|
a |
|
b/evaluation/Evaluation_Secondary.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import json\n", |
|
|
10 |
"import pandas as pd\n", |
|
|
11 |
"import numpy as np\n", |
|
|
12 |
"import joblib\n", |
|
|
13 |
"import scipy\n", |
|
|
14 |
"import pickle\n", |
|
|
15 |
"import matplotlib.pyplot as plt" |
|
|
16 |
] |
|
|
17 |
}, |
|
|
18 |
{ |
|
|
19 |
"cell_type": "code", |
|
|
20 |
"execution_count": null, |
|
|
21 |
"metadata": {}, |
|
|
22 |
"outputs": [], |
|
|
23 |
"source": [ |
|
|
24 |
"## This notebook assumes: \n", |
|
|
25 |
"#1: The loaded outcome is if the outcome happens ever, as opposed to the other evaluation, which was focused on the first 5 days\n", |
|
|
26 |
"#2: num_windows is the number of hours // 4 in which we want to make the triaging decision. Our default is making predictions using 48 hours of data to triage\n", |
|
|
27 |
"\n", |
|
|
28 |
"num_windows = 12" |
|
|
29 |
] |
|
|
30 |
}, |
|
|
31 |
{ |
|
|
32 |
"cell_type": "code", |
|
|
33 |
"execution_count": null, |
|
|
34 |
"metadata": {}, |
|
|
35 |
"outputs": [], |
|
|
36 |
"source": [ |
|
|
37 |
"# Load models\n", |
|
|
38 |
"\n", |
|
|
39 |
"models_dict = joblib.load('models_dict.joblib')\n", |
|
|
40 |
"models_dict.keys()" |
|
|
41 |
] |
|
|
42 |
}, |
|
|
43 |
{ |
|
|
44 |
"cell_type": "code", |
|
|
45 |
"execution_count": null, |
|
|
46 |
"metadata": {}, |
|
|
47 |
"outputs": [], |
|
|
48 |
"source": [ |
|
|
49 |
"### Read in sample cohort\n", |
|
|
50 |
"# Cohort should include those who did not have outcome within the first two days\n", |
|
|
51 |
"# Each individual should have exactly 12 windows\n", |
|
|
52 |
"# The outcome shoudl be whether deterioation occurred ever (not just within the first five days)\n", |
|
|
53 |
"\n", |
|
|
54 |
"df_cohort = pd.read_csv('sample_cohort_outcome_ever_past_2days.csv')\n", |
|
|
55 |
"\n", |
|
|
56 |
"# Remove windows after 2 days\n", |
|
|
57 |
"df_cohort = df_cohort[df_cohort['window_id'] < num_windows]\n", |
|
|
58 |
"\n", |
|
|
59 |
"# Remove incomplete windows\n", |
|
|
60 |
"df_cohort = df_cohort[df_cohort['window_id'] >= 1]\n", |
|
|
61 |
"\n", |
|
|
62 |
"test_hosp, test_window, test_y = df_cohort['hosp_id'], df_cohort['window_id'], df_cohort['y']\n", |
|
|
63 |
"\n", |
|
|
64 |
"cohort_IDs = df_cohort.set_index('ID')[[]]" |
|
|
65 |
] |
|
|
66 |
}, |
|
|
67 |
{ |
|
|
68 |
"cell_type": "code", |
|
|
69 |
"execution_count": null, |
|
|
70 |
"metadata": {}, |
|
|
71 |
"outputs": [], |
|
|
72 |
"source": [ |
|
|
73 |
"len(np.unique(test_hosp))" |
|
|
74 |
] |
|
|
75 |
}, |
|
|
76 |
{ |
|
|
77 |
"cell_type": "markdown", |
|
|
78 |
"metadata": {}, |
|
|
79 |
"source": [ |
|
|
80 |
"## M-CURES Model" |
|
|
81 |
] |
|
|
82 |
}, |
|
|
83 |
{ |
|
|
84 |
"cell_type": "code", |
|
|
85 |
"execution_count": null, |
|
|
86 |
"metadata": {}, |
|
|
87 |
"outputs": [], |
|
|
88 |
"source": [ |
|
|
89 |
"mcures_clfs = models_dict['M-CURES']\n", |
|
|
90 |
"df_mcures = pd.read_csv('../preprocessing/sample_output/mcures.csv').set_index('ID')" |
|
|
91 |
] |
|
|
92 |
}, |
|
|
93 |
{ |
|
|
94 |
"cell_type": "code", |
|
|
95 |
"execution_count": null, |
|
|
96 |
"metadata": {}, |
|
|
97 |
"outputs": [], |
|
|
98 |
"source": [ |
|
|
99 |
"# Calculate aggregated scores for all examples\n", |
|
|
100 |
"\n", |
|
|
101 |
"eval_matrix = scipy.sparse.csr_matrix(cohort_IDs.join(df_mcures).values.astype(float))\n", |
|
|
102 |
"all_y = np.array([clf.predict_proba(eval_matrix)[:,1] for clf in mcures_clfs])\n", |
|
|
103 |
"y_scores = all_y.mean(0)\n", |
|
|
104 |
"\n", |
|
|
105 |
"df_Yte_all = pd.DataFrame({'hosp_id': test_hosp, 'window_id': test_window, 'y': test_y, 'y_score': y_scores})\n", |
|
|
106 |
"df_Yte_agg = df_Yte_all.groupby('hosp_id').mean() #Can be changed to max, depending on how you want to aggregate scores" |
|
|
107 |
] |
|
|
108 |
}, |
|
|
109 |
{ |
|
|
110 |
"cell_type": "code", |
|
|
111 |
"execution_count": null, |
|
|
112 |
"metadata": {}, |
|
|
113 |
"outputs": [], |
|
|
114 |
"source": [ |
|
|
115 |
"scores = np.sort(df_Yte_agg['y_score'])\n", |
|
|
116 |
"total_negs = df_Yte_agg['y']\n", |
|
|
117 |
"for s in scores: \n", |
|
|
118 |
" curr = df_Yte_agg[df_Yte_agg['y_score'] <= s]\n", |
|
|
119 |
" # How many people do we correctly flag with atleast an NPV of 0.95 (i.e. At most 5% of people we flagged have the event)\n", |
|
|
120 |
" if 1 - curr['y'].mean() == 0.95: \n", |
|
|
121 |
" curr_no_outcome = curr[curr['y'] == 0]\n", |
|
|
122 |
" print('NPV: {:.2f}, Population % Flagged Correctly as Low-Risk {:.2%}'.format(1 - curr['y'].mean(), curr_no_outcome.shape[0] / len(scores)))\n", |
|
|
123 |
" latest = curr" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "markdown", |
|
|
128 |
"metadata": {}, |
|
|
129 |
"source": [ |
|
|
130 |
"## Sweep over NPV" |
|
|
131 |
] |
|
|
132 |
}, |
|
|
133 |
{ |
|
|
134 |
"cell_type": "code", |
|
|
135 |
"execution_count": null, |
|
|
136 |
"metadata": {}, |
|
|
137 |
"outputs": [], |
|
|
138 |
"source": [ |
|
|
139 |
"# Plot the percentage of correctly flagged low-risk patients (true negatives) as NPV varies\n", |
|
|
140 |
"scores = np.sort(df_Yte_agg['y_score'])\n", |
|
|
141 |
"mcures_npvs = []\n", |
|
|
142 |
"mcures_flagged = []\n", |
|
|
143 |
"\n", |
|
|
144 |
"for s in scores: \n", |
|
|
145 |
" curr = df_Yte_agg[df_Yte_agg['y_score'] <= s]\n", |
|
|
146 |
" curr_no_outcome = curr[curr['y'] == 0]\n", |
|
|
147 |
" mcures_npvs.append(1 - curr['y'].mean())\n", |
|
|
148 |
" mcures_flagged.append(curr_no_outcome.shape[0] / len(scores))\n", |
|
|
149 |
" \n", |
|
|
150 |
"fig, ax = plt.subplots(figsize=(3.5, 3.5))\n", |
|
|
151 |
"\n", |
|
|
152 |
"plt.plot(mcures_flagged, mcures_npvs, label = 'M-CURES Model', lw = 1.25)\n", |
|
|
153 |
"\n", |
|
|
154 |
"plt.xlabel('Percentage Correctly Flagged as Low-Risk')\n", |
|
|
155 |
"plt.ylabel('Negative Predictive Value')\n", |
|
|
156 |
"plt.show()" |
|
|
157 |
] |
|
|
158 |
}, |
|
|
159 |
{ |
|
|
160 |
"cell_type": "code", |
|
|
161 |
"execution_count": null, |
|
|
162 |
"metadata": {}, |
|
|
163 |
"outputs": [], |
|
|
164 |
"source": [] |
|
|
165 |
} |
|
|
166 |
], |
|
|
167 |
"metadata": { |
|
|
168 |
"kernelspec": { |
|
|
169 |
"display_name": "Python 3 (ipykernel)", |
|
|
170 |
"language": "python", |
|
|
171 |
"name": "python3" |
|
|
172 |
}, |
|
|
173 |
"language_info": { |
|
|
174 |
"codemirror_mode": { |
|
|
175 |
"name": "ipython", |
|
|
176 |
"version": 3 |
|
|
177 |
}, |
|
|
178 |
"file_extension": ".py", |
|
|
179 |
"mimetype": "text/x-python", |
|
|
180 |
"name": "python", |
|
|
181 |
"nbconvert_exporter": "python", |
|
|
182 |
"pygments_lexer": "ipython3", |
|
|
183 |
"version": "3.9.7" |
|
|
184 |
} |
|
|
185 |
}, |
|
|
186 |
"nbformat": 4, |
|
|
187 |
"nbformat_minor": 4 |
|
|
188 |
} |