|
a |
|
b/03-Experiments/13-AutoGluon-Zero-Shot-Optimization.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"WIP" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "code", |
|
|
12 |
"execution_count": 1, |
|
|
13 |
"metadata": {}, |
|
|
14 |
"outputs": [ |
|
|
15 |
{ |
|
|
16 |
"name": "stderr", |
|
|
17 |
"output_type": "stream", |
|
|
18 |
"text": [ |
|
|
19 |
"/Users/arham/anaconda3/envs/DataScience/lib/python3.10/site-packages/pandas/core/arrays/masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).\n", |
|
|
20 |
" from pandas.core import (\n" |
|
|
21 |
] |
|
|
22 |
} |
|
|
23 |
], |
|
|
24 |
"source": [ |
|
|
25 |
"import pandas as pd\n", |
|
|
26 |
"from sklearn.model_selection import train_test_split\n", |
|
|
27 |
"import matplotlib.pyplot as plt\n", |
|
|
28 |
"import seaborn as sns\n", |
|
|
29 |
"import numpy as np\n", |
|
|
30 |
"from sklearn.preprocessing import MinMaxScaler\n", |
|
|
31 |
"from sklearn.preprocessing import PolynomialFeatures\n", |
|
|
32 |
"import lightgbm as lgb\n", |
|
|
33 |
"from sklearn.metrics import accuracy_score\n", |
|
|
34 |
"\n", |
|
|
35 |
"def load_data(path):\n", |
|
|
36 |
" df = pd.read_csv(path)\n", |
|
|
37 |
" train_df, test_df = train_test_split(df, test_size=0.35, random_state=42)\n", |
|
|
38 |
" train_df, val_df, = train_test_split(train_df, test_size=0.20, random_state=42)\n", |
|
|
39 |
" train_df = train_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
40 |
" test_df = test_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
41 |
" val_df = val_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
42 |
" return train_df, val_df, test_df\n", |
|
|
43 |
"\n", |
|
|
44 |
"def encode_target(train):\n", |
|
|
45 |
" target_key = {'Insufficient_Weight': 0, 'Normal_Weight': 1, 'Overweight_Level_I': 2, 'Overweight_Level_II': 3, 'Obesity_Type_I': 4,'Obesity_Type_II' : 5, 'Obesity_Type_III': 6}\n", |
|
|
46 |
" train['NObeyesdad'] = train['NObeyesdad'].map(target_key)\n", |
|
|
47 |
" return train\n", |
|
|
48 |
"\n", |
|
|
49 |
"def make_gender_binary(train):\n", |
|
|
50 |
" train['Gender'] = train['Gender'].map({'Male':0, 'Female':1})\n", |
|
|
51 |
"\n", |
|
|
52 |
"def datatypes(train):\n", |
|
|
53 |
" train['Weight'] = train['Weight'].astype(float)\n", |
|
|
54 |
" train['Age'] = train['Age'].astype(float)\n", |
|
|
55 |
" train['Height'] = train['Height'].astype(float)\n", |
|
|
56 |
" return train\n", |
|
|
57 |
"\n", |
|
|
58 |
"def age_binning(train_df):\n", |
|
|
59 |
" train_df['Age_Group'] = pd.cut(train_df['Age'], bins=[0, 20, 30, 40, 50, train_df['Age'].max()], labels=['0-20', '21-30', '31-40', '41-50', '50+'])\n", |
|
|
60 |
" return train_df\n", |
|
|
61 |
"\n", |
|
|
62 |
"def age_scaling_log(train_df):\n", |
|
|
63 |
" train_df['Age'] = train_df['Age'].astype(float)\n", |
|
|
64 |
" train_df['Log_Age'] = np.log1p(train_df['Age'])\n", |
|
|
65 |
" return train_df\n", |
|
|
66 |
"\n", |
|
|
67 |
"def age_scaling_minmax(train_df):\n", |
|
|
68 |
" train_df['Age'] = train_df['Age'].astype(float)\n", |
|
|
69 |
" scaler_age = MinMaxScaler()\n", |
|
|
70 |
" train_df['Scaled_Age'] = scaler_age.fit_transform(train_df['Age'].values.reshape(-1, 1))\n", |
|
|
71 |
" return train_df, scaler_age\n", |
|
|
72 |
"\n", |
|
|
73 |
"def weight_scaling_log(train_df):\n", |
|
|
74 |
" train_df['Weight'] = train_df['Weight'].astype(float)\n", |
|
|
75 |
" train_df['Log_Weight'] = np.log1p(train_df['Weight'])\n", |
|
|
76 |
" return train_df\n", |
|
|
77 |
"\n", |
|
|
78 |
"def weight_scaling_minmax(train_df):\n", |
|
|
79 |
" train_df['Weight'] = train_df['Weight'].astype(float)\n", |
|
|
80 |
" scaler_weight = MinMaxScaler()\n", |
|
|
81 |
" train_df['Scaled_Weight'] = scaler_weight.fit_transform(train_df['Weight'].values.reshape(-1, 1))\n", |
|
|
82 |
" return train_df, scaler_weight\n", |
|
|
83 |
"\n", |
|
|
84 |
"def height_scaling_log(train_df):\n", |
|
|
85 |
" train_df['Log_Height'] = np.log1p(train_df['Height'])\n", |
|
|
86 |
" return train_df\n", |
|
|
87 |
"\n", |
|
|
88 |
"def height_scaling_minmax(train_df):\n", |
|
|
89 |
" scaler_height = MinMaxScaler()\n", |
|
|
90 |
" train_df['Scaled_Height'] = scaler_height.fit_transform(train_df['Height'].values.reshape(-1, 1))\n", |
|
|
91 |
" return train_df, scaler_height\n", |
|
|
92 |
"\n", |
|
|
93 |
"def make_gender_binary(train):\n", |
|
|
94 |
" train['Gender'] = train['Gender'].map({'Female':1, 'Male':0})\n", |
|
|
95 |
" return train\n", |
|
|
96 |
"\n", |
|
|
97 |
"def fix_binary_columns(train):\n", |
|
|
98 |
" Binary_Cols = ['family_history_with_overweight','FAVC', 'SCC','SMOKE']\n", |
|
|
99 |
" # if yes then 1 else 0\n", |
|
|
100 |
" for col in Binary_Cols:\n", |
|
|
101 |
" train[col] = train[col].map({'yes': 1, 'no': 0})\n", |
|
|
102 |
" return train\n", |
|
|
103 |
"\n", |
|
|
104 |
"def freq_cat_cols(train):\n", |
|
|
105 |
" # One hot encoding\n", |
|
|
106 |
" cat_cols = ['CAEC', 'CALC']\n", |
|
|
107 |
" for col in cat_cols:\n", |
|
|
108 |
" train[col] = train[col].map({'no': 0, 'Sometimes': 1, 'Frequently': 2, 'Always': 3})\n", |
|
|
109 |
" return train\n", |
|
|
110 |
"\n", |
|
|
111 |
"def Mtrans(train):\n", |
|
|
112 |
" \"\"\"\n", |
|
|
113 |
" Public_Transportation 8692\n", |
|
|
114 |
" Automobile 1835\n", |
|
|
115 |
" Walking 231\n", |
|
|
116 |
" Motorbike 19\n", |
|
|
117 |
" Bike 16\n", |
|
|
118 |
" \"\"\"\n", |
|
|
119 |
" # train['MTRANS'] = train['MTRANS'].map({'Public_Transportation': 3, 'Automobile': 5, 'Walking': 1, 'Motorbike': 4, 'Bike': 2})\n", |
|
|
120 |
" # dummify column\n", |
|
|
121 |
" train = pd.get_dummies(train, columns=['MTRANS'])\n", |
|
|
122 |
" return train\n", |
|
|
123 |
"\n", |
|
|
124 |
"\n", |
|
|
125 |
"def other_features(train):\n", |
|
|
126 |
" train['BMI'] = train['Weight'] / (train['Height'] ** 2)\n", |
|
|
127 |
" # train['Age'*'Gender'] = train['Age'] * train['Gender']\n", |
|
|
128 |
" polynomial_features = PolynomialFeatures(degree=2)\n", |
|
|
129 |
" X_poly = polynomial_features.fit_transform(train[['Age', 'BMI']])\n", |
|
|
130 |
" poly_features_df = pd.DataFrame(X_poly, columns=['Age^2', 'Age^3', 'BMI^2', 'Age * BMI', 'Age * BMI^2', 'Age^2 * BMI^2'])\n", |
|
|
131 |
" train = pd.concat([train, poly_features_df], axis=1)\n", |
|
|
132 |
" return train\n", |
|
|
133 |
"\n", |
|
|
134 |
"\n", |
|
|
135 |
"def test_pipeline(test, scaler_age, scaler_weight, scaler_height):\n", |
|
|
136 |
" test = datatypes(test)\n", |
|
|
137 |
" test = encode_target(test)\n", |
|
|
138 |
" test = age_binning(test)\n", |
|
|
139 |
" test = age_scaling_log(test)\n", |
|
|
140 |
" test['Scaled_Age'] = scaler_age.transform(test['Age'].values.reshape(-1, 1))\n", |
|
|
141 |
" test = weight_scaling_log(test)\n", |
|
|
142 |
" test['Scaled_Weight'] = scaler_weight.transform(test['Weight'].values.reshape(-1, 1))\n", |
|
|
143 |
" test = height_scaling_log(test)\n", |
|
|
144 |
" test['Scaled_Height'] = scaler_height.transform(test['Height'].values.reshape(-1, 1))\n", |
|
|
145 |
" test = make_gender_binary(test)\n", |
|
|
146 |
" test = fix_binary_columns(test)\n", |
|
|
147 |
" test = freq_cat_cols(test)\n", |
|
|
148 |
" test = Mtrans(test)\n", |
|
|
149 |
" test = other_features(test)\n", |
|
|
150 |
"\n", |
|
|
151 |
" return test\n", |
|
|
152 |
"\n", |
|
|
153 |
"def train_model(params, X_train, y_train):\n", |
|
|
154 |
" lgb_train = lgb.Dataset(X_train, y_train)\n", |
|
|
155 |
" model = lgb.train(params, lgb_train, num_boost_round=1000)\n", |
|
|
156 |
" return model\n", |
|
|
157 |
"\n", |
|
|
158 |
"def evaluate_model(model, X_val, y_val):\n", |
|
|
159 |
" y_pred = model.predict(X_val)\n", |
|
|
160 |
" y_pred = [np.argmax(y) for y in y_pred]\n", |
|
|
161 |
" accuracy = accuracy_score(y_val, y_pred)\n", |
|
|
162 |
" return accuracy\n", |
|
|
163 |
"\n", |
|
|
164 |
"def objective(trial, X_train, y_train):\n", |
|
|
165 |
" params = {\n", |
|
|
166 |
" 'objective': 'multiclass',\n", |
|
|
167 |
" 'num_class': 7,\n", |
|
|
168 |
" 'metric': 'multi_logloss',\n", |
|
|
169 |
" 'boosting_type': 'gbdt',\n", |
|
|
170 |
" 'learning_rate': trial.suggest_loguniform('learning_rate', 0.005, 0.5),\n", |
|
|
171 |
" 'num_leaves': trial.suggest_int('num_leaves', 10, 1000),\n", |
|
|
172 |
" 'max_depth': trial.suggest_int('max_depth', -1, 20),\n", |
|
|
173 |
" 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.6, 0.95),\n", |
|
|
174 |
" 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.6, 0.95),\n", |
|
|
175 |
" 'verbosity': -1\n", |
|
|
176 |
" }\n", |
|
|
177 |
"\n", |
|
|
178 |
" n_splits = 5\n", |
|
|
179 |
" kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)\n", |
|
|
180 |
" scores = []\n", |
|
|
181 |
"\n", |
|
|
182 |
" for train_index, val_index in kf.split(X_train, y_train):\n", |
|
|
183 |
" X_tr, X_val = X_train.iloc[train_index], X_train.iloc[val_index]\n", |
|
|
184 |
" y_tr, y_val = y_train.iloc[train_index], y_train.iloc[val_index]\n", |
|
|
185 |
"\n", |
|
|
186 |
" model = train_model(params, X_tr, y_tr)\n", |
|
|
187 |
" accuracy = evaluate_model(model, X_val, y_val)\n", |
|
|
188 |
" scores.append(accuracy)\n", |
|
|
189 |
"\n", |
|
|
190 |
" return np.mean(scores)\n", |
|
|
191 |
"\n", |
|
|
192 |
"def optimize_hyperparameters(X_train, y_train, n_trials=2):\n", |
|
|
193 |
" study = optuna.create_study(direction='maximize')\n", |
|
|
194 |
" study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=n_trials)\n", |
|
|
195 |
" return study.best_params" |
|
|
196 |
] |
|
|
197 |
}, |
|
|
198 |
{ |
|
|
199 |
"cell_type": "code", |
|
|
200 |
"execution_count": 2, |
|
|
201 |
"metadata": {}, |
|
|
202 |
"outputs": [], |
|
|
203 |
"source": [ |
|
|
204 |
"path = '/Users/arham/Downloads/Projects/01-Dataset/01-Data-for-model-building/train.csv'\n", |
|
|
205 |
"train_df, val_df, test_df = load_data(path)\n", |
|
|
206 |
"\n", |
|
|
207 |
"train_df = datatypes(train_df)\n", |
|
|
208 |
"train_df = encode_target(train_df)\n", |
|
|
209 |
"train_df = age_binning(train_df)\n", |
|
|
210 |
"train_df, scaler_age = age_scaling_minmax(train_df)\n", |
|
|
211 |
"train_df = age_scaling_log(train_df)\n", |
|
|
212 |
"train_df, scaler_weight = weight_scaling_minmax(train_df)\n", |
|
|
213 |
"train_df = weight_scaling_log(train_df)\n", |
|
|
214 |
"train_df, scaler_height = height_scaling_minmax(train_df)\n", |
|
|
215 |
"train_df = height_scaling_log(train_df)\n", |
|
|
216 |
"train_df = make_gender_binary(train_df)\n", |
|
|
217 |
"train_df = fix_binary_columns(train_df)\n", |
|
|
218 |
"train_df = freq_cat_cols(train_df)\n", |
|
|
219 |
"train_df = Mtrans(train_df)\n", |
|
|
220 |
"train_df = other_features(train_df)\n", |
|
|
221 |
"\n", |
|
|
222 |
"val_df = test_pipeline(val_df, scaler_age, scaler_weight, scaler_height)\n", |
|
|
223 |
"test_df = test_pipeline(test_df, scaler_age, scaler_weight, scaler_height)\n", |
|
|
224 |
"\n", |
|
|
225 |
"Target = 'NObeyesdad'\n", |
|
|
226 |
"features = train_df.columns.drop(Target)\n", |
|
|
227 |
"\n", |
|
|
228 |
"features = ['Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweight',\n", |
|
|
229 |
" 'FAVC', 'FCVC', 'NCP', 'CAEC', 'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE',\n", |
|
|
230 |
" 'CALC', 'Age_Group', \n", |
|
|
231 |
" 'MTRANS_Automobile', 'MTRANS_Bike', 'MTRANS_Motorbike',\n", |
|
|
232 |
" 'MTRANS_Public_Transportation', 'MTRANS_Walking', 'BMI', 'Age^2',\n", |
|
|
233 |
" 'Age^3', 'BMI^2', 'Age * BMI', 'Age * BMI^2', 'Age^2 * BMI^2'] \n", |
|
|
234 |
"#'Scaled_Age', 'Log_Age', 'Scaled_Weight', 'Log_Weight', 'Scaled_Height', 'Log_Height',\n", |
|
|
235 |
"\n", |
|
|
236 |
"X_train = train_df[features]\n", |
|
|
237 |
"y_train = train_df[Target]\n", |
|
|
238 |
"X_val = val_df[features]\n", |
|
|
239 |
"y_val = val_df[Target]\n", |
|
|
240 |
"X_test = test_df[features]\n", |
|
|
241 |
"y_test = test_df[Target]\n", |
|
|
242 |
"\n", |
|
|
243 |
"#combine X_train and y_train as one dataframe\n", |
|
|
244 |
"tr = pd.concat([X_train, y_train], axis=1)\n", |
|
|
245 |
"te = pd.concat([X_test, y_test], axis =1)\n", |
|
|
246 |
"va = pd.concat([X_val, y_val], axis = 1)" |
|
|
247 |
] |
|
|
248 |
}, |
|
|
249 |
{ |
|
|
250 |
"cell_type": "code", |
|
|
251 |
"execution_count": 6, |
|
|
252 |
"metadata": {}, |
|
|
253 |
"outputs": [ |
|
|
254 |
{ |
|
|
255 |
"name": "stderr", |
|
|
256 |
"output_type": "stream", |
|
|
257 |
"text": [ |
|
|
258 |
"No path specified. Models will be saved in: \"AutogluonModels/ag-20240421_174637\"\n" |
|
|
259 |
] |
|
|
260 |
}, |
|
|
261 |
{ |
|
|
262 |
"ename": "TypeError", |
|
|
263 |
"evalue": "AbstractTabularLearner.__init__() got an unexpected keyword argument 'hyperparameters'", |
|
|
264 |
"output_type": "error", |
|
|
265 |
"traceback": [ |
|
|
266 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
267 |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
|
|
268 |
"Cell \u001b[0;32mIn[6], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mautogluon\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtabular\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m TabularPredictor\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Train AutoGluon model with zero-shot HPO\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m predictor \u001b[38;5;241m=\u001b[39m \u001b[43mTabularPredictor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mTarget\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlearner_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mhyperparameters\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mzero\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mhyperparameters_extra\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mNN\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mnum_epochs\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m}\u001b[49m\u001b[43m}\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m predictor\u001b[38;5;241m.\u001b[39mfit(train_data\u001b[38;5;241m=\u001b[39mtr, tuning_data\u001b[38;5;241m=\u001b[39mva, time_limit\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Evaluate on validation data\u001b[39;00m\n", |
|
|
269 |
"File \u001b[0;32m~/anaconda3/envs/DataScience/lib/python3.10/site-packages/autogluon/tabular/predictor/predictor.py:255\u001b[0m, in \u001b[0;36mTabularPredictor.__init__\u001b[0;34m(self, label, problem_type, eval_metric, path, verbosity, log_to_file, log_file_path, sample_weight, weight_evaluation, groups, **kwargs)\u001b[0m\n\u001b[1;32m 252\u001b[0m learner_kwargs \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlearner_kwargs\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28mdict\u001b[39m())\n\u001b[1;32m 253\u001b[0m quantile_levels \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquantile_levels\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m--> 255\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_learner: AbstractTabularLearner \u001b[38;5;241m=\u001b[39m \u001b[43mlearner_type\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 256\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath_context\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 257\u001b[0m \u001b[43m \u001b[49m\u001b[43mlabel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 258\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeature_generator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 259\u001b[0m \u001b[43m \u001b[49m\u001b[43meval_metric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meval_metric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 260\u001b[0m \u001b[43m \u001b[49m\u001b[43mproblem_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproblem_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 261\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantile_levels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquantile_levels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 262\u001b[0m \u001b[43m \u001b[49m\u001b[43msample_weight\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample_weight\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 263\u001b[0m \u001b[43m \u001b[49m\u001b[43mweight_evaluation\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mweight_evaluation\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 264\u001b[0m \u001b[43m \u001b[49m\u001b[43mgroups\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroups\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 265\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mlearner_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 266\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 267\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_learner_type \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_learner)\n\u001b[1;32m 268\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_trainer: AbstractTrainer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", |
|
|
270 |
"File \u001b[0;32m~/anaconda3/envs/DataScience/lib/python3.10/site-packages/autogluon/tabular/learner/default_learner.py:31\u001b[0m, in \u001b[0;36mDefaultLearner.__init__\u001b[0;34m(self, trainer_type, **kwargs)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, trainer_type\u001b[38;5;241m=\u001b[39mAutoTrainer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m---> 31\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer_type \u001b[38;5;241m=\u001b[39m trainer_type\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclass_weights \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", |
|
|
271 |
"\u001b[0;31mTypeError\u001b[0m: AbstractTabularLearner.__init__() got an unexpected keyword argument 'hyperparameters'" |
|
|
272 |
] |
|
|
273 |
} |
|
|
274 |
], |
|
|
275 |
"source": [ |
|
|
276 |
"from autogluon.tabular import TabularPredictor\n", |
|
|
277 |
"\n", |
|
|
278 |
"# Train AutoGluon model with zero-shot HPO\n", |
|
|
279 |
"predictor = TabularPredictor(label='Target', learner_kwargs={'hyperparameters': 'zero', 'hyperparameters_extra': {'NN': {'num_epochs': 10}}})\n", |
|
|
280 |
"predictor.fit(train_data=tr, tuning_data=va, time_limit=None)\n", |
|
|
281 |
"\n", |
|
|
282 |
"# Evaluate on validation data\n", |
|
|
283 |
"performance = predictor.evaluate(va)\n", |
|
|
284 |
"\n", |
|
|
285 |
"# Make predictions on test data\n", |
|
|
286 |
"y_pred = predictor.predict(te)\n", |
|
|
287 |
"\n", |
|
|
288 |
"# Print evaluation metrics\n", |
|
|
289 |
"print(performance)\n" |
|
|
290 |
] |
|
|
291 |
}, |
|
|
292 |
{ |
|
|
293 |
"cell_type": "code", |
|
|
294 |
"execution_count": null, |
|
|
295 |
"metadata": {}, |
|
|
296 |
"outputs": [], |
|
|
297 |
"source": [] |
|
|
298 |
} |
|
|
299 |
], |
|
|
300 |
"metadata": { |
|
|
301 |
"kernelspec": { |
|
|
302 |
"display_name": "DataScience", |
|
|
303 |
"language": "python", |
|
|
304 |
"name": "python3" |
|
|
305 |
}, |
|
|
306 |
"language_info": { |
|
|
307 |
"codemirror_mode": { |
|
|
308 |
"name": "ipython", |
|
|
309 |
"version": 3 |
|
|
310 |
}, |
|
|
311 |
"file_extension": ".py", |
|
|
312 |
"mimetype": "text/x-python", |
|
|
313 |
"name": "python", |
|
|
314 |
"nbconvert_exporter": "python", |
|
|
315 |
"pygments_lexer": "ipython3", |
|
|
316 |
"version": "3.10.13" |
|
|
317 |
} |
|
|
318 |
}, |
|
|
319 |
"nbformat": 4, |
|
|
320 |
"nbformat_minor": 2 |
|
|
321 |
} |