Switch to side-by-side view

--- a
+++ b/evaluation/Evaluation_Primary.ipynb
@@ -0,0 +1,203 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pickle\n",
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import scipy\n",
+    "import joblib"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Load ensemble of models\n",
+    "\n",
+    "models_dict = joblib.load('models_dict.joblib')\n",
+    "models_dict.keys()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Load data: Data should be formatted as sample cohort. See README for example\n",
+    "\n",
+    "df_cohort = pd.read_csv('sample_cohort.csv')\n",
+    "test_hosp, test_window, test_y = df_cohort['hosp_id'], df_cohort['window_id'], df_cohort['y']\n",
+    "cohort_IDs = df_cohort.set_index('ID')[[]]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df_cohort"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Functions to assist with evaluation \n",
+    "\n",
+    "from sklearn import metrics, utils\n",
+    "from joblib import Parallel, delayed\n",
+    "\n",
+    "\n",
+    "def bootstrap_func(i, y_true, y_score):\n",
+    "    # Bootstrap resample to calculate AUROC\n",
+    "    yte_true_b, yte_pred_b = utils.resample(y_true, y_score, replace=True, random_state=i)\n",
+    "    return metrics.roc_curve(yte_true_b, yte_pred_b), metrics.roc_auc_score(yte_true_b, yte_pred_b)\n",
+    "\n",
+    "def get_roc_CI(y_true, y_score):\n",
+    "    # Bootstrap confidence intervals \n",
+    "    roc_curves, auc_scores = zip(*Parallel(n_jobs=4)(delayed(bootstrap_func)(i, y_true, y_score) for i in range(1000)))\n",
+    "    print('Test AUC: ({:.3f}, {:.3f}) percentile 95% CI'.format(np.percentile(auc_scores, 2.5), np.percentile(auc_scores, 97.5)))\n",
+    "\n",
+    "    tprs = []\n",
+    "    aucs = []\n",
+    "    mean_fpr = np.linspace(0, 1, 100)\n",
+    "    for fpr, tpr, _ in roc_curves:\n",
+    "        tprs.append(np.interp(mean_fpr, fpr, tpr))\n",
+    "        tprs[-1][0] = 0.0\n",
+    "        aucs.append(metrics.auc(fpr, tpr))\n",
+    "\n",
+    "    mean_tpr = np.mean(tprs, axis=0)\n",
+    "    std_tpr = np.std(tprs, axis=0)\n",
+    "    tprs_upper = np.minimum(mean_tpr + 1.96 * std_tpr, 1)\n",
+    "    tprs_lower = np.maximum(mean_tpr - 1.96 * std_tpr, 0)\n",
+    "    return roc_curves, auc_scores, mean_fpr, tprs_lower, tprs_upper\n",
+    "\n",
+    "def eval3():\n",
+    "    # Calculate hospital admission level AUROC for every complete window\n",
+    "    df_Yte = df_Yte_all.copy()\n",
+    "    df_Yte = df_Yte[df_Yte['window_id'] >= 1]\n",
+    "    df_Yte_agg = df_Yte.groupby(['hosp_id']).max()\n",
+    "    return df_Yte_agg"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## M-CURES model performance and scores"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Load exact model and features of patients. Features should be generated from preprocessing script. \n",
+    "\n",
+    "mcures_clfs = models_dict['M-CURES']\n",
+    "df_mcures = pd.read_csv('../preprocessing/sample_output/mcures.csv').set_index('ID')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df_mcures"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "### AUROC on given dataset\n",
+    "\n",
+    "# Calculate model outputs for all patients, average over all models\n",
+    "eval_matrix = scipy.sparse.csr_matrix(cohort_IDs.join(df_mcures).values.astype(float))\n",
+    "all_y = np.array([clf.predict_proba(eval_matrix)[:,1] for clf in mcures_clfs])\n",
+    "y_scores = all_y.mean(0)\n",
+    "\n",
+    "# To evaluate models, take maximum over all windows\n",
+    "df_Yte_all = pd.DataFrame({'hosp_id': test_hosp, 'window_id': test_window, 'y': test_y, 'y_score': y_scores})\n",
+    "df_Yte_agg = eval3()\n",
+    "y_score = df_Yte_agg['y_score']\n",
+    "y_true = df_Yte_agg['y']\n",
+    "fpr, tpr, thresholds = metrics.roc_curve(y_true, y_score)\n",
+    "print('Test AUC: {:.3f}'.format(metrics.roc_auc_score(y_true, y_score)))\n",
+    "\n",
+    "# # Optionally: Generate 95% CI\n",
+    "# try:\n",
+    "#     roc_curves, auc_scores, mean_fpr, tprs_lower, tprs_upper = get_roc_CI(y_true, y_score)\n",
+    "# except:\n",
+    "#     pass"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Generate list of scores for each example \n",
+    "\n",
+    "y_score_lst = df_Yte_all.groupby(['hosp_id'])['y_score'].apply(list)\n",
+    "df1 = pd.DataFrame({'y_scores_mcures_lst':  y_score_lst})\n",
+    "df2 = pd.DataFrame({'id': df_Yte_agg.index, 'y_scores_mcures': y_score})\n",
+    "\n",
+    "outcome_outputs = df1.merge(df2, left_index=True, right_index=True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "outcome_outputs "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}