[d2c46b]: / diff_sex / diff_sexR.R

Download this file

80 lines (76 with data), 5.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#diff sex################
#train old:DMP+clin lasso+xgboost30
{
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load("UMN_DMP_new.Rdata")
id3 <- read.table("xgblasso_DMP.csv",sep=",",header = T)
head(id3)
id3 <- as.character(id3$Feature)
X <- UMN_DMP_new[,colnames(UMN_DMP_new) %in% c("chf","SEX",id3)]
X = X[,c(2,1,3:32)]
X <- data.frame(X)
X <- rownames_to_column(X,"ID")
colnames(X)[2] <- c("target")#chf
write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_pdata_sex_train.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_sex.csv",row.names = F,sep=",")
# write.table(X[,colnames(X) %in% c("ID","target","AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
# "D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_ehr_sex.csv",row.names = F,sep=",")
# write.table(X[,!colnames(X) %in% c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
# "D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_cpg_sex.csv",row.names = F,sep=",")
}
#test old sex:DMP+clin lasso+xgboost
{
load(file="JHU_DMP_new.Rdata")
X <- JHU_DMP_new[,colnames(JHU_DMP_new) %in% c("SEX",id3)]
table(X$SEX)
# 0 1
# 121 50
X <- data.frame(X)
X <- rownames_to_column(X,"ID")
pdata <- data.frame(JHU_DMP_new$chf)
pdata$ID <- rownames(JHU_DMP_new)
write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_pdata_sex_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_sex_test.csv",row.names = F,sep=",")
write.table(X[,colnames(X) %in% c("ID","AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_ehr_sex_test.csv",row.names = F,sep=",")
write.table(X[,!colnames(X) %in% c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_cpg_sex_test.csv",row.names = F,sep=",")
}
#add sex feature###########
#train old:DMP+clin lasso+xgboost30
{
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load("UMN_DMP_new.Rdata")
id3 <- read.table("xgblasso_DMP.csv",sep=",",header = T)
head(id3)
id3 <- as.character(id3$Feature)
X <- UMN_DMP_new[,colnames(UMN_DMP_new) %in% c("chf","SEX",id3)]
X = X[,c(2,1,3:32)]
X <- data.frame(X)
X <- rownames_to_column(X,"ID")
colnames(X)[2] <- c("target")#chf
write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_pdata_sex_train.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_sex.csv",row.names = F,sep=",")
# write.table(X[,colnames(X) %in% c("ID","target","AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
# "D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_ehr_sex.csv",row.names = F,sep=",")
# write.table(X[,!colnames(X) %in% c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
# "D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_cpg_sex.csv",row.names = F,sep=",")
}
#test old sex:DMP+clin lasso+xgboost
{
load(file="JHU_DMP_new.Rdata")
X <- JHU_DMP_new[,colnames(JHU_DMP_new) %in% c("SEX",id3)]
table(X$SEX)
# 0 1
# 121 50
X <- data.frame(X)
X <- rownames_to_column(X,"ID")
pdata <- data.frame(JHU_DMP_new$chf)
pdata$ID <- rownames(JHU_DMP_new)
write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_pdata_sex_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_sex_test.csv",row.names = F,sep=",")
write.table(X[,colnames(X) %in% c("ID","AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_ehr_sex_test.csv",row.names = F,sep=",")
write.table(X[,!colnames(X) %in% c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")],
"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126\\20210817deepfm_feature_dmp_lassoxgboost_cpg_sex_test.csv",row.names = F,sep=",")
}