

Multi-Class Prediction of Obesity Risk

 \bigcirc

Prepared by:

- Amina Mohamed
- Ashraf Mahmoud
- Nagham Ehab
- Shorouq Hossam

Under the Supervision of:

• Eng. Abdelrahman A. Eid

Problem

Ο

 \bigcirc

Introduction

- The dataset we used was generated from a deep learning model trained on **the Obesity or CVD risk dataset**.
- The original dataset consist of the estimation of obesity levels in people from the countries of *Mexico, Peru and Colombia*, 77% of the data was generated synthetically using the Weka tool and the SMOTE filter, 23% of the data was collected directly from users through a web platform with a survey where anonymous users answered each question.

Problem Statement

- The obesity burden has increased worldwide in recent decades. According to the World Health Organization (WHO).
- We will delve into the intricate relationship between lifestyle choices and weight management. By meticulously analyzing of 'Multi-Class Prediction of Obesity Risk' data, we aim to unravel the key factors contributing to weight gain.
- Understanding of obesity classification using machinelearning techniques based on physical activity and nutritional habits.

Meet our Dataset

The dataset contain 18 variables:

Meet our Dataset, Cont'd

Meet our Dataset, Cont'd

verview	Variables	Interactions	Correlations	Missing values	Sample		
Overview	Alerts (14)	Reproduction					
Gender is highly overall correlated with Height and <u>1 other fields</u>							High correlation
Height is highly overall correlated with Gender							High correlation
NObeyesdad is highly overall correlated with Gender and 1 other fields							High correlation
Weight is highly overall correlated with family_history_with_overweight							High correlation
family_history_with_overweight_is highly overall correlated with NObeyesdad_and 1 other fields							High correlation
FAVC is highly imbalanced (57.9%)							Imbalance
CAEC is highly imbalanced (61.0%)							Imbalance
SMOKE is highly imbalanced (90.7%)							Imbalance
SCC is highly imbalanced (79.0%)							Imbalance
MTRANS is highly imbalanced (63.7%)							Imbalance
id is uniformly distributed							Uniform
id has unique values							Unique
FAF has 5044 (24.3%) zeros							Zeros
TUE has 6566 (31.6%) zeros							Zeros

Report generated by <u>YData</u>.

Gender NObeyesdad 100 Overweight_Level_I Normal_Weight Insufficient_Weight 80 Obesity_Type_III Obesity_Type_II Overweight_Level_I percent 60 Obesity_Type_I 40 20 Male Female Gender

- 99.8% of people suffering from obesity_type_3 are females.
- 99.7% of people suffering from obesity_type_2 are males.

Insights

- Most of the people who are susceptible to obesity have a family history with overweight.
 - Ο

•

people who consume food that contain a lot of calories are more susceptible to obesity.

Ο

 \blacklozenge

• people who track their calories consumption are less susceptible to obesity.

Insights, Cont'd

 people who prefer transportations that include physical activity are less susceptible to obesity.

- There are Outliers present in Age.
- Age, height and Weight are normally distributed with some skewness.
- Some features are skewed.

• people who track their calories consumption are less susceptible to obesity.

• people who track their calories consumption are less susceptible to obesity.

Insights, Cont'd

03. Training model on original data without any Features Extraction

Data Preprocessing and Model Selection

Data Preprocessing :

- Categorical Variables: One-Hot Encoding
- Numerical Variables: StandardScaler
- Target Variable: Label Encoding

Model :

Decision Tree No Feature Extraction Accuracy: 84%

1. New Features Extraction

 \bigcirc

1.

After understanding the data very well, we could extract new features that can help us get more insights about the data and improve the performance of the models.

Body Mass Index (BMI)

BODY MASS INDEX (kg/m²)

 \cap

BMI Categories

Distribution of BMI Categories

New Features, Cont'd

2. Meal Habits

- Combination of **'FCVC'** (Frequency of consumption of vegetables) and **'NCP'** (Number of main meals) created the 'Meal_Habits' feature.
- This feature seeks to encapsulate overall dietary patterns, considering both the frequency of vegetable consumption and the number of main meals.

3. Tech Usage Score

- A comprehensive score was crafted by weighting the frequency of technology usage **'TUE'** by the individual's **age**.
- The resulting 'Tech_Usage_Score' aims to quantify the average time spent using technology relative to the person's age, providing a nuanced perspective on technology habits.

New Features, Cont'd

4. Activity

- If the person use bike or walk, his activity will be **high**.
- If the person use transportation, car, motorbike, activity will be **low**.

Distribution of Activity

New Features, Cont'd

5. Age Categories

Age Categories

Age Category

New Features, Cont'd

6. Vegetable meal ratio(Veg_Meal_Ratio):

- X_['Veg_Meal_Ratio'] = X_['FCVC'] / X_['NCP'] .
- This ratio helps in understanding the relationship between the frequency of vegetable consumption and the number of main meals.

2.Custom One-Hot Encoding

 \bigcirc

$_{\odot}$ 2.Custom One-Hot Encoding

Handles categorical variables using a custom one-hot encoding approach.

 \cap

3. Column Transformation

o 3. Column Transformation:

•Numerical Columns Pipeline:

Imputes missing values using median strategy.

•Categorical Columns Pipeline:

- Imputes missing values using the most frequent strategy.
- Applies custom one-hot encoding.

Models:

Model	Validation Accuracy			
Logistic Regression	0.873			
SVM	0.875			
Decision Tree	0.845			
Random Forest	0.890			
KNN	0.837			
Adaboost	0.878			
LGBM	0.906			
Catboost	0.902			
XGBoost	0.903			

 \bigcirc

LGBM

 \bigcirc

4. Full Pipeline

o Full Pipeline

0

0

- Features Extraction Pipeline: Performs feature engineering.
- Preprocessing Pipeline: Applies column transformation to numerical and categorical columns.
- StandardScaler: Standardizes features.
- LGBMClassifier: Fits an LGBM classifier using specified parameters (after tuning using optuna).

- https://www.kaggle.com/competitions/playground-series-s4e2
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887184/
- https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

 \bigcirc

