|
a |
|
b/Fun_Auxiliary.R |
|
|
1 |
# ------------------------------------------------------------------------- |
|
|
2 |
get.penalityMatrix=function(adj,X1, y1){ |
|
|
3 |
feature.num = dim(adj)[2] |
|
|
4 |
M.c = diag(0,feature.num) |
|
|
5 |
M.lasso = diag(0,feature.num) |
|
|
6 |
M.elastic = diag(1,feature.num) |
|
|
7 |
M.network = Non.NormalizedLaplacianMatrix(adj) |
|
|
8 |
M.AdaptNet = AdaptNet.Non.NormalizedLap(adj,X1, y1) |
|
|
9 |
return(list(M.c=M.c,M.lasso=M.lasso,M.elastic=M.elastic,M.network=M.network,M.AdaptNet=M.AdaptNet)) |
|
|
10 |
} |
|
|
11 |
# ------------------------------------------------------------------------- |
|
|
12 |
# Normalized Laplacian Matrix from adjacency matrix |
|
|
13 |
laplacianMatrix = function(adj){ |
|
|
14 |
diag(adj) <- 0 |
|
|
15 |
deg <- apply(abs(adj),1,sum) |
|
|
16 |
p <- ncol(adj) |
|
|
17 |
L <- matrix(0,p,p) |
|
|
18 |
nonzero <- which(deg!=0) |
|
|
19 |
for (i in nonzero){ |
|
|
20 |
for (j in nonzero){ |
|
|
21 |
L[i,j] <- -adj[i,j]/sqrt(deg[i]*deg[j]) |
|
|
22 |
} |
|
|
23 |
} |
|
|
24 |
diag(L) <- 1 |
|
|
25 |
return(L) |
|
|
26 |
} |
|
|
27 |
|
|
|
28 |
# Non-Normalized Laplacian Matrix from adjacency matrix |
|
|
29 |
Non.NormalizedLaplacianMatrix = function(adj){ |
|
|
30 |
diag(adj) <- 0 |
|
|
31 |
deg <- apply(adj,1,sum) |
|
|
32 |
D = diag(deg) |
|
|
33 |
L = D - adj |
|
|
34 |
return(L) |
|
|
35 |
} |
|
|
36 |
# ------------------------------------------------------ |
|
|
37 |
AdaptNet.penality.matrix = function(adj, X, y){ |
|
|
38 |
|
|
|
39 |
library(glmnet) |
|
|
40 |
glmnet.fit = glmnet(X, y, lambda=0, family='binomial') |
|
|
41 |
Beta = coef(glmnet.fit) |
|
|
42 |
|
|
|
43 |
p <- ncol(adj) |
|
|
44 |
coeff.sign = sign(Beta)[2:(p+1)] |
|
|
45 |
|
|
|
46 |
diag(adj) <- 0 |
|
|
47 |
deg <- apply(abs(adj),1,sum) |
|
|
48 |
L <- matrix(0,p,p) |
|
|
49 |
nonzero <- which(deg!=0) |
|
|
50 |
for (i in nonzero){ |
|
|
51 |
for (j in nonzero){ |
|
|
52 |
temp.sign = coeff.sign[i]*coeff.sign[j] |
|
|
53 |
L[i,j] <- -temp.sign*adj[i,j]/sqrt(deg[i]*deg[j]) |
|
|
54 |
} |
|
|
55 |
} |
|
|
56 |
diag(L) <- 1 |
|
|
57 |
return(L_star=L) |
|
|
58 |
} |
|
|
59 |
AdaptNet.Non.NormalizedLap = function(adj,X, y){ |
|
|
60 |
library(glmnet) |
|
|
61 |
glmnet.fit = glmnet(X, y, lambda=0, family='binomial') |
|
|
62 |
Beta = coef(glmnet.fit) |
|
|
63 |
|
|
|
64 |
p <- ncol(adj) |
|
|
65 |
coeff.sign = sign(Beta)[2:(p+1)] |
|
|
66 |
diag(adj) <- 0 |
|
|
67 |
deg <- apply(abs(adj),1,sum) |
|
|
68 |
L <- matrix(0,p,p) |
|
|
69 |
nonzero <- which(deg!=0) |
|
|
70 |
for (i in nonzero){ |
|
|
71 |
for (j in nonzero){ |
|
|
72 |
temp.sign = coeff.sign[i]*coeff.sign[j] |
|
|
73 |
L[i,j] <- -temp.sign*adj[i,j] |
|
|
74 |
} |
|
|
75 |
} |
|
|
76 |
diag(L) <- deg |
|
|
77 |
return(L_star=L) |
|
|
78 |
} |
|
|
79 |
# ------------------------------------------------------------------------- |
|
|
80 |
sen.spe = function(pred, truth){ |
|
|
81 |
#---------------------------------------- |
|
|
82 |
# 1: True sample |
|
|
83 |
# 0: False sample |
|
|
84 |
# truth = abs(sign(sim.data$w)) |
|
|
85 |
# pred = abs(sign(out1$w[-length(tmp)])) |
|
|
86 |
#---------------------------------------- |
|
|
87 |
sen = length(which(pred[which(truth==1)]==1))/length(which(truth==1)) |
|
|
88 |
spe = length(which(pred[which(truth==0)]==0))/length(which(truth==0)) |
|
|
89 |
result = c(sen,spe);names(result) = c("sensitivity","specificity") |
|
|
90 |
return(result) |
|
|
91 |
} |
|
|
92 |
|
|
|
93 |
# Prior network regularization |
|
|
94 |
Prior.network = function(adj){ |
|
|
95 |
# adj is a p x p matrix |
|
|
96 |
# L is a (p+1) x (p+1) matrix |
|
|
97 |
L = laplacianMatrix(adj) |
|
|
98 |
L = rbind(L,rep(0,p)) |
|
|
99 |
L = cbind(L,rep(0,p+1)) |
|
|
100 |
return(L) |
|
|
101 |
} |
|
|
102 |
# ------------------------------------------------------------------------- |
|
|
103 |
get_sim_prior_Net = function(n,t,p11,p12){ |
|
|
104 |
A = matrix(0,nrow=n,ncol=n) |
|
|
105 |
for(i in 1:n){ |
|
|
106 |
for(j in 1:n){ |
|
|
107 |
if(i>j){ |
|
|
108 |
set.seed(10*i+8*j) |
|
|
109 |
if(i<t&j<t){ |
|
|
110 |
if(runif(1)<p11) A[i,j] = 1} |
|
|
111 |
else{ |
|
|
112 |
if(runif(1)<p12) A[i,j] = 1} |
|
|
113 |
} |
|
|
114 |
} |
|
|
115 |
} |
|
|
116 |
A = A +t(A) |
|
|
117 |
diag(A)=0 |
|
|
118 |
return(A) |
|
|
119 |
} |
|
|
120 |
# ------------------------------------------------------------------------- |
|
|
121 |
GET.SIM.DATA = function(smaple.num, feature.num, random.seed, snrlam=0.05){ |
|
|
122 |
# smaple.num = 700; feature.num = 100; random.seed = 10; snrlam=0.05 |
|
|
123 |
ii = random.seed |
|
|
124 |
set.seed(30) |
|
|
125 |
w <-c(rnorm(40),rep(0,(feature.num-40)));b = 0 |
|
|
126 |
mu <- rep(0,40) |
|
|
127 |
Sigma <- matrix(.6, nrow=40, ncol=40) + diag(40)*.4 |
|
|
128 |
|
|
|
129 |
set.seed(ii*2) |
|
|
130 |
X1 <- mvrnorm(n=smaple.num, mu=mu, Sigma=Sigma) |
|
|
131 |
|
|
|
132 |
set.seed(ii*3) |
|
|
133 |
X2 <- matrix(rnorm(smaple.num*(feature.num-40), mean = 0, sd = 1), nrow = smaple.num, ncol = feature.num-40) |
|
|
134 |
X = cbind(X1,X2) |
|
|
135 |
|
|
|
136 |
Xw <- -X%*%w |
|
|
137 |
pp <- 1/(1+exp(Xw)) |
|
|
138 |
y <- rep(1,smaple.num) |
|
|
139 |
y[pp<0.5] <- 0 |
|
|
140 |
|
|
|
141 |
p = dim(X)[1];q = dim(X)[2] |
|
|
142 |
set.seed(ii*3) |
|
|
143 |
XX = X + snrlam*matrix(rnorm(p*q),ncol=q) |
|
|
144 |
|
|
|
145 |
return(list(X=XX,y=y,w=w)) |
|
|
146 |
} |
|
|
147 |
# ------------------------------------------------------------------------- |
|
|
148 |
GET.SIM.DATA2 = function(smaple.num, feature.num, random.seed, snrlam=0.05){ |
|
|
149 |
# smaple.num = 700; feature.num = 100; random.seed = 10; snrlam=0.05 |
|
|
150 |
ii = 10 |
|
|
151 |
set.seed(30) |
|
|
152 |
w <-c(rnorm(40),rep(0,(feature.num-40)));b = 0 |
|
|
153 |
mu <- rep(0,40) |
|
|
154 |
Sigma <- matrix(.6, nrow=40, ncol=40) + diag(40)*.4 |
|
|
155 |
|
|
|
156 |
set.seed(ii*2) |
|
|
157 |
X1 <- mvrnorm(n=smaple.num, mu=mu, Sigma=Sigma) |
|
|
158 |
|
|
|
159 |
set.seed(ii*3) |
|
|
160 |
X2 <- matrix(rnorm(smaple.num*(feature.num-40), mean = 0, sd = 1), nrow = smaple.num, ncol = feature.num-40) |
|
|
161 |
X = cbind(X1,X2) |
|
|
162 |
|
|
|
163 |
Xw <- -X%*%w |
|
|
164 |
pp <- 1/(1+exp(Xw)) |
|
|
165 |
y <- rep(1,smaple.num) |
|
|
166 |
y[pp<0.5] <- 0 |
|
|
167 |
|
|
|
168 |
p = dim(X)[1];q = dim(X)[2] |
|
|
169 |
|
|
|
170 |
set.seed(random.seed) |
|
|
171 |
XX = X + snrlam*matrix(rnorm(p*q),ncol=q) |
|
|
172 |
|
|
|
173 |
return(list(X=XX,y=y,w=w)) |
|
|
174 |
} |