[b4c0b6]: / 03-Experiments / mlflow.db

Download this file

214 lines (211 with data), 188.4 kB

SQLite format 3@  ~.;~.fêö.ûö0
ã§Eã`-{Dummy_Experiment/Users/arham/Downloads/Projects/03-Experiments/mlruns/2activeN\fN\f`-{Dummy Experiment/Users/arham/Downloads/Projects/03-Experiments/mlruns/1active4Ú°4Ú°W{Default/Users/arham/Downloads/Projects/03-Experiments/mlruns/0active4Ú«4Ú«
ÌõáÌ-Dummy_Experiment-	Dummy Experiment
Default



BÁDÌŒO
×
—
Z
!â¢e,í­p7
ø
¸
{
B7Mf1?ê—z@Ä<%V΄13be3077591445048510cbe8dc4432c3;Mrecall?ê—ó´OKV΁13be3077591445048510cbe8dc4432c3>Mprecision?ê—lgVÎ13be3077591445048510cbe8dc4432c3=Maccuracy?ê—ó´OKVÎz13be3077591445048510cbe8dc4432c37Mf1?ê¶ÕæÄɏPcff498b0ae3147fbb0958fa35a6f543a;Mrecall?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a>Mprecision?ê´VÞ͏Pcff498b0ae3147fbb0958fa35a6f543a=Maccuracy?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a7Mf1?êŠÁ€'fýN¥íded7127625a9417f84b1856f1364c270;Mrecall?ê‹Ï³¥SN¥ëded7127625a9417f84b1856f1364c270>Mprecision?ꉴüŸ5N¥èded7127625a9417f84b1856f1364c270=
Maccuracy?ê‹Ï³¥SN¥ãded7127625a9417f84b1856f1364c2707Mf1?ê¯ö"û
HÖnf55b0b097c6445889d3c1eabcfe9240b;Mrecall?ê³D2uÍ»HÖlf55b0b097c6445889d3c1eabcfe9240b>
Mprecision?ꬨäÙ6ǏHÖif55b0b097c6445889d3c1eabcfe9240b=	Maccuracy?ê³D2uÍ»HÖcf55b0b097c6445889d3c1eabcfe9240b7Mf1?êº@XàØN:òú31cf7bde4f294a5f938dbe34e3ce3092;Mrecall?ê¼_:¶M5:ò÷31cf7bde4f294a5f938dbe34e3ce3092>Mprecision?ê¸!Í#u9:òô31cf7bde4f294a5f938dbe34e3ce3092=Maccuracy?ê¼_:¶M5:òð31cf7bde4f294a5f938dbe34e3ce30927Mf1?ê¢%kàn:%Uf48515b746954c2da857221ef186ed60;Mrecall?ê¡!ôÎÆ:%Rf48515b746954c2da857221ef186ed60>Mprecision?ê£<̯g@:%Of48515b746954c2da857221ef186ed60=Maccuracy?ê¡!ôÎÆ:%Ff48515b746954c2da857221ef186ed60

+ÁÈ
ÏÖÝ
ä
$
+€‡
Ž•œ
£BI
PW^
e9Mf1V΄13be3077591445048510cbe8dc4432c3?ê—z@Ä<%=MrecallV΁13be3077591445048510cbe8dc4432c3?ê—ó´OK@MprecisionVÎ13be3077591445048510cbe8dc4432c3?ê—lg?MaccuracyVÎz13be3077591445048510cbe8dc4432c3?ê—ó´OK9Mf1Pcff498b0ae3147fbb0958fa35a6f543a?ê¶ÕæÄÉ=MrecallPcff498b0ae3147fbb0958fa35a6f543a?ê¹V7ö"·@MprecisionPcff498b0ae3147fbb0958fa35a6f543a?ê´VÞÍ?MaccuracyPcff498b0ae3147fbb0958fa35a6f543a?ê¹V7ö"·9Mf1N¥íded7127625a9417f84b1856f1364c270?êŠÁ€'fý=MrecallN¥ëded7127625a9417f84b1856f1364c270?ê‹Ï³¥S@MprecisionN¥èded7127625a9417f84b1856f1364c270?ꉴüŸ5?MaccuracyN¥ãded7127625a9417f84b1856f1364c270?ê‹Ï³¥S
9Mf1HÖnf55b0b097c6445889d3c1eabcfe9240b?ê¯ö"û
=MrecallHÖlf55b0b097c6445889d3c1eabcfe9240b?ê³D2uÍ»@MprecisionHÖif55b0b097c6445889d3c1eabcfe9240b?ꬨäÙ6Ç
?MaccuracyHÖcf55b0b097c6445889d3c1eabcfe9240b?ê³D2uÍ»	9Mf1:òú31cf7bde4f294a5f938dbe34e3ce3092?êº@XàØN=Mrecall:ò÷31cf7bde4f294a5f938dbe34e3ce3092?ê¼_:¶M5@Mprecision:òô31cf7bde4f294a5f938dbe34e3ce3092?ê¸!Í#u9?Maccuracy:òð31cf7bde4f294a5f938dbe34e3ce3092?ê¼_:¶M59Mf1:%Uf48515b746954c2da857221ef186ed60?ê¢%kàn=Mrecall:%Rf48515b746954c2da857221ef186ed60?ê¡!ôÎÆ@Mprecision:%Of48515b746954c2da857221ef186ed60?ê£<̯g@>M	accuracy:%Ff48515b746954c2da857221ef186ed60?ê¡!ôÎÆ

‰øÓ®‰H#þÙ
Œ
g
B
 
û
Ö
±Ü·’m´jE$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270
$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b
$Mf55b0b097c6445889d3c1eabcfe9240b	$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60#M	f48515b746954c2da857221ef186ed60


ðð%acf3f17fdcc7
ðð%	acf3f17fdcc7

û!û 
4B¥ALó
è
šÖr}	$
Ë°»	b,W	€
'	ΘÃuHäï	–`‹=¸
T_
Ðû­uÃ
¸
jBÞé
…
72'Mpreprocessing13be3077591445048510cbe8dc4432c34/!Mmodel_name13be3077591445048510cbe8dc4432c330#Mexperiments13be3077591445048510cbe8dc4432c32==Mmlflow.log-model.history13be3077591445048510cbe8dc4432c313)Mmlflow.runName13be3077591445048510cbe8dc4432c3071Mmlflow.source.type13be3077591445048510cbe8dc4432c3/71Mmlflow.source.name13be3077591445048510cbe8dc4432c3.0#Mmlflow.user13be3077591445048510cbe8dc4432c3-2'Mpreprocessingcff498b0ae3147fbb0958fa35a6f543a,/!Mmodel_namecff498b0ae3147fbb0958fa35a6f543a+0#Mexperimentscff498b0ae3147fbb0958fa35a6f543a*==Mmlflow.log-model.historycff498b0ae3147fbb0958fa35a6f543a)3)Mmlflow.runNamecff498b0ae3147fbb0958fa35a6f543a(71Mmlflow.source.typecff498b0ae3147fbb0958fa35a6f543a'71Mmlflow.source.namecff498b0ae3147fbb0958fa35a6f543a&0#Mmlflow.usercff498b0ae3147fbb0958fa35a6f543a%2'Mpreprocessingded7127625a9417f84b1856f1364c270$/!Mmodel_nameded7127625a9417f84b1856f1364c270#0#Mexperimentsded7127625a9417f84b1856f1364c270"==Mmlflow.log-model.historyded7127625a9417f84b1856f1364c270!3)Mmlflow.runNameded7127625a9417f84b1856f1364c270 71Mmlflow.source.typeded7127625a9417f84b1856f1364c27071Mmlflow.source.nameded7127625a9417f84b1856f1364c2700#Mmlflow.userded7127625a9417f84b1856f1364c2702'Mpreprocessingf55b0b097c6445889d3c1eabcfe9240b/!Mmodel_namef55b0b097c6445889d3c1eabcfe9240b0#Mexperimentsf55b0b097c6445889d3c1eabcfe9240b==Mmlflow.log-model.historyf55b0b097c6445889d3c1eabcfe9240b3)Mmlflow.runNamef55b0b097c6445889d3c1eabcfe9240b71Mmlflow.source.typef55b0b097c6445889d3c1eabcfe9240b71Mmlflow.source.namef55b0b097c6445889d3c1eabcfe9240b0#Mmlflow.userf55b0b097c6445889d3c1eabcfe9240b2'Mpreprocessing31cf7bde4f294a5f938dbe34e3ce3092/!Mmodel_name31cf7bde4f294a5f938dbe34e3ce30920#Mexperiments31cf7bde4f294a5f938dbe34e3ce3092==Mmlflow.log-model.history31cf7bde4f294a5f938dbe34e3ce30923)Mmlflow.runName31cf7bde4f294a5f938dbe34e3ce309271Mmlflow.source.type31cf7bde4f294a5f938dbe34e3ce309271Mmlflow.source.name31cf7bde4f294a5f938dbe34e3ce30920#Mmlflow.user31cf7bde4f294a5f938dbe34e3ce3092
2'Mpreprocessingf48515b746954c2da857221ef186ed60/!Mmodel_namef48515b746954c2da857221ef186ed600#Mexperimentsf48515b746954c2da857221ef186ed60
==Mmlflow.log-model.historyf48515b746954c2da857221ef186ed60	3)Mmlflow.runNamef48515b746954c2da857221ef186ed6071Mmlflow.source.typef48515b746954c2da857221ef186ed6071Mmlflow.source.namef48515b746954c2da857221ef186ed600#Mmlflow.userf48515b746954c2da857221ef186ed603)Mmlflow.runNameeb68cd6a84f548beb14e62bb6a947f3271Mmlflow.source.typeeb68cd6a84f548beb14e62bb6a947f3271Mmlflow.source.nameeb68cd6a84f548beb14e62bb6a947f32/#M	mlflow.usereb68cd6a84f548beb14e62bb6a947f32



BÁDÌŒO
×
—
Z
!â¢e,í­p7
ø
¸
{
B7Mf1?ê—z@Ä<%V΄13be3077591445048510cbe8dc4432c3;Mrecall?ê—ó´OKV΁13be3077591445048510cbe8dc4432c3>Mprecision?ê—lgVÎ13be3077591445048510cbe8dc4432c3=Maccuracy?ê—ó´OKVÎz13be3077591445048510cbe8dc4432c37Mf1?ê¶ÕæÄɏPcff498b0ae3147fbb0958fa35a6f543a;Mrecall?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a>Mprecision?ê´VÞ͏Pcff498b0ae3147fbb0958fa35a6f543a=Maccuracy?ê¹V7ö"·Pcff498b0ae3147fbb0958fa35a6f543a7Mf1?êŠÁ€'fýN¥íded7127625a9417f84b1856f1364c270;Mrecall?ê‹Ï³¥SN¥ëded7127625a9417f84b1856f1364c270>Mprecision?ꉴüŸ5N¥èded7127625a9417f84b1856f1364c270=
Maccuracy?ê‹Ï³¥SN¥ãded7127625a9417f84b1856f1364c2707Mf1?ê¯ö"û
HÖnf55b0b097c6445889d3c1eabcfe9240b;Mrecall?ê³D2uÍ»HÖlf55b0b097c6445889d3c1eabcfe9240b>
Mprecision?ꬨäÙ6ǏHÖif55b0b097c6445889d3c1eabcfe9240b=	Maccuracy?ê³D2uÍ»HÖcf55b0b097c6445889d3c1eabcfe9240b7Mf1?êº@XàØN:òú31cf7bde4f294a5f938dbe34e3ce3092;Mrecall?ê¼_:¶M5:ò÷31cf7bde4f294a5f938dbe34e3ce3092>Mprecision?ê¸!Í#u9:òô31cf7bde4f294a5f938dbe34e3ce3092=Maccuracy?ê¼_:¶M5:òð31cf7bde4f294a5f938dbe34e3ce30927Mf1?ê¢%kàn:%Uf48515b746954c2da857221ef186ed60;Mrecall?ê¡!ôÎÆ:%Rf48515b746954c2da857221ef186ed60>Mprecision?ê£<̯g@:%Of48515b746954c2da857221ef186ed60=Maccuracy?ê¡!ôÎÆ:%Ff48515b746954c2da857221ef186ed60
Û^"

ÀÓqÛŸŒ
=P
î/óà
‘¤BÇ´
ex'Mf113be3077591445048510cbe8dc4432c3+Mrecall13be3077591445048510cbe8dc4432c3.Mprecision13be3077591445048510cbe8dc4432c3-Maccuracy13be3077591445048510cbe8dc4432c3'Mf1cff498b0ae3147fbb0958fa35a6f543a+Mrecallcff498b0ae3147fbb0958fa35a6f543a.Mprecisioncff498b0ae3147fbb0958fa35a6f543a-Maccuracycff498b0ae3147fbb0958fa35a6f543a'Mf1ded7127625a9417f84b1856f1364c270+Mrecallded7127625a9417f84b1856f1364c270.Mprecisionded7127625a9417f84b1856f1364c270-Maccuracyded7127625a9417f84b1856f1364c270
'Mf1f55b0b097c6445889d3c1eabcfe9240b+Mrecallf55b0b097c6445889d3c1eabcfe9240b.Mprecisionf55b0b097c6445889d3c1eabcfe9240b
-Maccuracyf55b0b097c6445889d3c1eabcfe9240b	'Mf131cf7bde4f294a5f938dbe34e3ce3092+Mrecall31cf7bde4f294a5f938dbe34e3ce3092.Mprecision31cf7bde4f294a5f938dbe34e3ce3092-Maccuracy31cf7bde4f294a5f938dbe34e3ce3092'Mf1f48515b746954c2da857221ef186ed60+Mrecallf48515b746954c2da857221ef186ed60.Mprecisionf48515b746954c2da857221ef186ed60,M	accuracyf48515b746954c2da857221ef186ed60
¯Q-ÁÄp
Â×®
§
d¶
;þ³QnEó{{¯‚b11„otablemodel_version_tagsmodel_version_tagsCREATE TABLE model_version_tags (
	"key" VARCHAR(250) NOT NULL, 
	value VARCHAR(5000), 
	name VARCHAR(256) NOT NULL, 
	version INTEGER NOT NULL, 
	CONSTRAINT model_version_tag_pk PRIMARY KEY ("key", name, version), 
	FOREIGN KEY(name, version) REFERENCES model_versions (name, version) ON UPDATE cascade
)†‹ytablerunsrunsCREATE TABLE "runs" (
	run_uuid VARCHAR(32) NOT NULL, 
	name VARCHAR(250), 
	source_type VARCHAR(20), 
	source_name VARCHAR(500), 
	entry_point_name VARCHAR(50), 
	user_id VARCHAR(256), 
	status VARCHAR(9), 
	start_time BIGINT, 
	end_time BIGINT, 
	source_version VARCHAR(50), 
	lifecycle_stage VARCHAR(20), 
	artifact_uri VARCHAR(200), 
	experiment_id INTEGER, deleted_time BIGINT, 
	CONSTRAINT run_pk PRIMARY KEY (run_uuid), 
	CONSTRAINT runs_lifecycle_stage CHECK (lifecycle_stage IN ('active', 'deleted')), 
	CONSTRAINT source_type CHECK (source_type IN ('NOTEBOOK', 'JOB', 'LOCAL', 'UNKNOWN', 'PROJECT')), 
	FOREIGN KEY(experiment_id) REFERENCES experiments (experiment_id), 
	CHECK (status IN ('SCHEDULED', 'FAILED', 'FINISHED', 'RUNNING', 'KILLED'))
))++‚	tablealembic_versionalembic_versionCREATE TABLE alembic_version (
	version_num VARCHAR(32) NOT NULL, 
	CONSTRAINT alembic_version_pkc PRIMARY KEY (version_num)
)=Q+indexsqlite_autoindex_alembic_version_1alembic_version
øI]7indexsqlite_autoindex_registered_model_tags_1registered_model_tags‚:77„tableregistered_model_tagsregistered_model_tagsCREATE TABLE registered_model_tags (
	"key" VARCHAR(250) NOT NULL, 
	value VARCHAR(5000), 
	name VARCHAR(256) NOT NULL, 
	CONSTRAINT registered_model_tag_pk PRIMARY KEY ("key", name), 
	FOREIGN KEY(name) REFERENCES registered_models (name) ON UPDATE cascade
)';indexsqlite_autoindex_runs_1runsAU/indexsqlite_autoindex_registered_models_1registered_models‚//ƒ7tableregistered_modelsregistered_modelsCREATE TABLE registered_models (
	name VARCHAR(256) NOT NULL, 
	creation_time BIGINT, 
	last_updated_time BIGINT, 
	description VARCHAR(5000), 
	CONSTRAINT registered_model_pk PRIMARY KEY (name), 
	UNIQUE (name)
)';indexsqlite_autoindex_tags_1tagshƒ3tabletagstagsCREATE TABLE "tags" (
	"key" VARCHAR(250) NOT NULL, 
	value VARCHAR(5000), 
	run_uuid VARCHAR(32) NOT NULL, 
	CONSTRAINT tag_pk PRIMARY KEY ("key", run_uuid), 
	FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid)
)=Q+indexsqlite_autoindex_experiment_tags_1experiment_tags‚)++„	tableexperiment_tagsexperiment_tagsCREATE TABLE experiment_tags (
	"key" VARCHAR(250) NOT NULL, 
	value VARCHAR(5000), 
	experiment_id INTEGER NOT NULL, 
	CONSTRAINT experiment_tag_pk PRIMARY KEY ("key", experiment_id), 
	FOREIGN KEY(experiment_id) REFERENCES experiments (experiment_id)
)ƒ##…itableexperimentsexperimentsCREATE TABLE experiments (
	experiment_id INTEGER NOT NULL, 
	name VARCHAR(256) NOT NULL, 
	artifact_location VARCHAR(256), 
	lifecycle_stage VARCHAR(32), creation_time BIGINT, last_update_time BIGINT, 
	CONSTRAINT experiment_pk PRIMARY KEY (experiment_id), 
	CONSTRAINT experiments_lifecycle_stage CHECK (lifecycle_stage IN ('active', 'deleted')), 
	UNIQUE (name)
)5I#indexsqlite_autoindex_experiments_1experiments
q
³
T	UÞ¡ÖEÄl
ÄO³³³³ˆJS}
	
á	Â	Â	’`ƒ;0†Itabledatasetsdatasets"CREATE TABLE datasets (
	dataset_uuid VARCHAR(36) NOT NULL, 
	experiment_id INTEGER NOT NULL, 
	name VARCHAR(500) NOT NULL, 
	digest VARCHAR(36) NOT NULL, 
	dataset_source_type VARCHAR(36) NOT NULL, 
	dataset_source TEXT NOT NULL, 
	dataset_schema TEXT, 
	dataset_profile TEXT, 
	CONSTRAINT dataset_pk PRIMARY KEY (experiment_id, name, digest), 
	FOREIGN KEY(experiment_id) REFERENCES experiments (experiment_id)
)©ûV*3sindexindex_tags_run_uuidtagsCREATE INDEX index_tags_run_uuid ON tags (run_uuid))G)indexindex_latest_metrics_run_uuidlatest_metricsCREATE INDEX index_latest_metrics_run_uuid ON latest_metrics (run_uuid)b(9indexindex_metrics_run_uuidmetrics	CREATE INDEX index_metrics_run_uuid ON metrics (run_uuid)	’--&Aindexsqlite_autoindex_metrics_1metricsƒ%†	tablemetricsmetricsCREATE TABLE "metrics" (
	"key" VARCHAR(250) NOT NULL, 
	value FLOAT NOT NULL, 
	timestamp BIGINT NOT NULL, 
	run_uuid VARCHAR(32) NOT NULL, 
	step BIGINT DEFAULT '0' NOT NULL, 
	is_nan BOOLEAN DEFAULT '0' NOT NULL, 
	CONSTRAINT metric_pk PRIMARY KEY ("key", timestamp, step, run_uuid, value, is_nan), 
	FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid), 
	CHECK (is_nan IN (0, 1))
);$O)indexsqlite_autoindex_latest_metrics_1latest_metrics‚t#))…#tablelatest_metricslatest_metricsCREATE TABLE "latest_metrics" (
	"key" VARCHAR(250) NOT NULL, 
	value FLOAT NOT NULL, 
	timestamp BIGINT, 
	step BIGINT NOT NULL, 
	is_nan BOOLEAN NOT NULL, 
	run_uuid VARCHAR(32) NOT NULL, 
	CONSTRAINT latest_metric_pk PRIMARY KEY ("key", run_uuid), 
	FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid), 
	CHECK (is_nan IN (0, 1))
);"O)indexsqlite_autoindex_model_versions_1model_versions „(!))ˆtablemodel_versionsmodel_versionsCREATE TABLE "model_versions" (
	name VARCHAR(256) NOT NULL, 
	version INTEGER NOT NULL, 
	creation_time BIGINT, 
	last_updated_time BIGINT, 
	description VARCHAR(5000), 
	user_id VARCHAR(256), 
	current_stage VARCHAR(20), 
	source VARCHAR(500), 
	run_id VARCHAR(32), 
	status VARCHAR(20), 
	status_message VARCHAR(500), 
	run_link VARCHAR(500), storage_location VARCHAR(500), 
	CONSTRAINT model_version_pk PRIMARY KEY (name, version), 
	FOREIGN KEY(name) REFERENCES registered_models (name) ON UPDATE CASCADE
)C W1indexsqlite_autoindex_model_version_tags_1model_version_tagsƒ.==…#tableregistered_model_aliasesregistered_model_aliases
CREATE TABLE registered_model_aliases (
	alias VARCHAR(256) NOT NULL, 
	version INTEGER NOT NULL, 
	name VARCHAR(256) NOT NULL, 
	CONSTRAINT registered_model_alias_pk PRIMARY KEY (name, alias), 
	CONSTRAINT registered_model_alias_name_fkey FOREIGN KEY(name) REFERENCES registered_models (name) ON DELETE cascade ON UPDATE cascade
)O/c=indexsqlite_autoindex_registered_model_aliases_1registered_model_aliases`


'L
q˜¾
ä

WMI


Q13be3077591445048510cbe8dc4432c3Dummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDVËUVÛëactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/2/13be3077591445048510cbe8dc4432c3/artifactsWMI


Qcff498b0ae3147fbb0958fa35a6f543aDummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDP½PÔactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/2/cff498b0ae3147fbb0958fa35a6f543a/artifactsWMI


Qded7127625a9417f84b1856f1364c270Dummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDN¢ªN³Áactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/2/ded7127625a9417f84b1856f1364c270/artifactsVMI


Q	f55b0b097c6445889d3c1eabcfe9240bDummy_Classifier_Decision_TreeUNKNOWNarhamFINISHEDHÒñHâ active/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/f55b0b097c6445889d3c1eabcfe9240b/artifactsXMM


Q	31cf7bde4f294a5f938dbe34e3ce3092Dummy Classifier - Decision TreeUNKNOWNarhamFINISHED:ïя:ûýactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/31cf7bde4f294a5f938dbe34e3ce3092/artifactsXMM


Q	f48515b746954c2da857221ef186ed60Dummy Classifier - Decision TreeUNKNOWNarhamFINISHED:!™:5Óactive/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/f48515b746954c2da857221ef186ed60/artifactsVMM


Q	eb68cd6a84f548beb14e62bb6a947f32Dummy Classifier - Decision TreeUNKNOWNarhamFAILED9ú9active/Users/arham/Downloads/Projects/03-Experiments/mlruns/1/eb68cd6a84f548beb14e62bb6a947f32/artifacts
þþ’#HÜ·m$M13be3077591445048510cbe8dc4432c3$Mcff498b0ae3147fbb0958fa35a6f543a$Mded7127625a9417f84b1856f1364c270$Mf55b0b097c6445889d3c1eabcfe9240b$M31cf7bde4f294a5f938dbe34e3ce3092$Mf48515b746954c2da857221ef186ed60#M	eb68cd6a84f548beb14e62bb6a947f32




‰øÓ®‰H#þÙ
Œ
g
B
 
û
Ö
±Ü·’m´jE$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$M13be3077591445048510cbe8dc4432c3$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mcff498b0ae3147fbb0958fa35a6f543a$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270
$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b
$Mf55b0b097c6445889d3c1eabcfe9240b	$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60#M	f48515b746954c2da857221ef186ed60
4}	€	[	6	ìÇ¢} 
û
Ö
±
Œ
g
B

¨
ƒ
^
9
	ï	Ê	¥Ð«†a<
ò
ÍÜ·’mH#þÙ´jEøÓ®‰d?õ$M13be3077591445048510cbe8dc4432c34$M13be3077591445048510cbe8dc4432c33$M13be3077591445048510cbe8dc4432c32$M13be3077591445048510cbe8dc4432c31$M13be3077591445048510cbe8dc4432c30$M13be3077591445048510cbe8dc4432c3/$M13be3077591445048510cbe8dc4432c3.$M13be3077591445048510cbe8dc4432c3-$Mcff498b0ae3147fbb0958fa35a6f543a,$Mcff498b0ae3147fbb0958fa35a6f543a+$Mcff498b0ae3147fbb0958fa35a6f543a*$Mcff498b0ae3147fbb0958fa35a6f543a)$Mcff498b0ae3147fbb0958fa35a6f543a($Mcff498b0ae3147fbb0958fa35a6f543a'$Mcff498b0ae3147fbb0958fa35a6f543a&$Mcff498b0ae3147fbb0958fa35a6f543a%$Mded7127625a9417f84b1856f1364c270$$Mded7127625a9417f84b1856f1364c270#$Mded7127625a9417f84b1856f1364c270"$Mded7127625a9417f84b1856f1364c270!$Mded7127625a9417f84b1856f1364c270 $Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mded7127625a9417f84b1856f1364c270$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$Mf55b0b097c6445889d3c1eabcfe9240b$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092$M31cf7bde4f294a5f938dbe34e3ce3092
$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60
$Mf48515b746954c2da857221ef186ed60	$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Mf48515b746954c2da857221ef186ed60$Meb68cd6a84f548beb14e62bb6a947f32$Meb68cd6a84f548beb14e62bb6a947f32$Meb68cd6a84f548beb14e62bb6a947f32#M	eb68cd6a84f548beb14e62bb6a947f32
WÊ6ù¥o
Û
ž
J
Ñ
˜
Z
#	í	Y	ÈOØ¡kךHÏ–X!ëW1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyded7127625a9417f84b1856f1364c2704#Mmlflow.userarhamded7127625a9417f84b1856f1364c2705'MpreprocessingNonef55b0b097c6445889d3c1eabcfe9240b<!)Mmodel_nameDecision Treesf55b0b097c6445889d3c1eabcfe9240b7#MexperimentsArham A.f55b0b097c6445889d3c1eabcfe9240b„v=ˆMmlflow.log-model.history[{"run_id": "f55b0b097c6445889d3c1eabcfe9240b", "artifact_path": "model", "utc_time_created": "2024-04-23 18:47:31.187521", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "6f84982cdfa3456ea3b36887c476d9eb", "mlflow_version": "2.10.2", "model_size_bytes": 308206}]f55b0b097c6445889d3c1eabcfe9240bP)IMmlflow.runNameDummy_Classifier_Decision_Treef55b0b097c6445889d3c1eabcfe9240b;1Mmlflow.source.typeLOCALf55b0b097c6445889d3c1eabcfe9240b1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyf55b0b097c6445889d3c1eabcfe9240b4#Mmlflow.userarhamf55b0b097c6445889d3c1eabcfe9240b5'MpreprocessingNone31cf7bde4f294a5f938dbe34e3ce3092<!)Mmodel_nameDecision Trees31cf7bde4f294a5f938dbe34e3ce30927#MexperimentsArham A.31cf7bde4f294a5f938dbe34e3ce3092„v=ˆMmlflow.log-model.history[{"run_id": "31cf7bde4f294a5f938dbe34e3ce3092", "artifact_path": "model", "utc_time_created": "2024-04-23 18:32:20.990743", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "8a380b90adc64b5ea04c2ec73acfd776", "mlflow_version": "2.10.2", "model_size_bytes": 309646}]31cf7bde4f294a5f938dbe34e3ce3092R)MMmlflow.runNameDummy Classifier - Decision Tree31cf7bde4f294a5f938dbe34e3ce3092;1Mmlflow.source.typeLOCAL31cf7bde4f294a5f938dbe34e3ce30921AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.py31cf7bde4f294a5f938dbe34e3ce30924
#Mmlflow.userarham31cf7bde4f294a5f938dbe34e3ce30925'MpreprocessingNonef48515b746954c2da857221ef186ed60<!)Mmodel_nameDecision Treesf48515b746954c2da857221ef186ed607
#MexperimentsArham A.f48515b746954c2da857221ef186ed60„v	=ˆMmlflow.log-model.history[{"run_id": "f48515b746954c2da857221ef186ed60", "artifact_path": "model", "utc_time_created": "2024-04-23 18:31:28.350063", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "b095c9c34cd04aef889de99648effb34", "mlflow_version": "2.10.2", "model_size_bytes": 308446}]f48515b746954c2da857221ef186ed60R)MMmlflow.runNameDummy Classifier - Decision Treef48515b746954c2da857221ef186ed60;1Mmlflow.source.typeLOCALf48515b746954c2da857221ef186ed601AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyf48515b746954c2da857221ef186ed604#Mmlflow.userarhamf48515b746954c2da857221ef186ed60R)MMmlflow.runNameDummy Classifier - Decision Treeeb68cd6a84f548beb14e62bb6a947f32;1Mmlflow.source.typeLOCALeb68cd6a84f548beb14e62bb6a947f321AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pyeb68cd6a84f548beb14e62bb6a947f324#Mmlflow.userarhameb68cd6a84f548beb14e62bb6a947f32
JÃqø¿J€C
ñx?Ê”Ãqø¿J54'MpreprocessingNone13be3077591445048510cbe8dc4432c3<3!)Mmodel_nameDecision Trees13be3077591445048510cbe8dc4432c372#MexperimentsArham A.13be3077591445048510cbe8dc4432c3„v1=ˆMmlflow.log-model.history[{"run_id": "13be3077591445048510cbe8dc4432c3", "artifact_path": "model", "utc_time_created": "2024-04-23 19:02:46.665659", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "ecb8baa05b85468cbac408fef26b51e7", "mlflow_version": "2.10.2", "model_size_bytes": 308686}]13be3077591445048510cbe8dc4432c3P0)IMmlflow.runNameDummy_Classifier_Decision_Tree13be3077591445048510cbe8dc4432c3;/1Mmlflow.source.typeLOCAL13be3077591445048510cbe8dc4432c3.1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.py13be3077591445048510cbe8dc4432c34-#Mmlflow.userarham13be3077591445048510cbe8dc4432c35,'MpreprocessingNonecff498b0ae3147fbb0958fa35a6f543a<+!)Mmodel_nameDecision Treescff498b0ae3147fbb0958fa35a6f543a7*#MexperimentsArham A.cff498b0ae3147fbb0958fa35a6f543a„v)=ˆMmlflow.log-model.history[{"run_id": "cff498b0ae3147fbb0958fa35a6f543a", "artifact_path": "model", "utc_time_created": "2024-04-23 18:55:23.681796", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "87334ed5f5444e48bc777adf36c2acd4", "mlflow_version": "2.10.2", "model_size_bytes": 308686}]cff498b0ae3147fbb0958fa35a6f543aP()IMmlflow.runNameDummy_Classifier_Decision_Treecff498b0ae3147fbb0958fa35a6f543a;'1Mmlflow.source.typeLOCALcff498b0ae3147fbb0958fa35a6f543a&1AMmlflow.source.name/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/ipykernel_launcher.pycff498b0ae3147fbb0958fa35a6f543a4%#Mmlflow.userarhamcff498b0ae3147fbb0958fa35a6f543a5$'MpreprocessingNoneded7127625a9417f84b1856f1364c270<#!)Mmodel_nameDecision Treesded7127625a9417f84b1856f1364c2707"#MexperimentsArham A.ded7127625a9417f84b1856f1364c270„v!=ˆMmlflow.log-model.history[{"run_id": "ded7127625a9417f84b1856f1364c270", "artifact_path": "model", "utc_time_created": "2024-04-23 18:53:51.985511", "flavors": {"python_function": {"model_path": "model.pkl", "predict_fn": "predict", "loader_module": "mlflow.sklearn", "python_version": "3.10.13", "env": {"conda": "conda.yaml", "virtualenv": "python_env.yaml"}}, "sklearn": {"pickled_model": "model.pkl", "sklearn_version": "1.4.0", "serialization_format": "cloudpickle", "code": null}}, "model_uuid": "31d982efe0914f2b8ea186badb566a81", "mlflow_version": "2.10.2", "model_size_bytes": 309166}]ded7127625a9417f84b1856f1364c270P )IMmlflow.runNameDummy_Classifier_Decision_Treeded7127625a9417f84b1856f1364c270;1Mmlflow.source.typeLOCALded7127625a9417f84b1856f1364c270












	dϤ
[
.aú"
í	ñ	Ä	d^<7{indexindex_params_run_uuidparamsCREATE INDEX index_params_run_uuid ON params (run_uuid)+;?indexsqlite_autoindex_params_1params-y:ƒMtableparamsparams,CREATE TABLE "params" (
	"key" VARCHAR(250) NOT NULL, 
	value VARCHAR(8000) NOT NULL, 
	run_uuid VARCHAR(32) NOT NULL, 
	CONSTRAINT param_pk PRIMARY KEY ("key", run_uuid), 
	FOREIGN KEY(run_uuid) REFERENCES runs (run_uuid)
)39G!indexsqlite_autoindex_input_tags_1input_tags+U8!!‚utableinput_tagsinput_tags*CREATE TABLE input_tags (
	input_uuid VARCHAR(36) NOT NULL, 
	name VARCHAR(255) NOT NULL, 
	value VARCHAR(500) NOT NULL, 
	CONSTRAINT input_tags_pk PRIMARY KEY (input_uuid, name)
)e7;indexindex_inputs_input_uuidinputs)CREATE INDEX index_inputs_input_uuid ON inputs (input_uuid)J6}‚indexindex_inputs_destination_type_destination_id_source_typeinputs(CREATE INDEX index_inputs_destination_type_destination_id_source_type ON inputs (destination_type, destination_id, source_type)+5?indexsqlite_autoindex_inputs_1inputs'‚F4„gtableinputsinputs&CREATE TABLE inputs (
	input_uuid VARCHAR(36) NOT NULL, 
	source_type VARCHAR(36) NOT NULL, 
	source_id VARCHAR(36) NOT NULL, 
	destination_type VARCHAR(36) NOT NULL, 
	destination_id VARCHAR(36) NOT NULL, 
	CONSTRAINT inputs_pk PRIMARY KEY (source_type, source_id, destination_type, destination_id)
)s3Cindexindex_datasets_dataset_uuiddatasets%CREATE INDEX index_datasets_dataset_uuid ON datasets (dataset_uuid)32miindexindex_datasets_experiment_id_dataset_source_typedatasets$CREATE INDEX index_datasets_experiment_id_dataset_source_type ON datasets (experiment_id, dataset_source_type)/1Cindexsqlite_autoindex_datasets_1datasets#