[c4ddf6]: / wrap_AdvancedAnalysis_wOnset_wAUROC.py

Download this file

592 lines (447 with data), 30.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 8 14:49:49 2024
@author: aa36
"""
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import average_precision_score, precision_recall_curve, roc_curve, roc_auc_score
import ast
# import sys
# sys.path.append('../Methods_utils') # Add the path to the custom folder
# print(sys.path)
import Methods_utils.methods_cm_time as custom_cm
import Methods_utils.methods as custom
from imblearn.under_sampling import RandomUnderSampler
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import os
colors = ['#630C3A', '#27C3C1', '#FFC107', '#7E34F9', '#E01889', '#617111','#fe6100', '#7d413c',
'#423568', '#5590b4']
sns.set_palette(sns.color_palette(colors))
## Def plot correct predictions, incorrect predictions vs onset time
def metrics_model (y_test, probabilities, predictions, model):
print("probs: ", probabilities)
precision, recall, thresh = precision_recall_curve(y_test,predictions )
fpr, tpr, _ = roc_curve(y_test, probabilities)
auc = roc_auc_score(y_test, probabilities)
auprc = average_precision_score(y_test, probabilities)
print("Precision for ", model, " : ", precision)
print("Recall for ", model, " : ", recall)
print("Threshold for PR for ", model, " : ", thresh)
print("AUC for ", model, " : ", auc)
print("AUPRC for ", model, " : ", auprc)
return auc, fpr, tpr, auprc, precision, recall
#%% Top 10 selected features from Hetmap and CV10
def heatmap_featureSelection (data_heatmap):
heatmap_featSel = data_heatmap['Selected Features'].iloc[-1]
# print("Top 10 most selected features from the CV, as seen in the heatmap:", heatmap_featSel)
return heatmap_featSel
def cv_featureSelection (data_CV):
best_auprc_row = data_CV.loc[data_CV['Test AUPRC'].idxmax()]
best_AUPRC = best_auprc_row['Test AUPRC']
best_features = best_auprc_row['Selected Features']
feature_selection_method = best_auprc_row['Current Feature Selection']
model_best_folds = best_auprc_row['Model']
print("\n--------Choosing the best features from CV -------------------------------------------")
print("Best AUPRC among the folds:", best_AUPRC)
print("Corresponding Features:", best_features)
print("Feature Selection Method:", feature_selection_method)
print("Model:", model_best_folds)
# Filter out rows where the feature selection method is LASSO
data_CV_filtered = data_CV[data_CV['Current Feature Selection'] != 'lasso']
# Find the row with the highest AUPRC among the remaining rows
best_auprc_row_noLasso = data_CV_filtered.loc[data_CV_filtered['Test AUPRC'].idxmax()]
# Step 4: Retrieve the corresponding features, feature selection method, and model for that row
best_AUPRC_noLasso = best_auprc_row_noLasso['Test AUPRC']
#if best_auprc_row_noLasso['Selected Features'] == ['All']:
# If the best set from CV10 is ['All'], then force the full set of features in here
if 'All' in best_auprc_row_noLasso['Selected Features']:
print(":::::::::::::::::::::::::::::::::::::::: CASE 1")
best_features_noLasso = "['c_gender', 'c_vor_diab', 'c_vor_herz' ,'c_vor_atem' ,'c_vor_alko','c_vor_smok', 'c_vor_kidn' ,'c_vor_canc', 'c_ek', 'c_pct', 'c_mechventil','c_dialyse', 'c_ecmo_pecla', 'c_picco' ,'o_sofa_resp', 'o_sofa_cardio','o_sofa_coag' ,'o_sofa_renal', 'o_sofa_liver','n_alter', 'n_kat', 'n_sapsii','n_bddia' ,'n_bdmit', 'n_bdsys', 'n_herzfr', 'n_temp', 'n_ph', 'n_po2' ,'n_pco2','n_fio2pro' ,'n_sbe', 'n_balance', 'n_laktat', 'n_hb' ,'n_blutz', 'n_calcium','n_kalium' ,'n_leuko' ,'n_thrombo' ,'n_bili', 'n_inr' ,'n_ptt' ,'n_ery', 'n_hct','n_crp', 'n_krea' ,'n_harn' ,'n_sofa_total' ,'n_meanlambda' ,'n_delta', 'n_c']"
else:
print(":::::::::::::::::::::::::::::::::::::::: CASE 2")
best_features_noLasso = best_auprc_row_noLasso['Selected Features']
feature_selection_method_noLasso = best_auprc_row_noLasso['Current Feature Selection']
model_noLasso = best_auprc_row_noLasso['Model']
print("\nBest AUPRC (excluding LASSO):", best_AUPRC_noLasso)
print("Corresponding Features:", best_features_noLasso)
print("Feature Selection Method:", feature_selection_method_noLasso)
print("Model:", model_noLasso)
return best_features_noLasso
def averages_AUROC (data_CV):
best_auprc_row = data_CV.loc[data_CV['Test AUROC'].idxmax()]
best_AUPRC = best_auprc_row['Test AUROC']
best_features = best_auprc_row['Selected Features']
feature_selection_method = best_auprc_row['Current Feature Selection']
model_best_folds = best_auprc_row['Model']
print("\n--------Choosing the best features from CV -------------------------------------------")
print("Best AUROC among the folds:", best_AUPRC)
print("Corresponding Features:", best_features)
print("Feature Selection Method:", feature_selection_method)
print("Model:", model_best_folds)
# Filter out rows where the feature selection method is LASSO
data_CV_filtered = data_CV[data_CV['Current Feature Selection'] != 'lasso']
# Find the row with the highest AUPRC among the remaining rows
best_auprc_row_noLasso = data_CV_filtered.loc[data_CV_filtered['Test AUROC'].idxmax()]
best_AUPRC_noLasso = best_auprc_row_noLasso['Test AUROC']
# if best_auprc_row_noLasso['Selected Features'] == ['All']:
# If the best set from CV10 is ['All'], then force the full set of features in here
if 'All' in best_auprc_row_noLasso['Selected Features']:
print(":::::::::::::::::::::::::::::::::::::::: CASE !")
best_features_noLasso = "['c_gender', 'c_vor_diab', 'c_vor_herz' ,'c_vor_atem' ,'c_vor_alko','c_vor_smok', 'c_vor_kidn' ,'c_vor_canc', 'c_ek', 'c_pct', 'c_mechventil','c_dialyse', 'c_ecmo_pecla', 'c_picco' ,'o_sofa_resp', 'o_sofa_cardio','o_sofa_coag' ,'o_sofa_renal', 'o_sofa_liver','n_alter', 'n_kat', 'n_sapsii','n_bddia' ,'n_bdmit', 'n_bdsys', 'n_herzfr', 'n_temp', 'n_ph', 'n_po2' ,'n_pco2','n_fio2pro' ,'n_sbe', 'n_balance', 'n_laktat', 'n_hb' ,'n_blutz', 'n_calcium','n_kalium' ,'n_leuko' ,'n_thrombo' ,'n_bili', 'n_inr' ,'n_ptt' ,'n_ery', 'n_hct','n_crp', 'n_krea' ,'n_harn' ,'n_sofa_total' ,'n_meanlambda' ,'n_delta', 'n_c']"
else:
print(":::::::::::::::::::::::::::::::::::::::: CASE 2")
best_features_noLasso = best_auprc_row_noLasso['Selected Features']
feature_selection_method_noLasso = best_auprc_row_noLasso['Current Feature Selection']
model_noLasso = best_auprc_row_noLasso['Model']
print("\nBest AUROC (excluding LASSO):", best_AUPRC_noLasso)
print("Corresponding Features:", best_features_noLasso)
print("Feature Selection Method:", feature_selection_method_noLasso)
print("Model:", model_noLasso)
return best_features_noLasso
#%% Best model name retrieval and ML model
def cv_bestAverageModel (data_CV):
print("\n--------Choosing the best performing model on average -------------------------------------------")
# group by model and calculate the mean performance
average_performance_per_model = data_CV.groupby('Model')['Test AUPRC'].mean()
# calculate the mean performance across all metrics for each model
average_performance_per_model = data_CV.groupby('Model')['Test AUPRC'].mean()
# find the best average performing model
best_avg_model = average_performance_per_model.idxmax()
best_average_auprc = average_performance_per_model.max()
print("Average Performance of each Model accross the folds:")
print(average_performance_per_model)
print("\nBest Average Performing Model:")
print("Model:", best_avg_model)
print("Average Performance:", best_average_auprc)
print("Average best performing model is: ", best_avg_model, best_average_auprc*100)
return best_avg_model
def cv_bestAverageModel_AUROC_Table (data_CV):
print("\n--------Choosing the best performing model on average -------------------------------------------")
# group by model and calculate the mean performance
average_performance_per_model = data_CV.groupby('Model')['Test AUROC'].mean()
# calculate the mean performance across all metrics for each model
average_performance_per_model = data_CV.groupby('Model')['Test AUROC'].mean()
# find the best average performing model
best_avg_model = average_performance_per_model.idxmax()
best_average_auprc = average_performance_per_model.max()
print("Average Performance of each Model accross the folds:")
print(average_performance_per_model)
print("\nBest Average Performing Model:")
print("Model:", best_avg_model)
print("Average Performance:", best_average_auprc)
print("Average best performing model AUROC is: ", best_avg_model, best_average_auprc*100)
return best_avg_model
def ml_model_cm (model_name, X_train, y_train, X_test, y_test, iteration, onset_days_arr, plot_number):
if model_name == 'rf':
model, auroc, fpr, tpr, auprc, precision, recall, plot_info = custom_cm.random_forest(X_train, y_train, X_test, y_test, True, "RF_" + iteration, onset_days_arr, plot_number)
elif model_name == 'svm':
model, auroc, fpr, tpr, auprc, precision, recall, plot_info = custom_cm.svm(X_train, y_train, X_test, y_test, True, "SVM_" + iteration, onset_days_arr, plot_number)
elif model_name == 'xgb':
model, auroc, fpr, tpr, auprc, precision, recall, plot_info = custom_cm.xgboost_clf(X_train, y_train, X_test, y_test, True, "XGB_" + iteration, onset_days_arr, plot_number)
elif model_name == 'ridge':
model, auroc, fpr, tpr, auprc, precision, recall, plot_info = custom_cm.ridge(X_train, y_train, X_test, y_test, True, "Ridge_" + iteration, onset_days_arr, plot_number)
elif model_name == 'logistic':
model, auroc, fpr, tpr, auprc, precision, recall, plot_info = custom_cm.logistic(X_train, y_train, X_test, y_test, True, "Logistic_" + iteration,onset_days_arr, plot_number)
else:
print("ERROR")
pass
return model, auroc, fpr, tpr, auprc, precision, recall, plot_info
#%% Plot AUROC train and test, plotViolin, print AUROC and AUPRC and sd
def plot_ROC (df_train_OrTest, title_name, save_name):
colors = {'HeatmapTop10': '#630C3A', 'cv10_FeatSel': '#27C3C1', 'AllFeatures': '#FFC107', 'Baseline': '#7E34F9'}
plt.figure(figsize=(10, 9))
plt.rcParams['font.family'] = 'Arial'
# 'HeatmapTop10 Features', 'CV10TopAUPRC Features', 'All Features'
for _, row in df_train_OrTest.iterrows():
method = row['Iteration Counter']
label = ''
if method == 'HeatmapTop10':
label = 'HeatmapTop10 Features'
elif method == 'cv10_FeatSel':
label = 'CV10TopAUPRC Features'
elif method == 'AllFeatures':
label = 'All Features'
plt.plot(row['FPR'], row['TPR'], marker='o', linestyle='-', color=colors[method], label=f"{label}: {row['AUROC']:.2f}")
plt.plot([0, 1], [0, 1], linestyle='--', color='black', label='Baseline: 0.5')
plt.xlabel('False Positive Rate', fontsize = 18+4)
plt.ylabel('True Positive Rate', fontsize = 18+4)
plt.title(title_name, fontsize = 20+4)
plt.xticks(fontsize=16+4)
plt.yticks(fontsize=16+4)
# Increase the size of the text in the legend
legend = plt.legend(prop={'size': 18+4}, loc='lower right') # Adjust size and location as needed
# Adjust size as needed
for text in legend.get_texts():
parts = text.get_text().split(':') # Split text at ":"
if len(parts) > 1: # Ensure there is a part after ":"
text.set_text(f"{parts[0]}: $\\mathbf{{{parts[1]}}}$") # Set LaTeX format for bold text
plt.tight_layout()
plt.savefig( save_name + '_' + str(df_train_OrTest['Count'].unique()) + '.png' , dpi=600)
plt.show()
def plotAUROC_trainAndTest(plot_AUROC_df_train_grouped, plot_AUROC_df_test_grouped, results_directory):
# Plot each group separately
for counter_iter, group_train in plot_AUROC_df_train_grouped:
print("Counter iter is: ", counter_iter)
print("Counter iter is: ", group_train)
group_test = plot_AUROC_df_test_grouped.get_group(counter_iter)
print("Group test AUROC: ", group_test['AUROC'])
title_name_train = f'ROC Curve for Training Data'
save_name_train = results_directory + str(counter_iter) + '_training_holdout'
plot_ROC(group_train, title_name_train, save_name_train)
title_name_test = f'ROC Curve for Testing Data'
save_name_test = results_directory + str(counter_iter) + '_testing_holdout'
plot_ROC(group_test, title_name_test, save_name_test)
##########################################################################
# Violin plot for the variation of the % of correct predictions #
# of the best average performing model with HeatmapTop10 and CV feats #
##########################################################################
def plotViolin (plot_info_df, results_directory):
heatmap_df = plot_info_df[plot_info_df['Feature Selection Method'] == 'HeatmapTop10']
# Calculate percentage of correct values for each row
heatmap_df['Percentage Correct'] = (heatmap_df['Correct'] / heatmap_df['Total']) * 100
# print("This is heatmap_df: _______________________________", heatmap_df)
unique_values = heatmap_df['Percentage Correct'].unique()
print("Unique values in 'Percentage Correct' column:", unique_values)
heatmap_df['Percentage Correct'] = pd.to_numeric(heatmap_df['Percentage Correct'], errors='coerce')
colors_violin = ['#8c95c5', '#4d004b', '#b6cde2']
sns.set_palette(sns.color_palette(colors_violin))
# Create violin plot
plt.figure(figsize=(10, 6))
sns.violinplot(data = heatmap_df, x = 'time_categories', y = 'Percentage Correct', cmap = colors_violin)
plt.title('Violin Plot - HeatmapTop10 Features')
plt.xlabel('Time Categories')
plt.ylabel('Percentage Correct Sepsis Predictions')
plt.savefig(results_directory + "violin_plot_heatmap10.png", dpi = 600)
plt.show()
heatmap_df.to_csv(results_directory + "heatmap_df_violinData.csv")
##### Violin plot CV10
cv10_df_violin = plot_info_df[plot_info_df['Feature Selection Method'] == 'cv10_FeatSel']
# Calculate percentage of correct values for each row
cv10_df_violin['Percentage Correct'] = (cv10_df_violin['Correct'] / cv10_df_violin['Total']) * 100
unique_values_CV10 = cv10_df_violin['Percentage Correct'].unique()
cv10_df_violin['Percentage Correct'] = pd.to_numeric(cv10_df_violin['Percentage Correct'], errors='coerce')
colors_violin = ['#8c95c5', '#4d004b', '#b6cde2']
sns.set_palette(sns.color_palette(colors_violin))
# Create violin plot
plt.figure(figsize=(10, 6))
sns.violinplot(data = cv10_df_violin, x = 'time_categories', y = 'Percentage Correct', cmap = colors_violin)
plt.title('Violin Plot - CV10 Features')
plt.xlabel('Time Categories')
plt.ylabel('Percentage Correct Sepsis Predictions')
plt.savefig(results_directory + "violin_plot_CV10.png", dpi = 600)
plt.show()
cv10_df_violin.to_csv(results_directory + "cv10_df_violinData.csv")
##########################################################################
# AUROC and AUPRC values with their respective standard deviations after #
# taking into accounts all the iterations (here 20 (0, 19)) #
##########################################################################
def print_AUROCandAUPRC_andSTD (results_dict):
logistic_results = {k: [] for k in results_dict.keys()}
for i, model in enumerate(results_dict['Model']):
if 'LogisticRegression' in str(model):
for key, value in results_dict.items():
logistic_results[key].append(value[i])
# Group by features
grouped_results = {}
for model, features, aurocs in zip(logistic_results['Model'], logistic_results['Features'], logistic_results['AUROC']):
features_tuple = tuple(features) # Convert list to tuple
if features_tuple not in grouped_results:
grouped_results[features_tuple] = []
grouped_results[features_tuple].append(aurocs)
# Compute standard deviation for each feature set
mean_stddev_dict = {}
for features, aurocs in grouped_results.items():
mean_stddev_dict[features] = {
'mean': np.mean(aurocs),
'stddev': np.std(aurocs)
}
# Print mean and standard deviation for each feature set
print("Mean and standard deviation of AUROC for models containing 'LogisticRegression' grouped by features:")
for features, values in mean_stddev_dict.items():
print(f"Features: {features}, Mean AUROC: {values['mean']}, Stddev: {values['stddev']}")
### AUPRC mean and stddev
print("")
logistic_results = {k: [] for k in results_dict.keys()}
for i, model in enumerate(results_dict['Model']):
if 'LogisticRegression' in str(model):
for key, value in results_dict.items():
logistic_results[key].append(value[i])
# Group by features
grouped_results = {}
for model, features, aurocs in zip(logistic_results['Model'], logistic_results['Features'], logistic_results['AUPRC']):
features_tuple = tuple(features) # Convert list to tuple
if features_tuple not in grouped_results:
grouped_results[features_tuple] = []
grouped_results[features_tuple].append(aurocs)
# Compute standard deviation for each feature set
mean_stddev_dict = {}
for features, aurocs in grouped_results.items():
mean_stddev_dict[features] = {
'mean': np.mean(aurocs),
'stddev': np.std(aurocs)
}
# Print mean and standard deviation for each feature set
print("Mean and standard deviation of AUPRC for models containing 'LogisticRegression' grouped by features:")
for features, values in mean_stddev_dict.items():
print(f"Features: {features}, Mean AUPRC: {values['mean']}, Stddev: {values['stddev']}")
#%% Retrieve data and make it usable
def getData(data_path, CV_nr):
# read the all CVs to extract the avg perf model ^ best score
cv_resPath = './resultsAllCVs_pipeline_' + str(CV_nr) + '__split_' + str(CV_nr) + '.csv' #'C:/Users/aa36.MEDMA/Desktop/ML_paper/Restructured_withConfusionMatrix_Balanced/resultsAllCVs_pipeline_10__split_10.csv'
data_CV = pd.read_csv(cv_resPath, encoding='latin-1', sep='~')
# read heatmap cv to get the features
heatmap_resPath = './final_stratif.csv'
data_heatmap = pd.read_csv(heatmap_resPath, encoding='latin-1', sep=',')
data = pd.read_csv(data_path, encoding='latin-1', sep='~')
# print(data.columns.values)
onset_time_path = 'C:/Users/aa36.MEDMA/Desktop/ML_paper/fbentriesProgV3.csv'
data_onset = pd.read_csv(onset_time_path, encoding='latin-1', sep='~')
heatmap_featSel = heatmap_featureSelection(data_heatmap)
print("\nTop 10 most selected features from the CV, as seen in the heatmap:", heatmap_featSel)
cv_featSel = cv_featureSelection (data_CV) #"['c_gender', 'c_vor_diab', 'c_vor_herz' ,'c_vor_atem' ,'c_vor_alko','c_vor_smok', 'c_vor_kidn' ,'c_vor_canc', 'c_ek', 'c_pct', 'c_mechventil','c_dialyse', 'c_ecmo_pecla', 'c_picco' ,'o_sofa_resp', 'o_sofa_cardio','o_sofa_coag' ,'o_sofa_renal', 'o_sofa_liver','n_alter', 'n_kat', 'n_sapsii','n_bddia' ,'n_bdmit', 'n_bdsys', 'n_herzfr', 'n_temp', 'n_ph', 'n_po2' ,'n_pco2','n_fio2pro' ,'n_sbe', 'n_balance', 'n_laktat', 'n_hb' ,'n_blutz', 'n_calcium','n_kalium' ,'n_leuko' ,'n_thrombo' ,'n_bili', 'n_inr' ,'n_ptt' ,'n_ery', 'n_hct','n_crp', 'n_krea' ,'n_harn' ,'n_sofa_total' ,'n_meanlambda' ,'n_delta', 'n_c']"
#cv_featureSelection (data_CV)
print("\nTop 10 most selected features from the CV, based on best AUPRC:", cv_featSel)
best_avg_model = cv_bestAverageModel (data_CV)
# aurocs_averages = cv_bestAverageModel_AUROC_Table(data_CV)
# auprcs_averages_manuscriptTable = cv_bestAverageModel (data_CV)
## Although it does not guarantee that the best model will actually do great
## with the features from the best auprc in the folds
## still the model "saw" those features at a certain point
## and because that was specific to the split which model does best
#%% Retrain avg_best_model on the 90% data
# data split
data2 = data[['c_gender', 'c_vor_diab', 'c_vor_herz' ,'c_vor_atem' ,'c_vor_alko',
'c_vor_smok', 'c_vor_kidn' ,'c_vor_canc', 'c_ek', 'c_pct', 'c_mechventil',
'c_dialyse', 'c_ecmo_pecla', 'c_picco' ,'o_sofa_resp', 'o_sofa_cardio',
'o_sofa_coag' ,'o_sofa_renal', 'o_sofa_liver','n_alter', 'n_kat', 'n_sapsii',
'n_bddia' ,'n_bdmit', 'n_bdsys', 'n_herzfr', 'n_temp', 'n_ph', 'n_po2' ,'n_pco2',
'n_fio2pro' ,'n_sbe', 'n_balance', 'n_laktat', 'n_hb' ,'n_blutz', 'n_calcium',
'n_kalium' ,'n_leuko' ,'n_thrombo' ,'n_bili', 'n_inr' ,'n_ptt' ,'n_ery', 'n_hct',
'n_crp', 'n_krea' ,'n_harn' ,'n_sofa_total' ,'n_meanlambda' ,'n_delta', 'n_c']].copy()
y_toSplit = data['event']
X = data2
featureSelection_options_str = [heatmap_featSel, cv_featSel]
featureSelection_options = [ast.literal_eval(s) for s in featureSelection_options_str]
print(featureSelection_options)
featureSelection_options.append(['c_gender', 'c_vor_diab', 'c_vor_herz' ,'c_vor_atem' ,'c_vor_alko',
'c_vor_smok', 'c_vor_kidn' ,'c_vor_canc', 'c_ek', 'c_pct', 'c_mechventil',
'c_dialyse', 'c_ecmo_pecla', 'c_picco' ,'o_sofa_resp', 'o_sofa_cardio',
'o_sofa_coag' ,'o_sofa_renal', 'o_sofa_liver','n_alter', 'n_kat', 'n_sapsii',
'n_bddia' ,'n_bdmit', 'n_bdsys', 'n_herzfr', 'n_temp', 'n_ph', 'n_po2' ,'n_pco2',
'n_fio2pro' ,'n_sbe', 'n_balance', 'n_laktat', 'n_hb' ,'n_blutz', 'n_calcium',
'n_kalium' ,'n_leuko' ,'n_thrombo' ,'n_bili', 'n_inr' ,'n_ptt' ,'n_ery', 'n_hct',
'n_crp', 'n_krea' ,'n_harn' ,'n_sofa_total' ,'n_meanlambda' ,'n_delta', 'n_c'])
return X, y_toSplit, featureSelection_options, data_onset, best_avg_model
#%% Train models and use other functions
def trainModels_andTest(X, y_toSplit, featureSelection_options, data_onset, best_avg_model, number_ofIterations):
results_dir = "./Results_iterationPlots/"
if not os.path.exists(results_dir):
os.makedirs(results_dir)
print("....Created results directory...")
iteration = ['HeatmapTop10', 'cv10_FeatSel', 'AllFeatures']
count = 0
results_dict = {'Model': [], 'Features': [], 'AUROC': [], 'AUPRC': [], 'Precision': [], 'Recall': []}
plot_info_df = pd.DataFrame(columns=['Iteration Counter', 'Feature Selection Method', 'time_categories', 'Total', 'Correct', 'Incorrect'])
plot_AUROC_df_train = pd.DataFrame(columns=['Count', 'Iteration Counter', 'Feature Selection Method', 'AUROC', 'FPR', 'TPR'])
plot_AUROC_df_test = pd.DataFrame(columns=['Count','Iteration Counter', 'Feature Selection Method', 'AUROC', 'FPR', 'TPR'])
undersample = RandomUnderSampler(sampling_strategy=1)
X_train_unscaled_imbalanced, X_test_unscaled, y_train_imbalanced, y_test = train_test_split(X, y_toSplit,
stratify=y_toSplit,
test_size=0.1 ,
random_state = 1)
print("Cases and controls hold-out aka test data: \n", y_test.value_counts())
print("Cases and controls training data: \n", y_train_imbalanced.value_counts())
subjects_index_with_sepsis = y_test[y_test == 1].index
# Filter based on the index values where y_test is equal to 1, because onset can be only for sepsis (thus 1)
onset_days_arr = data_onset.loc[subjects_index_with_sepsis, 'n_onset_days']
onset_array = onset_days_arr
y_test.reset_index(drop=True)
for counter_iter in range (0, number_ofIterations):
count = 0
plot_number = results_dir + str(counter_iter)
for features in featureSelection_options:
print("-----------------------> Using the features from ", iteration[count] )
X_toScale = X_train_unscaled_imbalanced[features].copy()
X_test_featsGood = X_test_unscaled[features].copy()
print("Currently working with: ", X_toScale)
X_train_unscaled, y_train = undersample.fit_resample(X_toScale, y_train_imbalanced)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train_unscaled)
X_test = scaler.fit_transform(X_test_featsGood)
print("Cases and controls training data balanced: \n", y_train.value_counts())
model, auroc_model, fpr_model, tpr_model, auprc_model, precision_model, recall_model, plot_info = ml_model_cm (best_avg_model, X_train, y_train, X_test, y_test, iteration[count], onset_array, plot_number)
results_dict['Model'].append(model)
results_dict['Features'].append(features)
results_dict['AUROC'].append(auroc_model)
results_dict['AUPRC'].append(auprc_model)
results_dict['Precision'].append(precision_model)
results_dict['Recall'].append(recall_model)
plot_info = plot_info.reset_index()
# print("PLOTTING INFORMATIONNNNNNNNNNN: ", plot_info)
plot_info['Iteration Counter'] = counter_iter
plot_info['Feature Selection Method'] = iteration[count]
# Append the current iteration's plot_info to the main plot_info DataFrame
plot_info_df = pd.concat([plot_info_df, plot_info], ignore_index=True)
plot_AUROC_df_test = plot_AUROC_df_test.append({'Count': counter_iter,
'Iteration Counter': iteration[count],
'Feature Selection Method': features,
'AUROC': auroc_model,
'FPR': fpr_model,
'TPR': tpr_model}, ignore_index=True)
predictions_model_train = model.predict(X_train)
model_Grid_probabilities_train = model.predict_proba(X_train)
model_probabilities_train = model_Grid_probabilities_train[:,1]
auc_train, fpr_train, tpr_train, auprc_train, precision_train, recall_train = metrics_model(y_train, model_probabilities_train, predictions_model_train, model)
plot_AUROC_df_train = plot_AUROC_df_train.append({'Count': counter_iter,
'Iteration Counter': iteration[count],
'Feature Selection Method': features,
'AUROC': auc_train,
'FPR': fpr_train,
'TPR': tpr_train}, ignore_index=True)
# Append the current iteration's plot_info to the main plot_info dataframe
# plot_info_df = pd.concat([plot_info_df, iteration_plot_info_df], ignore_index=True)
count = count + 1
title_name_train = 'ROC Curve for Training Data'
title_name_test = 'ROC Curve for Testing Data'
save_name_train = results_dir + str(plot_number) + "training_holdout" + ".png" # plot number is actually the iteration number to be used in saving the plot
save_name_test = results_dir + str(plot_number) + "testing_holdout.png"
plot_AUROC_df_train_grouped = plot_AUROC_df_train.groupby('Count')
plot_AUROC_df_test_grouped = plot_AUROC_df_test.groupby('Count')
# Plot each group separately
plotAUROC_trainAndTest (plot_AUROC_df_train_grouped, plot_AUROC_df_test_grouped, results_dir)
#%% Dummies: majority, minority, stratified
model_dummy_majority, auroc_dummy_majority, fpr_dummy_majority, tpr_dummy_majority, auprc_dummy_majority, precision_dummy_majority, recall_dummy_majority = custom.dummy_clf_majority0 (X_train, y_train, X_test, y_test)#, True, "Dummy_majority_" + iteration[count-1])
results_dict['Model'].append(model_dummy_majority)
results_dict['Features'].append(featureSelection_options[1])
results_dict['AUROC'].append(auroc_dummy_majority)
results_dict['AUPRC'].append(auprc_dummy_majority)
results_dict['Precision'].append(precision_dummy_majority)
results_dict['Recall'].append(recall_dummy_majority)
model_dummy_minority, auroc_dummy_minority, fpr_dummy_minority, tpr_dummy_minority, auprc_dummy_minority, precision_dummy_minority, recall_dummy_minority = custom.dummy_clf_minority1(X_train, y_train, X_test, y_test)#, True, "Dummy_minority_" + iteration[count-1])
results_dict['Model'].append(model_dummy_minority)
results_dict['Features'].append(featureSelection_options[1])
results_dict['AUROC'].append(model_dummy_minority)
results_dict['AUPRC'].append(auprc_dummy_minority)
results_dict['Precision'].append(precision_dummy_minority)
results_dict['Recall'].append(recall_dummy_minority)
model_dummy_stratif, auroc_dummy_stratif, fpr_dummy_stratif, tpr_dummy_stratif, auprc_dummy_stratif, precision_dummy_stratif, recall_dummy_stratif = custom.dummy_clf(X_train, y_train, X_test, y_test)#, True, "Dummy_stratif_" + iteration[count-1])
results_dict['Model'].append(model_dummy_stratif)
results_dict['Features'].append(featureSelection_options[1])
results_dict['AUROC'].append(model_dummy_stratif)
results_dict['AUPRC'].append(auprc_dummy_stratif)
results_dict['Precision'].append(precision_dummy_stratif)
results_dict['Recall'].append(recall_dummy_stratif)
#%% Results
print(results_dict)
plotViolin (plot_info_df, results_dir)
print_AUROCandAUPRC_andSTD (results_dict)
#%% Wrap this .py script
def wrapAdvancedAnalysis (data_path, CV_nr, number_ofIterations):
X, y_toSplit, featureSelection_options, data_onset, best_avg_model = getData(data_path, CV_nr)
trainModels_andTest(X, y_toSplit, featureSelection_options, data_onset, best_avg_model, number_ofIterations)
#data_path = 'C:/Users/aa36.MEDMA/Desktop/Franzi/CC_QtJune/New_Bianka/fbentriesProgV2.csv'
#wrapAdvancedAnalysis (data_path)