[d2c46b]: / 4-pipeline-DMP_train.R

Download this file

417 lines (398 with data), 22.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
rm(list=ls())
#merge EHR and CpG
{
library(impute)
library(tibble)
library(dplyr)
setwd("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\early_chf\\c1_UMN_JHU\\train_UMN_tset_JHU/1123_dataSummary")
load(file="CellFraction.Rdata")
load(file="HFpEF.Rdata")
HFpEF <- data.frame(HFpEF)
data_cpg = filter(HFpEF,PACKS_SET == "UMN")
data_cpg_chf <- filter(data_cpg , chf == 1)
data_cpg_nochf <- filter(data_cpg , chf == 0)
data_cpg <- rbind(data_cpg_chf,data_cpg_nochf)
data_cpg$Sample_Name <- paste(rep(c("chf","control"),c(nrow(data_cpg_chf),nrow(data_cpg_nochf))),
c(c(1:nrow(data_cpg_chf)),c(1:nrow(data_cpg_nochf))),sep = "")
train_meta <- data_cpg[,-c(4:7)]
train_meta <- train_meta[,c(128,1:127)]
train_meta_raw <- cbind(train_meta,CellFraction)
{
colnames(train_meta_raw)= c("Sample_Name","shareid",
"Ejectionfraction","PACKS_SET",
"Omega3","Omega3amount",
"Statin","Statinamount",
"Thiazides","Thiazidesamount",
"Diuretic","Diureticamount",
"Potassium","Potassiumamount",
"Aldosterone","Aldosteroneamount",
"Amiodarone","Amiodaroneamount",
"Vasodilators","Vasodilatorsamount",
"CoQ10","CoQ10amount",
"Betablocking","Betablockingamount",
"AngiotensinIIantagonists","AngiotensinIIantagonistsamount",
"ACEI","ACEIamount",
"Warfarin","Warfarinamount",
"Clopidogrel","Clopidogrelamount",
"Aspirin","Aspirinamount",
"Folicacid","Folicacidamount",
"cvd","Coronaryheartdisease","Heartfailure",
"chddate","chfdate","cvddate","midate",
"Myocardialinfarction","Diabetes",
"Atrialfibrillation","afxdate",
"Stroke","strokedate",
"DATE8","DATE9",
"Gender","Age","Bloodglucose","BMI","LDLcholesterol",
"Numberofcigarettessmoked","Creatinineserum",
"Smoking","Averagediastolicbloodpressure",
"Leftventricularhypertrophy",
"Fastingbloodglucose","HDLcholesterol","Hight",
"Averagesystolicbloodpressure",
"Totalcholesterol","Triglycerides" ,"Ventricularrate",
"Waist","Weight","Treatedforhypertension",
"Treatedforlipids","aspirin.1",
"Drinkbeer","Drinkwine","Drinkliquor","Sleep",
"Albuminurine", "Creatinineurine" ,
"HemoglobinA1cwholeblood","Atrialenlargement",
"Rightventricularhypertrophy","lvh","Rheumatic",
"Aorticvalve","Mitralvalve","other_heart",
"Arrhythmia","other_peripheral_vascular_disease",
"other_vascular_diagnosis",
"Dementia","Parkinson","Adultseizuredisorder" ,
"Neurological","Thyroid","Endocrine","Renal","Gynecologic",
"Emphysema","Pneumonia","Asthma","Pulmonary","Gout",
"Degenerative","Rheumatoidarthritis","Musculoskeletal","Gallbladder",
"Gerd","Liver","Gidisease","Hematologicdisorder","Bleedingdisorder",
"Eye","Ent","Skin","other","Depression","Anxiety","Psychosis",
"other2","Prostate","Infectious","Fever","pneumonia.1",
"Chronicbronchitis","emphysema.1","COPD","Creactiveprotein",
"CD8T","CD4T","NK","Bcell","Mono","Gran")
}
setwd("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\early_chf\\c1_UMN_JHU\\train_UMN_tset_JHU/1123_dataSummary/")
save(train_meta_raw,file="train_meta_raw.Rdata")
train_meta = train_meta_raw[,!colnames(train_meta_raw) %in% c("PACKS_SET","Omega3amount","Statinamount","Thiazidesamount","Diureticamount",
"Potassiumamount" , "Aldosteroneamount" , "Amiodaroneamount",
"Vasodilatorsamount","CoQ10amount","Betablockingamount",
"AngiotensinIIantagonistsamount", "ACEIamount" , "Warfarinamount" ,
"Clopidogrelamount" , "Aspirinamount" , "Folicacidamount" ,"chddate" ,
"chfdate" ,"cvddate" ,"midate" ,"afxdate" ,"strokedate" ,"DATE8","lvh","cvd",
"DATE9","aspirin.1","other_heart","other_peripheral_vascular_disease",
"other_vascular_diagnosis","other","other2","pneumonia.1","emphysema.1")]
}
#EHR
{
#sex
train_meta$Gender <- ifelse(train_meta$Gender == 1,"F","M")
train_meta = train_meta[,-c(1,2)]
{
library(table1)
library(tableone)
{
#0,1 feature
c = c("Omega3" ,"Statin" , "Thiazides" ,"Diuretic" ,"Potassium" ,"Aldosterone",
"Amiodarone","Vasodilators" , "CoQ10", "Betablocking",
"AngiotensinIIantagonists" , "ACEI", "Warfarin","Clopidogrel" ,"Aspirin" ,
"Folicacid",
"Coronaryheartdisease", "Myocardialinfarction", "Diabetes","Atrialfibrillation" , "Stroke" ,
"Smoking" ,"Leftventricularhypertrophy" ,"Treatedforhypertension", "Treatedforlipids" ,
"Drinkbeer", "Drinkwine" ,"Drinkliquor",
"Atrialenlargement","Rightventricularhypertrophy" ,
"Rheumatic", "Aorticvalve","Mitralvalve" ,"Arrhythmia",
"Dementia", "Parkinson",
"Adultseizuredisorder","Neurological" , "Thyroid","Endocrine" ,
"Renal" , "Gynecologic", "Emphysema" , "Pneumonia" ,"Asthma","Pulmonary",
"Gout" ,"Degenerative", "Rheumatoidarthritis","Musculoskeletal" ,
"Gallbladder" , "Gerd" , "Liver" , "Gidisease" ,"Hematologicdisorder" ,
"Bleedingdisorder" , "Eye" , "Ent" , "Skin", "Depression" ,"Anxiety" ,
"Psychosis" ,"Prostate" ,"Infectious", "Fever" ,
"Chronicbronchitis" , "COPD" )
for(i in c){
train_meta[,i]<- as.factor(train_meta[,i])
train_meta[,i]<- as.logical(train_meta[,i] == 1)}
{
label(train_meta$Ejectionfraction) <- "Ejection fraction"
label(train_meta$CoQ10) <- "CoQ 10"
label(train_meta$Omega3) <- "Omega 3"
label(train_meta$AngiotensinIIantagonists) <- "Angiotensin II antagonists"
label(train_meta$Betablocking) <- "Beta blocking"
label(train_meta$Coronaryheartdisease) <- "Coronary heart disease"
label(train_meta$Myocardialinfarction) <- "Myocardial infarction"
label(train_meta$Atrialfibrillation) <- "Atrial fibrillation"
label(train_meta$Bloodglucose) <- "Blood glucose"
label(train_meta$LDLcholesterol) <- "LDL cholesterol"
label(train_meta$Numberofcigarettessmoked) <- "Number of cigarettes smoked"
label(train_meta$Creatinineserum) <- "Creatinine serum"
label(train_meta$Averagediastolicbloodpressure) <- "Average diastolic blood pressure"
label(train_meta$Leftventricularhypertrophy) <- "Left ventricular hypertrophy"
label(train_meta$Fastingbloodglucose) <- "Fasting blood glucose"
label(train_meta$HDLcholesterol) <- "HDL cholesterol"
label(train_meta$Averagesystolicbloodpressure) <- "Average systolic blood pressure"
label(train_meta$Totalcholesterol) <- "Total cholesterol"
label(train_meta$Ventricularrate) <- "Ventricular rate"
label(train_meta$Treatedforhypertension) <- "Treated for hypertension"
label(train_meta$Treatedforlipids) <- "Treated for lipids"
label(train_meta$Drinkbeer) <- "Drink beer"
label(train_meta$Drinkwine) <- "Drink wine"
label(train_meta$Drinkliquor) <- "Drink liquor"
label(train_meta$Albuminurine) <- "Albumin urine"
label(train_meta$Creatinineurine) <- "Creatinine urine"
label(train_meta$HemoglobinA1cwholeblood) <- "Hemoglobin A1c whole blood"
label(train_meta$Atrialenlargement) <- "Atrial enlargement"
label(train_meta$Rightventricularhypertrophy) <- "Right ventricular hypertrophy"
label(train_meta$Aorticvalve) <- "Aortic valve"
label(train_meta$Mitralvalve) <- "Mitral valve"
label(train_meta$Adultseizuredisorder) <- "Adultseizure disorder"
label(train_meta$Hematologicdisorder) <- "Hematologic disorder"
label(train_meta$Bleedingdisorder) <- "Bleeding disorder"
label(train_meta$Chronicbronchitis) <- "Chronic bronchitis"
label(train_meta$Creactiveprotein) <- "C reactive protein"
label(train_meta$CD8T) <- "CD8+ T cell"
label(train_meta$CD4T) <- "CD4+ T cell"
label(train_meta$NK) <- "Natural killer cell"
label(train_meta$Bcell) <- "B cell"
label(train_meta$Mono) <- "Monocyte cell"
label(train_meta$Gran) <- "Granulocytes cell"
}
{
units(train_meta$Age) <- "years"
units(train_meta$Sleep) <- "hours"
units(train_meta$Numberofcigarettessmoked) <- "day"
units(train_meta$CD8T) <- "proportions"
units(train_meta$CD4T) <- "proportions"
units(train_meta$NK) <- "proportions"
units(train_meta$Bcell) <- "proportions"
units(train_meta$Mono) <- "proportions"
units(train_meta$Gran) <- "proportions"
train_meta$Heartfailure <- factor(train_meta$Heartfailure, levels=c(0, 1, 2), labels=c("NoChf", "Chf", "P-value"))
}
rndr <- function(x, name, ...) {
if (length(x) == 0) {
y <- train_meta[[name]]
s <- rep("", length(render.default(x=y, name=name, ...)))
if (is.numeric(y)) {
p <- wilcox.test(y ~ train_meta$Heartfailure)$p.value #行wilcoxon=Mann-Whitney U
} else {#t.test
p <- chisq.test(table(y, droplevels(train_meta$Heartfailure)))$p.value
}
s[2] <- sub("<", "&lt;", format.pval(p, digits=3, eps=0.001))
s
} else {
render.default(x=x, name=name, ...)
}
}
rndr.strat <- function(label, n, ...) {
ifelse(n==0, label, render.strat.default(label, n, ...))
}
table1(~ Gender+Age+
CD8T+CD4T+NK+Bcell+Mono+Gran+
Smoking+Numberofcigarettessmoked+BMI+Hight+Waist+Weight+
Fastingbloodglucose+Bloodglucose+LDLcholesterol+HDLcholesterol+Totalcholesterol+
Triglycerides+Ventricularrate+Averagediastolicbloodpressure+Averagesystolicbloodpressure+
Treatedforhypertension+Treatedforlipids+
Ejectionfraction+Creactiveprotein+Creatinineserum+Creatinineurine+
Albuminurine+HemoglobinA1cwholeblood+
Drinkbeer+Drinkwine+Drinkliquor+Sleep+
Omega3+Statin+Thiazides+Diuretic+Potassium+Aldosterone+Amiodarone+Vasodilators+CoQ10+
Betablocking+AngiotensinIIantagonists+ACEI+Warfarin+Clopidogrel+Aspirin+Folicacid+
Coronaryheartdisease+Myocardialinfarction+Diabetes+Atrialfibrillation+
Stroke+Leftventricularhypertrophy+Atrialenlargement+Rightventricularhypertrophy+
Rheumatic+Aorticvalve+Mitralvalve+Arrhythmia+Dementia+Parkinson+Adultseizuredisorder+
Neurological+Thyroid+Endocrine+Renal+Gynecologic+Emphysema+Pneumonia+Asthma+Pulmonary+Gout+
Degenerative+Rheumatoidarthritis+Musculoskeletal+Gallbladder+Gerd+Liver+
Gidisease+Hematologicdisorder+Bleedingdisorder+Eye+Ent+Skin+Depression+
Anxiety+Psychosis+Prostate+Infectious+Fever+Chronicbronchitis+COPD | Heartfailure,data=train_meta,
droplevels=F, render=rndr, render.strat=rndr.strat, overall=F)
}
}
#rm missing > 20% or P>0.05
{
for(name in colnames(train_meta[,-c(19)])){
y <- train_meta[[name]]
if (is.numeric(y)) {
p <- wilcox.test(y ~ train_meta$Heartfailure)$p.value #wilcoxon = Mann-Whitney U
} else {#t.test
p <- chisq.test(table(y, droplevels(train_meta$Heartfailure)))$p.value
}
if(p>0.05){
print(name)
}
}
#p value
train_meta <- train_meta[,!colnames(train_meta) %in% c("Ejectionfraction", "Omega3", "Statin",
"Thiazides", "Potassium",
"Aldosterone", "Amiodarone", "Vasodilators", "CoQ10",
"Warfarin", "Clopidogrel", "Folicacid", "Myocardialinfarction", "Stroke",
"Numberofcigarettessmoked", "Smoking", "Leftventricularhypertrophy", "Hight", "Triglycerides", "Ventricularrate",
"Drinkbeer", "Drinkwine", "Drinkliquor", "Sleep", "Creatinineurine",
"Mitralvalve", "Arrhythmia", "Dementia",
"Parkinson", "Adultseizuredisorder", "Neurological",
"Thyroid", "Endocrine", "Renal", "Gynecologic", "Emphysema",
"Pneumonia", "Asthma", "Pulmonary", "Gout", "Degenerative",
"Musculoskeletal", "Gallbladder", "Gerd", "Liver",
"Gidisease", "Hematologicdisorder", "Bleedingdisorder",
"Eye", "Ent", "Skin", "Depression", "Anxiety", "Psychosis",
"Prostate", "Infectious", "Fever", "Chronicbronchitis",
"COPD","CD8T","CD4T","NK","Bcell","Mono","Gran")]
#missing
train_meta <- train_meta[,!colnames(train_meta) %in% c("Diabetes")]
save(train_meta,file="train_meta.Rdata")
# all 0
train_meta <- train_meta[,!colnames(train_meta) %in% c("Rightventricularhypertrophy")]
save(train_meta,file="train_meta.Rdata")
}
#impute
{
library(tibble)
library(impute)
load(file="train_meta_raw.Rdata")
load(file="train_meta.Rdata")
train_meta <- train_meta_raw[,colnames(train_meta_raw) %in% c(colnames(train_meta))]
#same feature is many NA (NA>1%)
Patient_impute <- impute.knn(as.matrix(data.frame(t(train_meta))))
Patient_impute <- data.frame(t(Patient_impute$data))
#change 0,1,
for(i in c("LDLcholesterol","Fastingbloodglucose","Atrialenlargement")){
Patient_impute[,i] <- round(Patient_impute[,i],0)
}
for(i in c("BMI","Waist","Albuminurine","Creactiveprotein")){
Patient_impute[,i] <- round(Patient_impute[,i],2)
}
write.csv(Patient_impute,"Patient_impute.csv")
}
#clinic correction
{
suppressMessages(silent <- lapply(c("readxl", "dplyr",
"Hmisc","corrplot",
"RColorBrewer","kableExtra"), library, character.only=T))
Patient_impute <- read.table("Patient_impute.csv",sep=",",header = T,row.names = 1)
colnames(Patient_impute) = c("Diuretic","Beta blocking",
"Angiotensin II antagonists","ACEI",
"Aspirin","Coronary heart disease","Heart failure",
"Atrial fibrillation","Gender","Age","Blood glucose","BMI",
"LDL cholesterol","Creatinine serum",
"Average diastolic blood pressure","Fasting blood glucose",
"HDL cholesterol","Average systolic blood pressure",
"Total cholesterol","Waist","Weight",
"Treated for hypertension","Treated for lipids",
"Albumin urine","Hemoglobin a1c whole blood",
"Atrial enlargement","Rheumatic","Aortic valve",
"Rheumatoid arthritis","C reactive protein")
cor<-data.matrix(Patient_impute)
cor.m<-rcorr(cor)
cor.r<-cor(cor)
paletteLength <- 100
myColor <- colorRampPalette(c("dodgerblue4", "white", "brown4"))(paletteLength)
p.mat<-cor.mtest(cor.r)$p
corrplot(cor.r,
order="AOE",
type="lower",
method = "circle",
hclust.method = "ward.D2",
outline=TRUE,
addrect = -1,
col = myColor,
tl.cex=0.5,
tl.col="black",
addgrid.col = NA)
}
#rm cor<0.8 feature
{
cormat<-round(cor(Patient_impute,method = "spearman"),2)
cormat[1:4,1:4]
row_name <- ""
col_name <- ""
n <- 1
for (i in 1:nrow(cormat)) {
for (ii in 1:ncol(cormat)) {
if (cormat[i,ii] != 1 & abs(cormat[i,ii]) >= 0.8 ){
row_name[n] <- i
col_name[n] <- ii
n=n+1
}
}
}
row_name=as.numeric(row_name)
col_name=as.numeric(col_name)
cg_cor_data=cbind.data.frame(row_name,col_name)
cg_cor_data
colnames(cormat)
Patient_impute <- Patient_impute[,!colnames(Patient_impute) %in% c("Blood glucose","LDL cholesterol","Waist","Weight")]#删除彼此相关性高,和chf相关性低的特征,还剩下41-5=36
write.csv(Patient_impute,"Patient_impute_25.csv")
}
#norm
{
#normalization-not 0,1 feature
normalization<-function(x){
return((x-min(x))/(max(x)-min(x)))}
#c= c("AGE8","BMI8","CREAT8","DBP8","FASTING_BG8","HDL8","SBP8","TC8,Albumin_urine","Hemoglobin_A1c_wholeblood","crp")
for(i in c(10:17,20,21,26)){
#print(colnames(Patient_impute[,i]))
Patient_impute[,i] <- normalization(Patient_impute[,i])
}
write.csv(Patient_impute,"Patient_impute_25_nor.csv")
}
}
#merge cpg and valid EHR
{
load(file= "CorrectedBeta.Rdata")
new_beta = data.frame(t(CorrectedBeta))
new_beta[1:4,1:10]
new_beta = rownames_to_column(new_beta,"Sample_Name")
data_beta = read.table("sigCpGs.txt")#318
#data_beta = read.table("new_champ/sigCpGs.txt")#32
beta = new_beta[,colnames(new_beta) %in% data_beta$probe.id]
Patient_impute <- read.csv("Patient_impute_25_nor.csv",head=T,row.names = 1)
#beta+ehr
train_data <- cbind(Patient_impute,new_beta)
save(train_data,file="train_data.Rdata")
#some beta+ehr
train_data_sigCpGs <- cbind(Patient_impute,beta)
save(train_data_sigCpGs,file="train_data_sigCpGs.Rdata")
}
#merge overlap cpg and valid EHR
{
setwd("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\early_chf\\c1_UMN_JHU\\train_UMN_tset_JHU/1123_dataSummary/new_champ/")
#beta
load(file= "CorrectedBeta.Rdata")
new_beta = data.frame(t(CorrectedBeta))
new_beta[1:4,1:10]
load("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\diagnosis_chf/0622_nobootstrapping/champ/ID_overlap.Rdata")
beta = new_beta[,colnames(new_beta) %in% dmp_over1]
beta = new_beta[,colnames(new_beta) %in% dmp_over2]
beta = new_beta[,colnames(new_beta) %in% dmp_over3]
beta = new_beta[,colnames(new_beta) %in% dmp_over4]
beta = new_beta[,colnames(new_beta) %in% dmp_over5]
beta = new_beta[,colnames(new_beta) %in% dmp_over6]
beta = new_beta[,colnames(new_beta) %in% dmp_over7]
#valid EHR
Patient_impute <- read.csv("../Patient_impute_25_nor.csv",head=T,row.names = 1)
train_data <- cbind(Patient_impute,beta)
save(train_data,file="train_data_1.Rdata")
save(train_data,file="train_data_2.Rdata")
save(train_data,file="train_data_3.Rdata")
save(train_data,file="train_data_4.Rdata")
save(train_data,file="train_data_5.Rdata")
save(train_data,file="train_data_6.Rdata")
save(train_data,file="train_data_7.Rdata")
}
#merge overlap pair cpg and valid EHR
{
setwd("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\early_chf\\c1_UMN_JHU\\train_UMN_tset_JHU/1123_dataSummary/new_champ/")
#beta
load(file= "CorrectedBeta.Rdata")
new_beta = data.frame(t(CorrectedBeta))
new_beta[1:4,1:10]
load("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\early_chf\\c1_UMN_JHU\\train_UMN_tset_JHU/20210628_pair/champ/ID_pair.Rdata")
#sigDMV,sigCpGs,Bumphunter_dmp_early
beta_pair1 = new_beta[,colnames(new_beta) %in% sigDMV$probe.id]
beta_pair2 = new_beta[,colnames(new_beta) %in% sigCpGs$probe.id]
beta_pair3 = new_beta[,colnames(new_beta) %in% Bumphunter_dmp_early$probe.id]
#valid EHR
Patient_impute <- read.csv("../Patient_impute_25_nor.csv",head=T,row.names = 1)
train_data <- cbind(Patient_impute,beta_pair1)
train_data <- cbind(Patient_impute,beta_pair2)
train_data <- cbind(Patient_impute,beta_pair3)
save(train_data,file="train_data_pair1.Rdata")
save(train_data,file="train_data_pair2.Rdata")
save(train_data,file="train_data_pair3.Rdata")
}