqKq/TXJckj/v7qfMml/Q3b+2wcd4QFW9L8neJM/t7our6oFJ3rZvQMVVbjUbbPLUJB9I8pYkx2zgcR7b3e9e575zklw4G/DxlvITSZ7W3a+rqkcl+V9JHrxgxv/t7iuSpKr+Icmd8m8HpEySdPe5Sc5Nkj98x4W2HAAAAAAAAAAAAAAAAAAAAAAAAAA4pLZNXcBWV1UnJfmWJL9dVZ9M8rNJHpXk4iT32jdfd39Dkl9McvwBPtTbuvvruvve3f1bG5j/2u4+PSsDKlaSs7r7yiS7q+rOB1JAd1+e5FVJzjqQ5TfoR5L84Wz6D5KcMZv+bJI7zM13+1nbWq6fm94Tg68CAAAAAAAAAAAAAAAAAAAAAAAAsIQMKjm9RyT53e6+U3ef1t13SPKJJG9J8viquu/cvEcf6uK6+5okP53kGVW1I8lzkry0qo5LkqraVVWPWyDyN5I8KbfcQI2fS/LNs+lvSfKR2fQbkzyuVnxjkiu6+/NJrkpy7C1UCwAAAAAAAAAAAAAAAAAAAAAAAADcYm6pgf3YuDOTPG9V2+tm7Y9O8ryqOjXJPye5JMn/Nzff06rqh+ZuP6y7P7ng4z+gqi6cu/3fu/u18zN09/uq6v2zml6WZFeSC6rqxiQ3Jvn1udlfWVXXzqYv6e4Hr8q6pKpen+RpC9Z516r6zNztp3X3H6wx339J8qLZAJjXJXnirP1Pk3xXko8muSbJj87a359kT1X9XZL/neSLC9YFAAAAAAAAAAAAAAAAAAAAAAAAAJMwqOTEuvtBa7SdM3fzm9dZ7uwkZ2/wMc5Pcv467cevs8yuVbe/d+7m82c/q5d54H5qnb/99CRP39888zXMBsrcuVb2Gsu8Pcm912jvJGet0X5jkm9Z1fy/5+7/no08LgAAAAAAAAAAAAAAAAAAAAAAAAAcatumLgAAAAAAAAAAAAAAAAAAAAAAAAAAgMXtmLoAxqmq70jyvFXNn+juh09Rzy2pql6a5H6rml/U3b8zRT0AAAAAAAAAAAAAAAAAAAAAAAAAcKgZVPIw0t3nJTlv6joOhe4+a+oaAAAAAAAAAAAAAAAAAAAAAAAAAGBKBpWEAY4+cufUJfw7X7ihh2XtOurIYVnH7r1hWNbuYUlJ1bYhOXv3jlvvl15747Csk48e9xzuGfcnsoA9O8c9h2zcETvG9A0s5oZL/mnqEjaf408YEnNk3zQkBzaDD/7TF6cuYVP5+kH9zI7jTxySw2LudGvrfSrbt9menMTePVNXsCX1DddNXcImc9yQlPZ6n8Sea6+ZuoQtaddRy3ccfqs46rLPTV3C5nLKyUNirmqncRcx5pM12XnCSYOSWMSVN+yduoRN5dhBOdtqUBAL2X7TuPPlLKb+6VNTl7C5nHjPqSvgINxU26cuYUu6uh0PXtSI7fhjjjxiQAoH4sjbnjp1CVvSJTt3TV3CpjLmKA1TOeraK6cuYZMZc1xrr3Mgizvu4Ldq7nTsUQMK4UAct8351ilcd6tRR/VZxGm3dg5kCscd6ZzfFK7bO+4kyOe+eMWwrLuedMywrJGfYHu3jTmeWDvGvd5HPoefv3zcvsVdTx51pm7sczjymPD2Qc/j1deNOyf26csuH5Z191NPGZZ1455x57n3DPxO6tGjXg63OnpQUPL5S8f1pXcY+F2/3jPundg3Hd7fx+o9477rfNPuca+H7UePO1468rrQUdcf1cD1nh7YZ1199bCs7ccM/GxdxufwhnF9VtXAC31GZh3uBq6rNzzxocOyHnbuHw3LesOPf/+wrDYIBQDAUnAlIwAAAAAAAAAAAAAAAAAAAAAAAADAJmRQSQAAAAAAAAAAAAAAAAAAAAAAAACATcigkgAAAAAAAAAAAAAAAAAAAAAAAAAAm5BBJQEAAAAAAAAAAAAAAAAAAAAAAAAANiGDSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEIGlQQAAAAAAAAAAAAAAAAAAAAAAAAA2IQMKrkkquphVdVVdbe5tjOq6vyq+khVvbeq/qSq7jm77+yq+mxVXTj3c8I62Q+sqitm83ygqn5pjfZ9Pw+e3bdndvuiqnrTfHZV/UxVfXB2/wVV9bhZ+/lV9aG5rNfO1XpNVZ0yl7G7qk6em/cLq/6eI6pq92ze06rqog2ux6+tqndU1d/P6j5u7r6fr6qPzmr8jlnbCVX1k6vW1R9v5LEAAAAAAAAAAAAAAAAAAAAAAAAAYEoGlVweZyZ5++x3quq2SV6T5Fnd/ZXdfa8kz0lyl7llXtDdp8/9XL6f/Ld19+lJ7pPkh6rqXvPtcz9/MWu/dnb7HkkuS3LWrK4fT/JtSc6Y5X1rkpp7nMfOZT1irv2SJM+YL6i7L903b5LfWvX33LChtfbv/XaSn+vueyZ5fZKfndV99ySPSfLVSR6S5DeranuSE5L85DpZAAAAAAAAAAAAAAAAAAAAAAAAALC0DCq5BKpqV5L7J3lCVgY+TJInJ3lFd//Nvvm6++3d/YaDeazuvjrJe5J8xQKLvSPJqbPpZyX5ie6+cpZ3ZXe/YgMZL0/y6Ko6aZF6D8BXJfmr2fRbkvzAbPqhSV7d3dd39yeSfDTJGUmem+QuVXVhVf3qbN5dVfXaqvpgVb2yquYHzQQAAAAAAAAAAAAAAAAAAAAAAACApWBQyeXw0CRv7u4PJ7m0qu6d5KuTvPdmlnvabDDEC6vqrRt5oKo6Ock3Jrl41vSAuYwLq+ouq+bfnuRbk7yxqo5Lcmx3f3w/D/HKuaxfnWvfnZWBJZ+ykToPwsVZWZ9J8sgkd5hNn5rk03PzfWbW9nNJPtbdp3f3z87u+7okT01y9yR3TnK/tR6oqp5YVe+uqnf/6R/+wdi/AgAAAAAAAAAAAAAAAAAAAAAAAABuxo6pCyBJcmaSF82mXz27/W9U1d8mOS7Jn3f3voEZX9Ddv7bBx3hAVb0vyd4kz+3ui6vqgUne1t3fs8b8t6qqC7My8OIHkrwlyTEbeJzHdve717nvnCQXVtVGaz4QP5bknKr6xSRvTHLDAWS8q7s/kySzdXBakrevnqm7z01ybpK8+b0X94EWDAAAAAAAAAAAAAAAAAAAAAAAAAAHwqCSE6uqk5J8S5J7VlUn2Z6kk7wiyb2S/FGSdPc3VNUjkqw1AORGrDd45Hqu7e7Tq+roJOclOau7z6mq3VV15+7++KIFdPflVfWqJGctuuwCj/HBJN+eJFX1VUm+e3bXZ5PcYW7W28/a1nL93PSeeJ8AAAAAAAAAAAAAAAAAAAAAAABsKr23py4B4JDYNnUB5BFJfre779Tdp3X3HZJ8Islbkjy+qu47N+/Rh7q47r4myU8neUZV7UjynCQvrarjkqSqdlXV4xaI/I0kT8otNFBjVZ0y+70tyS8k+a3ZXW9M8piqOrKq/kOSr0zyriRXJTn2lqgFAAAAAAAAAAAAAAAAAAAAAAAAAG5JBpWc3plJXr+q7XWz9kcneU5VfbSq/iYrA1C+ZG6+p1XVhXM/px3A4z9gVcYjVs/Q3e9L8v5ZTS9L8tYkF1TVRUnelmTv3OyvnMv6izWyLpn9vUcuWOddq+ozcz+PXGe+M6vqw0k+mORzSX5n9rgXJ3lNkn9I8uYkZ3X3nu6+NMlfV9VFVfWrC9YEAAAAAAAAAAAAAAAAAAAAAAAAAJPZMXUBW113P2iNtnPmbn7zOsudneTsDT7G+UnOX6f9+HWW2bXq9vfO3Xz+7Gf1Mg/cT63zt5+e5On7m2e+hu7+ZJKda2WvscyLkrxonfueneTZa7T/4Kqm8+fue/JGHhcAAAAAAAAAAAAAAAAAAAAAAAAADrVtUxcAAAAAAAAAAAAAAAAAAAAAAAAAAMDidkxdAONU1Xcked6q5k9098OnqOeWVFUvTXK/Vc0v6u7fmaIeAAAAAAAAAAAAAAAAAAAAAAAAADjUDCp5GOnu85KcN3Udh0J3nzV1DQAAAAAAAAAAAAAAAAAAAAAAAAAwJYNKwgDbttWQnL//zBeG5CTJPW//ZcOy9uztYVnZtm1Y1Gcuu2xY1kl3vN2QnGsvv2pITpIcc9QRw7I+f+U1w7JOunbcet8Sjrv7kJjtN90wJIfF7L7uxqlL2HSOP/bgM4649W0PPgQ2kR29Z+oStqS73fbEqUuAQ+a6G2zTTGXbtVdPXcLmctyAjckke2+6aUgOi/n4lddNXcKmcvqtx+TcdIXjNAu53alDYm666oohOSxm2177TlPZeeppU5ewJQ069cSC+kb7T2wdI08Bs3GXXG+bZlHHjQr6sjuOSmIB12/bOXUJW5LjkgsadFzymG0+XKewY/cXpy5h8znx+KkrANiQ7UfvmrqELakdi2eL2XON/acp3Oom1xdM4VOX2n9axKm3OWlIzhW+j7CQYwcdEN526efHBCW5/UmnDMvqI8cdL/38ZVcOy7rdiYNW/M4jx+Qk2fbPnx2WNfQ5POIwfw6T7Bn0PN7qinHfk73jyScPy7pxz95hWZ8f+D3S250w5jh1klyzZ8yx6h2XfW5ITpLc5oRx78MdO8d9P/mfr75+WNatjz1mWNaOo44aktM3jvs+ah0xpqYkqe3j+tLuce/pnSeM2f5Lxl1/tP2YcX1Datx7Z+hzOPBY1DI+h0OVCwoXUdu3D8npPct5vPQNP/79w7Ie9lt/OCzr5U961LAsAAAO3Lg9QAAAAAAAAAAAAAAAAAAAAAAAAAAADhmDSgIAAAAAAAAAAAAAAAAAAAAAAAAAbEIGlQQAAAAAAAAAAAAAAAAAAAAAAAAA2IQMKgkAAAAAAAAAAAAAAAAAAAAAAAAAsAkZVBIAAAAAAAAAAAAAAAAAAAAAAAAAYBMyqCQAAAAAAAAAAAAAAAAAAAAAAAAAwCa05QeVrKqHVVVX1d1WtZ9RVedX1Ueq6r1V9SdVdc/ZfWdX1Wer6sK5nxPWyX9gVV0xm+cDVfVLa7Tv+3nw7L49s9sXVdWb5rOr6meq6oOz+y+oqsfN2s+vqg/NZb12rtZrquqUuYzdVXXy3LxfWPX3HFFVu2fznlZVFy2wPndU1b9U1XNXtX+yqm690ZyDUVUnVtXrq+r9VfWuqrrH3H0Pma2nj1bVz821P7Wqjp67vftQ1AoAAAAAAAAAAAAAAAAAAAAAAAAAB2rLDyqZ5Mwkb5/9TpJU1W2TvCbJs7r7K7v7Xkmek+Quc8u9oLtPn/u5fD+P8bbuPj3JfZL8UFXda7597ucvZu3Xzm7fI8llSc6a1fXjSb4tyRmzvG9NUnOP89i5rEfMtV+S5BnzBXX3pfvmTfJbq/6eG252ra3v25J8OMkjq6pubuZbyLOSXNjdX5PkcUlelCRVtT3JS5N8Z5K7Jzmzqu4+W+apSY5eIwsAAAAAAAAAAAAAAAAAAAAAAAAAltKWHlSyqnYluX+SJyR5zNxdT07yiu7+m30N3f327n7DwTxed1+d5D1JvmKBxd6R5NTZ9LOS/ER3XznLu7K7X7GBjJcneXRVnbRIvQfozKwM4vipJN+06r7/WlV/X1XvqqqvSJKqOq2q/rKq3l9V/7eq7lhVx1fVP1bVttk8x1TVp6tqZ1XdpareXFXvqaq3VdXd1qjh7kn+Mkm6+4NJTpsNFHpGko9298dnA2e+OslDq+qnk3x5krdW1Vv3hVTVs6vq76rqnbPlAQAAAAAAAAAAAAAAAAAAAAAAAGBpbOlBJZM8NMmbu/vDSS6tqnvP2r86yXtvZtmnVdWFs5+33sy8SZKqOjnJNya5eNb0gLmMC6vqLqvm357kW5O8saqOS3Jsd398Pw/xyrmsX51r352VgSWfspE6D1RVHZXkwUnelOT3sjLA5LwruvueSV6S5IWzthdnZQDPr0nyyiTndPcVSS5M8s2zeb4nyXndfWOSc5P8VHffO8nPJPnNNUr5uyTfP6vpjCR3SnL7rAzO+em5+T6T5NTuPifJ55I8qLsfNLvvmCTv7O6vTfJXSf7LGn/vE6vq3VX17j993Wtudv0AAAAAAAAAAAAAAAAAAAAAAAAAwEhbfVDJM5O8ejb96vz7QRCTJFX1t1X1gap60VzzC7r79NnPg9Zabs4Dqup9Sf48yXO7e9+gkm+byzi9uz82a79VVV2Y5AtJbpvkLRv8ex47l/Wzq+47J8mPVNWxG8w6EN+T5K3dfW2S1yV52GxgzH1+b+73N82mvynJq2bTv5vk/rPp30/y6Nn0Y5L8flXtSnLfJH8wWz//I8nt1qjjuUlOmM3zU0nel2TPgn/LDUn+eDb9niSnrZ6hu8/t7vt0932+6wcetWA8AAAAAAAAAAAAAAAAAAAAAAAAABycHVMXMJWqOinJtyS5Z1V1ku1Juqp+NsnFSe6V5I+SpLu/oaoekZVBEw/E27p7kWWv7e7Tq+roJOclOau7z6mq3VV15+7++KIFdPflVfWqJGctuuwCzkxy/6r65Oz2yVlZx/sGxez5km4m641JfmX2PN07yV8mOSbJ5d19+v4W7O4rk/xoklRVJflEko8nuVWSO8zNevskn10n5sbu3lfjnmzh9woAAAAAAAAAAAAAAAAAAAAAAAAAy2nb1AVM6BFJfre779Tdp3X3HbIy+OADkrw0yeOr6r5z8x99qAvs7muS/HSSZ1TVjiTPSfLSqjouSapqV1U9boHI30jypNwCAyTOanpAkjvO1udpWRnA8sy52R499/sds+m/SfKY2fRjk7wtSbp7d5ILkrwoyR93957ZYJGfqKpHzh6zqupr16jlhKo6YnbzPyf5q9myFyT5yqr6D7P7H5OVwSuT5Kokxx7MOgAAAAAAAAAAAAAAAAAAAAAAAACAQ2krDyp5ZpLXr2p7XZIzu/sLWRn48DlV9dGq+pusDEL5krl5n1ZVF879nHYANTxgVcYjVs/Q3e9L8v5ZvS9L8tYkF1TVRVkZgHHv3OyvnMv6izWyLpn9zUcuWOddq+ozcz+PXGOehyf5y+6+fq7tj5J8b1Xte7wTq+r9SZ6S5Gmztp9K8qOz9h+e3bfP7yf5odnvfR6b5AlV9XdJLk7y0DVq+Y9JLqqqDyX5zn2Z3X1TkicnOS/JB5K8prsvni1zbpI3V9Vbb25lAAAAAAAAAAAAAAAAAAAAAAAAAMAy2DF1AVPp7get0XbO3PQ7k3zzOsueneTsDT7O+UnOX6f9+HWW2bXq9vfO3Xz+7Gf1Mg/cT63zt5+e5On7m2e+hu7+ZJKda2Wvmv8VSV6xqu2yJLeZ3Txt9vuZq+b5xyTfsk7ma5PUqrZPJHnIzdTyjiRftc59f5rkT9dof3GSF8/d3jU3/dokr93fYwIAAAAAAAAAAAAAAAAAAAAAAADAobZt6gIAAAAAAAAAAAAAAAAAAAAAAAAAAFjcjqkLOFxU1Xcked6q5k9098OnqOeWVFUvTXK/Vc0v6u7fmaIeAAAAAAAAAAAAAAAAAAAAAAAAANiKDCo5SHefl+S8qes4FLr7rKlrWDbHHnXksKzTbn3ikJxrbrhxSE6S7Nnbw7Ku2rt3WNYdTj5hWNaOjPkbb3/Crnz6i1cNydo7cL3f7tijhmXt3XnSsCw27rIbxr13toLjBuV0j3sfspgrveYXcuygnBsvv2xQ0hZx0slDYv7lmhuG5GwVxx4/JufSa8dtL28Fo9b7VRe/d0zQFnHsV99rSM6nLr1iSM5Wcrtbj9nv+WJvH5KzVQzqarJ727jjNFvBuKMrTGHHCWO2SVnMzpNuM3UJm8qNl/3LsKzPX3XdsKytYNR2/PWf+NCYoK3ia+4zJGbkeR427ppPfXTqEjaV42/7ZUNyPn/5lUNytopTbzNmn3X7jdcPydlaxhyNv/UR24bksJgj9t40dQlbUl3y2alL2FxOHLMR/1efGrcfthV876BtmmvjePAibpU9Q3Kuu9WoK0RY1HWf+cTUJWwqxw26vmDXwGtV2bjaffnUJWwux43Zd7rxii8OydkyTr71kJhrPvnhITlbxdGnfdWwrMvHbB5tGaO2Arfvsj05Bdd1LGbUdR3X3uD42BSOP2rn1CVsSXuu2T0sa9tJY44dJcm2gd9PqaphWR/9wiXDsu68bcz5p5uuHvPdvCTJCacMixr5HI408jn8D3vHvH+OvN0dhuQkyee+OO49vX3ge+fSq64elvXxf7p0WNY973i7ITnbP3LxkEYMceUAACAASURBVJwk2XXXccfPrx3YP9zm1DsNy6q943bqRn3n4rrPfnJIzmgj+/gjThrXx9901bhjgLvudvqQnGsHXsfUN427Fu2Gy8Z97hx5ypg+Kxm7DTjqOdxx3KhvSCS1bVxfuvPEMccSk2TPwPf0yPN+Rx0xbl/sukHXcl513bjvkPaecdulL3/So4Zl/dj/eM2wrPPPfvKwLACArcaV6rBERg0oyXRGDSgJsJUZUBIAVhiEEwA4HIwahNOAkgDA4cCAkgCwwiCcAMDhYNQgnAaUBAAOB6MGlAQAgGUxakBJAAA4lFytDgAAAAAAAAAAAAAAAAAAAAAAAACwCRlUEgAAAAAAAAAAAAAAAAAAAAAAAABgEzKoJAAAAAAAAAAAAAAAAAAAAAAAAADAJmRQSQAAAAAAAAAAAAAAAAAAAAAAAACATcigkgAAAAAAAAAAAAAAAAAAAAAAAAAAm5BBJdkyqmr33PRXVdWfVtVHquq9VfWaqrptVT2+ql6yarnzq+o+h75iAAAAAAAAAAAAAAAAAAAAAAAAAFjfjqkLgEOtqo5K8idJnt7db5q1PTDJbaasCwAAAAAAAAAAAAAAAAAAAAAAAAAWsW3qAmACP5jkHfsGlEyS7j6/uy+asCYAAAAAAAAAAAAAAAAAAAAAAAAAWIhBJdmK7pHkPQcbUlVPrKp3V9W73/CaVw8oCwAAAAAAAAAAAAAAAAAAAAAAAAA2bsfUBcCS6Y22d/e5Sc5Nknd88GPrLQcAAAAAAAAAAAAAAAAAAAAAAAAAt4htUxcAE7g4yb3Xue/SJCeuajspySW3aEUAAAAAAAAAAAAAAAAAAAAAAAAAsCCDSrIVvSrJfavqu/c1VNV/qqp7JLkgyf2q6stm7fdJcmSST09SKQAAAAAAAAAAAAAAAAAAAAAAAACsY8fUBcCh1t3XVtX3JHlhVb0wyY1J3p/kKd39T1X1lCR/WlXbkuxOcmZ3752wZAAAAAAAAAAAAAAAAAAAAAAAAAD4dwwqyZbR3bvmpj+Y5CHrzPdHSf7oUNUFAAAAAAAAAAAAAAAAAAAAAAAAAAdi29QFAAAAAAAAAAAAAAAAAAAAAAAAAACwOINKAgAAAAAAAAAAAAAAAAAAAAAAAABsQjumLgAAAAAAAAAAAAAAAAAAAAAAAABgqL17pq4A4JDYNnUBAAAAAAAAAAAAAAAAAAAAAAAAAAAsrrp76hpgS6iqJ3b3ubJkLWtNsjZ/TbI2f02yNn9NsjZ/TbI2f02yNn9NsjZ/TbI2f02yNn9NsjZ/TbI2f02yNn9NsqbLWsaaZG3+mmRt/ppkbf6aZG3+mmRt/ppkbf6aZG3+mmRt/ppkbf6aZG3+mmRt/ppkbf6aZE2XtYw1ydr8Ncna/DXJ2vw1ydr8Ncna/DXJ2vw1ydr8Ncna/DXJ2vw1ydr8Ncna/DXJArhlvfupZxpkDTgg93nh79XUNSxi29QFwBbyRFmyboEcWdNlLWNNsqbJkTVd1jLWJGuaHFnTZS1jTbKmyZE1XdYy1iRrmhxZ02UtY02ypsmRNV3WMtYka5ocWYdH1jLWJGuaHFnTZS1jTbKmyZE1XdYy1iRrmhxZ02UtY02ypsmRNV3WMtYka5ocWdNlLWNNsqbJkTVd1jLWJGu6rGWsSdY0ObKmy1rGmmRNkyNruqxlrEnWNDmypstaxppkTZMja7qsZaxJ1jQ5sqbLWsaaZE2TI2vaLAAAVjGoJAAAAAAAAAAAAAAAAAAAAAAAAADAJmRQSQAAAAAAAAAAAAAAAAAAAAAAAACATcigknDonCtL1i2QI2u6rGWsSdY0ObKmy1rGmmRNkyNruqxlrEnWNDmypstaxppkTZMja7qsZaxJ1jQ5sqbLWsaaZE2TI+vwyFrGmmRNkyNruqxlrEnWNDmypstaxppkTZMja7qsZaxJ1jQ5sqbLWsaaZE2TI2u6rGWsSdY0ObKmy1rGmmRNl7WMNcmaJkfWdFnLWJOsaXJkTZe1jDXJmiZH1nRZy1iTrGlyZE2XtYw1yZomR9Z0WctYk6xpcmRNmwUAwCrV3VPXAAAAAAAAAAAAAAAAAAAAAAAAADDMu596pkHWgANynxf+Xk1dwyK2TV0AAAAAAAAAAAAAAAAAAAAAAAAAAACLM6gkAAAAAAAAAAAAAAAAAAAAAAAAAMAmtGPqAoCbV1W7unv31HXsU1Undfdlg7K+r7vfOChrSF1V9RVJvjbJB7r7Hw6+MgAAAAAAAAAAAAAA2Fqq6o7d/al17ntAd79tgawd3X3TuOoOX1X1A939ujXaj0jyzO7+5QWyvrG73zm0wCVSVXfc3/3rvX4P4HEWev1W1a9097Nm09/W3W8ZUQcAh49D9RnGLauq/tP+7u/uvzpUtXBgqmpbd+9d574TuvvyQ10T8K+q6lPdvd/PTAAAgMOJQSVhc/iHJBs+YFFV90zyP5OcmuTPsnLS/4uz+97V3WcskHW/JL+dZG+SH0vy35PceXYxwaO6+x0LZH3/6qYkL62qHUnS3X+4QNYvdPd/n03fPckbkuysqkry6O7+2wWy3prkkd19SVX9cJJfTPJXSc6uqnO7+8UbzWJzq6qv7+4L1rnvh7v7dxfIWvcCKNY26qKxrXDBmIuXNm4rnFytqid390tm01/d3RdPXdOy0s9vnH5m8zvcLwrWv09nGS9Aq6pnJHnB6otxqurkJM/v7icskPX9+/ZNq+rEffvSrM0XPzZuGT9bR36uLmPfkIz9vHDR32IOxWvicNmWPNy3a0Zu0+hrNn9fc7i/3pPl3Y4fZRm3aWbzL2UfP5LP1mks42t+Wde7Pp55h/ux+CXeLnWMbAKOj03jcD8Hkhz+fY1+ZjH6mo1bxm342fyH9fF4x8c2P/3Mxm2FfuZwt4z7rFX1uP3d393/Z4Gstybp9aP6WxfI+n/2X9bGt7uTnF9Vv5Xk17t7zyz/tkl+Pcndktxngax3JbnXLOPF3f1TCyz7JVX1O9n/ulpkP/qquazal5GV72sd0d0b/t7WyOcwyROr6glJzuruT8zyvzPJC5K8eYGcJPnN/Ot6f0d3f9OCy3/JqPU18r2T5E9mNdRcWye5TZJTkmzfaFBVvSnJk7v7H1e1PzjJC5PcY4G6HpLkWbPp5yU5qP79cD+OW1W7unv3Ovfdpbs/dqhrmj32Yb3ek+Vd99y8wZ/3TGPYZ9hoy3gMY4n97BptneRrktwhi22LLOt+68jj+iP360bV9e6q+ole9Z3mqvrPWdmeu/NGa9qfiY9LDjufMvIc8Ki6qup/d/fjZ9M/0t2vOIisQ3Kcpqr+urvvNyjrqd39wkFZa76vDjBrVF1187NsMOgA13tV3TfJaZkb22XB/dZbKuvUJHdalXVA+yiDs5ZufS3xeh/1990myX9ZI+vHFsy516qmTnJJd3960ZoAADhw1b3e+UZgI6rqx7r75bPp2yd5RZJ7Z2UgyMd394c3mPP09e5K8t+6+6QFanp7VgZ/fGeS/5zkR5N8X3d/rKre191ft0DWu5I8IcmuJG9K8rDufvtsp+7Fixz8qKobk5yX5J/zrwdhHpHktVk52bThHcuqem9377sw4U+SvKS7/6yqzkjywu6+7wJZF3X3PWbTFyR5SHdfWlVHJ3lnd3/NAlnDLgqZ5d01yROzcsFMknwgyf/s7g8tkjPL2p7kxO6+ZHb7iCSPT/K07v6PG8wYdsKwqj6Rf3vRS83d7u6+ywJZQy7sqar3J/nrJD+/7wLUqrpHVi6Euay7H7ZATfOv0dd19w9sdNl18g77i8aq6uNJ1r1orLs3dNHYqnV/wBeMzZYfeaHXyOfw77OfE7/dPezipX394waz5tf9l6YXNbh/eNMazV86ubrguhr5enhxkmd191Wr2u+Wlc+0By+QNWS9z5Yf8p5exj5+lrWU/fwy9jWHez8zW/6wvjC4qs5LsifrXBTc3U9doKb59X6wFwUP6R/074sZvP03pH8Y/FlxbpIzsvJ6/+tZ208m+a9Z6Wc2fCHB4PVuG36D2/Cz5YZsxy/j5+osa+k+Wwe/3kf+fSNfoyM/L96bZN2L/rp7wxf9Db747LB+zS/xtqT91g1u1+hrDpu+xnb8xrNGvuaXro9fxm2a2TKH9XqfZR3un62H9XqfZS3jdrxtmgn6+MHbIY7FL2DgsdeRfYNjZBMcIzvcj4/NlncOZOM1jTwHsnTH4mdZS9fXHO79zCzrsO5rbMNPuv80av/Q8bGN5+hnptumWbpBx7ZIP7N0+62H+z7r7PjFWr4vyakLfq7ee43mb8zK9to/d/fXL5D1jDWaj87KdxNO7u5dC2SdmOS5Se6b5ClJ7pnk6Umen+Rlvc6Awutkfem7EAd5jGat5+sOSZ6WZHt33/5AcmfZu5KcleRJSV7f3Wuty/WWHfYczvLOzMr3Sl6VlcEMT8nK9vyFC+bMr/eFvo+ygewDWl8j3ztrZJ+W5JlJHpzknO5e77HWWvaxSX45yf/Kymv8NlkZTPJOSX6yu9+zQNaw/n2WMXK7bUjfPPhz+mNZ6d9fM9d2VJJfSPKY7v6KBbL+vLu/fTb98939nI0uu0bW0q33WdbSrfvB633k3zdyH3jkcZqDrmvk5/0sb1nX+8j3zsjt5WF1zWWelgP8DJstP3K9j9x/Grk/PfL1MKyuVbn3y0ofemKSZ3f3Wp8l6y27rPutI4/rj9yvG1JXVd0/yUuzMgj+M7Oy7febST6Tle/ufmaBmpb1eMHI8ykjzwEPqWvUvuYaNR30dvx+HufT3X2HQVmf6u79Dkq7mbMG17Tweq+q301ylyQXZqXPSVY+J376AB5/ZNbzkjw6K+NhzGd938RZS7e+lni9j6zrb5K8Lcl75rLSCw4SO9s+Wu2kJEckOXPRY1IAo737qWeutw8HsF/3eeHvDRus/lA44JNkwJc8OcnLZ9O/keT3k3xbkocmeVmSjR78/ZUkv5pkrf8Us23Bmo7t7n3/PfLXquo9Sd5cVT+c9Q9Ur2dnd/99klTVv3T325Oku99bVbdaMOu+Wbkg5ILuftks84Hd/aML5qz25d39Z7O63nUAdd1YVad292eT7E5y9az9+iz4H7m6+9j526svclgkq6q+KckfJvkfSc7NysH8r0vy1qr6/l7gP+hU1WNmOVdX1UeSPDsrr9sLkjx2gbKuXqPtSycMs3IBxEatvtBwW5JHJfmZJO9bICdJ/niNti9d2LNAzr2y8t+93ldVv5yVi5a+K8kzunutx9if+Q2CEf9Nar2LgL4vyalJFvnPIT+zRtuXLjhasK6Rr4l7Z6WPuLCqVl80tt+Ty6vMr/uD+m9LI9/TGfgcdvc9V9V1Wv71xO+vLFjXq7PSr6x18dKPLJg1yrD+obu/d/723MnVLyRZ6KLlwa+HL2Tltf6L3f2qWhnI+OwkD8/Ke/FAHezOyKj39DL28cmS9vPL2NdsgX4mGfjaGvwcDvmc7u7vmF0U/BdVNX9R8GMO4ATM/Ov9qAWXXW1I/6B/X9iw7b+B/cPIz/sn1sp/13tpVV2UlUH5P5Lkm7r784tk5d+u64Nd77bhFzNkO34ZP1dndR3Wn62D/75hr9GRnxdJfjrJubXyD1hWX/T3nxbM+tq56adk5Z/UHJAt8Jpfutf7jP3WA3NQn636mun6mtiOP1AH+5pfuj7+cN+mSZZzvc/qOqw/W7fAek+Wc93bpjlwB9PHH+7nW5MlPRafccdeR/YNjpFNc4zssD4+NuMcyMaNPAeyjMfik+Xsaw73fiY5zPsa2/CT7j+N+hsdH9s4/cxilvHaPf3MYpZxv/Ww3mftucFXq6qycl33M5O8MyvXey+S9aXB6qrqm5P8Yla2c39837X2C2T9+lzWsVnpS38sK6/dX19vuXWyvpjkSbM+5i+SfC7JNy4ysMp83AEss1ZNX/pCfFXdOcmzsvJZ89ysDAa4sKo6IclTs9J3virJ13f3pQvWNew5nHlNkq/Oyvvl8iTf0t0fPoCcbbUyOOi2uekvvQe6+7JFAw92fY1878zlfGWS/5bkG7LyOv/p7r5xkYzufmVV/XFW+vYPJNk5q+d/dveir99TqurpWVnX+6bnH+s3Fqxt5HbbqL555LbWtyd5Sa0MSP6TWXnt/1qSNyQ5fYGcZOVzeZ9HJjngwQ2XdL0ny7nuh633jN0GHLkPPPI4zUHXNfLzfmZZ1/vI987I7eVhdY34DEvGrvfB+08j96dHvh5G1pWq+tasbP91kl/p7rcsmrGs+62Dj+sP268bVVd3v71WBog/O8nHsvId5Sd0958vUs/Msh4vGHk+ZeQ54FF1bcbBhUbWPHJwlEmyVu8vrcpYaKDsm3Eg6/0+Se5+APuEt3TWw5LctbuvX7KsZVxfy7reR9Z1dHc/82BDuvtBa7VX1X2SnJPFz/UAAHAADCoJY31Vdz9qNv362v9/n1rtvUne0Gv858HZibWFVNXx3X1FknT3W2vlv2m+Liuj+S9ifkDLn1913xGLBHX3BVX1bUl+qlb+08Azc+AHru5cVW/MygGd21fV0d19zey+nQtmPS3Jn1fV65JcnOQva+W/DN0/ye8cSHEjLgpJ8v9k5b8unD/X9oaq+sskv5TkOxfI+oUk9+7uj1bVvZK8I8kjeoH/VJUMv0Do0lnOtiQ/nJWD+Rcm+e7u/ocFs4Zc2NPdNyV5TlXdlOS3s3LR0hnd/blF6tkXt870AXHR2EKGH8QfdKGXi5c2ePHSyP5hnxEnV+eyRrwenl1Vv5fkxVX140m+PCsX733t3OfZRp1QVQ/Pymf2cVX1/ase6w8XqGvIe3oZ+/hZ1tL288ly9jWHaz8zm3crXBi8dBcFj+7j9e8brmv0BecH3T/cAp/3F2Xlv7s+JCvr7Bm9+Jflk+RWVfV1s4yjZtPzr/f3bjTINvzChm7HL+Pn6ixnmT5bh375IBn2942+WHnUxZYjL/qz37rxmpZ1W9J+68YN26bZR1+z8bgDWGa9umzHb9wt8Zpfuj5+ybZpkltmu2bp1vss57D8bN3ncF3vs7qWbjveNs00ffzg/XLH4hera+gxskF9g2NkCxj1HG6F42POgSxk5DmQpTsWP6trGfuaw7qfmWUd9n1NYht+AUt3PN7xsYVq0s8sZunOgehnFj5esHT7rVthn7WqdiR5fFYGpXlnVq7x/tABZn1HVq4bvz7Js7v7rQdR10lZGWT2sVkZnPdesz5j0ZwTkjwvK++Zh2RlwJc/q6qn/P/snXm4ZEWR9n+BICCyOggKCtKIIJsoMDDqCCgioiIg64ggjjuyqSC4AM4IsjlsittIiw6boCCjMijQKIgCsm8CnzSKjgqOCm4g9Pv9kVl9z62u5eSpuFVZdfN9nn761Dkn3xM3KisyMjJOpKQrEunWNbNbCf19TjwmfpakjRLkWpegq02AEwj2+IlEeTCzfwDeD+wOfAnYRPE9jibw+g7N7GXAp4EfEgolvQK4xMzOi7wpxQuWB37ClN9e9dlFQiEYT315/XbMbAOCXV+fYJffJunJJjJFvBDYnDB32hRYhfD+Xmpxry8Ay3Y4HghOfpvX+xuevtb/A7Y3sw8CdxOKNm4n6Y4UnhZdgzY9kZPeI1eOuveMj82ED+gxB56JtZmB5PIa7yFrvXv+djz95YHlmoExrMXr8V5ki8tj/uQ5n/bsDy5ymdkOBB39EfiIpKtT5OjCmdu8FZzi+s7zOje5gDcBewJnANsCu5vZDSnrDJBvvADfQvOe72N5ybW6mZ0a27aOp4SUDkiQyU3v7XkJ1UvA0gky9YOn/zsqrl7zpVNSHjoDer8dWBVosnY/k1w/I9gYj+KGnlw56itXvXvK9d9m9lpJ33bgWgSSbrBQsLygoKCgoKCgoGAIKEUlCwoGRzVYtLKZLVEJsKYUN3wr0C243r4TWT8cB6xHWHQBQNKtlUXIFHzUYsFGSRe1TprZHNJ2nmvJsQA4xcy+Rtghpyl2bPu8WJRrFULgNUWmeWb2T8BehMDRT4C/Ae+TdHcKl3NSyBxNLyjZkvcqM/t8Itfjku6L7W80s3uVWFCyBccEoSUIC2cHA1cDb2zJ2FCugRN7Yr/+NCHYuB6hcOf3zewTklILjG5sZo8QA4XxGKaSlpZL5CtJY/XhmTDmnehVkpdqwNM+eC6uevcHYEH8f3HCjoZ3Kf0lVoDvE3bvbB2/vnJNQFKxAo/fdI42PvJkaedztDWTbmdamOTE4IyTgl3sQ7Hvjey7V8K5i31wHu/3Bo4GPgfMATYGPm1m9wAfkJSy2++vgU91OIag920SZSs+fH24+PE5jquRJ8ex1W1c9f77HPuod7KlS9Ifjslns6TPZ+dLlnlrEtx8mmJrRmprih9fH559Pjsbn6lPA742Pju9R55JH1tng94hPz+++DRp8LTxE7veGnmyjMVH2Txir262ocTI0uEY55zY+FhFtrIGUg9uayBRtqxi8ZErR1sz8XYmck2srSk+/EjnT572ocTHaqLYmSRkmbtX7Ewacpy3TvKc1czeSyhGdDnwGknzE+Wocl0PrEzQ0bXx3Itb15VQvNvMTgB2Bj4PbCjpT03lIvjZnwHeG7+3y8zsRcBnzOwBSXsmcK03gBwLYeFdhpcQCuwcDDxJ2EgESC6I8gDwEHAm8BfgbS2eyJVSMMTtOyS8q/F2SdfFzxeZ2WXAkcAtwLp1iSStmfDcfnDRl+dvh6CPXwDfItjlzdtkSvEb/pNgq94j6VozW4Ywj7rFzA5SQrFsSUfXvbembK5+m6Nt9hqnFycU6PtX4D0En+ZUM3tPA761zOybBJveOl4ISW/o3KyjXFnqPXLlpns3vVfk2pfB/z5Pv9TTPxpYLufxvsWZnd4jn+dvx60Qp4NcbmNYlMezv3vn+XjOpz37g4dclwAPEt4tPtTMDq1eTBx3spy3esb1Ped1XnKZ2fcI7yO/StL9ZvYR4L3ADWb2SUmp7wLnGC/wXE/xXAP2kuuDleMbEp7fCZ56f32Pa/+dQmRmj9K5SGNyoUQzu60H1yqjkMt5/uSidzO7hPC3LQvcaWbXUSkkmGjfPblOi1x/AW42s8vbuFLmwJ5c2ekrY717ytX6DRpwhJk9RhhvGtdC6PKcVZiBDRwKCgoKCgoKCgo6w9RoQ5CCgoIWzGyftlPflPR7M1uVsIPPEaOQq2A0MLM/M5Xk8Gj79cSkkJ9IekmXazdKenGna13uf5DpCdiHVD8nJF9UFww/PciCYZTpCULCys/br0tKefGqmthzPiGxp8pVK7HHzO4DPiTpgsq5ZxN09RxJL60rkzfaEl+O804aq2KApLFB+8TPCEljJ7cW41pJY0DtpDEzW6PXdUkPJMjk+Zv2/A6fZGrhd5HFvYbJS+9tS156LZCUvOQFZ/uwgLC4egsdgo6JAVLP/vBRYB/gw5LOM7PVCLterQy8Ww13Gh0UXr/pHG185MrSzudoaybdzkS5PPuW53foMk6b2Q2ExNTrKueeRkgK3lFS7aRgT3jZh2Lf0+Ds/7nYB+ex4mLC/PuByjkD3gV8UFLSS79eKD58fR8+tnPx43McVyPXRI+tzn+fZx/1HC9aSX/vi0l/ixGS/g4GkpL+OsQT2+X6cgLXRPf5HPt7lKvMW0fg1xRbM1JbU/z4ESBHGz/pPk2UKzu9R65JH1snWu+RKzvdF59mZD7NRK+3Rq5cY/FesVdP21BiZGlcXt/hRMfHIldZAxkBcozFR66JtjU52pnINdG2pvjwI50/ec0PS3ysZnys2JmR+jQutqbYmTTkOG+d9DlrtKO/JfT3qh1tUox1XoWj9TJ4C5JUu3h3lOsxwnfYSa7aL5Sb2eqSHuxy7e2SvpDAtYWkH9W9vwfPfKbrCqb0pRTf1syOosMYWOH6eALXvD5cKd/hYpIWdLm2kaRbO13rcv/+kk6Px+tLuqNu2w5cR+GgL+ffzr49ZEpdVzsYOFVtxZvMbEOCXf3nBK7LJL06Hh8u6di6bbvwefptXu9veI7TtwPzCPHgP8Zzr4syfl3S4Qlcr+h1XdJVCVzZ6T1yZad7Z717/n2ec2DPOM3AcnmO95EvV717/nY8/eWB5fKa+1b4PPXuOX/ynE979gevmLen/cty3uoZ1/ec13nJZWY7SfpGh/OrAidKenOCTFnGCyYdZra4GhaXnY3wjAF6wczOl7RbPD5O0mGVawvnVkOWydO+e3L18h8k6awRcWWnr4z17iaXN2yqeGYVKwH/BBwo6ZLhS1VQUFAwhRsO2rMUWSsoKGiETU8+x/rflQ9KUcmCgoICR5jZkb2uK2G3EzP7LXBup0vAbpJq79jiJZdzgtBcFg0MVETSfglc8ytcnZKgaiX2mNnTuy3omdmrJH0vQaadWwu6ZraiGu46V+ErSWM1k8a8EsYi11H4JXqV5KX6PHPxsw+egdujesiVauNPIew2+2jb+e2BT0mqvZu2mc2VtG883id14b+Ny+U3naONj1xZ2vkcbc2k25nYfj4TnBiccVLwXBzsQ7HvaXD2/7xevpqL01jR5znPlbRI8mWP+49R3BzCzLaV9N0Bnl18+NG8+HEUmY2rkWvfHnKNZGx1Hlc9C5d59lHP8cIz6c8t+WzS+3zGvuRcyry1ll/j7NMUWzM6WzOX4sfX5fLs80eRmY3P0aeJbTxt/FFkpvfItW8PuSZhbD2KCdZ75MrRj59L8WmGbuOd/ZC5+H2H8ytckxqLn4dDfMXZL52L03fY5zklRraoTBMbH4tc8ylrIHVl8lwDmUdmsfjINZfMbM2k25mKXBNra4oPP9L5k9daXYmP1ecpdmZ0Ps1RONiaYmfSkOO8ddLnrDakQgxmtoSkv3twecBCYZSdgD0l7ZDQ7kZJL47H10racqZk9ICZbSbp+lHLAWBmBmwD7AW8TmnvIlT1vvB4BmSsra9h/Xa8YGZLAW+QdH5Cm5skbRKPB9a7s982H4fYkOD6pgAAIABJREFUg/M4/RJJP+lwfilCnPgjCVxJ8bQ+XNnpPXJlp3tnvXv+fUfh4JdGrrl9uFLi+m5yeSFjvc/H97fj5S+7ydWBeyng9ZK+ltjuKPz0vm8PrtT507w+cqXMp+eD2/zCTS4vZDxv9Yzre87r3OTqwvEcYA9JJyS0yTVe4Lme4rkG7CJX25znNEnvG0AmT72fLOmgeHygpFMq1xbmMNTk2kbSFfH4eZLur1xb+J3U5FpX0t3xeElJj1WuJcUHveTqNX+qXqvJ5ab32GZakctu50bANe1v63ZuBFzZ6StjvXvKdbmkV/Y7V4OnfR1LwO+A6yX9NlWugoKCAm+UopIFBQVNUYpKFhTMMpjZTsBVkv7PzFYm7FK0CXAn8H51SbQqmExUg5AOXG4J4uMGM1tF0m9GLQeAmc0hJM/sIWn9hHauyTMlaax+0tiwEsZSE71K8pKbXC72ocnC3LBgZv8s6fsJ98+43j2Rk42HfOx8j+dMrK3J1c54I/U7nEE5xiEpeGD7UOx7I7lc/L+mCWgzATNbAdiF0N/Xk/TshLZu/b348Pm9+DHJ4yqkj61D8t+zsQ0zhYZJf27JZ32eM7F9PmdfssxbF7m32BoHZG5rih8//f5h2Zpi46e3KXofEEXvo0OOfnzkLj7NovePVWyyxOKT5Rs4vpKbX1piZKNDzvExb5Q1kCQZJy4WD81tTbEzgyNnW1N8+I5tSoxsQIwyPlbsTH52JnKXomPT24zVnBXymrfmOmc1s5cRfoPvHYBjEF95pV7XJf1fA3meCuwQ5dkOuBD4uqRLEjiq/T2pKEQN7kZ9oQPPC4E9478/SNo0oe3Ova4rochHhXMLwt/1RmAl4L3AN5VQuKWtv3vrvbG+uvAl/3bM7BJ6F196Q0NZnkLo63sCrwZ+IOlNCe2HNWcdWRx3GON0wz5R1f2FknYZVI4Ozxhp/DxH3XvqfYh+vFt8zNM/GkSupnOB2Hbs9D5JGHTcqcFf9D5DMLPb6O2L1C7IOgw0mbd24Gg8V+nC5+XLDyyXhXfMdyX8Fp8NfEPSB5rKVOEdabzAOa6fHZezroai91TuSefKUaZebczs1ib2fQhcjeb8Q+Aaqb7GTO9JcsXxZRngCmArWFhwezngUknrJsq0MrCypDvbzr8QeEjSQyl8BQUFBd4oRSULCgqaYtyKSi4+agEKCiYAn5D0wnh8OvAj4AjgVcCZwLajEqxgJNiP0A8GhnoUjTSzJPttZudL2i0eT9tlwio73zTBIAuGbTzTEs0JQfO6bXsG4STdmCjLs4HdoywbAscCe6RwwLSdygZ2DrotnrYW2gkJPo3QvuAB5Jg09tkUisrxUqnP70nclrgE1E5c8vwOh5m8BKQs8s3IRHoQ+9DGs8jCXGL7U3tdl3RAE7kid+O+xQzpvQUPO5+TjY+c2dn5acQZ2JrZZmdamKnEYBK+Q+/E4C5JwYMkJXj394FtfLHv6RjE/2vj6fSbrvWimpkd0uu6pE8lyrI0sCPhb9oEWJbQ72sXh/BG8eGTfHiYIT8+h3E1tslxbJ0p/72xbejB2fTFxRlJthx07GF6f39pExm6Ek9wn8/Zlyzz1p4otmYybU3x43s8uulz+yEHG5+pT0MvmQZFDnqPbWbb2Dqxeo+82fnxUa7i0/TGTOp+4tZbI2fusfiBY2SD+qUlRjaaGNlsi48tJC9rILUoB2i7KFkGsfjYfqJtTY52JradVbam+PB9MRYxshIf64xiZ/KwM9Dc1hQ7MzhGPW+dTXNWM9skyrQrcD+QXEAw8nj4yj8h9K1Of5uAtRLkeTVT/ftK4CxgM0lvTZQJYDEzWxFYrHK8UMZU++fUFzCzNZmyUX8H1gA2lTQ/ker1Pa6JhD5hZscQ+tLPgXOAo4Eber2j0AMrmNlOBL0v1z6/azCfWxMffbX4Bv3tnNjkuT3keUWU57XAdQRf5HmS/pJItZaZfZPQx1vHC9F03IkyDuprdeJMjj10G6cdZGnvExemUlSOa9u7GnJloXfIVvduep9hP36QtYZ2Lpe1mUHlcpoLjI3eI59LvDRyufjLTeVyHHc6cQ/Sr9zmT56xZc/5haNcr6v7zH7IeN7a4nGL63v58h5ymdmywM6RYx2CP/o8Sas3kafCm2u8YNA58EytAQ/C5akrTy5PXfXiSuXOketp0RddDFg6Hlv8t7SjTPVJzN4NvAeYY2a3Vi4tC1wzQq49CfbqeW3zzGWB1LiKJ1d2+spY725yAe8EDiLMRap+0CM0q5dxGvCZDuefAXyEoIOCgoKCgoKCgoIZRikqWVAwOJ5SOV5b0u7xeK6ZHVSXxMzWB+ZI+mb8/B/A8vHy6YkB6cI1Ii5PmNnVkl4Wj78iae/K5euAlN1Mnl853hY4rPJ55QayuSwYOiaan9TjmgiJl3XkeQchyL4aIcD+NuBiSUcnygNTgcfFgKUqQcgg1AD9qiSN9YV3wtiaOCYuRc6SvNRfJhf74Lww95MGbXrJtiY+fWt1Cy/ZWuV4IZq8YOth53Oz8VGmbO18hrZm4u1MRbaJTAzOPCl4YPtQ7Htj++6SiOP0m1429bk95DkbeDlwGWEB8grgPknzGtA908ILtlY5XojUl2srMhYfvj/c/PgMx1XIc2x1HVe9k1OdYg+eyZaeY49rot6k9/lcfckyb60NV5+m2JokeNua4sfXg3ef95KrylniBf3lWpO89A6zY2xdkwnWe5QnRz+++DT14W3jJ3K9NcqUbSw+yjdwfMXRlpYYWTOeQb/DiY+PVeQrayD94boGEuXLKRYPedqaSbczMAtsTfHhk5BtPL7Ex9JQ7EwtZJ27V+xMkmw5zVsnes5qZusw1c8fBs4DTNLWqQJ5+sqSnpfapgcuJRQ/eZmk+6OspzTkWp5gA1u6ruq5tv3z7Atmdi2wHHAusIuke83s/ia2qqHt7YZ/Be4BzgAukfSYmTUdH68CWrbk+0yf36UWu3TRl+dvR9JVqW16yPUg4Td4BvABSY/Gv6/JeuaOleOBxyBnX6vFOVDswcwepbPfZoAkLZfA5dYn2mQayK/MUe+RI0fdu+m9Cg8/3tMvdYzrDyyX81ygnTsrvUc+zwJ0Lv7yoHI5jzstzjXx0bvn/Mmt8DaO8wuc5JJvod8s562ecxVnX95Lrt8S9PMR4GpJimsPjZBpvMBzPcVzDdhLrnUtFGYzphdpa/lGKRvneOq9V6ztKd2bdUQvXyvV98qR63+B1vrSryvHrc8p8NL72cB3CGP7hyrnH22w9uvJ9UOCvv6B6ePio8CtHVsMhytHfeWqdze5JJ0CnGJm75N0WqIcnbC2pEXmNpJ+YGZnOPAXFBQUFBQUFBTUgEkzujFlQcHEw8w+B/yGMPH6d0LQ7xtmtjVwlKRX1OS5BDhW0g/j5zuBjwJPIyyWvzFBpsI1Oq4ngE7B2SYLqzdJ2iQe3yjpxZ2u1eRa2L4D17TPfXjaFwzPA06TtGZdWSpc1UTzc5lKNPdMQkqV6XHgWuD9km6I534mKXmXQzObR/egpSSlLDJ1W2j/gKQ1GsjWvuDxDcKCx8h0H+VaQEga27eSNJasfzObDyygS8JsCl9b4tK5lcSlZF15foeeaFtEvqiyiNzkb+w55tVNuvK0D2b2VxZdmGv0u/aEc9/ap9f1lMVMLzufo42PcmVp5yfd1uRoZyJXezLB+YRkgiZyuX2HXjCz3xKSgk9mKim4aX8/s8dlSdovgcvFPhT7nmzf3fw/z9+0F8zsZsKC/VkEvT84QH8/stf1lISj4sMnc83HwY+f9HE1yuXyO3QeVz3He7fYgyc8xx4z+wtwHzH5LB5Dg+SzSe/zGfuSZd5an8fTpym2Jo3L09YUP74+l2efLza+PpenjS96r89V9J4mV45+fPFp0rhcbPykr7dGuXKNxbvEV3KMj0W5SoxsBMgxPha5yhpIfS7PNZCJjsVHuVxsTbEzyXJlZ2uKD5/MlV08vsTH6sfHip1J5ppPZrl7xc4k25mJnrfmOGet/AbfJum+AWXy9JV75pYrociHmb2IUBhpV+BnhP7wsRHHSj37wkXAi4FvAmdL+uEAXIf0uq6EAuxm9hRgW8Jv+pWE3/SrgOdIeiJVNi946cv5t9OzeENdvyFynUwoDnc7ocjDxcBto46Vgruv5RZ78IJzn3gS+DPBp1maqXeEmrwXNNF6j3K56N5Z755+vOcc2HNtZmC5POcCsW2ueveMl3r6ywPL5T3u5BgPng2wRQv9GlMbSSTZP2e5POetnnMVT1/eRS4zO4gw51mGEPM5D/huQ5lyjRd4rqfMw28N2EUuM+s5Vimh+Kuz3ufTPdaWtCGEmf2BUMTaCP5Iq+ibETaBWDGB67eEscIIhZHPrXDtJmmVUcjlBWe9G/CPwLPjqV8C10npBV48uSLfKgQ/BOCXkn7ThMeTK0d95ap3Z12tS/Apq1wXS7q7AddPJb0g9VpBQUHBsHD9gbuXImsFBQWNsNkp53WcH+SKxUctQEHBBGB/4MPAT+Png83sz8AlwN4JPM9SLGoY8YikCwHM7J2JMhWu0XHdpoRij33QyyFNdVafZlO797R28jGmFlvrwnOn2BcCvwfuAu6S9KQ13P3U2nYQaofq7yj0LELC0klmtiphQW6JJjJJ2qpJux64m6D711UW2g9uyOW286xn0hghQWgP4Htm1koaS90xiSaLsT3wG0KAbhVgZeBemu966fYdeiYvARcQAn67A0+a2cU0/BtTFjX6wM0+AIcT+tVngHPM7LymQlnbzmDtUNpOYW59Sw125usBLzufo42HfO18drZmFtgZgNMJyQR7VZIJmurd7Tt0TAx+FlNJwSeb2ZUEP3Dx1KRgOew4XIGXfSj2PQ1u/h9Ov2kzO7XXdUkH1OWS9KK4iLknwZd8GFjWzFZJXWBVg11qe6D48Alw9OOzG1dju+zGVudx1W28xzH24Jxs6Tb2AOsN0LYdk97nc/Uly7y1Jpx9mmJr0uBpa4ofXxPOfT47G5+jTxOf62njs9N7bDfpY+uk6x3y9OOLT5MARxs/6eutkG8s3iu+4mZLS4wsGS7f4SyIj0FZA6kN5zWQ7GLxkKetmXQ7E2WYdFtTfPgEZBqPL/Gx+ih2JgGZ5u4VO5OG7Oats2DOujPhN3ilmV3KVFGGJnDzlYEbCMWJHo6fqzIJqF3kQ9LNwM3Ah8zsn6J8S5jZd4BvSPp8XS5H++fZF95oZssTvsujzOz5wApmtrmk6xLpTiTo6jvAYzTvC0h6kvCbvtTMlgReR3hv4JdmdrmkvepyOc7nPPXl+dtZQOjXZxPeA/prQx4kHRTHma0Iff14YHkz2w34tqQ/1eUys9voMTYkjjvg62u5xB7MbKVe1yX9XwKdW5+Q1MgX6oLs9B7bZad7Z717+vGec2DPtRkPudzmAhG56t0zXurpLw8sl+e4E+EZD/Ys2uxZeNttfuEo1+XAqsDXCcU8f15Xhg4yZTlvxXeu4ubLe8kl6eTYfi2CXb0IeLaZHUaY89yTIFOW8QLP9RTPNWAvuZRQNLIGl6fe1/TiAnasHJ/Ydq39cz98sHJ8Q9u19s/94CnXIjCzbYFDJW1bt42X3i0Uo/4MYTz9ZTy9OrC2mb1H0mUj4noR8Flg+SqXhQKf70mJLTtzZaevjPXuKddhhHHwHMKGCC2uc83sXEmfrMsVcZ+ZvVbSt9uesz1hs5mCgoKCgoKCgoIhwNSsCHpBQUEHxMXtxSX9rkHbXpX375G0TuEaC66b5FRUMi7IvZ9QCPIE4AOtS8DxkuYkcM2jd0LB1jV5XHeKrSSa705IOnoBsEHqSy0WdsdrJRxBW+KSEnY6qnCuHuXak7BL1DckHZHQ3jOJDTN7I0H3LyUsQp4LfFHNdply23k26r5r0pgSdoZq420lje0C3EJC0phzwmzLtu8c5Xk+sAKwXWqil/N3eDM9kpdSFzLMzJhaRH4tITD5NkaYvORlHyp8rYW51vd4JIkLc2b2EPALQoD0x7Qlu6Qu+jj2rUvorffaL9h62vmcbXzkzc3OZ2VrZomdeQahr+9JSMI4n7DT7nPqcrTxeX2HrT7fMTFYDV6yqyQF70nYuW9kScGRz83GF/tem8vN/4t8A/+mLewSezvht/crFtV740INZvYSYC/Cb/xBSf+U0Nbt5driw4/sxY/sxtXIld3Y6jmueskUeTx90otwSrascA489nhj0vt8jr5k5Cvz1nocbj5N5Cu2ZkQofnxtHu8+n5WNz9GniTzeNj4rvUeu2TC2TrTeI1+OfnzxaerzuNj42bTeGnmzicU7x1e8bGmJkSXA6zucJfGxsgZSv73ny8jZxeIjT3a2ZtLtTOSaDbam+PD1ebKLx5f4WJIsxc6MyM5EPo84dbEzafk02c1bZ8OcNfItQyiksCehYONZUabaL4G38Q3qKx8EvAn4I6EffCOlX9bgX4xgA/dI+Q4tFHnphkb2b9C+0IHvmcBuke+5KXMxM9s4tnsN8BNCjOxyye/FLzNbFthJ0lkJbY7sdb3JfK7CvQpBX3uQqK/Y3uW3U7FXrwfuJNj6y5rM59p4lyB8n3sQxrB/SGjb0/amjjsVXo84rkvsIdr4B4GWnttt/FopfJFz4D5hvgUXW5zZ6D1yZad7T717+oCRz2UOHLk819495RpoLhA5stS782/Hcz7tGseNnI3HnQqHl94917jdYsue8wtnuVp63wNYCjiPEGdJGnNynbe2cQ40V2njcvPlPeWKfBsQ4ue7SVo7sW2O8YKJLu5q0zfOaf2WG22c4x0P7vKMdYAPSnr7oFyR76WSrnHieq5HjDhy1ZbLzLYhFOx7NqGw63HAmYTv8BOpcZouz0jSu5ndBWwvaX7b+ecRfs+1N0Zy5roZeKekH7ed3wL4nKSNR8SVnb4y1runXPcA60v6e9v5pwJ3SHp+Xa7Y7vnAt4AfEmJbAJsCWxKKz48sD7qgoKAA4PoDdy9F1goKChphs1POa7wR3ChQikoWFAwIM3uzpK/G42kBCjPbX9LpNXmuBD7UZTL4SSXsvlK4Rsp1hKRj6t7fh+vMXtfluLtPE3gsGLbxvSTy7Ub6Sy2thce1gYuBcxR3tfNADGLsKenjCW16fX+DJLGVpLH+bdwTxircAyUuRY6SvJQuU+OX3rrwbUBMxEhZmLPpid0bEYKb50i6YxB5InfjvmVmr+h1XQ13OPO08znb+PiMbOx85M7C1swyOzNrEoMzTAp2s/HFvtfm9U54WQLYLvLV/k1XkuF2JySmngdcIOkPTWXp8AwDXi7p+wlt9ul1XQ1eri0+fO12M+LH5zKuRp6sxtaZGlcHkakDj0eyskuyZRfuRkl/nslnHbgnus/n6EtG7jJv7d5uRnyayF1sTe92M2lrih/fve1M9vksbHxuPk1sO5M2Pgu9R57ZNLZOtN4jb45+fPFperd1t/Gzab01PiObWLxnjKxpfCy2LTGyEcTIZmF8rKyB9G4zI2sgucTiY9vsbM2k25nYfrbZmuLD926bdTy+xMdq8xU7U69dtrl7xc40kimLeetsm7NG7hWJPpykVzblqfAtB7wxxVeutG0VQdsReAA4RtLNvVstwuFacHYm0aQv9OOTdG/Dtq3f4KuAwyR9M7G960bCw4CZrTGgb+Ty2zGz3YFPA8dJOqEpTwfepSX9tf+di7RbgVDUC+AeSX90lKlxsaMKR+PYg5mdDGwNXEOIE1ztFSeI/I36hJndz5Tv2A6pQcHFNv6R6j22z073M6F3bz8+cjaOj3XgahzXnym5KnOB3SW9rSHHTOh94NhD5PEsQOf5voVrHDdyNhp32jgGnYe5zJ88Y8ue84uZiHnH3+AewKkE3zvZZ8tx3tqDMzmu34PLzZf3lMtBliziBZ7rKZ7z6Zla5xkEznrfCDiRqUKJnwZOB/4ROEnSfyRwPYVg01cDLpV0u5m9DjgCWFrSJnW5It+Wkev7kn4bZf0QYb0oZf3QRS4zuwk4GLgW2B74KqFuQK0aD21cLno3s3uB9drtr4VifXcmxrtdudSlUKCZ3TdKLjLTV856d5TrbsL48kDb+TUI/sML6nJV2i5JmPNuEE/dAZwt6W+pXAUFBQXeKEUlCwoKmqIUlSwomGUwsxslvbj9uNPnPjybExLp5gKtxIiXAPsQFmJSdtUtXKPjOo3eu8gcUJfLE+a8G24bd6PkwR58yS+1VNq2Fh53B54BfFgJL3DNpJ5mAiVpbLQYNHEpcpTkpTTeJi+9rSvp7ni8pKTHKte2lHRtQ1mWJCyyngAc3WSBoQd3475lZisDSHrIUR43Oz9KGx85xsrOQz62ZrbYmcg9EYnB45YUnGofin13k6nJC7bLSXqky7X1JN3VQI7VCb7kIYS+/pXE9qf2uj6qeVgnFB9+tMhlXI082YytMzmuNpWpA4dHsvLAyZbjhknv85n6kmXe2rvdjPg0kbvYmhGg+PF9285kn8/Cxufk08R2M+3XZKH3yDMrxtbIP9F6j7xZ+fHFp6nV1tXGT9J6a+QYq1h8aoxsJuJjsW2JkTXnaxQjm6XxsbIGMgLkEouPbWeFrcnFzsS2s9HWFB++e7us4/ElPlYfxc6MHoPammJnknmzmLdO6pzVzFbqdV0JBXrN7GRJB8XjAyWdUrk2V9K+DWVcn2Br9gYOlXR+YvsFwO3Aw61TlctSYsFZC4XT9wLWjafuIryYnqIrt75gZldLelk8/oqkvSvXar9P0sa5MqGoxq7A34GPSvpRIscC4GbgO8BjLKr3pLmhmW0N7M90vZ8uaV4izyX0ft/iDTV5tpF0RTx+nqT7K9d2kXRholyrEfr5TsDvgfNpULTZzG7tdV3SRglcSwKfA94I3E/4DtcAvgG8S9LjKbINA2a2DmG8SCnSa8BWhDjB5sBlwBnV77Qmj5s9HTc00XtsN6t07+3HR87G8bE2nsZx/S58teQyszdL+mo8fqmkayrX9vdYl5khvQ8ce4g8LvHSGfCXa8tlZrfRe1ytPe7UeNag8zCX+dMgseU2noHnF55yVdq/HLgaOE/SD5rKU+HNYt7qGdd39uVd5LLpm5tA8NtcNv9te05W8YJJhJltyNSc504NsPmlh97N7MfAGYRCia8hFFr8MvAxJRZnM7O5wHOA6wjFEX8FbEoovHhRItcJhA1zbiYU6f0f4F+BY4HPpcjmJVf7/NvMfqoGxfBiWxe9m9nhhLn9ucAv4unnEOae50s6dkRcpwJzCIW/q1xvAe6XtP+IuGZaX88ljPu1uTLWu6dcryEUTb2X6bpaG9hf0qV1uQoKCgrGAaWoZEFBQVOMW1HJxUctQEHBBMC6HHf63BWSrjOzLYD3AvvG03cAW0j6TYpAhWt0XMANleOjgZ473fSCmb0euLW14GJmHyPsXvYAcGDiQu3r244vqXwWUCtY3iN58GFC0KA2zOx8SbvF4+MkHQYhSm5mHwFencIX8TfCztuPEBImlkpsfwEhkNlKqpyWPENNPbVgZi8A3sH05JnPS7onUa5eC+0XxH8pXB2TxiQ9YmatXQCTIOlnZnYxsDQhaWwdpvRYFzfQI2mMsENhLXgkjEWenolLQK3Epci1SPKSpN8Dnzez36XIFTnak5cOJiQJpfL0TF4CBk5eMrOk5CXrU6AXSEmWOBto2a5rK8cQFkaTkvXi37gDYbF2TUISfBO991sgrt23It+RwPuAxcJHewI4rUFykIudz9TGQ6Z2PldbM8l2JnL1Sia4vS5P5OqaGEwoXt40MXgTYEPgQeC3iRQn0iMpuIE8XknBXja+2Pc0np4JL4mYR9SvmV3eluT3X6Tr/sUEvW9L6K8/aSDTuwi/2/MJSQQDBefMbB/gQKCVRHAXcKrSX0ovPnyCDw8+fnyu42rkyGpsdR5Xeyan1pUpci2SrCxpAXCZhST4JHRIttypSbLlTCT9eSSfTXqfz9iXLPPWtL7l5dMUWzM6W1P8+DQ+rz6fpY3PzaeJXJ42Pku9R45JHlsnWu+RJ0c/vvg0I7DxXnH4yFVi8Wk8XjGyeTjGxyJPiZHV43KNkU1qfCzylDWQNHm81kCyjcVHnqxszWywM7HtRNqa4sMDo5s/ucTISnwsqX2xM6PzaVxsTbEzyXYm53nrpM5Zf8KUrWuHgLUSuP65crwPcErlc1JBIZtetPYXhJfUj1GzAsaHAG8C/hp5kgv1VeRaD7iCULDiJoLeNgOOiL/3u2tSvb7HtdS+sEzleP22a0k+s5ntRygKsBShv+4mKXXO1MImhPF5B0I/Owe4XFKTedMOBBvw8fjPCPOSL1koOvbtBLoTU5/fg6dlsy5k+jzpw/FcLZjZVcCyhLnOW4HW+PBUM1spcQxbQOhDZxPe2RhkY7yPAEsAz5H0aJR1WULM9aPxX220+VqtvtnI1zKzQyUdH493lfQ1Ask9ZpZkn2OfvNLMbiLYnX8jFLP4QgoPYax6EHiiJWb1MaTZU8xscWB7Kr4k8D+SnujeqiNPlnqP7bLTvaPePddH3eJjnv6Rk1yHAF+Nx6e1tdmPdP/PU++esQfPeKmnv+wh1+tSntkPnnqPfC7zpwrfoLHlKjzmFy5ymdl84A8EX/kdRHva6m9K3Owhx3krvnF9z3mdl1yXA6vGZ58r6ecJbach13hB5HNZT4lcnu/dDiyXmS0PXEwopHYLQVcbmtnPgR3VZSOwLlyeel9S0tx4/NMYUzw0oX0VmwIbSVoQfcdfA3MkJcfHCPPMTST9zUIB6V8AG0iaP0K5VmgbWxevflbaRiIuepd0rJldRIitbBlP/xL4F0l3NuC6mDAWD8p1gJm9NnKtVuH6dOL8vsW1PeFvHJTLW18DcznL5Kl3z/5waVwX2rxNruslPZnCBR3XeRZewrHQckFBQUFBQUFBQW9Yg/XAgoKCCqyye4UtupNFo50lCyYDZnaTpE0GaH8robDlX8zsdcAQhwsbAAAgAElEQVSnCIkdmwC7Stpu2HKZ2ZU9LksJO8VW5ejw20mSMSZU7kEIWnyPEHy/oXerjjxvjDxrE4LA50i6L5Uncm1JWAj4PHAjIeCxCfB2YGel7xZ7Pz2SxiSlLLS72a0uSWPfapI0ZmYHEZLG/sgASWNdEsY2IbwYkZIwhpm9otd1JexC56z3avLShUwlL7XkSkn0v5keyUtK2EnQzP6NkPTxrg7JSw9IqpW8ZOHlka6Q9OUEmaq2ZpptaWBrzgI2AL5NsDNJCQRtXA8RfjPnAD+m7bed2LcOISTPvEOx4HD8bZ4BXCrpPxK4XOx8jjY+cmVp53O0NZNuZ2K7M3tclhJ2inXu8+2JweerQWKwmW1M8B1fg29ScKu/v5iQtJqUFOxl44t9T7bvvYrdS2mFD1x0b2YfJyQT3EXw/S5VYuJnhesZxJ2sCYlU5wEXSPpDA659gIMIyZLV/n4CcLKkryRwFR8+jcvFj89xXI33Zze2Oo+ra/S6njjee+p9PlPJllcwlbzekqt2smVMCPFK+uuYfAY0ST6b6D6fsS9Z5q01+5azT1NsTQKcbU3x4+tzefb57Gx8jj5N5PK08dnpPd4/6WPrROs9cuXoxxefZgQ23isOH7lKLD4tFu8SI3Pu7yVGNoIY2aTHxyJXWQOpz+W5BpJdLD7en52tmXQ7E++faFtTfPiRzp9cYmQlPlY/PlbsTDJXdrl7xc4k25ns5q2zYc7qhT5+ZGp/XwDcStDTI7S9DC7pUw3kq9quBwhFKpMK4ZpZay5xftv5XYC9JO2SKtegcLYzCwhFpFo2oF3vSYWcKrytAtCvAg6T1G8zlvb284ADJd3Sdn4jwqYrPW12D96VASQ91KCt57xpPlO6XqTAdcp4H/nWJej79YSCeGcDl6XOxczsdmBzSX9pO/904EeSNkjh84RjnGYZgk3YHViZYFfPb+IHmtnJwNbANYRYwdVNYgWRazWCT/O/TPdpVgW2lvSrJryDwtneZKd7T70768ozPpYVl6ctbZfDQe+esQfPeKmnv+wp1wrA8+PHeyT9sW7bNh5PvXvOn1xiy5HLc37hFfOex3RfZFphw8R+leu81TOu7zmv85RreWDnKNtShPj5uSk6jzy5xgs811M814Bd5DKzU4HHgUMVNt/BzBYDPgksLel9CTJ56v1uQh9t2YX/ImzmYpAce3WrfzCoHzMTcjmPq256n40ws2c2HadnEmb2DDUrojorEGM0qwNPAj9rukZQUFBQkDuuP3D3UmStoKCgETY75byBNnofNkpRyYKCAWFmfwHuIwQD5sRj4ue1JC3TrW0bz5V0371Gmr7jfOHKlKuNd6CiomZ2i6SN4/GXgJ9KOm5Q7kHl8sIMJNDcStjlXCyaQHNAomzVBfJnAB9OWfiKHN8BjlPbjkZxge1DkrZP4fPEpCeNzVTC2CCJS7F9SV4aQfLSDNiaP8ePnfSeslPsUwjJ0nsSdon7FmEh8466HBWum4BtJT3cdn5lwvfYuMBxU+Rs4yNntnY+F1tT7EwaZqDPuyYGW6ZJwYOg2PfR2Pf4fK+E4AWEnTdbv+fqbuySlLJ7bZV3dYIveQihv9d+8TS2/xGwh9p2yTSzNQmJPVs0kWtQTLoPHznc/fhcxtV4/3wyG1tnYlz1SE511vs8nJItI59X0p9b8lkb70T2+eJLjrdfMxM+TbE1tXlmxNYMgknv75FrRvz4XGx8jj5N5JkRG5+L3uP985klY+uk6j3yZenHe6DY+BKL78KZbSx+EMyA3kuMrCa8YmSzKT7mgbIGMvw1kPj8ibY1k25n4v2zxtYUH74WT3bx+BIfG1l8rNiZEeTuFTsz/vGC2TBnNbPFCZtZrBtP3Qn8T4O+cAuwFbAYoSjXVkzZ5SsV89Jrch1F9/x6JB2dIluFd32CrdmbYKPP79Okvf1PJb0g9VqX+18AvIMpvd8FfF7SPYky/Qx4P0HvJwAfaF0Cjpc0J4HLrZBThXNlQrGjXYG/Ax9VYtFTM7tb0rqp13rwHQm8j6AzIxSlPk1pxfjd5k0Jz1w/NbZoZrsTisccJ+mExLa3dpuzmdltkjZM4au03ZCKvWkaL/UYX83sz8C9hMLW97Kojf96olxGsH17EoqFXQacobhRUALPXOBmSSe3nT8AeImknps2deHMRu/x/ux076l3Z115xmmy4vK2pZ56b+MdKPYwyTCzJYHPAW8kxAANWAP4BqGY2eMDcA8a85mP3xq3W2zZc34xEzHvPs/bVtJ3+9wznwznrW2cA8X1KzwDz+tmSK7FCHOeUwmxlSYxmuziBZ7rKc7zaRe5zOxOYKN2Hcf5+m2S1kuQyVPvnsWMW7UQgGn1EJLXi8zsD8D3K6f+ufo50S67yVXzefuozyarnnrv8YzvJPb15YDDCUX/vi3pnMq1z0h6TwLXqsCRwALgY4T5+c7A3YTf0/8mcK3U4fSNhEKxlhLXN7PXSLo0Hi8PnESYW9wOHCzpNwlcnwROlPSwmb0E+BqhWOJTgbfUHS/M7EZCEdyzJf2s7vO7cG0GHA/8kvBdfgnYjDAfe4ekmxK4ng4cCuxC6BOPA/8P+KykuYlyvZAwZq1J2KTrJuCZwFWE/tCoWHlBQUFBrihFJQsKCppi3IpKLj5qAQoKJgC1g0F98IEO57YgTOpSd2QoXKPj8oTFif1fgFcCn6lcW2o0IoGZPYOwq0o1gebslOBOxNPMbBNCMsjS8djiv6UTud6aeH8//I2w6/YjhMW0Jvqe0x7YhpDMY2afbyKUV9IYsJiZrUjQfeu45cA8JZHr40wtMj09sW1HSPqZmV1M6Ad7A+sAKcmpG0p6UwfeC83smFR52hOXzCw5caklQpfjTp97E0lr1rmvbvKSwg7wRwJHxuSls4DjCMltKVjQvuAR+f9kZkl/o5ntAxwItBL87gJOlXRWokyrW0gSt8ox8fNqKUSSFqtzn5mtKOn3fbieBC4FLo0L+XsC88zsaEmnp8gFLKG2l1jjMx4ysyUSubzsfM42HjK087nZmtlgZ8AvMRhYwcx2Inx/K5jZzq1HAMsncm2deH9PxISeTYANgQdp5t+u2r7IDiDpVjNbpYFMHja+2PdEmNnWwP5M7++nd7JlffBMMzuEoOvWMfHzygk8z0t8bl+Y2YsJOt8W+A5hx9hULKe2l1gBJM2PC/GpMhUfvj7c/PjcxlXIdmz19N87JqeaWZPkVE+9b1XnvjrJlpHvj8CZZvZlppL+lgJSk/5eRUg+W1DhXmBmRwC3JXJNfJ/P2Jcs89Z6cPNpiq0Zua0pfnw9ePvxWdn4TH0a8LfxWekdZs3YOtF6j3xZ+fFQfJoUufD1a2bDeivkGYv3iJF5xcegxMhGFSOb+PgYlDWQBHivgeQWi4c8bc2k2xmYBbam+PBJyDEeX+JjCSh2Jgk55u4VO5OIDOetEz1nNbPVCAUg/5fw0rYBrwM+ZWZbS/pVgkzLE3yzlm25sSpaAg+Sjqpzn5kdLunYPvdUi9b+glDA7BhJf02RKeLPDa+1y7QloSjA5+M/I8wv5pnZzkorungV8IbK8esr176/6O3dofpFDS5Un0K9ZrYfoZjkUsAFwG6Smr4b4aL3KNchwMuAzRSLzcU+coaZHSzpP2pSrWVm3yR8d61j4mf3eVDEV4A6RdpWI/T5nYDfAwcTinulQm3+QhULOpzrJ9fyhILUzwVuibwbmtnPgR0lPZIiW5fjTp974Wvx/hcwFaeu8iQVNpQk4EoLmwTtAfwboUDHF1J4gC0k7duB/1Qz+2kKUaZ6hzx176Z3fHXlGR/zjOt7yLWumd0a28yJxy2OpMJzEZ5694w9eMZLPf1lD7k+AiwBPEfSo5FzWUJB44/Gf6kyuejdef7kGVv2nF+4xrxr4DigZ2wl43lr67kecf0WPOZ1bnLZVFHKlxOKlu4k6QdN5Mk0XuC5nuK5Buwl1+OdYn2SnjCzxxJlctO7pFp2pmbs1asWAoT5fRUnDcDlKVcdHAj0LCrppfe4ntbxEvCiOs+o4EyCf30hsJ+ZvYmwic9jhHoIKZhL2JR1GeBK4L+AHQjrDp9l0e+3Fx5mqrhyC6sRYlIizac8hpDjA6FP/ZoQY9mZqXWRuthB0ofi8YnA7pKuN7N1CIV6N63JsyKwAiFe9GvgHOC8xHhdC58m2PYVgB8SCmVua2at+hFbJnD9FyHOsB0h9rMMId72ETNbR9IRCVxfAvaR9FMz2xx4r6R/NLO3A/8JLBLvLygoKCgoKCgoyB+lqGRBweA4lBD4v2YQEkkLk2st7KjyUUIg812SvlO4xoPLzB5laqHraWbWWuBt7YqSkvh8MiEh7xHgLkk3xGdsQkgcSpHrkopc1aQJCILV2vnFzNYjJC79D1OJS5sBR5jZNjFgXRe/ZirRs3rc+lwb6rMzTAtmdpp67DBuZtsQFrA3B74HnNLSewM82uNaUvJMlK0kjdVHjolLUJKXaicvWXiJ9SDgEEL/NMLfcYKZSdJXEmT6YOW4/ffc9PfdD5dTT+9LEgLuexJ28jmVZnrv9UJA0s6SjnY+Oxsf78nSzo+5rRlLOxNlmujE4IyTgr1sfLHvCTCzHYDTCS8WfZwpvX/JzPaX9O0Eui8Ay3Y4BvhiXRJJ7QvHHWFm10rquThqZh8n6Pwugg95eIMXuFro5Xsm+aXFh0+G14sf4zyuwnDHVs+XDzyTU72Tleugb7IluCb9uSWfzYY+n6kvWeat9eHm01BsTSo8bU3x4+vD048fZxs/zvGCcdY7jO/YOvF6h/z8+OLTJMPFxk/6emu8J9dYvFeMzCU+BiVGNqoY2aTHx6JcZQ2kPjz1nl0sHrK1NRNtZ2DybU3x4ZORYzy+xMdqotiZZOSYu1fsTAJynLfOgjnrJ4AzJJ1cPWlmBwDHAvvUJVLNAjLO2JUgZy/cB9xKKKr2CKGw2rvNQpeVlFI4uFp0vYrUAuwfA/bU9EImF5nZFYQX/LevSyRpJgqf9kOd8fqLwO2E4g7bAa9u6Rzqvz8QMcfa3j+IaOI77A1sq8oGLgqFjd8MXAbUte/VIhcntl1r/+yFTnZ2+g1mVxHmcOcTilb9Ll56qpmtpLSCY+2+QxXJxdkIRf5uALZRLLxtZosBnyTYop42tA0bW3hXxgiF8arvzdQu6KQOBQQ7wcz26TcemNkyhH6xO8EefB14iaSf15Wngl5+0CIFgvogO71Dtrr31LunD+gWH8Mxru8kl3cRJze9e8YePOOlnv6yk1w7AZurUrxM0qNm9h7gRyQWlXSO+dRF3/mTV2w5crnNLzzlqom+vkgChjpv9Yzre87rvOQys/nAHwgxlXcAT8TzLwaQdGPXxp35sosX4Bjzwfe9Wy+5lrKpYs9VGLBkokyuxeFrok7RWbf1Ime77CZXTXja0n56v57gp3V65gqJz5pT0eVFZvZh4AozS5nbt7CKpNMAzOw9ko6L508zs7clcn2QsAndByXdFjnvlzRo3HVTSa3Cm/8Rc5xSsLiZLR7XCJaWdD2ApHtiHlFd/F7SB4APmNnLCWsXN5rZXcA5klIK4S6hWLPCzI6TdEGU6XIzS41jrClpbjz+lJldL+nfzOythE2xUopKLi3pp1GW68zss/H4C11icAUFBQUFBQUFBWMAk5qsIxUUFLRgZgcSAnTPIiz8niPppoZc2xGS/h4DPiHpygHkKlwj4vJEDAA/E7ilsoD8LELwoPYCq4VimV2REMS7ADhf0vlt53ch7GriscAxYzCzGyV1XfAwswWEpKWrCYkW0wZJSQckPOu3hIWARS4RFhiSdmAys7nAzV2Sxl4iKTUoNlT00328p6X/VtJYu/5rJY2Z2YN03pnegIMkPaeW0IHrJtoSl+L5lYHLJG2SwOXyO0yBmd3UT8a25KULmUpeaslVO3kpLoItoEvykqRaiWNm9iNgD0nz286vCZwrKXX3pKGipt7PAjYAvk34m24f4HlP0nmhy4ClJC2RwDW2dj7RzmRl58fZ1oyrnYlc3wGOa0sMbunwQ5JqJwaPAv10H/t7KykYFu3vtRcOzewPdE4wM+BlklZM4BpbGz/m9n0ecKDaduE0s40Iuwf3tB2jRE29LwDuZypxtNXfjWAbNkp43l8ILzMscglYS9IyCVxzKT587Rc/vPz4cR5X4zOHNrY6j6u305acGs8/HfiRpA0SuNbodb1u8lAKaup9PlNJf1cQk/4qctVO+jOzuwlJJZ2Sz74qqXbC9qT3+Yx9ybH1aWC4fo2zT1Nszehszdj2+TH348fWxo95vGBs9R6fOa5j60TrPd6Tox8/tvYdxtfGj3McHsY+Fj+PEiOr+7wSI2N842ORq6yB1H+W5xrIPMbUzsBwbU2xM1MYV1tTfPiRzp9cYmQlPlY/PlbszEh9GhdbU+xMsp0Z23nruM5ZzexuSet2ufZTSS9IkKlfMZ6kQiY1n1mnvx9FjwJ4ko5OeN6Rva7X5TKzeySt0+Vaqt57vmCfYkcTnlmnv7vZP2eu27v5LL2u5YCaep/PVH+v9vvWvMm9gLeZrS/pjhr33QlspLbC22a2OHBbyvrhsFFT938G7iXY5ntZ1MZ/PeF5PwM+0OkScLykOQlcY6t3GK7unfU+dB+wwH288Iw9uMVLPf1lD7nM7NZuMTkzu03ShnXliW3c9J7yTC9eZ66+9i+By0WuYcvkPG/1jOt7zutc5IrrA1UfsDo/l6RtEmTKNV7guZ7iuQbsIpeZ9XyfXNLWCTLNx0nvCc/M1ZZmxzVMWxrj+TtJurfDtV8kxkrvAtZXrDMQz+1LKOr4dEk9Y/5tXLdI2jge/7ukj1SudfUtevCtTtgg4heEjTpuadLPK7FlA95LKKSpJnKZ2fsIRdc/CfwzsCKhmPc2hLXIvWvyLNJfzOwphEKauythoxEzu5agn+UJm2EcKOmi6PudJGnTBK4fAodKutpCYdH3StouXkuNa32dUCz9CmBnYEVJ+5nZEsDtKVwFBQUF44DrD9y9FFkrKChohM1OOc+zQP2MY/FRC1BQMO6QdApwSkyy24Owu/zSwDmEApP31OExs+sJO7KdAFwbzy2caCYmwxWuEXF5oi2x50Vmi4wvKbv2vVU1dxLsgw0lvan9pKQLzeyYFCIz27nX9ZRFe0fUDuDUwAd7XGuy+9UWnb5DSaea2U9TiEaRNEbnIHg7Ps7UAsrTB3jWFwiLJ53wxUSuJdoXQwEkPRSDYrUxosSDOhPbNeJ97yTshtaCxfO1A7iquct1jeSl5dT2Emvkn29my9WVJz6r087IVc4muzH1Qx29v5nw8umBwAEVG99KGqv9d0p6Sp37zGxFSb/vc5uLnc/UxkO+dn6cbc242hkIi0vzOjzjKjNL2SlsJInB9Nd97UXrGtixx7XU3dBcbHyx71Ooad9XVdtLrPEZt5pZarHzU3tdT0nEqYk6eh90F8MqPJN0iw+fBi8/fpzHVRji2Oo8ri5Q2wus8Rl/MrOkBTfNwIuqdR5b45758b7tgFfTlvRHSDKpi/+l8wuVAL9O4IHJ7/O5+pJl3lrTr3H2aYqtGZ2tKX583Yf59vlxtvHjHC8YZ73D+I6tk653yNOPLz7NaGz8pK+3Qr6xeJcY2QjiY1BiZMBIYmTjGh+DsgaSAs81kHGOxcNwbU2xM5XH1rgnR1tTfPjRzZ9cYmQlPpYUHyt2Jg3Z5e4VO1MhrmdnJn3emuOc9a89ri1i8/vgBkJBlNZvZxA7Whd9+7uko+oQmdnhko7tw1W3aGQ/rkd7XOu0sUgvnAjcDHwHeIx6tnfGUdf+mdmF6lMAy5MLeLzhtfZn3drruhKLYHjB2SbXxVeAOkVRHldbYUMASU+Y2WMpDzSzlXpdV0Kxo7qPrHHP1wg26QXx3zSRCAVE6uIqQgGSTuhUtKgXxlnvMFzdu+nd0wf0jI95+kcecpnZo0wfy1u+aPI6Snymp+/tFnvAMV6Ko7/sJJfMbEU6/1YXdDjXD556rwvPgh65FgfJUa6hzlvxjet7zutc5JK0VZ37zGxbSd/tc1uu8QLP9RTPNWAXuVSzaGSd73BEc4JcbWmOXJ5z9n4yHQUs1uXa+xKfdQkhrvO9hQ+X5prZr4HTErkuNrOnS/qTpheUXBuoVROjCkkPArvG4obfBZ6WyhFRjS1/GfgH4CEzW5UQd0mR6TQzuw14N7AOoabO84GLgH9PoFpEH5KeBC6N/1LwLuB4go+2HfBuC5ta/RJ4ewOuL5rZ84E7gP2AViHwTydy7QccARwO3ELIsYLwPWa9qVZBQUFBQUFBQUF3lKKSBQVOiEl2xwHHmdkmwJeAjwG1Xi4hJB/8CXhT/DeNnrQkjsI1Oi5PnNTjWqpcXkkRvZJkUhNoLiAEclrBnPbEpaEni0n6cp37zOw0ST2Ddp5cESVpLKJfopdjwhg4JS7F55XkpSn0S17q1d97XeuELQm7HJ0D/Jh8kvW6LQhMQ80CA3VxOf2TxrzsfHY2HrK28xNtazK1MzDhicEZJwV72fhi36cwTPsOYfHxdsLup78iA93XfenNzK6VtOWwuCg+/EIM+cWPiR5X43PXrHOf49haZ1x1S071Tlb2gmfSn2fyGRPe5zP2Jcu8NcLRr6nj0xRbEzECW1P8eEbixxcbz0hsfNE7Re8zgUz9+OLTRAzZxk/0eitkHYv30n128TEoMTJmJkY2rvExKGsgwEjWQCY6Fg9+9qHYmWkYV1tTfPiIEcyfXGJkJT6WxFXsTMQIfJpSdIyR2JmJnrdmOmddvkuBKQNS7fEhhFz4vwLnAt+Q9KdEjlR4+qq7Av1sgxfXc7oUczdgtcRnbQLsCewA/IQQI7tc0kwWD/LUe0oxIA+ujc3skQ7nDVgq4VkLCLbkbEJxjdSYZhMk+bp9ULcQZB3U7Q9LxXed2u83YMnEZz4MPAi0iiW223jPftXi7H1Dh0LgnWBm+/Sz4ZJqFauqw8V4673F2/sGJ9176t3ZB/SMj3n6Rx5yXQ6sGp97rqSfN+BYCGe9u8Ue8I2XevrLHnItT/A/On3/TXwRT70X+GP+MB/mOW91jut7zus81wjq4DhCwbVeMq1ZU6ahxgvKd7gQfb/DBHjOCQrq45phPUjSBT2uXdQ6rjlHObTL+UsJxRJTuD7W5fx9VGos1JzvVNt/08y+C8xpv1ZTro6xZUm/Bt6SKpdC8e55ve6pMUfZo99z6sqksDnhdpVTBzJVwDGV61Zg8w7nHwIWxrtqcv0BWKR/Sfoj8KNebQsKCgoKCgoKCvJFKSpZUOAEM1sc2B7YA3glYaJ5VN32dZPhClfeXJ6om9RYE0/rshDdelbdHa6f2WU3OwNWTpRpZ8LvZSPgYuCcGHSaSXgl0LzUiSeFqySNTcEraawOj1fiEpTkpSr69Yf1uiQUGOnJLqsC2xIS9vYCvkWwN14LZ53g2d/rFBioizpyedn5cbbxMHw7P862ZlztDJTE4BaGnRTsZeOLfZ9CHbnmmNk3u7RN7QPPIvhRuxOSU88DLogLiTMBT72n2tRBuYoPP4VhvviR5bhqZs+tmXSb49hapy94Jqe6JivXxHxHLs+EsTpcWfb5BHj1+WH7kmXeOgUvv6bYmjQM29YUPz5g2H78ONv4HH0amHy9w/iOrUXvUximH198mikM08aX9dYpDDsW7xUjG3Z8DEqMrIVhx8jGNT4GZQ2khWGvgYxzLB7ytDWTbmdgfG1N8eGnMOz5k1eMrMTH6nMVOzOFYfs0pehYwLDtzDjPW8d1zvp94PU9rtWGpJOBk81sLYLuLzezB4BjJN3cu3VjfM2Ry/M77Mf1wR7Xbkh5UCwKcAvwITP7J8Ic6jQzO0xSpzlCT5jZi4C1gTsk3dXltsNSeXvAc35Xp/jcU1weJL3IzNYl6Pts4M74/2WSnujZuAbMbA4h1rmHpPXjM7cYlLf6CEeuut/hr4FP9biWglOBrQkFWc4Brh6TWAGEoh21C6M4cI2z3iFP3dfh8fQBPeNjnv7RwHJJeqOZLR/l+oKZLUWIQ50r6f8ayOSpd8/Yg2e81NNfHliuusXnEuCp97rwnD8N05904zKzQyUdH493lfS1yrVjJB0BIKlTfKIpcp23esb1Ped1XnJ59qtRFCmvg/IdjoZrviNXrn9jP1s6t1XsvFchPUn7O8o034ln2HOUGeOS9FfCxkoDc/VAjlw5yuTNVVBQUFBQUFBQMEYoRSULCgaEmbVejtkB+DEh0esdkpJ2l+qSdLYQkmrvNla4RsflCWe5VgNOonsyad0drr8ALNvl2hcT5GntpHKRmS0D7AicZGbPAD5cd4egBjhlhniHgbFLGjOzg+KzIM+ksb48XolLkcstecnM1gD+EHd7wcy2Bt4IPACcLunx+MxxTV5az+1B0pPApcClZrYkQf/zzOxoSad7PcfMfi7pufHjK714GX7SmIudn2kbb2YrEn4D1b9pbG18jrbGzJ7b63rrhZIxtjOQaWJwdSGzD7wSg4eaFIyTjfe072a2Up9ntRLjxtm+79jj2olJD5N+B3wW+KyZrU7wJ++M/f0rKVw1sbcj17D7+zj68JtJuj5+zNGH78uV47gacRE1krcyHVvrvPSxptOzXJOVR5RsOdRkqlz7vJm9WdJX4/FLJV1TubZ/a7x27PPDHlvHbt7ahhz9mrG1Nd0Q1w4OlbRtfObY2hry9OO3kXRFPH6epPsr13auxM9z7O8wxJcqI5dXvGDS45JZ6h1Govuid8a+z0+kTzMhsfixWW+dtFg8TjGyYcXHzOwaSa0XpUqMjJEURxnL+FhElmsgvdAWPxjXNZCxi8WPga2ZdDsDY2prig8//bGOXEOLkTnH4mvlOY5xfGzs7MwY5O3V4vKyNcXOTMPQ8sdgJHnCYzlnrZknlMr5MzO7GFia4OetAyTbGTPbHjgceGE8dQdwnKRvV551zOASL8TQfHh1KS4BYGaN3r6WxUwAACAASURBVLMys5UJBb42BB4EftuA42PAmwnFwY43s2MlfaH9PkmXNZExBySs8fSFpLuBI4EjzWx34CxCwegTGsr2bEJx/70I3+OxhDF7JjDThQAXfaC0lSPXQWZmwFYEO3OamV0GnFH9TgeBma0i6Tfx4zU9b06kHibXuOm9A3LUfR29u/mAnvExT//IS67o255pZl8m2LxTCcUDuxVD7cXlqXe32AOO8VIc/WUc5Kqbo1UXnno3s+2AZSVd0Hb+TcAfJX03PrPv/Cn6WStLurPt/AuBhyQ9FE8NFFs2s8UrfbXv/MLMlpPUqQhn+0bk/eTaAzg+Hh/O9Ln8a4Aj+slSfW6v65qM90BGgWHGvOsiV72X79CRq5rrbGbbtmznIkQ1Yq9mtoWkH9WQq+96UZuN64W+dtlRro0rxwMV0vPUe91HOvEUrtFx5SiTN1dBQUFBQUFBQcEYoRSVLCgYHIcTdvN6v6TfD8DTLekMQnAopYBg4RodlycuICTwtJJ4qpP3VLnuk1S3cGRXSDp6UI4O+BvwR+ARYA0a7FxmZmfSPYgqSW+LB3Mbyjhy5Jw01gOHACfHZ+WYNFYn8O6WuASuyUvnAzsBf7SwI/HXCIlLGwOfAf41ka8Ohrmos3TUFWa2pKTHWhfMbAtCEm5txBdYdyAkJ6xJSHT4hpu08TGtg9Tk+j4Y6mLaDNh5Dxv/MeB8SXfH7/JSQl9/wsz2kvQ9GG8bn6mt+Rah/7X7HysDzwQ8E3Wq/ENDronBhN2H+2KME4PdbLyjfX+Y8H21koDa+/1aMN72HbipV9JSE0IzezFB99sC3yEks6e0v5/perDKZ0maEw867VI4FhgXHz4m1e0Z//0B2DQ+K0cfvi9XpuMqjGZBfmi2ZgaSU72Sld2SLRMw7ISxXPv8IcBX4/FpTC+quh/gXSxx2GNrlvNWM3uUKV207I4Ia0FPlbQ4jK9fk6utMbNtCIU+nk0oInwccCbhO/hEClcChp3Im6MffyJTtuVCptuZjxDj5+Pa3yFbGz/pcclc9Q7D133Re8Ck9/ksfZp+j2kdjKuNz3i9deJj8TjHyAaNj9XAQplKjGwRzoFiZGb2dmCepHvjS/hfAnYB5gP7SroxPmcs42OQ7xqImT0F2I2wMeqlkm43s9cRYjRLR/5xXgPJLhZfA2Nva3K0MzD5tqb48NMw7PmTW4zMMRbvmedYF8MsOrav47NanLM9b68Wl6etKXYm4WEZzlvNrGdRJElviP/PbSjfSGFmJ0s6KB4fKOmUyrW6m9O27m8Vrd0R+AVwLqFw7V8byPV24J3AoUwVNdoU+KSZrS7p86mcdR47LC4zu1rSy+LxVyRVi1NcR41NIytc+xHmOksRxsXdJDXJG4NQ0PBFkv5iocjYpYTiVTOJYRcrqLXGU+thZqsR+vxOwO+Bg2m2zvoOwtxrNYKtfxtw8QzZxJnA43Vuspobc9aFJAFXmtlNhO/h34B7GaDPmtkKhLnTXoSNkZ4dn7V/U84OGLZPk63eY6xmRUkPx89PBfYFDpa0XnxejrqvxePoAwJuOcItDBzX95LLpgpSvhy4GthJ0g+ayuOld+f5gFu81HNscJLLNUfLOebzMUIR/nbMAy4BOhbo6oLTCHOudjyD4D/sBfViy3X9wJrzi3mt+83scknVTfEWbkReQy7rctzpcz9M/HsgBQtR9D47UM11Po4029mOzzBls66VtGWnm2quFy20cWZ2oaRdunDVWfPzksvzN+Gp9zrItbBr4Ro+T85cBQUFBQUFBQUFY4RSVLKgYEBI2iYunP2Lma0fT98BnF198aYGz1sdZSpcI+Jyxs6ERd6NgIuBcyTdNwihhR3F144f75P0t8T250vaLR4fJ+mwyrXLJL06gWsbwt+3OfA94BRJqTu8tfDfHc49h5AYMhOLHUPf6SPXpLF+j3Lm8+YdauIS+CUvEV70/FU8fjPwJUknmdli+CYYzxT6JS+dzZSur2W63j9DWrLeWcAGwLeBo2fwRZhxCLD27fNedt7Zxu9OSHgC2Cf+vzIhof7Lkd8bY5skCT62RtKGbZxrEnaIexXg+cLBTKFvkmTGicFPM7NN6NJ3Wi+YOWLY/d3Fxjvb91OBrQk7ap8DXB0TL8cFdfQ+jxpJS7UeZvZxQoGIuwh+5OFK3EE6YtO2z4sRfkcfAG5qwFcHQ+3vOfvw0a63Ckn+nZCYuqmk+U346jxyiFzZjasRq5nZqd0uSjqgAedAsPq7xNZ5+cA7OdUrWdkz2TJX5Nrnx1n3dfp8lvNWScu2cT8deC/hhT/vgk7eqNMvcrU1JwHvIPSF7eP/H0p5gX8MkKMfP852BsY0XsDkxyUhT73DeOu+6H00GFufpg/GIWbTr2BBruutsyEWPw+HGJljfKwfZqq/lxgZHAjMjcd7EnIynkd48foUwhzBG8PWe65rIP9JyOW4DjjVzH5FiBV/SNJFDTl7YSztTGxfbE1NnkztDEy+rSk+/MxgqPF4x/iYe55jTsjYzvR8lDPfTPCOZdExZoGdyXTeuiXhN3MO8GOGEwMeZn//58rxPgRfoYVam9NWcB9wK8EeP0IoIv5usyCCpJTCwQcDL9P0jT2uMLPtCePGTBSV/Fr/W9y4lqkcr992LfX7/yJwO2GTlu2AV7d0DlOFT2viMUl/ie1+F+1LY1gogLs2cIeku7rcdliX8zPF5bLGY2ZXAcsSikC+FfhdvPRUM1tJaZvSnE6Ike7VslNmNtOxyFqFINthZnMIhbP2kLQ+gKQtajZ325jTzJYh+DS7E+KIXwdeUjMPpZ1r6ci1F2HOtCyhCNn3U7nqPnLIXLnqfQ/gc8CfzexewoaJXwKuB/4lla/uY4fJ41h41i0+5hnX95DLzOYTNqI+l5D38EQ83yqEl5yz7Oh7e84HPOOlnv6yh1zeuROeMZ8lJT3UflLSw9GepWBtSYuMC5J+YGZnJHJ5+oHV+1cagEtdjjt97k00/u+BDP2dzSFzzXfi8UYj37QLctS7J9d8Jx7w1XsdVHXQuKB1B661HLkGkWv1mKtvleOFGEWufgJy7OuFazQ8I+Mys3WAM4BVJG1gZhsBb5D0747yFBQUFBQUFBQUDAmlqGRBwYAws/UIuyNdw9Ru8FsBHzazN0i6sybPPxKSK+YAtwH79VhsL1yZcnkiJsxfVFn4PcnCjqMflnRVIt1hZnYcYdfMBwiBgOeY2ZmR7+81eZ5fOd6W6YkfKyfK9D1C4tLVwJLAW8zsLa2LKUE6SRe2jmPi5RGEJKtPEl5K8MYp/W9x58o1aawX3JJpzOwgSSfHj42TxhrwuC2wOicvVZ+9DSHBBEkLqolozqiTULoG8AdJf4yftyYk9TwAnC7p8Shnv+Qlz4XtNwN/JrywcUBFPxZE0XJ1iczskG6XgKcnylX7sQM1Nvu5pOfGj6/seXOAl513s/HA45XibtsB50p6ErjLEncG7QQzW5HQb6s2q5GdH4ArV1uDmT0f+DDwj4RCKQck+A2pqGNnntvreisxrmaSZK6JwasRdN1JBhHsfl8kvLzSN5HXkwu//u5m3yUdZIFgK2Bv4DQzuww4Q5Uddp1R5yXI9uSiaaj8nuvYd6+kJQhJYfcDG8d/x0T9t3RfyzeV9DuAmPy+N/BBwks2O9SdRzfA3v1vceXK0oc3s2uB5QiJoLtIutfM7pdzQUkz20zS9fHjQC9+JHLlOq7+lam40UAwv2KQtV5krzmueup9Pn7Jym7JlgmYP2SuXPv8sHVfx5d8s6SvxuOXSrqmcm1/xQKAw+7zOPo1CxuarQAcBLyFUCxqs9bYOwPwCkSk+jRZ2RpJ8+LxRWb2S818Qcn5Q+bKzo9nNDa+jh+/jaQr4vHzqnMKM9tZUusFi2H3eS8bP+lxSchT7+3PHobui94XfXYWfT5XvVNi8Smx+CzXW5l9sfhBYmQu8TEI/kG3S8DSCTL1e841kl4aPw4UI2vAlWOM7InKWsfrgLPinOl7ZnZ8j3aDYJiFUSDfNZBNgY3iWLoU8GtgjuectW3OX6swiiNXdrF4GD9bMyF2Bibf1hQffgpjOX/yjI855znWxfwhcuVqZ3ohu7y9hlxe/b3YmTQ7k+O8ddUoy56EgmPfIhSwvSNRnhQMM0+4V19PxceZsgGDxlGs0+9DodBhOlkoRnk48MJ46g7gOEnfrnDXKnLjxNXLVqba0a0T7++Ftczsm/HYgDmVz0lzMDP7GCFu9xPgeDM7VtIX2u+TdNkwufBb41kj3v9Ogj+zUNx4PqWwybOAXQl+zKqEMWOJhPY9YYMVgsTMnk0oIrgXsCFwLKFgW7IoXY47fe6H3wL3EvzJewk639TMNgWorIn1Fuj/s3fucbtN5fr/3ojQYlltVAgRkmMOidqVNjoop5xWkqjUTweVpEiiqGQrdNhbRSpEItKW7VQtRMn5UEssok1R0QnF9fvjHnO9833e5zDG89zv+07LvD6f9VlzPs+c1xjveMYcc4x73Pd1m52Ki5xfiIumXwLcXtt/DYGZLS/p/nR6ed+L47ka1+4Jh+CClLendcCVwBslnVdYpxKM1PYlPMFzwEj7WKRdP6Je8/B+tA2wNeP7ZLbPcoVJnHuP+uxE2ksj58sR9Yr2nYhs96XMbBF1JMsxs6dRbpec0ee70nd25Dwwqv3XN7OHSTbbdEw6H0pgrYFxIMsCy3b6iJvZ2sAfNCZAOqpdv97nBq7rzGwpSQ/3+K7uq9u3XmZ2oKTPpuOdJZ1Z++5ISR8FkNTLXj8Mctp9G2CGpO92fP5G4CFJ/5vqNXBu2v6G+b+hxcY9LZd8KKx2XOcqsSculPbaF6odzx/bC9/T/ca/UkTV60O142GTcVaIbPeuMLOdNBYXP+oapeWaBq4m1mlErhPx5+i/ACTdkNbsrahkixYtWrRo0aLFkxCtqGSLFqPjBOBdlQGtgpn9B/BF8p0EvggcgGfTewPweXxTZhi0XNPHNRl4BHgIdyJcmeE2A16LOwetKukv4AZTPIPY5/AArxxEbpy8tfD6vjCztfCN7Q2Bo4F3dm48ZXCcRO+/Q5L2SQcnTyVXRdnjeBiEOY2Z2V/o/ncasMQo3B34AP5sZjuNBfFEbrBGOi9dYmZnAP8HLIM70GBmz6YwS1WwQ+kZeEbJh8wzEp+JOy6tD3wJeFtmtSKz7GVlaTazZST9acBl/Taiw5xIC4NPB9JVB5mbKFHjfOQY/6iZrQPcj8+rDqh9VzTOJMfGMyTdZmaLARfg/fNfZjZb0kWQPc6HcdHAsSa1+cG4g8pngX3kAcTFCN4QPR//OzqdlpYFlgMWLqhaUx2Db5dU5ITVA7nCfjmOvJFcIf09eHxHkoBLzexa3OH2CNzpcoLz84DyIoUgHwDuIQVwMbHfP6+Ds2/RPY67nQ/CqoXXd0VyCtsbz0I9B9he0u1Dct3J+L/DaueStFo6uGkquWjoHB5/p64ALI+Pn5WD8chIjkG7p39/xoPEh5rDj8DVuPdqwoOSvlFYfi9EiUFGRrZFtvs84pyVw5wtgx3GIh0Im9rn1zKzGxgLdLqhxpXNY7FCkB8AvpWOj2f8c7Q3bufNRSPXrWb2b8AH8YCirwMbVuv9SUTfeU2H7ah6noXvTy0qaRGYljnNPOLGmpk2XqBjkfp5YeBOV5jZVsCBkrZKnEM7GA/J1cR5fBVUaUwMsCyas1qsEOTnGBtfzmL8WHMI8D2Ylj4fNcYv6HZJaGa7Q1Dbt+2+QNjiG9nurS2+yBbf1P3W1hafjxD7WMLr+3z3g8By5tvpM+1akVxNtJE9kcbyP+HP/6dq3xUFsprZ24HL5IlbDF+L7YSvOfZSEuTKsY9FctHcPZDHJD0BIOkRM7tDQwhKmtnCwC64nfMCSTeZ2bZ4AtLFcb+RXGGUMC4aaItPeLKNNQvCOAML/ljT1Dn8pQ2cw0Mz5/HziLOPVRjZz9F6C+F6xZKdJtMWH8XVyHHmSei3NwxXVH9f0G0FMHnjTMl33RCybk0+SxcAF6S14e7AZWb2CRUmearZknuV9Yb0/8lTyNVPPKHEFwpJh+VcZ2YfkXTUgMseNrP1JV3fce/6wF9K6pXmIPsCBzIm7LAx8GkzW1HSf08D10wz2wFv9/pejwFL59YHQJkiymZ2lqSdBly2Xcf550rq0oFdgQ0k/d1c8PkCCn2hJokrZI9H0io515nZCzVAhDatTb8CfMXMVsT/3vvN7Fbg7GoPvwQWIARpZu/Ax7wV8LF+H+D7kj5RWp+EyHn8memeNdO/Tq7cPdK18XXTrcCtkh43syg/ppn4emc28ALgOQCS3j3FXE1sd3A7ze0Akn5pZnM1gqBksrEsI+mBdL4osBfwfkkvSOUMbK8oHmLngJH2sUi7/sj1kvSKnOvMbCt1xE32QGS7Rz47kXPcpnGF+Gj1KHfUdv8ecGLy8fobgJk9A9/vK/Wlud3MXquaiHjiew1wRyFX2DyQ3qJjRoHIqKSieX8/WGwcSJggIe6v96Uunz8T96eZnbhy7PpzJL00HX9TUj050dUkX53M/cPLquvN7GJJ9X3j+b66GfXaDW9vcAH8ejKNV+N7Dlmw2PibQ3FbQycuA84Dcsb2Cu1vmI/IuKcTGfOhqB8Pg6XxRAFVveqJhUrf0/38s6Wy5NJR9fq2CuPJ+yCy3XvhWNy/cKg1SsvVCK4m1mkUriUkXW3jk8lEPVMtWrRo0aJFixYtphitqGSLFqNjhW4bI5IuMrPjC3gWqvGcaWYfGaFOLdf0cYXBzLbEjZGb4tnoviBp2AwprwPWkDR/A0fSw2b2LuA28kUllzCzDfGNk8XTsaV/RQ7PyhTTMLPjJb1nwDVnAhvhmbPeDzyOZzSrysrNRtPNWX6lxFm6QRPJBQ11GpM0GQbRrtWZJp6w4PRI5yVgf9zR6NnASzWWLe5Z+OZfCSIdSheX9Lt0vAfwdUnHmNlCwHUFPCua2XF4O1fHpPMVCnhKcDEDhHn6OWGZ2SaBdRk2y1c3lG7ch4zzkWM83t+/i2+eHask7GBmrwWuza1Twq64UBzAW9L/ywJrAN/A37fTwdXEseZ64Lf4ZuamwKY2PnttSSbcsA1RSevWz81sFTxj4H8ApcELTXUMjsIStWd4AqqAsGngmuoxfuD4bmZL4g7Zu+L98nt4Bu67+93XA5FCkMfhTn+XA6cBc+rz+UKEOC0BSLor5zozu1LSS/pccifeTp8H7gbWM7P5AqYqE1/auON8ITwI+ADK3xWRXE2dw29vZksDOwKHmWcjnmlmm0q6uqReqcxVGBN//CfuGLqxpHnTxNXE9yoUBpENKjKIZ4XaODwBhe/7MOfUSGflSGdLYh3GIrma2udfUFJ2H0QKQfYL/C19rhq5bsUDTf8AnAT8HdinYx6fnR3ZgsQgO21HyTl8PzyA4Ozc+iQ0cqwBfsx4gY6f1M6LAneSTfgreBDSOcBn8N/TGC8+MaVcNHAez/igys6AytIAy0ghyMixpolj/IJul4RmtjvEtX3b7hXxk9cWH9nujZzTPAVs8Y3cb+WpYYuPCuyLso8hqWcAsZktn1unDIQE4g/J1UQb2aG48MjCwLnV+8DMXk558On7gJPT8e54kqZVcSHCLwAvmyaupu6BVOu6qi7V2q4KMMtKcgV8Dfe/uBo4zsx+h9t2D5J0TibHZHA10Rb/ZBxrFoRxBhb8saapc/j30bw5PMTO40NsZJH2sWA/x+/ibVK1S+d+a8keYhRXI8eZJ6Hf3jBcjRMdo5m2AogdZxq5bjUXk3wd/v5aBfepKN1nAHgJ7hN1GnAVo/XxKK5B4gmTgZ3x/tYPHwTONbOT8PqBz5XfgvezErwff2bqNphLzEWA5gDZopKBXD8G3lA77tzrmQwMfFfnrsEy8aikvyfeB9OY0ASuyD2eHHyTjMSdZrY9sDpwo6RjgGPMbA2mVwjyBOBKYHY1v7LRBBfDEnNK2ivnOjN7S7/3gaQNzGwtvM0uMrMHgBlmtryk+0vqlMpbHO9js/F1zgxcSKn4uQ7kaly7J9RtF+A2pPnnhf4FuwH/BfzNzObi+9FfB34OvGmqeSB2DhhpH4ucH02x7/JnyBAeC557h9keiBURDJsvB9UrykerQmS7HwJ8ErjLzO5KHCvhNtmPFXLtD5xvZrswfm76EmDbQq7IeWA/0bGvFnJNgLmo8X6SSvx8IuNAIgUJV5c0oX0l/dTMvlzAA7Bk7fiFHd+Vrsvq188agSvSXyhSkHAxSX/o/FDSA+YxFCVof8NMRMY9DbmO6MW1SiBXmH92YL3mC5Jm+kj0q1NYu/fBdNpdW65m8TSF6wEzW41kjzQXkf6/sFq1aNGiRYsWLVq0mFK0opItWoyOhcxsMUmP1j80s6dT9ozVjf8TzgsFNVqu6eOKxEXADbiDy2LAnma2Z61eJUZ8SRMFaFSeyfE+4D+7HFfnk4EtMq7ZBDdUHIA7MXUazbMcZiWdVR2b2fNwEYd/Bz6Nb1plI5IroalOYxOQNhV2AHaX9LqgukxX8MFUOy5BhvNSep5P7/J5aVAfxDqU1p+9LXFxFCQ9YVZki/xQ7bjTyXxYp/NBKDaWmtnajIke/ZmJIlTDoqifdjj0jPsKeEZh2VM9zg8c4yX9DFiry+c/BH448Y6+eKz2PtwGOF2edfFWMytdG0VyNXGs2YegsTdyQ7TG8XzcGf/FuKj0e2uO+rlopGMw3jbzYWZPA9YB7pX0+4KyVsDbptv4Jnycng6uqR7jc8b33wNz8XfrXPxv2tjMNobi9UCYEKSk/c1foK8A3gwcb2YXAl+ugvoLMKlOSz0wyOH1Iryt10//6igKCJP0IECav7wZ72fXAa+TdEsuTzQXDZ7DS3oIF5U6ycyWw4UzjzWz50paKbcwM7sSWAp/fnaSNNfM7tRwgpJRXE18rwK8zczeIOlcADM7ljHHzxNUJtAbJQb5D8YcLEdFtHNqDgY6K5vZEsA/q3mCma0JvBaYJ6k0yCzS6S+Sq6l9/kRJWweUFdlW6nHc7XwQmrpuPZqxv2WkgOLOgGQbTQyycnLeH9gTOBXYpHrvFqCRY00/cY4hcAzwDjw47DXp/4MklQioTgZXE+fxb80Nmiosr0ljTRPH+DUlnQ7zg7gBt0ua2WaFZTXRLgnNbPf5NmEzWxXYMAUn3TKETbht9zHkzGma2Ocj272pc5rxNyx4tvhG7rc+RWzxU20jKwoIh/nz5p3wQPUX4ALhuffu2OsrCgNZI7looI1M0g/MbGVghqQ/1b76BS4QVIJ/1fYntgVOSWudi8zss33um2yupu6BRK3rNgbWS++/p+Pj52pDrDOjuZpoi5+AJow1C/o4A0+Jsaapc/gfdbNLLkD+NDD1NrIc4ZBIP8cdceGm9YDvA6dJur2oxvFcjRxnuqHhfnvDcDVOdOwp4LcHDVy3mtkpuO/MD4FPSLpphLKeBWyF2xlm42Idp2mwqNGkcUWKOhRgYMeQNMfMXgz8P2Cv9PEtwGaSSvuCqUtSD7k4YSFVDFfw/k52sYMuMLPtgBUlfTGdX8WYSP2Bkr5bUF6nENRqtXMkvaH7bZPLpVjhzBwM7Bhm9iVczOYK4AjzxKxHSPo1cHhheZFCkM/G5wXHmNmzcJHKpw3JFZ2YMxfvw5PD9ISk24CPAx83s43wcfXnZnaPpM1zCzKzU3Gh/AvxpJWXALdLuqy00pFcTW13JtouOs9LcAieyPt2M3sR/gy8UdJ508RTgizh2UwUJcMcgJw4qlxE1CtS5Aby2j1yPRBpL42cL49cL2UmpylAWLtL+hdwkJl9AhduBh9L/1FaqeRPui4+714nffxjYF9JjxTSnVfoG94PDw7phzMOZrYSLrRZJY49DZ+DVH5WJdh71PrUEClI2O8dUzq/6Te3Kp13Rfn5hPkLBcffLGVmi6Tnsc75NMpt8e1vWIiIuCczu7CyeVtewqt+XO+uxizLE3jux7VjNZaa2TId+yDTVa/6fGWkuVRku/fBdNpdW65m8TSFaz88WctaZnYvcCeF4v4tWrRo0aJFixYtmoNWVLJFi9FxCnCWme1XGeKToe44fJMjF53G//p5aYbllmv6uCIR6axyi5ntKemU+odmtgdwWy6JMjOUTzUiHarMM10egmeTPBp4Z6fhfDq4muo0Nv9Cs0XxLNCz8YCus4CvFBVm9he6G6wMWGKqeWBaHJcgz3mp828U8ABwKfDhwgCXSIfSS8zsDDwDzTK4Aw1m9mzgsVwSZWbgDEaWsTS946vg1X8CKwMbq1DsKFgIst/G3BdKiJo4zndpq6q/z1G5qNqjZrYOcD8u+nZA7bui8SGSq4ljjaSTwwuM2RBdJ3G8EPgssE8KIC5GUx2DgR3N7F5JN5vZ0rhT3OPALDM7QNJpmWXdLqlE7HFKuKZhjM9p8zPTdWumf533l4gbRgpBVgEpl5rZtXjA0xG48OWJhTxTkSlxQrF9v4wTAKocW/YG3o8Hq20/bHBZJFdT5/A9nBxOAE5IAa4luB8Xnl0eD2KohFmHQQhXE9+rCUcxPvhvG9wJcAl6Z3PuhSgxyAejxuVJcE7NQU67X4CLZc81s9Xx9+q3gW3N7MWSDiooL9JhLNKBsKl9ftnBl2Qhst3XMrMbGAtyuiF9bhQ60Dd13SrpsOhCRxWDNLN/w5PA7Ap8HdhQLm5cjKaONfUA+S6QpJJ9AtUCkc5Ja4Nhnc/DuBo6j19vksobdaypgiqNiQGWqxZVqplj/KmMBfdcyfhAny9RFnDVOLtkKr+J7Y6ZLYULEW0EXJ8+3sDMrsHtIw8PUVbb7oPRxD4f2e6NnNPAgm2Lb6IdHp4ytviptpHl9vfF8SDN2fi+8gzcTlAayPr6Pt/9YLq4mmgjq4vZpTG46u/XSfpLYVlPpDH4T8CrgE/VvisNxgvjavAeyNOA5SVdXv/QzLagLOD6MUlPAEh6xMzuKNwjnxSuJtritogj/gAAIABJREFUKzRwrFmgxxlY8MeaBs/ho+ySneWNun66NHAeP9U2spw/dm+CAh4lnYPbspbEx61jzOyZwMGl/S6Kq6njzPwLG+S3F83VUNGxBdpvL5X/itLCpwB7AH/DBbLeW2sfw23hS+USJT+jC4ALzJOI7A5cZmafKLWhR3El0ax+5ZQkKMxF1rgtF488NKC8h81sfUnX1z80s/WB0rlRCFcfuxEAkv6z3/eTiANxH6EKiwGbAEviyUNLRCW36zgfRZA3jKu2T9sVkiL3gCCvv/87sL6kx82TV/4U99MaBmFCkOm98hXgK2a2Ir7ner+Z3QqcLemjJXxmNmtAeRMEWwNQ9FKTdA1wjZl9CBd1LMHa+FrnVuDW9HsOO08N42pquwfbMR6rfOwk/dLM5mo4IcgonhJEiiVOluj8qIioV/TfltNHw9YDkfbSyPlyRL26rFEsnRfPlVOdwtrduieWeX41n1ehsKOkR/H50Kg4hLhY0b1x/9tRcQoez3oW8Go8Mc11wLoqFHSv7wGbJxFG0l+HrFekIOHtZvZaeUK7OtdrgDsKuWaa2Q7AQum46mvGWLL3XCyX1gZWO664SmyN65vZw+m+xdNxxVOcHApi4m/wvn6iuWjf3xLvM/D97dLnoP0NMxEZ98T4v2GoRDQ11MesUYW162PpxSNyRdUrcr4S0u5mdiO9baXLt1zN52pinaK5arhL0n+kPZWFhtjPbNGiRYsnB9RU802LFi1axKIVlWzRYkRI+qSZvRv4adpANuCvwOckHV/AE7lB0XJNE1ckgo34+wHfM7O9GROe2Bg34O+QS9JjQ2c+Sjd0ohDlUGVmZ+IBmcfgIjKP4xsgFU/2hn0kV+JrpNOYmW2NO8JtjTtGnoKLCxQ/V5KGzWw5KTwwLY5LkCcSMeFvNLNl8GzQX8GN1bkIcyjFRSZ2xR2iXlrbrHoWvhmShVqwfVeoLDtyGMzsSmApPNv8TvJsh3eWBrEmRApB9nTqMbNNSrgaOs53a6tVgIPN7DBJpxdw7Y87VS4LHFsFwprZa4FrC+sVxtXEscbMzut3TclzGLwhej3wW+B8YFNg07ojvaT3FtSrqY7BL5P0znT8VuDXkrZPDqb/g2cefdKiiWO8AsUNE1+IEGQtuGlXfKz5Hp6F++7SOpnZcQPqnP3sRCH4GbwT+BfweeBuYD0zmz92Fr6/wriaOoenj5NDaSBiGp+WBnYEDksOTDPNbFNJV08HVxPfqwnPlnRF7fxhSWcBmNm+heVFiUGWzvd7Ito5NRM57b6MpLnp+C3AaZLekwIsrwFKRCUjnf4inc+a2ueX7re+KBhPw4QggRcUXt8TTZzTQOw73+LEIO8C/oA7df8d2KdjDp/9zm/wWNNr7f0GXDC5RFRyZsezs0j9vHBeE8bV0D6/hJltSI9gk8K5VpgQJOODKjsDKosCLBs6xluP427ng9A4u2Qqv4ntDp7M7hZgNyXRI/MB9WO4Y3U/gds62nav0WZc08Q+H9nuTRzfF3hbfEPt8PDUsMU30UZ2Kh4cfyFwPD423K4xcfBs9NufNbOioIFIrobayLqJ2c3CbYH7SLqkoKxD8eDOhYFzJd0MYGYvpzyALoyrwXsgnyeJJXXg4fRdP6HBOtay8TaCymZQrQ9L5g5hXE0cZ6CZY81TYJyBBXysafAcPsouCYFCkLgIWtQ8fqptZDl+TCcHlwnwCPAQ/o5YmSGD7yO4mjrONNFvL5prGsaap7zfXiq/cetWSQtF8pkLQL4Of4ZWwW1vZ08j1y+Am3CBUhhvdxIuOhqNHBHV7YAVJX0xnV/FmL/BhyWdWVDeB4FzzewkxvuxvwUXDS1BFNfncKGe/wEepdzeNwxyylhU0m9r53PkwoIPJl+ibChWjCtS6PcJvG+fCpyHJ9acbjxW+TRK+rtZubpvBcULQW4PrA7cKOkYXKxyDcaLj+biAeAe3DcKJo43pXvwORjkq3qGpF3S8WckfRh8Ymtmh+BznbyCpA3MbC18TL7IzB4AZpjZ8pLuL6p0IBcNbHfo3fbpfH7S4kzUBZzA96rnnxfYoqJ4StAqCUwPcvpo2Hog0l4aOV8OqtfF+Lz/e8Dpw/gYd9Qpch3Wz94rCgTtuthD5n/F5PkMTSVmaSyZ8I/MbGfgTZVvQCnM7F24LX7JdP5X4DOSvlRIFSlIuD9wvpntwvh5/EuAbQu5foz7ZVXH9b5WmkjpRMb2SevH4Ik/syBp4cJye8Ji428OAT4J3GVmd+HPzErA13B/kxK0v2E+wuKemLy5yqhr4H7+NFG8pejnb1y6fxjV7qXPRsvVPK4m1imaq8KdZnYB8B2SrbpFixYtWrRo0aLFkxetqGSLFgGQZxM9wcxmpPNi9f0uGwFV9to5VWBEy9V8rmhEGfEl3Qu82My2xA3KAD+UdHFhlb6LO9BcV1WxXgxxmbrqyDEEHtPnuxKHqk3S9QfgTkejbNhHckFDncbwLMs/xR0RqyCuoiC8vhVwB6gdgN0lvW4aeJrouNQVkv4EHGtmby68NcyhVJLwIM/Oz0sDBF+Cb56cBlxFc5z17sfFIJbHnSPnMuQmQVTwaY/718admHYH/oxv0uViqsf5oTPhmmfuvYgufa4P18+Atbp8/kPghxPvmBoumjnWjJKVvBORG6L7ELc511TH4HpgwFbAmQCS7iv0Vf1w/cQ8I+g6wL2Sfl9CFMw11WN8jhN85NoiTAgS+D3+rjmdsXfOxma2MRQHarwTn0ueAfyOZvT3sGAi/H0gYP30r47S91ckV1Pn8KHOJXKBsZOAk8xsOWAXfF76XEkrTQNXE9+r0NHnJW1WO12ukCtKDPJtZvYGSecCmNmxjGX4PaEwCDLUOTUQ9f6+JXA0gKTHzKzI4TLSYSzY+aypfX5p3GGl27hUMp6GCUECJxYGPfRDU9et1wy+JBtRYpBHM/Ysjvr+b+RYI+k91XEKMHsTPof+GfCpQrpuTrLVeelcJJKrcfN43EZzTI9rS+daYUKQwFsVJ1zfxDFePY67nQ9CmF0SWFNJ7CwFcXuFpGvNbLPet3VFE9sdYIvOvpXssYeb2dzut3RFuD3YzFYFNjQXer1lCHswNLfdm9jnI/t7U+c0C7otvpH7rU8RW/xU28hy+NcG/gTcCtwq6XEzC7HdmNlMYCdgNr62es40cTXORtZLaMnMVsb7x4tzC5L0g3TfjLRfW+EX+LifjUgumrsHsrykGzs/lHSjma1SUFakvSCSq4m2eHgSjDUL2jgDT4mxpqlz+Ci7JAQKQQI/6mabHHL91DgbmU1MWlntt14q6VuFXFviAkmb4vPQL0j6xZD1iuJq5DjDk8Rvb0Supo4147CA+e1BA9etaW1ah4A/p7+7rCCzU3Cflx8Cn5B0UynHJHB9AHgj3sdPx0Xn/jpsvTKRIwh5IONF6xbDfaOXxPePskUlJc0xsxcD/w8XYQVPorOZpPtyeYK5NsTtOq/D99hOAy4epl8BmNkGuPDfzZJu7XHZh3t8Xscy9RNJ766dLksBBgiDHijpu9PBpfFifafiv9+pwIWS/tX35uGQ42MRmbwgTAjSzL6Ex35cARxhnpj1CEm/Bg4v4Uo4DnglcDne5+cM2+cLMGhe8/za8VaMf06K+jyApNuAjwMfN7ON8H72czO7R9Lm08TVxHaH2LbvFHDqPJ9qnulCUwSVJoNrXgBHKSLXA5H20sj58sj10vhk3iea2dNxIaDTJf2xlI/Adu9lHwMws50KuSLHgvp7v45h3vvr2VhC6W5c2WKX5gkLqj7wIJ48xXCi7N8yiTJvDrxC0h3ps+cBXzCzWZI+mctFoCChPJHgurgNeJ308Y+BfSU9UsIFnFfoR98PD8pjwycFyfa9n6QSH7Kw+Js0vz7IzD6Bz0/Bk04VP9vtb1j0G+4dWIVeyZIBSpOFzjSzHYCFgKU6hZILf5PFk5/QQsDTrSM5dKEPelS9Ivf8Qtpd0l1RFWq5poeriXWK5qphLXyPbT/ga2b2A3xOOWcSymrRokWLFi1atGgxybDJ34do0WLBRjK27wr8EfgB8CHg34HfAEdIeqDP7XWej3f5eBawDXBYFRzUcjWbKxI1I/67O434wFWFRvyoOm2POzOsDnwfOE3S7ZNc5l6anGzmTyqY2f6409hDTKLTmJntL+nz6fijko4ccP0GeJ/YGbgj1e1QSSuPUIdFcSet2fhzeBbwPUnnTRNP5bj0eibfcQkz+5nGC8yU3Ps04JpS56Uo2MTsf/OdxPHM1A9m8iyMO6fsDqyHb4SdJunm4PreLem56XhWzkZrbcN9d9yZZiawjaSrR6zLuOBTSSVCkKQgq+r+fwIrAxtLmlfIM2njfNrkHufMO+oYb2bXStqw4PrGilI/mcaaIcraiz5B35K+MRX16ISZrY+3+asZ0THYzE5WhmiImW0t6cIB11yKC6Pci4+fa8kFJRcBbpI0IYC6B89XgOMl3ZzGriuBx/F57gGSTsvhmQSukDG+S8DAOFRjes74Hry2+BsThSDr9SrJqnty5/3jqZTtbGBmz8Tna7viGc+/A3xX0p9zOUphZuuMEnyxIGAK5/CbSPp5Os6Zw/8ZF5Uy4GV0ZHQtcS6xWlZ6M/uIpKNq361cslkdzBXyXjUXsxwYjJnzXk3j+0GSrur4fDPg05JeUVCvdYDnaUQxyBTkeZSkK9L5Lbij3xLATpK2z61Tur+aK+8GjOqcmlPe9yT1zfxuZt8C7sPfqwcBq0r6e3Ly+rGkTvHYflxLAP9UCugzszWB1wLzJJ1dWPcwrnR/4+aSZvZLSS8KKGv+2BDAVbR+GMA1JevWjjKz1q2B5R1G/3l8T4GmyUQTx5p03SJ44OIBuJjkUZJ+NRl1mg4EzuO3lHRJOl61vn42sx2r+XLmPD7ymc5a02VyhYx/Nb5GjfFm9nt8bmv4+qJaLxmwi6TlC8paSx6Mh5ktJunR2nebyUXEcrnmt3vnbzDMb9K0dk/XzJX0/B7f3S5p9W7f9eFblbEkZLdU+1CFHEsBXwU2woMaADbA7Sz7SOoWPNOPr4nt3rg+H9nfW1v89NjiJ3u/tbXF9+WadBuZmV0uaYt0nGUfq41/u+J/25rAOpLuH6L8xXHB7Nm4OMYMYHvgJ5KKkitEcU2VjayjzIE2sj73lo6lneuFqo9ep8KEtMFcYXsgA8rZQtLl6ThnDyRkTmNmq+MClZd31ge4T9Jv8v6CcK4pscUvKGPNU3WcSfcvKGNNE+fwYevyptomE9+U2cgybfEv7/LxLGAPYK6kgwrKewK4AZiD98/O/dbsoPkorinc81tg/PYiuaZyrMkZZ/rcu0D47SWuxvkJm9md+N9UF9mZgQvwvK1wXf4E8Ld0Wm+zYURfwrgS3/Pwtt8OT/51pKTr+t/Vlec1wEdwcXGAm4HPyBM0lPD8XNImtfMTlAQOR3lemggz2xwfa/4Df2bOHXBL5/2H4u+9a3Dx8KMknThkXb4NXNZ5v5ntiwsD7V7AdTmwm6TfpvPrgFeRhEElvWo6uLpw7wp8Ee+nRw/Lk7hWw989u0l64aDra/f1fX+qzGelLgT5Klww54jc+zu4bgLWlycHWAL4qaSNhuGqcRrwCrzPbwpcCHy51NY2oIzlq/VmfezocW3oHk+PMgx4maSfDLx4krimot07yuvb7umaSW/7JwMy15rLAstKuqXj87WBP0j6QzofaB8bUM4i1Tw3x65vZkv12o+zmt9bv3qZ2YGSPpuOd5Z0Zu27IyV9dMg/py9y5xJR64FIe2nkfDnajmtmC6W6HYfPJXMTxnbyTPo6rL5/ONVcZnYz7qvXFYXv/RCbj5nNwwU9uyZKkfS8Aq5f4fOHRzo+Xxy4XtIaQ9RvcUYUJIxEsA0war6xEu5/+xzgHPx5PhzYEzhV0vsKuN7S73sVxN90sQd3ck1G4oiBWNB/ww7eZwAMa0/sYXudD0k/LuA6qT9VUXzKZfSPdclOxBNZryhEtXsXm938ryi3Q7Vc08DVxDpFc/XgXwbXsniTpIVH4WrRokWLpuHn792lFVlr0aLFUNjkuDOmIsF0GFpRyRYtRoSZnYEHjCyJZ4a8Cc/E9FJgA0nbjsg/C7goyLDVck0T15Dlhxvxo2CeOXo73Nn8mcDBJQbIxHES/Q2H+xRwhRi4zazvb62CDDmRXB28IU5jffiH3pirOVXthAeQni3pvwvu3zrdvzXuzPgdXMBqlcJ6hPD04B7acSk5HP1Z0kPp/JV4QMRduPBLTibciqtbn18GfybnSMrOPhvpUNqDfxlcVGFzSTsPcf9i+O95NJ7NOyx7mJn9VtJKI9y/PLAL/kw+t5TL4oQgrwSWwp3DT5dnf7tT0qolPB2cI43zyUnyDEm3pd/wAmB9PHhqtqSLhq1brYxXAh8r3Gh6UohSjzjW9B3DlSGMlXieD3wU+BPwn3i235fhwun7SPpFSb2iYC5+1U/YpiTLXp13VMfgyE3tNXBnnmcBn6+cwsxsG2BrSR/M5LlZyTHWPMjlFfJstM8C/qfEgSWSq4N36DHe3DH/HnxcgfFONEXOM33KKF4PWKAQ5GTBzFbE310fwPv7Nwvvr4I15n9UO5ek1TJ5Du3ztVTgTG0TxQU6ybId4yK5apzhc3gbQQQj2LlkvkPcqGNhJFcH7yjv1ch6bIqvTU4GqvXgRvhceRcVCKNYkBikmf2i3nfqzrpmNkfSS3Pr1ME7knNqpLNysqG8D3g28HVJ16fPNwdWKxkDzewn+DxorrnYwNXAt/FgrJ+rLCg2jKsL9yh9fg9J30rH80Uh0vm7C9/VUQ6zkaJxd+CCf12Raz/qwjvSurVjXV7NaQQsAiwqaZECrn/DM8T+Cfh6qlM1j/+gJjnos0edjuv3vQqCwDt4Qxzhu/BuBRwoaauCe/bDx5qL8Wdv3gjl79nnaxWOW2FcHbyjzOMjhdB6jg9WE90urdeoMLPb8PbpumE8rF04cU+7bdJiHdcnpT909o1R3yVNaPd07zcYS2hXF4r7GLCGpDdn8oQJQaY18DzgcCXRHzMzfG66uqR+49Ag7qa0e+P6/GT199YWn8UTaosf1Q6fOFpb/JC2+FFtZH14R+3vG+HCBzsD90javODeU/H5/4V4P70ED+wr7qORXDXOkW1kZvZ2XFhjbnrnfB3fm54H7DXKXCvxrwmcLOklBfd0C3KahYv17qMkqj7VXB28o+6BLIyPwysAF0i6ycy2xfeRFi/cbzgNuEQTxVHeBmwladdMnh8AH5F0Y8fn6+J96/UFdQrj6rh/UsaZxP2kH2uequNMKmNBHWuaMoePtCc+GWyTQ9vIbAoCytM75BpJGxTcsxdBSSsjuRJf67c3xVxduIcaa4LHmaeS317EurXv3FND+vnU+HcE3iHp1aPwNAlm9kJ8rHkzvl9xRuH9bwf2BQ4EKv+ujYFPA18tHBt6Cr+b2W+U6R+Srt8OWFHSF9P5VcCy6esPq7YnPJVc6f5l8TXPzrjt6GMqSHqUOG4GNpEnOHwmvnbaZNB9PbiWwwVMHmW8b8FiwPYqEIa3QGHQSK50zwp4X98B39s8gyGFm83sOfhYNRtYFzgKFzK+se+N4zkiBcXDhCBH3T8ZwD0T/w2OAD7auVYfkm8n/Hd4gaTnZN5X7a0tBHwr3W/p37ckvaCgDmdI2iUdf0bSh2vfFf3GkVwdvCO3e5pnLyPpgXS+KP7Of39hezWu7YN/w22AGZK+2/H5G4GHJP1vAdfpwJfUISZqZi8D3iVpdgHXfJ8sM/umant8pc94x97TxaoJ/OZyWbC4qAX5sffgDhEhHtVeWuMZeb4cVa/avS/DEyt8R9JPh61LB3eY+HMH70g2zlG4psp+ZGZPU0o6PZUws9skrVX6XY/rw+xHXdbA87+iXEiriYKElwI/Bq7EhWJfjSdCeL+k+0bgHVWQMFJEsP0Ny/jehSd8WDJ99Fd8LP3SqHVt0R3W2xc3RGRvyDqFvQtarunhamKdork6eF+Oz29fjdsWvyPprOhyWrRo0WI60YpKtmjRYlg82UQls4MRW7Ro0RNrS1rHzBbBHW0rcYYLzOz6fjfmQNIfk5PqyGi5po9r+CqMF5RMH/7DXERnOvEInnn7YTzw6ulDcPygy2crAe8HSjNXfBc30lZOmuNEhYDcTYpj+nwnIDtYKphr7EbpDjP7PrA47jS2BmN/dwSG7vNyQZMrzOx9+EbmbkC2Axoe6PZT4KVKWTfN7AtDVCWKh3Rvp+PS+4Gzh6A6I3E8ZJ4p/kzccWl94EvA2wq4OgNXBDwIfEHS+SWVkjSj87OaQ+lXcEe5oSHpT8CxZpYV1Fyrw2J4tvrdgVVwB/hh2r1v9Ua62Z3zjgeOtwFZijth44NPd9JY8Om8IapyPx7EtTzuHDmXEf82Rh/nd8UdngCqwOtl8THrG0B2IKuZ3cjEv2cW8Ds841s2JH2iRxmzUp2yg08judJ9UWPN+Yxtes2vLt7+y5H/jj0JOAXvp1cB+6e6vQx3DHlxboUsVgjycwXXZiE5Bm+IO5TeA/x+CJolzGxDerxHVRBgJunX+OZL5+c/MrM/FtSpHvSwFf7eQdJ9Q0xxI7mixvjjgFcCl+NZIOdIsVkzhlkPSNorqnybKG5YBZDM0ZAZys2Fz3fHf8f/wUVDStEpXrgQ7lx/AHBtAc/funy2JLAP7mCXLSoJTJjPjIBILiBuDm9BIhjAnaM4Z3Yg8rkL4wp8r4bZBCRdbWYvBt6Nz7UF3AxsKqn03fPstP6q8HC1WW9m+xbwjOvvHUEeyxXWqZtz6g5DOqfuBnw2HX+E9N5JeDUuWJAFeUbsT5vZ04HVzWwdPDj9CuCK/ndPwDKS5qbjt+BZ5t+TnPOvAUqEICO5Ivv8B/BAAfC1Tt3Rbm+gRFhojyHK74al+zmnljimAksD29L92S6xHwFx69bOdXlyBN0PD/gr5TsVd+J5Pi5WehKeKfZluIDYK3KJLE4Mcpj5Rk9EjTVmtiVu96gyi38Gby8DPlVIdzy+jngpsEVtClk5I65XwNUrwPAN+Nq/RIQkkiuqz1uP427ng/Dh+ol1iG4zcd7aD2FrOrxtj+nBVWwXbqBtck0VCDwPQGR/6Ay+7/VdFhrY7gDvAb4G3G5m1XpiA3wdlp2kC392bwF200QhyBMos7dt0bkOTmvzw81sbvdbeqOJ7a4+AiNmVmqniurz0f29tcXnI9oWH7Hf2triC23x6d4IG1kvjNrfrwGuMbMD8DlvCdbGx89bgVvlwgXD1ieSCwizkb0PT9gB/huuB6yK2/irtc9A9Ni3mIUnpShaz0p6a48yVsbfSdn7KZFctXsj9kC+hvtyXA0cZ2a/w+fbB0k6p5Brf+BsM3sTY8/exsCi+Ps7F8uriziIpBuTHbUEkVzApI8zsGCMNQv0OANPjbGmiXN4xuZEmNlikh6tnW+mMoGoJtsmI2xkUf52PZGe7dJ7Th613MngSnyt397Uc0WNNa3f3nCIWLe+BPgt7tdxFYH7r+BjsZkdUnJPWk+Oo8FFR4exq4Rw2XjR2t/ia90j015nKd6PP391H6NLzOw1+DujZGy4yszeromi8Pvi64MSHIj/jRUWw/cxlsT3Z0qEIEO4zGxv3N/l6fh7cZch9u4rPCrp7wCSHjQXfh4WF0h6kZm9Cp83A5yv4cS/l6mfKIlAJixLGcK4zOzHuL/CGcBb8XEUYFEzm9XRf/vxvAOfE62QuPYBvt/LnjQApe3RD49JehxALjQ6yti3lpndkI4NWC2dD7MP2SmAtiw+59toWD8i80Sf2+FihBviv+v2wE/63deB/8MTnwPcVzuuzkvw/NrxVozfTyz9jcO4ItvdzHYD/gv4W9qL+RSeEOHnwJsK6ert3ZS2j/wND8X7YycuA84DskUl8WRqE/q1pJ+a2ZcL67Vk7fiFHd+Vjhf16zvnJblckXu2EOfH7hWIsz1UfBH20goR8+WR62Vm83AfidOBd+CJxyob5VCJL6PbvQem0/f08s4PzGw1/H22m6TOZ7Mfxs0903t/y8S1Lb6vOBDV71WDgAck/bagLhXuNbNXSbq4o4wt8fduCfolXSqyH3VbA4+A+hypjmHmSOuZWbfkm6UidLMkHZaOf2RmOwNvqvwySmEdgoRmNpQgYS97cOLcqZCr/Q0zkWwVmwOvkHRH+ux5wBfSmueTBVzd9vHno6StusSndHJNS9KiqHpF9tHAdr+K8b7Yo6Dlmh6uJtYpmguYP6+8FrexfEhSt5ivFi1atGjRokWLFk8StKKSLVqMjscAJP0rOU7X8fio5OYZcf80Kk/LNb1cQyLSiB+CVPZuwKZ4kM4XJP2i/13doVp2imQU/Sjw73g23K8V0u2Y6rUe8H1cjOH2Ier0ytJ7poILwp3G+qHUma2X4ekBysQmwI1YuwEXmdkd+N9YKjAayRPmuJSwuKTqPbEH8HVJxyTnsSIH436bOhEIcCgdBzN7GgXzTjM7BVgH+CHwCUk3jVB2r40FA55RyNVXGA8XZchFWPCppO3NbGl8LDzMzJ4PzDSzTSUVOW8GjvOP1ZxjtwFOT05yt5oLcZdg245zAQ9GGqY1zaLUkWONpHU7uFfBnar+AziyoFrPUMpMb2bv1FgG9/81s9Iso2FCkBohg2sngh2DQ0VD6rDhhVH+bGbbAvcCW5AEJtIzuHhhNcK4osZ4SfunZ+0VeMDO8WZ2IfBlDSm42KWuxeuBLu+dUYQgu21qrwIcbGaHScoOmDezw3GBiFvxudFHJP2rsD6AO78nzoXwtv8QPpd5naRbCnjmi7Cb2Qw8UPOtqX79BNq7cQ3jDD7pXJFzeIsVwTiHtIFsZmdJKnIK6sDzzOxcfPyrjudDZcLBIVzBc/gVrI+omvIF1TCz7YAVJR2azq8GNgLebGYHSvpuQb2ixCB/Z2YvlnRVR103w0VDshHsnBrmrJzeVUfifeHNSk0tAAAgAElEQVTudP9K5tmXD1ZZhs76fH1L4GgASY9ZefKPMK7gPh/pKP4z6y4EUOqoFxlsfZcKMmv3Q+S6tcY5ExfX2BMXh9ykeu8WYHlJH03zpLskVXP328xsv0KuEMEL9RHjKkXwWHNM4rgSeE36/yBJpfYscHGJEEh6T3Wcfsc34Wu6n1EodhnJFdjnw4TQJF1ocaLbkWu62yUNvQaso6G2ySKB5wGIFMZbMc3brHZMOl+hhKih7Q4wU9LOKZilCiS+RdJvCnlChSD7YNrsY8S2ez9UCRZyEdXnI/t7a4svQJQtPnK/ldYWXzrWhNjI+gTIGOX20uPp3yezA/AlbWBma+Fzo4vM7AFghpktLxdnzUYkV/A+979qa/ltgVPSuukiM/tsn/s60blvUQkBzZX0WJfriyHprrRHOi1cwXsgGwPrSXrCPHHHfcBqQ6xZK6HgzZP9fZ308TDiKDP7fFe6BxLGFWmLX9DHmqfAOAML+FjT4Dn8yYwF0V3J+IC6L1EWYNdU2+Q8YmxkIf52qexO8RJw4ak98QRbJVyd64Fqv/VSSd/qftfkcgWPM/2wIPjthXIFjjWt317ZPZHr1mfhglC746Iq5+PjTdHY0Keuz8ATYZbgGiYKHc0wT+TytkL7chTX7cAN+Hj8MPBc4F3VslcFog6AdXs25EKHBTSAiwedY2azger9shEu4thNpKsfFtV4QZw5aZ71oLnY2nRwfRW4CbgLt6tsXW+jIf0dgPnCf/N9Hgq5LN1zMXDxgGsHIVIYNJJrZfzZ2Refz8ynS58/L5PnBHzON7sap3rsUecgUlA8UgjyBQXX5uD3uI30dMZspRub2cZQLPxyKi5yfiGeFOgSfJ/sspIKKTbmot/vX9o3IrnC2h04BBekvD3NB68E3ijpvMI6IekVpff0oxvyu8niAVhM0h8mkEgPDPHu6SdQVLoun6x+OuzeU2gyM8X5sYfaHiLtpZHz5aB6zcN/q22ArRk/Nx0m8WVku/cS5DIyxRZrXGF7kUri2Gb2HFzwdzYu6HkU48XLc7iOTFybJZ7tcZHX/SjbS+7mNz3LPEn17pJK1q7vBb5vZnMYn9xpC9y2kY1+a2ArFCTsBzO7W9JzC265k/6ClyW4UdKGEUTmiSKqZ/BBfI5Zze9Lnp0wQcIBOBY4a+BVGWh/wwl4M7C+pEeqD+QJa3YBrgdKfsPOffxRECkMGiY6S2y9MLN1gbXS6S1D2qGi2j0ywUrLNT1cTaxTNFeF9SR1E+lt0aJFixYtWrRo8SSEqTypYosWLWows9/jm3uGG5IrYQ/Djfm5GYW6Gcpn4UH8e0q6raBOLdc0cUXCzF6IOwh1NeJHOVUV1ukJ3HFpDt5m49pNBYIaiW8tfGN7Q1xA4VvDOtQnvnoWx2fiAhHZ4lP9nEGg2FEijCvxVW1fOY11tn1JJqC/dN5ffQUsISnbidPMLu3ztTRkALWZbY47Eu6EG8vPVhI3m0qe5IhdtVW9zSrHnlzHJczsxmqT3Mx+iQeQ/Cid31DoJIR55uiPMBZAfDOedeyHJTx9+J8GXFNSrx79fhn8mZwj6fBMnieAKkixW7vnio9gZh/v970KhKPM7OUDuIrE7mws+HR3PLPqTGAbFQpBduFdHncu2A14rqSVCu4NGefN7GfA2/CA3V/hDkx3pu9uk7RWv/t7cL6SsYysN0vqN/4Mw/2xYcesUbkix5oa5/OBg4EX404G31CBaJKZ/VLSizqPu51PJdLf9VFc6O8/gRNxx8TfAPuUOOWk/l45BsPE/p7tzGtm10ZtRCe+VRhRGMXM1gCOwx30Py/p5PT5NsDWkj44TVxhY3yNcyY+5h0BfLTTeTnj/si1Rbf3zizcWatICLJPGbOAi0qew9TudwJ/Tx9Vf2+xs3KaI+yNBw/MAT49YoDZB3CBo2/gznXFwv5mdmifryXpiGniipzDV0KQ5wKnSrrCzO4Y8h0xf8wadfyKnB9FcQXP4e/Cs9b3qlO2UJqZXY5nsf5tOr8Od9h8BnCSpFcVcF2KC591E4P8dK7Tt5ltCnwHD7KtBwHthdu0SkRRLmN8u49zTi2cG4XNQ8zsWNzZ6P2S/pI+WwoP6P6HpPcVcH0LF024FzgIWFXS39N76MeS1p8mrnnE9fnGzQEjy42cswWvW/8N+CC+dv46cLykh4asVxN/w3/DHaX/hP99RzM2h/9gyTxissaadP4rSWvm3j+ZMBeA2gt3Lv8ZcJSkX00nV1SfN7M/42IlhveDSrjEgJdKWqagTnXR7dM1JrpdLPIZPD705DKzTST9vIBrHg2zTZrZ9bi4f1enRJU5wYfsryWut/T7vnDeNo+GtXt1f8Q4bmZzJT2/x3e3S1q9gOsb+Hh+hDTmdGBmHwPWkJQtftDUdh9Qzm8Lba9Re8qR/b21xY+AYW3xkfutrS2+2BYfYiMzT1TQEyoQmYl8prtwb4QHMO4M3CNp8+ngCraR/RIX7PsTbtvfUslvwsxulVQktGBmqzLW329RCsyLgJmtCZws6SXTwRW8BxK2vjQXpXwnsDpwI/A1DSfuehpwSed+gJm9DdhK0q7TxBVpi39KjTUL6jiT7lsgx5qmzuH77YGUrv8bbJu8jCAbWeIbyd8ucdzZUZdKRPVS4JMqCELssR6YhQsBzpV00FRzBY8zTxm/vQiuqLEm2lZgC7DfXuIK9ROu8S6G94ej8eQW2eKn1l1AZhk88cQJnXO5Ieu3I/AOSa+eai4zO4w+ok2FdpWrUtnXd3y+PnCipE0LuH4p6UVm9ipq/V3lovB9bY9m9htJq001V6QNKpjrHtwvrhdXyXtnOTzx6KN0EQZVgaB7JFdBmS9Un3gJM3smvobYHfdrOwPYq8RuW+N6EH/XdxUUV4FAuJmt3O97SXf1+76D60JJW+den8F3Mr3Hm9K/8zpc2PcUfK/uHhvSl6kH/1bAgZK2KrjnNrw/LAR8C19nWvr3rZI1XTDXycS1e6ed5iZJ6/S7pw9XZOxMSHsFt/uvgbU7bU9prnVLr/2yHlznA1/snO+leeF7Jb2mgOsO3EdkIXxeVInOGfDZwndi9c4w3J+zekcYsH/OeGhmj+N7RVUik8quZcDTJQ2VzMJG9GNPHPOIsz1E2ksj93nC6pVR1laS/jfjunnEtXvkOzFyL/Id+FizAj5/OAP4vobzNzkSn4/cDZwGnA38YhiuHvwbA/8p6d8L73s6PobOt0sC31ZN4C6gbqUigv24Svfep8rP52m5Y1d6dp6g93yy5Nn5FR2ChOnzxYHrJa2RyzWgnKJ2j+R6CvyGPffq+303gHMm7u8A8GsN6WO6IMPcN+T7eLKO6/Hfcl18jN6uxE5d4xyp3YPX+C3XNHA1sU7RXDXOFfGkEVukj34KvE/SPaVcLVq0aNFk/Py9u7Qiay1atBgKmxx3xmQIe08aijJPtmjRois+VDvuFLEpyTTVmblCwIOS/tbt4parsVxhkHSzma3DeCP+T4B9I434hch2Sh8EMzsTdyY5Bt/AfBxYysYy65Zk76nwCPAQ7ry5Mp6trQTfxTNPVxm8OjO0lQhBRnIBHM7YhlxRFrVOSArL3qPY7KB13iuAK8zsfXhWwt2AYufUUXkkrZJz3SDHpYRLzOwM4P9wh8ZL0r3PBh7LrVO65+14ht4DGXvXbAx82sxWLHS+7edQ+t2SejExy1TlJP4FSefnkkjKyh5uZstogPBUv81hM9skt06Jq6djn5lt0eu7PnwPAScBJ9lY8OmxZlYkBNmF937cgHv8oI34Loga5/fH+8+ywLEaC2J9LXBtCZGZrYCPmY8wJrK8s5l9BthB0r0FXH2F4wrrFcYVOdakucPB+Nzhs7jQ4uMl9UmosmXXM2WTzouc/ixQCBJ/Zk7BhUOuwvvaDonvi7jzUS4m5R02Kmy8MMpOGhNGmVfCI+nXwATndEk/MrOieVYwV8gYb+ODm5bFx4mNJN1dUp+EsPVAr/eOJSFIxgQjhoakP1o1ac5HiHNSwp3Av4DP4xvs65nZ/GCWXGdSMzsaF3T4b2BdSX8doU7dfqslgX3w4LdsIchgrsg5/PY2JoJxWBpbZ5rZpioXwVCP42Fw55DP3aRxBc/hH9QIAdUdWFRJUDJhTlr3/jGNaSX4MPCd5HQ+QQwyl0TS1Wb2YuDd6V7hQW+bqjDjufKFLHOcU9c3s4dJzsrpmHReus7fFhc0mt/XJT1sZu8CbgOyRSWBt6frV8FFlSsn6rVxkcoShHEF9/mwOWCfeswE9pP0qdxbIspN2COKKHLdijuG/wGf6/4d2Kf+qi907HmemZ1L+s3SMem8aD5gcWKQp+K2i+cDV+N/5xcS11dxcbosBI81MztsIovUz3PnNKm8foHgUpkg1374+HAx8OrSdcBkcQX2+e1qx53jXelYej/u4L88viaYy+hzmwmwQiFI/D1dv39txpIG/Bm34WWhobbJtXD7TFcHasreF1H7awBrSvpo4T1d0dB2h7h34hXmYvrdhCCvLOR6D/A14Hbz4FGADXD73z4lRE1t97Se7/oV5b9JSJ/vt0Yxs9K5ZGuLnx5bfNh+K60tvoiLIBuZ+gi5pT5WwtXvmR4pEE/SNcA1ZnYAPv+eLq4wGxme/OMXwMLAuRoTens5kC3SZmYz8HfYRnhAEcAGZnYNvm9RInx1Ht376LMpXIdGchG7B1LZC2C8zaBYKBFPLvRPPADlNcAL8LGsFPsDZ5vZmxifpHVRfN9ourjCbPFPtbFmQRtn0j0L9FgTPIe/NHDt1G8PpNRuEGmbnC/uamaLSXq0dr6ZpJ/lEgXbyGB0fzsUJJSQuLquB5Kt8xo8UdNUc7V+e0P47UVwBY41rd9eGSLXrZiLSb4Ot5Gugic1PbuQpvPZEZ7AbQ9JN45aR/B9ATM7ZDq4JB2Wc52ZfUTSUQMu+yBwrrlIeX1++xbK1xWW6ncxvtcwCq4ys7dropj7vvj+0ZRz9bNBdfCeJWmnCK5MLIy/byLmIhdoojDo+RpCGDSYKxffxBOwdoWkB4GvAF8xFz7YFbjfzG7FhYxL9g3uU4Gw3wCcqDghyGWDeACQtFfOdWb2lkH+MpI2MLO18PH9IjN7AJhhZsurTLB0S/x3fA4uXPoZ3J5rQK5fQYX/Y0xU4z7GC2zcN11cke0OLGfjxZZn1s8L/Qsi413qbTRKe0XxgNf/RDN7d+ULambPwP0VSmN59gfON7NdGP9+fQkT/U8H4ce4MHZ1XJ/H/WTi5X1xImPzpPoxuD/GQKhA2D4HFufHHm17iFw/Rc6Xp9KX/TPAQDtBZLsriUZaQNKVfnuRQ+AEfG98tlIcg5kN62/yNuDXwJeB8yQ9OgLXBEj6RRq7Su97BPf3mkxE2s5K2+zyzg/MbDU8Bnc3SS+ceEtPnNnBY3jC+Nn4GJ9lj899djIhdYkdlvQPczHasHKmkWtB/w3vNbNXpfV0vW5b4vPMbCS7yn8B2+NxHAasbGZnA++UVGrbeiXuN14JW96KJ+y4rIQnca0JvKOD67/l8UelXBH1OgK3120p6YnEuxDwaXxt8Z6C+kS1e+Qav+WaHq4m1imaq8JJuM/3zul8j/RZdrKHFi1atGjRokWLFs2B1WJFWrRoEQjzjD6vl3TmwIvH3/dKxgzlN0vql0245Woo12QiGbJ2l/Tt6a5LL5jZ8ZL6GtlsYvayzqzpJdl7tsQdDjclifWoTKCq4tk+8ayOZ6U5TfkB8pPGVVhujtNYt/uWxAMidpf0uoB6DJMdtKfjD4CkX/b7PpqnBNaR9bPHNYY7LD0bOKMKvjOzDYHllLKfZ5Z3C/BSdYivmmfdnaOyLJwndXxUOZReNoRD6ZQip9273DMukF9SdiC/mS2MB5uugDvI3WRm2+JieYsrLkvayirLutgt6GM+FJihslbmwHE+sKyz8cyPJ3d8vicuuLdd1xu7c3UG9g4tHBfJVVBmzljzOPBb4HxcsHkclJn9tMvf18lT0kfnMCYE+X7cueo8PCDsk5KyhSDN7DpJG6TjcVnn699FIscx2My2lnRh7fxpwDrAvSoU5TKzc3Bn2HOBUyVdYQEZvEcZ/yaTq08Zffu7mf0NF405nS7iMSoTAeolEFFxDSN23q2ckIyaad3yMUlbBlSrk/tKSS8ZcM3J9H7vKNfBOjm1PIoLVHbLZpwtvtTBOwMXT9oHzx58TOlzOBlcA8opnsOb2XL4vGR3oEgEw/pnFy9q+/qzmjNeThVXaXl9rvmZpM2Cyhv33ur47jcqyDKf7lkOd555IWNikF8s6aNmth2woqQvpvOr8YAE4eu50mC1nDKL5/Ajlvdr9cjK3O+7AZxPx9f6ALd3c96bDq6MsnL6fOQccCXgY4wFfpyGB97uic9xsgQ9Mx2/c+sUJvxXUGZOux/Wo15AmVO0ucBBT6ggoM3MLsQd7GYAr8Idg6p5/JuUH7x+vaT1k13kLtUy1E/iHD6n3TvtIXVkz2mikeZIv8eFRrvNkbLFWiK5CsocNI8/WZlBU5nlVaLbu+PCpTOBbVQout1lTTfSmsfMVqnd/09ckGFjjSDsOaC8KbNNRq1rEteRChKCnOo5Rm6ZwTbh39MnUUGBzWcpXNjmRYwFCc4XgpSL7+XW6bmS7jZ37K+CiG+R9JtcjlJMQ7vfycQ9rPlQkHCKmX1O0gEBPHfX37VRaG3x86+fUlv8VNrhU3mtLX6szIE2so7rZwI74YFJL5D0nMLyXoL3959I+r15ApeDgJcV2nyOp38fzXpXRHMVlJllIzOzRYAZqondmu91mzIT1yQb5zzgcI0FFBm+jl1dUrZgaZd1WLXXOlflQVxhXAVl5uyBRNoLbpS0bjpeBLh6lHlcspevk05v1ghiJpFcGWUVjTPpngVqrFnQx5l0z8m0Y810rp0qzmodZcAukrJFWc1sPUk3pOORhCA79kDGtclkrWkz7DQh/naJq5sw3nyoYO92QDlh9sTJsE0Os+eX7ltg/PaiuQrKHNTfW7+9SUDOutXMTsHnWD/Ex5mbpqRyQ8BcqGVOxNgQydXBm/XOMLNnAf+PmnAPvpdcJMZlZvcwXsxrHFQgXGa+v30O7idST5y4GLC9ygTowrgyyxtoF7eJe+9XMSYGWLT3Hjk3CLbph3FFlmnur786cGM1npvZGrgQzeEFZTW13e8AetqOo+ZZXcodxia8EW4P3gW4R9Lmmfddi/uVXoknoPgWcJCkE8pq/eRH5vrp4/2+V5l/wbTEu0wV0vr+k7jg2134unAlfJ/sY5L+Wci3GG6XmW8/wv1finx9zGzHwDXSuyfrWbHypLHVfSF+7IVlRo7hYX6Lkfs8EfWKfpdnjllL4QKnGzN+b7o46Uriew3wEcb2pm8GPiPph4U8z8TFknYHnoX7B+9VYietcS2MCy3tjvtXXYonVVhJ0r9K+brwLw/8UNJGBfdMiY9c6d60jRdF7qzXwZL6+vP34HwOvt6fDawLHAV8T0MkHzCzzRLP9ngSnv3wxEODEkpX93c+DwIe0Phk9Ll1uRg4Ut0FCT+mgkQj1j2BH3i7ryFpsQKu9jfMr8sL8fnVHMYLUm8BbKcCn1gzOwJP8vtOSX9Jn80Avoj7Y36sgOt1uLDu4fh62nD/oUOAd5eMp2nf6Xt4ApmKa0Pg7cCOhfbzkHolu916neNvmhfeWGi3C2n34HlKyzUNXE2sUzRXjXPCvslk7KW0aNGixXTj5+/dpRVZa9GixVDY5LgzIgW9Jx2LTHcFWrRYkJAMwdvghuCtgZ/Skemkz70r4EaURxgzFO1sZp8BdqicmFquZnNFIm2e7Ic7dX8fd97cD3cMuB5orKgkbuDsC8Vm77kIuAE3tC4G7Gke4FSVlbXxKOkc4JzkqLkdcEzaLDpYhVlkI7kKsTNuQB8IM1sUzwA9Gx+7zsIzfWbDYrODHtPnO+FZoqaSpwQDJ4CSRJegX0nXDlNep2Nq4nrQfWDzISk6s3jIRm1ucZl1WoWYQP6v4c4kVwPHmdnv8E2dg9Iznw0bEHzKWAbSHHyupOwg9B3nu2wWCngAd5a9s7CstSXt0PmhpFPM7OASIo1luxwnJI1v3hchkqsAOX1+HwIyBqogADADz5D03wBm9k6Nia7/r5kdXchVz6zY6UgSmXWxjhwxxx3N7F5JN5uLmlyJO0PNMrMDJJ2WW5ik7W1MGOUwM3s+nk16U5ULo6xCkJBJJFdukQO+PxPv62umf3WUZsm+ht4CESKvD/RFGiuyHBJq93Rz4pgF/A4X5JoMPH3QBQoSAZK0UARPBXNx0A8AbwK+Abwo1wlkMrkyMXAOb2YXSto6HVcBaScAJ9iAoO5OKDa7eP25GfVZieQqLa8X3mZmb5B0LoCZHQssnb47QWVBb1eZ2dslnTiuEmb74vPLbNQCUg5N51fjQTJvNrOSgJQDcefwCosmnmfg67pwUUky2t3MlgD+WTlvm2eyfS0wT9LZheXdYmZ7Sjqlo4w9gNtKiJJT0ZF4tvm7Sc7m5gF/B5c4m0dyFSCnz59YjTUBOAX4MW5reDUuTngdsG5hwNrPrHv29mInV0kzCsqNQo694LCowiqbk8UIli4v6aNm88Ugq7n7bWa2XwHP46luMrMHOr6brDl8TruH2kMCESJONglcuRjU9mFClrVgm5OAk2xMdPtYc6G7bGd/SRdGrXnM7Eo8qcLpuADXXDO7cxLXTpA3xq8p6fRUx/kO4ZKuTU7V04FX4wJxEVjYzJahR1t0s6UGINsmbGarAhuaCxXcMqRN+B+M7WGNgpmSdrYYIchz8PXSb4BJE5LswJT2dwWJRmZgF/oEBhdgspxVWlu8Y6pt8QP3W1tb/KRhoI3MzBbH94Bn48ExM/AApZ+UFJRs5Nvi66UPm9mP8CDno4BSofOhRKCmgCsXOTayHWvHMNbnr6uCeTKxRaedM723DzezuQU89XXYqoz10Xs0hDBbJFcBcuxwT8PXiJfXPzSzLYAiURr8/QCApH+V7m3Xyn468E6ScAjwtc4AsengKsDAcQYW+LFmQR9noB1rKuQ86D/qZpcccu30odpxZz8r7Xcn44Gr4Pu/9eC8L3WcD4L1OO52HoVBvCH+dgmv7/Nd0d6tdU8IuAy+P1qUgCiSKxOt3148Vy769vfWb29S/PYgY90K7IEnPHwf8N5aGxXt8wxa36sg0UOXtTT42PAGfA8+G5FcuUXmXJT24g4NKG9hfO844l11gaQXmdmrGOuj52s4MfdIrhzk+OJ17r0vBmwCLEn53nvk3GDZHv0UKBMGDebKRd+2N7Mv4XPaK4Ajkn/dEZJ+jYuRlGDdIevYDUtbH9FtlYnJLY2v53r5tU2KqGSP8vpC0jXANWb2ITxRYcGtuiwdn5P8MEPHUBtCdHsquLrRD7pABaKRGVxh8S79+nwqK6uvRvGka/8FHGRmn2C8/8Q/cjk6+B7Fx/RRcQhxz+7ejDjnsAFJY4es01Qj8t0Z6beYM1/ORUS9okUzctr9OFzgfDdNTLpyAgW+0Gb2dmBffN5V2Xg2Bj5tZitWsQo5kPQgvp7+ipmtiAva3W9mtwJnqyA5pqTHgQuAC9Le9LZ4svd7zexiSbNzeKx7Ep5ZwOb4eqoEs6L8D3v4soP//tnJWxL6+e59oYTIzN6B70mvgIuC7oMnzyt+T5rZkbhN5258DPwE8AtJ3yik6mYPmZVsQLtLuq7L973wXuD7ZtZVkLCwXtsWXt8P7W+YCXlc0Tq47a+yw/8E2HcIX84dgE0l/b3G/xcz+3/Az/AxNRcfwpMxXF/77Doz+wVwPJ4UJBeH4u1yWe2zc8zsEuDjuGD8VNfrsW57fGlP8tFuN/RBVLtHzlNarunhamKdorkqPJhiLKoYyN3xJEgtWrRo0aJFixYtnoRoRSVbtAiAeQbv2XiA+9W4gW7VusEgAycAX5Z0cgf3nrgTYonBr+WaPq5IfBMXnrkSz9ByML7Q377QkNxIWGxG6r2J3eB6BHgIF6tamUyH/ingykGOQMfWjInfXooLPWwypJPiMcA7GMsOeiVDZgdVQaasqeApLXbQBTYx21sVfHAp8OG0MZmLh81s/Q5jOWa2PlAayBDmUBq5UZuJnHaPDOTfGM9Y9UQKLroPWK3wt6sQFnzaz3EnBXNNB7ptFq4CHGxmh1VB3ZnoKjpmZgvhjqvZsCe/KPXAPt85nxkWwWNWpBDkWmZ2A/6+Wy0dk84nS4AsZ47xMknvTMdvBX4tF4d8FvA/jG2o5BUoPcSIwiiR4980iaL0bffOILyRCgoUiOjhPDOsEGSnE4eAByX9bcjq5SDn3drTQRzyncR7BHHVebJFX1JA7I54pst1Jf01997J5CopNuOaZWvH4wLSFCsEXIrOd0VTuErL64WjGB/8tw3uBLIE7gyzfUF578edZWbjWVTBBRwXK+SBODHIRTU+g+6c9Oz9MTmMTwZy2v0C3EFsrpmtjq8zvw1sa2YvlnRQQXn7Ad8zs70Z71y3OO7wU4Kj8Xnu8zSWdXYpfG7/OcqcNyO5cpHT9ssOviQbszQmlvgjM9sZeFPlIJwLTYEQpJnNBPaTVBpkm4Ocd+txfQkKgrdtTLB0b+AuRhMsjRKDfJ6ZnZvqUh2TzidLqCun3fvNzSTpm4H1yUbke32a5giD2n4Jc1G9XsJ/JTbhccE2kn7PkKLbwWue+3GH5+XxcXUukz+3yeE/lRghjBKbziBECkGuhb/rJy1ZQA/evkjv96/ic7XKlruBmV0D7COp007SDw8O4fDeDZFCkJMlfNIPU9nfo/ey+haVfWHv9bSV8BSitcXT2uJLKrWg2+LN7FQ8MP5CPIjlEjwY+bIhynodsKGkR9J78bfAOsM8O/3eE2b23OniKkDOGNZNsGoWsJ6Z7aMYAZGisdTMZuBiuCO/7yO5CpDzbv08vpfciYfTd/2ExDqxvplVf4cBi6fz0uQR38AFKn+K+ym8ALqeONAAACAASURBVNi/oB6TxZWLnHfrAj3WPMXHmdy6jF385B5rptQuOaBvlc4NI4Ug++2BTJbdYBBvmL/dkD5nvdCZEFB40OKlwLumkSsHT3m/vWiukmL7fdn67U2K314WFJdsMjLRQ+daWrjtYQ9JN04jVw5y5pFVgsIvpvOrGHvXflhjyYBz8H+SSoX5elYNQNLF8P/ZO/e428Zy/X8vhyQ5rRJySEglOZRT0UElHVQiNitko91BhyWFIp12JGyJYm8Vqa22EpGSHzm0SkIkFmUhonJKdFqUdf3+uJ+53jHnO+d8xzPm8673tYzr8/Exx5hzXONZ8x3zGc+47+u+bi6aRlyl0C/3fj9RjJ+be39lwXGVNAYtyVUKLwU2sv2oonnlj4FPNeS6e5gmqq4eKqGkEeQfbU+FQVud+eYM27uk10faPggW5JcPJdY7dbCCuo0El6xuO8NEUAVNt0tyZaDx9562FzQtzkSJepdvE80sOnVO1es/57ovxTPIoPJZSibXmddW73pywVvkxbSmI0o1jQW6n8slPTntm2wNZsnn6oWhW2yC6TiuOmMq1nSF0F9u3aMj+FF6pppNaH6zYftO4vn6GEnPoluXmcv1MPFbOjPF4HLizL3NUDoxjA8kPUwOriCvGcowFDMkdEFjZEIfdDkw0/ZVAOrfuLoO9gV+A5wInGv74SZcg+IhkjYlDFZfmsFVzJDQYw38qk2G5ti+NYcncbV/wzy+ecBXcsfRB/Pdx6fA9l8b/DtX6Y1pJa7rJOUaxa7TL2dl+1JJuXNyqXE9cYA2UYRePwelvveSDXZarqnhmo5jKs3Vwd5EXvrYtP0TokayRYsWLVq0aNGixWMQralkixYjQtKdRBeTE4EPOrpN3NYvYDAB1rc9rpjd9mmSDmm5HjNcJbG27ecDSPoS8Adgzdzg7zRGsY7ULmeg9QoiAbQ50Y39uE5geiq5MlHXoOPHRELtNgBJWR2hqufzY6Q7aCmepnAfI4xUsLEXITrZOYPuAOCcZApRNUZ5G9HduzYKC0onJVE7IkoW8j/iZICSCm5ubVjEWrT4VNLihOHcakQX7uslbQ98hDDL2aTJGEfBoGRhKni+kDwDgu9JOhmY5WSkloSWx5LXBQ0eB6bUks5lyDVu+411eArPWSWNIJ+b+fmFhUcqr7cFvgVg+48dAVpTuNsY5YMZh5ac/6bCFGUo+oh4O0Ufszvrmwyu7YBlbX+7Z/9OwEO2/18GXUkjyH4FJ0spOtnmGqyURClzr94iripyTV8OAB4mjIUOqfzumog2S3LVRZ3f03QUBcJYEXi1AByafV8luUphVds/rWw/ZPtMAEnvyCFK8/mL07NiR5h1XsMi5FJmkCv2jPE9lc2S5oK5WNF2RzT6NuAbtt+r6PZ7NVDbVNJhLrJFz/f+/VRglIvtgfWSsLXD/5CkdwE3kWcEWZKrJJYfIKoH8gT1sGD92JlI70/8nSKvke5jamAEKWkNwhi2U/TxDeCThPHz6aOMZ0RcPfFHaqNjWPpMj25YWsoMsvps1Fv0WbIINBebDdj/RmLtOyWmkiWLUaZpYctqRFx40BqwiNDN+YaaxZ55HA0GlieMyj+eig5WkLS57Z834SyEUkYYL5G0DfDuJgLzHpQ0gpxje6HHwGrg88AcYNdOXDHdCz9KPOvnNB94ZOKP1ELJgt/VNMQc2RnGyIVR0vilWC5L5cwghz1P5xhIl0Ybi29j8VUs6rH49YnmkDcCNzqMC5pe7/M6+X/bD0i62SM085H0IuIavcz2PZI2JJ6jXwLUalg0GVw1UaexVt+CBYWp+BnAFjXP9VNJhwGfqj6bS/ooUcCWg+Mpd78vyVUSK7uPIY7tX0laK4fIdpZJ7RCsX9HTfJloADwduEpikZ9rFvF5Btq5JgdF45JDsAuQk28taQS5enp+UuU1aXu1TK4iKKW3A5D0BuA6jxWpHwbsRDS+eX9O/tYFGwKW5Kp7yhqfeVzq9kpz5aLV7U2Zbq9fPMTAn6v3xjqoPt9LWintu7fJmAY9S081V03UiSH1NihcisiJLEOYoeWYSpaMJa7UR+uzAM4z7CvJVQd1vodiuffCeqCSxqAluepiorj4I7Y7jfL+3slFN0RJ08ySRpAPF+LJRZ3v4VmV19sCB1W2c677S+nW3F3KmOF/rglnMdPtwlx1sTC/99L1Ljsmrg2B7xJan7lTyAPDG6FkXVv91pMjoKOp7kUnj79hBteGFY1dP646moAiTWO7Th76pw8T6w8k/ZUwTv9iU84WRfDbqR5AD3Lvueq3TrJ9f5MlwASxydom1TXyh3W5tnGPAecIKLaOd0FDwsRTpLECsCrxLH+MpFWI2O2STcaUuLYlmoB8TtLFhIZ5Cdv/asi5ALavUjLZzTyuiCGhxpqhbsqYaXPjJkPt37AeCuv2rMFNe3Pv18NqWnLrXYY1V8nlKjWuPwCDYgK5Ztmlvvc7Kvm9avOjJYh6gByfl5Zrarim45hKc8XBcd+vVXfaokWLFi1atGjRYvqjNZVs0WJ0fBvYAfg34FFJ36VZgUzfbqySFiOS1C3XY4OrJBYUfiVx+J1+7BhKTpiAcMGO1BpvoLWgk7Ttr2dQXQhcR4jolgL2TAVJQZpXAFmSKwd1kj8vIJLtF0q6lSgoa3qt93YHXUJT3B20FE8mGhX02n4AOFbSHpnHzZa0BfBuQtwKIfrf0vkdIUsKSosmauucb6IPFC7kr4o4quZ42SKOwsWnXyaKan4OfF7S74mE38G2z87gyUGjP6jtPzUQ7h0IHAHcLun2dO41gK8S31cOHuum1HXmmkkzZWk6Z1HQCNL5xiAlUOea/XP6Dd8FbAXsAyBpCeI3XQrvo+bfuOT8V3gurYuJvvd+Ir21CBPAj9vOKZg/jHim68WlwLlAjqlkSSPIkqaLdVHn3lqqKOLlpX7Ttvs+0001VwbqzDODjL2A+qbBpVGwCLwYl6Q1bd9R46N17qtdc43tLSubT8sa2BjHj4AmRpJVlCpIuULS222fXN2pMMycrPn9tzU+U32+fwVhkoftRyRlCaAkbQY81fYPqHzv6XnnHts5Zn7uV+DmZgX9Jbnqos41vzxRrDHo3pNTrLE8443CflHhqnUfU1kjyNOI+/uZwGuIAs1rgec3eJauizr31q8WPF9Jw9IiZpCdQk9JTwTWTbvnTnKc87c1xvXezuv0nPpWouDmZ0xe/GhClCxGKVzYUhcTXfNzbZfqkFys2KbkM4+kHVNM9BTgFElPI2JAx6Z1ymQYo9SZ44sYYdjeXtIOwHmSTicars2vvJ/zzDNdjSDros73vlVv4Ueaoz8p6eb+hwzEfpJeMOhN278Y9F4PShpB/oOy5sh1sNCudyiby6KQGaQXvikKtLH4DhZ2LL5xYqWNxY+Mod+d7Y0lPYcoTLpQ0n3AspJWtn135rl64zzPrG7nxHwkHUU8E1wLHCTph8C+xN81y8igJFfOaZseaPt2STmFZu8lftNzJS0ooAOuIcX3M1Dyfl+Sqy7qfO8rDHmvZA4kB1U9zb9GzEWX5KqLOvfWRXqueRzMM9DONR0s7LjkMOReAyWNID9Ued1r0jJZTYp/O+zNgno7iHjalol3e8JYbzdivX0SsF1dIg0xGIVsLVoxrrqnrPGZRVq3V5orA9navVa3VwR1iPvFQ5ZN98Z9nWF0LeljxP11sdjUv4DjnWly12f+60Lm2qgYV03UMYTs16DwfuB+5TUoBHhl5ueHoaRhXzEuSRsT+asbbN844GMHDdhfxVTk3uug5AQwqQ9LktYBZhLm58+DcRqNfigWR6SsaWZJI8jnF+Qaip7nzZ/UOGRYvD0nFn99z/Z8GjaXhqKm2yW56mJhfu9QsN4lxcjPTveaNxEGUU8BDvGQ5k+TxZO4+jaOADoNx4tA0h2218w45DaGG17m4Fcl8q0q2DRW0qHAiwl96K1p39rAcZJm2P7PUcfbB6Wa88H0vXcO5JJ0oO3Pptc72/5W5b3DbX8EwPbQZ+QGqPO9l2y68pCkjWz/srpT0kYMNzYbh8KxyVL5w5x1y0QoZsKugoaEKthYIT3jnAScJGl1oq77bkk3Amd1rvuaXI8STUDOV+j9tydyH3dJusj2zLpc/SBpZTLv0SprSFisGWr7N8zCDNulmoL20+J2kDuudXryRR2I/NqUNQboj5rEz4uMq67GR9K2tieqESryvfdqOBUGpfsRv6Wz6vK0XFPHNR3HVJqrwrE2cByR7zGxXtvfozcfb9GiRYsWLVq0aDEFaE0lW7QYEbZnSdofeDkhhPsskUDZBfi+7b/WpPqepJOBWbb/BpASYccCuZ1aWq6p4yqJjRRd4zqBp6Ur27kB4IWNCbtnFxZt9itknwHsLmkD2wfX5Nmb/GDqwuAaCkmzbH8ubU4oGrN9LZHMOVjSi4m5a0lJPyAC7zlixMvoTmpXt6eqO2ixzqCSnkF0xn4wbW9DmE7dDpxg+xGoJVwado4labAmSyLUw5qetzqEgoLSYonaQegRXtQSLaa/X6eQf2WaF/IXM8ajbPHppsCGtucrTDr+CKyTkmwjIwlFejvETzjPD+DaBngg55iUSPtgEg90DEhusf33BkOYlqbUkoaKiZyMserMNbmiqVw0mbNc0AiyT4J8QWELcFDOdS/p1N6CqQGoIwx+B5FwX4VYU3YKBV4JnFd3TDWQNTH3zH8jGZmU4pI0Y4LzdO5JQ+d4DzA2TPwXEsU3dbGU7Xv7nOO+BoL6YkaQnhqTiAkLZpLAaxBsu25X3bOIoqmRkXFdLVSuCc6zme0r02adwo9hxl4tunE2Na6tmmv430vawvYV1Z2StgR+33B8JVCqIGV/Qog9kzGzvxcSQvF+ZrsDUVicep2kowmz5nWBCxLPMAODQTgS6CcSn0Pc13KMzeZI2tP2adWdknYnzPpyUIxL0u5OBb6StrL9k8p77+k8C9e85m+3XaRo3/ZaJXgoawQ5w/bH0+sfStoZeGtHLDlJmPC5VdJTCSHPA0R38aOIrve3AAfYnptxPvc8u3V2ZhuWupAZpMJo/XAiVrbAnEjSKUThx8jiSUnbAgfa3jaNvZYQPo1tL+CDhJnkW2z/etTxLIqQ9AqHMTKSnulKAZfGTBRhhALTnvVRHRQrtlFZI8hDqcREbd9DiLBPSLHGnHGVjE0WM8Kwfbak24hY8D6MPadPlvl9HeQ8Aw7FwogJd06V+flhzwGm/rqmpBHk/S5kjjxdr/eSuaxSz/kaYi6azlPXYHSi87Sx+PGYtFh8yTh84mtj8ZmQ9BPbW6XNCWNktm8CPgZ8TNILCdODKxWNIl+cceo39Wwfk3FsL14PbGJ7Xrqmfgds4AyTlkniqos6MbK+kPRsMgwbHEWOOysMK9ZPu+fYvqXpGAYNbTpy9cQP6uRArhoQi9qXhW8w3UFHTwPx3YyipynJNRC58wws8nPNIj3PwKI/1xRewxeLSw7J84j876qYEeSwZ6cUD6+Nus8pNWJkpfR26XQL1o07Al92NHW6WtK7M3hgeLwnV4tWkqsvWt3e5HJNdpym1e2NjAmfWwfFQ9JcdhKR+5kQCkOUrYHNOvFpRZHziZL2t31s7VGXzbcX41KYiX6YsXXDDcCRthfo2G0fXoOqVIPCYvqIhJKGfUW4kv5ld+K55rOSjuh97gGwfUENumK598IoaQxakgsASU8nzGNmEuaJRxDmy3VRMo5Ycl1d0gjybhUyheqHpMPYifgbPJcwhe6dOwbhSZI2IeJ3S6fXnXV3ThOKJ/fZtxbNmkv3mm4vqYam24W5UDRAWtH2fWn7CUSuen/bz02cC/N7h8mpd5kHPAg8BDwDeOIU8wzCsYQOpQRy549HXFBXPQiSlqypxyjSNLaCPYCNqtoS27cqaix/CdQ2lZS0HbCs7W/37H8L8KCTGVSd5wFJKwEr2Z7Ts3994F6PaYjrxEuHnWcJ2/9Km3Xq6pbzAFM+dTfXHjauXYlaVoj1ZPXZ9DVkNg5TwboGyjZdOQA4J+mNOnHpTYG3EWu6HJSMTZbKHz6pMqePQ2YOuKShezFDQso2VlgA23cSsYhjFI0Pc9aTvVwPE/eHMyUtC8yqe6yk4xl/X51BGO3mNIKGsoaEJZsMtX/D+riCQnUSrqnFlfQ82zdM8LHefFEVuTGODw15L7eRUslx1cGRwFBTycLfe+fZaxYxb55OxLgaaU1arqnhmo5jKs2Vjv8C0Gn8uivwDWCLhnwtWrRo0aJFixYtphDy+PrCFi1ajIAkMtqOEHttZ/upGccdQSQGOwmiNYGvAh/piJ9arunNtagjJV8G3Thsu3ZSR9J8QiDZSQxVkxUuIRZOyferbW88Ktd0hvK7G/bjWAx4FZHoKSLUbjCGX9h+QWX717afPVU86dgrgDfb/r2iI/GFxHyxIfBP2/tmcPUTa69ICKJm54jcJF3M8N9ibfFW+jf+xwBB6cm2N8/g2hr4X6JodFyi1vbsulxDzvE7ZxqhDeF6Ro4oQ9JzUuEOkpZKyabOe1va/lkG1/UUKj7tc813bWdyHQacYfsmRYe284GNgH8BM21fWJPnV/RPpv0e2LPzPdbkeumw921flsF1LJEg72ckPc8ZXXULc3W+r657ISHkfZrt2oWxKYn6EaJg+L+AkxkzpNnHdq3kXOE5q5gR5AD+FYl13Itt75xxXOPfSg6Ub4wyjGvke37i+aDtIsnVXK60BryTmFdg/BpwZAMSSdc4o/uypN8A61eEXJ39SxLFfc8adUxNMEQQtxPwkCfujlg95ja6f4eqbNv2OhlcB/TZvQwh8HqK7X5C3348WX+nCbg6/76+Zp4511VJrj7c6xOxgt2I4qdNM46tCgRbDEHha2tz4P+AU+ku/NgL2MV2joFjMSiMrs4mipjHFaTYvjuT7xXA89LmDU6mYZkcC+6ro65PJS1NCLBWBb7SeVZRFFeuY/trGVxX2t5swHvX2a7d4VvSakQBZtWIaVNClP9m23dNEVfJ777k76fIfUzSL21vVNm+E1jTDYwgJf2SaAzUmeMvrm47z4S4usbt8JkoPn2C7dpFqJIuIER0yxLFWKcA5xLr+LfafnkG19nAd9zfsHQX22/M4OprBpnGV9sMMj07LUsUw/wl7VuOEPv9w3ZtwWWar04iipnOJsR9p6SxfdoZhTuS9iPmmouIoszf1j328YhSc42kV7tSfDni+qjknDXw39AgflTsWbNwbPJtw953TWPAFC86FHgL8CHb36s7hj5cB9k+sunxPVzfI+bgd3vEztiFv/evEjGZT7mSlFcYtq1nu5aZUEkUvkZ/5tHNNTtc0+56T1ynVDbfQNyjK1T18ykqZAaZ8gNDaJxjnD7sPG0sfjxXkVh8qTh84mpj8RlcE5xn5GtekoCXZH5XdQtG63D1XqON10uFud4OXGL75vQdfYUwK/gtsFfd+S9xnUv/a35VIhd5eU2eWkWxNbmK3e8Lcy1OmPuuBpxv+3pJ2xM5pKUzY+grE02CHqE7jvEE4v6d2/ThcYlS99ZFZa5Z1OeZxLVIzzWF1/ALK2dU0uz9aNsfLMSVlQPWJGvu1EBvJ+k6orj670QjkJ2ctAmS5thef9jxj2Xk/v0GcCwyur1J4Coy16jV7WXp9iSdM+z9nFzDBOfJiS1fA2zrZMRV2b8ScMEI64iVANynEenC5ErrmXcABzJmvLAp8BngS84wnJX0v8TaqF+Dwpfb3i13fCVQ+H5fhEvSDUSh/d8lPYV4duqbW67B9QvbL5D0SirGoG6Qe388QNJ/ELmh1YAz0n/fzV2rSbrA9qsLjWmGyzWavZPQbvaFM4wgJf0BOJHB69u+jZkn4FyaMG2ZCWxC5HJ3AC5zRh5+glg1trfJHVsP/wzgwpwYrMbXujReKxfm2hX4b+BvwM3Ap4ln1yuJZ7Oc59ZLGLwWGfl7bwpFLn9XYHNSU3DX1CtPBk+N85TMgeQ+053gHgNRRUOKmcQzwfP6H9mX6yOumE6nuMgrEtf2tleuy1UKkm6y/Zzc9wZ8/ieEFu7env1PBc61/aIMrm8CX+yNqUl6CfAu2zMzuGbb3jq9/lo1lpKbO1K3FuOi6vNEXa7q2qh3ndRk3aSydQ1r2r5DhZqupFj1foxpHecAX8iNUU9yPqVp/vAvxH1hkHa5dg646RgGcN3sATr6Ye8N+PyNTkbKOe8N4XsRsZ68zPY9kjYEDibi57Xn+FL5FI3XKRi4H7jS0ZC2Nhbi33Cu7XX7vTfg8+3fsP6Yij0DZ5yz5HVzpu2dCnEdb/u9hbiKjKtwjGLo957WLQcQccivAMc7NdBpcK6Wawq4puOYSnNVOMfVVqhHx9+iRYsWiwKufN8urclaixYtGmGzz59RskHZpKM1lWzRYhIhaWnb/0ivawUsUpK2E4y7xWMdnBudv+WaGq4SUBQ2vZMY03WEkcK/hh816WPqdw2vQXQaWtz26hlcOxAJ33WB7wLfsD23yEC7z3Ota4pcNV4cvsD0yvbXM89bjKvGubKS2ipUuJi4Pmd7Vnr9ftvHVd471T3drCbguhWoCq6PotK1yDWNAUrxJK4FgTBJRwPzbR+oEPNe2xskm4DrlJ5dneTCJbbPq8uTuF7YZ/eWhKjwnhxhW0lBaeJbBXg3IyZqh/DnCi/6FX0sgPMMNUqatZQ0gvw70Jk/BayTtkUkkHOu0xuILouuCPdeBawHfNU1xcqSntGzy8D9TgWfOUh/w16YEIivkSlM6DWS7piilDClbszVh3stoqPoq4DP2z4+49jZwGnAcsT9eRZjhjT/abtWd6iSc9YA/kZGkBNw5v4ObyKu8RIdPXu5RzFG6VcIDjHO9Wwv1XRclXMUMadswiXpc8A2wE+IjmWzXTAwIWkb4KOZ4pnPACsD7/FYYfqTiS7B99mu3XlYZY0gSwrintKzazFCPPFB4BdNk+uKDp7vJwwlzwCOqSuakHQPMLCTvPPMBZ7hQt27S3IlvrUYmw/+SXRO39SZxlU965BiQo1FESWvrcT3NOA9xPrWwA3E+jZLIDQZUAEzyIJjKSpOTcc9kbE4zVxXOthncAwUveUK4irHVb/3ObYvyuUoyVXyu1fNjrk1uYrcx1TWCPK3wPwKVxX2aMbBTyZEy+8AzrLdz4R50LG/tL2RJAG3V9dWOXGt9PmShqVFzCAVHc3X613zJTHnTc4TF19DPOdcDrwW+DpwsO0T6nJUuOYD9wD30sd8O+dZ+vGAwnPNWpRZH40rtmmKwqLaapym6y3y4zQlY5OH2/5I3c8P4fk1cCZR4PaPEbmKGUEmvh2IWM3pRIHlgsLHzPtFye99OeDLwAsYM/vYGLiGaP5RW8ipMAiWewy2Je0BPGr79Jo8JY0gX8jw2GtOrqHY9z7BeRobvzRd11aOXyhmkKXQxuL7chWJxZeKwyeuNhZfqEFkzjUv6XiGX+85ca2RC0Yrn/8zUC2IfWl1O/N3WJLremAT2/+UNJMobHg1YVrwMdsvyeB6Wc+uTu7i5szrqmRRbMn7fUmuU4nfys+BLQiz2U2JZ6iz6/L0cG4DbJA2W3OUTDS4ty7Sc82iPs8krkV6rin87LSh7evS65FMxRcWCudbc3Vfk665axCX3Jso0n6I0C29Ju3fBDjaeSZ7bwCu6+TrFKbsOxFrwffbvm0quIaco9XtTS5XkblGrW4v12DlXuB3hKbjCnryKrYvzeEbcI4nE3qRutre621vkPveEL6PAe8ltBMiGj0c7wyD0ZJckuYAW/fGMRVaj9nOMOZQ4QaFpaCyhn1FuPrEja623e83XodroRuGPJYh6REi33eAx4yob3Vmvna6fu8qaARZMoeV+E4ntKQXENqaHxF6jCLm66XRIA/Zm6efT9RvzM5d+xXmup6Yg+em9eDlwFts94vJLjQUjuvPJ2qeZifOLt66cYxSPDXOkxun+cCgt4imnDMajOHphAHMTOD5RBz8O7Z/1YBry8SzA9EcYz/gHNsP1Di2d44xoZv9Xe44Et9FwOHu0UApNFIfdYbxqaSrPEB/rfxmwsO4staT6tZPjGROqAJajJJ5tQH8a9G8rqGkFiPrOXcCrpKxyVL5w0k3YZe0BmFee1QGV0lDwpKNFY4Ctifim+sCPwT2JebS/3aG1rRUPqXwNVryeijZsKj9G9bnKmY0n3HOadfMIXGVvBeUajKx0MYk6W+ERvUU4C+97+dcCy3X1HBNxzFNAlfneeYg4AEiXmDieWVF2x+uy9WiRYsWjwW0ppItWrRoiseaqeQSUz2AFi0WZbi7oK5WkjsdsyAJJGlb4EDb2zY8f8s1BVyF8FWiqPbHwOsIoVetYu3Jgu0zO68lrU2IQV9KdMP9cibX2cDZkpYhul0ekwRQh+SKzipBiypWBPYkDD/q4ug++2YAu0vawPbBU8Q1EXIfXo6ZgCuncPGllddvI8yXOsgt8rwMeMOAbROmCAuTB7oFPa8APgxge76Ut+az/e9ZBwzn6ohIO0UNHwWeCLzT9g8yuWZL2oIQlO6Vds8BtswVlCa+PwKH5R5XxQTCiydn0vX7LTaFBrzutz0RniPpusqx66TtJuYVWd3cJsAjlUThdkSH10eBGyXVfnbwmCB/GypGR4QBTBZsV3/PSNoKOBT4IyHIzeH6J/DBlAAdyUi6JFcHkp4FHEIkMo8B3pfOk4MnO3Wnl/RO299K+/9fSrzWwrA5S9IyblCU3MP/AHCswvhgZCgKi3Ofb1cjvue+pkLk3Q87opmRjVGI5Phko2TgIovL9izFTfTlwB7A8ZIuAE7MEVuqv/nmDEIEsGfOmIg55T+B2yV1zATXJNa3h2ZyHUYI83pxKWHwWttUEljKPUZcALbvS2vo2rB9P4CiuGYPomjnWuD1tufkcCWeGcAHgLcSzy0vqCNA7EHV7GpUnEUUP04rLkmXEya/3wR2sn2zpNsazAvQ/VtrbHr26tssLAAAIABJREFUOEGxa0vSm4DVbR+Wtn9OFNzsIelA9xjILmw4CvenS/F+b1OFQe9NiLTuPBz4d+AO4vpfQ1Hwd0jm+uhCSZ8GDu2sc9N96BNkfneSNgOemp65flTZ/1qiSLD2dVeSi4LfPfAzSYPMrW17uQyuUvex5YnfdHUe7BTAmYw50fZaGeetBUkrEEbuexImZpt17rsZeBTiC5Z0X8978/t8fiAcppFbqNuw9Pu2L1KYXJ85+Ohx2J4eM0jbD0l6F3AT9eOUrnJUdj464HqbiOuS9PpsSXe5gaFkwrQsjJrGKDLXFF4f3SZpH9tdcWlJ+xBG75/L4KrGabroyI/T3EZ3bHIUFItNAq8h4vmj4u1EEVGXoaSiucK9/eb+QbC9vcII4zxFEWNjI8j0+bMl3UbEg/dh7NrMul9Q9ntfwfbOktYB1k/75ti+JZeIiIP1M+H4DvFvrmUqCeynIQYWzmuyMSz2mhtbKfm9D0OnwUITjCQkc0aR3DBI2nGC8+SYc7Sx+KmJxReJw0Mbi8/lGvL7EWHEXhdX5Z57CKrXdG/OO/d6f1PP9rCc8MLk+lflWX574LT03HShpM/mEHV0BJKeydg1f6czjd5sP7+63VMUe3gm10NAkft9SS6iWG7DdC99IvFbXqfBMyvqboj6K+DLnuKGqNMVBecZWPTnmkV6nklci/pcU3INfypjuZnL6c7TfJGMvI2k3Z2a/UrayvZPKu+9Z4RY0rhTZX24v7atw5Obby2iuSuot8P2VyT9EHgaUC0q/wMR68/BpwmDPiRtD+xO5OA3AU4i1tBTwTUIrW5vcrmKzDWtbi8bqwDbEr+XmcB5hIFtdmOyAbGHFYE3Ajlz8rB7ca7x8weArYmczm1p39rAiZL2t33sFHCpXzzU9v0N7qvn236BpFcydq8/z1NsCp8b711IXGtLOie97sSNOttZZkLASkNibZNiGPIYx6rAzsQ6ZhWike2SDXiWHxYvzYmVFsYf3MCkdgBKFyiuTxhE3Ajc2DBnOxSlanBSzDNXj9Yvrr0WcIikj9se2KR2krkecTKCt/0LhUFXI0PJkjkCysb192bEPEphnkEaU4jf1cqZdMsOee+4Ie+NP/lYs6nViPlvH+C7zjCcrXAdTsyndxCG4J8ArrL91Qyafs8oMyQ9AdjN9rV93h+G9wHflTSbbuP0rRgfD5oIy0laojcWmTTjubG2YX/D3HvQsGs0Wwcz5Ni6XBtJeogUg0yvSdtPzBzPAhSqayh5HyvZHLZkbLJkLU9fSNrM9pUZh1SbCq1EzBO7AU8nNNI5+KmiSUc/Q8LLM7kOAM5JOtBxjRUyuV5PNBqaJ2lFojHCBg31R6XyKSWv0ZLPF+8laiLmShrXZChzXO3fsD4WJ9aTC9NwpOS6froaLU3HcU00pqMqnxm2HqmDlmtquKbjmEpzXZ24OnPWOyrvmRSXb9GiRYsWLVq0aPHYQmsq2aLFwsPQ4EAq9D2JCNCeDRxJdAgQIW6rjZZr6rgKY/2OwFjSl4luOVMOSc8hCog2IQIP7xyxYGAe8CDRqfwZNEta9QYtOp2kLwbeVZdkkLA2iYSuBmobQZbkSsf9hcFJ7SflcJUqXKycv9/rbLhQN6dSPAk/knQGIXJekWT2IWlVMsWI6bjXEkG0jljvBuBI299vwLUd8Vt8GPi07ewCwQ5KCUolXczg+51t9yt67odiwothgvlUEJlFN+B1v+2JUDJ5vLTtmwAkLWX74c4bis6jtw88cjwelrQBcDewDd0F1rXnGkmrESLweYwlC3eWdCTwZofRSRaS0PWjxHd9uO0cY7YOx0v77N60I761fVmf9xcG1waE6OJ5wGeBfVIRcRNUTWceGvJenXGtRgg4r7P9iKKT/SxCyP70huOr8mcbQQ4QxK1IdL/KNfaaazvLOHIQShqjdArBe/ifCtxfFWOMiClNGKd/x8WSrgF2BT4F3AycnEHTa75p4jvKNjxNa9mDJX2CscL0ubb/kQo4rsigK2YESUFBXDpmb2B/oov3Dh2hai4UBrU7Av8DPN/2X5vwEH+vHPHi0GEV4inNdTch/lwZWIm4zpv+/oatQ1p0o+S1dSAxT3XwBMJU8slE3GBKTSWnGUqKU48ingnWtv0XAEnLEWL2o8lruHEA8CW6BXEbEUX5+2aO60j6F7/OIa6HnHVFSa6OSU7VIIe0nWVCa3tUUUkVRe5jLmgEmZ6jl3WPIazCbPGhnGeMtD47gFiHfoUQOD7YcGidgjUxvnitkfGh+5vOHkueqaT7rT8bFBbNkbSn7dOqOyXtTphT5mCFnmeCJarbOQUy/dbdLYai1HVacn00k2QK0IOvEfN8jqlkSSPIRwpeXyVjk4snEXbf9W5GEe67CUOPXjyFiFXOzBmUCxlBSloqnf8twFttfy9nHD0o+b2fTZjw3wI0MYOqYsl+z1+2/5bur3VRzAiycK6haCx+CKasQ2jBQs839LyuFp7mmnO0sfg8lIrFF4nDp/O2sfgMLobf72vfO4bFHSStmTEeKHu9X5OMwsahwbhKcs1P8/kDRCFjVYORG+dclih8eyFjhlUbS7qayK30HfMQvpGLYivfxz8rY1qw3/YdU8FFrEvnp+PmSbq1QfFcB19lrCHqa4m5dVZDrkUdReYZeFzMNY+LeSZxLqpzzcUF1/AlTcU/AHw9vT6ebkPKvckwMFNBI0jGa9uqyDVk6GBUzV0RvR2ApGcAf+6sPxUGQDsQa+RcI097zEB8R8LM+GrgaknvngquVrc3dVwUjBe0ur3auj2SZul84PwUd9sNuETSJ5xvztsbezBh7rC77V9l8FRzkVWuJrnIPYBtbS9o9GX71pS3uIDIpyxsrockbWS7asyLpI2Av2SMB9J3ZPsi4KLMYx9v6DUTGsVcbSoMQx6zSM+nJwEnSVqdyLneLelG4CzbdZtkLU9oyPp977mx0pIoeR3Unr/rwPbGqRZkN8KI/z5gWUkr2747h6tUDY4KNpf2AFO+tLa/kNB3LnQu4GnqNoZaobqdaQz1baKZdEcD03tvzMmZL4jrK0zH6Kd9rMl1apPjJosnoViD90HXQ0OcQBixzbR9FUCmBqOKfYHfEM37zrX9cC7XoGcUSZsCn6fbzL4O3w0pBzKTsYYdlwHvsD0vh4u4nk9WNIn4WxrXk4kcVu4cP1fS63rX/+k54dZMrhUkvRlYjG4di4h7Uw4684PonitEaComhO3FM885FIXrGlaT9PlBb9p+XwbXkyRtwmDNQ+3micPymlVIOtP2ThNw1coPSrrc9ouGfOSgns+vT9yvdwP+TJjm1cU/Jb2N+B2uR/xenml79QyODooZEjoaK2wO7MfojRXmdeYU2w8oDJt/m8nRQal8SrFrlLLPF8WaobZ/w6y/YUmj+Rbl8duFdSLbH2+5Httc03FMk8A1UAOcqUts0aJFixYtWrRoMY3Qmkq2aDF9cAzwH0Ry6LXp/wc3EOC0XFPLVRILBKO2/6X8brPFIelbhHD6GMKQ5lHCJADIKjztCAl2BTYnEuvHdZKiuRgWtCgBR7H8lHK5rLFDX6hZZ9DFUjHyYpXXnX9gVnJS0udsz0qv32/7uMp7p9YVnJbiSZhFiJVWBbauCPtXIRKltSHp7USXlgOJwnaIxN5nJK1u+38yuK4kksRHkbq7SVoghM9JVJQUlNJd+NjBlsS/+Z66JMOEF5I2yxgPkhYHdiEMC863fb2k7YGPEAUkm2TQrZ6S2qq8Jm2vljMuyhpBns5YIcTldBdFfLFneyLMIgRHKwHHeqyD+uuIxG9dnACc2CvukbRnGlPtTqOSXk/83h4EDrU9O2McvfhQn30mOsqtQd68VZLrl0RnvfOI++Lm1XtFpmCiiKmQpFnE9z4XWErSFwnR32nEWqA2VNYIsrcYr1PYcpzt8zK5SqKYMUqaAz4D/IkwW/wa8FTiPrun7fNr8hTrslyYaxliDvg34rv6DvDCnGK3hH6i+aVSQUPWurQD2/8AeosWvgXkFC+W7IxcUhB3G/AvwljnDmBDSQu6aTqvQ/kBRHHMoUTn9c5+BZWXq8nTt8hH0tZEh+v9MsZUUnhWjMv2DpKWJ4rUPp4KR1eQtLnt3KYBwwz7cr73xwNKGs48wfbvKtuz0/zyJ+UbxS7SKCxO3R5Yzx4zs7P9kKR3EQZ0tU0l0/y5m6S1GRMq32A7VwwMYUY4bp1u+3aFweBUcS2MbucrAPvZzmm+UuQ+poJGkERR5g599l9KmDHlcN0O3EsUxfwd2KdnDZ9T9FF9PuotVhuleK0XuQGpUmaQ+wHfkbQ33R3KlwbenDmmS+l+Jrissp1VIDNBIXh7bx2PItdp4fXREu5jwuFoipB7vZc0gvxJIR4oGJsEnkP8BgcVVtaNGazrPuZdtn8s6cScAamsEeR1hHHuC9Kz3Sgo+b2XTOwsLWkZ9zRTUJjePKEuyaDCsCZI9wTZ/lrP/j2AR22fnkFXMhZfzPhF0rmMGRRUTXUBsP3GDLoiZpC2F5iTS7qmup2LNhY/ZbH4UnF4aGPxWVzDfi+ScuOcLyKux8ts35NibQcDL0njqouRC0YruIR0HUq6qCfHdzZ5+aKSXIcRudHFgXNs35B4X0Z+se7xRHHarp3isLT2+yjxe6hlNFC4KPY8xpuEmfj7PY28670kVydfBN05o84zz4aDDx2HadkQdTqi5DyTjlmU55pSPDAN55l03KI+17yfcs9OJY1PSxpUFjOCLKltK6W5K6y3O4OI9T0oaWMix3oE0eTpi+Q1eVKKJf+dMFGqNrfINY4rwtXq9vL0dtNRu9fq9urr9ipjWwp4PWFgshZhKHRWLs+w2EMmT8lc5JKumEBWznGv8oukS3EdAJwj6RS6cylvA3bPHNNK6jYu6x1bTg5rkYZrmgnVRGsYkglJOxDNf39l+xjgGEnr0d34cyL80fbekzLA0VDMCLKJBq4G503Ax4CPSXohMddfKelO2y/OoCpVg1OsufQg2P5Tg/xhSa6T6TZa7t3OwY7E72RD4LvAN9ywuTSApI8RhmGLxab+BRyfO6dV8il9UTefUoonffb2xPlMxjRDcxpqhkqalK8K7EzMe6sQz1NNjVpWBbYlfsefS+vLpftpWHNh+6r0PNXk2HlEg9ZRcSjwn8Dtkm4nnnfWIAzuPprJNQs4T9IudK+3XkS+AemlwBsrr3t1LDmozge9c8OXMrm60FDvBWXrGv7B2Pc9KlYj7j2DNA85TZzrIquh8wQYGoewfYGktRgzkvwn0URkU+cb7d1DxPEPJTSvVhihNkExQ8JKTGDkxgqMz90/s7qdmccvlU8peY2WfL4o1gy1/Rtm/Q37rhclrUHkH47K4KqL6dqwdaFxSTrQ9mfT651tf6vy3uFODQxsD20Km4mh37ukM2zvkl4fafugynsX2H513RO1XFPDNR3HVJqrD7eIOW8msVbOznO3aNGiRYsWLVq0mHrIztVctWjRogkURT0Di2Uk/cL2Cyrbv7b97IbnarmmiKskJD0KdJLhIgqu/s5YQHOhFzZL+i1jSdpxAmPbOWZV84lCz9mJq+uGlJloQtHx/G+271MUgW0N3GK7tpBN/QsNVyRE4evafutUcA05xzKEIHc326/POG5oZ1BnmAqla2I+AwLmmdfEgt9in99l1/bC4CkNSXMIceufevY/hUjU1TYCkXQJwwWltRMVSRDUiwWCUttZhaMV3pcRyfonEtfVD5rwJK6uLnu2a3fZk3QqIR74ObAF0bl2U0K4dHbmON427H3bX83gKnadVtcYveuNidYfk4Vh99Lc+2y6X9xJCBTGXfeZycJe7q2IZPmKxHV67gSHTAqXpL0YLoLKubaeMex91++GuWDOkrQm0cl2K9vZwo4keO4aBmEEeYkLGkGqj7HCBJ9/te0LKttLAhsAd9luIqjvGKPsBjwLWAHYzpnGKJKuIortlwf+B3it7Z8pOoR/o+5vutS1MAlcfyNMN79JH/PNuusQSbcxuIgraw0ywXl+Z7t2YaakzxAJs34GWvdVE3U1uJYgBHH7MmZwsCYhiDs0R/SX7ofD1g5TKrBWdPWcSYglbwO+Y/v4jONvZ4hAJXMeLcbVh/tphMHGbsCaOddWi/pQFOqubfuctH0sYx3AT3BeIddc2+sOeO8W2+uMPOBFBJKeBPzTqZhP0rOB1wG/zXkuT8f+xvZ6ue8N+HzvutrEfPy7fp+fgGvY9TDwvYXANZLwo4drDeI5rhMv+AbwSSKWcbrt2oaefe5jXcJu9zGCG8DzE2AH2/f27H8qcK6Hd3Dv5bpq0POkpOucYagh6eMMX8NnF0lKeiJROAUw16kTdylIusN2bbNsSasR5lZVgfcCM0jbd2We/xV0F2pcJGkn22fm8LSYGii/2HsQz47VNf8o6yOF+f2rbN/ds39l4EIn05uaXCfYfk/dz0/AdQARv/pyz/59CJPcz2VwPcdDjNBs/yyDq0iMqHDM59eEEeSnPKIRpKSXEvf4OT371wfu7b2P1OQcucBM0j3E829f5ORBJH2QKER9p8eK4NYCvkDEWGoJzlXQCFLSFcArbf+1Z/8yhPFR7cYkha/3YTGDLOOUFOceCDcsPC/4myya82hj8RNytbH45uOcFrH4PlwrADsRcann2n56zeOOIoTz1xJr+B8Szz5HAP+ds5ZXFG0PRM6zRclrtPT1np4Rl7X9QGXfMsQ96a+DjxzHc7PtZ+W+1+ezjzJWFDvO4C3nHt2Hey3gIOBVwOdz4pwluQrH9adNzv2xhqbzTDp2kZ5rFvV5Jn1+kZ5rCsclO89OIszjOs9RAnaxXbtYreT6ryQk7W776+n1VrZ/UnnvPc4w3lEhzZ36N4es8uToxxbEVyUdDcy3faCkxYBrM2OvexP58ocI3dJr0v5NgKOdYbJXkqsPd6vbWwhcpaBWt5el25N0GqGf+T7wTdvXNxlH4ipmDJX4tmEsZne97UsajGngdTjK9V6AaxXg3VRiksAXbP+xLkfi+QNwIoNjY0WMPhcFSHoTsLrtL6TtKxgzXT/QPU3vJuCaktjQYxWKBtfPA35KxL3Ptf2pBjzt82khSBLwEvdpLDbkmGlZg9MP6f7x0Zz79MLgGnEc1ebeTwEOyc1ZKEyIXwv8h8eaH61N3EfOt31sBleRfErJvIyk5QhTvk2J+ArAxoT+YR/bDw06tg/XQJNy4EvOMCnv4V2d+BvuBiwDnOVkdtSAaykilrQb0ZDkItszm3AlvpWB7+fk+9JxxRt8Slqabj1No9xy+o5mEmtdCGPQ03PibImnS/cwCnJjAgM4ium9Et+k5OlGxVSstwqPfyiXpMuB5Yi42Ddt3yzpNjdoCiJpFmFAvAxxPfwf8P9y4gR1xz2FXCXvF6Xqb4pdo4O41MCQsPC42r9h/THN6MShJK1E1EjsRszVZ9nu1xxkENegxuxvAR50RmP2NJaVPIG+Sj21VrlQxeBa0l7uaZLZ5/PLDVqbSVrT9h11xlU4xjlUa9sZUw2eaj6sd0yj5PBbroXENR3HVJqrctyWxHp5B2AGsB/R0O+BoQe2aNGixWMMV75vl9ZkrUWLFo2w2efPKGmaP+lYYqoH0KLFYx11AxaE+HIYVugR6i1R3c5MOLRcU8dVDC7bWbcIbK9VkG5v8rvJ94Wkw4iOvJb0TULofAnwekkvc+p8XQO9HeY7plcXA+/KHFZJrgWQ9ASiA/RMYDui6PakTJpSnUEBXlY3uF4DGvB6qnj6JbUN3Ef8HQ+yfX8OXa8wFcD2/cpsWGr75VkHDOdaYBDXIyh9Z66gNHFsRxTzPUyIUi9uMi6V67K3KbCh7fkKg44/Autk/u06eHZToUYfDLtOc6/b3mt00HsTQuO7lHeu+dkdwVBNLDaAfzEg9/62TebnJ4SkVxLXuoHDc5Jok8E1UYIsk6vUnDyvM2fZviMJ/hp1CrX974PeU6YRZDpmNaK77nW2H1GYkMwC9iKSrHWxo6S7bN+gMIS8nCjomiHpg7a/kTMu2w8SxR6naMwY5dj0TJBjHLdEJ9Ep6ZNOpgm2b8q5X/S7FhTmS/fbed0lSnIB3yJ+L89O/3WdijAuqjOmbJFMQ+T++3o7I0PFCDLrxJFIP1jSJ+gRxEnaArgig2uvnHMPg/qbp1fPNW69M4BnPcbu9fcRoiXZbjLv358jVFtYXKoUVEr6sO0jgBOAEyYSsLQYCUek/zrYjrhXP4kwDN0hg+sKSW+3fXJ1p6R3EEYpLcZwPrAPcLOkdYn76v8C20vawvbBGVxzJO1p+7TqToUB0k2Z4zqmz74Z6dl6N9vX9nl/EC6U9GnC2NdpTAI+Afwoc1wluVaa+CO1cRpwKRFreA0hhL8WeL4zC9aG3ccyx7SU+xiBOZqKLJPJtVxVrNaBwlx86Rwi2x/PPPdAKEwPDidiZQsMOBXm7Ie4pgFn4voVg8X5WZ1iHaaRW6jbDPL7TmaQxHWSw/cjxl/fx+bwSNpz+Cm6DdJaFEXtwv8JcCiVNb/D0L/p+ugo4DyFiWPHNPqFaf/RmVy3SdrHBYwgibjtln32f42YV3O4Tgc6Yr/LK68BvtizvbAwV9LrbH+/ulPSa4Fc08W3E0aQXfeGXqFyTbyb+E568RTiuqtdMKWxArMXEsZqABtLyi4wo9uYdyTYPlrSX4HLFM0LBPwF+IztEzOo3ksU6fbiO8BlxHVXF0u6j0GP7b+l+2sOil3vJWMGti+VtDGxnrnB9o2lqAvxjIw2Fp+FIrH4gnF4aGPxTXiWJoqtZwKbAMsSsYLaBfNErnYT2/MkrUgYhm3Q4HcDEYsaqWC0gmL5opJcVe1FinF3rvlrbf8lc1xDT5Xx2X0oPBdLehZwCGGsewzwvpznuUngWhJY2RXTssS9FTFH52AjSZ01kICl0/aUNUSdzig0z8CiP9cs6vMMLPpzTcm45Icqr6/qea93eyI8R9J1xN9rnfSatJ1VOK+CRpDAB4Cvp9fH0/2MszcRH6mLUpq7Nwx5r3beNqH6+3gF8GGA9HyQNSjbX5H0Q+BpjD2XA/wBGKg9mGwuaHV7U8FVULvX6vbysDvwN+D9wPsq31GT9V9urLYvNNYIax5j8bad09ortxHWRpX1bAcdre8TM4dWjCvl4gY2wMzAH2x/sgDP4wEHEmY7HSwFbEaY75wC1DaVpH/MtcVgvBTYyPajigaWPwayTSWB2g3GWgQknWF7l/T6SKcGybYt6VAgxzi+twZnyamuwRmQL59BNEEalmuebK6+33vabmrYPw94kDBQfwb59zCAPYBtbd/X2WH71qTPuYDI59eCK8ZPCrMiMnN9RXkSPk+YNO9qe37iFLHmOoG8v+P+jDcp/1HKkc4mGshnw/adxDPCMek5fdcJDhnG9TDxjHKmpGUJXfWEkHQ8/a/1FxPrwVzMaBqr6IX6N0N4Vmd9mjvPpO/olAJD69I9jIjcmEA/FNN7QbdpZMpL0y8nXBOPNDzu8Yi7gdUIfddKwM00jP8kjcvnFEbBuxJmo0+XdBBhZvebDLqSZglPUjT6GGSAX7thvOubFZ9pe6cJuOoaDl7ujAbYPcduZvvKjEMWPF+ojyFh5ulXk/T5QW86r/lR+zesj38qTHpnAusR941n2l69wekHad8vAc4FcvLmx1NDX+UahpKSZtveOr3+mu09Km//nBQDd716uUs6n5d0kbubAZ1d4ZpoXCX1IefRXRtO2l6JiDfX1WMMm8tHyeG3XAuPazqOqSiXpMOJe80dhCH1J4CrStVVtWjRokWLFi1atJgatKaSLVqMjksoE7C4lG6h3mWV7VyRXss1dVzFUMqspSQkDS3aywz+njrygMawK/BcwiTkDmAV239PRfm1DSIKFxoWNTqS9GoiAfBqQhR5GrCZhxh1DR/egg7NZysMtZomIs+iXPHyYqkYYrHK607gNafwrRQPtpft3Zf49iJEwTtn0D0kaSPbVZEykjYiin9rQ9KBtj+bXu9s+1uV9w7PLbYsJSiVdCURHD+KED13zRt15wh1d9nbyWNd9n7bYFiPdIQgqeDm1oZFrBBJ9lKFrCUL+1ZPST5VXpO2V8vkGnfNA2sBh0j6uO1v1uT5nqSTgVlOhoHJ8OVYoot9Dq4ZVKyvCTp/9fn864nCmAcJA5/ZmWOZLK5zGfJ3t/3GDK5SgvrqtQSwanU7M3lczAhS0TnzEGAusJSia/mRxH0xqxsu0Vn7nen1vwO/sb2DpFWAHxCJkEZwtzFK7S6CCfMrr3tNl3KK07ckuiD/iRDdfg14KnFv3NP2+VPB5ULmhhrccXEn4KGcovIhv0ERCfLacEEjyArnP4Bf9ez+FmFWWQt9zAp6z/FfGUPqNU/voqJ+Qd5NhCh8e9tz0zj3zxhHFX2FZ5K2Jkzj9psirmpB5c5UjA4LFni1GI9Vbf+0sv2Q7TNhgRlkDvYnnplm0m1WtRR55pSPB6xo++b0+m3AN2y/NxVYXg3kmEruB3xH0t6MFYVtSpj+vTlnUB5gVCtpU0I8/tIMugMIg6m5kjqxho0IIe6+OeMqzLX8ABE1kC2gnuExs8QfStoZeGvnmSoXac23H2OGhDdI+kJaK9VFMSNIIsZ3cir47jynPBk4jsz43zChJWSvl48insWe6WR0oDA0Ozr9lyPS3z7js7XgAmaQQ5Ar1NtswP43Es+/rank5KGYKHgQctdHtk+TdC/wSWADYi16A3BYg4LrkkaQS/QrkknPwrnXfEmha92YzkSYRZh57kL3ffpF5M9BxYwggXVtjzPpsf1jSTmGi1C2wKykAT62TwJOSoVguJlBTkkjyKXVp2FIGt8TMrmKXe8lc1mKpma7E9f7ZyUd4R7T+YWNShxDwNqSzqm+nxlLbGPxeSgViy8Vh4c2Fp/LdTrwEqIg+nhinTu3kjeti3m25wHYfkDSzQ1/N1CmYLSDp6U4oCqvSdu5xl92aC1fAAAgAElEQVQlufoZVs0ANlQYe+c0V/hpmps/ZY81PJL0UVJusg6GaRWSxqA2JG1AXKPPAz5LmFA/msMxGVzEGvbDffY/lN4bZiTWBU/DhqjTFQXnGVj055pFep6Bx8VcUywuOey5SVKuGdlzMz8/DCWNIIs985TS3DXUnA3CjySdQZg1rkiKJ0palUwDCUXjkT87GcRJ2obIydxO5lxWiqvV7WUb1k9H7V6r28vT9vZtYNAELmcMdQJwYu8cqGhG9UXC1LvumIqtb0txSXoTsLrtL6TtKxhbEx1Uvc7q0JUY0+MET7D9u8r27BTPul+Zze08BZr+xzge6axBHXr/ptft3cM0UZl6qMcLnlV5vS1wUGU791nsUrpzQ9WanKmqwenNVZnI1WQ1Pp8ErmLfu6Ip5K7A5sCFwHG2c834O1jSFUPJDmzf2yBnhKSPEc3NFotN/Qs43plmx6V4gK169arpWf+Tkm7uf8jgYfWb693ApBxA0ouIvMJltu+RtCGhrXoJGSa7khYHdklc59u+XtL2RI5l6ZpcvdePgfuBD2Tqezq4gnLPKcWaIWi8vn7BW/CYb5xTVO8FIOldRHx5mbT9V+BI2/3y+8Owq6TlbT+YeLqey23nxAyqc2dHO7YBcFfDa7UOSq6th3I5ahiWB3YEPq4wml1B0ua2GzVAt30r0ej48BQT3I3IH6479MBulDQkXI0w0h2kP39FBlddZDWZmQATGTj3XqPrM9bc8c+EtqYuShoSFmuGSvs3zPkb3kMYKx5KPGtaUpb+uYKSjdlL6quq535ez3ujaOR6a+pzuIrpQ2x3NTFQNGw9CHgVMbfWRUd3uRihs+poMEW+Brrlmhqu6Tim0lz7Ar8BTgTOtf2wpGnTMLlFixYtSsPzGz8ut2jRosVjCq2pZIsWo6NIwKKkSK/lmjquwrgPuBPoFM33djUpGRSti2OGvJcV/NV4854FpldOXd4zMC8lkx6RdIvtv0OY+khqIkz9WwqsbglsDdxiO7eTU1Eu4HzCdGdr27cl/uMa8MD4zqBLqHln0JJJsuWJREWHsypkzAlCleLpC9sPAMdK2mPCD3fjAOAcSafQXXD9NqIoNQe7EuJ+iGRtVTSYVWxZUlBKdCj/K/CW9F8VOXNEsS57wHMkXZdeC1gnbXcEABtmcC3eI3TuQqYwsKQR5Icqr3uFHVlCIduf6LdfYXR8IfUNCA4kjLNul3Q78e9aA/gq+cXAl1DDwLsmziXurfcDB0o6sPpmTsF1Ya7cQpiBKCio/1DPduNEssoaQf4H8Gzbf1IUMv+GEH41GV91jbAtaS61/cfmOtW+eB95f+ONJD1ESuSk16TtnG7SJxC/t+WJop3X2v6ZpOcQhpm1jSBLcvUR8nbWgLM7a5yaGNRx8VLyOy4O+/s0+n26gBHkBMi9SPuZFTTFy13GEHFHYk1zsaTziXtMox+f7QUGQCkZOpOY724jU6BckosCa88WjdB1vVf/pkRn0NpIYsMXJ0F2R/ByXmYR8uMF1ev9FcTzRcdAKyvjloo7t+j53r9v+6IiI41zXKXUST3jmL8Buyk6eC8wSUziy9zzF+Mi7s/bM1iol2uWWH3muZ8oDlcad+1nHklbAacDpxLrPoi1388lvdX2T2pSFTOCJAR6/8n455QvE0ZhOSgltIT4+61XNSqw/VASaN9EhqlkoXt0HZRaMOcK9d67YABxXb6VEOr9DPh0oTG16I9SouBqnKaKJnEaHOaRXQaSkp7YW8xdAyWNIBeTtLLtu3vGtXImD5Q1QntJKtB4d8P7TZw0DOeeT6yTN0i7LwXe4WR4k4GSQuVhzzy5RW8lC8yy8hMTIRV6fIi0fpB0A3C07d7nz2EoaQT5ZeDbkt7ZuQclEfUX0ns5KHm9F8tlAf8GbJwKm59CxEAamUqqnBnk0QNeN0Ebi89DkVh8wTg8tLH4XK71gQeAG4EbbT/aUAjf+xt+ZnU7c0wlcTJj98Tqa4jGBlPCNUiPkXLpZwBbZNC9l7jHVJs0bAxcA+xTl0TSbNtbp9dfs13N+/6cvOv9l8DvgPOIYv7Nq0vIzILKklwr91sj2P5Vul+3mByUmmdg0Z9rFul5Jp1/UZ9risYlh2AXIKeJ38m2X13o3CWbPRR75imluZP0BqIpZOd57jBgJ8LY4f2ZudtZxPPTqoS2rRNnWYX8dekZRIOpByVtTORYjyAaM32RvMZMpbha3d7UcY1DQ+1eq9vL0/b2auFNGLQ2+vupjDHU+rbHmS84mg8d0nBc2zCWp7vezYzAS3EdSFxbHSxFNNpaBjiF7utsIrxy4o+0SFixumH7PZXNXHO9FnkoFUtcHHgyrZlqDobN5bnz/PU92/NppgMshpL58sK595Lf+4XAdcBs4n6xp8JkOcjyng+H5bFya3A+QNTKbFZZM68NnChpf9vHLkyeOqfK/HxJk/KjiOfpa4GDJP2QeDY5gmhgkIMvEzmBnwOfl/R7Yp17sO2za3Js05sbHRHF5uRhtX6KBvQ5XCU1tCV1DxtWdOL9uGqZXZbSeyWuQ4EXE1rhW9O+tYHjJM2w/Z8ZdP9HuWf8HRWNGW5QmC9eDjwKzJD0QdvfqEsk6dSa1/1BE30gaRsO8oDGbRVM+AzrMN88BThF0cz534jn3zVtr1FjvMO4r5d0KXmxUihrSDjX9mSYDg5DSR33UC7bF6T8S8eE8J/AM4BNnd8wqqQhYclmqO3fsD4+TDznfxH4hqT/yx1sBSUbs5fUV5Vc45aKn5eqxVoAhcnvIcT8eQzwvn46wyH4I/BffV53tnPQck0N13QcU2muVYm6yt2Az0m6mPgNjZt7WrRo0aJFixYtWjx20JpKtmgxOooELCStDqxle3ba/gCR5AY43fbclmv6cxXG54FtgJ8QZj2zm4qySsH2NgXp+hW6zQB2l7SB7YMzuDpiSxGB0o7QUoRIsRaSOPZtgCV9k+gccwnwekkvsz1rKrgSXkAEky+UdCtRUNa0y/FldHftq27nCrtLdh17WSEBRimegUiB96x1lO3ZkrYA3k2YuwHMAba0nRuoKylcLyYotf3yzHMP4inZZe+5JcaU8By6Rc9V5Jr9FjOCJAz2ckX4WXAY+OWYZf8T+KCkjzLWyXCB6W8mSnUcg7ivlkIxLtuXluIawJ8tqC+YOIayRpDzOuIW23dI+nVDHoA/Kzry3gVsRSoEk7QE+cnVYci6Tm03vb/3YgnbFwBI+qTtnyX+mzJ+zpPB1S8RvRZwiKSP265bNF+s4+Kg36CkNYj1V6nfaEkBc64BU1+zgoY4iwKdpJNo8ez093oTUWz2tCSwOqtzzdWBpPUYE3DcRwjR1OT5pSQXY0W/oxqGtMjD7yVtYfuK6k6F0f/vmxA6TCRbI8nhuE7S0cR9dV2gc99YIZdI0mbAUx1GYT+q7H8tcM8I9/7qOVYmv1C3OvfdlY7PEQZNChdwu+1cUfkg9BZ6wlixZ+4zzzHADravqew7R9JZwH9TX6BazAgyCVsOlvQJxp5T5jrMoLNQeL3sfjE/NzCekLQPMMP2UWn7LmL9JeBDtk8qMWDy4t6/GvB5EQZWWUjr9b0IM4GfAW+x/etcnhbZKCUKvo3uuGQRSFoc2I5Yw72aKPLPKbItaQR5FHCepAMYm0NfmPbnmr8VM0Kzvb2kHdLYTie6Ss+vvF+7kMTRifoSoPNMNsf5hpJQVqg8V9LrbH+/ujOtHxqbaPZB7nPdfj33/S44wxhA0puIa+gIxkwTNwW+k4pkvluTqpgRpO2jJf0VuExh+iyicO4ztnONQUte7yVjgA97rJHZ/ZIWG4GriBmk7UtT0dW6hDH5jSNwtbH4PExqLD43Dp+OaWPxGbC9saJRzm5EzvU+YNl+64AJ8Kae7WFmthOhSMFowv22TxhhLJPF1Re2b08515xjHgJ2lrQOYd4HsRa5JfP01Rjy83rey73e96FcQVtJrmExmZI5kBYVFJxnYNGfaxb1eQYW/bmmZFxyGHK/q5IGUCXN7zuGE1XTJNJ2bmPpUpq7TwNbAqS8+e7E/LUJ0bByu7oDSvHNfnneJxPzWe28H7C07U4+Z3fgK7aPSc9j1w45bjK5Wt1eHqaddq/V7WXj6nT+6r9nWYXh8r7OMFJQOWOovjGZ9HvO+j1KWo34rc1jzBxlZ0lLA292NMBb2FxPsP27yvZs2/cD9zfQwGSZBj3OcYWkt9vuaiIj6R2EgUuLyUOpWOIfnGdQ2wKepGiyuxhhELEJMd+L/HhBv0aea5GvA3w8oOT3vjflng83GhIvyDXd2QPY1vZ9nR22b5W0O/E8UPeeX4oH4KeppudTVU1GiqdfnsEDZU3KXw9sYnuewgjwd8AGOWusCjYFNrQ9X9ITCfOYddI6oi6yGj/WwEoa33x+AWz/16D3MnEscGYJIkl32M5pGF9S9/Ar25uMyFFS7wXxO9yoqgFIv8NdiGYlOaaSJZ/xX2L7nen1vwO/SbnOVYhmpLVNJal53dfUMd8KXC3pY7ZPH8LVa8Y80bnvAY6X9HVgv5xjFc28TwKeTjSOO5IwqxR5fz8oa0i4SEPS5cByRNxoJ0fT1tsazu8lDQmLNkNdlFHyb2j7c4Qx29rE3/Js4OmSDiLqJH6TQVeyMXtJfdUKCrPTxehupJNVz53wtLR+UOV1h6t2zN/larE6jX8PIfI7nwX2sf1oLk/JmF3LNTVc03FMk8D1KNFc63xJSxEm+EsDdyma0s4sda4WLVq0aNGiRYsWCw+tqWSLFqOjSMCCKCj838r2O4D/AZ4EfAJ4a8v1mOAqBtuzUuHQy4mkzPGSLgBO9BR1b1R3l+xxcEanbA827zmHSGjlmEpeylhSrp/wsi52JYQqTwLuAFax/fdUrJ6bsCrJhe1r03EHS3oxIeJdUtIPiGDy/2Rw7ZV7/iEo2XWsiEFRQZ5B1/yKRMe3b+fyJRHqYaOOi4LC9ZIBREkH2v5ser2z7W9V3js8p9jS3V32VgZ2oVmXvaVt35TGsJTthytj2hLIETHPKZC076Bk8WlWl/smUHRTfyDj8y/ts3vTTj2s7Zy5uWShxjUe0AVSYXY4JVypWPsjxHf8X8DJwEuAW4jEU25xc79zZAnqJZ3LkO/XeUZoJY0gq6YCAKtWtzOLIt5BmHivAsyqFAq8Ejiv4fj6YapMwedXXvcaJeWOqRiXB5gbSppBdNGuKyYt2XGxevxKwM7EWuvpxLqiFHJNoQb9DgU8JZNr2PrDtj+VQ5dz7omQxA2nA6cnkeTORHffnOKymwjjoO2dmgJI2r/hkEpyVYt+GxuGtMjGQcD/STqVbiOnvYg1ZYvJwduB9xMFAq/2mIHJ+uRf/0cSws9ezCGeEWoX0Ek6nvFz6Qyim/r7M8fVr3B/hqQnALul5/ap4Co2L9teqxQXsJy7DSU757hW0jATsd7PFzOCBFB0cd+PsUL+GyR9IQlxc3iemngeAL5CxBc7a/gDnNekZo6kPW2f1nOO3Yn7Ug7eSTwjdnCP7dVS8cAPCcFwLaicGeT2GZ8dCkn7Eb/di4DXNBTdtigMSZvZvrLmxx8pWVAu6WXATOB1RIHnVsAznW+kVcwI0vZpku4FPglsQPyObgAOcxgm56CkERq2z5Z0GxEzr5qI1C4kkbQc8CXi+7mWmBM2lnQ1EcPoGysZgJJC5VnE33AXugu5XkT+PFSywGzY9ZNlDEBcU9v2zH3XSfoR8N3034RwWSNIHIbFJ3Xu77b/ksuRUOx6L5nLortBQMf8ZUHDgJwYmQuZQabrc3fiWv+spCN6C99z0MbiszCpsfjcOHw6po3FZyJdpx8DPibphcRa4kpJd9p+8RSMqUTBaAd7A6UM2kpy9YWkZwMPT/jB7mM63+8/ieLVrv2276hJNeyazo15nzrovaQNmBIu4Cr1N0fZl3L5/RZ9UGiegUV/rlnU5xlY9OeaYnHJlCccdI7c8yw/7Jkg83mgpBFkMRP2gpo7V2IoOwJfTnn8qyW9u+n4FAY5M4mc323km3xU/+avIIrocZikZA+nBFer25s6rpLavVa3l6Xbe+aAc+xI5Ble0+/9AShlDHWepJMJfU/HQGGZdPz3hx45HicQOuxTqzsl7UkYdvSaey8MrhWrG7bfU9ksaZjcohv7E81QZ9KdG1gK2GHKRvX4wMm2X12Ap6iG6XGCPxAaVQjzuaq5W5bRckEd4OMB1e961O/91EJjKmq6AyxZvd9XznGv8ho+lOIBeC/RUG2uwhwbYGPgGlIT+rpwmJRvTuhE9kq7m5qUz3My67P9gKSbR9A+PGJ7fuKaJ+lW5xlKwpjpad851RlN8hIWJ0xnJ3uOLsmfy1VU9zAIkpZ0NBcbisJ6r0Q5vqmk7X9Imt/vgCEo+YxfNcbbltRo1PYfG3AVu+5tH6Vo7PlfimbAvQ0+a8WiJK1BNFjuGEF+g9AI7EGeYSaENvE/CH3Da9P/D3azJj8lDQkPqm6keX0D4K5c7V4GFuZccTfRMHNl4jnuZhrWkbisIeGukpZPuoBOTnoHIn9/gu2cv3H7N8yE7VuBw4HDFSaFuxFxjHWHHtiNYo3ZKauvuhR4Y+V103puiBq6Zfu8htCpjQRJKwD72f50xmG/JMy/zwM2Bzav3m/q1q6lGJhsf61n/x7Aox5iSNxyTQ+u6Tim0lxVJL3XmcCZSSu6IEYm6W1uzaZbtGjRokWLFi0eM2hNJVu0GB2lAhbPtv29yvbfbR8DIOnHmWNquaaOqyhsG7hY0jVEEPhTRECycXHYiPg2IZDsJFWrwdTcTtl9YfvR3ISO7X5mEwBI2imDal4Khj8i6ZaOcNb2vyTlJkJKcnXB9k+Jwtb3A68iro3a4lRJn7M9K71+v+3jKu+dmileLdl1rFSgv2TCoLeDoIH7geNsZxmOSbqYwckE235lBl2nM6iIjqWdYpLszqD/n71zj7ttKtv/90IkOe2S5BSi3nKqdigqEd6KUnLYlHrp+FIOkUTqVUgIEaUDHV5UZAtFEUop6XWWH7uQY6KUFDlcvz/uMfczn7XXWs8cc429n23veX0++7PXnHPNa45nrbnGHOMe133dJQWlxL34ufR6f9JCbULrZEvbfwKOI8x1V848/VTGhMqXM160fALlBNG5KJl8uqDChGvQonbj6uPqbxoyBbgb2DmjTfv22WeiquOK5FWIL2XgDXAJ6TtXVEqq/+6mk3c/lOQ6GfgmUdXu18RC3VsJU5ovAus3JSooqC9pflbSCLL33mqdIJEW02cRutu+QFLj3w0UNdwpiWLPisJcfWH7L8obBBaruKgwvngbkdy0Rjp/Fdsr5PAkrmJGkAz/Heb+Rh/us28xQhz5LGKe0RTL9/ymxyFjgXwT2z9Nr1exfavtvwInScoVNr6NGIdcLOl8QpTcdkxYkutW5yWYdigA21dIWh/YnRDxVkZO681G0dJ8D4fB32cVxnUvSOKnGdX8NZNu8X7CW9u3K4z8ctBrQFTN6fYG+ibEDYLt1/XbL2kqYVTdz8xltnMRhkJFIGkL4vM/o2f/NsDfbf8kj05Lp769vnMKUZk4h6iUEeSGxBzxFGL8DZEYdoWknWz/IoPuVOL+Wp0wsjuZGIe8mogJb5zBtRvwfUm7MF6otygxL8iBehIEKgH1I5JyjbeLmEEWFtIfB9wHbARsWBs+Ki7ltQteq8N49IqCX0yIXKcBDxL3bBPk/M6GQtKdRDGfE4F9bD+kqA6fayhZ2giSdM648yQ9vTf21gDFjNAUFaQPBN4O7NSzJpKDLxAJUjtUCUppLvcJIoE6J35UTKhs+xZJaxHzujXT7kuB9/dLeJkAJRPM+j7zW2Khfglltm/LTaJzOSNI0rhvX9JzWtINwJG2r8ts08B1Bkm5c+Ctel6fU78UeXGD3sT/1jEzlTOD3B5Y11HI7FlEpfgi64ZdLH5CFInFF4zDQxeLz+UaB4+ZJu1DjOUnvU3zIgbETKcAy5E/pz0vcfXqFJYBnkPze34pSW8l5qdL1dZWBCyZ0yBJl9neKL3+lu131g5fQcb9UJKLGGudJWknxo+1FiZ/rtmhJUboZ6DraxpjLu1nYN7va95V45zFVNz2r5q2ieinej/3ChOaJ/RgSWJO2Y8rdz5QzAiScsZJA9FCc6e0vvpPovDiCbVjudqjNRiLFd0PfIeIVbaZF/9U0ncJw6OlgWo9cTnyjQxKcgGdbm8SuIpo9zrdXpm5se3vSzow87RSxlD7EiYMtysMFABWAr5B/t/2YtuzjIlTnPiASeL6tfqbwr+feD53mD043/bLJG1KFEsEOK/SsnSYrShllprTf3eg+LrFoGvk6gDnebiskXTJgvElMWx8nTP2LsUDsJTtbSWtxlg/f6Pt32fy1MfqJUzK6wXNAFZRy4JmjBVDAMYVRMjRUCxPGNANmkfnFMkDuMf2wZnntMFIJl8jcs2ie0j32Y7EOvpLZj1lIMbpB1L/uUni2pIGGnRJvbEcA/fbviOjHXXcJWlT2xf1XGcTYn6dg5Lz8gclbQncRRQc3TVxLURorHJQ9L63fZek84BDiHlsZSqZE4v6JqFxOJOYw11J5G6u7XzzWtu+JL2eLukutzOUhLKGhG9LbblB0pLEmvITRDHufWw3Ns/MiKHsN9EbJJ0I7OeJi6i+c9hB21unv+ttwKckrU7Ehdez3Wpe5zKGhN8h1oX+piiC+T3gMGAdIh74ngyu7jscAbavl3QpGflh6bxihdkL66vOcV4Rp2F4YIR+aiY02KB3Z0LTkoNdRm1PwofoP3f9PmG+mdOujmtyuObGNpXm6ovUr36ztmsPIh7boUOHDh06dOjQ4SmAzlSyQ4cR4QEV9lqgV0xUn8zlJsx3XJPHVQyKKrpvIZLDliEm8y+fZFOSymBlbeBs4DTbM9oQqX+V+aWJIN0NrVs4K46mecXzSsQtYIlRBN2Fufot9FW4n0jWzUHdnOJdhOlBhdzk+74LQJIWAKbZ/t8MriIGRQV5hhqWtsA+ffZtAHyUMERoDJetDFpSUKoBr/ttDyaZQPDCWCWrOdamhGMlLQgsXYldJS1MmBXtZTsnoaCYESTwIiLJYtCi9qoZXL0J+yYWZ/qZkQ2E7XGiboV5y4FERd0P5XBRtuJY/TPqfQ7l3g8luZ5p+yQASR+oicR/IumITK4ignrblw46Juk7xMJhU5Q0gpxtiw9qb4oChQx3SqLks6Lwc6cvksjkrxO+cQy9FRchEga+lo7l4D5ChH8gcJltpyS/NihmBDnod5gWu3cg43foZJqfzl+cWMz7L8Iw8ahB5w3Avxjhd1zDkYwlJp7J+CTFA2g+hsf2dEL4VM2h9iTMD04kKrL+eDK4qCX2SjrTdo7hfYeWkPQWYAXbB6XtKwjTuHemxKwck+UODZHEmYcSfcsfifHQipJOBg5wg6rpNSw95Ngzcto1gTnRlcSzYyTYvjIl3o6Mlly/kjTI0Ni2l8jgOohaRdEaLiXMmHJMJY8GfpxME6rq7S8HDk/HGkFljSCPAra2fVVt3w8knQV8mTyx3rK2P57E3LfbrsbtN0naLYMH23cB6yfxdSUs/6HtixSGno2ficBSPdyHwsw4TVac04XMICXtCkypPiNJdxHzOgH7OozNmiLLDLZDOdj+saTnMzZnegxYGZjqPiZ3Q3CrpF1tf62+M90ni9s+JoPrDKLP2h54QtLZjJA44nJGkPXzFwS2ID6zzYGf05MUMgFKGqFdSxp3txEV17Bhr6jbtoGDJd2SQ1RYqIztRyVdAvw57bqxDQ9lE8xKVgR/XNJKvWtECuO/xzPbVcQIMo29jyQSDqq55VTCLHkf22fn8A3BdvSPr/dFPa4v6apR4vzV3FzJPD3tntHy3iplBvmoxwqZPZCe863QxeInLRZfJA4PXSw+l0vScQy/5382p9vEgLGBpM2J8fJmGVxra8zQprdNufPDkly9cdFq3eKWzGRDbK81rjExRt2PMHQ6NIPqUsb6uEsZv7bS9D6osFjtdW+ycO79UIzLYRT8qhR7r8ZanTnKbEbBfgbm/b5mXu9nYN7va06hkKm47ZIxn9ttl0r2LGkEWco4qaTm7hjCnODvwO9sX5n4X0q+ScRNRNxjy0pLKGmvTI4KexLzp+WAjWrrC88lP05ShKvT7WUXC50btXudbq8A0hpWbhyilDHUusDnibWsFxDFvbYiTNOfCeTM7/v+Dem3k/v9luLai9Ap7Mj4dbVF6L9216EMBOAwTLpogvd2KIsl1b94NhAmtk1IMmN7HYZA0mbARzPnh4O4cnWA8zyG3e/Q/J5PKFkwviTWGTLPzzHeLsUDSbuX1viy1/l6ULLAZW9Bs1z9Zh0liiHMsJ1rHDkMfceele61pq+ZmKh/ka7qGhOaLfZw7T3oEDGebAzbuyfO5xFzzh2BtYg10x0yuSpdzwaJZ2siFrgbzddH+91DU9La2jTbV/c5PgwfBs6WdBnjCxZtyKz370QoOcd/P1EE87nAnh4zWtyUKBSTg2L3vaSXEMVQ7yYKn+fGVCpMsf2p9PoCSdsSBUOfHHLOICzV8+xZqL6d+dwpaUj4atsfSK//C7jZYeL3XEKv09iQkIb9ckPN9x+I4lCfHKbhsH19g+v9jShOfbKikPb2wNFJ67FikzYPu34bQ0JgUdt3p9fvAL5u+6g0b83tH7rvsCGSFvRLjJkbHp54ReTANMaAseTqSj7umb9pHAWiTs45ZwAOJK+I0zDsQn6ctR8GGfSu5UyD3rr+vNJ12/5HizY9rd95th9WZhHhjmvSuObGNpXmaoqugESHDh06dOjQocNTCJ2pZIcOIyIFf1ez/YO0fTRjhnHH2/6/gSePx0OS1rB9M4wtckt6EfBQZrM6rsnjKon7gFsIo5dbiMWwqZKmQn7ArwQ8q8HKUSnx7QAPMZ8agN4q85Wo+2Lgg4WaDHmBirqI+2eMJuguyQXDF4tzK9tdnEoAACAASURBVKENExDmYgtJ+xOV2n5AGEzsDnwEuAbIEaeWMigqxQOApDcQos0qgfgG4HDbP8zhsT2zTZJeS1Q+ejrwAUfSek6bziNMNaa3STLspRvwut/2RPCA1/22h6Gk4KVUmwAeIQSoD6ck+UOArwO/AXbK5CppBHmj7ZdmXr8vnExDkqirSiC5geibs6Go4v0J4m861HaOCU2FH9r+TZvr90HJ+6EkV32xv1cMlSUEGCaol7RYgT4D4JU5b3ZBI8iJEt2dWWW5kClKX8MdSc8mksFLVsN9ymOAyGsKIabZuSmPh1RclLQ+8OuMZu1PCLlOAE5TGKe2wqAxsVoYQfacvwywLXGvPg84qwXHFGBv4pn1DUIw2UbA+0Ch33XxpJbUx50KnJoMI7Ylkj1zjCBLctX/jpxne4fR8FHGizMXJhJunkmIYDpTydmDIwjDkVVtPwQgaQlibH8kYWbbFBdKOgQ4sHqOKtRP/0OqVl4IpRLolmUEE7NRuWwvPvG7GmMR23/u3Wn7/hQLagzbJ0m6G/g0MbcwcCPwGdvnZFCVNIJcooenauvVCtPlHDyRzrWk+3uOtRHz4jD26L3Hc4qlQBh5fsZ2r8n2wWQ+D1XODPIDhECvwn22l0/mXBcQ4slG6Dfu7jBnIOlyYAkiVr2Nwwzw1ty5E5EEsUGf/d8iRJyNTSVt75nMCTYmxsmfI5IQtyNiCW1EnCWMIKvY347AGwkD+w2BVZxM4DJQ0gjtvcD97jGUVBRY+HO//r8Fsp+tLmQEmcYdXyXGfVentqwr6bfAro6q2U1RMsGsZEXwTxLjpEMZn7zzMWKu0ggqawR5MLBZT19wraSfEoXJSplKjjJuG2mcpjHz9F2A21Nb2pqnlzKDXFXSD6omAqvVtnPjY10sfhJi8aXj8Imri8U3w5WZ7x+Ekm36laSb6Z9QdEgm13Wl1otKcnnMoHcVxu75O51p9FaHpNWJwjTrE8+zD2f2yfvnJg4NwbDvfJT7fSSuNOf6ABE/vw74Woqrd5i9KNXPwLzf18zr/QzM+31NsXUeSe+w/e30ekPXCslI2t12TjLpIPOKpwNbOa9wRDEjSAoZJyUU0dzZ/rqkC4DnEBqvCvcQSeE5qApVXyzpfCKG1Ha9z+n8XjyT0CvmFJMrxdXp9vIw12n3Ot1e9liyn+HO0oRZcm6Cf2UMVf97qj4sxxjqy8DrkyZkaeKe+BBhNnkS8PYMrvMkfYUwonkYQlNFrMlkaUILcp1v+2Vpfl/d650p/OzHMgPudwBsf35ONmY+w5JE4ZVBMbs5niMxv2ACc5us+WEpHeB8gjOI9avKuKn3udj4nq/rE5OmkELrfCPBhYy3S/EklDQ8eYbCgH/Qum3TvMGBGtNeqEER66YaCkmX287SfqfzXtFi3WDm2mgB3Wtvka5RMEwXdOyQY7NA0vuIv2l54LvArsDZtv8nt1Fp7XdboojzaYQ+7socja7t1w3gnkqYML6m3/EhfDcoihTuyFis7We0KA5ZeI5/M+P1R9X+Cwj9URG0yLc4g5gPzNKGXK4efcgDRDypMkLP0Yf0K3BTbeeOtUoaEtbjtZuRtDi2701/Zg5K9stHSDoV+HzSy51ITf+XGber894HHCfp24RRbGNMMGbLMiRk/Ge0CTGfxvaTLT737jtsjqOA9xEFmd6Q/v9YZqy7wlZDjmX9piU9RP84UZuCX3MjShr0IumDxG9msbT9DyIueUIGzaL9ngdJs7xwZpM6rsnhmhvbVJqrKbr8yA4dOnTo0KFDh6cQOlPJDh1Gx2eJxKsKWxCCo2cQFVGbVgj9JHBuSpqvVxn9OHmJ9x3X5HKVxPeISfYL0786Jlsw8QjwN8L4amXyq/6VrjI/9FKN3zjciGvoguzs5Ep8fRf6WmKBtNi0QO11FYTPXYj/JlFN9HKiwtjHE9fWzq9oV8qgqBQPkt5LVLT7KGMJIFOBz0pawfZJmXxbEJWYHgUOsd02QfAkQox9jKSLiQXk81omRZRMRqmLQBfVWKXQLBHoMLGEpA0z27SCpC+kNlSvqzYtn8l1IPBy2zMkvYy479/uPEOUCsWMIEtC0vLE8+URxgTe20o6HHir7bsa8ryJSLL5G2EGdNkIzTpJUdXrdOA02zeOwPWcJARV7TVpOzchpCTXiyRdy1gS+LU1rmwTsvQ9Lgdca/vfigp5ewLvJhaW5yhU1giyWKK7ypmiVBViP0sku3+aMER5NvGc3dn2+aXaPQ+gV+Rl4tndKtkiGaJc17P7e8BKGRzHEM/UVYnn63TgeZI+SiSC3NymbaMK4tJi3tsIYdYaRP+8iu0VWrTliMR1ElFpsZXBTkLf8YakjYiqxk1FEyWTWjapkikkrWL7Vodh5kmSHpgsLob/jR1mHxa2fUdt+7IkqPuLMk3xOmRhS2CNJAQFwPbfk6DmJvLiKx8hTKFmSKrmlesQc7KcytYTIbevOa7POVOAV5EZPyrJNeQaSwG72c5J/FhC0kK9JhOKiqWLZl6/SvY+N+e8fm1yOSNISVraPabKCuPlXFOnysxJzGrsVDLmlau23Bf4qqQZjCWCr0sYMOX+fkqZQcp2/RlaiUkfkZR7X83rosa5GX8i4ijLEnPeqghSLhbqZ8KR5q5tDAlNGCZcnPqqygzyBGJO1hgqZAQp6U4i4eNEYB/bD6W5Zq6hJJQ1Qvtv4nPpxbOImNeODXl+Kekg4NP1576kTxCxssZQWSPILxDmxTtUQuB0T32CSHTPSV4smWBWrCK47emSbiXGSh9Ku28AtrN9zeAzZ0FJI8iF+sVRbN+W+/el53HfQ5T9TnJRmaev4tHN00uZQb6lZ7t1vKyLxU8OSsXhE1cXi8/AsPVDSY3jiSXbRNmEorkSae72NeKZP3Oe0uaZr0hkPYBIZP1cOv+JFs26WtL1xBrrmbYfbMFRYSlJbyXmlUtpzDBMjBWknQyubxDFtH5O3Fv/QawVdZiNKNjPQNfXNMZc2s/AvN/XlNSa7A18O70+DnhZ7dgu5BmYvbN6odELR5Q0gixmnFRKcydpZeDBavypMD3fmjDUz+ofPGuh6j2JvutE4Czb2QXgUpteSsQstgVuJa8ATzGuTreXjblSu9fp9rLQu/5i4F7gHbZ79RlD4XLGUAt6zERle+Ak22cCZ9bWE5tiX6KIyO2SKiOmlYgx9McniasyirkIuCizDR3aY0HC0Ggy44/zK+61vctkN2I+Rcn5YVEd4DyOyoR9bWId5jTbM9qSSfoksVa0QGzqceA42weXaOw8hOVraxWzwPaHc7iI38+gOV2O0XxTlCxiPWw8OK54naIo4bT070Fi/J2DxyS9iwK6V48V6aoXErnR9h9acGUbPg7B8UT/uaPtKwEktdWHvge4mdAXnOMoylhEa2r7yrTu0+bcR4iCb8Uw6hx/gN5uJjJ/0/sVzLdYF3i2wsRzFK4lmVUfUuW4ZulDhuUztkBJQ8IHJW0J3EVocnYFqkKPWRoyCvfLtu9SFJE4hDDwqwzoGsftJK1IaFQqI8jTCH3GO9PrHJQcs/1U0neJQjJLk4peS1qOATkBQ9B9h1lN8iXp9XRJd7Vdkxn2m1Z+vnPJIvZVHlwvKi3n2hlca9diWf24GutCVcigV9KBhKZ742rsocg3OlbSFNtNDV6/Bpwh6QO1sc3zgS+mYznouCaHa25sU2mupuhiaB06dOjQoUOHDk8hqJbv06FDhxaQdKXtqbXtX9neIL2+zPZGGVxrEuKnarHjeuAI29e3aFfHNUlc8zIUlY52ANYDLgROrxbBWvKtDDxs+36FGdNGwO9t5xru9Kt0CRGkWMP2Im3bWLvGH23nivznBNdmwEdtb5Zxzm1EcLxv4N1248UmSdfZXiu9XpBYZFjJmRXo0vkz+8+e/QsQBkWNqqeX4knn3Ahs1Bs0lvQswpzmPzK4fkMkdxxBnwRrZ1TRqnE+g1js2AF4JfAj4FTbP8ngeAJ4mCQoBaoEdwFPt52V/FsC6V7ajlgkOt/29Wnh6eNEpbvGCaBJlDAQOSJmSf9n+2W17ettr9n0/B6uq0olskp6N2Fgt7Tt+9O+hYlF6L0y79OziEqZp/Ts35kw3etNWB7E8yRwJ5G0M0v/nJEgXfG9kLjPtycS4E4jnkG3ZfJ8ctjxHMFIYa6VJ+BqVEk2ce1JJDrNABYhDCMOJ5IJPmf7noY8Lxt0CDjX9nIZbXrtsOPDktdzIOk7trfPeP90IiHpB0Tf+UtJf8h5Dta4riT6qCWJBII32P6VpBcRAsC5KnF9MqHBJhFAdiXVQde4w/aKGe9/AbCs7V/U9q1FVB9+bU6Sg/obQW7fRhAn6V+Emc2BxLjDI9yjTxLJMY8zvl8eyYCpj8jr+7aPa3jug0T1WwGvTq+rNm1ke+mMdsx8Rvd5Xo/bnsNcw8ZZrT/3DsMhaYbtFww49nvbq83pNs0PkHSz7TVyj03AuSpjcZob2giCNdjcWsAmthsbjfaZW5gQHP2GED//epK4BgnZdibGOI2NjiR9ljCM271K9Eji4mOB+23vN+z8Hq6sPnMIz++AV7m/EeQvbb8og+t9wHuBfRhfWOZwoor6lzO45tQYt1UMqef3c6Pt37fg6I17f9z2oen1FbbXa8jTt19OcZoZbcY2HSYHkpYkxrrTgNWBpYAtbF+RwXEd8Hrbf+rZvyxwYRVnLNDW/W0fNvE7Z76/bgQ53WNGkNkmDZKOIQwYrgdOJRLDrms5ji8ZPxr3m+451jjGpTDT+xoxn66StdcFriLMVv6W0aZTgNuAgz2rEeQLbDc2gpR0i+3Vc48NeP99hKFaXzgjGSU9x6a6f0Xw32Q+x2Yxfm4DSTfYfsmAYzfafnEG1zXAVrb/2LN/ZSLpqbFAXGGYaQaIT3N+j7UxYO98s+JqHJuUdAs95ulp/4LATZn3VtHxg8LouXrGzmi5LtPF4vO43k2BWHypOHw6p4vFZyaCSnolcc//zPZ9ktYGPga8umlMsfDfN+4elfT/bPcWnGzKNXPM3rN/c2Bf560nl+Q6hXLP/CeAO4DzgFlM3po+p1P/93rifn8j8Cvifj/bUcioMSSdPOy4M5I3C3PV1/EXAq4oMU/vMDFK9DOJZ57ua+b1fiZxzdN9TW3uJGLsUM2jRJjfL5vRppn3aJ/7NXs8p/6FI1Z1fuGIB4h5/SB9VWMjpFLx0sQ10OgSmptdSvo1YWp+t6R1CS3gYYTRzWO2GxepkXSK7Xf37FuaWEPc3vamGVxrMGZgcj/wHaJwx1BdxezmGsDf6fZmP1cR7Z463d6kQ2FcO1Of7TFjhabnXw+sa/txSTcB77P9s+pYTtxA0iuIufSDRGxlY+K7vAn4VO/9Nie4Uoz684OO2x54rEN7lHw+d8hD99lPHvrEXlvPDzvkQ2Mm7NsThd8OaLE2sDdhLvU+27emfasS65zn2z66bKufulAYPh806HjmukWxtYaMa5acRw7lUpjPVHOnx4CViTXO21pcq6TutSpSOJXxa9NtihQi6Q2EIV61HnoDcLjtH2byPIuxgvPPBb4LvDsn9lfjWhDYLHFtShTVfD2w4qhrw0mH8UPbL888r1jB18Jz/JJrkUXyLRLXHsT9PjJXKWisQFEFE5//ZdWzI4PrWMJ88x7gzcTa+WMKQ8JzPECHMoBrDaJg6HOBY6q1UkURiM1tfySDq+Qa8EuI5+jdxJpvq+9MUXjiUiLu8J/p39WJ895MrmJjthQr3574Hr/rsQIzLwWWcUYxmO47zOL6A6FTrXAEUZgCyC5YNOw6k5bvLOkGIgbfF87LgytyPxSOvf4/YJ3eWKuikPo1ztDFS/oAMQapzJ7/AXzW9olNOTquyeWaG9tUmmvINbZxFPdB0vG2dy/F3aFDhw6ThSt2f3tnstahQ4dWWO/4M55SJtudqWSHDiNiWFBOLZPmO3SooDC73JeaiQJwpDOr/RZsz5PAtcBlxKLCuIdIpnj6IOBdieN0YuHrEmB9IrC2ZwZXvwUlASsC+9seGKDMuEaWOVFpLoWh55cYM4k4HDiZ+DsPyQkmS1o5JzA7AddIRjs9XEsC/00kWPwA+AmwO/AR4p5oamZXhCdx/W6Q+HTYsQHvv4TBlfFse6QKlSkZ5RvA2i5X4Tu3DecRyfLTPUKl2ZT0sSIhKFifWNiZSlRWm57Jdajt3Arig7h6xZt717dzxJsqawS5A/BlQmR8C1FZ7euEIc2nc4TPE4xrGi9EajYarEhahxBkb0dUrN4w49xX2P5N22vPLq6SqAvqJa1EVC/d0PZvM3kuHnbc9utGaGb9OllGkBNwZS+IqoApSuK52va66fW458NkiMnmZmi4SUTWQu2Qa+QuaJ9LjBmv69m/NnCo7d6q6sO4Sgri9iT6u8WIJMPvAD8p8RmNglIir5LPChVMNizJ1WFyIOl/gUtsf6Vn//uJaqHTJqdl8zYUZs3ft/3Nnv3vIBKIc4x7eueUJgwN72jRrn59TTUv0yjj0p7rTKYwq6SQbSHgM8B7gNsZi618DfiE7ccyuEqZShYzgkx8WzJWWMbAjURhmXNatq+EmVPRYilpbrkT4+OJp9p+NJOniBmkpBOAv9g+sGf/Z4Bn2/5ATrs6TA4kva0ef5T0HGJePo1IVG9qwLQz8GEiTlf/TR8BHJ8j8p/gOrl9aTEjyMQnInl4GiGeXRLYlUjY+EcGT0kBdamYzzq2r5G0GmPJNjfa/r2kD+YIElXWCHIY10DT8QHvL5lgtg+R/NOvIvglto/I4Kob4B9n+0NNz+3hKWkEuTXwOeBQInkLUhwX2C83llsKheebs8M8faTxQxqzHQrswvgx28lEAmrOmO0Uulj8HI/Fl+qT0/u7WHwe1xHAlsSc6QXABcT85zDgy01/j5J2t318oTYVSygqvJ5ckqvkM//dDF5vzXpO1zgXJhLxdwBeB1xke6eM85+bO/+eQ1zF1vE7NEepfiZxzdN9zfzUzyTeea6v0WwyFR+1/1LZwhElDTz6zvHT/GAr29/L4BpmDGo3NLuUdG01B5R0JPCk7Y+m+N/VmfPDkp/Vk8DPCYOQGWnfKIX3RuYq3Get7HlYtzcbuIpo99Tp9nK5BhVtA7ILdixPFON8hLH40csJE823OplZNOA5gIi13g+sBLzMthVFRL+ROWf9P6L40V8kvYbQL3+IMCj6D9tvn9Ncku4hnl2DCq5kFVTo0AydBmTyIOkxz0PGuU8l9JkfHlnfzhnXdMiHwjzuP4m54VrEWsoFmRxXAZtV8e7a/mWAH3f92hjmxJxudqJw+wdySbocWIIYx5xu+5a28+jEV0z3qrKFRN4LvJ/QDF2Zdk8FPgt81fZJue1LvCsQZm3TiL/5rLbrZZIWIWKL04jCeRfZ3rHBeccx6/h9CvAqYA9naqIkPS1nvXECrmJz/AH8SwMP2nkJ8iqUb1GSS9I7bH87vd7Q9i9qx7JixepfsGgKsAVhfj+wyGYfrmKGhCUxrF+WtFjOvFhRLHTPfs/kHC5J19hep7Z9J6GperJpW2rnznZDQkmvBnawvduoXC2vP69/h0ViuA2uM2n5ziXHRxPcD8WeS5ltuskDigUPOzYB5+IAad0iuwBPxzX5XHNjm0pz9eEuliPRoUOHDnMLOlPJDh06tMVTzVRyocluQIcO8wDulrS+7V/Xd0ragEi86dChFSS9hVioPww4Ku2eCnxf0j62z56EZu3CELFYJnYA/gN4BiHmfa7tfyqS4a4eemYP6kLLtDCxI1H57VbgzELtLTlBaMN1FPA+wiTiDen/j+UsDNVwFlAqYWQdSVWFPwGLpu3sKnREJba/En/be4CPJ56tbefcE6V4AP6ulChd36lIpHsoh8j2xpnXnhCK6oHbEb+n5UhVDjM5iglKgZNSW45RGJucBpxn+9+ZPFMJke2TSUB/L7Ca7QdatOk/iXugBL4CLD5gO/d3/QjwF+BhSb3Jp42TRxIOBF5ue4bCgOdy4O25AoCEBfrtTAHlHNHzVR5Q/TMtlrdCasdzgGUJ4cV9mRQnSXomIXw5zfaNbdtSkkuzVvSsqkFeTIjGcu79R5yq3Nv+oyIJOVvg4CGmkZLWz+UbglcW5MqG7b8RyR4na8wU5WhJjU1REuoLxf/qvcyIzZyn0FZo1oshSQwiqnjnYFn3MW23fa36m5cPw/7Es/AE4DRJ38k8v379Y4hn6qqJczrwPEkfJZ7bNzflkjRlgmv9JaNpNxEiry1rIq+9Ms6vrjnQ1EBS44SPim7A637bc5Krw+RgL2C6pB0Zb1a1CGEW1WH2YDciXrEL4w2FFgXemsl1VJ99UxSJ19My53VLASvY/iKApCuAZYjf836Z7RqGkosCuVxTbH8qvb5A0rbATm2EbI4K9x+T9D+MNzrqHd80wdq1eEEdWfEC2ydJuhv4NOONID/TQvRcCWzPzTlvAFdfM6ckBswycyIE4UUg6cVEku4vGPstbgwcIOnNmfOWH0v6jHvMIIGDgRxB8L7AVyXNAKr4yrrE/Pc9GTwdJhcHEom/ANi+DzgeOD5nzGz7m5L+TNxHaxK/6RuAg2z/qGB7s/pS23umMe3GRILG54AlJW1HphFk4jMxp79Y0tMIYf40Yp7w7AyqxkL+Bpgh6Y22f1jfKekNwB8yeM6StG2KNfy+xvMp4M1E4nMJ5D4Pf6koZPXpesKIpE8QsbIcPOBCBqe2j5T0D+BnKY4kIq7cpiJ4/TPJnTPV8UngQkl9jSBziGxPVxSP+AiRLA/xm96uN6Y+ETSrsXjvtRoXzrF9qaR1ifHMDbZ/l9OWHtwoaWf3N0+/KYeo4PjhCCIuvYrthxL3EsSa4pHAHhnN6mLxeSgViy8Vh4cuFp+LNwEvtf2IItHwDmBN27dl8uxCjIVK4FJgq9r2z2rbpjYGa4CS68kluYYhd9x2ykCi6GezYfvfiqTP3xExpMZmswlXS7qeWBc90/aDbdoxG7hKruN3aI5S/QzM+33NfNPPJN55rq8ZNm9SGBTm4EWSriW+r9XSa9J2rsnAGcRawPbAE5LOpv36Tt/7Ry2MIIF31s5fkLFYwebEultjLtv/lXHdYaj/fZsQ65yk+UEu1zOSZm+QGVrjOR1RFHIHIq5yPjEObBuDL8XV6fbyMNdp9zrdXjZy+/FhOB44sfcZqyhAdALQyGTU9iGSLiI+6x/XYoALMBaXaooFaxqJ7YGTbJ8JnCkp9x4txXWP7YMzr91hdGw62Q2Yj/EnSXsPOuiMojIdsnEp49en6/PF3Plhh4ZQmJTvAKwHXAgca/vK4WcNxNPcYygJYPvPaV2ywxjajIMGYdwaWvqs1wTuSmvnswNzSov0J8IQfllCU3ULI+gkh+he9yMMFxvrXgljvnf38Bs4OK355GAvkvFfbd9P03r5ZcR4Ohu27yTmjEdJWp34m1vBUSy2GksuDuzZ8NTe/sTAA8DeLe/PX1Nu3lpsjp/0AN+1fZPCgPNHhP7ocUk72r4wg65IvkVhrr2Bb6fXxzH+O8iKFXuAKX3Skl9IhhYl/eb6vf+ZxHyusYZM/Q1Q69f6cFMuYD9FEYPlgGtT/PU5xO/m3URhkKZYF3i2pKmjcqV1geoef4DQHgmytfolY/r19o2Uc9t9h82/w4Ix3AkvNYlcv+jdoShSvCNhWPqSWU8ZiHHx8fSZb5K4tiTGKROij/bIwP2278hoS4W7JG1q+6Kea2wC3NOUJOl5diPGW2cTmq3dCePYa4DGxn8d1+RwzY1tKs010aUK8XTo0KFDhw4dOnSYw5DzCrF06NChB5LWIypnncJ4s4J3AdvbvmKSmtbhKQ5J1wBv6RWXS3o+cLZrlW+eitD4KvPjqskov8r8GoTQdhphwvUdYB/bWSZAkq5jsDnRGrYXmQyuxNdbWfz/2X5hDkft3Lmyuq6k62yvlV4vSARYV7L9yGTwpPM3IgJoJzM+wfZdwDtsX5bB9VHbn0uvt62LyyUd6oyKhIpKidOAFxKLOKfb/mXT83u43kIs1L6eSHYfRVBacT6DWLDagTCM+xFwqu2fNDy/935vXWkz9aUbM1i4nrMwN+w6r7D9m4z3X0+IpUc2guzzeV1ve81cnnTu0cQC756VWFnSYsDRxIJ3o0W+nj7+Itub9juW0a5XE/f81sB1xML09x2GgFmQ9ELi3tweeIy4509vk8xVkqsP99LEAuarbG+bcd59jF+436G+nblQO+gaxapM5XL1WeSbeQg41/Zyhdq1j+3GInlJTwAPp3YsCvyz1q6nu6usPhOStgAWt31Gz/5tgL9nPCteO+y4hxgW9uG6xfbqA47NsP2Cfscm4KwEcdOA1YGDyDeCfAFheFmvNrsWcCzwWtuNTQYUJh+m//PQzqj6K2lr4m/bEKhEXl91pmFoGqdtRyxinm/7eklbEklFi+aMVyU9SAhmRFRo/ll1iBACLj0ZXB0mF0m0UQlSbrD908lsz/yCns/9xl4xzYjcU4HP235Nxjm/IMRJd6Ttq4nkoMWAk+vj1BHbNpnjo945z8X17dw5TxLT7Ubt9wN8MVdkXCr2oMxK6xNwtZ5b9uE6mjA22suzmjn9y3aOmVMxKBIqP9s7ppL0esKsaqB5fB+uxYCvAq+gjxmkM0320vio3j/8ftj7O8xdKPn7GcDfxoxhGN9I/bLGG0FuYTvHCHIY7/62D8t4/7lEgcD/tp1j/NiPa3XgPOCXjI9zvpIwjG80V5H0ckLIu5Pty5OI90QiTvkWDzA2G8D1DcKYsp8R5Bq23znw5Fm5lgC+RiRWVMna6wJXAbvmxJAk/cr2Bk3fn8E7syJ4y/Pr8baRfpMK44WPMP55f5TzjSAXcphSjwyF2cEg2PYmGVwHAe8g7vX1gcNsf6Vlu5YnEjL+RR/zdNt3ZXAVGT8okuTWqP9u0v4FgZsGxTgGcHWx+LxrF4nFl4rD97api8U34un9DlvNW2b32Kh2Ns/HOgAAIABJREFUnWVt/ynj/b1r7sXWk0fkKvnMv8z2Run1t+rnttAYrMhYDHcxxu6rXNPgBYl11h2ANwK/SlxnO7NIQ0muDpODUv1MP67Zhcnqa+aHfiadM1/2NS1inEP1Xa4VG27IJ8YKR7wRWBLYlczCEZLWtH19ej2LEaTtt2e267VEEuwbgSuItbZVbf9z6Imz8mxFJEffnrYPArYhzOv3sH1rQ55jiaTte4hCEWvYfkzScsA5tqdmtOkhIm44aC2y8ZyuxrkYYU4wjUgg/iZhQJJT8KYIV5/+vdPtzTmuIto9dbq9xrq9PnzLQBhVtTx/4O9llN/SKEixgnVtPy7pJuB9tn9WHcuZ65fimlv7hg4dZhck3UOsLQyKJfY1QuowOiR9pGfXk0TuxWVNx5Ed8iHpSeBawrjO9OSYtI0J5xybH6HIu/prFd+W9Doi9n07cHzOmEvSl4DjbN8gaUlireEJYAqRt3RaBtcp7jFKHPC+zSeas0g6EdhvojXa+vx2wPElCfO/Su+6FLFOXiQfUtKaiXt7Z+hxVVDbK+l3tvsW+Rh2bAjfKwnt689s3ydpbaKI36ttr5jBM7KOtuk9ldGm4mPTEnN8STcQBXws6X2J6/XAGsA3bK+XwVUs36IUV/1z7xM7LfadjBiznsWQ0Bm6PknvGnbcGcU/Je0JHADMIArOnwAcTtxbn7OdY/i2B1FccCQuSbcRY6uRtfoloUI5t4mr+w6bt6nXRN+0HHerbL7zIHN/EfrSKTltS5zPI9bxdwTWAg4jNAbXteDaIPFsTYyzdgN+YPuvDc/vpz2aAiwMTHNGwRtJLyGM+i5jfFxyQ0Ijd0NDnrMZK8CzKVHcU0QsP6u4Scc1OVxzY5tKc01wnWI5Eh06dOgwt+CK3d/emax16NChFdY7/oynlOF2ZyrZoUMBKCrOVsnWJpKvLiSS1nebzLZ1eOpC0g0eUJFF0o22XzwJbTqH8UHIKqB5se1v9z9rINcfiKoXAj4H7FsdIgK2q2VwPUlUbd/V9oyKPzfgPkCkLGBFYH/bb5wMrsRXfV4VjmDsM8N24ypTfRatxiFnAWwA/2LAW4lg65syziuSvFiKp3b+c4H/pmZ8QBhq3Nu2XaO2UdLXCRHpRbafHPK+l2QEqYsKSmu8awPfANZ2Q/MrSf8kFnMgfjerpW0RCzFrZ1z/UeAuZsPCnKQXM7a49mCmoL6kEeSdQL0y8971bWdUbVaYJhxGmBnezli/9Q3g400FNCUXtSXdkdpyOlFdslhFV0UC/Q6EGONe2xvODVw9vLn9Q7GF2iHXuCNT8FLMCHLAIt9MOMMkZ4LrdIseswkKc6+texMOJD2bSE565Yj8KxLzsCMyzjkN+Kl7DCYkvQfYzPb2GVwljSDPJcaN1/XsXxs41PaW/c/sy7WyMxPuGnCOmnx1CvGMuYIw+bibWGj/mO3pmW0paTJajKtDh/kJkl4BPNv2j3r2vwG4z+0refdeJ3ds9Bvbr6htH2979/Q6yzCqT0xk5iFgE9uLTRLXbZQTsm0InEoUz6m+s6p4zk7151sDroHjfklPs/1YQ56SRpAluUqaOe0KTKnGL5LuIgynBOxr+0sZXDfZftGAY9ki+HTeyGaQkhYGdmK8edmpth/N5eowOeiJ1Yw7RGaspsY5khmDwqxgUF+6qO2Fcts04DpZRpATcGXPNRWm7ocR/fOJRJ8PtDIOXoQQ3lYxqOq3mFvUZ23gLGJd7L1p9465v2mVNYJcx/Y1ior31drJjbZ/L+mDtk/M4Ho5/e8tAGz/36BjA/jWJGL59T7wyFzxdO13WI+XQubvUGWNIOsx7+Nsf6gE76hQJBS9wvY/JT2LSMB6xUTnTcA5snl6qfGDpJttr5F7bMD7u1h8XjuKxOJLxeETVxeLz+DSWDGRCq+pb9t+c0OexxkrLDTuUNB4iaZt6sO9FGEKtSPwH7afl3FuyfXkklwln/n1e761eZ+kXxJJut8lTIBKxS0WBt5A3KOvI9Zyd5psrg5zDqX6mcQ1T/c183o/k94/3/Y1LdaTf2x781GvO4B7pMIRKmcEeSfwR2JuP932Q5JudWbRtsR1LbBBmvNsSYxJpwEvBba1vUVDHhHJvssR47+70v6XAss0XfNL55Q0N5jFDENRlHNbwoCkcbGoUlyF+6x5WrdXmiudP7J2T51ur7Fur3buJ4EPAQsQ44/HCSOlgzN5+hoBSVoAuNktinyOCkkHEP36/cBKwMtsO+k9vpE5zyzCJWlKbry3Q4enMkqu23bIQ+rfezGFGDN/yvbAcUqH9pD0boavPeUYMFUF0Gc5RFcAfRwk/ZooEHa3pHWJHL/DgLWBx2y/J4NrZm6XwgRrY9tbp7HqjzLjBSW1K/sC7wM+afvUQpzPIeaKOxDm8I3n9xPwbg581PbrM84pWUjk14QB+DU9+9cBvuI8Q8IjgC2JONQLgAuA9xD315dz1t9VQEdb+rnaZz1sHJquhw3hbzvHr8ftzgR+bPvLaXvS8i1KcZWctw65xuuATzivoGMxQ8IB/EsT679ZJgeSbgQ2sv0XSSsBNwMbtonBluQqBZU1JCySczuEv/sO+7ep2LhbBYsyDWhXnauxwb/GDH6rdZDvEsWr2sS8DyWeDX8k4m5nAVe24RrAPxX4vO3XZJ73dGJ9oB6X/N/MZ/3cWsyn43oKt2l2cFHIvLZDhw4dngroTCU7dOjQFk81U8kiCVUdOszvcFRsP0hhmDONSLR+DVGFthEkfdf2dun14bb3qx3LEk52XJPHVRiPS1rJ9h/rO1MgsEjCXwsc2WffFOAdiup1H8vgupQQwkGI6LeqHfvZrG8fircRi5YXSzqfEF5mP5DrQVT1qaA1WVwJ/T6jattAY3Eq8C/GzCGKQCE0fxPxd25B/I2NTQ8S1pFUVUkUsGjazk2KKMUDccK9wEE55wyABrzutz0Utndp+NZvEYkTTTj/SSzwfacmKN0ZyBKUAijMlrcjfpfLEQsD786gyDa5GIIbc4QaE0FRtbRaFH0MWBmYavu2TKrn9Cz0LVXfzlxs/wphONJvOyu44TB22SeJLSrR7u+dmRDRc93eNuQGXDZqssilzMT1JE5+DrAssBjQOkG2JFcP79PInLPliBhGQO53eNSQYzdlXXiIaaSk9XO4JsBTamL/FMMi7jGUBLB9vyLBJRuSliHGWdOA5xGLyDnYEzhL0k6MryK4MJFwk4NjgP3rO2xfl4SEh2ZyLes+JiO2r51IHNAHZ9FwTNAUth8mjG1OrYm89gOaJphNJZJXnkwL7vcCq9l+oEVbBho9KgzSJoWrQ4f5DIcD/9Vn/43AyYT57EhI84zcccjS9Q0nQ8mEZTK5+sVEPOTYHOGy/fzMaw/DUYT581W1fT+QdBbwZUK83BTfq29IEnEf7EgIq5cdsa1tsHYtXlBHm3iB+wkhbT8hKfc+/QDwn7Xt+2wvn56PF5AXX1lA0iLuMXZLXNnrQSne81rGRHHPlnRnL/8EHC8GfgD8grGx1sbAAZLebPvG3HZ1mBTcyvjYZGuovxnDKrmxB9uLT/yuIvggkfxRAm1i1tMl3UrEg3dl7HlhIEvgbftRSZcA1ZzsxhYiySnAncQ62HQi+Wp3YDFJizkv8XkV29tqgBEkYbTRFGdJ2jYJwmea30r6FPDmTK5hz2KTMa6R9JbEdxhj8ZGpwPcl7WP77Ix2lYqZXkGaH+bG0/qgfk+PNF+S9LZhx51h0AE8WvUpth9IsbuRYPunwE+rbYUR0262D8mjKTJ+uFHSzra/Wd8p6R1kxtroYvGTEosvGIfvvW4Xi58Yb+nZHha7HobrCt/vixJt25Ewg1oc2Jr8NfP6+juMtp5cjMv234G+z/yM9syka3msFx8jTM2HnqNMg3Hb/06Ja78jijS07mdLcnWYoyjVz8C839fM6/0MzON9TZof9j1E/vw3N1bbGGnsdS5wrqT9J3p/HRpvBLmPx4wg24zbziB+c9sDT0g6m/x7qoJrbXgb8LU0H/6tpP/OIaG/ueEzif6isalkYcxibm/7r8BJ6d9kcHW6vbz4+dyo3et0e3kcewMbEUU7bk37VgVOlLSX7aMz6M6T9BVgz6QxIGlDjgZ+mNOuUrB9iKSLiM/nx7Vn9QKEkeYc58qMq3boMC+g0+ZNEjzAJCaN7y9kiPl1h/awfUpBruzxwXyMRW3fnV6/A/i67aNSnPnqIef1Q70Y1GYkTYzte0MOk4VnpPyivic6o8Cd7SMknQp8XlHQtLdIYc5cpTrnPuA4Sd8migxmQVGo7UuElnc6oSk7mfh7P5NJ9yGikMgMSbMUEsnk+gihgTqZ8TrhdxH3Rw7eBLzU9iNJO3sHsGaLNayqDaPqaIvdUwkLErGBkZ/XQ+JHZ6R/OXhUUdDxT0RxlHrxh2fkEA3Kt0jfQZY2ps4l6Zlp3z9yOBJepCgkImC19Jq0naUNUX9jqCmEaenOme26iTAk3NJjhoR7ZXJU7TqIKGxyk6Io6o+I3/Tjkna0fWEG3SPVPMr2HyX9P7c3ECzCJekdtr+dXm/oWgFvSbvbPj6Drp8m6vmE3i7XCLxIzi1032HOd1hy3F2t4UtahfHFUP/QlGOidrXE8cDlRCHiKwFaaGcrvIcwAz0ROCdp3IqZPdm+suqjM897BPj6iJd/rMb3RNLfZpv+dVyTyjU3tqk015Ytz+vQoUOHDh06dOgwF6MzlezQYUSof8UdeYjhzQDUK7FuRphxVMgVTnZck8dVEp8ELlRUWqkvWn2M8W2cY/AAgxVJPyDa2NhU0nY/s4mKb5vMdk0Hpiex2VsIY6DnSDoROMsNK6cX/D0X5QJwT9X0EfHAoEWwXCgqBk4DNgcuBr5JiAkHfr+DUErkUFIsIeliBou47YzKeD08oyb2NUXjhZ5CgtL3EvfDCwmB8r62f5nDkbCo7ZsS5zgzDEkbAI2raJWEpMuBJYjFm21s35ISBm5rQVfSCHLgoo6kV+RwSepXdWtqJXix3TSpqErUFeOTdkXms9XNq6Y1rez+auI+3Rq4jvg+97L9t5x2leQakDS/NJFQkiWYkHQOQ+4h228ekUfAs3LaNOzZp7JGkN8DVirE1VWbmX1YQtJCtseZpCtMVBdtSiJpcULksCOwBpGos4rtFXIb5CgS8CpFBdY10+7zHIYRuShpBLnUkGONP6uEYmJsSZtUn42kVWzfWiVfScoRsv3b9pMQC+6KqqfZhpKpHQsS45jlgfNtXy9pS+DjxGeVUwm8GFeHDvMZFu83brN9u6Rn5xBJOo7+osZXAXtktuvXkt5r+ys913g/YaiUg6WAFWx/MXFcQYxtTX6cphiXpC2Iz/+Mnv3bAH+3/ZMMuiU83lASANtXp2dvY9g+NLVjA+J5vTXxPe7GeFHvRChpBFnSjKGkmZN6noFV8sEjCsOHHHwTOFPSbjUx4fOBLxAJrM0bVc4M8jjgg733oqTXA18khN4d5n78O2N+PhAqa8Ywp1AysTFrrpkE2AcCbwd2sn1u2wtLWgL4KmEScjXxd60r6bfArg4Tlib4LfF3CHiIMBy+Im3nGl2WNILcFviepJ1sX64IZp1IxCk3zuAZGsdogYOBzXrih9dK+ilwdvrXtF2lYqLFjCApGz/Zquf1OT3XyUl6WzWtW8FY0k213Tg+BiBpReATjCW+nUZ8rzsThRZyUGr8sBthTLoL49cPFyW/OEYXi89AqVh8wTg8dLH4XK6rBj3zJJWKLWdBkfD7asK06TjCwHaG7UtyuSZYf88y9i/JVftsHwOu6d3vniKbE2ApSW8lDFqWqq2vCFiyKUnG72xbGhiMp+fFDsR9uhjxvHhz1cfmoCRXh0nBXNfPpGvPdX3NvN7PpOvO631NfX7Yi8f67BuGJQesmQPtTDAGILdwRDEjSNt7KhLuNyY+988Rf/d2wA+dZzaglAD7T2BT4ITasae3aZ9GL5i8X+J5OmPG6TNaJjCWNMMowtXp9iaPq6B2r9Pt5eGdREzr/mqH7T+kGMaPCUPIptiXKMB5u6Rq3rkSYZz58ZbtGxm2f9Vn382TzdWhw3yEHO11hzkA23+R8p3xOjRDKV1vh2zU7+lNSMXCHeZ9uVwPJg3hXUSMfFcASQuRr+VcnihE0q8RWQXuAGzfJek84BBija0ylWy0vjZkLeyd6XUujgLeR5hMvSH9/zHnmalVWMoDihTmEtm+TNJ6xDrbuysuYAOHkX0OHqnmu7b/KumWlmtYUEZHW/SeAu6xfXDmOYMwLH6Uqy/Yg4jVLAMc7TED/DcSRqOtkDTDWzA2v/45PcWUG3B8kOhjFkvb/wAOt33C0BPHo2Rhqbcx3gzXRDzi4ZZcRQwJiRjbp9PrdzG2nrkGMUfMMSRcQdIXatvL1bdtf3gSuPYGvp1eH8f4QhO7EAZ8jTBoXVrtDAmL5NwmdN/hiGgz7q5pvqYyZozdRvNV8b2B6LOqZ+sNRJ+VW/xjOSKefJSk5xLxrKdlctS5NiP64mNSTHBR9ck7aoMUe8vV7T004Jxc7fLcWsyn4+q+w5koqEvs0KFDhw4dOnToMBehM5Xs0GF0lKq4U7LSecc1eVzFYHu6pFuJimhVxdobgO1sXzP4zDkPRyWLkpRHky9OJS1wnAqcqqj4ti0hWm0a4C5WQaswF5KOsb1ner2H7WNrx07JFK/+u99ORdXFabb/N4PrfOLv3Ki2KHfs8FOaIy1avDW1602TwNPP6GID4KPAfZnNWKcWmFu0J2jXStTdABP2YYUFpa8kBPgXVYvbA675Ets3DOE5lbHFl8sZvxBzAg2ruCccmxZ6l66ErpIWJsQAe9nOWXz9E7Hoviyx8HUL7RMGihlB9jn/xYyZ2j5ILBw1xb599hlYG1iRqDzZBPXE3N6k3a9mtKcoJN1BJEKfDnzKUU110rmYtaKlgQeAY22fl8l15AjtaMpT6hpQ1ggyd3G1XxXOiicrWa1DFr4PfEVRrfFhoKrMeix5BhH3EcYlBwKX2XZK8msN2xcTyTajoKQR5JXqb4T2HsZMI5pi+R6xxDhkCi+OZOxZfCbjn8sH0HwcX1XVhTGTj2ob22tntOlrxHPqCuALku4mGfInMUwOSnJ16DA/Yekhx7IqgQNX9mxXY6O9gVUyufYiBHE7AlVy6MuBRYhk4Bx8lBBIVliY6B8WA04mT0xakusg+v8tlxJmTDmmkpK0tMMsuL5zCpFIn0N0KBGX+SMhMv8f4MoWybIljSAHQtLTbOcku5c0cxo3fvCYIecCQJYpq+3PSNod+LmkZxDP2H8AR9o+LrNdpcwgl+/lSG29UGEi2+GpgV9M/JZGKGbGMAdRUlCaOye4ljTmtv2vzHN78QUiKWaHKm6XRMqfIETPOzchsZ37LB6GkkaQv5W0NWFUuRvw3nToP10zyWuClBwv29/q2f9O4AnbOUaCC/VLILJ9m6K4Qk67bmX8vaXatm2v1pCq5G+umtf1zukqcWrjeV3d8ELSVW0MMGp4S8/2KLGsbxLjqjOB/yTGqlcDa7VIMCsyfrB9F7C+pE2Al6TdP7R9UWZ7oIvFT1YsvlQcHrpYfC4uId3Xki7qMaCZTvN7vu+cTWHqs6/tzTLa9GLgr8DvgN+ldfcifbWkpYBtCIOo/yCSgieD6zxmTRo18ft+Dnn3/KWE+XT1ur6+kmPI2hQTrjtI+iXRZ30XeK/DMLvdxQpydZg0XEKZfgbms75mPu5n4Cna1xSeHy4JbMlgg4FSppJZ68kuawSJbRNrkRenOWFlWHACeXHAY4h5yd+J3/SVMNMY8p6mJCpbMPliSZ8jkqtvJz7rFSWdDByQGXstaYZRhKvT7Y2m2xuRq5R2r9PtjV1zIt0ewNNcM5SsYPvPuTEtYF3g88R61guIPnUrYm3smcBfMvk6dOgwD8B299ufy6AoxvzXCd/YoS1Kam47NMdPJX2XmCctTRTZQNJyDBiXD8H7ifXW5wJ71taINiXiEjmYYTvX5K8vJL2EWF+9G1jPduM5YQ2D1sLWbrEWBjH9vSS9ni7pLrczlIQUT3OYSGYbSdZRm7sdNApPQr3AHcAqalngjsE62pz11mL3VK0ds+5MRUpsH9GUqGT8yPavgRf12f9DYKYRmqR3NdGnSXotEYt8I6EX3hBYxZlFUSUdSBTL3tj2H9K+VYm10ym2P9OEx1G8e2ti3nSd7Qty2tGD79jOiUUPa1dJQ8J/p/gYRFzsdNtPAL9TmPTmoHe9dZT1lFJcGvC633YreAQj8AI5t9B9hyOj5bi7iOYrnfdeYlzzUca02lOBz0pawfZJTbkcJshfAr4kaQVCD/gnSb8j+ofGxUTSfXQ+cL6iCPOWhJbmrrTetmMTnqRH7Y3JTSH66T2atqc6LzOu3ReeS4v5dFxznmdu5ppA82rnmV126NChQ4cOHTp0mEvQmUp26DA6SlXcqaoiL0CIlqoKyW0SDTuuyeMqBkXl7rtt79yzfxlJT3e7St6jtmlKn91LE8HHiYRmWZcalSAZIJyU/jVFyQpaJbkAXlN7/S7CeKlCjuEOwBaS9ieEsz8gDCZ2JwxMrwFyxKkvI/7OCyX9gfg7RwpIpSTDNxELdFsQC9Rfmgyeung+LRp+ghCSfsD2jzK5igXqCqOYoNT2Lg2v+S2GJ8yUXIh5hBCfPizpFqIK59eB3wA75RDZ3lrSksTv+1OSVgeWkrSe7Ssy2zUOIySfVuc/v3b+Y8DKwNR+SevDYHucuaGkDQnDtnsZMzhugh/a/k3OtecQNnKD6kmSjrM90d9bjGtYkrykxZxRFdL2pUO4vkMIf0biKYySrtS5yW9bFrx2h+Y4EPgMcLuk6je0EmHkd2AGz/7EGOQE4LR0f88NKGkEuSdhiLIT480mFibfrOpfLa4/CKWe0+sQ5hB39OxfkXju5GAqIWJ8Ms2j7gVWc37F5tJcHTrMT7hQ0iHAgZVoLImW/ockym6KYaJOSVeSYUidzEZe1WO4c57trDYlLGy73mddlvqGB5JocrK4FrH9596dtu9vwXU08GNJ+zDehPPwdCwH7wFuJsTr59h+tJRZQQXlG0GOM2NI9+gmRNxgSzKMxT3EzEnSNuQVS/mxpM/Y7h0LHUyeaLNq2/HA8ZIWT9sP5XIklDKDXEDSIu4xdUvP2W6N6qmDWyXtavtr9Z2SdgUWt31ME5LSZgylMIEoLmuNwPbiE7+rMd4L3O8eQ8kUR/pzv/5/CDbsNThIz+yDU8ysEST1xvSc2tg7rp8QLmsEOQW4k4idTwcuJGLei6XYSk6C6oeIBLBefJ8wkckxlXxc0kq2/9jT3pWBxzN4YNZ44QLAdoS5wlUZPMWMIAmzn9mBkcYMVVwrPWtekHbPaLmuNsX2p9LrCyRtC+w0LJY+pF0lzSBJY9qZ41qFEdNutg/JoOli8ZMQiy8Yh4cuFp/LVb+ve9e9c+75X0m6mTA8m07MmU5OHDm/QWyvK+lFxD11oaT7gcUlLWv7TzlcAJIWJZL6dgReShiNbk0LI7RSXLbX6uF9PpGk9nrg0Mxm7e92icxt0eSZ9DHg57Ukur6QtL/tw+YgV4fJQal+BuaDvqbrZ2biKdnXSHqH7W+n1xva/kXt2O7OM4y4PUNvMgqy5xrpcyphBNnL+xhwLnBu0nDlnPt1SRcQpqn1wtT3ADkG/SULJn+O+A2vUsUjJS1BmOccSV7CbkkzjFJcnW5vkrhKafc63d44TKTbg+EmS7kGTF8GXm/7XwrTiv2Jue+6hLb37Zl8HTp06NBhBKh/Ie4phCFdYzOaDnmo63ElLZP25azzdWiHPQlzo+WIOHOlL3ku0NjkCMD2zYThYu/+C4BRjN/GIVczThR13NN9zOcyuIqthSUsJeltte2F6tu2cwpHlNSY587dhqG3wN1RI3DNrvVWACS9osU60sy18tRnbUvEQp4HnNWiDQsBb2DMEPJG4ALbuevlTbEHMNRUUtKdRKHkE4F9bD8k6VZnGkomvBNYp74WbfsPSQdzDaGZnxCSTiDWkH8JfDqti366RXug7G8HKGZI+KikNYkCg69jfCGJrMLlgzSmSSOwVb9jTbgkPTPta6Nf8oDX/bZbQS0MCdU/FxjiGXJGZhO677AhCo+7i2i+EvYixkV1HdVPJb0BuIy8POx6e+4knodHJX3HDm14EtejRBzxzKSB3TPj9Ct7tg08AOzt/OKVvyavWFxfSNqk0qxLWsWpOFDaflvO2KjjmhyuubFNpbkoZKLaoUOHDh06dOjQYe6CJtCGdejQoSE0VnFnGpGM/E0yKu5IuoQhwSVnVIDuuCaPqyQknQSc3zt5l/RWYHPbH5yENt1KfFbVAkMVWLsY+Iztvw86N/M6f7Td2CSiNEb9Pc8OLklX2X5p7+u0/X/OqCIm6WxiEeFyYsHvOcR3uoftq3Pa1cP7KuLv3IZY/DrLGRWKJG2ezt+cuKe+Axxn+/mZ7SjCU+PbgkjmexQ4xPbFLXnOIxbRpmcu9reGpF/Z3qAQV9Z9NgHXuHt42LV6r9vifr8e2Nr2DEXS++XA222fM8KfUHE/h0jcngasZHvFzPOfTwEjSEmXA0sQ4vDTbd+SFrVbV3aUtCkhxDZwqPsYiUxw/lVENfnTgdNs39i2LTnXHHZfZXKVvN8bcUlanhAuXWv73+n+2hN4t+3nFWpL4+frgEXMmXCewUCRNqX3nzOgXQI2sZ1rnNTL/2zgAXcT5dmOlChYN3b4l6T1HZVkc3hWJRadpwGrE1WEpycR3xyHpGUJ0dS/6WME6RaJiEkAsmbavMEtjNBmV782ynNa0rlEcuZ1PfvXIp49jQUho44XZhdXhw7zE9Lc96vAekS1egjz2CuB97QUaPW7zh254+5SkDTD9gsGHPu97dUmietm4MW9QltFgvONtldvypXO25KoQvwSYtx1I3BE7hxK0oLAZsQzelNifv56YMUcUbCkj9s+tLauiw+fAAAgAElEQVQ9zgjSdmMjyBrHBun8rQmh3m7ADxwFSkZGizFu9ft5BWNJ4OsSBkxZvx9Jew87bvvzGVw3A2u5vxnkdU3vLUkHAhsQJle3p33PJypoX2n74KZt6jB5kPRbYINe4ZgiMfzKtnNEjTdj2MJ2azOGeRGSTgdOsP2znv2vBj7ohlXY0zm3DPrdDnsu9Xlvv9joFGLOMy0nvlwTrr+Y8UaQTwI4wwiyz9oFtW3bXjWDa+AcQNK1Ofe7wjTzc4SRTX2O+DFgP9vTm3LVOBcgElP2JcZdh+bE3hSGlgPhBsZtsxujzsMUiUmHArsAtxP3wYqECdMBOSJYSdcQRrjVvXVxfTvnPh1yjSwzSEkrErHbymDqNMKMemfgVNuNzVq6WPzkxuJHjcMnji4Wn8FVMK51FZFwczmRCPlt4GPOM88axP1y4l7dDrjT9qsyzj0VeDWRwHc6YTw7o809WpKrxrk6cACwPpFU9I3cxARJ9wLXE33fmbYfbNuehtd7yt7vHSYHhZ+t83Rf0/Uz4675lOxrSt/v/T6DFIfayvb3+pw2iKsqHFHXtpG2F7VdpMiJChr8tognrgw8aPtvaft1RKzzduB4240M39KcdQdgQ6AqmPzVlmOHW4A1etfZU5z4ppw4deHfRBEudbq93LbMddo9dbq9OteEvwtJTwAP0z/W9nTbT8u43jW210mvv0gUy/lU2r7a9rqZf0KHDh06dBgBfdYITOgl58jzcX6GpE8SxsoLEM/Ux4kxUrdePoeR1lp3sL1bxjnHMVxT/eEMrs2BGyigGZe0CFHwoDVX6bUwSScPOWxnFJWQdB8xVx1ElvO530TMU/qa7dn+v377R4GkM21vU4jrctuvHHBsc9fy09RTYM12boG1xYnCbzsCaxDFF7e3vUKLdi9PxP3uIQoliigu81zgdbbvzuVscM0mc55jiFjK9cRc8WxCC9VYV1Djusn2i3KP9Xnv9YQ55ROSnkEUhXl5bnsS153AQI1Ypn5skCFhxZWj61ifMPxcBjjGyTRT0huBd9qe1pSrh3dBxrRHmxOfXVYBA0kfJIogVLko/wAOt31CBsc/gRnEfb5aek3aXtUZeS6awJDQ9k0ZXP30NBVy9TTdd9ica3XGF+ZoPe4upflK7/+d7b6GxsOODeF7JVE852e275O0NqGJenWOriPdA9slrvNtX6/QMn+ciOs3ivFKOsU9BpxtUTC2XHItpeOaBK65sU2zk6tDhw4d5gdcsfvbu9zxDh06tMJ6x59RvJDH7EQRgVSHDh1Gr7hje+OCbem4JomrMF5u+329O22fJalRparSGEW83YsBAW6IQGu2IUBJjPp7nk1cC6TzF6i9rgYduZW0V7W9FoCkrxILdCu5VhmtDWz/EvilpD0Io4gdSBWK1KBaNiFQ/jlR8ejWdN6xw0+ZrTxI+g2x2HEEIeZFkQwJZC8en0R8Jscokq9PA85rKubuadc7bH87vd7Q9i9qx3Z3SiQpJUytqAtyTTThXkHSF9I1q9dVG5bPvNa/bc+A+L7SYsrISayJ7z7geOD4utBK0nG2PzTsXI1PPt3GY8mnt7Voyp+Iz2VZ4n69hZaV7CS9iUi0+RtwoO3L2vDYfqmkFxL3/BmSHiPu+dNz/0ZFosji7qnKq6h8+VCt72r1O58bIGlP4nOfASyiqDR5OGFE3EoMUABbliLScCPIZ2XSHdny2KwXDzOhzwJ/AT4NfIsQVy0gaWfb52e2rUMGbP8LuK5n9/eApsanLwCWTc/AQ4FDFWaExwKHkT8+KgLbfwJepfFGkOe5hRFkjfNiQqg3CvqONyRtRBi/NBZIAqtK+gFJIJFek7Zz5gvLusdQEsD2dQqzhxz8f/bOO0y2qsz6v3UJEiQOYiA4giICEgYBPzEAIqCCYCBKcABRB2a8OCCIGDBgQkVAMIvKSFBJosLVCyIGBEQyiEgS1FFQHFREgfX98e66fbpuVfXZ1bu7+t671/P085xQZ53dp3bts/cb1ruupOsa7Vi7sZ8rhFuSq6JikUFa++6pEPtdPx2+0fbtpW9VmC8HP5X0etufbR6U9AbgihFynQ18Nq0F/5p4Hk+8E3OqjDbXkxdktmE+2H6UWJ9fmILYdwSWBu6VNNcthdCcBCXVWwjysAGXzgdJxxJ2mbuJ9ckxhBjewOr0QyBr/dzn93OT7V8Nce/jCIGx7xAJtpNZy3+ZqPbcSwzyK21JbL9P0iHAZSnoWUTQ5nG2T5xE+yqmF4u7hxCHIyll6H6WOC8ALpD0tsk0cCHF090lKAlg+zJJp2Ry/VjSO4H32mMCD5LeQbJ7toH7FOGS9BxifHhhRpt+xljg+oOE8MsVad9A68D1kr4LYGlJy3YHciuSZ5bMIbJ9bgrQ/28iURAiSWw329f2v3J+KERY9yeEhX5IEu/L4UhtKiYa2Ug+mHeosW/nCWV37Efda80O2SsymvYRYDngabYfTPzLE+/J44DWoovACkRfbY51Hb9AVj/VBGKQGW36MnAp8A1gB0LI/RpCDDq3mEW1xeehiC2+lB0eytriM7DA2uKBVRVC7Gpsk/afkENk+/tp81xJ97qAyFvi/RnwM0mHE2Jr0cB2wlXrEQJFNwM3OxIPh11HF+OStAHR59cnxJYPSGvGYbAaY37oYyVdTvT585LNuTRai5i1QElf6wIVnLiIodg4Awv9WFPHmTEsqGON+mwP04595l3YI4GYjGdke7nMew+LNxE+yRLIfV5nAa8E/ixpY+L5fIAo9HQycGAbEkehg3M1VjB5NjF2nUJ+wWQ37Q2Ng8P8to+AebEizSKFw8S1leKqcXt5mImxe8Xi9hptW6LbZippFdv3pbYtqHF72C4Zb7GYpMUdBcdeDDRjomseS0VFRcU0o6SPoKI9kn3g+cBmjfnRWsApkg61/fGRNnARgKRNiJiTXYE7CB9LDq4q2Jz1gP+hTMz4GwkB9slwFfOFAdj+95zPT4CHGCvcN1msRhQh6SmqRhS4LY1sgcIBWKrfCdtzVKjAWsLvCb/90cAPbVvSK4fgAXg/cIrt45sHJf0XYcvYb0jeQWiz5pkt6VBCQHVPwqa4gqTdgG87r4D2vZJebHtu86CkbYg1f1v8o2PTtP23ycTiELaKx1NmLdmM6+hGblzHT4H5RDZtfxv4dmdf0n5t4vkkvYgY219G9NktiRiBv7VtU+I5GngesFUn3jW9pz8haWXbbXN4s8T4JsCrKCRIWDKepn6HWTjT5QTaisR8JfyfpI26Y5YkbUTEbrWGpI8QccHXAEdIuoiwTX+AiG/KweeJYrFXACdI+g2paK/zCvaWzPN4ggYUeXd7gd6SvpTKNRqumdimqeSqqKioqKioqKhYSFCd8RUVUwDbfyKCkHIq/W4G/LqT7CNpX6Jq8F3Au51XuadyjYirMJYZcG7WtLWiCylZ66+270sJ/c8HfmX7nEyqXmJVIgyAMyaBeJjf8xRxdTtrmwGRucG384IZU/DuPZMNTG3C9mOEaGYzuPgrwETG8H8jgje/J+l2IsFvmADFUjwQFbf/Arwm/TWR5Ty2fR5wXhJQ2IlIFD1F0neAr9r+bka73gKclrZPZPyz3Z9IriyN6RRvObyx3R2EkRuUsWqXEX/F5n6GEX8gugKttmxxSTEhSNu7SFqBcBy+W1HRbEVJm9vOFaT5JnAPcD/wVklv7bpX6+Rt278gRFqOSQ6mPYC5kn5nu80z6uAEIuC8WxDn+UQSyZvS/U7N4JxpOAh4pu0/SloTuBXYMiV0ZaEZPN99CliiLU+v4EFJqxDO6Ny+WkwI0valmfcehJOIynUrEFVQX2r7cknrEgkEVVRy+pHjiDqerjmjQ4xwNiEyOVK4jBBkMTQTVnoESGYJjhFJZR10/4ZzftMrDji3dAYPRJLcE4Ffdx1fA8gV1CjJVVGxyKBrDnIvMbedT3ysJVdJQeqSOJRIsN2LsTX5psDjCKHDUXEdDbwPuEvSXYzZVj5PiBblYErWk7YfJgLyv6EQ5GodaKyyQpAHEnPtU4Bv2n54EgIrgzCMsNCSwIsYE5VcJdlrHs6k2oQIdn45YUc6HZg7xBy+qBhkEr04KX3/OAl8VSxQmCXpiQ4R9XmQVLI4UEkxhoUFg4QwWq/xE/6TeDfcJumadGxj4OfAAUO0bRxsX6UQNc65pmQRq257iIH7bHfP69vg84Qw2xs9XlT3k+lcTrsWT4HY+w7Rjm7cATxCrIfvBjaUNC8Y2nartZ0KCkESAdxNzAJ2I4Sff57BA+PXk1n2oh7YEVin+f6z/X+S3gTcQp6o5IsKJtmWEoNc2fa70/ZFknYFXpt8M7motvi8e5eyxRezw6fPF7HFJwGnA4HVgQs9vqDZ0Z1kmwXcFv9Zxt6vzW2Az2XwrCDpVY39xZv7bcfkQUhjWFNcelcmmCvZ3jjZt/ck/KT3Acv1mse1uH8xLuBawtb2LWBzYPNmLqTt/8po16PARcT4tyTwUsbEgebafm1bLknbE/19bjOxVtL+tr+Q7lfS1lxy/TnKohsVg1FqnIGFfKxZRMaZExnwe+20awEea9xnO7sdtm8omEC8FCGq8XTgOuALDiGz0phWgbcuLG37N2l7b+J//KikWcQaoxUknWr7dS5TMPkmReHGL3fdY29iHZaDSyR9mLBXz7N5S/oi8Hb3KHwyDVw1bi8PMy52r2TcnqLA5FeApSRdDRzUmE/OYeJnPQxGMv9L/2vHb3GDxwSvc3A6cGl61z9ECI52Con+uUQ7KyoqKioqFgDsA7zESXwawPbtab48B6iiklMASeswJrJ3H3AmIPcpojcIvWJU0vrpgSHiMYrFjANvmCyX7X8d4r590UN8ycTz/6GTqGoG7h8yPqgXbrM9FcKRgzAtdhqVLbAGEZu9B1G44nRJZw7JA/Bc26/rPmj7BEm/mATvILSy2aTf7iWE7WAJxoqcnAysknG//yLWmz9kTAT1OYRta+e+V82PdSVdl7YFrJ32lZqbI5T2W9vvyfh8X5SM68jAm4GBv31J9xBxE6cAh9l+MPX7LFtiwj7ARk37THpP70bYnlsJEtq+S9IuhF3yetsXDdGWDkoKEiJpccLW3RGEvAm4aIrsplC/QyhrPy4Z8/XfwPnJPtocs/YjbM05eDmwie2/p3nRr4ENhnz/PAfY0PZjycb/O2Bt2/dn8iyTcmV6Pn+3L1AD5QR6i/lSKtfIuGZim0pzlRJRraioqKioqKiomEGoopIVFTMHnyYqBCPphcAHCYPPxoQAXXdAVOWamVwl8fteSUgKEcw/jKJBiqo2+wGWdAbx3L4PvFzSi2zPbsvVTPrqIWyTW/lvUUDJxMWNJP1f2hawdNrvOJuWL3SfJiY0oNq+hghuPlLS8wiH3BIpePMc263EOEvxJK6t2n42g/NvRFDCmSnp90tEoGpO8GzJSjKjwERV3p9p+6hC9+pO1mnujyzhqmDyaYfvz8AXgS9KWpVI3v64pDVtr5FBlR0oMxFS4sKqRNLuskT1yhxsavug7oO2z5HUtmJcLkr+jtpw/d1JxNr23ZJ+MWRwEEQV1X5onayhEI7+IPBH4L1EQPwqhJDIvrZbCy66oBCkpOsZnHyVEzCxuO05ifc9ti9PHLdoUsU9KyaBnHH5ibavn4/Avk4hgl7RQOEAyb6/aUk5osFXSXq97c92cRxIfnXpjwNv654vS1o+ndtpRFwVFYsSes1BVk6J13umdVpb9BIR8oBz0wLbvweep6gi3kmg+5bti0fM9Qix/j2GCGaDCIR+KJerJAYFl2SipBDkk4GXEO/D4yVdQthEFs8NkBwwLxWx9snhWg84H/gRY+/ArYC3S3qF7ZvacjmEy65lvE3kRElH2D4/p12Jb9JikL36QpewQw02WjDwEeBbkv6b8WK4H6Hc2FwXYvPjNkkvs/3t5kFJLwVuz+R6mu1dJa0NrJeO3WT7VwqhvVMm01CFwGjW+KyyQpDF5iK2j5P0F+AHCqFMAQ8CH7Sd+5yuIAkJSDrR9n9mXt/E94hntFH6G9ds2hcMKCYE2QneTva/fQiBwmuAl+e8vxLXpZI2JuYzN9q+Oef6+enmT+BLYh2584hzKCcGUUwMMgXkd8bN+wnRKQE4r1hetcXn85WwxRe3w0MRW/yniaKHVwAnSLrUdmcu9ypaJttkYrpt8fenOe5kcSnjbUQ/aOznjMk5aJsEeQvwLuBdkjYl1gRXJrGi5+XcsCDXAUzBOGD7H5JuAm4m5qbPanutooDB84m57VGSjveYeP4hwBdKt5fp7+8Vo0GpcQYWgbFmYR5nEpoi3ccQ/+tUYzrHmk6iezPJvXPdWlk3KptA/CVCtO8yQqByffKE5dsidw38YLqm81w714v8YmvN72YbUiG+lHCbwzOfb93DF0w+GDhb0v6MT0ZemowiQwkfJtYST+vYI5Of7rj0l/N9luKqcXt58XYzNnavUNzeh4Htbd8o6TXAdyXtk2JOFoR52kRxe0hajZhr/J2x3/SukpYGXmn73rY3s/1+SXMJH82chs1mFhGnXVFRUVFRsShgCTcEJTuw/QeFkFnF1OAWYm24o+3bACQdOgxRyqM6K8UXPw74DpFv9oikvWx/L4OuZMz4pLkk7W37tLS9pccXnDpkCFtXr8KJ/0rEwLzb9hkZXBPOXSuAggXWAGwfT8RVrUWIS54LPEXSEcSa7tYMukHxa8PYfdrgRxN9QNLytjtrcxxFJy4ALpCUZQNMa8MNiJzIThzgD4A3OK+IRK7tcRB6rk0lrQHsYfsjWWTTL0jYZm39daJ49+7Ao5LOY/h+717fle2HJLX25Us6megDPwbem/zR7x2yTcXsC2mNfzHwWyImREShzo9J2tpjxWtKon6HZQXaVuwX85XbKNs/lLQ5Yc99XYeLEAHOKYYKMQ/5e+L9k6RfenhB4390YmccIpW3O19QEuJ9+FF698HWBWoSSgn0riXp/NSmzjZpP1e4t3KNhmsmtqk0VykR1YqKioqKioqKihkE9cinqKioGAEkXWt7o7T9SeAPncQiSdfY3rhyzXyukkgGurOAUxkfbLkvYcT/6QjadBPh/FyGCOZ9ku2/JQfBNbY3yODqJWxzmO0qAtQDkq52wSpT041h258S4LYl+vz+6dj6tm+cDh5Jb7X94bS9q+2vNc4dO0yypSLBejfCwfpk4nd+ukP4oS3HvOfZ/Wynqq9Iutz2cyf4TJGggunq75I2s33lFPBmt19jyad7ArlCkIN4n9oJbFeLxPVuB3nXuTVt351x7xcQ/88uwPVE9cuzHUm3rSHpZts9neSDzvX5/FLAcrb/0HX8CcCDHYeWpNfZPnUauX5PPJ8O9mju2/6vCf61VpC0Rdv5g6SrgKOAFYiEkZfavlzSusSYtUnGfYsJQWoCscCcRI5RjKUVIOmb9Bdg2sb2si15fmn7GX3O3Wb76b3OLapIARGXAQc0AiRvt52V1JeuW4x4Z60GXGj7Bkk7EmPG0m3HhzQnOocI/Guud5YkElFaByZIutL2Zn3OXW/72aPgqqioAEnPAT5m+4UZ1+wMrG77k2n/CiLg1cARzXVZRSCtJw5mLDD1RuCTDvHKHJ5H6B2wm53Mmt491xCB9A8zPtDEbYOt0nunIwT5YqJC/LbAGpMJTFUE+e+YeF8AzLW9V8b1Jeelcwmhsu92Hd8WeLuHEIFO65LdiAIu/wTe4SSinsExUBi0bWDjBH0B28fktKtidFAIGR4JbECMyTcSffc7hfjvtr1mCa6FBQrhs28RwcrNOfP/I5KfWidrSLod2NVdSUSS3g28ou0aWNKJzL+mWxl4HvBm29/MaNMlPQ6vTKwJckWp+90jey7Sdf3Qorrp+p931kgzzdag+YUgj3WmEKQi0XF/4FDgh8SYcNuQ7XknsDfR17cAPuCuIgQZXOcSdsgvdx3fG9jN9isyuOZ9h5OFpGsJ4ejOu/CS5r5bikFKuhN4DHoHwees9astfjS2+JJ2+HRNKVv8dR1bbfL9nkwUGtoTuLzUb6HrnhPaz0tyTUefl/RE2/87BbxDt12SgBfY/kHaf5vtD4yaK10/jMj/GoQfZU9CQPV04AyHOF1bjuuBTWw/ImlF4KvAL2wfWnLs77rnUbaPnWlcFWUxje/WhXasWVjGmR6cUzK29LjPtI01he1jxxNzmRuIMfk84Poh/VjzfDlpTnPFJPr1QCFI24sPwztZSPoEEW/0W+AVwDq2/ynpyURhnu5iAv14biH6ec8kQdtX9zo+AWezkNJNtucOwfFL4n9y1/HFgFv6+YinkmumrelzMWz7VShubzJcKhy7pzJxe/PijTv/ByHAeATwzqnoK2oRt9f47BIOQZTmsVXcQ8hqAMc5wHndayxJ+wKvtr1zW66KioqKioqKwfOxBX2uOZMhaRdi3rclcCFhO/+c7VyBFSTdCGxg25IOItZS2wLrAF+yvXkGV7GY8RJc0xVLLWll4Hs5fJL+FfhTx98haWvCfnAXcJLt1qKTkrazPaexvwQR+3BvbnxVxj1L+hkHcmmswNqewDOAFQkx/OwCa334N0jcuzsjPjvFKRzW6xTwYdtrZ3Adb3t22n6z7U80zp1q+3UZXM1+P9f2i3uda8k1x/Z2bT8/HZC0csf3nGLIdiW+v6cQwqC9vpN+XL0ECTcBngRMiSBh2+8g2ZK3Iv63lxF5LwcA37b9l4z7zSXiJeZ2Hd+GiLlrFbsn6QZgI0exy2WAy2xv2rYdXVz3AH1j85whSCjpVCLn9/iu4/8FbGp7v2HaOME963co/ZYootTP9to6ZrLw+zhrvJyA6wFCRLeDFzb3M2Nz/gZ04o0ErJ32O7HLrXLOpuPdq0yBXkkvGnTe9qUZbapcI+CaiW2aAq66Lq2oqFikcMUhr6kiaxUVFUNh85O+vkCJcFdRyYqKGYJkdNo4Ba3fAhzUCJC9wXlifZVrRFylkYLY/oNwVkEk6p40VU6rFu1pOk7GGcaGcJwUE7ZZFDDVAeaSliUqw+9p++VTwF/SgF2Eqw1PSSe5pNcTjo5nAt8gkg5+PGTbO8bypqGctL+WWwpyJa5i1SVLPS/Nn1w7Dm6ZXNuHez3GBG0fcMtg+sx7TOr3qkwhyAze3D4/tINc0q+JgI0ziMqsQ7+3JF0KHN4d1CBpM+CjzhMo+gwhgHZ21/FXAtvZftOIuAY6Ym1/qS3XBPdpLdChhrC2usQ7c/u4CiYU9eFfBbjfmYtbSY8CfyXGmqUZE1ASsJTtWgF6ClDQMXc6cLG7BCYkHQi8xPbuw7dy4YPKBkieCqwBXEEIffyGELY50va5Q/BtTWO9Y/viITiKiYyW5KqoqAgMsXb6ERFw8+u0fw0hJrgs8MXmHLUi1nFEovWpjAmObQrsB7y2ucZrwVUyoGojYt21Q2rX6YRw49AOCU1SCHIA73KEoPGXJ/zwFEDSLbbX7XMuV0h/fyIhdimimvfQ6zEVEoOcir5QMXOgKLiwk1sK/mpMjGG+U4xQjGEmI419ezHeR/BVp2IWGTybAl8j3g0/SYHZpxC2yp3dR9ysB0+3DcPA/cCVpfwWmqQQZA++YUTnNiDEFpuCzcfZvn7Ye0/Wrq1yYr8lhSDvAR4BjicKkXW36ez5LurPdSOwmaOQ2b8Qdreegv8tuFYjxBweYrwg69LEO//eDK7uZLxxcF5i350UEINs2o8ni2qLH40tvpQdPn2+pC1+vnmpQvB1e2DVfvaSPlyLAQcCqxO/56bv6Wjb7xsR11QVZlsReDXxzn6W7adMwT1Krtem1W8r6Ye2n5+2v2J7n2HbIunHRLGbswhf688muKQfT7ffYzGiwNbywHq21+97cW++7Yk+Otf2nY3j+9v+wqi4KqYfUzXOJO5FcqxZUMeZHryTXQ/0Evifh8x5aREuFU6YT+vUrZh8AvGMLCaYbChvBJ4OXAd8wUMWzUnPaneSIF5njSNpE+AJbohkTMDzIHAl/dco22S0qfn/XQ98fhL/362218k9N5VcJcfHPvyLXNxeW65BtpXMOKaScXtXEQVfftc4tjpwAbC27eWG4CwhBLk18BXCP3A1EQd9ZzqX+z78he1n5p6rqKioqKio6I1GrOp8p6ixqlOONN/emZgPbgN8mRBVa7V2ShzNQnLfAObY/nTaz51rFYsZL8HV9b9154gVXQvl8kn6KeHb+42kjYHvAR8ANgT+afvADK5PASfavlEhwPgT4FGi6OFhtk/P4GolyKUuIcs+nzmFKLI80F8vaQPbN7Rs36qE3WAPyhZY2w54q+1tM6754qDztv89g6tkblexfl/qd9IjnkaMFTux84pBL0eIjO5FiN+eTQiCrj5Eu05l+gUJs59pioPYnhjrt7e9Ssa16xNFbn7I+PiCLYl4mlbFNUraJVVWkHBQbOKUrPHrd1jchjbjfDeJq6SgXZGcs0HPSpnFUFVWoHdjwnZ+o+2b215XuWYO10xsU0muqfaBVFRUVMw0VFHJioqKYbGgiUrW5KyKipmD04FLJd1HJDldBiDp6cCfK9cCw1UUtv9X0geIhT3Abc5MFi2MFSW9ijBKL5+2SfsrZHK9inBSXSKpI2yzQL1EpxmrSTqh38mcAPEOJC0JvJxwFG1PBEx+augWDkbrKoAtUKqftOFRn+1h2vH/CCf2XNuP9b1hu4rurQUlWuAtwGlp+0Sg6RzYH2gtKkm557Uu4cjpGbgOZInPKqpUdpJX/wk8FXhOMxGrJc9SwHK2/9B1/AnAg43x+RPzXZyBLmfHlpPhGgLNZ77ygHMT4fltnDZql6h7OHBWckg3HXz7Eu+RHGxq+6Dug7bPkdQ68bQ0V04A0CSR8x02x6mHus5lGc169QUNLwT5XOCDwB+B9xIB8asAsyTta/vCjHYtlnPvijLo5xxWqtgHtHUezwbOkfRaxo8NSxIJNxUNOMQez20ESM4GVk0BaVkBkqd1nwYAACAASURBVMRz3tD2Y+nd+DsiOeb+Idt2CXDJMNc2cJWk17u3yGhuwmdJroqKRR6KYhm5DrclnQQlE36Yxpj70zhWMR4fBXax/fPGsfMlnQN8mhAAnjR6JTQOgu1rgWuBIyU9j1iPnSjpCNvnD9MG2w8TtotvpODXrHe+JhDjyuQ6AFjZqdqwpHuB5Yg59+G2c+wrsyQ9Lv1/zXssRb4P53PADYSw0PbAdtLYMsAZ1Z+JqvJ7ErajocUgp6IvVIwWCsGdThDvdoQ9vZWo5DAJ1Ys6bD8s6ftAxx510zA+Ats/U4jNnyPpYOD16dQO3ePPBDinX0KLpDVtzycsOERbr5L0+MnypDZlz0Uk7QwcR9hyP5oOPwc4W9Jhts/LoFtX0nXE+2HttA1jiR8bZnAN+v3k/I93MF4IckNJ89rhDCFIInHLwEbpr7tNOVwP2/5basP9kmZlXDv+xiGosoWkbRgTBv227blD0DWFKSeLF7UNdJ8A5zDejj8ZzEhbfAYWVFt8KTs8lLXFXyVph6aN1fZ7JP2GSFrKwaeBZYiiJCdIutR2Zz7+KiDHhl6Sa0NJvd5jwyTkLU3Y2fYi5s7LAbsAP8hoTw5azbdaoqRPvg1Xcy3fLdaY25YjgcsmWpdIepvtDwz4yK8kvahjr7b9KHBA8u+8OqdBko4Fnk8I9xwl6XjbJ6bThwCthSBLclWMDMXGGahjTQbPTBxnSuOqxvYxwLtmANcTJtGG+ZCe+SVEHFkzgfhkwh/cFhs1focClk77w7zviwlBAl8i5siXEaKZ6wNvHoYoPate4vePJ8aMtn6/25whHDkBmv/fS4m4ptlDct2UfP/jigBJ2hu4ZURcNW5vDNM9lywVi1Yybu9I4ImEnxwA2/dI2go4OKNN44QgJY0TgiR+yznr/w8Togs3SnoN8F1J+9i+nPzvraddJtlraqxNRUVFRUVFJmqs6mhh+69EsdavSlqJEAQ6gvZrJ4CHFUXp/hfYGmiKCC2T2Z6eMeNpDbrTsFwd/6ozCjN0aPps99ofGmnu+6fMy5a2/Zu0vTexLv9ompdek8n1AttvTNv/DtxqexdJTyKKrbYWlSRELSdEy7jc24GfSXqX7a8O4GolKJk++3siLuc0MtcoAMnH+ilCNOtc4EPAF4l1RW6ORCvRSEn7tcinGLQ+zEXJfr9CI7dy/hu197/PBZ5E+NjPmGTsxe8Jv9rRROylJQ0bW/9c9xBRtX2CpF9Moo2DMGERbUnLN2NXUlzjBcAFkrLy7dI6egPCRtOxL/8AeENmfE4nPgTGx4gMEx/yW9vvyfj8IHTnAjXxt0L36Eb9DvuMU52cmU7caUuUtE0uoyhO1E+w9Oq2RP3ygroh6Ru2B/pf28bSSPqJ7f834CNHdH1+XDFUIv6rLf6pEPBuCvQ+zZkCvYpCnnsTsTkflvSB7jyVyjWzuWZim0pzEeL7FRUVFRUVFRUVCxmqqGRFxQyB7fdLmktUkJ7TCE6dRQSHV64FgKskJC0OHEs4rO4mjHVrKCp1vd0ZifwFcSljjsofMN5pmRW07rLCNosCiiUuKirEdZK+LyGqLW7W1mHXxbW37dPS9pa2f9Q4d4jtkwBsP7dE2xNKOafb8BRzFtrev+VHv8IEAaG9jOUaUqCNssKZpZ7XTS5XResnwPJEQP2rbf9S0h1DJrGeAFzI/MnQzyd+T28CsH3q0A0ePYp8h20dOrRI1LV9haQtgP8AXpcO3whskYIecjAocCc3Ub0Yl6RvMuD5Ok/4ZRByfoedZJtmog1pf6mcm6qgECQhdHsUIWZ9MfBS25dLWpcI6Mnhqhgx1KNiX9trbf8v8LwUaLZBOvwt2xcXb+hChEIBkv/oJNrY/ruk2z2koGRBlBQZrYKlFRVDQNKJzD/XWBl4HvmJsSs1d2w3bTNFE5UXEizv8YKSANi+RiG8mINxwgGSRASK7AXsSCRJZiG97zcBng3cQwSt5lxfTAiSEAi7hggGf5jxa97ctfQbgR0a+7+3vVoK8r+IvOTfLxNCmQd31lJJkOkEYu6cg60zP98XLiwGOdm+UDF6KKqL70UIH1xBrOmf5iQCV1EekpYnxGI3JcYvARtL+hlwgPuIO/bhWpn47e1HJH58j/B/LCtpWafK6i3wfZLtUtJc2y9unDuXAkJ3Gk4IsuRc5D3AS7rsh9dJuhg4L/21RbHiQLaP6XdOUo5QRzEhyF7JI5PAWpI675dOcP68980w9rFkI5hnJ5C0InCw7fdn0NzfIoGpLUqJQZYU8JiRtniFgPGBwOrAhV2+p6Ntvw8WaFt8Sd9TSVv83n2Of454H+Vg805SjaSTgJMlnU3MKXP7cEmu60v0eUlfBV5A2NROJMaa22x/f0i+7Yn+Prf5m5G0v+0vANg+dpLNbqJktfVcf+sw14992G4bk7ArIRo06Hwv/qNTvEIOdgI2sf2IpHcTtte1bB9Kfh8tyVUxGhQZZ6DsWNNnvjwPnYTDGTrWLKjjDJIeTPfv5W+1M8QNPV4kYvZk5qgFuUolzPe6tplA/LbMa0uKtRQTggTWs/1sAEmfJ2wrk0ZKAN6L6JN3EMKEo0DJ/+9gorDD/oz31S1Nvq+uFNeMjNtrcM5XFErSKrbvgxkbt9eWq1QcU8m4ve91tpPNDdt/tP0AkGNzgLJCkEs6CWLa/rqkm4n+fwT539u3JH0WmJ1iDEhxvh8Hvp3JVVFRUVFRUVExEnTmaj3w9fSXgzena54AfNz2HekeLwPmi9nJaOPQBR0bHG8C3kYquiHpL8CHbJ/ckmJQkbys4mPp/tfT22/7G2DfXLrG9jbE/4mjIHpu05pi+y8hPWfbvxuCq6Qg10eSHfBjigK3pwCPNc5PaF9RCJS9gzERyNMJn/c+5IlldvBR4CDgJ0ThiJ8AR3Zyw6YIbybsMIMwK8U9z2psd76DXHvQqikmTY1t0n5ufOIKRFxdvyJ+rWxkDpHTFYiCap9NMWhnEgKTbeM5OngbsAdRrOV0SWdmXt9EMUFCRSGt2Wn7zbY/0Th3aif+oCtetB++T//Ylf8hwy8vaY7t7Zh8Ya9i8SGUFSTsZ8cV4d9v36j6HeZg3v8zmZyZhJLFUFcjxvl+Y9ZUCMtlzycGYGAum+05KlcMtZRA7+7Axrb/JulfiJy3YYX/KtdouGZim0pz3S2pM4fvjA8mdIiWtF31iCoqKioqKioqFkDUSVxFxQxCCgSahxSEswVhyH155VowuAriI8BywFq2H0ztWp5IgD+O4YNUh8ag4EVJAyvGDOAsIWyzKKBk4uKFhMP5+Q2H9icGX9IXbwFOS9snMt5ovz8h/rUgo5ioWgYm9EqrrEBbySp7RYMKCuF/CafHEwkH7y8ZPsB5U9sHdR+0fY6krKqLI0KbiIeSDvJiSOJx7ypA9XtJm9sel8AgaTPgDyPkOi7z832h/gKVAv6lLU/hZJuSQpCLOwlPS3pPZw5n+5YhgnoqRgCFuNWrmGTFvg5sX0Ik21QMgKRtkpgGkp5m+w7bfwI+IylXELJfFU4AnFeFswhcUGS0JFdFxSKGq7r2DdxPrBmflsn1U0mvd1e1TElvoFCi7UIGSVopjevNgyuTKXbeEQ5Ia869gF2IwO6DgcMyG7U/sBuxdv46sJvzReGhrBDkJkSg2MuJILvTCdGWYdaI8nhR5U6w+d8lLZ1DZPt9kg4BLpO0DPE//gU4zvaJme36ufuIzElaM5Orc91khUFL9YWKEULSPUTho1OAw2w/qBAKq4KSU4sTgJuIgPDHYJ7g7zuItXZO0s3PGBMzeZDwf1yR9k17211zHO5OxMpamPcRthlWCLLvXGSIMWfxXoHEtu+UtEQOkduLvU0WbwGOb/NBFxSC1ATiz7Y/lkG3c9f+0PayAYlT+xL+qBz8Y+KPtG9aIZ7VJJ3Q72RHFGoEKGmL/zRR1OcK4ARJl9ru9LdXATPdHj/Rdz0j7fAAyWa7M/FdAtwLnG/75kyqJTsbth8BDpL0TsI+/PgRcpXCesCfgJuBm20/2giwz4KkY4niZVcDR6VkrM464BAmn/zU87bTzLViSrCZlbY7iWsi/AZTgYHtsv2QpBUkvYLx/f0i2/dm3mvx1Dex/YCknQi769do9N8RcFUs+Cg21jB+vnwMZfyuE6HUWLNAjjMAtnMLvrTFdAu69UORhPkWeBMTCHhOIUoKJc4T/HOIBw9NJGkdxpJi7yMEBmQ7t+DMEYlvKeDp6dhttv8+RLOK/X/pXbyFpG0IIU+Ab9ueO0KuGRm3l/yZXwGWknQ1cFDDpjGHMoUNRo3pjt1rE7e3JiEG+WLggTik5Yk1ypGZCeolhSD/KelJtn+X+G6U9GJCpHftTK7DgWOBuyR17FtrEiIvR2VyVVRUVFRUVFSMCk3/aDdy/KPY/imwbo/j36Yhui1pvzZrBxUq6CjpaMK3upXt29OxtYBPSFrZqUjXBCgpoAXhx2n610ysqf46BNfFks4CfksUKe7EwD6ZfB/eA5J2JOzAWwIHJK7FicIDOSgqyGX7XknfIkTqd2JMVLKtfeXLwKVEoYkdCFvgNcCGnfVBJuyxwjbnSrrXUysoCe1sgCsQv+vOZ1uLd/bAZ4l8ze5tyC+0dpfbFzIYCNt/Br4o6UtEPusJxNo3x++O7eOB49N4sAfhM39KWmueY/vWDLpigoTACxvb+wFNe0hu7Hmx2BUK+WcLx4eUFCS8lBhbeqFtkaUO6nfYHv+UtB9lcmZK2iZvsz0VwpGDMG0+DRUshko5gd6HO3M82/dLyorrrlwzgmsmtqkoV7dPU9LjidyBN5D/3qmoqKioqKioqJghqKKSFRUzDJKWJBKb9yIqjn0D+FTlWrC4CmFHYJ1mYrvt/1NUkruFEYhKToCPM8lq5x1hm/RXMR49nZ7J2LOn7f/J4Po3wqj5PUm3E4bSYcXD1Ge7134plErinJCnsKhaW7QxlpcUaCspBFkqqOATisqbK9m+D+aN0a8DDrXd+j4eX7Hv3ZKeQSSSzCcG2ALLDDg3GSPuILQJVl4KWM72H7qOPwF4sBHw3yYIvaSDvAjUu2IpJNGDTPGyw4GzJJ3KWKW25xAJ5XtkNq0Yl+1L+51Ljqe+53tgUMJ9MfHKTJQUgnyssd1d+bKks7Fi6lCqYl9FHo5jLGnoG4xPIHo7efP4jQiBiF93HV8DGCYArRhcUGS0JFdFxaKAQQFLkq4iEs3a4lAiIHUvxoI/NwUeR4gcVozHx4E5kg5j/PP6UDrXGknMZFdCOO50QmTgqiED0j4H3ADcRdjZtmvO/Wy/oiVPMSFI29cC1wJHSnpe4j1R0hG2z8+kW7GLuyPIOYso+pDbtpOAkxQC3DgVmBkC36d/Be9zyavgXUoMslRfqBgtvk6MwbsDj0o6j7oGmw5s2S0AmMa/90j6ZQ6R7VyR575UfbZ77U+EkkKQ53iAqK7tuzO4Hul1jaSnAo/kNErSHYx/Lmrs23ZuQn/fW2W0qaQQ5CCRnKz+0LGPFRIz6Zc49ewhEqcOltR8fxq4z3b3mrgNSolBPsSYPXKymKm2+M07dl9JJwEnSzqbmL9Nle+pJO9EtvgZZ4cHSIlkexJ+w853tjqRIHGG7Q9m0F0laQc3iqDZfo+k3xAi1TkoyfW1XgclbQccbvslbUhsb5x8cnsS/tb7gOUkPdFRsCQHOwGbJPGldxOFGNeyfShT1997Pocp5LoUeEVju5m4lpus1hYTJRTtS4jqzSGSiAG2Bo6VdIztL2fc61eSXtR5l9l+FDhAUZAutzBnSa6K0aDIOANlx5qmbUfS7ILJh4NQaqxZIMcZmDe3fSMxv70O+IKTcOxCgmIJ8xNglJUFiwklMiaMB+PF8TpxDzlJ+LcQooQ72r4NQNKhQ7TpEkkfJooG35XasoakLwJvt/3PgVePR7H/r+u3cz3w+WF/OwW5Zmrc3oeB7R3iga8BvitpnxSTMdPj9lpxjSB2r40940yiuMdr03yNtLbelfg+n5txv5JCkEcSfvx5tg/b90jaikgAzsHGhGjJO4nfz1bE+3VJQtz/j5l8FRUVFRUVFRXTjoL+0Ry8mRDi7guVLei4D7BR059m+3ZJuxHxMROKStq+S9IupHWT7YuGaEcTZ9ouJXA/m4hReDIhzN9Zpz6JfLHzNxACfU8CZjd8hi8GvpXJVUyQS9L6RF/4DeEf++0QNCvbfnfavkjSrsR65bEB1wxCs2gLwOLNfdulCok0MeFazPa/FruZfUwpLvqsv5NNYifbre2kjXi2FwA/BF5p+7JhG+YQmz2W8H1skLi/zZg/vg1KChIOyj/MRcnYlX7CmUHWss9LerDr3p34kGHsf8UECW3/e5vPqZ0wcv0O26NkzkxJe9zCjmLFUF1OoHctSZ345E7u7rx45cz42co1Gq6Z2KbSXEEirUjMwTuFmzezfX8uT0VFRUVFRUVFxcyAhsi9rKiomAKkAOI9ge0I4YozgROHMXpXrtFxlYSkW22vk3tuVJD0a9trjLodCytSIt5/EIbN84HvAocA/w1ca3vnIXk7TqdXE47jc2y3FvWUdHXH6dvc7rXfgmtv26el7S1t/6hx7hC3rG5Xiid9/luEAexcD1cdMRttnpuka2xvnLZvbiZ2Svq57U0y7vfUQec9yUpbklYhqmK1nnRK2gP4NPBXwoD/fuALwJXAe20PXVVQ0qqEKMaewJo545akS4lknyu6jm8GfNT2C3tf2ZOrlRCkpNfZPnUCrs8AF3Y7upLDaTvbb8po12a2r2z7+cmiTX8t3UclPZEYTzdIh24ETvIQ4igluQbc427bOSJMMw6F3xWPEmODiMqwnSAqAUvZXqJcyyumApJmE07VZQlRqDOB79rOFTKuyEBzvO0ee4eYO1wAvM329V3Hnw0ca7tf8FBFRcUiimHtBZK2AdZPuzfavrhsyxYeSNoReCvxvAzcBHzE9jczeX4P3EokQ37T9sOSbh/mPS3pRYPOe4Cw+gDOjg1jW2AYIcgOzxOIdeGuRGL4O1KSbQ7HycAfbR/ddfx9wCq235jBVUzcq/A7/zHGxCChK7iubcDRVPSFitFAoZywFfE7fBlR7OQA4Nu2/zLCpi20kPRL28/oc+42260D/TVeFA+GFMZLSU4fI9bhh6Zt0v7sTFvb8i4kBNllexgnqjuE7WEXQpThWMYXEjmSeP+cm8H1L12HZhHvoMOAq20XEYfKsR9JeteA07b9nkJtmp0CrNt+fnHimY8TMwGyxUwkXWt7o8b+PYQtODtxSlKvYgMrEyIKe9q+JoPrLkKMoSdaJGh0eLL69ARcM9UWf4vtdbuOvZMQqF6139g4GbS0xS8GHEgILV7Y5X862vaEyZnps9Nqh0/3bGOLvxVYv/v3phAavXEqnvt0I60zPwU8hUj6+BAxzgh4f9uEoh68mxJ9fTfgHtvPy7i228+3GFGAcXlgPdvr9724N9/2RB+da/vOxvH9bX9hFFxqiORMFybq85J+AWxh+4Gu4ysBP82JxZC0NIDt7kJYSFrN9r3zXzX1XBWjwVSNM4l76LGmi2dScwlJJzIgAc8thbJL8SSuGTfOpM+cSdieLgNeSogwDlVAWGPJrL18pHaeYF8Rrn7PQEMkzE9wn5H5yxu+aRj/vIZJIi7Zrl0If+uWRNHZM4DPOVMwRdLHCYHzQ52K3EhanihW99Cw/XWy6PHbudP27FFyzeC4ve717/qEyMARwDuHGe8lLdFjTbCKUyGC6eaa7ti9lnF7g2x2fc/1+fy2wB8cRbGax1cEDrb9/rZcXdevDGB7KPFHSVcD29r+o6QXEuPMfxJik8+y/ZpheCsqKioqKioqphvJ//RSoONzuAm4yFNU9KGlveB4oqDjDcRc9zxCzHGY2Jz5/CltznV97mQi3ujHhMDiN22/N7ctDb6s2JQh7/ECYA/bueLppe7f93+UtGzO2kXSzYSffT4xz7Zckq4lYjk6Am+XNPdz1wWKYhP9YE9BkZHJ9BtJ6xA5Pq/PuKZvIUDItk1uYPuGtL0Y4c/s5Khe1nb9JOlO4AFi/XUxXQUvJ+m3XYLId7nXBfNcuu6x30T+7kZfnUX8j1vR6LdNG0eL+5WMXbmfGIt7iSS27vOSziWEa88GzsiJeenB9RDzCxIOFceZcc82NpH6HbZvU7GcGUn/CvzJ9p/T/tbEXOIuIn+tteikpO1sz2nsT8f4UGxu0HKu1SmGuifwDKKA/PbOL4bai7sj0Lu7W8btlYyfrVyj4ZqJbZoCrlUIf8fuRNzYiZ0xp6KiomJhxBWHvKaKrFVUVAyFzU/6+igL42ajikpWVMwQKJJ0LwNeZ/uOdGzYpO3KNSKukkiGyLNtf7nr+N7Abh6iUsRUYpRBvIsCJJ0H/An4CeGsXZUwdr/ZGUmLA/hnEaIMe3SM5ZLWt33jBNf9DbgttWXttE3aX8v2shltKCI6VoonfX5nwoi/LeFcPR34Vo7BPReSLrc9sGJ5yf+xD3+2EGS67rnAB4lq5O8FvgKsQjiM9rV9YUueG4BdbN+mSHj/CfAaZwqitLjPU50ECSWdaPs/J/j85sBZwKmMTyjfl/jt/DTj3iWFIH9me9M+5250RsKhpJ8TFeXPAE63fVPba7t4iolm9uEfqo8uiMh9v0q6nsEJWBsWaVgGVIUgK3pAYxX7Os7adxKJIG0r9lVkoPD86Erbm/U5d73tZ0++xRUVFQsTqr1gaqHM4gkTcC0GvIR4P7+YWAdvC6yRG1CvgkJh6ZoSQpD7J46lgK8DZw0bCCdpWeBzwGZEsi9EMuWVwIHOENhLtslrgO8AD9MV3Gj7mAyuku/8UgFVRftCxcxACijtBMJvb3uVETdpoYSkLwG/IoTd3Dj+DmAd2/tkcBURxtNgQcLJjFmTFYIsJqqbrtmICJScJ3BNFJW5tv9VA/lmAfsAhxNj/rG5djeNCb/MdwpY2vbiw7St6x5ZQpATcOXatIqJmZROnOpzj+cAH3NeoaEiYpBtfAgZXDPVFn8acFq3T0HSgcApOfZEFRKCTJ//HLAMkcCzD3Cp7bekczl+rCJ2+By0scVLuoV4r9/VdfypwBzbz8y857rAzoTwDsC9wPm2b87hKcmVnv2hRF9/KXAacGTBNZWAF9j+Qdp/m+0PTHDNBURRgEu7jr8POMr2rIz7Hws8H7ga2Ak43vaJ6Vzuu7Uk1++IBOnTgW+4S8hxKiDpKNvHDjh/K7BZdyKEIsnoKmeKqKbrdmB8H71omP+1JFfF9GOqx5l0j+yxpuv6yYpK7tfYPQYYt0Zwe6HsIjyJa8aNM+kz83wmChGLK0rMB2cKVChhPl3fFLqEsbVPsfXOwohko9yZeO7bAF8mRAnnDLxw7PpfEvYFdx1fDLgl931YCiV/O6W4NHPj9q4CdnRDWFfS6sAFwNq2l8tow9ZEnNdSxBzwICdh8SHmfyW5pjV2r82aW9IZRGzcl4BOwZY1gP2IolO7DXnvyQpBrkkUSnkxIUQiQqz+YmI+cmcG1zzBUkmfJIQv35325xXDrqioqKioqKiYyZC0GjEX+i3wc2J+tAkhFrW17d9MwT1bzXeTfWcrJlnQUdJcwu84t+v4NkRczdYtOG4ANrL9qKRliDV9z7yElm3qiIT1hDMKq3bxbgLsRcQN3UHYgFrb3FS2wMl2hP/4ycB1tv+hKLY2m8hLfEoG1+OIfJuhuRRihI9BXzG1keZGtoGkk2wfMsFnNiR8x52CPp8ETgK2IHz5H8+4XzHbZOJ7EdE/X0b4Ebck8un+NvDC8Rzfp38fte1tMrg+RYhB3Zh8Dj8BHiViRA6zfXpbrox7thEkvJP+fRVnFEyZqtiVyUJjYnZ7EHaRMwlxwlxx12KChBn3bCPWdyf1O8zl686ZeRdhw22dMyPpp8Arbf9G0sbA94APABsC/7R9YAZXsfFB0qm2X9fic+OELPt85hSi0G/PONPG5+b5JVq2cVVCJG8PMouhDuDcDnir7W0ny9XF+w2XK05cuUbANRPb1JZL0l+BPxDFEh/sPj/sHL6ioqJipqKKSlZUVAyLKipZUVExFJJBZw/CwXE7kUTyTttPrVwLDldJJCfm2cBDjBcvW5owBN47gjb1E6oSEWT6uGlu0iKDriDXxQjn9ppOwmxTdM82Tp2Bv5PuxLMJuIok/pbi6eJchkiY2gP4f4TQw1dtfzeDY2/bp6XtLT0+cTFLBEQFBdpUSAgycV0FHEUENnwGeKntyxXJfqdnfIfdwhc32N6gbTuGQUYQxxOB/yAqcUEEBJzkTCESlRWCvNn2s3LPDeB7JtHXdyfEWk4nnGB3ZnCUFM0s2UcHvcfsDMHFwlz9+p6AC2w/OYOr2LhcUTEVkPR04Ild78FnA58AXmR7sZE1biGGpAeAHxDjygvSNmn/+bZXyuD6Zb8kMkm3uWXVxYqKioULkr5J/7nRNs4oOFCRh5IBcV28jwN2JILZXgDMtb3XMO3SJITCVFYI8jFCYKAzJx7XZz1EAZcU9NdZv91k+1dDcGxEPOcdCBvg6cTzznbeqGwF7yJikKX6QsXMhTIFTCraQyGo93ng3wghQggB258DB7hANWgNIYw3gCtLkLCkHVdlRXUXd6aY8gCuJYD9iTH5h8AHbd82+KrRQQXFwCX9OvO9U0zMZLoSp4boW0XEICVtyvh5jIH7bP+6zyWDuGasLb7g/YoIQabPX9ex+yoEaU4mbNV7ApdnjluTtsMnnpKimTsQyXe/ZEwYZU3g6cAhmbb4I4jncgZwTzq8OvE/n2H7gyPi6n7f/MKZYpk5aOlrXRrA9kM9zq2WExOQ/Bab2H5E0orAV4Ff2D50iHdrSa7FSCJJRELl5USfP6/X/92Cb3uiD8xt/mYk7W/7Cy059iMKHc1hfH9/CSHofWpGe/YlEsDmEAKQpPa9BDjGXUVEp4urYjSY7nEm3aPNWNMU7OuOL7Dt5Ye891DxMFZiSQAAIABJREFUF6V5So4zKiswUKxAqKKo4xuJ9/J1wBeGXbcU5pp0wnxFPtQjWVfSSkTs4+5N+9sEPLfaXif33FSj8G+nCNcMjtvblhD7u7br+IrAwbbfn3G/KwnBkhslvYZITN8nxX3lzv+KcTU4Jx27l3iWsP3PrmOr2L4vg2NJQvCnKXx/D/BN4PO2H87gKikE+RPgeODrth9NxxYjxobZOTYJhbDQxmk9cAshDNoRtJ5y20FFRUVFRUVFRQlIOhW4ptt/Kem/gE1t79fzwsndc5hid0MXdJS0PnAe4Yds5pxtCezsCYTqE0exNVi6/rfAKfT20+WKhK1DPJc9gfsIYa/DPFze4MDv23kFTmYDbwduAx5H+Is+RBR7+LDt32ZwvRk4ugRXKUh6S9chE8//h7bvyOQ63vbstP1m259onGslRtb4/E+JvvUTIsbqKELs/52TWZ8XsE3eA9yd2nau7Qcl3eEMcb3SUCMfKfXXrWzvIulJwHdK2HR73LOIrXgU6Nf2ZEfdyfbXhuCcRdgwTiDEf4cV1J20IGHGvRbYOL6Z/B12cW5AfJe7OyPfoitO4TjgMdtvTW28xnm5a8XGh5J9RtLhwEHAu2x/tQRnF/9KhL00J35iG+BTjIkZf4gQ3BPwPtvnFG5jsXG0co2Gaya2qS2XpHcz2D/aeg5fUVFRsSCgikpWVFQMiyoqWVFRMWlIeh5hIHo1cC1h7PtM5VqwuEohGaCayelzB31+itvSy/kmotLy22y/bJqbtMigtLO25T2HDeJcBbjfmZMMFUr8LcUzgH9Dwvm4oTOEr6a6XcNChYQgE9e8SuTqEjPM6U+av0LlW5r7JZwxPe453YmsxYQgJV0KHG77iq7jmxFVF4cWBVCIm+xBiLj8zvaWLa8rKZpZso+WFMItyXXJBFwTVoqdgH+ocbmiYiog6QJi3nh91/ENCYf7jqNp2cKNlNTXF7YvzeA6HbjY9me7jh8IvMT27sO1sqKiYkFGn3GmM/dQzjhTkYdpsg8sRxQ4yRHCKFU4opgQZMn3YeJbEngtY3a7G4kk1tYJoz04O7bJbYnKy+dnXj8lFbw1OWHQ4sU/KmYWVFCErmI8JG1k+1pJawPrpcM32f6VpDfZPqXQfYq8S3L7Qkl7qcqK6jbbdaLt/2x7bZ92PUIk9M8nxuuugiyjhjKFICfgyu0PxcRMJD01xzY3DBTFh77dzwba55oiYpB9bIkrA0sCe9q+psf5flwz1haf7L9NgY57gfNt35x5v5JCkLfYXrfr2DuJZM9VnSF+2sUxlB0+XVtMNDNdMwvYnPHP/UonQZIMnluB9T2/WMuSwI05z6ow1+3AYY1DHwEO7+yUHpfbznclrUAkQDaf+0W2H8i8X7dvbjHCr7I8sF6mb6YYVxfvksBLiT6/NSEM+dqM648Fng9cTYgKHW/7xHQud/6wEvH77X7uf2rLkXh+AWzR/X0l/p9mvsOKcVWMBtM9zqR7jmxtXXAtUTLxcLLjTFNg4BgiSXcenCcw0CkWCowT9MwW85R0JiFEfRnx/91l+81tr58KLhVMmFdBoctFAQV/e+cCZ3fbfSXtDeyWY3sticK/nSJcC0LcnqSVAWz/ccj7XWt7o8b++kRB9CMIgY6ceVYxrj782bF7krYmitguRcwlD3ISbBxiHplVPHoCrpJCkIOKQ/Y91+fzbycEg+8jxNf/zbYVRUS/lLNuraioqKioqKgYFXrZ9BvnpqQQiKSTbB8ywWcGFfh81hB+kKWIgg/zcs6A/3FLkT1JfyMEDSHWSmun/c66qbVQVeIraed5jLBfHOBUuE/S7S5XQG4l4IHc+HpJNxHF3P+oEIq/FdjS9s8muHRKuCTtbfu0tL2lxxcgy16/9Ik9Wpmwp7/b9hkZXCVjAublKqX9In1hsn1W0vHALkR821cJodfrc9sm6a22P5y2d3VDBE/SsbaPyuBqxmp9C/iaUzGtqbInT+Y5KgRkD7f9+oxrThh03nnFgTawfUPaXowxod/tgMtsvyaDqxP79wJC8PdM25e1vX6idjKEIGEG/9B9o36HrXiXADYA7nVmUXWNL3hzNZGLc1HanxcP0ZKr2PigKESyJ/QVkr66LVfiW42IV1mF8Ds81uBq5V+TtAbwDsaEIE8H3kPEUpye4wuR9HMiBu0nhC/lNKIITBG7YI/7lZxDVa4RcM3ENpXmqqioqFhYUEUlKyoqhsWCJiq5+KgbUFFRMT9s/xj4saLi1LbA7kSAfuVagLhKwfbFROXhkcONJDxJmxDOx12BO4BvjKpdiwg2ktRxHgtYOu1nB8xmYMJFkaTnAh8E/gi8lwi+XAWYJWlf2xdm3G9dSdeRnNFpm7Sf41ArxTMPigTR3YjEgycDZwGvy6Xps91rfzqxuO05AJLeY/tyANu3SNnNeqyx/VDXuZxF9meB5frsj2yxLun6PvcfJmji95I2d28hyD9kNu1w4CxFRdVmldF9iT47FBTJo6sCTwSWBXIcV8sMODcrsynF+qh7JJNrSMHFwlx9RSMlbZHDVXhcrqiYCjzRXYKSALav0wRirRXDwwNEsiTlJnzMBs6R9FrGv3eWBF45XAsrKioWAqwIrG77kwCSrgCeQMyfjxhlwxYBbNiwFzQxTIJtd6X5yaBbMKnfuYkwKYH1Lvx8QGB+liCepPWA84EfMfY+3Ap4u6RX2L4pt3GSngBsAjwbuIe8NRhQvBpsc8G18oBzE6FUX6iYuVigHKMLGM5JyQI/A37VOaioDP0KIoB2Ukh2z1K/xdy+sGp696ix3eF5QiZX037YbVv8XCZX8/+YbIL894jnu1H6a8KEoMJMQm7C1IN9rukIdeTgpmS76iVmcksm1zlAqcDaE5n/f1wZeB6QK7xzXI9jKyuEj1qLQfazJUp6DnACkFNkaKba4o8gkg/OIMQSAVYHTpd0hu0PZtAt2dlwCBMdpBCCvBh4fGbTrpK0Q9PGavs9kn7DkGPyJO3wAJt7TDTzJOBkSWczIHljQFuaYk7XA5/38GJOjxGJGt129Ccz3pc03VyXEkKEHfygsT8V43IbX+u+hGDZHELUEGIddKykY7rHxQnwK0kv6tgCkyjNAZLeRxTVzEFJrnmw/Y+UJHszsCnQushawk7AJrYfSXOir0pay/ahZPR5hRjOE7uTXyVtKel3tn/V59KedPT+rh/LadMUcFWMBtM9znR4B0KLkGDfZMcZN0QjJc12hohkD67WRUpbYL1G0ujnGZsjjZLr60TC/O7Ao5LOY/g55JcYE7p8GSGEMZRo5iKCZVLc3mSTdQ8Gzpa0P+N9fkszQp9fyd9OQa6ZGre3JvBh4MXAA3FIyxPrnSOdRBNb4p+SnmT7dwC2b5T0YuACQlQmByW5gCKxex8Gtk9teQ3wXUn7pBik3HnW/kCp5PFVbJ/ZPJDm3mdIem8m188knUyMqZ0CFmsA+wE/zyGy/X5Jc4lnPacRBzULGLoAS0VFRUVFRUXFNKM7l6GJv+UQSTre9uy0/Wbbn2icO9X26wA8gaBkwvdJfix1FfgE/ocMH5ekOba3A77Q9poeyLXRToSe8+sk8rSH7Y9kcL2KWANcIulCwm80lJ00+YbOSvkHjwO+A2wMPCJpL9vfy6D7u5Ogv+27FSKl2YKSBbneQghdAZzI+D6UvX7pF3ukKGbwPeJ7aItBOVS5WKrLHvJwcz9XvKwUbM+WdCgRN7Ynsf5cQdJuRJHCv7Sk2iNdC/A24GuNczsArUUlgQck7Uj4nbYEDgBQFODL9eO3xYTfr6JIxHGMib19kuifWwAfzbxf83cyX3GgHNi+QVGsei/CNnkF8dyeZrv1+0LSnYR95gzgIKIAKZL+Ld1n6D6qECRcAviE7bcPyzMBfjTRB+p32P47lPQp4MRki1qBECZ8lIgROcz26W25gIslnQX8FliJlGcu6cnAPzJ4oOz4sBrxvff6/RvYJofM9r0Kocv3E761TixAjn/ty4Sv7hvE2HkVcA1RnOZ3Oe2JJvn7aftcSfdOlaBkRcWoIeks27ul7Q/ZPqJxrrPmqKioqKioqKioWMBQRSUrKmYI1KMylO3HgDmKai2VawHgKokByXiLA0vanvYxPD2PPdPffcCZgAaJYVWUQeFg85I4iXBOrUAYpV9q+3JJ6xLVfHLEy0o5pIs5tiW9nujvzyQMyoc7xGeHwUwVUSglBAljQdTNAGrS/lJtSQaJYChEF6cCbZzUOxa8XzEhSNtXKIQH/4OxgOkbgS2cWcEMQNILiH6/C5E4egZwqO0/Z9CUFM0s1kdVUHCxJNcE+BqQI3BTclyuqJgKrDjg3FQFqizyUFTd3I1w3l+Ygid2JMaLpQkBq1aw/b/A8yRtTVTMBPiWQwy/oqJi0cVbGT+PXZKY3y4LfJHxQY4VZXG9y1UPP44IoPoO8DDj10m568NSQmHFhCAZHJh/LnniUycCb7L93a42bUsES7a2laWk7d2IdfPXgd2GWcslrmIVvClnxygpGlcxM1HFQacOuwJfk/Ra2z+RJEK07JlEQkJrqKwwXj/k9oViQpAT2BNnZ7arWJ/uJJDNJAzwPWULQdpebuJPtUZJMZOSoltXde0buB94S+77urAYZC/+qyRliSTOYFv8AcD6tv857kLpY4TtO0dUspgQpO29+xz/HJnjViE7PJQVzWyKOb2U8LfljqEdzAbmSvolY2ImaxJiZm2SaqeEy/a/9zuXRGpKo01/fzuwqe0HutqzEvBTIvGlLXbtddD20ZJyhU9Lcs1LGCb6/bKEv+IVtnOFgxfvCOHZfkDSTsBnJH2Nxu+hBY4nkjK78X/p3E49zvXD+4GrJc1hfB99CeE/ykFJrooRYATjDLQba4oJ9jXmk71iAloLq5XiafCVGmeamEnr3XnzIoew7si5CibMQ1nRzEUBRZJ1bd8LbCFpG2JcgPju5hZp5UKEGRy3dyYxd3ltEiLs+IV3JdYYz83gOpIQu5+XXG37HklbEWv2HBTjKhi7t6TtG1Nbvi7pZsIOcQSjHe+LCUESMWcHEEIMq6Vj9wDfBD6f27AkuNl97NZcnoqKioqKioqKEWIFSa/qcVxArjB804ezH/CJxv6GmVylCnxCgZgL290FnSaLebE4iuKquxJz+qcQheFaw/a5hIjTssDOhL9g1WSjPsf2nAy63Rmzse7HWMzKOsR8PEdUcvWu+JwnN/czY3NKcA0SbizmN7X9R+UbkmYlf8esxnaHI3et/TvgY332s8TLunzmy0zWNmnbwCWEAOoShJDZHsDJRH5Jq2b12e61PxHeQPifnwTMbgipvRj4ViZXW0woSEjEhZxCiOvtQMQpfomwa/w952YuWBxI0j3A3alth9l+UNIdOWKECXcS/Wr79DeuyeT10WKChCorjFy/w/Z4ge03pu1/B261vYukJxHxuTmikrOJ99iTgec34iieRJ7gLJQdH26znSUc2Q+S1ie+v98QhTV/OyTVyrbfnbYvkrQr0T9zi1UCrNg1l1y8uW+7dCG5krFOlWs0XDOxTW25ntHYfglwRGO/xnlXVFRUVFRUVCygkD2TYt8qKhZdSLra9r91b/far1wzl2sqkRLBDiaMd+fY/u8RtOExIsj8ANu3pWO3215ruttSAck5+kpgT9svnwL+y20PDC6VdI3tjdP2zbaf1Tj388kKW0haBbjfk5ywDMsj6QuEoX7uIAOypPU7gacDPvM34DbCELd22ibtr2V72Zy2lYKkR4G/MpY03HGaCFjK9hKjaFcTktZjTND2AdvPybh2KWA523/oOv4E4MGO40rS62yfOkTbhu6jKXHoPxgT5LoROGlY8ZASkPRr4C4iuPysSQiZbA6cBZxKD9FM2z/N4CrWRyVdxZjg4mfoElzMGbNKck1wn1/bXiPj81M6LldUTBaSTgcutv3ZruMHAi+xvftoWrZwQyFivAaRhLcF4XB/DnBkCryrqKiomBQkXWl7s8b+SZ0gszZry4rhMWiOJ2kJdwnxTMC1EbHu2oGYx3fWw8OsdwZWjvYAAaMunqbdbpwQ5BA2wHnPqvu55c6VJd1ie90+58bNw1twPQbcQKzFoCuB1fYrMrj2a+zOV8E7J/gyBVt+jFh7HcpYILaIgMJW65RSfaFitNAEInQeQQGkRQWSNiSSaw4GXp8O72X74Uye/boOdYTxrsyx/0xXX0gB48cX4rrbdmsh4gnsuLbdOjFMY0K6PWH7Y4POL4roEjO5yUOImUj6PWHf7ImcRC5Jy3uAwLXtu3Pb14dr0v7IZG/+tu1NJ8ExtC0+4x4T2uIl3QJs765ERklPBebYfmbpdrVFsv/uzJhAx73A+bZvzuAoYodPXKcBp7mryFGytZ2SaT+/3mNiTosDV0ymX0qaBWzO+Gd1pZPYzai4unhXBF4N7AU8y/ZTJsPXg/8o28dO8Jlbgc3cJSiaEsSusv2M3lf25VuBWNM1n9VF7hKtnE4uST9OHGcBZ9j+2QSXDOK6APiI7Uu7jr8POMr2rJY84+wYXefm/RYy2rUSkVzW/az+lMNTmqti9JjqcSbdo81YU3SMn2koOc508c6kmLGOzxzG+82zE91LcnXxLkGMX3sSc7m2CfMzOl5vJqKU3z/F07yREOu+Hvi8k3hzxcSYIXF7v+w3Xxx0rsW9V4YQDBnm+pJcpWL3UozPjh5LlEfS6sAFwNrOKJwh6RHGYpfGnSJ/TF6SEIJsrjPnCUHm2AAlHWL7pLafr6ioqKioqKhY2CHpi4POe0BxkB5cg+JNRpkLdztwWL/zbiF21MP/K8YKgWTbCSQtB7yKsIetA5wN7G579RyeAfwrEUKVu3t8MdmJrmt+h98g/E2fTvu5z73b9z4OmbE5k+Yq2acmuM/W/H/2zjxMkqpK3+/X7JtoCyIqKMsgDrsgMODCIps/UGRkV1BARgeUBhcWHRTUHgcVm0UcQRDUgUYQVNBpWtlERmCatekBcQNERQRsQUUU+H5/3MiuqOysrLiZtyqrq8/7PP10xI3ME6cyI2M595zvwL85Q0BM0v3Ac9BZzMj2WiV8m4hIeiVwrO1DGr5+3GtbJR1v+99HeU0jQcKG+1tQ51KtF6lH7ffzkTSD1AjwbuBC4NukRt8Dq5WVNM/2BtXyNGA71wQJM/McS1534jts7lP9uvNd4JJWnkTB+O7rSPV5uQ1hijBK7vIKtv/cadsIr7+HlJN6VT+2JN1JaoTVuu5cW1/PiVGOci/pjPN7o7wjSTt7FMHssDUYWxPRpzGwtUhobARBEJTiliPfFiJrQRD0xJZnXlpS/HvMiSKvIJg4lOwoFLYGZ6s4VZL5NJIQ14WkopLHBuTOXqRuWddKmkUqdhr4Z7Q4USUS/j/SJOsupA7c/5lp4+22v14tb2v7xtq2BcmFoyWmVtSTNZ9q25Yr4Lg18GngcVIXwK+RurJNkXSQ2wrixtoOQNMAb7WP0YJjjQUlxhPbuR3+xgVJr2CoePXvwMuBLWzfn2nqdGAWKSGhzmuBnYH3AriBoGTJY6va5+9oE/joBUlzGbmY384odCd1LRu146ikM2y/b6Tttm+RtBVJNPOd1fA8YCtnFsgWPkaXbAXCJZ1s+6ZqH/cqu3FmUVvdyA1QFTsvB8EYMQ24XNKBDBedXZpUdBOMDVsAG9t+rioQe5hUHDOo54ogCCYfL6iveHjX4uhQObZcUl9RuhndgRQ32B1Yrakh23cCdwLHSdqG9Dx2hqRjbX8nxymXEwqs31xP7bKtCR5hudP6aEyRtEx7QWd1nc2dd9k+8/Uj4oIdvEmdxVfqsAzw5QyfQjRyEpBTVB2Uoyq6fwg4GPgW8APgSGCFKmE2pxj/8iZJhKMxjsfCMUARUUnyrxcl47jdPq+I03TA9jXANa31ao7sCNufyjDzFEMxh365jir2rzaBa9Lvsu+kWSUxyMbHg6QzOrx+KrANcFQP+38FBWLxkpYADgNeBsxqm3v6qO1PQrNYPCl+dLWknwK/qsbWJIndHDniu0b2rW8hyMrOsaTPaSapcQekv/ciSTNtf7qhqSJxeADbbx9h/Mtk3LNVLBCkt/1MP3FuFRQoKmmrsrcc6Xg4ANiMdK7eE/hhpp1dSN//1fXfi6RDbJ8H4FFE3io+BdwmaTbDj/edSHNROT4dRJp3mk06ziE9b0yXdJLtrw7CFnAccIPdvWFBk+JFUrHwQtj+qKQvZvj0/C7blsuwg6R1gdVsz2wb31bSw7Z/PghbweAoeJ7pdM1fgCuh7IbnmrE6x98FnNfLebmUnYpi5xkNCSkIWE5S6zmqL8HFfik5Zz5WOSJOzW2uBK6UdHzm2zdp+6xbn/1AP/fFgAtI54cbgN1Iz8PTBurRBKdE3l7N1kJNoSStYvtRaJy3d6uks0jfZetecg1SLOn2TH/WBE4BdgTmpyE9j/SMflzOM2JJWwVz944jzZcsEJW0/ZCk7UjNXHKY63INXQ+vcjVz7mVH4hAgRCWDIAiCIAgq3FA0UtLBDXIrpiiJGU6pLbcCLLnP2S9Sakyn2jLVem6O1cqk3KBOwR6zcP1EJ64GXly9dmbTeeMuPEKaQ/ko8CPbltRTbnA1X96JS6t/OTwtaUPgd6RYd12Mc/kcQyMdL1W8a49ebUlasRr7U44NYH1Jd5GOg3WqZar1bEG1EWpTppKa2R+UY8v2K3L3PxKS9mo3DzwK3GH7yVL7yUWpUehngZeQ5o+/QHo22wr4XIapTWvxsPa45LLlPB7G3sBo8zKvry0fDJxWW8+pUwJYVtJmDJ2znq6v274t014RbE+TdDRJeG5/UkxjZUn7kJo6NvpNSvqw7VOq5b1tX1LbNt32CRlu/a22vBNVjqjth3uI73erm84lvsPmzJe0O2medVtSUxGUGn9lzUW2+bgZKTa5N/BLUnwy5/2N5p4acqyklwKrA3fZ/pukF5FizO8knRebsimwiqQt+rS1MilfqH6st45Lk3FdbHov2YDraJB3NJroX9gaqK2J6FNpW8tX55cppPuQ1rm91ZwuCIIgCIIgWAQJUckgmDiULGoOW4OzVQxJqwAfAPYFzgM2s/3HQfkDYPtbwLeUOm2/hRSYe1FVoHF5wwBD0AOSdiYFtncmdcn5KklgtJcA5THA16vlMxieUJmbXNhK7C4xcXUmcAIpgHsNsJvtm6piv4tIwoDjaSeHUSdWOhUIVr/zx0YrbljckPRj4Hmkwsx/tv1TSb/MLWKt2Nz24e2Dti+X9MlMW8WOrREm26E3IcjdM17blSaFrBXbNrBVRDSzMCUFF0uK6l4xwnsEvDDTr5Ln5SAoTnVu2EapY+2G1fB3K9GIYOz4m+3nAGz/VakzaAhKBkFQkpslvdv2OfVBSf/CkNhKMAa0hAOURPAPIIkUTCUVQX6wy1tHRNKqJNGDjUhiZlnC8JWN07ttz0g+Kxm3K5mY/1Xgm5KOaD1HVYJMp5OKV3O43V2E3jJt1ekr1uBCYpAFj4UgWBy5lSExkydJRQe3VOtZia6MgzBeYUp27Mg6H2bEx5rYGvFcKimEOmpIWgP4N4aKbS4CTmao4VoOjzUo/mvsWm25L4HrEZLzexGDnNO2buAx4BhnNvQpHIv/Eqno7hbgdEnX227db+0FNI7H254laT1gS4YLQf6v7WdznFI5IUhIhR4bdBB+OZXUVKmRrZJx+Gr/RUQzKSvmVFKgqJgtSRcCryMJJZ5Bmuv5me3rMu1MJzUvuw04QdIM22dUm48kze03wvYFkr5DEiVqfYfXAcfb/kOOX8BHSPNi89v8fQFwM+k5Ztxt2W4qpDdq8aLtpyStLOnNDD/mr7L96y5vbWfOCHGMw8gXJp4BdBJPe6LallNEXNJWMABKnWcq6tf8k+hv3nWszvFvAjagB2HrgnZKn2eiqUIZ3svoBekLGCuhy0nMsbBArGLdauxntv+aaecfbW9U2TqXiOWPSMm8vWqe/GukIvzbSKKC91ebZ5MXozmI9JxyEkP3Rg8BVwDnZrp2Mel+48DWc5dS84C9Sc9TTUQux8JWU7o+o9v+wYIXVsI0th+v7ndzGll0d6KDWOgohBBkEARBEATB4DmKFKfoRrtAUT+iWUUafFY8kCHE3hHbe0pamTSXc071rHkxSWAyp8lhi+OB/YCzSHMxF/fhXn2+vJ3c+fKjSEKUqwKft/1LAElvIlOUv071rLMLQ8+MN9DWILiBjfeSPrcVqvU/Af9h+6yGJko2TYR0LNQF7Uyaf/1zqR1U84Afsv3ujLd1io9PBTaWdOgA89DPITUK+DGwK3AH6ZxyYGas5k6Xa2DQlCbz3SUFCR8GTh1h3aRG2o3QUHMgSEJYfTUHqmr6rgWulbQU6btsnctWaWhmP5KYIaTfdP1csCupFq0pJQUJSwojx3fYnH8h5ZK+GJhmu9XoZEfguxl2WufMVqPQR0nXadnupZl5e75JP/wj8F/Az4BllJrf/Acpdrp5pq33kASp+7LlsmLGx7QNtcSMf9S6j2hqqrbcV95R2BqYrYnoU2lb9fN5p3N9EARBEARBsAgSopJBMHEo2RkqbA3OVkkeAH4PfAX4C3Coat2EbJ86wvvGnGoy6ELgwiqYvDcpYTVEJceOWaQJxtfWJjBP6/6WEek2qZMVMCqc2L1kS5hU0sm2b6r2ca/yOmmVspPDqIXJlcDHp4HHgU+QEoRXIU3KHGR7LMQuF1V+R0p2Xo00cf9TehfD6NY5ckqmrZLH1pgKQQ5asLSwaGZJSgoulrT12R63LUQU3ASLCravJU3cB+PD+m3POfXnHgZ4Xg6CYPJwNKkJxQEMJU5vDixDEjkMxohKzGRv4EGS+NJJwJxehJQkHQLsQ7qfvRTYJ1eYqEZdhKMf4YOSQpDFEvNtf1LSkcANkpav/PkT8NmamExTrmMCCr0VFIMsdSwEwWKH7bUKmiuZRDge5DbsqCebD9tEZkK9pF+22VJt3bbsUDPkAAAgAElEQVTXybHXhWNIAgtB4qvA9cA3Scn4c0gFNxvVkuub8rfRX9KYkgLXpcQgL+8mSG37wQxbJWPxW7biC5LOBM6SdBmpsCFXgHNZUtHAusBc4Fzbz/ToVxEhyIrnSMKn7TH51RnehGjcKCmaWTi2XFKgqKgt4A/APcA9tp+V1MsxvwepIeQzkj5OmjNf2/bR5B/v6wKr2Z7ZNr6tpIdt/zzHHJ1/w8/l+lXYVs4+u79AOoj0TDGbVEgHsD0wXdJJtpuKXU4DLpd0IEPPLFsASwNvzfI6fX9z2wdtz62aDwzKVjAYSp1nqMd2JE3rRzR7gp7jByFm1+Q8U78PuQs4r4/7kMWZificOZm4VtIpJDG6B0if9xqSvgJ8JEPQbsHrqvua8p5OHkrm7Z0C7GJ7nqS3Ad+X9I4qByn3Szjc9pkk8Yp+WcX2MLGXShBypqRPDNBWU7peb5UaOJ1CKtyfn4b0PJIA9HGZzRWGCcQo/Xh2IDX+2p30jD0INq7lLtXpSYwhCIIgCIJgMWLU+/CSAkUu1OCzoqPvVXxjD9uNxA1t/xH4iqQLSIJap5Nyh7Jr1mzPAGZIWruy9S3gJdV8xuW278uwVWy+3PbNwPodxr8HfK+1LungJnE4SW8gPQO8iRTX2hZYy/ZfcvyS9FFSA7rtbP+iGlsbOE3SVNujNm2z/YCkPanm1WxfleNDBy62XSRXSdLGpFqIVmPBL5CE9bcCPpdja6TGDpJeDnyjsjkIlrF9frX8E0lH2f5wD3YGUffTZJ/FBAltb5fnXldbY9YcqIqtXSHpPuDpjLcWq9WkoCAhBYWR4zvM8uE+Uu5L+/hVwILztKTjbY/WoOleUmxyd9s/q953dI4/tf0vdI2rftfze6g/PBx4pe3Hq9jbfcC2tnMb+EE65vu2Jenttr9eLW9r+8batiOrWGpTOh2jrwA+Iunj7fP7XSiZdxS2BmNrIvpU1FbJ83sQBEEQBEEwcQhRySCYOJTsDBW2BmerJJ9h6OF9zAKl/WL7D8DZ1b9g7Hg1aVL1B5J+QSoO6zXxv2TwqST1grun2rbl+FXKTmnOJHWlWpmUkLqb7ZskrU8S/ghRyQoP73j5cUn/ADxf0pa2c4tJHun0PkmvIQn35lDs2CopBDlBBUuLiWaWpGTBVGFb15eyFQRBMAKbkIpXftU2vgbROS4IggJUIjjbSNoB2KAa/q4H1wF8ceIwUgLVF4ErbD/dq1gBSVjxblIh8i7Azm0NTt7c1FBB4YOSQpAlE/OpEszOlLRStf5kj6aKCb2pbAfvImKQJUUwgmBxQ1J7oYaBR22339c3YcLFhEsKQRZONt+ibX0KSXT5g8DtBfcTah3DmWr749XyVZL2Bg603YtQ3xFtv59+fjslBa5LiUFeRyFB6sKx+KVrdp8BDpd0Imk+ZMVMWxeQBG5uAHYjzeVOy7TRoqQQ5DTgakk/ZSjGsiapSO/IHv3rl5KimSUpKVBUzJbtTat5uf1Jc66PAitJWs327zJMLdkSGLM9X9IewNmSLqH2W2jIDOD4DuNPVNv2yLD1KeA2SbMZfozuRJo/yqGkraY0uSf5CLC57fn1warY6WaSSPHoO0rf9zaStgc2rIZ7jWM8v8u2rHuawraCAVDwPLOQ6TIeFqHUeXkQYnZNPsf6fcibSLHOo8bSqUnKRDpmJyOnkOKka7VikpU43merf02P2VYjTRjeTDME6BamZN7e0rbnAdi+VNI9wGWVwErub+cQUj5aCW6VdBbpPNi6/1sDOJj8eEhJW6W4mHR/fWAlcImkJUhNu2YCWzc1ZHt69f6tSSIye5Ji+0eQ4kc5lBSCnGt7s8z9B0EQBEEQBH08w0paD/iQ7XdnvKdUg0+Ad9TsLkHK9dkf2JkU22gkKilpm+p9rwN+BLzV9g0ZfixEJZA4ndQQaMPK/vdIcyqNkbQkaa6oJQj5f8BVY9gE5CjSs0w3nx4iNf/9IvBB209K+mWuoGTFO4BNbP+1NWD7F5L2Ae4ERhWVrJ6/NgD+B/hENc/XTxy/ZKDuHNLn9GOSuNodpM/3wPrf3A+VqOZSJWz1yLKSNmPoc3u6vm67qYBffS56IWxni7w2oMl3XUyQUNJebUMGHgXu6CPvrm8Kip+WFPcqJkhYUhg5vsMxYW9gNFHJvUixyWslzSLFsno6V1c5HN+wfa+kZYD/BjYFnpF0gO0fZJj7q+3HAWw/KOknPQpKlrR1DPD1avkMhufPZMVSR8o3ljQV+AHpe2hCybyjsDUYWxPRp6K2JL0dkO2vtY2/A3jW9oWZvgVBEARBEAQTAOU3DwiCYDyQ9ELg9cCDfQRTwtaAbQXBWFCbtP1n0kTh5bYbi3pK+gvwM1KAaJ1qmWp9bdsrlPW4sV/PAn9mqGi4NakqYFnbjSb6StnJQdJNtrsml0q6w/am1fI9tl9V23Z7JHWOjKQXkQq39wfWtL1Gxnu3JHUePJ8hQYwtgIOA/Zy6Tja1VezY6iYECWQJQUqaw5Bg6dm0CZaOxbHVyzHbq2jm4oCkuXSZZLS98Ti6EwTBJETSlcDxtue2jW8ETLedU5weBEEQTCCqpPCdSM9LOwLXAm8E1shNoJb0hm7bexVDl3SbC3Ww74eSifndkngrW40TeeufT/tnNYE+uyJxi4ny9wTBooKkazsMTyWJVe1v+44MWw8Bp5LiWEdXy1Tr03LibYsLkqaQing+RCpumW77/wraf9D2mqXsLepIuhPYjqHE92vr663k8Ya2Sv52uooq54hWt13zh4lB5lwj69fl9mt0v9fsPmPxXwe+3h7blnQY8MXM+Plc2xtVy0sCt/R6DyFpV1JhQEchyJxYfGVvCrAl8NJq6NfA/7ZESUrS5PuUdC+wi9saWUl6OTDb9itL+9WE2nwKDJ9TyRZGKWmrg+3NScf7PsBDtrdp+L4rgc+0PyNJ+iRwgu0pGT78r+3XjLBtwW8hw94LSIXD9WP0KqdGkVmUtNVwf02O+fuA19j+Y9v4ysAc2//QcF/LAu8hnQvmAuf2WoQs6SLgGtvntI0fBuxke99B2AomBr2eZzrYmTDP06XOy2N5fu+yzybnmWL3IZMdDTUKaN3Dt+a7BSxnOxrejxFKIufrtedeVLHie5teD4PeKJC3NwfY3fbDtbGXAVcC6zijcUbJ64OkpUmi9W9h6P7vIeAK0r3S04OwlbHPrrl7kn460m+j27YRXj+dVPD/IKmR9OWke9G1Mt0umjPYzZakpdzWjCAIgiAIgiBINIwXdBWrsv35jP0dXFtdqMGnMxt1Vrk+B5CaY9wCbEuqCWokcCjpfmA+SRjpGmBYnDRDEG8k+0uRGvv82qlpcc57X1r59FuSQL2AzYAXA9vb/k0/vo2wzybHwwySuPzdwIXAt0ki72v3sL97ba+fu63tdXeThCmflbQ8cIPtzXN9qdlr5RZ0JDMnakENVbX+i14+p1H28UrgfNv/VNJuxv6vY+Q6ENveoaGd35IEODsKxeXMSzdF0gmuGieMB5K+0mF4KrAxcKgH1MBc0s0MFz89gSR+eqIzxE8lPQf8iQL1Zhn77Dk2pN6EkeM7LExObEjSCqR42/7ADqRme5fbnp2xv3nAhrYt6fDK1huB9YALbG+ZYesRhgsr7ldfz8zHLWJrLPNpRtpPg9eWzDsKWwOwNRF9GgNbNwM72v5T2/gKwA/7ubcMgiCYiNxy5NtC4yAIgp7Y8sxLx6VrcikicSsIJghV4cFxtu+WtDqpc88cYB1JZ9ueEbYmvq2SaOFC91b3nmtt/2gALgUTBNv/A/yPpKNIgdv9SEJySNrAVTfzLrxqlO0DwXavHdzHxA6ApLfb/nq1vK3tG2vbjrR9ZrXPJt3Kn6stP9W2LR5Au1AlEJwJnFkVQgIg6Qzb7xvlvbdI2gr4V+Cd1fA8YKvcxISSxxbp72kJQV5DmxAkkFPIumRrEkjSybZvqvy9V8p7NqmK6Fay/fu28VWBJ2sTaqeNYmdE0UxJWaKZiwm7D9qBIAgmPau5TVASwPZcSa8Yf3eCIAiCUjiJ18wCZil1Dt6dlND2ayWxogMyzN1u+4lOGyQNRPSqQ3xsGDmJZww1GoAOifmZfJYkMPbfwNOMkNDbkJKdZ8eKiFsEwQCwvX2ncUlbAKeTmmM15RxgpQ7LAF/uycFJSlXYdAhJfPNHwJ62f9b9XSPaaomsLLSJdL0OhliZdK2uX1NbRWoGGhcXlfztFC7Oqf9tU7tsGw2PsNxpPYs+Y/FvH2H8y+SfZxYIXdh+JjfO3bb/WVVBTN9CkCVF6BrSNQ5fMQ24uhIWWkg0c6wcG42S8ymF52babd8K3CrpQ8DrWuOSjrf9713euvcI9j4q6YuZbjy/y7asa4WkdUlxwJlt49tKetj2zwdhK4NLGrzmU8BtkmYz/JjfiTQf1ZQLSOeaG4DdSPPn0zLeX2cacLmkAxne4G5p4K0DtBVMAPo4z7QL9i0nqRWzGTPRxSZMxLyODJqcZ4rdh0x2nCF8FxTH9sLNPCvxiIjjjTEF8vaOA1YDFohK2n5I0nbAEZnubFy7PtTp5VpxeJUHl3s/O9a2gM6iiJJWsf0oNMrdu1XSWaT7wNZ95BrAwSRxmhwOA+4j/X1X2H56LH57PQhBDrvOKV3EdiAJDO1OOu6CIAiCIAiChblx9JdwDsPFqu4g3VsemCNWBcNFIyVNc6aIZJ1K/O/ByrcP2n5S0i/dUFCy4n5SDGqX6t8wd0n3lDk+/Sdwhu15Ss2Afgw8C0yV9EHbF2WY+xSpcdmwmj5J7wf+nXQ/X5pR7+1tT5N0NKlB3v7AKcDKkvYBvtcuxjMKv5a0o+2r64OSdiCJaTbhb605L9t/Uf8BrSWAFekvF6rFspI2q9l6ur7uDNFSSVew8PczFVgd6DhPOR7Y3q6Qqd/aPrmEIUkndtls25+oFnoWlOxFkND2u0aw9XLgGySh3kGwjO3zq+WfSDrK9od7sHNnKcG6DEb9nWoUYeScncV3OCY0jinZ/jNJzPhCpeaAewPHAo1FJUnXjNY+dwFmVteQe5QabeXwobb1Wzu+anxtjVk+TQtJ2wONmzCWzDsKW4OxNRF9Km0LWKrTPaztP1e5lEEQBEEQBMEiiDrkFgVBMAAkzbO9QbV8ArC+7YMkrQTcaHvjsDXxbZVEwzvQtZgK7ANc3D4xFgTQe5cpSasAj3VKOl6cqX+e7Z9t7mct6Vngz4xjx6rJTq/H+0RAta6Lku6x/aratqzuV4WP07OBWbYvaxt/K7Cz7fc2tDOHIdHMs2kTzRzARNsiR5yXgyAoiaSf2v6HEbb9zPa64+1TEARBMLZUca232v5qxnvqzxZX296x07aGtuoiWssz/Bm4cTFrW3xsISHIXpPrc5+7Orx/E1Ji+K6kBLaLgKt7uX9XwW6xY0U/z9+ljoUgCIZTMi5WFSvFfENFVXz1DDCDVIQ1jPa4WVAGSS+3/cA47Cf3nqZRwU3uvvuJ41bH6Kmka+nR1TLV+jTbazT1qSlN/aviv29huHjjd2zfk7m/1nwKDJ9Tyb5/KCkEKelihovQ3W87W4RO0hIkEZKXkeLx9YZmH7X9yUx7UyggmhkM0eSYr4phd2X4536V7fmZ+7oIuMb2OW3jhwE72d43w9aVwPFuay4jaSNguu09BmGret8upGP+atv318YPsX1epq0XkIqc2j/7xsU7kuba3qhaXhK4pd97q6qAaMNqdZ7tayaCrWBisijPc09EJJ1Bl2JAZzQlKXkfMtlpu8+6Cziv1/usIA9J3wIua4/9Sno7sI/tNw/Gs6CHZ86pALYf73F/fcW522yVjDWVtLU9qZHtsqTmE4e37iczn6WXBg5l+DPrQ8AVpOfEpzN8WoIkar4/sCNwLUlgdI3c86CkE1wT8WgXgrSdLQSp1Aj4AGBPUr7xEaRn88b3y0EQBEEQBJMBSTNaMfxKXOq02rbzbb8zw9aCvP9q/Re2GzdE62K3r3tnSTNI9313k0Smvg3MLeFbHz7V6/OmAdvZ3lPSi4H/zqyRuNf2+iNs+4ntV5bxepjd7OesSmhnF9Izwi62V8l47wak7+1HDG80tC3wFo/euABJfwFaTRIFrFOtt+JZWTWRhZ/prmPkuJ1tNxYtlfSG9vcDjwE/tf233jzsH0l7ddveNL+g8DP+BzoML0+an3yh7RUzbHUVJLT9+f49HmzMXNK9pN9vS6Dxv0jP1Vnip4P4GxrOad7McGHkE0jCyCc6Uxi5X1/GikX8Oxz1t9+KIY5ETmxR0k2kc8HvgJ8Am9v+ZbVtxOtuDtXcwR62mzT66vT+FQGcJ9Lcem/rmli/HlKtr217hQxbc+ksZvwb4CDb9za0swGwju3vVOufJ9VaApzZ9PgMW4OzNRF9GgNb9wBbOInX1sdXIuUf9X1uCIIgmEjccuTbomY/CIKe2PLMSxep7sS5nQOCIBg76h1ldyR1MsOpU9hzYWuRsVUMj1AUr9S57X9IBY1B0E6TLlNbA58GHgc+QUq8XAWYIukg27PG1sVFCo2w3Gm9K7aX6N+dIJcRgvjQ4yR5QerXl6fatuUGJDaR9ARVUUu1TLW+bKatzW0f3j5o+3JJOYWsS9qeDSDpZNs3VXbuVd/NLycfcV4OgmAcmCPp3SMUp/fTFTIIgiAYMJKOKWmuttyeiJb7DLxS/+4Mj48piZ71JCLZyXRfb7bvBO4EjpO0DSkp8QxJx7YSdDJsDVw0shNqE4Nse9ZsLKJQ6lgIgmAISatRqHt6xTHEfEOdH5A+302qf3UMhKjk2HA5MKbJ+T3+dv7cYWwFkhDFC0mxvKa8qLp3U22Zan3VDDvnACt1WAb4coadokg6lnRPNBO4pRp+GXCRpJm2P93UVuH5lAsYLgT5KiBbCLLiH2sidOcy9Hfm8iVS4dYtwOmSrrfdOh72AhrH4lVQNDMYRtfnH0kHkQTvZ5MEDQG2B6ZLOqld4GkUpgGXSzqQ4QWjSwNvzfIaVmsXgQSwPVfSKwZlS9J04LUkEaATqmLuM6rNRwKNRSUlrVv5NrNtfFtJD9v+eUNTC3JEbD/Tz9xVyd9h/KYXK5rkdYRgX3Pm1JYXakqSQ+R1ZFG/z3oTsAFw1EA9Wnw4ArhM0iEMv39Yjvz7h6AsTc7vawKnkPJU56chPQ+4BjjONQHuvhyRlrL999FfOeE5hSTKMk/S24DvS3pHlYeUcxN3uO0zSSIKfeEk4D8LmCVpGWB30u/vIUnX2D4gw9Z0GFEI8oM5flX33XuTmqRcRLomzik4rxIEQRAEQbCo8fra8sHAabX13PqBZSVtxtA96NP19RzBlpLYnibpaGA70hzNKcDKkvYBvtdEjEnSh22fUi3vXReAkjTd9gmZbtXF/XYCLql8fbiHOGx7jUWdv3TZ1g83jvYCSc+z3cqhoXr2uhK4UtKrcnZWPetsSHoe2KAa/iHwLxlib1n7bEDHL0rSGsB+tj/T1JDt7Uo5Zfv6Nn9eSPqdL0OafxgU3Zpw5eQX7Dj6S5ph+3Ot5UoM6ijgENI87udGet8InMNwQcI7SHHBA0sJEkp6JdC42cMY8DBDjRzb101q/tCEeg7AQtg+daRtfdDkxLqM7fOr5Z8oCS1/uKgT8R32QxPhxVtJf0en79tAjpj0UcClpByVz9cEJd8E3J5hZxhKTVhaAss7k+YNskQlJb0XOJ6Uk4OkPwH/YfusDDMlr4l7Mfy+xsBj7aJ7Dfg08O+19V2AfyPljJxIigeGrYltayL6VNrWucClkt7jqil0lRfyhWpbEARBEARBsAgSopJBMHH4laT3kbrfvpqUdISk5YClwtYiY2vMsf1UCHIFXWhSEHkmqbPUyqSE1N1s3yRpfVJCYYiXDeERljutBxOT3QftwAgUE4IsXNiyfJdtUzLslBTNXByI83IQBGNNyeL0IAiCYGLxWVKy5n+TEvPqQaPce++J/gw8EXwYhqRVgc2AjUixxUd6sHF6t+2239+bd/0RYpBBMHgknUHnjufbUFaoIyYcath+56B9WEwpdhyW/O2MUHDzLnovuOlbDHKiClKThDY3aBctkXQqMI+UzDwISglBQjkRui1bDa8knQmcJekyUoFFrtGSopnBEKM9e3yE1KRrfn1Q0guAm4HGopK2fwdsI2l7YMNq+Lu2r8nwt8Xzu2xbboC29gA2q343HwculLS27aPJP+ZnkIqJ2nmi2tateLPOJm1zc8vV5u0ai+hXlPwdxm968aFJjCME+xoyhk1Jgu6UvM8KMrD9a2ArSTswJDjxPdtXD9CtINHk/H4x6b7lwEqcsFV0vTfpWXPrjP0NK8xWekjZgSRGsjuwWoatjWv3R8PMkn9/VNLW0rbnkd54qaR7SKKqx5I3Z3AIKTenbyS9BviV7YdtPy1pBdK8+3eB6zJtlRSCPAy4jyT2cUXl24SbVwmCIAiCIBhHNMJyL5QSqyrW4LOFbQPXAtdKWook+rYfcBawSgMT+5HEKCHFXuvPGbuS8ttzmC9pd1JDpm1J80dIWpL82PLKkvbqMC4g63Oqmh1Nq5aPsn1abdv5rTli20c2MHcdVbM8SVfbrosB/hcZjfQkzba9MxnNl9ppCf8UZMHfU+VF7U2aw3oJqVFgYzp8fwYeBe6w/WSmrStJzRjulrQ6SUhyDrCOpLNtD6SRpu13FbLzeAk7LSRNJTUYPZAUa3617T/0YKqYIKGkK+g8j7868PZebJagoPjpEsCKjG8OThPRvmLCyPEdNkfSiV022/YnqoXpo9myvVa//tRs3Qys32H8e8D3WuuSDm4Sn5L0BlIs8k2kOYJtgbVsZ4k/S/ooKadnO9u/qMbWBk6TNNV2o8acth+QtCdVAz/bV+X40cbFtks0x13d9v/U1p+w/U0ASf8SthYJWxPRp6K2bH+2EnL9oaQVq+E/AZ+23XejpiAIggnHc8+N/pogCIJJQIhKBsHE4VDgZOCNwL61AoStga+ErUXG1phSTaS9g1SkHgS9sqTt2QCSTnbq3I3te0OwdCHWl3QXaUJgnWqZaj2nk1MwNox6wHaaJJe0Cqk71MASZwsLQZbkEUlb2h5W8FElRP8+w04x0czFhDgvB0EwphQuTg+CIAgmFpuREnf/H0k4+CLg6h6fd1qdlsXwrssidSZepCmZmC/pEGAf0vPNpcA+trMFJSturS2fBHysRztBEEw+5rStG3gMOKaPc04nori8Ru361xHbp3bbHvTMS7sJLWeKLBf97ZQquCklBtm0+KAwTYKUz5GKydpj8qszvAnReFNKCBLKidAtXfcJOLz6Xq8hFankEGJOY8NoB4rofP18rsF7hxuSlgXeQ1XYApxbHRe9MEfSu22f07aPwxj+3DHetpZs/U2250vaAzhb0iXUfg8NWc323PZB23MlvaKpkcLzdCV/h/GbXnxocq6I46E34vlm/Ch5nxVkUPj+IRh/VrF9cX2gEpecKSnrea5VdC5pa1Lx9p6kQv4jgA9m+jXX9maZ7xkPW3+X9GLbDwPYnidpR+BKYJ1C+8jlS6RcYyS9ntRE4X3ApsBbgK9l2CopBLk6sBNpzmiGpGtJz61LxjkiCIIgCILFlClVI6ApteXWw2tWfLCgWNWYNvh0avx1haT7SI1pm9BNfLOXh/1/AU4HXgxMa93Lk4QKv5tp63pGbiT0w0xbr68tHwycVlvfONNW/XOZ2mVbE/rOx2rLh2r5YHrIh6r4u6SDSc+Z6wGXkQTCXtaDe52+v6mkZgSHZuYwr2X77mr5XcD3bR9UNQa8kdTAYdyRtBVwNukZdS5wiO17BuFLzafPAHtVfm1k+099mCsmSEhqnl2nNY//U9t/68PHvhhBvHYBti9raOq3tk8u4FJRQUIKCiMT32EOf+4wtjwpFvRCICsOWNWU78aQIOT/AVeNYcznKFJ+TDefHiI1Svki8EHbT0r6Za6gZMU7gE1s/7U1YPsXkvYB7gQaiUpKOovUiOl/gE9U9ZG95tCUmvQYdu9nu95U6EVha5GwNRF9Km0L2/8J/Gd1b0X1m54i6UDb/5VrLwiCIAiCIBg8ISoZBBOEqojpPR3GryV1DQtbi4CtknSY2AF4ijQxltt1Ilh8aBKErxfvPdW2LRLsh/OqQTuwOFIlwK9k+/dt46sCT9YmCU5b6M0L29qalLz7OGnS5WukrptTJB1ke1ZR5xd9PgR8Q9L5DBUFbgEcROpE2ogJLJo5UYnzchAE48Kgn3GCIAiC8ti+k5Q0dZykbUjFgmdIOtb2dzLNncNQkkl9GeDLfTvbAyWFIAsn5n8ZuJskmrQLsHO9cN72mzP8WpB8J2maG3R4DoJgseFy20902iBpTdsPNjU0wnwDVKJoPfo3Wel2vYg4zdjxFPkiZSNR8rdTrOCmoBhkp+KDFUhN9LKLDxoyaiwemAZcLemnwK+qsTVJQjdHjoFPTSklBFky7j1H0q71+QnbJ0v6DangIocQcxobLhll+6eA2yTNZvjxvhP5v8ELSN/jDaRCoFeRfk+9MA24XNKBDJ/jWRp46wBt/VzSG2xfDwtEkw6V9EngnzNtPb/LtkHd05T8HcZvevFhtPMMxPEQTHyK3WcF2ZS8fwjK0iRv79aquPkChu4l1yCJmtyeszNJ04G9ScXbF5GaFs0pHWOWtFQlTjMIW8cBq5EEDwCw/ZCk7UjimU3ZuHbOGuYS+eesJWw/Xi3vC5xt+5vANyXdkWEHCgpBVvfZs4BZkpYBdifdIz8k6RrbB2T6FgRBEARBsKizMim22Qqq5AifDaODWJWBR4E7bD/Zq91+kbQxSeDrJcC3gC8AZwJbAZ9raMYjLHdaH92YfR+wa4fxq4CrWuuSjrf976PYeleTfUo6uMFzUDfxzFxKfmYrdxNDayiEdjVJxPMyYGbOXOgIPEJqcPNR4Ee2LSl3XgAY+TuU9HLgG6RjtSn1Z8kdSbltLcGjQTa4+2Au7d8AACAASURBVAKpscMPgTeTxC13GaA/AB8gCct+FPhILbbcyzNwMUHC1jzRAmekF5IEX5ehj3N0AUYSr4X0NzYVJCwZxC8mSFhYGDm+w4bYXnAdrgTajgIOAWbS/Brdev9LSQ0qf0uKH4oU9zlV0va2f1PK7/puG7zmUlKTm32BZyV9m97zqlwXlKwNPpV5jn89SZzyWUnLk2LovebQrNqtMbGbNyX+jaStbN9cH6zqXXO/u7A1GFsT0aeitiQ9jxRvfynwbeAHko4k3ePcCYSoZBAEQRAEwSKI7Kh9CYKJgKQr6BI0ySlEDluDsxUEY4Wkt9v+erW8re0ba9uOtH1mhq1nSRMMrYLhVgcgAcvaXqqc55MPSasAjzluosYMSWcDs9onwavJ6J1tvzfD1hzgBFJiyNnAbrZvkrQ+cJHtzQq6PimQtBrwr8CG1dA84MxKhDkYA+K8HARBEARBEPRLJcK/D6mA9O/Av9m+abBeTV4kvaHb9vYEygy7t9l+dW9eBUEw2aifEyRdbXvHTtuC8aMS/50xaD8mIyWP6ZK/nSo5/WngGYbPJWYX3Ej6QIfhBWKQtldsaqtms1V8cCip8OpzOXFcSUuQCk9eRorJ1+eePmr7k5n+TAG2JCUZA/wa+N9K2CIYA2qxZRgeXw4xpxGQtAvpmL/a9v218UNsn5dh5wWkosD68X6V7T9k+jPX9kbV8pLALf2eDyVtT22Ox/Y1g7QlaTlIRT8dtr3U9q8zbF0EXGP7nLbxw4CdbO+b61+/lPwdxm960UfSGXTPP3p/hq04HhpSE9HvNNcan1Uw6RiL+4egGZ0EESWtYvvRDBtLk57h3sLQveRDwBXAubafzrD1CHAfSbDiCttPS/qF7bWb2qjZOsH29Nq6SMIQBwC7215tELba7E4FqAk65rz39lI5YpLuBjatRJ/vBQ63/cPWNtsbdrcwot2WEOT+wGtJ972NhSAlvQb4le2Hq/WDgLcBvweus/21XvwKgiAIgiAIQNJXOgxPBTYGDu0nBtsPkm4mNav6MUnI8QSSgP2JnYSZRrDxHPAnxjmHfazmBru85k5gO2AKSZhrO4YEs661vUnG/h4iieoJOJohgT0B02yvkWHrMZJwTyfxLts+pKGdlUmN8vYDlgUuJglM9vL8NK2yswKpgcHFwPd7edYcZT+587ZXALNJz9DnAWvZnl/NQcyxvUFJ/zL8GvZ3RC7HyEi6EjjO9t2SVieJEM4B1iE1bFikczEkTe3lN9fAbr85AcWEkeM7zLcHHAMcSLo+n5Y7l1zZOZ/0fc1oG38/sLntgwu4277PRueyKu63HSme9SZS7eahwPec0bRV0tXAdNtXt43vQMqF3r4Xv/s5J0v6Lek+q6PApu2TGtrZknQtPZ8h8dXNSU2G9rV9S4ZPYWsAtiaiT2Ng69vAH0jPFTsCLyId+0fZzm2kFARBMOG55V/3Cn2QIAh6YsuzLlukukKHqGQQTBBKFiKHrcHZKomkrgEr24Ps4BOMM21FkDHpNE4odWb5NPA4qTPR14BVSJPJB9meNUD3Ji2SbrW9+Qjb5uVM+Eq6w/am1fI9tl9V21YsYTgIgiAIgiAIgmAQSDqEJCa5LKnz7zd6FYSXdHq37TnCB5MdSc+z/cQI29a0/WCPdiPGEwTBAuqxq/Y4VsS1BoOkB22vOWg/JiOSbrK9dSFbE/63U6Dwo1TxwZeB5YFbgHcA19s+ptqWW8i1LPAeYF1gLkkM5ZlcnxYXlBpf1UVkfg18x/Y9g/Nq8iNpOkmc5TZgD2CG7TOqbY2PeUnrAqvVhVir8W2Bh23/PMOnkoUtxX6HpX/TVUHrriwswjk/085qwOXA34Bbq+EtgKWBt7YEdIJgUEiqF+6dBHysvt32BePrURAEk5HIGxt/KqHtr5Hi8LeRRATvr7blPjtlNY8exdYSwE6kou0dgWuBNwJr9HEfuDVJ/HFPkkjOEaRnlV6eOfu2JWlN4BTS3zefVMj6PJIIzHGuCcWPYmfEeEAnsdBRbH2EVCT/KLAm8Grbrp4TLrC9bYatYkKQkm4D3mj7cUmvB2YC7wM2BV5l+21NbQVBEARBEExmJK0HfMj2uwvYejkpT2er/j3raf8L6iSq9WyR+UHNnRUWfh/VlqT7gecYWRhqrYz9fazb9qYiU5Wtos/0Sg3g9gNOJ4lznTrKW7rZWruytT/wD6RY5+W27yvg5yuB823/U8Z7XgScDKwOfMH27Gp8e5Ko2mf79asXJP0C+GBt6LP1dduXDcCnHVpit5LWsv3L2ra9cnwqLEi4oBZM0gnA+rYPqubOb7S9cY69UkjaCjibJIw4FzhkIszZFswJKCaMHN9hlk+fIYn9nk06ZzUWWOxg617b64+w7Se2X9mr7S77zL5OS1qK1JRxf2AX26tkvHcDksjyjxg+B7wt8Bbb8xra+Qvws9Yq6Zj4WbXsnGO05DW6muM+AtiAdB6dB/wA2M/2EWFr4tuaiD6VtKXhzcyWAH4LrOmGQvVBEASLGiEqGQRBryxqopJLDtqBIAgSdeFCSatWY78PW4uWrcLMAe4mBdth+OSVSd2bg8UHjbDcaT0ox5mkjo0rk5JRd7N9U1XsdxEQopJjw/Jdtk3JtPVcbfmptm3x4N+GpLl0/lyyJ1CCIAiCIAiCIBgXvkyKHz1ASsjaWRoKE9h+c4atW2vLCwkfBMO4Dmg1/7ja9o61bd9qbWuCpCcZeg5bXlJLrLL1HPa8/t0NgmARxSMsd1oPxoeIxY8dR7Q1WzPwqO1f9WBrwv52OhR+vDq38KOt+GCjfooPgC1bMV9JZwJnSbqMlOSfe7xfAPwduAHYDXgVMK0P3yYtko4lfcYzSYKeAC8DLpI00/anB+bc5GcPYDPbz0j6OHChpLVtH03eMT8DOL7D+BPVtj0ybG3S9gywXLXey/NAyd9hMVuVMM7HgNkkMUmA7YHpkk6y/dWmtmz/DtimKhLdsBr+bk7BWxCMJXXRSEnTQkRyfGgTwr0LOC/ErYNJTsn7h6AZp5AKoedJehvwfUnvsH0T+c9Oh5Dy0frG9rOk3LVZkpYBdgeWAx6SdI3tA5raqgTY9wYeJOXEnQTM6eVaVtIWcDHpHvvA6u9tFbXuTXqmatqg4pI2H0XKvz2A9Lmt1tQh25+SdDVJyGS27VasYQpJxDGHL5GEQKmEID/NkBDkW0hipk1Zwvbj1fK+wNm2vwl8U9IdmX4FQRAEQRAs8kjamCTu9hJSHscXSPfiWwGfK7EP2w9UAkqDYllJmzH0XPJ0fd32bQ1sDGrurOR+R7Vl+xXFdpYhGtmAjs+UVbxrD9uXdNre4fXbkOaeXkcS5Hqr7Rv6ccz2L4DppFj+hpX975FicI2QdAULfz9TSc9Tb8/05xFSDLBu/wUkQf5rc2wV5nqGzwvV1w2Mu6gk6dzXmnv/JsPz2D5Knk+d5rymAhtLyhIkJM07tdgROAfA9pOSnuv8lnHhCyQh0B8CbybFIXYZoD9FcwJsv2uEfbyc1AAzRxg5vsPmfAB4mvSb+0gtp7eXGG57LWSdv/Tm3qjcONoL1NaYvWraciVwpaRX5eysirtuSIrVbVAN/xD4l0xRu6z9jsJI1+g1SIJ9n2lqqJrjPrHKi9ofOBh4PekcnUXYGoytiehTYVsLzu+2n5X0UAhKBkEQBEEQLPqEqGQQTCCqblXvIyUXSdIzwBm2Tw5bi46tghxD6jr8FCkB7vI+C8OCRZsJWwQ5yVmy1sHu5CoZGNv31kU6guI8ImlL27fUB5W6s+eK/raS6euJ9FTry/bv6qRj90E7EARBEARBEARBFtuXMhTCB1nUgwJTu2wbFdsr9e9OEASTlBdJOoZ0XmktU62vOji3FmsiFj92fLbD2FRJSwP7284RP5iQv52ChR8liw+Wbi1UwkuHSzqR1GRrxUy//rHWtf5chsQSg4U5FNigKqpYgKRTgXkkEZFgbFiyJTJme76kPYCzJV1C7ffQgNVsz20ftD1X0ityHLK9RM7rR6Hk77CkrY8Am9ueXx+sij1vBhqLSrYJx80Fzg3huGACE/eO40ddCPdNpILDowbqURCMIYXvH4JmLG17HoDtSyXdA1xWCcYP7Hxf5VH9yvbDtp+WtALpvva7pMZIORwG3Ad8Ebiistfr31bS1iq2L64PVOKSMyV9oqkR29MBJG1NKk7fkxTbP4IkOpBFK4ewbey+XDuUFYJcQlLrmWdH4PDatqgXCYIgCIJgceQc0j3pj4FdgTtIMYQDSwmkSHolac5mUDwMnDrCuklC6qNRn0tbCNunjrStT0oW4/RsS9J6wIdsvzvjPad32277/RkuvKNmdwmSCNr+wM6kWNeoopKS7gfmk+oODweeqcZfXfnTRFy0m/2lgKWA02x/JPPt7XPABh4Dfmr7b5l+nAh8o6rlWobUZGET4BlJB9j+QaZvRRhJsG/AaITlTutdKSxI+CtJ7wMeIgldzqpsLUc6xgbFFNvfr5YvkdSpsdx4UzInoCM9CiPHd9gQ21MKmltZ0l4dxgVkHQuSZtieVi0fZfu02rbzbb8TwPaRDcxdx8iN2f+LvMbss23vDJzX9D2dsP1AP+9vY8HfI2lVUpOb/UmC5Zc3NVLda+xf/XuU1ERHtrNzv8PWYGxNRJ9K2yKamQVBEARBEExKIkkgCCYI1STMa4HX2P5lNbY28EVJR9v+fNia+LZKYnsGMKPyZT/gakkPANMzi+eCycH6ku4iBWLWqZap1tcenFuTnnqnrPbOTlEEMnZ8CPiGpPOBW6uxLYCDSOfDxkQyfR6dJlAkrQI8ZjuO+SAIgiAIgiCYeNxe7/ZbR9KafdiN+//uRPOPIAjGg3OAlTosA3x5/N1ZPJD0JJ3P5QKWG2d3FhtGSmiVtAVwOqmLelMm6m+nSOFH4eKDOZJ2tT2rZv9kSb8hFVrmUO9a/0w05urKc6RCg/Z4/OoMn5cKyvNzSW+wfT0sEKM5VNIngX/OsPP8LtsGea0o+TssaUt0vrY+R36xb104bjfgVcC0fpwLgmBSEOLWQRCMNX+X9GLbDwPYnidpR+BKYJ1MWxvXijPr9FKc+SXgjQCSXk8SqH8fsCnwFuBrGbZWB3YiFaDOkHQtqXB0gTD7gGzdKuks0n3gr6qxNYCDgdubGpE0nVT4/SBwEXASMGcCNNcqKQR5EXC9pEdJeY43AEhaF/hjCWeDIAiCIAgWMZaxfX61/JNKOOnDvRiSdAULxzinku593967i/1he7sCZpYgNRob74mdUcUSM7hxtBdI2pgkcPgS4FvAF4AzSYJ4n8vc36215ZOAj2W+fwG275b0BpL4/ZtIca1tgbVs/6WhmftJx+cu1b9hu6CZuOgCJP0ncEb17LsySZj1WVJDwA/avqiprdZ8TM32C0nzvssAuWKX+wKt5gIHV/+vCqxHemYciKhk1cDsrlYdTiV++c+kecCjWnWq48yY57X1KEh4KHAyKZaxb60Z2dbAV0r41SPPbxPsG7Zu+7LxdqhwTkBHehRGju+wIZJ2sH1NtbxW/Vwgaa9Mn64H9hhh2w8zXavn3hwMnFZb3zjTVrHG7BRqENsh56s1T91L7PXvkg4mXaPXAy4jXZ9flunWvaQ43e62f1b5eXSmjbA1WFsT0aeitqL+OgiCIAiCYHKi0IYJgomBpNuBnWw/2ja+KjDb9mZha+LbGiskbUASUnsH8GHb3xiwS8E4U3XxGpHCnXSCCknPAn9mqGC4NTErYFnbg+ykNamRtBrwr8CG1dA84EzbjwzOq8mPpK1JSeaPkybdvwasAkwBDqoXFwdBEARBEARBMHgk3Wa7Y7ff+rZ+7AYLI+kh4FRSfODoaplqfZrtNQblWxAEiweSplWNqYJg0hP3JYsGtfkUGD6nEl3r25C0K6lQ8acMiaKsCawLHBlx+LFD0nIAttsbySHppbZ/3dDORcA1ts9pGz+MlHewbwl/cyn5Oyxs62DgRGA2w4/5nYBP1Aq7m9iaWxOOWxK4Ja4RwUSiVqzWKb8grodjRPv9Ytw/BkFQGklvBH5v+8628ecDR9j+VIat20vlo0q60/Ym1fIXKh8/Xq3fYXvTHu0uA+xOEoV8Lene94BB2JK0NEmw4C3AS6vhh4ArgHNtNxI/kPQIcB8wA7jC9tOSfmF7oM28JX2EJBzzKOke+dW2XQlBXmB720x7W5OEjWbb/nM1th6wou1cwZYgCIIgCIJFGkn3ku5DW6JG/0USBRJAzv1RJfpXx8BjwE9t/61/b3ujTUBrIZoIVpWOo1SCel1c8ie6bG+3NcP2tGr5KNun1badb/udGbZuJjVU+zGwK3ACSYjwRNt/bWqng92+nvGq/KMHK9++ZftJSb+0vVavNvtF0jzbG1TL04DtbO8p6cXAf2fWa14JHFeJZ65OEpKcQ2rQcHZOzkP9s5b0TdJzz5eq9YHFAyXdBWxt+y+SdiflkO0PbAbsbbtd6HM8fJpPEpoT8DqGROcEvNb2Cwrs45XA+bb/qU87LwDme4AiB5K6iSHa9iHj5kxFSUHC0YSRbf+4T1/jO+xAW17vuMxhSDrYozRQaTuXDruG5fpV8m+U9AvggyNtb3rMS/oW8GKSAORM2w829aGDradIYs8fBX5Uxeyy44mS9iTpAmwLzAJmAl/u5VoftgZjayL6NAa2SgrhBkEQTHhu+de9QmQtCIKe2PKsy8a7MU9fhKhkEEwQJN1te8PcbWFrYtkqiaS1SQ/1byEVV8wEvtupyCVYPJG0CvDYIAPvQRBMLiTNISVJrAycDexm+yZJ6wMXlUpsD4IgCIIgCIKgDKMkeWUlLmt4l97lCeGDEZH0sW7bbZ80Xr4EQbB4IulB22sO2o8gGGuq5kPfs715xnuKFastDlSx37o4x6+B79i+Z3BeTX4kTQG2ZPjn/r+2nx2cV4sHklYmFYzWP/urbM/PsLEacDnwN+DWangLYGngrbYfLufx5KAqKNuFhT/3P2TaCeG4IAgWIsStgyAYTyRNBbD9eI/vHzFuL2kp23/PsHU3sKntZyrBnMNt/7C1LTOH9jXAr1r3spIOAt4G/B64zvbXBmTrSNtnNn19FztLkETN9wd2BK4F3gisYfuZfu336VsIQQZBEARBEIwBkq5jYRGtFra9Qx+2Xwi8HnhgkPdsJUS0SgrfV/Y+0GF4eeAw4IW2V8ywVVKsapjwfimR+X5j1JJmAHsCdwMXAt8G5ub4JunDtk+plve2fUlt23TbJ2T6VM9F+y5wiavmUD3kotUFKk8A1rd9kKSVgBttb5xh6ybScfQ74CfA5i3BI0n32l6/qa2SaHjDh/OAn9j+j2p9IHMYWlgIdxi2r8+wVUyQsJrH/4bte5WaUMwCNgGeAQ6w/YOmtiY7hc9/xYSR4ztsTsm83ox9jnpsSLoT2A6YAlxTLbdEUa5tnc8a7q9YY3ZJj5GugZ0EWrKEQat8gL1IdfnLAheTBCaz4rlKwsr7ASsAF1V2vt/r/YOkFUi5OfsDOwBfBS63PTtsLRq2JqJPpWwNQgg3CIJgkISoZBAEvbKoiUouOWgHgiBYQLcgXG7nsrA1OFsl+RlwFykg9gSpE/F7pXSdsX3qyG8NJhtV8uCngceBTwBfA1YBpkg6yPasQfoXBCWRNJfOSRytoo/Gk8dBNku2gsaSTrZ9E0A16TdYz4IgCIIgCIIg6IRHWO603t2QvVL/7iwehGhkEAQTgAjUBJMKSWfQuRhlG+CoTHN/7jC2AnAo8ELSHEsASDqWlFQ8E7ilGn4ZcJGkmbY/PTDnJjGSlgXeA6wLzAXOHbSIyeJCJWbzMWA2SdQQYHtguqSTbH+1iR3bvwO2kbQ90BLq+a7ta0r7PBmQtC6wmu2ZbePbSnrY9s8zzG0i6YmWCWC5aj2E44IJQds5/i7gvDjHjz22lxi0D0EQTG4krQmcQhIjnJ+G9DxS4fVxtu/PMHdJfUUpGWcH4ABgd2C1DFsXAddLehR4Crihsrku8McMOwBfIoksIun1pDzF9wGbkgpSGwtBFrZ1CNC3qGQl4D8LmFWJHuxOEiF+SNI1tg/odx99+HZTh7H7BuFLEARBEATBZML2dqVsSbqSdO9/t6TVgduAOcA6ks62PaPUvnKw/a4CZnYsYGMBtj/XWq6EA48i3dfPBD430vtGQCMs98Kykjar2Xm6vj4ocVDb0yQdTRL12p/07LmypH1Ijff+1MDMftX7AI5n+HPnrkCWqCQwX9LupHmUbUlzrEhakvQclUO9ccKOwDkAtp+U9FymrWnApcCqwOdrgpJvAm7PtFUSSVqR1ORmR+Cs2rZlB+FQjmhkAz7bbp4eBQmBfRmaqz+4+n9VYD3gAmAggoSS9gDusv1AtX4i8M/AA8BRrWNtvN0aYbnTelfaj4eaMPIypOtZDvEdNqdYXm8GTY6NlUlNE1uv7ef6dw6wUodlgC9n2nogRziyG7b/CHxF0gWka+TppPNxVi1+dX83Q9LalZ1vAS+p8mwuz43fVc1kLgQurBoy7g0cS8pdyCJsDcbWRPSpoK1i150gCIIgCIJg4iA7RHSDYCKg4V3Th20ClrW9VNia+LZKIunjdAkSRvH64oWkOaTJvJWBs4HdbN8kaX3gorHoUBQEg0LSy7ttb030BOWJzkJBEARBEARBsGhRsttv0BxJp3fbbvv94+VLEASLJ5IetL3moP0IglJIOrhtqFWM8r+2H+nDbqtY7VDgG8Dn+rE32ZB0H7CB7b+3jS8NzLP9D4PxbHIj6WJSEd0NwG7A/banDdarxQNJPwG2sj2/bfwFwM2212toJ4RBM6gKro+3PbdtfCNguu09BuNZEJSnwzn+Adu5AtlBEATBBEPSj4EZwKWVOCGSliAVZ06zvXUPNrcmCUnuSWqqcATwHdt/6MHO6sDsqngUSesBK+aIoki60/Ym1fIXgN/b/ni1foftTQdkq0iukqTXAL+y/XC1fhDwNuD3wHW2c4QugyAIgiAIgkUASXu1DRl4FLjD9pOZtubZ3qBaPgFY3/ZB1TzUjbY3LuJ0JpK2ItUWrUOKVR9i+55B+FJH0lTgGOBAksjYabnPOpWdO0lii1NIov7bMSRqc23ruaOhresYuT7PtnfIsPVkzdbyJDFBKND8SNJSJCHI/YBdbK/S4D23t+rJ6sud1hv6sB5JgOvFwAzb51fjuwA72/5Ahq0rSIJGDwHnAWvZni9pOWBO63e1KCPpEFKt3xPAI7Z3rcY3Az5ru6hwa0Of3gK8zPYXqvWbScJ/AB+2fWkftluChA/kirG2HavfJMUyvlStD6xWSdJdwNa2/1IJqp5KEnndDNjb9i4D8KlYXVc3YWQgSxg5vsMsn+YDPyRdG15XLVOtv9b2C8Zgn4tszd9I16tqXn4P25d0eNtItrYhff+vA34EXGz7hkJ+bljZ3tf2uiVsBsFEIOqJgyBY3LjlX/cKkbUgCHpiy7MuW6QEt5cctANBECRKdk0PW4OzVZJWIl0QVCxpezaApJNddai2fW9qWB4Ek4dOopGSVgEecyiijzWbSHqCNFG1XLVMtT6QTolBEARBEARBEHSlZLffoDm31pZPAj42KEeCIJi8tBWjDNsELDfO7gTBWHO57Sc6bZC0pu0Hc4x1KFZ7dS/FaosBzwEvAdpj8qtX24Kx4R9tbwQg6VzglgH7szghOl9bn2OoELUJF/x/9u48yq66Tvf/+wloCBBooKEvzkCMoJCYKCar8ccPgl6BRkFoLhKQGVGElciQFgd+C1igLchwmZQwBHFABpsGjAwaBuEKXkaZ0Xtp5uASpEODBALP74+9i+wUVcnZp3ZqV1We11pZfL/fnfPZH86uM6TO2c9mydC4TYAEg/bvH3oHSgLYvk/SBwa/nYjlKs/xEREj09/b/nl1oQyXvFjScXUKSTqBIozyCeBnFL9fvsP2hd001vMdwl5rj3ZRaiVJK5dh6dsAX6psq3uuQZO1JlS+u1RVN6zlh8CnACRtCXwXOBT4KLAjkFDJiIiIiJGnr4vZrE3xHnN/2/Nq1KpenGsbiu/nYPslSW1+nnImcARFUNXnKMLwBz04q0rSicDOFGGXm9n+rwGUW5Pi+zk9v7+vFWBXZXurAfTRu9bYZf+trmu/DlxVXhhuYac362fc17yTHh6lCLbsvX4tcG3PXNJRtr+zjHL7A8dS/Htst8pFv6YCF9TpS9KpPRdpkzTD9mmVbXNs71OnXlNsny/pWmA94N7KpvnAvm30BMyiCCbtMRrYHFiN4n7vOFRyaYGEkmoFEgILy0C254CtKZ6/eqxao07TbLsnHHZniovJ3QncKenglnraUNKVFM9/PWPK+QY1a21g+/5yvC9wfTUYmeK1o1M5hp3bsTI+qde23vOmdH2CcRkofKTtA2vcpskLs3+xUnclivczuwP/neIz+Y5CJSX9B/AicDHF7yQXleuTy566fi9RBj+/gyIs+5vd1okYopp83YmIiIiIISKhkhERQ1TDv1iL4a/6YfPfem1LyF6MKJKmUnx59wXgOIov7v49MErSXravabO/kWyoBi1HRERERETfbB/Tdg8rouoJvpJmdnvCb0TE0izPk1EihqAbgZ4rnv/G9jaVbVf0bOtEwyerjXQzgd9I+iPwZLn2PmAccEhrXY18b518antRLh43qI4H7pJ0HUv+zH+a4vOoTiU0rp6/W8q2BGXHSJPn+IiIkelOSWdRhIv3vI98L7A3cHfNWgcAjwJnA1fZXihpKHz372fATZL+QvHdxN8CSBoH/GeLte6zPanmbfqyku0XyvFuwDm2Lwcul3RPA/UjIiIiYoix3WeYm6T3A5cAU2qUe1LSocBTFJ9ZXVPWGkMRLtSWUbavL8eXSjqqxV56HE4Rhvgt4JuV34/VDYbH9geaakrSzr3LA38B7rH9UlP7qUvSBIpwsXdRfCZ6JnAGxc/n9zss89EyBJpxoAAAIABJREFUjF/AmEowv4BVmu14CbsCSw2VtP1n4MvVNUlrATfavqHm/rasjPcGTqvMJ9Ss1RhJe9r+MfC0pC0oQvqw/aykQyiO52B7p+0nK/NbbD8PPC9ptZq1mgwknEkRaLkucIrtxwAkbU/93680SZJWB16hCA4+q7JteT6GlqbJQMImg5FzDDtk+6YWdnvrsv5CQ687PRq7MHsZXPv/AtOB7Sk+f9+C4jnolaXeeEn/QfEa/xneHrRtYFqnhST9ADjd9gOS1gR+B7wBrC3pCNs/q9FXxFDXRhBuRERERCxnCZWMiBi6vgzcT/GB5TMM4GoxMSJMbOmDvog2nAF8g+LqkvOA7WzfJmljii8eJ1QyIiIiIiKCXJRkiBgKJ/xGREQMd9XPwNZeyrZONHay2khn+xpJ44FPAO8ul58G/rftN9rrbMSb2OtzvjGVzwDzM7oc2b5Q0pUUJ5D0/MzfCBxl+681SiU0rp47JB1oe3Z1UdIBLHmyUcRIkOf4iIiRaS9gf4qTo3veRz4FXAWcV7PW+hSh5rsDp0q6geL1YmXbixrqtzbbx0v6TdnfdbZ7fu89Cji0rVpLI+kdtl9f9t8EYKXKfbwN8KXKtpxLEREREbECsf24pLpBkPsDxwKfAnaz/WK5PhW4oMn+avq7XmGJS8xt/2KwG7I9annvo/xs60jbB9a42Wf7WFsbmCBpf9vzmumuttkUFx34HbAtcA/FBQ32sP1qhzXubSiMv65lfjgi6WjgEtsPSxpNcR7QRGCRpOm2f93l/obSBzOHAT8ux6ez5MUS96OdUMm1qhPb1YsJrluzVmOBhLZvAzbuY30uMLdmX006leKxtwB4yPYdAJImAc+20VDDgYSNBSPnGHZO0o7Ae2yfWc5vZ/Hjb5bty2rUOtX2zHI8w/ZplW1zbO8Db3us96eJ1x3K/TV2YXZJTwFPlL0dUT7HPFYzUBLbW3XbQx/+H9s9wcj7Ao/a3knSfwN+RXF+a8SIYPsmSR+luAjxA7YfaruniIiIiBi4fBEiImLoWp/iyl27AYuAnwOXVT6AjBWI7ZXa7iFiEK1s+zoASceWHzxRfpjcbmcRERERERFDS2NX+42IiIhokfsZ9zVfeqFBOFltpJC0CsVF7sYB9wHntRlisqLIZ37tkTQO+AfbF/da30LSfNv/p8NSCY2rZybwb5L2YPG/YT8OvBP4fGtdRSwHeY6PiBixvmT7DIqTmgekDPC/BrimDNTYARgDPCVpnu3pA93HAHq7rY+1R1uudWl1ouKLY9OA6RT33T90WOdnwE2S/gL8DfhtWW8c8J9d9BURERERw5SkD1FcnKxjtv9M8XlKtc5awI22b2iwvbpuYsmwxOrcwKCHSkqa1hPQKGkD249Vtu1cJ+hS0gTgJOBdwBXAmRQBfVOA79fpy/a+/ezj/cAlZc02jLY9pxw/UoaFzapZo62L4Xay392A48rx3uV/1wXGU4SY1QmVHFU+7kZVxj0nF7X5e9mlhV22dfLT7f1c7Osg4Pc1azUWSNhpMN5gs32+pGuB9YB7K5vmUwTJDbomAwlpMBg5x7CWWcAXKvPRwObAahT3e51juGVlvDdwWmU+oWZfTbzu9GWgr0WXATtRvG68Ienfu6kpaZbt75XjXW1fWtl2gu1v1Cj3WmX8acrfU9qen3NbY6Qpg8D3pPg+x/ckfaf3+4iIiIiIGH4SKhkRMUTZfh74AfADSe+h+EXig5L+xfZF7XYXEbFcVa9Y97de29r60DsiIiIiImLIafJqv9E5SS+x+N+nq/YKlEmITERERH3rSTqM4rW0Z0w5X7f/m8UAXQi8ThGmsR2wCUX4W8RIdSpwVB/rC8ptn+1j29skNK4e288B/yhpa2DTcvmXPScWR0RERAwD+1EElwyYpM2BJ23Pt71Q0moUYdu/BG5sYh8jie0TACRNpQiS3AlYG/gqcESNOsdL+g3Fhd6vs93z+/1RwKGNNh0RERERQ4Kkq3j7eQdrU7wn3LNmraOBS2w/XIbDXwNMBBZJmm67TjBeY/oLSmzZSRTBcwCXV8YA36Je0OVsinD/3wHbAvdQfLa1h+1XB94q2H5cUq1gvIatImkSi8MHF1bntu/qoEb1s9W3sX3ywNvsUyeJWq9V/v31GeDi8mILD0mqe177mhRBRz377eS+GQyNXTyxQV8DrpA0ncX308coQu12qlmrsUBCmg3Ga4ykPW3/GHha0hbArQC2n5V0CA39TqimxgIJGw5GzjHs3DttP1mZ31KeK/58+fvAOpYWXltXE687jbM9U9LXgK2A3YHvAWtK+h/AXNv/1WGpL5S3heJ7AdUL1mwL1AmVfFHSDsDTwBYUz4eUr19jatSJGA52Az5q+xVJ61D8eyehkhERERHDXEIlIyKGOEmTKX4Z9mngVxQfgkREjGQTy0AOAWN6hXOs0l5bERERERERQ1pC+AeJ7bFt9xARETHCzAbG9jEGOHfw21lhfNj2ZgCSzgN+33I/EcvbP9i+r/ei7fskfWDw21kxSFqF4mS1ccB9wHm2F7XbVURERERrfkgRxICkLYHvUoQafhTYEcjFxisknQDsCjwB/Aw4Brijmwts2b6tj7VHB9xkRERERAxVJ/WaG3ge+KPt12rW2g04rhzvXf53XWA8RchhK6GSkj4L/MH24+X8aGAX4HFghu3H2mirn3Ff82UZbXtOOX5E0gzbs7rurA+SPgQsbLJmTfOBk/uZG5jWQY2VgNUZeNBYXZcu+6+wUNKmwHPA1ix5cYBV6+zM9gfq/P1BtLGkP1Dc/xuVY8r5hm00VIYI/qOkacBHyuWuLvbVcCBhk8F4TToM+HE5Pp0lw3Abu9BITY0FEjYcjJxj2Lm1qhPbh1SmdS+sOqp83I2qjHvu/7oXQ2zidQdo/sLsZQjxDcANZeDzthQhkWcBf99pW/2M+5ovy0HA/wT+GzDT9vxyfRuKCwRFjCQLbb8CYPt5SaPabigiIiIiBi6hkhERQ5SkY4F/Ah4CLgaOyskVEbEisF33Q42IiIiIiIiIiIiIGKZsH9N2Dyuo13sGthdJQ+m8j4jl4u+Wsm3MoHWx4rmQ4vnmt8B2wCbAzFY7ioiIiKhnQuWk6KpuTpBeyfYL5Xg34BzblwOXS7pnoI2OQAcAjwJnA1fZXigpF9iKiIiIiGWyfVN1LmkdYEtgNHBXzXKvlUFHAJ8BLrb9BvCQpDbPzT0emAogaQdgT2B3YBLwA4peB5v7Gfc1X5ZVJE1icQjUwurcdsfHUdJVfex/bWB9ivutFba3aqDMs7aPbaAO8FYAXX9s+7hycEIH5WYCl1EEqJ3SE3QqaXvg7oH2WtYaDxxp+8Am6nVhk5b22y9Jc4GDyxDJ2kGSvWo1GUjYZDBek5oMoWtKk4GETQYj5xh27nZJB9qevUQz0kHUv9jnmsCdLP5/qfs+5i0Nve701FpuF2a3/TpwlaRHqRf+3Nj7kPJiNNv2sX4tcG3PXNJRtr9Tp3bEELShpCvLcU9Qds8c259rp62IiIiIGIiESkZEDF3fAh6j+GX7ROCE8mSuni8jTmixt4iIiIiIiIiIaFnTV/uNiIiIaEOnJydF4yb2ev84ppznvWSMVHf0c/LOARQn4sTy8WHbmwFIOo/6J0pFREREtO0+25MaqrWSpJXLi4tvA3ypsi3f6X+79YFPUwTjnCrpBop/u/bchxERERERfZJ0NfB12/dLWp8igOkOioCUc2yfWqPcQkmbAs8BWwNHVLat2ljT9dn2K+V4Z+A823cCd0o6uKWeegJpxNvDaTaoWWs+cHI/cwPTatQ6qdfcwPPAH22/VrOvxkjaeWnbbf+ikzINtdPj5T7WVqUI/V+HxeF0y2T7NmDjPtbnAnPrNCVpAsVxfBdwBXAmcAYwBfh+nVpNsv14X+uSRlH8W7bP7cvZBcB1ki4EvleGs3WryUDCxoLxGtZkGG5TmgwkbDIYOcewc18DrpA0ncX308cowq13qlPI9geaaqqP1x0DfwHusf1SU/upq8Hn+I9WvvMyptf3YVZpruMl7AokVDKGux17zXu/d46IiIiIYShfQImIGLrqfmAWERERERERERErkOV5td+IiIiIQdTXyUmrAftT8+Sk6JztldruIWKQzQT+TdIeLA6R/DjwTuDzrXU18r11sqLtReWFNCMiIiJGBEnvqBnO8DPgJkl/Af4G/LasMw74z+XQ4rBWhhxcA1wjaTSwAzAGeErSPNvTW20wIiIiIoayDWzfX473Ba63vZekscCtQJ1QyZnAZRRBaqfYfgxA0vbA3Q32XJckrQ68QhFaf1Zl2/IKTlqWaiBN7zCaWuE0trcacDeLa91UnUtaB9iSItyrzVC0zy5lm4FOQiW3aaiXYqf2W+Fd5eNlBrAfcDE1wxslnWp7ZjmeYfu0yrY5tvepUW42cDbwO2Bb4B6KUMM9bL9ap68mSVoD+CrwbuBK4HrgEOBw4F7gJ4Pdk+1LJf0K+DbFBdcuAt6sbD+53xu/XWOBhE0G4zVsY0l/oAid26gcU843bKmnxgIJaTAYOcewc7b/DPyjpGnAR8rlX9qe19Q+JI0HjrR9YI2b9fW6szYwQdL+TfZXU1PP8fc2eHGgTuXD7xj2er9X7o+ky23vsrz7iYiIiIhmJFQyImKI6u9qVREREREREREREREREREjRT8nJ+1LFycnRUT0x/ZzFCfvbA1sWi43evJO9GmipAXlWMCYci7Attdor7WIiIiIjlxanahIyZ4GTKcIOfyHTgvZPl7Sb4D1gesqwQyjgEObaXfkkLQ58KTt+bYXSlqNIhT+l8CNrTYXEREREUNdNfx9G4qwImy/JOnNvm/SN9u3ARv3sT4XmDuQJgfoVIrQpQXAQ7bvAJA0CXi2jYY6DaTphKSde5cH/gLcY/ulmrWuBr5u+35J61OEtN1BET52ju06IaONsb1vAzVeaKKXKklrA4cBe1CEek22/dcuSm1ZGe8NnFaZT6hZa7TtOeX4kTKkclYXPTXtIuCvFEFoBwDfoPj8Yyfb97TY12sUF3YcDYylEipZU2OBhP3pMhivSZu0tN9+NRxIuNyDkXMM307SXODg8pgN6LNoSRMogpnfBVwBnAmcAUyh5vdp+nvdkfR+4JKyZhuaeo73sv9K49rYZ0Rb2gpbjoholN3tP48iIoaXhEpGRAxRkl6i718q5eSKiIiIiIiIiIiIiIiIGDEaPDkpIqJPklYBvgyMA+4DzrO9qN2uRj7bK7XdQ0RERMRA2D4BQNJUiiDJnYC1ga+yZJhCp/Vu62Pt0QG2OVL9EPgUgKQtge9ShG9+FNiRIrwjIiIiIqIvT0o6FHgKmAxcAyBpDPCOOoUknWp7ZjmeYfu0yrY5tvdprOsabJ8v6VpgPeDeyqb5FBdvG3SSdgTeY/vMcn47RZAZwCzbl9Uo99k+1tYGJkjav2a42ga27y/H+wLX296rvNjdrRQBnYNO0hTgHGAjis8t9rP9UBu9VHo6Edi57Gsz2/81kHL9jLuxShmY2lNnYXVu+64B1u/WhrY3A5B0LkWg6/tsv9pSP0jaFjgZuJLiM/dXBlCusUDCJoPxmmT78b7WJY0Cdgf63L48NRlI2GQwco5hLRcA10m6EPie7deXdYOlmA2cTRFeuy1FoPSFwB5NPdfYflxSrfdHDWvqOX49SYf1t9H2yQNrs08DfX2LGE4SohoRERExjCRUMiJiiLI9tu0eIiIiIiIiIiIiIiIiIpanhk9Oiojoz4XA68Bvge2ATShOhouIiIiI6JekE4BdgSeAnwHHAHfYvrDVxlYMK9l+oRzvBpxj+3Lgckn3tNhXRERERAx9+wPHUoSU72b7xXJ9KkXQUx1bVsZ7A6dV5hO67nCAJO1p+8fA05K2oAhHxPazkg6hCPoabLOAL1Tmo4HNgdUo7veOQyVt9xmMKen9wCUUIWadqoZ5bUMR0IXtlyS9WaNO086kuFjBzcDnKMItP9NiPwCHAwuBbwHflN7KyhJg22vUqDVK0lrAqMq4p2DdC1LNpwhK7GtuYFrNek1562fL9huSnmozULL0TWBX2w8MtFCTgYQMQjBeNyStQXHhkHdTBHFeDxxC8Vi4F/hJC201FkjYcDByjmGHbF8q6VfAt4E7JF0EvFnZXifccLTtOeX4kfI4zmquW5D0IYrn/rY09Ry/ErA6gxv0eOkg7isiIiIiIqJjCZWMiIiIiIiIiIiIiIiIiIiItjR5clJERH8+bHszAEnnAb9vuZ+IiIiIGB4OAB6lOGn+KtsLJbnlnlYUK0la2fYiiuCXL1W25RyIiIiIiOiX7T8DX66ulYF2N9q+oWY59TNu22HAj8vx6cDkyrb9aCdU8p22n6zMb7H9PPC8pNWa2IHtxyW9o+bNnpR0KPAUxf10DYCkMUDdWk0aZfv6cnyppKNa7AUA26MaLLcmcCeLHzd3dVvI9lZNNLQcTJS0oBwLGFPO2/yc+7D+AiUlfdH2RZ0WajiQcLkH43XpIuCvFEGJBwDfoDh+O9lu5YIWDQcSNhmMnGNYz2vAyxQBy2OpHMOaVpE0icXPpQurc9sdP7dKuooipLFqbWB9YM8u+xuwBp/jn7V9bBOFJB29lM22fVw5OKGJ/UUME0Pp30IRERERsQz5QkVERERERERERERERERERES0ouGTkyIi+vN6z8D2okqAbURERETE0qwPfBrYHThV0g0UIRE9YYex/PwMuEnSX4C/Ab8FkDQO+M82G4uIiIiIoa0MArrE9sOSRlOECE4EFkmabvvXNcqNKgMpR1XGPb9gXqnRxutZWthlW78AX6s6sX1IZbpuEzuQ9CGKi9XVsT9wLPApYDfbL5brU4ELmuirS38naef+5rZ/MdgNSZpme1453sD2Y5VtO9fpyfYHGuzrg8CJwDjgPuAI2083Vb9bttt8DujPeZJuBY7q+VmXtClwFvACRQBfp5oMJGwsGK9hG1YuSncu8CzwPtuvttRPj6YCCZsMRs4x7JCkbYGTgSuBybZfGUC5+WWtvuYGptWodVKvuYHngT/afq3rDgeo12vh29R47Wny/c/LfaytShFcug5wXIP7imiVpDVsL+hn2/tsP1FO/2UQ24qIiIiIAUqoZEREREREREREREREREREREREjGQTJfV8EV4UQUALyrFtr9FeaxERERExVNl+gyKA5poyjGYHYAzwlKR5tqe32uAIZvt4Sb+hCPa8zrbLTaOAQ9vrLCIiIiKGgd1YHPazd/nfdYHxwIVAnVDJNYE7WRxU1FZoVm/uZ9zXfLDcLulA27Ori5IOAn5fp5Ckq3j7/8faFP8+2LNOLdt/Br7cq/5awI22b6hTq2E3AZ/tZ25g0EMlKQLHJpfjyytjgG/RQE+SxgNH2j6wxs3OB34E3Ax8DjgdWGoI2QpsMnAkcLek44DNgO2Bw21fXbNWk4GETQbjNal6Ubo3JD3VdqBkw4GETQYj5xh27pvArrYfGGgh21sNvJ23at1UnUtahyI8djTtvr/57FK21Xk93KaBXoqd2t/vGUsaC8wA9gMuBr7f3+0ihqkbKd/zSfqN7epj6YqebbavG/zWIiIiIqJbCZWMiIiIiIiIiIiIiIiIiIiIiIgRy3bdE6MiIiIiIpC0OfCk7fm2F0paDXgn8EuKky1jObJ9Wx9rj7bRS0REREQMK69VQsk/A1xcBsY/JKnW+bS2P9B0cw3ZWNIfKMLBNirHlPMNW+rpa8AVkqazOJzqYxRhVTvVrHVSr7mB54E/2n6tTiFJRwOX2H64vFjANcBEYJGk6bbrhIw2xva+bex3GZYWIlgrVFDSBIrj+C6KQKIzgTOAKdQP5BpbCSs9UdJQCXcdcmwvAr4jaRFwLvAM8Anbz3RRrrFAwiaD8Ro2FC9K11ggIQ0GI+cY1nJYf8dP0hdtX9RpIUm9A3QN/AW4x/ZLdZqSdDXwddv3S1qf4ufhDor3EefYPrVOvaY09Xpo+4Um6vSQtDZwGLAHRSj5ZNt/bXIfEUNE9T3e2kvZFhERERHDSEIlIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiKW9EPgUwCStgS+CxwKfBTYEej4JPCIiIiIiBg0CyVtCjwHbA0cUdm2ahM7kDQeONL2gU3U68ImLe23X7b/DPyjpGnAR8rlX9qe10Wtm6pzSesAW1IEVNYNRdsNOK4c713+d11gPEVIVCuhkpI+C/zB9uPl/GhgF+BxYIbtx1poy/2M+5ovy2zgbOB3wLbAPRT39x62X61ZaxVJk1gcbDSmOredkMmSpI0oAjxN8TyxHXCzpONtX1CzXGOBhJI+CJwIjAPuA46w/XS39ZoyRC9K11ggYZPByDmGtZwn6VbgKNsvApTvS84CXqDe7xM/28fa2sAESfvXfI3dwPb95Xhf4Hrbe0kaC9wKtBIqKWkKcA6wEcXP1n62H2qjl0pPJwI7l31tZvu/2uwnYjlr8v1fRERERAwRCZWMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiFjSSrZfKMe7AefYvhy4XNI9LfYVERERERH9mwlcRhEceEpPOJ+k7YG76xSSNAE4CXgXcAVFWNsZwBTg+w32XEtPEGFvkkYBu1MEEw4qSXOBg8uAq9pBkr1qXQ183fb9ktanCLO7A9hI0jm26wRfvWa7JxDnM8DFtt8AHpLU5vnVxwNTASTtAOxJcewmAT+g6HWwbSjpSooQwZ4x5XyDmrVG255Tjh+RNMP2rC77ehY4uTKfX5kbmNZl3ZHoWuDrwNUU4X+/Bn4OnCLpANtbdFqoyUBC4HzgR8DNwOeA0ykC2+Ltmgwk7FOXwcg5hp2bDBwJ3C3pOGAzYHvgcNtX1ylke9++1iW9H7iE4v1Ip16vjLehCP/F9kuS3qzTV8POpAgA7/nZOpV2XgOrDgcWAt8Cvin1ZOsiwLbXaKuxiOVgPUmHUfx894wp5+u211ZEREREDERCJSMiIiIiIiIiIiIiIiIiIiIiIiIiIiIilrSSpJVtL6I42fpLlW35Hn5ERERExBBk+zZg4z7W5wJza5abDZwN/A7YFrgHuBDYw/arA2y1a5LWAL4KvBu4ErgeOIQiBOle4CcttHUBcJ2kC4Hv2X59WTdYig1s31+O9wWut72XpLHArRSBU51aWAayPQdsTRFc1WPVAfQ4ULb9SjneGTjP9p3AnZIObqmnHSvjk3pt6z1fllUkTaIIJILiOLw1t31Xp4Vsb11z3yuyyRQhaGcDT1Dc3+8F5lCEAg5Yl4GEY23PLscnSur4+K+AGgskbDgYOcewQ+XvEb8jaRFwLvAM8AnbzzS4j8clvaPmzZ6UdCjwFMXP2TUAksYAdWs1aZTt68vxpZKOarEXAGyParuHiEE0GxjbxxiK57CIiIiIGIbyZZaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCX9DLhJ0l+AvwG/BZA0DvjPNhuLiIiIiIi+STrV9sxyPMP2aZVtc2zvU6PcaNtzyvEjZb1ZzXXbtYuAv1KEXR4AfIMiPG4n2/e00ZDtSyX9Cvg2cIeki4A3K9tPrlGuGki5DUXADbZfkvRm3zfp10zgMmBd4BTbjwFI2h64u2atJknS6sArFP+PZ1W2rdJGQ7ZvarDcfODkfuYGptUpJmkdYDqLA2MfAn5q+4UB9jnSHAOsDmxo+yV4K4T2JOCfgOs6LdRwIGHvkNEx3YaMjnQNBxI2GYycY9ghSRtRPF4MbAJsB9ws6XjbFzS0jw8BC2vebH/gWOBTwG62XyzXp1IEQ7fl7yTt3N/c9i8GuyFJ02zPK8cb9Lx3KOc7t9FTxPJi+5i2e4iIiIiI5sl22z1ERERERERERERERERERERERERERERERAwpkqYC6wPX2X65XBsPrJ4T5iMiIiIihh5Jd9me3Hvc17yDWg8Du7M4ROsnFMF2rYZoSbrP9mbleCXgWeB9XYSENd3XO4GvU9xHP2fJUMmOA2skXUURfvcUcD6wge0XJY0B7rD9kUYbb4Gk/SjCQBcAf7a9bbk+CTjJ9jYt9LQj8B7bZ5bz2ynCOAFm2b5ssHsq+9gEmAdcSxEEKmAS8Glgmu2H2+hrKJL0R2C8ewUHlM8TD9v+YI1at7NkIOE3KAIJj677XCPphqVstu1aIaMjWa9AwpkUgYSHALUDCSXdY/ujlfn/tb1hl33lGHZI0p8oXguvBsaVy88DpwDvtb1FjVpXUfwsVK1N8bvKPW3/boC9rgW82Ps5YzBJWtrPtW3vN2jNlJp8Lxkx1En6CLCR7SvL+SnAmuXmM/IZSESMNLd/ZaeErEVEV6acfYWW/beGjpXbbiAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiYqixfVsfa4+20UtERERERHRE/Yy7MR84uZ+5gbZCtF7vGdh+Q9JTQyBQcluK++ZKYLLtVwZQbn/gWOBTwG62XyzXpwJ1Q9VOtT2zHM+wfVpl2xzb+wygz67ZPl/StcB6wL2VTfOBfdvoCZgFfKEyHw1sDqxGcb93HCop6YPAiRSBavcBR9h+usu+jgNm2L6k1z52AY4Hdumy7kjkvsLhyueJuuEpo23PKcePlI+fWV02tXU3t1tBXcuSgYS/pgjpPUXSAXUCCYFVyqDantfChdV5naCwHMNaJgPfoghlfYLi/n4vMIciKLmOk3rNTRFQ+Ufbr9UpJOlo4BLbD0saDVwDTAQWSZpu+9c1e2uE7bZe85Zmae8lh1WQTEQHvgt8pzL/DPBtYFXgaGCnNpqKiIiIiIFJqGREREREREREREREREREREREREREREREREREREREDHejJK0FjKqMewKAVqpTyPZWDffWlImSFpRjAWPKuShC5dZooadvArvafmCghWz/Gfhyda08jjfavqFmuS0r472B0yrzCd11OHCS9rT9Y+BpSVsAtwLYflbSIcAZLbT1TttPVua32H4eeF5FaauDAAAgAElEQVTSajVrnQ/8CLgZ+BxwOrBzl31tZvufey/avlzSCV3WHKkelLSX7R9VFyXtCTxcs1ZjgYRlD+sA04GNy6WHgJ/afqFmXyNdk4GEjQYj5xh27BhgdWBD2y8BSFqDIiDyn4DrOi1k+6bqvDwGW1KE/tZ6DAK7UYT0QvF6CLAuMB64kCLAdNBJ+izwB9uPl/OjKcKCH6cIFH6shbbcz7ivecRwt77t/1WZL7B9OYCkg1rqKSIiIiIGKKGSERERERERERERERERERERERERERERERERERERETHcrQncyeIgtLqhS2+R9EHgRGAccB9whO2nB9zhANmuFY45SA7rL1BS0hdtX9RpoTJQ6hLbD0saDVwDTAQWSZpuu07wlfoZt+0w4Mfl+HSKILke+9FOqORa1YntQyrTdWvWGmt7djk+UVLXj0Pg5S63rYi+CvxC0n4Uz4MAHwfGAJ+vWauxQEJJmwDzgGuBuykei5sD35A0zXbdwMuRrMlAwq2aairHsJYdgPG23woftL1A0lcowl1ndFpI0tXA123fL2l9ivc0dwAbSTrH9qk1+nqt0tNngIttvwE8JKnNvJHjgakAknYA9gR2ByYBP6DodbBtKOlKip/znjHlfIMW+olYnsZWJ7anVqbrDXIvEREREdGQhEpGRERERERERERERERERERERERERERERERERERExLBm+wMNljsf+BFwM/A5ivC/nRusP5KcJ+lW4CjbLwJI2hQ4C3gB6DhUEtgNOK4c713+d11gPHAhUCdUcpSktYBRlXFPuGSb4ZxLC7tsK/zydkkHVsIgi2akg4Df16y1iqRJLP5/GVOd264TMrmepMP6WBf1wy5HtDL0doqkacBHyuW5tn/TRa2tGmztOGCG7Uuqi5J2oQiU26XBfQ13TQYSNhmMnGPYOVePX2XxDUlvW1+GDWzfX473Ba63vZekscCtQJ1QyYXl6/JzwNbAEZVtq9bsq0m2/Uo53hk4z/adwJ2SDm6ppx0r45N6bes9jxjunpE0xfbt1UVJU4FnWuopIiIiIgYooZIRERERERERERERERERERERERERERERERERERERMSJJGg8cafvAGjcbWwnYO1FSnSC8Fc1k4EjgbknHAZsB2wOH2766Zq3XKoFcnwEutv0G8JCkuudErwncyeJww6FyDN3PuK/5YPkacIWk6Sy+nz4GjAZ2qlnrWeDkynx+ZW5gWo1as4Gx/Ww7t2ZfKwTb84B5A6nRcCDhZrb/ufei7cslnTCANkeiJgMJmwxGzjHs3IOS9rL9o+qipD0pgkHreL0y3obi+RDbL0l6s2atmcBlFGG8p9h+rOxre+DumrWaJEmrA69Q/D+eVdm2ShsN2b6pjf1GtORfgJ9LmsOS7//2pgh6j4iIiIhhKKGSERERERERERERERERERERERERERERERERERERETGsSZoAnAS8C7gCOBM4A5gCfL9muVUkTWJxIOGY6tz2UAkobJ3tRcB3JC2iCPp7BviE7We6KLdQ0qbAc8DWwBGVbavW7OsDXex/MGws6Q8UP0sblWPK+YZtNGT7z8A/SpoGfKRc/mUZUFi31tYN9nVMU7WiliYDCV/uctuKqMlAwiaDkXMMO/dV4BeS9qMINQb4ODAG+HzNWk9KOhR4iiK8+RoASWOAd9QpZPs2YOM+1ucCc2v21aRTgXuABcBDtu8AKN9vPdtGQ5J2BN5j+8xyfjtFGCfALNuXtdFXxPJg+/eSpgCHAPuUyw8AU20/11pjERERETEgCZWMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOFuNnA28DtgW4qgoguBPWy/WrPWs8DJlfn8ytzAtIG1OnJI2ogiwNPAJsB2wM2Sjrd9Qc1yM4HLKAKcTrH9WLmP7YG7G+p3PHCk7QObqNeFTVrab78kzQUOLkMkawdJ9lFvHWA6i0PMHgJ+avuFLmptBxwFfLhcegD41zIMLZaPJgMJ15N0WB/rYnFQWxSaDCRsMhg5x7BDtp8GpvQK6J1r+zddlNsfOBb4FLCb7RfL9alArddWSafanlmOZ9g+rbJtju19uuhvwGyfL+laYD3g3sqm+cC+bfQEzAK+UJmPBjYHVqO43xMqGSNKGSx+dHVN0iclHW37qy21FREREREDINtt9xARERERERERERERERERERERERERERERERERERER0TVJ99j+aGX+f21v2GZPKwJJfwK+DlwNjCuXnwdOAd5re4uW+poAnAS8C7iCIvjyDGAK8H3bp7TRV38kjQJ2t/2TFva9K3A8RQjr92y/PoBam1AEU15LEQQqYBLwaWCa7Ydr1DoQOIgi5OuOcvnjwHeBc22f022f0T9JDwO7sziQ8CcUIaG1Awkl/X9L2277mC7bHLF6BRI+2E0goaQblrLZtjsORs4xHDokrQW86JoBIZLusj2597iv+WCStKftH5fjLWzfWtl2iO0zWujpf9vevDI/w/Yh5fg221MHu6eIwVAGD+8O/A/gMeAXtk9vt6uIiGbd/pWdErIWEV2ZcvYVWvbfGjoSKhkRERERERERERERERERERERERERERERERERERERw1qTQWhlvXXK229cLj0E/NT2C400PEJIWgP4FrAv8ATF/f1eYA5wve3ratQ61fbMcjzD9mmVbXNs71Oj1u3A2cDvgG2Bb1CEJh5t+9VO6zStvL++CrwbuBK4HjgEOBy41/aOLfW1OvBtivvqIuDNnm22T65R5zLgEtuX9FrfBZhue5catR4EPtn7MVc+Nm+xvUmntaJzTQYSRkR3JB1N8Vz6sKTRwDXARGARxXPpr2vUutv2pN7jct5mqOSQC7uU9Cfb4/rZ9n9sbzTYPUUsL5LGU/zbaXfgL8DPgSNsv7/VxiIilpOESkZEt4ZbqOTKbTcQERERERERERERERERERERERERERERERERERERETFA84GT+5kb6DgITdImwDzgWuBuiqDEzYFvSJpm++FGOh4ZjgFWBza0/RK8FZx4EvBPQMehksCWlfHewGmV+YSafY22PaccP1KGVM6qWWN5uAj4K0XY5QEUYZcCdrJ9T4t9vQa8DIwGxlIJlaxpM9v/3HvR9uWSTqhZS32FuNp+XhpW5/MPK7a3brKepO2Ao4APl0sPAP9qe26T+4klNRmMnGPYit2A48rx3uV/1wXGUwQkdxwqCYyStBYwqjLueRJdqYFeu6V+xn3NB8vtkg60PXuJZqSDgN+31FPE8vIw8FtgB9t/ApD0tXZbioiIiIiBSqhkRERERERERERERERERERERERERERERERERERERAxrtrdqsNxxwAzbl1QXJe0CHA/s0uC+hrsdgPG23bNge4Gkr1CE1cyoUWtpAVN1rSJpUqXOwurc9l0DrN+tDW1vBiDpXOBZ4H22X22pHyRtSxHAeiUw2fYrAyj3cpfb+rJA0kTb91YXJU0EXqrdWXSsqUBCSQcCBwGzgDvK5Y8D35X0HtvnNNRyVDQZjJxj2JrXKq+rnwEutv0G8JCkuhkhawJ3svj1sK3Xv97cz7iv+WD5GnCFpOksvp8+RhG4vFNLPUUsLzsDXwBukHQNcDHtBbpGRCx/b7b19iIiYnCp8jvaiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhhR9IHgROBccB9wBG2n+6y1iO2P1R324pI0qO2x9fd1s/fvxfYChhFEYi2FYvDbW6wPbFGrRvpP5TKtqd1WqtJku6yPbm/eUs9/Rb4su0HGqj1FEVA5ds2ATNtv7dGrU8CPwEuoAhEgyLMbm9gT9u3DLDd6EM/gYSTgE8DdQMJHwQ+2TuMsgytvMX2Jo01Hm+RdBlwST/ByNNtdxyMnGPYDkm3AQcAzwGPAB+z/Vi57WHbGy/t9sOBpFeAP1E8x2xUjinnG9percXepgEfKacP2J7XVi8Ry5uk1YAdgd2BacCPgH+zfV2rjUVENOz2g3ZMyFpEdGXKD/99WAVv170KQURERERERERERERERERERERERERERERERERERETEUHM+RQjKzcDngNOBnbus9XKX21ZED0ray/aPqouS9gQ6Dp8rrUkRHthzsvZd3TZle6tub7ucTZS0oBwLGFPORRF2uUYLPR3WX6CkpC/avqhGrdnA2H62nVunKdu3SJoCHAzsUy4/CEy1Pb9OrajlOGBGP4GExwMdBxIC6h1GCGD7eWlYZTIMN5vZ/ufei7Yvl3RCzVo5hu2YCVwGrAucUgmU3J4i7HXAJI0HjrR9YBP1ujDkAkklzQUOLkMkEyQZKwTbLwM/BX4qaS1gV+BfgIRKRkRERAxDCZWMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOFurO3Z5fhESV0HEgLrSTqsj3VRBDzFYl8FfiFpP4pASICPA2OAz9cpZPsDTTUl6YPAicA44D7gCNtPN1W/W7ZXaruHPpwn6VbgKNsvAkjaFDgLeAHoOFTS9jFNNmZ7fhmCN65c+pPtV5vcR7xNk4GECyRNtH1vdVHSROClgTQZS9VkMHKOYQts3wZs3Mf6XGBunVqSJgAnAe8CrgDOBM4ApgDfH3CzXbL9eF/rkkYBuwN9bl/OLgCuk3Qh8D3br7fQQ0RrbP8VOKf8ExERERHDUEIlIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiImK4W0XSJIrgR4Ax1bntOiGTs4Gx/Ww7t/sWR54yqHGKpGnAR8rlubZ/09Q+JI0HjrR9YI2bnQ/8CLgZ+BxwOrBzUz2NMJOBI4G7JR0HbAZsDxxu++q6xSRtBxwFfLhcegD41zIMrU6dlYETgH2BJygey++VdAHwzYR9LTdNBhIeDlxZHrNq6OzewJ5d9BadaTIYOcewBZJOtT2zHM+wfVpl2xzb+9QoNxs4G/gdsC1wD3AhsEebIb2S1qAIpn43cCVwPXAIxc/cvcBPBrsn25dK+hXwbeAOSRcBb1a2nzzYPUVERERERNSRUMmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIGO6eBaphP/MrcwPTOi1k+5gG+1oh2J4HzBtIDUkTgJOAdwFXAGcCZwBTgO/XLDfW9uxyfKKkOqGiKxTbi4DvSFpEEZr6DPAJ28/UrSXpQOAgYBZwR7n8ceC7kt5j+5wa5U6kCHfd0PZLZf01KH5GTgJm1O0vOtJYIKHtWyRNAQ4G9imXHwSm2p4/oC5jaRoLRs4xbM2WlfHewGmV+YSatUbbnlOOHylDKmcNpLmGXAT8lSLs8gDgGxTPMzvZvqfFvl6jCNAdTfE4enPpfz0iIiIiImLoSKhkRERERERERERERERERERERERERERERERERERERAxrtrdusp6k7YCjgA+XSw8A/2p7bpP7iSXMBs6mCJjaFrgHuBDYw/arNWutImkSRUAVwJjq3HZCJkuSNqII8DSwCbAdcLOk421fULPc14BP2n6hsjavfDzdAtQJldwBGG/bPQu2F0j6CvAwCZVcXhoLJASwPV/SCcC4culPXTyeo4amg5FzDFuhfsbd6P16uHCIvB5uaHszAEnnUoSDv6/Nny1J21IEkl8JTLb9Slu9REREREREdCOhkhEREREREREREREREREREREREREREREREREREREx7ElaB5gObFwuPQT8tFfAXSd1DgQOAmYBd5TLHwe+K+k9tusE40XnRtueU44fkTTD9qwuaz1LEQzVY35lbmBal3VHomuBrwNXU4TG/Rr4OXCKpANsb1Gjlvp6vNl+Xqqdi+ZqoGRl8Q1Jb1uPZjQZSChpZeAEYF/gCYoQu/dKugD4pu3Xm9pXLKmpYOQcw9aMkrQWMKoy7nkSXalmrerrX+95m6+Hb/3slM/rTw2BsNJvArvafqDlPiIiIiIiIrqSUMmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIGNYkbQLMowjIu5sifGlz4BuSptl+uEa5rwGf7BWON68M6boFSKjk8rGKpEksDs5aWJ3bvqvTQra3Xg79jVSTgW8BZ1MJjQPmAOfXrLVA0kTb91YXJU0EXqpZ60FJe9n+Ua9aewJ1Hs9RU1OBhMCJwFhgQ9svlbXXAE4q/8xopuOoajgYOcewHWsCd7L49bDj17/ebG/VREPLwURJC8qxgDHlXBShwmu00NNh/QVKSvqi7YsGu6GIiIiIiIg61McFWiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIihg1JlwGX2L6k1/ouwHTbu9So9ZDtTepui4GRdCPQ34nPtj2tZr11gOnAxuXSQ8BPe4WFrvAknQKsThGm1Ts07m+2Ow6Nk/RJ4CfABRSBaFCE2e0N7Gn7lhq13g38Avhbr1pjgM/bfrrTWtG5pQUSAufWCSSU9EdgvHsFGkhaCXjY9geb6TqqJD3I24ORe54Tb6nzGpZjOPxJ+iBFOOg44D7giDx/9k3SH4BbgaNsv1iubQqcBbxge6c2+4uIiIju3X7QjglZi4iuTPnhv2vZf2voGNV2AxERERERERERERERERERERERERERERERERERERERA7RZ70BJANuXA5vWrLVA0sTei+XaS132F8tgeyvbW/fzp26g5CbA/cDHgEeBPwKbA/dL2nhpt10B7QB8qSdQEsD2AuArwPZ1CpWhkVMozmHfp/wzCphaJ1CyrPW07SnAscB/lH+Otf0JYGqdWlHL14D/bnue7QXln3nAduW2Otw7jLBcfIP+A2Rj4NRXeK7t57uolWM4hEgaL2l2zZudD/wS2AW4Czi98cZGjsnAE8DdkvYrQ5cvB76XQMmIiIiIiBgOVm67gYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIAXq5y219ORy4UtIFwJ3l2seBvYE9u+gtOiDpg8CJwDjgPuAI2093We44YEbvoFFJuwDH8/+zd/+hdtd3nsdf73iHJjDqH01r2dYuuFZixaYOThNY2T8CC81u6OBYFrYbbJV1pfUPx3Yp27gwVGnGju74Ry3L1DLuKFOhXcNMKWJdvNMtgU1B+wNtGqgsox1nU9jkj4RuhI557x/3a705vdp77j3Jud/bxwMOfM/nq+/z5h6Tcw3keZfiWix502hcVU0djevu41V1MEvvY5K82N2vrmO5xSSLE8evh76YvTcNElbVtLOOVtXN3f3oOS9QtT/JsXXsyFs7VVU7u/tHyw/XGEb2Hs5BVX0gyQNJ/kmSv07y5SQPZSna+1+mHHdxd78eory/qr4/s0U3me7+xyR/UlX/mOSrSf4hyYe6+x/muxkAAMDqiEoCAAAAAAAAAAAAAAAAADB276yqT69wXkneMc2g7j5cVbuSfCrJJ4bjo0l2d/fxdW3JW/mLJI8m+W6SjyT5UpI/XOOsa7v7o5OH3f3EEDzkDTOLxlXVQpKDSW5J8nKWfv1dPgRa7+7uX85o56nrhqzaLIOEdyQ5VFW35txA77YkN657U97MLMPI3sP5eDjJf03yv5J8OMkPk/xlkn+3hkjv1qq6Lm/8vrlt+fPuFpkcVNU/y1LAs5NcnWRvku9W1Re6+5G5LgcAALAKtcIPjgEAAAAAAAAAAAAAAAAAgNGoqj9+q/vd/fk1zNya5Mrh6YtrCDkxhar6YXd/cNnz73f3761x1pv+u+uZuxlV1buTHEpyJitE47r7lSlmPZjk4iR3dffp4eySJA8kOdPdd85o55e7+72zmMW5quqGJH+VZMUgYXcfXsPMPUmuGZ4e7e5nquqm7n5iFjvz66rqXVkKI//q657ky2sNI3sPL6wVPg//d3dfscZZf/sWt7u796xl7mZUVS8m+U9JvpU3vv87keTBJJd39z+f124AwPp87/Y/EFkD1mTXn//NqH6wiagkAAAAAAAAAAAAAAAAAAAMqmohycEktyR5OUkluTxLkbW7u/uXc1xv06qqY0n+bZa+3slS2O5jrz/v7u9PMevvk/zZSreS/FF3X76+bTeflaJxa5jx0yRX9cRfYK+qi5Ic6+73TTHr+SQr/UX4Gl7jbdPux+rMOkj4Jq8hDHqene8wsvfw/Jnl5yGrN0SQ/3N+/fu//5bkf3T30/PbDgBYD1FJYK3GFpVcmPcCAAAAAAAAAAAAAAAAAACwXlW1N8nnkrx/OPpxki9295NTjro/ycVJruju08PsS5I8MDzunM3GTPg/OTcEeXzZ806yZ4pZD2fpPVzJV6dfbfPr7sUki+sf078W6+ju16pq2ojHvnXuwhp19/GqOpjzGCTMG7E8ZuzNwshVNeswsvfw/Fn++Tf5fNrPw1TV27MUpdwxHP0kyde6++Q699xsPp/kd7Py93//OomoJAAAsKHVCn8uBwAAAAAAAAAAAAAAAAAAo1FVtyW5Pclnkzw7HF+f5L4kX+3ur0wx66dJrpqM41XVRUmOdff7ZrM1bC5V9ddJDnX3oxPn+5P8m+7+yDrnb09yYqVwJbPxZkHCJDMNElbVy9393lnM4lxV9WCWorp3rRDGO9PdMwkjew/HoaquzlIw+NtJfpClX9PXJfmXSfZ097E5rreh+P4PADav793+B/4fEliTXX/+N6P6gQoL814AAAAAAAAAAAAAAAAAAADW6a4kN3T3yWVni1W1N8nhJKuOSibplaJ13f1aVQkRnEdV9fYkH0uyYzj6SZKvTbyvq521N8nnkrx/OPpxki9295Oz2JUV3ZHkUFXdmuS54ez6JNuS3DjNoKranaUo7Mkk9yZ5LMn2JFuq6ubufmpmW7Pc/VkKEl6xQpDwgSSrDhJW1fNJVvo9s5Jctv5VeRP7MhHG6+5TVfXJJMfiPdzwqup9Wfq1eGWS55P8x+5+ZY3j7k1yZ3d/feI1bkryhSQ3rWfXTcb3fwAAwKiJSgIAAAAAAAAAAAAAAAAAMHa1Uniwu09U1bSzjg7RukfPeYGq/VkKcnEeVNXVSRaTfDvJD7IULfv9JAeqak93r/prX1W3Jbk9yWeTPDscX5/kvqp6T3dPExlllYbo2a6q2pPkmuH4ye5+ZgiYPTHFuIeSHEhyaZb+u9jb3UeqakeSx5OISp4fMwsSDrO48GYZxvMezsdfJHk0yXeTfCTJl5L84RpnXdvdH5087O4nqurg2lfclHz/BwAAjJqoJAAAAAAAAAAAAAAAAAAAY3eqqnZ294+WH1bVziSnp5x1R5JDVXVrkueGs+uTbEty47o35c3cm+TO7v768sMhRviFJDdNMeuuJDdMhEYXq2pvksNJRCXPo+5ezFIIcrkHM11UcqG7n06Sqrqnu48Ms4+tIRTL6s0sSNjdL02eVdX2JCdWeg1mZmZhPO/h3Fzc3Q8P1/dX1ffXMesXa7z328j3fwAAwKiJSgIAAAAAAAAAAAAAAAAAMHafSfLNqnok54aAPp5k/zSDuvuVJLuqak+Sa4bjJ7v7mSFwOE0Yj9W7trs/OnnY3U9U1cEpZ9VEUPL1WScECedm2i/82WXXZybuidmdPzMLElbV7iT3JTmZpWjsY0m2J9kyvMZTM9qZc80sjOc9nJutVXVd3vh9c9vy5909TWTynVX16RXOK8k71rfm5vJW3//NcS0AAIBVKz8AAgAAAAAAAAAAAAAAAACAsauqdyX5VN4IAR1N8uXuPj7D13i5u987q3m8oaq+392/N+29N/nnv5fkP3T3jybOdyZ5uLs/tL5tmda0v3aq6rUkv8hS+Gxbkv/3+q0kW7v7d2a/JVX17iSHshTy/LUg4RBdW+2sZ5McSHJpkq8k2dvdR6pqR5LHu/u6mS7POSbCeEdfDyN396rDyN7D+aiqv32L293de6aY9cdvdb+7P7/qxQAARurIbftE1oA12f3wt0b102lEJQEAAAAAAAAAAAAAAAAA2BSqamuSK4enL3b3qzOe/7PuvnyWM1lSVX+f5M9WupXkj6b5ulfVDUn+KskjOTeM9/Ek+7v78DrXZQVV9XySlf7yeiW5qrvfdoFXYo1mFCT8YXd/cLj+SXdfvezeDwQJL7w1xF29hwAAjJ6oJLBWY4tKLsx7AQAAAAAAAAAAAAAAAAAAWI+qWkhyMMktSV7OUsTu8qp6JMnd3f3LGb2UEMH583CSi9/k3lenGdTdh6tqV5JPJfnEcHw0ye7uPr7mDflN9s17AWajuxeTLE4cP5hk1VHJJGeXXZ+ZfIm17MW6TRvD8B7OSVW9PcnHkuwYjn6S5GvdfXINs/Ym+VyS9w9HP07yxe5+cha7AgAAsDGISgIAAAAAAAAAAAAAAAAAMHb3ZylIeEV3n06SqrokyQPD487VDqqq57NyLKuSXLb+VVlJd39+xvOOV9XBJFcORy9296uzfA3O1d0vTZ5V1fYkJ7pbgG78pg0S7qyqU8O/t224fn3O1pluxmpN++vQezgHVXV1lqKu307ygyx9vX8/yYGq2tPdx6aYdVuS25N8Nsmzw/H1Se6rqvd091dmujwAAABzU/78DQAAAAAAAAAAAAAAAACAMauqnya5ajJcV1UXJTnW3e+bYtY/fav7K4XzmI2q2pvkc0nePxz9OMkXu/vJKecsJDmY5JYkL2cpyHV5kkeS3N3dv5zZ0vxKVe1Ocl+Sk0nuTfJYku1JtiS5ubufmuN6rFNVvdzd7533Hry13xBGvqq733aBV2JKVfXfk3y9u78+cX5Tko91901TzDqa5IbuPjlx/vYkh7v76lnsDACwkR25bZ/IGrAmux/+1rQ/YGOuFua9AAAAAAAAAAAAAAAAAAAArFNPBiWHw9eqaqp4wErRyKranuTESq/BbFTVbUluT/LZJM8Ox9cnua+q3tPdX5li3P1JLk5yRXefHuZfkuSB4XHnzBZnuYeSHEhyaZLFJHu7+0hV7UjyeBJRyQ3uNwQJL7vA67A2++a9AOt2bXd/dPKwu5+oqoNTzqrJoOQw60TVqNooAAAA/I4tl/MAACAASURBVAaikgAAAAAAAAAAAAAAAAAAjN3Rqrq5ux9dflhV+5Mcm2ZQVe1Ocl+Sk0nuTfJYku1JtgyvIYx3ftyV5IaJ+NViVe1NcjjJNFHJfUmuWh4B7e5TVfXJLP33ICp5fix099NJUlX3dPeRJOnuY+JloyFIOHLCyJvCL9Z4byWnqmpnd/9o+WFV7UxyeurNAAAA2LBEJQEAAAAAAAAAAAAAAAAAGLs7khyqqluTPDecXZ9kW5Ibp5z1UJIDSS5Nsphkb3cfqaodSR5PIip5ftREUDJJ0t0n1hAk7JXiad39WlWJqp0/Z5ddn5m45+s+AoKE4yeMvCm8s6o+vcJ5JXnHlLM+k+SbVfVIzv3+6ONJ9q99RQAAADaaLfNeAAAAAAAAAAAAAAAAAAAA1qO7X+nuXUnuSfJ3w+Oe7v5Qkt1Tjlvo7qe7+xtJjnf3keE1js1wZX7dqaraOXk4nJ2ectbRqrp5hVn7k3gfz5+dVXWqqk4n+cBw/frza+e9HL9ZVe2uqu9U1aGquq6qXkjyQpKfV9WH570fq/JQkoNZiiAvJvn33f2uJP8iyZ/MczFW7eEkF6/w+N0kX51mUHcfTrIrS22RTwyPLUl2D/cAAADYJBbmvQAAAAAAAAAAAAAAAAAAAMxCdy9mKaK13INJnphizNll12cmX2Ite7Eqn0nyzap6JMlzw9n1ST6eZP+Us+5Icqiqbp2YtS3JjTPYlRV090Xz3oF1eyjJgSSXZun30r3dfaSqdmQpUvjUPJdjVRa6++kkqap7loeRq2q+m7Eq3f35Gc87XlUHk1w5HL3Y3a/O8jUAAACYvy3zXgAAAAAAAAAAAAAAAAAAAM6jaStaO6vqVFWdTvKB4fr159eeh/1I0t2Hk+zK0t9//sTw2JJk93BvmlmvdPeuJPck+bvhcU93fyjJ7pktDZvPQnc/3d3fSHJ8eZBwznuxesLIm0BV7a2q71bV/x0e/7Oq/tUa5ixU1Z8m+VmSv0zyaJKfVdWfVtXvzHpvAAAA5mdh3gsAAAAAAAAAAAAAAAAAAMB5NFVEq7svOl+L8Na6+3hVHUxy5XD0Yne/uo55i0kWJ44fTPLEWmfCJidIOH47q+pUloLK24brDM+3zm8tVquqbktye5LPJnl2OL4+yX1V9Z7u/soU4+5PcnGSK7r79DD/kiQPDI87Z7Y4AAAAcyUqCQAAAAAAAAAAAAAAAADAqFXV81k5eFZJLrvA67AGVbWQ5GCSW5K8nKX37vKqeiTJ3d39y1m91IzmwGYkSDhywsibwl1Jbujuk8vOFqtqb5LDSaaJSu5LclV3/+p7pO4+VVWfTHIsopIAAACbhqgkAAAAAAAAAAAAAAAAAABjt2/eC7Bu9ye5OMkV3X06SarqkiQPDI9Zha9Wio8CESSEDaImgpJJku4+UTV1F7mXByWXHb5WVT4PAQAANhFRSQAAAAAAAAAAAAAAAAAARq27X5o8q6rtSU6sFFNiQ9qX5Krl71d3n6qqTyY5limiklX1fFaOR1aSy9a7KACcR6eqamd3/2j5YVXtTHJ6yllHq+rm7n50Ytb+LH22AgAAsEmISgIAAAAAAAAAAAAAAAAAMGpVtTvJfUlOJrk3yWNJtifZMsSUnprnfqxKrxQA7e7XqmraMOi+Ge0EABfaZ5J8s6oeSfLccHZ9ko8n2T/lrDuSHKqqWydmbUty4wx2BQAAYIMQlQQAAAAAAAAAAAAAAAAAYOweSnIgyaVJFpPs7e4jVbUjyeNJRCU3vqNDAPTR5YdVtT/JsWkGdfdLk2dVtT3JiZXClQCwUXT34araleRTST4xHB9Nsru7j08565Uku6pqT5JrhuMnu/uZqropyRMzWhsAAIA5K3/uCQAAAAAAAAAAAAAAAADAmFXVD7v7g8P1T7r76mX3ftDd181vO1ajqt6d5FCSM0meG46vT7ItyY1DGGu1s3YnuS/JyST3JnksyfYkW5Lc3N0iowBsaFW1NcmVw9MXu/vVGc9/ubvfO8uZAAAb0ZHb9omsAWuy++Fv1bx3mMbCvBcAAAAAAAAAAAAAAAAAAIB1Orvs+szEPfGAERiikbuqak+Sa4bjJ7v7maq6KckTU4x7KMmBJJcmWUyyt7uPVNWOJI8nEZUEYEOqqoUkB5PckuTlJJXk8qp6JMnd3f3LWb3UjOYAAACwAYhKAgAAAAAAAAAAAAAAAAAwdjur6lSWAknbhusMz7fOby2m1d2LWQpBLvdgpotKLnT300lSVfd095Fh9rEqDS0ANrT7k1yc5IruPp0kVXVJkgeGx50zeh3RbQAAgE1EVBIAAAAAAAAAAAAAAAAAgFHr7ovmvQPn1bQlyLPLrs9M3BPRAmAj25fkqu7+1edVd5+qqk8mOZYpopJV9XxW/tyrJJetd1EAAAA2DlFJAAAAAAAAAAAAAAAAAABgI5s2BLmzqk5lKZq1bbjO8HzrTDcDgNnq5UHJZYevVdW0n4f7ZrQTAAAAG5yoJAAAAAAAAAAAAAAAAAAAMFdV9XxWjkdWksummdXdF81kKQC48I5W1c3d/ejyw6ran+TYNIO6+6XJs6ranuTESuFKAAAAxktUEgAAAAAAAAAAAAAAAAAAmLd9814AADaAO5Icqqpbkzw3nF2fZFuSG6cZVFW7k9yX5GSSe5M8lmR7ki1DuPKpmW0NAADAXIlKAgAAAAAAAAAAAAAAAAAAc9XdL02eVdX2JCe6u+ewEgBccN39SpJdVbUnyTXD8ZPd/UxV3ZTkiSnGPZTkQJJLkywm2dvdR6pqR5LHk4hKAgAAbBJb5r0AAAAAAAAAAAAAAAAAAADw262qdlfVd6rqUFVdV1UvJHkhyc+r6sPz3g8ALqTuXuzuLw2PZ4bjB6ccs9DdT3f3N5Ic7+4jw+xjM10WAACAuVuY9wIAAAAAAAAAAAAAAAAAAMBvvYeSHEhyaZLFJHu7+0hV7UjyeJKn5rkcAGwANeU/f3bZ9ZmJe73OXQAAANhARCUBAAAAAAAAAAAAAAAAAIB5W+jup5Okqu7p7iNJ0t3HqqZtaAHApjRtCHJnVZ3KUoxy23Cd4fnWmW4GAADAXIlKAgAAAAAAAAAAAAAAAAAA83Z22fWZiXvTRrQAYJSq6vms/LlXSS6bZlZ3XzSTpQAAANjwRCUBAAAAAAAAAAAAAAAAAIB521lVp7IUzdo2XGd4vnV+awHABbVv3gsAAAAwPqKSAAAAAAAAAAAAAAAAAADAXHX3RfPeAQDmrbtfmjyrqu1JTnR3z2ElAAAARmDLvBcAAAAAAAAAAAAAAAAAAAAAgN92VbW7qr5TVYeq6rqqeiHJC0l+XlUfnvd+AAAAbEwL814AAAAAAAAAAAAAAAAAAAAAAMhDSQ4kuTTJYpK93X2kqnYkeTzJU/NcDgAAgI1py7wXAAAAAAAAAAAAAAAAAAAAAACy0N1Pd/c3khzv7iNJ0t3H5rwXAAAAG5ioJAAAAAAAAAAAAAAAAAAAAADM39ll12cm7vWFXAQAAIDxWJj3AgAAAAAAAAAAAAAAAAAAAABAdlbVqSSVZNtwneH51vmtBQAAwEYmKgkAAAAAAAAAAAAAAAAAAAAAc9bdF817BwAAAMZny7wXAAAAAAAAAAAAAAAAAAAAAAAAAABgeqKSAAAAAAAAAAAAAAAAAAAAAAAAAAAjJCoJAAAAAAAAAAAAAAAAAAAAAAAAADBCopIAAAAAAAAAAAAAAAAAAAAAAAAAACMkKgkAAAAAAAAAAAAAAAAAAAAAAAAAMEIL814AAAAAAAAAAAAAAAAAAAAAAAAAYKb67Lw3ALggtsx7AQAAAAAAAAAAAAAAAAAAAAAAAAAApicqCQAAAAAAAAAAAAAAAAAAAAAAAAAwQqKSAAAAAAAAAAAAAAAAAAAAAAAAAAAjJCoJAAAAAAAAAAAAAAAAAAAAAAAAADBCopIAAAAAAAAAAAAAAAAAAAAAAAAAACMkKgkAAAAAAAAAAAAAAAAAAAAAAAAAMEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAIyQqCQAAAAAAAAAAAAAAAAAAAAAAAAAwQqKSAAAAAAAAAAAAAAAAAAAAAAAAAAAjJCoJAAAAAAAAAAAAAAAAAAAAAAAAADBCopIAAAAAAAAAAAAAAAAAAAAAAAAAACMkKgkAAAAAAAAAAAAAAAAAAAAAAAAAMEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAIyQqCQAAAAAAAAAAAAAAAAAAAAAAAAAwQqKSAAAAAAAAAAAAAAAAAAAAAAAAAAAjJCoJAAAAAAAAAAAAAAAAAAAAAAAAADBCopIAAAAAAAAAAAAAAAAAAAAAAAAAACMkKgkAAAAAAAAAAAAAAAAAAAAAAAAAMEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAIyQqCQAAAAAAAAAAAAAAAAAAAAAAAAAwQgvzXgAAAAAAAAAAAAAAAAAAAAAAAABglrp73isAXBBb5r0AAAAAAAAAAAAAAAAAAAAAAAAAAADTE5UEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBFamPcCAAAAAAAAAAAAAAAAAAAAAAAAADN1tue9AcAFsWXeCwAAAAAAAAAAAAAAAAAAAAAAAAAAMD1RSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABghUUkAAAAAAAAAAAAAAAAAAAAAAAAAgBESlQQAAAAAAAAAAAAAAAAAAAAAAAAAGCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAERKVBAAAAAAAAAAAAAAAAAAAAAAAAAAYIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIAREpUEAAAAAAAAAAAAAAAAAAAAAAAAABihhXkvAAAAAAAAAAAAAAAAAAAAAAAAADBLffa1ea8AcEFsmfcCAAAAAAAAAAAAAAAAAAAAAAAAAABMT1QSAAAAAAAAAAAAAAAAAAAAAAAAAGCERCUBAAAAAAAAAAAAAAAAAAAAAAAAAEZIVBIAAAAAAAAAAAAAAAAAAAAAAAAAYIREJQEAAAAAAAAAAAAAAAAAAAAAAAAARkhUEgAAAAAAAAAAAAAAAAAAAAAAAABghEQlAQAAAAAAAAAAAAAAAAAAAAAAAABGSFQSAAAAAAAAAAAAAPj/7Nw9i11VHMXh9R+H1EIa8aUIaJNaBMFKLLTyBQWtLIRUVjYKfgIrK5uAhZ0GmwgKAUEQLMTWEALBxliK1hJnW3iLIeiMw4xzWPA83dnn3LvXJ/gBAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIX2tx4AAAAAAAAAAAAAAAAAAAAAAAAAcKbWwdYLAM7F3tYDAAAAAAAAAAAAAAAAAAAAAAAAAAA4OVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFNrfegAAAAAAAAAAAAAAAAAAAAAAAADAmTpYWy8AOBd7Ww8AAAAAAAAAAAAAAAAAAAAAAAAAAODkRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKLS/9QAAAAAAAAAAAAAAAAAAAAAAAACAs7QO/tx6AsC52Nt6AAAAAAAAAAAAAAAAAAAAAAAAAAAAJycqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACi0v/UAAAAAAAAAAAAAAAAAAAAAAAAAgLO01sHWEwDOxd7WAwAAAAAAAAAAAAAAAAAAAAAAAAAAODlRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABTa33oAAAAAAAAAAAAAAAAAAAAAAAAAwJlaa+sFAOdib+sBAAAAAAAAAAAAAAAAAAAAAAAAAACcnKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAcV5pVAAABy1JREFUAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIX2tx4AAAAAAAAAAAAAAAAAAAAAAAAAcKYO1tYLAM7F3tYDAAAAAAAAAAAAAAAAAAAAAAAAAAA4OVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAABQSFQSAAAAAAAAAAAAAAAAAAAAAAAAAKCQqCQAAAAAAAAAAAAAAAAAAAAAAAAAQCFRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAABAIVFJAAAAAAAAAAAAAAAAAAAAAAAAAIBCopIAAAAAAAAAAAAAAAAAAAAAAAAAAIVEJQEAAAAAAAAAAAAAAAAAAAAAAAAAColKAgAAAAAAAAAAAAAAAAAAAAAAAAAUEpUEAAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAUEhUEgAAAAAAAAAAAAAAAAAAAAAAAACgkKgkAAAAAAAAAAAAAAAAAAAAAAAAAEAhUUkAAAAAAAAAAAAAAAAAAAAAAAAAgEKikgAAAAAAAAAAAAAAAAAAAAAAAAAAhUQlAQAAAAAAAAAAAAAAAAAAAAAAAAAKiUoCAAAAAAAAAAAAAAAAAAAAAAAAABQSlQQAAAAAAAAAAAAAAAAAAAAAAAAAOKWZeW1mbs7Mwcw8ecR3z8/M7Zm5MzPvHTq/NDPf784/m5kLx90pKgkAAAAAAAAAAAAAAAAAAAAAAAAAcHo/Jnklybf/9sHMPJDkoyQvJLmc5I2Zubx7/UGSD9dajyf5Lclbx10oKgkAAAAAAAAAAAAAAAAAAAAAAAAAcEprrVtrrdvHfPZUkjtrrZ/WWn8k+TTJizMzSZ5N8vnuu0+SvHTcnaKSAAAAAAAAAAAAAAAAAAAAAAAAAADn45EkPx96vrs7u5jk97XWvfvOj7R/5vMAAAAAAAAAAAAAAAAAAAAAAAAANvTMte9m6w1Ap5m5kuTKoaOra62rh95/neShf/jp+2ut6//3vvuJSgIAAAAAAAAAAAAAAAAAAAAAAAAAJNkFJK8e8f65U17xS5LHDj0/ujv7NcmDM7O/1rp36PxIe6ccAwAAAAAAAAAAAAAAAAAAAAAAAADAf/NDkidm5tLMXEjyepIv1loryTdJXt1992aS68f9magkAAAAAAAAAAAAAAAAAAAAAAAAAMApzczLM3M3ydNJvpyZG7vzh2fmqyRZa91L8naSG0luJbm21rq5+4t3k7wzM3eSXEzy8bF3/h2jBAAAAAAAAAAAAAAAAAAAAAAAAACgyd7WAwAAAAAAAAAAAAAAAAAAAAAAAAAAODlRSQAAAAAAAAAAAAAAAAAAAAAAAACAQqKSAAAAAAAAAAAAAAAAAAAAAAAAAACFRCUBAAAAAAAAAAAAAAAAAAAAAAAAAAqJSgIAAAAAAAAAAAAAAAAAAAAAAAAAFBKVBAAAAAAAAAAAAAAAAAAAAAAAAAAoJCoJAAAAAAAAAAAAAAAAAAAAAAAAAFBIVBIAAAAAAAAAAAAAAP5qDw5IAAAAAAT9f92OQAUAAAAAAAAAgKEAgfZxYbxbdf0AAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 7200x7200 with 2 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "dPy6Lz-QcBso",
        "outputId": "8c7659e3-d10e-4bbb-8732-a5d669a14781"
      },
      "source": [
        "corr.shape\n",
        "ICU_corr = corr.iloc[236]\n",
        "ICU_corr.describe()\n"
      ],
      "execution_count": 19,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "count    201.000000\n",
              "mean      -0.007311\n",
              "std        0.195205\n",
              "min       -0.561299\n",
              "25%       -0.126787\n",
              "50%        0.044200\n",
              "75%        0.103800\n",
              "max        1.000000\n",
              "Name: ICU, dtype: float64"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 19
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 282
        },
        "id": "02_7tszMigC6",
        "outputId": "f82895e5-d26d-480e-9e9d-ecc013db131f"
      },
      "source": [
        "ICU_corr = np.array(ICU_corr)\n",
        "selection = []\n",
        "for i in ICU_corr:\n",
        "  if(i):\n",
        "    if(i>0.11):\n",
        "      selection.append(True)\n",
        "    elif(i<-0.12):\n",
        "      selection.append(True)\n",
        "    else:\n",
        "      selection.append(False)\n",
        "  else:\n",
        "    selection.append(False)\n",
        "\n",
        "print(len(selection), selection.count(True))\n",
        "selection = np.array(selection)\n",
        "selected_final_data = final_data.loc[:, selection]\n",
        "selected_final_data.head()\n",
        "\n",
        "selected_final_data = selected_final_data[['AGE_ABOVE65', 'DISEASE GROUPING 2', 'DISEASE GROUPING 3', 'DISEASE GROUPING 4',\n",
        "                                           'HTN', 'BIC_VENOUS_MEAN', 'CALCIUM_MEAN' , 'CREATININ_MEAN', 'GLUCOSE_MEAN', 'INR_MEAN',\n",
        "                                           'LACTATE_MEAN', 'LEUKOCYTES_MEAN', 'LINFOCITOS_MEAN', 'NEUTROPHILES_MEAN', 'PC02_VENOUS_MEAN',\n",
        "                                           'PCR_MEAN', 'PLATELETS_MEAN', 'SAT02_VENOUS_MEAN', 'SODIUM_MEAN', 'UREA_MEAN', 'BLOODPRESSURE_DIASTOLIC_MEAN',\n",
        "                                           'RESPIRATORY_RATE_MEAN', 'TEMPERATURE_MEAN', 'OXYGEN_SATURATION_MEAN', 'BLOODPRESSURE_SISTOLIC_MIN',\n",
        "                                           'HEART_RATE_MIN', 'RESPIRATORY_RATE_MIN', 'TEMPERATURE_MIN', 'BLOODPRESSURE_DIASTOLIC_MAX', 'BLOODPRESSURE_SISTOLIC_MAX',\n",
        "                                           'HEART_RATE_MAX', 'OXYGEN_SATURATION_MAX', 'BLOODPRESSURE_DIASTOLIC_DIFF', 'BLOODPRESSURE_SISTOLIC_DIFF', \n",
        "                                           'HEART_RATE_DIFF', 'RESPIRATORY_RATE_DIFF', 'TEMPERATURE_DIFF', 'OXYGEN_SATURATION_DIFF', \n",
        "                                           'AGE_PERCENTIL_10th', 'AGE_PERCENTIL_20th', 'AGE_PERCENTIL_80th', 'AGE_PERCENTIL_90th', 'ICU']]\n",
        "\n",
        "print(selected_final_data.shape)\n",
        "selected_final_data.head()\n"
      ],
      "execution_count": 20,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "237 98\n",
            "(293, 43)\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>HTN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.551183</td>\n",
              "      <td>-0.683145</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.867507</td>\n",
              "      <td>-0.587500</td>\n",
              "      <td>-0.145299</td>\n",
              "      <td>-0.678571</td>\n",
              "      <td>0.604396</td>\n",
              "      <td>-0.504274</td>\n",
              "      <td>-0.627027</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.626087</td>\n",
              "      <td>-0.613497</td>\n",
              "      <td>-0.572519</td>\n",
              "      <td>-0.852941</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.878788</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.132620</td>\n",
              "      <td>-0.506215</td>\n",
              "      <td>-0.119762</td>\n",
              "      <td>0.652398</td>\n",
              "      <td>-0.329167</td>\n",
              "      <td>-0.435897</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>0.216117</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.506306</td>\n",
              "      <td>-0.263682</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>-0.692754</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-0.582697</td>\n",
              "      <td>-0.784314</td>\n",
              "      <td>-0.682540</td>\n",
              "      <td>-0.723906</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>13</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>0.236838</td>\n",
              "      <td>-0.539451</td>\n",
              "      <td>0.189142</td>\n",
              "      <td>0.852390</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.048433</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.293694</td>\n",
              "      <td>0.019900</td>\n",
              "      <td>0.912281</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.811861</td>\n",
              "      <td>-0.725191</td>\n",
              "      <td>-0.901961</td>\n",
              "      <td>-0.761905</td>\n",
              "      <td>-0.959596</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>18</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.078189</td>\n",
              "      <td>-0.495292</td>\n",
              "      <td>-0.137566</td>\n",
              "      <td>0.835283</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.418803</td>\n",
              "      <td>-0.404762</td>\n",
              "      <td>0.252747</td>\n",
              "      <td>-0.282051</td>\n",
              "      <td>-0.553153</td>\n",
              "      <td>-0.482587</td>\n",
              "      <td>0.894737</td>\n",
              "      <td>-0.843478</td>\n",
              "      <td>-0.820041</td>\n",
              "      <td>-0.821883</td>\n",
              "      <td>-0.980392</td>\n",
              "      <td>-0.904762</td>\n",
              "      <td>-0.966330</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "    AGE_ABOVE65  DISEASE GROUPING 2  DISEASE GROUPING 3  DISEASE GROUPING 4  \\\n",
              "0           1.0                 0.0                 0.0                 0.0   \n",
              "4           0.0                 0.0                 0.0                 0.0   \n",
              "8           0.0                 0.0                 0.0                 0.0   \n",
              "13          0.0                 0.0                 0.0                 0.0   \n",
              "18          0.0                 0.0                 0.0                 0.0   \n",
              "\n",
              "    HTN  BIC_VENOUS_MEAN  CALCIUM_MEAN  CREATININ_MEAN  GLUCOSE_MEAN  \\\n",
              "0   0.0        -0.317073      0.183673       -0.868365     -0.891993   \n",
              "4   0.0        -0.317073      0.357143       -0.912243     -0.780261   \n",
              "8   0.0        -0.317073      0.326531       -0.968861     -0.891993   \n",
              "13  0.0        -0.317073      0.357143       -0.913659     -0.851024   \n",
              "18  0.0        -0.317073      0.357143       -0.891012     -0.891993   \n",
              "\n",
              "    INR_MEAN  LACTATE_MEAN  LEUKOCYTES_MEAN  LINFOCITOS_MEAN  \\\n",
              "0  -0.932246      1.000000        -0.835844        -0.914938   \n",
              "4  -0.959849      1.000000        -0.382773        -0.908714   \n",
              "8  -0.959849     -0.828421        -0.729239        -0.836100   \n",
              "13 -0.959849      1.000000        -0.702202        -0.641079   \n",
              "18 -0.959849      1.000000        -0.706450        -0.340249   \n",
              "\n",
              "    NEUTROPHILES_MEAN  PC02_VENOUS_MEAN  PCR_MEAN  PLATELETS_MEAN  \\\n",
              "0           -0.868747         -0.754601 -0.875236       -0.540721   \n",
              "4           -0.412965         -0.754601 -0.939887       -0.399199   \n",
              "8           -0.784714         -0.779141 -0.503592       -0.564753   \n",
              "13          -0.812725         -0.754601 -0.990926       -0.457944   \n",
              "18          -0.846339         -0.754601 -0.997732       -0.292390   \n",
              "\n",
              "    SAT02_VENOUS_MEAN  SODIUM_MEAN  UREA_MEAN  BLOODPRESSURE_DIASTOLIC_MEAN  \\\n",
              "0            0.345679    -0.028571  -0.836145                      0.086420   \n",
              "4            0.345679     0.085714  -0.836145                     -0.551183   \n",
              "8            0.580247     0.200000  -0.937349                     -0.132620   \n",
              "13           0.345679     0.142857  -0.903614                      0.236838   \n",
              "18           0.345679     0.085714  -0.884337                     -0.078189   \n",
              "\n",
              "    RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  OXYGEN_SATURATION_MEAN  \\\n",
              "0               -0.593220         -0.285714                0.736842   \n",
              "4               -0.683145          0.357143                0.867507   \n",
              "8               -0.506215         -0.119762                0.652398   \n",
              "13              -0.539451          0.189142                0.852390   \n",
              "18              -0.495292         -0.137566                0.835283   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  RESPIRATORY_RATE_MIN  \\\n",
              "0                     0.000000       -0.162393             -0.500000   \n",
              "4                    -0.587500       -0.145299             -0.678571   \n",
              "8                    -0.329167       -0.435897             -0.547619   \n",
              "13                    0.000000        0.048433             -0.500000   \n",
              "18                   -0.291667       -0.418803             -0.404762   \n",
              "\n",
              "    TEMPERATURE_MIN  BLOODPRESSURE_DIASTOLIC_MAX  BLOODPRESSURE_SISTOLIC_MAX  \\\n",
              "0          0.208791                    -0.247863                   -0.459459   \n",
              "4          0.604396                    -0.504274                   -0.627027   \n",
              "8          0.216117                    -0.247863                   -0.506306   \n",
              "13         0.362637                    -0.076923                   -0.293694   \n",
              "18         0.252747                    -0.282051                   -0.553153   \n",
              "\n",
              "    HEART_RATE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "0        -0.432836               0.736842                     -1.000000   \n",
              "4         0.000000               1.000000                     -0.626087   \n",
              "8        -0.263682               0.754386                     -0.692754   \n",
              "13        0.019900               0.912281                     -0.826087   \n",
              "18       -0.482587               0.894737                     -0.843478   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "0                     -1.000000        -1.000000              -1.000000   \n",
              "4                     -0.613497        -0.572519              -0.852941   \n",
              "8                     -0.730061        -0.582697              -0.784314   \n",
              "13                    -0.811861        -0.725191              -0.901961   \n",
              "18                    -0.820041        -0.821883              -0.980392   \n",
              "\n",
              "    TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  AGE_PERCENTIL_10th  \\\n",
              "0          -1.000000               -1.000000                 0.0   \n",
              "4          -1.000000               -0.878788                 1.0   \n",
              "8          -0.682540               -0.723906                 0.0   \n",
              "13         -0.761905               -0.959596                 1.0   \n",
              "18         -0.904762               -0.966330                 1.0   \n",
              "\n",
              "    AGE_PERCENTIL_20th  AGE_PERCENTIL_80th  AGE_PERCENTIL_90th  ICU  \n",
              "0                  0.0                 0.0                 0.0  1.0  \n",
              "4                  0.0                 0.0                 0.0  1.0  \n",
              "8                  0.0                 0.0                 0.0  0.0  \n",
              "13                 0.0                 0.0                 0.0  0.0  \n",
              "18                 0.0                 0.0                 0.0  0.0  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 20
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "oGzYkVtSypc9",
        "outputId": "7cf65310-bb08-4d0f-d049-c76c4dd26a72"
      },
      "source": [
        "corr = selected_final_data.corr()\n",
        "corr.shape\n",
        "plt.subplots(figsize=(30,30))\n",
        "ax = sns.heatmap(\n",
        "    corr, \n",
        "    vmin=-1, vmax=1, center=0,\n",
        "    cmap=sns.diverging_palette(20, 220, n=200),\n",
        "    square=True\n",
        ")\n",
        "ax.set_xticklabels(\n",
        "    ax.get_xticklabels(),\n",
        "    rotation=90,\n",
        "    horizontalalignment='right'\n",
        ");\n",
        "corr.tail()"
      ],
      "execution_count": 21,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>HTN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <td>-0.313916</td>\n",
              "      <td>-0.058553</td>\n",
              "      <td>-0.114311</td>\n",
              "      <td>-0.054115</td>\n",
              "      <td>-0.169772</td>\n",
              "      <td>0.013096</td>\n",
              "      <td>0.131271</td>\n",
              "      <td>-0.074361</td>\n",
              "      <td>-0.107257</td>\n",
              "      <td>-0.078865</td>\n",
              "      <td>0.074443</td>\n",
              "      <td>0.054177</td>\n",
              "      <td>0.219045</td>\n",
              "      <td>-0.005714</td>\n",
              "      <td>0.046349</td>\n",
              "      <td>-0.148719</td>\n",
              "      <td>0.084417</td>\n",
              "      <td>-0.013667</td>\n",
              "      <td>0.157883</td>\n",
              "      <td>-0.201817</td>\n",
              "      <td>-0.047245</td>\n",
              "      <td>-0.111062</td>\n",
              "      <td>0.060691</td>\n",
              "      <td>0.181119</td>\n",
              "      <td>-0.084997</td>\n",
              "      <td>0.122856</td>\n",
              "      <td>-0.084227</td>\n",
              "      <td>0.073454</td>\n",
              "      <td>-0.054504</td>\n",
              "      <td>-0.115735</td>\n",
              "      <td>0.156086</td>\n",
              "      <td>0.152179</td>\n",
              "      <td>-0.013078</td>\n",
              "      <td>-0.050120</td>\n",
              "      <td>0.050871</td>\n",
              "      <td>-0.002497</td>\n",
              "      <td>-0.022218</td>\n",
              "      <td>-0.006817</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.144480</td>\n",
              "      <td>-0.116793</td>\n",
              "      <td>-0.101302</td>\n",
              "      <td>-0.149620</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <td>-0.323780</td>\n",
              "      <td>0.006130</td>\n",
              "      <td>-0.081539</td>\n",
              "      <td>0.015912</td>\n",
              "      <td>-0.121100</td>\n",
              "      <td>0.039324</td>\n",
              "      <td>0.130802</td>\n",
              "      <td>-0.072781</td>\n",
              "      <td>-0.056432</td>\n",
              "      <td>-0.020764</td>\n",
              "      <td>0.103174</td>\n",
              "      <td>-0.096160</td>\n",
              "      <td>0.076510</td>\n",
              "      <td>-0.117150</td>\n",
              "      <td>0.038461</td>\n",
              "      <td>-0.098218</td>\n",
              "      <td>0.101462</td>\n",
              "      <td>0.044953</td>\n",
              "      <td>0.084859</td>\n",
              "      <td>-0.137249</td>\n",
              "      <td>0.126126</td>\n",
              "      <td>-0.077020</td>\n",
              "      <td>-0.082433</td>\n",
              "      <td>0.190544</td>\n",
              "      <td>-0.117213</td>\n",
              "      <td>0.011360</td>\n",
              "      <td>-0.109793</td>\n",
              "      <td>-0.119135</td>\n",
              "      <td>0.142613</td>\n",
              "      <td>-0.039946</td>\n",
              "      <td>0.096577</td>\n",
              "      <td>0.200298</td>\n",
              "      <td>0.107792</td>\n",
              "      <td>0.117468</td>\n",
              "      <td>0.125407</td>\n",
              "      <td>0.110745</td>\n",
              "      <td>0.083120</td>\n",
              "      <td>0.043650</td>\n",
              "      <td>-0.144480</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.120463</td>\n",
              "      <td>-0.104485</td>\n",
              "      <td>-0.140198</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <td>0.372051</td>\n",
              "      <td>-0.048820</td>\n",
              "      <td>-0.052347</td>\n",
              "      <td>0.039624</td>\n",
              "      <td>0.081773</td>\n",
              "      <td>0.031392</td>\n",
              "      <td>-0.106084</td>\n",
              "      <td>0.187437</td>\n",
              "      <td>-0.006491</td>\n",
              "      <td>0.066156</td>\n",
              "      <td>0.072293</td>\n",
              "      <td>-0.045179</td>\n",
              "      <td>-0.124717</td>\n",
              "      <td>-0.017195</td>\n",
              "      <td>-0.038268</td>\n",
              "      <td>-0.008421</td>\n",
              "      <td>-0.176491</td>\n",
              "      <td>0.062060</td>\n",
              "      <td>-0.004862</td>\n",
              "      <td>0.246949</td>\n",
              "      <td>-0.010905</td>\n",
              "      <td>0.008452</td>\n",
              "      <td>-0.009846</td>\n",
              "      <td>-0.060254</td>\n",
              "      <td>0.073879</td>\n",
              "      <td>-0.095074</td>\n",
              "      <td>0.017877</td>\n",
              "      <td>0.015329</td>\n",
              "      <td>-0.057432</td>\n",
              "      <td>0.036275</td>\n",
              "      <td>-0.112635</td>\n",
              "      <td>-0.093839</td>\n",
              "      <td>-0.092799</td>\n",
              "      <td>-0.056737</td>\n",
              "      <td>-0.027386</td>\n",
              "      <td>-0.048452</td>\n",
              "      <td>-0.061946</td>\n",
              "      <td>-0.053039</td>\n",
              "      <td>-0.116793</td>\n",
              "      <td>-0.120463</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.084463</td>\n",
              "      <td>0.117203</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <td>0.322705</td>\n",
              "      <td>0.134898</td>\n",
              "      <td>0.062662</td>\n",
              "      <td>-0.039135</td>\n",
              "      <td>0.093065</td>\n",
              "      <td>-0.023979</td>\n",
              "      <td>-0.008451</td>\n",
              "      <td>0.011321</td>\n",
              "      <td>-0.046688</td>\n",
              "      <td>0.003333</td>\n",
              "      <td>-0.157023</td>\n",
              "      <td>0.067807</td>\n",
              "      <td>-0.024487</td>\n",
              "      <td>0.068433</td>\n",
              "      <td>-0.038205</td>\n",
              "      <td>0.011468</td>\n",
              "      <td>-0.031250</td>\n",
              "      <td>-0.093800</td>\n",
              "      <td>-0.052278</td>\n",
              "      <td>0.065191</td>\n",
              "      <td>0.035194</td>\n",
              "      <td>0.020020</td>\n",
              "      <td>0.006909</td>\n",
              "      <td>-0.033732</td>\n",
              "      <td>0.227708</td>\n",
              "      <td>0.005969</td>\n",
              "      <td>0.028998</td>\n",
              "      <td>0.042049</td>\n",
              "      <td>-0.006645</td>\n",
              "      <td>0.173577</td>\n",
              "      <td>-0.087677</td>\n",
              "      <td>-0.093220</td>\n",
              "      <td>-0.090489</td>\n",
              "      <td>-0.078546</td>\n",
              "      <td>-0.137506</td>\n",
              "      <td>-0.075868</td>\n",
              "      <td>-0.124175</td>\n",
              "      <td>-0.028338</td>\n",
              "      <td>-0.101302</td>\n",
              "      <td>-0.104485</td>\n",
              "      <td>-0.084463</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>0.136393</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>ICU</th>\n",
              "      <td>0.240516</td>\n",
              "      <td>0.116123</td>\n",
              "      <td>0.128431</td>\n",
              "      <td>0.143218</td>\n",
              "      <td>0.152904</td>\n",
              "      <td>-0.128091</td>\n",
              "      <td>-0.281260</td>\n",
              "      <td>0.219298</td>\n",
              "      <td>0.186633</td>\n",
              "      <td>0.125135</td>\n",
              "      <td>-0.206652</td>\n",
              "      <td>0.116605</td>\n",
              "      <td>-0.257798</td>\n",
              "      <td>0.196802</td>\n",
              "      <td>-0.151272</td>\n",
              "      <td>0.342681</td>\n",
              "      <td>-0.205424</td>\n",
              "      <td>-0.126787</td>\n",
              "      <td>-0.270175</td>\n",
              "      <td>0.284436</td>\n",
              "      <td>-0.207844</td>\n",
              "      <td>0.145838</td>\n",
              "      <td>0.211525</td>\n",
              "      <td>-0.142736</td>\n",
              "      <td>0.170446</td>\n",
              "      <td>0.154358</td>\n",
              "      <td>0.268190</td>\n",
              "      <td>0.365030</td>\n",
              "      <td>-0.374781</td>\n",
              "      <td>-0.122936</td>\n",
              "      <td>-0.202084</td>\n",
              "      <td>-0.285522</td>\n",
              "      <td>-0.460225</td>\n",
              "      <td>-0.453095</td>\n",
              "      <td>-0.521195</td>\n",
              "      <td>-0.404924</td>\n",
              "      <td>-0.486424</td>\n",
              "      <td>-0.232002</td>\n",
              "      <td>-0.149620</td>\n",
              "      <td>-0.140198</td>\n",
              "      <td>0.117203</td>\n",
              "      <td>0.136393</td>\n",
              "      <td>1.000000</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                    AGE_ABOVE65  DISEASE GROUPING 2  DISEASE GROUPING 3  \\\n",
              "AGE_PERCENTIL_10th    -0.313916           -0.058553           -0.114311   \n",
              "AGE_PERCENTIL_20th    -0.323780            0.006130           -0.081539   \n",
              "AGE_PERCENTIL_80th     0.372051           -0.048820           -0.052347   \n",
              "AGE_PERCENTIL_90th     0.322705            0.134898            0.062662   \n",
              "ICU                    0.240516            0.116123            0.128431   \n",
              "\n",
              "                    DISEASE GROUPING 4       HTN  BIC_VENOUS_MEAN  \\\n",
              "AGE_PERCENTIL_10th           -0.054115 -0.169772         0.013096   \n",
              "AGE_PERCENTIL_20th            0.015912 -0.121100         0.039324   \n",
              "AGE_PERCENTIL_80th            0.039624  0.081773         0.031392   \n",
              "AGE_PERCENTIL_90th           -0.039135  0.093065        -0.023979   \n",
              "ICU                           0.143218  0.152904        -0.128091   \n",
              "\n",
              "                    CALCIUM_MEAN  CREATININ_MEAN  GLUCOSE_MEAN  INR_MEAN  \\\n",
              "AGE_PERCENTIL_10th      0.131271       -0.074361     -0.107257 -0.078865   \n",
              "AGE_PERCENTIL_20th      0.130802       -0.072781     -0.056432 -0.020764   \n",
              "AGE_PERCENTIL_80th     -0.106084        0.187437     -0.006491  0.066156   \n",
              "AGE_PERCENTIL_90th     -0.008451        0.011321     -0.046688  0.003333   \n",
              "ICU                    -0.281260        0.219298      0.186633  0.125135   \n",
              "\n",
              "                    LACTATE_MEAN  LEUKOCYTES_MEAN  LINFOCITOS_MEAN  \\\n",
              "AGE_PERCENTIL_10th      0.074443         0.054177         0.219045   \n",
              "AGE_PERCENTIL_20th      0.103174        -0.096160         0.076510   \n",
              "AGE_PERCENTIL_80th      0.072293        -0.045179        -0.124717   \n",
              "AGE_PERCENTIL_90th     -0.157023         0.067807        -0.024487   \n",
              "ICU                    -0.206652         0.116605        -0.257798   \n",
              "\n",
              "                    NEUTROPHILES_MEAN  PC02_VENOUS_MEAN  PCR_MEAN  \\\n",
              "AGE_PERCENTIL_10th          -0.005714          0.046349 -0.148719   \n",
              "AGE_PERCENTIL_20th          -0.117150          0.038461 -0.098218   \n",
              "AGE_PERCENTIL_80th          -0.017195         -0.038268 -0.008421   \n",
              "AGE_PERCENTIL_90th           0.068433         -0.038205  0.011468   \n",
              "ICU                          0.196802         -0.151272  0.342681   \n",
              "\n",
              "                    PLATELETS_MEAN  SAT02_VENOUS_MEAN  SODIUM_MEAN  UREA_MEAN  \\\n",
              "AGE_PERCENTIL_10th        0.084417          -0.013667     0.157883  -0.201817   \n",
              "AGE_PERCENTIL_20th        0.101462           0.044953     0.084859  -0.137249   \n",
              "AGE_PERCENTIL_80th       -0.176491           0.062060    -0.004862   0.246949   \n",
              "AGE_PERCENTIL_90th       -0.031250          -0.093800    -0.052278   0.065191   \n",
              "ICU                      -0.205424          -0.126787    -0.270175   0.284436   \n",
              "\n",
              "                    BLOODPRESSURE_DIASTOLIC_MEAN  RESPIRATORY_RATE_MEAN  \\\n",
              "AGE_PERCENTIL_10th                     -0.047245              -0.111062   \n",
              "AGE_PERCENTIL_20th                      0.126126              -0.077020   \n",
              "AGE_PERCENTIL_80th                     -0.010905               0.008452   \n",
              "AGE_PERCENTIL_90th                      0.035194               0.020020   \n",
              "ICU                                    -0.207844               0.145838   \n",
              "\n",
              "                    TEMPERATURE_MEAN  OXYGEN_SATURATION_MEAN  \\\n",
              "AGE_PERCENTIL_10th          0.060691                0.181119   \n",
              "AGE_PERCENTIL_20th         -0.082433                0.190544   \n",
              "AGE_PERCENTIL_80th         -0.009846               -0.060254   \n",
              "AGE_PERCENTIL_90th          0.006909               -0.033732   \n",
              "ICU                         0.211525               -0.142736   \n",
              "\n",
              "                    BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  \\\n",
              "AGE_PERCENTIL_10th                   -0.084997        0.122856   \n",
              "AGE_PERCENTIL_20th                   -0.117213        0.011360   \n",
              "AGE_PERCENTIL_80th                    0.073879       -0.095074   \n",
              "AGE_PERCENTIL_90th                    0.227708        0.005969   \n",
              "ICU                                   0.170446        0.154358   \n",
              "\n",
              "                    RESPIRATORY_RATE_MIN  TEMPERATURE_MIN  \\\n",
              "AGE_PERCENTIL_10th             -0.084227         0.073454   \n",
              "AGE_PERCENTIL_20th             -0.109793        -0.119135   \n",
              "AGE_PERCENTIL_80th              0.017877         0.015329   \n",
              "AGE_PERCENTIL_90th              0.028998         0.042049   \n",
              "ICU                             0.268190         0.365030   \n",
              "\n",
              "                    BLOODPRESSURE_DIASTOLIC_MAX  BLOODPRESSURE_SISTOLIC_MAX  \\\n",
              "AGE_PERCENTIL_10th                    -0.054504                   -0.115735   \n",
              "AGE_PERCENTIL_20th                     0.142613                   -0.039946   \n",
              "AGE_PERCENTIL_80th                    -0.057432                    0.036275   \n",
              "AGE_PERCENTIL_90th                    -0.006645                    0.173577   \n",
              "ICU                                   -0.374781                   -0.122936   \n",
              "\n",
              "                    HEART_RATE_MAX  OXYGEN_SATURATION_MAX  \\\n",
              "AGE_PERCENTIL_10th        0.156086               0.152179   \n",
              "AGE_PERCENTIL_20th        0.096577               0.200298   \n",
              "AGE_PERCENTIL_80th       -0.112635              -0.093839   \n",
              "AGE_PERCENTIL_90th       -0.087677              -0.093220   \n",
              "ICU                      -0.202084              -0.285522   \n",
              "\n",
              "                    BLOODPRESSURE_DIASTOLIC_DIFF  BLOODPRESSURE_SISTOLIC_DIFF  \\\n",
              "AGE_PERCENTIL_10th                     -0.013078                    -0.050120   \n",
              "AGE_PERCENTIL_20th                      0.107792                     0.117468   \n",
              "AGE_PERCENTIL_80th                     -0.092799                    -0.056737   \n",
              "AGE_PERCENTIL_90th                     -0.090489                    -0.078546   \n",
              "ICU                                    -0.460225                    -0.453095   \n",
              "\n",
              "                    HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  TEMPERATURE_DIFF  \\\n",
              "AGE_PERCENTIL_10th         0.050871              -0.002497         -0.022218   \n",
              "AGE_PERCENTIL_20th         0.125407               0.110745          0.083120   \n",
              "AGE_PERCENTIL_80th        -0.027386              -0.048452         -0.061946   \n",
              "AGE_PERCENTIL_90th        -0.137506              -0.075868         -0.124175   \n",
              "ICU                       -0.521195              -0.404924         -0.486424   \n",
              "\n",
              "                    OXYGEN_SATURATION_DIFF  AGE_PERCENTIL_10th  \\\n",
              "AGE_PERCENTIL_10th               -0.006817            1.000000   \n",
              "AGE_PERCENTIL_20th                0.043650           -0.144480   \n",
              "AGE_PERCENTIL_80th               -0.053039           -0.116793   \n",
              "AGE_PERCENTIL_90th               -0.028338           -0.101302   \n",
              "ICU                              -0.232002           -0.149620   \n",
              "\n",
              "                    AGE_PERCENTIL_20th  AGE_PERCENTIL_80th  \\\n",
              "AGE_PERCENTIL_10th           -0.144480           -0.116793   \n",
              "AGE_PERCENTIL_20th            1.000000           -0.120463   \n",
              "AGE_PERCENTIL_80th           -0.120463            1.000000   \n",
              "AGE_PERCENTIL_90th           -0.104485           -0.084463   \n",
              "ICU                          -0.140198            0.117203   \n",
              "\n",
              "                    AGE_PERCENTIL_90th       ICU  \n",
              "AGE_PERCENTIL_10th           -0.101302 -0.149620  \n",
              "AGE_PERCENTIL_20th           -0.104485 -0.140198  \n",
              "AGE_PERCENTIL_80th           -0.084463  0.117203  \n",
              "AGE_PERCENTIL_90th            1.000000  0.136393  \n",
              "ICU                           0.136393  1.000000  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 21
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABs4AAAaZCAYAAADs8fryAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfbSfZXkv+O+1sxMgvCNiEVEUX5fVQ8HR6tGqWBVPW5VRq+jIwbbDTKd0nJ4ea3u0hVqPMxaXtRX7kqNU7YhooVqqtuiqciyjtuRYBFGL4AtitQj4UkJISHLNH/vZa/262TskJnqH5PNZa6/8fvdzP/d1/fZLsvf+5n6e6u4AAAAAAADAvm5udAMAAAAAAACwJxCcAQAAAAAAQARnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAAAMUlXnV9VNVfXZFY5XVf1BVV1XVVdV1Ykzx/5jVX1xevuPu6MfwRkAAAAAAACjvD3JKds5/qwkD5nezkzyR0lSVUckOTvJ45I8NsnZVXX4rjYjOAMAAAAAAGCI7v54klu3M+U5Sd7ZCz6V5LCqOjrJM5N8pLtv7e5vJ/lIth/A7ZD5XV0AAAAAAABgb/OUc87r0T3sDf77b//y/5aFnWKL1nX3up1Y4pgkX5t5fuM0ttL4LhGcAQAAAAAA8AMxhWQ7E5QN5VKNAAAAAAAA7Km+nuTYmef3m8ZWGt8lgjMAAAAAAAD2VJckOb0W/HiS73b3N5JcmuQZVXV4VR2e5BnT2C5xqUYAAAAAAACGqKp3J3lKkiOr6sYkZydZnSTd/cdJPpTkPyS5LsntSV42Hbu1qn4nyRXTUq/p7lt3tR/BGQAAAAAAAEN092l3c7yT/NIKx85Pcv7u7MelGgEAAAAAACCCMwAAAAAAAEgiOAMAAAAAAIAkgjMAAAAAAABIIjgDAAAAAACAJIIzAAAAAAAASCI4AwAAAAAAgCSCMwAAAAAAAEiSzI9uAAAAAAAAYE9TVaNbYAA7zgAAAAAAACCCMwAAAAAAAEgiOAMAAAAAAIAkgjMAAAAAAABIIjgDAAAAAACAJMn86AYAAAAAAAD2NHNVo1tgADvOAAAAAAAAIIIzAAAAAAAASCI4AwAAAAAAgCSCMwAAAAAAAEgiOAMAAAAAAIAkyfzoBgAAAAAAAPY0VaM7YAQ7zgAAAAAAACCCMwAAAAAAAEgiOAMAAAAAAIAkgjMAAAAAAABIIjgDAAAAAACAJIIzAAAAAAAASCI4AwAAAAAAgCSCMwAAAAAAAEgiOAMAAAAAAIAkgjMAAAAAAABIIjgDAAAAAACAJIIzAAAAAAAASJLMj24AAAAAAABgT7Nqzt6jfZGPOgAAAAAAAERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASZL50Q0AAAAAAADsaapqdAsMYMcZAAAAAAAARHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJAkmR/dAAAAAAAAwJ5mrkZ3wAh2nAEAAAAAAEAEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASZL50Q0AAAAAAADsaebK3qN9kY86AAAAAAAARHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJkvnRDQAAAAAAAOxp5qpGt8AAdpwBAAAAAABABGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEmS+dENAAAAAAAA7GmqRnfACHacAQAAAAAAQARnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQJJkf3QAAAAAAAMCeZq5qdAsMYMcZAAAAAAAARHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJAkmR/dAAAAAAAAwJ5mbs7eo32RjzoAAAAAAABEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEmS+dENAAAAAAAA7GnmanQHjGDHGQAAAAAAAERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQJJkf3QAAAAAAAMCepqpGt8AAdpwBAAAAAABABGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJAkmR/dAAAAAAAAwJ5mVdl7tC/yUQcAAAAAAIAIzgAAAAAAACCJ4AwAAAAAAACSCM4AAAAAAAAgieAMAAAAAAAAkgjOAAAAAAAAIIngDAAAAAAAAJIIzgAAAAAAACCJ4AwAAAAAAACSCM4AAAAAAAAgieAMAAAAAAAAkiTzoxsAAAAAAADY01SN7oAR7DgDAAAAAACACM4AAAAAAAAgieAMAAAAAAAAkgjOAAAAAAAAIIngDAAAAAAAAJIIzgAAAAAAACBJMj+6AQAAAAAAgD3NXNXoFhjAjjMAAAAAAACI4AwAAAAAAACSCM4AAAAAAAAgieAMAAAAAAAAkgjOAAAAAAAAIEkyP7oBAAAAAACAPU1VjW6BAew4AwAAAAAAgAjOAAAAAAAAIIngDAAAAAAAAJIIzgAAAAAAACBJMj+6AdgTPOWc83pE3Xef9eIRZZMkN9763WG1k+Toww4ZVvuar//LsNonHnfMsNpzt35zWO1b9jt0WO2R1syvGlr/sNw5rPbcmv2G1d70L18fVnvN/R44rPZcD/mnLEly+5Ztw2rna18cVzvJmiPuPaz2ts2bhtW+4rtbhtV+3JFrh9X+9uoDh9U+fMvtw2pvvWNc7ST5py1rhtV++Jqtw2qP/P7pR/Yf939s7/zOrcNqfzUHDKt99Le/Nqx2kqzaf9zfrasOGFj7oHE/l275zi3Datea/YfVnlu9eljtVWsPGlY7Sb732fXjig/8WeEf9jt6WO21+437fDt07bivsyR5/MOPr6ENwD2c4AwAAAAAAGCJVXMyyH2RSzUCAAAAAABABGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZ3udqnpuVXVVPXxm7LFVdVlVfbGqPl1VH6yqR03Hzqmqr1fVlTNvh91NjTdN58zNjJ1RVd+azr+mqi6qqrXTsaqqV0/1r62qj1XVI6djH6uqZy5Z//+qqj+qquOqauOS3k6f5qypqnXTel+oquct08eVVfULu+t9CwAAAAAA7N3mRzfAbndaksunP8+uqvskeW+SF3f3J5Kkqp6Y5PgkV0/n/F53v2FHFp/CslOTfC3Jk5N8bObwe7r7rGneBUlemORPk/xSkick+XfdfXtVPSPJJVN49u4kL0py6cw6L0rya9Pj67v7hGVaeVWSm7r7oVNPRyzXBwAAAAAAfD+qanQLDGDH2V6kqg5K8sQkP5+F8ClJzkryjsXQLEm6+/Lufv/3WeYpSa5J8kdZCOeW62M+yYFJvj0NvTLJWd19+1T/w0k+keQlSS5K8lNVtWY697gk903yd3fTx88l+b+n9bZ1983f5+sBAAAAAABIIjjb2zwnyd9097VJbqmqk5I8Msmn7+a8X5m5tOHH7mbuaVnYJfa+LAReq2eOvbCqrkzy9SzsAPurqjokyYHd/aUl66xP8sjuvjXJPyR51jT+oiTv7e6enh+/5FKNT5q5lOTvTJee/PNpZ92i51XVVdPlIo9d6YVU1ZlVtb6q1v/z//j/7uZlAwAAAAAAezvB2d7ltCQXTo8vzDI7wqrq76vq81X1+zPDv9fdJ0xvT11p8WlX2H9I8v7u/l6Sv08ye3+y90yXVfyRLFwG8hU72Pfi5Roz/fnumWPXz/R2Qnf/XRYuMXq/JJ/o7hOTfDLJ4qUm/yrJcd396CQfSfKOlYp297rufkx3P+a+J/37HWwVAAAAAADYWwnO9hJVdUSSk5O8taq+koXQ6mezcFnFExfndffjkvxmkkO/jzLPTHJYkqunGk/MMuHctFvsr5L8xBSwbaiqBy2ZdtLUW5L8ZZKnVdWJSdZ29/+4mz5uSXJ7kr+Ynv95ptfY3bd096Zp/K1THQAAAAAAgLslONt7PD/Jn3X3A7r7uO4+NsmXs7Dr6oyqesLM3LXfZ43TkvzCtP5xSR6Y5OlVtdx6T0xy/fT43CR/UFUHJElV/eR0/IIk6e7bknwsyfn5t7vNljUTzD1lGnpaks9Nax89M/XZST6/4y8PAAAAAADYl82PboDd5rQkr18ydvE0/sIkr6+qY5LclOTmJK+ZmfcrVfW/zDx/bnd/ZXahKRw7Jcn/vjjW3Ruq6vIkPzMNvbCqnpiFQPbGJGdM429OcngWdqptTfLNJM/p7o0zJRbvm/ai/FvHT/dNW3R+d/9Bklcm+bOqelOSbyV52XT8/6yqZyfZkuTWmR4AAAAAAAC2S3C2l1ju3mRTwLToySucd06Sc3Zg/duTHLHM+P888/TtK5zbSX57eltp/fcnqSVjX0lywArzv5rkJ5YZ/40kv7FSHQAAAAAA2BFzVXc/ib2OSzUCAAAAAABA7DhjGVX1zNz1so9f7u5TR/QDAAAAAADwwyA44y66+9Ikl47uAwAAAAAA4IfJpRoBAAAAAAAggjMAAAAAAABI4lKNAAAAAAAAdzFXNboFBrDjDAAAAAAAACI4AwAAAAAAgCSCMwAAAAAAAEjiHmeQJHn3WS8eUve08y4YUjdJ3nbmC4bVTpINmzYPq/2QHzlyWO01mzcOq12HHj6s9tbbtwyrfe9DDhxW+47N4153kszN7zes9tb5NcNq19EPGFZ7Ww8rnWy8fVjpA+bHfUu57d4/Mqx2kqw66NBhtbdu+NdhtR+6dvWw2rlzw7DSRw582VsPvNew2vPzA194kqMzrv7q/VYNqz3yb7cN28bdy2P/NeO+fzlq/4OG1T7goAcNq50kcwPf79s2bxpWu2rc/ydfffi9h9Ueaesd475nrdXjfkZJkoMffsK44mvH/Vz8tNvHfe/2zc3jfkCbX2W/CtyT+QoGAAAAAACACM4AAAAAAAAgieAMAAAAAAAAkgjOAAAAAAAAIIngDAAAAAAAAJIIzgAAAAAAACCJ4AwAAAAAAACSCM4AAAAAAAAgSTI/ugEAAAAAAIA9zVzV6BYYwI4zAAAAAAAAiOAMAAAAAAAAkgjOAAAAAAAAIIngbJdU1daqurKqrqmqz1TVr1bV3HTsKVX1genxfarqA9Ocz1XVh6bx46pq47TG4tvpM+ufUFVdVacsqfuqqeZV0zmPm8Yvq6p/mlnrohX6PqWq/qGqvjDNe09V3X869vaq+vI0/pmqetrMeWuq6k1VdV1VfbGq/rKq7jfzWj67pM45VfWfl1n301X1+Jnx58/0v37m/MdU1WUzzx87zfnitMYHq+pRy7y+l0zvm6ur6hNV9e924MMJAAAAAADs4+ZHN3APt7G7T0iSqjoqyQVJDkly9pJ5r0nyke7+/Wnuo2eOXb+4xjJOS3L59OffTOc+PslPJzmxuzdV1ZFJ1syc85LuXn+XlSZV9aNJ3pzk2d39+Wns2UmOS3LDNO0V3X1RVT01ybokD5nGX5fk4CQP6+6tVfWyJH+xGNztgMV1n5HkT5I8epk5R1XVs7r7r5f0fZ8k703y4u7+xDT2xCTHJ7l6yRpfTvLk7v52VT1reg072iMAAAAAALCPEpztJt19U1WdmeSKqjpnyeGjk3x4Zu5Vd7deVVWSFyR5epK/q6r9u/uOaa2bu3vTtNbNO9nqK5O8bjE0m9a4ZIW5n0xyzNTP2iQvS/LA7t46nfenVfVzSU5Ocv1O9PDxJA9e4di5SV6V5K+XjJ+V5B2LodlU//LlFpidk+RTSe63E70BAAAAAEAWfk3PvsalGnej7v5SklVJjlpy6C1J3lZVH5sus3jfmWPHL7lU45Om8Sck+XJ3X5/ksiQ/NY1/OMmxVXVtVf1hVT15Sa13zax17jJtPjLJp3fwJZ2S5P3T4wcnuaG7v7dkzvppzZ3xM7nrLrFFn0yyedrtNmtn+p7187lrCJckqaozq2p9Va3/f9/5ju9jaQAAAAAAYG9ix9kPQXdfWlUPykIQ9awk/zhdMjFZ+VKNpyW5cHp8YZLTk1zc3bdV1UlJnpTkqUneU1W/3t1vn+Zu91KNs6rqXkn+NsnaJOu6+w3ToXOr6nVZ2Kn1+B19mTswfm5VvTrJt7IQaK3ktUlenYXdcSv1/vdZuCzmh7v75SvMeepU54nLNta9LguXccw3br51pf4BAAAAAIB9hB1nu9EUjm1NctPSY919a3df0N0vTXJFkp/YzjqrkjwvyW9V1VeycE+yU6rq4Gmtrd19WXefnYVLGD5vJ9q8JsmJ0zq3TKHduiQHzcx5RXc/NAvB1fnT2PVJ7r/Yw4yTpjVvSXL4kmNHJJm9lOQruvuE7n56d392pQa7+6NJDkjy48v1Pc15XJLfTHLocmtM95F7a5LndPctK9UCAAAAAABYJDjbTarq3kn+OMl53d1Ljp083SMsU/B0fJIbtrPc05Jc1d3Hdvdx3f2AJBcnObWqHlZVD5mZe0KSr+5Eq7+b5FVV9YiZsbUrzD0vyVxVPbO7NyR5R5I3TsFequr06dyPdvdtSb5RVSdPx47Iwg67Ze9DtgNem+TXZp6/JckZVfWEu+u7qu6f5C+SvLS7r/0+6wMAAAAAAPsYl2rcNQdU1ZVJVifZkuTPkrxxmXknJTmvqrZkIax8a3dfUVXHZbrH2czc85P8WJL3LVnj4iS/mIWdV2+uqsOmmtclOXNm3ruqauP0+Obu/snZRbr76qp6eZJ3VtUhWdgRdkOSs5c23d1dVYsB1qVJfiPJG5JcW1XbknwhyakzQeHpSd5SVYvvg9+e7tG207r7Q1X1rZnn36yqFyZ5fVUdk4VdfTcnec0yp/9Wknsl+cPp5o1buvsx308fAAAAAADAvqOWbI6CfdKoe5yddt4FI8omSd525guG1U6SLVu3Dau9en7VsNr3mhv3umvVuE3GX799y7Da9z7kwGG179g87nUnySED/3vM1vk142pvG/d1tmpu3NfZ3MYNw2rX/LhPtm2bNt79pB+gVQcte9XoH4qtG/51WO1bs3pY7cPvHPe5vmrtuH9Ttq45YFjt2vC9YbWTsZ9vR+437vvGkTZsq2G197/9u8Nqb9j/kGG1D9q2aVjtJJlbs9+w2ts2j3vtVS7E9MO29Y7bh9VeffiRw2onybaN4157Bn4Pk9vHfe/2zc3jfu89P/B3MEly/H3vM+4f873ML/63Pxeg7AZ/9L++4B71Oek7BAAAAAAAAIjgDAAAAAAAAJIIzgAAAAAAABioqk6pqn+qquuq6teXOf57VXXl9HZtVX1n5tjWmWOX7GovA+9+AgAAAAAAwL6sqlYleUuSpye5MckVVXVJd39ucU53/8rM/F9O8mMzS2zs7hN2Vz92nAEAAAAAADDKY5Nc191f6u7NSS5M8pztzD8tybt/UM0IzgAAAAAAAPiBqKozq2r9zNuZS6Yck+RrM89vnMaWW+sBSR6Y5KMzw/tP636qqp67q/26VCMAAAAAAMASq+ZqdAt7he5el2TdblruRUku6u6tM2MP6O6vV9WDkny0qq7u7uu/3wJ2nAEAAAAAADDK15McO/P8ftPYcl6UJZdp7O6vT39+Kcll+bf3P9tpgjMAAAAAAABGuSLJQ6rqgVW1Jgvh2CVLJ1XVw5McnuSTM2OHV9V+0+Mjk/z7JJ/blWZcqhGS3Hjrd4fUfduZLxhSN0l+ft2fD6udJP/luScPq33tN24eVvulJz50WO1avWZY7fsefsCw2p+67mt3P+kH5KQHLnsp5h+aDVu23v2kH5AD79w0rPbcmv2G1a5NG4fV3nrAgcNqbx74ubZm67jaSZLetk/W3rB587Da9z7iXsNq95Y7h9Wu274zrHbmVo2rnSQ9rvTWDf86rPb8IYcNq732zjuG1Z47bNzX+OYN41731o0bhtVOkr5z3N/rIz/Xtw38+23k940jzR940LDaW2+/bVjtJNm2aeDfrVsHfg+zavWw2gftP+5nww2bxv29CvdE3b2lqs5KcmmSVUnO7+5rquo1SdZ392KI9qIkF3b37E8Jj0jyJ1W1LQubxf6f7hacAQAAAAAAcM/U3R9K8qElY7+15Pk5y5z3iSSP2p29uFQjAAAAAAAARHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASZL50Q0AAAAAAADsaeaqRrfAAHacAQAAAAAAQARnAAAAAAAAkERwtkuqamtVXVlV11TVZ6rqV6tqbjr2lKr6wPT4PlX1gWnO56rqQ9P4cVW1cVpj8e30mfVPqKquqlOW1H3VVPOq6ZzHTeOXVdU/zax10Qp9n1JV/1BVX5jmvaeq7j8de3tVfXka/0xVPW3mvDVV9aaquq6qvlhVf1lV95t5LZ9dUuecqvrPy6z76ap6/Mz482f6Xz9z/mOq6rKZ54+d5nxxWuODVfWoZV7fc2beN+ur6ok78OEEAAAAAAD2ce5xtms2dvcJSVJVRyW5IMkhSc5eMu81ST7S3b8/zX30zLHrF9dYxmlJLp/+/Jvp3Mcn+ekkJ3b3pqo6MsmamXNe0t3r77LSpKp+NMmbkzy7uz8/jT07yXFJbpimvaK7L6qqpyZZl+Qh0/jrkhyc5GHdvbWqXpbkLxaDux2wuO4zkvxJkkcvM+eoqnpWd//1kr7vk+S9SV7c3Z+Yxp6Y5PgkVy9Z42+TXNLdPb2v35vk4TvYIwAAAAAAsI+y42w36e6bkpyZ5Kyqu9wx8OgkN87Mveru1pvWeEGSM5I8var2n1nr5u7eNK11c3f/8060+sokr1sMzaY1Lunujy8z95NJjpn6WZvkZUl+pbu3Tuf9aZJNSU7eifpJ8vEkD17h2LlJXrXM+FlJ3rEYmk31L+/u9y+d2N23dXdPTw9M0kvnAAAAAAAALCU42426+0tJViU5asmhtyR5W1V9bLrM4n1njh2/5FKNT5rGn5Dky919fZLLkvzUNP7hJMdW1bVV9YdV9eQltd41s9a5y7T5yCSf3sGXdEqSxWDqwUlu6O7vLZmzflpzZ/xM7rpLbNEnk2yedrvN2pm+U1WnVtUXknwwyc+tMOfM6VKO69/3nnfv6NIAAAAAAOwDqsrbbni7pxGc/RB096VJHpTkv2XhkoH/WFX3ng5f390nzLz93TR+WpILp8cXTs/T3bclOSkLu9u+leQ9VXXGTLmXzKz1iu31VVX3mgK2a2u6F9nk3Kq6NguXnnz9jr7MHRg/t6qunHr/+e2s9dokr95esar6+6r6fFX9/rJFu9/X3Q9P8twkv7PCnHXd/ZjufsypLzxte+UAAAAAAIB9gOBsN6qqByXZmuSmpce6+9buvqC7X5rkiiQ/sZ11ViV5XpLfqqqvZOGeZKdU1cHTWlu7+7LuPjsLlzB83k60eU2SE6d1bpnur7YuyUEzc17R3Q/NwmUdz5/Grk9y/8UeZpw0rXlLksOXHDsiyc1L1j2hu5/e3Z9dqcHu/miSA5L8+HJ9T3Mel+Q3kxy6ndea6RKUD6qFe8EBAAAAAACsSHC2m0w7yP44yXkz99daPHbydI+wTMHT8Ulu2M5yT0tyVXcf293HdfcDklyc5NSqelhVPWRm7glJvroTrf5ukldV1SNmxtauMPe8JHNV9czu3pDkHUneOAV7qarTp3M/Ou2E+0ZVnTwdOyILl3q8fCd6m/XaJL828/wtSc6oqifcXd9V9eCa9n9W1YlJ9stCsAcAAAAAALCi+dEN3MMdMF16cHWSLUn+LMkbl5l3UpLzqmpLFsLKt3b3FVV1XKZ7nM3MPT/JjyV535I1Lk7yi1nYefXmqjpsqnldFi59uOhdVbVxenxzd//k7CLdfXVVvTzJO6vqkCzsCLshydlLm+7urqrFAOvSJL+R5A1Jrq2qbUm+kOTUmaDw9CRvqarF98FvT/do22nd/aGq+tbM829W1QuTvL6qjsnCrr6bk7xmmdOfl+T0qrozycYkL1waZgIAAAAAACwlONsF3b1qO8cuS3LZ9PjcJOcuM+crWbgk4Y7UuiTJJdPTJ6ww5yk7uNYHk3xwhWNnLHl+cRZCu3T3piS/PL0td+7nkjx1R9Zdbnxp/9190pLnn0ry5OXWWTLv9dnxe7MBAAAAAAAkEZwBAAAAAADcxaq5Gt0CA7jHGQAAAAAAAERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASZL50Q0AAAAAAADsaSo1ugUGsOMMAAAAAAAAYscZJEmOPuyQIXU3bNo8pG6S/JfnnjysdpK87v0fHVZ73S88f1jtbZvvGFZ785oDhtXeNPBz/ejDDh5W+8ZbvzusdpI86NC1w2pv6HH/N2fThnFfZwfut9+w2ms2bhhX+4ADh9VedeC4r/Ek2dTj/vfhqoMOG1b71hu+Maz2/e916LDa2+bXDKudLd8bVvqOteO+xpPk8DWrh9Wu27cMqz3075eB37PO7b//sNpH7rdqWO0tm8fVTpKtBx8+rPbcHRuH1R5pW28bVnvV2oOG1c7A1z1690DVuJ/Ptg38fn3Tlq3Dah+8bdzvIr63bdznOrDrRv+bAQAAAAAAAHsEwRkAAAAAAABEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJkuzIUFAAACAASURBVPnRDQAAAAAAAOxp5qpGt8AAdpwBAAAAAABABGcAAAAAAACQRHC2S6pqa1VdWVXXVNVnqupXq2puOvaUqvrA9Pg+VfWBac7nqupD0/hxVbVxWmPx7fSZ9U+oqq6qU5bUfdVU86rpnMdN45dV1T/NrHXRCn2fUlX/UFVfmOa9p6ruPx17e1V9eRr/TFU9bea8NVX1pqq6rqq+WFV/WVX3m3ktn11S55yq+s/LrPvpqnr8zPjzZ/pfP3P+Y6rqspnnj53mfHFa44NV9ajtfHz+p6rasrg+AAAAAADA9rjH2a7Z2N0nJElVHZXkgiSHJDl7ybzXJPlId//+NPfRM8euX1xjGacluXz682+mcx+f5KeTnNjdm6rqyCRrZs55SXevv8tKk6r60SRvTvLs7v78NPbsJMcluWGa9oruvqiqnppkXZKHTOOvS3Jwkod199aqelmSv1gM7nbA4rrPSPInSR69zJyjqupZ3f3XS/q+T5L3Jnlxd39iGntikuOTXL3M61yV5PVJPryDvQEAAAAAAPs4O852k+6+KcmZSc6qussdA49OcuPM3Kvubr1pjRckOSPJ06tq/5m1bu7uTdNaN3f3P+9Eq69M8rrF0Gxa45Lu/vgycz+Z5Jipn7VJXpbkV7p763TenybZlOTknaifJB9P8uAVjp2b5FXLjJ+V5B2LodlU//Lufv8K6/xykouT3LSTvQEAAAAAAPsowdlu1N1fSrIqyVFLDr0lyduq6mPTZRbvO3Ps+CWXanzSNP6EJF/u7uuTXJbkp6bxDyc5tqqurao/rKonL6n1rpm1zl2mzUcm+fQOvqRTkiwGUw9OckN3f2/JnPXTmjvjZ7LMLrHJJ5Nsnna7zdrhvqvqmCSnJvmju5l3ZlWtr6r173rnO3ZkaQAAAAAAYC/mUo0/BN19aVU9KAtB1LOS/ON0ycRk5Us1npbkwunxhUlOT3Jxd99WVScleVKSpyZ5T1X9ene/fZq73Us1zqqqeyX52yRrk6zr7jdMh86tqtcluV+Sx+/oy9yB8XOr6tVJvpXk57ez1muTvDoLu+NW6v3vs3BZzA9398uXHH5Tkld297a7bv6baax7XRYuRZkbb7plpf4BAAAAANgHbefXy+zF7DjbjaZwbGuWuTxgd9/a3Rd090uTXJHkJ7azzqokz0vyW1X1lSzck+yUqjp4Wmtrd1/W3Wdn4RKGz9uJNq9JcuK0zi1TaLcuyUEzc17R3Q/NQnB1/jR2fZL7L/Yw46RpzVuSHL7k2BFJbl6y7gnd/fTu/uxKDXb3R5MckOTHl+t7mvO4JL+Z5NBllnhMkgun993zk/xhVT13pXoAAAAAAACJ4Gy3qap7J/njJOd1dy85dvJ0j7BMwdPxSW7YznJPS3JVdx/b3cd19wOycL+uU6vqYVX1kJm5JyT56k60+rtJXlVVj5gZW7vC3POSzFXVM7t7Q5J3JHnjFOylqk6fzv1od9+W5BtVdfJ07Igs7LC7fCd6m/XaJL828/wtSc6oqifcXd/d/cDp/XZckouS/B/buRcaAAAAAABAEpdq3FUHVNWVSVYn2ZLkz5K8cZl5JyU5r6q2ZCGsfGt3X1FVx2W6x9nM3POT/FiS9y1Z4+Ikv5iFnVdvrqrDpprXJTlzZt67qmrj9Pjm7v7J2UW6++qqenmSd1bVIVnYEXZDkrOXNt3dXVWLAdalSX4jyRuSXFtV25J8IcmpM0Hh6UneUlWL74Pfnu7RttO6+0NV9a2Z59+sqhcmef10D7Obpt5f8/2sDwAAAAAAsJTgbBd096rtHLssyWXT43OTnLvMnK9k4ZKEO1LrkiSXTE+fsMKcp+zgWh9M8sEVjp2x5PnFWQjt0t2bkvzy9LbcuZ/Lwn3X7nbd5caX9t/dJy15/qkkT15unZWsVBcAAAAAAGApl2oEAAAAAACA2HEGAAAAAABwF6vm7D3aF/moAwAAAAAAQARnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQRHAGAAAAAAAASZL50Q3AnuCar//LkLoP+ZEjh9RNkmu/cfOw2kmy7heeP6z2mW+9aFjtS8762WG15zZvHFZ7y6o1w2pv2LR5WO2jDjloWO3RVs+vGlb7oNXj/l/QHduGlU7WHjiudo8rvXXDv44rnmS/Qw4bVrvv3DSs9to1q4fVHmnDHeP+TTlgy5Zhtefmxv5/y6/d8p1htY+d3zqs9vd63I/rhw+rnGy7445htb+5edw/aEdVDaudJPvNjat/5x23D6u9av+142ofMK72nd8e9/uAuf32H1a7auy/Z3d++1vDatfA75k3HTTuX5WN28b93dY98IckYJfZcQYAAAAAAAARnAEAAAAAAEASwRkAAAAAAAAkEZwBAAAAAABAkmTc3YYBAAAAAAD2UFU1ugUGsOMMAAAAAAAAIjgDAAAAAACAJIIzAAAAAAAASCI4AwAAAAAAgCSCMwAAAAAAAEiSzI9uAAAAAAAAYE9TNboDRrDjDAAAAAAAAGLHGXuwqrqtuw+aeX5Gksck+UaSF0zDj0py9fT4/CRHJPm1JMd1903LrQMAAAAAALAcO864x+nu/9rdJ3T3CUk2Lj7u7j+Yptyc5FcHtggAAAAAANwDCc7YG52f5IVVdcToRgAAAAAAgHsOwRl7sgOq6srFtySv2cHzbstCePby7U2qqjOran1Vrf/Qxe/d1V4BAAAAAIB7OPc4Y0+2cbocY5J/c4+zHfEHSa6sqjesNKG71yVZlySX/uPnehf6BAAAAAAA9gKCM/ZK3f2dqrogyS+N7gUAAAAAgHueVXMu2rcvEpyxN3tjkivi8xwAAAAAANgB4lL2Wt19c5L3JdlvdC8AAAAAAMCez04c9ljdfdCS529P8va7mXPOkuf/Kcl/+oE0CAAAAAAA7FXsOAMAAAAAAIAIzgAAAAAAACCJSzUCAAAAAADcxVxqdAsMYMcZAAAAAAAARHAGAAAAAAAASQRnAAAAAAAAkERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJkvnRDcCe4MTjjhlSd83mjUPqJslLT3zosNpJsm3zHcNqX3LWzw6r/ezz3jus9vt+7qeG1V6737DSecQha4bV3rT/wBeepO8c93W26vbbhtW+7YBDhtXeb8N3htV+7X+/eljtX3/Cw4bVnj/4sGG1k2TjV68bVvv6NYcPq/2IQ/cfVvtfN24eVvvgvnNY7W2rVw+rvf/qVcNqJ8mx9xr3db7t5m8Oq33E/LjPt613jqv97fm1w2qvHvgbkuqxv565bfOWYbU37XfwuNoDX/dBc9uG1b5z4Pt885atw2rPrxq7f+Dw+x43rPbI9/sBVcNq79fjvsYPvv32YbWBXWfHGQAAAAAAAERwBgAAAAAAAEkEZwAAAAAAAJBEcAYAAAAAAABJBGcAAAAAAACQJJkf3QAAAAAAAMCepmp0B4xgxxkAAAAAAABEcAbw/7N35/GWVeWd8H/PrYkq5kkGJRbiLBIifGInkQ4ORDsGBYICUZGEtP3mjdGQxjZG3zTGqElaojHYSdOJIiYRiIriEE00IWJe24CmkMGJoUTQADIPRVHD6j/OvubkcG/dUwgsivp+P5/zuXuvtfZ6nl13vk+ttQEAAAAAIInCGQAAAAAAACRROAMAAAAAAIAkCmcAAAAAAACQJFncOwEAAAAAAICHm6rqnQIdWHEGAAAAAAAAUTh7yFTVhqpaVVUXV9VXquonh/aVVXXp2Lgfr6rPV9U3qupfqurPqmrFHPOtrKprq2pmon1VVT2zqk6pquuG89nXTlV1aFW1qjp87JpPVNWhw/HSqnpXVV1RVd+qqo9V1WPmynVoO6WqTh6O/0NVfWmI9bWqOmUT/x4nDHk8b6ztiKHt6OH8/OHfYTb/D81xr2dNtJ0x3Pey4Xy3qlo9Xx4AAAAAAACzFM4eOmtaawe21n40yRuSvH1yQFXtkeSvk7y+tfak1tqPJfl0ku0nx7bWVie5JskhY9c/Ocn2rbUvDU3vHGLOvm4d2q9N8sZ58nzbEO9JrbUnJPloko/UdGtS35/kVa21A5Psn+ScBcZfkuTYsfPjklw8MeZlY/kfPdtYVU9JsijJIVW17cQ1G5L80hT5AgAAAAAA/IDCWR87JLlljvZfTfL+1toXZxtaax9qrV0/zzwfzL8vPB2b5Kx5xo67OMltVXXYeOOwsu0Xk5zUWtswxH9fkrVJnjPFvI9K8r3hug2ttcsXGH9Bkh+vqiVVtV2SxydZNUWcZFRk+0CSv03y4om+dyU5qao8ww8AAAAAAJiawtlDZ/mwteDXk/xZkrfMMWb/JF/ejDnPSXLEWIHomIyKabNOGtvm8B8mrn1rkjdNtD0+yTWttdsn2i9K8rQp8nlnkm9U1blV9V+qapsFxrckn03y/IyKX+fNMeYvx+7hf4y1H5NRkfCDGRXRxl2T5AtJXrGp4FX1qqq6qKouOvOMMxZIFQAAAAAAeKSzIuehs2bYwjBV9RNJzqyq/X+YCVtr1w/PHHtuVV2fZH1rbfwZZO9srb1jnms/X1WpqmdtTshNtbfWfqeq/jLJzyT5hYwKWocuMOdZSV6TZMck/zXJb030v6y1dtF4Q1UdnOT7rbVrquq6JO+tql1aazePDXt7ko8l+eS8N9Pa6UlOT5Ibb7ltvnsDAAAAAGArtGhmmicY8UhjxVkHw1aMuyXZfaLrsiQHbeZ0s9s1Hpt/v9psGpOrzq5M8iNVNflMtYOG3G5KsvNE3y5Jvj970lq7srX2J0mem+RHq2rXTSXQWvvnJE9Psltr7ZtT5n1ckidX1eoh5x2S/PzEvN/KaNvHl045JwAAAAAAsJVTOOugqp6cZFFGhahxpyV5ZVU9c2zsUVW1xyam+0iSn82/bV04tdba32ZUCDtgOL8ryfuT/GFVLRriH59kRZK/b63dmeR7VfWcoW+XJC/IaFvEVNULq2q2BP+EJBuS3DpFKr+Z+640m1NVzWRUDHt6a21la21lRts8Tm7XmIwKgydPMy8AAAAAAICtGh86y6tq1XBcSV7ZWtvwb3WmH2y9eGySd1TVo5JsTPL5JJ+eb9LW2q1V9cUke7bWrproPqmqXj52fsQcU7w1oy0NZ70hyTuSfLOqNib5epIjW2uzWxken+Q9VfWHw/mbW2tXDsevSPLOqro7yfqMtlncMF/uY/fwN5vo/suqWjMcfz+jZ8Nd11r77tiYzyd5alXtNTHvZVX1lSTPWCgHAAAAAAAAhbOHSGtt0Tztq5PsP3b+xSSHbObc9ymItdZOSXLKHMNXJzl/bNx5GRXyZs/XJvm14TVXrMuTPHuevmM3I+czkpwxR/sJY8eHznP5f5i4ZkOSPYfTEyb6jpo2JwAAAAAAYOtmq0YAAAAAAACIFWdbhKr6xSSvnWj+p9bar/bIZ3NsybkDAAAAAABbF4WzLUBr7X1J3tc7j/tjS84dAAAAAADYutiqEQAAAAAAAKJwBgAAAAAAAEkUzgAAAAAAACCJwhkAAAAAAAAkUTgDAAAAAACAJMni3gkAAAAAAAA83FRV7xToQOEMkszc/K9d4taOO3eJmyS1ZGm32Ely79Ll3WLP3LumW+xzf+mF3WIf+d5Pdov9sV85ulvsmaXLusVefMv13WInyTc39Ps8f/Ie/b6+XXfDrd1i77dNv8X8v3LYT3SLveHGa7rFvmfHR3WLnSQ7rHxit9jLbrilW+wNd9/ZLfZ31t3TLfZTd962W+yNa/vd98133N0tdpLssHybbrEX77Znt9i15q5usduGdd1if/eW27vFXrlbv59frun37k6SbLPx3r4JdLLD8n6/K1x1483dYu//mD26xb57bb+vL9ssXdItdpLceHvnT/ROdt/Y728wPf/utvZfv9MtdpLkcU/oGx+2cLZqBAAAAAAAgCicAQAAAAAAQBKFMwAAAAAAAEiicAYAAAAAAABJFM4AAAAAAAAgSbK4dwIAAAAAAAAPNzNVvVOgAyvOAAAAAAAAIApnAAAAAAAAkEThDAAAAAAAAJIonAEAAAAAAEAShTMAAAAAAABIkizunQAAAAAAAMDDzaKZ6p0CHVhxtgWqqj2r6qyqurKqvlxVn6qqJw59v15V91TVjmPjD62qT8wxz5Kq+r2q+lZVfaWqvlhV/2noW11Vu1XVyqq6dOK6U6rq5OH4jKq6u6q2H+t/V1W1qtptE/fQquovxs4XV9WNs3lW1QnD+aqx11PHxs93n62qDh9r+0RVHTrlPy0AAAAAALAVUzjbwlRVJTk3yfmttf1aawcleUOSPYYhxyW5MMlRU0z3liR7Jdm/tfaMJEck2X7Tl8zpiiQvHvKbSfKcJNctcM1dSfavquXD+WFzXHN2a+3AsdflY33z3ee1Sd54P+4BAAAAAADYyimcbXmenWRda+1PZxtaaxe31i6oqv2SbJfkTRkVluZVVSuS/Ockv9ZaWzvMc31r7Zz7kdNZSY4Zjg9N8k9J1k9x3aeSvHA4Pi7JB6cJtsB9Xpzktqo6bJq5AAAAAAAAZimcbXn2T/LlefqOzaiIdUGSJ1XVHvOMS5LHJ7mmtXb7A5DTN5PsXlU7Z1TIOmvK685KcmxVbZPkgCRfmug/ZmKrxtnVaQvd51szKqptUlW9qqouqqqL3n/W2VOmDAAAAAAAPFIpnD2yHJfkrNbaxiQfTvKSB2DONmX7RzIqaD0zo4LWwhO39tUkKzPK+1NzDJncqnHN0L7J+2ytfT5JqupZC8Q/vbV2cGvt4Fcee8ymhgIAAAAAAFuBxb0TYLNdluToycaqenqSJyT5u9Fj0LI0ydVJTptnniuS/EhV7bDAqrObkuw80bbLMPe4szNaCff+1trGIYdpnJfkHRlt8bjrQoM34z5nV51Ns2UkAAAAAAD8O5vxd24eQaw42/L8fZJlVfWq2YaqOiDJu5Oc0lpbObz2TrJ3VT12rklaa3cn+fMkf1RVS4d5dq+qydVbdyb5XlU9ZxizS5IXJPnCxLhvJ3ljkv+5mffz3iRvbq1dMuX44zLFfbbW/jajgt8Bm5kPAAAAAACwlVI428K01lqSI5M8r6qurKrLkrw9oxVb504MPzej7ROT5LlVde3Y6ycyWpF1Y5LLq+rSJJ9IMtfqs+OT/H9VtSqjwt2bW2tXzpHb/5qrfYH7uba19u55uiefcfaTw/1s6j7HvTXJPpuTDwAAAAAAsPWyVeMWqLX23SQvnWLcb4ydLp9n2H8bXpPXrhw7vjzJs+eJccI87Svnah/r326OtvOTnD8cn5HkjDkufdwc143f5/lj7eclsZYWAAAAAACYihVnAAAAAAAAECvOeBBV1a5JPjdH13Nbazc91PkAAAAAAABsisIZD5qhOHZg7zwAAAAAAACmYatGAAAAAAAAiMIZAAAAAAAAJFE4AwAAAAAAgCQKZwAAAAAAAJBE4QwAAAAAAACSKJwBAAAAAABAkmRx7wTg4eCmZTt2ibvh7vVd4ibJ3jsv7xY7Sdauvbdb7PWLlnaLvWJZt9D52K8c3S32i//kQ91i//VrX9Et9uLd9+4WO0meWP1i33DH3d1iP367Jd1i37BhUbfYe63o97Xtxt1/pFvsXdbd1S12kmTp9t1CP25Fv/8D99Fv3NIt9hFP6ffxdudMv8+z7XferVvs3btFHrnqltu6xd5v1x26xb5xY7/P8Z332Kdb7KfddlO32Dd0/B1ln0X9fjdMkuywU7/YHd/ntX5jt9hPXrqhW+z111/XLfayJf2+l84s6/sd7VGL+r3Pe1p9b7/fkR5b/WJ/Z9d9u8VOkr5/jXhkqXT84wrdWHEGAAAAAAAAUTgDAAAAAACAJApnAAAAAAAAkEThDAAAAAAAAJIonAEAAAAAAECSZHHvBAAAAAAAAB5uZqp6p0AHVpwBAAAAAABAFM4AAAAAAAAgicIZAAAAAAAAJFE4AwAAAAAAgCQKZwAAAAAAAJBE4QwAAAAAAACSKJw9LFXVnlV1VlVdWVVfrqpPVdUTq2pNVa2qqsur6syqWjKMP7Sqbhv6Zl/PG5vviKpqVfXk4fxLw5hrqurGsWtWVtXqqtptGNeq6tSxeU6uqlOG41Oq6uTh+Iyquq6qlg3nu1XV6k3c38ph7t8da9utqtZV1Wlj8183cU87jY1/19A/M9Z2QlVtrKoDxtouraqV9+89AQAAAADA1mrRTHk9AK8tjcLZw0xVVZJzk5zfWtuvtXZQkjck2SPJla21A5M8Pcljkrx07NILWmsHjr0+O9Z3XJIvDG/TWnvmMM9vJzl77JrVE+msTXLUbCFtARuS/NJm3OrVSV44dv6SJJdNjHnnxD3dmiRDsezIJN9J8tMT11yb5I2bkQcAAAAAAEAShbOHo2cnWdda+9PZhtbaxRkViWbPNyT55ySPXmiyqtouybOSnJjk2M3MZX2S05OcNMXYdyU5qaoWTzn33Um+VlUHD+fHJDlnymsPzajI9icZioFjPpHkaVX1pCnnAgAAAAAASKJw9nC0f5Ivb2pAVW2T5JlJPj3WfMjEtob7De0vTvLp1to3k9xUVQdtZj7vSfKyqtpxgXHXZLSq7RWbMfdZSY6tqn0yWrH23Yn+k8bu5x/G2o9L8sGMVua9cHbLysHGJH+Q5LcWCl5Vr6qqi6rqorP/8gObkTYAAAAAAPBIpHC2ZdmvqlYluT7J91prXx3rm9yq8cqh/biMClQZ3k6u0Nqk1trtSc5M8pophr89yesy/cfVp5McltFKuLPn6B/fqvHZSVJVS5P8bJKPDrl9KcnzJ677qyT/oar23VTw1trprbWDW2sHH/Oyzan3AQAAAAAAj0TTbqvHQ+eyJEfP03dla+3A4Zlj/1RVL2qtnTffRFW1S5LnJHl6VbUki5K0qnpda61tRk7vSvKVJO/b1KDW2reGwt5LNzVubPy9VfXlJP81yVOTvGiKy56fZKckl4weB5cVSdZktEXj7Lzrq+rUJK+fJg8AAAAAAIDEirOHo79PsqyqXjXbUFUHJNln9ry19v0kv5nkDQvMdXSSD7TWHttaW9la2yfJ1UkO2ZyEWms3Z/T8sROnGP7WJCdvxvSnJnn9EGMaxyX55eF+VibZN8lhVbViYtwZSZ6XZPfNyAUAAAAAAJIkVeX1ALy2NApnDzPDSrAjkzyvqq6sqssy2gLxXyeGfjTJiqqaLYJNPuPs6IyKTOdOXPfhbOZ2jYNTk+w2Rf6XZbQ6bSqttctaa++fp/ukiXt6apIXJPnk2PV3ZfRstcMn5r03ybuTPGraXAAAAAAAgK2brRofhlpr383c2x3uPzamJfnRsb4d5xj/oTnmfvfY8RkZrcwa7185drzd2PH1GW2LOHt+ytjxCRNzHDVHLuP9qzN2L3PlM8x/yuSYJLvMcd14vDPG2t+dUfEMAAAAAABgQVacAQAAAAAAQKw440FUVU9P8oGJ5rWttWf2yAcAAAAAAGBTFM540LTWLklyYO88AAAAAAAApmGrRgAAAAAAAIjCGQAAAAAAACRROAMAAAAAAIAkCmcAAAAAAACQROEMAAAAAAAAkiicAQAAAAAAQJJkce8EYGu2+w7bdov9f674TrfYSbLXTtt3i33X2nu7xX7KDku7xZ5Zuqxb7L9+7Su6xX7JH32gW+zzXv3SbrGTZN3tt3WLvWKHXbvFzvoN3UIvXbyoW+y1N3y3W+yZ7XfvFjutX+gkubvfh1uWbugXfO+dd+gWu927tlvsFR1/fqnW7/298Z57usVOksft1O9n5tbx82zX7ZZ3i72x49fWtnFjt9h7bdvv+/jG9f1+Vk+S3HV7t9Azy1d0i52Zfu/zqo7/l31Fv6+rufuurTN2krau398iZpb1+56y3279fn5q967pFnvZkn5fX4AfnsIZAAAAAADAhKrqnQId2KoRAAAAAAAAonAGAAAAAAAASRTOAAAAAAAAIInCGQAAAAAAACRROAMAAAAAAIAkyeLeCQAAAAAAADzcLJqp3inQgRVnAAAAAAAAEIUzAAAAAAAASKJwBgAAAAAAQEdV9YKq+kZVXVFVvzlH/wlVdWNVrRpevzzW98qq+tbweuUPm4tnnAEAAAAAANBFVS1K8p4khyW5NsmFVXVea+3yiaFnt9ZePXHtLkn+e5KDk7QkXx6uveX+5mPFGQAAAAAAAL38eJIrWmtXtdbuTXJWkhdPee3zk/xda+3moVj2d0le8MMko3AGAAAAAADAg6KqXlVVF429XjUx5NFJvjN2fu3QNunnq+qrVfWhqtpnM6+dmsLZFqSq9qiqv6qqq6rqy1X1xao6sqoOrapPTIw9oapOm2g7v6oOHo63q6r/VVVXDnOdX1XPHPoeU1UfG/YDvbKq/qiqlg59K6rqL6vqkqq6tKq+UFXbDX0bxvYXXTXXPqQTuVxTVTXW9tGqunM4XllVaybmO35s7IFV1arqBRPztqo6dez85Ko6ZbP/sQEAAAAA2KrNVHk9AK/W2umttYPHXqffj3fHx5OsbK0dkNGqsvc/sO/tf6NwtoUYCkwfTfL51trjWmsHJTk2yWPu55R/luTmJE8Y5vrFJLsNcT6S5KOttSckeWKS7ZK8dbjutUmub609vbW2f5ITk6wb+ta01g4ce/3eAjncmuSnhvvbKcleE/1XTsx35ljfcUm+MLwdtzbJUVW121T/CgAAAAAAQE/XJdln7PwxQ9sPtNZuaq2tHU7/LMlB0167uRTOthzPSXJva+1PZxtaa99urf3x5k5UVfsleWaSN7XWNg5zXd1a++QQ557W2vuG9g1JTkryS1W1IqPi1g8+6Fpr3xj7YN1cZ2VU/EuSozIq2E2TfyV5SZITkhxWVduMda9PcvqQ80Lz/GB56Nl/+YHNyRsAAAAAAHhgXJjkCVW177D73bFJzhsfUFXjC29elORrw/FnkvxMEu+lNwAAIABJREFUVe1cVTsn+Zmh7X5TONtyPC3JVx7AuVYNRbG5+r483tBauz3JNUken+S9SV4/bBP5u1X1hLGhyye2VjxmgTw+l+Q/VtWijD4Rzp7o329ivkOG9p9McnVr7cok5yd54cR170nysqracVPBx5eHHvOyVyyQKgAAAAAA8EBrra1P8uqMCl5fS3JOa+2yqvqdqnrRMOw1VXVZVV2c5DUZLaxJa+3mJG/JqPh2YZLfGdrut8U/zMX0U1XvSfKsJPcmed0cQ9o8l87XPpXW2qqqelxGVdvnJbmwqn6itfa1DFs1bsZ0GzLabvHYJMtba6vHHnmWDFs1znHdcRmtVsvw9vgkHx7L8faqOjOjT541m5EPAAAAAADwEGutfSrJpybafnvs+A1J3jDPte/NaNHPA0LhbMtxWZKfnz1prf3q8Byvi+YZf1OSnSfadkny/YyeLfajVbVojlVnlyc5eryhqnZI8iNJrhhi35nRtoofqaqNSX42/7YscnOdleTcJKdMM3hYnfbzSV5cVW9MUkl2rartW2t3jA19V0Yr9N53P/MCAAAAAAC2MrZq3HL8fZJtqupXxtpWbGL8hUl+qqr2TJKqOjjJsiTfGbY4vCjJm4fnhaWqVlbVCzPaPnFFVR0/tC9KcmqSM1prd1fVTw37hGbYa/SpSb79Q9zXBUnenuSDU45/bpKvttb2aa2tbK09NqPVZkeODxqWYp6T5MQfIjcAAAAAAGAronC2hWittSRHJPnpqrq6qv45yfuTvH4Y8tyqunb2leRxSV6b5FNVtSqjFVjHtdY2DuN/OckeSa6oqkuTnJHkhiHOkUleUlXfSvLNJPck+a3huv2S/GNVXZLkXzIqwM1ukzj5jLPfm+a+WmvvaK19f47uyWecvSajbRrPnRj34aF90qlJdlsoBwAAAAAAgMRWjVuU1tr3Mnoe2FyWz9P+sXnmuj3Jf56n7ztJDp+n78wkZ87Tt2ieHOYae+g87dsNb1dn/nuavOa8JOeNXz8cX59Nr8oDAAAAAAD4ASvOAAAAAAAAIFac8SCrqnOT7DvR/PrW2md65AMAAAAAADAfhTMeVK21I3vnAAAAAAAAMA2FMwAAAAAAgAkzVb1ToAPPOAMAAAAAAIAonAEAAAAAAEAShTMAAAAAAABIonAGAAAAAAAASZLFvROAh4Olixd1iXvPveu7xE2Sg/Z9dLfYSXLtzbd1i/2oHbbrFnvtNsu6xV58y/X9Yu++d7fY5736pd1iv+i0c7rFTpKP/8bx3WK3ja1b7NrQ7/8FLV+ypFvsZXs8plvsdHx/z2zs+//AFt96Y7fYi3bcuVvsJy7Ztlvsavd2iz2zbm232HdXv1/dNi5a2i12kmyzuN/X1sXp+P2s9Yt9xz3rusXetqpb7I3r+/1+1tb1+9qWJIt33KVb7PW33dwtdtu4sV/sDRu6xc5dd3QLPbO43/ezmWXLu8VOkup579ts0y327Wv7fW3dbpt+7/MVS/t9fQF+eFacAQAAAAAAQKw4AwAAAAAAuI/quBqefqw4AwAAAAAAgCicAQAAAAAAQBKFMwAAAAAAAEiicAYAAAAAAABJFM4AAAAAAAAgSbK4dwIAAAAAAAAPN4tmqncKdGDFGQAAAAAAAEThDAAAAAAAAJIonAEAAAAAAEAShTMAAAAAAABIonAGAAAAAAAASRTOWEBV3Tm8XVlVrap+bazvtKo6YTg+o6qurqpVVXVxVT13gXnPr6prqqrG2j46EW/NMN/s6/ixsQcO+bxgYt5WVaeOnZ9cVaf8cP8KAAAAAABsbarK6wF4bWkUztgcNyR5bVUtnaf/da21A5P8epI/nWK+W5P8VJJU1U5J9prov7K1duDY68yxvuOSfGF4O25tkqOqarcp4gMAAAAAAPyAwhmb48Ykn0vyygXGfTHJo6eY76wkxw7HRyX5yDRJDKvUXpLkhCSHVdU2Y93rk5ye5KQp5nlVVV1UVRf91QfOXGg4AAAAAADwCKdwxub6/SQnV9WiTYx5QZKPTjHX55L8x2GuY5OcPdG/38RWjYcM7T+Z5OrW2pVJzk/ywonr3pPkZVW146aCt9ZOb60d3Fo7+BdecfymhgIAAAAAAFuBxb0TYMvSWruqqr6U5Bfm6P4fVfW2JI9J8hNTTLcho+0Wj02yvLW2emK/0yuHrR8nHZfRarUMb49P8uGxHG+vqjOTvCbJminyAAAAAAAAsOKM++VtSV6fZPKpfq9rrT1x6HvvlHOdleTdSc6ZZvCwOu3nk/x2Va1O8sdJXlBV208MfVeSE5NsO2UeAAAAAADAVk7hjM3WWvt6ksuTHD7PkNOSzFTV86eY7oIkb0/ywSnDPzfJV1tr+7TWVrbWHpvRarMjJ3K8OaNi3IlTzgsAAAAAAGzlFM64v96a0ZaM99Faa0l+N8l/W2iSNvKO1tr35+iefMbZazLapvHciXEfHtonnZpkt4VyAAAAAAAASDzjjAW01rYb3q5Osv9Y+8UZK7y21k6YuO7DGXvu2BzzHjpFvOVT5nhekvPGrx+Or0+yYpo5AAAAAAAArDgDAAAAAACAWHHGg6yqzk2y70Tz61trn+mRDwAAAAAAwHwUznhQtdaO7J0DAAAAAADANGzVCAAAAAAAALHiDAAAAAAA4D4q1TsFOrDiDAAAAAAAAKJwBgAAAAAAAEkUzgAAAAAAACCJZ5xBkmSnrOsSd2bxsi5xk+Su9Ru6xU6Sx+24omv8Xtq6e7rF/uaGpd1iP7HjdtDrbr+tW+yP/8bx3WInyeF/eGa32Oee+HPdYt+z7U7dYi+54+Zusa+tbbrF3uWW67rFvuvR+3WLnSTb7bp7t9jfvX1Nt9h7Lu33hX3dNtt1i734nru6xV667s5use/t+HU1SerOW7vFXr+h38/MtWhRt9jbrl/fLfbNi/v9nrDLin6x77m3z++ks9bevbZb7NvX9/tYX7Ko3+9Id224t1vsR+3Y73vpkpl+/4d/yeJ+H2tJcs+9S7rFvvfufh9vSzt+P1t33epusXe6t9/X1STJY/bsGx+2cFacAQAAAAAAQBTOAAAAAAAAIImtGgEAAAAAAO5j0UzH54/QjRVnAAAAAAAAEIUzAAAAAAAASKJwBgAAAAAAAEkUzgAAAAAAACCJwhkAAAAAAAAkSRb3TgAAAAAAAODhZqaqdwp0YMUZAAAAAAAAROEMAAAAAAAAkiicAQAAAAAAQBKFMwAAAAAAAEiicLbFqqo7N9H3rqq6rqpmJtqPr6pLq+qSqvqXqjq5qt5TVauq6vKqWjMcr6qqo4drPlpV/2c4fv5Y/51V9Y3h+MyqOrSqbhvrX1VVz9tEjq2q/mLsfHFV3VhVnxjOTxjOx+d76tj4X6+qe6pqx7G2Q4d5Dx9r+0RVHbpZ/7gAAAAAAMBWaXHvBHhgDcWyI5N8J8lPJ/mHof0/Jfn1JD/TWvtuVS1Lcnxr7VeH/pVJPtFaO3Bsrp2SHJTkzqp6XGvtM0k+M/Sdn+Tk1tpFw/mhSS5orf3clKnelWT/qlreWluT5LAk102MObu19up5rj8uyYVJjkryvrH2a5O8McnHp8wDAAAAAADuo6p6p0AHVpw98hya5LIkf5JRcWnWGzIqdH03SVpra1tr/3uBuY7KqAB1VpJjH/hU86kkLxyOj0vywWkuqqr9kmyX5E359/eYJBcnua2qDptinldV1UVVddEZH/iLhYYDAAAAAACPcApnjzyzBahzk7ywqpYM7fsn+fL9nOuDuW+Bai6HTGytuN8C489KcmxVbZPkgCRfmug/ZmK+5UP7scO1FyR5UlXtMXHdWzMqqm1Sa+301trBrbWDT3jFyxe8OQAAAAAA4JFN4ewRpKqWJvnZJB9trd2eUSHq+fdzrj2SPCHJF1pr30yyrqr2X+CyC1prB469rtzU4NbaV5OszKgo96k5hpw9Md+aof24JGe11jYm+XCSl0zM+/nhHp61QL4AAAAAAAA/4BlnjyzPT7JTkkuGvVdXJFmT5BMZbd94UJK/n3KulybZOcnVw1w7ZFSweuMDm3LOS/KOjLaY3HWhwVX19IwKen835LU0ydVJTpsYOrvqbP0DmCsAAAAAAPAIZsXZI8txSX65tbaytbYyyb5JDquqFUnenuR/VNWeyWh1WlX98gJzvWBsroPy4Dzn7L1J3txau2TK8cclOWU2r9ba3kn2rqrHjg9qrf1tRoW/Ax7YdAEAAAAAgEcqhbMt14qqunbs9VtJXpDkk7MDWmt3JflCksNba5/KaFXWZ6vqsiRfyWgV2X1U1cokj03yf8bmujrJbVX1zE3kNPmMs6MXuonW2rWttXfP0z35jLOfzKh4d+7EuHMzd1HvrUn2WSgHAAAAAACAxFaNW6zW2lxFz7fNMe6oseP3JXnfPPOtTrL/2PGj5xjzjLHjQyf6zk+y4xSpz47fbo6285OcPxyfkeSMOS593BzX/cbY6flj7eclqWlzAgAAAAAAtm5WnAEAAAAAAECsOONBVFW7JvncHF3Pba3d9FDnAwAAAAAAsCkKZzxohuLYgb3zAAAAAAAAmIatGgEAAAAAACAKZwAAAAAAAJDEVo0AAAAAAAD3UVW9U6ADK84AAAAAAAAgCmcAAAAAAACQxFaNkCSZWbqsS9wNi5d2iZsk265b2y12ktzV+tXtlyxe1C32orvv7Bb7yXvs3C32DXfc3S32ih127Ra7bWzdYifJuSf+XLfYR/75J7rFfvPRP9Mt9lvO/Wy32B/6z0d0i33Fit27xf7uVdd2i50kT3vMHt1i77m035Yh192zoVvsve69pVvsW5ds2y32zkv7/ey0cePGbrGTZGabFd1iX3XrXd1ir6gl3WLvuV2/f/Nd7rqjW+xF6/v9ieT7d67pFjtJduv4Pt93l+27xU51/P/krd/X1vW39ftemo5bni3atuPHWpJ1M/3ufee1/X4nX7Sk39eXO3Z9dLfY96xb1y12kjyqa3TY8llxBgAAAAAAAFE4AwAAAAAAgCS2agQAAAAAALiPRR23WaUfK84AAAAAAAAgCmcAAAAAAACQROEMAAAAAAAAkiicAQAAAAAAQBKFMwAAAAAAAEiicAYAAAAAAABJksW9EwAAAAAAAHi4qareKdCBFWcAAAAAAAAQhTMAAAAAAABIonAGAAAAAAAASRTOHhJVdeccbadU1XVVtWrstVNVnVBVp02MPb+qDh6OV1fVbsPxQVV1dVX9WFXtWFVnVtUVVXXlcLzj2BxPrKpPVdW3quorVXVOVf10VX2zqpaPjftkVb1hLKd7q+qS4fj3hvxunMj7qVU1U1XvrqpLh/EXVtW+m/g3WV1VF0y0raqqS4fjQ6vqtok4zxsbe0RVtap68ljbyqHt18baTquqE6Z6RwEAAAAAAFs1hbO+3tlaO3Dsdeu0F1bVAUk+lOSY1tq/JPnzJFe11h7fWtsvydVJ/mwYu02STyb5k9baE1prz0jyP5PclOQjSd44jDsiyZLW2ttnc0ry3STPHs5/cwh/9kTelyc5JsneSQ5orT09yZFJFrqf7atqnyH2U+bov2AizmfH+o5L8oXh7bgbkry2qpYuEBsAAAAAAODfUTjbMj0lyUeTvKK19s9V9fgkByV5y9iY30lycFXtl+QXknyxtfbx2c7W2vmttUuHcS+pqgOT/F6SX72fOe2V5HuttY3D/Ne21m5Z4JpzMiq4JaMC2AenCVRV2yV5VpITkxw70X1jks8leeUU87yqqi6qqove9/73TxMaAAAAAAB4BFM46+uksW0I/2EzrvtYkle31r4wnD81yarW2obZAcPxqiRPS7J/ki/PNVFr7e4kJyf5fJKzWmvfmiL+MRNbKC7PqAh2+HB+alX92BTzfDjJUcPx4Uk+PtF/yESc/Yb2Fyf5dGvtm0luqqqDJq77/SQnV9WiTQVvrZ3eWju4tXbwL75ywTobAAAAAADwCKdw1tf4Vo3PHtraPGPH2z+b5JcXKgxNa1iJdmtG2zdOY3KrxjWttWuTPCnJG5JsTPK5qnruAvPclOSWqjo2ydeS3D3RP7lV45VD+3FJzhqOz8rEdo2ttauSfCmjlXYAAAAAAABTWdw7Ae7jpiQ7T7TtkuT7Y+evTvKnGRW6/kuSy5McWFUzs1slVtVMkgOHvt2T/PQCcTcOr/uttbY2yd8k+Zuquj7JERltm7gpZyd5T5ITpolRVbskeU6Sp1dVS7IoSauq100MfVtGz4D7x6lvAAAAAAAA2KpZcfbwc2GSn6qqPZOkqg5OsizJd8bGbMxoNdWTq+p3WmtXJPmXJG8aG/OmJF8Z+v4qyU9W1QtnO6vqP1bV/g9U0lX1jKraezieSXJAkm9Pcem5Sf4gyWemDHV0kg+01h7bWlvZWtsnydVJDhkf1Fr7ekZFw8OnnBcAAAAAANjKWXH20FhRVdeOnf/h8Pakqnr5WPsRrbXVVfXaJJ8aClB3JjludiXZrNbaPVX1oiT/OKzuOjHJH1fV7HaGXxza0lpbU1U/l+RdVfWuJOuSfDXJa+/n/RxTVc8aO/9/k+yQ5H9X1bKh7Z+TnLbQRK21OzJ6JlmqarL7kKpaNXb+uxlty/j7E+M+PE/7WzMqKAIAAAAAACxI4ewh0Fqbb2XfKfOM/1iSj83Tt3Ls+LaMtmOc9fL7XPBvY7+e5AWb6F85TXtr7YwkZ8wzzafnm3+aeK211Un2H47PT7LjHJd+aI7r3j12uv9Y+8WxqhIAAAAAAJiSwhkAAAAAAMCEmdxnlzS2AgpnPKiq6ksZPaNt3Ctaa5f0yAcAAAAAAGA+Cmc8qFprz+ydAwAAAAAAwDQ8/wkAAAAAAACicAYAAAAAAABJFM4AAAAAAAAgiWecAQAAAAAA3MeimeqdAh1YcQYAAAAAAACx4gySJGuvv65L3NrrsV3iJsnM0mXdYifJ2rvu6RZ7uyX9/s/Anct36Bb7uhtu7Rb78dst6RY76zd0C10b+v7/lHu23alb7Dcf/TPdYv/3D/1tt9gfP+nl3WLftrbfx/pe37u0W+zvLd+rW+wkedS2/b6f/v9Xfbdb7J/YZ7duse/K8m6xd1rf7+eXNdd+u1vs63d+dLfYSbJy+aJusR+3wzbdYm9ct65b7LuvurJb7Hse88RusXdd1O9jbc8dt+8WO0n+9bY7usVes2xpt9gz1W8VwYaNG7vFXrFix26xZ2b6/o60ot+nea658ZZusR+9c7+/RSy//eZusbffaZdusWdWf6tb7CTJ3nv0jQ9bOCvOAAAAAIBHtJ5FMwC2LApnAAAAAAAAEIUzAAAAAAAASOIZZwAAAAAAAPdRHZ+HST9WnAEAAAAAAEAUzgAAAAAAACCJwhkAAAAAAAAkUTgDAAAAAACAJApnAAAAAAAAkEThDAAAAAAAAJIki3snAAAAAAAA8HBTVb1ToAMrzgAAAAAAACAKZwAAAAAAAJBE4aybqrpzjrZTqurk4fiMqrquqpYN57tV1erheGVVramqVWOvpUPfEVX11ar6WlVdUlVHTMQ4uaq+PlxzYVUdP7SfX1UHV9WXhr5rqurGsflXVtWOVXVmVV1RVVcOxzsO189U1bur6tIh7oVVte8m7n91VV0w0baqqi4djg+tqtsm7vF5Y2OPqKpWVU8ea1s5tP3aWNtpVXXCtO8XAAAAAABg66Vw9vC2IckvzdN3ZWvtwLHXvVX1o0nekeTFrbWnJHlRkndU1QFJUlX/T5LDkvx4a+3AJM9N8u82aW2tPXPo++0kZ4/NvzrJnye5qrX2+NbafkmuTvJnw6XHJNk7yQGttacnOTLJrQvc3/ZVtc+Q21Pm6L9g4h4/O9Z3XJIvDG/H3ZDktbOFRAAAAAAAgGkpnD28vSvJSVW1eMrxJyd5W2vt6iQZ3r49yeuG/t9K8iuttduH/ttba++fZuKqenySg5K8Zaz5d5IcXFX7JdkryfdaaxuHua9trd2ywLTnZFRwS0YFsA9Omct2SZ6V5MQkx05035jkc0leOc1cAAAAAAAAsxTOHt6uyWhV1Svm6NtvbAvD9wxtT0vy5YlxFyV5WlXtkGT71tpV9zOXpyZZ1VrbMNswHK8a4p6T5PAhn1Or6semmPPDSY4ajg9P8vGJ/kMmtmrcb2h/cZJPt9a+meSmqjpo4rrfT3JyVS3aVPCqelVVXVRVF515zoemSBcAAAAAAHgkm3YlE/28PcnHknxyov3KYUvFh4XW2rVV9aQkzxlen6uql7TWPreJy25KcktVHZvka0nunui/oLX2c3Ncd1ySPxqOzxrOf1AwbK1dVVVfSvILC+R8epLTk+TGr321bWosAAAAAADwyKdw9jDXWvtWVa1K8tIphl+e0XaKF4+1HZTkstba7VV1Z1U97n6uOrs8yYFVNTO7HWNVzSQ5cOhLa21tkr9J8jdVdX2SIzLaNnFTzk7yniQnTJNEVe2SUWHu6VXVkixK0qrqdRND35bkQ0n+cZp5AQAAAAAAbNW4ZXhrRs8vW8g7kryhqlYmyfD2t5KcOvS/Pcl7hm0bU1XbVdXx0yTQWrsiyb8kedNY85uSfKW1dkVVPaOq9h7mnUlyQJJvTzH1uUn+IMlnpskjydFJPtBae2xrbWVrbZ8kVyc5ZCLfr2dU0Dt8ynkBAAAAAICtnBVn/ayoqmvHzv9wvoGttcuq6itJnrGpCVtrq6rq9Uk+XlVLkqxL8t9aa6uGIX+SZLskF1bVuqH/1Llnm9OJSf64qq4czr84tCXJo5L876paNpz/c5LTFpqwtXZHRs8kS1VNdh8yrLab9bsZbcv4+xPjPjxP+1szKvYBAAAAAAAsSOGsk9baJlf7tdZOmDg/aux4dZL957nuI0k+Mk9fy2h11x/M0XfoxPkZSc6YaLslycvnmfvTST49V98841fO0bY6w3211s5PsuMcl35ojuvePXa6/1j7xbGqEgAAAAAAmJLCGQAAAAAAwISZ+2ySxtZA4YwHVVV9KcmyieZXtNYu6ZEPAAAAAADAfBTOeFC11p7ZOwcAAAAAAIBpeP4TAAAAAAAAROEMAAAAAAAAkiicAQAAAAAAQBKFMwAAAAAAAEiSLO6dAAAAAAAAwMPNohlrj7ZG3usAAAAAAAAQK84gSbL0Mft2ibuxdQmbJKm1a/oFT7LtsmXdYt+zsVvoLLvr1m6x99um3/+VuGHDom6xly7uF3v5kiXdYifJkjtu7hb7Led+tlvsj5/08m6xD3/nX3SLfe6JP9ct9oU7PKZb7O0X9fscT5Lv3XFPt9gHbdctdL59573dYu+98bZusW9Yun232Lvs99Rusfdd1Pf/W85s3NAt9jdu6Pez24ql/X6O2HnlU7rF3v72m7rFbot37Bb7Xzt+XU2SH9m13723u+7oFntmcb8/i7UN/f4gsL7j51l1/Nmtbd/v4zxJnrrXrt1ir7vl+91iL/m/7N15vJ5Vfe/9z3fvkImEGWSUqCCigBF4iqI8BapVW1FRFFKntPZBz+NUPdpq7am0VatSrXKwp/JUiXqUQRAHKlgLpsWhlIBhVBkjg6hMMmXO/p0/7iv29mYPdzA8i5DP+/W6X7muda21fr/r3kN29i9rXdvv2Cz2favb/QLo9m3a/RsJYJem0aVNnyvOJEmSJEmSJEmSJCycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAnwGWeSJEmSJEmSJEkPkaR1CmrAFWeSJEmSJEmSJEkSFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkCYFrrBCRJkiRJkiRJkh5tktYZqAVXnEmSJEmSJEmSJElYOHtYklSSj/advzPJCd3xCUluS7K077VNkoVJTh6YZ3GSg5Nc3PW7OckdfePmJVmW5MokVyT5tyR79o3fPclXk1yX5IYkn0gyvbt2eJJ7u3l+mOR9fe3nDuSxKMkx/Tl1x8uS7DDQd+FAjkuTPDXJSJKTklzV5XtJkidM8h4uS3LRQNvSJFeNk//613P7+r60+zg8pa9tXtf2lr62k5MsnCgPSZIkSZIkSZKk9SycPTyrgJcNFpX6/H1Vze97/XKyyarqkKqaD/wlcEbfuGVdlyOq6gBgMfAXAEkCfBn4SlXtDTwZmAN8oG/qi7p5DwZeneTAh3W3D3XGwP1dAxwL7AocUFX7A0cDk943MDfJHt397DvO9YsG4vxr37UFwHe6P/v9Anjb+gKiJEmSJEmSJEnSsCycPTxrgVOAt///HPf7wG7d8ZHAyqo6FaCq1nX5/FGS2f2DqupB4FJgr0cwt12A26tqrIt5a1XdM8WYM+kV3KBXADttmEBJ5gDPAV4PHDdw+Q7gAuB1Q+YtSZIkSZIkSZIEWDj7TXwSeFWSrce59va+7QW/vRFjvgD4Snf8NHrFsF+pqvuAmxkokCXZHngmcHXXdFj/FojAizcwj2MHtlCcRa8IdlR3/tEkzxhinrOBl3XHRwFfH7h+2ECcJ3XtLwHOr6prgbuSHDQw7sPAO5OMThY8yfFJliRZsujUU4dIV5IkSZIkSZIkPZZNa53Apqqq7kvyOeCtwIqBy39fVX83OGSiqYYI9+0k2wEPAP9jA9I8LMkPgDHgQ1V1dZLD6W2B+KL1nZIs2oA5obdV45sH2m5Nsg+9lXBHAhckeUVVXTDJPHcB9yQ5DvghsHzg+q/l2WcB8Inu+PTu/FdFxKq6McnFwB9MdhNVdQq9lYPce//9w3wcJEmSJEmSJEnSY5iFs9/Mx4HLgGGWK90FbDvQth1w5xBjj6D3vLAvAH8FvAO4Bjimv1OSrYDHA9cDv8XEhadHRFWtAs4Dzkvyc+Cl9LZNnMwZ9FbvLRwmRldAPBLYP0kBo0AleddA1w8CZwH/NvQNSJIkSZIkSZKkzZpbNf4GqupuelsUvn6I7pcAz06yM0CSg4EZwC1DxloL/AmOnrr6AAAgAElEQVTw2q54dAEwO8lru/lGgY8Ci6pqcOXWIy7JgUl27Y5HgAOAnwwx9BzgI8A3hwx1DPD5qtqzquZV1R7ATcBh/Z2q6kf0iotHDTmvJEmSJEmSJEnazFk4+819FNhhoO3tA8/mmldVPwfeBnyje67Yx4EFVTU2bKCquh04DXhTVRVwNPCKJNcB1wIrgT/fCPfU74okt3avj3Vtg884OxTYCfh6kquAK4C1wMlD3NP9VfXhqlo9zuXBZ5wdQ29bxnMG+p3dtQ/6ALD7kPcpSZIkSZIkSZI2c27V+DBU1Zy+458Ds/vOTwBOmGDcV4GvTjLvImDRQNu8gfO39B3fwgQrqqpqMbB4mPaqWth3fPhEsfssmqD9/Anax8vvIXNX1TJgv748tx5n6FnjjDup73S/vvbLsTgsSZIkSZIkSZKGZFFBkiRJkiRJkiRJwhVneoQluZjes9z6vaaqrmyRjyRJkiRJkiRJwxiNa482RxbO9IiqqkNa5yBJkiRJkiRJkjQMy6WSJEmSJEmSJEkSFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRIA01onIEmSJEmSJEmS9GiTpHUKaiBV1ToHqbn777uvyRfC2IrlLcL2Ys/asllsgJEVD7YLPrvdvb//nAubxf5vz3tWs9g7zp7eLPaqX/y0WewZj9u9WWyAW3/5QLPYu7T7kPPAyIxmsbdcdX+z2Ed/+txmsc98+aHNYs96/BObxQa4+7vfahb7qp2e0iz2oY+b2yz28plbNYs9Z+YWzWKvvvWmZrHHHvf4ZrEBpk8bbRZ7dPWKZrEzfWaz2Ct+cn2z2Mt33KNZ7LGGvx/Zcct2H2+Ae1aubhZ7bKzd+7567bpmsefObPcD87TRdt9X71+5qlnsVWvWNosNsN2c2c1ijzT8xf+MsTXNYre0+u5fNI2/w95PtdqzkVx4xY8toGwERx6wzyb1OelWjZIkSZIkSZIkSRIWziRJkiRJkiRJkiTAwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAJjWOgFJkiRJkiRJkqRHm5G0zkAtuOJMkiRJkiRJkiRJwsKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkCLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwtlEkWZdkaZKrknwpyeyufeckpye5IcmlSb6R5Mndtdclua57va5rm53kn5P8KMnVST40SczfTvL9gbZpSX6eZNcki5Lc1OW1NMn3uj4Lk4wlOaBv3FVJ5nXHWyf5XJLru7w/l2Tr7trhSc4diLkoyTHd8YuS/CDJ5UmuSfKGSfI/IUkl2auv7U+6toO782VJruy7h5MG7vWOwfcoyeIkS/rOD06yeKI8JEmSJEmSJEmS1rNwtnGsqKr5VbUfsBp4Y5IA5wCLq+pJVXUQ8B7gcUm2A94HHAL8FvC+JNt2c/1dVT0FeAbw7CQvnCDmRcDuSfbsa3sucHVV/bQ7f1eX1/yqOrSv363AeyeY99PAjVW1V1U9CbgJ+Kep3oAkWwCnAEdV1dO7/BdPMexK4Li+81cAVw/0OaLvHt7a1/484FrgFd173W+nSd43SZIkSZIkSZKkcVk42/guAvYCjgDWVNU/rr9QVZdX1UXA84FvVdXdVXUP8C3gBVW1vKq+3fVdDVwG7D5ekKoaA87k1wtPxwGnDZHjucDTkuzT39it/joI+Ju+5r8GDk7ypCnmnAtMA+7q8ltVVT+eYsxXgJd0sZ8E3AvcOUT+AAuATwA3A88auHYiExcGJUmSJEmSJEmSxmXhbCNKMg14Ib2VVPsBl07QdTfglr7zW7u2/rm2AY4CLpgk5Gl0hbMkM4DfA87uu35i3zaHX+hrHwM+Avz5wHxPBZZW1br1Dd3xUuBpk+RBVd0NfA34SZLTkrwqyVSfX/cBtyTZr7uPM8bp8+2+e3h7d68z6a2u+zq992DBwJjvA6uTHDFZ8CTHJ1mSZMmpp546RaqSJEmSJEmSJOmxblrrBB4jZiVZ2h1fRG+7wzc+3Mm6AtxpwElVdeNE/apqSZI53cqxfYGLuwLWeu+qqrMmGP5F4L1JnrABqdVk7VX1x0n2p1fUeie97RQXTjHn6fSKZs8Hfgf4w4HrR1TV4Cq0FwHfrqoVSc4G/keSP+kv+AHvB/4C+LMJb6bqFHrbS3L/ffdNdG+SJEmSJEmSJGkzYeFs41hRVfP7G5JcDRwzQf/bgMP7znfn158HdgpwXVV9fIjY61ed7ctw2zQCUFVrk3yUXy8sXQPMTzLSbQVJt2psfndtJrDtwFTb0be9YlVdCVyZ5PP0no+2cIpUzqW3teKSqrrvoY8rG9cC4DlJlnXn2wNH0tvycn0eFyZ5P/DMYSaUJEmSJEmSJKnfkL+v1mOMWzU+ci4EZiQ5fn1DkgOSHAZ8E/jdJNsm2Rb43a6NrtizNfAnQ8Y5DXg1vcLRVzcwx0X0VoftCFBV1wM/oLdSa72/AC7rrl0H7Jpk3y7XPYGnA0u7lW+H942bD/xkqgSqajm94t0Hhkk4yVbAYcDjq2peVc0D3sRDt2uE3qqzPx1mXkmSJEmSJEmSJFecPUKqqpIcDXw8yZ8BK4FlwJ9U1d1J/ga4pOv+113b7sB7gR8Bl3XV7JOr6p8mifPDJA8Cl1bVgwOXT0zSXwT7rYGxq5OcBHyir/n1wP9MckN3/v2ujapaleTVwKndc8bWAH9cVfcmmQv8aZJPASuAB5l6tdn6PE6f5PK3k6zfgvEKes98u7CqVvX1+Srwke45b/3zfiPJHcPkIEmSJEmSJEmSZOFsI6iqORO0/xR45QTXPgN8ZqDtVmCD134ObhPZtS2coPui7rW+30nASX3n99BbwTZRrO8yzvaHVXU/8HtDpkxVnTBB++F9x/MmGP7ZgTF3062a49e3wKSqDho2J0mSJEmSJEmStHlzq0ZJkiRJkiRJkiQJV5xtEpK8F3jFQPOXqmqo54K1tCnnLkmSJEmSJEmSNi8WzjYBXZFpkyw0bcq5S5IkSZIkSZI2X6Mjbtq3OfKjLkmSJEmSJEmSJGHhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJKmhJC9I8uMk1yd59zjX35HkmiRXJLkgyZ5919YlWdq9vvab5uIzziRJkiRJkiRJktREklHgk8DzgFuBS5J8raqu6ev2A+Dgqlqe5L8BHwGO7a6tqKr5GysfV5xJkiRJkiRJkiSpld8Crq+qG6tqNXA68JL+DlX17apa3p3+B7D7I5WMK84kSZIkSZIkSZIGJK0zeGxIcjxwfF/TKVV1St/5bsAtfee3AodMMuXrgfP6zmcmWQKsBT5UVV/5TfK1cCYBy9eONYk7a1q7L8HVa9c1iw0wfdaW7YJXu9DvPnSfZrHX3XFzs9h37Pj4ZrFH5u7YLDZjDT/ZgO3uua1Z7Otnt3vfd7n9qmaxL9nqEfvPTlM68+WHNov9yrO/1yz2196659SdHkFbHvq7zWIfeN2VzWLfu8XOzWJvN9rue+vP7n2wWey70u5npyfc9MNmsQFW7tnu56c7H1jdLPb00XY/r98xulWz2Psu/2Wz2CNbbNEsNsxsGBum3dDu75SR6e3uvem7Xm1+DwGwxW7zmsXedk2776uZPqNZbIC1d/20WezRmbObxc5W2zSLvTajzWJ//5dtf+92VNPo0kN1RbJTpuw4hCSvBg4Gfruvec+qui3JE4ELk1xZVTc83Bhu1ShJkiRJkiRJkqRWbgP26DvfvWv7NUmeC7wXeHFVrVrfXlW3dX/eCCwGnvGbJGPhTJIkSZIkSZIkSa1cAuyd5AlJpgPHAV/r75DkGcCn6BXNftHXvm2SGd3xDsCzgWt+k2TcqlGSJEmSJEmSJElNVNXaJG8GvgmMAp+pqquT/DWwpKq+BpwIzAG+lN7D526uqhcD+wKfSjJGb7HYh6rKwpkkSZIkSZIkSZI2TVX1DeAbA21/2Xf83AnGfQ/Yf2Pm4laNkiRJkiRJkiRJEq44kyRJkiRJkiRJeoiR3paA2sy44kySJEmSJEmSJEnCwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAAtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHCmCSRZl2RpkquSfCnJ7K595ySnJ7khyaVJvpHkyUnmJVnRjbkmyeeSbDHJ/IcnqSR/3Nc2v2t7Z3e+KMlN3ZxLk3xvYI6vJPmPgbYTkixPslNf2wMb632RJEmSJEmSJEmPXRbONJEVVTW/qvYDVgNvTBLgHGBxVT2pqg4C3gM8rhtzQ1XNB/YHdgdeOUWMqwb6LAAuH+jzri6P+VV16PrGJNsABwFbJ3niwJg7gf8+9J1KkiRJkiRJkiRh4UzDuQjYCzgCWFNV/7j+QlVdXlUX9XeuqnXAfwK7TTHvT4CZSR7XFeVeAJw3ZE4vA74OnA4cN3DtM8CxSbabbIIkxydZkmTJ5z+7aMiwkiRJkiRJkiTpscrCmSaVZBrwQuBKYD/g0iHGzAQOAc4fIsRZwCuAQ4HLgFUD10/s26rxC33tC4DTuteCgTEP0CuevW2ywFV1SlUdXFUHv+Z1C4dIVZIkSZIkSZIkPZZZONNEZiVZCiwBbgY+PcSYJ3Vjfg7cXlVXDDHmTHqFs/WFsEH9WzW+CiDJ44C9ge9U1bXAmiT7DYw7CXhdkrlD5CBJkiRJkiRJksS01gnoUWtF97yyX0lyNXDMJGNuqKr5SXYAvpvkxVX1tcmCVNXPkqwBnkdvhdihk/XvvBLYFript8MjW9ErvL23b95fJvki8KYh5pMkSZIkSZIk6deMxLVHmyM/6toQFwIzkhy/viHJAUkO6+9UVXcC7wbeM+S8fwn8WfdstGEsAF5QVfOqah5wEA99zhnAx4A3YIFYkiRJkiRJkiQNwcKZhlZVBRwNPDfJDd0KtL8FfjZO968AsweLahPM+72q+soEl/ufcbY0yZOBPYH/6Bt/E3BvkkMG5r0TOAeYMcz9SZIkSZIkSZKkzZsrcTSuqpozQftP6W2VOJ79+voV8PRJ5l8MLB6n/YS+44UTDN9tnHEHdocXD7S/A3jHRHlIkiRJkiRJkiSt54ozSZIkSZIkSZIkCVec6RGW5PnAhweab6qqo1vkI0mSJEmSJEmSNBELZ3pEVdU3gW+2zkOSJEmSJEmSpA0xktYZqAW3apQkSZIkSZIkSZKwcCZJkiRJkiRJkiQBFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgBIVbXOQWru55df0uQLYcaOO7cIC0CtW9csNsDolnObxV734P3NYo9Mn9ks9gMj05vF3nLNg81itzQyc3bT+A+OpVnsS268tVnspN19z53Z7uvsoMc/rlnsln+nvPik05rFBjjtzX/QNH4rW9x5W7PYa3bYrVnskZF2/+9wxsp2P7/cvna0WWyAXdp9a6Vmt/uZde26sWaxR++7q1ns5bO2bhZ7q9F2vx+5b127n18Alq9e0yx2y5+fWlq1tt3PT1vPbvfv0uWr2n2uzRlb3Sw2wL2Z1iz22Fi7729b3nN7s9gzHtfu58aVt97ULDbATgcc3PYvlseQJdcts4CyERy897xN6nPSFWeSJEmSJEmSJEkSFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkCLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTAwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAJjWOgFJkiRJkiRJkqRHm5GkdQpqwBVnjyJJ1iVZmuSqJF9KMrtrf2CSMR9PcluSkST7d+OXJrk7yU3d8b8mmZdkRd/1pUle282xLMkOA/MuTHLHQP+nTzL/SJKTutyvTHJJkidMkveyJBcNtC1NclV3fHiSewfiP7ev70uTVJKn9LXN69re0td2cpKFQ38QJEmSJEmSJEnSZssVZ48uK6pqPkCSLwBvBD42UeckI8DRwC3Ab1fVt4H14xcB51bVWd35POCG9fMP6YyqevNA20TzLwB2BQ6oqrEkuwMPTjH/3CR7VNUtSfYd5/pFVfWiCcYuAL7T/fm+vvZfAG9L8qmqWj1FfEmSJEmSJEmSpF9xxdmj10XAXlP0ORy4Gvhf9ApILe0C3F5VYwBVdWtV3TPFmDOBY7vjBcBpwwRKMgd4DvB64LiBy3cAFwCvG2Ke45MsSbLk82edM0xoSZIkSZIkSZL0GGbh7FEoyTTghcCVU3RdX2w6B/j9JFtM0f9JA1sfHjZF/2MH+s+apO+ZwFFdv48mecYUcwOcDbysOz4K+PrA9cMG4j+pa38JcH5VXQvcleSggXEfBt6ZZHSy4FV1SlUdXFUHv+aYo4dIV5IkSZIkSZIkPZa5VeOjy6wkS7vji4BPT9QxyXTg94B3VNX9SS4Gng+cO8n8G2OrxnFV1a1J9gGO7F4XJHlFVV0wybC7gHuSHAf8EFg+cH2irRoXAJ/ojk/vzi/ty+XG7v34g2FylyRJkiRJkiRJAgtnjzYrNqCw9XxgG+DKJACzgRVMXjh7RFXVKuA84LwkPwdeSm/bxMmcAXwSWDhMjCTb0SvM7Z+kgFGgkrxroOsHgbOAfxv6BiRJkiRJkiRJ6oyMpHUKasCtGjddC4A/rqp5VTUPeALwvCSzWyST5MAku3bHI8ABwE+GGHoO8BHgm0OGOgb4fFXt2d37HsBNwK9tO1lVPwKuobcFpCRJkiRJkiRJ0pQsnG0aZie5te/158ALgH9e36GqHgS+w+SFosFnnL2179oVffN/rGsbfMbZoZPMvRPw9SRXAVcAa4GTp7qxqrq/qj5cVavHuTz4jLNj6BUMzxnod3bXPugDwO5T5SBJkiRJkiRJkgRu1fioUlVzJmgfr8D5wXH6vazveOHAtWXArAnmnzdBSosmaB9v/vOB8yfqP0zMLsf9uuPFwNbjDD1rnHEn9Z3u19d+ORaHJUmSJEmSJEnSkCwqSJIkSZIkSZIkSbjiTI+wJBcDMwaaX1NVV7bIR5IkSZIkSZIkaSIWzvSIqqpDWucgSZIkSZIkSZI0DAtnkiRJkiRJkiRJA0aS1imoAZ9xJkmSJEmSJEmSJGHhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJgFRV6xyk5u65ZVmTL4RpW2/XImxPjbWLDayqdg/WnJF23/dW/OT6ZrFnzXtys9gtP9+Wr2sWmmm/vKNdcGD69js2i/2LB1c1i73TljOaxb79/pXNYs+44qJmsbc89HebxV6ztuEXObDg5C82i33OO17XLPbmanXDz7dZtIudaVs0iw2w9t67m8W+f8acZrHnzmz399nIigebxV4zY1az2FusWtEs9s0r1jaLDbDz1nObxR5r+HupsbF2/065f+XqZrGnTxttFrulbdP258aRmTObxW757+KWX2czV9zXLPbYmjXNYgNs/8S92/3i7THmiptusYCyERzwhD02qc/Jaa0TkCRJkiRJkiRJerRJNql6jzYSt2qUJEmSJEmSJEmSsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmwcCZJkiRJkiRJkiQBFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg422BJ3pvk6iRXJFma5JCufVqSO5J8qK/f0u61ru/4rUlmJDkjyfVJLk4yrxvzvCSXJrmy+/PISfI4NckbBtpemuS87rg/5tIk7+7aFydZ0jfm4CSL+86fk+Q/k/yoex3fd21RkmMGYj7Q/TmS5KQkV3X5X5LkCZPkvyzJRQNtS5Nc1R0fnuTegXt47sC9VpKn9LXN69re0td2cpKFE+UhSZIkSZIkSdJ4RhNfG+G1qZnWOoFNSZJnAS8CDqyqVUl2AKZ3l58HXAu8Isl7quoDwAe6cQ9U1fy+ef5f4J6q2ivJccCHgWOBO4GjquqnSfYDvgnsNkE6pwHvAT7V13Zc1w6woj/mgJ2SvLCqzhu4v52BLwIvrarLuvv7ZpLbquqfp3h7jgV2BQ6oqrEkuwMPTjFmbpI9quqWJPuOc/2iqnrRBGMXAN/p/nxfX/svgLcl+VRVrZ4iviRJkiRJkiRJ0q+44mzD7ALcWVWrAKrqzqr6aXdtAfAJ4GbgWVPM8xLgs93xWcDvJElV/aBvvquBWUlmTDDHBcBTkuwCkGRL4LnAV4a4jxOB947T/iZgUVVdBr37A/4UePcQc+4C3F5VY93YW6vqninGnEmv4Aa99++0Sfr+SpI5wHOA19MrFva7g95787oh5jk+yZIkSxZ94YvDhJYkSZIkSZIkSY9hFs42zL8AeyS5Nsk/JPltgCQz6RWtvk6v+LNginl2A24BqKq1wL3A9gN9Xg5ctr5IN6iq1gFnA6/smo4CFlfVfd35rIFtDo/tG/59YHWSIwamfRpw6UDbkq59KmcCR3WxPprkGUOMORt4WV/+Xx+4ftjAPTypa38JcH5VXQvcleSggXEfBt6ZZHSy4FV1SlUdXFUHL3zVHwyRriRJkiRJkiRJeiyzcLYBquoB4CDgeHorm87onp/1IuDbVbWCXjHopVMVbSaT5Gn0ij9vmKLrafzXiqv+bRqh26qx73XGwNj3A3+xganVRG1VdSuwD73tI8eAC5L8zhTz3QXc021X+UNg+cD1iwbu4YaufQFwend8OgOFyqq6EbgYsBomSZIkSZIkSZKG5jPONlC30msxsDjJlfS2BFwNPCfJsq7b9sCRwLcmmOY2YA/g1iTTgK3pFZHong12DvDavkLRRL4H7JLk6cChPHTbwsnu48Ik7wee2dd8Db3C4Ff72g6it20kXY7brr+QZDt6z2VbP+cq4DzgvCQ/B15Kb9vEyZwBfBJYOEzeXcwjgf2TFDAKVJJ3DXT9IL1tMP9tmHklSZIkSZIkSZJccbYBkuyTZO++pvn0Vp4dBjy+quZV1Tx6zwqbbLvGr/Ffz+A6BriwqirJNsA/A++uqu9OlU9VFb3C02eB86pq5Qbe0vvpPcNsvU8CC5PMB0iyPb2Vbx/pri8Gjk0yvTtfCHy763tgkl274xHgAOAnQ+RwTjf/N4fM+Rjg81W1Z/d+7wHcRO9j8CtV9SN6hcCjhpxXkiRJkiRJkqRfSeJrI7w2NRbONswc4LNJrklyBfBUeiuaLhx4FtlX6T3va8YE83wa2D7J9cA7gHd37W8G9gL+su+5XjtNkdNpwNP59W0a4aHPOPvQ4MCq+ga9wt/689uBVwP/X5If0VvR9pmq+np3/VzgIuDSJEuBZwN/1g3fCfh6kquAK4C1wMlT5E5V3V9VH66q1eNcHnzG2TH0CpLnDPQ7m/ELlR8Adp8qB0mSJEmSJEmSJHCrxg1SVZfS2xJx0GcH+t0N7Nh3Pmfg+krgFePM/356q8A2JKelwENKtlU17jPWqurwgfODBs7/Hfi/Jon3V8BfjdN+PnD+UEn3+s8bp20ZsF93vJjeFpaDzhpn3El9p/v1tV+OxWFJkiRJkiRJkjQkiwqSJEmSJEmSJEkSrjjbJCS5GBjc9vE1VXVli3w2xKacuyRJkiRJkiRJ2rxYONsEVNUhrXN4uDbl3CVJkiRJkiRJ0ubFrRolSZIkSZIkSZIkXHEmSZIkSZIkSZL0ECNJ6xTUgCvOJEmSJEmSJEmSJCycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmAVFXrHKTm7rrhx02+EEZnz2kRtqfG2sUGas42zWKPrlnVLPbVd9zbLPaMae0ea/nE2e3+n0atW9csdtOvceD25Wuaxd55ers9wP/jp3c3i31Qww/5xfe2+1w/sNp9b+MJT20XG5g5fYtmsY/+2GebxT7n9S9qFnvlrK2axZ61ZkWz2Gvvbfe97e45OzaLDbDjVlu2C37vXc1CZ3S0WezVd93RLPbyHfdoFrulrWfPbBr/jvsebBZ7dKTdz43rxtr9TmzdWLt/k2/T8POt5Xu+9cx2P7cBLLv7vmaxW36P2Xbm9Gaxx1Ysbxb7wRt/2Cw2wK7POsIHc20kP77ldgsoG8E+e+yySX1OuuJMkiRJkiRJkiRJAtotP5AkSZIkSZIkSXqUSjaphVLaSFxxJkmSJEmSJEmSJGHhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFs8eEJO9NcnWSK5IsTXJIkulJPp7k+iTXJflqkt37xqzr+l6d5PIk/z3JSHft8CTndscnJHnnQLxlSXbojivJ/+67Ni3JHevHT5Dvwm7cc/vaXtq1HdOdL07y4y7HpUnOGphjaZLTB9oWJbktyYzufIckyzb4DZUkSZIkSZIkSZulaa0T0G8mybOAFwEHVtWqrqA1HfggMBfYp6rWJflD4MtJDqmqAlZU1fxujp2ALwJbAe/bwBQeBPZLMquqVgDPA24bYtyVwHHAv3bnC4DLB/q8qqqWDA5Msi8wChyWZMuqerDv8jrgj4D/tWG3IUmSJEmSJEnSfxkdSesU1IArzjZ9uwB3VtUqgKq6E/gl8IfA26tqXdd+KrAKOHJwgqr6BXA88OYkD+c7wTeA3++OFwCnDTHmIuC3kmyRZOXYbrMAACAASURBVA6wF7B0yHgLgM8D/wK8ZODax4G3J5myKJzk+CRLkiz57OlnDBlakiRJkiRJkiQ9Vlk42/T9C7BHkmuT/EOS36ZXhLq5qu4b6LsEeNp4k1TVjfRWce30MHI4HTguyUzgAODiIcYUvdVmz6dX/PraOH2+0LdV44l97cd2MU+jV0TrdzPwHeA1UyZQdUpVHVxVB7/uuGOHSFmSJEmSJEmSJD2WWTjbxFXVA8BB9FaM3QGcARy+MUNM1V5VVwDz6BWxvrEBc59Ob7vG4xh/ldqrqmp+93oXQJKD6a2wuxm4AHhGku0Gxv0t8C78/JYkSZIkSZIkSRvAwsJjQFWtq6rFVfU+4M3AUcDjk8wd6HoQcPV4cyR5Ir3ng/1i4NJdwLYDbXPpbQfZ72vA3zHcNo3r8/5PYH9gh6q6dshhC4CnJFkG3EDvuWwvH5j3OnrbPr5y2FwkSZIkSZIkSZIsnG3ikuyTZO++pvnAj4HPAh9LMtr1ey0wG7hwnDl2BP4ROLmqBleY/Tvw4vVFuCQvAy5f/+y0Pp8B/qqqrtzAW3g38OfDdEwyQq8Ytn9VzauqefS2eRzcrhHgA8A7NzAXSZIkSZIkSZK0GZvWOgH9xuYA/zPJNsBa4Hp62zbeT28F2LVJxoAfAUf3FcZmJVkKbNGN+zzwscHJq+qKJCcD30lS9Fak/fE4/W4FTtrQ5KvqvEkufyHJiu74TuBvgNuq6qd9ff4deGqSXQbmvTrJZcCBG5qTJEmSJEmSJElJWqegBiycbeKq6lLg0Akuv6V7jTdudJI5FwOL+84/BXxqgr5zpho/zvVFwKJx2hf2HR8+wfBnDoxZB+zcnS4cuPayiXKQJEmSJEmSJEka5FaNkiRJkiRJkiRJEq440yMoyR8Cbxto/m5VvalFPpIkSZIkSZIkSZOxcKZHTFWdCpzaOg9JkiRJkiRJkqRhuFWjJEmSJEmSJEmShIUzSZIkSZIkSZIkCXCrRkmSJEmSJEmSpIcYSVqnoAZccSZJkiRJkiRJkiRh4UySJEmSJEmSJEkCIFXVOgepufMvu7rJF8KTd9mxRVgAHly1ullsgLsfWN4s9uzpWzSLvffc6c1ir1v+QLPYX7/5nmaxd912q2axn7xzu69xgG2zrlns21a2i737lu2+xn/yQLvvrbuPrm0W+94ttmwWe84vf9YsNsDorvPaBb/3rmahj/70uc1in/2a5zWLfUtmNYu9R61oFhtg2pytm8W+a6zd//fcfmSsWezr7lvZLPZec9r9XTq2elWz2GvmbtcsNsC0u9v9nTa65dxmsUe22Dw/39atbPc13vQ9X7OmWWyA6du3+zfaiptvbBZ7dHa7n9d/tHq0Wex5O7T7vv7j2+9oFhvgyAP2cX/BjWTZz+6wgLIRzNt5x03qc9IVZ5IkSZKkCbUsmkmbi5ZFM2lz0bJoJknatFg4kyRJkiRJkiRJkrBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTAwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAAtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQJgWusEJEmSJEmSJEmSHm1GRtI6BTXgijNJkiRJkiRJkiQJC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFs81WknlJrhpoOyHJO5MsSnJTkqVJLk/yO319Fif5cXdtaZKzBuZYmuT0IeIvSrI8ydy+to8nqSQ7dOfr+uIsTfLuvr47JFmT5I0D8y5Lcnbf+TFJFm3AWyNJkiRJkiRJkjZT01onoEetd1XVWUmOAE4B9u679qqqWjI4IMm+wChwWJItq+rBKWJcD7wE+N9JRoAjgdv6rq+oqvkTjH0F8B/AAuAfB64dlOSpVXXNFPElSZIkSZIkSZJ+xRVnmsr3gd2G7LsA+DzwL/QKYlM5HTi2Oz4c+C6wdgNi/XdgtyS7D1z7KPDeIeeRJEmSJEmSJOkhRoivjfDa1Fg401ReAHxloO0LfdsnntjXfiy9Ythp9ApbU7kW2DHJtl3/wS0eZw1s1XgsQJI9gF2q6j+BM/mv4tt6ZwIHJtlrsuBJjk+yJMmSb3z5S0OkK0mSJEmSJEmSHsvcqnHzVVO0n5jkg8DuwLMG+jxkq8YkBwN3VtXNSW4DPpNku6q6e4o8vgwcBxwCvGHg2kRbNR5LrzgGvWLbZ+itMltvHXAi8B7gvIkCV9Up9Lah5PzLrp7o/ZAkSZIkSZIkSZsJV5xtvu4Cth1o2w64szt+V1U9GfgzeoWpqSwAnpJkGXADsBXw8iHGnQH8DfCtqhobov/6WAu7WF8DDkiy90CfzwP/N7DHkHNKkiRJkiRJkqTNnIWzzVRVPQDcnuRIgCTb0duW8TsDXU8GRpI8f6K5kowArwT2r6p5VTWP3jPOptyusap+Qu95ZP8wTN5JngzMqard+mL97WCsqloD/D3w9mHmlSRJkiRJkiRJcqvGzdtrgU8m+Vh3/ldVdUPyXw/rq6pK8n7gT4Fvds1fSLKiO76T3oqx26rqp31z/zvw1CS7VNXtkyVRVZ+a4NKsJEv7zs8HVgDnDPQ7m97Ktb8eaP808BeTxZYkSZIkSZIkSVrPwtlmrKquAY4Yp33hwPnZ9IpTVNXhE0z3zIEx64CdJ4m9cIL2eX3HoxONHxhzBbDvOONXAbsOM4ckSZIkSZIkSf36F5lo8+FWjZIkSZIkSZIkSRKuONMjLMkngWcPNH+iqk5tkY8kSZIkSZIkSdJELJzpEVVVb2qdgyRJkiRJkiRJ0jDcqlGSJEmSJEmSJEnCwpkkSZIkSZIkSZIEuFWjJEmSJEmSJEnSQ4ykdQZqwRVnkiRJkiRJkiRJEhbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgRAqqp1DlJz99x802b3hTBtm+2bxh/L5rlB8P0rVjeLfcvdv2wWe99tZjWLXatXNYudLaY3iw2wdtacZrFH77+nWeyVs7ZqFnv6fXc1i71ybrvv63NH2/01+uBY279PZk7folnslavXNIs9/d47msV++ee/1Sz2Oa9/UbPYNTbWLPaauds1iw3wxe/+oFns1x+6f7PYa37Z7u+UGlvXLPb/85XvN4t96JP3bBb71c8+sFlsgGmjo81ir13X7vNtrOFvAh5c1e7fhqOb6QN7dtpyRtP4YytXNov983Y/NrLL3JnNYq9s+G+FuuW6ZrEBdjrg4M3zC/0RcPudd292vzd+JOyyw3ab1OekK84kSZIkSZIkSZIkLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTAwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAAtnkiRJkiRJkiRJEgDTWicgSZIkSZIkSZL0aDMy4tqjzZEfdUmSJEmSJEmSJAkLZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkChiicJVmXZGmSy5NcluTQrn1ekqvG6b97kq8muS7JDUk+kWR63/XnJPnPJD/qXsf3XTshyW1dvOuSfDnJU/uuL07y4y6X7ybZZ5z2S5LM7xuzLMmV3ZxLk5zUtT8zycVd2w+TnNC1Py7Jud1c1yT5Rtd+eJJzB+51UZJjHm4OE7zfi5Lc1M1zbZLPJdl9YK4d+s5fmqSSPKWvbSTJSUmu6uJekuQJffd7c5I7+vKZl2TrLtb13cftc0m2nuJj3X//WyT5UPdxuyzJ95O8cJL7XJbkooG2pevjdO/3vX05Lk3y3Cnue17X9pa+tpOTLJwoD0mSJEmSJEmSpPWGWXG2oqrmV9XTgfcAfztRxyQBvgx8par2Bp4MzAE+0F3fGfgi8MaqegrwHOANSX6/b5q/7+LtDZwBXJhkx77rr+py+Sxw4jjt/zDQDnBEN+f8qnpr1/ZZ4Piqmg/sB5zZtf818K2qenpVPRV499Rv0cPOYSLv6ubZB/gBvfdg+gR9FwDf6f5c71hgV+CAqtofOBr4ZVUd0t3vXwJn9OWzDPg0cGNV7VVVTwJuAv5p2BsH/gbYBdivqg4EXgrMnWLM3CR7ACTZd5zrF/XlOL+q/nWK+wb4BfC2Sd4vSZIkSZIkSZKkcW3oVo1bAfdMcv1IYGVVnQpQVeuAtwN/lGQ28CZgUVVd1l2/E/hTJihOVdUZwL8AfzDO5X8H9hqn/fvAbkPcy07A7evzrKpruvZdgFv7crhiiLkebg6Tqp6/B34GPGT1VpI59IqPrweO67u0y/9h787j9SrLe/9/vplIGAMBRAGJgOKExGKr4lCcCrZSBEGJWIrVY/urVsVCtUf0UFutFjmoVdtDa6VYRTgOIE60FTl1oEpUBEQREBRQkSEMgSQke1+/P561cfGwx0C4SfJ5v17PK2vd6173da21n509XPu+F/CLqhrtxrmuqib8uCXZE9iXQfFrzDuApyTZY6o8u4/t/wD+rKpWdzFvqKozJz+TMxkU+WBQADt9qlhdvImuG+BG4CvAH05nLEmSJEmSJEmSxjMr8fUAvDY00ymcLeiWyfsRgxlIfz1J3ycA3+k3VNXtwM8YFLnucxxY1rVP5LvAY8dpPwi4ZJz2A4Gzhtq+2lvu75iu7WTg8iSfTfLHSeZ37R8CPpLkq0nemuQRk+Q2kenmMF0T3YODgS9X1Y+Bm5Ps27WfCRzUxTopyZOnGP/xwEVdoRO4p+h5EZN/bMbsCfys+1jPxKeBQ7vtg4Bzho4/a2ipxrEi3kTXPeY9wLFJZk8WPMlrkixLsuzUT0yrZidJkiRJkiRJkjZic6bRZ2W3vB9Jng6cluSJ6zetexkuR348yUrgGuDPhtrnMVgacsnQOc/pZrfdo6rekeTjwO8wmNG2FNi/qs5NsjuD4tcLge9111sT5Ndvn1EOMzBRSXYp8P5u+5Pd/neq6roMnv/23O71lSSHV9VX1jH++nIzsDzJEcAPgbuGjn+tql40znnjXvfYwar6SZJvMf5MRXr9TgFOAVj+s6sn+vhKkiRJkiRJkqRNxHQKZ/eoqguSbA/sMEGXy4DD+g1JtgYeCVzZHd8XOLvXZV/gB5OEfTKDWWljjqyqZeP0O5JB8eRE4O/59UymCVXVVcA/JPkn4MYki6rq5qq6hcGz2D6R5PPAs4HLgW2HhtgO6BfDZpzDND2ZwfKD90iyHYOi2N5JCpgNVJLjuiUeVwNfAr6U5AYGzxybqHB2GbAkyayx5R2TzGJQ/LtsgnP6rgQemWTrdZh1dgaDWX5HT6fzZNc91PVdwKeA/zfDfCRJkiRJkiRJ0iZqRs84S/JYBoWKmyfo8hVg8yRHdf1nAycxeK7ZXXQFkiRjM9gWMVhW7+8miPcSBjPCprWOXlUV8DbgaV2uk13L7yX3LK75aGAEuDXJc7tndpFkK2APBktNXgE8IsnjumO7AfswWM5wnXKYSgZez+CZZV8eOnwY8LGq2q2qFlfVrsDVDJY3/I2xJSa7AtiTgJ9OFKeqrgS+Bxzfaz4e+G53bFLdx/YjwPu7GXck2SHJ4dO4zM8y+PifO42+MMl1D+X0IwZFv4OmOa4kSZIkSZIkSdrEzeQZZxcxmB30h71nYe2V5LqxF4OixiHA4UmuAH4MrAL+J0BV/QJ4BfBP3TPTvgn8S1X1n211TBfviq7vc6vqxuleUFWtZFCs689A6j9f7LSu7Q8YPOPsIuBjDGayjTCYAbcsycXABcA/V9WF3QyuVwAf7c75FPDqqrrtfuQwkROTfJ/B/ftNBss83j3UZymDolPfp7v2HYFzklwKXAysBT44RcxXAY9JclWSq4DHdG1j7vWxHqcodjxwI3BZF/fzwJSzz6rqjqp6zzjXB/d9xtlhU1z3sHcCu0yVgyRJkiRJkiRJEkAGE6SkTdum+IyzOQsXNY0/moke3bdxu2PleDXiB8e1t9zaLPbjFi5oFrvuXt0sdubOaxYbYO2CLZvFnn3H8maxVy3YulnsebdPNCl//Vu1Vbv/17ea3e7L6J2jbb+ezJ83t1nsVXevaRZ73m3T/ru2B9xLPvYfzWJ/9lXjPX73wVGjo81ir9lqu2axAT7xje81i/2q/fZuFnvNre2+ptToyNSd1pP/cdYFzWLv95jdmsV+xTN+o1lsgDmzZzeLvXak3ftttOFvAu5c3e5nw9mzNs2fx3fcYrOm8UdXrWoW+4Z23zby8K3mN4u9quHPCnXtFc1iA+z4pKdsmp/o68GNy2/b5H5vvD7ssO02G9R7ckbPOJMkSZIkSZIkSdoUbKJ/+7/Js3DWSJIPAc8Yan5/VX20RT7rS5JvAcN/0vMHVXVJi3wkSZIkSZIkSZImYuGskap6bescHgxV9dTWOUiSJEmSJEmSJE3HrNYJSJIkSZIkSZIkSQ8FFs4kSZIkSZIkSZIkLJxJkiRJkiRJkiRJgM84kyRJkiRJkiRJuo/Zs5x7tCnyoy5JkiRJkiRJkiRh4UySJEmSJEmSJEkCIFXVOgepuZ/84ldNPhG2n9siamfW7IbBYWTOvGax71x1d7PYW9WaZrFbWjGr3cd7883afaLNXrO6WWyA0TXt3uu30u6+L6Td59mv1rb7m6SHbbNFs9g33HZns9jbbD6/WezWNlvd7r5fs3KkWezd5o42i33IRz7fLPYprz6sWeztVtzYLDbAmu13bhb7+uW3N4t9/P89t1ns9//B7zeLvWjV8max5y16WLPYv7yr7c8JC2+5rlnsWQs2bxY7s1v+UN5Obbdjs9hzV69sFrtG2n6eja5pF3/WvM2axa4ttm4Wu6Vf3npH0/iPe+Qj0jSBjcjy2++wgPIA2HbrrTao96QzziRJkiRJkiRJkiQsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAmBO6wQkSZIkSZIkSZIeamaldQZqwRlnkiRJkiRJkiRJEhbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkhpKcmCSy5NcmeQt4xzfLMkZ3fFvJVncO/aXXfvlSQ64v7lsEoWzJCNJLkpyaZJzkizs2hcnWdkdG3sd1R37oySXJLm4O+/grv3UJFd3fb+b5Om99sO67fO7D9D3k1yYZMlQPu9Lcn2SWUn27sW+pTf2f3Z9n5DkvG68K5K8LUm6Y0cnubHr/6MkxySZ323v3Yt3XJL/M8G96d+Dy5KclmRu7/icLsa7u/239vId6W2/PskJ3XX17+fCCeLun6SSvLrXtqRrO3ace31Rkm8OjXFWkv8eajshyV1Jduy1rRj/nSFJkiRJkiRJklpKMhv4EPBC4PHA0iSPH+r2KmB5Ve0JnAy8pzv38cARwBOAA4EPd+Ots02icAasrKolVfVE4Bbgtb1jV3XHxl6nJdkFeCvwzKp6EvA04OLeOcdV1RLgLcC4BSngyKraB/gwcOJYY5JZwCHAtcBvV9UlY7GBz42NXVXPT7Kga3t3Ve0F7APsB/xpL84Z3bnP6HLeAXgjgzdHkuwM/EmX60Su6sbYG9gFeGnv2AuAHwOHJ0lVvbOX78refftA1//koft56yRxLx2KtRT4/lCf43pj7de7jwuBfYFtkuw+dM5NwJ9PEleSJEmSJEmSJD00/BZwZVX9pKruBj4JHDzU52DgX7vtTwHP6yYZHQx8sqpWV9XVwJXdeOtsUymc9V0A7DxFnx2BO4AVAFW1orvhw/4L2HOG8fYHfgD8A4NC0WReDnyjqv69y+Mu4HWMUwSrqpsZvCEeXlVfBn4BHMWg8npCVS2fIhZVNQJ8eyjfpcD7gZ8BT59qjBn6KTA/ycO6N/iBwJemee6hwDkMPoGOGDr2L8DLkmw32QBJXpNkWZJlp//baTNMXZIkSZIkSZK0MZtV5esBePV/F9+9XjN0q3dmMNlozHXct45zT5+qWgvcBiya5rkzMuf+nLyh6abnPQ/4SK95jyQX9fb/DPgmcANwdZKvAJ+pqnPGGfIg4JIpwh4InNXbXwqcDpwNvCvJ3KpaM8G5TwC+02+oqquSbJlk66FreyQwn1/PjHsjgyLYFVX1sSlyHBtjPvBU4A29/ecDfwws7HL/5oQDDByT5BXd9vKqes4U/T8FHA58D/gusHro+IlJju+2f1BVR3bbS4F3MPg4fRp4V++cFQyKZ28A/tdEgavqFOAUgJ/84lc1RZ6SJEmSJEmSJGmG+r+L3xBsKoWzBV1xbGfgh8B/9I6NLVN4L0kOBH6TQaHt5CT7VtUJ3eGxYs6NDNbVHM/Hk8wDtgSWdGPOA34XeFNV3ZHkW8ABwOfvx7W9LMmzgccCr6uqVQBV9fMk501z7LHi4aOAL1TVWPHtRcBXq2plkk8Db0vyxm5m2kROrqr3ziD/M4EzuvxPZ7AUZd9xVfWpfkOShwGPBr5eVZVkTZInVtWlvW4fAC5KMpNcJEmSJEmSJEnSg+t6YNfe/i5d23h9rksyB9gGuHma587IprJU48quOLYbEO79jLNx1cC3q+pvGSwF+JLe4bHnbr1gqFjTdySwO4M1N/++azuAwcytS5JcAzyTyZdrvIzBc7zu0T3Pa0VV3d41ndE9h20/4N1Jdup1H+1eUxkrHu4B7Jvk97v2pcDzu1y/w2Da43OnMd60VdUvgTUMnqX2lWme9lJgWwYzAq8BFjN0H7tnq32CaXysJUmSJEmSJElSMxcCj07yqG4C0hHA54b6fA74w277MOC8qqqu/YgkmyV5FINJN9++P8lsKoUz4J5nhL0e+POuIjmuJI9I8hu9piUMnsc103gFvA14WpLHMijuvLqqFlfVYgYzvF6QZPMJhvg48Mwkz+/yWsBgJtXfjRNrGfAxumUW10VV3cTg+Wl/2S0F+Szgkb18X8vUz2VbF28H3jzFTLa+pcCBvbz25b7POQP43wyWmdxUZlZKkiRJkiRJkrRB6Z5Z9jrgXAarBp5ZVT9I8o7eRJ+PAIuSXAm8iUEtg6r6AYOV7S4Dvgy8dga1hnFtUoUzgKr6HoPngI0VgPZIclHv9XpgLvDeJD/qljB8GetYkKqqlcBJwJsZPO/sC71jdwJfZ/CstInOPRg4PsnlDJ6ndiHwwQnCvQd4ZZKt1iXXzlnA5sAxDCq2/WeOnQ0clGSzSc4/Zuh+Lp4qYFV9s6rOmuDwiUPjPYbBzMH/7p1/NXBbkqcOjXsT8FlgsnwlSZIkSZIkSVJDVfXFqnpMVe1RVe/s2t5eVZ/rtldV1eFVtWdV/VZV/aR37ju78/aqqi/d31w2iZk4VbXl0H6/ULVggtPGXZKwqo6eqr2q9h86dtIkuR062dhVdQmw/3B7d+xU4NTe/s+BnXr74+Y6NMY1wBN7+wXsM0HfW4AdevvD9/UE4ISpYnZ9zwfOH6f9hN720ROcvvM4543NEPzWUPubGFSfJUmSJEmSJEmSJrVJFM4kSZIkSZIkSZJmpEZbZ6AGLJxtIpLszeAZaH2rq+qp4/V/AOMewGAJyb6rq+qQ9RlXkiRJkiRJkiRppiycbSK6JR+XNIh7LoMH+kmSJEmSJEmSJD2kzWqdgCRJkiRJkiRJkvRQYOFMkiRJkiRJkiRJwsKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRIAc1onID0UbLv2riZxR7ZY1CQuQFbc2iw2AGtvbxZ6wdq1zWKPzp3bLvbqVc1ib7Xt9s1ip0aaxb4rbb/Mzluzolnsbee1+9ucldf9tFns7fZ4fLPYd193dbPYN2eLZrF3nLWmWWyAWfM3bxb77ttuaRZ717nzmsWu0XZfS0959WHNYr/mnz/VLPbpB+7dLDbA/Ecsbhb7ljvb/JwA8IGjDm4W+03/dk6z2Ke++GnNYo/evbpZ7LvubvczCsBWDX9WmLWg3dfSlurudvd83ki775+qWWTIVgsbRofVq9vd9wV339ks9pyGP5OPzprdLPaKVe2+pki6/5xxJkmSJEmSJEmSJGHhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAzziTJEmSJEmSJEm6jxpp95w+teOMM0mSJEmSJEmSJAkLZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkCLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEwp3UCkiRJkiRJkiRJDzlVrTNQA844kyRJkiRJkiRJkrBwJkmSJEmSJEmSJAEWzu63JIuSXNS9fpnk+t5+9bYvSvKW7pzzk/wsSXrjnJVkRbe9OMnK7pzLkvxjkllD7WOvo7pzrklySZKLk/y/JLsN5XlWkv/utg/onb8iyeXd9mlJjk7ywaFzz0/ylKniJBkZ73onuG8zuQf3utbu+JLu/h44NG4lOam3f2ySE6bxoZQkSZIkSZIkSZs4n3F2P1XVzcASgK5As6Kq3tvtr6iqJROceivwDODrSRYCDx86flVVLUkyBzgPeDHw3bH2CcZ8TlXdlOSvgOOB/9HlsRDYF1iRZPeqOhc4tzt2PnBsVS3r9o+exmWPGwdYOUlu45nWPZjg3KXA17t/v9xrXw0cmuRvq+qmGeQiSZIkSZIkSZI2cc44a+eTwBHd9qHAZ8brVFVrgW8Ce85g7AuAnXv7hwLnDMV8IAzHmalp3YNh3Sy1w4GjgRckmd87vBY4BThmGuO8JsmyJMtO/fgnZpK3JEmSJEmSJEnaCFk4W78WDC01+LLesa8Az04ym0Hx6IzxBkiyOfA84JKuaY+hMZ81zmkHAmf19pcCp3evpffzmiaLM9n1jmeqezDRte4HXF1VVwHnA783dN6HgCOTbDNZ8Ko6paqeUlVPOfrIl0+RqiRJkiRJkiRpk1Kjvh6I1wbGpRrXr8mWLhxhsNTgEcCCqrqm97gv6IpGQAFnV9WXkixm8uULv5pkO2AFuLzKXAAAIABJREFU8DaAJA8DHg18vaoqyZokT6yqSycYo6bRfp8407je8Ux1Dya61qUMZqvR/XsU8Ol7Eq26PclpwOuBlTPIR5IkSZIkSZIkbcKccdbWJ4EPAGeOc+yqqlpSVU+uqhOmOd5zgN2Ai4C/6tpeCmwLXJ3kGmAxk886u7nr37cd0H9e2Hhx1tVk9+A+utlpLwHe3l3P3wMHJtlqqOv7gFcBW9zP/CRJkiRJkiRJ0ibCwllbXwP+lsESig+I7plobwSO6maFLQUOrKrFVbUY2JfJn3N2IfCMJDsBJHkKsBlw7RRx1tVM78HzgIuratfumnZjMNvskKH8bmFQjHvV/chNkiRJkiRJkiRtQlyqcf1a0C23OObLVfWWsZ2qKuC9Mxxzj6Ex/6WqPtDvUFW/SHI68FoGM8P+u3fs6iS3JXlqVX1rePCquiHJG4AvJpnFYDnGpVX3XYh0KM5fT3W945niHtznWoEnA58d6vdp4P8DThtqPwl43WTxJUmSJEmSJEmSxlg4ewANL6lYVbMn6Lf/BO1bdv9eAzxxnOPXAAsmOHfx0P6fdZt/PU7f35gsl6o6Gzh7hnEmvN4JxrlP3K69fw/GvdZxzvkc8Ln++d32DcDm081JkiRJkiRJkiRt2lyqUZIkSZIkSZIkScIZZ1rPknwWeNRQ85ur6twW+UiSJEmSJEmSNB01cp8nGGkTYOFM61VVHdI6B0mSJEmSJEmSpOlwqUZJkiRJkiRJkiQJC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmAVFXrHKTmbrrisiafCHO23KZF2IGkXWxg5Zz5zWLPmtXubwbmz53dLPZNd9zVLPYOm7W77lq7tlnsu2bPaxYb2r7XR0dHm8W+4fYVzWI/aodtm8VetWakWey6+ofNYi/fYbdmsQF2Wbhls9i/uL3d/+sPm9ssNKvmtvseYvavrm0We82ttzSLvfTLlzSLDXDOMa9oFnt01apmsdcsv7FZ7LV3tvtaWrvt1Sz2FrPa/X6k5rb9vvHV//SpZrE//MpDm8XebHRNs9i3rGn3flu0+WbNYteau5vFHrnzjmaxAX66tt3PxaOj7d5ve2zV7v2WOXOaxV6z/KZmsQEW7fnYtr/424jcdsMvLaA8ALZ52E4b1HvSGWeSJEmSJEmSJEkSFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgBo94RESZIkSZIkSZKkh6iq0dYpqAFnnEmSJEmSJEmSJElYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmAOa0TkCRJkiRJkiRJesipap2BGnDGmSRJkiRJkiRJksQGWjhLskuSs5NckeSqJO9Psk23/eiuz9wklyR5apKvJ3lh7/zDk3y5235Ykk8k+UmS7yS5IMkh3bH9k9yW5KLe6/ndsUpyUm/MY5OcMEnOeyU5vxvjh0lOGTr+xiSruutY1Iv3yyTX9/Yfk+TSoXNPSHJst31qkqu7vt9P8rx1jDMvyYreeU9Icl6Sy7v7/rYk6Y4dnWQ0yZN6/S9NsniS+3FNkq8NtV00dm2T3fvu+Iu7j8Fje22Lu7Y/67V9MMnRE+UhSZIkSZIkSZI0ZoMrnHXFms8AZ1XVo4HHAFsCxwN/CXyw63os8M2q+hbwJ8D/TjI/yZbAu4DXdmOdBfxXVe1eVfsCRwC79EJ+raqW9F7/2bWvBg5Nsv00U/8AcHI3xuOAvx86vhS4EDi0qm4eiwf8Y++8JcDd04h1XNf3jd35M45TVffESbIA+Bzw7qraC9gH2A/409641wFvndad+LWtkuzaxXjcOMcnuvdj1/H17t++XwFvSDJvhrlIkiRJkiRJkqRN3AZXOAOeC6yqqo8CVNUIcAzwR8DnAZL8BYNi2V92fS4FzgHeDLwdOK2qrurGuruq7ikuVdVPq2q4qDWetcApXezpeDiD4tJYnEvGtpPswa+Lf8OFoPvjAmDnByDOy4FvVNW/A1TVXcDrgLf0+nweeEKSvWYw7pnAy7rtpcDp0zmpK34+E3gVg0Jn343AV4A/nMY4r0myLMmy0z555rSTliRJkiRJkiRJG6cNsXD2BOA7/Yaquh34GbAn8AbgPcDfVNUtvW5/xaAA9ELg73pjfXeKeM8aWi5wj96xDwFHJtlmGnmfDJyX5EtJjkmysHfsCOCTwNeAvZI8bBrjTceBDGbU3d84493zq4Atk2zdNY0yuK//cwb5fRo4tNs+iEFxs2+ie38w8OWq+jFwc5J9h857D3BsktmTBa+qU6rqKVX1lKOOeOkM0pYkSZIkSZIkSRujOa0TWA8OBH4BPLHfWFV3JjkDWFFVq8c7McmHGMxkuruqfrNr/lpVvWi8/lV1e5LTgNcDKydLqqo+muTcLr+DgT9Osk+Xy1LgkKoaTfJp4HB+veTkfYaaRvuJSd7FYMnJp/faZxJnXXwCeGuSR02z/83A8iRHAD8E7ho6PtG9Xwq8v9v+ZLd/T2Gvqn6S5FsMCqWSJEmSJEmSJM1cjbbOQA1siDPOLgPuNcOom/X0SOAmBkWs3wJ+N8mThs4d7V5jfgD8xthOVb0WeB6wwwzyeR+DJQO3mKpjVf28qv6lqg5msNTjE5PsDTwa+I8k1zCYFTbZMoo3A9sOtW3H4NrHHFdVj2GwNOW/AKxDnL7x7vnuDIqQt/euby1wUhd3us5gMHNvuss0bsdgic1/7q7jOOCl3fPq+t7V5THcLkmSJEmSJEmSNK4NsXD2FWDzJEcBdMvxnQScymA5xHdV1XXAm4APjVNQ6TsPmJ/k/+u1bT6TZLrlIM9kUDybUJIDk8zttncCFgHXMyhenVBVi7vXI4BHJNltgngrgF8keW431nYMZrF9fZzuHwRmJTlgpnGGfBx4ZpLndzEXAB/g10te9p0KPJ/pFx8/241z7jT7HwZ8rKp2665jV+Bq4Fn9TlX1IwYFv4OmOa4kSZIkSZIkSdrEbXCFs6oq4BDg8CRXAD8GVgH/zmDW2Ue6fucAy4GjphjrxcBvJ7k6ybeBf+XeM6aGn7N12DhDnQRsP0XqvwNcmuT7DIpEx1XVLxnM/PrsUN/Pdu0TOQp4W5KLGBT//qp75th41/c3wF+sY5yxcVYyWF7y+CSXA5cAFzLOMo9VdTeDotqOU43b9b+jqt7TnTdsvHu/dJzr+DTjz557J4PlKiVJkiRJkiRJkqaUQW1F2rTddMVlTT4R5my5TYuwA5NOxlz/Vs6Z3yz2rFnt/mZg/tzZzWLfdMfwYwQfPDts1u66a+3aZrHvmj2vWWxo+14fHW23BvgNt69oFvtROwyvpvzgWbVmpFnsuvqHzWIv32E6k+fXn10Wbtks9i9ub/f/+sPmNgvNqrntvoeY/atrm8Vec+stzWIv/fIlzWIDnHPMK5rFHl21qlnsNctvbBZ77Z3tvpbWbns1i73FrHa/H6m5bb9vfPU/fapZ7A+/8tBmsTcbXdMs9i1r2r3fFm2+WbPYtWa8v5t+cIzceUez2AA/Xdvu5+LR0Xbvtz22avd+y5w5zWKvWX7T1J3Wo0V7PtbH1zxAbv35tRZQHgALH7HrBvWe3OBmnEmSJEmSJEmSJEnrQ7uy+0YqyVuBw4ea/29VvbNFPq0l+RYw/Kclf1BVbf9sVZIkSZIkSZKkSdRIu9Vd1I6FswdYVyDbJItk46mqp7bOQZIkSZIkSZIkaTpcqlGSJEmSJEmSJEnCwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAAtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQIgVdU6B6m5b/zwyiafCA9fuHWLsA8J226xoFnsa2++tVnsXRctbBZ77chos9jXL7+tWezdF27RLPbInHnNYgNkRbv3+qz5mzeLPbp6VbPYszdv935bm9nNYq+6e02z2AvWtvt4A9Sau9sF32ZRs9DL71zZLPbZy37QLPYRT9+nWez58+Y2iz2nRprFBjjo5H9rFvvUP3lZs9gjo+2+d0vSLPYPr7+hWezPXHhps9gnvfjZzWJD269nd11zRbPYLc3eYqtmsTO73d/Rj6y8q1nsedtu3yw2wJyt2/0+YGRVu++ZV265XbPY197S7mfiLedv1iw2wN6Ld2n3xXwjs/zaayygPAC23XXxBvWedMaZJEmSJEmSJEmShIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTAwpkkSZIkSZIkSZIEwJzWCUiSJEmSJEmSJD3kVLXOQA0440ySJEmSJEmSJEnCwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAAtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEkAzGmdgCRJkiRJkiRJ0kNNVbVOQQ08qDPOkowkuSjJ95N8N8l+XfviJJeO03+XJGcnuSLJVUnen2Re7/gzk3w7yY+612t6x05Icn0X74okn0ny+N7x85Nc3uXyjSR7jdN+YZIlvXOuSXJJN+ZFST7QtT8tybe6th8mOaFrf1iSz3djXZbki137/kk+P3StpyY5bF1zmOB+T5TX0Uk+2G3v1cUb63NKkgN646/ocrkoyWnTvO/HjpPLit72Y5J8sfu4fDfJmUkeNsE17J+kkry617akazt2gnu3rNf3KUnOn+geSZIkSZIkSZIkjXmwZ5ytrKolAEkOAP4W+O3xOiYJ8BngH6rq4CSzgVOAdwLHJdkJ+ATw4qr6bpLtgXOTXF9VX+iGObmq3tuN9zLgvCR7V9WN3fEjq2pZV/g5Efj9ofZXdu0v6KX2nKq6aSjdfwVeWlXf7/Lcq2t/B/AfVfX+LocnzeBezTSH8UyUV98HGNyns7sc966qS4Bzu/3zgWOralm3P537PqEk84EvAG+qqnO6tv2BHYAbJjjtUuClwD93+0uB708SZsckL6yqL02VjyRJkiRJkiRJ0piWzzjbGlg+yfHnAquq6qMAVTUCHAP8UZLNgdcCp1bVd7vjNwF/AbxlvMGq6gzg34GXj3P4v4A9x2m/ANh5GteyI/CLsTyr6rKu/eHAdb0cLp7GWOuaw0zy6hvO8ZIpxpzRfR/Hy4ELxopm3RjnV9V9Zhz2/BSY383gC3AgMFlR7ETgrVMlkuQ1SZYlWXb2mZ+cZvqSJEmSJEmSJGlj9WAXzhZ0S/79iMHsob+epO8TgO/0G6rqduBnDIpc9zkOLOvaJ/Jd4LHjtB8EjFcwOhA4a6jtq71lDI/p2k4GLk/y2SR/3M2qAvgQ8JEkX03y1iSPmCS3iUw3h/FMlNdwn/OSfCnJMUkWTpHPutz3vieOc/50fAo4HNiPwcdx9SR9LwDuTvKcyQasqlOq6ilV9ZSDX3rEOqQkSZIkSZIkSZI2Ji2Xanw6cFqSJz6I8TO0//EkK4FrgD8bap8HbAksGTrnPsskVtU7knwc+B0GM6qWAvtX1blJdmdQ/Hoh8L3ueid6omC/fUY5jDvYBHkN9floknO7HA8G/jjJPlU1WWGqhTOBMxgUPk9nUECbzN8AxwNvXs95SZIkSZIkSZKkjUSzpRqr6gJgewbPthrPZcC+/YYkWwOPBK4c73i3/4NJwj4Z+GFv/8iqWlJVL66qa/vtwO4MnhH291NcCgBVdVVV/QPwPGCfJIu69luq6hNV9QfAhcCzgZuBbYeG2A7oF8NmnMNM8hrq8/Oq+peqOhhYy2BW2ETW5b73/WCc86dUVb8E1jB41ttXptH/PGAB8LSZxpIkSZIkSZIkqUZGfD0Arw1Ns8JZkscCsxkUkcbzFWDzJEd1/WcDJzF4vtZdDJZBPDrJ2Ay2RcB7gL+bIN5LGMy8On06+VVVAW8DntblOtm1/F737C2ARwMjwK1Jnts9j40kWwF7MFhq8grgEUke1x3bDdgHuGhdc5hJXkN9Dkwyt9veCVgEXD/JsDO67+P4BLBfkt/r5fDsac48fDvw5u55d9PxNwyevyZJkiRJkiRJkjSlB3upxgVJxopDAf6wqka62s5eSa7r9T0GOAT4cJK3MSjyfRH4nwBV9YskrwD+qStKBXhfVZ3TH6PrswVwKfDcqrpxuslW1cokJwHHAa/qmr+aZKxwc3FVHQX8AXBykrsYzNg6sruufYEPJlnb5f/PVXUhQJfXR7vnjq0BXl1Vt92PHMYzUV79Pr8DvD/Jqm7/uG5210T3ZDr3/fgkb+yds8vQ9bwIeF+S93XXfjHwholi9s795lR9hvp/Mcm0P96SJEmSJEmSJGnTlsGkJmnT9o0fXtnkE+HhC7duEfYhYdstFjSLfe3Nt07daT3ZddHCZrHXjow2i3398vv8XcCDZveFWzSLPTJnXrPYAFnR7r0+a/7mzWKPrl41daf1ZPbm7d5vazO7WexVd69pFnvB2nYfb4Bac3e74NvcZwXuB83yO1c2i332sumuEP7AO+Lp+zSLPX/e3Gax50x7wYf146CT/61Z7FP/5GXNYo+MtvvebeiPLR9UP7z+hmaxP3Phpc1in/TiZzeLDW2/nt11zRXNYrc0e4utmsXO7GYLUDGy8q5msedtu32z2ABztm73+4CRVe2+Z1655XbNYl97S7ufibecv1mz2AB7L96l3RfzjczNP7nCAsoDYNHuj96g3pPtvlJKkiRJkiRJkiRJDyEP9lKNWg+SfAh4xlDz+6vqoy3yWRdJDmDwrLS+q6vqkBb5SJIkSZIkSZKkTY+Fs41AVb22dQ73V1WdC5zbOg9JkiRJkiRJkrTpcqlGSZIkSZIkSZIkCQtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJgFRV6xyk5m6+6vImnwhzt92+RVgARu68o1lsgMyd1yx2rbm7WezRNWuaxZ61/U7NYs+pkWaxa6Rd7MyZ2yw2wNrbbmkW+6dr2v1tzu5bz28W+8fL72oW+zHbbt4s9k9XtPt/dZfttmkWG+COVaubxd5q9YpmsWfNa/d5ljlzmsX+8S3t7vktd7b7/+WpD9+uWWyA5TW7Weyj//GMZrFPeMkLmsW+7a5VzWI/Y7t23z/N3mxBs9hv+dK3m8UGeOdz924W++5f/bxZ7BoZbRd7tN3PKZvt+Ihmsdfefmuz2Js9fNdmsQFumt3u+/Udtt6iWWxuu7lZ6FkLFzWLff0ttzeLDfD43XZO0wQ2Ijf/5AoLKA+ARbs/eoN6T7b7qVOSJEmSJEmSJOmhqtr9kYXacalGSZIkSZIkSZIkCQtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJgDmtE5AkSZIkSZIkSXrIqWqdgRpwxpkkSZIkSZIkSZKEhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgTAnNYJSJIkSZIkSZIkPdRUjbZOQQ044+whKMmKof2jk3yw2z4hyfVJLuq9Fvb6vq87Pmvo/Bu7vj9KckySA3rnr0hyebd92gQ57Z/ktt4Y7x06vn2SNUn+pNv/UNf3siQre7EOS3Jqkqt7bd+c5F4cnaSSPL/X9uKu7bBu//wkT+m2r0ny6V7fw5KcOq0bL0mSJEmSJEmSNmnOONswnVxV7x1u7IplhwDXAr8NfLV3+Iyqel2SRcDlwJOrakl33vnAsVW1bIq4X6uqFyVZAHwvyWer6hvdscOB/waWAv9YVa/txl4MfH4sVtf2IuC4qvrUNK/3EuAI4D+7/aXA9yfpv2+Sx1fVZdMcX5IkSZIkSZIkyRlnG5n9gR8A/8CguHQfVXUzcCXw8HUNUlUrgYuAnXvNS4E/B3ZOssu6jj2BrwG/lWRuki2BPbv4EzkJeOtUgyZ5TZJlSZb96yfPeIBSlSRJkiRJkiRJGypnnD00LUjSLwxtB3yut39Mkld028ur6jnd9lLgdOBs4F1J5lbVmv7ASR4JzAcuXtfkkmwLPBr4r25/V+DhVfXtJGcCL2NQvJrMiUmO77Z/UFVHTtK3GMw2OwDYhsG9eNQk/c8E/jTJnpMlUFWnAKcA3HzV5TVFvpIkSZIkSZIkaSPnjLOHppVVtWTsBbx96PjJvePPAUgyD/hd4Kyquh34FoNC05iXJbmYwWyzD1fVqnXI61lJvg9cD5xbVb8cG5tBsQrgk0ww223Icb1rmKxoNuaTDJZrPIJBcXAyI8CJwF9OY1xJkiRJkiRJkiTAwtnG5ABgIXBJkmuAZ3LvAtYZVfUkYD/g3Ul2WocYX6uqfYAnAK9KMvbcsqXA0V3czwFPSvLodbuM8VXVt4G9ge2r6sfTOOVjwLOBXR/IPCRJkiRJkiRJ0sbLpRo3HkuBV1fV6QBJtgCuTrJ5v1NVLUvyMeANrOOMrKq6Osm7gTcn+V/AllV1z/POkvxVl8871u1SJvQWYFoz5apqTZKTu3POe4DzkCRJkiRJkiRt7EZGWmegBpxxtmE6JslFvdfjgQOBL4x1qKo7ga8DB41z/nuAVybZ6n7k8I8MZnQtBT47dOzTTL1c44lD1zBvqoBV9aWq+uoMcvwIFoclSZIkSZIkSdI0WVR4CKqqLYf2TwVO7bZPAE4Y57Ttxhnn0N7uqb32nwM79fb3n0ZO5wPn9/ZXAjtP0Pdi4HHd9jXAE4eOHz1VvF7fU+nlPt4Y/fyranFvezXwiOnGkiRJkiRJkiRJmzZnnEmSJEmSJEmSJEk440xDkhzAYCnHvqur6pD1HPeVDJ671veNqnrt+owrSZIkSZIkSZI0xsKZ7qWqzgXObRD3o8BHH+y4kiRJkiRJkiRJY1yqUZIkSZIkSZIkScLCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiBV1ToHqbkfX/fLJp8IO20+t0XYe2T27GaxV1eaxb595epmsbdjTbPYmdXu433zaLu/01i05YJmsQFmNfw6O7LitmaxfzXa7v+3HWePNIv987ubhWbXbbdqFvvnt93ZLDbAdltu3iz2nNnt/n/Lilubxb7yznafZ4+a1e7r+JFnnN8s9geOOrhZbIDtVtzYLPZtW+/YLPa1N7f7PDvh0//RLPaJL/+9ZrF3vvmaZrEX7PKoZrEB7pq/dbPYufL7zWKP3HlHs9iZ0+571pY/n2Vuu+ueNXdes9gAszZr9/PhvEU7NIs9uqbh7yK2bXfdI6OjzWJfeu0vm8UG2H/vvdr94m0jc9OPLrGA8gDY/rF7b1DvyTmtE5DURsuimbSpaFk0kzYVLYtm0qaiZdFM2lS0LJpJm4qWRTNJGy4nHm2aXKpRkiRJkiRJkiRJwsKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkCLJxJkiRJkiRJkiRJAMxpnYAkSZIkSZIkSdJDTlXrDNSAM84kSZIkSZIkSZIkLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTAwtm9JBlJclGSS5Ock2Rh1744ycru2NjrqO7YHyW5JMnF3XkHd+2nJrm66/vdJE/vtR/WbZ+f5PIk309yYZIlQ/m8L8n1SWYl2bsX+5be2P/Z9X1CkvO68a5I8rYk6Y4dneTGrv+PkhyTZH63vXcv3nFJ/s8E96Z/Dy5LclqSub3jc7oY7+7239rLd6S3/fokJ3TX1b+fCyeIu3+SSvLqXtuSru3YCe7psl7fpyQ5f5pvAUmSJEmSJEmSAKiREV8PwGtDY+Hs3lZW1ZKqeiJwC/Da3rGrumNjr9OS7AK8FXhmVT0JeBpwce+c46pqCfAWYNyCFHBkVe0DfBg4cawxySzgEOBa4Ler6pKx2MDnxsauqucnWdC1vbuq9gL2AfYD/rQX54zu3Gd0Oe8AvBH4cAZ2Bv6ky3UiV3Vj7A3sAry0d+wFwI+Bw5Okqt7Zy3dl7759oOt/8tD9vHWSuJcOxVoKfH+S/jsmeeEkxyVJkiRJkiRJku7DwtnELgB2nqLPjsAdwAqAqlpRVVeP0++/gD1nGG9/4AfAPzAoFE3m5cA3qurfuzzuAl7HOEWwqroZuBJ4eFV9GfgFcBRwMnBCVS2fIhZVNQJ8eyjfpcD7gZ8BT59qjBn6KTA/ycO6WXQHAl+apP+JDIqDkiRJkiRJkiRJ02bhbBxJZgPPYzCLa8weQ0sLPovBrKcbgKuTfDTJQRMMeRBwyRRhDwTO6u0vBU4HPgv8Xn9ZxHE8AfhOv6GqrgK2TLL10LU9EpjPr2fGvRF4J7BDVX1sihzHxpgPPBX4cm//+cA5Xc5TFfoAjundy69Oo/+ngMMZzKT7LrB6kr4XAHcnec5kAyZ5TZJlSZad8fFpXbokSZIkSZIkSdqIzWmdwEPMgiQXMZhJ9UPgP3rHxpYpvJckBwK/yaDQdnKSfavqhO7wiUmOB24EXjVBzI8nmQdsCSzpxpwH/C7wpqq6I8m3gAOAz9+Pa3tZkmcDjwVeV1WrAKrq50nOm+bYe3T351HAF6pqrPj2IuCrVbUyyaeBtyV5YzczbSInV9V7Z5D/mcAZXf6nMyigTeZvgOOBN0/UoapOAU4B+PF1v6wZ5CJJkiRJkiRJkjZCzji7t5VdcWw3INz7GWfjqoFvV9XfAkcAL+kdHnsO2Quq6tIJhjgS2B34V+Dvu7YDgIXAJUmuAZ7J5LO4LgP27Tck2R1YUVW3d01ndM9h2w94d5Kdet1Hu9dUxoqHewD7Jvn9rn0p8Pwu1+8Ai4DnTmO8aauqXwJrGDxL7SvT6H8esIDBc+ckSZIkSZIkSZKmZOFsHN0zwl4P/HmSCWflJXnQKl2sAAAgAElEQVREkt/oNS1h8DyumcYr4G3A05I8lkEh6tVVtbiqFjOY4fWCJJtPMMTHgWcmeX6X1wLgA8DfjRNrGfAx4A0zzbM3xk0Mnp/2l91SkM8CHtnL97VMb7nGmXo78OYpZrL1/Q3wF+shD0mSJEmSJEmStBGycDaBqvoeg+eAjRWAhp9x9npgLvDeJD/qljB8GetYkKqqlcBJDJYWPBD4Qu/YncDXGTwrbaJzDwaOT3I5g+epXQh8cIJw7wFemWSrdcm1cxawOXAMcF5V9Z85djZwUJLNJjn/mKH7uXiqgFX1zao6a6p+vf5fZLBMpiRJkiRJkiRJ0pR8xllPVW05tN8vVC2Y4LRxlySsqqOnaq+q/YeOnTRJbodONnZVXQLsP9zeHTsVOLW3/3Ngp97+uLkOjXEN8MTefgH7TND3FmCH3v7wfT0BOGGqmF3f84Hzx2k/obd9dG97/6F+91rCUpIkSZIkSZIkaSLOOJMkSZIkSZIkSZJwxpmGJNmbwTPQ+lZX1VPXc9wDGCwh2Xd1VR2yPuNKkiRJkiRJkiSNsXCme+mWfFzSIO65wLkPdlxJkiRJkiRJkqQxLtUoSZIkSZIkSZIk4YwzSZIkSZIkSZKk+6rR1hmoAWecSZIkSZIkSZIkSVg4kyRJkiRJkiTp/2fvzuPtrMq7/3++mYAYpoDMYkQQB8RYeap1RJSCtSpaUCMVabW0T6mt+BO1Dn1Qq9WqP4RK7Y+qICoKVcGKA1qUR1GKRAwEUQRKRBAsM4TM51y/P/Z97Hazz5ABVkg+79drv7L3Wute13Xfe5+Tc3JlrVuSAAtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQJgRusEpI3BLlu2qSHfN5omcQFmr17RLDbA9FXt4m/fLDKMrF7dLHaNtIu9/c6PaBZ7tJqF5t4V7a45wMPWrGkWe5c5s5vFXvZf1zWLvf28xzWLvfwX1zaLfev0bZrFfvjo8maxAaZt2e6zvvL2W5vF3nvHnZvFXrN0WbPYJ736xc1iv/EzX2kW++MH79csNkC2bfd5u3tZu59ZP/iqFzaLffyZX20W+8zff3yz2KOrVjaLvWJ6258bZy27r1nsGh1tFnt0ebu/U1qa1fDv8RW/uqFZ7G3nP61ZbIClM9r93LjVijuaxW73L18w0vAfBFr+DCFp/Vk4kyRJkiRJkiRJGlDV8H9kqxm3apQkSZIkSZIkSZKwcCZJkiRJkiRJkiQBFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRIAM1onIEmSJEmSJEmStNGp0dYZqAFXnEmSJEmSJEmSJElYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycPWiS7JBkUfe4JclNfa+r7/miJG/tjrkwyQ1J0jfPuUmWds/nJVneHXNVkn9JMm2gfexxVHfMkiSLk1yR5P8meeRAnucm+c/u+SF9xy9NcnX3/IwkRyf56MCxFyY5YLI4SUaGne84120q1+DK7vmB3bV8Ud/Y85IcuNZvmCRJkiRJkiRJ2uzMaJ3A5qKqbgfmAyQ5AVhaVR/qXi+tqvnjHHoX8AzgoiTbAbsO9F9XVfOTzAC+DRwGXDbWPs6cz62q25K8C3gH8GddHtsBTwGWJtmrqs4Hzu/6LgTeVFULu9dHT+G0h8YBlk+Q2zCTXYN+NwJvB76yFvNLkiRJkiRJkvRbamS0dQpqwBVnG7/PA6/snr8M+NKwQVW1BvgBsPdazH0xsHvf65fRKzj1x9wQBuOsrSldg87lwN1JDl6PeJIkSZIkSZIkaTNk4WzjsNXA1oWv6Ou7AHh2kun0ikdnDZsgyWzgecDirunRA3M+a8hhhwLn9r1eAHyueyxYz3OaKM5E5zvMlK5Bn/fSW+E2oSTHJFmYZOFpZ5wx2XBJkiRJkiRJkrSJc6vGjcNEWxeOABfRKxhtVVVL+m73BV2BDCjgy1X19STzmHirxu8kmQssBd4JkGRnYB/goqqqJKuT7FdVV44zR02h/X5xpnC+w0x2DX47garvJiHJMyeatKpOBU4FuOe2/x7vfCRJkiRJkiRJ0mbCFWcPDZ8HTgbOHtJ3XVXNr6onV9UJU5zvucAjgUXAu7q2lwPbA9cnWQLMY+JVZ7d34/vNBW6bJM66mugaDDOlVWeSJEmSJEmSJEljLJw9NHwP+Ad6WyhuEN090d4AHNWtClsAHFpV86pqHvAUJr7P2aXAM5LsApDkAGAL4JeTxFlXa3UNquqb9Ap7+69HTEmSJEmSJEmStBlxq8aNw1bddotjvlFVbx17UVUFfGgt53z0wJyfrKqT+wdU1c1JPgccS29l2H/29V2f5O4kT62qSwYnr6pfJ/kb4GtJptHbjnFBVY0OGdsf5z2Tne8w63gN3gt8eS2PkSRJkiRJkiRJmykLZw0MbqlYVdPHGXfgOO1zuj+XAPsN6V8CbDXOsfMGXr++e/qeIWN/Z6JcqurLjFOYmiDOuOc7zjz3i9u13+8aVNWFwIV9Y/4dGP9maJIkSZIkSZIkSX3cqlGSJEmSJEmSJEnCFWfaSCQ5B3jUQPNbqur8FvlIkiRJkiRJkqTNj4UzbRSq6qWtc5AkSZIkSZIkSZs3t2qUJEmSJEmSJEmSsHAmSZIkSZIkSZIkAW7VKEmSJEmSJEmSdH812joDNeCKM0mSJEmSJEmSJAkLZ5IkSZIkSZIkSdoIJZmb5FtJrun+3H7ImPlJLk7ykyRXJHlFX9/pSa5Psqh7zJ8spoUzSZIkSZIkSZIkbYzeClxQVfsAF3SvBy0DjqqqJwCHAh9Jsl1f//FVNb97LJosYKpqQyQuPaTdfu3PmnwhTJu1RYuwAMzYbodmsYGm+wOPrljRLPbto+3+v8Kv7rynWewnbN3ulpo12u6zlqRZbIA7ZsxuFnvuyPJmse+e+bBmsbdedlez2PfO3m7yQQ+Qlue9fM7cZrEBtpzV7vvb0hWrmsXeZuW9zWK/9uzvNIv9r4f9XrPYjIw0C716x92bxQa4bMlNzWI/ddvpzWKvuu3XzWLT8N8JXvXNq5rFPviJ+zSLffjv7t8sNsCqht9jLrr6+maxt5u9VbPYLc3Zst2/RYw2/P1sn112bBYbYPct2/2d8quV7a77blu0+3eQaVu1+534ju9/q1lsgEe+4I/a/oPEJuSWhd+3gLIB7HLAM9b5M5nkauDAqro5ya7AhVW17yTHXA4cXlXXJDkdOK+qvjDVmK44kyRJkiRJkiRJ0sZo56q6uXt+C7DzRIOT/C4wC7iur/m93RaOJyaZ9H+QtPsvspIkSZIkSZIkSRspd+zbMJIcAxzT13RqVZ3a1/8fwC5DDn17/4uqqiTjvindirRPA6+p+s2WZ39Lr+A2CzgVeAvw7onytXAmSZIkSZIkSZKkB0RXJDt1gv7nj9eX5NdJdu3bqvG/xxm3DfBV4O1V9Z99c4+tVluZ5DTgTZPl61aNkiRJkiRJkiRJ2hj9O/Ca7vlrgC8PDkgyCzgHOGPwXmZdsY0kAQ4DrpwsoIUzSZIkSZIkSZIkbYzeDxyc5Brg+d1rkhyQ5OPdmJcDzwaOTrKoe8zv+j6bZDGwGNgR+PvJArpVoyRJkiRJkiRJkjY6VXU78Lwh7QuB13XPPwN8ZpzjD1rbmK44kyRJkiRJkiRJkrBwJkmSJEmSJEmSJAFu1ShJkiRJkiRJknR/IyOtM1ADrjiTJEmSJEmSJEmSsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgSsZ+EsyUiSRUkuT3JZkqd37fOSXDlk/B5JvpzkmiTXJTkpyay+/mcm+WGSn3WPY/r6TkhyUxfvmiRfSvL4vv4Lk1zd5fL9JPsOab80yfy+Y5YkWdzNuSjJyV3705Jc0rX9NMkJXfvOSc7r5roqyde69gOTnDdwrqcnOXxdcxjnep+e5Ppunp8nOSPJHgNz7dj3+rAkleSxfW3Tkpyc5Mou7qVJHtV3vjckubUvn3lJtu1iXdu9b2ck2XaS97r//GcmeX/3vl2W5OIkL5jgPJck+d5A26LBOEk+0n0mpvW1vTHJJ/teH5nkq+PFkiRJkiRJkiRJGjNjPY9fXlXzAZIcAvwD8JxhA5ME+BLwsap6SZLpwKnAe4Hjk+wCnAkcVlWXdQWg85PcVFVjhY8Tq+pD3XyvAL6d5IlVdWvXf2RVLewKbh8EXjzQ/idd+8F9qT23qm4bSPdTwMur6vIuz3279ncD36qqk7oc9l+La7W2OYzn+Kr6Qnc930DvGuxXVauGjF0AXNT9+X+6tlcAuwH7V9VoV3i7r6qe2p3T0cABVfVXY5Mk+QJwZVUd1b1+F/Bx4Igp5vweYFdgv6pamWRnxvmc9Nk6ySOq6pdJHjfY2RXLXgr8spvrO13XycDCJM8AfgL8PfC8KeYpSZIkSZIkSRIAVaOtU1ADG3Krxm2AOyfoPwhYUVWnAVTVCHAc8KdJZgPHAqdX1WVd/23Am4G3Dpusqs4Cvgm8akj3d4G9h7RfDOw+hXPZCbh5LM+quqpr3xW4sS+HK6Yw17rmMKHqORG4Bbjf6q0kc4BnAq8FXtnXtStwc3Vf8VV1Y1WN+74l2Rt4Cr3i15h3AwckefRkeXbv7Z8Br6+qlV3MX1fV2ZMceja9Ih/0Cn+fG+g/kF5h7GNdP93ca4C/BE4B/hH4ZFX91zi5HZNkYZKFn/r8ZOlIkiRJkiRJkqRN3foWzrbqttD7Gb0VSO+ZYOwTgB/1N1TVPcAN9Ipc9+sHFnbt47kMeOyQ9hcBi4e0HwqcO9D2nb5tCY/r2k4Erk5yTpI/T7Jl134K8Ikk30ny9iS7TZDbeKaaw1SNdw1eAnyjqn4O3J7kKV372cCLulgfTvLkSeZ/PLCoK3QCvyl6LmLi92bM3sAN3Xu9Nr4IvKx7/iLgKwP9Y8W0c4AXJpnZl98PgJ8Cz6dXPBuqqk6tqgOq6oDXvPLla5meJEmSJEmSJEna1GzIrRp/DzgjyX7rn9aUZeD1Z5MsB5YArx9onwXMAeYPHHO/bRKr6t1JPgv8Pr0VbQuAA6vq/CR70St+vQD4cXe+NU5+/e1rlcNaGLwGYxYAJ3XPP9+9/lFV3Zje/d8O6h4XJDmiqi5Yx/gPlNuBO5O8kl4RbNlYR3cd/wB4Y1Xdm+QS4BDgvK5/DnAAMBN4OH2rBCVJkiRJkiRJksazwbZqrKqLgR3pFSqGuYreln+/kWQbYE/g2mH93eufTBD2yfSKKmOOrKr5VXVYVf2yvx3Yi969y/5pklMBoKquq6qP0bs/1pOS7NC131FVZ1bVq4FLgWfTK/JsPzDFXKC/GLbWOUzR4DUgyVx6RbGPJ1kCHA+8vLsvGlW1sqq+XlXHA+8DDptg/quA+d09xcbmn0av+HfVuEf9j2uBPbv3em2dRW+V3+A2jYcA2wGLu/N7Jn3bNQLvAj5D7/55J65DXEmSJEmSJEmStBnaYIWzJI8FptMrIg1zATA7yVHd+OnAh+nd12wZvQLJ0UnGVrDtAHyAcbbaS/JH9FaEDRZVhqqqAt4JPK3LdaJzeeFYkQnYBxgB7kpyUHfPLpJsDTya3laT1wC7JXlc1/dI4En0tjNcpxwmk56/pnfPsm8MdB8OfLqqHllV86rqEcD1wLOS/M7YFpNdAWx/4Bfjxamqa4EfA+/oa34HcFnXN6Huvf0EcFK3UowkD09yxBRO8xx67//5A+0LgNd15zYPeBRwcJLZSZ4IvJDeZ+dUYF6Sg6cQS5IkSZIkSZIkbeY21D3OFtFbHfSavnth7ZvkxrEHvWLOS4EjklwD/BxYAbwNoKpuBv4Y+Nfunmk/AD5ZVf33tjqui3dNN/agqrp1qslW1XJ6xbrj+5r77y92Rtf2anr3OFsEfJreSrYReivgFia5ArgY+HhVXVpVK7t8TuuO+QK9ws7d65HDeD6Y5HJ61+9/0dvmcdXAmAX0ik79vti17wR8JcmVwBXAGuCjk8R8LfCYJNcluQ54TNc25rfe6yFFsXcAtwJXdXHPAya951lV3VtVH+g/v65weSjw1b5x9wEX0bsX2seA46pqRVWNAv+bvqKdJEmSJEmSJEnSeNbrHmdVNX2c9iX07i81zIsmmO+79IpBw/pOAE6Y4NgDp9JeVR/uez5vnGNeOU77B4EPjtP3feBpGyqHceY5epL+sbmeO6Tv5L6XgyvU+sedDpw+0HYnvcLgsPFLGP5e/1vfmFXAm7vHpIZdky7O2P3z5g7pf1n39KyB9oXA46cSV5IkSZIkSZIkbd422FaNkiRJkiRJkiRJ0kPZeq040wMjySnAMwaaT6qq01rk80BJcgmwxUDzq6tqcYt8JEmSJEmSJEnS5s3C2Uaoqo5tncODoaqe2joHSZIkSZIkSZKkMW7VKEmSJEmSJEmSJGHhTJIkSZIkSZIkSQLcqlGSJEmSJEmSJOn+qlpnoAZccSZJkiRJkiRJkiRh4UySJEmSJEmSJEkC3KpRAuAXbNUk7k5bzmkSF2DVfSuaxQbYcYvpzWLfsqrdEuuZDb/rzttx+2ax/3vlqmaxd31Yu8/a6Jo1zWIDzJ09u1ns6Wvafdh3mN7uPa8Z2zaLPbq63fe2aTNnNou9zfS222bUyuUNo7f7rK/eem6z2E9/zCObxZ61w87NYo+uWtks9qxpbb/OvnTplc1iP/2FT2sWe6s9HtUsdsvP28FPXN0s9rcWX9Ms9jEHtfusASxf3e6677/nrs1i37G03d/ju263dbPYs2Y0/B2p4ZZnMxr+ngAwsmJZs9i7P6zdvz+tnL5Fs9g33353s9i777t/s9iS1p8rziRJkiRJkiRJkiQsnEmSJEmSJEmSJEmAWzVKkiRJkiRJkiTdX422zkANuOJMkiRJkiRJkiRJwsKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkCYEbrBCRJkiRJkiRJkjY2NTLaOgU14IozSZIkSZIkSZIkCQtnkiRJkiRJkiRJEmDhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEnAA1w4SzKSZFGSy5NcluTpXfu8JFcOGb9Hki8nuSbJdUlOSjKrr/+ZSX6Y5Gfd45i+vhOS3NTFuybJl5I8vq//wiRXd7l8P8m+Q9ovTTK/75glSRZ3cy5KcnLX/rQkl3RtP01yQte+c5LzurmuSvK1rv3AJOcNnOvpSQ5f1xzGud7j5XV0ko92z/ft4o2NOTXJIX3zL+1yWZTkjCle9zcNyWVp3/PHJPla975cluTsJDuPcw4HJqkkr+trm9+1vamvbUaSW5O8v69tepIfJXl2X9s3kxwx3jWTJEmSJEmSJEkaM+MBnn95Vc0HSHII8A/Ac4YNTBLgS8DHquolSaYDpwLvBY5PsgtwJnBYVV2WZEfg/CQ3VdVXu2lOrKoPdfO9Avh2kidW1a1d/5FVtbAr/HwQePFA+5907Qf3pfbcqrptIN1PAS+vqsu7PPft2t8NfKuqTupy2H8trtXa5jDMeHn1O5nedfpyl+MTq2oxcH73+kLgTVW1sHs9les+riRbAl8F3lhVX+naDgQeDvx6nMOuBF4OfLx7vQC4fGDMwcDPgSOS/G31jCT5S+BfkzwFOBwYrap/myxPSZIkSZIkSZKkB3Orxm2AOyfoPwhYUVWnAVTVCHAc8KdJZgPHAqdX1WVd/23Am4G3Dpusqs4Cvgm8akj3d4G9h7RfDOw+hXPZCbh5LM+quqpr3xW4sS+HK6Yw17rmsDZ59RvMcfEkc67VdR/iVcDFY0Wzbo4Lq+p+Kw77/ALYslvBF+BQ4OsDYxYAJwE3AL/XN/cl9K7hCcD7gL8aL0iSY5IsTLLwS58/c4qnI0mSJEmSJEmSNlUP9IqzrZIsArakV7A5aIKxTwB+1N9QVfckuYFekesJ9FZU9VvYtY/nMuCxQ9pfBAwrGB0KnDvQ9p0kI93zT1XVicCJwNXd6qxvdO0rgFOAs5L8FfAfwGlV9asJ8htmqjkMM15eg2O+neQH9AqLp1XVXRPksy7Xvd9+DLyvU/QF4Ajgx/Tex5VjHd0qtucDfw5sR6+I9oO+Y/8W+CXwkaq6drwAVXUqvVWNXHbtL2odcpQkSZIkSZIkSZuQB3Orxt8Dzkiy3wMcs18GXn82yXJgCfD6gfZZwBxg/sAx99smsareneSzwO/TW1G1ADiwqs5Pshe94tcLgB935zteUaa/fa1yGDrZOHkNjDktyfldji8B/jzJk6pq5eB8jZ0NnEWv8Pk54Ol9fX8IfKeqlif5IvDOJG/oVikCPBu4m17RTpIkSZIkSZIkaUoetK0aq+piYEd697Ya5irgKf0NSbYB9gSuHdbfvf7JBGGfDPy07/WRVTW/qg6rql/2twN70VtZ9U+TnAoAVXVdVX0MeB7wpCQ7dO13VNWZVfVq4FJ6RZzbge0HppgL9BfD1jqHtclrYMyvquqTVfUSYA0TF5jW5br3+8mQ4ydVVbcAq+ndy+yCge4FwPOTLKG3mm0HutWMSR4G/GP3eqckf7C2sSVJkiRJkiRJ0ubpQSucJXksMJ1eEWmYC4DZSY7qxk8HPkzv/lrL6G2DeHSSsRVsOwAfoFckGRbvj+itvPrcVPKrqgLeCTyty3Wic3lhd+8tgH2AEeCuJAd192MjydbAo+ndg+saYLckj+v6Hgk8CVi0rjmsTV4DYw5NMrN7vgu9otNNE0y7Vtd9iDOBpyd5YV8Oz57iysO/A97St5JsrJj6LGDPqppXVfPo3YdtQd8xZ1fVz4C/BE7stnaUJEmSJEmSJEma0IN1jzPobZv4mqoa6Wo7+ya5sW/sccBLgX9O8k56Rb2vAW8DqKqbk/wx8K9dUSr07mH1lf45ujEPA64EDqqqW6eabLf134eB44HXds399xe7oqqOAl5NryCzjN6KrSO783oK8NEka7r8P15VlwJ0eZ3WFXFWA6+rqrvXI4dhxsurf8zvAyclGbv32fHd6q7xrslUrvs7kryh75g9Bs7nD4GPJPlId+5XAH8zXsy+Y38wpPmlwLcHtpb8MvCPSZ7U9T+pO/7H3baUbwHeNVk8SZIkSZIkSZK0eUtvkZO0ebvs2l80+ULYaZs5LcICsGpkZPJBD6Adt5jeLPbN961qFnvmjHbnPWt6u9j3rWx3zXfdqt15j65Z0yw2QM3eulns6Wvavedp+Fmv1e3O+7bVzUKz/ZplzWJPn93u71KAavh1fme1+6xvNWtms9hnfG9hs9h//qwnN4s9uqrdLYmnzdqiWWyA4876ZrPYH3rh05rFJoO37H7wtPy8/cuiJc1if2vxNc1i/9vfvLpZbIDlq9v9IPHL2++afNAD5I6ly5vF3nW7dj+rz2r4e+low3+HnD1rVrPYADuOtPuZecbD2v3MvHJ6u58jbr7rnmaxd68Vkw96AO2w1z7tfpDYxNz4f79hAWUD2OM5hz6kPpMP2laNkiRJkiRJkiRJ0sbsgd6qUQ+AJKcAzxhoPqmqTmuRz7pIcgi9e6X1u76qXtoiH0mSJEmSJEmSJAtnD0FVdWzrHNZXVZ0PnN86D0mSJEmSJEmSpDFu1ShJkiRJkiRJkiRh4UySJEmSJEmSJEkCLJxJkiRJkiRJkiRJgPc4kyRJkiRJkiRJur+q1hmoAVecSZIkSZIkSZIkSUDKiqnEzZde1OQLYatH7NUiLAAjy+5rFhsg06e3i520iz2j3ULfG1Y2C80jpq9pFjuztmgWu1avahYbYMVW2zSLfdvSZc1i77Lt1s1i33L3vc1iz5vb7v1u6e4Vq5vGv3PZ8max95i7bbPYo/99U7PYq7bbqVnse1e0+76+bFW72I96+PbNYgPU0nuaxX7Lv1/ULPbfvezgZrFXrG73vXXNyGiz2HPnzG4W+4iTPt0sNsBnj31Vs9g339Xua3yLme1+P7v+v+9oFnvPHbdrFnv6tHb/h/9hW8xqFhtgxap231tnNzz3bVa2+x0pDT9vq+9q9zUOsNMTf6fdP35tYm688OsWUDaAPQ58wUPqM+mKM0mSJEmSJEmSJAkLZ5IkSZIkSZIkSRJg4UySJEmSJEmSJEkCoN1mzpIkSZIkSZIkSRupGhlpnYIacMWZJEmSJEmSJEmShIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTAwpkkSZIkSZIkSZIEwIzWCUiSJEmSJEmSJG10arR1BmrAFWeSJEmSJEmSJEkSFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg422gkWTrw+ugkH+2en5DkpiSL+h7b9Y39SNc/beD4W7uxP0tyXJJD+o5fmuTq7vkZ4+R0YJK7++b40ED/jklWJ/mL7vUp3dirkizvi3V4ktOTXN/X9oMJrsXRSSrJ8/vaDuvaDh8vfte2dZLrkuzTvZ6ZZHGSp07+LkiSJEmSJEmSpM2ZhbOHjhOran7f4y6Arlj2UuCXwHMGjjmrquYDzwDeDlw1djywEDiye33UBHG/141/MvCHSZ7R13cE8J/AAoCqOrYb+wfAdX25fqEbf3xf29MnOd/FwCv7Xi8ALh8Y81vxuxzuBf4W+GjX9CbgB1V1ySTxJEmSJEmSJEnSZs7C2UPfgcBPgI/RV0DqV1W3A9cCu65rkKpaDiwCdu9rXgD8P8DuSfZY17nH8T3gd7sVY3OAvbv4/YbGr6qzAZK8GfgLeoW0+0lyTJKFSRZ+5px/38DpS5IkSZIkSZKkh5oZrRPQb2yVpL8wNBfor+Ycl+SPu+d3VtVzu+cLgM8BXwbel2RmVa3unzjJnsCWwBXrmlyS7YF9gO92rx8B7FpVP0xyNvAK4MOTTPPBJO/onv+kqo6cYGwB/wEcAmxL71o8qi+fyeL/DfBT4JiqumNogObNi78AACAASURBVKpTgVMBbr70opokd0mSJEmSJEmStIlzxdnGY3n/VozA3w3092/V+FyAJLPobYt4blXdA1xCr9A05hVJrqC32uyfq2rFOuT1rCSXAzcB51fVLWNzA2d3zz/POKvdBvRv1ThR0WzM5+lt1/hKesXBfpPFPxS4GdhvCnEkSZIkSZIkSZIsnD3EHQJsByxOsgR4Jr9dQDqrqvYHng68P8ku6xDje1X1JOAJwGuTzO/aFwBHd3H/Hdg/yT7rdhrDVdUPgScCO1bVzwe6x42fZDfgr4HfBf4gyf4bMi9JkiRJkiRJkrRpsnD20LYAeF1VzauqefS2Mjw4yez+QVW1EPg0ve0L10lVXQ+8H3hLkscAc6pq977Y/8DUVp2trbcCb+tvmEL8E4H3VdWNwBuBU5LkAchNkiRJkiRJkiRtQiycPXQcl2RR3+Px9LYj/OrYgKq6D7gIeNGQ4z8A/EmSrdcjh38Bnk2vQHXOQN8Xmbxw9sGBc5g1WcCq+npVfWegedz4SQ4G9gQ+0R3/FeBO4KjJYkmSJEmSJEmSpM3bjNYJqKeq5gy8Ph04vXt+AnDCkMPmDpnnZX0vT+9r/xWwS9/rA6eQ04XAhX2vlwO7jzP2CuBx3fMlDNxbrKqOnixe39jT6ct9yBxfmCg+8K2BvhdPNbYkSZIkSZIkSdp8WTiTJEmSJEmSJEkaVNU6AzVg4UwkOYTeVo79rq+qlz7Acf+E+9937ftVdewDGVeSJEmSJEmSJGkYC2eiqs4Hzm8Q9zTgtAc7riRJkiRJkiRJ0jDTWicgSZIkSZIkSZIkbQwsnEmSJEmSJEmSJElYOJMkSZIkSZIkSZIA73EmSZIkSZIkSZJ0P1XVOgU14IozSZIkSZIkSZIkCVecSQBM33J2k7jTZm3RJC5ArV7VLDbAyNbbN4u9xbQ0i7101Zpmsbccbfieb7Ndu9j33dMs9Ixt5zaLDbBy2cpmsXec0+b7KsAtd9/bLPaeO2zbLPady9u93zOuW9ws9rJHPK5ZbIBdtt26Wexb77mvWeydHtbuvGdMn94s9nZ33Ngs9tYrVzSL/bpzL2gWG+DUww9sFvu9Bz2xWexV117eLPasZe2+vyx79PxmsZevXt0s9mePfVWz2ABHnnJms9hvO+ygZrGnp93/J581o93fZytXjzSLPVrtvs5Wrm73+zjA7Fkzm8W+7d5239e33XLzXLex5t67WqcgaT1snt+5JEmSJEmSJEmSpAEWziRJkiRJkiRJkiQsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJgBmtE5AkSZIkSZIkSdrY1MhI6xTUgCvOJEmSJEmSJEmSJCycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmwcCZJkiRJkiRJkiQBFs4kSZIkSZIkSZIkAGa0TkCSJEmSJEmSJGmjU6OtM1ADrjiTJEmSJEmSJEmSsHAmSZIkSZIkSZIkAZtg4SzJHkm+nOSaJNclOSnJtt3zfboxM5MsTvLUJBcleUHf8Uck+Ub3fOckZyb5ryQ/SnJxkpd2fQcmuTvJor7H87u+SvLhvjnflOSECXLeN8mF3Rw/TXLqQP8bkqzozmOHvni3JLmp7/Vjklw5cOwJSd7UPT89yfXd2MuTPG8d48xKsrTvuCck+XaSq7vr/s4k6fqOTjKaZP++8VcmmTfB9ViS5HsDbYuGnNtHurym9bW9Mckn+14fmeSr48WSJEmSJEmSJEkas0kVzrpizZeAc6tqH+AxwBzgHcDfAh/thr4J+EFVXQL8BfD/JtkyyRzgfcCx3VznAt+tqr2q6inAK4E9+kJ+r6rm9z3+o2tfCbwsyY5TTP1k4MRujscB/zTQvwC4FHhZVd0+Fg/4l77j5gOrphDr+G7sG7rj1zpOVf0mTpKtgH8H3l9V+wJPAp4O/GXfvDcCb5/SlfgfWyd5RBfjcYOdXbHspcAvgef0dZ0M/E6SZyTZDvh74PVrGVuSJEmSJEmSJG2GNqnCGXAQsKKqTgOoqhHgOOBPgfMAkryZXrHsb7sxVwJfAd4C/B1wRlVd1821qqp+U1yqql9U1WBRa5g1wKld7KnYlV5xaSzO4rHnSR7N/xT/Fkxxvqm4GNh9A8R5FfD9qvomQFUtA/4KeGvfmPOAJyTZdy3mPRt4Rfd8AfC5gf4DgZ8AH+vPt6rW0CvanQL8I/DJqvqvYQGSHJNkYZKFZ3zhS2uRmiRJkiRJkiRJ2hRtaoWzJwA/6m+oqnuAG4C9gb8BPgD8fVXd0TfsXfQKQC+gV2wZm+uySeI9a2Crxkf39Z0CHJlk2ynkfSLw7SRfT3Jct1JqzCuBzwPfA/ZNsvMU5puKQ+mtqFvfOMOu+XXAnCTbdE2j9K7r29Yivy8CL+uev4hecbPfWDHtHOCFSWb2xf8B8FPg+fzP+3k/VXVqVR1QVQccdfjLxhsmSZIkSZIkSZI2E5ta4WwyhwI3A/v1N1bVfcBZwKerauWwA5Oc0t0X7NK+5sGtGq/rm/Me4AzgrydLqlsh9zjg3+itpPrPJFt03QuAz1fVKL1i0hETTTWF9g8m+TlwJr0i4pi1ibMuzgSeluRRUxx/O3BnklfSK4ItG+tIMgv4A3pbct4DXAIc0tc/BzgAmAk8fMOkL0mSJEmSJEmSNnWbWuHsKuAp/Q3dqqc9gdvoFbF+F/iDJPsPHDvaPcb8BPidsRdVdSzwPNauEPMR4LXAwyYbWFW/qqpPVtVL6G31uF+SJwL7AN9KsoTeqrCJtlG8Hdh+oG0uvXMfc3xVPYbe1pSfBFiHOP2GXfO9gKVdUWvs/NYAH+7iTtVZ9FbuDW7TeAiwHbC4y/eZA/m+C/gM8F56q/kkSZIkSZIkSZImtakVzi4AZic5CiDJdHrFmtPpFVDeV1U3Am8ETkmSCeb6NrBlkv/d1zZ7bZLptoM8m17xbFxJDh3bajDJLsAOwE30ikEnVNW87rEbsFuSR44Tbylwc5KDurnm0ltld9GQ4R8FpiU5ZG3jDPgs8Mwkz+9ibgWczPAtEk+nt33iVIuP53TznD/QvgB43Vi+wKOAg5PM7oqAL6S3mu5UYF6Sg6cYT5IkSZIkSZIkbcY2qcJZVRXwUuCIJNcAPwdWAN+kt+rsE924rwB3AkdNMtdhwHOSXJ/kh8Cn+O0VU4P3ODt8yFQfBnacJPXfB65Mcjm9ItHxVXULvZVf5wyMPadrH89RwDuTLKJX/HtX/xaSA+f398Cb1zHO2DzLgZcA70hyNbAYuJReYW5w7Cp6RbWdJpu3G39vVX2gOw6AJLPpFQO/2jfuPnrFwRcBHwOOq6oV3baT/xs4qdveUZIkSZIkSZIkaVwzWiewoVXVL+kVUAadPzDuxQOvTxgy182MUzyqqguBbcfpm9P3/NdMslKtqt5IbxXcYPte44ydKOergOeOE+fogddfpHc/s/FymihO/zkupndvtmHznE5vpdnY65PpFc/G1a0iG2xbwv/cm27ukP6XdU/PGmhfCDx+oniSJEmSJEmSJEmwia04kyRJkiRJkiRJktbVJrfibGOW5O3AEQPN/1ZV722RT2tJLgG2GGh+dbeCTZIkSZIkSZKkdqpaZ6AGLJw9iLoC2WZZJBumqp7aOgdJkiRJkiRJkqQxbtUoSZIkSZIkSZIkYeFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmAGa0TkCRJkiRJkiRJ2tjUyEjrFNSAhTMJmL7V7CZxR1etbBIXYMY22zWLDTBtxfJmsVevWNYs9sottm4Wu6m7b28Welqjr2+ANXff0Sw2wD1rpjeL/ai57T7ry7eY1Sx23Xdvs9ijzGwWe9qsLZvF3nrLdu83wGhVs9jTp6VZ7Gkz233e1jT8xXVmw79TWv599s9/8rJmsQGWLb6kWexMb7dJy8jydj+z1uhos9gXXX19s9j777lrs9hbzGj7zzNvO+ygZrHfd+63m8XebfttmsXeZbt2Py/vtM2cZrFXrFrTLPa+uz28WWyAP9x/72axb122qlls1rT7+6ylFTctaZ2CpPXgVo2SJEmSJEmSJEkSFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRIAM1onIEmSJEmSJEmStNGpap2BGnDFmSRJkiRJkiRJkoSFM0mSJEmSJEmSJAmwcCZJkiRJkiRJkiQBFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRKwnoWzJCNJFiW5PMllSZ7etc9LcuWQ8Xsk+XKSa5Jcl+SkJLP6+p+Z5IdJftY9junrOyHJTV28a5J8Kcnj+/ovTHJ1l8v3k+w7pP3SJPP7jlmSZHE356IkJ3ftT0tySdf20yQndO07Jzmvm+uqJF/r2g9Mct7AuZ6e5PB1zWGc6316kuu7eX6e5IwkewzMtWPf68OSVJLH9rVNS3Jykiu7uJcmeVTf+d6Q5Na+fOYl2baLdW33vp2RZNtJ3uv+85+Z5P3d+3ZZkouTvGCC8xy7Jou76/z3SbYcjNdd97v7cv2PIZ+VRUneP14sSZIkSZIkSZKkMTPW8/jlVTUfIMkhwD8Azxk2MEmALwEfq6qXJJkOnAq8Fzg+yS7AmcBhVXVZVwA6P8lNVfXVbpoTq+pD3XyvAL6d5IlVdWvXf2RVLewKbh8EXjzQ/idd+8F9qT23qm4bSPdTwMur6vIuz3279ncD36qqk7oc9l+La7W2OYzn+Kr6Qnc930DvGuxXVauGjF0AXNT9+X+6tlcAuwH7V9VoV3i7r6qe2p3T0cABVfVXY5Mk+QJwZVUd1b1+F/Bx4Igp5vweYFdgv6pamWRnxvmc9HluVd2WZA69z8n/B7xmyLjvVdUfDmn/zWdFkiRJkiRJkiRpKjbkVo3bAHdO0H8QsKKqTgOoqhHgOOBPk8wGjgVOr6rLuv7bgDcDbx02WVWdBXwTeNWQ7u8Cew9pvxjYfQrnshNw81ieVXVV174rcGNfDldMYa51zWFC1XMicAtwv9VbXcHpmcBrgVf2de0K3FxVo908N1bVuO9bkr2Bp9Arfo15N3BAkkdPlmf33v4Z8PqqWtnF/HVVnT3Zsd3YpcBfAIclmTuVY6YqyTFJFiZZ+KnPTykdSZIkSZIkSZK0CVvfwtlW3VZ4P6O3Auk9E4x9AvCj/oaquge4gV6R6379wMKufTyXAY8d0v4iYPGQ9kOBcwfavtO3pd9xXduJwNVJzkny52PbBAKnAJ9I8p0kb0+y2wS5jWeqOUzVeNfgJcA3qurnwO1JntK1nw28qIv14SRPnmT+xwOLukIn8Jui5yImfm/G7A3c0L3X66Q79npgnyHdz+q7dm/vaz+ur/2QceY9taoOqKoDXvPKl69repIkSZIkSZIkaROxIbdq/D3gjCT7rX9aU5aB159NshxYArx+oH0WMAeYP3DM/bZJrKp3J/ks8Pv0VrQtAA6sqvOT7EWv+PUC4Mfd+dY4+fW3r1UOa2HwGoxZAJzUPf989/pHVXVjevd/O6h7XJDkiKq6YB3jP1jGO0+3apQkSZIkSZIkbXDdxm3azGywrRqr6mJgR+Dh4wy5it6Wf7+RZBtgT+DaYf3d659MEPbJwE/7Xh9ZVfOr6rCq+mV/O7AXvXuX/dMkpwJAVV1XVR8Dngc8KckOXfsdVXVmVb0auBR4NnA7sP3AFHOB/mLYWucwRYPXgG5Lw4OAjydZAhwPvLy7LxpVtbKqvl5VxwPvAw6bYP6rgPlJfvNZ6Z7P7/omcy2wZ/der5MkWwPzgJ+v6xySJEmSJEmSJEmT2WCFsySPBabTKyINcwEwO8lR3fjpwIfp3ddsGb1tEI9OMraCbQfgA8A/jhPvj+itCPvcVPKrqgLeCTyty3Wic3nhWJGJ3vaAI8BdSQ7q7tk1Vsx5NL2tJq8BdkvyuK7vkcCT6G1nuE45TCY9f03vnmXfGOg+HPh0VT2yquZV1SPobXX4rCS/M7bFZFcA2x/4xXhxqupa4MfAO/qa3wFc1vVNqHtvPwGc1K24I8nDkxwxxfOcA/wzcO5E92KTJEmSJEmSJElaXxvqHmeLgLOA1/TdC2vfJDeOPegVc14KHJHkGnqrh1YAbwOoqpuBPwb+tbtn2g+AT1bVV/rijd236ppu7EFVdetUk62q5fSKdcf3NfffX+yMru3V9O5xtgj4NL2VbCP0VsAtTHIFcDHw8aq6tKpWdvmc1h3zBeB1VXX3euQwng8muZze9ftf9LZ5XDUwZgFwzkDbF7v2nYCvJLkSuAJYA3x0kpivBR6T5Lok1wGP6drG/NZ7PaQo9g7gVuCqLu55wGT3PPtON/aH9IqTfz7JeEmSJEmSJEmSpPWS3iIoafN2+7U/a/KFMH3OOu9guf6xt5rdLDbA6IoVzWKPrFjWLPY9W2zdLPaqNSOTD3qAPLzavd8tP+sjy9t91gB+uWZ6s9iPmtvus37rssH/T/LgmZs1zWLfxcxmsbe8adJF6A+YeuS+zWIDTJu2wTZwWGtLV6xsFvvhs8a7/ewD7771vk3zupt55y3NYrdUO+7eNP6qxZc0i53p7b7GW/4cUaPt7uXx1dqhWez999y1WewtZrT73gZwx33tPm/vO/fbzWLvtn2738l32a7dz8s7bTOnWewVq9r9vLzvbuPdXebB8Yf7790sdsvfkbZf0/b34lbu/M9239sA9jriT9v9wL6Juf7cz1hA2QAeddgfP6Q+k+1+C5AkSZIkSZIkSZI2Im3/S5OGSnIK8IyB5pOq6rQW+TxQklwCbDHQ/OqqWtwiH0mSJEmSJEmStHmzcLYRqqpjW+fwYKiqp7bOQZIkSZIkSZKkobzV1WbJrRolSZIkSZIkSZIkLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiQAZrROQNoYTJ+zTZO4Sbva9eiKFTD7Yc3itzR9y9nNYq9ctaZZ7G222qJZ7KwZbRabadObhZ7+sK1Zc+/dzeLPnD6rWWwafn+blrSLPaPdj1arVow0i71ls8iQX1xNPXLfZvFHR9t9fxsZrWaxR1etahd7Zruvs0yf2Sx2S7nzv5m57fbN4rf7tEGNtPsaz4x2n7fR5cuaxd5uzlbNYt9w213M2bLdz8zzHt7u62x6w5/ddtu+ze/jAL+6855msfeYu22z2CMNf36ZOWMadyxd3iT2wv+6kSfuuUuT2ND9O0wja9r9qsC0We1+W6iR1c1ia9NRIw2/gNSMK86kzdVmWjSTHkwti2bS5qJl0UzaXLQsmkkPps21aCY9mFoVzYCmRTNJ0kOLhTNJkiRJkiRJkiQJC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSQDMaJ2AJEmSJEmSJEnSRqdGW2egBlxxJkmSJEmSJEmSJGHhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgQ8CIWzJCNJFiW5PMllSZ7etc9LcuWQ8Xsk+XKSa5Jcl+SkJLP6+p+Z5IdJftY9junrOyHJTV28a5J8Kcnj+/ovTHJ1l8v3k+w7pP3SJPP7jlmSZHE356IkJ3ftT0tySdf20yQndO07Jzmvm+uqJF/r2g9Mct7AuZ6e5PB1zWGc6z1eXkcn+Wj3fN8u3tiYU5Mc0jf/0i6XRUnOmOJ1f9OQXJb2PX9Mkq/9/+zde5xlVXnn/8+379000IAgCGoLMhIVbYXBRCWCYmASDeIlCDqExPyMEUbFSNSoYycZI4oGJRITfhMBHbxFI4pOxBs98Ra1ReQiEiVNFBSVO03fq5754+yabA+nuqv6thr68369zqvPXnvt9Tx7n1NVp+rptXb3ulyR5KNJHjzJORyV5K4k3+ny+OckzxoVr7uGK3q5v2KSa/bkya6ZJEmSJEmSJEkSwKztEGN1VS0BSHIs8FbgaaM6Jgnwj8B7q+r4JDOB84G3AGcm2Rf4IPCcqroiyYOAy5LcXFWf6YY5p6re0Y13IvClJIdW1S+6/S+qquVd4eds4LeH2n+va39mL7Wjq+rWoXQvAn6nqr7b5fmorv3Pgc9X1bu7HB43jWs13RxGmSyvvnMZXKdPdjkeWlVXA5d128uA11TV8m57Ktd9UknmAZ8BXl1Vl3ZtRwF7Az+b5LAvV9Wzur5LgEuSrK6qL47oe2ZVfWxE+1SvmSRJkiRJkiRJ0nZfqnE34I6N7H86sKaqLgCoqjHgDOD3kywATgMurKoruv23An8CvG7UYFX1EeBzwMkjdv8z8MgR7V8H9p/CuewD/HQiz6r6Xte+H3BTL4erpjDW5uYwnbz6hnO8ehNjTuu6j3Ay8PWJolk3xrKqus+Mw1Gq6koGBcnTpxhPkiRJkiRJkiRp2rZH4Wx+t1Te94H/CfzFRvo+Bvh2v6Gq7gZ+xKDIdZ/9wPKufTJXAIeMaH82MKpgdBxwyVDb5b0l/87o2s4Brk/yiSR/2M2qAjgP+Psklyd5Q5KHbCS3yUw1h1Emy2u4z5eS/FOSM5Is2kQ+m3Pd+x474vjpmux1BDi7d20O7bVPXLNvjDooyUuTLE+y/MIP/K8tTE+SJEmSJEmSJN3fbe+lGn8NeH+Sx26HuBMytH1xktXAjcB/G2qfAywElgwdc58l/6rqz5NcDPwGgxlVJwFHVdVlSQ5kUPz6L8B3uvOtSfLrt08rh5GDTZLXUJ8LklzW5Xg88IdJHl9Vazc1fkPDr2PfZi3VWFXnM1gKlDtv+clkr48kSZIkSZIkSdpJbNelGqvq68CDGNzbapTvAYf1G5LsBjwM+OGo/d32tRsJ+wTgut72i6pqSVU9p6p+3G8HDmRwj7C/3sSpAFBVN1TVe4FnAI9PslfXfntVfbCq/ivwLeDXgduAPYaG2BPoF3amncN08hrq85Oqel9VHQ9sYDArbDKbc937rh1x/HQNv46SJEmSJEmSJG0zVeVjKzzub7Zr4SzJIcBMBkWkUb4ILEhyStd/JvBOBvfXWsVgGcRTk0zMYNsLeBvw9kniPY/BzKsPTSW/GryCbwJ+tct1Y+fyW0kmZkEdDIwBdyZ5enc/NpLsChzEYKnJHwAPSfIr3b6HA48HrtzcHKaT11Cf45LM7p7vC+wF3LyRYad13Uf4IPDkJL/Vy+HXpzrzMMnjGFyT86YYT5IkSZIkSZIkadq2x1KN85NMFIcC/G5VjXW1nUcluanX9wzgBOBvkryJQWHvfwN/ClBVP03yYuD/74pSAd5VVZf2x+j67AJcAzy9qn4x1WSranWSdwJnAi/pmi9PMtY9v6qqTgH+K3BOklUMZmy9qDuvw4D3JNnQ5f8/q+pbAF1eF3T3HVsP/EFV3bUFOYwyWV79Pr8BvDvJmm77zKq6ZSPXZCrX/Y1JXtU75oCh83kW8K4k7+rO/SrglZPFBI5M8h1gAfBz4BVV9cWN9JckSZIkSZIkSdoiuT9Ok5O2tlb3OEu266TPX7Zgl3axAVbd2zZ+I7esa/c9d7f5c5vFnr9hzaY7bSMz5rQ77w333Of/RmxXP8u8ZrEPWLSwWezbVrW7Zeees9p9jd+yZrxZ7N1+tqJZ7Hr4o5rFbu2eNeuaxd5nxvpmse+d3e4zzLx7Jls444Ft9u7DK85vX/dce0XT+K3U+NimO20jY6tXNYv9tYUPbxZ74bx2nxsX79326+znd61sFvvvl32zWeyf3HF3s9hHHPTQZrF3X9Du94TbV65uFvvQh+3bLDbACY9e3Cz2z9p9dOPBs9vFrrF2J377Vz/fLDbAgS/4/Wy6l6biho/+vQWUreCg33nJ/eo92fCv9pIkSZIkSZIkSdKOY3ss1ahtIMl5wFOGmt9dVRe0yGdzJDmWwb3S+lZU1Qkt8pEkSZIkSZIkSTs3C2f3U1V1WusctlRVXQZc1joPSZIkSZIkSZIksHAmSZIkSZIkSZJ0X2Pt7jurdrzHmSRJkiRJkiRJkoSFM0mSJEmSJEmSJAmwcCZJkiRJkiRJkiQBFs4kSZIkSZIkSZIkwMKZJEmSJEmSJEmSBMCs1glIO4INd97WJO7sPfZuEhcga1c3iw0wXuPNYs+cv6BZ7IUz2p33v/3i9maxD5kz1ix20u7/iNRYu/MGuHdsXbvgDb/Gx8bbxa6xahZ713lzmsVu+Xqv3dD262xdw/gt3+tj69Y0i33v+Oxmsec1iwzV8Jrfvr7d9zaAebvs2iz2hnvubBY7M2Y2i72z2m9Ru/faip+3+6wOMGdWu/fbvg2v+wF77t4s9jdv+HGz2Mcf9phmsdfPa/f5Zb9FuzWLDbBqZsPP6+vb/W6Y2e0+u21YeVe72Pfe0yy2tq6qtp+F1YYzziRJkiRJkiRJkiQsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJABmtU5AkiRJkiRJkiRph1PjrTNQA844kyRJkiRJkiRJkrBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTAwpkkSZIkSZIkSZIEWDiTJEmSJEmSJEmSAAtnkiRJkiRJkiRJEmDhbIeRZOXQ9qlJ3tM9X5rk5iRX9h6Len3f1e2fMXT8L7q+309yRpJje8evTHJ99/z9k+R0VJK7emO8Y2j/g5KsT/Kybvu8ru/3kqzuxXp+kguTrOi1fW0j12Ii9+8k+UGSy5I8ubf/wiTP754v653Hlb32saHrtXjqr4YkSZIkSZIkSdoZzWqdgKbsnKp6x3BjVyw7Afgx8DTg8t7uj1TV6Un2Aq4HnlBVS7rjlgGvqarlm4j75ap6VpL5wHeSfKKqvtrtewHwL8BJwN9W1Wnd2IuBT0/E6tqeBZxZVR+bqztWMgAAIABJREFU4vl+pKpO7449GvjHJEdX1XUj+r5oxHms7seXJEmSJEmSJEnaFGec3f8dBVwLvJdBAes+quo24IfAfpsbpKpWA1cC+/eaTwL+GNg/yQGbO/YUYl8OnA+8dFvFkCRJkiRJkiRJO5Ykeyb5fLc63eeT7DFJv/4qdJ/qtT8iyTeS/DDJR5LM2VRMC2c7jvn9pQWBPx/af0Zvf39W2UnAh4BPAL+VZPbwwEkeBswDrtrc5Lo348HAP3fbDwX2q6pvAh8FTpzCMGf3zuHiaaZwBXDIJPsu7o27V9fWv56fGHVQkpcmWZ5k+fs/OtWJcJIkSZIkSZIkaTt5HfDFqjoY+GK3PcrqqlrSPX671/42Biv6PRK4A3jJpgK6VOOOY/XQ0oanAof39t9nqcauMvqbwKur6p4k3wCOBT7ddTkxya8zKDidXlVrNiOvI5N8l0HR7F1VdcvE2AwKZgAfBt4HvHMTY01nqcZh2ci+zVqqsarOZzCTjVu/f3VtZl6SJEmSJEmSJGnbOJ7BynsAFwHLgNdO5cAkAZ4OnNw7fimDFfwm5Yyz+7djgUXA1UluBJ7KLy/X+JGqehzwZOCsJPtuRowvV9XjgccAL0kyUYw6CTi1i/sp4HFJDt6805iSJwCj7m8mSZIkSZIkSZIemB5cVT/tnt8CPHiSfvO6Feb+Jclzura9gDurakO3fRO/fDuqkZxxdv92EvAHVfUhgCS7ACuSLOh3qqrlST4AvBJ4/eYEqqoVSc4CXpvkzcDCqvp/b7Akf9blM7zE5BZL8jQG9zc7emuPLUmSJEmSJEnSKDU+3jqFB4QkL2XwN/4J53crwk3s/wIwauLPG/obVVVJJls97uFVdXOSA4EvJbkauGtz8rVwdv9xRpIX97ZPBo4DXjbRUFX3JvkK8OwRx78NuCLJX1bVPZuZw98Cr2FQIBu+b9jHgY+w8cLZ2Une2Ns+oqrWTdL3xCRPBRYAK4DnVZUzziRJkiRJkiRJuh/p3zZpkv3HTLYvyc+S7FdVP02yH/DzSca4ufv335IsY7CK3ceBRUlmdbPODgBu3lS+Fs52EFW1cGj7QuDC7vlSButuDttzxDjP7W1e2Gv/Cb2KbVUdNYWcljFYL3RiezWTTGOsqquAX+me3wg8dmj/qZuK1+t7Ib3cR+w/tff8qEn6LBzVLkmSJEmSJEmS7jc+BfwucFb37yeHOyTZA1hVVWuTPAh4CvD2boba5cDzgQ9Pdvww73EmSZIkSZIkSZKkHdFZwDOT/AA4ptsmyeFJ/mfX51eA5Um+C1wOnFVV3+v2vRZ4dZIfMrjn2d9vKqAzzkSSYxks5di3oqpO2MZxf4/Bfdf6vlpVp23LuJIkSZIkSZIkacdXVbcBzxjRvhz4g+7514BDJzn+34AjphPTwpmoqsuAyxrEvQC4YHvHlSRJkiRJkiRJGsXCmSRJkiRJkiRJ0rDxsdYZqAHvcSZJkiRJkiRJkiRh4UySJEmSJEmSJEkCLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEwq3UC0o4gc+a1TmGnM3PBwmax199xa7vYc3dtFvuxBzy4WewNP7u5WWwW7NIu9r33tIsN7LN7u6+zDXfd0Sz2ggW7N4u94e7bmsWetcc+zWLP3n9xs9hzF7T9GX7XqjXNYs+dNadZ7Bmr1zWLPXNGmsWuPdt9nc0ZW98s9l6z273XAFbNbPf/Pefu85BmsdffdXuz2HMe1O5z40LmNos9Z9bMZrEf9qBFzWIDrF0/1iz2Pru1+8w6Nj7eLPbxhz2mWexPfvvaZrGPfvRBzWKv29DufQ6wcE67P8OuWtfuc0Stbxe75d+e5jT83Chpy1k4kyRJkiRJkiRJGlJVrVNQAy7VKEmSJEmSJEmSJGHhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmwcEaSsSRXJrkmyaVJFnXti5Os7vZNPE7p9v1+kquTXNUdd3zXfmGSFV3fK5L8Wq/9+d3zZUmuT/LdJN9KsmQon3cluTnJjCSH9mLf3hv7C13fxyT5UjfeD5K8KUm6facm+UXX//tJzkgyr3t+aC/emUn+bpJr078G30vy/iSze/tndTHO6rbf0Mt3rPf8FUmWdufVv56LJol7VJK7knynO7d/TvKs3v6lSV4z4ppfmeQVXfuN3Ws00f7k6b0zJEmSJEmSJEk7tfFxH1vjcT8zq3UCO4DVVbUEIMlFwGnAW7p9N0zsm5DkAOANwBOr6q4kC4G9e13OrKqPJfkN4O+Ax42I+aKqWp7k94CzgWd2Y88ATgB+DDytqi4HJnK7EPh0VX2s254PfAr4o6r6XJIFwMeBlwPndXE+UlWnJ9kLuB74GPAq4G+S/DrwEOBlwOEbuT43VNWSJDOBzwO/A1zc7Xsm8K/AC5K8vqreMnHtkqzsX7skS4FzquodG4nV9+WqelZ37BLgkiSrq+qLI/qeOXFdhhxdVbdOMZ4kSZIkSZIkSdrJ7fQzzoZ8Hdh/E332Ae4BVgJU1cqqWjGi3z8Dj5xmvKOAa4H3Aidt4tiTga9W1ee6PFYBpwOvG+5YVbcBPwT2q6rPAj8FTgHOAZZW1R2biEVVjQHfHMr3JODdwI+AX9vUGJurqq4E/pzB+W01SV6aZHmS5Rd96MNbc2hJkiRJkiRJknQ/ZOGs082oegaDWVwTDhpaWvBI4LvAz4AVSS5I8uxJhnw2cPUmwh4HXNLbPgn4EPAJ4Lf6yyKO8Bjg2/2GqroBWJhkt6FzexgwD7iqa3oVg5lhe1fVBzaR48QY84AnAZ/tbR8DXNrlvKlCH8AZvWt5+VTi9lwBHDLJvrN74x7aa7+8a/vGqIOq6vyqOryqDv/dk144zXQkSZIkSZIkSdIDjUs1wvwkVzKYSXUdg+UIJ9xnqUaAJMcB/5lBoe2cJIdV1dJu99lJ3gj8AnjJJDEvTjIHWMh/LMU4B/hN4NVVdU9X7DkW+PQWnNuJ3ZKMhwCnV9UagKr6SZIvTXHsg7rr8wjgM1U1UXx7FnB5Va1O8nHgTUle1c1Mm8x0lmoclo3sc6lGSZIkSZIkSZK0xZxx9h/3OHs4g+LMaZs6oAa+WVVvBV4IPK+3+8yqWlJVz6yqayYZ4kXAgcBFwF93bccCi4Crk9wIPJWNz+L6HnBYvyHJgcDKqrq7a/pIVT0OeDJwVpJ9e93Hu8emTBQPDwIOS/LbXftJwDFdrt8G9gKePoXxNtcTGBQ2JUmSJEmSJEmStglnnHWqalWSVwCXJPmbyfoleQiwb1Vd0TUtAf59M+JVkjcBNyQ5hEEh6g+q6kNdnF0YLAe5oLt/2bCLgT9NckxVfSHJfOBc4O0jYi1P8gHglcDrp5trN8atSV4HvD7JMuBI4KFVtbbL9/e6c/j85KNsniSPA94E/MHWHluSJEmSJEmSpFFqfGMLrOmByhlnPVX1HQb3AZuY6TV8j7NXALOBdyT5freE4YkMClKbE2818E7gtQzud/aZ3r57ga8wuFfaZMceD7wxyfUM7qf2LeA9k4R7G/B7SXbdnFw7lwALgDOAL00UzTqfBJ6dZO5Gjj9j6Hou3kjfI5N8pzu384BXVNUXtyB3SZIkSZIkSZKkjdrpZ5xV1cKh7X6hav4kh41ckrCqTt1Ue1UdNbTvnRvJ7bkbG7uqrgaOGm7v9l0IXNjb/gmwb297ZK5DY9wIPLa3XcDjJ+l7O7B3b3v4ui4Flm4qZtd3GbD7RvYv7T0/dZI+i6cSS5IkSZIkSZIkaYIzziRJkiRJkiRJkiSccSYgyaHAB4aa11bVk7Zx3GMZLCHZt6KqTtiWcSVJkiRJkiRJkkaxcKaJJR+XNIh7GXDZ9o4rSZIkSZIkSZI0ioUzSZIkSZIkSZKkYVWtM1AD3uNMkiRJkiRJkiRJwsKZJEmSJEmSJEmSBFg4kyRJkiRJkiRJkgALZ5IkSZIkSZIkSRIAs1onIO0IZsye3STu2JpVTeICzNplYbPYANR4s9Az5s5rFnvdhrFmsVetXd8s9tzZc5rFZtW9zULPmNX2x+zsGQ3/f0zSLPSMhuedmTObxb5nzdpmsfdYv65Z7Jbf21obG293k+rx9Q2v+8z5zULPXru6Weyd+ZbkY6vbfWYeX7OmWewZDT8/rfnJj5rFHn/wru1iV7uvtJktP7cB49Xu+/qadRuaxW75+Wn9vHa/Ex/96IOaxb78ezc0i/3ERxzQLDbQ9O8gs2e1+z2Favc13vIzxIZ77mwWW9KWc8aZJEmSJEmSJEmShDPOJEmSJEmSJEmS7qMarvShdpxxJkmSJEmSJEmSJGHhTJIkSZIkSZIkSQIsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSQDMap3AA1mSvYAvdpv7AmPAL7rtxwPf7XX/cFWdlWQZcCDw8KqqbpxLgGOqamGSxcB1wPXAHOCfgZcDD+u1T/irqnp/khuBe4AC7gBOqap/7+V5CbBvVf1qkmOBt3W7HgncDKwGrgK+BBxeVaf3jl0GvKaqlm8sTpIx4Orh853kui0D9gPWduf4BeCNVXVnt3/liGsx4QjgZODsLneAq6rqlFGxJEmSJEmSJEkaqcZbZ6AGLJxtQ1V1G7AEIMlSYGVVvaPbXllVSyY59E7gKcBXkixiUETqu6GqliSZxaCY9Rzgion2ScY8uqpuTfJnwBuB/6/LYxFwGLAyyYFVdRlwWbdvGV1RrNs+dQqnPTIOsHojuY3yoq4YNwd4K/BJ4Gkj+t3nnJMAfKRf4JMkSZIkSZIkSdoUl2rcMX0YeGH3/LnAP47qVFUbgK8xmBk2VV8H9u9tPxe4dCjm1jAcZ7NU1TrgT4CHJXn8FmfVk+SlSZYnWX7hxR/cmkNLkiRJkiRJkqT7IQtn7cxPcmXvcWJv3xeBX08yk0Ex6yOjBkiyAHgG/7EE4kFDYx454rDjgEt62ycBH+oeJ23hOW0szsbOd6OqaozBspaHjNjdP+fzeu0n9tp/b5Jxz6+qw6vq8FNfdPJU05EkSZIkSZIkSQ9QLtXYzsaWLhwDvsKgaDa/qm7slh+ccFCSKxncS+yTVfVP3f2+NrZU4+VJ9gRWAm8CSPJg4GDgK1VVSdYneWxVXTPJGDWF9vvEmcL5TkUmaZ/snF2qUZIkSZIkSZIkTYszznZcHwbOBT46Yt8NVbWkqp5QVUunON7RwMOBK4E/69p+B9gDWJHkRmAxG591dlvXv29P4NZNxNki3cy7Q4HrtsZ4kiRJkiRJkiRJo1g423F9GXgrgyUUt4runmivAk7pZoWdBBxXVYurajFwGBu/z9m3gKck2RcgyeHAXODHm4iz2ZLMZnAdflxVV23JWJIkSZIkSZIkSRvjUo3tzO+WW5zw2ap63cRGVRXwjmmOedDQmO+rqnP7Harqp0k+BJzGYGbYv/T2rUhyV5InVdU3hgevqp8leSXwv5PMYLAc40lVNT6ibz/OX2zqfEe4OMlaBoW5LwDHb+LcJUmSJEmSJEnaamp8rHUKasDC2XYyvKRiVc2cpN9Rk7Qv7P69EXjsiP03AvMnOXbx0PZ/657+xYi+T9xYLlX1SeCT04wz6flOMs594g7t39S1uBC4cKrxJEmSJEmSJEmSwKUaJUmSJEmSJEmSJMAZZ2ooySeARww1v7aqLmuRjyRJkiRJkiRJ2rlZOFMzVXVC6xwkSZIkSZIkSZImuFSjJEmSJEmSJEmShDPOJEmSJEmSJEmS7quqdQZqwBlnkiRJkiRJkiRJEhbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgR4jzMJgJkLFjaJm9lzmsQFGFu1sllsaFu1T9pFnzWzXex5c2Y3iz1j7t7NYrPq3mahZ8yd3yw2wOxZM5vFnrnLrs1iL2h32tSuuzeLvXbl2maxM2dus9gLx9c1iw1A2oWeMa/ddafh9/V9mkWGsXvvaRY7uy5qFnvsjlubxQaYs8eDmsWeMX+XZrE33H1ns9i7L/nVZrEPrna/I82a2e5DRMvfEwDWrt/QLPajHtLuZ8raDe3Oe79FuzWLvW7DWLPYT3zEAc1iv/Mz/6dZbICjHnVKs9hzZzX8E3DD7y+zF+3ZLPbCQ5Y0iy1pyznjTJIkSZIkSZIkScLCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmwcCZJkiRJkiRJkiQBMKt1ApIkSZIkSZIkSTuaGh9vnYIacMaZJEmSJEmSJEmShIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiTgAVg4S3JAkk8m+UGSG5K8O8nu3fODuz6zk1yd5ElJvpLkv/SOf0GSz3bPH5zkg0n+Lcm3k3w9yQndvqOS3JXkyt7jmG5fJXlnb8zXJFm6kZwflWRZN8Z1Sc4f2v+qJGu689irF++WJDf3tv9TkmuGjl2a5DXd8wuTrOj6fjfJMzYzzpwkK3vHPSbJl5Jc3133NyVJt+/UJONJHtfrf02SxRu5Hjd2r8/VSb6X5H8kmdftWzxxjiNegy/0zrmf71mTxZIkSZIkSZIkSZowq3UCW1NXrPlH4L1VdXySmcD5wBuB1wPvAY4FXgN8raq+keRlwD8kuZzB9fhL4LhurEuAi6rq5G78hwO/3Qv55ap61ohU1gLPTfLWqrp1CqmfC5xTVZ/s4hw6tP8k4FvAc6vqAmBJ128psLKq3tFtL55CrDOr6mNJjmZwbQ6ebpyubeLf+cCngD+qqs8lWQB8HHg5cF7X/SbgDcCJU8hvwtFVdWuShV2efwf87oh+k70G5/TzlSRJkiRJkiRpWsbHWmegBh5oM86eDqzpij5U1RhwBvD7wKcBkvwJ8DIGhTSq6hrgUuC1wH8H3l9VN3Rjrauqv50YvKr+var+egp5bGBQ7Dljinnvx6C4NBHn6onnSQ4CFjIo/p00xfGm4uvA/lshzsnAV6vqcwBVtQo4HXhdr8+ngcckedR0k6yqlQxer+ck2XO6x29MkpcmWZ5k+QUXvX9rDi1JkiRJkiRJku6HHlAzzoDHAN/uN1TV3Ul+BDwSeCVwHfDSqrq91+3PgCuAdcDhvbGu2ES8I5Nc2dt+Xld0g8Fsq6uSvH0KeZ8DfCnJ14DPARdU1Z3dvhcCHwa+DDwqyYOr6mdTGHNTjmMwo27C5sYZdc1vSLIwyW5d0zjwduBPGT1rbKO613AFg9lxwzn1X4N/qKq3dM/PSPLi7vlrq+qyEeOez6DAyd233VrTzUuSJEmSJEmSJD2wPNAKZ5tyHPBT4LH9xqq6N8lHGCxHuHbUgUnOA57KYBbaf+6aJ1smcKLY837gFcDqjSVVVRckuazL73jgD5M8vsvlJOCEqhpP8nHgBQyWnBw51BTaz07yl8ABwK/12qcTZ3N8EHhDkkds5vGZpN2lGiVJkiRJkiRJ0lbxQFuq8XvAYf2GbtbTw4BbGRSxjgB+M8njho4d7x4TrgWeOLFRVacBzwD2nkY+7wJeAuyyqY5V9ZOqel9VHc9gqcfHdvc6Oxj4fJIbGcwK29gyircBewy17cng3CecWVX/icHSlO+D/3dPtenE6Rt1zQ9kUIS8u3d+G4B3dnGnJcmuwGLgX6d7rCRJkiRJkiRJ0lQ90ApnXwQWJDkFIMlMBsWaCxksh/iXVXUT8GrgvCSTzWIC+BIwL8kf9doWTCeZbjnIjzIonk0qyXFJZnfP9wX2Am5mULxaWlWLu8dDgIckefgk8VYCP03y9G6sPRnMYvvKiO7vAWYkOXa6cYZcDDw1yTFdzPnAuQyWZhx2IXAM0yg+JlkI/A1wSVXdMdXjJEmSJEmSJEmSpusBVTirqgJOAF6Q5AcMZiitYXDfsIcBf9/1uxS4AzhlE2M9B3hakhVJvglcxC/PmDoyyZW9x/NHDPVO4EGbSP03gGuSfBe4jMGssFsYzPz6xFDfT3TtkzkFeFN3368vAX/Wu+/a8Pn9D+BPNjPOxDirGSwv+cYk1wNXA99ixDKPVbWOQVFtn02NC1ye5Brgm8CPgD+cwjGSJEmSJEmSJEmbLYP6ibRzu/u2W5t8IWT2nBZhARhbtbJZbIAZs9rdYrHGxjfdaRu5bbzd/1fYY5f5zWLP2Nj83m1t1b0Ng7e1fm6713zO+IZmsTNzZrPYNTbWLPbNK0fepnW72K/djzOSB9T/A5uWGfOntRjC1lXtfpa2NHbvPc1iZ9dFzWKP33HrpjttQy0/t86Yv8lV97eZDXff2Sz27N2H7wCw/fy02v1QmdXwM8SsmW1/nt2+clWz2D+4pd33mLUb2n1m3W/Rbs1ir9vQ7jNrS+/8zP9pGv/SV0/6//e3uVUb2n12m7d+TbPYmT27WexVK9recWbfw36t5V9iHlCufdd/t4CyFTzmVX9+v3pP7rx/aZAkSZIkSZIkSZJ62k352AkleQPwgqHmf6iqt7TIp7Uk3wDmDjX/16q6ukU+kiRJkiRJkiRp52bhbDvqCmQ7ZZFslKp6UuscJEmSJEmSJEmSJrhUoyRJkiRJkiRJkoSFM0mSJEmSJEmSJAlwqUZJkiRJkiRJkqT7Gq/WGagBZ5xJkiRJkiRJkiRJWDiTJEmSJEmSJEmSAJdqlAC4+5rlTeLuesiSJnEBxteuaRYbIFnQLPb6O37RLPYeD1ncLPYv7r63Wex9Zo41i13r1zWLnVltf8yuWTe7Wez1M9Is9o9+cUez2I/eb69msfdcOLNZ7A23/aRZ7FW779MsNsAec9t9nd94+93NYj/4np83iz13n4c0iz2+fn2z2GvXtov9sw3tvr8ALN5tUbPYPx9v97N0n73axV45q91n9f2r3Xt9bM2qZrFvGZvbLDbAgjnt3m/Petwjm8UeX9Pu9+JVM+c0i71wTsPfU2q8WeijHnVKs9gAz/6r9zeL/fEXH9Ms9tjsdu/1rGs3Z2TWbrs3iy1pyznjTJIkSZIkSZIkScLCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmwcCZJkiRJkiRJkiQBFs4kSZIkSZIkSZIkAGa1TkCSJEmSJEmSJGmHU+OtM1ADzjiTJEmSJEmSJEmSsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDC2VaR5DlJKskhvbYjkixL8oMkVyT5TJJDu31Lk9yc5MreY9EkYx+V5K6uz3VJ3jyifeJxTLdvrNu+Jsml/bGTvCbJ97v930pySte+LMn1vbE+1st1VZJ9emOsTLJXr+8tQ+czJ8nKru/iJNdM8Tq+IMm1ScaTHD607/VJftjleGzXtijJy4eu1aenEkuSJEmSJEmSJGnYrNYJPECcBHyl+/fNSR4MfBQ4uaq+BpDkqcBBwNXdMedU1TumOP6Xq+pZSXYBrkxyab99RP/VVbWki3sRcBrwliQvA54JHFFVdyfZDTihd9yLqmr5iPFuBf4YeO1EQ1XdBkzEWAqs7J9Pkime2i+5Bngu8Hf9xiSPBl4IPAZ4CPCFJP8JWAS8HPibzQkmSZIkSZIkSZLU54yzLZRkIfBU4CUMijsApwMXTRTNAKrqK1V1yZbEqqp7gW8Dj5zGYV8H9u+e/ynwR1V1dzfe3VV10RTGeB9wYpI9p5PvdFXVdVV1/YhdxwMfrqq1VbUC+CFwBHAWcFA3y+3sru/CJB/rZtVdnI1U8JK8NMnyJMsvvvR/b/XzkSRJkiRJkiTdf9X4mI+t8Li/sXC25Y4HPltV/wrcluQwBjOjrtjEcWf0lja8fCqBkuwF/Cpwbdd05NBSjQcN9Z8JPAP4VDe7bNeq+reNhLi4N9bZvfaVDIpnr5xKntvA/sCPe9s3dW2vA26oqiVVdWa37wnAq4BHAwcCT5ls0Ko6v6oOr6rDX/Ts39w2mUuSJEmSJEmSpPsNl2rccicB7+6ef7jb/iVJvgHsBnyuqiaKT9NZqvHIJN8BxoGzquraJEcx+VKN85NcyaC4dB3weWCXKcSZbKlGgHMZLBM51Zxb+WZV3QTQXYPFDJbRlCRJkiRJkiRJ2igLZ1ugW7rw6cChSQqYCRRwEfBE4JMAVfWkJM8HRhW5pmKyAtlkVlfVkiQLgMuA06rq3CQrkxy4iVlnI1XVnUk+yOB+advbzcBDe9sHdG2jrO09H8P3uCRJkiRJkiRJmiKXatwyzwc+UFUPr6rFVfVQYAWDGV6nJnlyr++C7Z1cVa0CXgH8cZJZwFuB87plG0myMMkp0xjyr4A/ZPsXoz4FvDDJ3CSPAA4GvgncA+y6nXORJEmSJEmSJEkPUBbOtsxJwCeG2j7etZ8IvDXJD5N8jUGR7T29fmcM3Z9s8WbEH77H2fOHO1TVd4CrupzeC1wOfCvJNcCXGSz/OKF/j7MvjBjr1u58504zz0cluan3eMGoTklOSHIT8GvAZ5Jc1sW9Fvgo8D3gswxm0I1V1W3AV5NcM3RPNkmSJEmSJEmSpGlzGbstUFVHj2g7t7f5tEmOWwosnWKMZcCySdp3n+SYhUPbz+5tvr17DB9z1EZy7W+/Gnj1xvr0c6iqG4HZo8YeccwnuG8hcmLfW4C3jGg/eahpWW/f6VOJK0mSJEmSJEn0+wCtAAAgAElEQVTSsKpqnYIacMaZJEmSJEmSJEmShDPOdhhJjgXeNtS8oqpOaJHPtpTkPOApQ83vrqoLWuQjSZIkSZIkSZIEFs52GFV1GXBZ6zy2h6o6rXUOkiRJkiRJkiRJw1yqUZIkSZIkSZIkScLCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIA73EmSZIkSZIkSZJ0X+PjrTNQA844kyRJkiRJkiRJknDGmTRQ1Sbugl3axAVmjK1vFhtgfH67c8+99zSLvW7DWLPYO6sZc+e3iz1vXrPYAOtWrWsWe4+1q5rF3n+P3ZrFXn/Hrc1iz9htr2axZ85b0Cz2+Hijn+GdVQ2/re++oN33mJlj7X6O/6zhR5h95sxtFnv+unubxW79dTa2Zm2z2Hs/aFGz2ON3/KJZ7Plrbm8W+yez2n1/2X+Xhc1iL9iQZrEBbr2n3feYXzT8zNr017P17c571bp2P0xnz5rZLPbcWW3/DPrxFx/TLPbz/tcXmsX++CnHNoudtPvemhnt3uuStpwzziRJkiRJkiRJkiQsnEmSJEmSJEmSJEmAhTNJkiRJkiRJkiQJsHAmSZIkSZIkSZIkARbOJEmSJEmSJEmSJMDCmSRJkiRJkiRJkgRYOJMkSZIkSZIkSZIAC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSQDMap2AJEmSJEmSJEnSjqbGx1unoAaccSZJkiRJkiRJkiRh4UySJEmSJEmSJEkCLJxtFUmek6SSHNJrOyLJsiQ/SHJFks8kObTbtzTJzUmu7D0WTTL2UUnu6vpcl+TNI9onHsd0+8a67WuSXNofO8lrkny/2/+tJKd07cuSXN8b62O9XFcl2ac3xsoke/X63jJ0PnOSrOz6Lk5yzRSv49ldblcl+cRQ3q9P8sMux2O7tkVJXj50rT49lViSJEmSJEmSJEnDLJxtHScBX+n+JcmDgY8Cf1pVB1fVE4G3Agf1jjmnqpb0HnduZPwvV9US4HDgxUme2G/vPb7Qta/uth8L3A6c1uX1MuCZwBHdeM8A0ovzot5Yz++13wr8cT+hqrptoi/wt0Pns25KV+2+Pg88tqoeB/wr8Pou70cDLwQeAxwH/E2SmcAi4OWTjCVJkiRJkiRJkjQtFs62UJKFwFOBlzAo7gCcDlxUVV+b6FdVX6mqS7YkVlXdC3wbeOQ0Dvs6sH/3/E+BP6qqu7vx7q6qi6YwxvuAE5PsOZ18p6uqPldVG7rNfwEO6J4fD3y4qtZW1Qrgh8ARwFnAQd0st7O7vguTfKybuXZxkjCJJC9NsjzJ8osv/adtdFaSJEmSJEmSJOn+YlbrBB4Ajgc+W1X/muS2JIcxmBm1qYLUGUle3D2/o6qO3lSgJHsBvwr8BbA3cGSSK3tdnldVN/T6z2Qwq+zvk+wG7FpV/7aREBcnWd09/3xVndk9X8mgePZK4M2bynMr+X3gI93z/RkU0ibc1LW9jsEMtSUwWKoReAKD6/8T4KvAUxjMBryPqjofOB/gpmX/VFv9DCRJkiRJkiRJ91813joDNWDhbMudBLy7e/7hbvuXJPkGsBvwuap6Zdd8TlW9Y4oxjkzyHWAcOKuqru2KRF+uqmeN6D+/K6jtD1zHYAnEXaYQ50VVtXySfecCVyaZas6bLckbgA3AxZtx+Der6qZunCuBxUxSOJMkSZIkSZIkSeqzcLYFuqULnw4cmqSAmUAxmG32ROCTAFX1pCTPB0YVuaZisgLZZFZX1ZIkC4DLgNOq6twkK5McuIlZZyNV1Z1JPkh3v7RtJcmpDK7TM6pqYhbYzcBDe90O6NpGWdt7PobvcUmSJEmSJEmSNEXe42zLPB/4QFU9vKoWV9VDgRUMZnidmuTJvb4LtndyVbUKeAXwx0lmAW8FzuuWbSTJwiSnTGPIvwL+kG1UjEpyHPAnwG93uU/4FPDCJHOTPAI4GPgmcA+w67bIRZIkSZIkSZIk7XwsnG2Zk4BPDLV9vGs/EXhrkh8m+RqDItt7ev3OSHJl77F4M+IfOTTG84c7VNV3gKu6nN4LXA58K8k1wJcZLP844eLeWF8YMdat3fnOnWaej0pyU+/xgkn6vYdBIezzXQ5/28W9Fvgo8D3gswxm0I1V1W3AV5Nck+TsaeYkSZIkSZIkSZL0S1zGbgtU1dEj2s7tbT5tkuOWAkunGGMZsGyS9t0nOWbh0Paze5tv7x7Dxxy1kVz7268GXr2xPv0cqupGYPaosUcc88iN7HsL8JYR7ScPNS3r7Tt9KnElSZIkSZIkSZLAwpkkSZIkSZIkSdJ9jVfrDNSAhbMdRJJjgbcNNa+oqhNa5LMtJTkPeMpQ87ur6oIW+UiSJEmSJEmSJIGFsx1GVV0GXNY6j+2hqk5rnYMkSZIkSZIkSdKwGa0TkCRJkiRJkiRJknYEFs4kSZIkSZIkSZIkLJxJkiRJkiRJkiRJgIUzSZIkSZIkSZIkCbBwJkmSJEmSJEmSJAEwq3UC0o7gm3P3axP4mht4xoH7NgmdmbObxJ2wdsNYu9gL92gWe37SLPbe46ubxa5x+PcNMxtFH+OgBy1qFBvuXruhWew5M1tdc5g5e0Gz2PPvvr1Z7Nl77d0uNkVtaPR+W7CQzGrzsXIvYM1PftQkNsCGvQ9oFnuPeXOaxb7qtnbfXx73oHnNYgNsSLtzn1VtPj8dvAuMr1nTJDbAPVnYLPYud93WLHb2aPczpd0nVtgXmLH63iaxa2ycdXPmN4m9y0yYeXe799vu8xr+v+oNq5qFnjGn3c+UzG77O3mtX98ocLvfj1jfMDYwNrvdZ7ePn3Jss9jPe/9lzWJf8tLjm8WeOWsWPx9v93W+V7PI0gODM86khloVzaTtrV3RjJ22aKadT7OiGTQrmkHbopl2Pjtj0QzaFs2082lVNAOaFc2gbdFMO59mRTNpJ9KyaCZpy1k4kyRJkiRJkiRJkrBwJkmSJEmSJEmSJAEWziRJkiRJkiRJkiQA2t2QQpIkSZIkSZIkaQdVNd46BTXgjDNJkiRJkiRJkiQJC2eSJEmSJEmSJEkSYOFMkiRJkiRJkiRJAiycSZIkSZIkSZIkSYCFM0mSJEmSJEmSJAmAWa0TkCRJkiRJkiRJ2tHU+FjrFNSAM84kSZIkSZIkSZIkLJxJkiRJkiRJkiRJgIWzrSbJc5JUkkN6bUckWZbkB0muSPKZJId2+5YmuTnJlb3HoknGPirJXV2f65K8eUT7xOOYbt9Yt31Nkkv7Yyd5TZLvd/u/leSUrn1Zkut7Y32sl+uqJPv0xliZZK9e31uGzmdOkpVd38VJrpnidVyS5F+6MZYnOaJrT5Jzk/wwyVVJntgb++Te8acmec/UXjVJkiRJkiRJ0v9l777j5arq9Y9/vkkglAQQBFRAmiDSpAkIeqWKBSlSgwUEL16FS7EDFmwgICpNFBvoT0Ckc0VEEBQUhQhIVUBAASsovSfP74+1huwMc05OyFl7Tc4879crr+zZe848u82embX2WsvMZvAYZ6NnCnBl/v/TEbEkcAawm6RfA0TE64AVgRvz33xF0pdG+PpXSNo6IhYEro+IC5rzezz/CUlr5dxTgH2AL0TE/wBbAutLejgiFgK2b/zdOyRN7fF69wMfAj7WmSHpAaCTcSjwaHN7ImKEmzaTI4HPSPpJRLwlP94EeDOwUv63AXBi/n85YDfg1BcSZmZmZmZmZmZmZmZm1uEWZ6MgIiYBrwP2AnbNs/cFTulUmgFIulLSuXOSJekx4HfAK2bjz64ClsrTBwPvl/Rwfr2HJZ0ygtf4DrBLRCw6O+v7AghYKE8vDPw1T28LfE/Jb4BFIuKlwBeB1+cWagfm574sIi7KLf2OLLy+ZmZmZmZmZmZmZmY2RrjibHRsC1wk6TbggYhYF1gNuHYWf3dgo2vDy0YSFBGLARsCN+dZr4+Zu2pcsev544HNgfNz67LJku4cJuIHjdc6qjH/UVLl2f4jWc85cABwVETcA3wJOCjPXwq4p/G8e/O8j5Na3a0l6St52VrALsAapMq+ZXoFRcTeuTvIqRefe1aBTTEzMzMzMzMzMzMzs7mJu2ocHVOAY/L06fnxTCLit6SWVBdL6lQ+zU5Xja+PiOuA6cAXJd0cEZswdFeN80fE9aTKpVuBnwELjiBnqK4aAY4ldRM50nV+Id4PHCjprIjYGfg2sMVsvsalkh4CiIhbgGWZudINAEknAScBnH3V9ZqjtTYzMzMzMzMzMzOzsUUuNh5EbnE2h3LXhZsB34qIu4GPADuTWoSt03mepA2AT5K6H3whrpC0tqR1JX19BM/vjHG2LBDAPrl7xkcjYoUXsgKSHiSNJbbPC/n7EdodODtP/whYP0/fBzRbji2d5/XyVGN6Gq4gNjMzMzMzMzMzMzOzEXDF2ZzbEfi+pGUlLSdpGeAuUguvPSJio8ZzF2h75SQ9DuwHfCgiJgCHAyfkbhuJiEkR8e7ZeMkvA++jXGXUX4E35OnNgNvz9PnAuyPZEHhI0t+AR4DJhdbFzMzMzMzMzMzMzMwGiFvizLkpwBFd887K83cBjoiIpYB/AvcDn20878CIeGfj8XaS7p7N/NfnLhk7Pi/pzOYTJF0XETfkdToRmARcExHPAM8ARzee/oOIeCJP3y9pi67Xuj8izgEOnM31fGVE3Nt4fKCkH/V43n8Dx+RKvieBvfP8C4G3AHcAjwPvyfNvAKZFxO+Bk4H/zOZ6mZmZmZmZmZmZmZmZAa44m2OSNu0x79jGwzd0L8/PORQ4dIQZlwOXDzG/Z9ePkiZ1PX5b4+GR+V/332wyzLo2H38Q+OBwz2muQ64MnKfXa/f4myuBdXvMFz26iJT0DKllWtPJjeW9xn8zMzMzMzMzMzMzMzN7HnfVaGZmZmZmZmZmZmZmZoZbnPWViNiK53f7eJek7WusT0kRcQKwcdfsYyR9t8b6mJmZmZmZmZmZmZnNZLpqr4FV4IqzPiLpp8BPa69HGyQ9r9tFMzMzMzMzMzMzMzOzmtxVo5mZmZmZmZmZmZmZmRmuODMzMzMzMzMzMzMzMzMDXHFmZmZmZmZmZmZmZmZmBrjizMzMzMzMzMzMzMzMzAxwxZmZmZmZmZmZmZmZmZkZ4IozMzMzMzMzMzMzMzMzMwAm1F4Bs36wwMR5quT+/WlVyQWYNN/EatkAk6c/XS37ielRLXuinq2WHQu/qFr2sjG+WraefqJa9qT55q+WDfDMfXdXy35ksaWqZU9eZNFq2Q8/Pb1a9uSKt0M9W/E9PnHJeucawITHHq6WPX3afNWyl3txvffZkxU/xyfUO9WZPq5eeEyo+7Pxnn89WC171aWWqJb9zLR6nynTptf7nbLA/AtUy/7bAw9Vy15mgu9rrkHTnqmW/eyj9c638QtMqpY97YnHq2XPU/F3AkA8Xe99HlHv+9O5e29bLXu7k86rlv2NvXaolm1mc87fzMzMzMzMzMzMzMzMzKzvRMSiEfGziLg9//+81gERsWlEXN/492REbJeXnRwRdzWWrTWrTFecmZmZmZmZmZmZmZmZWT/6OHCppJWAS/PjmUi6TNJaktYCNgMeBy5uPOUjneWSrp9VoCvOzMzMzMzMzMzMzMzMrB9tC5ySp08BtpvF83cEfiLpBfcP7IozMzMzMzMzMzMzMzMzKyIi9o6IqY1/e8/Gny8p6W95+u/AkrN4/q7AaV3zvhARN0TEVyJi4qwC647ybGZmZmZmZmZmZmZm1oc0fVrtVRgTJJ0EnDTU8oi4BHhJj0WHdL2OIkLDvM5LgTWAnzZmH0SqcJs3r8PHgM8Ot76uODMzMzMzMzMzMzMzM7MqJG0x1LKI+EdEvFTS33LF2D+HeamdgXMkPdN47U5rtaci4rvAh2e1Pu6q0czMzMzMzMzMzMzMzPrR+cDueXp34LxhnjuFrm4ac2UbERGk8dFumlWgK87MzMzMzMzMzMzMzMysH30R2DIibge2yI+JiPUi4ludJ0XEcsAywC+6/v4HEXEjcCPwYuDzswp0V41mZmZmZmZmZmZmZmbWdyQ9AGzeY/5U4L2Nx3cDS/V43mazm+kWZ2ZmZmZmZmZmZmZmZma4xZmZmZmZmZmZmZmZmdnzaXrtNbAK3OLMzMzMzMzMzMzMzMzMDFecjYqI2C4iFBGrNOatHxGXR8TtEXFtRPw4ItbIyw6NiPsi4vrGv0WGeO1NIuKh/JxbI+LTPeZ3/m2Rl03Lj2+KiAuarx0RH46IP+Tl10TEu/P8yyPij43XOrOxro9HxBKN13g0IhZrPPfvXdszb0Q8mp+7XETcNML9+OqIuCoibszrvVBj2UERcUdex63yvEUi4gNd++r/RpJlZmZmZmZmZmZmZmbWzRVno2MKcGX+n4hYEjgDOFjSSpLWAQ4HVmz8zVckrdX49+Awr3+FpLWA9YB3RsQ6zfmNf5fk+U/kx6sD/wb2yev1P8CWwPr59TYHopHzjsZr7diYfz/woeYKSXqg81zg613b8/SI9trzfQv4uKQ1gHOAj+T1XhXYFVgNeBPwtYgYDywCfGCI1zIzMzMzMzMzMzMzM5strjibQxExCXgdsBepcgdgX+AUSb/uPE/SlZLOnZMsSY8BvwNeMRt/dhWwVJ4+GHi/pIfz6z0s6ZQRvMZ3gF0iYtHZWd8XYGXgl3n6Z8AOeXpb4HRJT0m6C7gDWB/4IrBibuV2VH7upIg4M7eq+0FENCsGzczMzMzMzMzMzMzMhuSKszm3LXCRpNuAByJiXVLLqGtn8XcHNro2vGwkQRGxGLAhcHOe9fqurhpX7Hr+eFKrsvNzt4eTJd05TMQPGq91VGP+o6TKs/1Hsp5z4GbS/gTYCVgmTy8F3NN43r153seBP+VWbh/Jy9YGDgBWBVYANh4qLCL2joipETH1wrN/NHpbYWZmZmZmZmZmZmZmc6UJtVdgDJgCHJOnT8+PZxIRvwUWAi6W1Kl8+oqkL40w4/URcR0wHfiipJsjYhNSV41b93j+/BFxPaly6VZS660FR5DzDklTh1h2LHB9RIx0nV+IPYFjI+KTwPnAC+ny8WpJ9wLkfbAcqRvN55F0EnASwEXX3qwXssJmZmZmZmZmZmZmZjZ2uOJsDuSuCzcD1ogIAeMBAacA6wDnAUjaICJ2BHpVco3EUBVkQ3lC0loRsQDwU2AfScdGxKMRscIsWp31JOnBiDiVPF5aCZL+ALwRICJWBt6aF93HjNZnAEvneb081Ziehs9xMzMzMzMzMzMzM3sBJLe3GETuqnHO7Ah8X9KykpaTtAxwF6mF1x4RsVHjuQu0vXKSHgf2Az4UEROAw4ETcreNRMSkiHj3bLzkl4H3UagyKiKWyP+PAz4BfD0vOh/YNSImRsTywErA1cAjwOQS62JmZmZmZmZmZmZmZoPHFWdzZgpwTte8s/L8XYDDI+KOiPg1qZLt+MbzmmOcXR8Ry72A/O4xznbsfoKk64Ab8jqdCFwGXBMRNwFXkLp/7GiOcXZJj9e6P2/vxNlcz1dGxL2NfzsN8bwpEXEb8Afgr8B3c+7NwBnALcBFpBZ00yQ9APwqIm7qGpPNzMzMzMzMzMzMzMxstoWbGprVG+Ns+cUXrRELwKT5Zrf+c3RNjmerZf/72aiWvei89e5XiPHjq2U/G/Wyxz/9RLVsTZy/WjbAM/fdXS37qcWWqpY9eXy97zaPTKt3fZk8bvqsn1TItHnqfaaMf/aFDIk6eqY99ki17HHzzlct+9Fx81bLnndCvc+UCePrfY6Pq3d5IZ5+atZPKujmfz1ULXvVpZaolv3MtIrX9en1PksXmFDvfXbXA/XOtWUmTKuWPchq/kaa9sTj1bLHLzCpWnbN7Z5nkXplMFD3eyMVy39jQr1RVLY76bxq2d/Ya4dq2QCvXOalFb89ji3XHrSXK1BGwTqHf3uuOifd4szMzMzMzMzMzMzMzMyMQmNV2eyLiK2AI7pm3yVp+xrrU1JEnABs3DX7GEnfrbE+ZmZmZmZmZmZmZmZm4IqzviHpp8BPa69HGyTtU3sdzMzMzMzMzMzMzMyGNb1e99lWj7tqNDMzMzMzMzMzMzMzM8MVZ2ZmZmZmZmZmZmZmZmaAK87MzMzMzMzMzMzMzMzMAFecmZmZmZmZmZmZmZmZmQGuODMzMzMzMzMzMzMzMzMDXHFmZmZmZmZmZmZmZmZmBsCE2itg1g8WXmC+KrkTxteru37sqaerZQM8PH16tWxJ1bInP/54teyn/n5Ptex7Flu+WvbEecZXy15g3nrnOcAiTz9VLfvJZ56plj3u7turZf9tkaWrZU+k3vXlqgenVcveYGK98xxg/KSFq2U/ce9d1bL/uODLqmWvziPVsv++SL3tfvTJeuf6CuPqvs8mzTepWvZ9/364WvY/H360WvZDjz9ZLXutf99RLXupV65ZLfuZB+td2wCefeTBatlP3nd3teyann2s3jGfd9ElqmXXPNcmrbJWtWyACQvV+94Y4+r9Ln5g3PzVsr+x1w7Vst/37bOqZQNcfui+VfPN5nZucWZmZmZmZmZmZmZmZmaGK87MzMzMzMzMzMzMzMzMAFecmZmZmZmZmZmZmZmZmQGuODMzMzMzMzMzMzMzMzMDXHFmZmZmZmZmZmZmZmZmBsCE2itgZmZmZmZmZmZmZmbWbzR9Wu1VsArc4szMzMzMzMzMzMzMzMwMV5yZmZmZmZmZmZmZmZmZAa44MzMzMzMzMzMzMzMzMwNccWZmZmZmZmZmZmZmZmYGuOLMzMzMzMzMzMzMzMzMDIAJtVfAzMzMzMzMzMzMzMys70i118AqcIszmytExKON6ZUj4sKIuD0iro2IMyJiyYjYIyKO7/q7yyNivfbX2MzMzMzMzMzMzMzM5jZucWZzlYiYD/gx8EFJF+R5mwCL11wvMzMzMzMzMzMzMzOb+7nFmc1tdgOu6lSaAUi6XNJNFdfJzMzMzMzMzMzMzMzGAFec2dxmdeB3o/FCEbF3REyNiKnnnnH6aLykmZmZmZmZmZmZmZnNxdxVo40lQ43U2HO+pJOAkwCu+sOfPMqjmZmZmZmZmZmZmdmAc8WZzW1uBt4wxLIHgBd1zVsUuL/oGpmZmZmZmZmZmZnZmKPpbm8xiNxVo81tTgU2ioi3dmZExH9FxOrANcDGEfGSPH89YCJwT5U1NTMzMzMzMzMzMzOzuYpbnNlcRdITEbE18NWI+CrwDHADsL+kf0TE/sCFETEOeBSYIml6xVU2MzMzMzMzMzMzM7O5hCvObK4gaVJj+g/Am4Z43nnAeW2tl5mZmZmZmZmZmZmZjR3uqtHMzMzMzMzMzMzMzMwMV5yZmZmZmZmZmZmZmZmZAa44MzMzMzMzMzMzMzMzMwNccWZmZmZmZmZmZmZmZmYGuOLMzMzMzMzMzMzMzMzMDHDFmZmZmZmZmZmZmZmZmRngijMzMzMzMzMzMzMzMzMzwBVnZmZmZmZmZmZmZmZmZoArzszMzMzMzMzMzMzMzMwACEm118FsrhYRe0s6ydmDk+9sZw9Cdu18Zzt7ELJr5zvb2YOQXTvf2c4ehOza+c529iBk18539mBl28ymHjDFFSijYL2vnha112F2uMWZ2Zzb29kDl+9sZw9Cdu18Zzt7ELJr5zvb2YOQXTvf2c4ehOza+c529iBk18539mBlmw08V5yZmZmZmZmZmZmZmZmZ4YozMzMzMzMzMzMzMzMzM8AVZ2ajoWZ/w4OaXTvf2c4ehOza+c529iBk1853trMHIbt2vrOdPQjZtfOd7exByK6d7+zByjYbeCF5bDszMzMzMzMzMzMzM7OmqQdMcQXKKFjvq6dF7XWYHW5xZmZmZmZmZmZmZmZmZgZMqL0CZmZmZmZmZmZmZmZm/UaaXnsVrAK3ODMzMzMzMzMzMzMzMzPDLc7MbBYiYlFJ/66Yv42k82vlm5mZmZkZRMR/Dbdc0i/bWhczMzMzs5JccWbWZyJiDeCbwFLAT4CPSfpPXna1pPULZm8MfAuYDuwJfB5YISLmBXaWdFWp7Jz/9u5ZwAkRMQFA0tkl8wdVzUKQiHj5LLL/Uip7kLngy8xsbIiITw2zWJI+19rK2CD4SI95AtYElgHGt7s6M0TEBEnPFnz9HSSd1WP+vKTfa8XeaxHxGknXDLHsXZK+Xyp7OKX3ec44TNLBeXpLST8rmdeVvaGk37SV15X98lq/g2ptd0ScLGmPPL27pFNazq92rnWtx0bAcjTKayV9bwCylwKW7cpu5Tdpje2OiHW6Zgm4X9I9JXPNbPaEpNrrYNZ3ImJPSd/J00sDpwDrArcAe0i6rWD2laQKq98A7wXeA2wj6U8RcZ2ktQtmXw3sBUwCLgC2k3Rl/lA/TtLGpbJz/jPAT4F/kirNAHYEziQV/uxZOP8R0hcWGvkifYGaV1Kxmw0i4q5Gdie/81iSViyYfUGP2c8VgkgqVggSETfmrGjMFrA4sETh7GqFjbULOisf83cPt7zkj5QBzr6Mma8vXdHavGB2zevqoB7vap8nOf+7DH++7VUwu+Z+r3KuR8SHesxegPQdcjFJk0rkNvKr7fOcX/P6VvNcr7bdXeuxMfAJ4EXAFyT1+n4xmnkXAPtK+nPX/C2Ar0pavWD2T4FpwD6S7srz3gx8BbhI0gEFs28AfgUcJOnBPG914GvAvyVtVzC72j7POddKWqd7ug1d2VdJem2l7LMk7VApu7XtbpZ1tH2suzNr5Ofc7wMrAteTrjeQrun7jfHsI4BdSOVtzextWsiust35c7zbosC8wBRJ15fMt9l3zf67uAJlFLzmmB/GrJ/VP9zizKy3fYHv5OkvAz8EtgS2BU4ESv4YnSzpojz9pYj4HXBRRLyLoX8gj5Z5JN0IEBH/knQlgKRrI2L+wtkAGwFfBK6RdGJej00kvaeFbCRNbj6OiEnAPsD7gHMKx6/X9XgcsDPwYeC6ksGS3tZ83CgE+RzuoGUAACAASURBVDvwv4Wz1+jKXg74GLAFcFjJbOCxHvOeK2wESlZe1cyuesyB1wwxfxtSS9uShayDmv3hHvM2BD5KulGhmMrX1UE93tU+T7L/6zFvGeBAyrdGqbbfa53rko5uZE4G9if1GnA6cPRQfzeKap7rUPH6Rt1zveZ2ExGbA58k/TY5rMWWGacDl0XEt4EjSTdafZXUSmH3ksGStoqIKcAlEXEqsDqwBLBrCwWc65Ba+10XEZ8D1gDeAnxIUq/zcDRV2+d9oFm4N1/F7BUqZre53S6UTt/hVlWdFg41s7cDXinpqQrZVbZb0qa95kfEesCxwLA9xJhZO1xxZjZrK0vaOU+fM4uWIqMiIhaW9BCApMsiYgfgLNIdKCWNa0wf1LVs3sLZSLomIrYE/jffgfMxKnyBjohFgAOAdwOnAq+R9EDJzM7rR8Q44F2kH8fXA2+VdEvJ7I6KhSBExErAIcAGpIK+/SQ9UzKzZmFjHxR0drJbP+aSnquYi4gA3kF6r/8G+IKzi2T/rpH9BtIxnw/4H0k/KZndyK1xXR3U413180SNrswiYgXgYNKP/y8C3y6cXW2/N3JbP9cjYlHgg6TtPQVYR7mb79Jq7/Oa17fK53qV7Y6It5K+rz0EfKJzk11bJP0gIv6PVIFzKzAP6Tz7ZkuFnmcAq5EqRx8ENlPBnkg6lLpDPDwiniV1q/9XYH1Jf20hu/Y+XyIiPkiqzOlMN9fvywWzx0XEi0i/kTvTz1Uqqew44Bpiug21tnvpiDg2Z3Wmn9NCy6ea51rHTcBLgL+1kNVP2XeSri01Ks5qbvfzSJqab76yfuMe+waSK87Memt+aVs8IuZpFOLPUzj7COBVpAIHACTd0CjgLumTEbGApMclnduZGRErUv6OYQAkTQeOiYgfke5mbE1EvBj4EKmbgO8Aa3cqMFvInodUcXIgcCWpm8w7WsquVgiSu5k5hFQIcSSwl6Rpw//VqOZXK2ysnF214CvSuIV7kO6Y/w2wo6Q/Orto9lakVoVPkbrT6tU9SIncatfVnD9wx7vm50ljHVYhnW9rA0eRCvOLjoPTyK6136uc6xFxFPB24CRgDUmPls7ssQ7V3mc5v8r1LWfXPNdrbPcFwL3AA8BHI+KjzYVtdKsFrAqsD1xNaimwJKlco+gNVxHxOuAE4NekloVvAC6IiB+S9n+xAt/8W+wEUgXKq4A3A7+MiC9I+m6p3IYq+zz7JjC5x3QbFgZ+x4xKo2sby0TZlmCvjoiHc/b8eZr8WJIWKphda7ubYyhOLZQxnGrnWu4SVTnzlkhDaDx3TSl5ba2cfVzOfhy4PiIu7couVllac7tnsV5L4taXZn3DY5yZ9RAR3d1OnC/pPxHxElJLmINrrJeVFRGPAf8Cvgs80r285F1mEXEv8CypsvB5A0FLOrtg9nRSIcjv6fElrfCX5WnAPcCPmdGneDO75JflZmHjCW0WNtbMzvk1j/k+pBZ2lwJHSLq7VJazn8u+htS10lHAVd3LJV37vD8aveya19VBPd7VPk9y/o9I48IeTWqdMdO1veQd+pX3e5VzPV/PnyId8+eNbVe4cLXqPs/5Na9vNc/1KtudW7cNSdIvSuQ28r9NqqTcR9JVEbEg8BlSt4UHSLq4YPZU4AOSrm7MWwD4NLCtpFUKZt8BfFzSmY15LyMNKbCMCo5DXXOf22CJiAlt3XjQb2peWytnD9fdq1R2bNran2edSsOmRUnDl+yvwmOG2uy7Zr+dXYEyCl5z7Blz1RhnrjgzM8si4tPDLZf0mYLZJzP8IO97Fszu1y/LSDqlYHa1wsY+KOisecynk8Zf+Re9t31NZ4969uWNTDHz2BWStFnB7EMZ/tr22YLZg3q8T6bS50nOv5uZzzeYcc5JUrE79Cvv90OpdK7XVHOf5/zLGX6/l7y+3c3w19aS5/rlVNrumiLiQODY7t4JImIN0o1IxcaEiYhxuWeMXsvWlHRDwexJQ91kFRFbSLqkYHa1fZ5zLpb0xjx9kKTDS+Z1Ze8r6fg8vZqkm1vMfnvnRpeIeFFbvVLkvCrbHRHXSlonTx+nRlfALeVXO9ca63CEpI/Nat4YzN5f0jGzmlcou8p29ygHEak19zWSio9VarPPFWejwxVnZmNARGwP/ELSvyNicdKdpGsDt5AGYb636gpaEc0fCf0kIpaU9I8KucuQBjw/qkL2fMDbJP2o7exB1sYxj4hlh1su6c/Obk/M3BVx29mvkXRNwdf38e5S6/OkLX2834ue6z3yFgS2B6ZIemvhrL7c51ZGRNzIMF1Ila4oHUr+3riNpDNazAxgM2A3YGtJS7aVnfNXzNm7Slqtzeyc38o+j4jrJK2dp5+rWGlDV0WOs8vnVjvW/ZA/VG5E3NDGtbUPs587HhWyi293LmdcXF3jD0fEqsC/JP2rZL7NPlecjY65reLMY5yZ9fYFSavm6eNJ4zUcDGxB6oJny1orZkXtSTre1UXEIsAOpB/ErwJe1lLu4sBOwJSceU4buTl7PLBVzn4jcAXQasVZm4WN/ZLd9jEfqhA10tghU4B9nF1Wd2EfaayStrJXJW3vFOBB0lgpRfh4P5dZ5fOkax1aKeDts/3e2rme8+YF3kraz1sBZwFfL5kJ9fd5RLx9uOUq29X1sIWqKttNZK3t3rrQ6862Ib43Fq84i4gNSe+z7Ujdau1DGt+vuEjdM+6S89cADgd2bSM759fY5/1SUNl2QV8MMd22NrNrH+tq+RHxfuADwIoR0Wy9Ohn41RjOnkK6ni0fEed3ZRfr7jhnV9vu7Djgaz3mL0Yav3S3FtbBzGbBFWdmvY1vTL9C0i55+uSIOKBkcESsBqwo6fz8+CukAXoBji/8I7xadj/k1xYR8wPbkr4krU360rYd8MvCuZNJ423tBqwMnA0sL2npkrmN/Dfk7LeQBh3fOOc/3lJ+lcLGmtm1j3ljPdbO67ATcFdeD2eXy61S2BcRyzGjAuEZYFlgPbU7/tRAHe9anydd61C7gLfGfl+Ols/1iHgjMwqxLwO+B7xG0ntKZQ6zLjXeZ28bZpkKr8PRs8gu2V1ile3uhxaEtb43RsRhpHP7L8BppHG+pqpgt+KN7L1J7/OlSBVVewHnqWA38l35Nb+rr5AL1KMx/RwVHJcXWCT3RDMOWKi7wrpkxTwwf76mjgPmy9PPVWIV/l1ca7tXyRUYwcyVGa10/Uvdc+1U4Cek70ofb8x/RAXHy+yD7F8DfwNezMyfqY8Axbq/zWpuN6Ryxud9L5d0RUSc2EK+zSZN79lbs41x7qrRrIeI+AbwD9KH6OeBKyWdExGbAodKGnZ8oDnMvgA4XNKv8+NbgE8CCwA7SNpuLGb3Sf6zQK8fgG2MeXUq8HrgYuB04OfAHZKWL5XZyH6C9CP4E6RzXRFxpwqOzdHIvpdUAHEicK6kRyLirpa2u7uw8YfAcZKWG8vZOb/mMV+ZGQXL95O2/cOShu3uy9lzlN1d2HcOqbCvjffZVcBCpOva6ZJub/E9PqjHu9rnSc7vLuA9g1TAO9aPeZVzPdIYY1cAe0i6K89r5Xqes6rtc2tfRDxCj7HsaOG7cs6v+b3xn8BtwFeBCyQ91eJ3p6eBq0hDBkzN88b8d/WcX3Nc3u8OH110DOrLqTd+Y5Xtjspd/9Y813J+ABswo2eA+4Cr1UKhbc3snL8k6XsjwH1qqVvxyvv8j5JeObvLrJ6r993RFSijYP3jz3RXjWZjwL7AIcAf8+MDI+Ix4ALgXYWzX9qpOMoelnQWQES8bwxn90P+jW30oz2EVYH/ALcCt0qaFhFtfTAfRGoF8DXgtIj4YUu5AGeSWkHsAkyLiPNor5uMi0iFja9rFDYWH4C4D7Kh7jH/A2nbt5Z0B0CkgeedXc57SYV9JzKjsK+t99k/SD+ElwQWB26nvff4oB7vmp8nkLo8vgrYrVHAOwjHvNa5vg7pen5JRNxJqrgbP/yfjKqa+5yI+OBwyyV9uWB2zW4ia233pcBLSC3aTpf0l0I5Q6n5vfGlpO76pwBfjYjLSK2CJkh6toXsnYCjI+IlpBsS5imc2VFznxevrJhFdustdxvZm1TMrrLdtVu01jzX8k2VXyN9d7gvz14aeEVEfEDSxWM0ey1SbysLN7Mj4kHgAyVbVtbc7uyOiHiLpAu71uvNwJ2Fs81shNzizGwWImJhYIKkB1rKG+7Ok9skrTwWs/skv5UBaIfJX4X0Y3wX0l3brwRWb/GOqxVIhW9TgJWATwPnSLqtcG4Am+Tct5C+OO8FXCjp0YK5a5G2dyfSl9PTgU+11DKhWnbXerR+zCNiu5y5MakC8XTgWy3dLT6o2eOZUdi3OamV4xbAMi0U9nU+R9/OjPNsEWArSVcXzh3I453zq32eRMRizBg3sVPAu4ekZVrIrr3fq5zrjfyNcvYOwO9J1/OTCmfW3ufTgetJ3S09BTOPx6OCXdk1sq/vzJo5umhrlJrb3TnPdwXmI7UyPF3tdG1V7Xtj1zpMJI33NoXUwvdSSa2MRxMRS5Ou7VOABUnv84MLZ1bb5xFxI8NU1Klg932umB8yu8h2d7Vo7VzT2mzRWvNcuxV4s7q6do6I5Unvs1eN0ezrgfdJ+m3X/A2Bb0h6dcHsatudc1YCfkzqrvJ3efZ6wGtJNyMVLYOx2ecWZ6Njbmtx5oozsx4i4p2S/l+e3ljSrxrL9pV0fMHsy4CPD/Hl4Ysl7z6rmd0n+QdLOqxkxkhFxLqkH6c7A/dK2qjl/NVz/i6SXtFi7jzMGHR8K0kvbim39cLGfsjuWo9Wj3lELEgag2kKaRyY75G2vfTdfQObnfOrFfbl/CVI17UpwMtbqkwZ2OOd16Ha50mNAt6c2w/7vfVzvZE9jlQ5voukvVrKrLLPI+LVOfNNpIKn00jXtTa6WepUGr4COA84rdPqroXsatvdWIdxpO0/FjisZCXCMOswD2kf7EqL3xu71mEysL2k71XIXgmYIumzLWa2us+jYvd9EfHpWWSXrKCu2U1kte2uqfK5djvwqu4b2iKNh31Lyd9mtbMlrTTEsjvG6nY3siaSxo9cPc+6GThV0pOls232ueJsdLjizGwMiIhrJa3TPd3rcYHs9Ul3bp4MdJqmrwvsTioAKXbXcs3sPsk/juHvMtuvZH4v+Q7P16vHwLGjmLGKpD/k6YmSnmose62kqwpmLyTp4SGWvUrSraWyh8hsvbCxRnbNYz7E+ryI1EJlF0mbO7u1/IWA7WoU9uX8lSTd3nLmIB/v4p8ns8hfGdi1zQLenFt1v+d1KHau17zZa5h1qrLPGzeibAF8TNL5LeV2Kg13ARYDDlGLXX61vd2NvNcDVwI/lHRFycyRiIj5JT1R8PUHsvXRcErv866sRUgteQFuk/RQG7nWvohYA1glP7xF0s0t57d+rkXEQaSbbU4H7smzlyFVUJ8h6fAxmn0ssCLpZptm9ruBuyTtWzC72nbb3MkVZ6Njbqs4G1d7Bcz6VAwx3evxqMqVQxuSxqfYI/8bB2xYuuKoZnY/5ANTSXft/g7YpjHd+VdMRJzRmD6iM53vHP5EyWzg1MZ0d4XJCYWzL+9MRMSlXct+UDI4It7ZmN4YQNL0fHf8dWM1O6t2zCNis8b08gCS/pNb2X3N2UWyv9qY3r8znSutiw0un/OubEx/v2tx0bH1Bvh41/w8ISI+2pjeqZF/G6lbt5LZNfd7rXO9WZh/XNeyYi0SOmru8671WBxYG1gDuBf4Z1vZwJPAQ8DDwCQKn+dNbW93RNxNOq73AXsD3wEei4h1IqLYjYWN/BuG+gf8dpYvMGe+BLyTVDk6CZjc+DepcPaZpOv31vnf2xr/ti4ZXHmfExETI+Jk4G7gJOCbwN0R8Z3cMqR0/qYRcVZE3Jz/nRkRm5TOzdmvjIijI+LH+d+X8k0obWS3vt0RsXBEXE5qwbsb8A7g/Ii4LN/sVVTNcy1X0uxGKmt6bf4XwDtKV+Dk139Hpez9SL89NyWNwX1Qnj6hZKVZzq623QAR8UhEPNzj3yMR0fPGYjNrn1ucmfUQFVucWX+Ilsc7a+b1OOeKrktX9kxZYzy7ZsvSqtcY73dnt5hd89rmfd7yPu/O9H5//rLCua1ez3NG7c+zPUl3jM9Hqlw4Q1IrlWa50nBXYH3gEtI4X1Nbyq6y3blQu1OA0Bl7qEOSSt+McX3OPRW4AJiptZPKdqU2qN2CVtvnOf9zwArA/0h6JM+bTCps/7OkTxbMfitwPPBZUm8oAaxDqsTcV9KFBbNfC5xNqsDpZK8N/Dfwdkm/KZhdZbsjtT56GviopOl53jjgi8D8kv63RG4jv9q5Zmb9zy3ORsfc1uJsQu0VMOtTq+S76AJYMU+TH69QMjjSOF9DXZClgl3e1Mzuh/zuvBazZpVXel00xPRYz67WsrRyNni/O7s9Na9t/brPS2fX3Ofg/T67y0Yzt+3rOdT/PPsWcBPwZ9IYqW+MmBEraZuC2ZcAN5C6K5wIvDsi3t3ILtnFd5Xt1gjHG46ILSX9rED+WhGxCqkC61Tglvz/xeoap6ZA9u9JY9F+PGZ0V3lcRBTvHlPSucC5MaNb0KMjopVuQWvu82x7YH1JjzfW6ZGI+ADwG6BkZcZHSF1a/74x7/qImEpq4Vus4gz4FGn8ussb886NiJ8DnwbeXDC71nZvAazZqTSD1CNHRBwM3Fgos6nmuTakiPiJpGLHO7fmOwhYGrhQ0mmNZV+T9IGC2a8BjiS1Yj6I1Ir5NcDtwN6SivXEEhGTgI+SxhlfmlRp+yfg65JOLpVrZnMXV5yZ9faqitkf7jFvQ9KHeuk7SWtm90N+TQtExNqkrinnz9OR/81fOHvpfIdfNKbJj5cqnL1EpDEjojHdyV68cPagVhhC3WM+qPu9Zva4SGMOjWtMd0pYxxfOXiQits/Zi8SMcVoCWLhw9qAe75qfJzC4+73WuV7tZq+s9ufZpi1kDOU9FbNrbvdIHAGMesUZgNIYrZ8GPh0Ru5DGxjkCOKpEXrfon25Bl6WlbkEr7/PpzYqMxjo9GhGlrzEv6ao86mTfEBFLFs5esavSrJP9i4g4qXB2re1+uldlrKRnI+KpXn8wyqqdazF0V7cBrFUyG/guqaLqLGDPiNgR2E1pDOwNC2efQLq2LAL8GjhQ0pYRsTmpW+DXFsz+AXAO6eaTnYEFSeOdfSIiVpZ0cMFsM5tLuOLMrLePAqeqMcB6WyQ9N5ZWRLyBdGfTfKQuA34yVrP7IT8iHmFGIc8CMaNv6Uirp5J9q/8d+HKP6c7jkj7SmO7uYqh0l0PfJI0N0T0N6W7qkmoWNtYu6Kx5zFeIiPPJ25qnyY+Xd3YRC5O6lepUll3bWFa60OkXpDEjO9Nvayz7ZeHsQT3eNT9PAF6dPz+DVHHX/CwtXchbc7/XOtdr3uwFdfc5I21tExFnSdphlLNPGWH2caPdxVjN7R6hYq0NI2IpUreF2wP/AQ4kFX4W1aN7zJ0rdgt6TFvdgub8Kvs8U9cNP03Te8wbTY+9wGWj4ZGK2bW2e77GzT5NQWrVW1rNc+0a0neHXtmLFM5esfE5cW5EHAL8PCJKttjumKdTzhMRR0g6E0DSpRHxpcLZyzValn05Iq6R9LmIeA+pZa0rzszMY5yZ9RIR+5N+HLwUOIPUj3yxZuI98rci9SH+FPAFSZcNQnY/5NvgiIhlh1teeJyMatm15UrxIZXscmhQsweVj/fg8X5v39yyz6PlsWu7squNj1xru0ttc0T8gnST1Rmk1hEPNJdL+vdoZzaypzOje0zouvGkZLegObvTLah6ZBfrFrTmPs/5d5MqLXpVKEhSsRvOIuJBet/4EMDrJL2oYPY/Sa1femXvLKlYy69a252HbRiSpKItbSufazcB20u6vceyeyQtUzD7VmC1ZheZEbEH6UbLSZKG/d06h9lXkVqcLQx8Cdhf0rn5u8XRktYrmP1r0nh6V+ZKwn0kbZWX/VHSK0tl29zJY5yNjrltjDNXnJkNIxdu75r/zU8aBPo0SbcVzLyG1EXdUcBV3cslXfu8PxoD2f2QX1OjS6eeJJ1dMHvYcRkKFwQcO9zywuODDKyax9zaN0z3L0Dxz5UPDrdc0peHW26zr+bnSc5fdBb5RQtZa6l1rne1lofcSr7zf+HW8nONypVXA5ddsOLsbmac78877wsXbNe8GWP3WWSPqPXjC8y+m0r7fHZExGqSbh7l1xzUY97XN0REoTEUZyO/xLm2I3CjpD/2WLad0jiHRUTEkaQxCy/pmv8m4DhJKxXMfjVpjLPppJas7wd2J4159t+Sfl0we01SDzcrATcDe0q6LXfHO0XSsOUUNnhccTY6XHFmNkblbgO+QxqwttiYMBFxOUN3nSVJm43F7H7IrynfSXp9/gcz3+kmSXsWzP4XcA+pYvi3XdmlfxQ+Tbp79wzgrz2yS/4orFbYWLugs/Ixv2G45ZLWdPaoZ3fukr+/M2vm6KKfK51r209ILYm7z7XPFMwe5ONd5fOkkX8v0BmnpDu/ZMF2P+z3Vs/1iDgXeAlwNnC6pL+UyBkmv9o+nx2DWHlVMzsizpY0bCV+4fxRL9iejexa3WMW6RZ0NrKr7fOcX/N9NqjHvMp21zzWtfMjYveSv4+d3V/Z1l+u/sDbXYEyCtb/2tlzVcWZxzgzG0ZETADeTGpxtjlwOXBoyUxJm5R8/X7N7of8yt5OOs/WBM4jtWy8o6XslwBbAlOA3YAf5/w2fvy+FNgJ2IVUyPpD4ExJD7aQfSn1ChtrZkPdYz6dVEl4KnAB8EQLmYOe/UFgx5x5OnCOpEdbyl6bdJ69lTTO2mnApWrnzq1BPd41P08AjgU2BX5FOt5XtnS8oe5+r3KuS9ouIhYmHfdvRsR8pM/S01tq3Vdzn8+Omj/Sx0x2RHxU0pF5eidJP2osO0zSwQA1K82y7wO1CtZrtsDauGJ2zX0Odd9ng3rMa2137ULXmvn7A7UqcZxtZgPHLc7MeoiIToHyW0mtMU4HzpNUeiDe2l321e7eqWp+P4iIBYFtSRVJiwGHtNkdRkRMJJ37RwGfkXR8i9lLkwp7Pwh8TNL3W8jsFDbuShrsvbXCxprZXevR+jGPiFVy5ttIgy+fSuoi5Nlh/9DZc5q/Aul825Y0Rsthkq4f/q9GNX8j0vZvQXqPD9tl6ChlDvLxrvZ5EhEBbELa/vWBi4ETJd3VQnbV/Z7XofVzPeeOI73HjyW9v1vpCrXy+2xxYHFJt3TNXxX4l6R/5cdvlHRx6fVp5E/obH9E7CHp5FF+/YUkPTzEspd3bsgZ7e1utrTobnVRuxVIUwzumHYDN55eI39Q9/vAZde+1gzq+8zZNujc4mx0zG0tzsbVXgGzPnUQaYytVSRtI+nUNirNsrcN82/rMZzdD/n94EngIeBhYBKpQqW4iJiYKy7/H7APqdDtnDayc/46pLu53knq5up3beRKekjSd0ktS78BfBbYY6xnQ91jLukPkj6df3ReAHyP1K+9s8vm30lqgXQxqTJj5bayc+H22sAapG78/tlG7iAfbyp9nkDqj1HSZcBHga8D7yFVIrWRXXW/1zjXI2KjiDgOuBbYCNi+rUozqL7PjwNe3GP+YsAxnQclKs0i4srGdPfNPlc3sk8e7WxSLxid7Eu7lj03Fk6B7Y4hpns9rsmFW+3zPjcrr+b7zNlmNnDcVaNZD5I2i4h5gXdExGp59s3AqZKeKpz9npKv36/Z/ZBfU0RsRrpLfH3gEuAYSVNbyv4esDpwIanF0U1t5Obsz5Jadt5Katl5UKVWAa8HriQVNl4xANnVjnnOX4p0vm8P/IdUwNpKpd0gZne1NLuH9F47TFLxLtUiYk9gZ1KlzZnAzpJaqTTL+YN4vKt9nuT8Zku3xUld0q7bVpe0Ffd7lXM9Iu4GHiS9r/cmjy2Xb0hB0rUtrEO19xnwCkm/7J4p6YqIOLFw9oKN6dW6lpWuRGq+/qItZmuI6V6PB9WY6ZpzLvN0xexBPea1su+ulNvhc83ZZjYg3FWjWQ8R8SrSHbO/YkbLl3VJfYhv090dzChnbwCcBKwI3AjsKenWUnn9kt0P+TVFxHTgBlIFiugqfJC0X+HsTovKZm6kaC1UOPsu4PGu/E72mgWz72ZGYePPyYWNHSULG2tm5/yax/wXwGTgDOAs4IHm8pJdVQ5wduf6ch6p9VH39aVYy5ScfROpa0h6ZG9TMHvQj3frnyc5/zHgdtL17fYe+SW7nK6931s/1yPi8kaWmLmAR5I2K5HbyK+2z3P+HyW9cnaXjVJ2tW4La2VHxDTS94cA5mfG97cA5pM0T4nc2RURv5G04Si/5kB2Czob6zHq+zy/7lbAZElnds3fEXhI0s9GO7ORMZDHvGJXsCMaQ7GUiHj5cMvbugGoW0TsIOmsPH28pH2dPXazrX+5q8bRMbd11eiKM7MecpcnX+z+Ih4RW5DGCNm0YPZUUleRvwS2Ad4raatSef2S3Q/5NUXE7sMtl1R9QNqIeJGk/4zyay473HJJfx5u+RxmX06lwsbaBZ0jVeiY383M2/7cItK2FxtofICzD+3KnImkzxTMfsNwy1VwzK0BPt5VP08i4mSGPt8kac+C2XdTb79XO9dHIiK2LFHAXHOf5/wfAydIurBr/puB/SS9uWD2ncCHSMMfHAV8uLMIOFLSigWz7wW+nLMOzNOd7AMkLVMqu6bKlSinA1/rbuEYEa8H3i9pt4LZV0p6XZ7+vqR3NZaVrqStWpkQEb8CtutUUjXmvxi4QNJrC2YP6jFvVsxfKmnzNrJr3oyQM26kx+8yUuv5JSSNL5k/zHr9RdKw70Nnj51s61+/ff92rkAZBRuceO5cVXHmrhrNeluq1w8vSZdEGkOipHGN7B9FxEGF8/olux/yqxlpQWZEHCfpf0uvzxAuBUb1B8tIK8Yi4qrR/mEsaZMRZo96YWPNOV8uEQAAIABJREFU7NlU4pgvN5LnRcRqkm529qhkHzrC7IMkHT7K2SOqLIiIsyTtMMrZy40we6wd76qfJ5L2GGH+7qNdiVd5v1c710foCGDUP09q7vPsAODHEbEzM3qJWA94LeXHx/0F6UavzvTbGsue133kKPsmqaVf9zTAtwpnP09ELALsI+kLhaM+BWzXY/7lpN5CSn5nGtRuQX/MMJUJQOnKhIndlWYAku6P1DVwSYN6zGt1BVt1DEVJa8wUGLEc8DHSGK2Hlc4fxqB2Uzio2WbWR1xxZtbbuIiYqK7xzCJiPsq/bxaJiLcP9VgFuziqnN0P+XODjStm1/wCOV/F7CKFjXNBNtQ95t9nlCvtnD1LOwGjWnE2G4q2SpmFQT3eNT9PAPYHarWmrrnfa53rtQuBiuxzSbdHxBrAbqSxOyFVYr1P0pOjndflgorfTR+QdHzboRGxDPBJ4GXAucBpwGeBdwOntrAKNStRJg+zrHQXlcPd5V70Dvg+qExYqNk1YWM95iF1F1rSQB7zrtdvcyzDvhhDMSJWAg4BNgCOJrVefqat/B5qtnJxtpkNNFecmfX2PeCsiNin0yIm/0g4lvTDv6TuO1abjwWU/IFeM7sf8m14g/rldZDvdvN+d3ZbfK4NnkHd77XO9dqFQMX2eb7R7bulXn8Yn6Ded9M9gdYrzki/kX5BGs/uTcBU4HpgDUl/byG/ZiXKHRHxliG6Bb2zcPYiEbE9qVvQ5o2FASxcODsF1atMOBv4ZkTsK+mxvC6TgGMo//4b1GO+RER8MGd1pjvZixfMfXVEPJxz5s/TndziN1FGxOqkc3w14EhgL0nTSufm7E43kc9bBCzp7LGVbWZzD1ecmfUg6fMRsS9wRUQsQPrwfBT4kqSiXTVKek/J1+/X7H7INxvCoFYY1jao+31Qs2vyPq/D+32wFNnnEfHIEK/dGWNtoRK5A2zRRve/P42InYB3SJreUn7NSpSB7Ba0ZmVC9gng88CfI+LPpPf2MsC3Sa0fSxrIY06lrmBrjSHW8HvgHlL3pOsD60fMuOdD0n4Fs0ufT87ur2wzm0u44sxsCLn7k+MjYnJ+/EgbuY07up5bFeB+4EpJd43V7H7In0sM6h36g9wqoybv98Hi9/hgqb3Pa+fXUmu7766UW5Sk4bpSK22ViLihx/xOpd2aBbPXbLTG6JVdrMIwIl7EjPP4AWDhyKXLkv5dKjerVokywN2C1qxMILcu/HhEfAZ4RZ59h6QnSubm7EE95lW6gh1Ki2Mo7ln49Yc00nG/nT02ss1s7uGKM7Me8lhmuwD/Bv4P+EhE/BfwJ+Bzku4vGN+rAGA54JCIOFTS6WM0ux/y+0oumHhQUvNO6mMK5HQP+jyTRiHI5qOdPRveVTH77rGWHRGbSfp5nl6+WTEdEW9v/FCvecyfdnbrftRmWERsLOlX+eHH2szuMqjHe9Q/T2YlIpaU9I/88FfDPrmsUd/vEbGQpF4VGUTEyyX9JT8c1XM9Ij4q6cg8vZOkHzWWHSbpYABJbx/qNVrS+rkeEX+R9PKCEXcxcyuQNt0oae0KuQuTWt40K4Cvzf+LwmP41axEyfmD2i1oNV3jX3es1Km8K125NMDHfODGUJT03LiruSUrkh4tnZvzqrWednb72WY294iZy2PNDCAizgCeARYEXgTcBFwAvA5YS1Lrzbpz5cYlklofzL5mdj/ktyEiPgWcIekPETERuAh4NfAssJukSwpmTwfuzVkwc2GIJBUrBImIu5j5C2s0HkvSigWzR1TY2KaI2BL4qKQtC+dc23k/Nad7PS6QvSypQvih/HhTYDvgz8DxkooVrg5w9n8Dl+c7pwP4DrADqWJ2D0nXDvf3c5g9HtgZWAq4SNJNEbE1cDAwf8mC3wE+3ucPt1zSNsMtH235TvEdSHfsv0rSywpmbQVMlnRm1/wdgYck/axgdvO6eqmkzXstK5zb6vU8ZwxbMdWoMGxdRNwjaZmCr39dpcqrYbMjYp6Wxp5q3RCVKM8pWYlSuYC3+Ht5hOvRamVCzhyu0kqSilXsDeoxr5UdEZeRWvRdRRpD8U2kMRQPVDtjKBIR7wcOIpUDQRqu4whJXyucW+267Wyzkfnt+7Z1Bcoo2OAb581VvY64xZlZb6tKWj0iJgD3SnpDnn9RRPy+xgpJ+nenG5RByu6H/JbsAnwuT++e/18cWBk4BShWcQYcC2xKuvv/NFLXmG19KViv6/E4UiH7h4HrCmfvShqrAdIPpGZrmzeRCvaLiIjNgK8z447KI0h3swZQuhsSmLlytPu9Vfq9dgawPfBQRKxF2u+HkyqKvwa819mjbn/g5Dw9BVgTWB5Ym9Tq6PUFs79N6kbrauDYiPgr6X3/cUnnFsyFwT3eryV1q3Ua8FsqdA0YEfMD25Iqy9YmtSjfjvLjsnwq53S7nHQDVLGKM2bez90tuUseg5rXc0jdt6krS6TvMEsANcesKf1d5nmtJiNiRdJ5v6uk1Qpmz9RCOH9P3ixnbw0sWSI0IroL0wXcL+meEnk9DNfCTxRsoaPB7Rb0eZUJEdFKZQIMPwZ2ROxQOHtQj3mtrmCrjqEYEZ8ANgI2kXRnnrcCcExELCrp8wXjfwvUqhx3tpnZEFxxZtbb05C6A8mFfE1tDob8nHy3+n8GLbsf8lvydKOyaivgdKWBt2/NFbjFSDogF7hsQuoS8biIuBg4UYXHlpP0AEBEjMvZHyHdWfhWSbeUzKZuYePRwN6kOyrfnP//uNobT0BDTPd6PNrml9S5rr4T+I6ko/M5cL2zi3i2cUfl1sD38nvvkog4cpi/Gw3rAWtKmh6pG+S/Ayt23vuFDerxfgmwJamSdDdSxcZpkm4unAtARJxKqoy9GDgO+DmpK7XLW4ifKOlf3TMl3R8RC/b6g1FU67pa83qOpDWajyNiOVJ3lFsAh5XOj+ePj/vcImBSyWxJ++Z1eBnpBqjdgDVIleS7Fs4+LGdvmHO3I1XY7kO6+aiUo3vMWzQi5gWmSCp6fatZiTKcsdwtaOXKhFn5CnBWjeCxfMyp1xVs7TEU3wW8Wo3x6yTdGRE7k8b6K3muD+o4w4OabWZzCVecmfW2dEQcS/ow7UyTHy9VMjgibuT5BR2LAn8l9e89JrP7Ib+ypyJideAfpNZfzUKPBUqH50q7yyLiOlJhz+eA24FvlsyNiHlI/egfCFwJbCfpjpKZDTULG9UoRD43Iu5rsdIMYIXcnVs0psmPly+c3fyRshnpDmZyxUrh6IHNnh4RLyXdgLA5M7dqnL9w9tOdO4UlPRkRd7ZUaQYDerzzTRcXkVrJTyRVoF0eEZ9p6TqzKulcuxW4VdK0iGirFfNCETFBaRyk5+TPmtLn+hK5Eica0+THixfMfXVuGRDA/I1WAgHMVzB3JhGxEnAIsAGpcmW/lrpAGq5FSNFx/CJib9L7aylSK9O9gPMkfaZkbs4+DNgJ+AupdelngKlqjNFTgqRNh1if9Ug9GPxXyfxZqFaJQvkC2Kcl/blwxlBqVibMylgudK95zIdUuHu7qmMokn6fPdlj5hORhjYoafFhbgRB0pedPaayzWwu4Yozs94+0pie2rWs+/Fo6x4/TcADkh4rnFs7ux/yazoAOJNUuPaVTkuviHgLhbsszHfhb0u6W3pxUjc367Y0LsldpLHVvkoq/FkzIp7reqTkWBXULWxcpGucjgnNx4W3G9Lx7vhS17Lux6Pt55HGkfwbaQzJnwPkip1i4z4NePanSJ9d44HzOy2PIuINwJ2Fs5tdDQWwYn7cRldDlw3o8SZXmL2VVKi/HKlA+5zSuQCS1oqIVXL2JRFxPzA5IpaU9I/C8WcD34yIfTvfHSKNyXMMBbtwy77JjEqc5jTAt0qFSqrZFSL5pp9DgNVI3R/vlStvW9FGJdUwjie1GN9N0lSAFiuJ3wvcBpwIXCDpqRazn0fS1Pxeq6lmJcpY7ha0ZmXCrNQcb2YsH/MqXcFKWq7E686G+yJic0mXNmdG6mL/b4Wzx5NaSde4jjnbzGwI0d4wNmZzv9zN1Nsk/WiWT57zrE1JhRAAN0u6rHRmP2T3Q/6giYjHSK3LTs//z/TBULISJyJO7s6bObrcgN81RcWBznP+yZL2KJkxTHaQKmlfCpwh6b48f21gCUk/dXaR/AnAZEn/acxbkPRd8NGCucsOt7zk3dSDerwj4nvA6sCFpG5/byqVNcL1WZdUibYzadzYjQpmTSC1fngv8GdSYcgypLH2PlmyBVSurGuz5fCwImIRYB9JRcfNjIhppDH1fkyP7swl7VcyP6/Dm0mtOlfNs24mjb90YeHcxUitvqaQukg9A9hD0jIlc3P2eGZ0ybo5cBmpe8xlultctiEilgQulLRu29mNdSjadd4sugU9RFL32IYl1qFXt6BnS7qxYOalwGFDVCZ8cqhWiKOY36tHEkj7fWVJEwtmD+Qxb2T36gr2/OZ3yVHOqzqGYkSsBpxH6gXld3n2esDGwLYlu7yOiGslVRlvy9lmI/Pb923rCpRRsME3zpurKqtdcWY2C/mH6VakH6ZvBK6QtGPBvKVId0U/yYwvbOvy/9k787hbx7L9fw/zNm12IRkypUmmhFAZMtQroRd7G0PS+1PZZIxkeNuVIeNLb8hQmTJsoVDGhLxklpCpSKJEkfH4/XFdaz/3s/a9nv2Udd3Xeta6vp+Pj3t49jqute617uE6z/M4g8XQZq3Jt37T7gX9nNQ8mBl4BrjBifuMDXDwak7g1dZEqqR3AZ8AHrXdSGVGLjI/pLzb9v1xeXbbL1f2rW775gbGsCRDwfn7HHt2JNbM9r7bqhth6Pxyh+0XUulG7WWAhWz/sm37msBTtn+XUPtK2xukev1eJVYAtCq1q+f2VpXfvM2Palow8cO2r29AaxywTFx9yPZLDWhmOa9KWgz4KvB2YCrBtu9QgsX1WbZ3T6y/w0j7U1sHStoF2BXYhyFXiFWAbwKn2P5uSv3KOBYlTG5PAuYCLrL9lYa0ZydUgUwi9Be8yvbWibSOp95WfQ1gd9uXpNCt6OcMonxtpP0pqx81vS3oeQRb0NT22lmDCVE/ZwLOoB7zdivYiwhWsEm1JdUly04AGumhGMcwByFYOO05AfhhXdVll3Vvd76+ckW7UBgFN++ycQmgdIHVT760BM4KhX4gWlhtTZhIv4XwcLCU7RcT615EuCk+vW379sCnbX+q9h+Oce1e0M9JhwezCYSg7cG2z2l4SI0wQiYnkNZbXNL1BEupB+Pk/i3ADwkZ6/9ne7+E2iP17LPt76fSjvr3Ex7Ga29abP+6bnuXtKdNLrdPNKeeeJY0L8Ey7QOEvhwAKxImgna2/Xynf9sF7Zzvu67CcQKwPOF9X51Q+1Jg//bMaEnvJ2SwJ2t8n/lh/AWm76P4DKEqZF831+etcSSdZ3vLuPwt2/tW9iUNZtYEiYeRuII6V+DsGuA6gmXgRvG/O4A9bD/V8FjmBkhZxVqjeR+wlu2/tG1/CyH56D1NjaWi/U6CldphGbTnASan0q4JlBp4lnDf9HQKzTb9bEGUnEh6hfAb/7KHbEEftp2651NLP0swoW0MjSc95STnMZf0NMEK9hiGrGAb+77VjGcV4Nu2c/ZQTIqk+VNV8hXt3tMujE1K4Kw7jLXAWelxVijUIOkPhAyrk4C9bL8g6ZHUQbPIe21v1r7R9pmSDuhj7V7Qz0anjEVJE4CfE2wUk5Cz2o3hPWCaZn7bD8blHYCzbX9R0myEQEqywBnwwQ7bNyFkliYNnEWNo6gPnJnQxyAV6rBct95tjiNM9ky0/QZMq4L5KqFXzUgBzTdLtvdte8e67XEC8jxgtYTyC9XZCdm+W9ISCXUBxo8USEkZRLE93blN0vzAZ4DvEDK5kxCvG8OGAzzn5rLl3llZXh/Yt7K+QGLtkQKxJm2fs+U11CuzSupKvwm2D47LV0jaAtimdY5rAkn/RbBKnCuu/51glXhiE/LtQTMA28+G03ticelDhGvq9bafVujTuh+h8itZ4Cw6YmwZtS+3fY+kjYGvEJwaUmmv40xWzzAUGMsVRFEmW1CC7e8WwFGSWragsybWnEYMkH2vKb0qlaSnVQhJAQArSkqe9BT1B/GYL8yQFewxMUFjnKRZnMEK1g31UKxJepq2i/QV+49rqE9l6+JlwpztbLZTzt0W7ea1C4XCGKGcCAqFes4neHlvBbwu6WKaaz48U91GSTMRGpj2q3Yv6Pcctv+i9DM/dcGrJYADJCWtdktpcTIa+cryusARALZfUeJm57a/2FqOx3cbwuTyzUDSfjSRh2ynDI6NRHsVTqd9KVizfcIvBhMOlfRg/T/pGjnfdy22H5OUehJmvhH2jUusPZ5gX9YpQJwyiDK9YMhqPVrSdomlbiO8v+r7nkfSHcBnbT+aWH+k73PS73qnIDGApE+n1AbuzljhOD9Dx/tZQtBYEO4jEmsfSLDpW7sVvJC0FHCspAm2/zulPvC8pBVs31ndKGkFILUV7RGEc8wdwL6SriD01/sGkNrm+lRC/75bgOMkPUkILOxne2pC3eUTvvYMyRlE0Qi2oJIWdUJb0Fil/B3gOxqyBf2TpN+Q2BY0czABMiY9Deoxt/06cDlwuYasYMcBT0hKZgXbCYUeik3cK09wwl6oI9GecBUDhbsRvn9JWwgU7ea1C4XC2KEEzgqFGmxPlrQHsDYh0+pwwiTEloTG1yktaC6VdDLBZuUfAJLmAo4GUme25dTuBf2eQ9I6QFILgczVbgeNsNuJbY7uknQk8AShF86VcUwjTfR3DUmzEKpP9iIEzP7T9m+b0B4JSR+0/X8JJRaVdBxhwqW1TFxfJKHujEgdoO65963Q1+/lGf7hm+NWSbvYPrlN+7MM9UpJxWPusR6NMVCZ9P7bHXqQxOq77xCs/FIyp6SVCMkw4+Ky4n+pg6UjcTRwQQ5hSbMmnIwbT/gtVc9hLbtdA6mttbYDVqhattl+ON4z3wmkDpx9GfixgiVttf/SDsC2ibX/A1jJ9j9j8PL3wHINBKchvMflbb8RbfSeApZuwAZ2zspvejqc0Oo5krNyfA+mtwW9OlYk3QA00k/P9h8IrgFHKdqCJpbMFkyI5Ex6GtRjXtV+mXDtvEDRCjaVlmbQQzGVboVfAVl6QLeIz6GTiX1KgQ82cF4v2pm0C4VC71MCZ4VCB+IN+TXANXGia0NCEO1E4K0JpfchZKo+Jqnl0784cAbBfiUlObV7QT8bqm92PgF4krSTAB1pqNrtHzXb5gJ2Bt5CQpsjYBfCQ9gSwAYVK9b3Akcm1EXSblH7KmCjhibZqlSt05D0XsL5bRLwHGFCLhV7V5ZvbdvXvt5tbozB2sOqtnWSvkroI5GSbO9b0iXUn18WJv3E8mTgIknbMHxSezZgOmveLpPNP131FpHzEzLGz294OECwpozVQan5I9DqT/lUZbm1novU34cfDRML1891CX2BNgYWSiFqe4kUr/uvDWH6Pke2X0pdvR11bpC0KiFL/DNx833A6k7f4+2frfdu+6+SHmzwev5KK3AUA3cPNzTRl9PqGfIGUQbSFpQeCCaMQOoPfiCPufJZwbbfD7d6KO7pBnookve+8a2ERJCtCLaoK9n+W9HuT+1CoTB2kBtrd1Ao9AeSxtl+KS5fYDuJ9Y+kcYQqGIDfuZn+atm1e0E/B5q+2bmBZ1uVdzmI1W5fbcrSL2Yx7k4Imp0HHNXEQ1LM1G593x6qmwBMoPkG8DTwZ4YHNFq2N8mtkBT6S7WCZa8C7wBWST3pJ2lKSnuZGWjPS7C3WpmKxRNwO8HiKcvDkqQjbe+V8PU/2rapNRHxoO1XUum2jWEdYLm4eq/tqxvQXN72XXF59pg13dq3uu2bE2qf1rap9Zlfa/uyVLojES1obrC9Yg793Eh63PbiDeisTgiWbUoIUO8G/NiJGtBLap/QNvCM7d+n0KvRvwqYYvuqtu3rEu4h1kmsf3p7IKUpJD0HXF/Z9JHquu1NEmq/CDzUWgWWjutJ7yMk3Z7LkjTqP2j7nR32PWR7mbp9XdL+FfC5DragJ9teNaF21RZ0GaBqC/q/Ke9de+CYnwH8jvqkp2VtJ7M/HuBjfjpDVrCrERI5k1vB5jyfR/0/MDzZZxi2O+7rgvY/CM+Fp1FjM1y0+0u7MDa5eZeNSwClC6x+8qXZkhT+HUrFWaHwL9IKmkWS2d9Enbtb65LWB/axvX4qzV7Q7gX9HHio2fk6DDU7v5dQ9ZiU3NVu0RJyT0KfrzOAlVNNMLbpzgJMAXYEHidMNi0WJ7wPSGxLU2ul1hSSbgLmJdhwftr2g5IeaShTfiPyVZDOZ3sLSUsz1OT9Ptu/yzSeFlsSLDuTYPs6AElLMnR++UMTQbMYmP48YdLnbuBUN9dY/nSGsuRvYnjG/IkkzKD3CL22UiNpz5rN8wObEKzMstDEtbzD9QzC+T1JxVdFewqwBeF6cjZwCHCr7TNS6hKqf9qZIGk2YJLtO2r2d5MvARdLuoHhVaVrAp9KrA15e261v7+6Y5GK9zSoNSqU3uoZ8laOD6ot6AIdritAI5PLXyQkPT2k0KsTKklPibUH9ZjnsoLN2kOR0FN9bvJUnh3B0P1LXf/xot1f2oVCYYxQAmeFwpuj6xkHMUP3O8DbganAtwhZMAK+3m29XtHuBf2cSFoEuBD4J0MPZltI+hawme0nEspv3LbeWLVbzKbcnNAj4P1O2z+wnSMIN8lL2X4hjmdegk3jkST00m8FSjPyJ4L9ykLAAsCDNNN0G2DmOAHQqT/KdJY4XWQqITD7O0L2cq+Q9AE9VnOeCnyA0HMIYEVJtxEq7Z5PKH8GoaLxF8DHCZO9yfpjtKEOy3Xr3RcPPVD2ZyhIey/wLdupe3a2P/ybMOm1re27a/6+q2S+lrdfz5rks8ADwEnAJbZflpT8vNqpokvSKoR+UB9JrH+vpOUIVXatwPz1wK5NVHCTsedWKylhRqRwqBjtfYSkm2x/qIvSOa2eIWMQZYBtQXMGEyBj0tMAH/NcVrC5eyj+0fahiTVqsX1wDt2iXSgUCiNTrBoLhTeBpF/b7mrGuqTbCY2IbyJMMv6AYIuQPEs8p3Yv6OdE0kXAxbZPb9u+PaEiKFnWdqz46kjKQEa0LHwZeI16y8J5E2o/SLB4cdv2mYH7O1kBdUn7BTpXRSR935UxjCcELScB7wTmAza0fUti3ZeBJ+jQH8V2skrenHZDI/zOBNxpe9GE2qcDjwKHtiZCJAn4KrCM7WSVpZLutv3+uDwLcEu3r5sjaE+7Rrdfr1Ncv9u0dwF2JfTubPXsWAX4JnCK7e+m0s5NL1zL26or77P9cAOaMwPrE86p6xEqxj8GLNZglWX7mJJ+z3uBeD39PzpfUxqxmx6JzNeermvnsnqO2ovbfjxHEGWAbUGznkdy6g/wMc9lBZv1fN7pfClpMWCi7SMSap9ne8u4/C3b+1b2XWl7g6LdP9qFsUmxauwOxaqxUBgsUvzgbfvauDxV0hMNTjbl1O4F/Zy81/Zm7RttnynpgMTatxGCOJ0avae0JJ0p1WuPTn767BHbr6euErCd1Q5C0ua2LyRUgZwmaUGCXeDRcVJqsYTy9+WaQAQWkXRcp522v5RQe6TfWUpbUIA12yd+4nf/0BhATsm092b7tRCva4xF4/FWZZm4vkhi7T2AtdoSD66OVWg3EKpskyDpEkaoIE052TYkkedaHquGTyEEKadVozRRXWn7deBy4HJJsxOq38YBT0i6yvbWqbTrkLQQDVQS90AiyEO9EBybATknWrqqndnqGfJWjg+qLWjthbuJYMJI+g0xqMc8lxVs7vP5eq0FSQsQ7JcnESroL0qsXU3YXJ/h1b0LFO2+0y4UCmOEEjgrFGqQNG+nyZVWpmNc3bfub94k80navLI+S3U9TnanIqd2L+jnpDaAJGkmgkVKMmxn67eVs9oNuE/S9rbPbBvTtsD9CXV7gQMJ1qAA2H6a0PvoBEnvyDaq9LzEkBVqo+T8nc2A1BNSK0hqXU8FjIvrTUyq711ZvrVtX/t6t1Hd+cv2sw0ED49MLTAD2q/lszZ4LT+OYKM1saa68gQa6NsJYPtl4ALggmiVmsyeVNLx1PcpXYOElsNVLaftCVroLXJaPUPeIMpA2oKSN5gAeZOeBvKYO58V7EhaTfRQfFXSDgTr4WUJz0pLpnSFqDDSeTT1ObZoN69dKBTGCCVwVijUcy3Qsne6yvZ6lX1TW/tsX5lA+zrgk5X16yvrpjLZ3WfavaCfk0slnQxMduwtJmku4GggaT8cSRsC89g+v237p4Hnbf8soXy2ajdCv4ILJe3E8Ibf44Dpqv8GhdE+LL8Jzkn8+iPxrO0zcghLGtFmKOXkC3CjpIOAw6pVlpK+SrDTS4btpIH/GWh3PNaSUgeXnpe0gu07qxslrQC8kFK4OtkWJzmx/eeUmm1cx/BeY9Vre+prebbqymjVuCUhqHC57XskbQx8hXBdOSyRdHsQ2MCzwJ4xKSI1vyLeF2eivefWrMBywBMNvf/RkDPY01Vt25tWrJ4PlvROQrB8VSe2eo7kDKIsQqj66XTP2guVjynum3MGEyBj0hODe8xHyxxdfr3cPRSfBm4hJBjeYNuSmnombAVpZyIkmbUCtiLcQxTt/tIuFApjhNLjrFCooepv3e51nbNPQaF/iRM93yA0nn6McMO2GHAG8BXbryTU/iWwafvEqqS3ApekzCSU9I4GAjUzGsO6DO+Fc1XO8TRBW++CYbtI2Lsgal9KSNz5f26g71Cb9s22V29Ss6J9zQi7k/ZtiPZ1pxImt6fZ1wG3E+zr/pZKu1eR9LjtxRO+/lrADwl2qNXA/A7AtrZvSKUd9b8GfJEwGSBCH8nj3UDTe0lfbtv0BvAMYRLqkcTaD7pDf0pJD9leJqH26YTr9i3AasCThGO+n+2pKXXbg4VNkvtl3UThAAAgAElEQVS+WNJ3CN/te2NA5ybgdULV3V62z06oParPXtIG3U62k3QSsO+M7EclLWf7nm5qt73+gsBWwEQgtdUzkh4DDuq0P2VyTO7v+mhQmv7bLzF9MOFhJ+xJ26afs8fZQB7znNrK20NxMuFcNhdwNnAu8LMmvuuSrmVkm+11inb/aBfGJjd/9hMlgNIFVj/lJ6XHWaHQB7jDct16V5G0KLBEa1JN0p7A3HH3WbbrJrvHvHYv6Ock2hztFStAWhN7v7P9YgPys9dVI9h+Jla9peQiMmWqS/og8FbbPwWurmz/OPC07VzZrU3wCMOrOxvD9saSNgUuk3QWcBJhYr21P6U9524jVX4lttzJ9vAVJ1a3kLQ08N64+b7YI2ZQSXrDbvsGSasB/4+QEAHBQnB120+l1I7XzrWAD7YCVZKWAk6StIfto1PqM3TdrrIEcICkg22nrDrNVl1JCJItb/sNSXMATwFL2342sW7OHjwAC8TvXC22v51Y/8O2Px+XdwQeiFVRbwN+Spj8TMWoPvtEDhUPA7dJ+prts0bQThY0i6//NHC8pB8QKvlTk61yfIDZnxBMOBE4W9K5DesnSx4s9BbK3EPR9jHAMfGeaSLBaejtkvYFLrL9QELttVO9dtHuPe1CoTB2KIGzQqGeBeMkgCrLxPXUjUKPIGSpt9gV+C4wJ3AIsE2faveCfjYkfaRm8yqtXji2r08oP6+kWWy/1jamWUlvU5Az2+RbhEm2du4jVIn0gv1KKl7JWelne6qkRwh2rDszlJCQ2p5zJHu+pJY7Gt7zaXrxhH2fJLUqq14F7mzf7qG+nX2FOvdQbNmwJCUGyDpWRiRkO2B9289UxvKwQv/GKwkWwMmwfUjd9ng8fk5au9YvEqorH5I0XXVlQl0I59U3AGz/M1ZkpA6aQcYePJGZCcHSXNfz6qT6+sCPIPz+lL6fYM7+R0fE5JNvS9qZ6ZNQklxTJC1G6Bn4dsKk8tnAoYTzTsogZYucQZSBtAXNGUyITJQ0vlUdL2kdYFOCQ8cJKV05GNBjnlE7dw9FINwzAVOAKZKWI1S//YSh5NauE+/RZPv7bdu3A14fKUGiaI897UKhMHYogbNCoZ6TgXlqlgFOSaz9LtuXVtZftH0UgKRf9LF2L+jnZO+abSZkMy9GmJhKxYXAyZK+4KH+anMDx5K+r1zOXhXz1AWPbD8WbSr7mV/mEpY0O8Hu5z+Bbdp+80nJbLnxybblSyrrqfs+Xcb0vQRNmJRYkLTnl5yM1EPx1ZTC0Zqz02SPPbx3areZtRo0q4j+OU76ZcH2X5Q+kjGf7VzVle+WdFdcFrB0XE9tgZu7B88f3YAF6Ag8p9BL7glgTWKAVNIspE/+yfrZ235C0mXA1wnXlVbgLOU15UxC38ILgI0IPfbuIFRbJq2mjeQMomwu6Yk6W1BJPWELSlugp5vkCCZEziX0Hv6bpBUJwfFvACsQquA+m1B7II/5aK1gCQHzruH8PRTrxnSPpOsIFswp+SJQd294ISHRMGUQp2g3r10oFMYIJXBWKNTQKVu6Idqb7FYv5qkn83Nq94J+NmwPs82TtCYhuPAU4aYuJQcC/w08FntHACxOyNo/MLF2zobf84+wb87GRpGHRyTtbPvU6saYtT5PzC5OxV2ECbeVbb+UUGc6cmYW2p5W3Rh7ZtRVO6bSfn91PfaP2Bf4GGESrC+xvWRG+b1qtq0O7ENoPp+SkSaOs1VrxAnuvyaWmUo4t/wOaNqK9D0N67V4yAl7JI6C2mBorEyaaPuIxPq7AscBbwMmV4I36xGSBlKS7bOX9D5CldmTwKq2/9iQ9ATbB8flKyRtQUiCeWOEf9NNcgZRBtUWtE6nqWACwDjbT8blbYHv2T5K0kwM9W1NxaAe82xWsDEofhpwmoZ6KB4tqYkeiusC32GoovZbcSwiPCunZFbbf2/faPsfDSQ9Fe3mtQuFwhihBM4KhRriw+jStn8c148GxsfdJyS2vXlB0rIt2wvHfj+S3g28kFA3t3Yv6GdH0noECxwDU2z/LLVmtGjcT9IhDGWNPmT7pdij51cJ5XP2qvi5pK8DB9qhF06shjiESs+zPmVrwiR+O98nZI+nDJztAjzTHjST9F7gz67pt9dFeiWzMEtj4Zi5ewBhouso4EsO/RX7Eknb2v5BXF7T9i8r+75g+4RU2q70SJT0UcJ5fQ7g8w59FVOygqTnmb7CUEyfoNJ1JN3N9N/xCYQJ/u1Tyyd+/Y7UVTDXIekm2x9KPZ6o9UHb/5dYZto5VdICwBaESpS3E/qYJiXeM25Us/0K4IrU+p2QNFerij8R5xMChdO9x9TakuZn6Lf2LDC+VU3qtH1KIW8QZSBtQTMHE2D4e16X0HMNh36SqbUH8pg7kxVszTia7qF4FPA5QmXhx+P/90t5v1hhXN25W9I8wGxFu++0C4XCGKEEzgqFer5JyF5ssSFh0mtOQr+STRNqfw24NE7ot26IPwB8Bdg9oW5u7V7Qz4ak/yBMaP+NEMi5oekxxEDG3W2bf0SoPktFbfWDpLWASbZTPiR9mWC9Wu2FswIhcJQyY7kXmKUuYGL7lQas1P4fISu8nbcQKhy3Tqg9kJmF0VLpAOB9wOHAzrZfzzuqRtgT+EFcPh5YubJvJyDpRIikDQnf6ZeBr9u+JqVeC9u5rTc3bls3IUkiZRChRU7739HS7eBlew+e9xICV5OA54BVuqzXzquSdiCcu5clJCIsaXvRxLoASDqeEZIREh/zfSUtAiwM3BWvoQsCk4HPEAINqVgReKukVRrWHk9wCqjeK7Tu2VP3KYW8QZRBtQXNGUwAuFrSecAfCW4RVwNIWpj0VdSDesyzWMEqfw9F2742Lk+NNp1Nfc9PBc6X9PlWIk50iPifuK9o95d2YQwSc60LA0YJnBUK9Sxs+8bK+vO2LwCQtGtKYduXS9qcYOfUeti/B9g8hR1Cr2j3gn5mLgH+QMjc3UfSPtWdtjfJMqrE2fu2p1U9xazKrQnZ6o+QuL9anMSdpNDs/H1x870OPRz6nZkkLWT7T9WNkhZqQHsZ29e3b7T9i9hTISXZMgslXcJQ1c9Skn5c3Z/4N34n8HuCbdmqwKrVCcYeCSakQB2W69a7Kyz9H6GH3BGESUYkTQvcJa5cb41hHYbObfdUJoOSMtrKq0TktP8dLV196rZ9ZZzoaQXLXgXeAaxi+9FuanXgaeAWQpD4BtuWtFkDui1ubVCrnfcCPwQeAmaXdCKhGudMQuJXSj5P+Mwb1ba9RKrXHiU5gygDaQtK3mAChGDwVoQA9VqVxK+3EZIrUzKQxzyjFWzuHorzxbmIFrNU11NW2tk+UtLfgesVeo0D/B34pu2kz0dFu3ntQqEwdlCJmBYK0yPpt7bf1WHfA7aXbXpMhf4mWnl1xPZ1TY2liqTHbSerOJO0LEOTfc8QelfsZfsdqTQr2iu3bTLBQvD3qbVzI2l7QnD6ywyv7jyCYEebzD5zBufXjvu6pL0XYbKjLrPwWifsxZPzNy7pM4xckZHLLjUpkn5te+X25br1BNrX0vkzd8rJsFgBcyHwT4aCSB8gZMdvZvuJVNq5SX1cu0G3xyjpJmBe4BzgHNsPSnrEDfX4kzQZmAjMRagIOBf4me3UlUcjjWl+4DknftCVdB9hIv8vkhYHHgDWrFq19pu2MlrgRg0xFEQ5r3U+i8lXC7ihHl9No9AbdaUO+1Jbcz7M8L6dRwB7t1aasu1rR9KHCX0Um7Dwa5zMx/w3ZLCClXSn7RUq638AFndDPRQlnTbCbtveqaFxzBMFX1CwoZ1k+4dFuz+1C2OHm3b+eAmgdIEPnfrTbNb6/w6l4qxQqOdJSavZHtbbSdLqhMyrQqHb3G77+bodcUIkGZVKmOl2EezzUnI/8AtgY9sPxfHskVizxVE12yZImo1ws5y6V0Y2bJ8p6c8E+5PlCMf/XuAgp++/9JCkT9j+SXWjpI8TmpEnoyazUIT+iU1kNV4naUVCH8F7bf8mpV6b9umd9kW7oX7l3ZLuIhznpeMycT3ppL7ttVO+/gw4ATip/bjHgPmJwKdyDKohUlecdINuPyz+iWDptRChyvFBGuyjaPsY4JhYvT2RYK/1dkn7Ahc59q1NhaSDCAGU+yXNDvyUYGP4mqStbf88ofw/HXt62X48Jn80VfGYSzurBW4Mhp5Ts2tuwrktWeBMg2sLeh3Bqq/F9ZX1ZLZ9ddS4U1yQWG9Qj3kuK9isPRRt75jy9UdC0ryEPm6LABcTenF/gRC0vpNQ3Vy0+0S7UCiMHUrFWaFQg6RVCRmzpzO8GmMHYCvbt2QaWqFPaauMuMr2enX7EmnnrITZlDDRtiZwOWEy5JSmMuU7jGkV4Nu2P5JrDLmQNAfwSds/SqjxToK9zY0MVcOsAnyIEEBNOslaGce0zMKG9A4CtiW859WAb9g+uSHtG2yvFZe/b3u7yr6er9D5d5E0YuWqE1oKStrH9uFxeYvqb0rSFNvJ7KVyVnXmJlaQ/tX23+L6OoS+tI8RqmmTBdYUrGb37ZQEU/m75dxl+2lJ44HNCdXb7wTmAzbMdb+q0FdxEuGeeZnEWvcCy9m2pM9F3Y8R+q2dYXvVhNpPMzyIM7G6nnJSPZd2tQqmvSJmpAqZRGOZLoiSsuJNoZdfRxJX608m9Cp9CJidkATRsuY83M1Z6TWO8rpTDOQxl7Q7FSvYprQlPUropVbb1y11JbOkPds1Cd+5G2w/klj7YuCvBHvv9YAFCZ/D7qmTOYt289qFsUmpOOsOpeKsUOgDbN8Sq8t2I2RVtaoxticEz0rgrNBtqhePCSPs6zqdAmMKDZonEjJNU2lPJfRLmIuQKTwZWDBOQF6Uw3LH9q0a8jnveyTNDGxImJDYgFABmCxwFm3E3k+Y7Foubr4O2NX2P1PptogTunsTez/FSdcjbd+dWHorYEXbL0p6CyFQ3EjgjGCh1uJ9bfvG1I3rv8jJtjfIpD0RODwu78/w39RGpO3LMlPdxmg9M3NC3V7gXGAz4G+xwvNHwDeAFQgTf59NqP0wcJukr9k+q9MfdTtoFl/zb8BpwGmxKmAr4GhJi9terNt6oxjPPZKuIyQJpOYVD2WCbkiwq3wd+E0DFbV7t6032V8vl7Y7LNetd50OQRTZXie1dl2QRA3ZggKfA97lPLag2YIJkWzuFIN6zAm93RrXdv4eivPUbFsCOEDSwbbrql27xVK23w8g6RRCH8fFm3g2KtpZtAuFwhihBM4KhQ7Y/hNwkEIfpEmEgNlHSG8JcZ7tLePyt2zvW9l3ZcpJwJzavaCfmawTES0kLUDI3J1EsOG4qAldB6/8s4Cz4gPpFsC+JLTc6YSkhWjwM89FrDTcGvgEIRlgTWBJ2y+m1rb9skIPqD/HTfc1FDT7FHAkYSK9ZdW5CnChpL1sX5xQ/uXWZ2v72RjEaIqRvs/9/F1fIKO2OizXrXebyySdTOhP8g8IPUmAo4GfjPgvxz7jbLcstbcFvmf7qPh7S5o9bPsISWcB35a0M3ASIXO+tb8ROzPbTwPHS/oBIQEsKZLWBb5DuGeYSqhKOI3wPf/v1PrAyzEh4k/AOgzvxTRnSuFO1Sat6u2mtFvJPrb/nlIzks0CN5ItiKLBtQXNGUyAUE07EbhGUsudopGknwE+5lm0lbmHou1DOoxrAvBz6m1iu8WrlXG8LukPDQZwinbz2oVCYYxQAmeFQg05sxkJFjst1icED1qkngTMqd0L+jlZMGZ0qrJMXE/63qNl3eaEIMqyhF4FS9peNKVu1F7X9tVxeUnbj9j+K/BdSc8m1q7rWzABWAPYPaV2bhSabT9OmNjdy6ER8iNNBM0U/ORPIdjf3kH4jq8o6TZgZ8/A5uxNciiwvu1HK9vuknQ1wds+ZeBsKUk/jsutCcfWOrY3Sag9n6TNCJVI80navDKO8Ql1czO+8l6nI3EgI2cyxN7AFOAxSS07ysWBM0hb6dYLVCdT1yVU+2H7DSn9PKvtJyRdBnydEDhpBc6S9QGK1eFfZShwdTbhXLddXE7NUYTKiJuAj8f/75d6grPC7sD5hHulo1sVMJI+Adze0Bgar96Omv9F+I7PFdf/DnzL9okJZd+T8LVHQ7YgCqGS87C4vAND9+jLEs6vKYMoi0o6rrK+cHXdCW1BMwcTcrtTDOQxz6idtYdiJ2LlXerzzAqSWs9AAsbFdYUheN6i3VfahbHIG/2cb1roRAmcFQr1ZMtmJG9lQO6qhNz6OTmZoYzO6jKEIENKniZUHB1IsF1xnGRvgiMZeii6gOEPSAeQtsLz1rZ1E5pQ7wlk67HWEOcT+v5sBbyu4PHe1G/sOOA+YKLtNwDiw+hXCQ/E2yfUnqUtaAaA7UclzZpQF8JkT5UjE+tVuQ7YpLJcrYS4vsFxNM14YGM69MogUSAjskLl4Xtc24P5HAl1IWTDfxs4CFgGWJtwzGcD5gb+klg/J1dLOo9gtzM/0ErMWBhI1t8saryPkIzwJLCqm+s5dCbhd30BwQb0VkJSwvK2n2pA37avjctTJT3RYNAM278C3l2z/SdUKiwl7dCpQuzNkKt6W9KBhESftW0/HLctBRwraYLtJNV+th9T6E+7DHC37StS6IygnzOIMqi2oLU0FEyo6uVwpxjUY55LO2e1fkcU+qX+NaWG7WxW2kW7UCgUOlMCZ4VCPTmzGedUaHY9E2GybaWoLWBcH2v3gn5OfmL7/zJp70/4vp8InC3p3Aa1sz0gjTSBJulWQoVGX2J7ckwGWJuQHX84oTpnS8J3MaXd05q2P9M2HgOHSnowoS4Ea53FbT9e3SjpHcBrKYUdewlGC69l4uaHGrIE2b+hCfRe4zHbO+UQzvww/r/Ax2y/FCcX9we+SAiofRf4z4xjS81kQkLAwsBatls2PG8jfbXd+QR7zOkCCZLmatlmJmCC7YPj8hWStgC2aSUmNEC1ihVglup6UxaVo2B3QoVI18hZvU2oKFyheg2x/XC8jt9JIptMSScSemXeCBwmaVXbh83gn3WdTEGUgbQF7UQTwYSo0977ucX58b+UDOQxz2gFm7uH4t01OhMICTEpE/tqXVgq+zZPeS0t2s1rFwqFsYOcvKdpoTB2qWQzTiJY/pxJ4mxGhb4/HX+YKe0ic2r3gn5OJN1OqAQ4Bzjb9n0ZxrAUIYA2iWCbeRAw1fYDCTV/bXvl9uW69SaR9Hvbi+XQzkGstmpZTG1o+60JtR60/c4O+x6yvUzdvi5pb0oIEk5hKHt2FWA/YN+YyZ5Ke5aouxPwGCEwvBihF9ABlQn+FNpPAfcQbNsusP1cKq1eQtLttleq2T4H8EnbyWzUol3fWYRzaKqASSftO22vEJf/B/hzK7Ai6Q7bKzY5nl5A0ocJVa7Jen4p9L95KyFod5ftVyQtSAjmfcb22xPp3klIgmglm1xTXXfsU5MKSaeNsNu5gtftdDofvMnXPIZQvX0P4fd+MaEKK3mvL0n3256u0m5G+7qgew8hYPe6pDmBX9j+QAqtDvqdgihA2u+7pNUIwdcFgGNaAUMFW9DtbE9Kpd02julsQW0nS4iYUTDB9v2ptKP+I1G/tno85e9tUI951BxmBQskt4KV9CLwENHSPC4T15eyPVenf9sl/XcyvDrdwLNN3MflfCYu2r01D1HoXW7acaMSQOkCHzrt8mwVxP8OpeKsUBiBHNmMttdO9dq9rN0L+jmxvZKkdxECV+dLepUwyX2Oa6zluomkZYCFHBowTwGmSHo/cCzwDSBl5USr75OYvgdUTrvEgbopikGbS4FLJe2fWO5GhWbrh1Xsb5D0VUJvnGTYnhonYL5MqMABuBfY0vadKbWBIwgWrEvafgFo9Xs7Mv6Xsq/eIsDHCOeXKZJuJpxfLrb9UkLd3GzXWqibdCJt/6HvEj7vYyRdQ/i8L7Od1C4wMrOkWWy/BqxH6D/VYmDu/WPV+taEe7dHSGv9C/B5guXxQ8DssTLnW4Skq5SBhfGERIDqQ+iv4/8NJA3i2N4x5et3ka5f1zNXbz8haT3bV1U3SlqXYFWaileiVR22X5Sas+qL3MYIQRQSft89oLagBCeWLMEEANvZngcG9ZgrkxUs+XsonpsxWJLTprJo95A1aKFQ6C1KxVmh0GNI+iDwe0dbLUnbA58mVCgcnDiTMpt2L+j3EpJWIEy6bgk8ZXvNhFqXEqzc7m7bvjwwxfbGCbU/OtJ+R3u7RNqXUD+RJmDd1FmNvYqkx20ns6mMwaJTCf3s7oibVwRuB3a2/beE2q1gQuMo2FAu67YbrxjQub9TFV6CccwGfJxwflkHuMr2Nk1o56DDpNNSDUw0tvTnJFgqTQQ+BPwUOMv2zxJqHkB4v88QLGdXtu2YJHFGyutJbiQtSwhgTCK8/3MJFnrvaED7PoI95F8kLQ48QLCmzd6LKCWS9mzbZMJnf0PV9ig3KSrOajSarN5+H6HC7QaGV1CvCXzK9r2JdFsVITC8KkSE6p/lU+iOJVJUKmi4LehUD9mCJg8q9ULlRaza/zhDQaz7gCty3dO104fH/Le0WcHG7eOAO20vm1A7Ww/FJq4TI2gPZOXVoGoXxial4qw7lIqzQqHwZvlfQmUAkj4CfJPmepPk1O4F/Z5A0kzAgsBCBHuMpxNLLtQeNAOwfZdC76dkjBQYk5R6cvfImm0eYd+gkPpGZknbW0haGnhv3Haf7d9FW5iTEmrfQgjYIel421+cwd93E7cHzeLG1yU1dhPuYB93H/AbQhVM7uzeZChv/yEgVGQQgjfnxmSEMwh9MpJV8tr+uqSrCJaBV1a+dzMxVGnZr9xPqCbc2PZDALEiqAn+2Urwsf24pN82ETSTtK3tH8TlNWP1eGvfF2yfkHgI89RsWwI4QNLBts9JrD9afjnjP/nXkDSv7edb623V20nPrbbvVei9tDWh5xjA9cCu7ZPdXSb7NaPXgyikuY86n2ALuhXwuqSLac4dIesEl6RFgKsJlZS3x/FsDHxb0jq2n8w5vki/HXPXnUcceqcm65+p/D0UF6hJBpmG7W8n1M7pwlK0e8v5plAo9BCl4qxQ6DGUsTdJTu1e0M+NQg+WSYSHpLsJ/c4uTFmBE3Vz9pyamVBVtwhwue17JG0MfAUYlzLrT9KngEVt/09cv4XQw8CEflcpbdx6lgYqzh4GtmifUJZ0MLBJ4szCaZmkTWcSSppK+D2f2bZ9W4JV5CaJ9RdjqIfhXAxZwSbtTZITZew/VBnDQoRz3ERCIOs8Qh/L1NagA0nMVJ9IqLq5nHAdPaWhDP2no16LidV1219KpNuTGdMKvah+nlpf0jG2J8fl3W0fW9l3uu3PJNSufvZX2V6vbl8i7Sttb5Dq9XuVDkGUlYC3AT0RREl17CWJIVvQTxBsWncmsS1oTELpGDBIHExA0unAHbaPadv+JeADtndIqT8a+vCYX0VwHamzgv2qE/UdV/4ein8kJFvVBkJtH5JQO6cLS9FuWLswNikVZ92hVJwVCoU3S87eJLn7ouTWz4ak3xMsKc8h2FKmrjKrcqukXWyf3DamzzJk/5OKU4HFCJVAx0l6kmA1tJ/tqYm19yFMbLaYLWrPBZxG2v5HWZH0Ap1tKscllt8C+JGkbWzfFCcFTgLeRZgcSEnOm93dgAsl7cRwW61xwGYphSXdSAhOnwfs0kQVTC/gjP2HJO0SNd9F6K21t+0bU+kVAvG6MVXSXMCngMnAgpJOAi6ynaxHLbB323pTv7Oe7NHhYFnZhP5HKss7EPqztkhtG1h9fxNG2JeCBRK/fi019w9iqOeYbc+beAhfB07qEET5BuE7kJskxz5WD18DXKPhtqAnAslsQQkV0nOT73yyel0A3PZxCpaCvUC/HfMvARdLqrWCTaibu4fiH20f2rAmEII0klYk2FTea/s3Rbt/tQuFwtihryeiC4UxytnAdZKeAV4iWA6h0JskaeVRZu1e0M/JWrYfm9EfKY293GTgIknbMPzhaDYST+hHneVtvyFpDuApYGnbzybWBZjN9u8r6zdE3WfjpGvfYrvOWqsp7dtiVchFknYDdom7NrL9cmL5d0u6izDBsXRcBtL3ZrH9BLBazNZt2Wr9pD2bNxH7EbJ2RwwcStrf9jcaGE9jZJx0+hBhEvcq2x1tjSS9z4l6EQ0ytv9BqDI8S9L8hID9vkCywJntM1rLkuaO25IFZ6vSHZbr1htD0jrAX5uQ6rDcBDk/+/GSNu+00/aFiXSvIlR3XUioWn48kU4nxkIQpa9sQckYTIi8NMK+xqyXZ0BfHXPns4J9d9u9+dKV+/ak9+kVzek3RtcG20ckE5YOArYlPIsfLukb7UmtRbt/tAuFwtihWDUWCj2IpNUZ6k3yj7htWWAu27f3q3Yv6Pc6Ka1/4iTXcnH1XttXp9Bp08xmK6URbCgl/c720k2MY9CI9l0Q+ptNBX4OfAF4A0KVQkLtEXv2jSZ43W0kzQfsZvvrTWvXjGVgGmH3SpBwkD7zJqicX2pJeX6J+v8F7E+oXAb4O/At2ycm1HwReIg4yRiXietL2U6aCCLpbqYPEk0AngS2d2I7WEl3EqpKZyJY+K3N0OTnNY4W4Im0WxZ2AvZgyM5OwGTbiyXUfpZgP1s30WvbOyXUHg9sTqjan4PQx/Gc1L+vqD3Ncvlf2dcl7UG1Ba39XJsIJkSdh4G96nYBh6e8Xx/gY57FCjb3fbqkCa3zmKQFCEk3k4C3E6rW676H3dK+F/hgrLR7C6GFwQdT6RXtvNqFsUmxauwOxaqxUCi8aWzfXF2P1S+rER5Q/6NftXtBf5CxfQ2hMqNJOmUWtsaUMrPwV6q3qNyVYB1ZSMNtDNk6vUD4fd/CkN1Tsv5TOQJjLeIE01cJD99TCRW2hwLbEypjeoExdRP7JvkvQkVYbgbpM2+C6vmlnaTnF0kHAmsAa9t+OG5bCjg2Tsb9dyLp1NUmM1MAyfkAACAASURBVGJz4JXKuoFnW8lPDTCecNxbx/zXDekCnAzMU7MMcEpi7cdSBsdGwqH37mmSziDcnx9HCKAl7XUV6VRpJyC1TeSg2oJWAzbTBRMSawNcB3yyw77rE2sP6jHPYgWb8z498qqkHQiVdssSKmuXtL1oA9ov234RwPazkmZqQLNo59MuFApjhBI4KxR6FEmzEQJFWxOspS4AvtPv2r2gX2iUFYCFgN+3bV+MYNuYkj0IvXC2Zmii7QPA7MCmibUHFttL5tKW9Aj1vVkgZOinrDI8kzD5cwGwEXArcAfwftupv+ujZZCy6HolYDVIn3lycp5fgO2AFao2VrYfVuipdyeQJHBm+7Fof7sMcLftK1LojMC5OasmbS+RUfuQXNp0thSbA/ik7WR9WiWtQQicfBi4AdjM9i9S6bWRM4gyqLagOYMJ2N5xNH8naYeqZW6XGNRjnsUKVvl7KD5NSOY7kGDhb0mp2xa0WErSj+NyK5m0tY7tTYp2X2kXxiB+4/XcQyhkoATOCoUeQ9IGhIfRDQjVP2cSSshH9dAwVrV7QX+M0CuTvd3iaGD/9gxDSfPGfZ0mR940tp8G1mjrOXVZExaVg4yk9glWA894eL+5VKzStj4TsCXBAii1FewE2wfH5SskbQFs4xH6X2Wg384vI1ECVn2KpFmAjwPvjpvuA66w/Vpiadf1frH9kqRkv3NJJxKuYTcCh0la1fZhqfTqhtCg1qiJNt97295lhn/872scN9J+219KpU0I1LbGMTND/Rs3IPQIThI4k/Qo8BxwDvA54LW4fWUA20kr/jIHUWZS6Jk4U2W59f2fucta7Swoac+o11omrqeuDsoZTPhX2B0ox7w7jAc2pnP1dr/2UNyfUEV7InC2pHMb1P5U2/qRRbuvtQuFwhihBM4Khd7jcsID71q2HwGQdOzI/6QvtHtBPxsxQ3ge239u274A8EJlMq7fPo+FbN/dvtH23ZKWaGIAMVBWgmXNcVTNtgmx0nSS7TtSCdt+FiBacWwH7E2o+voP2/el0m3RNuHyLCGjV3FsyXvDjIJkFQo5qGQutz7zVrBMwLgsg5qeV2b8J4XRImkRwvn8j4RguAiTf9+WtI7tJxPKPyFpPdtXtY1p3TieVHyEUOn2uqQ5CfdRTQbOFqhM6E6H7aT2fZKWJ0x2tWxw/wc4gWADXHe96Sa3VZYPAb6WWG8atu+R9FFCFdAnCIGNNQmVQC8mlH6UcC7dMP43bFjAugm1/xVSBFEG1RY0ZzDhXyFFEH9Qj3kWK1jbm1Z6KJ4cn48b66Fo+xjgmGizPJFwTXm7pH0JPc4eSKh93Wj+TtIFtj9dtMe2dqFQGDuUwFmh0HusTLhR+3lshnwO6TPaekG7F/RzchwhcNiewbcWIXv4vwBsn97ssJIz3wj7emViu9BFbK9Tt13SKoTfwUfq9ncDSbMCOxFsOm8ANrX9UCq9NtonX2BoAiZp7yUASRsCiwJX2X60sn0n298DsD0l5RiaxvY8M/6rtEia1farbdveavsZANur5xlZ3/J14KQ4+TUNSV8i9LTbIaH2l4CLJd3AUEBlFUIwoz2ruZu8Yvt1gNjgvukKsJmBuclXeXYycBJwE8EG9w5CwGSbugrAblKtaJI0OUGFU0ck/QF4nPDe97L9gqRHEgfNsL12ytfvIl3/Pg6qLWjOYMK/SNcryQf1mJPRCjZzD8XWGB4GpgBTJC1HqOb9CcESOTdJnxeKds9pFwqFzMguTjWFQq9S6SHwaUJ/jItsf7fftXtBv2kk3Wb7Ax323Wv7fXX7xjqSzgautn1y2/bPAuvb3irPyAo5kPTrlL1y4kTja8AxhAnHYaTq2RC139FuSdoUkqYQgvC/JtifHmP7+Lgv6WeekzjB83nCRMddwPcasOtraa8DfJ8w2fNr4HOtgGU/f+a5kXS/7Xd32Pdb2+9KrD8HoQKodc2+D/hhygCOpBeBVgKAgKXjeqsnzPKptKN+1u+zpDtsr1hZf9h245NcTX8Oko4h9GO9BzgLuJjQ4y51EsY+tg+Py1tUJ9AlTbH9lZT6o6XJ4zEAtqDTUQkmbGW7F4IJSLrd9koNafX1MZe0nO174vJ0VrC2/zOhdnsPxXPdXA/F9rHMCiwHPBEt/rOT85pbtAuDzo07rF8CKF1gjTN+1pM2750oFWeFQg9j+0bgRkm7Ax8DtgIaCR7l1O4F/QzMOcK+mRobRfNMBi6StA3DM/RnA3qxf0IhEZIWIn3fqZ9HjRXif1VS9mwAuIhQVZuDTwIr2X5N0sHAWZKWsr0HPdqfqEucAbxKsK77BCGYsXtD2ocDG9q+V9J/Aj+TtJ3tm+nvzzw3L42wL2kljqQrbW8AfC+lTg3vaVivnU6VCYsBE20fkVh/DkkrVcbxcnU9dc+tXNieLGkPYG3CJPPhBPvfLYGf2P57IumJUQuChV+18mQjoCcCZyQ4zw6qLWg7MZgwK3Cs7QNyjaOGX3b7BQf1mOeygs3dQ1HSd4Dj473beEIl8+sES/m9bJ+dUr9QKBQKvUcJnBUKPYakbW3/IC6vafuXtt8ArozZbX2p3Qv6mXla0qq2b6lulPRB4M8d/s2Yx/afgDVidcZycfNlse9YoQ+RdDzTB8gmAGuQOKhh+zMpX38G5AyWzNKqtLL9nKRPAt+V9CNCkLpfea/t9wNIOpUw8dMUs9m+F8D2+ZJ+A1wYra1KtmI6xkvavGa7gHkTay+Q+PVryVXJWmG91oJCX9YtCIGctxMSBlLzFMMtvKrrSXtuVfooAswp6fnWLkK1X9LvnIN1zDXANTGYsRFDvajemkhWHZbr1nPS9SAKg2sLmjWYIOkY25Pj8u62j63sO711b2f7CwnkB/WYZ7GCJX8PxQ/b/nxc3hF4wKHv2tuAnwK9EDjLeZ4t2oVCYeAogbNCoffYE/hBXD6e4RUKOxGy3PpRuxf0c7I3cJ6k0xleebU9YRKkr7F9DWHyp9D/3Nq2buBZYM/UNiiS9hxpv+2U/RMWGcl2J7HN0u8kfdSxCXbsh7SzpP8m2OH2K9N6i8Vqu0a1Jb3N9lNR/15J6wGXEqz0Cmm4jlBhWcf1ibU7Be2AdFawbcEbiEEbGgreEL7rOxAqE5YlVO4uaXvRxLpA3p5b7oE+ii0ceileIukB4OWUUh2W69a7TuYgyuwe6jX826i/TwKdGdF08kXuYEK19+0OwLGV9aRWtAzuMT+fYAW7FfC6pIubGEPO83nklcry+sSKWttPpb6HlDSv7ec77Fvcdstift+iPfa1C2MUv5F7BIUMlMBZodB75MzkzJ1Fmls/G7ZvkbQa8P+Az8TN9wKr9YqneqHQJS4a5UNKCkaa5Ew9IfASw213mmSLuo22D5R0UtODaZAV2ipAxsX1JgIK+wELEapfIAj+QdLawG4JdQca2zuO5u8k7ZAge388sDH19ysprWCvAt4WX/+cxOfQOp4mVHMeCNxg25Ias1quCVYaeAa4w/YLTY2jaTJayK1YOY+OazvHzpFQt0XOIMpA2oKSMZgQGen5MDUDecxzWcH2QA/F5yRtDDxBsKbcOWrPAoxLrH0tMWlY0lW216vsm9raZ/vKot0X2oVCYYxQAmeFQu+RM5MzaxZpD+hnJdoWZutZUCg0xLWM4iElBbYP6bRP0uRUupFnm7TZqWL7JUnjJW0CLBI3PwFcYfuJHGNqAtszZ9T+eWtZ0oS47S+2nwO+nmtchWnsTrDb6iaP2d6py685Q2Llx3hgc+BkSXMA5xKCaH9pYAj7M2QPeLakcxvQrFJXYTgBWF7Szn1s/ZzLQu5O2yslfP0ZkTOIMqi2oDmDCQAzSZqf0PO5tdw69qmv84N6zHNZwebuobgrcBwhGWVyyzWAYEl8WWLt6vlswgj7inZ/aBcKhTFCCZwVCr3HuyXdRbhYLx2XietL9bF2L+hnQ9Ld1AcHWw9HqbNoC4Wm6NWHlD2BYxK+/isz/pM0SNqeEJS/kjDxBbAOMEXSIbbPzDW2fkXS4oTJn/UIje4laV7gamA/249mHF4hzbmm9jVjIOuT1cz5bmP7b8Bpks4gTDweR6j+SWk/29I+BjhG0lJReyrw9tjP7yLbDyTWr60ylPQO4DxCBVY/kstCLnciW7YgygDbguYMJkCo5r2NoePcWJXXAB/zYTRoBZvVfSZerzaq2X4FcMW0gUj72/5Gt+U7LNetd5uiPYBJ24VCYXSUwFmh0Hu8Z0C1e0E/JxvnHkCh0BC9+pCS+oF8N0nVajoDz9j+fWJdgAOAD8Rqp2nECcdfASVw1n3OJQRit4k95ZA0M8E28xxg9YxjK6Q512zXWojHekOCxdUGwC8YnjnfVSStEbU+DNwAbGb7F6n06rD9MDCFEJBfLo7nJ8AyTY6jMp7HYpVEv5LLQm7BkfqFJu4VChmDKINqC5o5mIDtJbr9mqNlUI95RivYXn1GaGcLoNvf9da5VQw/zwpYoMtaRTu/dqFQGCOUwFmh0GPYfqy6LuktBD//x20n7Y+TU7sX9HPS/t4BJL2VYO/WSw8KhcKbpVcfUlL/zo6s2TZB0mzAJNt3JNQW9e/vDYoVSSreanuYZV0MoJ0j6bBMYyoM0fXvve17JH0U2Br4BKHv15rAkrZf7LZeC0mPEqoazwE+B7wWt7d6czTagycGq2YFjrV9QJPabeN4F2krI3KTy0JuZmBuMl07cgZRGFxb0NGSIpjQEUnLAnvb3iWhzKAe81xWsLl7KI6WFOe/kxnqxVxdBjglgV7RzqtdKBTGCCrzsYVCbyHpUoKN0z2SFiZkUt4KLA18N1ri9J12L+jnRNLqwDeBvwCHAd8n+MfPBGxv+/KMwysUuoakEfv4jdSHrAva1X4Rw3YB42w3nlAkaRXg27Y/klBjB+AgglVjq8JtcWB94LCK3VehS0g6h3A+P4Ohz3wxYAdCUG3LXGMrgKQTbH+hy6/5B+BxwmTjVNsvSHrE9pLd1KnRvZbOgX/bTtaDJ+p/Bzje9r2x19pNwOuEyeW9bJ+dWP8Spn//E4CFgW1t35RSf9CQ9GvbyXqR/rs0FETppP0O4Dzb/WoLOiok3Z6i/92Mqp9sH91tzVGMqa+PuaQ7bK9YWX/YdvK2Cam+Q92mV8+DhUIhLTduu24JoHSBNX5w9ZhK3C0VZ4VC77Gk7Xvi8o7Az2xvL2ke4Jek7cGTU7sX9HNyAqHh8XhCD5yP275Z0ruBs4ESOCv0BSMFxiRNTqzdM/0iWti+VdLciTXOkPRjgnXcInHztcD+tv+aUnuA2R7YGTiEoc/8D8AlwKm5BtXvSDrG9uS4vLvtYyv7Trf9GYBuB80i5wObAlsBr0u6mAaspXL24Il82Pbn4/KOwAO2N5X0NuCnhHuYlLRX8xp4FnjQdrbekqmpsZAbhu0LU0knet3RieezkOvIANiCjpZU57tc1U8dGYBjnssKdqxMSnf9PCjpfcDStn8c148mzAsAnJCyerxoN69dKBTGDiVwVij0Hq9WltcjPCwQM5ff6GPtXtDPySy2rwSQdKjtmwFs3y+NqYSMQuHNsCf9HSCfDkkLkXiiQNIywEK2z2nbvqakp2z/LqX+gPI52ycQJvsKzVGt3NwBOLayvnxKYduTJe0BrE3o73U4MF7SlsBPbP89ha6kfWwfHpe3sP2jyr4ptr+SQrdCNTi1PrGXm+2nmrh/sX1ddb1i8z07Dfa/ykCdhVwLA6kCZ+slet3R0nNBlAGwBR0tqX7ws1cq438bkyL2SaQ1KgbgmOeygs3dQ3G0pOhZ+k2GW51uCHwVmJPgGrFpAs2inU+7UCiMEUrgrFDoPX4v6YuEzPSViZVGksYRekb0q3Yv6OekGhh8qW3fWMm+KxTeLH0bJZZ0PPV2YmsAuyeWPwbYv2b783HfSBOwhX+PnQhVEIVmUYflRog9Sa8BronVCBsBE4ETCfbLKZhICNJB+J1XJ/Q2IlSzp+Q5SRsDTxB6uu0MIGkWYFxi7RFtviX1rc237R0z6f4lh26FbEGUGdmCNjGGHidFMAHyVT8N7DHPWMmctYeipING2G3bh8WFKQnkF7Z9Y2X9edsXxHHtmkCvaOfVLhQKY4QSOCsUeo+dgUOBjwFb2X4ubl8dOK2PtXtBPycrjJFmyIVCSvo5SHxr23rLTmxP208n1l7I9t3tG23fLWmJxNqFQpPMJGl+Qn/Q1nJrAm7mJgdi+1XgEkkPkLYyYaRgYROTj7sCxwFvAybbfipuXw+4rAH9gbT5lrQa8F1CH+C7gZ1s/ybvqBohWxCFwbUFzRlMgHzVTzC4xzyXFewfbR+a6LVHwz9qts0JfBZ4C6EPeSqG2cnbXr2yumBC3aKdR7tQKIwRSuCsUOgx4gTq52u2X0PIYu5L7V7Qz4ntRif0CoVcSHqB+gCZaKA6ISMX2X6+boekxW0/nlB7vhH29fNnnpPlKwkQVUSYaJy36QENCOOB2xiaVG/Mqi9j7yV3WK5b7764/QChsq19+xXAFa11Sfvb/kb733WBQbX5/h9gL+B6YBNCgHDDrCNqhmxBlAG2Bc0ZTMjax3GAj3kuK9iszhO2p12rY/LF7gQHgXNI30PxSUmr2f5VdaOk1YEni3bfaRcKhTFCCZwVCj1GB0uIadjepB+1e0G/UCikx/Y8M/6rvuRaggUtkq6yXe0TM7W1LxG3StrF9snVjZI+SwgyFLrP3bZXyj2IQcP2Ehnlc/VeWnGMVKxvwfBeIt1iUG2+Z7L9s7j8I0l1drx9R84gygDbguYMJtRVPxl4BrjD9guJtQf1mGexgiV/D0UkTSD0XN6GcA1f2fZfG5DeFzhX0ukMBWU/QOjXulXR7jvtQqEwRiiBs0Kh92i3hBgU7V7QLxQKhVRUs2gnjLAvBZOBiyRtw1CgbBVgNmCzxNqFNiTNGm38Cg0haVlgb9u7JJTJ1XvpzjESpE11nhtUm+/52gIKw9YTWqllJWcQhQG1BYWswQSor36aQKjs3tn21Qm1B/KY57KCzd1DUdIRwOaE9/5+239vStv2LbHSaTfgM4Rz273A9oRAzi1Fu3+0C2MTv/F67iEUMlACZ4VCj1G1hJC0QNz2537X7gX9QqFQSEg2OzXbfwLWkLQOsFzcfFniyaZB50fVFUkiWIhtDWwMLJRjUP1ORrtEyNd7aaz0hkwyzjqb79jb7tpo9d2vXMfwgEJ1PaWVWm5yBlEG0hY0ZzABOlc/SXoHcB7h/J6KgTzmDK4V7JcJPUkPBA4It25AQzbb8X79IEkrA5MIwZuPABek1C3aebQLhcLYoATOCoUeRNLXgC8SmttL0mvA8U00y82p3Qv6hUKhkIgFJe1JePhuLRPXF0gpLGkOwsTyMoTM4VNtv5ZSc9CxPQWm9UnYGtiUMLm7G2EyqpCGXHaJkK/3UvV8Mh22v91pX8MkqTiTdBBwnu37Jc1OsGpcAXhN0ta2f55CNzcZrdSykjmIMqi2oFmDCZ2w/Zik1J/7oB7zQbWCnSmXdqyMnxT/ewY4F5DtdYp2/2kXCoWxQwmcFQo9Rpz8WAv4oO1H4ralgJMk7WH76H7U7gX9QqFQSMjJwDw1ywCnJNY+g5A1/Qvg48B7CPaNhURImkLo6fQ4cDZwCHCr7TOyDqz/yWWXmLP30szA3KS3fH2z/GjGf/JvsRVwWFzeIf5/AWBZwrmvLwNnkj4J3GX7sbh+EPBp4DFg99Z99KDQUBBlIG1BcwYTRkLSuwgBvZQM5DFncK1g121VrUpasnoelbR54vd9P+E+fWPbD0XNPRLqFe282oVCYYwge6y4exQKg4Gk24H1bT/Ttn0B4MqUfSxyaveCfqFQKPQjku62/f64PAtwi+2VMw+rr5H0NPAAwd7oEtsvS3rY9lKZh9bXSLqfkDncCiL9kFDxl9ousa730jBSTbhJ+nXO33MM2HTCtg8bYX839G9v3R9KuoBwv/i/cT3rZ5MSSXcBq9t+UdLGhOrGScBKwBa2B8FWbRoxiHK67Q81rDs/8Jz7eFIlczABSZcwvdXrBGBhYFvbN6XUrxnPIBzzkYKCtr1TY4NpkOo1o/36kfp6ImlTYCKwJqGy8RzgFNtLptIs2vm0C2OTX2790b497zfJmmdd1+vJfsMoFWeFQu8xa3vgCEKvrwYyKXNq94J+oVAoJCHz5PK0Hh22X6vYLBXSsTCwPmEi+xhJ1wDjJM1SbDKTkssuEep7L7VI2XMq9w/6HzXb5gQ+C7yFoWqwVLwsaTngT8A6DLdCnTOxdk5s///27j3KzqrM8/j3F1CSVlBEGBVRuUUQIRBB6JblaOgegWZERNs2Rm6KjlxWEJAWsLulWdgoYGAJagflIi0it0FG0gKCyuAytAGCQBKFcYabYM+AThgucvvNH+9b5ORYVWml9tlV5/191qrFfvdbqedZtYtKzvuc/Ww/3o7fS9OC92bgZkmHVMyrqDUVUQrH7mRbUJpzI0cKBpf1jKFp31h699GpfdcGHgbusv1UycBdXfOutoJl9b9P+/9uLfp3re0rgCskvQTYm6YzxEaSvgL8V9vXJPbwxI6IqSOFs4jJZ7wXAEVfHFSOPRniR0SUMtrD5ZfQtAEq/XB5lqSV7Vg0BZyVVD6fZJjZfpbmAdv32odtewEzgPslXW97btUEh1TFdok1HzTuVikuALZPGxlLWheYDxxE887t08b6cxPoCOBSmvaMC3pafe8J3DqA+LVI0kuBx2l+Br7cc296nZQGoloRhY62BaViMQHA9o9WCyhtALwdWAcotou41ck173ArWI8xHu26TAL2Y8CFwIXt7sb3A38DFC/iJPbgY0fE5JfCWcTk0/uAs5co/0K4ZuzJED8ioogxHi4fyAAeLtteq+TXj98naSfgPtsPtW0aXwK8GLgK+GHV5IbYKO0STXPg+1LbjxaOvTOwENgcuB04yPbykjEBbD9SOsaaSHoFcCTwIZqHybNt/2YQsW0vBrYaZX4RsGgQOVRyOrAUWAkst70EQNIOwIM1EyupchHlqZ72fO8CLmrfJLG8bYM8rKoWEyR9F/i07TskvZpmnZcAm0taaPv0guG7uuYn0ZzjRtsKdh6rWsF+leZ7MYw2k3QlzbOHkTHt9cDb97V/jy5sPxJ7yGNHxOQ0zH/ZR0xJNR9w1n64Wjt+RERJNR8ux8D9E/DnAJLeDpwMHA5sT9MO5oJ6qQ210dolvgLYTtJHRs7pKeQsmjaBNwDvpilsDOvDxedJOoWmVeBCYFvb/2/A8U+3fUQ7nm/7jJ5759k+YJD5DIrtcyRdDWwE3NZz6yGaN2UMpcpFlK62Ba1dTNjU9h3t+EDgWtv7tW9C+jHN79pSurrmnWwFS/PvsxH9u1v7ryMiogNSOIuIiIgorPbD5Ri4tXp2An0AWGj7MuAySUsr5jXUxmqXKOn1wMXAzgXDT7N9bTu+RNKxBWNNJkcBv6M56+j4njMUB9UK9u094/2BM3qutyscuxpJ82z/M/CApLfRFBCw/aCkw4AzqyZYTs0iSlfbgtYuJjzdM94NOBvA9qOSniscu6tr3slWsP07WiMiIlI4i4iIiCiv9sPlGKy1JK1t+xmah04f67mXf38PmO17JL2ocJiX97WKXO3a9uWF41dhe1rlFMY7f2mYHQn8czv+EjC7595BDG/hrFoRpattQSdBMeE+SYcD99P8nH8PQNIMoOjv9a6uOR1tBStpb+C1ts9qr2+iKZoCHGP70mrJRUREFbVf6EREREQMPdvTbM+wva7t9Xo+1k3RbCh9C/iRpO8ATwD/HUDSFsD/rZlYF0l6I03huqQf0bSKHPnovd6rcOxqJM3pGW/ad6//zLkSpklavz3ramT8irY17jC3AB+vYDjMBcT7JB0uaR8GXESRdHrPeH7fvfNKxq5J0t6SDu25vknSL9uP9w0ghY8A2wAHAB+w/dt2fhfg3JKBu7rmts8B/iPN937PnltD3QoWOAa4sud6HWAn4B3AJ2okFBERdeUdrxERERERE8j2SZKuA14NXGPb7a1pNGedRQGS/hvgvulX0KzDvJKxx2oT2QGnsmq302WsvvPpM0DpnXYvA25mVbHolsLxJguPMR7teph8BPgHmjMkB1pEoaNtQWmKCX/dcz1STHgJzfe86C4c2/8G/JfeOUnrAz+0/YOSsenomne4FeyLbd/Xc32j7YeBhyW9pFZSETE52KW7A8dklMJZRERERMQEa1s89c/9okYuHdJ/3o6Bh4G7bD9VMrCk/wz8zPY97fXfAfsC9wDzR87GGUJVdz7ZfkPpGJPUVpJ+RvM93rwd015vVi+tsioXUbraFrRqMaH9XXqx7RWS1qHZZTgLeEbSXNvfLxl+jPGw62or2PV7L2wf1nO5IRER0TkpnEVERERExJTXfxZP277v7TQ7JErvRDqJZtcLkvai2eH2QWAH4KvAuwrHr2VS7nySNBP4lO2Da+VQ2Na1E6ihchFlWlukm9YzHimmDHNb0NrFhA8AJ7bj/XvizgTOB7LmE6+rrWBvknSw7bN7JyV9HPjXSjlFRERFKZxFRERERMSUJ+m7wKdt3yHp1TTFsiU0O3IW2j59/K/wgtj24+34vcDXbd8M3CzpkIJxa9tM0pW0O53aMe31pmP/sYkhaTuanYavAa4AzqLZDbEzcFrp+LWM7GzsJ2kaTcF21PtDoGYRpattQWsXE57qaXf8LuAi288CyyWVfp7V1TWflG+IGIBPAldImsuqtX4LzZtv3lMtq4iIqCaFs4iIiIiIGAab2r6jHR8IXGt7P0nr0pzRUrJwJkkvBR4HdgO+3HNvesG4te3dM+5vldl/XcLZwFeAnwC7A0tpCigfsv3kAOJXIWk94FBgY+BK4FrgMOAo4Dbgm/WyK6paEaXDbUFrFxN+J+nNwK+BdwJH99z7k5KBO7zmXW4F+2eS5gDbtNNX2b6+YloREVFRCmcRERERETEMnu4ZbISFAAAAFm9JREFU70ZTVMH2o5JKn+h9Ok3RZiWw3PYSAEk7AA8Wjl1Nf3vMCtaxfV47/rmk+baPqZnQgFwA/IamYPhR4Diah9rvsb20ZmKFVSuijGXY24JOgmLCEcClNDsLF4ycFylpT+DWAeWwmmFfc7rbCnYRcEj7s51iWUREpHAWERERERFD4T5JhwP3A7Npzj9C0gzgRSUD2z5H0tXARjQ7fkY8RLP7bShJ2ht4re2z2uubWHXu0TG2Ly2cwvS2ODnSSu13vde2h7W12ma2twWQ9DWa4uzrhnmXXataEaWrbUFrFxNsLwa2GmV+EbCoZOyurnmHW8GeC1wj6XzgC7afXtMfiIiI4TatdgIRERERERET4CM0OyIOAD5g+7ft/C40D8SKkTTP9gO2bwX+dGTe9oPAu0vGruwYmlaBI9YBdgLeAXxiAPEfAr5I8xD7tL7rQbSKrOX5B7ptq8L7O1A0w/Zi21vZ3sD2iT3zi2x/sHD4s4ELgX2B/02zw/R/AFvYXlA4dk0jxYTjJRV9A8JoJJ3eM57fd++8wuE7ueaS1pN0rKQzJf0nNQ4Hfgn8Ve38SrF9Cc2bbtYDlkg6WtKRIx+V04uI2ux8TMTHFCNPwaQjIiIiIiLWRNL6wG9d+EWPpFtsz+4fj3Y9TCT91PZOPddn2j6sHS+2vUu97IaXpGeBx0YugRk05+sJsO31auVWkqTTbR/RjufbPqPn3nm2DygYe6nt7Xuuf2l7aM976tWe3/i3NOcIXgA83/rW9hcLx672u7Wray7pO6xqBbsbzU5qAfOHvBUskl4MfBqYC3yb1X/WT6iVV0TUd+Nf75oCygTY9aIbtebPmjzSqjEiIiIiIqY8SX8HXGx7haR1aFo1zgKekTTX9vdLhh9jPNr1MFm/92KkaNbakMIkbQmcAmwB3A4cbfuB0nFrs71W7RwqeXvPeH/gjJ7r7QrH7mpbUICnaAq16wDr0lNMGIDxfreW1tU172QrWEm70+xYvhKYbfvxyilFRERlKZxFRERERMQw+AAw0r5t//a/GwIzgfOBkoUzjzEe7XqY3CTpYNtn905K+jjwrwOIfw7wDeAGmpaYXwLeO4C4UUfNIspIG9DRrg3MGXA+AzEJignT2p3D03rGI2tfuoDcyTWnrxWspE60ggWOB95v+87aiURExOSQwllERERERAyDp3paMr4LuKg9/2m5pNKve7aS9DOaB7qbt2Pa62Fu7fVJ4ApJc4GR3RdvodmZ8p4BxF+3p2h3iqRh3QESjWpFFNvvKPn1J7HaxYSXATezap0H9v94h9d8lqSV7VjAjPZ6qFvBAkeO9XMu6cO2Lxh0QhERUVcKZxERERERMQx+J+nNwK+BdwJH99z7k8Kxty789Scl2/8G/JmkOcA27fRVtq8fUAr9rdRmdKSVWldVK6J0tS0olYsJtt9Q8uuPp6tr3uFWsF+X9GPgWNu/BWj/TfFl4BGa8/0iIqJDUjiLiIiIiIhhcARwKU17xgW2/yeApD2BW0sGtn3PaPOSpgEfBEa9P9VJWgQc0hbKBlUs6/Ug3Wyl1kk1iyh0ty3opCwmSJoJfMr2wQXDdHXNu2o28CngVkknAtsCewJH2f5u1cwior7nhrnzeowlhbOIiIiIiJjybC8GthplfhGwqGRsSesBhwIb05wFdC1wGHAUcBvwzZLxKzoXuEbS+cAXbD+9pj8wkWy/c5DxYnIaUBGlq21BqxYTJG0HnAq8BrgCOAs4E9gZOK1w+K6ueSfZfgb4R0nPAF8DfgW81fav6mYWERG1pHAWERERERFTnqTTbR/RjufbPqPn3nm2DygY/gLgN8BPgI8Cx9G0k3uP7aUF41Zl+xJJ/wL8LbBE0gXAcz33vzjmH54gkjYA5rKqaLocuND2I6Vjx2BVLqJ0si3oJCgmnA18heZ36+7AUuB84EO2nywcu5Nr3lWSNqf5nWKa9st7ADdIOsn2uVWTi4iIKrTq/OyIiIiIiIipSdIttmf3j0e7LhD7dtvbtuO1aFoIvm4AD3ark/Ri4NM0xatvs3rh7ITCsbemaRF5NU07TgE7AH8BzLG9omT8GCxJN7F6EeU4miLK35X+f03SD8a5bdtD2Ra0r5hwBE0x4TBgIMUESUttb99z/Uvbm5WO28bq5Jp3laS7af4u+y7NuXYADwMLgE1sv61WbhFR341/9bYUUCbArhf/WGv+rMkjO84iIiIiImIYaIzxIDzfotD2s5Lu70jRbHeaM8WuBGbbfnzAKZwIzLd9cV9e+wInAfsOOJ8oax3b57Xjn7c7S48ZROAOtwW9mtWLCd+nKZAvkPTRARQT+nd9/W5Qu746vOZdNRv4DE1x/l6an7FNgPNozruLiIiOSeEsIiIiIiKGwTRJ6wPTesYjD1vXKhx7lqSV7Vg0Lb1WtmPbXq9w/FqOB95v+85K8be1/b7+SduXSfpcjYSiqGpFFOhsW9DaxYSHaIrzo10bKLrrq6Nr3lUnAC8FNrP9KDx/fumpwF8C11TMLSIiKkirxoiIiIiImPIk/S+aNoGj7jazvelAE+oASTvZ/ukY9z5s+4LC8cdswVm6PWcMnqQf0hRLRlO0dV5X24JKWkBTTDhylGLCE7bn18yvpK6ueVdJuguY6b6HpG375RW2t6yTWURMBmnVODHSqjEiIiIiImLAbL+hdg4d9HVJPwaOtf1bAElvBr4MPAIULZwBG0k6cpR5ARsWjh0DZvsdFcN3tS3oXvQVE2yvlPQJYAVQtHAmaUvgFJo2kbcDR9t+oGTMHl1d865yf9GsnXxWUh6YR0R00LTaCURERERERJQiaaaks2vnMaRm07Rvu1XSQe3ulMuAL9h+zwDinw2sO8rHS4GvDSB+DJCkLSVdIekOSd+StPEAw2/bX0CBpi0o8OYB5jFoYxYTGHv330Q6B7iKpkh1C/ClAcQc0dU176plkvbrn5Q0j6ZIHBERHZMdZxERERERMeVJ2o6mfdhrgCuAs4AzgZ2B0yqmNrRsPwP8o6RnaApVvwLeavtXA4p/wiDixKRxDvAN4Abg3TRFlPcOKPZjf+S9qW6ZpP1sf6N3coDFhHVtj7zx4RRJRc+x69PVNe+qQ4HLJR0E3NzO7QjMAPapllVERAAg6f3AZ4GtaV5vLBnj83YHzqA54/prtk9u5zcFLgI2oPk9/2HbT40XM4WziIiIiIgYBmcDXwF+AuwOLAXOBz5k+8maiQ0rSZvTFChN8yJ2D+AGSSfZPndAOewBHAu8qZ26E/i87UWDiB8DVbOI0tW2oLWLCdMl7cCqsytn9F7bLvkz0NU176S2BejOkuYA27TTi2xfVzGtiIhY5Q6aN0z901if0J5LeRbNeaT3Az+VdKXtZcDngQW2L5L0VeAjNK8dx5TCWUREREREDIN1bJ/Xjn8uab7tY2om1AFXA58GvktzBtH3gW8DCyR91PbbSgaXdDDwceAYYORdpzsCJ0t6re2FJePHwNUsooy0BR3N0LYFnQTFhAeBL/ZcP9RzbWBOwdidXPOus309cH3tPCIiYnW2lwNIGu/T3grcbfuX7edeBOwtaTnNvxnmtp93Ps3utXELZxqlXXVERERERMSUImkF8EFWPVT/Js2Lo0E8VO8kSesBnwEOpDnrTMAmwHnAtbavKRx/GbCr7Uf65jcAbrS9dcn4MViSfjDObdsuWUSJiIiIiBdA0seAj/VMLfxD3+gm6YfA0aO1apT0PmB32x9trz9M07b/s8Bi21u085sA/2J73DNLs+MsIiIiIiKGQe9OhP7r0jsTuuoE4KXAZrYfheeLaacCfwkULZzRvBH0kf5J2w+v4d2oMQXZfmfN+GkLWkdbCJ8LbNVOLQcuHO3//QKxs+YRERETpC2SjVkok/R94FWj3Dre9neKJTaGFM4iIiIiImLKs/2O2jl00F7ATPe0MbG9UtIngBXA/MLxV0qaZfu23klJs4BHC8eOCmoVUdIWtA5JW9O0zbsauJVmV+tOwHGS5theUTB21jwiImKAbP/5C/wSD9B0vxjx2nbuYeDlkta2/UzP/LjSqjEiIiIiIqY8SVsCp9CctXU7TQuPNb4gij+epF/YnvmH3pvA+LvStOQ8F7i5nd4R2B+YZ/vGkvFjsMYoouxAcwB86SJK2oJWIOlS4GLbF/fN7wvMtb1vwdhZ84iIiElmDa0a1wZ+AexGUxj7Kc2/F+6UdAlwme2LJH0V+JntL48Xa9qEZx8RERERETF45wBXAfsCtwBfqptOJyyTtF//pKR5NDvOimoLYzvTvK49oP2YBuySotlQOhGYb/sA22fYPt32/sDhwEmFY4/ZFrRw3K7btr9oBmD7MmDcc0kmQNY8IiJikpC0j6T7gT8FrpJ0dTv/GkmLANrdZIfRvMlqOc2bb+5sv8TfAEdKuhvYAPj6GmNmx1lEREREREx1kpba3r7n+hbbs2vmNOwkbQxcDjzB6ju+ZgD7DGrHn6TpNDsNAe62/eQg4sZgSfq57Tf+ofcmKPZNwMfGaAt6tu23lordZeP9Hi/9Oz5rHhER0W054ywiIiIiIobBdEk70LRvA5jRe237lmqZDam2MLazpDnANu30ItvXDSJ+247lc8CBwL00a72JpHNpDhF/ehB5xMA89kfemwhHAVe2P1u/1xa0cOwu20jSkaPMC9iwcOyseURERIdlx1lEREREREx5kn4wzm3bnjOwZGIgJC0A1gU+afvRdm494FTgCdvza+YXE6ttz/PF0W4BR9jeZJR7Exn/VcAhrCoSLwPOsv1QybhdJunvx7tv+4TC8bPmERERHZXCWUREREREREw5ku4CZrrvRa2ktYAVtresk1mUULuI0uaQtqAdkzWPiIjoprRqjIiIiIiIoSBpA2AusFU7tRy40PYj9bKKgtxfNGsnn5WUd4gOmUEUxsaStqD1SNoDOBZ4Uzt1J/B524sKx82aR0REdNi02glERERERES8UJK2Bu4A3gL8ArgL2Am4Q9JW4/3ZmLKWSdqvf1LSPGBFhXyiMEl7SLpB0v9pP34kac8BhD4FeAWwme232J4NbA68nKY1aBQg6WDgROCzwGbtxwnAZyV9rHD4rHlERESHpVVjRERERERMeZIuBS62fXHf/L7AXNv71sksSpG0MXA58ARwczu9IzAD2Mf2A7Vyi4nXFlE+DhwDLGmndwROBr5me2HB2GkLWoGkZcCu/buG293FN9reumDsrHlERESHpXAWERERERFTnqSf237jH3ovpj5Jc4Bt2stltq+TtK/ty2rmFROrchHlF7Zn/qH34oWRtHysdR3v3gTFzppHRER0WFo1RkRERETEMHjsj7wXU5zt621/qf24rp1eUDWpKEGjnVdo++EBxE5b0DpWSprVP9nOPVo4dtY8IiKiw9aunUBERERERMQE2EjSkaPMC9hw0MlEdaqdQEy4lZJm2b6td3JARZRDgcslHcQobUELx+6yo4ArJZ3L6t/3/YF5hWNnzSMiIjosrRojIiIiImLKk/T34923fcKgcon6JN1r+3W184iJI2lX4JvAqEUU2zcOIIe0BR0wSa8CDqHn+w6cZfuhAcXPmkdERHRQCmcREREREREx5Ui6HRjtBa2AmbbXGXBKUVjtIsoYOaVIW5ik6cAW7eXdtp+snE/WPCIiYsilcBYREREREUNB0h7AscCb2qk7gc/bXlQvqyhF0uvHu2/7nkHlEoMzCYso99nepGYOw0rS2sDngAOBe2mK4pvQ7Do83vbTlfLKmkdERAy5nHEWERERERFTnqSDgY8DxwBL2ukdgZMlvdb2wmrJRRGjFcYkvRJ42HmH6NAZq4jSnn9VrYjC6LseY2KcAqwLbGb7UQBJ6wGnth/zK+WVNY+IiBhy2XEWERERERFTnqRlwK62H+mb3wC40fbWdTKLUiTtApwMPAKcCFwAvBKYBuxn+3sV04sJJmkBTRHlk6MUUZ6wXayIkragdUi6i+b76775tYAVtrcsGDtrHhER0WHZcRYREREREcNA/UUzANsPS6qRT5R3JnAc8DLgemAP24slbQV8C0jhbLjsRV8RxfZKSZ8AVlB299FeBb92jM2j7R61/ayk0u8Cz5pHRER0WApnERERERExDFZKmmX7tt5JSbOARyvlFGWtbfsaAEn/YHsxgO0VKZYOpWpFlLQFrWaZpP1sf6N3UtI8mmJpMVnziIiIbkvhLCIiIiIihsFRwJXteUc3t3M7AvsD86plFSU91zN+ou9eHmwPn2pFlPHagrY5ZXdjGYcCl0s6iNV/r88A9ikZOGseERHRbTnjLCIiIiIihoKkVwGHANu0U8uAs2w/VC+rKEXSs8BjNGcOzQAeH7kFTLf9olq5xcSTtDFwOU2R9PeKKLYfKBh7Cavagi6kry2o7R1KxQ6QNIee3+u2r5O0r+3LCsbMmkdERHRYCmcRERERETE0JE0Htmgv77b9ZM18ImJiVSqiLLW9fTtebnvrnnu3pogyeJLutf26gl8/ax4REdFhadUYERERERFTnqS1gc8BBwL30uw62qRt3Xi87adr5hcRE8P29cD1fdMLgGKFM9IWdDIqfZBh1jwiIqLDUjiLiIiIiIhhcAqwLrCZ7UcBJK0HnNp+zK+YW0SUVbqIMkvSyjbOjHY8End64dgxutLFq6x5REREh6VVY0RERERETHmS7gJmuu8FjqS1gBW2t6yTWUSUVrptX9Qh6XZGL5CJ5vf9OgNOKSIiIjoiO84iIiIiImIYuL9o1k4+KynvFoyY4tZQRPkPA04nBmOv2glEREREN6VwFhERERERw2CZpP1sf6N3UtI8YEWlnCJi4qSI0jG27+mfk/RK4OHR3igRERERMVHSqjEiIiIiIqY8SRsDlwNPADe30zsCM4B9bD9QK7eIKCNFlOEmaRfgZOAR4ETgAuCVwDRgP9vfq5heREREDLEUziIiIiIiYmhImgNs014us32dpH1tX1Yzr4h4YVJE6R5JS4DjgJcBC4E9bC+WtBXwLds7VE0wIiIihlYKZxERERERMdQk3Wv7dbXziIg/Xooo3SNpqe3t2/Fy21v33Ls1ax4RERGlTKudQERERERERGGqnUBEvGBr277G9iXAQ7YXA9jOGYbD67me8RN99/Iu8IiIiChm7doJREREREREFJYHrBFTX4oo3TNL0kqaNz/MaMe019PrpRURERHDLq0aIyIiIiJiypN0O6M/PBcw0/Y6A04pIiaQpGeBx2iLKMDjI7eA6bZfVCu3iIiIiBguKZxFRERERMSUJ+n14923fc+gcomIiIiIiIipK4WziIiIiIgYSpJeCTzsvOiJiIiIiIiIf6dptROIiIiIiIh4oSTtIumHki6XtIOkO4A7gF9L2r12fhERERERETE1ZMdZRERERERMeZKWAMcBLwMWAnvYXixpK+BbtneommBERERERERMCdlxFhERERERw2Bt29fYvgR4yPZiANsrKucVERERERERU0gKZxERERERMQye6xk/0XcvbTYiIiIiIiLi3yWtGiMiIiIiYsqT9CzwGCBgBvD4yC1guu0X1cotIiIiIiIipo4UziIiIiIiIiIiIiIiIiJIq8aIiIiIiIiIiIiIiIgIIIWziIiIiIiIiIiIiIiICCCFs4iIiIiIiIiIiIiIiAgghbOIiIiIiIiIiIiIiIgIAP4/pZzHl/A5wUUAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 2160x2160 with 2 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "-FiJDAVQ5Nq-",
        "outputId": "7b35f915-532c-41dc-8349-b6382da6af72"
      },
      "source": [
        "selected_final_data.columns"
      ],
      "execution_count": 22,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Index(['AGE_ABOVE65', 'DISEASE GROUPING 2', 'DISEASE GROUPING 3',\n",
              "       'DISEASE GROUPING 4', 'HTN', 'BIC_VENOUS_MEAN', 'CALCIUM_MEAN',\n",
              "       'CREATININ_MEAN', 'GLUCOSE_MEAN', 'INR_MEAN', 'LACTATE_MEAN',\n",
              "       'LEUKOCYTES_MEAN', 'LINFOCITOS_MEAN', 'NEUTROPHILES_MEAN',\n",
              "       'PC02_VENOUS_MEAN', 'PCR_MEAN', 'PLATELETS_MEAN', 'SAT02_VENOUS_MEAN',\n",
              "       'SODIUM_MEAN', 'UREA_MEAN', 'BLOODPRESSURE_DIASTOLIC_MEAN',\n",
              "       'RESPIRATORY_RATE_MEAN', 'TEMPERATURE_MEAN', 'OXYGEN_SATURATION_MEAN',\n",
              "       'BLOODPRESSURE_SISTOLIC_MIN', 'HEART_RATE_MIN', 'RESPIRATORY_RATE_MIN',\n",
              "       'TEMPERATURE_MIN', 'BLOODPRESSURE_DIASTOLIC_MAX',\n",
              "       'BLOODPRESSURE_SISTOLIC_MAX', 'HEART_RATE_MAX', 'OXYGEN_SATURATION_MAX',\n",
              "       'BLOODPRESSURE_DIASTOLIC_DIFF', 'BLOODPRESSURE_SISTOLIC_DIFF',\n",
              "       'HEART_RATE_DIFF', 'RESPIRATORY_RATE_DIFF', 'TEMPERATURE_DIFF',\n",
              "       'OXYGEN_SATURATION_DIFF', 'AGE_PERCENTIL_10th', 'AGE_PERCENTIL_20th',\n",
              "       'AGE_PERCENTIL_80th', 'AGE_PERCENTIL_90th', 'ICU'],\n",
              "      dtype='object')"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 22
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "bvzM4VbPLli-",
        "outputId": "b131c46d-bc15-4e3f-99f9-c254c34dc3e4"
      },
      "source": [
        "Non_ICU_Admitted_data = selected_final_data[selected_final_data['ICU']==0]\n",
        "ICU_Admitted_data = selected_final_data[selected_final_data['ICU']==1]\n",
        "\n",
        "Vital_Non_ICU_Admitted_data = Non_ICU_Admitted_data[['BLOODPRESSURE_DIASTOLIC_MEAN',\n",
        "       'RESPIRATORY_RATE_MEAN', 'TEMPERATURE_MEAN', 'OXYGEN_SATURATION_MEAN',\n",
        "       'BLOODPRESSURE_SISTOLIC_MIN', 'HEART_RATE_MIN', 'RESPIRATORY_RATE_MIN',\n",
        "       'TEMPERATURE_MIN', 'BLOODPRESSURE_DIASTOLIC_MAX',\n",
        "       'BLOODPRESSURE_SISTOLIC_MAX', 'HEART_RATE_MAX', 'OXYGEN_SATURATION_MAX',\n",
        "       'HEART_RATE_DIFF', 'RESPIRATORY_RATE_DIFF', 'TEMPERATURE_DIFF']]\n",
        "\n",
        "Vital_ICU_Admitted_data = ICU_Admitted_data[['BLOODPRESSURE_DIASTOLIC_MEAN',\n",
        "       'RESPIRATORY_RATE_MEAN', 'TEMPERATURE_MEAN', 'OXYGEN_SATURATION_MEAN',\n",
        "       'BLOODPRESSURE_SISTOLIC_MIN', 'HEART_RATE_MIN', 'RESPIRATORY_RATE_MIN',\n",
        "       'TEMPERATURE_MIN', 'BLOODPRESSURE_DIASTOLIC_MAX',\n",
        "       'BLOODPRESSURE_SISTOLIC_MAX', 'HEART_RATE_MAX', 'OXYGEN_SATURATION_MAX',\n",
        "       'HEART_RATE_DIFF', 'RESPIRATORY_RATE_DIFF', 'TEMPERATURE_DIFF']]\n",
        "\n",
        "\n",
        "Lab_Non_ICU_Admitted_data = Non_ICU_Admitted_data[['HTN', 'BIC_VENOUS_MEAN', 'CALCIUM_MEAN',\n",
        "       'CREATININ_MEAN', 'GLUCOSE_MEAN', 'INR_MEAN', 'LACTATE_MEAN',\n",
        "       'LEUKOCYTES_MEAN', 'LINFOCITOS_MEAN', 'NEUTROPHILES_MEAN',\n",
        "       'PC02_VENOUS_MEAN', 'PCR_MEAN', 'PLATELETS_MEAN', 'SAT02_VENOUS_MEAN',\n",
        "       'SODIUM_MEAN', 'UREA_MEAN']]\n",
        "Lab_ICU_Admitted_data = ICU_Admitted_data[['HTN', 'BIC_VENOUS_MEAN', 'CALCIUM_MEAN',\n",
        "       'CREATININ_MEAN', 'GLUCOSE_MEAN', 'INR_MEAN', 'LACTATE_MEAN',\n",
        "       'LEUKOCYTES_MEAN', 'LINFOCITOS_MEAN', 'NEUTROPHILES_MEAN',\n",
        "       'PC02_VENOUS_MEAN', 'PCR_MEAN', 'PLATELETS_MEAN', 'SAT02_VENOUS_MEAN',\n",
        "       'SODIUM_MEAN', 'UREA_MEAN']]\n",
        "\n",
        "\n",
        "# set width of bar \n",
        "barWidth = 0.25\n",
        "fig = plt.subplots(figsize =(20, 10)) \n",
        "   \n",
        "vital_non_ICU = np.array(Vital_Non_ICU_Admitted_data.mean(axis=0)) \n",
        "vital_ICU = np.array(Vital_ICU_Admitted_data.mean(axis=0)) \n",
        "   \n",
        "# Set position of bar on X axis \n",
        "br1 = np.arange(len(vital_ICU)) + (barWidth*0.5)\n",
        "br2 = [x + barWidth for x in br1]  \n",
        "   \n",
        "# Make the plot \n",
        "plt.bar(br2, vital_ICU, color ='r', width = barWidth, edgecolor ='grey', label ='ICU Admitted') \n",
        "plt.bar(br1, vital_non_ICU, color ='b', width = barWidth, edgecolor ='grey', label ='NOT Admitted') \n",
        "\n",
        "   \n",
        "plt.xlabel('Features', fontweight ='bold') \n",
        "plt.ylabel('Normalized Values', fontweight ='bold') \n",
        "plt.xticks([r + barWidth for r in range(len(vital_ICU))], ['BLOODPRESSURE_DIASTOLIC_MEAN',\n",
        "       'RESPIRATORY_RATE_MEAN', 'TEMPERATURE_MEAN', 'OXYGEN_SATURATION_MEAN',\n",
        "       'BLOODPRESSURE_SISTOLIC_MIN', 'HEART_RATE_MIN', 'RESPIRATORY_RATE_MIN',\n",
        "       'TEMPERATURE_MIN', 'BLOODPRESSURE_DIASTOLIC_MAX',\n",
        "       'BLOODPRESSURE_SISTOLIC_MAX', 'HEART_RATE_MAX', 'OXYGEN_SATURATION_MAX',\n",
        "       'HEART_RATE_DIFF', 'RESPIRATORY_RATE_DIFF', 'TEMPERATURE_DIFF'], rotation = 90) \n",
        "\n",
        "plt.legend()\n",
        "plt.title(\"Vital Signs of Covid19 Patients\")\n",
        "plt.show()\n",
        "\n",
        "\n",
        "# set width of bar \n",
        "barWidth = 0.25\n",
        "fig = plt.subplots(figsize =(20, 10)) \n",
        "   \n",
        "lab_non_ICU = np.array(Lab_Non_ICU_Admitted_data.mean(axis=0)) \n",
        "lab_ICU = np.array(Lab_ICU_Admitted_data.mean(axis=0)) \n",
        "   \n",
        "# Set position of bar on X axis \n",
        "br1 = np.arange(len(lab_ICU)) + (barWidth*0.5)\n",
        "br2 = [x + barWidth for x in br1]  \n",
        "   \n",
        "# Make the plot \n",
        "plt.bar(br2, lab_ICU, color ='r', width = barWidth, edgecolor ='grey', label ='ICU Admitted') \n",
        "plt.bar(br1, lab_non_ICU, color ='b', width = barWidth, edgecolor ='grey', label ='NOT Admitted') \n",
        "\n",
        "   \n",
        "plt.xlabel('Features', fontweight ='bold') \n",
        "plt.ylabel('Normalized Value', fontweight ='bold') \n",
        "plt.legend()\n",
        "plt.xticks([r + barWidth for r in range(len(lab_ICU))], ['HTN', 'BIC_VENOUS_MEAN', 'CALCIUM_MEAN',\n",
        "       'CREATININ_MEAN', 'GLUCOSE_MEAN', 'INR_MEAN', 'LACTATE_MEAN',\n",
        "       'LEUKOCYTES_MEAN', 'LINFOCITOS_MEAN', 'NEUTROPHILES_MEAN',\n",
        "       'PC02_VENOUS_MEAN', 'PCR_MEAN', 'PLATELETS_MEAN', 'SAT02_VENOUS_MEAN',\n",
        "       'SODIUM_MEAN', 'UREA_MEAN'], rotation = 90) \n",
        "plt.title(\"Lab Test Results of Covid19 patients\")\n",
        "plt.show()"
      ],
      "execution_count": 23,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAMGCAYAAACzgU5KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfZhdVXk3/u9NgEErBgVEEBCsVF4EIkYU7EOBoiitILVF4GcFbUtfhJKWVkNbzUSrxpZWrKKFn1KgSkCxWkRaRSkCgpZQEXl5fG2EIK9RUCzEBNfzxzlJhzAzOWFmZ5Lh87muc83Za++99n32mcmFX9dau1prAQAAAIDJttFUFwAAAADA9CR4AgAAAKATgicAAAAAOiF4AgAAAKATgicAAAAAOiF4AgAAAKATgicAYNJU1c1VdeDjPPfAqlryOM/9i6r68OM5tytV9ddVdV9V3bWOrzvuvaiqxVV1yLqsaW2tj98nAPD4CJ4AgIFU1b9X1dtHaT+iqu6qqo1ba3u01q7otw9X1Ucn8fpHVNUNVfXjfqBzeVXtnCSttXe11n53sq41UVW1Y5JTkuzeWnvmGMc8tapOr6rbqurBqvpuf3uriVx7be5FVT2/qj7Xv59tlP279e/zA1X1nao6cpy+jq+qR/qf5cf97+rXB6jhMYHjZH2fVbVTVbWq2niifQEAj4/gCQAY1LlJXldVtVr7byf5WGttRVcXrqrnJjkvvTBnZpKdk5yR5JGurjlBOyZZ2lq7Z7SdVbVpki8m2SPJK5I8Ncl+SZYm2XddFZlkeZKPJ/mdUWrcOMm/JrkkydOTnJDko1X1S+P0d21r7SlJtkjykSQfr6qnTXrVAMAGQ/AEAAzq00m2TPJ/Vjb0Q4VfTy8UWjWNq6pekeQvkry2PwLm6/39b6iqW6vqJ1X1var6/QGvPSvJf7fWvth6ftJa+2Rr7bZ+v48aXVVVr6+q71fV0qp668jpZf1jP15V5/XruLmqZo849y1VdUd/3zer6ldHK6iqZvb7uLd/rb+qqo3617ksyXb9z37OKKe/Pr1w6sjW2i2ttZ+31u5prb2jtXZpv//dquqKqrq/X+Ph/fYX90eYzRhRy5FVdeMY9+K3R9yLvxxZRGvtm621jyS5eZQad02yXZL3ttYeaa1dnuTL6QWN42qt/TzJ2UmelOQXx/req+oXkvzbiHv1YFVtN8pneElVXdO/F1+vEdM5+/foHVX15X7/nx8xauzK/s/7+33vV1XPraov9Udx3VdVF67p8wAAj5/gCQAYSGvtofRGx7x+RPNRSf5va+3rqx3770neleTC1tpTWmt793fdk15Q9dQkb0jy3qraZ4DL/1eSXavqvVV1UFU9ZawDq2r3JB9M8v8l2Ta9EVLPWu2ww5NckN7InIuTfKB/7vOSnJjkRa21zZMcmmTxGJd6f7/v5yT5lfTuyxtaa19I8sokP+h/9uNHOfeQJP/eWntwjM+wSZLPJPl8kmckOSnJx6rqea21ryb5aZKDR5xybJLzx7gXH0ovLNouveBw+zE+zyAqyfPXeFBvtNTvJnkwybczxvfeWvtpHn2vntJa+8FqfT0ryWeT/HV6I6/+LMknq2rrEYcd2+/3GUk27R+TJAf0f27R7/vaJO9I774+Lb178f61uwUAwNoQPAEAa+PcJL9ZVZv1t1/fbxtIa+2zrbXv9kctfSm9AOD/DHDe95IcmF6A9PEk91XVOWMEUL+Z5DOttatbaz9L8rYkq69fdHVr7dLW2iNJ/jnJymDskSRDSXavqk1aa4tba99d/QL90UZHJzm1P/pqcZK/ywCjgfq2THLnOPtfkuQpSRa01n7WH210SZJj+vsXrnxfVZsnOazftrrfTHJJa+3K1tqyJG9N8vMBa/xmeoHRn1fVJlX18vQCtiePV3dV3Z/krn59R7bWHni833vf65Jc2v++ft5auyzJovQ+80r/1Fr71ohwdNY4/S1P8uwk27XWHm6tXT1gHQDA4yB4AgAG1v8f6fcleXVV/WJ66xE9ZqTNWKrqlVX1lar6YT+gOCzJQItpt9a+0lo7qrW2dXqhxQFJ/nKUQ7dLcvuI8/4nvbWTRhr5pLn/SbJZ9RZH/06SOUmGk9xTVRdU1XajXGOrJJsk+f6Itu/nsSOrxrI0vdFYY9kuye39KWuj9X9+kt+oqqEkv5Hkv1pr389jrX4vfprH3otRtdaWJ3l1kl9L736dkl6oM96TB7/SWtuitbZVa+0l/dFfE/re0wuJfqs/ze7+/vm/nEffv9W/zzFHxCV5c3ojt/6zP4XxjQPWAQA8DoInAGBtnZfeSKfXJflca+3uMY571CijfkjyySSnJdmmtbZFkkvTCwHWSmvtuiT/ktGnfd2ZEdPJqupJ6Y0wGrTv81trv5xe4NGSvGeUw+7L/46cWWnHJHcMeJkvJDm0v8bRaH6QZIeqGvnfaqv6b63dkl4Q9cqMMc2u784kO6zcqKonZ+3uxY2ttV9prW3ZWjs0vWmF/zno+f1rrul7f8zT9FZze5J/7gdaK1+/0FpbMMhHeExDa3e11n6vtbZdkt9P8sHqLV4PAHRA8AQArK3z0luj6Pcy/jS7u5PsNCI82TS9aWz3JllRVa9M8vJBLlhVv1xVv1dVz+hv75reOk1fGeXwi5K8qqr2r97T44YzYLhVVc+rqoP7YcnDSR7KKFPT+lP0Pp7knVW1eVU9O8mfJvno6seO4Z/TC1Q+WVW79hcl37Kq/qKqDkvy1fRG7ry5P83twCSvSm9dqpXOT3JyeiO/PjHGdS5K8uv9+7dpkrdnxH//Vc9m6X03qarN+p995f69+m1Prqo/S2+U0TkDfsaV1vS9351ky6qaOcb5H03v+zy0qmb06zmwqgZZq+re9L6/54z4TL814twfpRdODTr9EABYS4InAGCt9NczuibJL6S3MPdYVoYhS6vqv1prP0nyx+kFNj9Kb6TOeOePdH96QdM3qurBJP+e5FNJ/maU+m5ObzHuC9Ib8fNgemsVLRvgOkNJFqQ3oumu9BarPnWMY09Kb5Hv7yW5Or0g6OxBPkx/vaVDkvzf9J6A9+P0RhJtleSr/bWpXpXeiKb70lss/fWttf87opuF6a25dHlr7b4xrnNzkjf1a7szvfs+cqrcs9ML11Y+1e6h9NZ2Wum3++fdk+RXk7ysX/vA1vS99z/TwiTf60+l2261829PckR6T0m8N73A7s8zwH/H9qdZvjPJl/t9vyTJi5J8tf97dHGSk/triAEAHajW1jS6GQBgw9VfgPz+JLu01v57qusBAHgiMeIJAJh2qupV/elhv5De2kLfSLJ4aqsCAHjiETwBANPREekt0P2DJLskOboZ5g0AsM6ZagcAAABAJ4x4AgAAAKATgicAAAAAOrHxVBewLm211VZtp512muoyAAAAAKaN66+//r7W2taj7XtCBU877bRTFi1aNNVlAAAAAEwbVfX9sfaZagcAAABAJwRPAAAAAHRC8AQAAABAJ55QazwBAAAA66fly5dnyZIlefjhh6e6FMaw2WabZfvtt88mm2wy8DmCJwAAAGDKLVmyJJtvvnl22mmnVNVUl8NqWmtZunRplixZkp133nng80y1AwAAAKbcww8/nC233FLotJ6qqmy55ZZrPSJN8AQAAACsF4RO67fH8/0IngAAAACSPOUpT1n1/lvf+lYOO+yw7LLLLtlnn31y1FFH5e67784555yTE0888VHnHXjggVm0aNGofd53333ZZJNN8o//+I9jXnd4eDinnXbaWtW6//77J0kWL16c888/f1X7DTfckEsvvXSt+krG/wwTYY0nAAAAYL1z+oIFeWDZsknrb+bQUObMnTvQsQ8//HB+7dd+LX//93+fV73qVUmSK664Ivfee+9aX/cTn/hEXvKSl2ThwoX5gz/4g7U+fyzXXHNNkv8Nno499tgkveBp0aJFOeywwybtWhMheAIAAADWOw8sW5Z5w8OT1t/8tejr/PPPz3777bcqdEp6I4KSrPWooIULF+bv/u7vcuyxx2bJkiXZfvvtkyTvfOc7c+655+YZz3hGdthhh7zwhS9cdZ0XvOAFueqqq/LTn/405513Xt797nfnG9/4Rl772tfmr//6r5P0Rmc9+OCDmTt3bm699dbMmjUrxxxzTM4444w89NBDufrqq3Pqqafm13/913PSSSflpptuyvLlyzM8PJwjjjgiDz30UN7whjfk61//enbdddc89NBDa/W5BiV4AgAAABjhpptuWhUETcTtt9+eO++8M/vuu2+OOuqoXHjhhTnllFNy/fXX54ILLsgNN9yQFStWZJ999nnU9TbddNMsWrQo73vf+3LEEUfk+uuvz9Of/vT84i/+Yv7kT/4kW2655apjFyxYkNNOOy2XXHJJkmSbbbbJokWL8oEPfCBJ8hd/8Rc5+OCDc/bZZ+f+++/Pvvvum0MOOSRnnnlmnvzkJ+fWW2/NjTfemH322WfCn3c01ngCAAAAGNBYC2yP1n7hhRfmqKOOSpIcffTRWbhwYZLkqquuypFHHpknP/nJeepTn5rDDz/8Ueet3N5zzz2zxx57ZNttt83Q0FCe85zn5Pbbb1+rej//+c9nwYIFmTVrVg488MA8/PDDue2223LllVfmda97XZJkr732yl577bVW/Q7KiCcAAACAEfbYY4986UtfGnXflltumR/96EePavvhD3+Yrbba6jHHLly4MHfddVc+9rGPJUl+8IMf5Nvf/vYarz80NJQk2WijjVa9X7m9YsWKgT9HkrTW8slPfjLPe97z1uq8yWLEEwAAAMAIxx57bK655pp89rOfXdV25ZVX5qabbsqLXvSifPnLX85dd92VpLfm07Jly7LDDjs8qo9vfetbefDBB3PHHXdk8eLFWbx4cU499dQsXLgwBxxwQD796U/noYceyk9+8pN85jOfedy1br755vnJT34y5vahhx6a97///WmtJUm+9rWvJUkOOOCAVU/Du+mmm3LjjTc+7hrGI3gCAAAAGOFJT3pSLrnkkrz//e/PLrvskt133z0f/OAHs/XWW2ebbbbJ+973vhx22GGZNWtW5syZk4ULF2ajjR4dsSxcuDBHHnnko9pe85rXZOHChdlnn33y2te+NnvvvXde+cpX5kUvetHjrnWvvfbKjBkzsvfee+e9731vDjrooNxyyy2ZNWtWLrzwwrz1rW/N8uXLs9dee2WPPfbIW9/61iTJH/7hH+bBBx/Mbrvtlre97W2TsqbVaGpl4vVEMHv27La2q88DAAAA3bv11luz2267rdo+fcGCPLBs2aT1P3NoKHPmzp20/p6oVv+ekqSqrm+tzR7teGs8AQAAAOsdIdH0YKodAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAAAkqaqccsopq7ZPO+20DA8Pr9o+66yzsuuuu2bXXXfNvvvum6uvvjpJcuSRR2bWrFl57nOfm5kzZ2bWrFmZNWtWrrnmmsdcY8WKFdl6660zd5yn9p1zzjk58cQT16r2ww47LPfff3/uv//+fPCDH1zVvnjx4px//vlr1VeSHH/88bnooovW+rzVbTzhHgAAAOjcggWnZ9myBybcz9DQzMydO2cSKoJuTdbv/EqD/O4PDQ3lX/7lX3Lqqadmq622etS+Sy65JGeeeWauvvrqbLXVVvmv//qvvPrVr85//ud/5lOf+lSS5Iorrshpp52WSy65ZMxrXHbZZfmlX/qlfOITn8i73/3uVNXEP1ySSy+9NEkvaPrgBz+YP/qjP1q1ff755+fYY4+dlOusLcETAADABmDZsgcyPDxvwv0MD8+fhGqge5P1O7/SIL/7G2+8cU444YS8973vzTvf+c5H7XvPe96Tv/3bv10VSO2zzz457rjjcsYZZ+Qd73jHwHUsXLgwJ598cj70oQ/l2muvzf77758k+ad/+qe8+93vzhZbbJG99947Q0NDSXojj570pCfla1/7Wu65556cffbZOe+883LttdfmxS9+cc4555wkyU477ZRFixZl7ty5+e53v5tZs2blZS97Wa666qrceuutmTVrVo477rj88R//cebOnZsrrrgiy5Yty5ve9Kb8/u//flprOemkk3LZZZdlhx12yKabbjrwZxqP4AkAAACg701velP22muvvPnNb35U+80335wXvvCFj2qbPXt2zj333IH7fvjhh/OFL3whZ555Zu6///4sXLgw+++/f+68887Mmzcv119/fWbOnJmDDjooL3jBC1ad96Mf/SjXXnttLr744hx++OH58pe/nA9/+MN50YtelBtuuCGzZs1adeyCBQty00035YYbbkjy2FFYZ511VmbOnJnrrrsuy5Yty0tf+tK8/OUvz9e+9rV885vfzC233JK77747u+++e974xjeu9f1bnTWeAAAAAPqe+tSn5vWvf33+4R/+YdL7vuSSS3LQQQflSU96Ul7zmtfk05/+dB555JF89atfzYEHHpitt946m266aV772tc+6rxXvepVqarsueee2WabbbLnnntmo402yh577JHFixevVQ2f//znc95552XWrFl58YtfnKVLl+bb3/52rrzyyhxzzDGZMWNGtttuuxx88MGT8pmNeAIAAAAYYc6cOdlnn33yhje8YVXb7rvvnuuvv/5Rgcz111+fPfbYY+B+Fy5cmKuvvjo77bRTkmTp0qW5/PLL13jeyml3G2200ar3K7dXrFgx8PWTpLWW97///Tn00EMf1b5yjajJZsQTAAAAwAhPf/rTc9RRR+UjH/nIqrY3v/nNectb3pKlS5cmSW644Yacc845qxbxXpMf//jHueqqq3Lbbbdl8eLFWbx4cc4444wsXLgwL37xi/OlL30pS5cuzfLly/OJT3zicde++eab5yc/+cmY24ceemg+9KEPZfny5UmSb33rW/npT3+aAw44IBdeeGEeeeSR3HnnnfmP//iPx13DSEY8AQAAAKzmlFNOyQc+8IFV24cffnjuuOOO7L///qmqbL755vnoRz+abbfddqD+PvWpT+Xggw9+1IilI444Im9+85vzoQ99KMPDw9lvv/2yxRZbPGrNprW15ZZb5qUvfWme//zn55WvfGXe9a53ZcaMGdl7771z/PHH5+STT87ixYuzzz77pLWWrbfeOp/+9Kdz5JFH5vLLL8/uu++eHXfcMfvtt9/jrmGkaq1NSkcbgtmzZ7dFixZNdRkAAABrbf78+ZP2VLt58ybvSWEwWW699dbstttuq7YXLDg9y5Y9MGn9Dw3NzNy5cyatvyeq1b+nJKmq61trs0c73ognAAAAYL0jJJoerPEEAAAAQCcETwAAAAB0QvAEAAAArBeeSOtQb4gez/cjeAIAAACm3GabbZalS5cKn9ZTrbUsXbo0m2222VqdZ3FxAAAAYMptv/32WbJkSe69996pLoUxbLbZZtl+++3X6pwpDZ6q6hVJ3pdkRpIPt9YWrLb/vUkO6m8+OckzWmtb9Pc9kuQb/X23tdYOXzdVAwAAAJNtk002yc477zzVZTDJpix4qqoZSc5I8rIkS5JcV1UXt9ZuWXlMa+1PRhx/UpIXjOjiodbarHVVLzC9LFhwepYte2DC/QwNzfSYVwAAgDFM5YinfZN8p7X2vSSpqguSHJHkljGOPybJvHVUGzDNLVv2QIaHJ/5PyvDw/EmoBgAAYHqaysXFn5Xk9hHbS/ptj1FVz06yc5LLRzRvVlWLquorVfXq7soEAAAA4PHYUBYXPzrJRa21R0a0Pbu1dkdVPSfJ5VX1jdbad1c/sapOSHJCkuy4447rploAAID12Pz5Exu1PXNoKHPmzp2kaoDpbCqDpzuS7DBie/t+22iOTvKmkQ2ttTv6P79XVVekt/7TY4Kn1tpZSc5KktmzZ3smIwAA8IQ3b3h4QufPn+D5wBPHVE61uy7JLlW1c1Vtml64dPHqB1XVrkmeluTaEW1Pq6qh/vutkrw0Y68NBQAAAMAUmLIRT621FVV1YpLPJZmR5OzW2s1V9fYki1prK0Ooo5Nc0FobOVpptyRnVtXP0wvPFox8Gh4AAAAAU29K13hqrV2a5NLV2t622vbwKOddk2TPTosDAAAAYEKmcqodAAAAANPYhvJUO4D1lqfCAAAAjE7wBDBBngoDAAAwOlPtAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOjElAZPVfWKqvpmVX2nquaOsv/4qrq3qm7ov353xL7jqurb/ddx67ZyAAAAANZk46m6cFXNSHJGkpclWZLkuqq6uLV2y2qHXthaO3G1c5+eZF6S2Ulakuv75/5oHZQOAAAAwACmcsTTvkm+01r7XmvtZ0kuSHLEgOcemuSy1toP+2HTZUle0VGdAAAAADwOUxk8PSvJ7SO2l/TbVveaqrqxqi6qqh3W8lwAAAAApsj6vrj4Z5Ls1FrbK71RTeeubQdVdUJVLaqqRffee++kFwgAAADA6KYyeLojyQ4jtrfvt63SWlvaWlvW3/xwkhcOeu6IPs5qrc1urc3eeuutJ6VwAAAAANZsKoOn65LsUlU7V9WmSY5OcvHIA6pq2xGbhye5tf/+c0leXlVPq6qnJXl5vw0AAACA9cSUPdWutbaiqk5MLzCakeTs1trNVfX2JItaaxcn+eOqOjzJiiQ/THJ8/9wfVtU70guvkuTtrbUfrvMPAQAAAMCYpix4SpLW2qVJLl2t7W0j3p+a5NQxzj07ydmdFggAAADA47a+Ly4OAAAAwAZK8AQAAABAJ6Z0qh0AAKM7fcGCPLBs2ZoPHMfMoaHMmTt3kioCAFh7gicAgPXQA8uWZd7w8IT6mD/B8wEAJspUOwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6sfFUFwAAMJ0sWHB6li17YML9LF8+YxKqAQCYWoInAIBJtGzZAxkenjfhfoaH509CNQAAU8tUOwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6MaXBU1W9oqq+WVXfqaq5o+z/06q6papurKovVtWzR+x7pKpu6L8uXreVAwAAALAmG0/VhatqRpIzkrwsyZIk11XVxa21W0Yc9rUks1tr/1NVf5jkb5K8tr/vodbarHVaNAAAAAADm8oRT/sm+U5r7XuttZ8luSDJESMPaK39R2vtf/qbX0my/TquEQAAAIDHaSqDp2cluX3E9pJ+21h+J8m/jdjerKoWVdVXqurVXRQIAAAAwOM3ZVPt1kZVvS7J7CS/MqL52a21O6rqOUkur6pvtNa+O8q5JyQ5IUl23HHHdVIvAAAAAFM74umOJDuM2N6+3/YoVXVIkr9McnhrbdnK9tbaHf2f30tyRZIXjHaR1tpZrbXZrbXZW2+99eRVDwAAAMC4pjJ4ui7JLlW1c1VtmuToJI96Ol1VvSDJmemFTveMaH9aVQ3132+V5KVJRi5KDgAAAMAUm7Kpdq21FVV1YpLPJZmR5OzW2s1V9fYki1prFyf52yRPSfKJqkqS21prhyfZLcmZVfXz9MKzBas9DQ8AAACAKTalazy11i5NculqbW8b8f6QMc67Jsme3VYHAAAAwERM5VQ7AAAAAKYxwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANCJjae6AGDDcPqCBXlg2bIJ9TFzaChz5s6dpIoAAABY3wmegIE8sGxZ5g0PT6iP+RM8HwAAgA2LqXYAAAAAdELwBAAAAEAnBE8AAAAAdELwBAAAAEAnBE8AAAAAdELwBAAAAEAnBE8AAAAAdELwBAAAAEAnBE8AAAAAdELwBAAAAEAnBE8AAAAAdELwBAAAAEAnBE8AAAAAdELwBAAAAEAnBE8AAAAAdGKNwVNV7VZVe/Xfv7Gq/qqqtuq+NAAAAAA2ZBsPcMzHklxRVZcn+XCSlmS/JL/WZWEAAAAAbNgGmWr3S0luTHJQkkuTvCvJL3dZFAAAAAAbvkGCpxVJZic5MMkVSQ6fn90AACAASURBVL474HkAAAAAPIENEiB9IckfJdkryWeT7JHk210WBQAAAMCGb5A1nn47yUeTfK+1dmtV/WuShd2WBQAAAMCGbo0jnlprDyVZnuSNVbV7kp2SPNJxXQAAAABs4NYYPFXVnCSfSXJSkmcm+Y0kf9txXQAAAABs4AZZ42lOkk+M2P5Ckn26KQcAAACA6WKQ4OlpSb4+YvvJSWZ0Uw4AAAAA08Ugi4t/Nckf9t//WZJfTvLlzioCAAAAYFoYJHg6Ocm/Jqkkr0jy7fSm3wEbgAULTs+yZQ9MuJ/lyw10BAAAYO2sMXhqrd1aVbsleV6/6ZutNU+1gw3EsmUPZHh43oT7GR6ePwnVAAAA8ESyxuCpqt42Sltrrb2jm5IAAAAAmA4GmWo3PEpbSyJ4AgAAAGBMgwRPR6UXNCW9J9y9Kcl1nVUEAAAAwLQwyBpPF43crqqfxmgnAAAAANZgkDWeblzt+J2T/LizigAAAACYFgaZavf8Ee9/nmRxkrd0Ug0AAAAA08YgU+02WheFAAAAADC9jBk8VdWfjnNea629t4N6AAAAAJgmxhvxdFp6T7OrUfa1JIInAAAAAMY0XvD0hnVWBQAAAADTzpjBU2vt3HVZCAAAAADTyxoXDq+q3arqc1X1g6r6Yf+1dF0UBwAAAMCGa5An1p2Z5CVJnpnkwSRbJFnSZVEAAAAAbPgGCZ5ekORv0ltQ/A1J/jrJdZNx8ap6RVV9s6q+U1VzR9k/VFUX9vd/tap2GrHv1H77N6vq0MmoBwAAAIDJM0jwlCQ/6P98RZLtkxw90QtX1YwkZyR5ZZLdkxxTVbuvdtjvJPlRa+256T1F7z39c3fv17BHv6YP9vsDAAAAYD0xSPD07STPSnJtklOSHJfkpkm49r5JvtNa+15r7WdJLkhyxGrHHJFk5SLnFyX51aqqfvsFrbVlrbX/TvKdfn8AAAAArCfGfKpdVR2c5D+SvDzJz5N8JMnJ6U25e/8kXPtZSW4fsb0kyYvHOqa1tqKqHkiyZb/9K6ud+6xJqAkAAACASTJm8JTkC0nuTvLJJB9vrV2Z5DHrMK3vquqEJCckyY477jjF1UyeBQtOz7JlD0yoj0dWbJwZG6+YcC0zh4YyZ+768avhvjzW0NDMDA/Pn3A/j6zYOPOHhyfUx8yhoQnXMVncl9FNxt9QMjl/R+vL31DivozFfRmdf19G5/dldO7L6NyX0fn3ZXR+X0bnvozOfZkCrbVRX0nOTnJfeqOdHklyR5L3Jdl/rHPW5pVkvySfG7F9apJTVzvmc0n267/fuF9PrX7syOPGe73whS9s08Xw8HBL2oRew8PDE+ug/xoeHp7q27GK+wITMxl/Q5P1d7Q+/Q25L6NzX1gbfl9G576Mzn1hbfh9GZ37Mjr3pRtJFrU2ehYz5hpPrbU3Jtkmval2/39660GdlOSqqrptEjKv65LsUlU7V9Wm6S0WfvFqx1yc3ppSSfKbSS7vf6CLkxzdf+rdzkl2SfKfk1ATAAAAAJNkvKl2aa09kt6Uuy9U1T8kOT3JIZmE9ZRab82mE9MbrTQjydmttZur6u3pJWUXp7eu1D9X1XeS/DD9p+n1j/t4kluSrEjypn6tTxiTMcx2+XIPAgQAAAC6M27wVFV7pDfS6DeT7J7eNLeHknx2Mi7eWrs0yaWrtb1txPuHk/zWGOe+M8k7J6OODdHcuXMm3Mf8+ROfHw4AAAAwlvGeandrkl9KL2x6OMm/JrkwyWdaa/+zbsoDAAAAYEM13oin5yS5JMnHk/xra+3BdVMSAAAAANPBeMHT1q21H6+zSgAAAACYVsZ7qp3QCQAAAIDHbczgCQAAAAAmQvAEAAAAQCfGe6rd68c7sbV23uSXAwAAAMB0Md7i4uckaePsFzwBAAAAMKbxgqc/7//cM8khSc5Ob2re8Umu6LQqAAAAADZ4YwZPrbW/S5KquinJcGvtw/3t7yc5cd2UBwAAAMCGarwRTyttk+SkqlqR3oink5I8s9OqAAAAANjgDRI8vSfJ3yT5SJLqt/1ZZxUBAAAAMC2sMXhqrZ1WVZ9PcmC/6YrW2o2dVgUAAADABm+jtTz2kiQzq2qHjuoBAAAAYJpY44inqjo6yUfTm2Z3Y5JTk/w0yau7LQ0AAACADdkgI57mJ/niiO3PJtmvm3IAAAAAmC4GCZ62S3L5iO3lSZ7UTTkAAAAATBeDPNXuG0le33//20lekeTrnVUEAAAAwLQwyIinU5I8M701no5LskmSP+uyKAAAAAA2fGsc8dRau7aqnpv/Xdfp2tbaj7otCwAAAIAN3RpHPFXV5UnekuTfWmuXJpnVbwMAAACAMQ2yxtOBSX4lyR5VdXSSZ/S3AQAAAGBMg6zxlCSfSfLyJFcleVZ35QAAAAAwXQwaPJ2f5LAkOyd5T3flAAAAADBdDDLVLknSWvtiVb00yWeT7NhdSawrM4eGMn94eFL6AVjdRP998W8LAABs+AZ5qt1GI97fUlXPT7JVp1WxTsyZO3eqSwCmsXnz5k11CQAAwBQbM3iqqn9IcnaSN46yuyU5uauiAAAAANjwjTfi6cQkV/d/rk7wBAAAAMC4xgueDkpyS/8nAAAAAKyV8YKnb6z2EwAAAAAGNl7wdF96U+pG09ZwLgAAAABPcOOFR1dm7OAJAAAAAMY1ZvDUWjtwHdYBAAAAwDSzxulyVVVJjk6yZ5LN+s2ttXZKl4UBAAAAsGEbZJ2mM5L8QXrT7qrf1pIIngAAAAAY0yDB05FJzk9yTJKTk7w6yVVdFgUA09X84eEJnT9zaGhyCgEAgHVgkODpaekFTcckuTPJRUnemmS4u7IAYHqaN2/eVJcAAADrzCDB01394+5K8uEkmyb5cZdFAQAAALDh22iAY/4qyXfTW9Pp4SQPJJnTZVEAAAAAbPjWOOKptfbREZsXdFgLAAAAANPIGoOnqpqV5G1Jdk4yo9/cWmt7d1kYAAAAABu2QdZ4uijJc7ouBAAAAIDpZZA1np6a3oinjVtrG618dVwXAAAAABu4QUY8nZzewuJLqmrl0+xaa+1T3ZUFAAAAwIZukODpkCT7JPlIf7uStPzvek8ATBNDQzMzPDx/UvoBAAAYJHj6rSTXJ/lckuXdlgPAVJo7d85UlwAAAEwjgwRP/57k5tbaxP8vcAAAAACeMAYJnvZO8pqq+p0k9/fbWmtt7+7KAgAAAGBDN0jwtEv/5/b9FwAAAACs0SDB09OSLGutPdx1MQAAAABMHxuNt7OqKskdSV6/bsoBAAAAYLoYN3hqrbUklyaZvW7KAQAAAGC6GGSq3awkv1hVRyS5u99mcXEAAAAAxjVI8PTc/s+t+y8AAAAAWKM1Bk+ttXGn4wEAAADAaAYZ8ZSqOj7JK5O0JJe21s7rsigAWJ8MDc3M8PD8SekHAACeSNYYPFXVXyV5+4im36qq7Vtr7+quLABYf8ydO2eqSwAAgA3SICOefjfJZ5Kc0t/+uyQnJBE8AQAwkMkaObh8+YxJqAYAWFcGCZ6eluSy1tp3kqSqLktyYJdFAQAwvUzWyMH58yceXgEA684gwdOiJO+qqn3720ckua67kgAAAACYDgZ5Yt0fJ7k3yev6r3uSnDSRi1bV06vqsqr6dv/n00Y5ZlZVXVtVN1fVjVX12hH7zqmq/66qG/qvWROpBwAAAIDJt8bgqbV2c5LnJdmz/9qttXbrBK87N8kXW2u7JPlif3t1/5Pk9a21PZK8IsnpVbXFiP1/3lqb1X/dMMF6AAAAAJhkY061q6o/HWPXoVWV1trfT+C6R+R/14k6N8kVSd4y8oDW2rdGvP9BVd2TZOsk90/gugAAAACsI+Ot8XRakpakRrS1Ee8nEjxt01q7s//+riTbjHdwf32pTZN8d0TzO6vqbemPmGqtLZtAPQAAAABMsvGCpzestr1bkj9I8tQkP1hTx1X1hSTPHGXXX47caK21qmqjHLeyn22T/HOS41prP+83n5peYLVpkrPSGy319jHOPyHJCUmy4447rqlsAAAAACbJmMFTa+3cJKmqfdILi16d5L+TvDnJOWvquLV2yFj7quruqtq2tXZnP1i6Z4zjnprks0n+srX2lRF9rxwttayq/inJn41Tx1nphVOZPXv2mAEXAAAAAJNrzMXFq+qAqvr3JNcleW56T7TbpbV2VmvtZxO87sVJjuu/Py7Jv45y/U2TfCrJea21i1bbt23/Z6UXiN00wXoAAAAAmGTjTbW7Ir01nX6c5LYkxyQ5ppf1pLXWjpjAdRck+XhV/U6S7yc5KkmqanaSP2it/W6/7YAkW1bV8f3zju8/we5jVbV1eutP3ZDeFEAAAAAA1iPjBU9JL9iZmeTXVmuf0JS11trSJL86SvuiJL/bf//RJB8d4/yDJ3J9AAAAALo3XvC08zqrAgAAAIBpZ7zFxb+/LgsBAAAAYHoZc3FxAAAAAJgIwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANCJjae6AAAAgJGGhmZmeHj+hPtZvnzGJFQDwEQIngAAgPXK3LlzJqWf+fMnHl4BMDGm2gEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQiY2nugAAABjUzKGhzB8ennAfAMC6IXgCAGCDMWfu3KkuAQBYC6baAQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJT7UDAKbc/OHhCZ0/c2hocgoBAGBSCZ4AgCk3b968qS4BAIAOCJ4AAIBpaebQkBGVAFNM8AQAAExLc+bOneoSAJ7wLC4OAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCcETwAAAAB0QvAEAAAAQCc2nuoCYH00f3h4wn3MHBqaeCEAAACwARM8wSjmzZs31SUAAE8AQ0MzMzw8f8L9LF8+YxKqAYDJJ3gCAIApMnfunEnpZ/78iYdXANAFazwBAAAA0IkpGfFUVU9PcmGSnZIsTnJUa+1Hoxz3SJJv9Ddva60d3m/fOckFSbZMcn2S326t/az7ygGAlSZritDQ0MxJqAYAgPXRVE21m5vki621BVU1t7/9llGOe6i1NmuU9vckeW9r7YKq+sckv5PkQ92VCwCsbrKmCAEAMH1N1VS7I5Kc239/bpJXD3piVVWSg5Nc9HjOBwAAAGDdmKrgaZvW2p3993cl2WaM4zarqkVV9ZWqWhkubZnk/tbaiv72kiTP6rBWAAAAAB6HzqbaVdUXkjxzlF1/OXKjtdaqqo3RzbNba3dU1XOSXF5V30jywFrWcUKSE5Jkxx13XJtTAQAAAJiAzoKn1tohY+2rqruratvW2p1VtW2Se8bo447+z+9V1RVJXpDkk0m2qKqN+6Oetk9yxzh1nJXkrCSZPXv2WAEXAAD8P/buPd62ud7/+PuN2pSQUiQK6SgR2kcX3VxK91BiO5Wio/P71YmudEen+4106hxd0DmVlNBFl5OD0l2FUOLn1vU4KaUU4v37Y4xlzT3XmHOvZZnzO7bv6/l47Icx5lh792k8xlhzzs/4fj4fAABwGytVavc5Sfu22/tKOmX4B2zf1faSdvvuknaQdGGSSDpd0jPH/X0AAAAAAACUVSrx9DZJj7N9saRd2n3ZXmr7w+3PPEDS2bbPVZNoeluSC9tjB0t6me1L1PR8+shUowcAAAAAAMAKTazUbpwkV0vaueP1syW9oN3+lqStRvz9SyVtP8kYAQAAAAAAsDhFEk/ApCxZsrYOPfSwRf8bAAAAK5O1lyzRYYceuuh/AwCA2xqJJ9yuHHLIQaVDAAAAmLqDDjmkdAgAAHQq1eMJAAAAAAAAt3MkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBFFEk+217X9X7Yvbv97146f2dH2OQN//mp7t/bYsbYvGzi2zfT/XwAAAAAAAGCcUiueDpF0WpLNJZ3W7i8nyelJtkmyjaSdJF0n6asDP/LKmeNJzplK1AAAAAAAAJi3Uomnp0s6rt0+TtJuK/j5Z0r6UpLrJhoVAAAAAAAAbjOlEk/3TPLrdvs3ku65gp/fW9Inh157s+3zbL/X9pLbPEIAAAAAAAAsymqT+odtf03S+h2HXju4kyS2M+bf2UDSVpK+MvDyq9UkrO4o6WhJB0s6fMTfP0DSAZK08cYbL+D/AQAAAAAAABZjYomnJLuMOmb7f2xvkOTXbWLpqjH/1LMknZTkxoF/e2a11PW2j5H0ijFxHK0mOaWlS5eOTHABAAAAAADgtlWq1O5zkvZtt/eVdMqYn12moTK7Nlkl21bTH+r8CcQIAAAAAACARSiVeHqbpMfZvljSLu2+bC+1/eGZH7J9X0kbSTpz6O9/3PaPJf1Y0t0l/csUYgYAAAAAAMACTKzUbpwkV0vaueP1syW9YGD/ckkbdvzcTpOMDwAAAAAAAItXasUTAAAAAAAAbudIPAEAAAAAAGAiSDwBAAAAAABgIkg8AQAAAAAAYCJIPAEAAAAAAGAiSDwBAAAAAABgIkg8AQAAAAAAYCJIPAEAAAAAAGAiSDwBAAAAAABgIkg8AQAAAAAAYCJIPAEAAAAAAGAiSDwBAAAAAABgIkg8AQAAAAAAYCJIPAEAAAAAAGAiSDwBAAAAAABgIlYrHQAAAAAAALfWkiVr69BDD1v0v3PjjaveBtEAGEbiCQAAAACw0jrkkINuk3/nsMMWn7xC/5GonD4STwAAAAAAoAokKqePHk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYiNVKBwAAAAAAAG5bS5asrUMPPWzR/86NN656G0SDmpF4AgAAAADgduaQQw66Tf6dww5bfPIKdaPUDgAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE7Fa6QAAAAAAAABWJmsvWaLDDj100f9GDUg8AQAAAAAALMBBhxxSOoSVBoknAAAAAADQiZU9WCwSTwAAAACA6pFg6cbKHiwWiScAAAAAQPVIsACTwVQ7AAAAAAAATESRxJPtPW1fYPtm20vH/NwTbF9k+xLbhwy8vont77avf8r2HacTOQAAAAAAAOar1Iqn8yXtIenro37A9qqS/lXSEyU9UNIy2w9sD79d0nuT3E/S7yXtP9lwAQAAAAAAsFBFEk9JfpLkohX82PaSLklyaZIbJB0v6em2LWknSZ9pf+44SbtNLloAAAAAAADcGn3u8bShpJ8P7P+ife1ukq5J8reh1wEAAAAAANAjE5tqZ/trktbvOPTaJKdM6n+3I44DJB0gSRtvvPG0/mcBAAAAAACqN7HEU5JdFvlP/FLSRgP7925fu1rSOrZXa1c9zbw+Ko6jJR0tSUuXLs0iYwIAAAAAAMA89bnU7vuSNm8n2N1R0t6SPpckkk6X9Mz25/aVNLUVVAAAAAAAAJifIokn27vb/oWkh0v6ou2vtK/fy/apktSuZnqxpK9I+omkE5Jc0P4TB0t6me1L1PR8+si0/z8AAAAAAABgPDcLiOqwdOnSnH322aXDAAAAAAAAuN2w/YMkS7uO9bnUDgAAAAAAACsxEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgnKR3D1Nj+X0lXlI6jR+4u6belg+ghzks3zks3zks3zks3zks3zks3zks3zks3zks3zks3zks3zks3zks3zsvy7pNkva4DVSWesDzbZydZWjqOvuG8dOO8dOO8dOO8dOO8dOO8dOO8dOO8dOO8dOO8dOO8dOO8dOO8dOO8zB+ldgAAAAAAAJgIEk8AAAAAAACYCBJPdTu6dAA9xXnpxnnpxnnpxnnpxnnpxnnpxnnpxnnpxnnpxnnpxnnpxnnpxnnpxnmZJ3o8AQAAAAAAYCJY8QQAAAAAAICJIPEEAAAAAACAiSDxBAAAAAAAgIlYrXQAAPrF9hvGHE6SN00tGACogO1Hjzue5OvTimVlYnu1JH8rHQewMuM+AlbM9rFJntdu75vkuMIhrXRoLl4J288ddzzJx6YVC/rN9ss7Xr6TpBdIuluSNaccUm9wH2EhbB8jadSbbJLsP8140F+2P9/xciRtLWmjJKtOOaTeaM/Ni5NcMfT6LpKOSPKgMpGVZfsZSU7seP2Okg6u9SGR7b9P8v0Rx56T5D+mHVMfcB91s71xkitLx9E3th+W5Dul4+gT2z9Ksm27/cMk25WOaWXDiqd6/P2I158maUNJVX5htn2tZr8Yuv1v1Nwbd0xS3T2S5N0z27bvIulASftJOl7Su0f9vUpwH3WwfbrGJ1h2nmY8PfKFjtc2kvRSSTUnErhehiR56uC+7R0kvU7SbyT9c5Gg+uN4Safb/oikd0haT9IRku4jad+SgRV2gO39Jb0oyWWSZPuJkt4r6ctFIyvrI7a/KenVSa6RJNsPkvQBSb+TVGXiSdxHo5wsaTtJsn1ikmcUjqcvPqDZ8/LtJA8vHE8fsFpnkar7Ul2rJLd8cLVtSf8g6WBJ35H05lJxlZbkLoP7tteU9CJJL5R0UpGgesD2upJepuY6OU7Sdkl+Xzaq8riPRnpFx2sPk/QqSVdNOZbeGFyNYHtTSa+R9GhJb5P0kVJx9QDXywi2d5b0ejUfcN+S5L8Kh1Rcko/b/oKaL8s/kXQHNb9vP5SKl+0n2dX2Mklfs/0JSQ+SdA9Jeyc5p2x0RW0n6ZWSfmT7TZK2kvQkSS9P0vUwoArcRyN5YHvTYlH0z+B5Wb1YFP1yb9vvU3NuZrZvkeQlZcJaeZB4qojt1SQ9T82H/u9IemaSi4oG1RO215F0kKTnSvqEpL9PcnXZqMqw/U5Je0g6WtJWSf5UOKRe4T6aK8kPZrZtP0bNF+fVJf1Tki8VC6wHbG+hZuXKtpLeqeacVN1Lg+tlLttPlvRaSX+Q9LokZxUOqW8eKGl7Sd+TtFTSPdV8hr2xZFA9cIKkLdWsorxG0k5JflY2pLLa369vtf03SR+W9CtJ2yf5VdnIeoH7aK6M2K7dKrbvqmYQ2cz2LcmoJL8rFlk5rxzYPrtYFCsxejxVwvaL1JRMnSbp7UkuLxtRP9i+u6SXS9pL0kclHZXkD2WjKsv2zZKul/Q3Lf8mbDVlMGsVCawHuI9Gs72rmgTL9ZLenOT0wiEVZ/vTkh6ipkT1BEk3DR6v9IObJK6XYe3v3V9IOlcdX36SPG3qQfVEWxq0rZqSsm/bvrOkw9SsYjkoyVeLBliI7UdK+ldJ31KzmvIxkt4u6VNq7qnrC4ZXjO3N1JyXqHmg+ERJL1ZzTo4pGVtJ3EfdbN8k6c9qPuOuIem6mUOq+DOv7csl3azlVz7NSJLqVofRhH/xSDxVov1Qe5Wk/1V3MmHrIoEVZvvPas7JMZKuHT6e5D1TDwq9xX3Uzfb31fSLeKekbw8fT/LDqQfVA+0Ht5nrJFr+A1yVH9wkrpcu7cqvkZKcOa1Y+sb2SyW9L8lNQ69vJelfk4ydCHh7ZftsSf83yfcGXruTpDdKenqSLYoFV5DtSyQdkuQzA6/dRclA3QAAIABJREFUS9J71DTq36FYcAVxHwGLM9hQ3PZRg+03MD8kniph+z7jjg9PuaiF7UM1vsnt4VMMp7faJ2O7S1qW5Mml4ymF+6ib7TM0/j7aaYrhoOe4XnBbsL26pKclOaF0LCXYXiXJzSOObZ3kvGnH1Ae21xzVIsD2Lkm+Nu2Y+oz7yHsk+Wy7fVf6mTZsvzjJ+9vtLZNcUDqm0phqt3gknirXLtVeluRFpWPpm3EjeWvQjmR+sqR9JO0q6URJn03SNfa7atxH6GJ77IeSGlf2oJvtH2tMf5FaV1MOs72qmvejZZIeL+kbSZ5ZNqp+aAde7KTmPfspSe5ZOKTeaMvv9lHTeH3L0vGUxn00a2gVC8mEFudlLs7J4tFcvEK2t1XzBrynpMskfbZsRP1h+4Fq3oiXqWnUubRsRNNn+/Ga/TByuqSPqWm2/vyigfUM99Es23uMOz7zNLFC7x5zLGq+JFaH66XTU0oH0GdtKeI+avrRfE/SDpI2SXLd2L9YAdsPU3NudpO0rprJvF2TI6vSltftpebcbCXprZL2LhpUYdxHnTxiG7M4L40tbJ+n5nxs1m5LlbfbWAgST5WwfX/NJlR+q6b5pJPsWDSwHrB9X82emxsl3UfS0oobR39Z0jckPTLJZZJk+8iyIfUD99FITx1zLKo0Kcd1MRLXy5Bay3Tnw/YvJF0p6YOSXpHkWtuXVf5lWbbfoubBx5WSPqmmUfTZSY4rGlhhtg9Q8x69oZqhDvtLOiXJYUUDK4z7aKQ12geJq0havd0enN5W68rkdWzvrua8rDX8wKjSB0QPKB3Ayo5Su0q0TZG/IWn/JJe0r11aa3PbGba/LWktScdLOj7Jxe0b8SaFQyvG9jZqngruKelSNefmDUnG9jeqAfcRFoKVPZgv29eqY2CBVPdkJUmyfYSa1TznS/qEpFMk/bj237u2r5L0M0lHSPp8kut5P5Js36BmaMHLk5zdvsZ54T7qRM/BbrbHTYBMkv2mFgxuN0g8VcL2bmqSCTuoWdFyvKQP15xgkSTbJ0vaTtLnJH0iybf4gDLL9iPUPDl8hpox3yclObpsVOVwH3Wz/bJxx2udDtkmKs9p/0hzp9pV+cGN62Wu9r1ofTWrvY5PcmXhkHql7V/0WDXvR0+StLaalSynjmokfXvX9ul5nJpzsrOa0vhd1Exuq3bkt+27qXlwtkzNPXWCpOcl2ahoYD3AfQTcekMPiGY+z/GAaAFIPFWmnU72dDVvOjup6d9zUpKvFg2sINtrS9pDzTnZXNI6knYdHFFcO9urqPlAu1eS/UvHUxr30fIGEixfknS9hvoB1FriMJCovJ+ap8ufnFkpVzOul24D70V7S1pdTSnv8Ul+VzSwnrF9B0lPUHOedk1y98IhFWd7iZo+YcskPUrSaUn2KRtVebbvrabP0zJJd1bzPv2aslH1A/dRg5XJ3XhAhEkg8VQx23dV81RoryQ7l46nD2zfQ9Kz1HxI2bjGJ2S2n53kP9vtHZJ8c+DYLeNV0eA+kmw/WM098wRJP1DTb+S08AYjablE5V6S7ibptUnOLBtVOVwv47WJ/r0lvU/SW/iAP5rtNZL8pXQcfWL7LpJ2T/Kx0rH0ie3N1UyfPbx0LH1T831ESVk3228cd7zWB0SSZHsrSVu0uxcmuaBkPCsTEk+VsL1Tkv9utzeZaRrd7j8jyYnlousn25snubh0HNM2blxo7eNDuY9WbKA8cxdJByf5XOGQimtLYmaeLG+l5rx8pWxU/cD1MmvgXDxK0lmSPpXkG2WjKm9gclCnWicJsSKhGytYunEfAYvTrko+RdLGatqPWM1nuislPT3JHwuGt1Jgql093qWml5EknTiwLUmvbV+rju2zkjyy3f6PJM8ZOPwpLX+eajFutGztI1W5j8awvZ6kbdW8Ef9C0lVlIyrL9k5qkk3bS/qapCNnmt2C62WQ7cslXaOmb9wBkv7Wvr6dVPVkJUm6WU0fjU9I+rykKldmdHiXRpes1vxU+TMa01tPFU7NbHEfjWD779T83p1ZxfITSUcn+Vm5qMqzvaOkF2v58/L+JGcUC6qsN0k6W9JOSW6Wblmh/DZJb5b0zwVjWymQeKoHyYRudx7Y3nLoWK3nJSO2u/Zrw33UwfZ+akpUV1fzof9ZSapNIgz4mqTz1KxeWSLpubafO3MwyUtKBVYS10uny9X8ft1V0uM198tylZOVJCnJNra3ULMa7BOSLmz/+9Wam2irSdouk/RkUbI6aKZP2tait94tuI+62X64mmTk0e0fq7m3zrC9R5LvlIyvFNtPlvR+SYe3f6zmYetH27Ybp5aMr5BdJG09k3SSpCQ3236NpB+XC2vlQaldJSif6sZ5mcv2dZIuUfMms1m7rXZ/0yR3HvV3b++4Xrq1zaLPl3RF+9JybyxJnjb1oHrA9r7jjic5blqx9AnXy61n+3FJ/qt0HCXZ3kvSv0p6e5J3lo6nDyhZnYveeuNxHzVsf0nNOThj6PXHSDokyROLBFaY7TMkHZjk3KHXt5Z0VJLHFAmsINvnJNlmoccwixVP9djU9ufUJg/abbX7NY+CX8f27pJWabdnegNYzZjZGj2gdAA9xn3UbcfSAfTRfBNLto9KUtMSba6XW+/tkqpLPNneUM0qlt0l/V7SSyWdVDSonqBkdaS/SvqDpD9Kuo+aFZZV4z7qtFlX6ViSM20fXSCevlh/OOkkSUnOs33PEgH1wOq2t1V3xcOSAvGsdFjxVIk2cz9SrU+BVjDNQkmeP61Y0H/cR4tj+8QkzygdR9/UvFpuHK6XuWz/KMm2peOYJttnSrqLpBPU9NG7evB4kt+ViKu0jpLVEyhZ7eytdzy99biPRrH9gyQPGXGs2vfmFZyXkcduz2yfPu54Eh6qrQCJJwDLsX2tli99cbtvNaNl1yoSGFZ6NX5pno+aP9yOw/UyV43XStt4feY9ac57U5JNpx5UD1Cy2q09LzO99aK556XW3nqXi/toDttXqRnqMOeQmv6DVa7usX2NpK93HZL0yCR3nXJIKw1K4kej1K4SjFHtxjjiTqdJWl9Ns8Xjk1xZOJ7e4D5aNJ50YCG4XqAk953Pz9neMskFEw6nT3i63o2V6h24j0Z65ZhjNa+Ue/qYY++aWhQrpypL4ueDxFM9GKPabdw44iol2c322momw3zI9uqSPqUmCVXlUuwB3EeYhOp/72DeLi8dQI/9h5qpS1WYb2l3bSWr9NZbtNruI66XDvx+WRQ+042wSukAMB1tp/1lktZU86X5zZK2lPTLJFeM+7u3c9tK+qqaccT3kfRNSYcnOSzJYUUjKyjJH5IcI+mJkv5dzSjV5xUNqge4jxaNN+OW7cEHP0cWC6TfqrlebL9qYHvPoWNvmdlOsocwSjXXywJVWUI1DzuUDqCnuI+6cb104/fLXKzWHoHEU0WS/DTJG9v+EJ+X9DE1Ey2qleTcJIe0CYWPqFlaeqHtKnsjzLD9CNtHSfqhpEdI2r3SssM5uI/msr2e7Qd2vP7AduLSjIOnGFZxts8a2P6PocPfm9lIcuy0YuoD2yP7xNneeGC3putl74HtVw8de8I0A1mJ8WG/G+cFC8H1goXgesG8kXiqiO0Nbb+8/TL0bDVflj9YOKxeYBzxrLYB5Qck/VLSAZI+KunPtrezXc3y61G4jzodJenuHa/fTQOreZJ8dWoR9cOdB7a3HDpW81PlM2Y2bJ82dOzkmY3KrheP2O7aBwAA/XR56QD6ih5PlRgao/p8zY5RvaPtdWvt3dMxjvhZjCPW5WqeYOwq6fFa/ktPJO1UIKZe4D4a6X5J5kw/SfIN2zUn5cY9Caz5KeHg75R1xxyrSUZsd+2j2w2lA+ipWu+pFeG8dOM+6sb10q2a82L7VUne0W7vmeTTA8fekuQ1EiXx4zjh80wNGKPajXHEt16N40K5j7rZvijJ3y302O2d7UslvVzN6uJ3SnrFzCFJ70iyWanYSrL9w7ZUdbntrv1a2L5J0p/VXBtrSLpu5pCk1ZPcoVRspdneVdJdknxm6PVnSvpDbe9DM9qV2usluXDo9QdK+t8k/9vuP76y1YMj2V4tyd/a7efVVOY8VMY8BxOM56r8elkryR9HHNt45nqp6fcLn10WjxVPlWCM6kiMI771qhsXyn000iW2n5Tk1MEXbT9R0qWFYuqDMyU9bWD7qQPH5qwQq8g9bL9MTVJlZlvt/nqj/9rtV5JVS8fQY2+QtFvH62eo6bNX1fvQgKPUlMUPu5uk10naR6quZFW2z0ryyHb7P5I8Z+Dw99RObKspidD6opoHZsOr2NeTdA9JVf4O4noZ6Qy1/99tn5Zk54FjJ2v2vNT0+4WS+EUi8YRhtY1RZVzorccv2dGquo8kHSTpi7afJekH7WtLJT1c0lOKRVXe55N8tnQQPfQhNSWrw9uS9OHph9NftteR9KIkby4dS0FLZlbvDEryW9t37voLlaDEuRu99Tok2Wpw3/Z91Qxw2EXSWzr+Si24XrpREj8XJfGLROIJw2r9ZbIiVZZQrQC/ZEer6j5KcrHtrdQ8YX9Q+/KZkl6Y5K/lIivudZJIPM11dZL3lw6iT2xvJOn1ku6l5mnyJyUdLum5kj5RMLQ+WGuw5GWG7TuoKUus1V3GHKu2NFP01hvL9uaSXivpoZLeLeklSW4sG1VRXC/dSLLM9WDbf1RbEt9uq91fvVxYKw8STxhW6y+TFeG8YCGqu16SXC/pmNJxYKWwnyQST8v7mJpk7YmSniDpbEnnSNoqyW9KBtYDn5X0IdsvTvJnSbK9ppqJmTUndilx7raO7d3V9NZbx/ZMo19LWrtcWGXZfpCahNOWkt4haf8kN5WNqhe4XrpREj+EkvjFo7k4lkNztG6cl7lsf5bJDd1qu15sX6vuZNtM0/W1phxSL9i+TtIlXYfUnJetpxxSL9R2f8yH7XOTPHhg/xeSNk5yc8GwesH2apL+RdIL1AwCsaSNJH1E0utrXa3Rrlz5oqRvqaPEOcnPSsVWku2xD0CSPH9asfRJO8Dg52qumTkJpyQvmXpQPcD10s32G8cdT3LYtGLpO0ri548VTxjGGNVu1ZROMS70NlHVfZRkXMlHzS7T8g3F0dh6YIn6oNoTlXfV7HvN1ZLWtm1JSvK7YoEV1pbYHWL7MEn3a1++JMlfCoZVHCXOI9Fbr9t+pQPoKa6XbpTED6EkfvFY8VQJxhF3Y1zoXIwLHY1xxAtn+8okY8/b7ZXtHyXZtnQcfcN5mcv25ZJuVvdDjiSpts/gQOlLJ740YlDtn1Pmoy1VVZI/lY6lNK6XbpyXuWyfria5/201JfFPUFMS/1JK4ueHFU/1YBxxtzPEuNBhjAsdjXHEC1fzNfPN4Rdsb6ZmhcLeSYYn6FTP9h1qLJ1Kct/SMfTYuFWDUaV9nihxxkLZ/j+SXq12kpvtP0l6e5IPFA0MWDmsm+TQdvsrtveU9A+UxM8fiad6MI64G+NC52KSxQiMI75Vqr1mkrxYkmzfS9JeahJOW0l6q6S9C4ZW2qcHd9pysp3UnJ+nSLpniaBKsj38ZDmSfpvk5yXi6ZNxPVZsP2OasfQJJc4jbWH7vI7Xa++t9zpJj5D02CSXtq9tKulI2+sm+ZeiAZbD9dKNkvgOlMQvDqV2lbD9M0kPHDGO+MIkm5eJrCzKyuZqG1D+We24UEnXzRyStHqSmsc0S+ocR3xcjas0ZgxMO5lzSNJrkwwndatg+wBJyyRtKOmE9s8pSTYpGlhP2H6YmmTTbmoS/y+S9Lkkvy8aWAHtEv5h60q6o6RlSc6ZckgrhZpLecep+bzYvkDSk0YdT3LFFMPpDdsXSXrwcP8v22tIOjfJ/ctEVhbXSzdK4ueiJH7xWPFUD8YRd2Nc6BDGhY7GOOKRxj15P3JqUfTP+9X0AtgnydmSZLv6pz223yJpT0lXqmnOeZiks5McVzSwgpLs2PW67aWS3ifp0dONaKVR68rkFan5vNxQa7JgBdLVdD7JX2zXXCrE9bJAlMTj1iLxVI/XqRlHfIXtOeOISwZW2Ic0+6V5cFuSPjz9cPqLcaGSpHM1O454e0nbtytsJdU7jpixuiNtoCbB8m7b66tZ8VT9ikFJL5D0M0kfVDNR6HoSct2SnD3TCBiduG661Xxe6K3X7Ze2d05y2uCLtneS9OtCMfUB10s3SuKHUBK/eJTaVaZdUss44la7AoxxoQNWNC40yYEFwyvK9r7jjte8YsP2E9U0LX1g+9IFapqWnlouqv6wfW81fZ6WqWnselKS15SNqgzbq0p6nJpzsbOk09X0SdtouBy8drbvKenUJA8pHUsptn+s0U20759kyZRD6gVKnMcb0Vvvs0l+XDSwQmxvKekUSWdJ+kH78lJJO0h6epILSsXWB1wv3SiJn0VJ/OKReKoE44i71drHaRzGhc4P44hn2f5HSS+U9CpJZ7cvL5X0NkkfTnJ0qdj6qO0RtneSN5WOpTTbS9Q8PV0m6VGSTkuyT9mops/2UZqbXFlXTTPgA5N8fvpR9YPt+4w7XmuZjO03jjte60pUeuuNZnt1NUmEmVU8F0r6eFcJXi24Xrp1lMSfpKYkvurz0qUtiX9PEkriV4DEUyVsHzPmcJLsN7VgeoTE01y2z03y4IH9X0jamHGhjeFxxJKqH0ds+0JJjxye6GH7bpLOSvKAMpGVZ/vhaj7Qfj3JVba3lnSIpEcl2ahsdP1i+y6SDqoxIdexmjJqJuZ8P8lVBULqHdubaOAL88xkLmCQ7RvUPDh7+UBvvUtp/IsuXC/dbF+lpiT+CM2WxFd/Xkbh++T80OOpEowjHolxoR0YF9qNccQjueu6SHL1YA+s2th+p5rVPOdIOtj2V9T0N3qrpCqT/dItpXbPUpOQ+3KS820/RdJr1EzSrC7xJGnHJM8rHUQf2V5LTc/FpWruJUnaxvYP1Ax46HoPrwIlzp3ordfB9rUaXbJa7eddcb2MsoFmS+KPaKsh1rC9GiXxy2tL4lnJMw+seELtY3cZFzqEcaGjMY64m+3vSjogyblDrz9Y0oeSbF8msrLalWDbJflrm8z9uaQHJbm8bGRl2T5WzXCL70l6qKRfqUkqHJLk5IKhFcPT0tHa6+VySYfPrLxtH4S8XtL9kjy3XHTlUOK8YvTWm1XrJLKF4HrpRkl8g5L4xSPxBNn+ea0lH+MST7xJY5jtnybZYqHHbu9sP1LSxyUdo+Wblu4r6dlJzioVW0nDyQQS3Q3b50vaOsnNbc+R30jaLMnVhUMrxvZP1Xyo71wimOSH042oP2xfnGTzhR67vaPEeWFq761Hcnthar9eRqEkfjmUxC8QpXaQ6l4eyLjQIYwLHYtxxB2SnGV7ezXTTp7XvnyhpIdV3pB+U9ufG9jfZHA/ydMKxNQHN8ysXGlXg11ac9KptaGkd2vESlM170uYq95aXkqcRxrXW091lvJKdd8rY3G9zEVJfCdK4heJFU+VYBzxeIwLncW40NEYR9zN9rG8Gc9l+zHjjic5c1qx9Int6yRdMrMrabN2f6bXyNalYiuF1XCj2T5O0v+T9KYMfGi1/Xo1n1+eUyy4gihx7jbUW+9+kgZ76/17rRPc2kEx7xl1PMnIY7dnXC/dKImfi1WDi8eKp3o8pXQAfdQxLvQwNeNCjysaWEFJdux6vR0X+j5J1Y4LTXKB7Qdp+XHEX5f0wlo/nLSqSxTMx3wTS7ZPTFLTkAdKgBbA9t8n+X7pOAr6Z0kfkXSJ7Vuai0v6kaT9i0VV3sslfa6dWjynxLlYVOU9WdK29NabY1VJa4qVT8O4XrotFSXxw+5ke1tREn+rkXiqRJIrJMYRd3iBmnGhH9TsuFCWAXZIcrbtNUvHUVqbYPpo6Th6hjfjxamqYf/M+9GK2P52kodPOp6eOHhwx/YD1fR8WibpGjVfAmq1TpI9bW+m2eltFyb5fyWDKo0S55H+OvMgKMnv2z5glxeOqQ9+neTw0kH0ENdLN0ri56IkfpEotavEqHHEap6SVTuOuK1hnhkXurOk0yXtImkjxoUurx0XemqSh5SOpRTGEXdrz8v3NXoSIm/GY7B8u1tt5We276vZZNONku4jaWntX4K4P7pR4tzN9jVqViLPePTgfq299Ub9PrW9kZom2u8sEFZxXC/dKImfq7bPJJPAiqd6vE/Nk7C9O8YRv19SleOIk9wk6cuSvjwwLnQNNU2kGRc665ZxodOPqFfWZdJhp0tILmECqnkyZvvbktaSdLykZyS52PZltSedWpQGdavui988PX1o/91FouifnWc2bK+nps3EMkn3knRSqaB6gOulGyXxC0BJ/PyQeKrHDsNPxtomnYfbvrhMSP2S5HpJJ0o6cWZcaOGQSjl7aH9mXOjLGBeq70riyTtua3yxxv+oWcZ/T0nrSbpYFSXeVmBD2+8bdTDJS6YZTI9Q4tyB3noj3diOg99H0v0lfVbSJknuXTassrheulES34mS+EUi8QSp4i89jAvtxLjQ0aq9V1Zg+M34DpIeJOmXNScrF1AKc/CKf6RK1dxvSXazvbakPSQdantzSevY3j7J9wqHV9pfNNs8G7PoN7I4VfXWk3SVmgllr5N0VpLY3r1wTCuT2q6X+Vq9dADTkuSrlMQvDomnenzL9hvUPY742+XCKu4jmh0X+j7b1Y8LFcv3x1nP9stGHax1HLGkPWz/sp36t7aa3yk3SVrX9iuSfLJwfKXM615K8tVJB9Intj8o6eB59BZ8zjTi6Yskf5B0jKRjbN9D0l6S3mt74yQblY2uqKtrnjQ7BiXOi1PbisJXS9pb0gckfdL2pwrHs7Kp7XqZr2rOCyXxi0fiqR6MI+7GuNC5WL4/GuOIuz0qyT+128+X9LN2Bcf6kr4kqdbEE/dSt0sl/cD2G5N8YtQPJTl/ijH1SrtS8Cjb/6lmalnNbigdALCyS3KEpCNsb6omAXWypHvZPljSSUl+VjRAoP8oiV8kptpVon1ieiXjiJc3PC2H6TlMKBuH66Pb4KQP21+U9Okkxw4fqw330mi2N5T0Hkl3l/RBSTfPHEvy2VJxldJOlnq9mka/J6tJ1h6uZtXXJ5NUO9ihLW34fbsiTLZ3lLSbpCskvT9JlYkp248fXC1JifPC1PzeNMP2g9SUDO2V5H6l4+kzrpdutZ2XgZL4ZZI2l7SOpF0piZ8fVjzV42RJ27WJpqqTTUO2sH1eu21Jm7X71Y4LFcv3x+lcuVL7OGJJ17S90X4paQe1qyhtr6amV1qtuJdGSPLLNkn5ZklP1WziKWqa3tbmY5LOVDPg4glqhjyco2ZF7m9KBtYDn5K0u6Q/2N5G0qclvVXSg9WUDb2gYGwlUeLcgd5689f2NT1T0kNLx1IK10s3SuK7URK/OCSe6kFpUDfGhS4A40IZRzzCCyW9T9L6kg4a+KK8s6QvFouqx2zfOcmfS8dRgu0t1axy+pWk7ZP8unBIfbBukkPb7a/Y3lPSPyS5eczfqcUaSX7Vbj9b0keTvNv2KmqSc7WixLkbvfU62N5J0r9pdlXl29V8gbakfykYWmlcL90oiV8BSuIXjsRTPRhH3IFxoZ0YFzoa44g7tL0hntDx+lckfWX6EfXGwW1J2QaSzktyQ/uE7CBJz1PzBaBGn1GToJxzbVSekLurZh8SXS1pbduWpCS/KxZYeYMPznZS0yRZbW/GMhH1w2CJ4ePUrARTkt9Ufl7ordft3ZIOULMy7ontfw9J8v6iUZXH9dIhyTttf0LSe2zvL0riV1gSXzC0lQaJp3owjnhxGBfKuFCJccSdbB+lMQ0Wa01sq+mn93FJl0haYvsDap4yf0zSQ0oGVtg2ku5ue6lIyM1YW8179OCXn5kvPFHdo7z/2/YJkn4t6a6S/luSbG+guhuPU+LcbUM1SZbO3npqkpc1SpIz2u2T2zLN2pNOEtfLSJTEz0FJ/CKReKoH44gXp5ou/IwLHYtxxN3OLh1ATx0g6e+S/M72xpJ+JmmHJLU/BPgnNclbEnKtJPctHUOPHaSmj8YGkh6Z5Mb29fUlvaZYVOVR4tyN3nrd1rG9x8D+aoP7Na5gaXG9dKAkvhMl8YtE4qkeNT8VxMIwLnQExhF360pqt2VD16Tu0al/nSmRaqeKXkTSSVLzhZmE3ADbz07yn+32Dkm+OXDsxTWvTGh/hxzfcWhNSU+XVFvvFUmUON8aNZfyqlmp8dSB/a8P7Ne6gmWsyq8XSuI7UBK/OK77O0E9GEe8OIwLZVzoKIwjlmy/QdIJSX5qe4maxrbbSPqbpH2SfK1ogIXYvkrLf2Hee3C/1hJE2z9Mst3A/rlJHlwyptIGz0nH+Vluv2ZtL5Z91Ax2uEzSibUm5Shx7mb78ZIu0IjeeklqLOXFCFwv3drPcncX5+UWti9XU27YWZaZpOaS+HlhxVM9GEfcgXGh3RgXOn+MI5bUXB9varf3VfOmvJ6aBuzHSaoy8STplUP71a7oGXLvoWEXGwzuV/qF2SO2u/arYvv+mu05+Fs1n2ecZMeigZVHiXM3eut1sP2yoZei5n46K8llBULqC66XbpTED6EkfvFIPNWDccTdGBe6AowLncU44pFuGCip21XS8UlukvSTttFtlUb11bO9upYveagNCbm5MmK7a782P5X0DUlPSXKJJNl+admQyqPEeSR663W7S8dr95X0WtuHJukqZ60B10s3SuKHUBK/eJTaVcL2j5Ns1W7/UNKrZ+p2bZ+XZOuiARbUjjt/j5olpYwLXcG40CQHFgyvKNs/kvRSzY4j/k8xjli2v6Nm1eT/SLpI0kNmnqDa/mmSLUrG1we2V1WTlFsm6fGSvpHkmWWjKs/2mpKU5E+lYynJ9nVqnixb0mbtttr9TZPcuVRspdneTU2Z6g6SvqymXPXDSTYpGlhhlDh3o5R3YWyvK+lrtZbzcr1047zMRUn84lX7JLpCjCMegXGhczDodyQOAAAgAElEQVQudDTGEXc7UE0jyvUkvXcg6fQkST8qGVhpth+jpifNkyR9T82X502SXFc0sMJs/x81UyLv3O7/SdLbk3ygaGDlPKB0AH2V5GQ1v2/vrKaZ+EGS7tGWyp+UpMrm4qLEeRRKeRegXdFSczkv10s3zstclMQvEomnejCOuAPjQjsxLnQ0xhF3SPJdSXNWNSU5VdKpM/u29x1VfnZ7ZPsXkq5U8zvmFUmutX0ZSSe/TtIjJD02yaXta5tKOtL2ukmqK1tNckW7sud+kn7cNUmodu0UpU9I+kRbUranpINV6VQ7UeI8CqW8C9AOG/p96TgK4nrpxnmZi5L4RaLUrnK2HyVp7yRV9u6x/RMxLnQ5ts+V9FjNZu9PH9yveVyo7WPGHE6S/aYWzEqotqXIto9QMz30fDVfmE9Rk1SoevKJ7YskPTjJX4deX0PSuUnuXyayctrGrVtK+paknSV9Psmbxv+tOrSlQCPV+p5EifPCzPTWS/Lp0rGUYPvHmvvleF01D16fm+Sn04+qv2q/XgZREt+gJH7xSDxViHHEsxgXOhfjQjEptn+UZNvScUxTW8LwWDW9nZ4kaW1J+0s6tdYPceO+FNf6hdn2+WqScTfZvpOaHmBVTg4aZvsyNV+YeU8aYPuhakrq1pN0xEyisi1xfk6SZSXj6wN6682yvbmWb60RSVfX+IB1FK6X5Q2XxEuquiTe9n3GHU9yxbRiWVnVvBS3KowjHolxoUMYFzoa44gXrbonHW0pzOmSTrd9B81+qP2AmqR3jX5pe+ckpw2+2E6NrLXc+Ya2TEpJrqu858pyam8iPgolzqPRW6/Tp2pacbwQXC9zURI/FyXxi8eKp0rYvlnNOOL9MzuO+NJanxTOsH2hmp5XjAttMS50NNtv7Hh5XTXJhJrHEc9LbSuebK+V5I8jjj0gyU+mHVMftL31TpF0lmb7RixV82H/6UkuKBVbKQNL+KXll/FbTf6y2smzktT2LHqiZhMtF0r6SpK/lYtq5VBhifNgb72TB3rrVZ3ArO39d764XrpREj8XJfGLx4qneuyhZhzx6bZnxhHzRFX660x/iCRX2r6o5qRT62WS/rPdPkrS4AfW/SRVm3hKcljX6zPjiNXcVxjtmyv+kduVM9TeP7ZPS7LzwLGPa/l7qxpJLrD9IDVPmLdsX/66pBcOf8itCFPtRrC9oZpJvL9WMyXTkp4i6T22d0zyq5LxrQRq+6z3GTW99faSdJPtU1ThatsO63Ws2r5FkvdMM5ge4Xrplq734yR/aRcz1OjRGiqJ1+xkUcwDiadKMI54JMaFzsW40AWqfRyx7SOSHNRuH5jkyIFjxyZ5niQleXGhEEsZvCaGGyTXfL18NcnjJX20dCx9QW+Isd4s6YNJjhh80fZLJL1V0r5Folp5VPUlOslBtl+q2d5675C0tu1nqeLeepJWlbSmKn7v6cL1MhIl8XNREr9IJJ4qwzjiORgXOhfjQheIccR69MD2vpKOHNivuUSIe6nbeqUD6Bvb12r5a8KabaidJGsVCawfHjaTvB6U5H1tOQjGq+7LEb31Ov06yeGlg+gjrpdOL5F0iu3OkvhiUZW1he3z2m1L2qzdpyR+nkg8VWLMOOLPtH+qNNhwk3Ght9hi4BfpZkO/ZGvvCTZ2HPH0I+qNcavkanaPtrTBA9tq92tOvqxte49RB5N8dprB9MRpktaX9FlJxye5snA8ffKXMceqbf67AFWVOA/31ktyo6QvSPqC7ZpLWjvfm21vJGnvJO+ccjy9wPXSjZL4TtVeD7cVEk/1+IHGjCNWxQmF4XGhtqseFyp+sY6zhxhH3GWVdgXlKgPbM79rVi0XVnEfknSXjm1J+vD0w+mNtdX06Bn1flRd4inJbrbXVvM75kO2V1czffb4mT6EFRuVqLSkaleCUeI80hmit16XW86D7fXUVDwsk3QvSSeVCqoHzhDXyxyUxM9FSfzikXiqRO3TGUZhXOhcjAsdi3HE3dZWk9yeSST8sGAsvTGqGT10RZL9SgfRN0n+IOkY28epGQbyPkmrS6q16e+MMyU9dcSxr08zkJ6hxLkbvfW63Wh7XzUrWO6vJsG/SZJ7lw2rOK6XbjWvyu5ESfzikXiqCOOIOz1HQ+NCk1zaNhU8V1J1iaehcaFvsr0940JvUfOHkJGS3Ld0DH00NLhgjkqHF0ijSz5Wl/TUJJ+ecjy9YPsRalYgPErSWZJ2T/KNslGVl+T58/k52/sOls9XgBLnbvTW63aVpO9Jep2ks5LE9u6FY+oDrpdulMTPRUn8IpF4qgTjiEdiXOhcjAsdjXHEC2D7/pJemeQfS8dSyOCwgsMkvbFUID3znJkN26tqtpHr49X8vqku8WT7cknXSDpe0gGS/ta+vp0kJWEV4YodKKmmxBMlzt3ordft1WpWUn5A0idtf6pwPH3B9dKNkvghlMQvnptG/ri9s32spHNGjCN+SJIqxxHbPk3SW0aMC319kh3LRFaO7R8OlpMN79fM9q8lfVAjni7XWlple2tJ71LTK+JkSf8q6f2SHirp3UneWzC8XrD9oyTblo6jL2w/Rk3Jx5PUPIXfQdKmSapsFm37DI1+up4kO00xnJVSbfdYm6y8WaPfj6pssWB7bIK/1vfpGW07ib3VJPs3V/NA5KQkPysaWCFcL9347D+e7VU0WxL/Fh48zw+Jp0rY/mmSLUYcuyjJ3007pj6wvaWkU9SUNcwZF5rkglKxlWL7OkmXzOxK2qzdr35cKG/E3Wx/V01C7tuSniDpNWpWHryh4ukny+HamWX7F5KuVHPNnJzkWtuX1fpFGbcN7jFgYdqpZcsk7ZXkfqXjQX+MSuRTEj+nJP5TlMTPH6V29WAccQfGhXZiqt1ojCPutiTJse32Re2EpVeVDAi99hlJu0naS9JNtk9R3b00ZPtVSd7Rbu85+KHe9luSvKZcdCsN+hyJEmd6682P7TtIuoOkI5O8tnQ8pXC9jERJ/BBK4hePxFM9GEfcgXGhczEudCzGEXdb3fa2mv3id/3gfq1vxkMTUO5k+48zh1TxBJQkB9l+qaTHqrl/3qHmPepZkk5N8qeS8RWyt5rzIDW9WAY/1M+sIsR43ywdwDStqMS5YGil0Vuvg+1/k3RU+8B1bTUrlG+StK7tVyT5ZNkIi+F66ZDk/BEl8ZvUWhIv6XI1n+l2bf8MiiRK4leAUrtK2D5m3PH5To25vamtJ8R8MC50NNt3UdNUcHAc8V61jyOmPw0Wo33y/gQ1yZddk9y9cEhTN/heNPy+VPv7lO0jkhzUbh+Y5MiBY8cmeV6x4AqixHnFar93Btm+IMmW7fZBkh7bNkteX9KXOE9cL4MoiccksOKpEowjHolxoXMxLnQ0xhF3SPLY0jFg5ZXkRkmft/0zSdeXjqcQRnqP9uiB7X0lHTmwX23PQVHiPB+13zuDbhjYfpzaVZVJfmNTpdrieplFSfwQSuIXj8QThtU2jphxoUMYFzoW44g7dCRvI+m3aiZpXlsgJPQYJUKdtmlLMS1pjaGyzNXLhdULHrFdO0qcsRDX2H6KpF+qKZnaX5JsryZpjZKBoX8oie9ESfwikXjCsNo+1F2RZL/SQfRNkj9IOsb2cZodF7q6pKrHhSY5QtIRA+OIT5Z0L9sHq+JxxJKe2vHaupK2tr1/kv+edkDotQ9p+RKhc9Q88PiHikuEzqXEY6RVbN9V0ioD2zOfVVYtF1Zxv9Hy78mD+9X2G6G33kgvVPNZbn1JByX5Tfv6zpK+WCyqwrheRkvTj+d0SacPlcR/QFJ1JfEa/xCktu/Ptwo9nrCc2sYRMy60G+NC549xxKPZvo+kE5I8tHQs6A/b5yTZZmD/0iSbloyptNreexeinSR0s0Z8sKfnCHDbsf3qJG8tHQf6yfbfSTq4xof2g+/Tw+/ZvIfPDyueMKy2jC3jQocwLnT+GEc8XpIr2nMEDKJEaK572H7ZqINJql1tmuS+pWPoI0qcMSF7SiLxVDlK4jtREr9IJJ4wrKpxxIwL7XS5GBfaiXHEC9M+Gau1WTRGo0RorlUlran6Hv7carbvL+mVSf6xdCyFUOKMSeB3ECRK4rtQEr9IlNpVgnHE3RgXioVgHHE325/X3Gkn60raQNKzk3x7+lEBKw+W6Y+2oifvSd5bMLzeocQZi8HvIkiUxHfh3lg8VjzVg3HE3RgXOoRxoWMxjrjbu4b2I+lqSRcnuaHj51GxjhKh5SSpbpqoWGUwDk/eF4ASZywSv4sgURLfhZL4RSLxVA/GEXdgXGgnxoWOxjjiDknOHNy3fTc1ye4lkmr8cILxukqEZkRSjYmnnUsH0GNLkhzbbl/Urtp+VcmA+owSZyxSdb1N0YmS+LkoiV8kEk/1YBzxCIwLnYNxoaMxjriD7S9IOqTtmbaBmmTT2ZI2s310kiPKRog+SfL80jH0TZLflY6hx3jy3mFFJc7Tjwh9ZvsNYw4nyZvajbdMKST0WJLHlo6hh36d5PDSQazM6PFUCcYRLwzjQhkXuhi1jSMe6n31GklbJHmu7btI+maSmst5McT2QyUdLWkzST+WtF+Sn5SNCn1l+wyNLoFPkhqfvKsdjDKIEmeMZPvlHS/fSdILJN0tyZpTDgk9Rkn8XLZ/VGsv19sKiSdUjaalc9m+WdKf1I4LlTQz3c+SVk9C74gVqC1BN9iE0vZpkj6U5PjhY4Ak2T5bTRnv1yU9TdILkgxP0ASwAAMlzlfUugoM89M+FDpQTbuAE9R83r2qbFToE9vHjDmcSh/Mr8vq5MWh1K5yjCOmaWkHxoUuXm0liT+3/c+SfiFpO0lfliTba0giUYlhqyT5r3b707ZfXTQa9FrHk/dI+q2kc5JcWyCkXqDEGQtle11JL5P0D2o+626X5Pdlo0IfURI/F0mnxSPxVIkVrewpGFppNC2di2WQi1fbOdxf0uGSdpG0V5Jr2tcfJmncUzPUaZ2hZMJy+zUu4cdYXc3o15W0te39k/z3tAPqiU2SnN9uP1/Sfw2WOEsi8YRb2H6npD3UlDlvVenwHMwTJfGYBErtKmH7u1p+Zc9r1DzteEPFK3tk+6dqptnNrFD5uKR9ZvZrXK5u+xdafpLFchgXumLUgUvtAINrwpsMhrCEH7cF2/eRdEKSh5aOpQRKnLEQbRuF6yX9Tcs/HLOa37trFQkMvURJPCaBFU/1YGVPN8aFzsW40MWrahxxOy3nhCQ/tb1ETandgyX9zfY+Sb5WNkL0CUv4cVtIckU7ibZWlDhj3pKsUjoGrFQoicdtjsRTPRhH3IFxoZ0YFzoC44hH2kvSm9rtfdv/rifp/mpWVpJ4wi1sP1XSeUmuaPffIOkZkq6QdGCSy0rGh5VDO332+tJxFESJM+bN9k4zZam2Nxn8PWt7D0qcMYSSeNzmKLWrBOOIuzEudC7KxEZjHHG3wWvG9omSvprk39v9qib8YcVsnyfpYUmus/0UNatMl0naVtKeLOfHINuf19zPL+tK2kDSs5N8e/pR9RMlzhhl8L14+H2Z92kMoyQek8CKp0qwsmekrqalMyKpusSTpJ1LB9BXSW5pxD8wjng/Scer7ib919t+kKT/kbSjpFcMHLtTmZDQY0lyXbu9h6SPJPmBpB/Y/r8F40I/vWtoP5KulnRxkhsKxNMLlDhjgTxiu2sflaMkHpNA4qkSjCPuxi/WuRgXOh7jiDsdJOkzasrr3juzhN/2kyT9qGRg6CXbXlPSdWoS3R8YOLZ6mZDQV0nOHNy3fTdJj5a0RFKVbQJalDhjITJiu2sflaMkHpNA4qkejCPuwLhQLATjiLsl+Y6kLTpeP1XSqdOPCD13hKRzJP1R0k+SnC1Jbd/BX5cMDP1j+wuSDklyvu0N1CSbzpa0me2jkxxRNsJibhgoqdtV0vFJbpL0E9t8vsewTW1/Ts3qpplttfublAsLPfVmNf3i1JbEP1uzJfH/puZ3DrAg9HiqHOOIGReK+WMccTfbRyQ5qN0+MMmRA8eOTfL/27v3IE3L8s7j3x8HYULA7EZclWAUBUEUAmggK0lKTDZgGUFZ14gE0A1hS0yhoGxEdhWIJyCgq+QgBgSCJiRQJFEqgkeCtbByMsAwLKxREBc3QVlYwAN47R/P08w7zdsz3dPTfb9vP99PVVc/z/10z1wzNVPdfb33df+OalacJlKSHYCnA1+vqp/0a88Etqyqu5sWp4mS5Laq2r2/PgnYtaqO6Medv1pVe7StsI0k19KdL/hd4A5gn5Hdpmuq6kkvBmi4kvzq+p7P3lmoYUvy9aras78+D7ijqj7U33smmDaKr4gMnHHExoVq/owjntOvjFwfCXxk5H6QPxRqbkkOr6o/B+5N8jLgqwBV9b+TvBX4WNMCNWl+PHL9CuBcgKp6qH8xYKgccda82VjSAjkSr03OH6IGzjjiLh505m3MvfSEJAeMXD931rMh/3tZ36Gl0mzHj1x/dNYzk3I02z1Jfi/Ja4C96Q7RJskqYLAvnFXVtVW1a1X9bFWdNrJ+RVW9oWVtmjxJDk5y7Mj9dUm+0b/9+5a1aSLNjMRfjyPx2kTc8TQQG4ojXv6KJsZXWPf8q9H7oabaaW5n0v3gA3DpyDXAyQz338tmfYz3ZiPXMw2ozduVpQllupIW4j8CpwK/Bry+qh7o1/cD1hf5vaI54qwFOhH4rZH7rYCXAtvQ/T/66xZFaTJV1XlJPkc/Ej/y6D7AYCZtFBtPw2Ec8Rim2mmB/IF5vKcCN7D272DISVPaMNOVNG9V9X+A/zS61je3v1xVX2pT1URwxFkL8ZSqumfk/pqquh+4P8k2rYrSZHIkXkvBxtNAGEc8nnGhWiB/YB6jqp7TugZNlV2T/CNdo/J5/TX9/U7tytIk6r8uX1JVa5JsRTdqtyfwWJLDqurzbStsxhFnLcS/Gr2pqreO3G6/zLVo8h0P/Hl//VHW3eH/Zmw8aSPYeBoI44jnZFyoFsI44gVIsgvwzqo6unUtmii7tS5AU+X1wMwZRkf277cHdgEuAIbaeHLEWQtxXZKjq+rc0cUkxwD/o1FNmlzu8NcmZ+NpOJ5bVbf2128CrhqNI6Y7RG6Iqqoe6a9fC/xZVd0A3JDkLQ3r0mQ6eOR69vjq7PvBSLIH3Z//WcDlwDl0r4btC/xhw9I0gWZ2mM6WZDO6xv/Y5xqsH1XVzI7S3wD+oqoeB25PMuTvYx1x1kK8Hbg8yWGs/beyD93kwyHNqtKkcoe/Nrkhf8EeGuOIxzMuVPNmHPGczgX+GPjvwIF0SSgXAG+sqh+0LEyTJ8l2wLHADsDfAlcBbwVOoDvE9OJ21WkC/TDJi4DvAi8H3jHy7KfalNSeI85aiP6stH/bp/Pu3i9/tqq+2LAsTS5H4rXJ2XgajnuS/B7wbYwjHjUTF/ogxoVqA5IcDPxcVZ3T31/H2rMRTqyqoabCbFVVn+yv7+gTlk5sWZAm2kXA9+kalb8DnET3zewhVXVzy8I0kd5Gl7i1PXD2zNmLSV4J3NSysEnkiLPGSXIF8Ja+0WSzSRviSLw2uazdvayVLMnT6eKInwmcU1VX9usvB/apqiGPCe1AHxdaVT/p154JbFlVdzctThMlyVeB35pJhklyM91OuW2A86vqFS3rayXJGroRqZmRj4uBw2buq8oRED0hyS1V9eL+enO6Jv+z3R0nzd+GRpyr6uyG5WnCJHkd3bmmFwCnV9WPN/Ap0pPMjMRXlTuTtWA2ngasP4jygRrwP4KRuFCSvKyqvjry7K1VZWqDnpDka1X10pH7j80kwyS5tqr2a1ddO0m+zNwz/1VVByxjOZpwSW6sqr3nupdGJflwVb2tvz6uqj4y8uyTVXVUs+Ia6nfcjo44n0TXVPivNnE1Tn+0xH+h+/dyEfDEURtVdVarujR5NjQSX1UHr+fTpbFsPA3E+uKIgcHGEY/+wOMPQ9qQJHdV1fPnePa/qup5y12TNG2SPA48PHMLrKI7Zy90jcrtWtWmyePX6fGS3FxVvzBy/42q8uwVzSnJU4Dfp9uR/Jes23g6pVVdmjxJ/oa1I/GvoJsMCXCcI/HaWJ7xNBzGEY9nXKgWwjjiMZLsDJwBPB+4BXhHVd3btipNqqoy6l0Lsb6v00O2dX8e5czfyQ9H7x1x1qgkBwJn0e1e2Xsk0VkaZ6eRkfhP4Ei8NgEbT8NhHPF4xoVqIYwjHu884ELgauDVwEeB1zatSNJKsVl/NMBmI9czzZYhNzHvo2skjLsvwBFnjXo38Lqquq11IZoKT5wBVlWPJ/m2TSctlqN2A5HkWrr0oO8Cd9AdKD6TDLOmqnZtWV8rSR4B7qKPC+2v6e93qqptWtWmyTUrjvi2occRjxn5GOz4i6RNK8k36UaCxu52qqrnLmtB0hRK8tKq+tocz367qi5a7po0uRyJ11IY8k6XoTGOeDzjQjVvxhHPafbIxypHPiRtClX1nNY1TCJHnLVAf9Yn876rqh4ASPIi4I+A79EdNi4BjsRrabjjSRrDuFCNYxzxeEm+tJ7HptpJ2uSS7AK8s6qObl1LC0n+gXVHnH+pqhxx1lj9sRrvBH6X7szXFwOvBE6oqs+0rE3SMNh4GgjjiMczLlQLZRyxJC2fJHsAZwLPAi4HzgE+BuwL/GFVnd2wvGYccdbGSPJO4EPAd4BfrKrvNC5J0kA4ajccvzJyfSTwkZH7PZa5lklyEWvjQn8HOIluPOgQ40I1hx/Rzb1vBWzLSONpyJL8LF1E88x5cbcDn6qq77WrStIKcC7wx3Rfpw8EbqbbdfrGgR9264iz5i3J8+iatkV3zMRBwNVJ3ldV5zctTtIguONpIJLcVFV7zb7u7wf7KlmSW0biQjfHuFCtx6w44lONI+4k2Y3uzKvP0Z0ZF2Av4NeBA6pqTcPyJE2xMTt7vlFVO7WsaRI44qyFSHIX8PvAZ+jOBQO4Hzgb2LGqXtaqNknD4I6n4TCOeDzjQrUQxhGPdxpwXFVdMrqY5FC6M7EObVKVpJVg9s6eH7qzB6rq5a1r0FTZGziZbvfg3XT/f3YEPgmc164sSUPhjqeBMI54PONCtRDGEY+X5I6qesFCn0nShiT5Mt140DiD3tnjiLPmK8nZwE8Dx1fVQ/3adnTnpz1aVce1rE/SymfjSZLmKck/AnPGEVfVIS3ra2V947pDHuWVpKXiiLMWIsmdwC416we//piJNVW1c5vKJA2Fo3YDN/Q4YmmB9qaLI74piXHEaz09yfFj1gNsv9zFSFo5kuwMnEF3Ls0twDuq6t62VU0ER5y1EDW76dQvPp7EXQiSltxmrQvQ8kiyR5Irk9ya5A+SPDPJpXSvlq1uXZ80Darqsar6AN0Op08ArwNePvCmE3SpU9uOeftpur8nSdpY5wGfpWuk3Ah8tG05E+PFs5tOAFV1KfCiBvVosq1OcsTsxSSHA+6Ok7Tk3PE0HMYRS4tkHPF4VXVK6xokrVjbVtW5/fUZSQZ5mPgYD2/kMw3TscBlSd4M3NCvvYTubNPXNKtK0mB4xtNAGEcsLZ5xxHNLchDwLuCF/dJtwIeq6op2VUmadknWAG9gbTjKxXQHag861S7Jt4Gzxj0C3lZVOy5zSZoCSQ4Adu9vV1fVF1rWI2k4bDwNhN+4SYvXJ8CcDLyJJ8cRX1VVV7arrp0kRwPHACcC1/fLLwE+CHyiqj7eqjZJ0y3Jl9bzeLCpdknes77n7kSVJE0SG08DYRyxtHjGEY+XZDWw/+wI7z7q+5qq2q1NZZIkSZJas/EkSfNkHPF4SW6fq7m0vmeSNB99E/swYNd+6XbgU7Ob3UPjiLMkaVqYajcQSXZOcnmfavfpJDu0rkmaQnPGETP3jsIheDDJnrMX+7WHGtQjaYVIshtwK7AP8D+BO4GXArcm2XV9n7uS9SPOpwHvBXbq304B3pvkdxuWJknSk7jjaSCS/ANwIXA18Grgl6rqtW2rkqZLksuBy6rqwlnrhwP/oape3aaytpLsT3du3Pmsm5ZzJHB4VV3TqjZJ0y3JXwOXVNUls9YPBQ6rqkPbVNaWI86SpGli42kgxqTa3VhVe7esSZo2/U7By4BHGRNHXFX3tqqttSTPAN7CSFoOcE5V3deuKknTLskdVfWChT5b6RxxliRNky1aF6Bls3WSvVibardq9N5UO2nD+sbSvrPiiK8wjhiq6r4k7wee3y/dVVU/aFmTpBXh4Y18ttI9mGTPqvr66KIjzpKkSeSOp4EwjljSUkmyBfB+4E3A3XQN7R3pRu/eXVU/bliepCmW5NvAWeMeAW+rqh2XuaSJ4IizJGma2HiSJC1KkrOBbYG3V9VD/dp2wJnAo1V1XMv6JE2vJO9Z3/OqOmW5apk0jjhLkqaFjacBMY5Y0lJIciewy+zEvySbA2uqauc2lUnSypZkaxxxliRNuM1aF6DlYRyxpCVUs5tO/eLjgK9uSFqUJAcluTrJv/RvX0nyytZ1tZRkiySnA/cAF9AlF9+T5PQkW7atTpKkdXm4+HCcBhw3Rxzx+4BBxhFL2iRWJzmiqi4cXUxyOLCmUU2SVoAkRwPHACcC1/fLLwE+mOTnqurjzYpr6wy6Eeedxow4nwk44ixJmhiO2g2EccSSlkqSHYDLgEdZ95DbVcBr+jRASVqwJKuB/WcfC9AfH3BNVe3WprK2HHGWJE0TdzwNh3HEkpZE31jaN8kBrD3k9oqq+kK/q/LSdtVJmnIZdxZlVd2fpEU9k2LOEeckvqosSZooNp6G4+lJjh+zHmD75S5G0spTVV8Evjhr+WxsPEnaeA8m2bOqvj66mGRP4KFGNU0CR5wlSVPDUbuBMI5YUgtJ7qmqHVvXIWk6JdkfuBg4n3VHeY8EDq+qa1rV1pIjzpKkaWLjSZK0ZJLcXVXPbl2HpOmV5BnAW1g7yrsaOKeq7mtX1WSYNeK8embEuarcaSpJmhg2ngYkyUHAu4AX9ku3Adv3QbsAAAZ7SURBVB+qqivaVSVp2iW5BRj3xSR0h99utcwlSVphkmwNPL+/vauqftCynklmw1+SNGk842kgjCOWtIRe1boASStTki2A9wNvAu6ma2jvmOR84N1V9eOW9U2oQZ+6LkmaPO54GgjjiCUtpyRPA+4fl7okSfOV5GxgW+DtVfVQv7YdcCbwaFUd17K+SeSOJ0nSpLHxNBBJbp+rubS+Z5K0IUn2Az4IfA84DbgIeBqwGXBEVf19w/IkTbEkd9KN7Nas9c2BNVW1c5vK2nLEWZI0TRy1Gw7jiCUtlY8BJwFPBb4IHFRV1ybZFfg0YONJ0saqcTsnq+rxJEN+9dQRZ0nS1LDxNBwnAH/bn4nwpDjiZlVJWgm2qKorAZKcWlXXAlTVmsSjRiQtyuokR1TVhaOLSQ4H1jSqqbmq+tbsNUecJUmTysbTQFTVNUn2pYsjPqpfXg3sZxyxpEX6ycj1o7Oe+QOQpMU4FrgsyZtZ94WzVcBrmlXV2PpGnPtGnTtNJUkTwzOeBsY4YkmbWpLHgYfpzhZZBTwy8wjYuqq2bFWbpJUhyQHA7v3t6qr6QpJDq+rSlnW1kuR61o44f5xZI85VtVfTAiVJGmHjaSDmiiMGjCOWJElTZ8jpbUlurqpf6K/XCYlJcpONJ0nSJNmsdQFaNmcA/xrYqar2qaq9gecBP0MXSSxJkjRNhnyInCPOkqSp4Y6ngTCOWJIkrSQD3/HkiLMkaWp4uPhwGEcsSZKmSpJbGL+DJ8C/WeZyJkZVbd66BkmS5svG03AYRyxJkqbNq1oXIEmSFsdRu4FIsgNwGd05AE+KI66qe1vVJkmSNF9JngbcP24ntyRJmjweLj4QVXVvVe0LnAp8s387tap+EdivYWmSJEljJdkvyZeTXJZkryS3ArcC301yYOv6JEnShrnjSYM+nFOSJE2uJNcDJwFPBT4OHFRV1ybZFfh0Ve3VtEBJkrRB7ngSDDuOWJIkTa4tqurKqvor4L6quhagqjyfUpKkKWHjSTA+LUaSJKm1n4xcPzrrmd+/SJI0BRy1G4gNxBHvUlVbLXNJkiRJ65XkceBhuu9XVgGPzDwCtq6qLVvVJkmS5sfG00Ak+fn1Pa+qby1XLZIkSZIkaRhsPA2YccSSJEmSJGkpecbTQBhHLEmSJEmSlps7ngbCOGJJkiRJkrTc3PE0HMYRS5IkSZKkZWXjaTiMI5YkSZIkScvKUbuBMI5YkiRJkiQtNxtPkiRJkiRJWhKO2kmSJEmSJGlJ2HiSJEmSJEnSkrDxJEmStBGSPCdJzXp7YCN/rWcleW+SQzZ1nZIkSS1t0boASZKkKXcTcHp//aON/DWeBbwHuAC4fKGfnGSLqnpsI39vSZKkJeOOJ0mSpMX5Z+Dz/dsXkuyW5KokDyb5VpK3z3xgkmv79UeS3JDkl/tHX+vfH9nvnDoqySf765f0n/v/knyzvz6qf/aXSW4DLknylCRnJrk3yQNJ/irJ9v3HH5PkniQ/THJ3khOW6e9GkiQNnI0nSZKkxfl3dM2nfwY+C/wN8EK6XVDXAWcl+c3+Y68CjgfeCzwDOK9ff3f//mrgDcBX5vl7/wbwp8CFwLuAE4C/Az4MHAT8Sf9xpwPfB44G/ghwd5QkSVoWjtpJkiQtznXAyf31o8A1/fVpIx/z60m+BOxN1yDafOZBklXAlcD7gH+qqr/o1+fze59XVf+t//iZ5tUxo79v//5OYCfgAOAG4OL5/OKSJEmLZeNJkiRpcf6lqj4PkGT3fu1zwJkjH3MfcDjwSuBTdGc5vR/YB9gKqDG/7uP9+y2SbAWsGvMx35l1/xjwqpHPndndfgBwKF3j6wPA64H95/FnkyRJWhRH7SRJkjadO+h2F+0P7AW8ADiWruEzYztgD+DFI2vf79/vleQNSZ4GfLNf+23gg2z4+7bP0L2oeCTwbOBA1u5++jDwU8CNwP+lO8xckiRpybnjSZIkaROpqseSHEzX6DmZbufRjcAtwF10u45+rf/wq2euq+obST4FvJZuR9QvA+cCvwm8ke4Mp0c38Nt/ANiG7oyoQ4B/ojv/CeBngFOAbfv1/7zIP6okSdK8pGrczm5JkiRJkiRpcRy1kyRJkiRJ0pKw8SRJkiRJkqQlYeNJkiRJkiRJS8LGkyRJkiRJkpaEjSdJkiRJkiQtCRtPkiRJkiRJWhI2niRJkiRJkrQkbDxJkiRJkiRpSfx/mKc9QVi/280AAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 1440x720 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAALDCAYAAABU08r5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5hdZX03/O+PAAHfQkBIEQUEBSsgEDFAweelSFWUKshrC0h9BbWlWkFpeUpDW2XiMVZatYoWHqVgLQHBqoi0nhABQSXUqByqoEYJAmI4CAppgvfzx96Jk2FmMsnMypDJ53Nd+5p1uu/122uvC+P3ute9qrUWAAAAAJhoG012AQAAAABMTYInAAAAADoheAIAAACgE4InAAAAADoheAIAAACgE4InAAAAADoheAIARlVVV1bVn0x2HY8XVXVCVV2zDs6zXVVdVVUPVtU/dH2+Iee+qaoOGWHfIVW1eF3Ws7ZG+x4AwLoheAKADURVLaqq53fY/x9X1UP9z8NV9etB6w+tRX87V1Wrqo1HOWagqpb1z3F/VV1bVQeO75uscZ2tqnbtoOsTk/w8yZattVNHOPf+VXV5/7vfW1XfrKpXj/fErbU9W2tXjuXYqjqpqhZU1dKqOm+Y/X9SVbf1f6P/rKonj7e+Eeo4r6rePnjbmnyP1fQ9UFUfH28/ALAhEjwBABOitfZvrbXfaq39VpIXJ/npivX+tq5c1O9/2yRfSXJxh+dal56a5ObWWhtuZz9guyLJV5PsmmSbJK9P79qvSz9N8vYk5w7d0R9t9M4kRyZ5YpIfJZm/LosDACaX4AkANnBVtXVVXVZV91TVff3lHYYc9vT+aJpfVNVnquqJa3iOJ1fVJ/vn+FFVvXHQvv37I2Z+UVV3V9U/9ndd1f97f3+0zKgjmVpry5P8W5KnVNXMft8zquqjVXVnVd1RVW+vqmn9fbtW1Ver6oGq+nlVXdTf/piRViM9blhVK2r8dr/GY6pq2/41XDEK6eqqGvbfXFV1UFVd36/h+qo6qL/9vCTHJzmt3+9wI9Xek+T81tq7W2s/bz03tNaOHtT/n/ZHG91bVZeuGG1UVR+uqjOH1PKZqvrL/vLK0XFVtXl/NNF9VXVzkv2GXPd/b619OsmSYWp8SZKLW2s3tdb+J8nbkhxcVU8f4XpcWVXvGuleq6qLq+qu/vW6qqr27G8/MckfD7penx3me2xUVXOq6gdVtaSqPrGi70G/+fFV9ZP+/fC3/X0vSvI3SY7p9/3t/vYTquqH1XsU8kdV9cfDfScA2NAJngCAjZL8S3ojbHZK8nCSDw455lVJXpNk+yTLk/zTWDvvhy6fTfLtJE9J8vtJTqmqw/qHvD/J+1trWyZ5epJP9Lcf3P+7VX/U1HWrOc+m/TqXJLmvv/m8fr27Jnl2khcmWREgvS3JF5JsnWSHJB8Y63daobW2osZ9+jVelOTUJIuTzEyyXXqhxWNGLfVDj8+ldy23SfKPST5XVdu01k5IL0T7+36/XxrS9glJDkxyyUi1VdWhSd6V5Oj0frcfJ7mwv3t+ekFK9Y/dOr1rc+EwXZ2R3u/y9CSHpReIrYkaZvlZoxw/2r32H0l2S/LbSf4rvWuU1to5WfV6vXSYfk9O8rIkv5fkyendI2cNOeZ/Jfmd9O7Rt1TV7q21/0xv1NZF/b73qar/p1/Xi1trWyQ5KMnCUb4TAGywBE8AsIFrrS1prX2ytfar1tqDSd6R3v85H+xfW2s3ttZ+meTNSY5eMXJoDPZLMrO19tbW2v+01n6Y5P8kOba/f1mSXatq29baQ621r6/hVzi6qu5PLzD70yR/2FpbXlXbJTk8ySmttV+21n6W5L1DzvvUJE9urT3SWpuoCcOXpReaPLW1tqy1dvUIj8v9QZJbW2v/2lpb3lqbn+S/kwwXmgy1dXr/jrtzlGP+OMm5rbX/aq0tTXJ6kgOrauckV6cXhv2//WP/MMl1rbWfDtPP0Une0Vq7t7V2e9YgdEzyn+n9PntX1eZJ3tI/7xNGaTPivdZaO7e19mD/+wwk2aeqZoyxltcl+dvW2uJB7f+wVp1DbG5r7eHW2rfTC0r3GaW/Xyd5VlVt3lq7s7V20xjrAIANiuAJADZwVfWEqjq7qn5cVb9I7xG3rYYES7cPWv5xkk3Sm1NpLJ6a5Mn9R8/u74dEf5PeaKAkeW2SZyT57/7jZi9Zw6/widbaVv3+bkzynEHn3STJnYPOe3Z6o2WS5LT0RuB8s3pvP3vNGp53JO9JcluSL/QfxZozwnFPTu9aDvbj9EaFrc596QUf249yzCr9t9YeSm802FP6QdiFSV7R331c+qOHRuhn6O8/Jv2RWmck+WSSRf3Pg+mNCBvJsPdaVU2rqnn9R+V+0e8rWbP78FOD7oVbkjya39yHSXLXoOVfJRl2brJ+KHZMemHWnVX1uap65hjrAIANiuAJADg1vceLDug/7rbi8bHBj0jtOGh5p/RG9fx8jP3fnuRHrbWtBn22aK0dniSttVtba69ILxB6d5JL+o8yDTup9khaaz9P701wA1W1ff+8S5NsO+i8W7bW9uwff1dr7U9ba09O8mdJPlS9t9P9st/l4FE5T1qDOh5srZ3aWntakiOS/GVV/f4wh/40vTBksJ2S3DGGc/wqyXVJXj7KYav037+m2wzqf356I36emuSA9MKh4dyZx/7+Y9ZaO6u1tltrbbv+OTZOLyAcyUj32nHpTVL+/CQzkuzcP2bFfbq6++X29B6NG3wfbtZaW+31Hq7v1trnW2svSC/8++/0RvEBAEMIngBgw7JJVW026LNxki3Se0zt/v68Q2cM0+6VVbVHf26htya5pLX26BjP+c0kD1bVX/cnqp5WVc+qqv2SpKpeWVUzW2u/TnJ/v82vk9zT//u0sX651tr3knw+yWmttTvTm8PpH6pqy/7k0k+vqt/rn/eP6jeTqN+XXrjw69baPemFM6/s1/qa9OY3Gsndg2usqpdUb+LySvJAeqNqfj1Mu8uTPKOqjquqjavqmCR7JLlsjF/3tCQnVNVfVdU2/XPvU1WD53F6dVXNqqrp6c1T9I3W2qL+tfpWeoHOR5J8vrV2/2PO0POJJKdXbxL6HdKbK2mlfu2bJZmWZNqg+yr95WdVz05JzklvPq/7hp5kkJHutS3SCxKXpBcKvnNIu1V+h2H8c5J39IO2VNXMqjpylOOH9r1zf76yVNV2VXVkP8xbmuShDP8bA8AGT/AEABuWy9MLmVZ8BpK8L8nm6YUQX09vXp6h/jW9ibrvSrJZkjcOc8yw+qHBS5LMSvKj/CbsWDE3z4uS3FRVD6U30fix/Xl2fpXefFNf6z8e9btjPOV7kpxYVb+d3kTVmya5Ob1w6ZL85vG0/ZJ8o3/eS5O8qT//VNKbK+qv0gs59kxy7SjnG0hyfr/Go9Ob/PpL6YUR1yX5UGvtK8NclyX963Jq/zynJXlJf+TWarXWrk1yaP/zw6q6N71g5/L+/i+lN0fSJ9MbtfT0/GZ+qxUuSG8E0QWjnGpueo+8/Si9IO9fh+z/u/TupTlJXtlf/rv+vs36fT+UXgB5Xb+m0Yx0r32sX8cd6f2eQ+cC+2iSPfq/w6eH6ff96f3OX6iqB/vtD1hNLStc3P+7pKr+K71/Q/9leqPK7k1vTrTXj7EvANig1PBzXQIAwLpVVVcm+Xhr7SOTXQsAMDGMeAIAAACgE4InAAAAADrhUTsAAAAAOmHEEwAAAACdEDwBAAAA0ImNJ7uAdWnbbbdtO++882SXAQAAADBl3HDDDT9vrc0cbt8GFTztvPPOWbBgwWSXAQAAADBlVNWPR9rnUTsAAAAAOiF4AgAAAKATkxo8VdWLqup7VXVbVc0ZZv97q2ph//P9qrp/0L5HB+27dN1WDgAAAMDqTNocT1U1LclZSV6QZHGS66vq0tbazSuOaa39xaDjT07y7EFdPNxam7Wu6gUAAAC6s2zZsixevDiPPPLIZJfCCDbbbLPssMMO2WSTTcbcZjInF98/yW2ttR8mSVVdmOTIJDePcPwrkpyxjmoDAAAA1qHFixdniy22yM4775yqmuxyGKK1liVLlmTx4sXZZZddxtxuMh+1e0qS2wetL+5ve4yqemqSXZJcMWjzZlW1oKq+XlUv665MAAAAoGuPPPJIttlmG6HT41RVZZtttlnjEWmTOeJpTRyb5JLW2qODtj21tXZHVT0tyRVV9d3W2g+GNqyqE5OcmCQ77bTTuqkWAAAAWGNCp8e3tfl9JnPE0x1Jdhy0vkN/23COTTJ/8IbW2h39vz9McmVWnf9p8HHntNZmt9Zmz5w5c7w1AwAAAFPUb/3Wb61c/v73v5/DDz88u+22W/bdd98cffTRufvuu3PeeeflpJNOWqXdIYcckgULFgzb589//vNssskm+ed//ucRzzswMJAzzzxzjWo96KCDkiSLFi3KBRdcsHL7woULc/nll69RX8no32E8JnPE0/VJdquqXdILnI5NctzQg6rqmUm2TnLdoG1bJ/lVa21pVW2b5LlJ/n6dVA0AAAB07n3z5uWBpUsnrL8Z06fnlDlzxnTsI488kj/4gz/IP/7jP+alL31pkuTKK6/MPffcs8bnvfjii/O7v/u7mT9/fl73utetcfuRXHvttUl+Ezwdd1wvUlm4cGEWLFiQww8/fMLONR6TFjy11pZX1UlJPp9kWpJzW2s3VdVbkyxorV3aP/TYJBe21tqg5rsnObuqfp3eqK15g9+GBwAAAKzfHli6NGcMDExYf3PXoK8LLrggBx544MrQKemNCEqyxqOC5s+fn3/4h3/Icccdl8WLF2eHHXZIkrzjHe/I+eefn9/+7d/OjjvumOc85zkrz/PsZz87V199dX75y1/mYx/7WN71rnflu9/9bo455pi8/e1vT9IbnfXQQw9lzpw5ueWWWzJr1qy84hWvyFlnnZWHH34411xzTU4//fS85CUvycknn5wbb7wxy5Yty8DAQI488sg8/PDDefWrX51vf/vbeeYzn5mHH354jb7XWE3qHE+ttcuTXD5k21uGrA8M0+7aJHt1WhwAAACwQbrxxhtXBkHjcfvtt+fOO+/M/vvvn6OPPjoXXXRRTj311Nxwww258MILs3Dhwixfvjz77rvvKufbdNNNs2DBgrz//e/PkUcemRtuuCFPfOIT8/SnPz1/8Rd/kW222WblsfPmzcuZZ56Zyy67LEmy3XbbZcGCBfngBz+YJPmbv/mbHHrooTn33HNz//33Z//998/zn//8nH322XnCE56QW265Jd/5zney7777jvv7Dmcy53gCAAAAWK+MNMH2cNsvuuiiHH300UmSY489NvPn96avvvrqq3PUUUflCU94QrbccsscccQRq7Rbsb7XXntlzz33zPbbb5/p06fnaU97Wm6//fY1qvcLX/hC5s2bl1mzZuWQQw7JI488kp/85Ce56qqr8spXvjJJsvfee2fvvfdeo37Han15qx0AAADAOrHnnnvmq1/96rD7ttlmm9x3332rbLv33nuz7bbbPubY+fPn56677sq//du/JUl++tOf5tZbb13t+adPn54k2WijjVYur1hfvnz5mL9HkrTW8slPfjK/8zu/s0btJooRTwAAAACDHHfccbn22mvzuc99buW2q666KjfeeGP222+/fO1rX8tdd92VpDfn09KlS7Pjjjuu0sf3v//9PPTQQ7njjjuyaNGiLFq0KKeffnrmz5+fgw8+OJ/+9Kfz8MMP58EHH8xnP/vZta51iy22yIMPPjji+mGHHZYPfOADWTF19re+9a0kycEHH7zybXg33nhjvvOd76x1DaMRPAEAAAAMsvnmm+eyyy7LBz7wgey2227ZY4898qEPfSgzZ87Mdtttl/e///05/PDDM2vWrJxyyimZP39+Ntpo1Yhl/vz5Oeqoo1bZ9vKXvzzz58/Pvvvum2OOOSb77LNPXvziF2e//fZb61r33nvvTJs2Lfvss0/e+9735nnPe15uvvnmzJo1KxdddFHe/OY3Z9myZdl7772z55575s1vfnOS5PWvf30eeuih7L777nnLW94yIXNaDadWfVnc1DZ79uy2prPPAwAAAN275ZZbsvvuu69cf9+8eXlg6dIJ63/G9Ok5Zc6cCetvQzX0d0qSqrqhtTZ7uOPN8QQAAAA87giJpgaP2gEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAQJKqyqmnnrpy/cwzz8zAwMDK9XPOOSfPfOYz88xnPjP7779/rrnmmiTJUUcdlVmzZmXXXXfNjBkzMmvWrMyaNSvXXnvtY86xfPnyzJw5M3NGeWvfeeedl5NOOmmNaj/88MNz//335/7778+HPvShldsXLVqUCy64YI36SpITTjghl1xyyRq3G2rjcfcAADxuzJv3vixd+sC4+pg+fUbmzDllgioCAFg7E/HvmsHG8m+c6dOn59///d9z+umnZ9ttt11l32WXXZazzz4711xzTbbddtv813/9V172spflm9/8Zj71qU8lSa688sqceeaZueyyy0Y8xxe/+MU84xnPyMUXX5x3vetdqarxf7kkl19+eZJe0PShD30of/7nf75y/YILLshxxx03IedZU4InAJhCli59IAMDZ4yrj4GBuRNUDQDA2puIf9cMNpZ/42y88cY58cQT8973vjfveMc7Vtn37ne/O+95z3tWBlL77rtvjj/++Jx11ll529veNuY65s+fnze96U358Ic/nOuuuy4HHXRQkuRf/uVf8q53vStbbbVV9tlnn0yfPj1Jb+TR5ptvnm9961v52c9+lnPPPTcf+9jHct111+WAAw7IeeedlyTZeeeds2DBgsyZMyc/+MEPMmvWrLzgBS/I1VdfnVtuuSWzZs3K8ccfnze+8Y2ZM2dOrrzyyixdujRveMMb8md/9mdpreXkk0/OF7/4xey4447ZdNNNx/ydRiN4AgAAAOh7wxvekL333junnXbaKttvuummPOc5z1ll2+zZs3P++eePue9HHnkkX/rSl3L22Wfn/vvvz/z583PQQQflzjvvzBlnnJEbbrghM2bMyPOe97w8+9nPXtnuvvvuy3XXXZdLL700RxxxRL72ta/lIx/5SPbbb78sXLgws2bNWnnsvHnzcuONN2bhwoVJHjsK65xzzsmMGTNy/fXXZ+nSpXnuc5+bF77whfnWt76V733ve7n55ptz9913Z4899shrXvOaNb5+Q5njCQAAAKBvyy23zKte9ar80z/904T3fdlll+V5z3teNt9887z85S/Ppz/96Tz66KP5xje+kUMOOSQzZ87MpptummOOOWaVdi996UtTVdlrr72y3XbbZa+99spGG22UPffcM4sWLVqjGr7whS/kYx/7WGbNmpUDDjggS5Ysya233pqrrroqr3jFKzJt2rQ8+clPzqGHHjoh39mIJwAAAIBBTjnllOy777559atfvXLbHnvskRtuuGGVQOaGG27InnvuOeZ+58+fn2uuuSY777xzkmTJkiW54oorVttuxWN3G2200crlFevLly8f8/mTpLWWD3zgAznssMNW2b5ijqiJZsQTAAAAwCBPfOITc/TRR+ejH/3oym2nnXZa/vqv/zpLlixJkixcuDDnnXfeykm8V+cXv/hFrr766vzkJz/JokWLsmjRopx11lmZP39+DjjggHz1q1/NkiVLsmzZslx88cVrXfsWW2yRBx98cMT1ww47LB/+8IezbNmyJMn3v//9/PKXv8zBBx+ciy66KI8++mjuvPPOfOUrX1nrGgYz4gkAAABgiFNPPTUf/OAHV64fccQRueOOO3LQQQelqrLFFlvk4x//eLbffvsx9fepT30qhx566Cojlo488sicdtpp+fCHP5yBgYEceOCB2WqrrVaZs2lNbbPNNnnuc5+bZz3rWXnxi1+cd77znZk2bVr22WefnHDCCXnTm96URYsWZd99901rLTNnzsynP/3pHHXUUbniiiuyxx57ZKeddsqBBx641jUMVq21CelofTB79uy2YMGCyS4DADozd+7cCXmr3RlnTNwbZAAAxuKWW27J7rvvvnJ93rz3ZenSByas/+nTZ2TOnFMmrL8N1dDfKUmq6obW2uzhjjfiCQAAAHjcERJNDeZ4AgAAAKATgicAAAAAOiF4AgAAAB4XNqR5qNdHa/P7CJ4AAACASbfZZptlyZIlwqfHqdZalixZks0222yN2plcHAAAAJh0O+ywQxYvXpx77rlnskthBJtttll22GGHNWojeAIAAAAm3SabbJJddtllsstggnnUDgAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOTGrwVFUvqqrvVdVtVTVnmP0nVNU9VbWw//mTQfuOr6pb+5/j123lAAAAAKzOxpN14qqaluSsJC9IsjjJ9VV1aWvt5iGHXtRaO2lI2ycmOSPJ7CQtyQ39tvetg9IBAAAAGIPJHPG0f5LbWms/bK39T5ILkxw5xraHJflia+3eftj0xSQv6qhOAAAAANbCZAZPT0ly+6D1xf1tQ728qr5TVZdU1Y5r2BYAAACASfJ4n1z8s0l2bq3tnd6opvPXtIOqOrGqFlTVgnvuuWfCCwQAAABgeJMZPN2RZMdB6zv0t63UWlvSWlvaX/1IkueMte2gPs5prc1urc2eOXPmhBQOAAAAwOpNZvB0fZLdqmqXqto0ybFJLh18QFVtP2j1iCS39Jc/n+SFVbV1VW2d5IX9bQAAAAA8TkzaW+1aa8ur6qT0AqNpSc5trd1UVW9NsqC1dmmSN1bVEUmWJ7k3yQn9tvdW1dvSC6+S5K2ttXvX+ZcAAAAAYESTFjwlSWvt8iSXD9n2lkHLpyc5fYS25yY5t9MCAQAAAFhrj/fJxQEAAABYTwmeAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATgieAAAAAOiE4AkAAACATmw82QUAAI8/c+fOXeu2M6ZPzylz5kxgNQAArK8ETwDAY5wxMLDWbeeOoy0AAFOLR+0AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBObDzZBQBrb96892Xp0gfG1cf06TMyZ84pE1QRAAAA/IbgCdZjS5c+kIGBM8bVx8DA3AmqBgAAAFblUTsAAAAAOiF4AgAAAKATgicAAAAAOiF4AgAAAKATJhcHAABgg+Ct0LDuCZ4AAADYIHgrNKx7HrUDAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6sfFkFwBMvrlz1/6VsDOmT88pc+ZMYDUAAABMFYInIGcMDKx127njaAsAAMDU5lE7AAAAADoheAIAAACgE4InAAAAADoheAIAAACgE4InAAAAADoheAIAAACgE4InAAAAADoheAIAAACgE4InAAAAADoheAIAAACgE5MaPFXVi6rqe1V1W1XNGWb/X1bVzVX1nar6clU9ddC+R6tqYf9z6bqtHAAAAIDV2XiyTlxV05KcleQFSRYnub6qLm2t3TzosG8lmd1a+1VVvT7J3yc5pr/v4dbarHVaNAAAAABjNmnBU5L9k9zWWvthklTVhUmOTLIyeGqtfWXQ8V9P8sp1WiEAAAAMMXfu3LVuO2P69Jwy5zEP/MCUNZnB01OS3D5ofXGSA0Y5/rVJ/mPQ+mZVtSDJ8iTzWmufHq5RVZ2Y5MQk2WmnncZVMAAAAJwxMLDWbeeOoy2sjyYzeBqzqnplktlJfm/Q5qe21u6oqqcluaKqvtta+8HQtq21c5KckySzZ89u66Tg9cD75s3LA0uXrnV7KT0AAACwOpMZPN2RZMdB6zv0t62iqp6f5G+T/F5rbWVS0lq7o//3h1V1ZZJnJ3lM8MTwHli6VEoPAAAAdGoy32p3fZLdqmqXqto0ybFJVnk7XVU9O8nZSY5orf1s0Patq2p6f3nbJM/NoLmhAAAAAJh8kzbiqbW2vKpOSvL5JNOSnNtau6mq3ppkQWvt0iTvSfJbSS6uqiT5SWvtiCS7Jzm7qn6dXng2b8jb8AAAAACYZJM6x1Nr7fIklw/Z9pZBy88fod21SfbqtjoAAAAAxmMyH7UDAAAAYAoTPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ0QPAEAAADQCcETAAAAAJ3YeLILYO3Mm/e+LF36wFq3X7Zs2gRWAwAAAPBYgqf11NKlD2Rg4Iy1bj8wMHcCqwEAAPhZp2EAACAASURBVAB4LI/aAQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANAJwRMAAAAAnRA8AQAAANCJMQVPVfUHVfW+qtqjql5ZVft0XRgAAAAA67fVBk9VdUqSzyY5OcmTkvx/Sd7TcV0AAAAArOfGMuLplCQXD1r/UpJ9uykHAAAAgKliLMHT1km+PWj9CUmmdVMOAAAAAFPFxmM45htJXt9f/t9J/leSr3VWEQAAAABTwlhGPL0pycNJKsmLktyZ3uN3AAAAADCi1QZPrbVbkuye5Fn9zx6tte9NxMmr6kVV9b2quq2q5gyzf3pVXdTf/42q2nnQvtP7279XVYdNRD0AAAAATJzVPmpXVW8ZZltrrb1tPCeuqmlJzkrygiSLk1xfVZe21m4edNhrk9zXWtu1qo5N8u4kx1TVHkmOTbJnkicn+VJVPaO19uh4agIAAABg4oxljqeBYba1JOMKnpLsn+S21toPk6SqLkxyZJLBwdORg85/SZIPVlX1t1/YWlua5EdVdVu/v+vGWRMAAAAAE2QswdPR6QVNSe8Nd29Icv0EnPspSW4ftL44yQEjHdNaW15VDyTZpr/960PaPmUCagIAAABggqw2eGqtXTJ4vap+mfGPdlpnqurEJCcmyU477TTJ1Uyc6dNnZGBg7lq3f3T5xpk7MLDW7WdMn77WbSfKvHnvy9KlD6x1+0eXb5xpGy8fVw0zpk/PKXMeMz3ZOjPe+yBxLyRT414Y7zVIxn8dJvsaJO6FxH8XVpjse2Gy74PEfxdWcC9M/jVIXIfENVhhsq+D/53scS/438l1qrU26ifJdwZ9bk7vDXd3r67dGPo9MMnnB62fnuT0Icd8PsmB/eWNk/w8vbfrrXLs4ONG+zznOc9pTB0DAwMtaWv9GRgYWPvG/c/AwMBkXwaae2EirsFEXIfJvgYTcR2mwr1Az2TfC4+H+8B/FybmOrgGU+e/jZN9HVyDx891wL0wEddgqvx3YaIkWdDa8FnMat9ql9+8ze5ZSZ6R5I4kfz7+yCvXJ9mtqnapqk3Tmyz80iHHXJrk+P7yHya5ov+FLk1ybP+td7sk2S3JNyegJgAAAAAmyFgetRtLOLXGWm/OppPSG600Lcm5rbWbquqt6SVllyb5aJJ/7U8efm964VT6x30ivRFYy5O8oXmjHQAAAMDjyojBU1X95SjtWmvtveM9eWvt8iSXD9n2lkHLjyT5oxHaviPJO8ZbAwAAAADdGG3E05lJWnpzKg3Vkow7eAIAAABg6hoteHr1OqsCAAAAgClnxOCptXb+uiwEAAAAgKlltROHV9XuVfX5qvppVd3b/yxZF8UBAAAAsP4ayxvrzk7yu0melOShJFslWdxlUQAAAACs/8YSPD07yd+nN6H4q5O8Pcn1XRYFAAAAwPpvtMnFB/tp/++LkmyT5Ogkf9JJRQAAAEBnpk+fkYGBuWvdftmyaRNYDVPdWIKnW5M8Jcl1SU5Nb+STEU8AAACwHpoz55RxtZ87d+1DKzY8IwZPVXVokq8keWGSXyf5aJI3pRc8fWCdVAcAAADAemu0EU9fSnJ3kk8m+URr7aokc9ZJVQAAAACs90abXPy8JJsk+fMkX6mqO6rq/VV10DqpDAAAAID12ojBU2vtNUm2S+9Ru//TP/bkJFdX1U/WTXkAAAAArK9GG/GU1tqjrbUvtdZel+T303v8rtKbbBwAAAAARjTqW+2qas8kf9j/7JFe6PRwks91XxoAAAAA67PR3mp3S5JnpBc2PZLkM0kuSvLZ1tqv1k15AAAAAKyvRhvx9LQklyX5RJLPtNYeWjclAQAAADAVjBY8zWyt/WKdVQIAAADAlDLaW+2ETgAAAACstVHfagcAAAAAa0vwBAAAAEAnRnur3atGa9ha+9jElwMAAADAVDHa5OLnJWmj7Bc8AQAAADCi0YKnv+r/3SvJ85Ocm96jeSckubLTqgAAAABY740YPLXW/iFJqurGJAOttY/013+c5KR1Ux4AAAAA66vRRjytsF2Sk6tqeXojnk5O8qROqwIAAABgvTeW4OndSf4+yUeTVH/b/+6sIgAAAACmhNUGT621M6vqC0kO6W+6srX2nU6rAgAAAGC9t9EaHntZkhlVtWNH9QAAAAAwRax2xFNVHZvk4+k9ZvedJKcn+WWSl3VbGgAAAADrs7GMeJqb5MuD1j+X5MBuygEAAABgqhhL8PTkJFcMWl+WZPNuygEAAABgqhjLW+2+m+RV/eX/P8mLkny7s4oAAAAAmBLGMuLp1CRPSm+Op+OTbJLkf3dZFAAAAADrv9WOeGqtXVdVu+Y38zpd11q7r9uyAAAAAFjfrXbEU1VdkeSvk/xHa+3yJLP62wAAAABgRGOZ4+mQJL+XZM+qOjbJb/fXAQAAAGBEY5njKUk+m+SFSa5O8pTuygEAAABgqhhr8HRBksOT7JLk3d2VAwAAAMBUMdbgKa21Lyd5bpLF3ZUDAAAAwFQxlrfabTRo+eaqelaSbTutCgAAAHhcmjF9euYODIy7DzYMIwZPVfVPSc5N8pphdrckb+qqKAAAAODx6ZQ5cya7BNYjo414OinJNf2/QwmeAAAAABjVaMHT85Lc3P8LAAAAAGtktODpu0P+AgAAAMCYjRY8/Ty9R+qG01bTFgAAAIAN3Gjh0VUZOXgCAAAAgFGNGDy11g5Zh3UAAAAAMMWs9nG5qqokxybZK8lm/c2ttXZql4UBAAAAsH4byzxNZyV5XXqP3VV/W0sieAIAAABgRBuN4ZijklzQX35Tkq8keVtnFQEAAAAwJYwleNo6ydX95TuTXJLkxM4qAgAAAGBKGMujdnf1j7sryUeSbJrkF10WBQAAAMD6bywjnv4uyQ/Sm9PpkSQPJDmly6IAAAAAWP+tdsRTa+3jg1Yv7LAWAAAAAKaQ1QZPVTUryVuS7JJkWn9za63t02VhAAAAAKzfxjLH0yVJntZ1IQAAAABMLWOZ42nL9EY8bdxa22jFp+O6AAAAAFjPjWXE05vSm1h8cVWteJtda619qruyAAAAAFjfjSV4en6SfZN8tL9eSVp+M98TAAAAADzGWIKnP0pyQ5LPJ1nWbTkAAAAATBVjCZ7+M8lNrbW5XRcDAAAAwNQxluBpnyQvr6rXJrm/v6211vbpriwAAAAA1ndjCZ526//dof8BAAAAgNUaS/C0dZKlrbVHui4GAAAAgKljo9F2VlUluSPJq9ZNOQAAAABMFaMGT621luTyJLPXTTkAAAAATBWjBk99s5K8tqrurqrv9D/fHs9Jq+qJVfXFqrq1/3frYY6ZVVXXVdVN/XMeM2jfeVX1o6pa2P/MGk89AAAAAEy8sQRPuyapJDOTPKv/2Wuc552T5Muttd2SfLm/PtSvkryqtbZnkhcleV9VbTVo/1+11mb1PwvHWQ8AAAAAE2y1wVNrbaPhPuM875FJzu8vn5/kZcOc9/uttVv7yz9N8rP0wi8AAAAA1gNjCpCq6oSquqiqLqyqiZhofLvW2p395buSbLea8++fZNMkPxi0+R39R/DeW1XTJ6AmAAAAACbQxqs7oKr+LslbB236o6raobX2ztW0+1KSJw2z628Hr7TWWlW1UfrZPsm/Jjm+tfbr/ubT0wusNk1yTpK/HlLj4PYnJjkxSXbaaafRSgYAAABgAo1lxNOfJPlskmf0P5elH+SMprX2/Nbas4b5fCbJ3f1AaUWw9LPh+qiqLZN8Lsnftta+PqjvO1vP0iT/kmT/Ueo4p7U2u7U2e+ZMT+oBAAAArCtjCZ62TvLF1tptrbXbknyxv208Lk1yfH/5+CSfGXpAVW2a5FNJPtZau2TIvhWhVaU3P9SN46wHAAAAgAm22kftkixI8s7+PEtJb2Lw68d53nlJPlFVr03y4yRHJ0lVzU7yutban/S3HZxkm6o6od/uhP4b7P6tqmam97a9hUleN856AAAAAJhgYwme3pjeCKVX9td/kOTk8Zy0tbYkye8Ps31Beo/2pbX28SQfH6H9oeM5PwAAAADdW23w1Fq7qap+J8nv9Dd9r7W2vNuyAAAAAFjfjRg8VdVfjrDrsKpKa+0fO6oJAAAAgClgtBFPZyZp6c2jtEIbtCx4AgAAAGBEowVPrx6yvnt6k3hvmeSnnVUEAAAAwJSw0Ug7Wmvnt9bOT/LdJEck+askP08vfHrauikPAAAAgPXViMFTVR1cVf+Z5Poku6b3VrvdWmvntNb+Z10VCAAAAMD6abRH7a5Mb06nXyT5SZJXJHlFVSVJa60d2Xl1AAAAAKy3Rguekt7E4jOS/MGQ7W2YYwEAAABgpdGCp13WWRUAAAAATDkjBk+ttR+vy0IAAAAAmFpGnFwcAAAAAMZD8AQAAABAJwRPAAAAAHRC8AQAAABAJ0Z7qx08rk2fPiMDA3PXuv2yZdMmsBoAAABgKMET6605c04ZV/u5c9c+tAIAAABWz6N2AAAAAHRC8AQAAABAJwRPAAAAAHRC8AQAAABAJ0wuzgZrxvTpmTswMO4+AAAAgOEJnthgnTJnzmSXAAAAAFOaR+0AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBOCJ4AAAAA6ITgCQAAAIBObDzZBQAAANC96dNnZGBg7lq3X7Zs2gRWA2woBE8AAAAbgDlzThlX+7lz1z60AjZcHrUDAAAAoBOCJwAAAAA6IXgCAAAAoBOCJwAAAAA6MSnBU1U9saq+WFW39v9uPcJxj1bVwv7n0kHbd6mqb1TVbVV1UVVtuu6qBwAAAGAsJmvE05wkX26t7Zbky/314TzcWpvV/xwxaPu7k7y3tbZrkvuSvLbbcgEAAABYU5MVPB2Z5Pz+8vlJXjbWhlVVSQ5NcsnatAcAAABg3Zis4Gm71tqd/eW7kmw3wnGbVdWCqvp6Va0Il7ZJcn9rbXl/fXGSp3RYKwAAAABrYeOuOq6qLyV50jC7/nbwSmutVVUboZunttbuqKqnJbmiqr6b5IE1rOPEJCcmyU477bQmTQEAAAAYh86Cp9ba80faV1V3V9X2rbU7q2r7JD8boY87+n9/WFVXJnl2kk8m2aqqNu6PetohyR2j1HFOknOSZPbs2SMFXAAAAABMsMl61O7SJMf3l49P8pmhB1TV1lU1vb+8bZLnJrm5tdaSfCXJH47WHgAAAIDJNVnB07wkL6iqW5M8v7/+f9m797jr6jn/4693pVvoSBoSKqdxqOhmHMahkvOhEOVM+M0MRhqU01T8NEOM4/zML2OI35AYaQxjUjkPQ4gUpqiIQeWQYwd9fn+stbv3fd3Xdd2p9vpe916v5+NxPVqHfV199ufea+21Put7IMnqJP/Yv+aPgVOTfI2u0PS3VXVmv+8Q4OAkZ9ON+fT2QaOXJEmSJEnSes2sq91yquoiYK9Ftp8KPKNf/k/gTkv8/neBu80yRkmSJEmSJF0zrVo8SZIkSZIkac5ZeJIkSZIkSdJMWHiSJEmSJEnSTFh4kiRJkiRJ0kxYeJIkSZIkSdJMWHiSJEmSJEnSTFh4kiRJkiRJ0kxYeJIkSZIkSdJMWHiSJEmSJEnSTGzSOgBJkiRJ0sq35apVHHH44df4b0gaFwtPkiRJkqT1OujQQ1uHIGkDZFc7SZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNhIUnSZIkSZIkzYSFJ0mSJEmSJM2EhSdJkiRJkiTNxCatA5AkSdK1b9WqLTn88COu0d+47LKNr6VoJEnSWFl4kiRJmkOHHnrQNf4bRxxxzQpXkiRJdrWTJEmSJEnSTFh4kiRJkiRJ0kxYeJIkSZIkSdJMOMaTJEmSJF0FRxx++NX+3S1Xrbr2ApGkDYiFJ0mSJEm6Cg477LDWIUjSBseudpIkSZIkSZqJJoWnJNsk+XiSs/r/br3Ia/ZIctrUz++S7NPve2eSc6b27Tb8u5AkSZIkSdJyWrV4OhQ4uapuDZzcr6+lqj5RVbtV1W7AnsBvgBOnXvLCyf6qOm2QqCVJkiRJknSVtSo8PRI4pl8+BthnPa9/DPDvVfWbmUYlSZIkSZKka02rwtN2VfU//fKPgO3W8/r9gfcu2PaqJF9P8vokS04RkeRZSU5NcuoFF1xwDUKWJEmSJEnSH2Jms9olOQn4o0V2vXR6paoqSS3zd24C3An4j6nNL6YrWG0KHA0cArxisd+vqqP717B69eol/z+SJEnTnDZdkiTpmptZ4amq7r/UviQ/TnKTqvqfvrD0k2X+1GOB46vqsqm/PWktdUmSdwAvuFaCliRJ6jltuubFqlVbcvjhR1zt37/sso2vxWgkSWMzs8LTevwr8BTgb/v/nrDMaw+ga+F0pamiVejGh/rGrAKVJEmSNmSHHnrQNfr9I464+kUrSZJajfH0t8DeSc4C7t+vk2R1kn+cvCjJLYEdgE8t+P1/TnI6cDpwI+B/DxCzJEmSJEmS/gBNWjxV1UXAXotsPxV4xtT6ucD2i7xuz1nGJ0mSJEmSpGuuVYsnSZIkSZIkzblWYzxJkiRJ2gBsuWrVNZrlcfI3JEnjZOFJkiRJ0pIOOvTQ1iFIkjZgdrWTJEmSJEnSTNjiSZIkzZ1Vq7bk8MOv/hTwq1ZteS1GI0mSNF4WniRJ0tw59NCDWocgSZIk7GonSZIkSZKkGbHFkyRJkhZ1TWczcyYzSZJk4UmSJEmLcjYzSZJ0TdnVTpIkSZIkSTNh4UmSJEmSJEkzYVc7SZIkaRmOcyVJ0tVn4UmSJElaxmGHHdY6BEmSNlh2tZMkSZIkSdJMWHiSJEmSJEnSTFh4kiRJkiRJ0kxYeJIkSZIkSdJMOLi4JEmSJEnS1eDMp+tn4UmSJEmSJOlqcObT9bOrnSRJkiRJkmbCFk+SpCvZVFiSJEnStcnCkyTpSjYVliRJknRtsqudJEmSJEmSZsLCkyRJkiRJkmbCwpMkSZIkSZJmwjGeJEmSNLdWrdqSww8/4hr9viRJuvosPEmSJGluHXroQa1DkCRp1OxqJ0mSJEmSpJmwxZMkAUccfvg1+v0tV626dgKRJEmSpDli4UmSgMMOO6x1CJIkSZI0dyw8SZIkSZKkUbmmk09M/obWz8KTJM0BvzglSZKkq87JJ4Zj4UmS5oBfnJIkSZJWIme1kyRJkiRJ0kzY4kmSJEnS3Lum3dLtki5JV4+FJ0mSJElzz27pktSGXe0kSZIkSZI0ExaeJEmSJEmSNBMWniRJkiRJkjQTFp4kSZIkSZI0ExaeJEmSJEmSNBMWniRJkiRJkjQTm7QOQJKuqVWrtuTww4+4Rr8vSZIkSbr2WXiStME79NCDWocgSZIkSVqEXe0kSZIkSZI0ExaeJEmSJEmSNBMWniRJkiRJkjQTFp4kSZIkSZI0ExaeJEmSJEmSNBMWniRJkiRJkjQTm7QOQJKkleSIww+/Rr+/5apV104gkiRJ0hyw8CRJ0pTDDjusdQiSJEnS3LCrnSRJkiRJkmbCwpMkSZIkSZJmwq52kqS5sWrVlhx++BHX6PclSZIkXXssPEmS5sahhx7UOgRJkiRJU+xqJ0mSJEmSpJmw8CRJkiRJkqSZsPAkSZIkSZKkmbDwJEmSJEmSpJmw8CRJkiRJkqSZsPAkSZIkSZKkmbDwJEmSJEmSpJmw8CRJkiRJkqSZsPAkSZIkSZKkmbDwJEmSJEmSpJloUnhKsl+SM5JckWT1Mq97UJJvJzk7yaFT23dM8l/99vcl2XSYyCVJkiRJknRVtWrx9A3gUcCnl3pBko2BvwceDNweOCDJ7fvdrwZeX1W3An4GHDjbcCVJkiRJkvSHalJ4qqpvVtW31/OyuwFnV9V3q+pS4FjgkUkC7Al8oH/dMcA+s4tWkiRJkiRJV8dKHuNpe+D7U+vn99tuCPy8qi5fsH1RSZ6V5NQkp15wwQUzC1aSJEmSJElr22RWfzjJScAfLbLrpVV1wqz+vwtV1dHA0QCrV6+uof6/kiRJkiRJYzezwlNV3f8a/okfADtMrd+s33YRsFWSTfpWT5PtkiRJkiRJWkFWcle7LwG37mew2xTYH/jXqirgE8Bj+tc9BRisBZUkSZIkSZKumiaFpyT7JjkfuAfwkST/0W+/aZKPAvStmZ4D/AfwTeC4qjqj/xOHAAcnOZtuzKe3D/0eJEmSJEmStLx0DYjGYfXq1XXqqae2DkOSJEmSJGluJPlyVa1ebN9K7monSZIkSZKkDZiFJ0mSJEmSJM2EhSdJkiRJkiTNxKjGeEpyAXBe6zhWiBsBF7YOojFz0DEP5mDCPJiDCfNgDibMgzkAczBhHszBhHkwBxPmYY1bVNW2i+0YVeFJayQ5damBv8bCHHTMgzmYMA/mYMI8mIMJ82AOwBxMmAdzMGEezMGEebhq7GonSZIkSZKkmbDwJEmSJEmSpJmw8DReR7cOYAUwBx3zYA4mzIM5mDAP5mDCPJgDMAcT5sEcTJgHczBhHq4Cx3iSJEmSJEnSTNjiSZIkSZIkSTNh4UmSJEmSJEkzYeFJkiRJkiRJM2HhSZIkSZIkSTOxSesAJA0nyX2W219Vnx4qllaS3Hy5/VX1vaFiaSnJXy+zu6rqlYMF05B58LwwkeTJy+2vqncNFUsr5sAcSAt5TJgDrZHkHcBSs7NVVR04ZDwbEme1G4Ekv2TNAZL+v0VXeNy0qkZRgExyDmufKDK1XlW18/BRDSvJhxfZXMAuwA5VtfHAIQ0uyel07zlTmwvYFrjxGHIAkOSvFtl8PeAZwA2r6gYDh9SEefC8MJHkzUvsegSw/Ri+K82BOZhI8gmWv7naa8h4WvD6ueMxYQ7A+6iJJI9eZPMOwPOBjavqZgOHtMGw8DRCSW4APBv4X8DxVbXYjdfcSXLDBZs2Ah4LvAD4SlUtdiKZa0nuBbwM2Bp4VVUtdgM615LcEjgEuD/wpqpa6uJibiXZHHgecCBwHPC6qvpJ26iGZx46nhcgSYAn0J0bzqTLw9fbRjUsczDuHCTZfZHNdwdeBPykqu46cEjNjfX6edqYj4mJsebA+6h1JdkJeAlwH+D1wNur6tK2Ua1cc1+d1RpJtgIOAp4MvAe4a1Vd1Daq4Uzea5KNgCcBLwROAx5aVWe2jG1oSfYCXk73pOLIqvp445AGl+TWwEuBPwFeB/xlVV3WNqphJdkGOJjuAuoY4C5V9bO2UQ3PPHQ8L0CSTYCn0l1IfwF4TFV9u2lQAzMH5gCgqr48WU5yX7pzw3WBP6uqf28WWANjv34GjwkwB95HrZHkdnQP6O4MHEV3Xry8bVQrn4WnEUhyI+CvgMcB/wTcuap+0Taq4SW5DvB0uqaQnwX2qaqz20Y1rCQPpSu2/AJ4WVV9tnFIg0tyR7oc3AF4DXBgVf2+bVTDS3IU8CjgaOBOVfWrxiE1YR48L0wkeTZdi7eTgQdV1bltIxqeOTAH05I8kO7m6hK6Vh2faBzSoLx+7nhMmAPwPmoiyfuB3ekeWj8f+D2wRdcQDqrqp+2iW9nsajcCSX4NXAC8A/jlwv1V9XeDB9VAkvOBy4E3AOsMIF1VHxw8qIEluQI4H/gai4zdUFWPGDyogSX5PfB94CN0XxZrqaq/HDyoBvrPwiV0x8Q6ffaraosmgQ3MPHhemOjz8BO678vFPgu7NAlsQObAHEwk+RLd2IdHAZ9fuL+qvjJ4UAPz+rnjMWEOwPuoiSTnMjW21WTzZL2qdho8qA2ELZ7G4TVTy5s3i6K9k+hOELv2P9MKGMMJc4/WAawAT28dwEpQVRu1jmElMA+A54WJHVsHsAKYA3Mw8WvgV8BjgEez7oQce7YIamBHsebGcuH185ie3HtMmAPwPgqAqrpl6xg2VLZ4GoEkz6mqt7SOYyVLsl1V/bh1HK0k2QHYv6qOah1LK0mu9k0Q+wAAIABJREFUCzy8qt7fOpZWklwf2Bc4oKoe2jqeVsxDx/NCJ8mf0n0Wnt06llbMgTmYluQ6YxsTcaEkd62qL7WOoyWPCXMw4X1UdgYeT3fNdIfW8axUPukdB1t4LCLJVkkOTHIy8NXW8QwtybZJ/iLJZ4BPAts1DmlwSTZO8pAk7wbOoxvHYVSSbJpk377P+v8AewH/0DiswZmHjueFTpI7Jzmqb1L/SuBbjUManDkwB9PS2SvJ2+m65o5OktsneWWSs4G3to6nBY8JczDhfVRumuT5fbfkM+jqKvs3DmtFs6udRiXJZsAj6arSd6ZrOr0P8OmWcQ0l3XTxj6J7/7ehaxa7Y1XdrGlgA+tn6Hk88BDgi8C96PLwm6aBDSjJA4ADgAcAnwDeRTdTz9OaBjYw8+B5YSLJbeg+CwcAFwLvo2sZPpquiObAHCyU5O5054Z9gG2AZ9PN6jUKSW7Jms/DZcAtgNVjGlzaY8IcTIz9PgogybPoPgfbA8cBBwInVNURTQPbANjVbgSSXA4sdkM9msFzAZK8B7g3cCJwLHAKcHZVjabfdpLf0hVaXgZ8tqoqyXfHNBBePzji9+ieVn6oqn6Z5JwxfQ7gyoEyPwM8tarO6beN6rMA5gE8L0xMfRYOnMzUM7Y8mANzMJHkSGA/uu/L9wLHA6eO6bsyyeeBLeiuGY+tqrNGfr0w2mPCHHgfNZHkUroJF/6qqk7tt43qs3B12dVuHE6vqi0W+dl8LEWn3u2BnwHfBL5ZVb9nXINDArwYWAX8H+DFfZ/ksfkAcFO6bnUP78fzGdvnAOAudF+cJyX5eJIDgY0bx9SCefC8MPEoum6Wn0jytiR7sfaAymNgDszBxDOAH9M9pHl3VV3E+L4rf0zXomM7uhn+YHw5AI8JMAfgfdTETeiK8a9L8u0krwSu0zimDYItnkYgyVer6s6t41gJktyOrnnk4+iayt4WuOPYBsRLshNdP+QDgFsDhwHHV9V/Nw1sIEkC3I/u/T8E2JKuqexHq+pXDUNrIsk96XLxaOBrdJ+Fo9tGNbyx52Hs54WJvhj9SLo87EnX/fL4qjqxaWADMgfmIMnGwN50738vuq7I9wd2qKrLW8Y2pCRb0hUdJufFrYAHVtUXmwbWwNiPCTAH3ketLcnN6HJxAHB9us/CS9pGtXJZeBqBJC+pqiNbx7HSJNmd7kTxWOD8qrpn45CaSHJH+i+RqrpV63iGluQ6wAPpcvDAqrpR45CaSbIR3Y3F46rqwNbxtGIePC9MJNmarrvR46pqr9bxtGAOzEGSVcDD6M4J9wZOrqrHt41qeEluTHfNeABw86raoXFIzYz9mABz4H3U2vpxwPavqle0jmWlsvA0AknezDJNIavqLwcMZ8XpW7/cu6rmfmC8JLerqm/1y6uq6pKpffeoqs+3i24YSbaoqouX2PfHVfXNoWNqIckTq+r/9cv3qqrPTe17TlW9pV10wzEPnhcmkuxZVaf0yztOxvzq1x9dVf/SLrphmANzsD5JtgD2qap3tY6lpSS3rqqzWscxBI8Jc7CcMd1HASR5UVW9pl/er6reP7XvSFs8Lc0xnsbhVODL/c8jppYnP6OQ5Lip5VdPlqurvr6sSVDDe8/U8sKbyb8fMpCGPjlZSDcF7LR/HjaUpg6eWn7zgn1PHzKQxsyD54WJ104tL7yJeOmQgTRkDswBAEneMLX8vMly/+BmzyZBDSzJZ6eW371g9/sGDqcljwlz4H3UGvtPLb94wb4HDRnIhmaT1gFo9qrqmMlykoOm10fm1lPLewOHTK1vyzhkieXF1ufV9PvcZpl9887PQsc8mIMJ82AOwBxM3Gdq+SnAG6fWdxk4llauP7V8hwX7xvRZ8JgwB+B91ISfhavJFk/jM+a+lcu997HkpZZYXmx9XpmDjnnomAdzMGEezAGYg4nlbq7GwuvGjseEOQCPhwk/C1eTLZ40JtdLcme6gutm/XL6n82aRjacmyV5E917nizTr2/fLqxB3TjJwXTvebJMvz6mJza3S/J1uve9c79Mv75Tu7AGZx48L0zslORf6f/t+2X69R3bhTUoc2AOJjbqB0/eaGp5UoDauF1Yg9oqyb50OdgqyaP67aGbDXcsPCbMAXgfNbFrkovp33e/TL9+3XZhrXwOLj4CSX7Jmgrs9YDfTHbRdc3doklgA0vySZYfZH2P4aJpI8lTlts/hm6YSQ5bbn9VHTFULC0lucVy+6vqvKFiack8eF6YSHLf5fZX1aeGiqUVc2AOJpKcC1zB4q2dqqrmvjCf5B3L7a+qpw0VS0seE+YAvI/SNWfhSZIkSZIkaRlJFo4Pu5aq+ulQsWxoLDxpNKaaSC+qqj44VCytTDUNXlRVPWKoWFqZ6ka0qKr6y6FiaWlBS0joW0AyvpaQo8+D54XOVDfLRVXV3A+obA7MwUSSuyy3v6q+MlQsrUx1xV9UVf3dULG05DFhDsD7qIkkVwDnA5dPNk3tHkVr0KvLMZ40Jh8ATut/YMGJAhjDCfMewPeB9wL/xTgHDP0z4BvAccAPGWcOAE4G/ojuc39sVX2vcTytmAfPCxNX0H0XvAf4MPDbtuE0YQ7MwcSpdN+VF/brC6+Z9hw8ouG9lu6a8d+BS/DcOOZjwhx4HzXxJmAP4HN0102fLVvyXCW2eNJoJNkH2B+4FXAC8N6qOrttVMNKsjHdFKgH0E2H/BG6PJzRNLABJbkhsB/wOLqnFe8DPlBVP28aWANJtgQeRXdcXJcuF8eOrZnw2PPgeWGNJLejy8PDgTPpbjJOrKrLl/3FOWIOzAFAkoOAxwC/AI4Fjq+qX7WNalhJdqX7HDwI+DLdTebJY7zJ9JgwB95HrZEkwP3oPg93A04E3lpV57SMa6Wz8KTRSXJ94JF0hYcbAi8dw6CACyVZRXfCPAo4oqre0jikwSW5Gd2X6MHAIVX17sYhNZFkI7o8vAk4cizdBxYyD54XpiV5HPD3wKur6qjW8bRgDsxBkp3ozouPBM6jOzeetvxvzZ8k96Q7N96f7nph2S7K82zsxwSMOwfeR62RZCu68+MrgZdU1dsah7Si2dVOY/Q7uid4FwO3YGRTX/Y3lg+lu4C6Jd1N9vEtY2qhH7/iALqWHv9O9zRzVKYupO8NfBbYt6o+0zaq4ZkHzwsTSbanu4jcF/gZ8HxGlgdzYA6mVdV3k5xAN136k4DbsKarzSgk2Ra4M3AnurFdftI2ouF5TJiDKWO/j5ouvG1L18Vw95EO1fAHscWTRiPJnnRfGHcDTqLrSnNq26iGleRdwB2Bj9K9/280DmlwSV5Bd4P9TbruAx8bSzPpaf1U2T+ny8EprBkkERjHwLFgHsDzwkSSTwGb043/9i/ARdP7x9D10hyYg4kFLZ2+T3eO/EhVjWZsmyRPBx5Ld2P9AeC4qhpj0Wn0x4Q58D5qIsmvgbPozolnsfYENaMZZP3qsPCk0ehnIfg6XYuGYt0TxdzPZtbn4Nf96jozeY1kBq8rgHOA3/SbJnmY5GDuZyYBSPJJ1rz3ySxuE1VVYxg41jzgeWGiL0JOfxau3MVIZqoxB+ZgYuqa6QS6lg0Lr5nmvityn4Nv0HUxhHVzMJYZP89l5MeEOfA+aiLJO1nw3qdUVT19wHA2KHa105g8rXUArVXVRlfldUm2rqqfzTqeRnZsHcBKUFX3uyqvS7J3VX18xuE0Yx48L0xU1S2vyuuS3GFeB143B+ZgyitYc3N1g5aBNLRH6wBWAo8Jc9Ab/X0UQFU99aq8LslTquqYGYezQbHFk7RAkjdX1XNbx9FSkq9U1V1ax9FSks9X1T1ax9Gan4WOeTAHE+bBHIA5mEjy4qr6m9ZxtJTkX6rq0a3jaM1jwhyA91ETfhbWdZWeckojc6/WAawAWf9L5t6oBktchp+FjnkwBxPmwRyAOZjYr3UAK8Dcd7O6ijwmzAF4HzXhZ2EBC0+SFmNTSHMwYR465sEcTJgHcwDmYMKbKz8LE+bBHGgNPwsLWHiSJEmSdHV4cyVJ67Iov4CFJ2ldnijMAZiDiXNbB7BCnNs6gBXAY6JzaesAVgBzYA4mPC+YgwmPCXMAIz4ekmw3tfq5ZoGsUBaeNGpJtk6y8AT5xibBDCDJNsv9TL10r2ZBrhxPah3ALCV50dTyfgv2HTlZrqpHDRnXSpFk7yRXzmI3z3lIsufU8o4L9k2/77k+LyS5RZItp9b3SPLGJAcn2XSyvaru3ibC2TMH5uBqeH/rAFpIMj2OzSHNAhmAx4Q5+APN7X3UYpJsleTAJCcDX51sr6rnNAxrRXJWO41Gkr8GjquqbyVZBXwM2BW4HHh8VZ3UNMABJLkCOJ/uPcPaTyWqquZ+gMwk57B214BMrVdV7Tx8VMObnm1j4cwbY5qJoy+6/ANwU+BDwKuBd9B9Ll5VVR9sGN4g/Cx0kvwXsG9V/TDJbsBJwN8AuwCXVdUzmgY4AHNgDiaSPBP4ZFWd1T+g+yfg0XStP59aVV9pGd8QkmwMPBbYHvhYVX0jycOAlwCbVdWdmwY4EI8JcwCQ5F+X219VjxgqltaSbAY8Eng8cGdgc2Af4NNVdUXL2FayTVoHIA3occAr++Wn9P/dFrgNcAzdl8i8exOwB13zz/cCn63xVZ9XL1jfiO7C8gVMPakYgSyxvNj6PHsd8Czg88CD+/8eWlVvaRrVsPwsdDarqh/2y08E/qmqXpdkI+C0hnENyRyYg4nnAe/slw+gu8Heke4m643AvduENai3AzsAXwTelOSHdNcQh1bVh5pGNiyPCXMAcA/g+3T3D//FuK4PrpTkPXTnvxOBNwOnAGdX1SdbxrUhsKudxuTSqSLLA4Fjq+r3VfVNRlKEraqDgN3omsY/Cfhqktcs7F4zz6rqoqq6CPgZ8DDgE3Rfpg+tqkc3DW5YtcTyYuvzrKrqk1V1SX8j8YORFZ3Az8LE9EX0nsDJACN7emkOzMHE5VV1Wb/8MOBd/ffnScD1G8Y1pNXA3lX1YuAhdHm418iKTuAxAeYA4I/oWvvdka74vDdwYVV9qqo+1TSyYd2e7h7im8A3q+r3jOta6Wobxc221LskyR2BH9O1+nnB1L7rtQlpeH3x7RNJvgrsT9cK7CzgbU0DG0iS6wBPB54PfBbYp6rObhtVE7smuZjuYmqzfpl+/brtwhrcVgvGMdpken0MXe2Anfom9Jlapl8fTVEaOCXJccD/AFvTPcUkyU0Yz4Cx5sAcTFzRv+ef0Y3v9qqpfZu1CWlwl04KC1X1uyTf7R9cjc0nPCY8L/QFlo8BH+uHLDkA+GSSI8b0wK6qdktyO7r3f1KSC4HNk2xXVT9uHN6K5hhPGo0kd6drNr4t8IaqemW//SHAk6rqgIbhDSLJ9en6JD+OLg8fpBv36ntNAxtQkskYV28A1nnfIyk0qJfkHcvsrqp6+mDBNJLkvsvtH8uTzH4cm8cBN6E7L/6g335n4MZV9R8t4xuCOTAHE/1YRv8X2Bj4cFU9s99+X+BFVfXQlvENIclvgMmDqQA79+uh+37YpVVsQ/KYMAcTfcHpoXRFl1sC/0rX7fAHLeNqKcnudPl4LHB+Vd2zcUgrloUnaUSS/JquddOx/X/XOgGMoeiS5J0s3SR2FIUGgCTXoxsQ87J+/bZ0XQnOrarjmwanQSV5Z1U9tXUcrSW5XVV9q19eVVWXTO27e1V9oV10w+q7X9+hXz2zqr7bMp4h+TlYI8kmwOZV9bOpbdenu3/4VbvIhpHkFsvtr6rzhoqlpSQnVtUDWsehtpK8i66b3Ufphiv5RuOQVpS+OHnvqvp061hWKgtPGo0kBy/YVMCFdANsn9MgpMFZdNFEkk8DB/YzFt2KbvDUf6bru/6lqjq0aYADSfLkZXZXVb17sGAaGdPMdctxdj9IsgXwj8DuwNf6zbsBX6Y7X1y81O/OCz8HnQVdkGHNNdNpVfXLBiENrv9u3K6qPrdg+72AH1XVd9pENqwkXx3LDH5LSfJL1h0P8UK6cUIPGUMXzH5m7F/3q+vMDl1VWwwf1fCSHFdVj+2XX11Vh0zts0i7DMd40phsvsi2WwIvTXJ4VR07cDyDs1XDogXItVTV3w0VS2NbV9VZ/fJTgPdW1XOTbEp3kzmKwhNw1yW2P4JuCu25LzwB1+u7Cyw6Q02NYNr0nrP7dTOfngnsPxnbpn+K+3LgLcByhdp54eeg8/BFtm0D7JLkwKo6ZeiAGngD8OJFtl/c71ssR/Noy0UKkVcaQ2v5qlrnHiLJ1sBTgX8A9hs6pqFVlZOSdW49tbw3cMjU+rYDx7JBsfCk0aiqIxbbnmQb4CS67mdzzVZfwOIFyDGaflq1J3AUQFVd2j/VGoWqeu5kub/BfgLdRcQXWHsw3Xm2PfA6Fr+pLrrPxxg4u183Y9dTpzf0E1K8IslZi//K3PFzAFTV0xbb3nc/Ow74k2EjamK7qjp94caqOj3JLYcPp5kt6Wb0W+o7Yu4LT4vpu6C+PsmTWscyhP5+aVoBP6/xdZ9a7v2OLRd/EAtPGr2q+ml/wzkGtvpaogA5Ql9P8lrgB8CtgBMBkmzVNKoG+nFMnko30+UXgMdU1bebBjWss6tqLMWl5dwsyZvobq4my/Tr27cLa8UYy/ekn4NlVNV5/eywY7Dc9+FYZvYDOM+hGBbXHwtjuZ/+Ml1hZfq7YPMkpwHPqKpzm0Q1vEkr8Y3oZoWetBgP4zov/MHGcqBIS0qyB910wXPPVl+Q5K+X2V2T2Q5H4JnA8+gKjw+oqt/0228PvLZVUENL8my6PJwMPGhEF05XSZK7VtWXWscxkBdOLZ+6YN/C9Xn1n/058pXTT7GTvBz4fLuwBuXnYBn9RBSXrPeF8+HUJM+sqrdNb0zyDLqb8LEYS9F5SUt0Ndyabqa7DwwcThNVteNi2/vc/APwoGEjauZ/gMmwHD+aWp6sawkOLq7RSHI66zaB3Ab4IfDkySw2YzWWwSOT/NUim68PHAjcsKpuMHBITSW5Ll2LJ+havvyuZTxD67sV/gS4gMUHy5z76bKTPKCqTpxavz3d1MAH0DWjX90suAElObKqXtI6jpb6wcXfDtwFOK3fvBvwVbrBxX/RKraVIMlrq+oFreMYQpIPs/g1002AJ1bV3Bcik2wHHA9cyppC02pgU2DfqhrFTWaSXarq6/3yKGd6TPKOBZsKuAj4ZFV9pEFIK8qYJl7Q1WfhSaOxyLS4BVxUVb9e7PVj0rf6evnYutsk2ZyutcuBdGNWvK6qftI2qmH03cuOBJ4GfI+u0LID8A7gpVV1WcPwBuN02Z1+vJJJseky4BbA6jG1APPCGZLcvKq+l2RnutaPAGeOZfau9Unyvaq6ees4hpDkvgs2TW60z6qqSxuE1Ex/jXTHfvWMkQysfiVnetRyktyAbqzY3VrH0lKSvYEXVdXerWNZqexqp9GY3ED2FxB36DefQTcV6iisr9XX8BG10XctPJhuIOljgLv0g0SOyVF0Y37tNJkau2/t8Nr+53kNYxvMWApLy0nyeWALuq62j66qs5KcM6aiU2/jfpaipWb3++nA8bTwIbrz4XcAi03rGk2Xo6r6FECSHVlzzXT+mIpOfYvgP6NrFXw68PaqurxtVE040yOQ5MF0sxxOivJnAK+uqo+2i2o4S8wKvTXdLMBvGTicZpLsSde18KZ035mvpntoG8YzKc3VYuFJo5Fke7qZN37HmibT+yV5NV2T6R80C244D1uwPrpWX0mOAh4FHA3cqap+1TikVh4G3GZ6HJequjjJnwPfYiSFpyS/ZPFZSCZd7bYYOKQWfkw3aPJ2dFMBn8U4Z2a5Hd13w1IzN+00bDhNjOYmcimLzNx05S5GlJ++RfDbgd2Br/Wbd0vyZbpulxc3C244x9C1AP0M8GDgj4GDmkbUxuhnekzyTOB/AS9izVhvq4G/TXKzqjq6WXDDWThBUdGNafTExWZ/nGOvA55FN+7hg/v/HlpVoym+XV12tdNoJDkeOKGq3rlg+5PpnvI/sklgA1rmghoYxxP9fkyfS4DLWXxMnzEUGkjy31V1mz90n+ZTki3pCrIHALemm83pgVX1xaaBDWgs49wtJ8lPWGaSiar6ywHDaSLJOaw7c9OVlhpgd94keSdwLvCKqrqi3xbg5cCtqmruW0knOb2q7tQvbwJ8cYzdyqbOC6EbTHtyjgjw2KrarlVsQ0lyJvCnC6+Tk9yQrpvZH7eJTENbpLvpt6vqti1j2lDY4kljcvuq2nfhxqp6V5KXtgiogcWmQp0YxRP9qtqodQwrxJlJnlxV75remOSJdC2eNBJJHlVVH6RrKv6OJDcGHgu8vh/zZ4e2EWpAv2Vcs3WtYyyFpavgXlX11OkNfQvZVyQ5q01Ig7tyrMOquryru42SMz12jTXWeThbVReN5XOxxIQDV6qqRwwYTktbLZjl8DrT6/31lBZh4UljsmjBIclGwMYDx9KEF9S2+prybOCDSZ7O2rP1bAasU6DVXHsZXTdkAPoB9t8CvGV9g6/PmSVb+ozIRVV1TOsgWkqybIuWqvrKULGsYOO404Zdk0y6FAbYrF8fVQvp5c4JSV47ZCwNXZxk16r62vTGJLsCv2wU09DG8m+9Pp9i7aFLPgU8vF8upq6ntDa72mk0krweuAFw0GRMoyTXB14P/G4kXQgeCGxeVR9YsP3RwMVV9fE2kQ1nPd0oqqrmvtXXtH6QxMnAsWdW1ckt49HwnJWok+Tf6B7I/UVVfbd1PC0k+UJV3b11HC0lWW7CkRrL7K9JjqEbYP6V02MBJnk53fiAT2oWnFaMscz0mORPgX+maxk8/bDuKXRjHH22VWwtJNkWoKouaB3L0JL81YJNVwAX0nW5PKdBSBsMC08ajSTXAf4GeCpwHmumjz8GeMkYZmpJ8jlgn4VfFEluBHy4qu7RJrLhJLmFM5lBkrsCN6qqf1+w/cHAT6pq1N1txiTJb4CzF9tFd6O9y8AhNZNkH7rvifcAb6W7oATG0Royye4s35XC1j4j0c9y+nbgLsBp/ebdgK/SDS7+i1axaeVI8v2xdMdO8kfAXzD1sA74+6r6UbuohpXkMOC5dL1IQjde6pur6hVNAxtQn4OFtgEeCBxeVbaeXoKFJ41Oks3opsYF+E5V/aZlPENKcmpVrV5i39fHcINp645OklOApy0swvVdq94xlqf6giRnAA9Zav/YCrV914lPAz9jTRFmFK0hbe3TjXm23P6xjd+RZGfWTB9/ZlV9p2U8Gt56Znr8WlXdbMh41EaSg+lmcXvWpGVPkp3oHtJ8rKpe3zK+1vrj5CTvMZbmGE8ajST3WWTz6smggFX16WEjamKLJJtU1eXTG/vWYJs1imloYxmbYn02X6ygUFXn9S3gNB6Xjq24tJgkq+jGu3oM8ISq+rfGIQ2uqvZoHcMK8PAFyx+eWh/N+B1JJt2nLgO+tnB7VX2vRVxqYrmJaS5bZNvc6YvyS7XWqKraa8h4GnkSsHdVXTjZUFXf7SelOZFu6JLRqqqfZiwjzV9NFp40Ji9cZFsBu9B1uRvDAOMfBN6W5DlT41zdAHgjI7mYBrZP8qaldo5hrK/e1svsu95gUWgl+FzrAFaIrwP/Atylqn7bOpgW+huIVNW7F2x/EvD7qnpPm8iGU1VPmywn+er0+sh8hHWLDQVsC9yYcVwzCSem6b1gkW13B14E/GTgWFq5znTRaaKqLugfYI9akj3oWkprCRaeNBpVNf0UkyT3onu6/SO6/spj8DLgfwPnJZm0cLg53TgOL2sW1bBGP11476QkrwJeNhk4tn9ScwRwStPINLRzkhxYVW+f3pjkQLqWcW9oFNfQnglcuLDolOT2wAUjGUT1ucBiT+4/SNf9cO4LTwuMdjyKqrrT9HqSWwKHAPcHjmwQkhpJ8sSq+n/98r2q6nNT+55TVW9pF90wpse9THJf4OXAdYE/WzhW5hxbbizcuR8ndyLJ6az73bAN8EPgycNHtOFwjCeNTpK96L4wCjhyDDO5LbRgnKuzq+q3Sf6kqv6rZVxDcIynTj+j4z8Cd2PNwLG7AqcCz6iqX7WKTcNK8mXg7lV12YLtmwKnjmHsN4AkxwL/Z2G36yT3Bv68qh7fJrLhLHd+HMs4gNP8voAktwZeCvwJ8DrgmIXnCs236eNg4TExpmOknxn6ZcAlwKuqarkx8eZOkt8Dv2bdVpABrltVo2j11I+FOq2AiyY9SbQ0WzxpNJI8lO7i6Rd0rTxGNfXptP6J/ukLNr+frvXTvFv0qUw/Ve4BVfXsgeNpov+CPKAfGHIyQ8sZY51GfuQ2WexGsqouHdl4BbdabKy/qvpMkre2CKiBzZJcf+EFdJLNgU0bxTSoJB9mzc3UTkn+dXp/VT2iSWADS3JHumumOwCvoZvJ7vdto1IjWWJ5sfW5lORLdN1MjwI+32+7suA2hhk/q8rutYxvwpVrk4UnjcmHgfOBi4AXJXnR9M6xXEwuYxQXD1V198lykjsDjwf2A85hPONcrXXBBPyA7kbLp9jjtFGS7arqx9Mbk2zXKqBGNl9m3yie5NJ1u/5Akj+bXFz3Xaz+vt83Bq9dYnlsvgZ8n26sp7sBd5uuQ49oPESt3a1oYVeZsXSd+TXwK7rJJx6zYF8Bcz/j50Q/ltHkgeU3quqTDcPRBsTCk8bE2XqWN4qLhyS3AQ7ofy4E3kfX7Xhsn4/XLbJtm7571QFVddoi+zWfjgI+kuSvgMlT29377WO68T47yUOq6qPTG5M8GBhFS8Cqem2SXwGf7ieeCPBL4G+rahStvqrqU0l2o+uOfkZVfbN1TI0cyEiuC7Ret0vydbrzwc79Mv36Tu3CGk5V3a91DK0l2Z7uAe3vWDNW6n798B37VtUPmgWnDYJjPGk0kmxRVRcvse/mY5gaeKoLwTq7gD2r6voDhzS4JFcAn6HrNnB2v+27VTWKi6f1SbIa+Luquk/rWDQza8MzAAAWhUlEQVScvrhyKHBHunPEGXTFhrEMmjoZy+YjwH+y5qJ6NXAP4GFV9d+tYmuh715HVf2ydSxDSvLXwBPpPgN/AvxNVb2tbVQrS5JNqury1nFoGIuMabOWMXQ9SvKiqnpNv7xfVb1/at+RVfWSdtENI8nxwAlV9c4F258MPLqqHtkkMG0wLDxpNBYMjnhyVe212L551s/EsaSq+tRQsbSSZB9gf+BewMeAY4F/dLrgNcZyPGh5Sa4LPHz6AnveJVlF1/32jv2mM4D3VNXv2kU1rH5snxcyNfYb8NqqWjgu4FxKcgZw16r6TZIbAh+rqru2jmtoST5bVX/aL7+7qp40tc/viBFJcmJVPaB1HC05wDok+XZV3fYP3SdN2NVOYzI9htE2y+ybW0sVlpLsQFeMmfvCU1V9CPhQP6vbI4GDgBv3gwcfX1UnNg2wsX5cH59IjFSSjYEH0nVFfQBd68DRFJ6q6pIknwQu6DedObKi0yPpulf+DWu6464GPpjkBVV1QrPghnNJVf0GoKouSrJR64AamW4BfYcF+0ZxzaQrbds6gBVg9AOsA4ueC/tzpAOPa70sPGlMHBxxSpJt6QbVPgC4KXB824iG1c/a9B7gPUm2psvFIcAoCk9J3sy6n/ttgHsCzxs+IrXUt4Z8PPAQ4It0LQJ3nNyAj0GSLYB/pBvf6jS6m4ndknyZrmvuol2158wrgL2r6typbV9PcgpwQv8z76ZnspuMaXPlzHYjmohkueui0V0zjdyWSR611M6qGsPELN5DdGNBvg04aDLzaf8Q9/XAR5f9TQkLTxqXGyc5mO5CcrJMvz6Kpzn9mB2PorvBvA3dIIE7VtXNmgY2oCR7VtUp/fKOVXVOVf0MODrJRY3DG9KpC9aLbsbHgwG7HY5IkvOB7wFvBV5QVb9Mcs6Yik69NwFnAvtX1RUA6abxejnwFuDJDWMbyiYLik4AVNW5ScYys9/CcUrGNMD+tK2S7EvXymGrqcJDgC3bhaUGtgQexuIte4pxzAi8a5KL6XKwWb9Mv37ddmEN6oXAkcB5SSbjet0cOAaY+zGudM05xpNGI8lhy+2vqiOGiqWVJL+la83wMuCzVVVjG1jbfvrrl+R7VXXz1nFoGEneAOwDfIOuFeAJwOljOi8AJDmrqm79h+6bJ0m+Rjeu1/cWbL8F8OGq2qVNZMPrxzi7Vb969pi6XAIkecdy+6vqaUPFora8NhJAkrsC5wM/pzs33g94OPAt4PCq+mm76LQhsMWTxuSjVfWl1kE09mK6sZz+D/DeJO9rHE8L9tNfP/MwIlV1UJLn011EHgC8hq5rxWPpzpu/ahnfCjGWY+Iw4KQkR7L2zH6H0nVFnntJNqF7qv904Dy6f/sd+kLMS6vqspbxDejFVfWj1kFoRVj0/DemCSiSfITuwcyHJt3MRuj/Avevqt/2Q1S8GHgusBtwNPCYlsFp5RvrgIkap6OTnJXklUlu3zqYFqrqDVV1d9Z0JfgQcNMkL0pym4ahDcl++utnHkamOp+oqmfRdbU8gO48cW7TwIb1n0n+uu9ed6UkLwc+3yimQfWTL+wH7Am8s//ZA3hsv28MjqIb727Hqtq9b+mxM7AV4+p2d1qSk5IcmGSr1sGoqekZDTdO8pAk76YrzD6uXViDOpquu+G5SY5Lsm+STVsHNbCNp1o1PQ44uqr+papezprWodKS7GqnUUlyW7oWP48DLgPeCxy72JgW8yjJrYDtqupzU9vuBLwRuG9Vzf2sFEl+Dnya7gnevftl+vU/raqtW8U2pCQfZvECU4A9q+r6i+zTyCR5cVX9Tes4htAPLv524C50g4tD9yT3q3SDi/+iVWxDSbJJVV3eOo6WkpwF3KYWXCD3Mz5+awxdLuHK93t/umumhwBfoLtmOqGqftsyNg1viQkodhrbWIBJrkfXvWx/4B7AvwPvqaqPNw1sAEm+AexWVZcn+RbwrKr69GRfVd2xbYRa6Sw8abSS7Er3xfFY4EdVda/GIc1ckn+jaz5/+oLtuwBHVtXD2kQ2nP7iaUlV9amhYmlpiTxMvhAyljxoeWMa7yvJrlX1tSQ7A5NWsWdW1XeS/HlVvbVlfENYMAbem6vqua1jGlqS/66qRVsAL7dvnvUtOx5Md820B3ByVT2hbVQayoIJKD40NQHFqCci6a+djwF2GcmD25fSFR4vpBtU/C79WLG3Ao4Zw32UrhnHeNIoJdkIuDGwHXB94CdtIxrMdguLTgBV9fV+8Ni5t1xBJcmYvjS3Am5WVX8PkOSLdLM7FiMZy0VXyVjGNgI4Psl+VfVl4DuTjUkOBx5Bd9M176b/vcd0Ppx2ZpInV9W7pjcmeSLdILqjU1WXJjkT+CawO/DHjUPSsD5ANwHF44DfJzmBkXbJT7Id3QPr/YGbAMcBT20Z01Cq6lVJTqZ73ydOtQrdiG6sJ2lZtnjSqCS5N93YJfsApwPHAh8cQxcKWO+sTWdX1dz30e67DzwW2B74WFV9I8nD6KaC3ayq7tw0wIEk+RzdtPHf79dPA/aiK8S+o6r2ahmfVoaRtXjaHXg/8ISq+nw/1tNbgdsCj6yqi5f9A3NguVk/xyLJ9nTTw/+WtQdY3wzYt6p+0Cq2oSXZge4G+wC674bJ8ASjLMCNWX8+vB/dZ+EhwJbAgYxkAookz6R777cF/oXuOPjPtlFJGxYLTxqNJN+nGwjxWOC4qhpLK6crJXkvcEpVvW3B9mcAe1fV3A8SmeSdwA50YxT8CfBD+lmbRjR4Lkm+VFV3nVp/S1U9p1/+Qj8IvUYgyS9ZeryvzapqNK2j+64TxwPPBp7Zb358VV3SLqrhJPkNcDbdv/3O/TL9elXVLq1iG1qSPYE79KtnVtXJLeMZWpL/pHtAcxzdTfaX1/MrGokk1wEeSFeIeWBV3ahxSDOX5J/oCq8nV9UVy7zuDlV1xnCRSRsOC08ajSS3qKrzrsLr5nZci76J8PHApaz9JHdTuie5cz91cj844i5VdUU/FfCPgJ2r6qLGoQ1quRZuSb5TVTsPHZPUUpJt+sXb0834eRLwHOAKgKnZfObW+rpcX5Xv0HnVz+z27Kp6VetYhpDkPsBnFg6yvsjrRjMBgdblv//axtpSVLoqLDxJC4zhSyPJHsBk9okzquqUlvEMaeG/7xj+vReT5J+BTy7S+u1/AferqgPaRCa1keQcupZf0+McTdarqnZqEpgG1XcvezlwU7oC5HuBVwBPppu96nkNw1txxvodqs6YumNfFUm+OpYhG6Q/1Giaz0tao6o+AXyidRyN3C7J1/vlADtPrTOiriTPBz6U5PHAV/ptuwOr6MZAk0Zl7DM0wVrFtys3Ta3XSFpCvgv4FN04Lg8CTgVOA+40hlbBV8OYJiDQuvz3X5stOqQlWHiSNDa70s1m+P0F23eg63Y3Cv0YZ/dcMI7JR8bU+k2almRhq40CLpwMwD8Sqxesb0Q3GcMLgK8OH04T21TV4f3yfyTZj27A+SXHdRk5b7THzX9/SVeJhSdpXT69mW+vB168cKySJFv0+x7eJKpG+kKTxSYJXrfItm2SbAocUFWnDR3Q0CZj3SXZCHgS8EK61j4PraozW8Y2pCRbs+Za4CJgy35Wr1GM9fUH8pppzk1NQDH5t54Um0I326PWuLR1ANJKZeFJo9EPJL15VV2wYPu2wC+r6nf9pjcOHpyGtF1Vnb5wY1WdnuSWw4cjaSWoqj0W255kNfAm4D7DRjS8fraqp9N1xf0ssE9Vnb38b82dLekm35guqEy6IxfgWF9re3/rADRbVbV56xhWiiTXqarLFmy7UVVdCOCMwNLSHFxco5HkaOBjVfXBBdv3BR5QVX/eJjINKclZVXXrJfYtOdObpPEaywDKSc4HLgfeAHxv4f6F35/z6KrOgDsGSR4I3IxuCvlzp7Y/var+qVlgGlT/4PbPgFsBXwf+qaoubxvVsPpJed4NXJeuEP2syTExlu8H6ZraqHUA0oB2X+yiuaqOZwRPsnWlU5M8c+HGJM+ge8otSVdKsh3jGcfkJLqJJ3al63Y8/fOwhnEN6fjWAawESY4EXgrcCTg5yXOndj+nTVRq5Bi68d9OBx7C4t2S591rgAdW1Y2Ao4GPJ5m0brK7qXQV2NVOY3K9ZfZZhB2Pg4DjkzyBNYWm1cCmwL7NopLUVJI3s26BaRvgnsDzho9oeFX11NYxrADeRHYeDty5qi5PcjjwniQ7VdXzMUdjc/uquhNAkrcDX2wcTwubVtUZAFX1gSTfBD6Y5BDG82BCukYsPGlMfpLkblW11hdmkrsCFyzxO5ozVfVjutnc9gDu2G92NjdJpy5YL7qBpQ/uZ4Gce0kOXm5/Vf3dULE0tH2SNy21s6r+cshgGtpk0p2qqn6e5OHA0UneT/egRuNx5ZhGfSGyZSytXJbkj6rqRwBVdUaSvYB/A3ZuG5q0YbDwpDF5IXBckneydkuXJwP7twpKbVTVJ+i6lEgSwPFVdfFiO5LcvKrWGfNoDi03iPBYnur/FrtdA3wnyX2r6lMAVfV74MAk/xt4dNvQNLBdk0zOjQE269cDVFVt0S60wRwKbAf8aLKhqs5Pcj/g2a2CkjYkDi6uUenH6vgL1rR0OQN4y1ieZkuSFjc9QGySk6tqr8X2jVWSg6rqDa3jmDX/rTtJNgOoqt8usm/7qvrB8FFJ7SXZBqCqfto6FmlDYosnjUrfzeqw1nFIklac6f4j2yyzb6wOppvtbt5d2jqAlaCqfptkyySPALbvN/8A+A+LThqbJDenG2B8L+Dn3aZsAZwCHDo966OkxVl40mgkOZ3FuwpMmgrvMnBIkqSVo5ZYXmx9jMZSfHt2kukWTwVcWFXfbxVQC0meTPeg7kS6ghPAHsCRSY6oqnc1C04a3vvoCu9P6LudkmRjYD/gWODuy/yuJOxqpxFJcovl9tf/b+9eY+yqyjCO/x9agQpUrBiUhEYJoihVKBCJAgk3AQMBMYYUFDCImGBCgQ8EJUKDXIJAGjREQIho5CIhoBWD3C+agLSFWIkiyqVUQrgVKtCAhdcPe48zDDNt6TBnz3D+v2Ry1l5rn3OeaZrMmXfevXbVE73KIkmaWJIsAy6gKbCc0I5pj+dW1ZZdZZsIkiytqpld5xhvSUba+28GzYbac6rqwR5H6kSSh4HPV9WLw+Y/CNxXVdt0k0zqvSSPVNUn3umapEF2PKlvjFRYSrIZ8HxZgZWkfncpg5trDx0D/Kz3cXovyX8YvTN4Wo/jdKKq9hhpPslOwIXA7r1N1Jkw8v+FN+mf7jdpwKIkFwFXAAPdj1sCRwIPdJZKmkQsPKlvJNkFOAd4ATgD+CWwGbBekiOq6qYu80mSulNV80ZbSzK3l1m6UlWru6tdX6uqhUk27jpHD50JLE5yM4O/aM8E9qH5DCX1kyOAo4F5DO55tgxYAFzWVShpMvFSO/WNJAuB7wEfAC4B9q+qe5N8CriqqnboNKAkaULql8vMNLr2rri/r6odu87SK+1ldfvy9s3Fl3eXSuq9JN+tqp90nUOazCw8qW8kebCqtm/Hf6uqbYesPWDhSZI0kiRP9vseT/0iyY95+yVmM4AvAMdX1YLep+q9JFsDm1fVn4bNfxF4uqr+1U0yqfeSLK6q2Ws+U9JovNRO/eTNIeOVw9aswEqSRuPPiP6xcNhxAc8DJ1bVMx3k6cp84JQR5le0awf2No4kaTKz40l9I8kbwCsMbpL66sASsGFVva+rbJKkbq1pY+2q8o91fSDJ9KpaMcrazKpa2utMXUhyf1XtPMrakqqa1etMUleSrGLw94a3LAFVVdN7HEmadPwQpb5RVVO6ziBJmpjcWFutO4HZAEluq6q9hqzdMLDWBzZdzVpf3OFQGmKJW3JIY7Ne1wEkSZKkCSJDxjNWs/ZetzDJMcMnk3wLWNRBHmlCSuIVE9JasONJkiRJatQo45GO38vmAtcnOZzBQtNOwPrAVzpLJXXj2qEHSQLsCRwGHABs3kUoaTJxjydJkiQJSLIMuICmu+mEdkx7PLff7m6YZA9gu/bwoaq6vcs8UpeS7EJTbDqYpiPyOOC3VbW802DSJGDhSZIkSQKSnLa69aqa16ssXUqyIfAdYGtgCXBZVa3qNpXUjSRnAV8DlgJXAdcDC6vq450GkyYRC0+SJEmS/i/JNcB/gXuA/YHHq2put6mkbiR5BvgHMB9YUFWvJXm0qrbqOJo0aVh4kiRJkoAkP1jNclXVGT0L06EkS6pqVjueCvy5qvrljn7SWySZAuwDzAH2Au4A9ga2tBNQWjtuLi5JkiQ1XhlhbiPgaOBDQF8Unmi6nQCoqlXNXspSf6qqN4CbgJuSbECzofg0YFmS26vqsE4DSpOAhSdJkiQJqKrzB8ZJNgGOB74JXA2cP9rz3oM+l2RFOw4wrT0OTefX9O6iSb2VZGfgyap6ur3MbiOaOzzeCNzZaThpkliv6wCSJEnSRJFkRpIfAn+h+SPt7Ko6uaqe6Thaz1TVlKqa3n5tUlVTh4wtOqnfXAy8DpBkd+Ac4ArgKeCgDnNJk4YdT5IkSRKQ5EfAIcAlwKyqernjSJK6N6WqXmjHhwKXVNV1wHVJHuwwlzRpuLm4JEmSBCR5E3gNWAUM/ZDsJWZSn0ryV2D7dr+zvwPfrqq7B9aqartuE0oTnx1PkiRJElBVbkMhabirgLuSPAesBO4BSLI18FKXwaTJwo4nSZIkSZJGkWQX4KPAzVX1Sju3DbBxVS3uNJw0CVh4kiRJkiRJ0riwnViSJEmSJEnjwsKTJEmSJEmSxoWFJ0mSpHWQ5GNJatjXi+v4WlskOT3Jwe92TkmSpC55VztJkqSxeQA4tx2/vo6vsQVwGnAFcMM7fXKSqVW1ah3fW5IkadzY8SRJkjQ2zwK3tl+3Jdk2yS1JViR5IskJAycmubedfzXJoiS7tUv3t49Htp1TRyX5eTveqX3uy0keb8dHtWvXJHkI+HWS9ZOcl+TfSV5Mcm2SD7fnH5vkySSvJVma5KQe/dtIkqQ+Z+FJkiRpbL5EU3x6FrgR+A3waZouqPuAC5Ic2J57C3AicDrwEeDydv777ePdwBzgrrV8732Bi4FfAKcAJwELgPnA/sBP2/POBZYDxwAXAXZHSZKknvBSO0mSpLG5Dzi1Ha8E/tiOzxhyzj5J7gBm0xSIpgwsJJkG3AycCTxWVVe382vz3pdX1YXt+QPFq2OHvm/7+AiwFbAnsAj41dq8uCRJ0lhZeJIkSRqb56rqVoAkn2nn/gCcN+Scp4GvA18GrqTZy+ksYEdgA6BGeN032sepSTYApo1wzlPDjlcBBwx57kB3+57AV2kKX2cDhwK7rsX3JkmSNCZeaidJkvTueZimu2hXYAfgk8BxNAWfAdOBzwKzhswtbx93SDInyWbA4+3cN4BzWPPntt/R/FHxSGAmsB+D3U/zgfcDi4GXaDYzlyRJGnd2PEmSJL1LqmpVkoNoCj2n0nQeLQaWAP+k6Trauz397oFxVT2a5ErgEJqOqN2AS4EDgcNp9nBauYa3PxvYiGaPqIOBx2j2fwLYFJgHbNLOnzzGb1WSJGmtpGqkzm5JkiRJkiRpbLzUTpIkSZIkSePCwpMkSZIkSZLGhYUnSZIkSZIkjQsLT5IkSZIkSRoXFp4kSZIkSZI0Liw8SZIkSZIkaVxYeJIkSZIkSdK4sPAkSZIkSZKkcfE/UPKSaRIPIhEAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 1440x720 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 662
        },
        "id": "YQnuIULnc_JM",
        "outputId": "335fdcb9-7c11-48c0-cb3a-7f2c48a46a2b"
      },
      "source": [
        "X_data = np.array(selected_final_data.drop(['ICU'], axis = 1))\n",
        "Y_data = np.array(selected_final_data[['ICU']])\n",
        "print(X_data.shape)\n",
        "print(Y_data.shape)\n",
        "from sklearn.decomposition import PCA \n",
        "\n",
        "labels = []\n",
        "for i in Y_data:\n",
        "  if(i[0]==0):\n",
        "    labels.append(0)\n",
        "  else:\n",
        "    labels.append(1)\n",
        "print(X_data)\n",
        "Y_data = np.array(labels)\n",
        "\n",
        "#pca = PCA(0.80)\n",
        "#X_data = pca.fit_transform(X_data)\n",
        "print(\"pca \", X_data.shape)\n",
        "model = TSNE(n_components = 2, random_state = 0) \n",
        "  \n",
        "tsne_data = model.fit_transform(X_data) \n",
        "\n",
        "\n",
        "# creating a new data frame which \n",
        "# help us in ploting the result data \n",
        "tsne_data = np.vstack((tsne_data.T, Y_data)).T \n",
        "tsne_df = pd.DataFrame(data = tsne_data, \n",
        "     columns =(\"Dim_1\", \"Dim_2\",\"label\")) \n",
        "  \n",
        "# Ploting the result of tsne \n",
        "sns.FacetGrid(tsne_df, hue =\"label\", size = 6).map( \n",
        "       plt.scatter, 'Dim_1', 'Dim_2', s = 100).add_legend() \n",
        "  \n",
        "plt.show() \n"
      ],
      "execution_count": 24,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "(293, 42)\n",
            "(293, 1)\n",
            "[[1. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]\n",
            " ...\n",
            " [1. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]]\n",
            "pca  (293, 42)\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/seaborn/axisgrid.py:316: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n",
            "  warnings.warn(msg, UserWarning)\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAGoCAYAAADsEFQiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5zU1X34/9eZz2dmWHZJjDcimEU3RVpFAmpovGwiNtRVEkVNQYzxEsS2aCLyaBts/XWxfqv2kgQag62I8UICkqiooFCTYrJeEiIXAU3RdAkiGq4xYZdlZz4z5/fHZ2aZnZ35zPnMfWfez8eDx7Izn505i+O855zzPu+30lojhBBCiNIKVHoAQgghRD2QgCuEEEKUgQRcIYQQogwk4AohhBBlIAFXCCGEKAO70gMolra2Nr1mzZpKD0MIIYQ/qtIDKJeameHu37+/0kMQQgghsqqZgCuEEEJUMwm4QgghRBlIwBVCCCHKQAKuEEIIUQYScIUQQogykIArhBBClIEEXCGEEKIMJOAKIYQQZSABVwghhCgDCbhCCCFEGUjAFUIIIcqgos0LlFKfAB4DhgMaeFBrvVApdSzwBHAK8Btgmtb6d5UapxB5OdgJr94PW1ZApAtCTTBuGpx3KxzbUtSn2nmgm8Udnazc9D7dvQ6NYZupE0Ywq7WFUcc1FvW5hBD5UVrryj25UicBJ2mtNyqlhgEbgKnADcBBrfV9Sql5wMe01t/weqxzzjlHv/766yUfsxBG3nkRVlwHsSjEo0dvDwTBCsK0x2D05KI81brte5m9dCPRWBwnfvT/ZzugCFoBFl17FpPGnFiU5xKiBKRbUDlorT/QWm9M/P0Q8CtgJHA58Gjiskdxg7AQg8PBTjfYRg/3D7bgfh897N5/sLPgp9p5oJvZSzfSE431C7YATlzTE40xe+lGdh7oLvi5hBCFqZp+uEqpU4AJwC+A4VrrDxJ3/RZ3yTnTz9wM3AzQ3Nxc+kEKYeLV+92ZrZdYFF77Lkz5ZkFPtbijk2gs7nlNNBbnoY4d3D11rCw9C1FBFV1S7huEUk3AT4F/1lo/pZT6UGt9TMr9v9Naf8zrMWRJWVSNe06GyKHc14WHwR3vFfRUY9vX0tXr5LyuKWzznWsmyNKzqEaypFwuSqkg8CTwfa31U4mb9yT2d5P7vHsrNT4hfIt0Ffc6D90GwTZ5nSw9C1FZFQ24SikFLAF+pbX+VspdzwLXJ/5+PfBMuccmRN5CTcW9zkNj2GxXyLaU8dKzEKI0Kj3DPR/4CnCRUmpz4s+lwH3AZKXUO8DnE98LUT4HO2HVXHd5eP4x7tdVc80SncZNc7ORvQSCMG56wcOcOmEEdsB7Rc4OKLRmwMw2nRPXPL1pd8FjEkJkVhV7uMUge7iiaPI80pNMSNqwaSNP8rcMVb05nkgVfDZ354Fu2hZ00BONZb2mIWh53t9vRAp23DvF9ziEKEDd7OFKwBUi1cFOeOB89+hONsGh8Nev9AuQ6WdhLwxsZlFwITYOIZUj2CUC+Z62B/nOrlN8ZxCbnMP92g82GSdXbbvr4pzXCVFEdRNwK72kLER18XOkJyHTWdiX4uNpi9zHsthFHNINxLVbSi2jxNncYc/O5NX1r9PV66CBrl6H5et30bagg3Xbs+cNThpzImvmtDJjYjNNYRul3MA5Y2Iza+a0MmnMicZLz1dMGOn9uwsh8iYzXCFS5XGk586VW1m+fpfnHun/C36Pq63/wSb7bDeiLZbFLqLduXHAfQ1BizVzWs3PyqaVlYwHG1neex7/Gb2Ed3XGY+3+n0OI4pAZrhB1KY8jPSs3vZ8zIenywMuewRYgpGJcab2c8T5fGcTvvOgui298LPHhQROIdjEj8CI/Dd3OjvA1bA3P5G77YZrVHuyAoiFosejasyTYClFCEnCFSJXHkR6Ts7CN9Bg9bCNHMt5unEHsUVZSoVHKTYwapnqYbq1jbWge//jHu/uWnoUQpSMBV4hUeRzpaQhZOR+2mwajp+9mSPb7IgZFLl69H5xc2dGukIrRoHq5btc/MkrtMfoZIUT+JOAKkeq8W92jP16sIPzJZX3ndLcFru63RJvJytj5RLR3YI5oi6diF2S9vzFkUOTijeWgzY4A9UlLAhNClIYEXCFSHdvinrMNDh040w0E3dvPnwPLru7bIw2g+5Zo14TmcWFg84CHXRybgpOjV4iDzZLYpRnvM84gjuZRmjEehS1P+P85IYQvEnCFSDd6snvO9uzr3WxkpdyvZ18PM5bDKwsy7pGGVIyhqpdFwYUDZrrv6uHMjt7GYR0eMNONaIvDOszs6G1ZM4iDVoCbWk8t7u/ZbxCF13UWQnirmvZ8QlSVY1vc1nnp7fNWzc15TtfGYab1/IDjPcmzuTOt57nSeplGjtDNEJ6KXcCS2KUZg21q8YqSZhAXoa6zEMKbBFwh/NiyYmBT+TTJ4z2pAdcOKD572gm89n8W7dEbM561zWTGxGZuaj3VPNgGG/0vKxeprrMQwpssKQvhh+HSa/rxnqAVoP2Lp7NmTiuWj//rfAVbgE9dDSp31nQ/VhDOvcXfzwghfJOAK4QfhkuvDgG2hmfSGb6GbeGZvDjmmZSjN2aFdRT4b5d33q1gh82uTSaBTXssr8YJQgh/JOAK4ceYtpyXaA02MYapHgIKmlQPJ3f+EB44n5dWfx+Vvapy/8cB/+3yvLKs+wJ9ShLYX7+SsfOREKL4ZA9XCD8MYqVSGeawcbfV37T/u5Ml+j7eJXM2cjqjYhfpklnWr33XPe4T6Uq0AZzuLh3LbFaIipCAK4Qfb68p6MetLBnM2TQEfe7HJmXLshZCVIwsKQvhR4HnVTM1KGhWe7jbfrhvzze1alWvE/dszSeEGDwk4ArhRxHOq6ZmMF8Y2Mya0DymW+v69nxTq1a1sonZSzey80AeFaSEEFVFAq4Qfpg0N8gh2aCgWe1hUXAhQ1UvIdW//nFq1aqTYh/4z1YWQlQdCbhC+GHS3MBLIMjvT7uShqDFzfbz2HgnRdk4XB9Y7T9bWQhRdSTgCuFH8thNvqwgJ1/yN6yZ08qXgq8MmNmmS+755pWtLISoKpKlLIRfoyfjHvwxO08LuMvQVrCvyMQogLh5U3qj1nxCiKom/xcLkY9QE0QOmV0bHpb5DKzhY3QzxKw1X7U42Amv3u/Wne47AzzNXY6XM8CijsmSshD5MEmeCgTh0zfBHe+552HTg824aeiA92feiLZ4VreWtjVfMb3zIjxwfl+vYNDu142Pube/82KlRyhExUjAFSIfJslTuZoCnHcrygp5PoSDTctlf1fa1nzFcrATVlyXsVcw8ah7+4rr3OuEqEMScIXIh1fNYtOmACmPkT7TjWqLiBrCocuWcO45ny7BL1ACr96fs1cwsahbclKIOiQBV4h8JWsWn329u0+r8mgKkHgMdfYN/R4jOPFGQl97jeFnf7Hkv0bRGPQKJh516zsLUYeU1j4yLavYOeeco19//fVKD0OI+jX/GIy7O7R/WPLhiEHDrF9lDZAZrhCiOOwhZtcVoTymEIORHAsSQhTuYCfEIrmvC9juEaksdh7oZnFHJys3vU93r0Nj2GbqhBHMam0ZHIljQniQgCuEKNyr92O8Mpglc3vd9r3MXrqRaCyOE3eXprt6HZav38WTG3az6NqzmDTmxCINWIjykyVlIUThtqwAbVB+MhDMmLm980A3s5dupCca6wu2SU5c0xONSdckMehJwBVCFM60T3DsSMabF3d0Eo3FPX80GotL1yQxqEnAFUL0d7ATVs2Fe052M4/vOdn93qtghWkiVJbrVm56f8DMNp0T19I1SQxqEnCFEEflW5rRtNRlloSp7l6zbkjSNUkMZhJwhRCuQkozFljqsjFslr8pXZPEYFbxgKuUelgptVcptS3ltvlKqd1Kqc2JP5dWcoxC1IVCSjMWWOpy6oQR2AHvLGc7oAZX1yQh0lQ84AKPAG0Zbv+21np84s/zZR6TEIOf373YQkszFlDqclZrC0HL++0oaAUGT9ckITKo+PqM1vpnSqlTKj0OIWrKOy+6y7+x6NEgmtyLfWOZO9tMD4CmmcZe1x3b4rYinPJNX8MddVwji649a8A5XHBntkErwKJrz5LiF2JQq4YZbja3KqW2JJacP5bpAqXUzUqp15VSr+/bt6/c4xOiOuW7F2uaaazs/Fvsecy6J405kTVzWpkxsZmmsI1S0BS2mTGxmTVzWqXohRj0qqJ5QWKGu0prPTbx/XBgP24l9LuBk7TWX/V6DGleIETCqrnuTNZreTgQdJd6U2eiJj8HgIJgQ+ZZspdMs+7kWKyg/8cTtUKaF1SS1nqP1jqmtY4Di4GJlR6TEINGvnuxJpnGAGj/zeSlOb0Q1RlwlVInpXx7BbAt27VC1J1cyVD57sWmZhqbTDr8NJOX5vRCVD7gKqWWAa8BY5RS7ymlZgL/qpTaqpTaAkwCbq/oIIWoFiaFKQqp+pTMNA4Y5FP6aSYvzemFqIos5RkZbl5S9oEIUe1Sl2XTxRP7oiuugz+eAm+uzL2Hm61N3rEtEDes6FSMzOZ8rhNiEKp4wBVCGDJdlkW5e7FeATcehc3LQGt37za1IMXBTneGmzN5iqyz6fS+tlvDQ2hSPXk/nhC1oOJLykIIQ6bLsm+/kL3qU6po98Aayckla5MZbpZZ8rrte2lb0MHy9bvo6nXQwNOx84loK6/HE6JWSMAVotpkS4qKHDL7+UhX/6pPIY9iEakZwp0/Jf7EVxJL1gbHBTPURs7W13ZxbApOrgU1j1rLQtQCCbhCVBOvpChTyWXZZNWncVfn7uQTi/LhU3NxohGDJ1BZayNn62v7rh7O7OhtHNbhgTNdg1rLQtQCCbhCVItcZ1VNZFqWNVyK/uihXxNSMYPnsLPWRvbqa/tSfDxtkftYFruIQ7rBV61lIWqBJE0JUS1MkqJy6IkFeKBrMlcd6D5ad7jYmb/ayToTzdXX9l09nHbnRubHbmTHvVOKOy4hqpwEXCGqhclMNCnQPws5oi0cbGZHb+PlN+Is3tbBomvPcusPh5rM938NHIoPYdy81TSGbaZOGMGs1pa+4N4YtukyaCavNZya5TGEqFWypCxEuWVNijKdiSr+cMaXOaQbiGvFId3AsthFtEXu46X4eJy4picaY/bSjew80A3jpuXcw41oi+365JyZxBFt8VTsAjTQ1euwfP0u2hZ0sG77XsDta5ujrW2fbI+x80A3d67cytj2tZw6bzVj29dy58qt7u8ixCBWFc0LikGaF4hBwauAv+nsNjyMO//kBZav35V1vxTc4oy2pRgR/y1rQvNoUL1Zrz2sw3w18jc8HPp3hua4ri1yH+/q4f1ubwharJnTyu7f9XDNQ78w+z3SNAQt5l92OvOffcuzRZ90Dao50rxACFFkRUyK8kpOStJANKbZqYfz11kyhCPa4rAOMzt6Gz/XZ2TNJE69Lj3YAkRjcR7q2MHz2z7AyvPtM+LE+Puntw04UgQMnLULMQhJwBWiXIqQFJU8q5orOSldeoawZuBSdKbrMi1ZZ+LENU9v2s3KTe8Ty3PRLKYhluNDRDKwCzEYyZKyEOVyz8nmyUvpS8xpPWPHtq81Sk7KxA4oZkxs5ulNu/N+jEyUArRRyYyCNIVttt11cYmfRZSRLCkLIYogNUHKT6bw2de7Z1SznFWdOmEEtml2UprkbHTqhBF5L/9mYilFQyhH+cYi6I4U70OCEOUkx4KEKJVsCVK5hIe5FaKmfDPrJbNaW3hyw26cuEGhigy6eh2e2rg77+XfTGJxTW80hqUo6uOmawzJ25YYnGSGK0QpeCVIeTEs4D/quEYWXXsWDUEr75nu4Uh+wTobTWIftoTB1g4orpgwsnRPIEQJyUdFIUoh3wQpHwX8J53QxS8+9Tyht35IKNZDN0N4Jn4Bi51L2Zkhk7hcAgpy5D7lLWgFuKn11NI8uBAlJjNcIUrBT9Uo8F/AP9Hk4CNv/YAh8cMElGaY6uHLwXW8EJrHhYHN+Y89CzuAUVELP8G2KWwT9LGRvOjas6QilRi0JOAKUQp+6hf7LeDvsVyt4g5DVS+LggtpCez1OWhvTrz4M9fuXgetc6epKmDq+BFS9EIMarKkLEQpmNYvDg+DO97z99gGy9UNVox7jv8ZN+2/uqhHf4pNQ84CHgBDgha3Tz6t9AMSooRkhitEKRjULzZNkBrAYLlaxR0+0/Ui2+66mKbw4P1cbQcUDUFLlpJFTZCAK0QpnHermwDlxUeCVD+my9WJ60zO7FoKThveRFPYRil3b/W0E5uwy/wOoYCgpfrGMGNiM2vmtMpSsqgJg/ejrxDV7NgWNwEqW6OCZNUokwSpdKbL1aEmwOzMbsi2WHzdOf1mkWPb1+LE/Q+vEBoI2xbvSCUpUYNkhitEqYye7CZC5aga5ZvP5WqvM7teS7Z+6zUXi1SSErVKZrhClNKxLTmrRvl23q3wxjLvfdy05epJY05kzZxWHurYwdObdtMdcWgM2VwxYSQ3tZ6acX/UtJl8sUklKVGr5JUtxGCT53L1qOMauXvqWO6eOtboaaZOGJGz564dULSc0Ejnvm6jbONcpJKUqGWypCzEYGSyXJ3aOGH+Me7XVXPd2w3Mam0haHm/RQStAPO/eEbO60xJJSlRy6Q9nxC1KFvjhLQ2f7ms276X2Us3Eo3F+81g7YAiaAVYdO1ZTBpzYtbrTKU/nqgrddOeTwKuELXmYCc8cL5biSqb4FB3JmyQJb3zQLfR3m/yuic3vpezMYIVUITtAD3RWM69ZFHzJOAONhJwhUhYNRc2PuadVBUIusvPxUzmSmE6MxYCCbiDjwRcIRL8NLsPBCHuuGd2x01zM6DzORucgenMWNQ9CbiDjQRcIRLmH4NbQsInn/u7QhRJ3QRcyVIWotYkKkz5Fo+6+74rrjPOZBZCmJOAK0StMalE5SUWhde+W7zxCCEACbhC1B6Txgle4lHY8kTxxiOEACTgClF7kpWogkPzn+madiQSQhiT0o5CVKuDnW6z+S0r3ADoJ5M4WYnqte/CLx/y/9z57gMPcjsPdLO4o5OVm96nu9ehMWwzdcIIZrW2SGa1KFjFs5SVUg8DXwD2aq3HJm47FngCOAX4DTBNa/07r8eRLGVRU4pUKQowO5ebqsRndKuVnB2uGMlSLqNHgLa02+YBP9FajwZ+kvheiPpwsNMNttHDA4NkPpnEfvd00zoN1YOdB7qZvXQjPdHYgNKUTlzTE40xe+lGdh7ortAIRS2oeMDVWv8MOJh28+XAo4m/PwpMLeughKikV+93Z7Ze/GQSm+7pBoLuNRk6DdW6xR2dRGNxz2uisTgPdewo04hELap4wM1iuNb6g8TffwsMz3SRUupmpdTrSqnX9+3bV77RidpUYHedotmyIvfyr99M4vTuQuAG2EAQyNBpqM6s3PR+zqYLTlzz9KbdZRqRqEVVnzSltdZKqYz/J2itHwQeBHcPt6wDE4NbekKSPQRiEUCBTjRdjxxy9z7fWFba6kvpYzGtEuU3k/jYFndfts72Zk109zpm10XMrhMik2oNuHuUUidprT9QSp0E7K30gEQNyZSQ5PRkvjaeuGbFdcbddQoei6lSZxIf7OQP/7OA0Fs/JBTroZshrKKVD06fyVWfb62prN3GsE2XQdBtDFXrW6YYDKp1SflZ4PrE368HnqngWEQt8UpI8lKK6kv5jgXcpeBx04s7nlTvvEjsu+cxZOtShsQPE1CaYaqHq/gJf/XWdfzzgv9g3fba+Rw8dcII7IB3sqwdUFwxYWSZRiRqUcUDrlJqGfAaMEYp9Z5SaiZwHzBZKfUO8PnE90IUziQhKZNSVF/KdyxQ2kzig53En/gKVqyHkOrf1zakYgxVvSwIfJt7lz6fX9ZuteyVp5jV2kLQ8n47DFoBbmo9tUwjErWo4usjWusZWe76s7IORNQHk4SkbCJdhRWjKMZYUs/hliqT+NX7iTtRz0/jNg5fYRUPdZzD3VPHmj92piX0cu2Vexh1XCOLrj0r5zncWlpGF+VX8cIXxSKFL4SRfFvXAQQbAFWcYhR+x6JUIrhPd2e2pTy2Y9hP95Bu4FweZdtdF2e8P71q0x+H9/NM4O8I6SPZHzQ4tDR75Yakh29F1E3hi4rPcIUoq1CTeXP2VAEbnAjo2MD78k2s8jOWr20sXxAyzH5u5EjWrN1MVZuuiT0LRL3fXpN75RXKpB51XCN3Tx3rb9YuhKGK7+EKUVYFta7L8UHcb2LVuGm5HzP5vOVsl2eY/dzNkIxZu9mqNk21XhmwJzyAdCoSNUwCrqgvfsscJqsvBYJHz+dm4zdYnHcrZkvKurxBaNw0nByLXxFtsTJ+Qcas3WxVmxrJcvRqwINLpyJRmyTgitqWnhH7n5+FUy5wC12kz3QDtvvHbnD3TFOrLzke+46p/ASLY1sw3r4qZxA671YCtveHEgebx/lCxqzdbFWbjhAye/467VQkap/s4YralS0j9v/WQcCCT14E776akm3skZBkut/qN1iU6nELcWwLgemPE1v+FWJOpN8ycERbONjMid/OHddeOiCRaOeB7n4FJJrVHmZZq7nC6qCBSO7nVnZpzxcLUUEScEVtSi0qkS6Z5PSbjv5JTulHfoJD4ZhPwIe7IGpw3jSfYhTjpsGGRzInYyUpq/xBaPRkrFtepXvdQuJv/pBQ7DDdDOE5PstvT/8q/5Ch0lQyUSrpwsBmFgUXYuPk3rvto/udLy5nf9r057IthdZuDeUm6YsrikCOBYnaZNIDNrXvayElFpPyOdLS+VN47DLPS7SGGZF/4HU1linjPs7cyWOq7k1/54Fu2hZ00BN1A2uz2sOa0DyGql5/DxRsgH/4LVDe/rTZniuV9MUtGTkWJMSg5qfjzrm3ZJ8NmyikGMVbz7gzWI8ZrkOAS6z1/Nw5g2c2f8ALW/fwX9ed7fmmX86ZIQxMlJplrcYmj0L/ib3y1EznAZfENU7c7U+7Zk7+NZ2T/0ZPbdzN4UjuGXixnlfUL0maErXJNMko0pVXiUWt3T+HdAN/OOPL+be127LCezkZCKo4V1ovHx1yLM5fPb4ha1nFddv30ragg+Xrd9HV66CBrl6H5et30bagoyQ1kNMTpYyOAGWS2KsudX/a1H8jk2BbrOcV9U0CrqhNpklGoaa8SiwqBV00MD6yhH+zZuVflMJHkYl+P+ZkftPPdgYW3BlaT9SdoeVVA9lDens74yNAqVL2wEvZn9br38iE9MUV+ZKAK2qTSYGL5Bt8nkduGjlCTFPYm6+PIhOpNJmft9Qzw2waw/13p7pp8P8gKQ0ZStmf1uTfqBTPK4QEXFGbjApcaPiTy/I+cpMMggW9+Rp8MIhoi6diFwx8/gzPW8qZoZf09nYrY+cT0ZbZDyeLi6TsgacH8Gzy6U9r8m9UiucVQgKuqE3Htrhv4MGhblJSJlrDsqth1Lm+yz2mBsGC3nwNPhg42CyJXTrg9kzPW8qZoZf09naLY1NyVqsCINR4tLhIyh54KfvTmv4bZX9epC+uyIsEXFG7Rk+GGcuz369jbmbyjp+5hTB8SA2CBb35pn4wSAv6EW1xWIeZHb2Nd/XwfvepLM9bypmhl2R7u4aghR1QvKuHMzt6G4d1eOBMNzmj/fKP4O/fd49lpe2Bl7I/rem/UTYaJX1xRV4k4Ira9tYzoHK8zOMxaPlcxqCXfkw9PQhaisLffEdPdmd4Z19PPDSMuFYc0g0si11EW+Q+XoqPH/AjITtzsCnlzDCXSWNOZM2cVmZMbKYpbPNTPZ6r+Dc2Hn858dCwgeUyPbK60wN4+vgbglbe/WlN/o28BANKjgSJvEjhC1HbDHu7Eh4Gf/kztyvPlifQvV106xDv6RM4We1nKL10M4SnYhewJHZp34zzX646k+mfbi7qkNdt38tfPr6BiJM5sSdkBbKew00vQJFJQ9AaNOdIS9Gf1uTfyItSsOPeKXn9rMiobgpfSMAVtc20ybtS0P5hv5uOVh+KkR77rIDinivG9gu2xSw2sfNAN99+8W1Wb/2AaMwdvx1QfGHcSdw++TTPxytnhabByqSyVDZNYZttd11copHVJQm4g40EXJGRnxnuHe8NuDk5w3pq43t0pxRIGBqyuPKskX3BtNqCXClmhrUm9d+oyzCRSgHXfmaUNKgvLgm4g40EXJGR35rKGeQKpvMvO535z75V0WXccpdyrDU7D3Rz8bd/xpEsy/hJYTvAf9/+Wfk3LS4JuIONBFyR0cFOeOB87zrJHk0HTPb7LOWuSHu9V9sBxYyJzSWZGVXb7HqwKmTvHORDTwHqJuBKlrKobR7HbjIVXEi3uKOTXsc7uSamvYMtlK4cYKVKOdaiSWNO5MXbP8vU8SMIWkdjgB1QTB0/ghfnfjZrsK1E/Wox+MgMV9SHg519GchGDecTTv/HNb6L22dTiuzWO1duZfn6XZ6JP6WcXYvSZobXyay5bma4Up9M1IdjW9w92iz7tNkUK9hCacoB+inlKAG3NPzUr/bz3yDTVkFy1vzkht2yVTAIyZKyEGVQqmITlSrlKI4qRf1q2SqoTRJwhSiDfMsQ5lKpUo7iqFJ86KlU1ydRWhJwhfAwNGRWYzlsB0pShjCXSpZyFK5SfOipVNcnUVoScIXwcOVZI7FypHRYCqad84l+dYSVcisSzZjYzJo5rSXbaytlkX9hphQfemSroDbJOpMQHma1tvDkht2eGagh2+qr4HT31LFlTU5KFvnPdQ63hjJaq07yNeLEs79GglaAvxqn3EIsW1akZMpPc1s0pmXKN4Zto+pXslUwuMgMVwgPpexaUyzpXXrKNbsWLpPXyPKLDjFy2efdqmeRQ4B2v258zC3M8s6L/X5Otgpqk5zDFcKA1CYWuWR7jfzVOOUGWx/Vzmqt61MOdXMOVwKuEEKUUp71vOuoZGfdBFxZUhZCiFLassI72IJ7/y8fcoPzwU5AtgpqkcxwhRCilEx7MoM707WCbn3v0ZP733ewE169v3/S1Zg296HfXpMzEauK1c0MVwKuEEKUkmlP5lTpHazeeRFWXAexaO7ZslfQrk51E3BlSVkIITLYeaCbO1duZRC1BesAACAASURBVGz7Wk6dt5qx7Wu5c+VW/+UUx00b2Kkql1jUbbYB7sx2xXVu0lWuYAvuNdHD7s8klqdFdajqGa5S6jfAISAGOFrrc7JdKzNcIUSxFDVhyaQncwZHAo2cE/se34g9yNXWOoLKbyMNBQEb4k61LzXLDLeKTNJaj/cKtkIIUSxFbxzg1ZPZQyh2mK5eh6nWK3kEWwCdmBF7n/kV5TMYAq4QQpRNSRoHjJ7s7smefb3xj3QzBIBGesyfx4ssNVdctQdcDfy3UmqDUurm9DuVUjcrpV5XSr2+b9++CgxPCFFrcjUOaFZ7aA8s4RubPu9mIN9zcr/jPFklezKfMzPnTDeiLZ6KXQBANw2+fwdPqfvDoqyqfQ93pNZ6t1LqROBF4Gta659lulb2cIUQxXDqvNVZD/FcGNjMouBCbBxCKcu8OmAT1TZfj9/O2t4zaQzbTJ0wglmtLQMrQRns6R7WYdoi9/GuHs7d9sNMt9b1e76ChYfBHe8V7/EKI3u41UBrvTvxdS/wNDCxsiMSQtS6bO32mtUeFgUXMlT1Dgh+Ku4Q0kf4Ft/iE2oPXb0Oy9fvom1BB+u27+3/QB57uhFtcViHmR29jXf1cAAWx6bgFLvPTKSruI8njFRtwFVKNSqlhiX/Dvw5sK2yoxJC1LpsjQNmWaux8e7gY+Mw03oeyJFglbqnGx4GSkF4GD/i87RF7uOl+Pi+S9/Vw5kdvY3DOkxEm/VnzinUVJzHEb5U7ZKyUqoFd1YLbhvBH2it/znb9bKkLAr16q/30/7sm7yz9+in/9EnNnHXZWdw3h8dX8GRiXLK1jhga3gmw1TuBKZDuoEze5f0fW8HFDMmNhu1bbxz5VaWr9+VcQ+5We1hpvU8V1ov06iOEAg3wWmXuHe+/YI7a1WJY0Cela0UnPkXcNXinOMpk7pZUq7agOuXBFxRiIU/eZtvv/hO1vtvnzya2/7stDKOSFRSpnO4neFryNExD4C4VrT0fr/fbU1hm213XZzzZwvuEmR65tceAtOXVkslqroJuFW7pCxEubz66/2ewRbg2y++w6u/3l+mEYlKy9Q44LBhtnDyOE+/2yK5m8lDEfovJ/eH7YFj6Mc5IseDKkACrqh77c++aXTd/OfMrhO1YdRxjdw9dSzb7rqYHfdOoenT1/g6zpOqMWSe9FRwl6DRk+GPv0jOiaMcDyq7Iqe+CVF9dh7oZnFHJys3vU93rzPgyEbqnq2Xt/dIZmddO+9WeGOZZz1jB5slsUv73WYHFFdMGOnrqZLB3mTfN6O315CzQ1E8Clue6NeDV5SWBFxR0zLtxSWPbDy5YTeLrj2rwiMUg0ZyuTZD156ItnCw+x3nSQpaAW5qPbXw58/Uni+9PnLyGtPuRHI8qKwk4IqalVoTN50T1zhx98iGEIBZQEse53ntu+7sMNKFYzfyw97zWOJcSmf86HJvaqODrHuupjK150vWR35jmftBAI5eY0qOB5WVBFxRs0xr4n50iM3vj+ROajltuLw51SyTgJbM6E2WaEwsxdrABQe6+d+OHezdtJvuiENjyOaKCSO5qfXUwoNtanu+dPHEeJ+41v3eOWL+uIEgjJte2NiELxJwRc3KVRMX3JluJGZ2NG7+F88oxrBEtTEJaCuu698QPk3Be65eXr0/96zV6fX/uFYQzr0lvzGJvEiWsqhZ3b1mRzGOODFunzza85rbJ4+W4he1yiSgVSijd+eBbo5s9E7UcmlyJkklBYJuWclpj1Vjb9yaJjNcUbMawzZdBkG3MWRz25+dxqdHHcv8597sl4182vAm5n9RKk3VtC0rcge0eBR++RBoXbYm7smEvzcDh4tbGuLs692ZrQTbspOAK2rW1AkjspbJS0o9snHeHx3Pf9/+uXINT1QLP5m6mfZ0SyA14a873MCwYvXEDQ+TY0AVJEvKombNam0haHm/xIt2ZEMMXn4ydX00cd95oJs7V25lbPtaTp23mrHta7lz5daBjQwySE34Wxk736BpgSLnNFiSpCpOAq6oWQWXyRP1Ydy0nBWk0sWdiOee7rrte2lb0MHy9bvo6nXQ4N2yL01qwp9Rez4VIOceriRJVZwEXFHTCi6TJ2rfebe6wciHgHaIv/FExvtSl4PTtzM8W/alSE3482rPF9UBtM4Rav0kSR3shFVz4Z6TYf4x7tdVc6XmcpFItyAhRH072AkvfAPe+W9fPxZHEZj/4YDbvVrsJeVq2Te2fe2AhL9+7fk4wmFChIkSVN5nzTlzGky6I3ewzXQWGdyAbQVLuW9dN92CJGlKCFG/UoOMT916CMPSbzzYyRmb/olNwQ4a6aGbBlbGzmdxbEq/ko9OXPP0pt1ZA26mhL939XDanRtpd24E4G77YaZb67wHGQjCkI8MLP34xnKIpsyw7YbEmeMMWf2GZ5FFbrKkLISoT6kFL3Kec+0voi2eTu8K9M6L8MD5XMVPGKZ6CCgYpnqYbq1jTWgeFwY297vcq2WfScLfVOsVQip731zgaIOClPGx4ZH+wRbA6ckcbFNJd6GCScAVdaGQjFFRo0wKXmThYLPM+uLRG1KCd3oQDKkYQ1Uvi4ILaVZ7+m73atk36rhG5l92uucYGk2PCkW6+n+40DmCdDapwVvkRQKuqHmFZoyKGmVS8CJNRFsc1mFudeZwzoSzj95hELxtHGZaz7t/z9Gyb932vcx/9i3Px+umwWzQoaaCPlz0I92FCiIBV9S0QjNGZWZcwwyDh9YQ14pDuoFlsYtoi9zHa4Gz+p/fNgjeIRXjSutlwPv8t1eXq1Q/jp2FUc7raZfk9eEiI+kuVBBJmhI1zbRj0EMdOwYksJj00pVjRYNYqMmob2wXDZzZuwRItNyzM7TcMwzejRzJef7b5DXr8nHCpBgzUymcUbCcM1yllKWU+kul1N1KqfPT7ruzdEMTonCmHYOe3Phev9uKcZZSVDmDghcONs/x2dzntw1nfhFraM7z3yavWYDPW5tQJgdq3n6hODNTKZxRMJMl5f8CPgccAP5DKfWtlPuuLMmohCgS045BhyOxfnu57izDe0kvOTMWg5RBwQs7GOKa2+5jx71T2HbXxdw9dWzmmalJtapAkCFnz8hZ2cz0NesraSqPalp9pLtQ0ZgE3Ila62u01guAPwWalFJPKaXC1NGBZTE4NYbNd01mL93I7s43YdVc5m2azNvBa9gansnd9sP9skuTkmcpxSB1bIsbRIJDBwYjv0HGpFqV4QzR9DV72E/SlJ9qWsqCUCMo5TY7OPt69/xtCZs11AuTgBtK/kVr7WitbwY2A/8DyA66qGpTJ4wYUEc5m3PjGznh8YvQGx+lyeAcJXifpRSDwOjJbjA5+3o3uOQbZIoYvE1es3ZA8ebxbUazasZN7z8+laURgrLc+695Av7+fWj/EO54z+0uJDPboshZ2lEptRRYqrVek3b7TcADWus81ymKS0o7ikx2HuimbUFHzozPZrWHNaF5DFW9Wa85rMO0Re7rVzGoKWyz7a6LizZeMcgd7HSLQ2x5wl3KDTW5Ac9H/1mT12xD0OLHN36Ckcs+756tzSY4tH91qOT43lgGkZT8g1AjfGpGpfrk1s1KadFqKSulJmutXyzKg+VBAq7IZt32vdz4vV96XpMsk+dVuSeiLZbFLuorrQfwlc+MylqeT4h8ZcqQh0SWtBU4miFfufrHxVQ3AbeY53D/pYiPJUTRTBpzIkND3v1ETcrkpZ6jTJJeuqIUjLtcFWtJXJRFMWe4m7TWE4ryYHmQGa4YIFmofcsKdKSLLj0kYyF5gM7wNZhs9ca1oqX3+wAMsQP87/+7pBQjF6KeyAw3D7XR50/UhmSh9o2PQeQQCu1dSN4w47ObIQBYCv7inE8UfdhCiNolpR1F7fHoApOpkLwdUDynW4kr7+MYEW3xVKJDTMi2ZDlZiCqhlPIspaWUOkUptc3nYz6ilPpSYSPrr5gB9zdFfCwh8mdQqD2Iw03W8337Yp+7YT4BO+T5Mw42j8an5CzNJ4QQmRhXBVBKWcAU4JTUn9NafyvxVapOiepgUKg9qGJc1/hzrrvjR0dvnPZYxozPqLaIYjOXuZw/8dPc1HqqBFshqpBSqgl4BvgYEATu1Fo/k7jbVkp9HzgLeBO4Tmt9WCl1NvAt3LoS+4EbtNYflGJ8fpoXPAccAbYCJpW1hagM00Lt6dclMz7TzlEGx00neO4t/Kcc/hei2h0BrtBa/0EpdTzwc6XUs4n7xgAztdavKKUeBmYrpRYC3wEu11rvU0pNB/4Z+GopBucn4J6stR5XikEIUVSGXWAyFnQ/tsWtrDPlm8UflxCi1BRwj1Lqs7gTw5FA8kjCLq31K4m/LwW+DqwBxgIvKrcThAWUZHYL/vZwX1BK/XmpBiJE0RgWkpdWY0LUnC8DJwBna63HA3sgcbRg4EkajRug39Raj0/8OVNrXbI45yfg/hx4WinVo5T6g1LqkFLqD6UamBB5K2IheSHEoPJRYK/WOqqUmgSMSrmvWSl1buLv1wAvA9uBE5K3K6WCSqkzSjU4PwH3W8C5wFCt9Ue01sO01h8p0bgAUEq1KaW2K6V+rZSaV8rnEjWkmF1ghBCDyfeBc5RSW4HrgP9NuW87cItS6le4SVUPaK0jwJeAf1FKvYHbmOe8Ug3OuNKUUupnwIVa67IkTCWyot8GJgPvAb8EZmit38p0vVSaEgMUoZC8EOWy80A3izs6Wbnpfbp7HRrDNlMnjGBWa8uArHg/15ZqDEVUN5Wm/ATcR4AW4AWgr6VK8lhQ0QfmTvHna60vTnx/R+L57s10vQRcIcRgla1ZQdKQYIAvnX0ys1pb6NzfbdbYIJeU0qdEunDsoayInM9DzqV0xo/+vO/H9U8C7oALlWrPdLvW+q6ijujo830JaNNa35T4/ivAn2qtb0255mbgZoDm5uazd+7cWYqhCCFEyZi2kLQDYAUCaCDiZF9obAharJnT6j0jzdJlKKItHGxmR2/jpfh4/4+bn7oJuMbHgkoVWAuhtX4QeBDcGW6FhyOEqHdps0Z3G2Oam8iXZRtjcUcn0VjunTonDk4893UnxT7gtz+4hVGHfpx5DKmlT9OEVIwQMRYFFw7o/RyNxXmoY4e0oyxAzqQppdSCxNfnlFLPpv8p4dh2A6nV4U9O3CaEENUnrWEGaPfrxsfc29/J3C585ab3My4j5+PCwGZWBb/BWfufzT4Gg9KnNg4zref73ebENU9vkrfgQpjMcB9PfP33Ug4kg18Co5VSp+IG2qtxU7mFEKK6eMwaiSeWbVdc51YyS5vpdvc6RRlCs9rDA8EFNKiI9xhQOUufJns/tzs39h9rpDhjrVc5A67WekPi60+VUick/r6v1APTWjtKqVuBtbjVPx7WWr9Z6ucVwkgeS4eihhnMGolF3az5tCpmjWGbriIE3Xb7UYaQIdimjyFHsO0bF0cG3hbyU5xQpDP611NKzQduxV2CVkopB/iO1vqfSjg2tNbPA8/nvFCIcsqUcJJctntjmXvGd/Tkyo5RlJdBwwziUfeIWlrAnTphBMvX7+pbVm5We5hlrWaq9QqN9NBNAytj57M4NqXfnmqqZrWHiwKbUbnSjwyDLRzt/ZxkBxRXTBhp/POldMq81Z8E5gLXAsOAQ7jlGr/1m/um/F8hj62UagMW4k70HtJa35d2fxh4DDgbOABM11r/xuSxTfZw5wLnA5/WWh+rtf4Y8KfA+Uqp2/38IkIMeh69dolH3dtXXOdeJ+pHvg0zgFmtLQQt9634wsBm1oTmMd1axzDVQ0DBMNXDdGsda0LzuDCwOePDzrJW+xtvjtKnqb2fk4JWoCp6QJ8yb/UlwBZgFvAR3CznjyS+35K4Py+J+g/fBS4BTgdmKKVOT7tsJvA7rfUfAd8G/sX08U0qTX0Ft+DEjuQNWutO3E8W15k+kRA1wc/SoagfmRphGF436rhGFl17FqcF97EouJChqpeQ6n9EKKRiDFW9LAoupFntGfAYU61Xcs9u+x6sMWfpUwebJbFLAXdmWy09oBMz2x8BQ3Hb76UKJm7/UeK6fEwEfq217kxUoVoOXJ52zeXAo4m//wj4M6XM/vVNAm5Qa70//cbEPm6OgrVC1Bg/S4eifhTYMGPSmBP50ac2Dgi06Rro5aeh29kansnd9sN9wbeRHvOxfmpG1tKnOmATUUOYy1x2MZymsM2Mic2smdNaqqIXfs0ld9wJAvmuvo4EdqV8/17itozXaK0d4PfAcSYPbrKH67ULn2OHXogqlk/iUwFLh6KGnXeru3/v9WEsR8OMj7z9FOCdPJWcRw3DXWa+yupgdvQ2umlgmGnQTZY2zdD7WY2bTqi6ez9fi1nA/Qpu3lFVMZnhfirRHSj9zyHgzFIPUIiSyPPMZCFLh6KGFaNhhs8PaanLzD+OTSCiLc/rtYb9IyYdLX7x6v3wxhPQ2wXBJjhz2mCoMz7M8Lp8/wc0qf/Qd41SysbtUHTA5MFzBlyttZXoDpT+Z5jWWpaURXU62Amr5sI9J8P8Y9yvq+a6txeS+CS9dkU2oye7s8azr4fwMHc6Gh7mfv/Xr+TOXM/zQ5qNg0bh5FiwPEKIa3ZNZc+G5/L7sFkdDhlel+8SU1/9B6VUCLf+Q3qBp2eB6xN//xLwP9qwRrIcqhK1J9exnVMuME98OveW/svOwaGQq2GW9NqtX8e2uMd+0o7+GBk3zX2N+ji6A+5Md7K1kdnR21gUXIiN028vOLU+soPmY6tuAj3wjG2uAh1VYiluNrLXp94oRws2+ZKt/oNS6p+A17XWzwJLgMeVUr8GDuIGZSPGzQuqnXQLEoA7K33g/MwVf/yyG9xZSnqxAGWBjh39mhQIusG22OdwpchGfSjgtRvXipbe79Os9jDTep4rrZdp5AhOYhHTJkY3Dbyvj6NFvU9QeXxoDATdWXk+HxryY9y8IJF9vAU3Gzmbw8C4Qs/jloIEXFFbVs3Na5aQl4ANdth9gyxVr90sXV1KFtxF8fn5wJTtv3cOh3QDZ/Yu6fv+wsDmjLNdrTE7PhQeBne8l//v4Y+vbkGJc7Y/wp3lps50o4k/X/rNfVNeKGRApSIBV9SWe05O7EuVQalnAiYznuDQal7+E/l8YDrYeTR7uPdQziAZ0RbLYhf11T1uVntYE5rHUNWb/YdyUQraPyzs9/DxbH5/IDHTvR03G7kJd8/2ceDb1TizTZKAK2rL/GOAMr6mM80EisVktl7+5T9hqhgfmA52cnjhZzyD52Ed7mulZwcU7YElTLfW5TzT6yn1dW3we0TUEPZ95X8Y2XJGPs9WN/1wTY4FCTF4lPs4TinP20qRjcGt0KpkiSVchUZrdzk4VURbHNZhZkdv4109nMaQRdAKMNV6pbBgm55lb/J7xKO89Mh81m3fm//z1gHJUha1xSTTMxCEP7oIdnRkXiILWO7t2uBNyyvAF7rnJUU2SmbngW4Wd3SyctP7dPc6NIZtpk4YwazWluKVL8ynoUHyNbP5B+C4hSwaUuZ/yaB7hCA79XBOVvt4OPivdNPAW8e3ET/3Fhqfy5CB7Ed6lr3B7xFSMS6jg4lLN7JmTmvFS0BWKwm4oraYVvxpSzQASau0w6jzoPOnuY/+gPd522J0FAo1me1HS5ENI8kg+6PX3+OI0/+/b1evw/L1u3hyw24WXXtWccoY+v3AlHzNOBHQmStOJfdyh+goLep9Qols42H0MPF3z6HWriUeDIOTR9BN3Y9N/UBo+Hs0coRoLM5DHTu4e+pY/89fByTgiurRV/1mOUS7j94ebIRPXW02M0xW/MmV4JF8nNQzk8m9KtM3q2znbQtoRt6P6WxdimzktG77XmYv3UjEiRHLssXvxDVOPMbsYs3S/Hxg8nrNZKAUhOj/oUHFHYg7BJTlZtDHPcpEKhtOGA2/fy9l9SVLlr3h79HNEJy45ulNu0sfcOd/NGt7Pub/Pu+kKaXUw8AXgL1a6wG/RKJJwULgUtzjRzdorTeaPr7s4YrqkCy1uOGR/sEW3O83PGJeBSffij8me1UAKO9SfcXqKHTerTm7ukiRjcx2HujmzpVbGdu+llPmrebG7/2Snmj2YJsqOUsrmJ+qZMavPRMGOUh2CK7+gZsY1f6h+3XKNzO/ng1+j9R2ft0R73rQBZv/Uc/2fIn78/UI0OZx/yXA6MSfm4EH/Dy4ZCmLyvNz4L/AYzCee3f/NcZsRhIIwq3rs4/B9GiSSYaznMP1LTmbjcbifU3d/WoK22y76+LCBuInS/k/P1vc42zZirbk87ox+D1SM6Xz+Lczz1J2Z7ZGhS/ynekqpU4BVmWZ4f4X8JLWelni++3AhVrrD0weW5aURdlkC3Z/5yzmI6af7pMzwzyOwWR6I07du3vL6jL7Pz8edd8gsyVAGe55xXu7GNe+1jtpJzlbT99rLkWRjRqw80A3s5dupCdaQJYuRZql+dneKHbiW+wIfG1jcV43id8j8oNrIR7NWjYyeSzpignp3eyKyk97vlJ0C8rWvs8o4MoMV5RFtlmHHVBsDn6VJuWjn2ceZ193HuimbUGH5xvxtvBMf+PINlswnOGmVweyA4qgFShe0k4dunPlVpav35X3zDapKDPcpNRCFtkCX7ELtpTgfPjuzjd56ZH5XKY6aOQI3QzhqdgFLIldyrt6OAANQSuf/W8/M9zf4y4f5/IH5v/+o34G0TcY7xnuKuA+rfXLie9/AnxDa20UfGSGK0rOa9bhxDVD/TTPhv6zAcOjN4s7OonGvDOPV8Yv4GprHXaOnqR9siVAGSQ7pe55JflK2pH6yhmt3PR+wcEW3JWPU+atZmjI4sqzRhZ2XMikoUGejQsyKlEi3ciWMxjx5e8yMcsH5+SHxRIfCSp1e75cTNr3ZSVJU6LkcgW7bhr8PWDyGIyPnrYmb8QPOpfm7CmaUXoClEGyk4PNktilGe/LmbSTby/fKpKa1HTqvNWMbV/LnSu3svNAd+4f9tDdW9yEncORGMt+8S5tCzpKW9TBJEEO3IYZuZQwkW7SmBNZM6eVGRObaQrbKOWuBsyY2MyaOa3lWJkpdXu+XJ4FrlOuzwC/N92/BVlSFmUwtn0tXR5vhHfbD5uXokuWMjz3Fl9l806dtzpjwcdmtYdZ1mqmWq/QSA9HCBHCIRBQBEwKXySlLeHt2fAcw56d6dkq7aX4+KwPl3VJswbqK3ttLxS6pJ7rtWYq/XXRTQPP6VY+d8P8fMsX5parcUGwAcZ/GU4aDy/8nXlCVPWvhvhZUv4uZu35HmT+733v4SqllgEXAscDe4D25HNprf8zcSzoftxM5sPAjabLySBLyqIMcs06FsemcJXVQQiDAJf89O7n6M2Ub9IYtge8EWfqqDKUCBEdQMc1BBsIOIbL3WlJL9/ZdQqvRv+F6wOr+1qlZdrzyiZr0o7P37tU8q3UlGt7odBzsFMnjCh4DzfT62IYPXyJn8DjP4NrlpYmM9xPgtwp55tdV4wCLNXlW8AN5A64387nwbXWM3Lcr4G8lw9khitKzmTWcWFgMw8EF9IQcDKXVFSW2wov+Qbh8+hNejKNSUeVwzqMBhpNuq6kzXALnWllneEW88hRngqZoZokNdkBxYyJzXkVTzBJjvNi1GmnylcQ+gye1RB/zQvcc7ae7fmY//uqbM8ne7ii5KZOGIEd8P5/6mUm8MDpj8E5N0IobWYTanRvTy1a4bNs3qzWFoLW0Zf7LGt1zuQoG4dd+oTc+7opSSrJvclCgq3n0YoK11dOnaGmB00nrumJujPUbHuxJnvpyWpF+Rh1XCOLrj2LhqA14DVnBxRWQOH1UjR5XRgVLamA5GvvkvZHefzOq4guPAed62x7lf4untxgOg54EPgDEE98fRD3/G1VBluQJWVRBrNaW3hyw26cePZZR9AKcNXnW+G4NrOlUMNyc4fiQxg3bzWNYZvPfPJYXv31AXqduFFHlZCKcTL7cLC9l7sTy9ypM79CBK0AN7WemmVQla2vbJLt7VVP1zSpqZBzsMnEnoc6dvD0pt10RxwaQzZXTBjJJWM/zsxHX886AzbqtJPecKAKJF9758Y38qS9ANtyCJrkRFTh72LELWpxK6U5a1syEnBFySVnHbmWIX3t2fk4eqNxj3l0vL0/McuBRsOjSEOJ8NXo3w7Y0wP6Jans1MOZvTT/pUw4OgP7zCePZcp/vJx5b7TC9ZX9zFAzBdxMe+mZNIYKe2sadVwjd08dm3EM2V6LYP66KEuHJsNkp+SqwwnO+9wfWuC/8bx0myobWVIWZdFyfCN/fkb/fb2gpfjCuJNYM6eVluMb/R0TyePojRPXiS4xyvgoUjdDeCk+nrbIfSyLXcQh3UBcD6zNbDLzS2cpaAxZfUcrPjv6BBTQ8fZ+unqdvg8Ky9fvOnospcL1lQudoZpsL5SkWtHBTlg1F+45mUnLTuPNITP5/kkrGBPa1+8y4yNqpe7Q5OPoV/K1Z7Qcnol0myobCbii5NZt30vbgg5Wb/ltvxmF1rD2zT2s3LybtgUdLF+/K3ugSZcsmxccOqCwenpj7nQKzcrY+Tn3ZlOLU7yrh9Pu3MiZvUto6f0+Y48s4c7oDexMPH4+BResQID7v3wWO+6dwuqvX8BrnQc44gycdfXbG9XDs/7eBILeTRWKoDFsNvPMNkNN30vPxHNJPR8Zglcg2sWf/m4Va8N38MzFh2kIWgQURq+LkndoSu0clL6SEY+6t6+4zr2Oo6+9vBrPS7epspKAK0rKJMnm2y++k18SToauQId0A8tiF9EWuS/rOVcnDo+rL+Dk2FHxKk6R/oEgn4ILkVi873fzszeadzekIih0hporqakhaBW3WpFB8PrUq1/nxzd+gi//6SiWBr6Y83VR8g5NPrtNJV97xsvhqaTbVFnJsSBRUsWobevnmEi2AhfplIKffynOx1bdhIpH+yWYmBanKIbk7/b0pt1GiuO2BQAAIABJREFUe5tFrfGbB5NjNyb1dHce6M6Y1HRT66nFLQ24aq7ZnvfZ1x9NHKp0hyafR7+SR9C2hmcyzLQWeHV1m/J3LGgQkxmuKKli1Lb1c0zEz5Ln8LO/SOhrrxGceCOEh6ExmyEXkxPXPP7zncbHiEreazSHYs1Qk0lN2+66mB33TmHbXRdz99Sxxa/Du2VF7vrEyUzdpAquIAC+j34lVx2MlsPh6AeMcvwuoh/JUhYlVazatqaB5quna07c9j0uD7zcV5JvZex8Fsem9O3n9lvyTCksr4DXt+/lnx/bQEQXdrSnVArN3i0Gr2M3RZ+hFirfc8smDQdKxefRr+Sxu8WOQcW26ih0Ubcq/3+vqGmmx0ByPo5JoHnnRea8cwNOINKvJN90ax1XWR19S8ReSTktxzd6FkaopDL0GjXmdeymqlT43HJefB79OnrsDm515nC/vWDAEba4sgnYoZIm1IncZElZlJRJkk0uRoEmkRwTcHoGZGqGVIyhqpdFwYWcFtznueS5uKOzKO3dSqHo2bv1YNy0gdnc6aotUzePo1/JVYeRn76Mq/g3liePsKGIh4YROOcGWUKuAjLDFSVlUmUqF6NAY5DZGVIxfjR+Ex8Zc0PWa4rVTxXg8vEjWLPtt/Q6hS1Pl7HXaO0571a3SL/XbLHaMnWTR95yJW6lzVSTqw5MHQtcX94xCyNVOcNVSs1XSu1WSm1O/Ml8NkNUPZMkm9snjy78mIhBcoyNw0feftLzmmL2U1295QM0ELICvmf5Feo1Wns8zmuX49xy3iqduCVKoiqPBSml5gNdWut/N/0ZORZU3XIdAyn4mMj8Y8DkQJBS0P5h1ruL1U811RA7QNvYj7Ny8/vGP/PTv72w3++dbzs8kXCw06ydnaiEKs2aKD4JuKI2FKltXTHODaezA9ByQhM79ncTjeV+XAVc+5lRfQlJpWzYLkQVqJuAW5VLygm3KqW2KKUeVkp9rNKDEVWuSMkxJqUH/XLi8PaeLqNgC+48PXnuuNB2eEKI6lGxgKuU+rFSaluGP5cDDwCfBMYDHwAZD8MppW5WSr2ulHp93759mS4R9aKQov4phe1HfWckW8Nf5Z7QI7QEMtRwLpPkuWNfJR+FEFWtKpeUUymlTgFWaa09D/zJkrLIqyRflp/RAZuotrm59+tlqTiVLlnC0XRPudIlH4UogCwpV5JS6qSUb68AtlVqLGIQ8ZvZ6VHYXsUdQvoIDwQX0qz2lPGX6H/uuBwN24UQ5VGt53D/VSk1Hnc76zfAX1Z2OGLQ8FOSz+DsblDFmGU/z/8XvbFIA8wt9dxxuRq2CyFKrypnuFrrr2itz9Raj9NaX6a1/qDSYxK1J/7GE0Znd6cGXi7TiCBs9y9wUbGG7UKIoqvKgCtEqa3bvhciZpm9TeoIDUGr5BtNCrhk7Mf7HfEpdsP23Z1v8vPv3EBX+8eJt3+UrvaP8/Pv3MDuzjcLGboQwoAEXFF3kkdtuhlidL0KN7FmTitWibsaaODHv+qfGV3Mhu1vrPshH3t0Emftf5Ym1UNAQZPq4az9z/KxRyfxxrofFvPXEUKkkYAr6k7yqI1R/9DE2d1RxzUSK0NTg0zJT8nC9DMmNudd8nF355uMfukWhqrerM0dRr90i8x0hSghybQQdSfZoGCxNugfmnJ2t1itBr1kS34qtB3ertX/xgl4j93GYdfqf2fk176X13MIIbxJwBWDUrbawpeOPYnnt33gWXM4edTmXT2c2dHbWBRcOKB/aERbONgMTRS233mgm5M+OoR39ho2NM/TiGOGsPNAd9HrI4/dv2bAzDZdSMU4Y/8LRX1eIcRRVV/4wpQUvqgf2WoLWwpiGgIKUld/02sOn/6PazgcORp8mtUeZlrPc6X1Mo0coZshPBW7gGWBL7Dmn25Ieb4YBXbay8lSELKtotdHjrd/FJMt6LhWBO7K3txBiBKQwhdCVCOv2sLJUsXpW63pNYdHHtPQ7/539XDanRs5s3cJLb3f58zeJbQ7NxL/2Klpz1fK3+zo71CK+siHach9ERgnkgkh/JOAKwYVk9rC2SRrDu/+sMfo+vd+11PQ8xWi2PWRtx3fljNBLKIt3jz+kqI9pxCiPwm4YlBJJjzlw4lrnt60m56I915mUk80VtDzFSI51mL5xJS/xcmRsuFg84kpf1O05xRC9CcBVwwqprWFs/58xE2kMtEYsgt+vkIUsz7yyJYzeOfC73JYhwfMdCPa4rAO886F32VkyxlFe04hRH8ScMWgYhoss/58yPZVLrHQ5yuE1jC2fS13rtxalP3cT036C353/To2Hn85h3QDca04pBvYePzl/O76dXxq0l8UYdRCiGzkWJAYVKZOGMHy9bvyWuZNBtGbWk/lyQ27ceLZl5aT5RI1Ou/nS0pmTycp3KpSJrp6HZav38WTG3YXJXN5ZMsZ/c7ZDgM+U9AjCiFMyQxXDComtYWzSQZRP+USC3k+gM+0HMsXPzWiX4Woy8ePYIht/pjpWdZCiMFJzuGKQafQc7hJOw9081DHDp7etNvd2w3ZfTPg1MITyefriZolW6XK9tzZfodcjzVjYnPe1aaEqFJ1cw5XAq4YlLIFy0vGfpwXtv02ZxBNf6xMVatSq1PtPNDN57/1U6Kx/P5/aQharJnT2m8Mqb+DacnIprDNtrsuzmsMQlQpCbiDjQRckQ+v2TJA0A7QG43TGLY56aND6NzXRT4xN9fs9NR5q432dZWCHfdO8T8AIapX3QRc2cMVdStX1aqYhiPROBo3eWnH/vyCLeQ+V9sQytG1KCFbcwMhRPWTgCvqlt8qUqmlHa08PpNnO1e7bvteeg32h5NZ1kKIwUkCrqhb+VaRsgPwyROb+jKPTVlKDcgyTs6yTWbOySxrIcTgJAFX1K18q0g5cXj/wyNsu+tidtw7hWs/05yzkAZALK5pW9DBuu17+24znWVbAdV3VEkIMThJwBV1q5AqUqnLw6ZndTUDOwGZzrLDdqCo7fqEEOUnAVfULZMSj9mkJi+lFtIwebTUTkCms+x8zgALIaqLBFxRt/KtIpUpeWnSmBNZM6cV2yCbKjVj2U8jBSHE4CYBV9QtrxKPXrIlL406rhHH8NxQcknaTyMFIcTgJh+bi8ykapGoHsmZaWrVqpAVIOLEBxSisAMQtCzP5KXGsG1UNSo5Y53V2mLcSEEIMbhJpakiyla1KLU7TJME4KqW/G8YcWIDjupYCu658kymf7o568/fuXJrzu5C6VWnsr1ustVhFqLGSKUp4Y9X1aLU75Lt1tKPh4jKS/1vmGllOKZh/rNveXbsMdkXTp+xJmfZMyY29+sqNGNiM2vmtEqwFaJGyAy3SExmNunSC9rLcnRl5TM7zURmrEL4UjczXAm4KQoJeGPb1xp3fElKffOWN+nKM/1vaNKxx7T1nxBCAu6gU2jALTTgmXZ7SdcUtln99QtoW9DhedYyU3s3UVzSsUeIiqibgCt7uHjvvzpxPaA6UCam3V7SdUcco/J+qcUSRGnImVghRClJwMWsnq1XwFu3fS+9jnnXmVSNIduovF+u9m6icHImVghRShJwMatnmy3g9XV7yavrjPvmbVreL1t7t/Tx3LlyK2Pb13LqvNWMbV/LnSu3es7OhSufDGMhhDAla2OY17PNFPD89lRNZQcUfzgSMd77TV/KTE/yCtsBonGNQvf1bk0eQ3pyw25JvMohWXkq116+7KMLIfIhM1wK27vLp6dqAAgoOOLEeWbzB0Y/k76UuW77XtoWdLB8/S66eh007uPF4pr01W3TfWghZ2KFEKUjWcqYnb9UuD1JY3Hdd1zo0rEncc1Dv8hzxP6kZinvPNCdM6s5E5MzpEIIUWaSpVxqSqm/UEq9qZSKK6XOSbvvDqXUr5VS25VS3gcei8Bk707jzhQ17jLtD37xblmCrR1QNAT71+/NdxlbEq+EEKJyKrmkvA24EvhZ6o1KqdOBq4EzgDZgkVIqvzM3hvLpGpNHjlReMi1l5rOMnWSSeCWEEKL4KpY0pbX+FYBSAwLc5cByrXUvsEMp9WtgIvBaKcaRmnjUE40lkmMUTkyjVPkCayZKkXH51zTJKxM5QyqEEJVRje++I4Gfp3z/XuK2ostUXcqJayzlLiFXens7W3A0bQGXTs6QCiFE5ZR0SVkp9WOl1LYMfy4v0uPfrJR6XSn1+r59+3z9rFd1KcMe4iXlFRxNCjRkImdIhRCicko6w9Vafz6PH9sNfCLl+5MTt2V6/AeBB8HNUvbzJIWcny0Hr+Bo0rQ8lZwhFUKIyqvGJeVngR8opb4FjABGA+uL/SSFJB6VWth2gyO4R5YydS/KVqDBSkx8Q3aAI05cutQIIUSVqFjAVUpdAXwHOAFYrZTarLW+WGv9plJqBfAW4AC3aK39HTg1UEjikYmAcmepsXh8QCEKLxeNOZH2y06nc7971jY1oKZXjVozp1VawAkhxCBRt4Uv8ulf60cy4B7fFGL3h0dyXn/a8CYWX3eOcWELadcnhKgRUvii1uWbeGQqrqHXiRsFW4Ddv+vxVdhC2vUJIcTgUrcBN1ldqlnt4W77YbaGZ9IZvoat4ZncbT9Ms9pT1vF0R47OZqVdnxBC1J5qTJoqi1HHNbL8okOMfmkeNg4h5Qa8YfQw3VrHVVYHs6O38VJ8fNnHZrq/3NXrcOq81f2SqWSJWQghqlPdznA52MmnXv06Q1VvX7BNCqkYQ1Uvi4ILyz7TBfPuRUBfbefl63fRtqCDddv3lm5gQggh8la/AffV+yEW9bzExmGm9XxZhjM0dLRcdD77y9KCTwghqlvdLimzZQXEvQNuSMW40nqZdufGjPdbAShW7YxoLN63PPxnf3IiVkDldU44mUwlLfhErUitd55+Hl22UMRgUr8z3EiX0WWNZM4ybgrbfGHcSUaPYTJZjcaOtv5bveUDNBCyAnnNdCWZStSKddv30ragg+Xrd9HV68gWihjU6jfghpqMLutmSObbIw4/+ZVZ/eaQFfDV+s+JayJOnICCL4w7iaawzcCmStlJCz5RC7zqncsWihiM6jbg/uG0K4lo7za7EW3xVOyCjPc1hmzjbOLeWJw1c1qZMbG5L3jaAZXztLcT1wwbEmTbXRez494pNBkmU0kLPlELTM6j90RjfO7fXmJs+1ruXLlVgq+oanUbcB+KXYqTYwvbwWZJ7NIBtyc7+ZhmEzeGbEYd18jdU8f2Bc8hQYtcO7Tpy8MmyVTSgk/UCj/1zmWZWQwGdRtwH35LMTt6G4d1eMBMN6ItDusws6O38a4ePuBnnbjmhxt2cdJHh2Dn+Be0FBkDoOnsOHV5OFmsw4u04BO1wm+98+Qy8189vkFmuqIq1W3A7e51eCk+nrbIfSyLXcQh3UBcKw7pBpbFLqItcp9n0Ysj0Tj/t7crZ2OCmIaxIz8y4HY/s+OkUcc18v+3d+/BUtfnHcffz17OAgdS4wUSJYdAio6KBhFpjcGoiZGGXFAnoNaJMaTW21Rj04mZpIMpk9S0TaONYkYiTYxRysSgVg0EM1ipxlhuATSxKAaBGCBSJ9w8Zy9P//jtgT2cvZ/d/e3l85o5c/bsb8/u82NZHr7f3/f7PAuunJL3enAsYgyPR9WCT9pGJfvRc/WmMlyx8HklXWk6HZtw+z/Mr/sY5qWu5rTe+5jQ+yNO672Peamr845sj1TujqDbHntp0Ie/2unh808aPeh68MhEjMun9bDs5umcf9LoMqMSaW5DqXe+4623+ei3n9H0sjSVjk249W5ekCtfo4GKp4f3bIHHb4FvjGXcd05g/ksz2HTWcl77u5PZ9LWLmD9rkka20lbK+YwU05vKaBWzNJWOTbhD/TBXIpVxfvj8Vsbf+sSh1ZRA+dPDm1fAPefA2vuhby/gwfe19wf3b17RkPMQaaRil1DKpa5a0kw6th8uBJvqr39g7YAm7xAkvGqqPJUrFjHi0QgLrpzChGO7izeR37MlSKrJA4WfMD4CrnsWjp5Qt5hFwrL1zf2HPiPV9LAemYix6WsX1SEyqZGO6Yfb0QkXBn6YcxPew2u3c6CvcAP4WiirifzjtwQj2WJlKCNxOPMqmPmt2gcp0kRuWryOR9f/rqLfMYPX/nFmnSKSGuiYhNvxFRL698ceWXvYcRa/sK2uI92y6h6XUfOZTBI2/IcSrrS9n/+68kVQKgQjzaJjr+GW0ohrvGXVPS6z5nPZjxNpYZXuzVUhGGkmSrgF5C7YiBaY8IhYMC38hQsn5l3Y0WM7mR9bxMbEXLYkrmBjYi7zY4sG9NgtWfe4zJrPZT9OpIVVujdXhWCkmWiupYj+Pa/fW/UaP1m7nf0513RHdEW5dMrYQ4ubZk0+YcC14A/ZehbE7yRG6lCD+1EcZE50JZdGV3F98iaezkwuPd11+uzyruGePqcWpyxySDO2xZt1xvFlXeoxYJgKwUiT6fhFU3WxZwt93zmbLs/f2g/ggCf4ePKbnDPtrOLXcLVKWUJQbAV//wr7MIqsbH1zPzPuWMXBZPEFjbMmH88XLjxRybY1dMyiKU0p18NzdxG34lPFMVLMjT1Zerrr6Akw+/4gqUbiA49F4sH9s+9XspWaaea2eOWUN/33q8/ijsvOULKVpqOEWw8blmCZ4gm3y9LMSTxX3j8KEy8MRrBnXgWJUcE+h8So4Ofrng2Oi9RIOW3xwiwoofKm0qo0pVwPtx0FJZvvESTOeW/VPRyRSkyat7ysAhMqKCE1oillGQKtLJYWVk3rSBEpTauU60Eri6WFdSdiZY1wh1pQohlXQYvUk0a49fCBGyEaL/6YaBzOvqEx8YhUoNrWkZVY+fIuZtyxisUvbGNfbwoH9vWmWPzCNmbcsUpt9aQtKeHWg1YWSwuruHVkhZp5FbRIPWlKuV76Vxb/4u6gznHfvuCa7elzgpGtkq00qf6tN6X24Y47pvvQtPBP1u4Y0OxjRFeUS6ackHd6uJJV0EX3qIu0GK1SFpEBCiXRYfEIPe8cwfa3DnKwL00iHiGZyuAO+dJnxCARiw4qkqFV0HIErVIWkc6Te201N9lGDN5OZnh19z4O9KVxgp/TBZItQMbJOz2sVdDSqZRwRQQofm21/8d0FRNiRxbJKLcBgdrqSbvR32gRAcq7tlqNVMb54fNbWbpuB7POOJ4PnzyaJza8UbQBgdrqSTtSwhURAB5Z97uSXXiGon/bTzRiRCJ2eNich9rqSTtSwhURoPLm7tVIZZxUxim0zffIVdAi7UQJV0SA8itM1UKhwe25Jx7HvE+comQrbSm0RVNm9mkze9HMMmY2Nef+95rZQTNbn/36blgxinSScipM1dsvXn0z1NcXqacwVylvAi4Bnslz7FV3n5z9urbBcYl0pHIqTNVbmG3/ROottClld/81gFnH7HkWCU05jQLGHdPNbZ88hS89vLHs541FgunhWq21SmWcpet2qMKUtKVmvYY73szWAX8Evuruq/I9yMyuAa4B6OnpaWB4Iq1j5cu7BpVp3Neb4qFfvs5Dv3ydeCxCbzJDdyLGu/9kGBEKF7PINTIR4yMnj+anm35Pb6p224lU8ELaVV0Trpk9Bbwrz6GvuPujBX7tDaDH3d80szOBR8zsVHf/45EPdPd7gXshKO1Yq7hF2kVuMYsj9RexSCeDZLmvN8XmXfvKet7+sotffWQj6RpvJaq24EXRUbzthOfugg1Lcuqazw46e6muuTRIXROuu3+kit/pBXqzt9eY2avAiYAKJYtUqF7FLPb1ppg0bzlv56lKNRTVFrwoNIpf/MI2dq15nHu67iTqqcM9qvv2Bj2rf/VQ0Llr4oU1OweRQppuStnMjgP2uHvazCYAE4EtIYcl0pLqWcyiHluI3J2H127ngee3lt2Qvtgo/nj/PXdEvk003Tv4FzPJ4GvJZ4LOXhrpSp2FuS3oYjPbDpwNPGFmy7OHzgU2mNl64MfAte6+J6w4RVpZI4pZ1Fp/c4RyG9IXG8X/VfQJYpT4M0gngzaaInUWWsJ196XuPtbdE+4+xt0vyt7/sLufmt0SNMXd/zOsGEVaXbmNAprFkc0RymlIX2wUPyv6LF02eOQ7QCYZ9KwWqTN1CxJpY9UWs+ixncyPLWJjYi5bElewMTGX+bFF9NjOOkRZWrH9ucVG8d0cLO8F+spbLCYyFEq4Im2smmIW50XWs6zrVi6LrWSUHSRiMMoOMie6kmVdt3JeZH2doi2sf39uPsVG8fsZXt4LdI2sJiyRiijhirSxccd0s+DKKQyPR8sa6fbYThbE72SE9RJn4FRsl6UZYb0siN8Zyki30P7cYqP4R9Ln0OfR4k8cicPpc4YankhJSrgibe78k0az7ObpXD6th5GJGGYwLBYhGjFiR/wLcE3syZKLjGKkmBt9so4R51dof26xUfzC9ExSpTZjRONw9g1DDU+kJHNvj3oRU6dO9dWrtVVXpFxb39zP91a9xtJ1O9jfl6K7K8bq6GcZljlQ8nf3+nBO672v/kFmRQ2u+LNxBUs+5tuHC8G+3guivxq8DxeCkW00rn244euY+r5KuCJy2G1HAaX/Tci4MaH3R8QiRixiZBz66lBgI9c3Lz2NOWcVLuGa7z8QF59xAp+fPj6oNPWLu4PVyIcqTc0JRrbafxs2JdxWo4QrUgPfGBtUYSphrw/nbH7A505xPh99khG/+TGR5AH2M4xH0uewMD2T131MTUMbHo+y7Obp6pXbfjom4eoarogcdvrsYKq1mEicUdP+kk1XRrjllat5x0sPEkvtJ2LOKDvIZXVazazWfdLqNMIV6SR7tgws4h8fAUe9B97aBskDwc/pXsgUXjh10BN8ru+LLOr6F4ZbnpKJWQc8wYy+22s60u1vmiBtRSNcEWkzm1fAPecERfv79gIOyf2w+zfB9/6f+/8TbgO30/R5lAOe4LrkTXws+kuiIaxmVus+aWVKuCKdYM+WoEh/8sDAlbr5eM7+265uHGOvD+eh9AXM6LudpzOTyyqZ2GVpLon+dw2CP6za1n0izUB/e0U6wXN3BUX6K2EReP/l/H3ysyx+YduA7Tbllkzs5u3KXrOIalv3iTQLjXBFOsGGJaVHtkfKFvXP1xyg3JKJ+xlW2WsWEY9G+Pz08TV7PpFGU8IV6QTVFufv25e3OUA5JRP7PMpP0h8seDxqcOKYkQOrX5kNWkFjBMcWXDlFW4KkpWlKWaQTdI0sa39tvt/rzsQGNZtfmJ7JpdFVdFH4Om6KGPelP1b4qWNRFn5m6qEkuvLlXVz7wzX0pQbvnGiPvRTS6TTCFekE5eyvPVK2qH++5gCv+xiuT97EAU8MHulG4hAfwebz7mZ3bPDvxiLG8Hh0wIh165v7uf6BtfSmMoOSqwO9qUzRnrgirUAJV6QTfODGoG5wJbJF/Qs1B3g6M5kZfbfzUPoC9vpwHIPEKDjzKrjuWd5//qcHNU0YmYhx+bQelt08nfNPGn3ouRau2kKyRGlIFb6QVqfCFyKdYvOKYGtQOll8AVWeov7FmgPEo8H11dwEWqlJ85YPmrbOR4Uv2pIKX4hIm5l4IVz3bDACTYwCM+jqhtEnB99t4Ag1t4NOvhZ/hUar1ci3MCvv41T4QlqYFk2JdJKjJ8DMbwVf5cqWgxy3YQnz+/YxPzESzpodTFPXqNNOd2Lwwqy8j1PhC2lhGuGKSGH5ykH27Q1+vuec4HgN5FuYdSQVvpBWp4QrIvkVKweZSQb3L/lM8LghKrQwK5cKX0irU8IVkfzKKQeZTgaN3Ydo3DHdLLhyCsPj0bK2EYm0IiVcEcmvnHKQ2fKPtVDvhVkiYdMKBBHJr9xykNWWjcxj3DHdzJ81ifmzJtXsOUWahUa4IpJf18jaPk6kwynhikh+5ZSDzJZ/FJHSlHBFJL9yykFmyz+KSGlKuCKS39ETgvKO8RGDR7rZBgXMvr9mxS9E2p0SrogUlq8cZIHyjyJSnJoXiIhImNS8QERERGpHCVdERKQBlHBFREQaQAlXRESkAZRwRUREGiC0hGtm/2xmvzGzDWa21MyOyjn2ZTN7xcxeNrOLwopRRESkVsIc4a4AJrn76cD/Al8GMLNTgMuAU4EZwAIzi4YWpYiISA2ElnDd/Wfunsr++DwwNnv7U8Bid+9199eAV4BpYcQoIiJSK81yDfdzwE+zt08AtuUc2569bxAzu8bMVpvZ6t27d9c5RBERkerVtR+umT0FvCvPoa+4+6PZx3wFSAE/qvT53f1e4F4IKk0NIVQREZG6qmvCdfePFDtuZp8FPg582A/XmNwBvCfnYWOz9xW1Zs2aP5jZ1ipDbRbHAn8IO4gaa7dzarfzAZ1TK2i384HD57TM3WeEHUwjhFZL2cxmAP8KfMjdd+fcfyrwIMF12+OBnwMT3T0dSqANZGar3X1q2HHUUrudU7udD+icWkG7nQ+05zmVUtcRbgl3AQlghZkBPO/u17r7i2a2BHiJYKr5hk5ItiIi0t5CS7ju/qdFjn0d+HoDwxEREamrZlmlLIF7ww6gDtrtnNrtfEDn1Ara7XygPc+pqLbphysiItLMNMIVERFpACVcERGRBlDCDZmZfdrMXjSzjJlNzbn/vWZ20MzWZ7++G2aclSh0TtljLd+YwsxuM7MdOe/Nx8KOqRpmNiP7PrxiZreGHU8tmNlvzWxj9n1ZHXY81TCzRWa2y8w25dx3tJmtMLPN2e/vDDPGShU4p7b4HFVCCTd8m4BLgGfyHHvV3Sdnv65tcFxDkfec2qwxxbdz3psnww6mUtk/97uBvwBOAS7Pvj/t4Pzs+9Kqezy/T/D5yHUr8HN3n0hQm6DV/oP0fQafE7T456hSSrghc/dfu/vLYcdRS0XOSY0pmsc04BV33+LufcBigvdHQubuzwB7jrj7U8APsrd/AMxqaFBDVOCcOo4SbnMbb2brzOy/zGx62MHUQNmNKVrAjdlezotabXovq50D0VSWAAADKElEQVTei1wO/MzM1pjZNWEHU0Nj3P2N7O3fA2PCDKaGWv1zVBEl3AYws6fMbFOer2IjijeAHnc/A7gFeNDM3tGYiEur8pxaRonzuwd4HzCZ4H36VqjBSq4PuvsUgqnyG8zs3LADqrVs3fl22M/ZcZ+jMEs7doxSTRwK/E4v0Ju9vcbMXgVOBJpiIUg150SVjSnCUO75mdlC4PE6h1MPLfNeVMLdd2S/7zKzpQRT5/nWR7SanWb2bnd/w8zeDewKO6Chcved/bdb+HNUEY1wm5SZHde/oMjMJgATgS3hRjVkjwGXmVnCzMYTnNMLIcdUsew/eP0uJlgk1mr+B5hoZuPNrItgMdtjIcc0JGbWbWaj+m8DH6U135t8HgOuyt6+Cng0xFhqok0+RxXRCDdkZnYx8B3gOOAJM1vv7hcB5wL/YGZJIANc6+4tseig0Dm1UWOKfzKzyQTTer8F/jrccCrn7ikzuxFYDkSBRe7+YshhDdUYYGm2GUoMeNDdl4UbUuXM7CHgPOBYM9sOzANuB5aY2VxgKzA7vAgrV+Cczmv1z1GlVNpRRESkATSlLCIi0gBKuCIiIg2ghCsiItIASrgiIiINoIQrIiLSAEq4IiIiDaCEK9IgZpbOtiF70cx+ZWZ/a2aR7LGpZvZvNXiNG7Pt9tzMjh161CJSK9qHK9IgZrbP3Udmb48GHgSedfd5NXyNM4D/A54Gprr7H2r13CIyNEq4Ig2Sm3CzP08gKLF4LPAh4Ivu/nEzuw0YD0wAeoAvAH9OUJB/B/AJd0+WeK3fooQr0lQ0pSwSEnffQlBWcXSew+8DLgA+CTwArHT304CDwMyGBSkiNaOEK9KcfpodxW4kSMr9NYE3Au8NKygRqZ4SrkhIslPKafK3WutvzZgBkn742k8GNR0RaUlKuCIhMLPjgO8Cd7kWUoh0BCVckcYZ3r8tCHgK+BnwtVq+gJn9Tbb92Vhgg5l9r5bPLyLV0yplERGRBtAIV0REpAG0+EKkBZnZUoK9urm+5O7Lw4hHRErTlLKIiEgDaEpZRESkAZRwRUREGkAJV0REpAGUcEVERBrg/wESK0MGwpM1TwAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 483.875x432 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 249
        },
        "id": "Oq_e-QhR4NG6",
        "outputId": "2448ef66-5a57-4b9d-d9df-ee8dab243a98"
      },
      "source": [
        "selected_final_data.head()\n"
      ],
      "execution_count": 25,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>AGE_ABOVE65</th>\n",
              "      <th>DISEASE GROUPING 2</th>\n",
              "      <th>DISEASE GROUPING 3</th>\n",
              "      <th>DISEASE GROUPING 4</th>\n",
              "      <th>HTN</th>\n",
              "      <th>BIC_VENOUS_MEAN</th>\n",
              "      <th>CALCIUM_MEAN</th>\n",
              "      <th>CREATININ_MEAN</th>\n",
              "      <th>GLUCOSE_MEAN</th>\n",
              "      <th>INR_MEAN</th>\n",
              "      <th>LACTATE_MEAN</th>\n",
              "      <th>LEUKOCYTES_MEAN</th>\n",
              "      <th>LINFOCITOS_MEAN</th>\n",
              "      <th>NEUTROPHILES_MEAN</th>\n",
              "      <th>PC02_VENOUS_MEAN</th>\n",
              "      <th>PCR_MEAN</th>\n",
              "      <th>PLATELETS_MEAN</th>\n",
              "      <th>SAT02_VENOUS_MEAN</th>\n",
              "      <th>SODIUM_MEAN</th>\n",
              "      <th>UREA_MEAN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MEAN</th>\n",
              "      <th>RESPIRATORY_RATE_MEAN</th>\n",
              "      <th>TEMPERATURE_MEAN</th>\n",
              "      <th>OXYGEN_SATURATION_MEAN</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MIN</th>\n",
              "      <th>HEART_RATE_MIN</th>\n",
              "      <th>RESPIRATORY_RATE_MIN</th>\n",
              "      <th>TEMPERATURE_MIN</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_MAX</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_MAX</th>\n",
              "      <th>HEART_RATE_MAX</th>\n",
              "      <th>OXYGEN_SATURATION_MAX</th>\n",
              "      <th>BLOODPRESSURE_DIASTOLIC_DIFF</th>\n",
              "      <th>BLOODPRESSURE_SISTOLIC_DIFF</th>\n",
              "      <th>HEART_RATE_DIFF</th>\n",
              "      <th>RESPIRATORY_RATE_DIFF</th>\n",
              "      <th>TEMPERATURE_DIFF</th>\n",
              "      <th>OXYGEN_SATURATION_DIFF</th>\n",
              "      <th>AGE_PERCENTIL_10th</th>\n",
              "      <th>AGE_PERCENTIL_20th</th>\n",
              "      <th>AGE_PERCENTIL_80th</th>\n",
              "      <th>AGE_PERCENTIL_90th</th>\n",
              "      <th>ICU</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.183673</td>\n",
              "      <td>-0.868365</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.932246</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.835844</td>\n",
              "      <td>-0.914938</td>\n",
              "      <td>-0.868747</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.875236</td>\n",
              "      <td>-0.540721</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>-0.028571</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>0.086420</td>\n",
              "      <td>-0.593220</td>\n",
              "      <td>-0.285714</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>-0.162393</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.208791</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.459459</td>\n",
              "      <td>-0.432836</td>\n",
              "      <td>0.736842</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-0.912243</td>\n",
              "      <td>-0.780261</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.382773</td>\n",
              "      <td>-0.908714</td>\n",
              "      <td>-0.412965</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.939887</td>\n",
              "      <td>-0.399199</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-0.836145</td>\n",
              "      <td>-0.551183</td>\n",
              "      <td>-0.683145</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>0.867507</td>\n",
              "      <td>-0.587500</td>\n",
              "      <td>-0.145299</td>\n",
              "      <td>-0.678571</td>\n",
              "      <td>0.604396</td>\n",
              "      <td>-0.504274</td>\n",
              "      <td>-0.627027</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.626087</td>\n",
              "      <td>-0.613497</td>\n",
              "      <td>-0.572519</td>\n",
              "      <td>-0.852941</td>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-0.878788</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>1.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.326531</td>\n",
              "      <td>-0.968861</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>-0.828421</td>\n",
              "      <td>-0.729239</td>\n",
              "      <td>-0.836100</td>\n",
              "      <td>-0.784714</td>\n",
              "      <td>-0.779141</td>\n",
              "      <td>-0.503592</td>\n",
              "      <td>-0.564753</td>\n",
              "      <td>0.580247</td>\n",
              "      <td>0.200000</td>\n",
              "      <td>-0.937349</td>\n",
              "      <td>-0.132620</td>\n",
              "      <td>-0.506215</td>\n",
              "      <td>-0.119762</td>\n",
              "      <td>0.652398</td>\n",
              "      <td>-0.329167</td>\n",
              "      <td>-0.435897</td>\n",
              "      <td>-0.547619</td>\n",
              "      <td>0.216117</td>\n",
              "      <td>-0.247863</td>\n",
              "      <td>-0.506306</td>\n",
              "      <td>-0.263682</td>\n",
              "      <td>0.754386</td>\n",
              "      <td>-0.692754</td>\n",
              "      <td>-0.730061</td>\n",
              "      <td>-0.582697</td>\n",
              "      <td>-0.784314</td>\n",
              "      <td>-0.682540</td>\n",
              "      <td>-0.723906</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>13</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-0.913659</td>\n",
              "      <td>-0.851024</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.702202</td>\n",
              "      <td>-0.641079</td>\n",
              "      <td>-0.812725</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.990926</td>\n",
              "      <td>-0.457944</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.142857</td>\n",
              "      <td>-0.903614</td>\n",
              "      <td>0.236838</td>\n",
              "      <td>-0.539451</td>\n",
              "      <td>0.189142</td>\n",
              "      <td>0.852390</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.048433</td>\n",
              "      <td>-0.500000</td>\n",
              "      <td>0.362637</td>\n",
              "      <td>-0.076923</td>\n",
              "      <td>-0.293694</td>\n",
              "      <td>0.019900</td>\n",
              "      <td>0.912281</td>\n",
              "      <td>-0.826087</td>\n",
              "      <td>-0.811861</td>\n",
              "      <td>-0.725191</td>\n",
              "      <td>-0.901961</td>\n",
              "      <td>-0.761905</td>\n",
              "      <td>-0.959596</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>18</th>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>-0.317073</td>\n",
              "      <td>0.357143</td>\n",
              "      <td>-0.891012</td>\n",
              "      <td>-0.891993</td>\n",
              "      <td>-0.959849</td>\n",
              "      <td>1.000000</td>\n",
              "      <td>-0.706450</td>\n",
              "      <td>-0.340249</td>\n",
              "      <td>-0.846339</td>\n",
              "      <td>-0.754601</td>\n",
              "      <td>-0.997732</td>\n",
              "      <td>-0.292390</td>\n",
              "      <td>0.345679</td>\n",
              "      <td>0.085714</td>\n",
              "      <td>-0.884337</td>\n",
              "      <td>-0.078189</td>\n",
              "      <td>-0.495292</td>\n",
              "      <td>-0.137566</td>\n",
              "      <td>0.835283</td>\n",
              "      <td>-0.291667</td>\n",
              "      <td>-0.418803</td>\n",
              "      <td>-0.404762</td>\n",
              "      <td>0.252747</td>\n",
              "      <td>-0.282051</td>\n",
              "      <td>-0.553153</td>\n",
              "      <td>-0.482587</td>\n",
              "      <td>0.894737</td>\n",
              "      <td>-0.843478</td>\n",
              "      <td>-0.820041</td>\n",
              "      <td>-0.821883</td>\n",
              "      <td>-0.980392</td>\n",
              "      <td>-0.904762</td>\n",
              "      <td>-0.966330</td>\n",
              "      <td>1.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.0</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "    AGE_ABOVE65  DISEASE GROUPING 2  DISEASE GROUPING 3  DISEASE GROUPING 4  \\\n",
              "0           1.0                 0.0                 0.0                 0.0   \n",
              "4           0.0                 0.0                 0.0                 0.0   \n",
              "8           0.0                 0.0                 0.0                 0.0   \n",
              "13          0.0                 0.0                 0.0                 0.0   \n",
              "18          0.0                 0.0                 0.0                 0.0   \n",
              "\n",
              "    HTN  BIC_VENOUS_MEAN  CALCIUM_MEAN  CREATININ_MEAN  GLUCOSE_MEAN  \\\n",
              "0   0.0        -0.317073      0.183673       -0.868365     -0.891993   \n",
              "4   0.0        -0.317073      0.357143       -0.912243     -0.780261   \n",
              "8   0.0        -0.317073      0.326531       -0.968861     -0.891993   \n",
              "13  0.0        -0.317073      0.357143       -0.913659     -0.851024   \n",
              "18  0.0        -0.317073      0.357143       -0.891012     -0.891993   \n",
              "\n",
              "    INR_MEAN  LACTATE_MEAN  LEUKOCYTES_MEAN  LINFOCITOS_MEAN  \\\n",
              "0  -0.932246      1.000000        -0.835844        -0.914938   \n",
              "4  -0.959849      1.000000        -0.382773        -0.908714   \n",
              "8  -0.959849     -0.828421        -0.729239        -0.836100   \n",
              "13 -0.959849      1.000000        -0.702202        -0.641079   \n",
              "18 -0.959849      1.000000        -0.706450        -0.340249   \n",
              "\n",
              "    NEUTROPHILES_MEAN  PC02_VENOUS_MEAN  PCR_MEAN  PLATELETS_MEAN  \\\n",
              "0           -0.868747         -0.754601 -0.875236       -0.540721   \n",
              "4           -0.412965         -0.754601 -0.939887       -0.399199   \n",
              "8           -0.784714         -0.779141 -0.503592       -0.564753   \n",
              "13          -0.812725         -0.754601 -0.990926       -0.457944   \n",
              "18          -0.846339         -0.754601 -0.997732       -0.292390   \n",
              "\n",
              "    SAT02_VENOUS_MEAN  SODIUM_MEAN  UREA_MEAN  BLOODPRESSURE_DIASTOLIC_MEAN  \\\n",
              "0            0.345679    -0.028571  -0.836145                      0.086420   \n",
              "4            0.345679     0.085714  -0.836145                     -0.551183   \n",
              "8            0.580247     0.200000  -0.937349                     -0.132620   \n",
              "13           0.345679     0.142857  -0.903614                      0.236838   \n",
              "18           0.345679     0.085714  -0.884337                     -0.078189   \n",
              "\n",
              "    RESPIRATORY_RATE_MEAN  TEMPERATURE_MEAN  OXYGEN_SATURATION_MEAN  \\\n",
              "0               -0.593220         -0.285714                0.736842   \n",
              "4               -0.683145          0.357143                0.867507   \n",
              "8               -0.506215         -0.119762                0.652398   \n",
              "13              -0.539451          0.189142                0.852390   \n",
              "18              -0.495292         -0.137566                0.835283   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_MIN  HEART_RATE_MIN  RESPIRATORY_RATE_MIN  \\\n",
              "0                     0.000000       -0.162393             -0.500000   \n",
              "4                    -0.587500       -0.145299             -0.678571   \n",
              "8                    -0.329167       -0.435897             -0.547619   \n",
              "13                    0.000000        0.048433             -0.500000   \n",
              "18                   -0.291667       -0.418803             -0.404762   \n",
              "\n",
              "    TEMPERATURE_MIN  BLOODPRESSURE_DIASTOLIC_MAX  BLOODPRESSURE_SISTOLIC_MAX  \\\n",
              "0          0.208791                    -0.247863                   -0.459459   \n",
              "4          0.604396                    -0.504274                   -0.627027   \n",
              "8          0.216117                    -0.247863                   -0.506306   \n",
              "13         0.362637                    -0.076923                   -0.293694   \n",
              "18         0.252747                    -0.282051                   -0.553153   \n",
              "\n",
              "    HEART_RATE_MAX  OXYGEN_SATURATION_MAX  BLOODPRESSURE_DIASTOLIC_DIFF  \\\n",
              "0        -0.432836               0.736842                     -1.000000   \n",
              "4         0.000000               1.000000                     -0.626087   \n",
              "8        -0.263682               0.754386                     -0.692754   \n",
              "13        0.019900               0.912281                     -0.826087   \n",
              "18       -0.482587               0.894737                     -0.843478   \n",
              "\n",
              "    BLOODPRESSURE_SISTOLIC_DIFF  HEART_RATE_DIFF  RESPIRATORY_RATE_DIFF  \\\n",
              "0                     -1.000000        -1.000000              -1.000000   \n",
              "4                     -0.613497        -0.572519              -0.852941   \n",
              "8                     -0.730061        -0.582697              -0.784314   \n",
              "13                    -0.811861        -0.725191              -0.901961   \n",
              "18                    -0.820041        -0.821883              -0.980392   \n",
              "\n",
              "    TEMPERATURE_DIFF  OXYGEN_SATURATION_DIFF  AGE_PERCENTIL_10th  \\\n",
              "0          -1.000000               -1.000000                 0.0   \n",
              "4          -1.000000               -0.878788                 1.0   \n",
              "8          -0.682540               -0.723906                 0.0   \n",
              "13         -0.761905               -0.959596                 1.0   \n",
              "18         -0.904762               -0.966330                 1.0   \n",
              "\n",
              "    AGE_PERCENTIL_20th  AGE_PERCENTIL_80th  AGE_PERCENTIL_90th  ICU  \n",
              "0                  0.0                 0.0                 0.0  1.0  \n",
              "4                  0.0                 0.0                 0.0  1.0  \n",
              "8                  0.0                 0.0                 0.0  0.0  \n",
              "13                 0.0                 0.0                 0.0  0.0  \n",
              "18                 0.0                 0.0                 0.0  0.0  "
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 25
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "uex2Now7pBWj",
        "outputId": "003441ac-7d3a-4a54-f59a-e7f6b93565d1"
      },
      "source": [
        "print(X_data)\n",
        "print(Y_data)"
      ],
      "execution_count": 26,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "[[1. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]\n",
            " ...\n",
            " [1. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]\n",
            " [0. 0. 0. ... 0. 0. 0.]]\n",
            "[1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0\n",
            " 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0\n",
            " 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1\n",
            " 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0\n",
            " 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1\n",
            " 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0\n",
            " 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0\n",
            " 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0]\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "uW54PL8Sn97v"
      },
      "source": [
        "## Training and Testing using various classifiers\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NuEikuB2o40d"
      },
      "source": [
        "Importing Libraries"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "bBVDjTrZo3PH"
      },
      "source": [
        "from sklearn.linear_model import LogisticRegressionCV\n",
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.model_selection import KFold\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.naive_bayes import GaussianNB\n",
        "from sklearn.linear_model import SGDClassifier\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "from sklearn.pipeline import make_pipeline\n",
        "from sklearn.ensemble import RandomForestClassifier\n",
        "from sklearn.datasets import make_classification\n",
        "from sklearn import svm\n",
        "from sklearn import tree\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "from sklearn.metrics import confusion_matrix\n",
        "from sklearn.metrics import roc_auc_score\n",
        "from sklearn.model_selection import GridSearchCV\n",
        "from sklearn.tree import DecisionTreeClassifier\n",
        "import matplotlib.pyplot as plt \n",
        "from sklearn.metrics import log_loss\n",
        "from sklearn import tree\n",
        "import graphviz\n",
        "from sklearn.neural_network import MLPClassifier"
      ],
      "execution_count": 32,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "zy5QU6xOna4B"
      },
      "source": [
        "Shape of Datasets"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "pdBhgfi5nhKt",
        "outputId": "1a0aae21-1767-4eac-eb9a-e91de4c77eb0"
      },
      "source": [
        "print(X_data.shape)\n",
        "print(Y_data.shape)"
      ],
      "execution_count": 33,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "(293, 42)\n",
            "(293,)\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "LNNOo8in0ysg"
      },
      "source": [
        "def ass(y_true,y_pred):\n",
        "  tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()\n",
        "  accuracy=(tp+tn)/(tp+fp+fn+tn)\n",
        "  specificity = tn/(tn+fp)\n",
        "  sensitivity=tp/(tp+fn)\n",
        "  print(\"Accuracy:\",accuracy*100)\n",
        "  print(\"Sensitivity:\",sensitivity*100)\n",
        "  print(\"Specificity:\",specificity*100)\n",
        "  print(\"ROC_AUC_Score:\",roc_auc_score(y_true, y_pred)*100)\n",
        "  "
      ],
      "execution_count": 34,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "y_HSSUxxpEiW"
      },
      "source": [
        "Splitting Data into Training Data and Testing Data"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "KiaJXUCGpL6F"
      },
      "source": [
        "X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, test_size=0.30, random_state=1)"
      ],
      "execution_count": 35,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hPgM9dpWpSiB"
      },
      "source": [
        "Performing Logistic Regression with Cross Validation Estimator"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "GDgUYgh4plpD",
        "outputId": "460421a1-1ae8-476e-b76f-70f9bcec0750"
      },
      "source": [
        "lgc=make_pipeline(LogisticRegressionCV(cv=5,random_state=1,max_iter=5000))\n",
        "lgc.fit(X_train, Y_train)\n",
        "y_pred=lgc.predict(X_test)\n",
        "ass(Y_test,y_pred)"
      ],
      "execution_count": 36,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Accuracy: 84.0909090909091\n",
            "Sensitivity: 66.66666666666666\n",
            "Specificity: 91.80327868852459\n",
            "ROC_AUC_Score: 79.23497267759562\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "tPmQIpDApxpZ"
      },
      "source": [
        "Performing Gaussian Naive Bayes "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "nXQjXc67r9Mx",
        "outputId": "e4156eda-edc9-4c2a-d9cf-85a9cfc993d5"
      },
      "source": [
        "gnb=make_pipeline(GaussianNB())\n",
        "gnb.fit(X_train,Y_train)\n",
        "y_pred=gnb.predict(X_test)\n",
        "ass(Y_test,y_pred)"
      ],
      "execution_count": 37,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Accuracy: 82.95454545454545\n",
            "Sensitivity: 66.66666666666666\n",
            "Specificity: 90.1639344262295\n",
            "ROC_AUC_Score: 78.41530054644808\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "L_fWzmKksG_t"
      },
      "source": [
        "Finding Optimal Depth (SGD Classifier)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "QNOVQYrBsJE_",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "61697ced-140c-4110-8c4e-9e01250de686"
      },
      "source": [
        "mx=-1\n",
        "ri=-1\n",
        "for i in range(1,10000):\n",
        "  sgd= make_pipeline(SGDClassifier(random_state=i))\n",
        "  sgd.fit(X_train,Y_train)\n",
        "  pmx=mx\n",
        "  mx=max(mx,sgd.score(X_test,Y_test))\n",
        "  if(pmx!=mx):\n",
        "    ri=i\n",
        "print(ri)"
      ],
      "execution_count": 38,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "285\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "n4Wp94dHsJsI"
      },
      "source": [
        "Performing SGD classifier with optimal Depth"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "TV8VNF7FsKXJ",
        "outputId": "5ebcbd97-d1c9-492a-b765-46190600d10e"
      },
      "source": [
        "sgd= make_pipeline(SGDClassifier(random_state=ri))\n",
        "sgd.fit(X_train,Y_train)\n",
        "y_pred=sgd.predict(X_test)\n",
        "ass(Y_test,y_pred)"
      ],
      "execution_count": 39,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Accuracy: 88.63636363636364\n",
            "Sensitivity: 74.07407407407408\n",
            "Specificity: 95.08196721311475\n",
            "ROC_AUC_Score: 84.5780206435944\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZZRydhZNElFR"
      },
      "source": [
        "Performing SVM ( Supoort Vector Machine ) classification on the given data"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "7_n1uW_RsMJo",
        "outputId": "fbf6bce0-3583-4011-a544-97f224727b0a"
      },
      "source": [
        "SVM_object = make_pipeline(svm.SVC(kernel='linear'))\n",
        "SVM_object.fit(X_train,Y_train)\n",
        "y_pred=SVM_object.predict(X_test)\n",
        "ass(Y_test,y_pred)\n"
      ],
      "execution_count": 40,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Accuracy: 85.22727272727273\n",
            "Sensitivity: 66.66666666666666\n",
            "Specificity: 93.44262295081968\n",
            "ROC_AUC_Score: 80.05464480874316\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "LMyfx9OAMy6x"
      },
      "source": [
        "Performing Decision tree classification\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "uKEcm7VNunvc",
        "outputId": "e9e38da3-5f11-4060-f16e-aec37a62e889"
      },
      "source": [
        "DT_object=tree.DecisionTreeClassifier(criterion='entropy',max_depth=4,max_leaf_nodes=10)\n",
        "DT_object.fit(X_train,Y_train)\n",
        "y_pred=DT_object.predict(X_test)\n",
        "ass(Y_test,y_pred)"
      ],
      "execution_count": 41,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Accuracy: 93.18181818181817\n",
            "Sensitivity: 92.5925925925926\n",
            "Specificity: 93.44262295081968\n",
            "ROC_AUC_Score: 93.01760777170614\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "f9uLCuzh0y65",
        "outputId": "40fbdce6-d04f-4c3e-ada7-027aada71244"
      },
      "source": [
        "from sklearn import tree\n",
        "import graphviz\n",
        "text_representation = tree.export_text(DT_object)\n",
        "print(text_representation)\n"
      ],
      "execution_count": 42,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "|--- feature_34 <= -0.91\n",
            "|   |--- feature_12 <= -0.77\n",
            "|   |   |--- feature_16 <= -0.49\n",
            "|   |   |   |--- class: 1\n",
            "|   |   |--- feature_16 >  -0.49\n",
            "|   |   |   |--- class: 1\n",
            "|   |--- feature_12 >  -0.77\n",
            "|   |   |--- feature_8 <= -0.88\n",
            "|   |   |   |--- feature_17 <= -0.10\n",
            "|   |   |   |   |--- class: 1\n",
            "|   |   |   |--- feature_17 >  -0.10\n",
            "|   |   |   |   |--- class: 0\n",
            "|   |   |--- feature_8 >  -0.88\n",
            "|   |   |   |--- class: 1\n",
            "|--- feature_34 >  -0.91\n",
            "|   |--- feature_12 <= -0.84\n",
            "|   |   |--- feature_36 <= -0.90\n",
            "|   |   |   |--- class: 1\n",
            "|   |   |--- feature_36 >  -0.90\n",
            "|   |   |   |--- feature_21 <= -0.46\n",
            "|   |   |   |   |--- class: 0\n",
            "|   |   |   |--- feature_21 >  -0.46\n",
            "|   |   |   |   |--- class: 1\n",
            "|   |--- feature_12 >  -0.84\n",
            "|   |   |--- feature_27 <= 0.07\n",
            "|   |   |   |--- class: 1\n",
            "|   |   |--- feature_27 >  0.07\n",
            "|   |   |   |--- class: 0\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 777
        },
        "id": "o67ZSie01OnD",
        "outputId": "c77774ed-d757-48f2-87cb-efde3fddea0a"
      },
      "source": [
        "features=['AGE_ABOVE65', 'DISEASE GROUPING 2', 'DISEASE GROUPING 3',\n",
        "       'DISEASE GROUPING 4', 'HTN', 'BIC_VENOUS_MEAN', 'CALCIUM_MEAN',\n",
        "       'CREATININ_MEAN', 'GLUCOSE_MEAN', 'INR_MEAN', 'LACTATE_MEAN',\n",
        "       'LEUKOCYTES_MEAN', 'LINFOCITOS_MEAN', 'NEUTROPHILES_MEAN',\n",
        "       'PC02_VENOUS_MEAN', 'PCR_MEAN', 'PLATELETS_MEAN', 'SAT02_VENOUS_MEAN',\n",
        "       'SODIUM_MEAN', 'UREA_MEAN', 'BLOODPRESSURE_DIASTOLIC_MEAN',\n",
        "       'RESPIRATORY_RATE_MEAN', 'TEMPERATURE_MEAN', 'OXYGEN_SATURATION_MEAN',\n",
        "       'BLOODPRESSURE_SISTOLIC_MIN', 'HEART_RATE_MIN', 'RESPIRATORY_RATE_MIN',\n",
        "       'TEMPERATURE_MIN', 'BLOODPRESSURE_DIASTOLIC_MAX',\n",
        "       'BLOODPRESSURE_SISTOLIC_MAX', 'HEART_RATE_MAX', 'OXYGEN_SATURATION_MAX',\n",
        "       'BLOODPRESSURE_DIASTOLIC_DIFF', 'BLOODPRESSURE_SISTOLIC_DIFF',\n",
        "       'HEART_RATE_DIFF', 'RESPIRATORY_RATE_DIFF', 'TEMPERATURE_DIFF',\n",
        "       'OXYGEN_SATURATION_DIFF', 'AGE_PERCENTIL_10th', 'AGE_PERCENTIL_20th',\n",
        "       'AGE_PERCENTIL_80th', 'AGE_PERCENTIL_90th']\n",
        "classes=['Non-ICU','ICU']\n",
        "dot_data = tree.export_graphviz(DT_object, out_file=None, \n",
        "                                feature_names=features,  \n",
        "                                class_names=classes,\n",
        "                                filled=True)\n",
        "graph = graphviz.Source(dot_data, format=\"png\") \n",
        "graph"
      ],
      "execution_count": 43,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "<graphviz.files.Source at 0x7f07b7cbc0b8>"
            ],
            "image/svg+xml": "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Generated by graphviz version 2.40.1 (20161225.0304)\n -->\n<!-- Title: Tree Pages: 1 -->\n<svg width=\"1270pt\" height=\"552pt\"\n viewBox=\"0.00 0.00 1270.00 552.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 548)\">\n<title>Tree</title>\n<polygon fill=\"#ffffff\" stroke=\"transparent\" points=\"-4,4 -4,-548 1266,-548 1266,4 -4,4\"/>\n<!-- 0 -->\n<g id=\"node1\" class=\"node\">\n<title>0</title>\n<polygon fill=\"#f5ceb3\" stroke=\"#000000\" points=\"670.5,-544 460.5,-544 460.5,-461 670.5,-461 670.5,-544\"/>\n<text text-anchor=\"middle\" x=\"565.5\" y=\"-528.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">HEART_RATE_DIFF &lt;= &#45;0.913</text>\n<text text-anchor=\"middle\" x=\"565.5\" y=\"-513.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.958</text>\n<text text-anchor=\"middle\" x=\"565.5\" y=\"-498.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 205</text>\n<text text-anchor=\"middle\" x=\"565.5\" y=\"-483.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [127, 78]</text>\n<text text-anchor=\"middle\" x=\"565.5\" y=\"-468.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 1 -->\n<g id=\"node2\" class=\"node\">\n<title>1</title>\n<polygon fill=\"#99cdf2\" stroke=\"#000000\" points=\"530.5,-425 316.5,-425 316.5,-342 530.5,-342 530.5,-425\"/>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-409.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">LINFOCITOS_MEAN &lt;= &#45;0.774</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-394.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.912</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-379.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 104</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-364.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [34, 70]</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-349.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 0&#45;&gt;1 -->\n<g id=\"edge1\" class=\"edge\">\n<title>0&#45;&gt;1</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M515.8353,-460.8796C504.6584,-451.513 492.7038,-441.4948 481.2288,-431.8784\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"483.2893,-429.0386 473.3767,-425.2981 478.7931,-434.4037 483.2893,-429.0386\"/>\n<text text-anchor=\"middle\" x=\"475.5713\" y=\"-446.5016\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">True</text>\n</g>\n<!-- 2 -->\n<g id=\"node11\" class=\"node\">\n<title>2</title>\n<polygon fill=\"#e78c4a\" stroke=\"#000000\" points=\"872.5,-425 658.5,-425 658.5,-342 872.5,-342 872.5,-425\"/>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-409.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">LINFOCITOS_MEAN &lt;= &#45;0.841</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-394.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.399</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-379.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 101</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-364.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [93, 8]</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-349.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 0&#45;&gt;2 -->\n<g id=\"edge10\" class=\"edge\">\n<title>0&#45;&gt;2</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M635.4503,-460.8796C652.0452,-451.0056 669.8572,-440.4075 686.812,-430.3193\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"688.785,-433.2181 695.5892,-425.0969 685.2057,-427.2025 688.785,-433.2181\"/>\n<text text-anchor=\"middle\" x=\"689.4365\" y=\"-445.628\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">False</text>\n</g>\n<!-- 5 -->\n<g id=\"node3\" class=\"node\">\n<title>5</title>\n<polygon fill=\"#61b1ea\" stroke=\"#000000\" points=\"281,-306 72,-306 72,-223 281,-223 281,-306\"/>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-290.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">PLATELETS_MEAN &lt;= &#45;0.489</text>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-275.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.656</text>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-260.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 65</text>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-245.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [11, 54]</text>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-230.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 1&#45;&gt;5 -->\n<g id=\"edge2\" class=\"edge\">\n<title>1&#45;&gt;5</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M337.1114,-341.8796C316.0526,-331.7339 293.4068,-320.8235 271.9532,-310.4876\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"273.3679,-307.2842 262.8398,-306.0969 270.3297,-313.5905 273.3679,-307.2842\"/>\n</g>\n<!-- 6 -->\n<g id=\"node6\" class=\"node\">\n<title>6</title>\n<polygon fill=\"#f7d9c3\" stroke=\"#000000\" points=\"522,-306 325,-306 325,-223 522,-223 522,-306\"/>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-290.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">GLUCOSE_MEAN &lt;= &#45;0.879</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-275.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.977</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-260.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 39</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-245.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [23, 16]</text>\n<text text-anchor=\"middle\" x=\"423.5\" y=\"-230.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 1&#45;&gt;6 -->\n<g id=\"edge5\" class=\"edge\">\n<title>1&#45;&gt;6</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M423.5,-341.8796C423.5,-333.6838 423.5,-324.9891 423.5,-316.5013\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"427.0001,-316.298 423.5,-306.2981 420.0001,-316.2981 427.0001,-316.298\"/>\n</g>\n<!-- 17 -->\n<g id=\"node4\" class=\"node\">\n<title>17</title>\n<polygon fill=\"#4ba6e7\" stroke=\"#000000\" points=\"103,-179.5 0,-179.5 0,-111.5 103,-111.5 103,-179.5\"/>\n<text text-anchor=\"middle\" x=\"51.5\" y=\"-164.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.42</text>\n<text text-anchor=\"middle\" x=\"51.5\" y=\"-149.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 47</text>\n<text text-anchor=\"middle\" x=\"51.5\" y=\"-134.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [4, 43]</text>\n<text text-anchor=\"middle\" x=\"51.5\" y=\"-119.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 5&#45;&gt;17 -->\n<g id=\"edge3\" class=\"edge\">\n<title>5&#45;&gt;17</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M132.7811,-222.8796C120.5375,-211.2237 107.2339,-198.5587 95.0029,-186.9148\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"97.2012,-184.1751 87.5451,-179.8149 92.3746,-189.245 97.2012,-184.1751\"/>\n</g>\n<!-- 18 -->\n<g id=\"node5\" class=\"node\">\n<title>18</title>\n<polygon fill=\"#b7dbf6\" stroke=\"#000000\" points=\"231.5,-179.5 121.5,-179.5 121.5,-111.5 231.5,-111.5 231.5,-179.5\"/>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-164.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.964</text>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-149.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 18</text>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-134.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [7, 11]</text>\n<text text-anchor=\"middle\" x=\"176.5\" y=\"-119.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 5&#45;&gt;18 -->\n<g id=\"edge4\" class=\"edge\">\n<title>5&#45;&gt;18</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M176.5,-222.8796C176.5,-212.2134 176.5,-200.7021 176.5,-189.9015\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"180.0001,-189.8149 176.5,-179.8149 173.0001,-189.815 180.0001,-189.8149\"/>\n</g>\n<!-- 13 -->\n<g id=\"node7\" class=\"node\">\n<title>13</title>\n<polygon fill=\"#efb184\" stroke=\"#000000\" points=\"487,-187 250,-187 250,-104 487,-104 487,-187\"/>\n<text text-anchor=\"middle\" x=\"368.5\" y=\"-171.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">SAT02_VENOUS_MEAN &lt;= &#45;0.102</text>\n<text text-anchor=\"middle\" x=\"368.5\" y=\"-156.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.85</text>\n<text text-anchor=\"middle\" x=\"368.5\" y=\"-141.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 29</text>\n<text text-anchor=\"middle\" x=\"368.5\" y=\"-126.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [21, 8]</text>\n<text text-anchor=\"middle\" x=\"368.5\" y=\"-111.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 6&#45;&gt;13 -->\n<g id=\"edge6\" class=\"edge\">\n<title>6&#45;&gt;13</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M404.2637,-222.8796C400.3092,-214.3236 396.1034,-205.2238 392.0175,-196.3833\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"395.191,-194.907 387.8184,-187.2981 388.8368,-197.8439 395.191,-194.907\"/>\n</g>\n<!-- 14 -->\n<g id=\"node10\" class=\"node\">\n<title>14</title>\n<polygon fill=\"#6ab6ec\" stroke=\"#000000\" points=\"615.5,-179.5 505.5,-179.5 505.5,-111.5 615.5,-111.5 615.5,-179.5\"/>\n<text text-anchor=\"middle\" x=\"560.5\" y=\"-164.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.722</text>\n<text text-anchor=\"middle\" x=\"560.5\" y=\"-149.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 10</text>\n<text text-anchor=\"middle\" x=\"560.5\" y=\"-134.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [2, 8]</text>\n<text text-anchor=\"middle\" x=\"560.5\" y=\"-119.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 6&#45;&gt;14 -->\n<g id=\"edge9\" class=\"edge\">\n<title>6&#45;&gt;14</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M471.416,-222.8796C484.9615,-211.1138 499.6908,-198.3197 513.1998,-186.5855\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"515.7401,-189.015 520.9946,-179.8149 511.1497,-183.7303 515.7401,-189.015\"/>\n</g>\n<!-- 15 -->\n<g id=\"node8\" class=\"node\">\n<title>15</title>\n<polygon fill=\"#399de5\" stroke=\"#000000\" points=\"355,-68 260,-68 260,0 355,0 355,-68\"/>\n<text text-anchor=\"middle\" x=\"307.5\" y=\"-52.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.0</text>\n<text text-anchor=\"middle\" x=\"307.5\" y=\"-37.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 3</text>\n<text text-anchor=\"middle\" x=\"307.5\" y=\"-22.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [0, 3]</text>\n<text text-anchor=\"middle\" x=\"307.5\" y=\"-7.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 13&#45;&gt;15 -->\n<g id=\"edge7\" class=\"edge\">\n<title>13&#45;&gt;15</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M345.7859,-103.9815C341.0092,-95.2504 335.9595,-86.0202 331.1494,-77.2281\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"334.1153,-75.3568 326.2451,-68.2637 327.9742,-78.7165 334.1153,-75.3568\"/>\n</g>\n<!-- 16 -->\n<g id=\"node9\" class=\"node\">\n<title>16</title>\n<polygon fill=\"#eb9f68\" stroke=\"#000000\" points=\"486,-68 373,-68 373,0 486,0 486,-68\"/>\n<text text-anchor=\"middle\" x=\"429.5\" y=\"-52.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.706</text>\n<text text-anchor=\"middle\" x=\"429.5\" y=\"-37.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 26</text>\n<text text-anchor=\"middle\" x=\"429.5\" y=\"-22.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [21, 5]</text>\n<text text-anchor=\"middle\" x=\"429.5\" y=\"-7.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 13&#45;&gt;16 -->\n<g id=\"edge8\" class=\"edge\">\n<title>13&#45;&gt;16</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M391.2141,-103.9815C395.9908,-95.2504 401.0405,-86.0202 405.8506,-77.2281\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"409.0258,-78.7165 410.7549,-68.2637 402.8847,-75.3568 409.0258,-78.7165\"/>\n</g>\n<!-- 3 -->\n<g id=\"node12\" class=\"node\">\n<title>3</title>\n<polygon fill=\"#f6d1b7\" stroke=\"#000000\" points=\"877,-306 654,-306 654,-223 877,-223 877,-306\"/>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-290.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">TEMPERATURE_DIFF &lt;= &#45;0.905</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-275.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.964</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-260.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 18</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-245.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [11, 7]</text>\n<text text-anchor=\"middle\" x=\"765.5\" y=\"-230.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 2&#45;&gt;3 -->\n<g id=\"edge11\" class=\"edge\">\n<title>2&#45;&gt;3</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M765.5,-341.8796C765.5,-333.6838 765.5,-324.9891 765.5,-316.5013\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"769.0001,-316.298 765.5,-306.2981 762.0001,-316.2981 769.0001,-316.298\"/>\n</g>\n<!-- 4 -->\n<g id=\"node17\" class=\"node\">\n<title>4</title>\n<polygon fill=\"#e5833b\" stroke=\"#000000\" points=\"1187,-306 980,-306 980,-223 1187,-223 1187,-306\"/>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-290.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">TEMPERATURE_MIN &lt;= 0.07</text>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-275.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.094</text>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-260.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 83</text>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-245.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [82, 1]</text>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-230.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 2&#45;&gt;4 -->\n<g id=\"edge16\" class=\"edge\">\n<title>2&#45;&gt;4</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M872.717,-343.3779C904.0909,-331.6374 938.4845,-318.7668 970.2219,-306.8902\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"971.8408,-310.0215 979.9798,-303.2387 969.3874,-303.4655 971.8408,-310.0215\"/>\n</g>\n<!-- 7 -->\n<g id=\"node13\" class=\"node\">\n<title>7</title>\n<polygon fill=\"#399de5\" stroke=\"#000000\" points=\"729,-179.5 634,-179.5 634,-111.5 729,-111.5 729,-179.5\"/>\n<text text-anchor=\"middle\" x=\"681.5\" y=\"-164.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.0</text>\n<text text-anchor=\"middle\" x=\"681.5\" y=\"-149.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 5</text>\n<text text-anchor=\"middle\" x=\"681.5\" y=\"-134.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [0, 5]</text>\n<text text-anchor=\"middle\" x=\"681.5\" y=\"-119.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 3&#45;&gt;7 -->\n<g id=\"edge12\" class=\"edge\">\n<title>3&#45;&gt;7</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M736.1209,-222.8796C728.2037,-211.6636 719.6269,-199.5131 711.6675,-188.2372\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"714.3486,-185.9662 705.7223,-179.8149 708.6298,-190.003 714.3486,-185.9662\"/>\n</g>\n<!-- 8 -->\n<g id=\"node14\" class=\"node\">\n<title>8</title>\n<polygon fill=\"#ea985d\" stroke=\"#000000\" points=\"1018,-187 747,-187 747,-104 1018,-104 1018,-187\"/>\n<text text-anchor=\"middle\" x=\"882.5\" y=\"-171.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">RESPIRATORY_RATE_MEAN &lt;= &#45;0.456</text>\n<text text-anchor=\"middle\" x=\"882.5\" y=\"-156.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.619</text>\n<text text-anchor=\"middle\" x=\"882.5\" y=\"-141.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 13</text>\n<text text-anchor=\"middle\" x=\"882.5\" y=\"-126.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [11, 2]</text>\n<text text-anchor=\"middle\" x=\"882.5\" y=\"-111.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 3&#45;&gt;8 -->\n<g id=\"edge13\" class=\"edge\">\n<title>3&#45;&gt;8</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M806.4209,-222.8796C815.453,-213.6931 825.1013,-203.8798 834.3888,-194.4336\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"836.8893,-196.8827 841.4044,-187.2981 831.8977,-191.975 836.8893,-196.8827\"/>\n</g>\n<!-- 9 -->\n<g id=\"node15\" class=\"node\">\n<title>9</title>\n<polygon fill=\"#e58139\" stroke=\"#000000\" points=\"878,-68 765,-68 765,0 878,0 878,-68\"/>\n<text text-anchor=\"middle\" x=\"821.5\" y=\"-52.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.0</text>\n<text text-anchor=\"middle\" x=\"821.5\" y=\"-37.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 11</text>\n<text text-anchor=\"middle\" x=\"821.5\" y=\"-22.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [11, 0]</text>\n<text text-anchor=\"middle\" x=\"821.5\" y=\"-7.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 8&#45;&gt;9 -->\n<g id=\"edge14\" class=\"edge\">\n<title>8&#45;&gt;9</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M859.7859,-103.9815C855.0092,-95.2504 849.9595,-86.0202 845.1494,-77.2281\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"848.1153,-75.3568 840.2451,-68.2637 841.9742,-78.7165 848.1153,-75.3568\"/>\n</g>\n<!-- 10 -->\n<g id=\"node16\" class=\"node\">\n<title>10</title>\n<polygon fill=\"#399de5\" stroke=\"#000000\" points=\"991,-68 896,-68 896,0 991,0 991,-68\"/>\n<text text-anchor=\"middle\" x=\"943.5\" y=\"-52.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.0</text>\n<text text-anchor=\"middle\" x=\"943.5\" y=\"-37.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 2</text>\n<text text-anchor=\"middle\" x=\"943.5\" y=\"-22.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [0, 2]</text>\n<text text-anchor=\"middle\" x=\"943.5\" y=\"-7.8\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 8&#45;&gt;10 -->\n<g id=\"edge15\" class=\"edge\">\n<title>8&#45;&gt;10</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M905.2141,-103.9815C909.9908,-95.2504 915.0405,-86.0202 919.8506,-77.2281\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"923.0258,-78.7165 924.7549,-68.2637 916.8847,-75.3568 923.0258,-78.7165\"/>\n</g>\n<!-- 11 -->\n<g id=\"node18\" class=\"node\">\n<title>11</title>\n<polygon fill=\"#399de5\" stroke=\"#000000\" points=\"1131,-179.5 1036,-179.5 1036,-111.5 1131,-111.5 1131,-179.5\"/>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-164.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.0</text>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-149.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 1</text>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-134.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [0, 1]</text>\n<text text-anchor=\"middle\" x=\"1083.5\" y=\"-119.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = ICU</text>\n</g>\n<!-- 4&#45;&gt;11 -->\n<g id=\"edge17\" class=\"edge\">\n<title>4&#45;&gt;11</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M1083.5,-222.8796C1083.5,-212.2134 1083.5,-200.7021 1083.5,-189.9015\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"1087.0001,-189.8149 1083.5,-179.8149 1080.0001,-189.815 1087.0001,-189.8149\"/>\n</g>\n<!-- 12 -->\n<g id=\"node19\" class=\"node\">\n<title>12</title>\n<polygon fill=\"#e58139\" stroke=\"#000000\" points=\"1262,-179.5 1149,-179.5 1149,-111.5 1262,-111.5 1262,-179.5\"/>\n<text text-anchor=\"middle\" x=\"1205.5\" y=\"-164.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">entropy = 0.0</text>\n<text text-anchor=\"middle\" x=\"1205.5\" y=\"-149.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">samples = 82</text>\n<text text-anchor=\"middle\" x=\"1205.5\" y=\"-134.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">value = [82, 0]</text>\n<text text-anchor=\"middle\" x=\"1205.5\" y=\"-119.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">class = Non&#45;ICU</text>\n</g>\n<!-- 4&#45;&gt;12 -->\n<g id=\"edge18\" class=\"edge\">\n<title>4&#45;&gt;12</title>\n<path fill=\"none\" stroke=\"#000000\" d=\"M1126.1697,-222.8796C1138.1194,-211.2237 1151.1037,-198.5587 1163.0411,-186.9148\"/>\n<polygon fill=\"#000000\" stroke=\"#000000\" points=\"1165.6053,-189.303 1170.32,-179.8149 1160.7175,-184.292 1165.6053,-189.303\"/>\n</g>\n</g>\n</svg>\n"
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 43
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ffGvJcYENNba"
      },
      "source": [
        "Performing K-Nearest Neighbour Classifier \n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "vcx8Mi-evX6V",
        "outputId": "69902a97-6c26-4966-ecc5-555809875632"
      },
      "source": [
        "KNN_object=make_pipeline(KNeighborsClassifier(n_neighbors=25,p=1))\n",
        "KNN_object.fit(X_train,Y_train)\n",
        "y_pred=KNN_object.predict(X_test)\n",
        "ass(Y_test,y_pred)"
      ],
      "execution_count": 44,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Accuracy: 82.95454545454545\n",
            "Sensitivity: 51.85185185185185\n",
            "Specificity: 96.72131147540983\n",
            "ROC_AUC_Score: 74.28658166363084\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "nb1UkljD0soy"
      },
      "source": [
        "Performing Random Forest Classifier"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "SWODFEAs01a_",
        "outputId": "ab827304-e6a8-4f54-cad5-60abe8ea94c3"
      },
      "source": [
        "RF_object = RandomForestClassifier(criterion='gini',random_state=23,max_depth=6,bootstrap=True)\n",
        "RF_object.fit(X_train,Y_train)\n",
        "y_pred=RF_object.predict(X_test)\n",
        "ass(Y_test,y_pred)"
      ],
      "execution_count": 45,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Accuracy: 93.18181818181817\n",
            "Sensitivity: 88.88888888888889\n",
            "Specificity: 95.08196721311475\n",
            "ROC_AUC_Score: 91.98542805100182\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vn5S8JzzKWLO"
      },
      "source": [
        "##Performing Grid Search on Various ML Algorithm"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4HbI6650KnFq"
      },
      "source": [
        "Grid Search on Decision Tree"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "MnUr-QtDJxFX",
        "outputId": "6c3d7228-ba5f-41d3-8f8f-711aca8de6e9"
      },
      "source": [
        "param_grid = {'criterion':['entropy','gini'],'max_depth':np.arange(1,30),'max_leaf_nodes':np.arange(3,20),'random_state':[1,2]}\n",
        "GS_DT=GridSearchCV(DecisionTreeClassifier(), param_grid,cv=5)\n",
        "GS_DT.fit(X_train,Y_train)\n",
        "GS_DT.best_params_"
      ],
      "execution_count": 46,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "{'criterion': 'entropy',\n",
              " 'max_depth': 7,\n",
              " 'max_leaf_nodes': 13,\n",
              " 'random_state': 1}"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 46
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "qDQTK32CJ0aH",
        "outputId": "929acf6c-60ce-4f28-fe80-44509ea65187"
      },
      "source": [
        "GS_DT.score(X_test,Y_test)"
      ],
      "execution_count": 47,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "0.9318181818181818"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 47
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "QC2lGuBSJ2bd"
      },
      "source": [
        "dt_train_score=[]\n",
        "dt_test_score=[]\n",
        "for i in np.arange(1, 30):\n",
        "  param_grid = {'criterion':['entropy','gini'],'max_depth': [i],'max_leaf_nodes':np.arange(3,20),'random_state':[1,2]}\n",
        "  GS_DT=GridSearchCV(DecisionTreeClassifier(), param_grid,cv=5)\n",
        "  GS_DT.fit(X_train,Y_train)\n",
        "  y_train_pred=GS_DT.predict(X_train)\n",
        "  y_pred=GS_DT.predict(X_test)\n",
        "  dt_train_score.append(log_loss(Y_train,y_train_pred))\n",
        "  dt_test_score.append(log_loss(Y_test,y_pred))"
      ],
      "execution_count": 48,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 312
        },
        "id": "r7ZskDF4J4W6",
        "outputId": "794ecda5-50b6-4d84-8693-7b573caf686d"
      },
      "source": [
        "plt.title(\"Decision Tree Classifier : Error vs Depth\")\n",
        "plt.xlabel(\"Depth\")\n",
        "plt.ylabel(\"Error\")\n",
        "plt.plot(np.arange(1,30),dt_train_score,label=\"Training Error\")\n",
        "plt.plot(np.arange(1,30),dt_test_score,label=\"Testing Error\")\n",
        "plt.legend()\n",
        "plt.plot()"
      ],
      "execution_count": 49,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 49
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEWCAYAAABollyxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3xcdZ3/8dcnlyZpkyZtk4Y26ZXepLUUCeVSWgqIgqIiitpFoeoKdVVQUURcFdyfirq7XlBEVAQBFRaWRdB1tUhtAaG0gFhaoaUEmt4bSGh6y+3z++OchOk0adJ2zpzJzPv5eMwjM3POnO/nzMl85jvf8z3fr7k7IiKSvfLiDkBERKKlRC8ikuWU6EVEspwSvYhIllOiFxHJckr0IiJZTol+ADGz/zWzi/uxXouZTUxHTHEzs2vM7PYIt/+smc0P75uZ/cLMXjWz5WY218yei6psSR0zm29mDXHHERcl+hQzs3oz22NmO82sycweNbNFZnbE77W7n+Put/ZjvVJ3X3+k5SUKvzy6bp3hPnY9vjCVZfVQ9j+Z2YqwrM3hF96pUZbZxd2nu/uS8OGpwFlArbvPdvdl7j41HXEAmNkSM9ubdCzuT1f5qRIm3c6EfWgws7vM7IQUluFmNilV2xvolOij8Q53LwPGAdcBXwB+Hm9IRyb88ih191LgZYJ97Hrujq71zKwgleWa2WeB7wHfAKqBscANwLtSWU4/jQPq3X3XkW7oCN6nTyYeC3d/R3+3f6hlpvpYJtkU/i+VAScB/wCWmdmZEZaZu9xdtxTegHrgzUnPzQY6gRnh4yLg3wkS5lbgRqAkYf13AU8DrwEvAGeHzy8B/jm8Pwn4C9AM7ADuTHi9A5PC++XAL4HtwEvAvwJ54bKFwMNhLK8CLwLnHMo+AvOBBoIvsy3AbQQViKvC2BuBu4DhCa8/CXgUaAL+BszvpZxyoAW44CCxXAPcnvD4v8I4moGlwPSEZW8DVgM7gY3A58LnK4EHwnheAZYlvEf1wJuBjwJ7gY4wpmu79j1h+6OBe8L3+kXgsqQ47wZuD4/rPx/G/9aS3l7Xy3E4oMwwxt+G+7kO+Fh/YwRODLedn/Dcu4FnEv7PV4Sv3Qr858Fi7eH5HwIrEh5PA/4Uxvoc8L6EZbcQfG7+FB7PvwDjwmVLCT4Du8Jj9f6E9+cKYBuwGfhw3PkiXbfYA8i2Gz0k+vD5l4GPh/e/G37YhhPUaO4Hvhkum02QpM4iSJg1wLRwWfcHHfg18KVwnWLg1ISyEhP9L4H7wnLGA88DHw2XLQTagI8B+cDHgU2A9Xcfww9QO/Atgi+wEuBy4DGgNnzuJ8Cvw/VrCJL/28LYzwofV/VQztnhtgsOEss17J/oPxLuaxHBL4GnE5ZtBuaG94cBbwrvfzNMGoXhbW7Xe5C0rwuBhxO2N58wYYX7shL4CjAImAisB96aEGcbcF64bkkP+/JPhEmzl33tPv49LOvpOBxQJkESvCH8n5lF8KV0xiHE+AJwVsLj/wKuCu//FfhQeL8UOOkgsfaU6M8gqBANCW8bgA8DBcBxBBWaY8J1byFI8PPC/f1+0rHp/gwkvT9fC4/x24DdwLC4c0Y6brEHkG03ek/0jxEkZiOoaRydsOxk4MXw/k+A7/ay7e4POkECv4mgvTh5PSeo8ecDrV0fjnDZpcCS8P5CYF3CssHha4/q7z6GH6BWoDhh+RrgzITHo8IEUkBQ47wtaXv/B1zcQzkXAlv6iOUaEhJ90rKKcH/Kw8cvh/s/NGm9rxF8GU7qYRuJ+7qQ3hP9icDLSa/9IvCLhDiXHuH/1pIwOTUl3P7tIMdhvzKBMQS/SMoSnvsmcEt/YwT+H3BzeL8s/F8eFz5eSvBLp7KPbXS/b0nPTwuPVw1BLXxZ0vKfAF8N798C/CZhWWm4b2MSPwNJZe4hodJAULPv8cso225qo0+fGoKfoFUECXVleLK2CfhD+DwEH8YX+rG9Kwm+NJaHPUM+0sM6lQS1l5cSnnspjKXLlq477r47vFvaj/ITbXf3vQmPxwH3JuzfGoIPYXW47IKuZeHyUwm+DJI1ApX9bSs2s3wzu87MXjCz1wiSNATvA8B7CGpyL5nZX8zs5PD57xA0Y/zRzNab2VX93fEE44DRSft1NcE+d9lwGNtNdpm7VyTcvpywLPk4JJc5GnjF3XcmPJf8/9BXjL8CzjezIuB84El37/r/+igwBfiHmT1hZuf2d6dCNQQJuong/Twx6f28EDiqp1jdvYXg8zX6INtvdPf2hMe7OfT/9QEpypMtEgp7E9QQtIfvIKhZTHf3jT2svgE4uq9tuvsWgiYXwh4oi81sqbuvS1htB0FNehxB2zQEJzN7KvdIeNLjDcBH3P2R5BXNbANBjf5j/djuX4F9BE0Jd/dj/X8iOL/xZoIkX05w7sEA3P0J4F1mVgh8kuDcwZgw8V0BXGFmM4A/m9kT7v5gP8rssoHgV9nkg6yT/D6lWk/bT3xuEzDczMoSkn3y/8NBY3T31Wb2EnAOwfv9q4Rla4EFYQ+z84G7zWyE9//k9bsJvjh2hf8nf3H3sw6y/piuO2ZWStAUuqmfZeUU1egjZGZDw1rNbwiaF/7u7p3AT4HvmtnIcL0aM3tr+LKfAx82szPNLC9cNq2HbV9gZrXhw1cJPqCdieu4ewdBMvu6mZWZ2TjgswQn26J0Y1jmuDDWKjPr6iVzO/AOM3trWAMvDrvb1SZvxN2bCdq8f2Rm55nZYDMrNLNzzOzbPZRbRvDF0Ejwq+kbXQvMbJCZXWhm5e7eRnDCsDNcdq6ZTTIzIzg/0kHSe9kPy4GdZvYFMysJ921GKrsMHil330BwEvyb4fs+k6AWfqj/D78iOA8zj6CNHgAz+6CZVYX/403h0wd9Hy1QY2ZfJThZfHW46AFgipl9KDzmhWZ2gpm9IeHlbzOzU81sEPBvwGPhPkJwMjgnriXpDyX6aNxvZjsJanlfAv6T4KRSly8QNBU8FjYxLAamArj78nDd7xIknb8Q1MiTnQA8bmYtBCd2L/ee+85/iqAddT3BL4pfATcf6Q724fthTH8M34fHCNqwu5LNuwg+0NsJ3qPP08v/orv/B8GX078mrP9J4H96WP2XBE0RGwl+wTyWtPxDQH34ni8iaAoAmExwDFoIfkXc4O4PHcoOh1+q5xKc4HyR4NfUzwh+VfRL+EX0bB+r/TCpH/3KQ4kTWEBwUn4TcC9Bm/fiQ9zGr4HTgD+7+46E588Gng3/J78PfMDd9/SyjdHhei3AE8AbCXpf/REg/MXxFuADYaxbeP1Ec5dfAV8laLI5HvhgwrJrgFvDZp/3HeL+ZZ2ungUiIgOGmd1CcEL3X+OOZSBQjV5EJMsp0YuIZDk13YiIZDnV6EVEslxG9aOvrKz08ePHxx2GiMiAsXLlyh3uXnWwdTIq0Y8fP54VK1bEHYaIyIARXsB2UGq6ERHJckr0IiJZToleRCTLZVQbvYjEr62tjYaGBvbuTR4IU+JUXFxMbW0thYWFh/xaJXoR2U9DQwNlZWWMHz+eYJw3iZu709jYSENDAxMmTDjk16vpRkT2s3fvXkaMGKEkn0HMjBEjRhz2rywlehE5gJJ85jmSYzLgE31bRyc3LFnH0ue3xx2KiEhGiizRm9lUM3s64faamX061eUU5Bk/+ct6/vDslr5XFpGM19jYyKxZs5g1axZHHXUUNTU13Y9bW1sP+toVK1Zw2WWX9VnGKaeckpJYlyxZQnl5eXd8s2bNYvHiQx3eP3qRnYx19+cIJmHAzPIJJoO4N9XlmBlTqktZt7Ul1ZsWkRiMGDGCp59+GoBrrrmG0tJSPve5z3Uvb29vp6Cg59RVV1dHXV1dn2U8+uijqQkWmDt3Lg888ECvy7sn6M7L6/Fxbw62n4cqXU03ZwIvJEwinFKTRpbx/LadaCROkey0cOFCFi1axIknnsiVV17J8uXLOfnkkznuuOM45ZRTeO6554Cghn3uucGc5Ndccw0f+chHmD9/PhMnTuQHP/hB9/ZKS0u7158/fz7vfe97mTZtGhdeeGF3Hvn973/PtGnTOP7447nsssu6t9sf9fX1TJ06lYsuuogZM2awbNmy/R5v2LCBz3/+88yYMYM3vvGN3Hnnnd3xzJ07l3e+850cc8wxKXnvIH3dKz9AMP3YAczsEuASgLFjxx7WxiePLOXXu9vY0dJKVVlR3y8QkX659v5nWb3ptZRu85jRQ/nqO6Yf8usaGhp49NFHyc/P57XXXmPZsmUUFBSwePFirr76au65554DXvOPf/yDhx56iJ07dzJ16lQ+/vGPH9AP/amnnuLZZ59l9OjRzJkzh0ceeYS6ujouvfRSli5dyoQJE1iwYEGvcS1btoxZs2Z1P77nnnvIz89n7dq13HrrrZx00knU19fv9/iee+7h6aef5m9/+xs7duzghBNOYN68eQA8+eSTrFq16rC6UfYm8kQfTtz7TuCLPS1395uAmwDq6uoOq0o+uTr4dl67bacSvUiWuuCCC8jPzwegubmZiy++mLVr12JmtLW19fiat7/97RQVFVFUVMTIkSPZunUrtbX7z0M/e/bs7udmzZpFfX09paWlTJw4sTvZLliwgJtuuqnHMnpquqmvr2fcuHGcdNJJ3c8lPn744YdZsGAB+fn5VFdXc9ppp/HEE08wdOhQZs+endIkD+mp0Z8DPOnuW6MqYPLIMgDWbWvhlKMroypGJOccTs07KkOGDOm+/+Uvf5nTTz+de++9l/r6eubPn9/ja4qKXq/45efn097efljrHGm8PT3u7+tSIR1t9AvopdkmVaqHFlFWXMBanZAVyQnNzc3U1NQAcMstt6R8+1OnTmX9+vXU19cDdLehp8rcuXO588476ejoYPv27SxdupTZs2entIxEkSZ6MxsCnAX8d8TlMHlkKWu37YyyGBHJEFdeeSVf/OIXOe6441JWA09UUlLCDTfcwNlnn83xxx9PWVkZ5eXlPa7b1Ubfdbv77rv73P673/1uZs6cybHHHssZZ5zBt7/9bY466qhU70a3jJoztq6uzg934pEv3P0Mi9dsZeWXz0pxVCK5Zc2aNbzhDW+IO4zYtbS0UFpairvziU98gsmTJ/OZz3wm1ph6OjZmttLdD9qndMBfGdtlcnUpjbtaaWzZF3coIpIFfvrTnzJr1iymT59Oc3Mzl156adwhHbasGb1ycvXrJ2RHlKrnjYgcmc985jOx1+BTJXtq9CO7uljqhKyISKKsSfSjyosZMiiftVt1QlZEJFHWJHozY1J1mWr0IiJJsibRA0wZWapELyKSJGtOxkLQ8+a/VjbQtLuVisGD4g5HRA5DY2MjZ555JgBbtmwhPz+fqqoqAJYvX86gQQf/bC9ZsoRBgwZ1D0V84403MnjwYC666KIjjm3+/Pls3ryZkpISACZNmtSvfvNxy65EHw6FsHZbCyeMHx5zNCJyOPoaprgvS5YsobS0tDvRL1q0KKXx3XHHHQcdCjl5eOH+DjecymGJk2VVop/U1fNmqxK9SDZZuXIln/3sZ2lpaaGyspJbbrmFUaNG8YMf/IAbb7yRgoICjjnmGK677jpuvPFG8vPzuf3227n++ut58MEHu78s5s+fz4knnshDDz1EU1MTP//5z5k7dy67d+9m4cKFrFq1iqlTp7Jp0yZ+9KMf9WtsewiGUS4uLuapp55izpw5vPLKK/s9vuiii1i0aBG7d+/m6KOP5uabb2bYsGHMnz+fWbNmdQ9ydsUVV0Ty/mVVoq+pKGHwoHwNhSCSKv97FWz5e2q3edQb4Zzr+r26u/OpT32K++67j6qqKu68806+9KUvcfPNN3Pdddfx4osvUlRURFNTExUVFSxatGi/XwEPPvjgfttrb29n+fLl/P73v+faa69l8eLF3HDDDQwbNozVq1ezatWq/YYdTnbhhRd2N92cddZZfOc73wH2H0Z54cKF+z2eOXMm119/Paeddhpf+cpXuPbaa/ne974HQGtrK4c7IkB/ZVWiz8szJo0sZZ1OyIpkjX379rFq1SrOOisY3qSjo4NRo0YBMHPmTC688ELOO+88zjvvvH5t7/zzzwfg+OOP7x607OGHH+byyy8HYMaMGcycObPX1/fWdJM4jHLi4+bmZpqamjjttNMAuPjii7ngggu613v/+9/fr7iPRFYlegiabx5ZtyPuMESywyHUvKPi7kyfPp2//vWvByz73e9+x9KlS7n//vv5+te/zt//3vevj65hiVM5JDFk1rDEybKqeyUEJ2S3vraP5j09T0QgIgNLUVER27dv7070bW1tPPvss3R2drJhwwZOP/10vvWtb9Hc3ExLSwtlZWXs3Hlozbdz5szhrrvuAmD16tX9+sLor/LycoYNG8ayZcsAuO2227pr9+mSdTX6rqEQ1m1r4fhxw2KORkSOVF5eHnfffTeXXXYZzc3NtLe38+lPf5opU6bwwQ9+kObmZtydyy67jIqKCt7xjnfw3ve+l/vuu4/rr7++X2X8y7/8CxdffDHHHHMM06ZNY/r06b0OS5zYRl9ZWcnixYv73P6tt97afTJ24sSJ/OIXv+j/G5ACWTNMcZeXG3cz7zsP8a33vJH3n3B4c9CK5LJcHKa4o6ODtrY2iouLeeGFF3jzm9/Mc88912ef/XQ73GGKs65GXzOshOLCPJ7XbFMi0k+7d+/m9NNPp62tDXfnhhtuyLgkfySyLtHn5xlHV2koBBHpv7Kyssi7OMYp607GQtBOv06jWIoctkxq0pXAkRyT7Ez01WVsat7Lzr3qeSNyqIqLi2lsbFSyzyDuTmNjI8XFxYf1+qxruoH9e94cN1Y9b0QORW1tLQ0NDWzfvj3uUCRBcXExtbW1h/Xa7Ez01a8PbqZEL3JoCgsLmTBhQtxhSAplZdPN2OGDGVSQp6EQRETI0kTf3fNGJ2RFRLIz0UPQTq8uliIiWZ7oG17dw659qRu0SERkIMreRF8d9Lx5Ybtq9SKS27I20U/qmlZQQyGISI7L2kQ/fsRgCvNN7fQikvOyNtEX5OcxsVI9b0REsjbRA0yqVs8bEZFIE72ZVZjZ3Wb2DzNbY2YnR1lesskjS9nw6m72tHaks1gRkYwSdY3++8Af3H0acCywJuLy9jOlugx39bwRkdwWWaI3s3JgHvBzAHdvdfemqMrrSdfgZmu3qZ1eRHJXlDX6CcB24Bdm9pSZ/czMDpju3MwuMbMVZrYi1aPljRsxhII8UxdLEclpUSb6AuBNwI/d/ThgF3BV8krufpO717l7XVVVVUoDGFSQx/jKITohKyI5LcpE3wA0uPvj4eO7CRJ/Wk2pLtUoliKS0yJL9O6+BdhgZlPDp84EVkdVXm8mjSzjpcZd7G1TzxsRyU1R97r5FHCHmT0DzAK+EXF5B5g8spROh/Xbd6W7aBGRjBDpDFPu/jRQF2UZfeka3Gzttp0cM3ponKGIiMQiq6+MBZhQOYT8PFM7vYjkrKxP9EUF+YwbMZjnNeaNiOSorE/0oNmmRCS35UiiL+Olxt3sa1fPGxHJPbmR6KtL6eh06nfsjjsUEZG0y41EH842pXZ6EclFOZHoJ1YNIc9QO72I5KScSPTFhfmMHT6YdRrFUkRyUE4kegiGQtAoliKSi3Im0U+pLuXFHbto6+iMOxQRkbTKmUQ/ubqU9k6nfofGvBGR3JI7iT7seaMTsiKSa3Im0R9dVYoZaqcXkZyTM4m+ZFA+tcNKNH+siOScnEn0AFPU80ZEclBOJfpJ1aWs39FCu3reiEgOyalEP3lkGW0dzkuvaMwbEckdkc4wlWkmjwxmm7r2/tUcNbQopdseNngQn3/rVAryc+q7U0QGgJxK9FOPKuPYMRWs3bqTtSkc4Gxfeyev7Grl7TNHMbO2ImXbFRFJhZxK9MWF+dz3iTkp3+6qjc2ce/3DbGray8zalG9eROSIqJ0hBWoqSgDY1LQn5khERA6kRJ8CFYMLKSnMZ6MSvYhkICX6FDAzRlcUq0YvIhlJiT5FaoYNVqIXkYykRJ8iNRXFbGzaG3cYIiIHUKJPkdHlJexo2cfeto64QxER2Y8SfYqMDnvebGlWrV5EMosSfYp0JXr1vBGRTKNEnyI1SvQikqGU6FPkqPJizHTRlIhknkiHQDCzemAn0AG0u3tdlOXFaVBBHiPLipToRSTjpGOsm9PdfUcayond6IoSNqmLpYhkGDXdpFCQ6FWjF5HMEnWid+CPZrbSzC7paQUzu8TMVpjZiu3bt0ccTrRqKkrY2LQHd487FBGRblEn+lPd/U3AOcAnzGxe8grufpO717l7XVVVVcThRGt0eTH72jtp3NUadygiIt0iTfTuvjH8uw24F5gdZXlxG63hikUkA0WW6M1siJmVdd0H3gKsiqq8TFAzTIleRDJPlL1uqoF7zayrnF+5+x8iLC92r180pZ43IpI5Ikv07r4eODaq7Wei8pJCBg/KV41eRDKKulemUDABSQkbX1WiF5HMoUSfYqMrStjUrEQvIpmjz0RvZnlmdko6gskGNZpSUEQyTJ+J3t07gR+lIZasUFNRwo6WVk1AIiIZo79NNw+a2Xss7EIjvevqS79ZE5CISIbob6+bS4HPAh1mtgcwwN19aGSRHYpvTYC2Q2guieL7qmQ4LFq230VTEyqHpL4cEZFD1K9E7+5lUQdyROo+DB1t/Vw5gnFoXtsEq+6BbWuoqTgOQD1vRCRj9LsfvZm9E+gaq2aJuz8QTUiH4cyvxFv+jrVBom9uoLr2ZMw005SIZI5+tdGb2XXA5cDq8Ha5mX0zysAGlPLa4G/zBk1AIiIZp781+rcBs8IeOJjZrcBTwBejCmxAKSyBwZXQ3AAEPW/Ul15EMsWhXDBVkXC/PNWBDHjltdC8AdBMUyKSWfpbo/8G8JSZPUTQ42YecFVkUQ1E5bXQuA4IavR/XL0Vd0c9UkUkbn0mejPLAzqBk4ATwqe/4O5bogxswCkfA+uXgDujK0pobe9kR0srVWVFcUcmIjmuz0Tv7p1mdqW73wX8Ng0xDUwVY6C1BfY27deXXoleROLW3zb6xWb2OTMbY2bDu26RRjbQdPe8aWB0RTGgCUhEJDP0t43+/eHfTyQ858DE1IYzgHUl+qYN1IydCqgvvYhkhv620V/l7nemIZ6Bq3xM8Le5gfKSQoYMylfPGxHJCP0dvfLzaYhlYBtcCflF0LyhewISNd2ISCZQG32q5OWFfemDi6ZGV5So6UZEMoLa6FMp6aKpVRubYw5IRKT/o1dOiDqQrFA+Bl54EAhmmmrcFUxAUlyYH3NgIpLLDtp0Y2ZXJty/IGnZN6IKasAqr4WdW6C9db++9CIiceqrjf4DCfeTBzA7O8WxDHzltYDDzk3UdCd69bwRkXj1leitl/s9PZaK17tYqkYvIpmir0Tvvdzv6bF09aVv2sBR5cWYQYMSvYjErK+Tscea2WsEtfeS8D7h4+JIIxuIho4O/jY3UJifR3VZsWr0IhK7gyZ6d1d3kUNRWAJDqhK6WCrRi0j8DmXiEemPpIumlOhFJG5K9KlWPqa7Rl8zrIRNzXvp7NTpDBGJjxJ9qpWPCWr07tSEE5A07mqNOyoRyWGRJ3ozyzezp8zsgajLygjltdC2G/a8yujyoIulxrwRkTilo0Z/ObAmDeVkhu4JSDaoL72IZIRIE72Z1QJvB34WZTkZJWGmqRolehHJAFHX6L8HXEkwuXhuqBgb/G3awNCSAoYMylfTjYjEKrJEb2bnAtvcfWUf611iZivMbMX27dujCid9Bo+AgmJNQCIiGSPKGv0c4J1mVg/8BjjDzG5PXsndb3L3Onevq6qqijCcNDHbry99zbASDWwmIrGKLNG7+xfdvdbdxxOMgvlnd/9gVOVlFM00JSIZRP3oo9DVlx6oqSjhlV2t7GntiDkoEclVaUn07r7E3c9NR1kZoXwMtGyB9n2MrgjGftvUrFq9iMRDNfoodHWxfG1j90VTOiErInFRoo9CQl96XTQlInFToo9CQqI/qryYPION6nkjIjFRoo9CV6Jv2hBMQDK0mI2vqkYvIvFQoo9CQRGUVidMQKKLpkQkPkr0UUmegES9bkQkJkr0Udkv0RezuUkTkIhIPJToo5I8AUlHJzt27Ys7KhHJQUr0USkfA+17YHdjwnDF6nkjIumnRB+VHiYgUc8bEYmDEn1UdNGUiGQIJfqolI8J/jY3MLS4gNKiAo1iKSKxUKKPyuDhUFACTV0TkBSrRi8isVCij4oZVIzZ/6Ip9aUXkRgo0UcpcaapCs00JSLxUKKPUtLVsa/samV3a3vMQYlIrlGij1L5GNi1Ddr2qi+9iMRGiT5KiROQqIuliMREiT5K3V0sN7w+paASvYikmRJ9lBIumqoeGkxAokQvIummRB+loaMBg+aG1ycgURu9iKSZEn2UkiYgqakoYWPT7piDEpFco0QftYox0JQ405Rq9CKSXkr0UUvqS7+5eY8mIBGRtFKij1pXonenpqKYtg5nR4smIBGR9FGij1r5GOjYB7t2vD4uvXreiEgaKdFHrbuL5csJF02pnV5E0keJPmoJ49LXDOuq0avnjYikjxJ91BIumhpaXEhZUYFq9CKSVkr0USsZBoVD9ut5ozZ6EUknJfqomYU9b7r60mumKRFJr8gSvZkVm9lyM/ubmT1rZtdGVVbGK69NumhKiV5E0ifKGv0+4Ax3PxaYBZxtZidFWF7mqhjT3XQzbsRgXt3dxvad6ksvIukRWaL3QEv4sDC85eYloeW1sHsHtO3h5ImVADyybkfMQYlIroi0jd7M8s3saWAb8Cd3f7yHdS4xsxVmtmL79u1RhhOf7i6WG5k+eijDhwxi6fNZuq8iknEiTfTu3uHus4BaYLaZzehhnZvcvc7d66qqqqIMJz4JF03l5RmnTqpk6doduOfmDxwRSa+09Lpx9ybgIeDsdJSXcRL60gPMnVzJjpZ9rNm8M8agRCRXRNnrpsrMKsL7JcBZwD+iKi+jDa2hawISgHlTgl8uy9aq+UZEohdljX4U8JCZPQM8QdBG/0CE5WWu/EIoG9Wd6KuHFjO1uoxla3VCVkSiVxDVht39GeC4qLY/4CRcNAVB840AonAAAAkNSURBVM0vH3uJPa0dlAzKjzEwEcl2ujI2XRIumoKg+aa1vZPHX2yMMSgRyQVK9OlSXguvbYTOTgBmTxhOUUEeS59X842IREuJPl0qxkJHK+wKTsAWF+Yze8JwnZAVkcgp0adLUhdLgHmTq1i7rYXNzRr7RkSio0SfLgkXTXWZOyUYDmGZmm9EJEJK9OnSQ41+anUZI8uKWKrmGxGJkBJ9uhRXwKCy/RK9mTF3chUPr9tBR6eGQxCRaCjRp0v3BCQN+z09b0olTbvbWLWxOabARCTbKdGnU9JFUwCnTgrb6dV8IyIRUaJPp6SLpgBGlBYxo2ao+tOLSGSU6NOpvBb2vAKtu/Z7et7kKp58+VV27m2LKTARyWZK9OlUMTb427xxv6fnTq6ivdN5bP0rMQQlItlOiT6durtY7t98c/y4YQwelK9Zp0QkEkr06dRDX3qAQQV5nDxxhE7IikgklOjTqWwUWN4BNXoIhi2ub9zNy427YwhMRLKZEn06JU1Akqhr1ildJSsiqaZEn27lY3pM9BMqh1BTUaLmGxFJOSX6dOvhoikIhkOYN6WKR9c10tbRGUNgIpKtIptKUHpRXgur7oHvH3vAoi+3drDI99HxvWIKC/QdLJIzBo+Aj/05ss0r0afbsQugZRt4xwGLCto7efLvm5laXMYxo4bGEJyIxKIo2s+7En26jZwG7/5xj4sGAbfteIROh/85f0564xKRrKX2gQwzd3IVzzQ00bS7Ne5QRCRLKNFnmHlTquh0eGRdY9yhiEiWUKLPMMfWllNWXKBuliKSMkr0GaYgP485R1eybO0O3DXrlIgcOSX6DDRvShUbm/bwwvZdfa8sItIHJfoMNHeyZp0SkdRRos9AY4YPZmLlEA1bLCIpoUSfoeZOruSx9a+wr/3AC6tERA6FEn2Gmju5ij1tHax86dW4QxGRAS6yRG9mY8zsITNbbWbPmtnlUZWVjU4+egSF+aZJw0XkiEU5BEI7cIW7P2lmZcBKM/uTu6+OsMysMaSogDeNHcZtf63nwTVb4w5HRCI0bPAg7lp0cmTbjyzRu/tmYHN4f6eZrQFqACX6frrszMnc8fhLcYchIhEbWlwY6fbTMqiZmY0HjgMe72HZJcAlAGPHjk1HOAPGnEmVzJlUGXcYIjLARX4y1sxKgXuAT7v7a8nL3f0md69z97qqqqqowxERyTmRJnozKyRI8ne4+39HWZaIiPQsyl43BvwcWOPu/xlVOSIicnBR1ujnAB8CzjCzp8Pb2yIsT0REehBlr5uHAYtq+yIi0j+6MlZEJMsp0YuIZDklehGRLGeZNIuRmW0HEi8FrQSycbCXbN0vyN59034NPNm6b8n7Nc7dD3oRUkYl+mRmtsLd6+KOI9Wydb8ge/dN+zXwZOu+Hc5+qelGRCTLKdGLiGS5TE/0N8UdQESydb8ge/dN+zXwZOu+HfJ+ZXQbvYiIHLlMr9GLiMgRUqIXEclyGZnozexsM3vOzNaZ2VVxx5NKZlZvZn8PB3lbEXc8h8vMbjazbWa2KuG54Wb2JzNbG/4dFmeMh6uXfbvGzDYO5AH6epvHeaAft4PsVzYcs2IzW25mfwv37drw+Qlm9niYI+80s0EH3U6mtdGbWT7wPHAW0AA8ASzIlrlmzaweqHP3AX0hh5nNA1qAX7r7jPC5bwOvuPt14Rf0MHf/QpxxHo5e9u0aoMXd/z3O2I6EmY0CRiXO4wycByxkAB+3g+zX+xj4x8yAIe7eEs7v8TBwOfBZ4L/d/TdmdiPwN3f/cW/bycQa/Wxgnbuvd/dW4DfAu2KOSZK4+1LglaSn3wXcGt6/leDDNuD0sm8Dnrtvdvcnw/s7ga55nAf0cTvIfg14HmgJHxaGNwfOAO4On+/zmGVioq8BNiQ8biBLDlrIgT+a2cpwvtxsUh1OCg+wBaiOM5gIfNLMngmbdgZU80aypHmcs+a49TA/9YA/ZmaWb2ZPA9uAPwEvAE3u3h6u0meOzMREn+1Odfc3AecAnwibCbKOB22CmdUueGR+DBwNzAI2A/8RbziH72DzOA/k49bDfmXFMXP3DnefBdQStHhMO9RtZGKi3wiMSXhcGz6XFdx9Y/h3G3AvwYHLFlvD9tKudtNtMceTMu6+NfzAdQI/ZYAet17mcR7wx62n/cqWY9bF3ZuAh4CTgQoz65o4qs8cmYmJ/glgcnhWeRDwAeC3MceUEmY2JDxZhJkNAd4CrDr4qwaU3wIXh/cvBu6LMZaU6kqEoXczAI/bQeZxHtDHrbf9ypJjVmVmFeH9EoJOKmsIEv57w9X6PGYZ1+sGIOwG9T0gH7jZ3b8ec0gpYWYTCWrxEEzj+KuBum9m9mtgPsGQqVuBrwL/A9wFjCUYbvp97j7gTmr2sm/zCZoAHKgHLk1o1x4QzOxUYBnwd6AzfPpqgvbsAXvcDrJfCxj4x2wmwcnWfIKK+V3u/rUwl/wGGA48BXzQ3ff1up1MTPQiIpI6mdh0IyIiKaRELyKS5ZToRUSynBK9iEiWU6IXEclySvSSU8ysIxzJ8NlwRMArzOywPwdmdnXC/fGJI16KZAolesk1e9x9lrtPJ7j45ByCfvKH6+q+VxGJlxK95KxwGIpLCAa+snDwqO+Y2RPhQFiXApjZfDNbama/s2CehBvNLM/MrgNKwl8Id4SbzTezn4a/GP4YXs0oEisleslp7r6e4KrDkcBHgWZ3PwE4AfiYmU0IV50NfAo4hmCgrPPd/Spe/4VwYbjeZOBH4S+GJuA96dsbkZ4p0Yu87i3AReGQsI8DIwgSN8DycI6EDuDXwKm9bONFd386vL8SGB9hvCL9UtD3KiLZKxwzpINgxEYDPuXu/5e0znwOHLq3t7FDEscb6QDUdCOxU41ecpaZVQE3Aj8Mx2H/P+Dj4ZC3mNmUcJRRgNnhiKp5wPsJpnQDaOtaXyRTqUYvuaYkbJopBNqB24CuoW1/RtDU8mQ49O12Xp+i7Qngh8AkgiFiu0YhvQl4xsyeBL6Ujh0QOVQavVKkD2HTzefc/dy4YxE5HGq6ERHJcqrRi4hkOdXoRUSynBK9iEiWU6IXEclySvQiIllOiV5EJMv9f0O6vWbUlh4dAAAAAElFTkSuQmCC\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "A04gAJ53K1qy"
      },
      "source": [
        " Best kernel Performance using Grid Search"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "iPgeWyJCJ6gp",
        "outputId": "3a8cb97d-4b28-44fc-9161-8341a855a103"
      },
      "source": [
        "param_grid = {'kernel':['linear','poly','sigmoid','rbf'],'gamma':['scale','auto'],'random_state':[1,2,3]}\n",
        "GS_SVM=GridSearchCV(svm.SVC(), param_grid,cv=5)\n",
        "GS_SVM.fit(X_train,Y_train)\n",
        "GS_SVM.best_params_"
      ],
      "execution_count": 50,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "{'gamma': 'scale', 'kernel': 'linear', 'random_state': 1}"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 50
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "FC3L0uKkJ9Dd",
        "outputId": "3ac53273-b8f2-4c6c-b9a9-71f20909dbb6"
      },
      "source": [
        "GS_SVM.score(X_test,Y_test)"
      ],
      "execution_count": 51,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "0.8522727272727273"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 51
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "6r_cOsQjJ-pZ"
      },
      "source": [
        "dt_train_score=[]\n",
        "dt_test_score=[]\n",
        "for i in ['linear','poly','sigmoid','rbf']:\n",
        "  param_grid = {'kernel':[i],'gamma':['scale','auto'],'random_state':[1,2,3]}\n",
        "  GS_SVM=GridSearchCV(svm.SVC(), param_grid,cv=5)\n",
        "  GS_SVM.fit(X_train,Y_train)\n",
        "  y_train_pred=GS_SVM.predict(X_train)\n",
        "  y_pred=GS_SVM.predict(X_test)\n",
        "  dt_train_score.append(log_loss(Y_train,y_train_pred))\n",
        "  dt_test_score.append(log_loss(Y_test,y_pred))"
      ],
      "execution_count": 52,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 312
        },
        "id": "bauKzIcYKAKi",
        "outputId": "391a911b-6331-4802-e159-bced05db65cf"
      },
      "source": [
        "plt.title(\"SVM: Error vs kernel\")\n",
        "plt.xlabel(\"Kernel\")\n",
        "plt.ylabel(\"Error\")\n",
        "plt.plot(['linear','poly','sigmoid','rbf'],dt_train_score,label=\"Training Error\")\n",
        "plt.plot(['linear','poly','sigmoid','rbf'],dt_test_score,label=\"Testing Error\")\n",
        "plt.legend()\n",
        "plt.plot()"
      ],
      "execution_count": 53,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 53
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3gUVffA8e9JDyH03ntJaEKkCQLSq6AoTQHLq6g/sfcGtlexoyKWV0BARMFCk6oIUqQISu8BgpRQEgiE1Pv7YzYQQwJJ2N3ZzZ7P8+Rhy+zcE5KcvXtn5hwxxqCUUsp3+NkdgFJKKffSxK+UUj5GE79SSvkYTfxKKeVjNPErpZSP0cSvlFI+RhO/Uh5MREaJyBQPiGOpiNxtdxzKOTTxK6cSkTYislJE4kXkpIisEJFrRaSliJwVkcLZvGaDiPyfiFQTESMiG7I8X0pEkkUkOg9xGMd4CZm+nnTCt6iU19PEr5xGRIoAc4APgRJARWA0kGSMWQ3EAP2zvKYBEAFMy/RwIcfjGQYD+/IRUmNjTOFMX2NyiDsgy30RkVz/beR1eztk/R6Vb/PoX1bldeoAGGOmGWPSjDGJxpiFxpi/Hc9PAoZmec1QYJ4x5kSmxyYDw7Js85WzgnQsn8wQkSkichoY7ljKeE1EVgDngBoi0lpE1jo+vawVkdaZ9nHJ9lnGeEpEZmR57AMRGeu4PVxE9orIGRHZJyJDchF3oIhME5GZIhIkIhUct2Md+xiZi+/xFcensDMislBESmV6TUvHp7U4EflLRNrn6z9YeT5jjH7pl1O+gCLACawE3x0onuX5ykAqUNlx3w/rU0Bfx/1qgHH8exDwx/o0sB3oBERn2tc4YNxlYjFArRyeGwWkAH0dMYQCS4EDQCQQAJQFTgG3O+4Pctwv6dhH1u0Ds4xRFesNIdxx3x84DLQEwoDTQF3Hc+WByMvEOsUR41xgomNffsB64EUgCOuNZy/Q9Qrf4x6sN+iM+284tq/o+Nn1cGzf2XG/dKbv9267f8f0yzlfOuNXTmOMOQ20wUq6nwOxIjJLRMo6nj+IlUBud7ykIxCMldAyiwF2YCX7oVifALKOdb8x5v4rhPSnY/aa8dU103OrjDE/GmPSjTGJjscmGmO2GGNSgS7ALmPMZGNMqjFmGtYbUO9M+7iwvTEmJUt8+4E/gX6Oh24AzhlryQsgHWggIqHGmMPGmC2X+T6KAPOxkvYdxpg04FqspPyyMSbZGLMX6/984BW+xwnGmJ2O+98CTRyP34b1yWueY/tFwDqsNwJVwGjiV05ljNlmjBlujKkENAAqAO9n2mQSFxP/7cA3WZOmw1fAcKyZ9iWJP5eaGmOKZfpakOm5g9lsn/mxCsD+LM/vx5oZX24fmX2NFT9Yxym+BjDGnAUGACOAwyIyV0TqXWY/LYFGWLPzjKqKVYEKmd/YgGexPqlcLr4jmW6fAzIOtlcFbsmyvzZYn0ZUAaOJX7mMMWY71tJE5gO13wOVRKQDcBPWG0F2ZgI9gb3GmAOuCO8Kj/2DlQwzqwIcusI+MvsOaC8ilbBm/l9feKExC4wxnbES63as2XpOFgL/BZZkfHrCSur7sryxhRtjMs/Q81J69yAwOcv+wowxb+RhH8pLaOJXTiMi9UTkMUeiQ0QqY814M5Y3Mma7M4AJwH5jzLrs9uXY7gbArnPH5wF1RGSwiASIyACs4w1zcrsDY0ws1tLWBKwkvQ1ARMqKyI0iEgYkAQlYSz+X29cYrDeOJY4DsmuAM46DyKEi4i8iDUTk2rx/q4B1HKG3iHR17CtERDLetFQBo4lfOdMZoAXwh4icxUr4m4HHsmw3CWs2fdkzdYwx64wxe7J7TkTGi8j4K8TzV5bz+N+/wvaZxz4B9HLEfgJ4EuhljDme2304fI11rOLrTI/5AY9ifao4CbQD7stFTK8APwKLgaKO+Jpgnep6HPjC8XieOY6/3Ii1XBSL9QngCTRHFEhycclQKaWUL9B3c6WU8jGa+JVSysdo4ldKKR+jiV8ppXyMVxRuKlWqlKlWrZrdYSillFdZv379cWNM6ayPe0Xir1atGuvWZXu6t1JKqRyISNarzwFd6lFKKZ+jiV8ppXyMJn6llPIxXrHGn52UlBRiYmI4f/683aGoTEJCQqhUqRKBgYF2h6KUyoHXJv6YmBjCw8OpVq0aImJ3OAqrqc+JEyeIiYmhevXqdoejlMqB1y71nD9/npIlS2rS9yAiQsmSJfVTmFIezmsTP6BJ3wPpz0Qpz+fViV8p5Rxro0+y5Z94u8NQbqKJP59OnDhBkyZNaNKkCeXKlaNixYoX7icnJ1/2tevWrWPkyJFXHKN169ZOiXXp0qUULVr0QnxNmjRh8eLFTtm38n7HE5IY9uUahv5vDfGJ2XXBVAWN1x7ctVvJkiXZuHEjAKNGjaJw4cI8/vjjF55PTU0lICD7/96oqCiioqKuOMbKlSudEyzQtm1b5szJuXmUMQZjDH5+ftnez8nlvk/lHT7+dTdJqekkpqQxdskuXugVYXdIysV0xu9Ew4cPZ8SIEbRo0YInn3ySNWvW0KpVK6655hpat27Njh07AGsG3qtXL8B607jzzjtp3749NWrUYOzYsRf2V7hw4Qvbt2/fnv79+1OvXj2GDBlCRgOdefPmUa9ePZo1a8bIkSMv7Dc3oqOjqVu3LkOHDqVBgwYsX778X/cPHjzIE088QYMGDWjYsCHTp0+/EE/btm3p06cPERGaJLxZzKlzfLN6Hz+U/ozvyk3m65W72X3sjN1hKRcrEFO10bO3sPWf007dZ0SFIrzUOzLPr4uJiWHlypX4+/tz+vRpli9fTkBAAIsXL+bZZ59l5syZl7xm+/bt/Prrr5w5c4a6dety3333XXIe/IYNG9iyZQsVKlTguuuuY8WKFURFRXHvvfeybNkyqlevzqBBg3KMa/ny5TRp0uTC/ZkzZ+Lv78+uXbuYNGkSLVu2JDo6+l/3Z86cycaNG/nrr784fvw41157Lddffz0Af/75J5s3b9bTNr3c+4t38ZT/FBrF/wrA+KCjvD6rOP+7q40eqC/ACkTi9yS33HIL/v7+AMTHxzNs2DB27dqFiJCSkv36ac+ePQkODiY4OJgyZcpw9OhRKlX6d4/r5s2bX3isSZMmREdHU7hwYWrUqHEh+Q4aNIjPPvss2zGyW+qJjo6matWqtGzZ8sJjme///vvvDBo0CH9/f8qWLUu7du1Yu3YtRYoUoXnz5pr0vdyuo2dg49cMD/wZmt8LZerRbs4j+O1/ml82TaFjI/35FlQFIvHnZ2buKmFhYRduv/DCC3To0IEffviB6Oho2rdvn+1rgoODL9z29/cnNTU1X9tcbbzZ3c/t65T3mTHrJ14L+B8pVdoQ2PU18A8k1S+Y1rP+j80/DuZ8jZ8JKVzM7jCVC+gavwvFx8dTsWJFACZOnOj0/detW5e9e/cSHR0NcGEN3lnatm3L9OnTSUtLIzY2lmXLltG8eXOnjqHssWn7DobHvEBSSCkCB3wF/tbSYkDTIexq8z4RaTuI+7QnJJ6yOVLlCi5L/CLypYgcE5HNmR4rISKLRGSX49/irhrfEzz55JM888wzXHPNNU6boWcWGhrKuHHj6NatG82aNSM8PJyiRYtmu23GGn/G14wZM664/379+tGoUSMaN27MDTfcwJgxYyhXrpyzvw3lZiblPEEzh1NcEggcMg3CSv7r+XqdhvF5+ZcocXo7KV/2grPHbYpUuYpknB3i9B2LXA8kAF8ZYxo4HhsDnDTGvCEiTwPFjTFPXWlfUVFRJmsjlm3btlG/fn0XRO5dEhISKFy4MMYYHnjgAWrXrs0jjzxia0z6s/FgxnB46r2U3z2dpQ3fpP3NI7Ld7ODJc7z03ljGB7xDUKkaMPQnCNc3fW8jIuuNMZecO+6yGb8xZhlwMsvDNwKTHLcnAX1dNb6v+Pzzz2nSpAmRkZHEx8dz77332h2S8mBm3ZeU3z2dyf79aHXjf3LcrnKJQkS27cfQpCdJO3UAJvSA+Bg3Rqpcyd1r/GWNMYcdt48AZXPaUETuEZF1IrIuNjbWPdF5oUceeYSNGzeydetWpk6dSqFChewOSXmq/Ssx857k17TGhHYfTXCA/2U3v699TfaHN+WpQqMxZ2NhQnc4uc9NwSpXsu3grrHWmHJcZzLGfGaMiTLGRJUufUmvYKVUXsTHYL4dyiHK8EGxp+jXtMoVX1IoKIBnetRnxrGKLIj6DJLOWDP/47vcELByJXcn/qMiUh7A8e8xN4+vlO9JSYRvBpOadI7h5x/hvm7N8PfL3cVZvRuVp3m1Ejy7OoAzA36E9BRr5n90i4uDVq7k7sQ/CxjmuD0M+MnN4yvlW4yBWSPh8F88y4OEV4qkS0SOK6yXEBFe6hNB3Llk3t0UCMPngV8ATOwJ/2x0YeDKlVx5Ouc0YBVQV0RiROQu4A2gs4jsAjo57iulXGXVx7DpW9bVuI/vEhrxZLe6eS7FEFmhKAObV+GrVfvZmV4e7pgHQeEwqQ8cXOuiwJUruezKXWNMToVjOrpqTHc6ceIEHTta38qRI0fw9/cn41jEmjVrCAoKuuzrly5dSlBQ0IXSy+PHj6dQoUIMHTr0qmNr3749hw8fJjQ0FIBatWrl6rx9VcDs+QUWvUBKnZ7cs6s9bWsXp3XNUvna1eNd6jLnr38YPXsLU+5qgdwxD77qA5P7wuDpUK2Nk4NXrlQgSjbY4Uplma9k6dKlFC5c+ELiHzEi+/Op82vq1KmXLf2ctZxybssraxlmL3FyL3x3B5Sqy/jiT3Ay8R+e7Fov37srERbEo53rMGr2VhZsOUq3BpXhjp/hqxthSn8YOBVqFYg5nU/Qkg1OtH79etq1a0ezZs3o2rUrhw9bZ66OHTuWiIgIGjVqxMCBA4mOjmb8+PG89957NGnShOXLlzNq1CjefvttwJqxP/XUUzRv3pw6deqwfPlyAM6dO8ett95KREQE/fr1o0WLFmS9sO1yspaNznp/48aNtGzZkkaNGtGvXz9OnTp1IZ6HH36YqKgoPvjgAyf/rymnS0qAb4YAcPLGiYxfdZSeDcvTsFL2V3Xn1m0tq1KnbGFenbuV8ylp1gVdw+dCyVowbSDs+NkZ0Ss3KBhTt5+fhiObnLvPcg2he+4PQRhjePDBB/npp58oXbo006dP57nnnuPLL7/kjTfeYN++fQQHBxMXF0exYsUYMWLEvz4lLFmy5F/7S01NZc2aNcybN4/Ro0ezePFixo0bR/Hixdm6dSubN2/+V5nlrIYMGXJhqadz58689dZbwL/LRg8fPvxf9xs1asSHH35Iu3btePHFFxk9ejTvv/8+AMnJyXl6k1E2SU+HH0dA7Ha4bSYfbkjjfGo6j3apc9W7DvD3Y1TvSAZ/8QefL9vLgx1rQ1gpGD4bptwM02+Dm7+AyH5O+EaUKxWMxO8BkpKS2Lx5M507dwYgLS2N8uXLA9CoUSOGDBlC37596ds3dxcr33TTTQA0a9bsQhG233//nYceegiABg0a0KhRoxxfn9NST+ay0Znvx8fHExcXR7t27QAYNmwYt9xyy4XtBgwYkKu4lc2WvwPbZkOXV4kp0ZKpq3/jlmaVqFm6sFN237pWKbo3KMe4pXu4uVklKhQLhdDicPuP8PWtMONOSE2CxgOdMp5yjYKR+PMwM3cVYwyRkZGsWrXqkufmzp3LsmXLmD17Nq+99hqbNl3500lGGWZnlmAGLcNcoO34GX59FRreCq3+j/dn/A0CD3Wq7dRhnu1Rn1+2H+O/P2/nw0HXWA+GFIHbZlpLPj+MsK4diLrDqeMq59E1ficJDg4mNjb2QuJPSUlhy5YtpKenc/DgQTp06MCbb75JfHw8CQkJhIeHc+ZM3lrcXXfddXz77bcAbN26NVdvILlVtGhRihcvfuF4wuTJky/M/pUXiN0BM/8D5RtDn7HsOpbA93/GMKxVVcoXDXXqUJVLFOLedjWZ/dc/rNmXqRxXUBgM/hZqd4Y5D8PqT5w6rnKegjHj9wB+fn7MmDGDkSNHEh8fT2pqKg8//DB16tThtttuIz4+HmMMI0eOpFixYvTu3Zv+/fvz008/8eGHH+ZqjPvvv59hw4YRERFBvXr1iIyMzLEMc+Y1/lKlSrF48eIr7n/SpEmMGDGCc+fOUaNGDSZMmJD7/wBln8Q4mDYIAoJhwFQIDOXthesoFBTAfe1ruWTI+9rVZMa6g7w0awtzHmxz8UrgwFArhpl3wvynrZl/20ddEoO6CsYYj/9q1qyZyWrr1q2XPFbQpaammsTERGOMMbt37zbVqlUzSUlJNkd1KV/82dgmLdWYyTcbM7qEMdErjDHGbDhwylR9ao75YPFOlw49+69DpupTc8yU1dGXPpmaYsyMu4x5qYgxv7xmTHq6S2NR2QPWmWxyqs74vci5c+fo0KEDKSkpGGMYN27cFS8UUwXcL6/C7kXQ8x2oal0TMmb+dkqGBXFnG9f2zO3ZsDyTq+/n7QU76NWwAkULBV580j8A+n1qfQr57U1r5t/5ZdAG7h5BE78XCQ8P11Mq1UWbv4ff34WmQyHqLgB+33WclXtO8FLvCAoHu/bPW0R4qXckvT5cznuLdzKqT5be137+0PtDCAiFlWOt5N99DPjpoUW7efVPwLioe5jKP/2ZuMmRTfDTA1CpOfR4G0QwxjBmwXYqFgtlcIsrl112hogKRRjcogqTV+9nx5FsTlbw84Meb0HrB2Ht5zB7JKSnuSU2lTOvTfwhISGcOHFCE40HMcZw4sQJQkJC7A6lYDt7AqYNhpCiMGCytZwCzN98hL9j4nmkc50rNllxpsc616VwcACjZ2/J/u9RBDq/Au2egg2T4Yd7Ic35PahV7nntUk+lSpWIiYlBu3N5lpCQECpVqmR3GAVXWip8NwwSjlq1chx9cFPT0nlr4Q5qlylMv2squjWk4mFBPNalDi/+tIX5m4/QvWH5SzcSgQ7PQkAILBkNqefh5i8hQI9R2cFrE39gYCDVq7v24JVSHmfh8xC9HPp+ApWaXXj4+z8PsTf2LJ/envsmK840uHkVvv7jAK/O3UaHemUICczhE0fbR61TPuc/DdOHwK2TIVA/Ibqb1y71KOVzNn4Nf3wCLe6DJoMvPHw+JY33Fu+kSeVieWqy4kwB/n681DuSQ3GJfPrb3stv3PI+6PU+7FpklXlIPuueINUFmviV8gYx62H2w1CtLXR55V9PTVm9n8Px5/PVZMWZWtUsSc+G5fnkt90ciku8/MZRd1ifWqKXWwXezp92T5AK0MSvlOc7c8RaFgkvC7dMAv+L58ufOZ/Cx7/upm3tUvlusuJMz/Swav6/Pm/blTduMgj6fwkxa62GLomnXBydyqCJXylPlpoE02+H8/Ew8GsIK/mvp79Yvo9T51J4omtdmwL8t0rFCzGiXU3m/n2Y1XtPXPkFkf2sdf4jm2BSbzh73PVBKk38SnksY2DeExCzBm782OoRkcmJhCS+WL6XHg3L0ahSMZuCvNSIdjWpWCyUUbO2kJqWfuUX1OsBg76B47utJu5njrg+SB+niV8pT7Xuf/DnJGjzKDS46ZKnP/51D4kpaTza2TNm+xlCAv15rmd9th85w7S1B3P3olod4bYZEHcQJnS3/lUuo4lfKU8UvQJ+fgpqdYYbnr/k6ZhT55iyej+3NKtMrTLOabLiTN0blKNVjZK8s3AHceeSc/eiam1g6I/WBWoTesDJfa4N0odp4lfK08QdhG+HQvFqVitDv0vPif9g8S6XNFlxFhHhpT4RnE5M4d1FO3P/wsrNYdgsSE6wZv6xeXityjVN/Ep5kpRE6wye1CTrYG7opWv3u46eYeafMQxtWdVqfeih6pUrwu0tqzJl9X62Hc7D6ZoVmlhN3NNTYWIPOLrFdUH6KE38SnkKY2DWSDj8N9z8OZTOfu3+nYU7KRQUwP0dXNNkxZke6VyHoqGBOdfxyUnZCKskhV+gdcD3nw2uC9IHaeJXylOs+gg2fQsdnoO63bPdZOPBOOZvOcJ/2tagRJjn17kpViiIx7rUZfXek8zblMezdUrVhjvmQXA4TOoDB/5wTZA+SBO/Up5g9xJY9CLU7w1tH8txs7cWWE1W7mrrPXWqBjWvQv3yRXh93jYSk/NYkrlEdWvmH1YKJveDfctdE6SP0cSvlN1O7oUZd0LpetB3fI6NSn7fdZwVu0/wQIdaLm+y4kz+fsKo3hEciktk/G978r6DopWs5F+sMkztD7uv3D9aXZ4tiV9EHhKRzSKyRUQetiMGpTxCUoJVWx9g4FQIzv7UzMxNVoa0dE+TFWdqUaMkvRqVZ/xve4g5dS7vOwgvZx3wLVXbaiy/fZ7zg/Qhbk/8ItIA+A/QHGgM9BIRzz9KpZSzpafDjyPg+A64ZSKUqJHjphlNVh7uVNutTVac6dke9RHJZR2f7ISVgmGzrSuYv73daj2p8sWOGX994A9jzDljTCrwG3DpZYlKFXTL34Zts63uVDU75LhZalo6by/cQa0yhbmpqfc2ualQLJT729di3qYjrNyTz5o8ocXh9h+tlpMz74KN05wbpI+wI/FvBtqKSEkRKQT0ACpn3UhE7hGRdSKyTrtsqQJn+zz49TVoNABaPXDZTb//8xB7Ys/yeJe6tjRZcaZ7rq9BpeKhjJ61NXd1fLITUsQq71D9eusT07ovnRukD3B74jfGbAPeBBYC84GNwCWH+o0xnxljoowxUaVLl3ZzlEq5UOwO+P4eKN8Een9gtSXMwfmUNN5fvJPGlYvRNdKeJivOFBLoz/M967Pj6Bm+XnMg/zsKCoNB06F2V5jzCKwa57wgfYAtB3eNMf8zxjQzxlwPnAL0umzlGxLjrIOTgSHWwdzAy195O2X1fv6JP89TXe1tsuJMXSPLcV2tkryzcCenzuayjk92AkNgwBSo3wcWPAPL33FekAWcXWf1lHH8WwVrff9rO+JQyq3S02Dm3RC3H279yjpN8TLOnE9h3NI9tKlVita17G+y4iwiwku9I0lISuWdRTuubmcBQdB/AjS8BZa8DL+8al0BrS7LrpOBZ4pISSAFeMAYE2dTHEq5zy+vwO5F0PNdqNr6ipt/sXwfJ88me0yTFWeqUzac21tW5atV0QxqXoXICkXzvzP/AOj3KQSEwLK3rHpHXV697BKar7NrqaetMSbCGNPYGLPEjhiUcqvNM+H396DZcLj2rituntFkpXuDcjSu7DlNVpzpkU6OOj6ztuatjk92/Pyh91hofo9V+mLe49bpsipbeuWuUq52+G/48QGo3AK6v5Wrl2Q0WXmsS8Gb7WcoWiiQJ7rWY030Seb8ffjqd+jnB93HQOuRsPYLmPWgtbymLqGJXylXOnsCvhlinX9+62RrTfoKDsUlMmX1fvo3q+SRTVacacC1lYmsYNXxOZecevU7FIHOL0O7p2HjFOvsqbSUq99vAaOJXylXSUuB74ZBwlEYOAXCc3c65vuLdjqarNRxcYD28/cTRvWJ5HD8ecYvzUcdn+yIQIdnoNMo2DwDvhsOqVdx9lABpIlfKVdZ+DxEL7fO1a/YLFcv2X3MarJye8uqVPTgJivOdG21EvRpXIHxy/Zy8GQ+6vjkpM0j1tLP9jlWc5uUROft28tp4lfKFTZMgT/GQ8v7ocmgXL/s7QWOJivta7owOM/zTI96+Ivw2tx81vHJSYt7rTfeXYvg61sh+axz9++lNPEr5Wwx66yrSatfb9XhyaW/HE1W7m5bnZKFg10YoOcpXzSUBzrUZP6WI6zYnc86PjlpNtw63TP6d5h8E5zPQxvIAkoTv1LOdOYITL/NKiPcf6J1jnkujVmwnRJhQdzdNucqnQXZ3W1rULlEKKNnbyElv3V8ctJ4APT/Eg6tg69uhHMnnbt/L6OJXylnSU2C6bfD+XgYOA3CSub6pd7aZMWZrDo+Eew8msCU1fudP0BkP6vEw9HNMKk3JPhu8UdN/Eo5gzHWRUMxa6DvOCjXIA8vNbyV0WSlhfc1WXGmLhFlaVu7FO8t2smJhCTnD1C3OwyeDif2WE3cTzvh+gEvpIlfKWdY+wX8+ZXVLzeyX55eumDLEf6KieehTrUJCfTOJivOIiK82CuCs8lpvL3QRbUba95glXU+fQgmdIe4q6gS6qU08St1taJXwPynrRLBHZ7L00tT09J5a4Gjyco1FV0UoHepXTacYa2q8c3aA2w+FO+aQaq1sRq6nDsJE3pYfY99iCZ+pa5G3EH4digUrwY3f27VjMmD7zdkNFmpQ4C//jlmeKhTbUoUCmLUrC1XX8cnJ5WvhWGzrFM8J/SAWN+pDq+/aUrlV/I568KgtGTrYG5I3ipMnk9J4/1FO2lcqShdI8u5KEjvVDQ0kCe61mXd/lPM+usf1w1UoYnVxD09zVr2ObLZdWN5EE38SuWHMTB7pFWA7abPoXTeyytM/eMA/8Sf58lu9QpMkxVnuiWqMg0qFuG/87Y7p45PTspGwB0/Q0AwTOoFh/503VgeQhO/Uvmx8kPY9B3c8BzU7ZbnlyckpfLxr7tpU6sU1xWgJivO5O8njOodyZHT5xn3q5Pq+OSkVC24Yx4Eh1vn+R/4w7Xj2UwTv1J5tXsJLH4JIm6Eto/naxdfLN9bYJusOFNUtRL0bVKBz5bv5cAJJ9bxyU7xatbMP6w0TO4H+5a5djwbaeJXKi9O7oUZd0Lp+nDjuHx1eTqRkMTnywp2kxVnerp7fQL8hFfnbnX9YEUrWcm/WBWYegvsWuz6MW2giV+p3Eo6A9MGW8l+4FQIzl+t/HFLM5qsFPyyy85QrmgI/3dDLRZuPcryXW642ja8rHXAt1RtmDYQts1x/ZhupolfqdxIT4cfRsDxHVZz7xLV87WbQ3GJTF6V0WQl3MlBFlx3talO1ZKFGD17q/Pr+GQnrCQMmw3lG1un626e6fox3UgTv1K5sewtq657l1ehZod87+aDxda54r7QZMWZggP8eaFnBLuPJfDVKhfU8clOaHEY+iNUaQkz74YNU90zrhto4lfqSrbPg6WvQ6OBVn39fNp97Awz1sdweyvfabLiTB3rl+H6OqV5f/FOjruijk92gsNhyAyo3uMwKr8AACAASURBVA5+uh/W/s8947qYJn6lLid2h9W3tcI10Pv9fB3MzfDOwp2EBvr7XJMVZ8mo45OYnMbbC3a4b+CgQjDoG6jTDeY+CqvGuW9sF9HEr1ROEuNg2iAIDLHK+Qbmf5b+18E4ft58hP9cX8Pnmqw4U60yhRneuhrT1x1kU4yL6vhkJzAEbp1sncK74BlY9rb7xnYBTfxKZSc9DWbeZVVuvHWydZrfVXhrwQ6fbrLiTCM71aZkWBCjZruwjk92AoLg5i+h0QD45RVY8op1BbcX0sSvVHaWvAy7F0OPMVC11VXtasXu4/y++7hPN1lxpiIhgTzZtR7r95/ip40urOOTHf8A6Dsemg6F5W/Dwue9Mvlr4lcqq80zYcX70OwOiLrzqnZljGHM/O1UKBri801WnKl/s0o0qlSU//68jbNJLqzjkx0/P+j1ATS/F1Z9BHMfs0739SK2JH4ReUREtojIZhGZJiIhdsSh1CUO/w0/PgCVW0L3MVe9u4wmKw93ruPzTVacyc9PGNUnkqOnk/j41912BADd34TrHoJ1/4NZ/2ctD3oJtyd+EakIjASijDENAH9goLvjUOoSZ4/DN0Os87dv/cpa070KqWnpvL1wJzVLh2mTFRdoWqU4NzWtyBfL9xF9/Kz7AxCBTqOh/TOwcap1rn9aivvjyAe7lnoCgFARCQAKAW5eqFMqi7QU+G44JBy1yjGEl73qXX6/4RC7jyXwRNe62mTFRZ7uVo9Af+HVudvsCUAE2j9tvQFs+d76HUp10zUGV8Htv43GmEPA28AB4DAQb4xZmHU7EblHRNaJyLrYWDfU51C+bcFzEL0c+oyFik2venfnU9L4YPEubbLiYmWKhPBgx9os3naU33bamCfaPAzdHVd3fzMYUhLtiyUX7FjqKQ7cCFQHKgBhInJb1u2MMZ8ZY6KMMVGlS5d2d5jKl2yYAms+hZYPQGPnrDpO/eMAh+IStcmKG9xxXTWqlSzE6NlbSE618SBri3ug91irbPfUWyApwb5YrsCOz5+dgH3GmFhjTArwPdDahjiUgph1MOcR65L8zi87ZZcZTVauq1VSm6y4QXCAPy/2jmBv7Fm+WhVtbzDNhsFNn8H+lTDlZjjvxovM8sCOxH8AaCkihcSaCnUEbFqgUz7tzBGYfhuEl4dbJlrnaDtBRpOVJ7vWc8r+1JXdUK8s7euW5oPFu4g9Y/Mae6Nb4ZYJcGid1c3r3El748mGHWv8fwAzgD+BTY4YPnN3HMrHpSZZSf98PAz8GgqVcMpuTyQk8cXyfXSL1CYr7vZCrwjOp6bx1oLtdodilXYYMBWOboFJvSHBs45T2nKqgTHmJWNMPWNMA2PM7cYYzz8MrgoOY6yLbmLWQt9PoFwDp+163NI9nEtO5fGuWnbZ3WqWLswd11Xnu/Ux/HUwzu5wrF7Mg6fDiT0wsQecPmx3RBfoOWbK96z9AjZMtvrlRvZ12m4PxSUyefV+bm6qTVbs8uANtSgZFsyo2VtIT/eAUgo1b4DbZsLpf2BCd6v2kwfQxK98S/QKmP+0VWK3w3NO3fUHi3eCgYc762zfLuEhgTzVrS4bDsTxw4ZDdodjqXYdDP0JEk/ChB7WJwCbXTHxi4ifiOhZN8r7xR202ugVr26deeHnvHnP7mMJzFgfw20ttcmK3W5uWonGlYvxxvztJLi7jk9OKkVZrRyTz1rJP9aN/QSyccXffGNMOvCxG2JRynWSz1kX1qQlw6BpEFLUqbt/Z+EOQgP9eaCDNlmxm5+fMKp3BLFnkvjwl112h3NR+cZwxzww6VbyP7LJtlByO+VZIiI3i16JoryRMTDrQesP7eYvoFRtp+4+o8nK3W21yYqnuKZKcfo3q8SXv+9jnx11fHJSpj7c8TMEBMPEXnBovS1h5Dbx3wt8BySLyGkROSMip10Yl1LOs/JD2DwDbnge6nR1+u4vNlmp7vR9q/x7sltdggP8eWXOVrtD+bdStayZf0hR+KovHFjt9hBylfiNMeHGGD9jTKAxpojjfhFXB6fUVdu9GBa/BBF9oe1jTt99RpOV+9vXJDwk0On7V/lXJjyEkR1r8cv2Y/y6/Zjd4fxb8WrWzL9wGZjcD/b+5tbhc310S0T6iMjbjq9ergxKKac4sQdm3Aml60PfcVfVKD07xhjGLNhBhaIh3NayqlP3rZxjeOvq1CgVxitzttpbxyc7RStayb94Nfj6Vti1yG1D5yrxi8gbwEPAVsfXQyLyX1cGptRVSTpjHcwVPxj0NQSFOX2IBVuO8tfBOB7upE1WPFVQgB8v9I5g7/GzTFy5z+5wLlW4DAybA6XqwLRBsG22W4bN7Yy/B9DZGPOlMeZLoBvQ03VhKXUV0tPhhxFwfJdVg6d4NacPkZZueHvhDqvJSlNtsuLJOtQtww31yjB2yW6OnTlvdziXCitpnepZoQl8Oww2zXD5kHk5kTlz4RHnngunlDMtc9RF7/Iq1GjvkiG+/zOG3ccSeLyLNlnxBi/0iiApNY0x8+09fz5HocXg9h+gSkurk9eGKS4dLre/sa8DG0RkoohMAtYDr7kuLKXyaftcWPo6NB4MLe9zyRBJqWm8v3gXjSoVpVsDbbLiDaqXCuPONtWZsT6GDQdO2R1O9oLDYcgMa7Ly0wOw5nOXDZWrK3eBdKAlVu38mUArY8x0l0WlVH4c2w7f3wMVmkKv95x+MDfD1NWOJitdtcmKN3nwhtqUDg9m1OytnlHHJztBhWDQN1CnO8x7HFZ+5JJhcnvl7pPGmMPGmFmOryMuiUap/Eo8Bd8MgsBCMGAKBIa4ZJiEpFQ+cjRZaVNbm6x4k8LBATzdrR5/HYxj5p8xdoeTs8AQuPUr6xTkhc/BwTVOHyK3Sz2LReRxEaksIiUyvpwejVL5kZ5mrYvGHYQBk63T5Fzkf8v3cfJsMk9okxWv1O+ailxTpRhvzt/BmfMpdoeTs4AguPl/Vk3/ys2dvvvcJv4BwAPAMqz1/fXAOqdHo1R+LHnZulCrx1vWwTEXOXk2mc+X76VbZDmaaJMVr2TV8YnkeEISH/6y2+5wLs8/AOq75pKp3K7xP22MqZ7lq4ZLIlIqLzbNgBXvQ9SdEHWHS4ca9+tubbJSADSuXIxboyoxYcU+9sR6bkN0V8rtGv8TbohFqbw5/Bf89H9QpRV0e9OlQ/0Tl8hX2mSlwHiiaz1CPLGOj5voGr/yTmePwzdDrF65t35lrYm60AeLd2mTlQKkdHgwD3WqzdIdsfyy/ajd4bidrvEr75OWYl3heDbWOoOncBmXDrf7WALfrT+oTVYKmKGtqlGzdBgvz95KUmqa3eG4VW6rc2Zd39c1fmWfBc/B/t+h91io2NTlw727SJusFERBAX682DuS6BPnmLAi2u5w3OqyiV9Ensx0+5Ysz73uqqCUytGGKbDmU2j1f9B4gMuH+zsmjnmbtMlKQdWuTmk61S/Lh0t2cey0B9bxcZErzfgHZrr9TJbnujk5FqUu7+BamPOIdUl7p9FuGfKtBTsoXihQm6wUYC/0qk9KmuGN+dvtDsVtrpT4JYfb2d1XynVOH4bpt0F4eeg/wTrH2cVW7j7O8l3HeaBDLW2yUoBVLRnG3W2r8/2fh/jTU+v4ONmVEr/J4XZ295VyjdQk+PZ2q8b+oGnWmTwuZozhTW2y4jMe6FCLskWCGTVri+fW8XGiKyX+xhk9doFGjtsZ9xu6IT7l64yBuY9CzFro9wmUjXTLsNpkxbeEBQfwTPf6/B0Tz4z1HlzHx0kum/iNMf6ZeuwGOG5n3NfPvsr11n5hHdC9/gmIuNEtQ2qTFd90Y5MKNKtanDELtnPak+v4OIHbO0iISF0R2Zjp67SIPOzuOJQXiP4d5j9tlaht/6zbhtUmK75JxKrjc+JsMmMX77I7HJdy+2+1MWaHMaaJMaYJ0Aw4B/zg7jiUh4s7AN8OhRI14KbPwM89v6raZMW3NaxUlAFRlZm4MprdxwpuHR+7pzMdgT3GmP02x6E8SfI5qxxDWgoM/BpCirhtaG2yoh7vWpfQIH9enrMVYwrmgV67E/9AYFp2T4jIPSKyTkTWxcbGujksZRtjYNaDcGSTVY+8VG23DZ2QlMrHv+6mdU1tsuLLShUO5uFOdVi2M5Yl247ZHY5L2Jb4RSQI6AN8l93zxpjPjDFRxpio0qVLuzc4ZZ+VY2HzDOj4AtTp4tah/7d8HyfOJvNkN22y4uuGtqpKrTKFeWVuwazjY+eMvzvwpzHG90rjqeztXgyLR0FkP2jzqFuHzmiy0jWyrDZZUQT6+/FS7wj2nzjH/37fZ3c4Tmdn4h9EDss8yged2AMz7oQyEXDjxy5rlJ6TC01WutR167jKc7WtXZouEWX56JfdHIkvWHV8bEn8IhIGdAa+t2N85WGSzsA3g0H8YeBUCApz6/AZTVZualqJ2mW1yYq66PmeEaSmG94sYHV8bEn8xpizxpiSxph4O8ZXHiQ9HX4YAcd3wS0ToXg1t4dwoclKJ/cdSFbeoUrJQtzTtgY/bDjE+v0n7Q7Haew+q0f5umVjYPsc6Poa1Gjn9uEzmqwMaVmFSsULuX185fnu71CTckVCGDVrK2kFpI6PJn5ln21zYOl/ofFgaDHClhAuNlmpZcv4yvMVCgrgmR712HQonu/WHbQ7HKfQxK/scWwb/HAvVGgKvd5z+8FcuNhk5a62NSilTVbUZfRpXIFrqxXnrQU7iE/0/jo+mviV+yWesg7mBhayeuYGhtgSRkaTlf9okxV1BSLCS70jOXku2Tom5OU08Sv3Sk2CmXdD3EEr6Re1p/qlNllRedWgYlEGXluFSaui2XX0jN3hXBVN/Mo9jIFNM+Cja60LtXq+DVVa2BSK1WSlvDZZUXn0eJc6hAX5M3q2d9fx0cSvXC96BXx+A8y8C4KLwO0/QLPhtoWzcGtGk5Xa2mRF5UnJwsE80rkOv+8+zsKt3lt0QBO/cp3YHTBtEEzsAQlHoe8ncO9vUPMG20JKSze8vWAHNUqHcXPTSrbFobzXbS2rUqdsYV6du5XzKd5Zx0cTv3K+M0dh9sMwrhXsWw4dX4QH10OTweBn7wz7hw2H2KVNVtRVsOr4RHLwZCJfLN9rdzj5EmB3AKoAST4LKz+CFR9AWhJceze0exLCPKPEcVJqGu8t2knDikXprk1W1FW4rlYpukWW4+Nf93Bzs0qULxpqd0h5olMedfXSUmH9JBjbFJa+DrU6wgNroMcYj0n6AF//4Wiy0q2uNllRV+25nvVJM4b/zvO+Oj6a+FX+GQM7F8D4NjB7JBSrAncuhAGToWRNu6P7l4SkVD76xdFkpZbnvBkp71W5RCFGXF+DWX/9w9po76rjo4lf5c8/G2FSb/j6VmtZ59av4K6Ftp2ieSVf/m41WXmiq872lfOMaF+T8kVDeOmnLV5Vx0cTv8qbuAMw8z/wWTs4thW6v2Ut60TcaEvZhdw4eTaZz5ZZTVauqVLc7nBUAVIoKIBne9Rn6+HTTF/rPXV89OCuyp3EU7D8HfjjUxA/q0NWm4chpKjdkV3RJ0u1yYpynV6NyjN59X7eWrCdng3LU7SQ518JrjN+dXmpSbDqYxh7jXXGToP+1qmZnV7yiqT/T1wik1ZpkxXlOlYdnwjiE1N4b/FOu8PJFZ3xq+wZA1u+h8WjIW4/1OgAXV6Bcg3tjixPxi7RJivK9SIrFGVQ8ypMXr2fQc2rULecZ08ydMavLpVRYmHGnRAcDrd9D0N/9Lqkvyc2gW/XaZMV5R6PdalL4eAAXp6zxePr+GjiVxfF7rxYYuHMEbhxHNy7zDov3wu9u3AnIdpkRblJibAgHu1chxW7T7BgyxG7w7ksTfwKEo7BnEdgXEurxMINL1jr+NcMsb3EQn5tioln7qbD3K1NVpQbDWlRhbplw3l17jaPruOjid+XJZ+F38ZYB27//AquvQse2gjXPw5B3r00MmbBdm2yotwuwN+Pl/pEEHMqkc+WeW4dHz2464vS02DDFPj1dUg4AvV7Q8dRUKpgLIms3GM1WXm+Z31tsqLcrnXNUvRoWI5xS3fTv1klKhTzvDo+OuP3JcbAzoXwyXWZSiwssDphFZCkb4xhzHxtsqLs9WyP+hgDr8/bZnco2dLE7yv+2Qhf9YGvb8lSYqGl3ZE51cKtR9moTVaUzSoVL8SIdjWZ8/dh/th7wu5wLqGJv6CLOwDf32OVWDiyGbqPgfv/8OgSC/mlTVaUJxnRriYVi4UyavZWj6vjo4m/oEqMg4UvwIdRsPUnaPOIdeC2xb0QEGR3dC6hTVaUJwkN8ufZHvXZdvg009YcsDucf7Hl4K6IFAO+ABoABrjTGLPKjlgKnNRkWPsFLBtjJf/GA+GG56FowZ4Ba5MV5Yl6NCxHyxoleHvhDno1Kk+xQp4x6bJrWvQBMN8YUw9oDHjmERBvYgxs/h4+vhYWPAPlm1gXX/UbX+CTPmiTFeWZrDo+kZxOTOG9RZ5Tx8ftM34RKQpcDwwHMMYkA8nujqNA2b8SFj4Ph9ZDmUi4bSbU6mR3VG6T0WSlVQ1tsqI8T/3yRbitZVWrjk+LKtQrV8TukGyZ8VcHYoEJIrJBRL4QkbCsG4nIPSKyTkTWxcbGuj9Kb3B8F0wbDBO6w+l/4MaPYcRyn0r6cLHJis72lad6tHMdioQGMnrWVo+o42NH4g8AmgKfGGOuAc4CT2fdyBjzmTEmyhgTVbp0aXfH6NkSjsGcR+HjFrBvmaPEwp9wzW1eW2Ihv06eTebzZXvpEqFNVpTnKlYoiMe61GXV3hP8vNn+Oj52JP4YIMYY84fj/gysNwJ1Jcln4be3HCUWJkHUnTByQ4EosZBfnyzdzdnkVB7vqk1WlGcb3LwK9cqF89rcbSQm21vHx+2J3xhzBDgoIhl/qR2Bre6Ow6ukp1m1dD5sBr++CjXaW+fi93wbCvvup6HD8VaTlX7XVKKONllRHs7fTxjVJ5JDcYl8umyPrbHYVavnQWCqiAQBe4E7bIrDsxkDuxfDohet/raVroX+E6BqK7sj8wgfLNYmK8q7tKxRkp6NyvPJ0j30b1bJtj4RtpzOaYzZ6Fi/b2SM6WuMOWVHHB7tn43w1Y0wtT+kJMItk+CuRZr0HfbEJvDd+hgGt6hC5RK+ucylvNOzPeojAv+dt922GPTyRk8TdzBTiYVN0O1NeGANRPYtcCUWrsa7C3cSHODH/91QMIrLKd9RsVgo97WrxdxNh1m1x546Ppr4PUVinLWk82Ez2PIjXPewdeC25YgCW2Ihvy40WWlTXZusKK90b7saVCwWyujZW0hNS3f7+Jr47ZaaDKs/sc7UWTEWGtxkdb/qPBpCi9kdnUfKaLJy9/U17A5FqXwJCfTn+Z712X7kjC11fLQRi12MgS0/wJLRcCraOlOn88tQvrHNgXm2jCYrz/WoTxFtsqK8WLcG5WhdsyRvL9xJr0YVKB7mvk/2OuO3w/5V8EUnmHEHBIbBkJlw+4+a9K8gc5OV21tpkxXl3TLq+CQkpfKum+v4aOJ3p+O74JshMKEbnD50scRC7U564DYXFjmarDzUUZusqIKhbrlwbm9Zlal/7GfrP6fdNq4mfndIiL1YYmHvUqtMso+WWMivtHTDWwt2UKNUGP2bFfxqo8p3PNKpDkVDAxk9e4vb6vho4nel5HOOEgtNYP1EiLoDRm6E65/w2RIL+fWjo8nKY9pkRRUwRQsF8njXuvyx7yRzNx12y5h6cNcV0tNg49fw62tw5jDU6wWdRkEpvcI0P5JS03hXm6yoAmzgtVWYuvoAr8/dRsd6ZQkNcu1KgE6dnMkY2LUIxreBWf8HRSrCHfNh4FRN+ldhmqPJyhNd6+Lnp8dCVMGTUcfnn/jzfPKb6+v4aOJ3lsN/ZSqxcA5umQh3L9YSC1fpbFIqHzqarLStrU1WVMHVvHoJejeuwKe/7eHgyXMuHUsT/9WKOwjf3wuftoMjf0O3N+CBtRDZT8/UcYKMJitPaJMV5QOe6V4PPxFen+fabrS6xp9f5+Nh+bvWVbcA142ENo/q1bZOdOpsMp8t20vniLI01SYrygdUKBbK/e1r8s6inazcfZzWLmolqjP+vMoosfBBE1jxvjWzf3C9ddWtJn2n+uS3PSQkp/KENllRPuQ/19egcolQRrmwjo8m/tzKKLHwcXOY/zSUawj3LoObPoVile2OrsA5HJ/IxJXR9LumojZZUT4lJNCf53pEsPNoAlNW73fJGLrUkxsHVsPC5yFmLZSJgCEzrIbmuubsMmOX7MIYwyOd6tgdilJu1zWyLG1qleLdRTvp06QiJZxcx0dn/JeTUWLhy67WQdw+H8KI36F2Z036LrQ3NoFv18UwpEVVbbKifJJVxyeC+uWLcDoxxen71xl/dhJi4bc3YN0ECAyFDs9Dq/shKMzuyHzCO4usJisPdNAmK8p31S4bzvR7XXM6uCb+zJLPweqP4fcPrHPxmw2H9k9D4TJ2R+YzNh+KZ+7fh3nwhlqUDtcmK0q5giZ+uLTEQt2eVomF0rq+7G5jFuygWKFA/qNNVpRyGd9O/MbA7iVWy8NjW6BiM+j/JVRtbXdkPmnVnhMs2xnLsz3qaZMVpVzIdxP/4b9h0QtWmeTi1aD/BL3a1kbGGMYs2E65IiEMbVXN7nCUKtB8L/HHHbSWdP76xrrgqut/4dq7IEDXk+20eNsxNhyI4783NdQmK0q5mO8k/qwlFlo/CG0f06ttPYDVZGU7NUqFcYs2WVHK5Qp+4k9NhnVfwm9vQuJJaDTA6oBVrIrdkSmHnzYeYufRBD4afI02WVHKDQp24t/6EyweBSf3QvXrofMrUKGJ3VGpTJJT03l30U4aVCxCjwbl7Q5HKZ9QsBP/phngHwyDv9OrbT3UtDUHiDmVyGv9GmqTFaXcxJbELyLRwBkgDUg1xkS5ZKA+YyEoHPwL9vubt7KarOyiZY0SXK9NVpRyGzszYgdjzHGXjhCqNdw92YQV+ziekMxnQ+tpkxWl3EiPpClbnDqbzKe/aZMVpexgV+I3wEIRWS8i92S3gYjcIyLrRGRdbGysm8NTrjbe0WTl8S7aZEUpd7Mr8bcxxjQFugMPiMj1WTcwxnxmjIkyxkSVLl3a/REqlzkSf/5Ck5W65bTJilLuZkviN8Yccvx7DPgBaG5HHMoeHyzZRbo2WVHKNm4/uCsiYYCfMeaM43YX4GV3x6GuXnq64UxSKmfOp3DmfKrjK+XCv6cdj53O9NiZ86lsPBjH7S21yYpSdrHjrJ6ywA+OszgCgK+NMfNtiMOnpacbEpIvTdZWok7ldGJKts/963ZS6hXHCfL3IzwkwPEVSHhIADddU5GHOtZ2w3eplMqO2xO/MWYv0Njd4xYk6emGsxeSduaEnTHLvkyydiT1hORUjLn8OIH+ciFZh4cEEB4cSNWShSgSGnghkRfJktQz/i3i+FcLrinlefTKJjczxnA2Oe2SJZGLM+zsE/fpTMk9IenKSTvAT7Ik5AAqlyh0ISEXySZZX0jmoVbiDg7w0/PrlSqANPHngTGGc8lp/07YlyTpfyfwrMsmCUmppF8haftfSNrWLDs8JIBKxQtdSMhZl04yz7IzEnpIoCZtpVT2fCbxG2NITLmYtOMTcz4oeWGdO8tjCUmppF0ha/sJlyTkSsVDMyXs7GfZRUMvPhYa6K9JWynlMgU68T/7wyaW74q9kNxzk7QLB/97Bl2haAhFyoVfZpadMQu37hcK0qStlPJsBTrxVywWSrMqxbOdZV9Y6850oDJMk7ZSygcU6MT/QIdadoeglFIeR4u0KaWUj9HEr5RSPkYTv1JK+RhN/Eop5WM08SullI/RxK+UUj5GE79SSvkYTfxKKeVjxFypzKMHEJFYYH8+X14KOO7EcNTV05+JZ9Kfi+e52p9JVWPMJb1rvSLxXw0RWWeMibI7DnWR/kw8k/5cPI+rfia61KOUUj5GE79SSvkYX0j8n9kdgLqE/kw8k/5cPI9LfiYFfo1fKaXUv/nCjF8ppVQmmviVUsrHeFXiF5EEx78VRGSG3fGoqyciS0VETyF0IhH5QkQiXDzGPBEpls3jo0TkcVeO7Qsycl02j9cTkY0iskFEauZ3/17ZgcsY8w/Q35VjiEiAMSbVlWMo5QrGmLvdMEYPV4/hq8Tq/5rTpLwvMMMY8+rVjOFVM/4MIlJNRDY7bg8Xke9FZL6I7BKRMZm26yIiq0TkTxH5TkQKOx5/UUTWishmEfnM8R+dMft8X0TWAQ/Z8s15OcfPZruITBWRbSIyQ0QKiUhHxyxlk4h8KSLBWV53p4i8n+n+f0TkPfd/B95FRMJEZK6I/OX4fR6Q+VOUiNwlIjtFZI2IfC4iHzkenygin4jIahHZKyLtHT+XbSIyMdP+Bzl+ZptF5M1Mj0eLSCnH7eccY/wO1HXv/0DB4Pi72SEiXwGbgVAReU9EtojIEhEpLSI9gIeB+0Tk16sZzysTfzaaAAOAhsAAEans+KV8HuhkjGkKrAMedWz/kTHmWmNMAyAU6JVpX0HGmChjzDtujL+gqQuMM8bUB05j/b9PBAYYYxpifdK8L8trvgV6i0ig4/4dwJfuCderdQP+McY0dvw+z894QkQqAC8ALYHrgHpZXlscaAU8AswC3gMigYYi0sTx+jeBG7D+xq4Vkb6ZdyAizYCBjud7ANc6/Tv0HbWx/m4iHffXOW7/BrxkjJkHjAfeM8Z0uJqBCkriX2KMiTfGnAe2AlWxftkjgBUishEY5ngcoIOI/CEim7B+qSMz7Wu6G+MuqA4aY1Y4bk8BOgL7jDE7HY9NAq7P/AJjTALwC9BLROoBgcaYTe4K2IttAjqLyJsi0tYYE5/puebAb8aYk8aYFOC7LK+dbazzuTcBR40xm4wx6cAWoBpWEl9qjIl1LHtOJcvPDWgL/GCMOWeMOY31BqLyZ78xZrXjdjoXc9EUoI0z2iqI+AAAA3xJREFUB/LKNf5sJGW6nYb1fQmwyBgzKPOGIhICjAOijDEHRWQUEJJpk7MujtUXZL04JA4omYvXfQE8C2wHJjg7qILIGLNTRJpizbZfFZEleXh5xt9NOv/+G0rH+htKcU6UKpcul3ucesFVQZnxZ2c1cJ2I1IILa6F1uJjkjzvW/F16kNhHVRGRVo7bg7GW2apl/CyA27E+vv6LMeYPoLLjNdPcEai3cyzHnDPGTAHeAppmenot0E5EiotIAHBzHne/xvH6UiLiDwzi0p/bMqCviISKSDjQO1/fiMrKj4u5aTDwuzN3XlBm/JcwxsSKyHBgWqYDic87ZkifYx1AOYL1x6GcawfwgIh8ibX0NhLrjfg7RwJai7VWmZ1vgSbGmFNuidT7NQTeEpF0rBn6fcDbAMaYQyLyOlYCP4n1SSo+px1lZYw5LCJPA79ifYKea4z5Kcs2f4rIdOAv4Bj69+QsZ4HmIvI81v/rAGfuXEs2KKcSkWrAHMeBxvy8fg7Wwau8LFmoHIhIYWNMguMN9wfgS2PMD3bHpexVkJd6lBcRkWIishNI1KTvVKMcJzdsBvYBP9ocj/IAOuNXSikfozN+pZTyMZr4lVLKx2jiV0opH6OJX/k8yVQJUUR6OOrOVL3ca65yvOEZNXOUsoMmfqUcRKQjMBbobozZn8vX+Ls2KqWcTxO/UoCIXA98DvQyxuxxPHabo6rlRhH5NCPJi0iCiLwjIn8BrRz3X3NUyFwtImUd25UWkZliVYJdKyLX2fYNKpWJJn6lIBjr/Pa+xpjtACJSH+tqyeuMMU2wakANcWwfBvzhqIj5u+P+amNMY6wSBv9xbPcB1sVo12KVS/jCXd+QUpdTYEs2KJUHKcBK4C4u9mHoCDQD1orVriEU69J5sN4EZmZ6fTIwx3F7PdDZcbsTEOF4PUARR30opWyliV8pqxrlrcASEXnWGPM6Vm2aScaYZ7LZ/rwxJi3T/RRz8UrIjOqwYH2ibukoF35BpjcCpWyhSz1KAcaYc0BPYIiI3AUsAfqLSBkAESmRjzN9FgIPZtwRkSbOilepq6GJXykHY8xJrI5WzwO1HP8uFJG/gUVA+TzuciQQJSJ/i8hWYIQz41Uqv7RWj1JK+Rid8SullI/RxK+UUj5GE79SSvkYTfxKKeVjNPErpZSP0cSvlFI+RhO/Ukr5mP8HpqXRgRlSsmAAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "fAMztA6VLBIJ"
      },
      "source": [
        "Grid Search on K nearest neighbour"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "a_cjavdRKCAf",
        "outputId": "3a5b2545-0b40-40ad-f99a-411e01b7fa49"
      },
      "source": [
        "param_grid = {'n_neighbors':[10,15,20,25,30,35,40],'leaf_size':np.arange(3,20),'p':[1,2]}\n",
        "GS_KNN=GridSearchCV(KNeighborsClassifier(), param_grid,cv=5)\n",
        "GS_KNN.fit(X_train,Y_train)\n",
        "GS_KNN.best_params_"
      ],
      "execution_count": 54,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "{'leaf_size': 3, 'n_neighbors': 15, 'p': 1}"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 54
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "6fOc-C7IKDs5",
        "outputId": "5c8e663f-85af-4000-976f-d54ecf537c13"
      },
      "source": [
        "GS_KNN.score(X_test,Y_test)"
      ],
      "execution_count": 55,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "0.7954545454545454"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 55
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "SPG1C5UDKFS6"
      },
      "source": [
        "knn_train_score=[]\n",
        "knn_test_score=[]\n",
        "for i in [10,15,20,25,30,35,40]:\n",
        "  param_grid = {'n_neighbors': [i],'leaf_size':np.arange(3,20),'p':[1,2]}\n",
        "  GS_KNN=GridSearchCV(KNeighborsClassifier(), param_grid,cv=5)\n",
        "  GS_KNN.fit(X_train,Y_train)\n",
        "  y_train_pred=GS_KNN.predict(X_train)\n",
        "  y_pred=GS_KNN.predict(X_test)\n",
        "  knn_train_score.append(log_loss(Y_train,y_train_pred))\n",
        "  knn_test_score.append(log_loss(Y_test,y_pred))"
      ],
      "execution_count": 56,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 312
        },
        "id": "0wN4euytKG2-",
        "outputId": "7e0a4acc-1798-4a8c-d719-bb1092dc5ac3"
      },
      "source": [
        "plt.title(\"K-Neighbours Classifier: Error vs Number of Neighbors \")\n",
        "plt.xlabel(\"Number of Neighbors\")\n",
        "plt.ylabel(\"Error\")\n",
        "plt.plot([10,15,20,25,30,35,40],knn_train_score,label=\"Training Error\")\n",
        "plt.plot([10,15,20,25,30,35,40],knn_test_score,label=\"Testing Error\")\n",
        "plt.legend()\n",
        "plt.plot()"
      ],
      "execution_count": 57,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 57
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU1RrA4d+XTgqhhRp67y30LkVABKUjCNgAC2BFrwVRUUG5KoKISBWQIqCigiAI0nvvHRJqCCSEQEg7949ZuEtMSAK7mS3nfZ482Z2Znfl2dna/mXPmnCNKKTRN0zT35WF2AJqmaZq5dCLQNE1zczoRaJqmuTmdCDRN09ycTgSapmluTicCTdM0N6cTQRaIyFIR6ZfJZVeLyLPpzCshIkpEvGwbof1Z4i5jp3X3FpHlVs8bichREbkuIo9lZf9r2UdEpovISJO2LSIyTUSuisgWO6y/mOX488zEsvf8XovICBGZZesYbcHpE4GInBKRVlbPe1oOimZpLKtEZK+IeFhNGyki0zOzLaVUO6XUDJsE7qBEpJCITBGR8yISKyKHROQDEQmw97aVUrOVUm2sJn0IjFdKBSqlfrHn/heR/iKSbPnSW/8Vtsf27Mnynbhk/ZmJyLMistrEsOylMdAaCFVK1U090/K5KhEZlmp6hIg0z2jlSqkzluMv2WYROyCnTwTWLGeL3wCPKKX+SWexwkDP7IvKXJk5k7FaNg+wEcgBNFBKBWF8yXIBpe0T4T0VB/Y/6EqycOW10fKlt/47l5n1ZfXqLhuuBj2BoXbehs1l5Xi1KA6cUkrF3WOZK8AwEQm6/8gcy33sp3tymUQgIgOB/wIPK6U23GPRz4AP7nH5Vl9ENohItIjstj5rsC7uERFPEfmviFwWkZMi8lIal4XFRWS95cx6uYjkS7W5p0XknOXs+3Wr7fiKyFeWeecsj30t8/qLyLpUMd8prrFcpn8rIktEJA5oISLtReSAJY6z1ttK5VUgFuijlDoFoJQKV0oNVUrtSWNfPSIiO0XkmoiEi8gIq3l+IjJLRKIs+3KriBSweg8nLPGcFJHeqd+biBwHSgG/Wc7MfSVVcZuIPC0iBy1XgMtEpHiqffKiiBwFjqbzfjPNcpb9pojsAeJEpIxlG8+IyBngbxHxEJF3ReS05Yz8BxEJtry+ROrl09jGQRHpYPXcS0QiRaTWvfZnOj4HXheRXGls519FGKmO7f6W4/ZLy7ZOiEhDy/Rwy3tLXUSXT0T+snym/6T6LCpY5l0RkcMi0t1q3r+O1zTiLSwiiy2vPyYiz1mmPwNMBhpYjpEP0tkXBzFOcF5Na6blc3tLRI5b9u98MU6K/rWvRKSkiKyxvM8VIvKN/Lu4p7eInBHjt+GdVPP8RGSe5fU7RKS6VRwVLZ9DtIjsF5GO99pPkvnvdcaUUk79B5wCFgIXgeoZLKuAssB24FnLtJHAdMvjIkAU0B4jSba2PA+xzF9t9bpBwAEgFMgNrLCs38tq2eNAOYwz7NXAKMu8EpZl5wABQFUgEmhlmf8hsAnID4QAG4CPLPP6A+vSeF9lLI+nAzFAI8t78APOA00s83MDtdLZP5uADzKxD29vq7kldg+gmuUzeMwybyDwG+CPcXZaG8hpeb/XgPKW5QoBldN6b5bPtpXVc+v93wk4BlQEvIB3gQ2p4vwLyAPksEyLBhqn877+tV/TOM52AUUtn+ftz/AHy3vKATxtiakUEAgsAmam+szvLJ/GNoYDs62ePwIcvNf+vEesrSzbH2mZ9iywOlUsXuns2/5AEvCUZVsjgTMYV9u+QBuME4ZAq2MuFmhqmT/29r60vNdwy7q8gJrAZaBSesdrGu9nDTAB41iugfFdeSiTn1t/YJ3ldVeBPJbpEUBzy+OhGMd+qCX+74A5ae0rjIQyBvDBKJa6BsxKtez3luOhOnALqGiZPwJIBLoC3sDrwEnLY2+MY+dty7ofsuzT8untJzL5vc7U76gtf5TN+MM46K8BvwIeGSyrgDIYP/SnLTvcOhG8ieWLa/WaZUC/NL4sfwMDrZZrxb8TwbtW818A/kx1wFSwmv8ZMMXy+DjQ3mrewxiXv2ke+Pw7EfyQav4ZjB+SNH84rJY7CgzKzD5MZ95XwJeWx09jJLBqqZYJwPhB7kKqH8PU7417J4KlwDNW8zyAG0BxqzgfysJx1B/jxy/a6u94qlietnp++zMsZTVtJfCC1fPyGF98r7SWTyOGMhhffn/L89nA8Hvtz3t8J1oBVTB+PELIeiI4ajWvqmX5AlbTooAaVsfcXKt5gUAyRtLsAaxNFd93wPvpHa+pli1qWVeQ1bRP+f939q5jJp3P9XZSmg+Mtjy2TgQHgZZWrymUxufmBRSzHCP+VsvO4t+JINRq/hagp+XxCGBTqmP2PNDE8ncBq98wjBPFEQ/6vc7Mn6sUDT2PceY9WUQEwHJpdbvCr4n1wkqpJRgHwsBU6ykOdLNcmkWLSDRG1i+UxjYLY5zp3BaexjIXrB7fwPiCWLN+zWnLOm+v+3Q68zIjdSxdsCQ/y2V7g3ReF0Xa7zVNIlJPRFZZii9iMK6Sbhd/zcRIonPFKN76TES8lVGW28Oy7HkR+UNEKmThvd1WHBhr9TldAQTjqu62tD6Te9mklMpl9Ze6XiSt9VlPS+tz8wIKpLP8XZRSxzB+lB4VEX+gI/CjZXaa+/Neb0YptQ/4HXjrXsul46LV45uW9aWeZn0833lfSqnrGJ9HYYzPqV6q71RvoGBar01DYeCKUirWatpp7v6cM2s48HwaRWrFgZ+t4juIkXxSL3c7lhsZxH6v7731fkrB+B0qbPkLt0y7LfX7vN/vdYZcJRFcBFpiZNUJAEqpyur/FX5r03jNOxiXYf5W08IxrgisfwwClFKj0nj9eYxLyduK3kfc1q8pBtyumDyHcXCmNS/OOmYRsf5C3abueqLUVqVUJ4yipl8wzozSsgJ4XKzuqsrAj8BioKhSKhiYiPFjjFIqUSn1gVKqEtAQ6AD0tcxbppRqjZF0DmFcSmdVOMYVmfVnlUPdXT+k0nvxfUprfdbT0vrckrj7RzWjmOYAvTCKvg5YksM992cG3gee4+4flNsVq9bHflrHUVbcOZZFJBCjSO4cxuf0T6rPKVAp9bzVa++1T84BeeTuit5iwNmsBqiUOoRRXJa63D4caJcqRj+lVOptnLfEYr3fsvq9t95PHhi/Iecsf0VTffdSv8/7/V5nyFUSAcq4u6Ml0FZEvszE8quBfUA/q8mzMM7GHhajMthPRJqLSGgaq5gPDBWRIpYKuTfvI+z3RMRfRCpjlKHOs0yfA7wrIiFiVDAPt8QGsBuoLCI1RMQP43IzXSLiI8b9+cFKqUSMYrSUdBb/AqMcf8btyj7L+/tCRKqlsXwQxhlSvIjUBZ6w2m4LEakqxt0N1zAutVNEpICIdBLj1sZbwPV7xHMvE4H/WPYdIhIsIt3uYz22NAd4xVKhGAh8AsxTSiVlYR1zMcrgn+f/VwPp7s+MVmZJJPOAIVbTIjF+YPpYjvOnefC7wtqLSGMR8QE+wri6Cse4IiknIk+KiLflr46IVMzMSi3r2AB8avk+VgOe4f/fh6z6AOO7Zl2JPhH42OqYDxGRTmnEchrYBoywfK8aAI9mcfu1RaSzGJXPL2N8BzYBmzGuHoZZ9lFzy7rnprWSLH6vM+QyiQCMe34xKlm6isinmXjJuxhnLrdfH45xJvY2RoVUOPAGae+n74HlwB5gJ7AE4+wvK/cb/4NRQbQSGKOUut2YaiTGAbcH2AvssExDKXUEozJ5BUaZ/joy9iRwSkSuYRTJ9E5rIaXUFYyzzURgs4jEWmKLscSZ2gvAh5blhnP3GUlBYAHGAXrQ8l5nYuzLVzHOgK4AzTB+9LJEKfUzMBqjqOQaRlJvd6/XpFVMmMrtu0+s/+pkIaypGO9xDUYlYDwwOAuvRyl1HqNCsiH/PzGA9PdnZnyIUTdj7TmMYzsKqIzxY/sgfsS4+riCUZHdB8BSpNMG45btcxjFJqMxKmUzqxdG+fs54GeM+oUV9xOkUuokxn6z3h9jMa5sl1uO5U1AvXRW0RtogLHfRmJ8RreyEMKvGEWjVzG+l50tV3sJGD/87TAq0ycAfS1XMenJ1Pc6M8RS6aA9IBFpB0xUShXPcGFN01yCiMwDDiml3jc7lgfhUlcE2UlEcohxH6+XiBTBOBv62ey4NE2zH0uxVmkx2h60xShB+MXsuB6UTgT3TzDKG69iFA0dxCge0TTNdRXEuNX2OvA18LxSaqepEdmALhrSNE1zc/qKQNM0zc05XTfI+fLlUyVKlDA7DE3TNKeyffv2y0qpkLTmOV0iKFGiBNu2bTM7DE3TNKciIqfTm6eLhjRN09ycTgSapmluTicCTdM0N+d0dQRpSUxMJCIigvj4eLND0az4+fkRGhqKt/c9O8nUNM1kLpEIIiIiCAoKokSJEojRC7VmMqUUUVFRREREULJkSbPD0TTtHlyiaCg+Pp68efPqJOBARIS8efPqqzRNcwIukQgAnQQckP5MNM05uETRkKZpWmopKYq/Dl5k/9kYs0OxmTol89CkbJptwh6ITgQ2EBUVRcuWLQG4cOECnp6ehIQYH9aWLVvw8fFJ97Xbtm3jhx9+4Ouvv77nNho2bMiGDQ/aZTysXr2aTp063VVuP2bMGFq1avXA69Y0R5CUnMIfe88z/u9jHL10HQBXuTgdmFxaJwJHlTdvXnbt2gXAiBEjCAwM5PXXX78zPykpCS+vtHd1WFgYYWFhGW7DFkngtiZNmvD777+nO//OgNYeHmk+T8+93qem2Vticgo/7zjLhNXHOBV1g/IFgvi6V00eqVoITw8XyQR24jJ1BI6mf//+DBo0iHr16jFs2DC2bNlCgwYNqFmzJg0bNuTw4cOAcYbeoUMHwEgiTz/9NM2bN6dUqVJ3XSUEBgbeWb558+Z07dqVChUq0Lt3b273ILtkyRIqVKhA7dq1GTJkyJ31ZsapU6coX748ffv2pUqVKqxdu/au5+Hh4bzxxhtUqVKFqlWrMm/evDvxNGnShI4dO1KpUiWb7DtNy4r4xGRmbjpN889XM2zhHgL9vPjuydosHdqEjtUL6ySQCS53+vbBb/s5cO6aTddZqXBO3n+0cpZfFxERwYYNG/D09OTatWusXbsWLy8vVqxYwdtvv83ChQv/9ZpDhw6xatUqYmNjKV++PM8///y/7sPfuXMn+/fvp3DhwjRq1Ij169cTFhbGwIEDWbNmDSVLlqRXr17pxrV27Vpq1Khx5/nChQvx9PTk6NGjzJgxg/r163Pq1Km7ni9cuJBdu3axe/duLl++TJ06dWjatCkAO3bsYN++ffo2US1b3UhI4sfNZ5i05gSXYm9Rq1guRj5eheblQvSNCllk10QgIq8AzwIKY+zdp5RS8Vbz+wOfYwykDTBeKTXZnjFlp27duuHp6QlATEwM/fr14+jRo4gIiYmJab7mkUcewdfXF19fX/Lnz8/FixcJDQ29a5m6devemVajRg1OnTpFYGAgpUqVuvNj3KtXLyZNmpTmNtIqGjp16hTFixenfv36d6ZZP1+3bh29evXC09OTAgUK0KxZM7Zu3UrOnDmpW7euTgJatomNT2TmptNMWXuSqLgEGpTKy1c9a9CglL6F/H7ZLRFYhm8cAlRSSt0UkfkYA1hPT7XoPKXUS7ba7v2cudtLQMD/x8d+7733aNGiBT///DOnTp2iefPmab7G1/f/Y3p7enqSlJR0X8s8aLxpPc/s6zTNHqJvJDBt/SmmrT/JtfgkmpcP4aUWZQgrkcfs0JyevesIvIAcIuIF+APn7Lw9hxUTE0ORIkUAmD59us3XX758eU6cOMGpU6cA7pTh20qTJk2YN28eycnJREZGsmbNGurWrWvTbWhaWi5fv8XoPw/RePQqxq48Sv1SefntpcZMf6quTgI2YrcrAqXUWREZA5wBbgLLlVLL01i0i4g0BY4AryilwlMvICIDgAEAxYoVs1fIdjVs2DD69evHyJEjeeSRR2y+/hw5cjBhwgTatm1LQEAAderUSXfZ1HUE7777boZ3Lj3++ONs3LiR6tWrIyJ89tlnFCxYkEOHDtnsPWiatYvX4vnunxP8uOU0t5JS6FCtMC+2KE2FgjnNDs3l2G3MYhHJDSwEegDRwE/AAqXULKtl8gLXlVK3RGQg0EMp9dC91hsWFqZSD0xz8OBBKlasaOu34HSuX79OYGAgSilefPFFypYtyyuvvGJqTPqz0bIq4uoNJv5znPlbI0hWisdrFuH55qUpHRJodmhOTUS2K6XSPOOzZ2VxK+CkUirSEsQioCFwJxEopaKslp8MfGbHeFze999/z4wZM0hISKBmzZoMHDjQ7JA0LdNOXo5jwqpj/LzzLCLQLawozzcrTdE8/maH5vLsmQjOAPVFxB+jaKglcNepvIgUUkqdtzztCBy0Yzwu75VXXjH9CkDTsurIxVi+WXWM33afw9vTgz71izOwWSkKBecwOzS3Yc86gs0isgDYASQBO4FJIvIhsE0ptRgYIiIdLfOvAP3tFY+maY5l39kYxv99jD/3X8Dfx5Pnmpbi2calCAnyzfjFmk3ZtR2BUup94P1Uk4dbzf8P8B97xqBpmmPZceYq4/8+xt+HLhHk58WQh8rwVKOS5A5Iv08uzb5crmWxpmmORynF5pNXGPf3UdYfiyK3vzdvPFyeJxsUJ6efHsHObDoRaJpmN0op1hy9zPi/j7L11FXyBfryTvuKPFGvGAG++ufHUehPwgYepBtqMDpu8/HxoWHDhgBMnDgRf39/+vbt+8CxNW/enPPnz5Mjh1HxVqZMGRYsWPDA69W0e1FKseLgJcb/fZTdETEUDvbjw06V6R5WFD9vT7PD01LRicAGMuqGOiOrV68mMDDwTiIYNGiQTeObPXv2PRuMpe4+OrPdSetup7XUklMUS/cZYwEcuhBLsTz+jOpclc61QvHx0p0dOyr9LbaT7du38+qrr3L9+nXy5cvH9OnTKVSoEF9//TUTJ07Ey8uLSpUqMWrUKCZOnIinpyezZs1i3LhxrFy58k4yad68OfXq1WPVqlVER0czZcoUmjRpwo0bN+jfvz/79u2jfPnynDt3jm+++SZTYxuA0U22n58fO3fupFGjRly5cuWu53379mXQoEHcuHGD0qVLM3XqVHLnzk3z5s2pUaPGnU7oXnvtNTvvSc0ZJCWnsHj3Ob5ZdYzjkXGUDgngyx7VebRaYbw8dQJwdK6XCJa+BRf22nadBatCu1GZXlwpxeDBg/n1118JCQlh3rx5vPPOO0ydOpVRo0Zx8uRJfH19iY6OJleuXAwaNOiuq4iVK1fetb6kpCS2bNnCkiVL+OCDD1ixYgUTJkwgd+7cHDhwgH379t3VZURqvXv3vlM01Lp1az7//HPg7m6y+/fvf9fzatWqMW7cOJo1a8bw4cP54IMP+OqrrwBISEggdetuzT0lJKWwcEcE364+zpkrN6hQMIhvnqhF2yoF9TgATsT1EoEDuHXrFvv27aN169YAJCcnU6hQIQCqVatG7969eeyxx3jssccytb7OnTsDULt27Tudyq1bt46hQ4cCUKVKFapVq5bu69MrGrLuJtv6eUxMDNHR0TRr1gyAfv360a1btzvL9ejRI1Nxa64rPjGZeVvDmfjPcc7HxFM9NJjhHcJoWTG/7graCbleIsjCmbu9KKWoXLkyGzdu/Ne8P/74gzVr1vDbb7/x8ccfs3dvxlcvt7udtmWX06C7ndayLu5WErM3n2bSmpNcvn6LOiVyM7pLNZqUzacTgBPThXd24OvrS2Rk5J1EkJiYyP79+0lJSSE8PJwWLVowevRoYmJiuH79OkFBQcTGxmZpG40aNWL+/PkAHDhwIFMJJbOCg4PJnTs3a9euBWDmzJl3rg4093QtPpHxfx+l8ei/+WTJISoUDGLegPr8NKghTfWIYE7P9a4IHICHhwcLFixgyJAhxMTEkJSUxMsvv0y5cuXo06cPMTExKKUYMmQIuXLl4tFHH6Vr1678+uuvjBs3LlPbeOGFF+jXrx+VKlWiQoUKVK5cmeDg4DSXta4jyJcvHytWrMhw/TNmzLhTWVyqVCmmTZuW+R2guYyrcQlMXX+S6RtOERufRMsK+XnxoTLUKpbb7NA0G7JbN9T2oruhNiQnJ5OYmIifnx/Hjx+nVatWHD58OMM2C9nNHT8bV3ApNp4pa08yc9NpbiQk065KQV5sUYYqRdI+2dAcn1ndUGt2dOPGDVq0aEFiYiJKKSZMmOBwSUBzTsv3X2DwnJ0kJqfQsXphXmhRhnIFgswOS0u4AT726ZJbJwInFRQUpG/h1Gzu0rV4hi3cQ9kCgYzrVYuS+fSNAQ4hMR4mNobqvaDZGzZfvctUFjtbEZc70J+Jc1FK8ebCPcQnJjO2Z02dBBzJxnFw5TiEZq7BaFa5RCLw8/MjKipK//A4EKUUUVFR+Pn5mR2Klknztoaz6nAkb7WtoIeFdCQxEbD2C6j4KJRuYZdNuETRUGhoKBEREURGRpodimbFz8+P0NBQs8PQMuFM1A0++v0AjcrkpW+DEmaHo1lb/i6oFGjzsd024RKJwNvbm5IlS5odhqY5peQUxes/7cbDQ/i8a3U8dNcQjuPkGtj/MzT/D+QubrfNuEQi0DTt/k1Zd4Itp67wRffqFM6lxwl2GMlJsPRNyFUMGg2166Z0ItA0N3b4Qixjlh3h4coFeLxmEbPD0axtnQyXDkCPWeBt3wTtEpXFmqZlXUJSCq/O30XOHF588nhV3U2EI7keCas+gVItoEIHu29OXxFompsa9/dR9p+7xqQna5M30NfscDRrKz+AxDho9xlkQ4LWVwSa5oZ2nLnKN6uO0a12KG0qFzQ7HM3a2e2wcxbUGwQh5bJlkzoRaJqbuZmQzGvzd1MoOAfDH61kdjiatZQUWDIMAvNDszezbbO6aEjT3MyopQc5eTmOH5+rR5Cft9nhaNZ2z4Gz2+CxieCXM9s2q68INM2NrDt6mRkbT/N0o5I0LJ3P7HA0a/ExsOJ9CK0L1bJ3FEB9RaBpbiLmZiJvLNhN6ZAAhrUtb3Y4WmqrR0PcZej9E3hk7zm6TgSa5iY+WLyfS7G3+PmFhvh5e2b8Ai37XDoEW76DWn2hcM1s37xd046IvCIi+0Vkn4jMERG/VPN9RWSeiBwTkc0iUsKe8Wiau1q69zyLdp5l8ENlqBaay+xwNGtKwdJh4BMALYebEoLdEoGIFAGGAGFKqSqAJ9Az1WLPAFeVUmWAL4HR9opH09zVpdh43v55L1WLBPNiizJmh6OldnAxnPwHWrwLAebU29i7IMoLyCEiXoA/cC7V/E7ADMvjBUBL0c0bNc1mlFK8vWgvcQnJfNmjOt6e+v4Qh5JwA5a9A/krQ9jTpoVht6NCKXUWGAOcAc4DMUqp5akWKwKEW5ZPAmKAvPaKSdPczU/bI1hx8BJvtq1Amfx6uEmHs/4riAmH9p+Bp3lVtvYsGsqNccZfEigMBIhIn/tc1wAR2SYi2/SYA5qWOeFXbvDhbweoXyoPTzUsYXY4WmpXT8G6r6BKFyjR2NRQ7Hmd2Ao4qZSKVEolAouAhqmWOQsUBbAUHwUDUalXpJSapJQKU0qFhYSE2DFkTXMNKZYxBgDGdNNjDDikZe+Ahye0/sjsSOyaCM4A9UXE31Lu3xI4mGqZxUA/y+OuwN9KjzepaQ9s6vqTbD55heGPViI0t7/Z4WipHVsJh36Hpq9DsPndf9uzjmAzRgXwDmCvZVuTRORDEeloWWwKkFdEjgGvAm/ZKx5NcxdHL8by2bLDtKpYgG619VChDicpwRhwJk8paPCS2dEAdm5QppR6H3g/1eThVvPjgW72jEFzbOFXbhDs701O3eeNTSQmp/DK/F0E+nrxaWc9xoBD2jwRoo7CE/PByzG6/9b3kmmmSElRfL/mBA/9dzUdx63jXPRNs0NyCeP/Psa+s9f45PGqhAQ5xo+MZiX2AvwzGso+DOUeNjuaO3Qi0LJdZOwtnpq+lY+XHKRB6XxEXU+gx6SNhF+5YXZoTm13eDTjVx2jc60itK2ixxhwSCtGQHICtP3U7EjuohOBlq3WHo2k3di1bDwRxUedKjPjqTrMfq4e124m0eO7jZy6HGd2iE4pPjGZV+bvIn+QL+8/WtnscLS0nNlsdDPd4CXIW9rsaO6iE4GWLRKSUvh06UGenLKF3P7eLH6pEU82KIGIUC00Fz8+V4/4pBS6f7eRY5eumx2u0xn95yFORMbxedfqBOfQ9S0OJyUZlr4BQYWhyWtmR/Mv7pMIUlLg6F9mR+GWTkfF0e27jXz3zwmeqFeMxS81pkLBuwfdqFw4mLkD6pOioOekjRy+EGtStM5nw7HLTFt/iv4NS9C4rB5jwCHt+AHO74Y2H4FvoNnR/Iv7JIKdP8DsrrBtqtmRuJVfd53lka/XcTLyOhN61+KTx6uSwyftLpDLFQhi3sD6eHoIPSdtZN/ZmGyO1vlci0/kjQV7KJUvgDfbVjA7HC0tN67Ayg+heCOjFbEDcp9EUKMPlG0Df7wGh/80OxqXF3cridfm72bo3F1UKBjEkqFNaF+1UIavKx0SyPyBDfD38eKJ7zexKzw6G6J1Xh/+doAL1+L5okeNdBOsZrJVn0B8NLQbDQ56O6/7JAJPL+g6DQpVhwVPQcR2syNyWfvOxtBh3DoW7YxgyENlmDugfpZatxbPG8C8gfXJ5e9Dn8mb2Xbqih2jdV7L9l9gwfYIXmhemhpF9RgDDunCXtg2BcKegYJVzY4mXe6TCMAom3tiPgTmhx+7Q9RxsyNyKUopJq89weMT1nMzIZkfn63Pq23K43UfXR+H5vZn/sAG5A/ype/ULWw8/q8uqNza5eu3eHvRXioXzsngh8qaHY6WFqVgyTDwywUt3jY7mntyr0QARhLovRBUilFnEHfZ7IhcwuXrt3h6+lZG/nGQZuXys2RoExqUfrAexQsG+zF3YH2K5MpB/2lbWHNE9zwL/x9jIPZWEl/2qIGPl/t9jZ3CvoVwZoMx6ph/HrOjuSf3PILylYEn5sG1c8aVQYJuyFnVChcAACAASURBVPQg1h+7TLuxa1l/PIoPO1Xm+761yRPgY5N15w/yY+6A+pQKCeTZGdtYefCiTdbrzBbtOMvyAxd5o015yhXQYww4pFvXYfm7RlF0rb5mR5Mh90wEAEXrQpcpcG4nLHgakpPMjsjpJCanMPrPQ/SZspmcfl788kIj+lraBthS3kBf5jxXjwqFghg0azt/7rtg0/U7k7PRNxmxeD91S+bh6cYlzQ5HS8/aMRB7HtqPMbqadnDumwgAKnaAdp/BkaWw5HWjTE/LlPArN+g2cSPfrj5Oj7Ci/Da4MZUK58z4hfcpl78Ps56tZ4y7++MOftudetRT15eSonjjp92kKMV/u1XHU48x4JiijsOG8VC9l3HC6QTMGxvNUdR9DmIijCHjchV1yFZ/jmbx7nO8s2gvCIx/oiYdqhXOlu3m9PPmh2fq8fT0rQydu5OEpBS6uFE3yzM2nmLD8ShGda5K0Tx6jAGH9edb4OUHrT4wO5JM04kAoOX7Rn3Byg8hZxGo3tPsiBzSjYQk3v91Pz9tj6BWsVyM7Vkz23+QAn29mPFUXZ77YRuvL9hNQnIKveoWy9YYzHDs0nVGLT3EQxXy06NOUbPD0dJz+E84uhzajISgAmZHk2k6EQB4eECnb+D6Bfj1RePOotIPmR2VQ9l/LobBc3Zy8nIcL7Uow9BWZfG+j9tCbSGHjyeT+4UxaNZ2/rNoL4nJKfRtUMKUWLJDUnIKr83fhb+PJ6O66DEGHFZivHE1kK8c1B1odjRZ4t51BNa8fKDHLMhXHub1hfN7zI7IISilmLb+JI9/s4G4W0nMfrYerz9c3rQkcJuftyffPVmb1pUKMPzX/Uxee8LUeOxpwurj7I6I4ePHq5I/yM/scLT0bPoGrp40WhB72eauueyiE4E1v2Do/RP45YTZ3SA63OyITHUlLoFnZ2zjg98O0KRsPpYObUrD0o7TqZmvlycTetfikaqFGPnHQb5ZdczskGxub0QMX688SqcahTPVRYdmkpizsGYMVOjglKUJOhGkFlwEei+AxJtGg7ObV82OyBQbjl2m7VdrWHv0MiMercTkfmE2axtgS96eHoztWYPHaxbh82WH+eKvIygXufvr9hgDeQN9+LBjFbPD0e7lr/eMRqoPf2J2JPdFJ4K0FKgEPWfDlRMwt7dR9ucmEpNT+HzZIXpP2Uygnxc/v9iQ/o1KOnS5tJenB2O6Vad7WChfrzzK6D8Pu0QyGLPsMMcuXTfGGPDXYww4rFPrjFbEjV6G3MXNjua+6Mri9JRsAo99CwufgV8GQZepRqWyCwu/coOhc3ey40w03cNCGdGxMv4+znGIeHoIozpXw8fLg4n/HOdWUjLDO1Ry6AR2L5tORDFl/UmerF+cpuVCzA5HS09yktGfUHAxaPyy2dHcN+f4lpulalfjttK/3jNuK334Y7Mjsps/9pznrUV7QMHXvWrSsXr2tA2wJQ8P4aNOVfDx9GTq+pMkJKXwUacqeDhZw6vY+ERe/2k3xfP485/2eowBh7ZtKlzaD91ngncOs6O5bzoRZKThYKPB2cbxRjJo8ILZEdnUjYQkPvztAHO3hlOjaC7G9cr+tgG2JCK816Eivt4efLv6OAlJKYzqUs2pWuGO/P0g56Jv8tOghk5zReaW4i7DqpFQshlUfNTsaB6IPsoyIgJtP4VrZ2HZ25CzMFR+zOyobOLAuWsMnrODE5fjeKF5aV5pXc7020JtQUQY9nB5fDw9GLvyKInJKYzpVv2+usPObisOXGTetnBeaF6a2sVzmx2Odi8rP4SEOKObGictgrxNJ4LM8PCELpPhh06waIDR4Kx4Q7Ojum9KKX7YeJqPlxwkVw5vZj1Tj0ZlHOe2UFsQEV5pXQ4fLw8+X3aYhOQUxvas6dCJLur6Ld5atIeKhXLycqtyZoej3cvZHcY4xPVfgPzOX3znuN8KR+OdA3rNhVzFYE4viDxsdkT35WpcAs/9sJ33F++nUem8LB3axOWSgLUXW5Th3UcqsmTvBZ6ftYNbSclmh5QmpRTv/LyPazeT+KJ7dT3GgCNLSYGlwyAgBJq/aXY0NqGPtqzwzwN9FoCnD8zqCrHO1R3yxuNRtBu7ln+OXOK9DpWY2r8OeQN9zQ7L7p5tUoqPOlVmxcGLDJy5nfhEx0sGv+w6y5/7L/Bqm3JULGS/Xlw1G9gzFyK2QqsRRiNUF6ATQVblLgG958ONKKPB2a1YsyPKUFJyCl8sP8wTkzfh7+PJzy804pnGjt02wNaebFCCUZ2r8s+RSJ6ZsZUbCY4z/sT5mJsM/3U/YcVz81yTUmaHo91LfAz89T6E1jG6mXYRdksEIlJeRHZZ/V0TkZdTLdNcRGKslhlur3hsqnBN6D4DLh6A+X0hOdHsiNIVcfUGPSZt4uu/j9GlVii/DW5MlSKucRaTVT3rFuO/3aqz8XgU/adu5fot85OBMcbAHpJTFP/trscYcHj/fAZxkUYFsQu1K7LbO1FKHVZK1VBK1QBqAzeAn9NYdO3t5ZRSH9orHpsr2xoeHQvH/4bFQxxyUJule8/TfuxaDl+IZWzPGozpVp0AX/e+P6BzrVDG9qzJ9jNXeXLKZmJumpvEZ20+zbpjl3nnkYoUzxtgaixaBiIPw+aJUOtJKFLL7GhsKrt+FVoCx5VSp7Npe9mj1pPGbaWrP4XgUHjoHbMjAuBmQjIf/n6AOVvOUL1oLsb1rEmxvM7bNsDWHq1eGG9PDwbP2UGfyZuZ+Uxdcvlnfz9KJyKv88mSgzQrF8ITbjCmglNTyqgg9gkwxi9xMdl1bdMTmJPOvAYisltElopI5bQWEJEBIrJNRLZFRkbaL8r70exNqPkkrPkMtk0zOxoOXbhGx/HrmLPlDIOalWbBoAY6CaShbZWCfPdkbQ5fjKXnpE1EXb+VrdtPSk7h1fm78fXy5LOu1dyqvsYpHfodTqyGFu9AgOvdZWf3RCAiPkBH4Kc0Zu8AiiulqgPjgF/SWodSapJSKkwpFRYS4mD9rohAhy+hTGv441VjhCITKKWYuek0ncav5+qNRGY+U5e32lVw6PvmzfZQhQJM6RfGqag4ek7axKVr2de54HdrTrArPJqPHqtCgZx6jAGHlnjTaEyavzKEPWN2NHaRHb8S7YAdSqmLqWcopa4ppa5bHi8BvEXE+dKtpzd0mw4Fq8GCp+Ds9mzdfPSNBAbO3M57v+yjfqm8/PlyE5qUdbCE6aCalA1hWv+6nI2+Sc9Jmzgfc9Pu29x3NoYv/zpCh2qFnLJPJ7ezfixEn4H2n4Gna9axZUci6EU6xUIiUlAs18QiUtcST1Q2xGR7voHGoDYBITC7u9GFdTbYfMJoG7Dq8CXefaQi0/rXIZ8btA2wpQal8zLzmbpExt6i+3cbCb9yw27bik9M5rX5u8kT4MNHnfQYAw7v6mlY9yVU7gwlGpsdjd3YNRGISADQGlhkNW2QiAyyPO0K7BOR3cDXQE/lzB3JB+aHPguNASpmdTE6pbKTpOQUvvzrCL2+34SvlweLnm/Es01KOV1Pm46idvE8zHq2HjE3Euk5aROnLsfZZTtf/nWEwxdjGd21GrkdcKAfLZXl74B4GIPRuzC7JgKlVJxSKq9SKsZq2kSl1ETL4/FKqcpKqepKqfpKqQ32jCdb5CtrdEVx7Rz82AMSbH92eS76Jk98v5mxK4/yeM1Qfh/ShKqh7tk2wJaqF83FnAH1uZGQRI9JGzl26bpN17/l5BUmrT3BE/WK0aJ8fpuuW7OD46vg4G/Q5DVj5EIXpmsS7aFYPaOTurPbjYFtUmzXpcGf+y7Qbuxa9p+L4aseNfhv9+oEunnbAFuqXDiYuQMakJyi6DlpE4cv2Kbl+PVbSbz20y6K5vbnnfYVbbJOzY6SE2Hpm5C7pNEVvYvTicBeKj5qtD48vASWvPHADc7iE5N595e9DJq1neJ5/fljSBMeq+naZylmKV8wiLkDGuDpAT0nbWTf2ZiMX5SBj/84SMTVm/y3u27U5xQ2fweXD0PbUeDl+nVuOhHYU70B0GgobJtiVDjdpyMXY+k4fh2zNp1hYNNSLBjUkBL5dCtUeyqTP5B5AxqQw9uTJ77fxO7w6Pte16pDl5iz5QwDmpaiTok8NoxSs4vYi7B6lHFLeLmHzY4mW2SYCETEQ0Sct/N9s7UcAVW6wsoPYPe8LL1UKcXszad5dNw6rsQlMOPpuvynfUXdRXE2KZEvgHkDGxDs702fyZvZfvpKltdxNS6BYQv3UL5AEK+21mMMOIUVIyAp3rgacJOGfhn+oiilUoBvsiEW1+ThAY9NgBJN4NcXjdaJmRBzI5EXZu/gnZ/3Ua9UXpYObUozPYh5tiuax5/5AxuQL8iXJ6dsYdOJzN/drJTi3V/2EX0jgS96VMfXy9OOkWo2Eb4Fdv8IDV6EfGXMjibbZPbUcqWIdBHdDv7+ePlCj1nGHUVz+8CFvfdcfOupK7Qbu4a/Dlzk7fYVmN6/DiFBrl9O6agKBedg3oD6FMmVg/7TtrD2aOa6OVm8+xx/7D3Py63KUbmwvqvL4aUkG/V5QYWg6RtmR5OtMpsIBmJ0EZFg6U46VkSu2TEu15Mjl9HgzDcIZneD6PB/LZKcohi74ig9vtuIt5cHC59vyICmpXXbAAeQP6cfcwbUp0TeAJ6ZsY1Vhy7dc/kLMfEM/3U/NYvlYmBTPcaAU9g5E87vgtYfGQ1E3UimEoFSKkgp5aGU8lZK5bQ818MoZVVwqDHCWUKcMajNzat3Zp2PuUmv7zfx5YojdKxemN8HN6Z60VwmBqulli/QlznP1ad8gSAGzNzGsv1pj1CnlGLYwj0kJKXwRfcaeOn+nhzfzavGYPTFGkLVrmZHk+0yfYSKSEcRGWP562DPoFxagcrQczZEHTeKiZJusXy/0TZg39kYvuhena961iTIz9vsSLU05A7wYdaz9ahSJJgXZu/gt93n/rXM7M1nWHMkkrfbV6CkvrvLOaz6xEgG7T9zmwpia5lKBCIyChgKHLD8DRWRT+0ZmEsr2RQe+xZOr2Pv+F4MnLmV0Nw5+GNIEzrXCjU7Oi0DwTm8mflMPWoXy83QuTtZtCPizrxTl+P4+I+DNCmbjz71i5sYpZZpF/fD1skQ9jQUrGp2NKbIbMuW9kANyx1EiMgMYCfwH3sF5uqOFmjLP379eTZ6Oj8WL0Dt577Rt4U6kUBfL6Y/XYdnZ2zjtZ92k5icQtfaRXl1/i68PEWPMeAslIIlw8AvlzHWgJvKyi+PdYG1vgXiPimlmLPlDI+OX8e3CY8QUfZJGlz8EZ9tk8wOTcsifx8vpvavQ9OyIby5cC/9p21hx5loPupUhULBOcwOT8uM/Yvg9Dpo+R74u29jv8xeEXwC7BSRVYAATYG37BaVi4q5mcjbi/byx97zNC6Tjy96VCd/QEuYfxX+fAtyFoJKncwOU8sCP29PJvWtzYuzd7Li4EXaVy1Ipxp6jAGnkBAHy9+DQtWhVj+zozFVholARDyAFKA+UMcy+U2lVNq3TGhp2n76CkPm7OLitXjealeBAdZdRneZDDM6wsLnILAAFKtvbrBalvh6efJtn1os3nWO1pUL6CIhZ7H2v8aY412ngYd7N/aTzHT/LyLblFJh2RBPhsLCwtS2bdvMDiPTklMU364+xpcrjlIkVw6+7lWTGmndFhoXBVPbGGMYPPMXhOjuCDTNbqKOw4T6xoAznb8zO5psISLb0/sdz2wdwQoReV1EiopIntt/NozRJV2IiafP5M2MWX6ER6oW4o8hjdNOAgABeaH3AmPYy1ldjI6vNE2zj2Vvg6cvtP7A7EgcQmbrCHpY/r9oNU0BuslkOlYcuMgbC3ZzKymFz7tWo2vt0IyLDPKUhCfmw/QORoOzp5YYLZE1TbOdI8vhyJ9GC+KggmZH4xAy1fso8JZSqmSqP50E0hCfmMyIxft59odtFM6Vg98GN6ZbWNHMlxsXqQXdphv3Ns/vZwyQoWmabSTdgj/fhLxlod6gjJd3E5ntfdS9emC6T8cuXefxCRuYvuEUTzcqyaIXGlI65D76LCnXBh79Co6vhN9efuBBbTRNs9j4DVw5Ae1GgZceM/q2zBYNrRCR14F5wJ1RvZVSWe+g3QUppZi/LZwRiw+Qw8eTqf3DeKhCgQdbaa2+EHMW/hlljJfa4m3bBKtp7uraOVgzBso/AmVamR2NQ9F1BA/oWrzRNuD3PedpWDovX/aoQYGcfrZZefO34FoE/DMachaB2u59r7OmPZDl70FKEjz8sdmROJxMJQKlVEl7B+KMdpy5ypA5OzkfE8+wtuUZ2LQ0nrbsMloEOnwFsRfg91eMftLLtbHd+jXNXZxaD/sWQNNhxk0Z2l3uWUcgIsOsHndLNe8TewXl6FJSFN+sOka3iRsB+GlQA15oXsa2SeA2T2/oNgMKVoGf+sHZHbbfhqa5suQkWDoMgotC41fMjsYhZVRZ3NPqceoO5traOBancPFaPE9O3cznyw7TrkpBlgxtQq1iue27Ud9AeOInCMgHP3aHKyftuz1NcyXbp8HFfdBmJPj4mx2NQ8ooEUg6j9N67vL+PnSRdmPXsuN0NJ91qca4XjXJmV3jBgQVgD6LjDLOWV2Mlsiapt1bXBT8PdLo+l3345WujOoIVDqP03rusm4lJTN66WGmrj9JxUI5GderJmXymzCUXb6y0Gsu/NAJ5vSAvov1GY5me8dXGUUpSbfMjuTBJcTBrVho554DzmRWRomgumVsYgFyWI1TLICNbo1xbMcjrzP4x50cOH+N/g1L8Fa7Cvh5m9hBVbH60Pl7mN8XFj0H3X9w+w6zNBtKuAGLBxs/msUamh2NbZRtDfkrmh2FQ7tnIlBK3fcvjIiUx2h3cFspYLhS6iurZQQYizHwzQ2gv1LKIWpDlVIs2B7B+4v34+vlweS+YbSq9IBtA2ylUkdoN9o4a1s6DNqP0Wc7mm2s/wpiwqH/H1CisdnRaNkks+0IskwpdRioASAinsBZ4OdUi7UDylr+6gHfWv6bKjY+kXd+3sfi3eeoXyoPX/WoScFgB7sAqjfQ+MJuGGe5G+JlsyPSnN3VU7DuK6jSRScBN2O3RJBKS+C4Uup0qumdgB+U0Rf2JhHJJSKFlFLnsymuf9kVHs3gOTs4Fx3P623K8by9bgu1hVYfGq0lV7xvNDir1i3j12haepa9YxQztv7I7Ei0bJZdiaAnMCeN6UWAcKvnEZZp2Z4IUlIUk9aeYMyywxTI6cf8gfWpXdzBe9r28IDHvoXrl+CX5yEwP5RqZnZUmjM6thIO/Q4thxtdmmhuxe6jpYuID9AR+OkB1jFARLaJyLbIyEjbBWdx6Vo8faduYdTSQzxc2Wgb4PBJ4DYvX+gxC/KWgXl94MI+syPSnE1SAix9E/KUggYvmR2NZgK7JwKMeoAdSqm0Rlo5CxS1eh5qmXYXpdQkpVSYUiosJCTEpsGtOnyJdmPXsu30FT7tXJXxT9QkOEc2tQ2wlRy5oM8C8AmA2d0gJsLsiDRnsuU7iDoKbUcZJxaa28mORNCLtIuFABYDfcVQH4jJrvqBW0nJjPz9AE9N20pIkC+/vdSYXnWLOe94s8GhxghnCddhVle4GW12RJoziL0Aq0dD2Yeh3MNmR6OZxK6JQEQCgNbAIqtpg0Tk9ogQS4ATwDHge+AFe8Zz28nLcXT5dgOT152kX4Pi/PJiI8oWcIGRwApWMYqJoo4ZxUSu0CBIs68VIyD5FrT91OxINBPZtbJYKRUH5E01baLVY8XdXVvb3cLtEbz36z58vDyY9GRt2lR2saHqSjWDxyYYjc1+eR46TzYqlTUttTObYfccoyO2vKXNjkYzUXbdNWS62PhEhv+6n593nqVeyTx81bMGhYJzmB2WfVTrDtfOGmd7OYtAG307oJZKSjIsfQOCCkOT182ORjOZ2ySC5fsv8uuus7zauhwvtnDgtgG20uhlo9J4w9dG/UG9gWZHpDmSHT/A+d3QZYrRu63m1twmEXSuVYSqocGUc4W6gMwQMTraunbeuDUwZ2Go+KjZUWmO4MYVWPkhFG9ktCLW3J7bFB6LiPskgds8PKHLZAgNg4XPGmXCmrbqE4iPNvqrcta75DSbcptE4LZ8/KHXPKOuYE4PuHzU7Ig0M13YC9umQNgzULCq2dFoDkInAncQkBf6LAQPL5jVGWLTatunuTylYMkw8MsFLd42OxrNgehE4C7ylIQn5kHcZfixG9y6bnZEWnbbtxDObDD6E/J3ki5UtGyhE4E7KVIbus0w+iP6qR8kJ5odkZZdbl2H5e9CoepQq6/Z0WgORicCd1OuDXT4Ao6tgN9fNooLNNe3dgzEnjcGMdIj2mmpuM3to5qV2v0h5iys+cwY1Kb5W2ZHpNlT1HHYMB6q94Kidc2ORnNAOhG4qxZvG62PV39qtDHQxQWu68+3wMsPWn1gdiSag9KJwF2JwKNjjd4nf3sZggoZg3xrruXIMji6HNqMhCAHGXNbczi6jsCdeXpD9xlQoDLM7wfndpodkWZLSbeMq4F85aCu7mJES59OBO7ONwh6/wT+eWF2d2MAc801bBwPV04YLYi9fMyORnNgOhFoEFTQaHCWnACzuhh90WjOLeYsrBkDFTpA6YfMjkZzcDoRaIaQctBrLkSHw489IPGm2RFpD+Kv90ClwMMfmx2J5gR0ItD+r3gD6PI9RGw1OqlLSTY7Iu1+nFpntCJuNBRylzA7Gs0J6ESg3a1SJ2MQ80O/GxWNusGZc0lOMvoTCi5qjEmhaZmgbx/V/q3+IIgJNyobg0ONM0vNOWybCpf2Q/cfjJ5nNS0TdCLQ0tb6I7h2Dv4abnRhXbWr2RFpGYm7DKtGQslmULGj2dFoTkQnAi1tHh7w+ES4fgl+HgSB+aFkU7Oj0u5l5YeQEGeMTKcHnNGyQNcRaOnz8oWesyBvGZjbGy7uNzsiLT1ndxjjENcdCPkrmB2N5mR0ItDuLUduo8GZTwDM7mbcn645lpQUWDoMAkKg+ZtmR6M5IZ0ItIzlKmokg/hrRjKIjzE7Is3anrnGLb+tRoBfsNnRaE5IJwItcwpWNYqJLh82iomSEsyOSAMjKf/1PoTWMbqZ1rT7oBOBlnmlmkOnCXBqLfz6glEkoZnrn88gLtKoIPbQX2ft/ui7hrSsqd7DGMdg5QfGbaWtdR/3pok8DJsnQq0noUgts6PRnJhOBFrWNX4FYiJg/VdGg7O6z5kdkftRCpa+aVTit3zf7Gg0J2fXa0kRySUiC0TkkIgcFJEGqeY3F5EYEdll+Rtuz3g0GxGB9p9D+faw5A04+LvZEbmfQ7/DiVXQ4h0IyGd2NJqTs3eh4ljgT6VUBaA6cDCNZdYqpWpY/j60czyarXh4QpcpUKQ2LHwGwreYHZH7SLwJy96G/JUh7Bmzo9FcgN0SgYgEA02BKQBKqQSlVLS9tqeZwMcfnphnjHn8Yw+4fMzsiNzD+rEQfcYYcMZTl+5qD86eVwQlgUhgmojsFJHJIhKQxnINRGS3iCwVkcpprUhEBojINhHZFhkZaceQtSwLyGcMaiMeMKuz0SWFZj9XT8O6L6Hy41CyidnRaC7CnonAC6gFfKuUqgnEAW+lWmYHUFwpVR0YB/yS1oqUUpOUUmFKqbCQkBA7hqzdlzyloPd84zbG2d3g1nWzI3Jdy98xkm6bkWZHorkQeyaCCCBCKbXZ8nwBRmK4Qyl1TSl13fJ4CeAtIrrmyxkVqQ1dp8GFPbDgKaNffM22jq+Cg79Bk1eNu7U0zUbslgiUUheAcBEpb5nUEjhgvYyIFBQxukkUkbqWeKLsFZNmZ+XbwiNfwNHl8McrelAbW0pONG4XzV0CGgw2OxrNxdi7pmkwMFtEfIATwFMiMghAKTUR6Ao8LyJJwE2gp1L618OphT1lNDhb8znkDNWdoNnK5u+M7j16zQVvP7Oj0VyMXROBUmoXEJZq8kSr+eOB8faMQTNBi3eMXkpXfwLBRaBmH7Mjcm6xF2H1KCjTGsq1NTsazQXpe8802xOBjl9D7HlYPASCCkKZVmZH5bxWjICkeGMsaT3gjGYHupcqzT48vaHHTChQCeb1hXO7zI7IOYVvgd0/QoMXIV8Zs6PRXJROBJr9+AZB7wXgn8e4rfTqabMjci4pyUYXHkGFoOkbZkejuTCdCDT7CipoNDhLToBZXeDGFbMjch47Z8L5XdD6I/ANNDsazYXpRKDZX0h5426X6DMwp6fRV452bzevGoPRF2sIVbuaHY3m4nQi0LJH8QbQeZJR5r3oOaPYQ0vfqk+NZND+M11BrNmdTgRa9qn8GLT91Ggdu+xt3eAsPRf3w9bJEPa0MUSoptmZvn1Uy171nzcGtdk43ugmoaFuJXsXpWDJMGMQ+hbvmB2N5iZ0ItCyX+uPjNbHy9817ojRZeD/t38RnF4HHb407rbStGygE4GW/Tw84LGJRpfVvzwP3v5Qob3ZUZkvIQ6WvwcFq0GtfmZHo7kRXUegmcPbD3rOhnzlYG4vo51B5GGzozLX2v8aV0rtPzdGgNO0bKITgWaeHLnhub+NoqIzm2BCA6MBlTu2NYg6DhvGQbUeUKy+2dFobkYnAs1cXr7QaAgM2Qm1+xt3y3xdAzZ+A0kJZkeXfZa9DZ4+0FoP261lP50INMcQkA86fAHPb4AiYcYP44R6cPB317/N9MhyOPInNBtmtMTWtGymE4HmWPJXhCcXQe+FxhnyvN4w41E4v9vsyOwj6Rb8+SbkLQv1njc7Gs1N6USgOaayrWDQemg/Bi4dgO+awS8vQuwFsyOzrY3fwJUT0G4UePmYHY3mpnQi0ByXpxfUfQ4G74CGL8GeefB1Lfjnc9for+jaOVgzBso/osdr0EylE4Hm+HLkgjYj4aUtUKYlrBoJ48Jgz3xISTE7uvu3/D1ISYKHPzY7Es3N6USgOY88pYzBbvovgYC8qvs9SQAADJlJREFURud1U1rBmc1mR5Z1p9bDvgXQaCjkKWl2NJqb04lAcz4lGsFzq+Gxb43ilalt4Kf+zjPwTXISLB0GwUWh8StmR6NpOhFoTsrDA2o8AYO3Q7O34PCfML6OMb5v/DWzo7u37dPg4j6juMvH3+xoNE0nAs3J+QRAi/8YCaFKZ1j3JYyrBdumOeaYB3FR8PdIKNkUKnUyOxpNA3Qi0FxFcBF4fCI8twryloHfX4aJTeD4KrMju9vfH8GtWGinB5zRHIdOBJprKVILnloK3WZAwnWY+Rj82AMij5gdGZzbBdunQ72BRsM5TXMQOhForkfEGA3txS1G3z2nN8C3DYwBX8zq0E4po4I4IB80f8ucGDQtHToRaK7L28+4PXPwDqjVF7Z+b16HdnvmQfhmaDXCGH1M0xyITgSa6wsMMUb8uqtDu/pw6I/s6dAu/hr8NRyK1IbqT9h/e5qWRToRaO7jTod2C8DDC+Y+YenQbo99t7vmM7h+Edp9btz2qmkOxq5HpYjkEpEFInJIRA6KSINU80VEvhaRYyKyR0Rq2TMeTQOgbGvj6qD9GLi4H75rCr/aqUO7yCOw6Vuo2QdCa9t+/ZpmA/Y+PRkL/KmUqgBUBw6mmt8OKGv5GwB8a+d4NM1wu0O7ITuhwYuw29Kh3RobdminlNHFtHcAtBxhm3Vqmh3YLRGISDDQFJgCoJRKUEpFp1qsE/CDMmwCcolIIXvFpGn/kiOX0enbi5uhzENGY69xYbDnpwevPzj0Bxz/22jwFhhim3g1zQ7seUVQEogEponIThGZLCIBqZYpAoRbPY+wTLuLiAwQkW0isi0yMtJ+EWvuK29p6DEL+v9h6dDuWZj8AB3aJd6EZf+BkIpQ51nbxqppNmbPROAF1AK+VUrVBOKA+7qBWik1SSkVppQKCwnRZ1aaHZVobHRo12kCxERYOrR7Kusd2q3/GqLPQPvPwNPbLqFqmq3YMxFEABFKqdunVAswEoO1s0BRq+ehlmmaZh4PD6jZ29Kh3ZtweGnWOrSLPgPrvoBKj/2vvfsPsqou4zj+/oAoKSURDKNBoggalm6xEBYWkhWKkjqSP0ihYUgyaG3E/DEOmjM6GUPSjCmB5sJECv0SKscfg/ijphYXBDG0MCDLQaASNGdggn364/u9cLzu3b132eXcc8/zmtnhnu8599zn4bt7n3PPvfc5oaeQc1WuywqBmb0B/EPSKXHo88DGos1WAFfFTw+NAnab2bauism5ihzVC86+GWY2h28qFxrarWlsu6HdE7cACt1FncuArv7U0ExgiaQXgTrgTknTJU2P6x8FNgOvAguBa7o4Hucqd+wAuHgBTHsK+gyG3zSUbmi3+WnYuBzOug56D3zveueqkOxwfLOyE9XX11tzc3PaYbi8MoONj4RvCu96DYaOC0f+fYfA/v/B/NGwbw9c0xRaXDhXJSStMbP61tYdcbiDcS7TJDjtIhh6LjTNDxefv3cU1E+Fo/vAzlfgsoe8CLhM8ULgXEf06Amjr4W6SbDqjtDQzlrg5HPglHPTjs65inghcO5Q9OoHF8yDkV8Pl6A8c4ZfcMZljhcC5zpD/2Fw3py0o3CuQ7wVonPO5ZwXAuecyzkvBM45l3NeCJxzLue8EDjnXM55IXDOuZzzQuCccznnhcA553Iuc03nJO0EKrxKyAF9gX91Yjhp8lyqU63kUit5gOdScIKZtXplr8wVgkMhqblU972s8VyqU63kUit5gOdSDj815JxzOeeFwDnnci5vhWBB2gF0Is+lOtVKLrWSB3gu7crVewTOOefeK2+vCJxzzhXxQuCcczlXs4VA0k8k7ZD0UmKsj6QnJW2K/34wzRjLVSKX2yS9Lmld/DkvzRjLIWmgpFWSNkr6s6SGOJ65eWkjlyzOS09JqyWtj7l8N46fKKlJ0quSlko6Mu1Y29JGHo2StiTmpC7tWMslqbukFyT9Ni53yZzUbCEAGoFxRWM3AivNbAiwMi5nQSPvzQXgbjOriz+PHuaYOmIfcJ2ZDQNGAd+UNIxszkupXCB787IXGGtmZwB1wDhJo4C7CLmcDLwJTE0xxnKUygPg+sScrEsvxIo1AC8nlrtkTmq2EJjZs8B/ioa/DCyKtxcBFx7WoDqoRC6ZY2bbzGxtvP024Rf8w2RwXtrIJXMs+G9c7BF/DBgL/CKOV/28tJFHJkkaAIwH7o/LoovmpGYLQQn9zWxbvP0G0D/NYDrBDEkvxlNHVX86JUnSIOATQBMZn5eiXCCD8xJPQawDdgBPAn8DdpnZvrjJP8lAoSvOw8wKc3JHnJO7JR2VYoiVmAd8B2iJyx+ii+Ykb4XgAAufm83s0QJwHzCY8BJ4GzA33XDKJ6kX8EvgWjN7K7kua/PSSi6ZnBcz229mdcAAYCRwasohdUhxHpI+BtxEyGcE0Ae4IcUQyyLpfGCHma05HI+Xt0KwXdJxAPHfHSnH02Fmtj3+0rcACwl/vFVPUg/CE+cSM/tVHM7kvLSWS1bnpcDMdgGrgDOB3pKOiKsGAK+nFliFEnmMi6fxzMz2Ag+SjTn5DDBB0lbgYcIpoR/SRXOSt0KwApgcb08GlqcYyyEpPHFGFwEvldq2WsRznA8AL5vZDxKrMjcvpXLJ6Lz0k9Q73n4f8AXCex6rgEviZlU/LyXyeCVxkCHCOfWqnxMzu8nMBpjZIOAy4Ckzm0QXzUnNfrNY0kPAGELb1u3ArcAjwDLgI4RW1l8xs6p/E7ZELmMIpx8M2ApcnTjPXpUkjQaeAzZw8LznzYRz65malzZyuZzszcvphDceuxMODpeZ2e2STiIcjfYBXgC+Go+qq1IbeTwF9AMErAOmJ95UrnqSxgCzzOz8rpqTmi0EzjnnypO3U0POOeeKeCFwzrmc80LgnHM554XAOedyzguBc87lnBcClxpJJmluYnmWpNs6ad+Nki5pf8tDfpyJkl6WtKpofFDMb2Zi7B5JU9rZ33RJV7WzzRRJ95RYl5mPRbrq4YXApWkvcLGkvmkHkpT45mY5pgLTzOzsVtbtABoqaRVsZvPNbHEFj99pKszb1RAvBC5N+wjXYP128YriI/rCka6kMZKekbRc0mZJ35M0Kfah3yBpcGI350hqlvTX2Lul0JRsjqTnYxOyqxP7fU7SCmBjK/FcHvf/kqS74thsYDTwgKQ5reS3k9BWe3LxCkmDJT0maU183FPj+G2SZsXbI2KM62LMyW/EHh/vv0nS94v2fbdCP/6VkvrFsTpJf4r7+3WhGZ6kpyXNk9RMKFoTY47rJT3bSk6uBnkhcGn7ETBJ0rEV3OcMYDrwUeBKYKiZjSS0652Z2G4Qoa/MeGC+pJ6EI/jdZjaC0IRsmqQT4/afBBrMbGjywSQdT+gDP5bwreERki40s9uBZmCSmV1fIta7gFmSuheNLwBmmtlwYBZwbyv3fZDwzeQ6YH/RujrgUuDjwKWSBsbxY4BmMzsNeIbwLXSAxcANZnY64dvQtyb2daSZ1ZvZXGA28KXY039CiZxcjfFC4FIVO3YuBr5Vwd2ej43E9hLaJT8RxzcQnvwLlplZi5ltAjYTOlB+EbhKoVVxE6G175C4/Woz29LK440AnjaznbEF8BLgs2Xmtzk+zhWFMYWOpZ8Gfh7j+DGQ7FFE7JnzfjP7Yxz6WdGuV5rZbjPbQ3gFc0IcbwGWxts/BUbHItvbzJ6J44uK4l+auP0HoFHSNEKrBpcDfk7QVYN5wFrCEXDBPuKBiqRuQPI8e7K3SktiuYV3/04X908xQr+ZmWb2eHJF7OfyTsfCb9edhIuJFJ6IuxH6yh/KJROT/wf7Kf23XE4PmQN5m9l0SZ8ivIpaI2m4mf2742G6LPBXBC51scHcMt592b2twPB4ewLhalOVmiipW3zf4CTgL8DjwDcUWkgjaaikY9rZz2rgc5L6xlM8l3PwSb1dZvYK4aj9grj8FrBF0sQYgySdUXSfXcDb8UkZQgfKcnTjYHfKK4Dfm9lu4E1JZ8XxK0vFL2mwmTWZ2WzCexwDW9vO1RZ/ReCqxVxgRmJ5IbBc0nrgMTp2tP4a4Un8A4SOk3sk3U84fbRWkghPdm1e7s/Mtkm6kdACWMDvzKzS9r93ELpFFkwC7pN0C6HIPQysL7rPVGChpBbCE/fuMh7nHcIFWW4hfGrp0jg+mfA+ydGE02RfK3H/OZKGEPJc2UpMrgZ591HnqpSkXoV2ybEQHWdmDSmH5WqQvyJwrnqNl3QT4e/078CUdMNxtcpfETjnXM75m8XOOZdzXgiccy7nvBA451zOeSFwzrmc80LgnHM5938HVvUp7IoiDQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QhBBXvdhLTIy"
      },
      "source": [
        "Grid search on Random Forest Classifier"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "VahsTx3aKIYk",
        "outputId": "84ebb23c-837f-4e72-b6ab-457f5023b2f3"
      },
      "source": [
        "param_grid = {'criterion':['gini','entropy'],'max_depth': [6],'random_state':[23]}\n",
        "GS_RF=GridSearchCV(RandomForestClassifier(), param_grid,cv=5)\n",
        "GS_RF.fit(X_train,Y_train)\n",
        "GS_RF.best_params_"
      ],
      "execution_count": 58,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "{'criterion': 'entropy', 'max_depth': 6, 'random_state': 23}"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 58
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "wq6jLQrBKKDQ",
        "outputId": "8e64a57d-63ee-46a5-b925-b765d75206ba"
      },
      "source": [
        "GS_RF.score(X_test,Y_test)"
      ],
      "execution_count": 59,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "0.8863636363636364"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 59
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "k31Wp1OFKKsg"
      },
      "source": [
        "rf_train_score=[]\n",
        "rf_test_score=[]\n",
        "for i in np.arange(1, 30):\n",
        "  param_grid = {'criterion':['gini','entropy'],'max_depth': [i],'random_state':[23]}\n",
        "  GS_RF=GridSearchCV(RandomForestClassifier(), param_grid,cv=5)\n",
        "  GS_RF.fit(X_train,Y_train)\n",
        "  y_train_pred=GS_RF.predict(X_train)\n",
        "  y_pred=GS_RF.predict(X_test)\n",
        "  rf_train_score.append(log_loss(Y_train,y_train_pred))\n",
        "  rf_test_score.append(log_loss(Y_test,y_pred))"
      ],
      "execution_count": 60,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 312
        },
        "id": "i58xZVIUKLDn",
        "outputId": "2c9e263c-d16f-442e-eab8-0ae129f6a5be"
      },
      "source": [
        "plt.title(\"Random Forest Classifier : Error vs Max Depth\")\n",
        "plt.xlabel(\"Max Depth\")\n",
        "plt.ylabel(\"Error\")\n",
        "plt.plot(np.arange(1,30),rf_train_score,label=\"Training Error\")\n",
        "plt.plot(np.arange(1,30),rf_test_score,label=\"Testing Error\")\n",
        "plt.legend()\n",
        "plt.plot()"
      ],
      "execution_count": 61,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 61
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEWCAYAAABollyxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU1fn48c+ThaxAgAQIaxJU9hAk7CDBpVVBq63WUq3S9lfFpbi0tWq/tdh+bXFp6/LVWlt3rUvdt7YKBQE3CIus4gJBdsIWCBHI8vz+ODcwhOyZm5lMnvfrlVdm7r1zz3Pn3nnm3HPPnCuqijHGmMgVFeoAjDHG+MsSvTHGRDhL9MYYE+Es0RtjTISzRG+MMRHOEr0xxkQ4S/TNSERmiMjToY6jJRCRDBFREYnxaf23iMjfA56fLyIbRaRYRIaKyCoRyfOjbNOy+X1s+qHVJ3oRKRCRr70P+DYReVxEkkMdV1OISJ6IVHjbVPn3RjOWX68PgoicJCL/FJGdIlIkIstF5AYRifY7RlX9var+v4BJdwPXqGqyqi5V1YGqOtfvOABEZKqIlFfZX8Ui0q05yg8m7/N0WERSq0xf6h0TGUEur/JYq3zPtovImyJyRhDLKBCR04O1vlBo9Ynec46qJgM5wFDg5hDHEwxbvKRV+XdOQ1fgZ8IVkT7Ax8BGYLCqtgcuBHKBtn6VW4vewKqmrqQJtbwPq+yvZFXdUp/1N7TMZqiJrgemBJQ3GEj0ucwU7zM8BHgXeEVEpvpcZothiT6Aqm4D/oNL+ACIyE0i8qWI7BeR1SJyfsC8qSKyQETuFpE9IrJeRM4KmJ8pIu95r30XqFrLOddrItgrInNFpH/AvAIR+YVXyz0gIo+ISBcR+Ze3vlki0qGh2ygi/b2y9nplnxsw73ER+YuIvC0iB4CJItJNRF4SkUJv+6YHLD9CRPJFZJ9Xk/qTN2ue93+vV8saXU0otwEfqOoNqrrVe//Xqur3VXVvNXH/UETWeNu+TkSuCJiX6tXi9orIbhGZLyJR3rxfishm73VrReQ0b/oMEXlaROJEpBiIBj4RkS8D3v/TvcdRAcfBLhF5QUQ6evMqa5Q/FpGvgP82dJ/UxYvllyKyHDggIidULdOL8X9EZIOI7BCRJ0WkfX1j9N7byQHPY7x9frKIxHvv1S7vPV4kIl1qCfkp4NKA55cBT1Ypb5K4Wv4+cU1mMwLmXeQda+2852eJO9tOq+u9UtVtqnovMAO4I+A4qO04niEiL4rI895xskREhnjzngJ6AW94x/KNAcVdLCJfiTsj/VVdsYWUqrbqP6AAON173ANYAdwbMP9CoBvuS/Ei4ACQ7s2bCpQCP8EliiuBLYB48z8E/gTEAacA+4GnvXknees6A4gFbgS+ANoExPUR0AXoDuwAluDOOOJxH9bf1LBNecCmaqbHemXcArQBTvVi6uvNfxwoAsZ625sILAZu9ZbPAtYB3wzYvh94j5OBUd7jDECBmFre923AD2uZf8w6gElAH0CACUAJcLI37w/AQ972xQLjveX64s4YugWss4/3eEblvvCeK3BCDcfFtd6+6OHty78Cz1aJ80kgCUioYXv2AuNqmDcVWFDHMboM6AkkVFcm8CNv32Z5++Jl4Kn6xujt42cCnk8C1niPrwDe8I6HaGAY0K62zxOwFujvLb8Jd8akQEbAMToYd5xlA9uB8wLW8wzueOyE+0xNrs9xEjA9y5ve3yujtuN4Bu5zfIF3/Pwcd1YSW/VYqFLm37z3fghwCOgf6nxW4zEU6gBC/eftxGJcwlNgNu40sKbllwHf8h5PBb4ImJforaMrrhZQBiQFzP8HRxP9r4EXAuZFAZuBvIC4Lg6Y/xLwl4DnPwVerSHGPKACl1wq/76LS4DbgKiAZZ8FZniPHweeDJg3EviqyrpvBh7zHs/D1cxTqyxT7YevyjKlwJm1zK91HcCrwLXe498CrxGQqL3pJ+C+IE+v/NAGzJtB/RP9GuC0gHnpXvwxAXFmNeEYnOodK4H768sqsfyomvcmK2DabOCqgOd9GxKj917tBxK9588At3qPfwR8AGTX8/N0OvA/uC/gM3FNKTEEJPpqXncP8OeA5ynAV7iK118bepzgKkOKq7TUdRzPAD6q8lncCoyveixUKbNHwLSFwPcaewz4/WdNN855qtoWlyD7EdDEIiKXisgy75R1LzCIY5tgtlU+UNUS72Ey7ixgj6oeCFh2Q8DjboHPVbUCV/vsHrDM9oDHX1fzvLaLxltUNSXg7wWvzI1eWYExBZa5MeBxb6Bb5bZ7238L7iwD4Me4M5NPvdP5ydTfLlzCrBfv9P0jr2lmL3A2R/fDXbja7Dtes85NAKr6BXAd7oO8Q0Sek8Zd4OyNa/OtfA/WAOUcfR/g2PetMT6qsr/6VJlf3foDpx1zPHmPY+obo/derQHOEZFE4FxcxQRcU8x/gOdEZIuI3CkisXVsz1PA93FfYk9WnSkiI0VkjteUUgRMI+Bzpa757p+4z9sf6yirOpXH9G7qPo4h4L3xPh+bcO9pbbYFPC6h9s9jSFmiD6Cq7+FqtXcDiEhv3OnZNUAnVU0BVuKaBeqyFeggIkkB03oFPN6COwDxyhLcqfnmJmxCXbYAPSvbLQNiCiwzcDjTjcD6KgmoraqeDaCqn6vqFKAzcAfwore99RkSdRbwnfoELSJxuDOau4Eu3n54G28/qOp+Vf2ZqmbhEtQNlW3xqvoPVR3H0aaDO+pTZhUbgbOqvA/xqlrT++aH6tYfOO2Y44mjZ5Tba1i+Os/iLqJ+C1jtJX9UtVRVb1PVAcAYYDLHtsEfH5jqBlzzx9m4ZqSq/gG8DvRUdyH+IQI+VyKSgzuTeBa4r464q3M+7mxuLXUcx56eAWVH4ZrpKi+G+71vfWeJ/nj3AGd4F2Mqk1YhuAuCuBpGnbwDPR+4TUTaiMg4ILDnywvAJBE5zasd/QzXzvdB0LbkeB/jah43ikisuH7i5wDP1bD8QmC/dyEwQUSiRWSQiAwHEJFLRCTNqwFVXkCtwL1fFbi20Jr8BhgjIneJSFdvfSd4F/1SqizbBtc2XgiUibvg/Y3KmSIy2Xut4K4xlAMVItJXRE71vigO4s6CKmi4h4DbvS9+RCRNRL7ViPX46VngenEdAJKB3wPPq2pZA9bxHO59vZKjtXlEZKKIDBbXC2sfrkmoPu/jj4FTq5zVVmoL7FbVgyIyAlf7rywvHngaV+v+IdBdRK6qzwaI67BwDe74utk7Nms9jj3DROTb4nokXYf7LH7kzdtO7cdy2LNEX4WqFuJONW9V1dW408YPcTt7MPB+A1b3fVz74G7cgXfkFFZV1wKXAPcDO3EJ9xxVPRyEzaiWt+5zgLO8Mh8ELlXVT2tYvhxXe8vB1c52An8H2nuLnAmsEtdr5V5cG+XXXhPW7cD73qnyqGrW/SUwGtfeuco7fX8J9+W4v8qy+4HpuC/HPbj39fWARU7EnSEU4/bVg6o6B/flMNOLexvuzKMxXWfv9cp7R0T24xLAyIaswOuxMb6WRUbL8f3oh9eyfFWP4ppL5uH21UHcdZx6U9f76UNcrf35gFldgRdxSX4N8J5XVl3r+1JV82uYfRXwW+/9vBW3byv9AdfE+BdVPYT7nPyviJxYS3F7xfUUW4E7i7hQVR/14qjrOAZ3jeci3PH1A+DbqloaEM//eMfyz+va7nBU2TvEGGNaJXFdO09Q1UtCHYtfrEZvjDERzhK9McZEOGu6McaYCGc1emOMiXBhNcxmamqqZmRkhDoMY4xpMRYvXrxTVWsdByisEn1GRgb5+TX1xjLGGFOViGyoaxlrujHGmAhnid4YYyKcJXpjjIlwYdVGb4wJvdLSUjZt2sTBgwdDHYoJEB8fT48ePYiNrWvg0ONZojfGHGPTpk20bduWjIwM3DhxJtRUlV27drFp0yYyMzMb/HprujHGHOPgwYN06tTJknwYERE6derU6LMsS/TGmONYkg8/TdknLT7RHyor56H3vmT+54WhDsUYY8JSi0/0baKjeHjeOl5duqXuhY0xYW/Xrl3k5OSQk5ND165d6d69+5Hnhw/XfruG/Px8pk+fXmcZY8aMCUqsc+fOpX379kfiy8nJYdasWUFZdzC1+IuxIkJu7w4sKtgd6lCMMUHQqVMnli1bBsCMGTNITk7m5z8/er+PsrIyYmKqT125ubnk5ubWWcYHHwTvRm7jx4/nzTffrHH+kRt0R0VV+7wmtW1nQ7X4Gj3A8IyOfLW7hO37rDuYMZFo6tSpTJs2jZEjR3LjjTeycOFCRo8ezdChQxkzZgxr164FXA178mR3j/oZM2bwox/9iLy8PLKysrjvvqO3nk1OTj6yfF5eHhdccAH9+vXj4osvpnJE37fffpt+/foxbNgwpk+ffmS99VFQUEDfvn259NJLGTRoEPPnzz/m+caNG/nFL37BoEGDGDx4MM8///yReMaPH8+5557LgAEDgvLeQQTU6AGGZ3YEYFHBbiZn13XjdmNMfd32xipWb9kX1HUO6NaO35wzsMGv27RpEx988AHR0dHs27eP+fPnExMTw6xZs7jlllt46aWXjnvNp59+ypw5c9i/fz99+/blyiuvPK4f+tKlS1m1ahXdunVj7NixvP/+++Tm5nLFFVcwb948MjMzmTJlSo1xzZ8/n5ycnCPPX3rpJaKjo/n888954oknGDVqFAUFBcc8f+mll1i2bBmffPIJO3fuZPjw4ZxyyikALFmyhJUrVzaqG2VNfEv0ItKXY+87mYW7D+s9wS5rYLd2JMRGk1+wxxK9MRHqwgsvJDo6GoCioiIuu+wyPv/8c0SE0tLSal8zadIk4uLiiIuLo3Pnzmzfvp0ePXocs8yIESOOTMvJyaGgoIDk5GSysrKOJNspU6bw8MMPV1tGdU03BQUF9O7dm1Gjjt4uOfD5ggULmDJlCtHR0XTp0oUJEyawaNEi2rVrx4gRI4Ka5MHHRO/d/DoHwLt7/GbgFT/Kio2OYmivFBaut3Z6Y4KpMTVvvyQlJR15/Otf/5qJEyfyyiuvUFBQQF5eXrWviYuLO/I4OjqasrKyRi3T1Hire17f1wVDc7XRnwZ8qap1DqfZWMMzOvLptn3sO1j9N7sxJnIUFRXRvXt3AB5//PGgr79v376sW7eOgoICgCNt6MEyfvx4nn/+ecrLyyksLGTevHmMGDEiqGUEaq5E/z3g2epmiMjlIpIvIvmFhY3vCz88oyMVCks27Gn0OowxLcONN97IzTffzNChQ4NWAw+UkJDAgw8+yJlnnsmwYcNo27Yt7du3r3bZyjb6yr8XX3yxzvWff/75ZGdnM2TIEE499VTuvPNOunbtGuzNOML3e8aKSBtgCzBQVbfXtmxubq429sYjBw6VkX3bO1w5oQ8//2bfRq3DGANr1qyhf//+oQ4j5IqLi0lOTkZVufrqqznxxBO5/vrrQxpTdftGRBaraq19SpujRn8WsKSuJN9USXExDOzWjoXWn94YEwR/+9vfyMnJYeDAgRQVFXHFFVeEOqRGa47ulVOoodkm2IZndOTpjzZwqKycuJjo5ijSGBOhrr/++pDX4IPF1xq9iCQBZwAv+1lOpeEZHThUVsHKzUXNUZwxxrQIviZ6VT2gqp1UtVkyb25G5Q+n7IKsMcZUioghECqlJseRlZrEIutPb4wxR0RUogfXTp+/YQ8VFf72JjLGmJYiIsa6CZSb0YHn8zfy+Y5i+nZtG+pwjDENtGvXLk477TQAtm3bRnR0NGlpaQAsXLiQNm3a1Pr6uXPn0qZNmyNDET/00EMkJiZy6aWXNjm2vLw8tm7dSkJCAgAnnHBCvfrNh1rEJfoR3gBnCwt2W6I3pgWqa5jiusydO5fk5OQjiX7atGlBje+ZZ56pdSjkqsML13e44WAOS1xVxCX6Xh0TSWsbR37Bbn4wqneowzHGBMHixYu54YYbKC4uJjU1lccff5z09HTuu+8+HnroIWJiYhgwYAAzZ87koYceIjo6mqeffpr777+f2bNnH/myyMvLY+TIkcyZM4e9e/fyyCOPMH78eEpKSpg6dSorV66kb9++bNmyhQceeKBeY9uDG0Y5Pj6epUuXMnbsWHbv3n3M80svvZRp06ZRUlJCnz59ePTRR+nQoQN5eXnk5OQcGeTsZz/7mS/vX8QlehFhREZHuyBrTDD86ybYtiK46+w6GM6aWe/FVZWf/vSnvPbaa6SlpfH888/zq1/9ikcffZSZM2eyfv164uLi2Lt3LykpKUybNu2Ys4DZs2cfs76ysjIWLlzI22+/zW233casWbN48MEH6dChA6tXr2blypXHDDtc1cUXX3yk6eaMM87grrvuAo4dRnnq1KnHPM/Ozub+++9nwoQJ3Hrrrdx2223cc48byPfw4cM0dkSA+oq4RA+uP/1bK7ayee/XdE9JCHU4xpgmOHToECtXruSMM84AoLy8nPT0dACys7O5+OKLOe+88zjvvPPqtb5vf/vbAAwbNuzIoGULFizg2muvBWDQoEFkZ2fX+Pqamm4Ch1EOfF5UVMTevXuZMGECAJdddhkXXnjhkeUuuuiiesXdFBGZ6I/0p1+/m+5Du4c4GmNasAbUvP2iqgwcOJAPP/zwuHlvvfUW8+bN44033uD2229nxYq6zz4qhyUO5pDEEF7DElcVcd0rAfqntyM5LsbuI2tMBIiLi6OwsPBIoi8tLWXVqlVUVFSwceNGJk6cyB133EFRURHFxcW0bduW/fv3N6iMsWPH8sILLwCwevXqen1h1Ff79u3p0KED8+fPB+Cpp546UrtvLhFZo4+OEk62G4YbExGioqJ48cUXmT59OkVFRZSVlXHddddx0kkncckll1BUVISqMn36dFJSUjjnnHO44IILeO2117j//vvrVcZVV13FZZddxoABA+jXrx8DBw6scVjiwDb61NRUZs2aVef6n3jiiSMXY7Oysnjsscfq/wYEge/DFDdEU4Yprur//vs5d7/zGctuPYOUxNr73RpjjmqNwxSXl5dTWlpKfHw8X375Jaeffjpr166ts89+c2vsMMURWaOHo+30+QV7OH1AlxBHY4wJZyUlJUycOJHS0lJUlQcffDDsknxTRGyiz+mZQmy0sGjDbkv0xphatW3b1vcujqEUkRdjAeJjoxncvb31pzemEcKpSdc4TdknEZvoAYZndmTF5iIOlpaHOhRjWoz4+Hh27dplyT6MqCq7du0iPj6+Ua+P2KYbgOG9O/LX99axbONeRmV1CnU4xrQIPXr0YNOmTRQWFoY6FBMgPj6eHj16NOq1EZ3oczM6AJBfsNsSvTH1FBsbS2ZmZqjDMEEU0U03KYltOKlLMgvtjlPGmFbM73vGpojIiyLyqYisEZHRfpZXneEZHVmyYQ/ldiMSY0wr5XeN/l7g36raDxgCrPG5vOOMyOxI8aEy1mzd19xFG2NMWPAt0YtIe+AU4BEAVT2sqnv9Kq8mR28Ybt0sjTGtk581+kygEHhMRJaKyN9F5Lhh2kTkchHJF5F8P67yd09JoHtKAvnWTm+MaaX8TPQxwMnAX1R1KHAAuKnqQqr6sKrmqmpu5X0hgy03owMLC3Zbv2BjTKvkZ6LfBGxS1Y+95y/iEn9wlR2GhX+DjYtqXGR4RkcK9x/iq90lQS/eGGPCnW+JXlW3ARtFpK836TRgddALqiiDeXfB7NtqXGS4106/0IZDMMa0Qn73uvkp8IyILAdygN8HvYQ2iTDueiiYD+vnVbvIiZ2TaZ8Qa+30xphWyddEr6rLvPb3bFU9T1X9ybTDpkLbdJjzB6imHT4qSsi1G5EYY1qpyPhlbGwCjP8ZfPUBrJtb7SLDMzuybucBdhYfat7YjDEmxCIj0QOcfCm06w5zfl9trX54wLg3xhjTmkROoo+Jg1N+DpsWwhezj5s9qHt74mKiWGTt9MaYViZyEj1AziXQvhfMuf24Wn1cTDRDeqZYO70xptWJrEQf0wYm/AK2LIHP/nPc7BEZHVm1ZR8HDpWFIDhjjAmNyEr0AEOmQIcMmHt8W31uRgfKK5SlXzX7kDvGGBMykZfoo2Nhwi9h6yew9u1jZg3t5S7ILt9sid4Y03pEXqIHGPxd6NjH9auvqDgyuX1CLKnJcRTsPBDC4IwxpnlFZqKPjoG8m2D7Cvj0jWNmZaUmUbDTxrwxxrQekZnoAQZ9B1JPOq5Wn5GayDqr0RtjWpHITfRR0a5WX7gGVr9yZHJmajI7iw+x72BpCIMzxpjmE7mJHmDA+ZDWH+bOhIpyADJT3b1PrJ3eGNNaRHaij4pytfqdn8HKlwDISnOJfr0lemNMKxHZiR6g/7nQZZCr1ZeX0atjIiKW6I0xrUfkJ/qoKMi7GXZ/CSteID42mu4pCZbojTGtRuQneoB+k6BrNrx3B5SXkpmaZIneGNNqtI5ELwITfwV7CuCTZ12iLzxgNws3xrQKrSPRA5z0Teh2Mrx3F306tmH/oTJ2Fh8OdVTGGOM7XxO9iBSIyAoRWSYi+X6WVY9gXK2+6CtGHJgL2AVZY0zr0Bw1+omqmqOquc1QVu1OOA2SOtNrz4eA9aU3xrQOrafpBlytPmMciVs+JDYaGwrBGNMq+J3oFXhHRBaLyOXVLSAil4tIvojkFxYW+hwOkDke2b+VMSl7Wb+z2P/yjDEmxPxO9ONU9WTgLOBqETml6gKq+rCq5qpqblpams/hABkuhNPiP7M2emNMq+BrolfVzd7/HcArwAg/y6uXTn2gbTq5upKCXSWUV1gXS2NMZPMt0YtIkoi0rXwMfANY6Vd59SYCGePJLF7K4bJytuz9OtQRGWOMr/ys0XcBFojIJ8BC4C1V/beP5dVf5ngSDu/iBNlMwS5rvjHGRLYYv1asquuAIX6tv0kyxgEwOmo163d+k/EnNsO1AWOMCZHW1b2yUodMtF0PxsesYV2h1eiNMZGtdSZ6ESRzPCOj1lBQuD/U0RhjjK9aZ6IHyBhPe93nbjVojDERrPUm+szx7l/xEg6XVdSxsDHGtFytN9Gn9OJAYg9GyWq+2l0S6miMMcY3rTfRAwd7jGFk1BrWWzu9MSaCtepEn3BiHilygH0FS0IdijHG+KZVJ/rEvhMBiN/0fogjMcYY/7TqRE+7bmyJ7k7X3aG9J4oxxvipdSd6YEO7k+l7aAWUl4U6FGOM8UWrT/T7uo4mmRK+/sra6Y0xkanVJ/qYLNefvmjNf0MciTHG+KPVJ/ruPTP4vKI7URsWhDoUY4zxRatP9L07JvFhxQBSCvOhvDTU4RhjTNC1+kSf0CaatfFDaFPxNWxZGupwjDEm6Fp9ogfYmebd4XD9vNAGYowxPrBED6R16cZn9EIL5oc6FGOMCTpL9EBmajLvl/WHrz6GskOhDscYY4LKEj2QleouyErZ17B5cajDMcaYoPI90YtItIgsFZE3/S6rsTJTk/i4oj+KwHprvjHGRJbmqNFfC4T1bZx6dEjgQFRbdiSeCNZOb4yJML4mehHpAUwC/u5nOU0VEx1Fr46JrGyTDRsXQunBUIdkjDFBU2eiF5EoERnTyPXfA9wI1HivPhG5XETyRSS/sLCwkcU0XWZqEvNK+0P5Idi0MGRxGGNMsNWZ6FW1AnigoSsWkcnADlWt9eqmqj6sqrmqmpuWltbQYoImMzWJt/ZlohIFBWEyHMKHD8KT50HJ7lBHYoxpwerbdDNbRL4jItKAdY8FzhWRAuA54FQRebqhATaXzLQkdpbGU9p5cHhckC0uhP/+DtbNgSfOgQM7Qx2RMaaFqm+ivwL4J3BYRPaJyH4R2VfbC1T1ZlXtoaoZwPeA/6rqJU0L1z+ZqUkA7Og0AjYtgsMhvmH4+/dA2UGY9EfY9QU8PhmKd4Q2JmNMi1SvRK+qbVU1SlVjVbWd97yd38E1p8pEvzYhBypKYePHoQtm/zZY9HfI/h4M/3/w/RdgT4FL9vu3hy4uY0yLVO9eNyJyrojc7f1NbkghqjpXVRv0mubWpW08CbHR5Ff0BYkObTfLBfe4kTQn/MI9z5oAl7wIRZvg8Umwb2voYjPGtDj1SvQiMhPXH36193etiPzBz8CaW1SUkJGaxNo9QPeTQ9dOv28L5D8KOd+HjllHp2eMc8l+/1Yv2W8JTXzGmBanvjX6s4EzVPVRVX0UOBPXPz6iZKUmsX7nAcgYD1uWwKHi5g9i/p9Ay+GUXxw/r/cYuORl11b/2Nmuhm+MMXVoyA+mUgIetw92IOEgMzWJr3aXUNZ7HFSUwVcfNW8AezfCkidg6A+gQ+/ql+k1Ei59FUp2uWS/96vmjdEY0+LUN9H/HlgqIo+LyBPAYuB2/8IKjczUJMorlI1J2RAVCwXNPD79/D+CKoz/We3L9ch1yf7gXnhskrtQa4wxNajXL2Nxv2wdBbwMvASMVtXnfY6t2WV4PW/WFVW4ZNqc7fR7NsDSp2DYZZDSs+7luw+DS1+HQ/tcst+9zv8YjTEtUn1/GXujqm5V1de9v23NEFuzy/IS/ZF2+q3L4GBR8xQ+7y7X22fcDfV/TbccuOwNKC1xyX7Xl8GPa99Wf+6lu3+bO3sxxviuvk03s0Tk5yLSU0Q6Vv75GlkIdEhqQ0pirEv0WRNAK2Dtv/wvePc6WPYPyP0htO/esNemZ8PUN6H8MDx3MVSUBy+ufVvg/pPhnf8J3joBVr8Of+wLs2+zZG9MM6hvor8IuBqYh2ufXwzk+xVUKGVW9rzpNQa6DHI17fIyfwuddzdEx8K46xv3+i4D4ew7oXANrHoleHHN/5M7W8h/NHg9fCrKYc7tEB0HC/4M795qyd4Yn9W3jf4mVc2s8pdV12tboiOJPioK8m52ww+s+Kd/Be76Ej551v0Ctm3Xxq9nwPmQ1h/mzgxOrb6yB9BJZ7lEPP+PTV8nuC+iwk/h/L/A8J/AB/fBf35lyd4YH9W3jb6aTt2RKSs1ia1FByk5XAb9JkHXbHjvDn/aqcGtOyYexl7btPVERcHEm2HX57DixabHVdkD6Oy73AXiJU+5C8ZNUV4Gc/8AnQe4L6az74KRV8JHD8C/fmnJ3hifWBt9FZU9bwp2loAITLwF9qyHT54LfmGFa93ZwoifQDV05y0AABWWSURBVHLnpq+v3znQZTC8N7NpzU1VewCNu8G9F/Pvblp8K190Z0h5N7svJhE48w8w+hpY+Fd462dQUeOtC4wxjWRt9FVUDm5WsOuAm3DSmdBtKMy7E8oOB7ew9+6A2EQY08TafKXKWv3udbC8Cb1fq/YAat8dhv0Qlj7T+G6c5WVue7sOhn4Bwx6JwDf+153R5D8Cb11vyd6YIKvv6JVV2+cjto0+o1NAF0vwavW/cr9AXfZM8AravhpWvgwjr4CkTsFbb9+zIX2I+2JqTHNTTT2Axl3vLhjPa2Stfvnzbt15t7gvpEAicPpt7odiix+HN6ZbsjcmiGpN9CJyY8DjC6vM+71fQYVSUlwMXdvFs67wwNGJJ5wOPYa7JFd2KDgFvTcT2iS7Zotgqvxi2lPgLvI2OK67qu8B1C4dcn/s1tnQ/vrlpa42n54Dfc+qOe5Tfw0TfumajV6/JrhdRY1pxeqq0X8v4PHNVeadGeRYwobreRMwoFllW/2+TbDkyaYXsG0FrH4NRl8FiT5c6jjxG+6Xs+/d1bDmpp1fwPLnau4BNO461y3yvTsaFs+yf8DeDe49rO0mZZXvc94t7uzp1Sst2RsTBHUleqnhcXXPI0ZmWtLRpptKWROh12jXG6X0YNMKmDsT4trDqKuatp6aVCbMoq9gWQPu3lhXD6Dkzu7C8Yp/ugvJ9VF22LX5dx/mvoDqI++Xrna//Hl4+XL/f8dgTISLqWO+1vC4uucRIys1iT0lpewtOUxKYhs3sTJ5PnGOa0ceNa1xK9+8GD590zWvJKTUvXxj9TkNeo50zU05F0NMXO3LV/YAGju99h5AY6+FRY+4L4ULHq07jqVPQdFGOOee2mvzVZ3yc4iKgVm/cYO3dR9W/9ca09K0SWp6F+ta1JXoh3j3hhUgIeA+sQLE+xZViAVekB3aq83RGZmnuDFwFvwJTr4U2iQ2bMWFn8GzUyC5C4xs5BdFfYm4boxPneeam0b8pPbl37vDHWx19QBKSnUXkBf82Y2Z37l/zcuWHnRnQD1Hui+ehhp3nbteMOs2+GJWw19vTEuR1Dl0iV5Voxu7YhGJx3XHjPPKeVFVf9PY9TWnzLTARN/h2Jl5N8PjZ7thAcY04ELqjjXwxLnu8WVvQHwz3HI3K88N5TD/jzD0EohNqH65yh5A466vXw+gMT+FhX9zTVDffaLm5ZY8Cfs2w3kPNqw2H2j01e7PGNNoDbnxSEMdAk5V1SFADnCmiIzysbyg6dkhkegoOb6dHiBjrEugC/4Mh6uZX53tq9yNvSUKpr4FnfsFM9yaVTY37d/qmptqUtkDaMxP67fexI4w6kpY/SpsW1n9MqVfuy+Y3mMhc0KDQzfGBI9viV6dyq4rsd5fi2jXbxMTRc8OCayrLtGD6xVSstPVauuybYVL8tFt4IdvQ9pJwQ22LpnjXXPT/D/B4ZLq41v9mkvcDekBNPoqd0F5bg23Ds5/DIq31d3TxhjjOz9r9IhItIgsA3YA76rqx9Usc7mI5ItIfmFhoZ/hNEhmahLrC2tI9L1Gur71798Lh/bXvJIty9zF29hE+OFb0KmPP8HWZeItcGCHa26qqrIH0OgG9gBK6OCaVD59021noMMl7own8xR3U3NjTEj5muhVtVxVc4AewAgRGVTNMg+raq6q5qalpfkZToNkpiZTsOsAWtNAW3m3wNe74eO/Vj9/8xJ48lzXJDL1TegYwh8S9x7juodWbW7astQl6tFXu8TdUKOmQXyK+7IIlP+I+2LJu6VpcRtjgsLXRF9JVfcCc2hBP7LKTE2k5HA5O/bX8EvYHsPcODgf3H/8Xag2LYYnz4P49q5NvmOm/wHXZWI1zU1zZ7pE3diuovHtXbv+Z/9y3UYBDhXDgnugz6nQe3TT4zbGNJlviV5E0kQkxXucAJwBfOpXecGWmZoMwGfba2maybvZ9fH+6KGj0zYudF0aEzvA1LehQ2+fI62nniPghDOONjdtWgyf/dsl6vj2jV/vyCsgoSPM8drqF/3NfaFYbd6YsOFnjT4dmCMiy4FFuDb6N30sL6hyeqUQFxPF7DU7al6oW44bifHDB+DrPbDhQ3jqfNfXfOrb9bvJd3OaePPR5qa5v3cJeuQVTVtnXFvX//eLd+GL2e6L5MRvQM/hwYnZGNNkfva6Wa6qQ1U1W1UHqepv/SrLD8lxMUzs25m3VmylvKKWzkJ5N8GhInjtGnj6O26MmKlvN/zer82h+zB3x6j5f3Q/QBp7rUvUTTXiJ5CYCs9f4r7w8qoOi2SMCaVmaaNvqSYPSadw/yEWFeyueaGug6H/ue6iZvserk2+XXrzBdlQeTe5+8Amptb9a9n6apPkfsVaWuK+SLqfHJz1GmOCoq4hEFq1U/t1JiE2mjeXb2FUVi2/GP3G7yApzSXRYNwpyk/dcuD0GdDpRJeggyX3x268+VH2K1Zjwo3U2H0wBHJzczU/P7xuXHX1P5bw8bpdfHTzacRE2wmQMSa8iMhiVc2tbRnLXHWYPDidncWH+Xh9Lc03xhgTxizR12Fiv84ktonmzeVbQx2KMcY0iiX6OsTHRnN6/y78e+VWSsvtPqbGmJbHEn09TMpOZ09JKR9+uSvUoRhjTINZoq+HCSelkRwXw5vLt4Q6FGOMaTBL9PUQHxvNGQO68J9V2zlcZs03xpiWxRJ9PU3OTqfo61Le/2JnqEMxxpgGsURfT+NOTKVtfIz1vjHGtDiW6OspLiaabw7syjurt3GorDzU4RhjTL1Zom+ASdnp7D9YxvzPrPnGGNNyWKJvgHEnpNI+IZa3VljzjTGm5bBE3wCx0VGcObAr767ezsFSa74xxrQMlugbaPKQdIoPlfHeZ+FzI3NjjKmNJfoGGp3ViQ6Jsdb7xhjTYliib6CY6CjOHJTO7DXb+fqwNd8YY8KfnzcH7ykic0RktYisEpFr/SqruZ2TnU7J4XLmrK3lfrLGGBMm/KzRlwE/U9UBwCjgahEZ4GN5zWZEZkdSk9vwljXfGGNaAD9vDr5VVZd4j/cDa4AwvGN2w8VER3HWoHRmf7qdA4fKQh2OMcbUqlna6EUkAxgKfFzNvMtFJF9E8gsLW05PlknZ6RwsreC/n1rzjTEmvPme6EUkGXgJuE5V91Wdr6oPq2ququampaX5HU7QDM/oSOe2cTZ0sTEm7Pma6EUkFpfkn1HVl/0sq7lFRwlnD05nztpCiq35xhgTxvzsdSPAI8AaVf2TX+WE0uTsdA6XVTBr9fZQh2KMMTXys0Y/FvgBcKqILPP+zvaxvGZ3cq8OdG0Xbz+eMsaEtRi/VqyqCwDxa/3hIMprvnn6ow3sO1hKu/jYUIdkjDHHsV/GNtHkIekcLq/g3VXWfGOMCU+W6JtoaM8Uuqck2NDFxpiwZYm+iUSESdnpzP+8kKKS0lCHY4wxx7FEHwSTBqdTWq78Z/W2UIdijDHHsUQfBNk92tOzY4L1vjHGhCVL9EEgIkwa3I33v9jJngOHQx2OMcYcwxJ9kEzOTqe8Qvn3Kmu+McaEF0v0QTKwWzsyOiXa0MXGmLBjiT5IRITJ2d344Mud7Cw+FOpwjDHmCEv0QTQpO50KhX+vtOYbY0z4sEQfRP26tqVPWpINXWyMCSuW6IPI/XiqGx+v382O/QdDHY4xxgCW6INucnY6qvCvFdZ8Y4wJD5bog+ykLm05qUuy9b4xxoQNS/Q+mJzdjUUbdrOtyJpvjDGhZ4neB5O85pu3bURLY0wYsETvgz5pyfRPb2e9b4wxYcESvU8mZ6ez5Ku9bN77dahDMca0cn7eHPxREdkhIiv9KiOcTRqcDsDbdlHWGBNiftboHwfO9HH9YS0jNYlB3dvxprXTG2NCzLdEr6rzgN1+rb8lmJzdjU827mXj7pJQh2KMacWsjd5Hlc03dj9ZY0wohTzRi8jlIpIvIvmFhYWhDieoenZMZEjPFOt9Y4wJqZAnelV9WFVzVTU3LS0t1OEE3eTB6azcvI+CnQdCHYoxppUKeaKPdGdnW/ONMSa0/Oxe+SzwIdBXRDaJyI/9KiucdU9J4OReKXbjcGNMyPjZ62aKqqaraqyq9lDVR/wqK9xNzu7Gmq37+LKwONShGGNaIWu6aQZnD05HBBvR0hgTEpbom0HX9vEM793Ret8YY0LCEn0zmZSdzmfbi/ls+/5Qh2KMaWUs0TeTswZ3RQS7KGuMaXaW6JtJ57bxjMzsyFvLt6CqoQ7HGNOKWKJvRpOzu/Fl4QE+3WbNN8aY5mOJvhmdOagrUdb7xhjTzCzRN6PU5DjG9Enl9U+2cLC0PNThGGNaCUv0zewHo3uzcU8JFz38ETv2283DjTH+s0TfzL45sCsPXTKMz7bt57z/e5/VW/aFOiRjTISzRB8C3xzYlX9OG025Khc+9AGz12wPdUjGmAhmiT5EBnVvz2tXjyMzLYmfPJnPIwvWW7dLY4wvLNGHUNf28bxwxWi+MaArv3tzNb96dSWl5RWhDssYE2Es0YdYYpsYHrz4ZKZN6MM/Pv6KHz62iKKvS0MdljEmgliiDwNRUcJNZ/Xjzguy+Xj9Lr794Pts2GV3pDLGBIcl+jDy3dyePPXjkew6cJjzHnifhet3hzokY0wEsEQfZkZldeKVq8bSIbENF//9I576aAOHy6zd3hjTeJbow1BmahKvXDWWEZkd+fWrKxl7x3/587ufsX2f/cDKGNNwEk5d+nJzczU/Pz/UYYSNigrlvc8LefKDAuasLSQmSjhzUFemjslgWO8OiEioQzTGhJiILFbV3NqWifE5gDOBe4Fo4O+qOtPP8iJNVJQwsW9nJvbtTMHOAzz10QZeyN/Im8u3MiC9HZeN6c25Q7qT0CY61KEaY8KYbzV6EYkGPgPOADYBi4Apqrq6ptdYjb5uJYfLeHXpFp78sIBPt+0nJTGWi3J7csmo3vTsmBjq8Iwxzaw+NXo/E/1oYIaqftN7fjOAqv6hptdYoq8/VWXh+t08+eEG/r1qGxWqZKUmEWXNOca0OB0S2/DCtNGNem2om266AxsDnm8CRlZdSEQuBy4H6NWrl4/hRBYRYWRWJ0ZmdWJr0dc8u3AjX+ywG5oY0xK1i4/1df2+ttHXh6o+DDwMrkYf4nBapPT2CdxwxkmhDsMYE6b87F65GegZ8LyHN80YY0wz8jPRLwJOFJFMEWkDfA943cfyjDHGVMO3phtVLRORa4D/4LpXPqqqq/wqzxhjTPV8baNX1beBt/0swxhjTO1sCARjjIlwluiNMSbCWaI3xpgIZ4neGGMiXFiNXikihcCGgEmpwM4QheOnSN0uiNxts+1qeSJ126puV29VTavtBWGV6KsSkfy6xnBoiSJ1uyByt822q+WJ1G1rzHZZ040xxkQ4S/TGGBPhwj3RPxzqAHwSqdsFkbtttl0tT6RuW4O3K6zb6I0xxjRduNfojTHGNJElemOMiXBhmehF5EwRWSsiX4jITaGOJ5hEpEBEVojIMhFpsfdNFJFHRWSHiKwMmNZRRN4Vkc+9/x1CGWNj1bBtM0Rks7fflonI2aGMsTFEpKeIzBGR1SKySkSu9aa36P1Wy3ZFwj6LF5GFIvKJt223edMzReRjL0c+7w0FX/N6wq2NvjE3FW9JRKQAyFXVFv1DDhE5BSgGnlTVQd60O4HdqjrT+4LuoKq/DGWcjVHDts0AilX17lDG1hQikg6kq+oSEWkLLAbOA6bSgvdbLdv1XVr+PhMgSVWLRSQWWABcC9wAvKyqz4nIQ8AnqvqXmtYTjjX6EcAXqrpOVQ8DzwHfCnFMpgpVnQfsrjL5W8AT3uMncB+2FqeGbWvxVHWrqi7xHu8H1uDu7dyi91st29XiqVPsPY31/hQ4FXjRm17nPgvHRF/dTcUjYqd5FHhHRBZ7N0aPJF1Udav3eBvQJZTB+OAaEVnuNe20qOaNqkQkAxgKfEwE7bcq2wURsM9EJFpElgE7gHeBL4G9qlrmLVJnjgzHRB/pxqnqycBZwNVeM0HEUdcmGF7tgk3zF6APkANsBf4Y2nAaT0SSgZeA61R1X+C8lrzfqtmuiNhnqlquqjm4+26PAPo1dB3hmOgj+qbiqrrZ+78DeAW34yLFdq+9tLLddEeI4wkaVd3ufeAqgL/RQveb1877EvCMqr7sTW7x+6267YqUfVZJVfcCc4DRQIqIVN4hsM4cGY6JPmJvKi4iSd7FIkQkCfgGsLL2V7UorwOXeY8vA14LYSxBVZkIPefTAvebd2HvEWCNqv4pYFaL3m81bVeE7LM0EUnxHifgOqmswSX8C7zF6txnYdfrBsDrBnUPR28qfnuIQwoKEcnC1eLB3a/3Hy1120TkWSAPN2TqduA3wKvAC0Av3HDT31XVFndRs4Zty8M1AShQAFwR0K7dIojIOGA+sAKo8CbfgmvPbrH7rZbtmkLL32fZuIut0biK+Quq+lsvlzwHdASWApeo6qEa1xOOid4YY0zwhGPTjTHGmCCyRG+MMRHOEr0xxkQ4S/TGGBPhLNEbY0yEs0RvWjQRURF5OuB5jIgUisibQVh3nogUichSbzTVeSIyuQnryxCR7wc8nyoi/9fUOI2piyV609IdAAZ5PyYB94OSYP6Ser6qDlXVvsB04P9E5LRGrisD+H5dCxkTbJboTSR4G5jkPZ4CPFs5Q0RGiMiHXq38AxHp602/XkQe9R4PFpGVIpJYWyGqugz4LXCN97o0EXlJRBZ5f2O96TNE5Cmv3M9F5CfeKmYC472x0a/3pnUTkX97y90ZnLfDmGNZojeR4DngeyISD2RzdORCgE+B8ao6FLgV+L03/V7gBBE5H3gM96vJknqUtYSjg0rdC/xZVYcD3wH+HrBcNm4o2dHArSLSDbgJd4aQo6p/9pbLAS4CBgMXiUjgOE/GBEVM3YsYE95Udbk3PO0UXO0+UHvgCRE5EfdT+FjvNRUiMhVYDvxVVd+vZ3ES8Ph0YIAbagWAdt4IigCvqerXwNciMgc3oNbeatY3W1WLAERkNdCbY4fpNqbJLNGbSPE6cDduTJpOAdN/B8xR1fO9L4O5AfNOxN1JqlsDyhmKG1QK3BnxKFU9GLiAl/irji1S01gjgeOTlGOfSeMDa7oxkeJR4DZVXVFlenuOXpydWjlRRNoD9wGnAJ1E5ALq4A0w9WvgAW/SO8BPA+bnBCz+LXH3++yE+/JZBOwH2tZ/k4wJDkv0JiKo6iZVva+aWXcCfxCRpRxbW/4z8ICqfgb8GJgpIp2ref34yu6VuAQ/XVVne/OmA7neHYxWA9MCXrccN5TsR8DvVHWLN61c3I2er8eYZmKjVxoTZJFwI3ETWaxGb4wxEc5q9MYYE+GsRm+MMRHOEr0xxkQ4S/TGGBPhLNEbY0yEs0RvjDER7v8DbfHi2IrtlR4AAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QzfcYHhkV6ch"
      },
      "source": [
        "Training model with different activation functions and finding model with best accuracy"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "IXS6sCvkT997",
        "outputId": "4fe47824-f405-4563-ab64-c0a821b9cbe2"
      },
      "source": [
        "best=1\r\n",
        "acc=-1\r\n",
        "for a in [\"identity\", \"logistic\", \"tanh\", \"relu\"]:\r\n",
        "    model = MLPClassifier(activation=a,max_iter=10000, batch_size=64,alpha=0.1,random_state=1).fit(X_train,Y_train)\r\n",
        "    y_pred = model.predict(X_test)\r\n",
        "    print(a)\r\n",
        "    ass(Y_test,y_pred)\r\n",
        "    score = model.score(X_test,Y_test)\r\n",
        "    if score>acc:\r\n",
        "      acc=score\r\n",
        "      best = a\r\n",
        "    #print(a,\" - \",model.score(X_test,Y_test))\r\n",
        "print(best,acc)"
      ],
      "execution_count": 73,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "identity\n",
            "Accuracy: 84.0909090909091\n",
            "Sensitivity: 62.96296296296296\n",
            "Specificity: 93.44262295081968\n",
            "ROC_AUC_Score: 78.20279295689133\n",
            "logistic\n",
            "Accuracy: 81.81818181818183\n",
            "Sensitivity: 66.66666666666666\n",
            "Specificity: 88.52459016393442\n",
            "ROC_AUC_Score: 77.59562841530054\n",
            "tanh\n",
            "Accuracy: 84.0909090909091\n",
            "Sensitivity: 62.96296296296296\n",
            "Specificity: 93.44262295081968\n",
            "ROC_AUC_Score: 78.20279295689133\n",
            "relu\n",
            "Accuracy: 82.95454545454545\n",
            "Sensitivity: 70.37037037037037\n",
            "Specificity: 88.52459016393442\n",
            "ROC_AUC_Score: 79.44748026715239\n",
            "identity 0.8409090909090909\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8yTNetDsWQT5"
      },
      "source": [
        "Performing Grid search on the model we got from the above"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "2YPLpq7pUBmL"
      },
      "source": [
        "rf_train_score=[]\r\n",
        "rf_test_score=[]\r\n",
        "a=[0.001,0.01,0.1]\r\n",
        "for i in range(len(a)):\r\n",
        "  param_grid = {'activation':[best],'max_iter': [10000],'batch_size':[64],'alpha':[0.1],'learning_rate_init':[a[i]],'random_state':[1]}\r\n",
        "  GS=GridSearchCV(MLPClassifier(), param_grid)\r\n",
        "  GS.fit(X_train,Y_train)\r\n",
        "  y_train_pred=GS.predict(X_train)\r\n",
        "  y_pred=GS.predict(X_test)\r\n",
        "  rf_train_score.append(log_loss(Y_train,y_train_pred))\r\n",
        "  rf_test_score.append(log_loss(Y_test,y_pred))"
      ],
      "execution_count": 74,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 312
        },
        "id": "AcWaCyicUELw",
        "outputId": "5735e5b1-3904-42f5-f605-dcf1d502890d"
      },
      "source": [
        "plt.title(\" MLPClassifier Error vs Learning rate\")\r\n",
        "plt.xlabel(\"Learning rate\")\r\n",
        "plt.ylabel(\"Error\")\r\n",
        "plt.plot([0.001,0.01,0.1],rf_train_score,label=\"Training Error\")\r\n",
        "plt.plot([0.001,0.01,0.1],rf_test_score,label=\"Testing Error\")\r\n",
        "plt.legend()\r\n",
        "plt.plot()"
      ],
      "execution_count": 75,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "[]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 75
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXwV5dXA8d/JQhJIgJCNJexLSEAWCeDKooS61Gqt1rWC1SKtrVq12kVb7PZq9e1rXVFRwZ2qpSpubCKoKIuAQAggJOwkIUBICEuW8/4xQ7zGBG6SuyS55/v53A/3zsyde2ZuuGee58w8I6qKMcaY0BUW7ACMMcYElyUCY4wJcZYIjDEmxFkiMMaYEGeJwBhjQpwlAmOMCXGWCIzXRGS6iPzVj+svFZFe7vMYEXlHRIpF5HURuUZE5vjrs03jiMhUEbk32HGYhrFE0IyIiIpIgYhEeEyLdKepx7SFInJjLe/v4a6j1H3kichvPeaLiNwiImtF5JCI7HB/hE/x/9aBqsaq6hb35WVACpCgqper6suqOt5Xn+XuoyMe+6JURN7x1foDRUTGiMiOYMehqpNV9S/BjgP8f8DSElkiaH72A+d7vD7fnVYf7VU1FrgK+KOInOdO/xdwK3AL0AHoB/wXuLBRETdMd2CjqlY0dkUiEl7HrF+6yef446I63h/hzbSTxFCv5ZuSphR7U4qlJbFE0Py8CFzn8fo64IWGrEhVlwDrgIEi0he4GbhKVReo6lFVLXOPxO+v+V4RiReR2SJSKCL73eepHvMnisgWESkRkVwRucad3kdEPna7fPaKyEyP96g7/z7gj8AV7pH6De76PvFYtr+IzBWRfSKyQUR+7DFvuog8KSLvicghYGx99svxo2wRuVtE9gDPi8gUEXlDRF4SkYPARBHpLCJvuzF8LSI/81jHd5av8RkjRWSPZ5ISkR+KyFfu8xEislxEDopIvoj8sz7b4K6js4i86X5HuSJyi8e8ESKyREQOiMhuEXlMRFp5zFcRuVlENgGbPPbJHW4LdLeIXO+xfPVRuBfLJojT7XdQRJaJyF89v9sa23C8FXuDiGwDFrjTX3f3X7GILBKRAe70ScA1wF2erbwT7QtjiaA5+i8wSkTai0g8cDbwVn1XIo4zgQHASuBcYIeqLvVyFWHA8zhH7t2Aw8Bj7rrbAI8A56tqHHAGsMp931+AOUA8kAo8WnPFqvon4O/ATPdI/dkasbcB5gKvAMnAlcATIpLhsdjVwN+AOKDWH5mT6IjTKuoOTHKnXQy8AbQHXgZeA3YAnXG6sv4uIud4rKPm8p7b+AVwCPBc/mp3m8Bpnf1LVdsCvYF/1yd4EQkD3gFWA11wvt/bROR77iKVwK+BROB0d/4vaqzmEmAkcHy/dgTaueu7AXjc/RuszYmWfRxn2zsCE9zHyYwG0oHj8b8P9MX5/r/E3b+q+rT7/B/HW3le7IuQZ4mg+TmC80d9hft4251WH3uBfcA04LeqOh9IAHZ7uwJVLVLVN91WQwnOj+5oj0WqcFoaMaq6W1XXudPLcX5cO6vqEVVtyI/094E8VX1eVStUdSXwJnC5xzJvqeqnqlqlqnXtn0fcI+LjD88+7irgT27L6LA7bYmq/ldVq3B+QM8E7na3YxXO/vRsrVUv77EOT6/idM8hInHABe40cPZTHxFJVNVSVf3c253jGg4kqeqfVfWYW3t5BidpoqorVPVzd//lAU/x7e8P4H9UdZ9H7OXAn1W1XFXfA0qBtDo+v9Zl3RbQj3D2bZmqZgMzvNieKap66Hgsqvqcqpao6lFgCjBYRNo1ZF8YSwTN1Qs4PzgN7RZKVNV4VU1X1UfcaUVAJ29XICKtReQpEdnqdn0sAtqLSLiqHsJJUpOB3SLyroj0d996FyDAUhFZJyI/bUD83YGRnj/iON0BHT2W2e7Fem5R1fYeD8+zXgprSSCe6+wM7HOT4HFbcY44vY3hFeBSEYkCLgW+VNWt7rwbcGo0OW73yfe92B5P3YHONfbR73EK8IhIP3G68/a439/fcZKbp5rxF9Wo2ZQBsXV8fl3LJgERNdbtzXdVvYyIhIvI/SKy2Y09z51VM/7jTrgvjCWC5moxzo92Cg3r9qjNfCBVRDK9XP4OnKPBkW73xSh3ugCo6oeqmuXGmYNzBIaq7lHVn6lqZ+AmnC6dPvWMdTvwcY0f8VhV/bnHMo0dVre293tO2wV0cI/kj+sG7PQ2BvdoeCtOwd+zWwhV3aSqV+F0fTwAvOF2iXlrO5BbYx/FqeoF7vwncb6Xvu7393vc787b+BuoEKjA6RY8rqsX7/OM5WqcbrdxON1PPdzpUsuycPJ9EfIsETRD6owdfhHwA617HPEIEYn2eESeZJ2bgCeAV91iXyv3fVeKxymmHuJw6gIHRKQD8KfjM0QkRUQudn+4juJ0C1S58y6Xb4rK+3H+01Z5vfGO2UA/EfmJOKfPRorIcBFJr+d6GkxVtwOfAf/j7qdBOEfxL9VzVa/gnKk1Cnj9+EQRuVZEktxuqAPu5Dr3U43vOhpYCpSIU/COcY+iB4rIcPctccBBoNRtrf28rnX7kqpWAv8Bprityv58uzvNG3E4f1dFQGuc1oynfKCXx+uT7YuQZ4mgmVLVdR797rV5EueH+vjjeS9WewtOwfdxnB+fzcAPcWoSNT0MxODUGz4HPvCYFwbcjnPUvA+n7/n4D81w4AsRKcWpb9yq31w74BW3O2Y8Th/vLmAPzlFzVH3WAzwm376OYEU9338VztHoLmAWTr/3vHqu41Wc/bNAVfd6TD8PWOfup38BV9ZRZwCnO+pwjUdPnFrKECAX53uahnMEDXAnzpF1CU5rbSaB80s3jj04Z8G9ivPD7q0XcFpSO4FsnL8/T88CGW430H/d5HOifRHypO4DSmOM8T8ReQDoqKrenD1k/MBaBMaYgBLnGpBB7inMI3C61GYFO65QZlfpGWMCLQ6nO6gzTn/+/9KAa2GM71jXkDHGhDjrGjLGmBDX7LqGEhMTtUePHsEOwxhjmpUVK1bsVdWk2uY1u0TQo0cPli9fHuwwjDGmWRGRrXXNs64hY4wJcZYIjDEmxFkiMMaYEGeJwBhjQpwlAmOMCXGWCIwxJsRZIjDGmBDX7K4jaDZ2rYQN7wc7CtMc2DAvxlvdToM+5/p8tZYI/EEVZk2GwpxgR2KalZo3CDOmhrNus0TQbOR94iSBix+HodcGOxpjjDkhqxH4w7JnICYeBv4o2JEYY8xJWSLwtYO7YP1spyUQGRPsaIwx5qQsEfjaiumgVZB5Q7AjMcYYr1gi8KXKcicR9M2CDj2DHY0xxnjFEoEvrX8HSvNh+M+CHYkxxnjNEoEvLZsG7bv75fQuY4zxF0sEvpK/DrZ+CsNvgLDwYEdjjDFes0TgK8umQUQ0DP1JsCMxxph6sUTgC0cOwuqZznUDrTsEOxpjjKkXSwS+sPo1KD8Ew28MdiTGGFNvfh1iQkTygBKgEqhQ1cwa89sBLwHd3FgeUtXn/RmTz6k63UKdT4UupwY7GmOMqbdAjDU0VlX31jHvZiBbVS8SkSRgg4i8rKrHAhCXb+Qugr0b4JIngx2JMcY0SLC7hhSIExEBYoF9QEVwQ6qnZc9ATAcYcGmwIzHGmAbxdyJQYI6IrBCRSbXMfwxIB3YBa4BbVbWq5kIiMklElovI8sLCQv9GXB/FOyHnPTj1JxAZHexojDGmQfydCM5S1VOB84GbRWRUjfnfA1YBnYEhwGMi0rbmSlT1aVXNVNXMpKQkP4dcD9XjCv002JEYY0yD+TURqOpO998CYBYwosYi1wP/UcfXQC7Q358x+UzFMXdcofEQ3yPY0RhjTIP5LRGISBsRiTv+HBgPrK2x2DbgXHeZFCAN2OKvmHxq/dtwqABG2LhCxpjmzZ9nDaUAs5w6MBHAK6r6gYhMBlDVqcBfgOkisgbnPn13n+AMo6Zl2TSI7wm9bVwhY0zz5rdEoKpbgMG1TJ/q8XwXTkuhedmzFrYtgfF/hbBgn3hljDGNY79iDXF8XKEh1wQ7EmOMaTRLBPV1pBi++jcMvMzGFTLGtAiWCOpr1avOuEIjbFwhY0zLYImgPo6PK9QlEzoPDXY0xhjjE5YI6mPLQijaZKeMGmNaFEsE9bFsGrROgIxLgh2JMcb4jCUCbxXvgA3vOXcgs3GFjDEtiCUCby1/3qkR2LhCxpgWxhKBNyqOwpczoN95EN892NEYY4xPWSLwRvbbcKjQThk1xrRIlgi8sWwadOgFvc4JdiTGGONzlghOZs8a2P45ZN5g4woZY1ok+2U7maXPQEQMDLVxhYwxLZMlghM5fADWvA6nXAYx8cGOxhhj/MISwYmsegXKy+xKYmNMi2aJoC5VVU6ROHUEdPrObRWMMabFsERQl9yFsG+ztQaMMS2eJYK6LJ0GrRMh4+JgR2KMMX5liaA2B7bDxvfh1OsgIirY0RhjjF9ZIqjN8uecf21cIWNMCLBEUFPFUfjyBeh3PrTvGuxojDHG7ywR1JT9FpTttXGFjDEhwxJBTUufgQ69oeeYYEdijDEBYYnA0+7VsGMpDL/RxhUyxoQM+7XztPQZiGwNQ64OdiTGGBMwEf5cuYjkASVAJVChqpm1LDMGeBiIBPaq6mh/xlSnw/thzRsw6McQ0z4oIRhjTDD4NRG4xqrq3tpmiEh74AngPFXdJiLJAYindqtegYrDTreQMcaEkGB3DV0N/EdVtwGoakFQojg+rlDXkdBpUFBCMMaYYPF3IlBgjoisEJFJtczvB8SLyEJ3metqW4mITBKR5SKyvLCw0PdRblkA+7bAcBtXyBgTevzdNXSWqu50u3zmikiOqi6q8fnDgHOBGGCJiHyuqhs9V6KqTwNPA2RmZqrPo1w6DdokQcYPfL5qY4xp6vzaIlDVne6/BcAsYESNRXYAH6rqIbeOsAgI7JjP+7fCxg/g1Ak2rpAxJiT5LRGISBsRiTv+HBgPrK2x2FvAWSISISKtgZHAen/FVKsVz4MIZF4f0I81xpimwp9dQynALBE5/jmvqOoHIjIZQFWnqup6EfkA+AqoAqapas1k4T/lR5xxhdIugHapAftYY4xpSvyWCFR1C7V086jq1BqvHwQe9FccJ5T9XygrslNGjTEhLdinjwbX0mcgoS/0GhPsSIwxJmhCNxHsWgk7lzutAaf7yhhjQlLoJoJl09xxha4KdiTGGBNUoZkIyvZ9M65QdLtgR2OMMUEVmolg1ctQccSuJDbGGEIxEVRVwbJnodvp0HFgsKMxxpigC71EsHkB7M+1U0aNMcYVeolg2TPQJhnSbVwhY4yBUEsE+/Ng44cwbAJEtAp2NMYY0ySEViJY/hxIGAyzcYWMMea40EkE5Ufgyxeh/wXQrkuwozHGmCYjdBLBullweJ+dMmqMMTWETiLofyFc8iT0HBXsSIwxpkkJxM3rm4botjDk6mBHYYwxTU7otAiMMcbUyhKBMcaEOEsExhgT4iwRGGNMiLNEYIwxIc4SgTHGhDhLBMYYE+IsERhjTIizRGCMMSHOEoExxoQ4vyYCEckTkTUiskpElp9gueEiUiEil/kzHmOMMd8ViLGGxqrq3rpmikg48AAwJwCxGGOMqaEpdA39CngTKAh2IMYYE4r8nQgUmCMiK0RkUs2ZItIF+CHwpJ/jMMYYUwd/dw2dpao7RSQZmCsiOaq6yGP+w8DdqlolInWuxE0ikwC6devm14CNMSbU+LVFoKo73X8LgFnAiBqLZAKviUgecBnwhIhcUst6nlbVTFXNTEpK8mfIxhgTcvzWIhCRNkCYqpa4z8cDf/ZcRlV7eiw/HZitqv/1V0zGGGO+y59dQynALLfLJwJ4RVU/EJHJAKo61Y+fbYwxxkt+SwSqugUYXMv0WhOAqk70VyzGGGPq1hROHzXGGBNEJ00EIhImImcEIhhjjDGBd9JEoKpVwOMBiMUYY0wQeNs1NF9EfiQnOtnfGGNMs+RtIrgJeB04JiIHRaRERA76MS5jjDEB4tVZQ6oa5+9AjDHGBIfXp4+KyA+AUe7Lhao62z8hGWOMCSSvuoZE5H7gViDbfdwqIv/jz8CMMcYEhrctgguAIe4ZRIjIDGAl8Dt/BWaMMSYw6nNBWXuP5+18HYgxxpjg8LZF8HdgpYh8BAhOreC3fovKGGNMwJw0EYhIGFAFnAYMdyffrap7/BmYMcaYwDhpInBvGnOXqv4beDsAMRljjAkgb2sE80TkThHpKiIdjj/8GpkxxpiA8LZGcIX7780e0xTo5dtwjDHGBJq3NYLfqurMAMRjjDEmwLwdffQ3AYjFGGNMEFiNwBhjQpzVCIwxJsR5O/poT38HYowxJjhO2DUkInd5PL+8xry/+ysoY4wxgXOyGsGVHs9rDjB3no9jMcYYEwQnSwRSx/PaXhtjjGmGTpYItI7ntb02HooPl7OtqCzYYRhjzEmdrFg82L03sQAxHvcpFiDar5E1YwUHj3DF05+Tu/cQvZPakJXRkayMFIZ2bU9YmDWkjDFNywkTgaqGN2blIpIHlACVQIWqZtaYfw1wN05iKQF+rqqrG/OZwba39ChXT/uCgoNHuCOrH1/k7mPa4i1M/XgzibFRjEtPJisjhTP7JBId2ajda4wxPuH1PYsbYayq7q1jXi4wWlX3i8j5wNPAyADE5Bf7Dx3j2mlfsHP/YaZfP5yRvRL4FU430cINBczJzmf2V7t5bdl2YiLDGdUvkayMjpzbP5n4Nq2CHb4xJkQFIhHUSVU/83j5OZAarFgaq7isnGuf/YLcvYd4bqKTBI5rFxPJxUO6cPGQLhytqOTzLfuYm72HedkFfLgunzCBzB4dGJ+RQlZGCt0T2gRxS4wxoUZU/VfzFZFcYD9OYfkpVX36BMveCfRX1RtrmTcJmATQrVu3YVu3bvVTxA1TcqSca59dyvpdB3n6umGMSUv26n2qypqdxczNzmdudj45e0oA6JcSS1ZGCuMzOnJKl3ZWVzDGNJqIrKjZPV89z8+JoIuq7hSRZGAu8CtVXVTLcmOBJ4CzVLXoROvMzMzU5cuX+yfgBjh0tIIJzy1l1fYDPHntMLIyUhq8ru37ypiTnc/c7D0sy9tPZZWS0jaKcelOS+H03glERVhdwRhTf0FLBDWCmAKUqupDNaYPAmYB56vqxpOtpyklgsPHKrl++lKW5e3n0auGcsEpnXy27gNlx1iQU8Dc7Hw+3lhI2bFKYqMiGN0viayMFMamJdOudaTPPs8Y07KdKBH4rUYgIm2AMFUtcZ+PB/5cY5luwH+An3iTBJqSI+WVTHpxOV/k7uPhK4b4NAkAtG/diktPTeXSU1M5Ul7Jks1FzMnOZ976fN5ds5vwMGFkzw5kuXWF1PjWPv18Y0zo8FuLQER64Rzpg5NwXlHVv4nIZABVnSoi04AfAcc7/b9zimlNTaFFcKyiiskvrWBBTgEPXjaIyzO7Buyzq6qU1TsOVNcVNhWUApDeqa1bV0hhQOe2iFhdwRjzjSbRNeQrwU4E5ZVV3Pzyl8zJzufvPzyFq0d2C1osAHl7D1UnheVb91Gl0LldNOPclsLIngm0ivD2thPGmJbKEoGPVFRWcevMVbz71W6mXJTBxDOb1ujcRaVHq+sKizYVcqS8irioCMb0dy5iG5OWRNtoqysYE4osEfhAZZVy5+urmbVyJ7+/oD+TRvUOeAz1caS8kk827WVudj7zc/LZW3qMyHDhtF4JZGWkMC49hc7tY4IdpjEmQCwRNFJVlfK7/6xh5vLt3Dm+H788p29AP7+xKquUVdv3u6em5rOl8BAAA7u0JSvdGQcpvVOc1RWMacEsETSCqnLvW2t56fNt3HJOH24fnxawz/aXzYWl1XWFL7ftRxVS42MYl+4Um4f37EBkuNUVjGlJLBE0kKryl9nree7TXG4a3Yvfnte/xR01F5YcZUGOkxQWb9rL0Yoq2kZHcE7/ZLIyOjI6LYnYqKCORGKM8QFLBA2gqjzwwQamfryZ68/swR+/n9HikkBNZccqWHy8rrA+n/1l5bQKD+P03gnV1yuktLXRx41pjiwRNMA/527kkfmbuGZkN/56ycAWnwRqqqxSVmzdz9zsPczJzmere5Odwant3KTQkX4psSG3X4xpriwR1NPjH33Ngx9u4MeZqdx/6aCQH/RNVdlU8E1dYdX2AwB069C6uqWQ2T2eCKsrGNNkWSKoh2mLt/DXd9fzw6FdeOjywYSHeBKoTcHBI8xbX8Cc7D189nURxyqriG8dydj+yYzPSGFUvyRat7K6gjFNiSUCL834LI8/vb2OC0/pxL+uHGJHuF4oPVrBoo2FzM3OZ0FOAcWHy2kVEcZZfRLJykjh3PRkkuOsrmBMsAVl0Lnm5pUvtvGnt9eRlZHCw5YEvBYbFcEFp3TiglM6UV5ZxbK8fdVdSAtyChCBIV3bV99foU9ybLBDNsbUYC0C4I0VO/jNG6sZ0y+JqT8ZZmP++4CqkrOnpDoprNlZDECvxDbV4yCd2i3eut6MCRDrGjqBt1bt5NczV3FG70SmTci0G8r7ye7iw8zLzmdOdj6fbymivFJJaNOKc/onM35AR87qk0hMK9v3xviLJYI6vL9mN798dSWZ3eOZfv0I+yEKkINHyvl4g1NX+GhDASVHKoiODOPsvs5Nd87tn0xCbFSwwzSmRbEaQS3mZefzq1dXMqRre56bONySQAC1jY7kosGduWhwZ45VVLE0dx9zs/dUdyOFCQzrHl99vULPxDbBDtmYFi0kWwQLNxQw6YUVpHeK48UbR9rQzE2EqrJu18HqhJC9+yAAfZJjq69XGJLaPuSv6zCmIaxryMOnX+/lp9OX0Tsplld/dprd97cJ27G/jHnZ+cxdn88XW/ZRUaUkxUUxLt25v8IZvROtpmOMlywRuJbm7mPCc0vp1qE1r046jQ5tWvk4OuMvxWXlLNxYwJzsfD7eUEjp0QpatwpnlFtXOKd/MvH2fRpTJ0sEwJfb9vOTaV/QsV00r006naQ4K0Y2V0crKvl8i1NXmJddwJ6DRwgPEzLdusL4jI50S2gd7DCNaVIsEQBrdxZzz3/X8tRPhtkImi2IqrJmZ3F1XSFnTwkAaSlx1XWFU7q0s7qCCXmWCFyqaqNltnDbisqYuz6fudl7WJa3n8oqJaVtFOPSnaRweu8Eu2DQhCRLBCYk7T90jI82FDA3O5+PNxZSdqyS2KgIRvdz6gpj05LtZAETMiwRmJB3pLySJZuLmJOdz7z1+RSWHCUiTBjRs0N1F1JqvNUVTMtlicAYD1VVyuodB6rrCpsKSgFI79TWLTanMKBzW+tGNC2KJQJjTiB37yF3HKQ9rNi6nyqFzu2iqwfHG9kzgVYRNhqtad6ClghEJA8oASqBippBiHPI9S/gAqAMmKiqX55onZYIjD8VlR5lfo5TV1i8qZAj5VXERUcwJs25iG1MWpJdiW6apWCPNTRWVffWMe98oK/7GAk86f5rTFAkxEbx48yu/DizK4ePVfLJ13uZm72H+esLeGf1LiLDhdN6JZCVkcK49BQ6t48JdsjGNFogWgSZdSUCEXkKWKiqr7qvNwBjVHV3Xeu0FoEJhsoqZeW2/dV1hS17DwEwsEtbstI7kpWRQnqnOKsrmCYrmF1DucB+QIGnVPXpGvNnA/er6ifu6/nA3aq6vMZyk4BJAN26dRu2detWv8VsjDe+Lih1k8IeVm4/gCqkxscwLt0pNg/v2YFIu8udaUKC2TV0lqruFJFkYK6I5KjqovquxE0gT4PTIvB1kMbUV5/kWPokx/LzMb0pLDnK/PVOS+HVpduY/lke7WIiGZuWRFZGR0anJREbFbIjvptmwK9/naq60/23QERmASMAz0SwE+jq8TrVnWZMs5EUF8WVI7px5YhulB2rYNHGve49m/P576pdtAoP4/TeCYwf4NQVbIgT09T4rWtIRNoAYapa4j6fC/xZVT/wWOZC4Jc4Zw2NBB5R1REnWq/VCExzUVFZxYqtbl1hfT5bi8oAGNy1PVnpyWRldKRfSqzVFUxABKVGICK9gFnuywjgFVX9m4hMBlDVqe7po48B5+GcPnp9zfpATZYITHOkqmxy6wpzsvNZvf0AAN0TWpPljoM0rHs8EVZXMH5iF5QZ08TkHzzCPLeu8NnXRRyrrCK+dSTn9HeSwqh+ibRuZXUF4zuWCIxpwkqPVrBoY6FbVyig+HA5URFhnNUnkayMFM5NT7H7Z5hGs0RgTDNRXlnFsrx91dcr7Nh/GBEY2rU9WRnO9Qp9kmODHaZphiwRGNMMqSo5e0qqk8KancUA9EpsUz1i6tBu8YTbTXeMFywRGNMC7C4+7A6Ol8/nW4oor1QS2rTiXPcMpLP6JBLTym66Y2pnicCYFubgkXI+3uDUFT7aUEDJkQqiI8M4u69z051z+yeTEGt1BfONYA86Z4zxsbbRkVw0uDMXDe7MsYoqlubuY272nupupDCBYd3j3S6kjvRMbBPskE0TZi0CY1oQVWXdroPVCSF790HAGRLjeF1hSGp7wqyuEHKsa8iYELV9X1n19Qpf5O6jskpJiotiXLpzf4UzeicSHWl1hVBgicAYQ3FZOR9tcG66s3BDAYeOVdK6VTij3LrCOf2TiW/TKthhGj+xRGCM+ZajFZUs2VzE3Ox85q3PJ//gUcLDhEy3rjA+oyPdEloHO0zjQ5YIjDF1qqpS1uwsrq4rbMgvASAtJa66rnBKl3ZWV2jmLBEYY7y2raiMOe4ZSMvy9lGlkNI2inHu4Hin904gKsLqCs2NJQJjTIPsP3SMBTlOXWHRpkLKjlUSGxXB6H5OXWFsWjLtWkcGO0zjBUsExphGO1JeyWeb97pdSAXsLT1KRJgwomeH6i6k1HirKzRVLT4RlJeXs2PHDo4cORKkqExtoqOjSU1NJTLSjhhbmqoqZdWOA9V1ha8LSgFI79TWLTanMKBzW7vpThPS4hNBbm4ucXFxJCQk2B9eE6GqFBUVUVJSQs+ePYMdjvGz3L2Hqq9sXr51P6rQpX0M49KTGZeRwsieCbSKsJvuBFOLTwTr16+nf//+lgSaGFUlJyeH9PT0YIdiAqio9Cjz3brC4k2FHCmvItvEbGcAABPoSURBVC46grFpzkVsY9KSiIu2VmKghcRYQ5YEmh77TkJTQmwUP87syo8zu3L4WCWffL2Xudl7mL++gLdX7yIyXDitVwLjM1IYl5FCp3YxwQ455LWYRGCMaXpiWoVXF5Irq5SV2/ZX1xXufWsd9761jlO6tKtepn/HODuACAJLBD5QVFTEueeeC8CePXsIDw8nKSkJgKVLl9KqVd2X7S9fvpwXXniBRx555ISfccYZZ/DZZ581OtaFCxdy8cUXf6vf/qGHHmLcuHGNXrcxJxIeJmT26EBmjw787oJ0vi4odZPCHv5v3kb+OXcjqfEx1UlhRI8ORIRbXSEQLBH4QEJCAqtWrQJgypQpxMbGcuedd1bPr6ioICKi9l2dmZlJZmat3Xbf4oskcNzZZ5/N7Nmz65yvqqgqYWFhtb6uy4m205ia+iTH0ic5lp+P6U1ByREWrHfqCi9/sY3nP82jXUwk5/R36gqj+iURG2V/W/7S4vbsfe+sI3vXQZ+uM6NzW/500YB6vWfixIlER0ezcuVKzjzzTK688kpuvfVWjhw5QkxMDM8//zxpaWksXLiQhx56iNmzZzNlyhS2bdvGli1b2LZtG7fddhu33HILALGxsZSWlrJw4UKmTJlCYmIia9euZdiwYbz00kuICO+99x633347bdq04cwzz2TLli0n/MH3lJeXx/e+9z1GjhzJihUreOKJJ5g0aVL16/fee4/HHnuM999/HxHhnnvu4YorrmDhwoXce++9xMfHk5OTw8aNG+u9f41JjovmyhHduHJEN8qOVbBoo3O9woKcfGat3Emr8DDO6JPgtBbSU0huGx3skFuUFpcImpIdO3bw2WefER4ezsGDB1m8eDERERHMmzeP3//+97z55pvfeU9OTg4fffQRJSUlpKWl8fOf//w75+GvXLmSdevW0blzZ84880w+/fRTMjMzuemmm1i0aBE9e/bkqquuqjOuxYsXM2TIkOrXb775JuHh4WzatIkZM2Zw2mmnkZeX963Xb775JqtWrWL16tXs3buX4cOHM2rUKAC+/PJL1q5da6eJGp9o3SqC8wZ25LyBHamorGLFVreusD6fP8xayx9mrWVw1/aMd7uQ+ibHWl2hkVpcIqjvkbs/XX755YSHO2OyFBcXM2HCBDZt2oSIUF5eXut7LrzwQqKiooiKiiI5OZn8/HxSU1O/tcyIESOqpw0ZMoS8vDxiY2Pp1atX9Y/xVVddxdNPP13rZ9TWNZSXl0f37t057bTTqqd5vv7kk0+46qqrCA8PJyUlhdGjR7Ns2TLatm3LiBEjLAkYv4gID2NkrwRG9krgDxemszG/tPp6hQc/3MCDH26ge0JrstxxkIZ1j7e6QgO0uETQlLRp883tAe+9917Gjh3LrFmzyMvLY8yYMbW+Jyrqm/vMhoeHU1FR0aBlGhtvba+9fZ8x/iAipHWMI61jHL88py/5B49Un4H0wpKtTPskl/jWkZzTP8WtKyTSupX9xHnD76lTRMJFZKWIfKezWkS6ichH7vyvROQCf8cTLMXFxXTp0gWA6dOn+3z9aWlpbNmyhby8PABmzpzp0/WfffbZzJw5k8rKSgoLC1m0aBEjRozw6WcYUx8pbaO59rTuzPjpCL78YxaPX30qo/slMTd7D5NfWsHQP8/lhunLeG3pNgpLjgY73CYtEOnyVmA90LaWefcA/1bVJ0UkA3gP6BGAmALurrvuYsKECfz1r3/lwgsv9Pn6Y2JieOKJJzjvvPNo06YNw4cPr3PZmjWCe+6556RnLv3whz9kyZIlDB48GBHhH//4Bx07diQnJ8dn22BMQ8VGRXDhoE5cOKgT5ZVVLMvdxxy3tTA/pwCRNQzt2p6sjI5kZaTQJzk22CE3KX4dYkJEUoEZwN+A21X1+zXmPwVsUdUHROR04H9V9YwTrbOuISZsGAMoLS0lNjYWVeXmm2+mb9++/PrXvw5qTPbdmGBSVdbvLnGLzXtYu9M5o7BXYpvq6xWGdosnPARuuhPMISYeBu4C4uqYPwWYIyK/AtoAtV7VJCKTgEkA3bp1832ULcQzzzzDjBkzOHbsGEOHDuWmm24KdkjGBJWIkNG5LRmd23LruL7sOnCYeeudlsKzn+Ty1KItJMa2cq9X6MjZfROJjgy9m+74rUUgIt8HLlDVX4jIGODOWloEt7sx/K/bIngWGKiqVXWt11oEzYt9N6apOniknIUbCpmbnc/CnAJKjlYQHRnG2X2dm+6c2z+ZhNiok6+omQhWi+BM4AduATgaaCsiL6nqtR7L3ACcB6CqS0QkGkgECvwYlzHG0DY6kh8M7swPBnfmWEUVX+QWVZ+FNDc7nzCBYd3j3S6kjvRMbLlnxwVkGOoTtAjeB2aq6nQRSQfmA130BEFZi6B5se/GNDeqyrpdB6uLzet3O3WFPsmx1XWFIantCWtmdYUmNQy1iPwZWK6qbwN3AM+IyK8BBSaeKAkYY4y/iQgDu7RjYJd23J7Vj+37yqrrCk8v2sKTCzeTFBfFuPRkxmd05PTeCc2+rtBibkxjR51Nk303piUpLivnow3O4HgLNxRw6FglrVuFM7pfEuPSUzinfzLxbeoebTiYmlSLoCVqzDDU4AwN3apVK844wzlzdurUqbRu3Zrrrruu0bGNGTOG3bt3ExPj3PyjT58+vPHGG41erzGhqF3rSC4Z2oVLhnbhaEUlSzY7dYV56/N5f+0eZ6jt7vGMH9CR8RkpdO3QOtghe8USgQ+cbBjqk1m4cCGxsbHViWDy5Mk+je/ll18+4QVjNYeP9nY4aRt22oSyqIhwxqQlMyYtmb9cPJA1O4urC81/mZ3NX2Zn079jXHVd4ZQu7Zrs4Hgt73/x+7+FPWt8u86Op8D599frLStWrOD222+ntLSUxMREpk+fTqdOnXjkkUeYOnUqERERZGRkcP/99zN16lTCw8N56aWXePTRR5k/f351MhkzZgwjR47ko48+4sCBAzz77LOcffbZlJWVMXHiRNauXUtaWhq7du3i8ccf9+reBvDdYbL37dv3rdfXXXcdkydPpqysjN69e/Pcc88RHx/PmDFjGDJkSPUgdHfccUdD9qgxLUpYmDC4a3sGd23Pnd9LY2vRoeqk8PhHX/Pogq/p2DaacRnO9Qqn9epAVETTqSu0vETQBKgqv/rVr3jrrbdISkpi5syZ/OEPf+C5557j/vvvJzc3l6ioKA4cOED79u2ZPHnyt1oR8+fP/9b6KioqWLp0Ke+99x733Xcf8+bN44knniA+Pp7s7GzWrl37rSEjarrmmmuqu4aysrJ48MEHgW8Pkz1x4sRvvR40aBCPPvooo0eP5o9//CP33XcfDz/8MADHjh2jZp3GGPON7gltuPHsXtx4di/2HzrGghynrvCfL3fy0ufbiI2KYHRaEuMzUhiTlky7mMiTr9SPWl4iqOeRuz8cPXqUtWvXkpWVBUBlZSWdOnUCYNCgQVxzzTVccsklXHLJJV6t79JLLwVg2LBh1YPKffLJJ9x6660ADBw4kEGDBtX5/rq6hjyHyfZ8XVxczIEDBxg9ejQAEyZM4PLLL69e7oorrvAqbmMMxLdpxY+GpfKjYakcKa/ks8173dZCAe9+tZuIMGFkrw5kpacwLiOF1PjA1xVaXiJoAlSVAQMGsGTJku/Me/fdd1m0aBHvvPMOf/vb31iz5uTdWMeHnfblkNNgw04bE2jRkeGc0z+Fc/qn8LdLlFU7DjBnnXPf5invZDPlnWwyOrWtrisM6Nw2IHUFu4ODH0RFRVFYWFidCMrLy1m3bh1VVVVs376dsWPH8sADD1BcXExpaSlxcXGUlJTU6zPOPPNM/v3vfwOQnZ3tVULxVrt27YiPj2fx4sUAvPjii9WtA2OMb4SFCad2i+e35/dn/h1jWHDHaH53fn9atwrnkQWb+P6jn3DWAx/xp7fW8smmvZRX1jnyTqNZi8APwsLCeOONN7jlllsoLi6moqKC2267jX79+nHttddSXFyMqnLLLbfQvn17LrroIi677DLeeustHn30Ua8+4xe/+AUTJkwgIyOD/v37M2DAANq1a1frsp41gsTERObNm3fS9c+YMaO6WNyrVy+ef/5573eAMabeeiXFctPoWG4a3Zu9pUdZsL6AOdn5zFy+nRlLthIXHcGt5/blxrN7+fyz7YKyZqqyspLy8nKio6PZvHkz48aNY8OGDSe9ZiHQQvG7McaXDh+rZPEmZ3C8Uf2SuGhw5watxy4oa4HKysoYO3Ys5eXlqCpPPPFEk0sCxpjGi2kV7lygNqCj3z7DEkEzFRcXZ6dwGmN8osUUi5tbF1cosO/EmOahRSSC6OhoioqK7IenCVFVioqKiI6ODnYoxpiTaBFdQ6mpqezYsYPCwsJgh2I8REdHk5qaGuwwjDEn0SISQWRkJD179gx2GMYY0yy1iK4hY4wxDWeJwBhjQpwlAmOMCXHN7spiESkEttbjLYnAXj+F05SF4naH4jZDaG53KG4zNG67u6tqUm0zml0iqC8RWV7XZdUtWShudyhuM4TmdofiNoP/ttu6howxJsRZIjDGmBAXCong6WAHECShuN2huM0QmtsditsMftruFl8jMMYYc2Kh0CIwxhhzApYIjDEmxDXrRCAi54nIBhH5WkR+W8v8KBGZ6c7/QkR6eMz7nTt9g4h8L5BxN0ZDt1lEskRkhYiscf89J9CxN0Zjvmt3fjcRKRWROwMVc2M18u97kIgsEZF17nfebIaBbcTfeKSIzHC3d72I/C7QsTeUF9s8SkS+FJEKEbmsxrwJIrLJfUxoUACq2iwfQDiwGegFtAJWAxk1lvkFMNV9fiUw032e4S4fBfR01xMe7G3y8zYPBTq7zwcCO4O9PYHYbo/5bwCvA3cGe3sC8F1HAF8Bg93XCc3h79sH23018Jr7vDWQB/QI9jb5aJt7AIOAF4DLPKZ3ALa4/8a7z+PrG0NzbhGMAL5W1S2qegx4Dbi4xjIXAzPc528A54qIuNNfU9WjqpoLfO2ur6lr8Dar6kpV3eVOXwfEiEhUQKJuvMZ814jIJUAuznY3F43Z5vHAV6q6GkBVi1S1MkBxN1ZjtluBNiISAcQAx4CDgQm7UU66zaqap6pfAVU13vs9YK6q7lPV/cBc4Lz6BtCcE0EXYLvH6x3utFqXUdUKoBjn6Mib9zZFjdlmTz8CvlTVo36K09cavN0iEgvcDdwXgDh9qTHfdT9AReRDtzvhrgDE6yuN2e43gEPAbmAb8JCq7vN3wD7QmN8jn/yWtYj7ERjvicgA4AGco8ZQMAX4P1UtdRsIoSACOAsYDpQB80VkharOD25YfjcCqAQ643STLBaReaq6JbhhNX3NuUWwE+jq8TrVnVbrMm5zsR1Q5OV7m6LGbDMikgrMAq5T1c1+j9Z3GrPdI4F/iEgecBvwexH5pb8D9oHGbPMOYJGq7lXVMuA94FS/R+wbjdnuq4EPVLVcVQuAT4HmMB5RY36PfPNbFuxCSSMKLBE4hZGefFNgGVBjmZv5dlHp3+7zAXy7WLyFZlBMa+Q2t3eXvzTY2xHI7a6xzBSaT7G4Md91PPAlTsE0ApgHXBjsbQrAdt8NPO8+bwNkA4OCvU2+2GaPZafz3WJxrvudx7vPO9Q7hmDvhEbuwAuAjTgV9z+40/4M/MB9Ho1zpsjXwFKgl8d7/+C+bwNwfrC3xd/bDNyD03+6yuORHOztCcR37bGOZpMIGrvNwLU4xfG1wD+CvS2B2G4g1p2+zk0Cvwn2tvhwm4fjtPQO4bR+1nm896fuvvgauL4hn29DTBhjTIhrzjUCY4wxPmCJwBhjQpwlAmOMCXGWCIwxJsRZIjDGmBBnicC0GCJSGuDP+yzAn9deRH4RyM80ocESgTF1cK9arZOqnhHgz2yPM/KmMT5licC0aCLSW0Q+cO/BsFhE+rvTL3LHsl8pIvNEJMWdPkVEXhSRT4EX3dfPichCEdkiIrd4rLvU/XeMO/8NEckRkZc9Rj69wJ22QkQeEZHZtcQ4UUTeFpEFOOMCxYrIfHfAuDUicnwkyvuB3iKySkQedN/7GxFZJiJfiUhzG1jPNBXBvqLOHvbw1QMorWXafKCv+3wksMB9Hs839+y+Efhf9/kUYAUQ4/H6M5zhSBJxruqM9Pw8YAzOCJipOAdXS3AGfYvGGRmyp7vcq8DsWmKciHPVaAf3dQTQ1n2eiHPFqOCMSb/W433jcW5mLu7nzgZGBft7sEfze9joo6bFcoegPgN43WPk0eP3YEgFZopIJ5zxXXI93vq2qh72eP2uOkN2HxWRAiAF54fb01JV3eF+7iqcH+1SYIs697wAJxFMqiPcufrNkMkC/F1ERuGMP9/F/cyaxruPle7rWKAvsKiOzzCmVpYITEsWBhxQ1SG1zHsU+Keqvi0iY3CO/I87VGNZz/s2VFL7/xtvljkRz8+8BkgChqlquTtyam23mhTgf1T1qXp+ljHfYjUC02Kp6kEgV0QuBxDHYHd2O74Zrrdh93k9uQ1AL497CV/h5fvaAQVuEhgLdHenlwBxHst9CPzUbfkgIl1EJLnRUZuQYy0C05K0FhHPLpt/4hxdPyki9wCROLcBXI3TAnhdRPYDC3CGAPYpVT3snu75gYgcApZ5+daXgXdEZA2wHMhx11ckIp+KyFrgfVX9jYikA0vcrq9SnFFHC3y9LaZls9FHjfEjEYlV5+5oAjwObFLV/wt2XMZ4sq4hY/zrZ27xeB1Ol4/155smx1oExhgT4qxFYIwxIc4SgTHGhDhLBMYYE+IsERhjTIizRGCMMSHu/wHCNzoatjcmUQAAAABJRU5ErkJggg==\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    }
  ]
}