214 lines (211 with data), 188.4 kB
SQLite format 3 @ ~ . ; ~ .fê ö .ûö 0
ã §Eã ` -{Dummy_Experiment/Users/arham/Downloads/Projects/03-Experiments/mlruns/2activeN\fN\f` -{Dummy Experiment/Users/arham/Downloads/Projects/03-Experiments/mlruns/1active4Ú°4Ú°W {Default/Users/arham/Downloads/Projects/03-Experiments/mlruns/0active4Ú«4Ú«
Ì õáÌ -Dummy_Experiment- Dummy Experiment
Default
B ÁDÌO
×
Z
!â¢e,íp7
ø
¸
{
B 7Mf1?êz@Ä<%VÎ13be3077591445048510cbe8dc4432c3;Mrecall?êó´OKVÎ13be3077591445048510cbe8dc4432c3>Mprecision?êlgVÎ13be3077591445048510cbe8dc4432c3=Maccuracy?êó´OKVÎz13be3077591445048510cbe8dc4432c37Mf1?ê¶ÕæÄÉPcff498b0ae3147fbb0958fa35a6f543a;Mrecall?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a>Mprecision?ê´VÞÍPcff498b0ae3147fbb0958fa35a6f543a=Maccuracy?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a7Mf1?êÁ'fýN¥íded7127625a9417f84b1856f1364c270;Mrecall?êϳ¥SN¥ëded7127625a9417f84b1856f1364c270>Mprecision?ê´ü5N¥èded7127625a9417f84b1856f1364c270=
Maccuracy?êϳ¥SN¥ãded7127625a9417f84b1856f1364c2707Mf1?ê¯ö"û
HÖnf55b0b097c6445889d3c1eabcfe9240b;Mrecall?ê³D2uÍ»HÖlf55b0b097c6445889d3c1eabcfe9240b>
Mprecision?ꬨäÙ6ÇHÖif55b0b097c6445889d3c1eabcfe9240b= Maccuracy?ê³D2uÍ»HÖcf55b0b097c6445889d3c1eabcfe9240b7Mf1?êº@XàØN:òú31cf7bde4f294a5f938dbe34e3ce3092;Mrecall?ê¼_:¶M5:ò÷31cf7bde4f294a5f938dbe34e3ce3092>Mprecision?ê¸!Í#u9:òô31cf7bde4f294a5f938dbe34e3ce3092=Maccuracy?ê¼_:¶M5:òð31cf7bde4f294a5f938dbe34e3ce30927Mf1?ê¢%kàn:%Uf48515b746954c2da857221ef186ed60;Mrecall?ê¡!ôÎÆ:%Rf48515b746954c2da857221ef186ed60>Mprecision?ê£<̯g@:%Of48515b746954c2da857221ef186ed60=Maccuracy?ê¡!ôÎÆ:%Ff48515b746954c2da857221ef186ed60
+ ÁÈ
ÏÖÝ
ä
$
+
£BI
PW^
e 9Mf1VÎ13be3077591445048510cbe8dc4432c3?êz@Ä<%=MrecallVÎ13be3077591445048510cbe8dc4432c3?êó´OK@MprecisionVÎ13be3077591445048510cbe8dc4432c3?êlg?MaccuracyVÎz13be3077591445048510cbe8dc4432c3?êó´OK9Mf1Pcff498b0ae3147fbb0958fa35a6f543a?ê¶ÕæÄÉ=MrecallPcff498b0ae3147fbb0958fa35a6f543a?ê¹V7ö"·@MprecisionPcff498b0ae3147fbb0958fa35a6f543a?ê´VÞÍ?MaccuracyPcff498b0ae3147fbb0958fa35a6f543a?ê¹V7ö"·9Mf1N¥íded7127625a9417f84b1856f1364c270?êÁ'fý=MrecallN¥ëded7127625a9417f84b1856f1364c270?êϳ¥S@MprecisionN¥èded7127625a9417f84b1856f1364c270?ê´ü5?MaccuracyN¥ãded7127625a9417f84b1856f1364c270?êϳ¥S
9Mf1HÖnf55b0b097c6445889d3c1eabcfe9240b?ê¯ö"û
=MrecallHÖlf55b0b097c6445889d3c1eabcfe9240b?ê³D2uÍ»@MprecisionHÖif55b0b097c6445889d3c1eabcfe9240b?ꬨäÙ6Ç
?MaccuracyHÖcf55b0b097c6445889d3c1eabcfe9240b?ê³D2uÍ» 9Mf1:òú31cf7bde4f294a5f938dbe34e3ce3092?êº@XàØN=Mrecall:ò÷31cf7bde4f294a5f938dbe34e3ce3092?ê¼_:¶M5@Mprecision:òô31cf7bde4f294a5f938dbe34e3ce3092?ê¸!Í#u9?Maccuracy:òð31cf7bde4f294a5f938dbe34e3ce3092?ê¼_:¶M59Mf1:%Uf48515b746954c2da857221ef186ed60?ê¢%kàn=Mrecall:%Rf48515b746954c2da857221ef186ed60?ê¡!ôÎÆ@Mprecision:%Of48515b746954c2da857221ef186ed60?ê£<̯g@>M accuracy:%Ff48515b746954c2da857221ef186ed60?ê¡!ôÎÆ
øÓ®H#þÙ
g
B
û
Ö
±Ü·m´jE $M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270
$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b
$Mf55b0b097c6445889d3c1eabcfe9240b $M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60#M f48515b746954c2da857221ef186ed60
ð ð %acf3f17fdcc7
ð ð % acf3f17fdcc7
û !û
4B ¥ALó
è
Ör} $
˰» b,W
' ÎÃuHäï `=¸
T_
ÐûuÃ
¸
jBÞé
7 2'Mpreprocessing13be3077591445048510cbe8dc4432c34/!Mmodel_name13be3077591445048510cbe8dc4432c330#Mexperiments13be3077591445048510cbe8dc4432c32==Mmlflow.log-model.history13be3077591445048510cbe8dc4432c313)Mmlflow.runName13be3077591445048510cbe8dc4432c3071Mmlflow.source.type13be3077591445048510cbe8dc4432c3/71Mmlflow.source.name13be3077591445048510cbe8dc4432c3.0#Mmlflow.user13be3077591445048510cbe8dc4432c3-2'Mpreprocessingcff498b0ae3147fbb0958fa35a6f543a,/!Mmodel_namecff498b0ae3147fbb0958fa35a6f543a+0#Mexperimentscff498b0ae3147fbb0958fa35a6f543a*==Mmlflow.log-model.historycff498b0ae3147fbb0958fa35a6f543a)3)Mmlflow.runNamecff498b0ae3147fbb0958fa35a6f543a(71Mmlflow.source.typecff498b0ae3147fbb0958fa35a6f543a'71Mmlflow.source.namecff498b0ae3147fbb0958fa35a6f543a&0#Mmlflow.usercff498b0ae3147fbb0958fa35a6f543a%2'Mpreprocessingded7127625a9417f84b1856f1364c270$/!Mmodel_nameded7127625a9417f84b1856f1364c270#0#Mexperimentsded7127625a9417f84b1856f1364c270"==Mmlflow.log-model.historyded7127625a9417f84b1856f1364c270!3)Mmlflow.runNameded7127625a9417f84b1856f1364c270 71Mmlflow.source.typeded7127625a9417f84b1856f1364c27071Mmlflow.source.nameded7127625a9417f84b1856f1364c2700#Mmlflow.userded7127625a9417f84b1856f1364c2702'Mpreprocessingf55b0b097c6445889d3c1eabcfe9240b/!Mmodel_namef55b0b097c6445889d3c1eabcfe9240b0#Mexperimentsf55b0b097c6445889d3c1eabcfe9240b==Mmlflow.log-model.historyf55b0b097c6445889d3c1eabcfe9240b3)Mmlflow.runNamef55b0b097c6445889d3c1eabcfe9240b71Mmlflow.source.typef55b0b097c6445889d3c1eabcfe9240b71Mmlflow.source.namef55b0b097c6445889d3c1eabcfe9240b0#Mmlflow.userf55b0b097c6445889d3c1eabcfe9240b2'Mpreprocessing31cf7bde4f294a5f938dbe34e3ce3092/!Mmodel_name31cf7bde4f294a5f938dbe34e3ce30920#Mexperiments31cf7bde4f294a5f938dbe34e3ce3092==Mmlflow.log-model.history31cf7bde4f294a5f938dbe34e3ce30923)Mmlflow.runName31cf7bde4f294a5f938dbe34e3ce309271Mmlflow.source.type31cf7bde4f294a5f938dbe34e3ce309271Mmlflow.source.name31cf7bde4f294a5f938dbe34e3ce30920#Mmlflow.user31cf7bde4f294a5f938dbe34e3ce3092
2'Mpreprocessingf48515b746954c2da857221ef186ed60/!Mmodel_namef48515b746954c2da857221ef186ed600#Mexperimentsf48515b746954c2da857221ef186ed60
==Mmlflow.log-model.historyf48515b746954c2da857221ef186ed60 3)Mmlflow.runNamef48515b746954c2da857221ef186ed6071Mmlflow.source.typef48515b746954c2da857221ef186ed6071Mmlflow.source.namef48515b746954c2da857221ef186ed600#Mmlflow.userf48515b746954c2da857221ef186ed603)Mmlflow.runNameeb68cd6a84f548beb14e62bb6a947f3271Mmlflow.source.typeeb68cd6a84f548beb14e62bb6a947f3271Mmlflow.source.nameeb68cd6a84f548beb14e62bb6a947f32/#M mlflow.usereb68cd6a84f548beb14e62bb6a947f32
B ÁDÌO
×
Z
!â¢e,íp7
ø
¸
{
B 7Mf1?êz@Ä<%VÎ13be3077591445048510cbe8dc4432c3;Mrecall?êó´OKVÎ13be3077591445048510cbe8dc4432c3>Mprecision?êlgVÎ13be3077591445048510cbe8dc4432c3=Maccuracy?êó´OKVÎz13be3077591445048510cbe8dc4432c37Mf1?ê¶ÕæÄÉPcff498b0ae3147fbb0958fa35a6f543a;Mrecall?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a>Mprecision?ê´VÞÍPcff498b0ae3147fbb0958fa35a6f543a=Maccuracy?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a7Mf1?êÁ'fýN¥íded7127625a9417f84b1856f1364c270;Mrecall?êϳ¥SN¥ëded7127625a9417f84b1856f1364c270>Mprecision?ê´ü5N¥èded7127625a9417f84b1856f1364c270=
Maccuracy?êϳ¥SN¥ãded7127625a9417f84b1856f1364c2707Mf1?ê¯ö"û
HÖnf55b0b097c6445889d3c1eabcfe9240b;Mrecall?ê³D2uÍ»HÖlf55b0b097c6445889d3c1eabcfe9240b>
Mprecision?ꬨäÙ6ÇHÖif55b0b097c6445889d3c1eabcfe9240b= Maccuracy?ê³D2uÍ»HÖcf55b0b097c6445889d3c1eabcfe9240b7Mf1?êº@XàØN:òú31cf7bde4f294a5f938dbe34e3ce3092;Mrecall?ê¼_:¶M5:ò÷31cf7bde4f294a5f938dbe34e3ce3092>Mprecision?ê¸!Í#u9:òô31cf7bde4f294a5f938dbe34e3ce3092=Maccuracy?ê¼_:¶M5:òð31cf7bde4f294a5f938dbe34e3ce30927Mf1?ê¢%kàn:%Uf48515b746954c2da857221ef186ed60;Mrecall?ê¡!ôÎÆ:%Rf48515b746954c2da857221ef186ed60>Mprecision?ê£<̯g@:%Of48515b746954c2da857221ef186ed60=Maccuracy?ê¡!ôÎÆ:%Ff48515b746954c2da857221ef186ed60
Û ^"
ÀÓqÛ
=P
î/óà
¤BÇ´
ex 'Mf113be3077591445048510cbe8dc4432c3+Mrecall13be3077591445048510cbe8dc4432c3.Mprecision13be3077591445048510cbe8dc4432c3-Maccuracy13be3077591445048510cbe8dc4432c3'Mf1cff498b0ae3147fbb0958fa35a6f543a+Mrecallcff498b0ae3147fbb0958fa35a6f543a.Mprecisioncff498b0ae3147fbb0958fa35a6f543a-Maccuracycff498b0ae3147fbb0958fa35a6f543a'Mf1ded7127625a9417f84b1856f1364c270+Mrecallded7127625a9417f84b1856f1364c270.Mprecisionded7127625a9417f84b1856f1364c270-Maccuracyded7127625a9417f84b1856f1364c270
'Mf1f55b0b097c6445889d3c1eabcfe9240b+Mrecallf55b0b097c6445889d3c1eabcfe9240b.Mprecisionf55b0b097c6445889d3c1eabcfe9240b
-Maccuracyf55b0b097c6445889d3c1eabcfe9240b 'Mf131cf7bde4f294a5f938dbe34e3ce3092+Mrecall31cf7bde4f294a5f938dbe34e3ce3092.Mprecision31cf7bde4f294a5f938dbe34e3ce3092-Maccuracy31cf7bde4f294a5f938dbe34e3ce3092'Mf1f48515b746954c2da857221ef186ed60+Mrecallf48515b746954c2da857221ef186ed60.Mprecisionf48515b746954c2da857221ef186ed60,M accuracyf48515b746954c2da857221ef186ed60
¯ Q -ÁÄp
Â×®
§
d¶
;þ³Qn Eó{{ ¯ b11otablemodel_version_tagsmodel_version_tagsCREATE TABLE model_version_tags (
"key" VARCHAR(250) NOT NULL,
value VARCHAR(5000),
name VARCHAR(256) NOT NULL,
version INTEGER NOT NULL,
CONSTRAINT model_version_tag_pk PRIMARY KEY ("key", name, version),
FOREIGN KEY(name, version) REFERENCES model_versions (name, version) ON UPDATE cascade
)ytablerunsrunsCREATE TABLE "runs" (
run_uuid VARCHAR(32) NOT NULL,
name VARCHAR(250),
source_type VARCHAR(20),
source_name VARCHAR(500),
entry_point_name VARCHAR(50),
user_id VARCHAR(256),
status VARCHAR(9),
start_time BIGINT,
end_time BIGINT,
source_version VARCHAR(50),
lifecycle_stage VARCHAR(20),
artifact_uri VARCHAR(200),
experiment_id INTEGER, deleted_time BIGINT,
CONSTRAINT run_pk PRIMARY KEY (run_uuid),
CONSTRAINT runs_lifecycle_stage CHECK (lifecycle_stage IN ('active', 'deleted')),
CONSTRAINT source_type CHECK (source_type IN ('NOTEBOOK', 'JOB', 'LOCAL', 'UNKNOWN', 'PROJECT')),
FOREIGN KEY(experiment_id) REFERENCES experiments (experiment_id),
CHECK (status IN ('SCHEDULED', 'FAILED', 'FINISHED', 'RUNNING', 'KILLED'))
))++ tablealembic_versionalembic_versionCREATE TABLE alembic_version (
version_num VARCHAR(32) NOT NULL,
CONSTRAINT alembic_version_pkc PRIMARY KEY (version_num)
)=Q+ indexsqlite_autoindex_alembic_version_1alembic_version
ø I]7 indexsqlite_autoindex_registered_model_tags_1registered_model_tags:77tableregistered_model_tagsregistered_model_tagsCREATE TABLE registered_model_tags (
"key" VARCHAR(250) NOT NULL,
value VARCHAR(5000),
name VARCHAR(256) NOT NULL,
CONSTRAINT registered_model_tag_pk PRIMARY KEY ("key", name),
FOREIGN KEY(name) REFERENCES registered_models (name) ON UPDATE cascade
)'; indexsqlite_autoindex_runs_1runsAU/ indexsqlite_autoindex_registered_models_1registered_models//7tableregistered_modelsregistered_modelsCREATE TABLE registered_models (
name VARCHAR(256) NOT NULL,
creation_time BIGINT,
last_updated_time BIGINT,
description VARCHAR(5000),
CONSTRAINT registered_model_pk PRIMARY KEY (name),
UNIQUE (name)
)'; indexsqlite_autoindex_tags_1tagsh3tabletagstagsCREATE TABLE "tags" (
"key" VARCHAR(250) NOT NULL,
value VARCHAR(5000),
run_uuid VARCHAR(32) NOT NULL,
CONSTRAINT tag_pk PRIMARY KEY ("key", run_uuid),
FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid)
)=Q+ indexsqlite_autoindex_experiment_tags_1experiment_tags)++ tableexperiment_tagsexperiment_tagsCREATE TABLE experiment_tags (
"key" VARCHAR(250) NOT NULL,
value VARCHAR(5000),
experiment_id INTEGER NOT NULL,
CONSTRAINT experiment_tag_pk PRIMARY KEY ("key", experiment_id),
FOREIGN KEY(experiment_id) REFERENCES experiments (experiment_id)
)##
itableexperimentsexperimentsCREATE TABLE experiments (
experiment_id INTEGER NOT NULL,
name VARCHAR(256) NOT NULL,
artifact_location VARCHAR(256),
lifecycle_stage VARCHAR(32), creation_time BIGINT, last_update_time BIGINT,
CONSTRAINT experiment_pk PRIMARY KEY (experiment_id),
CONSTRAINT experiments_lifecycle_stage CHECK (lifecycle_stage IN ('active', 'deleted')),
UNIQUE (name)
)5I# indexsqlite_autoindex_experiments_1experiments
q
³
T UÞ¡ÖEÄl
ÄO³³³³ J S}
á Â Â ` ;0Itabledatasetsdatasets"CREATE TABLE datasets (
dataset_uuid VARCHAR(36) NOT NULL,
experiment_id INTEGER NOT NULL,
name VARCHAR(500) NOT NULL,
digest VARCHAR(36) NOT NULL,
dataset_source_type VARCHAR(36) NOT NULL,
dataset_source TEXT NOT NULL,
dataset_schema TEXT,
dataset_profile TEXT,
CONSTRAINT dataset_pk PRIMARY KEY (experiment_id, name, digest),
FOREIGN KEY(experiment_id) REFERENCES experiments (experiment_id)
)© û V*3sindexindex_tags_run_uuidtagsCREATE INDEX index_tags_run_uuid ON tags (run_uuid))G)indexindex_latest_metrics_run_uuidlatest_metricsCREATE INDEX index_latest_metrics_run_uuid ON latest_metrics (run_uuid)b(9indexindex_metrics_run_uuidmetrics CREATE INDEX index_metrics_run_uuid ON metrics (run_uuid) - -&A indexsqlite_autoindex_metrics_1metrics% tablemetricsmetricsCREATE TABLE "metrics" (
"key" VARCHAR(250) NOT NULL,
value FLOAT NOT NULL,
timestamp BIGINT NOT NULL,
run_uuid VARCHAR(32) NOT NULL,
step BIGINT DEFAULT '0' NOT NULL,
is_nan BOOLEAN DEFAULT '0' NOT NULL,
CONSTRAINT metric_pk PRIMARY KEY ("key", timestamp, step, run_uuid, value, is_nan),
FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid),
CHECK (is_nan IN (0, 1))
);$O) indexsqlite_autoindex_latest_metrics_1latest_metricst#))
#tablelatest_metricslatest_metricsCREATE TABLE "latest_metrics" (
"key" VARCHAR(250) NOT NULL,
value FLOAT NOT NULL,
timestamp BIGINT,
step BIGINT NOT NULL,
is_nan BOOLEAN NOT NULL,
run_uuid VARCHAR(32) NOT NULL,
CONSTRAINT latest_metric_pk PRIMARY KEY ("key", run_uuid),
FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid),
CHECK (is_nan IN (0, 1))
);"O) indexsqlite_autoindex_model_versions_1model_versions  (!))tablemodel_versionsmodel_versionsCREATE TABLE "model_versions" (
name VARCHAR(256) NOT NULL,
version INTEGER NOT NULL,
creation_time BIGINT,
last_updated_time BIGINT,
description VARCHAR(5000),
user_id VARCHAR(256),
current_stage VARCHAR(20),
source VARCHAR(500),
run_id VARCHAR(32),
status VARCHAR(20),
status_message VARCHAR(500),
run_link VARCHAR(500), storage_location VARCHAR(500),
CONSTRAINT model_version_pk PRIMARY KEY (name, version),
FOREIGN KEY(name) REFERENCES registered_models (name) ON UPDATE CASCADE
)C W1 indexsqlite_autoindex_model_version_tags_1model_version_tags.==
#tableregistered_model_aliasesregistered_model_aliases
CREATE TABLE registered_model_aliases (
alias VARCHAR(256) NOT NULL,
version INTEGER NOT NULL,
name VARCHAR(256) NOT NULL,
CONSTRAINT registered_model_alias_pk PRIMARY KEY (name, alias),
CONSTRAINT registered_model_alias_name_fkey FOREIGN KEY(name) REFERENCES registered_models (name) ON DELETE cascade ON UPDATE cascade
)O/c= indexsqlite_autoindex_registered_model_aliases_1registered_model_aliases `
'L
q¾
ä
WMI
Q 13be3077591445048510cbe8dc4432c3Dummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDVËUVÛëactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/2/13be3077591445048510cbe8dc4432c3/artifactsWMI
Q cff498b0ae3147fbb0958fa35a6f543aDummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDP½PÔactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/2/cff498b0ae3147fbb0958fa35a6f543a/artifactsWMI
Q ded7127625a9417f84b1856f1364c270Dummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDN¢ªN³Áactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/2/ded7127625a9417f84b1856f1364c270/artifactsVMI
Q f55b0b097c6445889d3c1eabcfe9240bDummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDHÒñHâ active/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/f55b0b097c6445889d3c1eabcfe9240b/artifactsXMM
Q 31cf7bde4f294a5f938dbe34e3ce3092Dummy Classifier - Decision TreeUNKNOWNarhamFINISHED:ïÑ:ûýactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/31cf7bde4f294a5f938dbe34e3ce3092/artifactsXMM
Q f48515b746954c2da857221ef186ed60Dummy Classifier - Decision TreeUNKNOWNarhamFINISHED:!:5Óactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/f48515b746954c2da857221ef186ed60/artifactsVMM
Q eb68cd6a84f548beb14e62bb6a947f32Dummy Classifier - Decision TreeUNKNOWNarhamFAILED9ú9active/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/eb68cd6a84f548beb14e62bb6a947f32/artifacts
þ þ#HÜ·m $M13be3077591445048510cbe8dc4432c3$Mcff498b0ae3147fbb0958fa35a6f543a$Mded7127625a9417f84b1856f1364c270$Mf55b0b097c6445889d3c1eabcfe9240b$M31cf7bde4f294a5f938dbe34e3ce3092$Mf48515b746954c2da857221ef186ed60#M eb68cd6a84f548beb14e62bb6a947f32
øÓ®H#þÙ
g
B
û
Ö
±Ü·m´jE $M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270
$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b
$Mf55b0b097c6445889d3c1eabcfe9240b $M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60#M f48515b746954c2da857221ef186ed60
4} [ 6 ìÇ¢}
û
Ö
±
g
B
¨
^
9
ï Ê ¥Ð«a<
ò
ÍÜ·mH#þÙ´jEøÓ®d?õ $M13be3077591445048510cbe8dc4432c34$M13be3077591445048510cbe8dc4432c33$M13be3077591445048510cbe8dc4432c32$M13be3077591445048510cbe8dc4432c31$M13be3077591445048510cbe8dc4432c30$M13be3077591445048510cbe8dc4432c3/$M13be3077591445048510cbe8dc4432c3.$M13be3077591445048510cbe8dc4432c3-$Mcff498b0ae3147fbb0958fa35a6f543a,$Mcff498b0ae3147fbb0958fa35a6f543a+$Mcff498b0ae3147fbb0958fa35a6f543a*$Mcff498b0ae3147fbb0958fa35a6f543a)$Mcff498b0ae3147fbb0958fa35a6f543a($Mcff498b0ae3147fbb0958fa35a6f543a'$Mcff498b0ae3147fbb0958fa35a6f543a&$Mcff498b0ae3147fbb0958fa35a6f543a%$Mded7127625a9417f84b1856f1364c270$$Mded7127625a9417f84b1856f1364c270#$Mded7127625a9417f84b1856f1364c270"$Mded7127625a9417f84b1856f1364c270!$Mded7127625a9417f84b1856f1364c270 $Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092
$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60
$Mf48515b746954c2da857221ef186ed60 $Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Meb68cd6a84f548beb14e62bb6a947f32$Meb68cd6a84f548beb14e62bb6a947f32$Meb68cd6a84f548beb14e62bb6a947f32#M eb68cd6a84f548beb14e62bb6a947f32
W Ê6ù¥o
Û
J
Ñ
Z
# í Y ÈOØ¡k×HÏX! ë W 1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyded7127625a9417f84b1856f1364c2704#Mmlflow.userarhamded7127625a9417f84b1856f1364c2705'MpreprocessingNonef55b0b097c6445889d3c1eabcfe9240b<!)Mmodel_nameDecision Treesf55b0b097c6445889d3c1eabcfe9240b7#MexperimentsArham A.f55b0b097c6445889d3c1eabcfe9240bv=Mmlflow.log-model.history[{"run_id": "f55b0b097c6445889d3c1eabcfe9240b", "artifact_path": "model", "utc_time_created": "2024-04-23 18:47:31.187521", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "6f84982cdfa3456ea3b36887c476d9eb", "mlflow_version": "2.10.2", "model_size_bytes": 308206}]f55b0b097c6445889d3c1eabcfe9240bP)IMmlflow.runNameDummy_Classifier_Decision_Treef55b0b097c6445889d3c1eabcfe9240b;1Mmlflow.source.typeLOCALf55b0b097c6445889d3c1eabcfe9240b1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyf55b0b097c6445889d3c1eabcfe9240b4#Mmlflow.userarhamf55b0b097c6445889d3c1eabcfe9240b5'MpreprocessingNone31cf7bde4f294a5f938dbe34e3ce3092<!)Mmodel_nameDecision Trees31cf7bde4f294a5f938dbe34e3ce30927#MexperimentsArham A.31cf7bde4f294a5f938dbe34e3ce3092v=Mmlflow.log-model.history[{"run_id": "31cf7bde4f294a5f938dbe34e3ce3092", "artifact_path": "model", "utc_time_created": "2024-04-23 18:32:20.990743", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "8a380b90adc64b5ea04c2ec73acfd776", "mlflow_version": "2.10.2", "model_size_bytes": 309646}]31cf7bde4f294a5f938dbe34e3ce3092R)MMmlflow.runNameDummy Classifier - Decision Tree31cf7bde4f294a5f938dbe34e3ce3092;1Mmlflow.source.typeLOCAL31cf7bde4f294a5f938dbe34e3ce30921AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.py31cf7bde4f294a5f938dbe34e3ce30924
#Mmlflow.userarham31cf7bde4f294a5f938dbe34e3ce30925'MpreprocessingNonef48515b746954c2da857221ef186ed60<!)Mmodel_nameDecision Treesf48515b746954c2da857221ef186ed607
#MexperimentsArham A.f48515b746954c2da857221ef186ed60v =Mmlflow.log-model.history[{"run_id": "f48515b746954c2da857221ef186ed60", "artifact_path": "model", "utc_time_created": "2024-04-23 18:31:28.350063", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "b095c9c34cd04aef889de99648effb34", "mlflow_version": "2.10.2", "model_size_bytes": 308446}]f48515b746954c2da857221ef186ed60R)MMmlflow.runNameDummy Classifier - Decision Treef48515b746954c2da857221ef186ed60;1Mmlflow.source.typeLOCALf48515b746954c2da857221ef186ed601AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyf48515b746954c2da857221ef186ed604#Mmlflow.userarhamf48515b746954c2da857221ef186ed60R)MMmlflow.runNameDummy Classifier - Decision Treeeb68cd6a84f548beb14e62bb6a947f32;1Mmlflow.source.typeLOCALeb68cd6a84f548beb14e62bb6a947f321AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyeb68cd6a84f548beb14e62bb6a947f324#Mmlflow.userarhameb68cd6a84f548beb14e62bb6a947f32
J Ãqø¿JC
ñx?Ê Ãqø¿J 54'MpreprocessingNone13be3077591445048510cbe8dc4432c3<3!)Mmodel_nameDecision Trees13be3077591445048510cbe8dc4432c372#MexperimentsArham A.13be3077591445048510cbe8dc4432c3v1=Mmlflow.log-model.history[{"run_id": "13be3077591445048510cbe8dc4432c3", "artifact_path": "model", "utc_time_created": "2024-04-23 19:02:46.665659", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "ecb8baa05b85468cbac408fef26b51e7", "mlflow_version": "2.10.2", "model_size_bytes": 308686}]13be3077591445048510cbe8dc4432c3P0)IMmlflow.runNameDummy_Classifier_Decision_Tree13be3077591445048510cbe8dc4432c3;/1Mmlflow.source.typeLOCAL13be3077591445048510cbe8dc4432c3.1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.py13be3077591445048510cbe8dc4432c34-#Mmlflow.userarham13be3077591445048510cbe8dc4432c35,'MpreprocessingNonecff498b0ae3147fbb0958fa35a6f543a<+!)Mmodel_nameDecision Treescff498b0ae3147fbb0958fa35a6f543a7*#MexperimentsArham A.cff498b0ae3147fbb0958fa35a6f543av)=Mmlflow.log-model.history[{"run_id": "cff498b0ae3147fbb0958fa35a6f543a", "artifact_path": "model", "utc_time_created": "2024-04-23 18:55:23.681796", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "87334ed5f5444e48bc777adf36c2acd4", "mlflow_version": "2.10.2", "model_size_bytes": 308686}]cff498b0ae3147fbb0958fa35a6f543aP()IMmlflow.runNameDummy_Classifier_Decision_Treecff498b0ae3147fbb0958fa35a6f543a;'1Mmlflow.source.typeLOCALcff498b0ae3147fbb0958fa35a6f543a&1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pycff498b0ae3147fbb0958fa35a6f543a4%#Mmlflow.userarhamcff498b0ae3147fbb0958fa35a6f543a5$'MpreprocessingNoneded7127625a9417f84b1856f1364c270<#!)Mmodel_nameDecision Treesded7127625a9417f84b1856f1364c2707"#MexperimentsArham A.ded7127625a9417f84b1856f1364c270v!=Mmlflow.log-model.history[{"run_id": "ded7127625a9417f84b1856f1364c270", "artifact_path": "model", "utc_time_created": "2024-04-23 18:53:51.985511", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "31d982efe0914f2b8ea186badb566a81", "mlflow_version": "2.10.2", "model_size_bytes": 309166}]ded7127625a9417f84b1856f1364c270P )IMmlflow.runNameDummy_Classifier_Decision_Treeded7127625a9417f84b1856f1364c270;1Mmlflow.source.typeLOCALded7127625a9417f84b1856f1364c270
d Ϥ
[
.aú"
í ñ Ä d ^<7{indexindex_params_run_uuidparamsCREATE INDEX index_params_run_uuid ON params (run_uuid)+;? indexsqlite_autoindex_params_1params-y:Mtableparamsparams,CREATE TABLE "params" (
"key" VARCHAR(250) NOT NULL,
value VARCHAR(8000) NOT NULL,
run_uuid VARCHAR(32) NOT NULL,
CONSTRAINT param_pk PRIMARY KEY ("key", run_uuid),
FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid)
)39G! indexsqlite_autoindex_input_tags_1input_tags+U8!!utableinput_tagsinput_tags*CREATE TABLE input_tags (
input_uuid VARCHAR(36) NOT NULL,
name VARCHAR(255) NOT NULL,
value VARCHAR(500) NOT NULL,
CONSTRAINT input_tags_pk PRIMARY KEY (input_uuid, name)
)e7;indexindex_inputs_input_uuidinputs)CREATE INDEX index_inputs_input_uuid ON inputs (input_uuid)J6}indexindex_inputs_destination_type_destination_id_source_typeinputs(CREATE INDEX index_inputs_destination_type_destination_id_source_type ON inputs (destination_type, destination_id, source_type)+5? indexsqlite_autoindex_inputs_1inputs'F4gtableinputsinputs&CREATE TABLE inputs (
input_uuid VARCHAR(36) NOT NULL,
source_type VARCHAR(36) NOT NULL,
source_id VARCHAR(36) NOT NULL,
destination_type VARCHAR(36) NOT NULL,
destination_id VARCHAR(36) NOT NULL,
CONSTRAINT inputs_pk PRIMARY KEY (source_type, source_id, destination_type, destination_id)
)s3Cindexindex_datasets_dataset_uuiddatasets%CREATE INDEX index_datasets_dataset_uuid ON datasets (dataset_uuid)32miindexindex_datasets_experiment_id_dataset_source_typedatasets$CREATE INDEX index_datasets_experiment_id_dataset_source_type ON datasets (experiment_id, dataset_source_type)/1C indexsqlite_autoindex_datasets_1datasets#