--- a +++ b/preprocessing/4-combine.py @@ -0,0 +1,97 @@ +import json +import sparse +import pandas as pd +import numpy as np +import scipy.sparse +import joblib + +def load_IDs(fname): + IDs = pd.read_csv(fname, header=0, names=['ID']) + IDs.index.name = 'i' + IDs = IDs.reset_index() + return IDs + +def _get_feature_set(df, X_ALL, IDs_ALL): + IDs = df.set_index('ID')[[]] + idx = IDs.join(IDs_ALL.set_index('ID')).astype(float) + X = [X_ALL[int(i),:] if not np.isnan(i) else sparse.zeros(X_ALL.shape[1]) for i in idx.values] + return sparse.stack(X) + +def get_features(df, feature_sets): + features = [] + feature_names = [] + if 'demog' in feature_sets: + X_d = df.set_index('hosp_id')[['ID']].join(df_demog).reset_index(drop=True).set_index('ID').loc[df['ID']] + X_d = sparse.as_coo(X_d.values) + features.append(X_d) + feature_names.append(names_demog) + print('demog - Done') + if 'vitals' in feature_sets: + X_v = _get_feature_set(df, X_vitals, IDs_vitals) + features.append(X_v) + feature_names.append(names_vitals) + print('vitals - Done') + if 'meds' in feature_sets: + X_m = _get_feature_set(df, X_meds, IDs_meds) + features.append(X_m) + feature_names.append(names_meds) + print('meds - Done') + if 'labs' in feature_sets: + X_l = _get_feature_set(df, X_labs, IDs_labs) + features.append(X_l) + feature_names.append(names_labs) + print('labs - Done') + if 'flow' in feature_sets: + print('flow', end='') + X_f = _get_feature_set(df, X_flow, IDs_flow) + features.append(X_f) + feature_names.append(names_flow) + print(' - Done') + X = sparse.concatenate(features, axis=1).tocsr() + feature_names = sum(feature_names, []) + return X, np.array(feature_names) + + +if __name__ == '__main__': + + df_demog = pd.read_csv('sample_output/out_demog/static-features.csv').set_index('hosp_id') + names_demog = list(df_demog.columns) + print('demog - Loaded') + + X_vitals = sparse.load_npz('sample_output/out_vitals/X_all.npz') + IDs_vitals = load_IDs('sample_output/out_vitals/X_all.IDs.csv') + names_vitals = json.load(open('metadata/vitals/X_all.feature_names.json', 'r')) + print('vitals - Loaded') + + X_meds = sparse.load_npz('sample_output/out_meds/X_all.npz') + IDs_meds = load_IDs('sample_output/out_meds/X_all.IDs.csv') + names_meds = json.load(open('metadata/meds/X_all.feature_names.json', 'r')) + print('meds - Loaded') + + X_labs = sparse.load_npz('sample_output/out_labs/X_all.npz') + IDs_labs = load_IDs('sample_output/out_labs/X_all.IDs.csv') + names_labs = json.load(open('metadata/labs/X_all.feature_names.json', 'r')) + print('labs - Loaded') + + X_flow = sparse.load_npz('sample_output/out_flow/X_all.npz') + IDs_flow = load_IDs('sample_output/out_flow/X_all.IDs.csv') + names_flow = json.load(open('metadata/flow/X_all.feature_names.json', 'r')) + print('flow - Loaded') + + df_cohort = pd.read_csv('sample_input/windows_map.csv') + X, names = get_features(df_cohort, ['demog', 'vitals', 'meds', 'labs', 'flow']) + df_features = pd.DataFrame(X.todense(), columns=names, index=df_cohort['ID']) + pd.Series(names).rename('feature_name').to_csv('./sample_output/feature_names.csv', index=False) + + ## Full feature matrix + joblib.dump(df_features, 'sample_output/full.joblib') + + ## Baseline features + baseline_cols = pd.read_csv('metadata/Baseline_Feature_Names.txt', sep='\t', header=None)[0].values + df_baseline = df_features[baseline_cols] + df_baseline.to_csv('sample_output/baseline.csv') + + ## M-CURES (lite) + mcures_cols = pd.read_csv('metadata/MCURES_Feature_Names.txt', sep='\t', header=None)[0].values + df_mcures = df_features[mcures_cols] + df_mcures.to_csv('sample_output/mcures.csv')