|
a |
|
b/03-Experiments/03-XGBoost_With_FE.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# Global Experiment Setup" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "code", |
|
|
12 |
"execution_count": 1, |
|
|
13 |
"metadata": {}, |
|
|
14 |
"outputs": [ |
|
|
15 |
{ |
|
|
16 |
"data": { |
|
|
17 |
"text/plain": [ |
|
|
18 |
"<Experiment: artifact_location='/Users/arham/Downloads/Projects/03-Experiments/mlruns/2', creation_time=1713912394972, experiment_id='2', last_update_time=1713912394972, lifecycle_stage='active', name='XGBoost', tags={}>" |
|
|
19 |
] |
|
|
20 |
}, |
|
|
21 |
"execution_count": 1, |
|
|
22 |
"metadata": {}, |
|
|
23 |
"output_type": "execute_result" |
|
|
24 |
} |
|
|
25 |
], |
|
|
26 |
"source": [ |
|
|
27 |
"import mlflow\n", |
|
|
28 |
"\n", |
|
|
29 |
"\n", |
|
|
30 |
"# Set the MLflow tracking URI to a new SQLite URI\n", |
|
|
31 |
"mlflow.set_tracking_uri(\"sqlite:///new_mlflow.db\")\n", |
|
|
32 |
"mlflow.set_experiment(\"XGBoost\")" |
|
|
33 |
] |
|
|
34 |
}, |
|
|
35 |
{ |
|
|
36 |
"cell_type": "code", |
|
|
37 |
"execution_count": 2, |
|
|
38 |
"metadata": {}, |
|
|
39 |
"outputs": [], |
|
|
40 |
"source": [ |
|
|
41 |
"import pandas as pd\n", |
|
|
42 |
"from sklearn.model_selection import train_test_split\n", |
|
|
43 |
"import matplotlib.pyplot as plt\n", |
|
|
44 |
"import seaborn as sns\n", |
|
|
45 |
"import numpy as np\n", |
|
|
46 |
"from sklearn.preprocessing import MinMaxScaler\n", |
|
|
47 |
"from sklearn.preprocessing import PolynomialFeatures\n", |
|
|
48 |
"import lightgbm as lgb\n", |
|
|
49 |
"from sklearn.metrics import accuracy_score\n", |
|
|
50 |
"import warnings\n", |
|
|
51 |
"from sklearn.tree import DecisionTreeClassifier\n", |
|
|
52 |
"from sklearn.model_selection import cross_val_score\n", |
|
|
53 |
"from sklearn.metrics import accuracy_score, precision_score, recall_score\n", |
|
|
54 |
"import xgboost as xgb\n", |
|
|
55 |
"from sklearn.metrics import accuracy_score, precision_score, recall_score\n", |
|
|
56 |
"from sklearn.model_selection import cross_val_score\n", |
|
|
57 |
"\n", |
|
|
58 |
"\n", |
|
|
59 |
"def load_data(path):\n", |
|
|
60 |
" df = pd.read_csv(path)\n", |
|
|
61 |
" train_df, test_df = train_test_split(df, test_size=0.35, random_state=42)\n", |
|
|
62 |
" train_df, val_df, = train_test_split(train_df, test_size=0.20, random_state=42)\n", |
|
|
63 |
" train_df = train_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
64 |
" test_df = test_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
65 |
" val_df = val_df.drop(['id'], axis=1).drop_duplicates().reset_index(drop=True)\n", |
|
|
66 |
" return train_df, val_df, test_df\n", |
|
|
67 |
"\n", |
|
|
68 |
"def encode_target(train):\n", |
|
|
69 |
" target_key = {'Insufficient_Weight': 0, 'Normal_Weight': 1, 'Overweight_Level_I': 2, 'Overweight_Level_II': 3, 'Obesity_Type_I': 4,'Obesity_Type_II' : 5, 'Obesity_Type_III': 6}\n", |
|
|
70 |
" train['NObeyesdad'] = train['NObeyesdad'].map(target_key)\n", |
|
|
71 |
" return train\n", |
|
|
72 |
"\n", |
|
|
73 |
"def make_gender_binary(train):\n", |
|
|
74 |
" train['Gender'] = train['Gender'].map({'Male':0, 'Female':1})\n", |
|
|
75 |
"\n", |
|
|
76 |
"def datatypes(train):\n", |
|
|
77 |
" train['Weight'] = train['Weight'].astype(float)\n", |
|
|
78 |
" train['Age'] = train['Age'].astype(float)\n", |
|
|
79 |
" train['Height'] = train['Height'].astype(float)\n", |
|
|
80 |
" return train\n", |
|
|
81 |
"\n", |
|
|
82 |
"# def age_binning(train_df):\n", |
|
|
83 |
"# # train_df['Age_Group'] = pd.cut(train_df['Age'], bins=[0, 20, 30, 40, 50, train_df['Age'].max()], labels=['0-20', '21-30', '31-40', '41-50', '50+'])\n", |
|
|
84 |
"# train_df['Age_Group'] = pd.cut(train_df['Age'], bins=[0, 20, 30, 40, 50, train_df['Age'].max()], labels=[1, 2, 3, 4, 5])\n", |
|
|
85 |
"# train_df['Age_Group'] = train_df['Age_Group'].astype(int)\n", |
|
|
86 |
"# return train_df\n", |
|
|
87 |
"\n", |
|
|
88 |
"def age_binning(df):\n", |
|
|
89 |
" age_groups = []\n", |
|
|
90 |
" for age in df['Age']:\n", |
|
|
91 |
" if age <= 20:\n", |
|
|
92 |
" age_group = 1\n", |
|
|
93 |
" elif age <= 30:\n", |
|
|
94 |
" age_group = 2\n", |
|
|
95 |
" elif age <= 40:\n", |
|
|
96 |
" age_group = 3\n", |
|
|
97 |
" elif age <= 50:\n", |
|
|
98 |
" age_group = 4\n", |
|
|
99 |
" else:\n", |
|
|
100 |
" age_group = 5\n", |
|
|
101 |
" age_groups.append(age_group)\n", |
|
|
102 |
" df['Age_Group'] = age_groups\n", |
|
|
103 |
" return df\n", |
|
|
104 |
"\n", |
|
|
105 |
"def age_scaling_log(train_df):\n", |
|
|
106 |
" train_df['Age'] = train_df['Age'].astype(float)\n", |
|
|
107 |
" train_df['Log_Age'] = np.log1p(train_df['Age'])\n", |
|
|
108 |
" return train_df\n", |
|
|
109 |
"\n", |
|
|
110 |
"def age_scaling_minmax(train_df):\n", |
|
|
111 |
" train_df['Age'] = train_df['Age'].astype(float)\n", |
|
|
112 |
" scaler_age = MinMaxScaler()\n", |
|
|
113 |
" train_df['Scaled_Age'] = scaler_age.fit_transform(train_df['Age'].values.reshape(-1, 1))\n", |
|
|
114 |
" return train_df, scaler_age\n", |
|
|
115 |
"\n", |
|
|
116 |
"def weight_scaling_log(train_df):\n", |
|
|
117 |
" train_df['Weight'] = train_df['Weight'].astype(float)\n", |
|
|
118 |
" train_df['Log_Weight'] = np.log1p(train_df['Weight'])\n", |
|
|
119 |
" return train_df\n", |
|
|
120 |
"\n", |
|
|
121 |
"def weight_scaling_minmax(train_df):\n", |
|
|
122 |
" train_df['Weight'] = train_df['Weight'].astype(float)\n", |
|
|
123 |
" scaler_weight = MinMaxScaler()\n", |
|
|
124 |
" train_df['Scaled_Weight'] = scaler_weight.fit_transform(train_df['Weight'].values.reshape(-1, 1))\n", |
|
|
125 |
" return train_df, scaler_weight\n", |
|
|
126 |
"\n", |
|
|
127 |
"def height_scaling_log(train_df):\n", |
|
|
128 |
" train_df['Log_Height'] = np.log1p(train_df['Height'])\n", |
|
|
129 |
" return train_df\n", |
|
|
130 |
"\n", |
|
|
131 |
"def height_scaling_minmax(train_df):\n", |
|
|
132 |
" scaler_height = MinMaxScaler()\n", |
|
|
133 |
" train_df['Scaled_Height'] = scaler_height.fit_transform(train_df['Height'].values.reshape(-1, 1))\n", |
|
|
134 |
" return train_df, scaler_height\n", |
|
|
135 |
"\n", |
|
|
136 |
"def make_gender_binary(train):\n", |
|
|
137 |
" train['Gender'] = train['Gender'].map({'Female':1, 'Male':0})\n", |
|
|
138 |
" return train\n", |
|
|
139 |
"\n", |
|
|
140 |
"def fix_binary_columns(train):\n", |
|
|
141 |
" Binary_Cols = ['family_history_with_overweight','FAVC', 'SCC','SMOKE']\n", |
|
|
142 |
" # if yes then 1 else 0\n", |
|
|
143 |
" for col in Binary_Cols:\n", |
|
|
144 |
" train[col] = train[col].map({'yes': 1, 'no': 0})\n", |
|
|
145 |
" # column datatype integer\n", |
|
|
146 |
" train[col] = train[col].astype(int)\n", |
|
|
147 |
" return train\n", |
|
|
148 |
"\n", |
|
|
149 |
"def freq_cat_cols(train):\n", |
|
|
150 |
" # One hot encoding\n", |
|
|
151 |
" cat_cols = ['CAEC', 'CALC']\n", |
|
|
152 |
" for col in cat_cols:\n", |
|
|
153 |
" train[col] = train[col].map({'no': 0, 'Sometimes': 1, 'Frequently': 2, 'Always': 3})\n", |
|
|
154 |
" return train\n", |
|
|
155 |
"\n", |
|
|
156 |
"def Mtrans(train):\n", |
|
|
157 |
" \"\"\"\n", |
|
|
158 |
" Public_Transportation 8692\n", |
|
|
159 |
" Automobile 1835\n", |
|
|
160 |
" Walking 231\n", |
|
|
161 |
" Motorbike 19\n", |
|
|
162 |
" Bike 16\n", |
|
|
163 |
" \"\"\"\n", |
|
|
164 |
" # train['MTRANS'] = train['MTRANS'].map({'Public_Transportation': 3, 'Automobile': 5, 'Walking': 1, 'Motorbike': 4, 'Bike': 2})\n", |
|
|
165 |
" # dummify column\n", |
|
|
166 |
" train = pd.get_dummies(train, columns=['MTRANS'])\n", |
|
|
167 |
" # convert these columns to integer\n", |
|
|
168 |
" train['MTRANS_Automobile'] = train['MTRANS_Automobile'].astype(int)\n", |
|
|
169 |
" train['MTRANS_Walking'] = train['MTRANS_Walking'].astype(int)\n", |
|
|
170 |
" train['MTRANS_Motorbike'] = train['MTRANS_Motorbike'].astype(int)\n", |
|
|
171 |
" train['MTRANS_Bike'] = train['MTRANS_Bike'].astype(int)\n", |
|
|
172 |
" train['MTRANS_Public_Transportation'] = train['MTRANS_Public_Transportation'].astype(int)\n", |
|
|
173 |
" return train\n", |
|
|
174 |
"\n", |
|
|
175 |
"\n", |
|
|
176 |
"def other_features(train):\n", |
|
|
177 |
" train['BMI'] = train['Weight'] / (train['Height'] ** 2)\n", |
|
|
178 |
" # train['Age'*'Gender'] = train['Age'] * train['Gender']\n", |
|
|
179 |
" polynomial_features = PolynomialFeatures(degree=2)\n", |
|
|
180 |
" X_poly = polynomial_features.fit_transform(train[['Age', 'BMI']])\n", |
|
|
181 |
" poly_features_df = pd.DataFrame(X_poly, columns=['Age^2', 'Age^3', 'BMI^2', 'Age * BMI', 'Age * BMI^2', 'Age^2 * BMI^2'])\n", |
|
|
182 |
" train = pd.concat([train, poly_features_df], axis=1)\n", |
|
|
183 |
" return train\n", |
|
|
184 |
"\n", |
|
|
185 |
"\n", |
|
|
186 |
"def test_pipeline(test, scaler_age, scaler_weight, scaler_height):\n", |
|
|
187 |
" test = datatypes(test)\n", |
|
|
188 |
" test = encode_target(test)\n", |
|
|
189 |
" test = age_binning(test)\n", |
|
|
190 |
" test = age_scaling_log(test)\n", |
|
|
191 |
" test['Scaled_Age'] = scaler_age.transform(test['Age'].values.reshape(-1, 1))\n", |
|
|
192 |
" test = weight_scaling_log(test)\n", |
|
|
193 |
" test['Scaled_Weight'] = scaler_weight.transform(test['Weight'].values.reshape(-1, 1))\n", |
|
|
194 |
" test = height_scaling_log(test)\n", |
|
|
195 |
" test['Scaled_Height'] = scaler_height.transform(test['Height'].values.reshape(-1, 1))\n", |
|
|
196 |
" test = make_gender_binary(test)\n", |
|
|
197 |
" test = fix_binary_columns(test)\n", |
|
|
198 |
" test = freq_cat_cols(test)\n", |
|
|
199 |
" test = Mtrans(test)\n", |
|
|
200 |
" test = other_features(test)\n", |
|
|
201 |
"\n", |
|
|
202 |
" return test\n", |
|
|
203 |
"\n", |
|
|
204 |
"def train_model(params, X_train, y_train):\n", |
|
|
205 |
" lgb_train = lgb.Dataset(X_train, y_train)\n", |
|
|
206 |
" model = lgb.train(params, lgb_train, num_boost_round=1000)\n", |
|
|
207 |
" return model\n", |
|
|
208 |
"\n", |
|
|
209 |
"def evaluate_model(model, X_val, y_val):\n", |
|
|
210 |
" y_pred = model.predict(X_val)\n", |
|
|
211 |
" y_pred = [np.argmax(y) for y in y_pred]\n", |
|
|
212 |
" accuracy = accuracy_score(y_val, y_pred)\n", |
|
|
213 |
" return accuracy\n", |
|
|
214 |
"\n", |
|
|
215 |
"def objective(trial, X_train, y_train):\n", |
|
|
216 |
" params = {\n", |
|
|
217 |
" 'objective': 'multiclass',\n", |
|
|
218 |
" 'num_class': 7,\n", |
|
|
219 |
" 'metric': 'multi_logloss',\n", |
|
|
220 |
" 'boosting_type': 'gbdt',\n", |
|
|
221 |
" 'learning_rate': trial.suggest_loguniform('learning_rate', 0.005, 0.5),\n", |
|
|
222 |
" 'num_leaves': trial.suggest_int('num_leaves', 10, 1000),\n", |
|
|
223 |
" 'max_depth': trial.suggest_int('max_depth', -1, 20),\n", |
|
|
224 |
" 'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.6, 0.95),\n", |
|
|
225 |
" 'feature_fraction': trial.suggest_uniform('feature_fraction', 0.6, 0.95),\n", |
|
|
226 |
" 'verbosity': -1\n", |
|
|
227 |
" }\n", |
|
|
228 |
"\n", |
|
|
229 |
" n_splits = 5\n", |
|
|
230 |
" kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)\n", |
|
|
231 |
" scores = []\n", |
|
|
232 |
"\n", |
|
|
233 |
" for train_index, val_index in kf.split(X_train, y_train):\n", |
|
|
234 |
" X_tr, X_val = X_train.iloc[train_index], X_train.iloc[val_index]\n", |
|
|
235 |
" y_tr, y_val = y_train.iloc[train_index], y_train.iloc[val_index]\n", |
|
|
236 |
"\n", |
|
|
237 |
" model = train_model(params, X_tr, y_tr)\n", |
|
|
238 |
" accuracy = evaluate_model(model, X_val, y_val)\n", |
|
|
239 |
" scores.append(accuracy)\n", |
|
|
240 |
"\n", |
|
|
241 |
" return np.mean(scores)\n", |
|
|
242 |
"\n", |
|
|
243 |
"def optimize_hyperparameters(X_train, y_train, n_trials=2):\n", |
|
|
244 |
" study = optuna.create_study(direction='maximize')\n", |
|
|
245 |
" study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=n_trials)\n", |
|
|
246 |
" return study.best_params\n" |
|
|
247 |
] |
|
|
248 |
}, |
|
|
249 |
{ |
|
|
250 |
"cell_type": "markdown", |
|
|
251 |
"metadata": {}, |
|
|
252 |
"source": [ |
|
|
253 |
"### XGB With Feature Engineering" |
|
|
254 |
] |
|
|
255 |
}, |
|
|
256 |
{ |
|
|
257 |
"cell_type": "code", |
|
|
258 |
"execution_count": 4, |
|
|
259 |
"metadata": {}, |
|
|
260 |
"outputs": [], |
|
|
261 |
"source": [ |
|
|
262 |
"\n", |
|
|
263 |
"path = '/Users/arham/Downloads/Projects/01-Dataset/01-Data-for-model-building/train.csv'\n", |
|
|
264 |
"train_df, val_df, test_df = load_data(path)\n", |
|
|
265 |
"\n", |
|
|
266 |
"train_df = datatypes(train_df)\n", |
|
|
267 |
"train_df = encode_target(train_df)\n", |
|
|
268 |
"train_df = age_binning(train_df)\n", |
|
|
269 |
"train_df, scaler_age = age_scaling_minmax(train_df)\n", |
|
|
270 |
"train_df = age_scaling_log(train_df)\n", |
|
|
271 |
"train_df, scaler_weight = weight_scaling_minmax(train_df)\n", |
|
|
272 |
"train_df = weight_scaling_log(train_df)\n", |
|
|
273 |
"train_df, scaler_height = height_scaling_minmax(train_df)\n", |
|
|
274 |
"train_df = height_scaling_log(train_df)\n", |
|
|
275 |
"train_df = make_gender_binary(train_df)\n", |
|
|
276 |
"train_df = fix_binary_columns(train_df)\n", |
|
|
277 |
"train_df = freq_cat_cols(train_df)\n", |
|
|
278 |
"train_df = Mtrans(train_df)\n", |
|
|
279 |
"train_df = other_features(train_df)\n", |
|
|
280 |
"\n", |
|
|
281 |
"val_df = test_pipeline(val_df, scaler_age, scaler_weight, scaler_height)\n", |
|
|
282 |
"test_df = test_pipeline(test_df, scaler_age, scaler_weight, scaler_height)\n", |
|
|
283 |
"\n", |
|
|
284 |
"Target = 'NObeyesdad'\n", |
|
|
285 |
"# features = train_df.columns.drop(Target)\n", |
|
|
286 |
"features = ['Gender', 'Age', 'Height', 'Weight', 'family_history_with_overweight',\n", |
|
|
287 |
" 'FAVC', 'FCVC', 'NCP', 'CAEC', 'SMOKE', 'CH2O', 'SCC', 'FAF', 'TUE',\n", |
|
|
288 |
" 'CALC', 'Age_Group', \n", |
|
|
289 |
" 'MTRANS_Automobile', 'MTRANS_Bike', 'MTRANS_Motorbike',\n", |
|
|
290 |
" 'MTRANS_Public_Transportation', 'MTRANS_Walking', 'BMI', 'Age^2',\n", |
|
|
291 |
" 'Age^3', 'BMI^2', 'Age * BMI', 'Age * BMI^2', 'Age^2 * BMI^2'] \n", |
|
|
292 |
"\n", |
|
|
293 |
" #'Scaled_Age', 'Log_Age', 'Scaled_Weight', 'Log_Weight', 'Scaled_Height', 'Log_Height',\n", |
|
|
294 |
"\n", |
|
|
295 |
"\n", |
|
|
296 |
"X_train = train_df[features]\n", |
|
|
297 |
"y_train = train_df[Target]\n", |
|
|
298 |
"X_val = val_df[features]\n", |
|
|
299 |
"y_val = val_df[Target]\n", |
|
|
300 |
"X_test = test_df[features]\n", |
|
|
301 |
"y_test = test_df[Target]\n", |
|
|
302 |
"\n", |
|
|
303 |
"# save X_train, y_train, X_val, X_test, y_test\n" |
|
|
304 |
] |
|
|
305 |
}, |
|
|
306 |
{ |
|
|
307 |
"cell_type": "code", |
|
|
308 |
"execution_count": 5, |
|
|
309 |
"metadata": {}, |
|
|
310 |
"outputs": [ |
|
|
311 |
{ |
|
|
312 |
"name": "stdout", |
|
|
313 |
"output_type": "stream", |
|
|
314 |
"text": [ |
|
|
315 |
"Target Drift For Each Class [0.004943133623686147, 0.011990707821925795, -0.0087675011457998, -0.001077949504617301, -0.017190035106736085, -0.00032756263090533144, 0.01042920694244659]\n", |
|
|
316 |
"Cross-validation Scores (XGBoost): [0.90597499 0.90736452 0.89671144 0.89620019 0.90222428]\n", |
|
|
317 |
"Mean CV Accuracy (XGBoost): 0.9016950833225661\n", |
|
|
318 |
"\n", |
|
|
319 |
"Accuracy (XGBoost): 0.9036680251945165\n", |
|
|
320 |
"Precision (XGBoost): 0.9042803910684232\n", |
|
|
321 |
"Recall (XGBoost): 0.9036680251945165\n", |
|
|
322 |
"F1 (XGBoost): 0.9039741044249812\n", |
|
|
323 |
"Recall for class 0: 0.9240506329113924\n", |
|
|
324 |
"Recall for class 1: 0.9064171122994652\n", |
|
|
325 |
"Recall for class 2: 0.7582089552238805\n", |
|
|
326 |
"Recall for class 3: 0.8449848024316109\n", |
|
|
327 |
"Recall for class 4: 0.8741092636579573\n", |
|
|
328 |
"Recall for class 5: 0.9665071770334929\n", |
|
|
329 |
"Recall for class 6: 0.9960474308300395\n" |
|
|
330 |
] |
|
|
331 |
} |
|
|
332 |
], |
|
|
333 |
"source": [ |
|
|
334 |
"\n", |
|
|
335 |
"import xgboost as xgb\n", |
|
|
336 |
"from sklearn.model_selection import cross_val_score\n", |
|
|
337 |
"from sklearn.metrics import accuracy_score, precision_score, recall_score\n", |
|
|
338 |
"import mlflow\n", |
|
|
339 |
"import warnings\n", |
|
|
340 |
"warnings.filterwarnings(\"ignore\")\n", |
|
|
341 |
"# import precision_recall_fscore_support\n", |
|
|
342 |
"from sklearn.metrics import precision_recall_fscore_support\n", |
|
|
343 |
"\n", |
|
|
344 |
"mlflow.sklearn.autolog(disable=True)\n", |
|
|
345 |
"\n", |
|
|
346 |
"with mlflow.start_run(run_name=\"XGB_with_Feature_Engineering\"):\n", |
|
|
347 |
" class_counts_train = [y_train[y_train == i].count() / y_train.count() for i in range(7)]\n", |
|
|
348 |
" class_counts_val = [y_val[y_val == i].count() / y_val.count() for i in range(7)]\n", |
|
|
349 |
" target_drift = [(train_count - val_count) for train_count, val_count in zip(class_counts_train, class_counts_val)]\n", |
|
|
350 |
" print(f\"Target Drift For Each Class {target_drift}\")\n", |
|
|
351 |
" mlflow.log_params({'Target_Drift_' + str(i): freq for i, freq in enumerate(target_drift)})\n", |
|
|
352 |
"\n", |
|
|
353 |
" xgb_classifier = xgb.XGBClassifier()\n", |
|
|
354 |
" cv_scores_xgb = cross_val_score(xgb_classifier, X_train, y_train, cv=5, scoring='accuracy')\n", |
|
|
355 |
" print(\"Cross-validation Scores (XGBoost):\", cv_scores_xgb)\n", |
|
|
356 |
" print(\"Mean CV Accuracy (XGBoost):\", cv_scores_xgb.mean())\n", |
|
|
357 |
" xgb_classifier.fit(X_train, y_train)\n", |
|
|
358 |
" y_val_pred_xgb = xgb_classifier.predict(X_val)\n", |
|
|
359 |
" accuracy_xgb = accuracy_score(y_val, y_val_pred_xgb)\n", |
|
|
360 |
" precision_xgb = precision_score(y_val, y_val_pred_xgb, average='weighted')\n", |
|
|
361 |
" recall_xgb = recall_score(y_val, y_val_pred_xgb, average='weighted')\n", |
|
|
362 |
" f1_xgb = 2 * (precision_xgb * recall_xgb) / (precision_xgb + recall_xgb)\n", |
|
|
363 |
" print(\"\\nAccuracy (XGBoost):\", accuracy_xgb)\n", |
|
|
364 |
" print(\"Precision (XGBoost):\", precision_xgb)\n", |
|
|
365 |
" print(\"Recall (XGBoost):\", recall_xgb)\n", |
|
|
366 |
" print(\"F1 (XGBoost):\", f1_xgb)\n", |
|
|
367 |
" mlflow.log_metric('accuracy', accuracy_xgb)\n", |
|
|
368 |
" mlflow.log_metric('precision', precision_xgb)\n", |
|
|
369 |
" mlflow.log_metric('recall', recall_xgb)\n", |
|
|
370 |
" mlflow.log_metric('f1', f1_xgb)\n", |
|
|
371 |
"\n", |
|
|
372 |
" precision_per_class, recall_per_class, f1_per_class, support_per_class = precision_recall_fscore_support(y_val, y_val_pred_xgb, average=None)\n", |
|
|
373 |
" for i in range(len(recall_per_class)):\n", |
|
|
374 |
" print(f\"Recall for class {i}: {recall_per_class[i]}\")\n", |
|
|
375 |
" mlflow.log_metric(f'recall_class_{i}', recall_per_class[i])\n", |
|
|
376 |
"\n", |
|
|
377 |
" mlflow.xgboost.log_model(xgb_classifier, 'model')\n", |
|
|
378 |
" mlflow.set_tag('experiments', 'Arham A.')\n", |
|
|
379 |
" mlflow.set_tag('model_name', 'XGBoost')\n", |
|
|
380 |
" mlflow.set_tag('preprocessing', 'Yes')\n" |
|
|
381 |
] |
|
|
382 |
}, |
|
|
383 |
{ |
|
|
384 |
"cell_type": "code", |
|
|
385 |
"execution_count": 7, |
|
|
386 |
"metadata": {}, |
|
|
387 |
"outputs": [ |
|
|
388 |
{ |
|
|
389 |
"name": "stdout", |
|
|
390 |
"output_type": "stream", |
|
|
391 |
"text": [ |
|
|
392 |
"[2024-04-25 14:13:00 -0400] [8930] [INFO] Starting gunicorn 21.2.0\n", |
|
|
393 |
"[2024-04-25 14:13:00 -0400] [8930] [INFO] Listening at: http://127.0.0.1:5000 (8930)\n", |
|
|
394 |
"[2024-04-25 14:13:00 -0400] [8930] [INFO] Using worker: sync\n", |
|
|
395 |
"[2024-04-25 14:13:00 -0400] [8931] [INFO] Booting worker with pid: 8931\n", |
|
|
396 |
"[2024-04-25 14:13:01 -0400] [8932] [INFO] Booting worker with pid: 8932\n", |
|
|
397 |
"[2024-04-25 14:13:01 -0400] [8933] [INFO] Booting worker with pid: 8933\n", |
|
|
398 |
"[2024-04-25 14:13:01 -0400] [8934] [INFO] Booting worker with pid: 8934\n", |
|
|
399 |
"^C\n", |
|
|
400 |
"[2024-04-25 14:15:17 -0400] [8930] [INFO] Handling signal: int\n", |
|
|
401 |
"[2024-04-25 14:15:18 -0400] [8934] [INFO] Worker exiting (pid: 8934)\n", |
|
|
402 |
"[2024-04-25 14:15:18 -0400] [8933] [INFO] Worker exiting (pid: 8933)\n", |
|
|
403 |
"[2024-04-25 14:15:18 -0400] [8932] [INFO] Worker exiting (pid: 8932)\n", |
|
|
404 |
"[2024-04-25 14:15:18 -0400] [8931] [INFO] Worker exiting (pid: 8931)\n" |
|
|
405 |
] |
|
|
406 |
} |
|
|
407 |
], |
|
|
408 |
"source": [ |
|
|
409 |
"!mlflow ui --backend-store-uri \"sqlite:////Users/arham/Downloads/Projects/03-Experiments/new_mlflow.db\"" |
|
|
410 |
] |
|
|
411 |
}, |
|
|
412 |
{ |
|
|
413 |
"cell_type": "code", |
|
|
414 |
"execution_count": null, |
|
|
415 |
"metadata": {}, |
|
|
416 |
"outputs": [], |
|
|
417 |
"source": [] |
|
|
418 |
} |
|
|
419 |
], |
|
|
420 |
"metadata": { |
|
|
421 |
"kernelspec": { |
|
|
422 |
"display_name": "DataScience", |
|
|
423 |
"language": "python", |
|
|
424 |
"name": "python3" |
|
|
425 |
}, |
|
|
426 |
"language_info": { |
|
|
427 |
"codemirror_mode": { |
|
|
428 |
"name": "ipython", |
|
|
429 |
"version": 3 |
|
|
430 |
}, |
|
|
431 |
"file_extension": ".py", |
|
|
432 |
"mimetype": "text/x-python", |
|
|
433 |
"name": "python", |
|
|
434 |
"nbconvert_exporter": "python", |
|
|
435 |
"pygments_lexer": "ipython3", |
|
|
436 |
"version": "3.10.13" |
|
|
437 |
} |
|
|
438 |
}, |
|
|
439 |
"nbformat": 4, |
|
|
440 |
"nbformat_minor": 2 |
|
|
441 |
} |