[0ae801]: / preprocessing / FIDDLE_helpers.py

Download this file

400 lines (335 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import argparse
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
try:
from .FIDDLE_config import *
except:
from FIDDLE_config import *
import pandas as pd
import numpy as np
import scipy
import sparse
from collections import defaultdict
from joblib import Parallel, delayed, parallel_backend
from tqdm import tqdm
from sklearn.feature_selection import VarianceThreshold
import sklearn
from collections import defaultdict
def print_header(*content, char='='):
print()
print(char * 80)
print(*content)
print(char * 80, flush=True)
######
# Transform
######
def get_unique_variables(df):
return sorted(df[var_col].unique())
def get_frequent_numeric_variables(df_time_series, variables, threshold, args):
data_path = args.data_path
df_population = args.df_population
T, dt = args.T, args.dt
df_types = pd.read_csv(data_path + 'value_types.csv').set_index(var_col)['value_type']
numeric_vars = [col for col in variables if df_types[col] == 'Numeric']
df_num_counts = calculate_variable_counts(df_time_series, df_population)[numeric_vars] #gets the count of each variable for each patient.
variables_num_freq = df_num_counts.columns[df_num_counts.mean() >= threshold * np.floor(T/dt)]
return variables_num_freq
def calculate_variable_counts(df_data, df_population):
"""
df_data in raw format with four columns
"""
df = df_data.copy()
df['count'] = 1
df_count = df[[ID_col, var_col, 'count']].groupby([ID_col, var_col]).count().unstack(1, fill_value=0)
df_count.columns = df_count.columns.droplevel()
df_count = df_count.reindex(df_population.index, fill_value=0)
## Slower version
# df_count = df[['ID', 'variable_name', 'count']].pivot_table(index='ID', columns='variable_name', aggfunc='count', fill_value=0)
return df_count
def select_dtype(df, dtype, dtypes=None):
if dtypes is None:
## Need to assert dtypes are not all objects
assert not all(df.dtypes == 'object')
if dtype == 'mask':
return df.select_dtypes('bool')
elif dtype == '~mask':
return df.select_dtypes(exclude='bool')
else:
## Need to assert df.columns and dtypes.index are the same
if dtype == 'mask':
return df.loc[:, (dtypes == 'bool')].astype(bool)
elif dtype == '~mask':
return df.loc[:, (dtypes != 'bool')]
else:
assert False
return
# def smart_qcut_dummify(x, q):
# z = smart_qcut(x, q)
# return pd.get_dummies(z, prefix=z.name)
# def smart_qcut(x, q):
# # ignore strings when performing qcut
# x = x.copy()
# x = x.apply(make_float)
# m = x.apply(np.isreal)
# if x.loc[m].dropna().nunique() > 1: # when more than one numeric values
# if x.loc[m].dropna().nunique() == 2:
# pass
# else:
# x.loc[m] = pd.qcut(x.loc[m].to_numpy(), q=q, duplicates='drop')
# # bins = np.unique(np.percentile(x.loc[m].to_numpy(), [0, 20, 40, 60, 80, 100]))
# # x.loc[m] = pd.cut(x, bins)
# return x
def smart_qcut_dummify(x, q):
z, bins = smart_qcut(x, q)
return pd.get_dummies(z, prefix=z.name), bins
def dummify(z):
return pd.get_dummies(z, prefix=z.name)
def smart_qcut(x, q=5):
# ignore strings when performing qcut
x = x.copy()
x = x.apply(make_float)
m = x.apply(np.isreal)
bins = None
if x.loc[m].dropna().nunique() > 1: # when more than one numeric values
if x.loc[m].dropna().nunique() == 2:
pass
else:
# x.loc[m] = pd.qcut(x.loc[m].to_numpy(), q=q, duplicates='drop')
bins = np.unique(np.nanpercentile(x.loc[m].astype(float).values, [0, 20, 40, 60, 80, 100]))
x.loc[m] = pd.cut(x.loc[m], bins, duplicates='drop', include_lowest=True)
bins = list(bins)
return x, (x.name, bins)
def smart_qcut_bins(first_args):
(x, bins) = first_args
# ignore strings when performing qcut
x = x.copy()
x = x.apply(make_float)
m = x.apply(np.isreal)
if bins is not None:
x.loc[m] = pd.cut(x.loc[m], bins, duplicates='drop', include_lowest=True)
else:
pass
return x, (x.name, bins)
def smart_dummify_impute(x):
x = x.copy()
x = x.apply(make_float)
m = x.apply(np.isreal)
if x.loc[m].dropna().nunique() == 0: # all string values
return pd.get_dummies(x, prefix=x.name, prefix_sep=':')
else:
x = pd.DataFrame(x)
# x = x.fillna(x.mean()) # simple mean imputation
return x
def make_float(v):
try:
return float(v)
except ValueError:
return v
assert False
def is_numeric(v):
try:
float(v)
return True
except ValueError:
return False
assert False
######
# Time-series internals
######
def _get_time_bins(T, dt):
# Defines the boundaries of time bins [0, dt, 2*dt, ..., k*dt]
# where k*dt <= T and (k+1)*dt > T
return np.arange(0, dt*(np.floor(T/dt)+1), dt)
def _get_time_bins_index(T, dt):
return pd.cut([], _get_time_bins(T, dt), right=False).categories
def pivot_event_table(df):
df = df.copy()
# Handle cases where the same variable is recorded multiple times with the same timestamp
# Adjust the timestamps by epsilon so that all timestamps are unique
eps = 1e-6
m_dups = df.duplicated([t_col, var_col], keep=False)
df_dups = df[m_dups].copy()
for v, df_v in df_dups.groupby(var_col):
df_dups.loc[df_v.index, t_col] += eps * np.arange(len(df_v))
df = pd.concat([df[~m_dups], df_dups])
assert not df.duplicated([t_col, var_col], keep=False).any()
return pd.pivot_table(df, val_col, t_col, var_col, 'first')
def presence_mask(df_i, variables, T, dt):
# for each itemid
# for each time bin, whether there is real measurement
if len(df_i) == 0:
mask_i = pd.DataFrame().reindex(index=_get_time_bins_index(T, dt), columns=list(variables), fill_value=False)
else:
mask_i = df_i.groupby(
pd.cut(df_i.index, _get_time_bins(T, dt), right=False)
).apply(lambda x: x.notnull().any())
mask_i = mask_i.reindex(columns=variables, fill_value=False)
mask_i.columns = [str(col) + '_mask' for col in mask_i.columns]
return mask_i
def get_delta_time(mask_i):
a = 1 - mask_i
b = a.cumsum()
c = mask_i.cumsum()
dt_i = b - b.where(~a.astype(bool)).ffill().fillna(0).astype(int)
# the delta time for itemid's for which there are no measurements must be 0
# or where there's no previous measurement and no imputation
dt_i[c == 0] = 0
dt_i.columns = [str(col).replace('_mask', '_delta_time') for col in dt_i.columns]
return dt_i
def impute_ffill(df, columns, T, dt, mask=None):
if len(df) == 0:
return pd.DataFrame().reindex(columns=columns, fill_value=np.nan)
if mask is None:
mask = presence_mask(df, columns)
# Calculate time bins, sorted by time
df_bin = df.copy()
df_bin.index = pd.cut(df_bin.index, _get_time_bins(T, dt), right=False)
# Compute the values used for imputation
## Collapse duplicate time bins, keeping latest values for each time bin
df_imp = df_bin.ffill()
df_imp = df_imp[~df_imp.index.duplicated(keep='last')]
## Reindex to make sure every time bin exists
df_imp = df_imp.reindex(_get_time_bins_index(T, dt))
## Forward fill the missing time bins
df_imp = df_imp.ffill()
df_ff = df_imp
df_ff[mask.to_numpy()] = np.nan
df_ff.index = df_ff.index.mid ## Imputed values lie at the middle of a time bin
df_ff = pd.concat([df, df_ff]).dropna(how='all')
df_ff.sort_index(inplace=True)
return df_ff
def most_recent_values(df_i, columns, T, dt):
df_bin = df_i.copy()
df_bin.index = pd.cut(df_bin.index, _get_time_bins(T, dt), right=False)
df_v = df_bin.groupby(level=0).last()
df_v.columns = [str(col) + '_value' for col in df_v.columns]
df_v = df_v.reindex(_get_time_bins_index(T, dt))
return df_v
def summary_statistics(df_i, columns, stats_functions, T, dt):
# e.g. stats_functions=['mean', 'min', 'max']
if len(columns) == 0:
return pd.DataFrame().reindex(_get_time_bins_index(T, dt))
else:
# Encode statistics for numeric, frequent variables
df_numeric = df_i[columns]
df = df_numeric.copy().astype(float)
df.index = pd.cut(df.index, _get_time_bins(T, dt), right=False)
df_v = df.reset_index().groupby('index').agg(stats_functions)
df_v.columns = list(map('_'.join, df_v.columns.values))
df_v = df_v.reindex(_get_time_bins_index(T, dt))
return df_v
def check_imputed_output(df_v):
# Check imputation is successful
## If column is all null -> OK
## If column is all non-null -> OK
## If column has some null -> should only occur at the beginning
not_null = df_v.notnull().all()
all_null = df_v.isnull().all()
cols_to_check = list(df_v.columns[~(not_null | all_null)])
for col in cols_to_check:
x = df_v[col].to_numpy()
last_null_idx = np.argmax(np.where(pd.isnull(x))) # Find index of last nan
assert pd.isnull(x[:(last_null_idx+1)]).all() # all values up to here are nan
assert (~pd.isnull(x[(last_null_idx+1):])).all() # all values after here are not nan
return
######
# Post-filter: feature selection classes
######
try:
from sklearn.feature_selection._base import SelectorMixin
except:
from sklearn.feature_selection.base import SelectorMixin
class FrequencyThreshold_temporal(
sklearn.base.BaseEstimator,
SelectorMixin
):
def __init__(self, threshold=0., L=None):
assert L is not None
self.threshold = threshold
self.L = L
def fit(self, X, y=None):
# Reshape to be 3-dimensional array
NL, D = X.shape
X = X.reshape((int(NL/self.L), self.L, D))
# Collapse time dimension, generating NxD matrix
X_notalways0 = X.any(axis=1)
X_notalways1 = (1-X).any(axis=1)
self.freqs_notalways0 = np.mean(X_notalways0, axis=0)
self.freqs_notalways1 = np.mean(X_notalways1, axis=0)
return self
def _get_support_mask(self):
mask = np.logical_and(
self.freqs_notalways0 > self.threshold,
self.freqs_notalways1 > self.threshold,
)
if hasattr(mask, "toarray"):
mask = mask.toarray()
if hasattr(mask, "todense"):
mask = mask.todense()
return mask
# Keep only first feature in a pairwise perfectly correlated feature group
class CorrelationSelector(
sklearn.base.BaseEstimator,
SelectorMixin,
):
def __init__(self):
super().__init__()
def fit(self, X, y=None):
if hasattr(X, "to_scipy_sparse"): # sparse matrix
X = X.to_scipy_sparse()
# Calculate correlation matrix
# Keep only lower triangular matrix
if scipy.sparse.issparse(X):
self.corr_matrix = sparse_corrcoef(X.T)
else:
self.corr_matrix = np.corrcoef(X.T)
np.fill_diagonal(self.corr_matrix, 0)
self.corr_matrix *= np.tri(*self.corr_matrix.shape)
# get absolute value
corr = abs(self.corr_matrix)
# coefficient close to 1 means perfectly correlated
# Compare each feature to previous feature (smaller index) to see if they have correlation of 1
to_drop = np.isclose(corr, 1.0).sum(axis=1).astype(bool)
self.to_keep = ~to_drop
return self
def _get_support_mask(self):
return self.to_keep
def get_feature_aliases(self, feature_names):
feature_names = [str(n) for n in feature_names]
corr_matrix = self.corr_matrix
flags = np.isclose(abs(corr_matrix), 1.0)
alias_map = defaultdict(list)
for i in range(1, corr_matrix.shape[0]):
for j in range(i):
if flags[i,j]:
if np.isclose(corr_matrix[i,j], 1.0):
alias_map[feature_names[j]].append(feature_names[i])
elif np.isclose(corr_matrix[i,j], -1.0):
alias_map[feature_names[j]].append('~{' + feature_names[i] + '}')
else:
assert False
# Only save alias for first in the list
break
return dict(alias_map)
# https://stackoverflow.com/questions/19231268/correlation-coefficients-for-sparse-matrix-in-python
def sparse_corrcoef(A, B=None):
if B is not None:
A = sparse.vstack((A, B), format='csr')
A = A.astype(np.float64)
n = A.shape[1]
# Compute the covariance matrix
rowsum = A.sum(1)
centering = rowsum.dot(rowsum.T.conjugate()) / n
C = (A.dot(A.T.conjugate()) - centering) / (n - 1)
# The correlation coefficients are given by
# C_{i,j} / sqrt(C_{i} * C_{j})
d = np.diag(C)
coeffs = C / np.sqrt(np.outer(d, d))
return np.array(coeffs)