|
a |
|
b/03-Experiments/Untitled-1.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 4, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [ |
|
|
8 |
{ |
|
|
9 |
"name": "stderr", |
|
|
10 |
"output_type": "stream", |
|
|
11 |
"text": [ |
|
|
12 |
"2024/04/26 04:39:52 INFO mlflow.tracking.fluent: Experiment with name 'LGB' does not exist. Creating a new experiment.\n" |
|
|
13 |
] |
|
|
14 |
}, |
|
|
15 |
{ |
|
|
16 |
"data": { |
|
|
17 |
"text/plain": [ |
|
|
18 |
"<Experiment: artifact_location='/Users/arham/Downloads/Projects/mlruns/2', creation_time=1714120792214, experiment_id='2', last_update_time=1714120792214, lifecycle_stage='active', name='LGB', tags={}>" |
|
|
19 |
] |
|
|
20 |
}, |
|
|
21 |
"execution_count": 4, |
|
|
22 |
"metadata": {}, |
|
|
23 |
"output_type": "execute_result" |
|
|
24 |
} |
|
|
25 |
], |
|
|
26 |
"source": [ |
|
|
27 |
"import mlflow\n", |
|
|
28 |
"\n", |
|
|
29 |
"\n", |
|
|
30 |
"# Set the MLflow tracking URI to a new SQLite URI\n", |
|
|
31 |
"mlflow.set_tracking_uri(\"sqlite:///new_mlflow.db\")\n", |
|
|
32 |
"mlflow.set_experiment(\"LGB\")\n", |
|
|
33 |
"\n" |
|
|
34 |
] |
|
|
35 |
}, |
|
|
36 |
{ |
|
|
37 |
"cell_type": "code", |
|
|
38 |
"execution_count": 1, |
|
|
39 |
"metadata": {}, |
|
|
40 |
"outputs": [], |
|
|
41 |
"source": [ |
|
|
42 |
"import seaborn as sns\n", |
|
|
43 |
"import matplotlib.pyplot as plt\n", |
|
|
44 |
"from scipy.stats import chi2_contingency\n", |
|
|
45 |
"from sklearn.model_selection import train_test_split\n", |
|
|
46 |
"\n", |
|
|
47 |
"import lightgbm as lgb\n", |
|
|
48 |
"from catboost import CatBoostClassifier, Pool\n", |
|
|
49 |
"from xgboost import XGBClassifier\n", |
|
|
50 |
"from sklearn.model_selection import StratifiedKFold, cross_val_score\n", |
|
|
51 |
"from sklearn.metrics import roc_auc_score, precision_score, recall_score, roc_curve, accuracy_score, f1_score, auc,classification_report\n", |
|
|
52 |
"from scipy.stats import ks_2samp\n", |
|
|
53 |
"\n", |
|
|
54 |
"from sklearn.preprocessing import label_binarize,OneHotEncoder, StandardScaler, FunctionTransformer, LabelEncoder\n", |
|
|
55 |
"from itertools import cycle\n", |
|
|
56 |
"\n", |
|
|
57 |
"from sklearn.ensemble import VotingClassifier\n", |
|
|
58 |
"from sklearn.model_selection import RandomizedSearchCV\n", |
|
|
59 |
"import shap\n", |
|
|
60 |
"\n", |
|
|
61 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n", |
|
|
62 |
"from sklearn.decomposition import TruncatedSVD, PCA\n", |
|
|
63 |
"\n", |
|
|
64 |
"import warnings\n", |
|
|
65 |
"warnings.filterwarnings(\"ignore\")\n", |
|
|
66 |
"\n", |
|
|
67 |
"import numpy as np \n", |
|
|
68 |
"import pandas as pd\n", |
|
|
69 |
"\n", |
|
|
70 |
"def load_data(path):\n", |
|
|
71 |
" df = pd.read_csv(path)\n", |
|
|
72 |
" # arham check this later\n", |
|
|
73 |
" # original = pd.read_csv('/kaggle/input/obesity-or-cvd-risk-classifyregressorcluster/ObesityDataSet.csv')\n", |
|
|
74 |
" # split to train test\n", |
|
|
75 |
" train_df, test_df = train_test_split(df, test_size=0.35, random_state=42)\n", |
|
|
76 |
" train_df = train_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
77 |
" test_df = test_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
78 |
" return train_df, test_df\n", |
|
|
79 |
"\n", |
|
|
80 |
"def corr_heat_map(df,scale=1) :\n", |
|
|
81 |
" # Calculate the correlation matrix\n", |
|
|
82 |
" correlation_matrix = df.corr()\n", |
|
|
83 |
"\n", |
|
|
84 |
" # Create a mask for the upper triangle\n", |
|
|
85 |
" mask = np.triu(np.ones_like(correlation_matrix, dtype=bool))\n", |
|
|
86 |
"\n", |
|
|
87 |
" # Set up the matplotlib figure\n", |
|
|
88 |
" plt.figure(figsize=(10//scale, 8//scale))\n", |
|
|
89 |
"\n", |
|
|
90 |
" # Define a custom color palette\n", |
|
|
91 |
" cmap = sns.diverging_palette(220, 20, as_cmap=True)\n", |
|
|
92 |
"\n", |
|
|
93 |
" # Draw the heatmap with the mask and correct aspect ratio\n", |
|
|
94 |
" sns.heatmap(correlation_matrix, mask=mask, cmap=cmap, vmax=.3, center=0,\n", |
|
|
95 |
" square=True, linewidths=.5, cbar_kws={\"shrink\": 0.7})\n", |
|
|
96 |
"\n", |
|
|
97 |
" plt.title('Correlation Heatmap')\n", |
|
|
98 |
"\n", |
|
|
99 |
"\n", |
|
|
100 |
"path = '/Users/arham/Downloads/Projects/01-Dataset/01-Data-for-model-building/train.csv'\n", |
|
|
101 |
"train, test = load_data(path)\n", |
|
|
102 |
"\n", |
|
|
103 |
"target = 'NObeyesdad'\n", |
|
|
104 |
"num_col = []\n", |
|
|
105 |
"cat_col = []\n", |
|
|
106 |
"\n", |
|
|
107 |
"for i in train.columns.drop([target]) : \n", |
|
|
108 |
" \n", |
|
|
109 |
" if train[i].dtype == 'object' : \n", |
|
|
110 |
" cat_col.append(i)\n", |
|
|
111 |
" \n", |
|
|
112 |
" else : \n", |
|
|
113 |
" num_col.append(i)\n", |
|
|
114 |
"\n", |
|
|
115 |
"# print(\"Numerical Columns : \", *num_col,\"\\n\",sep=\"\\n\")\n", |
|
|
116 |
"# print(\"Categorical Columns : \", *cat_col,sep=\"\\n\")\n", |
|
|
117 |
"\n", |
|
|
118 |
"\n", |
|
|
119 |
"train = pd.get_dummies(train,\n", |
|
|
120 |
" columns=cat_col)\n", |
|
|
121 |
"test = pd.get_dummies(test, \n", |
|
|
122 |
" columns=cat_col)\n", |
|
|
123 |
"\n", |
|
|
124 |
"target = 'NObeyesdad'\n", |
|
|
125 |
"\n", |
|
|
126 |
"le = LabelEncoder()\n", |
|
|
127 |
"train['NObeyesdad'] = le.fit_transform(train['NObeyesdad'])\n", |
|
|
128 |
"\n", |
|
|
129 |
"X_train, X_val, y_train, y_val = train_test_split(train.drop([target],axis=1),train[target],test_size=0.2,random_state=42)\n", |
|
|
130 |
"X_train.shape , y_train.shape, X_val.shape, y_val.shape \n", |
|
|
131 |
"\n", |
|
|
132 |
"import optuna\n", |
|
|
133 |
"ran_optuna = False \n", |
|
|
134 |
"\n", |
|
|
135 |
"def optimization_function(trial) : \n", |
|
|
136 |
" \n", |
|
|
137 |
" lgbParams = {\n", |
|
|
138 |
" 'num_class': 7,\n", |
|
|
139 |
" 'random_state': 42,\n", |
|
|
140 |
" 'metric': 'multi_logloss',\n", |
|
|
141 |
" \"boosting_type\": \"gbdt\",\n", |
|
|
142 |
" 'objective': 'multiclass',\n", |
|
|
143 |
" \n", |
|
|
144 |
" 'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.05),\n", |
|
|
145 |
" 'n_estimators': trial.suggest_int('n_estimators', 400, 600),\n", |
|
|
146 |
" 'reg_alpha': trial.suggest_loguniform('reg_alpha', 1e-3, 10.0),\n", |
|
|
147 |
" 'reg_lambda': trial.suggest_loguniform('reg_lambda', 1e-1, 10.0),\n", |
|
|
148 |
" 'max_depth': trial.suggest_int('max_depth', 6, 20),\n", |
|
|
149 |
" 'colsample_bytree': trial.suggest_float('colsample_bytree', 0.3, 0.9),\n", |
|
|
150 |
" 'subsample': trial.suggest_float('subsample', 0.8, 1.0),\n", |
|
|
151 |
" 'min_child_samples': trial.suggest_int('min_child_samples', 10, 50),\n", |
|
|
152 |
" }\n", |
|
|
153 |
" \n", |
|
|
154 |
" lgb_model=lgb.LGBMClassifier(**lgbParams)\n", |
|
|
155 |
" \n", |
|
|
156 |
"# skf = StratifiedKFold(n_splits=5,shuffle=False, random_state=None)\n", |
|
|
157 |
"# accuracy = cross_val_score(lgb_model,X_train,y_train, cv=skf,scoring='accuracy')\n", |
|
|
158 |
"# print(\"=\"*50,'\\nValidation Accuracy:', accuracy.mean())\n", |
|
|
159 |
"\n", |
|
|
160 |
" lgb_model.fit(X_train,y_train)\n", |
|
|
161 |
" \n", |
|
|
162 |
" acc = accuracy_score(y_val,lgb_model.predict(X_val))\n", |
|
|
163 |
"\n", |
|
|
164 |
" mlflow.log_metric('accuracy', accuracy)\n", |
|
|
165 |
" mlflow.log_metric('precision', precision)\n", |
|
|
166 |
" mlflow.log_metric('recall', recall)\n", |
|
|
167 |
" mlflow.log_metric('f1', f1)\n", |
|
|
168 |
"\n", |
|
|
169 |
" precision_per_class, recall_per_class, f1_per_class, support_per_class = precision_recall_fscore_support(y_val, y_pred, average=None)\n", |
|
|
170 |
" for i in range(len(recall_per_class)):\n", |
|
|
171 |
" print(f\"Recall for class {i}: {recall_per_class[i]}\")\n", |
|
|
172 |
" mlflow.log_metric(f'recall_class_{i}', recall_per_class[i])\n", |
|
|
173 |
"\n", |
|
|
174 |
" mlflow.lightgbm.log_model(lgb_model_final, 'model')\n", |
|
|
175 |
" mlflow.set_tag('experiments', 'Arham A.')\n", |
|
|
176 |
" mlflow.set_tag('model_name', 'LightGBM')\n", |
|
|
177 |
" mlflow.set_tag('preprocessing', 'Yes')\n", |
|
|
178 |
" \n", |
|
|
179 |
" return acc" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": 2, |
|
|
185 |
"metadata": {}, |
|
|
186 |
"outputs": [ |
|
|
187 |
{ |
|
|
188 |
"data": { |
|
|
189 |
"text/plain": [ |
|
|
190 |
"0.9058910707669507" |
|
|
191 |
] |
|
|
192 |
}, |
|
|
193 |
"execution_count": 2, |
|
|
194 |
"metadata": {}, |
|
|
195 |
"output_type": "execute_result" |
|
|
196 |
} |
|
|
197 |
], |
|
|
198 |
"source": [ |
|
|
199 |
"if ran_optuna : \n", |
|
|
200 |
"\n", |
|
|
201 |
" print('Number of finished trials:', len(study.trials))\n", |
|
|
202 |
"\n", |
|
|
203 |
" print('Best trial:', study.best_trial.params)\n", |
|
|
204 |
"\n", |
|
|
205 |
" optuna.visualization.plot_param_importances(study)\n", |
|
|
206 |
"\n", |
|
|
207 |
" study.trials_dataframe().sort_values('value',ascending=False)\n", |
|
|
208 |
"\n", |
|
|
209 |
" optuna.visualization.plot_slice(study)\n", |
|
|
210 |
"\n", |
|
|
211 |
"# 100 trials \n", |
|
|
212 |
"# {'objective': 'multiclassova', 'learning_rate': 0.04641200998070569, 'n_estimators': 587, 'reg_alpha': 0.0065043557057678746, 'reg_lambda': 4.460933310544669, 'max_depth': 7, 'colsample_bytree': 0.6833315654013498, 'subsample': 0.8193986843950917, 'min_child_samples': 15}\n", |
|
|
213 |
"\n", |
|
|
214 |
"\n", |
|
|
215 |
"if ran_optuna : \n", |
|
|
216 |
" lgbParams = study.best_trial.params\n", |
|
|
217 |
"\n", |
|
|
218 |
"else :\n", |
|
|
219 |
" \n", |
|
|
220 |
"# # 100- traials with PCA seed = None\n", |
|
|
221 |
"# lgbParams = {\n", |
|
|
222 |
"# 'objective': 'multiclassova', \n", |
|
|
223 |
"# 'learning_rate': 0.04641200998070569, \n", |
|
|
224 |
"# 'n_estimators': 587, \n", |
|
|
225 |
"# 'reg_alpha': 0.0065043557057678746, \n", |
|
|
226 |
"# 'reg_lambda': 4.460933310544669, \n", |
|
|
227 |
"# 'max_depth': 7, 'colsample_bytree': 0.6833315654013498, \n", |
|
|
228 |
"# 'subsample': 0.8193986843950917, \n", |
|
|
229 |
"# 'min_child_samples': 15\n", |
|
|
230 |
"# }\n", |
|
|
231 |
" \n", |
|
|
232 |
" \n", |
|
|
233 |
" # Moaz HyperParams\n", |
|
|
234 |
" lgbParams = {\n", |
|
|
235 |
" \"objective\": \"multiclass\", # Objective function for the model\n", |
|
|
236 |
" \"metric\": \"multi_logloss\", # Evaluation metric\n", |
|
|
237 |
" \"verbosity\": -1, # Verbosity level (-1 for silent)\n", |
|
|
238 |
" \"boosting_type\": \"gbdt\", # Gradient boosting type\n", |
|
|
239 |
" \"random_state\": 42, # Random state for reproducibility\n", |
|
|
240 |
" \"num_class\": 7, # Number of classes in the dataset\n", |
|
|
241 |
" 'learning_rate': 0.030962211546832760, # Learning rate for gradient boosting\n", |
|
|
242 |
" 'n_estimators': 500, # Number of boosting iterations\n", |
|
|
243 |
" 'lambda_l1': 0.009667446568254372, # L1 regularization term\n", |
|
|
244 |
" 'lambda_l2': 0.04018641437301800, # L2 regularization term\n", |
|
|
245 |
" 'max_depth': 10, # Maximum depth of the trees\n", |
|
|
246 |
" 'colsample_bytree': 0.40977129346872643, # Fraction of features to consider for each tree\n", |
|
|
247 |
" 'subsample': 0.9535797422450176, # Fraction of samples to consider for each boosting iteration\n", |
|
|
248 |
" 'min_child_samples': 26 # Minimum number of data needed in a leaf\n", |
|
|
249 |
" }\n", |
|
|
250 |
"\n", |
|
|
251 |
"\n", |
|
|
252 |
"\n", |
|
|
253 |
"fixed_params = {\n", |
|
|
254 |
" 'boosting_type': 'gbdt',\n", |
|
|
255 |
" 'num_class': 7,\n", |
|
|
256 |
" 'random_state': 42,\n", |
|
|
257 |
" 'metric': 'multi_logloss',\n", |
|
|
258 |
"}\n", |
|
|
259 |
"\n", |
|
|
260 |
"\n", |
|
|
261 |
"for i in fixed_params.keys() : \n", |
|
|
262 |
"\n", |
|
|
263 |
" lgbParams[i] = fixed_params[i]\n", |
|
|
264 |
"\n", |
|
|
265 |
"\n", |
|
|
266 |
"lgbParams\n", |
|
|
267 |
"\n" |
|
|
268 |
] |
|
|
269 |
}, |
|
|
270 |
{ |
|
|
271 |
"cell_type": "code", |
|
|
272 |
"execution_count": 6, |
|
|
273 |
"metadata": {}, |
|
|
274 |
"outputs": [ |
|
|
275 |
{ |
|
|
276 |
"name": "stdout", |
|
|
277 |
"output_type": "stream", |
|
|
278 |
"text": [ |
|
|
279 |
"Target Drift For Each Class [0.004943133623686147, 0.011990707821925795, -0.017190035106736085, -0.00032756263090533144, 0.01042920694244659, -0.0087675011457998, -0.001077949504617301]\n", |
|
|
280 |
"\n", |
|
|
281 |
"Accuracy: 0.9058910707669507\n", |
|
|
282 |
"Precision: 0.9067204051187663\n", |
|
|
283 |
"Recall: 0.9058910707669507\n", |
|
|
284 |
"F1 0.9063055482178468\n", |
|
|
285 |
"Recall for class 0: 0.9208860759493671\n", |
|
|
286 |
"Recall for class 1: 0.9090909090909091\n", |
|
|
287 |
"Recall for class 2: 0.8741092636579573\n", |
|
|
288 |
"Recall for class 3: 0.9736842105263158\n", |
|
|
289 |
"Recall for class 4: 0.9960474308300395\n", |
|
|
290 |
"Recall for class 5: 0.7701492537313432\n", |
|
|
291 |
"Recall for class 6: 0.8419452887537994\n" |
|
|
292 |
] |
|
|
293 |
} |
|
|
294 |
], |
|
|
295 |
"source": [ |
|
|
296 |
"\n", |
|
|
297 |
"\n", |
|
|
298 |
"import xgboost as xgb\n", |
|
|
299 |
"from sklearn.model_selection import cross_val_score\n", |
|
|
300 |
"from sklearn.metrics import accuracy_score, precision_score, recall_score\n", |
|
|
301 |
"import mlflow\n", |
|
|
302 |
"import warnings\n", |
|
|
303 |
"warnings.filterwarnings(\"ignore\")\n", |
|
|
304 |
"# import precision_recall_fscore_support\n", |
|
|
305 |
"from sklearn.metrics import precision_recall_fscore_support\n", |
|
|
306 |
"\n", |
|
|
307 |
"mlflow.sklearn.autolog(disable=True)\n", |
|
|
308 |
"\n", |
|
|
309 |
"with mlflow.start_run(run_name=\"LGB_Final\"):\n", |
|
|
310 |
" class_counts_train = [y_train[y_train == i].count() / y_train.count() for i in range(7)]\n", |
|
|
311 |
" class_counts_val = [y_val[y_val == i].count() / y_val.count() for i in range(7)]\n", |
|
|
312 |
" target_drift = [(train_count - val_count) for train_count, val_count in zip(class_counts_train, class_counts_val)]\n", |
|
|
313 |
" print(f\"Target Drift For Each Class {target_drift}\")\n", |
|
|
314 |
" mlflow.log_params({'Target_Drift_' + str(i): freq for i, freq in enumerate(target_drift)})\n", |
|
|
315 |
"\n", |
|
|
316 |
"\n", |
|
|
317 |
"\n", |
|
|
318 |
" lgb_model_final = lgb.LGBMClassifier(**lgbParams)\n", |
|
|
319 |
" lgb_model_final = lgb_model_final.fit(X_train, y_train)\n", |
|
|
320 |
" y_pred = lgb_model_final.predict(X_val)\n", |
|
|
321 |
" accuracy_xgb = accuracy_score(y_val, y_pred) \n", |
|
|
322 |
" precision_xgb = precision_score(y_val, y_pred, average='weighted')\n", |
|
|
323 |
" recall_xgb = recall_score(y_val, y_pred, average='weighted')\n", |
|
|
324 |
" f1_xgb = 2 * (precision_xgb * recall_xgb) / (precision_xgb + recall_xgb)\n", |
|
|
325 |
" print(\"\\nAccuracy:\", accuracy_xgb)\n", |
|
|
326 |
" print(\"Precision:\", precision_xgb)\n", |
|
|
327 |
" print(\"Recall:\", recall_xgb)\n", |
|
|
328 |
" print(\"F1\", f1_xgb)\n", |
|
|
329 |
" mlflow.log_metric('accuracy', accuracy_xgb)\n", |
|
|
330 |
" mlflow.log_metric('precision', precision_xgb)\n", |
|
|
331 |
" mlflow.log_metric('recall', recall_xgb)\n", |
|
|
332 |
" mlflow.log_metric('f1', f1_xgb)\n", |
|
|
333 |
"\n", |
|
|
334 |
" precision_per_class, recall_per_class, f1_per_class, support_per_class = precision_recall_fscore_support(y_val, y_pred, average=None)\n", |
|
|
335 |
" for i in range(len(recall_per_class)):\n", |
|
|
336 |
" print(f\"Recall for class {i}: {recall_per_class[i]}\")\n", |
|
|
337 |
" mlflow.log_metric(f'recall_class_{i}', recall_per_class[i])\n", |
|
|
338 |
"\n", |
|
|
339 |
" mlflow.lightgbm.log_model(lgb_model_final, 'model')\n", |
|
|
340 |
" mlflow.set_tag('experiments', 'Arham A.')\n", |
|
|
341 |
" mlflow.set_tag('model_name', 'LightGBM')\n", |
|
|
342 |
" mlflow.set_tag('preprocessing', 'Yes')\n", |
|
|
343 |
"\n" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
{ |
|
|
347 |
"cell_type": "code", |
|
|
348 |
"execution_count": null, |
|
|
349 |
"metadata": {}, |
|
|
350 |
"outputs": [], |
|
|
351 |
"source": [] |
|
|
352 |
} |
|
|
353 |
], |
|
|
354 |
"metadata": { |
|
|
355 |
"kernelspec": { |
|
|
356 |
"display_name": "DataScience", |
|
|
357 |
"language": "python", |
|
|
358 |
"name": "python3" |
|
|
359 |
}, |
|
|
360 |
"language_info": { |
|
|
361 |
"codemirror_mode": { |
|
|
362 |
"name": "ipython", |
|
|
363 |
"version": 3 |
|
|
364 |
}, |
|
|
365 |
"file_extension": ".py", |
|
|
366 |
"mimetype": "text/x-python", |
|
|
367 |
"name": "python", |
|
|
368 |
"nbconvert_exporter": "python", |
|
|
369 |
"pygments_lexer": "ipython3", |
|
|
370 |
"version": "3.10.13" |
|
|
371 |
} |
|
|
372 |
}, |
|
|
373 |
"nbformat": 4, |
|
|
374 |
"nbformat_minor": 2 |
|
|
375 |
} |