|
a |
|
b/Tabs/predict.py |
|
|
1 |
"""This modules contains data about prediction page""" |
|
|
2 |
|
|
|
3 |
# Import necessary modules |
|
|
4 |
import streamlit as st |
|
|
5 |
|
|
|
6 |
# Import necessary functions from web_functions |
|
|
7 |
from web_functions import predict |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
def app(df, X, y): |
|
|
11 |
"""This function create the prediction page""" |
|
|
12 |
|
|
|
13 |
# Add title to the page |
|
|
14 |
st.title("Prediction Page") |
|
|
15 |
|
|
|
16 |
# Add a brief description |
|
|
17 |
st.markdown( |
|
|
18 |
""" |
|
|
19 |
<p style="font-size:25px"> |
|
|
20 |
This app uses <b style="color:green">Random Forest Classifier</b> for the Prediction of Parkinson's disease. |
|
|
21 |
</p> |
|
|
22 |
""", unsafe_allow_html=True) |
|
|
23 |
with st.expander("View attribute details"): |
|
|
24 |
st.markdown("""MDVP:Fo(Hz) - Average vocal fundamental frequency\n |
|
|
25 |
MDVP:Fhi(Hz) - Maximum vocal fundamental frequency\n |
|
|
26 |
MDVP:Flo(Hz) - Minimum vocal fundamental frequency\n |
|
|
27 |
MDVP:Jitter(%),MDVP:Jitter(Abs),MDVP:RAP,MDVP:PPQ,Jitter:DDP - Several |
|
|
28 |
measures of variation in fundamental frequency\n |
|
|
29 |
MDVP:Shimmer,MDVP:Shimmer(dB),Shimmer:APQ3,Shimmer:APQ5,MDVP:APQ,Shimmer:DDA - Several measures of variation in amplitude\n |
|
|
30 |
NHR,HNR - Two measures of ratio of noise to tonal components in the voice\n |
|
|
31 |
status - Health status of the subject (one) - Parkinson's, (zero) - healthy\n |
|
|
32 |
RPDE,D2 - Two nonlinear dynamical complexity measures\n |
|
|
33 |
DFA - Signal fractal scaling exponent\n |
|
|
34 |
spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation""") |
|
|
35 |
# Take feature input from the user |
|
|
36 |
# Add a subheader |
|
|
37 |
st.subheader("Select Values:") |
|
|
38 |
|
|
|
39 |
# Take input of features from the user. |
|
|
40 |
avff = st.slider("Average vocal fundamental frequency", int(df["AVFF"].min()), int(df["AVFF"].max())) |
|
|
41 |
mavff = st.slider("Maximum vocal fundamental frequency", int(df["MAVFF"].min()), int(df["MAVFF"].max())) |
|
|
42 |
mivff = st.slider("Minimum vocal fundamental frequency", int(df["MIVFF"].min()), int(df["MIVFF"].max())) |
|
|
43 |
jitddp = st.slider("Jitter:DDP", float(df["Jitter:DDP"].min()), float(df["Jitter:DDP"].max())) |
|
|
44 |
mdvpjit = st.slider("Multidimensional Voice Program:Jitter(%)", float(df["MDVP:Jitter(%)"].min()), float(df["MDVP:Jitter(%)"].max())) |
|
|
45 |
mdvprap = st.slider("MDVP:RAP", float(df["MDVP:RAP"].min()), float(df["MDVP:RAP"].max())) |
|
|
46 |
mdvpapq = st.slider("MDVP:APQ", float(df["MDVP:APQ"].min()), float(df["MDVP:APQ"].max())) |
|
|
47 |
mdvpppq = st.slider("MDVP:PPQ", float(df["MDVP:PPQ"].min()), float(df["MDVP:PPQ"].max())) |
|
|
48 |
mdvpshim = st.slider("MDVP:Shimmer", float(df["MDVP:Shimmer"].min()), float(df["MDVP:Shimmer"].max())) |
|
|
49 |
shimdda = st.slider("Shimmer:DDA", float(df["Shimmer:DDA"].min()), float(df["Shimmer:DDA"].max())) |
|
|
50 |
shimapq3 = st.slider("Shimmer:APQ3", float(df["Shimmer:APQ3"].min()), float(df["Shimmer:APQ3"].max())) |
|
|
51 |
shimapq5 = st.slider("Shimmer:APQ5", float(df["Shimmer:APQ5"].min()), float(df["Shimmer:APQ5"].max())) |
|
|
52 |
nhr = st.slider("NHR", float(df["NHR"].min()), float(df["NHR"].max())) |
|
|
53 |
hnr = st.slider("HNR", float(df["HNR"].min()), float(df["HNR"].max())) |
|
|
54 |
rpde = st.slider("RPDE", float(df["RPDE"].min()), float(df["RPDE"].max())) |
|
|
55 |
dfa = st.slider("DFA", float(df["DFA"].min()), float(df["DFA"].max())) |
|
|
56 |
d2 = st.slider("D2", float(df["D2"].min()), float(df["D2"].max())) |
|
|
57 |
ppe = st.slider("PPE", float(df["PPE"].min()), float(df["PPE"].max())) |
|
|
58 |
|
|
|
59 |
# Create a list to store all the features |
|
|
60 |
features = [avff, mavff, mivff, jitddp, mdvpjit, mdvprap,mdvpapq,mdvpppq,mdvpshim,shimdda,shimapq3,shimapq5,nhr,hnr,rpde,dfa,d2,ppe] |
|
|
61 |
|
|
|
62 |
# Create a button to predict |
|
|
63 |
if st.button("Predict"): |
|
|
64 |
# Get prediction and model score |
|
|
65 |
prediction, score = predict(X, y, features) |
|
|
66 |
st.success("Predicted Sucessfully") |
|
|
67 |
|
|
|
68 |
# Print the output according to the prediction |
|
|
69 |
if (prediction == 1): |
|
|
70 |
st.warning("The person either has Parkison's disease or prone to get Parkinson's disease") |
|
|
71 |
else: |
|
|
72 |
st.info("The person is safe from Parkinson's disease") |
|
|
73 |
|
|
|
74 |
# Print teh score of the model |
|
|
75 |
st.write("The model used is trusted by doctor and has an accuracy of ", (score*100),"%") |