233 lines (232 with data), 8.5 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"id": "ec2980fa-e433-4924-bf8e-ae890c9352f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fitting 5 folds for each of 90 candidates, totalling 450 fits\n",
"Best parameters: {'classifier__criterion': 'entropy', 'classifier__max_depth': None, 'classifier__min_samples_leaf': 1, 'classifier__min_samples_split': 2}\n",
"Decision Tree Model:\n",
"Accuracy: 0.508\n",
"Classification Report:\n",
" precision recall f1-score support\n",
"\n",
" 0 0.51 0.52 0.51 1000\n",
" 1 0.51 0.50 0.50 1000\n",
"\n",
" accuracy 0.51 2000\n",
" macro avg 0.51 0.51 0.51 2000\n",
"weighted avg 0.51 0.51 0.51 2000\n",
"\n",
"Confusion Matrix:\n",
"[[517 483]\n",
" [501 499]]\n",
"\n",
"Top 10 Most Important Features:\n",
" feature importance\n",
"4 result 0.409878\n",
"6 duration_result_ratio 0.279102\n",
"0 age 0.120918\n",
"5 age_comorbidity_interaction 0.106891\n",
"1 gender 0.042323\n",
"3 duration 0.016378\n",
"9 age_group_2 0.006668\n",
"10 age_group_3 0.005753\n",
"11 age_group_4 0.004192\n",
"8 age_group_1 0.003047\n"
]
}
],
"source": [
"import mysql.connector\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split, GridSearchCV\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n",
"from imblearn.over_sampling import SMOTE\n",
"\n",
"# Database connection\n",
"db = mysql.connector.connect(\n",
" host=\"localhost\",\n",
" user=\"root\",\n",
" password=\"HunnyS@1511\",\n",
" database=\"patient_readmission\"\n",
")\n",
"\n",
"# Create a cursor object to execute SQL queries\n",
"cursor = db.cursor()\n",
"\n",
"# SQL query to retrieve patient features data\n",
"query = \"\"\"\n",
" WITH patient_medications AS (\n",
" SELECT \n",
" patient_id,\n",
" medication_name,\n",
" start_date,\n",
" end_date,\n",
" DATEDIFF(end_date, start_date) AS duration\n",
" FROM \n",
" medications\n",
" ),\n",
" lab_result_averages AS (\n",
" SELECT \n",
" patient_id,\n",
" AVG(result_value) AS result\n",
" FROM \n",
" lab_results\n",
" GROUP BY \n",
" patient_id\n",
" ),\n",
" comorbidity_index AS (\n",
" SELECT \n",
" patient_id,\n",
" COUNT(icd_code) AS comorbidity_index\n",
" FROM \n",
" diagnoses\n",
" GROUP BY \n",
" patient_id\n",
" )\n",
" SELECT \n",
" p.patient_id,\n",
" p.age,\n",
" p.gender,\n",
" ci.comorbidity_index,\n",
" pm.duration,\n",
" lra.result,\n",
" r.readmission_risk\n",
" FROM \n",
" patients p\n",
" JOIN \n",
" comorbidity_index ci ON p.patient_id = ci.patient_id\n",
" JOIN \n",
" patient_medications pm ON p.patient_id = pm.patient_id\n",
" JOIN \n",
" lab_result_averages lra ON p.patient_id = lra.patient_id\n",
" JOIN \n",
" readmission_risk r ON p.patient_id = r.patient_id;\n",
"\"\"\"\n",
"\n",
"# Execute the SQL query\n",
"cursor.execute(query)\n",
"\n",
"# Fetch all the rows from the query result\n",
"data = cursor.fetchall()\n",
"\n",
"# Create pandas dataframe from the retrieved data\n",
"df = pd.DataFrame(data, columns=['patient_id', 'age', 'gender', 'comorbidity_count', 'duration', 'result', 'readmission_risk'])\n",
"\n",
"# Convert gender to numerical value\n",
"df['gender'] = df['gender'].map({'Male': 0, 'Female': 1})\n",
"\n",
"# Feature engineering\n",
"df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 50, 65, 100], labels=[0, 1, 2, 3, 4])\n",
"df['comorbidity_group'] = pd.cut(df['comorbidity_count'], bins=[0, 1, 3, 5, np.inf], labels=[0, 1, 2, 3])\n",
"df['duration_group'] = pd.cut(df['duration'], bins=[-np.inf, 7, 14, 30, np.inf], labels=[0, 1, 2, 3])\n",
"\n",
"# Additional feature engineering\n",
"df['age_comorbidity_interaction'] = df['age'] * df['comorbidity_count']\n",
"df['duration_result_ratio'] = df['duration'] / (df['result'] + 1) # Adding 1 to avoid division by zero\n",
"\n",
"# One-hot encode categorical variables\n",
"df = pd.get_dummies(df, columns=['age_group', 'comorbidity_group', 'duration_group'])\n",
"\n",
"# Split data into features and target\n",
"X = df.drop(['patient_id', 'readmission_risk'], axis=1)\n",
"y = df['readmission_risk']\n",
"\n",
"# Split data into training and testing sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"# Create a pipeline\n",
"pipeline = Pipeline([\n",
" ('imputer', SimpleImputer(strategy='median')),\n",
" ('scaler', StandardScaler()),\n",
" ('classifier', DecisionTreeClassifier(random_state=42))\n",
"])\n",
"\n",
"# Define the parameter grid for GridSearchCV\n",
"param_grid = {\n",
" 'classifier__max_depth': [5, 10, 15, 20, None],\n",
" 'classifier__min_samples_split': [2, 5, 10],\n",
" 'classifier__min_samples_leaf': [1, 2, 4],\n",
" 'classifier__criterion': ['gini', 'entropy']\n",
"}\n",
"\n",
"# Perform GridSearchCV\n",
"grid_search = GridSearchCV(pipeline, param_grid, cv=5, n_jobs=-1, verbose=2)\n",
"\n",
"# Handle class imbalance with SMOTE\n",
"smote = SMOTE(random_state=42)\n",
"X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)\n",
"\n",
"# Fit the model\n",
"grid_search.fit(X_train_resampled, y_train_resampled)\n",
"\n",
"# Print the best parameters\n",
"print(\"Best parameters:\", grid_search.best_params_)\n",
"\n",
"# Make predictions\n",
"y_pred = grid_search.predict(X_test)\n",
"\n",
"# Evaluate the model\n",
"print('Decision Tree Model:')\n",
"print('Accuracy:', accuracy_score(y_test, y_pred))\n",
"print('Classification Report:')\n",
"print(classification_report(y_test, y_pred))\n",
"print('Confusion Matrix:')\n",
"print(confusion_matrix(y_test, y_pred))\n",
"\n",
"# Feature importance\n",
"feature_importance = grid_search.best_estimator_.named_steps['classifier'].feature_importances_\n",
"feature_names = X.columns\n",
"feature_importance_df = pd.DataFrame({'feature': feature_names, 'importance': feature_importance})\n",
"feature_importance_df = feature_importance_df.sort_values('importance', ascending=False)\n",
"print(\"\\nTop 10 Most Important Features:\")\n",
"print(feature_importance_df.head(10))\n",
"\n",
"# Close the cursor and connection\n",
"cursor.close()\n",
"db.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98c9f03e-5fc1-45cd-9173-925b70df4956",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}